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80th birthday of Professor Imre Tarjan

Professor imre Tarjan, Member of the Hungarian Academy of Sciences and
former president of the Department for Mathematical and Physical Sciences, cele-
brated his 80th birthday on 26th of July, 1992.

Imre Tarjan demonstrated his talent already as a secondary school student,
winning the all-Hungarian competition in physics in 1930. An interesting fact:
the winner of a similar competition several years before was Edward Teller, the
Hungarian-born American physicist. At the University Imre Tarjan was a member
of the E6tvds College, an outstanding institution of the pre- and postwar period.
Having graduated he began his scientific career working with the famous Hungarian
physicist, Professor Zoltdn Gyulai in Debrecen. This auspicious beginning was

interrupted practically for ten years by World War 11 and the difficulties of the
postwar reconstruction.
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Professor Tarjan is a scientist who has achieved outstanding results in two
apparently largely different fields; moreover, in both fields he founded scientific
schools. One of his fields is solid state physics, or more precisely, crystal physics,
the other is molecular biophysics. Professor Tarjan was among the first to recognize
and to carry out pioneering work in order to develop the idea that in solids (as
well as in biological macromolecular systems) a basic understanding of the physical
properties (biological functions) can be achieved only by a thorough knowledge of
the atomic and molecular order and of the structural defects acting against this
order.

While still a student of Zoltan Gyulai, in the thirties he began to investigate
structural defects generated by ionizing radiation, especially by X-rays, in alkali
halide crystals. Developing these studies he made conclusions concerning the mech-
anism of generation and the structure of crystal defects, their interaction with other
lattice defects (dislocations, impurities), and he pointed out the role of the defect
in some macroscopic properties. With his co-workers he was successful producing
extremely pure alkali halide crystals; this success became the starting point for
obtaining further interesting results both in Hungary and abroad.

One of his outstanding results was realized in the early fifties, when, together
with Zoltan Gyulai, he was among the first in the world to grow artificial quartz crys-
tals. At about the same time he and his co-workers produced Nal(Tl), anthracene,
naphthalene, and other single crystals for the detection of nuclear radiation.

In the mid-sixties he extended methods and approaches usually applied in
solid state physics to the investigation of biological macromolecular systems, e.g.
he was one of the first to use stochastic models to characterize processes of photo-
damage in the nucleoproteins of bacteriophages and also to describe the interaction
of ions or antibiotics with the membranes of bacteria. One of the conclusions of
this work was that the protection against photodimerization of a nucleic acid hav-
ing a double-helix structure is linked with the twisted arrangement of its structural
elements.

Professor Tarjan always considered the application of results obtained in basic
research for solving practical problems as an important aspect of his work. He is
one of the protagonists, on an international scale, to advocate application-oriented
crystal growth. He contributed towards the foundation of nuclear medicine in Hun-
gary and has been responsible for many of its developments. Some prime examples
of this activity are the transfer to industry of the technology developed together
with his co-workers for producing Nal(TI) single crystals for gamma-ray detection,
and the elaboration of models for a number of instruments in nuclear medicine. A
result of particular importance obtained in the seventies by him and this team in
applied biotechnology is the elaboration of a process for the last quantitative char-
acterization of the phage-host bacteria interaction parameters and the development
of an automatic equipment for measuring these quantities. This method, i.e. UV
chemical dosimetry is applicable in environmental protection, in the pharmaceutics
industry, food industry and in agriculture.

Scientific workers and physicians have a good reason to be grateful to Professor
Tarjan for his outstanding role in their education. He founded one of the bases of
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crystal physics in Hungary, the Research Laboratory for Crystal Physics of the
Hungarian Academy of Sciences. The leading scientific staff of this Laboratory
acknowledges him as one of their former teachers. In the field of biophysics he
had a pioneering role in the organization of interdisciplinary teams and in finding
and shaping the ways and the attitudes in the collaboration of variously trained
research workers. He was responsible for the founding of the Research Laboratory
for Biophysics of the Hungarian Academy of Sciences where the leading scientists
— experts in biology, physics and chemistry — were also his students. In the
field of medical education he participated not only in the training of generations
of physicians by inspiring an exact scientific way of thinking but also developed
an internationally accepted system and textbook for the biophysical education of
medical students.

Professor Tarjan, in spite of his 80 years, is as active as few of the young in
many areas including biophysical education, research of biological macromolecules
and scientific public life.

His colleagues and students, Hungarian physicists and biophysicists, together
with the Hungarian scientific and medical communities wish him good health and
creative activity in the years to come.

Jozsef Janszky Gyorgyi Rontd
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EFFECT OF TEMPERATURE ON THE GRAIN BOUNDARY
MOVEMENTS DURING CREEP IN COPPER AND A
COPPER-ZINC ALLOY

M. B. Zikry and K. H. Georgy?™*

College for Girls, Ain-Shams University
Cairo, Egypt
*Solid State Physics Department, National Research Center
Dokki, Cairo, Egypt

(Received 8 January 1991)

Previous work by the present authors [1] showed that the presence of second phase
particles of zinc at the boundaries of copper grains blocked the absorption of lattice dislo-
cations by these boundaries during sliding at steady state creep. This was detected from
measuring the sensitivity parameter of the steady state creep rate to the applied stress at
wide range, either for pure copper or for copper 28 wt% zinc solid solution. In this work we
consider the effect of temperature and accordingly the redistribution and diffusion of these
zinc atoms at the copper grain boundaries on this blocking phenomenon. It was found that
changing the temperature from 200 eC to 400 eC did not alter the suppression of grain
boundary movements and, accordingly, their cooperation to creep deformation was also
suppressed.

Recently, the present authors [1] have observed that the presence of second
phase particles of zinc at the boundaries of copper grains blocked the absorption
of lattice dislocations by these boundaries during sliding at steady state creep, at
the temperature of 200 °C. The changes of structure and the sliding of these grain
boundaries during creep were found to be suppressed. In this work, we are interested
in considering this observation at some other relatively high temperatures, namely
300 and 400 °C. The convenient method we used to detect this blocking effect at the
boundaries is to measure the sensitivity parameter of the steady state creep rate to
the applied stress at wide range, either for pure copper or for copper 28 wt% zinc
solid solution.

The influence of solute atoms in alloys and solid solutions on the mobility of
dislocations during sliding at high temperature creep were extensively studied and
discussed previously [2-4]. The mechanisms controlling the creep rate of these ma-
terials were mainly considered to be based on dislocation dynamics. Unfortunately,
little knowledge about grain boundary movements or changes of structure during
creep processes were mentioned. In this work, direct experimental evidence based
on measurements of the creep rate sensitivities is given to relate the interaction be-
tween the moving dislocations, the moving boundaries and the solute atoms. The
role of temperature which can change the amount of solute atoms to segregate along
the boundaries by diffusion was found to be of interest to be examined.
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8 M. B. ZIKRY and K. H. GEORGY

Fig. 1. Typical examples of creep curves tested at 300 °C:
a) for pure copper; b) for Cu 28 wt% Zn solid solution
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EFFECT OF TEMPERATURE ON THE GRAIN BOUNDARY MOVEMENTS 9

Samples of copper of purity 99.99 % and of alloys of homogenized composition
of copper 28 wt% zinc, were used in the form of wires of circular cross section of a
diameter of 1 mm. These samples were prepared carefully for creep tests and were
first annealed under vacuum for 2 h at 723 K to eliminate the effect of pre-cold
work. Creep tests were then carried out on both types of samples at the different
temperatures, using a carefully adopted conventional type creep machine.

Figures la-b present typical sets of creep curves. These sets of curves are for:

a) pure copper tested at 300 °C and stress ranging from 87 to 175 MPa.

b) Cu 28 wt% Zn solid solution tested at 300 °C and applied stress ranging
from 137 to 300 MPa.

All the stages of creep can be distinguished between these two sets of curves
(a-b) and, accordingly, the hardening and strengthening between pure copper and
the Cu-Zn solid solution at the comparable conditions of examination.

Figure 2 presents the relation between the logarithm of applied stress a and
the logarithm of steady state creep rate €, , and allows us to determine the sensitivity
parameter

at the different testing temperatures of 200, 300 and 400 °C, for

a) pure copper and

b) Cu 28 wt% Zn solid solution.

From the Figure it can be noticed that:

a) for pure copper the slope m' at any temperature is increasing with increas-
ing stress and the change of temperature from 200 to 400 °C did not change this
behaviour of m".

b) for the solid solution the slope m' at any temperature is constant indepen-
dent of stress, and the change of temperature from 200 to 400 °C has an effect on
the values of m' considered to be negligible.

Figure 3illustrates the change of m" with the applied stress a. It represents an
important relation concerning the sensitivity parameter of the creep rate. Figure 3a
is for pure copper. It shows that m" increases regularly with stress at lower levels
to reach about 5at 100 MPa. It then begins to increase in an accelerating manner
at higher stress levels to reach several orders of magnitude of about 30 at 170 MPa.
This type of changes between the sensitivity parameter m' and the applied stress
a can be observed for all the testing temperatures and, generally, independent of
temperature for pure copper.

In case of the Cu-Zn solid solution (Fig. 3b) quite different shape and mag-
nitude of changes of m' with applied stress a can be observed:

i) At any temperature in the range (200-400 °C), it is not possible to observe
any change in the value of m' with the applied stress (m' = constant independent
of stress).

i) The maximum change in the values of m' with temperature in the range
from 200 to 400 °C is between 4 and 7. It is not possible to estimate the exact
reason illustrating this change of m" with temperature, which is considered neg-
ligible. The structural changes due to the absorption of slipping dislocations by
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10 M. B. ZIKRY and K. H. GEORGY

applied stress <r(MRa)

Fig. 2. Bilogarithmic relations between the steady state creep rate is and the applied stress <
a) for pure copper; b) for Cu 28 wt% Zn solid solution

grain boundaries during creep have previously been discussed [5, 6]. It was sug-
gested that, as these moving dislocations are absorbed by grain boundaries, they
dissociate into the boundaries structural dislocations and move along to cause grain
boundary movements or slidings [7, 8]. Many factors affect this interaction between
slipping dislocations and grain boundaries, and consequently affect the extent of
boundaries cooperation in the creep process. One important factor of these that
affects the rate of absorption of dislocations by grain boundaries is considered to
depend on the lattice diffusion at the boundaries [9]. One important part of this
diffusion at the boundaries involves the diffusion of the precipitated (or networks
of) solute atoms at these boundaries.

Acta Physica Hungarica 72, 1992



EFFECT OF TEMPERATURE ON THE GRAIN BOUNDARY MOVEMENTS 11

AO 00 120 160 200 2A0 280 320 360 AO00
applied stress cr-(MPa) ---------- >

Fig. 3. Dependence of the sensitivity parameter m' on the applied stress <r: a) for pure copper;
b) for Cu 28 wt% Zn solid solution

For this reason it is generally believed that in the range of temperature where
the bulk diffusion is fast enough to transport a reasonable amount of solute atoms
the segregation of these atoms along the boundaries can be enhanced [10]. Howev-
er, although the beneficial effects of these segregated solute atoms have been well
recognized since the early 1960% [11], the mechanisms through which these atoms
or precipitates operate have not been completely defined, and little is known about
their segregation or grain boundary precipitations and their combined effects on
creep properties [10].

In a previous work on creep properties of an aluminium-copper solid solution
[12] it was found that either the segregation or precipitations of copper atoms at

Acta Physica Hungarica 72, 1992



12 M. B. ZIKRY and K. H. GEORGY

grain boundaries of aluminium did not prevent the moving dislocations from being
absorbed and penetrating through these boundaries, which is the reason for the
detectable movements and changing of structure of these boundaries during creep
at any testing temperature.

In the present work on pure copper and on copper-zinc solid solution, another
behaviour of zinc atoms at the grain boundaries of copper is detected. For pure
copper the sensitivity parameter m! (Eq. (1)), increases first at a constant rate and
then at a growing rate by increasing of applied stress cr, indicating a cooperation
between grain boundary movements and creep process at any testing temperature
especially at higher levels of applied stress. In case of copper-zinc solid solution,
this observation differs. At any temperature, the value of the sensitivity parameter
m! of the creep rate remains constant independent of stress levels. Changing of
temperature in the range up to 400 °C did not change this phenomenon and its
effect on the absolute values of m' was considered negligible. This was previously
discussed [1] on the basis of blocking effects of grain boundaries movements as a
result of the presence of zinc atoms. The zinc atoms act as pegs which suppress the
displacements between boundaries [13]. At higher temperatures, the changes in the
amount of zinc atoms segregated at the boundaries of copper grains by diffusion
did not alter its beneficial influence in blocking the movements of these boundaries
during creep. The applied stress sensitivity parameter of the steady state creep rate
remains constant with the change of applied stress.
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STABILITY OF TWO SUPERPOSED HOMOGENEOQOUS
FLUIDS

R. P. Singnh and H. C. Khare*

Department of Mathematics and Statistics, Ewing Christian College
Allahabad, India

*Department of Mathematics and Statistics, University of Allahabad
Allahabad, India

(Received 2 April 1991)

The stability of two homogeneous fluidsunder gravitational force has been discussed.
A general perturbation in the horizontal plane z = 0 has been taken with wave number kx,
ky along and perpendicular to the streaming motion, respectively. It is found that critical
wave number K* lies on an ellipse in the first quadrant of kX, ky plane.

Introduction

Initially, Jeans [1] studied the problem of gravitational instability of a static
infinite homogeneous medium. He found a critical wave number Jc=AnGp/C2]1!2
and showed that the system becomes unstable for all perturbations of wave numbers
less than ifc® Here C stands for velocity of sound p for density of medium and G for
gravitational constant. Ledoux [2] considered this problem of stability in an infinite
isothermal medium and showed that the medium in unstable for perturbations
propagating parallel to the plane of symmetry of the medium. Ficke [3] discussed
this problem with effect of rotation. Chandrasekhar [4,5,6] reviewed the work of
Jeans and showed that, when the medium is rotating with an angular velocity Q
and perturbation is propagating in perpendicular direction then the critical wave
number k* is given by
1/2

AirGp —4112
C2

Later Sharma and Thakur [7] considered the problem of two fluids in porous
medium. Here, we propose to discuss the problem of instability of two superposed
homogeneous fluids for general perturbation in horizontal plane z = 0. A general
dispersion relation be obtained. Critical wave number k" will be derived and some
special cases will be discussed.

Acta Physica Hungarica 72, 1992
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14 R. P. SINGH and H. C. KHARE

Mathematical formulation of the problem

The two streams of different densities are separated by the plane z = 0, such
that in the region z > 0 the system is of density p\ and in the region z < 0 the
system is of density pi. The streams are moving along the x axis with velocity A
in region z > 0 and V2 in region z < 0. The external force on the system is the
gravitational force.

Following Chandrasekhar [8] the linearized perturbation equations are

fd 1 48\ d . d.
n » + r9ir,="aiv"r+'voiwr, ()
(4 d\ 0 d
di+v'di)Vr=-~ lip'+,"aistr’ )
(d 6\ (dur dvr dwr\
[di + Vrd i) 6pr- - pr +~ar)’ 4
{i,+vé )" (8 ;+v" ) 5 >

Here the suffix r stands for the two regions. For r = 1 we have the region
z>0and forr = 2we have z < 0. (u,v, tu) are components of perturbation of
velocity along x, vy, z axes, respectively. Cr is the velocity of sound in the medium
and Vr is the streaming velocity in the region along x axis. Other symbols have
their usual meanings.

We ascribe to all quantities describing the perturbation a dependence on x,
y and t of the form

N (f) e V)N’ (7
where
k=y/kfTkj. (8)

Here kx, ky are the real numbers denoting the wave numbers of the propagation of
the disturbance along x and y axes, respectively, K given by (8) is the wave number
of the disturbance, i = y/—, t is symbol for time and d(r) denotes some functions
of z. n is a constant, in general a complex number, of the form n = ng + inj.

For the perturbation of the form (7) we have

9 9 &+ 9 -9 n
S =n' = sl =D

and
d2 d2 d2 Y2l

dx2 + dy2  dz2 k2. ©

Ada. Physica Hungériai 72, 1992



STABILITY OF TWO SUPERPOSED HOMOGENEOUS FLUIDS 15

Now writing
ar = n+ ikxWr (10

and taking the perturbation of the form (7) we get linearized Egs (1) to (6) as

pr<rur = - ikxSpr + kxpr8d, (11)
Prifrvr = - iky6pr + ikypr6<4¥, (12)
prartvr = - D 6pr +prD 8dr, (13)
aTepr = —pr(ikxur + ikyvr + Dwr), (14
k2)6(r = —AnGS8pr, (15)
8pr =C 28pr. (16)

Substituting the value of ur, vr and uy from (11) and (13), respectively, in (14) and
eliminating 6pr with the help of (16) we get

Wt - (D2- k2)C?]8pr = -pr (D2- K26 (17)

Eliminating Spr from (15) and (17) we get a fourth order differential equation in
6 as
(B2- *2)(D2- a2y =0, (18)
where
92+ k2C2- 4nGpr

C? (19)

Solutions of the differential equation

The differential equations are solved subject to the physical conditions of the
problem. The solutions are to be bounded in the two regions. This leads to the
solution of (18) in the two regions giving 8 in the region z > 0 and &2 in the
region z < 0, as

6<H =Aie kI +pie aiz, (20)

6ip2 = \2ekz +/r2e"ai, (21)
where ai, a2 are non-negative quantities. Ai, p\, A2 and /r2 are arbitrary con-
stants in the above equations, to be determined with the help of the four boundary
conditions.

Boundary condition 1:
Perturbed gravitational potential Sip is continuous at z = 0, i.e.

dpi — at z=0,

Acta Phyéica Hungarica 72, 1992



16 R. P. SINGH and H. C. KHARE
this gives,
+ pi —A+ /i2,

or
Al + ¥ —"2 —12 —0. (22)

Boundary condition 2:
Normal derivative of the perturbed potential is continuous at z = 0, i.e.

Détpl = D6 at z =0,
this gives,
—k\\ - ai/ii = kX2+ a2r2,

or
JiA + ofifii + + <fi2 — (23)

Boundary condition 3:
Total perturbed pressure is continuous at z = 0, i.e.

Spi =Sp2 at z=0,

this gives,
C\6pi = C\f>pi at z—0,
ie.
C\{D2- k2)6ip =CIl{D2- fQiy>2 at r=0,
ie

oXi + C2(a2- X)/n + ofi2- C2(«l - k2)p2= 0. (24)

Boundary condition 4:
Normal displacement of any point is unique at the interface z = 0 equivalently,

W2

— =2 4 z=o0
3 = a z

Now from Egs (1.13), (1.15) and (1.16) eliminating 6pr, and Spr we get

<Ir

Hence the above condition gives

i 4wGpi DSIpi = -2 45  n g\ % at 20,

Acta Physica Hungarica 72, 1992



STABILITY OF TWO SUPERPOSED HOMOGENEOUS FLUIDS 17

ie.
2
1+ — a2 «k2) Pl+ g4 Y9 14+ C2 (a2_ A2 = 0
fT. .1+ 4nGPI(Ul : P AuG/>2 2 :
(25)
Writing the above linear equations in matrix form we get,
'«11 «12 «13 «14- -AT -0 -
«21 «22 023 «24 Pl 0
«31 «32 «33 «34 a2 0
-«41l  «42 «43  «44- -Ax»2- .0.
or, symbolically as
K '\ =[0, (26)
where
*io= Al X2= Ai> *3 = A2, X4=/i2>
au = 1, «12 = 1, «13 = —1, «14 = —1,
1 = Kk, a2 = ofi, «23 = K, «24 = 2>
«31 = 0, «32 = Cl{a\ - k2), «33 = 0, «4=-C |(32- k 2),
K Cc2
«4l = —J, «42 = U l+ A N _ f(z
K

@3= = we =t 4 9H-|(@2- *2)

For non trivial solutions of the Eg. (26) we must have the determinant of the
coefficient equal to zero, i.e.
la.il = 0. (27

Simplifying the above determinant we get

2C2(al+ Jb), Cl(a2-m)+ C2(ai + k)
1\ 2C2i(cn +K) .1 C2a2+ k) _ G2Qi(ai 4-k)
) Ai er\< n + . 2«2 Pint
1 1 a2 , «

1 M 1

\(N a\) [Ci(ai+k) Caz+*) “ 2rG 1R  Piffl J
Equation (28) is the dispersion relation for the problem in the most general case.
Solving this and putting n = 0 we can get the critical wave number k*. This k*
determines the criterion for instability. However, it is not possible, in general, to
get the value of k = k* from the dispersion relation in closed form. The numerical
value of kmcan be obtained in a specific physical problem. In order to get a feel of
the solution, we do this in special cases of physical interest.

Ada Physica Hungarica 72, 1992



18 R. P. SINGH and H. C. KHARE

Special case 1:
Let the two streams be moving in opposite directions with equal velocities
parallel to x axis, i.e. Vi = Vii, V2= —\/hi.
In this case
= (M= (n+ ikxV)2

Putting this value in Eqg. (28) we get

—+—==0 (29)

Simplifying this equation and putting the value ofa2and a\ from (19) we have the
above dispersion relation as

n(n+ i2kv) [p\ci -pld] + [pidid - V2)- pidid - y2|H
+Cid [pl~p\ =4xGpiP2 [pid ~ Pid]

For discussing the marginal state when the instability sets in we put n = 0 in the
above dispersion relation and obtain the critical wave number k* B
Thus

[piciid - V5 - p\cd - y>x + cZR- pe=irGpiptfad - p/di

ie.
(30)

where
2_ 47rGpip2[p2C| -pid]
1" Pidid - V2)- pidid - V2)’
a2 _ 4xGpip2[p2C'| - pid]
2~ dd\p\-p\] ‘

We observe that when the perturbation propagates along both the axes x and
y with wave numbers kx and ky, respectively, then the value of the critical wave
number k* lies on the elliptic orbit in the first quadrant given by Eq. (30) whose
axes are ky = 0and kx = 0. Thus the positive kx,ky plane is divided in two regions
by the marginal state elliptic curve (30). One is the unstable region where k < K*
and the other is the stable region where k > k*.

We also see that if we have horizontal wave propagation of the perturbation
along and perpendicular to the streaming motion then the criterion for the stability
is different from those as it would be when the perturbation is propagating only
along the streaming motion or perpendicular to the streaming motion. kx, ky play
a combined role in deciding k*, and it is not just by simple addition but by the rule

of Eq. (30). For a given set of kx,ky the critical wave number k* = k% + k% does

not mean that kx and ky are separately critical numbers. It is critical only when
one of them is zero, i.e. when kx = 0, k* = ky or when ky = 0, km= kx.

Acta Phyaica Hungarica 72, 1992



STABILITY OF TWO SUPERPOSED HOMOGENEOUS FLUIDS 19

Particular cases
L When the perturbation is propagating only along the streaming motion,
then ky = 0 and kx = k* is given by

47rGplp2(p2C f-p 1C2)

ACI{CI-V*)-P\CI{CI-V")" (31)

The above expression clearly shows that the determination of the stability is
dependent on streaming velocity and it has destabilizing effect on the stability, k*
also depends on density and sound velocity in the medium. Similar results have
been obtained by Sengar and Khare.

2. When the perturbation is propagating perpendicular to the direction of
the streaming motion in the horizontal plane, then kx = 0 and ky = k* is given by

L. _ \"Gpxpi{piCl - piCI)1
I C\C\{p\-p\) J- J2)
This expression is free from streaming velocity showing that in this case the stability

of the system is unaffected by the streaming motion.
Further considering Eq. (29) since ¢ and a 2 are non-negative, it follows that

ai = a2= 0, (33)
i.e. )
-PXV2+ PCIl- 4nGpi _ -PXV2+ PCI . 4xGp2
ci - cl
giving
pX p
L oairgpi 1 (34)
C*-V2
and - P
= 1 (35)
Ci-v2 ct
Thus the two media become disentangled for the stability conditions in this case
and the system becomes unstable for the wave number k whenever it

is less than k* given by (34) or (35) for the two regions, respectively. Particularly,
when the perturbation is propagating only along the streaming motion, i.e. kx = k*,
ky = 0 we have
AMTGpi 47rGpi
~Cl-V2 C\- V2m
When the perturbation is propagating in the perpendicular direction to the stream-
ing motion in its plane, i.e. ky = k*, kx = 0 we have

AirGpi and  47rer2
~cT ~cV

P (37)
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The results (36) clearly show that k* dependence is only on streaming velocity,
medium density and velocity of sound in the medium. It is independent of the other
medium density and sound velocity. Thus the values of k* show that the system is
decomposed.

