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INVESTIGATIONS OF y SPECTRA
OF CERTAIN (p, Y) RESONANCES

By

I. DEMETER, ILoNA Fopor, L. KeszrHELYI, I. SZENTPETERY, JUDIT SzZics,
Z. SzOKEFALVI-NAGY, L. VARcGA, J. ZIMANYI
CENTRAL RESEARCH INSTITUTE FOR PHYSICS, BUDAPEST

and _
H. U. Gersca, W. RubporLrH

CENTRAL INSTITUTE FOR NUCLEAR RESEARCH, ROSSENDORF NEAR DRESDEN, GDR
(Received 20. I. 1970)

The investigation of p spectra of the isobaric analogue resonances gives useful informa-
tion about the structure of the nuclei. Our original aim was to look for isobaric analogue
resonances in (p, ) reactions on several nuclei, and to study the systematics of their p spectra.

Experimental

The experiments were performed with the proton beam of the 2.5 MeV
Van de Graaff generator with an energy spread and calibration uncertainty of
about 1 keV. The excitation functions were measured with a 3" x3” NaJ(TI)
scintillation counter while the y spectra were taken by a 15 cm?® Ge(Li) detec-
tor located at 90°. The targets were evaporated on thick Ta and Au backings
from natural metals, except ¥Ca when the target material was enriched
14CaCO,. The thickness of the targets was about 1—2 keV, for 2 MeV protons.

“Ca(p, y)*Sc

This reaction has been investigated by several authors [1, 2]. Surprising-
ly, the measured excitation functions did not show any striking resonance in
the region of bombarding proton energy corresponding to the position of the
isobar analogue of the E, — 1904 keV (3/27) state in the %°Ca nucleus. From
(d, p) stripping measurements [3] it is known that this level has a relatively
large spectroscopic factor, namely (2J + 1)S, = 2.56. This fact suggests the
idea that the isobaric analogue of this level should be found in the **Sc nucleus.
From the estimation of the Coulomb displacement energy, the expected posi-
tion of the TAR is about 1670 keV bombarding proton energy. We have also
measured the excitation function (Fig. 1) in the 1550—1750 keV proton energy
region, in 2 keV steps with an overall resolution of about 3 keV. As is seen

1 Acta Physica Academiae Scientiarum Hungaricae 30, 1971



2 I. DEMETER et al.

from Fig. 1 it is very difficult to decide on the basis of intensities, which of the
peaks belong to the TAR. It can be expected that the structure of the y-spectra
of the different resonances makes it possible to find out their features. So we
have measured the y-spectra on the different peaks, with a Ge(Li) detector.
The results on the high energy part of the y-spectra are summarised in Table I.

Fig. 1. The excitation function of the reaction **Ca(p, y)**Sc taken with E,, > 3.5 MeV energy
y rays

The N,[/N, relative intensities displayed on it show the characteristics of y-
transitions leading to the 376 keV (3/27) second excited state of the %Sc. At
Ep = 1640, 1650, and 1658 keV resonances there are relatively strong transi-
tions to this level in comparison with the E, = 1583 and 1619 keV resonances.

Table 1

» yields from the reaction *Ca(p. 7)*Sc
N,y/Np in 10~ '* units

E, keV ‘ ‘ :
:‘Sc 1583 : 1619 } 1640 ’ 1650 ‘ 1658 1757

Ez - ‘,", -~ : — - — - 2 —
0 12- ‘ 5 i T G G | - 21 | GoC o
12 3/2+ f 5 39 o P 18 20
376 3/2- ‘ 4 1 14 36 36 31 22
541 e O g ) R
719 = v RS O g 22 3 1 o
940 12+ R 24 ‘ b it <l
973 — e a8 ‘ 2 13 Ay } 11
1065 U, ol MR S i SR

\ k
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INVESTIGATIONS OF y SPECTRA 3

After the appearance of [4] it became certain that the resonances found
‘at E, = 1640, 1650 and 1658 keV are the fine structure members of the iso-
baric analogue of the 3/2~ level in #*Ca. On the basis of this work it was possible
to evaluate the radiation width at E, — 1640 keV for some of the transitions.

r$0k¥ — 0.06 4 0.02 eV and F =Y =035 L1105 eV

were obtained. The Weisskopf estimations for these transitions are I, (E2) =
=0leVand I, (M1) = 1.63 ¢V. However, the strength of the y transi-
tion leading to the 376 keV level is only of the order 0.1 Weisskopf unit; its
relative large intensity at the members of IAR in comparison with the other
resonances suggests that the 376 keV level in *Sc may be a member of the
fragmented anti-analogue state. ENDT has called attention to this type of
M1 y transitions [5] in the s—d shell, where these transitions between the
analogue and anti-analogue are very intensive and can be assumed to be pure
single particle transitions. In the heavier nuclei e.g. in the f,/, shell it can be
expected that the strength of the anti-analogue state is fragmented. So the
M1 transition strength will be distributed over the fragments. More detailed
investigations of y spectra of better statistics would be necessary to determine
the whole fragmentation pattern of the anti-analogue state.

‘8Ti(P, y)49 Vv

The reaction has also been measured [6, 7] recently. Detailed measure-
ments were made at E,, = 1007, 1013 keV and 1362 keV resonances. From these
experiments it turned out that the referred resonances are the isobaric ana-
logues of the 1384 keV (3/27) and 1724 keV (1/27) states in 4Ti.

The aim of this work was to extend the investigated region of excitation
function to higher bombarding energies. We have measured the excitation
function between 1320 keV—2140 keV proton erergy in 2 keV steps, includ-
ing y rays above 3.5 MeV energy. Fig. 2 shows the excitation function. There
are 85 resonances. Some of them are of remarkably higher intensity than the
average. The Ep = 1362 keV, 1925 keV and 2077 keV are supposed to be iso-
baric analogues. It is striking that in the bombarding energy region between
1400 keV and 1900 keV there is an intensive resonance at E, = 1566 keV.
In the corresponding energy region there is no known level in the “Ti parent
nucleus. We have measured the y spectra of the resonances at £, = 1566 keV,
1579 keV and E, = 1392 keV. The y yields for the high energy transitions are
collected in Table II. It can be seen from the Table that in the case of the
1566 keV resonance there is a very strong transition to the 753 keV level in
contrast to the investigated analogue resonances. It is known from [8] that
the 753 keV level in *V is a d;, hole state. This may suggest that the E, =

1% Acta Physica Academiae Scientiarum Hungaricae 30, 1971
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INVESTIGATIONS OF y SPECTRA 5

Table II
y yields from the reaction **Ti(p, »)¥V N,V/Np in 10712 units

e e : ! |
|

wy i 1392 i 1566 1 1579
E, J= |
‘ .
oA v 3 99. S Ve
9.« | -5 6 A R
168 2L 47 27 ‘ 11
R S St 21 126 18
1139 12~ } 18 61 35
- 1639 1L e 14 25 | =
I |

= 15606 keV resonance has a similar configuration. So one could assume that
this resonance may be an isobaric analogue resonance as well, but its parent
state according to its peculiar structure cannot be excited in (d, p) reaction.
If it exists at all it can be found in proton pick-up reaction e.g. >°V(d, *He)*Ti.

The 7 spectra of the 1392 keV and 1579 keV resonances do not show any
characteristic feature to give any indication of their origin.

51 V(P" ')’)52CT

This reaction was studied by Teranisar and FuruBavasar [9, 10, 11].
They measured the excitation function in E, = 0.7—2.6 MeV bombarding
energy range and identified 13 resonances as isobaric analogues of the low
lying levels of 2V nucleus. The identification was made only on the basis of
resonance energies.

Our aim was to study the y spectra and some angular distributions at
certain resonances, to obtain further evidence concerning their origin. Reso-
nances at E, = 1217; 1559; 1568; 1629 and 2333 keV were studied. The results
of the evaluation of the y spectra are summarized in Table III. The results
of recent investigations [12, 13] on the level structure of 5*Cr differ somewhat
from earlier ones [14]. The present work is in a good agreement with the results
of [12, 13]. As is seen from Table III the structure of y spectra of 1559 keV
and 1568 keV resonances are very different. These resonances have been assum-
ed to be fine structure splitting. Since the y spectra themselves cannot give
sufficient information about this question, it seemed necessary to make angular
distribution measurements. The angular distribution of y transition leading to
1.434 MeV(2+) excited state gives the following A, values assuming that the
transitions are of E2 { M1 type:

E, = 1559 keV; Ay, = +0.19 + 0.06;
E, = 1568 keV; A, = +0.09 4 0.05.

Acta Physica Academiae Scientiarum Hungaricae 30, 1971
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Final state energies and widths of y-transitions of 5'V(p, 9)**Cr reaction

Table III

- mﬁofiz] i! g::wﬁ;] E, = 1217 keV 2+ E, = 1559 keV 3+ Ep = 1568 keV 3+ E, = 1629 keV 4+ Ep = 2333 keV 4+
Eg MeV \ E; MeV E,MeV | I, eV | E MeV I, eV | EgMev | I Tyl eV | EpMeV |, Iyl eV | E,MeV | I,TpilyeV
1.434 2+ 1.437 1.434 0.23 1.434 0.085 ’ 1.434 0.23 \ 1.434 0.026 1.4347? 0.007
2371 4+ 2.372 2.368 0.054 2.369 ‘ 0.16 | 2.370 0.35 2.366 0.15 2.369 0.12
2,650 0+ 2.650
2,767 4+t 2.768 2.765 0.2 2.767 0.095 2.765 0.04 2.7667 0.015
2.965 2+ 2.964 2.965 0.013 2.965 0.07 2.966 0.013 2.9657 0.015
3.114 6+ 3.119 3.1147? 0.02 3.115? | 0.01
3:163 2% 3.162 3.165 0.03 3.163 0.13 3.162? | 0.01
3.416 3.413 3.412 0.14 | 3.414 0.042 3.409 : 0.053 3.418 0.04
3.472 3.470 ’ 3.469 0.08 1 3.473 0.078 3.471 } 0.026 3.467 0.03
3.619 5+ 3.617 [ 3.622 0.025 3.615 | 0.026 3.615 0.07
3972 2% 472 3.762 0.01 | ‘
3.947 3.944 3.9277? 0.01 3.947 | 0.02 3.949 0.02 3.943 0.03 3.945 0.02
4.016 4.013 3.9867 0.01 | 4.022 | 0.008 | 4.018 0.02 4.013 0.04
4.040 4.038 4.023? 0.01 ‘ 4.037 ’ 0.012 | 4.0447 0.01 4.037 0.042
4.563 4.563 ; 4
4.630 4.630 ‘ 4.630 | 0.08 4.630 0.02 4.630 0.062 4.630 0.04
4.706 4.706 | 1 | 47047 | 0.015
4.743 4.741 4.731 0.024 ‘ " 4.7437? 0.014 4.738 0.01 4.7407 0.015
4.808 4.807 | ’ ‘
4.837 4.838 i 4.838 ‘ 0.024 4.841 0.048 4.831 0.01
|

1% 19 HALAWAA °I



INVESTIGATIONS OF y SPECTRA 7

These values are not contradictory to the assumption that both the
resonances have 3% spin and parity.

Returning to the discussion of the p spectra, it is interesting that ground
state transition cannot be found even in the case of the 2* resonance. No vy
transitions were observed to the 2.650 keV (0 %) excited level either. This latter
fact can be explained by the 2p—2h character of this level [15]. Furthermore,
in most of the y spectra the levels of J* = 2%, 4* dominated by the con-
figuration of seniority » = 2 are preferred to those dominated by » = 4.

“Co(p, ) Ni

Earlier, ButLER and GosseT have dealt with this reaction and, recently,
Ara1r and MiessNER [16, 17] have also measured the excitation function,
between 1.5 MeV and 2.3 MeV. They [17] claimed to have found the isobaric
analogues on the bases of the positions of the resonances. The two published
excitation functions are very different.

