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Port Harcourt, Nigeria

(Received 10 September 1992)

The flow of blood during deep heat muscle treatment is studied. We model the blood
vessel as a long tube of circular section whose radius varied slowly. Under the Boussinesq
approximation, we seek asymptotic series expansions for the velocity components, tempera-
ture and pressure about a small parameter, e, characterizing the radius variation. The study
reveals mathematically why physiciansrecommend a hot bath for cuts and physiotherapists
use ice packs for bruises.

1. Introduction

The principle question around which the study of physiological fluid dynamics
is centered concerns the range of validity of the assumptions of the Newtonian
nature of blood in large blood vessels. In a previous analysis, Bestman [1] studied
the unsteady low Reynolds number flow in a heated tube of slowly varying section.
In that analysis the effect of forced and free convection heat transfer on flow in an
axisymmetric tube whose radius varied slowly in the axial direction was addressed.

The temperature of the body, that is the temperature in the interior, called
the core temperature is fairly well regulated, normally varying from the mean by
not more that 1 °C. Hence the walls of the blood vessels which travel deep inside
the body will not show much variation in temperature.

On the other hand, the surface temperature of the body rises and falls with
the temperature of the surroundings, within a certain limit. In such a case, the wall
temperature of the blood vessels which start from the core and travel to the surface
will exhibit variation with axial distance. Examples of such blood vessels abound

"Permanent address: Department of Physics. R/S University of Science and Technology,
Port Harcourt, Nigeria.
ARegretfully, Professor A. R. Bestman passed away before the publication of this report.

Acta Physica Hungarica 73, 1993
Akadémiai Kiad6, Budapest



4 A. OGULU and A. R. BESTMAN

but one which readily conies to mind is the subclavian artery which branches from
the aorta and bifurcates further into the brachial artery that subsequently travels
to the near surface of the body. In this study, Bestman [1] incorporated a heat
source/sink term to simulate abnormalities of body temperature regulation in a
pathological situation.

In this study we want to look at the behaviour of blood and blood vessels
during deep heat treatment in which thermal radiation is prevalent. Here we assume
blood to be a constant viscosity fluid and the differential approximation for the
radiative heat transfer for an optically thin medium. In a later study we hope to
consider the case of a variable viscosity fluid.

The problem is formulated in Section 2 and the leading approximations and
solutions are presented in Section 3. Higher approximations are obtained in Sec-
tion 4. Quantitative results and discussion are given in Section 5.

2. Formulation

The flow of blood in blood vessels during deep heat muscle treatment is gov-
erned by the equations of continuity, momentum and energy which can be written
in cylindrical polar coordinates (r',0, z') with velocity components (u', v',w").

We consider viscous flow with heat source term ¢ in a heated long tube of
circular section whose radius varies slowly as

r=as(S")" 21)

s is an arbitrary function and prime denotes dimensional quantities.

Assume Boussinesq approximation is valid, so that if p designates fluid den-
sity, and subscript oo denotes a reference density then the equation of state for a
Boussinesq fluid, Bestman [2] is

Poo - P = PooR{T - Too), (2.2)
where [ is the coefficient of volume expansion. Let p designate the fluid viscosity,
K the thermal conductivity and cp the specific heat at constant pressure.

Generally, the radiative flux satisfies the differential equation, Cheng [3]
V70R - - 16mrT3VT = 0, (2.3)
where a is the absorption coefficient and < is the Stefan-Boltzmann constant. We
only consider the optically thin limit of Eg. (2.3) since blood can be regarded as an

optically thin medium (a ... 1). Bestman [4] showed that the optically thin limit of
Eq. (2.3) in suitable non-dimensional variables is

% = - ). (24)

Acta Phytica Hungarica 73, 1993



DEEP HEAT MUSCLE TREATMENT |1 5

Hence the governing non-dimensional equations of continuity, momentum and en-
ergy incorporating the radiative flux term can be written as

1 ldv
ra

) (ru) + —3%+ C& —0.

du V@+M_2+Wdu\ dp d(1d. n
ap r dl) ~~d” +e[d*\rdi(ru7

1d2u 2dv
r2d2g r2do dz2

Re* (

—Gr(9 —1) cos

0 du vdu w2 | dv 1dp \d d, n
R\ ar rap T T HYE +
1dzv 2dud” ,d2v Gr (0 —Dsin<A
r2dp2 "I F(O —Dsin<?,
n2( dw wndw dw\ dpld ( dw\ 1 d2w nd2w

Re [V + ragb+w~d)~ Coéi+roP V J+ 7BW +f Tz2

de Voe de\ 1a t ae\ 1492
"r C\ dr + rdp+ Wdz) ~rdr V dr) +r2dg2+

,82020 3 4

+e d"~ ARa{e ~ 1¥ (2:5a,b,¢,de)
subject to the boundary conditions
Uu=Q=v=w-~B on r—s(),
u,v,w,e<oo on r=0. (2.6)
We have introduced the following non-dimensional quantities

r ez- o (uview) no Voo p
r=—,z=—,...(tii5td) = -, 2.7
uo a0 ( ) ft-g—o i oo " ~Poo @0

,_(p'-Poo)ao A gRTOAl r> Uooad n _ pcp. D _ 16<ma0TE

P PU® aug C Ty T it =
subsequently r = (3fa)" * &

(o is a typical axial velocity, R is the Reynolds number of flow, Gr is the

free convection parameter (Grashof number), Pr is the Prandtl number, p is the

kinematic viscosity, g is gravity, Rais the radiation parameter, B is the temperature,
and ao is a characteristic radius. Also

d 1d 1 d2

Ve dr2” rdr A r2di2
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6 A. OGULU and A. R. BESTMAN

Combining (2.5b,c) we get

Equation (2.8) will be useful in subsequent analysis.
The mathematical statement of the problem simply put is a solution of Eqs
(2.5a,d,e) and (2.8) subject to (2.6).

3. Leading approximations and solutions

The problem formulated in the previous Section is non-linear and coupled
and not readily amenable to closed form analytical treatment. We therefore adopt
an asymptotic analysis similar to that in Bestman [4] by expanding the velocity
components and temperature in the form

u=u® M4 . ... etc., (3.1a)

while the pressure is expanded as
=100,
PEE o 137 7 Wit A . (3.1b)

Substituting (3.1) into Eqgs (2.5a,d,e) and (2.8) we find that for the leading approx-
imation
10v(®

r 04
8 18 [ dw®\
T 0z +;5;(r 61‘)_0’
920 166° 3

0)4 =
e aalli e = 0,

(0) (0)
v?2 {%(;ir(rv(o)) & ',lfa;¢ } G agr sin¢g = 0. (3.2a,b,c,d)

The method of solution of (3.2) has been described elsewhere. See for instance
Ogulu [5]. The results are

10
= L2 resi0)
rar(”‘ )+

w® = %(rz - sz),

4 6
V© = _B(z) - gA(z)rz % e {5“” Jo } ,

96 s 288
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6

U471
" 288 }
‘W«M +(t-0",+(s -5)"4
(3.3a,b,c,d)
where a is the real positive root of the quartic equation
dw = a(z) + R-Y + O(RI) (34

obtained on imposition of the boundary condition on (3.3). In our solutions, since
Rais small we have neglected terms containing squares or products of Ra. Subscript
w indicates conditions at the wall. A(z) and B(z) are arbitrary functions of 2 given
by

f U234 t 3a4541

A(z) = GrRI
(@) =GRl c1oRa+ 64

and

B« =-3C'A-{5w :+7TWw}-
Also K is the constant pressure at the left ventricle of the heart in a healthy person.

4. Higher approximations
The governing equations for the next approximation are

iL d (rum) + lél/l)+ 9W: 0,
or r

o 0z
o @dwE) . (O)dwW\ dpW 1/ dwh 1
A hd9 dr Fll dz )  r\ dr 12 &2 /

t/°) Ot/0) r/OM 0) (0)duw \

r dp r Wdz)_

a Ot/0)  t/°) Ot/0)  t/°)*
rop dr > dz J.
~2 (1d. 16t/1)) ffdOW . 1dOW \\
=v + *+2?2"er@V/

o0 L sH#Y 1dNo - 1a2y)

dz J° Tdrf2 T rTdr A 12 dp?
-4, a0(030(1)- (4.1a,b,c,d)

R.Pr [«<») dr + 10(
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8 A. OGULU and A. R. BESTMAN
The boundary conditions are

u® = o) =0. = wM =61 on r=s(2). (4.2)

We seek a separable solution for ©(1) of the sort

o0 = ©{(r, 2) + ©(r, z) cos ¢ (4.3)

then substituting for u(®), w(®) and 6(% in (4.1d) coupled with (4.3), we obtain
equations for 9(11) and 6(21) from which on rejection of unbounded functions we can
deduce that

and

o) = D(z)I (ar) + arr + £(r), (4.4a,b)
where H(z) and D(z) are arbitrary functions, I,(ar) is Bessel function of order

n and a = 2Ré a¥.K, will be used to denote Bessel function of the second kind
subsequently. Also

al

4

az; =

o -

and

a; = 2RP,RaagB(z),

and the constants H(z) and D(z) are obtained on imposition of the boundary
condition 951) =0 on r = 5(z). They are

1 da k s* it da; _ K s?
il balh 3 {zz: (” ;) = x’ﬂ?:}

L APLET f(s)
Li(as) IL(as)

The other functions and constants are as defined in Ogulu [5].
To obtain the axial velocity we write (4.1b) as

dw(® ow(® dpV 108 [ 6w 1 82w
(0) (0) =uits SRR e e
# (u B Ty ) iy Pl (r ar > + = 092 - S

and

D(z):=

We seek a separable solution for w(1), of the sort
w® = w{M(r, 2) + v cos ¢. (4.6)

Acta Physica Hungarica 78, 1998



DEEP HEAT MUSCLE TREATMENT I 9

We put
> = i/(°) costh 4.7

Substitute (4.6) and (4.7) in (4.5) and after some algebra we obtain

(1)

uijin= R K 2(As3szr2 — sszr4 — 3s5sz) + (r2 —s2)
and
W) PM P> L AS MS(2)r3 N(r)4,.r4 (3.021;r« Nn3r8]n
B 4 > -+ — P (— g— + " 160 ~ Cr\* 8965-+ T35087)"

(4.8a,b)
where E(z) is an arbitrary function given by

F-\ _ p(Dzs.. . KR(/BREHS2, W(IRE3 r [ 3.a2iRASS , a4RI°7) ~
U 9 "V 8 + 160 r\ 8960 + 43008 })

and )
Sz - g:r and p(][)>= dglzl)

We continue the solution of Eq. (4.1). We seek separable solutions for 6M\
u(l) yil) and w”\ of the sort

0(i) _ 0~ (r, Z)y+ ©2~(r, z) COS ®,

i/1) = UAfr, z) + u[1(r, z) costh+ U”"\r, z) cos 2dy
t/D) = v/IN(r, z) S>>+ VjINriz)sin 27,

u/l) = uijir+ cos h (4.9a,b,c,d)
Substituting (4.9b,d) in (4.1a) we obtain

from which we can deduce that

W =1 - i3 +330) ~F & ++)-

G- 2 u PiV/Sr 3\ pm™
- g-K+ +  — (-j--tJ- ~rssr- (4-19)
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10 A. OGULU and A. R. BESTMAN

The boundary condition on Uy (©) gives

p(l)s 4 4p(1)szs,Z +

RK?
1 (2363” + 143533) —li}

which is reminiscent of Reynold’s equation in lubrication theory. We integrate the
Reynold’s equation to obtain

(1) L RK234
& 12

and

(1) RKzsas,

R S
As observed in Bestman [1], to terms of order ¢, the free convection currents have
no effect on the pressure distribution.

We continue the solution of Eq. (4.1). Assume G, > R then (4.1c) becomes

A law(l) % kg 4 2 19601
r O0¢ 3 r 8¢

}cosqS =0 (4.11)
We substitute (4.9) in (4.1a) and (4.11) to obtain, respectively,

dw)

108 Sner i L g
= TN LA e

and

-_( v“))+ UM = T(2)r—
3 5 2 3
G, RP, {H( )Il(m) ?Iig e %%"—’RGE (;—2 s STT)} :
i B (4.12a,b)

We proceed to solve (4.12a,b) simultaneously. The results are

(1) 2 (1) 2
Ul(l) =X(2) - o) r? + Ll -+- ——ss,T + {534331' +s%s,,r+
8 6 3 4
ar’ ss” H(z)1(ar) 1 da, , ldaxR, r®  &Pr
& i -G, RF, {——azr “Sia . e (ﬁ v 19—2)}

and

oy ey
Vl( -X(2) + T(z)r - gp(l)s“r - 1’; (s%r — 3r%)—
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DEEP HEAT MUSCLE TREATMENT I 11

- "1\5"—{4r353szz + 12r3s2s2 - 3s5szzr + 5s4s2r + 20szzr - |75 2-
0
- bssztr*) + GTRPr | M (JO0(ar) + 72(ar))- (4.13a,b)

~h{iK+w A 6+4 sV))}

On application of the no-slip boundary condition we obtain the constants T(z) and
X(z) as

4 2 . 10 RK2f . ™ A
T(2) =jjPzVs - -jp*’ + “Nr (s s“ + n 2+20 - dcrnpr-
_ H(z)h(as) 1 da2_ K 307 da
(10(as) + 12(as) 224 dz R* 3" ~ 20128 T2
X{z) = -*p(1s2sz- p{\](y - + BI&% 0 s 2+ 208.3s5s2 + 0.9s6577) -

-GTPrR (II" I\él (/0(ar) + 72(ar)) + ‘Aa E 1(as)-
161 daZIL K 6 12661 da )
28224 dz " a®  ass17124dz "V

where plvV = A A
Next we substitute Eqg. (4.9) in (4.11a) and (4.11) to obtain

E<<>A" 0
and

| g TR+ -uil) rI _V> (4.14a,b)

where

2 2 1 % 4\
- (O™ 10/- N I
After some algebra Eq. (4.14b) becomes

()

1.d 2U.
zridzr(yr Vaur o= A(z)r2+ C{r,2). (4.15)
We now solve Eqgs (4.14a) and (4.15) simultaneously. The results are
unr = B(z)r+’\1—5A(z)r3+ Y(r,z)

and
Al = -B(z)r - —A(z)r3+ H,

where 77= — X and Y(r, z) = —2f C(r, z)dr. The higher approximate solutions
are now complete.

Acta Phystca Hungarica 73, 1993



12 A. OGULU and A. R. BESTMAN

Fig. 1. Velocity profiles for flow in a tube of slowly varying radius. Ra=0.1,0.5;z = 1

5. Discussion of results

We have formulated and solved approximately expressions for the velocity
components, pressure and temperature for flow in a heated tube of slowly varying
section. From the viewpoint of deep heat muscle treatment, physiotherapy, we
are interested mainly in the temperature distribution and the axial velocity profile
because the axial velocity component is responsible for convection of nutrients to
various parts of the body.

The expansions for the temperature and velocity are given as

B = 0(°\r,z) + e6(l\r,<f>2)...

and
w = z) + cw()(r,4>,2) + eome

c is a small parameter, for simplicity, in this analysis we take t —0.001. For the

Acia Phytica Hungariai 73, 1993



DEEP HEAT MUSCLE TREATMENT 1 13

Fig. 2. Temperature distribution for flow in a tube of slowly varying radius. Ra —0.1,0.2,0.5;

r=10n=2

higher approximate solution for the temperature and velocity, we have
0(i) _ 07 (r, z)+ 0j7(r, 2). cos

and
u/l)=wn(r,z) + «"(r, z).cosa.

In the discussion of the velocity and temperature distributions and in Figs 1, 2
and 3 the value of ¢ is taken as zero. Other values of & show insignificant change in
the presentation. Without loss of generality we take & = only. For the velocity
we consider only the first two terms of the expansion.

We solve the quartic equation (3.4) for ‘a’ for different values of the radiation
parameter, Ra, to obtain the temperature distribution. For the axial velocity we
take typical values of the various parameters in the equations for w  and u/1) for
blood. The constant pressure in the left ventricle of the heart, K, we take as —,

Acta Physica Hungarica 73, 1993



14 A. OGULU and A. R. BESTMAN

Fig. 3. Temperature distribution for flow in a tube of slowly varying radius. Ra = 0.1,0.2,0.5;
z=2

Reynolds number for blood as 40, Grashof number as 0.5 and Prandtl number as
25. These values are actually given in the literature, see for instance, Bestman [Z].
Numerical discussion shall be considered only for a locally dilating tube of
the form
s = ez,

where z = 0 is taken as the inlet of the aorta.

Figures 2 and 3 show the temperature distribution for three different values
of the radiation parameter at z = 1,2. There is symmetry along the axis of the
tube, that isat r = 0. A close look at Figs 2 and 3 suggests that the temperature
decreases away from the walls of the blood vessel. This is not surprising since in
addition to the heat source, extra heating results from friction between the blood
vessel and the blood. This arises as a result of the increased blood flow. This
increased blood flow is the reason why physicians use a hot water bottle in areas
of suspected thrombus formation because increased blood flow is associated with
increased supply of oxygen, nutrients and leucocytes which aid recovery. A well

Acta Physica Hungarica 73, 1993



DEEP HEAT MUSCLE TREATMENT 1 15

oxygenated muscle heals a lot faster than a poorly oxygenated one. Leucocytes are
the body scavengers, they eat up bacteria and germs which is why a good supply of
them means a torn ligament will heal much more quickly for a patient undergoing
physiotherapy.

Heat is actually a stimulus and the human body will react to any external
stimulus. The external stimulus in this case is applied so that the body defense
mechanism is activated in a positive manner. Blood supply to the diseased part of
the body is increased during physiotherapy as shown in Fig. 1 Also from Fig. 1,
it is obvious that once flow is set, further increase in the radiation parameter does
not result in increased blood velocity.

As we all know, platelets aid blood clotting so an increase in blood velocity
means more platelets would be available so that blood clots easily in cuts. If a boxer
has a cut in the ring or a footballer has a knock in the field of play, the first line of
treatment is the use of an ice pack. This is heat treatment except the heat in this
case is negative heat (cold). This brings about the constriction of the blood vessels
and the reduction of blood supply to the affected part, and of course, of oedema.

Hours later after the onset of oedema the second line of treatment follows;
this time positive heat is applied to increase the blood supply to the affected area
with the resultant increase in oxygen and nutrient supply.
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Nomenclature

X! dimensional temperature

r dimensional radial coordinate

X' dimensional axial coordinate
u',v',w' dimensional velocity components
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16 A. OGULU and A. R. BESTMAN

c a small parameter

s an arbitrary function

p fluid density

p kinematic viscosity

K thermal conductivity

B coefficient of volume expansion
Cp specific heat at constant pressure
00 denotes reference condition

a absorption coefficient

<€ Stefan-Boltzmann constant

r radial coordinate

z axial coordinate

v} azimuthal coordinate

u,v,w velocity components
Ra radiation parameter
Pr Prandtl number
R Reynolds number
Gr Grashof number
p pressure
Uoo typical axial velocity
ao characteristic radius
, leading component of the velocity vector
p(°) leading component of the pressure
p™) perturbed pressure gradient
K applied pressure gradient
In Bessel function of the 1st kind of order n
kn Bessel function of the 2nd kind of order n
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(Received 10 September 1992)

The effect of viscosity variation on the flow of blood during deep heat muscle treat-
ment is studied. Two methods: an asymptotic series expansion technique and a pertur-
bation technique are employed to obtain the temperature distribution. The results are
compared with the problem of Part I. A novel development in this part of the study is the
combined asymptotic patching and matching technique.

1. Introduction

In the first Part of the study we looked at the differential approximation for
radiation with radiative heat transfer as applied to a fluid with constant viscosity
and thermal conductivity. Some workers in this field (Pedley [1]) feel that the
velocity profiles in large arteries are approximately flat, suggesting that the effect
of viscosity is confined to thin boundary layers on the walls of the blood vessel.

Whole blood cannot be regarded as a homogeneous fluid in the smallest blood
vessels because the diameters and spacing of red cells are comparable with capillary
diameters, and some workers (Rowan [2]) feel that the viscosity of blood varies
considerably. In this Part of our study therefore we want to look at the effect
variation in viscosity would have on the velocity and temperature profiles.

The approach used in this Part of the study is again the differential approx-
imation for radiation with radiative heat transfer with the viscosity and thermal
conductivity assumed to vary with temperature. Also account is taken of conduc-
tive as well as convective heat transfer. The governing equations are presented in
Section 2. Since these equations are non-linear asymptotic solutions are developed
for them in Section 3. Section 4 is devoted to the qualitative discussion of the
results.

“Permanent address: Department of Physics, R/S University of Science and Technology,
Port Harcourt, Nigeria.
**Regretfully, Professor A. R. Bestman passed away before the publication of this report.
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18 A. OGULU and A. R. BESTMAN

2. Formulation of the problem

The problem is formulated and non-dimensionalised as in Ogulu and Best-
man [3] except that here the viscosity is varied with the temperature; so the non-
dimensional equations of continuity, momentum and energy, in cylindrical polar
coordinates (r,<>2) with velocity components (u,v,w), Byron et al [4 which we
propose here are:

+eGr (0 —1)cos th

bR P ] = e D BHT-
d fnn\ldv. u]\ 4 d (n)dv 16wlI\] &
I ap (2*[rab+ ) €Tz r rTz + F~d'|'\” m {8- 1l}smq
( dw  Vdw Vdw\ 26 (nndw\ dp d ( ,\dw 2d i
Re\udr + r~djr~d7) ~~e dz [207h )’ cTz+ dr (rl9 dr + E 5 JJ +

16 (. F2dv  1dw]\
+i«* ('['5 +i# ) (2,la,b,c.d,e)

Vdo do\ I d ( ,de\ I d (.de\

dd
RPTC glbxf+-r-)(§(£+wd2) rdr\ drl r2dCdeCb\]

We found it useful in the analysis to eliminate the pressure gradient between (2.1b
and c¢) and the result is

Acta Phyaica Hungarica 73, 1993



DEEP HEAT MUSCLE TREATMENT 11 19

[6ul\  I,/1,L/16u Al d ( \dw Gul\
+ra\) +re(rolr \rgp +r)\ ~1Yz V
n n
-Gr — (r[0- Lsind) + — ([©O- 1cosd (2.2)

All the various quantities in (2.1) and (2.2) either shown or unmentioned, have been
defined in Ogulu [5].
The problem has now been put in mathematical terms. The boundary con-
ditions are
n=Vv=0=w on r—s(2),

B=6W on r =s(2). (2.33,b)

3. Basic approximate solutions
The inherent non-linearity of Egs (2.1) and (2.2) makes solutions difficult
to obtain in a closed form. Solutions are therefore obtained by series asymptotic

expansions.
For the velocity components we write

n=t/°)(r,qpz) +et/H+ ... etc.
For the temperature and pressure we write
B=</°)r,z) + cBM\r, hz) + ...,
P=JP@O)(*) + PA(r>Rz) + oo, (31)

where eis a very small parameter. Substituting (3.1a,b,c,d,e) in (2.1a,d,e) and (2.2);
and collecting terms without e we obtain these basic approximations

1d. coi. 1<)

o™ )+ s (322
"dwW \ dpw
dr )~ dz ’ (3:20)
for \ ory - LRaO(MA- D=0, (3.20)
d o d /t/°)\ 16t/0)"
fivd %) rar\ YArd g )* (3.2d)

M S VIR S/ R 2N g & TR G Il A )
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d "ldvW  u(°>lyY ooy .
ot b ro) Grr dr singp= 0.

Let 10 be the externally applied pressure gradient, then the elementary solution
of Eqg. (3.2b) subject to the boundary condition u°) = Oon r = s(z), is

c jr fsfp C (3.3)

The basic approximate solution for the temperature is obtained from (3.2c)
employing both the series expansion method as in [3] and a perturbation method.
For the series expansion the solution is

8C) = [a(® + (a(,)4- 1) A fiarZé. (3.4)

a{z) is defined in [3].
For the perturbation method we first linearize (3.2c) to obtain

A2gn - lapn oo o

3.4a
from which we now get
*0) = to6 + ~a (r2-*2)]*, (3.5
whenn=QC=0and
o) = *O(§%(.) (3.6)
10 (|sY25)

when n = 1, C = 0. See Ogulu [5] for the method of solution. In(x) is a modified
Bessel function of the first kind of order n; OWis the temperature at the wall of the
blood vessel.

A plot of 0(°) against r based on Egs (3.5) and (3.6), (Figs 1 and 2) show
that there is no difference between do and ¢\ so we can confidently perturb d as
D+ V-

To obtain the small correction g we write

a2 = 'P+O\- (3.7)

On substitution of (3.4a) in (3.7) we can show that

|D-<p 1d e V! _
dc A-—C-:- - —2tihv= T — (3.8)
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Fig. 1. Temperature distribution based on Eqgs (3.5) and (3.6). Ra —0.1; =2,z=0;n=0
and n =1
Jo(0) is one (1), so = A(z) + 1 hence when ( is small we deduce that
MB{z) + I =B" 1o B* + 4. 0-9)

where B(z) is an arbitrary function of z. Consequently
V=A(2)I0(a0 + YZT" mB(z)I0(0[B(z) + 1]. (3.10)

A(z) is an arbitrary function of z and a = [2(B(z) + 1)]a.
For large £ we use the transformation in Abramowitz and Stegun [6] to reduce
the differential equation, whence we have

0.57- - ®& = 05[AR)70(C) + 1] (3.11)
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Fig. 2. Temperature distribution based on Eqs (3.5) and (3.6). Ra= 0.5,9W=2;z =0

An appeal to the WKB approximation, Bestman [7] would give the solution of
(3.11). We introduce the Green’s function G(C,C") such that

82G
05 " (C,C) - R(X)G(C,C) = -6(C - n ,
G(C,0 = 0= G(C~n).

£(z) is Dirac delta function.

In the determination of the Green’s function G(C*,C*) we retain only the
eikonal and transport terms; thus

Gi(c*,n = + g2(c*)g ",
GnO~OSC”Oexp sinh dtQ%{t)).
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The constants C\ and C: follow from the matching conditions

Gi(C*,0=Gi,(0,0

and

N g * A% dG —_ - —
fd &0 - 98n(f )= 5

while C3 is obtained in terms of Cs from the boundary condition ( = C# Hence
CI(0 =c4«),xp [-jjhjjT*o*(0o] [** "»*«)) -

/[Er ig¥ (i)sln'l( m C Jt9H,)) +200

(05)a Q-*(C)sinA 1 -J -~ j*dtQHL)J (0.5)iQTi (C*+

0.5)* . s
ghiOexp (0.5)b</ jiQeli) (3.12)

C2(C) = C4(C)exp
~(53)rFBgH H 4 (™ T JKr*()

(05)1
2#<r-*(n SMAC(Ti§T /T Nie*(<)) +(0.5)*Q-£(C), (3.13)

expl—gayy <« n <*(*)]

C3(CY = -C4(N (3.14)

exXP& ~ " J1 ~*(01

We have two solutions for our small correction <4 one when £ is small and the other
when a is large. The two solutions have to be patched.
For a small we have

V2.B[B(2) + 1J*

V=A(2)I0[2B(z) + :J + 1- 2(B(2) + 1) w -

(3.15)
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For large ( we have

%
o= /c G1(¢,¢*)(0.5) [B(2) Io(C*)[B(2) + 1]¢"H1d¢" +

Cun
+ [ (e GO BELEIBE) + 1 dc. (310

Abramowitz and Stegun [6] give the series expansion for Ij as

1
LQ)=1+7C+...,
hence the patching condition is

(1+ B(2))
> 57 g

Finally, for the u and v components of the velocity we put
u® = U(o)(r) cos ¢

and
v(0) = V(O)(r) sin ¢

in our leading equations (3.2a,d); the result is a fourth order linear differential
equation. An appeal to Newton—-Ralphson algorithm readily gives the solution to
these equations.

4. Discussion of results

In Part I we looked at the differential approximation for radiation with radia-
tive heat transfer for a fluid with constant viscosity. In this Part we are considering
a fluid with variable viscosity. In essence we want to look at the effect of variation of
viscosity on the velocity and temperature profiles. Here the viscosity is assumed to
vary with temperature. Since this is purely for comparison we have only considered
the basic approximate solutions for the pressure, velocity and temperature. This
would be enough to give a clue as to any difference between the assumption that
the viscosity of blood varies as the temperature is varied; and the assumption that
the viscosity of blood is constant during deep heat muscle treatment.

Figures 1 and 2 show the temperature profiles for the cases when n = 0,1
based on Eqgs (3.5) and (3.6) which compare favourably well with the temperature
profile for the constant viscosity fluid. (See Ogulu and Bestman [3].) Both these
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Fig. 3. Temperature distribution based on Eqs (3.5) and (3.6). Ra= 1, 0W= 2,z — 1, n =0
and n — 1

profiles are of the same order of magnitude which means the variation in the vis-
cosity has not affected the temperature distribution. This is in agreement with the
conclusion of Pedley [1].

If one accepts the fact that for a constant viscosity fluid once the flow is
set further increase in the radiation parameter is not accompanied by subsequent
increase in the velocity then the agreement between the two cases becomes even
more remarkable as depicted in Fig. 4.

In whole of this analysis we assume that the radiation parameter Rais small;
but as can be seen from Fig. 3, the analysis is valid even for radiation parameters
as large as one (1). This shows that our perturbation of the temperature is quite
accurate.
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Fig. 4. Velocity distribution for flow with variable viscosity based on Eq. (3.3) for n = 1,
Ra=05;z=1landn=1;Ra—0.1;2=1
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Nomenclature

e a small parameter

S an arbitrary function
r radial coordinate

z axial coordinate

o4} azimuthal coordinate
u,vtw velocity components
Ra radiation parameter
Pr Prandtl number

R Reynolds number
Gr Grashof number

p pressure

ao characteristic radius

u(®),tre) ()

leading component of the velocity vector
leading component of the pressure

p*1nr perturbed pressure gradient

K applied pressure gradient

In Bessel function of the 1st kind of order n
kn Bessel function of the 2nd kind of order n
P small correction

ow wall temperature

Gj,G\i Green’s function

Cl»2»C3,Ci constants

6 Dirac delta function
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CdS and CdS:Ag thin films were prepared using the spray pyrolysis technique. The
prepared films were deposited on glass substrate kept at a temperature of (420+10) °C. The
optical and electrical properties have been studied for CdS and CdS:Ag (0.1 —2.5) wt%.

The energy gaps were obtained as a function of doping concentration, which were
found to vary from (2.4 £ 0.01) to (2.21 £ 0.01) eV in the doping concentration range
(0—2.5) wt%. The electric conductivity was obtained from the I-V characteristics which was
measured along the plane of film using the gap method. The effect of dopant concentration
on electric conductivity is discussed.

All the measurements were carried out at room temperature.

Introduction

CdS has a direct band gap of 2.4 eV at room temperature (Gupta and
Agnihotri [1]) and it is a suitable material for application to windows of P-Si/n-CdS
type heterojunction solar cells (Couzza et al [2]), photoconductor devices (Amal-
nerkar et al [3]) as well as in photovoltaic devices (Mitchell et al [4]). Studies
have been made on CdS thin films prepared by various methods such as sputtering
(Yang and Im [5]), sintering (Gupta et al [6]), chemical vapour deposition (Partain
et al [7]) evaporation (Norian and Edington [8]) and spray pyrolysis method (Kim
and Park [9]). Various dopants have been tried according to the films applications
(Nakayama [10], Shinkalgar and Pawar [11], Lokhande and Pawar [12], Kim and
Park [9]). However, as far as the authors know no work has been published to date
on the optical and electrical properties of sprayed CdS:Ag.

In the present study, CdS and Ag-doped CdS films were prepared by the spray
pyrolysis method which is known to be a simple and low-cost process. The optical
absorption and electric conductivity have been studied and discussed.

Experimental details

The cadmium sulphide films were prepared by pyrolytic decomposition of
CdCb and thiourea. Solution of CdS with (0.5) M concentration has been prepared
by dissolving (1.023) gm of CdClI2 and (0.5271) gm of (NH2)2CdS of the compound
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in (100) ml deionized water of each. The ratio of Cd:S in the sprayed solution
was 1:1.

Silver-doped films were prepared by adding different weight percentage (0.1 —
2.5) wt% of Ag by dissolving a proper amount of AgCl in deionized water and added
to the solution. The obtained solution is immediately sprayed with the help of a
double nozzle sprayer onto (420+10) °C heated substrate of glass slides. The sprayer
set-up and experimental details of preparation have been described elsewhere (Raza
et al [13], Agnihotri et al [14]). The thickness of the prepared samples was in the
range of (0.21 — 0.65) um. The films were clear, yellow in colour and transparent.
For optical absorptance measurements, a Pye-Unicam SP-800 UV/VIS double beam
spectrophotometer covering the range from (200-900) ym was used.

The electric conductivity was obtained from the I-V characteristic which was
measured along the plane of the film using the gap method (Chen-Chwe et al [15],
Slawh [16]). Each sample had Coplanar Aluminium stripe contacts, with a gap of
2 mm and a length of 10 mm.

All I-V measurements for coplanar dark conductivity for CdS and CdS:Ag
were carried out at room temperature.

Analysis of results and discussion

The optical absorption data were analysed in terms of the theory of Bardeen
et al [17] which gives for a direct transition:

a = B(hv — E;)% /hy,

where o is the absorption coefficient, E; the direct band gap, hv is the photon
energy and B is constant depending on the probability of transition (Neumann et
al [18]).

The plot of (ahv)? versus hv is shown in Figs la, 1b for CdS and CdS:Ag for
different doping concentrations. Extrapolation of the straight line to (ahv)? = 0
gives the direct allowed band gap E,.

Figure 2 shows the obtained energy gap from Figs la, 1b as a function of
doping concentration. It can be seen that as doping concentration increased, the
energy gap decreased. The reduction in the values of energy gap may be related to
the increase in the donor levels which make the semiconductors in the degenerate
state (Sze [19]). The effect may cause the conduction band to extend into the gap
(tail) which reduces the forbidden energy gap. This result agrees with that reported
by Slawh et al [20] for CdS:In films. The energy gap of CdS thin film agree with
that reported by Agnihotri and Gupta [21].

The electric conductivity of CdS and CdS:Ag thin films has been investigated
using the gap method. Table I presents the electric conductivity as a function of
Ag wt%.
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Figs la,lb. (ahi/)2 vs photon energy for CdS and CdS:Ag for different silver concentrations
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Fig. 2. Energy gap Eg as a function of silver concentration

Table |
Electric conductivity of CdS:Ag film
for different doping concentrations

Ag wt% <r(i7fem) 1
0 7.943 E-10
0.1 7.941 E-8
0.2 1 E-4
0.3 1.995 E-4
0.4 3.1623 E-3
0.5 1.259 E-2
0.6 2.5119 E-4
0.8 1.778 E-6
0.9 1.000 E-6
1 5.0119 E-7
1.4 1.00 E-7
1.7 1.9953 E-8
2 1.259 E-8
2.5 1.5849 E-8

Figure 3 shows the log coplanar conductivity as a function of Ag-doped con-
centration. It can be seen that the dark conductivity of the film first increased with
Ag doping concentration and reached a maximum point for 0.5 wt% Ag. After-
wards the conductivity decreased and reached a constant value for doping larger
than 2 wt% Ag. This can be explained as follows: Ag can be doped into Cd sites
of CdS thin film substitutionally and can act as donor. The increase of the car-
rier density of a film at a rather low concentration stage less than 0.5 wt% may
though be due to this effect. Similar observations have been reported for CdS:In by
Mizuhashi [29], Suzuki et al [23] and Hayashi et al [24]). After that, as the doping
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Ag (wt *#)

Fig. 3. Plot of log coplanar conductivity (<r) vs Ag wt% doping concentration

increases there is a possibility that Ag+l would go to the interstitial position rather
the vacancy position of Cd2+ and probably this may be the reason why conductivity
decreases for doping larger than 0.5 wt% Ag. The interstitial Ag ions act as recom-
bination centres decreasing the number of charge carriers and the conductivity as
well. Similar results have been reported for CdS-doped Al (Lokhande and Pawar
[12]) and Cdo.75Zn0.25S doped Sn (Oda [25]). For a high doping stage greater than
2 wt% Ag, conductivity seems rather constant and goes into compensated stage.

Conclusion

The spray pyrolysis technique can be used to deposit pure and Ag-doped n-
type thin films (0.21 pm - 0.65 pm thick) with large range conductivities (10-10 —
10~12 i2-1cm-1); 0.5 wit% Ag doping gives the highest conductivity. From these
results we conclude that the Ag atoms were doped substitutionally at low level of
concentration into the CdS and act as donor centres while doped interstitially at
high concentration and act as compensation acceptor centres.
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The energy gaps were calculated as a function of doping concentration. It was
found that the energy gaps decreased with increasing doping concentration. Before
any conclusion can be drawn from the above results, further studies are needed to
identify the film structure and the possibilities of using such technique and such
films in devices applications.
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Total ionospheric electron content (IEC) obtained simultaneously at two low lat-
itude stations, Udaipur (22.6 °N, 69.6 °E, dip latitude 14.4 °N) and Gauhati (23.8 °N,
83.6 °E, dip latitude 14.2 °N) during solar minimum has been analyzed to investigate the
effect of equatorial electrojet and spatial separation. Results show that the mean peak
levels of ionization in winter and summer are about equal at Gauhati whereas at Udaipur
winter IEC is less than that obtained in summer. The difference in solstitial behaviour was
brought about by reduction in the winter level of ionization at Udaipur compared to that
at Gauhati. Diurnal and seasonal variations of IEC at these two locations under the influ-
ence of strong equatorial electrojet (EEJ) were found to be dissimilar as a result of which
difference between the two sets of data increases. Latitudinal variation of IEC as derived
from observations along a chain of stations centered around 71 °E meridian in the Indian
low latitude region shows that the position of the crest of the anomaly varies with season
but not with the strength of EEJ. IEC for Gauhati does not correspond to the anomaly
level along 71 °E indicating a longitudinal variation within the Indian zone.

1. Introduction

The ATS-6 campaign in India (September 1975 to August 1976) provided a
unique opportunity for intercomparison of ionospheric electron content (IEC) ob-
tained at a group of stations located across the Indian low latitude region. Study of
correlation of ionospheric parameters is important from the viewpoint of predictions
in space-time configurations where observational facilities do not exist. Klobuchar
and Johanson [1], Kane [2], Soicher et al [3], Bhuyan et al [4] and Bhuyan and
Tyagi [5] had investigated various aspects of variability in electron content for low
and midlatitudes. Klobuchar and Johanson [1] and Bhuyan and Tyagi [5] had
observed that the correlation of mean daytime IEC decreases with increasing longi-
tudinal and/or latitudinal separation between observing stations. Kane [2] showed
that at American midlatitudes, the difference between IEC measured at two loca-
tions only 400 km apart could be as high as 50 %. Neutral winds play a major role
in IEC variability at midlatitudes, on the other hand, at low latitudes, variations
in the equatorial electrojet (EEJ) strength mainly influences the day to day vari-
ability (Rama Rao et al [6]; Dabas et al [7]). The location of observing stations
with respect to the geomagnetic equator and their longitudinal separation was also
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Table I
Co-ordinates of the observing stations
Station Geographic Subionospheric at 420 km
Lat °N Long °E Lat °N Long °E Dip Lat °N
Udaipur 27.4 75.3 22.6 69.6 14.4
Gauhati 26.1 91.5 23.8 83.6 14.2

Fig. 1. Mean diurnal variation of IEC at the two stations, Udaipur (broken curve) and Gauhati
(dotted curve) for the period October 1975 to July 1976

found to contribute to difference in magnitude of observed IEC near the crest of
the anomaly in the Indian zone (Bhuyan et al [4]). The aim of this paper was to
investigate the effects of longitudinal separation and EEJ, ifany, on the diurnal and
seasonal variations of IEC obtained simultaneously at Udaipur (lat. 22.6 °N, long.
69.6 °E) and Gauhati (lat. 23.8 °N, long. 83.6 °E) situated near the northern crest
of the equatorial anomaly.

2. Data

Simultaneous IEC data used in this analysis for the period November 1975
to July 1976 were obtained by monitoring the Faraday rotation angle of 140 MHz
beacon transmissions from ATS-6 positioned over the Indian Ocean (35 °E) during
its phase-11 campaign. The co-ordinates and other relevant details of the observing
stations are given in Table I.
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3. Results

3.1. Comparison of seasonal variation

Scrutiny of individual daily plots of IEC for Gauhati and Udaipur revealed
that the diurnal variation is quite similar on some days whereas on some other days,
IEC at the two stations register dissimilar variations. The day-to-day variability was
found to be random and sometimes very high at both locations. Hourly average
IEC for the three seasons viz. winter (Dec./Jan.), spring (Apr.) and summer
(June/July) for the two locations plotted against local time was shown in Fig. 1
It may be seen that a semiannual variation in IECmex with peak in equinox and
troughs in the solstices is evident both at Gauhati and Udaipur. However, the
summer and winter peak levels are different in each case. At Udaipur, winter IECnex
(19.5 x 1016 el.m-2) is considerably less than that in summer (23.2 x 1016 el.m-2)
whereas at Gauhati, winter and summer levels are about equal (26.9 x 1016 el.m-2
and 27.2 x 1016 el.m-2, respectively). Observed variation of the individual as well as
average IEC were further confirmed by obtaining the relative electron content (IEC-
IECmin) at each data point, which neutralizes the effect of any probable error in
the base level ionization. The mean daily range of IEC (IEChex-IECmin) obtained
for winter and summer at Udaipur and Gauhati are 17.9 x 1016 el.m-2, 21.5 x 1016
el.m-2 and 21.5 x 1016 el.m-2, 22.7 x 1016 el.m-2, respectively. We may see that the
summer daily range is about equal but in winter, at Udaipur, the daily range falls
to a level below that of summer. Therefore, the difference in the solstitial behaviour
of electron content was caused by reduction in the winter level at Udaipur. Around
75 °E meridian, observations during the AST-6 period had revealed that the winter
anomaly (i.e. winter electron content being higher than summer electron content)
was present only at locations confined within the equatorward trough region of the
equatorial anomaly (Bhuyan [8]). At locations outside the anomaly region, summer
IEC was higher compared to that in winter, transition between these two different
seasonal variation patterns occurring around Ahmedabad (dip lat. 13 °N) where
IEC was comparable in both the solstices. Klobuchar et al [9] had shown that in
the Indian zone, during solar minimum, the crest of the anomaly normally centres
around Ahmedabad with latitudinal shifts depending on season. The subionospheric
points of Udaipur and Gauhati are thus generally located northward of the crest of
the anomaly and it is reasonable to expect similar seasonal variation at these two
places. Contrarily, while IEC at Udaipur show normal seasonal variation expected
at a location outside the crest of the anomaly, IEC at Gauhati exhibit seasonal
variation observed in the transition region. Bhuyan et al [4] had reported earlier
that a small difference in latitude coupled with the difference in longitude of two
subionospheric intersections plays a critical role in determining the magnitude of
IEC measured in the vicinity of the equatorial anomaly crest in the Indian zone.
The difference in relative position of the two subionospheric points (for Udaipur
and Gauhati) vis-a-vis the geomagnetic equator and their longitudinal separation
seems to have affected the seasonal variation of IEC at these two locations.
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Fig. 2. Diurnal variation of IEC for three consecutive strong (top) and normal (bottom) EEJ days
at Udaipur (dotted) and Gauhati (broken)

3.2. Effect of equatorial electrojet (EEJ)

The short as well as longterm variability of IEC in and around the northern
equatorial anomaly region in India was found to be mainly controlled by the varia-
tions in equatorial electrojet strength. Dabas et al [7], Rama Rao et al [6] made a
quantitative study of the electrojet control over the equatorial anomaly in IEC using
data from a chain of six Indian stations ranging from the dip equator to 40 °N dip
during the low activity period of 1975-76, utilizing the same data base. They found
that the position of the crest of the anomaly depends strongly upon the integrated
electrojet strength. During strong EEJ days, the crest of the anomaly was found
to form beyond 40 °N dip, i.e. the northernmost station of the latitudinal chain,
while on days of no electrojet or counter electrojet, no anomaly was found. Since
both the stations are located near the crest of the anomaly at approximately equal
distances away from the geomagnetic equator, effect of EEJ on IEC measured both
at Gauhati and Udaipur could be expected to be similar provided longitudinal sep-
aration between the two stations is not taken into consideration. Variations in the
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EEJ current at the equator can be obtained by taking the difference in the deviation
AH of the H field at an equatorial station to that at a station situated well outside
the equatorial electrojet region according to Rush and Richmond [10] and Chandra
and Rastogi [11]. For the present analysis, EEJ strength had been calculated as
AHyp_ 4 following Chandra and Rastogi [11] where T represents Trivandrum (mag.
lat. 0.3 °N) and A is for Alibag (mag. lat. 9.5 °N). EEJ strength calculated as above
was found by Dabas et al [7] to be well correlated with the day-to-day variability in
electron content in the Indian zone during the low solar activity period of 1975-76.
In Fig. 2, diurnal variation of IEC at Gauhati and at Udaipur are plotted for two
periods of three consecutive days during which EEJ was strong (top) and normal
(bottom). EEJ was considered strong for the day in which the maximum value of
AHyp_ 4 exceeded 50 nT and normal when AHp_ 4 < 40 nT. The peak level of IEC
at Udaipur gradually decreases from 47.9x 106 el.m~2 on day 1 to 44.0x 106 el.m~2
on day 2 and to 39.8 x 10!® el.m~2 on day 3 during strong EEJ. During the same
period, IEC at Gauhati remained at the peak level of 34.1 x 10'¢ el.m~2 on all three
days. On the other hand, when EEJ activity was normal, IEC at both stations
rise and fall in unison from one day to the next. The day-to-day variations were
further confirmed by obtaining similar curves for relative IEC. The period chosen
for Fig. 2 was at random and many such periods in which IEC at the two locations
vary independently could be found.

3.8. Comparison of IEC

The relative variation of IEC measured at one station with respect to that
obtained at another can be studied by plotting data of one station against those
of the other station. If the IEC measured over a length of time matches well then
a simple relationship of the type y = mz, where m is unity, should be expected.
However, since Fig. 1 indicates that the diurnal curves averaged over the seasons for
Udaipur and Gauhati do not match well, we could look for a systematic deviation
of one set from the other which is related to some geophysical factors like season
or magnetic activity. Bhuyan and Tyagi [12] investigated IEC correlation at three
low latitude stations in the Indian and East Asian longitude sectors during solar
minimum and studied the relative deviation of IEC during quiet (QQ) and disturbed
(DD) days and in different seasons of the year. They observed that the deviation of
IEC was influenced by season but not by magnetic activity. In Fig. 3, the monthly
mean relative IEC grouped into winter (Nov., Dec., Jan., Feb.), spring (March, Apr.)
and summer (May, June, July) at Gauhati is plotted for all local times against the
corresponding values similarly obtained at Udaipur. The Figure indicates that IEC
at Udaipur and Gauhati match each other only in summer. In winter, IEC measured
at Gauhati is higher while in spring, Udaipur values are much higher compared to
those correspondingly obtained at Gauhati. There had, therefore, been systematic
seasonal deviation of IEC observed at the two stations with respect to each other.
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O IEC at Udaipur

Fig. 3. Monthly mean relative IEC (IEC-IECmin) at Gauhati plotted against corresponding values
of Udaipur for all local times

S.f. Effect of EEJ on relative deviation

During days of strong EEJ, day-to-day variability at Udaipur and Gauhati was
found to be different (Section 3.2) whereas similar variation had been noticed during
days of normal EEJ. To check any possible effect of EEJ strength, relative IEC at
Gauhati is plotted against those of Udaipur for strong electrojet days in winter and
summer in Fig. 4. Sufficient number of simultaneous data for strong EEJ could
not be found in spring. It may be seen from the Figure that during strong EEJ,
difference between the two sets of data increases with increase in electron content
in winter. In summer, too, IEC at Udaipur increases relative to the corresponding
values at Gauhati. The discrepancy further increases for higher values of IEC, i.e.
during daytime maximum hours giving the curve a rather skewed shape.

Figure 5 further stresses the influence of EEJ on relative variation of IEC at
Udaipur and Gauhati. The data are for normal EEJ days. It can be seen that IEC
at two locations are about equal in summer at all local times when in winter, IEC at
Gauhati is marginally higher than the corresponding values at Udaipur. Comparison
of Figs 3,4 and 5 shows that the average relative behaviour is influenced by strong
EEJ activity. Superimposition of Figs 3 and 5 indicates that the separation of strong
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Fig. 4. Relative IEC of Gauhati at all local times plotted against those of Udaipur for
strong EEJ days

EEJ days from the monthly average leads to indentical values of IEC at the two
stations in both winter and summer. For higher values of A1EC (> 20 x 1016el.m-2
in winter and > 25 x 1016 el.m-2 in summer), the monthly mean data points
lie entirely on the Gauhati and Udaipur side, respectively, of the regression lines
(Fig. 3). Since the discrepancy between the two sets of data under the influence of
strong EEJ increases for higher values of IEC (Fig. 4), it may be concluded that
the average behaviour of IEC is influenced by EEJ activity and the electrojet effects
are discernible in high daytime values of IEC.

4. Discussion

Changes in the electric current system in the atmosphere are known to in-
duce variations in the horizontal component (H) of the earth’s magnetic field on
the surface of the earth. The relatively strong belt of current along the magnetic
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Fig. 5 Same as in Fig. 4 for normal EEJ days

equator at E region heights, termed as the equatorial electrojet, in association with
the magnetic field gives rise to an E x B vertical drift of ionization at the equator
(Balsely and Woodman [13]). lonization at the equator is lifted vertically upward by
the electrodynamic drift during the electrojet (normally during daytime) to higher
altitudes which later diffuse along geomagnetic field lines to higher latitudes giving
rise to the phenomenon known as the ‘Appleton’ or equatorial anomaly (Martyn
[14]). Variations in the E x B upward drift velocity will result in lifting up of the
ionization to varying altitudes and thereby producing the peak of the anomaly at
different latitudes. Rama Rao et al [6] had found that during a strong electrojet day,
the crest of the anomaly tends to form northward of the normal latitudinal position.
However, seasonal variations in the position of the crest of the anomaly with respect
to the equator had also been observed during this period. In winter, the crest of the
anomaly shifts equatorward relative to its position in summer, while in equinox, it
moves further north beyond average location in summer. In Fig. 6, IEC-IECmin at
1400 h local time along the latitudinal chain centering around 71 °E meridian has
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Fig. 6. Latitudinal variation of L1EC at 1400 h L.T. for selected days of strong electrojet. Solid
lines represent winter and broken lines represent summer days. Dots and circles are corresponding
values for Gauhati in winter and summer, respectively

been shown for some strong EEJ days to illustrate the shifting of the anomaly crest
with respect to the equator. The curves were drawn through points corresponding
to the stations Trivandrum (7.9 °N, 73.3 °E; dip lat. 0.1 °N) Ootacumund (11.0 °N,
73.5 °E; dip lat. 1.6 °N), Bombay (17.8 °N, 69.8 °E; dip lat. 9.3 °N), Ahmedabad
(21.5 °N, 69.4 °E; dip lat. 13.1 °N), Udaipur, Delhi (26.2 °N, 72.2 °E; dip lat.
18.3 °N), and Patiala (28.3 °N, 72.1 °E; dip lat. 20.2 °N). Circles and dots are the
corresponding data points for Gauhati. It could be seen from the Figure that the
anomaly peaks near Bombay in winter and around Udaipur in summer with a ten-
dency to move further north in an early summer day. Relative IEC for Gauhati does
not correspond to the anomaly level as deduced from observations along the chain
of stations around 71 °E on any day of strong EEJ. IEC at Gauhati is higher than
the corresponding values at Udaipur in winter and lower in summer. Longitudinal
separation of Gauhati (by 12°) from the other stations seems to have contributed
to the observed mismatch in IEC behaviour.

The structure of the equatorial anomaly in IEC was shown to correspond to
electrojet strength (lyer et al [15]; Singh et al [16]) while Jain et al [17] had shown
that at low latitudes, stormtime changes in IEC were controlled to a large extent by
changes in electrojet strength. Figure 6 shows that the equatorial anomaly which
is well developed under the strong EEJ peaks at different latitudes in different
seasons. Thus the position of the crest of the anomaly appears to be influenced by
season rather than by EEJ activity. It would be worthwhile to look for a mechanism
coupled to the EEJ and responsible for this spatial shift in the anomaly peak with
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season. The EEJ and Sq current systems are coupled interactive systems (Forbes
[18]). The mean daytime Sq foci are asymmetric about the dip equator and the
total intensities of the external Sq current system vary with season (Matsushita and
Campbell [19]; Trapley [20], Gupta [21]). The EEJ resulting out of the asymmetric
current system do not always flow parallel to the dip equator, particularly during
winter and summer and thus the cumulative effect of the EEJ might be to produce
seasonal variation in the magnitude of vertical drift velocities resulting in lifting up
of ionization to varying heights above the equator and consequently to form the
anomaly at different latitudes.

We have seen that IEC variation between Gauhati and Udaipur, situated at
about the same dip latitude but separated in longitude is not symmetric. The
asymmetry is accentuated by EE] activity. Detailed theoretical work taking into
consideration various factors that govern E and F region dynamics in this low lati-
tude region might establish the role of EEJ on anomaly structure and longitudinal
variation in IEC.
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By considering a homogeneous and isotropic universe with matter admitting a bulk
viscosity coefficient depending on the energy density, curvature squared and the energy
density times the curvature squared we study the spectrum of allowed inflationary cos-
mologies when all these effects are present simultaneously. We also demonstrate that when
the equation of state for matter violates the dominant energy condition inflation is never
possible unless the bulk viscosity coefficient admits negative contributions from the above
mentioned effects.

1. Introduction

Inflationary cosmology originally developed as a scheme to resolve the flatness,
horizon and monopole abundance problems of conventional big bang cosmology [1].
Old inflation [1], new inflation [2], chaotic inflation [3] and extended inflation [4]
all address the same problems with extended inflation offering us the best theory
for how the universe inflates in the beginning to resolve the flatness and horizon
problems and then slows down in its expansion rate so as to allow the true vacuum
to percolate. In extended inflation a Brans-Dicke type scalar is used as a catalyst
to provide the initially fast rate of inflation and the later slowing down of the scale
factor expansion [5]. Even if a scalar potential is not present to provide the driving
force for the above mechanisms of inflation there exist other dynamical schemes
that can lead to inflationary like cosmologies, namely bulk viscosity driven inflation
[6] and higher curvature driven inflation [7]. Such mechanisms are important for
they suggest that inflation might not be a generic result of a theory with a scalar
field displaced from the minimum of the potential but rather a general feature of
early universe cosmology independent of the initial conditions. This is the spirit
behind the “cosmic no-hair theorem” [8,9,10] along with the conjecture that infla-
tion might be an “attractor in initial condition space” [11]. Actually, if quantum
gravity ultimately determines the initial conditions for conventional cosmology then
it might be of interest to study those cosmological scenarios wherein quantum ef-
fects are already imbedded in the cosmology being studied. One example of this
is curvature dependent bulk viscosity where the effect of pair creation in a back-
ground gravitational field generates an effective curvature dependent bulk viscosity
coefficient [12,13]. Actually energy dependent bulk viscosity has been studied as a
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means of representing particle creation in the early universe as well as describing
dissipative processes related to primordial entropy generation [14]. Bulk viscosity
can also represent in a phenomenological manner the conversion of massive string
modes into massless modes if strings are the fundamental constituents of the early
universe [15].

In a previous note we have studied the influence of energy dependent, cur-
vature dependent and energy dependent times curvature dependent bulk viscosity
on inflation and calculated the rate of inflation in each case generated around the
Planck era [16]. In this note we extend the analysis and study the rate of inflation
when all three of these forms of bulk viscosity are simultaneously present. We also
demonstrate that if the equation of state of matter violates the dominant energy
condition that inflation is never possible in the presence of the above forms of bulk
viscosity unless one or more of the contributions to the bulk viscosity coefficient are
negative. Since the inflationary solutions derived in this note add to the already
present large list of inflationary cosmologies, it gives us further reason to believe in
the “cosmic no-hair theorem” and the belief that inflation might ultimately be a
result of quantum effects generated around the Planck era.

2. Bulk viscosity and inflation
We begin our analysis by writing the homogeneous, isotropic metric as

@Sf =dt2-R 27 + r7d02+ r2sin2dd<t>)" m (A = 0,£1),  (2.1)

the Ricci components are

3R
Roo 1
R 2K 29
Ri~1IR+2IRJ + )R 1%iie (2.2)
For the matter, we have [17]
= (-P+ e)U»Uv - 4,,,P, (2.3)

where
P=pP —f/l“ —P —4

(U° =1, U = 0), £ = bulk viscosity coefficient.
We next assume an equation of state of the form P = ac (a = constant).
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For the bulk viscosity coefficient we add together the constituent effects re-

ferred to in [16] and write
£ = Ci(c) + C2(Rs)2+ C3(e)(Rsf-

Here Rs = RRvgRv, C\, C2, C3 are constant.
For a flat universe K —0, we have

Rs = RRVQRV _ 6i +6

Using Egs (2.2), (2.3), (2.4) and (2.5) the Einstein equations read

here. Too =1, Tj=-Pgij = | _4  \g>T=e-~iP

g = . 6— fe—3ae+ 9(Cii + Cz(iis)2+ C3e(Rs)2)—

(‘=T?'C=")m

-ae + 3(Cie + C2(fis)2 + C3(e)(Rs)2)$|

o

- £- 3ee + 9(CIE + C2A(A5)2+ CBH(fis)2)

Solving for ke in Eq. (2.6) and Eq. (2.7) and equating them we have

3{- U&cuapg») 1+2(8)r-|*c.Ne )ria

DA ¥« WL PIRNEYTh e g~ dage U RIPY
We now insert the inflationary solution R —R 9"+ into Eq. (2.8) giving
/75(9C3(144) + /~(432kC2) + R(9Ci) + (-3a - 3) = 0.

We now study the following cases for Eq. (2.9).