Similarly in the case of (37) the system is decomposed with k* depending only
on the medium density and sound velocity. The streaming velocity has no effect on
k*.

This decomposition of the system in two separate media suggests that the
two media may be treated independently for various results under consideration.

Special case 2:

For a single homogeneous medium when the two streams are moving in op-
posite direction with equal velocity v, (i.e. pi =p2=p, Ci = C2=C, Vi =V,
V2 = —V) we have Eq. (33) ag

«| = <2 =0,
giving
kg .
4irGp + 4:}3/p — (38)
C3-V3 C3

which determines the critical wave number k* satisfying (38) and k* = yjk2 + KA
In particular, for the perturbation along the streaming motion ky = 0 and

_ . 4nGp
K, = K* = C2- 2 (39)
and for the perturbation perpendicular to the streaming motion kx = 0 and
_ . 4nGpl
ky =k' = Co (40)
Obviously, for the single static homogeneous medium
anGg' 12
ro= —C2 (41)

which is Jeans result. Talwar and Kaira have obtained a similar result.

Special case 3:

Let the two media be at rest, i.e. V\ = V2= 0. Then a2 = n2 Putting in
dispersion relation (28) we get,
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where
n2- AnGpr + f2C2
« = C,) '
From these two relations we get

peelin'2- AnGpT+ k2C\] = p\C\[n2- 4nG>2 + f2C|],

2 _ 47rG(PIP2C | - p2p2C2) - *2C?Ca(p» - p2)
{p\~ p\C()
For the critical wave number k* we put n = 0 in the above equation and get
'47rGpip2[p2G| - piC2 12
C\C\{p\-p\)
which shows that k* follows a circular path of radius

M4~Cplp2[p2C2-p 1C2J11/2
€ 2c2(pl- P?)
i.e. in every direction of perturbation propagation for the wave number Kk < k*
given by (42) the system is unstable and for k > K* it is stable.

[ = y/k[+ki= (42)

Conclusion

A general dispersion relation for horizontal propagation has been derived.
The limitation of obtaining a general solution for it* has been discussed and results
obtained in special cases. It is suggested that numerical calculation may be made
to get some results.

For some special cases the critical wave number has been obtained. In par-
ticular, we discussed the stability criteria for the perturbation propagation along
the streaming motion, and perpendicular to the streaming motion separately. \We
found that the streaming motion has destabilizing effect when the perturbation is
propagating along the streaming motion, but for perpendicular propagation the in-
stability criterion is unaffected by the streaming motion. In general, K’ follows an
elliptic path in first quadrant. The value of critical wave number k* can be found
for the perturbation propagation in any direction in horizontal plane z —0. In case
of static medium, i.e. in the absence of streaming motion, the value of k* is the
same in every direction. In other words, we find a circular path in first quadrant
for f¢', of a radius equal to Jeans critical wave number k’. But in the presence of
streaming motion, because of destabilizing effect of streaming velocity, the value of
k* is increased from Kkj for perturbation propagation in every direction of the hori-
zontal plane z = 0 other than the transversal. As a result, the circular orbit changes
into an elliptic one. We further observe that the stabilizing tendency is dependent
on the wave number, therefore the system has maximum stabilizing tendency for
the transversal perturbation propagation and minimum for the perturbations prop-
agating parallel to the streaming velocity.
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The equations of motion accounting for rigid rotation about an axis perpendicular to
the flow have been given and exact solutions have been obtained for both velocities such as
the primary flow as well as the secondary flow corresponding to the cases of non-conducting
and conducting walls, taking into account the Hall currents. In case ofnon-conducting walls,
it is found that these solutions for u, w are fill independent of the partial pressure of the
electron gas, s. The induced magnetic field is neglected under the assumption that the
magnetic Reynolds number is small.

1. Introduction

The study of flow problems of an electrically conducting fluid, particularly of
an ionized gas, is currently receiving considerable interest. Such studies have been
made for many years in connection with astronomical and geophysical problems,
motion of the interstellar gas, etc. In the last few decades considerable interest has
also been developed in the study of the interaction between magnetic field and the
flow of an electrically conducting incompressible viscous fluid due its wide applica-
tions in modern technology. It is also well known that a number of astronomical
bodies, viz., the sun, the planets, the magnetic stars, pulsars, etc., possess fluid in-
terior and at least surface a magnetic field. Hence any flow phenomenon occurring
in a celestial body takes place under the influence of an external magnetic field.
In the presence of the strong magnetic field due to gyration and drift of charged
particles the effect of resulting Hall currents is to be taken into consideration. These
Hall effects introduce a cross flow of a double swirl pattern and tend to increase the
rate of flow for a given pressure gradient [1].

The theory of rotating fluids is highly important because of its occurrence in
various natural phenomena and for its applications in various technological situa-
tions which are directly governed by the actions of the Coriolis forces. Interactions
of Coriolis forces with electromagnetic forces are met often in the planetary motions
of various solar systems. Therefore, it is of considerable interest to study the effects
of Coriolis forces on specific flow problems.

The study of the flow of a conducting fluid through a straight channel under
a uniform transverse magnetic field presents one of the simplest problems in MHD.
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24 T. LINGA RAJU and V. V. RAMANA RAO

The problems concerned with the effects of Hall currents on specific flow problems
under the influence of a strong magnetic field have been studied by several authors
notably, Broer et al [2], Sato [3], Sherman and Sutton [4], Tani [1], Yaminishi [5],
Katagiri [6], Pop [7], Gupta [8], Datta and Jana [9], Jana and Datta [10], Jana
et al [11], Krishnam Raju et al [12], etc. These effects in the unsteady case were
discussed by Sakhnovskii [13], Vatazhin [14], Debnath et al [15], etc.

In this paper an attempt has been made to study the flow of a rotating electri-
cally conducting viscous fluid in the presence of a uniform transverse magnetic field
taking Hall effects into consideration following Sato’ [3] analysis. The induced mag-
netic field is neglected under the assumption that the magnetic Reynolds number
is small. Exact solutions are obtained for both primary and secondary velocity dis-
tributions and the discussion has been also made for various governing parameters
such as Hall parameter a, Hartmann number Ha and the rotation parameter T.

2. Basic equations, boundary conditions and their solutions

The viscous flow of an ionized gas between two parallel walls in a rotating
system is considered. Figure 1 illustrates the co-ordinate system used to write the
equations of motion. The x-axis is taken in the direction of hydrodynamic pressure
gradient in the plane parallel to the channel walls, not in the direction of flow.
A parallel uniform magnetic field Bo is applied in the ~-direction. The system is
rotated about the y-axis perpendicular to the walls with an angular velocity Q.
The height of the channel is denoted by 2h and the width is assumed to be very
large compared with 2h.

Fig. 1. The rotating system
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The following assumptions are made:

1. The density of gas is everywhere constant.

2. The ionisation is in equilibrium, which is not affected by the applied electric
and magnetic fields.

3. The effect of space charge is neglected.

4. The flow is fully developed and stationary, that is, d/dt = 0 and d/dx = 0,
except dp'/gx ¢ 0.

5. The magnetic Reynolds number Rm is small, namely, the induced magnetic
field is small compared with the applied field. Therefore, components in the
conductivity tensor are expressed in terms of Bo.

6. The flow is two-dimensional, namely, d/dz = 0.

The fundamental equations to be solved are the equations of motion and
current for the study flow of a neutral fully-ionized gas valid under the above as-
sumptions and expressed as (see Spitzer [16]),

JXB-Vp'+ pvW2vV = 2pH XV, D

E+VxB+E«--JxB- —=0 )
en ao

in which vectors J, B and E are the current density, the magnetic flux density and
the electric field, respectively. Also p' is pressure, p the density, v the kinematic
viscosity, —e/c the electron charge in e.m.u. and n is the number density of ions
which is equal to that of electrons, Ee denotes the equivalent electric field due to
the gradient of electron pressure pe, namely Ee= (*)V pe. The conductivity a0 is
defined as a coefficient of proportionality between current density and the collision
term in the equation of motion of charged particles as is shown in Spitzer [16].
The other fundamental equations are the continuity relations

divV = 0, @)
divd = 0. (4)

The boundary conditions are
V=0 at y= . (5)

Equations (1-4) are simplified by the above-mentioned assumptions and bound-
ary conditions given by Eq. (5) as

d» 0 d?u ) . .
-mN-[1 —s(I —)] + + Bg[—<i(Ez + uB0) + <r\Ex —ti>2%0)] = 2pilw, (6)

d ~o d?u) . _ H
S'8§<_ab + Pva§/r~2 + Bo[tTi(Ex —wBo0) + (X"E, + u2?0)] = —2pfiu, )
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in which fi represents the angular velocity with which the system is rotated about
the y-axis and s = |f- is the ratio of the electron pressure to the total pressure.
The value of s is | for a neutral fully-ionized plasma and approximately zero for a
weakly-ionized gas. u, w and Ex, Ez are the x and z components of velocity and
electric field, respectively. Also

. do
0-i L+ an (8
0’00t
02 T T A" ©))
a= (10)
&+ £]

where we is the gyration frequency of the electron, r and re are the mean collision
time between electron and ion, electron and neutral particle, respectively. The
above expression for a which is valid in the case of a partially-ionized gas agrees
with that of the fully-ionized gas when re approaches zero.

The two Eqgs (6,7) have /beezn non-dimensionalised, using the characteristic

length h and velocity up=— '~ The same notation is used u, w for u/up and
w/wp and vy for y/h.
Further introducing the Taylor number T, given by T2 = we obtain the

non-dimensional equations as

*i+/c\iy2_ @FIZ(T2+ u)+aH|(mx- w) = 2T 2w, )
- —HI - tu) + —HI +u)=-2T 12
dy2 " Qo (MX - W Rz ) 2 (12
in which
*i= fos (e =5 =2 mx= Exo Ez
( (roj (To £=0up BOup

and the Hartmann number Ha is defined as H2 = B2h2(To/pv.
Introducing g=wun+ iw, K = ki + ik2and M = mx + imz; Egs (11,12) can
be written in complex form as:

d2q . o ;
i(—Ha+ 2tA -2 g 2]>=-HIM (= +1= +k 13
ay 1 {7 YL S b it 13)

which is to be solved subject to the boundary conditions T(£1) = 0.
Ix and 1z defined in non-dimensional form as Jx/(croBoup) and Jz/((ToBoup),
respectively, are given in complex notation as

| = IX+ ||Z 02+ i(Tif S 1S (14)
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HALL EFFECT IN THE VISCOUS FLOW 27

The non-dimensional electric field M is to be determined by boundary con-
ditions at large x and z.

Fig. 2. Mean velocity um (non-conducting walls). Broken line: Sato’s calculation (T = 0)

Non-conducting walls

When the side walls kept at large distance in r-direction are made up of the
non-conducting material, the induced electric current does not go out of the channel

Acta Pkgsica Hungarica 72, 1992



28 T. LINGA RAJU and V. V. RAMANA RAO

but circulates in the fluid. So an additional condition for the current defined in non-
dimensional form is

/' lzdy = 0.

Fig. 3. Mean velocity wm (non-conducting walls). Broken line: Sato’s calculation (X = 0)

Similarly if the insulation at large x is also assumed, another relation is ob-
tained as

\] Irdy = 0.

The constants in the solution are determined by these two conditions. Solu-
tions for g and | are all independent of the partial pressure of the electron gas s
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and obtained as

{ch(p - iq) - ch(p - tg)y}
3= 4P (o~ ig)ch(p- ig) - sh(p - ig)"

-lb -08 06 -04 -02 0 02 04 06 08 10

Fig. 4. Primary velocity distribution for a = 2 (non-conducting walls).
Broken line: Sato’s calculation (T = 0)

i 2+ »1
<0 3m
where

(A -fw){p - ig)ch(p - iq) - sh(p- iq)}
m— Hish(p - iq) —i2T2(l + ior)(p - ig)ch(p —iq) ’

29

(15)

(16)

(17)
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18
poiq =70 (18)

Fig. 5. Secondary velocity distribution for a = 2 (non-conducting walls).
Broken line: Sato’s calculation (T = 0)

Separating real and imaginary parts of g and gm from Egs (15) and (18),
we obtain the velocity distributions u, w and the mean velocities um and wm over
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the cross section; discussion has been also made for various governing parameters
involved.

-10 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 10
Y

Fig. 6. Primary velocity distribution for or = 5 (non-conducting walls).
Broken line: Sato’s calculation (T = 0)

Conducting walls
When the side walls are made up of conducting material and short-circuited
by an external conductor, the induced electric current flows out of the channel.
In this case no electric potential exists between the side walls. If we assume zero
electric field also in the ~-direction, we have
mx =0, m2—0.
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These conditions are realised, for instance for the flow between two concentric
cylinders under the radial magnetic field with the pressure gradient parallel to the
axis of cylinder.

1| S TR WA R— YRR N N Y|

10 -08 -06 -OA -0.:2 0 0.2 OA 0.6 0.8 10

Fig. 7. Secondary velocity distribution for a = 5 (non-conducting walls).
Broken line: Sato’s calculation (T = 0)

Constants in the solution are determined by these two conditions. Solutions
for gand | depend on s and are obtained as Eq. (15) and

D+ i\ ( «\

0 JI*  Hi) (19

_(
1=
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where

-0+ o (p- i?)ch(p - ig) - sh(p- ig)
- 2iT2 (p - ig)ch(p - iq)

p and g are the same as in Eqg. (18).

AT — (20)

Fig. 8. Mean velocity um (conducting walls), s = 0. Broken line: Sato’s calculation (T = 0)

In this case also by separating real and imaginary parts of g and gm from
Egs (15) and (20), we obtain the velocity distributions and the mean velocities.
Discussion has also been made for the governing parameters, viz., a, T and Ha.
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Fig. 9. Mean velocity wm (conducting walls), 1 = O. Broken line: Sato’s calculation (X = 0)

3. Results and discussion

Non-conducting walls

The mean velocity profiles have been plotted against the Hartmann number
Ha in Figs 2 and 3, respectively, for different values of the Hall parameter a and
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Taylor number T. For fixed values of a and Ha it is concluded that the primary
mean velocity um decreases as Taylor number T increases. When T = 0, we recover
the work of Sato [3]. The conclusion that for fixed Ha, um increases with increasing
a in Sato’s [3] work, also holds good even in the rotating case until T = 1 and
beyond that it decreases. However, when T —5, the variation of um is almost the
same for a = 2 and 5.

Fig. 10. Mean velocity um (conducting walls). 8= 1/2. Broken line: Sato’s calculation (T = 0)

When a is fixed um always decreases as Ha increases. This is true only when
T <1 When T > 1, its tendency is just the opposite. When T = 5 the secondary
mean velocity wm decreases with increasing a up to Ha= 5 and beyond this value
of Ha, it always increases. This conclusion is valid for T = 0.5 and Ha —3.5. As
T increases further, wm always increases. When T —5, wm is almost the same for
a=2and 5.

Figures 4 and 6 show the primary velocity distributions against y and for
different values of T and Ha when a = 2 and 5, respectively. It is concluded that
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for fixed Ha the primary velocity u decreases at any point of the channel with
increasing rotation. It is also concluded that for fixed T < 2, u decreases with
increasing Ha at any point of the channel. Note that when T = 2 or 5, there are
two points about the central line y = 0, at which n is maximum. For large rotation,
the boundary layer thickness decreases as Ha increases. This is in agreement with
the conclusion that the magnetic field causes thinning of the boundary layer.

Fig. 11. Mean velocity wm (conducting walls), a= 1/2. Broken line: Sato’s calculation (T = 0)

Figures 5 and 7 show the secondary velocity distribution against y and for
different T and Hawhen a = 2 and 5, respectively. For fixed Ha it is concluded that
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as rotation increases, the secondary velocity W increases at any point of the channel
till a value of T is reached and beyond which it decreases with further increasing
values of rotation. For fixed T (< 1), as Haincreases, Wincreases at any point of the
channel and for T > 1, an opposite result holds good. For large T (approximately
5) the influence of the magnetic field is inappreciable. However, there are two points
about the central line Y = 0, at which this velocity is maximum.

vo -08 -06 -0A -02 0 0.2 OA 06~ 08 - 10
Y— »

Fig. 12. Primary velocity distribution for or = 2 (conducting walls), s =0
Broken line: Sato’s calculation (T = 0)

Conducting walls

Figures 8 and 10 show the primary mean velocity Umfor S = 0 and respec-
tively. When T = 0, we recover the work of Sato [3] from these two Figures. In the
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case of a weakly-ionized gas, it is found from Fig. 8, that the effect of increasing
rotation is to reduce um for fixed values of a and Ha. Also for fixed T and Ha,
um increases with an increase in a, when T and a are fixed, um decreases as Ha
increases. For large rotations greater than or equal to 2, no noticeable variation in
um is seen with increasing a. In this case for fixed T, the limiting value of um at
H = 0 is the same for different a.

Fig. 13. Secondary velocity distribution for a = 2 (conducting walls), a= 0
Broken line: Sato’s calculation (T = 0)

From Fig. 10 corresponding to s = |, it is noted that for T = 0, um de-
creases within a range 0 < Ha < H* (critical) and increases within the range
H* < Ha < o0, as a increases. For T = 0, FT* is found to be about 1.5. This is
true for all T > 0. For fixed a, as T increases within the interval 0 < T < 0.5,
um increases and decreases in the interval 0.5 < T < 5, with increasing values of
Hartmann number. These conclusions can be attributed to the fact that in this case
the limiting value of umat Ha = 0 is not equal for various values of T and a. For
both s = Oand um always decreases as Ila increases when T and a are fixed.
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Figures 9 and 11 show the secondary mean velocities wm corresponding to
s = 0and  respectively. It is found from Fig. 9, that for a weakly ionized and
non-rotating gas, wm decreases in the interval 0 < Ha < 2.5 and increases in
2.5 < Ha < oo with an increase in a. For T > 1 and fixed Ha, wm increases with
an increase in a. For fixed a, it is found that wm increases in 0 < Ha < tf* and
decreases in H* < Ha < 00, as T increases. In the limiting case at Ila = 0 and
when T is fixed, wm is same for different a (although not shown in Fig. 9).

Fig. 14. Primary velocity distribution for a = 5 (conducting walls), s = 0
Broken line: Sato’s calculation (T = 0)

From Fig. 11, for a fully neutral-ionized plasma the secondary mean veloc-
ity wm starts from a non-zero negative value and becomes positive at a certain
Hartmann number. In particular, for T = 0, this Ha is found to be about 1.6. This
is not only true when T = 0 (Sato’s [3] work) but also for small values of Taylor
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number say T = 0.5 and Hall parameter a = 2. In the classical case (T = 0) wm is
found to increase as a increases for fixed Ila. For a = 2 and fixed Ha,as T increases
in 0 < T < 1, wm increases and decreases outside this range as T increases. For
large a, say 5, there is a critical value of Ha so that for any Ilain 0 < Ila < H*,
as T increases up to T* (critical), wm increases and for any Hain #A* < Ha < oo,
wm decreases and beyond T¥*, it always decreases for any |lam

Fig. 15. Secondary velocity distribution for or = 5 (conducting walls), s = 0
Broken line: Sato’s calculation (T = 0)

Also it is concluded that as in the classical case and for small rotations say T =
T* = 1, wm increases in the beginning and decreases afterwards as Ha increases.
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But when T* > 1, its tendency is such that it always decreases with an increase in
Ha. This conclusion seems to hold good for s = 0 and for T* < 0.5.

Fig. 16. Primary velocity distribution for or = 2 (conducting walls), s = 1/2
Broken line: Sato’s calculation (T = 0)

Figures 12 and 14 show the primary velocity distribution u in the case s = 0
and when a = 2 and 5, respectively. When s = 0 and Ha is fixed, as rotation
increases, u decreases at any point of the channel. When T is sufficiently large,
there are two points symmetrically situated on either side of the axis of the channel,
i.e., y =0, at which this velocity becomes maximum. It is noted that when a = 2
and for large T, say 5, the boundary layer thickness becomes thin as the Hartmann
number increases. But when a = 5 and large T, i.e., 5, it is almost the same for
Ha = 2 and 5 at any point of the channel except that near y = 0, u becomes
negative when T = 5.
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Figures 13 and 15 show the secondary velocity distribution w in the case s = 0
and when a = 2 and 5, respectively. It is concluded that as T increases in (0,1),
w increases at any point of the channel for fixed values of a and Ha = 2. Qutside
this range as T increases, it decreases. When Ha= 5, as T increases the secondary
velocity always decreases at any point of the channel for fixed values of a.

Fig. 17. Secondary velocity distribution for a = 2 (conducting walls), s —1/2
Broken line: Sato’s calculation (T = 0)

In particular for T = 5, w is maximum at two points situated symmetrically
about y —0. This can be regarded as the effect of rotation.

Figures 16 and 18 show the primary velocity distribution in the case s = i
and when a = 2 and 5, respectively. For fixed values of Ha and a, it is found that
as T increases, the primary velocity at any point of the channel decreases. The
two symmetrical points about y = 0, at which the velocity is maximum have been
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observed in this case, too, for large rotation. And wn is almost the same for fixed a
at any point for large T, whatever Ha be.

Figures 17 and 19 show the secondary velocity distribution in the case s = 1
when a = 2 and 5, respectively. The discussion in this case remains the same as
secondary velocity distribution corresponding to s = 0 as in Figs 13 and 15.

Fig. 18. Primary velocity distribution for or = 5 (conducting walls), s = 1/2
Broken line: Sato’s calculation (T = 0)
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Y

Fig. 19. Secondary velocity distribution for a = 5 (conducting walls), a= 1/2
Broken line: Sato’s calculation (T = 0)
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Coherent phonons which start martensitic formation are the solutions of the Duffing
equation. By using this idea the frictional force was included in this undamped nonlinear
equation. Numerical results were obtained for Au-Cu-Zn (30 at% Cu, 47 at% Zn) and
In-T1 (21 at% TI) single crystal. Dependence of vibrational amplitude of the phonons on
frequency of driving force was researched for various temperatures in the austenitic range.
It was found that damping effects change that strongly as the martensitic transformation
temperature, M 3, is approached. The proposed model in this study can explain the jump
phenomenon in the response curves more clearly and realistically when damping is included.

