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O BO3BYXXJAEHWWN NOKANIbHbIX KONEBAHUI
3APSI)KEHHBIMW YACTULAMU U CTYMEHbKAMMU
ABVKYLLNXCA AUNCTIOKALNI
B LLLEEIOYHOMANOUAHBIX KPUCTAJIIAX

0. 4. HOLUNH

VHCTUTYT KPUCTA/IJTIOTPA®NN um. A. B. LULYBHNKOBA AKAJEMUN HAYK CCCP,
MOCKBA, CCCP

n

M. AHCKMU

WCCNELOBATE/IbCKASA TPYTMA MO KPUCTANTOPUINKE BEHITEPCKOWM AKALEMUN HAYK
BYOAMELWUT

(Moctynuno 22. 1. 1976)

PellieHa 3a1a4a 0 BO36Y>KAEHUM ONTUYECKMN aKTUBHbIX NI0Ka/IbHbIX KONe6aHWii B LLeNo4Ho-
rafongHbIX KpUcTannax ABUXKYLLEAcA 3apsKeHHOW 4acTuuein. BblumcneHbl BenuymMHa norna-
LL|aeMOli NIOKa/IbHBIMW KOeGaHNAMMN SHEPTUM N MHTEHCUBHOCTb MX UH(PAKPACHOTO M3/yyeHust
B CNyyasnx, Korga ABVXKYLLMMUCS 3apsfamMy SIBMSIIOTCS MOHbI M 3apsKeHHbIe CTYMeHbKW ABU-
XYLMXCA AMCNOKaUmMiA. MpeanaraeTcsi MCMonb3oBaTh [AETEeKTUPOBaHWEe 3TOT0 W3NyYeHUs ans
onpeaeneHnsl KonMuyecTBa HepensiTUBUCTCKMX WOHOB B Kackafax, Co3laBaeMblX B KpucTasiax
YacTULLAMU BbICOKMX 3HEPIWiA, 1 ANS ANAarHOCTUKM N/asMbl NPU paspyLUeHn KpUcTania MHTeH-
CMBHbIM CBETOBbIM UMMY/1bCOM.

1 CyuiecTBoBaHME NOKa/bHbIX KonebaHWii B KpucTannax € MpUMecsamu
NPOSIBNSETCA B Pa3NYHbIX (PU3NYECKMX CBOMCTBaX 3aTUX Kpuctannos [1—3].
B wenoyHo-ranongHeix Kpuctannax (W. r. K.) ¢ MPUMECAMM 3aMeLLeHUs Hanmume
ONTUYECKM aKTUBHbIX NIOKaIbHbIX KOnebaTenbHbIX MO NPUBOAMT K MHGpakKpac-
HOMY MOT/IOWEHNI0 HAa 4acToTaX, MPEBbILAKOLMX YacTOTbl MOMEPEYHbIX ONTU-
YeCcKMX KonebaHuii coBepLUeHHOro Kpuctanna [2—3].

B HacTosLen paboTe paccmaTpuBaeTcs 3afada O BO3AENCTBUM 3apsAXKEHHON
yacTuupl, ABWKYLLEACS BHYTPW KPWUCTa/iia, Ha JIOKaNbHOE OMTMYEeCKoe Kose-
6aHue B LWL I. K. co cTpykTypoii NaCl. Mpeanonaraetcs, 4to TemnepaTypa Kpu-
cTanna npousBosbHa. Mo3ToMy [0 MPOXOXKAEHMS 3apSHKEHHON YacTWLbl OKab-
Hasg MOoJa HaxoguTCs B TEMJIOBOM PaBHOBECMU C OCTa/IbHbIMM KONebaTe/bHbIMM
MoJamm Kpuctanna, a €8 BO30YXKAeHMe ONMUCbIBAeTCA MNMAHKOBCKOW (yHKLMel
pacnpefeneHns. YunuTbiBas 4to 3T0 0BCTOATENLCTBO, Mbl NPOBENN WUCCNef0BaHUE
B paMKax KBaHTOBOW TEOPUN.

B n. 2, 3 N3/10)KEHO peLLeHne yKa3aHHOM 3afa4yn B rapMOHUYECKOM Npubamn-
YXEHWUW, NOSTyYEeHHOEe C MOMOLLLI0 METO0B HEPensTUBUCTCKON KBaHTOBOM Teopuu
nons. Bo3byxaeHWe NOKanbHOM MOAbl 3HAYMTENbHO, ecnu 3PMEKTUBHOE BPEMS
nponeTa 3apsXKEeHHOW YacTuLbl MOpsAKa mepuoja KonebaHWs M MHOrO MeHbLLe
€ro BpPeMEHW )KU3HW, 4YTO W ONpaBAblBaeT MPUMEHEHUE T[aPMOHMYECKOTO
NPUBAMKEHNS.

1* Acta Physica Academiae Scientiarum Hungaricae 41, 1976



4 HO. 1. OLWWH n . AHCKWN

[onyyeHHble pe3ynbTaThl Mbl UCMOML3YeM B M. 4, 5 Ang Tex cfy4yaes, Korga
OBMXKYLLMMUCA 3apAfamMu ABAAKOTCA WOHbl U 3apSXKeHHbIe CTYMEHbKU KPaeBblX
ANCNOKauuiA. B 4aCTHOCTWU, B 3TUX CAyvasix MOXeT O6biTb 06Hapy>KeHO WHdpa-
KpacHOe M3/y4YeHre U3 KpUCTaiaia Ha YacToTe I0KabHbIX KonebaHuii 1o0. CrneayeT
MOLYEPKHYTb, YTO 3TO W3/yYyeHUe, B OT/IMYME OT MU3MYUYEHUS| OCHOBHOM peLUeTKM,
He 6yZeT NOrnoLWeHO BHYTPWU KpUCTanna, yuto obfieryaet ero AeTeKTUpOBaHue.

Hawm pesynbTaThbl, 3anucaHHble B 06LUeM BUAe, cnpasefnvBbl AN MH0ObIX
LeHTpPOB B LW, r. K. OAHako Haubonee W3y4yeHbl, KaK 3KCMNEPUMEHTaNbHO, Tak
N TeopeTuyeckn, (7-UeHTpbl B W. . K. [2, 3], Korga npUMECbIO 3ameLLeHus
ABNAETCA BOLOPOA WK AelTepuid. MoaToMy B fanbHelileM Mbl OyfeM KOHKPeTu-
3MpoBaTh Hallle pacCMOTPEHUe, UCMOMb3ysA TeopeTuyeckne mogenu (7-LeHTPOB.

2) Ecnn Ha WMOHbI KPUCTA/INIMYECKON pelleTKn [eiCTBYIOT Cufbl, 3aBUCS-
Wwue or BpemeHu, n FAl, K, t) — pgekapToBa KomnoHeHTa (« = 1,2,3) cunsbl,
[le/ACTBYIOLLEN Ha K-blii aTOM B |-0if siueiike B MOMEHT BPEMEHU /, TO B rapMOHU-
YECKOM MPUBAMKEHUN MOBELEHME CUCTEMbl MOHOB OYyAeT ONUCbIBaTLCA Famufib-
TOHWAHOM

H=HO+ Hl H1=- 2 t»Ai,k)K(i,b,t), (1)

= Ek.l’, 2 Mg - ﬁ«* |'2|<\-f3 <p«BNeVk')B g K)u BRI~ K')e @)

3gecb M k> pn(l, k), un(l, K) — COOTBETCTBEHHO Macca W KOMMOHEHTbI
MMMYNbCa M OTKIOHEHWI K-TO MOHAa B /-0if Auelike kpuctanna, <pB(lk; VK') —
OnHamnueckass matpuua kpuctanna [2]. OTKNOHEHWS M UMNY/bCbl OTAENbHbIX
MOHOB MOXHO BbIpa3uTb Yepe3 HOpMa/lbHble KOOpAMHATEI A = as+ a/ W KaHOHU-
YECKN COMPSHKEHHbIE UM UMMY/bChI

P5= -"-(«s-

I v \w
“w>= gy A OI2mik) A, ()
Pa(lk) = P ~ ) 122 *s'2B*(k)Ps- (4)

3pecb h — noctosHHaa MnaHka, s — 4acTOTbl HOPMa/bHbLIX KONebaHuIA.
OnepaTtopbl POXAEHUA W YHWUTOXEHMS (DOHOHOB S-O/ Mofbl KonebaHwii o/, as
YOBNETBOPSIOT MNepPecTaHOBOBYHbLIM COOTHOLLEHMAM [a®) 0*] = 6ss, a Koaptu-
umenTbl BI(Ik) — ycnoBusim opTOHOPMMPOBAHHOCTM W 3aMKHYTOCTU

2”(*B'N9) BNe ) = «&, 2n BNe ) K)= 06"V V (5)
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O BO3BYXXAEHUV NOKANbHbLIX KOMEBAHUN 5

Wcnonb3ys (3), npeobpasyem HAt) K Buay
al=-2 /X . T = BP(l, k)Fa(l+k,t). (6)
K

eli3eHOEpProBCcKNe ypaBHeHUs ABWXeHWs ana onepatopos J1§/), Ps(i),
BbITeKatowme u3 (1)—(6), metoT Bug

As(t) = 2 i Ps(t), P(t) = - . A )+ m, (7)
nnn

A() + corAs(D) = ~-Ts(t). (8)

Mcnonb3ys 3anasgbiBalowlyto ¢yHkumio [puHa yp. (8), nonydyaem ero
peLleHne

As(t) =A4"\t) + -ﬁjr_@*m*‘)sin (*- *)e ©)

3pechb npegnonaraetcs, uto nput  — °° cunbl Fal, K t) -* 0, A{n\t) —
OrnepaTopHOE peLLeHne COOTBETCTBYHOLLErO OHOPOLHOIO YpPaBHEHWS, YAOBNETBOP-
AIOLLIEe HEKOTOPOMY Haya/lbHOMY YCNOBUIO NPU t -> — oo.

PaccmatpuBas 3afady 0 BO3OY>KAEHWUMN 3apsHXKEHHOM YacTuLEen NoKanbHbIX
KonebaHWn ONTMYECKOro TWMa, MPeanoiokKUM, YTO YacTuua C 3apsgom Ze [Bu-
XETCA NPSMOSIMHEIHO CO CKOPOCThIO \ B MAOCKOCTM, 06pa3oBaHHOW KpucTanio-
rpagmyeckumy ocaMu Xy, TPaekTopus COBMafaeT C KpucTaniorpafuyeckon
0Cbt0 X, @ MPMMECHLIA aTOM HaXOAWUTCA B TOW XKe MI0CKOCTM Ha OCMY Ha paccTosi-
HUM b OT Hayana KoopAMHar.

Mpu BbluucneHnn fs(t) no . (6) yutem, uto FaAl, Kk, t) = elKEX( K, t),
E(/, K, t) — HanpshKeHHOCTb 3NEeKTPUYECKOr0 MOMs, Co3[aBaeMas 3apsXKEHHO
YyacTuLLeil B TOYKe, COBMajatoLleli ¢ MonoXeHuem paBHoBecusi noHa (1k), eNo—
31EKTPUYECKNI 3apsf 3TOFO MOHa.

Kpome npvMeCHOro aToMa, B JIOK&/lbHOM Kone6aHWM Yy4acTByeT /uULb
HebOoNbLLIOe 4MCNO ero cocedeir, ansa KotopbiX B!S)(/, K) CyLIECTBEHHO OT/IUYHbI
OT Hyna. Tak B MOfenn npumecy 3amelleHus [3], B KOTOPOW y4TeHO OTnvuue
MacCbl MPUMECHOr0 aToMa OT MacChl 3aMELLEHHOr0 MM aToMa OCHOBHOW peLleTKM
N M3MEHEHWE CU/bl B3aVMOLENCTBUA MEXAY aTOMOM NPUMECU U ero 6amxaiinmu
cocefisiMu, NLb Ana aTux nocnegHux BfAL, k)= 0.

Kak cnegyeT vM3 Mofennm MexXAayy3enbHoro fAedekra, pacCMOTpPeHHon B [4]
(t/j uentp B KI), B NnokanbHOM Kone6aHuW, OTBETCTBEHHOM 3a MH(paKpacHoe
NOrfoLleHre, NpPakTUYeCKN y4yacTBYeT fiMLb MOH BOAOPOAaA.

Mpegnonarasd, 4TO nNpULenbLHOE paccTosiHue b~>a (a — paccTosHue
mMexay OmmKalwmnmm cocegamn B pelleTke), 3anuwem En(l k t)~ E&O, t) -
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6 HO. A. FOLVH n M. AHCKWN

- (Rifc — RQ y Ea, npeHebperas BbiCLUMMU YnieHaMmn pasnoxeHns no RIk— RO,
rae R — pagnyc-BekTopbl moHa npumecn (0) m ero cocegein (1K), a rpagueHT
y Ealt) BbluMCNEH B TOYKe HaxoXAeHuWa npumecu. Ana AedeKTOB 3amelleHus
B L. I. K. NPUMECHbIIi aTOM SBASAETCS LEHTPOM CUMMETPUK. [103TOMY BTOPOI Y/eH
pas3fnoxeHus faet Hynesol Bknag B fs(t), Tak Kak 4ns AByX OLHOMMEHHbLIX UOHOB,
PacMONOXEHHBIX CUMMETPUYHO OTHOCUTENBLHO MPUMECHOTO aToMa, BCE MHOXUTESN
B (6) oAMHakoBbl, 3a MWCKtoYeHMeM Riit— RO, KOTopble OTAMYAKOTCA 3HAKOM.
YuuTtbiBas 310 B (6), nony4vaem

h 1/2
[(*)=2 Ed0,t)$\ *«= 2 *K BP(Ik) (10
*) a0, t)$\ *« P < oMK

3ameTuM, YTO OMnepaTop AMMNOMLHOTO MOMEHTA, CBA3AHHOTO C OTK/IOHEHWEM
VIOHOB OT PaBHOBECHbIX MOMIOXEHWIA, paBeH

< = %k e'K n«l) = 2S &S)As- (n)

Takunm 06pa3om, BO3OYXeHNe NOKaNbHOIo Koneb6aHns MpomcxXoauT 3a Cuét
B3aVIMOAENCTBUSA €ro AMMONLHOr0 MOMeHTa g(S)AS C KY/IOHOBCKUM MOMIEM ABUXY-
Leica 3apsyKeHHOM YacTuLpl.

JlokanbHble ONTUYeCKUe KonebaHWs, CBA3aHHbIe C JeeKTaMu 3ameLleHus
B L. I K. C KyGUYeCKOW peLLeTKOl, TPEXKPaTHO BbIpOXAeHbl. BekTopbl g ans
TPeX BbIPOXAEHHbIX BeTBeW S = 1, 2, 3 OpTOroHa/IbHbI, MOCKO/IbKY MpY NOBOPO-
TaxX Ha Yrnbl 9/2 OHW JO/MKHbLI NepexoanTs Apyr B apyra. [poussesis nuHeinHoe
npeo6pasoBaHWe Ana HOpMasbHbIX KoopauHaT A1 /12, A3 Mbl MOXeM [0OMTbCA
TOro, 4TO BeKTOpbl g OyayT HanpaB/ieHbl MO KPUCTaNOrpauyecKMm OCsM.
Moatomy 3anuwem gH= g&S s= 1,2,3. Mbl BbIYMCAUAN BeIMUUHY g ANA
YNOMSHYTOW Bbille mMogenu [3] u noayuunam

M,+ M2
™M= ————— (12
Oo(MIM2QI2 M1+2M2
3nechb — Macca 0AHOBA/IEHTHOrO MPMMECHOr0 MoHa, M2 — macca 6:m-

XaliLlero cocefHero MoHa OCHOBHOW pewieTkn, e0= \ek|, ea, — yacToTa /I0Kab-
Horo Kone6aHus. Capyroii CTOPOHbI, BENMUYMHA g MOXET ObITb HaliieHa 13 pe3sy/ib-
TaTOB 3KCMEPUMEHTOB MO UH(PaKpacHOMY MOrNoLLeHNO Ha YacToTe cdl.

MpeanonoXum, YTo B MOMEHT BpeMeHu t = 0 3apsKeHHas 4acTuua Haxo-
JOUTCA B Hayane KOOPAMHAT Ha paccTosHMM b oT mpumecHoro noHa. Torga komno-
HEHTbl Hanps>XXeHHOCTU eé COOCTBEHHOrO KY/IOHOBCKOrO MOAs B TOYKE pacnoso-
YXEHUS MPUMeCU B MOMEHT BpeMeHM t paBHbl (VX = v > 0)

Zevt

Ze
0 (V221 922 °

b
(rA0] b232

Acta Physica Academiae Scientiarum Hungaricae 41, 1976

Ey{0, 1) Ex(0, 1) EA0,t)=0. (13)



O BO3BYXAEHUW SIOKAJIbHbIX KONEBAHNI 7
Paznoxum Exy(t) B uHTerpan ®ypbe W BbIMUCAUM KOMMOHEHTbI ®ypbe

EXMo)= — I EXMDem dt.
A 2rJ oo 0

Monyuvaem [5]
Zeb I° cox Zeco_ cob

E y(co) dx(x2\-b2~13 cos-——- = = K x (14)
2nv J- V nv*
Ze COX oo |
Ex((0)= —i dx(x2-\-b2)~32Xsin — 15
((©) 2nv f- ® ( ) \Y \Y% (19)
roe Kog — | — moanduumpoBaHHble PyHKLUKM Beccens TpeTbero poga.

Yutem Tenepb NONAPU3aLMI0 KPUCTAN/IMYECKOA Cpedbl 3MeKTPUYECKUM
nosieM 3apsHKEHHON yacTulbl. [19 3TOro Mbl BOCNONb3YeMCH pe3y/ibTaToM, nosy-
YeHHbIM B TEOPUWM MHOTMX T/ B pamKax AW3NIEKTPUYecKoro gopmanusma [6, 7],
M 3anuwem

Ueoqp= VP
e(w, q)
roe Voo, q) — KOMMOHeHTa 4-MepHOro npeob6pasoBaHnsa Pypbe KyOHOBCKOrO

noTeHLUMana 3apsXKeHHOM YacTulbl B BakKyyMe, paBHas

Ze .
0(co—qv) [8],
2n22
s(co,q) — MNpoAoNibHas AU3NEKTPUYECKas MNPOHULAEMOCTb KpucTanna, q —

BONHOBOW BeKTop. U(co, q) = V(co, q) + Vp(co, q) eCTb CyMMapHbIin (3ddeKTms-
HbI1) NOTEHLUa/, CO34aBaeMblii «CTOPOHHEN» 3apsXKEHHOI YacTuueil B cpefe, a
Vp(co, g) — NOTeHUMan MHAYLMPOBaHHbIX 3apsfoB. Pasnoxum e~\co, q) B psg Mo
W= P(13 cO06pPKEHNI CUMMETPUN HEUETHbIE MO ( YEHbl B Pa3foXeHUU OTCyT-
CTBYIOT)

e-Atw, q) = e-Aco, 0) + Q2 -+ (16)

8@

ShheKTMBHLIM Be3pasMepHbIM NapaMeTpoM pas3fnoXxeHus B (16) asnsetcs
(ga)2 [9], @ — paccTosHME MeXAY 6AMKalluMMN COCelAMM B PeLLEeTKe. B TO Xe
BPEMS B KY/IOHOBCKMI MOTEHLMaN Ha PacCTOfHUAX " b OT 3aps>KeHHOI YacTuLibl
OCHOBHOW BKNaf JatoT KOMNOHeHTblI ®ypbe V(co, q) cq £ 1/b.

Mpy BbIYMCNEHUN HAMPSXKEHHOCTU E(0, t) Mbl OFPAHUYUMCH B Pa3N0OXeHUM
(16) ero nepebiM 4neHoM e-\co, 0) = e-[lco) (B KyOMYECKMX KpUcCTannax TeH30p
eik(co) = aile(co) ). 310 NpUBAMKEHNE ABNAETCS TOYHbIM Npn b">a, a npu b % a
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8 HO. A. FOLUUH n N. AHCKW

COOTBETCTBYET Y4Y&Ty [/M1aBHOM YacTu MONApu3auuu cpefpl, BBUAY 4YacTUUHOW
B3aVIMHON KOMMEHCALUN HeyUNTbIBaeMbIX BKIALOB OT HaBEAEHHbLIX MONspu3saLmii
MOHOB B HanpshkeHHocTb E(O, /). B 4acTHOCTW, HeTpPyAHO BWAETb, UTO BTOPOM
uneH pasnoxeHus (16) maeT HyneBoli Bknag B E(0, /). Mbl nonyyaem B pe3ysb-
TaTe, YTO KOMMOHEHTbI ®ypbe HanpPsXXeHHOCTU anekTpuueckoro nons £a(o, i)
paBHbl Exy(ps) = Exy(ale(m.
3) MonbITaeMcs BLISICHUTbL, B KAKOM COCTOSIHUM BYAYT HaX0AUTLCA OCLUANSA-

TOPbI NOKaNbHbLIX MOZ MOC/e NPOXOXAEHNS 3apsHXKEHHON YacTULbl, eCn 4O 3TOro
OHW HaxXOAMNCb B COCTOSHUW TEMJIOBOr0 PaBHOBECUS C OCTasIbHbIMWU KosebaTeslb-
HbIMM MogamMn KpucTtanna. [lockonbky npu t-* + o0 fs(t) —»0 Mbl MOXEM
ncrnonb3oBaTh Hopmannam in, out — onepaTopoB KBaHTOBO Teopuu nons [10].
Monyuaem u3 (9)

A fout)(t) — A<in)(t) + -f use-im¥, us: rodefs@) . (17)

WHTepBan BpemeHun T, korga fs(t) npaktuueckn otanyHa ot HynaT ~ C —?
\%

rae uicno C~ 10. Mostomy reiizeH6eprosckmii onepatop As(t), gaBaembliii (9),
cosnagaet ¢ Agut)(f) npu t >T . Micnonb3ya (10)—(15), Mbl nofiyvyaeM BefMUMHBI
nx, U2 4N MO, AWMOMbHBLIA MOMEHT KOTOPbIX MOMISPU30BaH COOTBETCTBEHHO MO
ocam Xy

ui — KO n2= iny|ft>'Ub - 20 (18)
hv2e (ce0)
[ns BbluMCneHNs CpefHNX 3HAUYEHUIA AMHAMUYECKUX BEINUMH, OTHOCALLMXCS
K KONMe6aHuto AaHHOW MoAbl, Nepeingem K npeAcTaBNeHN0 B3aMMOAENCTBUS U Hail-
[EeM MaTpuuy NAOTHOCTW NIOKaNbHOMO KOfiebaHus Mocsie NPOXOXAEHUS 3apsKeH-
HOW uYacTuubl é(out) = &i, npegnonaras, 4TO A0 3TOrO

o= é(@n= exp {—hcoO(@a+as+ 1)IkT}n~LT).

34ecb K — noctosHHaa bonbuMaHa, T — Temnepartypa KpucTanna.

[ns HaxoxnaeHus Ox yAoOHO MCMo/Mb30BaTh MpefcTaB/eHne KOrepeHTHbIX
COCTOSIHWIA OCUMNNATOPOB |a>, o06nagatrolMx CBOWCTBOM as|a) = a| a> [11].
B a-npeacrasneHny Ana martpuLbl NAOTHOCTA

fo= (d2xPO{x)\xy(<x\, Q) — ---— fXp (-eoeeee- 19
J( {x)\xy( PO(a) ey p( \ n((T))I
nn(T)= ¢exp h:([_lq_a . KorepeHTHOe COCTOSIHME |a) MONyyaeTcs M3 OCHOB-

HOr0 COCTOsIHMS ocumnnsTopa |0> fAeliCTBMEM YHMUTApHOro onepaTopa CABMra
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O BO3BYXXAEHWW NOKAJ/IbHbIX KOJIEBAHUY 9

la) = D(a) 10>,D(a) = exp (aa+ — a*as) [11].YuuTbiBas cOOTHOLWEHUSA Arout)=
= S+7in)S, Haxoaum, 4TO MaTpuubl paccesHua S, cootseTcTBytowme (17), (18),
paBHbl D(us) gns s = 1,2. MNoatomy onepatop ¢x = S8 + MOXHO NpejcTaBUTb
B BUAE

él = J d*a P0(«) D (us) D(«) |0><0| D+(«) B+(us) . (20)

Wcnonb3ysa 3akoH YMHOXeHWs onepatopoB casura [11]

D(a? Dfo) = Dfo+a-j)exp ™ XM”"N ««i| N

nonyyaem
gi(*) = J *Po@)£>@) P(“+«9) |0> <0 D+(x+us). (21)

CootseTcTBYytOLas (21) BecoBas (yHKLMS

" A I I«- »s
x)y = J'OAX —ax  «s) Po(«i)d2*i5 exp (22)
PA%) «s) Po(«i) T 1 »(N)
Lna BbluncneHns cpefHUX 3HaYeHWA PasfMYHbIX BENMYMH C NOMOLLbIO (21),
(22), 3anuwemM BbipaXKeHWe AN COOTBETCTBYHLLErO OMepaTopa B BWAE CYMMbI
HOpPMasbHbIX MPOU3BEAEHUIA OT onepaTopoB i+(/), as(t). YunTeiBasa onpegeneHue
KOTepeHTHbIX cocTosHui 1 . (19), (22), nonyunm

ei(n-m)ai,t

SpfeKW )" («*(*)} = An(T) J (a*+ M¥" (a+u)mexp (23)

Mepexoas K NONSAPHbIM KOOPAMHATaM B KOMMIEKCHOI NIOCKOCTU @, HaXoauMm
[nn(T)] (X*)ma" exp I~ d2a = [n(T)]mml 6, (24)

dopmynbl (23), (24) NO3BONAOT HANTWM CpeAHee 3HAYEHWE NPOW3BOSbHOIO
onepaTopa, 3aBuUCALLEro oT a,, as. I3 HMX crefyeT, 4To CpefHue OT OnepaTopos,
NNHEeWHbIX No a+, aS NonyvalTCs U3 COOTBETCTBYHIOLLEIO BbIPaXKEHUA A8 3TUX
onepaTopoB 3amMeHon as —»us, a/ -* u*. CpefHue OT OMepaTopoB, KBafpaTUYHbIX
no a/, as, HaxogAaTCsA C MOMOLUBIO COOTHOWeHUsA <+ ds>= n(T) | us\2 B uacT-
HOCTW, NOA [eACTBMEM 3apSKEHHOW uYacTuubl floKanbHas Moga npuobpeTaeT
3Hepruto heeQ\us 2 [ns sHeprum, npnobpeTaeMoii TPems BbIPOXKAEHHbIMI MOAAMU
OAHOrO MPVMMECHOrO LIeHTpa, Nosy4aem

_ 49Z2e6 T 2 1od0b L K2 ®0b (25)
1® frvs 2 (100) [ ° ( V v
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10 O, . FOWWH n N. AHCKW

Bblucium Tenepb € MOMOLLBKO MaTpulbl MAOTHOCTU (T WHTEHCUBHOCTb
MHPaKpPacHOro wu3fyyeHnUss Ha uactote o 419 OAHOTrO JIOKANbHOTO LEHTPa,
BO30Y>KAEHHOT0 3apSXKEHHOM vacTulein. Micnonb3ys opmyny Ans MHTEHCUBHOCTU
OMNONBHOrO U3NnyyeHns B cpefe [12], nonyyaem

2garniel2(T0)

10= 27(6) Ir,
3hc3

(26)

B aToli hopmyne n B fanbHeileM He yUMThIBaeTCA BCerda CyLecTByloLLee
TENA0BOE M3/lyyeHne onTuueckoro konebaHus ~ n(T).

Mocne NPOXOXAEHUS 3apPAXEHHON YaCTULbl aMNIMTYAbl NIOKa/IbHbIX Kose-
OaHWiA ByayT 3aTyxaTb B COOTBETCTBUM C hopmynoi u(t) = ue~rt n3-3a B3au-
MOLENCTBUA C OCTa/IbHbIMK KOfiebaTelbHbIMA MOLAMU  KpUCTaiia BCRefCcTBue
aHrapMoHusma, I — MoAywupruHa AMHUM MH(PaKpacHoOro nornouwleHus [2].
Bypaet 3aTyxaTb M UHTEHCUMBHOCTb UH(MPaKPacHoOro usnyuveHns ~ e~2rt. MNonHas
3Heprus, U3flyyeHHas O4HUM LIeHTPOM MOC/e MPOXOXKAEHMWS 3apSHKEHHON YacTuLbl,
pagHa (I'r< TN

« = e-2cdt=~ =%*ib)~ - (27)

O606LWKMM MOoyYeHHbIe pe3y/bTaTbl Ha Cy4yail MPOWM3BONLHOIO Hanpa./e-
HUS  ABWKEHHON 4acTWubl MO OTHOLIEHWK K KpUCTannorpadmyeckmm Ocsm.
C 3TOi Uenblo NpoBeAeM MAOCKOCTb, MPOXOAALLYH) Yepe3 TPAeKTOPUI0 YacTuubl
M MPUMECHOA aTOM M BBEAEM B 3TOW MIOCKOCTV AEKApTOBY CUCTEMY KOOPAWHAT
X', y' Takum 06pasom, 4TO TPAeKTOpUsa YacTuLbl COBMafaeT C OCbio X', a npuMec-
HbI/A aTOM /IEXXUT Ha OCU Yy’ Ha PaccTosHMU b OT Havana KoopauHat. BennumHsl
Ey(t), Ex(t) n nx komnoHeHTbl ®ypbe gatotca ¢. (13)—(15), a pe3ynbTupytoLime
CABUIM KOOPAMHATbl S-r0 NOKaNbHOr0 KonfebaHus paBHbl US= uX cos-(j*gs) +
+ w cos (y*gs). B aTy hopmyny BXOAAT KOCWMHYCbl Yr0B Mexay ocamu X',y
1 BEKTOPOM ¢<§, HampaBfieHHbIM MO COOTBETCTBYHOLLEA KPWUCTaniorpaunyeckoii
ocu, ub W gatotea . (18). HetpygHo y6eantbes, uto . (25)—(27) 6yayT non-
pexxHeMy Ccrnpasef/Bbl.

Bbluncnnm sHepruo S, TepsiemMyro 3apsSXKeHHON vacTuueld Ha efuHuLe NyTu
Ha BO30YXfeHWe NOKaNbHbIX KonebaHwii. MNMpeanonarass, yto NpUMECHbIE aTOMbI
pacnonoXeHbl B KpUCTanie paBHOMEPHO € NAOTHOCTbIO N CKHaxoamm

3= Ncl 2nbé”b) do = Dv-*KO “oK I 0
Jh \ 11V (28)
8 nb0Z2e2g2e2N 1
LLI2(GD)

roe b0 — MMHMManbHOe 3HaueHWe MpULEnbHOrO napameTpa. PU3NYECKUM OCHO-
BaHWEM ANs1 NPOV3BOAMMOrO MPW WHTErpUMPOBaHUK MO NPULENbHOMY NapameTpy

Acta Physica Academiae Scientiarum Hungaricae 41, 1976



O BO3BYXXAEHUW TOKANbHbLIX KOJIEBAHUIA 11

YCPeAHEHWUs MO PacCTOSHUAM MeXAy MPYMECHbIM aTOMOM W TpaeKTopueld 3apsi-
YKEHHOI yYacTuupl SBNSETCS MPOLLECC MHOTOKPATHOrO PacCesHUs 3apsKeHHON
YacTULbl Ha Masible YTribl. SHEPrus, TepsieMas 3apsHKEHHOW YacTuLel B eAUHNLY
BpemMeHn, W = $v. Mpwu onpeaeneHnin MHTEHCUBHOCTM MHPAKPACHOTO M3MyyeHus
Ha yacToTe cod M3 KpucTanna, B KOTOpoM N 3apsXKeHHbIX YacTul, ABUMXYTCS CO
CKOPOCTbIO V, yuTéM, 4TO BO3GYXK/[EHHOE YacTuLeli NoKanbHOe KonebaHue 3aTy-
XaeT 3a Bpemsi ~ -1, a B aKCMepuUMeHTe M3MepsieTCs yCpeaHeHHas Nno BpeMeHU
MHTEHCVMBHOCTb, KOTOpas paBHa

—_ NaylY
I = Név 29
r (29)

BenmunHa ykKasaHHbIX Bbille 3()()EKTOB CYLLECTBEHHO 3aBUCWT OT YMC/IEH-
HOro 3HaueHus z = bCcojv 1 BbICTPO YObIBAET MPW Z > 1, YTO CBA3AHO C aCUMMTOTK-
YeCcKMM MnoBefieHNeM (YHKL I

K 01(z) »

Mony4yeHHble pe3ynbTaTbl MOXHO WMCMOMbL30BaTh U NPU PacCMOTPEHUN B3au-
MOLEACTBUA ABMKYLLMXCA 3apsAoB C ONTUYECKM aKTUBHLIMW PE30HAHCHBLIMU
KonebaHnamK, ana Kotopbix I < 000, MOCKONbKY AN MPOMEXYTKOB BPEMEHN
~ c001 pe3oHaHCHOe KofiebaHWe MOXHO MPUGAMXKEHHO OMMcaTb KaK J0KabHOe
[BWKeHWe onTuyeckoro Tuna [2, 3]. B 3akntoueHWe faHHOro pasfena ocTaHo-
BUMCS Ha KOHKPETHOI MNpuUMHE, M3-3a KOTOPOM MOXXHO MCMO0/b30BaTb FapMOHU-
yeckoe NpubAVKEHWE NpU pelleHMn Halleid 3agadn. C y4yéTOM 3HrapmMoHM3Ma
BTOPOW uneH B yp. (9) MpuHMMaeT Buf

I- * fOt") sin K (t-t')] e-N*~M.

nJ-o
Kak cnegyeT v3 NpoBefjeHHOro HaMmn aHann3a, 1okanbHoe KonebaHve Bo3byxaaeTcs
MposieTatoLLeil YacTULIE 3HAUNTENbHLIM 06pa3oM UL B TOM Clyvae, eciu Bo3-
6yxpatowan cuna /QK) cywecTBeHHO OTAMYHA OT HYNA ANS BefMuumH | t\ A T,
a Bpems nponeta T~ ofl'l Bygem paccmaTpuBaTh BpemeHa t Takue, uTo |/ 1<T.
CooTBeTCTBEHHO, \t — V \ N T~ coql TaK Kak BefnunHa 3aTyxaHus I o), TO
Moatomy BennunHy exp [— IF'(/ —/)] MOXXHO 3aMeHWUTb eauHULEN

ANS YKa3aHHbIX 3HAYeHUN t.
4) B cnyyae, Korga ABWXKYLLMMCS 3apsafloM fBASieTCS MOH ¢ Maccoid Mi}

Miv2 .
paccMOTpeHve M. 2, 3 NPUMEHUMO MpU  YCNOBUK > ii (b). B cnyuae

M-v2
e0=-" > é Lb) ero MOXHO uCMONb30BaTb A8 NPUGIMXKEHHOIO Camocor-
Ub).
NacoBaHHOro pelleHWs 3afayu, nonaras v — NS aneK-
P A 2AT ¢ 2M, A
TPOHOB YKa3aHHOE HepaBeHCTBO A1 CKopocTelh v~aa>0 He BbINOHAETCA.
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Mpun 061yyYeHUM TBepAbIX Tesl MOTOKaMWU PensTUBUCTCKUX vacTuly, (npoTo-
HOB, HETPOHOB 1 T. f.) B KpUcTannax 06pasytoTcs pas/IMyHOro poja pagvaloH-
Hble HapyLlUeHWs B pesynbTaTe CMELLEHW aTOMOB M3 MX PaBHOBECHbLIX MOOXe-
HUi. Ecnu najatowias Ha KpucTani 4vactuua o6nafaeT [OCTaTOYHO BbICOKOM
3Heprueid, T0 OHa MOXET BbI3BaTb KaCKaj HapyLUeHWi, MOCKOMbKY BblbMBaeMble
€10 «MePBUYHbIE» aTOMbl MOTYT, B CBOK 04epedb, 06pa3oBaThb Ha [AJIMHE CBOEr0
npobera HeCKONbKO «BTOPUYHbLIX» CMELLEHHbIX aToMoB M T. A. [13, 14]. Tak no
oueHke 3eiTua [13] HEATPOH C 3Hepruein 2 MaB Npu 3aMefneHUN 40 TENOBbIX
3Hepruin NpousBoaMT B TBepAbIX Tenax ~ 103 cMmeLLeHuiA.

Bbi6/BaeMble MOHbI B pe3yfbTaTe CUALHOIO B3aUMOAEWCTBUA C aTtomamm
KpucTanna mMoryT notepsTb 4acTb 3/IEKTPOHOB CBOMX BHELUHMX 060/104eK. B aHa-
NM3e 3TOro npouecca, nposegeHHoMm H. Bopom un [. Ningxapgom [15], yuuTbiBa-
N1Cb pesynbTaThbl aKcrnepuMeHToB H. SlacceHa [15]. M3mepss OTKNOHEHUS MOHOB
B MarHMTHOM rone, JlacceH onpeaensn BeNMUMHy UX 3apsaga nocne npoxoxaeHus
yepes rasbl U TBepAble Tena. B nocnegHem cnyvae 6biin 06Hapy>XeHbl 60MbLIve
(hNyKTyauuu 3apsifoB WMOHOB OTHOCWUTESIbHO CpefHero 3apsafa, ornpefensemoro
GanaHcoM Mexzay npoueccamu MoTepy W 3axBaTa 3/1eKTPOHOB. PaccmaTpuBas
[BWKEHNE VOHOB B LW, T. K., CeLYeT YUNTbIBaTh 6O/bLUIYIO LLIMPUHY 3aMpeLLeHHO
30Hbl, YTO 3aTPYLHAET MPOLEeCChl 3axBaTa 31eKTPOHOB MOHaMK.

[eTekTpoBaHMe MH(PaKPaCHOTO M3/IyYeHUs NOKaNbHbIX MO MOXET AaTb
CBELEHNSA 0 YMCe NOHOB C HEPENATUBUCTCKMMMU CKOPOCTAMU, UMEIOLLUXCA B KPU-
CTa/ine B pe3ynbTaTe KackagHOro npouecca, ¥ BENMYMHAX UX 3apALOB.

MpeanonoXmm, YTo Ha L. I. K. NagaeT CTauMOHapHLIA MO BPEMEHM MOTOK
PENATUBUCTCKMUX YacTuWL, U BCEACTBUE KACKaLHOro MnpoLecca B KpUcTasie NMeeTcs
Nj noHoB, o6nagatoLmx 3apsagom Zj e, n /yv) — GyHKUUa pacnpegeneHns aTux
noHoB Mo ckopoctam, J f(y)d3v= 1. B 3ToMm cnyyae MHTEHCMBHOCTb MH{paKpac-
HOro u3flyyeHWs Ha YactoTe od0 ecTb

J=T-'2 NjSfjui a g daV. (30)
J

a &j(v) paetca . (28) npu 3ameHe Z  Zj. B KayecTBe MUHUMaJLHOIO MpULLESb-
HOro paccTosiHua b0 MOXHO BblGpaTb CymMMy pajmycoB MPUMECHOr0 W NposeTaro-
Wwero uoHoB. Cpenaem crefytollee 3amedaHMe OTHOCUTESILHO Takoro BblGopa.
B Knaccmyeckoi Teopum paccesiHUS UMEeTCs OAHO3HAYHOE COOTBETCTBUE MEXAY
YIrOM paccesiHUs W 3HaYeHUeM NpuLenbHOro napametpa [17]. MoaTomy, orpaHu-
4yMBas WUHTErpupoBaHWe Mo NpULenbHOMY napameTpy, Mbl (DAKTUYECKN He YYUTbl-
BaeM MpOLLECCOB paccesHUs 3apsHXKEHHOW YacTuLbl HA NPUMECHOM WOHE Ha Yr/bl,
6onbwve HekoToporo yrna 0Q 3aBucawero ot BO. CnegyeT umeTb B BUAy, 4TO
13-3a W3BECTHOW YI/I0BOI 3aBUCMMOCTU amnmTygbl [18, 19] paccesHus u pesep-
(POPAOBCKOr0 CeYeHWUs paccesiHne, 00513aHHOE KYNOHOBCKOMY B3auMO[ENCTBUIO,
MPOVCXOAWT, B OCHOBHOM, Ha Masble yrbl. C Apyroii CTOPOHbI, A5 paccMaTpu-
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BaeMbIX HamMW 3HEPruiA ABUXKYLLUXCS MOHOB GO/bLUMM YriaM pPaccesiHus OTBeYaeT
Takas Be/MyMHa nepefaHHON NPUMECHOMY MOHY KUHETWUYECKOW 3Heprum, KoTopas
MOXET NPeB30iMTM aHepruio Ed~ 253B, OCTATOUHYIO A1 €r0 CMELLEHNE B MEX/Y-
y3enbHoe nosioxkeHune [13]. STOT npouecc cnefyeT YUYUTbIBaTb MPU BbIYUCIEHNM
3HEprun, TepsemMon ABMXYLUMMCA MOHOM [13], HO OH He JaeT BKMaj B MHTEHCUB-
HOCTb MH(hpaKpacHOro u3ny4veHns Ha yactoTe o. Mpy pacCcMOTPEHUM paccesHUs
Ha 60/bLLKE YT bl HEO6X0AMMO, HapAAY C KY/IOHOBCKUM B3aVIMOAECTBUEM, YUNTbI-
BaTb OTTa/KMBATENbHbIA NOTEHLMAN B3aMMOAEACTBMA MeXAy MoHamu [20], o6s-
3aHHbIA MNEPEeKPbITUI0 UX 3MEKTPOHHbLIX 000M04YEK, WMEHOLWMA Manblii  pagnyc
[eACTBMA 1 MPenaTCTBYIOLWNIA COMMKEHNIO MOHOB. TOT (hakKT, YTO MpPW CTOSIKHO-
BEHWWN MEXAY WMOHaMK, KOTOpOe COMPOBOXAAeTCA nepegadveil sHepruv, 60/bLUEN
Ed, B MOMEHT HanbosbLLEro CONMXKEHUS ABUXKYLLErOCS Y NPUMECHOTO MOHOB MMEeT
MECTO 3aMeTHOe B3aMMHOe MPOHUKHOBEHME UX3NIEKTPOHHBIX 060/104eK [13] 1 onpe-
[lensieT BbIOOP HWXKHErO nepefena WMHTErpuMpoBaHUA Mo b nopsgka CyMmbl WOH-
HbIX pPajunycos.

OLEHUM BEeNIMUMHY WMHTEHCUBHOCTU U3/lyYeHUs 77-LeHTPOB B Kpuctanne
KC1(H). Mpuatomodd= 10M4cek-1,g200* 1" 7,5 ¢ 104cm3cek-2, B0 3« 10-9cm.
Monoxmm Nc” 109cm-3, Z = 3, codl -1 - 102

Lns ckopocteit «oT 1,5 ¢ 10e go 3 « 10e cm/ceK, KOTOPbIM COOTBETCTBYHOT
KUHeTUYeckue aHeprum noHos K 45 n 180 3B, uHTeHcuBHOCTbL | ~ N(v)I0~18BT,
roe N(v) — uncno MoHOB B yKa3aHHOM WMHTEpBasie CKOPOCTENA.

Mpeanonoxum, 4to Npon3BoaMTCA 60MbapaMpPOBKa KpUcTania HeTpoHamMm,
npy KOTOPOW WCNOMb3yeTcA HEMTPOHHLIA reHepaTop, Mpeobpasyownii nyyoK
YCKOPEHHbIX [eATPOHOB B HEWTPOHbI MOCPeACTBOM peakumm Tuna Be9d, n)B1D
[14]. 3T0T MeTOf 06ecneumBaeT NOTOK HelTPoHOB / fo 10/ cMm-2 cek-1 1 obnagaet
TeM MPEVMYLLIECTBOM, YTO SHEPT M HETPOHOB COCPELOTOUEHbI B Y3KOM MHTEpBasIe.
OueHum N(v) no dopmyne N(v) ~ /SKa, rge S —nonepeyHoe ceveHve KpucTanna,
K —uuncno MoHOB, CMELLEHHbIX OAHUM HEMTPOHOM, a KoaddumuneHT a= O T/7\ 3gecb
" —cpeaHee BpemMs npobera BbIGUTOrO MoHa, [ I —Bpems, Korga CKOpPoCTb MOHa
HaxoAWTCS B YKa3aHHOM Bbillie MHTepBane ckopocTeid. Monaraa K ~ 103 a ~ 10-2,
S = 102 cm2 nonyuvaem / ~ 10-4 BT.

Ecnu Ha gnanekTpuK NafaeT Na3epHblii CBETOBON My4OK, 3HEPrus POTOHOB
B KOTOPOM MeHbLUE LUMPWHbI 3aMPeLLEeHHOR 30HbI, TO MPU AOCTATOYHO BbICOKOM
WHTEHCWBHOCTMW CBETAa NMPOUCXOANT paspyLLEeHNe KpucTania, PU3NUecKnii MexaHn3m
KOTOpOro AeTanbHO He m3BecTeH [21]. Mocne BO34eWCTBMA Na3epHOro MMMysnbca
B MCCneflyeMbIX 06pasznax UMeKTCa NonocTu, cBO60AHbIE OT OCHOBHOMO BeLlecTBa
Kpuctanna [21—24]. To3ToMy MOXXHO NPeAnofioKUTb, YTO Ha OAHON U3 cTagmu
npouecca paspyLleHns B KpucTannie obpasyetcs 31eKTPOHHO-MOHHAsA Mnniasma,
KOTOpas «BbINJECKMBaeTCA» B 6Gnm3nexawiue obnact kpuctanna. OpHol u3
TPYAHOCTEN 3KCMEPUMEHT/ILHOTO M3YYeHWs paspyLLeHUs SBAsSieTCA TO, YTO Mpo-
LIeCC MMeeT xXapaKTep «B3pbiBa». MOXHO N1 MCMONb30BaTh M3MEPEHWNE WUHTEHCKB-
HOCTVU MH(hPaKPacCHOro M3nyyeHust BO3GYXAEHHbLIX MOHaMW fI0KanbHbIX Koseba-
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HWA AN OUAarHOCTUKW Na3Mbl-ONpeseneHus CTerneHW MOHM3aLuuM MOHOB, WX
pacnpefeneHns no aHepruwu, sh(heKTUBHON TemnepaTypbl NaasMbl?

UTo6bl OTBETUTHL HA 3TOT BOMPOC, BbIYUC/IUM WUHTEHCUBHOCTb W3/TlyYeHUS Ha
yacToTe a0, npegnonaras, YTo MOHbI «BHEAPSIOTCA» B 061aCTb KpUCTania C KOH-
LleHTpaumneinl NpUMeCHbIX LEHTPOB NC 1 MMEelOT MaKCBEN/I0BCKOe pacnpefeneHue
Mo CKOPOCTAM, COOTBETCTBYOLLee TeMnepaType T. Torga UHTEHCUBHOCTL U3/yuye-
HUS 1j NOHOB C 3apAaaoM Z’e n maccoli Mj u nonHas WHTEHCUBHOCTb / paBHbI

k' HOY 1= 2. T (31)

M i 312

2ukIT G/y -1 D paetca o. (28), Nj —uncno MOHOB JaHHOIO
Tmna, X =Mjl2kT. WHTerpan (31) MOXHO BbIYMCINTL YUCNEHHO AN Pa3INUHbIX
Temnepatyp T.

UTobbl NONyYMTb OUEHKY ans Tj, NOCTYNMM CnefytowymM 06pa3oM: 3aMeHNM

rae Rj = 4nNj

Geccenesbl PYHKUMM MX acuMNToTUKaMu Kyz) * a r2 B nokasarvene

3KCMOHEHTbI Pa3NOXMUM OKOMO CpefHEKBaAPaTUUYHON CKOPOCTM MaKCBEMNOBCKOIO

pacnpefeneHus £y= 3,{2 - OCTaBMM [Ba MNEPBbIX Y/IeHa 3TOr0 Pas/oXeHus.
Monyyaem

Ij» R,«W — — T dvv exp 2Xv v --AA 32

2a0b jo ] (32

Takas oueHKa NpaBW/bHO YUYMUTbIBAET BK/aj B MHTEHCMBHOCTb MaKCHMyMma
MaKCBE/I/IOBCKOr0 pacrpefeneHns U HeCKOMbKO 3aBbllIaeT BKMafZ €ero BbICOKO-
3HEPreTUYECKOro «xBocTa». BblumcneHue (32) paet [5]

:2)6nexp DN, K24 3*;’3/“’ (33)

Mpn onpegeneHnn Temnepatypbl NnasMbl T C MOMOLLbIO U3MEPEHUS UHTEH-
CUBHOCTY / cneflyeT yUnUTbIBaTb, YTO BefMumHa (33) pe3ko YMEeHbLUAeTCst C pOCTOM
oTHoweHns mMOlvj. Mbl NPOBENN OLLEHKM UHTEHCUBHOCTK anst KpucTtanna KC1(H),
nonaras o6vem nonoctn ~ 10-8 cm3 yemy COOTBETCTBYET MO/HOE YMCMO WMOHOB
N ~ 104 KOal-1= 5 Nc= 10D cmM-3 Z — 1 YwucneHHble 3HAYEHUA [PYTUX
BE/IMYMH YKasaHbl Bbille B 3TOM pasfene. [Ana temnepatryp T, paBHbiX 2 ¢ 104,
2,5 ¢ 109 rpagycoB K Mbl noAy4mnam COOTBETCTBEHHO [/ ~ 2,4 «10-9; 10 6;
2,3 ¢ 10-6 BT.

CnefiyeT UMeTb B BUAY BO3MOXHOCTb CPaBHEHMWSI pe3yNnbTaTOB M3MEPEHUN,
NpoBefleHHbIX Ha 06pasuax, CofepXalimx pasHble npumecn (NMpU OLMHAKOBOM
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KpucTanne — maTpuue), YyeMy OCOTBETCTBYIOT pas/ivyHble 4acToTbl col. B vacT-
HOCTW, B KpucTannax ¢ //-ueHTpamy BOAOPOA MOXET ObITb 3aMEHeH AENTepueM.
WHhpakpacHoe n3ny4veHne OCHOBHOM PELLETKU MOXET ObITb 3PHEKTUBHO OTHNbL-
TPOBaHO, €C/IM MCMONb30BaTh (DMALTPbI M3 MOPOLUKOB TOTO >Ke KpucTanna 6e3
npumeceii [25].

5) WN3BecTHO [26], 4TO KpaeBble AMCNOKAL MU B L. T. K. NMPW CBOEM [BUXXEHMWU
NepeHOCAT 3MEKTPUYECKUIN 3apaf, a B3aUMOAENCTBME 3aPSXKEHHbLIX CTYNeHeK
OUCNOKaumMii ¢ gedpekTaMy BeCbMa CYLLUECTBEHHO A/151 MEXaHUYECKUX CBOMCTB UOH-
HbIX KpucTannos [27]. B pabote [28] skcrnepMMeHTa/IbHO BbISBIEHO 3HAYMTENbHOE
BAVUAHME 3aPSXKEHHbLIX CTYMEHeK Ha 3M1eKTPOHHY noacuctemy fetekra (F —
LleHTpa).

Mcnonb3ys nonyyeHHble HaMU pe3ynbTaTbl, MOXHO OLEHWUTb CTENeHb BO3-
OYyXXAeHNS NOKaNbHbIX OMNTUYECKMX KONebaHWn 3apsiKeHHbIMU  CTyNeHbKaMu
ObICTPO ABMXKYLLMXCA AUCNOKAUWIA, a TaK)Ke COOTBETCTBYHOLLME 3TOMY B3aUMOLEN-
CTBUIO CUJTY TOPMOXXEHMSI AMCMOKALMM W MHTEHCUBHOCTb MH(PAKPacHOro u3ny-
YeHMS.

Cuntaetcs [29, 30], yTO anemMeHTapHble CTYMEHbKM Ha KPaeBoW AMcnokauunm
B L.T.K. MMEHOT 3(hheKTMBHbIN 3apsig £ e/2. MNycTb KpaeBas ANCNOKaLUWSA eAMHNY-
HOW A/IMHBbI UMEET MF3apSHKEHHbIX CTYMEHEK 1 ABUXKETCA CO CKOPOCTbLIO V B CBOEN
NNOCKOCTW CKOMBXEHUS. JHeprus, TepsieMasi el Ha efuHMLe NyTU Ha BO30YX-
[leHVe NTOKa/bHbIX OMTUYECKUX KOnebaHWiA, CoBNagaeT C COOTBETCTBYHOLLEN CUNOIA
TopMOXeHusa F n paBHa F — &n, (& paetca ¢. (28) ¢ B0— a). OHa cuibHO 3aBu-
CWUT OT CKOPOCTU AUCNOKaL MU 1 UMeeT pe3Kuii MakcuMym npu aa/v ~ 1

Ecnn MAOTHOCTb AUCMOKALMIA, ABUXKYLLUMXCA CO CKOPOCThbiO V ecTb Nd, TO
3Heprus, TepseMas UMW B efUHULYY BpemeHW B 06beMe V, 1 COOTBETCTBYHOLLANA
WHTEHCUBHOCTb MH(PaKpacHOro M3ny4veHUs pasHbI

éd= njveNdv, /= (34)

Ouenum cuny F B kpuctanne KBr(Li), rae 4yactoTa KBa3u/oKanbHOro Kone-
6aHns co0= 4- 10mcek-1 [3],418 cnegytowmx 3HadeHn BenunH: N= 4 « 10cm_1
[28], Nd = 108cm-2, Nc= 10Dcm-3 v = 6« 104cm/cek. Monyyaem F ~ 2,8 gH/cm
M COOTBETCTBYIOLLEE eMy HanpsbkeHue cgsura 0= Fb-1~ 560 rmw~2
b — anuHa BekTopa Bloprepca. Ons cpaBHeHUs OTMETUM, YTO UCMONb3ys (op-
MYy 415 CUJTbl TOPMOXEHUS AMCNoKaunn/7 = Bv, rae onpeaeneHHbIi 3 akcnepu-
MeHTa KO3PMUUMEHT TOpMOXeHuss B A 2 <10 3 AgH cek. CM-2 ANna Kpuctanna
KBr [29], mbl nonyuum npu v = 6 « 104 cm/cek. BenuuuHy F ~ 120 gH/cw.

[na ykasaHHbIX Bbllle 3Ha4YeHUA BennunH 1 cod ~ 30 [3] MHTEHCMBHOCTb
[ ~ (2 *10-7) BT/cM3 * V. T10CKONbKY MNPUYMHOI 3TOr0 W3NY4YeHUs ABAAETCA
B3aVMOJENCTBME 3apSXKEHHON CTYMEHbKN C OTAeNbHbIMUA NPUMECHBIMUA LieHTpaMu
Ha paccTOfHMAX NOPSAKA HECKO/IbKUX MOCTOSIHHLIX PELUETKU, TO ero AeTeKTupo-
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BaHHe Mo3B0OMMMO Obl NOATBEPAMUTL KOHLEMNUMIO 3apsfa, CBA3AHHOrO CO CTYMEeHb-
KOW, B «MUKpOMacLUTabe» Mpu CKOPOCTSAX AMCOKaLWA, 6IU3KNX K MpesenbHbIM.
[ nsa BbICOKOYACTOTHbIX NOKa/bHbIX KonebaHuii ¢ 100~ HOl4 cek-1 (Hanpu-
mep, {7-UeHTp) BeNnUMHbI F, | Manbl 13-3a OrpaHMYeHHOCTU CKOPOCTW KpaeBbIX
OMCNOKaUMiA CKOPOCTbIO MOMEPEeYHbIX 3BYKOBLIX BOJIH B KpucTasniax.

B 3ak/t04eHme yKaXKeM Ha BO3MOXHOCTb 6e3bl3flyyaTesibHbIX 31eKTPOHHbIX
NnepexofoB B MPUMECHBLIX LEHTpax, CBA3aHHYI0 C BO36Y)AEHUEM /OKaNbHbIX
KonebaHWi, a TaKXXe Ha BO3MOXHOCTb BbIXOAa MPUMECHOIO MOHA B MEXJO0Y3/He.
O6a 3Tu npouecca NPUBOAAT K PaspyLLEHUIO NPUMECHOrO LeHTpa. Bo3byxaeHue
NOKanbHbIX KonebaHuii MOXeT O6biTb 3a)MKCMPOBAHO TaKXe, €eCcnM OAHOBpe-
MEHHO MW3MepsiTb CeYeHWe Heymnpyroro paccesiHWs HEWTPOHOB Ha JI0KalbHbIX
KonebaHusAX. 3T0 CevyeHWe MNPONOPLUOHANILHO CpefHeMY 4YMCAly KBAHTOB N Ans
npouecca nornoweHuna u n -f 1 Ana npouecca ucnyckaHus (OHOHa.

*

ABTOpbI 6narogapHbl J1. M. Bensiesy, B. B. HabatoBy, H. M. Mnakuge, . TapbsiHy
n . TypyaHu 3a nonesHble 06CyXAeHUS.
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ELASTIC SHEAR WAVES IN THE PRESENCE OF
COUPLE STRESSES
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In this paper the effect of the presence of couple stresses in an elastic medium on the
propagation of shear waves is discussed. Two different analytical representations for the
solution are obtained. Diffusion is seen to dominate near the source. Far down the source
two wave fronts appear. One is associated with damping, the other, corresponding to the
classical one, is associated with dispersion and its variation for large time is obtained in terms
of Airy function. By using the Fourier-Laplace transforms, the displacement is expressed in
terms of integrands of the modified Bessel function. The integrals are numerically calculated
for all time and the results are presented by suitable graphs.

1. Introduction

Continuum mechanics is the study of the response of a medium to deform-
ation. The conservation laws for mass, momentum and energy have to be
supplemented by a constitutive law to characterise the medium. The statement
of a constitutive law is based on the Hypothesis of the existence of a Stress
Vector. As the body deforms it is assumed that contiguous parts exert a mutual
action across bounding surfaces. It is further assumed that these surface forces
reduce, in the limit of vanishing area, to a single force inclined, in general,
to the common normal. Symmetry of the stress tensor follows from this further
assumption. It is important to realise that this symmetry is an assumption.
There is nothing in the derivation of basic laws to prove it. Once it is recognised
as an assumption, it is natural to inquire into the consequence of rejecting it.
The mutual action has then to be assumed to reduce to a force and a couple,
without loss of any generality.

Several attempts have been made to construct a new theory of elasticity
based on this broader assumption. Recently the subject has attracted attention
again. The different authors have, sometimes, varied attitudes to the develop-
ment. Toupin [1] has given a general review of earlier work and the formulation
of this general theory. Mindlin and Tiersten [2] have rederived the general
and linearised equations. They give solutions to a number of new problems.
They conclude that the existence of couple stresses may be of microscopic
character and may not show up in ordinary problems of engineering interest.
Koiter [3] reviews earlier work by himself and others. His original enquiry
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20 V. B. NYAYADHISH

was to seek an explanation of fatigue by use of this theory. He also gives
solutions to a number of simple problems where the new theory can be tested.
Kroner [4] gives a quite novel explanation. He traces the difficulty to the
limiting procedure involved. In the reduction of mutual action to a resultant,
one proceeds to the limit of vanishing areas. But there exists a lower bound
dictated by the interatomic distances beyond which one cannot shrink areas.
This lower bound below which the dimensions of an element cannot shrink,
gives rise to couple stresses of various orders in macroscopic phenomena.
Huntington [5] gives an interesting discussion of the physical circumstances
under which couple stresses are possible. It is possible that the best indication
of the existence of couple stresses is given by moving dislocations, since it is
one of the bridges connecting the microscopic and the macroscopic states
of a body.

Wave propagation is one of the important experimental methods of
evaluating elastic constants. So in the following we attempt to study the
propagation of shear waves. The dilational wave propagated is unaffected
by the existence of couple stresses. The theory of singular surfaces gives
a sharp wave front for this irrotational wave while it does not lead to any
discontinuous variation of rotation. So it is only the shear wave that is affected
by the new theory, therefore we study the simplest shear wave generated by
a source. The existence of couple stresses drastically modifies these ‘waves’.
The governing equation is no more hyperbolic. We first give an exact integral
representation of the solution. Using the interesting technique followed by
Steketee [6] in the study of magnetohydrodynamic waves in the presence
of viscosity and electrical conductivity, we obtain the solution as a super-
position of solutions o f‘elliptic’ equations. We then give the Laplace transform
solution. We obtain now ‘two’ ‘wave-fronts’. One is exponentially damped
while the other, corresponding to the classical wavefront, decays in amplitude
as the cube root of the inverse distance for large distances, near to the wave
front, while everywhere else it appears to fall off exponentially.