(2.4)

(2.5)

(2.6)

. (27)

(2.8

(2.9)
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Case |

If C3 = 0and a > —1 (equation of state obeying dominant energy condition
P +e > 0), CiyCi > 0then Eqg. (2.9) has one positive root which is the inflationary
solution, the value of B is for a = 1/3,

/81f 4 f 18Cr \3
].j4322kC2 ! 118|\|/ V432kC2) t 12 N864C2fc/

3 2 1 . f 18Ci \3
+ i /8i f . 4 +
\| 432fcc2 18V {ime!) A864C2fc/

Case 11

If a < —1 (violation of the dominant energy condition) and C3, C2, Ci > 0
then Eqg. (2.9) has no positive roots and inflation does not occur.

Case 11

C3,C2,Ci > 0and a > — then Eqg. (2.9) has one positive root and inflation
again occurs, the root must be found by numerical analysis of Eq. (2.9).

Case IV

Evenifa < -1 and C3< 0, and Ci,C2> 0then Eg. (2.9) has one positive
root and inflation occurs, inflation will also occur ifa< — and Ci < 0; Cr,C3> 0
orCr<0;,ClLC3>0orCi>0Cr,C3<0orCr>0 Ci,C3<0or C3>0;
Ci, Ci < 0; or C\, Ci, C3 < 0in which case Eq.(2.9) has at least one positive root.
The roots would have to be found by analysis of Eq. (2.9).

3. Conclusion

The fact that inflation always occurs for the bulk viscosity coefficient having
the general form in Eq. (2.4) providing the equation of state obeys the dominant
energy condition (P + e > () suggests that cosmologies admitting bulk viscosity
generate part of the solution space included in the general “no-hair theorem” for
inflation. It is also of interest that even if the dominant energy condition is violated
that inflation still occurs providing the coefficients (Ci, Cr, C3) fulfill the inequalities
in Case IV. The fact that multiple positive roots may occur suggests that the form of
bulk viscosity studied above may generate a cosmology admitting double inflation.
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Lastly it would be of interest to ask if the coefficients (Ci, C2, C3) could be calculated
from a quantum gravitational model to ascertain their positive or negative nature.
As in the case of “induced gravity” [18] the sign of the coefficients Ci,C2,C3 may
depend on the heavy fields that induce them. It is intriguing that the flavor attached
to inflationary cosmology has changed over the past ten years from a theory which
sought to solve the flatness and horizon problems of the universe so that of searching
for a cosmic no-hair theorem ultimately related to the quantum gravitational state
of the universe around the Planck era. Classical cosmologies with their matter
content, their homogeneity and isotropy or lack of it, may all be late time solutions
to a quantum cosmology with very specific characteristics generating random initial
conditions at the classical boundary. These initial conditions might show up in a
way not expected in classical cosmology and general features, such as bulk viscosity
or other dissipative processes might include the spectrum of uncertainty given to
us from the Planck era. The fact that the general form of bulk viscosity studied
in this note generates a wide solution space for iftflation suggests that this way of
thinking might be generic and correct.
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Supersymmetry provides an example of Gauge Theories where the presence of more
than one gauge potential in the same group naturally emerges. Particularly, we study the
Abelian case in three dimensions. A dynamics accounting for the presence of only two
potential fields in a single group is obtained via a soft-breaking of supersymmetry.

1. Introduction

Symmetry environment should not be restricted to the simple fusion between
Group Theory and Quantum Theory. The existence of a symmetry can be devel-
oped in a space larger than the limit where the number of potential fields rotating
under the same group equals the number of generators of the group. This context
motivates us to make the statement that a gauge group also rules a Gauge Theory
where TV-families of potential fields are transforming as

A'-+UAJJ-X+ éd,,U -U-1,

Bp —sUBpU~1+ -dpU sU-I,

; (n

Na —UNpU-1 + -dpU 1T 1

However, such an affirmation (1) cannot be tested experimentally. This is so be-
cause a field cannot be directly measured. Therefore, it is not possible to think of
experimental models that would distinguish the fields Ap, Bp, etc.

Considering such a limitation that field theory offers for laboratory to test
(1), we move to the theoretical approach in order to get some reasons to justify
the opinion (1). Gradually, different insights have been developed to identify these
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potential fields as independent fields [1]. This discussion could be advocated by
classifying the arguments in two differents aspects: global and local. A global point
of view means that the existence of distinguished fields in (1) is originated from the
proper Gauge Theory Structure. A local aspect means to show evidences for (1)
through the study of a specific Lagrangian.

A first, and perhaps the most natural argument against (1) is that it would
contain a hidden transformation which correlates the potential fields. Thus, as a
first global argument to advocate the defense, we would recall the existence of a
geometrical motivation, based on the Kaluza-Klein approach. This means that a
global justification for (1) can be originated in terms of the spontaneous compactifi-
cation of a higher-dimensional theory of coupled Yang-Mills gravity with non-trivial
torsion [1]. As a local defense, we would argue by determining the propagators of
the theory and their respective poles, or by specifying the number of degrees of
freedom and the quantum numbers of the different potentials. For that, it becomes
necessary to choose a specific Lagrangian and then, calculate such entities. As an
example, consider the following Lagrangian

La=GAG" +m2(Al-B )2,

where
= dBA,, - amB" 4-g[BR,AW. 2

Practical calculations show the presence of a spectrum with two different quanta
in (2). In parallel, the accusation of a hidden symmetry between AMand BR fields
can be shown to be a source for breaking gauge invariance.

The motivation of this work is to develop another general argument to assume
that (1) contains fields with different quantum numbers [2]. The proposal is that
supersymmetry already contains informations for the inclusion of more than one
potential field in a single simple group. Thus, in order to develop such a global
thesis for (1), this work will be organized as follows. In Section 2, it will be stressed
that the superspace formulation of an Abelian theory naturally induces the presence
of more than one potential field in the same group. However, in Section 3, it will
be shown that under requirement of certain constraints, the theory exhibits the
existence of only one potential field. Finally, in Section 4, we shall discuss the
possibility of formulating a dynamics for the second potential field but which avoids
other models with undesirable spins.

2. A supersymmetric spectrum for QED in three dimensions

Consider the following superspace action

S = \] d3xd2e(Da<tH)(Cad, 3)
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where ¢pis a complex scalar superfield and Da the covariant derivative,
Da = da + id0daR. 4

For (1) to be rendered covariant under the internal symmetry U (1),

®'(x;8) =e " BA(X-B), ©)

the concept of gauge covariant derivative is required. However, for the supersym-
metric extension, it emerges the possibility of generating two types of covariant
derivatives

Va = Da + iqgTa (6)

and
Val = daf + igg&al. )

(6) and (7) satisfy the Bianchi identities
[Va>[Vb/c}} + [Vb-[Vc'Va}} + [Ve-[Va.Vb}} = 0. 8)
The notation is Va = (Va;Val), where a(= 1, 2) denotes the spinor index and the
pair all the space-time index. Consequently, these two species of derivatives, Va
and VaR, that the superspace presents, generate two superfields Na and Aal-
Our purpose is to characterize the spectrum developed through the superfields

obtained from (6), (7) and (8). The gauge invariance requirement also yields the
following transformations

A'aB = AaE-----g—daBA, (10)

where /1= A(x,9) is a real scalar superfield.
For the real spinorial superfield a(a; 9) one gets

F(x;0) = {Xa(x)IM(x)-AaR(x)tXa(x)}. (11)

Adopting the component fields of the gauge parameter superfield as

Ax; 9) = {B(x), a(x), G(x)} (12)

it yields,
X'a =Xa-"T]a, (13)
AaR = Aak + —daRB, (14)
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S 1
M'=M - 3G, (15)

M= Aq. (16)

Notice that the components X,(z) and M(z) are pure gauge modes, and so, the
parameters 7(z) and G(z) can be chosen in such a way that X, and M be elim-
inated. This means that (11) carries only an U(1)-gauge field, A,s(z), and its
supersymmetric partner, Ay (z).

Similarly, the superfield A,z contains the following components,

Aap(2;0) = {vap(z), Y(v,0p) (%), Ca(T), uap(z)} (17)

transforming under U(1) according to:

1
V;p = Vap — ;aaﬁB: (18)
’ 1
'/’('r.aﬁ) = '/’('r,aﬁ) = ;3(013".,), (19)
1)
C:y = (o + ;6;}17,\, (20)
' 1

where Vop(z) is a vector field; 9, ap)(z) is a Rarita-Schwinger field in three di-
mensions (spin 3/2); (a(z) is a fermion field (spin 1/2); and u,p is also a vector
field but with a different dimension from vag(z). Thus A,p(z; @) carries six bosonic
and six fermionic off-shell degrees of freedom.

Thus, (11) and (17) put in evidence the presence of more than one vector
field in the same group, as a natural consequence of supersymmetry. There is an
abundance of spinors, vectors, and so on, as members of a same multiplet. However,
our interest here is to demonstrate just the presence of more than one potential field
transforming under the same group. Comparing (14) and (18), we observe that the
vector fields A, p(z) and vop(z) materialize our search for. They are fields with the
same dimension and transforming with the same term 8,3 B(z). This means that the
supersymmetric version of QED in three dimensions, with (11) and (17), exhibits
the presence of two potential fields in the same group. Nevertheless, we should
still study about the possibilities that theory offers for controlling the I'y(z;8) and
Aqp(z;0) component fields.

3. An imposed super — QEDg3

Supersymmetry is a typical example of a gauge theory where the presence
of more fields in the same group proliferates. (11) and (17) contain fermions and
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bosons transforming under the same 17(1) group. Therefore, this Section is devoted
to the study of how to control such a proliferation. In order to restrict the degrees
of freedom that the theory offers, we should take into account the constraints. Thus
they should be understood consistently through the Bianchi identities. The simple
supersymmetry algebra in flat superspace is realized by

{Da,Dp} = - Vdab. (22)

Notice the connection between the supersymmetry and the space-time derivatives.
The extension of (22) in terms of the gauge-covariant derivative algebra is

\yA,VB] = T%BV ¢ + FAB, (23)

where T "B denotes the torsion components and Fab the field-strength superfields.
Substituting (22) into (23) one gets a non-trivial torsion for the flat superspace

w = (24)

all the other torsion components being zero. However, such results are not ne-
cessarily the same for a i7(l)-covariant theory. A procedure is to carry (24) as a
constraint. This means that it works at a boundary condition between the geometry
generated from the usual and by the covariant derivatives.

A second constraint which can be imposed is

H<p =0 (25)
(25) in (23) gives
NaR —-~DaTp +DRTa). (26)

(26) shows that the connections Ma and A a3 are not independent. Their component
fields are the same. This means that, under certain circumstances, the additional
degrees of freedom introduced by dap can be eliminated. However, relation (25)
is not enough to complete the work. This is so because (23) still contains field
strengths, Faip7 and Fal,yf that must be proved to be dependent on la.

Informations about the field-strength superfields Fa,fy and FaR,ys can be
obtained from the Bianchi identities. Although these identities are only algebraic
relations, they become useful to establish relations amongst the fundamental su-
perfields in theory. Thus, considering the impositions over torsion (24) and over
superfield field strength (25) one gets from (8) the information that the superfield
Fa Ry is such that its completely symmetric part is zero

F(a,Ry) = 0. )
Then, decomposing the tensor Fa,fy into its irreducible representations
2 2
Faiy —F(a,By) + Bly + 910,72 (28)
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and defining
Wa = FR,Ra (29)
gives
Fa,By = \ c aBWT + {CayWR. (30)

Substituting (26) in (23) and comparing with (30) one gets
WA = -gDRDyTR + 9{DyDRrR - D2Ty). (31)

Similarly, we obtain
FaR,y6 = RaBRAY0 ay6A aR. (32)

Thus (26), (31), (30) and (12) show that "a(x;0) 'is the only basic superfield that
theory with constraints (24) and (25) is envolving.

4. A special dynamics

The presence of several fields in a single supersymmetry multiplet creates
the discussion on whether supersymmetry does not contain circumstances to be
conveniently chosen in order to propitiate more than one kind of dynamics. In
order to organize such a situation where just some intended fields propagate, we
submit the following action

*Stotai = Si + Su, (33)
where

Si —Scauge H'Sg ( + Sint T Smessi (34)
Sil = Shroken 4" Sjnt/broken > (35)

with J
SGaue = V d3xd2e(DkDar k)(DxDar x), (36)
Sgf. =~ J d3xd20(Dar a)Di (DRTR), (37)
Snt = \] d3xde{Vaty* (Ve*), (38)
Smess = \] d3xd2enf>* @ (39)

Sbroken = \J d3xd2ee2(dZAKS + dRAKa) » (dxAXE + A$AXa), (40)

s,nt/broken = \J d3Xd2€€2(Vai3d))* cVaBf. (41)
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Then, we have to analyse what the corresponding spectroscopy for (33) is offering.
Note that from (36) there appears a propagation for the photon and photino, the
gauge fixing term (37) also receives contribution from the pure gauge modes, but
(34) does not produce any information for the thesis of this work. Observe that (33)
contains an abundance of fields transforming in the same £7(1) group. However, the
thesis here is that gauge invariance allows the existence of a dynamics with more
than one potential field in the same group. Thus the task is to break supersym-
metry as in (35), in such a way to eliminate the matter-fields ip(aly)(x), Ga(x) and
the vector field ual’(x), but without losing gauge invariance. This attempt is orga-
nized through (40). There, only val(x) field propagates. Including (41), a scalar
electrodynamics for this second potential field is generated.

5. Conclusion

The supersymmetrization process, when carried out in superspace naturally
requires the presence of more than one potential field in the same group. These fields
originate from the covariantization process of the supersymmetric derivatives Da
and daB. This process introduces the presence of two super-connection terms. By
examining their respective components fields, one finds two gauge-potential fields
that are independent, but transforming under the same group.

However, usually, the presence of these potential fields is bypassed by in-
troducing suitable constraints in order to relate the fields that originally emerged
independently in the theory. Thus, the thesis that a gauge group supports the
transformation of more than one potential field can be advocated. This means
that, through the relaxation of certain constraints usually imposed on the field-
strength superfields, the proof of the existence of a superspace geometry with more
than one connection appears.

Finally, through the decoupling of undesirable matter fields inside of the su-
perfield Aal(x] B), the process is concluded. Thus, arguments based on super-
symmetry for characterizing the existence of a global assumption for justifying the
presence of more than one potential field in the same group are thought to be com-
pleted. The study was performed in three dimensions just for the sake of simplicity.
It could as well be carried out in four dimensions with the same conclusions: super-
symmetry, unless certain constraints are enforced, naturally leads to gauge theories
where at least two gauge potentials appear transforming under the same group.
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Thermosolutal instability of an electrically conducting fluid in porous medium in
presence of a uniform rotation and a uniform magnetic field, simultaneously, has been
considered. The stable solute gradient and rotation postpone the onset of instability.
For a non-rotating system, the medium permeability and magnetic field have destabiliz-
ing and stabilizing effects, respectively. However, in the presence of rotation, when the
magnetic field has a stabilizing/destabilizing effect, the medium permeability has a desta-
bilizing/stabilizing effect under certain condition. The rotation, magnetic field and stable
solute gradient introduce oscillatory modes in the system which were non-existent in their
absence.

1. Introduction

A detailed account of the thermal convection in a horizontal layer of fluid
heated from below, in the absence and presence of rotation and magnetic field,
has been given in a treatise by Chandrasekhar [1]. Veronis [9] has investigated'
the problem of thermohaline convection in a layer of fluid heated from below and
subjected to a stable salinity gradient. Thermosolutal convection problems arise in
oceanography, limnology and engineering, e.g. ponds built to trap solar heat (Tabor
and Matz [8]) and some Antarctic lakes (Shirtcliffe [5]). The physics is quite similar
in the stellar case in that helium acts like salt in raising the density and in diffusing
more slowly than heat.

The medium has been considered to be non-porous in all the above stud-
ies. Lapwood [2] has studied the stability of convective flow in hydrodynamics in
a porous medium using Rayleigh’s procedure. Wooding [10] has considered the
Rayleigh instability of a thermal boundary layer in flow through porous medium.
The gross effect, when the fluid slowly percolates through the pores of the homo-
geneous and isotropic porous medium, is represented by Darcy’s law. As a result,
the usual viscous term in the equation of motion is replaced by the resistance term
—]™)q where 1, ki and g stand for the fluid viscosity, medium permeability and
the filter (Darcian) velocity, respectively.

The problem of thermosolutal convection in fluids in a porous medium is of im-
portance in ground water hydrology, soil sciences, geophysics and astrophysics. The
physical properties of comets, meteorites and interplanetary dust strongly suggest
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the importance of porosity in the astrophysical context (McDonnel [4]). The effect
of a magnetic field on the stability of such a flow is of interest in geophysics, e.g. in
the study of the Earth’ core where the Earth’s mantle, which consists of conducting
fluid, behaves like a porous medium which can become convectively unstable as a
result of differential diffusion. Another application of the results of flow through a
porous medium in the presence of a magnetic field is in the study of the stability of
a convective flow in the geothermal region. It has been remarked by Stommel and
Fedorov [7] and Linden [3] that the length scales characteristic of double-diffusive
convective layers in the ocean may be sufficiently large that the Earth’s rotation
might be important in their formation. Also, the rotation of the Earth distorts the
boundaries of a hexagonal convection cell in a fluid through a porous medium and
the distortion plays an important role in the extraction of energy in the geothermal
regions.

Keeping in mind the importance in ground water hydrology, soil sciences,
geophysics and astrophysics, the thermosolutal convection in a porous medium in
the presence of uniform rotation and uniform magnetic field, simultaneously, has
been considered in the present paper.

2. Perturbation equations

Here we consider a layer of electrically conducting fluid of thickness d in porous
medium acted on by a uniform magnetic field H(0, 0, H), uniform rotation Q(0,0, fi)
and gravity force g(0,0, —). This layer is heated and soluted from below such
that a uniform temperature gradient & (= |"*-|) and a uniform solute concentration
gradient B' (= | |) are maintained.

Let 6p, 6p, B, 7, q(u,v,w) and h(hx,hv,hz) denote, respectively, the pertur-
bations in pressure p, density p, temperature T, solute concentration C, velocity
(0,0,0) and magnetic field H. Then the linearized hydromagnetic perturbation
equations appropriate to the problems are

ijq _--pfav<5p+ g%--j{zp + An&o (Vxh)yx H+ ?(q x M), (1)
Vg =0 )

Vh =0 ©)

e— =(H-V)q+ "V, 4

% pw + *V 20, ®)

£'A=[2W KVZ, (6)
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where E = £+ (1 —e)"—= Here, p, c and ps, ¢, stand for density and specific
heat of fluid and solid (porous matrix) material, respectively. £ k\, 1), g(0,0,—g),
i, kKand K' denote the medium porosity, medium permeability, resistivity, gravita-
tional acceleration, kinematic viscosity, thermal diffusivity and the solute diffusivity,
respectively. E' is a solute parameter analogous to E. The equation of state is

p=pO0[l-a(T-TO)+a'(C-Co)], )
where the suffix zero refers to values at the reference level z —0 and a, a' stand for
thermal coefficient of expansion and an analogous solvent coefficient a'. The change
in density Sp caused by the perturbations B and y in temperature and concentration
is given by
6p= -po(al - a'y). (8)
The steady-state solution is

qg=(0,0,0), T=Tg—Rz, C=C0-B'z, p=pO0[l +aBRz- a'k'z]. (9
Equations (1)-(6) and (8) give

2 /&  d2\ y H 2dhz 2fi6C _

\Fdt hi)y wsqai7+ w i( 7)" A £z - 0 (10
Ild  VvV\, 8 6 2Qd
( (+_Q W' "
47rpo dz e dz
) h* =H 7' (12)
K
‘(S“,VZ)I_H (13)
(14)
(15)

Let us consider the case of fluid layer in which both the boundaries are free, the most
appropriate case for stellar atmospheres (Spiegel [6]), and the adjoining medium is
electrically nonconducting. The boundaries are assumed to be perfect conductors
of both heat and solute concentration. The boundary conditions appropriate to the
problem are

w=~—=0=7=T= at 2=0 and z=a (16)
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3. Dispersion relation

Let us analyze the disturbances into normal modes, assuming that the per-
turbation quantities are of the form

[w,8,7,hs,¢, €] = [(W(z),©(2), I'(2), K(2), Z(2), X(2)]-exp(ikzz +ikyy+nt), (17)

where k;, k, are the wave numbers along the z and y directions, respectively,
k= (k2 + kf)l/ 2 is the resultant wave number and n is, in general, a complex
constant.

Expressing the coordinates z, y, z in the new unit of length d and putting
a=kd, o =nd?/vand D= af‘;, Egs (10)—(15), with the help of expression (17), in
nondimensional form become

: d2a2 H 3
(842) @ -atw = -2 @0-am)4 AL 0t DK -2 07, (19
P ; v TpoV €v
2 + ik DX, (19)
v T poV

: 2
(D? — a® — Ep,0)0 = — (%) w, (20)

/ J2
(D? —a? = E'qo)T = - (%) W, (21)
(D? = a® = pao)K = — (-—Ig) DW, (22)
(D? —a?—py0)X = - (IZ—:) DZ. (23)

v

Here pp = 5;- is the dimensionless medium permeability, py = % is the Prandtl
number, p; = ;’"- is the magnetic Prandtl number and ¢ = % is the Schmidt number.
The boundary conditions (16) transform to

W=D*W=0=T=DK=0 at z=0 and z=1. (24)

Using the boundary conditions (24), it can be shown that all the even order
derivatives of W must vanish for z = 0 and 1. Eliminating ©, ', K, X and Z from
Eqs (18)-(23) and using the proper solution

W = Wysinrz,
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Wo being constant, we obtain the dispersion relation

@+ x)(I + x + iEpxCTi) | +10) (1+ X+ ip2<) + Qij

X(I + x+ ip2<)
(1 + X+ iEpiai)  TAI(1+ X+ »P2g~i)(1 + X+ iEpiai)
1(l+ x+ifyi) X iM+ NMa +x+iphr0 +Qi}’ (25)

Ri=-

where
gald4 . ga'R'd4
X==> P=*P, Rl=" , Si=
_ Ha2 ey S8 g ta= 2
Ql_ Ail’pOVl‘)th’ - \_/tt Z7r4 an ax = T2

4. The stationary convection

For the stationary convection, <= 0 and Eqg. (25) reduces to

p(l + x)2

FI‘I(A) th + Qr +S|+TAIX“+X+in}, (26)
Equation (26) yields
dRi 27)
dsi —
dRi _ p(1+x)2

dTAl x(I + x+ pQi)”’ (28)

which imply that the stable solute gradient and the rotation have stabilizing effects
on the thermosolutal convection in porous medium. Equation (26) also gives

dRi . (14x)

doi  x(l +X_pri)2[(1+X+I0Qi)2-p2TAI(1+ x)] (29)

and )
dRi (i+x)2
dp xp2(l + x + pQi)2 [
It is clear from Eq. (29) that in the absence of rotation (TAl —0)

1+ x+pQi)2- p2TAI(1+ X)] . (30)

dRi _ 1+x

doi ~ x (31)

which means that the magnetic field has stabilizing effect for non-rotating system.
The magnetic field has still a stabilizing effect if

pZTAI(L + X) < (1 + x + pQi)2 (32)
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However, the magnetic field has a destabilizing effect if
PZTAI(1+ x) > (1 + X+ pQ\)2. (33)

It is evident from Eq. (30) that in the absence of rotation (TAl = 0),

ddF;i = (1;p;)2 34)
which means that the medium permeability has still a destabilizing effect if

PZTAI(1+ x) < (1 + x +pQiY. (35)
But if

PZTAI(1+ x) > (1 + x + pQi)2, (36)

the medium permeability has a stabilizing effect on thermosolutal convection in
porous medium.

5. The oscillatory modes

Here we examine the possibility of oscillatory modes, if any, coming into play
due to the presence of rotation, magnetic field on the thermosolutal convection
in porous medium. Multiplying Eq. (18) by W*, the complex conjugate of W,
integrating over the range of z and making use of (19)—23) together with the
boundary conditions (24), we obtain

(22 + Epxa4a),
@37

where
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h=f [0z
Jo
A= [\DT12+ a2rDA,
(0]
ho= | jraer
Jo
h = Jf (\D7K \2 + 2a2\DK\2+ ad\K\2)dz,
[0]
= [ (\DK\2+ a2K\9dz,
[0]
Is = [ 1\2\2dz,
5
h= [ (DX\2+a2X\)dz
0
ho = / \X\2dz, (38)
T

which are all positive definite. Substituting < = ar + K] and then equating real
and imaginary parts of Eq. (37), we obtain

h , pa'ka? T d2 erjJd2 _r ,anaZ
7 +~Thr-g,h + AlrpouPZI7+ =t ~‘iriepovp2ho _____ g EPin
h t pa K a2T t el d2 eT|d2 fnaka?2
_______ — A S 39
P kl_|4+ 4Trpo’\h ¢ Pih ¥ prouh 12 (39
and
h pakaz_, «P _
a e 5 EON- 4xpov e 4xpov VR 0
(40)

Equation (39) simply tells us that ar may be positive or negative which means that
there may be stability or instability in the presence of rotation and magnetic field
on thermosolutal convection in porous medium.

Equation (40) means that the modes may be non-oscillatory or oscillatory. In
the absence of stable solute gradient, rotation and magnetic field, Eq. (40) reduces

<n\; +"7-E PL3]=0, (41)

and so <i = 0 which means that oscillatory modes are not allowed and the principle
of exchange of stabilities is satisfied for thermosolutal convection in porous medium
in the absence of stable solute gradient, magnetic field and rotation. The presence
of each brings oscillatory modes in the system which were non-existent in their
absence.
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We have presented a new class of analytical solvable trigonometric and hyperbolic
type potentials, related to the Jacobi Polynomials, using the previously unconsidered equa-
tions. It should be remarked that several quasi-exactly solvable potentials having restricted
parameters have similar energy eigenvalue expressions.

1. Introduction

It is well known that the Schrbédinger wave equation is only solvable for a
limited number of potential energy functions. The supersymmetric WKB method
(SWKB) is one of the useful techniques to calculate the exact energy spectra of
the exactly solvable potentials. In fact, the general proof that the supersymmetric
WKB method always yields exact energy spectrum for shape-invariant potentials
is as valid for a spherically symmetric shape-invariant potential in the radial wave
equation as it is for a shape-invariant potential in one dimension [1]. The su-
persymmetric approach involves a pair of one-dimensional supersymmetric partner
potentials of the form V+(x) = W2(x) £+ W\x). In this formalism, if the ground
state wavefunction is known, by using the logarithmic derivative of the wave func-
tion, one can formally treat supersymmetric potential W(x), and then the partner
potentials, V(x), of the system [1].

Recently, Lévai [2,3] has suggested a simple method, based on the supersym-
metric quantum mechanics and shape invariance, for generating exactly solvable
problems of non-relativistic quantum mechanics. He applied the method to the
Jacobi, generalized Laguerre and Hermite polynomials [2]. Then, by using this
method, a number of new solvable potentials have been reported [2- 6].

In this letter we want to apply the method to the new type trigonometric and
hyperbolic potentials, which are related to the Jacobi Polynomials. It should also
be remarked that some of our results are quasi-exact, because there are restrictions
between the potential parameters. By quasi-exact in this work we mean non-exact
or not all the spectra of the given potential.

1Permanent address: Department of Physics, Faculty of Arts and Sciences, Yizinci Yil
University Van, Turkey

Acta Physica Hungarica 73, 1993
Akadémiai Kiad6, Budapest



68 Z. YALCIN et al

2. Levai method

The single dimensional Schrédinger equation or radial Schroédinger equation
was related to the hypergeometric equations, which involve orthogonal polynomi-
als. The Schrddinger equation can be transformed into various linear homogeneous
second-order differential equations. Any function F(g(x)) satisfies the second-order
differential equation

+ R(9)F(9) = 0. @

In this case, once choosing Q(g(x)) and R(g(x)), Eq. (1) is reduced to a special case
of hypergeometric equations [2].
The Schrodinger equation in one dimension

¥A*1 + [E'-V' ()]V(x) = 0, @)

where V'(x) = and E' = |CE. Lévai has determined the relations between
the Schrédinger equation and the hypergeometric equation given in Eq. (1). He
considered the solution of the Schrédinger equation as in the form

®(x) = F(x)F(g(x)), ©)
where /(x) is given by
I(x) ~ (g') 112exp I Q{o)dg 4)
and E —F(x) is given like
E'- V'(x) = R(g(x))(g")2- (/"/]). ©)

Substituting /(x) in the Eq. (5), expressed explicitly in the form of Eq. (4), one can
also easily construct E —V(x) in terms of g(x), Q(g(x)) and R(g(x)):

1dQ(g) 1 2
*.rec> =8 -H 71T +@0> RO-98 j  .4«w 6)

where g(x) is a function corresponding to the argument of the hypergeometric func-
tion. The purpose of this approach is to find the fraction of the right-hand side
of Eq. (6) corresponding to the potential and energy. The form of Q(g(x)) and
R(g(x)) is well defined for any solution F(g(x)) of a hypergeometric equation [7].
It was soon noticed that as applications of this method, a number of solvable po-
tentials have been reported by using Jacobi polynomials. Lévai [2,3] used the 1
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type hypergeometric equation, its solutions are the Jacobi polynomials (Eq. 26.6.1.
in [7]). Then, Williams [5] followed this approach by using the 3. type hypergeo-
metric equation (Eg. 22.6.3. in [7]). More recently, we have studied the method as
another application [6] by using Eq. (22.6.4) in [7], i.e., we considered the 4. type
hypergeometric equation in [7].

Firstly, Lévai considered the differential equations

n2 _¢ W2 1 g W?9 @
1~92) = (i-ff2)2 1 -<72)2

to find g(x). Then, Williams applied the method by considering the equations

(n?2 and 9'? 8
(i+s)2
Thereafter, following these studies, we performed [6] equations
»2=c “d N = a ©

It should be noted that the first equation in the Eqg. (9) was also considered by
Lévai [2] before, but he studied the Laguerre polynomials to solve the 1. type
hypergeometric equation for the Coulomb potential.

Moreover, Lévai classified the potentials (related to the Jacobi polynomials)
as PI, PIl and PHI types in the previous studies [2-4].3

3. Trigonometric and hyperbolic type potentials

We will now reconsider Eq. 22.6.3 for a = 8 = 1,

d2rF(g) N n(n+ 3) + 2

dx2 1-@ F@=0 10
and Eq. 22.6.4fora =R = 1/2 in [1]
d2F(g) _
dx2 +(n+ IYF(g) =0. ()
So, we have rewritten Eg. (6) taking into consideration Eqs (10-11) as
E*- =f£ -T(£)" ®M»+3)+2 )~ (2
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and $
" "
/ 1 g 3 g 27 922
e = - - =— 1 : 1

B-vie =2 -1(L) + o) (13)
It is to be noted that Eqgs (12) and (13) are the special case of Eq. (11) fora =8 =1
in [4] and for @ = § = 1/2 Eq. (11) in [6], respectively. The corresponding wave
functions in Jacobi polynomials

F(g)=(1-9)1+g)P}Y(g) (14)

and
F(g) = (sin(3)) (cos(3)) PY/2*(cos g) (15)

which both satisfy Eq. (1) separately.

In order to have the potential and energy on the left-hand side of Eqs (12—
13), we can get different kinds of g(z) functions. Here we consider two types of
differential equations to find g(z)

L= G (16)

and

-2? =Cg+h(17), (17)
where C; are definite constants. Thus, there are many possibilities for g(z) satisfying
Eqgs (16-17). For the moment, let us now go back to relations (12-13) to see what
really happens if we take a specific g(z) and then determine E,, V(z) and ¥(z).
However, as can be seen from the Table, we choose eight different g to calculate the
energy spectra of the potentials.

4. Conclusion

We have shown that the previously unconsidered Eqs (16-17) give a few prac-
ticable reparametrized potentials. As remarked in the Table PIII and PIV are not
related to the classifications of Lévai, they indicate the potentials which are pro-
duced by Eq. (10) and Eq. (11), respectively. Table I includes a number of family
of exactly and quasi-exactly solvable potentials corresponding to special values of
the parameters involved in Jacobi polynomials. An interesting property of many
of these potentials is that although the corresponding wave functions are expressed
in different terms of the Jacobi polynomials, they give the same or similar energy
eigenvalue expressions.

On the other hand, some energies are independent of at least one of the
potential parameters. Also, there are restrictions between the potential parameters
which are indicated in Table I. Despite these negative results, we may compare their
energy spectra with the Coulomb problem (by choosing +2B? = Z,Z; or 7,2,).
That is to say analytically solvable periodical and hyperbolic types of potentials
have been suggested to the interested applied physicists.
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Diff. Eq.

=Ci
(PIV)

(PIH)

(F’R/)I
(PHI)

il

V =Ci

(PIV)
(PHI)

PIV)
(PHI)

Table |
Parametric potentials (related to the Jacobi polynomials P~ (x)) with their properties
including energy eigenvalues and eigenfunctions (ft = 2p = 1). The range of trigonometric
and hyperbolic type potentials are 0 < x < ira/2 and —00 < x < 00, respectively

aM V(x) E., fF(X)F(g(x))
cos(aar) |-a2cot2(ax) —[iB sin(ax)]2 b 2 (-a sin(ax))~ cos(]) sin(f)P, 2(cos(g))
B =(n+ l)a
Ja2cot2(ax) a2[n(n + 3) + 3/2] [-a sin(ax)]T-(1 - g)(1 + 8)PY (9)
cosh(ax) na2coth2(ax) —[B sinh(ax)]2 32 o 3[.B 2 (asinh(ax))T cos(®) sin(])P 22 (cos(g))
B=(n+ l)a
ja2coth2(ax) a2[n(n + 3) + 5/2] [asinh(ax)]T 1- g)(I +8)pY (9)
sin(ax) |a 2tan2(ax) —[B cos(ax)]2 -b2°n [ sfr]2 (acos(ax))“ cos(]) sin(f)Pr22(cos(g))
B =(n+ l)a
Ja2tan2(ax) a2[n(n + 3) + 3/2] [acos(ax)]T (1 - g)(I + )PY (9)
tsinh(ax) |a 2tanh2(ax) —[Bcosh(ax)]2 N - Nari1z («acosh(ax))~ cos(®) s'n(f)Pn 2(cos(g))
B =(n+1)a
Na2tanh2(ax) -a2[n(n+ 3) +3/2] [*acos(ax)]~(l -g) (I +a)Pn’L(s)

SNOILNTOS TVIILATVYNY



Table I (continued)

§6671 ‘gL voruvbunyy vatshyg 1oy

Difl. Eq. 9(z) V(=) En (=)F(g(=))
95: =C sinh(az) %a’ tanh?(az) — [B cosh(az)]? %az or ;—[n—gl]z (a cosh(az))-T‘ cos(%) sin(%)P,.%%( cos(g))
(PIV) B = (n+1)a‘ : p:
i fo?tank®(a2) - ATEIES ety [acos(az)] T (1 - 9)(1 + 9)Pu (9)
A= a2[n(n +3)+ 2]
951 = C2 + h(z) tanh(az) —[B sech?(az)]? —a? or — [;%]2 (a sech? (a::)_Tl cos(%) sin(-})Pn%%(cos(g))
(PIV) B=(n+1)a i
B 74 toskfe=) -t fasech? (az)) 7 (1 - 9)(1 +9)PA" (9)
A= az[n(n +3)+ 2]
Hgi;'- = C2 + h(z) coth(az) —[B cosech?(az)]? —a? or - [-"—';T]’ (-a cosech"'(a::))-Tl cos(%) sin(g-)P,,%%(cos(g))
(P1V) B=(n+1)a 2
(PIII) — A cosech? (az) - Rn—fam [—a cosech?(az)] 7 (1 — g)(1+ y)P,‘," (9)
A= a’[n(n +3)+2]
99# = C2 + h(z) —icot(az) [B cosec?(az))? a? or [%]2 (ia cosecz(az))lzl‘ cos($) sin(g)P,%é(cos(g))
(PIV) B=(n+1)a o
(PIH) A cosec? (a:c) _R"_‘;"am [ia cosec? (GI)]—J—(I -9+ g)P,l;'l (9)

A =a?[n(n+3)+2)
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After surveying the main features of a simple dissociating gas, the propagation
speed of characteristic wave fronts through such a medium is determined. Then the growth
equations of the plane, cylindrical and spherical waves are obtained under the assumption
that they penetrate into a uniform region at rest. It is discussed on what conditions a weak
discontinuity damps out, forms a focus and terminates into a shock, respectively.

1. Introduction

Thomas [1], using the theory of singular surfaces proposed and developed by
himself [2], has investigated the propagation of weak discontinuities in an ideal gas,
which is uniform and at rest before the arrival of the wave front. He has derived
the growth equation of the waves and shown that a discontinuity in the gradient
of any field variable can become infinite in a finite time, i.e. a shock can arise.
By the same method Kaul [3] has studied the propagation of weak waves in ideal
gases considering the entropy and the sound speed as dependent variables instead
of pressure and density.

Since the high-temperature real gas effects (vibrational excitation, dissocia-
tion, electronic excitation, ionization etc.) may affect significantly the behaviour of
weak discontinuities, it has become necessary to include into the gasdynamic weak
wave theory these effects. The behaviour of weak waves in dissociating gases has
been studied by a number of authors. Shankar [4] has extended the analysis of
Thomas to a Lighthill-Freeman type [5,6] ideal dissociating gas. This work was
reconsidered by Shankar and Jain [7], who, following Elcrat [8], have studied the
non-uniform propagation of weak discontinuities in an unsteady flow of a disso-
ciating gas. Ram and Gaur [9] have obtained growth equations for weak waves
propagating through a uniform region of a Lighthill-Clarke [5,10] dissociating gas.
Rai and Gaur [11] have further generalized and developed this work and given a
more satisfactory and detailed analysis of weak discontinuities in a dissociating gas.
In these studies the assumption of Lighthill’s ideal dissociating gas is used, i.e. to
count just one-half of the total vibrational energy excited. Although in certain
temperature range this assumption is quite reasonable, unfortunately for low disso-
ciation the ideal dissociating gas model is unsuitable. Namely, in the fully molecular
limit (as the degree of dissociation tends to zero at low temperatures) the Lighthill
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gas becomes a perfect gas with constant specific heats, but with a ratio of specific
heats 7 = 4/3. This incorrect representation is an obvious result of the approxi-
mation to the vibrational energy. Hence it would be more realistic and valuable to
treat the dissociating diatomic gas by a more accurate model.

In the present paper, using the method of characteristics, we discuss the
propagation of plane, cylindrical and spherical weak waves into a static and uniform
region of a simple dissociating gas [12]. In a simple dissociating gas the translational,
rotational, and vibrational energies are assumed at equilibrium, vibrational energies
being those pertaining to the simple harmonic oscillator model.

2. Basic equations

In this Section we survey the main features of such a dissociating gas which
obeys the model proposed by Li [12] and for which the reaction rate equation intro-
duced by Clarke [10] is valid. The gas under consideration is assumed to be a pure
homonuclear diatomic gas such as oxygen and nitrogen. The temperature range is
such that vibrational excitation and dissociation may occur but electronic excitation
and ionization are negligible. (For oxygen and nitrogen this means temperatures
up to 7000 K.) We note that at temperatures where the dissociation is important,
the radiation heat loss from the gas may not be negligibly small. However, in order
to simplify the problem, we exclude such an effect. The partially dissociated gas is
assumed to consist of a mixture of atoms A and molecules A2, which take part in
the simple reversible reaction

kt
A7+ M ’\KrA +A+M

Here the third body M can be either A7 or A and kj and kr are the reaction
rate coefficients for the forward and reverse reactions, kj and kr are traditionally
assumed to be functions of temperature alone, further they have different values
depending on whether M is a molecule or an atom. Following Clarke, we consider
both species to be equally effective. It is assumed that each gas species is thermally
perfect during the dissociation and the atomic and molecular partition functions
(treating the molecule as a rigid rotator and simple harmonic oscillator) can be
factorized. The local rotational temperature of the molecules and the translational
temperature of both components are assumed to be identical and equal to the local
static temperature of the gas.

With these assumptions, neglecting the molecular transport effects leading to
viscosity, diffusion and heat conduction, the set of differential equations governing
the one-dimensional unsteady flow of a dissociating gas can be written [5,10,12] in
the form

pu _ 0
J (1)

X

pu, + puux 4-px = 0, (2)

pi + upx + pux + v
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pht + puhx -p, - upx = 0, (3)
G +ugx = W, w= K(l-d)-q2 4)
p=(1+q)RTp, (5)
v — TJIT
exp(F,./T)-1’ 6

where p, p, T, h and tt denote the gas pressure, density, temperature, specific
enthalpy and velocity, respectively; R is the gas constant for Az, g is the de-
gree of dissociation, r = {4p2kr(l + g)/m2}-1 is the forward-reaction time, m
is the molecular weight of A2, K = (pd/p) exp(—Tj/T) is the equilibrium constant,
Pd = C{T/Tv)xt2{1—exp(—T,,/T)} is the characteristic density of dissociation (C
is a constant), Td and Tv are the characteristic temperatures for dissociation and
vibration; t is the time and x is the single spatial coordinate being either axial
in flows with planar geometry or radial in cylindrically and spherically symmetric
flows. The letter subscripts denote partial differentiation unless stated otherwise
and the parameter v takes the values 0, 1and 2 for planar, cylindrical and spheri-
cal symmetry, respectively. The above equations describe a hypothetical gets which
exhibits, during dissociation, the main features of a real dissociating gas such as oxy-
gen or nitrogen. (For oxygen, C = 265000 kg/m3, T,, = 2230 K and Td = 59000 K.
For nitrogen, C = 214000 kg/m3, T,, = 3340 K and Td = 113000 K.) Combining
Egs (1), (3), (4), (5) and (6) we get

Pt + «Pr + pa2 («r 4 + DWp =0, (7

where

is the frozen sound speed,

_ 7+ 3q+2(1- q)el exp(V"?)
N B+ g+ 2(1- gle2exp(K)

is the ratio of frozen specific heats (V —Tv/T) and

D_2Td/T~2/(X+ 1) - ev- (4- g)2exp(T)/(l + )
5+ 9+ 2(1 —q)el exp(V)

Since Td/T > 8,0< ¢, < 1and 0< e2exp(K) < 1, it follows at once that D > 0.
Using matrix notation, Eqgs (1), (2), (4) and (7) can be written in the form

Ut+ AU* + B = 0, (s)
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in which U is a column vector with four components (p, u, ¢, p), 0 is a null vector
and the matrices A and B can be read off by inspection of Egs (1), (2), (4) and
(7). This system is hyperbolic and may describe both propagation of wave and
discontinuity in space-time. A function U(z,t) satisfying (8) everywhere except at
a characteristic curve E(t), where U is continuous, but U; and U, may suffer finite
jumps, is said to be a weak wave or a weak discontinuity. Denoting the jump of U
across X by [U], we have

) dy
E[U] = [U] + I[U:]: (9)

where §/6t denotes time derivative as observed from the wave front. Taking jump
in (8), using (9) and applying the condition of continuity [U] =0, we obtain

(A & %I) [U,] =0, (10)

where I is the unit matrix. Consequently, if there occurs finite discontinuity in the
derivatives U, across ¥, the characteristic speed of propagation is an eigenvalue of
A. It follows immediately that there are four families of characteristic curves:

dz dz dz
E_u:i:a, Ft—_.u, E—‘U. (11)

Two of these characteristics represent waves propagating in the *+z direction with
the frozen sound speed, the remaining two form a set of double characteristics
representing the particle path.

3. Derivation of the growth equation

In studying a wave phenomenon governed by hyperbolic equations, it is usu-
ally more natural and convenient to use the characteristics of the governing system
as the reference frame. Thus we introduce two characteristic variables o and g as
follows:

(i) o is a wave tag so that a is constant along an outgoing characteristic
dz/dt = u + a. If an outgoing wave is generated at time ¢, it will be labelled by
a=t.

(ii) B is a particle tag so that 3 is constant along a particle path dz/dt = u.
If the characteristic wave front traverses a fluid particle at time t*, its path will be
labelled by g = t*.

It is now clear that for each pair of values (a, ) there is a corresponding pair
(z,t) so that z = z(a,B),t = t(a, ). In view of this transformation, we get the
following relations:

Do =Tt s (12)

Acta Physica Hungarica 78, 1993



BEHAVIOUR OF CHARACTERISTIC WAVE FRONTS 79

XB = (u + a)tB, (13)
yr UBXa - \JaXR
Ul - 7 ________ 7 (14)
T _ U3, Uljta, (15)

where
J - - alt (16)
J~d("7R)~ a0’
The transformation from the space-time (x,t) plane to the plane of characteristic
parameters (or,/?) will be one to one if the Jacobian J does not vanish anywhere.
Since doubling or overlapping of fluid particles is prohibited by physical consider-
ations, tB ¢ 0. Consequently, / = 0 if and only if ta = 0, when two adjoining
characteristics merge into a shock wave.
Transforming (8) into the characteristic coordinate system (a,/?), we get

(apa - pua)tR + pURta + Mpuatatr& =0, a7
(paita - pa)ts + peta =0, (18)
ga- Wta=0, (19)
(apa - pa2ua)tl + pa*URta + vpa uat*tf + DWpatatB = 0. (20)
X
The combination of (18) and (20) yields
apBta + parufita + VEfi—/:PfE[]—t—rk + DWpatatll = 0. (21)

Since the wave front is a characteristic surface, the primitive field variables
are continuous across it. Thus the boundary conditions are

pl=0, M=0 [d=0 [p=0 t=R at a=0. (22)

The unperturbed flow ahead of the wave is assumed to be uniform and at rest, so
the above conditions demand that

Po=0, up-0 gp=0 pBB=0 tB=1 at a=0. (23)

The evaluation of Egs (12)—€13) and (17)-(20) at the wave front yields
xa=0, XB—a, (24)
Pa = EUa, Ca= 0, Pa=paua (25)
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ata =0
To compute J1 = [iix] at the wave front, which is the wave amplitude, we
invoke (15), (16) and (23) which give

Az_a_ta at a=0. (26)

Differentiating (13) and (21) with respect to a, (12) and the last equation of (25)
with respect to 8 and using (22), (23), (25), we find that at the wave front a = 0

where

and

7+1 41+ g)2(1 - g)el exp(V{V + 2, exp(V) - 2}
2 {5+qg+2(1- qelexp(U)I2{7+ 3g+ 2(1 - g)e2exp(V)}

Since 7 > 9/7, exp(V){U + 2e, exp(V) - 2} < 4, it follows that w> 0 and V > 0.
Integrating (27) with respect to B on the line of constant a(= 0), we obtain

ua = uao(x/x0) vi2exp(-wi), (29)

where uaoand xo are the values of ua and x at t = 0O, respectively. Making use of
(29) in (28) and integrating with respect to B, we get

ta =taO- (V7a)ual J/o (x/ X0)~V exp(-wt)dt, (30)

where <ao is the value of ta at t = 0. Using (29) and (30) in (26) and keeping in
mind that z = x0+ at, we finally obtain

AoF(t)

A= 14 papl{t)’ D

where

,

F(t) = (1 + at/xo)~v2exp(-wf), 7(i) = J!) F(t)dt

and Ao(™ 0) is the value of A(i) at t = 0. When the initial amplitude is positive,
we speak of an expansion wave, in the case of a negative initial value the wave is
a compressive one. Equation (31) gives the variation of the wave amplitude with
time. Further we study this result in detail to explore the possibilities of the shock
formation.
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5. Behaviour at the wave front
Plane waves (i/ —0)

For a plane wave (31) reduces to

o Aoexp(un)____ (32)
M = 14 (AWAQ{L - exp(-wf)}’
where Ac = ump. It is apparent form (32) that if A0 > 0 (i.e. for an expansion
wave front) A is continuous and monotonically decreasing over [0, 00), and A—+0
as t —»00. This means that all expansion waves decay continuously and damp out
ultimately. If Ao < 0 (compressive wave front), the behaviour of A(<) depends on
the relative magnitudes of |Ao and Ac. Henfce we call the quantity Ac the critical
initial amplitude.

(i) If Uol > Ac, there exists a finite critical time tc > 0, given by

1

1- w/|AQ|’ (33)
such that A is continuous and finite on [0,ic), but |A —* 00 as t —%tc. Thus the
weak discontinuity grows without bound and steepens into a shock wave after the
finite time tc.

(i) If JAg < Ac, |A(f)| is finite, continuous, monotonically decreasing and
tends to zero as i —»00, i.e. such a compressive wave decays and flattens out
ultimately.

(iii) When 120| = Ac, the wave propagates with the initial discontinuity with-
out any growth or decay.

These results differ from the well-known property of hydrodynamical flows
that all compressive disturbances terminate into shocks. The dissociation has a
stabilizing effect on the tendency of the wave surface to grow into a shock, in the
sense that in certain cases it disallows the shock wave formation.

Diverging cylindrical waves (i/ = 1, xp = Rgq> 0)

If the diverging wave surface at t —O0 is a cylinder of radius Rq, at any later
time it is a cylinder of radius R = Rq+ at. For this case the wave amplitude, the
critical value of the initial discontinuity and the time taken for the shock formation
are given by the following expressions:

B Ap(l + at/RQ 1 2exp(-w<)

. (34)
1+ A/ i efudeyrs\

m
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_w exp(—¢)
Ae = $”1/2¢1/2erfc(¢1/2)’ (35)
erfc(d + wt.)? = (1 — A./|xo|)erfe(¢2/?), (36)

where erfc(z) = (2/y/7) [° exp(—t?)dt is the complementary error function, ¢ =
wRo/a. The evolutionary behaviour of diverging cylindrical waves is quite similar
to that of plane waves with the difference that for |A\g| = A. the amplitude of a
compressive wave is not constant but it varies with ¢ as

Ny exp(=¢ — wt)
T Y w2(¢ 4 wit)/2erfe(d + wt)1/2”

By applying L’Hospital’s rule it turns out that in this case |A\| — w/¥ as t — oo,
i.e. the wave takes a stable form ultimately. Since erfc(z) < exp(—z2)/(z7'/?), A,
is greater for a diverging cylindrical wave than for a plane one. In other words, the
geometrical spreading helps to attenuate the wave amplitude. It is easy to verify

that
O0Ry > 9Ky L

which imply that the initial curvature has a stabilizing influence.

Converging cylindrical waves (v =1, zo = —Rg < 0)

If at t = 0 the converging wave front is a cylinder of radius Ry, then at a later
time t < t* = Rp/a it is a cylinder of radius R = Ry — at. (At t* the curvature of
the wave surface becomes infinite, which indicates the formation of a focus.) For

such a wave
Ao(1 — at/Rg)~/? exp(—wt)

A daw(¢p—wt)r/2 )’
1+ by {l - exp(—wt)W}
=2 .
D 2¢1/2daw(¢1/2)’

where daw(z) = [ exp(t? — z?)dt is Dawson’s integral. If Ao > 0, A(t) is posi-
tive, finite and continuous on [0,t*), further A — oo as ¢ — t*. The numerator
of (37) becomes unbounded at t*, whereas the denominator remains positive and
finite. Therefore we conclude that all expansion waves form a focus at a finite time
t*. When Ao < 0, there are again three possibilities as in the case of diverging
compressive waves.

(i) If |Xo] > A%, there exists a finite critical time X < t* defined by the
equation

/\(t) =

(37)

(38)

exp(—wt;)daw(g — wtz)!/? = (1 - A /|Ao|)daw(4'/?) (39)

such that A(t) is finite and continuous over [0,¢}), and |A| — oo as t — t>. Thus in
this case a shock forms before a focus can.
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(i) If |Ag| < A* the denominator in (37) converges to a finite negative limit,
whereas the numerator tends to infinity as t —=*t*. So A is finite and continuous
over [0,f*), and |A —»o0 as t —¥<* This situation corresponds to the formation of
a focus within a finite time t*.

(iii) If |AO| = A*, the numerator of A tends to infinity and the denominator
approaches to zero as t —t*. Hence A(S) is finite and continuous over [0,<*) and
|Al —+00 as t —*f*. This case corresponds to the simultaneous formation of a shock
due to steepening and a focus due to curvature effects.

The function rdaw(r) is zero at x —0, in the beginning it grows (at xy «
0.924 it is equal to 1/2), presents a maximum at Xi « 1502 and then declines
slowly, approaching to 1/2 asymptotically. Therefore A* is less than, equal to, or
greater than Acfor a plane wave according as (12 is greater than, equal to, or less
than x\. It can be proved that

———= 0 when
>0, drRO > »

We see that, in contrast to the diverging waves, the shock formation time decreases
with increasing curvature. A depends on Rgin an interesting way.

Diverging spherical waves (u = 2, xo = .Ro)

If the diverging wave front at t = 0 is a sphere of radius Rq, at any later time
it is a sphere of radius R = Rg+ at. For this case the wave amplitude, the critical
value of the initial discontinuity and the time taken for the shock formation are
given by the following expressions:

w,4  AXl + at/Ro) lexp(—w<)

(40)
IJJEXp(-Cb) (41)
C- homo) '
E\(h +wtc) = (1 —Ac/|A0|Ei(0), (42)
where Ei(x) = f_lexp(—¥)dt is the first Schlémilch function. The evolutionary

behaviour of diverging spherical waves is quite similar to that of diverging cylindrical
waves with the remark that for |Ao = Ac the amplitude of a compressive wave is of
the form
A _ n  exp(-¢p-ut)
mp(ch + ut) Ei(<" +wt)

By applying L’Hospital’ rule it turns out that in this case |A —»/¢ as t —» 00,
quite like toithe diverging cylindrical waves. From the inequality Ei < exp(—x)/Xx,
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it follows that Ac is greater for a diverging spherical wave than for a plane one. It
is a simple matter to show that

d\c dtc
dRo <0, dRo <0,

just like for diverging cylindrical waves.

Converging spherical waves (i/ = 2, xg = —Ro < 0)

If at t = O the converging wave front is a sphere of radius Ro, then at a later
time t <t* = Ro/a it is a sphere of radius R = Rg—at. (Obviously, at i* a focus
forms.) For such a wave (31) assumes the form

Ao(l —at/Ro) lexp(—it)

X(t) = 43)

1+ hs. (i _ EL(*-bI<)\
1+ n X1 Ei(*) /

where

_ wexp(d)
P pB\(e) *

and Ei(x) = J* f-1 exp(f)di is the exponential integral function.

Since Ei(x) —»—e0 as x —*0, for A0 > 0 both the numerator and the denomi-
nator of (43) become unbounded at «~. Applying L’Hospital’s rule, we get At) —<00
as t —»+, which means that all expansive waves form a focus at If Ao < 0, then
there exists a finite time t& <t* given by

Bi(<€ —w<’) = (1 —A/|AOQ]EI(<E), (44)

such that A(i) is continuous and finite on [0,<*), but |Al —¥00 as t —»<*, because the
denominator of (43) vanishes whereas the numerator remains finite. This means that
all spherically converging compressive waves, no matter how weak initially, steepen
up into shock waves before the formation of the focus. This is in contrast to the
corresponding case of converging cylindrical waves. It can be shown that

dtl
>

dRo 0,

like the converging cylindrical waves.
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A study of the Coriolis force effect on the last odd particle in odd-Re isotopes is
undertaken based on the cranking model and Nilsson model including pairing force. Accord-
ingly, the level structure of the ground state bands of odd-mass Re isotopes is discussed and
satisfactory results are obtained by that model as compared with the experimental results.
Furthermore, determination of the deformation parameter 8 of each nucleus is undertaken
by different methods and it is found that 6 decreases substantially with the addition of each
neutron pair.

1. Introduction

The experimental investigation of transitional nuclei, where the nuclear shape
changes considerably with nucleon number, remains a fertile testing ground as the-
oretical nuclear models become more refined. One of such series of nuclei is the
odd-proton 181-187Re isotopes. It is of interest to map the systematic changes in
energy level structure with deformation in these nuclei. The level schemes of odd-
Re isotopes have been investigated using a variety of experimental techniques [1-6].
The results of these experiments have been interpreted successfully for the most
part in terms of the Nilsson model [7], although there remain some aspects of the
level structure that need explanation. Perhaps one of the most striking anomalies
in this region is the Coriolis force effect on the last odd particle. This effect was
studied previously by many authors [8,9] and they have shown that the systematic
largeness of the moment of inertia of odd-A nuclei as compared with those of the
ground state bands of neighbouring even nuclei is due to that effect. The correction
to the moment of inertia from the last odd particle comes from the second order of
the Coriolis force. Numerical calculations of this effect were performed previously
[10] and generally satisfactory results were obtained for most of odd-A nuclei. But
there are still discrepancies between experimental and theoretical calculations in the
region of odd-Re isotopes. Accordingly, it was thought worthwhile to reinvestigate
the odd-Re isotopes to extend our knowledge of their level structure via the study
of the Coriolis force effect.
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2. The Coriolis force and Coriolis force anti-pairing (CAP) effects
on the last odd particle

In most of the treatments concerning the CAP effect the quasi-particle method
has been employed [11-13]. The essential approximation in this method is to replace
the pairing interaction in the original Hamiltonian by a pairing potential, whose
strength is given by the gap parameter, A¢ (7 = p for proton and 7 = n for
neutron). The CAP effect is described in terms of the decrease of this gap para-
meter with increasing frequency of the rotation, {2, or equivalently, the total angular
momentum of the system, I.

Taking into account only the lowest order effects of the Coriolis force the total
energy in the laboratory system can be written as

Eo(Q) = E5(Q) + Q(J2), (1)

where Eg(2) is the corresponding total energy in the rotating system and is given
by

E4(Q) = Bo(A,) ~ 502%0, (2a)
A

2
EO(A,.) =2 Z(c; - A)Vf — Z Ar2uv; + Z G:’
(J2) = Qo = VI + 1). (2¢)

The first and the second terms in Eq. (2b) describe the single particle and the pairing
energy, respectively. The symbols u; and v; are the usual occupation parameters

[10], i.e.