We have also repeated this measurement and we have taken the excita-
tion function in the Ep = 1.3 MeV—2.5 MeV region in 1 keV steps. Our result
was very similar to that of [16] and contradictory to [17], even if we averaged
our excitation function over 5 and 10 keV. There were no prominent resonances
in this energy range which could have been concerned as isobaric analogue
resonances. There were in the excitation function, however, relatively intensive

Table IV

y yields from the reaction 5*Co(p, y)*°Ni
N, /Np 10712 units

L
"N\‘\E'kev ) 1537 2114 2150 2206 2448
E, Jn E
g AT i i T
1332 ‘ DN 2.8 5.8 5.3 G108 eEsTg
2159 l it By 5 S N 811 11 30 | 40
7 R B SR BEC — — - e
2505 § 4+ -l 179 8.6 1748w | 1121025 25.0 17.7
2626 \ 3+ | 139 | ‘73 10.2 } 14.5 14.4 t 5.4
3124 2+ ! 6507 |- 26:3 135 74790 33.8 12.7
3190 | N SN R R e piee | 6.7 15.9 5
3269 R 1 N SR R X S 3.0 =
3390 | ARSI ] e S Ko
3618 SR S B X 45 1.6 6.6 5.5
3671 ﬁ ‘ 3.8 ‘ 0isl 26 | 44 154 | 187
3732 ‘ \ 1.0 O R 43 | 52 | 7 [ PR
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peaks which seemed to be interesting to investigate. Therefore, we have mea-
sured the y spectra on certain resonances to look for systematics in their
structure. Table IV shows the strength of the primary transitions. The main
features of the spectra are the following: there is no ground state transition
from any of the resonances; nor is the second 0+ state at 2285 keV populated
at all. The states at 2.505 MeV and 2.624 MeV excitation energy in °Ni are
relatively strongly populated in the decay of every resonance. These levels
were found in proton and neutron transfer reactions and proton and deuteron
scattering as well [18, 19, 20]. This fact refers to the complicated structure
of these final states, so the transitions cannot give any information about the
structure of the initial states. On the other hand, the resonance at E, — 2448
keV bombarding proton energy shows appreciably strong transitions to final
states above 3.5 MeV, too. It is well known from [18] that these levels are
of a relatively simple Ip—1h character. Therefore, the strength of the above
mentioned transitions might indicate that a similar simple component exists
in this resonance. Furthermore, its position corresponds within the limits of
the Coulomb-energy estimation to the position of the isobaric analogue of the
1006 keV level in %°Co; this level seems to be of relatively simple structure
from (dp) spectroscopic data [21]. Summing up, one can suppose that the
2448 keV resonance may be the isobaric analogue of the 1006 keV level of the
80Co. The certain identification of this resonance as an isobaric analogue seems
to be very difficult because the spin assignment of the parent state is not
known yet.

It can be seen from these experiments that more detailed investiga-
tions could give very important information about the nature of isobaric
analogues and about the nuclear structure. The measurements described above
must be taken as preliminary results.

The authors are very indebted to Dr. L. P6cs for making his codes available for evaluat-
ing the y spectra.
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WCCJIEAOBAHHUE »p-CINEKTPA HEKOTOPBIX (p, y) PEBOHAHCOB

U. AEMETEP, U. ®0O[10P, JI. KECTXEHU, U. CEHTIIETEPH, H. CIOY, 3. CEKE®AJIBH-

HAIb, JI. BAPT'A, 1. BUMAHH, I'. V. TEPUI u B. PYJOJIb®

Pezwme

Hccnenosanne y-criekTpa H300apHbIX aHAJIONOBbIX PE30HAHCOB JAAET IMoJie3Hble HHpopma-

" LIHH 0 CTPYKTYype sifiep. Haia ueJib Obijla HaiTH H300apHbIe AHAJIOrOBbIE PE30HAHCHI B PEAKLHAX
(p, ) B Cllyuae HEKOTOPHIX sifiep M U3yYaTh CHCTEMATHKY HX Y-CIIEKTPA.
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WITH DIFFERENT PROTON AND NEUTRON NUMBER
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Starting from realistic two-body potentials, and using the : esults of nuclear many
body calculations for infinite nuclei, a modified Thomas—Fermi theory is developed for
nuclei with different proton and neutron number. Coupled non-linear integral equations are
deduced to determine the proton and neutron density distributions separately. The method
is applied for a simplified case with rectangular density distribution. The range of neutron
and proton density distributions turns out to be equal.

I. Introduction

The Thomas—Fermi theory has been used for a long time to determine
the properties of finite nuclei. The original simple methods [1] consisted of
expressing the energy of finite nuclei as a function of the density, and its
derivatives. Minimizing the total energy as the function of the density, we can
determine the equilibrium density distributions and some overall properties
of large finite nuclei.

In recent years the Thomas—Fermi theory of large nuclei has been
further developed by BETHE [2]. Starting from realistic nuclear forces, and
using the results of the nuclear many-body approximations applied for infinite
nuclear matter, it was found that the local density approximation of BRUECK-
NER et al. [3] is valid, with certain corrections. The theory was applied for
semi-infinite [4] and finite [5] nuclei, and the results for surface energy and
surface thickness were in good agreement with the experimental values.

In the previous calculations the theory was applied for nuclei with equal
neutron and proton number, and the Coulomb energy was neglected. In the
present article we intend to extend the previous theory for realistic heavy
nuclei with different neutron and proton number, and to include the Coulomb
energy in the calculations. We shall apply the theory for a special simplified
case with rectangular proton and neutron distributions, and consider the
qualitative properties of the results. The more exact solutions will be published
in a following article [6].
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12 J. NEMETH

II. The extended Thomas—Fermi theory

The extended Thomas—Fermi theory for the N = Z case can be found
in previous articles [2, 4, 7, 8]. The same method can be applied for nuclei
with N =< Z, with some modifications.

The energy of a system with N neutrons and Z protons can be written in
first order BRUECKNER approximation as

1 kv k»
W — 2<¢m|Tl¢m> i E‘ 2 2 <(Dm q)n,GNN(kap)|¢m¢n> +

m=0n=0
1 kp kp
1 _{2 2 <d§m¢n|GPP(kaP)|¢m ¢n> + (2,1)
m=0n=0
k:& kp 4 ! 1 kp ke
a0 2 <®m¢n|GNP\kN kP)l®m¢n) = ol 2 2 <®mdjnll{:|¢m@n> ”
e ; 9 =

where V¢ is the Coulomb interaction and Gyy, Gyp and Gpp are the neutron-
neutron, neutron — proton and proton —proton interaction contributions to the
G matrix. respectively:

Gpp(kykp) = 2 G(smy, T =1,T5 =—1; kykp),

Sy

1
Gnp(knkp) = — X' [G(smg, T =1,Ty = 0; ky kp) +

Smy

L ClaT = 0, T~ 0 Mk (2.2)

CNN(kaP) = ZG(Sms, T= 1, T3 = 1; kN kp) ’

sm,

where ky is the neutron, kp the proton Fermi momenta, s, m, is the spin and
its third component. T, T, the isospin and its third component, and the
|@,, @, > are the finite unperturbed single-particle wave functions. G satisfies
the usual matrix equation:

/ X ’ = ’ ’ e
\Qm d)n |Gl d)m Q}n> <¢m d)n |v}¢)m (Dn> (2,3)

: , 0(a)
o ¢m q)n' q)aq)b s o q)aq)b G qjm¢n )
R T B RO B

where v is the realistic two-body potential, @ is the Pauli operator and the
E are the single particle and hole energies. BETHE has shown in his paper [2],
that we can separate the G matrix elements into a local and a non-local part,
where the non-local part includes the long range central and the density
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A SIMPLE THOMAS - FERMI MODEL 13

dependent effective long range tensor forces. The local part of the matrix
elements can be determined from the nuclear matter calculations, including,
however, the corrections arising from the fact that in Eq. (2, 3) the single hole
energies are those for finite nuclei, not for an infinite system, as in the case
of the matrix elements of nuclear matter. Taking into account all these con-
siderations, the (2, 3) matrix elements can be written as (see Eq. (2, 11), [7]):

<¢m¢n|GFl¢m an> < <¢m¢n|vll¢m¢n> oz
— {mn|v|mn) + (mn|Gyy|mny — 24U (&nlEmn)

(2,4)

where v, is the long range part of the nuclear forces, Gy is the nuclear matter
G matrix, Gr the finite one,

Emn N |mn > Y= QGNM !mn > (2?5)
e

is the deviation wave function for nuclear matter, and AU is the difference
between infinite and finite single hole energies. AU can be considered momen-
tum independent with good approximation, as BETHE has shown [2]. With the
above (2,4) approximation the energy of a system with equal numbers of
protons and neutrons can be written in the Thomas—Fermi approximation as

W = (Wani (o) @r + % j oP(ro) [e(ry) e(rs) —e(ry)2]ds ry dory +
ie % j o¥(r0) [le(ry ra) B —lo(ry ra) ae] A3y dory — (2,6)

—jAU(r>r<r>d3r+m.,

where

W(r) = Jd P 1€ ()12, 2,7)

nm

W m is the nuclear matter energy as a function of the density, We the Coulomb
energy, and v,D and v} are those parts of the nuclear forces which give a direct
and an exchange term, respectively.

If we accept the result of BETHE [2] and NEMETH and BETHE [4], that
the exchange term is, in good approximation, a local one, then the finite and
infinite exchange terms cancel each other in [2,6].

If the proton and neutron numbers are not equal, the total energy of the
system can be written as
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14. J. NEMETH
W = f Wam(ens 0p)d*r + 12 j Vir on) [on(ry) en(rs) —en(r)?1d2 ry d® ry +

1 2 3_r 3r
+ j V \(rs 00) [0(r) 0p(rs)—0p(ry)2 dory dory +

(2,8)
+ j Va(r ens 2p) [en(r) ep(ra) —on(ry) ep(r)] d* ryd® ry +
e J"P(’l p(ra) g3, g3, J [AU N (r) T(r)+ AU p(r)7U p(r)] @5 r.
2 [ry—Ty|
where
TN = TNN T TNp> Tp = Tpp 1+ Tnp» (2,9)
1 ky kwy ;
TNN = o 2 = } dr' | Enm(r's 1y [kpn—kp|)|%
s (2,10)
— L 3 3 (@ Ennlrr, h—knl) 1,
INp = 0 = = f SNP k.,

and V(r, gn) is the neutron —neutron, V,(r, op) the proton—proton and
V,(r,on, 0p) the neutron—proton effectivelongrangeinteraction occurring in the
direct term. Knowing the p dependence of Wya, Ty, Tp and of the effective
forces, we have expressed the total energy of the system as a function of the
neutron and proton density. Minimizing W according to gy and pp, we can
determine these functions, and the total energy of the nucleus.

III. Density dependence of the different terms in the energy

a) Nuclear maiter energy

The calculations of Sprunc [9] and Berae and Neémera [10] have
shown that the nuclear matter G matrix elements can be written as:

Gpp (k) = 4a, + 4b, k[kF,
Gyn (k) = 4a, + 4b, k[krF, (3,1)
Gne (k) = 2(ay + =) + 2(by + B)k/kr,
where a and b are the T' = 1 interaction contributions and « and f are the
T = 0 ones to the G matrix. In the 0.1p, — 29, density domain, where g, is

the nuclear matter equilibrium density, a, b, x and f can be represented with
the following curves in MeV units [10]:
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a=—1/y —1.13 — 1.07y + 0.2542,

b = (0.16 + 1.05y + 0.36y?)kr]y, (3,2)
o« = —8.26)y — 0.51 — 2.61y + 1.1y%

B = (1.66 + 5.04y — 0.27y)kr]y,

where

kn 1
PRI R e S (3.3)
ks 5 3

With the help of (3,1) we can determine the total energy of the infinite
system at a given density. Since the nuclear matter calculations give too little
binding, we multiply the potential energy by a factor 1.22 to get the correct
infinite nuclear matter binding energy for the N = Z case. The total energy
after this correction is:

c % <1 %5 ! 22/
Wym = T oe[02 (1.62/0N° — 0.88 — 0.620N° + 0.720%°%) +

+ 6N 0p (—5,55/0"°—0,60 —0,65 0'°4-2,30 p**)],

where 0 = p/p,, and
0o = 0.1855 fm —3. (3,5)

b) Effective long range forces

We have to deduce the effective v/(rg) long range forces from realistic
two-nucleon potentials. As a starting point we shall use the soft core REID
potentials [11]. For even singulet forces we accept the 'S force and for odd
singulet forces the 'P force. Since the nuclear matter calculations have shown
that the 3P state contribution to the nuclear matter energy is negligible for
every density, we take the form of the triplet odd forces as the sum of the
one-pion exchange potential and a term as Ae” **/x, where A is determined
from the requirement that the total P energy should be zero, just as in [4].
The effective force has been determined from the nuclear matter calculations
of S1tEMENS [12] in [7] as a density dependent expression, and we can take
into account the effect of the 'D—!S forces acting only in the d-state as a
density dependent force, acting in every even state.

