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DEEP HEAT MUSCLE TREATMENT 
A MATHEMATICAL MODEL -  I

A . O g u l u *

In te rn a tio n a l Centre fo r  Theoretical P hysics  
Trieste, Ita ly

a n d

A. R. B e s t m a n **

M athem atics D epartm ent, U niversity  of P ort H arcourt 
P ort Harcourt, Nigeria

(R eceived 10 S ep tem b er 1992)

T h e  flow of b lood d u rin g  deep h eat m u sc le  trea tm en t is s tu d ied . We m odel th e  blood 
vessel as a  long tube  of c irc u la r  section w hose rad ius varied slowly. U nder th e  B oussinesq  
approx im ation , we seek asy m p to tic  series expansions for the  velocity  com ponents, tem p e ra ­
tu re  a n d  p ressu re  ab o u t a  sm all p aram eter, e, characterizing  th e  ra d iu s  variation. T h e  study  
reveals m ath em atica lly  w hy physicians reco m m en d  a  ho t b a th  fo r cu ts  an d  physio th erap ists  
use ice packs fo r bruises.

1. In tr o d u c tio n

The principle question around which the study of physiological fluid dynamics 
is centered concerns the range of validity of the assumptions of the Newtonian 
nature of blood in large blood vessels. In a previous analysis, Bestman [1] studied 
the unsteady low Reynolds number flow in a heated tube of slowly varying section. 
In that analysis the effect of forced and free convection heat transfer on flow in an 
axisymmetric tube whose radius varied slowly in the axial direction was addressed.

The temperature of the body, that is the temperature in the interior, called 
the core temperature is fairly well regulated, normally varying from the mean by 
not more that 1 °C. Hence the walls of the blood vessels which travel deep inside 
the body will not show much variation in temperature.

On the other hand, the surface temperature of the body rises and falls with 
the temperature of the surroundings, within a certain limit. In such a case, the wall 
temperature of the blood vessels which start from the core and travel to the surface 
will exhibit variation with axial distance. Examples of such blood vessels abound

’ P e rm an en t address: D e p a rtm en t of Physics. R /S  University o f Science an d  Technology, 
P o rt  H arco u rt, N igeria.

^^R egretfully , Professor A. R . B estm an  p a sse d  away before th e  p u b lica tio n  of th is  re p o rt.
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4 A. OGULU and A. R. BESTMAN

but one which readily conies to mind is the subclavian artery which branches from 
the aorta and bifurcates further into the brachial artery that subsequently travels 
to the near surface of the body. In this study, Bestman [1] incorporated a heat 
source/sink term to simulate abnormalities of body temperature regulation in a 
pathological situation.

In this study we want to look at the behaviour of blood and blood vessels 
during deep heat treatment in which thermal radiation is prevalent. Here we assume 
blood to be a constant viscosity fluid and the differential approximation for the 
radiative heat transfer for an optically thin medium. In a later study we hope to 
consider the case of a variable viscosity fluid.

The problem is formulated in Section 2 and the leading approximations and 
solutions are presented in Section 3. Higher approximations are obtained in Sec­
tion 4. Quantitative results and discussion are given in Section 5.

2 . F orm u la tion

The flow of blood in blood vessels during deep heat muscle treatment is gov­
erned by the equations of continuity, momentum and energy which can be written 
in cylindrical polar coordinates (r',o , z') with velocity components (u', v',w').

We consider viscous flow with heat source term q in a heated long tube of 
circular section whose radius varies slowly as

r' = a"s (S ') ' (21)
s is an arbitrary function and prime denotes dimensional quantities.

Assume Boussinesq approximation is valid, so that if p designates fluid den­
sity, and subscript oo denotes a reference density then the equation of state for a 
Boussinesq fluid, Bestman [2] is

Poo -  P = Pooß{T -  Too), (2.2)

where ß is the coefficient of volume expansion. Let p designate the fluid viscosity, 
к the thermal conductivity and cp the specific heat at constant pressure.

Generally, the radiative flux satisfies the differential equation, Cheng [3]

V 7qR -  -  16mrT3VT = 0, (2.3)

where a is the absorption coefficient and <r is the Stefan-Boltzmann constant. We 
only consider the optically thin limit of Eq. (2.3) since blood can be regarded as an 
optically thin medium (a . . .  1). Bestman [4] showed that the optically thin limit of 
Eq. (2.3) in suitable non-dimensional variables is

%  = -  1). (2.4)

Acta Phytica Hungarica 73, 1993



DEEP HEAT MUSCLE TREATMENT I 5

Hence the governing non-dimensional equations of continuity, momentum and en­
ergy incorporating the radiative flux term can be written as

1 d , .
~ ^ - ( ru) + r dr

1 dv dw 
—S7 + C~Z~ — 0. г d<p dz

Re‘ (  du V du и2 —  + — + w 
дф г

1 d2u 2 dv
r2 d2ф г2 dф dz2

Re‘ Í  du V du
\  dr r  dф

uv 2 dv
+ ------1- w —r dz

1 d2v 2 du
----ö 7ГТ d” e

d u \  dp d (1 d . Л
d l )  ~ ~ d ^  + e [d^ \ r d ï (ru7

— Gr(9 — 1) cos ф,

\  1 dp \ d  d , л

— Gr(0 — l)sin<^,

+

+

,d2v
dz2r 2 dф2 r2 dф

n 2 (  dw и dw dw \  dp 1 d (  d w \  1 d2w nd2w
Re [ V  + г дф + w~dz )  ~  _Cö i  + r öP V J + 7s  W  + f T z2

de V de de\ 1 a t  ae\ 1 <92ö
' r C \  dr + rdф + Wd z )  ~ rdr  V d r )  + r2dф2 +

, e2 0 2 0  3  4

+e d ^ ~  ÄRa{e ~ 1}’
subject to the boundary conditions

u = Q = v = w ~ в on г — s(z), 
u,v,w, e < oo on r =  0.

We have introduced the following non-dimensional quantities

(2.5a,b,c,d,e)

( 2 .6)

r  ez-r = —, Z = — , . . . (ti, t>, tű) = ûo a0
(u',v',ew') n V  ..... p

TT 1 ^ — i ’ ^ —f t 'o o  too Poo
(2.7)

„_ (p '-P o o )a o  ^  _ g ß T 0Qal r>_ U ooa0 n _  pcp D _  16<та0Т£
P T T  ) W  J i t  —  , j r — I  j rta — 0 7 >P Uoo ^ UQQ V k 3 0(k

subsequently r = (ЗЯа)^ • §•
Cfoo is a typical axial velocity, R is the Reynolds number of flow, Gr is the 

free convection parameter (Grashof number), Pr is the Prandtl number, p is the 
kinematic viscosity, g is gravity, Ra is the radiation parameter, в is the temperature, 
and а о is a characteristic radius. Also

V2 d 1 d_ 1 d2
dr2 ^  r dr ^  r2 dф2
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6 A. OGULU and A. R. BESTMAN

Combining (2.5b,c) we get

Equation (2.8) will be useful in subsequent analysis.
The mathematical statement of the problem simply put is a solution of Eqs 

(2.5a,d,e) and (2.8) subject to (2.6).

3 . L ead in g  a p p ro x im a tio n s  a n d  so lu tio n s

The problem formulated in the previous Section is non-linear and coupled 
and not readily amenable to closed form analytical treatment. We therefore adopt 
an asymptotic analysis similar to that in Bestman [4] by expanding the velocity 
components and temperature in the form

и = u<°> + £U(1) + 

while the pressure is expanded as

.etc. (3.1a)

p = -p^0) +  p'( i ) . (3.1b)

Substituting (3.1) into Eqs (2.5a,d,e) and (2.8) we find that for the leading approx­
imation

1 d f04. 1 d v ^
r ^ u(0)) + i — = °-r dr

őp(°)
dz

r d<j> 

dr ) =  0 ,

Vi { ' r Y r , r ' /a''1 -  l ° w }  + G' ^ Sm<, = °- (3.2a,b,c,d)

The method of solution of (3.2) has been described elsewhere. See for instance 
Ogulu [5]. The results are

w(0) _

VW  = —B{z) - - A ( z y  + G \  5a2r4 7a4r61
r \  96 + 288 / ’

Acta Phytica Hanganca 73, 1993
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+
Ű4 T

“288 }
‘ W « M + ( t - Ö ' ,  +  ( s - 5 ) ' 4

where a is the real positive root of the quartic equation

dw = a(z) + R- У  + O(Rl)

(3.3a,b,c,d)

(3.4)

obtained on imposition of the boundary condition on (3.3). In our solutions, since 
Ra is small we have neglected terms containing squares or products of Ra. Subscript 
w indicates conditions at the wall. A(z) and B(z) are arbitrary functions of 2 given
by

A(z) = GrRl f  Ü2S4 t 3a4S
{ 512Ra +

3a4S4 1
64 J

and

в «  = - з с ' й - { 5 ш :  + т ш } -
Also К  is the constant pressure at the left ventricle of the heart in a healthy person.

4. H igh er  a p p ro x im a tio n s

The governing equations for the next approximation are

1 d . m  1 ő t/1) dw _ ( r u ( i ) )  +  — —  +  —  =  0 ,
r or г оф oz

(  (0\dw(°) (0)dwW\Ä ltd 0) —------f-U)W -dr dz )
dpW 1 /  d w ^  1

dz r \  dr r2 d(j>2 /

R {̂K“mŐ t/0) t /° )  Ő t/0) г / 0М 0)

i_a_
r d<j>

dr r d<j> r
Ő t/0) t /° )  Ő t /0) t/°)*

+ w(0) d u W \

dz )_

dr d<t> dz J.
^ 2  ( I d .  l ö t / 1) )  f fdOW . IdOW \ \

= v  + * + ? " e r C0* V /

R.Pr /«<») +  10(0)
dr dz J

- 4 .Д а0(О)30(1)-

öfl(°) 1 s2#1) 1 d№  1 a2^ 1)
- = ----  > =  - ^ r -  +  ------------ +  ^ r -dr2 r dr ^  r2 dtp'2

(4.1a,b,c,d)

A cta  Physica. Hungarica 73, 1993



8 A. OGULU and A. R. BESTMAN

The boundary conditions are

u*-1) = .t/1) = 0. = u /1) = 0*-1-1 on r = s(z). (4-2)

We seek a separable solution for of the sort

eW = © ^ (r . z) + © ^(r, z) cos ф (4.3)

then substituting for i/°), u/°) and <A°),in (4.Id) coupled with (4.3), we obtain 
equations for © ^  and © ^  from which on rejection of unbounded functions we can 
deduce that

and

©2̂  = D(z)Ii(ar) + а гг +  /(r), (4.4a,b)

where H(z) and D(z) are arbitrary functions, In(ar) is Bessel function of order
n and a = 1 R \ a i .K n will be used to denote Bessel function of the second kind 
subsequently. Also

Û2 = - r  -  -r 4 4
and

a i = 2RPrRaa2B(z),

and the constants H{z) and D(z) are obtained on imposition of the boundary 
condition Qj1̂  = 0 o n r =  s(z). They are

H(z) 1 ( da к s4 /  1 \
Jo(as) \ d z  4 a \  ^  a  /

da2 D К s2 \  
dz “ 2 a j

and
D(z) = - a i s / (*)

/i(as) .Zi(as)'
The other functions and constants are as defined in Ogulu [5]. 

To obtain the axial velocity we write (4.1b) as

R
( “

(ojÔtwÇo) ) 
dr dz

<9u/°)\ dp
dz

= l d _ (
r dr \

dwÍ1)
dr ) +

1 d 2w ^  

dd>2 '
(4.5)

We seek a separable solution for u /1), of the sort

w©) = ш ^(г, z) + cos ф. (4.6)

Acta  Physica Hungarxca 73, 1993



DEEP HEAT MUSCLE TREATMENT I 9

We put
u<°> =  i/(°) cos ф.

Substitute (4.6) and (4.7) in (4.5) and after some algebra we obtain

( i )
u i j 1  ̂ =  R K 2( As 3 s z r 2 — s s z r 4 — 3 s 5s z )  +  ( r 2 — s 2 )

(4.7)

and

,„(i) _ PM  . PÍ‘>rí . А'Я  /"S (2)r3 Л(г)Я„г4 ( 3.о2л;г« Л3г8 ] Л
- В Д > - +  — +  — ( — g — +  "  1 6 0  ~ С г \ “ 8 9 б 5 -  +  Т з 5 0 8 7 ) '

where E(z) is an arbitrary function given by

p(l)zs K R  / B(z)s2 A(z)R "3

(4.8a,b)

aiR2as5 , a4Rl°7 'F(-\ _  ............. ( В (2У  , Ж г)Дад3 r  [ 3.а2Д3д5 а4Д^ 7 ) ^
U  9 " V 8 + 160 r \  8960 + 43008 } )

and
ds (1) dpi1)

sz -  ~r and p\l> =dz dz
We continue the solution of Eq. (4.1). We seek separable solutions for 6̂ l \  

u(1)) yi1) and w ^ \  of the sort

0 ( i )  _  0 ^ ( r ,  Z )  +  © 2^ ( г ,  z )  COS Ф,

i / 1) = U ^ f r ,  z) + u[1}(r, z) cos ф + U ^ \ r ,  z) cos 2ф, 

t / 1) = v /^ (r , z) sin<̂ > + Vj1̂ (r i z ) sin 2^, 

u /1) =  uij1̂ + cos ф.

Substituting (4.9b,d) in (4.1a) we obtain

(4.9a,b,c,d)

dz '

from which we can deduce that

W  =l^ -ir3(s3s” + 3*3*ï) ~ f r(5s4̂  + ***«)-
Г5 - 2 u  PÍV / S2r r 3\  p™

-  g - K + +  —  ( - j -  -  t J  -  ~ r ss‘ r- ( 4 . 1 0 )

Acta Physica Hungarica 73, 1993



10 A. OGULU and A. R. BESTMAN

The boundary condition on u[°^ gives

p ^ s 3 + 4p^1)s2sz + ^ - ( 2 s 6s„  + 14s5s2) = 0,

which is reminiscent of Reynold’s equation in lubrication theory. We integrate the 
Reynold’s equation to obtain

P( ! )  =  _ R K 2s4
12

and
(!) R K 2s s2

Vzz g

As observed in Bestman [1], to terms of order e, the free convection currents have 
no effect on the pressure distribution.

We continue the solution of Eq. (4.1). Assume Gr R then (4.1c) becomes

1 dwt1)
г дф

дв1 .
- г -  sm ф + or

1 deW  I
г дф J

cos 0 = 0. (4.11)

We substitute (4.9) in (4.1a) and (4.11) to obtain, respectively,

i£№<« + V>) = -r dr r
ő u / 1)

dz

and

Ii(ar) da K r 3 1 dct2 К (  r5 s2r3'
rrRPr I H(z)- ld a 2 K i r 5 s2r3\  Ï

+ 2 d 7 Ä° ä  VÎ2 + " 8" J j -dz 16

We proceed to solve (4.12a,b) simultaneously. The results are

PzzVr pi

(4.12a,b)

TTm  . T(z) ,  piVs2r pi1} R K 2 fE 4 2 5Щ ’ = X ( z ) -----~ r 2 +  —-—  +  ~~ sszr + - ?T-{5s4s2r + s5s „ r +64

s2r5 sslz r5
H—  ----- 1-

35 35 ^  1 + £ ) }

and
q ,  ( 1 )

^i(1) = - X ( z )  + 8Т(г)г2 -  ë p*1)s“ r “  T Í“(s2r _ Зг3)_

Acta Physica Hungarica 78, 1998



DEEP HEAT MUSCLE TREATMENT I 11

- ^V"-{4r3s3szz + 12r3s2s2 -  3s5szzr +  5s4s2r + 20szzr -  | s 2-  
12o  7

- b- s s z tr*) + GTRPr | ^ M ( J 0(ar) +  72(a r))-  (4.13а,Ь)

~h { i Kr' +ш A 6 + 4 sV) )}
On application of the no-slip boundary condition we obtain the constants T(z) and 
X(z)  as

4 2 a  10 R K 2 f  a

T(Z) = jjPzVs -  - j p* ’Sz + “ ПГ ( s s“  + ™ Л 2 + 20^ - 4с гл р г-

(I0(as) + I2(as) - H(z)h(as)  1 da2 _ К
224 dz a

R K 2

R a  — * —
307 da 

29128 T z

X{z) =  - ^ p ( 1)s2sz -  р{\] ( у  -  + ^ - ( 4 0 s 2 + 208.3s5s2 + 0.9s6szz) -

- G TPrR ( l ^ M ( / 0(ar) +  72(ar)) + | ^ 7 1(a s ) -  l  a  l  a s
161 da2 К  6 12661 da

ILn 528224 dz “ a 4441712 dz h V j ,

where plV = A AP «  -  dz’
Next we substitute Eq. (4.9) in (4.11a) and (4.11) to obtain

;£< < ’>-A " 0

and

where
\  r őr (rF2(1)) + -u i l)} = AM l _ v>'

or r (4.14a,b)

_2 /  <92 1 <9 4 \
- (ó^+ró7- Ĵ Sln2<̂‘

After some algebra Eq. (4.14b) becomes

1 d
z i z ( r V ^ )  +

2U.( i )

= A(z)r2 + C{r,z).r d r y ~ ' r
We now solve Eqs (4.14a) and (4.15) simultaneously. The results are

(4.15)

U ^  = B (z ) r + ^ -A (z ) r 3 + Y(r,z) 
15

and
Д 1 ) _= -B(z )r  -  —A(z)r3 + H,

where 77 = — X  and Y(r, z) = — 2 f  C(r, z)dr. The higher approximate solutions 
are now complete.

Acta Phystca Hungarica 73, 1993



12 A. OGULU and A. R. BESTMAN

Fig. 1. V elocity profiles fo r flow in  a  tu b e  of slowly varying ra d iu s . R a =  0 .1, 0.5; z  =  1

5 . D isc u ss io n  o f  resu lts

We have formulated and solved approximately expressions for the velocity 
components, pressure and temperature for flow in a heated tube of slowly varying 
section. From the viewpoint of deep heat muscle treatment, physiotherapy, we 
are interested mainly in the temperature distribution and the axial velocity profile 
because the axial velocity component is responsible for convection of nutrients to 
various parts of the body.

The expansions for the temperature and velocity are given as 

в =  0(°\r,z) +  e6(-1\r,<f>,z)...

and
w =  z) + cw (1)(r,4>,z) + • • ■ •

c is a small parameter, for simplicity, in this analysis we take t — 0.001. For the

Acia Phyt ica  Hungáriái 73, 1993



DEEP HEAT MUSCLE TREATMENT I 13

Fig. 2. T em p era tu re  d is tr ib u tio n  for flow in  a  tu b e  of slowly varying rad iu s . R a — 0 .1,0 .2 ,0 .5 ;
г = 1; 0W = 2

higher approximate solution for the temperature and velocity, we have 

0(i) _  0 ^ ( r ,  z ) + 0 j^(r, z). cos ф

and
u /1) = w ^ (r , z) + « ^ ( r ,  z). cos ф.

In the discussion of the velocity and temperature distributions and in Figs 1, 2 
and 3 the value of ф is taken as zero. Other values of ф show insignificant change in 
the presentation. Without loss of generality we take в  =  only. For the velocity 
we consider only the first two terms of the expansion.

We solve the quartic equation (3.4) for ‘a’ for different values of the radiation 
parameter, Ra, to obtain the temperature distribution. For the axial velocity we 
take typical values of the various parameters in the equations for w and u /1) for 
blood. The constant pressure in the left ventricle of the heart, К , we take as — 1,

Acta Physica Hungarica 73, 1993



14 A. OGULU and A. R. BESTMAN

Fig. 3. T em p era tu re  d is tr ib u tio n  for flow in  a  tu b e  of slowly va ry in g  radius. R a =  0 .1 ,0 .2 ,0 .5 ;
z =  2

Reynolds number for blood as 40, Grashof number as 0.5 and Prandtl number as 
25. These values are actually given in the literature, see for instance, Bestman [2].

Numerical discussion shall be considered only for a locally dilating tube of 
the form

s = ez ,

where z = 0 is taken as the inlet of the aorta.
Figures 2 and 3 show the temperature distribution for three different values 

of the radiation parameter at z = 1,2. There is symmetry along the axis of the 
tube, that is at r = 0. A close look at Figs 2 and 3 suggests that the temperature 
decreases away from the walls of the blood vessel. This is not surprising since in 
addition to the heat source, extra heating results from friction between the blood 
vessel and the blood. This arises as a result of the increased blood flow. This 
increased blood flow is the reason why physicians use a hot water bottle in areas 
of suspected thrombus formation because increased blood flow is associated with 
increased supply of oxygen, nutrients and leucocytes which aid recovery. A well

Acta Physica Hungarica 73, 1993



DEEP HEAT MUSCLE TREATMENT I 15

oxygenated muscle heals a lot faster than a poorly oxygenated one. Leucocytes are 
the body scavengers, they eat up bacteria and germs which is why a good supply of 
them means a torn ligament will heal much more quickly for a patient undergoing 
physiotherapy.

Heat is actually a stimulus and the human body will react to any external 
stimulus. The external stimulus in this case is applied so that the body defense 
mechanism is activated in a positive manner. Blood supply to the diseased part of 
the body is increased during physiotherapy as shown in Fig. 1. Also from Fig. 1, 
it is obvious that once flow is set, further increase in the radiation parameter does 
not result in increased blood velocity.

As we all know, platelets aid blood clotting so an increase in blood velocity 
means more platelets would be available so that blood clots easily in cuts. If a boxer 
has a cut in the ring or a footballer has a knock in the field of play, the first line of 
treatment is the use of an ice pack. This is heat treatment except the heat in this 
case is negative heat (cold). This brings about the constriction of the blood vessels 
and the reduction of blood supply to the affected part, and of course, of oedema.

Hours later after the onset of oedema the second line of treatment follows; 
this time positive heat is applied to increase the blood supply to the affected area 
with the resultant increase in oxygen and nutrient supply.
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N o m e n c la tu r e

X ' d im ensional tem p era tu re
r '  d im ensional rad ia l co o rd in a te
x ' d im ensional axia l coord ina te
u ' , v '  ,w '  d im ensional velocity com ponents
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c a sm all p a ra m e te r
s an  a rb itra ry  function
p  fluid d ensity
p  k inem atic  viscosity
к  therm al conductiv ity
ß  coefficient o f volume expansion
Cp specific h e a t  a t  constan t p ressu re
oo denotes re ference  condition
a  abso rp tio n  coefficient
<t S te fan -B o ltzm an n  constan t
r  rad ia l co o rd in a te
z  axial co o rd in a te
ф az im utha l coord ina te
u ,v ,w  velocity com ponents
R a rad ia tio n  p a ram e te r
Pr P ra n d tl  n u m b er
R  R eynolds n u m b er
G r G rashof n u m b er
p  pressure
Uoo typical ax ia l velocity
ao ch aracte ris tic  rad ius

, leading com ponen t of th e  velocity  vector
p(°) leading co m ponen t of the  p ressu re
p^1 ) p e r tu rb e d  p ressu re  g radient
К  applied p re ssu re  gradient
I n Bessel fu n c tio n  of the 1st k in d  of order n
k n Bessel fu n c tio n  of the 2nd k in d  of order n
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DEEP HEAT MUSCLE TREATMENT 
A MATHEMATICAL MODEL -  II
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and
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M athem atics D epartm ent, U niversity of P ort Harcourt 

P o rt Harcourt, N igeria
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T h e  effect of viscosity v a ria tio n  on  the  flow of b lo o d  during  deep  h e a t m uscle t r e a t ­
m en t is s tu d ied . Two m eth o d s: a n  asy m p to tic  series expansion tech n iq u e  an d  a  p e r tu r ­
b a tio n  technique  are  em ployed to  o b ta in  th e  tem p e ra tu re  d is trib u tio n . T he re su lts  a re  
com pared  w ith  th e  p rob lem  of P a r t  I. A novel developm ent in  th is p a r t  o f th e  s tu d y  is th e  
com bined asy m p to tic  p a tch in g  a n d  m atch ing  technique.

1. In tr o d u c tio n

In the first Part of the study we looked at the differential approximation for 
radiation with radiative heat transfer as applied to a fluid with constant viscosity 
and thermal conductivity. Some workers in this field (Pedley [1]) feel that the 
velocity profiles in large arteries are approximately flat, suggesting that the effect 
of viscosity is confined to thin boundary layers on the walls of the blood vessel.

Whole blood cannot be regarded as a homogeneous fluid in the smallest blood 
vessels because the diameters and spacing of red cells are comparable with capillary 
diameters, and some workers (Rowan [2]) feel that the viscosity of blood varies 
considerably. In this Part of our study therefore we want to look at the effect 
variation in viscosity would have on the velocity and temperature profiles.

The approach used in this Part of the study is again the differential approx­
imation for radiation with radiative heat transfer with the viscosity and thermal 
conductivity assumed to vary with temperature. Also account is taken of conduc­
tive as well as convective heat transfer. The governing equations are presented in 
Section 2. Since these equations are non-linear asymptotic solutions are developed 
for them in Section 3. Section 4 is devoted to the qualitative discussion of the 
results.

’•‘P erm an en t address: D ep artm en t of Physics, R /S  U niversity of Science a n d  Technology, 
P o rt H arco u rt, N igeria.

**R egretfully , P rofessor A. R . B estm an  passed  aw ay before the  p u b lica tio n  of th is re p o rt .
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2 . F o rm u la tio n  o f  th e  p ro b lem

The problem is formulated and non-dimensionalised as in Ogulu and Best- 
man [3] except that here the viscosity is varied with the temperature; so the non- 
dimensional equations of continuity, momentum and energy, in cylindrical polar 
coordinates (r,<j>,z) with velocity components (u,v,w), Byron et al [4] which we 
propose here are:

+eGr (0 — 1)cos ф,

_ 2 /  őu V dv uv d v \  1 dp Г 1 d (  2/1 Г d t v \  1 <9u"| \R ‘ + 7Щ -  T  + т ш )  = — т Щ ре; V e b; Ы + 7щ \J -
d f n n \ l d v  u ] \  d ( n \dv  l ő w l \ ]■  дф ( 2* [г дф + )  “ еTz (  [ Tz + Г ~dï\ J  J “ f  1G r  {в -  1}s m ф'

(  dw V dw V dw \  2 ő ( nnd w \  dp I d  (  , \ d w  2d u l \
Re \ u dr + r~djr~d7 )  ~ ~ e dz [ 207h  )  - cT z +  r  dr  ( rl9 dr +  £ 5 z J  J  +

1 ö ( .  Г 2 dv 1 dw] \
+  ; « * ( ' [ ' 5 + : # | ) '  (2,la,b,c,d,e)

( “ i, dd V dO 
R P Tc I ti-x- +  --XT +  w or г оф

d o \  l  d (  , d e \  l  d ( . d e \
d z )  r dr  \  dr J  r2 dф V dф J

We found it useful in the analysis to eliminate the pressure gradient between (2.1b 
and c) and the result is
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l ô u l \  l „ / l „ L / l ő u  i Al  d (  \dw ő u l \  
+ г д ф \ )  + г в ( r ö Г  \ г д ф  + г ) \  ~ l Yz V

-G r
Л r\

— (г [Ö -  1] sin ф) + —  ([(9 -  1] cos ф) ( 2 . 2)

All the various quantities in (2.1) and (2.2) either shown or unmentioned, have been 
defined in Ogulu [5].

The problem has now been put in mathematical terms. The boundary con­
ditions are

и = V = 0 = w on r — s(z),

в = 6W on r = s(z). (2.3a,b)

3. Basic approxim ate solutions

The inherent non-linearity of Eqs (2.1) and (2.2) makes solutions difficult 
to obtain in a closed form. Solutions are therefore obtained by series asymptotic 
expansions.

For the velocity components we write

и = t/°)(r, ф, z) + e t/1) +  . . .  etc.

For the temperature and pressure we write

в = </°)(r, z) +  св^1\ г ,  ф, z) + . . . ,

P = jP (0)(*) + Р(1)(г> Ф, z) + • • •, (31)

where e is a very small parameter. Substituting (3.1a,b,c,d,e) in (2.1a,d,e) and (2.2); 
and collecting terms without e we obtain these basic approximations

1 d . coi. 1 <9t/°)
;5 ;< ™  ) + ; ”s r  ’

(3.2a)

'dwW
dr

\  dpw
) ~  dz ’

r or \  or J -  1 Ra(9(°)4 -  1) = 0,

d
дф

0(°) d / t / ° ) \  1 ő t/0)" 
Г dr \  r ) ^ r d ф ) +

(3.2b) 

(3.2c) 

(3.2d)

+ b»> [> + ^ ) l  - 1 * (»<«> [ 4  ( ^ ) + i ^ l )  -r [ \ r ^  r /J г оф \  [ or \  r J г оф )
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d

Г дф
' l dvW ц(°>|У 
г дф г ) Grr

Ö0 (°)

dr sin ф = 0.

j (о)
Let be the externally applied pressure gradient, then the elementary solution 
of Eq. (3.2b) subject to the boundary condition иД°) = 0 on r = s(z), is

c jr f s{z) C (3.3)

The basic approximate solution for the temperature is obtained from (3.2c) 
employing both the series expansion method as in [3] and a perturbation method. 
For the series expansion the solution is

ö(°) = [a(^) + (a(,)4 - l ) A fíar2]é. (3.4)

a{z) is defined in [3].
For the perturbation method we first linearize (3.2c) to obtain

from which we now get

д2фп 1 дфп
dC C dÇ -Фп = С ,

* (0) =  t ö  +  ^ a ( r 2 - * 2 ) ] * ,

when п = О, С = 0 and

0 ( ° )  =

/ 0’ ( | я У 25)
'*  ( § * í . )

(3.4а)

(3.5)

(3.6)

when п = 1; С = 0. See Ogulu [5] for the method of solution. In(x) is a modified 
Bessel function of the first kind of order n; 0W is the temperature at the wall of the 
blood vessel.

A plot of 0(°) against r based on Eqs (3.5) and (3.6), (Figs 1 and 2) show 
that there is no difference between фо and ф\ so we can confidently perturb ф? as
Ф\ + V-

To obtain the small correction <p, we write

Ф2 = 'Р+Ф\- (3.7)

On substitution of (3.4a) in (3.7) we can show that

д<р 1 dip . ,, ,
A-----Tr- — 2t/>i v> = — -01 -dC C dC (3.8)
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F ig. 1. T em pera tu re  d is trib u tio n  b a se d  on  Eqs (3.5) a n d  (3.6). R a — 0 .1 ; =  2; z =  0 ; n  =  0
an d  n  =  1

Jo(0) is one (1), so = A(z) +  1 hence when (  is small we deduce that

MB{z)  + 1} = B^ Io^ B^  + 4. 0-9)

where B(z) is an arbitrary function of z. Consequently

V = A(z)I0(aO + Y Z T ^  ■ B(z)I0(0[B(z) + 1]. (3.10)

A(z) is an arbitrary function of z and a = [2(B(z) + 1)] a.
For large £ we use the transformation in Abramowitz and Stegun [6] to reduce 

the differential equation, whence we have

0.5^- -  Ф& = 0.5[A(z)7o(C) + 1]]. (3.11)
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Fig. 2. T em p era tu re  d is tr ib u tio n  based  on  E qs (3.5) and  (3.6). R a =  0.5; 9W =  2; z  =  0

An appeal to the WKB approximation, Bestman [7] would give the solution of 
(3.11). We introduce the Green’s function G(Ç,Ç") such that

0.5 82G
d C

( C , C)  -  R(x)G(C,C) = -6(Ç -  n ,

G(C,O = 0 = G(C*,Cn).
£(z) is Dirac delta function.

In the determination of the Green’s function G(C*,C*) we retain only the 
eikonal and transport terms; thus

G i( c * ,n  = + g2(c*)q ^ ,

G n O ^ O S C ^ O e x p sin h dtQ%{t)).
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The constants C\ and C2 follow from the matching conditions

Gi(C*,0 = G i,(0 ,0

and
^ i (c* a*) _ d G n ( ç  c )  = -  —
flc u  Л да U Л ' 0.5’

while C3 is obtained in terms of C4 from the boundary condition (  = Си- Hence

C l(0  = c 4« ) ,x p  [ - j j h j  j T * o * ( o ]  [ * *  " » * « ) )  -

Æ r i g ¥ ( i ' ) s ln '1 ( m C J t 9 H , ) ) + 2 c o " ‘
(0.5)a

Q-*(C)sinÄ 1 - J - ^ j ‘ dtQHt)J  (0.5)iQTi (C*)+

(0.5)* g ^ í O e x p  / '" j iQ è l i )

C2(C) = C4(C)exp

(0.5)b<

. - ( 5 3 ) г Г ‘вдН  Н Ч ( ^ Г Л<г*(,)

(3.12)

2 # < г - * ( п
(0.5)1 sin Л ( ( ï i j î  / Г  Л<«*(<)) +(0.5)*Q-±(C), (3.13)

Сз(С*) = -С4(П
е х р [—тг-тту /<•“ л  <?*(*)](0.5)_________________

еХР& ^ "  Л ^*(01
(3.14)

We have two solutions for our small correction <p, one when £ is small and the other 
when a is large. The two solutions have to be patched.

For a small we have

V = A(z)I0[2B(z) +  1-C] + V2.B[B(z) +  1]* 
1 -  2(B(z) + 1) Ш - (3.15)
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For large (  we have

V = J  Gi(ç,C)(Ob)t [B(z)MC)[B(z)  +  1 r S R *  

+ Gn(C, Ci i ) ( 0 . 5 ) * [B(*)./o(C* )[В Д  + 1]C*\}dC

Abramowitz and Stegun [6] give the series expansion for Jo as

MO = 1 + ^c2 + • • - ,

(3.16)

hence the patching condition is

C > 2 (1 + ДС0 )
B{z)

Finally, for the и and v components of the velocity we put

u<°> = U^°\r) cos ф

and
v<°> = W°)(r) sin ф

in our leading equations (3.2a,d); the result is a fourth order linear differential 
equation. An appeal to Newton-Ralphson algorithm readily gives the solution to 
these equations.

4. D isc u ss io n  o f  r e su lts

In Part I we looked at the differential approximation for radiation with radia­
tive heat transfer for a fluid with constant viscosity. In this Part we are considering 
a fluid with variable viscosity. In essence we want to look at the effect of variation of 
viscosity on the velocity and temperature profiles. Here the viscosity is assumed to 
vary with temperature. Since this is purely for comparison we have only considered 
the basic approximate solutions for the pressure, velocity and temperature. This 
would be enough to give a clue as to any difference between the assumption that 
the viscosity of blood varies «is the temperature is varied; and the assumption that 
the viscosity of blood is constant during deep heat muscle treatment.

Figures 1 and 2 show the temperature profiles for the cases when n = 0,1 
based on Eqs (3.5) and (3.6) which compare favourably well with the temperature 
profile for the constant viscosity fluid. (See Ogulu and Bestman [3].) Both these
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Fig. 3. T em p era tu re  d is tr ib u tio n  based  on Eqs (3.5) a n d  (3.6). R a =  1; 0W =  2; z — 1; n  =  0
and  n — 1

profiles are of the same order of magnitude which means the variation in the vis­
cosity has not affected the temperature distribution. This is in agreement with the 
conclusion of Pedley [1].

If one accepts the fact that for a constant viscosity fluid once the flow is 
set further increase in the radiation parameter is not accompanied by subsequent 
increase in the velocity then the agreement between the two cases becomes even 
more remarkable as depicted in Fig. 4.

In whole of this analysis we assume that the radiation parameter Ra is small; 
but as can be seen from Fig. 3, the analysis is valid even for radiation parameters 
as large as one (1). This shows that our perturbation of the temperature is quite 
accurate.

Acta Physica Hungarica 73, 1993



2 6  A. OGULU and A. R. BESTMAN

Fig. 4. Velocity d is trib u tio n  for flow w ith  variable viscosity based o n  E q . (3.3) for n  =  1; 
R a =  0.5; z  =  l  an d  n  =  1 ; R a — 0 .1; 2 =  1
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N o m e n c la tu r e

e a  sm all p a ram ete r
s a n  a rb itra ry  function
r  ra d ia l coord inate
z  ax ia l coord inate
ф az im u th a l coord ina te
u,vtw velocity com ponents
R a ra d ia tio n  p a ram ete r
P r P ra n d t l  num ber
R  R eynolds num ber
G r G rashof num ber
p  p ressure
ao characteris tic  rad iu s
u ( ° ) ,t /° )  , il>(°) lead ing  com ponent of th e  velocity vecto r 

lead ing  com ponent of th e  pressure 
p*1  ̂ p e r tu rb e d  pressure  g rad ien t
К  app lied  pressure g rad ien t
I n Bessel function  of th e  1st k in d  of o rd e r n
k n Bessel function  of th e  2nd  k in d  of o rd e r n
<p sm all correction
0W wall tem p era tu re
G j , G \i G reen ’s function
C l » ^2  » C3 , C i  co n stan ts 
6 D irac  d e lta  function
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OF POLYCRYSTALLINE Ag-DOPED CdS THIN FILMS
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U niversity  of Basrah, Basrah, Iraq

(R eceived in  revised  form  1 D ecem ber 1992)

C dS a n d  CdS:Ag th in  film s were p rep ared  using  th e  spray pyro lysis technique. T h e  
p re p a re d  film s were deposited  on  glass su b s tra te  k e p t a t  a  tem p era tu re  o f (420± 10) °C . T h e  
o p tica l a n d  electrical p ro p e rtie s  have been  s tu d ied  for CdS an d  C dS:A g (0.1 — 2.5) wt% .

T h e  energy gaps were o b ta in ed  as a  fu n c tio n  of doping co n cen tra tio n , which were 
fo u n d  to  vary  from  (2.4 ±  0.01) to  (2.21 ±  0.01) eV in  the  doping  concen tra tion  ran g e  
(0—2.5) w t% . T he electric conductiv ity  was o b ta in e d  from  the  I-V  ch aracte ris tics w hich was 
m easu red  a long  th e  p lane of film  using  the  gap m eth o d . T he effect of d o p an t co n cen tra tio n  
on  e lectric  conductiv ity  is d iscussed.

A ll th e  m easurem ents were carried  ou t a t  ro o m  tem p era tu re .

In tr o d u c tio n

CdS has a direct band gap of 2.4 eV at room temperature (Gupta and 
Agnihotri [1]) and it is a suitable material for application to windows of P-Si/n-CdS 
type heterojunction solar cells (Couzza et al [2]), photoconductor devices (Amal- 
nerkar et al [3]) as well as in photovoltaic devices (Mitchell et al [4]). Studies 
have been made on CdS thin films prepared by various methods such as sputtering 
(Yang and Im [5]), sintering (Gupta et al [6]), chemical vapour deposition (Pártáin 
et al [7]) evaporation (Norian and Edington [8]) and spray pyrolysis method (Kim 
and Park [9]). Various dopants have been tried according to the films applications 
(Nakayama [10], Shinkalgar and Pawar [11], Lokhande and Pawar [12], Kim and 
Park [9]). However, as far as the authors know no work has been published to date 
on the optical and electrical properties of sprayed CdS:Ag.

In the present study, CdS and Ag-doped CdS films were prepared by the spray 
pyrolysis method which is known to be a simple and low-cost process. The optical 
absorption and electric conductivity have been studied and discussed.

E x p e r im e n ta l d e ta ils

The cadmium sulphide films were prepared by pyrolytic decomposition of 
CdCb and thiourea. Solution of CdS with (0.5) M concentration has been prepared 
by dissolving (1.023) gm of CdCl2 and (0.5271) gm of (NH2)2CdS of the compound
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in (100) ml deionized water of each. The ratio of Cd:S in the sprayed solution 
was 1:1.

Silver-doped films were prepared by adding different weight percentage (0.1 — 
2.5) wt% of Ag by dissolving a proper amount of AgCl in deionized water and added 
to the solution. The obtained solution is immediately sprayed with the help of a 
double nozzle sprayer onto (420±10) °C heated substrate of glass slides. The sprayer 
set-up and experimental details of preparation have been described elsewhere (Raza 
et al [13], Agnihotri et al [14]). The thickness of the prepared samples was in the 
range of (0.21 — 0.65) pm. The films were clear, yellow in colour and transparent. 
For optical absorptance measurements, a Pye-Unicam SP-800 UV/VIS double beam 
spectrophotometer covering the range from (200-900) pm was used.

The electric conductivity was obtained from the I-V characteristic which was 
measured along the plane of the film using the gap method (Chen-Chwe et al [15], 
Slawh [16]). Each sample had Coplanar Aluminium stripe contacts, with a gap of 
2 mm and a length of 10 mm.

All I-V measurements for coplanar dark conductivity for CdS and CdS:Ag 
were carried out at room temperature.

A n a ly s is  o f  r e su lts  a n d  d iscu ss io n

The optical absorption data were analysed in terms of the theory of Bardeen 
et al [17] which gives for a direct transition:

a  = B(hi/ — Eg)* /hv,

where a  is the absorption coefficient, Eg the direct band gap, hv is the photon 
energy and В  is constant depending on the probability of transition (Neumann et 
al [18]).

The plot of (ahi/)2 versus hi/ is shown in Figs la, lb  for CdS and CdS:Ag for 
different doping concentrations. Extrapolation of the straight line to (ahi/)2 = 0 
gives the direct allowed band gap Eg.

Figure 2 shows the obtained energy gap from Figs la, lb as a function of 
doping concentration. It can be seen that as doping concentration increased, the 
energy gap decreased. The reduction in the values of energy gap may be related to 
the increase in the donor levels which make the semiconductors in the degenerate 
state (Sze [19]). The effect may cause the conduction band to extend into the gap 
(tail) which reduces the forbidden energy gap. This result agrees with that reported 
by Slawh et al [20] for CdS:In films. The energy gap of CdS thin film agree with 
that reported by Agnihotri and Gupta [21].

The electric conductivity of CdS and CdS:Ag thin films has been investigated 
using the gap method. Table I presents the electric conductivity as a function of 
Ag wt%.

Acta Physica Hungarica 73, 1993



ELECTRICAL AND OPTICAL PROPERTIES 31

Figs la,lb.  (ahi/)2 vs photon energy for CdS and  CdS:Ag for different silver concentrations
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Table I
E lectric  conductiv ity  o f CdS:Ag film 
for different doping concentra tions

Ag wt% <r(i7cm) 1

0 7.943 E-10
0.1 7.941 E-8
0.2 1 E-4
0.3 1.995 E-4
0.4 3.1623 E-3
0.5 1.259 E-2
0.6 2.5119 E-4

0.8 1.778 E-6
0.9 1.000 E-6
1 5.0119 E-7
1.4 1.00 E-7
1.7 1.9953 E-8
2 1.259 E-8
2.5 1.5849 E-8

Figure 3 shows the log coplanar conductivity as a function of Ag-doped con­
centration. It can be seen that the dark conductivity of the film first increased with 
Ag doping concentration and reached a maximum point for 0.5 wt% Ag. After­
wards the conductivity decreased and reached a constant value for doping larger 
than 2 wt% Ag. This can be explained as follows: Ag can be doped into Cd sites 
of CdS thin film substitutionally and can act as donor. The increase of the car­
rier density of a film at a rather low concentration stage less than 0.5 wt% may 
though be due to this effect. Similar observations have been reported for CdS:In by 
Mizuhashi [29], Suzuki et al [23] and Hayashi et al [24]). After that, as the doping
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Fig. 3. P lo t of log co p lan ar conductiv ity  (<r) vs Ag wt% doping  concen tra tion

increases there is a possibility that Ag+1 would go to the interstitial position rather 
the vacancy position of Cd2+ and probably this may be the reason why conductivity 
decreases for doping larger than 0.5 wt% Ag. The interstitial Ag ions act as recom­
bination centres decreasing the number of charge carriers and the conductivity as 
well. Similar results have been reported for CdS-doped A1 (Lokhande and Pawar 
[12]) and Cdo.75Zno.25S doped Sn (Oda [25]). For a high doping stage greater than 
2 wt% Ag, conductivity seems rather constant and goes into compensated stage.

C o n clu sio n

The spray pyrolysis technique can be used to deposit pure and Ag-doped n- 
type thin films (0.21 pm -  0.65 pm thick) with large range conductivities (10-10 — 
10~12 Í2- I cm-1); 0.5 wt% Ag doping gives the highest conductivity. From these 
results we conclude that the Ag atoms were doped substitutionally at low level of 
concentration into the CdS and act as donor centres while doped interstitially at 
high concentration and act as compensation acceptor centres.
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The energy gaps were calculated as a function of doping concentration. It was 
found that the energy gaps decreased with increasing doping concentration. Before 
any conclusion can be drawn from the above results, further studies are needed to 
identify the film structure and the possibilities of using such technique and such 
films in devices applications.
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EFFECT OF EQUATORIAL ELECTROJET ON 
ELECTRON CONTENT VARIATIONS AT TWO 

LONGITUDINALLY SEPARATED LOW 
LATITUDE STATIONS

P. K. B h u y a n

D epartm ent  of Physics , Dibrugarh University  
Dibrugarh-786004, Assam, India

(R eceived in  revised fo rm  8 Decem ber 1992)

T o ta l ionospheric electron co n ten t (IE C ) ob ta ined  sim ultaneously  a t  two low la t­
itu d e  s ta tio n s , U da ip u r (22.6 °N, 69.6 °E , d ip  la titu d e  14.4 °N ) and  G au h a ti (23.8 °N, 
83.6 °E , dip la titu d e  14.2 °N) during so la r  m inim um  has b e e n  analyzed to in v estig a te  the 
effect of equato ria l e lectro je t and  sp a tia l separation . R esu lts  show th a t  th e  m e a n  peak 
levels o f ion iza tion  in  w in ter and  sum m er are  ab o u t equal a t  G au h a ti w hereas a t  U daipur 
w in te r IEC  is less th a n  th a t  ob tained  in  sum m er. T he difference in  so lstitial b e h av io u r was 
b ro u g h t ab o u t by re d u c tio n  in  the  w in te r level of ion iza tion  a t  U da ip u r co m p ared  to  th a t 
a t  G a u h a ti. D iurnal a n d  seasonal varia tio n s of IEC a t these  two locations u n d e r  th e  influ­
ence of strong  eq u ato ria l e lectro jet (E E J)  were found  to b e  d issim ilar as a  re su lt of which 
difference betw een th e  two sets of d a ta  increases. L a titu d in a l varia tion  of IE C  as derived 
fro m  observations a long  a  chain of s ta tio n s  centered  a ro u n d  71 °E  m erid ian  in  th e  Indian 
low la t i tu d e  region shows th a t  the  p o sitio n  of the  crest of th e  anom aly varies w ith  season 
b u t  n o t  w ith  the  s tre n g th  of E E J. IE C  fo r G auhati does n o t  correspond to th e  anom aly 
level a long  71 °E  in d ica tin g  a long itud inal varia tion  w ith in  th e  Ind ian  zone.

1. In tr o d u c tio n

The ATS-6 campaign in India (September 1975 to August 1976) provided a 
unique opportunity for intercomparison of ionospheric electron content (IEC) ob­
tained at a group of stations located across the Indian low latitude region. Study of 
correlation of ionospheric parameters is important from the viewpoint of predictions 
in space-time configurations where observational facilities do not exist. Klobuchar 
and Johanson [1], Kane [2], Soicher et al [3], Bhuyan et al [4] and Bhuyan and 
Tyagi [5] had investigated various aspects of variability in electron content for low 
and midlatitudes. Klobuchar and Johanson [1] and Bhuyan and Tyagi [5] had 
observed that the correlation of mean daytime IEC decreases with increasing longi­
tudinal and/or latitudinal separation between observing stations. Kane [2] showed 
that at American midlatitudes, the difference between IEC measured at two loca­
tions only 400 km apart could be as high as 50 %. Neutral winds play a major role 
in IEC variability at midlatitudes, on the other hand, at low latitudes, variations 
in the equatorial electrojet (EEJ) strength mainly influences the day to day vari­
ability (Rama Rao et al [6]; Dabas et al [7]). The location of observing stations 
with respect to the geomagnetic equator and their longitudinal separation was also
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Table I
Co-ordinates of the observing stations

S ta tio n  G eographic Subionospheric a t  420 km
L at °N Long °E  Lat °N Long °E Dip Lat °N

U daipur 27.4 75.3 22.6 69.6 14.4

G au h ati 26.1 91.5 23.8 83.6 14.2

Fig. 1. M ean d iu rn a l va ria tio n  of IE C  a t  th e  two sta tio n s, U d a ip u r (broken curve) and  G au h ati 
(d o tte d  curve) fo r th e  p e rio d  O ctober 1975 to  Ju ly  1976

found to contribute to difference in magnitude of observed IEC near the crest of 
the anomaly in the Indian zone (Bhuyan et al [4]). The aim of this paper was to 
investigate the effects of longitudinal separation and EEJ, if any, on the diurnal and 
seasonal variations of IEC obtained simultaneously at Udaipur (lat. 22.6 °N, long. 
69.6 °E) and Gauhati (lat. 23.8 °N, long. 83.6 °E) situated near the northern crest 
of the equatorial anomaly.

2. D ata

Simultaneous IEC data used in this analysis for the period November 1975 
to July 1976 were obtained by monitoring the Faraday rotation angle of 140 MHz 
beacon transmissions from ATS-6 positioned over the Indian Ocean (35 °E) during 
its phase-II campaign. The co-ordinates and other relevant details of the observing 
stations are given in Table I.
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3. Results

3.1. Comparison of seasonal variation

Scrutiny of individual daily plots of IEC for Gauhati and Udaipur revealed 
that the diurnal variation is quite similar on some days whereas on some other days, 
IEC at the two stations register dissimilar variations. The day-to-day variability was 
found to be random and sometimes very high at both locations. Hourly average 
IEC for the three seasons viz. winter (Dec./Jan.), spring (Apr.) and summer 
(June/July) for the two locations plotted against local time was shown in Fig. 1. 
It may be seen that a semiannual variation in IECmax with peak in equinox and 
troughs in the solstices is evident both at Gauhati and Udaipur. However, the 
summer and winter peak levels are different in each case. At Udaipur, winter IECmax 
(19.5 X 1016 el.m-2) is considerably less than that in summer (23.2 x 1016 el.m-2) 
whereas at Gauhati, winter and summer levels are about equal (26.9 x 1016 el.m-2 
and 27.2 x 1016 el.m-2 , respectively). Observed variation of the individual as well as 
average IEC were further confirmed by obtaining the relative electron content (IEC- 
IECmin) at each data point, which neutralizes the effect of any probable error in 
the base level ionization. The mean daily range of IEC (IECmax-IECmin) obtained 
for winter and summer at Udaipur and Gauhati are 17.9 x 1016 el.m-2 , 21.5 x 1016 
el.m-2 and 21.5 x 1016 el.m-2, 22.7 x 1016 el.m-2, respectively. We may see that the 
summer daily range is about equal but in winter, at Udaipur, the daily range falls 
to a level below that of summer. Therefore, the difference in the solstitial behaviour 
of electron content was caused by reduction in the winter level at Udaipur. Around 
75 °E meridian, observations during the AST-6 period had revealed that the winter 
anomaly (i.e. winter electron content being higher than summer electron content) 
was present only at locations confined within the equatorward trough region of the 
equatorial anomaly (Bhuyan [8]). At locations outside the anomaly region, summer 
IEC was higher compared to that in winter, transition between these two different 
seasonal variation patterns occurring around Ahmedabad (dip lat. 13 °N) where 
IEC was comparable in both the solstices. Klobuchar et al [9] had shown that in 
the Indian zone, during solar minimum, the crest of the anomaly normally centres 
around Ahmedabad with latitudinal shifts depending on season. The subionospheric 
points of Udaipur and Gauhati are thus generally located northward of the crest of 
the anomaly and it is reasonable to expect similar seasonal variation at these two 
places. Contrarily, while IEC at Udaipur show normal seasonal variation expected 
at a location outside the crest of the anomaly, IEC at Gauhati exhibit seasonal 
variation observed in the transition region. Bhuyan et al [4] had reported earlier 
that a small difference in latitude coupled with the difference in longitude of two 
subionospheric intersections plays a critical role in determining the magnitude of 
IEC measured in the vicinity of the equatorial anomaly crest in the Indian zone. 
The difference in relative position of the two subionospheric points (for Udaipur 
and Gauhati) vis-a-vis the geomagnetic equator and their longitudinal separation 
seems to have affected the seasonal variation of IEC at these two locations.
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3.2. Effect of equatorial electrojet (EEJ)

The short as well as longterm variability of IEC in and around the northern 
equatorial anomaly region in India was found to be mainly controlled by the varia­
tions in equatorial electrojet strength. Dabas et al [7], Rama Rao et al [6] made a 
quantitative study of the electrojet control over the equatorial anomaly in IEC using 
data from a chain of six Indian stations ranging from the dip equator to 40 °N dip 
during the low activity period of 1975-76, utilizing the same data base. They found 
that the position of the crest of the anomaly depends strongly upon the integrated 
electrojet strength. During strong EEJ days, the crest of the anomaly was found 
to form beyond 40 °N dip, i.e. the northernmost station of the latitudinal chain, 
while on days of no electrojet or counter electrojet, no anomaly was found. Since 
both the stations are located near the crest of the anomaly at approximately equal 
distances away from the geomagnetic equator, efTect of EEJ on IEC measured both 
at Gauhati and Udaipur could be expected to be similar provided longitudinal sep­
aration between the two stations is not taken into consideration. Variations in the
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EEJ current at the equator can be obtained by taking the difference in the deviation 
A H  of the H  field at an equatorial station to that at a station situated well outside 
the equatorial electrojet region according to Rush and Richmond [10] and Chandra 
and Rastogi [11]. For the present analysis, EEJ strength had been calculated as 
A H t - a  following Chandra and Rastogi [11] where T represents Trivandrum (mag. 
lat. 0.3 °N) and A is for Alibag (mag. lat. 9.5 °N). EEJ strength calculated as above 
was found by Dabas et al [7] to be well correlated with the day-to-day variability in 
electron content in the Indian zone during the low solar activity period of 1975-76. 
In Fig. 2, diurnal variation of IEC at Gauhati and at Udaipur are plotted for two 
periods of three consecutive days during which EEJ was strong (top) and normal 
(bottom). EEJ was considered strong for the day in which the maximum value of 
A H t - a  exceeded 50 nT and normal when A H t - a  < 40 nT. The peak level of IEC 
at Udaipur gradually decreases from 47.9 xlO16 el.m-2 on day 1 to 44.0 xlO16 el.m-2 
on day 2 and to 39.8 x 1016 el.m-2 on day 3 during strong EEJ. During the same 
period, IEC at Gauhati remained at the peak level of 34.1 x 1016 el.m-2 on all three 
days. On the other hand, when EEJ activity was normal, IEC at both stations 
rise and fall in unison from one day to the next. The day-to-day variations were 
further confirmed by obtaining similar curves for relative IEC. The period chosen 
for Fig. 2 was at random and many such periods in which IEC at the two locations 
vary independently could be found.

3.3. Comparison of IEC

The relative variation of IEC measured at one station with respect to that 
obtained at another can be studied by plotting data of one station against those 
of the other station. If the IEC measured over a length of time matches well then 
a simple relationship of the type y = mx, where m is unity, should be expected. 
However, since Fig. 1 indicates that the diurnal curves averaged over the seasons for 
Udaipur and Gauhati do not match well, we could look for a systematic deviation 
of one set from the other which is related to some geophysical factors like season 
or magnetic activity. Bhuyan and Tyagi [12] investigated IEC correlation at three 
low latitude stations in the Indian and East Asian longitude sectors during solar 
minimum and studied the relative deviation of IEC during quiet (QQ) and disturbed 
(DD) days and in different seasons of the year. They observed that the deviation of 
IEC was influenced by season but not by magnetic activity. In Fig. 3, the monthly 
mean relative IEC grouped into winter (Nov., Dec., Jan., Feb.), spring (March, Apr.) 
and summer (May, June, July) at Gauhati is plotted for all local times against the 
corresponding values similarly obtained at Udaipur. The Figure indicates that IEC 
at Udaipur and Gauhati match each other only in summer. In winter, IEC measured 
at Gauhati is higher while in spring, Udaipur values are much higher compared to 
those correspondingly obtained at Gauhati. There had, therefore, been systematic 
seasonal deviation of IEC observed at the two stations with respect to each other.
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Д IEC a t  U da ipur

Fig. 3. M o n th ly  m ean  re la tive  IE C  ( IE C -IE C min ) a t  G auhati p lo tte d  a g a in st corresponding  values
of U daipur for a ll local tim es

S.f. Effect of EEJ on relative deviation

During days of strong EEJ, day-to-day variability at Udaipur and Gauhati was 
found to be different (Section 3.2) whereas similar variation had been noticed during 
days of normal EEJ. To check any possible effect of EEJ strength, relative IEC at 
Gauhati is plotted against those of Udaipur for strong electrojet days in winter and 
summer in Fig. 4. Sufficient number of simultaneous data for strong EEJ could 
not be found in spring. It may be seen from the Figure that during strong EEJ, 
difference between the two sets of data increases with increase in electron content 
in winter. In summer, too, IEC at Udaipur increases relative to the corresponding 
values at Gauhati. The discrepancy further increases for higher values of IEC, i.e. 
during daytime maximum hours giving the curve a rather skewed shape.

Figure 5 further stresses the influence of EEJ on relative variation of IEC at 
Udaipur and Gauhati. The data are for normal EEJ days. It can be seen that IEC 
at two locations are about equal in summer at all local times when in winter, IEC at 
Gauhati is marginally higher than the corresponding values at Udaipur. Comparison 
of Figs 3,4 and 5 shows that the average relative behaviour is influenced by strong 
EEJ activity. Superimposition of Figs 3 and 5 indicates that the separation of strong
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EEJ days from the monthly average leads to indentical values of IEC at the two 
stations in both winter and summer. For higher values of Д1ЕС (> 20 x 1016 el.m-2 
in winter and > 25 x 1016 el.m-2 in summer), the monthly mean data points 
lie entirely on the Gauhati and Udaipur side, respectively, of the regression lines 
(Fig. 3). Since the discrepancy between the two sets of data under the influence of 
strong EEJ increases for higher values of IEC (Fig. 4), it may be concluded that 
the average behaviour of IEC is influenced by EEJ activity and the electrojet effects 
are discernible in high daytime values of IEC.

4 . D iscu ss io n

Changes in the electric current system in the atmosphere are known to in­
duce variations in the horizontal component (H ) of the earth’s magnetic field on 
the surface of the earth. The relatively strong belt of current along the magnetic
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Fig. 5 Sam e as in  Fig. 4 for n o rm al E E J  days

equator at E  region heights, termed as the equatorial electrojet, in association with 
the magnetic field gives rise to an E  x В vertical drift of ionization at the equator 
(Balsely and Woodman [13]). Ionization at the equator is lifted vertically upward by 
the electrodynamic drift during the electrojet (normally during daytime) to higher 
altitudes which later diffuse along geomagnetic field lines to higher latitudes giving 
rise to the phenomenon known as the ‘Appleton’ or equatorial anomaly (Martyn 
[14]). Variations in the E  x В upward drift velocity will result in lifting up of the 
ionization to varying altitudes and thereby producing the peak of the anomaly at 
different latitudes. Rama Rao et al [6] had found that during a strong electrojet day, 
the crest of the anomaly tends to form northward of the normal latitudinal position. 
However, seasonal variations in the position of the crest of the anomaly with respect 
to the equator had also been observed during this period. In winter, the crest of the 
anomaly shifts equatorward relative to its position in summer, while in equinox, it 
moves further north beyond average location in summer. In Fig. 6, IEC-IECmin at 
1400 h local time along the latitudinal chain centering around 71 °E meridian has
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Fig. 6. L a titu d in a l varia tion  of Д1ЕС a t  1400 h  L .T. fo r selected days of s tro n g  e lectro jet. Solid  
lines rep resen t w in ter an d  broken lines rep resen t sum m er days. D ots an d  circ les are corresponding 

values for G au h ati in  w inter an d  sum m er, respectively

been shown for some strong EEJ days to illustrate the shifting of the anomaly crest 
with respect to the equator. The curves were drawn through points corresponding 
to the stations Trivandrum (7.9 °N, 73.3 °E; dip lat. 0.1 °N) Ootacumund (11.0 °N, 
73.5 °E; dip lat. 1.6 °N), Bombay (17.8 °N, 69.8 °E; dip lat. 9.3 °N), Ahmedabad 
(21.5 °N, 69.4 °E; dip lat. 13.1 °N), Udaipur, Delhi (26.2 °N, 72.2 °E; dip lat.
18.3 °N), and Patiala (28.3 °N, 72.1 °E; dip lat. 20.2 °N). Circles and dots are the 
corresponding data points for Gauhati. It could be seen from the Figure that the 
anomaly peaks near Bombay in winter and around Udaipur in summer with a ten­
dency to move further north in an early summer day. Relative IEC for Gauhati does 
not correspond to the anomaly level as deduced from observations along the chain 
of stations around 71 °E on any day of strong EEJ. IEC at Gauhati is higher than 
the corresponding values at Udaipur in winter and lower in summer. Longitudinal 
separation of Gauhati (by 12°) from the other stations seems to have contributed 
to the observed mismatch in IEC behaviour.

The structure of the equatorial anomaly in IEC was shown to correspond to 
electrojet strength (Iyer et al [15]; Singh et al [16]) while Jain et al [17] had shown 
that at low latitudes, stormtime changes in IEC were controlled to a large extent by 
changes in electrojet strength. Figure 6 shows that the equatorial anomaly which 
is well developed under the strong EEJ peaks at different latitudes in different 
seasons. Thus the position of the crest of the anomaly appears to be influenced by 
season rather than by EEJ activity. It would be worthwhile to look for a mechanism 
coupled to the EEJ and responsible for this spatial shift in the anomaly peak with
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season. The EEJ and Sq current systems are coupled interactive systems (Forbes 
[18]). The mean daytime Sq foci are asymmetric about the dip equator and the 
total intensities of the external Sq current system vary with season (Matsushita and 
Campbell [19]; Trapley [20], Gupta [21]). The EEJ resulting out of the asymmetric 
current system do not always flow parallel to the dip equator, particularly during 
winter and summer and thus the cumulative effect of the EEJ might be to produce 
seasonal variation in the magnitude of vertical drift velocities resulting in lifting up 
of ionization to varying heights above the equator and consequently to form the 
anomaly at different latitudes.

We have seen that IEC variation between Gauhati and Udaipur, situated at 
about the same dip latitude but separated in longitude is not symmetric. The 
asymmetry is accentuated by EEJ activity. Detailed theoretical work taking into 
consideration various factors that govern E  and F region dynamics in this low lati­
tude region might establish the role of EEJ on anomaly structure and longitudinal 
variation in IEC.
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B y considering a  hom ogeneous a n d  iso trop ic  universe w ith  m a tte r  a d m ittin g  a  bu lk  
viscosity coefficient depend ing  on the  energy  density, c u rv a tu re  squared  a n d  th e  energy 
d ensity  tim es th e  c u rv a tu re  squared  we s tu d y  th e  sp ec tru m  of allowed in fla tio n ary  cos­
m ologies w hen all these  effects are p resen t sim ultaneously. W e also  d em onstra te  th a t  when 
th e  eq u atio n  of s ta te  fo r m a tte r  violates th e  dom inant energy condition  in fla tion  is never 
possib le unless th e  b u lk  viscosity coefficient ad m its  negative con tribu tions from  th e  above 
m en tio n ed  effects.

1. In troduction

Inflationary cosmology originally developed as a scheme to resolve the flatness, 
horizon and monopole abundance problems of conventional big bang cosmology [1]. 
Old inflation [1], new inflation [2], chaotic inflation [3] and extended inflation [4] 
all address the same problems with extended inflation offering us the best theory 
for how the universe inflates in the beginning to resolve the flatness and horizon 
problems and then slows down in its expansion rate so as to allow the true vacuum 
to percolate. In extended inflation a Brans-Dicke type scalar is used as a catalyst 
to provide the initially fast rate of inflation and the later slowing down of the scale 
factor expansion [5]. Even if a scalar potential is not present to provide the driving 
force for the above mechanisms of inflation there exist other dynamical schemes 
that can lead to inflationary like cosmologies, namely bulk viscosity driven inflation
[6] and higher curvature driven inflation [7]. Such mechanisms are important for 
they suggest that inflation might not be a generic result of a theory with a scalar 
field displaced from the minimum of the potential but rather a general feature of 
early universe cosmology independent of the initial conditions. This is the spirit 
behind the “cosmic no-hair theorem” [8,9,10] along with the conjecture that infla­
tion might be an “attractor in initial condition space” [11]. Actually, if quantum 
gravity ultimately determines the initial conditions for conventional cosmology then 
it might be of interest to study those cosmological scenarios wherein quantum ef­
fects are already imbedded in the cosmology being studied. One example of this 
is curvature dependent bulk viscosity where the effect of pair creation in a back­
ground gravitational field generates an effective curvature dependent bulk viscosity 
coefficient [12,13]. Actually energy dependent bulk viscosity has been studied as a

Acta  Physica Hungarica 73, 1993 
Akadémiai  Kiadó, Budapest



4 6 C. WOLF

means of representing particle creation in the early universe as well as describing 
dissipative processes related to primordial entropy generation [14]. Bulk viscosity 
can also represent in a phenomenological manner the conversion of massive string 
modes into massless modes if strings are the fundamental constituents of the early 
universe [15].

In a previous note we have studied the influence of energy dependent, cur­
vature dependent and energy dependent times curvature dependent bulk viscosity 
on inflation and calculated the rate of inflation in each case generated around the 
Planck era [16]. In this note we extend the analysis and study the rate of inflation 
when all three of these forms of bulk viscosity are simultaneously present. We also 
demonstrate that if the equation of state of matter violates the dominant energy 
condition that inflation is never possible in the presence of the above forms of bulk 
viscosity unless one or more of the contributions to the bulk viscosity coefficient are 
negative. Since the inflationary solutions derived in this note add to the already 
present large list of inflationary cosmologies, it gives us further reason to believe in 
the “cosmic no-hair theorem” and the belief that inflation might ultimately be a 
result of quantum effects generated around the Planck era.

2. Bulk viscosity and  inflation

We begin our analysis by writing the homogeneous, isotropic metric as 

(■d S f  = dt2 - R 2 ^  + r7d02 + r2 sin2 d(d<t>)  ̂ ■ (A' = 0,±1), (2.1)

the Ricci components are

Roo —
3R
1 Ï '

R'i ~  I R + 2 I R J + P2 I 9ii •
R
R

2 К
Ж ( 2 .2 )

For the matter, we have [17]

= (-P + e)U»Uv -  д„„Р,

where

P = P — f f /“ — P — 4  .

(U° = 1, U' = 0), £ = bulk viscosity coefficient.
We next assume an equation of state of the form P = ас (а = constant).