(2b)

1 i— A
u?=§(1+c—-ﬁ), (3a)

where E; = /(e; — )2 + A2?. Also, G, in the third term is the strength parameter
of the original pairing force. Also, 1 is the moment of inertia and is given by the

well-known formula ;

J2
Yo =2 Z ) (‘u,-l/j - ujl/,')z, (4)
ij

E; + E;
where J;; is the matrix element of the single-particle angular momentum J;,
Jif = (1|jz|]) (5)

Inserting Eq. (2a) into (1) and replacing Q by I with the help of Eq. (2c), the total
energy Eo(S2) is expressed as a function of the angular momentum,

Eo(I) = Eo(A,) + I(I +1). (6)

i N
2¢0(AT)
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Following the minimization condition:

dEp(l) _
dAr )

which leads to the gap equation [12]

=v 1 [/ +1) dipp(AT)

2
GT Ei(AT) + ta(AT) dAT

Using this equation and solving 4T up to the lowest order in I (I + 1), one obtains

1 dipo

Ax= A= 2Cr@(40)) aar 1L+ D), (92)
0)2

ot Ao )

where g(°” is the energy gap for 1=0.
Inserting Eq. (9a) into (6), one finally obtains up to the second order in
I(/+1),

EO(1) = EO(AW) + + 1)+ BAI2(I + 1)2, (10)
27o(A41°0
where the 5-parameter is expressed as
5n =£(-1) ! !
= £(- 7
7 8n(an0) W

The contribution to the energy from the last odd particle is just the quasipar-
ticle energy, £,-(I). Thus, the total energy of a band associated with a quasiparticle
state i is given by

51M) = 50(MN)+C,(M). (12)

In order to estimate the contribution to the 5-parameter from the last odd
particle, it is sufficient to retain terms only up to the third or fourth order in J- and
6, respectively. Proceeding further and according to the treatment given in [10],
one can easily obtain

Ei(l, Ki) = 50(A1°)+5,(4(C°)+ 1  [I(1+1)-K?]+B[I(1+1)-K?]2. (13)
Hi(AKJ)

Ki is the projection of the angular momentum | in the symmetry axis and i is the
total moment of inertia, including the contributions from both the even core and
the last odd particle,

Vi =do + Hi,
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Table I
The mean deformation parameters for odd-mass Re isotopes
Isotope ) § §
(nuclear orientation) (Coulomb excitation) (theoretical)
181Re - 0.19 0.212
183Re 0.2075(8) 0.19 0.2116
185Re 0.194(3) 0.19 0.1973
187Re 0.181(4) 0.19 0.1838
where the correction to the moment of inertia is: 6¢; = —2(52) s

The centrifugal B-parameter is given as a sum of the contributions represent-
ing the CAP and Coriolis force effect on the last odd particle,

B = Ba + Bg, (14a)

(-1) (v \®
Ba = Z ﬁ (a—A—,) , (14b)
B= %c,@). (14¢)

3. Method of calculation

According to the treatment given before, calculations of the B-parameter for
one-quasiparticle bands of odd-Re isotopes were undertaken.

By fitting the calculated energy gap to even-odd mass differences, the values
for G, = 2t and G, = 1 have been suggested [14].

The deformation parameter § is taken from the information obtained from
the nuclear orientation technique [6]. In the frame of the rotational model the
spectroscopic quadrupole moment @ is connected with the intrinsic quadrupole

moment Qo via the Bohr—Mottelson relation

3K2-J(J +1)
J+1)(2J+3)°

Thus the configuration J*K has to be known for the determination of Qo
from the measured @. Accordingly the ground state deformation é for the odd-A
Re isotopes is estimated and tabulated in Table I.

Further calculations of the deformation parameter were undertaken both from
Coulomb excitation experimental data and theoretical consideration [15] and the
results obtained are given in Table I. However, a readjustment of the parameter 6
was undertaken within the obtained results so as to reproduce the observed level
order and the moment of inertia as well as possible. Also, from Table I it is seen that
the mean deformation parameter of odd-A Re isotope decreases by the increasing
mass number A.

Q= Qo (15)
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4. Results and discussion

Numerical calculations ofthe A- and 5-parameter for one-quasiparticle ground
state bands of odd-A Re nuclei were undertaken following the prescription given
above. The (obtained) results are presented in Table II.

The experimental values of the A- and 5-parameters were determined by
applying the rotational formula

E(I, Ky =EK+A{l + )+ BII + )2

+ (" DA+ ) v(Ai+Bil(T+1)+-) (16)

Ek is the band head energy, A\ and B\ are parameters representing higher order
terms arising from the Coriolis interaction and depending on K which is the pro-
jection of the angular momentum. The results obtained for A- and 5-parameters
are included in Table II.

Table 11
Experimental and calculated A- and ~-parameters
Isotope Acxp Bexp A B Ba Be
181Re 17.1 -0.020 14.1 -0.022 -0.0244 0.0024
183Re 16.46 -0.022 15.6 -0.0240 -0.0263 0.0023
185Re 18.2 -0.027 19.5 -0.030 -0.0332 0.0032
187Re 19.9 -0.028 21.0 -0.026 -0.031 0.0050

From these data one can clearly see a characteristic orbital dependence of the
5-parameter similar to that known for the A-parameter. Actually, the parameters
A and 5 are correlated. Furthermore, our calculated results are in agreement with
those obtained from experiments. In our study, the contribution from 5 g is found
to be larger than that from Bc and accordingly the 5-parameter remains negative
like those of the ground state bands of even-even nuclei.

The CAP effect could be obtained by means of the derivative of the moment
of inertia with respect to the energy gap [10].

The strength of Coriolis coupling could be viewed by drawing a relation;

vs (21)2 as shown in Fig. 1. From this Figure it is obvious that clear
oscillations are obtained in the case of 187Re ground state band which supports the
large calculated value of Bc compared to those of the rest of Re-isotopes.
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Fig. 1. Coupling effects in the odd-mass Re isotopes yrast bands

5. Conclusions

The rotational parameters A and B of the ground state bands of odd-A iso-
topes were evaluated by means of the cranking model and the Nilsson model. The
results of our calculations agree quite well with A and 5-parameters derived from
experimental data. The positiveness of 5-parameters in most bands of odd-A nu-
clei is not found in our study concerning odd-A Re isotopes. This may arise from
the large negative value of the CAP force effect on the last odd particle which is
positive.

The oscillations obtained in Fig. 1in the case of 187/Re show that the Coriolis
coupling is strong compared with those of 181483 185pte isotopes.
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This review covers some modem applications of statistical methods in the analysis of
complicated molecular spectra, obtained usually with laser excitation. Among the available
fluctuation measures, special emphasis is given to the nearest neighbour separation and
spectral rigidity measures, and attention is called to the power spectrum (or statistical
Fourier-transform) method.

From the high-resolution spectroscopic techniques used to obtain spectra of highly
vibrationally excited molecules, the stimulated emission pumping (SEP) scheme is very
successful in simplifying the high excitation regions. Examples of SEP applications are
given, especially to acetylene, in greater details. Finally the role of molecular rotation in
molecular dynamical and statistical studies is stressed.

1. Introduction

In recent years there is an increased interest in the interpretation of complex
molecular spectra obtained usually with laser excitation. With high energy excita-
tion it is possible to reach large values of vibrational quantum numbers. Traditional
spectroscopy deals with spectra wherein each transition can be assigned to valid
quantum numbers and thus can be analyzed in a conventional fashion. With the
coming of lasers and their applications in laser-induced processes it became evident
that the common methods of spectroscopic analysis are not always easily applicable
at high vibrational excitation where the energy level density is extremely large. On
the other hand, e.g. chemical applications of lasers demand an understanding of
this energy region.

In this review we shall cover some relatively recent techniques that allow us to
gain at least a partial explanation of complex spectra. Such studies inevitably lead
to basic questions concerning regularity in molecular spectra and involve problems
about ergodic or chaotic behaviour in quantum systems. We shall shortly summarize
recent views on quantum ergodicity in molecular spectra. The relevance to laser-
excited molecular processes shall occasionally be emphasized as it is this aspect that
provides the most important impetus for such studies.
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2. A short historical overview

As we shall see the analytical approach to high energy density regions is
mostly statistical in nature. It is through a statistical study of energy level systems
or even actual spectral features from which we hope to extract information on
regularity and dynamical behaviour. Such studies were pioneered by Wigner in
nuclear physics [118,119,120,121] who proposed a form for the distribution of first
neighbour spacings in highly excited nuclear spectra.

This statistical approach is closely linked to the theory of random matrices
(Bohigas and Giannoni [17], Brody et al [20], Carmeli [23], Mehta [84], Porter
[102] because — as Wigner pointed out — the statistical properties of spectra
of complicated Hamiltonians are similar to those of random Hamiltonians. The
applications of random matrix statistics to atomic spectra have emerged in the
last twenty years (Camarda and Georgopulos [22], Rosenzweig and Porter [107])
with a rapid expansion to molecular spectroscopy (for NO,: Haller, Koppel and
Cederbaum [56,57], Hardwick [59], Lehmann and Coy [75,76], Smalley et al [108],
Zimmerman, Koppel and Cederbaum [117] — for acetylene: Abramson et al [1,2,3],
Engel and Levine [37], Farantos [39], Holme and Levine [63,64,65], Mcllroy and
Nesbitt [86], Pique et al [94,95,97], Sumpter and Thompson [109], Sundberg et al
[110], — for Ars: Leitner, Berry and Whitnell [77] — for formaldehyde: Miller et
al [87], Polik et al [99,100].

Following the simple applications of first neighbour spacing statistics, more
advanced statistical tools have been worked out. Thus the spectral rigidity measure
(A3) was introduced by Dyson and Mehta [32], and Bohigas and Giannoni [16]
to test long-range correlations among levels, the so-called F-statistics (Dyson [33])
to find levels in sequences to be eliminated from the analysis, and several other
correlation and fluctuation measures (Brody et al [20]).

For modern polyatomic applications not only the various spacing distributions
and the Aga-statistics became widely used, but additional fluctuation measures have
been developed for spectral line strength (Alhassid, Levine [4], Brickman, Engel and
Levine [19], Coy, Hernandez and Lehmann [27], Heller, Sundberg [61], Kommandeur
et al [73], Porter, Thomas [101]), and for fluorescent lifetimes (Engel et al [35]). In
this review we shall deal only with energy level statistics, occasionally mentioning
spectral line strength distributions.

An additional technique for testing long-range order or correlatedness in op-
tical spectra is the statistical Fourier-transform of energy level sequences or experi-
mental frequency spectra (Jost, Lombardi [69]), Leviandier, Lombardi, Jost, Pique
[78], Levine, Kinsey [79], Lombardi, Labastie, Bordas, Broyer [81], Lorquet, En-
gel, Levine [82], Pique, Joyeux, Manners, Sitja [98], Remacle, Levine [106]). This
method provides information on the time-scale of various processes leading to the
experimental spectra. Ergodic behaviour in spectra may also be quantified by the
fractal dimension of the trajectories in phase space (Grassberger and Procaccia [47]),
and by Kolmogorov entropy (Pesin [93]). Excellent examples for this approach are
in the recent literature (Beck, Leitner, Berry [9], Berry [14]).
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3. Regularity, ergodiclty and chaos In spectroscopy

One of the interesting questions of contemporary physics is whether chaotic
phenomena in classical dynamics appear in some form in the quantum mechanical
description. The literature on this subject is very extensive (e.g., Berry [10,11,12,13],
Casati et al [24], Heller [62], Tabor [112]).

It is characteristic of classically chaotic dynamics that it grows from the non-
linearity in the governing system of dynamical equations. Chaos means the irregular
and unpredictable evolution of a non-linear system in time. Quantum systems are
not chaotic in the way classical systems are. The Schroedinger equation that is the
basis of the wave mechanical description is a linear equation in the sense that if
two different wavefunctions satisfy it then also does any linear combination of those
functions. Thus a linear superposition is maintained indefinitely and the solutions
are periodic and quasi-periodic. In contrast to classical dynamics, molecular systems
do not have well-defined trajectories in phase space on time scales long relative to the
excitation time of internal motions. Due to the Heisenberg uncertainty relationship
it is not possible to prepare an individual spectroscopic state in which the position
and momentum coordinates of the nuclei and electrons are sharply defined; they
have a finite distribution instead. While in classical chaos particle trajectories have
an infinitely complicated substructure (Gutzwiller [55]), in the quantum mechanical
description these trajectories are blurred.

There are several terms that are frequently used in the discussion of the dy-
namical behaviour; regularity, ergodicity and chaoticity. In addition one encounters
frequently the qualification: “stochastic”. It is not attempted here to separate
clearly the meaning of these terms (in relation to spectroscopic behaviour) but a
few words are appropriate.

A stochastic process is one that is a function of a random variable (in addition
of being a function of time), and the random element is usually some external
influence on the system. The irregular behaviour of a classical system, modelling a
quantum system like molecules, is not a result of some random external influence
but is due to the intrinsic properties ofthe system itself. Therefore, strictly speaking
molecular systems cannot properly be regarded as stochastic. Still this term is very
widely used.

Ergodic behaviour is defined in statistical mechanics. When we have a clas-
sical system where the trajectory of motion in phase space samples uniformly the
latter, the time average of a given quantity equals its phase (ensemble) average.

Bohr’s correspondence principle requires that in a high excitation state, like
nearly dissociated or nearly ionized molecular states, where the energy density is
very great, the molecular quantum system should correlate with the classical de-
scription. Therefore one would expect some manifestation of classically chaotic
behaviour in a quantum system, or quantum phenomenon, like molecular spectra.
This manifestation is found in the statistical properties of molecular energy lev-
els and in transitions among them. Ergodicity or regular behaviour, and chaotic
limits shall in the following be studied from a statistical viewpoint. Regular spectro-
scopic behaviour may be related to the regularity of the underlying classical motion,
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whereas irregular (or chaotic) behaviour of the corresponding classical system man-
ifests itself in a very different statistical behaviour in spectroscopy. The transition
between regular and irregular (chaotic) classical systems is provided by the KAM
theorem (Kolmogorov-Arnold-Moser) (Arnold [15], Kolmogorov [72], Moser [88]).
It is possible to study the statistical properties of energy levels in the semiclassical
limit; A — 0, as was shown by Berry [11,12] using Gutzwiller’s method (Gutzwiller
[48,49,50,51,52], see also: Balian and Bloch [7]). In this way classical periodic orbits
may be related to semiclassical energy levels. In the semiclassical description quan-
tization is provided by the Einstein-Brillouin—Keller (EBK) quantization (based on
Einstein’s paper in 1917; [34]). This corresponds to ‘old quantum theory’ which
was superseded by wave mechanics, but for the study of molecular chaos in the
semiclassical limit has been rediscovered and widely used (see: Tabor [112], Section
6, pp. 228-279). In terms of EBK quantization rules a regular spectrum corresponds
to regions of integrable (regular) motion that can be quantized according to these
rules, whereas irregular (chaotic) spectra cannot be so quantized. As we shall see,
one may model certain spectroscopic observations on this semiclassical approach
that provides insight into spectral statistical characteristics.

4. The mathematical apparatus of statistical spectroscopy

Before applying most of the statistical probes to molecular energy levels or
actual molecular spectra a procedure is needed to place those sequences on the
same footing. For this purpose one has to separate the average density of levels from
fluctuations about that average (Brody et al [20], Bohigas and Giannoni [17], Haller,
Koppel and Cederbaum [56]). This is because we want to reduce different energy
level systems to the same basis that then allows a comparison of the statistical
behaviour of highly excited nuclear levels to those of molecular excitations. This is
achieved by a suitable mapping of the original energy level system: E — E. Taking
N(E) as the cumulative density of the energy levels it is seen to fluctuate about a
smooth average: N,,(E):

Fig. 1. Cumulative energy level distribution
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Now if

Ei = N, {Ei)- i=1,2,3,..

N,,(E)= }0 e®{E")dE' = J% QV(E")dE = E = Nav(E). (1)

The new energy level sequence Ei has a constant density; QGw(E) = 1, and it
may be split up to a secular part (showing a smooth change with energy, that is
universal) and a fluctuation part (that is specific to the system):

N(E) = Nav(E) + NA(E) = E + Nn(E). @)

We shall be concerned only about the fluctuation part Nr(E). This carries
the statistical information on the energy level system. Taking into account the fact
that energies (eigenvalues) are not continuous functions, Eq. (1) can be rewritten:

M
N,,(E) =J2Q(E-Ei), 3
-

where 0(E) is the Heaviside step function, and E can be given as:

E = b~I[N,,{E) - b0, 4
so that:
N,,{E) = 60+ fcif. (5)

This procedure is called “unfolding” (“deconvolution” or “mapping”) and
might be a sensitive function of the choice for Nav(E), i.e. of the way we ap-
proximate the average behaviour of the energy level system. There are various
possibilities for this, one of these is the use of a polynomial expansion:

m
tfav(£) = £>£*. (6)

*:i
Alternatively, one may use a cubic spline function smoothing (Press et al
[103], Chapter 3), or apply a moving average (Wong, French [122], Venkataraman

[115]):

Ei+i = Ei + 2k + I)(Ei+l - Ei)/(Eja+1- Eh), @)

where i runs over the energy levels, and ji = max(l, i—k) and ji —min(n—,i+k),
n is the total number of energy levels and K is the number of consecutive spacings
between the energy levels over which averaging is done.

All these unfolding methods produce level sequences of nearly unit local mean
spacing (density). The fluctuation properties of spectra may either be stationary
(invariant to translation along the energy axis), or not stationary. In the latter case
one is interested in asymptotic properties of energy level sequences.
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4-1. Fluctuation measures

With respect to the statistical nature of Nn(E) in Eqg. (2) there are two
extreme cases, the case of a complete lack of correlation among energy levels, and
the case of very strong correlations. There are a number of mathematical techniques
to test such correlations. Historically the first of these was suggested by Wigner
(Wigner [118,119]) that relates to the distribution of spacings among adjacent levels:
P(S) (5 stands for first neighbour spacing between unfolded energies: E). This
method relies on the absence or presence of repulsion between levels.1

For a completely random energy level sequence, the probability of a spacing is
independent of the magnitude of the spacing and one has a Poissonian distribution
law: (using first neighbour spacings (S) in terms of local spacing units. The local
spacing unit is 1 for an unfolded energy level sequence):

P(S) = exp(-5). (8)

On the other hand when there is (linear) level repulsion, the probability of a spacing
is proportional to the spacing magnitude:

P(S) = (#/2)5 exp(—A52/ 4). )

There is an important difference between the Poisson (Eq. (8)) and Wigner (Eq. (9))
distributions; for a random energy level sequence the most probable spacing is zero
(level clustering), whereas for the Wigner (strongly correlated) distribution zero
spacing has zero probability (level repulsion).

In order to model strong correlations among energy levels, which is the case
for highly excited nuclear spectra, Wigner proposed random matrix theory (Wigner
[118,119], Brody et al [20]). Random matrix theory is reminiscent of statistical me-
chanics in the sense that it deals with ensemble averages over stochastic quantities.
These ensembles are formed of matrices possessing random structure. Depending on
the way such a random matrix is defined there are three types of matrix ensembles:
the Gaussian orthogonal ensembles (GOE), the Gaussian unitary ensembles (GUE),
and the symplectic ones. If the physical system is invariant under time-reversal and
under rotations the matrices are real symmetric with random elements having in-
dependent Gaussian distributions. The ensemble must be invariant to orthogonal
transformations and consists of matrices of identical dimension. The GOE model

1Repulsion between energy levels may be understood in terms of avoided crossings, or the
“non-crossing rule” (Neumann and Wigner [89], Berry [11]). This rule applies only when we select
energy levels possessing the same symmetry. In the case of vibronic energy levels this involves the
same electronic state and vibrational quantum numbers (or combinations of vibrational quantum
numbers that correspond to the same symmetry of the product of vibrational wavefunctions),
the same total angular momentum quantum number (usually J) and the same parity (behaviour
towards space inversion). In addition there is a need to study as complete as possible level systems
in the given symmetry, so that no (or a minimal number of) energy levels should be missing, and
no spurious levels should occur. All the following statistical measures presuppose this kind of
symmetry selection, the use of so-called “pure sequences".
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represents the strongest possible level correlations and it is frequently feasible to give
analytical formulae for this limit of the various fluctuation measures. The GUE limit
corresponds to systems for which the Hamiltonian does not possess time reversal
and rotation symmetry, such matrices have complex Hermitian structure. Finally
the symplectic ensembles correspond to systems that are time-reversal invariant but
not invariant under rotations, and if the system has half-odd-integer total angular
momentum the matrices of the ensemble are quaternion real. The importance of
GUE and symplectic ensembles is little in the field of molecular spectroscopy.

Random matrices also show ergodic property so that their ensemble averages
are equal to spectral averages of a member (Pandey [91]). As a consequence when we
choose one member of the ensemble it will be representative of the whole ensemble.
This ergodicity property shall be utilized in the application of the various fluctuation
measures.

We can now return to the discussion of-the fluctuation measures with these
two limits in mind; the completely random Poissonian sequences and the strongly
correlated GOE limit.

The spacing distribution discussed previously does not include information on
spacing correlations. This is obtained for two adjacent nearest-neighbour spacings,
as a spectral average, by:

c=£(S. - D(Si+1- 1)/ E£(5, + )2 (10)
* i
For the Poissonian case ¢ = 0, while in the GOE limit the first-order spacings are
anticorrelated: ¢ = —0.271 (Brody et al [20], Garrison [43]).

Another very useful statistics is the spectral rigidity; AO3(L) (Bohigas,
Giannoni [16], Dyson, Mehta [32], French et al [41,42]). Spectral rigidity mea-
sures the least-squares deviation of the cumulative energy density N(E) in Eq. (2)
from the best straight line fitting it:

r<x+L

A3(ai1) = (Wiymin /- [N(E) - AE - B]ZE, (11)

where N(E) is the number of levels below E, A and B are constants of the fitting, L
measures the length of the level sequence, and a is the beginning of the L interval.
The value actually used in the analysis is the spectral average:

<[3(a,1)) = A3(E). (12)

For analytical purposes sums are used instead of the integral in Eqg. (12),

such formulae are found in Bohigas and Giannoni [16] and Feingold and Fishman

[40]. Spacing distributions and the A3(L) statistics are independent fluctuation

measures and are complementary information; spacing distribution measures short

range correlations, while 43(T) characterizes long-range ones. For a Poissonian
level A3(£) = X/15, whereas for a GOE sequence:

[3(X) = (Ur2)(1n L —0.0687). (13)
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The meaning of these two limiting expressions is that for a random set of
levels the variance of deviations from the mean behaviour is proportional to the
number of levels, whereas for the strongly correlated case the increase is only log-
arithmical. It is quite possible to find cases where spacing distributions indicate
strong correlations, while spectral rigidity is low. It is often found that for actual
level systems (theoretically computed or experimentally determined) the increase of
Aj(L) with L is slower than indicated by the GOE limit in Eq. (13), and saturation
is observed (see e.g. Zimmermann et al [116]). It is possible to relate A3(L) to the
sum over classical periodic orbits and find the general criterion for the saturation of
spectral rigidity. This occurs when L 3> Lpax, where Lyax is given by semiclassical
considerations (Berry [12]) as

Dy = h(d)/Tmin = h—(N_l): (14)

where (d) is the mean level spacing: (d)~! ~ A", and N is the number of freedoms
in the semiclassical system. T, in Eq. (14) is the period of the shortest classical
closed orbit.

In addition to these two most important statistical measures, there are a
number of others. One of these is the “number statistic”; n(L), which is a discrete
variable counting the number of levels contained in the interval L. Provided the
spectral sequence is unfolded, the average of n(L) is L. The useful measures derived
from this quantity are its higher moments, its variance Zz(L), its skewness 1 (L)
and its excess v2(L) (Pandey [90]).

All of these (and previous fluctuation measures) are derivable from the level
correlation functions. The k-level correlation function is defined as (Bohigas-
Giannoni [17]):

R(El,...,Ek)=(N!/(N—k)!)/~~~/PN(E1,...,EN)dE‘k+1...dEN, (15)

where Py is the joint probability density of the energy level E;:

Pn(E\, E,...,En) = Cyexp(—(1/46®) Y E}) [[ |E: - E;l, (16)

where Cy is a normalization constant, and ¢ is the variance of the eigenvalue E;.
In Eq. (16) Py(E;...EN) dE;...dEy gives the probability of having one
level at Ey, another at E; ... and another at Ex within the intervals {E;, E;+dE;}.
When we unfold the energies E; — E; (see earlier) a new set of k-level corre-
lation functions is obtained:

Rk(EI,E2-..EN)= lim Rk(El"'-pEk)

; o : (17)
N—oo Ry(E;)...Ri(Ex)
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The functions Rk characterize the fluctuation properties of levels completely.
Of central importance are the ifc-level cluster functions

- (om with tin Gj),  (18)

G j=1

where G stands for division of the indices 1,2 ... k into subgroups [G\, G2,..., Gm\
The most significant of the cluster functions is the two-level one: k = 2, when there
are two subgroups: m = 1 [(1,2)] and m = 2 [(1),(2)]:

Y2(E1,E2) =-R2(E1,E2) +Ri(EI)RIE2). (19)

Another possibility is to use the probability that in a sequence of unfolded
levels {Ei} of mean spacing unity, a length L contains exactly k levels. This is given

by

Efk-L) fim (NV(N—)Y dEk+1 memEn Pn {Ei ... En),

in out

(20
where the first group of integrals is performed on the variables inside the interval
[a,a + L] and the other group is an outside integral. The probability E(k;L\ in
Eq. (20) is simply related to various fluctuation measures, e.g. the nearest neighbour
spacing distribution p(E) in Eg. (8):

P(E) =p(0,E) = (d2/dE*)E(0,E). (21
Practically it is better to use integrated quantities:

YK | meeEk)dEi... dEk- (22)

Using yk quantities the various number statistics can be easily given as, e.g. the
average number of levels in an interval L:

n(L) =vyi(L) = L (23)
The variance of this number is;

Z2L) = (n(L)-L)* =yi(L)-y2(L). (24)
Particularly important are the quantities related to the two-level cluster func-
tion Y2(E1,E2) in Eqg. (19) which will be called two-point measures. E.g.:
1-r 2(tf) = £>(*,£), (25)
k=0
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so that all orders of spacing distributions are two-point measures. Using Y5(E) we
may write the variance of the number statistic 3 ?(L) as

2 =1 Ay & S
Y iLy=L A (L — r)Yy(r)dr (26)

and establish a relationship between Az(L) and 3" %(L):

As(L) = (2/L%) /OL(L3 —2L% + 1)) _*(r)dr. (27)

For a Poissonian spectrum of energy levels the relationships for the various
fluctuation measures are simple: For spacing distributions:

p(k, L) = (L*/k!) exp(—L). (28)
For k-level cluster functions:
YiB)=1; Yi(Ey,Ep)=0; kE>2 (29)
and also:
Y XL)=L and As(L)=L/15. (30)

In the GOE limit these formulae are considerably more complicated. Ana-
lytical forms for the different cluster functions (Eq. (18)) were derived on the basis
of Mehta’s work [83]. Mehta and Pandey [85] gave relationships among functions
related to spacing distributions, on the one hand, and the k-level correlation and
cluster functions, on the other.

The two-level cluster function Y3(r) is given for the limiting cases of small
and large r values:

Ya(r)rmo — 1 — (1/6)7%r + (1/60)7*r® + ... (31a)
and
Y2(r)rmoo = (1/7%r%) — (1 4+ cos? or)/n%rd 4 ... . (31b)

The quantity 1 — Y5(r) is 1 for the Poissonian case (see Eq. (29)), while it increases
from zero asymptotically to unity for the GOE limit.
The Az(L) formula was already given in Eq. (13) while

Y 3(L) = (1/7*)InL +0.44 (32)
for the GOE case. )
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4.2. The power spectrum statistics

In addition to the above statistical tests in recent years another important
fluctuation measure has been added to the arsenal; the statistical Fourier-transform
(FT) technique. In their first paper on this topic Leviandier et al [78] introduced
this robust method to detect long-range correlations in optical spectra. The method
consists simply of taking the Fourier-transform of a set of energy levels, or directly
spectroscopic data. There have been a number of theoretical papers describing the
properties of this method (Coy and Lehmann [26]; Coy, Hernandez and Lehmann
[27], Jost and Lombardi [69], Levine and Kinsey [79], Lombardi, Labastie, Bordas
and Broyer [81]; Pique, Chen, Field and Kinsey [94,95], Pique, Joyeux, Manners
and Sitja [98]; Remacle and Levine [106]).

The Fourier-transform of energy levels or spectral lines is denoted in many
different ways, let us adopt here C(t), where ¢ refers to time, and the abscissa may
be given in dimensionless (¢/p) units (o is energy density measured per frequency
interval). The quantity examined is the square modulus of the Fourier-transform
|C(%)|?, or as it is usually denoted in signal processing: the power spectrum. This
has to be spectrally or ensemble averaged prior to use. The power spectrum contains
two main components, a fast and a slow component. The fast component, whose
amplitude is proportional to the square of the number of lines or energy levels, is
the Fourier-transform of the overall spectral envelope, whereas the more significant
slow component is the Fourier-transform of the shape of the spectral lines, and its
amplitude is proportional to N only:

(IC@®)1?) =N?AR(t)(y)*(L(t,T))* + N(y*)(L*(¢,T))-
(1= G(t)ba(t)] ® A%(2), (33)

where @ denotes the convolution operation (see: Pique et al [94]), and N is the
number of lines in the spectrum, Ag(t) is the Fourier-transform of the spectral
envelope, L(t,T) is the FT of the normalized line-shape of individual lines (of width
I'), y is the integrated line intensity, and the angle bracket (,) denotes averaging
over all spectral features. The quantity G(t) is related to the distribution of line
intensity y and line width I in the spectrum. For a Lorentzian line shape G(t = 0)
= ()2 (D)?/(y*)(1%).

When there are correlations in the spectrum (or within a set of energy levels)
a “correlation hole” appears between the fast and the slow components of the power
spectrum. The fast component that depends on level density and not level spacing,
is not important for the study of level statistics. In the case of a theoretical spec-
trum of unfolded energy levels represented by sticks of equal amplitude, the fast
component reduces to a very narrow channel. It is the slow component of the square
modulus that is proportional to 1 — by(t), where by(t), the two-level form factor is
the Fourier-transform of the two-point correlation function Y5(F) in Eq. (25):

400
ba(t) = / Y (r) exp(2witr)dr. (34)

- 00
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When correlations exist among levels or spectral features (Y2 # 0), the ampli-
tude of the slow component is multiplied by 1 —b,(t), and since the latter difference
is zero for the GOE limiting case for t/p = 0, and rises approximately to unity for
t > o (average level density), a correlation hole is displayed. The correlation hole
is “filled” for an uneven distribution of line intensities, as G(t) < 1 for such a case,
and this reduces the observability of the hole. Extensive noise of the spectrum leads
also to the filling of the correlation hole.

An enormous advantage of the power spectrum method is that the correlation
hole persists (but becomes narrower) when several pure sequences are superimposed,
as it happens in transforming actual spectral details. So the technique is capable
of detecting correlations in any mixture of levels or different stretches of spectra.

All this is true only for spectral or ensemble averages, or smoothed FT spectra.
Individual level sequences or single lengths of spectra lead to total modulation,
“speckle noise” is observed. This is analogous to diffraction of laser light from a
rough surface. In the modulation there is a lot of information on the spectral fine
structure, that is, however, not needed for correlation analysis.

Through the two-level cluster function Y3(E;, E;) in Eq. (19) the power spec-
trum is related to the spectral rigidity statistics (Lombardi et al [81]):

Agl) = / [1 = ba (O] (r, t)dt, (35)

where K(r,t) is a kernel function:

K(r,t) = (1/@2nt)*)[1 - F(y)* - 3F'(y)*], (36)

where, in turn
F(y) = (sin(y)/y); y=nwrt.

Equations (35) and (36) can be derived from Eqgs (27) and (33) by inverting
the order of integrations. It is then also seen that |C(t)|?, As(r) and T%(r) are
all closely related and therefore all convey information on second order correlations
between the location of two levels. The disadvantage of the power spectrum, viz.
that it is very noisy, as opposed to the relatively smooth behaviour of the spectral
rigidity Ag(r) and 3 ?(r) statistics, may be turned into an advantage, since one is
then free to handle this noisy appearance by any noise reducing method chosen at
will.2

Depending on the nature of the quantum system to which the statistical
Fourier-transform method is applied we have four well defined examples (see
Lombardi et al [81]), these are shown in Fig. 2 containing sketches of smoothed
power spectra.

2The author is grateful to Professor Rémi Jost, CNRS Service National des Champs In-
tenses, Grenoble, France, for pointing out this property.
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Fig. 2. Power spectral behaviour

Cases a, b, ¢ and d correspond to a Poissonian (random) spectrum, a GOE
spectrum, the harmonic oscillator and finally a set of uncoupled anharmonic os-
cillators. To understand the four typical forms in Fig. 2 we can apply the simple
recipe in Lombardi et al [81] (based on Balian and Bloch [7,8], Berry [12]; Gutzwiller
[48,49,50,51,53,54]).

An understanding of the behaviour of |C(f)|2 may be obtained by a thought
experiment. Let us start classical orbits from a phase space point (p, q) for the
problem. At every time such an orbit closes upon itself (returns to (p, ¢)) enter a
peak into the power spectrum. Then the harmonic oscillator yields regular peaks
separated by the oscillator period T, whereas a set of anharmonic oscillators shows
up a flat hole, as nothing is found in the spectrum prior to the closing of the shortest
orbit (Tmin). In strongly correlated systems the number of closed orbits decreases
with time and that gives rise to the correlation hole.

Before leaving the subject of the power spectrum fluctuation measure, it is
very important to point out another approach or philosophy of power spectra. The
calculation of the constant amplitude stick spectrum of energy levels is equivalent to
the estimation of the time evolution of a molecular wavefunction. There is therefore
a strong connection between the theory of statistical Fourier-transformation and the
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theory of radiationless relaxation processes (Bixon and Jortner [15], Lahmani et al
[74], Delory and Trie [31]). Another way of stating this is to point out that the
square modulus of the FT yields the survival probability of an initially prepared
state IV(O) > after a duration of time 5

vcw 7=\vw Ne))\2 (37)

(see Levine and Kinsey [79], Pique et al [94]).

Therefore the power spectrum may also be regarded as the spectral autocor-
relation function (see also: a maximum entropy formalism of the autocorrelation
function by Remade and Levine [106], and the relationship to the rate of explo-
ration of the phase space (Lorquet, Engel and Levine [82]). The connection between
mode selective chemistry — a centrally important aspect of laser-induced chemistry
— and the application of the power spectrum method described above was given
by Levine and Jortner [80].

5. Examples from high-resolution spectroscopy

In spite of the obvious lack of molecular spectroscopic analyses about ten years
ago (Bohigas and Giannoni [17], Brody et al [20]), in recent times there has been
a surge of efforts to extend such analyses to high-resolution molecular spectra, as
already mentioned in the Introduction. The greatest problem in applying the usual
fluctuation measures to molecular spectra is the extraction of a statistically signifi-
cant sample size of line or level sequences of definite symmetry and good quantum
numbers from the very complicated structure of highly excited molecular spectra.
It is characteristic of such studies that when complete ro-vibronic (electronic ex-
cited state) or ro-vibrational (electronic ground state) analyses are available usually
only levels with .7 = 0 (no rotation) are included. This is meant to simplify the
construction of symmetry-wise pure sets, and to reduce the number of features to a
manageable size. However, when high vibrational excitation occurs assignment of
the spectral features is frequently not possible, and, of course, this is exactly why
one would like to use the statistical method described here.

In such cases special experimental technigques are sought that lead to spectral
simplification, or the power spectrum method is used that, as pointed out before,
is comparatively insensitive to symmetry mixtures and spectroscopic resolution. In
the following a number of recent examples shall be quoted. Special attention is
devoted to the SEP (stimulated emission pumping) method developed in 1981 and
applied since then.

In their seminal paper Leviandier et al [78] applied the newly proposed method
to the highly excited acetylene (C2H2) vibrational levels, and to singlet-triplet anti-
crossing (ac) spectra of methyl-glyoxal. Acetylene vibrational spectra were obtained
by the SEP method (to be described later). This was the first example of using
the Fourier-transform method to a highly excited vibrational spectrum (at about
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27900 cm™?') and it gave an independent proof (relative to earlier statistical exam-
inations) of strong correlations. The ac spectra of methyl-glyoxal were only taken
at a vibrational excitation level of 3000 cm~! and couplings in those spectra were
known to be very small.

Jost and Lombardi [69] used the optical-microwave double resonance data of
Lehmann and Coy [75] to show the lack of level correlations in those spectra, and the
SEP spectra of acetylene, taken by Abramson et al [2], to demonstrate strong corre-
lations objectively (objectivity being provided by the independent power spectrum
method). Their own singlet-triplet anticrossing spectra of methyl-glyoxal (CHz-
CO-CHO) displayed strong correlations in the 77 electronic state. One of their
main conclusions was that only two-step, state-to-state processes, such as optical-
optical or microwave—optical double resonance, or the optical anticrossing technique
can provide spectra with sufficient spectral purity for statistical correlation studies.
Molecular beam techniques may also help reducing spectral congestion prior to such
an analysis.

Among molecular studies one of the most interesting cases is that of nitrogen
dioxide (NO3). This molecule has a very complicated vibronic spectrum between
12000 and 25000 cm™! (Hsu et al [66]). In this spectral region there are four
electronic states potentially interacting with one another (Jackels and Davidson
(67,68]; Gillispie and Khan [44,45]). The assignment and interpretation of the ob-
served spectra have not yet been achieved. The molecule has been the subject of
many statistical approaches (Haller, Koppel and Cederbaum [56,57]; Hardwick [59];
Lehmann and Coy [75,76]; Persch et al [92]; Smalley et al [108]; Zimmermann, Kop-
pel and Cederbaum [116,117]). Hardwick conjectured in 1985 [59] that all selection
rules based upon the rotational quantum numbers are broken, and the spectrum
is an ideal example of total ergodicity. Lehmann and Coy [76], however, found in
their microwave—optical double resonance experiments that although the intensity
distribution of the spectral lines indicate perfect ergodicity (Heller’s F' parameter
approaches 1/3, see: Heller [60]), the first neighbour separations and the Ag spec-
tral rigidity tests show regular classical dynamics (Poissonian behaviour). Their
study involved not only vibronic band origins (J = 0) but rotational branches of
known J value as well. A similar study by Jost and Lombardi [69], using the power
spectrum method indicated no correlation hole in the NO; spectra. So, in spite of
the fact that many more rotational transitions were found than expected with strict
rotational selection rules, the statistical behaviour of levels did not display classical
chaoticity signs.

Many such problems may be approached, as we have already noted, by stim-
ulated emission pumping, and before looking at further examples a short charac-
terization of the SEP method is given.

6. Experimental studies of level correlations by SEP spectroscopy

There are several methods in spectroscopy to access high vibrational levels
with great specificity and resolution. One of these is direct overtone pumping and
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another important tool is stimulated emission pumping.

Direct overtone pumping utilizes lasers of appropriate fundamental frequency
or harmonics. An early example of this method was reported by Swofford et al [111].
A modern laser system for this purpose is the Ti3+: sapphire laser that allows one
to excite the range between 700 and 1100 nm (9000 and 15000 cm-1, resp.). Coy
et al [28] reported the use of this laser in double resonance studies on ammonia.
The measurement of overtones at high energy requires very sensitive modulation
detection techniques, such as optoacoustic spectroscopy, as overtone intensities are
usually very low.

In 1981 Kittrell et al [70] devised a double resonance method to obtain
simplified spectra of highly excited vibrational states (between about 8000 and
30000 cm-1). The technique is capable of accessing specific vibrationally excited
levels of the electronic ground state. Figure 3 is a simple sketch of this folded variant
of optical-optical double resonance (OODR).

Fig. 3. The scheme for the SEP experiment »2i: pumping; w82! dumping; —a4 fluorescence

A laser is used to pump population from level 1 (of the electronic ground
state) to level 2 (of an excited electronic state), and a second laser is used to
force population from level 2 into a high excited vibrational state in the ground
electronic state (3). Both lasers are narrow bandwidth tunable pulsed lasers in the
visible range that are frequency multiplied when necessary. The process may be
monitored by using fluorescence (spontaneous side fluorescence or induced one by
a third laser) to the ground state (indicated by levels 4 in Fig. 3) so the obvious
requirement is that there should be an observable fluorescence from level 2. The two
lasers involved in the experiment may be time shifted and used in antipropagating
arrangement so that Doppler broadening can also be eliminated resulting in highly
resolved spectra.

The selection of levels involved is controlled by Franck-Condon factors be-
tween the two electronic states so an additional requirement for good SEP spectra

Acta Physica Hungarica 73, 1993



STATISTICAL STUDIES OF LEVEL CORRELATIONS i 4

is that the two potential surfaces should be sufficiently different. This is automati-
cally satisfied when electronic excitation results in major changes in geometry. The
method was originally applied to the B « X system of iodine (I3).

Other versions of the SEP experiment are also known with different detec-
tion methods, such as polarization-labelling (Brand et al [18]). For a review see:
Hamilton et al [58].

The SEP method has been used extensively on the acetylene (C2Hs) molecule,
and many statistical tests were performed (Abramson et al [1,2,3]; Engel and Levine
[37]; Farantos [39]; Holme and Levine [63,64,65]; Pique et al [94,95,96]; Sumpter and
Thompson [109]; Sundberg et al [110]).

Acetylene has vibronic transitions A('4,) — X (*£}) that were sampled
both at about 9550 cm~! above the vibrationless level of the So(X 'T}) state and
about 28000 cm~! above the vibrational origin. In the high energy region very
unusual spectral features were observed; “clumps” of lines, with a clump width of
about 1.5 cm™!, containing, in high resolution, about 70 individual components.
An analysis of these features showed that they all belong to the same J quantum
number, and vibrational angular momentum quantum number [ = 0 (a;'). All
clumps have very similar structure. The intensity distribution within and among
the clumps showed a convincingly ergodic behaviour. As all other quantum numbers
cease to be “good” at this high level of excitation, symmetry is completely defined
by J, | and parity so that appropriate statistical tests could be made.

Pique et al [95], used the FT technique to detect strong correlations among
1500 cm~?! long pure vibrational sequences in the SEP spectrum around 26500 cm™?.
In another work on the same SEP spectra of acetylene Sundberg et al [110] carried
out both intensity distribution studies and applied static fluctuation measures (such
as P(S) and A3(L)). All these measures suggested a near GOE behaviour for highly
vibrationally excited X levels, in accordance with the results of Abramson et al [3].

Pique et al [94] reported a more detailed analysis of the 26000 cm~! range
SEP spectra. The smoothed power spectra had time dependent features corre-
sponding to the correlation hole, the recovery time from it, and recurrences. The
width of the spectral clumps and that of their fine structure lines define two time
scales (t, = 20 ps and 267 ps, resp.) that could be related to the recovery time from
the correlation hole (tcorr) (3 ps for a single spectral stretch, 45 ps for a spectral
average). For a GOE-like spectrum the theoretical expectation is that tcorr = t,,
whereas for the HCCH spectra tcorr = t,/6 from which the conclusion was drawn
that several symmetry species or good quantum numbers exist even in this high ex-
citation regime. However, about 1400 cm™! higher (at 27900 cm~!, see: Abramson
et al [3]) the power spectra suggest fully chaotic dynamics. The works of Pique et
al [94,95] showed that the power spectrum provides more dynamical characteriza-
tion of the statistical behaviour than the single number fluctuation measures (e.g.
spacing and spectral rigidity).

One more study on acetylene should be mentioned (Chen et al [25]) via
the SEP technique in the 11400-15700 cm™" range above zero-point level. These
spectra were rotationally resolved and allowed the examination of the coupling
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of rotation and vibration. There are five vibrational normal modes for acetylene
(v1,va(EF), va(EF), va(my), vs(7u)). The A — X electronic excitation involves a
large change of geometry (the CCH bond angle changes from 180° in the X state
to 120° in the A state, and the C~C bond length increases from 0.1208 nm to
0.138 nm) so the strongest vibrational progressions are those of v4 (trans-bending
mode) and its combination with the C-C stretch (v;) mode. Reduced term value
plots showed a significant difference between [ = 0 and [ = 2 levels. (The [ quantum
number measures vibrational angular momentum from the two degenerate modes:
l = |lg £ I5|). It was found that while the | = 0 levels were unperturbed, the I = 2
levels are strongly affected by vibration-rotation interactions.

In spite of these strong perturbations the two-point correlation statistics did
not exhibit level repulsion, the fluctuation measures were all close to Poissonian
behaviour. The authors drew the conclusion that the separation of vibrational and
rotational degrees of freedom persists even at this high excitation regime.

The SEP technique has become quite widespread in the study of near disso-
ciation vibrational behaviour, that is so important for chemistry, and has enabled
a number of very interesting molecular dynamic studies. Another well studied ex-
ample is that of formaldehyde (CH,0), from the George Harrison Spectroscopy
Laboratory at the Massachusetts Institute of Technology, Cambridge, USA.

In a series of papers (Dai et al [29,30]; Reisner et al [104,105]; Vaccaro et al
[114]) very careful and extensive vibrational-rotational analyses were reported for
the range 4500-9300 cm™!. In formaldehyde there are strong Coriolis and Fermi
perturbations that increase in strength with rising vibrational energy and level
density. The SEP technique allowed a major simplification of the emission spectra
and by its use it has become possible to state that molecular rotation is important
in intramolecular vibrational dynamics. The interactions destroy the goodness of
vibrational and K rotational quantum numbers, leading to an increase of vibrational
density over the usual anharmonic level counts (for such estimates see e.g. Toselli et
al [113]). Such studies (Dai el al [30]) have, however, led to a surprising conclusion,
viz., that the increasing complexity of the spectrum with increasing J value (angular
momentum) results in diminishing chaotic behaviour. This is an explicable but
intriguing finding.

Among SEP studies on more exotic molecules the case of the Na trimer (Nag)
(Broyer et al [21]) may be mentioned. A theoretical discussion of the SEP spectrum
was given by Gomez Llorente et al [46] who concluded that the SEP spectra may
be fully interpreted, regarding vibrational dynamics, using a classical Hamiltonian.

7. Conclusion and outlook

This overview paper strived to summarize, perhaps in a rather selective and
superficial way, the modern use of statistical methods in the analysis of molecular
spectra. Contrary to the original pessimistic predictions in one of the fundamental
works in this field, in the review by Brody et al [20]: “Parenthetically it should be
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clear ihat, because of the limited amount of information contained in the fluctua-
tions, highly detailed level-to-level calculations, as often carried out especially for
nuclei, should in many cases not be worth the great labor involved in making them”
(see: p. 469 in [20]), the past ten or so years have displayed steadily growing activ-
ity in statistical spectroscopy. (To be correct it should be mentioned that Brody
et al modified their previous conclusion for cases of interesting symmetry effects!)
One of the most promising mathematical techniques appears to be the power spec-
trum method, already casting contemporary studies into a framework much more
interesting for the chemist who aspires to selective laser chemistry and therefore ap-
preciates the connection between the methods of static spectroscopy and dynamical
phenomena on the picosecond time scale extractable from the former via Fourier-
transformation. Let us quote here R. D. Levine in “Mode Selective Chemistry”
([80]): “The exploration of phase correlation can be conveniently discussed in terms
of time correlation functions. The simplest is the autocorrelation function of the
initially excited region., This can be obtained from the experimental spectrum by
taking its Fourier-transform. Dynamical computations can, of course, directly yield
the correlation functions. Obtaining the information from experiment is however of
obvious interest” (p. 549 in [80]).

There is a close link between studies of classical chaos on simple systems rel-
evant to molecular spectroscopy, and the type of statistical studies reviewed here.
One aspect is especially interesting and could perhaps contribute to further de-
velopments: the role of molecular rotation. Although it is not simple to extract
molecular levels of known rotational (and overall) symmetry from spectroscopy, the
interest in such aspects is obvious. Most of the attention so far has been centered
on vibrational behaviour with rotations eliminated. We know notwithstanding that
molecular rotation has a very important effect, some of its recognitions stemming
already from its contributions to classical chaos (Fahrer and Schlier [38]). An even
more significant aspect is the involvement of rotational dynamics in intramolecu-
lar energy redistribution (Knight [71]). Intramolecular state mixing is decisively
important for the unravelling of intramolecular photochemical and photophysical
processes and it has become evident that it is not enough to consider solely the
vibrational Hamiltonian in accounting for time-averaged and time-resolved spectro-
scopic experiments. Intramolecular energy flow is central to the understanding of
the breaking of molecular bonds, so it is central in efforts to understand chemical
processes both on the traditional level and induced with the help of lasers.

The field of statistical spectroscopy is undergoing maturation but perhaps it
has not yet won the battle among spectroscopists who still believe in completely
assignable spectra, and any failure in obtaining such a full analysis is thought to be
curable by more exacting studies. It is the hope of the present author that with an
increase of statistical activity on difficult assignment cases molecular spectroscopy
will benefit from such approaches.
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CORRIGENDA

EQUATION FOR CATHODIC GLOW SHEATH

S. Hollé and B. Nyiri

Light Source Development Department TUNGSRAM Ltd
1340 Budapest, Hungary

(Acta Phys. Hung., 72, 1, pp. 71-88, 1992)

Figure 11 on page 85 should be replaced by

Fig. 11. Charge distributions during the transient shown in Fig. 10 taken at times 0, 0.02, 0.05,
0.15, 1.0, and infinity
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AMENDMENT

to

the Contents of Volume 72 of
Acta Physica Hungarica

The following amendment is to be inserted after the Section “OPTICS AND
ELECTRODYNAMICS” in the Contents of (the preceding) Volume 72 of Acta
Physica Hungarica:

FLUIDS, PLASMAS AND ELECTRIC DISCHARGES

Stability of two superposed homogeneous fluids. R. P. Singh and H. C. Khare ... 13
Hall effect in the viscous flow of an ionized gas between two parallel walls under transverse
magnetic field in a rotating system. T. Linga Raju and V. V. Ramana Rao ......... 23
Equation for cathodic glow sheath. S. Holl6 and B. NYITi . 71
Magnetic effect on low Reynolds number flow in a heated tube of slowly varying section.
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Physics

Spacetime without Reference
Frames

by
T. MATOLCSI

In the concept of this book spacetime is the fundamental notion;
the points of spacetime are structured with the assumption of
absolute time and absolute velocity of light resulting in the non-
relativistic and special relativistic case, respectively. This gives the
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ON THE MODIFICATION OF EINSTEIN-MAXWELL
FIELD EQUATIONS

J. N. s. Kashyap

Unit of Fundamental Reaearches, Amara Khaira Chak, Kandava
Varanasi, (U. P.) India

(Received in revised form 20 October 1992)

Here the Einstein—Maxwellequations in generalrelativity are modifiedin the light of
the Maxwell macroscopic theory which deals with electromagnetic behaviour of ponderable
m atter and an axially symmetric solution of physical interest is obtained.

1. Introduction

Before 1905, gravitation and electromagnetism were thought of as independent
of each other. But with the construction of the Einstein-Maxwell field equations
based on Lorentz electron theory the philosophy behind gravitation has changed.
Now the gravitational force may also be interpreted as a force produced by the
interaction of magnetic field and electric current [1]. On macroscopic ground the
Einstein-Maxwell field equations have a somewhat unsatisfactory status. It is hence
interesting to find a modified set of field equations. In the present paper, our
attempt is to modify the Einstein-Maxwell field equations with the help of the
Maxwell macroscopic theory for ponderable matter and to show how gravitation is
interrelated with electromagnetism.

2. Field equations

Connecting the electric field strength E, electric displacement D, magnetic
field strength H and magnetic induction B with the density of charge g and con-
duction current J the Maxwell field equations for ponderable matter can be written
in the usual vector language as:

divf) = g,

divB = 0,

" e =48 )
. 1 (dD \

Curld=c +J)
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124 J. N. S. KASHYAP

where
B =uH, D =c¢E. 2

Here the dielectric constant t and magnetic permeability L are regarded as functions
of the position and time. In 4-dimensional language the field equations (1) can be
expressed as

F\ftv+ Fw + F =0 ©))

and d
SZ «=& ") =>n )
Here the antisymmetric electromagnetic tensors and H\R are defined in the

usual sense as
0 Bz -By Ex

4 0 Bx Ey

FX.= g, -Bx 0 Ez ©)
-Ex -Ey -Em O
and
0 Hz -By Dx
-Hz 0 Hx Dy
H\u By “tfr 0 Dz (6)
-Dx -Dy -Dz 0
For gravitational consideration we can take [2]
€= U= o (7)

Following the method due to Tolman [3] in the field equations (1) and regard-
ing the integration as taken over a definite fixed volume in space we obtain

j9 (D ~ +B ~ +D-jydv =-eJ[Dx B)ndc (8
and

[{G«+t h B+| (@><ji)]} dv=1 [E)divi--(curlH) X-f-(curl-D) KoJdv
©

in the usual notations, provided
r'muw(®ekx, - d,Xk) = 0. (10)

Here 7.k is a tensor density antisymmetric in all the suffixes, .. represents a unit
vector in the ~-direction and X = (Xi, X2,X3) stands for H or E. In the case of
free space, where we take e = 1, = 1, the condition (10) is identically satisfied and
(8) and (9) reduce to

J (e -+ n = teEjyavi-0I[EX Hingr @
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and
IT(tE+IiNE) +i Il (Ex)]rN=- 1~ (12)

where pij are electromagnetic stresses defined as

Pii = ~2 4 - *E+nu?2-1 - BK),
Pij - -(EIiEj + HiHj). (13)

Equation (11) gives the rate of flow of electromagnetic energy across the boundary
of the fixed volume of space and (12) shows how the rate of change in the total
momentum inside the boundary is related with the electromagnetic stresses at its
surface. The electromagnetic energy momentum tensor in free space is given as

Ea=-FoaFXa+ *"SIF FaB. (14)

Here FXB is defined in terms of 4-potential vector A\ as

F\n = AXfl —Apk. (15)

Consequently, by virtue of (8) and (9) the electromagnetic energy momentum tensor
K*° in space filled with matter is related to El as follows:

KI = o2 . (16)

Therefore, the Einstein-Maxwell field equations may be modified from the principle
of stationary action

6\]V"giR+"Fx"+1¢x¢x)c14x a7
as follows:
R\n —"ARg\v = 2kKXl —/(®/1D,, - - g Xyudada) (18a)
and
0Od = yFXiHxr (18b)

Here, k and | are arbitrary constants and the covariant d ’Alembertian O is defined
to be a covariant divergence of ®“, where covariant ®B =
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126 J. N. S. KASHYAP

3. An axially symmetric solution

In cylindrical polar coordinates (g, %, z, t) we take the axially symmetric met-
ric [4]:

ds2 = _e2(a-,J)(Efi22 + dz1j _ ele-W dipl + e*Rdt\ (19)

where a and 8 are functions of g and z only. If we define the electromagnetic
4-potential vector An as
Aa= (0,e,0,£), (20)

then from (15), the only non-vanishing components of F\n are
F12="“Cl, ~23=£3 M4= —l) ~"34=—£3- (21)

Throughout this section the lower suffixes 1 and 3 after a function indicate partial
differentiation with respect to g and z, respectively. Now for the metric (19) the
field equations (18) with the help of (14), (16) and (21) can be recast in the form
as follows:

e 2[fizLil _TLIU 1T 1(p 22
Bl - BI- —= g2e-R R 2l 3)’ (29
il+ i ,iL+0
QU+ <B+BI+ 01 ——LD2 5 o T pn (9?74 0), (23)
. _ 4+4+tf+#
i+ w4 B+ Bl —2VIB= KP2 por on  eop -E(07 + 05,  (24)
£ig3 fus |
T™M 22 "% @ge-P en "2 = (25)
£ili + ®8= 0, (26)
yoh = (iL+ii _ TLtiA 7)
/[ Veze-2¢ e2r |’
where
- dg2 622 Bob (28)
Also, from (10) and (21) we have
6ldl+ <33 = 0, (29)
6 ®3—6 dL= 0. (30)
By virtue of (29) and (30) the Eqg. (26) is identically satisfied. If we take
Yo = Q, (31)
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then, from Eq. (27) we have

ele-1R - e28 m
Rom (31) we get
®=1+ m/r, (33)

where m is an arbitrary constant and r = (g2 + z2)1/2. Making use of (33) in (29)
and (30) we get
pci + ze3 = 0, (34)

*fj - PI3=0. (35)
From (23), (24) and (32) we further have

VI3 = —2kP2 ] (36)
From (36) we obtain
e2r2
(m + k)6’ (37)
provided
B =-log(l + m/r) (38)
and
m
€T 2020 (39)

e being another arbitrary constant. From (35) and (37) we get

ep ez
m + r)3’ I3 = (m+r)3 (40)

1= (
Now, from (32), (34) and (37) we obtain

. ez ep’
£ —- Fg(er' B B = rom+ 1) (41)

By making use of the values of ®, B, &, f3, £i and f3 from (33), (38), (40) and (41)
in (22), (23) and (25) we get

Im2p(p2- z2)
2 re (42)
Im2
«11 + 033= -774 (43)
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2 = /mZPTZI; (44)
The equation (42) or (44), after integration gives
_ _mV2
a= 2r4 (45)

provided / = 2. For the value of a so obtained Eq. (43) is identically satisfied.
Therefore, making use of (38) and (45) in (19) we obtain

w- i {-¥) (47 Rk (1Y %

This solution is an analogue of the Synge solution [4]. It is also worth noting that
the difficulty, which comes in solving the Einstein-Maxwell field equations due to
their non-linearity [5], is expected to be removed here.
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THEORETICAL STUDIES OF THE OPTIMUM DESIGN
CONSIDERATIONS IN RING DYE LASER

H. E1I-Kashef

Physics Department, Faculty of Science, Tania University
Tania, Egypt

(Received in revised form 12 January 1993)

The theoretical studies of the optimum geometrical design considerations in the ring
resonator of the dye laser are studied. The position of the minimum waists and the range
of stabilisation parameters using the optical matrices are calculated. The design consid-
erations of the high passive stability, and low optical losses are discussed. Additionally,
a single-mode, broad-band and low-loss ring laser resonator of length 600 mm, using a
minimum number of optical elements is reported.

Introduction

The resonator is one of three important parts of laser construction beside the
active medium and the pumping light source. Fundamentally, a ring laser resonator
consists of three mirrors at least, where a coherent light wave is produced. This
produced light will be amplified in laser material (active medium) by the induced
emission. The optical components contained in the resonator and its geometrical
design decide the qualitative and quantitative characteristics of the produced laser
beam.