Taking into account all the above considerations, the effective forces
acting in the different states are given in Eqs. (3,2)—(3,7) of [7]. The direct
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contribution of the T' = 1 forces can be written as
1
e [*Even 4 3 - 30dd + (*D — 1S)es] , (3,6a)
and that of the T = 0 forces
3 1
S 3Even Gy 10dd 4 (®D — ss)effJ~ (3,6b)

As a result, the density dependent effective long range forces can be written as:

van = — {[—7.501e~2 — 228.72¢~% — 1928.8¢ 4+ |-
PP 4x
+ 908.4¢ 6% 4 5768.2¢ 7] — ki(R) [—3.762e >+
P (3,7a)
+ 91.51e 3 — 458.84e~4* + 2917.8e % — 3561e~7]} =
= vi(r) — en(R)*" vy(r),
1 .
vnp =, {[—284.523e 7> - 2542.81¢~% — 15 002.93¢ % +
X
+ 70 584.96e ~6*—66 399.1e~7*]—ky(R) kp(R)[—0.86e 2 |
+ 467.463¢ 3 — 4353.4¢ ™ +43 000.9¢ ~6*—60 939.3¢ 7]} = (7h)
= v3(r) — en(R)"* ep(R)" vy(r) ,
where
X = Uit g =0.7fm2. (3,8)

The effective long range forces are no longer central forces, because of
the tensor forces. It does not make much difference if instead of p*3(R) we
use rather o(r;)"?o(r,)?, and the calculations are much easier, so in the following
we shall use this approximation.

c) Determination of

The derivation wave function as a function of the relative momenta has
been calculated by StEMENS [12] for nuclear matter at different densities. His
data can be approximated in the important density domain with a poly-
nomial:
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Wyn(k) = | [Enn(r)2d? ' = a(on)+b(on)k+c(on) k2+d(on) K
Wyp(k) = s [Enp(r)|2 d® 1" = alon, 0p)+ (3,9)
+ Blens ep) k+7(ons 0p) K2 +0(on, 0p) k°.

From (3,9) 7 can be determined by integration over k:

oy éﬁ Waonl =i+ 3 2W~p(|k Finl) =

m=0n=
- T—- [0,7 kk+5 Kk k] = BoXP+Co¥ o¥P,
(3,10)
kp kp
L = Zpr(lk km|) + 2 ZWNP(Ikn kml) =
=0n=0

m=0n=

N kb] = Bop*+-Coif of®.

IV. The equations determining the densities

With the results of Section III we are already able to determine the
total energy of the nucleus as a function of the neutron and proton density:

W = (Wanoxs o) @+ = [ i) Tonr) extrs) —en(n)* +
+ op(ry) ep(ra)— ep(ry)1d rydo ry —
- [ om0 x4 —on(r)¥* - 0n(r) Pl — s
— opl(r)P]drydor, + j va()[on(r1) ep(rs) — en(ri)ep(ry)] & ry dor,
+ f 04(r) [en(ra)® on(ra)® 0p(r;) 0 0p(ry) ™ —

cas QN(,-I)A/S QP(rl)dlIi] d.’; ry d3 T + % jM dJr d.} I3 _+_

h [7y— Ty
~ J [AUN(r) T(r) AU p(r) T(r)] d° .
AUy and AUp in (4,1) are exactly the differences between the finite and

infinite single particle energies of a neutron and a proton, respectively. Minimiz-
ing with the subsidiary condition

f on d%r + s op deti=i A5 (4.,2)
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we obtain the following equations:

aW Wy

EN = = S KN y
W, W,

o EENMECIR e e

9ep 90p

Here Ey and Ep are the Fermi energy of a neutron and a proton, respectively.
From Egs. (4,3) we can determine the AU:

LA
90p

AUN:K”, AUP':—: —}" Kp. (4',4)

From (4,1) and (4,3), (4,4) it is clear that AU is the solution of an integral-
differential equation. Since the last term in (4,1) is small, we can solve this
equation system by iteration. In first order

UR(ry) = | vi(r) [QN(T.") -on(ry) ] dry—4[3 on(ry)'? | oy(r)[on(rs)¥? -
— on(r)P1d® ry+ | wy(r) [op(rs) —ep(ry)] d®ry — (4.5)
=20 9N(’1)1/6 op(ry)"/ ‘ vy(r) [on(ra)® 0 p(rs) "0 —on(r)) "0 0p(ry) ] d® 1y —

1/6 o (ry) *° QP(r1)7/6 ‘ vy(r) [91\1(’2)7/6 Qp(rz)lls -on(r)" op(ry)®] d®ry,

and we get a similar equation for U{)(r,). Substituting this first order expres-
sion back into (4,1), we get Uf,) and U%. In this way we get two coupled
non-linear integral equations for gy and gp. Putting these back into (4,1),
we get the total energy:

W = | Wymlens 0p) @ r+1/2 [ v,(r) [on(rs) —on(r)][en(ry) —
— 2BoR(r,)—2Con(ry)** ep(r))** ] d3 ry dPry +
+1/2 [ vy(r) [ep(rs) —0p(ry)1[ep(ry) — 2Bop(r,)® —
— 2Cop(r1)%B 0p(r,)] d3ry d3 1, —
— 172 [ wy(r) [on(rs)" —en(r) "] [en(r)**—8/3 Boy(r,)* —
- 8/3 Con(ry) 0p(r )] d° ry dry— 1/2 [ wy(r) [0p(ra)*? —
— 0p(ry)"®] [0p(r,)"*— 8/3 Bop(r,)* — 8/3 Cop(r,) on(r,)**] dor, dr, +
+ 1/2  vy(r) [on(rs) —on(ri) ] [gp(ry) — 2 Be(r )" —
— 2Cop(ry)* on(r)P1d3 ry do 1y + 1)2 § wy(r) [0p(rs) —ep(r)] -
- [on(ry) ‘ZBQN(’I)‘E’/3 *QCQN(’H)Z/S QP(ﬁ)m] dryd3r, —
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— 1/2 § vy(r) [on(rz)" 0p(ra)"® —on(r1)" 0p(r1) "] [on(r:)"® 0p(r;)'e —
— T[3 Bon(r1)"0p(ry)"*—7/3 Con(r,)*®0p(r,)** —1/3 Bop(r,)* on(r,)"* —
— 1/3 Cop(r,) M0 on(ry) V] d3 ry dPr, —
— 172 { v,(r) [op(r2)"® on(r2) "8 —0p(r:)"® on(r,)"®] [0p(r;) 76 on(r))® —
— /3 Bop(ry)"" on(ry)"—1/3 Cop(r,)*"® on(ry)*® —
— 1/3 Bon(ry)*® 0p(ry)"* 1/3 Con(ry) ™8 0p(ry) 6] d®ry d3 1y +

3 r & .
+1/2 J —lgi%[ [op(ry) — Bop(r,)*"*—Con(ry)** op(ry)**] d* ry d* 1,y .

{ L)

Solving the equations as a function of Ey and Ep, we can determine the
density distribution of nuclei with given N and Z. Since for stable nuclei the
energy of the last neutron and proton is the same, Exy = Ep in our calcula-
tions. From the total energy (4,1a) we can determine the effective long range
two-body forces in a given nucleus:

(VN )ert = {”1(’) [1—Boy(r,)**— Bon(rs)™* —Cop(ry)*—Cop(ry)'*] —
— vy(r) (’N("1)1/3 on(ry)'*[1 -—-4/3 B(’N(r1)2/3 e (4.6a)
— 4/3 Boy(r,)*>—4/3 Cop(ry)"3—4/3 Cop(r,)*]} [—‘1 +;NM J

(vf)P)efr = viyn (oN—>0ps> 0p—>0ON)ers +

e’ y o 4,6b
I Beslr) Con(n) en(n) 4], .
LT 2

+

(vf\JP)eff o {”3(") 1= BQN(H)Z/B* BQP("1)2/3* C(’N(’x)_ll3 01>(’1)2/3 =
— Cop(ry) ™13 9N(’1)2’3] —v,(r) QN(’l)l/6 9P(’1)1/6 QN(r?.)I/G 9P("2)1/6 g

+ [1—4/3 Bon(ry)** —4/3 Bop(r,)**—4/3 Con(ry) ™ 0p(r,)** —

— 4J3 Cop(r;) % on(r)1} [ 1??2@ ] _

(4,6¢)

The total effective force can be written as:

[v(r; 0)aBlesr = Gap(0) 5(')‘}—(”23):3“ ’ (4,7)

where Py, is the operator projecting into nuclear matter state.

V. Rectangular density distribution model

Let us assume a simple rectangular density distribution with gy and
op heights and @ and b ranges, respectively. The total energy can be written as

W= Wyn+ D+ W, —4, (5.1)
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where Wy is the nuclear matter, D the surface; W, the Coulomb energy,
and A the correction term. The calculations were performed for three nuclei,
A = 64, 125, 216. The results for the densities can be seen in Table I. The

range of the neutron and proton distribution turned out to be the same:

Table I
Parameters of the rectangular density distribution
T o in fm~* roin fm x Ep 0. in fm—3 ry in fm ; Ep
ST L — e — b it ST | T 0 ol RS L
A= 64 0.151 l 1.16 0.095 —8.32 | 0,138 1.19 —17.61
A =125 0.135 } 1.20 0.123 —17.65 | 0.132 1.21 —6.14
A = 216 0.124 \ 1.24 0.174 —6.92 0.122 1.24 ! —4.17
1

a=0b— r,A18, (5,2)

where r, increases slightly with increasing mass number, while the central

density decreases. The neutron and proton central density was written as:

20, =on + 0p-
(5.3)
el A
on + 2p

The calculations were made beside the minimizing x values for the x = 0 case
as well, to see the effect of the symmetry terms on the density distribution.
Er is the Fermi energy of the nucleons.

Table II
Energy values for rectangular density distributions in MeV
A=64 A =125 A =216
b, | el . | s=kilh x=0 | x=014 | x=0
WymlA —13.312 —13.530 —13.667 —13.961 —13.806 ‘ —14.166
D/4 5.795 5.790 5.231 5.127 5.041 4.507
WA 2.037 2.547 3.308 4.270 4.333 } 6.255
44/4 — 1.347 — 1.338 — 1.243 — 1.231 — 1256 | — 1.103
dy/A — 0.553 — 0.629 — 0.930 — 1.062 — 1309 | — 1.574
a/4 — 1.900 — 1.967 — 2.173 — 2.293 — 2565 | — 2.677
D'/A 4.448 4.452 3.998 3.896 3.785 ’ 3.403
WelA 1.520 1.918 2.379 3.208 3.024 | 4.681
w4 — 1.344 — 1.160 — 17.300 — 6.857 — 6.997 ‘ — 6.093

Acta Physica Aeademiae Scientiarum Hungaricae 30, 1971




A SIMPLE THOMAS -FERMI MODEL 21

The results concerning the energies are shown in Table II. It is easy to
see that the energy per particle is slightly too high, which is not surprising,
since the minimizing density is not the correct one. It is interesting to note
that the effect of the correction term is very important. The nuclear matter
energy term is much less than for an infinite system. The reason for this is
that the Coulomb energy decreases the central densities, and increases the
range of the distributions. The value of the Coulomb energies are the correct
ones, but the surface terms are a little too big, owing to the rectangular density
distributions.
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MPOCTASI MOLAEJIb TOMACA-®EPMH 1J151 AAEP C PA3JIMUHBIM KOJIMYECTBOM
INNPOTOHOB M HENTPOHOB

M. HEAMET

Peswme

MCXO).UI H3 peasibHOI'0 JABYXYACTHUYHOI'0 NOTEHIHAJIA U HCI0JIb3Ysl pe3yJibTaTbl BbIYHCIIE-
HHIl 3aja4l MHOT'HX TeJl JUUIsi 0ECKOHEYHBIX 51/1€P, BbIBOAMTCS MoAaH(uuHpoBaHHas Teopus To-
maca—®DepMH IS 5/Iep C PA3JIHYHBIM YHCJIOM IIPOTOHOB H HEHTPOHOB. BbiBE/EHbI CBS3aHHBIE
HeJIMHEHHbIe HHTerPaJlbHble YPABHEHHsT 1151 ONpeJieJIeHHs1 pacnpe/iesieH|s: NJIOTHOCTH POTOHOB
d HEHTPOHOB B OT/IEJBLHOCTH. METO] NMPUMEHSIETCS B YIPOIEHHOM CJlyyae NpsiMOyToJbHOTO
pacrnpejesieHdsi TI0THOCTH. OGiacTh pacnpeesieHHsl MIOTHOCTH HeTPOHOB M NMPOTOHOB OKa-
3bIBAETCS] PABHOM.
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ON THE BREAKDOWN MECHANISM OF EXTERNAL
ELECTRODE DISCHARGES AT LOW FREQUENCY

By
J. F. Bité and K. G. ANTAL

UNITED INCANDESCENT LAMP FACTORY, BUDAPEST

(Received 27. II. 1970)

The breakdown phenomena, taking place between metal plates, placed outside the
discharge space under the influence of voltage at 50 cps, without an external magnetic field
in the case of argon and mercury vapour, are interpreted by us through a statistical descrip-
tion on the basis of a theoretical model elaborated by us. The pressure of the discharge space
in our experiments was carried out with argon, 2.5 mmHg, and with mercury vapour, 6 - 10~3
mmHg. The distance between the external electrodes was 20 mm. The breakdown process
and the current peaks following this process are interpreted.