2. Statement and solution of the problem

Referred to a Cartesian System (x, Yy, z) let the displacement vector be
(0, V(x, t), 0). We then seek the solution of the problem [2]:

1-12 92)d2v | 2.1
o*2J 8%2 — c2 3t2 cl

Here the right-hand member consisting of delta functions, gives the
‘source’ term; A may-be taken as the strength of this source; ¢ = (it/g)l/2 gives
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the shearwave velocity in absence of couple stresses; | is a new parameter,
of the dimension of the length, and, is the square root of the ratio of the new
elastic constant to shear modulus. We choose ct —at so that the new wave
velocity is unity and the new time has the dimension of length. We further
set X —=Ix, t —lt, V— vl and take the coefficient of the source term as unity.

We then have

(OZPY d2v
+ 0'(x) 0(t). 2.1a
dx2 dx2 a2 (x) (1) ( )

In the absence of couple stresses 1 =0 and we have the simple wave equation.
Since the new parameter multiplies the highest derivatives it should exhibit
boundary layer behaviour. But in addition it changes the basic character of
the equation, which is no more hyperbolic. This change in the character of
the equation is brought out very clearly by the following solution. We also
feel that this procedure offers an additional novel way of treating transform
problems.

The fourth order differential operator in (2.1a) does not formally
separate into two second order ones. We are able to effect this ‘factorisation’
by the following technique.

Taking the Laplace transform of (2.1a), we obtain

(1 — D2D2v = p2v + 0\x) , (2.2)

where a bar denotes Laplace transform, p the transform variable, and D denotes
differentiation with respect to x. This can be rewritten as

(Di - D2+ p2dv= - &'(x) . (2.3)
Formal ‘factorisation’ leads to
(D2- 12 717i+ij2 D+ p)(D2+ 12 D+p)v= - o'(x). (2.4)

If v = exp(—t/2)u, then v(x, p) = u(x,p + 1/2) [7]. Replacing p by (p — 1/2)
and V by u, we get,

(D2- Yfy D + p - 1/2) (D2+ }i2p D p —12)n= — <5 . (2.5)
Further if
0
u(x, t)= w(x, T)dT, (2.6a)
0

then we have [7],
u(x, p) = w(x, yp) . (2.6b)
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So replacing |/p by p and n by w we obtain

(D2- p pD+p2- 1/2) (D2+ f2pD + p2- 1U2)w= - d'(*)+ (27)

The equation has now formally ‘factored’ out. The above is equivalent to
il-ys— I [— +K2-"-+— =
kakz Y dt a2 2 ] 53*2 dx91  ar 2|

= -6'{x)6{t). (2.8)

To solve this we exploit the factorisation and introduce

L1t a2w. y—a22 wl

X2 a,8,+-"-T " *=- apgH(,)’ <'9a>
92 Mz anme = a2n2
~ 0 : 2.9b
22 ax2 k2 ax dt * dt2 0COHM (2.9b)

Note that =

L2e2. Also L”, L2 are linear differential operators and so
commute. Using this property we get

LL2Awl w2 —L2Liw]) LULZe?) — (L, Lx ( a(x)if(t))
az
- 21/2. T (dx)H(t) = -2 1/2 <5 (X)<5(1). (2,1°)
X
Comparing (2.8) and (2.10) we obtain
1
2 1P (>t —>»*)m (2.11)

We further note that (2.6a) can be integrated by parts to give

1 if '@2\ [© P« 1
It(x 0 : e w(x,T v r)irj =
00 \nt P : x ) =0 " Jo 41 .01
1 f“ T2 (2.12)
exp
Ynt Jo 4t 8t
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Since we thus need (QwjQt), we need only zl1= (@wy/ar) and z2= (Qwjdt)
satisfying the differential equations

82* i 2- N

o2 7 “o%s, = -w ). (2132
9272 N a2j 92; - . ) 138
a® 9*9t 0i2 2= — <O - (2.13b)

To obtain zxwe change it to the canonical form by the following trans-
formation of variables. Let

{=*+_i_l!q=A_i' (214)
Using this we obtain the equation for z1 as
%’é + drf = - 2W) %)~d{x,~t) =~P WWW - (2n5>

The last Jacobian transforms the delta functions to the new variables. But
the Eq. (2.15) is an elliptic equation. Thus the solution of the basic problem
of‘wave propagation’is obtained by superposing solutions o f‘elliptic equation’.
The new variables are of course different. In view of the transformation (2.12)
corresponds to J/T and not tot. So the solution may be said to be a superposition
of the solutions of a parabolic equation. However strict parabolicity would
have been there only if the term in [2in (2.1) were positive. The above method
is a novel approach to deal with problems and also provides an interesting
revelation of the change in the character of the basic equation which does not
belong to any standard type.

It is now straightforward to write solutions for zx and z2.

We have,

zi= PV xe+ 2+ yoxt),
72 — P (x2-)-t2—p Xt) . (2.16)

Using these we finally obtain u as

m2 .
exp 41 [KO(fx2 + t2+Y2xt)

- KO(J[x2+ t2+ Y2xt)] dT =

17= reXp (—it2) [KO\[x2+ 4m2+ 2yTtxu) — (2.17)
JitJ o

— KO(YX2+ 4tu2— 2 f2t*u)] du .
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The original variable v is easily obtained as v = exp(— 1/2 t)u. The solution
clearly exhibits r(0,t) = v(x,0) = 0. The form of representation indicates
(x/Vt) as a similarity variable.

It was not possible to convert it into simpler representations. We could
represent the modified second type of Bessel function by use of addition theorem
and convert it into a series of integrals involving confluent hypergeometric
functions. But that does not help to reveal the nature of propagation any
more clearly than (2.17). Forlarge x, K Ocan be replaced* by exponentials by use
of their asymptotic forms. The contribution to the integral is then seen to be
provided by the vicinity of the origin. This indicates the dominant behaviour
near X ~ t. To see these things clearly we obtain below the Laplace transform
solution by a straightforward process.

3. Asymptotic forms

We take the Fourier and Laplace transform of (2.1a) and perform
the Fourier inversion. We then obtain for, X 0 the Laplace transform of v as

exp f, 1 x 1 x (3.1)
IP+ 2 Y2. 2 Y2
P T
1= 1 y=*
ex — 3.1a
y1—dp2 P P+ 22 2 P 112 (3-12)

If we replace the original dimensional variables x and i, we can in fact pass
the limit Z—»0 of the two exponentials in (3.1a),

ml2= exp —2(VI +2/ptyi-2/p) (3.1b)
m. exp (—x/1), m2—{—px) .

This solution corresponding to my* thus tends to zero as Z= 0, while that
corresponding to m2leads to the solution

Ve — — 45 —*)e (3-2)

This solution (3.2) is the solution of the original problem (2.1) in absence of
couple stresses viz. 1=0. We then have a wave front travelling without
change of form.
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It is important to note that the Laplace transform is defined as a single
valued function on the Browmwhich contour which is any line parallel to the
imaginary axis in the complex p-plane, such that all the singularities lie to
its left. Any line now such that Rep /> 1/2 satisfied the requirement. However,
it must be noted that p = 1/2 is not a singularity of the integrand, while
p = — 1/2 is the only singularity, being a branch point.

For un 1, and small x, we expand the sine function and perform the
inversion to obtain

X 1 y (-1)" x2ndn 1 exp (3.3)
u 0 (2n+ 1)! 2 dxn .\nt 81 J

The series (3.3), exhibits the diffusive nature of the solution near the boundary.
Again since p = 1/2 is not a branch point the imaginary axis is an admissible
contour. Taking this we get

(3.4)

The second integral is everywhere exponentially small for large x and so it
may he disregarded. The first integral is, however, of the known form discussed
in the literature [8]. We obtain
13 2 13
\Y Al * (3.5)
w
where Ai denotes the Airy function.

The variation of the amplitude as inverse cube root of distance near
the wave front t~ Xx is clear from above. The same conclusions can be seen
from the method of steepest descent in greater detail. The exponentials in
the inversion of (3.1a) can be written as

exp[— x{m(p) —op}] . (3.6)

where &t/x) = 1/k.
For each fixed Oork, for large x, the major contribution to the integral
comes from the neighbourhood of the stationary points, given by m\p) = § as

Pi2=T-([8 4fc2- k4+ 8Y1- kZIR2+ [8- 4k2-k 4 8Y1-fc1). (3.7)
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Ofthe above tworoots it can be verified p 12belong to m12 respectively. However,

Pi gives an exponentially small contribution. Limiting attention to the neigh-
bourhood of the wave-front, t~ x with k2= 1 -f- e, we obtain

P2=J fA S A

Thus for t = X, origin is a saddle point. The path of steepest descent is such that
Im[m(p) —p] = 0, Re[m(p) —p] > 0. (3.9)

Scoles - (i) Ucm =0.1 unit time along t - axis
2 cm =0.05 unit displacement along U-axis

(ii) NMet =0.5 wunit time along t - axis
2 cm =001 unit displacement along U-axis

Fig. 1. The curve of displacement against time for x = 0.1, x = 1.0 and x = 10.0

It can be verified that the path starts from the origin, at angles ~(2”~/3) and
at infinity, is asymptotic to ][2gsin (0/2) = J: 1. The analytical expression
for the path is not easy to obtain. However, [m(p) —p] behaves, near the
origin as p3and so, with an exponential error, we can take the path of definition
of Airy integral [8]. Then we are led essentially to the same conclusions as in
(3.8). For e />0, t <[ x,p2is real, giving an exponentially small contribution.
This shows that there is a sharp fall in the amplitude just in front of t = x
i.e. ahead of the classical wave. However, just behind the front it has an oscil-
latory behaviour since p2gives two points on the imaginary axis.

The Figure shows the solution as calculated from (2.17). For different
values of x the ranges of the values of t and n are taken as follows.

= 01, t(0.01, 3.0), n (0.0, 11.10).
x = 1.0, 1(0.10,6.0), u (0.0, 11.10).
* = 10.0, t (1.0, 60.0), n (0.0, 11.10).
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4. Conclusion

The existence of couple stresses changes the character of the propagation
basically. A wave unchanged in form in their absence is modified drastically.
Near the source it is highly oscillatory and diffusive, whereas far from the
source, the amplitude decays as the inverse cube root of distance, falling off
exponentially ahead and in an oscillatory manner behind the classical shear-
wave front.
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SELF CONFINEMENT IN HIGHLY IONIZED PLASMAS
By

A. E. Pozwolski
75020 PARIS, FRANCE*

(Received 4. Y. 1976)

Although the pressure of a plasma usually grows as its density it is shown that for
a sufficiently high degree of ionization Z the pressure can decrease even to zero.

The total pressure p of a plasma is the sum of the ionic pressure and the
electronic pressure and except for very dilute plasmas such sum is smaller
than the value predicted from the perfect gas theory, because of the mutual
attraction between particles of opposite charge.

.The pressure is then conveniently obtained from:

P= -{dFIdV)T, )

where F is the free energy and V and T are the volume and the temperature,
respectively. The free energy of a plasma is easy to compute for plasmas where
a Debye sphere contains a large number of particles; analytically this means:

eMAIKT < 1 )
or
KT/nY3 e2> Z13, (3)

where n = Ze-is the electronic density and e is the electronic charge in e.s.u.
Now, if only one kind ofion Z times ionized is present, the pressure has accord-
ing B. D. Fried [1] the value:

b —nkT (1+ 1/Z) - AW3 "n13(1+2Z)e2 @)
kT
Eqg. (4) can be rearranged as follows:
p = nikT(Z + 11 - az32z + 1)1, (5)

where a = 7tmB(ny33 kT f2.

* 3A3 Résidence Lorraine, 4 — 6 rue de la Plaine, 75020 Paris, France.
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The problem to be solved, for fixed density n-is the effect of an increase
of the ion charge number.

Obviously, from (5) the pressure shows a maximum when Z increases
and this maximum occurs for a value Z0 solution of the equation dp/dZ = 0:

474+ 8Z3+ 5Z2+ Z - 4/902= 0.

Taking ItT/n”e* = 20 corresponding to a = 6.61 X 10“3 it is found that the
pressure is maximum for 6 < Z < 7 (Z0 = 6.62).

If Z grows larger than Z0the pressure will decrease and becomes equal
to zero for a value Z0 solution of:

Z1l+ Z3- 1l/la2= 0.

For the same example as above it is found that oo — 12. In these conditions
the plasma is self confined by the internal electrostatic forces.

The present derivation is restricted to low density and high temperature
plasmas, in order to check conditions (2) or (3). For dense plasmas the inequali-
ties (2) and (3) are reversed; however the ionic pressure is still obtainable
from (1) [2, 3]. At extremely large densities the ion-electron interaction could
lead to an imperfect lattice structure [4]; M. A. Cook expects such conditions
in some stars if Z > 16.
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A phenomenological model for lattice dynamics of b.c.c. metals is proposed by combin-
ing central ion-ion interaction on BY K scheme, angular ion-ion interaction on Clark —
Gazis—W allis scheme and electron-ion interaction on Krebs’s scheme with an essential
modification of the dielectric screening function. Calculated phonon dispersion curves of
sodium along all the five principal symmetry directions as well as (© — T) curve of it show
a good agreement with the experimental findings.

1. Introduction

In the recent past experimental phonon dispersion relations along the
principal symmetry directions in almost all cubic metals have been determined
by means of cold neutron scattering techniques. The interpretation of the
experimental results in terms of the existing theoretical models have demon-
strated the fact that none of the models is complete in the sense that it explains
satisfactorily well lattice dynamics of all the metals of the same crystallo-
graphic structure with equal success. In spite of the boundless efforts of
theoreticians to refine the theories on first principles (see for example Toya [1],
Harrison [2], Vosko et al. [3] and Price et al. [4] and references therein)
as well as on phenomenological basis (see for example Krebs [5], Cheveau [6]
and Shukla et al. [7] and references therein), still today a scope exists for
new models.

In the present paper a phenomenological model for lattice dynamics of
b.c.c. metals is developed in which total interatomic interactions present in
b.c.c. metals are divided into three parts, central ion-ion interaction, angular
ion-ion interaction and the electron-ion interaction. The ion-ion interactions

* Also at Departamento de Fisica, Instituto de Fisica “Gleb Wataghin”, Universidade
Estadual de Campinas.
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are considered effective between first two neighbours, the central interaction
being taken from Born-Von-Karman scheme and the angular one from the
work of Clark et al. [8]. The electron-ion interaction has been considered on
the formalism of Krebs [5] with an essential modification in his scheme as
far as the dielectric screening in metals is considered. While Krebs [5] has
used the Lindhard’s form for the dielectric screening function, we have used
several existing ones. The present formalism is tested first to sodium for which

experimental data on phonon frequencies and elastic and thermal properties
exist.

2. Theory

The phonon frequencies are obtained from the solution of the secular
determinant

IDij(q) — Ti20m | = o, n

where m is ionic mass, 6i; is Kronecker’s delta and | is a 3 X 3 unitary matrix.

Each element of the dynamical matrix £)(;-is split up into three parts,
central ion-ion interaction part Z)K(g), angular ion-ion interaction part, D\HQ)
and the electron-ion interaction part, DL(q), written mathematically,

Dij(q) = Wi(u) + W u) + L(y) e @)

By considering the ion-ion and electron-ion interactions in the way as
stated in the introduction, the typical diagonal and non-diagonal parts of
the dynamical matrices are given by

wu) = 80,(1 cjcjck) + 4as=, ©))
W (4) = (16¥x + 24W)[(! — CiCfik) - 2y,(4 cos agt - cos agj — cos agk- 2)]+
4
(- 3y2(2 — cos agj — cos agk) , “
. . ki
mq)= 4fKe S 32,_02]: X q2(ui) o . 02/ S2(U2) 9
q+ + Fi5 (h) h + -InTZ- f\h) )
Did(q) = 8XISiSjCk,
i P j ©)
W 4)= 8(3/2 y2- yxSiSjCk,
jyie— °3M2 K A t+biHgj+hj TR hi hj
Wi 7 2, X ﬁJK--J-)---ék"N g2uy) . (V
. h2+ ~ r Ne
4492
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where xt, y, are respectively the central and angular force constants for the
ith neighbour. S,, Ct and C2 are respectively sin (1/2 ag(), cos (1/2 aq) and
(cos g;a). a is the lattice parameter, (fc, /i) are respectively ith component of
the direct and reciprocal lattice vector, g-is £th component of the phonon wave
vector i.e. gqj = 2n/akp The function g(u) is the same as given in Krebs’
paper [4]. Function/(t) has been chosen in the following forms:

4 —t2 2+ t
In

Lindhard’s form
81 —i &)
o = fit) Modified Hubbard’s expression
-7 1-/(*)/Ne (see Falicov and Heine [9]), ©)
where f(q) = 1/2 qA(g2 + kF + kZp) (10)

Geldart and Vosko’s [10] form is obtained by replacing /(g) in Eq.
(3.8) by

(=% B0 ")

where
1+ 0.026yj "’
mx
7S = --mm- 7S » (13)
m

where m, mx are mass and effective mass of electron, krlF: Thomas —Fermi
screening constant.
Singwi et al’s [11] form

() = A [L- e-BNe 7, (14)

where A — 0.995, B = 0.2625.

By expanding the secular determinant in the long wavelength limit
(g —m0), the following relations are obtained between the elastic constants
and force constants:

aCn = 2oex-f- 2a2 + 12yt -)- 6y2 aKe (15)
aCi2 = 2xy— 6yt -)- 3y2 -f- aKe , (16)
aCti = 2xx-)- 2yx -(- 9y2. an)
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3. Numerical computations

To determine the five disposable parameters in the model, use has
been made of five equations i.e. Egs. (15) to (17) relating the force constants
and elastic constants together with two more equations relating the force
constants with phonon frequencies. While the experimental values of the
elastic constants were taken from the measurements of Martinson [12], the
experimental phonon frequencies, longitudinal frequency from |00f | direction
and transversal frequency from | | direction, corresponding to the measure-
ments of Woods et al. [13]. While the input data to calculate the force con-
stants are given in Table I, the output values of force constants are reported
in Table Il. The calculated phonon dispersion curves of sodium along all the

Table |

Input data to calculate force constants

Lattice parameter (a) in A = 4.24
Elastic constants in 1011 dyn cm-2

Cu = 0.854
C2= 0.709
C4 = 0.582
Atomic mass (M) in 10-23 gm
M = 3.8163
Phonon frequencies in 1012 c/s
vL C00 = 3.58
vL CCC = 2.88
Table 11

Calculated values of atomic force constants of sodium in units of 103 dyn cm-1

at = 1.412
a2= 0.924
yx — 0.056
y, = 0.025
aKe = 0.420

five symmetry directions are shown in Figs. 1 to 5. In these Figures the experi-
mental results of W ood et al. [13] are also shown for comparison purpose,
as well as their theoretical predictions of the dispersion curves on point ion
model studies. W hile the present theoretical curve is represented by continuous
lines, broken curves correspond to the theoretical predictions of W oods et
al. [13]. The experimental points are shown by the different symbols given
in the captions for the Figures. By dividing the first Brillouin zone into 8000
equivalent points, the complete vibration spectrum of sodium was also cal-
culated. The resulting spectrum was utilised to plot the g(v) versus v curve.
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Blackman’ sampling technique was used to calculate the lattice heat capacities
at various temperatures. The corresponding Cv versus temperature curve is
shown in Fig. 6 together with the experimental Cv for comparison purpose.

Fig. 1. Phonon dispersion curves of sodium along [£00] direction. Present results are shown
by solid lines. Broken curves correspond to the theoretical predictions of Woods et al. Experi-
mental points are shown by o

Fig. 2. Phonon dispersion curves of sodium alon [ffO] g direction. Broken curves correspond
to the theoretical predictions of W oods et al. Experimental points are shown by A
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The experimental Cv was taken from the work of Simon and Zeidler [14].
To estimate the heat capacities of sodium metal, the coefficient of the electronic
heat capacity, y, was subtracted from the experimental Cv data. The value

Fig. 3. Phonon dispersion curves of sodium along [SSi] direction. Broken curves correspond to
the theoretical predictions of Woods et al. Experimental points are shown by o

Fig. 4. Phonon dispersion curves of sodium along [1/2 1/2 1] direction. Broken curves corres-
pond to the theoretical predictions of W oods et al. Experimental points are shown by O
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€

Fig. 5. Phonon dispersion curves of sodium along [il1] direction. Broken curves correspond to
the theoretical predictions of W oods et al. Experimental points are shown by o

Fig. 6. (C, — T) curves of sodium. Experimental points are shown by o

Fig. 7. (0 — ') curves of sodium. Experimental points are shown by 0
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of y was taken to be y = 300 cal deg-2 mol-1 from the measurements of
Martin [15]. A knowledge of heat capacities at various temperatures made
it possible to compute Debye characteristic temperature of sodium. The
resulting (6 — T) curve is shown in Fig. 7.

4. Comparison with the experimental results

A study of Figs 1 to 5 reveals the fact that the theoretical phonon dis-
persion curves of sodium are in very good agreement with the experimental
results. Except at few wave vectors in the high frequency ends of some of the
selected branches, the theoretical curves have reproduced the experimental
ones within the limits of the experimental errors. The maximum deviations
between the calculated and experimental frequencies are found to be about
8% . The study of Fig. 6 shows that the calculated heat capacities are in good
agreement with the experimental results. The maximum deviation between
the two sets of results is found to be of the order of 5%. Fig. 7 shows that
the calculated (0 — T) curve of sodium has reproduced the entire course of
the experimental curve. While the experimental curve drops after 40 °K,
the theoretical curve attains saturation. The two sets of results differ by
about 4%.

5. Discussion and conclusion

The theoretical phonon dispersion relations along all five symmetry
directions as well as Cv and 0 versus temperature curves of sodium on the
basis of a five parameter model proposed here has given a very good account
of the experimental results. Such kinds of results are superior to those published
so far for this metal by other phenomenological model calculations.

As the theoretical interpretation of the phonon dispersion curves of
sodium along all the five symmetry directions by Woods et al. [13] have
been found so close to the experimental results that we deemed it necessary to
compare their results with the present study. A close study of Figs. 1to 5 may
reveal that our results are found to be a little bit superior to their results
along the longitudinal branches of | £00 |, | ££0 | and | 1/2 |/2£ | and transverse
branches of | 1/2 1/2£ |, | £00 | and T2 branch of | ££0 |. The results of W oods
et al. [13] are found to be alittle bit superior to our results in rest of the branches.
The comparison with the theoretical predictions of Woods et al. [13] does
not attach much significance to the knowledge of physics as their calculations
are based on some wrong assumptions such as:

1. They have used only point ion model and, that too, central forces.
Whereas, the effects of conduction electrons are dominating in the détermina-
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tion of the phonon frequencies. The use of central force is also objectionable
because the elastic constant Ci2 differs greatly from Cii.

2. They have used a huge number of parameters, 13. A large number of
parameters loose the physics behind a model and only reproduce the mathe-
matical fitting.

3. In order to evaluate model parameters they have used an arbitrary
weight to the individual phonon frequencies in the least square fit. Also the
values of the elastic constants employed by them at that time are found to be
quite different from the experimental values of Martinson [12]. The experi-
mental values of elastic constants are Clv C12 and C44, respectively. 0.808,
0.664 and 0.584, all in units of 1011 dyn cm-2. On the other hand, Woods
et al. [13] have used the values of Clv C12 and C44, respectively 0.953, 0.745
and 0.584, all in the units of 1011 dyn cm-2.

One can say, thus, confidently that the results given by the present five
parameter model have been found to be superior to those predicted by the
13 parameter model of W oods et al. [13]. We also made a comparison of the
present results with those of Vosko et al. [3] (M. O. et al. [16]) and found
that our results are quite superior to their results in the high and low wave
vector regions in all the three prominent symmetry directions, | |00 |, | ££0 |
and INe |

The present study also shows a clear importance of the angular forces
in the study of metals. The ignorance of the angular forces makes the value of
bulk modulus Ke to be positive, thus deviating the theoretical predictions
from the experimental results.

The present model has also considered the effect of different forms of
the dielectric screening functions in calculating the phonon frequencies of
sodium. It was found that all screening functions gave almost similar results
for sodium. But the best result was obtained by Geldart and Vosko’s forms.
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The theory of the incoherent scattering of light by a volume of gas is discussed. It is
shown that the wave mechanical treatment contains difficulties; the scattering process cannot
be accounted for alone by the density fluctuation of an ensemble of atoms described by a col-
lective wave function.

Introduction

The passage of an electromagnetic wave through a gas can be treated
satisfactorily by classical theory. The atoms of the gas are forced to oscillate
under the influence of the electromagnetic field acting upon them. The super-
position of the radiation emitted by the atoms upon the primary radiation
field gives rise to the optical effects of refraction, also incoherent radiation is
produced, which may be called the Rayleigh scattering.

The effect of refraction is obtained by averaging the effects of the atoms;
a satisfactory treatment of these effects is obtained if one replaces the atoms
by smoothed out polarizable material.

The incoherent scattering is caused by the microscopic fluctuations of
the density which is obtained considering the atoms to be concentrated packets
distributed at random.

W hile the wave mechanical treatment of refraction is quite straight-
forward (see e.g. [1]) — in connection with the incoherent scattering a peculiar
problem arises. The scattered intensity is produced by isolated scattering
centres distributed at random. In the wave mechanical description the atoms
— even if they were concentrated at an initial moment into packets —
are expected to diffuse rapidly. In fact the atoms of a gas enclosed into a box
are expected, in the course of short time, to diffuse and ultimately to spread
out with nearly uniform density over the whole of the volume of the container.

The question thus arises — is it possible at all to account for the inco-
herent scattering by pure wave mechanics — or is it necessary to add to wave
mechanics other features (e.g. second quantisation) so as to account for pheno-
mena which seem to arise from the action of atoms concentrated into small
packets ?
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The question is certainly not trivial. Presently we show that the wave
mechanical treatment of an ensemble of atoms leads to expect density fluctua-
tions, which give rise to incoherent scattered radiation. However, the wave
mechanical fluctuations differ from the classical fluctuations and they give
rise to much smaller scattered intensity than the observed intensity (which
agrees with the intensity calculated by the classical theory).

We show thus in this paper that the wave mechanical theory ofincoherent
scattering is not caused simply by the wave mechanically expected density
fluctuation ofa gas. This negative result in itself seems to be ofinterest. We hope
to come back to the full wave mechanical treatment of the process in a later
publication.

Part |
The classical theory of incoherent scattering

A wave incident on an ensemble of atoms produces harmonic oscillations
of the atoms. The oscillations are in phase with the incident radiation, there-
fore there are strict phase relations between the dipole fields the individual
atoms give rise to.

The phase relations between the fields of the oscillating atoms give rise
to beams of intensities comparable with that of the incident radiation. These
coherent beams together with the primary radiation give rise to the re-
fracted beam.

In most directions, however, the fields of the dipoles have random phases.
Indeed, consider the radiation field in a point P far outside the volume of
the gas and also outside the region of the optical beam. The distances of the
individual atoms from P have random values and thus in spite of the existing
phase relations the fields arrive with random phases in P. Thus the individual
fields are incoherent and the total intensity in P fluctuates rapidly around

a value
Jb-~ N, (1)

where N is the number of atoms in the gas and J A the intensity of secondary
radiation emitted by one atom.
Further from electromagnetic theory it follows that

Ja~ «21 » (2)

where JOis the intensity ofthe primary beam and x the dynamical polarisability
of one atom.

The refractive index of the gas is obtained considering the coherent part
of the radiation fields of the atoms. The well-known theory of this phenomenon
leads to

n2- 1= 4nxNjV . 3)
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From (1) and (2) we have
Js = BNaJ, (4)

where {3 is a geometrical factor the value of which is obtained from the detailed
calculation. Thus measuring the refractive index n and the intensity Jg of the
incoherently scattered radiation, the number NN of scattering centres can be
determined from (3) and (4).

A remark on the light of the sky

We note that the determination of Jg supposes the individual atoms to
be sources of secondary radiation which radiate independently into the vicinity
of the gas. The theory of Rayleigh considered the scattered radiation emitted
by small dust particles — and this theory was applied to explain the light
intensity of the sky. It was realized later that the sky light is not produced by
dust particles but is a scattering on the spatial fluctuations of the density of
air. According to (1) this fact can also be formulated by saying that the sky
light is due to the scattering on the individual gas atoms themselves, which
play the role of the dust particles of the original concept.

The method of virtual lattices

The simple classical consideration giving the intensity Jg of incoherently
scattered radiation can be carried out by a method different from that given
above. The latter method is mathematically identical with the former, therefore
it leads necessarily to the same result. This method is useful in connection
with the wave mechanical aspects of the problem.

The radiation induced by an outer field on an ensemble of N atoms can
be treated by supposing the atoms to be scattering centres of linear dimensions
small compared with 1 the wave length of the incident light. The ensemble
of atoms can alternatively be replaced by a medium of dynamical polarizability

x#(r) = xo(r) ,
where o(r) is the relative density of the medium, thus
j o(r)d’r = N . (5)

Supposing the atoms to be points with position vectors r” we have

or) = 3 8 — ), (6)

Acta Physica Academiae Scientiarum Hungaricae 41, 1976



44 L. JANOSSY

where <&r) is the three-dimensional Dirac (5-function. More generally we may
suppose

er) = 2 0*(r- r(n)’ (7)
where 0*(t) is a function with large positive values in the vicinity of r = 0,
vanishing outside. Thus (6) describes the density of an ensemble of atoms each
spread into a small vicinity of a point re\
The polarization density produced by a field can be taken as

P = xq(r)E .

The current density induced by the field is thus

where A is the vector potential of the total field acting on the medium.
Thus in case of a periodic field

JE— A with k= cjQ ®

(here Q is the circular frequency of the radiation). The field emitted by the
oscillating medium can be derived from a vector potential

As(r, ¥ e(r')A(r',0 d3r,; (9)

here t' = t— Ir — r' Jc. If the density g(r) is of the form (6), then (9) leads
to the same intensity of the scattered field as is obtained from the classical
consideration given further above. Instead of splitting p(r) into the densities

e<)(r) = O0*(r - r(n) (10)

of the individual atoms, we express the densities by Fourier series. For this
purpose we consider the gas to be enclosed into a cubic box with sides L,

thus we have _
eW = (Ii)

Q= -~-j QM exP{-tb,r} d3r,

Acta Physica Academiae Scientiarum Hungaricae 41, 1976



CLASSICAL AND WAVE MECHANICAL THEORY OF RAYLEIGH SCATTERING 45

where the k,, are vectors with components

2n 2N 2n
(12
T v
here w V2, V3 are integers.
Considering the densities of the individual atoms we have also
e((r) = £ elnNe'V,
! (13)
M= -£r/ r(n)e-'VvV d3r.
In case of 6-functions in place of <5 we have
2]@’1) """""£3"Pe|\6I ”
14
where 14
) = K,r<">.
Thus
So= N/L3,
. (15)
e JJLeb if
! n L3

The right hand expression is obtained supposing the < to have random
values forn — 1, 2,. . N,inthat case the sum of theiV complexunits exp (icg®)
has an absolute value of the order of ¥JV and has random phase.

Relation (15) can be made more precise taking the qffi to be random
variables and thus we can form expected values with respect to these variables;
we have

<S>= o0
if VA 0. (16)
<|eF> = N/L«

The concept of taking the gfp as stochastic variables needs explanation.

Indeed, at a fixed time t and a fixed configuration g(r) each Fourier
coefficient has a definite numerical value. When we introduce nevertheless
“expected” values this can be done for two reasons:

1) If the atoms are moving with thermal velocities, then the motions
are slow as compared with the frequency of the incident radiation — however,
in accord with (14) the thermal motion leads to rapid and independent changes
of the (p("\ Thus the expected values of gv can be taken to be expected values
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in short intervals of time which nevertheless are long as compared with the
time of oscillation of the primary wave.

2) The phases < vary strongly with v. Thus the expected values of Q¥
can also be considered as the average values of the gvinside a small region of
Fourier coefficients 6varound v.

Reflexion on virtual lattices

The field of the scattered radiation can be decomposed to the contribu-
tions of the Fourier components

= o7)
of g(r). We may thus write
As(r, t) = Alt, t) . (18)
\
Taking the field acting on the atoms to have a vector potential
A(r,t) = AOexp {i(Kr — Qt)} . (19)

The vector potential of the scattered radiation field is thus, making use of
(9) and inserting p,(r) in place of (j(r):

d
Afr,0= exp (il(kw K) - QU—[r—r')l} .+ (20

The integral is to be extended over the volume of the gas. For points r far
outside the gas and also outside the optical beam the following approximations
can he used: in the factor 1/1r —r" |

in the exponent

jr—r' 1~ r—r'rir.
We find thus
exponent A i[(k,, -)- K — Ko)»» KOr —it] , (21)
where
a r
KO
c r

Inserting (21) into (20) and carrying out the integration over a cubic box with
edges Lx, L2, L3; we find thus in a good approximation

A (r,t) = ag;f°L3 D,,(a) e r-w),
trr
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where

11
8sin ~—alL, sin — gL, sin — aL
12 X]_ [2 1 22)
(aLj) (aL2) (aL3)
with

a=k,+ K- Kn.

The expected value of the intensity of the radiation in the direction of the
vector K is thus proportional to

<M, (r )12 = |4, (a)12 Mol2- (23)

ArZ

We find with the help of (16) if we take | A0 |2to be proportional to the primary
intensity

JJJo=Nm (24)

Rayleigh scattering as Bragg scattering

So as to see the significance of the above considerations, we note tha
DV(0) = 1 and Dva) has a pronounced maximum in the vicinity of a= 0
[see (22)]. Appreciable intensities are thus obtained in directions K so that
a~ 0, i.e.

K~KO0 Kk,. (25

The above relation has the form of the Bragg condition known in X-ray
spectroscopy. The densities Q(r) correspond to virtual lattices with lattice
vectors k,,. Only those lattices contribute appreciably to the scattered radiation
for which (25) is satisfied. These lattices give reflexions into narrow cones
pointing into definite directions.

The incoherently scattered radiation consists thus of the very numerous
Bragg reflexions on the virtual lattices. The phases of the various reflexions
are randomly distributed, therefore the reflected rays are incoherent and the
intensities Jv arising from the reflexions can be added so as to obtain the total
intensity. Thus the expected value <| Av|2> [see (23)] gives the intensity
of radiation in a direction which depends on \/

We note further that the lattice corresponding to one particular r-value
gives appreciable reflexion only if

IKO— kv\~ K = Q/c. (26)
For k,,-values for which (25) is not satisfied practically no reflexion takes place.
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The ky-values satisfying (25) give radiation inside a cone with opening
angle of the order of JjkjL- Onthe other hand lattices with neighbouring vectors
k,, give the maximum intensities in directions K with angles of the order of
kjL between them. From this qualitative consideration we see that the Bragg
reflexions overlap to a considerable extent.

Scaterring on diffused atoms

We see that the scattered intensity on the medium with density g(t)
depends only on the expected values of the absolute squares of the Fourier
coefficients gv. Thus any density distribution g(r) for which (16) holds will
give the correct intensity distribution for the scattered radiation. We may
therefore replace the o*(r) by 67 (r) so that

gMM = 2 QnekKl. (27)
with

15<>

i L @)

where the q(n) have random values which may however differ arbitrarily
from the qifl= k,,r(n.

The (?(r) thus obtained correspond to the densities of “diffused particles”.
The g~ (r) because the original phase relations of the Fourier coefficients have
been destroyed does, in general, not possess a pronounced maximum. Never-
theless the Fourier coefficients of

e(r) = 2 e(n(r)
have the form (15), i.e.

TIN % (29)
- VN O
L3

where the qvdiffer from the qv,but the modified phases have still random values.
From the above considerations it follows that

<g,,> = <6B/>= 0>
do>= 4o P= Wi vA=0. (30

We see thus that the particles if they “diffuse”, they produce a change of

distribution in accord with
e() —&(n) 3D
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and the distribution, ofthe scattered radiation is not affected. More precisely, the
expected values of the scattered intensities in various directions remain unaf-
fected by the change (31).

The diffusion process (31) has some similarity to the wave mechanical
diffusion of a packet — one might suspect therefore that the scattered intensity
of radiation which is not affected by the “classical diffusion” (31) might also
remain unaffected by wave mechanical diffusion. This is, however, in general
not the case, as will be seen in Part II.

Part 11

Wave mechanical determination of the incoherent scattering intensity

Using results of former publications [1] we can suppose, that the intensity
scattered by an ensemble of atoms with dynamical polarizibility a is the same
as the intensity scattered according to classical theory by a medium of
polarizibility

x(r) = NaoxX(r) , (32)

where p(r) is the density of the quantum mechanical ensemble of atoms. More
precisely, considering an ensemble of N H-atoms supposing the state of the
ensemble to he described by a wave function !P(t\, V2; t) where

r. = ¥ 1P r(N) n= 1,2

the suffix n = 1 referring to proton, n = 2 to electron coordinate vector;
the upper indices refer to the various atoms. The density of the fc-th electron
can thus be written

e)r) = J IW(rv T2 t) Rare>- r)d3NVxd3Nr2, (33)

where the O-function is used to express in a concise manner that integration
is to be carried out over 61V-3 variables, i.e. all the variables except the compo-
nents of the coordinate vectors of the k-th electron. (The proton densities
can be worked out in a similar fashion; however, we may neglect the contribu-
tion of the protons to the radiation.)

Because of symmetry we have

9lI(r) = a(%) , K=2,3,...,N
thus the density appearing in (32) can be taken as

B(r) = Ng?\r). (34)
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There exist alarge number of wave functions Wwhich satisfy the wave equation
representing the ensemble of N H-atoms. We have dealt with the difficulty of
choice of the wave function elsewhere [2].

Particular wave functions

In a former paper [3] we have dealt with the emission of photons by
the ensemble of N atoms corresponding to a volume of gas enclosed in a cubic
box with sides L. Two types of wave functions were found both describing an
ensemble of atoms with momenta px, p2, .. pNoftranslational motion. These
wave functions were built each of two body H-wave functions. Both types of
wave functions thus constructed lead to the emission of photons of the same
manner as it was found in the case of a single atom enclosed in a box (see [3]).
Thus both wave functions lead to a process which appears to be the independent
emission of photons by individual atoms.

The first of the two wave functions thus considered corresponds to a con-
stant electron density. In the latter state (if realized in nature) the ensemble
would behave as a perfect crystal and no incoherently scattered radiation
was to be expected. This type of wave function (as was pointed out in [3])
must be expected to describe arather unstable configuration in which the energy
is concentrated into kinetic energy and energy of excitation without radiation
energy. The latter configuration does not seem therefore to represent the state
which is realized in nature; this conclusion is further confirmed by the fact
that the state produces no incoherent scattered intensity.

The second type of wave function which appears to be more suitable to
represent the emission of photons by independent atoms is of the following type.

Consider

W r n;*)= F,(R)?>,(») (35)

a normalized solution of the two body wave equation giving a stationary
state of an H-atom enclosed into a box such that R is the coordinate vector
of the centre of gravity and s the coordinate vector pointing from the proton
to the electron.
The wave function (35) thus represents an H-atom with some trans-
lational momentum p,,in the ground state or in an excited state with energy Ev.
We form the linear combination of N wave functions of the form (35), i.e.

(@) N (@)
p=2 K= Wiy, (36)

v=l
Further write

(37)
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Thus 'Pri is the 2iV-body wave function which happens to depend only on
one proton coordinate r™ and one electron coordinate r£\
The wave function used in [3] is thus

1
W= det #KL. (38)
L

The electron density obtained from (38) with the help of (33) and (34) is found
in a good approximation to be

p(r) = N IF(r) \W
where

F(r) = 2 covFAr) > (39)
(N)

the sum is to be extended over the amplitudes of the N states occurring in
the ensemble. So as to calculate the scattered intensity we have to determine
the Fourier coefficients of the density p(r).

When calculating the Fourier coefficients of the density it is important
whether or not the states kv(v= 1,2, . . N) occupy all the states in a compact
region of momentum space. Supposing this to he the case we take the v to
take all the values where k* < kfhax; kfax has to be chosen so that the above
condition should be satisfied by N k,, vectors. In the latter case we have with
the help of (34) and (36)

Q= N vy;c(i+,c*;L3,
<ft>> = N22i4>' <cr+pcr*c*+vV>/L°e
»

In the above sums the expected values of the terms with u 44 vanish.
If the value of vis not too large, there remain about N non vanishing terms
thus each equal to 1/1V2so

<e2>> = N/V .

Thus the Fourier coefficients of the wave mechanical density are equal to
those obtained from the classical model. The wave function thus obtained
gives therefore the correct intensity for the incoherent scattering.

Some criticism of the above result

In spite of the fact that the wave function given by (38) and (39) gives
the correct intensity of incoherent scattering, we do not think that the above
function is likely to be realized in nature. It seems very unlikely that the real
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state of the gas is composed of all states k,, so that all states kv< kmax should
occur with about equal amplitudes. It is more reasonable to consider a wave
function of the form (39) so that the coefficients c15¢2 .. cN correspond to
wave numbers kI5k2 ... kjVeach of them giving a harmonic contribution to
the density but the values k,, do by no means contain all the possible stationary
states. We can thus write

y if fi represents one of the N states
occurring in the ensemble (40)
0 otherwise.
We have thus
2 oFAr) = 2
(N) n

where on the right hand side a large fraction of the terms vanish.
We obtain e.g. something like a thermal distribution if we suppose that*

0 with a probability 1- P(p)

X . . (41)
el VKN with a probability P(p)

p(x) = yiV(2al7tf 2e -~

where /t2 = -f- ((%-f- pli Pv P>P3 tte components of fi.
The Fourier expansion of the density is thus

o(r) = 2A ny *'»

QX— 2 YAY*-x o

The expected value is
<Xx>= 0, A= 0

because of the random phase factors of the y . For the squares of the Fourier
coefficients we find

Al = 2 YUYy Vs e

For A4~ 0 on the right only terms with 4y = ' are different from zero.

*The Kinetic energy of the system is thus found to be proportional to I/a, thus a is
a parameter proportional to the reciprocal absolute temperature.
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We find
Jal® = #2<| v Bl Y [

and with the help of (41)

{0y > = 5 (an) ™% NI

Comparing the above value with the classical value we find the classical value
N/LS to be multiplied by a small factor, which gives the incorrect intensity of
incoherent scattering — therefore we find a strong discrepancy with the
classical result.

The density fluctuation thus calculated has a maximum in the region

when ;
a2~ 1.

In case of visible light 4 > 1 thus the maximum is found for & > 1; we see
thus that even the maximum value of (| g, |*) is much below the value IN/L®
obtained from the classical theory. We see thus that the scattered light
obtained from the consideration of the wave mechanical density fluctuation
of the ensemble has an intensity proportional to N the number of atoms;
however, the intensity has a strong temperature dependence and the calculated
intensity is much smaller than the observed one at the temperature where the
scattering is maximal.

The above result appears to be surprising at first sight. Indeed, we may
consider a wave function which in the initial state ¢ = 0 leads to a density
distribution p(r) as given by (11) or p(r) given by (28). From the general
considerations given in (1) we must expect that this distribution leads to the
same Rayleigh scattering as is expected from classical theory. Therefore at
least for a short time the configuration thus obtained leads indeed to the
correct scattered intensity. However, the detailed calculation shows that the
wave mechanical diffusion leads to changes, in the course of which the Fourier
coefficients of the density p(r) or p(r) change rapidly so that the amplitudes
show a strong decreasing tendency. Therefore the initial configuration in
which the density is of the form pg(r) or p(r) is according to wave mechanics
an exceptional one which in the course of the diffusion shows a tendency of
smoothing out until a state with very much smaller fluctuations is reached.

Concluding remarks

The failure of the procedure might be attributed to the incorrect choice
of the wave function of the ensemble. We do not think this very likely, because
linear combinations of the wave functions we have chosen should in general
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give fluctuations which are even more smoothed out than that of the wave
function considered here.

The discrepancy pointed out here is one encountered (although not
pointed out) in the original treatment of the Compton scattering by Klein
and Nishina [4]. In that work the correct Compton intensity of the scattered
radiation is obtained by using wave functions of the free electrons which
contain all possible momentum values with equal amplitudes. If the original
configuration of the free electron were to he replaced in the treatment of
K1ein and Nishina by a wave packet which contains a reasonable spectrum
of frequencies, then a cross section much smaller than the observed one would
be obtained.

It seems therefore that initial states with a constant spectrum of momenta
have some physical significance the nature of which is, however, not obvious.

We think that the correct scattered intensity might he obtained by
extending the consideration we have given here. A correct description might
be obtained considering not simply the average fluctuation of the ensemble —
but considering the avalanches which develop in an ensemble as the result of
suitable thermal disturbances. We think of a process very alike the one con-
sidered for the emission of single photons in our previous papers. We hope to
come back to this problem later.
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The 15.11 MeV energy level in 12Cwas excited by bremsstrahlung. The scattered photons
were detected with a total y absorption Nal(T1I) spectrometer set at 135° to the bremsstrahlung
beam. The following level parameterswere obtained: oa= (17.9 £ 0.6) barn, Not= (69 + 4) eV
and dint= (1.86 —0.12) mb MeV. The branching ratio to the first excited state and the

ground state is W o = (3-6 + L°)%-
Introduction

Scattered photons from the 15.11 MeV energy level in 12C have been
studied using high energy bremsstrahlung (endpoint energy 108 MeV). Although
subsequent fluorescence experiments were performed [1—6], considerable
uncertainty remained about the level parameters.

The first T = 1,1+ energylevel in 12C at 15.11 MeV is of particular
interest because it is an isobaric analogous state of several low-lying states in the
neighbouring odd-odd nuclei. Scattered photons are easily observed since
the integrated scattering cross section is rather large (1.86 mb MeV), the level
is narrow (69 eV) and situated in an energy region which is free of other scatter-
ing processes. Itis, therefore, desirable to have available an accurate determina-
tion of the parameters of this level for calibration purposes.

This level disintegrates to the 0+ ground state of 12C and to the first
2+ state at 4.43 MeV. Aimquist et al. [7] measured a branching ratio of
GilGo = 3%. An a-disintegration to the 0+-ground state of 8Be is strongly
momentum and parity forbidden and a-particle emission to the 2+ state at
2.9 MeV of 8Be does not occur if the 15.11 MeV level is a pure T = 1 state.
Reisman et al. [8] reported that the Tawidth of that state amounts to 2%
of the total width Got- Because the experimental errors described in this
paper are of the same order, this contribution can be neglected, and

Got= G GG~ [Y=g o+ Gi-

*The experiment was performed at the 300 MeV electron linear accelerator at Mainz.
** 0On leave from the Fachhochschnle Dortmund, Dortmund, Germany.
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The level parameters <° and -Ttot were determined through a resonant absorp-
tion experiment. This experiment consists of two independent measurements:
in the first — the production experiment — the yield of scattered photons
from a target of thickness T is measured;
in the second — the self-absorption experiment — an absorber is placed
into the incident beam to attenuate the 15 MeV photons.

Experimental arrangement

The experiment was performed using the bremsstrahlung beam from
the 300 MeV electron linear accelerator at Mainz.
The experimental set-up is shown below:

The bremsstrahlung beam is produced by electron bombardment of a 0.1 mm
thick tantalum target. A narrow beam of 2.4 mrad is defined by conical lead
collimators. At the scattering target, situated 12.5 m from the bremsstrahlung
target, the beam was 5 cm in diameter. A sweep magnet and vacuum pipe
maintain an electronfree beam up to the target. As target a 2 cm thick
(3.31 g/cm? disc of reactor graphite was used.

For the “self-absorption” experiment, a 7 cm thick (11.6 g/cm2 graphite
absorber was placed in the primary beam. The absorber and scatterer thick-
nesses were measured along the direction of the photon beam, thus eliminating
cosine factors from the formulae given below.

The scattered photons are detected at 135° and analysed in a total
y-absorption Nal(TI) spectrometer (9" diameter X 15.5" length). The detector
was placed 1.20 m from the scatterer. The resolution of the spectrometer for
15 MeV was 5.5%. The number of scattered photons N(T) was obtained by
summation over the peak shown in Fig. 1. All runs were monitored in terms
of the charge collected from a calibrated thick aluminium ionization chamber
of the NBS type P2—4 [9]. A detailed description of the bremsstrahlung
beam production, the total y-absorption spectrometer, the electronics and
the neutron background subtraction is given elsewhere [10—13].
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Fig. 1. The pulse-height distribution produced in the Nal(TIl) crystal
at 135° to the bremsstrahlung beam

Procedure and results

For a target of thickness T the yield of photons scattered by a single
level is given:

N(T) = C-l:gj):C--é(Sl;)| :C-Jrresa*(E,-DdE’ (1)

a*(E,T) = (1 _ e-nTblE)+bo.(E))y
nT(<ra(E) + K (£))
N(T) — vyield of scattered photons;
C — includes scattering and solid angle, dipole-distribution of the

scattered photons, detector efficiency, number of incident
15 MeV photons, and absorbers in the scattered beam;
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T —target thickness;
S(T) —target self-absorption factor;
1g(T) —measured integral scattering cross section;
19T) —integral scatteringcross section;
as(E) = aa(E) — — — resonant scattering cross section;
Aot
ca(E) — resonant absorption cross section;
ae(E) — absorption cross section due to pair production and Compton
scattering;
b — mean path of photons in the target.

It is assumed that the bremsstrahlung spectrum is constant in the energy
interval where as and aa are not zero and, therefore, the number of incident
15 MeV photons could be placed before the integral. It is clear that for such
a narrow level photon selfabsorption occurs and the number of scattered
photons is no more proportional to the target thickness.

Here we obtained

1g(T = 3.31 mg/cm2) = (1.1670.068) mb MeV .

"With an absorber of thickness A in the incident beam the attenuated scattered
yield is
N(T, A) = Ci JIBSa*(E, T) e~°'(E)nA dE . (2)

N(T, A) — vyield of scattered photons with absorber of thickness A in
the incident beam.

In the production experiment a water absorber was placed in the incident
beam of equivalent thickness to the graphite absorber.

This absorber modifies the bremsstrahlung spectrum in the same way
as does the graphite absorber, except for the filter effect at 15 MeV.

Therefore C is identical with Cv

From these two independent measurements the ratio V was experi-
mentally determined

N(T)
F=1lv (ivir375+(U" <3)

However, V can be also determined by numerical calculation with da and
Jntot as variables:

Jreso*(£) dE
lres <*{E) e~ a/1E)n /1

V =

(4)
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For the calculation of (4) the nuclear absorption cross section oa(E) is given
by folding a Gaussian distribution for thermal motions of the scattered nuclei
with the Breit—W igner one-level formula:

ex * —yfrat
oa(E) - p [_( Yy ] dy,
l+y2
E-EO
where
r

aa — peak absorption cross section at the resonance energy;
EO — the resonance energy;
E — the actual energy;
[ —s the full level width at half maximum;
0 — the “Doppler width”.

For photons of energy E incident on a nucleus of mass M, the Doppler width
may he given by

A 2kT 2
O=E
Me2
where K — the Boltzmann constant;
o the velocity of light;
T' — the effective temperature which takes into account the

vibration of the scatterer atoms due to their binding in a
chemical lattice.

As a lower level for 6 Schmidt [4] suggested 31.6 eV (for carbon gas at room
temperature) and as an upper level 40 eV (for diamant crystals). In our calcula-
tion a value of 33 eV was used.

Calculations for various values of t — (<5/Utot)2 and ¢a were carried out
on a computer at the University of Mainz.

The best fit with the experimental data was obtained for the values

Act = (69+4) eV,

% (17.9+0.6) b.

The obtained data are summarized in the following Table together with the
results of other authors.
The integrated cross section Iswas obtained from these values to be:

Is= I os(E)dE = “ra\ry = (1.86+£0.12) mb. MeV.
J res n
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Table |
Parameters of the 15.11 MeY level

Reference Is [mb. MeV] ¢rf barn flot[ev] I'ﬁnt lf4.43u;\ﬁte\/ 0/
Fullter [1] 1.90+ 0.27 222+ 22 79+ 16 1 7
Garwin [2] 2.33+0.19 29.7+ 11 64+ 10 0.62+ 0.1 5+ 4
BUSSIERE [3] 245+ 05 32 60+ 8 0 11+5
Schmid [4] * 1.82+ 0.12 32 45+ 10 1 —
Gudden [5]* 1.79 32 35.5 — —
Kuhne [6]* 1.8+ 0.2 32 39+ 5 0.9+ 0.3 —
present work 1.86+0.12 17.9+ 0.6 69+ 4 0.48+ 0.1 3.6+ 1.0

Discussion

The authors marked by an asterisk used for a” the value obtained from
perturbation theory for a single level formula 6nk2= 32b. In this case the
level width is no longer a free parameter, it follows directly from formula (1).

The influence of the following systematic errors on the ratio V should
be considered:

— after bremsstrahlung beam reduction by a factor of 4 the ratio does
not change. This means that errors due to detector dead-time are
negligible;

— the bremsstrahlung spectrum was modified by a 1.3 cm thick lead
absorber, and no change in the ratio was observed. It follows that
the 15.11 MeV level is not populated by inelastic scattering from
levels above the giant resonance;

— the 15.11 MeY level could be reached by the 13C(y, n)12C* reaction.
The isotopic abundance of 13C is about 1%, but the (y, n) cross
section is rather high [14].

If all 12C nuclei populate the 15.11 MeY state, the ratio would change
so that da= 6nKk2 This is extremely unlikely. But if dais smaller than 65k2
the extrapolation made in the perturbation theory is not valid for this level.
It is also possible that there are two levels very close to each other and the
level broadening could be explained. The resolution of our apparatus was not
enough to check this possibility. In Fig. 1 at 10.68 MeV the small peak repre-
sents the transition from the 15.11 MeV level into the 2+ level at 4.43 MeV.
The obtained branching ratio ylll'y0 = (3.6+;1)% is in good agreement
with reported data [7].

*

We gratefully acknowledge the discussions with Prof. ziegi1er as well as the financial
support given by the Bundesministerium fir Wissenschaft und Forschung.
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COMMUNICATIO BREVIS

AN EXACT SOLUTION OF THE PROBLEM OF MHD
UNSTEADY VISCOUS FLOW THROUGH A POROUS
STRAIGHT CHANNEL

By

L. M. Srivastava
DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF TECHNOLOGY, KANPUR, INDIA

(Received 14. 1V. 1976)

The exact solution of the problem of unsteady incompressible viscous
flow under a time-varying pressure gradient in a straight channel with two
parallel porous walls with uniform suction and injection at the walls has
been obtained by Prakash [1]. Mathur [2] dealt with the unsteady flow of
an electrically conducting, viscous and incompressible fluid between two
parallel uniform porous walls in the presence of transverse magnetic field
when there is a constant injection on the lower wall and an equal suction at
the upper wall. The present note is concerned with the study of unsteady flow
of an electrically conducting, viscous fluid through a straight channel with two
parallel porous flat plates under a time varying pressure gradient when there
is equal and uniform suction and injection on the walls. The exact solution
of the problem has been obtained when pressure gradient is constant and then
the case of steady flow under a constant pressure gradient has been deduced
taking the time since the start of motion to be infinite. The flow takes place
in the presence of a uniform vertical magnetic field.

Consider an unsteady electrically conducting two-dimensional incompres-
sible flow through a straight channel with two parallel porous flat plates situated
at adistance h apart.We take x andy values along and transverse to the parallel
plates and assume a uniform magnetic field HO acting along y-axes. The fluid
is being injected into the channel through the wall aty = 0 and is being sucked
through the wall aty = h with auniform velocity VO. Elastic field E is assumed
to be zero. The induced magnetic field due to electrical current flow in the
fluid is assumed to be very small and the electric conductivity aofthe fluid is
sufficiently large.

At a sufficiently large distance from the origin the flow is fully developed
and the physical quantities depend on y and t only. Then the governing
equations of the problem are

3u  T- du 1 dp 92u
- = + VvV

dt 3y Q dx 9y2 Q
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P
%Y
with the initial and boundary conditions
0<,y GCh:un=0 V=0 for t 0,
y =0:n=0 v= V0 .
f > 0.
y —hinm=0 V-V or ! (3)
Analysis

Introducing non-dimensional quantities as
u
X,——, Vi= P pj (4)

into Eq. (1)—(2), which reduce to

dui . 9ux Opx . 1 92ux
g = P e TR ml UL’ ®
Otx ' 0Jx 9*x Rs 9y\
0- dPi (6)
aJi

0 <; ¥ 1:Ux= 0 for x<; 0,
f
Yx=0,1:ux= 0 for x>0 , &
where Rs= Fobh/v = suction and injection Reynolds number,

1/2

mv2= — R'M = magnetic parameter,
K B

m. Mr M: = Hartmann number.
R.

Now assuming dPildxx = —/(tj), thus (5) reduces to

0Ux 0Ux .« 1 92Ux
------ G e — F(LQ) " -7 tttx A1 (8)
0tx 0Jx Rs dyl

To obtain the solution of (8), we will apply here Laplace transformation
which is defined for velocity u, as

ix= f M  dix. ©)
Thus (8) and (7) transform to
d2ux dut
R. Rsft+ ml) = — Rafft) (10)
dy\ dil
ix= 0 atyx = 0,1, n)
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where a*) = dh (12

The solution of (10) subject to the boundary condition (11) is

- No

- exp sinA (YByJ —
sinh YB Nm)f (YBy 13)
R No
~ exP Ai sinA {(1— + -
A+i
where
B W+ m)
4
thus
1 ry+« B
_ Ne _ » Jsi
u, = R SinA (¥YBy;y .
2m Jy-i,, (A+mjjsinAyR exP (Ji-1) ( Yi) (14)
- expjji . JsinA{(i -Ji + 4y - 3;dA
PIJTT, JsinAf( -J 1) W+ gy o %
After assuming pressure gradient constant (i.e., dplldxl= —/(tX) = P, P is
positive constant), (14) becomes
] . — e<yi_1) 2* sinA (Y Byr) -
1 BniJy_im [ [—A(A-(-mi) sinA ¥YB (15)
2 sinA {(Il —yXiB}] + 5A(IdA.
A(A+n*i)

Therefore solution for constant pressure gradient with the help of poles and
residue method is given by

i- . Bf+4B.m, . .
V-0 Sina iy B+eyi sinA{ ] / (1 vl
1- +
+
SinA B2+4B5T,
gCvi-ONM sinA B, yn - ey 2
I Sin/l
1+ +
m siR 2 (16)
2

4, R. (Ri +inn3, \, 4
nc 2 ¥sinA (naxyl) e~~2 ()" -1 e ( *

-f32PRsn 2
(BL-4n:2re2)2+ 4B 571(B2+ 4 n 2n2) J

(h=10,1,23 ...).
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Solution for steady state

Solution for steady state from (16) can be obtained by taking its limit
t— W,

17)
Now we shall obtain the steady state solution directly from the equation of

motion (8) which, after substituting P for f(tx), reduces to

- miRsui = Rs (18)
dy\ dyx P
with boundary conditions

ui= °. Ji= o.i. (19)

It may be easily seen that solution of (18) subject to the boundary conditions
(19) is (17).

I wish to express my sincere thanks to Professor Jagdish Lal, D. Sc., Director, Indian
Institute of Technology, Kanpur, for his help and guidance in the preparation of this paper.
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Becker—Sauter: Theorie der Elektrizitat

Band 1. Einfuhrung in die Maxwellsche Theorie. Elektronentheorie. Relativitatstheorie
21. vollig neubearbeitete Auflage, B. G. Teubner, Stuttgart, 1973

Es ist schon fast ein Jahrhundert vergangen, seit die erste Fassung des Buches durch
August Fsppl erschien. In den Handen der wiirdigen und kompetenten Nachfolger — es seien
nur Abraham, und Becker erwéhnt —sind der Inhalt und die Methode immer auf neuesten
Stand gebracht. Bewahrung der Traditionen — Beruicksichtigung der Ergebnisse der neuesten
Forsr(]:hung: diese sind die kennzeichnenden Merkmale des Buches, die es zu einem Begriff
machten.