Continuous wave (cw) dye lasers [1,2], have mostly been evolved directly from
earlier laboratory research instruments, their designs tend to remain complicated,
and they can be difficult and tedious to operate. On the other hand, different de-
signs of resonators are used [3-5]. Some of the most common shortcomings include
the use of elaborate mechanical resonator structures that require exacting initial
alignment and continuing realignments, complicated intracavity beam paths, which
are often folded into several dimensions. In addition, these lasers [1-5] use very
long four or five mirrors resonator. Introducing the elements of single mode selec-
tion (biréfringent filter, thin and thick etalon), unidirectional device, scanning and
astigmatism compensation elements, leads to very high losses, high costs and good
passive stability cannot be achieved.

In this paper these common shortcomings are eliminated, and new features
are added. Many original ideas are conceived and tested. Theoretical calculations
are carried out for optimum design considerations, such as the correct waist size,
enough place for the resonator internal elements, low optical losses, small circum-
ference, freedom from astigmatism, broad-band, high passive stability and simple
adjustment. All these advantages are assembled in a new design of ring dye laser
cavity.

Acta Physica Hungarica 73, 1993
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130 H. EL-KASHEF

Fig. 1. The numerical values of the resonator: too — 15.4 /im, tom = 218.5 /im, fil = 26.25 mm
and <2 = 27.5 mm (The plane mirrors have no effect on the beam parameters)

Theoretical

The mathematical calculations which describe the laser beam in the simple
resonator structure using optical matrices were studied [6]. We extend the calcula-
tions for more complicated active resonator structures.

The propagation of Gaussian beam is defined using the complex parameter g
as follows [7]:

1 1 iX
q R Tkp2’

where rois a measure for the beam cross-section (beam waist), and R is a measure
for the beam divergence (radius of the wavefront). The ring resonator is a periodic
sequence of optical systems. The elements of ABCD matrix of this system can be
used to calculate the mode parameters of the resonator. One uses the ABCD law
[7] and postulates self-consistency by putting g\ = gi = ¢ One has

. Ag +B
q|=@=q_cq+D

The roots of the resulting quadratic equation are:

1 D-A A

q 28 4-(A +D)2 (2)

which yields stable periodic sequences when the trace (A + D) obeys the inequality:
(A+D)2<4, -2<A +D<2. €))
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OPTIMUM DESIGN CONSIDERATIONS 131

As shown in Fig. 1, the resonator is divided at the middle of the jet (the jet repre-
sents only an optical pathlength in condensed medium) into two symmetrical parts.
It could be considered as the sum of two distances in air, one with optical pathlength
2di between the spherical mirrors. The rest of the pathlength is 2d* This means
that 2c% + 2d2 = L, where L is the circumference. The spherical mirror will act as
a lens of focal length / = R/2. From the condition of symmetry the minimum of
beam expansion is wo in the middle of the jet (see Fig. 1) and oppositely to wm in
the resonator. The total matrix of the resonator at the selected position in the jet
is:

M=(c d)- «
where

The stability criterion of Eq. (3) gives the condition for d\:
dmn A d\ < dmax )

where dmin = /, dmex = For d\ inside the stability range, one can calculate
the size of the beam in the jet by comparing Egs (1), (2):

- * D-A i
(Iq L_ A B + ZBv/4—(A+£»)2. (6)

Since A —D and q is imaginary, this means I/R = 0. By exact observation one
can put the matrix as a function of d\, dmex and drn:

M= )

A (di —dmp)  (dnex  di)
(<fmax  hmin)

8 _ 2 (*Nciax ~ A1) ' ("1 ~ “mlIn)

("max
C=-2
("™max  hmin)
d max in — /2
d2-f'
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3 1 1
U 25 26 27
d, (mm)

Fig. 2. The values of the beam waist Wo, wm in pm as a function of the mirror separations

(/ - dmin = 25 mm, dmax = 27.5 mm, and A= 600 nm)

then the beam radius in the jet:

mg— 9(*L dmin)(dmex di).

(8

The calculation of the beam parameter gm at a position opposite to the jet in the
resonator is similarly carried out, where d\ md2 will be changed, and still A = D.

This gives the waist at this position:

A2 e
thm — 2Ne  &min) «(dmex d2),

with .
s*min = = : ninj dm ax —
=4 d2- f
therefore and dependent on d\, dm\n and dmax,
w? w2 Amin amax 4l
" (dmex  anmtn)2 (di —dmin)

Acta Physica Hungarica 73, 1993

©)

(10)



OPTIMUM DESIGN CONSIDERATIONS 133

Figure 2 represents the dependence of waist size on di(/ = 25 mm, dmn = 25 mm,
dmex = 27.5 and L —600 mm) in the middle of the stability range, i.e. for

d\— + dlnin

or

Amex d\—d\ Anin)

then

2 _ N Amin 11\

wm ~ ﬂ (tim-—- RWI"IJT> I ll)

when d /, then in the first approximation:

. P
Nvex  min — o _J7~ Z% (12)
and
Amex  dmin 2/ £ —— 13
min 3 (13)
then for wm:
. dz2, (14)
and for vo-
. nl2

<15>

The arrangement of Fig. 1 as treated previously is a simplified model which
can be applied for all resonators. It consists of two spherical mirrors (one min-
imum waist) and any suggested numbers of plane mirrors. This is accepted for
most commercial lasers and many lasers developed in the institutes of research, for
example [1-5].

Experimental results and discussion

As a result of the previous calculations and experimental studies the optimum
geometrical construction of the ring cavity leads to a new design shown in Fig. 3.

The developed cavity is compact in size (L = 600 mm). This leads to an
easy selection of the single mode operation, where the laser modes are separated
by a distance c¢/L = 500 MHz, c being the velocity of light. The other developed
lasers [1-5] have long resonators of more than 1250 mm. This cavity consists of
a minimum number of frequency selective elements necessary for obtaining highly
efficient single mode operation:

(i) The cavity is used in addition to the Lyot filter (three quartz crystal
plates of thickness ratio 1:4:16), a new development of Mach-Zehnder Interferometer

Ada Physica Hungarica 73, 1993
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Fig. 3. The new design of ring resonator. Mp: pumping mirror, Mi-M 2: spherical mirrors. M3-
M5: plane mirrors O.D.: optical diode, L.F.: Lyot filter, G.W.: glass wedge, MZI: Mach-Zehnder
Interferometer (two plane mirrors and 50 % beam splitter)

(M2Z1) with a free spectral range = 42.5 GHz for single mode selection and tuning [8].
This MZI is placed in the corner of the cavity instead of one mirror. The incident
angle of the laser beam on MZI is 15°, which makes it broad-band etalon. The
experimental results showed that it caused losses of less than 0.5 %. The references
lasers [1-5] used two étalons, thin and PZT driven thick etalon for laser frequency
selection and tuning, which leads to high losses and complicated alignment.

(if) The incident angle on the spherical mirrors is about 3.5°. This is car-
ried out by using two plane mirrors M3, M4 beside the spherical mirrors, which
eliminates the astigmatism with more than 95 % without inserting astigmatism
compensation rhombs of certain length inside the cavity as in the other lasers [1-5].

(iii) In this cavity a glass wedge of thickness 4.5 mm and wedge angle of 0.5°
is used to extend the scanning range of the cavity up to 50 GHz. This wedge is
placed on a micrometer displacement table. The other lasers [1-5] used dual galvo
plates with a scan range of about 30 GHz.

(iv) This cavity used a new development of optical diode for achieving one
directional beam independent of wavelength [9]. It caused losses of 0.24 % at /1=
589.3 nm. The others [1-5] consist of two or more separated optical parts for this
aim which add more complications in the adjustment and also high losses.

(v) This cavity used a plane mirror PZT translator for laser frequency tuning
while the others used a spherical PZT mirror translator, which makes disturbance
by cavity scanning.

(vi) In this cavity the beam displacement due to the insertion of optical el-
ements are self compensated, where the beam displacement caused by the optical
diode is fully compensated by that caused by the Lyot filter and glass wedge. This
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leads to only 0.054 mm beam displacement when all the elements responsible for
single mode selection are introduced to the cavity.

(vii) The cavity is symmetric in construction and consists of an even number
of resonator mirrors which leads to a small deviation angle on all mirrors and
accordingly high reflectivity and broad band.

(viii) The laser resonator and the single mode elements are built on a gran-
ite stone plate (100 x 28 cm), used efficiently for acoustic isolation between the
components.

Conclusion

The calculated optimum design considerations lead to the optimum selection
of the optical elements and their separations. The new cavity construction elim-
inates many highly expensive optical elements which cause high losses and many
adjustment complications. This eliminates many holders and reduces accordingly
mechanical and acoustic vibrations to a minimum. Simple efficient single mode
operation is obtained using Lyot filter and MZIl. Among others the characteristics
of the cavity are: compactness in size, freedom from astigmatism and high passive
stability.

References

1. T. F. Johnston, Jr, R. H. Brady and W. Proffitt, Appl. Opt., 214, (13), 2307, 1982.

2. D. M. Kane and M. H. Dunn, Opt. Commun., 48, (5), 295, 1984.

3. J. C. Bergquist and Lee Burkins, Opt. Commun., 50, (6), 379, 1984.

4. C. R. Pollock, J. Kasper, G. K. Ernst, W. E. Emst, S. Blit and F. K. Tittel, Appl. Opt., 18,

(12), 1907, 1979.

5. H. W. Schroder, L. Stein, D. Frélich, B. Fugger and H. Welling, Appl. Phys., 14, 377, 1977.

6. H. Kogelnik and T. Li, IEEE, 54, (10), 1312, 1966.

7. A. E. Siegman, An Introduction to Lasers and Masers, McGraw Hill Book Comp., New York,
1971.

. H. ElI-Kashef and G. E. Hassan, J. Mod. Opt., 39, (1), 43, 1992.

9. H. ElI-Kashef and G. E. Hassan, Delta Journal of Science 16, (2), 50, 1992.

[ee)

Ada Physica Hungarica 73, 1993






Acta Physica Hungarica 73 (2~4), pp- 137-151 (1993)

UNIFIED DESCRIPTION OF THE EQUILIBRIUM
OF UNIFORMLY, SLOWLY ROTATING POLYTROPES

J. P. SHARMA and R. B. YADAV*

Department of Applied Sciences, M. M. M. Engineering College
Gorakhpur (U.P.), India

(Received 20 April 1993)

Using an approximation technique, we have considered a unified description of the
equilibrium structure of slowly rotating polytropes of index 1 in Newtonian theory gov-
erned by the equation of state P = constant fp. Approximate analytical solutions to the
equilibrium equations have been presented in different phase planes. Graphical material
shows a comparative study of the runs of Ug with VO (Fig. 1), Up with Vp (Fig. 2), Up
with Vp (Fig. 3) and 0 with £© (Fig. 4) between rotating (angular velocity W = 0.05 and
0.15) and non-rotating (W = 0) configurations. Transformations connecting solutions in
these phase planes have been obtained. Other physical properties of the configurations are
described in terms of the solutions of the structure equation.

1. Introduction

The importance of the effects of rotation on a self-gravitating body obeying
a polytropic equation of state of the form P = Kp1+* (K and n are the two dis-
posable constants) is well known, as for example, rotation brings about changes in
physical structure and the shape of the body. Considerable amount of work has
been done by several eminent authors in Newtonian theory (for example, Jeans [1,
2]; Chandrasekhar [3]; Chandrasekhar et al [4]; Roberts [5]; James [6]; Monaghan
et al [7]; Cunningham [8]; Carl J. Hansen et al [9]; Sharma et al [10]) as well as in
general relativity theory (GRT) (for example, Hartle [11]; Hartle et al [12]; Hartle
[13, 14]; Hartle et al [15, 16]) to study the structure and stability of various forms
(for example, ellipsoidal, spheroidal, cylindrical and rings) that a self-gravitating
body may take due to rotation. In case of slow or rapid rotation most of the au-
thors have experienced considerable difficulties in solving the structure equations
by known numerical methods (variational or perturbation analysis, R.K. method,
etc.) until quite recently (Sharma [17]) the rotational problem of highly rotating
polytropes has been tackled by Pade’ (2,2) approximation technique, as also used
elsewhere (Sharma [18, 19]). In this method, we do not require to perform numer-
ical integrations of the structure equations, instead, as given below, solutions are
obtained in simple and compact form from which the desired parameters can be
obtained directly. And further, computer programs are, however, not necessarily

* Working as a Research Assistant supported by a grant from CST (U.P.), Lucknow, India.
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required, that is, calculations can be carried out even with the aid of an electronic
pocket calculator. It seems, therefore, worth while to employ the present technique
for solving the rotational, polytropic problem which may assist in eliminating the
lengthy and cumbersome process of numerical integrations. The present technique
would also be equally helpful for solving rapidly rotating polytropic problems.

In contrast to the previous works, we will present in Section 2 the struc-
ture equations in generalized form from which spheroidal, cylindrical and plane-
symmetric cases can be easily obtained. Approximate analytical solutions for 7 = 2
in (£©,0), (V©, U@, (Vp, Up) and (Vp, Up) planes are given in Section 3. Section 4
presents the transformations connecting the solutions in these phase planes. Fig-
ures 1to 4 represent a comparative study of the characteristic features of spheroidal,
cylindrical, and plane-symmetric configurations rotating with small velocities W —
0.05 and 0.15. To test the reasonableness of our analytical technique, this is com-
pared with its non-rotating counter part (W = 0 (solid curves)). Integral properties
of the polytropes, and the physical significance of S, f7@ Vp, Up and Vp, Up vari-
ables is given in Section 5.

2. Generalized, polytropic structure equations

(i) Structure equation in (£e,0) phase plane

The fundamental equations governing the structure of a polytropic configu-
ration of index n rotating with angular velocity 'l can be expressed as

- = ViIf+ JiTV, x2=x2+y2,

P 2 y (1)

P = Kpl+i, (2)
V€= —Airg, 3

where P is the pressure, p the density, dpthe gravitational potential, \ the vectorial
distance from the axis of rotation, K a constant, and G the gravitational constant
(6.67 X 10-8 dynes cm2/gm2). If we introduce r as the distance from the centre of
the polytrope, and define the dimensionless variables 0, and £0 by the relation

_ e _ (DA A _ @
p =pcQn; r = aCEO = / te, W = 2irGpc’ )]

where pc is the central density, then Egs (1), (2) and (3) give

lJL(deO\:_O"+W (5)
to dte VO dte) '

which satisfies the boundary conditions

0 =1, at £©=0. (6)
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Equation (5) would describe a broad spectrum of polytropic configurations: N =
2,1 and O represent, respectively, spheroidal, cylindrical, and plane-symmetric shapes
For non-zero values of W, it does not seem possible to obtain exact solutions of
Eq. (5) and, as mentioned in the introductory part, one may then take resort to the
numerical methods. Using Pade’ (2,2) approximation technique, we present here
approximate analytical solutions of this equation for small values of W = 0.05 and
0.15.

(ii) Arrangement of the solutions in (V©,i7e) phase plane

As in non-rotating case [18], we shall discuss here briefly the arrangement of
the solutions in the (M©, uq) plane. Consider the following two functions uq and
\© defined as

e @

where we have used dash (') to denote differentiation with respect to £. The first or-
der differential equation between M®and Uq, equivalent to Eq. (5), can be obtained
as follows:

Differentiating the first equation in (7) with respect to £6, and making use of
Eq. (5), we obtain

rA = z©.[(i + ~O-tfe-n/Ve]; / =0n/0n- w. (8)

Ug af®©

Similarly, from the second equation in (7), we have

£ af “5 KI1I-")+* + M- ©)
Combining Eqgs (8) and (9), we have
VO dUe Ug + N/VO - (1 + N)
(10

Ue dve [ ua +Vg+(1-N)

Non-rotating case ([20]) can be obtained by putting W = 0. Unlike the non-rotating
case, it is not possible to express the derivative ~ 2- (or dVe/dUs) solely in terms
of uq and VO©. We may find that uq —+1+ n, vq —*0 as £0 —0.

(Hi) Discussion in (Vp,Up) plane
Equations (1), (2) and (3) enable us to write the generalized equation in
(Ep ,P) plane in the form
fT ~N(f?P"* &) =-p* +7 (1)

Acta Physica Hungarica 73, 1993
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Fig. 1. Runs of U@ with Ve for slowly rotating N = 0,1 and 2 configurations of polytropicindex 1.
Solid curves (-) represent non-rotating configurations

where
r —apfp = Es{izGAEp\ P= Pc&n; &= PK< (12)

Let the variables Up and Vp be defined by

ip (pirfT -vpicFiW] £pP'

Up = 0 W= R (13)

Proceeding as above in para (ii), we obtain the generalized first-order differential
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equation between Vp and Up in the form

VpdUp _ Up+fxvp- 1+ N)
Up dVP Up + SVp+ (1' N) ’

=«TT" A -(iT1)(jSra)’
We may find that Up —m(! + N), Vp —»0 «ds —»0.

(iv) Discussion in (Vp,Up) plane

As in the preceding sections (ii) and (iii), making use of Egs (1), (2) and (3),
the generalized equation in (£p,p) plane can be expressed as

15
P+ PcW’ (12
where :
_ . _'K{n+1]
r=app= - (16)
Assume that
U p*-' -PcPI~-"W ipp’
Lp= _ p 5 ) Vp= _Ipp (17)

then, after differentiations of Up and Vp with respect to (p, and making certain
simplifications, we obtain the following first-order differential equation, equivalent

to (5), in the form _
sow 0 HIPT Q0 )

h =P/P~PcW; R=-~.

Near the origin (Ep  0) Up—=*1+N, \p 0.

(v) First-order differential equations in {Z&y@), (Zp,yp) and (Zp,yp) planes

We define the new variables z@ and y© by

z& = log{n(0" - W)} + 210g£0, YO = ate i@=c¢e <e (19)
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Then, after some simplifications, Eq. (5) reduces to the first-order differential equa-
tion
W04 et (1-N)ye +2(1- V- /3(0,ye) /40)+e%e =0 (20)

where

/3(0, v&) (- ")g(?'n-w) ® (y0 + 2)2;/40) = OOn,W.

We may find that /3(0,y©) —»0, /4(0) —»1 (near the origin) as h — 0o and
W = 0. This leads to give our previous result [17] for the isothermal spheroidal
configuration. 1f we further define

(i) Zp=CPmP\ Cp=-e~1lp, m——2,

() YP=~ =~Amlr  +mZp' (1)

and
ZP=tpmp] ip=e-t', m=-2,

then Eqgs (11) and (15) reduce to the first-order differential equations

+@- myP-f(m- NHWzP -—------ zplyp +W (1------ (WzP - 2yP)

+ /w(Ep ,zp) - 0"W/6Lp, zp) = 0, (23)
where _ W

h(ip,zp) =tjrriZbr; /6(6>2p) =<

and

W' +(-17b +(m- 1)", + W2ZP+ (24)

- 11(ip, Z,)(Waz; + y2- 2WZpyp) - 2Wyp+ Zp/8(Ep, Zp) = O,
where

Mip,Zp) - Zp + peWgw>

h(ip,Zp)=ePawzp+pcw)i-i.

We note, for n — oo and W —% 0 we revert to our previous results for static,
isothermal, spherical configuration (TV= 2) [17].
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3. Solutions for 7 =2
(i) Approximate analytical solutions of Eq. (10)
We assume a series expansion of the form
UB= (1+ N) + a®®+ b®Vvq + c©Vvg + dqVq + ... (25)
which satisfies the initial conditions U@ —»(1 + N), F@ -* 0 as (© -+ 0 (Section 2
(ii)). By the usual procedure, we determine the coefficients a® b®, c®, d®, ...,

successively with the help of Eq. (10). Finally, we obtain the desired solution in the
form of rational function (Pade’ (2,2) approximant):

1+ Ag\W®+ B@VE

CreR2) = 1+ ™M1, cave + DEVE' (26)
where
1
NO = (FT¥)a0 + Cer D07 (1+ iy (8072@C8) + DG
a®d® —h@® D®_c© b@do
Ce=— si— ~’ A©
A© = 60—a@®

Note the physical significance of variables (V©, U@ as given in Section 3 (i). Figure 1
provides a comparative study of the variation of physical variable U© with MO for
IV= 2,1 and 0 configurations rotating with small angular velocity W = 0.05 and
0.15. USis a monotonie decreasing function of MS) and it decreases somewhat faster
for N = 2 configuration than for N = 1and N —O configurations. The value of U©
decreases as the angular velocity W increases, and it has larger values for N —2
configuration than for N = 1and N = 0 configurations. Static N = 2,1 and 0
configurations as shown by solid curves (= have somewhat larger values of U® than
their rotating counterparts.

(i) Approximate analytical solutions of Egs (5), (14) and (18)

Corresponding to Egs (5) (14) and (18), we assume the following series ex-

pansions
0 = 1+ aCEO + PCEO+ + d&(1 +... (E© —0), (27

UP =(1 + N) +apVP +bpVp + cpVp + dpVB + ... (EP —0) (28)

and
Up=(1+ N) +dpVp + bpVf + Qo\p + +... (ip- 0), (29)
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144 J. P. SHARMA and R. B. YADAV

Fig. 2. Runs of Up with VP for slowly rotating N = 0,1 and 2 configurations of polytropicindex 1.
Solid curves (-) represent non-rotating configurations

which satisfy the initial conditions: 0 —» 1, £0 —»0; Up —(1 + N), Vp —»0; and
W —»(1 + N), Vp —»0, respectively. Values of the coefficients de , B&, ¢Q, d@ ap,
bp, cp, dp-, dp, bp, O, dp are determined in a similar way as mentioned in Section 3.
Approximate analytical solutions of Egs (5), (14) and (18) are then given by

1+AXI +Bl&
1+ C*l +Dtf4”

Ty 1

1+ CpVp + DPVE "

02,2 (30)

up2.2) = 1+ IV (31)
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UNIFIED DESCRIPTION OF POLYTROPES 145

Fig. 3. Runs of Up with Vp for slowly rotating N = 0,1 and 2 configurations of polytropic index 1.
Solid curves (-) represent non-rotating configurations

1+ APVP+ BpVpR

U2, =@+ N) 1, cpp+ DRV 2!

(32)
Results of our calculations are displayed diagrammatically (Figs 2, 3, and 4) for
two chosen values of angular velocity W = 0.05 and 0.15. For comparison, the
non-rotating case (W — 0) is shown by solid curve (-). (Vp,Up) curves in Fig. 2
show decreasing trends similar to Fig. 1. Values of Up are somewhat higher than
those of Ug. Other behaviours of (Vp, Up) curves are similar to (Ve, U@) curves
(Fig. 1).

Decreasing trends in (Vp, Up) curves for N = 2,1 and 0 configurations have
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Fig. 4. Solution curves for slowly rotating IV = 0,1 and 2 configurations of polytropic index 1.
Solid curves (-) represent non-rotating configurations

been noted as in Figs 1 and 2. Values of Up are found to be smaller than those of
Up (Fig. 2) and U@ (Fig. 1). Other characteristic features of (VP,UP) curves are
similar to {Vp, Up) and (M©, U@ curves.

Figure 4 represents solution curves (£©,0) for TV= 2,1 and 0 configurations.
Figure 4 clearly indicates that the value of O increases as W increases, and possesses
higher values for TV = 2 configuration than for V.= 1 and 0 configurations. 0
monotonically decreases as £ increases, but it falls off more rapidly for Tv.= 0
configuration than for V= 1and TV= 2 configurations.

Values of the coefficients Ap, Bp, Cp Dp; Ap, Bp, Cp, Dp; and A& ,B®, Cq,
Dq are given in Appendix A.
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4. Transformations connecting the solutions in different phase planes
Dividing the first equation in (7) by the first equation in (13) and using the

Egs (2), (4) and (12), we find
uo= UP. (33)

From equations (4), (7) and (17) we have

Ue = Up. (34)
Combining Eqgs (33) and (34), we get

Up = Up. (35)

Similarly, from the set of equations (2), (4), (7), (12), (13) and (4), (7), (16), (17)
we derive that
V@ = 1~.|"—r|Vp =6W; 6= (I/(n+1), (36)

and
Ve = RVp. (37)

Hence, from the foregoing equations, we have
Vo —jVp; 7 =R/6. (38)

Using equations (4), (12), (16), (19), (21) and (22), one may obtain the transfor-
mations connecting the solutions in (z©,ye), (zp,yp), and (zp,yp) planes.

5. Integral properties of the configurations and physical significance
of (Ue,Ve), (UP,Vp) and (UP,VP) variables

(a) Integral properties

Some of the important integral properties associated with the description of
spheroidal, cylindrical, and plane-symmetric configurations are as follows:

1 Spheroidal configuration:
Mass, M=} pdv, (39)
which, with the help of Eqg. (4), can be expressed as
[+fe

M = 4Tra|ch/ 4 0 " = dirolpe|ile 4. (40)
0
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s

Internal energy, U = -—- | Pdv.
7 Jv

Using Egs (2) and (4) in Eqg. (41), we obtain, after some simplifications,
i+i

V= 40+y ;y r? I™Me-«.1)-j f1ilio'0'4

Moment of inertia, | = i pdv\2 = 4&a0/jcx 2|£ |0 '(EQ).

«l Vv

2. Cylindrical configuration:

Mass, M = [ pdv = 27ra0/?c|*ei0/|.
>/\)O | |

i+i
Internal energy, U= m - t Pdv = (n+ ----|£010'|2.
7- 1oy 2T- 1)
Moment of inertia, | = J/ pdv\2 = 27ra|p<x2|EeB, |

3. Plane-symmetric configuration:

Mass, M= pdv = 2pca0|©].

IV

+i  rfei

i s
Internal energy, U= —UL- [ Pdv=2("+ 1)Qe™ | .1 | te&d{&).
7-U, 7-1 Jo

Moment of inertia, 1 = 23 pdv\2 = 2pcaeX 2|0,
v

In above expressions £01 denotes the value of fO for which 0 vanishes.

(b Physical significance of (V@ U@), (Vp,Up) and (VP,UP) variables

(41)

(42)

43)

(44)

(45)

(46)

(47)

(48)

(49)

The following expressions describe the physical significance of (V& U@,
(Vp, Up) and (Up, Up) variables for spheroidal, cylindrical and plane-symmetric con-

figurations:
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1. Spheroidal configuration:

lTe: U(ng) 5 LPU1R)-POWE,

AMOml- »>» | e J°

_ -aP AW ) 3 \p(Zp)-P cW \
P P (n+ Ifre-'"K&X Kb) r
V = tpP'= (n+ 1)
P P dx anr'VI »~ |7
r_ Up-*-pcpl-'W) _ 3
' P npi-ipi \ p(U I’
Yy = = n' M (U1l
P 41C@\ "/?» | i

2. Cylindrical configuration:

0= f0(0"-Ww) 2{p(ie)-Pe”}

0 p(£e)
ie0;
vo= 8% 1T A (fe):
2trajpc "p"
Up - _Qp —pcP nHlif «ITw j Wip) - powo
(n+ e “ifA K60

= 2_7[40thCanr:\ (W;
_ 2{pfc,)-/>ewQ
"P 1- XKbl
u' nM (iP)
A 27ra2pc “pi

F, = -

5. Plane-symmetric configurations:

_ o0 - wo I ]
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0 0 2«epl-tpii Cel )’
iP{ P -pgP K AW) 3 p(Cp) - PcW\
pi “ (,+ Dpt-1IKm \ N ) i
\% tpP> - (n+1) (M("IN.
A P 2«<ppl-'p N Tpl r
rr_ U p2-* -Pcp'-"W) 7 \p(U -pcW\
t n~-11 p(u r
% w n FrAf(~) 1
P P 2apl-*pn u /'
Appendix A

From Egs (27) and (30), the values of the coefficients Aq, 84, Cq, Dg are

found to be

AO=ae + Ce> 4O = bB@+ &LQ+ De,

Cqg=(ece -a'ede)/AB, Dt = (ede - ¢*2)/40; (Al

A© = ugqGy —602.
Similarly, from the set of equations (28), (31) and (29), (32), the values of the
coefficients Ap, Bp, Cp, Dp-, Ap, Bp, Cp, Dp are determined as

Ap =(@1+N) 'ap+Cp, Bp=(1+N) '(bp +apCp) + Dp,

aPdp - bpcp Co —bpdp
Cp=— k;— m Dp= Ap = (A2)

Ap—(1+ N) 1ap4-Cp, Bp—(1+ N) '(bp+ apCp) + Dp,

ri _ (ipdp — bpCp) n _ (Cp — bpdp)

A3
Cp~ B A, ’ *3)
Ap = bp —apd.
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The simultaneous effects of finite ion Larmorradius (FLR) and collisions with neutral
atoms are investigated on the stability of an infinitely conducting plasma of variable density
in the presence of a horizontal magnetic field. The perturbations propagating along the
ambient magnetic field are considered. It is established that, real part of n is negative,
where n is the growth rate of disturbance, so that instability does not arise in the form
of increasing amplitude, i.e. overstability. A variational principle is used to obtain an
approximate solution of the problem. Further the case of two semi-infinitely extending
plasmas of constant densities separated by a horizontal interface is considered. It is found
that the system is stable (for some wave numbers) for potentially stable configuration
and unstable (for other wave numbers) for potentially unstable configuration even if there
are collisions with dust particles. Also criteria determining stability and instability are
independent of FLR effects.

1. Introduction

A detailed treatment of Rayleigh-Taylor instability, together with the possi-
ble extensions in various domains of interest has been given by Chandrasekhar [1].
The finite ion Larmor radius (FLR) has individually been shown to have a stabi-
lizing influence on thermal instability, thermosolutal instability and gravitational
instability by several authors [2-8]. Melchior and Popowich [9] have considered the
FLR effect on Kelvin-Helmholtz instability in a fully ionized plasma while that on
Rayleigh-Taylor instability has been studied by Singh and Hans [10].

Quite often the plasma is not fully ionized and is, instead, partially ionized.
A partially ionized plasma represents a state which often exists in the universe and
there are several situations when the interaction between the ionized and neutral
gas components becomes important in cosmic physics. Stromgren [11] has reported
that ionized hydrogen is limited to certain rather sharply bounded regions in space
surrounding, for example, O-type stars and clusters of such stars and that the gas
outside these regions is essentially non-ionized. A stabilizing effect of collisionals on
Rayleigh-Taylor configuration has been shown by Hans [12] and Bhatia [13]. But
the collisional effects are found to be destabilizing for a sufficiently large collisional
frequency on Kelvin-Helmholtz configuration by Rao and Kaira [14] and Hans [12].

In the present paper we study the simultaneous effects of ion Larmor radius
and collisions with neutral atoms on the stability of well known Rayleigh-Taylor
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configuration in hydromagnetics (Chandrasekhar [1]). We regard the medium as
being a mixture of an infinitely conducting component and a neutral component
interacting through mutual collisions. We make the assumptions that the individual
components, by themselves, behave like continuum plasmas and that the effects
on the neutral component resulting from magnetic field, pressure and gravity are
negligible. The case of a uniform horizontal field and longitudinal perturbations is
considered. Next, a variational principle is developed to obtain the approximate
solutions.

2. Perturbation equations

The model we consider consists of two inviscid, homogeneous, semi-infinitely
extending plasmas separated by a plane interface at z = 0, each region being per-
meated with a neutral component of the same density. Initially the configuration
is at rest. We give a small disturbance to the system. The linearized perturbation
equations for the mixture ofthe hydromagnetic plasma and a neutral gas moving to-
gether in a uniform horizontal magnetic field H(ff, 0, 0) and downward gravitational
field g(0,0,—g) are

P~ =-VIiF + -L(VXh) XH + g(6p) + pdve(4d - q), 2.1)
N =-Mun- q), (22
"p) =(9VY, (23)
A= (H-V)q, (2.4)
Vg=0 and V h=0, (2.5)

where p and pd are the unperturbed densities for the hydromagnetic and the neu-
tral component, respectively. vc denotes the collisional frequency between the two
components and  denotes the plasma pressure rendered tensorial due to finite ion
Larmor radius effect. Here 6p, , q(u,t;,ty), ga(l, r, s), h(hx,hy,hz) denote, re-

spectively, the perturbations in density p, stress tensor P , hydromagnetic plasma
velocity (initially zero), neutral component velocity (initially zero) and magnetic
field H. Magnetic permeability of the medium is assumed to be unity.

For the magnetic field along x-axis, taking into account the FLR effects
has the following components:
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(2.6

where p is the scalar part of the pressure and pu — 5" ; w# is the ion-gyration
frequency, while N and T denote, respectively, the number density and temperature
of ions and K* is the Boltzmann constant.

Analyzing the disturbances in terms of longitudinal modes, we seek the solu-
tions of Egs (2.1)-(2.5) in which x —t dependence is given by

exp(zA'x + nt) 2.7

where K denotes the wave number of disturbance and n is the growth rate of dis-
turbance.

Eliminating qj between Eqgs (2.1) and (2.2), and using (2.6) and (2.7), Eqgs (2.1)-
(2.5) can be written as

(2.8)
(2.9)
np + ngg g ow= —BD(Sp) + 2puk2y —uD(pDv)+
2_fikhz -
+ !.:)ﬁ {DP) + 4)K{nkhz Dhx), (2.10)
nNép - -w(Dp), (2.11)
nh = ikHq, (2.12
iku+Dw =0 (2.13)
and

ikhx -f Dh2 =0, (2.14)

where
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If we eliminate 6p from Eqgs (2.8) and (2.10) and use Egs (2.11)-(2.14), we
obtain the following pair of equations in w and v

n2(pk2w —D(pDW)) —gk2{Dp)W— - (D2 —k2)wi— (2-15)

—unk2]2(D2 + k2)(pv) —D(pDv)] + - n2[pdk2w —D{pdDw)] = 0

+ VC
and

pdvc H2k2  _ .
Tt oEEe VT Y [2p(D2+ k2)w —D(pDw)] (2.16)

np H

3. Boundary conditions

On a boundary, vertical motion is not possible, thus
w= 0, (3.1)

on a boundary free or rigid.

If the plasma is bounded by two rigid boundaries which are both ideally
conducting, no disturbance within it can change the electromagnetic quantities
outside. This merely leads to the boundary condition (3.1). A boundary condition
on v can be prescribed by preluding the presence of surface charge or surface current
at the rigid boundaries which are perfectly conducting. Thus we choose

v =0, (3.2)
at a surface bounded by an ideal conduction.
If the plasma is confined between two free boundaries, the tangential stresses
Pxz —2pi/ikv + IK* nw and Pyz = —pvDw vanish. Hence
v —Dw =0, (3.3)

at a free boundary. Should there be discontinuities in the density as in the case of
two superposed layers of different densities, we require the continuity of the vertical
component of velocity, tagential stresses and pressure at interface. Thus

ui, pDw, pv, pdDw, pdv (3-4)

and the total pressure must be continuous as at the interface.
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4. A variational principle

We shall show that the Eqgs (2.15) and (2.16) subject to the foregoing boundary
conditions are characterized by a variational principle.

Let «.i%» and »; denote the two characteristic values, and let the solutions
belonging to these characteristic values be distinguished by the subscripts i and j .
Multiplying Eqg. (2.15) for i by wj and integrating with respect to z over the whole
vertical extent of the plasma (denoted by fL), we obtain with the help of Eq. (2.16)
and boundary conditions,

nj\] p WiW -I-"DW|DWJ" dz I \] Pd {v=iwj "DWlDWJ"J dz—

'g \] (Dp)w{Wjdz + ~£~~\] ("\JJiwj + — DwiDwj*j dz + Uinj \] pviVjdz+

e, f o H2k2 f
_ﬁ],..._'__ijLPdVNsz + e L/ Vivjdz = 4.2)

Taking i = j and suppressing the subscripts, we obtain the following varia-
tional formulation of the problem

n2[\+ /4 + /B + 1t]—912+ 13+ Is —0, (4.2)
where -

/I ; (4.3)
h (Dp)w2dz, (4.9)

HY2
g JL w2+ ~dw)2 dz, (4.5)
h - pv2dz, (4.6)
h = H4$lr(2! / iz’ (4.7)
h = ey W2t i, (Dw)2 dz> (4.8)
T e gy Pavren (4.9)

Consider a change 8n2 on n2 of an arbitrary variation Sw and 8v in w and
v, respectively to satisfy the boundary conditions (3.1) and (3.2) of the eigen-value
problem, we have to the first order, from (4.2)

6n2(h 4-/4 + IR + /7) + n2{61\ + 614 + 6l¢ + Slj) — g8li + 613+ 815= 0, (4.10)
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where 61, (s = 1to 7) are the corresponding variations in I, (s —1to 7). After
one or more-integrations by parts, we find that these latter variations are given by

\bll= JL[[W'JW 6wdz, (411)

—6I2 = J (Dp)w6wdz (4.12)
;g ) H2k2 J (4.13)
—;6I4 = Jfl pvdvdz (4.14)
; 6h =H12l;2 v6vdz, (4.15)
B /6= o, o fL P~ RP(pdDI 6wz (4.16)
and
E<$Z? = +ve .{L pdévdz. (4.17)

Furthermore, 6w and 6v are connected by the relation

6n H 2k2 pdv2 - H2k2 pdvc By =
v s (n + Pc)2. "P AM2 n+\ -
_V/[2p(D2 + k2)6w —D(pDw)] (4.18)

If we substitute for I, and 61, (s = 1to 7) in Eq. (4.10) and make use of
Eq. (4.18), we obtain after some further integrations by parts,

A
6n2 li + h +h -IH [n2{pk2w - D(pDw)} - gk2(Dp)w+

-n2{pdk2w - D(pdDw)} —H2k2(D2 k2)w-
Ve "o xo ,J

—i/k2n{2(D2 + k2)(pv) —D(pDv)}] 6wdz = 0. (4.19)

We observe that the quantity occurring as a factor of 6w under the integral
sign vanishes if and only if Eq. (2.15) is satisfied. Thus a necessary and sufficient
condition for 6n2 to be zero to the first order for all small arbitrary variations 6w
and 6V (connected by Eqg. (4.18)) in w and v which is compatible with the boundary
conditions is that w and v should be the solutions of the eigenvalue problem governed
by Egs (2.15) and (2.16). A variational procedure of solving for the characteristic
values is, therefore, possible.
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5. An important property ofn

From Eq. (4.1), we have

il p MWW + — DwiDwj?j dz ——  (Dp)wiwjdz+

H__Z_'S_Z ( 1 F_'_Z_'S_Z_ f
;(lL \WW + DWlDWk/ dz + TL{L pviVjdz + i ) / v,t>,dz+
VCT4 ve
TITaT f pd V\AV\lj + = DWIDW] )) dz H———.——— - jL pdVivjdz = 0.

(5.1)

Interchanging i and j and noting that the above integrals are symmetric in i and j,
we obtain

i) p AWiWj + — DwiDw] dz — —FTDp)w,Wjdz+

L HX2 f [ H2&2 f .\
4-;&]-1- J;L \V\/iV\a [ :DwiDwj ) dz + n- / pV|VJd2 + e Jfl_ Viv;dz+
VeTli ven{ -

H--—-- - / Pd " i + PI’DWIDWJ dz H ————————— f pdViVjdz = 0
nj + Ve JL ) +

(5.2)

Let us consider two solutions characterized by n and n*, the complex con-
jugate of n. We expect that the corresponding solutions will also be the complex
conjugates of each other. Hence if n- = n, n- = n*, then iu- =w, wj = w*, i —v
and \j —v*.

Then, from (5.1) and (5.2) by addition and subtraction, we have

Re(n) T gv R H2k2- H2k2- »2(i* + 17)
T1HFS TN pofaPTI e pydnretd s Inj2+ 2veRe(n) + v2_
-i/c]ln|2(J6 -f T7)
In|2+ 2ilcRe(n) -+ v2’ (5.3)
and
-1y

! , , -
M) b s+ nalz amfriags 14)+ |nj2+ 20cRe(n) + v2o = & G4)
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where

/3
M\% -
It E&Xﬁ
Integrals I, (s —1to 7) are all positive.
If n is complex, Im(n) & 0, hence (5.4) gives
— — g— H%2— -— "lih - 1) =0, (5.6)
+ |nj2722  4#r|n|223 N+ |n|2+ 2vcRe(n) +v2
so that (5.3) gives
—  H2%k2- vile,
2Re() 11+ drlnf4+ |2+ 2veRe(n) -F V2
ve\n\2(16+1 t) (57)

[n|2+ 2vcRe(n) 4-v2

From Eq. (5.7) it follows that Re(n) is negative, which implies that if oscilla-
tory modes exist they should be stable, thus ruling out possibility of overstability.

6. Two semi-infinitely extending plasmas of constant
densities separated by a horizontal plane

We consider the case when two semi-infinitely extending plasma layers of
constant densities p\ and pi, and dust particle densities pd1l and pd2 are separated
by a horizontal boundary at z =0. The subscripts 1 and 2 distinguish the lower
and upper plasma layers, respectively.

We choose the following trial function for w(z),

72 <0;

6.1
750, (6.1
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which is consistent with the boundary conditions (3.1)—3.3). Here the same con-
stant A has been chosen to ensure the continuity of w at z = Q.

The value of v in the two regions can be calculated from Eg. (2.16) and noting
that p is constant, we have

Zie+i* r<o;

=1 6.2
VD=1 e 250 (52
where avknA
v

N2 = 1L (6.3)

m L s w2

H2 H2
Vo = Anpi and V2 = 4xp2 (6.4)
We assume that = ao as the simplifying assumption does not obscure

any of the essential features of the problem.

To evaluate the integrals I, (s —1to 7) in Eqg. (4.2), we divide the region of
integration into three parts (i) —e0 < z < —e (ii) e< z < 00 (iii) —e<z<e and
then pass it over to the limit e —*0. On substituting their values in Eq. (4.2), we
obtain the following dispersion relation between h and k,

_ _ kg i
n - ak(ar- c*i)+ k2v\ + N+ VCn2(c i+ a2+

QV%(IAZ «l + « =0,
"2U 4@ A 1+ A +k2v2 (6.5)
where
H2 \'?

= ( — 6.6
VA £2m(p1+Pr)/ o

can be termed as mean Alfvén velocity and

Pi,2

= e 6.7
«12 e ©.7
Letting n —y~n* kK — k*and omitting the asterisks for simplicity, so that the

Eq. (6.5) takes the following dimensionless form

A9N9-f ABNS-|-A7n7+ AGMG-|-A5M5-|-Adnd + A3n3-|-A2M2+ All-)-Ao = 0, (6.8)

where
A9=4, A8= 12A,
ar=2a2+ X% L4t k(a2- ai)} + 2Lk*B,
«l+ «2
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JIB  2k2B + Lk2 4-ve) + 4A3 + —-momo—-
| <¥102 aia2

4 (8A + 4il{fc2- k(az- <*i)},

a5 = 2ABP  + 2j/f) + _*1_+ 2Lk4(k2+ Bv?)+
aa ai«2

# (A2 4o LBAIN) {fo2- K(a2- c*i)}

Ad=-~_(A + 2if)+ 2AKk2uc ( + Lk2irce 4 zLka) +
<1< \«l<*2 )

4- (N - (A + 2vie) 4-4A2i1'l [K2- k(a2- ag)},
| <1<2 J

A3="-(1 4—2A)4—G|_k6vc2+{" N2 A+ ve)t+ — J}x
<K< <<

x {K2- k(az- (*1},

A2= +2Lkay3 + * Y (3+ 2ARI/) {f2- k(a2- ax)},
0qoq 0gaq
Ai = -~ —(1 4-2ilc){k2- k(a2- 0q)},
Jicv2 - 20)}
AOQ = - —{k2 - 2 - ,
<"1<’2{ (a q
A = {l + a0)v'c B = al+ a2, Vves cha’ (6.9)
9
and L — Mzi ’ is a non-dimensional number measuring the relative importance of

FLR effects and magnetic field.
For the potentially stable configuration (<*2 < <), all the coefficients of
Eq. (6.8) are positive, if
k>k*, (6.10)

where
K* = a2 —ati. (6.11)

So no positive real root or complex root with negative real part exists. Therefore,
the medium is stable even in the presence of collisions for disturbances of all wave
numbers as it is if there are none.
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For the potentially unstable configuration (ce2 > (*1), the absolute term in
Eq. (6.8) is negative, if
0<*<**, (6.12)

Therefore (6.8) possesses at least one real root which is positive leading to an
instability of the configuration even if there are collisions with dust particles.

Also we see that k* is independent of L, a measure of FLR effect. Hence we
conclude that for longitudinal perturbations, the stability criterion is independent
of magnetic viscosity.
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STATIC ANISOTROPIC FLUID SPHERES IN
D SPACE-TIME DIMENSIONS
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Using the Einstein field equations in the presence of a cosmological constant, the
equations which describe the hydrostatic equilibrium of a static anisotropic fluid sphere
are obtained in D (D > 4) space-time dimensions. W ith suitable transformations, the
equation of mass-continuity and of hydrostatic equilibrium are given in a non-dimensional
form. The formalism thus developed is used to study homogeneous charged fluid spheres
in higher dimensions and for these configurations a complete solution is obtained.

1. Introduction

The study of static anisotropic fluid spheres is important for relativistic as-
trophysics [1]. The starting point is represented by the Schwarzschild solution from
which all problems involving spherical symmetry can be modelled. Charged spheres
in the presence of matter have been studied by Bohra and Mehra [2] and Omote
and Sato [3] with mass-charge and radius-charge relations emerging from the static
solution. Several other anisotropic fluid sphere configurations have been analyzed
using various Ansétze [4], [5].

Lately, there has been an increasing interest in the study of compact astro-
physical objects in D space-time dimensions, prior to any compactification. So,
Krori et al [6] have extended the interior Schwarzschild solution with vanishing
normal pressure of Florides [7] to D space-time dimensions in the presence of a cos-
mological constant. Wolf has analyzed fluid spheres [8] and charged fluid spheres
[9 in D space-time dimensions with the condition of vanishing normal pressure.
The Oppenheimer-Volkoff equation has been generalized to D (D > 4) space-time
dimensions in [10].

The purpose of the present paper is to obtain the equations which describe the
hydrostatic equilibrium of an anisotropic, spherically symmetric, static fluid config-
uration, in D space-time dimensions, D > 4 and in the presence of a cosmological
constant (generalized mass-continuity and Oppenheimer-Volkoff equations). The
formalism thus developed is used to study the homogeneous charged fluid sphere
in D (D > 4) space-time dimensions, with a particular choice of the proper charge
density. Mass-charge and radius-charge relations are obtained, too.

The present paper is organized as follows. In Section 2, using the Einstein
field equations we deduce the generalized mass-continuity and Oppenheimer-Volkoff
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equations in D space-time dimensions. A non-dimensional form ofthese equations is
obtained in Section 3.The components of the energy-momentum tensor of a charged
fluid sphere are obtained in the new variable in Section 4. For this configuration,
the hydrostatic equilibrium equations are solved in Section 5. The results are sum-
marized in Section 6.

2. The generalized Oppenheimer—VolkofF equation
In D space-time dimensions the spherically symmetric metric takes the form:

ds2 = e"(dx0)2—exdr2 —r2dQ\ —r 2sin2©idQj —r2sin2©i sin2©r"©! —...
—12sin2©i .. .sin2 &D-3dq2. (2-1)

Here:
x° = ct, Xl=1T X2—0©1, x3= ©2,... XD~2= Qd-3,mm, xD~1 = <P
(r is the radial coordinate in D space-time dimensions) with domain:
0<r<oo 0<0-<T(i=1D-—-3), 0<ip<2x

The Einstein equations are:

—8—I—A(—3— T,L-l- —8-2,5-3——— (2.2)
where the components of the energy-momentum tensor are:
Tg=pc2, Tl =-Pr, T2=+w=TpZi = —PI. (2.3)

where pr ¢ px. The case pr = px corresponds to the isotropic fluid sphere (pr is
normal pressure, pj_ is transversal pressure).
Using (2.1) the field equations become:

(D- 2Ae“n (D- 2)(D- 3)(e~n- 1) 8irGp 8nGA (2.42)
2r 2r2 2 + c4 '
(D - ;ZU e~x (D- 2)(D érS)(e-A— 1 _S_tfpr 8_nGA. (2.40)
ATV vz vX o (D=8)( —AN)N (A - HE>- 4)(e-A
\Y ++4 4~+ 4r ) 2r2
8tG 8uGA (2.40)

-Ps. -
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From TA. = 0 it follows:

v, = 2pr  + 2(D —2)(px —Pr)

(2.5)
PC2 + Pr (PC2 + pr)r
From Eq. (2.4a) we obtain immediately:
d(rD- 3e~x) n 4 8uG 2 D 2 16nGArD~2
------- Jr-——---P -3)r - — —  “pr (2.6)
or
Li v U
ct D=ZT-3J0f 2)c<
and
—A_1_ 2GFD)M _ 16TrGAr2
rD-3 (2 —)(2? —2)c4’ 1
where:
f@)=(@-r)y - 28>
M(r) =i [ m2D-2prD~2dr. (2.9)

Using (2.9) and (2.5) in Eq. (2.4b) we obtain the generalized Oppenheimer-
Volkoff equation in D space-time dimensions, for an anisotropic spherically sym-
metric configuration:

dpr G(pc2+ pr)[(8*/(D - 2)cd)(pr- 211/(D - D)rD"1+ (D - 3)F(E»)M]

dr rD-2 (1 _ 2GF(D)M 16irGA
I/ (D-1)(D-2)c*r J

D-2)(PL-
+( ) ( pr) (2.10,

3. Non-dimensional form of the generalized Oppenheimer—Volkoff equation

To obtain the non-dimensional form of the generalized Oppenheimer-Volkoff
equation (2.10) and of the mass-continuity equation:

dM b o b
ar G2 P B*

we shall introduce Ureche’s [11] non-dimensional independent variable 7 and the
non-dimensional functions £(7), Pr(r), Pg (7 and 77(7) by means of the transfor-
mations:

r—arj, p=pd, Pr—PcCr) PI =PcGPI, M =M*m. (3.2)
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Here a is a scale factor (a characteristic length), pc and M* being a charac-
teristic density and mass, respectively.
Using (3.2) in Egs (3.1) and (2.10) we obtain:

“c';)’ .0-2f (3.32)
dPr _ (I +Pn[(Pr- n)rf-' +(D —3)m]
ar] \D-2(1- for - pi]2)

+(p - 2>r|;lg_--h>, (3.3b)

where we have taken:
M * = ~tr2D~2pcaD~1, (3.4a)

(3 '4c)

Here we have a set of two equations in four variables m, £, Pr and Pj_. For
a general solution we must specify two physically reasonable functional relations
among the four variables. Usually suitable forms of £ and Pr are chosen.

The system (3.1)-(2.10) or (3.3a-b) must be integrated with some boundary
conditions. These conditions depend on the concrete physical meaning of p, pr and
pL and they have to be specified in every situation.

4. Energy—momentum tensor of a charged fluid sphere

The Lagrangian of the electromagnetic field in D dimensions is given by [9],
[12;:

L=~ F ikFih- -fAi, (4.1)
K C

where if is a constant which will be determined by normalization. Varying (4.1)
with respect to A{ gives the Maxwell equations:

= 4.2)
The energy-momentum tensor of the electromagnetic fields from (4.1) is:

Tik =~ F nFlk+ ~F i mFImoik. 4.3)
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The current density j* has only one component for r < R (R is radius of
sphere)

.Q
®= pe&"\ = pee *. (4.4)

Here pe is the proper charge density. We set pt = poe~* and we shall suppose
that po is constant.

The electromagnetic field has only one non-zero component FOL and (4.2)
gives:

A= (45)
where
KP* rD-1
Qir) =y JO Por* 2<ir= 4(D- 1) ‘ NN
In order that o represents the charge within the (o —1) dimensional sphere
we have [9]:
4r(p-1)(4-1)
((n-1/2) (43)
Using (4.3) and (4.5) we find for the components of the energy-momentum
tensor of a massive charged fluid sphere:

2 Q2 2 Q2
9 = pc2=pme+ ., Tl= -Pr=-p+ ,
K r2( _2) K r4o-2) (4.8a)
mpD—% B 2 Q2
T2 ID-1 = - P1 = -P - oce (4.8b)

where pT is the mass density and p is the hydrostatic pressure.

We shall consider in the following only the case of the homogeneous fluid
sphere, that is we shall suppose that pm is constant.

We shall introduce now the transformations (3.2) in the form:

r=ali P~PmE) p=pmc2P, pr=pmc2Pr, px=pmc2PL, (4.9)
which give:
t = 14 20 - 1) r2, (4.10a)
e p Z(Da_ N (4.10b)
PI=P+ 2(D<*_ y 2, (4.10c)
where
~ (02 ke (4.12)

(4-1) 32nGph
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We suppose that we have an equation of state of the form:
P = P(Pm)- (4.12)

If P is a decreasing (non-increasing) function of 7 then from transformations
(4.9) it follows that P E [0,PQ, where Pcis the value of P at the centre of the
sphere.

We can generalize the classical restriction for the upper limit of the general
relativity in D space-time dimensions in the form:

P<|rrp (4.13)

which gives P E [0,1/{D —1)].
If we use the restriction
p< PmC2, (4.14)

then P E [0,1].

So, we have expressed the components of the energy-momentum tensor of
a homogeneous charged fluid sphere in D (D > 4) space-time dimensions in a
non-dimensional form.

5. Homogeneous charged fluid sphere in D space—time dimensions

Using the expressions (4.10a-c) in (3.3a-b) we obtain the following equations
which describe the hydrostatic equilibrium of a homogeneous charged fluid sphere
in D space-time dimensions:

dm

a
dj =02 1 a(p-1) (12
with solution: nD- 1
™V)=p.q 17 2(E>+ 1) (5.1b)
(where we have used the boundary condition m(0) = 0, too) and
dp 1+P)P-y +(D-3)/(D- 1)- 2arNV(E2- D]y (5.2a)

dri 1- [2/(D- 1) +pIr]2- a»@d/(N2- 1)

The Oppenheimer-Volkoff equation (5.2a) must be integrated with the boundary
conditions:
P(0) =Pc, Pbl =0, (5.2b)

where Pcis the hydrostatic pressure and rj, = R/a is the value of the non-dimensional
parameter 77at the centre and at the surface of the sphere, respectively.
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In order to solve Eq. (5.2a) we shall introduce a new variable:

y= {szd RCEll . v £ [YY], (5.3)

where yc = (D2—I)y/4a and ys are the values of y at the centre of the sphere and
at the surface, respectively.
We denote, too:

2 + SS_bxVvM F

7=, 1 - 7 (5.49)
So, Eq. (5.2a) becomes:
dPg _  PoPqg- 7vive)
dy y(62- y2)/yc (5.5)
with the boundary condition
Pobl = 1+ Pc (5.6)

This equation is a Riccati type equation. It has two particular solutions of
the form:

Pi2=7 yx\{D2-b)"62-y2)? lye. (5.7)

By means of the transformation:

z 5°8)
we obtain the equation:
dz (D2—5)i
LA —z=0, 5.9
dy  (62-y )i - &9
with solution
z = Cexp[—<D2- 5)2 sin-1(y/<5)], (5.10)

where C is a constant of integration.
From (5.10), (5.8) and (5.7), using the boundary condition (5.6) and denoting:

_ (Pc+1- 7)- \b{D2- 5)/yJ* vk
T (Pe+ 1- )+ |[7(*2- 5)lyd> exp[(P2—5)*sin 1(yc/6)\,  (5.11)

we obtain the final form of the hydrostatic pressure P, in the y variable:

7{D2- 5)a(S2- y2)aP, exp[-(P2—5)asin 1(y/5)] + 1 )
2 e P, exp[<P2—s)~ sin- 1(y/(5)] —1

P(y) = TYIYc -
12)
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The expressions given above (5.12) and (5.1b) represent the exact solution of
the equations which describe the hydrostatic equilibrium of a charged, homogeneous
fluid sphere in D space-time dimensions.

From (2.5b), a straightforward integration yields:

ty=Co P e-(U’-5)bln-1(y/i) _ ! o0-(D3-5)isin *(yii) (5.13)
Co being an integration constant.

In the variable y, we have, too:

A- X (5.14)
y(a2—y2)*

while the proper charge density is given by:

. . (5.15)
P'=PO(ik) (6*-y*)i'
For r > R we have:
£01~~"W"2 03 = const.), (5.16)
where Q is the charge included within radius R and, consequently:
r2(R-2) (5.17)
(no matter present, only electromagnetic field).
The Einstein equation (2.4a) gives in this case (i/ + A= 0):
-a , 2GMF(D) 32uGQ2 16wC/r2
e -1 rD-3 + (D-2)(D-3)KaW d-3) (E>- 1)(D - 2)c4” 1

which represents the D-dimensional Reissner-Nordstrom-de Sitter solution for a
central charge Q.
From (4.6) we obtain the total charge of the sphere:

_ KpORD~I

- 4D-1° (519)
In the variables (4.9) we have (m5 is the total mass of the sphere):
A1)
. I 2m, ar) (5.20)

nD~3 (D- 1)(D- 3)ed-3 "W

Matching (5.20) to (5.13) at § = rj, will give the value of the constant of
integration Co in (5.13).

Equations (5.1b), (5.12), (5.13) and (5.14) represent the complete exact in-
terior solution for a homogeneous charged fluid sphere, in D (D > 4) space-time
dimensions, in the presence of a cosmological constant. The normal and transversal
pressure can be easily found from (4.10a and c).
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6. Conclusions

From (5.12) and (5.13) it follows that y < 6, for all y. Particularly, fory = ys,
we obtain:

V. < (2y0)* [(1+ 1/TYe)* -1e]*= 4Mm (6.1)

So, Tmgives an upper limit of the radius ofthe charged fluid sphere. Similarly,
from (5.1b) we obtain:

L}'\D"_I Id

20 —1) U9 g5+ gV = ihm. 02

m, <

rnm being the upper limit of the total mass of the sphere.

In the above analysis we obtained a complete solution for a homogeneous
charged fluid sphere in D space-time dimensions, whose proper charge density is
represented by pe = poe~x!2 (p0 = const.). We have not discussed the stability of
such a sphere but it would most likely be unstable since the electrostatic repulsion
would tend to destabilize it.

An interesting question is the possibility of observing such objects in an astro-
physical setting. The observation of 7-ray bursts prompted investigators to suggest
that there might be a relation between the strong-coupling phase of QED and the
7-ray bursts observed. Certain anomalies in the spectrum are characteristic of
emissions from a charged object in more than four space-time dimensions [13].