1. Introduction

Nonlinear differential equation systems have become increasingly important
in metal physics. Martensitic transformation is associated with certain thermody-
namical features relating to phonons: This transformation occurs with the velocity
of sound, pre-transformation vibrational mode softening, etc. Therefore, in re-
cent years several phonon models relevant to martensitic transformation have been
presented [1]. Zhang has stated that the coherent phonons will be able to start
martensitic transformation [2]. In his model the researcher has neglected the fric-
tional effects which have a retarding role against leaving of interface from austenite.
In this paper pre-martensitic internal friction effects, contrary to Zhang’s investi-
gation were included in the nonlinear differential equation of atomic motion. The
main result of this study is that the damping parameter affects considerably the
vibrational amplitude of the phonons during the martensitic transformation. The
new model improved in this paper can explain the characteristics of the transfor-
mation and reverse transformation and describes rather well hysteresis phenomena
associated with the transformation.2

2. Forced oscillations
2.1 Undamped equation of atomic motion

According to the theory of coherent phonon starting martensitic transforma-
tion, a phenomenon starting transformation depends on cooperative atomic move-
ment in a potential well of coherent phonon waves propagated in austenite phases.
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Therefore, it is supposed that there are various regions including the lattice dis-
placement waves above the martensitic starting temperature, Ms. The amplitude
of the lattice displacement wave is enhanced enough to go beyond the critical am-
plitude atoms crowd through the energy barriers into the positions determined by
the crystal lattice of the low-temperature equilibrium phase and these dynamical
displacements are frozen out, resulting in the martensitic structure. The equation
describing the motion of the atoms can be derived from a potential <p(r) as marten-
sitic transformation is characterized by cooperative atomic movements. By using

the expression
F = —dip(r)/dr (1)

it is obtained as
mir + jffr+ 7r3 = 0, (2)

where
ip(r)/m = fir2/ 2 + [?r4/ 4,

which is called coherent phonon potential, m is the total mass of atoms, k and 7
are constants. The frequency of the soft-mode of the transformation is

v =n =CT- Te) = kim, (3)

where Te is martensitic start temperature and § = 7/71. Since the amplitude of
atoms is enhanced by the coherent phonon waves the motion of atoms must also
be under the influence of an external force Fqgcos wt. This driving force represents
the stress caused by the vibrating atoms driven by the pre-transformation lattice
displacement waves which crowd into the space between the neighbouring atoms and
cause the deformation of crystal lattice in the transformed region. By considering
this force the equation describing the motion of atoms termed Duffing equation can
be represented by

d2r/dt2 + fir + Br3 = (Fo/m) coswt. 4)

The solution of this equation is given [J]

I =ro cosWt, (5)
w2 =wl + 3/2ij/4 - £/r0,

where / = Fo/m. Zhang used this equation to study the amplitude of atomic
displacements during martensite transformation.

2.2 Damped equation of atomic motion
During the martensitic phase transformation it is known that the interface
of austenite-martensite moves with the velocity of sound. When the interface is
influenced from the austenite, this effect appears as frictional force. Therefore, the
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frictional force which is proportional to the velocity of the interface should he added
to the equation describing the motion of the atoms so that the potential used is
much more reasonable. In this study this force acting on such a system executing
small oscillations of phonons may be written —ar, where a is a positive coefficient
and the minus sign indicates that the force acts in the direction opposite to that of
the velocity. Adding this force on the right-hand side of the Eq. (4) we obtain

dBr/dt7+ 2/1dr/dt + ur £ Rr3 =/ coswt, (6)

where 2/1 = a/m. By using the Van der Pol method [4-6], the solution of this
equation is found as

I =rocos wt,
w2=wl +3/2r2/4 + [(//r0)2- (2u;04)2]1/2 (7

or
V2= Iq+ 3/2r216x2+ [(FO/ 47r2mr0)2 - (i/0A/X)2]1/2.

The coefficient B which depends strikingly on the properties of the material
was taken as a positive constant in the equations mentioned. Therefore, the solu-
tions already obtained above were found for the hard spring case. In the soft spring
case this constant is negative [7].

3. Results and discussion

It is interesting to compare the results obtained in this paper with those for
the response curve which is suggested by Zhang. For this purpose the amplitude of
oscillation displaying atomic displacements during the martensitic transformation is
plotted against the frequency of the driving force for damping parameter, A and a
given amplitude of that force. The values C2 = 48x 106jm~3K_1,B = 6xIOn jm-3,
m = 95.1 x 10-3 kg for a gram mole of the alloy Au-30 at% Cu-47 at% Zn and
Ci —25x106jm-3K-1,B = 1.04 x 1022jm-3, m = 133.6 x 10-3 kg for a gram of
the alloy In-21 at% T1 were used in computing amplitude-frequency response curves
[8- 101.

The effect of the damping parameter A which represents the friction of the
interface between austenite and martensite, is shown in Fig. 1 when all other pa-
rameters are held constant. The peak amplitude of the response increases as A
decreases and its corresponding frequency decreases. But at v — v$ (resonance),
the amplitude of the response does not decrease appreciably as A increases. The
curves are nested and bent to the left (since B < 0).
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Fig. 1. Effect of the damping parameter Aon the response. Driving amplitude Fo = 0.25, T = 210 K

Fig. 2. The phase transformation jump phenomenon described by the Duffing equation.
This curve was taken from reference [2]. Here A= 0, /3> 0

The response curve for A= 0 was discussed by Zhang’s paper (Fig. 2). From
this Figure, it is not understood that the amplitude jumps definitely to which values
of the driving frequency. But the response curves with damping have several fixed
peak values.

Figure 3 shows the effect of the driving amplitude Fq on the response. The
amplitude of response increases as Fo increases and the curves are spaced out in all
regions of the driving frequency.
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1556 1558 1560 1562
frequency  (Hz)

Fig. 3. Effect of driving amplitude Fq on the response curve for A= 0.3, T - 210 K

Fig. 4. Amplitude response curve in the case of a damped soft spring Duffing equation (R < 0)

The most characteristic feature in Eq. (7) is a jump in the response when
the driving amplitude is held constant and the frequency is slowly varied through
the response region. In the case of the soft spring system the amplitude response
curve will be as shown in Fig. 4. The path cd is unstable and there is a sudden
fall in the response from c to e when the frequency of the driving force is decreased
whereas there is a corresponding jump in response from d to b on increasing the
driving force. Consequently, the location of the peak response will depend upon
direction when slowly sweeping the driving frequency, i.e. whether it is upward or
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downward. The hatched region in Fig. 4 shows clearly the transformation hystere-
sis loop. Both reverse transformation and transformation hysteresis are striking

features of martensitic transformation [11].

Fig. 5. Amplitude response curve of Au-30 at% Cu, 47 at% Zn alloy for fo = 0.25 and A= 0.3

2917.1 2917.2 2917 3 2917.A 2917.5 2917.6
frequency V (Hz)

Fig. 6. Amplitude response curve of Au-30 at% Cu, 47 at% Zn alloy for Fo = 0.25 and A= 0.3

Figures 5 through 8 demonstrate the nonlinear character of the resonance
curves of Au-30 at% Cu-47 at% Zn alloy (M, = 208 K). It can be seen from these
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Figures that the nonlinearity effects increase and the response character changes
systematically as the martensitic transformation is approached.

5171A 5171.6 5171.6 5172.0 51722 51724 51726
frequency > (Hz)

Fig. 7. Amplitude response curve of Au-30 at% Cu, 47 at% Zn alloy for Fq = 0.25 and /1= 0.3

Fig. 8. Amplitude response curve of Au-30 at% Cu, 47 at% Zn alloy for Fq = 0.25 and 1= 0.3
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230 260 250 260
frequency V (Hz)

Fig. 9. Amplitude response curve of In-21 at% T1 alloy for Fa = 0.25 and A= 0.3

Figure 9 demonstrates the nonlinear character of the response curve for an
In-21 at% T1 alloy {M, = 314 K).

Consequently, the maximum amplitude of the resonance curve is governed
by the value of the damping parameter and a similarity between the shape of the
curves in this paper and those of reference [12] can be readily seen.
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We have considered some aspects of the structural features of the classical (Newton-
ian) equilibrium of a highly rotating spheroidal polytrope n = 1, governed by the equation
of state: P = constant p'l (P denotes the pressure, p the density and 7 the adiabatic con-
stant). Approximate analytical solutions to the equilibrium equations suitable for use in
very short computer programs or on small calculators have been givenin (uq,vq), (up,vp),
(up,Vp) and (£©,0) planes for 7 = 2 following Padé (2,2) approximation technique. Under
certain transformations, the equilibrium equation has been cast into first order differential
equations in (uqg,«®©), (uPfvp), (up,vp), (*©,y®), (zp,yp) and (zp,yp) planes. Transforma”
tions connecting solutions in these planes have been derived. Graphical material is included
showing a comparative study of the runs of ti© with vq (Fig. 1), up with vp (Fig. 2), up
with Vp (Fig. 3), 0 with £© (Fig. 4) and £ with Aw (Fig. 5) for rotating (w = 0.05 and
w = 0.15) and non-rotating (w = 0) configurations. It has been found that the present
method of approach is also more suitable for the study of both slowly and highly rotating
configurations.

1. Introduction

The study of the properties of polytropes has been a fascinating subject of
discussion to applied mathematicians in general and to astrophysicists in particu-
lar since long (102 yrs according to some estimates). The theory of polytropes is
fundamental not only in precise investigations of stellar structure, star formation,
galactic dynamics, etc. but also in the rough estimation of some processes in real
stars. Most of the stars in the sky are adequately described by Newtonian physics,
without taking into account general relativity. Such Newtonian stars deserve some
attention here, both because they serve as limiting cases for the more exotic objects
that interest general relativists, and also because they guide us in understanding the
qualitative properties of these objects. The fundamental problem of the equilibrium
of a configuration under its own gravitation with underlaying law

P=Kpl+t )

is almost due to Ritter [1] (K is a disposable constant). The foregoing relation can
represent a variety of different possible physical conditions. For example, n = 0

* Working as a Research Assistant supported by a grant from CST, U. P., Lucknow, India
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represents a homogeneous liquid, n = 1, a not centrally condensed matter (which is
quite reasonable approximation for neutron stars of one solar mass or greater; and
planets like the Earth are better approximated by a polytrope with n = 7/10 (Allen
[2]). White dwarfs and main-sequence stars are approximated by polytropes with
15 < n < 3. An isothermal perfect gas is defined by n —o00. Mass distribution
and velocity dispersion in the bulge halo subsystems correspond approximately to
that of a polytrope of index 5 (Mark [3]). Knowledge of polytropic (or isothermal)
configurations is useful in the study of gaseous filaments or of spiral arms and
globular star clusters.

Considerable amount of work has already been done towards the study of
the equilibrium of static, polytropic (or isothermal) configurations (for example,
Emden [4]; Eddington [5]. Milne [6]; Chandrasekhar [7]; Ostriker [8]; Taff et al [9];
Lightman [10]; Srivastava [11]; Seidov and Sharma [12]; Sharma [13]; Sharma and
Yadav [14]) and rotating configurations (Jeans [15]; Chandrasekhar [16]; Roberts
[17]; James [18] Monaghan and Roxburgh [19]; Carl J. Hansen et al [20]; Cunningham
[21]; Sharma and Yadav [14]) in classical (Newtonian) theory. Extensive studies
have also been made towards the above mentioned configurations under special
relativistic treatment (for example, Stoner [22]; Kothari [23]; Chandrasekhar [7],
Schatzmann [24], Sharma [13, 25, 26]) and slowly or highly rotating configurations
(neutron, supermassive and polytropic stars) under general relativistic treatment
(for example, Hartle [27]; Hartle and Thorne [28]; Hartle et al [29]; Hartle and
Munn [30]; Sharma [31]).

In most of the above works, particularly, in rotating cases, with which we are
presently concerned, the following methods have generally been adopted to solve the
equilibrium equations (i) a perturbation approach, (ii) the Roche approximation,
(iii) variational principle, (iv) formation of self-consistent density and potential
distributions, and (v) numerical methods.

The above mentioned methods are, however, lengthy, cumbersome, and in-
volve considerable mathematical complexities. Hence, these may not be economical
for computer programming. Further, one is faced with inherent analytical difficul-
ties for the case of highly rotating polytropes (high angular velocity i2 or w as it
needs developing in powers of fi, expansions for the departures of the equilibriafrom
Emden spheres). All this could be avoided by employing a much simpler method
known as Padé (2,2) approximation technique, as used elsewhere (see for example,
Seidov and Sharma [12], Seidov [32], Sharma [13], Sharma and Yadav [14]), to solve
the equilibrium equation for rotating spheroidal polytrope of index unity (n < 1
are only physically admissible values to the present case). The main advantages of
the present approach are: (i) it does not involve too much mathematical complexity
related with computational work, (ii) it is less time consuming, (iii) it is computa-
tionally efficient and economical, and (iv) it is suitable for both cases of slowly and
highly rotating polytropes.

First, in Section 2, we will present the structural equation in (£e,0) plane.
In Section 3, we will derive first-order differential equations in (ug,vq), (up,vp),
(up,vp), (za,20), (zp,yp) and (zp,yp) planes. Section 4 deals with certain transfor-
mations connecting the solutions in these planes. Approximate analytical solutions
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describing the physical structure of the configurations in (u©, i>©), (up,vp), (up,vp)
and (£©, 0) planes for y — 2 have been given in Section 5. Section 6 throws some
light on possible values of the critical angular velocity attainable by the configu-
rations. Concluding remarks are given in Section 7. Results of our calculations
are displayed in Figs 1-5. Stability considerations or bifurcation analysis could be
another interesting aspect of the problem which we, however, intend to include in
future work, as some light has already been thrown towards this aspect by some of
the above mentioned authors following different methods than the present one.

2. Structure equation

Structure equation in the (£©,0) plane

The fundamental equation of classical equilibrium of a highly rotating (sphero-
idal) mass of fluid obeying a polytropic equation of state (1) is given by

aG. .

where G is the gravitational constant, e the eccentricity, and S the angular velocity.
To reduce the foregoing equation to a manageable, dimensionless form, we
introduce the dimensionless variables 0 and £© defined by

1
= : = "+1)g At - i
p= A0N; 1 (1 —e2)"sin *e ( 4nG)g 10> ©)

and wand v by

w = . -V, Vo= Q2 (4)
(1 —e2)asin-1e | GX
Then, Eg. (2) in (E©,0) plane is obtained in the form
W ©
which satisfies the initial boundary conditions
0(0) =1 LI[J_I;() =0 at £0 = 0. (6)
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3. First-order differential equations in (uq,va), (up,vp), (up,vp),
(r@.ys),(20,yp) and (zp,yp) planes

3.1 First-order differential equations in (uq,va), (up,vp) and (up,vp) planes

Let the two independent functions ug and vq be related with the variables
£© and 0 by

*0(B"-u>) b>e'
Va= — " L oves — 4 )
Then, Eq. (5) reduces to its equivalent first-order differential equation:
due Ug Ugq *+ nctovo - 3 _ _ On
dvQ vVQ Ug -f- Vq 1 p «0= ©n —w )
In (r, P) and (r, p) planes, Eq. (5) can be written as
1d( r2 dP\ » -
r2dr \P'SIT drJ ©)
1 d/ rz dp\ (10)
where the dimensionless variables £p and fp are defined by
r=aPfp = Jn+ Vii&A"-1"f, )
and
r=ap@= nX« 1 g (12)

Further, if we define the four independent variables up and vp, up and vp by
equations

7(PNMr-C P2 P P.
wp= JENCPIW) o I YA, (13)
r(p2 »—A?L »w) . rp' , _dp
pl ' VP - p §P - dr) (14)
Then, we obtain from Eq. (5) the following first-order differential equations
dup up \up + apvp —31 { n \ P n+l , 1
dvp vp up dpvwp—1 ' P \n+1/ p*n —Cw' P n+1
(15)
and d PvP- 3
up _ up up+ a - . p .= 1 16
dv0 P up+aPvP- 1 e p—Xw’ p n 1e)
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3.2 First-order differential equations in (20,40 ), (zp,yp) and (zp,yp) planes

The relations between the variables (20,%0) and («0,0) like those used in
the discussion of static polytropic gas spheres are (Chandrasekhar [7])

20 = log{n(0 " - in)} + 210gi0 (17)
and d nonl, dQ n
20 = dig —-1037—A

respectively. In consequence of the foregoing Egs (17) and (18), Eq. (5) reduces to
the form of first order differential equation

zogzé- y- 2- 110 ,20) Vv(Q) + €*e =0, (19)

where

If we further define

@iy *P=&mP, m=-2,
(20)

(i) yp=& =-"mtlé +m'p’ N =ZeP
and

i =L mP. m=-2,
(1) zp 21

-m+1 dp -
“)%=gD= P TP PTE

then Egs (9) and (10) get transformed into two similar first-order differential equa-
tions

dyp i n\ . ® (m)\, :
ypdlp- yp+mzp- U nj N Yo+ U+I1J (mpm2yp)
+ F\'P(tp,zp) - CwF2p{ip,zp) = 0, (22)
where
FiAb>>*p) =
and m

*bl 6>,rp)=e|2" ,
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W~ - Y P+ mzp+ Um2zp- 2myp)- (1- 1)zplyp
uzp Tl Tl

+ Fi p(Cpt zp) + F2iP(CpzZp") = O, (23)
where
FilR(tp,zp) = TRZp(Z™zp)1- *

and
F2tP(~ zp) = -Xwep-m(Czp)l-i.

4. Transformations connecting solutions of polytropic equations
in (U©,v®), (up, vp), (up,Vp) planes
and (zo ,j/0), (zP,yp) and (zp,yp) planes

Dividing the first equation in (7) by the first equation in (13), and using
relations in (3) and (11), we have

Mo _ (1 —e2)3sin le«4rG

(24)
UP e-Knfce
since
dP _ (n + UffALl**©" -0° do 25
dr a®© 1 dtel (25)
. e(n+ K A_l. N
(1 —c2)asin 1e4irG
We find from (24)
W8 = ciup, where G = (1 —e2)asin le «4rG (26)

eR-fc

Further dividing the first equation in (7) by the first equation in (14), and using
relations in (3) and (12), we get

. 1 —edasin le™ 41G
= - @~ T @

because
,_dp_ nA6"-1-0"
N dr a©®
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Hence from Egs (26) and (27), we can easily deduce that

1
ve :.n__plvp<
ve = (28)
VPE(+ ) v

Similarly, using Egs (3), (11), (12), (17), (18) and (21), one may obtain the trans-
formations connecting the solutions in (ze,y©), (zp,yp) and (zp,yp) planes.

From the viewpoint of astrophysical applications, we are more interested in
obtaining approximate analytical solutions of some of the above first-order differen-
tial equations, say, Egs (5), (8), (15) and (16), as given in the following Section 5.

5. Approximate analytical solutions of the structure equations for » = 2

5.1. Approximate analytical solutions of Eq. (8)

We assume a series expansion of Eq. (8) of the form
u®© = 3+ a©ud® + 6gMA+ Cg\g + dOu®, (29)

which satisfies the initial conditions u© —»3, u© —»0 as £© —»0. W ith the help of
Eqgs (8) and (29), we may determine the coefficients a@, 6g,Cq,dq , ..., successively
by equating the coefficients of like powers of v©. Thus, we have

«@="35""@, 6© =-y%1£,(2a£, + 1+ no®©),
ce =-j»e(5a& + 2+ na®), d% =--"{M £ + c”(6a™ + 3+ no©)}. (30)
Now, we may express the function u© as P&dé (2.2) approximant:

_ o 1+ ~"©t'Q + BgVqg (31)

®~ '+ CwO + I?7Sty|’

where
w0 —j a0 "mre> 50 = 3(60+a”Cg) + JIO,

1 N 2 —
rl"‘ _a0n0 —&a®© D= 6 6Cdg (32)
c' ~ K
* * *
A©:®e ~ aecem
Figure 1 shows run of u© with v© for highly rotating (tu = 0.05 and 0.15) and
non-rotating (tu = 0) configurations.
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5.2. Approximate analytical solutions of Egs (15), (16) and (5)

The series expansion of Eq. (15), near the origin (p —»0, satisfying the initial
conditions up —3, vp —*0, is given by

up = 3+ apvp + bpvp ecpVp + dpvp (33)

Fig. 1. Run of u@ with W for the rotating polytropen = 1
With the initial conditions up —»3, vp —* 0, near the origin (p —*0, we obtain the
series solution of Eq. (16):
up= 3+ apvp+ bpv@+ cpvp + dpvp + ---- (34)
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The series solution of Eq. (5), satisfying the initial conditions in (6), can be written

as
0 = 1+ a©fg + £CBO+ Cfq + fCEO+ ... (35)

Corresponding to the above three series solutions up, upand 0 [Egs (33), (34) and
(35)], we obtain the following expressions for Padé (2.2) approximant:

1+ Apvp + BpVp

1+ Cpyp + DpUij, (30)
1+ ApVp + Bpv
ApVp + Bpvi 37)
1+ Cpvp + Dpv*
Fig. 2. Run of tip with vp for the rotating polytrope n = 1
and
p,_ 0 1+ "ef© + [Oe"O (38)

"1+ Cei| +Benn’
respectively.
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Results of our calculations are displayed in Figs 2, 3 and 4, respectively, for
two chosen values of angular velocity (w = 0.05 and 0.15). For comparison, the
non-rotating case (w = 0) is shown by smooth curve (for values of Ap, Bp, Cp,
Dp, ap, bp, cp, dp, A,,, Bp, Cp, Dp, etc. see Appendix 1).

*9

Fig. 3. Run of Up with Vp for the rotating polytropen = 1

s . Critical angular velocity

Spheroidal equilibria would bifurcate at 2= 0» (subindex ‘b’ means bifurca-
tion). More explicitly, we may say that bifurcation (possibility of the two equilibria:
the ‘spheroidal’ and ‘ellipsoidal’) would occur if fij < IMc or equivalently if s < wc
(subindex ‘c’ denotes the critical value), and it does not if W, > we. The equilibrium
is broken at f2c. If the angular velocity Q is increased more and more the matter
would flunge away from the equator, and it would form a thin disk.

From our approximate analytical solution in Eg. (38) we may find that the
value of the critical angular velocity wc is ~ 0.18 for n = 1 polytrope, for which
O —»0at £ = = 4.2976495. This clearly suggests that due to rotation the
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geometrical size £1 is increased by 36.94 % over its spherical shape. This result is
in good agreement with that of Roberts [17] as found by variational technique.

Fig. 4. Variation of density p, measured in units of central density A plotted as a function of

equatorial radius £, for rotating polytrope n = 1. For comparison, cases of non-rotating and

rotating polytropes (n = 1), respectively, rure shown by solid (Chandrasekhar [7]) and dashed
(Roberts [17]) curves

Further, our interest is to calculate small variation Aw (= wc—wp) in angular
velocity for n = 1 polytrope for two chosen values of wp —0.05 and 0.15 (subindex
‘P “means particular) by employing the formula.

we = a~nwp, (39)
where a is the limiting value of 0 when ( is small. In Fig. 5 Aw is plotted with £.
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Fig. 5. Run of Aw = (wc —wp) with ( forrotating polytrope n = 1

7. Conclusions

The present formalism attempts to analyze analytically some structural fea-
tures of the classical equilibrium of a highly rotating spheroidal n = 1 polytrope
which obeys an equation of state: P = Kp1l For this purpose, equation of equi-
librium (2) has been transformed into first-order differential equations in (ue.u®©),
(up.i'p), (*8,¥8), (zp.yp) and (zp,yp) planes (Egs (8), (15), (16), (19),
(22), (23)). Since our previous methods, numerical, variational, perturbation analy-
sis, etc.) would involve mathematical difficulty associated with computational work,
we have derived here simple approximate analytical formulae (Egs (31), (36), (37),
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(38)) in concise form from which the desired value of the physical parameter can
be obtained using even an electronic pocket calculator (without using computer
programs). Evidently, therefore, the present method seems more economical on
computer machine than the previous ones.

Results of our calculations are displayed in Figs 1-5, for two chosen values of
angular velocities, wp = 0.05 and 0.15. Monotonie falls in u© with v@, up with
vp, up with Vp, 0 with 80 and increasing trend in Aw with £ have been noted.
As pointed out in the main body of this paper (Section 6), our present approach,
when applied to bifurcation analysis, leads to yielding the value of critical angular
velocity wc ~ 0.18 which is quite a good approximation in view of the previous
findings (Roberts [17]).

With the help of our analytical formulae in Egs (31), (36), (37) and (38),
one may also obtain very conveniently solutions for other values of n. Our present
approach may find notable applications in the discussion of stability analysis which
has, however, not been included in the present work.
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Appendix 1
Values of the coefficients in Eqs (36), (37) and (38):

Ap =RaP + Cp, Bp = |{bp + apCp) + Dp,
g, _apdp —bpcp T _CcP —bpdp

Ap =bp —opcp
aP:——gtp, bp:—~1ap(2ap+ap+a'p),
cp = - -bp(bap + ap + 2ap),
dp = - —[36p + cp(6ap +ap + 3a),)],
AP —BG+Cp. Bp —{pp + dpCp) +Dp,

C - aPxp~ "PCP
Ap = b2—apq3:
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abhwNE

No

8.
9.
10.
11.