1. Introduction

The assurance of a clean working space containing the gas or vapour to
be ionized is a basic requirement both for the fusion experiments and the dis-
charges brought about for spectroscopic purposes. Therefore, external electrode
discharges are often employed, in such a way that the breakdown is capaci-
tative. Contamination of the discharge space with the material of the electrodes
can be prevented in this way.

In connection with this more treatises are known (Dawipow [1], Frip-
KIN [2], GoLpsTEIN [3], GRANOWSKI [4], GRINBERGC [5], HALE [6], HERTZ [7],
Kaprzow [8] and voN ENGEL [9]). In the case of the model examined by HALE
[6] it was presupposed that the energy necessary for ionization is taken up
by the electron during the movement on the mean free path. This model was
developed further by FrRIDKIN [2] in so far that he took the collisions into
account and so extended the adaptability of the model to higher pressures.
GRINBERG [5], GOLDSTEIN [3] and Kapzow [8] applied further refinements
with the consideration of the diffusion processes by the characterization of
the phenomena.

By the examination of the stationary case, vVON ENGEL and STEENBECK
[9] and also HERrTz |7] established an energy balance for the characterization
of these discharges.

In the case of low and intermediate frequencies the discharges were
characterized by GrRaNowskr [4] with the setting up of the equation charac-
terizing the energy balance. The energy balance equation determined in this
way was not used for the characterization of the breakdown process, but for
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the description of the microphysical parameters of the discharge. Such a de-
scription which discusses a breakdown phenomenon of this type on the basis
of the energy balance has not yet been published.

In the following, the breakdown process will be treated in the case of
low frequency, taking into account the time and space dependences. The dis-
cussion will deal with argon and mercury vapours, with the determination
of the energy balance.

2. Capacitive breakdown in argon

In the description of both the argon and mercury vapour processes the
discharge between the copper plates of 30 mm diameter, and at 20 mm distance
from each other was examined in a working space of about 14 cm?, at 50 cps
frequency. An external magnetic field was not taken into account and the
argon pressure was taken as 2.5 mmHg.

The description was made with the presumption of the Maxwell —Boltz-
mann distribution and with the presumption that at the moment of the break-
down the average electron energy is not less than the first ionization energy
characteristic for argon. We presupposed on the basis of our previous calcula-
tions that the mean random velocity of the electrons is 2 - 10% cm/sec. Taking
the cylindric coordinate system as a starting point, we discuss by description
only the changes occurring in the direction preferred by the direction of the
external electric field. The number of collisions, occurring in the half period is,
in our case, of 10° order.

For the average velocity — drift velocity — of the electrons an .upper
limit can be given, with the assumption of a constant electric field strength
and with the application of the relation:

(1)

m v

where e is the charge of the electron, m is the mass of the electron, L is the
mean free path of the electron, E is the potential gradient, v is the average
random velocity of the electron.

The value of E was taken on the basis of our previous experiments for
0.1 e. s. u. In this case, the value of the drift velocity u, is

Uy = T - 10° em/sec. (2)
Because
uy 7-106

2 3)

] 2-1v-
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as well as the quotient of the breakdown distance D and of the mean free
path L is:

L 302

et O el o | 4

5 2 (4)
by the division of the perturbated distribution function into a stationary and
an other, by the electric field perturbated member we can apply the follow-
ing extension:

fiv) = folv) + %fl (v) + (5)

where f(v) is the complete distribution function, f (v) is the stationary member
of the distribution function fi(v), in our case the Maxwell—Boltzmann dis-
tribution cos ¢ = uyfv, fi(v), f,(v) are the perturbated members of the com-
plete distribution function.

As was shown by Dawipow [1] if we stop by the extension at f;, we
still get a very good approximation. The members of higher order were not
taken into account in the following.

In our case, the expression proposed by Dawipow [1] was applied instead
of the collision integral in the Boltzmann equation, and in accordance with
our initial experiments, we do not deal with the power effect produced by the
external magnetic field:

1.8

8(nefo) Y . (v2f,) —

1
e G T a s ?—r‘;—Ene

ot v2 8_
~.&11[Me_a_ﬁ+£‘_f_o} o &
v M 9v|mL(v) 8v  L(v)|
8(n.f1) e of | M
28 : . n; =28 =0 7
ot +ovine Jo) + m S dv i L(v) S @

where n, is the electron concentration, M is the mass of the neutral atom, k
is the Boltzmann constant, T, is the gas temperature, L(v) is the free path
of the electrons.

With the application of value f,(v) the @, average of the drift velocity
of the electrons is as follows:

(8)

From Egqs. (6) and (7) it is enough to take into consideration equation
(7), because it was assumed previously that f (v) is a Maxwell—Boltzmann
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wl

distribution. Taking the time dependence as a factor e='“ into account, the

value of f;(v) is as follows:

Af_Ig_gﬁL
b rer e (9)

where »(v) = v/L(v) and »(v) is the collision frequency.

Inserting the value of f;(v) from Eq. (9) in relation (8), integrating parti-
ally and presupposing that the »(v) can be considered as changing slowly com-
pared with stationary distribution function f,(v), for the value of @, we obtain:

By LA (10)

m v—iw

where 7 = v /L(vax) and v,y is the maximum velocity of the stationary
distribution function.
The P, energy, taken up by the electrons with the help of average drift
velocity is as follows:
R 5

P =

1

dt . (11)

m v—iw

The P, energy taken up by the excited atoms through secondary colli-
sions is as follows:

P—on,S; eU, dt, (12)

where n, is the concentration of the excited argon atoms, S, is the cross-
section of the collision energy transfer in the case of collisions of the second
kind, U, is the average excitation energy of the argon atoms.

The N, member of the negative energy transport, which may be attri-
buted to elastic losses is

Mo 2]"; e(U,~Up)n,S (13)

where U, is the potential of electrons (energy equivalent), U, is the potential
of the gas atoms (energy equivalent), n, is the concentration of the gas atoms,
S is the elastic cross-section of collision of the electron-gas atom.

The loss which may be attributed to the inelastic collisions IV, is

N, = —%vnze XS, U;dt, (14)
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where S; is the cross-section of the inelastic collisions, U; are the excitation
and ionization potentials of the argon atom.
With their application the energy balance equation is as follows:

%:%LE{I_ ~%ﬁng5><
t m Y—1i0 (15)
S
% U,—U S A B
[M (U0 + 3 o ]

where d/dt is the total differential, but the space dependence may be neglected
with a good approximation. Averaging for a half period we get the following
relation:

4 e e m U“
UQ:WEQ——lf—}— i V V [14+i]—
3n m ] 37 (16)

> ol __i,i 1/2 418 ﬁ.U_"a Sa, 172 5
V V UiUe [1+L]+ 3%1/%] m L i g Ue [1+L]’

where the energy dependence of the cross-sections is taken in a linear shape.
If the relation is divided into real and imaginary parts, we get

e m UP
& 3om mML*

g e b (17)
b2 ﬁl/i,l,,s U, U4 — 4 V 1/ e Us na Sa 5
3n m| m L S 3n ' m L n, <8
i 4 O ‘/ V m U'Vz
Tl 5 S
37 m » 37 M M L (18)

R T R
By 1/2 A I L L e
V V Ub +3nl'nl'/mL nUe'

g

The suffix, characteristic for the excitation phenomena may be neglected
on account of magnitude, when we insert the value of the constants and we are
confined only to the processes preceding the breakdown. In addition to this
the value of the negative energy transport, taking place by the inelastic col-
lisions, must be taken into account, completed with a probability factor.

By the division of the equation into real and imaginary terms it is evi-
dent that in the expression for the energy taken up by the electrons from
space, the periodicity of the field strength supplying the energy is not to be
found in the imaginary term. Therefore, the more complete expressions of the
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real part may give us fuller information. In this case, we get from Eq. (17),
containing the real term:

E>22-10-1 (19)
the field strength, expressed in e. s. u., which in practical units is:

E > 66 V/em.

It must be mentioned that this criterion has the character of the lower
limit, exactly because of the way it was treated and because of our initial
conditions.

3. Capacitive breakdown in mercury

We must start with a given mercury vapour pressure, in our case from
the following microparameters:

Table I
mean free path for electrons (cm): 8.7
average random velocity of electrons (cm.sec™!): 2108
average drift velocity of electrons (em.sec™1): greater than 10°

On the basis of the above data it is evident that the criteria of the
statistical description, applied in the case of argon [Eq. (3) and (4)] are not
fulfilled. The energy transport may be analysed independently from this: in
this case, however, the collision frequency must be given on the basis of ele-
mentary considerations. The equation of motion is, in our case:

d?x dx
=eE+vy—, 20
dr* i di 29)

m

where x is the coordinate, preferred by the direction of the electric field, » is
the coefficient of viscosity.
In this case the mobility will be

AL ' (21)

m v —io

together with which the energy balance with the previously considered terms
will be

3 e 1 B,
t m V—10 (22)
2m il e T N e

se P2 i i B SR W | i

[M(e S e }
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‘where
d 3 )
dt ot ? ox (&)

Taking an average, applied also for the half period — as previously —
and neglecting the transport of the inelastic and second kind collisions, we
get the relation:

2 Nd

i N 8- ¥ n U,
7w

U o
€ 142] = E 14-i] — — ————2[142 24
dx [1-+] L 20) t1+] I n L M o [1+:] (24)

in which the space dependence is taken into account with a linear energy
dependence, substituting U, =Uj:

8. w. B

el e 1-Ei=—
2 aw m v—iw D L+
(25)
sr g Ok ey
T m vY—i10

Dividing the relation so obtained into real and imaginary terms, we get the
following equations:

Yiy 2 e Bo—w) U

2 7w m v’+o0* D
Lo K R (26)
.15 V_‘t L/_‘i_ U m
0] m V24 w? 157 /4 m L M
d 3/2
2 e E(+o) U; Lt e & YYD um 1- (27)
aw m v*4+w?: D 170) m 2+ w? L M o

If the viscosity coefficient is considered as a specific viscosity, for a non-
closed, infinite space, we get relatively low critical field strength, from both .
equations. One possible method for the closing of the model is weighting
-according to the u,/v and L/D. In the case of the closed model we then get
the following expression as the breakdown criterion having the character of
the lower limit:

E > 6, (28)

which is expressed in practical units:
E > 1800 V/cm. (29)
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By the treatment of the model, concerning the processes immediately
preceding the breakdown and characteristic for the “reflection time”, we have
left out of consideration, as well as in the case of argon, the positive energy
transport representing only a very small amount of energy and depending
on the presence of excited atoms.

4. Further characteristic current peaks

In the equations, characteristic for the energy balance (15), (22) in the
indication of the energy transport there is a sum, attributable to inelastic col-
lisions. The coefficients belonging to the single terms of this sum characterize
the cross-section of all processes, produced by the inelastic collision.

In the description of this method a recursive correction must be made,
however, which mainly affects the first term in the energy balance equation —
the energy quantity taken up from the electric field. The correction must be
made according to a distribution function, changing in the course of the dis-
charge, e.g. with the application of an iteration method or by a successive
approximation.

For the analyses of the current peaks, manifesting themselves at the
capacitive discharge it is suitable to use a method carried out over a greater
time interval and describing the elementary time dependences more minutely
instead of by the averaging applied so far for the half period. It is imaginable
that the energy accumulation, starting at this time with the population of the
excited and metastable atomic levels, which may have been neglected in the
description of the breakdown, alters the energy transport more considerably.

The detailed analysis and description of these phenomena and of the
behaviour of the transient processes in gas mixtures outlined will be the sub-
jects of our further examinations.

5. Experimental references

The relations established for the state preceding the transient period and
obtained theoretically were checked experimentally with the realization of
the formerly outlined arrangements. It has been found that the given break-
down criteria can be proved experimentally and the described model is suit-
able for further development.