Die vorliegende Auflage ist die 21-ste: allein diese Zahl spricht fiir sich. Sie ist grindlich
Uberarbeitet, zum grossten Teil neu geschrieben. Alle Veranderungen sind nach meiner Mei-
nung zu begrissen — vielleicht mit der einzigen Ausnahme der “s-freien” Behandlung der
speziellen Relativitatstheorie. Besonders halte ich die ausfuihrlichere Darstellung der Energie-
verhaltnisse, den Zusammenhang mit der Thermodynamik fiir niitzlich, die trotz ihrer Wichtig-
keit oft vernachlassigt wird. Methodisch mdéchte ich die Berlicksichtigung der Vertiefung der
mathematischen Kenntnisse der Leser als gelungen hervorheben.

Dieser erste Band behandelt auf 310 Seiten in 12 Kapiteln die Gesetze der Elektro-
statik, des elektrischen Stromes, des magnetischen Feldes, der quasistationdren VVorgange der
elektromagnetischen Wellen und der Relativitatstheorie. Dazu kommen noch ein Kapitel
Uber Vektor- und Tensorrechnung in dreidimensionalem Raum, Formelzusammenstellung und
ein Kapitel Gber die Losung der Aufgaben. Hier mochte ich bemerken, dass die geschickte
Auswahl der Aufgaben die Nutzbarkeit des Buches betrachtlich erhéht.

Es kann die Frage gestellt werden, und manchmal wird sie auch tatsachlich aufge-
worfen, inwiefern die klassische Elektronentheorie in einer modernen Darstellung ihren Platz
finden kann. Didaktisch halte ich die Heranziehung der bildhaften Beschreibung der Erschei-
nungen der Mikrophysik fur fast unvermeidlich: unsere Kenntnisse der atomaren Welt fiihren,
nicht nur historisch, sondern methodologisch gesehen, auch heute durch die klassischen Vor-
stellungen der Elektronentheorie. Durch das so begriindete Wissensmaterial werden eben die
in weiteren Banden behandelten modernsten Theorien erst zuganglich.

Im Zusammenhang mit dem Inhalt der weiteren Bande mdchte ich hier eine Schwierig-
keit erwahnen. Es scheint namlich fast unmadglich bei einem dreibandigen Buch alle Bande
gleichzeitig zu Uberarbeiten und so Methode und Inhalt gegeneinander vollstdndig abzustim-
men. Mit dem in 1963 erschienenen zweiten und im 1969 erschienenen dritten Band fand auch
dieses Problem eine befriedigende Ldsung.

Fir jeden, der sich in die Grundlagen der klassischen Elektrodynamik vertiefen will,
stellt das Buch einen vertrauenswerten Wegweiser dar.

K. Simonyi
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R. C. Newman: Infra-red Studies of Crystal Defects

Taylor and Francis Monographs on Physics. Editor B. R. Coles, Consultant Editor:
Sir Neville Mott, F. R. S., Taylor and Francis Ltd. London, 1973

The book deals with the basic problem of detecting and determining the presence and
concentration of various impurities in alkaline earth fluorides, alkali halides, silicon, germanium
and compound I11—Y semiconductors. Whereas the investigation of some particular impurities
can be successfully carried out by well developed experimental techniques such as electrical
conductivity or radioactive tracer methods, infra-red spectroscopy has become increasingly
important to learn more about the interactions between various impurities and of impurities
with intrinsic defects if more than one impurity is present. A relatively high concentration of
impurities may give rise to complicated complexes, which can be revealed only spectroscopi-
cally. The purpose of this monograph is to show how infra-red absorption resulting from
localized modes of vibration of defects may give useful informations, and enlarge our knowledge
on the effects of heat treatment, diffusion, radiation damage and implantation in crystals.

The monograph consists of an introduction and eight chapters dealing with infra-red
absorption from a lattice containing point defects, vibrations of an anharmonic oscillator,
localized vibrations of hydrogen and deuterium in the alkaline earth fluorides, hydrogen ions
in alkali halides, one-phonon infra-red absorption in silicon, radiation damage in silicon, one-
phonon absorption in germanium and informations which can be gained of compound 11—V
semiconductors.

A detailed mathematical treatment of the theory of the vibrations of imperfect lattice
is not included, nevertheless the symmetry relations of the oscillators (spherical, cubic, tri-
gonal and tetragonal symmetry) are properly dealt with. The basic ideas of lattice dynamics
are reviewed. In the referee’s opinion this could have been omitted, since the monograph is
apparently written for advanced readers, and lattice dynamics may be found in textbooks
anyway.

Y though the monograph is intended mainly for research workers, the theory is clearly
presented and can be easily followed. The book is certainly stimulating for solid state physicists
and chemists who wish to obtain a deeper insight into the lattice dynamics involved with the
presence of impurities and complexes formed by them.

Z. Morlin

P. J. Goodhew: Electron Microscopy and Analysis

The Wykeham Science Series, General Editors: Sir Neville Mott, F. R. S. and G. R. Noakes
Wykeham Publications Ltd., London and Winchester, 1975

The book gives an introductory survey on the principles and experimental techniques
of electron microscopy and microanalysis by means of electron optics. It is built up of six
chapters, the first two dealing with the basic ideas of electron optics and the interaction of
electrons with matter including electron diffraction. The second chapter also includes a de-
scription of the properties, generation and deflection of a beam of electrons. The third
and fourth chapters describe transmission and scanning electronmicroscopy, the various
methods of specimen preparation and examples of application. The fifth chapter discusses
the analytical informations which can be obtained from an electron microscope by means of
electrondiffraction, secondary electrons and X-ray generation. Finally, electronoptical
methods are compared with other techniques.

The book iIs written to give a summary in the field of up-to-date electronmicroscopy
and can he easily understood with some basic background in electronphysics. The book is
intelligible, and may be recommended also to chemists, biologists and medical researchers who
apply or wish to apply electronoptical methods in their research. Extremely good electronmicro-
grams, diffraction patterns and drawings help the reader to get well acquainted with the subject.

Z Morlin
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A. M. Campbell and J. E. Evetts: Critical Currents in Superconductors

Monographs on Physics No 4. Taylor and Francis Ltd. London

The authors give a wide range survey on the topic of the critical currents in type 11
superconductors, limiting the contents to those aspects of type Il superconductivity which
relate directly to flux vortex pinning and transport currents. So the question of flux jumps
and instabilities, for instance, are not dealt with.

The nature of the mixed state, the properties of the flux vortex lattice, the driving force
and its relation to the transport currents and flux flow are discussed first. The solution of the
critical state equation and the distribution of the current are then studied in situations where
the pinning force is known. The summation of pinning forces and the various types of vortex-
defect interactions are investigated in the next sections.

Experimental methods and results are also treated, such as, for example, the measure-
ment of the vortex structures and Ginzburg—Landau parameters, the experimental con-
firmation of the critical state model, the measurement of the critical current density and other
pinning parameters. Finally a critical assessment of the current agreement between theory
and experiment are given.

Some publications that have a direct bearing on subjects treated here are also listed
as an addendum to references. These had been published before this book was ready but are
not discussed in it any more.

The monograph can he recommended to graduates and researchers active in the field
of superconductivity.
I. Skopal

A. Bohr and B R Mottetson: StrUKtur CHAtOM(EITE

Akademie-Verlag, Berlin, 1975

This brilliant piece of work of the 1976 Nobel-prize winners is the first volume of a large-
scale undertaking, which is planned to cover the topics of single-particle motion in nuclei,
nuclear deformations and nucleonic correlations.

The present volume deals with nuclear structure, but the authors also include a sum-
mary of the symmetry properties, relevant to nuclear systems. The main theme of the book is
nuclear independent-particle motion, leading naturally to single-particle and single-hole
configurations, providing detailed and quantitative evidence on independent-particle motion.

An important and valuable feature of the book is the division of the material into three
parts: text, illustrative examples and appendices. The text gives a systematic development
of the subject, while comparison to experiments and discussion of empirical data is usually
placed in sections labelled “lllustrative Examples”. The appendices, dealing among others
with angular momentum algebra, elements of statistical mechanics, the formulation of electro-
magnetic and /9-decay make the book reasonably self-contained.

The clarity of presentation and the pedagogical care of the authors will make this
book extremely useful not only for experimental and theoretical nuclear physicists, but also
for researchers of other fields of physics and for graduate students.

J. Németh

J. M. Blakely: Introduction to the Properties of Crystal Surfaces

international Series on Materials Science and Technology, Volume 12.
Pergamon Press, Oxford, 1973

The properties of the surface always play a more or less important role in all phenomena
occurring in materials. Thus the physics of surfaces is a very interesting part of physics, subject
of many books and of many international symposia.

The Introduction to the Properties of Crystal Surfaces by Professor J. M. Blakely
examines in detail the atomic and electronic structure in the surface region. The treatment
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s suitable for senior undergraduates or postgraduates. For this reason the book offers only
a general introduction to the subject. But exactly this generality is its high advantage, because
the wide range of topics from the macroscopic thermodynamic aspects of the surfaces to the
details of the surface electronic structure offers an easily accessible up-to-date knowledge
on surface phenomena, such as adsorption, experimental measurements of surface tension in
solids, surface relaxation, surface defects, surface atom vibrations, various experimental
methods in surface studies and so on. Those who whish to go beyond the scope of this very
useful book can study some of the books recommended in the general references.

G. TURCHANY!I
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I. PAPERS will be considered for publication in Acta Physica Hungarica only if they have
not previously been published or submitted for publication elsewhere. They may be written
in English, French, German or Russian.

Papers should be submitted to

Prof. 1. Kovacs, Editor
Department of Atomic Physics, Polytechnical University
1521 Budapest, Budafoki ut 8, Hungary

Papers may be either articles with abstracts or short communications. Both should
be as concise as possible, articles in general not exceeding 25 typed pages, short communica-
tions 8 typed pages.

Il. MANUSCRIPTS

1. Papers should be submitted in five copies.

2. The text of papers must be of high stylistic standard, requiring minor correc-
tions only.

3. Manuscripts should be typed in double spacing on good quality paper, with generous
margins.

4. The name of the author(s) and of the institutes where the work was carried out
should appear on the first page of the manuscript.

5. Particular care should be taken with mathematical expressions. The following
should be clearly distinguished, e.g. by underlining in different colours: special founts (italics,
script, bold type, Greek, Gothic, etc); capital and small letters; subscripts and superscripts,
e.g. )éG x3; small 1 and 1; zero and capital O; in expressions written by hand: e and i, n and u,
c and V, etc.

6. References should be numbered serially and listed at the end of the paper in the
following form: J. Ise and W. D. Fretter, Phys. Rev., 76, 933, 1949.

For books, please give the initials and family name of the author(s), title, name of
publisher, place and year of publication, e.g.: J. C. Slater, Quantum Theory of Atomic Struc-
tures, 1. McGraw-Hill Book Company Inc., New York, 1960.

References should be given in the text in the following forms: Heisenberg [5] or [5]
7. Captions to illustrations should be listed on a separate sheet, not inserted in the text.

I11. ILLUSTRATIONS AND TABLES

1. Each paper should be accompanied by five sets of illustrations, one of which must
be ready for the blockmaker. The other sets attached to the copies of the manuscript may be
rough drawings in pencil or photocopies.

2. lllustrations must not be inserted in the text.

3. Allillustrations should be identified in blue pencil by the author’s name, abbreviated
title of the paper and figure number.

4. Tables should be typed on separate pages and have captions describing their content.
Clear wording of column heads is advisable. Tables should be numbered in Roman numerals
(1, 11, 111, etc)).

IV. MANUSCRIPTS not in conformity with the above Notes will immediately be returned
to authors for revision. The date of receipt to be shown on the paper will in such cases be
that of the receipt of the revised manuscript.
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WAVE MECHANICS AND THE PHOTON II
THE MANY-BODY ASPECT

By
L. JANOSSY
CENTRAL RESEARCH INSTITUTE FOR PHYSICS, BUDAPEST

(Received 6. V. 1976)

The considerations of a previous paper in which we have dealt with the wave mechani-
cal picture of the emission of a photon by a single atom are extended. It is shown how the
emission of photons by N independent atoms of a gas can be treated by wave mechanics.
The problem of wave functions realized in nature is discussed in some detail.

Introduction

In a previous paper (see [1]) we have discussed a mechanism which
gives the mode of the emission of photons by a H-atom with the help of
pure wave mechanical considerations.

We have investigated an H-atom in an excited state enclosed into a
box with linear dimensions L '$>ry. It was shown that the pure excited state
of the atom is highly unstable. Even a very small admixture of a wave func-
tion corresponding to a lower state of energy to the wave function of the higher
excited state leads to the emission of radiation. The radiation reaction of the
system upon itself starts an avalanche. Finally, the excess energy hv is emitted
in the form of radiation. Moreover, the radiation is emitted into a cone with
small opening angle. This process corresponds very closely to what one takes
gualitatively to he the emission of a single photon.

Presently we investigate the process where a box contains a gas consist-
ing of N H-atoms, some of which are in excited states. We investigate how
far it follows from the wave mechanical description of this system that it
emits radiation which can be taken as the emission of successive photons,
so that the emission of each photon takes place in a way, similar to that in
the case of the single atom.

The problem how to extend the considerations relating to a single atom
to that of an ensemble of N atoms is not a trivial one as the system of N atoms
has to be described by a collective wave function — and it is not trivial
how this wave function has to be chosen.

One finds that there exists avery large number of mathematically possible
solutions of the wave equations describing the ensemble of N atoms. Most
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72 L. JANOSSY

of these wave functions, however, describe systems with behaviours very
different from the observed behaviour of a gas enclosed in a box.

It is therefore necessary to select from the mathematically possible
ones those wave functions which describe the system correctly, i.e. one has
to find the wave functions which represent the states realized in nature.

The above problem of selection of the wave function is a general problem
of wave mechanics of many body systems — the question of the emission of
photons by a gas in an interesting particular case [2].

The choice of the wave function

Presently we construct reasonable types of wave functions representing
the ensemble of N H-atoms enclosed into a box. We shall construct two mathe-
matically possible types of wave functions. We believe that the second of the
possibilities we consider presently is the one which resembles the wave func-
tion realized in nature.

Taking the atoms of the gas to be largely independent of each other
it seems reasonable to build up the wave function of the ensemble as a
product of two-body wave functions representing single atoms.

Let us write
8= 2 ro. v )

for some solution of the two-body hydrogen wave equation; r*\ r® being the
coordinate vectors of proton and electron.

The iV-atom wave function will thus be supposed to have the following
form:

_ N @
V = <2, t) = ng <P(r«, 2> t) , (2)
2

where
<>=rf, <. K= 1,2

are the coordinate vectors of the N protons and the N electrons.
The wave function (2) satisfies the 21V-body wave equation in a good

approximation if @ represents the state of an H-atom enclosed into a box
and the interactions between electrons and protons of different atoms are
neglected. The approximation is justified if the density of the gas is small,
i.e. if

Nr8l <L> 3)

and one neglects the effect of formation of molecules.
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The wave function (1) does not possess the symmetry properties aris-
ing from the Pauli principle. A suitable wave function can be obtained in the
following usual way. Denote

2
Vki= IPKArb\ r4 t)= y(*ft>, «g», t) ; (4)

the WKL is independent of the coordinate vectors except those of the fC-th
proton and the L-th electron.

The can be taken as the elements of an N XN matrix. A wave
function obeying the Pauli principle is thus

xp= yl/(r(i), r4 t) = CNdet WKL . (5)
If the are mutually orthogonal, i.e. if
J = dkK-all-, (6)

then we have

CN = )
We note that if the two-body wave functions are such that

2
SP(rW, r®, 0 — 0,

g —r@ 1 @

then the orthogonality relation (6) is satisfied in a good approximation for
a gas of low density satisfying (3).

With wave functions of the form (4) one can express a large variety of
states. More general forms can he obtained as linear combinations of functions
of this form.

Particular simple wave functions can he obtained if we start from statio-
nary states of the H-atoms. Considering (5) and (7) the wave functions corres-
ponding to the vfi states can be written as

5/M deta g . 9)

Thus we obtain a stationary state corresponding to N H-atoms each in the
state described by (9). A state in which the N atoms are in various states
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(e.g. have a thermal distribution) can be obtained as a linear combination of
Y 4* as

W==yLrZctlid<'rt , (10)

where the sum is to be extended over N pairs of suffices V[i. Because of the
normalization we have

2\ VI2= iv-

One may suppose e.g. |cy 2= 1 and

vV o= A (11)

where the <fl are real phases.
The wave function corresponding to the v, U states of the H-atom can
be written as (in more detail see [3])

@ 1 oeer 9 .qme v, (12)
L32

where R = (mx(1) + m2r@Y)/M and s = ™ —r2with M = ml -f- m2 (Here m1
and ny are the proton and electron mass, respectively) (Ml is the amplitude of
the one-body H-wave function with frequency calculated for the reduced

mass m =
@
Taking !PnO= 0 for points outside the box the wave functions (12)

give in a good approximation the stationary states of an H-atom enclosed
into the box with sides L. Small corrections which have to be applied mainly
near the walls shall be neglected.

With the wave function (12) one finds for the energy of the system

U= h K + %) -«
wi

The above value consists of the kinetic energy

K= om Epi’’ p*= hkv’

of the energy of excitation

E = — f0)
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and of the energy of the ground state
uQ fhCDQ-

The wave function obtained from (10) gives a rather peculiar distribution.

On account of the orthogonality of the }2/)’\ we find that the
are also mutually orthogonal. One finds thus that although the states (10)
are not stationary states nevertheless both the three dimensional charge and
current densities are constant. Indeed, the density corresponding to the states
is constant as those states are stationary. Cross terms where products

yIbl*

when integrated over any of the variables give zero on account of the orthogo-
nality.
Calculating the current densities which contain terms of the form

gradK

the integration over any of the variables ric K' 5§=K gives a zero factor, and
thus the current densities arising from any of the cross terms vanish identically.

The wave function W as given by (10) has the peculiar property that it
describes a non stationary state such that it contains fluctuations of current-
and charge densities in the 6iV dimensional configuration space. The projec-
tions of these fluctuations upon the three dimensional space vanish, however,
identically.

The emission of photons by the ensemble

The state described by (10) is thus not stationary in the ordinary sense,
nevertheless it emits no radiation. In analogy with the considerations of
the previous paper we find that this state is very unstable. If one of the com-
ponents of W is modified to a small extent by say the admixture of a
lower state, then a radiative process sets in. Indeed, if

@ v O @
s**) — cjpto* + cIJPW> | (13)
where
lcoR+ lIci 2= 1. g~ 0

and if the mixture belongs to a stationary state of lower excitation of the
H-atom then ceases to he stationary and the avalanche starts which
was described in paper [1].
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Because of the orthogonality of the states (provided that state v',//
causing the perturbation does not occur among the components of W) the
radiation interaction is confined largely to the perturbed terms only.

The current density of the perturbed states has an amplitude propor-
tional to

ApCHO*/y<y0 , (14)
*where
IN
i = %-1IW (15)

is the current operator; 1(n) gives the current density of the ra-th electron.

From (10) we see that the current of an electron is proportional to (1/VIV)2 =
= 1/N on account of the factor of normalization. On the other hand the cur-
rent has N coherent components arising from the components of the operator
I. Thus the total electron current contains the factor N 172V = 1 and thus
reduces to that obtained in the two-body treatment.

The avalanche started by the perturbation (13) produces that Y —
—= Y71 and the radiation process is much the same in the two-body
treatment of the problem.

The total number of photons emitted is proportional to the number of
components of ¥7 containing excited states. Thus the emission takes place in
much the same was as to be expected for independent excited atoms enclosed
in the box.

In spite of this property of the wave function thus obtained, we think
that the state of the ensemble of N atoms which is realized in nature is given
by a different type of function.

Another type of wave function

Although the emission of photons can thus be interpreted in terms of
wave functions of the form given by (12), we do not think it likely that the
wave function of this form represents the ensemble of N atoms correctly. The
difficulty with the above wave function is that it represents a non stationary
state of such peculiar configuration that without perturbation it emits no
radiation. Such a state must be supposed to be rather unstable not only with
respect of the emission of photons caused by the excited H-atoms — but
also with respect to thermal radiation.

To demonstrate this point we can construct a wave function W with
the help of a two body wave function which does not correspond to a statio-
nary state. The latter wave function Y7is itself not stationary — but in general
it contains oscillating current densities and thus emits radiation. If the en-
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semble of atoms described by the latter wave function is enclosed into a box
and the box is not transparent for the radiation, a configuration builds up
which corresponds to a state of equilibrium of the atoms reacting with their
own radiation field.

The wave function (12), (13), (14) represents thus the peculiar state
where the whole of the energy of the gas appears in the form of kinetic energy
and excitation energy. An alternate wave function built up of non stationary
states gives a configuration where the energy is divided between kinetic energy
and radiation energy. One expects in the states realized in nature to have
equipartition of energy and thus one expects that states are realized which
are built up of non stationary two body wave functions.

A wave function W which represents fluctuating densities and currents
is obtained from two body functions of the form (12) putting

@ 1 @, 4

= og*= eV’ (16)

further

(2)
= iv(>-A T«,0 = BA ,rf, D) (17)
and
T =-L=aexWKL. (18)
fm

The wave function W given by (12), (16), (17), (18) contains N atomic states
corresponding to the N pairs of suffices v, U. ()

The emissions of photons can be described supposing that W by a

@
small perturbation receives a further term c”. where

Suppose resonance in the manner described in [1] between the additional
state and one of the original states of higher excitation energy. In this case
an avalanche starts and it transforms the resonating state v, 1 into v\ /t'
with amplitude |crtl. | = 1. Thus the emission of the photon does not change
the type of the configuration.

The emission is exhausted as soon as all the excited states have trans-
formed into lower states. If there is some unspecified perturbation which
produces excited states from lower ones then photons are expected to be
emitted at a steady rate.

Regarding the intensity of emission in the present case — just as in the
former case the current density produced by one pair of states is proportional
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to 1/N. The total current density is the sum of currents of the N electrons;
these densities have to be added, therefore the result is independent of N.
The emission is thus the same as calculated in the case of one atom in [1].

We see thus that we can describe the ensemble of N atoms either by a
collective wave function as given by (9), (10) and (11) or alternatively by a
collective wave function given by (9), (16), (17) and (18). In both cases we
expect emission of photons in the manner obtained in [1] for one H-atom only.

It seems reasonable to assume that the second type of wave function
is nearer to the wave function realized in nature than the first type — since
the second type describes a state in which the atoms are interacting with
their own radiation field while the first type of wave function describes a
rather singular state in which the energy of the system does not contain radia-
tion energy to a noticeable extent.

So as to avoid misconceptions we note that we have merely shown
that there exist 6N dimensional wave functions which describe states which
lead to photon emission much like that considered in [1]. Furthermore, we
have given an argument which indicates that the second of the two types
of wave functions given above is the more likely to represent the states realiz-
ed in nature. The possibility cannot be excluded, however, that the wave
functions realized in nature have forms differing from both types we have
discussed.
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PRODUCTION AMPLITUDES IN FIFTH
ORDER PERTURBATION THEORY

By
J. Cunningham

SCHOOL O MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY COLLEGE OF NORTH WALES,
BANGOR, GWYNEDD, U. K.

(Received 13. V. 1976)

A decomposition of the five point single loop amplitude into a sum over four point
amplitudes is studied for a variety of physical processes involving pions and nucleons derived

from a YUYaginteraction Lagrangian. Consequences for approximate isobar models of produc-
tion amplitude are discussed.

1. Introduction

The unpleasant analytic properties of fifth order (single loop) production
amplitudes are well known (Cook and Tarski [1], Landshoff and Trieman
[2]). In a recent paper the author [3] has suggested that the exploitation of
an expansion of the five point amplitude in terms of four point amplitudes
might lead to approximate production amplitudes without complex singula-
rities. In the present paper the analytic properties of the exact fifth order
amplitudes are studied for a variety of physical processes arising from a
trilinear yTp interaction Lagrangian.

2. Reduction formula

The five point single loop amplitude F5may be expressed as

A 1I<5,F,, (1)
1=1
where
1 *12 213 «14 *15
zj2 1 *23 *24 *25
S13 % 1 *34 *35 (2)
214 *24 *34 1 *45
*15 *25 «35 «45 1
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and, e.g.
th1 lh1l Mal M4l

1 *12 *13 *14 *15
*12 1 *23 *24 *25 (3)
*13 *23 1 *34 *35
*14 *24 *34 1 *4x

the symbols being as defined in reference [3] where references to the derivation
of formula (1) may be found.

3. Five point poles

The variables z12, z34, s45, z15 are essentially related to the masses of
the diagram and will be deemed to be fixed. There remain five independent
variables in formula (1) and, with any four fixed, any singularity in F5in
the complex plane associated with the fifth variable which belongs properly
to the leading Landau curve can arise only from the vanishing of A5 It is,
therefore, a pole and as such is of little mathematical interest in the applica-
tion of Cauchy’s theorem to derive dispersion relations. We shall take the
view that it does not really matter whether this point is real or complex and
we shall accept such singularities in the construction of any integral rep-
resentations.

4. Reality conditions

With alabelling of particles as in [3] we shall discuss a production process
in which particles 1 and 5 collide and produce particles 2, 3 and 4. The incident
energy Elis described by the scalar product variable or, equivalently, z25;
the energies E3 and Ei of pairs of adjacent emergent particles are described
by the scalar product variables s3 and si or, equivalently, z2i and z35. The scalar
product variables s2and s5or, equivalently, z13and z14 describe the momentum
transfers T2 and T5. The physical values of these variables are restricted
by the relations, i — 1, 3, 4,

Ei:* > (Mi+ M inrf (4a)
or
241 + 1- (Mt+ M, %2
fgin | ( = (4b)
2/h+i/h—+
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and, b— 2, 3,
Ti:S<;{M, - M~f (5a)
or
ri+1 + nu - (MF- (5)
NHHH—

where, as indicated in [3], the § and Mt are respectively the internal and
external mass values. We now rewrite Eqgs. (1) in the form

AOF° = OIFXEI, E3, E4 + 62FXT2 Ea TH) -f

+ CBF3(ES3, T5 Ej) -f- a4F 454 Ev 2) - 63F XT3 T2 EJ). ©)

Since we are going to treat interactions deriving from an interaction
Lagrangian ynp®, at each vertex in each diagram two nucleon (mass M) and
one pion (mass [X) lines meet; both the stability conditions on the external
masses as on the internal masses of jF5 are automatically guaranteed.

We shall now indicate the reasoning behind the results described in
Sections 5 and 6 bye onsideringthe example ofthe pseudo amplitude F-EEV F 3 E4).
Similar arguments may be applied to the other pseudo amplitudes and
hence to Fs.

Consider first the problem of writing a dispersion relation for J in the
variable Ev As indicated in [3] complex singularities will arise from three
point contracted diagrams unless

*

and
-1A*35n1- 8

This means that to avoid complex singularities the scalar product variables
s3 and s4 must be restricted to the ranges

(“2—Hi)2<% <. (H + Hi)2 9)
and

M3 — Hs)2< si<(Hz +Hs)2m (10)

Because of (4a) the physical regions of the variables s3 and s4 are

3> (Ma+ M3r (11)
and

A (M3+ M4:2. (12)
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Thus (7) and (8) are possible only if

P2+ NN N2+ (13)
and

lh + 251> -~3 + . =)

In order to avoid complex singularities arising from four point contracted
diagrams it is necessary that

(1 ~~z283 — *24 — 784 + 2«23224Z34)

(1 — z34 735 — Z45 + 22z34735Z45) ~ 0 .

If secondly we wish to consider writing a dispersion relation for Fxin
the variable E3 the restrictions necessary to avoid complex singularities are

-i<;*25 700 (i6)
together with
(1 - 285 - 285 — z|5 + 2234235245)

(1 — 223 725 z35 + 2223Z25Z35) 0 .

Finally the restrictions needed to avoid complex singularities of Fx
in the variable Ei are

-1 A~ »BAL (18)
together with

(1 24 725 745 + 2724725745)

(1 — z|3  z|4 — 234 -)- 2223224234) > 0 .

We remark that conditions (16) and (18) are identical and that (17)
and (19) may always be satisfied by chosing s4and s3 respectively sufficiently
large; this latter result is true because s4is bounded by condition (16) or (18).

5. Physical processes

Analyses of the type indicated above have been applied to the following

processes:
(a) an o ~Annan
for which, for all i — 1,2, 3,4, 5
Mi =1
H =M
(h) NN “mnnn
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for which, for i U=1, 5,

M.=1u
and, for i %=1,
H=M
with Mr= M5= M, = fi
(c) nN —»nnN
for which, for i =9=4,5,
Mt= L
and, for i 3=5,
Hi= M
with Mi = M5= M, u5=u.
The results are tabulated in Tables I, Il and IlIl. The three point

conditions are both necessary and sufficient to avoid complex branch points.
The four point conditions (namely |s | sufficiently large which we have
abbreviated in the tables to s~ di 00) on the other hand are not necessary,
merely sufficient.

Table |
ZiL N
Anplituce E E.
Fi 4/t2<. s3<; 4M?2 4/72< *1< 4M 2 V A MA AMI
4/i2 4M2 ~ @ S~ 0
F' - — *~2=0
s5 .o
[ V A 3N 4M2 4fi2<; §j <; 4AM2 _
—0 5= 0
Ft 4fi2<, s4<, 4AM2 4fi2" s1<, 4AM2
@~ -°0 *2=0
F> — S0 —wo
*5=0
F6 4fi2<; *3 4~ 4/i2<. *2<. 4M2 42 S 4AM2
*2>ss ~ —00 $2 —vo. sa oo s2= 0, s3™ °°
=0 S oo
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Table M

NN % 7217171

Amplitude Ei E. E.
. inx N s3aomow s, = 4M2 st= 4M2
4/iz~ sa~ 4M2 S| 00 s3n g °
E — — *s = (iVFf- «)2
S3 — 00
F3 v o~ *3a 4M2 s, = 4M2 —
s- — oo s = (JI/- Jo2
Ft 42 s4  4M2 — sf= 4M2
s2n — 00 ss = (M
Es — »3 = (M - /t)2 _
S2~ —00
Fs 4/i2 <; s3 s4<; 4M2 sX= 4M2s2  —oo0 st = 4M2sj - (M —liy2
$2,85 "  — o0 x4 - o0,s4= (M= 12 x3 - 0°. sS4 -
Table 111
nN “mnnN
Amplitude Ei E, Et
Ft 4uz <; s3< 4M2 sr= (m o+ A * = (m + fd!
<= (M + B2 00 ss oo
F, — — Sj= o0
S5 ~ — 00
Ft 4r2 < *3~ 4AM2 1= <M + —
*5 ~  — o0 Sj= 0
Ft *a= (M+ nf — » A (M o+ )2
S5 ~ — oo Sj = 0
E> — S2 — oo —
Sj= 0
Fs a(r <, S3<,4m - S, = (M + ~)2 s AW+ ony
S», S3~2 — oo s2~ —oo, A oo sj= 0, s3~ oo
sl = (M +nyY *5 = 0 sS3~ — oo

Taking the example of the process nn —mnnn Table | tells us that
dispersion relations in the variable Ex will not be complicated by complex
contours provided that
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(i) the emergent energies E3 and Eu are restricted to lie below two nucleonic
masses, i.e. 83, s4 <[ 4M 2,

(i) the momentum transfer variables s2 and ss are restricted to sufficiently
large negative values.

6. Isobar models

In conclusion we illustrate the use of these results in the discussion of
approximate amplitudes suggested by [3].

First of all we shall suppose that the particles 2 and 3 in the final state
are in a nn resonance and that conditions are such that this configuration
dominates the amplitude. We are therefore dealing with an approximate
amplitude in which

02F2 6iFi  03F3= 0, (20)
so that
dseEs= (BF3. (21)

The Tables now imply that dispersion relations in Exuncomplicated by complex
contours of integration should be possible provided

(i) the nn resonance has a mass lying between 2fi and 2M (say between
270 MeV and 1880 MeV)
(i) the momentum transfer variable s5 is sufficiently large and negative.

Secondly we shall suppose that the process is dominated by a final state
resonance of the particles 3 and 4. We are now dealing with an approximation
in which

OiFI o2F2+ S3F3+ <&BFS= 0, (22)
so that
ASF5- aiF4. (23)

The Tables now imply that dispersion relations in E3 uncomplicated by
integrations over complex contours are possible when

(i) for processes (a) and (b) the nn resonance has a mass, as before, lying
between 2/t and 2M while for process (c) the nN resonance has precisely
the mass value M -f- (i (say 1075 MeV)

(ii) the momentum transfer variable s2 is sufficiently large and negative.

Finally if we treat an approximation scheme in which
O0lF1+ &2F2-)- 65Fs = 0, (24)

daF>= 03F3+ OiFi, (25)
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we are demanding that physically in the processes nn —mnnn and NN —»nnan
the final states are dominated by nn resonances in the mass range 270 MeV
to 1880 MeV while both momentum transfer variables s2 and s5 are large and
negative. Various nn resonances are observed in the stated energy range.
Turning, however, to the process TN —mnnN we are requiring dominance of
the final state by a nn resonance in the above range and a 1N resonance with
a mass value of about 1075 MeV. The lowest lying known resonance of this
latter type is the N' (1470) with a mass value of 1435 MeV to 1505 MeV and
a width of 165 MeV to 400 MeV.

7. Conclusion

Our calculations suggest that single variable dispersion relations for
production amplitudes without complex integration contours may have
some limited validity.

For approximation schemes (based on isobar models) for processes such
as nn “mann and NN —»ann it seems evident that there is some chance
that single variable dispersion relations without complex contours will be valid
as long as one or both the E3 and final state resonances are dominant.
On the other hand while one may be hopeful of making a similar conclusion
for nN -f- nnn amplitudes when a nn final state resonance is dominant one
cannot be too hopeful about avoiding complex contours when nN resonances
play a significant role.
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In this aPer the most general spherically symmetric metric, recently defined by
synge in Kruskal coordinates, is considered and Einstein—Maxwell equations are imposed
which culminates in_a prescription for building the most general solutions. The Reissner —
Nordstrom solution is shown to be a special case.

1. Introduction

The most general spherically symmetric space-time is defined by the
metric [1]:
ds2 = —2/dudu + r2(d0o2 + sin20d4®) , (1-1)

where f and r are functions of (u, v). The space-time V4is the product of a
unit sphere S2and a 2-space U2in the sense that an event of V4 corresponds
to an ordered pair of points, one on S2and the other on U2 The usual polar
coordinates (6, ®) belong to S2 and the coordinates (u, v) are taken on U2
The minus sign before the first term is of no particular significance but merely
a notational convenience. In the 2-space U2the lines u = constant, v = con-
stant are zero. The indicial notation for it, 6, ® and v is

Xn= u, X2= 0, X3=1tp Xr= v. (1.2)

For the line-element (1.1) Synge [1] imposed Einstein field equations in
vacuo, which culminates in a prescription for building the most general
functions f and r. The Kruskal’s form of Schwarzschild solution has been
shown to he a special case.

In this paper we impose Einstein —Maxwell equations for the space-time
characterized by (1.1). A functional relationship between the functions f
and r is obtained from which many solutions may he obtained under suitable
initial conditions. The Reissner—Nordstrom solution is found to be a special
case. In particular, when the electromagnetic field is absent, we have some
results obtained by Synge in free space.
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2. Field equations

For the metric (1.1) the non-vanishing components of Ricci tensor,
Rip are

Ru = - (»>u —rjilf) »

2
R2= —1—— ("14+ rxr4), R3B= sin20 mR2
2.0
RU— . (rdd  rifilf) »
«l=y (/14 -1114]) + 2rird/r.
The scalar curvature J1 is given by
2
R = 21114 2/14 _ 8rl4 _ 4rxd  _2_ 2.2)

i P fr fr2 T2
where
n = 3//8U, /14=m920u0f, etc.

We consider here the Einstein —Maxwell field equations in absence of charge-
current which are [2]

= CEjj,
(V'~g Fij),j— 01 (2.3)
*[(/,Kd= 0»
where C = —8nG, G being the gravitational constant and FUand Eij are the

electromagnetic field and energy tensors, respectively, defined as
FU= ®ul- ¢pL11° (2.4)
Rij— —RiaRJ 4 ZrSthabReb (2.5)

Here comma and square bracket denote ordinary differentitaion and anti-
symmetrization, respectively.
If we take the electromagnetic 4-potential vector ®- as

o, = (0,0,0,-K) (2.6)
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the only non-vanishing component of is Fu, given by

Fli=KIf Fll= —K jp. (2.7)
Now, from (2.3), (2.6) and (2.7) we get

Fu =felr>, Fr*= —ellr2, (2.8)

where e is an arbitrary constant which exhibits the electromagnetic property.
From (2.5) and (2.8) the surviving components of Etj are

Eu = f'e?l2rd, E2= —e21*, E3z = sin20 e : (2.9

Therefore, the field equation (2.3) takes the form

m— 0, (2.10)
laa- rjjf= 0, (2.12)
1 + -7 (mMa+ Vi) = -7 Cexr-2, (2.12)
J *
\// 14 - [1/4lf) + -~ = - i- Cle2,r*. (2.13)
r 2

From the field equations (2.10) and (2.11) we obtain after integration
f= 2B(v)TI, f —2A(u)rt (2.14)

where J1 and B are arbitrary functions of integration. In view of (2.14) the
Eq. (2.12) takes the alternative forms:

("= AJ-£—Ijra, (2.15)

(erd)i=B (-~-1jr1, (2.16)
where A = 1/2 Ce2 These equations, after integration, provide

ri=sJL-A jl +-£) , (2.17)

ra=z .Bli +Zj , (2.18)
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where D [=£)(«)] and F[= F(v)] are functions of integrations. Differentiat-
ing (2.17) and (2.18) with respect to v and u, respectively, and using (2.14)
in the derivatives so obtained, we get D/A = FjB. Here the left hand side
and the right hand side are, respectively, the functions of u and v only, so
that there exists a constant K such that

D = kA , F — kB . (2.19)

Substitution of (2.18) in (2.17) and (2.18) gives

(2.20)

(2.21)

Putting the value of either rx or r4 from (2.20) and (2.21) in (2.14) we get

/= —2AB [l-——+ —7]- (2.22)

Making use of the Eqgs. (2.20), (2.21) and (2.22) it is found that Eq. (2.13) is
identically satisfied. Thus the problem reduces to the solution of the Eqs.
(2.20), (2.21) and (2.22).

We know that

dr = r4du -f- r4dtd, (2.23)

which, after using (2.17) and (2.18) gives

---------------- = —Adu - Bdv. (2.24)

Though the equation (2.24) is integrable, however, to get rid of the tw o
constants K and 4 setting

2= rifc, P(uy = Alk, Q{vy= BIK, 1y = XK (2.25)

in (2.24) we obtain

PAZ
22— 7 + un2

—Pdu — @dr . (2.26)
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3. Functional relationship
If we relate Z to a real variable A4 by the differential equation

Z*dz HdH

(3.1)
Z2- Z + u2 H2— /12
the Eq. (2.26) provides
HdH
= —Pdu — Qdv . (3.2)
H2- fi2
All solutions of Eq. (3.1) are comprised in the functional relationship
1/2
(H2- flm2= b(Z2- Z + fi)"2 " .e2( W
Z - - \+ \-T-f*2
(3.3)
with b as a real constant.
Eqg. (3.2) has a solution of the form
H2 — 2= IPV2, (3.4)

where U and V are arbitrary functions of n and v, respectively. Eq. (3.4)
after differentiation gives

HH, = V2UUI , Ad4= U2VVi. (3.5)
Further, from (3.2) we get
HHX A94

-P = (3.6)
A2-f12 H2- fI2

Therefore, from (3.4), (3.5) and (3.6) we have
-PMUJU —Q= VJV. 3.7)

Also, from Eq. (3.1) we have

Z1=2-\22- Z + fi) HHX (3.8)
Z2- fl2
aa4

Z4a= Z-\Z2-7Z + n) (3.9)
A2 —fi2
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Similarly from (2.22), (2.25) and (3.6) a simple straightforward calculation
provides the expression for the function f as

X21T 1

f = —2fc2Z 2(Zz2- Z + ud 14 .
(H2- L2

(3.10)

Hence for the metric (1.2) compatible with electromagnetic field equations
we have

r2= kZ2

where Z is determined from (3.3) in terms of the function H given by (3.4)
and the constant b so that r2comes out as a function of (1, t). Consequently
the function / can be written in a number of equivalent forms as a function
of (u, v). In the next Section we shall obtain the Reissner—Nordstrom solu-
tion in a specific coordinate system. Since the constant ofintegration bappearing
in (3.3) can he absorbed into H we shall take, hereafter, b = 1.

4. The Reissner—Nordstrom solution
On account of (3.7) the Eq. (2.26) becomes

du , dVv 247

(4.1)
U Z2- Z + [I2

Also Eq. (2.22) gives

/- —aB\1 -A +A]=-2..M Al=~:3i (4.2)
J 1 r r2 uv Z2

Hence
dudv Z2- Z + LR
-2/dudv = 4k2 (4.3)
uv Z2
Define r by
—du or r = log 4 -constant . (4.4)
U

Then using (4.1) and (5.4), the Eq. (4.3) becomes

22-7 + it2 i Z2dz Y
—2/dudr = k2 o (4.5)
Z2 \Z22— 7 -\ [i2j
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Therefore, the metric form (1.1) reduces to
ds2= J1 ——+ dr2 -f r2(d62 + sin 2602 — 11 — —-j- -~-jdt2, (4.6)

where t = kr.

The line-element (4.6) is the Reissner—Nordstrom solution for the
gravitational field of a charged particle at rest. If s = 0, one gets the Schwarz-
schild solution. If K happens to be negative, then it is the gravitational field
of a charged particle with negative mass.

The authors are thankful to Dr. K. P. Singh for valuable discussions

REFERENCES

1.J. L. synge, Annali di Matematica plara ed applicata series 1V 98, 239, 1974.
2.A. S. Eddington, The Mathematical Theory of Relativity, Cambridge, 1954.

Acta Phyeica Academiae Scientiarum Hungaricae 41, 1976






Acta Physica Academiae Scientiarum Hungaricae, Tomus 41 (2), pp. 95—105 (1976)
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Exact solutions of the transient forced convection energy equations of dust particles
and of liquid in a channel bounded by two parallel flat plates are obtained in the present
investigation when the inlet temperatures vary sinusoidally with time and an interpretation
of the case of laminar flows is given.

Nomenclature

=)

temperature of dust particle
temperature of liquid
specific heat of dust particle
specific heat of liquid
half distance between parallel plates
thermal conductivity of dust particle
tlhermal conductivity of liquid
me
velocity of dust particle in 5-direction
velocity of liquid in 5-direction
average velocity
cartesian coordinates (x: flow direction, y: distance from channel centre line)
liquid density
mass of dust particle per unit volume (= mIVO0, constant)
coefficient of viscosity of liquid
kinematic coefficient of viscosity
Prandtl number (= pc/K)
Reynolds number (= hu/v)
hp heat transfer coefficient for flow over dust particle
Ap surface area of dust particle
Vp  volume of dust particle
Tw constant wall temperature

& RAZToQHX

VU< 230X 0c
=2 <

The meaning of any other symbols is given in the text as they occur.

1. Introduction

Heat transfer by gas-dust suspensions in pipe flow has been a subject
of many studies because of the anticipated large heat-transfer coefficient due
to the high volumetric specific heat crfd icles or liquid droplets compared
to a gas and the demand for high heat transter coefficient in gas-cooled reactors.
Based on the experimental rvations on gas-dust suspensions by Farbar
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and Moritey [1] and Schiuderberg [2], by Johnson [3] on gas suspensions
of liquid droplets, and by Salomone and Newmann [4] on liquid-dust sus-
pensions, Tien [5, 6] has analysed the heat transfer by a gas-dust suspension
in turbulent pipe flow based on a simplified model. In solutions of the transient
forced convection energy equations of dust particles and of liquid in a circular
pipe, Soo [7] has assumed that the inlet temperatures of dust particles and
of liquid are constants across the flow with a specified constant wall tempe-
rature.

In the present investigation, exact solutions of the transient forced
convection energy equations of dust particles and of liquid with fully deve-
loped flow in a parallel plate channel are obtained under prescribed boundary
conditions when the inlet temperatures of dust particles and of liquid vary
sinusoidally with time and an interpretation of the case of laminar flows is
given.

2. Formulation of the problem

We consider the steady laminar flow of a dusty viscous liquid with uni-
form distribution of dust particles in a parallel plate channel whose sides are
separated by distance 2h. The dust particles and the liquid entering the chan-
nel have temperatures which are spatially uniform across the entrance section
but vary sinusoidally with time. Therefore we can write the inlet conditions as

Tp{0,¥>* = To+ (/1T)o sin cot (2.1))
T(0,y, t) — T0-)- (AT)Osin oot , (2*2)

where TO is the cycle mean temperature, (AT)0 is the amplitude and (5 is
the inlet frequency.

To obtain the heat-transfer performance and the temperatures of dust
particles and of liquid it is necessary to set down two energy equations, one
for the dust particles and one for the liquid-dust mixture. They are given as

- N + up®MJL =G (T-Tp), (2.3)
8t Qx
Qr, ,QT, mNop sTp . QTP L aTp- T @)
81 X oe 8t P x P Qy2
where
hpAp a m N 0CpG
r2
m N OCpVp Qc
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Simplifying (2.4), we get

ar ar 3T
— 4 N +TTP T). (2.5)
3t a P 3y

The inlet and the boundary conditions of the problem are as follows:

Tp= To+ {AT)Osin tot when X= 0, (2.6)
T = TO-f (21T)0sin cot when T=20° (2.7)
=0, m =o, fp=R&w? M= Tw at g =8B g
Q h-o \' @ b=o
t>0

The system satisfying (2.3), (2.5) is subjected to the following restrictions
(Soo [7]):

(i) Radiation effect is neglected.

(i)  The density of liquid remains constant; thus the velocity distribution
is independent of the temperature distribution.

(iii) Liquid property variations are neglected.

(iv) Each dust particle is small and maintains uniform temperature due to
its high thermal conductivity Kp.

(v) The liquid and dust particle cloud have similar velocity profiles. The
presence of dust particles does not affect the liquid velocity profile.

(vi) The dust particles are uniformly distributed throughout the channel.

(vii) The effect of collision with the wall is neglected.

(viii) The suspension is extremely dilute such that each particle is assumed
to see the wall without interference of other particles.

(ix) Fully developed laminar velocity profiles between the parallel plates.

(x)  Axial conduction is negligible with respect to bulk transport in the
A>direction. This is a reasonable assumption when Péclét number exceeds
100 [8].

(xi) Thermal resistance of the channel wall is negligible.

(xii) Eddy diffusivity of heat is negligible.
Further, to simplify the method of analysis the case of constant velocity

will he considered here and for this purpose we substitute n(u = up) for the

velocity profile in (2.3) and (2.5).
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We now introduce the following non-dimensional quantities:

e=T-T° = Tp- % * = y =3~
(AT)O P (AT)O h h
t— 9 TO h2aj
h2 {NT)o
e *2G ) 2/i%
P3 — » Pi —

Equations (2.3) and (2.5) then become

deJL+ RMNE. = R3{B - Bp), (2.9)
dt AX

09 38 1 84
S5r+ Jt'S'=7 " v + A("- 4

(2.10)

The inlet and the boundary conditions reduce to

Bp = sincot when X = 0, (2.11y
0= sincot when x = 0, (2.12)
88

g 0 =0, 0 =00 0=200 at y=1

3 ° sy Y=0 ' (2-13)
t>0
3. Solution

The foregoing problem can be separated into two as follows:
op(x, >0 = 0opi(x,y) + spa(x,y, 1) , (3.1)
B(X,y, ) = 0X*,y) + BAX, Y, 1), (3.2)
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where 6L, 02, 0pl and 0p2 satisfy the following problems:

A= i - o* (3.3)
R 09 R3(0i 0* b

00x 1 0%X

) (3.4)
a* P B f +Ri{6pl U
6pl — 0 when X —o0, (3.5)
0j = 0 when X= 0, (3.6)
00, ;
P =, I—! =0, Qy=160, 6X=00 at y= 1 (3.7
By jy.o [°Y Jy-0
1 jf 90p2 m a4
a. + J! p ~Pp3(e2 B/iib (3.8)
O™1 1 D 002 1 9202 'ola 0\ (3.9)
Bt~+ 3 x~ P Bf +Rii p2 2)’ '
Oop = sin cot when 1= 0, (3.10)
02 = sin cot when X = 0. (3.11)
00
2 =0, . =0, op—0, 02—o0, at y — 1,
8y °y Jy-o (3.12)
t> 0.

Solving Egs. (3.3) and (3.4) under the conditions (3.5)—(3.7), we get

M * 1y) = BO R — /\A _'_(_:_]:_)_:'___ e COS 2n + 1 ) ny n
Tn=o0 (2n -f- 1) (*n _ Mn)
8(»y)=*Ffjl - - jj V"  ecos ,
() JL n M (2n + 1) 1 2 / J
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where

K Rfxn  p_px x Pn il RK
(K- Pn) i a ) (K~Pn) Al

An{x) =
29,= & + Bi) + (2n + 1)%2
R 4PR

(A,+ RZ) m@2n+ 1)~1 (2 + 1)V

a 4P PRz B2
N @2n+ A
K 4iPR
Bz + RZ) , (2n + 1)r2 (2ra+ l)mBz
a 4P S PR2

In obtaining 6p2(x, ¥**) anfl 02(mr,y, t) we define the following auxiliary
problems:

NK +p”NK = B3(6"_0N), (3.13)
ot dx

30’ 901 1 0£
S aRs + Bii"pz — @) » (3.14)

3t IC)'¢ P 3y2
6 = cos cot when x = O (3.15)
02= cos cot when x = 0, (3.16)
(v _ (90D 0, 0A=0, 06=0, at y= 1. (3.17)

9y y® LK) Y»

Here we note that the auxiliary problems are similar to the original
problems for 0p2 and 02 except that the periodic condition is shifted by n/2.

Let us define new temperature functions Opc(x,y, t) and 0c(x,y, t) such
that

Bpc = Op2 + 10pr , (3.18)

BC — 02 -f- id2, (3.19)
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then the problems given by (3.8)—(3.12) and (3.13)—(3.17) can be combined
to give the following problems:

1N®p p4f(a O\ (3.20)
a, +R a* ~m K)'
80, 90, 1 87,
(3.21)
at + ', a, = f vy + W
Bpc= ent when Xx = 0, (3.22)
0, = el when x —o0, (3.23)
90, =0 , [ =0, BpC=0, 0,=0, at y =1,
9y ly=o0 I oY )y=o (3.24)
t>0
We now assume periodic solutions of the following types:
ep(x,y,t) = eM  W(x,y) , (3.25)
BA(X,y, t) = eIt ®d(x,y) , (3.26)

where the new temperature functions W and @ satisfy the following problems:

imy) - R —aﬂ——_ P3h — ¥ 1 (3.27)
ax
. 0 1 g4
iaQ)d -f- R_.U.X =5 5l snre @ (3.28)
®=1, &= 1 when Xx= 0, (3.29)
° -~ =, y/=0, @®=0 at y = 1, (3.30)

19Y 'y=o0

Solving Egs. (3.27) and (3.28) under the conditions (3.29) and (3.30),
we get finally

2H+l)

/ 9 1 . J I
ﬁ\ 1 f J'L:o(z(ﬂ+]1).oosl( ]
_ { . l I
BXX,y,t) = - \l- | WR J) | ||-|=Io (Q(H ll) * COS J 2 Jny * An(x),
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where
(nne - une x)

BA = (*n — Pn)

4. Discussion

When the boundary condition on the wall for 6p(x,y, t) and 0(x,y, t)
is homogeneous, that is, when 00is zero, then

Op(X, >0 = M *'Y 0 » (4-1)

6(x,y, 1) = 62x,y, 1) . (4.2)

Op2(x,y, t) and 62(x,y, t) show that the temperatures of dust particles
and of liquid decay exponentially along the channel.
For a single-phase system the number of dust particles per unit volume

is zero (and so Bi — 0). Hence

(_1)-- 2re+ 1

*pis0 = — Si i cos jny ecn-), (4.3
e»(*»jr>0 sin lwi 2. (2n £ 1) jn ne-) . (4.3)

where
(2n + 1)23=|2X 1

enx)'= exp M- AeLEt 2)Ae
L 4PR

and the boundary condition on the wall is homogeneous.

In many applications heat transfer in regions away from the inlet is of
interest; for such situations only the first terms in the series (4.1), (4.2) and
(4.3) need to be considered. Hence

4 ©
Bp(X, Y 'r) ~ —sm COt-—-- X ecos < g g, (4.4)
R e
_ 4 . ® ny
6(x,y, t) = —sin cot - -—-X e cos B01%) » (4.5)
n R )
t) = — sm COt--—----- X *COS =g= o3 , (4.6)
: R 1fi A
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where
'p« 5’[} - 77 . /*F-*“) »
(*o  Mo)
AO(X) = 1 _ Jg-PtX Po (_ ﬂ,ﬂ(J| , X
(fo "o) B (Ho-~0) T B
CO(*) = exp App
op0= @B+ O3, T2 , IAr (03 + g4 r ~
P +4PPJ+F[ R+ 4PHJ PR2 ™
(03 + [3) n* j I f s+ [O3) a2 n2
o — R 4P [ I ~R H apPJ  pP2 A%

The temperatures at any y, say y = 0, are given by

Bp(X,O,F) = — sin bI* __] [X\ ‘aP’ (47)
4

B(x, 0, t) = m—sin cot-——- -X ea, (4.8)
n R

os(x, 0,t) = — sin coOt----- P\ ea (4.9)
n R

where ap= BO(x), a = AQX), as= CO(x) denote amplitudes of dust particle,
liquid-dust mixture and clean liquid (single-phase system), respectively.

Table |

Comparison of the amplitudes for

P =073, R3= 105, -&-: 0.5, R = 13000

amplitudes

ap 0.99902 0.99802 0.99702 0.99602 0.99502
a 0.99898 0.99798 0.99698 0.99598 0.99498
0.99870 0.99740 0.99610 0.99480 0.99350

[
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amplitudes

o2

amplitudes

ap

anplitudes
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Table U

Comparison of the amplitudes for

P = 073,

0.9994499
0.9994270
0.9991550

R3= 105,

10

0.9988849
0.9988620
0.9983100

=05,

P3

15

0.9983199
0.9982970
0.9974650

Table 111

R = 20 000

20

0.9977549
0.9977320
0.9966200

Comparison of the amplitudes for

P = 0.73,

0.9994351
0.9994350
0.9991550

= 0.5, R = 20000,
P3
10 15
0.9988701 0.9983051
0.9988700 0.9983050
0.9983100 0.9974650
Table IV

R3= 109

20

0.9977401
0.9977400
0.9946200

Comparison of the amplitudes for

P =073,

0.99959
0.99958
0.99933

R = 25000,

10

0.99914
0.99913
0.99865

R3= 105,

15

0.99869
0.99868
0.99798

& -= 05
Pz

2

0.99825
0.99823
0.99730

We observe the following important points:

(@) From Tables I, Il and 1V it is obvious that the amplitudes ap, a, a3
increase of R and

increase with the

ap >a >as.
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25
0.9971899

0.9971670
0.9957750

25
0.9971751

0.9971750
0.9957750

25
0.99780

0.99778
0.99663

(4.10)



HEAT TRANSFER IN TWO-PHASE LAMINAR FLOW 105

Table V

Comparison of the amplitudes for

P=1073, R=25000, A=10», A =09

P3
x 5 10 15 2 25
amplitudes
- 0.99967 0.99933 0.99899 0.99875 0.99831
0.99965 0.99931 0.99897 0.99873 0.99829
s 0.99933 0.99865 0.99798 0.99730 0.99663
(b) Tables Il and 111 show that ap decreases with the increase of 83 (and

so B3, but a increases. Also

aP> a > as

holds (at least for values of P, BjB3, R and 3 considered here).
(c) From Tables IV and V we infer that the amplitudes ap and a in-
crease with the increase of BjR3 and

ap> a> as.

Thus, the effect of dust particle is to flatten the temperature profile and,
consequently, to increase the heat transfer.

Equations (4.1), (4.2) and (4.3) suggest that the phase lags are the same
for both two-phase and single-phase systems and is a limit due to the nature
of the model. Also, as the inlet frequency is increased, phase lag increases
and as the Reynolds number R is increased, the phase lag decreases.

REFERENCES

LL Farbar and M. J. Mori1ey, Ind. Eng. Chem., 49, 1143, 1957.

2.D. C schiuderberg, The Application of Gas-Ceramic Mixtures to Nuclear Power, Rept.
No. CF 55-8-199 ORSORT, AEC, 1955.

3.H. A Jonnson, Trans. ASME, 77, 1257, 1955.

4.J.J. satomone and N. NewMann, Ind. Eng Chem. 47, 283, 1955.

5.C. L. Tien, Transport Processes in Two-Phase Turbulent Flow, Ph. D. thesis, Princeton
University, U.S.A., 1959.

6. C. L. Tien, Trans. ASME, 83C, 183, 1961.

7. S. L. Soo, Fluid Dynamics of Multiphase Systems, Blaisdell Publishing Co., London, 1967.

8.P. J. schneider, Trans. ASME, 79, 765, 1957.

Acta Physica Academiae Scientiarum Hungaricae 41, 1976






Acta Physica Academiae Scientiarum Hungaricae, Tomus 41 (2), pp. 107—123 (1976)
ON THE AB INITIO CRYSTAL ORBITAL METHOD*

By

M. KERTESZ

CENTRAL RESEARCH INSTITUTE FOR CHEMISTRY OF THE HUNGARIAN
ACADEMY OF SCIENCES, 1525 BUDAPEST

(Received 18. VI. 1976)

A new computer realization of the LCAO Hartree— Fock crystal orbital method using
contracted Gaussian orbitals is reported. All integrals over the atomic orbitals are calculated
explicitly within a finite interaction range. No approximation with respect to exchange is
used. The spin-unrestricted Hartree— Fock-type crystal orbital formalism has been programmed,
too. Both programs are limited to quasi one-dimensional systems at present, provide never-
theless a useful tool for the theoretical investigation of the electronic structure of simple poly-
mers and one-dimensional models of solids. Basic information on both programs is documented.

Some numerical aspects, especially the convergency properties of the methods with
respect to the number of grid points in the Brillouin zone, the shape of the Fermi surface
in the special case of partly filled bands, the starting density matrices in the self-consistent
field iteration procedure and the size of the finite interaction range taken into account are
discussed. The specific problem of the starting density matrices in the unrestricted HF case
are also dealt with. Finally comparison is made with semi-empirical calculations.

1. Introduction

The linear combination of atomic orbitals (LCAO) Hartree —Fock
(HF) molecular orbital (MO) as well as crystal orbital (CO) methods appear
nowadays well established calculational tools for the investigation of the elec-
tronic structure of molecules and solids, respectively. A number of physical
observables can be estimated well even from approximate HF wave functions
(cspeciall)'r one-particle properties) while others await correlation corrections.
Thus it is easy to understand that a large effort has been devoted to the cal-
culation of the LCAO HF CO-s (and energy bands) of many systems. It is
not the aim of the present work to review this field, we refer to two review
papers only, covering part of the actual calculations [1]. From the methodolo-
gical point of view these calculations are either semi-empirical using usually
one of the integral approximation schemes of the approximate quantum
chemical MO methods or are of nonempirical nature. The latter are often termed
ab initio but use in fact in the majority of cases some kind of approximation
scheme [2] for the integrals over the atomic orbitals (AO-s) entering in the
LCAO CO formalism. In this paper we shall use the term ab initio (in close

* This work was partly performed at the Structural Chemistry Department, B. Kidric
Chemical Institute, University of Ljubljana, and supported by the Kidric Fund (Yugoslavia).
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analogy to the practice of molecular quantum chemistry) for those schemes
only in which all integrals over AO-s are explicitly evaluated (in most cases
within a finite neighbour’s range of an arbitrary elementary cell). Only very
few strictly ab initio CO calculations as far as the integrals are concerned have
been performed on three dimensional (3-D) solids [3], however, they did not
use the standard LCAO HF CO method. The applications to one D (1-D)
systems are scarce, too [4—10]. For obvious reasons 1-D systems are
much easier to investigate, and therefore in this paper we shall deal mainly
with 1-D systems.