12.
13.

14.

15.
16.
17.
18.
19.
20.

21
22

=--ap b,= --a,(2a, +a,+ &),
G,=-"bpfbal) + ap+2ah,
dP= - jj-[36p + Cli(cafi+ a, + 3a'[

Ag=a0 + Ce, Be —e + aeCs 4- De,
rc:e :aedeA—Obece , no_¢s —Ké"e ,
A0 = 6| —aCc©
. . Aae
a©=' ,\(1' t), k&z 20___1
ce=- —(A'6e + al B,> de = (A'ce + 2aebeB' + agC"),
. i _n(n - D(n - 2)
B" = ! 2 %~ 3l
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The classical one dimensional approach of cathodic glow discharge is extended into
a two dimensional time dependent model. A radial ion transport equation is derived on
the basis of the space charge balance. Axial effects are accounted for in a nonlinear source
term. It is shown that the radial transport of the ions caused by the radial electric field can
be described as a diffusion process with a cathode fall dependent diffusion coefficient. The
effect of the motion of sheath boundary and the displacement current are also incorporated.

The model exhibits all of the well-known macroscopic phenomena of glow discharges:
subnormal, normal, anomal glow behaviour; pressure dependence of voltage current char-
acteristics; (nearly) piecewise constant current density distributions; the effect of absorbing
or reflecting walls; stability limits; subnormal glow oscillations; the lateral spread of glow
discharge.

1. Introduction

Basic characteristics, namely subnormal, normal and anomal regions of glow
discharge between two parallel disc electrodes, in a few millibars of electroposi-
tive gas, with DC supply have been discussed widely (Von Engel, Klyarfeld et al,
Emeleus, Ingold and Vlasov et al [1-5]).

Extensive theoretical and experimental analysis has been done to understand
the steady state behaviour of the cathode dark space and negative glow (Von Engel
and Steenbeck, Emeleus [6-8]). Most of the theoretical works have studied the
one dimensional situation assuming infinite parallel plane electrodes and laterally
homogeneous discharge. The classical assumptions were: (i) the electric field is
linear through the cathode dark space; (ii) in this space charged domain the electron
density is negligible beside the ion density; (iii) all transport parameters and source
densities (ionisation) in the continuum description depend on the local electric field.
(Ward, Neuringer, Davies and Evans [9-12]). It has been shown experimentally that
the linearity of the field is a good approximation (Lawler and Doughty, Doughty et
al [13,14]). One dimensional calculations gave nearly linear field distribution in a
time dependent case as well (Bayle and Perrin [15]).

It is accepted that the ion influx from the negative glow can be neglected in
normal glow while in strongly anomalous glows it cannot (Emeleus [8, 16]).

Assumption (iii) on the transport parameters has been widely criticized point-
ing out that due to the high gradient of the electric field the transport and source
terms cannot depend on the local electric field only. To get beyond the limits of
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this assumption a more detailed set of transport equations for density, momen-
tum and energy of the components, and also equations of electric field has to be
used. The field dependent ionization function is replaced by functionals of distri-
bution functions. Recently Bayle et al [17] have presented such a one dimensional
time dependent model for CO2 glow discharges. To obtain a more correct descrip-
tion of ionisation the Boltzmann equation and Monte-Carlo simulations are used
(Tran Ngoc An et al, Boeuf and Marode, Segur et al, Sato and Tagashira, Carman,
Paulick and Schoenbach et al [18-24]. With these methods macroscopic transport
parameters have also been reexamined.

Regarding the radial coordinate the most exciting question is the normal
glow behaviour, i.e. what mechanisms keep the current density and the cathode
fall constant in a wide range of current. This question is sometimes put as how
the active area on the cathode is stabilized. The first explanations were based on
Steenbeck’s minimum principle. There were attempts to solve this problem by using
equivalent circuitry (Emeleus [16]). Another attempt was based on the focusing
effect of radial field on the electron motion (Von Engel et al [25]). Several aspects
of radial behaviour have been analyzed by studying the lateral spread of the glow
discharge. Applying a voltage higher than the normal cathode fall the edge of the
discharge front propagated on the cathode with constant velocity (Emeleus and Von
Engel [26]). Clearly, the axial effects should be treated simultaneously with radial
ones; normal glow behaviour is a two dimensional phenomenon. Recently Boeuf
[27] has presented such a numerical model based on the usual balance equations,
stressing the importance of the lateral electric field. The model showed some basic
features of normal and anomalous glow.

We see that although the actual glow discharge is a 3D phenomenon, the
results of ID models and theories are able to predict many qualitative features of
the glow. Processes in the axial and radial directions are, evidently, different, viz.
both their spatial and time scales may differ. So it may be worthwhile to make use
of this, applying different approximations in different directions, thus decreasing
numerical requirements and, the more important, easing the physico-mathematical

analysis.

2. The model

2.1. The charge balance

In order to concentrate on the evolution of the sheath itself we make use of
the results of the classical one dimensional calculations and measurements. This,
of course, will simplify the form of the balance equations.

First, on the basis of the general ion balance equation we derive a radial
balance for the sheath charge density (Q). The general ion balance for a changing
volume reads:

;t—J pidV + j> (Ji - piv) mA - Xffdv = 0. (1)
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Here pi is the ion charge density, J; is the ion current density, a is the source density,
and t; is the velocity of the boundary A of the (moving) volume V.

Fig. 1. Schematic representation of the system. The cathode is a disc with radius Ho lying in the
r, 0 plane of the cylindrical coordinate system. D (r,t) is the (moving) boundary of the cathode
fall sheath

The model situation is shown in Fig. 1, assuming cylindrical symmetry. The
cathode surface is a disc of radius Jo. The boundary surface of the cathode fall
region is described by its distance from the cathode as a function of radial position
and time, D(r,t). Applying Eq. (1) to the region with a radius R < RO, and
0 < 2 < D(r,t), and transforming the surface integral using Gauss theorem, we get

p,(r, z) dz + JiZ(r, 0) + Jiz(r, D)+ (2)

id_

. dE
Ardr dz - pi(r, D) dr —o0.

We also made use of the fact that the velocity of cathode sheath boundary is
Since Eq. (2) must hold for any [, the integrand with respect to r must vanish. To
exploit this we define the quantity Q(r, t) as

©)

Acta Physica Hungarica 72, 1992



74 S. HOLLO and B. NYIRI

This is the sheath charge per unit cathode area at radius r at the time t, provided
that the electron density can be neglected. By these the balance equation reads

(4)

Id_

. o NS
rdr g - Jir(r,z)dz- pi(r, D)"j

2.2. The electric field

If we want to obtain an equation for the quantity Q without solving the two
dimensional equations we need further assumptions. These we take from the results
of the classical ID approximation. As the electron density is neglected only ions
contribute to the space charge. So an assumption on the potential distribution will
have a direct consequence on the ion density distribution. As long as the axial
electric field is accepted to depend linearly on the distance from the cathode the
electric potential ¢ is

errD by ol (5)

Clearly, the potential at the cathode (z = 0) is zero, while at the sheath boundary
(z = D) itis the time dependent cathode fall U(t) The axial and radial components
of the electric field are

_ U
E'_D(DB-OZ m

respectively. This z dependence of Ez is supported both by 2D calculations of Boeuf

[28] and by experimental evidences cited above.
Integrating the corresponding charge density with respect to z we see that

2e0U f D dD D d2Db\
D \ +6r dr 6 dr2/ "’ (1)

where £0 is the permittivity of the vacuum. Let us neglect the terms containing
the derivatives, and accept the consequence that our results become less accurate
at rapidly changing D. Thus we get

2e0U

Q= p - (8)

Now, using Egs (6), (8), we express all the terms in Eqg. (4) with the new
basic variables Q(r,t) and U(t).
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2.3. Radial transport of ions

If the ion transport is mobility dominated the radial ion current density is
Jir = mpiEr, with ion mobility p-. Thus the total radial ion current reads

fDTJ 20paU2 dD (n D dD 1 (dD\l , D dD2
Jo " 3D2 'dr\ br'dr 1ovdr) 6 dr2 (9)

Neglecting the higher order terms in the bracket, again:

. 2eoiuU* dD
I Jirdz — 302 ar (10

Substituting D from Eq. (8) it is seen that

tal dQ
dr' (11

2-4- Axial ion current densities

The ion current density at the cathode surface, using Eq. (6), reads

Mr,0)=m (r:0Er(r,0)=$!—- n (12)

We assume that the ion influx from the negative glow is negligible, i.e.

Jiz{r, D) = 0. (13)

2.5. lonisation

For the sake of simplicity we apply Townsend’s formula and assume that the
radial component of the electron current does not contribute to the ionisation. This
is consistent with the neglection of higher order terms to get equations (8) and (10).
So

f D f D
‘./b crdz = “10 JezaT(Ez)dz. (14)
Assuming stationarity the local balance for the electrons is

dJ@ax

dz - Jez<*T{Ez), (15)
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where <*T(E) = Ap exp[-Bp/E] is Townsend’s ionisation function; A, B are mate-

rial constants, p is the pressure.
Integrating Eq. (15) and substituting into (14), it is seen that

odz —Jto (16)

where Jto is the electron current density at the cathode. If secondary emission is
the only source of electron emission then

JO—TYTH0) —72~2 9Ml, (17)

where 7 is the secondary emission coefficient.
Substituting Er from Eq. (6) and D from (8) into Eqg. (16) we get the source
term as a function of U, and Q

" "i=(ep (%)) - (9

where the ‘Arrhenius integral’ ja-rA(x) is defined as
Jiawi(x) (19)

It should be noted that although the particular source term given by Eq. (18)
is based on Townsend’s local ionisation formula, it is generally a functional of the
distribution functions. The distribution functions, however, are macroscopically
determined by the macroscopic parameters Je0, D and U. Thus, our approach is
able to incorporate a considerable variety of ionisation theories.

2.6. Moving sheath boundary term

We have now only one term not discussed in Eq. (4), the last term on the left
hand side corresponding to the motion of the sheath boundary. We set the value of
Pi(r, D) to the average ion charge density at r. Hence, by using Eq. (8) we get

QdU _ &Q
P.(r, Udt dt* (20)
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2.7. The sheath equation

The final form of the radial balance equation (4) using Egs (11), (12), (13),
(18), (20) reads
dQ _ QdU__ *Uld_ f dQ\ _
dt U dt 3 rdr V dr) ~

=utw (TP (~)) -Q@+7m)m ()

The terms in balance equation (21) are well interpretable. The first term is
the usual rate of change of the sheath charge. The second isan unusual term related
to the effect of the motion of the sheath boundary. The third term describes the
radial transport of the sheath charge caused by the radial electric field which is
formally a diffusion term with a diffusion coefficient depending on U. The source
term at r.h.s. includes two processes (as it is clear from its derivation): ions are
produced by volume ionisation caused by drifting electrons, and ions disappear from
the space charge by the ion current flowing into the cathode.

2.8. Boundary and subsidiary conditions

The boundary conditions we chose for Q(r, t) are very simple

W(AO,0 + (1- 0 7 =0 and /ar = 0. (22)
r=R, r=0

We use two values of parameter £. £ = 0 corresponds to the totally reflecting wall
while £ = 1 to the totally absorbing wall.

In the time dependent case the displacement current should be taken into
account as well. Since in our approximation the electric displacement vector (coT?)
at the cathode surface is equal to Q, the current in the external network is given by

, =1 'Q+y)W, T 2r dr+1 (23)

which, in steady state, reduces to the surface integral of the ion and electron current
density.

3. Results and discussion

3.1. Standard form of equations

In order to simplify the discussion, we regard two solutions essentially identical
if one of them can be obtained from the other by a linear transformation of the
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quantities Q, U, I, r, t, p. To reflect this we transform Eqgs (21) and (23) to the
(dimensionless) standard form

dQ QdUu__ U 1d I dQ\

24 Udt eazrdry dr) SUQh
S(UQ) =" ~7exp Q) - 1+7), (24)
= [ J2rndr+ i dQZrirdr
Jo Jo dt
with
Jrt) =@Q+7)e (25)

The quantities in Egs (24) and (25) are related to the real ones as follows:

Rq
71 T
1
P
rreal LT,
Qreal CE -»m (26)
fyed
frel  fdW o 1,
L7Tli
treal FGB «— -

Here L is the unit of length, and po is the pressure independent factor in the simplest
approximation of mobility, that is p- = PolP- Note the definition of o: it is the
dimensionless pressure for a given cathode. The secondary emission coefficient 7
has not been transformed. From Egs (24) and (25) it is clear that this system has
two similarity parameters, the numbers a and 7. From now on we shall use the
notation applied here in Eqs (24), (25) and (26). For the calculations 71 = 2 was
used.

The applied numerical procedure is a combination of Galerkin’s method in
space and a Runge-Kutta based time march. The Q distributions were represented
by a polynomial of order 16. Non-obvious results were checked by order 32.
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Fig. 2. Lines of the source function S(U,Q) in Eq. (24) at different voltages U at 7 = 0.01

3.2. The source function

The solution of Eq. (24) is highly influenced by the topology of the nonlinear
source term S(U, Q). Lines of this function with 7 = 0.01 at different U are depicted
in Fig. 2. The function always has the trivial root at Q = 0, which means that
if there is no space charge, there are, evidently, no processes. If U is low then
S(U,Q) < 0 for all Q > 0. There is a definite voltage Ug = 27.86 when S(U,Q)
has one root at Q = 1.65. At higher voltages the function has two nontrivial roots.
The lower root Q1 decreases while the higher one Qh increases with rising U.

3.3. Steady state results

Steady state solutions have been obtained by prescribing the current. First
we discuss results for the totally absorbing wall, i.e. £= 1in Eq. (22).

In Fig. 3 a series of the steady state voltage-current characteristics is pre-
sented for 7 = 0.01 at various pressures (a). The three different discharge states
can easily be identified. The normal glow range increases with the pressure. The
curves converge to a limit as a (pressure) moves to infinity. Since a is proportional
to the pressure times cathode size (see Eqgs (26)) this limit curve is identical to the
pressure independent characteristics of the infinite cathode.
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Fig. 3. Voltage-current characteristics at different pressures (times radii) a, with 7 —0.01

Fig. 4. Comparison of voltage-current characteristics belonging to 7 = 0.1 and 7 = 0.01
at a = 50 and a = 100

Acla Physica Hungarica 72, 1992
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Fig. 5. Current density distributions over the cathode surface at different total currents, with
or = 50, i.e. “moderate pressure” and y = 0.01. The currents corresponding to the curves from
inside outwards are: / ecr2 = 100, 200, 500, 1000, 2000, 5000, 10000, 20000

Fig. 4 illustrates the influence of y on the voltage-current characteristics.
The normal glow voltage increases with decreasing y, while the shape of the curves
changes but slightly.

The stationary current density distributions belonging to a = 50, i.e. to
the third curve from the right in Fig. 3, are depicted in Fig. 5. Curves from the
third to the sixth from inwards exhibit the typical distribution of normal glow while
the corresponding current changes one order of magnitude. When the active area
reaches the edge of the cathode the current density starts rising, as expected for
the anomal glow.

Reducing the value of a (i.e. the pressure for a given cathode) a qualitatively
different solution is obtained as shown in Fig. 6. The normal glow range is missing,
consistently to the corresponding characteristics in Fig. 3.

The pressure (a) dependence of the characteristics and the Q distributions
can be explained in the frame of the basic balance equation (24). At high pressure
the diffusion term is small, so is the radial loss. At low pressure this term becomes
significant and the radial transport causes the discharge to distribute smoother over
the cathode surface. As the source term S(U, Q) is a independent this increased
radial loss can be compensated only by higher source density, i.e. higher voltage.
As a result, for a < 50, the typical normal glow range is missing.
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Fig. 6. Current density distributions over the cathode surface at different total currents, with
a — 20, i.e. “low pressure” and 'y = 0.01. The currents corresponding to the curves from inside
outwards are the same as in Fig. 5: | ma2 = 100, 200, 500, 1000, 2000, 5000, 10000, 20000

Though the qualitative agreement of the results to experiments is apparent,
we made a comparison to measurements of Klyarfeld et al for argon [2]. The curves
in Fig. 7 are not a best fit. The parameter 7 was determined by fitting the normal
glow voltage, while the rest of the parameters and the ionisation function were taken
from the literature (Ward [9]).

Fig. 7. Comparison of the theoretical curves to experimental results of Klyarfeld et al [2] for
pressures of 6.6 mbar, 3.9 mbar and 1.0 mbar of argon. Parameters and formula for ionisation are
taken from Ward [9]
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Fig. 8. Voltage-current characteristics with reflecting wall. The unstable parts of the subnormal

glow branch of the constant distribution are marked with “o”. Below this runs the subnormal

branch of the inverse distribution, and that of the spot-like one (bistability). Where the inverse

branch approaches the normal glow plateau we find tristability. At the end of the plateau of the

spot the voltage of the constant distribution runs lower. In the anomal range only the constant
distribution is stable, a = 50, 7 = 0.01

We examined the effect of the boundary conditions, viz. the totally reflecting
wall (£ = 0). It is evident that in this case there exists always a constant solution,
namely the solution Q of the reduced equation S(U, Q) —0. These solutions are
necessarily identical to the classical 1D glow model [6,10]. The constant solutions
are, however, not always stable. Fig. 8 presents the variety of voltage current
characteristics belonging to this boundary condition. Starting from a spot-like
distribution at a current | mil — 100 we have solutions very similar to those of
absorbing wall, and have the constant voltage plateau till approximately | ma2 =
104. Here the spot-like solution loses its stability, and the constant current density
dominates the full anomal glow range. Coming back from higher currents the voltage
decreases below the previous plateau, and the constant distribution is maintained.
Thus, here we see two stable solutions. Decreasing further the current we see the
voltage rise high above the plateau, yet somewhere below | a2 = 1000 the stability
of the constant solution is lost. Depending on the type of perturbation the system
reaches either the original, spot-like state, or an ‘inverse’ distribution with the
current density being the highest at the wall. In Fig. 8 the branch belonging to this
inverse distribution runs between that of the unstable (thus non-existing) constant
solution and the branch of the normal spot. In Fig. 9 the three charge density
distributions of the tristable, | ma2 — 1000 current state are presented.
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Fig. 9. The charge density distributions of the three stable states: the spot-like, the inverse, and
the constant distribution taken at the current | a2 = 1000, a = 50,7 = 0.01 (see also Fig. 8)

Fig. 10. The evolution of voltage and conductive current during an initial transient, o = 50,
7 = 0.01, /o *a2 = 1000. The conductive current has been divided by total current To on the plot

3-4- Initial transient

An evolution of the voltage and conductive current (not containing the dis-
placement current) as the system approaches the steady state is shown in Fig. 10.
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While the initial conductive current is low the external current generator charges
the system that behaves now as a capacitor. The rising voltage is accompanied
by steep increase in Q (see Fig. 11), which, in turn, later leads to a breakdown in
the voltage. The abrupt change at the very beginning affects only the core of the
charge distribution (where the source term is positive). Finally the drift spreads
the distribution radially (see Fig. 11).

Fig. 11. Charge distributions during the transient shown in Fig. 10 taken at times 0, 0.02, 0.05,
0.15, 1.0, and infinity

3.5. The lateral spread of the discharge

Applying constant voltage the subnormal glow states showed to be unstable.
The stability of the anomal glow, in turn, at constant voltage is due to the limiting
effect of the wall. Thus on an infinite electrode with the voltage held constant the
discharge spreads endlessly.

For simulation of the experimental situation summarized by Emeleus and von
Engel [26] instead of the cylindrical geometry we used the simple one dimensional
infinite electrode system with voltage generator

ud2Q

s oo SUQ. @)

Due to the infinity of the cathode a could be transformed out from the equation.
In Fig. 12 the evolution of the charge distribution Q is presented. The even
propagation (constant velocity) of the discharge front can be clearly seen. The
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velocity of the discharge front was roughly the half of the average ion drift velocity
calculated at the edge of the curves. The propagation of the edge is a result of two
processes, namely the radial ion drift and the axial effect consisting of ionisation
and surface recombination, represented by the source term.

Fig. 12. The constant velocity spread of the discharge at voltage U = 30. The time elapsed
between subsequent states dt/a = 40, 7 = 0.01

Seeking the solution of this equation in the form Q — f(vt —x) it can be
shown by simple calculation using also Eqs (26) that this phase velocity must be a,
that is pressure independent. This is consistent with the experimental results. The
voltage dependence of the spread velocity is shown in Fig. 13.

Fig. 13. The velocity of the spread as a function of the voltage, at 7 = 0.01
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Fig. 14. Subnormal glow oscillation at different currents | ma2 — 35, 40, 45 and 50,7 = 0.01

3.6. Subnormal glow oscillations

The model gives back this well-known peculiar phenomenon, too [2]. A series
of voltage transients obtained at constant current, and absorbing wall is shown
in Fig. 14. At very low currents the system reaches the periodical state after a
few oscillations. At higher currents the oscillations first seem to damp or (on a
low resolution plot) even to disappear, yet after a longer delay the non-damped
oscillations reappear. At still higher currents these oscillations cease. The ceasing
of the oscillation can be checked by the vanishing of the sign changes of dU/dt. In
the frame of the model this self exciting oscillation is a two dimensional phenomenon
as the checked one dimensional time dependent system gave only strongly damped
quasi oscillations.
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In this paper we determine the parameters of LOC type AlGaAs laser heterostruc-
tures in order to find the reasons of their deficient functioning. The methods of character-
ization are as follows:

- broad-area laser test;

- scanning electron microscopy of selective etched sample;
- contact resistance profiling;

- optical microscopy of an angle-lapped, anodized sample;
- electrochemical C-V profiling.

Reasons for relatively high threshold current densities found by the broad-area laser
test are suggested.

Comparison of results, as well as some advantages and disadvantages of the foregoing
methods are discussed.

In our case the optical microscopy identifies most clearly the origin of the deficient
functioning, the other techniques seem to be inadequate. This result shows the importance
of this simple tool for a quick analysis of the LPE grown laser structures.

1. Introduction

Finding the connection between the parameters and functioning — sometimes
deficient functioning — of semiconductor Iriser structures is an important factor in
their continuous quality improvement. In particular, the most significant parame-
ters are the structure of the device, the composition and doping of the layers, and
the resultant electrical characteristics.

There are a number of reasons of interest in the separate confinement het-
erostructures (SCH) for the construction of laser diodes (LDs) as an alternative to
the conventional double heterostructure (DH). For a low threshold current LD very
thin active layer is needed. For the active layer thickness below 0.1 /nn, however, the
light guiding becomes weak in the DH (i.e. the confinement factor I decreases) and
the threshold current steeply increases [1]. In SCH, in turn, a very thin active layer
is placed “inside” the light-guiding layer (Fig. 2a). Thus, the composite waveguide
consists of three layers numbered in Fig. 2a by 3, 4, 5 (including the active layer
(4)). For a low-threshold LD this waveguiding “triple layer” is designed to reach
the maximum I-value and is typically 0.3-0.4 pm [1,2] or even less in some cases
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[3.4]. Also the Al-contents of all layers has to be carefully controlled to reach the
desired -value.

A version of the SCH is the large optical cavity (LOC) heterostructure, in
which the waveguiding triple layer is thick, in the order of 1 pm [5-7]. For such
thickness the I-factor is smaller leading to the higher threshold current densities.
Simultaneously, however, this appears in the elevation of the catastrophic mirror
damage level, whereby the LOC heterostructures are primarily intended for high
optical power LD-s.

The results presented in this paper concern two exemplary AlGaAs het-
erostructures of separate confinement type, grown by LPE.