(2.3)
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For the bulk viscosity coefficient we add together the constituent 
ferred to in [16] and write

£ = Ci(c) + C2(Rs )2 + C3(e)(Rsf-

Here Rs  =  R ßvgßv, C\, C2, C3 are constant. 
For a flat universe К  — 0, we have

Rs = RßVgßV = 6i + 6

Using Eqs (2.2), (2.3), (2.4) and (2.5) the Einstein equations read

here Too = f, T j = -Pgij  = p ~ 4 r \ 9ij> T = e ~ i P

3l  = - ‘ б — -  fe — 3ae +  9(Cií + Cz(iis)2 + C3e(Rs)2) —

( ‘ = T ? ’ C = ')■

! ♦ «  I
-a e  + 3(Cie + C2(fís)2 + C3(e)(Rs )2)

R
Ti

- i  £ -  3ee + 9(Ci£ + С2(Д5)2 + C3f(fís)2)
Л
Я

Solving for ke in Eq. (2.6) and Eq. (2.7) and equating them we have

з {  -  Ц & с ц а д » )  1 + 2 ( 8 ) г - | * с . № ) гй
1 I 3or 9 C \R  9 г* ( r> \7  R  cx 1 3 г* R  3 r* R  ( r> \72 + T  “  ~2R -  j ° 3 № )  Л 2 “  2 ~ 2°1Л “

We now insert the inflationary solution R — Rq9^+ into Eq. (2.8) giving 

/?5(9Сз(144) + /^(432kC2) +  ß(9Ci) +  ( -З а  -  3) = 0.

We now study the following cases for Eq. (2.9).

effects re- 

(2.4)

(2.5)

( 2 .6)

. (2.7)

( 2.8)

(2.9)
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Case I

If Сз = 0 and a > — 1 (equation of state obeying dominant energy condition 
P + e > 0), CiyCi > 0 then Eq. (2.9) has one positive root which is the inflationary 
solution, the value of ß  is for a = 1/3,

ß = 

+

■ 2 1 1 ll/8 1 f  4 Ï + 12 f  18 Cr \ 3
]j 432kC2 ' 18 V V432kC2) ^864C2fc /

3 2 1 /8 i f  4 1 + 12 f  18Ci \ 3
\| 432jfcC2 18 V { í m e ! ) ^864C2fc /

Case II

If a < — 1 (violation of the dominant energy condition) and Сз, C2, Ci > 0 
then Eq. (2.9) has no positive roots and inflation does not occur.

Case III

Сз, C2, Ci > 0 and а > — 1 then Eq. (2.9) has one positive root and inflation 
again occurs, the root must be found by numerical analysis of Eq. (2.9).

Case IV

Even if a < -1  and Сз < 0, and C i,C 2 > 0 then Eq. (2.9) has one positive 
root and inflation occurs, inflation will also occur if or < —1 and Ci < 0; Сг, Сз > 0 
or Сг < 0; С1,Сз > 0 or Ci > 0; Сг,Сз < 0 or Сг > 0; Ci,C3 < 0 or Сз > 0; 
Ci, Ci < 0; or C\, Ci, Сз < 0 in which case Eq.(2.9) has at least one positive root. 
The roots would have to be found by analysis of Eq. (2.9).

3. C o n c lu sio n

The fact that inflation always occurs for the bulk viscosity coefficient having 
the general form in Eq. (2.4) providing the equation of state obeys the dominant 
energy condition (P +  e > 0) suggests that cosmologies admitting bulk viscosity 
generate part of the solution space included in the general “no-hair theorem” for 
inflation. It is also of interest that even if the dominant energy condition is violated 
that inflation still occurs providing the coefficients (C i, Сг, Сз) fulfill the inequalities 
in Case IV. The fact that multiple positive roots may occur suggests that the form of 
bulk viscosity studied above may generate a cosmology admitting double inflation.
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Lastly it would be of interest to ask if the coefficients (C i, C2, C3) could be calculated 
from a quantum gravitational model to ascertain their positive or negative nature. 
As in the case of “induced gravity” [18] the sign of the coefficients C i, C2, C3 may 
depend on the heavy fields that induce them. It is intriguing that the flavor attached 
to inflationary cosmology has changed over the past ten years from a theory which 
sought to solve the flatness and horizon problems of the universe so that of searching 
for a cosmic no-hair theorem ultimately related to the quantum gravitational state 
of the universe around the Planck era. Classical cosmologies with their matter 
content, their homogeneity and isotropy or lack of it, may all be late time solutions 
to a quantum cosmology with very specific characteristics generating random initial 
conditions at the classical boundary. These initial conditions might show up in a 
way not expected in classical cosmology and general features, such as bulk viscosity 
or other dissipative processes might include the spectrum of uncertainty given to 
us from the Planck era. The fact that the general form of bulk viscosity studied 
in this note generates a wide solution space for iftflation suggests that this way of 
thinking might be generic and correct.
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S upersym m etry  provides an  exam ple  of Gauge T heories where the  p resence of m ore 
th a n  one gauge p o te n tia l  in  the  sam e g ro u p  na tu ra lly  em erges. Particu larly , we s tu d y  th e  
A b e lian  case in  th ree  dim ensions. A dynam ics accounting  fo r th e  presence of only two 
p o te n tia l  fields in  a  single group is o b ta in ed  v ia  a  soft-breaking of supersym m etry .

1. In tr o d u c tio n

Symmetry environment should not be restricted to the simple fusion between 
Group Theory and Quantum Theory. The existence of a symmetry can be devel­
oped in a space larger than the limit where the number of potential fields rotating 
under the same group equals the number of generators of the group. This context 
motivates us to make the statement that a gauge group also rules a Gauge Theory 
where TV-families of potential fields are transforming as

A ' - + U A J J - X + -d„U - U - 1,
9

Bp —► UBpU~1 + -dpU ■ U~l ,
9

: ; (и

Na — UNpU~l + -dpU l T 1.
9

However, such an affirmation (1) cannot be tested experimentally. This is so be­
cause a field cannot be directly measured. Therefore, it is not possible to think of 
experimental models that would distinguish the fields Ap , Bp , etc.

Considering such a limitation that field theory offers for laboratory to test 
(1), we move to the theoretical approach in order to get some reasons to justify 
the opinion (1). Gradually, different insights have been developed to identify these
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potential fields as independent fields [1]. This discussion could be advocated by 
classifying the arguments in two differents aspects: global and local. A global point 
of view means that the existence of distinguished fields in (1) is originated from the 
proper Gauge Theory Structure. A local aspect means to show evidences for (1) 
through the study of a specific Lagrangian.

A first, and perhaps the most natural argument against (1) is that it would 
contain a hidden transformation which correlates the potential fields. Thus, as a 
first global argument to advocate the defense, we would recall the existence of a 
geometrical motivation, based on the Kaluza-Klein approach. This means that a 
global justification for (1) can be originated in terms of the spontaneous compactifi­
cation of a higher-dimensional theory of coupled Yang-Mills gravity with non-trivial 
torsion [1]. As a local defense, we would argue by determining the propagators of 
the theory and their respective poles, or by specifying the number of degrees of 
freedom and the quantum numbers of the different potentials. For that, it becomes 
necessary to choose a specific Lagrangian and then, calculate such entities. As an 
example, consider the following Lagrangian

La = G ^ G ^  + m2(A)1 - B IJ)2,

where
= dßA„ -  диВ^ -I- g[Bß,A v\. (2)

Practical calculations show the presence of a spectrum with two different quanta 
in (2). In parallel, the accusation of a hidden symmetry between AM and Bß fields 
can be shown to be a source for breaking gauge invariance.

The motivation of this work is to develop another general argument to assume 
that (1) contains fields with different quantum numbers [2]. The proposal is that 
supersymmetry already contains informations for the inclusion of more than one 
potential field in a single simple group. Thus, in order to develop such a global 
thesis for (1), this work will be organized as follows. In Section 2, it will be stressed 
that the superspace formulation of an Abelian theory naturally induces the presence 
of more than one potential field in the same group. However, in Section 3, it will 
be shown that under requirement of certain constraints, the theory exhibits the 
existence of only one potential field. Finally, in Section 4, we shall discuss the 
possibility of formulating a dynamics for the second potential field but which avoids 
other models with undesirable spins.

2. A  su p e r sy m m e tr ic  sp e c tr u m  for Q E D  in  th ree  d im en sio n s  

Consider the following superspace action

S = J  d3xd2e(Da<t>*)(Da<l>), (3)
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where ф is a complex scalar superfield and Da the covariant derivative,

Da = da + id0 daß. (4)

For (1) to be rendered covariant under the internal symmetry U (1),

ф'(х;в) = е ^ ви(х-в) ,  (5)

the concept of gauge covariant derivative is required. However, for the supersym­
metric extension, it emerges the possibility of generating two types of covariant 
derivatives

Va = Da + iqgTa (6)
and

Vaß =  daß + iqg&aß. (7)
(6) and (7) satisfy the Bianchi identities

[Va>[Vb< Vc}} + [Vb-[Vc 'Va}} +  [Vc-[Va.Vb }} = 0. (8)

The notation is Va =  (Va ; V aß), where a(=  1, 2) denotes the spinor index and the 
pair aß  the space-time index. Consequently, these two species of derivatives, V a 
and Vaß, that the superspace presents, generate two superfields Га and A aß-

Our purpose is to characterize the spectrum developed through the superfields 
obtained from (6), (7) and (8). The gauge invariance requirement also yields the 
following transformations

A'a ß =  A  a ß ------d a ß  A ,  (10)
9

where Л =  A(x , 9) is a real scalar superfield.
For the real spinorial superfield Га(а;; 9) one gets

Г(х;0) = {Xa(x)lM(x)-Aaß(x)tXa(x)}. (11)

Adopting the component fields of the gauge parameter superfield as

A(x; 9) = {B(x), r]a(x), G(x)} (12)

it yields,
X'a = X a -^T]a,  (13)

Aaß = Aaß +  —daßB, (14)
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M'  = M ------G,
2 g

Л'а = Аа .

(15)

(16)

Notice that the components X a(x) and M (x) are pure gauge modes, and so, the 
parameters r)a(x) and G(x) can be chosen in such a way that X a and M  be elim­
inated. This means that (11) carries only an {/(l)-gauge field, Aaß(x), and its 
supersymmetric partner, Aa (x).

Similarly, the superfield A aß contains the following components,

Х ар(х',в) — {Па/з(г )] V’(7,a/3)(a'), Cai3-), uaß(x )} (17)

transforming under f7(l) according to:

v'aß =  Vaß -  - d aßB,
9

(18)

^{-y,aß) — V'(-y,or/3) — -д(арПу), (19)

Ca = Ca + ~daV A. 9
(20)

uaß = uaß ~daßG, 
9

(21)

where Vaß{x) is a vector field; ^(71а,/?)(х) is a Rarita-Schwinger field in three di­
mensions (spin 3/2); Ça(x) is a fermion field (spin 1/2); and uaß is also a vector 
field but with a different dimension from vaß(x). Thus A ap(x\ в) carries six bosonic 
and six fermionic off-shell degrees of freedom.

Thus, (11) and (17) put in evidence the presence of more than one vector 
field in the same group, as a natural consequence of supersymmetry. There is an 
abundance of spinors, vectors, and so on, as members of a same multiplet. However, 
our interest here is to demonstrate just the presence of more than one potential field 
transforming under the same group. Comparing (14) and (18), we observe that the 
vector fields A aß(x) and vaß(x) materialize our search for. They are fields with the 
same dimension and transforming with the same term daßB{x). This means that the 
supersymmetric version of QED in three dimensions, with (11) and (17), exhibits 
the presence of two potential fields in the same group. Nevertheless, we should 
still study about the possibilities that theory offers for controlling the Го(х;0) and 
Aaß(x;6) component fields.

3. A n  Im p o sed  s u p e r  — Q E D 3

Supersymmetry is a typical example of a gauge theory where the presence 
of more fields in the same group proliferates. (11) and (17) contain fermions and
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bosons transforming under the same 17(1) group. Therefore, this Section is devoted 
to the study of how to control such a proliferation. In order to restrict the degrees 
of freedom that the theory offers, we should take into account the constraints. Thus 
they should be understood consistently through the Bianchi identities. The simple 
supersymmetry algebra in flat superspace is realized by

{Da,Dp} = -  Vdaß. (22)

Notice the connection between the supersymmetry and the space-time derivatives. 
The extension of (22) in terms of the gauge-covariant derivative algebra is

\yA,VB] = T%BV c  + FAB, (23)

where T ^ B denotes the torsion components and Fab the field-strength superfields. 
Substituting (22) into (23) one gets a non-trivial torsion for the flat superspace

Щ  = (24)

all the other torsion components being zero. However, such results are not ne­
cessarily the same for a i7(l)-covariant theory. A procedure is to carry (24) as a 
constraint. This means that it works at a boundary condition between the geometry 
generated from the usual and by the covariant derivatives.

A second constraint which can be imposed is

F(<*p) = 0. (25)

(25) in (23) gives
^aß — -^(DaTp + DßTa). (26)

(26) shows that the connections Га and A aß are not independent. Their component 
fields are the same. This means that, under certain circumstances, the additional 
degrees of freedom introduced by Дap can be eliminated. However, relation (25) 
is not enough to complete the work. This is so because (23) still contains field 
strengths, Faip7 and Faß,yf that must be proved to be dependent on Га .

Informations about the field-strength superfields Fa,ßy and Faß,ys can be 
obtained from the Bianchi identities. Although these identities are only algebraic 
relations, they become useful to establish relations amongst the fundamental su­
perfields in theory. Thus, considering the impositions over torsion (24) and over 
superfield field strength (25) one gets from (8) the information that the superfield 
Fa ßy is such that its completely symmetric part is zero

F(a,ßy) = 0. (27)

Then, decomposing the tensor Fa,ßy into its irreducible representations

2 2
Fa,ß-y — F(a,ßy) +  ,ß]y + g -̂ [0,7]/? (28)
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and defining
Wa = Fß,ßa  (29)

gives
Fa,ßy = \ c aßW,т + l- C ayWß. (30)

Substituting (26) in (23) and comparing with (30) one gets

W^ = -g D ßDy Tß + 9-{DyDßr ß -  D2Ty). (31)

Similarly, we obtain
Faß,y6 =“ ßaßA уб дуб A aß. (32)

Thus (26), (31), (30) and (12) show that Га(х;0) 'is the only basic superfield that 
theory with constraints (24) and (25) is envolving.

4. A special dynamics

The presence of several fields in a single supersymmetry multiplet creates 
the discussion on whether supersymmetry does not contain circumstances to be 
conveniently chosen in order to propitiate more than one kind of dynamics. In 
order to organize such a situation where just some intended fields propagate, we 
submit the following action

•Stotai =  Si +  Su ,  (33)
where

with

Si — Scauge H" Sg ( + Sint T Smassi

Si I = Sbroken 4" Sjnt/broken >

SGauge = J  d3xd2e(DkDar k)(DxDar x),

Sg,f. = ^ J  d3xd20(Dar a)Di (DßTß),

S,nt = J  d3xd2e{Va<t>) * (Ve*),

Smass = J  d3xd2em<f> * Ф,

S broken  = \ J  d3xd2ee2(dZAkß + dßkA ka) • (dxAXß + д$АХа), 

s ,n t /b ro k e n  =  \ j  d3xd2ee2( v aiЗф) * c V a ß <t>).

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)
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Then, we have to analyse what the corresponding spectroscopy for (33) is offering. 
Note that from (36) there appears a propagation for the photon and photino, the 
gauge fixing term (37) also receives contribution from the pure gauge modes, but 
(34) does not produce any information for the thesis of this work. Observe that (33) 
contains an abundance of fields transforming in the same £7(1) group. However, the 
thesis here is that gauge invariance allows the existence of a dynamics with more 
than one potential field in the same group. Thus the task is to break supersym­
metry as in (35), in such a way to eliminate the matter-fields ip(aßy)(x), Ça(x) and 
the vector field uaß(x), but without losing gauge invariance. This attempt is orga­
nized through (40). There, only vaß(x) field propagates. Including (41), a scalar 
electrodynamics for this second potential field is generated.

5. Conclusion

The supersymmetrization process, when carried out in superspace naturally 
requires the presence of more than one potential field in the same group. These fields 
originate from the covariantization process of the supersymmetric derivatives Da 
and daß. This process introduces the presence of two super-connection terms. By 
examining their respective components fields, one finds two gauge-potential fields 
that are independent, but transforming under the same group.

However, usually, the presence of these potential fields is bypassed by in­
troducing suitable constraints in order to relate the fields that originally emerged 
independently in the theory. Thus, the thesis that a gauge group supports the 
transformation of more than one potential field can be advocated. This means 
that, through the relaxation of certain constraints usually imposed on the field- 
strength superfields, the proof of the existence of a superspace geometry with more 
than one connection appears.

Finally, through the decoupling of undesirable matter fields inside of the su­
perfield A aß(x] в), the process is concluded. Thus, arguments based on super- 
symmetry for characterizing the existence of a global assumption for justifying the 
presence of more than one potential field in the same group are thought to be com­
pleted. The study was performed in three dimensions just for the sake of simplicity. 
It could as well be carried out in four dimensions with the same conclusions: super- 
symmetry, unless certain constraints are enforced, naturally leads to gauge theories 
where at least two gauge potentials appear transforming under the same group.
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T h erm oso lu ta l in stab ility  o f a n  electrically co n d ucting  fluid in  p o ro u s  m edium  in  
presence of a  un ifo rm  ro ta tio n  a n d  a  uniform  m ag n e tic  field, sim ultaneously , has b een  
considered. T h e  stab le  solute g rad ien t an d  ro ta tio n  postp o n e  the  o n se t of instability . 
For a  n o n -ro ta tin g  system , the  m ed iu m  perm eability  a n d  m agnetic  field  have destabiliz­
ing a n d  stabilizing  effects, respectively. However, in  th e  presence of ro ta tio n , when th e  
m agnetic  field h a s  a  s tab iliz ing /destab iliz ing  effect, th e  m edium  p e rm eab ility  has a  desta- 
b iliz ing /stab iliz ing  effect under c e r ta in  condition. T h e  ro ta tio n , m ag n e tic  field an d  stab le  
so lu te  g rad ien t in tro d u ce  oscillatory  m odes in  the sy s tem  which were n o n -ex is ten t in  th e ir  
absence.

1. In troduction

A detailed account of the thermal convection in a horizontal layer of fluid 
heated from below, in the absence and presence of rotation and magnetic field, 
has been given in a treatise by Chandrasekhar [1]. Veronis [9] has investigated' 
the problem of thermohaline convection in a layer of fluid heated from below and 
subjected to a stable salinity gradient. Thermosolutal convection problems arise in 
oceanography, limnology and engineering, e.g. ponds built to trap solar heat (Tabor 
and Matz [8]) and some Antarctic lakes (Shirtcliffe [5]). The physics is quite similar 
in the stellar case in that helium acts like salt in raising the density and in diffusing 
more slowly than heat.

The medium has been considered to be non-porous in all the above stud­
ies. Lapwood [2] has studied the stability of convective flow in hydrodynamics in 
a porous medium using Rayleigh’s procedure. Wooding [10] has considered the 
Rayleigh instability of a thermal boundary layer in flow through porous medium. 
The gross effect, when the fluid slowly percolates through the pores of the homo­
geneous and isotropic porous medium, is represented by Darcy’s law. As a result, 
the usual viscous term in the equation of motion is replaced by the resistance term 
—(]^)q where ц, кi and q stand for the fluid viscosity, medium permeability and 
the filter (Darcian) velocity, respectively.

The problem of thermosolutal convection in fluids in a porous medium is of im­
portance in ground water hydrology, soil sciences, geophysics and astrophysics. The 
physical properties of comets, meteorites and interplanetary dust strongly suggest
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the importance of porosity in the astrophysical context (McDonnel [4]). The effect 
of a magnetic field on the stability of such a flow is of interest in geophysics, e.g. in 
the study of the Earth’s core where the Earth’s mantle, which consists of conducting 
fluid, behaves like a porous medium which can become convectively unstable as a 
result of differential diffusion. Another application of the results of flow through a 
porous medium in the presence of a magnetic field is in the study of the stability of 
a convective flow in the geothermal region. It has been remarked by Stommel and 
Fedorov [7] and Linden [3] that the length scales characteristic of double-diffusive 
convective layers in the ocean may be sufficiently large that the Earth’s rotation 
might be important in their formation. Also, the rotation of the Earth distorts the 
boundaries of a hexagonal convection cell in a fluid through a porous medium and 
the distortion plays an important role in the extraction of energy in the geothermal 
regions.

Keeping in mind the importance in ground water hydrology, soil sciences, 
geophysics and astrophysics, the thermosolutal convection in a porous medium in 
the presence of uniform rotation and uniform magnetic field, simultaneously, has 
been considered in the present paper.

2. P ertu rba tion  equations

Here we consider a layer of electrically conducting fluid of thickness d in porous 
medium acted on by a uniform magnetic field H(0, 0, H), uniform rotation Q(0,0, fi) 
and gravity force g(0,0, — <7). This layer is heated and soluted from below such 
that a uniform temperature gradient ß (= | ^ -|)  and a uniform solute concentration 
gradient ß' (= | ^ | )  are maintained.

Let 6p, 6p, в, 7 , q(u,v,w)  and h (hx ,hv,hz) denote, respectively, the pertur­
bations in pressure p, density p, temperature T, solute concentration C, velocity 
(0,0,0) and magnetic field H. Then the linearized hydromagnetic perturbation 
equations appropriate to the problems are

1 <9q
e dt

1  6 p  V-----V<5p+ g ------7- q  +po po к I Anpo1 (V X  h) X  H +  ?(q X  П), ( 1 )

V q  = 0, (2)

V h  = 0, (3)

e—  = ( H - V ) q  + ^ V 2h, (4)

d0
E - = ß w  + *V20, (5)

£ ' ^ = / ? W k'V 27, (6)
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where E  = £ + (1 — e)^—•• Here, p, c and ps, c, stand for density and specific 
heat of fluid and solid (porous matrix) material, respectively. £, k\, r), g(0, 0, —g), 
i', к and к' denote the medium porosity, medium permeability, resistivity, gravita­
tional acceleration, kinematic viscosity, thermal diffusivity and the solute diffusivity, 
respectively. E' is a solute parameter analogous to E. The equation of state is

p = p0[ l - a ( T - T 0) + a '(C -C o )], (7)

where the suffix zero refers to values at the reference level z — 0 and a, a' stand for 
thermal coefficient of expansion and an analogous solvent coefficient a'. The change 
in density Sp caused by the perturbations в and у in temperature and concentration 
is given by

6p =  -po(aO -  a'y). (8)

The steady-state solution is

q = (0,0,0), T  = Tq — ßz, C = C0 - ß ' z ,  p = p0[l + aßz -  a'ß'z]. (9)

Equations ( l) - (6) and (8) give

\ f  dt h i )
_ 2  /  Ő2 d2 \  , H 2 dhz
v “' “ 4 â ï î + w j ( 7)" ^

( I d  V \  ,  Я  ő( 2Q dw
+ —47rpo dz e d z '

) h‘ = H -S7 '

Жi  = H
‘ ( s “ , v 2 )

2fiôÇ
£ dz = 0, (10)

( 11)

( 12)

(13)

(14)

(15)

Let us consider the case of fluid layer in which both the boundaries are free, the most 
appropriate case for stellar atmospheres (Spiegel [6]), and the adjoining medium is 
electrically nonconducting. The boundaries are assumed to be perfect conductors 
of both heat and solute concentration. The boundary conditions appropriate to the 
problem are

d2w dhzw = ~—— = 0 = 7 = —— = 0 at 2 = 0 and z = a.dz2 dz (16)

Acta  Physica Hungarica 73, 1993



62 R. C .  SHARMA and  V. K .  BHARDWAJ

3 . D isp e r s io n  r e la t io n

Let us analyze the disturbances into normal modes, assuming that the per­
turbation quantities are of the form

{it>, , C. Í] =' [W(z) ,0(z) ,T(z) ,K(z) ,Z(z) ,X(z)]txp( ikxx + ikyy + nt), (17)

where kx, kv are the wave numbers along the x and y directions, respectively, 
к — (kl -f- jby)1 / 2 is the resultant wave number and n is, in general, a complex 
constant.

Expressing the coordinates x, y, z in the new unit of length d and putting 
a =  kd, a — nd2/u  and D =  Eqs (10)—(15), with the help of expression (17), in 
nondimensional form become

( -  + - )  (D2- a 2)W = - ^ - ( a e - a ' ' r )  + - ^ - ( D 2- a 2) D K - ^ - - D Z ,  (18) 
V £ pi )  V Anp0u eu

2 Ш DW + Hd
Anpou D X ,

(D2 - a 2 -  Epi<r)Q = -  ( p p )  W, 

(D2 - a 2 -  E'qa)T = -  W,

(D2 - a 2 -  р2<т)К = -  [ p p j  DW, 

(D2 -  a2 -  P2<t)X = - ( — )  DZ.

(19)

( 20) 

( 21 ) 

( 22 ) 

(23)

Here p\ — ^  is the dimensionless medium permeability, p\ =  ^ is the Prandtl 
number, рг = ^ is the magnetic Prandtl number and q = is the Schmidt number. 
The boundary conditions (16) transform to

W  = D2W =  0  = Г = DK  = 0 at z = 0 and z = 1. (24)

Using the boundary conditions (24), it can be shown that all the even order 
derivatives of W  must vanish for z = 0 and 1. Eliminating 0 , Г, К, X  and Z  from 
Eqs (18)—(23) and using the proper solution

W  = Wq sin 7rz,
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Wo being constant, we obtain the dispersion relation

(1 + x )(l + x + iEpxCTi) I  + i )  (1 + X + ip2<Ti) + Qi j
R i = - x(l +  X + ip2<Tl)

(1 + X + iEpiai) TAl( 1 + X + »P2g~i)(l + X + iEpiai)
1 ( l  +  x +  i £ y i )  x i ^ + ^ a  +  x +  ip ^ O  +  Q i } ’

where
gaßd4

X = ~г> P = *  PI, Rl = 47TZ 1/К7Г*
Si =

ga'ß'd4

Q1 =
H 2d2

Airpovr)tn2 ’
m 4Q2d4 , . a
TA\ = - , 2 4 and tax =

V Zt Z 7Г4  TT2

63

(25)

4. The stationary  convection

For the stationary convection, <r = 0 and Eq. (25) reduces to

я‘ ■ ( ^ )  t1
Equation (26) yields

+  X

P
+ Q г

dRi

+ Si + TAl

— +1>

p(l + x)2
X  { 1  +  X  + pQi}'

dSi
dRi _  p( 1 + x)2

(26)

(27)

(28)dTAl x(l + x + pQi) ’
which imply that the stable solute gradient and the rotation have stabilizing effects 
on the thermosolutal convection in porous medium. Equation (26) also gives

dRi _  (1 4- x)
dQi x(l + x -f pQi)2

and
dRi
dp

( i + x ) 2

[(1 + x + p Q i ) 2 - p 2TAl( 1 + x)]

[(1 + x + pQi)2 -  p2TAl (1 + x)] .xp2(l + x + pQi)2 
It is clear from Eq. (29) that in the absence of rotation (TAl — 0)

dRi _  1 + x 
dQi x

(29)

(30)

(31)

which means that the magnetic field has stabilizing effect for non-rotating system. 
The magnetic field has still a stabilizing effect if

p2TAl(1 + x) < (1 + x + pQi)2. (32)
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However, the magnetic field has a destabilizing effect if

P2TAl( 1 + x) > (1 + X + pQ\)2. (33)

It is evident from Eq. (30) that in the absence of rotation (TAl =  0),

dRi = (1 + *)2
dp xp2

(34)

which means that the medium permeability has still a destabilizing effect if

P2TAl( 1 + x) < (1 + x + pQ iŸ . (35)

But if
P2TAl( 1 + x) > (1 + x +  pQi)2, (36)

the medium permeability has a stabilizing effect on thermosolutal convection in 
porous medium.

Here we examine the possibility of oscillatory modes, if any, coming into play 
due to the presence of rotation, magnetic field on the thermosolutal convection 
in porous medium. Multiplying Eq. (18) by W*, the complex conjugate of W , 
integrating over the range of z and making use of (19)—(23) together with the 
boundary conditions (24), we obtain

5. T h e  o sc illa to r y  m o d e s

(Z2 + ЕрхаЧэ),
(37)

where
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h  = f  |0 |2 dz,
Jo

A = [ \ \D T \2 + а2|Г|2)А,
Jo

h  = I  |Г|2с?г,
Jo

h  =  f  (\D7K \2 + 2a2\DK\2 + a4\K\2)dz,
Jo

h  = [  (\DK\2 + a2\K\2)dz,
Jo

Is = [ 1 \Z\2dz,
Jo

h =  [  (\DX\2 + a 2\X\2)dz,
Jo

ho  = /  \X\2dz, (38)
Jo

which are all positive definite. Substituting <r = ar +  i<7j and then equating real 
and imaginary parts of Eq. (37), we obtain

h  , да'к'а? _T er]
7  + ~ Т ф Г -Е , h  +

d2 e 
. P2I7 + — h  +  ~rAirpoi/ e ‘iiepov

r]d2 r дака2 _
P2ho----- n  -E p ihvß

h  t да к a2 T t 
---- '------Hi—Í4 +LPi vß'

er/ d2 e
------- h  d-----h  + 7-------
4тгро^ Pi  4 x p 0 i /

T]d2 дака2
h -------H~l 2v ß

(39)

and

CTi h
e

да' к' a2 
v ß '

E'qh - 4xpov e 4xpov vß
«P = 0. 

(40)
Equation (39) simply tells us that crr may be positive or negative which means that 
there may be stability or instability in the presence of rotation and magnetic field 
on thermosolutal convection in porous medium.

Equation (40) means that the modes may be non-oscillatory or oscillatory. In 
the absence of stable solute gradient, rotation and magnetic field, Eq. (40) reduces

< п \ -  + ^ ^ - Е Р113] = 0 ,  (41)
£ V ß

and so <Ti = 0 which means that oscillatory modes are not allowed and the principle 
of exchange of stabilities is satisfied for thermosolutal convection in porous medium 
in the absence of stable solute gradient, magnetic field and rotation. The presence 
of each brings oscillatory modes in the system which were non-existent in their 
absence.
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We have presented a new class of analytical solvable trigonometric and hyperbolic 
type potentials, related to the Jacobi Polynomials, using the previously unconsidered equa­
tions. It should be remarked that several quasi-exactly solvable potentials having restricted 
parameters have similar energy eigenvalue expressions.

1. In tro d u ctio n

It is well known that the Schrôdinger wave equation is only solvable for a 
limited number of potential energy functions. The supersymmetric WKB method 
(SWKB) is one of the useful techniques to calculate the exact energy spectra of 
the exactly solvable potentials. In fact, the general proof that the supersymmetric 
WKB method always yields exact energy spectrum for shape-invariant potentials 
is as valid for a spherically symmetric shape-invariant potential in the radial wave 
equation as it is for a shape-invariant potential in one dimension [1]. The su­
persymmetric approach involves a pair of one-dimensional supersymmetric partner 
potentials of the form V±(x) = W 2(x) ± W\x).  In this formalism, if the ground 
state wavefunction is known, by using the logarithmic derivative of the wave func­
tion, one can formally treat supersymmetric potential W(x), and then the partner 
potentials, V±(x), of the system [1].

Recently, Lévai [2,3] has suggested a simple method, based on the supersym­
metric quantum mechanics and shape invariance, for generating exactly solvable 
problems of non-relativistic quantum mechanics. He applied the method to the 
Jacobi, generalized Laguerre and Hermite polynomials [2]. Then, by using this 
method, a number of new solvable potentials have been reported [2- 6].

In this letter we want to apply the method to the new type trigonometric and 
hyperbolic potentials, which are related to the Jacobi Polynomials. It should also 
be remarked that some of our results are quasi-exact, because there are restrictions 
between the potential parameters. By quasi-exact in this work we mean non-exact 
or not all the spectra of the given potential.

1 Permanent address: Department of Physics, Faculty of Arts and Sciences, Yüzüncü Yil 
University Van, Turkey
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2 . L eva i m e th o d

The single dimensional Schrôdinger equation or radial Schrôdinger equation 
was related to the hypergeometric equations, which involve orthogonal polynomi­
als. The Schrôdinger equation can be transformed into various linear homogeneous 
second-order differential equations. Any function F(g(x)) satisfies the second-order 
differential equation

+  R(g)F(g) = 0. (1)

In this case, once choosing Q(g(x)) and R(g(x)), Eq. (1) is reduced to a special case 
of hypergeometric equations [2].

The Schrôdinger equation in one dimension

¥ ^ * 1  + [ E ' - V ' ( x)]V(x) = 0, (2)

where V'(x) = and E' = | ÇE. Lévai has determined the relations between
the Schrödinger equation and the hypergeometric equation given in Eq. (1). He 
considered the solution of the Schrödinger equation as in the form

Ф(х) = f(x)F(g(x)), (3)

where /(x) is given by

/(x) ~  (g') 112 exp IJ  Q{g)dg

and E — F(x) is given like

E' -  V'(x) = R(g(x))(g')2 -  ( / " / / ) .

(4)

(5)

Substituting /(x ) in the Eq. (5), expressed explicitly in the form of Eq. (4), one can 
also easily construct E — V(x) in terms of g(x), Q(g(x)) and R(g(x)):

* - г с >  = §p - H 7 Ï  + (}'> R(g) -  ö
1 dQ(g) I 2
2 i ,  - 4 « W ( 6 )

where g(x) is a function corresponding to the argument of the hypergeometric func­
tion. The purpose of this approach is to find the fraction of the right-hand side 
of Eq. (6) corresponding to the potential and energy. The form of Q(g(x)) and 
R(g(x )) is well defined for any solution F(g(x)) of a hypergeometric equation [7]. 
It was soon noticed that as applications of this method, a number of solvable po­
tentials have been reported by using Jacobi polynomials. Lévai [2,3] used the 1.
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type hypergeometric equation, its solutions are the Jacobi polynomials (Eq. 26.6.1. 
in [7]). Then, Williams [5] followed this approach by using the 3. type hypergeo­
metric equation (Eq. 22.6.3. in [7]). More recently, we have studied the method as 
another application [6] by using Eq. (22.6.4) in [7], i.e., we considered the 4. type 
hypergeometric equation in [7].

Firstly, Lévai considered the differential equations

( Л 2
(1 ~ 9 2)

= C , W ?  . r
( i - f f 2)2

and W ? 9  
(1 -<7 2 ) 2

(7)

to find g(x). Then, Williams applied the method by considering the equations

( Л 2 and (.9'?
(i + s)2

( 8)

Thereafter, following these studies, we performed [6] equations

<»’>2 = c  “ d ^ = a (9)

It should be noted that the first equation in the Eq. (9) was also considered by 
Lévai [2] before, but he studied the Laguerre polynomials to solve the 1. type 
hypergeometric equation for the Coulomb potential.

Moreover, Lévai classified the potentials (related to the Jacobi polynomials) 
as PI, PII and PHI types in the previous studies [2-4]. 3

3. T r ig o n o m etr ic  and  h y p e r b o lic  ty p e  p o te n tia ls

We will now reconsider Eq. 22.6.3 for a = ß = 1,

d2F(g) 
dx2 +

n(n +  3) + 2
1 -  Q2 F(g) = 0

and Eq. 22.6.4 for a = ß  = 1/2 in [7]

d2F(g)
dx2 + (n +  lYF(g) = 0.

( 10)

(И)

So, we have rewritten Eq. (6) taking into consideration Eqs (10-11) as

E‘ -  = £  -  Ï ( £ ) ’ ■+ M» + 3) + 2 ) ^  (12)
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and

E ' - V \ t ) = í £ ” ! ( ✓ )  + ("+1)!(»')г- (13)
It is to be noted that Eqs (12) and (13) are the special case of Eq. (11) for a = ß = 1 
in [4] and for a  =  ß  = 1/2 Eq. (11) in [6], respectively. The corresponding wave 
functions in Jacobi polynomials

а д  =  ( 1 - 0 ) ( 1  +  <7)Р„М Ы  (14)

and
F{g) = (s in ( |) )  (cos(|)J Pn/2'1,2^osg)  (15)

which both satisfy Eq. (1) separately.
In order to have the potential and energy on the left-hand side of Eqs (12- 

13), we can get different kinds of g(x) functions. Here we consider two types of 
differential equations to find g(x)

a'"
(16)

and
f l  = C2 + h(x), (17)

where С,- are definite constants. Thus, there are many possibilities for g(x) satisfying 
Eqs (16-17). For the moment, let us now go back to relations (12-13) to see what 
really happens if we take a specific g{x) and then determine En, V(x) and Ф(ж). 
However, as can be seen from the Table, we choose eight different g to calculate the 
energy spectra of the potentials.

4. Conclusion

We have shown that the previously unconsidered Eqs (16-17) give a few prac­
ticable reparametrized potentials. As remarked in the Table P ill and PIV are not 
related to the classifications of Lévai, they indicate the potentials which are pro­
duced by Eq. (10) and Eq. (11), respectively. Table I includes a number of family 
of exactly and quasi-exactly solvable potentials corresponding to special values of 
the parameters involved in Jacobi polynomials. An interesting property of many 
of these potentials is that although the corresponding wave functions are expressed 
in different terms of the Jacobi polynomials, they give the same or similar energy 
eigenvalue expressions.

On the other hand, some energies are independent of at least one of the 
potential parameters. Also, there are restrictions between the potential parameters 
which are indicated in Table I. Despite these negative results, we may compare their 
energy spectra with the Coulomb problem (by choosing ±2B2 = Z\Zi  or | Z\Z2). 
That is to say analytically solvable periodical and hyperbolic types of potentials 
have been suggested to the interested applied physicists.
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T a b le  I
P aram e tric  po ten tia ls (re la ted  to  th e  Jacobi polynom ials P ^ ( x ) )  w ith  th e ir properties 

includ ing  energy eigenvalues and  eigenfunctions (ft =  2p =  1). T h e  range of trigonom etric
a n d  hyperbolic  type  p o ten tia ls are 0 <  X  <  ira /2  and  —oo < X  <  oo, respectively

Diff. Eq. я М V ( x ) E„ f ( x ) F ( g ( x ) )

V  = Ci cos(aar) |- a 2 co t2(ax ) — [jB sin (ax )]2 - b 2 ( - a  s i n ( a x ) ) ~  c o s ( |)  s in ( f )P „  2 ( cos(g))
(PIV ) В  =  (n +  l ) a

(P IH ) J a 2 co t2 (ax) a 2[n(n  +  3) +  3/2] [ - a  s in (a x ) ]T - ( l  -  g ) ( l  +  д ) Р У  (g)

V  = Ci cosh(ax) ^ a 2 co th2(ax ) — [B s inh (ax )]2 1 „2 „„ 1 г В  12 
2°  ОГ 2 ln + l i ( a s in h ( a x ) ) T  co s(^ ) s i n ( | ) P n2 2 ( cos(g))

(PIV ) В  =  (n  +  l ) a
(P H I) j a 2 co th 2(ax) a 2[n(n  +  3) +  5/2] [a s in h ( a x ) ] T  (1 -  g ) ( l  +  д ) р У  (g)

n///
V  = Ci sin(ax) | a 2 ta n 2(ax) — [B cos(ax)]2 - b 2 ° ^ [ s f r ]2 (a c o s (a x ) )“  c o s ( |)  s in ( f ) P n2 2 ( cos(g))

(PIV ) В  = (n + l ) a
(P H I) J a 2 ta n 2(ax) a 2[n(n +  3) +  3/2] [a c o s (a x ) ]T  (1 -  g ) ( l  +  д ) Р У  (g)

V  = Ci t s inh (ax ) | a 2 tan h 2(ax ) — [B co sh (ax )]2 И  -  И4г12 (« ac o s h ( a x ) ) ~  cos(^) s*n ( f ) P n  2 (cos(g))
(PIV ) В  = (n +  l ) a

(P H I) ^ a 2 ta n h 2(ax) - a 2[n(n  +  3) + 3 /2 ] [* a c o s ( a x ) ] ~ ( l  - g ) ( l  + я ) Р п ’1(я)
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4̂
to

Diff. Eq. <j(x)

а- г  — C\  s inh(ax)
V ív )

(P H I)

3p -  =  C î +  h (x ) tan h (a x ) 
(PIV )
(P i l l)

in
~ t" =  (72 +  h (x ) co th (ax ) 

(PIV )
(P H I)

w
~ r  — Cy +  h(x )  —I co t(ax ) 

(PIV )

(P H I)

T a b le  I  (continued)

E„

1 2
2 ° ОГ 21n+TJ

Л
2 l n ( n  +  3 ) + 3 / 2 ]

2—a or -  [ s+ r l

n ( n + 3 ) + 2

- a 2 -  -  tn + r!

A
n ( n + 3 ) + 2

7 г В  12a o r IÎT+TJ

A
n ( n + 3 )  +  2

V ( i

j a 2 ta n h 2(ax ) — [B co sh (ax )]2 
В  =  (n  +  l ) a  

} • ■ ! « * ■ ( - )
A  =  a 2[n(n  +  3) +  2]

— [B sech2(ax )]2 
В  =  (n  +  l ) a  
— A  sech2(ax)

A -  a 2[n(n  +  3) +  2]

— [B cosech2(ox)]2 
В  =  (n  +  l ) a

— A  cosech2 (ax)
+  =  a 2[r»(n +  3) +  2]

[B cosec2 (ax )]2 
В  =  (n  +  l ) a  
A  cosec2 (ax)

A  =  a 2[n(n  +  3) +  2]

_________________ /(x )F (g (x ) )__________________

( a c o s h ( a x ) ) ~  c o s ( |)  s in (^ )P n2 2 (cos(g))

[a cos(ax )]“  (1 - g ) ( l  +  g ) P „ 1(g )

(asech2( a x ) ~  co s(^ ) s in (^ )P „ 2 2 (cos(g)) 

[asech2( a x ) ] ~  (1 -  g ) ( l  +  g )P ^ ’l (g)

( —a cosech2 (ax) ) ~  c o s ( f )  sin( f )P „ 2 2 ( cos(g)) 

[ - a  cosech2 (ax)] “ (1 -  g ) ( l  +  д )Р ^ Д (g)

(ta  cosec2 (ax) ) ~  c o s ( |)  s in (^ )P n2 2 (cos(g )) 

[ta cosec2 (ax )]”  (1 -  g ) ( l  + g ) P , l '1(g)
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BEHAVIOUR OF CHARACTERISTIC WAVE FRONTS 
IN A SIMPLE DISSOCIATING GAS

T. N a g y

Department  of Physics, Miskolc University  
3515 Miskolc-Egyetemvdros, Hungary

(R eceived 3 M arch 1993)

A fter surveying th e  m ain  fea tu res  of a  sim ple dissociating gas, th e  p ropagation  
speed  of ch aracte ris tic  wave fron ts th ro u g h  such a  m ed ium  is determ ined. T h e n  the  grow th 
equations of th e  p lan e , cylindrical a n d  spherical waves a re  ob ta ined  u n d e r th e  assum ption  
th a t  th ey  p e n e tra te  in to  a  uniform  reg ion  a t  rest. It is d iscussed  on w hat cond itions a  weak 
d iscontinuity  d am p s o u t, form s a  focus an d  te rm inates in to  a  shock, respectively.

1. In troduction

Thomas [1], using the theory of singular surfaces proposed and developed by 
himself [2], has investigated the propagation of weak discontinuities in an ideal gas, 
which is uniform and at rest before the arrival of the wave front. He has derived 
the growth equation of the waves and shown that a discontinuity in the gradient 
of any field variable can become infinite in a finite time, i.e. a shock can arise. 
By the same method Kaul [3] has studied the propagation of weak waves in ideal 
gases considering the entropy and the sound speed as dependent variables instead 
of pressure and density.

Since the high-temperature real gas effects (vibrational excitation, dissocia­
tion, electronic excitation, ionization etc.) may affect significantly the behaviour of 
weak discontinuities, it has become necessary to include into the gasdynamic weak 
wave theory these effects. The behaviour of weak waves in dissociating gases has 
been studied by a number of authors. Shankar [4] has extended the analysis of 
Thomas to a Lighthill-Freeman type [5,6] ideal dissociating gas. This work was 
reconsidered by Shankar and Jain [7], who, following Elcrat [8], have studied the 
non-uniform propagation of weak discontinuities in an unsteady flow of a disso­
ciating gas. Ram and Gaur [9] have obtained growth equations for weak waves 
propagating through a uniform region of a Lighthill-Clarke [5,10] dissociating gas. 
Rai and Gaur [11] have further generalized and developed this work and given a 
more satisfactory and detailed analysis of weak discontinuities in a dissociating gas. 
In these studies the assumption of Lighthill’s ideal dissociating gas is used, i.e. to 
count just one-half of the total vibrational energy excited. Although in certain 
temperature range this assumption is quite reasonable, unfortunately for low disso­
ciation the ideal dissociating gas model is unsuitable. Namely, in the fully molecular 
limit (as the degree of dissociation tends to zero at low temperatures) the Lighthill
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gas becomes a perfect gas with constant specific heats, but with a ratio of specific 
heats 7 =  4/3. This incorrect representation is an obvious result of the approxi­
mation to the vibrational energy. Hence it would be more realistic and valuable to 
treat the dissociating diatomic gas by a more accurate model.

In the present paper, using the method of characteristics, we discuss the 
propagation of plane, cylindrical and spherical weak waves into a static and uniform 
region of a simple dissociating gas [12]. In a simple dissociating gas the translational, 
rotational, and vibrational energies are assumed at equilibrium, vibrational energies 
being those pertaining to the simple harmonic oscillator model.

2. Basic equations

In this Section we survey the main features of such a dissociating gas which 
obeys the model proposed by Li [12] and for which the reaction rate equation intro­
duced by Clarke [10] is valid. The gas under consideration is assumed to be a pure 
homonuclear diatomic gas such as oxygen and nitrogen. The temperature range is 
such that vibrational excitation and dissociation may occur but electronic excitation 
and ionization are negligible. (For oxygen and nitrogen this means temperatures 
up to 7000 K.) We note that at temperatures where the dissociation is important, 
the radiation heat loss from the gas may not be negligibly small. However, in order 
to simplify the problem, we exclude such an effect. The partially dissociated gas is 
assumed to consist of a mixture of atoms A and molecules A2, which take part in 
the simple reversible reaction

kt
A7 + M  ^ A  + A + M.

к г

Here the third body M  can be either A 7 or A and kj  and kr are the reaction 
rate coefficients for the forward and reverse reactions, kj and kr are traditionally 
assumed to be functions of temperature alone, further they have different values 
depending on whether M  is a molecule or an atom. Following Clarke, we consider 
both species to be equally effective. It is assumed that each gas species is thermally 
perfect during the dissociation and the atomic and molecular partition functions 
(treating the molecule as a rigid rotator and simple harmonic oscillator) can be 
factorized. The local rotational temperature of the molecules and the translational 
temperature of both components are assumed to be identical and equal to the local 
static temperature of the gas.

With these assumptions, neglecting the molecular transport effects leading to 
viscosity, diffusion and heat conduction, the set of differential equations governing 
the one-dimensional unsteady flow of a dissociating gas can be written [5,10,12] in 
the form pu

pi + upx + pux + v — = 0,
X

рщ + puux 4- px = 0,
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pht + puhx - p ,  -  upx = 0,

qt +uqx = W, W  = K ( l - q ) - q 2

p = (1 + q)RTp,

ev — T J T
е х р (Г „ /Т )-1 ’

(3)

(4)

(5)

( 6)

where p, p, T, h and tt denote the gas pressure, density, temperature, specific 
enthalpy and velocity, respectively; R  is the gas constant for A 2 , q is the de­
gree of dissociation, r  = {4p2kr(l + g)/m2}-1 is the forward-reaction time, m 
is the molecular weight of A2, К  = (pd/p) exp(—Tj/T) is the equilibrium constant, 
Pd = C{T/Tv)xt 2{ 1 — exp(—T„/T)} is the characteristic density of dissociation (C 
is a constant), Td and Tv are the characteristic temperatures for dissociation and 
vibration; t is the time and x is the single spatial coordinate being either axial 
in flows with planar geometry or radial in cylindrically and spherically symmetric 
flows. The letter subscripts denote partial differentiation unless stated otherwise 
and the parameter v takes the values 0, 1 and 2 for planar, cylindrical and spheri­
cal symmetry, respectively. The above equations describe a hypothetical gets which 
exhibits, during dissociation, the main features of a real dissociating gas such as oxy­
gen or nitrogen. (For oxygen, C = 265000 kg/m3, T„ = 2230 К and Td = 59000 K. 
For nitrogen, C = 214000 kg/m3, T„ = 3340 К and Td = 113000 K.) Combining 
Eqs (1), (3), (4), (5) and (6) we get

P t  + «Pr +  pa2 («r 4- + DWp  = 0, (7)

where

is the frozen sound speed,

_  7 + 3q + 2(1 -  q)el exp(V )̂
^ 5 + q + 2(1 -  g)e2 exp(K)

is the ratio of frozen specific heats ( V — Tv/T)  and

D _  2Td/T  ~ 2/ ( X + l) -  ev -  (4 -  g)e2 exp(T)/(l +  q)
5 + 9 + 2(1 — q)el exp(V)

Since Td/T > 8, 0 < e„ < 1 and 0 < e2 exp(K) < 1, it follows at once that D > 0. 
Using matrix notation, Eqs (1), (2), (4) and (7) can be written in the form

U t +  AU* +  В =  0, (8 )
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in which U is a column vector with four components (p,u,q,p), 0 is a null vector 
and the matrices A and В can be read off by inspection of Eqs (1), (2), (4) and
(7). This system is hyperbolic and may describe both propagation of wave and 
discontinuity in space-time. A function U(x, <) satisfying (8) everywhere except at 
a characteristic curve E(f), where U is continuous, but U« and Ux may suffer finite 
jumps, is said to be a weak wave or a weak discontinuity. Denoting the jump of U 
across E by [U], we have

> ]  =  [ U , ] + f [ U , ] ,  (9)

where 6/6t denotes time derivative as observed from the wave front. Taking jump 
in (8), using (9) and applying the condition of continuity [U] =0, we obtain

( a  -  § . )  [U J  =  0 , ( 10)

where I is the unit matrix. Consequently, if there occurs finite discontinuity in the 
derivatives Ux across E, the characteristic speed of propagation is an eigenvalue of 
A. It follows immediately that there are four families of characteristic curves:

dx dx dx
I t  = u ± a ' d t = u ’ Tt ( H )

Two of these characteristics represent waves propagating in the ±x  direction with 
the frozen sound speed, the remaining two form a set of double characteristics 
representing the particle path.

3. D e r iv a tio n  o f  th e  g ro w th  e q u a tio n

In studying a wave phenomenon governed by hyperbolic equations, it is usu­
ally more natural and convenient to use the characteristics of the governing system 
as the reference frame. Thus we introduce two characteristic variables a and ß as 
follows:

(i) о is a wave tag so that a is constant along an outgoing characteristic 
dx/dt = и +  a. If an outgoing wave is generated at time t, it will be labelled by 
a = t.

(ii) ß  is a particle tag so that ß is constant along a particle path dx/dt =  u. 
If the characteristic wave front traverses a fluid particle at time t*, its path will be 
labelled by ß  =  i*.

It is now clear that for each pair of values (a, ß) there is a corresponding pair 
(x , t ) so that x = x(a,ß) , t  = t(a,ß).  In view of this transformation, we get the 
following relations:

x & — uta , (12)
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X ß  =  ( u  +  a ) t ß , (13)

where

У г U ß X a  -  \ J a X ß

U‘ -  7 -------- ’
TT _ Uâ /3 U/jtaU* — 7 1

J  -  -  a/ t
J ~ d ( ^ 7 ß ) ~  a 0 '

(14)

(15)

(16)

The transformation from the space-time (x,t) plane to the plane of characteristic 
parameters (or,/?) will be one to one if the Jacobian J  does not vanish anywhere. 
Since doubling or overlapping of fluid particles is prohibited by physical consider­
ations, tß ф 0. Consequently, /  = 0 if and only if ta = 0, when two adjoining 
characteristics merge into a shock wave.

Transforming (8) into the characteristic coordinate system (a,/?), we get

(apa -  pua)tß + pUßta + иpuatatß = 0, (17)

(paita -  p a ) t ß  +  P ß t a  = 0, (18)

qa -  W ta = 0, (19)

(apa -  pa2ua)tß + pa^Ußta + v pa uat°‘tt} +  DWpatatß = 0. (20)
X

The combination of (18) and (20) yields

,  p a ^ u atn tnapßta +  parußta + V-----------£ + DWpatatß = 0. (21)
X

Since the wave front is a characteristic surface, the primitive field variables 
are continuous across it. Thus the boundary conditions are

[p] = 0, M = 0, [q] = 0, [p] = 0, t = ß at a = 0. (22)

The unperturbed flow ahead of the wave is assumed to be uniform and at rest, so 
the above conditions demand that

Pp = 0 , up -  0, gp = 0, pf3 = 0, tf3 = 1 at a = 0. (23)

The evaluation of Eqs ( 12)—( 13) and (17)-(20) at the wave front yields

xa = 0, Xß — a, (24)

p
Pa = ~Ua, Ça = 0, Pa = paua (25)
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at a = 0.
To compute Л = [iix] at the wave front, which is the wave amplitude, we 

invoke (15), (16) and (23) which give

A = - —  at a  = 0. (26)at a

Differentiating (13) and (21) with respect to a, (12) and the last equation of (25) 
with respect to ß  and using (22), (23), (25), we find that at the wave front a = 0

where

and

7 + 1 ______ 4(1 + g)2(l -  g)el exp(V){V + 2e„ exp(U) -  2}
2 {5 + q + 2(1 -  q)el exp(U)}2{7 + 3g + 2(1 -  g)e2 exp(V)}

Since 7 > 9/7, exp(V){U + 2e„ exp(V) -  2} < 4, it follows that w > 0 and V’ > 0. 
Integrating (27) with respect to ß on the line of constant a (=  0), we obtain

ua = uao(x/x0) vl2 exp(-wi), (29)

where uaо and xo are the values of ua and x at t = 0, respectively. Making use of 
(29) in (28) and integrating with respect to ß, we get

ta = taO -  (V7a)ua0 /  (x/ X0)~V exp(-wt)dt, (30)
Jo

where <ao is the value of ta at t = 0. Using (29) and (30) in (26) and keeping in 
mind that z = x 0 + at, we finally obtain

A ( 0  =
Ao F(t)

1 + Aotpl{t)’
(31)

where
F(t) = (1 + at/xo)~v^2 exp(-wf), 7(i) = Í  F(t)dt

Jo
and Ao(^ 0) is the value of A(i) at t = 0. When the initial amplitude is positive, 
we speak of an expansion wave, in the case of a negative initial value the wave is 
a compressive one. Equation (31) gives the variation of the wave amplitude with 
time. Further we study this result in detail to explore the possibilities of the shock 
formation.
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5. B e h a v io u r  at th e  w ave front

Plane waves (i/ — 0)

For a plane wave (31) reduces to

m  =
______ A0 ехр(-чЛ)______
1 4- (A0/AC){1 -  exp(-wf)} ’

(32)

where Ac = u>/rp. It is apparent form (32) that if A0 > 0 (i.e. for an expansion 
wave front) A(<) is continuous and monotonically decreasing over [0, oo), and A —♦ 0 
as t —► oo. This means that all expansion waves decay continuously and damp out 
ultimately. If Ao < 0 (compressive wave front), the behaviour of A(<) depends on 
the relative magnitudes of |Ao| and Ac. Henfce we call the quantity Ac the critical 
initial amplitude.

(i) If IЛ о I > Ac, there exists a finite critical time tc > 0, given by

1
1 -  w/|A0| ’ (33)

such that A(<) is continuous and finite on [0,ic), but |A| —* oo as t —*• tc. Thus the 
weak discontinuity grows without bound and steepens into a shock wave after the 
finite time tc.

(ii) If |Ao| < Ac, |A(f)| is finite, continuous, monotonically decreasing and 
tends to zero as i —► oo, i.e. such a compressive wave decays and flattens out 
ultimately.

(iii) When I Ao | = Ac, the wave propagates with the initial discontinuity with­
out any growth or decay.

These results differ from the well-known property of hydrodynamical flows 
that all compressive disturbances terminate into shocks. The dissociation has a 
stabilizing effect on the tendency of the wave surface to grow into a shock, in the 
sense that in certain cases it disallows the shock wave formation.

Diverging cylindrical waves (i/ = 1, xp = Rq > 0)

If the diverging wave surface at t — 0 is a cylinder of radius R q , at any later 
time it is a cylinder of radius R = R q + at. For this case the wave amplitude, the 
critical value of the initial discontinuity and the time taken for the shock formation 
are given by the following expressions:

m  =
Ap(l + at/RQ) 1/ 2exp(-w<) 

1 +  An /  i _ erfЧФ+“*)1'* \
(34)
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_  и exp(-ф)
е ф жЧ*фЧ*а1с(фЧ*У 1 '

етк(ф + wtc)1̂ 2 = (1 -  Ас/ |A0|)erfc(<^1/2), (36)

where erfc(x) = (2/y/ïr) / х°° exp(—t2)dt is the complementary error function, ф — 
ujR q/ a. The evolutionary behaviour of diverging cylindrical waves is quite similar 
to that of plane waves with the difference that for |Ao| =  Ac the amplitude of a 
compressive wave is not constant but it varies with t as

m  = -
и exp (—ф — ut)
ф ж1/2(ф + wí)1/2erfc((£ + wi)1/2

By applying L’Hospital’s rule it turns out that in this case |A| —► ш/ф as ! -* oo, 
i.e. the wave takes a stable form ultimately. Since erfc(x) < exp(—x2)/(x7r1̂ 2), Ac 
is greater for a diverging cylindrical wave than for a plane one. In other words, the 
geometrical spreading helps to attenuate the wave amplitude. It is easy to verify
that

d \ c
dllr < 0 ,

dtc
dR0 < 0 ,

which imply that the initial curvature has a stabilizing influence.

Converging cylindrical waves (y = 1, xo =  —До < 0)

If at t = 0 the converging wave front is a cylinder of radius R0, then at a later 
time t < t* = Ro/a it is a cylinder of radius R — Ro — at. (At t* the curvature of 
the wave surface becomes infinite, which indicates the formation of a focus.) For 
such a wave

Xo(l — a t /R0) 1/ 2exp(— ut) (37)

u  1
c ф 2<̂ 1/ 2daw($1/2) ’ (38)

where daw(x) = exp(<2 — x2)dt is Dawson’s integral. If A0 > 0, A(f) is posi­
tive, finite and continuous on [0,<*), further A —*■ oo as t —> <*. The numerator 
of (37) becomes unbounded at <*, whereas the denominator remains positive and 
finite. Therefore we conclude that all expansion waves form a focus at a finite time 
t*. When Ao < 0, there are again three possibilities as in the case of diverging 
compressive waves.

(i) If I Ao I > A*, there exists a finite critical time <* < t’ defined by the 
equation

exp(—wi*)daw(<^ -  w<*)1/2 = (1 -  A*/|Ao|)daw(^1/2) (39)

such that A(<) is finite and continuous over [0,f*)> and |A| —► oo as t —* <*. Thus in 
this case a shock forms before a focus can.
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(ii) If |Ao| < A*, the denominator in (37) converges to a finite negative limit, 
whereas the numerator tends to infinity as t —* t*. So A(<) is finite and continuous 
over [0,f*), and |A| —► oo as t —*• <*. This situation corresponds to the formation of 
a focus within a finite time t*.

(iii) If |A0| = A*, the numerator of A(<) tends to infinity and the denominator 
approaches to zero as t —> t*. Hence A(<) is finite and continuous over [0,<*) and 
|A| —+ oo as t —* f*. This case corresponds to the simultaneous formation of a shock 
due to steepening and a focus due to curvature effects.

The function rdaw (r) is zero at x — 0, in the beginning it grows (at xy «
0.924 it is equal to 1/2), presents a maximum at Xi «  1.502 and then declines 
slowly, approaching to 1/2 asymptotically. Therefore A* is less than, equal to, or 
greater than Ac for a plane wave according as ф1̂ 2 is greater than, equal to, or less 
than x\.  It can be proved that

>0 , ——— = 0 when ф
dR0 >

We see that, in contrast to the diverging waves, the shock formation time decreases 
with increasing curvature. A* depends on Rq in an interesting way.

Diverging spherical waves (u = 2, xo = .Ro)

If the diverging wave front at t = 0 is a sphere of radius Rq , at any later time 
it is a sphere of radius R = Rq + at. For this case the wave amplitude, the critical 
value of the initial discontinuity and the time taken for the shock formation are 
given by the following expressions:

w,4 A0(l +  at/Ro) 1 exp(—w<) (40)

ш exp(-ф)
c -  ф Ф М Ф )  '

(41)

Е\(ф + w t c ) = (1 — Ac/|Ao|Ei(0), (42)

where Ei(x) = f_1exp(—t)dt is the first Schlömilch function. The evolutionary
behaviour of diverging spherical waves is quite similar to that of diverging cylindrical 
waves with the remark that for |Ao| =  Ac the amplitude of a compressive wave is of 
the form

A _  и  exp ( - ф - u t )
■ф (ф + ut)Ei(<  ̂+wt)

By applying L’Hospital’s rule it turns out that in this case |A| —► и/ф  as t —» oo, 
quite like toithe diverging cylindrical waves. From the inequality Ei < exp(—x)/x,
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it follows that Ac is greater for a diverging spherical wave than for a plane one. It 
is a simple matter to show that

d \ c
dRo < 0 ,

dtc
dRo < 0 ,

just like for diverging cylindrical waves.

Converging spherical waves (i/ = 2, xq = —Ro < 0)

If at t = 0 the converging wave front is a sphere of radius Ro, then at a later 
time t < t* = Ro/a it is a sphere of radius R = Rq — at. (Obviously, at i* a focus 
forms.) For such a wave (31) assumes the form

X(t) = Ao(l — at/Ro) 1 exp(— uit)
1 +  h s . ( i  _  Е 1 ( * - ы < ) \
1 +  л  X 1 E i(*)  /

(43)

where
_  w exp(ф)

ф фЪ\(ф) ’
and Ei(x) = J"* f-1 exp(f)di is the exponential integral function.

Since Ei(x) —» —oo as x —* 0, for Ao > 0 both the numerator and the denomi­
nator of (43) become unbounded at t * . Applying L’Hospital’s rule, we get A( t )  —<• oo 
as t  —► t * , which means that all expansive waves form a focus at If Ao < 0, then 
there exists a finite time t*c < t* given by

Ei(<£ — w<’ ) = (1 — A/|A0|)Ei(<£), (44)

such that A(i) is continuous and finite on [0,<*), but |A| —*• oo as t —» <*, because the 
denominator of (43) vanishes whereas the numerator remains finite. This means that 
all spherically converging compressive waves, no matter how weak initially, steepen 
up into shock waves before the formation of the focus. This is in contrast to the 
corresponding case of converging cylindrical waves. It can be shown that

d t l
dRo

>0,

like the converging cylindrical waves.
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A s tu d y  of th e  Coriolis force effect on  th e  last odd  p a rtic le  in  odd-R e iso topes is 
u n d e rta k e n  based  on th e  cranking  m odel an d  N ilsson m odel including p a irin g  force. A ccord­
ingly, th e  level s tru c tu re  of th e  g round  s ta te  b a n d s  of odd-m ass Re iso topes is discussed and  
sa tis fac to ry  resu lts  are ob ta in ed  by th a t  m odel as com pared w ith th e  experim ental resu lts . 
F u rth e rm o re , d e te rm in a tio n  of th e  deform ation  p a ram ete r 8 of each  nucleus is u n d e rtak en  
by  d ifferent m eth o d s a n d  i t  is fo u n d  th a t  6 decreases substan tia lly  w ith  th e  ad d itio n  of each 
n e u tro n  p a ir .

1. In tr o d u c tio n

The experimental investigation of transitional nuclei, where the nuclear shape 
changes considerably with nucleon number, remains a fertile testing ground as the­
oretical nuclear models become more refined. One of such series of nuclei is the 
odd-proton 181-187Re isotopes. It is of interest to map the systematic changes in 
energy level structure with deformation in these nuclei. The level schemes of odd- 
Re isotopes have been investigated using a variety of experimental techniques [1-6]. 
The results of these experiments have been interpreted successfully for the most 
part in terms of the Nilsson model [7], although there remain some aspects of the 
level structure that need explanation. Perhaps one of the most striking anomalies 
in this region is the Coriolis force effect on the last odd particle. This effect was 
studied previously by many authors [8,9] and they have shown that the systematic 
largeness of the moment of inertia of odd-A nuclei as compared with those of the 
ground state bands of neighbouring even nuclei is due to that effect. The correction 
to the moment of inertia from the last odd particle comes from the second order of 
the Coriolis force. Numerical calculations of this effect were performed previously 
[10] and generally satisfactory results were obtained for most of odd-A nuclei. But 
there are still discrepancies between experimental and theoretical calculations in the 
region of odd-Re isotopes. Accordingly, it was thought worthwhile to reinvestigate 
the odd-Re isotopes to extend our knowledge of their level structure via the study 
of the Coriolis force effect.
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2. T h e  C o r io lis  fo r c e  an d  C orio lis  fo rce  a n ti-p a ir in g  (C A P ) e ffe c ts
on  th e  la s t  o d d  p a rtic le

In most of the treatments concerning the CAP effect the quasi-particle method 
has been employed [11-13]. The essential approximation in this method is to replace 
the pairing interaction in the original Hamiltonian by a pairing potential, whose 
strength is given by the gap parameter, Ac (r = p for proton and r  = n for 
neutron). The CAP effect is described in terms of the decrease of this gap para­
meter with increasing frequency of the rotation, Г2, or equivalently, the total angular 
momentum of the system, I.

Taking into account only the lowest order effects of the Coriolis force the total 
energy in the laboratory system can be written as

Е0(П) = Е'0(П) + П(1Х), (1)

where E'0(£l) is the corresponding total energy in the rotating system and is given
by

Е'0(П) = Eo(AT) -  (2a)

Eo(AT) = 2 -  A )ul -  £  Ar 2 uiVi + (2b)
» T  T  r

(Jx) = Пф0 = y / l ( I +  1). (2c)
The first and the second terms in Eq. (2b) describe the single particle and the pairing 
energy, respectively. The symbols м,- and i/, are the usual occupation parameters 
[10], i.e.