It is evident that accurate ab initio restricted HF LCAO energy bands
are necessary for the improvement and justification of the above mentioned
semi-empirical and approximate non-empirical methods. Furthermore, they
seem to provide a natural starting point to account for electronic correlation
effects (see e.g. [11]).

Another closely related variational method is the spin-unrestricted
Hartree—Fock (UFH) method of Pople, Nesbet and Berthier [12].
Using different (spatial) orbitals for different spins (DODS, see e.g. [13])
in a one-determinantal many-electron wave-function the UHF method permits
one to account for part of the correlation energy. The application of the UHF
method to solids [13, 14] seems to be especially attractive as an antiferro-
magnetic spin structure can be described with it [15]. The DODS method
has several different versions (see e.g. [14]) but its full variational form, the
UHF CO method, being a straightforward generalization of its restricted
form can be applied to solids [10, 16, 17] with comparable efforts to the
restricted HF method.

The aim of this paper is to report on a new realization of the ab initio
restricted HF method (applicable to both strongly and weakly bonded chains),
the first realization of the ab initio UHF method both restricted to 1-D systems
as well as to discuss some convergency properties of the HF CO methods in
question.

2. Method of calculation

The equations for the CO coefficients in the restricted HF method are
well known [18]. For the spin-unrestricted HF case the corresponding equations
are quite similar [16], the difference is only the exchange polarization term
[13] in the Fock operator. For the sake of completeness we sketch here an
alternative simple derivation [19] of the UHF CO equations (for the general,
3-D, case) by using Bloch function formalism as opposed to the block diagona-
lization method of Biczdé et al [16].

We start from a one-determinantal DODS wave function for na and
electrons with spins « and B, respectively, in each elementary cell which can
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be given by using Born—Kéarman periodic boundary conditions (/N elementary
cells being within the Born—Karmén boundaries) as

Phops = o {ay, (1) (D), 1 (2) «(2) . . .
oo @y gu(N) a(N)ag, (N + 1) (N + 1) ... a 1,(2N) (2N) ...
eoe @y jn(N o n)o(N-n)by ,(N-n+1)BN-n+4+1)..
e bog, (N - %) BN - m¥)}

Here of is the normalized antisymmetrizer, n* = n, -+ Ny k(. =11,2,. 25:N))
are reciprocal wave vectors from the first Brillouin zone (BZ) and the Bloch
functions ¢, ;(r) (¢ = a and b stand for the orbitals with spins « and f, respect-
ively) are defined in the LCAO form as

1 s
€n, 1(r) = T~ > 3 ¢RCy, u(k) 1u(r — R) , (2)

R p=1

where 7, (r), (0 = 1,2, ..., m) are the AO-s in the reference cell, the C,, , (k)-s
are the expansion coefficients of the Bloch functions a,, and b, , for
spins o and f, respectively. If not specified otherwise, the summations over
lattice vectors R are extended over all the lattice points within the Born—
Karman boundaries.

If the number of electrons with different spins in the unit cell is diffe-
rent, the Ypops gives the approximate description of a ferromagnetic state.
If, however n, = ns; Wpops corresponds to an antiferromagnetic state [15].*
A well-known drawback of the Ypops wave function is that it is not an eigen-
function [13] of the total spin operator. For large systems, however, as proved
by UkraInsky [20] the energetic properties are not influenced by the presence
of the non-singlet components in ¥Ypops [21].

We use the well known Born—Oppenheimer electronic Hamiltonian
without nuclear-nuclear repulsion for the system of N - n* electrons present
in N elementary cells (atomic units are used throughout)

1 Nan: N:n* N-n* )k

e L P ey

i=1 i>j

. (3)
where Z; is the I-th nuclear charge which is in the position X;. The summation
over I is to be extended over all nuclei. Using wave function (1) and the

Hamiltonian (3) the variational principle leads to the PopLE— NESBET

* For sake of simplicity we consider in this paper only this specific case, but neither the
UHF CO method nor our programs imply this limitation.
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Berthier equations [12] for the orbitals
He()c(l) = 62c,(l) (c-= a, and b; if a= a and B, respectively) (4)

where i stands for the pair of quantum numbers n and k, i.e. it labels the
electron levels in the whole system of N elementary cells. The Fockian is
as usual

(1) noo,. Pt +2 {Ji-kD ©®

with the definition of the Coulomb and exchange operators jt and K1

1T )=(M ~ w 17+ (nrw W o ),
J Ir —ril J Ir—rtl

B0 = & £ OV, @)

and the summation over iin (5) extends over all the occupied orbital indices.

Starting from the above UHF MO equations one can simply get the
UHF CO equations by substituting the Bloch form (2) of the orbitals into
(4) —(6). Then the practically manageable LCAO form can be obtained for-
mally by multiplying from left by x*(ri) an” integrating over d3rr We write
here down the result in an mXm matrix form (it is of course identical with
that of the alternative derivation of Biczo et al. [16])

He(k) Cn(k) = On(k) S(k) Cn(k)  (n= 1,2,.. .. m), @)

where* the “k dependent Fock and overlap matrices” are

M M
Wk) = and S(k) = j?e wW?S(R) . (8)
R R

In the course of the derivation of the equations (7, 8) use is made of the trans-
lational symmetry of the system. The elements of the matrices H(R) and

*The upper limit M indicates that the summations are practically to be extended
over finite (JVf-th) neighbour’s interactions only. M should be infinite in principle, but in this
paper we restrict ourselves to the finite (M-th) neighbour interaction scheme. It is to be noted
that the “interaction domain” must be chosen according to the symmetry of the system
[22]. To be consistent, the finite neighbour’s approximation must be applied to the nuclear-
nuclear repulsion, too.
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S(R) are defined as follows.*

K.(R) 3|'

r

KR=Ma+22 vt - R RS R] O

RiRi yo

0 R . .
Ri R%  pyir2 -RJ" = R R R\l
v r Oy vy O ,1

with the following definition of the density matrix elements

1 occ occ
on® = ~ 2 2 B #) enf®) (10

and two-electron integrals are

0 «;)-a d3rdv' () z*(r- r) Ir4i r, ! r'- ri)Mr’- ]
(n)

The summation over fc, as usual in solid state theory, can he transformed to
an integral over the occupied part of the Brillouin zone. This completes the
description of the UHF CO equations, which can be solved by the usual
self-consistent field (SCF) procedure starting from suitable initial density
matrix elements discussed in more detail in § 3c.

The total electronic energy per elementary cell is [16]

S @) waruw +dEP] @)

M “M kn

T

As a consequence of the use of a one-determinantal variational trial
wave-function, the equations derived are satisfied also by the solutions of
the restricted HF equations. Trivially, if the orbitals with different spins
coincide (ank(r) = bnk(r)) the above scheme reduces to the RHF CO formalism
[18] (using doubly occupied spatial orbitals).

* IR/fiy is the jU-th atomic orbital in the elementary cell with lattice vector R.
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3. Computational aspects

3.1. Some characteristics of the computer program

Both the above RHF CO equations as well as the analogous UHF ones
have been programmed on a CDC 6400 computer. (We have named these
two programs BLOCH and UBLOCH, respectively.) The pseudo-eigen-
value equations (7) are essentially complex [see (8)], thus we preferred for
their solution the complex matrix diagonalization technique including a
Cholesky-type decomposition of the overlap matrix [23] to the more time
consuming transformation of the eigenvalue problem of a complex hermitian
matrix into an eigenvalue problem of a real matrix of double size combined
with the Léwdin orthogonalization technique used by Del Re et al [18] and
Andreé et al [4].

The most crucial point was the choice of the basis set and that of the
method of integration over the AO-s. Taking the AO-s as linear combinations
of (primitive) Gaussian orbitals, as is well-known, all one- and two-electron
integrals can be evaluated analytically. Making the resctriction that the
exponents of the primitive Gaussians be equal one can considerably reduce
the necessary computer time [24] without decreasing the flexibility of the
basis set too much.

For the calculation of the necessary integrals we have adapted the
GAUSSIAN 70 MO program system of Hehre et al. [24]. The following basis
sets are thus permitted [25].

1. “Minimal basis set” of Slater-type orbitals (STO) expanded in terms
of 2—6 Gaussians (GTO):

2. “Extended basis set”, i.e. AO-s consisting of 4 GTO-s for the descrip-
tion of the valence shell (and 4—6 contracted GTO-s for the inner shells)
permitting a better description of the valence electron polarization at minimum
computational cost by contracting only the inner three primitive GTO-s in
the valence part;

3. General contracted Gaussian basis set, which may be taken arbitrarily
within the limitations of GAUSSIAN 70.

In the majority of the applications we used the first two basis sets in
order to facilitate comparison with earlier calculations on molecules [26],
mwhere the GAUSSIAN 70 program proved to be a good compromise with
regard to speed and physico-chemical reliability.

The two electron integrals (11) (the number of which is usually very
large) are stored on magnetic disc together with their orbital indices having
the computational advantage that zero and very small integrals need not
he stored and operated upon (the threshold for considering an integral
as negligible can be varied over a wide range).
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For calculating the Fock matrix elements H,, (R) economically it was
inevitable to perform an effective classification and administration of the
numerous two-electron integrals (11). Thus, in the first neighbour interaction
approximation for the one-dimensional case the following types (“classes’)
had to be dealt with separately: (00 |00), (10|00), (10 |10), (11 |00),
(11 ] 00), (10 | 11) where 0 and 1 stands for any AO in the elementary cell
and its first (right) neighbour, respectively. Furthermore, it was necesary
to consider also subclasses to make maximum use of the seven index-inter-
change symmetries of the two-electron integrals (11). For these six classes in
the above order the following numbers of subclasses have been considered:
11,5,4,4,5,2. (For the reference cell these were identical with those used
in the molecular program GAUSSIAN 70.) Each integral contributes to only
a few matrix elements H,, (R) the indices of which it was necessary to deter-
mine for each subclass separately.

We have applied our BLOCH programs to several systems: chains of
hydrogen atoms with both metallic and molecular crystal type models [6, 10];
hydrogen bonded molecular chains, as hydrogen fluoride [5] and hydrogen
cyanide [7]; polyene [8]; polysulfur-nitride chain [9]. The energy band struc-
tures as well as other results can be found in these papers. Here we wish to
discuss in more detail some computational aspects of the CO method.

The testing of any ab initio program presents some technical difficulties.
The BLOCH and UBLOCH programs have been tested with the following
calculations.

1. In the limit of negligible intercell interactions the results of several
molecular calculations have been reobtained by BLOCH and UBLOCH.

2. In the same limit the equidistant H atomic chain dissociates correctly
to isolated H atoms using UBLOCH [10].

3. The RHF solution using UBLOCH was the same as that for BLOCH
for several systems.

The intercell interactions represented a more difficult problem. These
have been tested by the following further calculations.

4. The two electron part has been programmed separately without neither
the above-mentioned classification scheme nor the use of the seven symmetry
relations for the integral indices. For the same systems these two independent
codings led to identical results.

5. Finite clusters of hydrogen-fluoride molecular aggregates have been
considered. The total energy per unit cell tends with increasing cluster size
very well towards that of the infinite periodic system as can be seen from
Fig. 1.

6. A model in which an aggregate of two interacting subunits (HF mole-
cules) is repeated periodically was considered. The distance of these aggregates
was taken very large and thus the interaction among them negligible. The
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results were independent of the formal choice of the elementary cell, i.e.
whether the strong interaction became inter- or intracellular.
7. Results showed all required symmetry properties in all cases (provided

that the starting density matrices were of correct symmetry).

For the orientation of the interested reader, we present in Table | the
computer times used for the full ab initio energy band calculation of some
selected systems. All data refer to minimal basis set calculations. (The calcul-
ations have been done in collaboration with J. Koller and A. Azman.)

Etot
I N
04 qu.
N ok
1 i k2 L—»
1 2 Z 0 N

Fig. 1. Total energy per unit cell of increasing clusters of HF molecules converging towards
the total energy per elementary cell of the corresponding infinite system.
@iV is the number of HF units.)

Table |

Computer times necessary for the performance of full ab initio crystal orbital calculation for
some selected systems (on a CDC 6400, Cyber 70)

Computer times (in sec)

Number of
Number of Number of included Integral evalua-
grid points in iterations in the &) Neighbouringyign"4nd mole- .
System the half crystal orbital  atoms in the gyjap cajeylation  Crystal orbital
Brillouin zone calculation 0 mnilighctlmatilping used to obtain ta CQ”ﬂ'ﬁy“"”
elementary cells starunl:g”diinsny
Hydrogen fluoride
(symmetric nuclear
configuration) 7 8 2(b) 80 65
Hydrogen fluoride
(asymmetric nuclear 7 8 2(b) 920 240
configuration) 7 7 4(b) 600 1500
Polyene 5 17 1(a) 20 25
Polysulfur nitride 5 16 3(a) 400 550
) 9 30 2(a) 70 510
Polyglycine 5 35 2(a) 360 2500
) ) 5 30 3(a) 600 2600
Hydrogen atomic chain 61 2 3(a, b) 120 18
61 2 15 (a, b) 800 25
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3.2. Convergence problems

In both methods (RHF and UHF CO) one should reach convergence,
with respect to the following four characteristics:

— number of k points in the Brillouin zone (NKP) used in the numeri-
cal calculation of the integrals to which the summations in (10) and (12)
are transformed;

— shape of the Fermi surface in the case of partly filled bands;

— density matrices in the SCF iteration procedure (see § 3.3 and 3.4);

— number of included neighbours (see § 4).

There is a considerable experience available from semi-empirical band
calculations for the choice of NKP according to which relatively few k-points
are usually sufficient. We used NKP values between 9 and 25 and in some
selected cases even 61. In the majority of the applications we did not require
self-consistency with respect to NKP, but on the basis of our experience we
tried to choose NKP in all cases to be sufficiently large. The integrations over
the BZ have been performed using Simpson’s rule.

The shape of the Fermi surface is not the most serious problem for 1-D
systems, though in certain cases one can have troubles. E.g. the case of poly-
sulfur-nitride was rather delicate: several starting Fermi ‘“‘surfaces” failed
to lead to self-consistent solution.

3.3. Choice of the starting density matrices

We have observed in our ab initio HF calculations that usually more
iteration steps are necessary than in the analogous semiempirical calculations.
The choice of the starting density matrices was found, therefore, to be crucial.
In several cases no or extremely slow convergence occurred if we started
from the density matrices corresponding to the eigenvectors of the one-
electron part of the Fockian (a Hiickel-type initial guess). In this respect the
following classification of the systems treated by us has proved useful.

(i) Systems consisting of weakly interacting even-electron subunits.
Molecular crystals fall within this class including the more strongly interacting
hydrogen bonded chains. For these systems the SCF density matrix elements
of the elementary cell were used as the intracell elements of the initial density
matrix while its intercell elements were taken zero. This choice produced
good convergency for all systems of this class. Usually 6—10 iterations were
necessary to reach convergency to 5 - 107% in all elements of the density
matrix.

(ii) Systems consisting of strongly interacting even-electron subunits.
Covalently bonded systems like real regular polymers come under this class
possessing elementary cells linked by chemical bonds. These systems are
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usually insulators or semiconductors. The starting density is very critical for
these systems. E.g. in a calculation for polyglycine using the starting density
described above for molecular crystals though self consistency was reached
up to 5 « 10-3 after 30 iterations, the wave-function obtained turned out to
be physically unrealistic (electron energy too high, atomic charges too pola-
rized). To overcome this difficulty we propose a simple procedure to construct
a better starting density matrix for systems of this class. Taking two interact-
ing elementary cells and supplementing them by fictitious atoms (e.g. hydrogens)
we obtain a chemically reasonable closed shell molecule. The density matrix
elements taken from a relatively rough approximate MO calculation for this
fictitious molecule provide a reasonable initial guess for the polymer. (Elements
connecting the fictitious atoms with the original ones are to be omitted, of
course.)

(iii) Systems with odd number of electrons in the unit cell (e.g. polymer
metals). In order to obtain SCF solutions for these systems sometimes special
considerations are necessary due to the combined problem of the starting
density matrix and the unknown shape of the Fermi surface. There is a possi-
bility to change both the Fermi surface and the density matrix simultaneously
during the SCF iteration procedure. Alternatively, one could change the Fermi
surface only after self-consistency with respect to the density has been reached.
Several combinations are also possible but neither procedure is necessarily
convergent. In case of polysulfur nitride the second iteration scheme led to
the SCF solution starting from a Hiickel type initial guess in 30 iterations with
the difference 8 » 10“5 in the density matrix elements in the last two steps.

3.4. Choice ofthe starting density matrix in the spin-unrestricted Hartree- Fock case

It is well known that the UHF method as applied to molecules and radi-
cals possesses worse convergency properties than its counterpart RHF method.
Especially pronounced is this difference in the case of closed shell systems
where the UHF solution can be found sometimes only by the special “opti-
mization of individual orbitals” procedure [27]. Even this method may fail
to give a solution different from the RHF wave-function [28].

In our practice the following starting densities have been used in all
semi-empirical and ab initio, molecular and crystal orbital calculations (essen-
tially introducing changes of opposite signs into the diagonal elements)

Ba ={1)l (0)+yy,

where -f- (—) stands for a = x(B). DyddF (0) is the SCF density matrix element
of the corresponding RHF solution. The ly-s are usually subjected to
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the restriction HIly= 0. The values ly have to be chosen always according

to the system forcing the orbitals with different spins to avoid each other as
much as possible.

Historically it was just this important type of correlation that was
attacked by the several DODS and alternant MO methods [13]. In simple
alternant systems the choice |ly|= 0.1 ...1.0 has led usually to conver-
gency, though in some cases it was necessary to try with two or more sets
of lyvalues to obtain an UHF solution. In some systems (e.g. linear polyenes)
the Tr-electrons can easily have an alternant structure for the orbitals with
different spins, but for the other electrons it may turn out not to be an easy
task to find the corresponding alternating densities in order to obtain part of
the correlation effect. In certain cases it is even impossible for mathematical
reasons to split the orbitals for a and R spins due to the limited size of the
basis set (e.g. the core electrons in a minimal basis set calculation).

4. Convergency with respect to the number of neighbours

The finite neighbour’s interaction approximation is perhaps the most
problematic approximation used in the SCF CO methods in question. This
problem is mentioned in almost all papers in this field (see e.g. Euwema et al

Fig. 2. Density matrix elements Dn and D 12 as function of the number of included neighbours,
M, in an equidistant chain of H atoms. (Distance of first neighbours, a = 1.88 a.u.)
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[2], André et al [4]), but to the author’s knowledge a detailed ah initio study
of this problem is still lacking.

A completely different approach is that of Harris and Monkhorst
and Kumar [3] using a modified type of Bloch functions (modulated plane
waves) in order to overcome the difficult problem of the evaluation of the
multicentre integrals, and the problem of distant neighbours, but their wave
function is not of the standard LCAO HF CO type.

345678910111213146 16M

Fig. 3. Total electronic energy per elementary cell, E/N, plotted against the number of includ-
ed neighbours, M, in an equidistant chain of H atoms (a — 1.88 a.u.)

Recently Zunger [29] investigated the problem of finite neighbours
interaction on closed ring clusters calculating in this way the approximate
energy bands of a hydrogen fluoride chain using semiempircial INDO (inter-
meditate neglect of differential overlap) method [30]. According to his results
it was enough to include 4—5 neighbouring molecules for an accuracy of
10-4 a.u. in the energy bands and 0.1 kcal/mol in the cohesive energy. The
inclusion of 3 neighbours gives charges accurate to about 10-3 e. A remarkable
property one can see from [29] is that all quantities considered show smooth
convergency with respect to the number of included neighbours.

On the other hand Simmons et al. [31] obtained rather slow and oscillat-
ing convergency for the overlap of the Bloch functions at A= 0 using the
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usual Gaussian basis set. This convergency was highly improved by truncating
the AO-s after 2—4 a.u.

In order to obtain some insight into the convergency properties of the
spin restricted SCF CO method we performed a series of ab iaitio energy band
calculations on a linear metallic-type chain of H-atoms with nearest neighbour
distances of 1.88 a.u. This distance has been found [6] energetically most
stable for this system and can therefore be considered as a not-too-weakly

Fig. 4. Three selected energy levels in the H atomic chain, a= 1.88 a.u.,, E(K = 0), E(K =
= .i/2a) and E(K = n/a) illustrating the behaviour of the energy band (bottom, Fermi level
and top) as function of the number of included neighbours, M

interacting model. Minimal STO-4G basis set has been used. Some of the
results are represented in Figs. 2—4, where the diagonal and first off diagonal
density matrix elements, Dn and 2)12 respectively, total electronic energy per
atom E/N and three selected energy levels (E(K) values) are plotted against
M, the number of included neighbours.

Considering these result it appears at once, that while the density matrix
elements Dn and D12 converge very quickly the convergence of the energe-
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tic quantities is worse. While the total energy changes less than 0.0005 a.u.
in going from the 6-th to the 16-th neighbour’s interaction, the Fermi level
E(n/2a) changes about 0.01 a.u. Thus, in general, it may he probable that using
alsmall number of neighbours charge distributions and cohesive energies will
be better than energy bands. The empty bands are more sensitive in this
respect than the filled ones. This latter observation is in accordance with the
experience obtained for several other systems, too. Further investigations of
similar type are necessary in order to see how general are the trends found
on the simple model considered here.

5. Comparison with semi-empirical calculations

Since ab initio and semi-empirical MO calculations have been comparati-
vely analyzed in a number of books and papers here we wish to sketch only
some problems which are connected with the nature of solids considered by
the CO method. As semiempirical MO methods have been parametrized for
the case of covalent molecules the original parametrizations lead to
wrong results in the case of ionic crystals as shown in [32]. Moreover, it was
found that even for molecular crystals the unmodified semiempirical MO
parametrizations are not always realistic [33].

Covalent solids and polymers would be ideal objects for the use of
“molecular-parametrized” semiempirical CO methods as the interactions
in the solid are essentially of the same type as those in the molecules. Even
in this case, however, large disagreement with both ab initio calculations and
experiment can often occur, as it is unfortunately the case for many mole-
cules, too.

As we have mentioned previously, only very few true ab initio calcula-
tions have been performed to date, comparisons of ab initio and semiemprical
results for two linear hydrocarbon polymers can be found in [34, 35]. (In
[35] the results of ESCA experiments for polyethylene are interpreted on the
basis of different CO calculations.) The general trend found in these compara-
tive studies was that the forbidden gap in the CNDO/2 method is too large,
while in the extended Hiickel (EH, [35]) method it is too small as compared
with the corresponding ab initio results. (This is in accordance with the ten-
dencies found for the difference of the orbital energies of the highest occupied
and lowest empty levels of molecules.) The improved CNDO/SW (Sichel
W hitehead [36]) method gave centres of gravity of the bands more similar
to ab initio than the original CNDO/2. (It is to be noted that the EH method,
being not an SCF one, fails for strongly polarized systems.) Other parametri-
zations considered in the above comparisons gave smaller gaps than ab initio.
The results of SAMO (simulated ab initio MO [34]) method agree rather well
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with the ab initio results for polyethylene in the first cell approximation, but
the discrepancy with the second neighbour approximation may indicate the
failure of the SAMO method as applied to solids.

A rather close qualitative agreement between the ab initio and CNDO/2
results has been found recently [5] for a hydrogen fluoride chain with respect
to both the energy band schemes and cohesion energies. It is worth noting
that both in these calculations on hydrogen fluoride chain and in our recent
ab initio band calculation for hydrogen cyanide chains [7] some possible
proton positions have been considered and of these the most stable nuclear
configuration was the experimentally observed one. (For the latter system no
semiempirical work is known to the author.) Recently we have published
energy bands of polysulfur nitride [9], too. The ab initio and CNDO/2 bands
show a similar qualitative pattern but there are considerable quantitative
differences. The ab initio charge distribution seems to be, however, much
more reasonable as expected and with respect to stability problems the ab
initio method is superior to both EH and CNDO/2 [37].

We feel that work is still to be done in order to have more confidence
in applying semiempirical quantum chemical parametrizations of CO methods
to solid-state calculations especially for van der Waals crystals. For these
problems ab initio results are in need to have a basis of comparisons.

6. Concluding remarks

The ab initio crystal method can now be applied as a routine aid for the
investigation of the electronic structure of simple one-dimensional systems
with arbitrary type of interaction between the elementary cells in both re-
stricted and unrestricted Hartree—Fock schemes without further approxim-
ation on exchange using contracted Gaussian basis sets.

The method may also help in improving semiempirical band calculation-
al methods which still retain their importance due to the high expenses of
ab initio calculations for large systems. Another promising methodological
possibility offered by our BLOCH program would be to compare strict ab
initio results with other approximate non-empirical schemes [2] mentioned
in the Introduction.

The problem of broken-symmetry solutions is common to all Hartree —
Fock schemes. The spin-unrestricted solution may break also the spatial
symmetry of the one-particle wave functions by concentrating the Bloch
functions with spins up and down on different sublattices. Even in the spin-
restricted Hartre—Fock case one can find, as is well known, broken-symmetry
solutions. In our ab initio treatment of the equidistant H chains [6] and polyene
[8] besides the symmetric (metallic) solution also broken-symmetry (insulat-
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ing) solutions with a lower energy have been found indicating the instability
of the equidistant nuclear configurations.

The convergency properties of the methods have been found sometimes
worse than those of analogous methods for molecules and especially for metallic
type systems special convergency considerations are necessary. The conver-
gency as function of the number of included neighbours seems to be the most
problematic point in the method. A model calculation on a chain of H-atoms
in this paper showed that sometimes several (at least 10), neighbours are
necessary to reach even a rather moderate accuracy of ~ 0.5 eV for the
energy bands.

The spin-unrestricted version of the LCAO Hartree-Fock method which
includes that part of the electronic correlation which may be associated with
an antiferromagnetic spin structure has convergency properties comparable
to the restricted version. The correlation energy one can include is not too
large (e.g. ~34% of the estimated correlation energy in the case of an equi-
distant H atomic chain [10]) but is still encouraging regarding that the spin-
unrestricted HF method retains the one-particle picture.

Several applications of our ab initio programs BLOCH and UBLOCH
described in this paper are in progress: infinite cumulene, polyacetylene,
polyglycine [38], formic acid chain, homopolynucleotides, the backbone of a
diacetylene polymer etc. are being studied. Work is planned to calculate corre-
lation corrections using Wannier functions calculated from the SCF Bloch
functions. Simple physical observables as dipole moments [39] and Compton
profiles will be also -calculated.
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Localized orbital densities have been investigated in a series of ten-electron hydrides.
It has been found that changes in the central atom nuclear charge cause systematic modifica-
tions in the localized electronic structure. The charge distributions of localized orbitals have
been analyzed using their electric moments.

Introduction

The wavefunction of a closed shell system in the independent particle
model is approximated by a single determinant of one-particle functions. The
canonical molecular orbitals (CMO) are the solution of the pseudoeigenvalue
problem: the well-known Hartree—Fock—Roothaan method uses atomic
orbitals (AO) to construct the molecular ones [1].

The CMO’s conform to the symmetry restrictions and they extend
usually over the whole system. Even though the analysis of canonical orbitals
provides information on the electronic structure of individual systems, real
and actual problems in chemistry are often connected with the comparison
of different molecules. The localization of electron distribution makes it possible
to come closer to classical chemical concepts, investigate related molecular
systems, study transferable properties and has some further advantages.
Each localized molecular orbital (LMO) yields significant charge density only
in distinct regions of a system. Thus one expects to use LMO’s or their charac-
teristic features determined for small systems as ‘“‘starting points’ in a preli-
minary study of related larger molecules [2, 3].

In order to investigate the localized orbitals and their characteristics
systematic work has been done on a series of ten-electron systems. Ab initio
molecular orbital calculations have been carried out for the ten-electron
hydrides derivable from C, N, O, F and Ne using basis sets of (13s7p/4s)
Gaussians contracted to [4s2p/2s]. The bond lengths and bond angles were
fixed at the experimental values of the neutral species [4].

The proton affinities, the ionization potentials and the molecular dipole
moments have been discussed in recent papers [5, 6, 7]. The localized orbitals

Acta Physica Academiae Scientiarum Hungaricae 41, 1976



126 E. KAPUY et al.

of the ten-electron systems studied have been analyzed in terms of first and
second electric moments of their charge distribution [7, 8]. The first moment
vector <r> with the origin at the central nucleus, determines the length of
the centroid of charge <(r) of a localized orbital. The eigenvalues <(x'2), uy 2,
<(Z2> of the second moment 0 tensor can be represented by an ellipsoid with
semiaxes <x'2,* <(y'2>* <«'2>* where the origin of the coordinate system is
usually shifted onto the centre of the charge distribution [9].

The electric moments of a charge distribution can he related to the
statistical moments of probability theory [8]. This mathematical background
offers the possibility of using the electric moments of localized orbital densi-
ties for characterizing molecular electronic structures. Thus the mean features
of the localized moments can also be used for analyzing the various types of
localized orbitals.

In the present paper the systematic modifications in the electron distri-
bution of the LMO densities caused by changes in the central atom nuclear
charge are investigated. The changes of the molecular environments are dis-
cussed in terms of localized moments and of their characteristics.

1. Construction of localized orbitals

The molecular orbital calculations were performed using the IBMOL-I1V
program [10]. The localized orbitals were obtained by Edmiston—Rueden-
berg energy localization criterion [11]. The studied ten-electron systems can
be grouped into five symmetry point groups, the localized orbitals corresponding
to these series are the following:

Kh core, four lone pair LMQO’s

Coo» core, three lone pair LMO’s, one bond pair LMO

core, two lone and two bond pair LMO’s

C3v core, one lone pair LMO, three bond pair LMQO’s

Td core, four bond pair LMO’s.

The transformation matrices of AO basis to CMO and CMO basis to LMO,
respectively, are in good agreement with earlier investigations [12, 13, 14, 15].
The calculated coefficients for the AO —=CMO and CMO —»LMO matrices
on the example of H,0 molecule are given in Table I.

2. Interaction energies of electrons on localized orbitals

The total energy of a closed shell system containing 2iV electrons

E= H(0) + 2j2 (@ IH(D) 1>+ J  (spflpgj 1°T212 - Pn) 19wW/> @)
i=l ij=I
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PY»
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Pz’
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(Hi)
(H2)
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Transformation matrices for the HsO molecule

lax

+0.044006
+0.981333
+0.010774
-0.004730
+0.000026
+0.001144
+0.000026
+0.001144

0.0

0.0

0.0

0.0
-0.002492

0.001222

Core

+0.990912

-0.125331
0.0

—0.048841
0.0

Table 1
AO to CVO
2ax 16,

-0.008621 0.0
-0.232763 0.0
+0.650577 0.0
+0.294719 0.0
+0.135915 -0.255611
-0.012522  -0.093975
+0.135915 +0.255611
-0.012522 +0.093975

0.0 -0.277285

0.0 -0.518776

0.0 0.0

0.0 0.0
-0.055817 0.0
-0.121473 0.0
CMO to LMO

Bond 1 Bond 2
+0.053419 +0.053419

0.579098 +0.579098
—0.707107  +0.707107
—0.402234  -0.402234

0.0 0.0

can be expressed using the Coulomb integrals

and the exchange integrals

<SPfPj |<PfPt>

IW/>  Vi,y

Vi, /

between the {fg functions of a given basis set [1].
The single-determinant wavefunction is invariant under the localiza-
tion transformation in the case of closed shell systems, while the Coulomb

KN

—0.003119
-0.083741
+0.252617
+0.270435
-0.143433
-0.110493
-0.143433
-0.110493

0.0

0.0

0.0

0.0

0.305897

0.615870

Lone 1

+0.078696
+0.395969
0.0
+0.580530
-0.707107

127

16

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0
+0.360029
+0.770638

0.0

0.0

Lone 2

+0.078696
+0.395969
0.0
+0.580530
+0.707107

2

@)
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self-repulsion terms increase and the non-diagonal exchange terms decrease
during the energy localization procedure [11]. The diagonal elements of the
Coulomb matrices over the localized orbitals of ten-electron hydrides studied
represent the self-repulsion energies of the core, bond and lone pair LMO’s
(Table I1).

The self-repulsions of core as well as bond and lone pair LMO’s are increas-
ing with the nuclear charge of the central atom within each symmetry point
group. The core self-interaction integrals are much larger than the terms

Table 11

Self-interaction energies of electrons on localized orbitals

Systems Core seif Bond seif Lone self

C4- 3.5454 _ 0.5281
Ne - 4.1882 — 0.6978
. OR 4.8371 — 0.8386
F- 5.4874 — 1.0041
Ne 6.1385 ; 1.1785
HC3* 3.5569 0.5997 0.5574
HNe - 4.2043 0.6265 0.7399
cm  HO- 4.8500 0.7316 0.8818
HF 4.4941 0.8953 1.0396
HNe+ 6.1418 1.0734 1.2017
H X2 3.5646 0.6305 0.5809
h - 4.2097 0.6982 0.7612
C. HD 4.8525 0.8128 0.9047
h 2F + 5.4966 0.9607 1.0688
H2Ne2+ 6.1421 1.1243 12174
Hi - 3.5669 0.6540 0.6023
HN 4.2083 0.7420 0.7797
C* HD+ 4.8512 0.8580 0.9280
HF2+ 5.4958 1.0023 1.0826
HNe3+ 6.1414 1.1585 1.2325
H4C 3.5670 0.6700 -
h4n + 4.2006 0.7702 —
Td HO2 4.8495 0.8898 —
H 4F3+ 5.4946 1.0344 —
HANel+ 6.1399 1.1855 —
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corresponding to the interactions in the valence shell. The values of self-
interaction of the lone pairs are always smaller than those of the bond LMO’s
in a given species: a lone pair LMO density is less concentrated than the bond
pair LMO. The electron density of the latter is better localized for the proton
provides a positive nuclear charge (i.e. there are additive basis functions for
describing the LMO distribution).

H2C2 H2N- HD H2F+  H2Ne2t

Fig. 1. Coulomb interaction energies of localized orbitals
@: Lone/Core 2: Bond/Core, 3: Lone/Lone, 4: Bond/Lone, 5: Bond/Bond)

The non-diagonal Coulomb and exchange terms characterize the interac-
tions between the various types of localized orbitals. The Coulomb interactions
change systematically with the central nucleus within each symmetry point
group (on the example of group the changes are shown in Fig. 1). The
interaction energies show certain regularity in each series, for the Coulomb
energies the following order was obtained:

lone/core >m bond/core > lone/lone ]> bond/lone > bond/bond

The exchange integrals are larger within the valence shell than between the
core and the valence shell localized orbitals, as expected. Fig. 2 represents
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the exchange terms for the molecules of ~2&point group. The
lone/lone > bond/lone > bond/bond (4a)

order holds again, whereas the lone/core and bond/core exchange interactions
are smaller (but still lone/core > bond/core integrals), showing a systematic

»(change energy (au.)

Fig. 2. Exchange interaction energies of localized orbitals
(5 Lone/Core 2: Bond/Core, 3: Lone/Lone, 4: Bond/Lone, 5: Bond/Bond)

change with increasing atomic number of the central nucleus. The results
suggest that one should expect a similar relationship while analyzing the
localized orbitals in terms of localized moments and their mean features.

3. Characteristics of localized moments viz. the change
of central atom nuclear charge

It is interesting to compare the angles between the centroid of charge
vectors of different LMO’s [16, 17, 18, 19]. A study on neutral ten-electron
systems as well as the investigation of the localized orbitals of hydrides with

Acta Physica Academiae Scientiarum Hungaricae 41, 1976



CHARACTERIZATION OF CHARGE DISTRIBUTION 131

increasing proton number have shown that the angles between the three com-
binations of bond and lone pair centroid vectors keep the

lone/lone /> bond/lone /> bond/bond (4b)

order [8]. The relationship (4b) is expected because of the inequalities of (4a).
Similar regularity has been found while investigating the centroid vector

ceritroid angle (degree)

Fig. 3. Angles between the centroid vectors of localized orbitals
(L: Lone/Lone, 2: Bond/Lone, 3: Bond/Bond)

angles of the ten-electron hydrides belonging to the Q® symmetry point group
(Fig. 3). It should he noted that fix valence angle has been taken for all five
species of C2 group, the experimental bond angle (104.52°) of the water mole-
cule. Therefore the angles between the bond pair LMO centroid vectors do
not differ too much, while the lone/lone angles decrease strongly with increasing
central atom nuclear charge, as expected.

The first electric moments of bond and lone pair LMO’s show significant
difference as well as the angles between the centroid vectors. The second electric
moments, however, are more sensitive to the geometry data and the basis
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set. It is evident, because the higher is the order of an electric moment it
describes the more distant regions from the centroid of the given orbital.
E.g. the dispersion ratio, Rd (as defined in (8)) shows systematic changes in
the series of neutral systems as well asin the case of the hydrides with increas-
ing proton number, but no regularity holds for the molecules of group
included in the calculations (Fig. 4). The discrepancies are certainly due to

R

Fig. 4. Dispersion ratio (Hd of localized orbitals

the geometry and basis set dependence. Further study in these directions is
in progress.

In addition to the use of first and second electric moments of localized
orbital distribution, other characteristics of the localized moments can also
be introduced. These quantities obtained by the combination of the electric
moments of different order [8] may be suitable for analyzing the LMO den-
sities.

The ratio of the absolute value of centroid of charge vector and the

major semiaxis, the quantity show the asymmetry of the i-th
localized orbital. A similar interpretation can be given to the quantity
(<(n); — *)Ky'2Y? which makes a comparison between the magnitudes
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of first and second moment components. This so called orbital distortion,
Dort» is the less the more spherical distribution has the given LMO (it can
also be negative). The orbital asymmetry, A om, as well as the orbital distortion
keep similar orders while investigating these quantities for the bond and lone
pair LMO densities of the ten-electron hydrides of the C& symmetry point
group (Figs. 5 and 6). The charge distribution of a bond pair LMO elongates

Aorb

Fig. 5. Orbital asymmetry (Aorb) of localized orbitals

more away from the central atom nucleus and decreases appreciably with
the change of molecular environment, i.e. increasing nuclear charge of the
heavy atom, the lone pair LMO densities are closer to spherical symmetry.

It has been shown that there is also a significant gap between bond and
lone pair LMO densities if they are calculated over density contours [20].
Similar results were obtained from a numerical integration of the inside and
the surface of electron density contours for some neutral molecules. Some
earlier investigations have already shown that the bond and lone pair LMO’s
can be characterized by main features of their electric moments [7, 8, 20].

The orbital asymmetry and the orbital distortion in the case of ten-
electron hydrides studied vary systematically — like in the C2v group’s species
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presented — for each LMO of the Kh, C,,v, C3vand Tdsymmetry point groups.
The deformation of both bond and lone pair LMO densities decreases with
increasing central nuclear charge, as expected. The effective solid angle,

is also suitable for characterizing a localized orbital, it can be calculated using
the first and second electric moments. These angles, presented in the series
of C2rgroup in Fig. 7. vary little for lone pair LMQO’s, but increase significantly
for bond pair LMO’s. Similar regularity holds within the other four symmetry
point groups, too. It should be emphasized that not only the first and
second electric moments of LMO’s can he related to mathematical variables,
hut they are, as one-electron properties, expected to he determined to a good
approximation by ah initio calculations (Brillouin theorem [21]).

Dorb

Fig. 6. Orbital distortion (-Dorty of localized orbitals

5
These systematic changes of localized moments with varying central

atom nuclear charge (in the present paper) and proton number (in [8]) are
expected, because similar relationships hold between the energy interaction
terms of studied ten-electron systems. The characterization of charge distri-
bution can be done using some quantities derived from the electric moments
of localized orbitals: in the case of ten-electron hydrides the change of these
features of LMO’s (Figs. 4, 5, 6, 7) are in agreement with the variation of
Coulomb and exchange energy integrals (Table Il, Figs. 1, 2).
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5%ff (steradian)

Fig. 7. Effective solid angle (17ff) of localized orbitals

4. The influence of geometry and basic set

It has already been pointed out that the electric moments of charge
distribution are sensitive to the basis set chosen [22, 23]. The effect of the
geometry on the electric moments has not yet been investigated in previous
references.

The calculated equilibrium geometry is expected to he near the experi-
mental one for a molecule, using ab initio calculations. In the case of ten-
electron systems we have taken experimental data for the geometries, the
total energy minima, however, have also been determined for the neutral
species (Table I11). The calculated equilibrium in each case is in modest agree-
ment with the expectation. Therefore it is hoped that the geometry effects
do not influence strongly the results obtained for the localized moments.
The basis set dependence may he more dangerous, but the characteristics
proposed, as they are ratios, are expected to he suitable for analyzing LMO
densities. The influence of geometry variation is under investigation and a
study on the basis set dependence is also planned.
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Table LW
Calculated equilibrium of the studied neutral systems

Geometry data in the Total energy (in a.u.) in the
System calculated equilibrium Equ. calc. Equ. exp.

CH4 HC - 2.054 bohr - 40.186000 - 40.185944

NH, HN = 1.924 bohr - 56.173377 - 56.170648
NHN = 112.51°

H.,0 HO = 1.845 bohr - 76.012339 - 76.010814
HOH: = 109.03°

HF HF = 1.746 bohr -100.03271 -100.03267

Ne — -128.54467* -128.54337**

* noncontracted basis set
** contracted basis set
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THE APPLICATION OF SU (1,1) SPIN COEFFICIENTS
FOR SPACE LIKE SYMMETRY

By
B. Lukéacs
CENTRAL RESEARCH INSTITUTE FOR PHYSICS, HIGH ENERGY PHYSICS DEPARTMENT
BUDAPEST
(Received in revised form 26. VII. 1976) .

If the space-time has a space-like Killing symmetry, the three-dimensional spin coeffi-
cient technique, which was useful for time-like symmetry, can be applied again. This paper
contains the spin coefficient forms of the Einstein equation and the Ricci and Weyl tensors.

1. Introduction

Solution of the Einstein equations have long been studied in the lite-
rature. Various methods have been applied to find solutions of these equations.
The spin coefficient technique developed by Newman and Penrose [1] is
one of them. By means of this technique several new solutions have been
found [2]. On the other hand, Perjés has shown that if the space-time has
a Killing symmetry, it is useful to reformulate the gravitational equations
in a three-dimensional “background” space and to apply the spin coefficient
technique in three dimensions [3]. This method has given solutions, which
could not have been obtained in the four-dimensional NP formalism [4], [5],
[6]. But this new formalism has been worked out in the stationary case only.

The massive objects whose gravitational fields are sufficiently strong
to have a non-Newtonian character show axial symmetry. Adapting the
Perjés formalism to the case of space-like symmetry, it will be possible to
investigate time-dependent solutions in a new way. This may be useful, for
example, in the description of the gravitational collapse.

This paper contains the equations of the spin coefficient method adapted
to the 3-dimensional relativity theory when the symmetry is space-like, i.e.
the Killing equation

+ Kvfli — o (1-1)

has a space-like solution K™* and the Lie derivatives of all field quantities
vanish along this Kf vector field.
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2. Three-dimensional relativity theory

The derivation of the equations of the 3-dimensional relativity is similar
to the procedure written down in [3] therefore we survey only some impor-
tant points.

The coordinate system can be chosen in such a way that

= Of. (2.1)
From Egs. (1.1), (2.1) we find that
=0. (2.2)
Eq. (2.2) shows that
T,v,3= 0. (2.3)

The condition (2.1) is preserved by the following transformations:

x3 —X3 - F(xf) , (2.4a)
Xu = *T(*r) (2.4b)
i=0,1,2.

In this paper we shall use such coordinate systems in which condition (2.1)
is fulfilled.
Let us write the line element of the 4-dimensional space-time in the form:

ds2= f(dz -f- cord*)2 —/ _1ds2,
ds2 = gikdx‘dxk , (2-5)

3=z,

where a tilde denotes the 4-dimensional quantities. This form is general
because / = KeKe>0. gk is a symmetric tensor of signature (-f, —, —).
/, ftij, gik are independent of z. f is a scalar, oo, is a 3-vector, gik is a symmetric
tensor with respect to the transformations (2.4b) and they transform under
(2.4a) as follows:

f'r= f,
o-= @Q—F,i, (2.4¢c)
Sik  gik

W e shall consider” asthe metric tensor ofthe 3-dimensional background space.
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Now we introduce the following quantities:

Gi

= (2frle(/,>+ up,),
& = ew™Nkh +2Y ?.
Here the stroke | denotes the 3-dimensional covariant derivation, v, — gikvk
The new form for the Einstein equations is:
Glr+ (G -G")Gr=-f~*R3za»
Gi\k — Gkii + G,Gk — GkG, = —ifikNeVgf~2m (2-7)
Rk + Gfik -f GiGk = f~ ZAgirgksRrS — gikR33)
Rik is the 3-dimensional Ricci tensor. R” can he obtained by means of fAv
considering Eq. (2.5). These equations were published by Perjés in 1970
[3]. The form of the equations of “3-dimensional relativity theory” is inde-
pendent of the signature of KeK®, hut having applied the spin coefficient

technique to the spacehke symmetric case, the spin coefficient equations
differ from those of [3]. Now we are going to calculate these equations.

3. The complex triad formalism

We have to construct the 3-dimensional analogues of the Newman —
Penrose spin coefficients. For that purpose we introduce a complex basic
vector triad in the background space with the following orthonormalization:

zp= (I, ml,m9) , /' is real,
P —0+5 —?
1 0 0- (3'1)
8mn zmrzn 0 0 -1
-1 0

The connection with the Newman—Penrose null tetrad [1] is:

- 14),
RU= Y—("*'; —mi0)) ,
s D o+ & .

2
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Similarly to the Newman—Penrose method we introduce the differential
operators:

(3.3)

From Eq. (3.2) it can be seen that their connection with the Newman—
Penrose operators is the following:

o
I
o

;. 0=Y=}9; nNn= —~fD ; (3.4)
u

because all quantities are independent of the coordinate r.

The complex rotational coefficients can be introduced similarly as in
the stationary case. They are antisymmetric in their first and second indices
because of the normalization. Eq. (3.1) shows that writing — instead of

we get the complex conjugate quantity. Thus we have 1 imaginary and 4
complex rotational coefficients:

ke
YTnp — zmi\kznzp i

7+00= X 1 7+0—— 0 (3.5)
7+0t — a = T+— = To»
7+-0= 6«

The correspondence between these rotational coefficients and the Newnan—
Penrose spin coefficients can be established using the definition of the spin
coefficients [1] and the formulae (3.5), (3.2), (3.1). We obtain the following
result:

4=
B -~ f
2 2 2
j= AN(<E+-G, + — Go) , (3.6)
y 4(( 5 5 ))
1 1, 1 -
¢ + T80 —T'to
2 2 ]
1
=y (*-2G+),

J— r -
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-j(é-G 0,
(x - 2G_),
n=-*7?8Bs (36)
Q—QG09

Similarly, we can calculate the commutators of the (3.6) differential operators
using the formulae (3.1), (3.3), (3.5) [7].

(D6 — OD)(p=[—{6 + 0 O— 06 + xD] @,
(60 — 60) 0= [rd — rdo — (p — E?)5] @+

Now we can write down the new form of the Einstein equations for the
space-like symmetric case.

4. The new form of the Einstein equations

First we project the Eqs. (2.7) on the complex vector triad. The result
is the same as in the [3] (but in the formulae lower index “3” is replaced
by “O"):

A r R33,
Xp=f~REpl, (4.1)
20 = f~ARk- A s) .

Now we can apply the method described [3]. It is necessary to decompose the
three-dimensional Riemann tensor into irreducible parts and to act with the
Ricci identity on the basic vectors Zm [7]. The triad components of Eqs.
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(2.7 a-b) give further equations:

Dg— 06X = Xr + xx — 2 — ad — G0G0 + @00,
Da—0x — -(g+ g+ 20 a - xx+ X2+ 2G+G+ - 20®++
Dr —<¥= —xa + xq + & + xGC — gr -f- gr — G0G_ — G0G_ -f- 240_,
6g — S0 = 2ax — (g — g) X — GOG+ — GOG+ -+ 20+,
or + Sr= —2tt —aa —e(g —qg) + gg— GOG0O —G_G+ — G_G+ -
+ ®oo + 2d+_ (4-2)
DG0— OG — 086G+ — (—0—Qf G, —G0O GO f- (x -j- r — G C) G+ +
x r—G+-|-GHG_ —A,
4G0 — DG+ = uG_+ @+ G0+ 0 G+ ~ (x + G+) GO — x+ »
0G0—DG_ = (g+ GO—£)G_+ uG+ — (x + G Go-f- Z- »
Gt — <56 = (£-)-G_)G_ — (t--G_)G+-b(g B)Go-(-yo.

The nonvanishing components of the Weyl tensor can he obtained from
the Newman—Penrose equations, using Eqs. (3.4), (3.6). If the energy-
momentum tensor vanishes they have the following form:

Wo= -CmMT1T & T 6= 2{—<G+ - (G+ + 2G+ - f) G+ + crG0} ,

Yx= -C%fnnW = F7{-0G +_ (2G0+ GO0+ C) G+ + *GO0} ,

y2= - -c¢ # (i« - HauaT6 = {dg0- *G+ -
2 2
— kG + 2G_G+ + (Gg + Gg) Gg} , (4-3)
Y3=mCa* 4P W ma= (~f)32{-0G-- (Go+ 2G0- €)c_ + *GO},
Y,= -C~rYdhaW m a= -J Ié {6G_+ (2G_+ G_- r)G_- 5G0}.
5. Eigenrays

The Eqgs. (4.2) can be simplified by some kind of convenient choice of
basic vectors. In stationary case it was useful to take the basic vector V as
tangent to the eigenray congruence of the gravitational field [3]. If we choose
V in the same way in the space-like symmetric case as in the stationary one,
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we get the same, pure algebraical requirement for this vector:

/- (/,0) It+ discpTYJ= 0. (5.1a)

This requirement can be fulfilled, except for the following special cases:

[,e= 0, qorer <_ 0,
or
Uu+ o0, j =0, f,rf,sgrs<. 0, (5.1b)
or
/o™ 0, yVv o, frf,sgrs= M<Pr= f,Vv = 0.
Projecting Eq. (5.1a) onto the basic vector triad z it takes the simple
form:

G_=0. (5.1c)

Now I' has been fixed. The quantity Ccan be made zero by a complex rotation
of the vector m* and still remains:

m' = m(cos C° isin C°) (5.2)

where C° is real and DC0 = 0. If one of the quantities G+, X, a has a phase
factor exp. iy° which is independent of time (i.e. Dy°® = 0), this can be made
zero by the complex rotation (5.2).

The geometrical meaning of the rotational coefficients is similar as in
the stationary case. If x = 0, the eigenray congruence is geodesic in the
background space-time, and then Rep gives the divergence, Imp gives the
rotation and |a \ gives the shear of the congruence.

It is possible to classify the space-like symmetric solutions similarly to
the Newman—Penrose classification. Defining the quantity M

M = pp — 060 (5-3)
the solution is
spherical, if it~ o,
cylindrical, if M = 0, but pp-|-<x 0,

plane wave, if p= a= o0,

where p= GO—p, a= —a. However, we note that this classification does
not refer to the rays (as the NP classification does) but to the 4-dimensional
images of the eigenrays (see Eq. (3.2)). When a — 0, the eigenrays coincide
with the 3-dimensional projections of the rays and the two classifications
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are equivalent. If u = a = 0, it can be seen from Eq. (4.3) that 0 — 4/1~ 0,
thus the space is algebraically special.

Our field equations can be handled similarly as their analogues in statio-
nary case. Unpublished calculations show that they can be solved if the gravi-
tational field has timelike geodesic and/or shearfree eigenrays.
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EFFECT OF SOLVENT ON POLARIZATION
OF FLUORESCENCE OF RHODAMINE-B
By

M. L. PANDYA* and M. K. MACHWE

DEPARTMENT OF PHYSICS AND ASTROPHYSICS, DELHI UNIVERSITY, DELHI, INDIA
(Received 14. VI. 1976)

Introduction

The polarization of fluorescence of molecules in solution has been reported
to depend upon various factors viz. viscosity of the solvent [1]; migration
of the excited state energy from the originally excited molecule to a neigh-
bouring molecule [2]; shape and size of the fluorescent molecule [3]; tempera-
ture, etc. In the present report the effect of dipole moment of the solvent as
an extrinsic cause of depolarization has been dealt with.

Experimental

The polarization of Rhodamine-B in different solvents (conc. ~ 107° g/cc)
has been measured at room temperature (~20°C) with an Aminco Bowman
spectrophotofluorometer. In each case, the excitation and emission peaks
were located and then keeping the excitation and emission monochromators
to the longest wavelength, the polarization was determined by the method
adopted in [4]. The effect of scattered light and background for each solvent
was checked by using pure solvent in the cell and setting the excitation and
emission monochromators at values used in the polarization measurements.
The contribution of this effect to the intensity of fluorescence was found to
be less than 0.59,.

Results

The results obtained for polarization along with the peak excitation
and emission wavelengths are given in Table I.

* Permanent address: Department of Physics M. M. College, Modinagar. Distt. Meerut
(U. P.) India
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Discussion

From Table | it is seen that the observed variation in polarization
cannot be accounted for as viscosity effect alone because in this case a plot
between 1/p and 1/n (Perrin plot) will not be linear. The electromagnetic coupl-
ing of neighbouring molecules and its depolarization effect due to energy migra-
tion is small on account of low concentration. It is, therefore, likely that the
observed variation in polarization is due to the dipole moment of the solvent.
The variation in polarization in the solvents listed in the Table shows that
the percentage polarization is lower in a solvent of higher dipole moment.
Though the solvents chosen have low viscosity, even then some change in

Table |
Dipole moment Viscosity neem
Solvent (5.6) (5,6) (run) (nm) % P
Formamide 3.25 3.307 566 576 5.0
Water 3.0 1.002 562 574 3.2
Acetic anhydride 2.8 0.90 570 580 3.7
n-butanol 1.67 2.9 548 564 6.3
Ethanol 1.68-1.70 1.197 562 572 7.4
Methanol 1.65 0.597 556 568 4.2

percentage polarization may be there due to change of viscosity. In the case
of water and acetic anhydride, the viscosities are of nearly the same order,
the percentage polarization in acetic anhydride (lower dipole moment) is
greater than in water (higher dipole moment). Again, in the case of water
and ethanol, the viscosities are of the same order, but the percentage polari-
zation in ethanol (lower dipole moment) is greater than in water. In the case
of water and methanol, the viscosity of water is higher than that of methanol.
If it had been a viscosity effect, the percentage polarization in water should
have been greater than in methanol. But the observed percentage polarization
is higher in methanol. This can be accounted for as due to the effect of dipole
moment. Similarly the pairs methanol and acetic anhydride, ethanol and
formamide all establish that the variation in percentage polarization can be
explained on the basis of the effect of dipole moment of the solvent. The
effect can be explained as follows:

During the short interval of time in which the absorption of excitation
energy takes place, the dipole moment of the solute molecule remains unchanged
But just before a radiative transition takes place, the solute molecule gets
itself reoriented in the surrounding solvent medium due to dipole-dipole
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interaction to get a new equilibrium position, thus resulting in fluorescence
depolarization. The BrowDian rotation tends to destroy this equilibrium orient-
ation and causes further depolarization. If the dipole moment of the solute
molecule in the excited state is different from that in the ground state, the
orientation of the molecule in the equilibrium excited state will be different
from the Franck —Condon excited state. Therefore, the Brownian rotation will
add to the dipole-dipole interaction, thereby increasing the depolarization
with a consequent decrease in the value of polarization. The dipole-dipole
interaction for a given solute depends upon the dipole moment of the solvent.
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F. S. Levin and H. Feshbach:

Reaction Dynamics
Documents on Modern Physics Series, Gordon and Breach Science Publishers Ltd. London, 1973

The book represents the the main part of the authors’ lectures at the Latin American
School of Physics held in 1968. In the first part written by P. S. Levin an attempt is made
to survey recent developments in direct nuclear reaction theory. Emphasis is focussed on the
comparison of theory and experiment.

In the second part H. Feshbach reviews recent developments in the general theory of
nuclear reactions. Since his original work which appeared in 1958 various new insight both
published and unpublished have been gained at MIT. The article brings these various elements
together in review of what has been accomplished and in order to show how they describe
nuclear reactions and how these elements might be used to calculate cross-sections from funda-
mental nuclear interactions.

P. Boschan

L. D. Landau and E. M. Lifschitz:
Theoretische Physik-kurzgefasst, Vol. 11., Quantentheorie
Akademie Verlag, Berlin, 1975 (In deutscher Sprache herausgegeben von Dr. Siegfried Matthies)

and
L. D. Landau and E. M. Lifshitz:

A Shorter Course of Theoretical Physics, Volume 2: Quantum Mechanics

Pergamon Press, Oxford — New York — Toronto — Sydney 1974 (Translated from the
Russian by J. B. Sykes and J. S. Bell)

Since the publication of the first volume of the “Shorter Course” we have been waiting
for the next concise volumes. No doubt, the Course of Theoretical Physics by Landau and
Lifshitz presents a rich and stimulating account of the subject. As a broad view of everywhere
connected texture of active physical thought, the Course has been and remains for a long time
the guide of physicists’ generations in the Soviet Union as well as in the rest of the world
(esp. due to tbe efforts of Pergamon Press, Akademie Verlag and the Soviet Publishing House
Mir, which had the book translated into French.) The Shorter Course itself was promised to
serve the “non-specialists of theoretical branches” in physics and we may add chemistry,
biology and engineering sciences. Such an effort is extremely rare in the literature though
there is a growing need for it. The reviewer believes that he is not alone to welcome the Authors’
and the Publishers’ achievement and to thank for the excellent work of the Translators.

The second volume of the “Shorter Course” retains the following sections from the
third volume of the longer Course (treating nonrelativistic quantum mechanics): Basic Con-
cepts of QM — Conservation Laws in QM — Schrédinger Equation — Perturbation Theory
— Spin — ldentity of Particles — The Atom — The Diatomic Molecule — Elastic Collisions
— Inelastic Collisions. The reduction is realized not only by dropping some too special sections
but also by rewriting part of the text to be self-contained and clear (in the spirit of
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Landau). The presentation of the relativistic quantum theory slightly changes the style,
since its aim is to present the fundamentals of the theory without entering every where into
complex details of the applications and so it is obliged to present the theory by expounding
the physical hypotheses and the logical structure (under headings such as: Photons — Dirac’s
Equation — Particles and Antiparticles — Electrons in an External Field — Radiation —
Feynman Diagrams).

Both the German and the English translation have been published in the spirit of the
late Professor Landau, offering a stimulating example of his striving for clarity, his efforts
to simplify what appeared to be complex and so to reveal the laws of nature in thir true
simplicity and beauty.

l. Abonyi

H. M. Nussenzweig:
Introduction to Quantum Optics
Gordon and Breach Science Publishers Ltd, London, 1975

The book was published as an umpteenth volume of a series entitled Documents on
Modern Physics. Due to some previous experiences on the series | took it in my hand with
certain aversion. While reading this feeling disappeared completely and was replaced by
recognition. Briefly: in the vast literature dealing with this topics it occupies a very honourable
place, it is very useful as a textbook for students, handbook for young research workers, and
for specialists as a kind of memory supplement, too (with perhaps an additional non-linear
optics textbook). Let us see what this opinion is based on:

In the last fifteen years together with lasers also the detection techniques developed
very rapidly. Lasing can be achieved from picosecond to CW operation, from infrared to
vacuum UV, from milliwatt to gigawatt output power. The detection of very weak and extre-
mely strong signals has become equally possible. These, altogether have led to the discovery
of quite new phenomena (non-linear optics, laser Raman-spectroscopy,holographic interfero-
metry etc.). In the same time the theory has undergone a very significant development as
well. The statistical description of the light field, the quantum theory of coherence (coherent
states), the understanding of the behaviour of non-linear, non-equiiibrium systems (lasers),
the theory of the non-linear interaction of light with matter all represent the result of this
period. The general term for all these topics is quantum optics. The working tools of the
theory in this field are quantum electrodynamics and statistical mechanics.