The accuracy of the measurements was 0.5 V, the calculated values
and their equivalents determined experimentally are shown in Table TI.
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Table II

breakdown voltage (V)

calculated | measured
= S po ; 2
2.5 mmHg argon 132 | 156
6 - 1072 mmHg mercury 1800 ‘ below 1800 there is no breakdown
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O MEXAHM3ME INMPOBOS1 HUBKOYACTOTHBIX PA3PSIOB B CJIYUAE BHEIIHHUX
QJIEKTPOOOB

M. ®. BUTO n K. . AHTAJI

Peswome

Ha ocHoBe paspaboTaHHOi HAMH CTATHCTHYECKOH MO/EJIH HHTEPINPETHPYIOTCS SIBJICHHST
npo60osi, BOHUKAIOLHE MOJ AeiiCTBHEM HANPsDKEHHs1 ¢ YacToToii 50 I B aproHe U napax pryTH,
NIPUYEM 3JIeKTPO/Ibl PACIOJIAraloTcsi BHe 00J1aCTH pPa3psijia U MArHUTHOE 1oJ1e 0TCyTCTBYeT. [laBiie-
HHe B pabouei 00J1aCTH NPH 9KCIIEPHMEHTAX ¢ aproHom 2,5 MM p. CT., IPH 9KCIEPHMEHTAX C Ma-
pamu pryTH 6-10-3 MM p. CT., pacCTOsiHHE MYy BHEUIHHMH 3JIEKTPOJAMHU cocTaBiisieT 20 Mm.
OO0bsICHsIETCs TIpoLiece Npo00st H CIIEAYIOLIHE 32 3THM CKauKH TOKa.
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IMPURITY INDUCED Tc = 0°K SUPERCONDUCTIVITY
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(Received 5. III. 1970)

Our earlier result, representing the dependence of critical temperature of supercon-
ducting transition on the concentration of dia- and paramagnetic impurities is applied to the
case when T, approaches absolute zero owing to impurities. We calculated the rate of spin
flip scatterings /Iy, for an electron at the Fermi surface, when either the scattering pro-
cesses or the change in the Fermi surface topology have a dominant role. The expressions
obtained were verified by a comparison with experimental data and by numerical estimation.

Introduction

In a previous paper [1] we examined the effect of para- and diamagnetic
impurities on the temperature of superconducting transition. Assuming a
Lifshitz singularity in the density of normal single-electronic states, we obtain-
ed the next equation for the determination of the critical temperature T,

w w

A2 th 3T i th T (1)
0 ek e Y] Ao ] o oo B e 2 ok e * b
Mo(e%) RCL do oL AM Re : do it (Ja—w — Va*—ow) =1,

where the first term is the result of the ABRIKOsSOvV—GoORKOV theory [2] and
the second term is due to the singularity. In this formula the symbols mean:
A the potential of electron—electron interaction, v,(ef) the density of the
regular normal single-electronic states on the Fermi surface of the pure metal
&, wp the Debye frequency, I', and I; are the rates of normal and spin flip

scatterings for an electron at the Fermi surface (proportional to the impurity
concentration), M is a constant depending on the effective mass of electron:

s m, V2 mg
272
and

it
@i g AT Doy ARy Pt~ B8 o
2)

a* =y, Azd I:Id+ Yp AZp Ir‘1p+" + ep—e; ,

I+ 1
2
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where m, and m are the diagonal elements of the effective mass tensor, AZ,
and AZ, are the differences in the valence of dia- and paramagnetic impurities
and the normal metal, y, and y, are constants, ¢ is the critical value of elec-
tron energy.

Superconductivity at T, = 0 °K

The value of T may be decreased to absolute zero owing to the effects
of impurities. This is due to paramagnetic impurities. In this case, in Eq. (1)
we have

(3)

If I'y = I',, where I'y, is the value at which T, = 0 according to ABRI-
K0sov—GoORKoV theory, then

DD dep
v,(¢%) Re e 4
web)Re [ ™)

Writing I', = I'y, + AI'y, and using the iteration method we have, in an
approximation of first order,

AT, = CRe et dgddn

4 o
T T ”
where
i, iy
vo(e¥%) o}

Taking into account that I', /wp ~ 1, the absolute values of square roots in
the denominator of Eq. (5) are large, we may write, approximately,

w"} LB

0

Aptlap, {_‘_‘i(rno‘*' I5) In (w+il) —204-2i[i(w i 15,)
8 Vag—o + g+ o

The value of AI', we calculate in two important limiting cases of experi-
mental interest.

a) If the scattering processes dominate, e.g. 7, << 1, and assuming, that
I'; = 0, then expression (6) has the form

AL — CRe|To— L) In (@p+ilyy) —20p  iL—I) il
30T S L e :
o g b G /1
i op + 3Lt L) VB 4 (e |

(7)
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Separating the real part, after some calculation we have

{(1’;0 —Lp0) [ln (wp+1'%)—2 arctan &l - 40)0} cos f8

[0}
AP == C - D
S0 4 lw% + (I;O_*_ I;]po)z ]1/4 +
4 (8)
{(I;o_ Lrin) [ln (0 +1T'%)+2 arc tan Lo l + 4-wD} sin f
Wp
=C L
7 [a% - (Lot L) ]1/4 =
3 4
+ ¢ 7110_“{:11770_1 L
(Lot Lpo)'?

where

- ﬂ = — arec tan,z{;q,—*jﬂq =

2wp

According to this relation if M >0 (and consequently C < 0), then
Ay >0, but if M < 0 (and therefore C > 0), then AI'yy < 0. In the first

case we can conclude that an electron group is generated in the Brillouin zone

Fig. 1

independently of the fact that other mechanisms may also contribute to the
decrease of the critical temperature. But if A/, << 0, then we cannot reach
such a direct and definite conclusion.

Curve a) in Fig. 1 represents the ABRIKOSOV—GORKOV theory and on
comparing the experimental curve b) [3] with our result we find a good agree-
ment. The curve ¢) would represent an alloy which has a positive effective mass.
The point ¢ corresponds to [, = [, and the points d and e stand for M < 0

S S
and M > 0, respectively.
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36 I. KIRSCHNER and A. STARK

We can make a numerical estimate to verify our results. We shall use
data for In:

ke
T,—34°K, 0p,=109 °K, I, = :"ZL S0y — 3,5-10~* cal/grad? mol,
Y

v2(ek)=9:2: 102 exg=tem s, m* — ;4 m,,
m*32  27.10—4
e 0 I

= 2 . 10—42 gl‘sl‘z,

where m, is the electronic mass, y is the electronic specific heat constant, and
the effective mass of electron is assumed to be isotropic and assuming

Tnpo ~ 102I";,. Comparing the BCS-formula for T
1
T.= 120, ¢ ™
with the ABRIKOSOV—GORKOV expression for /',

w

02413,

and hence
1

Iy~ wp e— (i

we see that [\, ~ 1,2T.. From these data we obtained AI'y/I';, ~ 0,1--0,3-
b) If the change in the Fermi surface topology has a dominant role e.g.

Yp > 1, and assuming that I'; ~ 0 and 4Z, >0, then Eq. (6) has the

form (after neglecting the imaginary part):

M Iy(0p+1'%) >

1’0('5(;:') (U%) : (9)

AT, =

(L30— I7,po) arctan fo +2wp
D

I;O _—_‘_rfll PO
Ve

X

7
4

Vay—op + Vxy+op

where

= as

rnc

ag=Y,4Z, I';po >owp and €
But if AZp <. 0, after similar calculation we have

M To(0b+150)(L30— Lhpo) S

Al — e
”0(5(;-‘) 2 wD (10)
__[ InI5, In (w}h+175,) ]
Vl“o| VI%H—CUD i V!“ol*wD
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With respect to experimental situations we notice that the decrease in
the critical temperature owing to the change in the nature of the Fermi sur-
face topology can be measured independently of other mechanisms. Namely,
adding diamagnetic impurities with +4Z,; and —A4Z,; to the pure supercon-
ductor we can make the potential of electron— electron interaction isotropic
and therefore the KADANOFF—MARKOWITZ mechanism [4] does not contribute
with a further increase of impurities.
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CBEPXITPOBOAWMOCTD IPU T, = 0 °K BCJIEJCTBUE INPUMECEN

M. KMPUIHEP u A. IITAPK

Peswme

Panee nosiyueHHbllf HAMH Pe3yJbTAT JUIS1 ONpeJesIeHHsI 3aBUCHMOCTH KPHUTHUYECKOH TeM-
[epaTypbl OT KOHLEHTPALHH /IHA- H MapaMarHHTHBLIX TPHMeceH NPHMeHs1eTCs K cayyato, koraa T,
CTPEMHTCSI K HYJIKO BCJIEACTBHE BJIMSIHHS NpuMecel. BbIUHCIAETCA YHCII0 CTOJIKHOBEHHH B €U~
HHILY BPEMEHH C [1€PEBOPOTOM CITHHA JUJIsi 3JIEKTPOHA Ha noBepxHocTH Pepmu Al Koraa rias-
HYIO POJIb HI'PAIOT JIMO0 MPOLIECCH PACCesiHHSI, JINO0 U3BMEHEeHHe TONO0JIOTHH TOBEPXHOCTH DepmMH.
ITosnyvyeHHBIe Pe3yJILTATHI POBEPEHBLI CPABHEHHEM C OTBITHBIMH JIAHHBIMH M YMCJIEHHOH OLeHK 0.
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Hartree—Fock type of calculations are made with density dependent forces, and we
examine the effect of density dependence on the results. The single particle and total energies
and the average radii of spherical nuclei are determined. The results are compared with other
calculations. Good agreement is found between theoretical and experimental values.

I. Introduction

The most usual method to determine properties of finite nuclei is the
Hartree—Fock approximation. It is applicable only for weak forces. Phase
shift analysis shows, however, that the two-body forces are not weak forces.
There are two ways of avoiding this difficulty. One is to deduce from the two-

body scattering some weak force which fits the scattering data relatively well,
" and which are already applicable in first order calculations [1, 2]. The other
possibility is to use BRUECKNER Hartree—Fock calculations {3, 4]. There one
rearranges the perturbation series by running up the ladder graphs, and in
this way a new first order term is deduced which already gives a better first
order approximation.

The biggest problem with the BRueckNER Hartree—Fock calculations
is the double self-consistency. One determines first a single particle potential,
from this the single particle wave functions by solving the Schrodinger equa-
tion, then one determines the G matrix elements, and from this again the single-
particle potential, and so on. The single particle potential is non-local, because
of the exchange term, which makes the whole calculation process even longer.
One can make a short cut by using harmonic oscillator wave functions, as
the real one, and forgetting about the Hartree—Fock self-consistency, keep-
ing only the BRUECKNER one; this is, however, a bad approximation for heavier
nuclei.

A new way of dealing with this problem has been developed in recent
years. Using the original local density approximation of BRUECKNER [3], one
can develop it further by applying certain corrections [5] and as a result one
can deduce an effective two-nucleon force, which is density dependent [6—9]
and which gives quite good results for first order calculations [8 -10].
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40 J. NEMETH

In this work we examine in detail the solution of the Hartree—Fock
equations for different density dependent forces. A short report of the follow-
ing results has been already published [10] in the Physics Letters. In the
second section we deduce the Hartree—Fock equations for our density depend-
ent force; in the third we examine the method for theirsolutions, and in the
fourth we discuss the results.

II. Hartree—Fock equation with density dependent forces

The density dependent force we use for the gy = pp case can be written
as [7, 8]
v = f(o(R)) 6(ry — ry)+-ve(r, 0) 8(0) (2,1)

where f(p) can be obtained from the nuclear matter energy density, and v, = 0
if r <1 fm. The density dependence of the long range forces can be written as

ve(r, 0) = vy(0) — o(ry) ™ o(ry)® vy(r), (2,2)
g(o) = 1 — 2Bg?3 — 2Cp'B. (2,3)
B and C are constants, and v, is different for the different partial waves,

and is the sum of Yukawa terms.
The total energy can be written as

~

i 1
W= Wian + |wle(BNER + - | 1P(0) gle(ry) -
[e(re(rs) — o(r)?1dr dr, —

- j o2(r) 8(o(r)) [o(r)?* o(r )" — o(ry)*] d* r, d¥r, +
1 ~
5 | 0 alelr) Lo — el d®PN P @, — (2

2 _;_ ]vi(r) g(o(ry) [o(rra)? o(r) 2 p(ry)¥? —

— 1(r, o(R))? o(R)P] dPry dPr, -

L[l+g(9(rl)) g(rl) 9(’2) d3r. d3r
2 . 2 £ — 1y 3l

+

and 7 is the nuclear matter exchange density

2 sinkp(R)r—kp(R)rcoskp(R)r

T = T
| K re

(2,5)
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kr is the Fermi momentum, v°, v* are the direct and exchange combina-
tions of the total forces, respectively, Wy, is the kinetic energy and thelast
term the Coulomb energy, corrected by a factor arising from the local density
approximation [6, 7, 8]. For the g, =~ ¢, case the energy is a much longer
expression and can be found in [7].