"H(i+£î )' (3a)
where E{ = у/(a -  A)2 + A2. Also, GT in the third term is the strength parameter 
of the original pairing force. Also, V’o is the moment of inertia and is given by the 
well-known formula

j?
^0 =  2 Y ,  + Ej (U|t/? “  “j"'')2’ (4)

where J i j  is the matrix element of the single-particle angular momentum Jx,

Jij = {i\Jx\j)- (5)

Inserting Eq. (2a) into (1) and replacing Q by I  with the help of Eq. (2c), the total 
energy Eo(Q) is expressed as a function of the angular momentum,

£ "( , ) = E°(A' ) + 2 f c k ) 7<i + 1 >- (6>
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Following the minimization condition:

dEp(I) __
dAr (7)

which leads to the gap equation [12]

2 = v  1 / ( /  +1) dipp(AT)
GT ^  Ei(AT) + t â ( A T) dAT

Using this equation and solving Д т up to the lowest order in I  (I + 1), one obtains

Дх = д(°> + 1
2Cr ô2(4 0))

' dipo' 
dAr 1(1 + 1). (9a)

c ,  = £
I

(Д(0))2
Ef

(9b)

where д(°^ is the energy gap for 1= 0 .
Inserting Eq. (9a) into (6), one finally obtains up to the second order in

/ ( /+ 1 ) ,
E0(I) = E0(AW) + + 1) + BAI 2(I + l)2, (10)

2^о(Дт°0
where the 5-parameter is expressed as

5л  = £ ( - 1 )
Г

1 1
8^(Д ^0)) (И)

The contribution to the energy from the last odd particle is just the quasipar­
ticle energy, £,-(П). Thus, the total energy of a band associated with a quasiparticle 
state i is given by

5 1(П ) =  5 о ( П ) + С , ( П ) .  (12)

In order to estimate the contribution to the 5-parameter from the last odd 
particle, it is sufficient to retain terms only up to the third or fourth order in J,- and 
6 , respectively. Proceeding further and according to the treatment given in [10], 
one can easily obtain

Ei(I, Ki) = 5о(Д1°))+5,(Д(°))+ 1 [I(I+1)-K?]+B[I(I+1)-K?]2. (13)
H i( A KT J)

Ki is the projection of the angular momentum I  in the symmetry axis and rpi is the 
total moment of inertia, including the contributions from both the even core and 
the last odd particle,

V'i = Фо + Hi,
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T a b le  I
T h e  m ean  d e fo rm ation  p a ram ete rs  fo r odd-m ass Re iso topes

Iso to p e 6
(nuclear o rien ta tio n )

6
(C oulom b excitation)

6
(theoretical)

181 Re _ 0.19 0.212
183 Re 0.2075(8) 0.19 0.2116
183 R e 0.194(3) 0.19 0.1973
187R e 0.181(4) 0.19 0.1838

(2)where the correction to the moment of inertia is: Sipi = — 2Q .
The centrifugal В-parameter is given as a sum of the contributions represent­

ing the CAP and Coriolis force effect on the last odd particle,

В = Вд + Вс, (14а)

v  (-1 ) ( b k  у
Л ~ \ д А т)  ’ (14Ь)

В = — 0 3 4)
1>Г •

(14с)

According to the treatment given before, calculations of the В-parameter for 
one-quasiparticle bands of odd-Re isotopes were undertaken.

By fitting the calculated energy gap to even-odd mass differences, the values 
for Gp = 2* and Gn — X have been suggested [14].

The deformation parameter 6 is taken from the information obtained from 
the nuclear orientation technique [6]. In the frame of the rotational model the 
spectroscopic quadrupole moment Q is connected with the intrinsic quadrupole 
moment Q0 via the Bohr-Mottelson relation

Q — Q о
3K 2 -  J (J  + 1) 
(J + 1)(2 J  + 3) (15)

Thus the configuration J* К  has to be known for the determination of Qо 
from the measured Q. Accordingly the ground state deformation 6 for the odd-A 
Re isotopes is estimated and tabulated in Table I.

Further calculations of the deformation parameter were undertaken both from 
Coulomb excitation experimental data and theoretical consideration [15] and the 
results obtained are given in Table I. However, a readjustment of the parameter S 
was undertaken within the obtained results so as to reproduce the observed level 
order and the moment of inertia as well as possible. Also, from Table I it is seen that 
the mean deformation parameter of odd-A Re isotope decreases by the increasing 
mass number A.
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4. Results an d  discussion

Numerical calculations of the A- and 5-parameter for one-quasiparticle ground 
state bands of odd-A Re nuclei were undertaken following the prescription given 
above. The (obtained) results are presented in Table II.

The experimental values of the A- and 5-parameters were determined by 
applying the rotational formula

E(I,  K) = EK + AI{I  + 1) +  B I 2{I + l)2

+ (" 1)/+1| t ^ ) ï (Ai + Bi / ( î  + 1 ) + - )' (16)

Ek  is the band head energy, A\ and B\  are parameters representing higher order 
terms arising from the Coriolis interaction and depending on К  which is the pro­
jection of the angular momentum. The results obtained for A- and 5-parameters 
are included in Table II.

T a b le  II
E x p erim en ta l and  c a lcu la te d  A-  and  ^ -p a ra m e te rs

Iso tope Acxp Bex p A В В д Be

181 Re 17.1 -0 .0 2 0 14.1 -0 .0 2 2 -0 .0 2 4 4 0.0024
183 Re 16.46 -0 .0 2 2 15.6 -0 .0 2 4 0 -0 .0 2 6 3 0.0023
185 Re 18.2 -0 .0 2 7 19.5 -0 .0 3 0 -0 .0 3 3 2 0.0032
187Re 19.9 -0 .0 2 8 21.0 -0 .0 2 6 -0 .0 3 1 0.0050

From these data one can clearly see a characteristic orbital dependence of the 
5-parameter similar to that known for the А-parameter. Actually, the parameters 
A and 5  are correlated. Furthermore, our calculated results are in agreement with 
those obtained from experiments. In our study, the contribution from 5 д is found 
to be larger than that from Bc and accordingly the 5-parameter remains negative 
like those of the ground state bands of even-even nuclei.

The CAP effect could be obtained by means of the derivative of the moment 
of inertia with respect to the energy gap [10].

The strength of Coriolis coupling could be viewed by drawing a relation; 
vs (21)2 as shown in Fig. 1. From this Figure it is obvious that clear 

oscillations are obtained in the case of 187Re ground state band which supports the 
large calculated value of Bc compared to those of the rest of Re-isotopes.
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Fig. 1. C oupling effects in  th e  odd-m ass R e isotopes y ra st b a n d s

5. Conclusions

The rotational parameters A and В of the ground state bands of odd-A iso­
topes were evaluated by means of the cranking model and the Nilsson model. The 
results of our calculations agree quite well with A and 5-parameters derived from 
experimental data. The positiveness of 5-parameters in most bands of odd-A nu­
clei is not found in our study concerning odd-A Re isotopes. This may arise from 
the large negative value of the CAP force effect on the last odd particle which is 
positive.

The oscillations obtained in Fig. 1 in the case of 187Re show that the Coriolis 
coupling is strong compared with those of l81>183.185pte isotopes.
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This review covers some modem applications of statistical methods in the analysis of 
complicated molecular spectra, obtained usually with laser excitation. Among the available 
fluctuation measures, special emphasis is given to the nearest neighbour separation and 
spectral rigidity measures, and attention is called to the power spectrum (or statistical 
Fourier-transform) method.

From the high-resolution spectroscopic techniques used to obtain spectra of highly 
vibrationally excited molecules, the stimulated emission pumping (SEP) scheme is very 
successful in simplifying the high excitation regions. Examples of SEP applications are 
given, especially to acetylene, in greater details. Finally the role of molecular rotation in 
molecular dynamical and statistical studies is stressed.

1. In tr o d u c tio n

In recent years there is an increased interest in the interpretation of complex 
molecular spectra obtained usually with laser excitation. With high energy excita­
tion it is possible to reach large values of vibrational quantum numbers. Traditional 
spectroscopy deals with spectra wherein each transition can be assigned to valid 
quantum numbers and thus can be analyzed in a conventional fashion. With the 
coming of lasers and their applications in laser-induced processes it became evident 
that the common methods of spectroscopic analysis are not always easily applicable 
at high vibrational excitation where the energy level density is extremely large. On 
the other hand, e.g. chemical applications of lasers demand an understanding of 
this energy region.

In this review we shall cover some relatively recent techniques that allow us to 
gain at least a partial explanation of complex spectra. Such studies inevitably lead 
to basic questions concerning regularity in molecular spectra and involve problems 
about ergodic or chaotic behaviour in quantum systems. We shall shortly summarize 
recent views on quantum ergodicity in molecular spectra. The relevance to laser- 
excited molecular processes shall occasionally be emphasized as it is this aspect that 
provides the most important impetus for such studies.
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2. A  sh o r t h is to r ic a l ov erv iew

As we shall see the analytical approach to high energy density regions is 
mostly statistical in nature. It is through a statistical study of energy level systems 
or even actual spectral features from which we hope to extract information on 
regularity and dynamical behaviour. Such studies were pioneered by Wigner in 
nuclear physics [118,119,120,121] who proposed a form for the distribution of first 
neighbour spacings in highly excited nuclear spectra.

This statistical approach is closely linked to the theory of random matrices 
(Bohigas and Giannoni [17], Brody et al [20], Carmeli [23], Mehta [84], Porter 
[102] because — as Wigner pointed out — the statistical properties of spectra 
of complicated Hamiltonians are similar to those of random Hamiltonians. The 
applications of random matrix statistics to atomic spectra have emerged in the 
last twenty years (Camarda and Georgopulos [22], Rosenzweig and Porter [107]) 
with a rapid expansion to molecular spectroscopy (for NO2: Haller, Koppel and 
Cederbaum [56,57], Hardwick [59], Lehmann and Coy [75,76], Smalley et al [108], 
Zimmerman, Koppel and Cederbaum [117] — for acetylene: Abramson et al [1,2,3], 
Engel and Levine [37], Farantos [39], Holme and Levine [63,64,65], Mcllroy and 
Nesbitt [86], Pique et al [94,95,97], Sumpter and Thompson [109], Sundberg et al 
[НО], — for Агз: Leitner, Berry and Whitnell [77] — for formaldehyde: Miller et 
al [87], Polik et al [99,100].

Following the simple applications of first neighbour spacing statistics, more 
advanced statistical tools have been worked out. Thus the spectral rigidity measure 
(A3) was introduced by Dyson and Mehta [32], and Bohigas and Giannoni [16] 
to test long-range correlations among levels, the so-called E-statistics (Dyson [33]) 
to find levels in sequences to be eliminated from the analysis, and several other 
correlation and fluctuation measures (Brody et al [20]).

For modern polyatomic applications not only the various spacing distributions 
and the Дз-statistics became widely used, but additional fluctuation measures have 
been developed for spectral line strength (Alhassid, Levine [4], Brickman, Engel and 
Levine [19], Coy, Hernandez and Lehmann [27], Heller, Sundberg [61], Kommandeur 
et al [73], Porter, Thomas [101]), and for fluorescent lifetimes (Engel et al [35]). In 
this review we shall deal only with energy level statistics, occasionally mentioning 
spectral line strength distributions.

An additional technique for testing long-range order or correlatedness in op­
tical spectra is the statistical Fourier-transform of energy level sequences or experi­
mental frequency spectra (Jost, Lombardi [69]), Leviandier, Lombardi, Jost, Pique 
[78], Levine, Kinsey [79], Lombardi, Labastie, Bordas, Broyer [81], Lorquet, En­
gel, Levine [82], Pique, Joyeux, Manners, Sitja [98], Remade, Levine [106]). This 
method provides information on the time-scale of various processes leading to the 
experimental spectra. Ergodic behaviour in spectra may also be quantified by the 
fractal dimension of the trajectories in phase space (Grassberger and Procaccia [47]), 
and by Kolmogorov entropy (Pesin [93]). Excellent examples for this approach are 
in the recent literature (Beck, Leitner, Berry [9], Berry [14]).
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3. R e g u la r ity , e r g o d ic lty  and  c h a o s  In sp e c tr o sc o p y

One of the interesting questions of contemporary physics is whether chaotic 
phenomena in classical dynamics appear in some form in the quantum mechanical 
description. The literature on this subject is very extensive (e.g., Berry [10,11,12,13], 
Casati et al [24], Heller [62], Tabor [112]).

It is characteristic of classically chaotic dynamics that it grows from the non­
linearity in the governing system of dynamical equations. Chaos means the irregular 
and unpredictable evolution of a non-linear system in time. Quantum systems are 
not chaotic in the way classical systems are. The Schroedinger equation that is the 
basis of the wave mechanical description is a linear equation in the sense that if 
two different wavefunctions satisfy it then also does any linear combination of those 
functions. Thus a linear superposition is maintained indefinitely and the solutions 
are periodic and quasi-periodic. In contrast to classical dynamics, molecular systems 
do not have well-defined trajectories in phase space on time scales long relative to the 
excitation time of internal motions. Due to the Heisenberg uncertainty relationship 
it is not possible to prepare an individual spectroscopic state in which the position 
and momentum coordinates of the nuclei and electrons are sharply defined; they 
have a finite distribution instead. While in classical chaos particle trajectories have 
an infinitely complicated substructure (Gutzwiller [55]), in the quantum mechanical 
description these trajectories are blurred.

There are several terms that are frequently used in the discussion of the dy­
namical behaviour; regularity, ergodicity and chaoticity. In addition one encounters 
frequently the qualification: “stochastic” . It is not attempted here to separate 
clearly the meaning of these terms (in relation to spectroscopic behaviour) but a 
few words are appropriate.

A stochastic process is one that is a function of a random variable (in addition 
of being a function of time), and the random element is usually some external 
influence on the system. The irregular behaviour of a classical system, modelling a 
quantum system like molecules, is not a result of some random external influence 
but is due to the intrinsic properties of the system itself. Therefore, strictly speaking 
molecular systems cannot properly be regarded as stochastic. Still this term is very 
widely used.

Ergodic behaviour is defined in statistical mechanics. When we have a clas­
sical system where the trajectory of motion in phase space samples uniformly the 
latter, the time average of a given quantity equals its phase (ensemble) average.

Bohr’s correspondence principle requires that in a high excitation state, like 
nearly dissociated or nearly ionized molecular states, where the energy density is 
very great, the molecular quantum system should correlate with the classical de­
scription. Therefore one would expect some manifestation of classically chaotic 
behaviour in a quantum system, or quantum phenomenon, like molecular spectra. 
This manifestation is found in the statistical properties of molecular energy lev­
els and in transitions among them. Ergodicity or regular behaviour, and chaotic 
limits shall in the following be studied from a statistical viewpoint. Regular spectro­
scopic behaviour may be related to the regularity of the underlying classical motion,
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whereas irregular (or chaotic) behaviour of the corresponding classical system man­
ifests itself in a very different statistical behaviour in spectroscopy. The transition 
between regular and irregular (chaotic) classical systems is provided by the KAM 
theorem (Kolmogorov-Arnold-Moser) (Arnold [15], Kolmogorov [72], Moser [88]). 
It is possible to study the statistical properties of energy levels in the semiclassical 
limit; h. —► 0, as was shown by Berry [11,12] using Gutzwiller’s method (Gutzwiller 
[48,49,50,51,52], see also: Balian and Bloch [7]). In this way classical periodic orbits 
may be related to semiclassical energy levels. In the semiclassical description quan­
tization is provided by the Einstein-Brillouin-Keller (EBK) quantization (based on 
Einstein’s paper in 1917; [34]). This corresponds to ‘old quantum theory’ which 
was superseded by wave mechanics, but for the study of molecular chaos in the 
semiclassical limit has been rediscovered and widely used (see: Tabor [112], Section 
6, pp. 228-279). In terms of EBK quantization rules a regular spectrum corresponds 
to regions of integrable (regular) motion that can be quantized according to these 
rules, whereas irregular (chaotic) spectra cannot be so quantized. As we shall see, 
one may model certain spectroscopic observations on this semiclassical approach 
that provides insight into spectral statistical characteristics.

4. T he m athem atical appara tus of statistical spectroscopy

Before applying most of the statistical probes to molecular energy levels or 
actual molecular spectra a procedure is needed to place those sequences on the 
same footing. For this purpose one has to separate the average density of levels from 
fluctuations about that average (Brody et al [20], Bohigas and Giannoni [17], Haller, 
Koppel and Cederbaum [56]). This is because we want to reduce different energy 
level systems to the same basis that then allows a comparison of the statistical 
behaviour of highly excited nuclear levels to those of molecular excitations. This is 
achieved by a suitable mapping of the original energy level system: E —* E . Taking 
N(E)  as the cumulative density of the energy levels it is seen to fluctuate about a 
smooth average: Nav(E)\

Fig. 1. C um ulative energy  level d is tr ib u tio n
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Now if

Ëi = N„{Ei)- i=  1 ,2 ,3 ,...

N „ ( E ) =  [  e&v{E')dE' = [  Qav(É')dË = Ë = Nav(É). 
Jo Jo ( 1 )

The new energy level sequence Ëi has a constant density; Qav(Ë) =  1, and it 
may be split up to a secular part (showing a smooth change with energy, that is 
universal) and a fluctuation part (that is specific to the system):

N(Ë)  = Na.v(Ë) + Nf\(Ë) = Ë + Nn(Ë). (2)

We shall be concerned only about the fluctuation part Nr(Ë). This carries 
the statistical information on the energy level system. Taking into account the fact 
that energies (eigenvalues) are not continuous functions, Eq. (1) can be rewritten:

П
N„(E) = J 2 Q ( E - E i ) ,  (3)

I — 1
where 0(E)  is the Heaviside step function, and E can be given as:

Ë = b~l [N„{E) -  b0], (4)

so that:
N„{Ë) = 6o + fci£. (5)

This procedure is called “unfolding” (“deconvolution” or “mapping”) and 
might be a sensitive function of the choice for Nav(E), i.e. of the way we ap­
proximate the average behaviour of the energy level system. There are various 
possibilities for this, one of these is the use of a polynomial expansion:

m
tfav (£ ) = £ > £ * .  (6)

*=i
Alternatively, one may use a cubic spline function smoothing (Press et al 

[103], Chapter 3), or apply a moving average (Wong, French [122], Venkataraman
[115]):

Èi+i = Ëi + (2к + l )(Ei+l -  Ei)/(Eja+1 -  Eh ), (7)

where i runs over the energy levels, and j i  = max(l, i — k) and j i  — min(n — 1, i+k), 
n is the total number of energy levels and к is the number of consecutive spacings 
between the energy levels over which averaging is done.

All these unfolding methods produce level sequences of nearly unit local mean 
spacing (density). The fluctuation properties of spectra may either be stationary 
(invariant to translation along the energy axis), or not stationary. In the latter case 
one is interested in asymptotic properties of energy level sequences.
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4-1. Fluctuation measures

With respect to the statistical nature of Nn(E) in Eq. (2) there are two 
extreme cases, the case of a complete lack of correlation among energy levels, and 
the case of very strong correlations. There are a number of mathematical techniques 
to test such correlations. Historically the first of these was suggested by Wigner 
(Wigner [118,119]) that relates to the distribution of spacings among adjacent levels: 
P(S)  (5 stands for first neighbour spacing between unfolded energies: E). This 
method relies on the absence or presence of repulsion between levels.1

For a completely random energy level sequence, the probability of a spacing is 
independent of the magnitude of the spacing and one has a Poissonian distribution 
law: (using first neighbour spacings (S) in terms of local spacing units. The local 
spacing unit is 1 for an unfolded energy level sequence):

P(S) = exp (—5). (8)

On the other hand when there is (linear) level repulsion, the probability of a spacing 
is proportional to the spacing magnitude:

P(S) = (7r /2)5 exp(—7t5 2/ 4). (9)

There is an important difference between the Poisson (Eq. (8)) and Wigner (Eq. (9)) 
distributions; for a random energy level sequence the most probable spacing is zero 
(level clustering), whereas for the Wigner (strongly correlated) distribution zero 
spacing has zero probability (level repulsion).

In order to model strong correlations among energy levels, which is the case 
for highly excited nuclear spectra, Wigner proposed random matrix theory (Wigner 
[118,119], Brody et al [20]). Random matrix theory is reminiscent of statistical me­
chanics in the sense that it deals with ensemble averages over stochastic quantities. 
These ensembles are formed of matrices possessing random structure. Depending on 
the way such a random matrix is defined there are three types of matrix ensembles: 
the Gaussian orthogonal ensembles (GOE), the Gaussian unitary ensembles (GUE), 
and the symplectic ones. If the physical system is invariant under time-reversal and 
under rotations the matrices are real symmetric with random elements having in­
dependent Gaussian distributions. The ensemble must be invariant to orthogonal 
transformations and consists of matrices of identical dimension. The GOE model

1 R epulsion  be tw een  energy levels m ay  b e  u n d ersto o d  in  te rm s of avoided crossings, o r the
“non-crossing  ru le” (N eum ann  a n d  W igner [89], B erry  [11]). T h is  ru le  applies only w hen  we select 
energy  levels possessing th e  sam e sym m etry. In  th e  case of v ibronic  energy levels th is  involves the  
sam e e lectron ic  s ta te  a n d  v ib ra tio n a l q u a n tu m  num bers (o r com binations of v ib ra tio n a l q uan tum  
n u m b ers th a t  co rrespond  to  th e  sam e sy m m etry  of th e  p ro d u c t of v ib rational w avefunctions), 
th e  sam e to ta l  a n g u la r m o m en tu m  q u a n tu m  n u m b er (usually  J )  a n d  th e  sam e p a r ity  (behaviour 
tow ards space inversion). In  a d d itio n  th e re  is a  need  to  s tu d y  as com plete  as possible level system s 
in  th e  given sym m etry , so th a t  no  (or a  m in im al num ber of) energy  levels should  b e  m issing, and  
no  spurious levels sh o u ld  occur. All th e  follow ing sta tis tica l m easures presuppose th is  k ind  of 
sy m m etry  selection, th e  u se  of so-called “p u re  sequences".
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represents the strongest possible level correlations and it is frequently feasible to give 
analytical formulae for this limit of the various fluctuation measures. The GUE limit 
corresponds to systems for which the Hamiltonian does not possess time reversal 
and rotation symmetry, such matrices have complex Hermitian structure. Finally 
the symplectic ensembles correspond to systems that are time-reversal invariant but 
not invariant under rotations, and if the system has half-odd-integer total angular 
momentum the matrices of the ensemble are quaternion real. The importance of 
GUE and symplectic ensembles is little in the field of molecular spectroscopy.

Random matrices also show ergodic property so that their ensemble averages 
are equal to spectral averages of a member (Pandey [91]). As a consequence when we 
choose one member of the ensemble it will be representative of the whole ensemble. 
This ergodicity property shall be utilized in the application of the various fluctuation 
measures.

We can now return to the discussion of-the fluctuation measures with these 
two limits in mind; the completely random Poissonian sequences and the strongly 
correlated GOE limit.

The spacing distribution discussed previously does not include information on 
spacing correlations. This is obtained for two adjacent nearest-neighbour spacings, 
as a spectral average, by:

c = £ ( S .  -  l)(Si+1 -  1)/ £ ( 5 ,  + l)2. (10)
* i

For the Poissonian case c =  0, while in the GOE limit the first-order spacings are 
anticorrelated: c = —0.271 (Brody et al [20], Garrison [43]).

Another very useful statistics is the spectral rigidity; Д3(L) (Bohigas, 
Giannoni [16], Dyson, Mehta [32], French et al [41,42]). Spectral rigidity mea­
sures the least-squares deviation of the cumulative energy density N(E)  in Eq. (2) 
from the best straight line fitting it:

r<x+L
Д3(а;1) = ( l / i )m in  / [N(É) -  АЁ -  B]2dÉ, (11)

■A® Ja
where N(E)  is the number of levels below E, A  and В are constants of the fitting, L 
measures the length of the level sequence, and a is the beginning of the L interval. 
The value actually used in the analysis is the spectral average:

<Дз(а,1)) = Дз(£). (12)
For analytical purposes sums are used instead of the integral in Eq. (12), 

such formulae are found in Bohigas and Giannoni [16] and Feingold and Fishman 
[40]. Spacing distributions and the Д3(L) statistics are independent fluctuation 
measures and are complementary information; spacing distribution measures short 
range correlations, while Дз(Т) characterizes long-range ones. For a Poissonian 
level Дз(£) =  X/15, whereas for a GOE sequence:

Дз(Х) = (1/тг2)(1п L — 0.0687). (13)
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The meaning of these two limiting expressions is that for a random set of 
levels the variance of deviations from the mean behaviour is proportional to the 
number of levels, whereas for the strongly correlated case the increase is only log- 
arithmical. It is quite possible to find cases where spacing distributions indicate 
strong correlations, while spectral rigidity is low. It is often found that for actual 
level systems (theoretically computed or experimentally determined) the increase of 
Д3(£) with L is slower than indicated by the GOE limit in Eq. (13), and saturation 
is observed (see e.g. Zimmermann et al [116]). It is possible to relate Дз(L) to the 
sum over classical periodic orbits and find the general criterion for the saturation of 
spectral rigidity. This occurs when L >  Zmax, where Lmax is given by semiclassical 
considerations (Berry [12]) as

imax = h(d)/Tm\n -  fi-(JV_1), (14)

where (d) is the mean level spacing: (d)_1 ~  hN , and N  is the number of freedoms 
in the semiclassical system. Tmin in Eq. (14) is the period of the shortest classical 
closed orbit.

In addition to these two most important statistical measures, there are a 
number of others. One of these is the “number statistic” ; n(£), which is a discrete 
variable counting the number of levels contained in the interval L. Provided the 
spectral sequence is unfolded, the average of n(L) is L. The useful measures derived 
from this quantity are its higher moments, its variance £)2(T), its skewness ~fi(L) 
and its excess у2(L) (Pandey [90]).

All of these (and previous fluctuation measures) are derivable from the level 
correlation functions. The fc-level correlation function is defined as (Bohigas- 
Giannoni [17]):

R(E1, . . . , E k) = ( N \ / ( N - k ) \ ) f - - - J p N(E1.......EN)dEk+l. . .dEN, (15)

where Pn  is the joint probability density of the energy level Ei:

PN(El t E2, . . . , E n ) = Cn  exp(—(l/4cr2) £  Ef) J J  \E{ -  Ej\, (16)

where Cn  is a normalization constant, and <r2 is the variance of the eigenvalue Ei.
In Eq. (16) Pn (Ei . . .  En ) d E \ ... dEN gives the probability of having one 

level at E\,  another at E2 . . .  and another at En  within the intervals {Ej , Ej+dEj}.
When we unfold the energies Ei —* Ei (see earlier) a new set of fc-level corre­

lation functions is obtained:

Rk(Êi ,È2 . ■ .Én ) hm .
° o  Ri (E1) . . . R 1(Ek)

( 17)
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The functions Rk characterize the fluctuation properties of levels completely. 
Of central importance are the ifc-level cluster functions

= (£■«, with t in Gj), (18)
G j  =  1

where G stands for division of the indices 1, 2 ...  к into subgroups [G\, G2, . . . ,  Gm\. 
The most significant of the cluster functions is the two-level one: к = 2, when there 
are two subgroups: m =  1 [(1,2)] and m = 2 [(1),(2)]:

Y2(É1,É 2) = - R 2(É1,É 2) + Ri(Êl )R1(É2). (19)

Another possibility is to use the probability that in a sequence of unfolded 
levels {Ei} of mean spacing unity, a length L contains exactly к levels. This is given 
by

E{k-L) lim (N \ / (N—k)\)
N — oo

dÊk+1 ■ ■ ■ <1Ën Pn {E i . . .  En ),
in  ou t

( 20)
where the first group of integrals is performed on the variables inside the interval 
[a, a +  L] and the other group is an outside integral. The probability E(k;L\  in 
Eq. (20) is simply related to various fluctuation measures, e.g. the nearest neighbour 
spacing distribution p(E) in Eq. (8):

p(É) = p(0,Ë) = (d2/dË*)E(0,Ë).

Practically it is better to use integrated quantities:

( 21)

Ук l  ■ • • Ê k ) d Ë i . . .  d É k - ( 22)

Using yk quantities the various number statistics can be easily given as, e.g. the 
average number of levels in an interval L :

n(L) = yi(L) = L. 

The variance of this number is:

(23)

Z 2(L) = (n (L ) -L )*  = yi( L ) - y 2(L). (24)

Particularly important are the quantities related to the two-level cluster func­
tion Y2(E1,E2) in Eq. (19) which will be called two-point measures. E.g.:

1 - r 2(tf) = £ > ( * ,£ ) , (25)
k = 0
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so that all orders of spacing distributions are two-point measures. Using l^i-E) we 
may write the variance of the number statistic 2(T) as

Y , \ L )  = L -  j L{L -  r)Y2{r)dr (26)
Jo

and establish a relationship between Д3(L) and £ ) 2(£):

A3(I) = (2/L4) / \ l 3 -  2L \  +  г3) V  \r )dr .  (27)
Jo

For a Poissonian spectrum of energy levels the relationships for the various 
fluctuation measures are simple: For spacing distributions:

p(k,L) = (Lk/k\)exp(-L).  (28)

For fc-level cluster functions:

Yi(É) = 1; Yk(É i,Ék) = 0; к > 2  (29)

and also:

J 2 \ L )  = L and Д3(1) = 1/15. (30)

In the GOE limit these formulae are considerably more complicated. Ana­
lytical forms for the different cluster functions (Eq. (18)) were derived on the basis 
of Mehta’s work [83]. Mehta and Pandey [85] gave relationships among functions 
related to spacing distributions, on the one hand, and the fc-level correlation and 
cluster functions, on the other.

The two-level cluster function Y?(r) is given for the limiting cases of small 
and large г values:

l 2(r)r_ 0 —» 1 — (1/6)тг2г + (1/60)7г4г3 -I- . . .  (31a)

and

Y2O')г—ЮО —*■ (1/7Г2Г2) -  (1 + cos2 7Гг ) /7 Г 4 Г4 + . . . . (31b)

The quantity 1 — 1г(г) is 1 f°r the Poissonian case (see Eq. (29)), while it increases 
from zero asymptotically to unity for the GOE limit.

The Дз(Т) formula was already given in Eq. (13) while

Y , 2(L) = (1/тг2)1п£ +  0.44 (32)

for the GOE case.
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4-2. The power spectrum statistics

In addition to the above statistical tests in recent years another important 
fluctuation measure has been added to the arsenal; the statistical Fourier-transform 
(FT) technique. In their first paper on this topic Leviandier et al [78] introduced 
this robust method to detect long-range correlations in optical spectra. The method 
consists simply of taking the Fourier-transform of a set of energy levels, or directly 
spectroscopic data. There have been a number of theoretical papers describing the 
properties of this method (Coy and Lehmann [26]; Coy, Hernandez and Lehmann
[27], Jost and Lombardi [69], Levine and Kinsey [79], Lombardi, Labastie, Bordas 
and Broyer [81]; Pique, Chen, Field and Kinsey [94,95], Pique, Joyeux, Manners 
and Sitja [98]; Remade and Levine [106]).

The Fourier-transform of energy levels or spectral lines is denoted in many 
different ways, let us adopt here C(t), where t refers to time, and the abscissa may 
be given in dimensionless (</f>) units (g is energy density measured per frequency 
interval). The quantity examined is the square modulus of the Fourier-transform 
|C(t)|2, or as it is usually denoted in signal processing: the power spectrum. This 
has to be spectrally or ensemble averaged prior to use. The power spectrum contains 
two main components, a fast and a slow component. The feist component, whose 
amplitude is proportional to the square of the number of lines or energy levels, is 
the Fourier-transform of the overall spectral envelope, whereas the more significant 
slow component is the Fourier-transform of the shape of the spectral lines, and its 
amplitude is proportional to N  only:

(|C(Í)|2) =fV2d |( i) (y )2(i( i , Г))2 + 7V(y2)(L2(i, Г))-
■[l-G(t)b2( t)]®A2E(t), (33)

where ® denotes the convolution operation (see: Pique et al [94]), and N  is the 
number of lines in the spectrum, Ae {1) is the Fourier-transform of the spectral 
envelope, L(t, Г) is the FT of the normalized line-shape of individual lines (of width 
Г), y is the integrated line intensity, and the angle bracket (, ) denotes averaging 
over all spectral features. The quantity G{t) is related to the distribution of line 
intensity y and line width Г in the spectrum. For a Lorentzian line shape G(t =  0) 
= <у)2(Г)2/(у2)(Г2).

When there are correlations in the spectrum (or within a set of energy levels) 
a “correlation hole” appears between the fast and the slow components of the power 
spectrum. The fast component that depends on level density and not level spacing, 
is not important for the study of level statistics. In the case of a theoretical spec­
trum of unfolded energy levels represented by sticks of equal amplitude, the feist 
component reduces to a very narrow channel. It is the slow component of the square 
modulus that is proportional to 1 — 6г(0 > where 62(i)> the two-level form factor is 
the Fourier-transform of the two-point correlation function Y2(E) in Eq. (25):/ + 00

У2(г) exp(2nitr)dr. (34)
■ OO
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When correlations exist among levels or spectral features (У2 Ф 0), the ampli­
tude of the slow component is multiplied by 1 — b̂  (t), and since the latter difference 
is zero for the GOE limiting case for t / q = 0, and rises approximately to unity for 
t > Q (average level density), a correlation hole is displayed. The correlation hole 
is “filled” for an uneven distribution of line intensities, as G(t) < 1 for such a case, 
and this reduces the observability of the hole. Extensive noise of the spectrum leads 
also to the filling of the correlation hole.

An enormous advantage of the power spectrum method is that the correlation 
hole persists (but becomes narrower) when several pure sequences are superimposed, 
as it happens in transforming actual spectral details. So the technique is capable 
of detecting correlations in any mixture of levels or different stretches of spectra.

All this is true only for spectral or ensemble averages, or smoothed FT spectra. 
Individual level sequences or single lengths of spectra lead to total modulation, 
“speckle noise” is observed. This is analogous to diffraction of laser light from a 
rough surface. In the modulation there is a lot of information on the spectral fine 
structure, that is, however, not needed for correlation analysis.

Through the two-level cluster function ^ 2) in Eq. (19) the power spec­
trum is related to the spectral rigidity statistics (Lombardi et al [81]):

Дз(г) =  J [ í - b 2(t)\K(r,t)dt,  (35)

where K (r , t ) is a kernel function:

K(r, t) = (l/(2trf)2)[l -  F ( y f  -  3F'(y)2]. (36)

where, in turn
F{y) = (sin(y)/у) ; у — irrt.

Equations (35) and (36) can be derived from Eqs (27) and (33) by inverting 
the order of integrations. It is then also seen that |C(f)|2, Дз(г)  and £ 2(r) are 
all closely related and therefore all convey information on second order correlations 
between the location of two levels. The disadvantage of the power spectrum, viz. 
that it is very noisy, as opposed to the relatively smooth behaviour of the spectral 
rigidity Д з(г )  and £ )2(r) statistics, may be turned into an advantage, since one is 
then free to handle this noisy appearance by any noise reducing method chosen at 
will.2

Depending on the nature of the quantum system to which the statistical 
Fourier-transform method is applied we have four well defined examples (see 
Lombardi et al [81]), these are shown in Fig. 2 containing sketches of smoothed 
power spectra.

^Tile author is grateful to Professor Rémi Jost, CNRS Service National des Champs In- 
tenses, Grenoble, France, for pointing out this property.
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Cases a, b, c and d correspond to a Poissonian (random) spectrum, a GOE 
spectrum, the harmonic oscillator and finally a set of uncoupled anharmonic os­
cillators. To understand the four typical forms in Fig. 2 we can apply the simple 
recipe in Lombardi et al [81] (based on Balian and Bloch [7,8], Berry [12]; Gutzwiller 
[48,49,50,51,53,54]).

An understanding of the behaviour of |C(f)|2 may be obtained by a thought 
experiment. Let us start classical orbits from a phase space point (p, q) for the 
problem. At every time such an orbit closes upon itself (returns to (p, ç)) enter a 
peak into the power spectrum. Then the harmonic oscillator yields regular peaks 
separated by the oscillator period T, whereas a set of anharmonic oscillators shows 
up a flat hole, as nothing is found in the spectrum prior to the closing of the shortest 
orbit (Tmln). In strongly correlated systems the number of closed orbits decreases 
with time and that gives rise to the correlation hole.

Before leaving the subject of the power spectrum fluctuation measure, it is 
very important to point out another approach or philosophy of power spectra. The 
calculation of the constant amplitude stick spectrum of energy levels is equivalent to 
the estimation of the time evolution of a molecular wavefunction. There is therefore 
a strong connection between the theory of statistical Fourier-transformation and the
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theory of radiationless relaxation processes (Bixon and Jortner [15], Lahmani et al 
[74], Delory and Trie [31]). Another way of stating this is to point out that the 
square modulus of the FT yields the survival probability of an initially prepared 
state IV’(O) > after a duration of time <;

\ С Ш 7 = \ Ш № ) ) \ 2 (37)

(see Levine and Kinsey [79], Pique et al [94]).
Therefore the power spectrum may also be regarded as the spectral autocor­

relation function (see also: a maximum entropy formalism of the autocorrelation 
function by Remade and Levine [106], and the relationship to the rate of explo­
ration of the phase space (Lorquet, Engel and Levine [82]). The connection between 
mode selective chemistry — a centrally important aspect of laser-induced chemistry 
— and the application of the power spectrum method described above was given 
by Levine and Jortner [80].

5 . E x a m p les  fro m  h ig h -r e so lu tio n  sp e c tr o sc o p y

In spite of the obvious lack of molecular spectroscopic analyses about ten years 
ago (Bohigas and Giannoni [17], Brody et al [20]), in recent times there has been 
a surge of efforts to extend such analyses to high-resolution molecular spectra, as 
already mentioned in the Introduction. The greatest problem in applying the usual 
fluctuation measures to molecular spectra is the extraction of a statistically signifi­
cant sample size of line or level sequences of definite symmetry and good quantum 
numbers from the very complicated structure of highly excited molecular spectra. 
It is characteristic of such studies that when complete ro-vibronic (electronic ex­
cited state) or ro-vibrational (electronic ground state) analyses are available usually 
only levels with .7 = 0 (no rotation) are included. This is meant to simplify the 
construction of symmetry-wise pure sets, and to reduce the number of features to a 
manageable size. However, when high vibrational excitation occurs assignment of 
the spectral features is frequently not possible, and, of course, this is exactly why 
one would like to use the statistical method described here.

In such cases special experimental techniques are sought that lead to spectral 
simplification, or the power spectrum method is used that, as pointed out before, 
is comparatively insensitive to symmetry mixtures and spectroscopic resolution. In 
the following a number of recent examples shall be quoted. Special attention is 
devoted to the SEP (stimulated emission pumping) method developed in 1981 and 
applied since then.

In their seminal paper Leviandier et al [78] applied the newly proposed method 
to the highly excited acetylene (C2H2) vibrational levels, and to singlet-triplet anti­
crossing (ac) spectra of methyl-glyoxal. Acetylene vibrational spectra were obtained 
by the SEP method (to be described later). This was the first example of using 
the Fourier-transform method to a highly excited vibrational spectrum (at about
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27900 cm-1) and it gave an independent proof (relative to earlier statistical exam­
inations) of strong correlations. The ac spectra of methyl-glyoxal were only taken 
at a vibrational excitation level of 3000 cm-1 and couplings in those spectra were 
known to be very small.

Jost and Lombardi [69] used the optical-microwave double resonance data of 
Lehmann and Coy [75] to show the lack of level correlations in those spectra, and the 
SEP spectra of acetylene, taken by Abramson et al [2], to demonstrate strong corre­
lations objectively (objectivity being provided by the independent power spectrum 
method). Their own singlet-triplet anticrossing spectra of methyl-glyoxal (CH3-  
CO-CHO) displayed strong correlations in the T\ electronic state. One of their 
main conclusions was that only two-step, state-to-state processes, such as optical- 
optical or microwave-optical double resonance, or the optical anticrossing technique 
can provide spectra with sufficient spectral purity for statistical correlation studies. 
Molecular beam techniques may also help reducing spectral congestion prior to such 
an analysis.

Among molecular studies one of the most interesting cases is that of nitrogen 
dioxide (N02)- This molecule has a very complicated vibronic spectrum between 
12000 and 25000 cm-1 (Hsu et al [66]). In this spectral region there are four 
electronic states potentially interacting with one another (Jackels and Davidson 
[67,68]; Gillispie and Khan [44,45]). The assignment and interpretation of the ob­
served spectra have not yet been achieved. The molecule has been the subject of 
many statistical approaches (Haller, Koppel and Cederbaum [56,57]; Hardwick [59]; 
Lehmann and Coy [75,76]; Persch et al [92]; Smalley et al [108]; Zimmermann, Kop­
pel and Cederbaum [116,117]). Hardwick conjectured in 1985 [59] that all selection 
rules based upon the rotational quantum numbers are broken, and the spectrum 
is an ideal example of total ergodicity. Lehmann and Coy [76], however, found in 
their microwave-optical double resonance experiments that although the intensity 
distribution of the spectral lines indicate perfect ergodicity (Heller’s F parameter 
approaches 1/3, see: Heller [60]), the first neighbour separations and the Д3 spec­
tral rigidity tests show regular classical dynamics (Poissonian behaviour). Their 
study involved not only vibronic band origins (J — 0) but rotational branches of 
known J  value as well. A similar study by Jost and Lombardi [69], using the power 
spectrum method indicated no correlation hole in the NO2 spectra. So, in spite of 
the fact that many more rotational transitions were found than expected with strict 
rotational selection rules, the statistical behaviour of levels did not display classical 
chaoticity signs.

Many such problems may be approached, as we have already noted, by stim­
ulated emission pumping, and before looking at further examples a short charac­
terization of the SEP method is given. 6

6 . E x p e r im e n ta l s tu d ie s  o f  le v e l c o rre la tio n s  by S E P  sp e c tr o sc o p y

There are several methods in spectroscopy to access high vibrational levels 
with great specificity and resolution. One of these is direct overtone pumping and

A d a  Pkysica Hungarica 73, 1993



110 L. NEMES

another important tool is stimulated emission pumping.
Direct overtone pumping utilizes lasers of appropriate fundamental frequency 

or harmonics. An early example of this method was reported by S wofford et al [111]. 
A modern laser system for this purpose is the Ti3+ : sapphire laser that allows one 
to excite the range between 700 and 1100 nm (9000 and 15000 cm-1, resp.). Coy 
et al [28] reported the use of this laser in double resonance studies on ammonia. 
The measurement of overtones at high energy requires very sensitive modulation 
detection techniques, such as optoacoustic spectroscopy, as overtone intensities are 
usually very low.

In 1981 Kittrell et al [70] devised a double resonance method to obtain 
simplified spectra of highly excited vibrational states (between about 8000 and 
30000 cm-1). The technique is capable of accessing specific vibrationally excited 
levels of the electronic ground state. Figure 3 is a simple sketch of this folded variant 
of optical-optical double resonance (OODR).

Fig. 3. T h e  schem e for th e  S E P  experim ent u>2i :  pum ping; u>32.‘ dum ping ; —+■ 4 fluorescence

A laser is used to pump population from level 1 (of the electronic ground 
state) to level 2 (of an excited electronic state), and a second laser is used to 
force population from level 2 into a high excited vibrational state in the ground 
electronic state (3). Both lasers are narrow bandwidth tunable pulsed lasers in the 
visible range that are frequency multiplied when necessary. The process may be 
monitored by using fluorescence (spontaneous side fluorescence or induced one by 
a third laser) to the ground state (indicated by levels 4 in Fig. 3) so the obvious 
requirement is that there should be an observable fluorescence from level 2. The two 
lasers involved in the experiment may be time shifted and used in antipropagating 
arrangement so that Doppler broadening can also be eliminated resulting in highly 
resolved spectra.

The selection of levels involved is controlled by Franck-Condon factors be­
tween the two electronic states so an additional requirement for good SEP spectra
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is that the two potential surfaces should be sufficiently different. This is automati­
cally satisfied when electronic excitation results in major changes in geometry. The 
method was originally applied to the В <— X  system of iodine (I2).

Other versions of the SEP experiment are also known with different detec­
tion methods, such as polarization-labelling (Brand et al [18]). For a review see: 
Hamilton et al [58].

The SEP method has been used extensively on the acetylene (C2H2) molecule, 
and many statistical tests were performed (Abramson et al [1,2,3]; Engel and Levine 
[37]; Farantos [39]; Holme and Levine [63,64,65]; Pique et al [94,95,96]; Sumpter and 
Thompson [109]; Sundberg et al [ПО]).

Acetylene has vibronic transitions A(1AU) *— X (1£+) that were sampled 
both at about 9550 cm-1 above the vibrationless level of the Sq(X 1E+ ) state and 
about 28000 cm-1 above the vibrational origin. In the high energy region very 
unusual spectral features were observed; “clumps” of lines, with a clump width of 
about 1.5 cm-1, containing, in high resolution, about 70 individual components. 
An analysis of these features showed that they all belong to the same J  quantum 
number, and vibrational angular momentum quantum number / = 0 (cr+ ). All 
clumps have very similar structure. The intensity distribution within and among 
the clumps showed a convincingly ergodic behaviour. As all other quantum numbers 
cease to be “good” at this high level of excitation, symmetry is completely defined 
by J , l and parity so that appropriate statistical tests could be made.

Pique et al [95], used the FT technique to detect strong correlations among 
1500 cm-1 long pure vibrational sequences in the SEP spectrum around 26500 cm-1. 
In another work on the same SEP spectra of acetylene Sundberg et al [110] carried 
out both intensity distribution studies and applied static fluctuation measures (such 
as .P(S) and Д3(L)). All these measures suggested a near GOE behaviour for highly 
vibrationally excited X  levels, in accordance with the results of Abramson et al [3].

Pique et al [94] reported a more detailed analysis of the 26000 cm-1 range 
SEP spectra. The smoothed power spectra had time dependent features corre­
sponding to the correlation hole, the recovery time from it, and recurrences. The 
width of the spectral clumps and that of their fine structure lines define two time 
scales (t e = 20 ps and 267 ps, resp.) that could be related to the recovery time from 
the correlation hole (fcorr) (3 ps for a single spectral stretch, 45 ps for a spectral 
average). For a GOE-like spectrum the theoretical expectation is that fcorr = te, 
whereas for the HCCH spectra tcorr ~  t e/ 6 from which the conclusion was drawn 
that several symmetry species or good quantum numbers exist even in this high ex­
citation regime. However, about 1400 cm-1 higher (at 27900 cm-1, see: Abramson 
et al [3]) the power spectra suggest fully chaotic dynamics. The works of Pique et 
al [94,95] showed that the power spectrum provides more dynamical characteriza­
tion of the statistical behaviour than the single number fluctuation measures (e.g. 
spacing and spectral rigidity).

One more study on acetylene should be mentioned (Chen et al [25]) via 
the SEP technique in the 11400-15700 cm-1 range above zero-point level. These 
spectra were rotationally resolved and allowed the examination of the coupling
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of rotation and vibration. There are five vibrational normal modes for acetylene 
(1/1, 1/з(Е+), v^TTg), Us(nu)). The A <— X  electronic excitation involves a
large change of geometry (the CCH bond angle changes from 180° in the X  state 
to 120° in the A  state, and the C-C  bond length increases from 0.1208 nm to 
0.138 nm) so the strongest vibrational progressions are those of íaj (trans-bending 
mode) and its combination with the C-C  stretch (i/2) mode. Reduced term value 
plots showed a significant difference between / =  0 and 1 = 2 levels. (The / quantum 
number measures vibrational angular momentum from the two degenerate modes: 
/ =  I/4 ±  /51). It was found that while the 1 = 0 levels were unperturbed, the 1 = 2 
levels are strongly affected by vibration-rotation interactions.

In spite of these strong perturbations the two-point correlation statistics did 
not exhibit level repulsion, the fluctuation measures were all close to Poissonian 
behaviour. The authors drew the conclusion that the separation of vibrational and 
rotational degrees of freedom persists even at this high excitation regime.

The SEP technique has become quite widespread in the study of near disso­
ciation vibrational behaviour, that is so important for chemistry, and has enabled 
a number of very interesting molecular dynamic studies. Another well studied ex­
ample is that of formaldehyde (CH2O), from the George Harrison Spectroscopy 
Laboratory at the Massachusetts Institute of Technology, Cambridge, USA.

In a series of papers (Dai et al [29,30]; Reisner et al [104,105]; Vaccaro et al 
[114]) very careful and extensive vibrational-rotational analyses were reported for 
the range 4500-9300 cm-1. In formaldehyde there are strong Coriolis and Fermi 
perturbations that increase in strength with rising vibrational energy and level 
density. The SEP technique allowed a major simplification of the emission spectra 
and by its use it has become possible to state that molecular rotation is important 
in intramolecular vibrational dynamics. The interactions destroy the goodness of 
vibrational and К  rotational quantum numbers, leading to an increase of vibrational 
density over the usual anharmonic level counts (for such estimates see e.g. Toselli et 
al [113]). Such studies (Dai el al [30]) have, however, led to a surprising conclusion, 
viz., that the increasing complexity of the spectrum with increasing J  value (angular 
momentum) results in diminishing chaotic behaviour. This is an explicable but 
intriguing finding.

Among SEP studies on more exotic molecules the case of the Na trimer (Na3) 
(Broyer et al [21]) may be mentioned. A theoretical discussion of the SEP spectrum 
was given by Gomez Llorente et al [46] who concluded that the SEP spectra may 
be fully interpreted, regarding vibrational dynamics, using a classical Hamiltonian.

7. C o n c lu sio n  and  o u tlo o k

This overview paper strived to summarize, perhaps in a rather selective and 
superficial way, the modern use of statistical methods in the analysis of molecular 
spectra. Contrary to the original pessimistic predictions in one of the fundamental 
works in this field, in the review by Brody et al [20]: “Parenthetically it should be
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clear ihat, because of the limited amount of information contained in the fluctua­
tions, highly detailed level-to-level calculations, as often carried out especially for 
nuclei, should in many cases not be worth the great labor involved in making them” 
(see: p. 469 in [20]), the past ten or so years have displayed steadily growing activ­
ity in statistical spectroscopy. (To be correct it should be mentioned that Brody 
et al modified their previous conclusion for cases of interesting symmetry effects!) 
One of the most promising mathematical techniques appears to be the power spec­
trum method, already casting contemporary studies into a framework much more 
interesting for the chemist who aspires to selective laser chemistry and therefore ap­
preciates the connection between the methods of static spectroscopy and dynamical 
phenomena on the picosecond time scale extractable from the former via Fourier- 
transformation. Let us quote here R. D. Levine in “Mode Selective Chemistry” 
([80]): “The exploration of phase correlation can be conveniently discussed in terms 
of time correlation functions. The simplest is the autocorrelation function of the 
initially excited region., This can be obtained from the experimental spectrum by 
taking its Fourier-transform. Dynamical computations can, of course, directly yield 
the correlation functions. Obtaining the information from experiment is however of 
obvious interest” (p. 549 in [80]).

There is a close link between studies of classical chaos on simple systems rel­
evant to molecular spectroscopy, and the type of statistical studies reviewed here. 
One aspect is especially interesting and could perhaps contribute to further de­
velopments: the role of molecular rotation. Although it is not simple to extract 
molecular levels of known rotational (and overall) symmetry from spectroscopy, the 
interest in such aspects is obvious. Most of the attention so far has been centered 
on vibrational behaviour with rotations eliminated. We know notwithstanding that 
molecular rotation has a very important effect, some of its recognitions stemming 
already from its contributions to classical chaos (Fahrer and Schlier [38]). An even 
more significant aspect is the involvement of rotational dynamics in intramolecu­
lar energy redistribution (Knight [71]). Intramolecular state mixing is decisively 
important for the unravelling of intramolecular photochemical and photophysical 
processes and it has become evident that it is not enough to consider solely the 
vibrational Hamiltonian in accounting for time-averaged and time-resolved spectro­
scopic experiments. Intramolecular energy flow is central to the understanding of 
the breaking of molecular bonds, so it is central in efforts to understand chemical 
processes both on the traditional level and induced with the help of lasers.

The field of statistical spectroscopy is undergoing maturation but perhaps it 
has not yet won the battle among spectroscopists who still believe in completely 
assignable spectra, and any failure in obtaining such a full analysis is thought to be 
curable by more exacting studies. It is the hope of the present author that with an 
increase of statistical activity on difficult assignment cases molecular spectroscopy 
will benefit from such approaches.
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CORRIGENDA______________________________________

EQUATION FOR CATHODIC GLOW SHEATH

S. Holló and B. Nyíri

Light Source D evelopm ent D epartm en t T U N G S R A M  L td  
1З4.О Budapest, H ungary

(A cta  P h y s . H ung., 72, 1 , p p .  71-88, 1992)

Figure 11 on page 85 should be replaced by

Fig. 11. C harge d is trib u tio n s du rin g  th e  transien t sh o w n  in  Fig. 10 tak en  a t  tim es 0, 0.02, 0.05,
0.15, 1.0, an d  in fin ity
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AMENDMENT

to

the Contents of Volume 72 of 
Acta Physica Hungarica

The following amendment is to be inserted after the Section “OPTICS AND 
ELECTRODYNAMICS” in the Contents of (the preceding) Volume 72 of Acta 
Physica Hungarica:

FL U ID S, PL A SM A S AND E L E C T R IC  D ISC H A R G ES

S tab ility  o f tw o superposed  hom ogeneous fluids. R . P. Singh  and  H. C. K h a r e .....................  13
H all effect in  th e  viscous flow of a n  ionized gas b e tw een  two parallel walls under transverse

m ag n e tic  field in  a  ro ta t in g  system . T. L in g a  R a j и and  V. V. R a m a n a  Rao  ...........  23
E q u a tio n  fo r ca th o d ic  glow sh e a th . S'. Holló a n d  B . N yíri .............................................................. 71
M agnetic  effect on  low R eynolds nu m b er flow in  a  h e a ted  tube  of slowly varying section .

A. O gulu  a n d  M. A. A la b r a b a .......................................................................................................  223
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Spacetim e w ithout Reference 
Frames
by
T. MATOLCSI

In the concept of th is book spacetim e is the fundam ental notion; 
the points of spacetim e are s tru c tu red  with the assum ption of 
absolute time and absolute velocity of light resulting  in the non- 
relativistic and special relativistic case, respectively. This gives the  
possibility of developing both the non-relativistic and  the special 
relativistic chapters along the sam e notions: world line, observer, 
splitting of spacetim e to space and  time, reference frames, splitting 
of classical fields to spacelike and  timelike com ponents, th e  
sym m etry groups of spacetim e (the Galilean and  the Poincaré 
group).
The book contains lots of exam ples with detailed calculations 
through which the reader can clearly understand  the connection 
between the traditional way of thinking and the new way of 
handling the problem s presented in the book; the well-known 
special relativistic paradoxes are trea ted  in detail. In the general 
relativistic case, only the basic though ts  are expressed.
The m athem atics involved is ra ther simple and it is sum m arized in 
the second part of the book.

This book is an enlarged and revised version of “A concept of 
Mathematical Physics — Models for Space-Time” by T. Matolcsi

In E nglish . 1992 . Approx. 4 0 0  pages. N um erous figures. 17 x 2 5  cm . 
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ON THE MODIFICATION OF EINSTEIN-MAXWELL 
FIELD EQUATIONS

J .  N. S . K a s h y a p

Unit of F undam en ta l Reaearches, Am ara Khaira Chak, Kandava  
Varanasi, (U . P .)  India

(Received in  revised form  20 October 1992)

H ere th e  E in s te in —M axwell e q u a tio n s  in  general re la tiv ity  a re  m odified in  th e  ligh t of 
th e  M axwell m acroscopic theo ry  w hich d eals w ith  electrom agnetic  b ehaviour o f  p o n d erab le  
m a t te r  a n d  an ax ia lly  sym m etric  so lu tio n  of physical in te re s t is ob tained.

1. In tr o d u c tio n

Before 1905, gravitation and electromagnetism were thought of as independent 
of each other. But with the construction of the Einstein-Maxwell field equations 
based on Lorentz electron theory the philosophy behind gravitation has changed. 
Now the gravitational force may also be interpreted as a force produced by the 
interaction of magnetic field and electric current [1]. On macroscopic ground the 
Einstein-Maxwell field equations have a somewhat unsatisfactory status. It is hence 
interesting to find a modified set of field equations. In the present paper, our 
attempt is to modify the Einstein-Maxwell field equations with the help of the 
Maxwell macroscopic theory for ponderable matter and to show how gravitation is 
interrelated with electromagnetism.

2. F ie ld  eq u a tio n s

Connecting the electric field strength E, electric displacement D, magnetic 
field strength H and magnetic induction В  with the density of charge g and con­
duction current J  the Maxwell field equations for ponderable matter can be written 
in the usual vector language as:

div£) = g, 
divB = 0,

IF  l d B
” i e  = " ¥ ’

. TT 1 ( d D  \  
Сиг1Я=с + J ) ’

( 1 )
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where
В = цН, D = eE. (2)

Here the dielectric constant t and magnetic permeability ц are regarded as functions 
of the position and time. In 4-dimensional language the field equations (1) can be
expressed as

F\ ft,v +  Ff, v>\  + F = 0 (3)
and

d
s Z  « = & " )  = >'■ (4)

Here the antisymmetric electromagnetic tensors and H \ß are defined in the 
usual sense as

and

F x ,=

H\u

0 Bz -B y Ex

1 to N 0 Bx Ey
By - B x 0 Ez

- E x -Ey - E m 0

0 Hz - B y Dx
- H z 0 Hx Dy

By - t f r 0 Dz
- D x -Dy - D z 0

For gravitational consideration we can take [2]

€ =  Ц  =  ф.

(5)

( 6)

(7 )

Following the method due to Tolman [3] in the field equations (1) and regard­
ing the integration as taken over a definite fixed volume in space we obtain

j 9 ( D ~  + B ~  + D - j yj d v  = - e J [ D x  B)ndc (8)

and

/ { ű « + ! h B + | (z,><jí)] }  dv = J  [£)divü-|-(curlH) x B-f-(curl-D) x D]dv

(9)
in the usual notations, provided

г,'и щ(ФкХ , -  Ф,Хк) = 0. ( 10)

Here T), kl  is a tensor density antisymmetric in all the suffixes, [ / , •  represents a unit 
vector in the ^'-direction and X  = (Xi, X 2, X 3) stands for H or E. In the case of 
free space, where we take e = ц = 1, the condition (10) is identically satisfied and
(8) and (9) reduce to

J  ( E ~ + H ~  +  E - j ) d v  =  - c J [ E x  H]ndcr (11)
A cta  Phystca Hungarica  75, 1993
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and

/ [ ( t £ + i ^ £ )  + i l ( E x J ) ] ^  =  - / ^ ,  (12)

where pij are electromagnetic stresses defined as

Pii =  ~2 4  -  *£ + н ? - Щ -  Bk),
Pij =  -(EiEj + HiHj). (13)

Equation (11) gives the rate of flow of electromagnetic energy across the boundary 
of the fixed volume of space and (12) shows how the rate of change in the total 
momentum inside the boundary is related with the electromagnetic stresses at its 
surface. The electromagnetic energy momentum tensor in free space is given as

E ax = - F oaFXa + ^ S l F ^ F aß. (14)

Here FXß is defined in terms of 4-potential vector A\  as

F\n = A X)fl — Ap}a. (15)

Consequently, by virtue of (8) and (9) the electromagnetic energy momentum tensor 
K°  in space filled with matter is related to E l  as follows:

K l  = Ф2̂ .  (16)

Therefore, the Einstein-Maxwell field equations may be modified from the principle 
of stationary action

6 J  V ^ g i R + ^ F x ^  + 1ФхФх)с14х  (17)

as follows:

R\n — ^Rg\v  = 2kKXfl — /(ФЛФ„ -  - д ХцФаФа) (18a)

and
□Ф =  y FXliH xr  (18b)

Here, к and l are arbitrary constants and the covariant d ’Alembertian □ is defined 
to be a covariant divergence of Ф“ , where covariant Фв =
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3. A n  a x ia lly  sy m m e tr ic  so lu tio n

In cylindrical polar coordinates (g, 9?, z, t) we take the axially symmetric met­
ric [4]:

d s 2 =  _ e 2 ( a - , J ) (£fi?2 +  d z 1 j  _  e l e - W d l p l  +  e * ß d t \  (1 9 )

where a and ß are functions of g and z only. If we define the electromagnetic 
4-potential vector Ал as

Aa =  (0,e ,0,£), (20)

then from (15), the only non-vanishing components of F\n are

F  12 =  “ Cl, ^23 =  £3, -̂ 14= —íl) ^34 = —£з- (21)

Throughout this section the lower suffixes 1 and 3 after a function indicate partial 
differentiation with respect to g and z, respectively. Now for the metric (19) the 
field equations (18) with the help of (14), (16) and (21) can be recast in the form 
as follows:

ßl -  ß l  -  — = ** 2 [ f iz L il  _  Î L l Ü l  _  1 (ф2 _  
g2e~2ß e2ß  J 2l 1 з)’

<*11 +  <*33 + ßl + ßl — — ̂ Ф2 

<*ii + <*зз + ßl  +  ßl — 2V/3 = кФ2

i l + i  , i L + ü
g2e~ 20 e2ß

4 + 4 + t f + #

~ ( ф? +  ф1),

î M A A  -  * ф

Lß2e - 2̂

£i£3 Í 1Í3

e2ß

l

- £ ( Ф ?  +  Ф § ),

g2e~2P e2ß  2 

£iÍi + <3̂ 3 = 0,

+ }■

where

уф  = (íL ± ii _ íL t íA
/ Ve2e - 2̂  e2/? / ’

~  dg2 őz2 ß őf>
Also, from (10) and (21) we have

61Ф1 + <зФз =  0,

6 Ф3 — 6 Ф1 = 0.
By virtue of (29) and (30) the Eq. (26) is identically satisfied. If we take

( 22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

УФ = 0, (31)

A d a  Physica H ungáriá i 73, 1993



M O D IFIED  EIN STEIN -M A X W ELL EQUATIONS 1 2 7

then, from Eq. (27) we have

e 1e - 1 ß  -  e 2ß ■

Rom (31) we get
Ф = 1 +  m/r,  (33)

where m  is an arbitrary constant and r =  (g2 + z2)1/2. Making use of (33) in (29) 
and (30) we get

p c i  +  Z £ 3 =  0, (34)

*íi -  PÍ3 = 0. (35)
From (23), (24) and (32) we further have

V/3 = —2кФ2 ■ (36)

From (36) we obtain

provided

and

e2r2
(m + k)6’ 

ß = - lo g (l +  m/r)

k = -
m
2e2 ’

e being another arbitrary constant. From (35) and (37) we get

Í 1 =
ep

(m + r )3 ’

Now, from (32), (34) and (37) we obtain

Í3 =
ez

(m + r)3-

epz ep‘
£i — ~ ~ôV . л ' £з =r2(m + r ) ’ r2(m + r)

(37)

(38)

(39)

(40)

(41)

By making use of the values of Ф, ß, &, f3, £i and f3 from (33), (38), (40) and (41) 
in (22), (23) and (25) we get

lm2 p(p2 -  z2) 
2 r 6 (42)

(43)
lm2

«11 +  0 3 3 =  - 7 ^ 4  ,
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, 2 P2*
( * 3  = /m —г - .rb

The equation (42) or (44), after integration gives

a  = —mV2
2r4 ’

(4 4 )

(45)

provided / = 2. For the value of a so obtained Eq. (43) is identically satisfied. 
Therefore, making use of (38) and (45) in (19) we obtain

*■ -  - (i + { - ¥ )  (* + ")'**+ (1 + jY '* -
This solution is an analogue of the Synge solution [4]. It is also worth noting that 
the difficulty, which comes in solving the Einstein-Maxwell field equations due to 
their non-linearity [5], is expected to be removed here.

A c k n o w le d g e m e n t

T he a u th o r  w ishes to express h is  sincere th an k s to  th e  Referee fo r h is  useful suggestions.
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THEORETICAL STUDIES OF THE OPTIMUM DESIGN 
CONSIDERATIONS IN RING DYE LASER

H. El-K ashef

Physics D epartm ent, Faculty o f Science, Tania U niversity  
Tania, E gypt

(R eceived  in  revised  fo rm  12 Jan u ary  1993)

T h e  theo re tical s tu d ie s  of the  o p tim u m  geom etrical desig n  considerations in  th e  ring  
re so n a to r o f th e  dye la se r  a re  s tud ied . T h e  p o sitio n  of the  m in im u m  waists a n d  th e  ran g e  
of stab ilisa tio n  p a ram e te rs  u sing  th e  o p tica l m atrices  are ca lcu la te d . T he design  consid­
e ra tio n s o f th e  h igh  p assiv e  stability , a n d  low  optica l losses a re  discussed. A dditionally , 
a  single-m ode, b ro a d -b a n d  a n d  low-loss r in g  laser re so n ato r o f  len g th  600 m m , u s in g  a 
m in im u m  n u m b er of o p tic a l elem ents is re p o rte d .

In tr o d u c tio n

The resonator is one of three important parts of laser construction beside the 
active medium and the pumping light source. Fundamentally, a ring laser resonator 
consists of three mirrors at least, where a coherent light wave is produced. This 
produced light will be amplified in laser material (active medium) by the induced 
emission. The optical components contained in the resonator and its geometrical 
design decide the qualitative and quantitative characteristics of the produced laser 
beam.

Continuous wave (cw) dye lasers [1,2], have mostly been evolved directly from 
earlier laboratory research instruments, their designs tend to remain complicated, 
and they can be difficult and tedious to operate. On the other hand, different de­
signs of resonators are used [3-5]. Some of the most common shortcomings include 
the use of elaborate mechanical resonator structures that require exacting initial 
alignment and continuing realignments, complicated intracavity beam paths, which 
are often folded into several dimensions. In addition, these lasers [1-5] use very 
long four or five mirrors resonator. Introducing the elements of single mode selec­
tion (biréfringent filter, thin and thick etalon), unidirectional device, scanning and 
astigmatism compensation elements, leads to very high losses, high costs and good 
passive stability cannot be achieved.

In this paper these common shortcomings are eliminated, and new features 
are added. Many original ideas are conceived and tested. Theoretical calculations 
are carried out for optimum design considerations, such as the correct waist size, 
enough place for the resonator internal elements, low optical losses, small circum­
ference, freedom from astigmatism, broad-band, high passive stability and simple 
adjustment. All these advantages are assembled in a new design of ring dye laser 
cavity.

A ct a P hysica  Hungarica 73, 1993  
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Fig. 1. T h e  numerical values of the resonator: too — 15.4 /im , tom =  218.5 /im , fil =  26.25 mm  
and <Í2 =  27.5 mm (The plane mirrors have no effect on the beam  parameters)

T h e o r e tic a l

The mathematical calculations which describe the laser beam in the simple 
resonator structure using optical matrices were studied [6]. We extend the calcula­
tions for more complicated active resonator structures.