The hook should be equally well called the textbook of quantum optics and as all text-
_bogks i_tI is mainly of theoretical character. From the above topics the following are considered
in detail.

Chapter 1 introduces the notion of classical coherence (spatial and temporal coherence)
through the correlation functions of the light field. Chapter 2 gives the generalization of the
classical coherence for the quantum case with the help of the correlation functions of quantized
fields. It points out also the relationship between correlation functions and measurements.
Chapter 3 deals with the detailed investigation of that state of the electromagnetic field in
which the previously introduced “degree of coherence” is unity (coherent state). In Chapter 4
the statistical properties of natural (thermal) light and other photonstatistics are considered.
Chapters 5, 6 and 7 describe the phenomenological, semiclassical and quantum theory of lasers,
respectively. The subject matter accessible thus far in the form of articles only is treated
here very systematically, striving for clarity and with special regard to some interesting prob-
lems (optical resonators, threshold theory, linewidth). Chapter 8 (which is actually the last
one) introduces other collective coherent and correlation phenomena (superradiance, photon-
echo, self-induced transparency).

Thus the book offers a nearly complete review of quantum optics. What one could
object is that the description of non-linear optics (e.g. higher harmonic generation, non-linear
absorption, light scattering and parametric processes) is omitted, however, it should well he
worth at least one chapter. Nevertheless this failure is partly compensated for by the very
complete literature cited.

As a conclusion we can state that the work by all means fills a gap existing in the lite-
rature, it follows a uniform treatment and merits the attention of the specialist working in

this field. It seems to be suitable for the purposes of a course as well.
J. Bergou
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J. M Irvine:
Nuclear Structure Theory
Pergamon Press Ltd, Oxford, 1972

This book is basically different from any conventional textbook on nuclear structure.
Especially Part | presenting a large compilation of experimental data in an unsophisticated
manner and, as far as possible, without any theoretical interpretation or comment, seems to
be rather unusual in the literature on nuclear theory. It is, however, an excellent guide to the
phenomena which nuclear structure theories must seek to explain. Extensive mass tables and
energy level diagrams are also included in order to increase the usefulness of the book as a
reference work. Part | also contains a brief review of the properties of elementary particles,
together with a short description of the meson theory of nuclear forces.

Part Il presents an account of the nuclear many-body problem. Several theories, design-
ed to explain gross nuclear properties, such as binding energies, charge and mass distributions
etc. are treated in a clear and reasonably selfcontained manner. Part 11 provides a good foun-
dation for the various nuclear models, discussed in Part IlI.

Part IV deals with the technology of nuclear structure theory. It reviews mathematical
techniques and formalism widely used in calculations, such as occupation number represent-
ation, angular momentum algebra, application of group theoretical methods to nuclear struc-
ture and scattering theory.

The monograph exhibits the author’s own way of looking at nuclear physics. This
unique point of view makes the book not only useful for university lecturers, research workers
and students, hut also highly enjoyable and fascinating.

J. Németh
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75 Jahre Plancksches Wirkungsquantum —
50 Jahre Quantenmechanik

Jubilaums-Diskussionskreis der Deutschen Akademie der Naturforscher Leopoldina
in Halle (Saale) am 13. 10. 1975

Herausgegeben von Prof. Dr. sc. nat. E. SCHMUTZER, Jena
(Nova Acta Leopoldina. Supplementum Nr. 8 —Bd. 44)
1976. 218 Seiten, 28 Abbildungen, 2 Tabellen
Kunstleder 21,— M

1975 bot sich die Gelegenheit der 75. Wiederkehr der Postulierung des Wirkungs-
qgquantums durch MAX PLANCK und der 50. Wiederkehr der ersten Formulierung
der Quantenmechanik durch WERNER HEISENBERG zu gedenken. Es wurden
aber nicht nur historische Vortréage (F. HUND und H. CANGRO) gebracht, sondern
in aktuellen Beitrdgen die Weiterentwicklung bis zum heutigen Tage aufgezeigt
(H. P. DURR, L. BERG, E. SCHMUTZER, E. PICASSO und F. BOPP). Der Band
dirfte damit die modernste Ubersicht tiber die Geschichte und die aktuellen Pro-
bleme der Quantentheorie darstellen.

Bestellungen an den Buchhandel erbeten
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Printed in Hungary
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ON THE INERTIAL-GRAVITATIONAL FIELD
By

L. D. RAIGORODSKI

DEPARTMENT OF PHYSICS, LENINGRAD SHIPBUILDING INSTITUTE, LENINGRAD, USSR

(Received 14. IV. 1976)

The physical significance of the inertial-gravitational field is discussed.

The method best suited for the study of the properties of any physical
field (or the properties of space-time, i.e. the gravitational field) is the investi-
gation of characteristics of the motion of test particles moving in the field
(or in the curved space-time) under examination.

The most complete information about the field (about the geometry of
the space-time) can be obtained from the comparison of world-lines of test
objects.

In the case of an electromagnetic field the role of test objects is played
by the small point charges and exhaustive information about the field can be
obtained from the comparison of the behaviour of the test charges moving
in the field studied with the behaviour of the neutral (uncharged) particles
moving freely in the same field (because they do not interact with the field).
These uncharged particles constitute the frame of reference.

In studying the properties of the space-time (gravitational field) it is
impossible in general to discern the test particles from particles belonging to
(or forming) the frame of reference, because ‘“gravineutral’” physical objects
(i.e. particles without mass) do not exist, and the concept of the frame of re-
ference in the curved space-time becomes indeterminate. The only way to
study the gravitational field (or the corresponding properties of the curved
space-time) is the comparison of properties of the free (geodesic) motion of
the test particles moving along the adjacent world-lines. In this case the “frame
of reference’” consists of test particles placed on the infinitesimal hyper-
surface orthogonal to the world-line of the chosen test particle — observer.
It is important that if the whole collection of test particles (the cloud of dust-
like matter) moves in the homogeneous gravitational field and the ‘“external”
reference points are missing (or they are included in the system of test particles
in question) then there is no possibility to ascertain the properties of this
field. Moreover, it is impossible to discover whether this system moves in the
homogeneous gravitational field or freely in the flat space-time.

However, the cloud consisting of noninteracting identifiable test particles
(noncoherent fluid) is the most perfect test object for the investigation of the
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properties of space-time (inertial and gravitational fields). The comparison of
neighbour world-lines of test particles can provide all information available
in principle about the properties of the space-time in the region filled by the
noncoherent fluid.

The theory of the gravitational and the inertial fields is based on the
geodesic principle.

In accordance with this principle the motion of test particles in the
gravitational field is the free motion of these particles in the curved space-
time and the geodesic equations are the equations of motion in the gravitational
field:

Dutdid;  jitkul = o, "

ds ds
where s is a canonical parameter (the proper time), Djds is the operator of the
absolute derivative with respect to s, I«1 are Christoffel symbols,

, _dx* )
ds (4)

are components of the 4-velocity of the test particle,
Wu* = gikjuluk= — 1. 3)

gik is the metric tensor. The usual summation convention is used.
The equations of motion (1) are the geodesic equations of the first kind.
However, so long as we suppose that the using of the collection of par-
ticles (the cloud of dust) in the capacity of the test object is more effective than
one particle, it is worth-while to use the geodesic equations in the following
form [1]:
=0 4)

(the geodesic equations of the second kind), where
Gki = UL,k ~ uk,ie (5)

(A comma denotes the partial derivative).

The geodesic equations of the second kind (4) are the degenerate Lorentz
type equations of motion. They are the equations of stream-lines in the non-
coherent fluid consisting of identifiable test particles moving in the curved
space-time. We interpret the skew-symmetric tensor Gik (5) as the “4-strength”
of a hypothetical inertial-gravitational vector field [2]. Components of the 4-
velocity of particles of the dust-like matter moving in the field are the inertial-
gravitational potentials.

“Although the four dimensional formulation of Einstein’s theory is
perfect from a geometrical point of view, it cannot disclose all physical aspects
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without the introduction of a physical frame of reference (preferred or not)
which gives rise to the local separation of space from time. This frame which
according to one’s approach can be represented by a tetrad field or even by a
simple unit vectorfield, is (...) an essential physical element...” (CATTANEO [3]).

We suppose that the inertial-gravitational field has the same physical
significance as CATTANEO’s unit vector field.

Let us discuss the meaning of the characteristics of the inertial-gravi-
tational field G,;.

World-lines of particles of the dust-like matter (stream-lines in the non-
coherent fluid) form a congruence and if test particles move freely in the
space-time their world-lines form a geodesic congruence (in accordance with
the geodesic principle).

A congruence of world-lines can be normal or non-normal.

By definition a congruence of world-lines is normal if there exists a family
of hypersurfaces to which these world-lines (stream-lines) are orthogonal. A geo-
desic congruence is normal if and only if the rotation of a unit 4-vector u; (2)
tangent to the world-lines (geodesics) of the congruence is equal to zero

Ui —" U = Gy=0. (6)
But if
Gki = 0 ? (7)

then the congruence is non-normal and it means that there exists no hyper-
surface to which each curve of the congruence is orthogonal.

Hypersurfaces orthogonal to geodesic lines of a normal geodesic con-
gruence are loci of synchronous points and any one of them can be brought
into coincidence with any other by a translation that is by a motion in which
all points of the hypersurface (and test particles placed in each of them)
describe the equal distance along their geodesic world-lines [4]. Hypersurfaces
orthogonal to geodesics of the normal geodesic congruence are equipotential
hypersurfaces;

i
Y ®)

Y
(p is a scalar function) and from (6)
Wi — Wep = 035wy = Uy
and geodesic equations are given by
upp u* = upuk=0. 9)

The tensor G,; (5) is the covariant characteristics of the congruence,
ind the geodesic equations of the second kind (4) may be regarded as of great
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importance as they contain the information about the type of the congruence
to which the geodesics belong.

But, in general, there is a great number of geodesic congruences and the
quantities Gki are different for different geodesic congruences and so the physic-
al interpretation of the tensor Gki is not obvious.

To make the tensor Cki the invariant characteristic of the inertial-
gravitational field it is necessary to introduce an additional condition: at
infinity where the space-time is flat and the metric is Galilean, test particles
form the “flat” cloud of the dust-like matter and each of them is placed in
one of centres of the spatial cubical lattice and ut(x) = const,. (The possibility
and the necessity of the introduction of this and any other conditions can be
the subject of a special discussion).

If the properties of space-time are such that world-lines of particles of the
dust-like matter moving freely (from infinity) in the space-time form the non-
normal congruence (Gki ~ 0) then we say that the cause of this is the inertial-
gravitational field. The rotational motion of the clouds of test particles is the
indication of the presence of the inertial-gravitational field.

If the space-time admits only normal congruences of world-lines of test
particles then the inertial-gravitational field is absent (G, = 0). Layers of
test particles move translationally in the space-time of such structure.

Equations of the inertial-gravitational field can be derived from the
variational principles.

There are two acceptable Lagrangians of the inertial-gravitational field

A\i-g) —0GJGjjy—g (10
and

-9 = a(G'iG,j 2HI ¥—g, (n)

where a = c#41r&, K is a Newton’s constant of gravity, g is the determinant of
Sik*
H = ukk (12

(A semicolon denotes the covariant derivative).
Let us use the action principle

8- 0O (13)
where
s=— [Azdo (14)
cJ
and dQ — dx°dxldx2x".
=" et (15)
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Agny is the Lagrangian characterizing all other physical objects besides the
inertial-gravitational field.

Taking into account the peculiarities of variational properties of inertial-
gravitational potentials u; [5] and using in (14) and (15) the field Lagrangians
(10) and (11) we obtain from (13) equations of the inertial-gravitational field
in two corresponding forms

C™.y Bt = % (O + i) (16)
and
O™ 5ty — H 8 py ~ %(@',k ey (16a)
where
R -i— 84, C™G,, (17)
and
6,=6,+ % g H? (17a)

are two forms of the energy-momentum tensor of the inertial-gravitational
field; 7, is a tensor characterizing all other physical objects as sources of the
inertial-gravitational field;

T ike = Wm Wi Uy 1 8mi Wi T 8mk Wi (18)

Pix = 8ir + Wi Uy (19)

is the operator of the projection in the three-dimensional space orthogonal
to the world-line of the observer moving with one of a number test particles.
This 3-space is the “empirical” space of the observer. :

From the equations of the inertial-gravitational field one can find com-
ponents of the metric tensor of the space-time curved g, potentials u;, and
components of the metric tensor of the three-dimensional empirical space of
the observer h,:

hy. = g™ Py P = Pi - (20)

The foundation of the theory of the inertial-gravitational field is the
geodesic principle, but the interpretation of this principle in the theory present-
ed here and in the previous papers differs from the traditional one. We use
the geodesic equations in the form of the degenerated Lorentz type equations
of motion (the geodesic equations of the second kind (4)) and interpret the
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tensor Gik by the analogy with the electromagnetic tensor as the “4-strength”
of the hypothetical inertial-gravitational vector field. The essence of this
theory is contained in the field equations (16) or (16a) and (5). These equations
include the quasi-Maxwell type equations of the field and equations of motion
in the field [1, 2]. Note that there is a possibility to connect the inertial-
gravitational vector field with the tetrad field (the field of tetrads may be
neither orthogonal nor normal (cf [3]), hut the theory of the inertial-gravita-
tional field is not, generally speaking, the “vector retelling” of Einstein’s
theory of gravitation (cf[6,7])).

The modified form of the field Lagrangian and corresponding field
equations are the objects of further investigations.
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INNER-SHELL IONIZATION BY ELECTRONS
IN THE 300—600 keV REGION

By

B. ScaLENK, D. BErEnyI, S. Ricz, A. VALEK and G. Hock

INSTITUTE OF NUCLEAR RESEARCH OF THE HUNGARIAN ACADEMY OF SCIENCES (ATOMKI),
4001 DEBRECEN

(Received 14. VI. 1976)

A measuring set-up at a Cockcroft— Walton accelerator is described for the determina-
tion of electron impact inner-shell ionization cross-section detecting the X-rays by Si(Li)
solid-state detector. The K-shell electron impact ionization cross-sections for Ag in the region
from 300 to 600 keV were determined and compared with the earlier experimental and the
calculated theoretical values.

1. Introduction

Most of the relatively few measurements on inner-shell ionization by
electron impact (cf. surveys in [1—3]) have been carried out using scintilla-
tion X-ray detectors. On the other hand, especially few reliable cross-section
values are available in the several hundred keV region of the bombarding
electrons.

That is why we intended to use the Cockroft — Walton generator of
ATOMKI accelerating electrons for electron impact inner-shell ionization
measurement with Si(Li) semiconductor X-ray detection techniques.

In this paper we report first of all on the measuring arrangement and
procedure including the scattering chamber, the efficiency calibration of the
detector, the thickness determination of the target foil, etc. We also report
on the results of measurement of the K-shell ionization cross-section for Ag
in the energy region of the bombarding electrons from 300 to 600 keV.

2. Experimental arrangement and procedure

Electrons were accelerated by the Cockeroft— Walton generator of the
Institute. The electron beam after passing a 90° magnet as well as a focusing
and collimating system hit the target placed in the centre of the scattering
chamber having a diameter of 18 em. The high voltage of the generator was
measured to 19, accuracy by a rotary-type voltmeter calibrated with elasti-
cally scattered electrons on thin foil. The energy of these scattered electrons
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was measured by a Si(Li) detector of room temperature calibrated in energy
with radioactive B sources and connected to the scattering chamber at an angle
45¢°,

A semiconductor Si(Li) X-ray spectrometer with a surface of 50 mm2
cooled by liquid nitrogen was used to detect the X-rays originated from the
target. It was placed at a distance of 48 cm from the target and it was mounted
to the scattering chamber at an angle of 90° with respect to the incident beam.
The Be window on the face of the detector was 0.025 mm thick. The whole
arrangement is schematically shown in Fig. 1. In the tube between the scatter-

s 'beam

scattering chamber

1V A biftl Pb shield

Fig. 1. Sketch of the experimental arrangement

ing chamber and the detector a high vacuum (cca. 10~5Hgmm) was maintained
as in the scattering chamber. At the same time the tube and the detector were
surrounded by a lead shield of 15—20 cm thickness to reduce the background
mainly due to external bremsstrahlung. The electrons scattered from the target
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were swept by a small electro-magnet preventing electrons to get to the Si(Li)
detector.

The whole charge in the electron beam was collected by the insulated
scattering chamber and a Faraday cup and it was measured by a current in-
tegrator. The Faraday cup outside and the scattering chamber inside were
shielded with lead of about 2 cm thickness for correct charge collection. In
addition, the inner surface of the chamber was lined with an aluminium layer
of 1 mm thickness in order to reduce the background originated from the scat-
tered electrons. During the course of the measurements the typical electron
beam current was 3050 nA.

The targets were self-supporting foils of about 150300 ug/em? thick
prepared by vacuum evaporation techniques. The thickness of the targets
was determined by direct weighing using a micro-balance.

The absolute efficiency of the detector having a resolution (FWHM)
of 320 eV at 6.4 keV was determined by means of standard calibrated radio-
active sources of 137Cs, 221 Am and 37Co, **Mn from TAEA, Vienna and OHM,

Budapest, respectively.

3. Measurements and results

For the determination of cross-section the following formula was used

o=—2>—,

N,newg

where NN, is the number of X-rays detected (pulses under the respective peak
in the X-ray spectrum), N, is the number of the bombarding electrons, n is
the number of atoms per cm? in the target, ¢ is the efficiency of the X-ray de-
tector and finally, w, is the fluorescence yield [4].

Table I

K-shell ionization cross-section for Ag (wyx = 0.834)

Cross-section (barn)
Energy (keV) |—— — 7
Experimental | Theoretical® ‘ Theoretical®

|
300 55.9456 | 54.20 I 48.19
400 53.0453 | 5243 | 47.20
500 50.2150 | S5Lél | 4688
600 sg1+52 | 51338 | 4688

n

? |
* KOLBENSTVEDT theory

> Pessa and NEWELL theory
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K«
|
8000 47A9
Ee=600 keV
16000
§ 4000
Hg puiser
|
2000
500 550 600 650 700

channel number

Fig. 2. K—X-ray spectrum from silver target by electron impact

(bam) mAg

Fig. 3. Electron impact K-shell ionization cross-sections for silver
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The K-shell ionization cross-section for Ag was determined in the energy
region from 300 to 600 keV of the bombarding electrons. A typical X-ray
spectrum in the region of the Ag K—X-rays is shown in Fig. 2.

The cross-section values are given in Table I and plotted in Fig. 3. The
present experimental values were compared with the most reliable earlier
experimental values of RESTER and DANCE [5] and with the theoretical values
calculated from KOLBENSTVEDT’s revised theory [6] and that of PEssA and
NEwELL [7]. As can be seen the agreement is fairly good with the previous
experiment and also with the theoretical values of KoLBENSTVEDT.

In the estimation of the error of the present experimental values, the
main contributions came from the spectrum analysis (background subtraction),
from the measurement of the target thickness and from the efficiency calibra-
tion of the detector. Thus the total error is estimated to be about 10 per cent.
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LATTICE DYNAMICAL STUDY OF PLATINUM
By
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(Received 18. VI. 1976)

A modified angular force model which takes into account the effect of electron-ion
interaction on the basis of SHARMA and JosaI model along with the ion-ion central and DE
LAUNAY type angular interaction, has been applied to investigate the phonon dispersion curves,
vibrational spectrum and specific heat of platinum. The calculated results show satisfactory
agreement with the experimental data.

1. Introduction

In spite of the significant advances made in the recent past, the lattice
dynamics of metallic crystals remains one of the most interesting field of in-
vestigation to undertake. The theory is still far from a stage of completion and
phenomenological force models based on empirical relations are still necessary
for a proper understanding of the vibrational properties. It is well known that
the Cauchy relation (C,, = C,,) does not hold for metals and Fucas [1] attri-
buted the cause of this failure to the presence of conduction electrons. Quite
recently, BEHARI and TrirATHI [2— 5] have investigated the lattice dynamics
of several body-centred and face-centred cubic metals using a modified form
of a non-central force model which takes into account DE LAUNAY [6] type
angular forces and SHARMA and JosHI [7] type volume forces along with the
ion-ion central interaction. It was emphasized that the Cauchy discrepancy in
metals arises because of the angular interaction between a pair of ions and the
presence of electron gas.-The frequencies calculated on this approach were
found to show good agreement with the recent experimental neutron scatter-
ing data for almost all the cases. In a recent study, we have utilized this model
as well to explain many other solid state phenomena for a number of cubic
metals [8, 9]. In view of the relative success and simplicity of this model,
it was thought of interest to employ it to other complicated cases of transi-
tion metals. In the present communication we have considered platinum
for lattice dynamical study, because of its high stiffness constants C;; and C,,
and departure from Cauchy relation which is is very much greater in it than in
copper (C,/Cypo= 1.53 for Cu and 3.82 for Pt). It shows that angular forces
are more important in platinum. Thus platinum is a suitable metal to test the
validity of modified angular force model. On the basis of this model we have

Acta Physica Academiae Scientiarum Hungaricae 41, 1976



166 R. C. RAIl and M. P. HEMKAR

calculated phonon dispersion relations, frequency spectrum and the specific
heat of platinum. An independent stimulus to the present study was also im-
parted by the availability of experimental dispersion curves from neutron
scattering [12] and specific heat data [10].

2. Secular determinant

The secular equation for the determination of vibration frequencies can
be written as:

ID(@ —4n2r2ml 1= 0, (1)

where | is the unit matrix of order three and m is the mass of the atom. The
elements Djjofthe dynamical matrix D can be expressed as the sum ofthe three
interaction terms as explained above. The expressions for two typical elements
of the dynamical matrix for fee structure are given by:

Da(q) —2 (og + a")[2 —C, (Cj Q.)] f-4a2S? f- 4a' (1 — CjCk) -

+ 4a" (Sj + S2) + 2a3th KeG2(qr0), 2(a)
Dt)g) = 2(a,- a")sS,Sj+ 2a3q,q, KeG2(qr0), 2 (b)
where
3 i —
C-= cosaq, S-= sinaqt,G(x) = (sin x X cos X)
ro is the radius of the Wigner — Seitz sphere, 2a the lattice constant,

q(jg| = 2jYA) the phonon wave-vector, xv a2 (radial); a’', a" (angular) and Ke
(corresponding to the bulk modulus of the electron gas) are the five force
constants. These constants are determined by expanding the elements of the
determinant in the long wave-length limit and relating them to the three
elastic constants and two zone boundary frequencies (vL, vT) in [COQ] direction.
The resulting relations are

2n2T (vj — vf) — 2a (C#4 -f CD)

aKe 3(a)
(n262 — 2)

Xi = _8 [6m n2M — 4m 2 — 3a Ken2G2], 3(b)

az= 3 [aKe{n2G2— 4} —2n2W®m f*4aCu], 3(c)
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QD
1

' _8 [4m n2rf-—2m n2 aKen2G?7], 3(d)
a =« aC44--—-—-mn2pfj 3(e)

The relevant constants and calculated values of the various force constants
are presented in Table I.

Table |

Constants and calculated parameters for platinum
Conetants/Parametera

Constants

Cu (10n dyn cm™D) 34.67
C,, (1011 dyn cm-*) 25.07
ctt (10 dyn cm-*) 7.65
2a % 0-» cm) 3.923
L (101 Hz 58
T (101* Hz 3.84

Calculated parameters
akK' (10* dyn cm-*) -12.4065

1 (103 dyncm" 69.2143
2 (103 dyncm* 9.2847
103 dyncm- -7.3723

103 dyncm-1 —4.2716

3. Numerical computation

Frequency versus wave vector dispersion relations for platinum along
the symmetry directions [£00], [££0], and [CCIi] have been determined from
the solutions of secular determinant (1) along these directions. Experimental
values of the elastic constants used in the computation have been taken from
the work of MacFarlane et al. [10].

To compute the frequency modes of lattice vibration, the simplest and
the most straightforward method is the Blackman root sampling technique,
in which the first Brillouin zone is divided into evenly spaced miniature cells.
Here we have taken the axes of these cells to be 1/20th of the ordinary recip-
rocal cell. This gives 24000 frequencies corresponding to the 8000 points of the
miniature lattices lying within the first Brillouin zone. From symmetry consi-
derations these 8000 points are reduced to only 262 non-equivalent points
(including the origin) for a face centred lattice lying Yvithin the 1/48th part of
the first Brillouin zone which is irreducible under the symmetry operations
that leave the roots of the secular equation unchanged. The frequencies have
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been calculated for these non-equivalent points from the secular determinant
(I).Each frequency has been weighted according to the symmetrically equivalent
points. The importance of giving correct weights to various points has been
emphasized by Dayal and Sharan [11]. A total of 24000 frequencies is ob-
tained. These frequencies represent the complete vibration spectrum. After
dividing the entire frequency range into a number of intervals, the smooth
curve that fits into the resulting histogram has been constructed and shown
in Fig. 2. It shows the two peaks characteristic of the frequency spectrum with
the higher peak being sharper and towards the higher frequency side of the
spectrum. It agrees well with the test that of anisotropy factor A — 2C4/
I(Cn — C12) is greater than unity, the higher peak is found towards the high
frequency end.

Using the frequency spectrum the lattice specific heat at constant volume
has been calculated in the usual way. The specific heat results calculated from
the frequency spectrum are expressed in terms of the conventional Debye

temperature 6D.

4. Results and discussion

The theoretically calculated phonon-dispersion curves are shown in Fig. 1,
where we have also plotted the experimental values obtained by the inelas-

Fig. 1. Phonon dispersion curves at 90 °K in the three symmetry directions in platinum
The experimental results are due to Dutton et al. L and T correspond to the longitudinal
and transverse modes
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tic scattering of thermal neutron by Dutton et al. [12]. Fig. 1 shows a fairly
good agreement between theoretical and experimental results. Along 110
direction the calculated curves slightly violate the symmetry properties of a
face centred structure. This deviation may be attributed to the assumption
of short-range interatomic forces and to the approximate calculation of the
electron lattice interaction. The analysis of the experimental data on Born—
Yon Karman theory indicates that interatomic forces in platinum are of a
fairly long range nature. The incomplete d-electronic shells which characterise
the transition metals and which are responsible for their large cohesive ener-
gies (Mott [13]) also make an important contribution to their lattice dynamical

properties.

frequency V (T Hz)
Fig. 2. The frequency spectrum of platinum

The calorimetric Debye temperature 6D, calculated from frequency
distribution is shown in Fig. 3. along with the experimental results. The speci-
fic heat of platinum has been measured by several investigators over the
course of years, mostly at low temperatures. For a review of these measure-
ments, reference may be made to Fetdman and Horton [14]. Only two recent
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measurements [15,16] extend to temperatures greater than 25°K,but even
these two experimental results cannot be used directly to compare with the
theoretical ones. Clusius et al. [15] and Shoemake and Rayne [16] have
used different values of d, the coefficient of the electronic specific heat (CE)

term, to reduce their data. Shimizu and Katsuki have shown that Odecreases

Fig. 3. The Debye temperature of platinum as a function of temperature. The solid line is the
theoretical curve and the experimental values are: ¢ Clusius et al.; 0 Shoemake and Rayne;
A Berg. For sake of clarity only a few representative points are shown.

substantially about 20% between 0 to 300 °K. Following shimizu and K a«-
suki’smethod k onti [17] has calculated the QDvalue corresponding to the spe-
cific heat values of above mentioned two investigators. These values are shown
in Fig. 3, together with some low temperature results due to B erg [18]. There
is considerable difference between the two sets (ciusius et al., shoemake
and rRayne) 0f experimental points themselves. This may be attributed
to different percentages of purity of specimen used in the two experiments
and some error in the measurement of energy. However, our calculated result
is in reasonable agreement to that of ciusius et al. at moderate temperature
and at very low temperature with that of shoemake and rayne and that of
B erg. INnorder to get a better agreement between theoretical and experimental
0D, a precise measurement of the specific heat of platinum over an extended
temperature interval (0 to ~300°K ) and a more accurate calculation of the
variation of the electronic specific heat with temperature than the existing
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one would be desirable. However, as things stand it emerges from the present
study that the lattice vibrations in platinum could he explained satisfactorily
by the modified angular force model of Benari and T ripatni.
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INTRODUCTION TO SPINORS AND PETROV TYPES
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By
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An introduction to spinor methods in general relativity is presented. Gravitational
equations are reformulated in spinor terms. The way of classifying gravitational fields with
respect to the algebraic type of the curvature tensor is discussed. The use of Petrov classifica-
tion is demonstrated on the example of the peeling-off theorem.

The late HERMAN WEYL remarked in his famous book “Classical Groups™:
“In every Euclidean field we can construct the spin representation; the Euclidean
nature of the field is essential . . . In some way Euclid’s geometry must be deeply
connected with the existence of the spin representation’ (He called any flat space,
irrespectively of the signature of the metric, an Euclidean space).

These results of WEYL have generally been interpreted to prohibit the
existence of spinors in curved space. On the other hand, we encounter many
recent results in General Relativity based on the use of spinors. I only want
to mention a work which is probably the most significant. NEwWMAN and PEN-
ROSE had developed a spinor method by which a lot of important discoveries
about the nature of gravitational field have been obtained [1].

As a preparation of our main topic, I would like to show how it is possible
that — despite of the above quoted statements of WEYL — spinors could
have been so successfully fitted into the theory of General Relativity. Our
second point will be the thorough reformulation of EINSTEIN’s gravitational
equations in terms of spinors. This was the real turning-point since that the
significance of spinors in the theory became generally recognized.

We shall finally see the elegance and ease achieved by use of spinors
on the example of the PETROV classification of gravitational fields. The original
route of classifying will be replaced by the more perspicuous spinor methods.
All these matters are mainly based on the above mentioned paper of PENRUSE,
excepting only the following discussion of the wayout from WEYL’s sceptic
conclusions.
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Let us consider the Space-time, as a curved four dimensional manifold,
for which it is possible to introduce in each point a tetrad of linearly independent
basic vectors X; Y; Z and T and the normalization can be chosen such that

X2= Yz2= Z2= - 1, T2=1

further the vectors are orthogonal to each other. All these orthogonality pro-
perties can be summarized in a single equation:

gvp= —XAXV—YTflYv—ZjiZv-f TATV.

We can easily check that this equation contains all the orthogonality proper-
ties. For example we multiply by Xv:
g, X'= —(XX)X~A- (XY)Y - (XZ)Z0+ (XT)
From the linear independence of the basis vectors it follows that
1+ (XX) = (XY)= (XZ)= (XT) = 0.

We can rotate the base vectors at will independently in the various points
of the space-time. Let me illustrate this situation on the symbolical Fig. 1.

Fig. 1. Orientation of orthonormal frames in different space-time points

Consider now point P. We can express each of the new X'; Y'; Z' and
T' base vectors obtained by an arbitrary rotation, in terms of the old ones:

X'= xn X -f-x12Y + «3Z -f- xU4T.

To see the structure of the tetrad rotation group, we observe that the metric
can equally well be put down in terms of the new tetrad, such that

gov — - X/iXv—YRYv ZIZV+ TJ. =
X/vl \.%r\\/ > 0t ,Iry’(/ri *

The transformations which preserve the above quadratic form are just the
Lorentz transformations. Identifying X, Y, etc. with the orthogonal coordinates
X,y etc., respectively, all properties of Lorentz transformations can be trans-
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ferred to the tetrad rotation group. We must not, however, confuse the tetrad
transformations with the coordinate transformations in the curved space.
These latter affect the base vectors in the well-known way:

AR I

ox'*

Now we construct a 2 X2 Hermitean matrix from the basis vectors as
follows:

T+2Z X —iY
X+:iY T -2

That means, M is a matrix, the elements of which are vectors. What are the

transformation properties of M ? For coordinate transformations we obviously

have:

To see the tetrad transformation rules for M, we recall that replacing the ele-
ments of M by the rectilinear coordinates x, y etc., we arrive at a complex
two-dimensional representation of the Lorentz group:

G P 1) |

M)p = AR Mps A%
B s Ly " A, U

Here A is a 2 X 2 unimodular matrix, and the row indices of M which transform
with the adjoint of /1, are distinguished by a prime. In general, any two com-
ponent quantity £, which transforms as

Ea=A% &

is called a (first rank) spinor. All the rules of this kind of spinor calculus are
easily inferred from the usual flat-space one using the correspondence between
base vectors and rectilinear coordinates. We summarize these rules in the
following: Primed spinors transform like

the components of primed spinors can be taken the complex conjugate of the
unprimed components. Spinor indices are raised and lowered by the anti-
symmetric metric spinors
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eAB ; gA'B'
eAB — £a 'B‘ —

such that, e.g., fA¥A is an invariant.
The action of a combined tetrad- and coordinate transformation on the
matrix M is written as follows;

”

M7ab' — FQ — N5 MWRS’A §>.
X

In terms of the orthogonality properties of the base, we can verify that Mu
satisfies

A"gAC'M fe + MM "AC'MBB = gfj.veAB =«

This relation shows that, in our calculus, M takes over the role of the Pauli
matrices. However, as is well-known, in the usual flat-space spinor calculus,
the form of Pauli matrices is independent of the coordinate system. To see
the relation between the flat-space calculus and the generalized one which
we want to use, let us confine ourselves to Minkowskian coordinates. We may
ask if it is possible to combine the two kinds of transformations such that, as
a result, the form of M be unchanged. Asis known, for Lorentz transformations
this can be achieved. This is easily seen if we move the base vectors and coordi-
nate axes together (Fig. 2).

It is clear, that if we rotate both the axes and the base together, then the
new X', Y' ...vectors will have the same components in the new coordinates
as the old basis in the old coordinates, therefore the form of M is preserved

It

Fig. 2. Simultaneous rotation of base vectors and coordinate axes

This is just the well-known property of Pauli matrices in the usual flat-space
spinor calculus. Therefore in the following we shall always write Mu= a"
Of course, in curved space we cannot stick to the rule that the components
of 6}, be coordinate invariant, but, by dropping this requirement we will be
allowed to perform coordinate and spin (tetrad) transformations quite independ-
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ently. In the following, we may forget about tetrads and the construction
of 0’s. We must bear in mind only that there exists a set of the Hermitean mat-
rices 0, satisfying

: £
Ouac’ 058 + Opac’ O = Buv €aB
7 w

in terms of which any tensor can be expressed equivalently as the set of its
spinor components. For example:

D, < Daptept=D,, 0 Apt0cpt-

The spinor algebra has some special features which arise essentially from
the identity

€A[BEcpDl = 0.

(Bracket denotes antisymmetrization). This identity is easily checked if we
recall that the indices can take only two distinct values (0 and 1), yet the
antisymmetrized quantities vanish unless all the enclosed indices are distinct.
The most important consequence of this identity is that antisymmetric tensors
are equivalent to symmetric second-rank spinors. We can prove this if we
contract the above identity with the spinor equivalent of F,, = —F,,.
FABfCD‘ = Fy.v gral geeh

and subtract the complex conjugate of the equation so obtained. As a result
we have

1 &
F sprcpt = r (eacPppt + €tpt Pac) »

where

¢Ac =F ﬁR’C .

We can construct the spinor representation of the curvature tensor along
the same lines. The curvature tensor has, as it can be proven by direct comput-
ation, the symmetry properties

R:xﬁ'yb T T ey
Ripys = Rysup s
R.1pya1 = 0.

Using the above construction for representing antisymmetric tensors
with symmetric second rank spinors, we obtain
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R-AE'Bf'CG'DH'= "~ABCD eE'f'eG'H'+ B8AB eCD "E 'F 'g'h' +
+ eCD® aBC'w'eEF* “b BAB ® E'F'CD eg H ' +
+ 271 (EAC eBD SE'F'eG'H’ + 8AB ECD eE'h' eG'F') »

Here the totally symmetric fourth-rank spinor 4*ABCD *8 defined thus:

4*ABCD — C*dyd aAETf-°" aCG'aD

Calyi is the trace-free part of the curvature tensor and it is called Weyl tensor
or conform tensor. This latter name stems from a symmetry property of C’yi
which momentarily is of no interest for us. In vacuum the Einstein equations
reduce to — 0 and thus the traces of R”iyi all vanish, therefore in empty
space we have C"yi = Rdyi-This means that in vacuum the curvature tensor
corresponds to the spinor ®ABCD.

In the above equation the mixed fourth rank spinor ®ABc'o’ represents
the trace-free part of Ricci tensor R as follows;

2¢ABCD R., 'SpV’\ aAC'aBD"

Finally, J1 is related to the curvature invariant R by

The spinor representation of curvature tensor gives us the clue for
classifying the gravitational fields with respect to the algebraic properties
of this tensor. But before doing this, I want to accomplish the reformulation
of gravitational equations in spinor language. First of all we obviously need
some rules of spinor analysis. As is easily seen, the partial derivatives of
spinors (e.g. 0,En) do not transform like covariant quantities. Just as for
tensors, we must introduce the covariant derivative of a spinor. Again | do
not want to go into the details of building up spinor analysis, I only would
like to point out, that similarly to tensor analysis, we stipulate the following
properties for covariant spinor derivatives [3]:

1. Linearity: y,,( ...+ t...)= Lee + cee

2. Leibnitz rules: Vn(£ = Leee Vd?+ (YUE see)V oo

3. Be partial derivative on scalars: \/,/p — (pfi

4. Be real operation: o= oynfooL.

5. The covariant derivative of the fundamental quantities ollAB' and

eAC should vanish:
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WauAB — \,eAC—O0.

There is another version of spinor analysis, where the vanishing of y,,eAC
is not required. This version was intended to include the electromagnetic
four-potential into the geometry, but has the drawback that spinor indices
under covariant derivatives cannot be raised and lowered. Penrose has
shown [2] that electromagnetic phenomena can be treated satisfactorily simply
even if V,,eAB = 0 holds.

Properties 1—5 imply that the covariant derivative of a first rank spinor
has the form

VitEs = 9ufs —IY%B £C»

where the spinor affine connection, "B is written
rese = ~ aeR (°W JIm+~0ORR).

The derivation rules for higher rank spinors follow from property 2.

We are now in position to translate differential relations of general rela-
tivity to spinor language. We have two important identities. The Ricci identity
prescribes how the second covariant derivatives acting on a vector vk commute:

V,,Va— W Y>vk = R luvvo.
The curvature tensor, by construction, satisfies the Bianchi identity:

VIAC1er= 0e

The spinor translations of these identities read as follows;

Vh (E'VFf)Ed = ~ dbe’f’ Ricci,

V(a Vbjpllc) = — VIABCDID + 2/1 £(AeBC

vE '"Mabcd = vE<?mmb)e’’ 1l Bianchi.

VBFi4>ABi?F'= -3 V ae'"]

Here the “spinor derivatives” are defined by

Vae'- tFAE Vi

and the parentheses denote symmetrization with the appropriate normaliza-
tion factors, e.g. £(AB)= 1/2!(JAB 4- £Bp4). Subscripts for which the symmetriza-
tion does not hold are separated by strokes.
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We have now four differential identities upon which the Einstein equa-
tions are to be imposed:

Rpv  ~ é/ivR A .

These equations mean algebraic conditions on the quantities ®gsc'E" an(l /1.
For example, in empty space we have

Pabca'— N1 = 0.
Thus in vacuum the field equations take the form:
Ve'” abed — Q -f- Ricci identities.

We now see that the vacuum gravitational fields are massless fourth rank spinor
fields (that means, this field is of spin 2) which satisfy a covariant spinor wave
equation.

The spinorial form of the gravitational equations is the starting point of
the Newman—Penrose equations [1]. It is not my purpose here to give a
detailed account of the Newman —Penrose method. | would like only to
mention, that in the spin space, just like in the usual four dimensional space-
time, it is possible to introduce a basis. This now consists oftwo independent
spinors. All spinor quantities are expressed in terms of their projections on
this basic dyad. The Newman—Penrose equations are essentially the dyad
projections of the above spinor relations. They are extensively used for treat-
ing problems in General Relativity.

v

Now, let us turn our attention to the classification of gravitational fields.
This task was first undertaken by petrov [4]1. We shall not follow his rather
complicated method but rather use spinor techniques which enabled Penrose
(21 to refine and simplify the original petrov classification.

I have shown previously, that the decomposition of the curvature tensor
in terms of irreducible spinors yields three quantities which correspond to
the conformal tensor, Ricci tensor and curvature scalar, respectively. The
latter quantities are locally fixed by the einstein equations for any given
distribution of matter. The only quantity which essentially describes the
gravitational field is the conformal tensor or the corresponding spinor WABCD.
In addition, for empty space this tensor is the curvature itself. Therefore we
shall consider the local properties of this quantity.
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As PIRANI has remarked [3], one of the most elegant results of the spinor
algebra is the decomposition of any symmetric spinor into the symmetrized
product of first-rank spinors. Let @,pc  be an arbitrary symmetric (that
means, irreducible) spinor with p indices. Consider the expression

¢ (&) =wspe.. 5 52 8C oinsy

where &* is a first rank spinor. Writing z = £1/£% and separating the factor
(8°)? in ¢ we get

9 (8) = () P(s),
where P is a complex polynomial expression in z. We can factorize P as

P(z) = (e 2 — o)1z — Bo) - - -

such that for ¢ we may write

(&)= (xs52)Ba EB) ... .

: A :
Since & is arbitrary,

®asc... = aPp - - - 7Tpy-

Thus we have obtained the canonical decomposition of the symmetric ¢ spc |
into the symmetrized product of first rank spinors. The spinors «,, fp .
are called principal spinors and are determined up to a (complex) scalar factor-
They need not be all distinct.
Any first rank spinor «, dctgrmines a real light-like vector 1, by
l,u. = A 0;‘8 &B' .

That the vectorl, is light-like, follows from the fundamental properties of the ¢
matrices (see above) from which the necessary relation

A= escep'p’

OABLOCD
can be obtained.

Thus we see that the canonical decomposition of irreducible spinor of
rank p gives at least one but at most p real null directions. Let us now con-
sider the curvature spinor ¥ ;.. Obviously, there are six different possibili-
ties. The type and name of the various classes is shown in Fig. 3.

The historical names for the various types will be explained later. The
interrelation among PETROV types can be visualized on the PENROSE diagram
(Fig. 4). Here the arrows show the direction of increasing specialization.
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It is usual to call type | algebraicallygeneral and the remaining types

algebraically special.

The physical significance of the Petrov classification very strikingly
reveals in the ilpeeling-off "theorem. This theorem states that the gravitational
radiational field of a localized source can be divided into shells with different
Petrov types. The situation can be visualized on the qualitative picture of

Fig. 5 in the ordinary three-dimensional space.

Type
"aBCD = “ (A 0B IT &)

AMBCD * “ (A *B RC *0)
laBCD “ “ (A “B 0C 0D)
AMBCD “ *(A aB “c 0D)

2ABCD" “(A aB“c D)
0

Name
1

1

0

Fig. 3. Petrov types

Fig. 4. Penrose diagram

Fig. 5. The “peeling-off” theorem
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This picture reflects that the curvature tensor of the radiation field
can be written in the form

. N aByi Illand Ma’ya Ictyé n ( —5\
Ra«lyi= — — + — Nemeee h—"— + -~ + nir )m

Here ris an invariantly defined distance, the so-called affine distance along the
lightlike radial geodesics. The r-independent coefficients belong to the Petrov
types indicated. As we move from outwards to the source, the type of the gra-
vitational field becomes more and more general. At large distances, where the
type is N, all the principal directions coincide but as we approach the source,
they gradually peel off.

This theorem was originally established by Roy Sachs. The proof was
considerably shortened by Newman and Penrose [1]. Even in this form
the calculations are rather involved and therefore in this introductory discus-
sionitis of no use to go into details. However, we may recall that the electro-
magnetic radiation (in its classical version) behaves in a very similar fashion.
The electromagnetic field can be represented by a second rank spinor for which
we have two types altogether: the two principal spinors either coincide or not.
Accordingly, the radiation zone separates into the algebraically general near
zone and the degenerate radiation zone.

To demonstrate further the interplay between the type of curvature
and physical processes, I would like to mention the famous Goldberg—
Sachs theorem. According to this, avacuum gravitational field is algebraically
special if and only if it admits a shearfree light-like geodesic congruence.

We get some insight into the meaning of this theorem, if we consider
a family of space-time filling light-like geodesics, called a light-like congruence.
The curves have the tangent vector I*. We can imagine this system as a bundle
of light rays passing through the region of space-time considered. We put
an infinitesimal disc at distance r orthogonally to the rays and consider the
shape of the shadow cast at r + dr behind the disc. (Fig. 6). Expanding the
boundary of the shadow into Legendre polynomials and neglecting higher
order terms, the shape will be of the form of an ellipse with the eccentricity
e = ]i2adr, where the shear a of the congruence is defined by

2*2=

It is interesting to classify the known exact solutions of the gravitational
equations according to the Petrov type of the curvature tensor. By direct
calculation we can prove that the Kerr solution [6] (the stationary field of a
rotating body) is of type D. Since the Kerr metric goes over to the Schwarz-
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Schild one in the static (nonrotating) limit, the Schwarzschild metric is also of
type D. There exist plane wave solutions of the vacuum Einstein equations
which were found first by Brinkman and were investigated later by Kundt.
These plane wave solutions are of type N. Quite recently W. Kinnerstey

Fig. 6. Measurement of the shear a

succeeded to find all type D metrics in explicit form. It is an interesting con-
sequence of his work that it turned out that the K err metric exhausts all type
D fields which can represent the field of a reasonable source. This fact and other
features of the K err metric indicate that this solution plays a very fundament-
al role in nature.

There are also type | solutions known. Weyl has completely solved
the static axially symmetric gravitational equation in empty space. wey1’s
fields with avery few exceptions are of type I. Recently Kota and | found type |
stationary solutions of the vacuum Einstein equations [7], which are not
equivalent to any other metrics previously obtained. However, we do not
know what kind of source can produce these latter gravitational fields. The
metrics exhibit rather pathological behaviour.

Finally, 1 would like to stress that everything that can be done with
spinor methods can also be achieved by conventional tensor calculus, although
in many cases the use of spinor calculus is much more simple. Thus the Petrov
classification in its original form was developed by conventional methods.
| do not find it particularly useful to go here into the details of this rather
complicated approach to Petrov types. However, the essence of this ap-
proach can be depicted in a way which does not show the covariance of the
classification [5].

The curvature tensor is a quantity, symmetric in the first and second
pair of indices. As these pairs are skewsymmetric, we may represent them in a
six dimensional space according to the following rule:
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[ 23 13 12 14 24 34

M 1 2 3 4 5 6

From the symmetry properties of R*"B follows that the 6 x 6 matrix represent-
ation of the curvature tensor can he partitioned in the following manner:

« r M N 1

M and N are symmetric and trace-free (3x3) matrices. We can construct a
complex (3x3) matrix P:

p=m+m

The Petrov classification arises now from the eigenvalue problem of this
complex matrix. Depending on the number of the linearly independent eigen-
vectors the type is 111 (one independent eigenvector), Il [2] or I [3]. If any two
of the eigenvalues coincide, the type is D. If all three eigenvalues vanish, the
type is N.
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By using a special set of “generalized electromagnetic antipotentials”, a Hamiltonian
formulation is given for an inviscid, infinitely conducting fluid, undergoing an isentropic
motion in an electromagnetic field. The concept of a “combined field” is used to consider the
interaction between the electromagnetic field and charges (or currents). The equation of con-
servation of energy of the total system is obtained, as an application of the theory.

1. Introduction

Hamiltonian formulations in hydrodynamics and electrodynamics,
separately, have been known for many years (see e.g. [1] and [2]). Recently,
by using the concept of “combined field”, we presented a symmetric Hamil-
tonian formulation in the electrodynamics of charged moving fluids [3].

In this paper we have constructed a suitable Hamiltonian density, lead-
ing to the equation of motion of our physical model. This has been done by
using special sets of field potentials.

2. Basic equations

In 1963, catkin [4] Wrote the source equations of the electromagnetic
field in a form suitable for an action principle, by means of the so-called “pola-
rization” P. Following cai1kin’s formulation, we showed [5] that the electro-
magnetic field E,B, interacting with a charged, moving fluid, can he described
in terms of the “generalized electromagnetic antipotentials” M and Ip

Ej — e6l(ekmdk Mm—Pj), ()

= Po(@V4'sien  vm 4G M) , @

where ejkm is the Levi-Civita symbol with e123 = -f-1, Q§ is the partial deri-
vative with respect to Xj (j — 1, 2, 3), 9/ is the partial derivative with respect
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to time, eoand”0Oare the permittivity and the permeability of the medium,
respectively. The generalized antipotentials M and » satisfy the homogeneous
d’Alembert wave equations 0 Mj — 0,0 ¥ = 0, if and only if they are related
by the Lorentz-type condition

bjM j+ e0fj0dtvV= 0- (3)
The conservation of the fluid mass is given by the equation of continuity
9/e + dj(QVvj) = 0, (4)

while the conservation of the entropy (the motion is isentropic) is shown by
the equation

dfS-\-Vjdjs —o, (5)

where S is the entropy per unit mass (specific entropy).
We are now prepared to construct a suitable Hamiltonian density for the
investigated fluid.

3. The Hamiltonian formulation

We shall develop our theory in two different cases:

a) The Hamiltonian formalism is based on the physical assumption that
the charges and/or currents do not interfere explicitly in the Lagrangian den-
sity. The “polarization” P is used to define the generalized electromagnetic
antipotentials, but it will not be present in the final result.

b) The construction of the Lagrangian density is based on the idea of
“combined field”, given as a combination between the electromagnetic field
E, B and the “polarization” field P, PXV. In this case, the Hamiltonian den-
sity contains both fields.

a) We shall use the Lagrangian density of such a fluid, given already in
a previous paper [5], but in a slightly modified form. In view of (1) —(5) we
have

Nz Gity "Dejkm Picvm DY mjy2  ~ (ejkm QAM m  Pj)
2 i 2e0 j

V — (9 Mj + EOWOO, X2+ -i- QVjVj - ge + (6)
2e0 2

+ e(9,0c + Vjdjix) - Bg{dtS + VjdjS),
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where e(q, S) is the specific internal energy. It is obvious that the Lagrangian
density (6) is written as a combination between two Lagrangian densities,
corresponding to the hydrodynamic [6] and the electrodynamic [2] behaviour
of the fluid, respectively. In view of the Euler—Lagrange equations

oL 9 9 9L
(
am U x,J at  dg,t

(k = 1,2,3) and the thermodynamic fundamental equation for reversible
processes

TdS = de (8)
one gets from (6) (see [5]):

3Bj=o0, 9)
gjkm 9k Bj = o, (10)
Ej "j- GimvkBm — o, (11)
vj + djx —RBdj S+ I 1efkmBhPm=20, (12)
— VjVj -f Vjdjfx f- 9(« — & - p=o0, (13)

2 Q
df3 + Vjdjg = T . (14)

As was shown [5], by eliminating the Lagrangian multipliers from (9) —
(14) one obtains the equation of motion in MHD

e(dt\Vs + vkdkes) = dsP + eskmjk Bm. (15)

This investigation tells us that the Lagrangian density (6) is suitable for a
Hamiltonian formulation.

The generalized momentap M . p”?, paps, corresponding to the field vari-
ables M;j,ip,oc,S, are then

PMj = Bj; Pp= —Po{djMj+ eoPodty) = o0, (16)
p* = g; Ps = —Ro6-

If we denote by q°‘ the general coordinates, and by pttheir conjugate momenta,
the Hamiltonian density is
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X = 2 Pirtf — L = Bjd,Mj — /X0O(9jM j -f eofiod,rp)dty) -f

+ Qdta —Red,S ~ BjBj + ~-e0EjE]j QVjVj + e —
Z[io A A

—e(d,a + Vjdjx) + BQ{dtS + VjdjS)

or, after performing some reduction

* = Bj Bj + -1 e3Ej.E j- Bjdjw (17)
zPo £

21 [2 (9 ™mijf - copi(OV)] + 4-€ vji+ eee
€
The Hamiltonian of the system fluid -j- field is then
S\l BiBj ~ e0EjE]j ovjvj + QE dx, (18)
1

and denotes the energy of the total field, as expected. In the derivation of
(18) we made the supposition that the potentials mj and rp vanish on the boun-
dary of the integration domain.

Next step is now to write the Hamiltonian density (17) in terms of the
field variables Mj, p, X, S, and the conjugate momenta pM., py, pa Pse We
have then

N—~ 'PMjPMj + —(£fkm9* M m — Pj)2 — PMj 9;% +
*Po *e0 |
+ 2 P~dj Mj ~ eofiodtW) + (19)
+ — psdjS sikm PMkpy, + Pae(Pa. S).
Pa Pa

Hamilton’s canonical equations [2]

. X X o, 93 DK
dq . 9/P- = . (20)
dPi 9y AXK oA\ K,
lead to the following relations:
9f PMj —  Sjkm9cEm, (21)
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8tMj = Po“*PMj - 9 jW — SkmPkvm, (22)
8tP v=~djPMj, (23)
dtW= —(2eoPo)~1{ag] L, — eoPo (24)
9/Pa = -dj(QVj), (25)
dtx = ———VjVj — Vjdjx+ e #— p, (26)
2 Pa
9fPs = -Tpa — 97(Ps «;) » (27)
dtS=-vjdjs. (28)

In addition to this, if Pp.is the generalized momentum associated with the
polarization pj, we still have

9/Ppj = 0= Ej + BkmvkpMme (29)

By making allowance for (16), it is easy to show that the system of equations
(21) —(29) is just the system (9)—(14), containing in excess the Lorentz con-
dition (3), and the equation of continuity (4). Consequently, we have refound
the equation of motion (15).

b) The discussion of the second case is similar. As was shown [3], the
combined field is given by

Hj = ejkm Qkcm ; Dj = ~dj<P ~ «opo 9t Cj, (30)

where Cj and grare the vector and scalar potentials of the combined field, re-
spectively. The Lagrangian density can he written as

Lc= 2 -9;? - £0P09/Cj)2- 4 Po 2. 9*C")2 - 31
C= a0 J( 09/ Cj) , Po J ) (31)
----- 50(9; Cj + 9(cpf + -i-gvjvj — s+ g(dtx + Vj3}x) —Rg(dtS + v}3jS) .

By taking o Cj, Pj, and Vj as variational parameters, one gets from (7) and
(31):

djDj = 0, (32)
sjkm9*Hm — dtD j= 0, (33)

Dj + eoHgBkmvkHm = 0, (34)

vj -f 3j)X — BdjS + Q-lgkm HKPm= 0. (35)
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We therefore arrived at the source equations of the electromagnetic
field [3], [4], a generalization of Ohm’s law for infinite conductivity [7],
and a generalization of the Clebsch’s transformation in the presence of both
the electromagnetic and “polarization” fields. The variation of g and S leads
to the equations (13) and (14). In particular, if charges and currents are absent,
the “polarization” field P, Pxv vanishes, and equations (32)—(35) turn into
(9) —(12), as expected. The generalized momenta pM., pv will be replaced by
PQg"' Pg» corresponding to the field variables Cj, tp, while pxand ps remain un-
changed. The Hamiltonian density is then

A ~~PoHjHj+ — DjDj fi0gkm Hj Pkvm+
2 260 (36)

+ " QUvi+ @+ * DjQp+ -~ . (BjCif — (dtp7.
2 e0 2 j

The third term in (36) gives the interaction between the electromagnetic and
the “polarization” fields. The energy of the total system is obtained by integrat-
ing (36) over a certain domain ®. In this case the last three terms vanish and
we are left with

Qc= 1

vPoH,6 Hj + pj Dj + pOegkmHjP, vm + avjvj + qe)dx, (37
J{Z JZeOJJPJJ 2Jq) (37)

or, written in a more symmetric form
Qc=J |{ Dlej +j pjEj+y Quvj+ oe)dx, (38)

where Eqg. (34) has been used. If the “polarization” of the medium is negli-

gible, the Hamiltonian (38) turns into the “classical” form (18), which proves
the theory.

N. B. It is easy to see that the Lagrangian densities considered in this paper are relati-
vistic invariants. Indeed, we can write for the first two terms in (31)

% D> 2 Hing ( PleBili1 (39)

where Fjkis the combined field tensor [8]. The rest of the terms in (31) are constructed by means
of either equations of conservation or quantities like g, e, S, p. which are supposed to be in-
variant with respect to the Lorentz transformation. The Lorentz invariance of the Lagrangian
density (6) is obvious.
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4. Application. The equation of conservation of energy

As we have shown [7], the combined field D,H is described by the follow-
ing equations of evolution:

e0OMXHj + ejkmdkDm — 0, (40)
9/ Dj —ejkmdkHm = 0. 41

The equation of motion of the fluid in the combined field is then

e(9,i>s + vkdkvs) = —asP + Mo Cskmjk Hm. (42)

In view of (5), (8), (33), (34), (40), (41), (42), and by means of some vector
algebra, it is not difficult to perform the partial derivative with respect to
time of the energy (38). The result is

9tQc  -ri—iik Dkd* I ngdSj— Jol,-vkvk w VjdSj. (43)
Ze0 i
where w = e piqis the specific enthalpy, and

EKHn f — Dk Bm (44)
eoMb

is the Poynting-like vector of the combined field.

Discussion. Equation (43) is a generalization of the equation of conserva-
tion of energy in magnetofluid dynamics. The concept of “combined field”
makes it possible to consider the “polarization” of the medium, i.e. charges
and/or currents. Written in this form, the equation of conservation of energy
is a better approach to reality. If P = 0 (i.e.j = 0, e, = 0) ncturns into the
usual Poynting vector N = M>-1® X B, and Eq. (43) becomes

8/ J [~ BJB1 Yy «0 EjEj Vj Vj E
[ + JEj+ y Qujvi+ q (45)

= - J w+8ly vkvk+ “j vj dSj,

which is a well-known equation of conservation. We could have arrived at the
same equation starting with (18) and following the same procedure as for (43).
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5. Conclusion

It was the purpose of the present paper to prove the usefulness of both
the “generalized electromagnetic antipotentials” and the concept of “combined
field” in the development of the Hamiltonian formalism in magnetofluid
dynamics. This method allows a symmetric Hamiltonian formulation, and
enables us to take into consideration the interaction between a continuous
system (the electromagnetic field) and point charges (or currents). An important
result of this investigation is the generalized Ohm’s law for infinite conductiv-
ity (34), which is useful in the study of the force-free combined field [7]. The
Hamiltonian formalism also leads to the equation of conservation of energy
(43) for the system: fluid -f charges currents -j- electromagnetic field, as a
final proof of our theory.
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ZEMPLEN’S THEOREM FOR THE SHOCK WAVES
OF COLLISIONLESS ANISOTROPIC PLASMAS

By

M. Dobréka
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The consequences of the second law of thermodynamics are treated in the case of the
shock waves of collisionless plasmas in the Chew—Goldberger—Low approximation. The den-
sity and at least one of the two pressures are found to have a positive jump on the strong
discontinuity surface.

In an earlier paper we discussed the shock jump conditions in a colli-
sionless anisotropic plasma and gave the classification of shock waves of this
medium (the so-called CGL-plasma) [1]. It is well known, however, that the
conservation equations give no conditions sufficient to select the only shock
wave solutions which can exist in nature. An additional condition must be
imposed, which is generally the second law of thermodynamics. Gy . Zemplén
was the first to discuss the consequence of this law for hydrodynamical
shock waves. According to Zemplén’s theorem the density and the pressure
in hydrodynamics is greater behind of the strong discontinuity surface (posi-
tive side) than ahead of it (negative side). This theorem was extended to the
case of magnetohydrodynamics by J. Szabé [2]. Because ofthe strong magnetic
field there are two pressures in CGL approximation: Px and Py, measured
along with and traverse to the magnetic field. The pressure tensor is highly
dependent on the magnetic field direction

pik = Hi Hk + Pxdik,

where H is the magnetic field and 0ik is the Kronecker symbol. Our problem
is how to formulate Zemplén’s theorem in this case.

The CGL equations are consistent with the assumption of a two-tempera-
ture Maxwellian velocity distribution function:

2nKTuny 2 27tkTL M ; ;
I(r,V,t) = n(r, t) y Fui - vi
M M e*pi 2K L tx
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where M isthemassofions,v(r,t)is the fluid velocity, n(r,t) is the particle den-
sity, P|| = nkTI] and P+= nkTr On the basis of Boltzmann’s [ -function
two entropy densities (entropy per unit mass) can be defined [3]:

A PyH2
S,= LCtin ™

3 e3
S+= Cvin P1

3 oH

where g— nM and C, is the specific heat. The total entropy is

pl/3 p2/3

S=SU+SX=C/In 1_1
n5/3

which gives the well known relation

when P||= PL=p.