From (2,5) we can get the Hartree—Fock equations

h2
i Em_ Ppi(ry) + x(o(ry))gi(ry) +
== _S‘ Blo(ry), o(ry), rys 1y) 1y @i (ry) + (2,0)

1 s P(o(ryry), o(ry), o(ry), 1y o)d? ry @u(ry) +
=t s 8(o(ry1y), o(ry), o(ry), 11, 15) @i(ry) d3ry = e;y(ry) .
where the various terms are given in the Appendix.
The Hartree—Fock equations can be solved in coordinate space or on
a harmonic oscillator wave function basis. In our case the last methodis very
difficult in practice, because we have p'/%, 0*3in our calculation. We used the
coordinate space solution method of VAUTHERIN and VENERONI [2] who sub-

stituted the non-local potential with an equivalent local potential, namely
after integrating out for the angle the remaining

5' k(ryry)u; (ry) dr, (2,7)

integral is replaced by an equivalent local expression

1!

u,(ry)

jk(’1 ro) wi(ry) u(ry) d® ry (2,8)

and we avoid the poles of u,r,) at r; = r, by calculating (2,8) for r; — ¢ and
ry, + € values, and linearly connecting the two terms (¢ <).
Because of the ¢ dependence of the effective forces, in (2,6) we have

ov
terms coming from — so we get the so called rearrangement expressions.

This arises because when we change the wave function, the total density also
changes and, therefore, so does the effective force. The effect of the rearrange-
ment term is very important. For density independent forces the total energy
can be written as

E—— 3(+e) (2,9)

where t; is the kinetic, e; the single particle energy. From known e;-s we
can roughly determine E, because t; is almost the same for the known models.
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We obtain |E| as smaller than its experimental value. For density dependent
forces the total energy can be written as

L 1 b e,
E=— 3 @te)— — 3(ij | —de
2 2 G

ij> (2,10)

instead of as in (2,9), and the rearrangement term corrects the above men-
tioned contradiction. This means that first order calculation cannot give well
all the experimental results, but the density dependence of the forces, which
comes from the inclusion of higher order terms, can provide good results.

III. Solution of the Hartree—Fock equations

The solution of the Hartree—Fock equations was carried out only for
spherical nuclei, with the method of VAuTHERIN and VENERONI [2].
If we write the long range forces in the form

v = fle) 6(ry —rs) + W(r. ¢) + B(r. @) P, — H(r, o) P, — M(r, o) P, P,, (3.1)

where
P L 140, 0,

o

g MR (3,2)
2 2

are the spin and isospin projection operators, and we expand the Yukawa
terms as
v(jr, —r,

) = % vg (riry) Py (cos 4,,), (3:3)

the Hartree—Fock equation can be written as

L(I+1)

r2

B2

2m

L"** ]+ V() () = e,(r), (3.4)

where ¥, is the total equivalent local potential

1

uy(r)

Vi(r) = f re’ U r') &' uy(r') (3,5)

and for density independent forces

4 i
Uy(riry) = —::“ o(r,— r2)J 0(rg) vo(ry r5) d®ry —

il 0

l l k2 (3’6)
~(2z¢+1)2(2lp+1)(21,,+1(“ 4 )
- 000

Fkaﬂ(rl rs) Qp(rl o) diry
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where o, § denotes the j,, I, ¢, quantum number set,

v0:3WO+%BO —%HO—MO,
(3,7)
Lo psi2
I;aﬁ:{] Ja 1/ } [W qaqp“Hk]'f'Bk 929 —M,.
B ﬁ

0: 040

{la Ja 112
Jols &

. Lk
( o j is the Clebsch—Gordon and
} the Racach coefficient.

In the case of density dependent forces the whole calculation becomes
more complicated, because W, B, H, and M now depend on the density. In
this case in (3,6) instead of v, and I7,; we have to substitute

8w, (ry ra0(r1) 0(r)) (3,7a)

v = vot-20(r) e
1

and

8Lup(rirse(ry) e(rg) (3,82)

o = Thapt-2 8(r1—15) el 73) Bo(ry)
1

To get good numerical results we have to introduce a single particle
spin-orbit force
ves = cis Is, (3.9)

where ¢ is determined from experimental fitting, because theoretical calcula-
tions cannot be carried out if one approximates the tensor force with a density
dependent effective force.

The numerical solution of the equations (3,4) consists of the following
steps:

a) First we determine the

Wl 1) = Y —1,) P, (cos O)dLQ
expressions, where v(r; —r,) is the sum of Yukawa terms

e~ Hilri—rsl
v(r;—r,) = 2»41 o

vy —ry|

We determine v,(r,, r,) for every k, u, r; and r, values, and the results are put
on a drum for every r; value as a function of yu, k and r,.
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b) We solve the single-particle Schrodinger equation for given initial
conditions and equivalent local potential. For the first iteration the starting
potential is a Saxon—Wood one. In this way we get the single particle energies
and wave functions.

c¢) Knowing the wave functions we determine the neutron and proton
densities and mean square root radii.

d) We calculate the Coulomb potential, the spin-orbit potential, and the
local density dependent potential coming from the direct terms.

e) We determine in a sub-programme the integrals for every u, k, o, f
and r, value. For heavy nuclei (like lead) k = 13, o, § = 38 and r, has a value
of 150 so that this is by far the longest part of the calculations.

f) We determine in a sub-programme the Racach and Clebsch —Gordon
coefficients needed for the exchange potential,

g) We calculate the non-local exchange potential, and express it with
the help of an equivalent local potential.

h) From the Coulomb, spin orbit, direct and equivalent exchange poten-
tials we construct the total single particle potential for every state as a func-
tion of r,. .

i) We calculate the total energy. This is now not such a simple calcula-
tion as in the usual Hartree—Fock case, because of the rearrangement term.

j) With the new potential we again solve the Schrédinger equation and
repeat the whole programme.

Since the exchange energy calculations are very long, for the first eight
iterations we used the Slater approximation, and only in the last five did we
use the total exchange programme.

IV. The results

The calculations were carried out for two different cases. In one case
in the long range forces and in the g(p) correction factor we suppressed the
“density dependence for which we substituted its nuclear matter value. In the
other case the long range density dependence was taken into account. We also
examined the effect of the different terms on the radii and energies, so for
this reason we changed the values of the different parts of the forces.

a) The mean square root radii

Table I shows the neutron and proton radii of the spherical nuclei. With
rc we note the charge radius

re = rf, + 0.6.

We also show the radii for the long range density independent case. It can
be seen that for the density dependent case the radii decrease. The reason for
this is that the density becomes bigger at the centre and smaller at the sur-
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Table 1

The average neutron, proton, and charge radii of spherical nuclei. The r(V- s are the results

of the density dependent, the r(?-s the density independent long range force calculations.

Tcexp is the experimental charge density, r, %) the results of Davies and TARBUTTON [4], 9 the
results of KERMANN et al. [1] and 7,® the results of VAUTHERIN and VENERONI [2]

ra® rp® re® W | e ! 7ol s 7o) re® re®
160 263 | 266 | 275 | 260 | 273 | 281 | 273 | 267 | 239 |27
10Ca 3.30 3.36 3.45 3.36 | 3.42 | 3.59 3.50 3.30 2.89 3.52
18Ca 3.66 3.43 3.52 3.69 3.50 | 3.57 3.49 3.34 2.79 3.60
oozY 4.23 4.16 ‘ 4.23 4.28 4.22 ‘ 4.29 | 4.30 3.03 4.32
28Ph 5.53 5.38 \ 5.44 5.58 ’ 5.42 5.48 ; 5.52 5.14 | 5.50

face. For comparison, in Table I we also show the experimental values and
the results of some theoretical calculations [1, 4, 2].

If we slightly decrease the total value of the forces or decrease the
saturation density of the nuclear matter, the mean square root radii will
increase. If we increase the attraction in the longest part of the long range
forces and decrease it in the medium, the radii will again increase. The reason

Table II

The energies per particles of spherical nuclei (1), (2), (3), (4), (5) are the same as in
Table I, Ep and Ex can be seen from (4, 2), aud Eg is the rearrangement energy

E/A Ep Ep
1 $ Lo 1 2 1 j 2
160 —1.73 —1.60 —4.89 —4.65 3.33 3.52
40Ca —8.32 —8.25 —5.65 —5.42 2.57 2:31
48Ca —38.02 —1.9 —5.43 —95.25 2.32 2.12
90Zr —8.20 —38.02 —6.05 —5.83 1.50 1.23
208Ph —17.45 —17.21 —17.63 —17.37 1.46 1.19
Ex
\ 3 g (E/A)exp E/A®) E/A® EJA®
20 0.54 0.70 —17.98 —4.81 —2.94 —6.05
40Ca 0.62 0.82 —8.55 —5.64 —3.96 —6.43
48Ca 0.67 0.90 —8.67 —5.3 —3.41 —6.10
90Zr 1 1.15 —8.71 —5.99 —6.28
206Ph 0.82 1.00 —17.87 —5.20 —5.52
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Table III
The single particle energies of 10, 1°Ca and **Ca for density-dependent (1) and density-indepen-
‘ 10
1 2 1
‘f neutron proton neutron proton neutron proton
1s1, —34.26 —30.53 —33.80 —30.40 45.25 —37.74
1p%, ~19.39 1585 | —19n —15.92 —33.19 | —25.97
1pY, —14.76 —11.25 —14.85 —11.55 —33.06 —922.84
(—15.67) (—12.15) ‘
149, 2077 | —I1381
251, —16.85 S V)
1d, | —15.53 —B61
1 (—15.62) | (— 8.33)
1f7s : |

for this is clear: in our case the attractive long range part acts as a repulsive
force, because

[ tetra e, (1)

r
is positive for negative .
b) The energies of nuclei
As can be seen in (2,4), the total energy can be written as

E ’
I = ENM+ED+Ex+Ecoul ] (4',2)

where Enp are the first two terms in (2,4), Ep direct, Ex the exchange cor-
rections and E/,, the Coulomb energy. In Table IT we can find the energies per
particle of different nuclei and the different terms in (4,2). One can also see
from Table II the importance of the rearrangement energy. In Tables III and
IV we can find the single particle energies of different nuclei. In each Table
we also show the energy values for the density-independent long range forces.
One can see that the deep single particle energies become more bounded for
the density dependent case, and the total binding increases. The results are
in very good agreement with experiments, as can be seen from Tables II, I1I,
IV (the experimental values are put in brackets). We also compared our
energy results with other calculations.