The propagation of Gaussian beam is defined using the complex parameter q 
as follows [7]:

1 _  1 iX
q R  7tip2 ’

where го is a measure for the beam cross-section (beam waist), and R is a measure 
for the beam divergence (radius of the wavefront). The ring resonator is a periodic 
sequence of optical systems. The elements of ABCD matrix of this system can be 
used to calculate the mode parameters of the resonator. One uses the ABCD law 
[7] and postulates self-consistency by putting q\ =  qi = q. One has

qi = Q2 = q —
Aq + В 
Cq +  D

The roots of the resulting quadratic equation are:

1
q

D - A  
2 В ^ 4 - ( A  + D)2, ( 2)

which yields stable periodic sequences when the trace (A + D) obeys the inequality:

(A + D)2 < 4, - 2 < A  + D < 2 . (3)

A cta P hysica Hungarica 73, 1993
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As shown in Fig. 1, the resonator is divided at the middle of the jet (the jet repre­
sents only an optical pathlength in condensed medium) into two symmetrical parts. 
It could be considered as the sum of two distances in air, one with optical pathlength 
2di between the spherical mirrors. The rest of the pathlength is 2d^- This means 
that 2c?i +  2d2 = L, where L is the circumference. The spherical mirror will act as 
a lens of focal length /  = R/2.  From the condition of symmetry the minimum of 
beam expansion is wo in the middle of the jet (see Fig. 1) and oppositely to wm in 
the resonator. The total matrix of the resonator at the selected position in the jet 
is:

M = ( c  d ) -  «
where

л  = в  = г ( 1 - j )  • ( ï - ^ )  - i ,

— 7 И)-
The stability criterion of Eq. (3) gives the condition for d\:

dmtn ^  d\ < dmax (5)

where dmin = / ,  dmax = For d\ inside the stability range, one can calculate
the size of the beam in the jet by comparing Eqs (1), (2):

I -  I  _ *'A
q R

D - A  
2 В ± i

2В v /4 - ( A  + £»)2. ( 6)

Since A — D and q is imaginary, this means l / R  = 0. By exact observation one 
can put the matrix as a function of d\ , dmax and dmln :

M  = (7)

^   (di — dm[n) (dmax di)
(<fmax h mln)

ß  ___ _  2 (*^rciax ~  ^ l )  ' (^1 ~  ^m ln)

(^m ax

C = — 2
(^max hmln )

d  max in — / 2
d2 - f '
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>1------------------------------------ 1------------------1-----------------
2U 25 26 27 28

d, (mm)

Fig. 2. T h e  values o f th e  b eam  w aist Wo, w m  in  p m  as a  fu n c tio n  o f th e  m irro r sep a ra tio n s  
( /  - dmin =  25 m m , dmax =  27.5 m m , a n d  A =  600 n m )

then the beam radius in the jet:

n>g — 9(^1 dmin)(dmax di). ( 8)

The calculation of the beam parameter qm at a position opposite to the jet in the 
resonator is similarly carried out, where d\ ■ d2 will be changed, and still A =  D. 
This gives the waist at this position:

д2 ___  ___
tnm — 2 №  ámin) • (dmax d2),

with

• * m in = /  = á,r n i n j dm a x  —
d2/

d2- f ’

therefore and dependent on d\, dm\n and dmax,

w 4
m

■̂ 2 ^mln________á max á l
(dmax ámtn)2 (di — dmin)

(9)

(1 0 )
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Figure 2 represents the dependence of waist size on d i(/ = 25 mm, dmln =  25 mm, 
dmax = 27.5 and L — 600 mm) in the middle of the stability range, i.e. for

d\ — + dim i n

ОГ

^max d\ — d\ ^min)

then
2 _  ^ ^min /1 1 \

wm ~  -------- л— T> l11)Я (“max ^minj
when d / ,  then in the first approximation:

P  P^max ^min — 7 ~ ~T~ (12)
«2 — J «2

and
P^max dmin 2 / -f- ——, (13)
d 2

then for wm :
d2, (14)

7Г

and for u>o-
,  Л / 2

< 1 5 >

The arrangement of Fig. 1 as treated previously is a simplified model which 
can be applied for all resonators. It consists of two spherical mirrors (one min­
imum waist) and any suggested numbers of plane mirrors. This is accepted for 
most commercial lasers and many lasers developed in the institutes of research, for 
example [1-5].

E x p e r im e n ta l r e su lts  a n d  d iscu ss io n

As a result of the previous calculations and experimental studies the optimum 
geometrical construction of the ring cavity leads to a new design shown in Fig. 3.

The developed cavity is compact in size (L = 600 mm). This leads to an 
easy selection of the single mode operation, where the laser modes are separated 
by a distance c/L =  500 MHz, c being the velocity of light. The other developed 
lasers [1-5] have long resonators of more than 1250 mm. This cavity consists of 
a minimum number of frequency selective elements necessary for obtaining highly 
efficient single mode operation:

(i) The cavity is used in addition to the Lyot filter (three quartz crystal 
plates of thickness ratio 1:4:16), a new development of Mach-Zehnder Interferometer

A d a  P hysica Hungarica 73, 1993
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МБ
PZT

Fig. 3. T he new  d esig n  of ring  re so n a to r. M p : p u m p in g  m irro r, M i -М 2: spherica l m irrors . M 3-  
M 5 : p lane m irro rs  O .D .: op tical d iode, L .F .: Lyot filte r, G .W .: glass wedge, MZI: M ach -Z eh n d er 

In terfe ro m eter (tw o p lan e  m irro rs a n d  50 % b eam  sp litte r)

(MZI) with a free spectral range =  42.5 GHz for single mode selection and tuning [8]. 
This MZI is placed in the corner of the cavity instead of one mirror. The incident 
angle of the laser beam on MZI is 15°, which makes it broad-band etalon. The 
experimental results showed that it caused losses of less than 0.5 %. The references 
lasers [1-5] used two étalons, thin and PZT driven thick etalon for laser frequency 
selection and tuning, which leads to high losses and complicated alignment.

(ii) The incident angle on the spherical mirrors is about 3.5°. This is car­
ried out by using two plane mirrors М3, M4 beside the spherical mirrors, which 
eliminates the astigmatism with more than 95 % without inserting astigmatism 
compensation rhombs of certain length inside the cavity as in the other lasers [1-5].

(iii) In this cavity a glass wedge of thickness 4.5 mm and wedge angle of 0.5° 
is used to extend the scanning range of the cavity up to 50 GHz. This wedge is 
placed on a micrometer displacement table. The other lasers [1-5] used dual galvo 
plates with a scan range of about 30 GHz.

(iv) This cavity used a new development of optical diode for achieving one 
directional beam independent of wavelength [9]. It caused losses of 0.24 % at Л =
589.3 nm. The others [1-5] consist of two or more separated optical parts for this 
aim which add more complications in the adjustment and also high losses.

(v) This cavity used a plane mirror PZT translator for laser frequency tuning 
while the others used a spherical PZT mirror translator, which makes disturbance 
by cavity scanning.

(vi) In this cavity the beam displacement due to the insertion of optical el­
ements are self compensated, where the beam displacement caused by the optical 
diode is fully compensated by that caused by the Lyot filter and glass wedge. This

A cta Physica H ungarica 73, 1993
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leads to only 0.054 mm beam displacement when all the elements responsible for 
single mode selection are introduced to the cavity.

(vii) The cavity is symmetric in construction and consists of an even number 
of resonator mirrors which leads to a small deviation angle on all mirrors and 
accordingly high reflectivity and broad band.

(viii) The laser resonator and the single mode elements are built on a gran­
ite stone plate (100 x 28 cm), used efficiently for acoustic isolation between the 
components.

C o n clu sio n

The calculated optimum design considerations lead to the optimum selection 
of the optical elements and their separations. The new cavity construction elim­
inates many highly expensive optical elements which cause high losses and many 
adjustment complications. This eliminates many holders and reduces accordingly 
mechanical and acoustic vibrations to a minimum. Simple efficient single mode 
operation is obtained using Lyot filter and MZI. Among others the characteristics 
of the cavity are: compactness in size, freedom from astigmatism and high passive 
stability.
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UNIFIED DESCRIPTION OF THE EQUILIBRIUM 
OF UNIFORMLY, SLOWLY ROTATING POLYTROPES
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U sing a n  approx im ation  technique, we h av e  considered a  un ified  descrip tion  o f th e  
equ ilib rium  s tru c tu re  of slowly ro ta tin g  p o ly tro p es of index 1 in  N ew ton ian  th eo ry  gov­
erned  by th e  eq u atio n  of s ta te  P  =  constan t f p . A pproxim ate  a n a ly tic a l solutions to  th e  
equ ilib rium  equations have b e e n  p resen ted  in  d ifferen t phase  p lan es. G raphica l m a te r ia l  
shows a  co m p arativ e  study  of th e  ru n s  of Uq w ith  V© (Fig. 1), U p  w ith  Vp  (Fig. 2), Up 
w ith  Vp (F ig . 3) and  0  w ith  £© (Fig. 4) betw een ro ta tin g  (angu lar velocity  W  =  0.05 a n d  
0.15) a n d  n o n -ro ta tin g  (W  =  0 ) configurations. T ransform ations connecting  so lu tions in  
these  p h ase  p lanes have b een  o b ta in ed . O ther p h y sica l p roperties o f th e  configurations a re  
described  in  te rm s of th e  so lu tio n s of th e  s tru c tu re  equation .

1. In tr o d u c tio n

The importance of the efFects of rotation on a self-gravitating body obeying 
a poly tropic equation of state of the form P = K p 1+* (К  and n are the two dis­
posable constants) is well known, as for example, rotation brings about changes in 
physical structure and the shape of the body. Considerable amount of work has 
been done by several eminent authors in Newtonian theory (for example, Jeans [1, 
2]; Chandrasekhar [3]; Chandrasekhar et al [4]; Roberts [5]; James [6]; Monaghan 
et al [7]; Cunningham [8]; Carl J. Hansen et al [9]; Sharma et al [10]) as well as in 
general relativity theory (GRT) (for example, Hartle [11]; Hartle et al [12]; Hartle 
[13, 14]; Hartle et al [15, 16]) to study the structure and stability of various forms 
(for example, ellipsoidal, spheroidal, cylindrical and rings) that a self-gravitating 
body may take due to rotation. In case of slow or rapid rotation most of the au­
thors have experienced considerable difficulties in solving the structure equations 
by known numerical methods (variational or perturbation analysis, R.K. method, 
etc.) until quite recently (Sharma [17]) the rotational problem of highly rotating 
polytropes has been tackled by Pade’ (2,2) approximation technique, as also used 
elsewhere (Sharma [18, 19]). In this method, we do not require to perform numer­
ical integrations of the structure equations, instead, as given below, solutions are 
obtained in simple and compact form from which the desired parameters can be 
obtained directly. And further, computer programs are, however, not necessarily

* W orking as a  R esearch  A ssistan t su p p o rted  by a  g ra n t from  CST (U .P .), Lucknow, In d ia .
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required, that is, calculations can be carried out even with the aid of an electronic 
pocket calculator. It seems, therefore, worth while to employ the present technique 
for solving the rotational, polytropic problem which may assist in eliminating the 
lengthy and cumbersome process of numerical integrations. The present technique 
would also be equally helpful for solving rapidly rotating polytropic problems.

In contrast to the previous works, we will present in Section 2 the struc­
ture equations in generalized form from which spheroidal, cylindrical and plane- 
symmetric cases can be easily obtained. Approximate analytical solutions for 7 = 2 
in (£©, 0), (V©, U@), (Vp, Up) and (Vp, Up) planes are given in Section 3. Section 4 
presents the transformations connecting the solutions in these phase planes. Fig­
ures 1 to 4 represent a comparative study of the characteristic features of spheroidal, 
cylindrical, and plane-symmetric configurations rotating with small velocities W  — 
0.05 and 0.15. To test the reasonableness of our analytical technique, this is com­
pared with its non-rotating counter part (W  =  0 (solid curves)). Integral properties 
of the polytropes, and the physical significance of V©, f7@, Vp, Up and Vp, Up vari­
ables is given in Section 5.

2. G en e r a liz e d , p o ly tr o p ic  s tr u c tu r e  e q u a tio n s

(i) Structure equation in (£e,0)  phase plane

The fundamental equations governing the structure of a polytropic configu­
ration of index n rotating with angular velocity П can be expressed as

-  =  Vtf + J i î V ,  x2 = x2 + y2, 
P 2
P  =  K p l + i ,

V2<£ = —A-irGp,

( 1 )

( 2 )

(3)
where P is the pressure, p the density, ф the gravitational potential, \  the vectorial 
distance from the axis of rotation, К  a constant, and G the gravitational constant 
(6.67 X 10-8 dynes cm2/gm 2). If we introduce r as the distance from the centre of 
the polytrope, and define the dimensionless variables 0 , and £© by the relation

p = pcQn; r =  a©£© = ( п + 1)А A-l---------— p?
4ttG И t e ,  W  =

Q2
2irGpc ’ (4)

where pc is the central density, then Eqs (1), (2) and (3) give

1 J L (  p N d O \  
to dte  V 0 dte  )

= - 0 "  +  W,

which satisfies the boundary conditions

0  =  1, at £© = 0.

(5)

( 6)
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Equation (5) would describe a broad spectrum of polytropic configurations: N  = 
2,1 and 0 represent, respectively, spheroidal, cylindrical, and plane-symmetric shapes 
For non-zero values of W,  it does not seem possible to obtain exact solutions of 
Eq. (5) and, as mentioned in the introductory part, one may then take resort to the 
numerical methods. Using Pade’ (2,2) approximation technique, we present here 
approximate analytical solutions of this equation for small values of VP = 0.05 and
0.15.

(ii) Arrangement of the solutions in (V©,i7e) phase plane

As in non-rotating case [18], we shall discuss here briefly the arrangement of 
the solutions in the (V©, U q ) plane. Consider the following two functions U q  and 
V© defined as

i9 0 ' (7)Ы 0 " -  w )  
Ue = -------- &------ ■ ©

where we have used dash (') to denote differentiation with respect to £. The first or­
der differential equation between V© and Uq , equivalent to Eq. (5), can be obtained 
as follows:

Differentiating the first equation in (7) with respect to £©, and making use of 
Eq. (5), we obtain

7 Г ^  = 7 - [(i + ^O-tfe-n/Ve]; /  = 0 n/0 n -  W.
U q  a £ ©  Ç©

Similarly, from the second equation in (7), we have

£ а £ “ 5 К 1 - " ) + *  +  , м -

Combining Eqs (8) and (9), we have

V© dUe 
Ue dVe

U q  +  n /V ©  -  (1 +  N )

[  U q  + Vq + ( 1 - N )

(8)

(9)

( 10)

Non-rotating case ([20]) can be obtained by putting W  = 0. Unlike the non-rotating 
case, it is not possible to express the derivative ^ 2- (or dVe/dUs) solely in terms 
of U q  and V©. We may find that U q  —+ 1 +  N ,  Vq  —* 0 as £© —♦ 0.

(Hi) Discussion in (Vp,Up) plane

Equations (1), (2) and (3) enable us to write the generalized equation in 
(£p , P) plane in the form

f T ^ ( f?P' * ë )  = - p *  + ^  (11)
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Fig. 1. R u n s of U@ w ith  Ve for slowly ro ta t in g  N  =  0 ,1  a n d  2 configurations o f po ly trop ic  in d ex  1 . 
Solid  curves ( - )  rep resen t n o n -ro ta tin g  configurations

where

r — ap£p =  n r=^£p\ P = Pc&n; & = PcK'<2 s f iG
Let the variables Up and Vp be defined by

Up = —
Íp (pirfT -vpicFïW]

-, Vp = £pP'

( 12)

(13)p ,  ’ '  P

Proceeding as above in para (ii), we obtain the generalized first-order differential

A cta  Physica Hung art ca 75, 199S



U N IFIED  D ESC R IPTIO N  OF POLYTROPES 141

equation between Vp and Up in the form

VpdUp _ Up +  f xVp -  (1 + N)
U p  dVP U p  +  SVp +  (1 -  N)  ’

5 =  « T T ’ A - ( ï T î ) ( j S r a ) '

We may find that Up —*■(! + N), Vp —► 0 «is —» 0.

(iv) Discussion in (Vp,Up) plane

As in the preceding sections (ii) and (iii), making use of Eqs (1), (2) and (3), 
the generalized equation in (£p, p) plane can be expressed as

P + PcW’
(15)

where

Assume that

r =  a pip =
'K{n + 1) I

47Г nG

U p* - '  -PcPl ~ "W )  
?

Up = — Vp = —i p p '

(16)

(17)

then, after differentiations of Up and Vp with respect to (p, and making certain 
simplifications, we obtain the following first-order differential equation, equivalent 
to (5), in the form

Up + fiVp -  (1 + N)Vp dUp 
Up dVp U p + f lV p  +  (1 - N ) ’ (18)

h  = P/P~ PcW; ß = ~ .

Near the origin (£p 0) Up —* 1 + N, Vp 0.

(v) First-order differential equations in {Z&,y@), (Zp ,yp ) and (Zp,yp) planes 

We define the new variables z@ and y© by

z& = log{n(0 " -  W)} + 21og£0 , y© = i @ = e <e.
ate (19)
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Then, after some simplifications, Eq. (5) reduces to the first-order differential equa­
tion

У0 ^  + ( 1 -  N)ye + 2(1 -  TV) -  /з (0 , ye) az© / 4(0 ) + e*e = 0, (20)

where

/з(0, У&)
' ( i -  ^)(Qn - w )  ■

0 " (y0 + 2)2; / 4(0 ) =
0 "  -  W

0 n-i •

We may find that /з(0,у©) —► 0, / 4(0) —► 1 (near the origin) as n —> oo and 
W =  0. This leads to give our previous result [17] for the isothermal spheroidal 
configuration. If we further define

(i) Z p = C PmP\ Çp = e~1p, m — —2,

(й) УР = ^  = ~ ^ m+1 ^  + mZp ' (21)
and

ZP = t p mp] íp = e- t ' , m = - 2,

< 2 2 >

then Eqs (11) and (15) reduce to the first-order differential equations

+ (1 -  rn)yP -f (m -  l )W zP ----- ----zp lyp + W (  1 ------(WzP -  2yP)

+ / ъ(£р , zp) -  о"ш/бЦр, zp) = 0, (23)

where

and

д-w
h ( ip , z p )  = t j r ri Z b г; / 6(6 >,2р) = < ^

Ур^ Г  +  (! -  т Ь  + (m -  1 ) ^ ,  +  W2ZP+ (24)

-  / 7(íp, Z,)(WaZ;  + y2 -  2WZpyp) -  2Wyp + Zp/ 8(£p, Zp) = 0,

where

M i p , Z p )  -  Z p  +  p e W ç w >

h ( i p , Z p ) = e Pa w z p + p cw)i - i .

We note, for n —» oo and W —*• 0 we revert to our previous results for static, 
isothermal, spherical configuration (TV = 2) [17].
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3. Solutions for 7 = 2

(i) Approximate analytical solutions of Eq. (10)

We assume a series expansion of the form

U® = (1 + N)  + a®V® +  b®Vq + c©Vq +  cIqVq + ...  (25)

which satisfies the initial conditions U@ —► (1 + N), F@ -* 0 as (© -+ 0 (Section 2
(ii)). By the usual procedure, we determine the coefficients a®, b®, c®, d®, . . . ,  
successively with the help of Eq. (10). Finally, we obtain the desired solution in the 
form of rational function (Pade’ (2,2) approximant):

C7©(2,2) = (1 + 7V) 1 + A qV® + B@V£
1 + C®V® + D®V£' (26)

where

^ 0 = (ГТ¥ ) а0 + С е’
a®d® —b@c©

Ce = — s i — ’

Note the physical significance of variables (V©, U@) as given in Section 3 (i). Figure 1 
provides a comparative study of the variation of physical variable U© with V© for 
IV =  2,1 and 0 configurations rotating with small angular velocity W = 0.05 and 
0.15. U© is a monotonie decreasing function of V©, and it decreases somewhat faster 
for N  = 2 configuration than for N  = 1 and N  — 0 configurations. The value of U© 
decreases as the angular velocity W  increases, and it has larger values for N  — 2 
configuration than for N  = 1 and N  = 0 configurations. Static N = 2,1 and 0 
configurations as shown by solid curves (—) have somewhat larger values of U® than 
their rotating counterparts.

B® =

D® =

1
(1 + iV)
c© b@d©

(6© -f a@C®) + D©,

A©
A© =  6© — a@c®.

(ii) Approximate analytical solutions of Eqs (5), (14) and (18)

Corresponding to Eqs (5) (14) and (18), we assume the following series ex­
pansions

0  = 1 + a©£© + i>©£© + + d*Q( I  + . . .  (£© —+ 0), (27)

UP =(1 + N) + apVP + bpVp +  cpVp + dpVß + . . .  (£P — 0) (28)

and
Up = (1 + N) + dpVp + bpVf + CpVp + + . . .  (íp -  0), (29)
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Fig. 2. R u n s of Up  w ith  VP for slowly ro ta t in g  N  =  0 ,1  a n d  2 configurations o f po ly trop ic  in d ex  1. 
Solid  curves ( - )  rep resen t n o n -ro ta tin g  configurations

which satisfy the initial conditions: 0  —» 1, £0 —► 0; Up —► (1 +  N),  Vp —► 0; and 
Up —► (1 + N), Vp —» 0, respectively. Values of the coefficients a'e , b*&, c*Q, d*@ ; ap, 
bp, cp, dp-, dp, bp, Cp, dp are determined in a similar way as mentioned in Section 3. 
Approximate analytical solutions of Eqs (5), (14) and (18) are then given by

0 (2, 2)
1 + A X I  + B I &
1 + C ^ l  + D t f  4 ’

U p ( 2 , 2) = (1 +  IV)
1 + A p V p  + B p V p
1 +  C p V p  +  D P V £  '

(30)

(31)
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Fig. 3. R uns of Up w ith  Vp fo r slowly ro ta tin g  N  =  0 ,1  an d  2 configurations o f p o ly  tro p ic  index  1. 
Solid  curves (-)  rep resen t no n -ro ta tin g  configurations

UP(2,2) = (1 +  N)
1 + APVP + BpVp2 
1 + CPVP + DPV 2 '

(32)

Results of our calculations are displayed diagrammatically (Figs 2, 3, and 4) for 
two chosen values of angular velocity W  = 0.05 and 0.15. For comparison, the 
non-rotating case (W — 0) is shown by solid curve (-). (Vp, Up) curves in Fig. 2 
show decreasing trends similar to Fig. 1. Values of Up are somewhat higher than 
those of Uq . Other behaviours of (Vp, Up) curves are similar to (Ve, U@) curves
(Fig. 1).

Decreasing trends in (Vp, Up) curves for N  = 2,1 and 0 configurations have
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Fig. 4. S o lu tio n  curves fo r slowly ro ta tin g  IV =  0 ,1  a n d  2 configurations of p o ly tro p ic  index 1. 
Solid  curves ( - )  rep re sen t n o n -ro ta tin g  configurations

been noted as in Figs 1 and 2. Values of Up are found to be smaller than those of 
Up (Fig. 2) and U@ (Fig. 1). Other characteristic features of (VP,UP) curves are 
similar to {Vp, Up) and (V©, U@) curves.

Figure 4 represents solution curves (£©, 0) for TV =  2,1 and 0 configurations. 
Figure 4 clearly indicates that the value of 0  increases as W  increases, and possesses 
higher values for TV = 2 configuration than for TV = 1 and 0 configurations. 0  
monotonically decreases as £ increases, but it falls off more rapidly for TV = 0 
configuration than for TV =  1 and TV = 2 configurations.

Values of the coefficients Ap, Bp,  Cp Dp ; Ap, Bp, Cp, Dp; and A *e , B*Q, Cq , 
Dq are given in Appendix A.
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4 . T ra n sfo rm a tio n s c o n n e c tin g  th e  so lu tio n s  in  d ifferen t p h a se  p la n e s

Dividing the first equation in (7) by the first equation in (13) and using the 
Eqs (2), (4) and (12), we find

U@ = UP. (33)

From equations (4), (7) and (17) we have

Ue = Up. (34)

Combining Eqs (33) and (34), we get

Up = Up. (35)

Similarly, from the set of equations (2), (4), (7), (12), (13) and (4), (7), (16), (17) 
we derive that

V@ = ~ ^-rV p  = 6VP ; 6 =  ( l/ (n + 1)), (36)Ti I
and

Ve = ßVp. (37)

Hence, from the foregoing equations, we have

Vp — jVp ; 7 = ß/6. (38)

Using equations (4), (12), (16), (19), (21) and (22), one may obtain the transfor­
mations connecting the solutions in (z©,ye), (zp ,yp ), and (zp,yp) planes.

5. In teg ra l p r o p e r tie s  o f  th e  co n fig u ra tio n s and  p h y s ic a l s ig n ifica n ce
o f  (Ue,Ve ), (UP ,Vp) and  (UP,VP) variab les

(a) Integral properties

Some of the important integral properties associated with the description of 
spheroidal, cylindrical, and plane-symmetric configurations are as follows:
1. Spheroidal configuration:

Mass, M = j
J  V

pdv,

which, with the help of Eq. (4), can be expressed as

/ 0

/•fe
M  =  4тга|pc /  4 0 " =  4 iro |pe| í | e #|.

Jo

(39)

(40)
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Internal energy, U = ----- - Í  Pdv.
7 ~ t Jv

Using Eqs (2) and (4) in Eq. (41), we obtain, after some simplifications,

(41)

i+ i
-  4("+ÿ ; y r? l^ e -« .! ) - j f 1 ili0'0'417 = (42)

Moment of inertia, I  = í  pdv\2 = 47ra0/jcx 2|£ |0 '(£0)|. (43)
«/ V

2. Cylindrical configuration:

Mass, M  = / pdv = 27ra0/?c|^e i0 / |.
»/ V

i+ i
Internal energy, U = ■ ■ - t  Pdv =  (n + ----|£010'|2 .

7 -  1 J v  2(T -  1)

Moment of inertia, I  = / pdv\2 = 27га|р<;х 2|£ев, |- 
J V

3. Plane-symmetric configuration:

Mass, M =  pdv =  2pca 0 |©'|.
J  V

(44)

(45)

(46)

(47)

i+ i  rfei
Internal energy, U = —Ц - [  Pdv = 2(” + 1)Qe^ l . 1 Í  t e &d{&).  (48)

7 - U ,  7 - 1  Jo

Moment of inertia, 1 = 2 pdv\2 = 2pcaeX 2|0 , |- (49)
Jv

In above expressions £01 denotes the value of f 0 for which 0  vanishes.

(b) Physical significance of (V@,U@), (Vp,Up) and (VP,UP) variables

The following expressions describe the physical significance of (V&,U@), 
(Vp, Up) and (Up, Up) variables for spheroidal, cylindrical and plane-symmetric con­
figurations:
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1. Spheroidal configuration:

TT _ U(Qn- w )
U e ~ ---------& ------ --- 5Ж е )

{p( te ) -PcW},

V  =  * e &  =  1
0  4ТГО!др1- »/>» I íe  J ’

_  - a P ^ W )  _  3 \ p (Zp ) - P cW \

P P ' (n +  1 f r è - ' K & X  K b )  Г

V = t p P ' = (n + 1)
P P  4 x a ^ ' V l  ^  / ’

r _  U p2- * - p c p l - ' W )  _  3
'  P' n p i - i p i  \  p ( U  I ’

У = = n ' Г M ( U 1
P 47Г OtZpp\ "/?» I i

2. Cylindrical configuration:

UQ = Í 0 (0 " - W )  2{ p ( í e ) - P e ^ }

v0 =

0

Í e 0 ;

p(£e)

-  -  , 1_ T  ^ ( f e ) ;
2тга|рс "p"

U p  =  — Çp — pcP n+1 if  «ТГ w j W ip )  -  pcWO
(n +  l)/?c “ i f ^ Ж 60

= - 4 t x  ^ (W ;
27Г Û p P c  n p n

_  _  2{ p f c , ) - / > ewQ
Up = —

"P<T 1 -  Ж Ы

F, = - U '  nM (iP)
^ 27ra2pc “pi

5. Plane-symmetric configurations:

í©(0" -  wo lc/0 = - - 0 ' Ж е )
{-p{U)-PcW},
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0  0  2 « e p l - t p i i  Ce1 ) '

Í P{ P -  p ç P ^ K ^ W )   _______ 3_______ Г p(Çp) -  PcW \
pi  “ („ +  1 ) p t - 1K m \  № )  Í

V t pP> -  (n +  1) ( М ( ^ И .
Я P  2« p p l - ' р Л  Г р 1 r

rr  _  U p 2- *  - P c p ' - ' W )  î  \ p ( U - p c W \

t  n ^ - 1 !  p ( u  r

V  W  n  Г A f ( ^ )  1

P P 2 а р 1 - * р Л  U  / '

A p p e n d ix  A

From Eqs (27) and (30), the values of the coefficients Aq , B q , Cq , Dq are 
found to be

-A© = ae + Ce > Я© = b*@ +  a%C*Q + D*e ,
C'q = (b'e c'e - a ' e d-e )/ А в , D*e = (b*e d'e -  с^2) /Д 0 ; (Al)
A© = üqCq — 602.

Similarly, from the set of equations (28), (31) and (29), (32), the values of the 
coefficients Ap, Bp, Cp, Dp-, Ap, Bp, Cp, Dp are determined as

Ap = (1 + N) ' a p + C p ,  Bp = (1 + N) '(bp + apCp) + Dp, 
aPdp - bpcp Cp — bpdp

Cp = — к ; — ■ D p =  A p  ■
Д p  — b^p — a p c p .

(A2)

A p — (1 + N)  1ap 4- Cp, Bp — (1 + N) '( bp +  apCp) + Dp,
r i  _  ( i p d p  — bpCp)  n  _  ( Cp — b p d p )

C p ~  ’ p ~  д ;  ’
Ap = bp — a.pCp.

(A3)
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LARMOR RADIUS EFFECT ON RAYLEIGH-TAYLOR 
INSTABILITY OF A PARTIALLY IONIZED PLASMA 

IN COMPOSITE MEDIUM
K . PRA KASH and  S . M ANCHANDA

D epartm ent o f M athem atics, D . C. C., H imachal Pradesh University  
Sum m er Hill, S h im la -171005, India

(R eceived 23 A pril 1993)

T he sim ultaneous effects of fin ite  io n  L arm or rad ius (FL R ) an d  collisions w ith  n e u tra l 
a to m s are  in v estiga ted  o n  th e  stab ility  o f a n  infinitely  c o n ducting  p lasm a  of va riab le  density  
in  th e  presence of a  h o rizo n ta l m ag n e tic  field. T he p e r tu rb a tio n s  p ro p ag a tin g  a long  the  
am b ien t m agnetic  field  a re  considered. I t  is established th a t ,  re a l p a r t  of n  is negative, 
w here n  is th e  grow th  r a te  of d is tu rb an ce , so th a t  in s tab ility  does n o t arise in  th e  form  
of increasing  am p litu d e , i.e. overstab ility . A varia tional p rin cip le  is u sed  to  o b ta in  an  
ap p ro x im ate  so lu tion  of th e  problem . F u r th e r  th e  case o f two sem i-infinite ly  ex tending  
p lasm as of constan t d ensities sep a ra ted  b y  a  horizontal in te rface  is considered. I t  is found 
th a t  th e  system  is s ta b le  (for some w ave num bers) for p o ten tia lly  stab le  configuration  
a n d  u n sta b le  (for o th e r  wave num bers) fo r  p o ten tia lly  u n s ta b le  configuration  even  if  there  
a re  collisions w ith d u s t partic les. Also c rite ria  determ in ing  s tab ility  a n d  in s tab ility  are 
in d ep en d en t of FL R  effects.

1. In tr o d u c tio n

A detailed treatment of Rayleigh-Taylor instability, together with the possi­
ble extensions in various domains of interest has been given by Chandrasekhar [1]. 
The finite ion Larmor radius (FLR) has individually been shown to have a stabi­
lizing influence on thermal instability, thermosolutal instability and gravitational 
instability by several authors [2-8]. Melchior and Popowich [9] have considered the 
FLR effect on Kelvin-Helmholtz instability in a fully ionized plasma while that on 
Rayleigh-Taylor instability has been studied by Singh and Hans [10].

Quite often the plasma is not fully ionized and is, instead, partially ionized. 
A partially ionized plasma represents a state which often exists in the universe and 
there are several situations when the interaction between the ionized and neutral 
gas components becomes important in cosmic physics. Strömgren [11] has reported 
that ionized hydrogen is limited to certain rather sharply bounded regions in space 
surrounding, for example, О-type stars and clusters of such stars and that the gas 
outside these regions is essentially non-ionized. A stabilizing effect of collisionals on 
Rayleigh-Taylor configuration has been shown by Hans [12] and Bhatia [13]. But 
the collisional effects are found to be destabilizing for a sufficiently large collisional 
frequency on Kelvin-Helmholtz configuration by Rao and Kaira [14] and Hans [12].

In the present paper we study the simultaneous effects of ion Larmor radius 
and collisions with neutral atoms on the stability of well known Rayleigh-Taylor
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configuration in hydromagnetics (Chandrasekhar [1]). We regard the medium as 
being a mixture of an infinitely conducting component and a neutral component 
interacting through mutual collisions. We make the assumptions that the individual 
components, by themselves, behave like continuum plasmas and that the effects 
on the neutral component resulting from magnetic field, pressure and gravity are 
negligible. The case of a uniform horizontal field and longitudinal perturbations is 
considered. Next, a variational principle is developed to obtain the approximate 
solutions.

2. P ertu rb a tio n  equations

The model we consider consists of two inviscid, homogeneous, semi-infinitely 
extending plasmas separated by a plane interface at z = 0, each region being per­
meated with a neutral component of the same density. Initially the configuration 
is at rest. We give a small disturbance to the system. The linearized perturbation 
equations for the mixture of the hydromagnetic plasma and a neutral gas moving to­
gether in a uniform horizontal magnetic field H(ff, 0, 0) and downward gravitational 
field g(0, 0, —g) are

P ~  = - V í F  + -L(V  X h) X H + g(6p) + pdve(4d -  q), (2.1)

^  = -Мчл -  q), (2-2)

^ p )  =  (q 'V V ,  (2.3)

^  =  (H-V)q,  (2.4)

V q  =  0 and V • h = 0, (2.5)

where p and pd are the unperturbed densities for the hydromagnetic and the neu­
tral component, respectively. vc denotes the collisional frequency between the two 
components and denotes the plasma pressure rendered tensorial due to finite ion 
Larmor radius effect. Here 6p, , q(u,t;,ty), qa(l, r, s), h (hx,hy,hz) denote, re­
spectively, the perturbations in density p, stress tensor P , hydromagnetic plasma 
velocity (initially zero), neutral component velocity (initially zero) and magnetic 
field H. Magnetic permeability of the medium is assumed to be unity.

For the magnetic field along x-axis, taking into account the FLR effects 
has the following components:
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( 2 .6)

where p is the scalar part of the pressure and pu — 5̂ ;  w# is the ion-gyration 
frequency, while N  and T denote, respectively, the number density and temperature 
of ions and K* is the Boltzmann constant.

Analyzing the disturbances in terms of longitudinal modes, we seek the solu­
tions of Eqs (2.1)-(2.5) in which x — t dependence is given by

where к denotes the wave number of disturbance and n is the growth rate of dis­
turbance.

Eliminating qj between Eqs (2.1) and (2.2), and using (2.6) and (2.7), Eqs (2.1)- 
(2.5) can be written as

exp(z'A'x + nt) (2.7)

( 2.8)

(2.9)

np +  9d c w = —D(Sp) +  2puk2v — uD(pDv)+ n + uc

+ 9— {DP) + ? -{ ikhz -  Dhx), n 4ж ( 2. 10)

( 2.11)

( 2. 12)

(2.13)

r)6p -  -w(Dp), 
nh = ikH q,

iku + Dw = 0

and
ikhx -f Dh2 = 0, (2.14)

where
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If we eliminate 6p from Eqs (2.8) and (2.10) and use Eqs (2.11)-(2.14), we 
obtain the following pair of equations in w and v

n2(pk2w — D(pDw)) — gk2{Dp)w---- -— (D2 — k2)w— (2-15)4tt

— unk2]2(D2 + k2)(pv) — D(pDv)] + ———n2[pdk2 w — D{pdDw)] = 0n + vc

and

pdvc H 2k2
n p  H-------- ------- n  +  —--------

П +  1/, 47ГП
v = —v [2p(D2 +  k2)w — D(pDw)] (2.16)

3. B o u n d a r y  c o n d it io n s

On a boundary, vertical motion is not possible, thus

w  =  0 , (3.1)

on a boundary free or rigid.
If the plasma is bounded by two rigid boundaries which are both ideally 

conducting, no disturbance within it can change the electromagnetic quantities 
outside. This merely leads to the boundary condition (3.1). A boundary condition 
on v can be prescribed by preluding the presence of surface charge or surface current 
at the rigid boundaries which are perfectly conducting. Thus we choose

v = 0, (3.2)

at a surface bounded by an ideal conduction.
If the plasma is confined between two free boundaries, the tangential stresses 

Pxz — 2pi/ikv +  lk̂ nw and Pyz =  —pvDw vanish. Hence

v — Dw = 0, (3.3)

at a free boundary. Should there be discontinuities in the density as in the case of 
two superposed layers of different densities, we require the continuity of the vertical 
component of velocity, tagential stresses and pressure at interface. Thus

ui, pDw, pv, pdDw, pdv (3-4)

and the total pressure must be continuous as at the interface.
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4. A  v a r ia tio n a l p r in c ip le

We shall show that the Eqs (2.15) and (2.16) subject to the foregoing boundary 
conditions are characterized by a variational principle.

Let t i % and n j  denote the two characteristic values, and let the solutions 
belonging to these characteristic values be distinguished by the subscripts i and j . 
Multiplying Eq. (2.15) for i by wj and integrating with respect to z over the whole 
vertical extent of the plasma (denoted by fL), we obtain with the help of Eq. (2.16) 
and boundary conditions,

nj J  p ŴiWj + j^DwiDwj^ dz + — J  Pd {v>iwj + -j^DwiDwj^J dz— 

-g J  (Dp)w{Wjdz + ~£~~ J  ( ĴJiWj + — DwiDwj^j dz + Uinj J  pviVjdz+

+
I'сПгП, f  Н2к2П( f

-------- — —  /  P d V i V j d z  +  — ------------  /  V i V j d z  =nj +  Vc JL 4тгп;- JL (4.1)

Taking i =  j  and suppressing the subscripts, we obtain the following varia­
tional formulation of the problem

where

n2[I\ + /4 + /в +  It] — 9I2 +  I3 +  Is — 0,

/1

h

dz,=SAw,+̂iw)\= J  (Dp)w2dz,

j L [w2 + ^ d w ) 2
Н Ч 2

47Г

h  = J  pv2dz,

dz,

h  =
H 2k2

47Г ! / i z '

h  =  f  Pd [ w 2 +  i (D w )2 dz>
п + Vc Jl  L fc2 J

=  [  P d V 7 d z .
n  +  Vc J L

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

Consider a change 8n2 on n2 of an arbitrary variation Sw and 8v in w and 
V ,  respectively to satisfy the boundary conditions (3.1) and (3.2) of the eigen-value 
problem, we have to the first order, from (4.2)

6n2(h  -|- /4 + Iß + / 7) + n2{61\ +  6I4 + 6Iç + SIj) —  g8Ii + 6I3 + 815 = 0, (4.10)
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where 61, (s = 1 to 7) are the corresponding variations in I, (s — 1 to 7). After 
one or more-integrations by parts, we find that these latter variations are given by

6wdz,\6Il= JL [pW ~ j2D(pDt
—6I2 = [  (Dp)w6wdz,
2 JL J — -p-.D2Û bwdz,1 CT H 2k2
26h  = "TT"
1 Г- 6I4 = / pvdvdz
2 J l
1 H 2k2
26h  =  1 7 L v6vdz,

b / 6 = — f  \pdw -  ^ D ( p dDi 
2 n + vc JL [ k*

6wdz

and
i<$Z7 = — /  pd6vdz.2 n + vc JL

Furthermore, 6w and 6v are connected by the relation

6n H 2k2 pdv2 
P -  - — 5- +47ГП2 (n + Pc)2.

V +  n
H2k2 pdvc

P Aim2 n + V,C .

6v =

—V [2p(D2 + k2)6w — D(pDw)]

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

If we substitute for I,  and 61, (s =  1 to 7) in Eq. (4.10) and make use of 
Eq. (4.18), we obtain after some further integrations by parts,

6n2 Ii + ^ h  + h + p- J  [n2{pk2w -  D(pDw)} -  gk2(Dp)w+

-n2{pdk2w -  D(pdDw)} — H 2k2(D2 -  k2)w-
П +  Vc "  "  '* ”  , J  47Г

—i/k2n{2(D2 + k2)(pv) — D(pDv)}] 6wdz = 0. (4.19)

We observe that the quantity occurring as a factor of 6w under the integral 
sign vanishes if and only if Eq. (2.15) is satisfied. Thus a necessary and sufficient 
condition for 6n2 to be zero to the first order for all small arbitrary variations 6w 
and 6V (connected by Eq. (4.18)) in w and v which is compatible with the boundary 
conditions is that w and v should be the solutions of the eigenvalue problem governed 
by Eqs (2.15) and (2.16). A variational procedure of solving for the characteristic 
values is, therefore, possible.
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5. An im portan t p roperty  of n

From Eq. (4.1), we have

ríj J  p ^W{Wj + — DwiDwj^j dz — — J  (Dp)wiWjdz+

H 2k2 Í  (  1 „  „  \  Я 2k2 f+  -----  / Wiw, + — DwiDwj dz +  Tij / pviVjdz + - -----  / v,t>,dz+4тгп,- JL \  к2 V  1 JL 4ttrij Jl

VCT4  f  (  1 \  v cn t  f4----------- / pd WiWj +  — DwiDwj ) dz H------- — / pdViVjdz = 0.
Щ + 1'c Jl \  к2 )  nj + vc JL (5.1)

Interchanging i and j  and noting that the above integrals are symmetric in i and j, 
we obtain

rij J  p ^WiWj + — D w iD w j  dz — — J  (Dp)w,Wjdz+

H 2k2 f  (  1 \  [ , H 2k2 f+ -----  / WiWj + -г;;DwiDwj dz + n,- / pviVjdz +   ------  / ViV;dz+
4 ttn j  J L \  k 2 )  J l  4 тгщ  J L

Vc Tli [  f  1 \  v c n { fH------ ;----  / Pd niiWi + -prDwiDwj dz H------ ----- / pdViVjdz = 0.
n j  +  Vc J L  \  k 2 )  m  +  u c J L (5.2)

Let us consider two solutions characterized by n and n*, the complex con­
jugate of n. We expect that the corresponding solutions will also be the complex 
conjugates of each other. Hence if п,- = n, n,- =  n*, then iu,- = w, wj = w*, Vi — v 
and Vj — v*.

Then, from (5.1) and (5.2) by addition and subtraction, we have

Re(n) _ g H 2k2 -  H 2k 2 -
1 1 +  F 5 — Г Т ? - ^ 2  +  — j— PT-I3 +  — j— r z l  4 +

»2(i* + 17)
4x|n|

- i / c ] n | 2 ( J 6 - f  T 7 )

|n |2 + 2i/cR e(n) -I- v2 ’

4x|n| |n|2 + 2vcR e(n) + v2_

(5.3)

and

Im(n) - I t)
h  / 5 + |n|2Í2 4тг|гг|2(/з Í4 )+  |n |2 + 2í/cRe(n) + l/ 2J = 0, (5.4)
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h =Jlp[ N2 +
J (DP)\w?

/3 =/)n’+ï
t4 =JL\v\2dz,
/5 = p\v\2dz,
76 =JLPd[И2 -
I t =Jl p\v\2dz.

Integrals I ,  (s — 1 to 7) are all positive.
If n is complex, Im(n) ф 0, hence (5.4) gives

" l i h  -  I t)

(5.5)

— — g — H 2 k2 — —
+ |n |2^2 47r|n |2^ 3 ^  + |n |2 + 2vcR e(n) + v2

= 0, (5.6)

so that (5.3) gives

2Re(n) — H 2k2 -
11 +  -J I io f4 +

vile,
47г|пI2^ ' |n |2 +  2vcRe(n) -f V2

vc\n\2(Î6 + Ï t)
|n |2 +  2vcRe(n) 4- V 2

(5.7)

From Eq. (5.7) it follows that Re(n) is negative, which implies that if oscilla­
tory modes exist they should be stable, thus ruling out possibility of overstability.

6 . T w o  se m i-in fin ite ly  e x te n d in g  p lasm as o f  co n sta n t  
d e n s it ie s  se p a r a te d  b y  a  h o r izo n ta l p la n e

We consider the case when two semi-infinitely extending plasma layers of 
constant densities p\ and pi, and dust particle densities pd1 and pd2 are separated 
by a horizontal boundary at z = 0 . The subscripts 1 and 2 distinguish the lower 
and upper plasma layers, respectively.

We choose the following trial function for w(z),

z < 0; 
z > 0,

( 6 . 1)
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which is consistent with the boundary conditions (3.1)—(3.3). Here the same con­
stant A  has been chosen to ensure the continuity of w at z =  0.

The value of v in the two regions can be calculated from Eq. (2.16) and noting 
that p is constant, we have

v(z) = I

where
^ 1,2 =

Zie+ i* г < 0; 
Z2e~kl z > 0,

—3 vk2nA

V? =

n*

H 2

1 _L «ЩУ.n + Vc

and V2 =

+ W 2 г

H 2

( 6 .2)

(6.3)

(6.4)Anpi * 4x p2

We assume that = ao as the simplifying assumption does not obscure
any of the essential features of the problem.

To evaluate the integrals I, (s — 1 to 7) in Eq. (4.2), we divide the region of 
integration into three parts (i) — oo < z < — e (ii) e < z < oo (iii) —e < z < e  and 
then pass it over to the limit e —* 0. On substituting their values in Eq. (4.2), we 
obtain the following dispersion relation between h and k,

n -  дк(аг -  c*i) + k2V\  + n + vcn2(c*i + a 2)+

9 2/ 42 —v k n «1
+ «2

" 2 u + æ  + ^ i  1 + ^ +  k2V,2
= 0,

where

VA = ( —[ 2 ж ( р 1

H 2 \ 1 /2

+ Рг) /
can be termed as mean Alfvén velocity and

Pi,2« 1,2 =  ---- ;----■
Pi +  P2

(6.5)

( 6 .6)

(6.7)

Letting n — y^n*, к — к* and omitting the asterisks for simplicity, so that the 
Eq. (6.5) takes the following dimensionless form

A9n9-f А8п8-|-А7п7 +  АбПб-|-А5П5-|-А4п4 +  Азп3-|-А2П2 +  А1П-)-Ао =  0, (6.8)

where
A9 = 4 , A8 = 12 A,

2k2 ВАт = 4 A2 +
«1 +  «2

+ 4 {it2 -  k(a2 -  ai)} + 2Lk*B,
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Лв 2 k 2 B
I <*102

+  L k 2 4- v'c )  +  4 A 3 +
2 k 2A B
----------h
a i a 2

4- (8A +  4i/'){fc2 -  k ( a 2 -  <*i)},

^5 = 2ABP +  2j//) + _*!_ +  2Lk4(k2 + Bv?)+
Ot\OC2 ai«2

9 Í.2 D
+  (4A2 4------------ 1- 8A i/') {fc2 -  k ( a 2 -  c*i)} ,

<*1<*2

A 4 = - ^ - ( A  +  2i/£) +  2 A k 2 u'c ( +  L k 2 i/'CB  4- Z L k 4 )  +  
<*1<*2 \«1<*2 )

4- ( ^ - ( A  +  2v' c )  4-4A 2i / ' l  [к2 -  k ( a 2 -  aq )}  ,
I <*1<*2 J

A3 = ^ - ( 1  4- 2A )  4- G L k 6 v'c2 +  { ^ ^ ( 2 A  +  v'c )  +  —  } x 
<*1<*2 l  <*1<*2 <*1<*2 J
x {к2 -  k ( a 2 -  (*1)} ,

A2 = + 2Lk«уз +  * Ч (3 +  2Aßi/') {fc2 -  k(a2 -  a x)} ,
oqoq oqaq

Ai = -^-^-(1 4- 2i/c){k2 -  k(a2 -  oq)},
<*1<*2

JfcV2
A 0 =  -----— { k 2 -  k ( a 2 -  aq)} ,

<*1<*2
Va

A  =  { l  +  a 0 ) v ' c  B  =  a 1 +  a 2 , v'e =  v c — ,
9

(6.9)

2 2

and  L  — 3Vv i  is a  non-dim ensional num ber m easuring the relative im portance of 
F L R  effects an d  m agnetic field.

For th e  po ten tia lly  stab le  configuration (<*2 <  <*1), a ll the  coefficients of 
Eq. (6.8) are positive, if

k > k * ,  (6.10)

where
к* = a2 — ati. (6.11)

So no positive rea l root or com plex root w ith negative real p a r t  exists. Therefore, 
the  m edium  is stab le  even in  th e  presence of collisions for d isturbances of all wave 
num bers as it  is if  there are none.
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For the potentially unstable configuration (ce2 > (*1), the absolute term in 
Eq. (6.8) is negative, if

0 < * < * * . (6.12)

Therefore (6.8) possesses at least one real root which is positive leading to an 
instability of the configuration even if there are collisions with dust particles.

Also we see that k* is independent of L, a measure of FLR effect. Hence we 
conclude that for longitudinal perturbations, the stability criterion is independent 
of magnetic viscosity.
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STATIC ANISOTROPIC FLUID SPHERES IN 
D SPACE-TIME DIMENSIONS

T .  H a r k o

Oncological In s titu te  
З4.ОО Cluj, R om ania

(R eceived 4 M ay 19S3)

Using th e  E in s te in  field equations in  th e  p resence  of a  cosm ological co n stan t, th e  
equations w hich  describe th e  h y d ro sta tic  eq u ilib riu m  of a  s ta tic  an iso tro p ic  fluid sphere  
a re  o b ta in ed  in  D  (D  >  4) sp ace-tim e  dim ensions. W ith  su itab le  tran sfo rm atio n s, th e  
eq u atio n  of m ass-continu ity  a n d  of h y d ro sta tic  eq u ilib riu m  are given in  a  non-d im ensional 
form . T h e  fo rm alism  th u s developed is u sed  to  s tu d y  hom ogeneous ch arg ed  fluid spheres 
in  h ig h er d im ensions an d  for these  configurations a  com plete so lu tion  is ob ta ined .

1. In tr o d u c tio n

The study of static anisotropic fluid spheres is important for relativistic as­
trophysics [1]. The starting point is represented by the Schwarzschild solution from 
which all problems involving spherical symmetry can be modelled. Charged spheres 
in the presence of matter have been studied by Bohra and Mehra [2] and Omote 
and Sato [3] with mass-charge and radius-charge relations emerging from the static 
solution. Several other anisotropic fluid sphere configurations have been analyzed 
using various Ansätze [4], [5].

Lately, there has been an increasing interest in the study of compact astro- 
physical objects in D space-time dimensions, prior to any compactification. So, 
Krori et al [6] have extended the interior Schwarzschild solution with vanishing 
normal pressure of Florides [7] to D space-time dimensions in the presence of a cos­
mological constant. Wolf has analyzed fluid spheres [8] and charged fluid spheres
[9] in D space-time dimensions with the condition of vanishing normal pressure. 
The Oppenheimer-Volkoff equation has been generalized to D (D > 4) space-time 
dimensions in [10].

The purpose of the present paper is to obtain the equations which describe the 
hydrostatic equilibrium of an anisotropic, spherically symmetric, static fluid config­
uration, in D space-time dimensions, D > 4 and in the presence of a cosmological 
constant (generalized mass-continuity and Oppenheimer-Volkoff equations). The 
formalism thus developed is used to study the homogeneous charged fluid sphere 
in D (D > 4) space-time dimensions, with a particular choice of the proper charge 
density. Mass-charge and radius-charge relations are obtained, too.

The present paper is organized as follows. In Section 2, using the Einstein 
field equations we deduce the generalized mass-continuity and Oppenheimer-Volkoff
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equations in D space-time dimensions. A non-dimensional form of these equations is 
obtained in Section 3.The components of the energy-momentum tensor of a charged 
fluid sphere are obtained in the new variable in Section 4. For this configuration, 
the hydrostatic equilibrium equations are solved in Section 5. The results are sum­
marized in Section 6.

2. T h e  g e n e r a liz e d  O p p en h e im er—VolkofF eq u a tio n

In D space-time dimensions the spherically symmetric metric takes the form:

ds2 =  e"(dx0)2 — exdr2 — r2dQ\ — r 2sin2 ©idQj — r2 sin2 ©i sin2 ©г^©! — ...
— r2 sin2 ©i .. .sin2 &D-3d<p2. (2-1)

Here:

x °  =  c t ,  X 1 =  r, X 2 — © 1 , X 3  =  ©2, . . . ,  X D ~ 2 =  Q d - 3 , ■ ■ - ,  x D ~ l  =  <P- 

(r is the radial coordinate in D space-time dimensions) with domain:

0 < r < oo, 0 < 0,- < 7Г (i = 1, D — 3), 0 < ip < 2x.

The Einstein equations are:

8iG  L 8ttGA ----- T + --------A  i  '  A ( 2 .2)

where the components of the energy-momentum tensor are:

Tq = pc2, Tl = - Pr, T 2 = • ■ • = TpZi  =  —Pl . (2.3)

where pr ф p±. The case pr = p± corresponds to the isotropic fluid sphere (pr is 
normal pressure, pj_ is transversal pressure).

Using (2.1) the field equations become:

(D -  2)А'е“л (D -  2)(D -  3)(е~л -  1)
2r

(.D - 2)i/'e~x
2 r +

„-А

2r2
(D -  2)(D -  3)(e-A -  1) 

2r2
(D -  S)(y' -í v "  v'2 v 'X  (D — 3)(i/' — A')\ 

\ Y + ~4 4 ~ + 4r )
8trG 8ttGA

- P s .  -

8irGp 8nGA 
c2 + c4 

8ttG 8nGA
-- —л-Pr — •

(Д -  3)(E> -  4)(e~A
2r2

(2.4a)

(2.4b)

(2.4c)

A cta  P hysica Hungarica 73, 1993



STATIC ANISOTROPIC FLUID SPHERES 1 6 7

From ТД. = 0 it follows:

v , = 2 p'r + 2(D — 2 ) ( p x  — P r )
PC2 +  Pr (PC2 +  pr )r

From Eq. (2.4a) we obtain immediately:

d(rD- 3e~x) n _4 8ttG 2 D_2 16nGArD~2
------- J r ------- - P - 3 ) r  - — — ^ p r

(2.5)

( 2 .6)

or _L_ f  _.r D - * J r Ц̂ОАг»
c! D - 2 rv - 3 J0 f  2)c<

and
—A_ 1 _ 2GF(D)M _  16TrGAr2

rD-3 (Z) — 1)(Z? — 2)c4 ’ 1 ;
where:

f (ß ) = ( д - г ) у -  <2 8 >

M (r) = i  /  тг2D- 2prD~2dr. (2.9)

Using (2.9) and (2.5) in Eq. (2.4b) we obtain the generalized Oppenheimer- 
Volkoff equation in D space-time dimensions, for an anisotropic spherically sym­
metric configuration:

dpr
dr

G(pc2 + pr)[(8*/(D -  2)c4)(pr -  2Л/ (D  -  l))rD" 1 + (D -  3)F(£»)M]
rD - 2 ( I _  2G F ( D ) M  16irGA

I /  ( D - l ) ( D - 2 ) c * r  J

+
( D - 2 ) ( P L - p r )

( 2 . 10)

3 . N o n -d im e n s io n a l form  o f  th e  g e n e r a liz e d  O p p e n h e im e r —V olkoff e q u a t io n

To obtain the non-dimensional form of the generalized Oppenheimer-Volkoff 
equation (2.10) and of the mass-continuity equation:

dM
dr

— _i>D —2 D  — 2"2^2 pr ci (3.1)*

we shall introduce Ureche’s [11] non-dimensional independent variable 7/ and the 
non-dimensional functions £(77), Pr(r)), Pg_(77) and 771(77) by means of the transfor­
mations:

r — arj, p = p d ,  Pr — PcC^Pr) Pl = P cCí P l , M  = M*m. (3.2)
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Here a is a scale factor (a characteristic length), pc and M* being a charac­
teristic density and mass, respectively.

Using (3.2) in Eqs (3.1) and (2.10) we obtain:

dm
dr)

„ D - 2 Í, (3.3a)

dPr _ (I +  Pr)[(Pr -  n ) r f - '  +(D — 3)m] 
dr] VD-2(1 -  f ô r  -  pi]2)

+ (p - 2>№ _--h> , (3.3b)
Г)

where we have taken:
M * = ^тг2 D~2pcaD~1, (3.4a)

( 3 ' 4 c )

Here we have a set of two equations in four variables m, £, Pr and Pj_. For 
a general solution we must specify two physically reasonable functional relations 
among the four variables. Usually suitable forms of £ and Pr are chosen.

The system (3.1)-(2.10) or (3.3a-b) must be integrated with some boundary 
conditions. These conditions depend on the concrete physical meaning of p, pr and 
pL and they have to be specified in every situation.

4 . E n erg y —m o m e n tu m  te n so r  o f  a charged  f lu id  sp h ere

The Lagrangian of the electromagnetic field in D dimensions is given by [9],
[12]:

L = ~ F ikF ih -  - f A i ,  (4.1)к  c
where i f  is a constant which will be determined by normalization. Varying (4.1) 
with respect to A{ gives the Maxwell equations:

= (4.2)

The energy-momentum tensor of the electromagnetic fields from (4.1) is:

Tik = ~ F n F lk +  ^ F i mFlm9ik. (4.3)
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The current density j '  has only one component for r < R (R is radius of 
sphere)

j_o
(4.4)■o dx°J = pe- ^  =  pee *.

Here pe is the proper charge density. We set pt = poe~* and we shall suppose 
that po is constant.

The electromagnetic field has only one non-zero component F01 and (4.2)
gives:

^ 01 =  (4-5)
where

Qir ) =  y J0 РоГ°  2<ir =
KP* rD -1

4(D -  1)' ‘ 4̂ '6^
In order that Q  represents the charge within the ( D  — 1) dimensional sphere 

we have [9]:
4тг(д -1 ) (Д -1 )

( ( Л - 1) /2)! (4J)
Using (4.3) and (4.5) we find for the components of the energy-momentum 

tensor of a massive charged fluid sphere:

rpO-*0 =  pc2 = pmC2 +
2 Q2
К  r 2( ° - 2) ’ T l  =  - P r  = - p  +

2 Q 2 

К  г Ч О - 2 ) ’

T 2 rpD — 1
1 D-1 =  - P l  = - P -

2 Q2 
К  г2С °-2) ’

(4.8а)

(4.8b)

where рт is the mass density and p is the hydrostatic pressure.
We shall consider in the following only the case of the homogeneous fluid 

sphere, that is we shall suppose that pm is constant.
We shall introduce now the transformations (3.2) in the form:

r = arli P ~  Pm£) p = pmc2P, pr = p mc2Pr, p x = p mc2PL, (4.9)

which give:

where

t  =  1 +

P r  =  P -

2 ( D  -  1) 
a

r,2,

Pl = P +

2 ( D  — 1) ' ’ 
<* 2 

2( D -  i y  ’

_  ( D  -  2) K p \  

(Д - 1 )  32nGp2m

(4.10a)

(4.10b)

(4.10c)

(4.11)
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We suppose that we have an equation of state of the form:

P =  P(Pm)- (4.12)

If P  is a decreasing (non-increasing) function of 77, then from transformations
(4.9) it follows that P  E [0,PC], where Pc is the value of P at the centre of the 
sphere.

We can generalize the classical restriction for the upper limit of the general 
relativity in D space-time dimensions in the form:

P < | r r p  (4.13)

which gives P  E [0,1 /{D — 1)].
If we use the restriction

p <  P m C 2 , (4.14)

then P E [0,1].
So, we have expressed the components of the energy-momentum tensor of 

a homogeneous charged fluid sphere in D (D > 4) space-time dimensions in a 
non-dimensional form.

5. H o m o g e n e o u s  ch a rg ed  flu id  sp h ere  in  D space—t im e  d im en sio n s

Using the expressions (4.10a-c) in (3.3a-b) we obtain the following equations 
which describe the hydrostatic equilibrium of a homogeneous charged fluid sphere 
in D space-time dimensions:

with solution:

dm
dij = r,D- 2 1 + a

2( D - l )

™(v) =
nD - 1

D -  1 1 +
2 (£> +  l)

(where we have used the boundary condition m(0) = 0, too) and

(5.1a)

(5.1b)

dP (1 + P)[P - y  + ( D -  3)/(D -  1) -  2ar?V (£>2 -  l)]y 
dri 1 -  [2/(D -  1) + p]r]2 -  а»74/(Л 2 -  1)

(5.2a)

The Oppenheimer-Volkoff equation (5.2a) must be integrated with the boundary 
conditions:

P(0) = Pc, Р Ы  = 0, (5.2b)

where Pc is the hydrostatic pressure and rj, =  R/a  is the value of the non-dimensional 
parameter 77 at the centre and at the surface of the sphere, respectively.
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In order to solve Eq. (5.2a) we shall introduce a new variable: 

rj2 (D2 — 1)7
У= y d - ' — ^ ---- , У £ [УсУ,], (5.3)

where yc = (D2 — l)y/4a  and ys are the values of у at the centre of the sphere and 
at the surface, respectively.

We denote, too:

7 =
2 + Sî _  b ± V v M  F

D  — 1 7

So, Eq. (5.2a) becomes:

dPg _  Pq(Pq -  7У / У с )  

dy y(62 -  y2)/yc

with the boundary condition

(5.4)

(5.5)

Р о Ы  =  1 + Pc (5.6)

This equation is a Riccati type equation. It has two particular solutions of 
the form:

Pi,2 = 7 y ± \ { D 2 - Ь ) ^ 62 - у 2)? /ye. (5.7)

By means of the transformation:

z < 5 ' 8 )

we obtain the equation:
dz (D2 — 5)i— + -̂--------’— z = 0, (5.9)
dy (62 - y 2) i V ’

with solution
z = Cexp[— (D2 -  5)2 sin-1(y/<5)], (5.10)

where C is a constant of integration.
From (5.10), (5.8) and (5.7), using the boundary condition (5.6) and denoting:

P, =
(Pc + 1 -  7) -  \ b { D 2 -  5)/yJ*r exp[(P2 — 5)*sin 1(yc/ 6)\, (5.11)
(Pc + 1 -  7) +  |[ 7 (^ 2 -  5)/yc]*

we obtain the final form of the hydrostatic pressure P, in the у variable:

P ( y )  =  Т У / У с  -
7{D2 -  5) à (S2 -  y2) à P, exp[-(P2 — 5) à sin 1(y/5)] +  1 

2 Ус P, exp[—(P 2 — 5 ) ^  sin- 1(y/(5)] — 1
-  1. 

(5.12)
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The expressions given above (5.12) and (5.1b) represent the exact solution of 
the equations which describe the hydrostatic equilibrium of a charged, homogeneous 
fluid sphere in D space-time dimensions.

From (2.5b), a straightforward integration yields:

t v = Co p  e-(U’-5 )b ln -1(y/i) _  ! o - ( D 3- 5 ) i  s i n  * ( y / i ) (5.13)

Co being an integration constant.
In the variable y, we have, too:

-A -  Ус
y(à2 — У2) '

while the proper charge density is given by:

P' = P0( i k )  ( 6* - y*) i '
For r > R  we have:

f 01~ ~ ^ W ^2 03 = const.),
where Q is the charge included within radius R and, consequently:

r 2 ( ß - 2 )

(5.14)

(5.15)

(5.16)

(5.17)

(no matter present, only electromagnetic field).
The Einstein equation (2.4a) gives in this case (i/ +  A = 0):

- a , 2 GMF(D)  32 ttGQ2 16тгСЛг2
e - 1 r D - 3 +  ( D - 2 ) ( D - 3 ) K cW d - 3) (£> -  1 )(D  -  2 ) c4 ’ 1 J

which represents the D-dimensional Reissner-Nordström-de Sitter solution for a 
central charge Q.

From (4.6) we obtain the total charge of the sphere:

_ Kp0RD~l 
-  4(D -  1) '

In the variables (4.9) we have (m5 is the total mass of the sphere):

e — e_x _  l 2m, 2(1? —1) ar)
r)D~3 (D -  1)(D -  3)t?2(d - 3) - w

(5.19)

(5.20)

Matching (5.20) to (5.13) at rj = rj, will give the value of the constant of 
integration Co in (5.13).

Equations (5.1b), (5.12), (5.13) and (5.14) represent the complete exact in­
terior solution for a homogeneous charged fluid sphere, in D (D > 4) space-time 
dimensions, in the presence of a cosmological constant. The normal and transversal 
pressure can be easily found from (4.10a and c).
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6 . C o n c lu sio n s

From (5.12) and (5.13) it follows that y < 6, for all y. Particularly, for y =  ys, 
we obtain:

V. < (2yc)* [(1 +  1/тУе)* - ! • ] * =  4M■ (6.1)

So, т)м gives an upper limit of the radius of the charged fluid sphere. Similarly, 
from (5.1b) we obtain:

m, <
D-lЧм Id ­

a r

2(D — 1) L 2(£> + 1);Vm = ihm. ( 6.2)

гпм being the upper limit of the total mass of the sphere.
In the above analysis we obtained a complete solution for a homogeneous 

charged fluid sphere in D space-time dimensions, whose proper charge density is 
represented by pe =  poe~x!2 (p0 = const.). We have not discussed the stability of 
such a sphere but it would most likely be unstable since the electrostatic repulsion 
would tend to destabilize it.

An interesting question is the possibility of observing such objects in an astro- 
physical setting. The observation of 7-ray bursts prompted investigators to suggest 
that there might be a relation between the strong-coupling phase of QED and the 
7-ray bursts observed. Certain anomalies in the spectrum are characteristic of 
emissions from a charged object in more than four space-time dimensions [13].

Other physical aspects concerning fluid spheres in D space-time dimensions 
will be postponed to a future paper.

R eferen ces

1. R . L. Bowers an d  E . P . T . Liang, A strophys. J ., 188, 657, 1974.
2. M. L. B o h ra  an d  A. L . M ehra, G en. Rel. G rav ., 2, 205, 1971.
3. M. O m ote  an d  H. S a to , G en. Rel. G rav ., 5 , 387, 1974.
4. T . S ingh, G. P. S ingh  a n d  R . S. Srivastava, In t. J . T heor. P h y s ., 31, 545, 1992.
5. G. M agli a n d  J. K ijow ski, Gen. Rel. G rav ., 24, 139, 1992.
6 . K . D . K rori, P. B o rg o h a in  an d  K. D as, G en . Rel. G rav., 2 1 , 1099, 1989.
7. P. S. F lorides, P roc . R . Soc. London, A 3 3 7 , 529, 1974.
8 . C. W olf, A c ta  Phys. H ung ., 70, 288, 1991.
9. C. W olf, C an. J . P h y s ., 70, 249, 1992.

10. T . H arko , A cta  Phys. H ung ., 72 , 251, 1992.
11. V. U reche, Rev. R oum . de  Phys., 25, 301, 1980.
12. L. L an d a u  a n d  L. L ifschitz, T héorie des cham ps, M ir, M oscou, 1970.
13. L. Sokolowski, M. L itte r io  an d  F . O cchionero, In t. C enter fo r T h eo r. Phys., M iram are , T rieste, 

P re p rin t No. IC /8 9 , 199, 1989.

A cta  Physica Hungarica 73, 1993





Acta Physica Hungarica 73 (2~4), pp■ 175-180 (1993)

PERCOLATION PHENOMENA AND 
SELF TEMPERATURE CONTROL HEATER 

FOR THE MIXED SYSTEM Cu-PEG

M . M . MOSAAD

P hysics D epartm ent, Faculty o f Education  
K a fr  El-Sheikh, E gypt

(R eceived 18 M ay 1993)

M ixed  sam ples of C u -P E G  were p re p a re d  by m illing th e  m ate ria ls  to g e th e r a n d  
com pressed  in  th e  form  of d iscs of 1-1.5 m m , 12 m m  diam eter, a n d  cylinders of 12 m m  
d iam eter a n d  2.5 cm  heigh t. T h e  percolative m o d e l is stud ied  for th e  sam ples in  th e  fo rm  of 
discs, for b o th  conductiv ity  a n d  dielectric c o n stan t. I t  is found th a t  th e  percolative m o d e l 
is obeyed fo r b o th  of th em  w ith in  th e  ex p erim en tal lim its. We also fo u n d  th a t  th e  ex p o n en t 
value in  th e  case of conductiv ity  depends s tro n g ly  on  th e  type of th e  conductive filler.