In accordance with the second law of thermodynamics the entropy of the
fluid cannot decrease, when it flows through the shock front, or in other words:
the entropy density has a non negative jump on the discontinuity surface:

[S]> 0.

If, as in [1], the conservation of the mean magnetic moment is required in
the shock front as well, we can write [S"] = 0. After this, the additional condi-
tion imposed by the second law of thermodynamics is

P>i H2'

(1)
e3

Introducing the notions

we can write the condition (1) as

Zlit_y2 %37 0.

(2)
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(The indices (-f-) and (—) designate the positive and negative sides of the
discontinuity surface.)

By means of the shock jump conditions, the ratio P |+/Py_ can be expres-
sed. The shock jump conditions are [1]:

=0

1 A2
otlv] + Pu- Pl fyHn~ P+ = (3)
an A2 8n
<tfHT] + A,[y] = 0, (4)
A2 - i
—pV2H—PM  pj 4 + Pr- Pl (Hv)a,
2 2 8n 4n A2
A2
+ + =0, 5
P+ oo (5)

€H

where T=1/p, a — 06 and 0 is the velocity of the discontinuity surface relative
to the fluid, n is the unit normal vector of the discontinuity surface oriented
towards the direction of the motion of plasma particles.

Multiplying Eq. (3) with v = 1/2(v+ -)- v_) we can find

<rv2] = (1 PM - Pl H Hpv+ pr+ -
14n H2 _ 8n

W ith the aid of this equality Eq. (5) can be written in the form:

1, ” A2 1 Pm - Pi H y A
J p"+ pr+ A 4n A2 v
A2 1 - i
+ Pi+ + pu-P i (Hv (6)
8n 4n A2
A2
xX4da,, - (pi+ =n vn 0.
Making use of the identities
[ab] = a[b] +b[a] , ™
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—4[3] [b] —(4b) —Sb, (8)
we get
Pn+Pi :nz + 4lre pnl__izp’\)ﬂ}[r]ﬂ”
ir-
Pl 4 Kl=o0 @)

By means of Eqgs. (4), (7), (8) we can transform Eq. (9) to the form not contain-
ing the components of velocity:

Jopn+Pilr +Pilrl[A1201] + mpiﬂ [Hr] =
-m
} (10,

This equation gives the well known result

* Al2 [T =0,
1[p]+pM + l6re[][]

K -

when P|| = Px= p and K = 5/3 [2].
After a simple calculation, excluding the contact discontinuities, where
n = 0, we find from Eq. (10), that

1+ A»(f2z—2ay + 1)(x — 1)+ p[% —a)+ 2x(l —y) +
P,- 2y — XX
+ wY—1] + 2* —ay}, (13
where
P +
h = 2 P = Pl and a = H+H_
16re P,, PM- A+ H_

The substitution of Eq. (11) into the inequality (2) gives

?_--)-(-)-(-{LlyZ— 2ay + 1)(* — 1) + p[y(*2—2x + a) —
- (ax2- 2x + 1)] + 2x —ay} —x3]> 0. (12)

As h and p depend only on the state parameters of the negative side and
the inequality (12) must hold at all possible values of these quantities we get
the following conditions:

2y — XX (*2- YD{o 2+ f) — 2*y} ™ 0, (13)
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Y3

(f 2ocy + 1)(*- 1)~ o0, (14)
2y —a*

............... {y(x2 —2x f-a) — (ax —2x + 1)} 0. (15)

An elementary calculation shows that the condition (13) holds only in
the case, when 2y — 0, so we find from (14), that

XN 1.

This means, that the density is always greater behind the shock than ahead.
From the inequality (15) we find, that

ax2 —2x + 1
Y > g(x, a) =
x2 — 2x f-a

Ifa < 0O, it can be seen from (13), thaty Xx. The range of x, y parameters
where the inequalities (13) —(15) hold is plotted in Fig. 1. By means of the
equality

follows that Px has a positive jump on the discontinuity surface in this case.
From the inequality (2) we can find that Pi+/P+_~ 1 when y <; x32 (region |
in Fig. 1), while P|j can have a negative jump in the region Il, where y x32.

a<0
Fig. 1
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If a> 0 the inequality (13) holds in two distinct ranges of the {x,y}
plane (Fig. 2). In the region | Pu+/Pu_<”~1 may be valid, while in the regions
I1—111 we find that Pu+/Puy_> 1. Ifa> 0 there always exists a range of
X,y parameters (I111), where Px+/Px_ 1.

As a result Zempitén’s theorem can he formulated for CGL plasmas as
follows: the shock waves of the CGL plasmas are compression waves. The den-
sity and at least one of the two pressures are greater on the positive side of the
discontinuity surface than on the negative one.
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THE UNIVERSE AS A BOLYAI-LOBACHEVSKY
VELOCITY SPACE

By
S. J. Prokhovnik
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It is shown that a uniformly-expanding universe, governed by the Cosmological Prin-
ciple, exhibits a velocity space described by the hyperbolic geometry of J. Boiyai and
N. Lobachevsky. This geometry provides a mathematical description of the free paths of light-
rays and of material bodies, and has considerable theoretical, epistemological and practical
implications. Its application is of particular importance for astronomical observations involv-
ing cosmological distances; this is exemplified in relation to the estimation of the size of ob-
jects (QSOs) with large (z >1) redshifts. It is suggested that Bolyai—Lobachevskian geometry
is of general relevance to any expanding model of the universe.

1. Basic assumptions

In the face of the great wealth of new astronomical observations and
discoveries over the last few decades, the evidence continues to support the
view that the observable universe can be considered as a homogeneous and
expanding system of fundamental particles (the galaxies or clusters of such)
governed by the Cosmological Principle. This Principle embodies the assump-
tions that the laws of nature as we know them appear to operate throughout
the observable universe, and that the universe would have the same isotropic
appearance for any fundamental observer, that is from the viewpoint on any
fundamental particle.

The apparent expansion may be described by Hubble’s Law:

w = Hr = r/T, 1)

where w is the recession velocity of a distant galaxy estimated from Doppler
red-shift measurements, ris its distance estimated from its apparent intensity
and H is the Hubble constant whose most-recently estimated value is about
50 km/sec per megaparsec. T, the reciprocal of H, has the dimension of time
and its corresponding value is about 2 X 1010 years.

There is a growing consensus [1] among astronomers that the expansion
appears to be very close to uniform, in conformity with strong theoretical

* During 1976 with the Department of Philosophy, London School of Economics, Hough-
ton Street, London, WC2A 2AE.
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arguments [2, 3] for a zero value of the deceleration parameter 0. The assump-
tion of uniform expansion provides a simple physical interpretation of T:
it can then be considered as the age of the universe measured from the time
when it commenced expanding from a highly dense state. In such a context
the ratio r/ie provides a cosmic measure of time, t, having a universal signi-
ficance for all observers.

We will consider a model of the universe based on the above assumptions
which are now widely accepted and in general conformity with the astronomic-
al evidence.

2. Mathematical formulation of the model

The model of the universe described above may be represented by a
General Relativistic type metric, named after its independent proposers
H. G. Robertson and A. G. W a1 ker.This representation incorporates a scale-
factor R(t) corresponding to the nature of the expansion assumed and also
acurvature parameter K whose value is taken as constant in view of the assumed
homogeneity of our model universe.

The reference frame is based on the set of fundamental particles-cum-
observers constituting the model, and clearly any one of these, say FO0, can be
taken as the origin of the frame. In terms of spherical polar space co-ordinates,
the Robertson —W atker metric is then given by

dt2 — 1)

1+ — fer2

ds2 = (dr2 + rade@2 + r2sin2Qd4>2),

(2)

where r, 0, are t<fhe fixed co-moving co-ordinates of any fundamental particle
or observer relative to FOat the origin of the system, and tits cosmic time co-
ordinate.

The curvature parameter K may take values of 0, -(-1 or —1 depending
on whether the geometry of the model’s 3-space is assumed to be Euclidean,
spherical or hyperbolic, respectively. Since this metric obtains equally and iso-
tropically for all fundamental observers, the interval dsis invariant with respect
to all such observers in conformity with General Relativity.

For the uniformly-expanding model described above, we may take
R(t) = tand k = 0. Further, the fixed co-ordinate r associated with any fun-
damental particle, or observer can be taken, in our context, as equivalent to
its constant recession velocity iv relative to F0. We will call w the Hubble
measure of the recession velocity, it being based on a cosmological red-shift
observation. We can now also define another radial co-ordinate r such that
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r=rt= wt, 3)

so that ris the time-dependent distance of a given fundamental particle from
F 0, and (3) can be considered as an expression of Hubble’s Law with t~2 X 1010
years at present .

We note that r or iv, though fixed with respect to a given fundamental
particle, takes different values for a set of such particles along (say) the path
of a light-ray emanating radially from FO. The path of such a ray constitutes
a geodesic with ds = 0, and dQ — d® = 0 also since the path is radial. Remem-
bering that for our model R(t) — t and k = 0, (2) then becomes:

0 = cMt2- tdr2,
with solution

r= w = clog (t/t0) , (4)

where t0 is the cosmic time epoch of the transmission of the ray at FO, and t
is the epoch at which the ray reaches a fundamental particle receding from FO
with velocity io. It follows that the distance travelled by the light-ray is given

by
r= rt = ctlog (t/t0) . 5)

The results (4) and (5) also follow [4] from the direct application of
McCrea’s Hypothesis [5] —that light passes every fundamental particle in its
path with the velocity ¢ — to a uniformly-expanding set of particles. The
equivalence of these two approaches is perhaps not surprising, since the metric
(2) employs a specific and unique cosmological reference frame, and the con-
stant c, in this context, clearly represents the velocity of light with respect to
this frame. Hence the Robertson —W atker metric implies the existence of
an expanding fundamental reference frame for light propagation.

The result (4) enables us to show [4] that the recession velocity measure
w is related to the corresponding Einstein measure* v by

w= ctanh 1(vic) = clog 1+ vicm 6)
1 - vlc

From this it is easily shown [4] that the set of fundamental observers are
Lorentz-equivalent, in conformity with their assumed cosmological equi-
valence. Note that this result is unique: it could not follow without the assump-
tion of uniform expansion.

*The Einstein measures of the co-ordinates of a distant event are based on defined
operations employing reflecting light-signals, standards clocks and measuring rods.
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From (4) and (6), it also follows in the usual way that the cosmological
Doppler effect is given by

A = :1:ewlc_1/1+d>

A0 R{t0 to 1 — *c’
where A0 and A are the respective emitted and received corresponding wave-
lengths of a light-ray transmitted between two fundamental particles whose
mutual recession velocity is w or v depending on the manner of measurement.
It is seen that the values ofv are restricted to —c < v < ¢, but that the corres-
ponding values of w have no finite limit.

3. The geometry of geodesics

For our present purpose, the most important consequence of (4) is its
application to the behaviour of geodesics. Consider then four fundamental
observers A, B,C and D, asin Fig. 1, such that the mutual recession of A and D
is w, of B and C also w, of A and B it is u, and of D and C also u. Thus A,B,C

W . D

/ /

9» 1 »..... w e —.... «C
Fig. 1. Parallelogram of recession velocities

and D he on the vertices of a parallelogram of recession velocities, and at any
given epoch of cosmic time, t, their space-intervals of separation, wt and ut,
also form a parallelogram.

Now imagine that at cosmic time T a light-ray passes A in the direction
towards D, and a second light-ray passes B in the direction towards C. It
follows from (4) that the rays will reach C and D at cosmic time Tewc. The
resulting light-paths might be considered parallel; yet on leaving A and B
these paths are separated by a distance uT, whereas on reaching D and C
the paths are separated by the greater distance uTewlc.

Travelling backwards along these paths we note that the distance bet-
ween them decreases by a factor of e for a length of path corresponding
to arecession velocity w. Hence no matter how large we take w in either direc-
tion the paths will not meet, even though in the backwards direction the sum
of the co-interior angles made by a transverse light-path is less than two
right-angles.
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The parallel light-paths of our cosmology have geometrical properties identical to those
of parallel Unes in hyperboUc geometry first discovered by Janos Bolyai in 1823 (when he
communicated his results to his father, Farkas Boiyai, himself an eminent mathematician
and friend of Gauss), and independently by Nicotai Lobachevsky. The latter published his
findings in 1826 and again in a shorter version in 1829 which came under general notice out-
side Russia only many years later. Janos Bolyai’s outUne of his new geometry appeared in
1832 as a twenty-four page appendix to a book on geometry by his father, Farkas. Both of
these men deserve fuU credit and honour for this achievement.

An important concept employed by them was the horocycle (or paracycle
according to Bouiyai), the line which cuts a bundle of coplanar parallel
lines orthogonally; the corresponding surface for a three-dimensional bundle
of such lines is known as a horosphere (parasphere). Applying the horocycle
concept to define the (varying) distance between parallel lines, they showed
that for such lines in hyperbolic space the distance between them increases
(or in the opposite direction decreases) by a factor exlx as we move a distance
x along a line and where y. is a constant. From this property all the relations
of hyperbolic trigonometry follow readily [6].

It is seen that this geometry applies precisely to the geodesics of our
cosmological model. However, in respect to our universe the exponential rela-
tion does not involve distances and an arbitrary constant x, but instead reces-
sion velocities and the universal liglit-velocity constant c; so that, for instance,
the angle* of parallelism, a, of the light-paths described above is given by

cosa :tanh (m/c). (8)

Thus our model manifests a hyperbolic velocity-space whose geodesics conform
precisely to Bolyai—Lobachevskian geometry.

4. Physical implications of a hyperbolic velocity space

The geometry of Bolyai—Lobachevsky is not merely a mathematical
tool or convenience in the description of a uniformly-expanding universe;
it describes precisely the behaviour of light-paths in such a universe. The
geometry shows what happens when the passage of a light-ray is constrained
by the (uniform) expansion of the substratum in which it propagates. The
divergence of ‘parallel’ light-rays is inevitable is such a universe and is in
principle observable.

*This is the acute interior angle made by one light-path with a transverse (light-path)
which is at right-angles with a parallel light-path.
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Thus consider our parallel light-rays associated with Fig. 1 from the
viewpoint of one of the observers, say A. According to A, the light-ray travell-
ing towards D maintains a fixed direction, the same direction as that of the
mutual recession separating A and D. However from A’s viewpoint, the light-
ray travelling from B to Cis diverging, as in Fig. 2, relative to the (light-ray)

Fig. 2. Observer A’s viewpoint of parallel light-rays and of separation distances. B', C' and D

are the respective positions, relative to A, of observers B, C and D when the light-rays from A

and B reach D and C, respectively. Note that C' is on the radial extension of the line from
Ato C

line linking A to D, in accordance with the recession of C (the ray’s destina-
tion) from D. Reciprocally, observer B would of course observe the ray from
A to D bending away from the fixed direction of B to C.

The divergence of parallel light-rays in this way would appear to consti-
tute a clear test of the nature of cosmological geometry, as was indeed recog-
nised by Gauss. Unfortunately the direct observation of such divergence,
or of associated phenomena, is well beyond our present practical capacity,
since the expected divergence could only assume an observably significant
character over enormous distances corresponding to recession velocities com-
parable to c. Thus recollecting the value of the Hubble constant (H ~ 50 km
sec per megaparsec), parallel light-rays travelling a distance of three million
light-years would only diverge to the extent of about one part in six thousand
(™ eVe000—1); and it follows from (8) that the angle of parallelism of two
light-rays separated by this same enormous distance would differ from a right-
angle by less than 0.01°. It is seen that for all local purposes, including those
even on the galactic scale, our cosmological hyperbolic velocity-space reduces
indistinguishably to a Euclidean space. This was forseen by Boiyai who
noted the limit equivalence of the two types of space as x —moo.

Both BoiyaiandLobachevsky also deduced another association between
these two types of space, that is that the surface of any horosphere is governed
by Euclidean geometry. In our context this means that at any given instant
of cosmic time, this geometry applies precisely for the description of the spa-
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tial relationships of our universe; so that we are certainly entitled to consider
our four observers of Fig. 1 as lying on the vertices of an Euclidean parallelo-
gram. We note, in this regard, that our cosmological hyperbolic velocity-space
is four-dimensional, and that the ‘surface’ of its horospheres, corresponding
to fixed instants of cosmic time, is three-dimensional.

Geodesics are equivalent to the ‘straight lines’ in a given space — the
‘shortest distance’ between two points in it. Hence we might expect that they
should represent not only the paths of light-rays but of any freely moving
body. This result is indeed confirmed elsewhere [7] by showing that our velo-
city-space can also be considered as a universal acceleration field; this field
constrains the motion of both light-rays and material bodies in accordance
with the results (4) and (5) above, except that for bodies the initial velocity
replaces the constant c.

Hyperbolic geometry thereby assumes a physical significance in respect
to all free motion in our uniformly expanding universe. Itisof interest that the
universal acceleration field, directly associated with Bolyai—Lobachevskian
geometry, can be considered [7] as a valid basis for gravitational phenomena
in terms of a value of G given by

where T is the reciprocal of the Hubble constant (or rather parameter), and go
is the density of the universe at cosmic time T.

5. Astronomical implications

The Euclidean notion for the addition (and subtraction) of space-inter-
vals applies along any straight line of hyperbolic space; such aline corresponds
to a free path (of light or a material body) in our context, where the length of
the path is measured in terms of the recession velocity obtaining between
fundamental observers at the two ends of the interval. Thus if in a given di-
rection, the Hubble recession velocities of two fundamental particles are
and MB (with wl<[ w3), then their relative recession velocity iv2 will satisfy
the simple relation w3= w1 -f- w2.

On account of (6), this is equivalent to

ctanh 1(ws/c) ctanh 1(«lc) -(- ctanh 1(v2/c) =

ctanh 1 K + v)lc

1 + vijvijc2
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so that the relativistic formula, relating the Einstein measures of recession
velocities in a given direction, is equivalent to a simple addition formula for
the corresponding Hubble measures. robb [8] appears to have been the
first to recognize that the function ctanh- 1(v/c) has hyperbolic geometry
properties and he named it the ‘rapidity’. B oyer [9] has employed these pro-
perties to derive the formula for astronomical aberration and to disclose the
basis of the Thomas precession effect, and, from quite a different standpoint,
Fock [10] has also linked Special Relativity with a hyperbolic velocity-space
in the treatment of his gravitational theory. In the context of our approach
the ‘rapidity’ function and its associated properties assume a tangible signifi-
cance in terms of the cosmological behaviour of light-rays and freely-moving
bodies.

As seen above, it would require millions of years of observation with
hypersensitive astronomical techniques to detect the slight divergence of
parallel light-rays posited by our cosmological model; however, modern astro-
nomical observations of galaxies and quasars at cosmological distances may
provide indirect evidence of the geometry of light-rays. For example, the
Quasi-stellar objects OH471 and OQ172 were observed by Browne et al.
[11] to have red-shifts of 3.40 and 3.53, respectively. They also found that
the angular diameters of these objects were less than 1/2 arc sec ,“which in
a Friedmann universe with HO— 50 km s—Mpc— and 0= -f-1 implies a
linear diameter less than 2.5 kpc” [11].

The appropriate hyperbolic trigonometric formula* for the analysis
of this data is

sinh(d/2c) = sinh/w/c) sin (a/2), (9)
where a 1/2 arc sec, d is the recession velocity measure of the diameter of
the observed object, and for z = 3.4 we have ewlc = 4.4 and sinh(io/c) ~ 2.1.

Expressing X in radians and in view of the smallness of the arguments, we may
take

sin (oc/2) ~ 1.25 X 10-6 and sinh(d/2c) ~ d/2c,

so that (9) yields
d 5 X 10~6c(km/sec) = 1.5 (km/sec),
which is equivalent to a diameter of 30 kpc on taking H = 50 km/sec per Mpc.
This result is more consistent than that of B8 rowne et ar. [11], with the
observed objects having galactic dimensions, as might be expected [12] from
the common association of QSOs with galaxies at cosmological distances. It is
* Note that, to the first order, (9) is equivalent to the Euclidean formula d = 2iesin(a/2).
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suggested that hyperbolic trigonometry will provide a more consistent inter-
pretation of observations of very distant (r >- 1) objects than is otherwise
possible.

Hyperbolic geometry is exactly applicable to the description of free
paths in a uniformly-expanding universe and, as mentioned above, the uni-
formity assumption (q0= 0) appears to be well-supported by observation.
However even if the expansion were finally found to be not precisely uniform,
hyperbobc geometry would still provide an excellent approximation to the
velocity-space of our universe; for in a univérse where energy propagates with
respect to an expanding reference frame, parallel light-rays must diverge accord-
ing to an exponential (or, at least, quasi-exponential) law. Hence the new
mathematical vistas, revealed by J. Boiyai and N. Lobachevsky, Will
remain of cosmological relevance as long as our universe is expanding.
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According to an unpublished suggestion of Hartree the improper integrals expressing
the electromagnetic potentials should be interpreted in terms of polar coordinates around the
singularity. It is shown that with the help of this suggestion the well-known relations of electro-
dynamics can be obtained in a consequent manner — and it is shown that when there might
be doubt of how to interpret singularities — the physically correct interpretation can be ob-
tained.

Introduction

More than thirty years ago | gave lectures on electrodynamics at the
University of Manchester using lecture notes prepared by D. R. Hartree.
These notes contained an idea which | have not met elsewhere but which |1
think is of importance. Presently | reproduce the consideration and extend
it to some extent.

The electrostatic potential of a charge distribution can be written as

(1)

For values of r so that g(r) ~ 0 the right hand expression is an improper
integral and its numerical value can be given only if we add to (1) the defini-
tion of how this improper integral should be interpreted.

For this purpose it is convenient to introduce polar coordinates, thus in
place of (1) we may write

d(r) = Jo dipj sin Odé J g(r -f- R) RdR , ©)
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where RO is the radius of a sphere containing the whole of the charge distri-
bution.

We note that (1) and (2) give identical results for values of r so that
p(r) = 0 more precisely if

o(r')y = 0 for Ir—r' 1< a,

where a is a length greater than zero.

The potential inside the charge distribution can be defined as to be
represented by (2). The definition (2) can he recommended for two important
reasons:

1) We show presently that ®(r) given by (2) obeys the Laplace—Poisson
equation

VA(r) = —42rg(r) ©)

both inside and outside the charge distribution.
2) The field strength

E = —grad ¢, (4)

calculated from the potential as defined by (2) agrees with the experimental
findings.

It is important to emphasize that the improper integral (1) from the
purely mathematical point of view (as any improper integral) could be inter-
preted in a fashion different from (2) — in the latter case ® defined by the
alternate method may not possess the properties 1) and 2).

The use of polar coordinates in potential theory is a well-known method.
The point made by Hartbee is, however, that the use of polar coordinates
does not simply represent a convenient mathematical method — but it really
contains a physical assumption about the nature of the field.

To show that using the hypothesis (2) of how to interpret the improper integral (1),
we obtain the well-known mathematical formalism without having to evaluate improper
integrals. We reproduce in petit the well-known procedures so as to show that once the sin-
gularity is eliminated postulating (2) — only regular expressions have to be dealt with.

The Laplace—Poisson equation

To show that (2) obeys the Laplace—Poisson equation we note that, (2) being an in-
tegral the integrand of which possesses no singularity, we can differentiate the relation (2)
and interchange the order of integration and differentiation. Remembering that

Vie(r + R) = + R),
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where the suffices r and R signify that the operator V2 has to be taken to operate on those
coordinates, we have

Y;d(r) = dtpft sind d&j f (Vie(r + R))RdR. (5)
Using the well-known relation

8y

1
n= 1 8 =
Vri?= g ¢R\  drJ 1 "™R2sind 0d (snew ) * R2sindl a2 ~ | T T M

the integral (5) can be separated into three terms. As can be seen easily neither of the terms
contain singularities and therefore the order of integrations can be interchanged. Thus

ex , P .

Jn  dtp2 1 daip

fw 11" w)=l &3’ =

the latter relation is correct including R — 0. We have thus Il = 1Il = 0. Further

r*w ("w)iK- r Bw +2aAr)"*-Rwir+w

where we suppose

and

do
dR

We see thus that (2) satisfies indeed the Laplace—Poisson relation (3).

=0, g=0 for r—RO

Dipole fields

The field of a polarized dielectric can be regarded as that of a dipole
density P(r); the field of the dielectric can thus be derived from a potential

P(r' -
M- 4y 6
Ir—r'1
Outside the dielectric the integral (6) can be transformed integrating by parts;
one finds thus
div P(r")
P« = - dVv .

Thus the field of the dielectric outside the dielectric can be derived from a fic-
tive charge distribution

£p(r) = —divP(r) , @)

the so-called Poisson distribution. The integrand (6) is highly singular at
r' = r if P(r) #20 thus inside the dielectric the right hand expression is an
improper integral. The latter integral can be interpreted again in accord with
Hartree’s Suggestion in terms of polar coordinates.
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We may thus write

TN en AoPir + RIR
DP(T) = ,- dp I sin»’?dfj}c dR. (8)

The integrand of the above integral is regular; we can make use of the identity

R - R div P - R2div K )

which is valid in the limit R “m0 also; introducing (9) into (8) we may integrate by parts just
as in the previous case, and find thus

dp (r) = - £ dp [* sinG dO I""(div P)RdR. (10)

Thus comparing with (2) and (3) we find

Y2op(r) = —4ngP,
pp = —divP. (11)

The field of the polarized atoms of a dielectric is obtained to be equal of the
Poisson charge gp. The above result is valid outside the dielectric. Inside the
dielectric it is valid if the improper integral, which is obtained by integrating
over the dipole density, is interpreted in terms of polar coordinates in the
form (8).

The definitions are not trivial ones, according to which certain improper
integrals have to be interpreted in terms of polar coordinates around the sin-
gularity. To see this we consider two mathematically possible treatments of
a dipole field and show that we are led to different results according to how we
interpret certain improper integrals.

The field of a point dipole M (we shall think of magnetic dipoles, this is,
however, unimportant from the purely mathematical point of view) can be
given by two different expressions, namely as

Both expressions are singular at r = 0. Both give, however, the same distri-
bution for r> 0. According to the two expressions (12) we can give the field
of a dipole distribution as

B =rotA
with
RxM(r-R) JIR

(13)
R3
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or
H= —grad Q
with
Q= Jﬁ M 4R . (14)
R3

“We write H and B to remind of the alternative mathematical definitions.
Outside the dipole distribution the integrals (13) (14) are regular and we find

H(r) = B(r) if M) 0. (15)

Inside the distribution the integrals are improper ones, both can be interpreted
introducing polar coordinates around the singularity. In this manner we can
by definition give definitive values to the fields H and B. The result of this
procedure leads, however, to different results according to whether we fix
the value of (13) as of (14) by introducing polar coordinates.

Indeed, writing (13) and (14) in polar coordinates and taking the rot resp. grad of
the integrals, we can interchange the order of differentiation and integration as the integrands
are regular. We thus find as the result of simple calculations

B =rotA = f:" dq)S;' sin® dd 55" (rot rot M(r + R)) RdR,
H = — grad @ = (*" dp (7 sind d6 [ (grad div M(x + R)) RdR.

(The operators under the integral are supposed to act upon R).

We have thus

B—H=—["dp sin «9dﬁff’ (VM) RdR = 4aM.

Thus according to which of the expressions (11) of the dipole field we start
— regularizing the improper integral by introducing polar coordinates —
we come to a different value for the field inside the polarized medium. We
arrive thus according to which of the definitions we choose to the ‘““magnetic
field strength” H or to the magnetic displacement B.

Introducing polar coordinates in certain improper integrals we can de-
fine their numerical values uniquely. This procedure is, however, not a formal
procedure but it can be shown that this intepretation of certain improper
integrals leads to values in agreement with experience. This can be seen to
be the case in the following manner.

The interpretation of (1) in form (2) leads to the potential distribution
@(r) obeying the Laplace — Poisson relation (3). The Laplace —Poisson relation
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(apart from an additional constant) has a unique solution, thus mathemati-
cally the expression (2) gives the only solution of (3).

That this solution describes the field inside a charge distribution correctly,
can be seen considering a charged conductor. In the state of electrostatic
equilibrium the electric field inside the conductor must vanish, thus

E=0
inside the conductor. It follows thus that
divE = 0

inside the conductor and therefore in accord with (3)

B= 0 -

The latter property of the distribution of the electrostatic field was first proved
to be correct by cavendish and is one of the common experiences of electro-
statics. If we were to replace (2) by some expression in which the singularity
of the integrand is interpreted in a different way, then the potential would not
necessarily obey the Laplace Poisson equations and even in the state of
equilibrium charge densities were to be expected inside a conductor.
Considering the case of a magnetic dipole distribution experimental
results prove that the force upon a charge moving through a magnet is given by

F = (v X B) .

c
Such experiments aree.g. the deflection of fast charged particles passing through
a permanent magnet. Similarly experiments on the change of polarization of
a neutron beam passing through a permanent magnet proves that a magnetic
field of strength B (and not of H) acts upon the magnetic moments of the
neutrons. In the electrical case one suspects that the field acting on a particle
penetrating into a dielectric is given by eE; experiments to clear this question
would be very desirable.

From the above consideration one is thus led to conclude that results
in agreement with experiments are obtained if we calculate the magnetic
field inside the magnet from (13) and not from (14); similarly in the dielectric
we have to calculate the field from ®p as given by (10). Thus the magnetic
field inside a magnet is obtained from an effective current density

ieff = rotM, (16)
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the electric field in a dielectric from the effective charge density
op = — divP. (17)

In both cases the improper integrals giving the field strength inside the distri-
bution have to be normalized by introducing polar coordinates.

v

Introducing polar coordinates to define the improper integral a straight-
forward derivation of the retarded potential expressions is also obtained. The
problem is to show that the wave equation

T
VD — — & = —dmg (18)
()5

s satisfied by the retarded potential
D(r, t) = f L e d’r’ t'=t— |r—r'|c. (19)
et ]

The integral (19) (being an improper one) does not define unambiguously
the retarded potential @(r,t). An unambigous definition is, however, obtained if
we use again HARTREE’s procedure and define the integral (19) by introducing
polar coordinates. Thus we replace the definition (19) by

O(r,1) = | dg [[ sin 90 [ o + R.t — Rje) RAR . (19a)

Outside the charge distribution (19) and (19a) give identical values; inside
the distribution (19a) gives a definite meaning to the improper integral.
To show that (19a) satisfies indeed (18) it is convenient to rewrite (19a) as

D (x,1) = (" dp (7 sind db ("2 (v, R, ) R dR (20)
with
o(r, R,1) = o (r + R,t — R/c). (21)

We may now apply the Laplace operator to both sides of (20). Since the integrand of (20)
is regular we can interchange the order of integration and differentiation, we have thus

Vid(r,1) = (2" dp (7 sind do [ Vi o(r, R, 1) R dR. (22)
As the result of a short calculation one finds, using the rules of partial differentiation, that
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23 1 &

Vie-VRP + — g > 3w (23)

Introducing (23) into (22) tne integral can be split into the sum of three integrals Ii + 1r
according to the terms on the right hand side of (23). Using the method of part I, the first
integral is found to have a value

/x= —4no(r,0,t) = —4no (r, ).

The third integral can be evaluated by taking the 323t2 operator before the integral; one thus
finds

1 2

Finally one finds integrating by parts that

h=o0
thus

V2d(r!0 = —4np (r, 0 + b (r, 1),
therefore (20) is indeed a solution of (18).

In the above derivation the introduction of polar coordinates is essentia®
as the operations we have carried out would not be unambiguous if we were
to start from (19) in place of (20) without specifying how to interpret the
singularity of (19),

In many textbooks other considerations are given with the purpose to
show that (19) gives a solution of (18). Thus the integral (19) is extended into a
small sphere around r and the retardation is neglected in this region. The
integral outside the sphere is shown to give the effect of retardation. The above
method is rather unsatisfactory both from the mathematical and from the
physical point of view. We think that this latter method contains in a hidden
way at least partly the assumption according to which the improper integral has
to be interpreted in terms of polar coordinates. It seems to us more satisfactory
to start from the assumption that the singularity has to be interpreted in polar
coordinates so as to arrive to a correct description of the phenomena.

This procedure of interpreting certain integrals in terms of polar coordinat-
es must be taken not as a procedure which can be justified by mathematical
argument — but it rather contains an empirically justified physical assump-
tion as to the structure of the sources of the electromagnetic field. Thus
replacing the not well defined expression (19) by the well defined equation
(10) we can prove, using exact mathematical methods, that (20) indeed gives
a solution of (18).
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1. Introduction

The investigation of natural convection effects in forced horizontal flows
is of great physical interest. This is the case in nuclear-reactor applications,
particularly when dealing with after shut down cooling problems. SpArRrROW
et al. [1] has shown that in case of horizontal flows of low Prandtl number
fluids, the bouyancy forces cannot be neglected as they significantly affect
the flow field. GiLL and CasAL [2] also proved that the effects of the buoyancy
forces are highly important in case of the horizontal flows of low Prandtl
number fluids. All low Prandtl number fluids are electrically conducting and
hence their flow is affected by transversely applied magnetic field. This pro-
perty has been utilised profitably in magnetohydrodynamic channel flows.
But all attempts to analyse the mhd flows were without considering the buoy-
ancy forces. This led GupTa [3] to investigate the effect of buoyancy forces on
a forced convection flow through a horizontal channel with nonconducting
walls. Recently JANA [4] extended the GuPTA’s problem by considering hori-
zontal conducting walls. ’

The present paper is concerned with the study of forced flow of electri-
cally conducting fluid between two parallel porous non-conducting walls, one
of which is at rest and the other moving parallel to itself, with a linear axial
temperature variation including buoyancy forces. The flow takes place in the
presence of uniform vertical magnetic field.

2. Mathematical problem and its solution

Consider the flow of an electrically conducting fluid between two hori-
zontal parallel nonconducting porous walls, the upper wall moving with a
constant velocity u,. The x and y axes are taken along and transverse to the

Acta Physica Academiae Scientiarum Hungaricae 41, 1976



220 L. M. SRIVASTAVA

parallel plates with the origin on the lower plate. It is assumed that a uniform
magnetic field HOis acting along the y axis. At a sufficiently large distance
from the entry, the flow will be fully developed and in the steady state we can
take all physical variables depending ony only. Then the governing equations
can be written as [3]

To (;u dp , d2u $ 1
B R -+ -~
eo &y Ty pdyZ asSiy n, (1)
dpP
0= - QS1 (2)
3y °
OT {1 §guar 7 4 p W L, u2 3
eoc lu” yody iy2 Play + apl W, u2. ©)

The equation of state under the Boussinesq approximation is assumed to be

B= e,[i - R(T- roj, 4)

where T is the temperature, 8 is the coefficient of the thermal expansion and
cr0, To are the density and the temperature in the reference state.
Combining Eqs. (1) and (2)

da g 3g diu Va|/|2LLI, du

\Y 5
0dy2 o px dy3 o 4y ©)
Introducing the following dimensionless variables
n= Uyp), Y = hr), x= PRIt
Eq. (5) reduces to
d3w Voh d2w Kj LW h2 dw
g8h2 - g (T LU, -0 (6
drf dr]2 veeuO di ey dr]

Assuming that the wall temperature has a uniform radient Ai along the
x-direction the temperature of the fluid can be assumed as

AS + Y(v) m
Hence Eq. (6) reduces to
d'w R
drf drf dr] ®
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where

gBRh2A 2
Rs- V°h, M - A HI ~— =
v uOv (9)

Eq. (7) shows that the positive and negative values of Alcorrespond to heat-
ing and cooling, respectively, along the channel walls. Since Pe >> 0, it then
follows from (9) that G~ 0 depending on whether the channel walls are uni-
formly heated or cooled in the axial direction.

The equation of energy in non-dimensional form, including viscous
and ohmic dissipation is

dw\
W - B, + M2W?2 10
drf o] o] ) 9

where

Y(n) = A®(r}); Pe-WUhce® ; B==AL and Pr= W
KAj

The boundary conditions available onvelocity IFaretheno slip conditions,
at the walls and the conservation of mass flow, i.e.
JF(0) =0, W{1) = 1, I"'wdr] = 1. ()

The boundary conditions for ® are given by
.. ()
d0) = 0; P(1) = N (wall temperature parameter) . (12)
A

The solution of (8) subject to the boundary conditions (11) gives the velocity
distribution and is given by

= A cosan W+ 4M2 + A sin hi]j[l'l'II * 4M Gri
4 Be2 M2’
(13)
where
A 1 4~¢ easink b
(eacosh b — 1) (eacosA b — 1)

— (Prx + 2M2) (eacosA 6 — 1) (—
+ (1 -- c) {ea(bsinkb  acosAb) M2 -f- a}

(ecosAb 1) (e(ssinAb — bcosA A + b} +
+ easinA b{ea(b cosAb acosAb) — M2 - a}
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- J-(MZX + 2M2 (e°coslib - 1) +
+ (1 + c){e°(bsinftb —acoshb) — M2 + a}

[(eacosAe — 1) {e{asinhb — bcoshb) + 6} +
-f- easinh b{e(b cosh b—acosh b) — M2-(- a2}]

- Rs o p_dfW+ amM2 4 .= G

2 4 M2

The solution of (10) subject to the boundary conditions (12) gives the
temperature distribution and is given by

@ = cOexp {mrj} -f bObA] -f b2X)2 + bIj3-f bdexp {2ai;} -f 65exp {ar/} sinhbr]
be exp {ar]} cosh brj -f- b, exp {2arj} sinh 2brj + bsexp {2a?j}cosh 2bt] +

-f- 69 « rjexp {arj} sink brj + bi10r)exp {ar]} cos h br7, (14)
where
60= — (6a3 + 2a2m -f- a'm2-f aom?); bx= - — (6a3-f 2a2m + a " 2;
m4 m3
b2 =" - —(3a3 a2m) ; b3= a3; 64 -
m 2a —m
1

[{(a — m)2 — b2} (a— m)ab—
5 {(a - m)2- b2

—{(a —m)2— bR bab—{(a - m2 fFas+ 2(a— m)eall ;
b6 — [{(a — m)2— b2} ba5 {(a —m)2— 6%
{(a mj)2 - 622
X (a— M)as— 2 (@a—m)bad-j- {(a — m)2-j- 623a10];

1

for = [(2a — m) aj — 2bas] ;
(2a - m)2 — (26)2
1
= 2a — m) a8 — 26a7] ;
bs (2a - m)2 - {2b)2 1 ) 1
1
K = a —m)a9 — 6all ;
(a —ni)2— b2 I ) ]
! [(a m) al0 — 6a9 ;
0 @ m2- !
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coz’ﬁ[b + by + bs + by(e®® — 1) 4 bye?sin hb |

~+ bg(e?* cosh b — 1) + b,(e**sinh 2b) + bg(e* cosh2b — 1) +
+ bye?sinh b + byge?coshb — N]; m = P, - R;

1
o= == (B M A2+ B,G* + AMY; = ——— (B, M*+ G);

BAE | .
o=t 4= E [4%2 + Bl + M2B* — A% — Bob — M24?] ;
o= — % [B 2 255 ep . By o B M2AB]+
TH. [A + 28 (40 + BY)— 2B, M| — B:C [ap | 2B 20ba);

M2 M4
b 2GB,
06 == MZ [B +-—]‘JT'(AI7 —|— Ba) + 2Br MzAB] e
a 2G B, B,G .
- [A + S (da + BE) + 2B, M2A%) — —2T @4 + A — 2abB]
& 4?4 [ b {4 A 4B 4 MPBP 4 A%+ B - MEA)
+ 2a {(4b + Ba)(Aa + Bb) + M?AB)}];
- =$ [26{Ab + Ba)(4a + Bb) + M2AB) —
_ 2B, (A% 4 Ba® + M2B® + A%® + B+ M2A4%)] ;
B,G B,G
ay = i Ba] and a,, = ——]‘—4— [4a + Bb],

The Drag-Coefficients at the two walls (y = 0 and n = 1) are given from
(13) as

aw é aw
R et B BE = d[£ZX| = (4b L Ba)e® sinh b
[dn ]n 0 % M2 i (‘I’? Jn=1 ( a)e By %
G
+ (da + Bb) — T (15)

The expressions for the heat transfer at the two walls from (14) are
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i—m] — com ~b d- 2ab4 -f- 66¢e e6e -f- 2bb'j -f- 2abs -f- 610 (16)
| dr] o
and
{no .
e ;=cOmem-(- b4 262+ 363 2abde?a (- [bea cosh b -f- aea sinhb] 65 -f-
| dr] j4=i

-f- [bea sink b -f- eea cosh 6]6e + [26e2a cosh 2b -)- 2ae2a sink 2b] -f- 67-f-
-(- [26e2a sinft 26 -f- 2ae2a cosh 2616, + [6ea cos6 6  siea siné b {- easink b]b9 -(-
-)- [bea sink 6 + aeacosé 6  e“cosh 6]610. 17)
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E. Kapuy and F. TorOk: Quantum Theory of Atoms and Molecules

Akadémiai Kiadé, Budapest 1975, 620 pages
(in Hungarian)

The aim of the book is to provide an introduction into the quantum theory of atoms
and molecules and to serve as a reference book for advanced research workers on the subject.

After a brief historical survey the elements of classical mechanics are given with an
experimental background of the quantum theory.

To lay the mathematical foundation the basis of linear operators in linear spaces is
given with matrix representation and infinite dimensional spaces including a survey of the pro-
perties of important orthonormalized functions.

In the next paragraph the properties of wave functions, the principle of superposition,
the statistical interpretation. physical properties and operators, the changing of the state
with time, the foundations of representation theory and the interrelation between quantum
and classical mechanics are presented in detail. Subsequently, the most important simple
solvable cases are reviewed and the basis of spin theory is given.

The many-body problem in quantum theory and the Pauli principle are treated in detail
and the separation of the variables in the Born—Oppenheimer approximation is analysed
carefully.

Variational method and perturbation theory are treated and group theory and symmetry
properties are dealt with in sufficient detail for the beginner to get a good working knowledge
of the topic.

In the next four paragraphs the mathematical apparatus of the theory is further de-
veloped. Eigenfunctions of the operators of the spin, evaluation of matrix elements with de-
terminants, density matrices and the occupation number representation are treated with basis
functions and the one- and two-particle integrals of the independent particle method.

In the following two paragraphs a short review of the electronic structure of atoms is
given with a more detailed presentation of the electronic structure of molecules beginning
from the diatomic molecules and ending at 7-electron systems, including localization, hybridi-
zation and the population analysis.

The Coulomb correlation of electrons in atoms and molecules is treated and methods
of relative coordinates, configuration interactions, the multiconfiguration self-consistent field,
perturbation theory and some other theories are reviewed.

Methods dealing with systems of many electrons such as the Xa-method, pseudopoten-
tials and the all electron methods CNDO, INDO, MINDO, OCILO, EHT are mentioned with
the m-electronmethods as the Hiickel method, PPP method and AMO and NPSO method
and crystal field theory and ligand field theory.

Short paragraphs deal with topics like the interactions of molecules with electromagne-
tic fields, weak interactions as the van der Waals one and the hydrogen bond, the interpreta-
tion of the chemical bond, molecular spectra and chemical reactions.

In the Appendix coordinate systems, relativistic corrections, the character tables of the
important point groups and values of the physical constants are given.

At the end of each paragraph the authors give many references, some review articles
and books for further reading.

The well written book may be recommended to chemists, physicists and spectroscopists
interested in the physics of molecules. Because of the detailed, textbook-like nature of the
first part and the enormous amount of material presented in the second part the book may
serve well both undergraduate and graduate students as well as research workers.

R. GASPAR
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P. Gombas and D. Kisdi: Wave Mechanics and its Applications

Akadémiai Kiado, Budapest, 1973. pp. X1l + 235.

The Publishing House of the Hungarian Academy of Sciences has published the Eng-
lish translation of the successful book of the late Prof. P. combas and his co-worker,
Dr. D. Kisdi. The first edition had been originally written and published in Hungarian, in
1967; later it was translated into German and published in cooperation with the Springer Pub-
lishing House, Vienna, 1969.

During the past few decades a considerable number of text-books on quantum mecha-
nics have appeared. Owing to its individual features the book reviewed here deserves special
appreciation; earlier editions met with merited success. According to the preface, the endeavour
of the authors was to give an introduction to quantum mechanics and its applications to atoms.
However, the book offers appreciably more than that.

Giving a non-axiomatic development of quantum mechanics, the book starts from the
knowledge of fundamental experimental facts, then through classical physical analogies and
a short discussion of the Bohr—Sommerfeld theory it gets as far as the Schrddinger equation.
These are treated in the three chapters of the first part of the book. The second part also con-
sists of three chapters, the first of which presents examples, which are exactly solvable with
Schrodinger’s equation; the second gives the quantummechanical discussion of the scattering
problem, the third treats the perturbational and variational methods and some of their typical
applications.

The authors’ aim was to develop the physical considerations and to explain the physical
characteristics of substance by using a moderate and non-formal mathematical apparatus
with clear and logical interpretation. Their choice of subject covers the field of non relativistic
quantum mechanics almost completely, including the most important approximative methods
necessary for applications. Moreover, the selected examples provide a firm basis for many
important concepts of nuclear as well as solid state physics. So the book is a good introduction
for a young researcher, wishing to become better acquainted with the literature of the subject.

The authors presented all this rich subject matter in a comparatively easily readable
form taking up altogether 235 pages. In view of the moderate size of the book it can perhaps
be noted that it would be desirable to introduce Dirac symbols and the basic ideas of relativis-
tic quantum mechanics in the same masterful style. Recent theoretical research achieved many
results in the field of the quantum-mechanical treatment of the many-electron systems, in addi-
tion to the one-electron approximation. This is also a chapter to be taken into account in a
possible new edition.

Owing to the good selection of the subject and the consequent logical treatment, the
book may be recommended to students in physics and chemistry and to young researchers

in all fields of modern science.
A. KONYA

A. Stolz: Einfuhrung in die Vielelektrcnentheorie der Kristalle
Akademie-Verlag, Berlin, 1974. X1l + 329 pages

The author, Dr. rer. nat. habil Hubertus Sto1z, one of the heads of the Central Insti-
tute for Electronphysics of the Academy of Sciences of the GDR, summarised in this book his
lectures held at Humboldt University. The book differs in many points from the numerous
monographs on solid state physics recently published.

It breaks with the practice often followed by similar books, which aim at completeness
and attempt to treat the basic experimental facts as well as several applications of the theore-
tical methods. Instead of this, this book concentrates on an appropriate and didactically correct
review of the Green-function formalism, the quantum field method for treating the electrons
in crystals. The quasi-particle picture of the crystal electrons, the theory of elementary exci-
tations and some applications of fundamental importance are all based on this method.

Modern experimental reaerch in the field of solid state physics demonstrates more and
more effects, which cannot be theoretically explained by the one-particle approximation but
which are typically many-particle effects. This is why the methods, ideas and results of the
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quantum mechanics of many-body systems should be introduced into solid state physies.
Most of the monographs on solid state physics, some of the textbooks too, deal with this prob-
lem only briefly, only few good summaries are available on this subject.

Under these circumstances the book of H. SToLz can be welcomed with pleasure. Its
well arranged structure and clear discussion is praiseworthy. In spite of its good qualities
the book is not an easily readable one. The reason for this is its subject, the close concentration
on the theme, and the omission of the fundamental introduction. It can be recommended to
solid state physicists, theoretical physicists and university students, who have completed their
basic studies in solid state physics and quantummechanics.

The subject of the book is divided into the following 12 chapters:

. Electrons in perfect crystals (8 pages):

Field-theoretical description of many electron systems (12 pages);

Green functions (22 pages);

Hartree—Fock approximation for a system of electrons in crystals (17 pages);
Screened Coulomb interaction (22 pages);

Electron-hole propagators and Bethe—Salpeter equation (24 pages);

. Quasi-particle picture of the electrons in crystals (40 pages):

8.—9. Interaction with electromagnetic field I—1II (71 pages);

10. Fundamental principles of the exciton theory (40 pages);

11. Fundamental principles for Landau—Silin theory of metallic electrons (28 pages);
12. The effective crystal-potential (11 pages).

MO e

A. KoNYA

N. F. Morr: Metal—Insulator Transitions
Taylor and Francis Ltd., London, 1974

Solid materials occurring in nature can easily be classified into the categories of metals
and non-metals or insulators. The two types of materials are thought to be characterized by
their electronic structures in such a way that non-metals must have non-overlapping, comple-
tely full and empty bands whereas in metals the Fermi energy lies somewhere in the middle
of the conduction band, allowing full and empty states within the same band. Like all simple
classifications, this one is not quite correct. There are solid materials showing transition from
the metallic state to the non-metallic one and vice versa. A particular case, nickel oxide, should
be metallic according to the simple band model because the eight electrons of the Ni%+ ion
would only partly fill the d band, this material, however, is definitely a non-metal.

Professor MoTT’s name is well known among solid state physicists; he was one of the
initiators of the investigations concerning metal —non-metal transitions. It is for this reason
that this phenomenon is frequently known as the Mort transition. The book has therefore
been written by the person who knows the story from the beginning and who participated
in the development of this extremely interesting field of solid state physics.

The book contains six chapters. For information on their subject matter, one can do no
better than to quote the author. ““Chapter 1 deals with the phenomena which can be described
in terms of a model of non-interacting electrons, including metal — insulator transitions due
to band crossing such as that shown by some divalent metals under pressure. It also describes
the behaviour of electrons in a non-crystalline medium and the Anderson transition, including
that in liquids. Chapter 2 discusses first the interaction of electrons with phonons, particularly
the mass enhancement by polaron formation, and also the band crossing transition in Ti,0,.
Then various phenomena due to electron—electron interaction are introduced, including ex-
citon formation, the properties of excitons in metals and the Noziéres peak at an absorption
edge, electron —electron collisions and the effect on the resistance (Baber scattering), and an
introduction to the Hubbard intra-atomic energy U. Chapter 3 deals with magnetic moments;
ferro- and antiferromagnetic coupling in non-metallic oxides are first described, followed by
the Anderson— Wolff condition for the formation of moments in metals. The Kondo effect is
relevant to some of the properties of materials near the metal —insulator transition and an
outline of the physics of this phenomenon is given. We also describe the interaction between
moments in spin glasses and amorphous antiferromagnets. A brief section on metallic ferro-
magnets is introduced, mainly in order to discuss nearly ferromagnetic materials where the
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Pauli paramagnetism can be indefinitely enhanced without any large effect on the density
of states or electronic specific heat; in this they are in strong contrast to the highly correlated
nearly antiferromagnetic materials where both are enhanced. Chapter 4 introduces the metal —
insulator transition due to correlation, and starts with the Hubbard model in which only intra-
atomic correlation is included. The sequence antiferromagnetie insulator—antiferromagnetic
metal —normal metal is described, and the comparison between the highly correlated nearly
antiferromagnetic and nearly ferromagnetic metals is again made. In the former the spin-
flip onstrongly occupied centres is compared with the Kondo behaviour. The chapter also de-
scribes Wigner and Verwey transitions with applications to Fe30 4, vanadium bronzes and the
transitions in some rare-earth compounds. Chapter 5 applies the ideas of Chapter 4 to the
well-known transitions in such materials as V23 V02 and NiS. Finally, Chapter 6 discusses
doped semiconductors and other disordered systems such as La, xSrxV03 YO0X and metal-
ammonia solutions where both correlation and Anderson localization play a part.”

Professor Mmott has succeeded in giving a consistent model to describe the metal—insula-
tor transitions in his book. As a result of his being so well informed down to the minutest
detail he is able to illustrate the complex theoretical treatment by concrete examples without
using the difficult formal treatment. In reality, this book is a collection of physical ideas with
examples to illustrate them. This book is indispensable for the specialist; il is also extremely
useful for a student endeavouring to learn the subject.

B. Vasvari

Gstav E R Schulze; Metallphysik
Akademie-Verlag, Berlin, 1974

This book is the essentially unchanged second edition of the late Professor Schuize’s
work that first appeared in 1967. The book is basically a handbook —the author having aspir-
ed to completeness in collecting the basic knowledge about metals. At the same time in the
individual main parts of the book Professor schuize goes so much into detail that these
parts can be regarded as a monograph of the subjects. The volume contains much more
information than needs to be learned by the average university student so it is a good in-
troductory work for those who wish to deal with the special subject of metal physics in a
more detailed way.

The book has nearly 500 pages and consists of four main sections. After a short introduc-
tion to the most characteristic metallic properties the first section is devoted to the description
of crystal lattices and their symmetry properties including some basic group-theoretical con-
cepts. This is followed by a detailed description of the individual lattice structures not only
in the case of simple metals but also for complex alloys. The thermodynamic treatment of the
different crystallographic phases with questions relating to melting and solidification closes the
main part.

The second section describes the mechanical and thermal properties of ideal crystals,
starting with the classical treatment of elasticity. This is followed by the description of lattice
dynamics, lattice heat capacity and thermal conductivity on the basis of the atomistic model.

The third section contains the description of atomic motions in real crystal lattices,
such as diffusion and the diffusionless matter transport (glide processes, work hardening).

The fourth section deals with electronic and magnetic properties. The quantum-
mechanical pictures of the electron structures of metals including some very new result for
the binding energy are first summarized, then follows the treatment of electronic properties
such as conductivity, the electron emission from metallic surfaces, optical properties. Magnetic
phenomena are treated by returning to macroscopic properties and using the atomistic inter-

retation.

P Each chapter contains quite a number of exercises. A wealth of clear figures and de-
tailed tables are to be found in the text illustrating the treatment. A trilingual (German,
Russian, English) subject index completes the book.

Professor schuize’s handbook will be very useful for university students as well as
metal physicists and metallurgists.

B. Vasvari
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R. Hanbury Brown:

The Intensity Interferometer and its Application to Astronomy
Taylor and Francis, London, 1974.

The reading of this book offers simultaneously the benefit of understanding physical
ideas and the enjoyment of being a companion — though only spiritually — to pioneers of
science. The intensity interferometer proposed by the author seems to be the only effective
tool for measuring the angular size of faraway visible and radio stars while the laboratory
measurements carried out on the basis of the ideas originating from stellar interferometry
led to the increase of our knowledge on the coherence of light, i.e. on nature itself.

The light interference measurements carried out by a Michelson interferometer provide
information on the spectrum of atomic transitions, moreover the interference phenomenon can
be applied for length measurements too. But both applications are influenced by the size of the
light source. This is an undesirable factor in spectral and length measurements but Michelson
turned this disadvantage into avaluable tool constructing the stellar interferometer for measur-
ing the angular size of stars.

The stellar interferometer, however, is affected by spurious variations of the armlength
and the refraction index of air, limiting the accuracy of the instrument. It was on the initiative
of the author that thorough theoretical and experimental work has been carried out on the
intensity interferometer. It consists of two square law detectors and the high speed electronics
measuring the correlation signal of the detectors. This signal is proportional to the degree of
spatial coherence of the light source i.e. to its angular size. Thus the difficulties connected with
the phase of the electromagnetic field can be avoided.

After a historical introduction the monography gives the physical outlines of wave
and intensity correlation. In Chapters 6 and 7 the author reviews the experiments carried out
both with visible light and radio waves. The big interferometer constructed on the principle
of intensity correlation was built up at Narrabi (Australia). It consists of two mosaic concave
mirrors (intensity interferometers do not require monolithic mirrors) with a diameter 6,5 m
built on two tracks moving in a circle of a diameter of 188 m. The signal of a pair of photo-
multipliers placed in the foci of the mirrors was then led to an electronic correlation circuitry.

The angular diameter of 32 stars between 0.5—6 X 10-3 sec of arc are listed, showing the
possibilities of the interferometer. Where a significant difference of the correlation signal
from unity was observed (for zero delay between the signals) the presence of multiple stars
could be concluded. The efficiency of the method was amply demonstrated by observing from
the periodic variation of the correlation signal the rotation of a binary star (known from spec-
troscopic measurements).

P. varga
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A HYDRODYNAMIC MODEL OF
FREE CONVECTIVE MASS TRANSFER

By

M. F. Kotkata and Y. K. Badawy

PHYSICS DEPARTMENT, FACULTY OF SCIENCE, AIN-SHAMS UNIVERSITY, CAIRO, EGYPT

(Received 3. VI. 1976)

The hydrodynamical flow due to the free convection in electrolysing cells with plane
vertical electrodes model is revealed by a shadow Schlieren method. Electrolyte composition
ranges from 0.01 to 0.50 M CuSo4in 1.5 M H7So4 under limiting currents for the deposition
of copper between 0.32—35.7 mA/cm2

The data of the mass transfer have been verified by the empirical formula

Nu = 0.22 (Sc « Gr)0'y,

where NU, SC and Grrepresent the Nusselt, Schmidth and Grashof mass transfer numbers.

Flow to solution of different concentrations near both cathode and anode has been
studied to confirm the presence of a “back-flow”. The recorded hack-flow was found to grasp
the original flow leading to some stratification of the cell liquid. Insertion of a centred-glass
diaphragm, to separate the cathode compartment from the anode, has a qualitative influence
on the back-flow phenomenon.

Introduction

The need to use electrochemical systems as models for analogous prob-
lems in mass and heat transfer has shown the importance of hydrodynamic
studies of the electrolysing cells. An application of electrochemical mass transfer
probes has been made by Hanratty et al. [1] to measure the velocity gradient
at a wall as to study the influence of drag-reducing polymers.

The first concept of the analogy between heat and mass transfer was
proposed by Agar [2]. Then, a correlation between the heat and mass transfer
problem has been carried out by many workers using different models. Heat
and mass transfer under simultaneous free and forced convection was stu-
died by Bairiev et al. [3] and others [4, 5]. Also, the heat transfer coefficients
were determined by analogy from mass transfer data with the aid of photo-
metric measurements [6].

The most convenient method for studying rates of mass transfer by
free convection mechanism measures the maximum rate of the electrode reac-
tion, i.e. the limiting current, which may be maintained in the steady state.
The rate of mass transfer from an electroyte to a solid can be related to the
overall concentration difference between bulk solution and electrode interface,

N = KL(Cb — Cj).
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The theoretical maximum current density is that which would reduce
the concentration at the electrode interface G- to zero [7]. This means that
every ion near the electrode is instantaneously removed by reaction. So, the
mass transfer coefficient KL, which depends on hydrodynamical conditions
[8], may be expressed in terms of the limiting current density IL,

KL= IL(1 - t)\ZFCbh.

The transfer number of copper (tCu++) could be neglected as it amounts to
less than 1.5% even at the highest concentration of copper sulphate [9].

For vertical plane electrodes, o e1any and Tovias [10] Show that the
local limiting current density (IL)Xfor a discharge of copper ions at a distance
X from the lower end of the cathode is represented by the relation

gxD a4
\2

VOX KZE C5/4 X 1/4 5

where v is the kinematic viscosity, g the acceleration of gravity, x the densi-
fication coefficient relates density changes (gb— g,) to concentration changes,
and If is a numerical constant which depends on the solution of the differen-
tial equations describing the mass transfer problem. The last relation may be

written as
(IDX= ex-*.

Experiment

Fig. 1 illustrates the elevation and side views of the working holder
used for the assembled cell. It is composed essentially of a cellholder and another
to control the Haber-Luggin Capillary (HLC) in three independent directions.
Necessary equipment is provided for the measurements of the total current
and cathode potential at different points on the cathode relative to the bulk
electrolyte solution in the cell.

A rectangular cell made of flow-free optical glass of dimensions 12.2 X
X 11.8x2.4 cm3 has been constructed for the deposition of copper from copper
sulphate with sulphuric acid as a supporting electrolyte. The anode and the
cathode are parallel plane plates made of electrolytic copper sheets of 0.4 cm
thickness, 2.3 cm width and 10.2 cm height. Each electrode is held in place
in a plexiglass holder. The backsides of the electrodes are covered with an
insulating material to avoid any side reactions providing two-dimensional
flow. The potential at any point near the cathode surface is measured using
the HLC tubes made of pyrex-glass with the required precautions [11]. The
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HLC is held in place parallel to the vertical mid-line of the cathode surface
and adjusted at 1mm away from it.