Other physical aspects concerning fluid spheres in D space-time dimensions
will be postponed to a future paper.
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PERCOLATION PHENOMENA AND
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FOR THE MIXED SYSTEM Cu-PEG

M. M. MOSAAD

Physics Department, Faculty of Education
Kafr EI-Sheikh, Egypt

(Received 18 May 1993)

Mixed samples of Cu-PEG were prepared by milling the materials together and
compressed in the form of discs of 1-1.5 mm, 12 mm diameter, and cylinders of 12 mm
diameter and 2.5 cm height. The percolative modelis studied for the samplesin the form of
discs, for both conductivity and dielectric constant. It is found that the percolative model
is obeyed for both of them within the experimental limits. We also found that the exponent
value in the case of conductivity depends strongly on the type of the conductive filler.

For samples with concentrations greater than fc and in the form of cylinders, we
study variation of temperature with time after applying Vac. We found that these types
of samples can be used as heaters which gives constant temperature without any control
devices. These heaters cover the lower temperature region which is useful in biological and
medical research.

Introduction

The electrical properties of conductor-insulator composite systems attracted
the attention of many investigators as subject of both theoretical and experimental
interests and because of the growing application of these materials in the indus-
try [1-5].

It is well known that conducting particles dispersed in a non-conducting ma-
trix with a suitable amount make the total system to be a conductor. Among these
systems some have been reported to have a switching characteristic: namely, the
electrical resistance for these shows an anomalous increase at a certain tempera-
ture [6- 8].

Copper-polyethylene glycol (Cu-PEG) is a conductor-insulator composite
consisting of Cu particles embedded in an insulating PEG matrix.

To the best of our knowledge, it is not clear if the percolation model is capable
of describing the electrical properties of Cu-PEG mixtures. The present paper deals
with the study of the variation of conductivity and the dielectric constant of Cu-
PEG mixture with the percentage of copper. We also try to study the switching
characteristics of Cu-PEG above the threshold percolation.
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Experimental

Copper-PEG composites were made containing different percentages of Cu
including (in weight) 1.25/2.50/3.75/5.00/6.25/7.50/8.75/10.00/11.25/12.00/17.00
/20.00/, milling the compound together. Then the samples were compressed in
the form of discs 1.0-1.5 mm thick and 12 mm diameter at 0.4 GN/cm2 at room
temperature. All the samples were mixed separately. The last three percentages
were used in the switching study in the form of cylinders with 12 mm diameter
and 2.5 cm length. We made a hole in the sample’s centre for a thermocouple to
measure its temperature. The copper used was 98.5 % very fine powder, atomic
weight 63.54, obtained from Prolabo, Paris, France. The size of the copper grains
in our samples was much smaller than the resolution of our optical microscope at
a magnification of 1000x. PEG used was from BDH laboratory reagents, with an
average molecular weight 3300-4000.

The capacitance of the mixture was deduced by an auto compute RLC-bridge
APLAB model H912, USA at a frequency of 1 KHz. The values of the dielectric
constant were determined using standard geometrical techniques in which the ca-
pacitance is assumed to be given by the usual expression for parallel plate capacitor.

Electric conductivity was measured using a Kithley type 617 programmable
electrometer. A sample holder with brass electrodes was especially designed to
fit the present electrical measurements. Good contact was attained by paint-
ing both surfaces of the sample with air drying conducting silver paste type RC,
made in UK.

Results and discussion

Kirkpatrick [9] was the first to demonstrate numerically that the conductivity
a of an insulator-conductor composite vanishes below the percolation threshold fc
and that a follows a power law above fc

a=a0(f - fcy. (1)

In Eqg. (1) / is the probability of finding the conductive phase which experimentally
usually sets equal the fraction of the conductive phase. o0 is a prefactor that
depends on details of the transport process, t (> 0) is a critical exponent which
is about 2.0 in the three dimensions [10] and which should be independent of the
chemical nature and geometrical properties of the constituents.

Also, Efros and Shklovskii [11] established theoretically that the dielectric
constant z of a conductor insulator composite would diverge near the threshold.
Specifically z would follow the following power law below fc

e = £o(lc - 1) *
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Fig. 1. D. C. conductivity versus |/ —fc\in the log—og plot showing the relation < = <ro|/ —/c|1
with t = 0.71 + 17

Fig. 2. Logarithmic plot of the dielectric constant as a function of \fc —/ 1» The critical exponent
ais 0.95+ 15

where s (> 0) is another critical exponent, and is about 0.7 in three dimensions
according to numerical simulation [12].

The percolation threshold (fc) of the composite system described here lies
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above 11.25 %. It is well known that fc depends strongly on the shape of the con-
ducting inclusion [13]. In this work we chose fc = 12% which was determined from
the rapid decrease of the resistance of the same mixture with copper composition
greater than /o.

Figure 1shows the logarithm of d.c. conductivity against the logarithm of the
excess critical concentration (log \f —fc\) curve. We found that our data are very
well described by the least square regression line of log conductivity on log \f —f c\
The experimental exponent value is 0.71 it 0.17. This value does not agree with the
theoretical expectation of 2.0 [14]. But our result agrees very well with our previous
work on Cu-PVA [15]. Thus we can say that the exponent value depends strongly
on the type of conductor filler.

Figure 2 shows a logarithmic plot of the measured dielectric constant as a
function of Ifc —f | We found that our data are very well described by the least
squares regression line of log (dielectric constant) against log |/c—/ 1 The ex-
perimental exponent value agrees favourably with empirical values obtained from
inorganic composites [16,17], and with our previous work [18]. It also agrees with
the value obtained from computer simulations [12].

We can therefore state that the percolative model gives a suitable description
of the dielectric constant and conductivity properties of the system studied within
experimental limits.

Figure 3 illustrates the behaviour for three different samples (12 %, 17 %,
20 % Cu), each one supplied with three A. C. powers (i.e. we have nine conditions).
The concentrations of the Cu and the applied voltage are indicated on each curve.

We notice that when the power is supplied to the sample, the temperature of
the sample increases within a certain time and reaches a plateau which is maintained
without any temperature control device. We can notice also that the plateau value
depends strongly on the Cu percentage and the applied voltage.

Of course these samples can be used as heaters when we need a constant
temperature, which is useful in biological and medical research. There are several
characteristics for these heaters by Cu-PEG mixed system. Copper particles are
easily dispersed in PEG matrices. As a consequence heaters with a required elec-
tric resistance can be easily made with an acceptable fluctuation of the resistance.
These heaters cover the lower temperature region which is not obtained by barium
titanate ceramics (70 °C). They could contribute to reducing energy consumption
when they are used properly. The reason for saving energy could be that the un-
necessary radiation loss, which is considered to be proportional to T4, where T
is the absolute temperature, is lower in the case of the heaters by Cu-PEG. The
most important characteristic of these heaters is the steady state constant temper-
ature which depends on the Cu concentration and the applied voltage. Therefore,
it could be possible to make a heater which shows a desired steady state constant
temperature.

The research to clarify the mechanism of conduction in these Cu-PEG systems
relating this to the mechanism of anomalous increase in the electric resistance is
now proceeding.
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time (min)

Fig. 3. Steady state constant temperature vs elapsed time after the supply of the power (150,
200, 225 Vac) for the samples (Cu-PEG) with Cu concentration 12, 17, 20 %
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Une évaluation du réle des vacances thermiques sur les diverses fonctions thermo-
dynamiques d’un cristal est effectuée. Les cas d’une faible concentration des défauts dans
des solides monoatomiques est illustré avec le cuivre et I'aluminium a !"aide des données
expérimentales. Le coefficient de dilatation thermique apparait comme le parameétre le plus
sensible et le mieux adapté a I’étude des défauts thermiques dans les solides.

Relations théoriques

L’enthalpie libre d’un cristal réel a la pression P constante et a la température
T peut étre écrite [1]:

G (p.T) = Go@w.)+ 53 nNj%ij(P>T) —KT InDij
i,

ou le premier terme représente la fonction de Gibbs du cristal supposé parfait (indice
0), rij le nombre de défauts de type j, gij I’énergie due aux défauts des espéces i
et j en interaction et Dij le nombre des différentes manieres de distribuer les tij
défauts supposés libres de migrer parmi les divers sites possibles (dont le nombre
est influencé par les défauts en présence). Les termes gij et In Dij sont nuis pour
i j siles interactions sont négligeables.

Si L est le potentiel chimique, la condition d’équilibre des défauts de I’espéce
j est:

La différentielle de G par rapport a P donne le volume:
V(P,T) =

Le second terme du crochet est non nul dans le cas général d’une contrainte ho-
mogéne et d’un cristal élastiquement anisotrope et doit é&tre évalué selon chaque
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Courbes 1

Contributions relatives des vacances (C %9 aux propriétés du cuivre en fonction de la
température (T K), h = 1170 meV, s = 1,5 K, x = 0, 5va, f* point de fusion.

cas, il est par contre nul a I’équilibre thermique ou si (drij/ gP)T — 0 pour des
impuretés ou des dislocations statiques par exemple et on écrit alors:

VP, )=V,,PnN+C nj (LW, Tou
est le volume de formation de défaut j. L’enthalpie de défaut j peut s’écrire h{j —

P wXij + eij (énergie correspondante).
Le coefficient volumique B de dilatation thermique a P constant peut étre

déduit de:
V-B= SR Ei e * N )
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ainsi que la compressibilité isotherme x :

(dVv(P,T)
VE—y dp
afin de faire apparaitre les contributions dues aux défauts (essentiellement des va-
cances).

Cas d’un cristal monoatomique

En présence de N atomes, on a (N + n) sites possibles pour n vacances simples
et D — avec une entropie de configuration S = InD.

A I’équilibre, en utilisant la formule de Stirling pour les grands nombres:
n = (N +n)e~°"KT = (N + n)e(a~h" KT ou s est I’entropie vibrationnelle de
formation, h I’enthalpie de formation des vacances et g I’enthalpie libre relative aux
vacances.

On en déduit:

V(P,T) = \WO(P,T) + nx(P,T),

Y-R=K-A H( ") p-

Envisageons le cas fréquent d’une faible concentration de vacances: (N + n)>ti
et Vg+ nx  nx, si Vaest le volume atomique [2]:

(dx(T,P))\ X(_h_\

BEB=N o v 9T Hp TVKT) ¢

Il apparait, par les défauts thermiques, deux contributions distinctes au coefficient
B qui sont de méme importance: (|*)p " car Yr A~ ~ (ce n’est P38 le cas si le
terme x/T devient prépondérant).

Le volume x = (ga/aP)T de formation d’une vacance peut étre divisé en
deux contributions: la création d’un site et un terme de distorsion du réseau soit
x = ua(l + d). On peut alors distinguer les coefficients: y- (fy)p pour un réseau
réel et RO+ Jytj pour le réseau correspondant supposé parfait. La différence
B" = nh/NT2K, ou n’apparait pas la dilatation d souvent inconnue, permet une
évaluation directe du role des vacances.

La capacité thermique a pression constante est alors:

h2

Cp — ~ Cp0+ n KT2

ainsi que la compressibilité isotherme:

n
X—>X0+ MO NvakT
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Courbes 2
Contributions relatives des vacances (C %) aux propriétés de I'aluminium en fonction de la
température (T K), h = 760 meV, s = 2,4 K, x = 0,5t’a, /: point de fusion.

Notons que x ~ compte tenu de I’expression précédente de 3. Ce volume
croit a haute température par le phénoméne d’auto-diffusion. Enfin [3], la relation
Cv —Cp —TVR2/x permet de mettre en évidence la contribution des défauts a la
capacité thermique a volume constant:

N - -
& =@y, 4 2 fxob rsmj (xh-BXT\

Cette contribution est positive car Bo/xo —RB/x mais faible tant que x ~ hx/RT.
Les grandeurs x, h et s jouent un réle analogue aux valeurs molaires partielles dans
les solutions diluées si bien que, dans les expressions précédentes de Cp, Cv et X,
les termes (|y)p, (fp)T, (f£)p et (|f)p sont négligés.
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Application au cuivre et a I'aluminium — conclusion

En adoptant x = va/2, a l'aide des données expérimentales pour le cuivre [4]
et I'aluminium [5], les contributions relatives des vacances aux diverses propriétés
thermodynamiques sont mises en évidence. Sur les courbes 1 et 2 on note, par
exemple, Cp pour (Cp —Cpo)/Cpo. Le paramétre de Griineisen y = BV/xCy
est également représenté. Par mangue de mesures trés fiables, la résistivité élec-
trique n’a pas été portée bien qu’elle semble également sensible a la présence de
vacances [6].

Pour x e [hVol3o/Cpo, hxo/R0oT], avec les approximations signalées, la contri-
bution au coefficient § apparalt comme la plus importante. La dilatation thermique
est la propriété la plus sensible et donc la plus appropriée a I’étude des défauts du
réseau cristallin (ceci reste vrai jusqu’a la valeur x « ua).

Pour étendre ces résultats a divers défauts et structures, ou faute d’approxima-
tions les expressions précédentes se compliquent, il sera sans doute nécessaire de
relier les propriétés des défauts & celles des phonons pour expliciter la dilatation
thermique vers les hautes températures [7].
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The results for the phonon dispersion curves along the major symmetry directions,
second order elastic constants (SOEC) and zero point energy are obtained on the basis of
modified scheme, centered around an empirical Morse potential for some fee metals. This
exponentied potential is less parametric, which incorporates the exchange and correlation
effects due to electrons in a simple and effective manner. These above computed results
are compared with experimental findings with remarkable success.

1. Introduction

Recently much emphasis has been put on theoretical studies [1-9] of lattice
dynamics based on Morse potential [10]. These studies explain excellently the elastic
as well as the lattice dynamical behaviour of all types of cubic metals. With the
volume forces recently Mohammad et al [1] have combined the central forces and
arrived at a model explaining the phonon dispersion in cubic metals. It may be seen
that the former forces, which are essentially of short range, may not be added to
the latter ones, which are obviously of long range character. Singh and Rathore [Z]
have used the composite form of the cohesive energy as input data to explain the
elastic and lattice dynamical behaviour of some cubic metals. This deficiency has
been removed by Mishra [6] in his recent publication. Three body forces derived
by Mishra et al [3-5] explain the lattice dynamical, elastic and thermophysical
behaviour of metals in a broad manner. Mishra [6] used a modified Morse potential
and applied it on fee cobalt. Rathore et al [8] explained the lattice dynamics of some
HCP metals successfully using the combined form of the empirical Morse potential.
Theories given by Agrawal et al [7] and Aradhana and Rathore [9] added a new
dimension to this type of study. But it is yet to know how they have developed a
Modified Born-Mayer potential [1] then added to the Morse potential.

The present investigation, therefore, deals with the specific nature of the
Generalised Morse potential which will be controlled by the factor P also in the
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paired part of the potential and then this two body part has been added to the
modified three body generalised part. We have found that the factor P is very
important and may provide a correct scheme to predict the lattice dynamical and
elastic behaviour and zero point energy of some fee solids, i.e. Au, Ni, Pt and Pd.
The subject matter of the present scheme uses a minimal number of parameters
for expressing two and three body forces. The results obtained are excellent and
surprising to report and very close to the experimental findings. This present scheme
also incorporates the exchange and correlation effects due to electrons, which depend
upon the variation of magnitude of P.

2. Theory
A. Two body part

Following Milstein [12] the attractive and the repulsive character of the two
body potential are blended to form a generalised exponential pair potential which
assumes the following forms for the atoms located at r.

o) = D(p = 1)-1 [exp{-P(r0- r)} - Pexp{-a(r0- r)}], (2.1)

where D is the dissociation energy, a the parameter which measures the hardness of
the potential, ro is the equilibrium distance and P is the exponent acquiring values
within the different range.

The average interaction energy cohesive due to the potential may be expressed
as

1"_[exp{-P(r0—o)a}—P exp{-(r0-rd)a}]. (2.2
]

The quotient 2 in Eq. (2.2) takes care of the double counts. Putting
B = exp(aro), (2.3)

we have a more compact form of the potential, i.e.

PMN=Di2(P - 1)} 172 {RPexp(-Parj) - BP exp(-arj)] . (2.4)
J

This distance rj may be written as
rji = (m\ +m\ + m\)It2a = Mja, (2-5)

where (mi,m2, m3) are integers denoting the co-ordinates of the J-th atom of the
solids and a is the semi lattice constant. We have evaluated the present dfr ~up to

eight nearest neighbours (140 atoms) for fee metals.
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B. Three body part of the generalised and modified Morse potential

For the present purpose, the three body potential signifies an extra interaction
energy affecting the pair owing to the presence of the third particle. In essence, it
is a distance dependent three body potential, which arises due to the deformation
of the electron shells caused by (s —d) hybridisation. The short range three body
exponential potential, capable of expressing the repulsive as well as attractive na-
ture, coupling the atom (m, k) with its common nearest neighbours (ri = 2) may
easily be written as

NR=Q{4p~ D} 1 .
m K
—PRexp {-a(ri - r2)}1, (2.6)

)rr(kfl’\Pexp{-arP((rl+ )}

where rland r2are the separations of the atoms (m'k') and (m"k') from the atom
(mk). Q is the deformation parameter. Prime on the first summation denotes
m'k" ¢ m"k".

C. The total potential

The total potential, responsible for the resultant interactions coupling the
atoms of the crystalline solids may now be written as

3. Parameter evaluation

Singh and Rathore [Z] have studied the lattice dynamics of some cubic met-
als based on the generalised Morse potential. According to this study, cohesive
energy, lattice constant and compressibility are the input data for the empirical
Morse potential. Compressibility and cohesive energy are, respectively, the sum of
ionic interaction and interaction due to the electrons. Mishra and Rathore [3] have
separated two and three body parts for compressibility. Mishra [6] has recently suc-
ceeded to elaborate the ionic behaviour and behaviour due to electrons on the most
significant contribution to the binding energy, which arises from the interaction be-
tween the metal ions and the electrons, is not included in the potential [3], even
though the potential is fitted to the total cohesive energy. In this note the following
procedure has been adopted to separate the ionic interaction and the interaction
due to electrons in terms of cohesive energy

dy = P+ Y, 3.1)
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Table I
The input data used
Metals Two body lonic part of Semi lattice P
bulk modulus cohesive energy constant (a)
kx (x 1012dyne/cm2) <A*(xIO0l2erg) (nm)
Au 0.509 2.644 0.2040 3.15
Ni 1.571 3.125 0.1760 2.75
Pt 1.085 4.111 0.1960 2.75
Pd 0.887 2.738 0.945 2.75
Table 11
The computed parameters
Metals D a ro Cauchy’s Q
discrepancy
(x10 12 erg) (nm"1) (nm) (x1012 dyne/cm2) (X10~12 erg)
Au 6.536 0.1519 0.3133 1.223 1.245
Ni 0.413 0.1945 0.2589 0.265 3.698
Pt 0.470 0.1418 0.2971 1.742 18.434
Pd 0.345 0.1632 0.2889 1.043 15.616
Table 111
Computed force constants (X104 dyne/cm)
Metals ai Pl a2 A A
Au -0.128 3.183 0.034 -0.155 0.307
Ni -0.272 3.576 0.089 -0.142 0.067
Pt -0.326 2.978 0.041 -0.088 0.311
Pd -0.216 1.864 0.039 - 0.011 0.221

where dxy is the total cohesive energy, dx is the energy due to ions and dy the
energy due to electrons.
Further

qy = E, + En+ Ec, 3.2
where Ej (Fermi energy) = —2.21/r2 Rydberg, En (exchange energy) = —0.916/r

Rydberg, Ec (correlation energy) = [0.0622Inr —0.096] Rydberg, while 1 Rydberg
= 21.79 x 10" 22 erg.

Hence the energy due to electrons

dy= 2% 9% os221nr- 00%) Rydberg. (33)
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Here r is the dimensionless quantity and may be varied like 2, 3, 4 or 5 while
In is the natural log.

The three parameters (D, a and ro) depending upon the two body poten-
tial with an appropriate value of P, are evaluated by the procedure laid down by
Girifalco and Weizer [13]. The deforming parameter Q is evaluated from the knowl-
edge of measured Cauchy’s discrepancy in the second order elastic constants.

4. Dynamical matrix

The elements of the diagonal and off-diagonal matrix may be given, after
solving the usual secular determinant, as

-Oa'a'(u) —4(/?i + 2c*i) —2@/?i + OCi)Ca'{CRI+ Cr')
- 4aiC7?'(r' + 4R2Sa>+ 4a2(SR, + SR), 4.1)
Da'’'(q) =2(/?i —ati)Sa'SRi -I-4/?3[{Ca‘ + Cry —2], (4.2)

where Ca>cos("p-), Sa>= sin(aga'/2).
Hence c*i, «2 are the first and i, /2 are the second derivatives of the potential
¢'rj) while /23 is the second derivative of (Table I1I).

5. Elastic constants

The second (SOEC) order elastic constant may be obtained as

@ 1(r)
f_me s o) rmadere yao A2RUd g

TATIT3 wj,t2,73 dr2dr2 ~

where d is the atomic volume. The other constants like C12 and C14 are obtained
by replacing m\ with suitable combinations of mi, m2 and m3.

6. Zero point energy

Zero point energy per mole has been computed using the method of Wallace
[14], ie.
Eo = 0.bN”2 hugj/ * W q, (6.1)
Jii A
where N is the Avogadro number and Wq the statistical weight of an allowed wave
vector in the irreducible part of the first Brillouin zone.
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Fig. 1. Phonon dispersion relation for gold (P = 3.15) (—) present study; (¢ * ») experimental
points

7. Discussion

The theoretical phonon dispersion relations for Au along the symmetry direc-
tions [100], [110] and [111] are shown in Fig. 1 along with the experimental points
due to Lynn et al [15]. The comparison of theoretical results with the experimental
ones reveals a good agreement, as is obvious from Fig. 1. Our theoretical results for
phonon frequencies of Ni are shown in Fig. 2 along with experimental points due
to Bergeneau et al [16]. The theoretical results compare well with the experiments
for all the branches. The phonon dispersion curve of Pt is shown in Fig. 3. The
agreement between calculated and observed values of Dutton et al [17] is found
reasonably good for Pt in all branches. The experimental phonon frequencies in
Pd were measured by Miller and Brochouse [18]. A study of Fig. 4 shows that
the computed phonon dispersion relations in palladium have almost reproduced the
experimental curves along all the symmetry directions.

Table IV predicts the second order elastic constants (SOEC) of all four fee
solids under study. Our results show a good agreement in SOEC of all the fee
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Table 1V
The computed second order elastic constants (X1012 dyne/cm 2)
Metals Cil Ci2 c44 Reference
Au 2.016 1.707 0.443
1.929* 1.638* 0.415* [19]
Ni 2.512 1.586 1.331
2.500* 1.600* 1.185* [20]
Pt 3.447 2.335 0.594
3.467* 2.507* 0.765* [21]
Pd 2.194 1.636 0.594
2.271* 1.760* 0.717* [22]
Table V

Computed values of zero-point energy (cal/mol)

Metals Present work Singh [23] Domb and Salter [25] Jain-Patel [24]

Au 415.0 423.0 458.0 406.6
Ni 860.0 864.4 876.0 -
Pt 572.0 525.6 580.0 -
Pd 665.0 621.0 685.0 -

Fig. 2. Phonon dispersion relation for nickel (P = 2.75) (—) present study; (¢ * ¢) experimental
points
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Fig. 3. Phonon dispersionrelation for platinum (P — 2.75) (—) present study; (¢ * ) experimental
points

solids with corresponding experimental values reported therein. In order to make a
further direct test of the model, we have also computed third order elastic constants
(TOEC) and fourth order elastic constants (FOEC) for the same metals. These
higher order elastic constants are not being reported here but can be had from
the authors on request. The studies on higher order elastic constants are useful
understanding the non linear strain-stress relationship, vibrational properties and
anharmonic behaviour of the solids.

Our computed values of zero point energy (Table V) are compared with the
calculations of Singh [23], Domb and Salter [25] and Jain and Patel [24]. Table V
predicts the clear picture of our computed values with the other studies.

Finally, we have drawn the conclusion that the present investigation provides
the satisfactory type of scheme which is centered around a more correct procedure of
parameter evaluation. The used input parameters are purely ionic for the two body
part while deforming parameter Q is explaining the three body part excellently.

One more interesting conclusion has also been drawn during the computation
that the variation of the magnitude of P in this scheme gives very reasonable ionic as
well as part due to electrons. Ifthe value of magnitude of P is varied, the results are
suddenly disturbed. The appropriation of the exponent (P) substantially includes
the electronic exchange and correlation effects into the ionic couplings.
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P o —mmg a

Fig. 4. Phonon dispersion curve for palladium (P = 2.75) (—) present study; (¢ ¢ *) experimental
points

The input data, computed parameters and computed force constants are given
in Tables I, Il and 1l respectively.
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A comparison is made between time development of the system, which follows from
the exact solution of Grabert equation for fluctuation distribution function and that derived
from the maximum entropy formalism. It is shown here that the maximum entropy formal-
ism can describe the behaviour of the physical system for times sufficiently long only if the
number of state variables under consideration is very large. Thus, the standard applications
of the maximum entropy formalism with few state variables are erroneous.

1. Introduction

The maximum entropy formalism [1] starting with an information theoretic
entropy analogue, which is the functional of the phase distribution, maximizes the
entropy subject to the condition that the values of the energy and certain addi-
tional moments such as, for example, pressure and heat flux are specified. Lagrange
multipliers are introduced and their subsequent evaluation enables to find the dis-
tribution function. Based on the information theory this approach asserts that the
best phase space distribution consistent with a given value of energy and certain
additional moments £,(r) defined at all points in the system interior is given by:

N
P{x) = exp{- A,(NE,(r, X)}dr, Q)

=1

where Z is normalizing factor and the A-(r) are chosen so that:
e.'(r) = £,averaged(r , z) :J p(X)Ei(r,x)dx. 2

E(r, X~ pi) is thermodynamic variable at point r calculated as function of
moments and coordinates of the particles. The maximum entropy so introduced:

S —- \] p(x)\np(x)dx (3)

1 Present address: Department of Physics and Astronomy, The State University of New
Jersey-Rutgers, P. O. Box 849, Piscataway, New Jersey 08855-0849
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has been extensively used and it was always taken for granted that the maximum
entropy so defined can be used for the description of physical systems [2]. The
possibility of defining Lagrange multipliers from (1,2) went without saying. In
previous work [3] we proved that this assumption is wrong. Simultaneously with
this assumption another has been made: that the maximum entropy, even defined
when just a few moments, except of energy, are specified can serve for the description
of physical systems for times sufficiently large ([2] and references therein). We will
prove making use of fluctuation distribution function introduced in [4] that this
assumption is erroneous. Consider the selected set A,(x) of dynamical functions of
the phase distribution and the set of generalized velocities A, (z), where iL is self-
adjoint Liouville operator. Further on we will use the notation a for state variables
and T) for generalised velocities. The maximum entropy so defined also provides a
distribution which is the average of the function:

ipa(x) = B(A(x)-a)6(A(x)-i1), 4

a=(a,r)).

8(A(x) —a) denotes a product of factors <5(A,(z) —a,) over the maximum entropy
distribution

o@ =1 p(gipacax. ©
According to the information theory, g(a) is the best fluctuation distribution con-

sistent with the specified values of A,(x) and A,(z). The time evolution of g(a,t)
is governed by the equation [5]:

d E dfaff), v % .g)
dt i dai " ],

Here:

PB(a) =J PB(x)rpa(x)dx,

vaa) =P B13) ] proico), @

1(3% pp(x)(iL)2Ai(x)dx.

The kernel D(a,a’,r) is defined as follows:

Dij(a,a\r) - ] pR(X)ipa>(X)[(iL)2Aj(x)](1 - P)exp[ii(l - P)T]ipa(x)(iL)2Ai(x),
(8)
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auri=/ ! 9)

and J is the projection operator for the system in thermal contact with surround-
ings, defined in [4]. (See also [5], where the correct form for the integral term is (5)
was derived. The equation holds provided the initial distribution satisfies:

Trlpp®iza(x)Fa (t)\ = 0, (10)
rn - P)exp[j7(I - P)t\ipa, (x)Ai(x)\
Fa' = - 2, LLl,
5[(1 - P) exp[iX(l - P)t]ypa (x){iL)Ai(x)\
(n)
r d<

This holds for maximum entropy distribution.

2. Solution of the equation for fluctuation distribution function
One can solve (5) using the Taylor expansion:
*rE>=t 3 "N - (12>
n=0
We readily establish the recurrence relation:

fa+iv \ _ r5[)i/">(a)] 6[1.()FF(N)(@)]

9 W dat fru
+ £ £ [/ Al(a',a)gW(a")da'". (13)
m,k>0 i J
AH*, a") is defined from
-pfw)s ~ A (14)
pfw) k=0

Now we are in a position to find the function g(a,t) at an arbitrary time, pro-
vided we know the fluctuation distribution at time t = 0. Assume at time t — 0
the initial distribution corresponds to the maximum entropy distribution, namely
is the best fluctuation distribution consistent with the specified values of a and t)
variables. We assume that the internal energy and heat flux per unit volume are
the state variables of extended nonlinear thermodynamics. The assumption that

Ada Physica Hungarica 73, 1993



200 E. S. FREIDKIN

few variables are sufficient for the description of a physical system is common in
nonlinear thermodynamics and maximum entropy formalism [4,6]. We will prove
that the assumption is erroneous. In Section 3, making use of the solution of the
Grabert equation, we will calculate the heat flux as function of t and the corre-
sponding second moment of the heat flux. Making use of the result we will work
out the expression for the corresponding maximum entropy distribution and fluc-
tuation distribution. We can calculate from g(a,t) as many moments, as we wish
if they are included among the state variables on which g(a,t) depends. In the
next Section we calculate the second moment of the heat flux as it follows from the
assumption that the system is described by the maximum entropy distribution and
compare it with exact results.

3. Calculation of the moments of heat flux

The expression for the heat flux has the form:

- \F , . 1 ~ ~ApnyU (rn
n I o T 52u(rin)-h P y, ( -y)(r“Y 7Y (e rja)’
i“n 73 n7

2V |

(15)
See [7] a and 7 label the components, F(r) is the energy of the interaction between
particles, V is the volume of the system, h is the enthalpy per particle

J=-£ «f i (°l(d
»<m)(,) £1=1 e (43<5i( Q) (16)
5.(q) = PRXJ PB(x)"4(x)(iLQi(x))dx, (17)

¢;(q) equals zero as the integrand is an odd function of coordinates. Therefore:

AD(@) = 0. (18)

For the second order term we obtain:

ff(2)(q) = E / 4 0)(*.q)i(QW * (19)
t=1"

and, after some transformations:

@. A dTr[PORIg() (LQIGO)ILQI()](—% F—)
0 @=FE " — - )
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Tr(pRip4 (iLQi(x))(ILQj(x)) is calculated in fluctuation approximation.

Tr[pR(X)i/>4(x) (iLQI(x)) (iLQj(x))] = Tr[pB(x)(iLQI(x))(iLQ] (x))1Tr[pR (x)tp4(x)].

(21

All integrals over momenta can be calculated exactly if one uses:
P?2(Pi-A)2 = A2(mfcT)2(3 + 2 (22)
(p,Ai)2(p,,A22= (mkTfA\A\ + 2(mjfcT)2(AiA2)26w, (23)
PnaPn'aPnPn' = (TnkT) (Snni+ Sall + Shn'SaR). (24)

If we assume the gas density to be small and take into account only correlation
functions of the second order after some lengthy calculation, we obtain:

Tr(iLQI())(ILQj(X))\ = Sijy \] exp(-BVv(r))dr ~ [M'2(n)]+
+1 (13) [ *M-0V(r))dr [+(*T/T)3r2[r"(r)]a

~vLi[V{OV{N]7 ~6ijV J exp(" " (r))dri2 » r2fF,(r)]2’

My n3az2
Tr[p0(x)cpu{x)] [s'1] e (26)
In (26)
T 150(tu3
2 2V ( m (27)

and we take into account only leading over density terms. In order to proceed with
further evaluation, we must do definite assumptions, concerning the potential and
the initial form of fluctuation distribution.

4. The evaluation of time of the validity of maximum entropy formalism

We assume that initially the distribution g(a, t) corresponded to the maximum
entropy distribution with specified values of internal energy and heat flux Q. The
corresponding function is easily found. The density distribution is;

pa(x) = Z lexp[-BH- 7(Q)Q(*)] (28)

Z = VN (2irmkT)*P. (29)
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The typical volume considered in nonequilibrium thermodynamics is of the order
10-18 m3. The result is valid for Q < 104 W/m2, which holds in all cases of interest.

T(Q) = ToQ, (30)
4V om
0= - 35 5 kT)3"
From here we find:
Iv m if ox
fO@ = sup kmyz. P (-p 2 ) (3D

If we assume that from t = 0 and further on the system is described by the maximum
entropy distribution, then in (28) we must substitute "~(Q) where "t*(Q) = ToQ(0
is calculated according to the formula:

Q) = Q(0)+J dq[a(a.t) - g(q,0)]a. (32)
The distribution
AR (V]
(g = 2 TS ®)

enables us to calculate second moment.

Q2(0 =) -H' aq[p(g-0-</(q.°)1q2- (34)

On the other hand, we can calculate the second moment of the heat flux, using the
maximum entropy distribution

QW =1*1[s7 (w J1%p w(-7(Q)4)4)- ()

Our aim is to compare these two results. Let us calculate the relative deviation of
the second moment with respect to t = 0

nT = Q29 - Q20) (36)
(i Q2(0)

The quantity A(t) calculated exactly will be compared with that calculated ac-
cording the maximum entropy formalism. We can proceed further to evaluate it
if we make definite assumptions concerning the shape of the intermolecular poten-
tial F(r). For the evaluation we suppose that the gas consists of molecules of Ne
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at atmospheric pressure and room temperature interacting through the Sutherland
potential:

V'(r)=o00 for r<4,
vin=—e ~ for r>a (37)

See [8]. We introduce the notation: Aexact(i) for J1 calculated exactly and Ame.f. (t)
for N1 calculated according the maximum entropy formalism

5<) = Aexact(i) - Amef.(i)- (38)

In the expansion of S(t) over powers of t we get the striking result. (The term,
proportional to t, of course equals zero by the definition of the maximum entropy
formalism). But even in the second order (') over time the disagreement between
maximum entropy approach and exact solution is notable

S(t) = 1053 m~1led<r(kT)~3pt2. (39)
For the evaluation we take neon at room temperature:
a= 0.233 nm, (40)
I =192K’

p= 2445 x 105 m"3
and get:

S(0=(4)\ (41)
1o = 28 x KIF'®s.

Therefore, only for t < tq the assumption that the system can be described by
maximum entropy distribution gives the results which coincide with the results of
exact calculation!

5. Conclusions

We investigated the problem of the validity of the maximum entropy formal-
ism. In particular, we presented the first evaluation of the time for which maximum
entropy distribution is valid for the description of physical systems. One can get
the same order of magnitude for other potentials of interaction between particles
and for other moments specified. The maximum entropy formalism turns out to be
valid (if one assumes that at some time the system was described in this way) only
for a period of time of 10“2(11) atomic collisions and further on strongly disagrees
with the results of exact evaluation. Thus, it turns out to be completely insufficient.
Of course, if the number of moments in question [9] tends to infinity, the maximum
entropy formalism gives exact results but there is no practical point to use such
approach.
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In generaBzed gauge models a so-called U matrix is developed. It isa non-dynamical
entity which correlates different field bases. In this paper such an M matrix is explicitly
evaluated for the cases with two, three and four fields rotating under a single group. The
corresponding propagator transformations between these field bases are also calculated. An
interacting potential expression depending on primordial parameters is shown.

1. Introduction

The viewpoint of associating two or more independent gauge potentials to
a single compact and simple gauge group has been shown to be supported by
differential-geometric arguments. Indeed an analysis based on a Kaluza-Klein cou-
pled matter-gravity theory [1] and a description of gauge potentials in terms of
connection on principal fibre bundles [2] enforce the possibility of introducing in-
dependent potentials is association to a single group and, at same time, allow a
geometrical interpretation for the extra gauge fields that are introduced. Another
proof was also derived by relaxing supersymmetry constraints [3]. Thus these three
different origins allow to be written a generalized gauge model based on the following
transformations:

AMX) - AMX) = UAI{X)U~I + Ud»U~\ (L.1)

where | = 1,..., IV. Equation (1.1) brings consequences on inducing the classical
generation of non-linear cr-model [4].

This generalized model can also be developed with matter fields [5]. This
means that distinct flavours can be understood as rotating under a same group

Pa-+P'a = e, (1.2)

where ®a is any matter field with a= 1,..., N and Q is a diagonal charge matrix
with ga eigenvalues.

A first consequence of these of generalized models is that the relationship
between fields and quanta is no longer univoque. The situation appears where for
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a given field basis one gets that a corresponding field will carry various quanta, a
result which can be verified by calculating the poles of the corresponding propagator.
However, we should observe that for spin-0 and spin-1/2 there is always a field basis
which is completely diagonalized. However, for high order spin cases just one sector
can be diagonalized. For instance, for Eq. (1.1) the longitudinal sector will preserve
a non-diagonal kinetic term while the transverse sector is diagonalized.

The motivation here is a non-dynamical entity which such generalized gauge
model develops. It was identified as i2 matrix and its origin comes from the possible
field rotation that theory contains:

P= N2, 1.3

where (pand ® are associated to field reparametrizations.
The so-called ®-basis is a column vector containing the fields in Eq. (1.2).
They generate the following diagonal Lagrangian

£[go] = ®+MNP-D+7120, (1.4)
In parallel, there is the considered ®basis, which corresponding Lagrangian
C[p] =cp+OKp-p+M 2p (1.5)

is invariant under
Pa(x) - <a(x) = (eia® ) abpb(x), (1.6)

where Q is an TV-dimensional charge matrix, not necessarily diagonal. Reality
condition says that K and m are hermitean. Their matrix elements are built up
in terms of the so-called primordial parameters. They represent elements in such
generalized gauge theories which are revealed when one works with non-diagonal
field basis as Eqg. (1.5). Due to the fact that such coefficients contain the property
of parametrizing the model in the sense that can take any value without violating
gauge symmetry, they were entitled as primordial parameters.

As a first glimpse on fi matrix existence at such generalized gauge model we
can derive the following relationship between the above charge matrices:

Q = Q-1 (1.7)

which shows the influence of such initial parameters.

Notice that the 1 matrix creates scalars and tensors and shows that sym-
metry can change its shape in the sense that depending on the field basis it will
appear in different representations for a given symmetry. Nevertheless such field
reparametrizations equally describe the TV-involved quanta. This property of quanta
invariance was proved in [5] where it is shown that quantum numbers as spin, mass,
charges, discrete symmetries which define a quantum are independent of i1 transfor-
mations. Consequently, gauge theories involving various fields rotating under a same
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single group offer a kind of field reference system which says that a given quantum
physics can be described through different ‘field coordinates’ or field reparametriza-
tions. Therefore such proposed d matrix, similarly to the Lorentz matrix and to
the gauge-fixing approach, belongs to the family of observators.

The d matrix provokes a new kind of choice on the calculation process, and
it develops a method for investigating the relationships inside of such generalized
gauge models. The first effort of this work is to calculate A explicitly. For this,
Section 2 is devoted to cases involving two, three, and four fields, Section 3, to
studying propagators transforming under such d matrix. And finally, experimental
parameters as masses, coupling constants and effective potentials are calculated in
Section 4 in terms of such primordial parameters. Calculations were performed
through the algebraic system Reduce [6] and Maple [7].

2. d matrix

The objective of this Section is to evaluate the @ matrix explicitly. For this
cases involving two, three and four fields rotating under a same group will be studied.
Three calculation methods were developed.

The first one means to diagonalize step by step Eq. (1.5). For this, one
introduces two unitary (orthogonal) matrices S and R, where S diagonalizes the
kinetic matrix K and R the correspondent mass matrix obtained after S rotation.
We call K the the diagonalized K matrix. By the use of Egs (1.3)—€1.5) it is quite
straightforward to show that the expression of fi matrix is given by [5]:

n=StK~12Rt, (2.1)

where K > 0means the A existence condition. However, in practice expression (2.1)
is very hard for doing calculations even considering algebraic computer methods.
A second method for building up the d matrix can be developed by using the
following relationship [8]:
ad+=R-1 (2.2)

and
Cl-}(K~1IM 2d = m2, (2.3)

which can be obtained from Egs (1.3)—L1.5). One can note from Eq. (2.2) that O
is not hermitean. Equation (2.3) can also be used to calculate the physical masses,
given by the diagonal m2 matrix, in terms of the primordial parameters.

Suppose that (/1, ) are the eigenvalues of K~XV 2

{K~IM 2w = \w. 2.4)

Then if one defines v as:
V — Cl~1w, (2.9)
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it yields,
Cl-1(K~1M 2)ilv = v, (2.6)
From (2.3) one can see that the elements of the diagonal matrix m2 are (K"1M 2)

eigenvalues. Then from Eqg. (2.6), one can choose a set of eigenvalues and eigenvec-
tors (Ai, vi); (A2,v2); ... ;(Adr, viv) such that:

(1\ fe /e
0 | 0
VI = : V2 = ; vn —

Vo o/ V)

are satisfying the orthonormality and completeness conditions.
Therefore the corresponding set for Eq. (2.4) is (Ai, w\ —fini);... ; (Aar, g =
Qujv) where each w- correspond to the ithQ column

/ Ma
wa = (2.8)
\ Clffa

and are satisfying the following relationship

=K I. (2.9)

Once obtained wa satisfying Eqg. (2.9) one is able to read off the elements of d
matrix.

This second method will be taken in order to evaluate the fi matrix. The K
and M matrix are preserved general, however, obeying the conditions of K and M
being hermitean and K > 0. We will explicitly exhibit the @ matrix now.

First, for the case involving two fields, N = 2, the initial matrices are

f *11*12\ M2- ( mHm12\
\ *12%22/ ~\m {2m22) - 210

In this case and in the following ones the diagonal elements of K and M2 are real
constants. The correspondent d matrix is:

—2(0(fai2fn22—L24712) - XAfc137I2—fermia)
fi — ( -a+fcnm22+biamja-fcjami2-fc22mn a+tnmaa+tiam”-kjjmia-iaamii
= ( - H cl c2
11y
where

cipe Q- *nn22 + *L1*I2M2 + *1*12m12 + *11%22L0, - 2fci2*i2mH
te= 2adet(iC)
(2.12
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atkn + Ar™trr —kuki2m12 —kxxk{2mx2 —~n~22L1y + 2Fi 2k\2mxx

bl = 2a det(if)
(2.13)
with
a2 = k\xm2 —z2Kiikiznfiamaz — 2fcufciam izm 22 - 2711122/11422 +
4i11722m12mi2 + k\2rri[\ + 4ni2~a*2miim22 —2ki2kl2mi2m*12-
2ki2k22mixm*12 + k{Im\2 — 2fc*2fc22miim12 + k22m\x. (2-14)
The physical masses are given by:
KUuT"— ATu+Kurny —a
m2 = 20et(Ar)
KUITIN-kuT* -K' T +K33rny+a
2det(K)
(2.15)
For N = 3, considering that
n &2 KX3\1 } m mi2
2 & 2 v - W rn22 M2 (2.16)
'fS k23 Ks3) 13 w23 T33.
one gets
/ Cl(n|CI+n2% Ca(nlr2+% 3+I'l2
n (rZIIJIrnsl’(IIﬁ:Ln G I'lsF 4 2.17
<K 3
ri+dirl rf+dIrT+d r"+d|r3+d (217)
Ci Co Cu
with

Icil2= ((M1M¥- n2n3)(KxxK2 - kx2Ki) + (7i<2- MIr23- n2dx - Mr2- rer)
(kxxK23 —k\3k12) — (dind —"2~3 + n3r2r3+ n4r2+ n4r3)(fci2&23 —"13"22))
(r2+ dm + d2)/((nin4- n2n3)(rx - r2)(ri - r3)det(F:)). (2.18)

Coefficients |c2| and |c3| are obtained by substituting Eq. (2.18) as
[c212=|ci|2{ri 4»r2}, (2.19)

bl 2= ki|2{ri #sr3}
Other coefficients in Eq. (2.17) are given by

L = (M12/23"33 —kx233IMTR3 —N13"22D233+ (2.20)
KX3K23rn23 + K22k33rnx3 - 2231 13)/iel(Er),
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«2 = (M3722733 —&13™23™23 —N231 12733+ (2.21)
K23T13T23 + kaamiam23 - kszsmiam22)/det(K),

N3 = —(KUK23T33 —K\\K33T23 —Kx3K\2T 33+ (2.22)
kisklam23 + Ku kaamis - k2kizmis)/aet{K),

nd = —{kid3m\2m33- ki3m2m#3- b1y 133+ (2.23)
k2Zmi3m*3+ k33m\\m23 - k33m+3m\2)/ ae\,(K),

d\ =(KuK2T23 —KuK33rnZ2 —ki2k23m13 + ki2k33mI2+
—k\3ki2m 23+ ki3k2mi3 + K\3k*3T 2 —Kki3k23rrii2\- (2.24)
KMK33TMW - K33K33TL, - k2313mi2+ fc23"23mu ) /det(").

d2 = (Ki3m2m23- k13m2m13- k23milm 23+
k23mi2m\3+ k33ui\TTi2 - k33mi2m12)/det(K). (2.25)

7<17-2, r3 are roots of the equation
r3s+ar2+ br+c=o (2.26)

for

a = (—KUK33rn33 + KuK23Tt 23 + KU K23T 23 —kiikaam22+
Kizklamss - Kizkeamls - &2*asr 23 + Kizksantl2+
—ki3k\2m 23+ ki3k2m 13 + k13k13T 22+ (2.27)
—k\3k23m\2 —k12k23mi 3 + k{2k33m\2 + ~227i3mi3+
—K22¢33TL - k2K13mx2+ k2Bk23mil)/det(K),

b= (knT22T33 - KN T23T23 - kiam\2ams3 + £12rm371*3+
KWET*12T23 - kism22ml3 —kizmi2amass + f2mlamz3+
k22rniirm3ss ~ K22T13T13 - k2amn mas + ~23/M12/3+ (2.28)
K{3TX2T.23 - k{3m13m22 - k23mn m23 + k23mx3m |2+
K33TUTZ2 - k33m12m12)/det(K),

¢ ——det(M2)/det(K). (2.29)
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This equation is the characteristic equation of K 1M 2 matrix. Therefore r\ r2and
r3 are the physical masses.

For N =4
I hoi k12 ki3 kb \ /Ty mi2 mi3 mi4
B2 k22 «2s ko4 7112 m22 m23 m24
Ris K33 «33 ka4 nxjg3 ™23 m33 m34
\Risa U5, R%, ka4l mo2a M*4 ma4
yielding,
[ CIMUrAHIHB)  ea("irj+nar3+nd) G} ) cAnirj+n2r4+n3)\

rf+dire+dsri+ds r3+dil3+d2r3+d rJHdTHTATIT-
Ci(N4r?4nari+n6) ea(n«r3+nara+ns)  eano»-3rngrarng)  CAMA2HS4HK)
fi = ri+dir2+d3i+ ra+di”a+daca+ds rf-(l-dTlé]:dArg—:dél)_ ri+dirj+dara+ds
ei(nTr?+n8ri+fi9)  ea(rl atngrats e3(mr3+nar3+n G T4 n«rd+n»
rj(+dir2+d2ri+d3) I%(‘Fall%'i'é(ra'i' r3+di™ +dars+ds rJ{rdIr2+dar4+d3)

\ d Q G c4

‘mJ+dlrJ+darsa+ds

(2./31)
with

|ci|]2= (b44(nin5n9- nin6n8- TRIUIM+ n2n6n7+ n3ndna—n3nsri7)+
6%4(-RIUS(3- nin5r2r3r4+ nin6d2- nin6r2r3- nin6r2r4- Hin6r3r4 + n2n4d3+
n2ndr2r3rd- n2n6di —n2n6r2- n2n6r3 - n2nérd- n3n4d2+ n3ndr2r3 + n3ndr2rd+
n3n4r3rd + n3n$di + n3n5r2+ n3nar3+ n3n5r4) + b24(ninad3 + nin8r2r3rs-
n4Tigdl2 + n4n9r2r3+ nin9r2r4 + nin9r3r4 —2n7d3—n2n7r2r3r4 + n2n9d 1+
n2n9r2+ n2n9r3+ n2n9r4 + n3n7d2—n3n7r2r3- n3n7r2r4 - n3n7r3rd—

n3n8di —n3nar2—n3nar3 —n3nar4) + 6i4(-n 4n8d3 —n4nar2r3rd+ n4n9d2-
nN4n9r2r3 —n4n9r2r4 —n4n9r3rd+ n3n7d3+ n5n7r2r3r4 —n5n9dx —nan9r2—
n5n9r3- n5n9r4 - n6n7d2+ n6N7r2r3+ nén7r2rd +n6n7r3r4d + n6n8di+

nénar2+ nénar3+ nénsrd))(rf + cAr2+ d2rx+ d3)/((nin5n9- ninéna—
n2n4n9 + n2nan7+ n3n4na—n3n3n7)(ri —r2)(ri —3)(ri —r4))

and similarly to the previous case

[c2]2=|ci|2{ri < r2}, (2.32)
[c3|2= |ci|2{ri <t+r3), (2.33)
[c4)2= |ci|2{rj r4} (2.34)

Other coefficients in Eq. (2.31) are expressed as

«1 = al4, (2.35)
N2 = ai2a24 + ai3a34 —ai4a22 —oi4a33l (2.36)
B = ai2<23a34 —<ii2a24a33 —ai3a22a34+

2i3024a32 + SUAT22SB3 —01451235862! (2.37)
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na — a2di (2.38)
75 = - (<*11024 — <*14<21 — O23<B34 +  <*24<*33), (2.39)
16 = — (<1< — <A — <F1321<4

+ HI3CUSL + U123 — <F14<*23<K3)), (2.40)
1%7 =<*34, (2-41)
I8 = — (<Fl1<R34 ~ <FACBL + <CR2<RB — <RU<K3Y)> (2.42)

179 = <K<K — <FLLIAU<I2 ~  <K12<21<3A

+ QRIUXRIL + <KUAP<IR ~ <KUA<HR<H3L0 (2.43)
d\ = —(an + a-2+ <) (2-44)
d2 = <I<F22 + <1133 — <122 — <F13<R3L + <233

— BB (2.45)
B = — (LIP3 — KU — <UD
+ RSB+ <A — <133 (2-46)

i’ll 72, 13,4 are the corresponding physical masses for TV= 4, which are roots of the
equation

ra+ or3+ br2+ Cr+ d = o,

w ith

a = —(ay + <R+ <33+ <A4)l

b= aya22 + ayas3 + auyad4d —012021 —013031
—aldadi + a2<B + LA —<IRIP ~ UL
+ 033044 — 034043,

¢ — —(auarrass + 011022044 —aLa23<*32
—011024042 + 011033044 —011034043
—012021033 —012021044 + 012023031
+ 012024041 + 013021032 — 013022031
— <FI3<BU<H4 + <FI3TAHL + <K14<21<K42

014022041 + 014031043 —014033041

+ 022033044 — 022034243 — 023032044
+ BIU + USZ ~ U< AD)i

d =det(a,j). (2-47)

a,j and bij were defined as

ay =((1/K)YM%, (2.48)
bu=(1/K)y. (2.49)
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Concluding this Section, one notices that the rotation matrix fi depends on
primordial parameters written in the Kinetic and mass matrices. In order to organize
such results depending on primordial parameters we prefer to present them in a
form which includes normalization constants c-, the physical masses r- and the
coefficients n- and d-. The structure of Egs. (2.16) and (2.17) can be generalized for
the cases N > 4. Athird method means to derive the i1 matrix through propagators
expressions.

3. Propagators

At quantum level, the basic entities are the propagators. From [5] one knows
that propagators are not invariant under I2 although their poles are preserved. The
corresponding transformation law is

(Ted) = B_1((w))n*_1. (3.1)

Propagators are better investigated in y>basis. This is so because in such
a field reference system the expressions are written in terms of such primordial
parameters. Although physics does not depend on any field basis, symmetry is
more explicitly expanded at y>-basis, and so, any entity calculated there will reflect
symmetry presence in more detail.

For this work N = 2,3 cases will be calculated. The general expression for
propagators at "-basis is

(3.2)

where rf are eigenvalues of the K 1M 2 matrix and (c;),;- coefficients to be deter-
mined.
ForN = 2,

|2x2 _ (ch)ij . (c2)ij (33)

Splitting up the expressions, one gets the following propagators:

with
/| 4 -2 f R2r2
(c,)I1- (rr-rl)

(3.4)
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(~2 )X- (fi)_zgz + k@z?z.

@)’

(Q2=T I *HN (3-5)

(r1 - r2)

and

and for the non-diagonal cases

M<P) = (vw) - p _r2+ kK2_r2>

with
miz - &i2»!
Cch” = W-ri)
mi2 - r|fci2 , .
CI2="(r2-'rl) = ( 1

Poles ri and r2 are the diagonal elements of matrix m2 given by (2.15).
Equations (3.1) and (3.2) also work as a method for calculating the fl matrix.
Notice that Eqg. (2.11) can be derived through Egs (3.3)—3.6).
The case N = 3is studied in Appendix A.

4. Masses, coupling constants and effective interparticle potentials

A further aspect from these gauge models adopting more than one field ro-
tating under a same group is that physical masses and coupling constants appear
depending on more initial coefficients. For instance, in the case with two fields and
adopting that kinetic and mass matrices use real, one gets from (2.15) the following
expression for the physical masses:

fecnm2+ k2rny - 2fcimi2 + a
(m hys) . (41)

P 2(M1722 - fcii)
where

a2 =k\xm\2+ k\2m\2+ 4fcnAri2m22 + 4k\2m\\rri22
—Afci2fcl2»Tliim22 —2k 1 Kk 12[TI2ATR2-
The fundamental consequence of Eq. (4.1) is that such generalized gauge models
develop at three level physical masses expressions depending on primordial para-
meters.
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For investigating more systematically about such a mass dependence on initial
parameters one should compare with loop corrections. For this, we are going to take
three cases with Ad type of interactions. The simplest situation is

C= "P<9"P - AT202- "AD4. (4.2)

Then, from tadpole graph one reads the following expression [9]

mphyS=mR - mR “orm 4rp2 (4.3)
A next step would be to include two interacting fields
C=\p»d" b, + "0"20"2 +
-\ mO\ - Imid2- AP 4+ (4.4)
|® 4-~ d 202
At one-loop, it yields
(mphy)l,l2 =ml2+ ﬂf%%mll (7- 1+1In 47r/r2 +
¥ éf;zm 7—1+In M2 45)
Finally, one should consider a non-diagonal case
c ="dIt91591+ -dltp2™ p2+
- 5" - - ACrpn+
Z"CrdJZ—,ql|C BO|P2+
- - N 5Plo). (4.6)

Including the counterterms, the effective action corresponding to the quadratic
part is

r finite = "Kp2- m?) + a]P2+
+ \[{P2- ml) + 4%$2 + CPLD2,
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where
G\m\ N \' GAm\
a~ 10omm \(, mi =T ) 1642
W2 g pay ) GAM 7)
10772 v | ) 16712
Gzm\ | 4F 4| T\ Gbm\
s (In4h ) 32m

Thus the physical masses are eigenvalues of the mass matrix

Expanding up to ft, one obtains
(r phys)i,2 = ’%{m\ + m2- a- b)+
— | —Tla N [m2—TLL6 (4.9)

m2 —m?2 m,

Now from Egs (4.3), (4.5) and (4.9) one also observes the existence of mass
formula depending on theory initial parameters. Nevertheless, these expressions
carry a fundamental difference from Eq. (4.1). It is due to the fact that their mass
dependence on primordial parameters only appears after loop corrections. Thus
the singular aspect in Eqg. (4.1) is that it contains the situation where at classical
limit such dependence on the initial set of parameters appears. This means that
a special feature from such generalized gauge models is that variables involved in
the Newton’s second law are expected to be expressed in terms of more primordial
parameters.

In order to show that the I2 matrix presence in the model is a consistent
method a next step is to understand that these mass corrections do not depend on
any field basis. From [5] one has that under field reparametrizations the effective
actions are related through the following relationship

Y, .. -P="" ..M ..0w, (4.10)

At d-basis, the effective action can be written as
Me] = -¢*[(p2—mR) —L7]d + interactions (4.11)
and at y>-basis, as
m =\n{kP2—M2) — + interactions. (4.12)
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Then, from (4.10) one gets
E=ir"TTITL (4.13)

Substituting (1.3) in (4.10) it yields that the equation which determines the
physical masses

mphy, =P2- ™ (4.14)
is an invariant under fi. Consequently, one verifies that shifts on the poles will not
depend on any field parametrization basis.

A third analysis in this Section is on the coupling constant. Substituting (1.3)
in (4.2), one derives that

Gijkl — (4.15)

Equation (4.15) reveals that any coupling constant will depend on more primitive
parameters. As an example, let us study a case at N = 2. Substituting (2.11) in
Eg. (4.15) one obtains

_ 16cf(fciam22 - k222)4
T (kuT22- a- k2mn)4 11
16¢|(fcizm22 - k2mi2)4
(a+ KUT2—K2Ty4)4 111
64c2(fcim22 - k22m 12)4cl
(@a+ knm2- k2mn)(kum2 - a - k2T )3 112+
96c2(fci2m2 - k22m 12)Ac)
(@a+ kuT22- 12mii)2(lim2 - a - 12ry)
BACU(fC12m22 - f22m i2)4ci
(a+ knm2- k2Tn)3(kyT2- a- k2Ty) " 2**%

Gun

SA 1222+

(4.16)

where ci, c2 and a are given by Eqgs (2.12), (2.13) and (2.14).

From the above results one should understand the consequences on the inter-
acting potential. From [5] one knows that the effective interactions do not depend
on Q. Taking the static potential case and assuming, as example, an interaction
which involves just @1 field, one gets

(72 p-m,f

M (1~+1)= 4721— @)

Concluding this Section we should analyse that the expressions derived for
masses, coupling constants and effective potentials are carrying a new aspect. These
physical entities become written in terms of more primitive parameters which are
inscribed when one writes the model at y?-basis. Consequently, these primordial
parameters written at Eq. (1.5), become the basic constituents for physics to be
defined. For instance, depending on their values tachyons will appear in Eq. (4.1).
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Nevertheless, the main consequence of these initial coefficients is on the redefinition
of the interacting potential. It has usually been defined in terms of three parameters:
coupling constant, mass and distance. Analysing Eq. (4.17), one notes that Gnu,
Diphys are expliciting a dependence on a more primordial set of variables given by
Egs (4.9) and (4.16), and so, the intensity of a given interaction will no more depend
just on three variables.