In the course of our work relatively high threshold currents have been found
by broad-area laser test.

Efforts have been intended to find out this deficient functioning by the mea-
surement of structural, doping and electrical parameters of the foregoing leiser struc-
tures using the following methods:

- scanning electron microscopy of selective etched sample;
- contact resistance profiling;

- optical microscopy of an angle-lapped, anodized sample;
- electrochemical C-V profiling.

2. Experimental

The heterostructures presented here are of LOC type. They were grown by
LPE process with compulsory squeezing out of melts [8]. The starting temperature
of the growth was 715 °C with a cooling rate of 0.6 °C/min, such that the active
layer was grown in the temperature range of 676-675.75 °C.

Two exemplary LOC heterostructures (referred to further as “HI” and “H2")
have been subjected to some characterization processes, which are convenient for
the quick evaluation of the heterostructure quality. The characterization methods
are described and the results are discussed in the following.

2.1. Broad-area laser test

This is a key test for rejection or acceptance of a heterostructure to further
technological process.

The broad-area test lasers are prepared on a small part of the heterostructure
slice. After thinning it, the p-contact metallization (Ag-Cd alloy) is evaporated
through a metallic mask to obtain stripes of about 60 pm width and spaced 500 pm
to each other. Then AuGeNi alloy is evaporated onto the whole n-side surface and
both contacts are alloyed. Finally bars of such broad-area test lasers are formed
by cleaving. Bars are not divided into chips because of the large distance between
adjacent stripes (lasers). Therefore, this method ensures that a current provided
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by a pin-like probe is confined only to the given stripe in the bar and the current
spreading below contact is negligible.

Light-current pulse (200 ns, 104 kpps) characteristics of the broad area contact
lasers (made from HI and H2) are show in Fig. 1 As it is clear from the Figure,
Jth values of about 2 -r 3 kAcm-2 are rather high (e.g. too high for CW operation).

2.2. SEM characterization of the selectivity etched samples

This characterization allows the measurement of heterostructure layer thick-
nesses and the rough evaluation of their Al-content. Some additional information
can be obtained at this occasion, which is usually accessible with the help of more
expensive methods.

heterostructure 1 heterostructure 2

Fig. 1. Light-current characteristics of broad-area lasers made from Hi (a) and H2 (b) samples
a) resonator length L - 280 pm and width W = 60 pm, threshold current density J = 2.6 KAcm-2;
b) L = 320 pm, W = 80 pm, J - 2.27 KAcm-2

Results of such characterization are shown in Figs 2b-g. For sample prepara-
tion, two parallel bars (freshly cleaved from each heterostructure slice) were etched,
one in the 12 solution (100 g H20, 113 g KJ, 65 g J2 [9]) for 30 s and another
one in boiled HC1 for 45 s. Both of these etchants selectively etch AlGaAs without
spoiling GaAs, resulting in the selective lateral underetching of cleaved walls. This
was followed by the perpendicular cleaving of bars into chips. Corners of the chips
are analysed using SEM photographs. There is a difference in “threshold composi-
tion” (xth) of AlGaAs above which the etchants start to etch. For 12 solution xth is
about 0.20 [10], while for HC1 it is 0.42 [11]. Then the comparison of the results of
etching with both etchants enables one to evaluate x to lie in one of three ranges,
ie. x < 0.25, x G (0.25,0.42), and x > 0.42, which is often sufficient to reject or
accept a heterostructure to further technological processes.
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Fig. 2. a) The configuration SCH (LOC) laser heterostructure (sample HI, H2)

In this way precise layer thicknesses can be obtained, e.g. for HI they are
0.6 /rm for the cap layer, 1.7 and 1.8 pm for p and n claddings, respectively, and
1 pm for the waveguide triple layer. The reversal slopes of etched walls of HI and
H2 are caused by preparation of bars in perpendicular directions.

2.3. Contact Resistance Profiling (CRP)

The CRP [12,13] was carried out on mechanically bevelled samples of hetero-
structures. On the bevelled surface of the sample there is a stripe ofsilver paste with
a gold wire dipped in it. Constant potential (Ups = 15 V) is maintained between
the probe and the stripe. The tip of probe traces along the surface of the sample
parallel with the stripe contact. Simultaneously, the current flowing between the
probe and stripe is monitored by a log-operational amplifier. Its output voltage
is converted by IBM PC/AT into resistance-depth (or current-depth) dependence
of the heterostructure sample. This dependence is the contact resistance profiling
(CRP) record.

The CRP records of samples HI, H2 are shown in Figs 3a,b. To determine
the position of p-n junction two CRP records were plotted for each sample at both
the positive and the negative polarity of Ups. They are marked «s “+” and
respectively.
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H1

12 HCl

H2

Fig. 2. b-g) SEM photos of selectively etched samples HI, H2. The etchants for b, d, f
and c, e, g were 12 and HC1, respectively

CRP is a semi-microscopic method, because the width of the probe trace is
of some microns, while this trace crosses the layers of “magnified” thickness.

The “geometric” thickness resolution of CRP can be defined as the least layer
thickness for which the tip of the probe can be found only in this layer. Easy to

prove that the geometric thickness resolution is

Dg=bcosa +r(l —cosa), @
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Fig. 3. Contact resistance versus depth into the sample, a-b) CRP for samples Hi and H2,
respectively

where b= r-(r2- d2/4)12is the depth of the probe’s trace, r is the radius of the
probe tip, d' is the width of the probe trace, and a is the bevelling angle.

In our measurements, for r = 10 /nan, d = 5 /mi, a = 15 deg we have
b= 0.317. Substituting this into (1) we obtain Do = 0.32 /nn.

The contact resistance is given by

R = Up/I, (2

where | = ¢\ exp(2.303 * c2 * Uop) is the current between the probe and the silver
stripe, ci and c2 being constants of calibration of the log-operational amplifier
(ci = 1.95 *10—42, c2 = 0.889), U is the output voltage of this amplifier.

The relative precision dR/R of our apparatus is given as

dR/R = 2.047 X dUop- ©)

The inaccuracy of the measurement of Ugp (standard deviation) is dUgp —
0.1 —0.15 V (such that dUop/Ugp = 0.01 - 0.05), therefore, from (3) we have
dR/R =02- 03.
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traces of CRP

M

9

b

Fig. 4. Photos of angle-lapped, anodized surfaces of samples HI (a) and H2 (b). Magnification
is about 50

2-4- Optical Microscopy of Angle-Lapped, Anodized Surface of Samples (OMALA)

After CRP recording the angle-lapped samples have been anodized in the
common solution ((5 % water solution of citric acid -f NH40OH; pH=6) + ethylene
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glycol = 1:3); (U =150V, t = 155s). Depending on the thickness and composition
of anodic oxides, the layers have been revealed by their proper interference colours.
The coloured layers were examined using a “Reichert Universal Camera Microscope
MeF”. The black and white versions of the originally coloured photos of HI and
H2 samples are shown in Figs 4a,b with a magnification of about 50. This method
can be also considered as semimicroscopic.

heterostructure t

Fig. 5. Carrier concentration versus depth into the sample Hi measured by electrochemical
C-V profiling

2.5. Electrochemical C-V Profiling (ECVP)

The ECPV method is a fast but destructive method of simultaneous carri-
er concentration and layer thickness determination in a multilayer structure. This
technique is based on the formation of a Schottky barrier between the semicon-
ductor sample and a sufficiently concentrated electrolyte. The concentration of
the electrically active charge carriers at the interface can be evaluated from the
measured capacitance-voltage characteristic of the reverse biased junction. The
profiling of the sample is possible by step-by-step anodic dissolution of the material
under proper circumstances (illumination or forward bias in the case of an n and
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p type semiconductor, respectively), and by calculation of the anodically removed
thickness on the basis of Faraday’s law [14].

In spite of its simplicity and fastness this method has a few disadvantages.
In order to ensure the precise measurement of the wetted surface it should be in
the range of 10 mm2 so the measured concentration profile always represents only
an average value of a macroscopic spot and its usefulness strongly depends on the
lateral homogeneity of the substrate. A measured graded concentration profile at
the side of a layer may either be the consequence of the roughness of the interface
or the real diffusion profile of the dopants. A further possible theoretical limit of
depth resolution of an ECPV profile is the presence of depletion layers in the sample
(at heterojunctions or p-n junctions) because near to these regions the measured
capacitance is a superposition of two capacitances and the cc. curve evaluated on
the basis of the simple Schottky equation gives only indirect information.

In Fig. 5 we present the free carrier concentration vs depth curve of the HI
sample. We observed a p-type region on the top of the sample which contains two
layers with a concentration step. After dissolving 1.7 pm thick material the phase
angle of the impedance changed its sign indicating the p-n junction. The region
under the junction contains at least three different n-type layers within a 1.3 pm
thick region so we identified these layers as LOC region, and the p-n junction is
situated at the upper side of the waveguiding structure.

3. Discussion

The measured results presented in Section 2 allow us some conclusions on the
quality of the heterostructures under consideration.

SEM photos in Fig. 2 show results of selective chemical etching using 12 and
hot HC1 etchants in the left and right column, respectively. Two upper photos
(b,c) and other photos (d-g) concern HI and H2, respectively. As for HI, it is seen
that the composition of both outer claddings (layers 2, 6) are slightly above 0.42,
and the composition of p-type cladding x(2) is somewhat higher than z(6). The
waveguide triple layer (3-5) thickness is 1 pm but the waveguide is asymmetric. The
bevelled remainder of the “lower” inner cladding (5) indicates (see photo b), that
its composition y(5) approaches 0.20, while y{3) is clearly lower. This asymmetry
can somewhat reduce the '-factor value. A small-angle bevel between layers 2 and
3 indicates the presence of the thin sublayer, which can be a consequence of melt
mixing during squeezing out. Of course, hot HC1 does not attack the waveguide
triple layer, so photos b and c¢ show their equal thicknesses. On the contrary, in H2
(photos d, e) the difference of 0.13 pm is seen in waveguide thicknesses inferred from
12 and hot HC1 etching. This difference is presumably caused by a thin sublayer
of x e (0.20,0.42) present at the interface of layers 5 and 6. This arises from the
comparison of thicknesses of n and p outer claddings in photos d and e. Then the
waveguide in H2 is also asymmetric. The step indicating layer 5 (of slightly higher
Al-contents) on photo d corroborates it.
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In turn, photos f, g of the same corners show flatness of interfaces and uni-
formity of layers (smoothness of the etched walls) in H2. This also concerns HI
(photos are not shown), in general, however, it is not a rule in heterostructures
made by LPE [10].

The layers are also clearly represented on CRP records (Figs 3a,b), because
their thicknesses are above or close to the “geometric” resolution of the method
(Do = 0.3 /mi, see Part 2.2). Thicknesses of the 3-5 components of the waveguiding
triple layer are comparable with Do, so they are only qualitatively resolved. The
main part of the waveguiding structure in both HI and H2 is on the n-side of the
p-n junction, which is found as the cross-point of the “+” and ” CRP records.

All the layers as well as traces of CRP probe are shown on the OMALA
photos of HI and H2 samples in Figs 3a and b, respectively. Nonuniformities of
layer thicknesses, wavy-like and sawtooth-shaped perturbations of interfaces are
revealed by these photos.

The doping concentration profile given by ECVP for HI (Fig. 4) is in general in
agreement with the previous design. The boundaries between layers are not sharp in
this profile (the reasons are discussed in Part 2.4). On the contrary, abrupt changes
at the layer boundaries are seen in the CRP records. Moreover, the tendencies
of these changes disagree with those of electromechanical C-V profiles (see Figs 3
and 5). Presumably, this is due to differences in the nature of the measurements.
The C-V method is mainly sensitive to the doping concentration, while in CRP
the resultant resistance depends on concentration, Al-content, carrier mobility and
properties of the contact metal probe with p- and n-type semiconductor.

The actual distance from the surface is inferred in the electrochemical profiler
from the etching time (based on Faraday’s law) and in CRP from the angle of the
mechanical bevel. So some discrepancies can be expected in the evaluation of the
layer thickness using both these methods and the SEM measurements described
above. In the CRP method some error can be caused by a rounding of the bevel
at the surface of the sample: i.e. just in the region of heterostructure layers. The
discrepancies can be seen by comparison of Figs 2 and 5. some underestimation
in electrochemical C-V profiles and overestimation in CRP records are seen in
comparison to SEM measurement results.

In general, however, the CRP and electrochemical C-V profiling results are
convergent. For HI for example, a wavy-like segment indicating LOC area and
a small distance between p-n junction and LOC edge are seen similarly in both
profiles (Figs 3,5).

Concerning the reasons for the relatively high Jth-value obtained in the broad-
area laser test, there are four possible reasons of the deficient functioning which are
potentially observable by our simple methods. We discuss them as entries a-d in
the following.

a) The first reason can be the rather high thickness of the triple-layer wave-
guide, which can reduce the I'-value. The thickness of such LOC triple layer is
far from the optimum value for minimizing Jth [2-4], however, even in high power
lasers with LOC heterostructure of similar waveguide thickness, the Jth value can
be maintained on the level of 1-1.5 kAcm-2 [6,7].
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b) The next possible reason for Jth increase is the compositional asymmetry
observed in SEM photos of Figs Ib-g, however, this cannot sufficiently explain such
high Jth either.

c) One of the most important factors influencing the Jth is the active layer
thickness. Unfortunately, the actual thickness of the active layer is very difficult to
be defined using the present simple methods. This is caused by difficulties with the
extraction of the active layer from the waveguide triple layer, unless the Al-contents
in the inner cladding layers are above 0.25.

d) The last and most considerable reason for the observed high Jth can be the
terrace-like structure of interfaces (and surface) and the resulting diffraction loss
[15]. The terraces are related to a substrate misorientation and the LPE growth
conditions. The presence of terraces is clearly seen on the OMALA photos as wavy-
like (Fig. 4a) or sawtooth-shaped (Fig. 4b) perturbations of interfaces. Taking into
account the magnitude of these perturbations (especially in some parts of both
heterostructures) they can be considered as an important reason for so high values

of Jth-

4, Conclusion

As it is clear from the discussion we applied relatively simple and quick meth-
ods for the qualification of the LOC heterostructures, but these techniques were
applicable for the detection of the simplest and most important sources of the high
Jth value. We found the source of the deficient functioning of the devices in the
poor interface qualities of the heterostructures. It is important to note that these
defects were observable only by the OMALA technique. Neither the SEM nor the
CRP and ECVP methods are adequate to identify the interface perturbations in
the case of our samples.

However, this problem does not concern only the LOC structures, but is com-
mon for all LPE heterostructures, and not sufficiently good substrate orientations.
Our results show the importance of the OMALA technique as a quick reference
method of the LPE structures.

5. Summary

Broad-area laser test has indicated high threshold current density (3th values)
of examined LOC laser structures. A set of characterisation methods have been used
to determine parameters of these heterostructures to find reasons for the mentioned
deficient functioning.

The thickness of layers, estimated Al-contents, contact resistance profiles,
position of p-n junction, doping concentration profile seem to fill the requirements.

The microscopic photos of the surface of the angle-lapped and then anodized
heterostructure samples revealed nonuniformities of layer thicknesses and pertur-
bation of interfaces. These faults have been introduced to the heterostructure by
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epitaxial growth. The high threshold current density of our LOC laser structures
is caused by just the foregoing faults.

Only the optical microscopy of the angle-lapped, anodized samples was able

to identify the source of the deficient functioning.
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TEMPERATURE DEPENDENCE OF GAMMA RAY INDUCED
LUMINESCENCE IN TOLUENE BASED LIQUID
SCINTILLATOR BETWEEN 220 AND 290 K

Faizan-UIl-Haq, M. Z. Butt and S. H. Zaidi

Centre for Advanced Studies in Physics, Government College
Lahore-54000, Pakistan

(Received 26 May 1992)

The fluorescence of toulene based liquid scintillator (toulene + 6 g/1 butyl-PBD +
0.1 g/LPOPOP) has been studied as a function of temperature in the range 220 to 290 K. It
has been observed that under gamma excitation the light output increases with decrease in
temperatme by a factor of 1.43. The data are well encompassed by an Arrhenius relation, in
which the activation energy ofrate process (0.21 eV) is compatible with thermally-activated
diffusion mechanism.

1. Introduction

The organic scintillation counter has proved to be an extremely versatile and
useful instrument for the detection and study of nuclear radiations. A lot of work
has been done to explore the influence of various factors, e.g. solvent-solute com-
position, oxygen dissolved in the solution, addition of wavelength shifter, magnetic
field and temperature, etc. on the luminescence properties of organic scintillators
under excitation by radiations of different wavelengths [1-13]. However, literature
survey shows that data pertaining to the effect of temperature on the fluorescence
efficiency of organic liquid scintillators are very scanty. First et al [1] investigated
the effects of temperature above ambient (300-550 K) on energy transfer from the
bulk material (solvent) to the emitting substance (solute) in a number of organic
solutions under gamma rays and ultraviolet excitation. They found that, in general,
fluorescence reduces with a rise in temperature by a factor which ranges from 1.3
to 20, depending on the nature of both the organic solution and radiation causing
excitation. For low temperatures Seliger and Ziegler [2,3] reported an increase by a
factor of 1.20 in the scintillation pulse height of two efficient de-oxygenated liquid
scintillators (8 g/1 PBD + 2 g/1 POPOP in xylene and 3.2 g/1 alpha NPO in xy-
lene) on reducing the temperature from 303 to 243 K. Later, Laustrait and Coche
[45] studied the temperature dependence of the scintillation pulse height of three
scintillation solutions (3 g/1 PPO, 5 g/1 PBD or 3 g/1 alpha NPO in toluene) with
and without dissolved oxygen, from 313 to 243 K. However, the temperature effects
observed by them were much less than those reported by Seliger and Ziegler [3]. Re-
cently, Faizan-Ul-Haq et al [6] have reported that the scintillation response of liquid
scintillator NE 213 (purified xylene -f naphthalene + POPOP) increases by a factor
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of 1.34 on cooling from 300 to 225 K. The primary concern of this communication
is to report (i) the efTect of low temperature on the fluorescence efficiency of toluene
based liquid scintillator containing 6 g/1 butyl - PBD and 0.1 g/1 POPOP, and (ii)
the mechanism responsible for quenching of the luminescence when temperature
increases from 220 to 290 K.

2. Materials and measurements

To study the effect of low temperature on the fluorescence response of the
liquid scintillator referred to, a vacuum-flask type cylindrical chamber of copper
was constructed in order to keep the liquid scintillator at a desired temperature
below ambient. It had four coaxial walls having space between them. A vacuum
of the order of 10-3 mmHg («10-2 Pa) was maintained between the two outer
walls, whereas the space between the two inner walls contained liquid nitrogen.
This copper cylinder was housed in a light tight hardboard chamber along with an
EMI photomultiplier tube 6255 and a long light guide, the latter being covered with
aluminium foil.

Argon was passed through the liquid scintillator to eliminate and bubble out
the dissolved oxygen, if any. A small pyrex glass bottle, covered with aluminium
foil excluding its base, and containing liquid scintillator as well as thermocouple of
digital thermometer, was first dipped in liquid nitrogen for some time to attain a
temperature of about 220 K. Then it was taken out and placed at the centre of the
copper cylinder along its axis. By this arrangement the temperature of the liquid
scintillator went on increasing very slowly, and for a particular reading, i.e. counts
per minute (regarded as index of light output) under gamma excitation, it remained
constant for a few minutes. The purpose of interposing a long light guide between
the base of the liquid scintillator bottle and the photomultiplier was to eliminate
any cooling effect on the latter.

For inducing luminescence in the liquid scintillator gamma rays from Ra2%
source were used, while the integral counting circuit comprised a quartz photo-
multiplier tube (EMI 6255), preamplifiers, linear amplifier, discriminator of energy
analyser, stabilised power supply and a digital scalar (all ORTEC design). Measure-
ments of light output (counts/minute) were made by keeping the gain of amplifier,
operating voltage of photomultiplier, and discriminator bias of energy analyser con-
stant while temperature was increased from 220 to 290 K.

3. Results and discussion

The points in Fig. 1 represent the measured values of the light of deoxy-
genated toluene based liquid scintillator under gamma excitation as a function of
temperature T in the range 220 to 290 K. It is evident that scintillation response
increases 1.43 times when temperature falls by a factor of 0.76. Figure 2 refers to
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the fluorescence data given in Fig. 1 asa function of T 1in log-linear coordinates;
it is well encompassed by the relation

liov —1 = lgexp(-E/kT), (1)

where | is the count rate (index of light output) at temperature T, Now is the
saturation value equal to 1200 counts/minute, 14 is the pre-exponential factor
equal to 2 x 106 counts/minute, K is the Boltzmann constant and E is the acti-
vation energy of the rate process. The latter parameter is evaluated from the slope
din®cu, —)/d(1/T) of the straight line drawn through the data points in Fig. 2,
using the expression E — kd\n(liow —I)/d (I/T) which is readily derivable from
Eg. (1), and is found to be equal to 0.21 eV.

225 250 275 300
T(K)

Fig. 1. Temperature dependence of the light output | for liquid scintillator: toluene + 6 g/1 butyl
- PBD + 0.1 g/1POPOP under gamma excitation. The error bars represent statistical error £v/J
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[(counts/min)

Fig. 2. Arrhenius plot of the light output parameter liow —1 versus 1/T, where
llot» — 1200 coimts/minute and values of | have been taken from Fig. 1

The decrease in the light output of liquid scintillator consisting of toluene
4- 6 ¢g/1 butyl - PBD + 0.1 g/1 POPOP with increase in temperature from 220
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to 290 K under gamma excitation can be attributed to the change in the mean
free path of a gamma ray excited ion or electron with temperature; thermally-
activated diffusion seems to cause quenching of the luminescence, as in the case
of xylene based liquid scintillator NE 213 [6]. The value of the activation energy
(E = 0.21 eV) obtained from the data given in Fig. 2 and compatible with Eq. (1), is
typical for a diffusion controlled process in the temperature range investigated, and
strongly supports this view. However, this may not be the unique interpretation of
the observations referred to above. One may also seek the origin of the observed
effects in intramolecular quenching due to internal conversion and/or inter-system
crossing.
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Elastic peak electron spectroscopy using a retarding field analyser (RFA) proved to
be an efficient tool for several applications. The advantage of RFA lies in its simultaneous
LEED-AES application, in its large aperture averaging angular effects and in the possibility
of surface analysis with the elastic peak. The difficulty of the RFA is its poor energy
resolution integrating also the background adjacent to the peak observed (elastic or Auger
peak) and producing peak distortion. Spectrometer correction was made by determining
the spectral distribution function of the RFA energy window, using an approach of sum of
Gaussians. Parameters of the Gaussian functions have been determined by decomposition
of elastic peak spectra measured with an RFA Riber OPR-304 on Ag. Ag and Au elastic
peaks at 1 and 2 keV energy were compared with highly resolved spectra obtained with
a hemispherical analyser. Calculated elastic peak spectra exhibited reasonable agreement
with experimental data obtained with the RFA spectrometer.