Fresh solutions prepared with different materials have been considered
to realise a constant state polarization potential of the cathode during the
electro-deposition. Molarities of Cu++ in the acidified copper sulphate solu-
tions are estimated by the analytical iodine-thiosulphate method.

Fig. 1. Elevation and side views of the working holder used for the assembled cell. 1. vertical
scale moves in xdirection; 2. vertical scale moves in y-direction; 3. capillary holder moves
in r-direction; 4. steel cell frame; 5. frame screw; 6. assembled cell; 7. H. L. capillary

The potential value at zero current is recorded and, then, subtracted,
with proper sign from the potential at the different current values. Thus,
any static potential difference due to variation in the surface structure of the
electrodes could be accounted for. The electric circuit is then immediately
closed and current is passed through the cell. Potential is changed in steps
of 25 mV each 1/2 minute and actual potentials are recorded with the aid
of a Vibrating Reed Electrometer, of error less than 2%, till, hydrogen evol-
ution takes place. Temperature is recorded during runs of the experiment
for the subsequent evaluation of liquid properties.

Current—Potential measurements have been taken at different locations
(0.5, 3.6, 6.6, and 9.7 cm) along the cathode (10.2 cm long). At each location,
the experiment was repeated 2—4 times using fresh solution and freshly pre-
pared polished cathodes. The reproducibility of successive limiting current
measurement has been found to be within 1—29%.
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To study the effect of separating the cathode compartment from that
of the anode, a centred glass diaphragm has been used. The diaphragm’s
dimensions are: 0.8 cm thickness, 2.3 cm width, 14 cm height. The sizes of
the adhering pyrexglass grains varied between 0.20—0.208 mm.

The hydrodynamical flow of the fluid inside the cell has been recorded
by considering a shadow Schlieren method. This method is similar to that
developed by Schmidtn [12] to study the thermal boundary layer, and later
confirmed by Griguin, [13].

Meass transfer calculations

Experimental measurements of the current-potential taken at different
points along the cathode surface indicate no detectable changes in the limiting
current value. This means that the limiting current density is constant along
the surface of the cathode. Therefore, the constant C of the limiting current
equation must be replaced by another factor C(x), i.e.

(ILX= C(X)X-V*.

As (IL)X has been found to be constant, experimentally, so, the factor
C(x) must vary with X within the electrolysing cell. In other words, the factor
C(x), which is a function of the physical parameters Ch D, x and c, increases
somewhat with increasing the cathode height X in such a way that the product
C(x) *X~Ili remains unchanged.

Such behaviour of the limiting current constancy along the cathode
height has been found over the whole compositional range studied; 0.0098
to 0.514 M/L CuSo4in approximately 1.5 M/L H2So04. Fig. 2 gives the average
current—potential curves of the considered concentrations from which the
limiting current values have been evaluated and given in Table | together
with the corresponding physical properties estimated from the reported expe-
rimental data [5, 14] after correction for the measuring temperatures.

Dependence of the limiting current density of the presentvertical electrode
model on the bulk concentration of the reacting ionic species, Cu++, can be
represented by the linear equation

(h)v - CT

which differs from that for a horizontal electrode model [15], where

(Ih ~ CY\

It is customary to represent the limiting current data in terms of the
three characteristic dimensionless mass transfer numbers; Schmidth, Nusselt
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Fig. 2. Current—Potential curves for determination of the limiting current for the different
concentrations

and Grashof by an envirical relation of the form
Nu = K(Sc «Gr)n,

where the constants k and n are evaluated from the experimental data, and
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the characteristic numbers are defined by

Sc = v/D, Nu = IvI/ZEDC b,
Gr = gl3{¢cb- g)lq\2,

where Z is the valency, | the electrode height and F the Faraday constant.
An IBM programmed computer has been used to indicate that

Nu = 0.2221{Sc mGr)0’2®

which is comparable to that for the inclined parallel electrodes model [16].

Table |
No. Mcoulgroi?y Te”T:p' naltne crsisee fio e x i Gy se Nu G rxl0 -
cb o
I 0.0098 1638 0.318 13736 1.248 0542 2534 3107 0.68788
" 00564 161 2127 1.3739 7.959 0529 2597 369.3 4.33208

hi 00936 161 3574 1.3949 19.318 0520 2683 4435 10.32530
v 02328 172 11050 1.4514 26.399 0514 2824 4884  14.34306
\Y 03480 17.7  19.684 15087 39.647 0510 2958 5769 18.11470
VI 04630 170 27128 15450 50.870 0500 3090 7117 2216757
VII 05140 180 35734 16151 56.896 0488 3309 7429 22.74789

Hydrodynamical observations

Observations of flow of the cell fluid from zero current to the limiting
current value have been recorded. As the current flows, there will be an initial
depletion of the metal ions, Cu++, in the region where the fluid is in immediate
contact with the cathode. As the metal ion is depleted, the fluid density
is reduced and consequently a convective flow occurs as a result of buoyancy
forces. Such convective flow supplies fresh solution to the electrode interface,
thus, the mass transfer is represented by molecular diffusion alone. The layers
of solution flowing along the electrode surface undergo greater depletion as
they rise to greater heights, and the convective current is continuously increas-
ed by the movement of additional bulk solution into the depleted regions.

However, the recorded Schlieren photos have shown that the original
flow, at the surface of the cathode, transfers not only solution of low concen-
trations but it also transfers part of denser solution towards the free surface
of the electrolyte. The transfer of denser solution is due mainly to the strong
effect of the hydrodynamic boundary layer of the electrolyte used which is
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much broader than that of the diffusion boundary layer, éh > 6d [17]. The
instability of the heigher density portions of the solution near the upper
surface of the cell liquid results in a “back-flow” which retransfers the denser
solution downwards from the upper corner of the cathode. Similarly, the solu-
tion of lower density which is carried by the original flow on the anode will
be retransferred upwards beginning from the lower corner of the anode.

+

Fig. 3. A schematic diagram of the convection one hour after passing the current,
a and b: original flow; ¢ and d: back-flow

Fig. 3 illustrates a schematic diagram of the typical convection one
hour after current flow started. | 0.91L to show the presence of the back-
flow combined with the original flow. Increasing the time of current flow
results in increasing the effect of the back-flow and the result is a stratification
of the bulk of the cell solution. This explains the results obtained earlier [18]
indicating that after a 15 hour duration of electrolysis the concentration in
the central region of the bulk was not uniform. Also, the concentration in
the lower parts was many times greater than in the higher parts. Recently,
Vhba and Rod [19] have made some calculation of mass transfer in a back-
flow model.

Since the back-flow at the cathode is primarily a motion of denser
solution, so it influences the concentration gradient perpendicular to the
cathode. Therefore, in the back-flow region the concentration gradient and
consequently the local limiting current become mostly constant along the
cathode.

Variation of the back-flow with time is found to depend on the molarity
of the electrolyte. However, due to the back-flow, the limiting current is
not reached at the same time by the whole surface of the cathode, (Fig. 2,)
where the current density remains constant, is not the same for the different
concentrations. The width of the plateau, in which the current remains con-
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stant with increasing potential, decreases with the increase of molarity. From
Fig. 2 it is clear also that the required time to reach the limiting current
increases with molarity.

Insertion of the specially designed diaphragm made of a centred glass
to separate the cathode compartment from that of the anode is accompanied
with an increase in the rate of the back-flow as given in Fig. 4. Moreover, the
rate of change of the back-flow increases with the separation of the dia-
phragm from the cathode towards the anode surface.

Fig. 4. Rate of change of the back-flow with and without diaphragm,
a: without diaphragm, b: with diaphragm

Variation of the viscosity and diffusion coefficients by the addition of
different concentration of glycerol, up to 6.38 M/L, to the acidified copper-
sulphate solutions also indicates a constancy in the limiting current measure-
ments along the height of the cathode surface beside presence of the back-
flow with the original flow.

Therefore, in conclusion, the back-flow is a physical phenomenon already
existing in the fluid motion of the electrolysing cell to grasp the original flow
irrespective of viscosity and diffusion coefficients of the electrolyte or of the
presence of the diaphragm separating the anode compartment from the
cathode compartment.
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A NOTE ON AN INTERIOR SOLUTION FOR A FLUID
SPHERE OF CONSTANT GRAVITATIONAL MASS DENSITY
IN GENERAL RELATIVITY

By

J. P. Sharma

DEPARTMENT OF APPLIED SCIENCES, M.M.M. ENGINEERING COLLEGE, GORAKHPUR, INDIA

(Received 12. VIII. 1976)

Solutions of the field equations, for afluid sphere of constant gravitational mass density,
have been obtained in the present note.

I. Introduction

Schwarzschild interior solution of the field equations for a fluid sphere
of constant density qis quite well known and is of great importance in general
relativity. Recently, in three subsequent papers [1, 2, 3], the author has stu-
died planetary structures in general relativity, in general, and the internal
structure of Mars in particular. So far as known to the author, a solution of
the field equations for a fluid sphere (which is in hydrostatic equilibrium)
of constant gravitational mass density gc2-+- 3P = H (1935) has not been
attempted. Gravitational attraction of matter is governed by this expression
(rather than q). The physical significance of the parameter HK/202 has been
pointed out.

Il. The equations of equilibrium

In the case of spherical symmetry, the time-independent metric in (r, 0, (in-
coordinate system is given by (Ms11er [4])

a(rdr2+ r4Q2- b(r)c2dt2 (1)

where dQ2= (d02 -f- sin2Qd02. The gravitational equations, needed for our
purpose, reduce to

N 1 J- +I1=KP 2
ar b drH_I' ' (£)
and
da 1
1 1 V- X = KQ@2,
ar a dr r rz 3
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where symbols have their usual significance. In the general theory, the hydro-
static equilibrium equation becomes

4)

where P is the pressure and s = pc2is the energy density written as an equi-
valent to mass density p times the square of the speed of light c2

I11. The desired solutions

For a fluid sphere of constant gravitational mass density, our assumed
relation, connecting pressure with the energy density, is

pc2 -f- 3P = H = constant. (5)
Substituting (5) into (4), we obtain a solution
H - 2P = ab, (6)

where a is the constant of integration. Adding (2) and (3), we have

~ -dr + = Bk = Kxr(P + e’ )
or, in view of Eqs. (4) and (6), this becomes

g (ab) = Kxr(ab)2, (7')

the integration of which yields

ab = 2B___ L

- KocRr2 ar ®

where B is another constant of integration and O = (KacBj2)112 Making use of
Eqs. (6) and (8) in (2), we obtain

1- @r— + b=R+ (KH - 2A)r2. 9)
dr 2

Solving this hnear differential equation, we obtain

b(r) = B\\ -fL - - (1 - OV)I2sin-1dr]+ — (1- dV)12, (10)
r r
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where L =-——(KH —21); M = constant )
%82

Since b(r) remains finite at the centre r= 0 of the fluid sphere, M must
vanish. Thus Eq. (10) simply reduces to

by =8 1+ L- — (@- OV)I2sin“1 G (12
or

Substituting (12) into (8), we get

a(r) = {1 + L)(I - 622 - L(6r)-1(1 - 02232sin“1dr"1} . (13)

In view of the above, the product of K and the pressure can be expressed as

_ *
kp= n— @+ 16-C 0% G er (14)

The central values of KP and (Kqg)&2 are given by

(KP)ro= A+ (L - D<= 05KH - (2, (15)
and
(Kg)£0= 3d2- 0.5 KH, (16)

respectively. These equations make it clear that KH must satisfy the inequality

. KTT
&< 2-<, 3d2, (17)

so that P0and g0 remain positive. One may verify that dP/dr is negative, the
physical meaning of which is that as the radius increases, the pressure de-
creases and attains a zero value at the surface boundary r = of the sphere,
where xx = ool satisfying

@— X)xr= — (KH —24) y 1 — X2sin-1 xx, (18)

and we find that it lies between 0 and 1. At this point we may replace the
interior solution by the Schwarzschild exterior solution for which

b(r)y = — = 1_15L _ J-4Ar2. (19)

a(r) r 3
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For the exterior solution a(r) and b(r), P and qgc2 should be continuous
everywhere and ab = 1, therefore, from (8) we find that

/3=1- d2r2 (20
Also, from Egs. (6) and (19), we find

H KHR 2m HK
= - a2 ~ (1- no3. (21)
202 202

We may note that A (cosmical constant) has been taken into consideration
for the sake of completeness, but in actual situation where the formulae are
to be applied we may ignore the same (if not actually zero).

We define the value of the parameter HKj2<&, in terms of the central
pressure and central density, as follows:

HK _ B+ 3P0

(22)
252 + po
If we put A= 0 in (21), then
2ml HK .
1 . (@ - 62ri) (23)
202
Hence, in order that m remains positive,
HK 1 02r) < 1 (24)
202 ' ’

which is a strict inequality so as to satisfy the Schwarzschild exterior solution.
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PLASMA HEATING DUE TO NON-LINEAR
INTERACTION IN TWO SPECIAL FOUR-PLASMA-WAVE
SYSTEMS
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Two slightly different systems of differential equations for wave-packet-averaged
electric-field amplitudes of four interacting waves in a plasma are solved, the solution of the
“undamped” system being used as the initial trial function of the “damped” system. The
rates of energy transfer from the waves to the plasma are calculated in either case.

In analogy to e.g. Tsytovich [1] we start from the following, merely
time-dependent system describing non-linear interaction of one longitudinal
and three transverse waves in a plasma:

E[ = -1A‘E2ERE{,

Ei = iA2E[E31E*4y2, E{ = const.
EI=iASE[E?E?, (l.a-d)
where Ej’] i = 1,...4, designate wave-packet-averaged electric field ampli-

tudes, Aj’lare real coupling coefficients, y2is a (large) damping rate, and wave
4 is strong enough to be considered constant during the relevant processes.
Setting 4 = 1EIJjAl «& = — I1E[ WA]j, we obtain the conservation law

4+ @=C= A(= «(0) + x (= 430) 2)
with x and Aas initial values, and the differential equations

a'(t) = 2A“AA34(0 (4(0 - C) IEi [*ly,

4(0 = 24 A1AIC - 4(0)4(0) IK \Uy2 (3.a,b)
solved by
4(0 = 1Calli{x + Ae4) . (4.a)
4(t) = «Ce~2*/(A + xe~W) . . (4.b)
with
y= —CAIAZAZY2 y2= —

* Present address: IAEA, 1010 Vienna, Karntner Ring 11, Austria.
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The difference in the sums of the energy densities of both waves at times t
and t — 0 is equal to the change in the internal energy density of the plasma:

-E"ek(T(t)—T(O))z\E‘m +

©

+ B> R(0) - IEIXL) - [E£]2AL) = oot . h G 2D

Obviously, one of the two waves 1 and 3 “sucks” up the other, the direction
of this process given by the sign of y. The role of the fourth, strong wave
consists in controlling the rate of this process, i.e. for positive y the amplitude
of the longitudinal wave grows the faster the stronger wave 4 (the wave acts
as a sort of “pre-stress” in the plasma).

We now include a weak damping in wave 3, i.e. El -f- y3E'3— D3E*E*‘E[;
the other waves remain as before. In this case (2) is replaced by

«'= *3 + 2[3*35 (2-9)
whence
4 =  e-»TJa'(t)exvtdt (6)

and, as the differential equation corresponding to (3.a):

a- = ~ A\ Ald e-t 4, (t)e2*<dt. @
dt y2 J

An iterative solution of this integro-differential equation now chooses the
time derivative of (4.a) as xl on the right-hand side of (7), i.e. the old system
is regarded as the limit of the new one for y3= 0. Taking 2(y -|- y3) = fi,
2y = V we obtain:

d in & = W e W g dt = 2yx|e~*y,‘r ------------- dx. (8)
T 2 J

dt

To have acase with tractable mathematics at hand, we set fi/v= 2 which leads to

X+ A vapH *J + 01" In (X + '

*damp (*) = (Aert+l + xe) *'xe *(* + A,

W+ AX L fIn (x + Ae¥)

a3damp (0 — e X+ Ac™ (9. a, b)
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where “damp” desighates solutions of the second system. Both systems have
the property that fori —o00,y > 0, aland adanptend to X -(- A, and X3 and o4damp
tend to zero, but the details of energy transfer are different. The change in
the internal energy density of the plasma is, for the second system, given by

JL Qk(T(t) - T(o)) = A\X + A)[(* + A)-*Ae-*A _
2

- (V + +
X
F4[.-"Az&L . (10)
L | « + Ae"
+ta<t+ A)l- fe+ A “T_T  —In (x (- A]

A fuller account of the work undertaken here will be published soon; in parti-
cular, the method of using the solution of one system as the zeroth iterative
solution of the next complicated one will be extended to system where the
fourth-wave amplitude is no longer constant.
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SINGULARITIES OF A VARIATIONAL PARTITION

FUNCTION
By
W. Lucht

MARTIN-LUTHER-UNIVERSITAT, SEKTION MATHEMATIK, HALLE/SAALE, GDR

(Received 7. IX. 1976)

By concrete examples it is shown that a variational approximation to the partition func-
tion (VPF) may have singularities of the phase transition types. Sufficient conditions for the
existence of such singularities are given. One of these conditions is the presence of a continuous
part in the spectrum of the underlying Hamiltonian.

1. Introduction

It was shown [1] that a generalized version of the Lippmann —Schwinger
variational principle can be used to calculate (approximately) the partition
function of statistical mechanics:

2(P) = Tr{e-w+rR} &= (kBT)-\ o)

H and K are the unperturbed and the perturbed parts of a Hamiltonian of
a proper physical system, respectively, and P is a variable scalar parameter.
kB and T are, as usual, Boltzmann’s constant and the absolute temperature.
In this paper we discuss the singularities of the variational approximation
to the partition function (called variational partition function, VPF). In
order to do this we choose special model Hamiltonians H and K which are
assumed to be given in the spectral representation. Furthermore, it is assumed
that these Hamiltonians possess a discrete and a continuous spectrum. The
presence of the continuous spectrum (typically for the Hamiltonian of a large
system) is the essential supposition of this paper. We show then that there is,
under some other conditions, a way to derive a VPF which itself is finite
and well behaved but which possesses discontinuous derivatives with respect
to P of a certain order (at fixed T). This order depends on the properties of
the given physical system (e.g. the density of states per energy interval).

First the general theory is reviewed. Then, after a little specialization
which makes the procedure tractable, we present the examples.
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2. The general theory

Defining the average

= (2)
one can calculate the partition function in the form [2]
~(P) = 5(0) <[/(/?, 0)>0, 3)
where
U(t,rj = 1- p £ dr K(r') W', T @)
K(r) = e'HKe~"H. (5)

U(. , .) is called thermal evolution operator. We introduce the star hermitian
conjugation [3] by
K(r)* = KLU -r) = K(r) (6)

and write down the operator valued Lippmann—Schwinger functional [4]

F(V*, V;r2 ) = 1- pj; dr[F*(T, TK(T) + K(r)V(r, rY] +

+ P ft'drV*(x, rd K(r) V(r, rj + P2['dr £ dr’ F*(r, r)K(r) - ?)
O(r - r") K(r') K(r') F(t', TY) ,
where

0(»)_1 1fot* >0 (8)
[ 0 for %<CO0.

As shown in [1, 4] the following basic theorem is valid:

Theorem: The values of the operators F and V* for which the functional
is stationary, with respect to variations SV and <5F*, are the evolution opera-
tors of the Hamiltonian PK. Furthermore, the stationary value of the
functional itself reduces to the evolution operator for the interval rl to 2

W ith the help of the integral equation (4) one can generate the operators

Un+i(r.Tj) = - PJI’T\dr’K(r‘) un(t't,), n~ 0 (9a)
U*+l(r,r2) = P£ dr'u*n(r'rdK(r') n~ 0, (9b)

with
uo(r, r,) = 1. (9¢)
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At order N we choose V = IfIN*and V* = U with

UM(t,tl = jg Un{r,xJ + Bl Un(r,ronn, (10a)
( 19 { . n(r,rr)
UW(T,r3d= 2 U*(™*) + *2 XU*(r,r2, (10b)
=1 n=y+l
where j is an integral number with the restriction
-l< . j< N-2. )

The operators yn and Xn must be determined. After a number of steps [4]
one can rewrite the functional (7) in the form

=%t ] (12)
i'j= Fz(Xj+L .. A2 PjHliees 1" 2 %)= 1 +zQzi )
2+ N-j-2
Qz= 2 1""+i+ 2 1U+2+n(U2j+n+3Hj+n+l +  A+4n+l U2j+n+3) -
/11=0 N =0

2 z2J+2+n+m AN+l ¢ (U2j+3+n+m zU 2j+i+n+m) fij+m+1 . (14)

1171+ 0

Setting the first variations of the functional F, with respect to Xn and un,
equal to zero we obtain the equations which determine the variational opera-

tors for «=j f-1,j (-2, .. N — 1:
OFE ry++2 . N-J-2 - :
s Uj+z+2 2 (F+Hn+2  2/j4s#Ha) o yty+n+1 0, (15a)
VIA, n=0
oF N-j-2
—= W2 Ylra2 - A 22 AHH (U2 — z Ujen+3) = 0. (15b)
11=0

The simplest case (which we shall use in this paper) arises with the choice
j = N — 2. The Eqgs. (15) yield the two relations for AWM 1 and /iN_y:

BN+ 1) — [N ) 2080 (2 AN (16a)

P2NV(T2 71) = AY—Y [172,V—1("2" TI) V] . (16b)

Assuming the existence of the inverse operator (this is fulfilled in our models)

[UN- i (€2 Ty) — zZU2N(r2, Ty)] 1
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we have, according to the above theorem, the following variational approxi-
mation to the thermal evolution operator (now tx= 0 and r2= R because
of (3))

2N -3
UGB, 0) ~ Fstat(® 0)= 1+ 2 Un+i(R"0) +
n=0 (17)
+ U2NL,(B, 0)[U2N_,(R, 0) - u2N(, 0)}-U1T-M 0).

We have used the expressions (12), (13) and (14) withj = N — 2 and the solu-
tions of Eq. (16).

Since we are interested in the P-dependence of the VPF we rewrite
the representation (17) using the fact that Un is proportional to Pn (see
Eq. (9)). We define

Un(R, 0) = PXGS8, 0), (18a)
where

wn(B, 0) = — dt « K(t)wn_x(t, 0), MO = 1, (18b)

and can then write (for short wn = wn(R, 0))

2N -2
W*0) ~ Fstat(?,0) = 1+ 2 pn”"n+ P™-1

(19)
¢ «2N-1[« 2N-1 — P ™2, ] 1M2N-1 »
The YPF is then explicitly given by
r 2N -2
Vpp(P) = ~(0) 1+ 2 pn<«oo+ p™-1m
n=1
(20)
e <MP2NL [% -1 — i ,M2V] 1 MRN-I>0

3. First model: diagonal perturbation

In order to explain how the theory works we study the simple model

h =2 E»\v>vi+ ( diE(f) I*><*1 (21>
\2 J©

K = T diiP()i> <i)| + rdiV(l') 1><! | (22)
Jst Jas
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with the non-overlapping condition

9tM 33= 0 (23a)
and

dc < V¢ 6, AU B¢ 6. (23b)
The fields | r> and | 1) are supposed to fulfil formally the relations
Olvy=d,, dlp=4<4l- 9, v[P=0 (2%)

(The conditions (23a, b) are written in set-theoretic notation, e.g. 0 is the
empty set.) We consider always parameters P which are not negative,

PO, (24)
and assume for reasons of physical stability

—const E,,< 0 and 0 <[ E(D , (25)
wWo~ W() ~ W1lwith WO< W1< 0 and 0 VO~ F(l). (26)

For concreteness we suppose for F(I) an unbounded function of the type
('c fixed)

M)=wn(l)-w, _, 0<y<1] (27)
r

with V(1) a bounded and positive scalar function. The sum 2 in (21) represents

v

the discrete part while the integrals in (21) and (22) give the continuous parts
of the corresponding operators. The continuous parameter 1is assumed to be
a multidimensional vector of, say, s dimensions (s 1)

1= {kltb, .. ks}. (28a)

It is then dl = dfcj dk2. .. dks and
I -t 2 (kn (28b)

Later we choose in an explicit example 5=1.

Remembering that the subspaces corresponding to the discrete and
continuous parts of the spectrum are orthogonal [5] we obtain from (18b)
and (19) (because of HK — KH — 0)

2N—2

Feat= 1+ 2 (-W /" 1+ [(-PBK)*"-4(2N - 1)!]5(--:-%+—ie. (29)
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where
= -2 NI(PB) < 0. (30)

In (29) we have introduced an infinitesimal positive quantity e which goes
to zero. Using the well-known relation (Pr denotes principal part)

= Pr ind (X — K)
K

and
mfstat = (~Vtat + -fstat)/2, (31)

we obtain
20r-2

<Fatat>0 = | + 2 L (~PB)nInl -<KM>o0+
n

+ PR A JKA BPred \xi\_+ 1 dAM s

2N — 1\ 1 J x wy » x—

(32)

If this expression shall have a meaning all the averages
1 m 2iV—2, must be finite. This is the criterion which yields the num-
ber N. We call it the truncation criterion. Since

K™ = j%dt{W(t))'n 1i><! 1+ Js df(U(f))- I1><i | (33)

and IF(Dis finite on 2[ we must investigate

(37 dt{m )mi*s<Il)o = dle-A{V{t)Y e(), (34)

where p(f) is a positive function which arises from TV{[ f) <f |}. (Example:
If the given system is enclosed in a three-dimensional volume Q and fis a
wave vector, i.e. s = 3, then it would be g(i) = fi/(2jt)3 = const).

Now we choose s = 1 and employ expression (27). Let the domain
of integration, S3, be the finite real interval [a, b], a <"b. Furthermore, let
the function

f(k) = e-czm . (v(k))mg(k) (35)
fulfil a Lipschitz condition with constant L (e.g. see to this problem [6])

/W -AHK 1<>L\k-k"\.
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The result is for kc such that a <[ kc< b

QLo mio e [odkce o)
/o 5(0) Ja Ik - kel (36)
finite for m <

[°° for m >

Here [x] denotes integral part of x (i.e. x = [x] f-a, O 1). Conse-
qguently the truncation criterion yields the maximal number for the expansion:

(37)

For N which are larger than the expression on the right the expansion (32)
is meaningless.
After having established this the average (see (32) in connection with (20))

IN pr . dk [fe)<fel (38)
W < - w(h) Jo ¢

can be calculated. Since x <[ 0 and W(k) <C0 we must distinguish three
cases, hnamely

Xx < WO WO0< x< Wx and WI< x. 739)

If the principal value integral does exist and is continuous, then, in general,
there can be discontinuities in the derivatives of (38) with respect to P along
the lines x = W0 and x = Wv Thus the VPF has singularities of a phase
transition type. Two explicit examples are given in Appendix A. The integral
over 33 in (32) has no singularities because x < 0 and V{k)*> VO 0. There-
fore, we will not discuss it here.

4. Second model: non-diagonal perturbation

The Hamiltonians are defined by

H=JEEV\Q> 9vi+ 2 falvaXval+ JI‘(EdiE(i) I<p(X<p(f) I,  (40)
a
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K = A(W + V)-2 * * JwXw |« [IMIIT(!) 125()><>() | +

+ 358d TF (1) |9p()><f (1) 1],

—CG <,EV< 0, —c2 ea< ¢3 E()]> 0. (42a)
Wo <. W(1) <, W WO<W 1<0, 0< VO0g V(), (42b)
Sic©®, 33c®, 2l1US3=e, 2in® =0. (43)

The cn, n = 1, 2, 3, are positive constants. The fields | >and |ip) are assumed
to fulfil the relations

< 1OV> = <W, <v+ IW> = aaar,  <O) Igp(@)> = <& — q), 1 44)
< 17(0) = 0, Va> = Ivax<Pv I' <9 IVa) = IVaXPi*)! ,

Especially we have with product states |rys) = |z> |

H Izifa} = (Ez + £,) lzpay  with 2= (Vand E*= E,, (45)
*s=¢>(1) and EzZ"E (I).

These states can be used to calculate the partition function

£Q) = Tre-w = N e<fvhd) + £ Fdig(ijercm=a.  (45)

v,

a(l) is given as in Eq. (34).
Let us assume that V(t) is unbounded (as in Section 3) and such that

Tr {e~PH(AV)m} = e-P'«<va [Am|v.) Jf dfo-«® e(l)(F("))m
¢} S

= o0 for m-= 1,
i.e. let

j dle-wn e()V() = oo . 47)
This is our truncation criterion again. It follows from Eq. (19)

Estait = 1+ PW (W - Pw2 1wi (48)
The prescription (18) yields with Eqs. (41)—(44)

nio= (W + V) 2% » Ift,Xw I (49a)
re-
and
- Pw2= (W+ V)« 2K, -P(W+ V)S,] IMy<% I,  (49b)
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where
o* (50a)
a,a= All - e”r)le (50b)
1 ‘e"'V—1 — 1
“a Ayp' App (50c¢)
efV ew Proy
Using the resolution of the identity in the form
1=/aw »dt 1 F WS Ak, (51)
we calculate the inverse of wt — Pw2 with the Ansatz
K-Pwij) 1= K 1P@)> v7() m +
1
1) (52)
. <HL)><9,(1) |
+lais F(l)
(tCj — Piv)(ivl— Piv2)~1= 1 (53)

Inserting (49b) and (52) into this condition we find the identity in the form
(51) if we choose the Gwi such that

2p, [<V - p{TO + = <ve (54)

In matrix form this may be written as
[a-P{IF (') + F()} -S]1G = 1. (55)
| is the unit matrix of a compatible order. Thus we have the representation
G= G()= [a- P{W() + F(f)}S]-b (56)

The average <Pstat)0 can now be written down:

<Astat>o = 1+ —(0)—?> £ V- PW)"H} = (57)
=1+~T 2 Prif "TO + f dl F(I)l «o(f)e- «<BA+v, G.VW «*.
us(O) 1J<a J® J

We have used the states (45) and the average process indicated in expression
(46). The procedure isnow, in principle, the same asin Section 3and Appendix A.
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We must calculate the integrals on the right of (57) using eventually prin-
cipal value integrals if P is such that the determinant

Det [a- P{W(k) + F(f)}S]

does vanish on 21 and/or $ (B is fixed). To discuss this we consider the follow-
ing specialization:

2

A = Ay TwX SV | with  Aiz= An- (58)

vifi=1

The matrices I, G, a and S are then (2,2)-matrices, the elements of the last
two are given in Appendix B. G follows then from (56). The determinant of
interest may be written

Det [a- P{W(i) + F()}S] = P{W() + F(f)}* Det (S)

— P{JF(H) + F(1)} *[onSu + a2S2 — alXx2l - a2S17] + Det(a).
It is straightforward to compute this expression explicitly and in general.
However, for short we consider one special case only.

We choose Au — A2= 0 and A12 0. Using expression (59) and the
matrix elements of Appendix B we obtain (e = €2 — ex)

Det [a- P{W(t) + F()}S] = (Alef[P*{W(l) + F()}*
c(Anls)Z(BRE) + 2 — exp (Bs) - exp ( Re)],

(60)

where

fx) = 2—X+ (*—1XPx —@+ 1) exXP(—* (61)

It is easy to see from (60) that it is necessary for certain P to do principal
value integration in (57) and hence we expect singularities of the VPF. To
explain this we derive from (56), (57) and Appendix B the following expres-
sion:
Tr{e BHWIWl  [4)-W = (AnleY (! - eBe)(e~Bt- 1)P m
di  e(fe-~>{IF(f)+F (f)}2 (62)

m2K (R)e-B-Pr -
=1 1/.4y 1" Detf[a- P{IF(f)+F(f)}S]
where

K(B) = I~B%e - h"g) = 1+ B e-e B
and

W(M) = 0 on 23 and F(i) =0 on 21

If we now use, for example, the same arguments as in Appendix A we obtain
(in the P—T-plane) a continuous VPF which possesses discontinuous deriva-
tives of a certain order (depending on the concrete form of g(i), IF(7) etc.)
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along certain curves. However, these curves are independent of the concrete
form of p(f), W(i) etc. provided they have no singularities. If this is the case
the singular curves of the VPF are the three lines

P=— f — [(6%+ - 2)If(Be)IM, B = (kBT )'* , (63)

for X = WO, Wx and VO. It is elementary to discuss the T-dependence of the
closed expression on the right. We omit it here.

Since our problem was the existence problem of singularities of the
VPF and for the sake of keeping this paper within reasonable length,
we will stop here our discussion. The essential conclusion of this model is
that the corresponding YPF in fact may have singularities ofthe phase trans-
ition type.

5. Conclusion

The basis of the considerations in this paper is a variational approach
to the partition function. We mention that the underlying Hamiltonian
H -f- PK is, e.g., of the form which is used in the theory of pressure induced
phase transitions [7]. P represents then the external pressure.

By concrete (transparent, and therefore, simple) examples we have
shown that the YPF may possess discontinuities in the derivatives with respect
to P, provided certain conditions are fulfilled. The following conditions are
shown to be sufficient for a phase transition singularity:

1. The operators H and K possess a continuous spectrum (of the type
considered above). This is the case for many systems of statistical mechanics.

2. There is a condition for the truncation of the series which follows
from the variational calculation (truncation criterion). The series will break
off if the operator K is unbounded in a certain fashion (for details see Eq.
(36) or (37)).

3. The density of states g(W) (and, to a little extent, the perturbation
K) is of a form such that the principal value integrals of the type indicated
in Eq. (32) or (57) do exist.

It is a remarkable result that the singular curves which have been obtain-
ed depend on the perturbation K alone. Especially, they are independent
of the density of states provided this density is integrable. However, the
order of the discontinuous derivative (the derivative of the VPF with respect
to P) depends strongly on the density of states. This fact is a general feature
of the VPF as can be seen from the explicit expression (20).
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Appendix A

In order to be specific let W(k) = WO+ E(k) on 2L The average (38)
can be written (with m -= 2N —1)

(W(k))me~tEM e (k)
Im{x) = -Z|I(‘(I)’)FPrI dk W(K)

| rw, W m e+P(W.-W)
dwg(w)g{w)
0 Jw. X -

where g{ W) is the density of states and g(W) arises from the transformation
of g(i). Let us choose the form

g{w) = D[\ wo- w\ .1 wx W\]v, 77~ 1,

D is a constant. For the sake of illustration we consider two simple cases:
First case: )= 1 and Wme+*w’~w”Q(W) »s Cx = const on 21. We find

IWp- Wielwx W

Imix) = dw X — W

5[)(; (Wl - WOB + x(W1- W0 + (WO- x)(Wx- X) »
In [(Wx- x)I(WO0- x)] for x< 1F0 and x > ITdl

In [((WI —x)I(x — W0] for WO< x < Wx JJ

This expression is continuous for all x. However, the first derivative --——--

is discontinuous at x — WOand x = WI (one could call it a transition of first
order).

Second case: 7= 2 and Wme+*w,~w”q(W) a C2= const on 2L In
the same way we obtain

Imix) = - liwWo- X)(W, - X)f «

lin [(Wx- x)I(WO0- x)] for x< JFO and x > WX
jin [(Wx- x)I(x - WO0)] for WO< x < W | J.

Q3(x) is a polynom of third order in x. As is clear, this expression is continuous

0 02
with its first derivative -—...The second derivative — — ... is disconti-
0X ox2

nuous at x = WO0and x = Wx (one could call it a transition of second order).
In both cases we obtain in the P T-plane two lines (namely

P = 2NkBTj \WO\ and P = 2NkBT/ | Wx])
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along which the first resp. the second derivative of the YPF is discontinuous.
The VPF itself is continuous in the first quadrant of the P T-plane.

Appendix B

The elements of the (2,2)-matrices a and S are (e = e2 — et):

®mn RAmn fot M= 1, 2; = Ale % 1)/g?
°2i = AJ1 — eld)je;
Sn = (AnR)AR + (AJeWe + e~f - 1);

s= ALJAn(Be + +"* 1)+ AJ.1- (Be + D«-*)] 450

s2l= Aa [An (-Be + e* - 1)+ An(1 + (Be - De*)] -
Sa= (AnBNe + (AJeft Re+ *~ 1).
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The effect of buoyancy force on the flow and heat transfer from a semi-infinite horizon-
tal flat plate, when the free stream oscillates about a non-zero mean, is analysed. Separate
solutions valid for low and high frequency ranges are developed. It is found that for low fre-
quencies, the oscillating component of the rate of heat transfer from the plate lags behind
the free stream fluctuations by 5/2 and its amplitude decreases with the increase of buoyancy
effects. The phase lead in the skin-friction fluctuations increases with buoyancy effects. For
very high frequencies, the rate of heat transfer has a phase lead of 135° over the free stream
oscillations and the skin-friction has a phase lead of 45°.

Introduction

The paper is devoted to a study of free convection boundary layer flow
on a horizontal plate, when the free stream is fluctuating about a non-zero
mean. Some aspects of the basic steady flow were considered by Gii1 and
Casat [1]. Sparrow and Mynkowycz [2] have also considered buoyancy
effects on flow past a horizontal plate, employing a series expansion of the
stream function which gives the perturbation of a basic forced convection
flow. The specific aim of the present study is to gain further insight into the
effects of buoyancy force on the oscillating layer from a horizontal plate.

We have reconsidered the basic flow using Karman—Pohlhausen tech-
niqgue and obtained an approximate solution to be used in the subsequent
study of unsteady flow. Two different solutions for low and high frequency
ranges are obtained. The method of solving the problem is essentially the
same as developed by Lightnitt [3] who has investigated the same case in
the absence of buoyancy effects. For high frequencies we have adopted a
procedure suggested by Grauert [4]. It is found that the phase lead in the
skin-friction oscillations over the free stream fluctuations increases with the
buoyancy effects. The rate of heat transfer, on the other hand, fluctuates
with a phase lag of 90° whereas its amplitude decreases with increasing buoy-
ancy effects. It is worthwhile to mention that there is no heat transfer from
the plate in the steady case. In the limiting case of very high frequencies,
the flow is of the “shear-wave” type unaffected by the mean flow predicting
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a phase lead of 45° in the skin-friction oscillations and a phase lead of 135°
in the rate of heat transfer fluctuations. In the intermediate frequency range,
the velocity and temperature fields are quite complicated due to the interac-
tion of the steady mean flow.

Basic equations

Consider a horizontal surface over which flows a laminar boundary
layer with free stream velocity U and free stream temperature . The surface
temperature is Tw. The coordinate X measures the distance along the surface
from the leading edge, while y measures the distance normal to the surface
(positive vertically-upwards). The boundary layer equations for two-dimen-
sional incompressible unsteady flow are

du du d2u
------- Y T, ydy A======b U b
dt ( dx Jay dt dx ~df’( )
ii- + -EL= 0, (1b)
dx dy
QT QT dT , 92T
—————— bu--—---—-bv— = «---- Ic
dt dx 3y ¢ dy2’ (©)

where g is the acceleration due to gravity, u, v are the velocity components
in x andy directions and k, B and v denote the thermal diffusivity, coefficient
of thermal expansion and kinematic viscosity, respectively.

In accordance with the usual practice in free convection we restrict
the effect of density variations to the formation of a “buoyant force” term,
which is the first term appearing in the right hand side of Eq. (la).

The boundary conditions are

y =0 T=Tw, nu= 0, v= 0;
Yy —<o0: T —T,, n—>UX t) = UOX)(l -b ecoscot), e<1. (2

Here UQ(x) is the mean velocity and co is the frequency of oscillation. Thus
the free stream consists of a weak oscillating flow superimposed on a steady
non-zero mean flow.

The solution of the above system of differential equations will be obtained
in terms of complex functions, the real parts of which will have physical
significance. We write U, u,v and T as

U= U0X) + eUO0(x)eiat, m= us+ eunlew,
V=1v, + eblew, T = Ts + eTxeiat, 3)
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where ws, vs, Ts give the steady mean flow and satisfy the equations:

du. 8us

Us*emmommm hvs---m-mv (T,- Ta)dy+ U0* - + (4a)
dx 9y ox Jy dx 0y?2
d
Us + 0, (4b)
dx dy
TS dTs 82TS
Q + s (4c)
dx dy dy2

with the boundary conditions:

Y= 0; us= 0, vs= 0, Ts= Tw; (5)
y =moo: u$-> UQX), Ts -+T,,.

Neglecting squares of e and dividing by e@at, we find that iq, tq and Tr satisfy
the following set of differential equations:

Kou, 4 u ,—%uz'—h' M.—-Ej(-;f_’—il—\/, Au. + Vs au.
X X dy dy (62)
=8R-~r Tjdy + -j— V~~~ + icoUo0,
dxjy 1y Jx W dy2
®UL+-®*L=0, (6b)
8* dy
i(oTi + iq-g!_---h ET-’ +! vx3r5i VS -E-i-l:’L: AdZ'I;{ (6¢)
8 0X 8y dy dy2

with the boundary conditions:

y=0:M=0,F=20, Tj= 0;

y — oo : iq -* 1/o(n;), T1->0. ™

Steady-state solution

Equations (4) and (5) are the boundary layer equations which describe
buoyancy effects on steady horizontal boundary layer flow and heat transfer.
It is interesting to consider the sign ofthe buoyancy term. For flow below the
plate, the coordinate y would be reversed to measure distances vertically
downwards and a negative sign in the buoyancy term will appear. It follows
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that a flow above the plate for which Tw Tce or a flow below the plate
for which Tw<" Tm, the induced pressure gradient is negative resulting in
an accelerated flow. The opposite effect occurs for flow above the plate for
Tw Tee and for flow below the plate for Tw J>Ta. It is, therefore, sufficient
to consider only one of the four situations. For convenience, we shall discuss
flow above the plate for Tw TM

We shall integrate Eq. (4) with (5) by Karman Pohlhausen method
since our aim is to get qualitative results. Integrating (4a) and (4c) over
the full width of the boundary layer, we obtain

(Ts L ) dydy +-:j\- rus(UO~us)dy+
(0]

dy)y~o=8BTxjojy xJ
(8)
dlJI\/I (U0~ us)dy,
dx Jo
K { L, Us(Ts~ T m)dy. 9)

ay ly—e  dx Jo

The expressions for us and Ts may be assumed as

(4i 471 + 3D - (rh 2rjl + 2rfi - rfr)
un o VA (10)

(% - 6ril + 8rd —

i3( 3 - syt s\ — 3rj|)—’;-(12- 41 +4 - 3,1

where rx= y/dv 2= y/d2 and A, B, C are given by

n + a2(Tw  T,)(20 - A)\ + = 0, 12a

dx 60 dx La( X ) o) (122)

6vUOC = ngB4d~(TW- r.), (12b)
X

36kax{Tw T®A = now10- 3B - C). (12¢)

and <G, d2 are the viscous and thermal boundary layer thicknesses, respecti-
vely. In general ~ and 02 are functions of x to be determined from Eq. (8)
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and (9). The expressions for Us and Ts satisfy the boundary conditions:

y:O, USZO, Ts = Tl

y " 3ws 0
tfo. 3y ' dy2
OT 32T
IS T,,, " 0, C
3y Ro =
2 4 dUg
o R =0,
dy2dyms” AT o (1 Ty + V0
d2\
= 0’ (13a)
ly=0
33m,
~gR
%y=0 7 a
_ dus (13b)
ly=0 dy

The boundary conditions (13a) are obtained by evaluating equations (4a)
and (4c) aty = 0, while (13a) are obtained by differentiating (4a) and (4c)

with respect to y and then settingy = 0.
Substituting (10) and (11) into (8) and (9), we get

va(19.3B-C) 91'35 dd [8S(TW-T ., )(2S-2A)] +
X

66t 3
775
. 20+ 2B + C)+ — ( 47B2
60  dx dx 16237 27 720
38C2 255 16C  use n
(14a)

2835 8316 2079 27 720

6k(Tw- T,)(10 + A)A =,IJ,1F [UXTW T.MUhAA) - 2Ah2A) -
X
- 6BA3(zl) + 3ABht(A) - 2Chs(A) + ACh6(A)], (14b)
where
h.{A) = 1 25A A4 A5 AT
63 27 + 77

25 1
AN,
63A2 27A5 TTA*
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- 3 571 A3 8&d4  3A5
AMAY = h st oo R
10/1 21 4 45 77
1
+ /dn i,
21A2 36A5 375A6
5A M 9A5 -
30 =T e P * 6 1540 !
+ 2 ! /dni,
21/12  28zd3  45A5 77/«
UTA 9 A3 8/14
ha(/dj — ; 9AS droi,
42 30 315 1540
4 1 . .
. i i,
105Zi2  28A3 + 90A5  1155/1«
3 4A 't A4 4A5 dA T
HA) 10 21 + 36 385 ‘
5 1 8_
21A2 4014 + 455 T«
L 41 B3  2zd4 4zd5 o
,|,,Zd) = e e JiNi ,
105 42 45 385
2 4
/dn 1;
105/12  35/d4+ 45zd5  385/1«
d= avéez- (15)

¥ e shall examine the possibility of obtaining similar solutions of the
boundary layer equations. It is natural that we should begin our quest for
similar solutions by simultaneously imposing power function variations for
both the free stream velocity and wall temperature. Accordingly we consider

T — A ~m y XXn i
also
VX kx
PRSI do= o 16
*| * TiZ) Un ( )

On substituting these values in (14) and requiring that the resulting equations

be independent of x, we find
m = (2re -(- 1)/5. a7

The fundamental case of Blasius flow (UO constant) past a horizontal
flat plate will now be considered in detail. In this case m = 0, n = —42 and
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Eqs. (14) and (12) become

. ™ 775 16C 38C2
iI0 - C = — a? &2+ sa*2
7a 6237 + 2079 2835

12C= -N6t3 A= -10, B= 0,
(r?3(10 - C) = 720 62, (18)

where N = gRa. YvlUft2and a = vjk is the Prandtl number. Eqgs. (18) were
solved for various values of N which is a measure of buoyancy effects and for
a= 0.7.

It is interesting that there is no heat transfer from the plate to the fluid
although the plate temperature is nonuniform. cit1 and casai1 [5] and Nanda
[6] have pointed out similar results. The non-dimensional skin-friction at
the wall is

(19)

The values of the skin-friction along with those of boundary layer thicknesses
<& and 02 are listed in Table I.

Table |
N % *S
0.00 5.179 8.108 0.322
0.025 4.205 7.525 0.402
0.05 3.565 7.117 0.476
0.1 2.786 6.557 0.609
0.5 1.236 5.015 1.359
1.0 0.828 4.394 2.021

The boundary layer thicknesses decrease with N increasing, while the
skin-friction at the plate increases with N. Comparing the shear-stress of
the present calculation for N = 0 with the well-known result of Blasius, the
difference is found to be less than 3%. Recently, ci11 and casai1 [5] have
given an exact numerical solution of Eqs. (4) for N = 0.0156 and 0.0312
and for a = 0.72. A comparison of the shear-stress at the plate as given by
Git1 and casai1 with the values obtained by the present method is made in
Table 11.

It can be seen that the polynomial expressions assumed seem to be
fairly good representations of the velocity and temperature fields.
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Table 11
N Exact value of rf Present values of rf
0.0156 0.382 0.371
0.0312 0.426 0.419

V e now proceed to investigate the nature of the flow and the temperature
fields due to fluctuations in the free stream. Two separate solutions will
be obtained: one for small frequencies and the other for high frequencies.

Low frequency fluctuations

Equations (6) are considered next. It is convenient to write uv vl and
Tj as the sum of in-phase and out-of-phase components:

ig= ur+ iu2 tg= vr+ iv2 T,= Tr+ iT2 (20)

Substituting into (6) and separating real and imaginary parts, we get

qus 3ur 3iq 3ur
—W«2+ Ur + Vr —— h v,
dx dx 3y 3y (21a)
B-3-\ Trd aa.
-f- rdy +
S R R df
dur + ~  =0i (21b)
dx 3y
daT da*Tr
-COT2 f- N —mmm-e |- ur 3T A e 3T (21¢)
X dx dy 3y dy2
with the boundary conditions
—n- = = © =
y =0: ur 0, g Jt1=0 22)
y - @: ur— UQ Tr— 09
and
9us 3m, 3lie 3
bIUT + «2- + U + V2 + Vs~
AX dx dy 9y (23)
d2u2
= gR ¢ r T2dy + v-——- -+ oUgp’
dx Jy 9j2
9u2 dvhr = 0 (23b)
dx dy

Acta Physica Academiae Scientiarum Hungaricae 41, 1976



EFFECT OF BUOYANCY FORCE 271

2 T2 2T2
calt + u2alx 3F2+ p A ws i T A (23c)
dx X ) 3y 3y2

with the conditions
Y = 0: u2= 0, t2= 0, T2= O0;

Y “m n2 a0, rN2-* 0.

(24)

Thus the difference in phase between the longitudinal component of velocity
and the temperature field fluctuations at a point within the boundary layer
and the free stream fluctuations is

s = tan 1 *i= tan 1(TJTr).

When the frequency is low, it is to be expected that the phase shifts will be
small. As such u2 and T2will be small relative to ur and Tr. Thus when o is
small, the terms —cou2 and coT2 can be neglected in (21a) and (21c). un vr
and Tr will then be the quasi-steady solution corresponding to co = 0. This
can also be seen from the facts that the same equations are obtained by sub-
stituting n — us -f- eun V= vs evr and T = Ts -f- eTr in the steady flow
boundary layer equations. Following Lighenitt [3], ur, vrand Tr are obtained
as

= Ur .E (VS +y— 1 5 N dvs (25)
3n0 2 T 3y 2 9N
Tr= vodae 1 O3 =gy

3Un 2 y"é§/1_ 2 3N

That (25) solve equations (21) when @ = 0 can be ascertained by direct sub-
stitutions.

It now remains to determine n2, v2 and T2 We shall again employ the
Karman-Pohlhausen technique to solve (23). Consistent with the boundary
conditions (24) we assume u2 and T2 in the form

Tf= AAvi- 4+ 3R)+ AWIi — 354+ 2»9) +
"0 (26)
+ A3Vl — 2Vi + »2)>

— ®i(% W + 3+ B2ANI - 2nNt + t9)), (27)
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where R
. O3,d 4 o 128 /W
A dx 12 2
A (10 C)3+YY—DOk + 50y

& dN dN

[IRREY
9 Pl -
A 12N uo

And Av Bj are functions of x to be determined. These expressions for u2
and T2 are chosen to satisfy the additional boundary conditions:

y @ ee (28)
02W2 32T2
+ gB-, 1 TAy + eUO= 0, ( |
dy2 y=0 dx Jo 10y2
63u2 0h2 3372
u = @18"") , n 9Tsj - k ( (29)
0Ji y=° ™ o 3y dx Jy=o 0y3

The last four boundary conditions are obtained by evaluating (23a) and (23c)

and their derivatives with respect toy, aty = 0.
Integrating (23a) and (23c) fromy — 0 toy = o0, we obtain the averag-

ing conditions as

) ( (ur uddy+ 2- T u2usdy Uo — I u2dy
Jo

dx Jo ox Jo (30)
=-VI-- I + gB rrTZdydy,
dy Jy=0 dx Jo Jy
o rrdy + — T [usT2+ u2(Ts- T,)]dy= -k 9T* (31)
Jo dx Jo dy Jy=o

Substituting for ur, Tn U2 and T2 we get

VU Al + -fH- 4 [<MA t*xiob, + B3] =
Ce 105 dx

®UO00L ¢ ¢ 51V 8% < 1 N dC ]
6 1 20, of dN d 4 81v.

. [155A 95A2 | 4bIA 13AjC 5AZXC 13A3CY
& 2079 2772 4158 1485 1848 20 7901.
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kBI(Tw-T,,)_ a>N
d. 4

A
dx

+ B, H(A)

where

F(A)
15

60

5zI
471

” 105
1

60A
A3
105

L(A)

do*IdN, do6*IdN and gC/dN can be
ations (32) is easily found to be

A = ?A*2A

(Tw Tsa) 5-902
dN

A2
3

5A2
36

5z12
126

5zl

|
63

Al
+
45

A3
+
72

Al

90

A .
N

1(A) + B3 J(A)

A4
3

A4
7

A4
24

4714
135

4715

385’

2714
135

4A5
1155

TAUJA, E(A) + A2F(A) + AJG(A) +

L(A)

36/15
385

9A3
220

21zI5
165

A5

77

zI5
231

273

(32b)

obtained from (18). The solution of equ-

where A( and B[ satisfy the relations

i = l’:gz (10Bi + B3

155/1(
0
5 2079

95Alt
+ m +
2772

r<
li +

4158

= IVr2B(

r

D,

4373

i5N 88*
dN

(13A

1485

(33)

9C ]

+ —
4 dNJ

13A'3
20790
(34a)
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N 1 A*
- (5iv.do L 62 A[E{A) + A'F(N) + A&(A)+
~ 4% [ 6t dN + 4,
(34b)
+ B'Ah (A)-~1(A)) + B3

where A2 A3 and B3 are given by
A3= RB10?A'3, B3 = Ri<52B3.

Results: When the frequency of oscillation is small, the temperature
and the longitudinal component of velocity at a point within the boundary
layer may be written in the form

T = Ts -(- £Rxcos (cot -f cgj) , (35)
n= us -)- eJ2cos (cot -f- a2 ,
where

Rx= (V + nyi\ r2= (u? + u*yi\

tan a, = tan*“
TI—r/

The functions ur, u2, Tr and T2 are shown in Figs. 1 and 2 for various values
of N. uris positive at all points within the boundary layer. For N — 0, the
pressure force dominates the inertia force near the plate resulting in phase
lead in the oscillating component of velocity, while near the edge of the
boundary layer the inertia force dominates the pressure gradient and it
produces negative values of u2 Consequently, the velocity fluctuations near
the edge lag behind free stream oscillations. When free convection is taken
into consideration, the pressure gradient and buoyancy force together domi-
nate inertia force and phase lag is more than compensated. Near the plate
u2 increases with N for small values of JV, but as free convection dominates,
u2 begins to decrease while ur behaves contrarily indicating the increase in
phase advance near the plate with N.

Tris negative at all points within the boundary layer and T2is negative
near the edge for all N except for N = 0. Hence the temperature fluctuation
near the edge has a phase lead but near the plate phase lag results. For TV= 0,
phase lag in temperature oscillations is noted everywhere inside the boundary
layer.

The oscillating component of the skin friction at the plate is

T "
ol
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Fig. 1. Flow functions UrUBand Ut/R1UOQ vs y/60 for various N
&) is the boundary layer thickness when N = 0

Fig. 2. The functions T¥Tw — Ta and Tt!BI(Tw — T«,) vs y/60 for various N

where
- (A SN d%\ SNecv A2
6012 + 2df oivj + 12 9iVj 1 (36)
5ar  dof 5N dC 1

tanocg= A (5/2 - Cls) R
20* 9Jv, 12 9ivj
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Fig. 3. Phase angle of the oscillating skin friction given by tan a3IRl vs N

The oscillating component of the rate of heat transfer in terms of Nusselt
number is

Nu = e-?Lei(<"i-"2)_ (37)
O~

Variation of phase angle and the amplitude of the skin-friction as functions
of N and R1 are shown in Figs. 3 and 4, respectively. It is remarkable that
for low frequency oscillations the phase lag of Nusselt number fluctuations
is always 90°. The amplitude of the Nusselt number is exhibited in Fig. 5 and
the interesting result noted is that it decreases as N increases. The quasisteady
skin friction decreases with increasing N.

Fig. 4. Amplitude of the oscillating skin friction  Fig. 5. Amplitude of the Nusselt number
given by Tj/oU0 \ UOx/v vs Rl for various N Nul vs N

High frequency oscillations

For high frequencies, Lignhenit1 [3] has shown that the oscillating
flow is to a close approximation an ordinary “shear wave” unaffected by the
mean flow. Thus Lignenit1 restricts his discussion for large o to the solution:
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uf= 1/0(l -e ~W y)f (39)

which is obtained by retaining the terms with the factor co together with the
derivatives of the highest order in (6a). This shows that for high frequencies
the thickness of the oscillatory boundary layer is of order Yv/co which is small
as compared to the thickness of the steady boundary layer which is of the
order of ~vx/UQ- Thus one can visualise the entire oscillatory flow as being
contained within the steady boundary layer. In order to solve (6) for large
co, we expand uv vxand Tl in inverse powers of ][ico in the forms:

u =2 bl ~a2”~ (x,r),
n=0
(ico)~nl2 \&n) (x, rj),
n=0
Ti= 2 bl ~m2T]n\x, ri), (39)
n=0

where 1j = y*im/v « Within the thin layer affected by oscillations, we may ap-
proximate us, vs, TS as

y ATt . zL (34
B 1% L3 3y
yiv e . 0y2 4o 3y1 y-0

= Ai(x)y * B()yd+ e
dvs N ay | y4 i94rs
+ —
3y y—o L2 dy2 y =0 L3 My%‘y:o bx [ay*)y=o

+ m

= -AU*)E-- BA-E-+

+ 4

(3TS (32TS 133TS 1
. + —
i3y == © 3ylU o0 L319y3J

= 4X)+ K(*)y3+ LIRS (40)
where

Ux) = TW~ T,,, Ux) =A-(TW- T,,),
a\
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and Ai and B4 denote the derivatives with respect to x. Substituting in (6a) —
(6b) and equating the coefficients of like powers of jAico on both sides and solving
the resulting differential equations, we get

u<> = o[ - ") ) = 0, b =0,
~ f
m3) = UOW A + . . M4 = o,
12
5 B\()"lZ\r/0 : 1\ : 2 : f-\ : f-\ - lf A-4
u® = 1 oB\(x)f ;R\ rf- rf- rf s-u_
f o (32 ~ 16 16”6 16 40 3
»/
+ 64+ rf +agRUJ'(X)rv e e l+H -e-"+
32 a3 1 a2 2(l -a)
-T-312 ,5/2
He-yY + DUo(l —e 4); (41)
20321 - a) a
e-n\!°
T<= 0, Tf)= 0, r@= -U OX\x) 1+
a

T<3= 0, T<b= 0,

T> aUO0lfv |yl4A"(* Y+
(1-a)2 1 (T

1 1 4a32 R
—rr? + le~"° 4 4
2/5(1 - a) (2 215 1 - a)2
. oAg 1 J_ y 5+0
. N +
Ao n -, BEAYE Y %3 @ - 0)2J
1 1 4/5(5 +
1 SAly3+ rf - r - ( 0)—e_'li'all‘
4/5(1 - a) \3 215 20 (1 - 0)2
32 1 1
— [ + —B+ -— ¥+ 2+
_ogy a L% 1 — (1 - «p >
24(1 + o) 24(1 + o) V@4 (42)
1- 0)3 (1 - 0)4

where D is a constant yet to be determined. Away from the wall, Eq. (6c)
can be written as

T,= - W(QTS (43)

B ico ( dx

since 02T\ldy2 is negligible away from the wall. From (43), we get

Tizx U *Ts(l-e-7). (44)
0 dx
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Solutions (42) and (44) for T{fit smoothly (aty = < % Yvl®) as exponentials
become negligible. The constant D in (41) isnow determined from the condition
at the plate, i.e.

. W
uo -|- -
ico |- ico arf at = o,
as
2 — 02 4-
D= o BY 2 i gRXTv + 0(dg). (45)

We notice from (41) and (42) that the boundary conditions W@E)(co) = o,
uP(oo) = 0, T[200) = 0 and T<5>(0o) = 0 are not fulfilled. This is due to
the fact that the method of solution involves expansions for smally. In (41)
and (42), the part multiplied by corresponds to flow noticeable only within
a layer of thickness da~”~j>/co. The polynomial part, not multiplied by e~
protrudes into the outer layer. The non-decaying part of the solution can be
interpreted as the high frequency influence on the outer layer. The outer
solution joins the free stream conditions and can be obtained as expansion
starting from interface between the two layers at about ay — 00 distance
which is still near the wall. Solution (45) for T1is such a solution. In the poly-
nomial part, we come across the existence of a high frequency boundary
layer flow affecting the whole domain of the basic boundary layer. But, unlike
the buoyancy free case [7], the process is twofold in this case. Here we find
that the outer unsteady flow also influences the flow inside the oscillating
boundary layer. This is due to free convection effects (though small) which
manifest themselves through the integral in (45). But in the particular case
of Blasius flow these effects are negligibly small as we have already seen.
For an arbitrary basic steady horizontal flow with free convection, the influ-
ence of the outer unsteady flow on the oscillatory flow near the wall may be
considerable.