The density dependent effective forces give very good results in first
order calculations. The single particle and total energies and the radii are in
very good agreement with experiments. It seems to us that by deducing our
effective forces with the help of the modified local density approximation we
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dent (2) long range forces. The values in parentheses mean the last nucleon’s separation energies

49Ca 48Ca
2 A e 1 2
e e e B e e e
—44.70 —37.26 —42.89 | —41.03 —43.40 : —41. 87
— 3273 —95.32 o = T —s1as | —31.68
—32.41 9216 ~29.49 ~28.86 2993 | —29.51
—20.32 —1351 - | —19%6 DT T =T T g " T
—16.53 — 9.63 —16.17 ~16.50 ~16.91 <3738
—15.45 Y S I 7 3 15.08 1613 —15.72
| (—15.60)
| — 1w —gm
\ (— 9.94)

have succeeded in finding a way to take into account the biggest contribution
of the higher order perturbative terms in first order calculations.
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Appendix

If we minimize the (2,7) energy as a function of we get the equation
(2,8) where

_G_W(Q(rl)) AT
8o(ry) e

p = vP(r) glo(ry) [e(rg)”e(rl)]+ "D(r) 0% (e(r.)) e(ry) [o(ry) —o(r ] X

do(ry)
% = oP(0) (6(0) [er) ™ — () P] e(r)
v } SP(r (@(’1)) 430 4/3 43 ik
5 2 (r) — 50(r) [o(ra)*® —o(r)*] o(ry)
8_8(9(’1)) T2 r r A 2
89('_1_) 1= ( 1 0( 1)) + (A,2)
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Table IV

The single particle energies of 205Pb, 99Zr for density-dependent (1) and density-independent
(2) long range forces. The values in parentheses mean the last nucleon’s separation energies

i 90Zr 208PL,

N 1 2 1 2

ﬁneutron | proton l neutron proton neutx:o_x; 7} 3 proton neutron proton
R —50.02 | —42.92 | —49.82 | —42.70 | —50.61 | —40.28 | —51.02 | —39.29
Lip +8, —40.75 | —34.72 | —40.51 | —34.17 | --44.97 | —35.78 | —42.21 | —34.57
1p Y, | —38.99 | —32.75 | —38.73 | —32.23 | —44.37 | —35.14 | —44.82 | —34.39
1d s, | —30.32 | —25.37 | —30.11 | —24.76 | —38.56 | —29.82 | —38.97 | —28.81
281, \ —27.42 | —21.33 | —27.23 | —20.87 | —36.19 | —26.92 | —36.65 | —24.95
1d 3, SB7160 ) =22 30N (a7 A N <E910h6 | s 228 35 Vo ataTR = SR giganls Eio 5
1£7, —20.39 | —15.94 | —20.18 | —15.21 | —31.55 | —23.21 | —31.97 | —21.13
2p 3, —16.40 | —10.36 | —16.21 | — 9.67 | —28.09 | —19.15 | —28.51 | —18.07
i —15.96 | —I11.11 | —15.77 | —10.52 | —29.51 | —20.97 | —30.08 | —20.03
2p Y, —14.60 | — 8.57 | —14.42 | — 8.13 | —27.12 | —18.14 | —27.87 | —16.12

(— 8.36)
g9 —10.20 —10.03 —24.10 | —15.82 | —24.53 | —14.57
(—12)
2d 9%, —19.86 | —11.12 | —20.31 | —10.35
Lgitls —21.02 | —12.54 | —21.76 | —11.78
3 s, —17.93 | — 8.83 | —18.52 | — 7.67
24d 3, —18.16 | — 9.40 | —18.78
LR —1595 | — 7.89 | —15.95 | — 8.53
(—8.03)
2 £ —11.50 = 12:0341%— 7.30
1h 9, =2 31577 =
3p ¥, — 8.99 — 9.57
2f 5, — 9.18 S0
1w, — £18 o 883
3p Y, y A e )
(—737)
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+ afetr) rat)) 2

e 1 8g(e(r) F)¥23(r, ofr
ol 2(>[2 e e elr) +

+ % g(@(rl)) o(r) P72 (rl Q(rl)) A

+ g (e(r)) o(r)*P 7 (vy o(ry)) 83_(2_5)@ :

9¢(ry)
= =Ar) aga(i( 1))) o(rymy)® —
e o BL(M r Y3 o(r. 313
- ()[ Lo elr ol (A4.3)

2 —2/3 1/3 r T4.75)2
+?g(r1) Po(ry)? g (e 1))]9( 172)%

0= [Uf(") —v3(r) 9('1)1/3 Q(’z)lls] g (9(’1)) o(ryrs). (A.4)

If we have different neutron and proton densities, the total energy can
be written as

B i, f A(R), 0p(R)) d* R +
_{ "_—J‘ (rl Qn) 81 Qn(rl ) [@n(r") Qn(rl)] ux(rl) d? LG | d? Ty +
+ _;-J‘U{D(H op) 81(ep) [op(rs) 0p(r)) —0p(ry)?1dor do ry +
+J‘U%D(r= 0ns 0p) 82(01 0p) [0n(T2) —0,(r1)] 0p(ry) d*ry d¥ry +-
1 1x 2 2 3 3
- j 0¥ (ry 05) €4(00) [en(ry ra)*— Th(ro, ) oy o,y + (A.5)

J 1*(rop) gi(ep) [op(ry 12)* —7 (TQP)] &ridir, +
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i j o5 (10, 0p) 82(0n 0p) [0n(ry 72) 0p(ry Ta) —

— Tu(ro,) Tp(rop)| d®ryd?ry +
+ J- 1+g1(QP) QP(rl) QP(rZ) _d3r d3

|r;—ry
and from this we get a coupled differential-integral equation system for g, 0p
— B2[2m Ag(r,) 4o, (ea(ry), 0p(r)) 97 (ry) +
o Y Bi(2n(ry) ep(r1) @n(rs) p(rs) 71 15) d2 1y pi(ry) + (A,6)
+ [ vi(en(ry r2) 0p(ri ) 0n(11) €n(rs) 0p(ry) 0p(rs) d° 1y @} (ry) +
+ § 0(0n(ry r2) 0p(r1 1) 04(ry) 04(rs) Ty 72) @i (ra) d° ry = €} 9} (1)

and a similar equation for zpp(rl). We can solve the system by iteration.
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BJIMSIHUE 3ABUCHUMOCTU CWJI OT TIJIOTHOCTU IIPY PACUETAX CBOWICTB
KOHEYHBIX SJEP B INEPBOM ITOPAOKE IMTPUBJIM)KEHUWST

N. HEMMET

Peswome

[1poBe/ieHbl BbMUCIIeHHs THIIA XapTpH— POKa C yueToM CHJI, 3aBUCSAILIMX OT MIOTHOCTH U
HCCJIEJI0BAHO BIIMSIHHE 3aBHCUMOCTH TJIOTHOCTH OT CHJl. OmpesiesieHbl MoJIHAsk H OH0YaCTHYHASI
9HEpIHsl, CpeAHUH pauyc chepuueckoro sapa. IToayueHo y10BIeTBOPUTEILHOE COrIacue Teope-
THYECKHUX M 9KCIIEPUMEHTAJIbHBIX JIaHHbIX.
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- THE GLOBAL STRUCTURE OF THE UNIVERSE
AND THE DISTRIBUTION OF QUASI-STELLAR OBJECTS

By

G. PaiL
KONKOLY OBSERVATORY, BUDAPEST

(Received 14. IV. 1970)

Periodicities in the frequency distribution of quasars according to their redshifts (as
well as other proposed regularities in their distribution on the sky) are shown to be compatible
with the cosmological interpretation of the redshifts: they may be apparent geometrical
phenomena in world models with multiply connected space sections. It is therefore a miscon-
ception that significant regularities would necessarily imply the existence of intrinsic redshift
components in the spectra of quasars — as generally stated in the astronomical literature.
Some further remarks on the connectivity properties of cosmological models are also made.

There are a number of arguments to indicate that the redshifts of QSOs
are cosmological [1, 2]. On the other hand it has been argued recently that
QSOs appear to exhibit such a non-random character in their distribution both
according to redshift and position which could only mean that the redshifts
are an intrinsic property of the QSOs [3]. Certain suggested properties of the
distribution have since failed to pass the significance tests, but, of course, have
not been disproved in this way [4]. Others seem likely to be of some importance,
while most of them have remained without due analysis. Putting aside the
issue of statistics, this note aims at calling attention to the fact, apparently
unrecognized by both sides of the debate, that regularities in quasars’ dis-
tribution admit the cosmological interpretation of the redshifts in a wide class
of cosmological models.

Let us consider a space-time described by a Robertson—Walker metric.
We then have, with the usual notations,

ds® — di* — RX(t)[dy> + S%(3)(dO? + sin? Odd?)).

This line element for ¢ = const is compatible with infinitely many topologic-
ally different space forms of constant curvature [5]. Clearly some cosmological
models with multiply connected space sections automatically produce appa-
rent periodicities in the distribution of sufficiently old objects — regarded as
negligible test particles — which are distributed in a not strictly homogeneous
manner, i.e. which constitute large-scale “clouds” in a universe otherwise
homogeneous in first approximation. Essentially the same clouds — seen at
different stages of their evolution — could be observed repeatedly in the models
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under consideration. In reality the clouds may be “local” (in the sense of being
situated at the distance of their first appearance) yet the route covered by
their light may be measured approximately by their redshifts in suitably chosen
models (see later). In this connection two points are to be noticed. Firstly,
contrary to the case of a simply connected spherical space, in our models the

cloud

region surveyed

frequency of light revolution has nothing to do with the curvature of the space
in question. (Cf. the analogy of the surface of any infinitely long cylinder,
which has zero Gaussian curvature just like the Euclidean plane.) Secondly,
the light travel time for a revolution may well be more than the age of indivi-
dual objects, if the cloud, as such, outlives them. — We see no strongreason
why the latter assumption should not apply to “clusters” of QSOs.

It is known from the elements of geometry [6] that any space form of
constant curvature can be derived from a simply connected spherical, flat or
hyperbolic “universal covering space” by introducing into the latter a dis-
continuous group of fixed point free isometric transformations and identify-
ing its points which correspond to each other according to the transformations
of the group. — For example by the group of parallel translations (n times
a given length d) a cylinder is obtained from the two-dimensional Euclidean
space. (See Fig. 1). As a consequence one finds that the observable properties
of a multiply connected model universe of the considered type are identical
with those of a corresponding ““universal covering model” populated by equal
configurations in strictly congruent cells and all the known formulae of observ-
ational cosmology hold in this crystal-like covering. These models naturally
show periodicities in the spatial coordinate distance, 3. However, when they
are applied to the real universe, evolutionary effects and observational selec-
tions have to be accounted for, which may make the periodicities obscure.
Although it is premature to discuss the question of the best fitting model on
the basis of the inadequate information available, there are still some remarks
relating these models to observations which seem to be pertinent.
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One easily finds models in which the period is “normal” in one region
of the sky and ““doubled” in an antipodal region, as suggested by BeLL [3].
Such a phenomenon can be found both in some Euclidean space versions —
orientables and non-orientables alike — and in some of the simplest spherical
space forms with cyclic fundamental groups. The tendency for the redshifts
‘““central” point of a cloud (admitting to draw
spiral joining lines in it with increasing redshifts) may be due to a nearly ortho-
gonal view on a flattened cloud or to secondary intrinsic redshift components.
The existence of apparently associated objects with different redshifts near to
one line of sight [3] is a general property of models with multiply connected
spaces. The angular sizes of the parts of the cloud-images situated within the
region of the sky surveyed (see Fig. 1) may be roughly equal for different red-
shifts, as proposed by BELL, especially in an expanding model where the
angular sizes of distant objects remain relatively large. Nevertheless, the
advantage of spherical spaces in interpreting this phenomenon is obvious.
Our conception is likely to be most vulnerable in the transition from periodic-
ities in y to those in the redshift. These distance parameters are convertible
only in models with a nearly exponential expansion law and with a deceleration
parameter ¢, = —(R,R,)/Ro ~ —1, which is not a good fit to recent Hubble
diagrams [7], provided our theories on galaxy evolution prove correct. It must
be pointed out, however, that changing periods in 3 can be found in some
models, thus ¢, may be higher. Note also that this difficulty disappears in some
“non-Doppler cosmologies”. Summing up, we may say that at the moment no
conclusive argument from regularities in the distribution of QSOs against their
“Hubble distance” appears to be possible.

to increase outwards from the

Apart from the applicability or otherwise of multiply connected spaces
to the QSO problem it is worth mentioning that a search for apparent recur-
rences in the distribution of observable objects on a cosmological scale is an
empirical approach to the topology of the universe (cf. [5a]). A direct observa-
tion concerning the global structure of the universe might have far-reaching
consequences. For example to observe that the space is not orientable is to
exclude spaces of constant positive curvature. This hints at a possibility of an
absolute delimitation of the space curvature by topological means. Further-
more, the same global experience would imply that the CP symmetry breaking
in elementary particle interactions is not true at least everywhere in the uni-
verse [8]. (Some related inferences might be the existence of mirror-particles
or that of galaxies made up of antimatter.) An observed multiply connected-
ness of the space would require that the field equations of physics show period-
icities both in a geometrical sense and in matter distribution which is possible
in special cases [9] but is by no means self-evident in general. This would pro-
vide a method of testing field equations that is sensitive to the higher order
terms undetectable in laboratories. Finally both homogeneity and isotropy

Acta Physica Academiae Scientiarum Hungnric;.le 30, 1971



54 G. PAAL

of the universe might have a completely new interpretation in a “‘crystal
model” [10]. It is clearly a promising task to study the global aspects of
cosmology in more detail.
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D
oW

I'JIOBAJIBHASI CTPYKTYPA BCEJIEHHOWM W PACITPEIOEJIEHUE
KBA3M3BE3IHbIX OB BEKTOB

I'. TTAAJI

Peswome

IlokasaHo, YTO NEPHOAMYHOCTH B pacHpejesIeHHH YacToT KBa3apoB I10 KPaCHOMY cMe-
LIEHHIO (a TAK)KE H APYTHE NPEJUI0XKEHHbIE PErYJISIPHOCTH B MX pacnpeie/ieHH! Ha He0e) CoBMeC-
THMBI C KOCMOJIOPHYECKOH HHTeprpeTalueii KpacHOro CMEWEHHs: DPeryJsipHOCTH TaKoro
THNA MOTyT OBITH KaXKyIMecsi reOMeTpUUeCKHe sIBJIEHHsI B Mozlesisix BceseHHoi ¢ MHoro-
CBSIBHBLIMH IIPOCTPAHCTBEHHBIMH ceyeHUsIMH. Takum 06pasom mosyyeHo ONpoBepiKieHHe 00bIu-
HOro B aCTPOHOMMYECKOIl JiyTepaType BbIBOAA O TOM, 4TO 00HApy)KeHHe CTaTHCTHYeCKH 3Ha-
YUMBIX peryJisipHocTeil (Ge3yc0BHO 03HayaJo Obl CyIIECTBOBAaHHE COOCTBEHHLIX KOMIOHEHTOB
KPaCHOro CMELIeHHs1 B CrieKTpe KBa3apoB. CresiaHbl HEKOTOPBIE AaIbHEHIIHe 3aMeYaHHsl 1o I10-
BOJIy CBOICTB CBSIBHOCTH KOCMOJIOI'HYECKHX MOJIeJIei.
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CALCULATION OF ELECTRON SCATTERING USING
THE STATISTICAL ATOM MODEL INCLUDING THE
INHOMOGENEITY CORRECTION

By
A. DoBAY-SZEGLETH

DEPARTMENT OF PHYSICS, UNIVERSITY FOR TECHNICAL SCIENCES, BUDAPEST

(Received 5. V. 1970)

The cross-sections for scattering of low energy electrons are calculated using the statis-
tical atom model including the inhomogeneity correction. Results are compared with the
empirical data.