Introduction and the problem

Elastic peak electron spectroscopy [1] (EPES) proved to be an efficient aux-
iliary method of AES and EELS (electron energy loss spectroscopy). EPES was
applied using a retarding field (RFA) 4 grids analyser [2] for determining:

- the elastic reflection coefficient re(E) of solids [2];
- the inelastic mean free path of electrons [3];
- surface composition [4] of InP;
- In island formation [5] on InP;
- evaluation of EELS [6] on Si;
- evaluation of appearance potential spectroscopy [7].
The advantages of the RFA are:
- high luminosity;
- averaging the elastic scattering of electrons within large angular aperture;

1 The paper is dedicated to Professor Imre Tarjan on the occasion of his 80th birthday
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- suitability for EPES surface analysis based on characteristic maxima of elastic
reflection [24];
- simultaneous structural (low energy electron diffraction) and surface analysis
(AES).
The quantitative evaluation of EPES measurements needs the amount of elas-
tically backscattered electrons collected by the analyser. The measured elastic peak
(Nm(E)), however, is affected by the analyser, in mathematical description:

Nm(E) =\] R(E' - E, Ep)N{E")dE", (1)

where N(E') is the original energy distribution of electrons and R(E, Ep) is the
transmission function (known, too, as response function) at primary energy Ep.
Usually, electron spectrometers are characterized [9] by the transmission function
(T(E)) and AE, which are the response function integrated over E and the full
width at half maximum (FWHM) at a given Ep, respectively. This simplified de-
scription is suitable when the shape of R(E, Ep) is close to Gaussian. Little attention
has been paid to the “line shape”, i.e. real distribution of R(E, Ep). For CMA [10]
(cylindrical mirror analyser), the apparent broadening and possible enhancement of
the elastic peak height were calculated.

The problem of RFA is its poor energy resolution resulting in wide instru-
mental response function [8]. The whole response function is needed to describe the
results of measurement by RFA analyser. Beside the real elastic peak, the adjacent
part of continuous background Nb(E) is integrated resulting in Nm(E). The trans-
mission function with highly non-Gaussian shape may cause distortion or artificial
shoulder of the peak detected. Unfortunately, the background has energy, angular
and material dependencies.

The same effects arise from the wide transmission function in case of Auger
peaks resulting in the distorted Auger peaks detected.

The goal of this work was to reconstruct the elastic and Auger peaks by means
of R(E, Ep).

Experimental method

An RFA analyser Riber OPR-304 (covering the a = 3 —b55° range) was
operated in derivative mode, with small modulation (0.1 V). With the detection
of the first derivative producing N(E), the spectral distribution of backscattered
electrons was recorded at energies at and close to the elastic peak.

The undistorted elastic peak N(Ep) of Au and Ag have been measured with
a hemispherical analyser [10] (HSA) of AES = 100 MeV energy resolution. The
FWHM of the elastic peak is determined by the Boersch width of the primary
electron gun [1]. The elastic peak spectra of Ag and Au have been measured with
the RFA in the Ep = 100 —2000 eV range. Measurements were carried out in UHV
on clean surfaces, produced by Ar+ ion bombardment, and checked by AES.
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The AE, of the RFA was determined from the measured FWHM of elastic
peak. RFA experimental spectra of Ag are displayed in Fig. 1

-30 -25 -20 -15 -10 -5 0 5 10 15
energy relative to primary energy (eV)

Fig. 1. Normalized elastic peaks of Ag measured by RFA with primary energies 200 eV, 500 eV,
1000 eV, 1400 eV, 2000 eV and 2500 eV

Evaluation of experiments

In our previous works R(E, Ep) for a CMA Riber OPC 103 was determined
using Gaussian-Lorentzian approach [10,11]. Calculated and measured elastic peaks
on RFA were compared. The difference of inelastic tail is explained by the different
arrangement of the two measurements (HSA has high incident angle electron beam
while RFA is operated under normal incidence).

Decomposition of elastic peak measured on RFA was carried out to produce
a synthetic elastic peak which can be applied to any energy for the previous tasks.
R(E, Ep) of our RFA was deduced from measured elastic peak by

step 1: inelastic background subtraction;

step 2: deconvolution to the energy distribution of primary electron beam

with 1.2 eV FWHM;

step 3: normalizing its integral value to 1.

It turns out that the response function does not fit to a single Gaussian peak
at energy measured higher than 200 eV (Fig. 2). This is due to the imperfections
of the 4 grid system, observed also by Taylor [12,13].
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Table |
The separated components of an elastic peak measured on Ag; height is normalized
to the highest component; width and position are given in % of the primary energy

Component Height W idth Position
r 100 0.14 0
2 64 0.17 -0.15
3 37 0.22 -0.32
4 21 0.30 -0.52
5 10 0.58 -0.80

1970 1975 1980 1965 1990 1995 2000 2005 2010
energy (eV)

Fig. 2. Ag elastic peak at 2 keV (heavy line) and its Gaussian components (the 5 peaks in thin
line) after decomposition

At 1-2 keV, a sum of 5 Gaussians proved to be adequate.

5
R(E,EP) =¥] Gauss (A,, A4,,C)), 2

1—fr

where the parameters appearing in the parentheses are the amplitude factor (Aj),
the FWHM of a Gaussian peak (5.) and the displacement relative to the primary
energy (Ci). The observed values of these constants for our RFA were determined by
averaging the results of 1keV, 1.4 keV and 2 keV and they are shown in Table I. The
accuracy is better than 3% regarding the smallest (which is the widest) component.
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Below 800 eV, the R(E, Ep) shape is smoothed by the original distribution of
electron beam enabling us to separate only 4, 3 or 2 components. Finally, below 200
eV, one cannot discover more than one component part of the elastic peak detected.
However, the sum of 5 Gaussians defined here is also applicable to fit the elastic
peak measured by RFA at low energies.

The measured elastic peak Nm(Ep) is determined by the original energy dis-
tribution of the backscattered electrons No(Ep,E) and response function according
to (1). The results of a calculation are shown in Fig. 3 and Fig. 4 for Ag and Au,
respectively. The heavy distortion of spectra is obvious. The calculated spectra are
compared with the real spectra measured by RFA.

energy (eV)

Fig. 3. Ag elastic peak at 2 keV measured by HSA and calculated to RFA. The experimental RFA
spectrum is shown for comparison

The agreement between the calculated and measured spectra is reasonable.
The difference in the background is due to the different arrangement used in the
experiments. Primary electron beam incident on the sample surface at 70 degrees
in the measurement with HSA is contrary to the normal incidence applied in RFA
(see [14]).

The evaluation of EPES measurements is based on the peak height, affected
by the background adjacent to the elastic peak. Spectrometer correction is needed.
It is affected by Nb{E) and material dependent. The correction factors determined
by Eq. (2) are applied to experimental results.
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energy (eV)

Fig. 4. Au elastic peak at 2 keV measured by HSA and calculated to RFA. The experimental RFA
spectrum is shown for comparison

Conclusions

Spectrometer correction of the measured elastic peak is based on the shape
of response function R(E, Ep) of the RFA electron spectrometer. R(E, Ep) fits
to the sum of five Gaussians. They are determined from the elastic peak of Ag
measured by RFA and by deconvolution of experimental elastic peak spectra. The
response function is energy-dependent but its parameters proportional to primary
energy. The parameters of Gaussian components (A, amplitude, Bt FWHM, C,
displacement) were calculated for our RFA and shown here. It makes possible to
build the response function valid to energies between 100 eV and 2500 eV. The
process is applicable to any RFA.

Based on the response function, spectrum calculations were carried out to
RFA. A reasonable agreement was found between calculated and measured elastic
peak spectra on Ag.
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One of the difficult problems in the relaxation time approach to the lattice
thermal conductivity is the evaluation of the three phonon scattering relaxation
times [1,2] which have a complicated dependence on phonon frequency and temper-
ature due to the complicated structure of the phonon branch and of the dispersion
in the phonon spectrum. Consequently, the approximated expressions may only
have validity for a limited phonon frequency and temperature range.

By assuming a Debye phonon spectrum (k = u/v) and making several as-
sumptions, Callaway [3] derived an expression for the lattice thermal conductivity
of solids. The success of this model lies in the fact that the Debye approximation
is valid at low temperatures. Using this model, the phonon conductivity of several
materials was calculated [4-7], and good fitting was obtained between the calculat-
ed and the experimental findings at low temperatures. The Callaway model was
modified by Holland [8] taking account of the phonon dispersion. However, he also
used the Debye approximation in this theory, and divided the Brillouin zone into
two regions 0 —\kTnx and |fcmex —kTx. He used two different velocities of the
transverse phonons, while for longitudinal phonons he suggested only one velocity
value. Verma [9] and his co-workers proposed a modification of the Holland mod-
el (known as SDV model) utilizing Guthrie [10] classification of phonon scattering
events. Considering the same classification and including the contribution of normal
and umklapp processes, Dubey [11] proposed an expression for the three phonon
scattering relaxation rate (Dubey model). This model was incorporated successfully
by the present author [12-14] to explain the experimental data of different samples
at high as well as at low temperatures. Instead of using the acoustic approximation
(k = ui/v), which is valid only at low temperatures, Verma et al [15] assumed an
empirical expression for the phonon wave vector as a function of the phonon fre-
quency in order to calculate the phonon phase and group velocities as a function of
the phonon frequency.

The aim of the present work is to test the validity of the Verma dispersion
relation in the temperature range 4-1000 K. The effect of the phonon dispersion on
the lattice thermal conductivity of Ge has been studied by evaluating the percentage
change in the lattice thermal conductivity. This percentage change has also been
studied separately for the transverse as well as for longitudinal phonons. The lattice
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thermal conductivity has been studied in the frame of the Holland model [8], SDV
model [9], and Dubey model [11] of three phonon scattering rates.

Considering the role of the three phonon normal processes, Callaway [3] ex-
pressed the lattice thermal conductivity as

N rQ!T
Ki- Y JO T.<F (x)(v3.i/vi,i)dx’ (@)

where F(x) = x4e*(e* - 1)"2, x = hw/KBT, N = (KB/3*3)(KBT/fi)3, Q, is the
temperature corresponding to a frequency at the zone boundary of the crystal, vg
and vf are the group and phase velocities of the phonon, the subscript i refers to T
and L for the transverse and longitudinal phonons, respectively, rd-is the combined
scattering relaxation time, and u is the phonon frequency.

In order to calculate Vg/v* for the conductivity integral in Eq. (1), Verma [15]
suggested a quadratic dispersion relation in the form

L= (whv)(l + rw2), 2

where K is the phonon wave vector, v is the phonon velocity and r is the dispersion
constant which depends on the crystal structure. The effect of the dispersion on
the lattice thermal conductivity is expressed as percentage change

BA =W I x 100, (3)

where K is the lattice thermal conductivity for r = 0.

The constants and parameters used in the present study are taken from the
earlier reports of Holland [8], Verma et al [9] and Dubey [11] (therefore not reported
here). With the help of these constants and using the conductivity integrals K(R)
has been calculated for Ge in the temperature range 4-1000 K. The results are given
in Table 1. Separate percentage changes in the lattice thermal conductivity of the
transverse and longitudinal phonons are calculated and listed in Table 1l. With the
help of these Tables, one can conclude the following:

1. The percentage change in the lattice thermal conductivity increases with
increasing temperature (30-1000 K). It can be said that the effect of the phonon
dispersion on the lattice thermal conductivity increases with increasing temperature.
This is mainly due to the fact that at high temperatures the phonons of high
frequency are more dispersive. However, there are some discrepancies at the low
temperatures, so a deviation of the dispersion relation, as suggested by Verma, from
Debye phonon spectra has been found at low temperatures (4-20 K). As a result,
one can conclude that the assumed dispersion relation is not valid for low frequency
phonons.

2. At any particular temperature (above 20 K), the percentage change in the
lattice thermal conductivity in the frame of the SDV model is smaller than those
obtained in the frame of other models. This comes from the fact that the SDV model
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Table |
Percentage change in the lattice thermal conductivity
of Ge in the temperature range 4-1000 K in the frame of the
Holland, SDV and Dubey models

T(K) Holland model SDV model Dubey model
4 -1.023 -0.960 -0.961
5 -1.305 -1.147 -1.226
8 -1.996 -1.785 -1.876
10 -2.354 -2.196 -2.201
20 -3.104 -2.675 -2.529
30 -2.174 -2.191 -2.099
40 -0.349 -1.965 -1.253
50 1.561 -1.855 -0.138
60 3.238 -1.673 0.879
70 4.621 -1.295 1.611
80 5.751 -1.000 2.324
90 6.688 -0.750 2.880
100 7.483 -0.537 3.353
200 12.046 0.362 5.441
300 14.071 0.607 5.988
400 15.020 0.726 6.209
500 15.507 0.796 6.320
600 15.781 0.844 6.384
700 15.952 0.875 6.419
800 16.064 0.901 6.442
900 16.140 0.921 6.456
1000 16.193 0.937 6.462

only includes the effect of the three phonon umklapp processes in the range 0—kmex
for both the transverse and longitudinal phonons. At the same time the Holland
model does not consider the contribution of the three phonon umklapp processes
in the range 0—  ax for the transverse phonons, and in the range 0 —knax for
the longitudinal phonons. In other words, the contribution of the three phonon
unklapp processes is one of the factors which are responsible for minimizing the
effect of dispersion on the lattice thermal conductivity, so it is more realistic to use
the SDV model of the three phonon scattering relaxation rate. The reverse nature
is true at low temperatures (4-20 K). The original cause of such kind of variation
can be explained by considering the role of the three phonon umklapp processes
which seldom happen in the low frequency region (w < uq). We must state here
that the Dubey model includes both three phonon normal and umklapp processes
in the same expression.

3. For longitudinal phonons, the percentage changes (% Ki(R)) in the frame
of the Holland model are zero. Similar results have also been obtained for other
models at low temperature (below 30 K). This can be attributed to the value of
the dispersion constant for the longitudinal phonons in the range 0—{fcmax (r = 0)
(For more details see [8,9 and 11]).

4. The studied sample, Germanium has a very dispersive transverse acoustic
phonon spectrum, which is similar to the findings of previous reports [16,17]. But
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Table Il
Percentage change in the lattice thermal conductivity of transverse and
longitudinal phonons of Ge in the temperature range 4-1000 K in the
frame of Holland, SDV and Dubey models

T(K) % KT(Ry % KL(RY
Holland sbv Dubey Holland SDV Dubey
model model model model model model

4 -1.32 -1.31 -1.31 0 0 0

5 -1.67 -1.57 -1.57 0 0 0

8 -2.57 -2.25 -2.22 0 0 0
10 -3.06 -3.01 -3.00 0 0 0
20 -4.49 -4.92 -3.89 0 0 0
30 -3.72 -4.77 -2.86 0 0 0
40 -0.68 -4.03 -1.44 0 0.04 0.15
50 3.28 -3.36 0.18 0 0.18 0.71
60 9.92 -2.81 0.86 0 0.48 0.11
70 11.73 -2.38 1.72 0 0.78 1.32
80 13.69 -2.03 2.42 0 1.17 1.64
90 13.02 -1.74 2.99 0 1.60 1.04

100 13.92 -1.51 3.47 0 2.00 2.44

200 16.09 -0.47 5.52 0 3.88 2.19

300 16.31 -0.15 6.06 0 4.32 4.52

400 16.37 0.01 6.28 0 4.49 4.62

500 16.40 0.10 6.38 0 4.57 4.72

600 16.41 0.16 6.45 0 4.62 4.73

700 16.41 0.20 6.50 0 4.66 4.74

800 16.42 0.24 6.53 0 4.66 4.76

900 16.43 0.27 6.53 0 4.67 4.78

1000 16.43 0.28 6.54 0 4.67 4.83

o K, - K*éﬁ({g)’f’.i. X 100

from Table Il it can be seen that the transverse phonons of the SDV model are
exceptions, due to the presence of umklapp processes in both class | and class Il
events for longitudinal phonons, which reduce the effect of dispersion.

5. Germanium has been chosen in this analysis because of its very dispersiv
phonon spectra [8].
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BOOK REVIEWS

Interaction of Charged Particles with Solids and Surfaces
A. Gras-Marti, H. M. Urbassek, N. R. Arista and F. Flores (eds)
Proceedings ofa NATO Advanced Study Institute on Interaction of Charged Particles with Solids
and Surfaces (Alacant, Spain, 1990), NATO ASI Series B: Physics, Vol. 271, Plenum Press, New
York and London, 1991, pp. 716

This is the first book on the subject which has been aimed at offering a tutorial intro-
duction of comprehensive level into the topic of interaction of charged particles with solids and
surfaces. The concepts, theoretical tools, and experimental techniques and results presented in
these Proceedings are of interest to a vast interdisciplinary community of scientists and engineers.
For example, researchers involved in surface physics, material sciences, ion implantations and so
on will find in this Volume of NATO ASI Series a sound introduction to the field of charged
partide-surface interaction.

This book covers theory, experiments, and applications of the stopping of charged particles
(ions and electrons) in matter. The lectures have been classified into three categories: main
stream lectures, invited lectures and contributed papers. Within each category the topic has
been divided into the following main chapters: stopping of ions, stopping of electrons, low energy
phenomena, and applications. Main stream lectures include: dynamicalinteraction ofcharges with
condensed matter (F. Flores); density functional theory of stopping power (P. M. Echenique and
M. E. Uranga); statistics of charged-particle penetration (P. Sigmund); accelerators and stopping
power experiments (H. H. Andersen); electron spectra in solids (R. R. Ritchie, R. N. Hamm,
J. C. Ashley and P. M. Echenique); low energy ion penetration and collision cascades in solids
(H. M. Urbassek); interaction of low-energy ions, atoms and molecules with surfaces (W. Heiland);
desorption induced by electronic transitions (R. A. Baragiola and T. E. Madey).

The volume is recommended to advanced researchers as well as beginners who are working

in solid state and surface pysics.
B. Apagyi

P. N. BUTCHER and D. Cotter: The Elements of Nonlinear Optics
Cambridge Studies in Modem Optics 9
Cambridge University Press, Cambridge 1991, £ 16.95, US$ 29.95

This book is the newest volume of the series “Cambridge Studies in Modem Optics” which
series deals with various fields and subjects of today’s optics, all of them having a large amount
of interest. In this way since nonlinear optics is also a basic part of recent research and practical
applications it has a good place in this series. Regarding the large number of lasers and nonlinear
elements used in science and technology, the need for a basic knowledge in the field is becoming
more and more important. The book has the aim of presenting basic, mainly theoretical knowledge
in the field of nonlinear optics starting from the basic principles and this aim is well reached by
the authors.
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The first chapter starts with the origin of optical nonlinearity, This is presented in a simple
straightforward way thus giving a firm base to build further the more complicated theoretical
descriptions. This is followed in the second chapter by the necessary fundamental properties
related to electromagnetic waves while the third chapter gives the basic concepts of the quantum
mechanics used. The semi-classical description is used in the book by the authors in which the
electromagnetic field is treated in a classical manner, while the material properties are treated
in a quantum mechanical way. The fourth and fifth chapters give detailed knowledge on the
susceptibility tensors and symmetry properties which are both important for the understanding
of nonlinear optics. Chapter six describes resonant nonlinearities, the last three chapters deal
with wave propagation in nonlinear media, dynamic optical nonlinearities in semiconductors and
optical properties of artificial materials.

Usually, it is difficult to write a theoretically oriented book for non-specialist readers. The
authors have succeeded, however, to explain all basic physics in a clear way without losing the
base showing the origin of results and the way they are obtained. The chapters dealing with
semiconductors and artificial materials, the latter including quantum wells, give the book a real
modem character.

Although the book is well written, well organized and its content is easy to follow in itself
it does not give a complete survey of all aspects of the very broad subject of nonlinear optics and
applications. This was not the authors' aim, however, and they admit that the book is really useful
as a theoretical base for other published books including experimental and practical aspects of the
field. The book is recommended for graduate students of physics and electrical engineering and
also for scientists and engineers working in this field. For research workers in the field the book
is considered to be a basic reference for fundamental formulas and explanation of basic physics
leading to these.

To summarize the book is an enjoyable and useful reading and is particularly useful when
it is in hand together with other reviews including the more practical sides of the field.

M. Janossy
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In the concept of this book spacetime is the fundamental notion;
the points of spacetime are structured with the assumption of
absolute time and absolute velocity of light resulting in the non-
relativistic and special relativistic case, respectively. This gives the
possibility of developing both the non-relativistic and the special
relativistic chapters along the same notions: world line, observer,
splitting of spacetime to space and time, reference frames, splitting
of classical fields to spacelike and timelike components, the
symmetry groups of spacetime (the Galilean and the Poincaré
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through which the reader can clearly understand the connection
between the traditional way of thinking and the new way of
handling the problems presented in the book; the well-known
special relativistic paradoxes are treated in detail. In the general
relativistic case, only the basic thoughts are expressed.

The mathematics involved is rather simple and it is summarized in
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THE CORRECTION TERM IN A DISLOCATION
CONTAINING LATTICE

A. H. Awad

Department of Physics, College of Education, University of Basrah
Basrah, Iraq

(Received 23 January 1992)

The correction term of a sample having dislocation (strain field as well as core) has
been studied at low temperatures on the basis of the Callaway integral as well as in the frame
of the generalized Callaway integral. Assuming four types of the scattering mechanisms,
viz. boundary, dislocation, point defect and three phonon, analytical expressions for the
correction term are given under two different conditions. The expressions derived give
results in agreement with the findings of previous works.

1. Introduction

Callaway [1] was the first who distinguished the three phonon normal pro-
cesses from the three umklapp processes. He derived an expression for the lattice
thermal conductivity of an insulator as a sum of two parts. The first one is at-
tributed to the combined scattering relaxation rates, whereas the second part is
very complicated known as the correction term (4A') due to the three phonon
normal processes.

Kosarev et al [2] and Parrot [3] have published a generalization of Callaway’s
approach to thermal conductivity when different polarizations are taken into ac-
count. Later on, the generalized expression was modified by Dubey [4] introducing
the dispersion of phonons.

The lattice thermal conductivity due to the correction term has been studied
in the frame of the Callaway integral as well as in the frame of the generalized
Callaway integral [5-11], and it is usually found that the contribution to the lattice
thermal conductivity arising from the correction term is negligibly small. (Excep-
tions are solid He [9], LiF [10] and solid HD [11]). These studies are confined to
samples of perfect structures only. In none of them was an analytical expression ob-
tained for the correction term in a lattice having dislocations (strain field and core).
Recently, the present author [12,13] studied the contribution of the correction term
for a sample containing core dislocation in the frame of the Callaway integral as
well as the generalized Callaway integral. It was found that analytical expressions
are very necessary to avoid the complicated integrals of the correction term.

The aim of the present investigation is to obtain a simple analytical expression
for the correction term on the basis of the Callaway integral and also the generalized
Callaway integral at very low temperatures.

Acta Physica Hungarica 72, 1992
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124 A. H. AWAD

2. Analytical expression for A" in the frame of the Callaway integral

According to Callaway [1], the lattice thermal conductivity of an insulator
can be written as

K = cOL1+ AK, (1)
where

AA' = Ol 2/13, (2)

r&D/T
Li = iTN + TR 3)

r&D/T
Li = - 4

-re D/T
A3 = (5)

@ = (Kb/2u2/) (Kb T/ft)3>A (x) = xdex(ex —I)-2, X = ftw/A'BT, W is the phonon
frequency, QO is the Debye temperature of the sample, V is the velocity of the
phonon, r~1is the three phonon normal processes scattering relaxation rate and
Tpl is the total scattering relaxation rate due to all momentum nonconserving
processes. The expressions used for the scattering relaxation rate can be derived as

TRI = TB1+ Tpll + TdJ + Tdc + TUI- (6)
r-1= Au#éd = Dx4, ()
Td,x= a'u= aix> ®)
Ti'/ = du8 = cx3. ©)
rr1= BuZls= b2, (10)
ryl= R'w2T3 = 62&2, )

A = 6i+ & (12)

where Tg1, r«l, ™1, tJ4 and ry1 are the scattering relaxation rates ascribed to
boundary [13], point defect [15], strain field dislocation [15], core dislocation [15] and
three phonon umklapp processes [1], respectively. A, a', d, B and Blare scattering
strengths of the respective processes.