Fig. 1. Aninterparticle potential

5. Conclusion

Models involving the presence of more than one field in a same single group
necessarily manipulate with field redefinitions. From this fact emerges a so-called
i1 matrix. Therefore a first effort in this work was to calculate Q explicitly. From
Egs (2.11), (2.17) and (2.31) one notices that i2 is adimensional and depends on free
coefficients which can take any value without violating gauge symmetry. Although
it was performed through a scalar case, the obtained expressions are generic. The
results are the same for any generalized model involving fermions, vector bosons or
tensors.

Q@ matrix brings an elegant connection between the different field bases and
divides the theoretical entities in scalars and tensors. For instance, Eqs (4.10) and
(4.15) are expressing how the effective actions and coupling constants transform
under 11 while the physical masses and the interaction potentials are scalars. Notice
that this fi matrix concentrates the information on primordial parameters that such
generalized gauge models contain.

Finally, one should interpret on such primordial parameters. Three conditions
in field theory are necessary for the classical limit to be reobtained. They are to
consider a potential which is derived from the effective action

=V hnr<s> (5.1)

n=0
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without Planck corrections, \]
Mo = v dxxCc (5.2)

and on its non relativistic and static limits. After these requirements, the associated
potential V (X) means the potential energy from which Newton’s law of motion states
that

dV

mx = F(x) = - — (5.3)

Now considering that Eq. (4.18) satisfies the above requirements, it works as an
example, where generalized gauge models develop at three level a force strength
expression depending on the distance and on such primordial parameters. Conse-
quently, one derives that the velocity expression and the classical trajectory will
appear depending not only on time, but also on primordial parameters written at
initial Lagrangian, and that they are not necessarily associated to experimental
values.
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Appendix A

Equation (1.3) preserves physics, however, propagators transform like Eq. (4.10).
We present below the propagators at “s-basis, for N = 3:

Kk2- M2, ‘k(zcl-)«"]rkﬂmlt (AD

There is the following list of diagonal and non-diagonal propagators:

M = Ailii + +
k2-rv k2- k2~rV

with

rXTUK33 - kizk rl + k22k33r$ +r1r 233 ,

<Cl),* = -=mmmmmmmmeememeeen (rl-d)M -d) - +
MR3TE3+ TMR2ATB3 - r\K22133 + r\KB T3
(r2- rh(ri - rl)
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r2k23T 23 - rlk22m 33 - r\m 22k33 + r% m23k23
+
c2)ii = -
(c2) n - rird—r8d + rrrs)

»7122D233 + T2k 22k33 — I*2723723 — m 23 ™ 23
" _/\_r/\+r/\_r/\)

r3k22T 33 r3k22k33 + r%k23k23- "~ 23723

Ol (* - rHO(r? - ri)
rsmzz~33 - rjm23723 ~ 1 22ras3 + m23m23 (A.2)
(r2 - rh)(r? - r))
and
/ \ . \ _ (cDl2 , (Cc2)I2 , (C3)I2
"~ 2= (iWl) = ~ 372 +
with
r2ki2k33 - r|&13&23 - m13m 23 - r|fci2m 33
(c1yrt2 = +
(r2- r|)(r| - r2)
r2~13TM23 - 2Tt 12«33 + + ml2m 33
(r2-rl)(r2-r?)
Ki2k33rf - mi3m23 - r*12r 3+ mi2m33
(c2)12 — (r2_r2)(r2_r2)
A3N23rl1+ rlTt 3k23 + r\ki3m23- rim 133
(R2_m)(r2-rn)
3)i2= r3k12T 33 - r%k12«k33 + r%ki3k23 - rlk13T 23
(c3)iz=— (r3- PIr3—r&g + rir))
rlv 12«33 -rim 13k23 - mi2m33 + m 13m 23
{rt-rirl-rivl +rirl) (A3)
and
Volrgs = 2yl = (ci)i3 (c2)i3 (c3)13
(Vars>= »¥) = o _+j - ri  f2—r|’
with

-mi3m2- r*\12- rlk12m23+ r\k13m22 - r\rn12|<23+
(r2-r 2)(r2-r 2)
rimi3k22 + r\kun k23 - r\kx3b2 + mi2m23
(r]-r2)(r2-r2)

(Chi3=
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N r2h 3m2 - r%k12m23 - r%mi2k23 + r%ami3k22
(€28 — M- rir2- r2ri + r\rl)
rkix23- roki3k2+ mx2m23 - ml3m22
(rt - r\r\ - r\r\ +r2r|)

r3k\2m23- m23 - mi3m2 + rlkX83m22 + r$ml3k22+

(r2—r3)(rl —r|)
r3m1Ik23+ mi12m 23 - ti3N2R3 + kX2k23r%

(c3)13 ——

(A.49)

and

with

, 4 _ kukért+rnlirn33-m 13m*3+rlk13ml3
(Cl>22~ {rl-rD){rl-rl)

MTUKB+ rim13kI3- rAfcu m33 - k1kI3rs
(r2 _r2)(r2_r2)

r2mx3kI3- r%Tuk33 - r%kyT3d - mi3mj3

(r2-r)(rl-rl)

, 5 MNIm3B- r$kukB + r3kxBkI3- r~13r}3,
1C3j22 - (rd_r2r2_r2r2+r2r2}

ramn k33 - r%mi3kl3- mn m33 + m13mj3 AS
(ri-rld -rlr| +r2r2 (A5)
and

= = A + + <«
M 'Kaﬁ!brz f2-' k2(—rV
with

K3BRI2r\ - mu m23- knk23rf + m13nw
(r2- ri)(ri - r3)

rihim 23- rlkXm#2- rim13kl2+ r?Tuf£23
(r2- ri)(rf - rl)

(ch23 =
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m13m 12 + r%ki3k12- mnm 23 - rirTy3ri2
(r2- r){rl - VI)

rlkum.23- rlk13m\2+ TATUER - 1M 2
(i-ri)(r&-»1)

(cr)23 =

_ rfeufe3- r|hy T2 - rjkix{2+ r|’\13T*2
vraeE - (r%— rir3 —r&m+ ror2)
riTu”23 + r3mi3k{2+ 14 T 23- mi3mi2

A.6
(' Firs —ra + rirr) (A6)
and finally,
bl =idiL +ifa.+ w»
f2-r21R—2 P-1r2
with
/C’L\ mi2mj2- mn m22+ m22r N u + rlfci2fc2
s NE e
r2ki2ml2+ r[ffc22mu —mi2r2fc?2 - r2f2fcn
(rz - MBy(r2- 1?)
(@3 = T 12T 12+ K2 T\TU —T U T 22+ m22fu rf+
(r2-r 2)(r?-r2)
k2rjkn - fci2r2m*2+ - TMi2<g2r?
(r2- r2)(r2_rg)
n _r3kuT22 - r%KuUuK22+ T%k1l2k{2 - r|fci2m 72
(C3)39 (r] - r])(r2- r2)
r3T n k22 - rlrtl 12kx,2 ~ T U™22 + mi2mj2 (A7)
(ri - ri){rl - r2

Physical masses rf, r2 and r3 are roots of the cubic equations (2.26)-(2.29).
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The thermosolutal instability of an Oldroydian viscoelastic fluid in porous medium
is considered. The effects of uniform rotation and uniform magnetic field, separately, have
also been studied. The stable solute gradient, rotation and magnetic field are found to
have stabilizing effects on the system. The medium permeability has destabilizing effect
but in the presence of rotation it has both stabilizing sind destabilizing effects depending on
the rotation parameter. The magnetic field, rotation and stable solute gradient introduce
oscillatory modes in the system which were non-existent in their absence.

1. Introduction

The thermal convection in a horizontal layer of a Newtonian viscous fluid has
been discussed in detail by Chandrasekhar [4]. Bhatia and Steiner [2] have studied
the thermal instability of a Maxwellian viscoelastic fluid in presence of rotation.
The thermal instability of a Maxwellian viscoelastic fluid in hydromagnetics has
also been considered by Bhatia and Steiner [3]. Veronis [13] has investigated the
problem of thermohaline convection in a layer of Newtonian fluid heated from below
and subjected to a stable salinity gradient. The medium has been considered to be
non-porous in all the above studies.

There has been considerable interest in recent years in the study of the break-
down of the stability of a layer of fluid subject to a vertical temperature gradi-
ent in a porous medium and the possibility of convective flow. The stability of
flow of a single-component fluid through a porous medium taking into account
the Darcy resistance has been considered by Lapwood [7] and Wooding [14]. The
Darcy’s equation describes the incompressible flow of a Newtonian fluid of viscpsity
ft through a macgf®yopically homogeneous and isotropic porous medium
meability ki. If qthe filter velocity of the fluid, the resistance term
replaces the usual viscous term in the equations of fluid motion. There is mountifig
evidence, both theoretical and experimental, which suggests that Darcy’s equation
sometimes provides an unsatisfactory description of the hydrodynamic conditions,
particularly near boundaries of a porous medium. Beavers et al [1] have exper-
imentally demonstrated the existence of shear within the porous medium near a
surface where the porous medium is exposed to a freely-flowing fluid, thus forming
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226 R. C. SHARMA and V. K. BHARDWAJ

a zone of shear-induced fluid flow. The Darcy’s equation, however, cannot predict
the existence of such a boundary zone, as no macroscopic shear term is included
in this equation (Joseph and Tao [6]). To be mathematically compatible with the
Navier-Stokes equations and physically consistent with the above-mentioned ex-
perimentally observed boundary shear zone, Brinkman proposed the introduction
of the term (*)V 2q in addition to —{j"-)q in the equations of fluid motion. The
elaborate statistical justification of the Brinkman equations has been presented by
Saffman [10] and Lundgren [8].

Toms and Strawbridge [12] have demonstrated experimentally that a dilute
solution of methyl methacrylate in n-butyl acetate agrees well with the theoretical
model of Oldroydian viscoelastic fluid. The thermal instability in a rapidly rotating
Oldroydian fluid has been considered by Eltayeb [5].

The present paper deals with the thermosolutal instability of an Oldroydian
viscoelastic fluid in porous medium. The effects of uniform rotation and uniform
magnetic field on the problem are also considered. The problem finds its relevance
and usefulness in chemical technology and geophysics.

2. Perturbation equations

Consider an infinite horizontal layer of Oldroydian viscoelastic fluid of depth
d in porous medium, heated and solute concentrated from below and acted on by
gravity force g(0, 0, —g). The Oldroyd fluid is described by the constitutive relations
(Oldroyd [9)):
Tij = —pSij + Tij,

(1)

o 1(dg. d4j\
BU 2\dxj + dxi) ’

where Tij, Tij, eij, p, qi, Xi, p, Aand Jo (< A) denote respectively the stress tensor,
shear stress tensor, rate-of-strain tensor, scalar pressure, velocity, position vector,
viscosity, stress relaxation time and strain retardation time. When a fluid perme-
ates a porous material, the actual path of an individual particle of fluid cannot be
followed analytically. The gross effect, as the fluid slowly percolates through the
pores of the rock, is represented by the macroscopic Brinkman equation described
above. Let 6p, Sp, q(u, v,w), 0 and 7 denote respectively the perturbations in
density p, pressure p, filter velocity (zero initially), temperature T and solute con-
centration C. Then the linearized thermosolutal perturbation equations through
porous medium, following Boussinesq approximation, are

1 1 6p
6 d Po Po.
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V= o (©))

0 = Bw, ()]

(e m - Kb \7 = R'w. (5)

Here V (= p/po), Kk, K', B (= |fj-|) and B' (= |) stand for the kinematic viscosity,
the thermal diffusivity, the solute diffusivity, uniform temperature gradient and
uniform solute concentration gradient, respectively. E = e+ (1 — where p, cv

and p, , ¢, stand for density and specific heat of fluid and solid matrix, respectively.
E' is an analogous solute constant.
The equation of state

p=pO[l-a(T-TO)+a'(C-CO\ (6)

contains a thermal coefficient of expansion a and an analogous solvent coefficient
al The suffix zero refers to values at the reference level z = 0. The change in
density Sp, caused by the perturbations 0 and 7 in temperature and concentration,
is given by

6p=-p0(al - a'y). ()

Eliminating 6p between the three component equations of (2) and using (3),
we obtain

(8)

Let us assume both the boundaries to be free. The case of two free bound-
aries is a little artifical except in stellar atmospheres (Spiegel [11]). However, this
assumption allows us to obtain the analytical solution without affecting the essen-
tial features of the problem. The boundary conditions appropriate for the problem
are (Chandrasekhar [4], Lapwood [7]):

d2w

W—+=0=0a z—0 and z=d ©)]

3. Dispersion relation and discussion

Analyzing the disturbances into normal modes, we assume that the pertur-
bation quantities are of the form

[tn,0,7] = [ie(z), O(z), r(z)] exp(ikxx + ikyy + nt), (10)
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where kx, ky are wave numbers along x- and y- directions, respectively, Kk (=
y/L, + L) is the resultant wave number and n is, in general, a complex constant.

Assuming that x, y, z stand for the coordinates in the new unit of length d and
letting a = kd, = nd2/i> F = Xv/d2,FO= /lon/d2,pi = v/k,q—v/ k', pi = ki/d2
and D = Egs (4), (5) and (8) using expression (10), in nondimensional form
become

[(1+ F<r)j +7(1 + FO) (D2- a2)W + (1+ Fa)*----- (a0 - aT)

- -(1 + FOa)(D2- a2)2w = 0, (N)
(D2-a2- EPlIa)Q=- (pp) W, (12)
(D2-a2- E'qa)T = - W- (13)

Operating Eq. (11) by (D2—a2—Ep\a){D2—a2—E'ga) and using (12) and (13)
thus eliminating 0 and I, we obtain

(D2-a2- EPla)(D2-a 2- E'qa){D2- a2) —Gﬁfa) +—€|:-Ifoa)

--(1 +FOa)(D2- a2) W
= (1+ Fa)a?[R{D2-a2- E'ga) - S(D2- a2- EPIla)]W, (14)

where R = is the Rayleigh number and S = ga'R'dA vk* is the analogous
solute Rayleigh number.
The boundary conditions (9) transform to

W=D2W =8 =T=0 at 2=0 and 1 (15)

Using the above boundary conditions, it can be shown that all the even order
derivatives of W must vanish for 2 = 0 and 1 and hence the proper solution of
Eq. (14) characterizing the lowest mode is

W = Wosin 72 (16)

where Wo is a constant. )
Substituting (16) in Eq. (14) and letting R\ = A/tr4, Si = SHid, ia\ = ahk2,
X = a2j > and P = >2Pi, we obtain the dispersion relation

L+ x)(I + x + iEpiai)
Ri = x(1 + ZI2Fcri) meee
v X L5 1+ x + iEpiai
( N ) 11+ x + iE'gai

iV 2F<7i) + (1 + {k2F"a1l)
17
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For the stationary convection, a = 0 and Eq. (17) reduces to

(1+%)2 1+ X

) c +Si. (18)

Ri

Thus for stationary convection, the stress relaxation time parameter F and
the strain retardation time parameter Fo vanish with a and the Oldroydian fluid
behaves like an ordinary Newtonian fluid. Equation (18) gives

dRi  (1+2)2

P ~  xP2 ’ 19

and

"b=+1
dsi ’ 0

meaning thereby that medium permeability and stable solute gradient have desta-
bilizing and stabilizing effects, respectively, on the thermosolutal convection for the
stationary case.

4. Effect of rotation

Here the problem is considered to be the same as described in Section 2 except

that the fluid is in a state of uniform rotation Q (0, 0, I1). The linearized perturbed
equation of motion becomes

1 '
6 \ 6p —g(<*0 — a y)
(21)
Equations (3)-(5) remain unaltered. Letc = — stand for the 2-component of
vorticity and express
C= Z(2) exp(ikxx + ikyy + nt). (22)

Equations (3)-(5) and (21), using expressions (10) and (22), yield the dimen-
sionless equations

1+ Fa) i3 + 99'::7‘*-??("1@ —an H——g—v -DZ
) (D2- a2W, (23)
/o o €\ _ 2
(4 gy 2T arFaDW, @y
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together with (12) and (13). The boundary conditions in addition to (15) are
DZ=0 at z=0 and 1 (25)

Eliminating O, I" and Z between Eqgs (12), (13), (23) and (24) and using the proper
solution (16), we obtain

@+ x)(I + x + iEpi<Ti)[ie<Ti(l + in2Fcri) + (1 + ix2FO<Ti)(I + x + p)]
1 x(l + in2Fcri) B)

(1 + x + iEpyffi) (1 + x + iEpi(Ti)(i + [72Fcri)
1(L+ x+ iEqeTi) Al x[ie<7i(l + iHHQFai) + (L + *V,fo0'i)(I + x + p)]’

where TAl = -f-,

4(a). The stationary convection

For the stationary convection, a = 0 and Eq. (26) reduces to

C(1+7%): V4 Si ('+%)
Ri = l+x+ —9)+Si+TA X (1+X+p) (27)
Equation (27) yields
dRi 1+x
dTAl ~ x(I + x +e/PY (28)
dlh
dSl—+ 1, (29)

which imply that the uniform rotation and stable solute gradient have stabilizing
effects on the system. Equation (27) also gives

dRi _ (1+31J_ __ Tm 1+ x) (30)
dp ~\ x ) p2L(i+*+f)a ;

It is clear from Eq. (30) that the medium permeability has a destabilizing effect in
the absence of rotation. It still has a destabilizing effect if

TAl < (1+x) (I + x+
But the medium permeability has a stabilizing effect if
TAI > 1+ x) (I + x+ -i)

Thus the medium permeability has both stabilizing and destabilizing effects
depending on the rotation parameter.
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4(b). The oscillatory modes

Here we discuss the possibility of oscillatory modes, if any, coming into play
due to the presence of rotation. Multiplying Eq. (23) by W*, the complex conjugate
of W, integrating over the range of z and making use of (12), (13) and (24) together
with the boundary conditions (15) and (25), we obtain

(1 + Eocr)

3 s Fa)Jh+ 97 - (h +E'ga*I5)

a*+ - (+ Foa¥) 16+ — (I + F0a*)I7
, (H-B4 y paka\T, _,r'N (31)
+e(l +Fa)l*- + EPI<T h)’

where

h = JI (ADW\2 + a2\W\2)dz,
o

h= J/ (E>©J2 + a2|0|2)dz,
o

h = f |0]2dz,
Jo

14 = J|'\\DT\2+a2\'I\2)dz,
0

h =/V |2dz,
Jo

h = C\zZ\2dz}
Jo

I7=J[ (\DZ\2 + a2\Z\2)dz,
o

h = [ (\D2W\2+2a2DW2+ ad\W\2)dz (32)
0

which are all positive definite. Putting a = ar + ia, in (31) and then equating real
and imaginary parts, we obtain

f (F+FO+ arFFo) 1) 9N'K'a2 2( FO\
r+ @+ Fary + F>*jPijh+~"~~Eqh+d [1+Pi)l6+
d2F0 (F+ FO+ arFFo) Is  pocka2

e e S 1o T a'Z arams v/ o AL
1+ FFp+a?) Il pa'kla2 cP

1+ Far)2+ F2a2P, + VR' 4+ P, 6+
(1 + FFoaf) Is  pocka2

-T
t ( 7+ 1+ Fary +F2af e v (33)
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and

,qa K'a2
Vi

AaKaZ

G h E'gh - d2 (1 + 16- F93, & Epx!s =0. (34)

It is clear from Eq. (33) that oy may be positive or negative implying thereby
that there may be stability or instability in the presence of rotation, stable solute
gradient, viscoelasticity and porosity on thermosolutal convection in an Oldroydian
viscoelastic fluid in porous medium which is also true in their absence.

Equation (34) implies that 04 = 0 or <~ ¢ O which means that the modes
may be non-oscillatory or oscillatory. In the absence of stable solute gradient and
rotation, Eq. (34) reduces to

aka2
g h + " %%e0in =0,

which yields <- = 0 implying thereby that the oscillatory modes are not allowed
and the principle of exchange of stabilities is satisfied for the porous medium in the
absence of rotation and stable solute gradient.

The rotation and the stable solute gradient, thus, introduce oscillatory modes
in the system which were non-existent in their absence.

5. Effect of magnetic field

Here the problem is considered to be the same as described in Section 2
except that the fluid is finitely (electrically) conducting and is acted on by a uniform
magnetic field H(0,0,#). The linearized perturbed equations are

Hi+d )£ = (i+ar) T @ 200

sV XM XH G aa ) (7 v 1) 4 (35>
Vh=q (36)
e =(H V)q+ &NM2h, (37)

together with Egs (3)-(5). pe, nand h(/ix, hy,hz) denote, respectively, the magnetic
permeability, the resistivity and the perturbation in magnetic field H. Substituting
P2= f and

hz = K(z) exp(ikxx -f ikyy + nt), (38)
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Egs (3)-(5) and (35)-(37), using expressions (10) and (38), yield the dimensionless
equations

L+ Ft- i(l +FO) D2- «2- Ar)] (A2- °2QW

gd2a2 o -y _a ] _
+ (1 + Far) (a0 —c/T’) AnEpc|>\§D2 a2) DK = 0, (39

(D2- a2- P2<K = -z DW, (40)

together with (12) and (13). The boundary conditions in addition to (15) for free,
electrically nonconducting boundaries are

DK =0 at z—0 and 1 (41)

Eliminating 0, I and K from Egs (12), (13), (39) and (40) and using the
proper solution (16), we obtain

Ri !+x+-i)]

(1 + x + iEpi<Ti) i1+ x\ (1+x+iEpicri)

1@+ xFiEQHi) 1V X ) (L+x+ ip2<i) (42)
where
Q TeH2d2
Anpourjn2
5(a). The stationary convection
For stationary convection (<r= 0), Eqg. (42) reduces to
i B2 e jasieqQi@r) (43)

The Oldroydian viscoelastic fluid, thus, behaves like a Newtonian viscous fluid
for the stationary convection. Equation (43) yields

dR\ 1+ X
doi X (44)
a6 =1t (45)
dRi (1+x)2t
P~  x P2 (46)

The magnetic field and stable solute gradient have stabilizing effects whereas
the medium permeability has a destabilizing effect on the system.
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5(b). The oscillatory modes

Here we examine the possibility of oscillatory modes, if any, coming into play
due to the presence of magnetic field. Multiplying Eq. (39) by W *, the complex
conjugate of W, integrating over the range of z and making use of (12), (13) and
(40) together with the boundary conditions (15) and (41), we obtain

. /11,2
1+ Tdgt) @'k'a * 4 (1+ Fpa)
T ey Ad-—UR2 (h + Eqer Is)+ o+ Fa) 8
+ - + 0 - — + * 47
AirpOV(I}g P2<r*l\o) ult 12+ Ep\a*13), 47)
where I\ —Is and Is are given by (32) and
h (\D2K \2+ 2a2\DK\2 + a4\K\2)dz,
ho= Jf (\DK\V2+ a2\K\2)dz, (48)
0

which are all positive definite. Putting a —ar -f iai in Eq. (47) and then equating
real and imaginary parts, we obtain

F + Fg+arFF0O (I\ Is\ got'k'a?

ar + (1+ Far)2+ F2a2 \P, e) ui' E'qls + Anpovp2I10
. (1 + FFQaj)
-Epil3 (1 + E<TN2+E 2
'lc'a2 ,anal
49
g~ 2" gron (49)
and ) " ]
ja'k'az _ per] p faka o
h - ™ ap Edls- o P20 = - Epih = 0. (50)
In the absence of stable solute gradient and magnetic field, Eq. (50) reduces
to
ho+ P Epip =g

~VR~

which gives g = 0 and hence the oscillatory modes are not allowed and the principle
of exchange of stabilities is satisfied for the porous medium in the absence of stable
solute gradient and magnetic field.

The stable solute gradient and magnetic field, thus, introduce oscillatory
modes in the system which were non-existent in their absence.
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ELECTRON IMPACT DOUBLY DIFFERENTIAL
K-SHELL IONIZATION CROSS-SECTION OF Ag
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Electron impact doubly differential K-shell ionization cross-section of Ag has been
computed with incident electron energy 500 keV for different scattering angles by using
the formalism of Sud and Moattar [10]. The results are compared with the available ex-
perimental data and good agreement is obtained in the higher scattered electron energy
region.

1. Introduction

Theoretical investigations of electron impact doubly differential K-shell ioniza-
tion cross-section, differential in energy and angle of one of the final state electrons,
have been done by a number of workers [1-10]. We refer the readers to the work
of Sud and Moattar [10] for the details of the available theoretical investigations
[1-10] and, in particular, about the interaction Hamiltonian and the wave functions
used for bound, incident and scattered electrons in them. Sud and Moattar [10]
have obtained the expressions for the K-shell differential ionization cross-section by
using Dirac plane waves for both incident and scattered electrons and the Darwin
wave functions and relativistic Sommerfeld-Maue wave functions to represent the
bound and continuum state, respectively. Sud and Moattar [10] have calculated the
double differential K-shell ionization cross-sections and compared their results with
the available experimental data of Quarles and Faulk [11] (for 20C and 47Ag by
300 keV incident electrons) and Komma and Nakel [12] (for 47Ag and 79Au by 300
keV electrons). A new result by Ruoff et al [13] for the electron impact ionization
cross-sections for 47Ag by 500 keV incident electrons at scattering angle 30° is now
available. In the present investigation, we report the results of our computations
of the double differential K-shell ionization cross-sections by using the theoretical
formalism of Sud and Moattar [10] and compare it with the available experimental
results of Ruoff et al [13].

2. Results and discussion

The explicit expression [10] for the double differential K-shell ionization cross-
section, which includes the effect of the exchange of the spin of the atomic electron,
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used in this work is given as

d2a 4a2 [Ki] E2
dEidOXx  mc2|kO| [(AE)2/h2c2- q2]2me2” + 1r2a2)(! + 1 |)
exp{-2(z/a0lk2|) tan~1[(2|k2|z/a0)/(q2- k| + z2/ag)]}z6
[1- exp(-27rz/a0lk2|)]3ag[(g2 + k™ + z2/ag)2 - 4q2k"]3
m2c2 1 ﬂ,p,E)Z

1 (AE)% 2/\] [(AE)2/ft2c2 - 7]

8

Eq(E®}- AE) +

h2c2 "4\ hx? -
th2202 [((A£)2S2c2- q2] |512q2/\3q2+ k2 + A
+ 256 h2

S22+ 101) (g,2+k, +k ) ~ ig,v\
+ 8- 3 (Kk2+ O (-’+K!+9 [(1r+K?+9 2_

- KA (3,!4;|\<’2+O 1}-w{(k'+3

G2+ K2+ —»" - 4q7ke + g4 (392+ K2+ -j
LI -

4q2k2

where in Eg. (1) EO(Ei) and AkO(ftkx) represent, respectively, the energy and mo-
mentum of the incident (scattered) electron and E2, /K2 is the energy and momen-
tum of the ejected electron. The momentum transfer by the incident electron is
given as

g2= k2—k2—2]ko||ki|cosO

and the energy transfer as E = Eq—E\.

We show in Fig. 1 differential cross-sections for 47Ag as a function of scat-
tering energy by electrons of incident energy 500 keV and at scattering angle 30°
by using Eg. (1). The experimental data of Ruoff et al [13] is also presented in
Fig. 1. It can be seen from Fig. 1 that the general trend in the variation of the
differential K-shell ionization cross-section as a function of scattered energy in the
higher scattered electron energy region agrees with the experimental data. In Fig. 2
we have shown the differential K-shell cross-section for 47Ag by 500 keV electrons
at different scattering angles (20°, 30°, 40°, 45° and 60°). It may be seen that
the peak in the differential ionization cross-section vs scattered electron energy lies
between the Moller energy Em and Emb (Moller energy + binding energy). The
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Fig. 1. The results of the present theoretical calculations of electron impact K-shell double
differential ionization cross-section <Pa/dE"dih , as a function of scattered electron energy by
500 keV electrons at scattering angle 0 = 30° and experimental data of Ruoff et al [13]

Moller energy is obtained from the kinematics of an electron scattering system and
is given as:
Em = Eqcos20/[| + Egsin20/2mc2].

(Eqis the incident electron energy, 0 is the scattering angle and m is the rest mass
of the electron). We have shown Em and Emb by arrows in Fig .2. It may be
seen from Fig. 2 that the Moller peak in the differential K-shell ionization curves
gets broader and shifts towards lower scattered electron energy for larger scattering
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angles. This is as expected since the Moller energy decreases with the increase of
scattering angle.

scattered electron energy (keV)

Fig. 2. The results of the present theoretical calculations of electron impact K-shell double
differential ionization cross-section d2a/dEidili, as a function of scattered electron energy by
500 keV electrons at different scattering angles. The scattering angle ©, (Maoller energy),

and Emb (Mdller energy + binding energy of K-shell) are indicated in the Figure

Finally, we conclude that the Sud and Moattar [10] theory correctly predicts
the position and nature of variation of the peak in the doubly differential K-shell
ionization cross-section vs the scattered electron energy curve. This investigation
further suggests the necessity of higher incident energy electron impact differential
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ionization cross-section measurements in the lower scattered electron energy region
in Ag as well as in other targets, for the better understanding of the ionization
process and for testing the theory.

e
w N

=
PO ©mNOoO U WN R
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Gauge models involving several fields rotating under a single symmetry group de-
velop the so-called il-matrix which is a consequence from field reparametrizations. It means
a structure which belongs to the model scenario but without participating on the dynam-
ics. Its main consequence is the advent of a kind of prescription where physical entities are
divided between tensors and invariants. For instance, the renormalization group equation
variables will not work as invariants under 0; on the other hand, physical masses will.

1. Introduction

Field reparametrizations are currently performed in order to understand a
number of points in field theory. For these rotations, Borcher’s theorem has stipu-
lated conditions for S-matrix invariance [1]. A consequence from these transforma-
tions is the appearance of scalars and tensors, for instance, the coupling constant
becomes a tensorial entity under a field reparametrization. Therefore, when one
studies a model which introduces different fields rotating under a same group [2],
it will be natural to expect the development of new scalars and tensors under such
fields redefinitions which obey [1]. In fact, these reparametrizations involving N
fields develop an Q-matrix [3]. It is an entity which does not belong to the dynam-
ics of theory.

Thus, considering the scalar case, we have that the iV-quanta developed by
the model can be articulated under different field parametrizations. The diagonal
basis-® is given by

£ = OVNP - plw2d, (1.2

while the non-diagonal basis-<p would be
C = <p'K\3<p-<p'M2q (1.2)

where K and M are Hermitean matrices. Equations (1.1) and (1.2) are invariant
under the following global transformations
b —>»P' = N, (1.3)

Acta Physica Hungarica 73, 1993
Akadémiai Kiad6, Budapest



244 R. M. DORIA and J. A. HELAYEL-NETO

£-» ¢ = ¢,aQr, (1-4)

for Q and Q being, respectively, diagonal and non-diagonal matrices. Comparing
(1.1) and (1.2) we get the following relationships for il-matrix:

fitjm = 11,
QtfM 2i2= m2 (diagonal) (1.5
with
<p=n 0] (16)
Being real scalars the Lagrangian and the action are invariant under (1.6)

=l = C[Me] = £[®], 1.7
s[vl] = m . (1.8)

Similarly, the Noether current
M = /"[®]. (1.9)

Thus, a first clue for understanding such non-dynamical variable Tl would be
to compare it with the Lorentz matrix JIE. Thus, while Lorentz transformations let
the metric invariant

n~no= 1 (1-10

one gets from (1.5) the similarity transformation
= m2, (1.11)

which says that poles are absolute variables.
Comparing (1.1) and (1.2), the following expression is derived

M= (1.12)

with

K = SRS*, (1.13)
where S and R are unitary matrices which diagonalize the kinetic and mass terms.
From Eq. (1.12) we read the properties that fi is not unitary (unless K is an
indentity-multiple) and the condition for f2 invertibility is K not to have zero eigen-
values. Equation (112) also informs that {7 does not make a group as the Lorentz
matrix. It is because the closure property QQ' = " is not obtained.

Thus the appearance of these non-dynamical [1 transformations raises the ne-
cessity of exploring about the distinction between relative and absolute variables in
a model which contains more than one field rotating under a same group. Fields
will only work as coordinates now. Therefore, we need to systematize about the
physical variables under Q. For this, Section 2 studies at classical level and Sec-
tion 3 at quantum level. Then, an example with SO(N) symmetry is developed in
Section 4.

Ada Physica Hungarica 73, 1993



TENSORS AND INVARIANTS 245

2. Classical aspects

Although the set of il-matrices do not build up a group, they divide the
physical entities into scalars and tensors. As studied before, Eq. (1.6) preserves the
minimal action principle and the mass shell information [3]. It was also understood
that Q is a canonical transformation in the sense that it preserves the Hamilton’s
equation, commutation relations, charge algebra and Pauli-Jordan functions.

An interesting result obtained for being pointed out is that symmetry nature
can change under Q rotations. This means that symmetry can explit different
representations under various field parametrizations. Substituting (1.6) in

O —d = n(rn)d, (2.1)
one gets
Pmas= T(W)<p, (2.2)
where
T(w) = CI~=1U(w)n. (2.3)

Then, the following group algebra relationships
U(w) = eiw*G*, UIl/" =1,

[ —jfabcGei

pa[®].a*[®]] = r7abeg c[d] (2.4)

will transform into
T(w) =eiwH, TT'c 1

Ha=n~1GaQ, HadHat,

[Ha,H b] = ifabcHc,
[Aam,<p] = 11
[QaH Q bfp]] = ifabcQ cH (2.5)

Thus Egs (2.4) and (2.5) are showing that a given symmetry will not depend
on its shape for writing its physical meaning. However, different proofs still must
be developed for this statement to be considered. For this we should first con-
sider the mass invariance. The ®-basis condition for mass preservation under (2.1)
rotation is

[Ga,mZ] = O. (2.6)
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Then, substituting (2.2) in (1.2) one gets that only under (2.6) is that such rotation
will be preserved. This shows that the relevant aspects are on symmetry expressions
as (2.6) and not on parametrizations basis.

A next classical step for showing that symmetry must not depend on field basis
is to study local symmetries. It yields the following covariant derivative involving
N potential fields:

&, P- V,d=[d}+ igrVEGe)d, (2.7
with the notation
Wl =VRB, VA=X,i (i=2,...,N). (2.8)
Thus
V,,® — (Pp®)' = U(w)(pR9) (2.9)
and
V' AUVAU -1, (2.10)
which yields
gVA+giX'h =gUDMU-"+giUXIU-1- iUd»U~\ (2.11)

Then we separate, by construction, Eg. (2.11) into non-homogeneous and homoge-
neous sectors,

£, = UDIU~1- 1ng»un-", (2.12)

X'pi = UXAiU-1. (2.13)

Concluding, the Lagrangian for the matter sector in the ®-basis is
£ = (7),9)1(X>"®D)-120 ~. (2.14)

We should now consider this local symmetry at <p-basis and verify its consis-
tency. Working out the non-diagonal parametrization we get a covariant derivative
VAtp given by

V, = IM~IT1, (2.15)
= (0, + igjV~Ha)?, (2.16)
VRp= SIVRD, (2.17)

where we notice that the covariant derivative also transforms as a covariant object
under a change of field basis.
Under gauge transformations this ip-covariant derivative transforms as

V., =TW V /W 1 (2.18)
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v,v>earcV'vy =t (wv”?, (2.19)

which yields
igiVh = igiTVAT-1+ TAT 1), (2.20)

with the corresponding infinitesimal transformation
9iSVfr = - d,wa. (2.21)

To systematize these gauge and field basis transformations, two basic consis-
tency conditions must be verified. They are that the potential field transformations
and the Lagrangian are invariants. Considering that structure functions fakc and
gauge parameter w are independent of rotations, one reads from Eq. (2.21)

SD"a - - fabwbD] —dRwa, (2.22)

SXf,a= - f abcWoX @, (2.23)

with rewrites (2.10) and (2.11).
Substituting (1.6) in (2.14), we get the following expression for the Lagrangian
at "-reference system
dEl = (VANISTIV'V) - u>'M\. (2.24)

Then, by checking (2.2) and (2.19) in (2.24), it yields

C'W) = L4 (2-25)
For the Abelian symmetry
G LD =n(a)®, (2.26)
where U(a) = e'aY, Y being a charge matrix Yij = similar results are ob-

tained.
Another classical aspect to be considered under i2 rotations concerns the
interactions. Considering the coupling of the free Lagrangian to external fields

%>] = \] d*x ("PiP4>+\y>3+ "V ) (2.27)
it yields the following equation of motion
Vp=-1, (2.28)

with the solution

<) = tp0(x) - \] dAyP~1{x\y)J(y). (2.29)
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Then the effective action corresponding to a current-current interaction result
5ed[1; J*¥] = - J daxddyJI(x)V-\x-, y)My). (2.30)
Working out the effective action at ®-basis we have
Sefi[Ji; Ji] = - \] ddxd4yJI(x)<7~1(x,y)J2(y) (2-31)

is written in terms of the operator a and the sources J\ and J2. Substituting
Eq. (1.6) in (2.27) one derives the following transformations laws

iT'Pfi = (7,
nn = Ju
fiv2=J2, (2.32)
which gives
SM\Ji] =Sen[Ji\JZ. (2.33)

Now the question for physical interpretation will be to understand about
which ofthe currents, J or J, describes the physical currents. For instance, a point-
like charge which generates an electrical field should be written in terms of J or J?
For analysing such argument let us consider as relevant the external currents coupled
to the diagonal basis. Then, the following point-like charges electric potential will
be associated

M x) = g63(x-a). (2.34)

Evaluating the case for static potentials one gets
vwm =8 £ [ * 1 ( 2 . 3 5 )

where Mint [@)] is a static potential describing the interaction between two static point-
like charges localized in a and b points. Then from (2.33) we get the information
that the above result is preserved in <p-basis:

vintM = UntNe. (2.36)

Concluding we would note that although the interaction between two static sources
is independent from field parametrization the exchange of field quanta is more clear
at diagonal basis. There it appears that just one pole m/ is the responsible for
intermediate such interaction. This interpretation indicates that, at classical level,
physics shows preference between such field bases.
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3. Quantum aspects

The effective action is defined as

M®] = 5c@)] + Moop[@]; (3.1)
it can also be written in the form:
o° 1
Ml= EAT / dax1l..d xnté i X2 eee) esercn(xn)'  (3-2)
n=Iln-J

Then, although the effective action must be preserved under a field basis
change
m =fm (3.3)

one gets that its components will change. Substituting Eqg. (1.6) in (3.2) we derive
the following general expression

P e [¥i- rSi.j.ah ‘A2z = 7w 3.4)

Consequently, the Feynman rules will change under a change of field basis.
Propagators will transform as

Aij = (3.5)
while three and four vertices are

r$(*;/r)6\k +i+ 1) =TM-BAOMK (*;hd 4+ /+r1)  (36)

and
r$,(*; ,g\r)e\k + /+ g+r) = (5L g nRd(* + [+ g+ ).
(3.7
As a check, we can show that
SIM + (fSp) .. =SIM + (rioop)mW n - (3.8)

Given this dependence for the Feynman rules, it turns crucial to understand
whether the poles are invariant under such field basis transformations. Considering
the contribution to the effective action from the self-energy, we have

f [¢] = -& p2—m2—*7]d+ interactions, (3-9)
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where (—x) means the self-energy contribution from loop corrections. Similarly,
for y>-hasis, we get

I'M = A [Kp2—M 2—iE]y>+ interactions, (3.10)

where (—E) is the corresponding quantum contribution to the effective action in
the yi-basis. Then, from Eq. (3.14), it yields

I'M = —172) —tV]i)_1y>+ interactions. (3.11)

Thus Egs (3.9) and (3.11) are showing that independently of field parametrizations
the equation which determines the physical mass is given by

p2 —m 2 —ixfree (p2; free coefficients) = 0. (312

Another proof that the physical masses do not depend on field basis is to
analyse the field propagators. From (3.4) their transformation law is

{llxp) = M(TPP)T*. (3.13)

Thus Eqg. (3.13) shows a rotation which does not change the poles structure. More
explicitly, we have

(T(P(r)dbl) = - vy= n~1D +

which shows that physical masses are K~1M 2 matrix eigenvalues. Observe that
this result was already predicted in Eq. (1.11).

The next analysis regards the wave-function, mass and coupling constant
renormalizations for different field parametrizations. Defining K*2 and as
the counterterms for the kinetic piece, and Km, Km those for the mass term, one
writes

dad] = "Okldn - "PpAQMPL - "N Dy - "PnKTdDA (315
and

E£EM = -7PrKUipr - UKMPpR - ~<PrM2gr - "PrKmVr,  (3.16)
which yields the following wave-function renormalization:

hB = 2|4, (3.17)
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where )
Zip=1-fK"A Ed =2d (non-diagonal). (3.18)
For the 97-basis,
B —Z5<PR, (3.19)
Zv=1+K-'KAK™*, (3.20)
Nop4- (3:21)

Notice that the K matrix is not renormalized.
Mass renormalizations in ® and ®B-basis are given respectively by

mB = mR + Sm2, (3.22)
where
om2=Km- "K™MmR - \m 2R V\ (3.23)
6m2 = (Sm2)1 (3-24)
and
MB —MR + SM2, (3.25)

SM2 = (SM2)1=KM - "M%K~1K-b K (2>kb+
- "kbkKO K-bk-"M*. (3.26)

Observe that the non-renormalized K matrix interferes on mass parameters renor-
malization.
Considering the relationship

PR = Aog, (3.27)

where 12is defined in terms of dimensionless parameters derived from the kinetic
matrix K (non-renormalized) and from the mass matrix M at tree level (the renor-
malized mass without corrections in h), one derives the following transformations
between the field parametrizations

K™= "1~ 2)«-1, (3.28)
Zv = (K~1Q)Zi (k~Dbir 1) (3.29)
and
SM2= - An-1Im2RIK -?2n-1IKWCI-1K? +
-NK AN -UKA2Sil-1K -~ m RCA-1. (3.30)
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The radiative corrections for the interaction terms are

Ent[*] = ~ /1 ObiP.®,P*P, - £ & $1No P KD, (3.31)
a 1 1
AntM = - JAijki<pi<pj<Pk<Pi - i (3.32)
with
K% = (3-33)

Thus, from these different field channels for physics to be understood, an
interesting question is about the renormalizability at ®-basis. Being diagonal, it
might not absorb the non-diagonal divergences. However, this non-renormalizability
problem is just apparent. The physics equivalence between the different field bases
allows to make this analysis in a chosen field basis-y?. Then, from such a boost, one
gets diagonal and non-diagonal parameters which can absorb the wave functions and
masses counterterms as Eqs (3.19) and (3.25) are demonstrating. Concluding, we
note that, for this extended scalar model, while the mass spectrum is more evident
at ®d-basis, the renormalizability turns clear at ®basis.

A further step would be to understand the variations of the renormalization
group equation under f2. From Eqgs (3.2) and (3.17) one derives the following rela-
tionship between bare and renormalized 1Pl Green functions:

L .B »(p;T9a;0B;c) = {z**(cB;p;H).T

cee (N *) jn(p;mH(/i), GR(n),fi), (3.34)

where 1L means the renormalization scale and e the dimensional regularization pa-
rameter. Applying n4-, it yields

(3.35)

where

TG) = (3-36)
- (3.37)
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Similarly for y>-basis, one gets

(r).n [>"kK ».+EEE +
M 9 7]
+ . « ; ii* =
A oy \MB ™8 Amf, 4 <9GfI - > ... ». (3.38)
where the coefficients are given by

M) =~ | mb,abM£E

and

R% ="~ NMBXB* kh (339)
with the renormalization coefficient Z$ and Zv defined through Egs (3.18) and
(3.20).

Consequently, the anomalous dimensions and the 8 functions will transform
respectively as
7M>= (3.40)

R% = ] (341)
Notice that, although the /?- and 7-functions depend on the field parametrization
basis, the physical information will be preserved. Equations (3.41) and (3.42) show
that any zero on these functions will remain for any other field basis. Conse-
quently, the information on finiteness structure is an invariant under such field
reparametrizations.
As a last quantum aspect to be analysed here we would select the Slavnov-
TaylOr identity under fi transformation. Considering that the classical symmetry
holds for I, we have at ®-basis:

| déx Sf; va. (3.42)

an equation that has to be understood order by order in ft. Then, by substituting
(16) and (2.32) in (2.41) one derives

ST ST
Spi SJi
which shows that informations derived from S.T. identity will be preserved under
field reparametrizations.

] o -0, (3.43)
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4. SO(N) renormalization
Assuming mass degeneracy as dictated by SO(N) symmetry,
@ =50 = eU’c“Dd, 4.2)

one gets that constraints between the counter terms KA2\ and must be
obtained through the Ward identity:

| d* A (Ga)i'* =0’ (42

which yields the following expressions

G "1)=0, (4.3

SikSjIT$\x-,y) = T$(x]y), (4.4)

SimSjnSkpSIqT % gq= %m (4.5)

Equations (4.4) and (4.5) indicate that 2) and are invariant tensors under

SO(N) group.
Expressing the two- and four-point 1P functions,

Eg3= (k2- mR)6ij + k2KI2) - , (4.6)
r%e = 6ki + GikSj, + m ,*) + (4.7)
and considering that K and are symmetric matrices while SO(N) genera-

tors are antisymmetric, it yields by substituting (4.6) and (4.7) in (4.4) and (4.5),
respectively,

[tf(2).,G 0] =0, (4.8)
[#("), Ga =0 (4.9)

and
GaimK”l, + GainK % g+ GaipK *niq + GaigK ~ pi = 0. (4.10)

Then, by virtue of the Schur’s lemma

Km = fo)1l) (4.12)

rW = jfe(mn (4.12)

Ada Physica Hungarxca 73, 1993



TENSORS AND INVARIANTS 255

and

Kijli - f(AH® WU- (4-13)

Consequently, SO(N) symmetry implies
®B = ZI*R,

where

Z* = (1 + [2)ll, (4.14)

T = Z$I1ZmmR,
where

Zm =(l +kW)U, (4.15)
and

XB = Z4Z$2\r,

where

Z4= (1+ *(4)11. (4.16)

Equation (4.14) shows that the renormalization process with symmetry SO(N) does
not mix fields. From Eq. (4.15), we get that all masses renormalize equally in the
sense that radiative corrections do not split the mass degeneracy dictated by SO(N)
symmetry. This argument can be verified by taking k2 —fj.2as a zero in Eq. (4.4).
It yields

rnJ\k2=S) = 0, (4.17)

which says that all propagators have a same pole: k2 =\i2 —mR + (6T2)snLe.
Therefore, since the symmetry is preserved the quadratic correction will preserve
the mass degeneracy. Finally, from Eq. (4.16), we also observe that symmetry will
protect that after renormalization no new vertex is created.

The important thing here to notice is that the same informations could be
obtained through yj-basis as Section 3 shows. For instance, from Eq. (3.26), one
gets

MB —MR+KM - \{M2BikK "K" - \k$K a\M R). (4.18)

Similarly for the coupling constants

\R 1 in4 \R ir— in(2) 1
\ﬁnpq ~ I'mnpq - Ivrrgn)pq —2/'mnpliYlr Jvré ),

- S \b*IPKW KW - \"nPgKAK<&.
(4.19)
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5. Conclusion

A clear consequence from assuming this generalized model (1.1) or (1.2) is
the development of a fi-matrix. These non-dynamical i1 transformations work on
the ingredients of theory and split them into classes of invariants and tensors. This
perspective brings a prescription that can be useful for understanding about the
physicity of every variable building up the model. Symmetry representations, Feyn-
man rules and the renormalization group equation contain such 2 dependence; while
physical masses and the Slavnov-Taylor identity were shown to be invariants.

Another interesting consequence form 12 matrix relates the presence of diago-
nal and non-diagonal field basis. Although physics should not depend on them, some
aspects are better seen depending on a given choice. Comparing to the case with
spontaneous symmetry breaking one concludes that at ®-basis the mass spectrum is
more explicit (similarly to unitary gauge), but the renormalizability is not explicit.
However, at y-basis (analogous to renormalizable gauge), the renormalizability is
evident.

Acknowledgements

Thanks to FAPERJ (Rio de Janeiro, Brazil), CNPq, and SHELL of Brazil for the invaluable
financial help.

References

1. H. J. Borchers, Il Nuovo Cimento, 15, 784, 1960; Comm, in Math. Phys., 1, 281, 1985;
H. J. Borchers and W. Zimmerman, M Nuovo Cimento, 31,1047, 1964.

2. For a Kaluza-Klein origin see: R. M. Doria and C. Pombo, N Nuovo Cim., 96B, 2, 1986;
C. M. Doria, R. M. Doria, J. A. Helayél-Neto, Rev. Bras. Fis., 17, 3, 1987.
For a supersymmetric origin see: N. Chair, J. A. Helayél-Neto and A. William Smith, Phys.
Lett. B, 233, 173, 1989; S. A. Dias, R. M. Doria, J. L Matheus Valle, Rev. Bras. Fis., 21,
I, 1991; C. M. Doria, R. M. Doria, F. A. B. Rabelo de Carvalho, A superspace origin for an
extended gauge model, UCP preprint 88/6; C. A. S. Almeida, R. M. Doria, Rev. Breis. Fis.,
21, 3, 1991; C. S. Almeida, R. M. Doria, A less-constrained (2,0) super Yemg—Mills Model:
The coupling to non-linear <r-models, UCP preprint 90/4.
For a <T-model origin see: R. M. Doria, J. A. Helayél-Neto and S. Mokhtari, Europhys. Lett.,
16(1), 1991.

3. R. M. Doria, F. A. B. Rabelo de Carvalho, Braz. J. Phys. 23, No 1; R. M. Doria, G. Oliveira
Neto, F. A. B. Rabelo de Carvalho, A consistent spectroscopical analysis for cm extended
gauge model, UCP preprint 90/9.

Acta Physica Hungarica 75, 1993



Acta Physica Hungarica 73 (2~4)t VVe 257-259 (1993)

RADIATIVE CORRECTIONS OF ORDER n
TO SUPERALLOWED FERMI /3-DECAYS

Gune8 Tanir, Ba8ar 8arer and Dariush Amirhashemi

Gazi University, Faculty of Arts and Sciences
06500 Ankara, Turkey

(Received 24 August 1993)

The outer radiative corrections of order a to superallowed Fermi /3-decays (140,
26mAl, 34Cl, 42Sc, 46V, 50Mn and 54Co) are calculated by applying an approximation to
Fermi function. The results sire compared to other studies.

Introduction

The calculation of the actual rate of /3-decay has fundamental importance
to find the precise values of vector coupling constant, half-lives, matrix elements,
etc. A precise knowledge of the vector coupling constant for nuclear /3-decay is
necessary to test of Conserved Vector Current (CVC) theory. According to the
CVC hypothesis all ft values for superallowed /3-decay should be identical providing
that small electromagnetic corrections are accounted for. One of the major uncer-
tainties in the ft values of superallowed /3-decay is the radiative correction. The
/ function should be modified by radiative corrections. Many authors [1,2,3] have
worked on the corrections but discrepancies remained among their results. Radia-
tive corrections arise from the interaction of the decaying nucleon and the emitted
positron with the external electromagnetic field. These corrections are separated
into: 1) “Outer” corrections of order a, Za2, Z2a3 ... and magnitude Si, 62,
63...5r = 6L+ 62+ 3+ ... which are included in the experimental ft multiplying
it by (1+ Sr). Si is given [3] by integrating a function g(W, Wo) over the positron
spectrum to the end point W

6l = (a/2*)g(W,WO).

2) “Inner” corrections which are included in the primitive Gv value: G'2= G~(l -f
A). A depends on the structure of decay, the details of strong interactions, and the
applied model.

In this work, the outer radiative corrections are calculated by applying an
approximation to Fermi function in the vector interaction of /3-decay.
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Details of calculations

The radiative correction of order a is given [4] by
a JN°
6(Z, W)= —T 1 pW(WO0 - W)2F(Z, W)g(W, W0)dWw, @)

where g(W, Wo) is a universal function and is given by the following expression:

g(W, Wo) = 31nM —3/4 + 4 2CBMNB MR- W nawo —w)
+jL + Marctanh/?][2(1 + B*)
W2 garctanns;. )

The Fermi function for Z ¢ 0 is:
F(Z,wo) =21+ )[r@7+ \))-\2pR)7" -x\ » zw™MT{l + miiw/p)|2. (3)

The calculation of the Fermi function using this expression is complex and boring.
So many approximations are experimented and done. An approximation for the
Fermi function in this work is considered:

Tazw
F(Z, wo) = 1+ a 4

where p = AW 2—L

Results and discussion

Our results for <& are listed in Table I. It can be seen that 61 decreases with
increasing Wo and the results are in agreement with others. The differences are
mainly due to the contribution of the axial vector current. It has been assumed
that radiative corrections of order a are dominant. However, it must be remembered
that corrections of higher order (in particular of order Za?2) may be important.

Table I
Radiative correction for superallowed 3-decay
Nucleus z Wo Si(Z,W0) [3] Si(Z,W0) 5] 6i(Z,W0) [6] *|(Z,W0)

140 7 4.5392 1.29 1.19 1.29 1.30
26A1 12 7.2827 111 1.01 111 1.13
31Cl 16 9.7481 1.01 0.90 1.00 1.03
42Sc 20 11.5743 0.94 0.84 0.94 0.97

22 12.7977 0.91 0.80 0.90 0.93
50Mn 24 13.9357 0.88 0.77 0.87 0.90
54Co 26 15.1301 0.86 0.74 0.84 0.87
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COMPARISON OF TWO- AND ONE-COMPONENT
PREEQUILIBRIUM EXCITON MODEL CALCULATIONS
FOR SOME NEUTRON INDUCED REACTIONS

B a8AR §ARER and GUNE§ TaNIR

Gazi University, Faculty of Arts and Sciences
06500 Ankara, Turkey

(Received in revised form 24 August 1993)

Two-component preequilibrium, used by Gupta, and analogously one-component
exciton model descriptions are applied to neutron induced reactions such as 4eTi(n,n"),
4eTi(n,xp) and 27Al1(n,xp) at 14.6 MeV. This is the first complete calculation made by the
two-component approach of Gupta. In order to obtain mean lives the time-integrated form
of master equations is used.

Introduction

The basic feature of the exciton model is the time-dependent description of
a nuclear reaction as a process in which the initial exciton state of the composite
nucleus equilibrates through a series of successive states by energy conserving two-
body residual interactions bringing about transitions between these states.

In the one-component formulation of the exciton model for preequilibrium
nuclear reactions, neutron-proton distinguishability, suggested first by Cline and
Blann [1], and then by several authors [2-7], is taken into account.

A two-component master equation approach for a nuclear system towards
equilibrium is described by Gupta [5], two-components being the proton and neutron
components, but to our knowledge no complete calculation has been done using this
approach. In this study, two-component master equation approach for a nuclear
system towards the equilibrium, as described by S. K. Gupta [5] and analogously
one-component exciton model descriptions for 46Ti(n,n"), 46Ti(n,xp) and 27Al(n,xp)
neutron induced reactions, are applied and the results are compared to experiments.

Calculations and conclusions

In the two-component master equation approach for a nuclear system equili-
brating towards the equilibrium has been suggested by Gupta [5], a state (nT,n,,)
is described by (n,i), where n, = pT+h,, n, = p,+ h,and t = hv. The
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two-component master equation for the population P(n, i, t) changing with time is
written as

= P(n —2,i—1,0A+(n- 2,i- 1)+ P(n - 2,0, )Xe(n - 2,i)

+P(n+ 2,7+ Li)AI(n+2,i+ 1)+ P(rz+ 2,t,i))Ad(n + 2,i)
+P(n,»'- 1L)AJ'(n,»- 1)+ P(n, i+ I[f)AJL(n,i + 1)
- P(n,t,<)/r(n,t), (1)

where

r(n,i) = [A+(n,i) + A+(n,i) + Al(n,i)
+A'"(n,0 + AS'(n,0 + AJ*(n,t) + L(n, i)]-1. 2

A’s are transition rates and L(n, i) is the total emission probability from state (n, i).
The maximum exciton number is given by n = 2\fgE. The number of coupled
equations in (1) grows quadratically with maximum exciton number, whereas in
the one-component formulation the growth is linear. The number of two-component
equations is hmax(hmex + 3)/2, the number of equations for the one-component case
is hmex only. Two-component transition rates are taken from [8]. It is true for the

Atransition rates that
y |
1
FﬁFN 2 MNT

AfL(n,i)) " NhyPy(n - IiN7- 1),

Z n

7=TT=Vor7 =V,y =i, N ="M\2g, j =>orv, pr = )a+i
pu —n —fta—h—z hv = h—i, where \M\2is the average squared two-body matrix
element. Here, na is the number of protons in the projectile. In this paper, the
squared matrix element for proton-proton, proton-neutron and neutron-neutron
interactions has been taken to be equal. Here, \g is the single particle level density
both for protons and neutrons, that is single particle level density for proton and
neutron can be given by jr* = gv —g/2 = The squared two-body matrix
element has been assumed to be independent of the exciton type. The exciton
energy and the (composite-nucleus) mass number dependence of \M\2 is expected
to be approximately [4]:

IM]2~ KA~3E~\ (6)
where if is a free parameter. The density of the exciton states with energy E has
been given by Ericson [9] as

gnEn~I

WOLE) o - Dpsumpgny - @
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The differential particle emission rate from an (n, i) state is written as

u(Pt- np,h*,p,, - v, hv,U)

+ 1
Wp(n, 1 ep)de = -p Real{e)de "hT,pu,hv, E)

(8

Here SR, fil and e are spin, reduced mass and energy of the emitted particle, respec-
tively, is the absorption cross-section for the inverse reaction of ejectile. Inverse
reaction cross-section has been calculated by the method given by Dostrovsky [10].
In (7) and (8) XB and i/ are the proton and neutron number of the emitted particle,
U is the excitation energy of the residual nucleus.