For sam ples w ith  concen tra tions g re a te r  th a n  f c and  in  th e  fo rm  of cy linders, we 
stu d y  v a ria tio n  of tem p e ra tu re  w ith  tim e a fte r  app ly ing  Vac. We fo u n d  th a t these  ty p es  
of sam ples can  b e  used  as h e a te rs  which gives c o n s tan t te m p e ra tu re  w ithou t any co n tro l 
devices. T hese  h eaters cover th e  lower tem p e ra tu re  region which is u se fu l in  b iological a n d  
m edical research .

In tr o d u c tio n

The electrical properties of conductor-insulator composite systems attracted 
the attention of many investigators as subject of both theoretical and experimental 
interests and because of the growing application of these materials in the indus­
try [1-5].

It is well known that conducting particles dispersed in a non-conducting ma­
trix with a suitable amount make the total system to be a conductor. Among these 
systems some have been reported to have a switching characteristic: namely, the 
electrical resistance for these shows an anomalous increase at a certain tempera­
ture [6- 8].

Copper-polyethylene glycol (Cu-PEG) is a conductor-insulator composite 
consisting of Cu particles embedded in an insulating PEG matrix.

To the best of our knowledge, it is not clear if the percolation model is capable 
of describing the electrical properties of Cu-PEG mixtures. The present paper deals 
with the study of the variation of conductivity and the dielectric constant of Cu- 
PEG mixture with the percentage of copper. We also try to study the switching 
characteristics of Cu-PEG above the threshold percolation.
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E x p e r im e n ta l

Copper-PEG composites were made containing different percentages of Cu 
including (in weight) 1.25/2.50/3.75/5.00/6.25/7.50/8.75/10.00/11.25/12.00/17.00 
/20.00/, milling the compound together. Then the samples were compressed in 
the form of discs 1.0-1.5 mm thick and 12 mm diameter at 0.4 GN/cm2 at room 
temperature. All the samples were mixed separately. The last three percentages 
were used in the switching study in the form of cylinders with 12 mm diameter 
and 2.5 cm length. We made a hole in the sample’s centre for a thermocouple to 
measure its temperature. The copper used was 98.5 % very fine powder, atomic 
weight 63.54, obtained from Prolabo, Paris, France. The size of the copper grains 
in our samples was much smaller than the resolution of our optical microscope at 
a magnification of 1000x. PEG used was from BDH laboratory reagents, with an 
average molecular weight 3300-4000.

The capacitance of the mixture was deduced by an auto compute RLC-bridge 
APLAB model H912, USA at a frequency of 1 KHz. The values of the dielectric 
constant were determined using standard geometrical techniques in which the ca­
pacitance is assumed to be given by the usual expression for parallel plate capacitor.

Electric conductivity was measured using a Kithley type 617 programmable 
electrometer. A sample holder with brass electrodes was especially designed to 
fit the present electrical measurements. Good contact was attained by paint­
ing both surfaces of the sample with air drying conducting silver paste type RC, 
made in UK.

R esults and discussion

Kirkpatrick [9] was the first to demonstrate numerically that the conductivity 
a of an insulator-conductor composite vanishes below the percolation threshold f c 
and that a follows a power law above f c

a = a0( f  -  f cy .  (1)

In Eq. (1) /  is the probability of finding the conductive phase which experimentally 
usually sets equal the fraction of the conductive phase. cr0 is a prefactor that 
depends on details of the transport process, t (> 0) is a critical exponent which 
is about 2.0 in the three dimensions [10] and which should be independent of the 
chemical nature and geometrical properties of the constituents.

Also, Efros and Shklovskii [11] established theoretically that the dielectric 
constant z of a conductor insulator composite would diverge near the threshold. 
Specifically z would follow the following power law below f c

e  =  £ o ( / c  - / )  *,
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Fig. 1. D . C. co n d u ctiv ity  versus | /  — f c \ in  th e  log—log  p lo t showing th e  re la tio n  <r =  <ro|/ — / c |1
w ith  t  =  0.71 +  17

Fig. 2. L ogarithm ic  p lo t of th e  d ie lectric  co n stan t as a  fu n c tio n  of \ f c — / 1 • T h e  critica l ex p o n en t
a is 0.95 +  15

where s (> 0) is another critical exponent, and is about 0.7 in three dimensions 
according to numerical simulation [12].

The percolation threshold ( f c) of the composite system described here lies

Acta P hysica  Hungarica 73, 1993



1 7 8 М . М. MOSAAD

above 11.25 %. It is well known that f c depends strongly on the shape of the con­
ducting inclusion [13]. In this work we chose f c = 12% which was determined from 
the rapid decrease of the resistance of the same mixture with copper composition 
greater than /о.

Figure 1 shows the logarithm of d.c. conductivity against the logarithm of the 
excess critical concentration (log \ f  — f c\) curve. We found that our data are very 
well described by the least square regression line of log conductivity on log \ f  — f c\. 
The experimental exponent value is 0.71 it 0.17. This value does not agree with the 
theoretical expectation of 2.0 [14]. But our result agrees very well with our previous 
work on Cu-PVA [15]. Thus we can say that the exponent value depends strongly 
on the type of conductor filler.

Figure 2 shows a logarithmic plot of the measured dielectric constant as a 
function of I f c — f  |. We found that our data are very well described by the least 
squares regression line of log (dielectric constant) against log | / c — / 1. The ex­
perimental exponent value agrees favourably with empirical values obtained from 
inorganic composites [16,17], and with our previous work [18]. It also agrees with 
the value obtained from computer simulations [12].

We can therefore state that the percolative model gives a suitable description 
of the dielectric constant and conductivity properties of the system studied within 
experimental limits.

Figure 3 illustrates the behaviour for three different samples (12 %, 17 %, 
20 % Cu), each one supplied with three A. C. powers (i.e. we have nine conditions). 
The concentrations of the Cu and the applied voltage are indicated on each curve.

We notice that when the power is supplied to the sample, the temperature of 
the sample increases within a certain time and reaches a plateau which is maintained 
without any temperature control device. We can notice also that the plateau value 
depends strongly on the Cu percentage and the applied voltage.

Of course these samples can be used as heaters when we need a constant 
temperature, which is useful in biological and medical research. There are several 
characteristics for these heaters by Cu-PEG mixed system. Copper particles are 
easily dispersed in PEG matrices. As a consequence heaters with a required elec­
tric resistance can be easily made with an acceptable fluctuation of the resistance. 
These heaters cover the lower temperature region which is not obtained by barium 
titanate ceramics (70 °C). They could contribute to reducing energy consumption 
when they are used properly. The reason for saving energy could be that the un­
necessary radiation loss, which is considered to be proportional to T4, where T 
is the absolute temperature, is lower in the case of the heaters by Cu-PEG. The 
most important characteristic of these heaters is the steady state constant temper­
ature which depends on the Cu concentration and the applied voltage. Therefore, 
it could be possible to make a heater which shows a desired steady state constant 
temperature.

The research to clarify the mechanism of conduction in these Cu-PEG systems 
relating this to the mechanism of anomalous increase in the electric resistance is 
now proceeding.
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t i me  ( min)

Fig. 3. S tead y  s ta te  co n stan t tem p e ra tu re  vs e lap sed  tim e a fte r  th e  su p p ly  of th e  pow er (150, 
200, 225 Vac) fo r th e  sam ples (C u -P E G ) w ith  C u co n cen tra tio n  12, 17, 20 %
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INFLUENCE DES DEFAUTS THERMIQUES 
SUR LA DILATATION DES SOLIDES

Y. T h o m a s

In s ti tu t  de Recherches Scientifiques et Techniques 
49045  A ngers Cedex, France

(R eçu  8 ju in  1993)

Une év alu a tio n  d u  rôle des vacances th erm iq u es sur les d iverses fonctions th e rm o ­
dynam iques d ’u n  c ris ta l est effectuée. Les cas d ’u n e  faib le co n cen tra tio n  des défau ts d an s  
des solides m onoatom iques est illu s tré  avec le cu iv re  e t l ’a lum inium  à  ! 'a ide  des données 
expérim entales. Le coefficient de  d ila ta tio n  therm iq u e  ap p a ra ît com m e le p a ram ètre  le p lu s 
sensible e t le m ieu x  ad ap té  à  l ’é tu d e  des défauts therm iq u es dans les solides.

R e la t io n s  th é o r iq u e s

L’enthalpie libre d’un cristal réel à la pression P constante et à la température 
T  peut être écrite [1]:

G  ( p , T )  =  G o ( p ,t ) + 5 3  nj 9ij (P>T) — K T  ln Dij
i,i

où le premier terme représente la fonction de Gibbs du cristal supposé parfait (indice 
0), rij le nombre de défauts de type j,  gij l’énergie due aux défauts des espèces i 
et j  en interaction et Díj le nombre des différentes manières de distribuer les tij 
défauts supposés libres de migrer parmi les divers sites possibles (dont le nombre 
est influencé par les défauts en présence). Les termes gij et ln Dij sont nuis pour 
i ф j  si les interactions sont négligeables.

Si Ц est le potentiel chimique, la condition d ’équilibre des défauts de l’espèce
j  est:

La différentielle de G par rapport à P donne le volume:

V(P,T) =

Le second terme du crochet est non nul dans le cas général d’une contrainte ho­
mogène et d’un cristal élastiquement anisotrope et doit être évalué selon chaque
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C ourbes 1
Contributions relatives des vacances (C %) aux propriétés du cuivre en fonction de la 

température (T K), h  = 1170 meV, s = 1,5 K, x  = 0, 5va, f '  point de fusion.

cas, il est par contre nul à l’équilibre thermique ou si (drij / дР)т — 0 pour des 
impuretés ou des dislocations statiques par exemple et on écrit alors:

V (P ,r)  = V „(P,r) +  Ç nj ( Щ т où =

est le volume de formation de défaut j. L’enthalpie de défaut j  peut s’écrire h{j — 
P ■ Xij +  eij (énergie correspondante).

Le coefficient volumique ß de dilatation thermique à P constant peut être 
déduit de:

V - ß  = m  - « - A + i : [ ■ * № ) .
+  Xi
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ainsi que la compressibilité isotherme x :

V  ■ X —
( dV(P,T) 
V dP

afin de faire apparaître les contributions dues aux défauts (essentiellement des va­
cances) .

Cas d ’un cristal m onoatom ique

En présence de N  atomes, on a (N + n ) sites possibles pour n vacances simples 
et D — avec une entropie de configuration S = ln D.

A l’équilibre, en utilisant la formule de Stirling pour les grands nombres: 
n = (N + n)e~°'KT = (N + n)e(a~h^ KT où s est l’entropie vibrationnelle de 
formation, h l’enthalpie de formation des vacances et g l’enthalpie libre relative aux 
vacances.

On en déduit:
V(P,T) = V0(P,T) + n x ( P , T ) ,

Y - ß = K - A  +n( ^ ) p +
Envisageons le cas fréquent d’une faible concentration de vacances: (N  +  n ) > t i  
et Vq +  nx nx, si Va est le volume atomique [2]:

( dx(T ,P ) \  x ( _ h _ \
V 9T ) p T  \ K T )  '

Il apparaît, par les défauts thermiques, deux contributions distinctes au coefficient 
ß qui sont de même importance: ( |^ ) p ^  car Yr  ^   ̂ (ce n’est P38 Ie cas si le
terme x / T  devient prépondérant).

Le volume x = (дд/дР)т de formation d’une vacance peut être divisé en 
deux contributions: la création d’un site et un terme de distorsion du réseau soit 
x = ua(l +  d). On peut alors distinguer les coefficients: y- ( fy )p pour un réseau 
réel et ß0 +  -}y y t j  pour le réseau correspondant supposé parfait. La différence 
ß' = n h /N T 2 K , où n ’apparaît pas la dilatation d souvent inconnue, permet une 
évaluation directe du rôle des vacances.

La capacité thermique à pression constante est alors:

ß = ßo = N  - V a

Cp — ~  Cp0 + n h2
K T 2

ainsi que la compressibilité isotherme:

n
X — Xo + -гг-  Nv, ^  Xo + NvaK T
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Courbes 2
C o n trib u tio n s re la tiv e s des vacances (C %) aux p ro p rié tés  de  l ’a lum in ium  en  fonction  de la  

tem p é ra tu re  (T  K ), h = 760 m eV , s =  2 ,4  K, x  =  0 ,5 t’a, / : p o in t de  fusion.

Notons que x ~  compte tenu de l’expression précédente de ß. Ce volume
croît à haute température par le phénomène d’auto-diffusion. Enfin [3], la relation 
Cv — Cp — T V ß2/ x  permet de mettre en évidence la contribution des défauts à la 
capacité thermique à volume constant:

^  ^  , » f x o h - ß 0x T \  ( x h - ß x T \с, =Су, + — г — j .
Cette contribution est positive car ßo/xo — ß /x  mais faible tant que x ~  hx/ßT.  
Les grandeurs x, h et s jouent un rôle analogue aux valeurs molaires partielles dans 
les solutions diluées si bien que, dans les expressions précédentes de Cp , Cv et x, 
les termes ( |у ) р , ( fp )T, ( f£ )p et ( | f ) p sont négligés.
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A p p lic a tio n  au  cu iv re  e t à  l ’a lu m in iu m  —  c o n c lu s io n

En adoptant x =  va/2, à l’aide des données expérimentales pour le cuivre [4] 
et l’aluminium [5], les contributions relatives des vacances aux diverses propriétés 
thermodynamiques sont mises en évidence. Sur les courbes 1 et 2 on note, par 
exemple, Cp pour (Cp — Cpo)/Cpo. Le paramètre de Grüneisen y = ßV/xCy  
est également représenté. Par manque de mesures très fiables, la résistivité élec­
trique n’a pas été portée bien qu’elle semble également sensible à la présence de 
vacances [6].

Pour x e [hVoßo/Cpo, hxo/ßoT], avec les approximations signalées, la contri­
bution au coefficient ß  apparaît comme la plus importante. La dilatation thermique 
est la propriété la plus sensible et donc la plus appropriée à l’étude des défauts du 
réseau cristallin (ceci reste vrai jusqu’à la valeur x «  ua).

Pour étendre ces résultats à divers défauts et structures, où faute d’approxima­
tions les expressions précédentes se compliquent, il sera sans doute nécessaire de 
relier les propriétés des défauts à celles des phonons pour expliciter la dilatation 
thermique vers les hautes températures [7].

R eferen ces

1. R . E . H ow ard, A. B. L id ia rd , R ep o rts  on P ro gress in  Physics, 27, 161, 1964.
2. J . T . H older, A. V. G ra n a to , Phys. Rev., 182, 729, 1969.
3. Y . T h om as, A cta  Phys. H ung ., 48, (4), 397, 1980.
4. R . O. S im m ons, R . W . Balufïi, Phys. R ev., 129, 1533, 1963;

O. Vollm er, R . K ohlhaas, Z. angew. Phys., 25, 365, 1968;
C. R . B rooks e t al, J . C hem . Phys. Solids, 29, 565, 1968;
Y . A. C hang, L. H im m el, J . A ppl. Phys., 37, 3567, 1966.

5. R . O. S im m ons, R. W . B alufïi, Phys. R ev., 117, 52, 1960;
D. G erlich, E . S. F isher, J . Phys. Chem . Solids, 30, 1197, 1969;
C. R . B rooks, R . E. B in g h am , J. Phys. C hem . Solids, 29, 1553, 1968.

6 . A. Ascoli, G. G uarin i, G . T . Q ueirolo, C rysta ls L a ttic es  Defects, 1, 159, 1970.
7. V. G allina , M. O m ini, P h y s . S ta t. Sol., 7, 771, 1964;

J. H older, A. V. G ran a to , J . Appl. Phys., 41, 5152, 1970.

A cta P hysica  Hungarica 78, 1993





A d a  P hysica  Hungarica 73 (2~4)i VV- 187-196 (1993)

THREE BODY FORCES AND A NEW APPROACH 
TO THE LATTICE DYNAMICS OF SOME 

fee METALS

M . K .  M i s h r a , P r a d e e p  G u p t a * a n d  S m t . A m i t a  S h a r m a ’ *

D epartm ent of P hysics, D . A . V. College 
K anpur, In d ia

* D epartm ent of Physics, D . S. N. College 
Unnao, In d ia

** D epartm ent of P hysics, R . B . S. College 
Agra, In d ia

(Received 8 Ju n e  1993)

T h e  resu lts  for th e  p h o n o n  d ispersion  curves along th e  m a jo r  sym m etry  d irec tio n s , 
second o rd e r e lastic  c o n stan ts  (SOEC) an d  zero  p o in t energy are  o b ta in ed  on th e  b asis  of 
m odified  schem e, cen tered  a ro u n d  a n  em p irica l M orse p o ten tia l fo r som e fee m eta ls . T h is 
exponentied p o ten tia l is less p a ram etric , w hich  incorporates th e  exchange an d  c o rre la tio n  
effects d u e  to  electrons in  a  sim ple and  effective m anner. T hese  above co m p u ted  re su lts  
are com p ared  w ith  experim en ta l findings w ith  rem arkable  success.

1. In tr o d u c tio n

Recently much emphasis has been put on theoretical studies [1-9] of lattice 
dynamics based on Morse potential [10]. These studies explain excellently the elastic 
as well as the lattice dynamical behaviour of all types of cubic metals. With the 
volume forces recently Mohammad et al [1] have combined the central forces and 
arrived at a model explaining the phonon dispersion in cubic metals. It may be seen 
that the former forces, which are essentially of short range, may not be added to 
the latter ones, which are obviously of long range character. Singh and Rathore [2] 
have used the composite form of the cohesive energy as input data to explain the 
elastic and lattice dynamical behaviour of some cubic metals. This deficiency has 
been removed by Mishra [6] in his recent publication. Three body forces derived 
by Mishra et al [3-5] explain the lattice dynamical, elastic and thermophysical 
behaviour of metals in a broad manner. Mishra [6] used a modified Morse potential 
and applied it on fee cobalt. Rathore et al [8] explained the lattice dynamics of some 
HCP metals successfully using the combined form of the empirical Morse potential. 
Theories given by Agrawal et al [7] and Aradhana and Rathore [9] added a new 
dimension to this type of study. But it is yet to know how they have developed a 
Modified Born-Mayer potential [1] then added to the Morse potential.

The present investigation, therefore, deals with the specific nature of the 
Generalised Morse potential which will be controlled by the factor P also in the
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paired part of the potential and then this two body part has been added to the 
modified three body generalised part. We have found that the factor P  is very 
important and may provide a correct scheme to predict the lattice dynamical and 
elastic behaviour and zero point energy of some fee solids, i.e. Au, Ni, Pt and Pd. 
The subject matter of the present scheme uses a minimal number of parameters 
for expressing two and three body forces. The results obtained are excellent and 
surprising to report and very close to the experimental findings. This present scheme 
also incorporates the exchange and correlation effects due to electrons, which depend 
upon the variation of magnitude of P.

2. T h e o r y

A. Two body part

Following Milstein [12] the attractive and the repulsive character of the two 
body potential are blended to form a generalised exponential pair potential which 
assumes the following forms for the atoms located at r.

Ф(Г) =  D(p  -  l ) - 1  [ e x p { - P ( r 0 -  r ) }  -  P e x p { - a ( r 0 -  r ) } ] , ( 2 . 1 )

where D is the dissociation energy, a the parameter which measures the hardness of 
the potential, ro is the equilibrium distance and P is the exponent acquiring values 
within the different range.

The average interaction energy cohesive due to the potential may be expressed 
as

1^ [ e x p { - P ( r 0 - o ) a } - P e x p { - ( r 0 - r J )a}]. (2.2)
j

The quotient 2 in Eq. (2.2) takes care of the double counts. Putting

ß = exp(aro), (2.3)

we have a more compact form of the potential, i.e.

Ф*П) = D i 2(P -  1)}_1 ^ 2  {ßP ex p (-P arj) -  ßP exp(-arj)]  . (2.4)
J

This distance rj  may be written as

rj  = (m\  + m\  + m \) l t 2a = Mja,  (2-5)

where (m i, m2, m3) are integers denoting the co-ordinates of the J-th atom of the 
solids and a is the semi lattice constant. We have evaluated the present ф*г  ̂ up to 
eight nearest neighbours (140 atoms) for fee metals.
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B. Three body part of the generalised and modified Morse potential

For the present purpose, the three body potential signifies an extra interaction 
energy affecting the pair owing to the presence of the third particle. In essence, it 
is a distance dependent three body potential, which arises due to the deformation 
of the electron shells caused by (s — d) hybridisation. The short range three body 
exponential potential, capable of expressing the repulsive as well as attractive na­
ture, coupling the atom (m, k) with its common nearest neighbours (ri =  Г2) may 
easily be written as

(̂Г1,га) =Q{4p ~ 1)} 1 ХЛ^Рехр{-агР((Г1 + Г2))}
m'k' mk 
m к

—Pßexp { - a ( r i  -  r 2) } ] , ( 2 . 6 )

where r 1 and r2 are the separations of the atoms (m'k') and (m"k'') from the atom 
(mk). Q is the deformation parameter. Prime on the first summation denotes 
m'k' ф m"k".

C. The total potential

The total potential, responsible for the resultant interactions coupling the 
atoms of the crystalline solids may now be written as

3. P a r a m e te r  ev a lu a tio n

Singh and Rathore [2] have studied the lattice dynamics of some cubic met­
als based on the generalised Morse potential. According to this study, cohesive 
energy, lattice constant and compressibility are the input data for the empirical 
Morse potential. Compressibility and cohesive energy are, respectively, the sum of 
ionic interaction and interaction due to the electrons. Mishra and Rathore [3] have 
separated two and three body parts for compressibility. Mishra [6] has recently suc­
ceeded to elaborate the ionic behaviour and behaviour due to electrons on the most 
significant contribution to the binding energy, which arises from the interaction be­
tween the metal ions and the electrons, is not included in the potential [3], even 
though the potential is fitted to the total cohesive energy. In this note the following 
procedure has been adopted to separate the ionic interaction and the interaction 
due to electrons in terms of cohesive energy

фху =  Ф* + ФУ, (3.1)
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T able I
T he in p u t  d a ta  used

M etals Two bo d y  
b u lk  m odulus 

k x ( x  1012 d y n e /cm 2)

Ionic p a r t  of 
cohesive energy 
<A*(xlOl 2 erg)

Semi la ttice  
co n stan t (a) 

(nm )

P

A u 0.509 2.644 0.2040 3.15
Ni 1.571 3.125 0.1760 2.75
P t 1.085 4.111 0.1960 2.75
P d 0.887 2.738 0.945 2.75

T able II
T he co m p u ted  p a ram ete rs

M etals D

(x lO 12 erg)

a

( n m " 1)

Г0

(nm )

C au ch y ’s 
d iscrepancy 

(x lO 12 d y n e /c m 2)

Q

(X 10 ~ 12 erg)

A u 6.536 0.1519 0.3133 1.223 1.245
Ni 0.413 0.1945 0.2589 0.265 3.698
P t 0.470 0.1418 0.2971 1.742 18.434
P d 0.345 0.1632 0.2889 1.043 15.616

T able III
C o m puted  force c o n stan ts  ( X104 d y n e /cm )

M etals a i P l а  2 А А
A u -0 .1 2 8 3.183 0.034 -0 .1 5 5 0.307
Ni -0 .2 7 2 3.576 0.089 -0 .1 4 2 0.067
P t -0 .3 2 6 2.978 0.041 -0 .0 8 8 0.311
P d -0 .2 1 6 1.864 0.039 - 0.011 0.221

where фху is the total cohesive energy, фх is the energy due to ions and фу the 
energy due to electrons.

Further
фу = E,  + En + Ec, (3.2)

where Ej  (Fermi energy) = —2.21 / г 2 Rydberg, En (exchange energy) =  —0.916/r 
Rydberg, Ec (correlation energy) =  [0.0622Inr — 0.096] Rydberg, while 1 Rydberg 
= 21.79 X  IO“ 22 erg.

Hence the energy due to electrons

фу = ' 2.21 0.916
r

+ (0.0622 ln r -  0.096) Rydberg. (3.3)
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Here r is the dimensionless quantity and may be varied like 2, 3, 4 or 5 while 
In is the natural log.

The three parameters (D , a  and ro) depending upon the two body poten­
tial with an appropriate value of P, are evaluated by the procedure laid down by 
Girifalco and Weizer [13]. The deforming parameter Q is evaluated from the knowl­
edge of measured Cauchy’s discrepancy in the second order elastic constants.

4. D y n a m ic a l m a tr ix

The elements of the diagonal and off-diagonal matrix may be given, after 
solving the usual secular determinant, as

-О а 'а ' (ч )  —4(/?i +  2c* i)  — 2(/?i +  O C i) C a ' { C ß I +  C r ' )
-  4a iC7?'(r' + 4ß2Sa> +  4a 2(S2ß, + Sr2,), (4.1)

Da'ß'(q) =2(/?i — ati)Sa'Sßi -I-4/?з[{Ca‘ + Cr>) — 2], (4.2)

where Ca> cos(^p-), Sa> = sin(aga'/2).
Hence c*i, «2 are the first and ßi, /?2 are the second derivatives of the potential 

ф*r j) while /?з is the second derivative of (Table III).

5. E la s t ic  c o n s ta n ts

The second (SOEC) order elastic constant may be obtained as

q2 /(r)
/ - ____ 4 n - l - 2  ™(r j )  , _ 2 . _ 2 n - l - 2  V '— TTl-̂ ùi Cl y  ̂ ~ 2 “г ТП-̂ ТП̂Ы Cl y ^

т ^ т г т з  Ш] , т 2 ,т з

where Cl is the atomic volume. The other constants like C12 and C14 are obtained 
by replacing m\  with suitable combinations of mi, m2 and m3.

д2ФУ, 1Ч'Ч.’-з)
dr2dr2 ’

(5.1)

6 . Z ero  p o in t e n e r g y

Zero point energy per mole has been computed using the method of Wallace 
[14], i.e.

Eo = 0.bN^2 huqj/ ^ W q, (6.1)
J,i я

where N  is the Avogadro number and Wq the statistical weight of an allowed wave 
vector in the irreducible part of the first Brillouin zone.
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t

Fig. 1. P h o n o n  d ispersion  re la tio n  fo r gold ( P  =  3.15) (— ) p re sen t s tudy ; ( •  •  ») ex p erim en tal
p o in ts

7. D isc u ss io n

The theoretical phonon dispersion relations for Au along the symmetry direc­
tions [100], [110] and [111] are shown in Fig. 1 along with the experimental points 
due to Lynn et al [15]. The comparison of theoretical results with the experimental 
ones reveals a good agreement, as is obvious from Fig. 1. Our theoretical results for 
phonon frequencies of Ni are shown in Fig. 2 along with experimental points due 
to Bergeneau et al [16]. The theoretical results compare well with the experiments 
for all the branches. The phonon dispersion curve of Pt is shown in Fig. 3. The 
agreement between calculated and observed values of Dutton et al [17] is found 
reasonably good for Pt in all branches. The experimental phonon frequencies in 
Pd were measured by Miller and Brochouse [18]. A study of Fig. 4 shows that 
the computed phonon dispersion relations in palladium have almost reproduced the 
experimental curves along all the symmetry directions.

Table IV predicts the second order elastic constants (SOEC) of all four fee 
solids under study. Our results show a good agreement in SOEC of all the fee
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Table IV
T he com puted  second o rd e r elastic co n stan ts  ( X1012 d y n e /c m 2)

M etals C il Ci2 C44 Reference

Au 2.016 1.707 0.443
1.929* 1.638* 0.415* [19]

Ni 2.512 1.586 1.331
2.500* 1.600* 1.185* [20]

P t 3.447 2.335 0.594
3.467* 2.507* 0.765* [21]

P d 2.194 1.636 0.594
2.271* 1.760* 0.717* [22]

Table V
C o m puted  values of zero-point energy  (cal/m ol)

M etals P re sen t work Singh  [23] D om b a n d  S a lte r [25] J a in -P a te l  [24]

A u 415.0 423.0 458.0 406.6
Ni 860.0 864.4 876.0 -

P t 572.0 525.6 580.0 -

P d 665.0 621.0 685.0 -

F ig. 2. P h o n o n  d ispersion  re la tio n  fo r n ickel (P  =  2.75) (— ) p resen t s tu d y ; ( •  •  • )  experim en tal
po in ts
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Fig. 3. P h o n o n  d ispersion  re la tio n  fo r p la tin u m  (P  — 2.75) (— ) p re se n t s tudy ; (•  •  • )  experim en ta l
p o in ts

solids with corresponding experimental values reported therein. In order to make a 
further direct test of the model, we have also computed third order elastic constants 
(TOEC) and fourth order elastic constants (FOEC) for the same metals. These 
higher order elastic constants are not being reported here but can be had from 
the authors on request. The studies on higher order elastic constants are useful 
understanding the non linear strain-stress relationship, vibrational properties and 
anharmonic behaviour of the solids.

Our computed values of zero point energy (Table V) are compared with the 
calculations of Singh [23], Domb and Salter [25] and Jain and Patel [24]. Table V 
predicts the clear picture of our computed values with the other studies.

Finally, we have drawn the conclusion that the present investigation provides 
the satisfactory type of scheme which is centered around a more correct procedure of 
parameter evaluation. The used input parameters are purely ionic for the two body 
part while deforming parameter Q is explaining the three body part excellently.

One more interesting conclusion has also been drawn during the computation 
that the variation of the magnitude of P in this scheme gives very reasonable ionic as 
well as part due to electrons. If the value of magnitude of P  is varied, the results are 
suddenly disturbed. The appropriation of the exponent (P) substantially includes 
the electronic exchange and correlation effects into the ionic couplings.
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P --------- --- — ---------- q q

Fig. 4. P ho n o n  d ispersion  curve for p a lla d iu m  ( P  =  2.75) (— ) present s tu d y ; ( •  •  • )  ex p erim en tal
points

The input data, computed parameters and computed force constants are given 
in Tables I, II and III, respectively.
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ON THE VALIDITY OF THE MAXIMUM 
ENTROPY FORMALISM

E. S. F r e id k i n
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Johannesburg, Republic o f Sou th  A frica1

(Received 15 June 1993)

A comparison is m ade between time development of the system , which follows from  
the exact solution of G rabert equation for fluctuation distribution function  and tha t derived 
from  the m axim um  entropy formalism. It is shown here tha t the m axim um  entropy form al­
ism  can describe the behaviour of the physical system  for times sufficiently long only if the 
num ber of sta te  variables under consideration is very large. Thus, th e  standard  applications 
of the m axim um  entropy form alism  with few s ta te  variables are erroneous.

1. In tr o d u c tio n

The maximum entropy formalism [1] starting with an information theoretic 
entropy analogue, which is the functional of the phase distribution, maximizes the 
entropy subject to the condition that the values of the energy and certain addi­
tional moments such as, for example, pressure and heat flux are specified. Lagrange 
multipliers are introduced and their subsequent evaluation enables to find the dis­
tribution function. Based on the information theory this approach asserts that the 
best phase space distribution consistent with a given value of energy and certain 
additional moments £,(r) defined at all points in the system interior is given by:

N

P{x) = exp{- A,(r)E,(r, x)}dr, (1)
1 =  1

where Z  is normalizing factor and the А,-(г) are chosen so that:

e.'(r) = £,averaged(r , z) = j  p(x)Ei(r,x)dx. (2)

E(r, X,-, pi) is thermodynamic variable at point r calculated as function of 
moments and coordinates of the particles. The maximum entropy so introduced:

S  — -  J  p(x)\np(x)dx (3)

1 Present address: D epartm ent of Physics and Astronomy, The S ta te  University of New 
Jersey-Rutgers, P. O. Box 849, Piscataway, New Jersey 08855-0849
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has been extensively used and it was always taken for granted that the maximum 
entropy so defined can be used for the description of physical systems [2]. The 
possibility of defining Lagrange multipliers from (1,2) went without saying. In 
previous work [3] we proved that this assumption is wrong. Simultaneously with 
this assumption another has been made: that the maximum entropy, even defined 
when just a few moments, except of energy, are specified can serve for the description 
of physical systems for times sufficiently large ([2] and references therein). We will 
prove making use of fluctuation distribution function introduced in [4] that this 
assumption is erroneous. Consider the selected set A,(x) of dynamical functions of 
the phase distribution and the set of generalized velocities A, (z), where iL is self- 
adjoint Liouville operator. Further on we will use the notation a for state variables 
and T) for generalised velocities. The maximum entropy so defined also provides a 
distribution which is the average of the function:

ipa(x) = 6( A ( x ) - a ) 6(À(x)-i]) ,  (4)

a=(a,r)) .

8(A(x) — a) denotes a product of factors <5(A,(z) — a,) over the maximum entropy 
distribution

g(a) = J  p(x)ipa(x)dx. (5)

According to the information theory, g (a) is the best fluctuation distribution con­
sistent with the specified values of A,(x) and A,(z). The time evolution of g(a,t) 
is governed by the equation [5]:

dg_
dt

E dfaff), v~̂
dai ^Í t

% . g )
dr],

Here:

Pß(a) = J  P ß ( x ) r p a ( x ) d x ,

va(a) = P ß \ a )  J  pß(x)Äi(x), (7)

7t(a) =P̂1(a) J  pp(x)(iL)2Ai(x)dx.

The kernel D(a,a',r) is defined as follows:

Dij(a,a\r) -  J  pß(x)ipa>(x)[(iL)2Aj(x)](l -  P )exp[iî(l -  P)T]ipa(x)(iL)2Ai(x),

( 8)
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a u  r i = /  ! (9)

and J5 is the projection operator for the system in thermal contact with surround­
ings, defined in [4]. (See also [5], where the correct form for the integral term is (5) 
was derived. The equation holds provided the initial distribution satisfies:

Tr[pp(x)iJ>a(x)Fa'(t)\ = 0, 
r, _  -  P) exp[j'î(l -  P)t\ipa,(x)Âi(x)\
Fa' = - 2- ^ --------------------- Щ ----------------------* *

5[(1 -  P) exp[iX(l -  P)t]ypa'(x){iL)Âi(x)\

r  d<

This holds for maximum entropy distribution.

( 10)

( И )

2. S o lu tio n  o f  th e  e q u a tio n  for f lu c tu a t io n  d is tr ib u tio n  fu n c tio n

One can solve (5) using the Taylor expansion:

*.*> = t 3- ^ -  (12>
n = 0

We readily establish the recurrence relation:

fn+iv \ _ r5 [ i) i/" > (a )]  ő[í.(a)ff(n)(a)]
9 W  ^  dat Я -dru

m + J b  +  l = n  .

+ £  £  /  Al(a',a)gW(a')da'.
m ,k> 0 i J

AH*, a') is defined from

- p f W ) S- ^ A
k=0

(13)

(14)

Now we are in a position to find the function g(a,t) at an arbitrary time, pro­
vided we know the fluctuation distribution at time t = 0. Assume at time t — 0 
the initial distribution corresponds to the maximum entropy distribution, namely 
is the best fluctuation distribution consistent with the specified values of a and t) 
variables. We assume that the internal energy and heat flux per unit volume are 
the state variables of extended nonlinear thermodynamics. The assumption that
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few variables are sufficient for the description of a physical system is common in 
nonlinear thermodynamics and maximum entropy formalism [4,6]. We will prove 
that the assumption is erroneous. In Section 3, making use of the solution of the 
Grabert equation, we will calculate the heat flux as function of t and the corre­
sponding second moment of the heat flux. Making use of the result we will work 
out the expression for the corresponding maximum entropy distribution and fluc­
tuation distribution. We can calculate from g(a,t) as many moments, as we wish 
if they are included among the state variables on which g(a,t) depends. In the 
next Section we calculate the second moment of the heat flux as it follows from the 
assumption that the system is described by the maximum entropy distribution and 
compare it with exact results.

3. Calculation of the m om ents of heat flux

The expression for the heat flux has the form:

n - I V —-  + '52u (r in) - hm i^n

1 ^   ̂ pnyU (rn-y)

" , 7 ,3
2V ' n 7

( r " 7  r j '7 ) ( r n<* r j a ) '

(15)
See [7] a and 7 label the components, F(r) is the energy of the interaction between 
particles, V  is the volume of the system, h is the enthalpy per particle

„<■)(,) =  - £ « f e (4)i (°l(<l)] 
1 =  1

dqi (16)

5.(q) = Pß X J Pß(x)^4(x)(iLQi(x))dx, (17)

ç;(q) equals zero as the integrand is an odd function of coordinates. Therefore:

<7(1)(q) = 0.

For the second order term we obtain:

ff(2)(q) =  E  /  4 0)(* .q ) i(0)W *

(18)

(19)
t =1  '

and, after some transformations:

(2). A  d[Tr[p0(x)i/>q(x)(iLQi(x))(iLQj(x))](—% f —)\
0 (q) = E ---------------------------- ^ ----------------------— • <2°)

i j = 1
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Tr(pßip4(iLQi(x))(iLQj(x)) is calculated in fluctuation approximation.

Tr[pß(x)i/>4(x)(iLQi(x))(iLQj(x))] = Tr[pß(x)(iLQi(x))(iLQj (x))]Tr[pß(x)tp4(x)].
( 21)

All integrals over momenta can be calculated exactly if one uses:

P?( P i-A )2 =  A 2(mfcT)2(3 +  2 (22)

(p,A i)2(p,,A2)2 = ( m k T f A \ A \  + 2(mjfcT)2(Ai A 2)26w , (23)

PnaPn'aPnßPn'ß = (тпкТ) (Snni + Saß +  Snn'Saß). (24)

If we assume the gas density to be small and take into account only correlation 
functions of the second order after some lengthy calculation, we obtain:

Tr[(iLQi(x))(iLQj(x))\ = S i j y  J  exp(-ßV(r))dr  ^  [^ '2(r)]+

+ Й  ( Í J )  / *M -0 V (r ) )d r  [± (* Т /т )3г2[Г "(г )]а

~ v L ï [V{r)V'{r)]7 ~ 6ijV  J  exp( " ^ ( r ))d rÏ 2 ^ r2fF ,(r )]2’

In (26)

Тг[р0(х)фч{х)]
Г ч __ Л 3/2
[ s ’1 ] exp

-T 15 O ( t u 3
? 2 V m

(26)

(27)

and we take into account only leading over density terms. In order to proceed with 
further evaluation, we must do definite assumptions, concerning the potential and 
the initial form of fluctuation distribution.

4. T h e  ev a lu a tio n  o f  t im e  o f  th e  v a lid ity  o f  m a x im u m  e n tro p y  fo rm a lism

We assume that initially the distribution g(a, t) corresponded to the maximum 
entropy distribution with specified values of internal energy and heat flux Q. The 
corresponding function is easily found. The density distribution is:

(28)

(29)

pq(x) = Z 1e x p [ - ß H -  7(Q )Q (*)] 

Z = VN (2irmkT)*P.

A cta  Physica Hungarica 73, 1993



2 0 2 E. S. FREIDKIN

The typical volume considered in nonequilibrium thermodynamics is of the order 
10-18 m3. The result is valid for Q < 104 W /m 2, which holds in all cases of interest.

T (Q ) = ToQ,

4 V m

(30)

7o = - 35 p (kT )3 '
From here we find:

ff(0)(q) =
I V  m i f

5tt p (kT)3.
exp

( - P ? ' ’)  (3D

If we assume that from t = 0 and further on the system is described by the maximum 
entropy distribution, then in (28) we must substitute "^(Q) where "t*(Q) = ToQ(0 
is calculated according to the formula:

The distribution

Q(t) = Q(0) + J  dq[g(q,t) -  g(q,0)]q.

,  *  ^  ff(n)(q)<"
*(q.*) =  2 ^ — —

n = 0

enables us to calculate second moment.

Q2(0 = Q2(°) + J áq[p(q-0-</(q.°)]q2-

(32)

(33)

(34)

On the other hand, we can calculate the second moment of the heat flux, using the 
maximum entropy distribution

Q!(1) = I * 1 [ s 7 ( w ] 1 “ p «w( - 7(Q)4)4j- (35)

Our aim is to compare these two results. Let us calculate the relative deviation of 
the second moment with respect to t =  0

л т  = Q2(<) -  Q2(0) 
( j “  Q2(o)

(36)

The quantity A(t) calculated exactly will be compared with that calculated ac­
cording the maximum entropy formalism. We can proceed further to evaluate it 
if we make definite assumptions concerning the shape of the intermolecular poten­
tial F(r). For the evaluation we suppose that the gas consists of molecules of Ne
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at atmospheric pressure and room temperature interacting through the Sutherland 
potential:

V'(r) =  oo for r < <7,

V(r) =  — e  ̂ for r > a. (37)

See [8]. We introduce the notation: Aexact(i) for Л calculated exactly and Ame.f. (t) 
for Л calculated according the maximum entropy formalism

5(<) = Aexact(i) -  Am.e.f.(i)- (38)
In the expansion of S(t) over powers of t we get the striking result. (The term, 

proportional to t, of course equals zero by the definition of the maximum entropy 
formalism). But even in the second order (!!!) over time the disagreement between 
maximum entropy approach and exact solution is notable

S(t) = 1053 m~1e4<r(kT)~3pt2. (39)
For the evaluation we take neon at room temperature:

cr = 0.233 nm, (40)

Ï  =  192 K’
p  =  2.445 X  1025 m" 3

and get:

S ( 0 = ( 4 ) \  (41)

T o  =  2.8 X  К Г5 * * * * * * 12 s.

Therefore, only for t < tq the assumption that the system can be described by 
maximum entropy distribution gives the results which coincide with the results of 
exact calculation!

5. Conclusions

We investigated the problem of the validity of the maximum entropy formal­
ism. In particular, we presented the first evaluation of the time for which maximum
entropy distribution is valid for the description of physical systems. One can get
the same order of magnitude for other potentials of interaction between particles
and for other moments specified. The maximum entropy formalism turns out to be
valid (if one assumes that at some time the system was described in this way) only 
for a period of time of 10“ 2(!!!) atomic collisions and further on strongly disagrees 
with the results of exact evaluation. Thus, it turns out to be completely insufficient.
Of course, if the number of moments in question [9] tends to infinity, the maximum 
entropy formalism gives exact results but there is no practical point to use such 
approach.
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In  generaBzed gauge m odels a  so-called  U m atrix  is developed. I t  is a  n o n -dynam ica l 
en tity  which corre lates different field b ases. In  th is p a p e r  such  an  П m a trix  is explicitly  
eva lu a ted  fo r th e  cases w ith  two, th ree  a n d  four fields ro ta t in g  un d er a  single g ro u p . T he 
corresponding  p ro p a g a to r  transfo rm ations b etw een  these field  bases are also ca lcu la ted . An 
in te rac tin g  p o te n tia l  expression  d epend ing  on  p rim ord ia l p a ram e te rs  is shown.

1. In tr o d u c tio n

The viewpoint of associating two or more independent gauge potentials to 
a single compact and simple gauge group has been shown to be supported by 
differential-geometric arguments. Indeed an analysis based on a Kaluza-Klein cou­
pled matter-gravity theory [1] and a description of gauge potentials in terms of 
connection on principal fibre bundles [2] enforce the possibility of introducing in­
dependent potentials is association to a single group and, at same time, allow a 
geometrical interpretation for the extra gauge fields that are introduced. Another 
proof was also derived by relaxing supersymmetry constraints [3]. Thus these three 
different origins allow to be written a generalized gauge model based on the following 
transformations :

A ^ {x )  -  А'^(х) = UA)lI{x)U~l + Ud»U~\  (1.1)

where I  = 1 , .. . ,  IV. Equation (1.1) brings consequences on inducing the classical 
generation of non-linear cr-model [4].

This generalized model can also be developed with matter fields [5]. This 
means that distinct flavours can be understood as rotating under a same group

Фа -+Ф'а =  е<в«Ф„, (1.2)

where Фа is any matter field with a = 1 , . . . ,  N  and Q is a diagonal charge matrix 
with qa eigenvalues.

A first consequence of these of generalized models is that the relationship 
between fields and quanta is no longer univoque. The situation appears where for
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a given field basis one gets that a corresponding field will carry various quanta, a 
result which can be verified by calculating the poles of the corresponding propagator. 
However, we should observe that for spin-0 and spin-1/2 there is always a field basis 
which is completely diagonalized. However, for high order spin cases just one sector 
can be diagonalized. For instance, for Eq. (1.1) the longitudinal sector will preserve 
a non-diagonal kinetic term while the transverse sector is diagonalized.

The motivation here is a non-dynamical entity which such generalized gauge 
model develops. It was identified as Í2 matrix and its origin comes from the possible 
field rotation that theory contains:

<p =  Г2Ф, (1.3)

where (p and Ф are associated to field reparametrizations.
The so-called Ф-basis is a column vector containing the fields in Eq. (1.2). 

They generate the following diagonal Lagrangian

£[ф] = Ф +П Ф -Ф + т2Ф. (1.4)

In parallel, there is the considered 99-basis, which corresponding Lagrangian

C[p] = c p + O K p - p + M 2p  (1.5)

is invariant under
Pa(x) -  <p'a(x) =  (eia^ ) abpb(x), (1.6)

where Q is an TV-dimensional charge matrix, not necessarily diagonal. Reality 
condition says that К  and M  are hermitean. Their matrix elements are built up 
in terms of the so-called primordial parameters. They represent elements in such 
generalized gauge theories which are revealed when one works with non-diagonal 
field basis as Eq. (1.5). Due to the fact that such coefficients contain the property 
of parametrizing the model in the sense that can take any value without violating 
gauge symmetry, they were entitled as primordial parameters.

As a first glimpse on fi matrix existence at such generalized gauge model we 
can derive the following relationship between the above charge matrices:

Q = ÇÏQÇ1~1 (1.7)

which shows the influence of such initial parameters.
Notice that the Í1 matrix creates scalars and tensors and shows that sym­

metry can change its shape in the sense that depending on the field basis it will 
appear in different representations for a given symmetry. Nevertheless such field 
reparametrizations equally describe the TV-involved quanta. This property of quanta 
invariance was proved in [5] where it is shown that quantum numbers as spin, mass, 
charges, discrete symmetries which define a quantum are independent of Í1 transfor­
mations. Consequently, gauge theories involving various fields rotating under a same
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single group offer a kind of field reference system which says that a given quantum 
physics can be described through different ‘field coordinates’ or field reparametriza- 
tions. Therefore such proposed Cl matrix, similarly to the Lorentz matrix and to 
the gauge-fixing approach, belongs to the family of observators.

The Cl matrix provokes a new kind of choice on the calculation process, and 
it develops a method for investigating the relationships inside of such generalized 
gauge models. The first effort of this work is to calculate Cl explicitly. For this, 
Section 2 is devoted to cases involving two, three, and four fields, Section 3, to 
studying propagators transforming under such Cl matrix. And finally, experimental 
parameters as masses, coupling constants and effective potentials are calculated in 
Section 4 in terms of such primordial parameters. Calculations were performed 
through the algebraic system Reduce [6] and Maple [7].

2. Cl m atrix

The objective of this Section is to evaluate the Cl matrix explicitly. For this 
cases involving two, three and four fields rotating under a same group will be studied. 
Three calculation methods were developed.

The first one means to diagonalize step by step Eq. (1.5). For this, one 
introduces two unitary (orthogonal) matrices S and R, where S  diagonalizes the 
kinetic matrix К  and R  the correspondent mass matrix obtained after S  rotation. 
We call К  the the diagonalized К  matrix. By the use of Eqs ( 1.3)—( 1.5) it is quite 
straightforward to show that the expression of fi matrix is given by [5]:

n = S tK~ 1'2Rt, (2.1)

where К  > 0 means the Cl existence condition. However, in practice expression (2.1) 
is very hard for doing calculations even considering algebraic computer methods.

A second method for building up the Cl matrix can be developed by using the 
following relationship [8] :

CICI+ = R - 1 (2.2)

and
Cl-1(K~1M 2)Cl = m2, (2.3)

which can be obtained from Eqs (1.3)—(1.5). One can note from Eq. (2.2) that 0 
is not hermitean. Equation (2.3) can also be used to calculate the physical masses, 
given by the diagonal m 2 matrix, in terms of the primordial parameters.

Suppose that (Л, u>) are the eigenvalues of K ~ XM 2

{K~l M 2)w = \w.  (2.4)

Then if one defines v as:
V — Cl~1w, (2.5)
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it yields,
Çl-1(K~1M 2)il V =  \ v . ( 2.6)

From (2.3) one can see that the elements of the diagonal matrix m2 are (K ^ 1M 2) 
eigenvalues. Then from Eq. (2.6), one can choose a set of eigenvalues and eigenvec­
tors (Ai, vi); (A2, v 2 );  . . .  ; (Адг, v j v ) such that:

( 1 \ f ° \ / ° \

Vl  =
0

; v 2 =
l

; . . .  ; v n  —
0

\ 0 / \ l )

are satisfying the orthonormality and completeness conditions.
Therefore the corresponding set for Eq. (2.4) is (Ai, w\ — fini);. . .  ; (Адг, и)дг = 

Qujv) where each u>,- correspond to the ithQ column

wa =
/  ^la

\ Clffa
( 2 .8)

and are satisfying the following relationship

= К  l . (2.9)

Once obtained wa satisfying Eq. (2.9) one is able to read off the elements of Cl 
matrix.

This second method will be taken in order to evaluate the fi matrix. The К  
and M  matrix are preserved general, however, obeying the conditions of К  and M  
being hermitean and К  > 0. We will explicitly exhibit the Cl matrix now.

First, for the case involving two fields, N  = 2, the initial matrices are

f *11*12 \  M2 -  (  mHm12 \
\  * 12*22 /  ~ \ m { 2m22) - ( 2. 10)

In this case and in the following ones the diagonal elements of К  and M 2 are real 
constants. The correspondent Cl matrix is:

= ( - H
— 2Ci(fci2fn22 — ̂ 32*7*12) - 2C2(fc 13*7122 — fermia)

f i  — ( - a + f c n m 2 2 + b i a m j a -fc jam i2-fc22m n a + t n m a a + t i a m ^ - k j j m i a - i a a m i i
Cl  C2 )■

where

k il2 =

( 2. 11)

2 _  Q*ll -  *n^22 + *11*12^12 + *ll*Î2m12 + *11*22ШЦ -  2fci2*i2mH
2adet(ÍC)

( 2 . 12)
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Ы  =
atkn +  Яг^тгг — kuk i2m l2 — kxxk{2mx2 — ^и^22Шц +  2Fi 2 k \2mxx

2a det(if)

with
(2.13)

a 2 = k\xm \ 2  — 2 k i i k i 2 m*1 2 m 2 2  — 2 f c u f c J 2 m i 2 m 2 2  -  2 ^ 1 1 ^ 2 2 ^ 1 1 ^ 2 2  +  

4 i 11^ 2 2 m 12m i 2  +  k \ 2r r i [ \  +  4 ^ i2 ^ * 2 m i i m 22 — 2 k i 2 k l 2 m i 2 m * 1 2 -  
2 k i 2 k 2 2 m i x m * 12 +  k { l m \ 2 — 2fc*2fc22miim12 +  k 22m \ x .  (2-14)

The physical masses are given by:

m 2 =
к ц т ^  — — к ^ т ц + к ц г п ц  — a

2det(Ár)

For N = 3, considering that

киГПп-кит* -к'  т^ + кззгпц+а 
2det(K)

(2.15)

one gets

11 &12 к хз\1 „ / 77111 m i 2
,*12 &22 ^ 2 3 , М  =  т Х2 Г П 2 2
.4*
13 к *K 2 3 к 3 3  ) V Ш 13 ™*23

m2 3 

тзз.

Г2

/  Cl(niCl+n2) Ca(nir2+f»2) Сз(П1Гз+П2)
rï+diri+d2 гJ+dTrT+dT r=+dir3+d2
Cllns l̂+n«) СзСпзГз+П«) Сз(ПзГз4-П4)
ri+d1r1+d2 rf+dlrT+dT r^+dir3+d2

Ci Со Сч

(2.16)

(2.17)

with

Icil2 =  ((П1П4 -  п2пз)(кххк22 -  kx2Ki)  + (” i<*2 -  П1Г2Г3 -  n2dx -  П2Г2 -  П2Г3) 
( к х х к 2 3  — к \ з к “12 )  — ( d i n 4 — ^ 2 ^ 3  +  n 3r 2r 3 +  n 4 r 2 +  n 4r 3)(fc i2&23 — ^ 1 3 ^ 2 2 )) 

( r 2 +  d m  +  d 2) / ( ( n i n 4 -  n2n3)(rx -  r 2) ( r i  -  r 3 )d e t (F :) ) .  (2 .1 8 )

Coefficients |c2| and |c3| are obtained by substituting Eq. (2.18) as

|c2|2 = |ci|2{ri 4-» r2}, (2.19)

Ы 2 =  k i |2{ri +-*• r3}.

Other coefficients in Eq. (2.17) are given by

Щ = (^12^23^33 — кх2кзЗГП23 — ^13^22D233+ (2.20)
кхзк23гп2з + к22кззгпхз -  ^2з^23т 1з)/йе1(ЕГ),
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«2 =  (^13^22^33 — &13™23™23 — ^23^12^33+ 
к2зт1зт*23 +  k33m i2 m 23 -  k33m1 3m22)/det(K),

n3 =  — (кцк23 т33 — к\\к3 3т23 — кх3 к\2т33+  
ki3 kl3m23 +  k*u k3 3mi3 -  k23k*l3 m i3 )/àet{K),

n4 = —{ki3m\2m33 -  ki3m23m*13 -  Ь т ц т з з +  
k23mi3m *13 + k33m \ \m 23 -  k33m±3m \2)/ àe\,(K),

d\ = (к ц к 23т*23 — кцк33гп22 — ki2k23ml3 + ki2k33ml2+
— k\3ki2m23 + ki3k22m i3 + к\3к^3т 22 ~~ ki3k23rrii2-\- 
к^кззт и  -  кззкззтц -  k23k*13mi2 +  fc23̂ 23mu ) /det(^ ) .

d2 = (ki3m*12m23 -  k13m 22m*13 -  k23m i1m 23+
k23m i2m\3 + k33ui\\TTi22 -  k33m i2m l2)/ det(K).

7*1,7-2, r3 are roots of the equation

г3 +  ar2 +  br + с =  0

for

а =  (—кцкззгпзз +  кцк 2зт 23 +  кцк 23т2з — kiik33m22+ 
ki2kl2m33 -  ki2k23m l3 -  &12*азт 23 +  ki2k33m*12+
— ki3k\2m 23 + ki3k22m l3 + к13к13т22+
— k\3k23m \2 — k*l2k23mi3 + k{2k33m\2 + ^22^i3mi3+
— к22кззтц  -  k23k*13mx2 + k23k23m i1)/det(K),

b = (кпт 22тзз -  кп т 2зт 23 -  ki2m\2 m33 +  £12гп2зт*3+  
кхзт*12т23 -  ki3m22ml3 — ki2mi2m33 +  fĉ 2ml3m23+  
k22rni i rn 33 ~ к22т13т *13 -  k23mn m23 +  ^23^12^3+
к{3тх2т.2з -  k{3m 13m 22 -  k23mn m23 + k23mx3ml2+ 
кззтцт22 -  k33m 12m l2)/det(K),

c — —det(M2)/det(K).

( 2 .21)

( 2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28) 

(2.29)
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This equation is the characteristic equation of К 1M 2 matrix. Therefore r\ r2 and 
r 3  are the physical masses.

For N  = 4,

/ h i к  12 k i 3 к ы \ / т ц m i 2 m i 3 m i 4
b *
K 1 2 k 2 2 к 2 з k 2 4 17112 m 22 m 23 m 24
b *
K 1 3

lr*
K 2 3 к  33 k 3 4 "* i3 ™23 m 3 3 m 34

\  b *\  K 1 4 u *
K 2 4 b *K 3 4 k 4 4  / m 2 4 m * 4 m 44

yielding,

fi =

/  С1(П1Г?+П2Г1+Пз)
r f + d i r 2 + d 3 r i + d 3 

ci(n4r?+n5ri+n6) 
r i + dir2 + d3ri + d3
ei(nTr?+n8ri+fi9) 
r j + d i r 2 + d 2 r i + d 3 

\  Cl

with

ea("irj+nar3+n3) 
r3+dil3+d2r3+d3 
еа(п«г3+ п ага+пв)  
ra+di ̂ a+daca + ds 
еа(птГа+п«га+яа)
r3+dir3+d2ra+d3

C2

Сз(п1Гд+П2Г3+П3)
rJ+dTrfTdTrT+ds"
ea ( n « » ~3+ n g r 3+ n g )
rf+dTrJ+d r̂T+dT
ез(птг3+паг3+п9) 
r3+di^ + dars + ds 

C3

c4(nirj+n2r4+n3) \ 
' ■J+dl r J + d a r 4 + d 3 

С4(п4Г2+Г>3Г4+П«) 
r j + d i r j + d a r 4 + d 3 ,
С«(»ТГ4+ n«r4+n») 
r J + d l r 2 + d a r 4 + d 3

C4 /

(2.31)

|ci|2 = (b44(nin5n9 -  n in 6n8 -  П2П4П9 + n2n6n7 + n3n4na — n3n5ri7)+
634(-RlU5(Í3 -  n in5r2r3r4 + nin6d,2 -  n in6r2r3 -  nin6r2r4 -  Hin6r3r4 + n2n4d3+ 
n2n4r2r3r4 -  n2n6di — n2n6r2 -  n2n6r3 -  n2n6r4 -  n3n4d2 + n3n4r2r3 + n3n4r2r4+ 
n3n4r3r4 + n3n$di + n3n5r2 + n3nar3 +  n3n5r4) + b24(ninad3 + nin8r2r3r4-  
n4Tigd2 + n4n9r2r3 +  n in 9r2r4 + nin9r3r4 — n2n7d3 — n2n7r2r3r4 + n2n9dl+ 
n2n9r2 + n2n9r3 + n2n9r4 + n3n7d2 — n3n7r2r3 -  n3n7r2r4 -  n3n7r3r4— 
n3n8di — n3nar2 — n3nar3 — n3nar4) +  6i4( - n 4n8d3 — n4nar2r3r4 + n4n9d2-  
n4n9r2r3 — n4n9r2r4 — n4n9r3r4 + n3n7d3 + n5n7r2r3r4 — n5n9dx — nan9r2— 
n5n9r3 -  n5n9r4 -  n6n7d2 + n6n7r2r3 +  n6n7r2r4 + n6n7r3r4 + n6n8di+  
n6nar2 + n6nar3 + n6nsr4))(rf + c^r2 + d2rx + d3)/((nin5n9 -  nin6na— 
n2n4n9 + n2nan7 + n3n4na — n3n3n7)(ri — r2)(ri — r3)(ri — r4))

and similarly to the previous case

|c2|2 =  |ci|2{ri <4- r2}, (2.32)

|сз|2 = |ci|2{ri <-+ r3), (2.33)
|c4|2 = |ci|2{rj r4}. (2.34)

Other coefficients in Eq. (2.31) are expressed as

«1 =  a 14, ( 2 .3 5 )

n 2 =  a i 2a 24 +  a i 3 a 34 — a i 4a22 — o i 4 a 33l (2 .3 6 )

П3 =  a i2<i23a34 — <ii2a24a33 — ai3a22a34+
ai3024a32 +  Я1АЯ22Я33 — 014Я2зЯз2! (2.37)

A d s  Physica H ungáriá i 73, 1993



n 4 — a 24i (2 .3 8 )

7*5 =  -  (<*11024 — <*14<*21 — O 23 <*34 +  <*24<*3з), (2 .3 9 )

1*6 =  — (<*11<*24<*34 — <*11<*24<*33 — <*13<*21<*34

+  <*13<*24<*31 +  <*14<*21<*23 — <*14<*23<*3l), (2 .4 0 )

1*7 =<*34, (2 -41)

1*8 =  — (<*11<*34 ~  <*14<*31 +  <*22<*34 — <*24<*32)> (2 .4 2 )

1*9 =  <*11<*22<*34 — <*11<*24<*32 ~  <*12<*21<*34

+  <*12<*24<*31 +  <*14<*21<*32 ~  <*14<*22<*31i (2 .4 3 )

d \  =  — ( a n  +  a -22 +  <*зз)> (2 -44)

d  2 =  <*n<*22 +  <*11<*33 — <*12<*21 — <*13<*31 +  <*22<*33

— <*23<*32j (2 .4 5 )

c?3 =  — (<*11<*22<*33 — <*11<*23<*32 — <*12<*21<*33

+  <*12<*23<*31 +  <*13<*21<*32 — <*13<*22<*31- (2-46)

2 1 2  J .  V. DOMINGOS et al

i’l l  Г2 , Г3 , Г4  a re  th e  c o rre s p o n d in g  p h y s ic a l  m asse s  fo r  TV =  4, w h ic h  a r e  ro o ts  o f  th e  
e q u a t io n

r 4 +  o r 3  +  b r 2 +  cr +  d  =  0 ,

w ith

a  =  — ( а ц  +  <*22 +  <*33 +  <*44)1 

b =  а ц а 2 2  +  а ц а з з  +  а ц а 44 — 0 1 2 0 2 1  — 0 1 3 0 3 1

— a l4a4i +  a22<*33 + <*22<*44 — <*23<*32 ~ <*24<*42 
+  0 3 3 0 4 4  — 0 3 4 0 4 3 ,

c — — (ацаггазз +  011022044 — аца2з<*32
— 011024042 +  011033044 — 011034043
— 012021033 — 012021044 + 012023031 
+  0 1 2 0 2 4 0 4 1  +  0 1 3  0 2 1 0 32  — 0 1 3 0 2 2 0 3 1

— <*13<*31<*44 +  <*13<*34<*41 +  <*14<*21<*42 

014022041 +  014031043 — 014033041
+  0 2 2 0 3 3 0 4 4  — О 2 2 0 з 4 а 4 3  — О23О32 О44 

+  <*23<*34<*42 +  <*24<*32<*43 ~  <*24<*33<*42)i

d = det(a,j). (2-47)

a ,j  a n d  b i j  w ere d e fin e d  as

ац = ( ( 1 / К ) М % ,  (2.48)
Ъц=(1/К)ц .  (2.49)
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Concluding this Section, one notices that the rotation matrix fi depends on 
primordial parameters written in the kinetic and mass matrices. In order to organize 
such results depending on primordial parameters we prefer to present them in a 
form which includes normalization constants с,-, the physical masses r,- and the 
coefficients n,- and d,-. The structure of Eqs. (2.16) and (2.17) can be generalized for 
the cases N  > 4. A third method means to derive the Í1 matrix through propagators 
expressions.

At quantum level, the basic entities are the propagators. From [5] one knows 
that propagators are not invariant under Í2 although their poles are preserved. The 
corresponding transformation law is

Propagators are better investigated in y>-basis. This is so because in such 
a field reference system the expressions are written in terms of such primordial 
parameters. Although physics does not depend on any field basis, symmetry is 
more explicitly expanded at y>-basis, and so, any entity calculated there will reflect 
symmetry presence in more detail.

For this work N  = 2,3 cases will be calculated. The general expression for 
propagators at ^-basis is

3. P ro p a g a to r s

(ТФФ) = ß _1((w ))n*_1. (3.1)

(3.2)

where rf are eigenvalues of the К 1M 2 matrix and (c;),;- coefficients to be deter­
mined.

For N  =  2,
| 2 x 2  _  ( c l ) i j  . ( c 2 ) i'j (3.3)

Splitting up the expressions, one gets the following propagators:

with
/ 4 "»22 f л,22
( c , ) l1 -  (r’ - r | )

-m 2 2 +  k22r2

(3.4)
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and
, x (ci)22 . (сг)22 
( ^ 2 )  -  k2 _ r2 +  k2 _ r2.

with
m n -  к ц г 1(Clb~ (rî-r|) ’

(c2)22 = Т Г  *1а1Л  (3-5)
( r l  -  r 2 )

and for the non-diagonal cases

(П<Р2) =  ( v w )  -  p  _  r 2 + к2 _  r2 >

with
m i 2 -  &1 2 »!

(Cl)”  = W - r î )  '
mi2 -  r|fci2 , .

(C2)l2 =  ( r ? - ' r l )  • ( }

2 1 4  J .  V. DOMINGOS é t a l

Poles ri and r2 are the diagonal elements of matrix m2 given by (2.15).
Equations (3.1) and (3.2) also work as a method for calculating the fl matrix. 

Notice that Eq. (2.11) can be derived through Eqs (3.3)—(3.6).
The case N  = 3 is studied in Appendix A.

4. M a sse s , co u p lin g  c o n s ta n ts  and  e ffe c t iv e  in te r p a r tic le  p o te n tia ls

A further aspect from these gauge models adopting more than one field ro­
tating under a same group is that physical masses and coupling constants appear 
depending on more initial coefficients. For instance, in the case with two fields and 
adopting that kinetic and mass matrices use real, one gets from (2.15) the following 
expression for the physical masses:

fcnm22 + к22гпц -  2fci2mi2 ± a 
2(^11^22 -  fcii)( m p h y s ) (4.1)

where

a 2 = k\xm\2 +  k \2m \2 +  4fcnAri2m22 + 4k\2m\\rri22 
— 4fci2fcl2»Tliim22 — 2к ц к 12ГП12ГП22-

The fundamental consequence of Eq. (4.1) is that such generalized gauge models 
develop at three level physical masses expressions depending on primordial para­
meters.
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For investigating more systematically about such a mass dependence on initial 
parameters one should compare with loop corrections. For this, we are going to take 
three cases with АФ4 type of interactions. The simplest situation is

С = ^Ф<9"Ф -  ^ т 2Ф2 -  ^АФ4.

Then, from tadpole graph one reads the following expression [9]

4тгр2'2 2 2 mphyS = m R -  mR -
1Ö7T2

A next step would be to include two interacting fields

С = \д» Ф ^ Ф , +  ^ 0 ^ 2 0 ^ 2  +

-  \ гп\Ф\ -  I m i Ф2 -  ^ Ф 4+

| Ф 4 - ^ Ф 2Ф2

At one-loop, it yields

(4.2)

(4.3)

(4.4)

(mphy.)l,2 = m l 2 + JTZ\2m l l  ( 7 -  1 + In
Gi m1,2

(4tr)2 47r/r2 +

+ 2 G3
(4tt)2m2,l 7 — 1 + In m2,l

4-Kfi2 (4.5)

Finally, one should consider a non-diagonal case

c  = ^dlt9 1a>,9 1 + - d lt ф2̂ ф2+

-  5"»?*? -  -  ^СгФ^+
1

4!'

-  -  ^ 5Ф1Ф|.