The analytical expressions have been obtained in the low temperature ap-
proximation under two different conditions, i.e. tJ4 (rjg1 + Tdc) and re 1~

iTde + Td,1)-
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(A) Td1» (V + Tdc)

For this case, the simplified forms of F2 and L3 can be written as

Li - b;:‘ [L- G,Fi- G3F*- GiFt- G4F7], (13)

L3=Dbih [1- A~ F 7- G\F™ - 2G!G4FG- 2G3G4FH - |* + ~ |g2G4F8

~i2 ip on * -»_ s~ + 2 i +
— 0y —ZlxaLrare — P — cpde (2+P) G1G3 Fgo
1+P) 1+ P)

(1§iA):F 1, (14)

where Gi = B1l/ab G2= F/ax, 3= F>/ab g4 = clab F = 6x/62, F™ = Im/In,

mand n= 1 2,3,..., etc. and the Fs are integrals which can be expressed as

r&ol/T
Ir= xrex(ex - 1)~2dx,
Jo

where r —2,3,4,..., etc. At very low temperatures, the upper limit of the integrals
can be taken as infinity. Thus Ir can be evaluated as

fOO [ole] l
Ir— Xrex(ex - 1) - 2dx = r\y2-L-. (15)
Jo =10 f

It is observed that the contribution of the three phonon umklapp processes scat-
tering relaxation rate is very small compared to to 1 and it can be ignored. A
further approximation can be made by neglecting the lower order term and then
the expression for AF is given by

AK = COPXNFL 1 oGxFi - 2G3F® - 2G2FB+ G2FE- 2G4FT]  (16)

(B) Tgl» (rdcl + r"1)
Applying this condition and evaluating (4) and (5), we get

Li =biTgh [l - ClgFg9- a\TBFI —Dtb Fd0- Etb Fq], (17)
L3= Me [l - M bF8- c2TgFR2- 2aicrBFR° - 2Dctb F$2- afr*F*

- (F + McrjjFgll- 2axDrBF6é - (F + 6r)«"2F®- D2t2Fa4

- (F + 62)Dr2rgl2- F62t2FA0Q] . (18)

Acta Physica Hungarxca 72, 1992



126 A. H. AWAD
Using these equations, AA is expressed as

AA = cooxr2h [1- 2ctBFg- 2<urBAG - 2o «» AA0- &irBF§] . (19)
With the help of Eg. (15), one can get an expression for OA' as follows:

AA' = 720co6ir2[1- 1008crB- 14alts - 10080DrB + 566irB]. (20)
In the absence of strain field dislocation, AA' reduces to

OA =cob”h [1- 2ctbFIl - 2DrBFED- fe~F §], (21)

which is similar to that obtained by Awad [12] for a sample having core dislocation

in the frame of the Callaway integral.
The expression for A" will be

OA = cobble [L- 2E>r2F@0- b.rlIFf] (22)

for a sample without dislocation, which is the same as that obtained by Dubey [8].

3. Analytical expression for JA in the frame
of the generalized Callaway integral

The generalized form of the Callaway integral of the lattice thermal conduc-
tivity can be given as

e./T

A=c E i 1».) / (W* *+ 1) + Rsx'Y{\ + 3R,x2)-1F(x)dx + AA

(23)
where G = AB/67r2ns)(ABT/fi.)3, A is a constant depending on the dispersion
curve of the sample, suffix s represents the mode of phonon and all other terms
have their meaning as in Section 2.

According to Dubey [4], A" can be written as

OA =d [2(Ti + T2) + (L\ + 1 2]2/ [2(T3+ T4) + (E3 + L4)\. (24)

It was found that the contributions of T2, T4, T2and i 4are very small in comparison
to the contributions of 7\, T3, L\ and T3 due to their integration limit. Thus A
becomes:

OA = d [(2Ti + Li)2/(2T3+ L3)] , (25)
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where

tnhe(n/t + o) U1+ Rix23F(x)dx, (26)

tnttr t(gve+raT) _1(1+ Eix24(l + 3Rix2)4F(x)dx,
27

t\ (tn\ + TA,i)_1(1+ R3X2)3F(x)dx, (28)

enmern (enn + een)-4 1+ AX4A(I + 3A3x2)4F(x)dX.
(29

@’s are the characteristic temperatures, suffixes T and L represent transverse and
longitudinal phonons, respectively. The expressions used for the above stated scat-
tering relaxation rate can be expressed as

—B\w2T 3 = hdx2, (30)
T\ =B2u2T 3e-eD/aT = 64x2, (31)
rAT -B3"T4 = 65, (32)
tuk =R4wi4e_OD/o,T = bbx, (33)

where B\ and B2 are the three phonon normal and umklapp processes scattering
strengths, respectively, for longitudinal phonons, B3 and B4 are the same for the
transverse phonons, a is a constant [15] and other terms have been defined in
Section 2.

As stated earlier, our interests are confined to low temperature only, therefore
our study is limited to two approximations.

(A) tb 1» (r/\l+ t) )

In the framework of the above approximation, the integrals T), L\, T3and L3
can be given
Tis o [XI(R) - A1BA° (N - AsBAUYOX) - (A3+ A5 BAB(AL)] ,
(34)
I [A8(fi3) - AIT|A9(A3I) - H2FAOX}2(R3) - 1/4F@X 10(R3)

Wi
-H 5F2X 3(R3)\ , (35)
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T3= “T“t n7(Ri) - ji®  FEY?(Ri)- HiF&7iRi) - 2HIHSFOY (R1)
\"

- 2HIH2Fi2YA\R 1) - I+ C L HIH3FAYa (R1) - HIF'YB(RI)

- 2592950 10YMR(A1) - N £ |1 23950 7YB( 1) - HIFfYTUR,)

(2Y A )u TT 1TI012/d \ HI S
(1+P)h203*5 yioM1)_ (g 4 o AW TUT) (36)

13=A[Y B(A3)- . 4598Y8L0(ST3) - HIF™Y™{R3)
Li (i+P

i)

_ 2HIHBF™YI(R3) - 2HIHZFAY E(Ra) - g+f1i))ﬂ1ﬂ4ymyn8(u3)
+

- A29«yamn($I3) - A5F8Y8 (A3)- H2HDFI1YR\R 3)

@ + HI) pacPRNRS - TRRMYIRY - @+ A) arieiidr g
@+ tt) (I+ ")
A |

(37)

where

*T(0O = 1+ 39,AEL + 3A2A£+2+ A?FE+4,
YE = 1+ 7TRiFv+ 1842C + 2+ 22RfFTH4 + 7A4A£+5 + 3A5A£+8,
Hi —cmB, H2=pb+«w, H3=(5+ B)B, a4 =n3T8,

Hb = axB, P'=

At low temperatures, the contribution of the three phonon umklapp process
scattering relaxation rate is very small to the combined scattering relaxation rate
and it can be ignored in the calculation of OA'. Neglecting #J1 as well as other
lower terms, A" can be approximated to

JA —3ci b3TB(2\ 4 Z2)/(14-al2)vsZ3, (38)

where
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Z. =N. Ni- 2H.Fi(l + ~ F |) - 2A5FB(1 + g -FB)- 2A2F9(1 + ~ F 90)
-265rBFE(I + 9231 (39)
6 .
70=bRxFI (1+ g F 1+ Brnc@+ R ErE«) - Fje L+ FoF,

+~Fi(1 +FIOF9) + "-c'FloHI +ifFr) + — -g'ftFNIQ\ 4 F&F\X

3
- A5F8jl + FIFt+ ~ F 501+ FIFI) + ~c'F |(I + FBF 8

+~-c'FBF9(l + F7F8)} - H2FU |l + FTF9+ ~ F %

(1+ FIfFg10) + ~Cc'F /A1 + FOF®) + i*c'FIF/~A| + F8219)) - O ~F 8

s 53 . 2333
{1+fFfB + b m# és + 4a + C'N7/,«0)

+7  dF8(1+ FgFg°) T (40)

Z3- N2- b5rBF*(I+~ F 8+ 7R.FI {(1 + ~c'F 8)- f5r0F8
(I+~"c'Fgl0}. (41)
Al=1+"F B Ar=1+ *"F B, c = a=Y and?= & With the help of
Eg. (15) and neglecting the dispersion of phonons, Eq. (38) reduces to
OA' = 960cib5«rITi[l - 924c7b - 13.3a!Te - 9072FrB - 130.565th]. (42)
In the absence of the strain field dislocation, we get

[A = 960ci65k71¢l[1 - 924crB - 9072F>rB - 130.5b8TE]. (43)

A similar expression was obtained by Awad [13] for a crystal having core disloca-
tions. The expression for A reduces to

AA = 960CIM I~ [ | - 9072F>7p - 130.565rB] (44)

for a sample having perfect structure, which is similar as the one obtained by
Dubey [11].
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B) T > (T*1+ 1))

The terms 7\, L\, T3 and L3 can also be approximated as

Ti = [AKal) - GAXURX) - G6A|(Ai) - g3fdx?(ai)
—GAF4A8(PI)] , (45)
Ir = ; [7B(a3) - GiFEX%(R3)- G3F*XI°(R3)- G4F 7A?(A3)
i4 X
-G 5F*XI(R3)] , (46)
Ts= (- TTAGeYArR,) - GfFgAPIi) - 2G1G4AFBy®B(Ai)
4] ('+p)
C 2GIG3FYB(AD - N A~ G enryf(4l)- GFHYH (Pi)
- 2G3GAFdOyMB(Ai) - "~ i|~ G 6GAFFyB(Ai) - GIFAYAIR,)
(47)
T  Wle . Pl
T3= —5— M8(i3) - C5PEYR(fis) - G?PayH(P3)- 2G1G4PEy7 (P3)

- 2G\G3FcYg°(R3)- [] F-f~ G1G5y®(P3) - GIF}OYtf(Ra)
- 2G3G4F"Ytf(R3)- gli JF”‘_%g4G5F9YQJ(R3)— GIFPYU(R3)
+ Pl

2+ Pi) on S Eivie(rs 48
(1+Pi)GBG5P6 102(P3) aepiy i°(R3) (48)

where G5 = (63 + 64)/a4 and G6 = (65 + b6)/ai. Neglecting the lower value terms,
the expression for OA' can be simplified as

3cib5/4P8 S\ +S2
= 4
AA a4l +al2). [ s3 \ (49)

where
Si = N3 N3- 2GiF4(1+ " F 4)- 2G3P&Z(1+ " P B)- 2G4F4(1- " F 7)
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2,3
2G7(1+ (50)

52=6B 46 1+ ~ + ~C'Fl+~"c'F 8F7- GiIF6{l+ FBF3
+ N 1TF|(1 + FBF8)+ "c'F B(l + F3FG)+ ~ ¢ 'F #(1+ F3F&)}
- G3F®(l + FBF4 + ~ F |(| + F9F8) + ~ Cc'FA40(1 + F4F M)
+ A cF&FA0(1 + F8F7)J - GAFB11+ FgF® + ~ F &(I + qur,g)
+ "c'F 9l + F&FT7)+ ~ ¢ ' F&F9(1 + FFFY)} - G712 + ~ F

1+ cFgRg)+ "F «d +cFgF8) +i”!c'F4(l + FBFB) (51)

$3=N2- G6(1 + 3% d) + TFIFF {1+ U-CF* - GT(1+ ¢ g > )
* > 52)

NM3= 1+ -Tjl-Ff and G7= b5ai.

Neglecting the dispersion and with some mathematical manipulation, Eq. (49) can
be expressed as

AK = 31.86cifcsi>71aj~2 [l - 0.45rgVai ~ 76.7c/ax- 572.5D/ar - 3.42i%ai] .
(53)
In the absence of core dislocations, AK will be:

AK =ZIMcibsv”*ai2[l - 0.451p7«i - 572.5D/ax- 3.4265ai] * (54)

This is similar to an expression obtained by Saleh et al [16].

4. Discussion

In the frame of the Callaway integral as well as the generalized Callaway
integral and assuming the additive nature of scattering relaxation rates, analytical
expressions for the correction term are rederived for a lattice having dislocation
for two different approximations. These expressions are very simple and easily
computable in comparison with the complicated phenomenological expressions given
by Callaway.
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With the help of Egs (16), (20), (42) and (53), it is obvious that the ex-
pression of AK is mainly governed by the three phonon normal scattering pro-
cess. At the same time, with the help of Egs (20) and (42), it is clear that for
Tgl {r~d + T4 ), the correction term shows a 6arTa dependence. By examining
Egs (16) and (53) it can be seen that for r~d (Tal+ Td), AK oc 6gr/af, which
suggests that the correction term is mainly governed by the three phonon normal
process and strain field dislocation scattering relaxation rate. These results obtained
show similarity with the previous findings of earlier workers for the correction term
[4-6, 11-13, 16].
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The generalised exponential potential and the Born-Mayer potential are employed
to describe the paired and the unpaired interactions in the hexagonally closed pack (hep)
metals. These forces are found to explain simultaneously the phonon dispersion and the
elastic behaviours of the metals like Scandium (Sc), Zirconium (Zr) and Magnesium (Mg).
The input data for lattice constants inverse compressibility and cohesive energy give rise
to such results on the said behaviour of the metals which compare satisfactorily with the
experimental values.

1. Introduction

Various phenomena such as electron density dependence [1] of the central
pairwise forces, charge transfer [2] mechanism during lattice excitations, multiple
scattering [3] of electrons by ions, the existence of Cauchy’s discrepancy in elastic
constants of various orders, the disagreement of experimental findings from Warren
[4] sum rule and the substantial concentration [5] of electrons along the bonding
directions suggest the important role played by unpaired forces in determining the
various properties of the hexagonally closed pack (hep) metals. The third order
perturbative studies [6- 8] dealing with these forces held out clearly the message of
enormous computational efforts, cost and time and suggest the real space analysis
of these forces. For the correct ordering of dispersion mode, the dynamical matrix
element [£>12(5,11)] should not vanish. This constraint is violated by the Keating’s
forces [9] which are used [10] to explain the behaviour of the unpaired forces. The
studies due to Sharma and Sinha [11] also suffer with the deficiency of using a large
number of parameters possessing the least bearings on the physical nature of the
forces.

The pseudopotential studies [12] invariably involve the attractive pairwise
forces to explore the lattice dynamical behaviour of the hep metals. The phe-
nomenological models [13] employ a large number of input data to evaluate the
parameters. These studies either ignore the consideration of lattice stability or
observe it extraneously.
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We have developed a model, which accounts for the paired forces through a
generalised potential [14] comprising the attractive as well as the repulsive interac-
tions. The exponent to this potential modifies the potential for the exchange and
correlation effects of the electrons. The unpaired interactions are expressed through
the Born-Mayer potential [15]. The procedure adopted to evaluate the defining
parameters incorporates the basic criterion of the lattice equilibrium. These inter-
actions, requiring only four input data for their definition, are deployed to predict
simultaneously the phonon energy and the elastic constants of various orders in the
hep metals scandium (Sc), zirconium (Zr) and magnesium (Mg). It is credible to
note that the theory based on the present lines has displayed its efficacy in explain-
ing the elastic and lattice dynamical behaviour of cubic metals [16-20]. The present
investigation therefore, rightly attempts to explore the prospect of a unified theory,
which could rope in the said behaviours of hep metals, too.

2. Formulation and computations — the paired potential

The generalised form of the exponential potential [14] comprising the attrac-
tive and the repulsive components finds the form

®d2(r;) = D[2(m- D]-1S ir exp(—marj) —m/?exp(—arj)], @
i

where
R = exp(aro), @]

and a, D and ro are the defining parameters of the potential. This pairwise potential
extends to seven nearest neighbours of the hep metals and requires the input data
of the lattice constants, the inverse compressibility and the cohesive energy for its
complete definition. Table | shows the input data along with the computed defining
parameters for the said metals.

2.1. The unpaired potential

The Born-Mayer potential [15], i.e.
®d3(R) = -b exp(—* ) &)}

is employed to couple the atoms lying in the meridian plane of the hep metals. The
parameters b and g of the potential are evaluated by the knowledge of the total
volume and the Cauchy’s discrepancy in the second order elastic constants.
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Table |

Input data and computed defining parameters for Sc, Zr and Mg

Metals Input data

C= 5.27 X10“10 m
a= 3.31 X10~10 m
K= 0.435 X 1011 N/m 2
B - 6.2478 x 10~191J
c= 5.15x 10-10 m
a— 3.23 X107 10 m
K = 0.833 x 1011 N/m2
B = 10.0125 X 10 19J
C—521x 10~1°m

= 321 x 1010 m
K = 0.354 x 1012 N/m 2

2.416 X 10" 19J

Computed defining parameters

a= 0.3574 X 10l° m -1
ro= 4.9045 X 10~1° m
D= 27796 x 10~2° ]

0= 0.3845 X 101° m
r0= 4.7539 X 10-10 m
D= 4.5105 x 10~20 J

a= 0.4898 X 1010 m ~1
r0—4.6084 X 10“1° m
D= 1.196 x 1020 J

2.2. The lattice equilibrium and the phonon dispersion

For the sustenance of lattice stability the first derivatives of both potentials
(Egs 1and 3) are made to vanish simultaneously. The second derivatives i, (2, /33,
24, %, e and R? of the paired potential and 7 of the unpaired potential (Table II)
are fed to the usual secular determinant to obtain the phonon dispersion along the
directions [0001] and [0110], which are shown in Figs 1, 2 and 3 for Sc, Zr and Mg,
respectively. The details for arriving at the elements of the dynamical matrix and
subsequently the phonon frequencies are taken from our earlier study [21]. The
experimental findings due to Wakabayashi et al [22], Bezdek et al [23] and Kohn
and Sham [24] are represented by the markings (g ,Q>0, A, =1, ).

Table 11

Computed force constants for Sc, Zr and Mg

Force constants

N/m Sc
Hi 3.028
Ri 2.889
03 0.845
Ri 0.427
03 0.243
06 0.233
o7 0.099
7 56.300

Zr Mg
6.177 4.036
5.987 3.962
1.626 0.755
0.782 0.245
0.431 0.110
0.411 0.107
0.154 -0.015

49.139 30.290
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Fig. 1. Dispersion relation for Sc along the directions [0001] and [Olio]. (4,0, M, A, » m)
represent the experimental findings due to Wakabayashi et al [22], Bezdek et al [23] and Kohn and
Sham [24]

Fig. 2. Dispersion relation for Zr along the directions [0001] and [0110]. For markings see the
caption of Fig. 1
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2.3. The elastic constants

The second, third and the fourth derivative of the paired energy density with
respect to infinitesimal strain tensors are determined to predict the second, third
and fourth order elastic constants in the metals under investigation. The method
given by Naiman et al [25] is followed to compute the TOEC and FOEC of the
hep metals. The computed values along with the available observed data and data
revealed by other available theoretical studies for the metals are listed in Table IlI.

PYnik

Fig. 3. Dispersion relation for Mg along the directions [0001] and [0110]. For markings see the
caption of Fig. 1

3. Conclusion

The present study reveals that the good agreement with the measured data in
respect of the phonon dispersion in Sc, Zr and Mg is attained by putting m = 1.1,
The relative standard errors creeping into the dispersion calculations of Sc, Zr and
Mg amount to 0.301, 0.129 and 0.213, respectively. The computed predictions of
second order elastic constants show good qualitative agreement with those computed
by the other investigators [29-31]. Our predictions for these constants fairly agree
with the measured data [26-28] also. The computed results on third order elastic
constants for Mg follow the trend revealed by the experimental values [32]. These
results show good agreement with those computed by other workers [30, 33, 34]. The
fourth order elastic constant revealed by the present study could not be compared
because of the lack of similar data.

Acta Physica Hungarica 72, 1992



2667 ‘7. eouebuny eoisAyd ey

Elastic constants

Cu
Ci2
Ci3
c3B
c4
Ces

Cm
C112
Cus
Ci23
Ci33
c222
C333
C34
C144
C 155

Cim
Cm2
Cm3
Cl122
Cliz3
Cuss
C4455
Cl222
C 1244
C1333
C2222
C3333
C4444

Computed values of present study

Sc

2
0.919

0.479
0.277
0.7498
0.277
0.479

-7.430
-3.89
-0.320
-0.526
-0.261
-13.69
-12.26
-2.41
-0.526
-2.61

298.183
43.378
15.213
25.573

3.244
3.249
0.720
42.151
2.908
1.124
291.235
4.105
11.725

Zr
3
1.422

0.711
0.341
1.59

0.341
0.711

-7.674
-6.97
-0.959
0.372
-2.706
-14.50
-21.54
-2.706
0.372
-2.706

379.946
48.175
19.213
31.679

4.064
4.354
2.236
57.839
3.695
4.309

351.017
10.492
17.163

Mg
4
0.669

0.283
0.204
0.581
0.204
0.283

-6.198
-1.63
0.328
-0.448
-0.806
-7.041
-6.017
-1.870
0.448
-0.806

182.379
21.351
8.263
14.456
1.810
2.021
0.898
28.189
1.547
1.786
163.328
6.781
7.688

Table 11
Computed elastic constants for Sc, Zr and Mg (10u N/m?2)

Sc

5
0.993

0.457
0.294
1.069
0.277
0.268

Ref. [19] Ref. [20]

Zr
6
1.43

0.73
0.658
1.65
0.32
0.352

Measured values

Mg
7
0.5918

0.2568

0.6147
0.1634
0.1675
Ref. [21]
-6.63
-1.78
0.30
-0.76
-0.86
-8.64
-7.26
-1.93
0.30
-0.58
Ref. [25]

Sc

8
0.993

0.457
0.294
0.865
0.310
0.268

Ref. [22]

-8.96
-3.15
-0.45
-0.72
-2.35

-10.95

9.40
-2.35
-0.59
-0.59

Ref. [26]

Zr

9
1.43

0.73
0.659
1.790
0.317
0.352

Ref. [23]

-9.37
-7.90
-0.93
0.26
-2.13
-14.70
-20.05
-2.13
-1.54
0.95
Ref. [23]

Computed values of other studies

Mg
10
0.624

0.235
0.217
0.634
0.160

Ref. [24]
-6.43
-1.79
-0.63
-0.47
-1.71
-7.37
-6.32
-1.71
-0.45
-0.65
Ref. [27]
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The computations lead to the following Cauchy relations in various orders of

elastic constants.

Ciz = C66, Ciz = cis, (4)
Cis55, (5)
ci266 — C6666 — Cii22,

ci123 = C 144, Cuss

Cl222 = Cii55, Cl255

Cusz = Css55 = cl233- (6)

It may be concluded that the present theory beside being fairly successful in

explaining the phonon dispersion and elastic constants of the hep metals (Sc, Zr,
Mpg) establishes the credential ofa unified theory for the cubic and hep metals both.
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NEW PIEZO-MIRROR TRANSLATOR FOR FREQUENCY
STABILISATION OF LASER OSCILLATORS
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Tania, Egypt
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For frequency stabilisation and tuning of active and passive laser oscillators, a new
construction of piezo-mirror translator has been developed. It has compact size, high
mechanical stability, high voltage tensile strength, high adjustable speed and low cost. Ifit
is driven by an appropriate control electronics, it allows to suppress efficiently the frequency
changes of laser cavities.

Introduction

The frequency stability of lasers depends upon the stability of the optical
length of resonators. Firstly, the geometrical length L of resonators can be changed
by different causes which are practically present due to changes in the ambient con-
ditions around the laser resonators. Examples are: the mechanical vibrations, the
change of the refractive index of air in the resonators with temperature, air pres-
sure fluctuations, turbulences and acoustic waves. These changes lead to frequency
fluctuation in the range of a few 10 MHz. Secondly, the frequency changes due
to changes of the optical characteristics of the active medium in active resonators.
Examples are: in dye lasers the refractive index of the dye stream depends on its
temperature which changes due to the absorption of a part of pumping laser power
and the power running in the dye laser resonator. This causes variation of the
refractive index with time, i.e. stable surface and thickness of dye stream do not
exist. On the other hand, small dirt particles and air bubbles which pass through
the focus will change the thickness and refractive index of dye stream for a short
time. This affects directly the laser frequency. For improving the frequency stability
of the laser resonator, the deviation of laser frequency from the desired frequency
must be regulated through changing the optical length n m_ of the resonator (n =
refractive index of the medium in the resonator). The regulation system must be
placed so that the frequency changes are controlled. For changing the geometri-
cal length, there exist different methods which depend on mechanical or electrical
operations. The mechanical changes can be achieved by using Brewster plate on
micrometer displacement table or galvokipper. The electrical one often uses piezo-
ceramic elements. The latter method has the advantage that changes with relative
high frequencies up to 1 MHz are achieved [1, 2]. Most of the commercial products
of lasers and other optical elements such as air-spaced étalons, spectrum analysers
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(Fabry-Perot interferometers) and others, use a piezo driver for frequency tuning
and stabilisation [3, 4 and others]. This paper reports about a new construction
of a compact and low cost piezo-ceramic mirror translator used efficiently for axial
drive applications.