Using the high frequency expansion terms up to it)5 and the oscillat-
ing components of skin friction and the rate of heat transfer are obtained as

e R5cos (CaI-(-CDX), (46)

Nulh = HA = eR6 t -f- d2) 47
K(Tw- Fw) e cos (co 2 47)
where
a5= (Pi+ Q)2 Py—tan 1
Qi.
p,
Q2)

4* Acta Physica Academiae Scientiarum Hungaricae 41, 1976

R« = (Pi + QI)12 ®, = tan 1



280 P. SINGH

and Pv Qv P2 Q2 are given by

. 1 5(10-C)
Pi 1 * Ri 966f
261C 3A 2 + 2fa + 4<r -f 3xr3e
32d*3 2 /ff(l +K&)2
Yadi
P,= —

i
2 "' 2 +KF)
1 1 rcto7 1204952 &?
- +
2 & 2(1+ VO "JALQ + l0)sar3
10 -C 532 4- 500r -f 241 — 1
12 16]/d(I + fb)2

<2 =
+

As U>—moo, we find that ®x—»45° and ®2 —135°. It may be mentioned that
in the absence of free convection effects, Ligntnitt found that ®2 _—» —go0-.
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lonospheric electrons of the D-region were investigated by means of cylindrical Lang-
muir probes. It was found that the energy distribution and the density of the electrons are
affected by the presence of negative ions of ionospheric origin and by the high energetic pro-
tons which cause an auroral activity at arctic latitudes. A measurable difference is detected
between the electron temperature and the neutral gas temperature at D-region altitudes. The
fast protons of the aurora are believed to be the origin of the partial heating.

Introduction

The density and energy of ionospheric thermal electrons have been
studied by different experimental techniques, such as among them R. F.
probes, Gerdien condensers at subsonic and supersonic speeds, and by radio
waves propagated from the ground. The results obtained about the thermal
electrons are not interpreted to a high degree of accuracy due to many factors,
such as interference perturbations caused by interaction between the iono-
spheric medium and the radio waves, the effect of the geomagnetic field in the
ionospheric charged particles and the influence of collisions between particles
on the outputs of the measuring devices.

To have reliable measurements about the physical parameters which
govern the different ionospheric layers one should resort to “in situ” measure-
ments by application of Langmuir probes since they are a good tool in diag-
nosing the plasma characteristics both in the ionosphere and in the laboratory.

The method used successfully to study the electron density and energy
distribution of thermal electrons under different conditions such as P.C.A.,
auroral activity, sporadic E nocturnal and daytime conditions, presence of
sun spots, eclipse and the conditions in the magnetosphere is discussed as fol-
lows:

1. It makes use of the double differentiation techniques of two signals
in the audio-frequency range together with a sweep potential applied to a
Langmuir probe of cylindrical shape, which sweeps through the ionosphere
by means of a spin stabilized spacecraft [1]. This electronic method has proved
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its validity as a successful technique in studying the energy distribution func-
tion of a plasma experimentally [2].

2. The conditions required for the application of this method are:
a. Maxwellian velocity distribution of the charged particles, b. Few collisions
inside the plasma surrounding the probe.

The experiment

The experiment makes use of the probe technique developed success-
fully by 1rving Langmuir as early as 1924 in the field of plasma diagnostics
in the laboratory. The same method can be applied in the ionosphere to
measure the thermal electron temperature and density. In its simplest form
a Langmuir probe is merely a small metallic electrode, usually a plane disc,
a sphere or a cylindrical wire which is inserted in the plasma. The probe
is attached to a power supply capable of biasing it at different voltage positive
and negative with respect to a certain reference level which is taken as the
space potential of the plasma; the current collected by the probe then provides
information about the conditions of the ionospheric plasma.

The disturbances caused by the presence of the probe are localized and
the probe can act truly as a probe in the sense that its very presence has no
effect on the measurements. This is attained by choosing a probe to satisfy
certain mechanical and physical requirements depending on the regions of
the ionosphere through which it is to be flown.

On applying the sweep voltage to the probe which passes through space
potential a current-voltage characteristic curve is obtained for the probe.
When the probe is at space potential the sheath thickness drops to zero. The
ionospheric charged particles move freely and diffuse to the probe. The current
collected by the probe is predominantly electron current (ions have small
mobility). If the probe is made positive electrons and negative ions will be
accelerated towards the probe. Moreover, the positive ions are repelled and
what little ion current was present at space potential vanishes.

If the probe potential is made negative the probe starts to repel electrons
and negative ions and accelerate positive ions. If the electron velocity distri-
bution function is Maxwellian the characteristic curve due to electron collec-
tion will be exponential in shape.

The current per unit area collected i0 due to electrons by the probe at
space potential is

i0= — enc, (1)
4

where c is the mean electron velocity (c =Y 8KT/nTen — density of electrons,
e = electronic charge.
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By using Boltzmann’s equation and applying a retarding potential V
to the probe, the electron collected current becomes

ip= AiOex
P "oKT ) 2

A = the area of the probe surface, K = Boltzmann’s constant, T = electron
temperature in °K.

Differentiating Eq. (2) once we obtain a mathematical expression for
the first derivative of the probe characteristics. Differentiating Eq. (2) twice
we obtain a mathematical expression for the probe characteristics which is
related to the energy distribution function /( V) of the electrons in the form

~ 2M sz? (Pi

V)= Re dv2 @)

Dividing the second derivative by the first derivative we obtain the
modulation depth m expression for electrons in the form

(4)

R agab [3] proved that the relationship between the modulation depth
M and Bwhich is the amplitude of the modulating signal divided by the mean
electron energy is as follows:

I AR)
h(B) ~

m =

®)

where 10(B) and 1"B) are the modified Bessel functions of the first kind and of
order zero and one, respectively. From Eqs. (4) and (5) the electron tempera-
ture T depth could be obtained through meaning the modulation.
From the carrier current at its maximum level, electron density can
be calculated from
dip

vp= 0, 6
K p (9)

t( ~carrjmax — ~3'ZKcls
pi

where V32Kcis is the amplitude of the 3.2 Kc/s carrier wave and

I dip e2nA

A
I )v pmo~ (RIitMKT)1» ' )

A is the area of the probe applied and M is the electronic mass.

Acta Physica Academiae Scientiarum Hungaricae 41, 1976



284 F. M. RAGAB

Particulars about the mechanical and electronic design of the experiment

The probes used to study thermal electrons were in the form of 30 cylind-
rical wires of circular cross-section. The wires were rhodium plated to provide
a good conducting surface for the charged particles collected by the probes.
In the case of daytime launching, it can also prevent photo emission of electrons
from the probe array surface or decrease it according to the work functions
of the material used in plating. It is also important to note here that one of
the advantages of the use of Langmuir probes is that they are not sensitive
to photo-emission as long as the potential applied is negative with respect
to space potential. The rate of change of photo-current varies very slowly
with the applied potential and hence its contribution to the modulation
depth and the carrier frequency signal output is negligibly small. Photo-
emission effect, though, is significant if the charged particle paraméteres are
evaluated from the collected current only, rather than from the probe charac-
teristics as in the case under discussion.

The wires are manufactured from steel, each of them is 50 cm long and
has a radius of 1 mm. Each probe is surrounded by a guard ring of the same
material as the probe and of circular shape. The probes and the guard rings
are separated from the body of the rocket by an electrical insulator. The 30
probes are connected so that they act as one probe. The probes are situated
on the payload in a waisted portion near the nose cone.

On deployment, under the effect of spin, the wires rise to a position
perpendicular to the rocket body.

The probes are connected to the components of an a.c. bridge network.

Both the probe-to-rocket and rocket-to-guard ring capacitances are
neutralized by means of capacitors of equal values inserted with the head
unit components so that the capacitative a.c. currents could be minimized.

The complete probe assembly is connected to the electronics via two
co-axial leads. The electronics contained a probe voltage wave form generator
and an a.c. current detector and analyser circuits. The composite wave form
to the probe consisted of three components.

i) Sawtooth sweep of 0.7 to 2.3 volts of 2 second period.

ii) Sine wave of amplitude 28 millivolt and frequency 3.2 Kc/s as the

carrier wave.

iii) Sine wave of amplitude 28 millivolt and frequency 0.5 Kc/s.

The probe current analyser produced two telemetry output voltages. The first
output was calibrated against the r.m.s. carrier current and required a band
width of 40 c/s, while the second output was calibrated against the modulation
depth of the carrier at 0.5 Kc/s with the carrier current as a parameter. The
telemetry bandwidth required for this was 80 c/s. The power supply to the
experiment was 13.4 volt.
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The experiment was launched from Andoya rocket range in Norway
during 1970 and the temperature monitor showed that the temperature inside
the payload during flight varied between 19 °C and 27 °C. Calibration curves
of the electronics at 20 °C were chosen in the data analysis. Fig. 1 shows the

Fig. 1. C 13 rocket 115. Pye calibration curves 20 °C

Fig. 2. Modulation depth calibration curves

outputs in volts which are proportional to the first derivative and the modula-
tion depth. The curves are plotted on a semi-logarithmic scale with first deri-
vative output calibration curve at the value 1.55 volt when the capacitance
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bridge in the head unit is well neutralized with the difference of currents flow-
ing in the two arms of the bridge being 10-11 or 10~ 10 A. When the difference
is greater (10-9 — 10~6 A) the output drops as shown.

The modulation curves were carried at 0%, 20%, 50% and 80% modula-
tion at Pye’s electronics and the values 10%, 30% and 40% were calculated
by interpolation. The percent modulation curves are plotted against the output
in volts at constant current (10-7 A, 10-8 A) and so on, or against power in
dB (—20 dB, —40 dB) with 10~6 A taken as reference current. The plotting
of the modulation depth as function of output voltage at constant current is
shown in Fig. 2. These calibration curves are used to find out the modulation
depth and the first derivation due to thermal electron collection.

The results

The results of applying the calibration curves to the data are shown
in Fig. 3. Fig. 3 is a semi-logarithmic plot for the first derivative against the
applied sweep voltage when the electrons are retarded. From Eq. (2) the
relation logdf/dF and V is linear. This is shown up till the current is 10—-8 A
and then the slope changes abruptly due to the influence of space potential.
The thermal electron temperature is calculated from the slope under retarda-
tion as follows:

d(Iog 1) = d(log ) = d(log ") = J_

slope =
dv dv dv \Y

8

Also, from the same plot, the electron density n could be calculated by

using the relation
dl 1 1 neAc

- dVfy = space potential 4 Vv

where A = (30) (2ml), r is the radius of the probe and | its length.

8kT
c = 6.19x105xT cm/sec .

Fig. 3 also shows the change in the slope due to negative ion collection. The
space potential corresponds to 0.95 volt, the electrons temperature is
300 °K and the density is 5x 102 electrons/cc. All measurements were taken
at 78 km altitude. More results of the same kind were discussed earlier [3].
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Fig. 3. First derivative of 1-V character (electrons and negative ions) Z = 78 km

Conclusion

The electron temperature in the lower ionosphere is found to be affected
by the presence of negative ions, flux of high energy charged particles and
by different kinds of collisions. The results indicate a difference between
the neutral gas temperature and the ionospheric thermal electron temperature.
The electron density is a factor of 2 less than that calculated from a radio-wave
propagation experiment [4] on the same payload. This is believed to be due
to the current damping problem discussed earlier by Boay [5]. Care should
be taken about factors affecting the experiment and their effect should be
eliminated. The probes should not be placed in the wake of the rocket other-
wise there will be a measurable decrease in their density. Among factors affect-
ing the experiment are:

i) lonization by R.F. excitation, resulting in the increase of electron density

content.

ii) Absorption of R.F. energy increases the electron temperature.

iii) Rectification at the antenna changes the vehicle potential.

iv) Escaping gas and outgassing tend to dilute the plasma.

v) Vehicle motion modifies the spatial distribution of density.

vi) Shock-wave ionization increases the electron density.
vii) The geomagnetic field modifies the probe current.

It should be pointed out that no comprehensive theoretical treatment
of Langmuir probe theory exists in the presence of magnetic field. Plasma
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diagnostic research makes it necessary to call for such a treatment, especially
when a complete study of the geomagnetic field effect on electron density
and temperature in the ionosphere is required.
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Basic spectral and thermodynamical properties of a spin chain (S = 1/2) with a longi-
tudinal — transverse anisotropy and nearest-neighbour interaction are considered, assuming
the Hamiltonian to be a sum of arbitrary high power terms. After the renormalization of the
spectrum, the rigorous solutions of the bilinear X-Y-model turn out to be stable with respect
to the arbitrary high power terms. As to the low-excited and magnon-bound states in the
spectrum of the system considered, they can be readily obtained from the known results for
a “usual” bilinear anisotropic Heisenberg chain.

1. Introduction

As was shown by schrsdinger [1], In describing the properties of
the localized spin systems it is necessary to take into account not only the
bilinear term in the Hamiltonian, but the biquadratic and the higher power

terms as well (including (Sn « Sm)2S). The biquadratic term having an effect
on the spectral and thermodynamical characteristics of spin models reflects
successfully the properties of many real systems [2—12]. In the case of the
isotropic spin system at S = 1/2 the addition of the biquadratic term is
reduced to a renormalization of the bilinear exchange integral [2]. On the
other hand, as has been shown by us [11, 12], the inclusion of the anisotropic
biquadratic exchange interaction in the one-dimensional spin system (chain)
with S = 1/2 and a bilinear transverse interaction between the nearest neigh-
bours (X-Y-model) yields some interesting results, e.g. the displacement of
the point of the second kind phase transition about the magnetic field (at
T = 0) and the emergence of two-magnon complexes being most important
for our work.

This paper is devoted to the basic spectral and thermodynamical pro-
perties of spin chains with a longitudinal — transverse anisotropy and nearest
neighbour interaction, when the Hamiltonian contains arbitrary high power
terms

20= -1 e,J [<r(SESR+l + SNSE+D) + yS*nS*+1]'- A4 J Sn. 1)
/=1 M4 n—
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In this formula Sn is the spin operator for the n-th site (n= 1,2,.. N),
e j is the exchange interaction constant of the 1-power term, a and y are the
parameters of anisotropy, H is the strength of the external constant magnetic
field. Here we shall follow the methods given in [13].

2. Effect of biquadratic and higher power terms on the ground
state and the phase transition of the X-Y-model

At first we write the Hamiltonian (1) as

%=%0+V, 2)
where

5m= al2 (SRSRHL + SySyH)- HE S'(e, = 1). (3)

n n

After the transition from the spin operators to the Fermi ones by the for-
mulae [14]

S+ =T/ a,; S'= /] om«+; S* = S*+ Sft am”™ 2S*= 1- 2a+ am(4)
m<n m<n

we obtain

*(Q = +H2 < an- "~ 2 « “nti+ «i+le,), (5)

and

V=—NIO- 2 (°n an + an+lan+\) AT A (an antl + an+l«i) +
(6
+ h 2 all all all+l all+l .

Here, as well as in the following

=
1

2 (1% - + if); Iry= 12 02, n= Vv gjM-iy2 1 .
/=i 3" 7 1 a 24,3 ’

i[ = 2(ip - /?2+ if); /2 2(i® + 1D ,

the only difference of (1[2 from 17(1]) is that the summing starts from
1= 2;Iljyand are sums of the products of a and y parameters, i.e. coeffi-
cients of the multiple products of X —Y and Ising parts in the bilinear term.
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As is well known [14, 15], the Hamiltonian X0 can be diagonalized with
the help of the Fourier components of the operators a+ and an:

an= N- b2£ e‘xnaat = N-12" e-~iknak. ©)
ft K

Thus, the system (3) is reduced to an ideal gas of Fermi magnons
5f0 ek ek H — al cosk. (8)

At H > HO = allk > 0 for all k, is a creation operator, and there is an
energy gap H al in the spectrum. At 4 < HO, sk > 0 only for |k | > ke,

4, —  KALL, = arccos — , ker(HO0) = o; (9)

the energy gap in the spectrum is absent. By the use of the canonical trans-
formation
«1=ck (1*1 >Kr) ck |0>= 0’ (10)
«ft= G (1*1< Kr)

the Hamiltonian of the X —Y-model is written as
1
3fo cfe— 2 14\ m (n)

In the formulae (10) by |0) we denote the ground-state wave function. At
T = 0 the susceptibility of the system has a root type singularity about the
field at H -* HO.

When I I al and |12\ al, the operator V is regarded to be a
small perturbation. The average in the ground state of the system (3), <0 | V | 0)
= <F>, can be obtained directly with the help of the formulae (N —oo0)

Kr , + Y sin kor sin2kr
<«n «,,> , \anan+iy ; (an anan+ianty (12
n

n

Now, we find the first-order correction to the energy of the ground state

0Ev=(v) = —N10 ENjrRe pKghy TS g
J
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The corresponding correction to the magnetic moment is

2NH ] 2N 1+UH11.H, [ 2iv  arccos A/d0
yl - A2 > yaea- A2

(14,

In the isotropic case (= y) the application of the perturbation theory
is permissible only if we neglect the Ising bilinear term, i.e. after changing
li —I[. Then for the terms | = 1,2, .. 5in Xwe can verify that I'2= —I[,
there is no singularity in and in the correction to the susceptibility
&r(l) the typical square root type singularity emerges at 4 —»A0, &t@) ~
NI[In YW, —H 2. In the anisotropic case, however, —Ilv OM~ has a
square root type singularity at H —A0, which is a physically meaningless
result. Similarly to [13], this obstacle can be eliminated by transferring the
quadratic terms from V into 500. Let us write then

- Nlo+ A£ a* a,- A.2 « an+ a++l antl)
2 n n (15)

— ~ 2 (xan+i + ait+ia«ti) m
*
n

and

v="h2 « enai+i«nti)- (16)
n

Now, ?fo can be diagonalized by (7) with a new dispersion function ek:

[~ 11

KO+ N éfc, = A — l2cos A,

(ott)
H=H -1, for arccos-;I JHO= 12 (17)
X

Therefore, the influence of the quadratic term from V on the unperturbed,
rigorously solvable model with a Hamiltonian >0 is expressed in:

— a displacement of the energy of the ground state without changing
its character;

— an effective displacement about the field 4 —»A, originating from
the even powers of the X — Y-part, the odd powers of the Ising part, and
from 1j7;

— a renormalization of the exchange constant due to the odd powers
of the X - Y-part and to Ly. All the characteristics of the system (15) can be
directly obtained (see for example [15]).

In the first order from the perturbation V we obtain

OE™ = <F> -NETI; /(I;%r - S'inZZrZeA L] (18,
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In the correction to the magnetic moment the singularity on the band edge
is absent, SM® — 0 at H — H . The singularity is absent in the correction
to the susceptibility too,

8N I,
32 I,

lim §X = — aww H+H,. (19)

Therefore, the perturbation (6) causes a transference of the point of the second
kind phase transition. After the renormalization of the spectrum, the rigorous
solutions of the unperturbed system are stable with respect to the arbitrary
high power terms in the Hamiltonian.

3. Magnon bound states

Let us write the Hamiltonian (1) as follows:

NH
Hoes oo o Nl B 9 S8t
9 0+ ; n~n (20)

I 4 1}
= ?1_2(5; Sq+8711 8% — 285 871 SHSh) — '?2 = (5287414 Sa4 S7)-

Evidently, from the bilinear term (I = 1, ¢, = 1) we obtain the Hamiltonian

(20) by the changes
ol -1, and yI— —1I;. (21)

Therefore, all the characteristics of the system (20) can be obtained directly
from the corresponding ones for the well known anisotropic Heisenberg chain.

The ground state of the system (20) at — I, > I, > 0 is the ferromagnetic
one at arbitrary H. In this case multimagnon bound states and low-excited
states of the spectrum can readily be obtained from the results given in [16],
by the change g — —I,/I,,1 — — I,. However for 0 << —I, <~ I, the ground
state is the ferromagnetic one only at

H>1I + I, (22)

In this case the spectral and thermodynamical characteristics can be obtained
from the corresponding ones in [17] through the replacements y — —1I,/I,,
I — I,. Here we confine our consideration to the two-magnon problem as an
example.

Let us denote by |t ) the wave function of the ferromagnetic state of
the chain, such that S;|1) = 0 forall n, and by E; — the energy of this
state. Evidently E; = —NH/2 — NI . As usual, we present the wave functions
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of the stationary states with one reversed spin in the form

[I> = ~e'MS-|t>, (23)
the one-magnon spectrum is expressed by the formula
Ek= Il — I, —l12cosK. (24)

The wave functions of the stationary states with two reversed spins
can he expressed as a linear combination

12>= 2 A'mSr Smlt> Alm= Aml (25)
g

Bearing in mind the translational invariance of the system considered, the
solution can be expressed in the form

| m
exp ik b(@), g= m—/= 1, + 2, b(@) = K-q), (26)

separating in this way the motion of “the centre of attraction” of the system
of two reversed spins with quasi-momentum fcE[—n, n], and its relative motion.
From the Schrédinger equation in this invariant subspace X |2y —(Ej §E)|2)
we obtain the following difference equation for the function b(g) = bq:

[E-2H + 21,- 1,(aun + 0q')] bqg+;

+ V osA . (bgH(l - + bo_,(1- oqt_,)] = o, (27)

[E- 2(H - h)]bg+ I2cos (bl - bq,) = 0, g> 1, (27a)

(E-2H + 1Jb, + 12cos— b2= 0. (27b)
2

Let us find a partial solution in the form:
bg= A (28)

Denoting a = [E — 2(H —h)Vh cos /2, K +?r, from (27a) we obtain
the following characteristic equation for the parameter r:

2+ 2ar+ 1= 0, r2= —a+ \a2—1, rr2= 1, r, + r2= -2a. (29)
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Three cases are possible, namely:

A. lal< 1, rx= r*= eiR, where R is real. Here

Ek(R) = 2H —21Ix—2 IZCos--é--cos R, —n <CR <C (30)

expresses the energy of two free scattered magnons with a total quasi-momen-
tum K and a relative one — R, i.e. this is the two-magnon continuum. The
general solution of Eq. (27a) is

b(g) = cteiRq-(- c2~iRq, (31)

where from the “boundary condition” (27b) we obtain the relation

E -2H + Ik+ l2cos— eiR

2= 1 e2*Cl.
E-2H + 11+ 12cos— e~iR
2
B. a= -f-1, rx= r2= In this case, at J2]> 0 the expression
E = 2H —21,721,00* — = E*«'l (32)
S

coincides with the lower and upper continuum boundaries, respectively
(if h < 0, the opposite is true). Analogous results can be obtained from (30)
for R = 0 and R = i~r.

C. lol> 1, rx= r21 = r, let us suppose that

M<1. (33)

The bounded solution at q >m-foo is expressed by (28), where
r= (34)

From (34) we obtain the existence condition for the solution (33) (i.e. for the
two-magnon complex or bound state), in the fc-space:

K> 2 arccos (35)
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Thus, in the model considered only one kind of bound states can exist,
namely a short-wavelength one, possessing a probability maximum at q = 1.
From (29) and (33) we obtain the energy of the complex

EspX = 2H+ I~Acos’A -ij, (36)

atH = 0,sign Espc_= -sign lv
Comparing the hound-state energy with the extrema of the continuum
at the same total quasi-momentum K, by the use of (32) and (36) we obtain

Esp_c_ E ftr = h
h

(387)

I+
=

It is obvious that the relative arrangement of the continuum boundaries and
bound-state energy is independent of sign h, but

sign (Espc. - EKKT) = sign lv (38)

Further we shall consider the case <[ 0, when Espc <* Ek"n and the complex
formation leads to an energy gain.

There are no complexes at = 0. At small near the boundaries of
the Brillouin zone a branch is detached from the continuum, due to the two-
magnon complex. From formulae (34) — (38) it is seen that, when |Ik]| is
increased, the detaching of the branch takes place at the gradually decreasing
values of Ik I, the width of the zone increases and both of the reversed spins
are bound more and more closely together. When increasing ]11|, at a fixed
k, Espc and F™In «— Espc increase. At Ij = 12 we obtain the well-known
results for the isotropic Heisenberg chain [18]. At — 12 the complex
exists for all Kk [16].

Let us examine now the relative arrangement of the one-magnon spec-
trum and the energy of the complex at the same values of k. From (24) and
(37) we obtain:

Sspec. H - 1+ 1+ 2h COS K (39)
2/i
Let us elucidate the case a) —Iliull2 <C 1/2. AtH NN+ 1D aninterval
exists for k, namely
cos K 1+ HUJL (40)
1+21J12 °

where Ek > Espc. Bearing in mind the condition (35) of the existence of the
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complex (35) we obtain a stronger unequality for the magnetic field, H < h ~
— /(1 -)- 21J1,), as the region of values of K is given by

1+2 HIJIT
2 1> cosk> — (41)
1+ 21J1,
For sufficiently small values of | I, | we can get the interval for H, where at

a ferromagnetic ground state the energy of the complex is lower than that of
the one-magnon, for all k from (41):

h + h<H<h h-h((+ -y?J - (42)

The case b) 1J12> 1/2 can be analyzed in a similar way.

Fig. 1. Relative (qualitative) arrangement of the one-magnon spectrum and two-magnon
bound state energy (dotted line): a) —1,1 < 1/2; 1) H = 0, and II) for int. (42);
b) - 1JI, > 1/2; I)for int. (42), and II) H> /, - 1,1 + 21J1.);
cos fdit = -(1 + 2H/,/ID/(l + 2/31j)

Fig. 1 shows qualitatively the arrangement of Ek and Espcin cases a)

and b).
All the results in part 3, after the replacement (21) coincide with the
corresponding ones for the bilinear Hamiltonian (at 1= 1 only) [13, 16,

17, 18]. Thus, the problem for the determination of the low-excited states of
the system with Hamiltonian (1) is solved.

In conclusion, investigating the spin Hamiltonians, S > 1/2, containing
the scalar products of the spin operators of the nearest and following neigh-
bours, of power / ]> 2, some new, interesting physical effects may be expected.

Appendix

The term with an arbitrary power in the sum 1=1,2,..., P(1),
i.e. the arbitrary power of the bilinear Heisenberg anisotropic Hamiltonian

Acta Physica Academiae Scientiarum Hungaricae 41, 1976



298

G. I. GEORGIEV

(S = 1/2) can be obtained in the following way. Let &j and Kj be the terms
of the i-th and the jf-th power, respectively

%, = -etjl2 W(SSSRt + S>Sy+l)+ ySnSbJJ.
In

Let us introduce conventional signs for the coefficients of the different ope-
rator terms:

iej=-ei3z[© +©(a;an+tah,< 0 + ® (a; an,- a*4an)+© akana;,an,

-Ej.izJ© +© ianantami 3",)+ ©(a;an, ¢ah, a,,K© amana;,,a,,l

The product can be expressed in a conventional form:

Kitj=-eH 2Z|©0 "0 +(0Xx©+Ox© +©XO© + ®*©} (a*an+a*,and+

+(© *© +© x®+® Xx©+© x®j (a*anl +o*tlan) +

+(©*0 +0©*0+ 2® XO - 2® KO +© O +2®x® +2@ x@ )a;ana;+lan+l|

In this formula the X sign means the usual product.

NoOOA~WNE
cx<zzIm

PWOMEEO<TTD
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THE INVESTIGATION OF AGGREGATION PROCESSES
IN QUENCHED NaCl : CaCl2 CRYSTALS BY DIELECTRIC
LOSS MEASUREMENTS

By

J. SARKOZI and Cs. KuTlI

INSTITUTE OP PHYSICS, DEPARTMENT OF EXPERIMENTAL PHYSICS
TECHNICAL UNIVERSITY, BUDAPEST

(Received in revised form 27. X. 1976)

The aggregation processes of the Ca2+ ion-vacancy dipoles of NaCl single crystals
strongly doped with Caz+ were investigated by means of electrical conductivity and dielectric
loss measurements. From the Kinetical curves obtained taking into consideration also the
ele_ctzjical conductivity curves the binding energy of the dipoles in the aggregates were deter-
mined.

1. Introduction

It is a well known fact that bivalent cation impurities connected with
cation vacancies form dipoles in alkali halides. This dipole formation results
in dielectric losses. By ageing the crystals at elevated temperatures the dielec-
tric loss values decrease because of the production of dipole aggregates.
Since the physical properties of the crystals are much influenced by the changes
of the impurity distribution investigations concerning the aggregation processes
have recently gained in importance [1, 2, 3]. The general characteristics of
the disappearance (aggregation) of dipoles in crystals containing small amounts
ofimpurities appear to be identical for every system. According to the litera-
ture [1] three single dipoles form one aggregate (one trimer). If, however, the
concentration of divalent cation impurities is large enough, aggregates already
exist in the crystal practically at any heat treatment, consequently the dipole
decay which may be expected will be different from the trimer case. The
impurity content of the NaCl: CaC”crystals used in the experiments to be
described was large enough (1.6 X10~2 mol%) to enable the investigation of
this case. Specially grown crystals were used free of any anion or OH- content
whose eventual presence may create difficulties in the interpretation of the
results [4].

2. Experimental details

Two types of samples were used; one group consisted of crystals whose
impurity content was at normal temperature in a thermodynamically stable
i.e. in a precipitated state (aged crystals), whereas the samples of the second
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group were quenched, consequently their impurity content became precipitated
only to a small degree, which corresponds to a thermodynamically unstable
state. This crystal type is suitable for ageing experiments.

The dielectric loss in alkali halides consists of two parts: conductivity
loss, which is connected with free vacancies, and of losses due to dipole reori-
entation. These two loss components can be separated, since their temperature
dependence is different. If the conductivity loss is subtracted from the total
loss the dielectric loss obtained is proportional to the number of dipoles. In
our tg 0 versus T(= dielectric loss temperature) curves one maximum was
observed at approximately 500 °C for the fixed frequency at= 104 Hz. Sub-
tracting the conductivity loss from this maximal value the tg 6 value propor-
tional to the number of dipoles has been obtained. Object of our investigation
was the determination of the dependence of the number of dipoles on the
guenching temperature and the time of heat treatment at this temperature.
The quenching was carried out in a low heat capacity furnace in an inert gas
atmosphere at a cooling rate of 100 °C/min from Tqto room temperature. The
dimension of the samples was 10x10x1 mm3, the quenching did not change
the dislocation density of the crystals.

3. Results and discussion

Fig. 1 depicts the change of the tg 6 = €" values, which is proportional
to the number of dipoles, for both sample types. The tg 6 value of the aged
samples increases nearly exponentially up to 150 °C to become stable above
this temprature (curve 1, Fig. 1). The time of heat treatment at the quenching
temperature was 10 hours. Repeated quenching (ageing) of already quenched

50 -100 150 600
Tq (°C)

Fig. 1. Quenching temperature dependence of tg &
Curve 1. “aged” sample, Curve 2: “prequenched” sample
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samples resulted in a minimum (curve 2, Fig. 1). In these experiments the
time of heat treatment at the quenching temperature was 10 hours. While the
first case seems to be an evidence of the dissolution of the precipitates, the
second may be explained by a local precipitation at the Tq= 150 °C quenching
temperature.

The dielectric loss dependence on the time of heat treatment at various
temperatures is depicted in Figs. 2. and 3. The dielectric loss presents an
exponential function of the time of heat treatment for the aged crystals as
well as for the pre-quenched samples, for this latter case it takes for example
the form( (Fig. 3):

«'(*) = «min + («max — «min) «_,/% (1)

Fig. 2. Time of heat treatment dependence of tg $of “aged crystals”
at various heat treatment temperatures

where émax = e'(0), £8in = e (°°) and T is the relaxation time characterizing
the decay of the dielectric loss. The fact that for both sample types the time
dependence of the loss values is represented by an exponential function leads
to the conclusion that the impurity dissolution (aged samples Fig. 2) as well
as the precipitation (pre-quenched samples Fig. 3) can be accounted for by
the same mechanism. In order to obtain the activation energy of the process
responsible for the measured decay the logarithm of the r values was plotted
against the reciprocal temperature. The activation energies as calculated from
the slopes of the straight lines obtained in this way were 0.98 ~ 0.05 eV and
0.86 ~ 0.05 eV for aged samples and for pre-quenched crystals, respectively.

Accordingly, the number of dipoles proportional to the dielectric loss
value increases or else decreases by diffusing away from a fixed number of
sources or diffusing to a fixed number of sinks. The sinks or sources consist
most probably of aggregates of more than three dipoles. The actual existence
of such aggregates in the aged as well as in the pre-quenched samples is also
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indicated by the conductivity (log cT versus 1/T) curves of the same samples.
The curves contain in every case a precipitation stage as can be seen in Fig. 4.
Curve 1 refers to the change of conductivity of the “aged”, whereas Curve 2
depicts this change for pre-quenched crystals. As can be seen from Curve 2
the pre-quenching does not cancel the precipitation state in Stage IV.

Fig. 3. Time of heat treatment dependence of tg $of “pre-quenched” crystals
at various heat treatment temperatures

Fig. 4. Electrical conductivity curves of NaCl.Ca single crystals. Curve 1: “aged” sample,
Curve 2: “pre-quenched” sample. The letter A denotes the end of the precipitation range,
and B indicates that the “pre-quenching” does not discontinue the precipitation state

Acta Physica Academiae Scientiarum Hungaricae 41, 1976



THE INVESTIGATION OF AGGREGATION PROCESSES 303

The activation energy corresponding to the values 0.86 eV and 0.98 eV
may he explained in the following way. From the slope of Stage IV (precipi-
tation) one obtains 0.95 eV, the slope of the association Stage (Section IIl)
yields 0.9 eV and the slope of the dissociation stage corresponds to 0.75 eV.
It seems to be generally accepted that the energy of migration of the cation
vacancies Em= 0.75 eV. The value 0.9 eV can be resolved into the form
Em -f- EJ2, where Esis the binding energy of a dipole. Furthermore the value
0. 95 eV can be resolved into the form Em-f-E J2 where Ea, the energy of disso-
lution of an impurity atom, is according to the literature [5]Es= ES + Ea,
here ES represents the energy necessary to tear away one dipole from the
aggregate. From these values one obtains Ea— 0.3 eV and Es= 0.38 eV,
respectively. Taking into consideration equation Es = ES -j- Ea we obtain
for the more interesting term of our investigation ES the value 0.08 eV.
Hence this energy (0.08) should be invested to tear off one dipole from the
aggregate or else this energy becomes free when a dipole becomes attached to
the aggregate. However, these dipoles do not remain in the surroundings of
the aggregates but diffuse away in the crystal with an energy of diffusion
0f 0.92 eV(—Ema) [6]. The sum of these two energies ES -f-EWA= 1 eV appears
to be within experimental error in good agreement with the energy of activation
obtained from the kinetical curves, hence the described mechanism should
also be in agreementwith the experimental results. The kinetical curves obtained
with pre-quenched samples (Fig. 3) yielded an activation energy of 0.86 eV.
The sum —ES -f~-Ema (= 0.84 eV) is in good agreement with this result,
1. e. any aggregation ofthe dipole takes up the energy of diffusion EWa = 0.92 eV
whereas by joining the aggregate an ES — 0.08 eV energy is released. Summariz-
ing for the discussed dissolution and precipitation processes the equation

E=Em=z* EJ

may be applied, where Es>corresponds to the binding energy characterizing
the attachement of a dipole to an aggregate, whereas Ena represents the
energy of diffusion of a dipole.

The authors wish to thank Mr. A Téth for valuable discussions.
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AGAIN THE KENNEDY-THORNDIKE EXPERIMENT
By

L. JANOSSY

CENTRAL RESEARCH INSTITUTE OP PHYSICS .BUDAPEST

(Received 28. X. 1976)

Answering valuable criticism of our former article on the interpretation of the Kennedy-
Thorndike experiment we analyse the relevance of a number of experiments in proving the
validity of various aspects of the Lorentz transformation.

The interesting article of 0. GrOn [1] following hereafter criticising my
paper [2] gives me the opportunity to return to the problem of the significance
of the Kennedy—Thorndike experiment (K.T.E) once more. In my former
paper | have indeed oversimplified the discussion of the experiment and thus
the discussion has to be modified in the following manner.

Consider one system of reference K in the measures of which light is
propagated isotropically. Such a system was considered by Michelson inter-
preting the Michelson—Morley experiment (M.M.E.) and also by Kennedy
and Thorndike.

In the measures of K, points A and B moving with constant velocity
v relative to K, have coordinate vectors

ra(0 = VC rB(0 = a + vt. (1)

The time of to and fro flight of a light signal between A and B is found in
the usual way

2a /1 — iMc2sin2ft 9)

Tab=~c-—--- 1- N s ()

where € is the angle between a and v. The interferometer used in the M.M.E.
can be schematized as consisting of two rods AB and AC. The fact that no
fringe shift is observed when the interferometer is turned round can be ex-
pressed by supposing

(TAB — TAQ) v = independent of &, ?3)

where vis the frequency of the light source, TAB, TAC are the times of to and
return flights between AB, respectively AC.
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It is natural to suppose that (3) is valid because v independent of ft

v independent of ft (4)

and both
TAB, Tbc — independent of ft. (5)

Accepting (4) and (5) we have to suppose in accord with (2) that the length
a of a rod changes when it is turned round; denoting with a(ft, v) the length
of a rod it attains when moving with the velocity v and being orientated at
an angle ft to v we find with the help of (2)

----------- (6)

where f(v) is an arbitrary function of v.
The K.T.E. investigates the possible change of interference pattern while
v, the velocity of the interferometer, changes relative to K. The very careful
invnstigation shows that the interference pattern does not change with v.
The negative result of the experiment proves that

(TAB — TAC)v = independent of v. @)
We may interpret (7) supposing that

v = independent of v, (8.a)

Tabi Tac = independent of v. (8.b)

W ith the help of (2) we can thus account for the negative result of the K.T.E.
supposing deformations in accord with

a(ft, v) - < ©)
Y1 iNc2sin2 ft

Since (9) is a particular case of (6) we see that the deformation (9) is suitable
to account for both negative result of the M.M.E. and the K.T.E.

"'he type of “Lorentz contraction” described by (9) is not the one
which was suggested by Lorentz. It gives a contraction proportional to
1 tMc2in the longitudinal and one proportional to ]/1 —a2/c2 in the trans-
verse direction; nevertheless if we wish to interpret only the M.M.E. and
K.T.E. this can be done supposing (9) to be true.

We note that the assumption (8.a) is not essential for the interpretation
of the experiments. Indeed, if we suppose that the frequency of the source
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changes with v, say so that

»(V) = Yog(v),
then we may replace (9) by

(1 - §;2c2alg(v)
Y1 — vac2sin2&

aé, y) (10)

and the contraction of the type (10) accounts for both the M.M.E. and the
K.T.E. — no matter of how we chose g(\).

So as to obtain information about the rate of clocks some third experi-
ment is needed. Considering e.g. the experiments concerning the perpendicular
Dopprter effect [3] (P.D.E.) one finds (see e.g. [4])

£(«) (n)

yi - vaA(?
and thus as a result of M.\M.E., K.T.E. and P.D.E. we find

Y 1 — p2c

a(é
(€) Y1 —P2c2sin2 &

(12

This is the expression arrived at by Lorentz and by rFitz-cerai1a. However,
even the above three experiments are insufficient to prove all the terms of the
Lorentz transformation.

Indeed from the Lorent. transformation it follows that a system con-
sisting of two physically connected clocks when accelerated adiabatically
suffers three types of deformation:

1. Lorentz contraction in accord with (12),

2. Slowing down of the rates of clocks in accord with (11).

3. A phase shift is caused between the clocks to the amount

AT
c2 - V2

a is the vector connecting the clocks. The third effect can be proved only by
some additional experiment.

Summarizing the argument we find that the M.M.E. and K.T.E. can be
interpreted both by a suitable type of deformation hypothesis; the type of
deformation which has thus to be postulated contains as particular case the
Lorentz deformation (12). That the deformations supposed to be suffered
by a closed system are indeed of the form (12) can be established by making
use of a third experiment, e.g. P.D.E.
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All the terms of the Lorentz transformation can be supported experi-
mentally only by adding at least one fourth experiment to the other three
considered above, the Trouton N oble experiment seems to give some indi-

rect evidence for the third effect.

REFERENCES

1.0. Gron, Acta Phys. Hung., 41, 309, 1976.
2. L. Janossy, Remark to the Interpretation of the Kennedy-Thorndike Experiment, Acta
Phys. Hung., 25, 275, 1968.
3. H. E. Ives and G. R. Stittwel1, J. Opt. Soc., 28, 215, 1938,
G. Otting, Phys. Zs., 40, 681, 1939.
4. L. Janossy, Theory of Relativity based on Physical Reality, Akad. Kiad6, Budapest
(in English) p. 38—41.

Acta Physica Academiae Scientiarum Hungaricae 41, 1976



Acta Physica Academiae Scientiarum Hungaricae, Tomus 41 (4), pp. 309—310 (1976)

COMMUNICATIONES BREVES

ON JANOSSY’S INTERPRETATION OF THE
KENNEDY-THORNDIKE EXPERIMENT

By

0. GOn

ST. GEORGS VEI 6, OSLO 2, NORWAY

(Received 9. VIII. 1976)

In the words of K ennedy and Thorndike [1] their experiment “was
devised to test directly whether time satisfies the requirements of relativity”.
The experiment is a modification ofthe Michelson—Morley experiment. Here,
however, an interferometer with arms of different lengths was used. As in
the Michelson—Morley experiment they did not observe the effect predicted
for the experiment by an “ether”-theory based on the validity of the Lorentz-
FitzGerald contraction and the concept of absolute time. From this null
result and that ofthe Michelson—Morley experimentk ennedy and Thorndike
derive the Lorentz—Einstein transformations.

Now sanossy [2— 4] States that “contrary to the general belief the nega-
tive outcome ofthe Kk ennedy —Thorndike experiment can he fully accounted
for in terms ofthe Lorentz—FitzGerald contraction of the arms of the inter-
ferometer”. In order to show this 1anossy calculates the change of length
of a moving rod when it is turned round, and proves that turning round the
interferometer produces no shift of fringes in the interference pattern, even
when the arms have different lengths.

This fact is however of no relevance as to the experiment of K ennedy
and Thorndike. They did not turn the interferometer round. Kk enneay and
Thorndike Write: “The present experiment was devised to test directly
whether time satisfies the requirements of relativity. It depends on the fact
that if a pencil of homogeneous light is split into two components which are
made to interfere after traversing paths of different lengths, their relative
phases will depend on the translational velocity of the optical system unless
the Lorentz—Einstein transformation equations are valid. Hence, such a system
at a point on the earth should give rise to an interference pattern which varies
periodically as the velocity of the point changes in consequence of the rotation
and revolution of the earth.”

The difference in travel time for light signals moving along two arms,
with a length difference Al, is calculated by K enneday and Thornaike, and
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is equal to 2-yAl/c, wherey = (1 — v2c?)~I12 This is in accordance with the result
of Janossy’s calculation [2], showing that the travel time for a light signal
from one end of a rod with rest length 10 and back is independent of the direc-
tion and given by 2yljc, where v is the velocity of the rod.

Kennedy and Thorndike were obviously aware of the fact that the
above result implies that no fringe shift occurs when the arrangement is turned
round. They write: The interference pattern is seen to be independent of orient-
ations, lengths and dispositions of paths, but depend upon difference of path
lengths and the velocity. Further: “Although the rotation of the apparatus
with the earth involves a slight effect on the time difference computed above
(whether regarded from the standpoint of relativity or classical theory), it
turns out to be altogether negligible in amount. This effect is a function of
rotational velocity, not of orientation of apparatus.” Kennedy and Thorndike
conclude that the hypothesis that time satisfies the requirements of relativity
can be tested by determining whether the interference pattern is unchanged
as v changes in consequence of the motions of rotation and revolution of the
earth. The result of the experiment is summarized with the words: “We have
shown that there is no effect corresponding to absolute time unless the velocity
of the solar system in space is no more than about half that of the earth in
its orbit.”

One must conclude that the Lorentz—FitzGerald contraction alone cannot
explain the results of the Kennedy Thorndike experiment, and that the
interpretation of their experiment given by Kennedy and Thorndike is

correct.
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TECHNICAL, UNIVERSITY, BUDAPEST

(Received in revised form 4. XI. 1976)

The interaction among dislocations in alkali halides is according to ex-
perience much weaker than the interaction between dislocations and point
or point like defects, or interactions between dislocations and some other
defects of various type. Consequently, the strength and plastical properties
of these crystals are mainly determined by the latter interactions. [1]. Point-
like defects exist also in “pure” crystals (e.g. vacancy clusters) though their
effect on hardness and plastical properties is considerably smaller than the
effects due to impurities in doped crystals. It is awell known fact that impurit-
ies, especially divalent cations, introduced into sodium chloride type crystals
result in considerable hardening, which depends upon the type of impurity,
its concentration and the way of impurity arrangement in the crystal [1, 2, 3].

In the experiments to be discussed the various impurity states of pure
and doped NaCl crystals were realized by heat treatment, the resulting effect
was investigated by measuring the microhardness of the quenched crystals.
In order to avoid any contamination due to various contaminants diffusing
at high temperature from the air into the crystals the quenching has been
carried out in dry nitrogen atmosphere. Because of the requirement of fast
heating and cooling a furnace of low heat capacity was used. The mechanical
stresses and plastic deformation formed during the quenching process were
investigated by a polarization microscope. In the experiments the heating
time up to Tqas well as the cooling time from Tqgwas negligibly small compared
to the time of heat treatment at Tg. With NaCl « Ca2+ crystals as well as with
NaCl « K+ crystals two types of samples were quenched: aged crystals in
which at room temperature the contaminant was thermodynamically stable
and pre-quenched crystals, in which it was in a thermodynamically unstable
state. The OH- free pure crystals and samples doped with Ca2+ or K+
impurities were grown by the Research Group for Crystal Physics of the Hunga-

* Present address: Research Laboratory for Crystal Physics of the Hungarian Academy
of Sciences, Budapest
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rian Academy of Sciences [4]. Since considerable research work has been done
with pro analysi sodium chloride crystals the present work describes also
changes of hardening due to heat treatment obtained with crystals of analytical
purity.

1) The quenching rate dependence of the microhardness was investigated
on NaCl « Ca2+ systems of both (aged, and pre-quenched) types. The aged
samples were heated at a rate of 100 °C/min to 100 °C and kept at this tempera-
ture for one hour, after which they were quenched to room temperature at
various cooling rates and their microhardness measured; the same procedure
was applied for 130 °C.

lg [vI°C/min)]

Fig. 1. Quenching rate dependence of the microhardness of NaCl.Ca samples aged at various
quenching temperatures

According to microscopic investigations in polarized light between
crossed Nickols plastic deformation and stresses could be detected only with
cooling rates above 150 °C/min. The microhardness dependence on the quench-
ing rate for NaCl « Ca2+ is depicted in Fig. 1. With lower cooling rate the soften-
ing of the crystal increases, a process which is very manifest at quenching
from 130 °C. This is understandable since because of the slow cooling the
sample remains for a relatively long time at high temperature, and the impurity
structure of the crystal may change. In accordance with this result electrical
conductivity measurements to be published elsewhere on the same samples
show that the solubility of the impurities increases with decreasing quenching
rate which means that the impurities pass over from a dissolved into a precipi-
tated state. Finally, if no considerable change of the defect structure formed
at temperature Tqg during some given time t is desired one should select (for
samples of the dimensions of 8 X 8 X 2 mm3) quenching rates belonging to
the plateau in Fig. 1 which is e.g. for NaCl «1,6x10 4 mol/mol Ca2+ 100 °C/min.
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2) The dependence of the microhardness on the heat treatment shows a
varying picture for aged and pre-quenched NaCl « Ca2+, NaCl « K+, and pro
analysi NaCl crystals, respectively. The microhardness of aged NaCl « Ca2+
crystals (t = 60 minutes, v = 100 °C/min) measured at room temperature
practically do not change if the temperature of heat treatment is changed
up to 150 °C, after a rapid decrease, however, at atreatment above this tempera-
ture it approaches a stable value (curve 2, Fig. 2). A “pre-quenched” sample
of this same material quenched again (t = 10 hours, v — 100 °C/min) gives a
low initial microhardness value after which it increases up to approximately
Tg= 140 °C and then decreases. This gives a maximum at 140 °C. The electrical

Fig. 2. The quenching temperature dependence of the microhardness of NaCl.Ca systems

Curve 1: “pre-quenched” sample, Curve 2: “aged sample”
conductivity of the same “pre-quenched” samples shows a minimum at
Tg— 140 °C, which means that the maximum of the hardness value at this
temperature can be interpreted as a precipitation process, while the softening
observable in curve 2 of Fig. 2 accompanied by an increase of the electrical
conductivity of the respective samples may he explained by the dissolution
of the impurities.

The quenched samples of the “aged” NaCl « 10—=2mol/mol K + system
(t = 60 minutes, v = 100 °C/min) show a decrease of the microhardness value
at a high quenching temperature (450 °C) after which it decreases and becomes
unchanged from 550 °C (curve 2., Fig. 3).

A repeated quenching of the “pre-quenched” samples (t = 7 hours,
v=100°C/min) results in a microhardness maximum at T?=450 °C (curve 1,
Fig. 3). By means of avacuum decorating method it could he shown electron-
microscopically [5] that the quenching of aged samples is connected with the
dissolution of impurities, whereas the quenching from 450 °C of pre-quenched
samples results in impurity precipitation. Consequently, the decrease of the
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microhardness of the aged samples at 450 °C may be explained by the dis-
integration of the precipitations checking the movement of dislocations, whereas
the hardening of the “pre-quenched” samples in the neighbourhood of this
temperature can be accounted for by impurity precipitation.

It appears to be instructive to compare the change of microhardness
of nominally pure NaCl crystals with extremely pure crystals. The divalent
impurity of the NaCl crystals used in these experiments was mainly Ca2+,
whereas the monovalent impurity was K+. The experiments were also in
this case carried out with “aged” and “pre-quenched” crystals, respectively.
The time of heat treatment was in the first case 1,0 hour, in the second case

Fig. 3. The quenching temperature dependence of the microhardness of NaCl.K systems.
Curve 1: “pre-quenched” sample, Curve 2: “aged sample”

Fig. 4. The quenching temperature dependence of pure and pro analysi NaCl single crystals.
Curve 1: pure NaCl, Curve 2: “pre-quenched” pro analysi NaCl,
Curve 3: “aged” pro analysi NaCl
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10 hours with a quenching rate of 100 °C/min for both. The hardness of the
aged samples softened in two steps (curve 3, Fig. 4), the first softening phase
(period) could be observed at 150 °C < Tg< 200 °C, whereas the second at
500 °C < I'?< 600 °C. A repeated quenching of “pre-quenched” crystals
resulted in two maxima in the H Tqcurve, at Tq= 140 °C and Tq= 500 °C,
respectively (curve 2, Fig. 4).

Since the divalent impurity of nominally pure NaCl crystals consists
mainly of Ca2+, and the monovalent impurity of K+ cations the interpreta-
tion of the experimental results may be the same as the interpretation of the
results obtained with NaCl « Ca2+ and NaCl ¢« K + systems, respectively. It
follows that the two step-softening as presented in curve 3 of Fig. 4 may
be explained by the dissolution of Ca and K impurities, whereas the maxima
of curve 2 may be accounted for by the precipitation of these impurities.
Quenching practically does not change the hardness of very pure NaCl crystals
(curve 1, Fig. 4). This fact seems rather convincingly to support the interpreta-
tion of our experimental results according to which the various changes of
the microhardness values of the heat treated crystals are due to the changes
of the state of their impurity structure. This change of state consists in our case
of dissolution or precipitation of impurities at high temperatures of aged and
pre-treated crystals, respectively. The precipitation of impurities at 140 °C
in CaCl « Ca systems, and a full dissolution of these impurities into the lattice
may be easily understood by electrical conductivity measurements. The
association domain appears above 140 °C, whereas the precipitation takes
place below this temperature. Consequently at quenching temperatures above
140 °C the impurity is in an already dissolved state. However, the dissolution of
potassium at 450 °C is up to now not clearly understood. This problem needs
further investigations.
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P. Gombas and D. Kisdi: Wave Mechanics and its Applications

International Series of Monographs in Natural Philosophy, Volume 58, pp. XII -f 238
Pergamon Press, Oxford, New York, Toronto, Sydney, Braunschweig, 1973.

After the Hungarian edition issued in 1967 the Publishing House of the Hungarian
Academy of Sciences published the hook also in German and English. These new editions
mark the very favourable reception of the book by wide circles of physicists.

The English edition was taken over by Pergamon Press asVolume 58 in the “Inter-
national Series of Monographs in Natural Philosophy.”

To be included in a well-known series like this will certainly bring the work further
success and promote its wider use in and outside the English-speaking countries.

As the earlier editions — including the English edition published by the Publishing
House of the Hungarian Academy of Sciences — were recently reviewed in Acta Physica
Hungarica, it seems unnecessary to give here full details. The contents of the book can be
briefly summarized as follows: Starting from the fundamental experimental facts through
classical physical analogies, after a short discussion of the Bohr-Sommerfeld theory one arrives
at the Schrodinger equation. This is followed by examples, which can be treated as exactly
solvable cases of the equation. Then follow the scattering theory and finally, the perturba-
tioual and variational methods with several physically important applications.

The clear treatment and consequent construction qualify the book an easily readable,
pedagogically good text-book. We recommend it warmly for students in the upper grades
in physics and chemistry and for young researchers.

A. KONYA

A. P. Jucys, and A. J. Savukynas:

Mathematical Foundations of the Atomic Theory
(In Russian) “Mintis” Publishers, Vilnius, 1972.

This monograph seeks to provide a theoretical background for physicists engaged, or
about to engage, in the quantum theory of atoms, atomic spectroscopy and related fields of
physical science.

Primary emphasis is given to the methods of constructing the antisymmetrical wave
functions of many electron configurations with the help of one electron wave functions (spin
orbitals) and of expressing the matrix elements of atomic quantity operators in terms of radial
integrals. For the shells of equivalent electrons the fractional parentage coefficients are used.
The wave function of the whole configuration is expressed in the form of antisymmetrized
product of antisymmetric functions of individual shells. For the operators the mathematical
apparatus of irreducible tensor operators are used throughout.

The extensive tables given at the end of the book enable to construct the expressions
for the matrix elements of operators in a quite easy way at least for the configurations having
one or two open shells outside any number of closed shells of equivalent electrons.

The well written book may be very useful for scientists working on the theory of nuclei,
atoms and molecules.

R. Gaspar
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J. M Ziman. Prinzipien der Festkorpertheorie
Akademie-Verlag, Berlin, 1974, pp 443

Nowadays zin an's Principles of the Theory of Solids is considered as one of the gems
of the literature on solid state physics. It was first published in 1964 and two reprints were
issued shortly afterwards. The second edition came out in 1972 as an enlarged version of the
first one in the sense that several sections covering subjects which have come into the focus
of interest in the period between the two editions, like type-11 superconductivity, have been
added. The German translation has been prepared from this second edition, by P.Renner.

The structure and content of the book is truly reflected by its title: the main emphasis
is on the discussion of the principles governing solid state physics. While the most modern
physical approach is applied, the formalism is kept on a relatively simple level. Thus use of
sophisticated modern mathematical tools like Green function technique is avoided. Ziman
is able to extract the essence of a physical problem from the multiplicity of facts and give
insight into the physical meaning of abstract formulas. This book is a basic textbook, to be
consulted by all solid state physicists who want to be informed about the ideas underlying
phenomena.

Ziman's Principles has been translated into Russian, Japanese and Spanish. The pre-
sent German translation bears further evidence of the ceaseless interest towards this excel-
lent textbook. Besides its high quality get-up this edition has the following remarkable fea-
tures. The even originally comprehensive bibliography has been completed by pertinent lite-
rature in German and Russian. Moreover, a tri-lingual (German—English—Russian) version
of the detailed index helps the reader to find passages of interest easily.

P.Sz¢pfatusy
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Simul — Ein Programm flr die mathematische
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Herausgegeben von P. Benedek

Autorenkollektiv: G. Almasy, P. Benedek, M. Farkas,
I. Pallai, F. Simon, P. Szepesvary,

T. Sztané

Das Buch gibt dem Leser eine Vorstellung Gber die Mdéglichkeiten, die fur die
chemische Technologie durch den Einsatz von Digitalrechnern geboten wer-
den. Es vermittelt die von den Autoren angewendeten Methoden zur Errech-
nung physikalish-chemischer GroéRen, beschreibt die zur Simulation der ein-
zelnen Operationen ausgearbeiteten Modelle, und fihrt vor Augen, wie immer
ein kompletter chemisch-technologischer Verfahrenszug in seinem stationdren
Ablauf von dem SIMUL-System simuliert werden kann. Die mit speziellen
Problemen einhergehenden Regelungs-, Rezirkulations- und Optimalisierungs-
falle werden auch im besonderen auseinandergesetzt. Das letzte Kapitel de-
monstriert am Beispiel einer Anlage fiur Essigsdureanhydriderzeugung die

Anwendung des SIMUL-Systems.

In deutscher Sprache ¢ Etwa 320 Seiten ¢« Ganzleinen

ISBN 963 05 1111 8
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Atom and lon Sources

by L. Valyi

Atom and ion beams are becoming more and more extensively used both in
science and technology. The broad field of applications gives grounds for the
publication of this book, rendering it most timely. In this monography
both the theoretical and practical problems concerning the use of particle
sources are discussed in detail. All the available knowledge in this field is
reviewed and further developed. The large number of illustrations is of great

help in the understanding and utilization of the discussed material.

In English « Approx. 380 pages ¢ Cloth

A co-edition — distributed in the socialist countries by KULTURA, Budapest;
in all other countries by JOHN WILEY AND SONS LTD., Chichester

ISBN 963 05 1113 4

AKADEMIAI KIADO JOHN WILEY AND SONS LTD.
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NOTES TO CONTRIBUTORS

I. PAPERS will be considered for publication in Acta Physica Hungarica only if they have
not previously been published or submitted for publication elsewhere. They may be written
in English, French, German or Russian.

Papers should be submitted to

Prof. 1. Kovacs, Editor
Department of Atomic Physics, Polytechnical University
1521 Budapest, Budafoki ut 8, Hungary

Papers may be either articles with abstracts or short communications. Both should
be as concise as possible, articles in general not exceeding 25 typed pages, short communica-
tions 8 typed pages.

Il. MANUSCRIPTS

1. Papers should be submitted in five copies.

2. The text of papers must be of high stylistic standard, requiring minor correc-
tions only.

3. Manuscripts should be typed in double spacing on good quality paper, with generous
margins.

4. The name of the author(s) and of the institutes where the work was carried out
should appear on the first page of the manuscript.

5. Particular care should be taken with mathematical expressions. The following
should be clearly distinguished, e.g. by underlining in different colours: special founts (italics,
script, bold type, Greek, Gothic, etc); capital and small letters; subscripts and superscripts,
e.g. xds, x3; small | and 1; zero and capital O; in expressions written by hand: e and I, n and u,
v and v, etc.

6. References should be numbered serially and listed at the end of the paper in the
following form: J. Ise and W. D. Fretter, Phys. Rev., 76, 933, 1949.

For books, please give the initials and family name of the author(s), title, name of
publisher, place and year of publication, e.g.: J. C. Slater, Quantum Theory of Atomic Struc-
tures, 1. McGraw-llili Book Company Inc., New York, 1960.

References shold be given in the text in the following forms: Heisenberg [5] or [5]
7. Captions to illustrations should be listed on a separate sheet, not inserted in the text.

I11. ILLUSTRATIONS AND TABLES

1. Each paper should be accompanied by five sets of illustrations, one of which must
be ready for the blockmaker. The other sets attached to the copies of the manuscript may be
rough drawings in pencil or photocopies.

2. llustrations must not be inserted in the text.

3. All illustrations should be identified in blue pencil by the author’s name, abbreviated
title of the paper and figure number.

4. Tables should be typed on separate pages and have captions describing their content.
Clear wording of column heads is advisable. Tables should be numbered in Roman numerals
(1, 11, 111, etc)).

IV. MANUSCRIPTS not in conformity with the above Notes will immediately be returned
to authors for revision. The date of receipt to be shown on the paper will in such cases be
that of the receipt of the revised manuscript.
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