— 7^СгФ2 — д|С!зФ|Ф2+

(4.6)

Including the counterterms, the effective action corresponding to the quadratic 
part is

r flnite = ^Kp2 -  m?) +  а]Ф2+

+ \[{P2 -  m l) + 4$2 + СФ1Ф2,
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where

G\m\
a ~  1Ö7T2 ( ь ^ - И - г  

V mi
\  GAm\  
)  16tt2

_  <J2»Tl2
1Ö7T2

( b 4" f + l  ,  
V ml

\  , GAm\  
)  167Г2

Gzm\
32тг2 ( i n 4,f + l T 

V ml
\  Gbm\ 
)  32тг2

Thus the physical masses are eigenvalues of the mass matrix

/  m2 — a c \
~~ V c m 2 -  b )  '

2mphys

Expanding up to ft, one obtains

1
(r phys)i,2 = ^{m\  +  m 2 -  a -  b)+

l™i -
I — тЦа |m2 — тЦб

m2 — m2
+ m2

(4.7)

(4.8)

(4.9)

Now from Eqs (4.3), (4.5) and (4.9) one also observes the existence of mass 
formula depending on theory initial parameters. Nevertheless, these expressions 
carry a fundamental difference from Eq. (4.1). It is due to the fact that their mass 
dependence on primordial parameters only appears after loop corrections. Thus 
the singular aspect in Eq. (4.1) is that it contains the situation where at classical 
limit such dependence on the initial set of parameters appears. This means that 
a special feature from such generalized gauge models is that variables involved in 
the Newton’s second law are expected to be expressed in terms of more primordial 
parameters.

In order to show that the Í2 matrix presence in the model is a consistent 
method a next step is to understand that these mass corrections do not depend on 
any field basis. From [5] one has that under field reparametrizations the effective 
actions are related through the following relationship

г Ц , ... ,-„[*] =  ....j M  • ..O w ,

At Ф-basis, the effective action can be written as

__f ' ( n )

Г[Ф] = -Ф*[(р2 — тп2) — 17г]Ф + interactions

and at y>-basis, as

m  = \ л { к Р2 — M 2) — + interactions.

(4.10)

(4.11)

(4.12)
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Then, from (4.10) one gets
E = ír^TTÍT1. (4.13)

Substituting (1.3) in (4.10) it yields that the equation which determines the 
physical masses

mphy, = P2 -  ™ (4.14)
is an invariant under fi. Consequently, one verifies that shifts on the poles will not 
depend on any field parametrization basis.

A third analysis in this Section is on the coupling constant. Substituting (1.3) 
in (4.2), one derives that

G i j k l  — (4.15)

Equation (4.15) reveals that any coupling constant will depend on more primitive 
parameters. As an example, let us study a case at N = 2. Substituting (2.11) in 
Eq. (4.15) one obtains

G u n  = 16cf(fci2m22 -  к22ТП12)4 
(кцт22 -  a -  k22mn )4 1111 
16c|(fci2m22 - k22mi2)4 
(a + кц т 22 — к22т ц )4 1111
______ 64c2(fci2m22 - k22m 12)4cl________
(a + kn m22 -  k22m n ) (k u m 22 -  а -  к22т ц )3
_________96c2(fci2m22 - k22m 12)Ac\________
(a + кцт22 -  l 22m ii)2( liim 22 -  a -  122т ц )
________ 64c%(fc12m22 -  fc22m i2)4ci________
(a + kn m22 -  к22т п )3(кцт 22 -  а -  к22т ц )

^1122 + 

5A1222+ 

^ 2 2 2 2 , (4.16)

where ci, c2 and a are given by Eqs (2.12), (2.13) and (2.14).
From the above results one should understand the consequences on the inter­

acting potential. From [5] one knows that the effective interactions do not depend 
on Q. Taking the static potential case and assuming, as example, an interaction 
which involves just Ф1 field, one gets

( 7 2  p - m , f

И"‘(1~+1)= 4?1 — • (4Л?)

Concluding this Section we should analyse that the expressions derived for 
masses, coupling constants and effective potentials are carrying a new aspect. These 
physical entities become written in terms of more primitive parameters which are 
inscribed when one writes the model at y?-basis. Consequently, these primordial 
parameters written at Eq. (1.5), become the basic constituents for physics to be 
defined. For instance, depending on their values tachyons will appear in Eq. (4.1).
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Nevertheless, the main consequence of these initial coefficients is on the redefinition 
of the interacting potential. It has usually been defined in terms of three parameters: 
coupling constant, mass and distance. Analysing Eq. (4.17), one notes that G n u , 
Dtphys are expliciting a dependence on a more primordial set of variables given by 
Eqs (4.9) and (4.16), and so, the intensity of a given interaction will no more depend 
just on three variables.

1

1

1
1

F ig. 1. An in te rp a rtic le  p o ten tia l

5. Conclusion

Models involving the presence of more than one field in a same single group 
necessarily manipulate with field redefinitions. From this fact emerges a so-called 
Í1 matrix. Therefore a first effort in this work was to calculate Q explicitly. From 
Eqs (2.11), (2.17) and (2.31) one notices that Í2 is adimensional and depends on free 
coefficients which can take any value without violating gauge symmetry. Although 
it was performed through a scalar case, the obtained expressions are generic. The 
results are the same for any generalized model involving fermions, vector bosons or 
tensors.

ÇI matrix brings an elegant connection between the different field bases and 
divides the theoretical entities in scalars and tensors. For instance, Eqs (4.10) and 
(4.15) are expressing how the effective actions and coupling constants transform 
under Í1 while the physical masses and the interaction potentials are scalars. Notice 
that this fi matrix concentrates the information on primordial parameters that such 
generalized gauge models contain.

Finally, one should interpret on such primordial parameters. Three conditions 
in field theory are necessary for the classical limit to be reobtained. They are to 
consider a potential which is derived from the effective action

Г = V  hn r<">
n =  0

(5.1)

A cta Physica Hungarxca 73, 1993



í í  MATRIX OF GENERALIZED GAUGE MODELS 219

without Planck corrections,
Г(0) = J  dxxCc' (5.2)

and on its non relativistic and static limits. After these requirements, the associated 
potential V (X) means the potential energy from which Newton’s law of motion states 
that

dVmx = F(x) = -  — . (5.3)

Now considering that Eq. (4.18) satisfies the above requirements, it works as an 
example, where generalized gauge models develop at three level a force strength 
expression depending on the distance and on such primordial parameters. Conse­
quently, one derives that the velocity expression and the classical trajectory will 
appear depending not only on time, but also on primordial parameters written at 
initial Lagrangian, and that they are not necessarily associated to experimental 
values.
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A p p e n d ix  A

Equation (1.3) preserves physics, however, propagators transform like Eq. (4.10). 
We present below the propagators at ^s-basis, for N  = 3:

K k 2 -  M 2

3 x 3
_  ( c l)«J , ( C2 )‘J I ( c3 ) i j

k2 -  r* ifc2 - r? ̂ Jfc2 - r| •i j  -  - l  -  ' 2  л  ' 3

There is the following list of diagonal and non-diagonal propagators:

M  = A ili i_  +  +
k2 - r \ k2 - k2 ~ r V

with

гхтцкзз -  k i zk^r l  + к22кззг$ + г1т23Ц 3 ,
<Cl),‘ = -------------------( r l - d ) M - d ) ---------------- +

ГП23ГП23 +  ТП22ГП33 -  г\к22тзз + г\к2зт*23
(r2 -  rl)(ri -  rl)

(A.l)
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a n d

w i th

a n d

w i th

(c2) ii  =  -
г 2к 2з т *23 -  r l k 22m 33 -  r \ m 22k 3 3  +  r % m 23k 23

И - ,.2 „ 2r l r 2 — r*>r‘2 „2
2' 3 + ггГз)

+

»7122D233 +  Т 2 к 2 2 к 3 3  — I* 2 ^ 2 3 ^ 2 3  — m 2 3 ™ 2 3

И - ^ - г ^ + г ^ - г ^ )  ’

(c3) ll  =
г 3 к 22т 3з г 3к 22к 33 +  r% k23k 23 -  ^ 2 3 ^ 2 3

( ^  -  гЮ(г? -  ri) 
r3 m 2 2 ^ 3 3  -  rjm23^23 ~  т 22газз +  m 23m 23 

(r2 -  r l)(r?  -  r |)

+

(A.2)

/ \ \ _  ( c l ) l 2  , (C2) l 2 , (C3 ) l 2
(^ 2> =  (iW l) -  ^ 3 ^ 2  +

( C l ) l 2  =
r 2k i 2k 33 -  г |& 1з&2 з -  m 13m 23 -  r | f c i 2 m 33

( r 2 -  r | ) ( r |  -  r 2)
+

Г2 ^ 1 3 ТП2 3 -  Г2т 12к 33 +  +  m l 2 m 33

( r 22 - r l ) ( r 22 - r ? )

( c 2 ) l 2 —
ki2k33rf -  mi3m23 -  г^12т 33 +  m i2m33 

(r2 _ r2)(r2 _ r2)

^13^23г1 + г1т1зк23 + r\ki3m*23 -  r lm 12kзз
(Г2 _ Г2)(Г2 - Г2)

(c3)i2 =  —
г 3 к 12т 3з  -  г% к 12к 33 +  r % k i3k 23 -  г 1 к 13т 23

(r3 - r»2 — 2r í r3 — r , r2 - 22'3 +  r i r | )
+

г 1 т 12к 3з  - r l m 13k 23 -  m i 2m 33 +  m 13m 23
{ r t - r l r l - r l v l  + rlrl) (A.3)

(V2l^3> =  (y>3¥>l) =
( c i ) i 3  (c2)i3 (сз)13

ifc2 — r j fc2 -  ri fc2 — r |  ’

( C l ) l 3 =
-m i3m22 -  г^ т22 -  r lk12m23 + r\k13m 22 -  г\гп12к2з 

( r 2 - r 2 ) ( r 2 - r 2 )

rlmi3k22 +  г\ки к23 -  г\кх3Ь22 + mi2m23 
( r | - r 2 ) ( r 2 - r 2 )

+
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(C2)l3 —
r2h 3m22 -  r%k12m23 -  r%mi2k23 + r%m13k22

И  -  r i r2 -  r2ri  +  r \ r l )
r2k i2k23 -  r%ki3k22 + mx2m23 -  m13m22 

(rt -  r\r\ -  r\r\  + r 2r |)

(сз)13 — —
r3k\2m23 -  m23 -  m-i3m22 + r lkX3m22 + r$m13k22

(r2 — r 3)(r l  — r | )
r3m 12k23 + m 12m 23 -  t i 3^22F3 + kX2k23r%

+

(A.4)

and

with

M  -  # 4 + +  <«t e
P - r 2 p - r 2  p _ 2 ’

, ч _  k u k é r t + rn1irn33- m 13m*13 + r l k 13ml3 
(Cl>22~  { r l - r l ) { r l - r l )

г \т цк33 + r lm 13kl3 -  r?fcu m33 -  k13kl3r$
(r2 _ r2)(r2_r2 )

( c 2)22 =  —
r2mX3kl3 -  г%тцк33 -  г%кцт33 -  mi3mj3 

(»•22 - Г 32)(г22 -Г ?)r2*i3̂i3 + г%кцк33 + r̂fci3mj3 + тцш33
(r22 - r l ) ( r l - r l )

+

, -, _  i*3^iim33 -  г$кцк33 + r3kX3kl3 -  г ^ 13т} 3 ,
tC3j22 -  (r4 _  r 2r2 _ r2r2 +  r2r 2}

r3m n k33 -  r%mi3kl3 -  mn m33 + m13mj3 
( r i - r l 4 - r l  r |  + r 2r2) (A.5)

and

with

= M  = Ä l b  + + <«>”к2 -  r2 fc2 - ' k2 - r V

(cl)23 —
_ kX3k*l2r\ -  mu m23 -  kn k23rf  +  m 13m*12

(r2 -  r i)(r i -  r3) 
r ih im 23 -  r lkX3m*12 -  r lm13kl2 + г? т ц £ 23 

(r2 -  ri)(rf -  rl)
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(сг)23 =
m 13m l2 +  r%ki3k l2 -  m n m 23 -  г1гтц3к*12 

(r2 -  rl){rl -  Vl)
rlkum.23 -  r lk13m\2 + т^ т ц £ 2з -  г ^ ц ^ 2з

( i - r i ) ( r § - » í )

_  r|fcufc23 -  г |^ ц т 2з -  rjk13k{2 +  г |^ 13т* 2
V ^ 3 j 2 3  —  T IÂ  2  2  о  о  . о  о \  '

(г34 - ri r3 — г’>г■2„2
2 ' 3 + г?г22)

г |тц ^23  +  r3mi3k{2 + т ц т 23 -  mi3mî2
(' „ 2 - 2Г1Г3 — г-зг2 - 221 3 +  г1гг)

and finally,

with

ы  = i d ï L  +  i ^ a .  + w »
fc2 - r 2 1 À;2 — r2 P - r 2’

/ _ \ m i2mj2 -  mn m22 + m22r ^ u  + r|fci2fc*2
(.C1J33 — y 2 —2\/—2 -2\(r2 -  гз)(г2 -  r i)

r2ki2ml2 + r|fc22mu  — mi2r2fc*2 -  r2fc22fcn
( Г2 -  Гз ) ( Г2 -  Г?)

(С2)33 =
т 12т 12 +  к2 2 г \т ц  — т ц т 22 +  m 22fcu rf 

( r 2 - r 2 ) ( r ? - r 32 )

k22r jkn  -  fci2r 2m*2 + -  ™i2<g2r?
(Г2 -  Г2)(Г2 _  rg)

+

(А.6)

,   ̂ _ г 3 к ц т 2 2  -  г % к ц к 2 2 +  Г%к1 2 к { 2 -  r | f c i 2 m î 2

(С з )зЭ  ”  ( г |  -  г | ) ( г 2 -  г 2 )

г 3т п к 22 -  r l m 12k x 2  ~  т и™22 + mi2mj2

+

(ri -  rí){rl -  г2)

Physical masses rf, r2 and r3 are roots of the cubic equations (2.26)-(2.29).

(A.7)
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IN POROUS MEDIUM

R . C. SHARMA and  V . K . B h a r d w a j

D epartm ent of M athem atics, Himachal Pradesh  University 
Shim la 171005, India

(Received 20 July 1993)

The thermosolutal instability of an Oldroydian viscoelastic fluid in porous medium 
is considered. The effects of uniform rotation and uniform magnetic field, separately, have 
also been studied. The stable solute gradient, rotation and magnetic field are found to 
have stabilizing effects on the system. The medium permeability has destabilizing effect 
but in  the presence of rotation it has bo th  stabilizing sind destabilizing effects depending on 
the rotation parameter. The magnetic field, rotation and stable solute gradient introduce 
oscillatory modes in  the system which were non-existent in  their absence.

1 . In tr o d u c tio n

The thermal convection in a horizontal layer of a Newtonian viscous fluid has 
been discussed in detail by Chandrasekhar [4]. Bhatia and Steiner [2] have studied 
the thermal instability of a Maxwellian viscoelastic fluid in presence of rotation. 
The thermal instability of a Maxwellian viscoelastic fluid in hydromagnetics has 
also been considered by Bhatia and Steiner [3]. Veronis [13] has investigated the 
problem of thermohaline convection in a layer of Newtonian fluid heated from below 
and subjected to a stable salinity gradient. The medium has been considered to be 
non-porous in all the above studies.

There has been considerable interest in recent years in the study of the break­
down of the stability of a layer of fluid subject to a vertical temperature gradi­
ent in a porous medium and the possibility of convective flow. The stability of 
flow of a single-component fluid through a porous medium taking into account 
the Darcy resistance has been considered by Lapwood [7] and Wooding [14]. The 
Darcy’s equation describes the incompressible flow of a Newtonian fluid of viscosity 
ft through a macroscopically homogeneous and isotropic porous medium of per­
meability ki. If q is the filter velocity of the fluid, the resistance term -(̂-)q 
replaces the usual viscous term in the equations of fluid motion. There is mounting 
evidence, both theoretical and experimental, which suggests that Darcy’s equation 
sometimes provides an unsatisfactory description of the hydrodynamic conditions, 
particularly near boundaries of a porous medium. Beavers et al [1] have exper­
imentally demonstrated the existence of shear within the porous medium near a 
surface where the porous medium is exposed to a freely-flowing fluid, thus forming
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a zone of shear-induced fluid flow. The Darcy’s equation, however, cannot predict 
the existence of such a boundary zone, as no macroscopic shear term is included 
in this equation (Joseph and Tao [6]). To be mathematically compatible with the 
Navier-Stokes equations and physically consistent with the above-mentioned ex­
perimentally observed boundary shear zone, Brinkman proposed the introduction 
of the term (^)V 2q in addition to — (j^-)q in the equations of fluid motion. The 
elaborate statistical justification of the Brinkman equations has been presented by 
Saffman [10] and Lundgren [8].

Toms and Strawbridge [12] have demonstrated experimentally that a dilute 
solution of methyl methacrylate in n-butyl acetate agrees well with the theoretical 
model of Oldroydian viscoelastic fluid. The thermal instability in a rapidly rotating 
Oldroydian fluid has been considered by Eltayeb [5].

The present paper deals with the thermosolutal instability of an Oldroydian 
viscoelastic fluid in porous medium. The effects of uniform rotation and uniform 
magnetic field on the problem are also considered. The problem finds its relevance 
and usefulness in chemical technology and geophysics.

2. P e rtu rb a tio n  equations

Consider an infinite horizontal layer of Oldroydian viscoelastic fluid of depth 
d in porous medium, heated and solute concentrated from below and acted on by 
gravity force g(0, 0, —g). The Oldroyd fluid is described by the constitutive relations 
(Oldroyd [9]):

Tij =  —pSij + Tij,

eü
1
2

(  dg. d4j \  
\ d x j  + dx i )  ’

( 1 )

where Tij, Tij, eij, p, qi, Xi, p, A and Ло (< A) denote respectively the stress tensor, 
shear stress tensor, rate-of-strain tensor, scalar pressure, velocity, position vector, 
viscosity, stress relaxation time and strain retardation time. When a fluid perme­
ates a porous material, the actual path of an individual particle of fluid cannot be 
followed analytically. The gross effect, as the fluid slowly percolates through the 
pores of the rock, is represented by the macroscopic Brinkman equation described 
above. Let 6p, Sp, q(u, v, w), 0  and 7 denote respectively the perturbations in 
density p, pressure p, filter velocity (zero initially), temperature T  and solute con­
centration C. Then the linearized thermosolutal perturbation equations through 
porous medium, following Boussinesq approximation, are

1
6 1 + Adt )

1 6 p
------- V S p  +  g  —

Po Po.

+ (2)
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V ■ q  = o, (3)

0  = ßw, (4)

( е м - к4 \ 7 =  ß'w. (5)

Неге V (= р/ро), к, к', ß (= |fj-|) and ß' (= |) stand for the kinematic viscosity,
the thermal diffusivity, the solute diffusivity, uniform temperature gradient and 
uniform solute concentration gradient, respectively. E = e + (1 — where p, cv
and p, , c, stand for density and specific heat of fluid and solid matrix, respectively. 
E' is an analogous solute constant.

The equation of state

p = p0[ l - a ( T - T 0) + a ' ( C - C 0)\ (6)

contains a thermal coefficient of expansion a  and an analogous solvent coefficient 
a1. The suffix zero refers to values at the reference level z =  0. The change in 
density Sp, caused by the perturbations 0  and 7 in temperature and concentration, 
is given by

6p = - p 0(aO -  a'y). (7)

Eliminating 6p between the three component equations of (2) and using (3), 
we obtain

( 8 )

Let us assume both the boundaries to be free. The case of two free bound­
aries is a little artifical except in stellar atmospheres (Spiegel [11]). However, this 
assumption allows us to obtain the analytical solution without affecting the essen­
tial features of the problem. The boundary conditions appropriate for the problem 
are (Chandrasekhar [4], Lapwood [7]):

d2ww — , _ = 0  =  0 at z — 0 and z = d.dzl (9)

3. D isp e r s io n  r e la tio n  a n d  d iscu ssio n

Analyzing the disturbances into normal modes, we assume that the pertur­
bation quantities are of the form

[tn, 0 , 7] = [ie(z), O(z), r(z)] exp(ikxx + ikyy +  nt), (10)
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where kx, ky are wave numbers along x- and y- directions, respectively, к (= 
у/Ц  + Ц)  is the resultant wave number and n is, in general, a complex constant.

Assuming that x, у , z stand for the coordinates in the new unit of length d and 
letting a =  kd, <7 = nd2/i>, F  = Xv/d2, F0 =  Л0и/d2, pi = v/ k , q — v/ k' , pi = k i /d2 
and D = Eqs (4), (5) and (8) using expression (10), in nondimensional form
become

[(1 + F<r)j  + ^ ( 1  +  F0<r) (D2 -  a2)W  +  (1 + F a )“------(a0  -  aT )

-  -(1 +  F0a)(D2 -  a2)2W  = 0,

(D2 - a 2 -  EPla)Q = -  (p p ) W,

(D2 - a 2 -  E'qa)T = -  W-

Operating Eq. (11) by (D2 — a2 — Ep\a){D2 — a2 — E'qa) and using (12) and (13) 
thus eliminating 0  and Г, we obtain

(И)

( 12)

(13)

(D2 - a 2 -  EPla)(D2 - a 2 -  E'qa){D2 -  a2) —(1 + E  a ) + —(1 + F o a )
- - ( 1  + F0a)(D2 -  a2) W

= (1 + Fa)a2[R{D2 - a 2 -  E'qa) -  S(D2 -  a2 -  EPla)]W, (14)

where R  =  is the Rayleigh number and S = да'ß'dA/ vk‘ is the analogous
solute Rayleigh number.

The boundary conditions (9) transform to

W = D2W = в  = T = 0 at 2 = 0 and 1. (15)

Using the above boundary conditions, it can be shown that all the even order 
derivatives of W  must vanish for 2 = 0 and 1 and hence the proper solution of 
Eq. (14) characterizing the lowest mode is

W  = Wo sin 7Г2, (16)

where Wo is a constant.
Substituting (16) in Eq. (14) and letting R\ = Ä/тг4, S i = S/ж4, ia\ = а/ж2, 

x = a2j ж2 and P = ж2Pi, we obtain the dispersion relation

R i  =
(1 + x)(l +  x + iEpiai)

x(l +  z7r2Fcri)
+  X

^ p - ( l  +  iV 2 F < 7 i )  +  ( 1  +  {ж2 F ^ a  1 )

( ^ ) + 5; 1 + x +  iEpiai 
1 1 + x +  iE'qai (17)
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For the stationary convection, a = 0 and Eq. (17) reduces to

Ri (l + *)2
X

1  +  X

€ + Si. (18)

Thus for stationary convection, the stress relaxation time parameter F  and 
the strain retardation time parameter Fo vanish with a and the Oldroydian fluid 
behaves like an ordinary Newtonian fluid. Equation (18) gives

and

dRi ( 1 + z ) 2 
dP ~ x P 2 ’ (19)

" b = + l
dSi ’ (20)

meaning thereby that medium permeability and stable solute gradient have desta­
bilizing and stabilizing effects, respectively, on the thermosolutal convection for the 
stationary case.

4 . E ffect o f  r o ta t io n

Here the problem is considered to be the same as described in Section 2 except
that the fluid is in a state of uniform rotation Q (0, 0, Í1). The linearized perturbed 
equation of motion becomes

1
б V 6p — g (< * 0  — a'y)

( 21)

Equations (3)-(5) remain unaltered. Let C = — stand for the 2-component of
vorticity and express

C = Z(z) exp (ikxx +  iky y + nt). (22)

Equations (3)-(5) and (21), using expressions (10) and (22), yield the dimen­
sionless equations

(1 + F cr) 2\rir gd?a2e.  2 i2)W  +  --------(a© — or Г) H------- -D Z
V V

)  (D2 -  a2)W, (23)

/ о  о € \ 2Ш
( d - “ - ä ) J

Z  = — (1 + Fa)DW, (24)
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together with (12) and (13). The boundary conditions in addition to (15) are

DZ  = 0 at z =  0 and 1. (25)

Eliminating 0 , Г and Z between Eqs (12), (13), (23) and (24) and using the proper 
solution (16), we obtain

(1 +  x)(l +  x + iEpi<Ti)[ie<Ti(l + in2Fcri) + (1 + ix2F0<Ti)(l + x + p)]
1 x(l + in2Fcri) ^6)

(1 + x + iEpyffi) _______ (1 + x + iEpi(Ti)(í + Í7r2Fcri)_______
1 (1 +  x +  iE'qcTi) Al x[ie<7i(l +  i-K2Fai) + (1 + *V,fo0'i)(l + x + p)] ’

where TAl = -f-.

4(a). The stationary convection 

For the stationary convection, a = 0 and Eq. (26) reduces to

Ri = ( l + * ) :

Equation (27) yields

(1 +  x + —) + Si +  TAl

(1 + x)

(! + *)
x (1 +  X + p )

dRi
dTAl ~  x(l + х + е/РУ 

dlh
dS 1 — + 1,

(27)

(28)

(29)

which imply that the uniform rotation and stable solute gradient have stabilizing 
effects on the system. Equation (27) also gives

dRi _  (  1 +  зЛ J _  ___ Tm _____ (1 + x)
dp ~  \  x )  p 2 L(i + * + f ) a  ̂ ;

(30)

It is clear from Eq. (30) that the medium permeability has a destabilizing effect in 
the absence of rotation. It still has a destabilizing effect if

TAl < (1 + x) ( l  +  x +

But the medium permeability has a stabilizing effect if

TAl > (1 + x) ( l  +  x + - i)  .

Thus the medium permeability has both stabilizing and destabilizing effects 
depending on the rotation parameter.
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4(b). The oscillatory modes

Here we discuss the possibility of oscillatory modes, if any, coming into play 
due to the presence of rotation. Multiplying Eq. (23) by W *, the complex conjugate 
of W,  integrating over the range of z and making use of (12), (13) and (24) together 
with the boundary conditions (15) and (25), we obtain

(1 + Eocr)a  +
P,{ 1  +  Fa)  J h + 9- ^ - ( h  + E'qa*I5)

< r *  +  — ( !  +  F0a*) I6 +  —  ( l  + F0a*)I7

where

, ( Н - В Д  y д а к а \ т , _ ,r N
+ e(l + F a ) 1* -  +  EP1<T h ) ’

h  = I  (\DW\2 + a2\W\2)dz,
Jo

h =  /  (|£>©|2 + a2|0 |2)dz,
Jo

= f  |0 |2dz,
Jo

4 = í \ \ D T \ 2 + a 2\T\2)dz,
Jo

= / V | 2dz,
Jo

= C \ Z \ 2dz}
Jo

I7 = [  ( \DZ\2 + a2\Z\2)dz,
Jo

h  = [  (\D2W\2 + 2a2\DW\2 + a4\W\2)dz
Jo

(31)

h

I.

h

h

(32)

which are all positive definite. Putting a = ar +  ia, in (31) and then equating real 
and imaginary parts, we obtain

f  ( F + F 0 +  arFFo) 1 )  9^'к'а2 2 (  F0\
Г  +  (1 +  Fary  +  F>*j Pi j  h  +  ~ ^ ~ E qh  +  d [ 1 + P i ) l6+

d2F0 (F  +  F0 +  arFF0 ) Is доска2 
+ -------- 47 +  77—  r,-----4-, . „■> о --------------- — F p i h(1  +  F«7r ) 2 +  E V ?  e vß

(1 + FFp + a?) Il да'к1 a2 cP 
.(1 + Far )2 + F2a2 P, + vß' 4 + P, 6+

- T+  c  7+ (1 + F a ry  + F 2a f  e
(1  +  FFoaf) Is доска2

vß (33)

A cta Physica H ungarica 73, 1993



2 3 2 R. C. SHARMA a n d  V. К .  ВН ARD WA J

and

CTi h  -
да'к'а2

vß' E'qh -  d2 ( l  + I6 -
F0d2 дака2 
----- h  +

vß
Ерх!з = 0. (34)

It is clear from Eq. (33) that oy may be positive or negative implying thereby 
that there may be stability or instability in the presence of rotation, stable solute 
gradient, viscoelasticity and porosity on thermosolutal convection in an Oldroydian 
viscoelastic fluid in porous medium which is also true in their absence.

Equation (34) implies that 04 =  0 or <т,- ф 0 which means that the modes 
may be non-oscillatory or oscillatory. In the absence of stable solute gradient and 
rotation, Eq. (34) reduces to

<?i h  +
дака2

E p ih = 0,

which yields <7,- = 0 implying thereby that the oscillatory modes are not allowed 
and the principle of exchange of stabilities is satisfied for the porous medium in the 
absence of rotation and stable solute gradient.

The rotation and the stable solute gradient, thus, introduce oscillatory modes 
in the system which were non-existent in their absence.

5. Effect of m agnetic field

Here the problem is considered to be the same as described in Section 2 
except that the fluid is finitely (electrically) conducting and is acted on by a uniform 
magnetic field H(0,0,#) .  The linearized perturbed equations are

H i +4 ) £ = ( i+a* ) -----V 6p — g (a 0  — <x'i)+
. Po

+ - ^ - ( V  X h) X H 
47rpo

+ ( 1 + a4 ) ( 7 v î - ît) 4' (35>

V h  = О, (36)

e ^  = (H V)q + £7?V2h, (37)

together with Eqs (3)-(5). pe, r) and h(/ix, hy,hz) denote, respectively, the magnetic 
permeability, the resistivity and the perturbation in magnetic field H. Substituting 
P2 = f  and

hz =  K(z) exp(ikxx -f ikyy +  nt), (38)
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Eqs (3)-(5) and (35)-(37), using expressions (10) and (38), yield the dimensionless 
equations

(1 + F<t)<t -  i ( l  + F0<r) D2 -  «2 -  ^ r )  ] (Я2 -  °2)W  

gd2a2
+ (1 + Far) -(a0  — с/Г) —^ E l ( D 2 -  a2)DKAnpoV =  0 , (39)

(D2 -  a2 -  P2<r)K = ------DW, (40)er]
together with (12) and (13). The boundary conditions in addition to (15) for free, 
electrically nonconducting boundaries are

DK  = 0  at z — 0 and 1. (41)

Eliminating 0 , Г and К  from Eqs (12), (13), (39) and (.40) and using the 
proper solution (16), we obtain

Ri

(1 + x + iEpi<Ti) í  1 +  x \  (1 + X + iEpicri)
1 (1 + x -f iE'qffi) 1 V X )  (1 + x + ip2<Ti)

!  +  x +  - i )]
(42)

where
Q TeH2d2

Anpourjn2

5(a). The stationary convection

For stationary convection (<т = 0), Eq. (42) reduces to

R i
(1 + *)2

X
( l  + x +  —j  + Si + Qi (1 + *) (43)

The Oldroydian viscoelastic fluid, thus, behaves like a Newtonian viscous fluid 
for the stationary convection. Equation (43) yields

dR\ 1 + X 
dQi X (44)

dfíl =  +1 dSi + ’ (45)

dRi (1 + x)2 t 
dP ~ x P2 (46)

The magnetic field and stable solute gradient have stabilizing effects whereas 
the medium permeability has a destabilizing effect on the system.
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5(b). The oscillatory modes

Here we examine the possibility of oscillatory modes, if any, coming into play 
due to the presence of magnetic field. Multiplying Eq. (39) by W *, the complex 
conjugate of W,  integrating over the range of z and making use of (12), (13) and 
(40) together with the boundary conditions (15) and (41), we obtain

<T -f (1 +  Tqit )
P j(l +  F<t)

/ / 2„ QOL к a * _ 4
A d---- Uß,— (h  + Eqcr Is) + (1 + Fpa )

c(l + F a ) 8

+  — ( 1*9 +  P2<r*I\ o )  —    X — ( f 2 +  Ep\a* I3),
Airpov uß

(47)

where I\ — Is and Is are given by (32) and

h (\D2K \2 +  2a2\DK\2 + a4\K\2)dz,

h o =  f  ( \DK\2 + a2\K\2)dz, (48)
Jo

which are all positive definite. Putting a — ar -f iai in Eq. (47) and then equating 
real and imaginary parts, we obtain

ar

+

F +  Fq + arFF0 (  I\  I s \
+  (1 +  F ar)2 + F 2a 2 \ P ,  e )

+

-Epil3

' / c ' a 2 дака'
~^ß~

(1 +  FF0aj)
.(1 +  Е<7Г)2 + Е 2<7?

I2 + 47ГОо̂

got' к.' a 
uß'

2
E'qls + Anpov P2I10

(49)

and

h  -
да'к'а2

uß1 E'qls -
per]e дакаJ

~л------ P2-Í10 Л------ д-4про1/ up E p ih =  0. (50)

In the absence of stable solute gradient and magnetic field, Eq. (50) reduces
to

h  +
дака
~vß~

Ep i p = 0,

which gives cq =  0 and hence the oscillatory modes are not allowed and the principle 
of exchange of stabilities is satisfied for the porous medium in the absence of stable 
solute gradient and magnetic field.

The stable solute gradient and magnetic field, thus, introduce oscillatory 
modes in the system which were non-existent in their absence.
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ELECTRON IMPACT DOUBLY DIFFERENTIAL 
K-SHELL IONIZATION CROSS-SECTION OF Ag

K. K. Sud

D epartm ent o f P hysics, Ja i N arayan Vyas University 
Jodhpur, S42001 Ind ia

(R eceived in  revised  form  27 Ju ly  1993)

E lec tro n  im p a c t doubly  d ifferential К -shell io n iza tio n  cross-section  of Ag has b e en  
co m p u ted  w ith  in c id en t e lec tro n  energy 500 keV  fo r  different sc a tte r in g  angles by u sing  
th e  form alism  of S u d  an d  M o a tta r  [10]. T he re su lts  are  com pared w ith  th e  available ex­
p e rim en ta l d a ta  a n d  good ag reem en t is ob ta in ed  in  th e  h igher sc a tte re d  e lectron  energy 
region.

1. In tr o d u c tio n

Theoretical investigations of electron impact doubly differential К-shell ioniza­
tion cross-section, differential in energy and angle of one of the final state electrons, 
have been done by a number of workers [1-10]. We refer the readers to the work 
of Sud and Moattar [10] for the details of the available theoretical investigations 
[1-10] and, in particular, about the interaction Hamiltonian and the wave functions 
used for bound, incident and scattered electrons in them. Sud and Moattar [10] 
have obtained the expressions for the К-shell differential ionization cross-section by 
using Dirac plane waves for both incident and scattered electrons and the Darwin 
wave functions and relativistic Sommerfeld-Maue wave functions to represent the 
bound and continuum state, respectively. Sud and Moattar [10] have calculated the 
double differential К-shell ionization cross-sections and compared their results with 
the available experimental data of Quarles and Faulk [11] (for 29C and 47Ag by 
300 keV incident electrons) and Komma and Nakel [12] (for 47Ag and 79Au by 300 
keV electrons). A new result by Ruoff et al [13] for the electron impact ionization 
cross-sections for 47Ag by 500 keV incident electrons at scattering angle 30° is now 
available. In the present investigation, we report the results of our computations 
of the double differential К-shell ionization cross-sections by using the theoretical 
formalism of Sud and Moattar [10] and compare it with the available experimental 
results of Ruoff et al [13].

2. R e s u lts  an d  d isc u ss io n

The explicit expression [10] for the double differential К-shell ionization cross- 
section, which includes the effect of the exchange of the spin of the atomic electron,
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used in this work is given as

d2a 4a2 |ki| E2
dEidOx mc2|k0| [(AE)2/h 2c2 -  q2]2 me2 ^  + 1г2а 2)(! +  I ^ | )

exp{-2(z/a0lk2|) tan~1[(2|k2|z /a0)/(q2 -  k | +  z2/ag)]}z6 
[1 -  exp(-27rz/a0|k2|)]3ag[(q2 + k^ + z2/ag)2 -  4q2k^]3

-128 m 2c2 1 Д Д Е )2
h2 + л V &2с2 4xi(k’+S (ч!+к?+® ~ * ч Х  +,4(3,!+k!+i)

h2c2 ' 4 \  h2c
Гm2c2 [(A£)2/S2c2 -  q2]

2

2 -4 *
E q(Eq -  A E )  +  1 ^ (A E )2 _  q2^ ] [(A E )2/ft2c2 -  q2]

)]

+ 256

+  8 -

h2
h2

|512q2 ^3q2 + k2 +  ^

, ( 2k? + i l )  ( q,2+k, + k ) ~ iq ,v \

0 (-,+к!+9 [(’г+к?+9 2-3 ( к 2 + 4q2k2

- ^ кя ( з,!+к’+0 ] } - ш {(к!+Э
9 \  2

ч  -
q2 + к 2 + —» ̂  -  4q7k2^2 

2 + q4 ( 3q2 + k 2 +  - j

where in Eq. (1) E0(Ei) and Äk0(ftkx) represent, respectively, the energy and mo­
mentum of the incident (scattered) electron and E2, Йк2 is the energy and momen­
tum of the ejected electron. The momentum transfer by the incident electron is 
given as

q 2 =  k 2 — k 2 — 2 |k o | |k i |c o s 0

and the energy transfer as E = Eq — E\.
We show in Fig. 1 differential cross-sections for 47Ag as a function of scat­

tering energy by electrons of incident energy 500 keV and at scattering angle 30° 
by using Eq. (1). The experimental data of Ruoff et al [13] is also presented in 
Fig. 1. It can be seen from Fig. 1 that the general trend in the variation of the 
differential К-shell ionization cross-section as a function of scattered energy in the 
higher scattered electron energy region agrees with the experimental data. In Fig. 2 
we have shown the differential К-shell cross-section for 47Ag by 500 keV electrons 
at different scattering angles (20°, 30°, 40°, 45° and 60°). It may be seen that 
the peak in the differential ionization cross-section vs scattered electron energy lies 
between the Möller energy E m  and E m b  (Möller energy +  binding energy). The
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Fig. 1. T h e  resu lts  of th e  p resen t th eo re tica l calculations o f e lec tro n  im pact К -shell double  
d ifferen tia l ion ization  cross-section  <P a  /  d E ^ d ih , as a  fu n c tio n  of sc a tte re d  e lec tro n  energy by 

500 keV  electrons a t  sca tte rin g  angle 0  =  30° an d  ex p erim en tal d a ta  of Ruoff e t a l [13]

Möller energy is obtained from the kinematics of an electron scattering system and 
is given as:

E m = Eq cos2 0 / [ l  + Eq sin2 0/2m c2].

(Eq is the incident electron energy, 0  is the scattering angle and m is the rest mass 
of the electron). We have shown Em and Emb by arrows in Fig .2 . It may be 
seen from Fig. 2 that the Möller peak in the differential К-shell ionization curves 
gets broader and shifts towards lower scattered electron energy for larger scattering
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angles. This is as expected since the Möller energy decreases with the increase of 
scattering angle.

scattered electron energy (keV)
Fig. 2. T h e  re su lts  of th e  p resen t th eo re tica l calcu la tions o f e lectron  im p ac t К -shell double 

d ifferential io n iza tio n  cross-section  d2a / d E id i l i ,  as a  fu n c tio n  of sca tte red  e le c tro n  energy by 
500 keV electrons a t  different sca tte rin g  angles. T h e  sca tte rin g  angle ©, (M öller energy), 

a n d  E m b  (M öller energy +  b in d in g  energy of К -shell) a re  in d ica ted  in  th e  F igure

Finally, we conclude that the Sud and Moattar [10] theory correctly predicts 
the position and nature of variation of the peak in the doubly differential K-shell 
ionization cross-section vs the scattered electron energy curve. This investigation 
further suggests the necessity of higher incident energy electron impact differential

A cta  Physica Hungarica  75, 1993



ELECTRON IMPACT 2 41

ionization cross-section measurements in the lower scattered electron energy region 
in Ag as well as in other targets, for the better understanding of the ionization 
process and for testing the theory.
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Gauge models involving several fields rotating under a single symmetry group de­
velop the so-called il-matrix which is a consequence from field reparametrizations. It means 
a structure which belongs to the model scenario but without participating on the dynam­
ics. Its main consequence is the advent of a kind of prescription where physical entities are 
divided between tensors and invariants. For instance, the renormalization group equation 
variables will not work as invariants under 0; on the other hand, physical masses will.

1. In tr o d u c tio n

Field reparametrizations are currently performed in order to understand a 
number of points in field theory. For these rotations, Borcher’s theorem has stipu­
lated conditions for S-matrix invariance [1]. A consequence from these transforma­
tions is the appearance of scalars and tensors, for instance, the coupling constant 
becomes a tensorial entity under a field reparametrization. Therefore, when one 
studies a model which introduces different fields rotating under a same group [2], 
it will be natural to expect the development of new scalars and tensors under such 
fields redefinitions which obey [1]. In fact, these reparametrizations involving N  
fields develop an Q-matrix [3]. It is an entity which does not belong to the dynam­
ics of theory.

Thus, considering the scalar case, we have that the iV-quanta developed by 
the model can be articulated under different field parametrizations. The diagonal 
basis-Ф is given by

£ =  Ф^ПФ -  ф!ш2Ф, (1.1)

while the non-diagonal basis-<p would be

C = <p'K\3<p-<p'M2<p, (1.2)

where К  and M  are Hermitean matrices. Equations (1.1) and (1.2) are invariant 
under the following global transformations

Ф —» Ф' = е‘“^Ф, (1.3)
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<P -» <p' = e,aQr,  (1-4)
for Q and Q being, respectively, diagonal and non-diagonal matrices. Comparing 
(1.1) and (1.2) we get the following relationships for il-matrix:

f it jm  =  11,

Çtf M 2i2 = m2 (diagonal) (1.5)
with

<р = П  Ф. (1.6)
Being real scalars the Lagrangian and the action are invariant under (1.6)

C[<p] = С[ПФ] = £[Ф], (1.7)

s[v] =  m .  (1.8)
Similarly, the Noether current

J»[<p] = /"[Ф]. (1.9)

Thus, a first clue for understanding such non-dynamical variable ÎÎ would be 
to compare it with the Lorentz matrix Л£. Thus, while Lorentz transformations let 
the metric invariant

Л^Л = r], ( I -Ю)
one gets from (1.5) the similarity transformation

= m2, (1.11)

which says that poles are absolute variables.
Comparing (1.1) and (1.2), the following expression is derived

П = (1.12)

with
K = SRS*,  (1.13)

where S  and R  are unitary matrices which diagonalize the kinetic and mass terms. 
From Eq. (1.12) we read the properties that fi is not unitary (unless К  is an 
indentity-multiple) and the condition for f2 invertibility is К  not to have zero eigen­
values. Equation (112) also informs that Í7 does not make a group as the Lorentz 
matrix. It is because the closure property QQ' = П" is not obtained.

Thus the appearance of these non-dynamical Í1 transformations raises the ne­
cessity of exploring about the distinction between relative and absolute variables in 
a model which contains more than one field rotating under a same group. Fields 
will only work as coordinates now. Therefore, we need to systematize about the 
physical variables under Q. For this, Section 2 studies at classical level and Sec­
tion 3 at quantum level. Then, an example with SO(N) symmetry is developed in 
Section 4.
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2. Classical aspects

Although the set of il-matrices do not build up a group, they divide the 
physical entities into scalars and tensors. As studied before, Eq. (1.6) preserves the 
minimal action principle and the mass shell information [3]. It was also understood 
that Q is a canonical transformation in the sense that it preserves the Hamilton’s 
equation, commutation relations, charge algebra and Pauli-Jordan functions.

An interesting result obtained for being pointed out is that symmetry nature 
can change under Q rotations. This means that symmetry can explit different 
representations under various field parametrizations. Substituting (1.6) in

Ф —► Ф' = и(ги)Ф, (2.1)

one gets
<P -*■ 4>' =  T(w)<p, (2.2)

where
T(w) = Cl~1U(w)n. (2.3)

Then, the following group algebra relationships

U(w) = eiw*G*, Ul/'  = 1,

[Ga)Gb\ — ifabcGci

<2а[ф],ф<]
д а[Ф],д‘[Ф]] =  г7аЬсд с[Ф] (2.4)

will transform into
T(w) = eiw°H‘ , T T ' ф 1,

H a = n ~ 1GaQ, Н а ф Н а+,

[ H a , H b] =  i f a b c H c ,

[дам,<р] = 11

[QaH Q b[‘p]] = i f abcQ c H  (2.5)

Thus Eqs (2.4) and (2.5) are showing that a given symmetry will not depend 
on its shape for writing its physical meaning. However, different proofs still must 
be developed for this statement to be considered. For this we should first con­
sider the mass invariance. The Ф-basis condition for mass preservation under (2.1) 
rotation is

[Ga,m 2] = 0. (2.6)
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Then, substituting (2.2) in (1.2) one gets that only under (2.6) is that such rotation 
will be preserved. This shows that the relevant aspects are on symmetry expressions 
as (2.6) and not on parametrizations basis.

A next classical step for showing that symmetry must not depend on field basis 
is to study local symmetries. It yields the following covariant derivative involving 
N  potential fields:

д„Ф -  V „Ф = [dß + igrV£G e)Ф, (2.7)

with the notation

Vßl = V ß, V ^ = X , i  (i = 2,. .  . ,N).  (2.8)

Thus
V „Ф — (РрФ)' = U(w)(pß9) (2.9)

and
V ' ^ U V ^ U - 1, (2.10)

which yields

gV^+giX'^  = gU D ^ U - '+ g iU X lU - 1 -  iUd»U~\  (2.11)

Then we separate, by construction, Eq. (2.11) into non-homogeneous and homoge­
neous sectors,

£>;, =  U D)1U~1 -  1-и д » и - ' ,  (2.12)

X'pi = UX^iU-1. (2.13)

Concluding, the Lagrangian for the matter sector in the Ф-basis is

£ = (7)„Ф)1(Х>"Ф)-т2Ф ^ . (2.14)

We should now consider this local symmetry at <p-basis and verify its consis­
tency. Working out the non-diagonal parametrization we get a covariant derivative 
V^tp given by

V„ = ÍM ^ÍT 1, (2.15)

= (0„ + igjV^Ha)?,  (2.16)

V ß<p = SlVß Ф, (2.17)

where we notice that the covariant derivative also transforms as a covariant object 
under a change of field basis.

Under gauge transformations this ip-covariant derivative transforms as

V„ = T W V / W 1, (2.18)
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which yields

ig iV h  = ig iTV^T- 1 +  T ^ T “ 1), (2.20)

with the corresponding infinitesimal transformation

9iSVfr = -  d,wa. (2.21)

To systematize these gauge and field basis transformations, two basic consis­
tency conditions must be verified. They are that the potential field transformations 
and the Lagrangian are invariants. Considering that structure functions f abc and 
gauge parameter w are independent of rotations, one reads from Eq. (2.21)

SD^a -  - f abCwbDl — dßwa, (2.22)

SXf,a = - f abcWbX cJ ,  (2.23)

with rewrites (2.10) and (2.11).
Substituting (1.6) in (2.14), we get the following expression for the Lagrangian 

at ^-reference system

C[(p] = (V ^JST ÍV 'V ) -  ч> 'М \. (2.24)

Then, by checking (2.2) and (2.19) in (2.24), it yields

C'W) = Ц.Ч>\- (2-25)

For the Abelian symmetry

ф^Цф'  = и(а)Ф, (2.26)

where U(a) = e' aY, Y  being a charge matrix Yij = similar results are ob­
tained.

Another classical aspect to be considered under Í2 rotations concerns the 
interactions. Considering the coupling of the free Lagrangian to external fields

%>] = J  d*x (^ P i’P4>+ \ч>'3 + ^ V )  (2.27)

it yields the following equation of motion

V<p = - J , (2.28)

with the solution
<p(x) = tp0(x) -  J  dAyP~l {x\ y)J(y). (2.29)

TENSORS AND INVARIANTS 2 4 7
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Then the effective action corresponding to a current-current interaction result

5еЯ[Л; J*] = - J  d4xd4yJl (x)V-\x- ,  y )M y) .  (2.30)

Working out the effective action at Ф-basis we have

Sefí[Ji; Ji] = -  J  d4xd4yJl(x)<7~1(x,y)J2(y) (2-31)

is written in terms of the operator a and the sources J \  and J 2. Substituting 
Eq. (1.6) in (2.27) one derives the following transformations laws

i T ' P f i  =  (7,

П‘л  =  Ju

fiV2 = J 2, (2.32)

which gives
S M \J i ]  = Sen[Ji\J2]. (2.33)

Now the question for physical interpretation will be to understand about 
which of the currents, J  or J,  describes the physical currents. For instance, a point­
like charge which generates an electrical field should be written in terms of J  or J? 
For analysing such argument let us consider as relevant the external currents coupled 
to the diagonal basis. Then, the following point-like charges electric potential will 
be associated

M x )  = g63( x - a ) .  (2.34)

Evaluating the case for static potentials one gets

v w m  =  § £ [ * ] ( 2 . 3 5 )

where Vînt [Ф] is a static potential describing the interaction between two static point­
like charges localized in a  and b points. Then from (2.33) we get the information 
that the above result is preserved in <p-basis:

vïntM = Ünt№. (2.36)

Concluding we would note that although the interaction between two static sources 
is independent from field parametrization the exchange of field quanta is more clear 
at diagonal basis. There it appears that just one pole m / is the responsible for 
intermediate such interaction. This interpretation indicates that, at classical level, 
physics shows preference between such field bases.
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3. Q u a n tu m  a sp e c ts

The effective action is defined as

Г[Ф] = 5с1[Ф] + Г1оор[Ф]; (3.1)

it can also be written in the form:

o° 1 ,

Й ф ] =  Ё ^ Т  /  d 4 x 1 . . . d ^ x n t (è: i
n = l n - J

x2i • • • ) • • • ^<n(xn)' (3-2)

Then, although the effective action must be preserved under a field basis 
change

m  = f  m  (3.3)

one gets that its components will change. Substituting Eq. (1.6) in (3.2) we derive 
the following general expression

p ( n )
< 1 * 3  •■■«» [*i -  r S : i . j . ah ‘A 72*2 * . f i 7 n* n (3.4)

Consequently, the Feynman rules will change under a change of field basis. 
Propagators will transform as

Aij = (3.5)

while three and four vertices are

г  $ ( * ;  /; r ) 6 \ k  +  i +  r) =  П - В Д о г Ж , ( * ;  h Ф 4(* +  / +  r) (3.6)

and

г  $ ,(* ; /; q\r ) 6 \k  + / + g + r) = (*; /; g; г)й4(* + / + g + r).
(3.7)

As a check, we can show that

S Í M  +  ( f S p )  .. =  S Í M  +  ( r íoop)mn W n -  (3.8)

Given this dependence for the Feynman rules, it turns crucial to understand 
whether the poles are invariant under such field basis transformations. Considering 
the contribution to the effective action from the self-energy, we have

f  [Ф] = -Ф <[p2 — m2 — *7г]Ф +  interactions, (3-9)
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where (—ix) means the self-energy contribution from loop corrections. Similarly, 
for y>-basis, we get

I'M  =  ^ ^ [ K p 2 — M 2 — iE]y> + interactions, (3.10)

where (—iE) is the corresponding quantum contribution to the effective action in 
the yi-basis. Then, from Eq. (3.14), it yields

I'M  = — 1712) — tV]i)_1y> + interactions. (3.11)

Thus Eqs (3.9) and (3.11) are showing that independently of field parametrizations 
the equation which determines the physical mass is given by

p2 — m 2 — ixfree (p2; free coefficients) =  0. (3 12)

Another proof that the physical masses do not depend on field basis is to 
analyse the field propagators. From (3.4) their transformation law is

{T(<p<p)) = П(ТФФ)П*. (3.13)

Thus Eq. (3.13) shows a rotation which does not change the poles structure. More 
explicitly, we have

(Т(Ф (г)Ф Ы ) =  -  У )  =  n ~1D +  K1- . „ . * - ‘n - “ , <ЗЛ4)

which shows that physical masses are K ~ 1M 2 matrix eigenvalues. Observe that 
this result was already predicted in Eq. (1.11).

The next analysis regards the wave-function, mass and coupling constant 
renormalizations for different field parametrizations. Defining K^2\  and as 
the counterterms for the kinetic piece, and Km, Km  those for the mass term, one 
writes

С[Ф] = -^ФкПФл -  ^Ф‘дА(2)ПФд -  ^ п ^ Ф ц  -  Ф̂*лКтФя (3.15)

and

£ М  =  - ^ P r KU ipr -  U K^tpR  -  <̂Pr M 2<pr -  ^Pr Km Vr , (3.16) 

which yields the following wave-function renormalization:

ф в  =  2 |ф д , (3.17)
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where
Zip = 1 -f К^2\  Ёф = 2ф (non-diagonal). (3.18)

For the 97-basis,
<рв — Z$<PR, (3.19)

Zv = 1 + K - ' K ^ K * ,  (3.20)

^  Ф 4 -  (3.21)
Notice that the К  matrix is not renormalized.

Mass renormalizations in Ф and 99-basis are given respectively by

m2B = mR + Sm2, (3.22)

where
óm2 = Km -  ^K ™ m 2R -  \ m 2RR V \  (3.23)

6m 2 = (Sm2)1 (3-24)
and

MB — MR + SM2, (3.25)

SM2 = (SM2)1 =KM -  ^М%К~1К - Ь к ( 2'>кЬ+

-  ^ к Ь к Ю к - Ь к - ' М ^ .  (3.26)

Observe that the non-renormalized К  matrix interferes on mass parameters renor­
malization.

Considering the relationship

PR =  ЯФ д, (3.27)

where Í2 is defined in terms of dimensionless parameters derived from the kinetic 
matrix К  (non-renormalized) and from the mass matrix M  at tree level (the renor­
malized mass without corrections in h), one derives the following transformations 
between the field parametrizations

K™  =  П "1' ^ 2) « - 1, (3.28)

Zv = (K~1Q.)Zi  (к~Ъ í r 1)  (3.29)

and

SM2 = -  ^ n - l1m2RÇî1K - ? n - l1KWÇl-lK? +

- ^ K ^ n - 11K^2'>il-1K - ^ m 2RÇî-1. (3.30)
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The radiative corrections for the interaction terms are

£nt[*] = ~ Л 0 ыФ.Ф,Ф*Ф, -  ± & $ 1 № Ф кФ, (3.31)

ОГ 1 1
Â n t M  =  -  jA i j k i < P i < P j < P k < P i  -  i (3.32)

with
к %  =  (3-33)

Thus, from these different field channels for physics to be understood, an 
interesting question is about the renormalizability at Ф-basis. Being diagonal, it 
might not absorb the non-diagonal divergences. However, this non-renormalizability 
problem is just apparent. The physics equivalence between the different field bases 
allows to make this analysis in a chosen field basis-у?. Then, from such a boost, one 
gets diagonal and non-diagonal parameters which can absorb the wave functions and 
masses counterterms as Eqs (3.19) and (3.25) are demonstrating. Concluding, we 
note that, for this extended scalar model, while the mass spectrum is more evident 
at Ф-basis, the renormalizability turns clear at 92-basis.

A further step would be to understand the variations of the renormalization 
group equation under f2. From Eqs (3.2) and (3.17) one derives the following rela­
tionship between bare and renormalized 1PI Green functions:

Щ .в .»(р;т я ;С!в ;с) = {z * *(с в ;р ;£) ) . т

• • • ( ^ Ф * )  j n ( p ; m H( / i ) ,  G R ( n ) , f i ) ,  ( 3 .3 4 )

where ц means the renormalization scale and e the dimensional regularization pa­
rameter. Applying и 4-, it yields

where

(3.35)

TyG) =  (3-36)

= (3.37)
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Similarly for y>-basis, one gets

(г | ) .л  [>"kK  ».+■■■ +

+ ^ дц \Мв’*в
(M) <9

Őmf, "r <9Gf,+ Я
■(A)

klmn - i í * . . . . . = ».
(3.38)

where the coefficients are given by

7ijM) =  ^ I mb,abM £

and

ß%  = ^ MB'XB̂ kh (339)
with the renormalization coefficient Z$ and Zv defined through Eqs (3.18) and 
(3.20).

Consequently, the anomalous dimensions and the ß functions will transform 
respectively as

7<M> =  (3.40)

ß %  =  ■ (3-41)
Notice that, although the /?- and 7-functions depend on the field parametrization 
basis, the physical information will be preserved. Equations (3.41) and (3.42) show 
that any zero on these functions will remain for any other field basis. Conse­
quently, the information on finiteness structure is an invariant under such field 
reparametrizations.

As a last quantum aspect to be analysed here we would select the Slavnov- 
TaylOr identity under fi transformation. Considering that the classical symmetry 
holds for Г, we have at Ф-basis:

/ d4x ST ST 
S4> i W i

(3.42)

an equation that has to be understood order by order in ft. Then, by substituting 
(16) and (2.32) in (2.41) one derives

/ dAx ST ST
S(pi SJi =  0, (3.43)

which shows that informations derived from S.T. identity will be preserved under 
field reparametrizations.
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4 . SO(N ) ren o rm a liza tio n

Assuming mass degeneracy as dictated by SO(N) symmetry,

Ф' = 5Ф = е‘и'”с “Ф, (4.1)

one gets that constraints between the counter terms K^2\  and must be
obtained through the Ward identity:

/  d4* ^ (Ga)i' * ' =0’ (4-2)

which yields the following expressions

G ^ 1) = 0, (4.3)

SikSjIT$\x-,y) =  T $ ( x ]y), (4.4)

SimSjnSkpSIqT % q =  Г %■ (4.5)

Equations (4.4) and (4.5) indicate that Г^2) and are invariant tensors under 
SO(N)  group.

Expressing the two- and four-point 1PI functions,

E g3 =  (k2 -  m 2R)6ij +  k2K l2) -  , (4.6)

г  %  = 6 ki + őikSj, +  м ,* )  +  (4.7)

and considering that К and are symmetric matrices while SO(N)  genera­
tors are antisymmetric, it yields by substituting (4.6) and (4.7) in (4.4) and (4.5), 
respectively,

[tf(2),G 0] = 0 , (4.8)

[# (”*), Ga = 0  (4.9)

and
GaimK^l,  + GainK % q + GaipK ^ niq + GaiqK ^ pi = 0. (4.10)

Then, by virtue of the Schur’s lemma

K m  = fc(2)11) (4.11)

r W  = jfc(m)n (4.12)
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and
K ijli -  fr(4)H ®  И- (4-13)

Consequently, SO(N) symmetry implies

Фв = Z Í * R,

where

where

and

where

Z* =  (l + fc(2)) l l ,  (4.14)

т в  =  Z $ l Z m m 2R ,

Zm = ( l  + k W ) U ,  (4.15)

X B  =  Z 4 Z $ 2 \ r ,

Z4 = ( 1 + *(4))11. (4.16)

Equation (4.14) shows that the renormalization process with symmetry SO(N) does 
not mix fields. From Eq. (4.15), we get that all masses renormalize equally in the 
sense that radiative corrections do not split the mass degeneracy dictated by SO(N)  
symmetry. This argument can be verified by taking k2 — fj.2 as a zero in Eq. (4.4). 
It yields

r \ ] \ k 2 = S )  = 0, (4.17)

which says that all propagators have a same pole: к2 = \i2 — m 2R + (6 т2)япце. 
Therefore, since the symmetry is preserved the quadratic correction will preserve 
the mass degeneracy. Finally, from Eq. (4.16), we also observe that symmetry will 
protect that after renormalization no new vertex is created.

The important thing here to notice is that the same informations could be 
obtained through yj-basis as Section 3 shows. For instance, from Eq. (3.26), one 
gets

MB — MR + K M  -  \ { M 2R)ikK ^ K ^  -  \ k $ K ü \ M 2r ). (4.18)

Similarly for the coupling constants

\ Bmnpq
_  \ R  I i^(4) _ _ \ R  i^ — l  i^(2) I

/ 'm n p q  ' l v m n p q  2 / ' m n p l IY lr J v rq  '

-  -  \ b * lP4Kw K W  -  \ ^ n PqK^K<&.
(4.19)
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5. C o n c lu s io n

A clear consequence from assuming this generalized model (1.1) or (1.2) is 
the development of a fi-matrix. These non-dynamical Í1 transformations work on 
the ingredients of theory and split them into classes of invariants and tensors. This 
perspective brings a prescription that can be useful for understanding about the 
physicity of every variable building up the model. Symmetry representations, Feyn­
man rules and the renormalization group equation contain such Í2 dependence; while 
physical masses and the Slavnov-Taylor identity were shown to be invariants.

Another interesting consequence form Í2 matrix relates the presence of diago­
nal and non-diagonal field basis. Although physics should not depend on them, some 
aspects are better seen depending on a given choice. Comparing to the case with 
spontaneous symmetry breaking one concludes that at Ф-basis the mass spectrum is 
more explicit (similarly to unitary gauge), but the renormalizability is not explicit. 
However, at у-basis (analogous to renormalizable gauge), the renormalizability is 
evident.
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TO SUPERALLOWED FERMI /3-DECAYS

G ü n e § T a n i r , B a §a r  § a r e r  and D a r i u s h  A m i r h a s h e m i

Gazi University, Faculty of A r ts  and Sciences 
06500 Ankara, Turkey

(R eceived 24 A ugust 1993)

T h e  o u te r  rad ia tiv e  correc tions of order a  to  superallow ed F erm i /З-decays (14 О , 
26m Al, 34Cl, 42Sc, 46V, 50M n a n d  54Co) a re  ca lcu la ted  by  applying a n  ap p rox im ation  to  
Ferm i function . T h e  resu lts  sire com p ared  to  o th er stu d ies .

In tr o d u c tio n

The calculation of the actual rate of /З-decay has fundamental importance 
to find the precise values of vector coupling constant, half-lives, matrix elements, 
etc. A precise knowledge of the vector coupling constant for nuclear /З-decay is 
necessary to test of Conserved Vector Current (CVC) theory. According to the 
CVC hypothesis all ft values for superallowed /З-decay should be identical providing 
that small electromagnetic corrections are accounted for. One of the major uncer­
tainties in the ft values of superallowed /З-decay is the radiative correction. The 
/  function should be modified by radiative corrections. Many authors [1,2,3] have 
worked on the corrections but discrepancies remained among their results. Radia­
tive corrections arise from the interaction of the decaying nucleon and the emitted 
positron with the external electromagnetic field. These corrections are separated 
into: 1) “Outer” corrections of order a, Z a2, Z 2a3 . . .  and magnitude Si, 62, 
63 . . .  Sr = 61 + 62 + S3 + .. .  which are included in the experimental ft multiplying 
it by (1 + Sr ). Si is given [3] by integrating a function g(W, Wo) over the positron 
spectrum to the end point IVo-'

61 = (a/2*)g(W,W0).

2) “Inner” corrections which are included in the primitive Gv value: G'2 = G^(l -f 
A). A depends on the structure of decay, the details of strong interactions, and the 
applied model.

In this work, the outer radiative corrections are calculated by applying an 
approximation to Fermi function in the vector interaction of /3-decay.
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D e ta ils  o f  ca lcu la tio n s

The radiative correction of order a  is given [4] by

a  rw°
6(Z, Wo) = — Г 1 J pW(W0 -  W)2F(Z, W)g(W, W0)dW, (1)

where g(W, Wo) is a universal function and is given by the following expression:

2 5 8  GÜNE§ TA N IR et al

arctan hß
ß

-  1g(W, Wo) = 31nM — 3/4 + 4

+  j L  +  ^[arctanh/?][2(l + ß‘

Wn -  W
— 3 / 2  + ln 2 (  W o — W )

:)

( W o - W ) 2 „ t
— 6 ^ ------- 4arctan/l/?j. ( 2)

The Fermi function for Z ф 0 is:

F ( Z , W o )  =  2 (1  + т ) [ Г ( 2 7  +  \ ) ) - \ 2 p R ) 7^ - x\ ^ z w ^ \ T { 1  +  m i í W / p ) | 2 . (3 )

The calculation of the Fermi function using this expression is complex and boring. 
So many approximations are experimented and done. An approximation for the 
Fermi function in this work is considered:

F(Z, W o ) =  1 +
7raZW

(4)

where p = л/W 2 — 1.

R e su lts  a n d  d iscu ssio n

Our results for <5i are listed in Table I. It can be seen that 61 decreases with 
increasing Wo and the results are in agreement with others. The differences are 
mainly due to the contribution of the axial vector current. It has been assumed 
that radiative corrections of order a are dominant. However, it must be remembered 
that corrections of higher order (in particular of order Z a 2) may be important.

T ab le  I
R adiative correction for sup er allowed ß -decay

Nucleus Z W0 Si(Z,W0) [3] Si(Z,W 0) [5] 6i(Z,W 0) [6] *l(Z,W 0)

14o 7 4.5392 1.29 1.19 1.29 1.30
26 A1 12 7.2827 1.11 1.01 1.11 1.13
31 Cl 16 9.7481 1.01 0.90 1.00 1.03
42Sc 20 11.5743 0.94 0.84 0.94 0.97

22 12.7977 0.91 0.80 0.90 0.93
50 Mn 24 13.9357 0.88 0.77 0.87 0.90
54 Co 26 15.1301 0.86 0.74 0.84 0.87
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COMPARISON OF TWO- AND ONE-COMPONENT 
PREEQUILIBRIUM EXCITON MODEL CALCULATIONS 

FOR SOME NEUTRON INDUCED REACTIONS
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06500 A nkara, Turkey

(Received in  rev ised  form  24 A ugust 1993)

T w o-com ponent p reequilib rium , used  by G u p ta , a n d  analogously one-com ponent 
ex cito n  m odel descrip tions are a p p lied  to  n e u tro n  in d u ce d  reac tions such  as 4eT i(n ,n ') , 
4eT i(n ,x p ) a n d  27A l(n ,xp ) a t  14.6 M eV . T his is th e  first com plete  ca lcu la tio n  m ade  by  th e  
tw o-com ponent a p p ro ac h  of G u p ta . I n  o rder to  o b ta in  m e a n  lives th e  tim e-in teg ra ted  form  
of m a s te r  equations is used.

In tr o d u c tio n

The basic feature of the exciton model is the time-dependent description of 
a nuclear reaction as a process in which the initial exciton state of the composite 
nucleus equilibrates through a series of successive states by energy conserving two- 
body residual interactions bringing about transitions between these states.

In the one-component formulation of the exciton model for preequilibrium 
nuclear reactions, neutron-proton distinguishability, suggested first by Cline and 
Blann [1], and then by several authors [2-7], is taken into account.

A two-component master equation approach for a nuclear system towards 
equilibrium is described by Gupta [5], two-components being the proton and neutron 
components, but to our knowledge no complete calculation has been done using this 
approach. In this study, two-component master equation approach for a nuclear 
system towards the equilibrium, as described by S. K. Gupta [5] and analogously 
one-component exciton model descriptions for 46Ti(n,n'), 46Ti(n,xp) and 27Al(n,xp) 
neutron induced reactions, are applied and the results are compared to experiments.