The total emission rate in (2) is obtained by integrating over the outgoing
particle energies and summing over all outgoing channels considered,

WRB(n, i, eR)de. @)

The spectrum for the emission of particle B is given by

da(a,R)

deR («, »«T(n, i). (10

Here, aa is the composite-nucleus formation cross-section by an incoming
particle o, T(n, i) is the time that the composite system spends in the (n, i) state,
that is

. J0s .
T(ni)= /7 P(nindt (11)

To obtain T(n, i), we include the system (1) over the time variable and solved the
system of linear algebraic equations:

—D(n, i) = P(n,0g° = T(h —2,*—DANn - 2,i- 1)+ T(n- 2, )ANri - 2,i)
+T(n+ 2,1+ DAI(n +2,1+1) + T(n + 2,i)\v(n + 2,1) (12)

+ T(n,1- DAg'(n, 1- 1)+ (n, 1+ DAI"(n, 1+ 1) - ~, 4

r(n,i)

where D(n, 1) is the initial population of the (n, 1) state; at t = 0 only D(pa +
2,00r 1) = P(pa+ 2, 0or 1,0) is non-zero.
The time integrated one-component master equation is

-D{n) = Ar(n- 2)T(n- 2) - 4(4) +A (n+2)T(n+ 2), (13)
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46Ti (n,n")

Fig. 1. Comparison of experimental and theoretical energy spectra of the 4®Ti(n,n") reaction at
14.6 MeV, as described by the one- and two-component exciton models for various K values.
The solid curves show K = 100 MeV®, the dashed curves Kk = 200 MeV®) the dotted curves
K = 300 MeV®, and the dashed-dotted curves k = 400 MeV®. The plus signs represent the

experimental data taken from [11]

where r(n) = [A+(n) + AO(n) + A_(n) -f£(n)]_1. To find the mean life T(n, E), the
system of linear algebraic equations (13) has been solved with the initial condition
D(n) = 6nno. The transition rates are given by

A-() = T \Mzgph(n - 2), (14)
or

A0(n) = — \M\3g(gE)(n - 1), (15)

A =i, 1(0TD)- <16»

The one component exciton state density is

E>=(£ifii <)
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46Ti (n, xp)

Fig. 2. The same as in Fig. 1, but for 46Ti(n,xp) at 14.6 MeV. Experimental data
are taken from [12]

and the one-component emission rate is given by

g Zav@lp = @

where p and h are the numbers of particles and holes, respectively and Qp(p) is
the neutron-proton distinguishability factor for a neutron-induced reaction. This
factor is to be chosen for neutron emission as 2—2z”j- and for proton emission as

Here, z = Z/A [5]. The spectrum for the emission of particle B is given as
" = (19)

where <a is the composite-nucleus formation cross-section by an incoming particle
a, T(n, i) is the time that the composite system spends in the state characterized
by n,i state and is given as

1]

T(n, o= J,; P(n, i, . 20)
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ZIAL(n,xp)

Fig. 3. The same as in Fig. 1, but for 27Al(n,xp) at 14.6 MeV. Experimental data
are taken from [12]

In this paper, only the emission of primary nucleons has been considered.
Complex particles, gamma emissions and secondary particles have not been tak-
en into account. In the course of calculations, level densities and transition rate
formulae without corrections for the Pauli principle have been used.

In order to perform a detailed comparison, the free parameter K has been
chosen to be 100, 200, 300 and 400 MeV3, respectively and both the one- and
two-component preequilibrium angle-integrated spectra have been calculated.

In the two-component preequilibrium calculations, for the initial exciton num-
ber both the n = 1and n = 3 values are used. In the case for n = 3, there are two
different configurationsas (n = 3,r=0)and (n = 3,r= 1). Only the (n= 3,i = 0)
configuration is used in the present calculations.

Figures 1-3 show a comparison between calculated and experimental angle-
integrated spectra for each reaction. Results are presented from the calculations by
the two- and one-component preequilibrium exciton models. The two-component
results are compared to the analogous one-component exciton model calculations
with and without the distinguishability factor Q [5].

In the 46Ti + nat 14.6 MeV, the thresholds for secondary neutron and proton
emission are about 5 MeV and 1 MeV, respectively. In the same entrance channel,
the reaction threshold for fH and 3H emission are about 6 MeV and 1 MeV, respec-
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10001T 'Ti(n, n")
K=400 MeV'

100+

1L
woo r

K=100 MeV'

6 8 10 © 14
e (MeV)

Fig. 4. Comparison between calculated and experimental energy spectra for the 46T i(n,n>
reaction for K = 100,400 MeV3. The dotted curves show two-component results with (3,0)
initial configuration, solid curves represent two-component calculations with (1,0) initial
configuration and dashed curves represent one-component results without Q-factor while
dashed dotted curves correspond to the one-component calculations with Q-factor. The plus
signs represent the experimental data [11]

tively. Therefore, neither primary deuteron and triton, nor secondary neutron and
proton emissions can contribute to the whole process which is essentially governed
by preequilibrium mechanism. Only 4He emission can contribute to the 46Ti + n
process.

In the reaction 27Al + n at 14.6 MeV, both the emission of the primary 3H,
the secondary neutron and proton are energetically forbidden. Only alpha and
deuteron emissions can contribute to the angle-integrated cross-section.

For all the three reactions, the calculated results are, in general, in good
agreement with the experimental data. In reaction 46Ti(n,n") (Fig. 1), one-compo-
nent calculations with and without a Q-factor, especially for K = 200 MeV3, are in
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good agreement with the experimental results. In the case of the Ti(n,xp) reaction,
(Fig. 2), the best agreement is attained by the two-component description with (1,0)
initial configuration and by the one-component exciton model with a Q-factor. On
the other hand, the K values do not seem to affect the calculations. In the same
reaction with K = 100 MeV3 the one-component exciton model calculations with a
Q-factor are better than the one-component calculations without a Q-factor.

In reaction 27Al(n,xp) (Fig. 3) the one-component calculations, both with and
without Q-factor are in better agreement with experiments than the two-component
calculations. For each calculation, K —100, 200 MeV3 give better agreement with
experimental results than higher K values do.

Figure 4 shows a comparison between the one- and two-component preequi-
librium calculations as well as the experimental data for K = 400 MeV3. Two-
component results with initial configuration (1,0) show the best agreement with
experimental data.

It is summarized here that the calculations have been performed with the
following assumptions: (1) The squared matrix elements for proton-proton, proton-
neutron and neutron-neutron interactions have been taken to be equal. (2) Single-
particle level densities for neutron and proton have been taken to be equal. (3)
Exciton state densities without corrections for the Pauli principle have been used.
(4) Complex particles, gamma and secondary particle emissions are not taken into
account. Despite the above approximations, the theoretical predictions are in good
agreement with the experimental results.
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By considering the propagative properties of the potentials in a two potential theory
of electromagnetism we arrive at signatures characterisitc of a two photon theory when the
two photons in the theory have a small rest mass and mix together in the Lagrangian.

1. Introduction

Classical electrodynamics and Quantum Electrodynamics have passed every
conceivable test that experiment has confronted them with and the formal beauty
and inner consistency of these theories represents a milestone in the history of the-
oretical physics. However, with the recent flurry of interest concerning a possible
strong coupling phase of Q.E.D. motivated by the 1.8 MeV (e+e~) peaks generated
in heavy ion collisions [1,2] questions regarding the validity of Q.E.D. as a strong
coupling theory have surfaced. Along with these questions there has been a per-
sistent interest from the theoretical community to understand magnetic charge and
magnetic monopoles within the present structure of electrodynamics [3]. Dirac [4]
originally proposed the idea of magnetic monopoles to arrive at an understanding
of how electric charge was quantized in the world. His idea was, “if there is one unit
of electric charge coupled to a magnetic monopole, quantization of electric charge
results from the quantization of angular momentum for the electric charge,”

eg _n
hC~ 2'

Schwinger [5] later discussed the interaction of two dyons (a dyon being a parti-
cle carrying electric and magnetic charge) and demonstrated that they obey the
quantization condition

2122 ®= 2n \C = speed of light).

(eiiPi —electric and magnetic charge of particle 1, t2)g2= electric and magnetic
charge of particle 2). With regard to interactions in the early universe, Witten [6]
has shown that the electric charge of a dyon need not be quantized in the presence
of CP violating interactions. Along the same line of reasoning Fischler and Preskill
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[7] have demonstrated that monopoles can reduce the axion density to acceptable
levels in the early universe with the monopole thus acquiring a non-integer electric
charge. When magnetic charge is present in the theory, it is easy to demonstrate
that a single vector potential does not exist for all points sinc

If the right side of Eq. (1.1) is zero then the equation is the equivalent to the exis-
tence of a potential. To circumvent this problem, Cabibbo and Ferrari [8] long ago
constructed a two potential theory of electromagnetism in the presence of magnetic
charge. In a very interesting paper, Callegari et al [9] have discussed the structure
of this theory when two photons are present (electric-like photons and magnetic-
like photons) along with the effects that such a two potential theory would have
on local electromagnetic phenomena. Their upper limits for the masses of the two
photons are low but not completely ruled out by experiments. Along the same
line of thought it was Vinciarelli [10] who emphasized that the dual symmetry of
Maxwell’s equation is unique to four-space time dimensions. This suggests that
magnetic monopoles and dyons might be topological condensations arising from
higher dimensional compactification. When the properties of the t’Hooft Polyakov
monopole were studied for an SO3 gauge Higgs system, it reinforced this idea with
the topology of the gauge-Higgs fields being related to the magnetic charge of the
field configuration [11]. Inspired by these theoretical considerations suggesting the
existence of magnetic charge along with the desire to find a consistent formulation
to describe electric and magnetic charge we study the propagative properties of
photons in a two potential theory when mass terms are present for the photons and
a mixing term is present in the Lagrangian.

We also arrive at the unique properties that would identify the presence of a
two potential theory and suggest provisional ways of looking for these signatures in
a cosmological setting.

2. Two potential theory of electromagnetism

We begin our analysis by writing the field tensor in a two potential theory of
electromagnetism as

_0A, _ (dB~ _ 81
Bv dxv pgx» f-sf—g \ dxp dxa) ’ 1
here AR is 4 vector potential, BB is 4 pseudo vector potential.

For the Lagrangian of electromagnetism with rest me for the electric like
photon, and mg for magnetic like photons we have

C=-— F"yl=g -
aARB,i

m|C2
| ¢ V4, (2.2)

m jc 2 A
ABARBYy/"g 84A2 a1r

8rrft2
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here Jp is the electric current density, JE is the magnetic current density, a is a
mixing constant.
Also the term aA~B”"y/—g destroys parity invariance since is a pseudo-

vector.
We could retain parity invariance by introducing a constant static pseudo-

scalar o such that the mixing term reads
a®0A ,B"y/". (2.3)

We, however, choose the original form in Eq. (2.2) to study wave propagation.
Varying Eq. (2.2) with respect to A" gives

(2.4)
Varying Eq. (2.2) with respect to BR gives
(2.5)
For the four vector potentials and pseudo-vector potential we have
A" = (At,AY,A2,®), B" = (BX,B,,BZ9),
The electric and magnetic fields are
E = ExiAEyj + EZzK,
B = Bxi+ Byj + Bzk. (2.6)

The field tensors now receive contributions from both the vector and pseudo-vector
potential. Also if we consider an EM wave propagating in the x direction we have

A" = (0,Ay,A*,0),

B* = (O by, £2>0).

Here the components of B~ depend only on x, t. The field tensor components
are

_ ___pAy 18BZ
=Bz= ax  C dt’
1dAy dBz
EY C dt + O,
— 1dB,, dA,
13 = By = C dt + dx° 2.7)
_ _ ldAz dBy
. C dt  dx
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Eq. (2.4) now reads for n = 2

A2AW + 1028y, 1~ N+ = _,»B,s (2.8)
dx2 Cdtdx C2 di2 C o6f6x fta -

For n —3 Eq. (2.4) reads

@AZ 162By 1 @TZ_ 1dBy m22, _
dx2 Cdtds + C2 dt2 * Catdx  h2 - 2Bz (29)

For n —2 Eq. (2.5) reads

1d2A, d2Bv 1 d2Bv 1d2A* 4+ m£2 5 10
Cdtdx dx2 T C2 dt2 Cdtdx N2 Bv= aAy (2.10

For n = 3 Eq. (2.5) reads

1d2Au d2Bz 1 d2Av 1 d2Bz IC2Bz

cdtdx dx2 Cdtdx C2 dt2 hy @Az (2.1

We now consider the following case for Eq. (2.8), Eq. (2.9), Eq. (2.10) and Eq. (2.11).

Case |

For a plane wave with zero mixing between the fields (a = 0), Az —By —0,
we have

Ay = Aoe kIX- UIt\

Bz = BOei(*a" " a,), (2.12
from Eq. (2.8) and Eq. (2.11)
12, 11°2
@-1 TS
«2 fal
C2 2+ h2 (213)

Here Ay and Bz propagate with different frequencies and wavelengths related by
Eqg. (2.13), though the potentials are monochromatic, from Eq. (2.7) the electric and
magnetic fields Ey, Bz are mixed states of two different frequencies and wavelengths.
Thus plane waves with a slight frequency splitting given by Eqg. (2.13) would be a
signal for a two potential theory.
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Case 11

For non-polarized wave again from Eq. (2.8), Eg. (2.9), Eq. (2.10), Eq. (2.11)
we would have (a = 0)

Ay = AQe*K' X-n"*\

Az = 3oe,(*ie-"10,

By = Bae " x~uf\

Bz =B0e " x- L#\ (2.14)
with the frequencies uqg, u2relating to fci, & by Eq. (2.13). The electric and mag-

netic fields given by Eq. (2.7) would again be a mixture of two different frequencies
and wavelengths.

Case 111

If a ¢ 0 (non zero mixing between AR, B") we have upon substitution of

Ay = AOe” kx- W\
Az = Ale* kx~i\
By = BOe” kx- Ut\
Bz = (2.15)

into Eq. (2.8), Eqg. (2.9), Eqg. (2.10) and Eq. (2.11)

’
Ao(k2 -AO(Nj+ hZCZj4o= —aBo,

N m2C2-
AO(k2) - AOCCD) + mﬂz Aq= -aBo,
_ m2C2
Bo(k) - BO(jP) + . -Ba—\-ako,
m*‘C2
+ -Bo —+aAdl. (2.16)

For small a the equations in Eq. (2.16) give for a consistent solution

)  eea a2C4 c4 a2C4
f-K2C2+% 3% - (mCe__mig'y W2~f(202+_?t2_+_ nic< _ EC<\ o
-------- g3-J a3 a3 )
2.17)
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The two dispersion relations in Eq. (2.17) would go into Eq. (2.13) when Az, By
alone are present or Ay and Bz alone are present even in the presence of non-zero
coupling. We see from the above analysis that the coupling between the two poten-
tials can generate unpolarized waves which produce two monochromatic branches
(w+, LLF). The fields need not be a mixture of two frequencies although they could
contain either of the two dispersive components in Eq. (2.17). The difference be-
tween the case of no-mixing between the fields (a = 0) and mixing (a ¢ 0) is that
with no mixing as in Case | and Case Il both frequencies show up in the electric and
magnetic field components while with mixing only one component need be present
for unpolarized waves.

3. Conclusion

The analysis above has provided us with different signatures to look for in a
cosmological setting, if me — 10~48 grams [9] we find that

AN--3XxXWNMT ILem™l

and
m’C4

We see from Eq. (2.17) that Qw2 ~ 1s~2which even for microwaves is an extremely
small frequency shift. The way to look for the shift is to look for repetitive [12]
signals of cosmological origin, for instance if the wave propagates over a distance of
106PC~ 1024 cm we might find a time delay between signals of w+, w_ calculated
as follows (neglecting a in Eq.(2.17))

1024 1024 1024 (

U= 10_21>)
.2. ]
C\A+ bh* c Vv )
{- = 1024 1024 1024 (, 10"22N\
- curs cr 2
1024 /10-21- 10~227
At=t —t+=~ |~ Vin2o~ 1
f— 173 C V 2 ) _ 2%:

Here we have assumed k s#1 1 (microwaves) and mg ~

If we include the mixing term in Eqg. (2.17) it would modify the calculation
of <+, £ . If we increase the cosmological length scale we increase At. Thus any
distinctive repetitive signals with very short time intervals between them might be
signatures of the two potential theory. If such signals were found they would also
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provide us with means to set limits on the two photon masses (me,mg) and the
mixing parameter a.

Two final points also have relevance, ifthere is evidence for a second potential,
it would be interesting to ask how it would effect Aharonov-Bohm type experiments
for electric and magnetically charged particles [13]. Certainly, the Lagrangian the-
ory of particles with both potentials present would have to be constructed in order
to ascertain the proper place of two potentials in a quantum formalism. Lastly,
Field et al [14] have studied the rotation of the plane polarization of polarized light
coming from cosmological sources when the Lagrangian of electrodynamics breaks
both parity and Lorentz invariance. Within the context of the two potential the-
ory here discussed, it would be of interest to ask how the parity violating term in
Eqg. (2.2) would effect the rotation of the plane of polarization of polarized light.
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The definition of the electromagnetic field in terms of Hertz’s potential makes it
possible to give a variational formulation in the dynamics of ideal magnetofluids, both
in non-relativistic and relativistic representations. The theory is applied in two cases:
(i) Using Noether’s theorem, the fundamental equations of conservation for our model of
magnetofluid are obtained, (ii) By means of the four-dimensional generalization of Hertz’s
vector, a relativistically-covariant formulation of a constrained minimum energy problem
in the case of force-free plasma configurations is given.

1. Introduction

The study of basic phenomena governing the behaviour of ideal megnetofluids
by means of the variational formalism has been intensively performed soon after the
moment when MHD became an independent field of research. The earliest papers
(e.g.- [I]-[5]) dealing with the variational derivation of fundamental equations of
magnetofluid dynamics showed that the variational formalism is a very useful tool
of investigation. Later, Dougherty [6], [7] extended this formalism in relativistic
MHD, while Taylor [8], [9], Rund et al [10], and Wells [11], [12], [13] studied the
minimum energy solutions for magnetofluids, in connection with their stability.

All aforementioned papers have a common point: the electromagnetic field
E, B is defined in terms of the usual set of potentials A, &y chosen as variational
parameters. As we showed, the description of the electromagnetic field in terms ofa
special set of antipotentials M, tp makes it possible to give a variational formulation
in both non-relativistic [14] and relativistic [15], [16] magnetofluid dynamics.

The purpose of the present paper is threefold: (i) To give a variational prin-
ciple for ideal, non-relativistic magnetofluids, by means of Hertz’s vector Z. (ii)
To extend this formalism, and give a relativistically-covariant formulation of the
problem, (iii) To apply variational technique in two different problems: the cold
plasma fundamental equations of conservation, and the stability of some force-free
plasma configurations.

*On leave of absence from the Department of Theoretical Physics, AL. I. Cuza University,
6600 lasi, Romania.
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2. Preliminary

The Hertz vector (potential), also called polarization potential [17], shows to be

a useful instrument in electrodynamics, especially in the study of wave propagation

and multipole radiation. It is a “superpotential”, i.e. a potential for the usual

potentials A and ¢ To construct the Hertz vector, one starts from the equation of
continuity

pi+jaa=o (1)

Here pe and j are the electric charge and current densities, respectively, the comma
stands for partial derivative, while the Greek indices run from 1to 3. In this formula
and throughout the paper the Einstein’s convention summation is used. Taking the
Fourier transforms of p and j

it follows from (1)
iwp'(r,w) + Vj(r,w) = 0. (2)

The number of independent sources pe, ja can be reduced by one by introducing
the vector function [17]

©)
which, in view of (1), yields
Saa=-/(r,f); Sait=ja(r,t). (4a,b)
If the electromagnetic potentials are chosen as
Aa —CPqZa,il ®— zat'o, (5a,b)

the Hertz vector Z(r,t) is then found as solution of the inhomogeneous wave equa-
tion

(6)

Here and hereafter it is assumed that e~ og; p ~ po- It is easy to show that
(5a,b) satisfy the Lorentz gauge condition

A a,a + (oPoO,r—O. ‘;’
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The electric field strength E and the magnetic induction B, in terms of z, are then
given by the relations:
Ea = ZRt3a —coHoZa.tt, (8)

Ba £oHofaRyZYMt. 9

The importance of this representation is that the number of scalar functions defining
the electromagnetic field reduces to three, Za(a = 1,2,3), which is most useful, as
we shall prove in the following.

3. A non-relativistlc variational principle

Let our physical model be a charged, inviscid, compressible, one-component
magnetofluid, undergoing isentropic motion in external electromagnetic field E, B.
A suitable Lagrangian density

C=-cOEyey — + - Pwyvy - pc + p(ait + n7ai7)

~ V (st "hv7si7) H--- p(coPovy 2y t -f Z7|7). (10)

Here s and c are entropy and internal energy per unit mass, respectively, p the
mass density, while a(r, t) and b(r, t) are two Lagrangian multipliers [19]. We also
assume that the particle number density, n, is equal to the charge carrier number
density: pe = en, p = mn. The last term in (10) gives the interaction between
hydrodynamics and electromagnetic fields.

If in the Euler-Lagrange equations

dc  d (dc\ d(dc\ _n
dp@ dxa ~nr(0 dt J ~

we take as independent variational parameters ZBRR\ ZR t; s; v, p, and use
(8)—€10), we obtain:

(zp.R) cOEaa- pe= 0, (12)

(ZB,t) Po calyBy)3 p va CoEat—O0, (13)

(s) bt + Vaba,t —T =0, (14)

(*) Pt+ (pva)a=o, (15)

v(a) va'bla—" n —f—eOfIOmEZat =0, (16)

0 \veva ---g--bat Hrg (6oliov@Zat -f Zaa) = 0, (17)
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i.e. Maxwell’s source equations, the equation of continuity, a generalized Clebsch
transformation, and a Bernoulli-type equation. In deriving equations (12)—17) we
have also used the fundamental thermodynamic equation for non-dissipating fluids

(reversible processes):
Tds = de —p~2odp. (18)

Before going furher, we want to make some remarks on the constraints used to
construct Lagrangian density (10). From the magnetohydrodynamic point of view,
there are motions consistent with the dynamical equations which are not included
in this principle. Indeed, if s is homogeneous in space, and Z does not explicitly
depend on time, Eq. (16) leads to v = —grade, meaning that in this case the motion
is restricted to irrotational flows. To remove this difficulty, Lin [20] introduced an
additional vector constraint expressing the conservation of the identity of particles,
in the form ~ = 0. Later, Selinger and Whitham [21] showed that a single com-
ponent of X, i.e. a single equation of this type is enough to solve the problem. The
specified component is one of the Lagrangian coordinates of the particle, even if the
description of the motion is Eulerian. We wanted to emphasize this point in order
to note that our description is not most general.

Next, we shall derive the equation of motion. To do this, we eliminate the
Lagrangian multipliers a, b from (14)—17). Multiplying (16) by va and introducing
the result in (17), we obtain:

P C
—,,2/ava—e ---------- ha, H—-Za@a + bvaSa = 0. (19)

Taking the gradient of this equation and writing its xa-component, we still have:

1 p g
—MWBA —ija+ ~Pa+ 2Pa a¥< fives>g)>a = (20)
But 9
fAat — Vat “H(T  bRBbRASYX  b(%)RSR}IA  £QPQ—Z OQ-tti
and consequently:
1 e
Va,t Por “H VBVRta VRO B8 a
P m
-b(VR8®W)<a+ {bvRsw)>a+ (Tsa- etc+ "P,a) =0. (21)

In view of (18), the last bracket vanishes, while the sum of the last four terms gives:
o — bRvatl -f GifzyVRBY, (22)
and Eqg. (21) takes the final form

dva 1 e.
i — JPOLH | \Eot + ZoyViBY))
which is the desired equation of motion.
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4. A relatlvistically-covariant extension of the variational principle

In the relativistic approach to our formalism, we shall use so called “Galilean
co-ordinates”:

Xl= X, X2=y, X3= 7, x4- ct; gaB = sap, y44 = —1. (23)

If the velocity four-vector u, is defined by

ua=ua= "va; ud=-u4=7, 7="1-—"]j . (24)
then we have:
tijur = -1. (25)

Here and hereafter, Latin indices run from 1to 4.

First, we must transpose (5a,b) in Minkowski universe, i.e. we have to give a
relativistically-covariant generalization of the Hertz potential. As one can see, only
derivatives of z appear in (5a,b). On the other hand, there is no time-component,
so as to be associated with the space-components Za. Consequently, if we define
the Hertz four-vector Z'(z,0), then the four-potential can be written as:

A* = CD*]K" (26)
Here duc is an antisymmetric tensor, given by
O* = (Z*u* - ZV). (27)
In the rest frame of reference (ua = 0, u4 = 1), this formalism yields
Aa = ®“44= CoHoZzat\ A4= bcb = aan
in complete agreement with (5a,b). To make our result consistent with any inertial
frame, we must consider the supplementary condition ®ap = 0. This condition
is not at all artificial, but it follows from the definition of z: the second-order
four-tensor @4t has three independent components ®a4.
To prove the consistency of this formalism, let us define the electromagnetic
field tensor Fik in terms of &;*:
Fjim = &Tkjk -® 1k ™= gi‘dTK iljfc - sk. (28)
As easy to verify, this leads to:
F R = Fal — CoROtaR'YZytt — Eocly-Hy,
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Fa - —Fa4- —178%a — ComUzalt- -, (29)

and similar formulas for the dual tensor F .,k = hilklmnFim:
Kp — Ey] FaA= Ba. (30)

Next step is now to write the relativistically-covariant Lagrangian density.
We shall write it as a combination of Lagrangian densities given by Halbwachs [22],
Landau and Lifshitz [23], Herivel [19] and ourselves [15], in the form:

)k
cC=-4~@ " >- +e ¢c n *

—nomo(e - ¢2) —-A (uju* + 1) + noiFaj —6no«Jsj. (31
Here nomo = po and eno = phare the rest-frame mass and charge densities, re-

spectively, while A@J), a(xJ), and b{rJ) are three Lagrangian multipliers. In the
derivation (31), the following conditions of constraint have been used:

(«ou]),j =0, (32)

wsj =0, (33)

i.e. equation of continuity and equation of conservation of entropy.
The Euler-Lagrange equations

%j%) d?(k te) [=0 G=1/; k=14 (34)
give then:
@-n) @ a Tog k= 1oj\ (35)
n enOcolk, k--Xuj + Nodj —bnosj =0, (36)
(no) ecUj-d% k - mO(e 4-c2) + ujaj - bujsj =0, (37)
00 (noud)j =0, (38)
*  u*Sj =0 (39)
© bj =0, (40)

i.e. Maxwell’s source equations, a generalized Clebsch representation, a Bernoulli-
type equation, the equation of continuity, and a vortex theorem for a and b. Equa-
tions (36) and (37) give A= —po(e+ c2), and Clebsch representation (36) takes the
final form:

ecPj + m + O+ c2itj + aj —bsj - 0. (41)
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The equation of motion follows from (41) , by the help of (18), after some
derivative and index manipulation:

Po-A[(t + c2)ui] = c(dkK, i -<bi.k)jk (42)

Since e is senseless in the case of one-particle system, in this particular situation
Eq. (42) yields:

mo® = e *- @, KWk (43)

as expected.

5. Applications

(1). Using the representation of electromagnetic field in terms of Hertz’s po-
tential Z, let us now derive the equations of transformation and conservation of the
fundamental physical quantities, associated with our model: energy, momentum,
and angular momentum. Following Noether’s theorem, with each infinitesimal sym-
metry transformation one can associate a conservation differential equation. The
general form of this equation is [4]

i | ydT=- £ Gds- <)
with
= C- “oNfyES w)’w + B <

- . o _ A o Ac
© = oo tidets FT 6y M 6 W) n vy asa )

We consider the following space-time infinitesimal symmetry transformations [24]:
(i) The Lagrangian density (10) is invariant with respect to the infinitesimal
displacement of the time origin

r—*t'=t+6f] 6r=0;, 6@ =0 (47)

Hence, in view of (10)—17), after some vector algebra we obtain:

D: 2€0EaEa ~ BaBa 2P%c™a pt‘bfo(ERZ a 3 6t,

<#>= -"-(E x B)e - pva f2lyi2+ Wj + — {eBayBRze,e),i —co(EaZBiR)tt St.
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Here w = e + " is the specific enthalpy. Introducing these results into (44) and
leaving out the constant St, we arrive at

IX G A\2HEH° B2+ B o
GWH + G (exB)] s “8)

which is the energy conservation equation.

(if) The Lagrangian density (10) is invariant with respect to the infinitesimal
displacement of the origin of the reference frame

r—'=r+9S, st—0; sipc~r=0. (49)
Here Sr is a constant vector, giving the direction and magnitude of translation. We
find:
7(r) = [fo(E XB),e + pva + elpo(ERZa}i)t’S]xa,
GR = [PraB + Pvave + ~2CI®|2 2p- ~R -~ e0oEaER — — BaBR
~eoPo(ERZat)} + to{fR~j6BeZati)rf\Sxa,

leading to the momentum conservation equation

gj J [ova + eo(E X B)aldr

= ~ j 1[PV=VB +PA/8+ A2C A2 ~ —~ E aBR]dSR. (50)

(iii) The Lagrangian density (10) is invariant with respect to an infinitesin
rotation of the axes, i.e.

r— —r+rx69; S=0

E'=E+ Ex<50; B'=B+Bx$&0,
SZat —Cally30y, SZa,a—o0,

Sva = ----- foPOSZai,
m

leading to the equation of conservation of angular momentum:

\] f-aB-iPO:XRd,T — £ £aBRAXaBXRdSg (51)
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Here
Pa = pva +Co(E x B)e,

Tae —pdae + pvave + (Z—eo|E|2+ —2/T0|812/) Sag- eOEaE e————P—éBaBg.

To obtain these results, we used some vector and tensor calculus. The inter-
mediate calculations are long, but not very interesting, and we leave to the reader
a thorough proof of these equations.

(2). The study of plasma stability is closely related to the constraints on the
system, i.e. the states of stable equilibrium must be consistent with the integrals of
the equations of motion. In the earliest research on force-free magnetic fields and
hydromagnetic stability, the nature of the stable solution was studied. It was shown
(Chandrasekhar et al [25], Woltjer [26], [27], [28], Bernstein et al [29]) that, if the
boundary conditions and the gauge are suitably chosen, then

li — 1 ABdr; 12= [ v.Bdr (52a,b)
Jv Jv

are two integrals of motion. Here v is the magnetofluid velocity, and A the vector
potential.

The research of constraint integrals (52a,b) was resumed a few years later by
Calkin [4], Moffat [30], Wells [11], [12], [31], and closer to nowadays by Rund et
al [10], in connection with the problem of the dynamic stability of closed plasma
configurations. The constancy of (la) was later investigated by Taylor, and again
shown to be related to the generation of magnetic fields in toroidal plasma [8] and
magnetic force-free equilibria [9]. The boundary conditions and the potential gauge
which assure the time-constancy of the integrals (la,b) may be stronger [28] or
weaker [10], [30].

The purpose of this application is to give a relativistically-covariant formula-
tion of a constrained minimum energy problem, namely the problem of minimizing
the total energy of closed MHD system, subject to the constraints (la,b), by means
of the four-dimensional generalization of Hertz’s vector. Using the theory of multi-
ple integral isoperimetric problem [32], it was shown [10] that a necessary condition
for an extreme value of the energy integral

No 2Ne 'B', + %‘,Nn+ AM (53)

subject to constraints (la,b), is:
Ey(L) + Aify(Qi) + A-EV(Q2) = 0. (54)

In the last two formulas v is the particle density, Q\ —a.B, Q2= v.B, Y stands
for dependent variables, while A-, A2 are two Lagrangian multipliers.
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To apply this formalism in our case, we first observe that Qi and Qi may be
regarded as the fourth-component of the four-vectors

r =Y TKI(D, %- Db ;)Pn (55)

5™M=~" Tbl(D, ;K- b ;) (56)
Therefore we have the following system:
Ey + *mEY (Rm) + HrnEriS™) = 0, (57)

where Am and fim are two four-vector Lagrangian multipliers. Assuming ¢ <C c2,
and using notations 5 = b= then performing the calculations in (57), after
some tensor algebra and index manipulation we arrive at:

Yc m- ") e*TK,(Pn %- Pb )+ =0, (58)
(po™)j =Q (59)

[Ouj + A TE*TKDN %- Db f)]*j = 0, (60)
[/W + 7~ TATBI(® %- ®bi,)]»j = o, (61)

where wm = %€*TK\Ww,K —Uu*,;). In view of (41), we still have:
m-Am+* TKOPU\ - db*)= Cjm\ Cjm = hSm - b, mSj, (62)
and Eq. (58) reads

AnFjm + +mCjm =0, rm=-"L . (63)
Zmo

Equation (63) shows that the four-tensors E;T, ufr, Cjm are linearly in-
dependent. To realize the physical significance of this result, let us take Am =
(0,0,0, A); im = (0,0,0,p). Then the system (58)—61) yields:

B .
(2A p)Ba §- [reapyny —o0,

(poua),a = o, (64)
(pOua + pBa)sa =0,
(pOlla + pBa)ba = 0,

which is precisely the conclusion drawn by Rund et al [10]; unless the flow is irrota-
tional, the Euler-Lagrange equations of this isoperimetric problem imply that the
four vectors fields v, B, V x v, V x B are collinear.
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6. Discussion

We first want to make some comments on the generalization of Hertz’s poten-
tial in Minkowski’s space, apart from the results previously obtained in this paper.

(@) It is obvious that the choice of three components of Hertz’s vector, instead
of the usual electromagnetic potentials, A, ¢yields a considerable simplification of
any problem regarding determination of the electromagnetic field. This advantage
becomes more important in case of complex applications.

(b) Since @ik is antisymmetric, we have ®kT km = 0, and Eq. (35) simplifies
to

<6 5 >

where axgopx\ — A —jrgfr is the D’Alembert’s operator. This is the relativistic
form of the wave equation for ®,7 |IT] i.e. for A'. We conclude that Maxwell’s
source equations (35), written in terms of Hertz’s potential, yield straightforwardly
to the four-potential wave equation, without any auxiliary condition.

(c) As one knows, the Lorentz gauge condition for the four-potential A’, which
is A'{ = 0, must be imposed in order to get the inhomogeneous wave equation
Bx gxk = —poi*! while using the Hertz four-vector we have &tk ik = A- = 0.
In other words, the Lorentz condition is contained in the definition of the Hertz
potential.

(d) As we showed [15], the electromagnetic field tensor Fik can be written as

Fk = Mk + Pike (66)

Here
Mik = Mk,i- Mitk] Ma = fiocMxc, M4=-M 4 = -fioi>

is a four-dimensional curl of antipotential four-vector Mi,
Pik = -Rofik,mP’vm; P&a= (P*“,0); t/" = (*°0)

is defined to give a four-dimensional generalization of Calkin’s ‘polarization’ vec-
tor field P, while the symbol ”” stands for dual tensor. With these definitions,
Maxwell’s source equations take the form:

(Fik - Pik)ik = 0. (67)

Let us now use the definition (28) of F k in terms of & in (67). The result is:

®
» —_—n LE]
dxkaxk e =P (68)

This shows that the source of the tensor field ®k is the polarization tensor Ptk. In
particular, for i —a, a solution of (68) is 9xkdxkz = —A p, which emphasizes the
physical significance of Hertz’s vector.
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7. Conclusion

The description of the electromagnetic field interacting with a charged fluid
in terms of the Hertz potential proves to be useful in variational derivation of the
fundamental system equations governing the behaviour of the chosen model. The
advantage of the Hertz potential emerges from the fact that it reduces by one
the number of field variables, which simplifies the calculation. The relativistically-
covariant generalization of this formalism allows us to give a variational principle
for ideal magnetofluids and make a straightforward connection with the tensor po-
larization properties of the medium. To give more motivation of the advantage of
this representation, the Hertz vector has been used in the derivation of some fun-
damental equations of conservation in MHD. This method has been also applied in
the study of equilibrium conditions of some force-free plasma configurations. All
these results show that the use of Hertz’s vector is advantageous not only in many
classic problems of electrodynamics, but also in the theory of magnetofluids.
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The influence of rotation and physical properties of bounding walls on a generalized
one-dimensional Hartmann flow (HF) and heat transferis investigated. The channelrotates
with a constant angular velocity about an axisperpendicular to the walls in a uniform trans-
verse magnetic field. Exact solutions for the velocity, magnetic field, viscous stress, current
density, temperature distribution, yield components, net electric current components, mean
temperature as well as Nusselt numbers are derived. Effects of relevant parameters such
as rotation parameter, Hartmann, Eckert and Prandtl numbers, wall conductivities, wall
thicknesses are examined numerically and shown graphically.

1. Introduction

Theoretical study of magnetohydrodynamical (MHD) channel flows is of great
interest due to its widespread applications in designing cooling systems with lig-
uid metals, MHD generators, accelerators, pumps and flow meters. Hartmann [1]
was the first to investigate the pressure driven flow of an electrically conducting,
viscous and incompressible fluid between two infinite, parallel and non-conducting
plates in the presence of a uniform transverse magnetic field. The effect of wall
conductances has been studied by Chang and Yen [2]. The heat transfer aspect
of the problem under different conditions has also been investigated. Alpher [3]
was the first to assess the influence of wall properties on the heat transfer. Since
he neglected the viscous dissipation and the heat generation within the walls, his
analysis was incorrect to account for the wall influence. Yen [4] and Jagadeesan
[5] studied the effect of viscous dissipation, Joule heating and unequal wall conduc-
tances on the temperature distribution. Snyder [6] extended these works including
the heat generation within the walls and solved the model numerically. Javeri [7]
developed further these results and investigated the simultaneous influence of vis-
cous dissipation, Joule heating, unequal wall conductances and wall heat fluxes on
the temperature field in the HF.

Study of interaction of Coriolis force with electromagnetic forces is impor-
tant for some geophysical as well as astrophysical problems, therefore modelling
of hydromagnetic flows in rotating channels has been vigorously pursued for the
last two decades. In these studies, however, the walls have been taken as either
non-conducting or perfectly conducting, or a combination of the two. Nanda and
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292 T. NAGY and Z. DEMENDY

Mohanty [8] considered the HF in a rotating channel with perfectly conducting
walls. Datta and Jana [9] discussed the effect of rotation and Hall current on the
HF using insulating walls. Jana, Datta and Mazumder [10] studied the MHD Cou-
ette flow in a rotating frame of reference when the fixed plate of the channel is
perfectly conducting, the moving one is insulating. Raju and Rao [11] investigated
this problem taking into account the Hall current but neglecting the induced mag-
netic field. Seth and Maiti [12] discussed the rotating hydromagnetic Couette flow
between non-conducting plates where a biasing external electric field is applied.
Unfortunately, for a number of physical situations the idealized wall conditions are
inapplicable, particularly when we consider the heat transfer aspects of the prob-
lems. For example, the usual assumption of a wall which is a perfect insulator
electrically and a perfect conductor thermally, cannot be valid because, according
to the Wiedemann-Franz law, the ratio of heat and electric conductivities of metals
is proportional to the absolute temperature and the proportionality factor is very
small.

The purpose of this paper is to study in detail, under realistic wall conditions,
the effect of rotation and external magnetic field on the hydromagnetic fields and
heat transfer in a generalized HF. In the model the flow may be driven either by a
pressure gradient or by motion of one of the walls. Exact solutions for the veloc-
ity, magnetic field, viscous stress, current density, temperature distribution, yield
components, net electric current components, mean temperature as well as Nusselt
numbers are derived. Effects of important parameters such as rotation parameter,
Hartmann, Eckert and Prandtl numbers, wall conductivities, wall thicknesses are
examined numerically and displayed in numerous figures.

2. Description of model

We consider a steady flow of an electrically and thermally conducting, viscous
and incompressible fluid between two infinite parallel walls of given electrical and
thermal conductivity. Let us denote with d, d\ and d* the distance of plates,
the thickness of lower and upper bounding walls respectively, as it is shown in
Fig. 1. The lower wall rotates with a constant angular velocity 11 about the y-axis
perpendicular to the walls. The x- and r-axes are fixed on the lower wall. The
upper plate may move with a constant velocity U = (Ux, 0, U2) with respect to the
Cartesian (non-inertial) system of reference /C(X,y, z). The unit vectors of K are i, j
and K. Outside the channel (in vacuum) a uniform magnetic field H,, = (0, HO, 0) is
applied, but there is no external electric field. We assume all the material properties
to be isotropic and constant, the magnetic permeability of plates and fluid is equal
to the permeability y of the vacuum.

The MHD equations governing the problem (balances of momenta and matter,
Maxwell’s equations and Ohm’s law) in the frame of reference IC(x,y,z) can be
written in the form

p(VV)V + 2y0j x V = -Vp* + pi/lV2V + yJ x H, (1)
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Fig. 1. Channel geometry and parameters

VV =0, )
V X H=J, ?)
V xE =0, 4)
VH =0, (5)
J = <(E+ iV x H), (6)

where V denotes the velocity; H the magnetic field; E the electric field; J the current
density; p the mass density; v the kinematic viscosity; < the electric conductivity.
The centrifugal term has been combined with the thermodynamic pressure p in the
gyrostatic pressure p*—p —pfl2(x2+ z2)/2. Eliminating E and J from (3)-(6), the
induction equation is obtained

V2H + /m-V x (V x H) = 0. @

The first two equations, (1) and (2), have to be satisfied only in the fluid, the last
five ones must be satisfied throughout all the space. In the following, the suffixes 1
and 2 refer to the values of corresponding quantities in the lower and upper plate,
respectively.

Since the plates are infinite along x- and r-directions, all the physical quanti-
ties, excepting the pressure, depend only on'y. From Eqgs (2) and (5) it immediately
follows that W = Oand Ily = 110, hence we can write

V= (F,0,V;), H={Ha,HOHT), E=(EttEYy,Et), J=(/,,0,/,). (8
Equation (4) implies that Ex and Ez are constants, With the ansatz (8) Egs (,)

and (7) give
d2vx dHx
—IpCIVz -f pHO
DU- W pClvVz -f p dy 9
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\% \%

Fig. 2. Primary and secondary velocity profiles.------------ N/2=100,E2=1;--- M2 —400,E2=1
— s M2=400,E2=4

- [P+ AM{HI + H])\ =0, (10
pvdd?;/22+W .+ =0. ()
d2—|J;(,>" u d(;;x o (12)

dj;lz + pcrHOdd\;Z =0, (13)

Equation (10) indicates the magnetohydrodynamic pressure to be constant along
the axis of rotation, moreover it follows from (9) and (11) that dp*/dx and dp*/dz
are also constants. Without loss of generality we can stipulate that dp*/dz = 0, i.e.
the pressure gradient lies in the direction of the x-axis.

With the dimensionless variables

Ht H2

v HOvpcr' z HOvpcr'

Egs (9) and (11) can be rewritten as
u'-2£4 +M X +P =0 (14)
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Fig. 3. Primary and secondary magnetic field profiles for & —4n(= ®). -
-------- M 2= 400,E2 —1;-------M2= 400,E2= 4

u"+ 2E2vx + M2hz =0,

Egs (12) and (13) becomes
K+ = o

K+« =0,

295

100, E2 —1

(15)

(i6)
(17)

where E2 = Cld2v is the rotation parameter which is the reciprocal of the Ekman
number, M = yHo”a/pu)112is the Hartmann number, P = —(d3pv2)dp*/dx is the
dimensionless pressure gradient and the primes denote differentiation with respect

to I

Introducing complex variables for the velocity and the magnetic field

v(T) = V() + »(?),  h(rj) = hx(rj) + th2(rj),
Eqs (14)-(17) reduce to the following simple forms

vi + 2ie2v+ M2h +P =0,

(18)

(19)
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Fig. 4. Distribution of primary and secondary current densities. -------—--- M2 = 100, E2 = 1;
-------- M2=400,E2=1;------M2= 400,E2=14

Let us now consider the boundary conditions (BC). As for the fluid, it does
not slip along the walls, consequently

v(0) = 0, u(l) = u, (20)

where n = ux + iuz with ux = Uxd/v and uz = Uzd/v. The appropriate BC for
the magnetic field can easily be deduced from the usual electromagnetic interface
conditions. It follows from (3) and (6) that in the fluid

h' = re — v, (21)

while in the lower plate
hi = leisi, (22)

where e = Exd/ufiHO+ iEzd/i/fiHOand si = eri/er is the non-dimensional electric
conductivity of the lower plate. Since the tangential component of the electric field
is continuous at the boundaries, from (21) and (22) we get

JT(0) = h'Jsr. (23)

The tangential component of the magnetic field has no jump either across the bound-
aries of the several regions, so hi(—ry) = 0and hi(0) = h(0), where w, = d\/d is the
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Fig. 5. Primary and secondary velocity profiles. ----------- M2= 4, E2= 50;
=M 2= i,E 2= 100 M2=29, E2=50

dimensionless thickness of the lower plate. Using these, (22) leads to the relation
h[ = /i(0)/*7 . (24)
Inserting (24) into (23), we obtain the required magnetic BC at 7= 0
'(0) = A(0)/eiifc. (25)
Finally, at the upper wall, in a similar way we find
') = -nh(1)yisa2r2 (26)
where S2 = 01/ o’ and 2= d*/d are the non-dimensional electric conductivity and
thickness of the upper wall. The BC are now complete.
To solve Eqgs (18)—(19) at first we integrate (19) using the no-slip BC (20)
h'+ V= A'(0), (27)
then we substitute h' into (18). The result

V' + (2IE2- M2V + P + M2h'(0) =0, (28)

Acta Phytica Hungarica 7S, 1993



298 T. NAGY and Z. DEMENDY

can easily be solved together with Eq. (27). The solutions satisfying the BC (20),
(25) and (26) are

+RQ) - Rlexpi-kr]) - i, (29)

h(r)) = ')»7 - lt(’;inﬁf((u + RQ) - R[exp{-kT])/ k + f\ + KO, (30)
where R= [P + M 2h'(0)V/k2, Q = exp(-fc) —1 and k = a —if} with

a:-V.-Z{Vm + 4E* + M 2)1' 2, B:VZ bIM* + 4£4- M2)1/2.
The constant of integration KO0 and the quantity /i'(0) are given as
[cothfc 1\, _/cothfc 1 -10
%:<~k~+¢.1 +RQ(-k~+@-I%_Ka)-M1+

_ + PK2
Topl+ 2+ pldp2(1-M2K 2y

and

0) (31)
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Fig. 7. Distribution of primary and secondary current densities. --------—--- M2= 4, E2= 50;
-------- M2=4,E2=100;...cccccc... M 2= 9, E2 = 50
where
| coshk—1 1 K2 Q/coshk—1 1 1\
) K sinh Kk k2\ asiBhA Q k)

¢\ = siizi and 42 = s272 are the dimensionless electric conductances of the lower

and upper wall of the channel.
For the sake of completeness, the non-dimensional viscous stress is given by

Tv(v) = K ()L (32)

where
. a) = —6kcosh krj+ Rk exp(—krj). (33)

The coefficient G is given as G = —{it + i?Q)/sinh k.
The components of the dimensionless current density jx = Jxd/HOufia and
jz —Jzd/HOw<j can be obtained from Egs (3) and (27). It is easy to verify that

j =-ih" - tlv- 1(0)], (94)

where
j(n) =Mv) + 2z{r})
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is the complex current density and
fi'(rj) = TV+ Gsinh k) + Aexp(—kr]). (35)

Here N —h'(0) —R. This means that the electric current distribution in the fluid
differs from the velocity distribution only in an additive constant.

Fig. 8. Primary yield YX. LHS: ------------| M 2 = 10, - M 2 = 100; RHS: - E2 = 4,

From the practical point of view, some integral quantities such as yield or net
electric current have extreme importance. The dimensionless yield of the flow is
given by

d cosfih —1 ~
Y =YX+iYz= of)dj=-"wbIl (4+ RQT+ R(Q/K + (36)

the total electric current flowing through the fluid is simply related to h(0), h(2)
and Y, JH0):

L=+ liz= N1-() dP= [AQ) - A)] = ily - AO)] (37)
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3. Heat transfer

For the steady flow under consideration the internal energy balance has the

form
,dzZT \(dvx\*  fdVz\il 1r(dHx\2 (dHx\ 2

dy2 + M\ dy) Wy )
where T is the temperature, flis the thermal conductivity. The second and the third
term are the viscous and Joule dissipation, respectively. (38) holds both in the flow
and in the walls, but in the latter case the second term vanishes, of course. Let
the temperature of outer surfaces of the plates be a constant value TO. Introducing
the dimensionless temperature 0 = T/TO and the thermal diffusivity of the fluid
x = Xlpcp, where ¢ is the specific heat at constant pressure, Eq. (38) in the fluid
reduces to

(38)

Q" = F(r), Fuw =—PrEc(\vanz+ M21h'(r;)]2), (39)

where Pr = v/\ is the Prandtl number, Ec = i/2d2cpTO is the Eckert one. By
using the formulae h[ = h(0)/r]i and h2 = —i(l)/r/2, it is easy to show that within
the walls the following equations are valid:

PrEcM2
[ ] .

0Oi=Fu Pr=- 1(0)]2, (40)
Nnyioel
_ PrEcM2
02 = F3, F2=- oo D12 (41)

where 1\ = Ai/A and /2 = A2/A are the non-dimensional wall heat conductivities.

Since both the temperature and the heat flux is continuous across the fluid-wall

interfaces, the corresponding dimensionless boundary and matching conditions are
01(-]?1) = 1, 0i(0) = 0(0), 0i(0) = 0'(0)/Hi,

0201+ w2) =1, 02(1) = ©(l), 02(1) = 0'(1)/b.

Although the temperature distribution in the channel walls is a simple parab-
olic-function of 7/ the integration constants involve a complicated dependence on
the geometry and material parameters of the model. With the functions

F(V)= J[) FW)dj, F(4)= J]:) F@lI"dr)’ (42)
the solutions for the temperature can be written concisely. In the flow
0 = F(ij) + Cr, + C, (43)
within the walls
0i = FiT22 + Ci77+ Ci, 02 = FZIR2 + C»/ + Ci. (44)
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Fig. 9. Secondary yield Yz. LHS: ----------- M2 - 10, - M2 = 100; RHS:------------ E2 = 4,

After some manipulations one finds

= F~I/2 - FAH2- F{1) - F(I)m/h
1+ Tii/h +

c= i-Fml/2 + Cm/h,

Ci=C/h, C2=Cl12+F(I)/12-F 2,

Ci=c, C2=C-C2+C - F22+F().

The final step of the calculation is to give the functions F(rj), F (1) and F(rj) explic-

itly. Substituting Eqgs (33) and (35) into (39), after a lengthy but straightforward
algebra we get

F(r)) = PrEc (ai 4 a2cos2Brj + a3sinh2 ax) 4- a4sin 2Brj + ase-2“”"
+ abeg>cos 3rj + aye’ sin 3] + a3e~°"1cosRr) + age- “” sin [3rj)
(45)
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Fig. 10. Mean temperature 0 m for »1l = 12 = 0.25, i = pv(= ), ij —/2(= 1) and PrEc = 0.02.
LHS:mmmmmmmeen M2=10,/= 0.1;---- M2=100,1= 0.1;.ccccomrnnnn. M2=10,1 = 0.2; RHS:--------mmm-
E2=4,1=0.1;—-— E2=161=0.1; E2=4,1=0.2

with the coefficients

- M\INa+ G,)+ (M2- 7)(G>RT+ GiRi),

a2= (M2- T)[G, - 2(GrRr + GtRt)],

a3 = - (M2+ 7)GS,

44 — {M 2 - 7)(GrRt —GiRr),
a5= (M2+ 7)(GrRr + GiRi ~ R,),

ab= —M 2(GrNT + GiNi),

a7 = - M 2(NrGi- NiGr),
a8 = M 2[vr(Gr- 24T)+ Ni(Gi -
a9 = M 2[Ni{Gr - 2Rr) - wr(G, -

20)],
241,

where 7 = a2+ 12, moreover the indices r, t and s refer to the real, imaginary part
and square of absolute value of the actual quantity, respectively. Integrating F(r]),

it is an easy task to find the functions
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F(rj) =PrEc (& + 627+ &sinh 2orq+ bAsin 20rj + 6 cos 2r) + bée 2ar'

+ b7ea] cos Brj + bBeQtlsin Rr) + bl%e~ar] cos Br) + broe- "~ sin R
(46)

with the coefficients
6L = (aAR + a5a)/2 + [a(a8- a6) + B(a7+a9)]/7, b2= <4+ (a2- al)/2,

63 - a3/4a, 64= ar/4/0, 6= - ad/2/?, 66= -ab/l2a, 67= (aab- Ra7?)/j,
bg = (aa7+ Rab)/y, M= ~(aa8+ Ra9)ly, bw = (~aa9+Ra8)/7,
and

N(7) = PrEc (ci +c2T7+ ¢332+ cdcosh 2al7+ (Beos 20r) + cesin 2Brj + c7e~2a]
+ cBedl) cos Brj + ege"” sin Brj + cme- """ cos ) + cue- “” sin rj) (47

with the coefficients
ci = [MAR + (bg—b3)/a]/2 + [a(69 —67) + B(b8+ h9)]/j, c2=DbA c3=1h2/2,

c4 = b3/ 2a, c6=-bA2B,c6= /28, c7=-b6/2a, c8= (ab7- Rb8)/j,
c9 = (ab8+ Rb7)/y, cto = —(ab9+ Bbio)/7, cu = (-a&m + Bb9)/7.

The determination of temperature distribution is now complete.
There are some additional parameters which are expedient to be defined. The
dimensionless mean temperature 0 m can be calculated by using the definition

m = ?) d).
Qm = { €7 d)
Substitution of (43) and evaluation of the integral leads to the result

Om=C+ C/2+ PrEc "ci + c2/2 + c3/3 + c4sinh 2a/2a + c5sinh 2R/21

+ ¢6(1 - cos 2B)/28 + c7(l - e~2a)/2a +a(cro - c8)/7 + /2(cy + co)/7
-f (e"/7)[c8(a cos B + BsinB) + c9(a sin B —B cos B)]

+ (e_77)[cio("sin/T - acos/?) - cu(asin/?+ [?cos/?)]). (48)

The Nusselt number, which describes the heat transfer at the walls, is of engineering
interest. The definition of the Nusselt number is based on the mean temperature:

NU = 0'(0)/[0m - 0(0)], Nu2=0'(1)/[0m - 0(1)].
In view (43), we get

Nui = C/[0m- C], nuz2=W 1)+ C]/[Om- O(1)]. (49)
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Fig. 11. Qm —0(0) for rjx = — 0.25, ¢ — <fe(= @), il = h (—i) and PrEc —0.02. LHS:
----------- M2=10,1=01;-—-—-M2=100,1= 0.1; RHS:~————-E2= 4,1 =0.1;———E 2 = 16,
1=0.1

4. Structure of the flow

Our purpose is to give a qualitative discussion for the effects of the rotation,
magnetic field and wall properties. In the model we have altogether 11 dimensionless
parameters, therefore a complete presentation of all the interesting quantities would
enlarge the paper enormously. Consequently, we select some characteristic sets or
extreme values of parameters. Although our analytical results are valid for the
generalized HF (i.e. for the MHD Couette—Poiseuille flow), we analyse only the
case of n = 0. In this subcase the velocity and current distributions in the fluid are
symmetrical and (beside P, E and M) depend only on the sum of the wall electric
conductances <=M+"2- Of course, the magnetic field and the current within the
walls depend also on the individual values of ¢\ and €2. In this Section we consider
the flow structure of this submodel in three particular cases of interest.

Case 1. £2< land M2 <CLl In this simplest case, in order to save place,
the overall behaviour of fields is described without accompanying figures. If the
system rotates slowly, the electric conductivity of the fluid is low and the applied
magnetic field is weak, the magnitude of the secondary fields (SF) is much smaller
than the magnitude of the corresponding primary fields (PF). (PF is defined by the
dimensionless field components vx, hx and jz, SF is defined by vz, hz and jx.) The
effect of external magnetic field on all the field variables is negligible. The PF is
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Fig. 12. Nusselt number Nuy for rfy = rfe = 0.25, dy -- p?{— ), ly = h(= 1) and PrEc = 0.02.
[ M2=10,1= 0.1;-------- M 2= 100,/ = 0.1; RH S~ E2=14,1=0.1;
-------- E2=16,1 =0.1

not affected by the rotation, while the magnitude of the SF increases linearly with
E 2. This is quite natural: the SF is induced by the rotation.

The profiles of the primary and secondary velocity vx and vz are nearly
parabolic having maxima at the middle of the channel. According to (34), the
distribution of current density components jz and jx is also nearly parabolic. The
velocity components are not affected by the wall properties, while the induced mag-
netic field and current density components depend strongly on the wall parameters.
The magnitude of hx and hz grows as ¢ increases. When neither wall is a perfect
conductor, jz is (jx) negative (positive) near to the walls and positive (negative) in
the central region of the channel. jz and —jx increase as ¢ increases. This is not
surprising, because no accumulation of electric charge is possible in a steady flow,
so the current has to form a closed loop. At insulated walls (¢ —0) the current loop
has to form inside the fluid, when at least one of the walls is perfectly conducting
(db = 00), the backward current can entirely pass through the wall. In a realistic
case, when o > 0, a part of the backward current remains necessarily in the fluid.

Case 2 M2” l1land E2~ 0(1). It is seen from Figs 2-4 that when the
applied magnetic field is strong and the rotation is slow, the magnitude of the
SF is much less than the magnitude of the PF. Both the PF and the SF depend
remarkably on the magnetic parameter M 2and the wall parameter &y whereas the
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rotation has significant influence only on the SF. The magnitude of the SF shows
a nearly linear growth with E2. (We note that all the displayed figures have been
made on taking P = 10. Each curve is labelled with the value of &)

Figure 2 shows clearly the characteristic effect of large Hartmann numbers on
the velocity components. We observe that in any point both the primary and the
secondary velocity decrease with an increase in M 2. From Figs 3and 4 we see that
the magnitudes of the induced magnetic field and current density components are
also decreasing when M 2 increases. This is due to the overall retarding effect of
the electromagnetic body force fiJ x H. At high M 2 the velocity is nearly constant
in the core of the flow and a boundary layer structure appears along the walls.
Figures 3 and 4 show that the magnetic field and current density variations are also
mostly confined to the layers contacting with the walls. As a result the flow can be
divided into a boundary layer (BL) and a central core (CC) region. The BL may
be identified as a modified Hartmann layer.