It is well known that if we incorporate the inhomogeneity correction of
GomBAs [1] in the statistical atom model we arrive at an atom model, which
besides its simplicity describes many features of atoms in a very good approxi-
mation [2]. The electron density of this model approximates the wave mecha-
nical Hartree —Fock distribution better than the original model including
WEI1ZSACKER’S [3] correction and it behaves exactly like the wave-mechanical
distribution at the nucleus and at large distances from the nucleus.

As is known, the calculation of the atomic cross-sections of the collision
of low energy electrons can be treated by the method of partial waves.

The differential cross-section is determined by the following expression,

1 .
@)= 72“12 (21 + 1)e“t sin 6; P; (cos 9)P, 1)

where k is the wave number, which is proportional to the square root of the
energy of the incident beam of electrons, [ is the angular momentum quantum
number, 0; is the phase shift of the I-th partial wave. The total cross-section
Is given by

o) = [IfOPaQ =T 3 @D sins,. )

Concrete calculations have been made referring to the cross-section for scatter-
ing of 0.2 keV electrons by Kr atoms. For the purpose of determining phase-
shift, first of all we have to solve the radial Schrédinger equation, which is
given in atomic units:

00 g St g ip i) Y
dr? e ar 2

R/=0, (3)

r2
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If we introduce the wave number defined by k* — 2E and replace the radial
wave function R; by the function

filr) = — Ri()
then

I v D) s = 0. e

For the equation (4) to be soluble, we have to know the potential V(r).
The well-known equation is valid between the potential and density

v = e (-2 _ay, (5)
77

where o(r) has been calculated by GomBAs [2]. We have put that density in
(5) and have performed the integration numerically. The results are given

in Table I.

Table I
The potential function
v V() r V()

0.0005 71 836.58 0.024 1343.84

G 35 836.58 28 1131.44
15 23 836.39 32 972.664
20 17 836.39 36 849.615
25 14 236.66 40 151.556
30 11 836.69 44 671.674
35 | 1012246 48 605.410
40 | 8836.80 52 549.601
45 7 836.88 56 502.000
50 7 036.95 60 460.963
0.006 5 837.14 0.068 393.908
7 4 980.21 6 341.547
8 | 4337.60 84 299.652
9 | 3837.88 92 265.458
0.010 | 343817 0.100 237.087
' 0.108 213.223

0.012 | 2338.82
14 2 410.97 0.124 175.468
16 2 090.32 140 147.098
18 | 1841.16 156 125.143
20 1642.02 172 107.747
188 93.7009
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Table Ia
The potential function
r r V(r) " r v(r)
0.204 L 82.1764 ' 1.212 1.52804
220 | 72.5046 |
236 J 64.5348 |  1.340 1.09878
252 | 57.6892 : 1.468 0.799905
268 | 51.8235 |  1.596 0.587895
284 | 467576 | 1724 0.435458
1.852 0.323391
0.316 38.5108 1.980 0.240732
348 32.1336 2.108 0.179554
380 27.1061 2.236 0.133318
412 23.0778 2.364 0.098807
444 L 19.8057 2.492 0.072002
476 | 171168 | 2.620 0.052183
508 14.8836 2.748 0.036779
2.876 0.024965
0.572 11.4412 3.004 0.016305
636 | 8.95300 3.132 0.009358
700 7.10342 3.260 0.002
764 5.70296 3.388 0.000334
828 4.62796 | 3.644
892 3.78890
956 | 312540
1.020 | 2.59270
1.084 2.16211
1.148 | 1.81398

As the potential is given in the form of a numerical table, the Schrédin-
ger equation also has to be solved with the method of numerical integration.
In the point r = 0, the initial condition is fi(r) = 0, because the radial wave
function R;(r) must be free from singularities. As the second initial condition
we have to give the function f/(r) at the point r = 0. Since the function fi(r)
is determined only up to a normalisation factor, therefore f;(0) can be chosen
arbitrarily. We have chosen it as f;(0) = 1. Starting from that initial data,
we have computed the functions fi(r) by the method of Runge-Kutta. For that
purpose, so that the phase-shift can be determined, we have to carry out these
calculations up to such large values of r, where the potential disappears, as is
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Table II
1 tg & 3
o 0 11.130 1.481

1 —0.61147 2.593

2 0.14136 0.1404

3 2.4999 1.190

4 0.57154 0.5192

5 0.27362 0.2671

6 0.29026 0.2825

7 0.12502 0.1244

8 0.08722 0.0870

9 0.018836 0.0188
10 0.013692 0.0137
11 0.0012470 0.00125
12 0.0012470 0.00125
13 0.00125 0.00125
14 0.0012220 0.00122
15 0.0011704 0.00117
16 —0.0029548 0.
17 0.

well known from the method of partial waves. At least, the cross-section has
been obtained from Eq. (1) having a knowledge of the phase-shift. In order
to determine the phase-shift the most simple method is to seek that value of r
at which point the radial wave function would disappear, in the asymptotic
domain of large values of r. In that domain the solution of Eq. (3) is of the
form:

Ri(r) = a; ji(kr) + bin (kr), (6)

where a; and b; are integration constants, j; and n; are the spherical Bessel
functions. According to the expression (6) when Ry(ry) = 0

Bl e )

a; n(kro)

Let us introduce the terms «; and §; instead of the integration constants a;
and b;, in the following manner:

a —= il(ZI + 1) o] COS (31 °
by = —i'(2l + 1) a; sin &,
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Table III
Differential cross-section as a function of angle
® a(®)
0° 28.120

10° 17371
20° 4.0825
30° 1.2516
40° 1.1412
50° 0.15962
60° 0.26174
70° 0.075764
80° 0.003335
90° 0.16522
100° 0.51587
110° 0.74094
120° 0.59230
130° 0.62942
140° 0.02740
150° 0.22784
160° 0.68326
170° 1.3518
180° 1.7610

then we shall get this expression:

(8)

Fig. 1. Differential cross-section for scattering of 200 eV electrons by Kr atoms

Table IT contains our results obtained for the scattering of 0.2 keV electrons
by Kr atoms. From the phase-shift given in Table II, we can easily obtain
the cross-section for scattering electrons according to (1). Our results are given
in Table III. The mesh of ¥ used was 10°. The cross-sections as a function of
angle ¢ are shown in Fig. 1. We compared our results with the data measured
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by Arnot, which are plotted by small circles. We can see that the data agree
with our result. It is quite satisfying especially for all the maxima. The experi-
mental points of Arnot do not extend over the values of ¥ = 100°. According
to our results a hard backward scattering had been obtained as is shown in
Fig. 1. From this it can be concluded from our calculations that the statistical
atom model including the inhomogeneity correction gives a good approxima-
tion to a description of such a complicated phenomenon as the angular dis-
tribution of the cross-section for scattering of low energy of electrons.

The author wishes to express her thanks to Prof. Dr. P. GomBAs for helpful advice
and discussions.
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PACYET PACCEAHMS 3JIEKTPOHOB HA OCHOBE CTATHUCTHYECKOW MOOEJIHA
ATOMA, COIEP)KAILEHN INOIMNPABKY HA HEOOHOPOJIOHOCTH

A. JIOBAU-CETJIET

Peswome
Brruucnsiercsi TNornepeyHoe CeYeHHe pacCesiHHs JJIEKTPOHOB HHU3KOM SHEPIruH, NMPpHMEHsIsA

CTAaTUCTHYECKYK MOJEJIb aTtoma C nonpanxoi’x Ha HEOJAHOPOAHOCTD. PeayanaTu CpaBHHUBAKOTCA
C SKCIEPHMEHTAJIbHBIMH JIAHHBIMH.
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The stability of stationary thermodynamic states will be examined by means of a varia-
tion principle. The Euler—Lagrange equations, existing as the necessary condition of the extre-
mum, provide the total stationary balance equation of the entropy production where — beside
the spontaneous entropy production — the source terms also appear. This method is equally
suitable for describing stable and unstable stationary states, moreover it contains the total
stationariness. It will be shown that the stability of the stationary equilibrium is secured
by the positive definite character of the conductivity matrix. Applying this principle for the
inieraction of homogeneous bodies we get the simplest model and stability criteria for station-
ariness.

Introduction

The thermodynamic interpretation of stationary states according to
PRrIGOGINE and DE GROOT [1], can be given as follows. If a system is character-
ized by n independent general thermodynamic forces X, X,,..., X, and is
kept in a state with fixed X, X,, ..., X, (k < n) and minimum entropy pro-
duction g, the “current” density o; = j; belonging to the indices i = k 1,
k + 2,..., n disappear. Here «; is the deviation of the i-th extensive para-
meter x; from the equilibrium:

o et e ity (1)

Xn+41

where the starting point of the scale of the extensive parameter x; is related
to the state of equilibrium. (x;), denotes the equilibrium value of the i-th
extensive variable while x ., the volume V" or mass m of the body. (Corres-
pondingly, «; is density or any specific quantity, and therefore of intensive
character.)

According to the interpretation above, those currents will be zero which
as conjugate variables correspond to the forces X, ., X, ,,, ..., X, not being
fixed. Such a state is called stationary of k-th order. (It must be remarked
that here entropy production means the spontaneous one which is independent-
from the accidental source of the extensive quantities characterizing the inter-
actions.)
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The entropy production belonging to this state can easily be computed.
Namely, the necessary minimum condition for the indices i =k + 1, k 4 2,
sl

oo
LyXiX;=2 SL;X;=2& =0, 2
8X,; aXl ,?1 ¢ ,2 ¢. ; )

where L;; are the elements of the conductivity matrix.

It follows from this that if among the fixed X; belonging to the indices
i =1,2,..., k there is one which is not zero for these indices o; = 0, i = 1,
2, ..., k. Thus the minimal entropy production will be

'M»

I
-

> Ly X X = Za,X,—amm (3)

i=1j=1 i=1

_ It can also be seen that because of ;< 0, 1 = 1, 2, .. ., k the stationariness
is only partial and can relate only to stable states, namely if L = L[L,] > 0.
In the vicinity of a non stable state, equation & = LX is not even valid, so
the minimal entropy production can characterize a stable state only.

It should be mentioned that if we consider the equation X = —gx too,
then we reach a contradiction, since

== X, 4)
X = —gx,

simultaneously describe the non-stationary process only, the decay of the non-
equilibrium state without external constraint. Even the conditions of their
deduction exclude stationariness. Here g is the entropy matrix

9%
a1 e (e

where « is the a-parameter of entropy.

PricoGcINE and GLANSDORFF [2], [3] later generalized the minimum
principle of entropy production in such a way that for a stationary process in
the case of a boundary condition being constant in time:

(o 1%

e el 4T
81,( 8“,’

0

0

jv'zj,-dx,.dV;O. (5)
1

Completing this they have shown [4] th