C a lcu la tio n s  an d  co n c lu sio n s

In the two-component master equation approach for a nuclear system equili­
brating towards the equilibrium has been suggested by Gupta [5], a state (nT, n„) 
is described by (n,i), where n , = pT + h„, n„ =  p„ + h„ and t =  hv. The
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two-component master equation for the population P(n, i, t) changing with time is 
written as

= P(n — 2 , i— 1,t)A+(n -  2, i -  1) +  P(n -  2, i, t)Xv+(n -  2, i)

+ P(n +  2, j’+ 1, i)AI (n + 2, i + 1) + P(rz + 2, t, i)Ad (n +  2, i)
+ P (n ,» '-  l ,í)A J '(n ,» -  1) + P(n, i +  l|f)A Jl,(n ,i +  1)
-  P (n ,t,< )/r(n ,t), (1)

where

r(n ,i)  = [A+(n,i) + A +(n,i) + AI(n,i)
+ A' (n, 0  + AS'(n, 0  + AJ*'(n, t) +  L(n, i)]-1. (2)

A’s are transition rates and L(n, i) is the total emission probability from state (n, i). 
The maximum exciton number is given by n = 2\fgE.  The number of coupled 
equations in (1) grows quadratically with maximum exciton number, whereas in 
the one-component formulation the growth is linear. The number of two-component 
equations is hmax(hmax + 3)/2, the number of equations for the one-component case 
is hmax only. Two-component transition rates are taken from [8]. It is true for the 
A transition rates that ( 1 y n — hn~, л+(п- *) = N (2 )̂ n(n + i) ’ (3)

A ÍL (n ,í)  = N h y P y ( n  -  i n 7 -  1), (4)
z n (5)

7 =  7r, T' =  V or 7 = V, y' = ír, N  = ^ \ M \ 2\g, j  = ж or v, pr = тга + i, 
pu — n — 7ra — h — z, hv =  h — i, where \M\2 is the average squared two-body matrix 
element. Here, na is the number of protons in the projectile. In this paper, the 
squared matrix element for proton-proton, proton-neutron and neutron-neutron 
interactions has been taken to be equal. Here, \g  is the single particle level density 
both for protons and neutrons, that is single particle level density for proton and 
neutron can be given by jr* = gv — g/2 = The squared two-body matrix
element has been assumed to be independent of the exciton type. The exciton 
energy and the (composite-nucleus) mass number dependence of \M\2 is expected 
to be approximately [4]:

|M |2 ~  КА~3Е ~ \  (6)
where if  is a free parameter. The density of the exciton states with energy E has 
been given by Ericson [9] as

w(n, i, E) gnEn~l
2"(n -  1)!ря-!Л1Г!р1,!Л1,!‘ (7)

A cta  Physica Hungarica 73, 1993



EXCITON M ODEL CALCULATIONS 2 6 3

The differential particle emission rate from an (n, i) state is written as

Wp(n, 1, ep)de = + 1- p ßeaß{e)deu (Pt -  np,h*,p„ -  vß, hv, U) 
, hT,pu, hv, E ) ( 8)

Here Sß, fiß and e are spin, reduced mass and energy of the emitted particle, respec­
tively, is the absorption cross-section for the inverse reaction of ejectile. Inverse 
reaction cross-section has been calculated by the method given by Dostrovsky [10]. 
In (7) and (8) Xß and i/ß are the proton and neutron number of the emitted particle, 
U is the excitation energy of the residual nucleus.

The total emission rate in (2) is obtained by integrating over the outgoing 
particle energies and summing over all outgoing channels considered,

Wß(n, i, eß)de.

The spectrum for the emission of particle ß is given by

da(a,ß)
deß aa («, », «)T(n, i).

(9)

( 10)

Here, aa is the composite-nucleus formation cross-section by an incoming 
particle or, T(n, i) is the time that the composite system spends in the (n, i) state, 
that is

Г 0°
T (n ,i)=  / P(n,i,t)dt. (11)

Jo

To obtain T(n, i), we include the system (1) over the time variable and solved the 
system of linear algebraic equations:

—D(n, i) = P(n, t)|g° = T(n — 2, * — l)A^(n -  2, i -  1) +  T(n -  2, i)A^(ri -  2, i)
+ T(n + 2 ,1+ l)AI(n + 2 ,1+ 1) + T(n + 2, i ) \ v_(n + 2,1) (12)

+  T ( n ,  1 -  l ) A g ' ( n ,  1 -  1) +  ( n ,  1 +  l ) A J " ( n ,  1 +  1) -  ^ 4 ,
r(n ,i)

where D(n, 1) is the initial population of the (n, 1) state; at t = 0 only D(pa + 
2, 0 or 1) = P(pa + 2, 0 or 1,0) is non-zero.

The time integrated one-component master equation is

-D{n)  = A+(n -  2)T(n -  2) -  4 4  + A_ (n + 2)T(n + 2), (13)
r ( n )
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Fig. 1. Comparison of experimental and theoretical energy spectra of the 4®Ti(n,n') reaction at 
14.6 MeV, as described by the one- and two-component exciton models for various К  values. 
The solid curves show К  =  100 MeV®, the dashed curves К  = 200 MeV®, the dotted curves 
К  = 300 MeV®, and the dashed-dotted curves К  = 400 MeV®. The plus signs represent the

experimental data taken from [11]

where r(n) = [A+(n) +  A0(n) + A_(n) -f £(n)]_1. To find the mean life T(n, E), the 
system of linear algebraic equations (13) has been solved with the initial condition 
D(n) = 6nno. The transition rates are given by

lir
A-(n) = — \M\2gph(n -  2), (14)

О7Г
A0(n) = — \M\3g(gE)(n -  1), (15)

A»  = f ' í , 'I(ÍTÍ)- <16»-

The one component exciton state density is

E> = ( £ i î i i  <17)
A d a  Physica Hungarica 73, 1993
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46Ti ( n ,  xp)

Fig. 2. T h e  sam e as in  F ig . 1 , b u t for 46T i(n ,x p ) a t  14.6 MeV. E xp erim en ta l d a ta
are  taken  from  [12]

and the one-component emission rate is given by

wß(n' ̂  = 2̂з1 w w  (eß)Qß(p) ■ (18)
where p and h are the numbers of particles and holes, respectively and Qp(p) is 
the neutron-proton distinguishability factor for a neutron-induced reaction. This 
factor is to be chosen for neutron emission as 2 — 2z^ j- and for proton emission as 

Here, z =  Z/A  [5]. The spectrum for the emission of particle ß is given as

^  = (19)

where <ra is the composite-nucleus formation cross-section by an incoming particle 
a, T(n, i) is the time that the composite system spends in the state characterized 
by n,i  state and is given as

T(n,
r°

0 =  /Jo
P(n, i, t)dt. ( 20)
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27A l ( n , x p )

Fig. 3. T h e  sam e as in  F ig . 1, b u t  for 27A l(n ,x p ) a t  14.6 M eV. E xp erim en ta l d a ta
are  taken  fro m  [12]

In this paper, only the emission of primary nucleons has been considered. 
Complex particles, gamma emissions and secondary particles have not been tak­
en into account. In the course of calculations, level densities and transition rate 
formulae without corrections for the Pauli principle have been used.

In order to perform a detailed comparison, the free parameter К  has been 
chosen to be 100, 200, 300 and 400 MeV3, respectively and both the one- and 
two-component preequilibrium angle-integrated spectra have been calculated.

In the two-component preequilibrium calculations, for the initial exciton num­
ber both the n =  1 and n = 3 values are used. In the case for n = 3, there are two 
different configurations as (n =  3, г = 0) and (n =  3, г = 1). Only the (n = 3, i = 0) 
configuration is used in the present calculations.

Figures 1-3 show a comparison between calculated and experimental angle- 
integrated spectra for each reaction. Results are presented from the calculations by 
the two- and one-component preequilibrium exciton models. The two-component 
results are compared to the analogous one-component exciton model calculations 
with and without the distinguishability factor Q [5].

In the 46Ti + n at 14.6 MeV, the thresholds for secondary neutron and proton 
emission are about 5 MeV and 1 MeV, respectively. In the same entrance channel, 
the reaction threshold for fH and 3H emission are about 6 MeV and 1 MeV, respec-
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10001т 'T i (n, n’)
К = 400 MeV'

100 т

S  ° '1 L  
B woo г

K = 100 MeV'

100 г

Ют

6 8 
e (MeV)

10 12 14

Fig. 4. C om parison  betw een ca lcu la ted  an d  ex p erim en tal energy sp e c tra  for th e  46T i(n ,n >) 
re ac tio n  fo r К  =  100,400 M eV 3 . T h e  d o tte d  curves show tw o-com ponent re su lts  w ith  (3,0) 

in itia l configuration , solid  curves rep resen t tw o-com ponent calcu la tions w ith  (1,0) in itia l 
configuration  a n d  dashed  curves rep resen t one-com ponent resu lts  w ith o u t Q -facto r while 

dashed  d o tte d  curves co rresp o n d  to  th e  one-com ponent calculations w ith  Q -factor. T h e  p lu s 
signs rep resen t th e  ex p erim en tal d a ta  [11]

tively. Therefore, neither primary deuteron and triton, nor secondary neutron and 
proton emissions can contribute to the whole process which is essentially governed 
by preequilibrium mechanism. Only 4He emission can contribute to the 46Ti +  n 
process.

In the reaction 27A1 +  n at 14.6 MeV, both the emission of the primary 3 H, 
the secondary neutron and proton are energetically forbidden. Only alpha and 
deuteron emissions can contribute to the angle-integrated cross-section.

For all the three reactions, the calculated results are, in general, in good 
agreement with the experimental data. In reaction 46Ti(n,n') (Fig. 1), one-compo­
nent calculations with and without a Q-factor, especially for К  =  200 MeV3, are in
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good agreement with the experimental results. In the case of the Ti(n,xp) reaction, 
(Fig. 2), the best agreement is attained by the two-component description with (1,0) 
initial configuration and by the one-component exciton model with a Q-factor. On 
the other hand, the К  values do not seem to affect the calculations. In the same 
reaction with К  = 100 MeV3 the one-component exciton model calculations with a 
Q-factor are better than the one-component calculations without a Q-factor.

In reaction 27Al(n,xp) (Fig. 3) the one-component calculations, both with and 
without Q-factor are in better agreement with experiments than the two-component 
calculations. For each calculation, К — 100, 200 MeV3 give better agreement with 
experimental results than higher К  values do.

Figure 4 shows a comparison between the one- and two-component preequi­
librium calculations as well as the experimental data for К  = 400 MeV3. Two- 
component results with initial configuration (1,0) show the best agreement with 
experimental data.

It is summarized here that the calculations have been performed with the 
following assumptions: (1) The squared matrix elements for proton-proton, proton- 
neutron and neutron-neutron interactions have been taken to be equal. (2) Single­
particle level densities for neutron and proton have been taken to be equal. (3) 
Exciton state densities without corrections for the Pauli principle have been used. 
(4) Complex particles, gamma and secondary particle emissions are not taken into 
account. Despite the above approximations, the theoretical predictions are in good 
agreement with the experimental results.
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B y considering th e  p ro p ag ativ e  p ro p e rtie s  of th e  po ten tia ls  in  a  two p o ten tia l th eo ry  
of e lectrom agnetism  we a rriv e  a t  signatures ch aracte ris itc  of a  tw o p h o to n  theory  w h en  th e  
two p h o to n s  in  the  theory  hav e  a  sm all re s t m ass  a n d  m ix to g e th e r in  th e  L agrang ian .

1. In tr o d u c tio n

Classical electrodynamics and Quantum Electrodynamics have passed every 
conceivable test that experiment has confronted them with and the formal beauty 
and inner consistency of these theories represents a milestone in the history of the­
oretical physics. However, with the recent flurry of interest concerning a possible 
strong coupling phase of Q.E.D. motivated by the 1.8 MeV (e+e~ ) peaks generated 
in heavy ion collisions [1,2] questions regarding the validity of Q.E.D. as a strong 
coupling theory have surfaced. Along with these questions there has been a per­
sistent interest from the theoretical community to understand magnetic charge and 
magnetic monopoles within the present structure of electrodynamics [3]. Dirac [4] 
originally proposed the idea of magnetic monopoles to arrive at an understanding 
of how electric charge was quantized in the world. His idea was, “if there is one unit 
of electric charge coupled to a magnetic monopole, quantization of electric charge 
results from the quantization of angular momentum for the electric charge,”

eg _  n 
h C ~  2 '

Schwinger [5] later discussed the interaction of two dyons (a dyon being a parti­
cle carrying electric and magnetic charge) and demonstrated that they obey the 
quantization condition

e i 0 2  - e2gi n-----^ -----= 2  \C =  speed of light).

(eiiPi — electric and magnetic charge of particle 1, t 2) g2 =  electric and magnetic 
charge of particle 2). With regard to interactions in the early universe, Witten [6] 
has shown that the electric charge of a dyon need not be quantized in the presence 
of CP violating interactions. Along the same line of reasoning Fischler and Preskill
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[7] have demonstrated that monopoles can reduce the axion density to acceptable 
levels in the early universe with the monopole thus acquiring a non-integer electric 
charge. When magnetic charge is present in the theory, it is easy to demonstrate 
that a single vector potential does not exist for all points sinceM
If the right side of Eq. (1.1) is zero then the equation is the equivalent to the exis­
tence of a potential. To circumvent this problem, Cabibbo and Ferrari [8] long ago 
constructed a two potential theory of electromagnetism in the presence of magnetic 
charge. In a very interesting paper, Callegari et al [9] have discussed the structure 
of this theory when two photons are present (electric-like photons and magnetic- 
like photons) along with the effects that such a two potential theory would have 
on local electromagnetic phenomena. Their upper limits for the masses of the two 
photons are low but not completely ruled out by experiments. Along the same 
line of thought it was Vinciarelli [10] who emphasized that the dual symmetry of 
Maxwell’s equation is unique to four-space time dimensions. This suggests that 
magnetic monopoles and dyons might be topological condensations arising from 
higher dimensional compactification. When the properties of the t ’Hooft Polyakov 
monopole were studied for an SO3 gauge Higgs system, it reinforced this idea with 
the topology of the gauge-Higgs fields being related to the magnetic charge of the 
field configuration [11]. Inspired by these theoretical considerations suggesting the 
existence of magnetic charge along with the desire to find a consistent formulation 
to describe electric and magnetic charge we study the propagative properties of 
photons in a two potential theory when mass terms are present for the photons and 
a mixing term is present in the Lagrangian.

We also arrive at the unique properties that would identify the presence of a 
two potential theory and suggest provisional ways of looking for these signatures in 
a cosmological setting.

2 . T w o p o te n t ia l  th eo ry  o f  e le c tr o m a g n e tism

We begin our analysis by writing the field tensor in a two potential theory of 
electromagnetism as

_  ÔA, _  ( d B ^  _ д в Л
ßV dxv дх» ‘i-sf—g \  dxp dxa )  ’ 1 ’

here Aß is 4 vector potential, Bß is 4 pseudo vector potential.
For the Lagrangian of electromagnetism with rest m e for the electric like 

photon, and mg for magnetic like photons we have

C = - — F ^ y / = g  -

m ■j c 2
8тг ft2

m |C 2
8яА2AßA ßy/^g - (- aAßB ,i

47Г V 4 , ( 2 .2)
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here Jp is the electric current density, J£ is the magnetic current density, a  is a 
mixing constant.

Also the term aA^B^y/—g destroys parity invariance since is a pseudo­
vector.

We could retain parity invariance by introducing a constant static pseudo­
scalar Фо such that the mixing term reads

аФ0 A , B ^ y / ^ .  (2.3)

We, however, choose the original form in Eq. (2.2) to study wave propagation. 
Varying Eq. (2.2) with respect to A^ gives

(2.4)

Varying Eq. (2.2) with respect to Bß gives

(2.5)

For the four vector potentials and pseudo-vector potential we have 

A" = (At ,A !/,A2, Ф), B" = (BX, B „ B Z,9),

The electric and magnetic fields are

E  = Exi A Eyj  +  Ezk ,
В = Bxi + Byj  +  Bzk. (2.6)

The field tensors now receive contributions from both the vector and pseudo-vector 
potential. Also if we consider an EM wave propagating in the x direction we have

А" = (0,Ау,А*,0),

В** = (О, Бу, Æz> 0).

Неге the components of В ^ depend only on x, t. The field tensor components 
are

’13

34

= BZ = дАу 1 8BZ 
дх C dt ’

_ 1 dAy dBz= Ey =
C dt + Ö,

_ 1 dB„ dA,
= By = c dt + dx ’

II II 1 dAz
c dt

dBy
dx

(2.7)
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Eq. (2.4) now reads for и = 2

д2А и 1 д2В.
+dx2 Cdtdx  С 2 di2 

For и — 3 Eq. (2.4) reads

■ + 1 ^ ‘ Л + = _„в„.
С öfőx fta

<92AZ 1 ő2By 1 <92TZ 1 d2By m2C2
dx2 C dtdx + C 2 dt2 

For и — 2 Eq. (2.5) reads

+ C dtdx h2 -Аг =  —aBz.

1 d2A, d2Bv 1 d2Bv 1 d2A.
+ C dtdxC d t d x  dx2 C2 dt2

For и = 3 Eq. (2.5) reads

1 d2Au d2Bz 1 d2Av 1 d2Bz

* + ml£ 2
h2 В у =  a A y

lC2Bz
= a A z

( 2 .8)

(2.9)

( 2 . 10)

( 2 . 11)c d t d x  dx2 C d td x  C2 dt2 h2

We now consider the following case for Eq. (2.8), Eq. (2.9), Eq. (2.10) and Eq. (2.11).

Case I

For a plane wave with zero mixing between the fields (a =  0), Az — By — 0, 
we have

Ay = Aoe^klX- Ult\
Bz = B0ei(*a' " " a,),

from Eq. (2.8) and Eq. (2.11)

_  l2 , т 1 ° 2
(~i2 1 12 ’

«2 £a I
C2 2 + h2

( 2 . 12)

(2.13)

Here Ay and Bz propagate with different frequencies and wavelengths related by 
Eq. (2.13), though the potentials are monochromatic, from Eq. (2.7) the electric and 
magnetic fields Ey, Вz are mixed states of two different frequencies and wavelengths. 
Thus plane waves with a slight frequency splitting given by Eq. (2.13) would be a 
signal for a two potential theory.
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Case II

For non-polarized wave again from Eq. (2.8), Eq. (2.9), Eq. (2.10), Eq. (2.11) 
we would have (a =  0)

Ay = А0е*к' х- и'*\
Az = 3oe,(*ie -"10,
By = Вае ^ х~ш̂ \
Bz = В 0е ^ х- Шз*\ (2.14)

with the frequencies uq, u>2 relating to fci, &2 by Eq. (2.13). The electric and mag­
netic fields given by Eq. (2.7) would again be a mixture of two different frequencies 
and wavelengths.

Case III

If а ф 0 (non zero mixing between A ß, B^) we have upon substitution of

Ay = A0e^kx- Wt\
Az = А0е*кх~ш' \
By = B0e^kx- Ut\
Bz = (2.15)

into Eq. (2.8), Eq. (2.9), Eq. (2.10) and Eq. (2.11)

?C2Ao(k2) - A 0 ( ^ j +  h2 

A0(k2) -  A0 Ç ç ïJ  + 

Bo(k2) -  B0 ( jP )

2N m2C2-r

+

ft2
m2C2

j4o = —aBo, 

Aq = -aBo,

ft2 -Bq — -\-aAo,

+
m‘C2_

-Bo — +aA0.

For small a the equations in Eq. (2.16) give for a consistent solution

(2.16)

2  7 2 s ~,1 m e C 4" l - k 2C 2+ - J 5- -
a 2C4

( m̂ C* mJC‘V--------g3-J
w2 ~  fc2c 2+ - ^ - + -

ft2
c 4 a 2C4

n;c< _  rn£C<\ • 
a3 a3 ) 

(2.17)
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The two dispersion relations in Eq. (2.17) would go into Eq. (2.13) when Az, By 
alone are present or Ay and Bz alone are present even in the presence of non-zero 
coupling. We see from the above analysis that the coupling between the two poten­
tials can generate unpolarized waves which produce two monochromatic branches 
(w+, Ш-). The fields need not be a mixture of two frequencies although they could 
contain either of the two dispersive components in Eq. (2.17). The difference be­
tween the case of no-mixing between the fields (a = 0) and mixing (а ф 0) is that 
with no mixing as in Case I and Case II both frequencies show up in the electric and 
magnetic field components while with mixing only one component need be present 
for unpolarized waves.

3. C o n c lu s io n

The analysis above has provided us with different signatures to look for in a 
cosmological setting, if me — 10~48 grams [9] we find that

^ - - З х И Г 11 cm"1

and
m’C4

We see from Eq. (2.17) that Дш2 ~  1 s~2 which even for microwaves is an extremely 
small frequency shift. The way to look for the shift is to look for repetitive [12] 
signals of cosmological origin, for instance if the wave propagates over a distance of 
106PC ~  1024 cm we might find a time delay between signals of w+, w_ calculated 
as follows (neglecting a in Eq.(2.17))

U  =

t -  =

1024 1024 1024 ( 1 10_21>)
C \ A +  bh* С V 2 ) '

1024 1024 1024 ( , 10"22N\
v_ C\J l  + C l 2 ) '

1024 / 1 0 - 21 -  10~22^l ~  9 V 1 n2 о ~  1
“  c V 2 ) ~  2 CAt  =  t_ — t+ = ~

Here we have assumed к яй 1 (microwaves) and m g ~
If we include the mixing term in Eq. (2.17) it would modify the calculation 

of <+, £_. If we increase the cosmological length scale we increase At. Thus any 
distinctive repetitive signals with very short time intervals between them might be 
signatures of the two potential theory. If such signals were found they would also
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provide us with means to set limits on the two photon masses (m e,mg) and the 
mixing parameter a.

Two final points also have relevance, if there is evidence for a second potential, 
it would be interesting to ask how it would effect Aharonov-Bohm type experiments 
for electric and magnetically charged particles [13]. Certainly, the Lagrangian the­
ory of particles with both potentials present would have to be constructed in order 
to ascertain the proper place of two potentials in a quantum formalism. Lastly, 
Field et al [14] have studied the rotation of the plane polarization of polarized light 
coming from cosmological sources when the Lagrangian of electrodynamics breaks 
both parity and Lorentz invariance. Within the context of the two potential the­
ory here discussed, it would be of interest to ask how the parity violating term in 
Eq. (2.2) would effect the rotation of the plane of polarization of polarized light.
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IN MAGNETOFLUID DYNAMICS
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T h e  defin itio n  of th e  e lectrom agnetic  field in  te rm s  of H ertz ’s p o te n tia l  m akes i t  
possib le  to  give a  varia tiona l fo rm u la tio n  in  the  dy n am ics of ideal m agnetoflu ids, b o th  
in  non-re la tiv istic  a n d  re la tiv istic  rep resen ta tions. T h e  theory  is a p p lie d  in  two cases: 
(i) U sing N o e th e r’s theorem , th e  fu n d am en ta l equ atio n s o f conservation fo r  o u r m odel of 
m agnetoflu id  a re  ob ta in ed , (ii) B y m ea n s  of th e  four-d im ensional gen era liza tio n  of H ertz ’s 
vector, a  re la tiv istica lly-covariant fo rm u la tio n  of a  co n stra in ed  m in im um  energy  prob lem  
in  th e  case of force-free p lasm a configurations is given.

1. In troduction

The study of basic phenomena governing the behaviour of ideal megnetofluids 
by means of the variational formalism has been intensively performed soon after the 
moment when MHD became an independent field of research. The earliest papers 
(e.g. [l]-[5]) dealing with the variational derivation of fundamental equations of 
magnetofluid dynamics showed that the variational formalism is a very useful tool 
of investigation. Later, Dougherty [6], [7] extended this formalism in relativistic 
MHD, while Taylor [8], [9], Rund et al [10], and Wells [11], [12], [13] studied the 
minimum energy solutions for magnetofluids, in connection with their stability.

All aforementioned papers have a common point: the electromagnetic field 
E, В is defined in terms of the usual set of potentials А, ф, chosen as variational 
parameters. As we showed, the description of the electromagnetic field in terms of a 
special set of antipotentials M, tp makes it possible to give a variational formulation 
in both non-relativistic [14] and relativistic [15], [16] magnetofluid dynamics.

The purpose of the present paper is threefold: (i) To give a variational prin­
ciple for ideal, non-relativistic magnetofluids, by means of Hertz’s vector Z. (ii) 
To extend this formalism, and give a relativistically-covariant formulation of the 
problem, (iii) To apply variational technique in two different problems: the cold 
plasma fundamental equations of conservation, and the stability of some force-free 
plasma configurations.

*On leave of absence  from  th e  D e p a rtm en t of T h eo re tica l Physics, AL. I. C u za  University, 
6600 Iasi, R om ania.
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2. Prelim inary

The Hertz vector (potential), also called polarization potential [17], shows to be 
a useful instrument in electrodynamics, especially in the study of wave propagation 
and multipole radiation. It is a “superpotential”, i.e. a potential for the usual 
potentials A and ф. To construct the Hertz vector, one starts from the equation of 
continuity

Here pe and j  are the electric charge and current densities, respectively, the comma 
stands for partial derivative, while the Greek indices run from 1 to 3. In this formula

The number of independent sources pe, j a can be reduced by one by introducing 
the vector function [17]

the Hertz vector Z(r,t) is then found as solution of the inhomogeneous wave equa­
tion

Here and hereafter it is assumed that e ~  cq; p. ~  po- It is easy to show that 
(5a,b) satisfy the Lorentz gauge condition

p'i +  ja,a = o. ( 1 )

and throughout the paper the Einstein’s convention summation is used. Taking the 
Fourier transforms of p and j

it follows from (1)
iwp'(r,w) +  Vj(r,w) = 0. ( 2)

(3)

which, in view of (1), yields

Sa,a = - / ( r ,  f); Sait = j a( r, t). (4a,b)

If the electromagnetic potentials are chosen as

A a  — CqP q Z a , i l  Ф — Zat'O,, (5a,b)

( 6)

A a , a  +  ( о Р о Ф , г  —  0 . (7)
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The electric field strength E and the magnetic induction B , in terms of Z, are then 
given by the relations:

Ea = Zßtßa — coHoZa.tt, (8)

Ba £oHo£aßyZ‘yfßt. (9)

The importance of this representation is that the number of scalar functions defining 
the electromagnetic field reduces to three, Za(a = 1,2,3), which is most useful, as 
we shall prove in the following.

3. A  n o n -r e la t iv is t lc  v a r ia tio n a l p r in c ip le

Let our physical model be a charged, inviscid, compressible, one-component 
magnetofluid, undergoing isentropic motion in external electromagnetic field E, B. 
A suitable Lagrangian density

C = -c0 EyEy — + - Pvyvy -  pc + p(ait + n7ai7)

~ V (s,t "h v7si7) H---- p(coPovy Zy t -f Z7|7). ( 10)

Here s and c are entropy and internal energy per unit mass, respectively, p the 
mass density, while a(r, t) and b(r, t) are two Lagrangian multipliers [19]. We also 
assume that the particle number density, n, is equal to the charge carrier number 
density: pe = en, p = mn. The last term in (10) gives the interaction between 
hydrodynamics and electromagnetic fields.

If in the Euler-Lagrange equations

dC d (  d c \  d (  dC \  _ n
d<p(3) d x a  ^ ^ ( 0  J  dt J  ~

we take as independent variational parameters Zß:ß\ Zß t ; s ; V ß , p, and use
(8)—(10), we obtain:

(zp.ß) c0Ea,a -  pe = 0, (12)

(Zß,t) Po caßyBy)ß p va CoEa>t — 0, (13)

(s) b}t + Vaba,t — T  = 0, (14)

(“) P,t + (pva),a =  o, (15)

v(a)
g

va "Ь Д,а — ^  л -f- e0fl0 — Za t = 0, m (16)

(p) \ v<*
p 6

va ------ Ь Of t H---- (бо/ioVQZa t -f Za a) =  0,p m (17)
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i.e. Maxwell’s source equations, the equation of continuity, a generalized Clebsch 
transformation, and a Bernoulli-type equation. In deriving equations ( 12)—(17) we 
have also used the fundamental thermodynamic equation for non-dissipating fluids 
(reversible processes):

Tds = de — p~‘2pdp. (18)
Before going furher, we want to make some remarks on the constraints used to 
construct Lagrangian density (10). From the magnetohydrodynamic point of view, 
there are motions consistent with the dynamical equations which are not included 
in this principle. Indeed, if s is homogeneous in space, and Z does not explicitly 
depend on time, Eq. (16) leads to v = —grade, meaning that in this case the motion 
is restricted to irrotational flows. To remove this difficulty, Lin [20] introduced an 
additional vector constraint expressing the conservation of the identity of particles, 
in the form ^  =  0. Later, Selinger and Whitham [21] showed that a single com­
ponent of X, i.e. a single equation of this type is enough to solve the problem. The 
specified component is one of the Lagrangian coordinates of the particle, even if the 
description of the motion is Eulerian. We wanted to emphasize this point in order 
to note that our description is not most general.

Next, we shall derive the equation of motion. To do this, we eliminate the 
Lagrangian multipliers a ,  b from (14)—(17). Multiplying (16) by v a  and introducing 
the result in (17), we obtain:

1 p c
- „ V a v a  — e ---------- h a  ,  H-------Z a a  +  b v  a S a  =  0 .  ( 1 9 )Z p m

Taking the gradient of this equation and writing its xa-component, we still have:
1 p g

— VßVß'Oi — i }a + ~P,a +  ^2 P>a a>“< f i Vß S >ß)>a  = (20)

But g
Я ,a t — Va,t “H ( T  bß b ß ^S )Ct b(%)ßStß } }Cl £QPQ——Z 0()-tti

and consequently:

1 e
Va, t  P,or “H V ß V ß ta  VßO ß 8  ap m

- b ( V ß 8 tß ) <a +  { b v ß S tß ) >a +  (Tsa -  etc + ^P,a )  = 0. (21)

In view of (18), the last bracket vanishes, while the sum of the last four terms gives:

Г0 — bßVatß -f Cotß-y VßBy, (22)

and Eq. (21) takes the final form

dva 1 e . .
j, — P,ot H \Eot +  Zotß'y'VßB'y)) at p m

which is the desired equation of motion.
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4. A  r e la tlv is t ic a lly -c o v a r ia n t e x te n s io n  o f  th e  v a r ia tio n a l p r in c ip le

In the relativistic approach to our formalism, we shall use so called “Galilean 
co-ordinates” :

X1 =  X, X2 =  y, X3 =  z, x 4 -  ct; gaß =  6 a ß , ÿ44 =  —1. (23)

If the velocity four-vector u, is defined by

ua =  ua =  ^va ; u4 =  - u 4 = 7 , 7 =  ^1 — ^  j  . (24)

then we have:
ti| u* =  - 1 .  (25)

Here and hereafter, Latin indices run from 1 to 4.
First, we must transpose (5a,b) in Minkowski universe, i.e. we have to give a 

relativistically-covariant generalization of the Hertz potential. As one can see, only 
derivatives of Z appear in (5a,b). On the other hand, there is no time-component, 
so as to be associated with the space-components Z a . Consequently, if we define 
the Hertz four-vector Z '( Z ,0), then the four-potential can be written as:

А* = Ф*,к„  (26)

Here Фцс is an antisymmetric tensor, given by

Ф* =  -(Z*u* -  Z V ) .  (27)

In the rest frame of reference (ua = 0, u4 = 1), this formalism yields

A a = Ф“4,4 = CoHoZa t\ А4 = -ф = - - г а}Спc c

in complete agreement with (5a,b). To make our result consistent with any inertial 
frame, we must consider the supplementary condition Фар = 0. This condition 
is not at all artificial, but it follows from the definition of Z: the second-order 
four-tensor Ф,-jt has three independent components Фа4.

To prove the consistency of this formalism, let us define the electromagnetic 
field tensor Fik in terms of Ф;*:

F jm  =  Фтк jk -Ф 1 к ™ = gi‘Фтк iljfc -  sk. (28)

As easy to verify, this leads to:

F ß = Faß — CoßOtaß'Y Z ytßt — Eocßy -H*y,
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F a =  —Fa4 = -------Zß}ßa —  ComUQ-Zaßt =  - - j u a,1~ К  -  1:- 4 a,tt —  —  c " c c
and similar formulas for the dual tensor F ,k = h í lklmn Fim:

Er.

K p  — Ey] FaA = Ba .

(29)

(30)

Next step is now to write the relativistically-covariant Lagrangian density. 
We shall write it as a combination of Lagrangian densities given by Halbwachs [22], 
Landau and Lifshitz [23], Herivel [19] and ourselves [15], in the form:

)k
c  = - 4 ^ (Ф ' "  •> -  ф>* +  e c n .*

— nomo(e -|- c2) — -A (uju* +  1) +  noiFaj — 6no«Js j . (31)

Here nomo =  po and eno = p% are the rest-frame mass and charge densities, re­
spectively, while A(a:J ), a(xJ), and b{rJ) are three Lagrangian multipliers. In the 
derivation (31), the following conditions of constraint have been used:

(«о u]),j = 0,

V? s j  = 0,
i.e. equation of continuity and equation of conservation of entropy. 

The Euler-Lagrange equations

give then:

(32)

(33)

dC
<9p(J)

d
dxk t e )

| = 0  (5 = 1,/; k = 1,4) (34)

(Ф.-Л) (ф km {.т - ^ т %),к = И o j \ (35)

и е п 0с Ф ] к , k -- X u j  + no d j  — b n o s j  = 0, (36)

(no) ecUj-Ф7k ,k -  m0(e -t- c2) + u j a j  -  b u j s j  = 0, (37)

00 ( n 0 u J ) j  = 0, (38)

(*) u*Sj = 0, (39)

(0 b j  = 0, (40)

i.e. Maxwell’s source equations, a generalized Clebsch representation, a Bernoulli- 
type equation, the equation of continuity, and a vortex theorem for a and b. Equa­
tions (36) and (37) give A =  — po(e + c2), and Clebsch representation (36) takes the 
final form:

есФ'jk, +  m  +  o(e +  c2)itj +  aj — bsj  =  0 . (41)
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The equation of motion follows from (41) , by the help of (18), after some 
derivative and index manipulation:

Po-^[(t + c2)ui] = с(Фk , ‘i -<bi. ’k)jle (42)

Since e is senseless in the case of one-particle system, in this particular situation 
Eq. (42) yields:

du' .
m0—  =  е(Ф*. * - Ф „  ‘к)ик, (43)

as expected.

5. A pplications

(1). Using the representation of electromagnetic field in terms of Hertz’s po­
tential Z, let us now derive the equations of transformation and conservation of the 
fundamental physical quantities, associated with our model: energy, momentum, 
and angular momentum. Following Noether’s theorem, with each infinitesimal sym­
metry transformation one can associate a conservation differential equation. The 
general form of this equation is [4]

í l ydT=- £ G d s - <44)

= c -  “  -  ^ f y  <5'  ■ v )”w + ■ <«>

with

G = - dCi b t i )èt+ô(Vy>(*)) Сбт — дс
ő(Vy.(0) (ór ■ V)v?(* дс

ë ^ ) ^ ' ) + s a - (46)
We consider the following space-time infinitesimal symmetry transformations [24]: 

(i) The Lagrangian density (10) is invariant with respect to the infinitesimal 
displacement of the time origin

r —* t ' = t + 6t] 6r =  0; 6<p(a) = 0.

Hence, in view of (10)—(17), after some vector algebra we obtain:

7(0 =
(47)

2€0ЕаЕа ^ ВаВа 2Р̂ ос^а pt “b £о(ЕßZ a tß 6t ,

<#> = - ^ - ( E  X B)e -  pva ( ^ |v |2 + w^ 2  lv l2 +  w j  +  — {eßayBßz e,e),i — co(EaZßiß)tt St.
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Here w = e +  ^ is the specific enthalpy. Introducing these results into (44) and 
leaving out the constant St, we arrive at

IX G />|v|2+/>£+r°|E|2+i |B,2d) dr

G'vH + G (exB)] -ds' (48)

which is the energy conservation equation.
(ii) The Lagrangian density (10) is invariant with respect to the infinitesimal 

displacement of the origin of the reference frame

r —*■ r ' =  r  + Sv, S t  — 0; S ip (’  ̂ = 0. (49)

Here Sr is a constant vector, giving the direction and magnitude of translation. We 
find:

7 (r) =  [fo(E  X B ),e +  pva +  elpo(EßZa}i) tßS]xa ,

Gß  =  [P^aß +  P V a V ß  +  ^ 2 C°I® |2 2 p - ^“ ß ~  e 0 E a Eß — — B a B ß

~ еоРо ( E ß Z a t)}t +  to{£ß~j6 BeZati)rf\Sxa , 

leading to the momentum conservation equation

d f
Qj J [pva +  eo(E X B )a]dr

=  ~  j 1 [Pv <*vß +P^«/8 + ^ 2 C° ^ I 2 ~  — ~ E a B ß ]d S ß .  (50)

(iii) The Lagrangian density (10) is invariant with respect to an infinitesimal 
rotation of the axes, i.e.

r — —r + r x 6 9;  St = 0,

E' = E +  Ex<50;  B ' = В + В x <5 0 , 

SZa,t — Caß'yXßSO'y , SZa,a — 0,

Sva = -----foPO SZa i ,m
leading to the equation of conservation of angular momentum:

J  f - a ß - i P о:Xßd , T  — £  £ a ß ^ X a ß X ß d S g (51)
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Here
Pa = pva +Co(E X B)e ,

тае — pôae + pvave + ( -eo |E |2 + -— |B12 ) Sag -  e0EaE e ------BaBg.\Z  2/10 /  Po
To obtain these results, we used some vector and tensor calculus. The inter­

mediate calculations are long, but not very interesting, and we leave to the reader 
a thorough proof of these equations.

(2). The study of plasma stability is closely related to the constraints on the 
system, i.e. the states of stable equilibrium must be consistent with the integrals of 
the equations of motion. In the earliest research on force-free magnetic fields and 
hydromagnetic stability, the nature of the stable solution was studied. It was shown 
(Chandrasekhar et al [25], Woltjer [26], [27], [28], Bernstein et al [29]) that, if the 
boundary conditions and the gauge are suitably chosen, then

I i  — Í  A .В dr; I 2 =  [  v .B  dr (52a,b)
Jv  Jv

are two integrals of motion. Here v is the magnetofluid velocity, and A  the vector 
potential.

The research of constraint integrals (52a,b) was resumed a few years later by 
Calkin [4], Moffat [30], Wells [11], [12], [31], and closer to nowadays by Rund et 
al [10], in connection with the problem of the dynamic stability of closed plasma 
configurations. The constancy of (la) was later investigated by Taylor, and again 
shown to be related to the generation of magnetic fields in toroidal plasma [8] and 
magnetic force-free equilibria [9]. The boundary conditions and the potential gauge 
which assure the time-constancy of the integrals (la,b) may be stronger [28] or 
weaker [10], [30].

The purpose of this application is to give a relativistically-covariant formula­
tion of a constrained minimum energy problem, namely the problem of minimizing 
the total energy of closed MHD system, subject to the constraints (la,b), by means 
of the four-dimensional generalization of Hertz’s vector. Using the theory of multi­
ple integral isoperimetric problem [32], it was shown [10] that a necessary condition 
for an extreme value of the energy integral

- №
1

2№ 'B ', +  2 ',IVIî  +  ^ M dr,

subject to constraints (la,b), is:

Ey(L) + Ai£y(Qi) + A2-EV(Q2) = 0.

(53)

(54)

In the last two formulas v is the particle density, Q\ — a.B , Q2 =  v .B , Y  stands 
for dependent variables, while A - , A2 are two Lagrangian multipliers.
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To apply this formalism in our case, we first observe that Qi and Qi may be 
regarded as the fourth-component of the four-vectors

r  =  У тк1(Ф„ % -  Фь ;,)Фл  (55)

5™ =  ^ тЫ(Ф „;к - Ф ь  ;,)«>• (56)
Therefore we have the following system:

Ey + *mEY (Rm) +  HrnEriS™) = 0, (57)

where Am and fim are two four-vector Lagrangian multipliers. Assuming c <C c2, 
and using notations 5 = b =  then performing the calculations in (57), after 
some tensor algebra and index manipulation we arrive at:

Yc m -  ^  ) е*тк,(Фи % -  Фь :,) + =  0, (58)

(p o ^ ) j  = О, (59)

[p0uj + ^ те*тк\Фп % -  Фь f,)]*j =  0, (60)

[/W  +  ^ т ^ тЫ( Ф % -  Фь i,)]» j = о, (61)

where w;m = %€*тк\щ,к — u*,;). In view of (41), we still have:

m ^ m +  ^ тк\Ф и \  -  Фь *,) =  Cjm\ Cjm = bjSm -  b, mSj, (62)

and Eq. (58) reads

A mFjm +  + rjmCjm = 0; r,m = - ^ L .  (63)
Z m  о

Equation (63) shows that the four-tensors Ё; т , ш*т , Cjm are linearly in­
dependent. To realize the physical significance of this result, let us take Am = 
(0,0,0, A); fj,m = (0,0,0,p). Then the system (58)—(61) yields:

в(2A p)Ba -j- [me ару и-y — 0,

(poua),a = o, (64)
(p0ua + pBa) s a = 0,

(p0lLa + pBa)b:a = 0,
which is precisely the conclusion drawn by Rund et al [10]; unless the flow is irrota- 
tional, the Euler-Lagrange equations of this isoperimetric problem imply that the 
four vectors fields v , В , V x v , V x В are collinear.
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6 . D isc u ss io n

We first want to make some comments on the generalization of Hertz’s poten­
tial in Minkowski’s space, apart from the results previously obtained in this paper.

(a) It is obvious that the choice of three components of Hertz’s vector, instead 
of the usual electromagnetic potentials, А , ф yields a considerable simplification of 
any problem regarding determination of the electromagnetic field. This advantage 
becomes more important in case of complex applications.

(b) Since Фгк is antisymmetric, we have Фкт km = 0, and Eq. (35) simplifies 
to

< 6 5 >

where дхдкдх\ — A — jrgfr is the D’Alembert’s operator. This is the relativistic 
form of the wave equation for Ф,т  |ГП, i.e. for A ' . We conclude that Maxwell’s 
source equations (35), written in terms of Hertz’s potential, yield straightforwardly 
to the four-potential wave equation, without any auxiliary condition.

(c) As one knows, the Lorentz gauge condition for the four-potential A’, which 
is A'{ = 0, must be imposed in order to get the inhomogeneous wave equation 
Bx gxk = —poi*! while using the Hertz four-vector we have Фtk ,ik = A',- =  0. 
In other words, the Lorentz condition is contained in the definition of the Hertz 
potential.

(d) As we showed [15], the electromagnetic field tensor Fik can be written as

Fik =  Mik +  Pik• ( 66)

Here
Mik = Mk,i -  Mitk] Ма = fi0cMxc , M4 = - M 4 = -fioi> 

is a four-dimensional curl of antipotential four-vector Mi,

Pik = -ßo£ik,mP’vm; P ä = (P “ ,0); t/" = (*°, 0)

is defined to give a four-dimensional generalization of Calkin’s ‘polarization’ vec­
tor field P , while the symbol ”” stands for dual tensor. With these definitions, 
Maxwell’s source equations take the form:

(Fik -  Pik)ik =  0. (67)

Let us now use the definition (28) of F,k in terms of Ф** in (67). The result is:

G>2
dxkdxk

ф>»
, 5  = " P ” , 5  • ( 68)

This shows that the source of the tensor field Ф,к is the polarization tensor Ptk. In 
particular, for i — a, a solution of (68) is 9xkdxk Z = — A p , which emphasizes the 
physical significance of Hertz’s vector.
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7. C o n c lu s io n

The description of the electromagnetic field interacting with a charged fluid 
in terms of the Hertz potential proves to be useful in variational derivation of the 
fundamental system equations governing the behaviour of the chosen model. The 
advantage of the Hertz potential emerges from the fact that it reduces by one 
the number of field variables, which simplifies the calculation. The relativistically- 
covariant generalization of this formalism allows us to give a variational principle 
for ideal magnetofluids and make a straightforward connection with the tensor po­
larization properties of the medium. To give more motivation of the advantage of 
this representation, the Hertz vector has been used in the derivation of some fun­
damental equations of conservation in MHD. This method has been also applied in 
the study of equilibrium conditions of some force-free plasma configurations. All 
these results show that the use of Hertz’s vector is advantageous not only in many 
classic problems of electrodynamics, but also in the theory of magnetofluids.
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INFLUENCE OF WALL PROPERTIES 
ON HARTMANN FLOW AND HEAT 

TRANSFER IN A ROTATING SYSTEM
T .  N a g y  a n d  Z . D e m e n d y

Department of Physics, M iskolc  University 
3515 Miskolc-Egyetemváros, Hungary

(R eceived 20 Sep tem ber 1993)

T h e  influence of ro ta tio n  a n d  physical p ro p e rtie s  of bounding  walls on  a  generalized  
one-dim ensional H a rtm an n  flow (H F) a n d  heat tra n s fe r  is investigated . T h e  channel ro ta te s  
w ith  a  co n s tan t ang u la r velocity a b o u t a n  axis p e rp en d icu la r  to the  w alls in  a  uniform  t r a n s ­
verse m ag n e tic  field. E xact so lu tions fo r the  velocity , m agnetic  field, v iscous stress, c u rre n t 
density , tem p e ra tu re  d is trib u tio n , y ield  com ponents, n e t electric c u rre n t com ponents, m e a n  
te m p e ra tu re  as well as Nusselt n u m bers are de riv ed . Effects of re le v an t p a ram ete rs su ch  
as ro ta t io n  p a ram ete r, H a rtm a n n , E ckert and  P r a n d t l  num bers, w all conductiv ities, w all 
thicknesses a re  exam ined num erically  a n d  show n graphically.

1. In troduction

Theoretical study of magnetohydrodynamical (MHD) channel flows is of great 
interest due to its widespread applications in designing cooling systems with liq­
uid metals, MHD generators, accelerators, pumps and flow meters. Hartmann [1] 
was the first to investigate the pressure driven flow of an electrically conducting, 
viscous and incompressible fluid between two infinite, parallel and non-conducting 
plates in the presence of a uniform transverse magnetic field. The effect of wall 
conductances has been studied by Chang and Yen [2]. The heat transfer aspect 
of the problem under different conditions has also been investigated. Alpher [3] 
was the first to assess the influence of wall properties on the heat transfer. Since 
he neglected the viscous dissipation and the heat generation within the walls, his 
analysis was incorrect to account for the wall influence. Yen [4] and Jagadeesan 
[5] studied the effect of viscous dissipation, Joule heating and unequal wall conduc­
tances on the temperature distribution. Snyder [6] extended these works including 
the heat generation within the walls and solved the model numerically. Javeri [7] 
developed further these results and investigated the simultaneous influence of vis­
cous dissipation, Joule heating, unequal wall conductances and wall heat fluxes on 
the temperature field in the HF.

Study of interaction of Coriolis force with electromagnetic forces is impor­
tant for some geophysical as well as astrophysical problems, therefore modelling 
of hydromagnetic flows in rotating channels has been vigorously pursued for the 
last two decades. In these studies, however, the walls have been taken as either 
non-conducting or perfectly conducting, or a combination of the two. Nanda and
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Mohanty [8] considered the HF in a rotating channel with perfectly conducting 
walls. Datta and Jana [9] discussed the effect of rotation and Hall current on the 
HF using insulating walls. Jana, Datta and Mazumder [10] studied the MHD Cou­
ette flow in a rotating frame of reference when the fixed plate of the channel is 
perfectly conducting, the moving one is insulating. Raju and Rao [11] investigated 
this problem taking into account the Hall current but neglecting the induced mag­
netic field. Seth and Maiti [12] discussed the rotating hydromagnetic Couette flow 
between non-conducting plates where a biasing external electric field is applied. 
Unfortunately, for a number of physical situations the idealized wall conditions are 
inapplicable, particularly when we consider the heat transfer aspects of the prob­
lems. For example, the usual assumption of a wall which is a perfect insulator 
electrically and a perfect conductor thermally, cannot be valid because, according 
to the Wiedemann-Franz law, the ratio of heat and electric conductivities of metals 
is proportional to the absolute temperature and the proportionality factor is very 
small.

The purpose of this paper is to study in detail, under realistic wall conditions, 
the effect of rotation and external magnetic field on the hydromagnetic fields and 
heat transfer in a generalized HF. In the model the flow may be driven either by a 
pressure gradient or by motion of one of the walls. Exact solutions for the veloc­
ity, magnetic field, viscous stress, current density, temperature distribution, yield 
components, net electric current components, mean temperature as well as Nusselt 
numbers are derived. Effects of important parameters such as rotation parameter, 
Hartmann, Eckert and Prandtl numbers, wall conductivities, wall thicknesses are 
examined numerically and displayed in numerous figures.

2. D escription of model

We consider a steady flow of an electrically and thermally conducting, viscous 
and incompressible fluid between two infinite parallel walls of given electrical and 
thermal conductivity. Let us denote with d, d\ and d^ the distance of plates, 
the thickness of lower and upper bounding walls respectively, as it is shown in 
Fig. 1. The lower wall rotates with a constant angular velocity ÎÎ about the y-axis 
perpendicular to the walls. The x- and г-axes are fixed on the lower wall. The 
upper plate may move with a constant velocity U = (Ux , 0, U2) with respect to the 
Cartesian (non-inertial) system of reference /C(x, y, z). The unit vectors of К are i, j 
and k. Outside the channel (in vacuum) a uniform magnetic field H„ = (0, H0, 0) is 
applied, but there is no external electric field. We assume all the material properties 
to be isotropic and constant, the magnetic permeability of plates and fluid is equal 
to the permeability у of the vacuum.

The MHD equations governing the problem (balances of momenta and matter, 
Maxwell’s equations and Ohm’s law) in the frame of reference IC(x, y, z) can be 
written in the form

p ( V V ) V  +  2 y O j  x  V  =  - V p *  +  p i / V 2V  +  y J  x  H ,  ( 1 )
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Fig. 1. C hannel geom etry a n d  param eters

VV = 0, (2)
V x H = J , (3)
V X E = 0, (4)

VH = 0, (5)
J = <r(E + /iV X H), (6)

where V denotes the velocity; H the magnetic field; E the electric field; J  the current 
density; p the mass density; v the kinematic viscosity; <r the electric conductivity. 
The centrifugal term has been combined with the thermodynamic pressure p in the 
gyrostatic pressure p*—p — pfl2(x2 +  z2)/2. Eliminating E and J  from (3)-(6), the 
induction equation is obtained

V2H + /m-V X (V X H) = 0. (7)

The first two equations, (1) and (2), have to be satisfied only in the fluid, the last 
five ones must be satisfied throughout all the space. In the following, the suffixes 1 
and 2 refer to the values of corresponding quantities in the lower and upper plate, 
respectively.

Since the plates are infinite along x- and г-directions, all the physical quanti­
ties, excepting the pressure, depend only on y. From Eqs (2) and (5) it immediately 
follows that Vy =  0 and IIy = II0, hence we can write

V =  (F„0,V ;), H = {Ня,Н 0,Н г), E = (Et t Ey,E t ), J  =  ( / „ 0 , / , ) .

Equation (4) implies that Ex and Ez are constants, 
and (7) give

d2Vx
pu- w

— IpÇlVz -f pH0
dHx
dy

With the ansatz (8) Eqs

( 8)

( 1 )

(9)
Acta Physica H ungáriái 75, 1993
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V V

Fig. 2. P r im ary  a n d  secondary velocity  profiles.------------Л/ 2 =  100, E 2 =  1 ; -------- M 2 — 400, E 2 =  1
— ---------M 2 =  400, E 2 =  4

p v
d?Vz 
dy2

-  [p’ + ^{H l  +  H])\ = 0, (10)

+ W . + = 0 . (И)

d2Hx ^  u  dVx
Jy> dy = 0 ’ (12)

d2Hz dVz , + pcrH0 =0. dy1 dy (13)

Equation (10) indicates the magnetohydrodynamic pressure to be constant along 
the axis of rotation, moreover it follows from (9) and (11) that dp*/dx and dp*/dz 
are also constants. Without loss of generality we can stipulate that dp*/dz =  0, i.e. 
the pressure gradient lies in the direction of the x-axis.

With the dimensionless variables

V
Ht

H0vpcr' hz H2
H0vpcr'

Eqs (9) and (11) can be rewritten as

u" -  2 £ 4  + M X  + P = 0, (14)
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Fig. 3. P r im a ry  a n d  secondary  m ag n e tic  field profiles for <f>i — 4n(=  Ф). ----------- M 2 =  100, E 2 — 1
--------M 2 =  400, E 2 — 1 ; ------------- M 2 =  400, E 2 =  4

u" + 2E2vx +  M 2h'z = 0, (15)

Eqs (12) and (13) becomes
К  + =  o, (i6)

K  +  «i = 0, (17)

where E 2 = Çld2/v  is the rotation parameter which is the reciprocal of the Ekman 
number, M  = цНо^а/ри)1!2 is the Hartmann number, P =  —(d3/pv2)dp*/dx is the 
dimensionless pressure gradient and the primes denote differentiation with respect 
to Г).

Introducing complex variables for the velocity and the magnetic field 

v(Tl) = Vt(tj) + »«*(»?), h(rj) = hx(rj) + th2(rj),

Eqs (14)-(17) reduce to the following simple forms

v "  + 2 i E 2 v  + M 2h' + P = 0, (18)

h" + v '  = 0. (19)
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Fig. 4. D is tr ib u tio n  of p rim ary  a n d  secondary  cu rren t densities. -----------  M 2 =  100, E 2 =  1;
--------M 2 =  400, E 2 =  1 ; ------------- M 2 =  400, E 2 =  4

Let us now consider the boundary conditions (BC). As for the fluid, it does 
not slip along the walls, consequently

v ( 0 ) = 0 , u ( l )  =  u , ( 20)

where и = ux + iuz with ux = Uxd/v  and uz = Uzd/v. The appropriate BC for 
the magnetic field can easily be deduced from the usual electromagnetic interface 
conditions. It follows from (3) and (6) that in the fluid

h '  =  ге — V, (21)

while in the lower plate
hi = leisi, ( 22)

where e = Exd/ufiH0 + iEzd/i/fiH0 and si = eri/er is the non-dimensional electric 
conductivity of the lower plate. Since the tangential component of the electric field 
is continuous at the boundaries, from (21) and (22) we get

Л'(0) = h'Jsr. (23)

The tangential component of the magnetic field has no jump either across the bound­
aries of the several regions, so hi(—гц) = 0 and hi(0) =  h(0), where щ = d \ / d  is the
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Fig. 5. P rim ary  and  seco n d ary  velocity p rofiles. ----------- M 2 =  4, E 2 =  50;
------- M 2 = i , E 2 =  100 ;..................M 2 =  9, E 2 = 50

dimensionless thickness of the lower plate. Using these, (22) leads to the relation

h[ =  /i(0)/*7i . (24)

Inserting (24) into (23), we obtain the required magnetic BC at 77 =  0

Л'(0) =  Ä (0)/eiifc. (25)

Finally, at the upper wall, in a similar way we find

Л '(1) =  - h ( l ) / s 2 r,2> (26)

where S2 = 01/ o’ and r)2 = d^/d are the non-dimensional electric conductivity and 
thickness of the upper wall. The BC are now complete.

To solve Eqs (18)—(19) at first we integrate (19) using the no-slip BC (20)

h' +  V =  A '(0), (27)

then we substitute h' into (18). The result

v" + (2iE 2 -  M 2)v + P +  M 2h'(0) = 0, (28)

Acta P hytica  Hungarica 7S, 1993
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Fig. 6. P rim ary  an d  secondary m agnetic field profiles for <f>i — Ф2 (=  Ф) ■ -----------JVf2 =  4, E 2 = 50;
-------M 2 = 4 ,  E 2 = 100;................ M 2 =  9, E 2 =  50

can easily be solved together with Eq. (27). The solutions satisfying the BC (20), 
(25) and (26) are

+ RQ) -  Rlexpi-kr]) -  Í], (29)

h(r)) = /i'(0)»7 -  t^ t t (u + RQ) -  R[exp{-kT])/ к + rj\ + K 0, (30)к sinh к
where R =  [P + M 2h'(0)\/k2, Q = exp(-fc) — 1 and к = a — iß with

a  = - . - { V m * + 4E* + M 2)1' 2, ß = Ы М *  + 4 £ 4 -  M2)1/2.
V 2 V 2

The constant of integration K 0 and the quantity /i'(0) are given as

/cothfc 1 \  „_/cothfc 1 exp(—k ) \  1 \*• =  < ~ k ~  +  + R Q ( - k ~  +  Q  + НЁQ “) - A K1 + TÙ
and

Ф-1

0) =

Q kQ 

+ PK2)
ф1 +  ф2 +  ф1ф2(1-М2К 2у

(31)
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Fig. 7. D is tr ib u tio n  o f p r im a ry  a n d  secondary  cu rren t densities. ----------- M 2 =  4, E 2 =  50;
--------M 2 = 4 ,  E 2 =  1 0 0 ;................. M 2 =  9, E 2 =  50

where
K!

cosh к — 1 
к sinh к

1
К 2

Q / cosh k — 1 1 1 \
k2 \ ä:sinh A: Q k)

ф \  = S i í / i  and Ф2 = S 2T)2 are the dimensionless electric conductances of the lower 
and upper wall of the channel.

For the sake of completeness, the non-dimensional viscous stress is given by

Tv(v) = К  (»7)1. (32)

where
v \ t] )  =  — Gk cosh krj +  Rk exp(—krj). (33)

The coefficient G is given as G = — (it + i?Q)/sinh k.
The components of the dimensionless current density j x  = Jxd/H0ufia and 

jz — Jzd/H0vn<j can be obtained from Eqs (3) and (27). It is easy to verify that

j  = - ih ' -  t[v -  Л'(0)], (J4)

where
j(n) = M v )  + 2iz{r})
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is the complex current density and

/i'(rj) = TV +  Gsinh kr) + Яехр(—kr]). (35)

Here N  — h'(0) — R. This means that the electric current distribution in the fluid 
differs from the velocity distribution only in an additive constant.

Fig. 8. P rim ary  y ie ld  Yx . LHS: ------------M 2 = 10, ---------- M 2 =  100; RHS: ------------- E 2 =  4,
--------E 2 =  16

From the practical point of view, some integral quantities such as yield or net 
electric current have extreme importance. The dimensionless yield of the flow is 
given by

d  cosfi h — 1
Y  = YX + iYz = o(7?) drj = - ^щ Ы Г ( ц +  RQÎ + R (Q /k  +  (36)

the total electric current flowing through the fluid is simply related to h(0), h( 1) 
and У, Л#(0):

I  = Ix + lIz = Л - ( , )  dT? = .[A(0) -  A(l)] = i[y -  A'(0)]. 
Jo

(37)
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3. H ea t tra n sfer

For the steady flow under consideration the internal energy balance has the
form

, d2T
dy2

\(dVx \* fdVz \ i  I 1 r(dHx \ 2 ( dHx \ 2i
+  ^ l \  d y ) W y  ) 1 (38)

where T  is the temperature, Л is the thermal conductivity. The second and the third 
term are the viscous and Joule dissipation, respectively. (38) holds both in the flow 
and in the walls, but in the latter case the second term vanishes, of course. Let 
the temperature of outer surfaces of the plates be a constant value T0. Introducing 
the dimensionless temperature 0  = T/T0 and the thermal diffusivity of the fluid 
X  = X/pcp, where cp is the specific heat at constant pressure, Eq. (38) in the fluid 
reduces to

Q "  = F(r,), F ( tj)  = —PrEc(\ v ' ( t] ) \ 2 +  M 2 I h'(r;)|2), (39)

where Pr  = v / \  is the Prandtl number, Ec = i/2/d2cpT0 is the Eckert one. By 
using the formulae h[ = h(0)/r]i and h'2 =  —/i(l)/r/2, it is easy to show that within 
the walls the following equations are valid:

„  PrEcM 20 i  =  Fu Рг = -  ■■ • |/i(0)|2,
ПЧ1Ф1

(40)

02 = F3, F2 = - PrEcM 2
2̂l?202 |Л(1)12 (41)

where 1\ = Ai/A and /2 = A2/A are the non-dimensional wall heat conductivities. 
Since both the temperature and the heat flux is continuous across the fluid-wall 
interfaces, the corresponding dimensionless boundary and matching conditions are

0 1(-|?1) =  1, 0i(O) = 0(O), 0i(O) =  0'(O)//i,

0 2(1 +  »72) =  1, 0 2(1) =  © (l), 0'2(1) =  0 '(1 ) /Ь .

Although the temperature distribution in the channel walls is a simple parab­
olic-function of 77, the integration constants involve a complicated dependence on 
the geometry and material parameters of the model. With the functions

F(V)= Í  F W ) d j ,  F (4) =  f  F(jl')dr)' (42)
Jo Jo

the solutions for the temperature can be written concisely. In the flow

0  = F ( ij) + Cr, + C, (43)

within the walls

0 i =  Fi T)2/2  + Ci 77 + Ci, 02 = F‘2T]2/2 +  C2»7 + Ci. (44)
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Fig. 9. Secondary  y ie ld  Yz . LHS: ------------M 2 -  10, ---------- M 2 =  100; R H S :------------- E 2 =  4,
--------E 2 =  16

After some manipulations one finds

= F^l /2  -  F ^ H 2 -  F{ 1) -  F(l)m/h
1 +  Tii/h +

c =  i - F m l / 2  +  Cm/h,

Ci = C /h ,  C2 = C /l2 + F ( l ) / l2 - F 2,

Ci = c ,  C2 = C - C 2 + C -  F2/2 + F(l).

The final step of the calculation is to give the functions F(rj), F(tj) and F(rj) explic­
itly. Substituting Eqs (33) and (35) into (39), after a lengthy but straightforward 
algebra we get

F(r)) = PrEc  (ai -I- a2 cos2 ßrj + a3 sinh2 cut) 4- a4 sin 2ßrj +  ase-2“’’
+ a6ea,> cos ßrj + aye01’’ sin ßt] + а3е~°"1 cosßr) +  age- “’’ sin ßrj)

(45)
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Fig. 10. M ean  te m p e ra tu re  0 m for »71 =  172 =  0.25, </>i =  фъ(= ф), í j  — /2(=  l) a n d  P r E c  =  0.02.
L H S :------------M 2 =  10, / =  0 .1 ;--------M 2 =  1 0 0 ,1 =  0 .1 ;................ M 2 = 10,1 =  0.2; R H S :-------------

E 2 =  4, l =  0 .1 ;------- E 2 =  16,1 =  0 .1 ; ..................E 2 = 4, I =  0.2

with the coefficients

=  -  M \ N a +  G , )  +  ( M 2 -  7 ) (G > R T +  G i R i ) ,  
а2 =  ( M 2 -  T) [G , -  2 ( G r R r  +  G t R t ) ] ,  
a 3 =  -  ( M 2 +  7 ) G S ,

44  — { M 2 -  7 ) ( G r ß t  — G i R r ) ,
a5 =  (M 2 + 7)(GrRr + GiRi ~ R,),
a 6 =  — M 2 ( G r N r  +  G i N i ) ,
a 7 =  -  M 2 ( N r G i  -  N i G r ) ,
a 8 =  M 2[7Vr (G r -  2 Д Г) +  N i ( G i  -  2 Д , ) ] ,

a 9 =  M 2 [ N i { G r -  2 R r )  -  JVr (G , -  2 Д , ) ] ,

where 7 =  a2 + ß2, moreover the indices r, t and s refer to the real, imaginary part 
and square of absolute value of the actual quantity, respectively. Integrating F(r]), 
it is an easy task to find the functions
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F(rj) =PrEc  (&i + 6277 + &3sinh 2orq + bA sin 2ßrj +  65 cos 2ßr) + b6e 2ar'
+ b7ear] cos ßrj + b8e0,11 sin ßr) + b9e~ar] cos ßr) + Ьюе- "’’ sin ßvß

with the coefficients

61 =  (aA/ß +  a5/a )/2 + [a(a8 -  a6) +  ß(a7 + a9)]/7 , b2 = <4 + (a2 -  a3)/2,

63 - a 3/4 a ,  64 =  а г /4/0, 65 =  - a4/2 /? , 66 =  - a 5/2a, 67 =  ( a a 6 -  ßa7) /j ,
bg = (aa7 + ßa6)/y, b9 = ~(aa8 + ßa9)/y, bw = (~aa9 + ßa8) /7 ,

and

^ ( 77) = PrEc  (ci -+- c2T7 + с3»у2 + c4 cosh 2aJ7 + C5 cos 2ßr) + се sin 2ßrj + c7e~2ar]
+ c8eaT) cos ßrj + ege"” sin ßrj + cme- "'’ cos ßr) +  сце- “’’ sin ßrj) (47)

with the coefficients

ci =  [bA/ß  +  (bg — b3)/a]/2 + [a (69 — 67) + ß(b8 + b9)]/j, c2 = bA, c3 = b2/ 2,

c4 =  b3/ 2a, c5 = -b A/ 2ß, c6 = b5/ 2ß, c7 = -b 6/ 2a, c8 = (ab7 -  ßb8)/j ,
c9 = (ab8 + ßb7)/y, сю = —(ab9 + ßbio)/7 , cu  =  (-a&m + ßb9) / 7 .

The determination of temperature distribution is now complete.
There are some additional parameters which are expedient to be defined. The 

dimensionless mean temperature 0 m can be calculated by using the definition

Qm = /  ©(»?) dr).
Jo

Substitution of (43) and evaluation of the integral leads to the result

0 m = C + C/2  +  PrEc ^ci +  c2/2  + c3/3 + c4sinh 2a/2a + c5sinh 2ß/2ß

+ c6( l  -  cos 2ß ) /2ß  +  c7(l -  e~2a) /2a + а ( с ю  -  c8 ) / 7  + /? (с ц  + c 9 ) / 7  

- f  ( e " / 7 )[c8 ( a  cos ß +  ß s in  ß) +  c9( a  s in  ß — ß cos ß)]

+ (e_7 7 )[cio(^sin/î -  a  cos/?) -  сц (а  sin/? + /?cos/?)]). (48)

The Nusselt number, which describes the heat transfer at the walls, is of engineering 
interest. The definition of the Nusselt number is based on the mean temperature:

N Ul =  0 '(O )/[0 m  -  0 (0 )], N u2 =  0 '( l ) / [ 0 m  -  0 (1)].

In view (43), we get

N ui  =  C /[0m -  C], N u 2 = Й 1) + C ]/[0m -  0(1)]. (49)

(46)
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Fig. 11. Q m — 0 (0 )  fo r rjx =  — 0.25, <t>i — <fe(= Ф), i l  =  h (— i) a n d  P r E c  — 0 .0 2 . LHS:
----------- M 2 =  10 , l =  0 .1; -------- M 2 =  100, I =  0.1; R H S :------------ E 2 = 4 ,1  =  0 .1 ; -------- E 2 =  16,

I =  0.1

4 . S tru c tu re  o f  th e  flow

Our purpose is to give a qualitative discussion for the effects of the rotation, 
magnetic field and wall properties. In the model we have altogether 11 dimensionless 
parameters, therefore a complete presentation of all the interesting quantities would 
enlarge the paper enormously. Consequently, we select some characteristic sets or 
extreme values of parameters. Although our analytical results are valid for the 
generalized HF (i.e. for the MHD Couette—Poiseuille flow), we analyse only the 
case of и = 0. In this subcase the velocity and current distributions in the fluid are 
symmetrical and (beside P, E  and M) depend only on the sum of the wall electric 
conductances <̂ =<̂ 1+ ^2- Of course, the magnetic field and the current within the 
walls depend also on the individual values of ф\ and <f>2. In this Section we consider 
the flow structure of this submodel in three particular cases of interest.