It is salient in Fig. 2 that the velocity components decrease remarkably as &
increases. In the CC hx and jz are unaffected by dy while in the BL they increase
with do Although hz varies quasi linearly in the core, it depends on ¢ not only in
the BL but also in the CC. With increasing wall conductivities —x decreases in
the CC and increases in the BL. In other words, decreasing ¢ makes the current
induced in the core flowing back through the Hartmann layers and hence reduces
the electromagnetic drag on the flow.

Case 3. E2 land M2~ 0(1). The numerical results for this case are
presented in Figs 5-7. When the rotation is rapid and the magnetic field is not
strong, the magnitude of the SF is larger than that of PF. It is surprising that both
PF and SF weaken as the rotation accelerates. (We will explain this behaviour
later.) We observe that the external magnetic field has an appreciable influence
only on the PF.

Figure 5shows that for large values of rotation parameter the velocity profiles
are M-shaped having maxima near the walls. The slope of velocity profiles on the
edges is determined by the parameter E according with the fact that the second
derivatives of velocity in Eqs (14) and (15) are multiplied by /E2. This indicates
the formation of a viscous BL.

The BL may be identified as a modified Ekman layer. The effects of the
external magnetic field and the wall parameters on the velocity are negligible in
the Ekman layers. In the CC there is no velocity component parallel with the
pressure gradient (at least this component is very small), the transverse component
is uniform. Thus in this region the fluid moves in the direction normal to the
applied pressure gradient and the axis of rotation. (We note that in certain cases
there exists a weak reverse flow in the direction of the pressure gradient.) The
primary flow is more sensitive to the variation of magnetic field and wall properties
than the secondary one, namely, vx increases with M 2 and dy further the influence
of M 2 becomes stronger with growing ¢. Near the limit E2 —00 the flow pattern is
completely insensitive to the variation of magnetic field and wall properties because
the Coriolis force dominates everywhere except in the BL.

The most rapid changes in the distribution of magnetic field and current
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density are limited mostly to the BL contacting with the walls. In the CC region
the magnetic field varies almost linearly, the current density is almost uniform, it
can be noted that the influence of wall properties on these quantities is significant.
The magnitude of hx and hz, further jz and —x increase with an increase in
Figure 7 reveals that in certain cases a reverse current arises not only in the vicinity
of the walls but also in the core. As for the external magnetic field, it raises the
magnitude of hx and jz.

The above results indicate that a suitable rotation can change the effect of
the external magnetic field.

5. Behaviour of integral quantities

In this Section we examine the influence of various parameters on the yield,
total electric current flowing through the fluid, mean temperature and Nusselt
number.

Figure 8shows the primary yield Yx plotted against the rotation parameter E2
and the Hartmann number M, respectively. From this figure it can be read off that
accelerating rotation reduces the primary vyield, i.e., as we have remarked earlier,
the Coriolis force retards the primary flow. When the rotation is slow, M and ¢
diminish the value of Yx, which is in agreement with the fact that the magnetic field
usually exerts a retarding influence on the flow. However, for sufficiently large E2
the primary yield increases in the beginning, attains a maximum and then decreases
as M increases. Moreover, at low M the yield Yx increases with raising dy while for
higher M the effect is just the opposite.

From Fig. 9 we see that the secondary yield Yz first increases rapidly from the
value zero, reaches a maximum and then decreases gradually as the rotation becomes
stronger. The increasing magnetic field and wall conductances shift the maximum in
the direction of larger rotation parameters. Since the secondary flow is driven by the
rotation, at first sight this trend appears to be suprising. The explanation, however,
is simple. Equations (14) and (15) show that the z-component of the Coriolis force
(the driving force for the secondary flow) depends linearly on the primary velocity.
Since initially vx decreases slowly then rapidly with the rotation, the driving force
increases in the beginning and reduces afterwards as E 2 grows. When the rotation
is not too fast, Yz decreases with increasing M and d. Although the results are
not presented here, further computations show that when E2 is sufficiently large
and ¢pis very small, Yz at first increases slightly then decreases on intensifying the
magnetic field.

Also it may be noted from Figs 8 and 9 that the relative importance of the
secondary flow with respect to the primary one increases with strengthening rotation
and decreases with intensifying magnetic field.

Notwithstanding that the yield Y and the current | are connected via the
simple relation (37), the conclusions concerning the behaviour of yield cannot be
* directly extended for the current since the quantity h'(0) depends on all the
input parameters. However, when ¢o = 0, | = 1Y, which suggests that the overall
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behaviour of I and Y becomes similar at large values of o Needless to say, ¢exerts
completely different influences on these quantities.

To demonstrate the effect of various parameters on the thermal behaviour
of the fluid, the dimensionless mean temperature 0m is investigated (Fig. 10) as
a function of jER and M at symmetric material and geometrical properties of the
walls. It is clear that 0 m decreases with E2and /(= /1= /2). As for the Prandtl and
Eckert numbers, it follows from Egs (39)-(41) that the mean temperature increases
with increasing values of dimensionless group PrEc.

Comparing Fig. 10 with Fig. 8, it is salient that the dependence of 0 m and
Yx on the magnetic parameter is more or less similar. However, the maximum in
0m is not purely due to the enhanced viscous dissipation.

To explain this behaviour of 0 m, at first let us consider Fig. 11 where 0 m —
0(0) is plotted. We see that this quantity has also a maximum in the actual
parameter range, further here the temperature difference increases remarkably with
@ The underlying physical mechanism in this parameter range is that the Joule
dissipation attains a maximum, further for large ¢ the major part of the Joule
heating is confined to the middle of the channel. This explains also the nature of
the curves of 0 m. We remark that Javeri [7] has discussed in detail the role of the
different kinds of internal heat generation in the non-rotating HF.

Finally, to complete the survey on the heat transfer aspects of the problem,
the Nusselt number Nu\ is presented in Fig. 12 for symmetric walls. We observe
that Nui increases if the rotation parameter E2 grows. In view Fig. 11, this means
that the magnitude of heat flux decreases less quickly with E 2 than 0 m—0 (0) does.
It is interesting that for not too small values of dpthe Nusselt number decreases then
becomes a constant on increasing M gradually, while for very small ¢bit grows quasi
linearly with M.

6. Remarks

(i) The analytic solution of temperature field and related quantities are very
complicated, therefore it is advisable to check the validity of the final formulae.
We have solved the whole problem numerically, too, using an infinite order Runge-
Kutta method to find v(rj) and h'(r)). The F(rj), F(r)), #(7) and 0m quantities
have been evaluated by an eight order Lagrange-Hermite integrator. The results of
the two computations are in excellent agreement.

(i) In the case of n ¢ 0 the velocity and current density distributions also
depend on the individual values of ¢\ and ¢?, therefore the problem becomes more
complicated.

(iii) In an ionised gas where the density is low and/or the applied magnetic
field is strong, the effect of Hall current becomes significant, therefore we have
to use the generalized Ohm’s law instead of (6). This problem requires further
investigation.
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1. Introduction

A large amount of research has been done in the field of gas lasers since
the discovery of the first infrared He-Ne laser in 1961 [1]. This has led to the
development of a large class of gas lasers for practical uses. The well-known He-Ne,
He-Cd, Ar ion and CO2 lasers operate in the positive column part of the discharge.
The possibility of laser operation in the negative glow region has been the subject
of detailed research since 1970 when Schuebel published basic results on hollow
cathode discharge lasers [2,3]. In hollow cathode discharges the electron energy
distribution is favourable due to the large number of high energy electrons present.
This property offers a good possibility for excitation of high lying ionic levels, which
are necessary to obtain laser operation in the visible and ultraviolet range of the
spectrum. The hollow cathode discharge lasers operate at much higher pressures
than the conventional positive column lasers which gives a good base to obtain
single frequency operation [4].

Several types of hollow cathode lasers have been developed, which can be
classified most simply by the way the active material is produced:

- noble gas-metal vapour lasers where the metal vapour is produced by heating.
Typical representatives are the He-Cd [2], He-Zn [5], Ne-TI [6] lasers.

- noble gas-metal vapour lasers where the metal vapour is produced by cathode
sputtering. Typical lasers are He-Cu [7], Ne-Cu [8], He-Ag [9], He-Au [10],
Ne-Al [11].

- noble gas mixture lasers, here the active medium is a mixture of He-Kr [12],
He-Ar [13] and He-Ne-Xe [14].

In the case of metal vapour hollow cathode lasers a basic problem is the
production of a uniform metal vapour density at the temperature needed to obtain
the necessary vapour pressure. This basic problem of metal vapour lasers has not
yet been solved in a satisfactory manner up to now. The production of metal
vapour by cathode sputtering partly overcomes this problem. The metal vapour
density obtained in this way is always below the optimum value, however [15],
and it cannot be controlled independently from the discharge current. The cathode
sputtering technique is particularly useful to produce laser action with metals where
the necessary vapour pressure can be obtained only at high temperatures of 1100-
1400 °C (Cu, Ag, Au, Al).

Noble gas mixture hollow cathode lasers operate at several ionic lines, mainly
in the green-blue part of the spectrum. In these lasers the uniform density of
the active medium in principle is reached and the laser tube can be operated at
room temperatures. Both metal vapour lasers and noble gas mixture lasers have
advantages and drawbacks. These questions are shortly dealt with in Part 3 and
Part 4.

In this paper a review is given on noble gas mixture hollow cathode lasers,
which is based mainly on work performed at the Gas Laser Laboratory of the Re-
search Institute for Solid State Physics, Budapest. In Part 2 the basic properties
of hollow cathode discharges are considered, which is followed in Part 3 by the
discussion of construction problems related to the lasers. Laser transitions, excita-
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tion mechanisms, operation conditions and some questions connected to a practical
noble gas mixture laser are given in Part 4, in this Part explanations of some ex-
perimental observations are also presented. An important feature of the noble gas
mixture lasers is the single frequency operation observed in case of TEMoo mode
operation, phenomena and problems related to this are dealt with in Part 5.

2. Basic properties of hollow cathode discharges

Hollow cathode gas lasers operate in the cold cathode abnormal glow operation
regime of electrical discharges. In cold cathode glow discharges electron emission
from the cathode occurs due to the impact of positive ions, metastable atoms and ul-
traviolet photons onto the cathode surface. The electrons emitted from the cathode
participate in collision processes where a sufficient number of charged and excited
particles, as well as photons are created to maintain the discharge by liberating
electrons from the cathode [16,17]. In the abnormal glow operation mode the whole
cathode surface is covered by discharge and the discharge voltage increases with
increasing current. (In normal glow regime the current density is quite low and
constant, the discharge covers only a part of the cathode surface which increases
with current.)

2.1. The spatial distribution of the discharge

The typical appearance of a glow discharge is shown in Fig. 1 for an ordinary
plane cathode arrangement [16-18]. Only the cathode region of these discharges
(consisting essentially of the cathode dark space and the negative glow) is used
in hollow cathode lasers (see Fig. 2). In hollow cathode discharge geometries the
negative glow (NG) region of the discharge is partly surrounded by the cathode
surface, as it is shown schematically in Fig. 2. The cathode cavity is filled with
the cathode dark space and the negative glow. There exists an optimal pressure
where the self-maintenance mechanism of the discharge is the most efficient. This
optimum can be observed as a voltage minimum when the pressure is changed
at constant discharge current [17]. The radial intensity distribution of the emitted
light also shows a characteristic behaviour as the gas pressure is changed [28]. Under
optimal operating conditions the light intensity peaks in the central region of the
cavity. With increasing pressure a relatively dark hole is formed in the middle of the
discharge and at even higher pressure the negative glow tends to form a bright ring
along the cathode surface. This effect is illustrated in Fig. 3. The radial distribution
of the discharge is also influenced by the voltage and the current of the discharge.
At high pressures where the middle of the cathode cavity is dark, by sufficiently
increasing current it can be reached that the light intensity reaches its maximum
in the axis of the discharge.

The cathode dark space (CDS) of abnormal glow discharges is characterized
by large electric field (up to 103—104 Vcm-1 at the cathode surface which decreases
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Fig. 1. Spatial distribution of a glow discharge (only the most important parts of the discharge
are indicated)

cathode dark space

cathode anode cathode anode
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al
negative glow

plane cathode hollow cathode

Fig. 2. A typical plane cathode and hollow cathode arrangement

to about zero at the CDS-NG boundary) and by a large electric field gradient. The
typical voltage drop on the CDS is in the order of several hundred Volts. In the
negative glow, however, the electric field is small. This region can be considered as
created by the high energy electrons injected into it from the cathode dark space.
These electrons dissipate most of their energy in the negative glow.

Because of the high electric field gradient in the CDS the electric field changes
significantly along a mean free path of electrons. The motion of electrons therefore
lacks hydrodynamic equilibrium and cannot be described with mobility data [19,20].
The negative glow is also a “non-hydrodynamic” region because of the injected high
energy electrons.
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Fig. 3. Typical radial intensity of a spectral line in a cylindrical hollow cathode: (a) at “optimal”
pressure and (b) “high” pressure

2.2. The hollow cathode effect

Typical voltage-current characteristics of a plane and a hollow cathode (HC)
discharge are shown in Fig. 4. It can be seen in Fig. 4 that at a given discharge
voltage the current (or current density) of the hollow cathode discharge is usually

much greater. The increased current density of the HC can be explained in terms
of the hollow cathode effect.

Fig. 4. Typical voltage-current characteristics of a plane cathode and hollow cathode discharge
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The main reasons of the hollow cathode effect are summarized below [21].

- In plane cathode discharges the role of ultraviolet photons in the maintenance
of the discharge is relatively unimportant [22]. In hollow cathode geometry
photons and metastable atoms can reach the cathode with a higher probability
and release more electrons than in an ordinary discharge. In HC discharges
the importance of photoelectrons emitted by the cathode due to UV radiation
from the discharge has been experimentally demonstrated [23,24].

- There may exist so-called “pendelelectrons” which oscillate in the potential
well formed inside a hollow cathode and increase the ionisation and excitation
rate [25,26]. The existence of oscillating electrons was proved experimentally
[21] and is also supported by discharge modelling calculations [27].

- Non-linear processes (the rate of which depends non-linearly on the concen-
trations) may start to play an important role because of the increased con-
centration of excited and charged species in the negative glow.

- The fast electrons may also be focused by proper geometry.

2.3. The energy distribution of electrons

Hollow cathode discharges were found to be efficient sources for laser operation
(see e.g. [28,29]). The electrons which acquire high energy in the cathode dark space
and enter the negative glow can ionize the gas and excite high-lying electronic
levels of atoms and ions efficiently. Metastable densities higher than in positive
column discharges can be reached (a He 23S density of the order of 1013cm3 at
discharge current densities around 100 mA/cm2 [30]), which is important from the
point of view of noble gas mixture lasers. The energy distribution of electrons
entering the negative glow is therefore of practical importance. Because of the non-
hydrodynamic nature of the cathode region the calculation of the electron energy
distribution function (EEDF) is a laborious task. (The EEDF is usually obtained by
solution of the Boltzmann equation or by Monte Carlo simulation [20].) The EEDF
in the cathode region is very different from the EEDF in the positive column of glow
discharges where it can be well approximated by a Maxwellian distribution (typically
found in positive column discharge lasers e.g. He-Ne laser). Figure 5 shows the
EEDF at the CDS-NG boundary calculated for a plane cathode discharge in He
(at 300 volts discharge voltage and 5 mbar pressure) together with a Maxwellian
EEDF with electron temperature corresponding to kTe =5 eV. The large extent of
high energy electrons at the CDS-NG boundary can be clearly seen in Fig. 5.

Noble gas mixture lasers operate in a mixture of buffer gas(es) and a small
amount of “active” gas which — from the point of view of the discharge — can
be considered as an admixture. The small amounts of admixtures may have large
effects on the parameters of the discharge as it was realized many decades ago
[18,31]. The influence of admixtures on the operation of hollow cathode discharges
is expected — at least qualitatively — to be the same as in the plane cathode case.

It was found that the admixtures quench the high energy tail of the EEDF [32].
This effect 1 7 monstrated in Fig. 6, where the EEDF at the CDS-NG boundary
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Fig. 5. The electron energy distribution function (EEDF) at the CDS—NG boundary at 300 V
cathode fall (----------------- ) and a Maxwellian electron energy distribution of kTc = 5 eV (------- )

Fig. 6. The electron energy distribution function (EEDF) at the CDS—NG boundary at 300 V
cathode fall in a pure He discharge (----------------- ) and in a mixture of He+0.8 % Kr (-------- )

is plotted for a discharge in pure He and in the mixture of He and 0.8 % Kr. This
is believed to be one of the causes of the decrease of laser power above a certain
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pressure of the active gas. It was also found that the small admixtures play an
important role in the maintenance of the discharge.

2-4- The effect of cathode sputtering

In hollow cathode lasers there also occurs the phenomenon of cathode sput-
tering. This process gives a possibility to utilize room temperature metal vapour
laser operation. However, it is an undesired effect in noble gas mixture lasers. The
sputtered cathode material may quench the energy of electrons and has a negative
effect on laser performance. The cathode sputtering occurs due to the impact of
heavy positive ions on the cathode surface. The sputtering yield depends on the
type and energy of the ions [33]. The ion energy is influenced by the cathode fall
voltage and the free path of ions which impact into the cathode.

The motion of positive ions in the cathode dark space is limited by charge
transfer processes. Thus their free path depends on the charge transfer cross-
sections and the concentration of the gas. In noble gas mixture lasers the large
difference between the concentrations of the admixed gases may result in very dif-
ferent free paths for the different (buffer gas, active gas) ionic species. Consequently,
the energy distribution of buffer and active gas ions may also be very different at
the cathode surface. This is illustrated in Fig. 7, where the energy distribution of
He+ and Kr+ ions is plotted for a plane cathode discharge. The Figure shows that
krypton (being the active gas in a He-Kr+ laser) is essential for laser operation but
also causes undesired cathode sputtering.

Fig. 7. Energy distribution of He+ and Kr+ ions on the cathode surface (in He f 0.8 % Kr, cathode
fall voltage: 300 V)
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From the point of view of hollow cathode lasers both the voltage and the
current density of the discharge play an important role in laser performance. The
energy of electrons in the discharge is largely influenced by the cathode fall voltage.
Therefore it is of importance to design hollow cathode geometries which result in
higher operating voltage than the convential hollow cathode arrangements.

3. Construction principles of hollow cathode discharge tubes

There are several requirements to be satisfied by the design and construction
of a hollow cathode laser tube. The discharge should only fill out the hollow cathode
cavity, any other room occupied by the discharge decreases the excitation efficiency.
The homogeneous discharge along the optical axis is also very useful. Since the large
discharge plasma in one piece is a subject of instabilities and arcing, the plasma
(especially in long tubes) has to be divided into several independent parts. These
requirements are general for all of the different hollow cathode lasers. While at
the cathode sputtered type of lasers there is a need for a high density of sputtered
particles in the plasma, in the noble gas mixture lasers the density of sputtered
metal should be kept as low as possible in order to avoid the effect of the metal
vapour on the discharge. In the hollow cathode lasers the high energy of feist
electrons is essential, which can be increased by different methods which increase
the voltage of the discharge. The different excitation mechanisms, however, need
different optimum electron energies. In the noble gas mixture lasers, where the
excitation mechanism is energy transfer between metastable He atoms and noble
gas ions, the too high electron energies may be disadvantageous, since they may
decrease the metastable atom concentration. To satisfy all these requirements in
one discharge arrangement is fairly difficult. Research on these problems is being
carried out continuously. However, some guidelines and the review of some typical
already existing laser constructions may help in understanding a large variety of
discharge tubes, and could show some directions of the research in this field.

3.1. Stability of the discharge

The output power of the hollow cathode lasers often increases with increasing
the current in a large range. However, above a certain current the discharge becomes
unstable, contracts into a small volume and an arc discharge develops. This effect
not only stops the laser oscillation, but may also damage the discharge tube. In our
earlier investigations we have shown that, at a given construction, and gas quality
and pressure, this arcing occurs around a certain current limit, the arcing threshold
current. In a wide range this arcing does not depend on the current density on the
cathode surface. A smaller volume of plasma, with higher current density is more
stable against arcing [28]. Therefore in each construction it is advisable to avoid the
large uninterrupted negative glow. The occurrence of arcing is strongly influenced
in the case of an Al cathode by the oxide layer present on the surface [34].

Acta Physica Hungarica 73, 1993



320 M. JANOSSY et al

Fig. 8. Longitudinal discharge arrangement

3.2. Longitudinal and transversal discharge arrangements

The longitudinal discharge arrangements are usually the simplest ones, one
example is shown in Fig. 8. The cathode is a cylindrical tube, and anodes are placed
at the two ends of the cathode. The discharge is flowing along the tube from the
anode into the cathode hollow. Such arrangements have several advantages. One
is the simplicity of the tube. Simple discharge tubes can be built in this way and
it can easily be arranged that the discharge should not flow outside the cathode
cavity. One possibility for this is when the wall of the cathode tube is the wall of
the discharge tube as well. Using such a construction the cooling of the cathode
is easy, and the electrical connections need not to be introduced into the vacuum
part of the discharge. A serious drawback of such arrangements is, however, that
neither the current density, nor the electron energy distribution are constant along
the tube. To flow the discharge deeper into the tube a certain voltage is necessary.
This has to be compensated by the lower current density on the cathode surface.
The density of the low energy electrons is increasing as we approach the end of the
cathode, therefore no optimum conditions can be set along the cathode, and the
output power from unit length is less than in the transversal arrangements [35].
Therefore short cathode lengths are preferred, however, then we lose the simplicity
of the tube.

Fig. 9. “Flute type” discharge arrangement
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In principle a “flute type” discharge tube (see Fig. 9) behaves similarly to the
longitudinal arrangements [36]. Here a series of holes are drilled in the wall of the
cylindrical hollow cathode. The anodes are placed into or above these holes and
the discharge current flows through these holes between the anode and the cathode.
However, this arrangement utilizes a large plasma in one piece which can be a source
of different instabilities.

In the transversal arrangements the discharge is flowing across the tube and
the homogeneous conditions of the discharge can be easily assured, especially in
noble gas mixture discharges. In the following the main types of transversal ar-
rangements are discussed.

Fig. 10. Slotted hollow cathode arrangement

Slotted hollow cathode discharge tubes. The idea of the slotted hollow cathode [2] is
demonstrated in Fig. 10, the cathode is here a rod placed into the vacuum envelope.
A slot is cut along the cathode and the anode is placed opposite the slot. These
constructions are simple, however, a considerable part of the current may flow
outside the slot reducing the efficiency of such discharges, especially in the noble
gas mixture lasers. On the other hand, the large cathode-anode distance has the
advantage that the lifetime of the tube is long. The lifetime is usually limited by
the short-circuit between the anode and the cathode due to the deposited sputtered
cathode material.

Internal anode (low voltage) tubes. A more efficient use of the discharge current can
be done if the anode is a rod and is placed into the cathode, along the cavity [37].
The cross-section of such an arrangement is illustrated in Fig. 11. Preferably the
cavity has an elliptical cross-section and then the cross-section of the active volume
is matching the laser beam profile.

Acta Physica Hungarica 73, 1993



322 M. JANOSSY et al

anode 42

Fig. 11. Internai anode discharge tube arrangement with asingle anode rod

3.3. Variable voltage discharge tubes

The conventional hollow cathode tubes have a flat voltage-current character-
istic, the discharge voltage is about a few hundred volts. Modifying the discharge
geometry, the efficiency of the discharge can be decreased by increasing the loss of
the charges in the discharge. The increased voltage increases the density of the high
energy part of the electron energy distribution and a more efficient excitation can
be achieved. The threshold current of the lasers decreases while the efficiency and
the output power increases [14].

Fig. 12. Coil cathode discharge arrangement

One possibility to increase the voltage is to use a coil cathode introduced by
Sabotinov and Grozeva [38]. This arrangement is illustrated in Fig. 12. The anode
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is placed outside the cathode coil, and the discharge can flow into the middle of the
coil between the windings. The voltage of the discharge can be tuned by changing
the space between the windings. Part of the current can be lost by flowing between
the threads and on the outer part of the cathode. This arrangement does not focus
the fast electrons into the axis of the discharge. Therefore this discharge does not
perform as well (especially at low currents) as the internal anode variable voltage
discharges. On the other hand, the risk of short circuit is low as the anode can be
placed relatively far from the coil cathode.

anode holder cathode pyrex cathode

Fig. 13. Internal anode discharge arrangement with a series of anode rods

The voltage of the discharge can also be increased in different internal anode
arrangements. If we place anode rods near the cathode surface into a cylindrical
hollow cathode, as illustrated in Fig. 13, the voltage of the discharge can be set by
the distance between the anode rods and by changing the number of the rods. This
discharge has a large flexibility to increase different voltages. Low threshold current
and high efficiency is characteristic of such discharges [14]. Since in the excitation
mechanism of noble gas mixture lasers metastable He atoms are also involved a
moderate increase of voltage gives the best efficiency [37]. Still better efficiency
can be achieved in constructions where the anode rods are replaced by a thin wall
(preferably stainless steel) tube, where the slots can be cut into the wall of the anode
tube [39]. A cross-section of such a discharge is shown in Fig. 14. The sputtering of
the cathode is disadvantageous since it not only unfavourably changes the electron
energy distribution, but also limits the lifetime of the discharge tube due to the
short-circuit caused by the deposited metal. This type of discharge combined with
less sputtering cathode material (like graphite) may give the best performance to
the noble gas mixture lasers. It is also clear that if the cathode sputters less, then
more active gas (like Kr in He buffer) can be introduced into the discharge, which
may provide a better lifetime, when the lifetime is determined by the clean-up of
the active gas, and in high current discharges we may achieve better performances
as well. These problems are the subject of present research.
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1.6 mm

Fig. 14. Slotted internal anode discharge arrangement

4. Noble gas mixture lasers

4.1. History

The He-Kr ion laser operating cw in a hollow cathode discharge was discov-
ered on the base of investigations where the characteristics of pulsed positive column
537.8 nm He-Cd+ and 469.4 nm He-Kr+ lasers were carefully compared [40]. It
was found that the behaviour of the two pulsed laser systems is very similar. Since
the green He-Cd laser was known to operate cw in a hollow cathode discharge the
same was tried for He-Kr with the first experiment being immediately successful
resulting in cw operation at 469.4 nm [12]. Later on using a high voltage hollow
cathode tube cw laser operation was observed at other Kr Il transitions too [41].

He—Ar mixture was also considered to be a candidate for cw operation at
476.5 nm in a hollow cathode discharge [42] but at first experiments failed to reach
this. ROzsa obtained a gain factor [43] of 16 in a large cross-section (7 x 12 mm)
transverse hollow cathode discharge tube, but was unable to reach oscillation [44].
The first successful oscillation in He-Ar at the 476.5 nm Ar Il transition was ob-
tained in a longitudinal type hollow cathode discharge [13]. The output power was
found to be significantly lower than in He-Kr. Several new cw Ar Il transitions
were observed later in a high voltage hollow cathode tube [41].

The question of cw laser oscillation in a Ne-Xe mixture was puzzling first. The
Ne-Xe laser operating at the 531.4 nm line of Xe Il was observed to be stronger
compared to He-Kr in pulsed positive column discharges [45]. In the cw hollow
cathode discharge used for He-Kr [12] even the spontaneous 531.4 nm spectral line
could not be observed. In the longitudinal discharge, where cw He-Ar oscillation
was obtained, the 531.4 nm spontaneous line was clearly seen. No laser oscillation
was observed, however, and measurements of the spontaneous intensity revealed
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Table 1

Gas mixture W avelength (nm) Transition Threshold current (A)
He-Kr Kr 1l
16 mbar He A 651.0 G5 P st . apesals 21

B 512.6 654p 312 g5p403 2 4.4
0.1 mbar Kr B 469.4 6s4Ps/2 -V D 912 11

B 458.3 6S4P3i2 - . p,e5/0 4.2

B 438.7 654P5/2 - Lp.par 45

B 4318 654PSI2 .\ b o1 2

no maxima as a function of Ne and Xe pressure which phenomenon is usually
characteristic for laser action. In the end in a high voltage hollow cathode discharge
an accidental addition of He to Ne-Xe resulted in gain and then optimization of gets
fill led to laser oscillation at 531.4 nm [14].

4-2 Laser transitions
He-Kr

Laser transitions of Kr Il operating cw in hollow cathode discharges are sum-
marized in Table I. Gas mixture, wavelengths, transition assignments and threshold
currents are given in the Table. The data were obtained in a high voltage hollow
cathode laser [41]. The active length of the discharge tube was 160 cm, it consisted
of 16 segments each 10 cm long. The cathodes were made of pure Al, the inner
diameter was 7 mm, the diameter of the volume left free by the six internal anodes
was 3 mm. The reflection of laser mirrors used in this experiment was maximum
for the wavelengths in question (R > 99.5 %), their radius of curvature was 3 m.
Excitation of the discharge was by 12.5 Hz half wave rectified alternating current.
In the Table the notation “A” denotes a laser transition not observed earlier at all,
“B” denotes such ones which have been observed earlier only in pulsed positive col-
umn discharges [48]. It is noted that the transition at 431.8 nm was obtained first
independently from us by Stefanova [46]. The strongest transition is at 469.4 nm
with a threshold current of 1.1 A. Maximum output power obtained in this tube
using a 2 % transmission mirror was 100 mW at 11 A.

He-Ar

Laser transitions of Ar 11 operating cw in hollow cathode discharges are given
in Table Il. Similarly to Table | gas mixture, wavelengths, transition assignments
and threshold currents are contained in the Table. The data were obtained in the
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Table 11

Gas mixture W avelength (nm) Transition Threshold current (A)
He-Ar Ar Il
15 mbar He A 686.1 V P ?/2 —3d2P3/2 2.3
0.9 mbar Ar A 648.3 V s?/2 —3d2P3/2 2.5

C 476.5 V p°/2 —A4s2P 2.2

C 457.9 V s?/2 - 4s2P!/2 4.2

C 4545 4p2paj2 - 4s2P302 3.5
Ar Ar Il
1.1 mbar 476.5 6

same meaning as before, “C” denotes leiser transitions which were observed for the
first time in a hollow cathode discharge. The strongest transition is at 476.5 nm,
the threshold current being 2.2 A. The maximum output power observed using a
2 % transmission output mirror was 21 mA at 10 A discharge current.

He-Ne-Xe

Laser transitions of Xe Il operating cw in a hollow cathode discharge are
summarized in Table Ill. Gas mixture, wavelengths, transition assignments and
threshold currents are given in the Table. The data were obtained in a transverse
hollow cathode discharge tube [47]. The tube was a slotted hollow cathode type
with the bottom of the slot widened, the anode rod being placed into this part as it
is shown in Fig. 15. The dimensions of the slot were 2x5 mm. The active length
of the tube was 40 cm, it was built of 4 segments, each 10 cm long. Excitation
was by 50 Hz repetition rate long pulses having a duration up to 0.5 ms. This
type of excitation is considered to be cw since it is much longer than the time scale
of collision processes leading to population inversion. In the Table the notation
“B” denotes as previously laser transitions observed earlier only in pulsed positive
column discharges [48]. The two transitions given in the lower part of the Table
were observed cw first in a hollow cathode discharge by Solanki et al [49].

Bennett has made a critical evaluation of published laser transitions in that
respect whether laser oscillation was really observed at these or not [50]. On the
basis of data given by Solanki the 526.2 nm and 572.7 nm transitions are denoted
as questionable. Experiments performed in [47] have shown unambiguously that
there is laser oscillation at these transitions and the sufficient agreement of wave-
length measurements with those of Solanki supports the correctness ofthe transition
assignments of [49].

From Table 111 it can be seen that the optimum He and Ne pressures are
significantly different for the two groups of laser lines (531.4 nm, 486.3 nm and
526.2 nm, 572.7 nm, respectively). Figures 16 and 17 show the dependence of the
laser power on He and Ne pressure for the two groups of laser lines. The 531.4 nm
transition was the strongest, at optimum gas fill 5 mW peak power was obtained at
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Fig. 15. Slotted hollow cathode discharge tube used for He-Ne-Xe laser

Table 111
Gas mixture W avelength (nm) Transition Threshold current (A)
He-Ne-Xe Xe 11
36 mbar He B 531.4 7s*P5/2 - 6p4D?/2 4
5 mbar Ne B 486.3 7**pP*[2 . GP4P £/2 6.1
0.02 mbar Xe
60 mbar He 526.2 eprDjlj - 6s*d3/2 6.6
2.5 mbar Ne 572.7 6P'2D°/2 - 5d*F6/2 7.2
0.02 mbar Xe

11 A. Weak laser oscillation was observed at 531.4 nm in 9 mbar Ne and optimum
Xe, in He-Xe and He-Ar-Xe no laser action could be observed [14,47].

4-3. Excitation mechanisms

The excitation mechanisms for the laser systems are discussed in the follow-

ing. Basically in all three types they are the same, some differences in details are
discussed, however.

He-Kr laser

The high gas pressure (15-40 mbar) and the large mixture ratio (He/Kr~200/1)
observed in the hollow cathode laser indicates that the excitation of the upper laser
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Fig. 16. Dependence of laser intensity on He pressure in case of different Xe Il laser lines

Ne pressure (mbar)

Fig. 17. Dependence of laser intensity on Ne pressure in case of different Xe Il laser lines

level is similar to that in the pulsed positive column discharge [48] being a resonant
collision of the second kind between He 23S metastables and ground state Kr ions

He 23S + Kr+ —He + Kr+*. (@)
Several observations support this mechanism:
- in the hollow cathode discharge those laser transitions oscillate of which the

upper level energy is near to that of the He 23S state.

Acta Physica Hungarica 73, 1993



NOBLE GAS MIXTURE HOLLOW CATHODE LASERS 329

- there is no laser oscillation at the transitions originating from lower energy
levels, while there is laser oscillation at these transitions in pure Kr positive
column discharges where they are excited by direct electron collisions.

- according to measurements in a hollow cathode discharge the intensity of the
spontaneous 469.4 nm transition was found to be approximately 25 times
stronger in He-Kr than in pure Kr [51].

- exciting the discharge by several hundred ps duration pulses after the 3 ps fall
of the current pulse, the laser oscillates still for a time of the order of 20 ps
in the afterglow.

The second kind collision process (1) occurs in principle with a high probabil-
ity if the energy difference between the exciting He 23S level and the excited Kr ion
level is small being the order of a few times kT (k is the Boltzmann constant, T is
the gas temperature). In the case of (1) the energy difference is 0.35 eV, however,
the He 23S energy is 19.82 eV, while that of the Kr ion level is 19.47 eV. The cross-
section of the process according to [49] is large in spite of this, being in the order
of 10“ 14 cm2. The large energy difference is taken up by the colliding particles in
the form of kinetic energy. The large cross-section can be explained by the Wigner
spin conservation rule being fulfilled in (1) and this is more important than a near
energy coincidence [52].

The lower laser level is populated mainly by direct electron collisions

e-fKr e+ Kr+*+ e

The population of the lower level is usually not significant compared to that of the
upper level. The lower level population will become noticeable only within special
circumstances, which means excitation with square wave shaped high current pulses
at low He pressures [53]. In this case at the fast 3 ps decay of the current pulse a
peak appears in the laser pulse. This is explained by the fast depopulation of the
electron collisionally excited lower level.
In the excitation of ground state Kr ions two processes can take part:
- Penning ionization by metastable He atoms

He 23S + Kr —»He + Kr+ + e + AE\ )

- lonization by electron impact

e+ Kr—e+ Kr+ + e (3)

Calculations have been carried out to see what is the ratio of the excitation rate of
processes (3) and (2) [54]. This ratio (R) of the excitation rates of electron impact
ionization and Penning ionization has been determined in the case of a Maxwellian
electron energy distribution valid in the positive column and using the electron
energy distribution determined experimentally in the negative glow [55]. In the
case of a Maxwellian distribution R ~ 0.3, while in case of the non-Maxwellian
negative glow distribution R ~ 120 has been obtained. This result shows that in a

Acta Physica Hungarica 73, 1993



330 M. JANOSSY étal

hollow cathode discharge electron impact is the dominant process for the production
of Kr ions.

He-Ar laser

The high optimum gas pressure (15-40 mbar) and the large mixture ratio
(He/Ar~30/1) indicates similarly to the He-Kr laser that the upper level is excited
by the process

He 23S + Ar+ —+He + Ar+*.

This process is supported by results of investigations performed on a laser excited
by several hundred fis duration current pulses [53]. Here at the time of the fast
3 fis fall of the current pulse a peak appears in the laser pulse (Fig. 18). The laser
operates in the afterglow for approximately 15 fis. The peak is interpreted as being
caused by the increase of population inversion due to the difference in the slow decay
of upper level population excited by long life He 23S atoms and the fast decay of
the electron collisionally excited lower level.

Fig. 18. Laser pulse (B) and current pulse (A, negative signal) at the 476.5 nm Ar Il transition
of the He-Ar laser. Current pulse 2A/division, time scale 50 ps/division, Pje = 32 mbar,
Par = 0.6 mbar

In the He-Ar system the energy difference between the He 23S (19.82 eV)
and the upper laser level of the Ar ion (19.87 eV) is -0.05 eV. On the basis of this
small energy difference it would be expected that the exciting process has a large
cross-section. Investigations aiming on this show, however, that the cross-section
is around 0.5 x 10~16 cm2 [56], which is significantly smaller than in the case of
He-Kr. In the He 23S-Ar ion collisions by the excitation of the 4p2Pgy2Ar ion level
the Wigner spin conservation rule is not fulfilled. This shows again that for a large
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collision cross-section spin conservation is more important than a near coincidence
of energy. The smaller cross-section compared to He-Kr results that in He-Ar the
upper level population is also lower which gives a lower output power. The ground
state Ar ions are believed to be produced mainly in the same way as in He-Kr by
electron impact [54]:

e+ Ar->e+ Art + e

He-Ne-Xe laser

In the He-Ne-Xe laser the relatively high Ne pressure (2-8 mbar) and the
large Ne/Xe mixture ratio (Ne/Xe ~ 250/1) makes it probable that the upper level
is excited similarly as in pulsed positive column discharges [48] by collisions of the
second kind

Ne Iss + Xe+ -*Ne + Xe+*.

This is supported by the observation that no laser oscillation was observed in He-
Xe and He-Ar-Xe mixtures. The ground state Xe ions are produced mainly by
electron impact [54].

Two questions arise in connection with the He-Ne-Xe laser

- what is the role of He in producing laser oscillation;
- what is the reason of the different optimum He and Ne pressures for the two
groups of laser transitions.

He influences laser operation presumably in two ways. In a He-Ne mixture
due to the resonant collisions of the second kind between He metastables and Ne
atoms the density of Ne Iss metastables significantly increases. According to mea-
surements of Solanki [49] a four times increase occurs in the Ne 1s5 density compared
to that in pure Ne. Also it is important that in a given pressure He-Ne mixture
a higher voltage is necessary to maintain the gas discharge than in pure Ne. As a
consequence of the high voltage more high energy electrons are present in a He-Ne
discharge, which increases the density of Xe ions.

The difference in optimum He and Ne pressures indicates a different excitation
mechanism for the two groups of laser transitions. Measurements have shown that
Ne is definitely necessary for laser oscillation. It has been considered to be likely
that the two groups are excited by collisions of different Ne metastables (Is2 and
IS5) with ground state Xe ions [47].

\.Jf. Laser output power and gas discharge parameters

The connection between laser output power and gas discharge parameters is
quite complex. In the following some basic relations are dealt with. These are the
dependence of output power on the partial pressure of the buffer and active gas,
dependence of output power on discharge current, dependence of threshold current
on gas pressure and the connection between optimum gas pressure and discharge
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current. The relations are similar for all the three laser systems. Several investiga-
tions have been performed on the He-Kr laser [12, 37, 57, 58], results obtained at
the 469.4 nm transition are presented. The laser operation parameters are strongly
influenced by cathode geometry, so in each case the cathode arrangement used is
specified. Excitation of the discharge was in most cases by 12.5 Hz repetition rate
half wave rectified alternating current.

Fig. 19. Dependence of He-Kr laser power on Kr partial pressure

Figure 19 shows the dependence of laser power on Kr partial pressure obtained
in a longitudinal hollow cathode arrangement [57]. As can be seen from the Figure
laser power is very sensitive to the value of Kr partial pressure, the optimum being
0.1 mbar. Recent experiments in a graphite cathode high voltage discharge tube
have resulted in an optimum of 0.3 mbar and laser oscillation occurred still at
0.9 mbar Kr partial pressure [59]. This observation is attributed to the presence
of the high voltage, which allows a sufficient excitation of atomic species at such a
high density of the active medium.

The dependence of threshold current on He pressure is shown in Fig. 20. The
measurements were performed in a hollow cathode tube having three internal anodes
[37]. It can be seen from the Figure that the threshold current is minimum around
14 mbar He pressure, it slightly increases below this but increases significantly
at higher He pressures. The increase of the threshold current at low pressures
is attributed to the presence of metal atoms resulting from cathode sputtering.
The metal atoms due to their lower ionization potential reduce the density of high
energy electrons and also that of He 23S atoms by Penning ionization. The increase
of threshold current at high pressures is due to the change of the spatial distribution
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Fig. 20. Dependence of threshold current on He pressure for the 469.4 nm He-Kr laser

of the discharge [60]. At high pressures the discharge fills the whole cross-section of
the tube only at higher discharge currents.

The dependence of laser power on discharge current measured at different
He pressures is shown in Fig. 21. The results were obtained in the same internal
anode tube as mentioned previously [37]. As can be seen from the Figure at low
He pressures laser power saturates, while at higher pressures it strongly increases
with increasing discharge current. The saturation is attributed to the presence of
metal atoms resulting from cathode sputtering. As the He pressure is increased
cathode sputtering is reduced but due to the change of the spatial distribution of
the discharge the threshold current increases.

The optimum He and Kr partial pressures depend on the value of discharge
current. Results measured in a d.c. excited transverse discharge hollow cathode
laser [58] are presented in Fig. 22. As can be seen from the Figure increasing
the discharge current optimum partial pressure values increase also. This rela-
tion can be explained on the basis of the change of the spatial distribution of the
discharge [60].

The appearance of cathode sputtering and its influence on the 469.4 nm spon-
taneous line intensity is shown in Fig. 23. The measurement was made in a trans-
verse slotted hollow cathode discharge excited by 0.5 ms duration square wave
pulses [61]. As can be seen from the Figure the intensity of the 469.4 nm Kr Il line
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discharge current (A)

Fig. 21. Dependence of 469.4 nm He-Kr leiser power on discharge current
measured at different He pressures

tends to saturate in the current range where an abrupt increase of the intensity of
the 396.1 nm Al | line occurs, the latter showing the appearance of a significant
amount of Al vapour. It is emphasized that this occurs even at the high He pressure
of 80 mbar where the data shown in Fig. 23 were obtained.

The gain and saturation parameter of the 469.4 nm He-Kr laser transition
were measured as a function of discharge current in a six rod internal anode system
[37]. These data were obtained from measuring output power as a function of
loss produced by rotating a quartz window inside the laser resonator [72]. In this
measurement a big advantage of the He-Kr laser system was that due to the large
pressure broadening, the 469.4 nm transition has a homogeneous linewidth and
oscillates only in a single axial mode. For measurement of the saturation parameter
TEMoo mode operation was produced by inserting a diaphragm in the resonator.
Excitation of the laser tube was quasi-cw with 100 ps halfwidth current pulses.
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discharge current

Fig. 22. Dependence of optimum He and Kr partial pressures on discharge current for the 469.4 nm
He-Kr laser

Fig. 23. Dependence of the spontaneous intensity of the 396.1 nm Al | and the 469.4 nm Kr 11
lines on discharge current at 80 mbar He and 0.2 mbar Kr pressure

The result of measurements are shown in Fig. 24 and Fig. 25. It can be seen from
Fig. 24 that the saturation parameter increases with increasing discharge current
and reaches a value of 150 W/cm2at 16 A peak current. Fig. 25 shows gain as a
function of current, a value of 16%/m is measured at 16 A. Gain increases slower
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Fig. 24. Saturation parameter as a function of discharge current (He—Kr leiser, 469.4 ran)
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Fig. 25. Gain as a function of discharge current (He-Kr laser, 469.4 nm)

than linear with increasing discharge current, while the increase of output power is
linear. Considering that output power is qualitatively proportional to the product
of gain and saturation parameter, since the latter increases also slower than linear,
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the product of them gives approximately a linear dependence.

4-5. Lasers for practical use

The cw noble gas mixture hollow cathode lasers have a perspective for practi-
cal applications. For this, however, a stable, long life laser is needed. Experiments
have been carried out on the He-Kr laser to see possibilities and problems of con-
structions aimed on practical uses. A d.c. excited water cooled transverse discharge
hollow cathode He-Kr laser was operated at 469.4 nm and 431.8 nm [58]. The active
length of the laser was 40 cm. An output power of 5mW could be obtained at the
blue line and 0.4 mW at the violet line operating the discharge at 4 A current. The
lifetime of the laser proved to be ~ 100 hours, failure of the discharge tube being a
short-circuit between the cathode and anode caused by the deposited metal arising
from cathode sputtering [29,62].

Investigations have been made on a similar construction laser placed into a
pyrex envelope and excited by 50 Hz repetition rate 0.4 ms duration current pulses
[63]. Cataphoresis of Kr was found to affect seriously the pulse shape. A He-Kr
mixture resulting in a near square wave laser output pulse was chosen for long time
operation measurements. The pulse peak power was 20 mW, the average power
0.4 mW, respectively. The lifetime of the laser was 440 hours, tube failure being
due to gas clean-up caused by cathode sputtering. As a practical application this
laser was used in a single frequency operation mode to determine the resolving
power and transmission function of a grating spectrograph [64].

The problem of a long life hollow cathode laser is not at all simple [29]. The
efficiency of metal vapour lasers is higher than that of the noble gas mixture lasers,
mainly due to the difference in excitation mechanisms. The metal vapour lasers
are excited via a single step process [65], while the noble gas mixture lasers have
a two step excitation mechanism. A disadvantage of metal vapours is the need
of a high temperature to produce the metal vapour and it is difficult to reach a
uniform vapour distribution. Noble gas mixture lasers can be operated at room
temperatures, the active gas distribution is homogeneous. However, the amount of
the active gas is limited and the laser is very sensitive to impurities. A practically
unlimited amount of metal vapour can be produced by heating solid metal pieces
and metal vapour lasers are much less sensitive to impurities due to these being
absorbed in the deposited metal layers. The noble gas in metal vapour lasers is
also absorbed here, however, which reduces the gas pressure. In cathode sputtering
operated lasers gas clean-up and short-circuit between the electrodes, both caused
by the sputtered metal are the main problems for a long life laser.

Our opinion is that both metal vapour and noble gas mixture systems are
suitable for long life lasers intended for practical uses. However, in both cases a
large amount of research and development work is still needed to reach this goal.
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5. Single frequency operation
5.1. Basic considerations

It is well known that cw visible gas lasers operate usually in several axial
modes simultaneously, the frequency difference of which being determined by the
resonator length L (AVmode = ¢/2L), and the number of oscillating modes by the
Doppler width of the gain curve, which amounts typically to 1-4 GHz. Doppler
broadening is called inhomogeneous, because atoms with different velocities can
interact with light waves of different frequencies. In a gas laser, however, the energy
of radiation in one particular oscillating mode with a given frequency comes from
a larger group of atoms having slightly different velocities, because their resonant
frequencies are broadened due to the finite lifetimes of the participating energy
levels. This broadening which is characterized by the radiative (natural) linewidth
Av, is called homogeneous. The homogeneous linewidth can be affected by other
effects, e.g. by collisions with other atoms. This effect may be important at higher
pressures. In most cases, for cw visible gas lasers, Av, <€ Avp and also Av, <
AVpmode, Tesulting in multimode operation.

In many applications, however, single frequency operation is of great impor-
tance. For the selection of a single mode, there are several well-known methods
from which the most common are the application of a short resonator length or
the insertion of a frequency selective optical element like a Fabry—Perot etalon into
the resonator. In the first case, however, the power available will be low, while
in the second one there are extra costs and a significant part of the multimode
power is lost.

A very attractive way to achieve single mode operation is the homogenisation
of the gain curve by increasing the filling gas pressure. If the collision broadened
natural linewidth Av, is significantly larger than Avmoge and if it becomes com-
parable to Avp, then the mode with the highest gain will saturate the whole gain
curve preventing the oscillation of all other modes. The main problem is here,
however, that for most visible cw gas lasers, excited in the positive column of a
discharge, the optimum gas pressure is much lower than that is needed for gain sat-
uration, and therefore at the applied high pressure the output power again becomes
too low.

This effect can be easily demonstrated with the red 632.8 nm He-Ne laser.
A small standard He-Ne laser (L ~ 40 cm, p ~ 4.5 mbar, output power ~ 5 mW)
oscillates commonly in three axial modes (Avmoqe &~ 400 MHz). Increasing the
pressure to 9 mbar only one mode will oscillate, but the power drops below 2 mW.

5.2. Single mode hollow cathode lasers
The situation is much better in the case of hollow cathode excitation, because
optimum gas pressures here proved to be significantly higher than those in positive

column discharges. Therefore single frequency operation can be achieved at the
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optimum laser conditions, even with large resonator lengths and without any optical
mode selection technique. (The only problem, which can arise here is the transversal
mode selection; the TEMoo mode can be selected either by applying an appropriate
narrow bore cathode geometry or by inserting an additional diaphragm into the
light path.)

The advantage of hollow cathode excitation in achieving single frequency op-
eration without power loss was demonstrated for hollow cathode red He-Ne lasers
by Cartaleva et al [66]. Pure single mode operation was achieved at pHe = 9 mbar,
just at the optimum He pressure for the given cathode geometry.

As another example, the blue hollow cathode He-Kr laser can be mentioned.
It was shown that this laser oscillated — above 20 mbar — always in a single
axial mode [58]. With a tube of 40 cm active length at optimum conditions
(PHe ~ 40 mbar, I = 45 A) 12 mW single frequency output could be achieved
[67]. The linewidth was less than 10 MHz during the 10 ms measuring time. By
changing the resonator length (L = 1m) the single mode frequency could be tuned
in a frequency range of 450 MHz which is three times larger than the axial mode
separation (Almodé ~ 144 MHz). During the tuning, the laser power remained
practically constant showing that the condition Auc  Ai'mode is fulfilled indeed
[67]. Similarly, single mode operation was also demonstrated in the hollow cathode
He-Ar+ J1= 476.5 nm laser [53].

5.3. Linewidth studies

To obtain a more clear picture on the processes involved and to obtain data on
Ai/Cand Al'd, linewidth measurements have been carried out [68,69] at several Kr+
and Ar+ lines, excited in a hollow cathode discharge using Fabry-Perot technique.
The spontaneous lineshapes were measured under conditions similar to those used
in cw hollow cathode lasers. From the experimental data first the collisional and
Doppler linewidths (Ai/e and Ai/p) were determined by deconvolution, and then
from these linewidths collision broadening constants (a) and Doppler temperatures
(TD) were calculated.

Some of the results for two laser lines (Kr+ 469.4 nm and Ar+ 476.5 nm)
and for two non-laser lines (Kr+ 473.9 nm and Ar+ 480.6 nm) are presented in
Table IV. Zero pressure linewidth data (Ai'o) are taken from the literature and
partly are calculated from level lifetimes. It has to be noted here that the upper
levels of the two non-laser lines are supposed to be excited by electron impact, while
the laser lines are excited mainly by second kind collisions of 23S He atoms with
ground state ions.

From the results presented in Table 1V, the following conclusions can be
drawn:

1 In hollow cathode lasers, both laser transitions have large homogeneous
linewidths compared to the typical axial mode separations and they are comparable
to the Doppler linewidths. They differ, however, in their origin significantly. For
Kr+ 469.4 nm there is a small natural linewidth and a large pressure broadening
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Table IV
Ion Krt Art
A (nm) 469.4 473.9 476.5 480.6
Avg (MHZ) 4313 200450 500450 2346
Ave (MHz) 560 500 620 170
Avp (MHz) 1330 1160 1990 1980
a (MHz/mbar) 23 12 5 6
Tp (K) 710 545 780 785

Errors: Av. and Avp : £50 MHz;
a:+1 MHz (Krt), £3 MHz (Art)

constant, while for Art 476.5 nm the situation is opposite: natural linewidth is
larger, and pressure broadening is small.

2. The Doppler temperatures differ significantly for the two Kr* lines. This
difference can be explained by the specific excitation mechanisms of the lines. Ac-
cording to (1) at the second kind collision excitation of the upper level of the Kr*
469.4 nm transition there is an excess energy (AF = 0.35 eV), which has to be
taken away by the colliding partners as kinetic energy. A simple calculation shows
that this energy can cause a temperature rise of about 200 K for this group of Kr
ions. The observed 160 K difference between the two Tp values is not far from this
value. On the other side, at the excitation of the upper level of the Krt 473.9 nm
transition by electron impact no temperature change is expected. Thus the observed
higher Doppler temperature for the Kr* 469.4 nm line gives a further support to
the validity of the excitation mechanism for this laser transition. Furthermore, tlie
Doppler temperature of the Krt 473.9 nm line can be accepted as the average gas
temperature. This assumption is supported by the fact that 7p deduced from the
deconvolution of the He 501.6 nm line gave nearly the same value [Tp (He 501.6 nm)
= (563 £ 50) K] [69].

3. The Tp values of the two argon lines are practically equal. According to
the excitation mechanisms just this result was expected because at the excitation of
the upper level of the Art 476.5 nm laser transition by second kind collisions with
23S He atoms a nearly exact energy resonance exists, AE = —0.05 eV, therefore no
temperature change should occur due to the collision process.

4. The Tp values of both Art lines are 260 K higher than the average gas
temperature, as accepted before (Section 2). The origin of this excess Ar ion tem-
perature is not clear. One possible explanation might be that in the production of
ground state Ar ions not only high energy electrons, but also excited Hes molecules
take part. Namely it was shown that non-resonant charge transfer collisions between
ground state Ar atoms and excited He} molecules, which are present in a large con-
centration in the high pressure hollow cathode discharge, have a large cross-section
[70]. At this type of collision about 2.5-4.5 eV kinetic energy is taken away by the
colliding partners [71], which could be responsible for the observed temperature rise
of the Ar ions. Further studies are needed to support this assumption.
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6. Summary

In this paper the properties of noble gas mixture hollow cathode lasers have

been dealt with. The basic properties of hollow cathode discharges and construction

pr

inciples for discharge tubes have been discussed. Laser transitions, excitation

mechanisms, relations between laser output power and discharge parameters were
described in detail. Some experiments aiming on the development of a practical
He-Kr laser and the question of single mode operation have been also discussed.
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BOOK REVIEW

Nonlinear Superconductive Electronics and Josephson Devices
G. Costabile, S. Pagano, N. F. Pedersen and M. Russo (eds) Plenum Press, New York, 1991

The basic phenomenon of the Josephson’s effectis represented by the tunneling of electronic
pairs between two superconductors through a non-superconducting layer. On the one hand, this
phenomenon has an extraordinary importance from the point of view of fundamental research and,
on the other hand, it is very important from the point of view of the technical application and
measuring technique. Both of these arguments were significantly increased after the appearance
of high-temperature superconductors.

The book reviewed here is devoted to the main problems of the superconducting electronics
based mostly on the Josephson effect. It consists of the lectures presented in the workshop held
in Capri, September 3-7, 1990, under the auspices of the NATO and the CNR.

A very fast development in the field of superconducting electronics can be observed and
even anumber of commercial devices start to use superconducting components both in analog and
digital circuits. The papers of this book cover many recent achievements concerning the theory
and practice of Josephson’s effect based fine, quick and low-power electronics.

Among them the impressive Japanese results in developing very fast superconducting cir-
cuitry (32 000 junction 4 bit Josephson’s processor and progress on Josephson’s computer) are
reported in the article of S. Takada.

As the examples of analog application a new Josephson’s voltage standard (a 14 000 junc-
tion 10 Volt chip) was presented by J. Niemeyer et al, while D. Andreone et al reported the
biharmonic junction’s drive and H. G. Meyer et al the external synchronization in Josephson’s
arrays, respectively. R. Blundell et al and D. Winkler et al were dealing with the great devel-
opment of superconducting mixers based on superconductor-insulatoi®superconductor junctions,
which are unique for highly sensitive millimeter-wave receivers having noise levels down to the
quantum limit. The up-to-date problems of SQuID-s of extreme sensitivity and high-Tc SQuID-
s in measuring technique were discussed in the papers of M. B. Ketchen, V. Fogliatti et al and
G. J. Cui et al. Questions of the operation of superconducting electronics are covered in the papers
of A. Barone et al (nuclear particle detection), J. B. Green (fast analog signal processing), Y. Zang
(flux flow type Josephson’s oscillator) and A. Andreone et al (thin film superconducting cavities).

Numerous papers of the book deal with different results of fundamental research of this
field, e.g. noise in Josephson’s junctions (J. B. Hansen), switching dynamics in the presence of
quantum fluctuations (P. Silvestrini), ultra-small junctions (T. Claeson et al and S. A. Hattel et
al) and quantum simulation of Josephson’sjunctions (A. Davidson et al).

A great part of articles in this book was devoted to the study of non-linear effects in
Josephson’s junctions. Among others, the interaction between solitons and electromagnetic field
(G. Filatrella et al), microwave boundary coupling (M. Salerno et al), strongly coupled junc-
tions in microstrip resonators (H. D. Jensen et al), Josephson’s transmission lines coupling
(M. Cirillo), phase locking in series arrays (W. Krech and H. G. Meyer), solitons in inhomo-
geneous long junctions (A. V. Ustionov), fluxon dynamics (T. Skiniotis et al), imaging of spa-
tial structures (T. Doderer), critical current in long junctions (S. Pagano et al), magnetic tuning
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(T. Holst and J. B. Hansen), turbulence and chaos in Josephson’sjunctions (L. E. Querrero and
M. Octavio) and new solutions of sine-Gordon system were analyzed.

As far as the basic questions of high-Tcsuperconductors are concerned, some structural and
intrinsic aspects of this subject have been investigated in this book, namely the vortex propagation
in granular thin films (G. A. Ovsyannikov et id) and the non-linear properties of BCS gap equation
and bifurcations (M. P. Soerensen).

Summarizing very briefly the subject presented indicates the statement that superconduct-
ing electronics has reached the level above the fundamental research to prepare the way for useful
applications.

I. Kirachner
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