Case 1. £ 2 <  1 and M 2 <C 1. In this simplest case, in order to save place, 
the overall behaviour of fields is described without accompanying figures. If the 
system rotates slowly, the electric conductivity of the fluid is low and the applied 
magnetic field is weak, the magnitude of the secondary fields (SF) is much smaller 
than the magnitude of the corresponding primary fields (PF). (PF is defined by the 
dimensionless field components vx , hx and j z , SF is defined by vz , hz and j x.) The 
effect of external magnetic field on all the field variables is negligible. The PF is
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Fig. 12. N usselt n u m b er  N u y  fo r rjy =  rfe =  0.25, фу -- ф?{— ф), ly =  h ( =  l) a n d  P r E c  =  0 .02 .
L H S :------------M 2 =  10, 1 =  0 .1 ; ---------M 2 =  100, / =  0.1; R H S :------------- E 2 = 4,1 =  0.1;

--------E 2 = 16,1 =  0.1

not affected by the rotation, while the magnitude of the SF increases linearly with 
E 2. This is quite natural: the SF is induced by the rotation.

The profiles of the primary and secondary velocity vx and vz are nearly 
parabolic having maxima at the middle of the channel. According to (34), the 
distribution of current density components j z and j x  is also nearly parabolic. The 
velocity components are not affected by the wall properties, while the induced mag­
netic field and current density components depend strongly on the wall parameters. 
The magnitude of h x  and h z grows as ф increases. When neither wall is a perfect 
conductor, j z is ( j x ) negative (positive) near to the walls and positive (negative) in 
the central region of the channel. j z and —j x  increase as ф increases. This is not 
surprising, because no accumulation of electric charge is possible in a steady flow, 
so the current has to form a closed loop. At insulated walls (ф — 0) the current loop 
has to form inside the fluid, when at least one of the walls is perfectly conducting 
(ф = oo), the backward current can entirely pass through the wall. In a realistic 
case, when ф > 0, a part of the backward current remains necessarily in the fluid.

Case 2. M 2 ^  1 and E 2 ~  0(1). It is seen from Figs 2-4 that when the 
applied magnetic field is strong and the rotation is slow, the magnitude of the 
SF is much less than the magnitude of the PF. Both the PF and the SF depend 
remarkably on the magnetic parameter M 2 and the wall parameter ф, whereas the
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rotation has significant influence only on the SF. The magnitude of the SF shows 
a nearly linear growth with E2. (We note that all the displayed figures have been 
made on taking P =  10. Each curve is labelled with the value of ф.)

Figure 2 shows clearly the characteristic effect of large Hartmann numbers on 
the velocity components. We observe that in any point both the primary and the 
secondary velocity decrease with an increase in M 2. From Figs 3 and 4 we see that 
the magnitudes of the induced magnetic field and current density components are 
also decreasing when M 2 increases. This is due to the overall retarding effect of 
the electromagnetic body force fiJ x H . At high M 2 the velocity is nearly constant 
in the core of the flow and a boundary layer structure appears along the walls. 
Figures 3 and 4 show that the magnetic field and current density variations are also 
mostly confined to the layers contacting with the walls. As a result the flow can be 
divided into a boundary layer (BL) and a central core (CC) region. The BL may 
be identified as a modified Hartmann layer.

It is salient in Fig. 2 that the velocity components decrease remarkably as ф 
increases. In the CC hx and j z are unaffected by ф, while in the BL they increase 
with ф. Although hz varies quasi linearly in the core, it depends on ф not only in 
the BL but also in the CC. With increasing wall conductivities —j x decreases in 
the CC and increases in the BL. In other words, decreasing ф makes the current 
induced in the core flowing back through the Hartmann layers and hence reduces 
the electromagnetic drag on the flow.

Case 3. E 2 1 and M 2 ~  0(1). The numerical results for this case are 
presented in Figs 5-7. When the rotation is rapid and the magnetic field is not 
strong, the magnitude of the SF is larger than that of PF. It is surprising that both 
PF and SF weaken as the rotation accelerates. (We will explain this behaviour 
later.) We observe that the external magnetic field has an appreciable influence 
only on the PF.

Figure 5 shows that for large values of rotation parameter the velocity profiles 
are M-shaped having maxima near the walls. The slope of velocity profiles on the 
edges is determined by the parameter E  according with the fact that the second 
derivatives of velocity in Eqs (14) and (15) are multiplied by 1 /Е2. This indicates 
the formation of a viscous BL.

The BL may be identified as a modified Ekman layer. The effects of the 
external magnetic field and the wall parameters on the velocity are negligible in 
the Ekman layers. In the CC there is no velocity component parallel with the 
pressure gradient (at least this component is very small), the transverse component 
is uniform. Thus in this region the fluid moves in the direction normal to the 
applied pressure gradient and the axis of rotation. (We note that in certain cases 
there exists a weak reverse flow in the direction of the pressure gradient.) The 
primary flow is more sensitive to the variation of magnetic field and wall properties 
than the secondary one, namely, vx increases with M 2 and ф, further the influence 
of M 2 becomes stronger with growing ф. Near the limit E 2 —> oo the flow pattern is 
completely insensitive to the variation of magnetic field and wall properties because 
the Coriolis force dominates everywhere except in the BL.

The most rapid changes in the distribution of magnetic field and current
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density are limited mostly to the BL contacting with the walls. In the CC region 
the magnetic field varies almost linearly, the current density is almost uniform, it 
can be noted that the influence of wall properties on these quantities is significant. 
The magnitude of hx and hz, further j z and —jx increase with an increase in ф. 
Figure 7 reveals that in certain cases a reverse current arises not only in the vicinity 
of the walls but also in the core. As for the external magnetic field, it raises the 
magnitude of hx and j z .

The above results indicate that a suitable rotation can change the effect of 
the external magnetic field.

5. B eh a v io u r  o f  in teg ra l q u a n tit ie s

In this Section we examine the influence of various parameters on the yield, 
total electric current flowing through the fluid, mean temperature and Nusselt 
number.

Figure 8 shows the primary yield Yx plotted against the rotation parameter E2 
and the Hartmann number M , respectively. From this figure it can be read off that 
accelerating rotation reduces the primary yield, i.e., as we have remarked earlier, 
the Coriolis force retards the primary flow. When the rotation is slow, M  and ф 
diminish the value of Yx, which is in agreement with the fact that the magnetic field 
usually exerts a retarding influence on the flow. However, for sufficiently large E 2 
the primary yield increases in the beginning, attains a maximum and then decreases 
as M  increases. Moreover, at low M  the yield Yx increases with raising ф, while for 
higher M  the effect is just the opposite.

From Fig. 9 we see that the secondary yield Yz first increases rapidly from the 
value zero, reaches a maximum and then decreases gradually as the rotation becomes 
stronger. The increasing magnetic field and wall conductances shift the maximum in 
the direction of larger rotation parameters. Since the secondary flow is driven by the 
rotation, at first sight this trend appears to be suprising. The explanation, however, 
is simple. Equations (14) and (15) show that the z-component of the Coriolis force 
(the driving force for the secondary flow) depends linearly on the primary velocity. 
Since initially vx decreases slowly then rapidly with the rotation, the driving force 
increases in the beginning and reduces afterwards as E 2 grows. When the rotation 
is not too fast, Yz decreases with increasing M  and ф. Although the results are 
not presented here, further computations show that when E2 is sufficiently large 
and ф is very small, Yz at first increases slightly then decreases on intensifying the 
magnetic field.

Also it may be noted from Figs 8 and 9 that the relative importance of the 
secondary flow with respect to the primary one increases with strengthening rotation 
and decreases with intensifying magnetic field.

Notwithstanding that the yield Y  and the current I  are connected via the 
simple relation (37), the conclusions concerning the behaviour of yield cannot be 
* directly extended for the current since the quantity h'(0) depends on all the 
input parameters. However, when ф = 0, I  = lY , which suggests that the overall
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behaviour of I  and Y  becomes similar at large values of ф. Needless to say, ф exerts 
completely different influences on these quantities.

To demonstrate the effect of various parameters on the thermal behaviour 
of the fluid, the dimensionless mean temperature 0 m is investigated (Fig. 10) as 
a function of jE(i) 2 and M  at symmetric material and geometrical properties of the 
walls. It is clear that 0 m decreases with E 2 and /(= /1 = /2). As for the Prandtl and 
Eckert numbers, it follows from Eqs (39)-(41) that the mean temperature increases 
with increasing values of dimensionless group PrEc.

Comparing Fig. 10 with Fig. 8, it is salient that the dependence of 0 m and 
Yx on the magnetic parameter is more or less similar. However, the maximum in 
0 m is not purely due to the enhanced viscous dissipation.

To explain this behaviour of 0 m, at first let us consider Fig. 11 where 0 m — 
0(0) is plotted. We see that this quantity has also a maximum in the actual 
parameter range, further here the temperature difference increases remarkably with 
ф. The underlying physical mechanism in this parameter range is that the Joule 
dissipation attains a maximum, further for large ф the major part of the Joule 
heating is confined to the middle of the channel. This explains also the nature of 
the curves of 0 m. We remark that Javeri [7] has discussed in detail the role of the 
different kinds of internal heat generation in the non-rotating HF.

Finally, to complete the survey on the heat transfer aspects of the problem, 
the Nusselt number N u\  is presented in Fig. 12 for symmetric walls. We observe 
that Nui  increases if the rotation parameter E 2 grows. In view Fig. 11, this means 
that the magnitude of heat flux decreases less quickly with E 2 than 0 m — 0 (0) does. 
It is interesting that for not too small values of ф the Nusselt number decreases then 
becomes a constant on increasing M  gradually, while for very small ф it grows quasi 
linearly with M .

6 . R em a rk s

(i) The analytic solution of temperature field and related quantities are very 
complicated, therefore it is advisable to check the validity of the final formulae. 
We have solved the whole problem numerically, too, using an infinite order Runge- 
Kutta method to find v(rj) and h'(r)). The F(rj), F(r)), # ( 77) and 0 m quantities 
have been evaluated by an eight order Lagrange-Hermite integrator. The results of 
the two computations are in excellent agreement.

(ii) In the case of и ф 0 the velocity and current density distributions also 
depend on the individual values of ф\ and ф?, therefore the problem becomes more 
complicated.

(iii) In an ionised gas where the density is low and/or the applied magnetic 
field is strong, the effect of Hall current becomes significant, therefore we have 
to use the generalized Ohm’s law instead of (6). This problem requires further 
investigation.
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1. In tr o d u c tio n

A large amount of research has been done in the field of gas lasers since 
the discovery of the first infrared He-Ne laser in 1961 [1]. This has led to the 
development of a large class of gas lasers for practical uses. The well-known He-Ne, 
Не-Cd, Ar ion and CO2 lasers operate in the positive column part of the discharge. 
The possibility of laser operation in the negative glow region has been the subject 
of detailed research since 1970 when Schuebel published basic results on hollow 
cathode discharge lasers [2,3]. In hollow cathode discharges the electron energy 
distribution is favourable due to the large number of high energy electrons present. 
This property offers a good possibility for excitation of high lying ionic levels, which 
are necessary to obtain laser operation in the visible and ultraviolet range of the 
spectrum. The hollow cathode discharge lasers operate at much higher pressures 
than the conventional positive column lasers which gives a good base to obtain 
single frequency operation [4].

Several types of hollow cathode lasers have been developed, which can be 
classified most simply by the way the active material is produced:

-  noble gas-metal vapour lasers where the metal vapour is produced by heating.
Typical representatives are the He-Cd [2], He-Zn [5], Ne-Tl [6] lasers.

-  noble gas-metal vapour lasers where the metal vapour is produced by cathode
sputtering. Typical lasers are He-Cu [7], Ne-Cu [8], He-Ag [9], He-Au [10], 
Ne-Al [11].

-  noble gas mixture lasers, here the active medium is a mixture of He-Kr [12],
He-Ar [13] and He-Ne-Xe [14].
In the case of metal vapour hollow cathode lasers a basic problem is the 

production of a uniform metal vapour density at the temperature needed to obtain 
the necessary vapour pressure. This basic problem of metal vapour lasers has not 
yet been solved in a satisfactory manner up to now. The production of metal 
vapour by cathode sputtering partly overcomes this problem. The metal vapour 
density obtained in this way is always below the optimum value, however [15], 
and it cannot be controlled independently from the discharge current. The cathode 
sputtering technique is particularly useful to produce laser action with metals where 
the necessary vapour pressure can be obtained only at high temperatures of 1100- 
1400 °C (Cu, Ag, Au, Al).

Noble gas mixture hollow cathode lasers operate at several ionic lines, mainly 
in the green-blue part of the spectrum. In these lasers the uniform density of 
the active medium in principle is reached and the laser tube can be operated at 
room temperatures. Both metal vapour lasers and noble gas mixture lasers have 
advantages and drawbacks. These questions are shortly dealt with in Part 3 and 
Part 4.

In this paper a review is given on noble gas mixture hollow cathode lasers, 
which is based mainly on work performed at the Gas Laser Laboratory of the Re­
search Institute for Solid State Physics, Budapest. In Part 2 the basic properties 
of hollow cathode discharges are considered, which is followed in Part 3 by the 
discussion of construction problems related to the lasers. Laser transitions, excita­

A cia  P hysica H ungáriá i 73, 1993



NOBLE GAS M IXTURE HOLLOW  CATHODE LASERS 3 1 3

tion mechanisms, operation conditions and some questions connected to a practical 
noble gas mixture laser are given in Part 4, in this Part explanations of some ex­
perimental observations are also presented. An important feature of the noble gas 
mixture lasers is the single frequency operation observed in case of TEMoo mode 
operation, phenomena and problems related to this are dealt with in Part 5.

2. B a sic  p r o p e r tie s  o f  h o llo w  c a th o d e  d isch arges

Hollow cathode gas lasers operate in the cold cathode abnormal glow operation 
regime of electrical discharges. In cold cathode glow discharges electron emission 
from the cathode occurs due to the impact of positive ions, metastable atoms and ul­
traviolet photons onto the cathode surface. The electrons emitted from the cathode 
participate in collision processes where a sufficient number of charged and excited 
particles, as well as photons are created to maintain the discharge by liberating 
electrons from the cathode [16,17]. In the abnormal glow operation mode the whole 
cathode surface is covered by discharge and the discharge voltage increases with 
increasing current. (In normal glow regime the current density is quite low and 
constant, the discharge covers only a part of the cathode surface which increases 
with current.)

2.1. The spatial distribution of the discharge

The typical appearance of a glow discharge is shown in Fig. 1 for an ordinary 
plane cathode arrangement [16-18]. Only the cathode region of these discharges 
(consisting essentially of the cathode dark space and the negative glow) is used 
in hollow cathode lasers (see Fig. 2). In hollow cathode discharge geometries the 
negative glow (NG) region of the discharge is partly surrounded by the cathode 
surface, as it is shown schematically in Fig. 2. The cathode cavity is filled with 
the cathode dark space and the negative glow. There exists an optimal pressure 
where the self-maintenance mechanism of the discharge is the most efficient. This 
optimum can be observed as a voltage minimum when the pressure is changed 
at constant discharge current [17]. The radial intensity distribution of the emitted 
light also shows a characteristic behaviour as the gas pressure is changed [28]. Under 
optimal operating conditions the light intensity peaks in the central region of the 
cavity. With increasing pressure a relatively dark hole is formed in the middle of the 
discharge and at even higher pressure the negative glow tends to form a bright ring 
along the cathode surface. This effect is illustrated in Fig. 3. The radial distribution 
of the discharge is also influenced by the voltage and the current of the discharge. 
At high pressures where the middle of the cathode cavity is dark, by sufficiently 
increasing current it can be reached that the light intensity reaches its maximum 
in the axis of the discharge.

The cathode dark space (CDS) of abnormal glow discharges is characterized 
by large electric field (up to 103 —104 Vcm-1 at the cathode surface which decreases
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cathode anode

- 1 1 i f § § f § 1 I
— Faraday dark space

positive columm-------
anode dark space ------

— negative glow
— cathode dark space

Fig. 1. S p a tia l d is tr ib u tio n  of a  glow discharge (only th e  m o st im p o rtan t p a r ts  of the  discharge
are  ind ica ted )

cathode

cathode dark space

anode cathode

negative glow

ál
anode

plane c a t h o de hol low c a t h o d e

Fig. 2. A  typ ical p lan e  ca th o d e  a n d  hollow  cathode  a rran g em en t

to about zero at the CDS-NG boundary) and by a large electric field gradient. The 
typical voltage drop on the CDS is in the order of several hundred Volts. In the 
negative glow, however, the electric field is small. This region can be considered as 
created by the high energy electrons injected into it from the cathode dark space. 
These electrons dissipate most of their energy in the negative glow.

Because of the high electric field gradient in the CDS the electric field changes 
significantly along a mean free path of electrons. The motion of electrons therefore 
lacks hydrodynamic equilibrium and cannot be described with mobility data [19,20]. 
The negative glow is also a “non-hydrodynamic” region because of the injected high 
energy electrons.
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Fig. 3. T y p ica l ra d ia l in ten sity  o f a  sp ec tra l line in  a  cylindrical hollow ca th o d e : (a) a t  “op tim al"
pressu re  an d  (b) “h ig h ” pressure

2.2. The hollow cathode effect

Typical voltage-current characteristics of a plane and a hollow cathode (HC) 
discharge are shown in Fig. 4. It can be seen in Fig. 4 that at a given discharge 
voltage the current (or current density) of the hollow cathode discharge is usually 
much greater. The increased current density of the HC can be explained in terms 
of the hollow cathode effect.

Fig. 4. T y p ical vo ltag e-cu rren t characteris tics of a  p lan e  cathode a n d  hollow  cathode  d ischarge
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The main reasons of the hollow cathode effect are summarized below [21].
-  In plane cathode discharges the role of ultraviolet photons in the maintenance 

of the discharge is relatively unimportant [22]. In hollow cathode geometry 
photons and metastable atoms can reach the cathode with a higher probability 
and release more electrons than in an ordinary discharge. In HC discharges 
the importance of photoelectrons emitted by the cathode due to UV radiation 
from the discharge has been experimentally demonstrated [23,24].

-  There may exist so-called “pendelelectrons” which oscillate in the potential 
well formed inside a hollow cathode and increase the ionisation and excitation 
rate [25,26]. The existence of oscillating electrons was proved experimentally 
[21] and is also supported by discharge modelling calculations [27].

-  Non-linear processes (the rate of which depends non-linearly on the concen­
trations) may start to play an important role because of the increased con­
centration of excited and charged species in the negative glow.

-  The fast electrons may also be focused by proper geometry.

2.3. The energy distribution of electrons

Hollow cathode discharges were found to be efficient sources for laser operation 
(see e.g. [28,29]). The electrons which acquire high energy in the cathode dark space 
and enter the negative glow can ionize the gas and excite high-lying electronic 
levels of atoms and ions efficiently. Metastable densities higher than in positive 
column discharges can be reached (a He 23S density of the order of 1013/cm3 at 
discharge current densities around 100 mA/cm2 [30]), which is important from the 
point of view of noble gas mixture lasers. The energy distribution of electrons 
entering the negative glow is therefore of practical importance. Because of the non- 
hydrodynamic nature of the cathode region the calculation of the electron energy 
distribution function (EEDF) is a laborious task. (The EEDF is usually obtained by 
solution of the Boltzmann equation or by Monte Carlo simulation [20].) The EEDF 
in the cathode region is very different from the EEDF in the positive column of glow 
discharges where it can be well approximated by a Maxwellian distribution (typically 
found in positive column discharge lasers e.g. He-Ne laser). Figure 5 shows the 
EEDF at the CDS-NG boundary calculated for a plane cathode discharge in He 
(at 300 volts discharge voltage and 5 mbar pressure) together with a Maxwellian 
EEDF with electron temperature corresponding to kTe = 5 eV. The large extent of 
high energy electrons at the CDS-NG boundary can be clearly seen in Fig. 5.

Noble gas mixture lasers operate in a mixture of buffer gas(es) and a small 
amount of “active” gas which — from the point of view of the discharge — can 
be considered as an admixture. The small amounts of admixtures may have large 
effects on the parameters of the discharge as it was realized many decades ago 
[18,31]. The influence of admixtures on the operation of hollow cathode discharges 
is expected — at least qualitatively — to be the same as in the plane cathode case.

It was found that the admixtures quench the high energy tail of the EEDF [32]. 
This effect 1 7 monstrated in Fig. 6, where the EEDF at the CDS-NG boundary
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Fig. 5. T h e  e lec tro n  energy d is tr ib u tio n  fu n c tio n  (E E D F ) a t  the  CDS—N G  b o u n d a ry  a t  300 V 
cathode  fa ll (----------------- ) a n d  a  M axw ellian e lec tro n  energy d is tr ib u tio n  of k T c =  5 eV (--------)

Fig. 6. T h e  e lec tro n  energy d is tr ib u tio n  function  (E E D F ) a t  the  CDS—N G  b o u n d a ry  a t  300 V 
ca th o d e  fa ll in  a  p u re  He discharge (----------------- ) a n d  in  a  m ix tu re  of H e + 0.8 % K r (--------)

is plotted for a discharge in pure He and in the mixture of He and 0.8 % Kr. This 
is believed to be one of the causes of the decrease of laser power above a certain
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pressure of the active gas. It was also found that the small admixtures play an 
important role in the maintenance of the discharge.

2-4- The effect of cathode sputtering

In hollow cathode lasers there also occurs the phenomenon of cathode sput­
tering. This process gives a possibility to utilize room temperature metal vapour 
laser operation. However, it is an undesired effect in noble gas mixture lasers. The 
sputtered cathode material may quench the energy of electrons and has a negative 
effect on laser performance. The cathode sputtering occurs due to the impact of 
heavy positive ions on the cathode surface. The sputtering yield depends on the 
type and energy of the ions [33]. The ion energy is influenced by the cathode fall 
voltage and the free path of ions which impact into the cathode.

The motion of positive ions in the cathode dark space is limited by charge 
transfer processes. Thus their free path depends on the charge transfer cross- 
sections and the concentration of the gas. In noble gas mixture lasers the large 
difference between the concentrations of the admixed gases may result in very dif­
ferent free paths for the different (buffer gas, active gas) ionic species. Consequently, 
the energy distribution of buffer and active gas ions may also be very different at 
the cathode surface. This is illustrated in Fig. 7, where the energy distribution of 
He+ and Kr+ ions is plotted for a plane cathode discharge. The Figure shows that 
krypton (being the active gas in a He-Kr+ laser) is essential for laser operation but 
also causes undesired cathode sputtering.

Fig. 7. E nergy d is tr ib u tio n  of H e+ a n d  K r+  ions on  th e  ca th o d e  surface ( in  He f  0.8 % K r, c a th o d e
fall voltage: 300 V)
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From the point of view of hollow cathode lasers both the voltage and the 
current density of the discharge play an important role in laser performance. The 
energy of electrons in the discharge is largely influenced by the cathode fall voltage. 
Therefore it is of importance to design hollow cathode geometries which result in 
higher operating voltage than the convential hollow cathode arrangements.

3 . C o n str u c tio n  p r in c ip le s  o f  h o llo w  c a th o d e  d isch a rg e  tu b e s

There are several requirements to be satisfied by the design and construction 
of a hollow cathode laser tube. The discharge should only fill out the hollow cathode 
cavity, any other room occupied by the discharge decreases the excitation efficiency. 
The homogeneous discharge along the optical axis is also very useful. Since the large 
discharge plasma in one piece is a subject of instabilities and arcing, the plasma 
(especially in long tubes) has to be divided into several independent parts. These 
requirements are general for all of the different hollow cathode lasers. While at 
the cathode sputtered type of lasers there is a need for a high density of sputtered 
particles in the plasma, in the noble gas mixture lasers the density of sputtered 
metal should be kept as low as possible in order to avoid the effect of the metal 
vapour on the discharge. In the hollow cathode lasers the high energy of feist 
electrons is essential, which can be increased by different methods which increase 
the voltage of the discharge. The different excitation mechanisms, however, need 
different optimum electron energies. In the noble gas mixture lasers, where the 
excitation mechanism is energy transfer between metastable He atoms and noble 
gas ions, the too high electron energies may be disadvantageous, since they may 
decrease the metastable atom concentration. To satisfy all these requirements in 
one discharge arrangement is fairly difficult. Research on these problems is being 
carried out continuously. However, some guidelines and the review of some typical 
already existing laser constructions may help in understanding a large variety of 
discharge tubes, and could show some directions of the research in this field.

3.1. Stability of the discharge

The output power of the hollow cathode lasers often increases with increasing 
the current in a large range. However, above a certain current the discharge becomes 
unstable, contracts into a small volume and an arc discharge develops. This effect 
not only stops the laser oscillation, but may also damage the discharge tube. In our 
earlier investigations we have shown that, at a given construction, and gas quality 
and pressure, this arcing occurs around a certain current limit, the arcing threshold 
current. In a wide range this arcing does not depend on the current density on the 
cathode surface. A smaller volume of plasma, with higher current density is more 
stable against arcing [28]. Therefore in each construction it is advisable to avoid the 
large uninterrupted negative glow. The occurrence of arcing is strongly influenced 
in the case of an A1 cathode by the oxide layer present on the surface [34].
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Fig. 8. L o n g itu d in a l discharge arran g em en t

3.2. Longitudinal and transversal discharge arrangements

The longitudinal discharge arrangements are usually the simplest ones, one 
example is shown in Fig. 8. The cathode is a cylindrical tube, and anodes are placed 
at the two ends of the cathode. The discharge is flowing along the tube from the 
anode into the cathode hollow. Such arrangements have several advantages. One 
is the simplicity of the tube. Simple discharge tubes can be built in this way and 
it can easily be arranged that the discharge should not flow outside the cathode 
cavity. One possibility for this is when the wall of the cathode tube is the wall of 
the discharge tube as well. Using such a construction the cooling of the cathode 
is easy, and the electrical connections need not to be introduced into the vacuum 
part of the discharge. A serious drawback of such arrangements is, however, that 
neither the current density, nor the electron energy distribution are constant along 
the tube. To flow the discharge deeper into the tube a certain voltage is necessary. 
This has to be compensated by the lower current density on the cathode surface. 
The density of the low energy electrons is increasing as we approach the end of the 
cathode, therefore no optimum conditions can be set along the cathode, and the 
output power from unit length is less than in the transversal arrangements [35]. 
Therefore short cathode lengths are preferred, however, then we lose the simplicity 
of the tube.

Fig. 9. “F lu te  ty p e” discharge a rrangem en t
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In principle a “flute type” discharge tube (see Fig. 9) behaves similarly to the 
longitudinal arrangements [36]. Here a series of holes are drilled in the wall of the 
cylindrical hollow cathode. The anodes are placed into or above these holes and 
the discharge current flows through these holes between the anode and the cathode. 
However, this arrangement utilizes a large plasma in one piece which can be a source 
of different instabilities.

In the transversal arrangements the discharge is flowing across the tube and 
the homogeneous conditions of the discharge can be easily assured, especially in 
noble gas mixture discharges. In the following the main types of transversal ar­
rangements are discussed.

Fig. 10. S lo tted  hollow cathode a rran g em en t

Slotted hollow cathode discharge tubes. The idea of the slotted hollow cathode [2] is 
demonstrated in Fig. 10, the cathode is here a rod placed into the vacuum envelope. 
A slot is cut along the cathode and the anode is placed opposite the slot. These 
constructions are simple, however, a considerable part of the current may flow 
outside the slot reducing the efficiency of such discharges, especially in the noble 
gas mixture lasers. On the other hand, the large cathode-anode distance has the 
advantage that the lifetime of the tube is long. The lifetime is usually limited by 
the short-circuit between the anode and the cathode due to the deposited sputtered 
cathode material.

Internal anode (low voltage) tubes. A more efficient use of the discharge current can 
be done if the anode is a rod and is placed into the cathode, along the cavity [37]. 
The cross-section of such an arrangement is illustrated in Fig. 11. Preferably the 
cavity has an elliptical cross-section and then the cross-section of the active volume 
is matching the laser beam profile.
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anode Ф2

Fig. 11. In te rn a i a n o d e  discharge tu b e  arrangem en t w ith  a single anode r o d

3.3. Variable voltage discharge tubes

The conventional hollow cathode tubes have a flat voltage-current character­
istic, the discharge voltage is about a few hundred volts. Modifying the discharge 
geometry, the efficiency of the discharge can be decreased by increasing the loss of 
the charges in the discharge. The increased voltage increases the density of the high 
energy part of the electron energy distribution and a more efficient excitation can 
be achieved. The threshold current of the lasers decreases while the efficiency and 
the output power increases [14].

F ig. 12. Coil ca th o d e  d ischarge a rran g em en t

One possibility to increase the voltage is to use a coil cathode introduced by 
Sabotinov and Grozeva [38]. This arrangement is illustrated in Fig. 12. The anode
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is placed outside the cathode coil, and the discharge can flow into the middle of the 
coil between the windings. The voltage of the discharge can be tuned by changing 
the space between the windings. Part of the current can be lost by flowing between 
the threads and on the outer part of the cathode. This arrangement does not focus 
the fast electrons into the axis of the discharge. Therefore this discharge does not 
perform as well (especially at low currents) as the internal anode variable voltage 
discharges. On the other hand, the risk of short circuit is low as the anode can be 
placed relatively far from the coil cathode.

anode holder cathode pyrex cathode

Fig. 13. In te rn a l anode d ischarge arrangem en t w ith  a  series of a n o d e  rods

The voltage of the discharge can also be increased in different internal anode 
arrangements. If we place anode rods near the cathode surface into a cylindrical 
hollow cathode, as illustrated in Fig. 13, the voltage of the discharge can be set by 
the distance between the anode rods and by changing the number of the rods. This 
discharge has a large flexibility to increase different voltages. Low threshold current 
and high efficiency is characteristic of such discharges [14]. Since in the excitation 
mechanism of noble gas mixture lasers metastable He atoms are also involved a 
moderate increase of voltage gives the best efficiency [37]. Still better efficiency 
can be achieved in constructions where the anode rods are replaced by a thin wall 
(preferably stainless steel) tube, where the slots can be cut into the wall of the anode 
tube [39]. A cross-section of such a discharge is shown in Fig. 14. The sputtering of 
the cathode is disadvantageous since it not only unfavourably changes the electron 
energy distribution, but also limits the lifetime of the discharge tube due to the 
short-circuit caused by the deposited metal. This type of discharge combined with 
less sputtering cathode material (like graphite) may give the best performance to 
the noble gas mixture lasers. It is also clear that if the cathode sputters less, then 
more active gas (like Kr in He buffer) can be introduced into the discharge, which 
may provide a better lifetime, when the lifetime is determined by the clean-up of 
the active gas, and in high current discharges we may achieve better performances 
as well. These problems are the subject of present research.
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11.6 mm

Fig. 14. S lo tted  in te rn a l a n o d e  discharge a rran g em en t

4 . N o b le  g a s m ix tu r e  la sers

4.1. History

The Не-Kr ion laser operating cw in a hollow cathode discharge was discov­
ered on the base of investigations where the characteristics of pulsed positive column 
537.8 nm He-Cd+ and 469.4 nm He-Kr+ lasers were carefully compared [40]. It 
was found that the behaviour of the two pulsed laser systems is very similar. Since 
the green Не-Cd laser was known to operate cw in a hollow cathode discharge the 
same was tried for Не-Kr with the first experiment being immediately successful 
resulting in cw operation at 469.4 nm [12]. Later on using a high voltage hollow 
cathode tube cw laser operation was observed at other Кг II transitions too [41].

He—Ar mixture was also considered to be a candidate for cw operation at 
476.5 nm in a hollow cathode discharge [42] but at first experiments failed to reach 
this. Rózsa obtained a gain factor [43] of 16 in a large cross-section (7 x 12 mm) 
transverse hollow cathode discharge tube, but was unable to reach oscillation [44]. 
The first successful oscillation in Не-Ar at the 476.5 nm Ar II transition was ob­
tained in a longitudinal type hollow cathode discharge [13]. The output power was 
found to be significantly lower than in He-Кг. Several new cw Ar II transitions 
were observed later in a high voltage hollow cathode tube [41].

The question of cw laser oscillation in a Ne-Xe mixture was puzzling first. The 
Ne-Xe laser operating at the 531.4 nm line of Xe II was observed to be stronger 
compared to Не-Kr in pulsed positive column discharges [45]. In the cw hollow 
cathode discharge used for He-Kr [12] even the spontaneous 531.4 nm spectral line 
could not be observed. In the longitudinal discharge, where cw Не-Ar oscillation 
was obtained, the 531.4 nm spontaneous line was clearly seen. No laser oscillation 
was observed, however, and measurements of the spontaneous intensity revealed
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Table I

G as m ix tu re W avelength  (nm ) T ran s itio n T h resh o ld  cu rren t (A)

H e-K r K r II
16 m b ar  He A 651.0 6 s ‘ P 5 / 2 -  5 P *  S 3 / 2 2.1

В 512.6 6 s 4 p 3 / 2 _  5 р 4 ° 3 / 2
4.4

0.1 m b a r  К г В 469.4 6s4P s /2 - V D °7/2 1.1
В 458.3 6s4P  3 / 2 -  5 Р 4 ° 5 / 2 4.2
В 438.7 6s4P 5/2 -  5 P 4 P 3 / 2 4.5
В 431.8 6s4P s /2 " V P  5 / 2

2

no maxima as a function of Ne and Xe pressure which phenomenon is usually 
characteristic for laser action. In the end in a high voltage hollow cathode discharge 
an accidental addition of He to Ne-Xe resulted in gain and then optimization of gets 
fill led to laser oscillation at 531.4 nm [14].

4-2 Laser transitions 

He-Kr

Laser transitions of Kr II operating cw in hollow cathode discharges are sum­
marized in Table I. Gas mixture, wavelengths, transition assignments and threshold 
currents are given in the Table. The data were obtained in a high voltage hollow 
cathode laser [41]. The active length of the discharge tube was 160 cm, it consisted 
of 16 segments each 10 cm long. The cathodes were made of pure Al, the inner 
diameter was 7 mm, the diameter of the volume left free by the six internal anodes 
was 3 mm. The reflection of laser mirrors used in this experiment was maximum 
for the wavelengths in question (R > 99.5 %), their radius of curvature was 3 m. 
Excitation of the discharge was by 12.5 Hz half wave rectified alternating current. 
In the Table the notation “A” denotes a laser transition not observed earlier at all, 
“B” denotes such ones which have been observed earlier only in pulsed positive col­
umn discharges [48]. It is noted that the transition at 431.8 nm was obtained first 
independently from us by Stefanova [46]. The strongest transition is at 469.4 nm 
with a threshold current of 1.1 A. Maximum output power obtained in this tube 
using a 2 % transmission mirror was 100 mW at 11 A.

He-Ar

Laser transitions of Ar II operating cw in hollow cathode discharges are given 
in Table II. Similarly to Table I gas mixture, wavelengths, transition assignments 
and threshold currents are contained in the Table. The data were obtained in the
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Table II

G as m ix tu re W avelength  (nm ) T ran s itio n T h resh o ld  curren t (A)

H e-A r A r I I
15 m b a r  He A 686.1 V P ?/2 — 3 d 2P  3/2 2.3
0.9 m b a r  A r A 648.3 V s ?/2 — 3 d 2P  3/2 2.5

C 476.5 V p ° /2 — 4s2P 2.2
C 457.9 V s ? /2 -  4s2 P  ! /2 4.2

C 454.5 4Р2р а/2 -  4s2P 3/2 3.5
Ar A r I I
1.1 m b a r 476.5 6

same meaning as before, “C” denotes leiser transitions which were observed for the 
first time in a hollow cathode discharge. The strongest transition is at 476.5 nm, 
the threshold current being 2.2 A. The maximum output power observed using a 
2 % transmission output mirror was 21 mA at 10 A discharge current.

He-Ne-Xe

Laser transitions of Xe II operating cw in a hollow cathode discharge are 
summarized in Table III. Gas mixture, wavelengths, transition assignments and 
threshold currents are given in the Table. The data were obtained in a transverse 
hollow cathode discharge tube [47]. The tube was a slotted hollow cathode type 
with the bottom of the slot widened, the anode rod being placed into this part as it 
is shown in Fig. 15. The dimensions of the slot were 2 x 5  mm. The active length 
of the tube was 40 cm, it was built of 4 segments, each 10 cm long. Excitation 
was by 50 Hz repetition rate long pulses having a duration up to 0.5 ms. This 
type of excitation is considered to be cw since it is much longer than the time scale 
of collision processes leading to population inversion. In the Table the notation 
“B” denotes as previously laser transitions observed earlier only in pulsed positive 
column discharges [48]. The two transitions given in the lower part of the Table 
were observed cw first in a hollow cathode discharge by Solanki et al [49].

Bennett has made a critical evaluation of published laser transitions in that 
respect whether laser oscillation was really observed at these or not [50]. On the 
basis of data given by Solanki the 526.2 nm and 572.7 nm transitions are denoted 
as questionable. Experiments performed in [47] have shown unambiguously that 
there is laser oscillation at these transitions and the sufficient agreement of wave­
length measurements with those of Solanki supports the correctness of the transition 
assignments of [49].

From Table III it can be seen that the optimum He and Ne pressures are 
significantly different for the two groups of laser lines (531.4 nm, 486.3 nm and 
526.2 nm, 572.7 nm, respectively). Figures 16 and 17 show the dependence of the 
laser power on He and Ne pressure for the two groups of laser lines. The 531.4 nm 
transition was the strongest, at optimum gas fill 5 mW peak power was obtained at
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Fig. 15. S lo tted  hollow  cathode  d ischarge  tu b e  used fo r H e -N e-X e  laser

Table III

Gas m ix tu re W avelength  (nm) T ran sitio n T h resh o ld  cu rren t (A)

H e-N e-X e Xe II
36 m b ar  He В 531.4 7s* P 5 /2  -  6p 4D?/2 4
5 m b ar  Ne 
0.02 m b a r  Xe

В 486.3 7**P*/2 -  6P4P £/2 6.1

60 m b ar  He 526.2 e p ^ D j / j  -  6 s * d 3/2 6.6
2.5 m b a r  Ne 
0.02 m b a r  Xe

572.7 6P '2D ° /2 -  5 d * F 6/2 7.2

11 A. Weak laser oscillation was observed at 531.4 nm in 9 mbar Ne and optimum 
Xe, in He-Xe and He-Ar-Xe no laser action could be observed [14,47].

4-3. Excitation mechanisms

The excitation mechanisms for the laser systems are discussed in the follow­
ing. Basically in all three types they are the same, some differences in details are 
discussed, however.

Не-Kr laser

The high gas pressure (15-40 mbar) and the large mixture ratio (He/Kr~200/1) 
observed in the hollow cathode laser indicates that the excitation of the upper laser
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Fig. 16. Dependence of laser in tensity  on He pressure in  case of different Xe II laser lines

Ne pressure ( mbar)

Fig. 17. Dependence of laser in tensity  on Ne pressure in  case of different Xe II laser lines

level is similar to that in the pulsed positive column discharge [48] being a resonant 
collision of the second kind between He 23S metastables and ground state Kr ions

He 23S + Kr+ —> He +  Kr+*. (1)

Several observations support this mechanism:
-  in the hollow cathode discharge those laser transitions oscillate of which the 

upper level energy is near to that of the He 23S state.
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-  there is no laser oscillation at the transitions originating from lower energy 
levels, while there is laser oscillation at these transitions in pure Kr positive 
column discharges where they are excited by direct electron collisions.

-  according to measurements in a hollow cathode discharge the intensity of the 
spontaneous 469.4 nm transition was found to be approximately 25 times 
stronger in Не-Kr than in pure Kr [51].

-  exciting the discharge by several hundred ps duration pulses after the 3 ps fall 
of the current pulse, the laser oscillates still for a time of the order of 20 ps 
in the afterglow.
The second kind collision process (1) occurs in principle with a high probabil­

ity if the energy difference between the exciting He 23S level and the excited Kr ion 
level is small being the order of a few times kT  (k is the Boltzmann constant, T  is 
the gas temperature). In the case of (1) the energy difference is 0.35 eV, however, 
the He 23S energy is 19.82 eV, while that of the Kr ion level is 19.47 eV. The cross- 
section of the process according to [49] is large in spite of this, being in the order 
of 10“ 14 cm2. The large energy difference is taken up by the colliding particles in 
the form of kinetic energy. The large cross-section can be explained by the Wigner 
spin conservation rule being fulfilled in (1) and this is more important than a near 
energy coincidence [52].

The lower laser level is populated mainly by direct electron collisions 

e -f Kr —*■ e + Kr+* + e.

The population of the lower level is usually not significant compared to that of the 
upper level. The lower level population will become noticeable only within special 
circumstances, which means excitation with square wave shaped high current pulses 
at low He pressures [53]. In this case at the fast 3 ps decay of the current pulse a 
peak appears in the laser pulse. This is explained by the fast depopulation of the 
electron collisionally excited lower level.

In the excitation of ground state Kr ions two processes can take part:
-  Penning ionization by metastable He atoms

He 23S + Kr —► He + Kr+ + e + AE\ (2)

-  Ionization by electron impact

e + Kr —> e + Kr+ +  e. (3)

Calculations have been carried out to see what is the ratio of the excitation rate of 
processes (3) and (2) [54]. This ratio (R ) of the excitation rates of electron impact 
ionization and Penning ionization has been determined in the case of a Maxwellian 
electron energy distribution valid in the positive column and using the electron 
energy distribution determined experimentally in the negative glow [55]. In the 
case of a Maxwellian distribution R ~  0.3, while in case of the non-Maxwellian 
negative glow distribution R  ~  120 has been obtained. This result shows that in a
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hollow cathode discharge electron impact is the dominant process for the production 
of Kr ions.

He-Ar laser

The high optimum gas pressure (15-40 mbar) and the large mixture ratio 
(He/Ar~30/1) indicates similarly to the Не-K r laser that the upper level is excited 
by the process

He 23S + Ar+ —+ He + Ar+*.

This process is supported by results of investigations performed on a laser excited 
by several hundred fis duration current pulses [53]. Here at the time of the fast 
3 fis fall of the current pulse a peak appears in the laser pulse (Fig. 18). The laser 
operates in the afterglow for approximately 15 fis. The peak is interpreted as being 
caused by the increase of population inversion due to the difference in the slow decay 
of upper level population excited by long life He 23S atoms and the fast decay of 
the electron collisionally excited lower level.

Fig. 18. Laser pulse (B) and cu rren t pulse (A, negative signal) a t the 476.5 nm  Ar II transition  
of the H e-A r laser. Current pulse 2A/division, tim e scale 50 ps/division, P,j e =  32 m bar,

Par =  0.6 m bar

In the He-Ar system the energy difference between the He 23S (19.82 eV) 
and the upper laser level of the Ar ion (19.87 eV) is -0.05 eV. On the basis of this 
small energy difference it would be expected that the exciting process has a large 
cross-section. Investigations aiming on this show, however, that the cross-section 
is around 0.5 x 10~16 cm2 [56], which is significantly smaller than in the case of 
Не-Kr. In the He 23S-Ar ion collisions by the excitation of the 4p2Pgy2Ar ion level 
the Wigner spin conservation rule is not fulfilled. This shows again that for a large
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collision cross-section spin conservation is more important than a near coincidence 
of energy. The smaller cross-section compared to He-Кг results that in He-Ar the 
upper level population is also lower which gives a lower output power. The ground 
state Ar ions are believed to be produced mainly in the same way as in Не-Kr by 
electron impact [54]:

e +  Ar -> e +  Ar+ + e.

He-Ne-Xe laser
In the He-Ne-Xe laser the relatively high Ne pressure (2-8 mbar) and the 

large Ne/Xe mixture ratio (Ne/Xe ~  250/1) makes it probable that the upper level 
is excited similarly as in pulsed positive column discharges [48] by collisions of the 
second kind

Ne Iss + Xe+ -*Ne +  Xe+*.

This is supported by the observation that no laser oscillation was observed in He- 
Xe and He-Ar-Xe mixtures. The ground state Xe ions are produced mainly by 
electron impact [54].

Two questions arise in connection with the He-Ne-Xe laser

-  what is the role of He in producing laser oscillation;
-  what is the reason of the different optimum He and Ne pressures for the two

groups of laser transitions.

He influences laser operation presumably in two ways. In a He-Ne mixture 
due to the resonant collisions of the second kind between He metastables and Ne 
atoms the density of Ne lss metastables significantly increases. According to mea­
surements of Solanki [49] a four times increase occurs in the Ne ls5 density compared 
to that in pure Ne. Also it is important that in a given pressure He-Ne mixture 
a higher voltage is necessary to maintain the gas discharge than in pure Ne. As a 
consequence of the high voltage more high energy electrons are present in a He-Ne 
discharge, which increases the density of Xe ions.

The difference in optimum He and Ne pressures indicates a different excitation 
mechanism for the two groups of laser transitions. Measurements have shown that 
Ne is definitely necessary for laser oscillation. It has been considered to be likely 
that the two groups are excited by collisions of different Ne metastables (ls2 and 
IS5) with ground state Xe ions [47].

\.Jf. Laser output power and gas discharge parameters

The connection between laser output power and gas discharge parameters is 
quite complex. In the following some basic relations are dealt with. These are the 
dependence of output power on the partial pressure of the buffer and active gas, 
dependence of output power on discharge current, dependence of threshold current 
on gas pressure and the connection between optimum gas pressure and discharge
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current. The relations are similar for all the three laser systems. Several investiga­
tions have been performed on the Не-Kr laser [12, 37, 57, 58], results obtained at 
the 469.4 nm transition are presented. The laser operation parameters are strongly 
influenced by cathode geometry, so in each case the cathode arrangement used is 
specified. Excitation of the discharge was in most cases by 12.5 Hz repetition rate 
half wave rectified alternating current.

Fig. 19. Dependence of He-К г  laser power on Kr p a rtia l pressure

Figure 19 shows the dependence of laser power on Kr partial pressure obtained 
in a longitudinal hollow cathode arrangement [57]. As can be seen from the Figure 
laser power is very sensitive to the value of Kr partial pressure, the optimum being 
0.1 mbar. Recent experiments in a graphite cathode high voltage discharge tube 
have resulted in an optimum of 0.3 mbar and laser oscillation occurred still at 
0.9 mbar Kr partial pressure [59]. This observation is attributed to the presence 
of the high voltage, which allows a sufficient excitation of atomic species at such a 
high density of the active medium.

The dependence of threshold current on He pressure is shown in Fig. 20. The 
measurements were performed in a hollow cathode tube having three internal anodes 
[37]. It can be seen from the Figure that the threshold current is minimum around 
14 mbar He pressure, it slightly increases below this but increases significantly 
at higher He pressures. The increase of the threshold current at low pressures 
is attributed to the presence of metal atoms resulting from cathode sputtering. 
The metal atoms due to their lower ionization potential reduce the density of high 
energy electrons and also that of He 23S atoms by Penning ionization. The increase 
of threshold current at high pressures is due to the change of the spatial distribution
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Fig. 20. Dependence of threshold current on He pressure for the 469.4 nm  He-К г  laser

of the discharge [60]. At high pressures the discharge fills the whole cross-section of 
the tube only at higher discharge currents.

The dependence of laser power on discharge current measured at different 
He pressures is shown in Fig. 21. The results were obtained in the same internal 
anode tube as mentioned previously [37]. As can be seen from the Figure at low 
He pressures laser power saturates, while at higher pressures it strongly increases 
with increasing discharge current. The saturation is attributed to the presence of 
metal atoms resulting from cathode sputtering. As the He pressure is increased 
cathode sputtering is reduced but due to the change of the spatial distribution of 
the discharge the threshold current increases.

The optimum He and Kr partial pressures depend on the value of discharge 
current. Results measured in a d.c. excited transverse discharge hollow cathode 
laser [58] are presented in Fig. 22. As can be seen from the Figure increasing 
the discharge current optimum partial pressure values increase also. This rela­
tion can be explained on the basis of the change of the spatial distribution of the 
discharge [60].

The appearance of cathode sputtering and its influence on the 469.4 nm spon­
taneous line intensity is shown in Fig. 23. The measurement was made in a trans­
verse slotted hollow cathode discharge excited by 0.5 ms duration square wave 
pulses [61]. As can be seen from the Figure the intensity of the 469.4 nm Kr II line
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d i s c h a r g e  c u r r e n t  (A)

Fig. 21. Dependence of 469.4 nm  Не-K r leiser power on  discharge current 
m easured a t different He pressures

tends to saturate in the current range where an abrupt increase of the intensity of 
the 396.1 nm Al I line occurs, the latter showing the appearance of a significant 
amount of A1 vapour. It is emphasized that this occurs even at the high He pressure 
of 80 mbar where the data shown in Fig. 23 were obtained.

The gain and saturation parameter of the 469.4 nm Не-Kr laser transition 
were measured as a function of discharge current in a six rod internal anode system 
[37]. These data were obtained from measuring output power as a function of 
loss produced by rotating a quartz window inside the laser resonator [72]. In this 
measurement a big advantage of the Не-Kr laser system was that due to the large 
pressure broadening, the 469.4 nm transition has a homogeneous linewidth and 
oscillates only in a single axial mode. For measurement of the saturation parameter 
TEMoo mode operation was produced by inserting a diaphragm in the resonator. 
Excitation of the laser tube was quasi-cw with 100 ps halfwidth current pulses.
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di scha rge  cur rent

Fig. 22. Dependence of optim um  He and Kr p a rtia l pressures on discharge current for the 469.4 nm
He- К г  laser

Fig. 23. Dependence of the spontaneous intensity of the 396.1 nm  Al I and the 469.4 n m  К г II 
lines on discharge current at 80 m bar He and 0.2 m bar K r pressure

The result of measurements are shown in Fig. 24 and Fig. 25. It can be seen from 
Fig. 24 that the saturation parameter increases with increasing discharge current 
and reaches a value of 150 W/cm2 at 16 A peak current. Fig. 25 shows gain as a 
function of current, a value of 16%/m is measured at 16 A. Gain increases slower
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Fig. 24. Satu ra tion  param eter as a  function of discharge current (He—K r leiser, 469.4 ran)

2 A 6 8 10 12 14 16
current  (A)

Fig. 25. G ain as a function of discharge curren t (Не-K r laser, 469.4 nm)

than linear with increasing discharge current, while the increase of output power is 
linear. Considering that output power is qualitatively proportional to the product 
of gain and saturation parameter, since the latter increases also slower than linear,
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the product of them gives approximately a linear dependence.

4-5. Lasers for practical use

The cw noble gas mixture hollow cathode lasers have a perspective for practi­
cal applications. For this, however, a stable, long life laser is needed. Experiments 
have been carried out on the Не-Kr laser to see possibilities and problems of con­
structions aimed on practical uses. A d.c. excited water cooled transverse discharge 
hollow cathode Не-Kr laser was operated at 469.4 nm and 431.8 nm [58]. The active 
length of the laser was 40 cm. An output power of 5 mW could be obtained at the 
blue line and 0.4 mW at the violet line operating the discharge at 4 A current. The 
lifetime of the laser proved to be ~  100 hours, failure of the discharge tube being a 
short-circuit between the cathode and anode caused by the deposited metal arising 
from cathode sputtering [29,62].

Investigations have been made on a similar construction laser placed into a 
pyrex envelope and excited by 50 Hz repetition rate 0.4 ms duration current pulses 
[63]. Cataphoresis of Kr was found to afFect seriously the pulse shape. A He-Kr 
mixture resulting in a near square wave laser output pulse was chosen for long time 
operation measurements. The pulse peak power was 20 mW, the average power
0.4 mW, respectively. The lifetime of the laser was 440 hours, tube failure being 
due to gas clean-up caused by cathode sputtering. As a practical application this 
laser was used in a single frequency operation mode to determine the resolving 
power and transmission function of a grating spectrograph [64].

The problem of a long life hollow cathode laser is not at all simple [29]. The 
efficiency of metal vapour lasers is higher than that of the noble gas mixture lasers, 
mainly due to the difference in excitation mechanisms. The metal vapour lasers 
are excited via a single step process [65], while the noble gas mixture lasers have 
a two step excitation mechanism. A disadvantage of metal vapours is the need 
of a high temperature to produce the metal vapour and it is difficult to reach a 
uniform vapour distribution. Noble gas mixture lasers can be operated at room 
temperatures, the active gas distribution is homogeneous. However, the amount of 
the active gas is limited and the laser is very sensitive to impurities. A practically 
unlimited amount of metal vapour can be produced by heating solid metal pieces 
and metal vapour lasers are much less sensitive to impurities due to these being 
absorbed in the deposited metal layers. The noble gas in metal vapour lasers is 
also absorbed here, however, which reduces the gas pressure. In cathode sputtering 
operated lasers gas clean-up and short-circuit between the electrodes, both caused 
by the sputtered metal are the main problems for a long life laser.

Our opinion is that both metal vapour and noble gas mixture systems are 
suitable for long life lasers intended for practical uses. However, in both cases a 
large amount of research and development work is still needed to reach this goal.
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5. S in g le  freq u en cy  o p e r a tio n

5.1. Basic considerations

It is well known that cw visible gas lasers operate usually in several axial 
modes simultaneously, the frequency difference of which being determined by the 
resonator length L {Avmo<ie =  c/2I), and the number of oscillating modes by the 
Doppler width of the gain curve, which amounts typically to 1-4 GHz. Doppler 
broadening is called inhomogeneous, because atoms with different velocities can 
interact with light waves of different frequencies. In a gas laser, however, the energy 
of radiation in one particular oscillating mode with a given frequency comes from 
a larger group of atoms having slightly different velocities, because their resonant 
frequencies are broadened due to the finite lifetimes of the participating energy 
levels. This broadening which is characterized by the radiative (natural) linewidth 
Avn is called homogeneous. The homogeneous linewidth can be affected by other 
effects, e.g. by collisions with other atoms. This effect may be important at higher 
pressures. In most cases, for cw visible gas lasers, Ai/n <C A vd and also A vn < 
Ai'modei resulting in multimode operation.

In many applications, however, single frequency operation is of great impor­
tance. For the selection of a single mode, there are several well-known methods 
from which the most common are the application of a short resonator length or 
the insertion of a frequency selective optical element like a Fabry-Perot etalon into 
the resonator. In the first case, however, the power available will be low, while 
in the second one there are extra costs and a significant part of the multimode 
power is lost.

A very attractive way to achieve single mode operation is the homogenisation 
of the gain curve by increasing the filling gas pressure. If the collision broadened 
natural linewidth Avc is significantly larger than Almodé and if it becomes com­
parable to A vd , then the mode with the highest gain will saturate the whole gain 
curve preventing the oscillation of all other modes. The main problem is here, 
however, that for most visible cw gas lasers, excited in the positive column of a 
discharge, the optimum gas pressure is much lower than that is needed for gain sat­
uration, and therefore at the applied high pressure the output power again becomes 
too low.

This effect can be easily demonstrated with the red 632.8 nm He-Ne laser. 
A small standard He-Ne laser (L ~  40 cm, p ~  4.5 mbar, output power ~  5 mW) 
oscillates commonly in three axial modes (Almodé «  400 MHz). Increasing the 
pressure to 9 mbar only one mode will oscillate, but the power drops below 2 mW.

5.2. Single mode hollow cathode lasers

The situation is much better in the case of hollow cathode excitation, because 
optimum gas pressures here proved to be significantly higher than those in positive 
column discharges. Therefore single frequency operation can be achieved at the
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optimum laser conditions, even with large resonator lengths and without any optical 
mode selection technique. (The only problem, which can arise here is the transversal 
mode selection; the TEMoo mode can be selected either by applying an appropriate 
narrow bore cathode geometry or by inserting an additional diaphragm into the 
light path.)

The advantage of hollow cathode excitation in achieving single frequency op­
eration without power loss was demonstrated for hollow cathode red He-Ne lasers 
by Cartaleva et al [66]. Pure single mode operation was achieved at рне = 9 mbar, 
just at the optimum He pressure for the given cathode geometry.

As another example, the blue hollow cathode He-Кг laser can be mentioned. 
It was shown that this laser oscillated — above 20 mbar — always in a single 
axial mode [58]. With a tube of 40 cm active length at optimum conditions 
(PHe ~  40 mbar, I  = 4.5 A) 12 mW single frequency output could be achieved 
[67]. The linewidth was less than 10 MHz during the 10 ms measuring time. By 
changing the resonator length (L = 1 m) the single mode frequency could be tuned 
in a frequency range of 450 MHz which is three times larger than the axial mode 
separation (Almodé ~  144 MHz). During the tuning, the laser power remained 
practically constant showing that the condition Auc Ai'mode is fulfilled indeed 
[67]. Similarly, single mode operation was also demonstrated in the hollow cathode 
Не-Аг+ Л = 476.5 nm laser [53].

5.3. Linewidth studies

To obtain a more clear picture on the processes involved and to obtain data on 
Ai/C and A I'd, linewidth measurements have been carried out [68,69] at several Kr+ 
and Ar+ lines, excited in a hollow cathode discharge using Fabry-Perot technique. 
The spontaneous lineshapes were measured under conditions similar to those used 
in cw hollow cathode lasers. From the experimental data first the collisional and 
Doppler linewidths (Ai/e and Ai/p) were determined by deconvolution, and then 
from these linewidths collision broadening constants (a) and Doppler temperatures 
(TD) were calculated.

Some of the results for two laser lines (Kr+ 469.4 nm and Ar+ 476.5 nm) 
and for two non-laser lines (Kr+ 473.9 nm and Ar+ 480.6 nm) are presented in 
Table IV. Zero pressure linewidth data (Ai'o) are taken from the literature and 
partly are calculated from level lifetimes. It has to be noted here that the upper 
levels of the two non-laser lines are supposed to be excited by electron impact, while 
the laser lines are excited mainly by second kind collisions of 23S He atoms with 
ground state ions.

From the results presented in Table IV, the following conclusions can be 
drawn:

1. In hollow cathode lasers, both laser transitions have large homogeneous 
linewidths compared to the typical axial mode separations and they are comparable 
to the Doppler linewidths. They differ, however, in their origin significantly. For 
Kr+ 469.4 nm there is a small natural linewidth and a large pressure broadening
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T able IV

Ion  K r+  A r+

A (nm ) 469.4 473.9 476.5 480.6
A I'D (MHz) 43±3 200±50 500±50 23±6
Aisc (MHz) 560 500 620 170
A i/д  (MHz) 1330 1160 1990 1980
a  (M H z/m bar) 23 12 5 6
T d  (K) 710 545 780 785
E rrors: A i/C a n d  Д к д  : ± 50  M Hz;

a  : ± 1  M H z (K r+ ), ± 3  M H z (A r+ )

constant, while for Ar+ 476.5 nm the situation is opposite: natural linewidth is 
larger, and pressure broadening is small.

2. The Doppler temperatures differ significantly for the two Kr+ lines. This 
difference can be explained by the specific excitation mechanisms of the lines. Ac­
cording to (1) at the second kind collision excitation of the upper level of the Kr+
469.4 nm transition there is an excess energy (AE — 0.35 eV), which has to be 
taken away by the colliding partners as kinetic energy. A simple calculation shows 
that this energy can cause a temperature rise of about 200 К for this group of Kr 
ions. The observed 160 К difference between the two To values is not far from this 
value. On the other side, at the excitation of the upper level of the Kr+ 473.9 nm 
transition by electron impact no temperature change is expected. Thus the observed 
higher Doppler temperature for the Kr+ 469.4 nm line gives a further support to 
the validity of the excitation mechanism for this laser transition. Furthermore, the 
Doppler temperature of the Kr+ 473.9 nm line can be accepted as the average gas 
temperature. This assumption is supported by the fact that Тд deduced from the 
deconvolution of the He 501.6 nm line gave nearly the same value [Тд (He 501.6 nm) 
= (563 ±50) K] [69].

3. The Тд values of the two argon lines are practically equal. According to 
the excitation mechanisms just this result was expected because at the excitation of 
the upper level of the Ar+ 476.5 nm laser transition by second kind collisions with 
23S He atoms a nearly exact energy resonance exists, A E  — —0.05 eV, therefore no 
temperature change should occur due to the collision process.

4. The Тд values of both Ar+ lines are 260 К higher than the average gas 
temperature, as accepted before (Section 2). The origin of this excess Ar ion tem­
perature is not clear. One possible explanation might be that in the production of 
ground state Ar ions not only high energy electrons, but also excited Hej molecules 
take part. Namely it was shown that non-resonant charge transfer collisions between 
ground state Ar atoms and excited He* molecules, which are present in a large con­
centration in the high pressure hollow cathode discharge, have a large cross-section 
[70]. At this type of collision about 2.5-4.5 eV kinetic energy is taken away by the 
colliding partners [71], which could be responsible for the observed temperature rise 
of the Ar ions. Further studies are needed to support this assumption.
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6 . S u m m ary

In this paper the properties of noble gas mixture hollow cathode lasers have 
been dealt with. The basic properties of hollow cathode discharges and construction 
principles for discharge tubes have been discussed. Laser transitions, excitation 
mechanisms, relations between laser output power and discharge parameters were 
described in detail. Some experiments aiming on the development of a practical 
Не-Kr laser and the question of single mode operation have been also discussed.
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BOOK REVIEW

Nonlinear Superconductive E lectronics and Josephson Devices
G. C o stab ile , S. P agano , N. F . Pedersen  an d  M . R usso (eds) P len u m  P ress , New Y ork, 1991

T h e  b asic  phenom enon of th e  Josephson’s effect is represen ted  by  th e  tunneling  of e lectronic 
pa irs b e tw een  two superconductors th rough  a  non-superconducting  layer. O n th e  one h a n d , th is 
phenom enon  h as  an  ex trao rd in a ry  im portance  fro m  th e  p o in t of view of fu n d am en ta l re sea rch  and , 
on  th e  o th e r  h an d , i t  is very im p o rta n t from  th e  p o in t of view of th e  techn ica l a p p lica tio n  a n d  
m easuring  technique. B o th  of these  argum ents w ere significantly in creased  a fte r th e  a p p ea ran ce  
of h ig h -tem p era tu re  superconductors.

T h e  b o o k  reviewed h ere  is devoted  to  th e  m a in  problem s of th e  su p erconducting  electronics 
based  m o stly  on  th e  Josephson  effect. I t  consists o f th e  lectures p re sen te d  in  th e  w orkshop h e ld  
in  C apri, S ep tem ber 3 -7 , 1990, u n d e r  the  auspices o f th e  NATO an d  th e  CNR.

A very  fast developm ent in  th e  field of superconducting  electronics can  b e  observed  a n d  
even a n u m b e r of com m ercial devices s ta r t  to  use  superconducting  com ponents b o th  in  ana lo g  a n d  
d ig ita l c ircu its . T he p ap ers  o f th is  bo o k  cover m an y  recent achievem ents concerning th e  theo ry  
a n d  p rac tice  o f Josephson’s effect based  fine, qu ick  a n d  low-power electronics.

A m ong  th em  th e  im pressive  Japanese  re su lts  in  developing very fa s t su p erconducting  cir­
cu itry  (32 000 ju n c tio n  4 b i t  Jo sephson’s p rocesso r an d  progress on  Jo sep h so n ’s co m p u te r) are  
rep o rted  in  th e  article  of S. T akada.

As th e  exam ples of an alo g  app lication  a new  Josephson’s voltage s ta n d a rd  (a 14 000 ju n c ­
tio n  10 Volt chip) was p re sen te d  by  J. N iem eyer e t al, while D. A ndreone  e t al re p o rte d  th e  
b iharm onic  ju n c tio n ’s drive a n d  H. G. M eyer e t a l th e  ex ternal sy nchron iza tion  in  Jo sep h so n ’s 
arrays, respectively . R . B lundell e t a l an d  D. W in k le r et a l were d ealin g  w ith  th e  g re a t devel­
opm ent o f superconducting  m ix ers based  on su p erco n d u c to r-in su la to i^ su p erco n d u c to r ju n c tio n s, 
which are  u n iq u e  for h ighly  sensitive  m illim eter-w ave receivers hav ing  noise levels dow n to  th e  
q u an tu m  lim it. T he u p -to -d a te  p rob lem s of SQ uID -s of ex trem e sen sitiv ity  a n d  h igh-T c SQ uID - 
s in  m easu rin g  technique were d iscussed  in  th e  p a p e rs  of M. B. K etchen , V. Fog lia tti e t a l a n d  
G. J . Cui e t a l. Questions of th e  o p e ra tio n  of su p erconducting  electronics a re  covered in  th e  p a p ers  
of A. B arone e t al (nuclear p a r tic le  detection ), J . B . G reen  (fast analog signal processing), Y . Zang 
(flux flow ty p e  Josephson’s oscillator) an d  A. A ndreone  e t al ( th in  film  su p erconducting  cav ities).

N um erous papers of th e  b o o k  deal w ith  different resu lts  of fu n d am en ta l research  of th is 
field, e.g. n o ise  in  Josephson’s ju n c tio n s  (J. B. H an sen ), sw itching d y n am ics in  th e  p resence  of 
q u an tu m  flu c tu a tio n s (P. S ilvestrin i), u ltra -sm all ju n c tio n s (T . C laeson e t a l an d  S. A. H a tte l  et 
al) an d  q u a n tu m  sim ulation  of Jo sephson’s ju n c tio n s  (A. D avidson e t a l).

A g re a t p a r t  of a rtic les in  th is book was d evo ted  to  th e  s tu d y  of non-linear effects in  
Josephson’s ju n c tio n s. A m ong o th ers , th e  in te rac tio n  betw een solitons a n d  e lectrom agnetic  field 
(G . F ila tre lla  e t al), m icrowave bo u n d ary  coupling  (M. Salerno e t a l) , strong ly  coupled  ju n c ­
tions in  m ic ro s trip  reso n ato rs (H. D. Jensen e t a l), Josephson’s tran sm iss io n  lines coupling  
(M. C irillo), p h ase  locking in  series a rrays (W . K rech  an d  H. G. M eyer), solitons in  in h o m o ­
geneous long  ju n ctio n s (A. V. U stionov), fluxon dynam ics (T . Skiniotis e t a l) , im aging  of sp a ­
tia l s tru c tu re s  (T . D oderer), c ritica l cu rren t in  lo n g  ju n ctio n s (S. P ag an o  e t a l) , m agnetic  tu n in g
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(T . H olst a n d  J. B . H ansen), tu rb u len ce  a n d  chaos in  Josep h so n ’s ju n c tio n s  (L. E . Q uerrero  a n d  
M. O ctavio) a n d  new  solu tions o f sine-G ordon  system  were analyzed.

As fa r  as th e  b asic  questions o f h igh-T c su p erconducto rs are concerned, som e s tru c tu ra l a n d  
in trin sic  a sp ec ts  o f  th is  sub ject have  b e e n  investiga ted  in  th is  book , nam ely  th e  vortex  p ro p ag atio n  
in  g ran u la r th in  film s (G . A. O vsyannikov e t id) an d  th e  no n -lin ear p ro p e rtie s  of BCS gap eq u atio n  
a n d  b ifu rca tio n s (M . P. Soerensen).

Sum m ariz ing  very briefly th e  su b je c t p resen ted  in d ica tes  th e  s ta te m en t th a t  su perconduct­
ing  electronics h a s  reach ed  th e  level above th e  fu n d am en ta l research  to  p re p a re  th e  way for useful 
app lications.

I. K irachner
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