Practical construction

The mirror translator works according to the phenomena of piezo-ceramic
material “piezoelectricity”. When voltage is applied to such crystalline material a
proportional deflection will result. The direction of both electrical and mechanical
axes depends on the direction of the original d. c. voltages applied to the electrodes
of the piezo element.

For an optical resonator with fixed mirror spacing, i.e. discrete resonance
frequencies, it is necessary for the resonance frequency to be tuned through changing
the mirror spacing. According to the practical need of the optical resonator, it
must be calculated how many free spectral ranges (FSR) are necessary for the
tuning process, i.e. how long the piezo translator is. The active length (6 mm in
Fig. la) of the present translator is selected to be used for frequency tuning and
stabilisation of the Mach-Zehnder interferometer [5] and 2 GHz spectrum analyzer
[6]. For changing the resonance frequency about 1 FSR = 2 GHz, the necessary
change of length is calculated as follows:

AL = 1/2 —0.6/2 = 0.3pm, A= 600nm,
i.e. a piezo change of length of about 1.05 pm = 3.5 FSR is required. This change
can be achieved by applying a voltage of about 500 V on the piezo. The dimensions
of the plates can be estimated using the formula [7]: L = AL md/v mC, where AL

is the change of length, C is the piezo material constant, L the active length of the
piezo plate, d the thickness of the piezo plate and v the applied voltage.

Fig. la. Triangle tube piezo driver
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Fig. Ib. Model for construction. 1 - piezo plate, 2 - middle guide block, 3 - air space, 4 - screw,
5 - adjusting vessel, 6 —thread-in vessel

Fig. Ic. Piezo-mirror head

The mirror translator is made from piezo material type PXE-5 from Firma
Valvo, Germany. Piezo rectangular plates of dimensions 12 x 6 x 0.3 mm are used.
The length of 12 mm is shortened using laboratory cutting and polishing method to
10 mm to be suitable for the use in [5, 6] and constructed to make a triangle tube as
in Fig. la. Using the plastic model as shown in Fig. Ib, the plates are fixed together
by epoxy material [8]. The fixing must be regular which requires high skill. The
inner and outer wall surfaces are connected together using conductive epoxy. The
testing process for the piezo-translator is achieved by connecting two fine isolated
wires to the positive and negative electrodes and used as voltage driving cables.
Fig. lc shows the piezo mirror head used in [5, 6].
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Advantages and discussion
This type of piezo PXE-5 changes relatively highly in length where C =
—175 x 10-12 m/v. These plates have a thickness of 0.3 mm. This means that the
piezo sensitivity is high (for an active length of 6 mm, the sensitivity is 3.5 pm/kv).
The nonlinearity of piezo expansion at high voltage can be avoided and the trans-

lator can efficiently be used in the linear range using voltages up to 500 V. The
electrical sensitivity Av/Av = 0.071 V/MHz.

Fig. 2. Measuring system of the response characteristics

b)

Fig. 3. Oscilloscope photo a) by frequency tuning;
b) at the resonance positions
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The first test during the construction of the piezo triangle tube against high
voltage must be measured using an ohm-meter, the resistance showed infinity by
the 20 Mil range. This guarantees that no current flow between the poles as a result
of construction leaks. The second test is made by using a regulated limited current
high voltage generator. A resistance of 1 MO and 0.25 W is used for insurance
and current limiting. A micro-ampere meter (pA-meter) can be used for observing
small current flows by applying high voltage up to 1000 volts on the piezo. By good
constructive isolation the pA-meter showed no current flow.

Figure 2 shows the measuring system for the response characteristics of the
mirror translator. The free running He-Ne laser beam is computerized mode
matched [9] to be incident on the spherical mirror spectrum analyser. One can
observe the resonance of the analyser on the oscilloscope separated by a distance
of 2 GHz. An a.c. voltage of ca 20 V with the desired frequency is taken from
the function generator in order to be applied on the piezo translator. By slightly
tuning the frequency we observe Fig. 3a on the oscilloscope. The expansion of this
motion is a measure for the amplitude of the mirror translator as a function of the
frequency of the applied voltage. At the resonance positions, the mirror transla-
tor shows qualitative circa Fig. 3b on the oscilloscope. The results showed that
the first and second main resonances lie by 13 and 39 KHz, respectively, fn com-
parison with other earlier standard piezo transducers, the present translator has
the following characteristics: (i) with the used thickness (= 0.3 mm), the desired
change of the mirror separations of the interferometer is accomplished by the avail-
able high voltage apparatus, (ii) It can be made in compact and different forms
and sizes according to the required number of the FSR and of low cost, (iii) It
is stable and can be used efficiently in all high precision laser frequency control,
tuning and many other axial drive applications. This construction of mirror trans-
lator is used efficiently for frequency selection and tuning of a new construction of
Mach-Zehnder interferometer [5] and spectrum analyser [6]. Ifa piezo driver (high
electrical sensitivity) is needed from this type, the transversal mechanical vibrations
can drastically be reduced by tungsten filled rubber which is epoxied to it to be
used as an absorber for ultrasonic test equipment.
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An attempt is made to study the Einstein relation for the diffusivity-mobility ratio
of the electrons in quantum wires of tetragonal semiconductors in the presence of crossed
electric and magnetic fields on the basis of a newly derived electron energy spectrum con-
sidering all types of anisotropies in the band parameters. It is found taking n-Cd3As2
as an example that the same ratio increases with electron concentration in an oscillatory
way. Besides, it decreases with increasing thickness and the crystal field splitting influences
significantly the ratio in the whole range of the variables considered. We have also sug-
gested an experimental method of determining the Einstein relation in degenerate materials
having arbitrary dispersion laws. The results for quantum wires of parabolic semiconduc-
tors have been also obtained from our generalized expressions in the absence of cross-field
configuration under certain limiting conditions.

1. Introduction

With the advent of fine lithographical methods [1], molecular beam epitaxy
[2], organometallic vapor-phase epitaxy [3] and other experimental techniques, low-
dimensional structures [4] having quantum-confinement in two and three dimensions
such as quantum-well wires and quantum-well boxes have in the last few years
attracted much attention not only for their potential in uncovering new phenomena
in solid state science but also for their interesting device applications [5]. Extremely
high mobility in quantum wires [6], high performance of quantum wire lasers [7] and
modulators [8] have been realised. In quantum wires, the electron gas is quantized
in two transverse directions and the charge carriers are free to move only in the
longitudinal direction [9].

The potential use of the quantum well wires (hereafter referred to as QWW)
for high speed devices under different physical conditions makes the knowledge of
their appropriate band structure desirable. It appears from the literature that the
Einstein relation for the diffusivity-to-mobility ratio of the electrons in QWW?s in
the presence of crossed electric and magnetic fields has yet to be investigated even
for parabolic energy bands. We wish to note in this context that the investigations
of electrons in semiconducting materials in the presence of crossed electric and
magnetic fields offer interesting physical possibilities, both experimental and theo-
retical [10]. The cross-field configuration is fundamental for studying the classical
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and quantum transport phenomena in degenerate materials [10]. Optical investiga-

tions of bulk semiconductors began with the theoretical work of Hansel and Peter

[11] , who indicated that an influence of electric field on the Landau levels should
lead to observable effects in cyclotron resonance transition in solids [11]. Aronov

[12] pointed out that the electric field effects should be visible in the interband

magneto-optical transitions. It is observed that [13] the low values of EB (Eq
is the electric field along x axis and B is the magnetic field along z axis) leads

to oscillatory effects whereas at large values of the Eq/B ratio one deals with the

non-oscillatory effects and we essentially arrive at the Keldysh-Franz effect in a

quantizing magnetic field. In degenerate materials, the creation of a large electric

field is not possible and hence the Eg/B ratio is small [14]. It appears that the

non-parabolic semiconductors are degenerate [14]. We have used tetragonal semi-

conductors which are being extensively investigated as non-linear optical materials

[15] and light emitting diodes [16]. In the present communication we shall study the

diffusivity-mobility ratio in QWW of tetragonal semiconductors under cross-field

configuration.

It is well known that the diffusivity-mobility ratio is a very useful relation
since this is more accurate than any of the individual expressions for the diffusivity
or the mobility, which are considered to be the two most widely used parameters of
carrier transport in solid state devices. The performance of the devices at the device
terminals and the speed of operation of modern switching semiconductor devices are
significantly influenced by the degree of carrier degeneracy present in these devices
[17, 18]. The simplest method of analysing the compound semiconductor devices
taking into account the degeneracy of the bands is to use the Einstein relation to
express the performance at the device terminals and the switching speed in terms of
carrier concentration. In recent years, the connection of the Einstein relation with
the velocity auto correlation function [19], its relation with the screening length [20]
and the different modifications of the diffusivity-mobility ratio (hereafter referred
to as DMR) under various physical conditions have extensively been investigated
[21-30]. It appears from the literature that the DMR in QWW of even parabolic
semiconductors under cross electric and magnetic fields has yet to be derived.

As stated above, we have used the tetragonal semiconductors, having non-
parabolic and non-standard energy bands, as an example of small-gap semiconduc-
tors. We shall work out the problem for the more interesting case which occurs
from the presence of various types of anisotropies in the energy spectrum. This
will make our analysis a generalized one since we can obtain the DMR in QWW'’s
of even parabolic semiconductors in the absence of cross-field configuration. Rowe
and Shay [31] have demonstrated that the quasicubic model [32] can be used to ex-
plain the observed splitting and symmetry properties of the conduction and valence
bands at the zone centre of tetragonal semiconductors. The s-like conduction band
is single degenerate and p-like valence bands are triply degenerate. The latter splits
into 3 subbands because of spin-orbit and crystal field interactions. The largest
contribution to the crystal field splitting of the valence band occurs from the non-
cubic potential [33]. The experimental results have produced strong evidence that
the conduction band in the same semiconductor corresponds to a single ellipsoid
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of revolution at the zone centre in K space. Incorporating the anisotropic crystal
potential to the Hamiltonian, Kildal [34, 35] proposed an E —K dispersion relation
for the conduction electrons in the same semiconductors based on the assump-
tions of isotropic spin-orbit splitting parameters of the valence band and isotropic
inter-band momentum-matrix elements, respectively, though the anisotropies in the
two aforementioned band parameters are significant physical features of tetragonal
semiconductors [36].

In what follows, in Section 2.1 we shall derive the DMR in QWW of tetra-
gonal materials under cross-field configuration by using the generalized dispersion
relation of the conduction electrons incorporating the above mentioned anisotropies
as derived elsewhere [37]. In Section 2.2 we shall derive the limiting cases of the
three-band Kane model, the two-band Kane model and that of parabolic energy
bands in QW W’ in the absence of electric field and magnetic field. In Section
2.3 we shall suggest an experimental method of determining the Einstein relation
in degenerate semiconductors having arbitrary dispersion relation. We shall study
the concentration and thickness dependence of the DMR in quantum well wires of
tetragonal semiconductors in the present case field taking n-CdsAs2 as an example
which finds extensive applications in Hall pick-ups and thermal detectors.

2. Theoretical background

2.1. Formulation of DMR in QWW of tetragonal semiconductors in the presence
of crossed electric and magnetic field

The generalized dispersion relation of the conduction electrons, incorporat-
ing the aforementioned anisotropies of the band parameters, in bulk specimens of
tetragonal semiconductors can be expressed [37] as

pd2 M +p/{E)/2M\\ = U(E), (1)

where ps = hk,, h —h/2ir, his the Planck’s constant, K& = K6+ KI, Aux =
M\ L(Eg+ 14yn) s(EQ + Ay x)-1 I mJ is the longitudinal effective mass at the edge
ofthe conduction band along kz axis, ML is the transverse effective mass at the edge
of the conduction band in the kxky plane, Eg is the band gap, OAm is the spin-orbit
splitting parameter along the C-axis, 4 x is the spin-orbit splitting parameter in a
plane perpendicular to the C-axis,

V(F) = [(E+£)(E?+ 4, + |Au)]
1 7-((E+ EQ)(E+Eg + |41 + 6(E+Eg+ 14 .)) + (A - OAx)]"

E is the total electron energy as measured from the edge of the conduction band in
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the vertically upward direction in the absence of any quantization,
U(E) = E(1+ aE)[(E + Eg){E + Eg+ [I,) + 6(E + Eg+ |ny) + H(Aj} - Al

[(E+ EQ)(E +Eg+ |au) + 6(E+Eg+ |Qu) + (48 - A41)]-1
and
a=I1/Eqg.

Following Zawadzki [38,39], the modified electron energy spectrum in QWW
of the same material in the presence of crossed electric field Eqalong the x-axis and
magnetic field B along the z-axis can be written as

[ + -q2sin {®) = enBhl, (22)

where

f =[[b-eBd\m -V - (b+eBdM2]1'2- 2”16+ eBdx) mg2- (6- eBd"2]1' 2],
b= (eB)~1[2M£p(E)eEOQ + irhleBd"1],
g2 =\2MLU(E) - MLp2a-\E) - w21 2(4ch-1 + 62,

®= [G(1-c£)1/2-C-(1-C+)1/2],
Ct =(bxeBd1)/2.

2d\ and 272 are the widths along z and y directions, respectively, t = 1,2,3, / =

p(E) = U(E) - {(1 + 2aE)[E(\ + aE)]-1 - /(B4 A)]-1+ (E + Eg+ Au)-1

JHE) = [UB) {C(E) *[1+ A(E)]-x- H(E) *[1+ G (£)1-1}1 .
I(E) = (I + A(E)I(I + G(E)}-\

A(E) = (E+Eg+ A,)(I + Eg)]"1mB(E + Eg+ £[u) + 1(A2- AX)],

G(E) = (E+ EQ)(E +Eg+ A2 5d(A9- A + b(E+ Eg + -A|))],

C(E) = A(E) ml [B(E + Eg+ Hilw) + f@@¢l - Al)]-1 +6- (2E + 2E+ A1)
A+ AX A +A + Ay)]-13.
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and
°(E) = MAV(E).

The electron concentration per unit length can be expressed as

n0= (2/1r)]r](al + a2), ©)
it

where ¢t = kz(Ep), Ep is the Fermi energy in the present case a2 = /[ou], | =
2(FRT)2r «(1 —21_2r) «C(2r)jpri-. kp is the Boltzmann constant, T is temperature,

r is the set of real positive integer and £(2r) is the zeta function of order 2r. Since
the DMR can, in general, be expressed [14] as

D dn0
i @

We can combine Egs (3) and (4) to get the expression of DMR in the present case
as

—=e-1 ]IT(ai + <2) _ +°r) )
J it

where the primes denote the differentiation with respect to Ep.

2.2. Special cases

2.2.1. Under the substitutions 6 = 0, Ay = Ax = [ (the isotropic spin-orbit
splitting parameter), mjl= n*L = m* (the isotropic effective electron mass at the
edge of the conduction band), Eqg. (1) takes form

h2 E(E + EQ)(E + Eg+ A)(Eg+ %A)
om* 7(E), 71(E) = Ey(Eg+ A)(E+ Eg+ |A) (6)

which is the well-known three-band Kane model [40]. Thus, under the above sub-
stitutions, the electron energy spectrum can be expressed through the equation

Al + 27isin 1(®i) = eBnhi, @)
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where

Fl = \[e+(Ql - QI)I'2- Q-(QT - QI)1'2,
0+ = [ht*w(2</2) 1+ m"Eogh(E)B~1+ eBd1],
iP(E) = +a£")}-1[1 + 2aE + E{1+ aE) |{(E+ Eg+ A)"1
- @\ + HIA)™MI)
a = lEqg,
02= [2m*y(E)[(k2(E))2h2] + m*2E 1" 2{E)B~2 + m* ECil>{E)t"h{Bd2) - 1],

0! = [A+V/i - @- - Cl,-v/1- @4

and
G = 0,2/Qi-

Thus the bcisic forms of no and DMR for the generalized case as given by

Egs (3) and (5), will not be altered for the three-band Kane model where c* has to
be determined from Eq. (7).

2.2.2. Under the conditons A >Egor A  Eg, Eq. (6) takes the form

E(l+,E)=", )

which is the well-known two-band Kane model [41]. Thus under the above substi-
tutions the basic form of Eq. (7) remains the same where 7(E) = E{1+ aE) and
ip(E) = (1 + 2aE).

2.2.3. Under the condition Eg —*00, Eq. (8) assumes the form

E = h2k2/2rnm 9

which is the well-known expression of the dispersion relation for parabolic energy
bands. Thus, under the condition a —0, the basic forms of Egs (7) will not be
altered where 7(E) = E and ®(E) = 1

2.2.4. Under the condition Eq—»0, the electron energy spectrum in QWW
of tetragonal semiconductors in the presence of a magnetic field along the direction
of free motion is given by

X+ sin 1(f3) = 2eBhnl, (10)

where

X =[r2¢C2-r2¥'2-r2(C2-riy'7
r+ = [<tA@2d2)-1 * eBdi],
C\ = (2M1U(E) - MLa-\E)p2)
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and
B=(r+)\Jci - r- | - r+m

Thus, the basic forms of no and DMR as given by Eqgs (3) and (5) will not change
where og has to be determined from Eqg. (10).

2.2.5. For the three-band Kane model, the basic forms of the Egs (10), (3)
and (5) remain the same where

Cl = 2m*y(E) -p 2.

2.2.6. For the two-band Kane model, the basic forms of Egs (10), (3) and (5)
will not be changed, where

Cl =2m*E(l +aE)-p2.
2.2.7. For parabolic energy bands
Cl = 2m*E —p2.

2.2.8. In the absence of magnetic field, Eq. (10) assumes the form

_ In plv(E)
UB) = Hmi LY T Y T (M)

which is the well-known dispersion relation for QWW of tetragonal semiconductors
as given elsewhere [9].

The basic forms of no and DMR as given by Egs (3) and (5) will not alter in
the present case where

1/2

= [2M,,/F(Ff)S21/2 «

2.2.9. For the three-band Kane model, the electron energy spectrum in QWW
assumes the form

7(E) = (h2n2/2m*)[(t/2dX)2+ (//12d2)2] + {h2k22m*). (12)
The basic forms of no and DMR as given by Egs (3) and (5) will be unaltered where
W = (21*/b.2)L2blEr) - {h2n22T*)[(t/2d\)2+ (//2d,)Z]V 2.

2.2.10. For the two-band Kane model, the electron energy spectrum in QWW
in the absence of cross-field configuration assumes the form

E(1+ aE) = (h2n2/ 2m*)[(t/2dX)2+ (//2d2)2] + (h2k2j2m™). (13)
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The basic forms of Egs (3) and (5) will not change either in this case, where

ai = (2m*)/ft2)12[£ H | + <EF) - {h2ir 2m*){(t/2di)2+ (1*d,)2}}1'2

2.2.11. The expressions of no and DMR in QWWs of wide gap materials car
be written under the condition a —*0 as
no (14)
u
and
” ={kBT/e) E (.iw J2E- A (15)
it

where 1= (kBT) I[Ep —"r[(</2di)2+ (//2d2)2]] and Fj(r]) is the one parameter
Fermi-Dirac integral of order j which can be written as [42]

I
Fj(ri) = (j + I)“lJ/ j/ [L+ exp(y —n)]~Idy forj > —1;
0

or for all y, analytically continued as a complex integral around the negative axis,

°4

)
Fi(v) = (©)) 'J/(_OO) y7[1+ exp(—y —r/)]-dy,

where 0j = [r/(sin(7r)(| j + I)] = | - j/2it\f-i.

2.3. Experimental suggestion of determining the DMR

The thermoelectric power of the electrons in the present case is given by
[43-44]
G0 = Holerio, (16)

where HO0 is the corresponding entropy per unit length.
Following Tsidilkovskii [44] we get

Go = (n2k2B/Zen0) . (17)
Thus, using Egs (4) and (17) we get
x = n2k2B/ZG0e2. (18)

Thus, by knowing Go we can determine D/p for degenerate semiconductors having
arbitrary dispersion relations.
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3. Results and discussion

Using the appropriate equations together with the [36] parameters ntx =
0.04mo, mjj = 0.03 m0, 6 = 0.085 eV, Eg= 0.095 eV, Au = 0.24 eV, Ox = 0.29 eV,
T =42K, EO= 102V/m, B = 2T, 2di = 40 nm and 22 = 50 nm, we have
plotted the normalized D/L ratio as a function of electron concentration as shown
in the plot of Fig. 1, in which the same dependence is also plotted by taking the
crystal field parameter as zero for comparison (plot e). In addition, in Fig. 1,
plot b corresponds to the degenerate three-band Kane model of n-CdaAs2 (taking
O = 0.27 eV and m* —0.035 mo for the purpose of numerical computations). We
have also plotted the DMR in accordance with the two-band Kane model and that
of parabolic energy bands. Using the same parameters as used in obtaining Fig. 1
we have presented the DMR as a function of film thickness as shown in Fig. 2 in
which the various simplified limiting cases have further been considered.

Fig. 1. Plot of the normalized diffusivity-mobility ratio in quantum well wires of n-Cd;i As2 un-

der cross field configuration as a function of no in accordance with (a) our proposed dispersion

law, (b) the three-band Kane model, (c) the two-band Kane model, (d) parabolic energy bands,
(e) 6 (crystal field splitting parameter) = 0.

It appears from Fig. 1 that the DMR increases with increasing electron con-
centration in an oscillatory way at a rate lower than that of when 6 = 0. Moreover,
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for relatively low values of electron concentration, the effect of crystal field splitting
decreases whereas the same parameter affects significantly the DMR for relatively
large values of the carrier degeneracy. The crystal field splitting parameter lowers
the value of the DMR in QWW of degenerate tetragonal semiconductors as com-
pared with that corresponding to 6 = 0 at a given value of electron concentration
in the whole range of concentrations considered. The influence of the energy band
models on the DMR is also apparent from the two Figures. It is again noted that
the variations of the DMR with no and 2d\ are completely band-structure depen-
dent for all models of QWW of degenerate tetragonal semiconductors. It appears
that the DMR increases with decreasing thickness in an oscillatory way as apparent
from Fig. 2.

Fig. 2. Plot of the normalized diffusivity-mobility ratio in quantum well wires of n-Cd3As2
under cross field configuration as a function of film thickness for the above mentioned cases.
(no = 1010/m, 2di — 40 nm).

It may be remarked that the D//i ratio is connected with as given by
Eqg. (4). Our experimental suggestion for the determination of DMR for semicon-
ductors having arbitrary dispersion laws given by Eq. (18) does not contain any
band parameter. For constant temperature (D/y) oc (G)_1. Only the experimen-
tal values of G for any semiconductor as a function of electron concentration will
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give the experimental values of the D/ji ratio for that range of no for that very semi-
conductor. Since the experimental data of thermoelectric power in the present case
is not available in the literature to the best of our knowledge, we cannot compare
our theoretical formulation with the proposed experiment. The results are theoret-
ical curves evaluated for parameters referring to real systems and the theoretical
analysis as given here would be useful in analysing the experimental data when
they appear. Since the above power decreases with increasing electron concentra-
tion, from Eq. (18) we can conclude that the DMR will increase with increasing
electron concentration which is also evident from Fig. 1. The experimental result
of Gqin the present case will provide an experimental check on the D/y ratio and
also a technique for probing the band structure in degenerate materials.

We wish to note that in formulating the basic dispersion relation we have
considered the crystal field splitting parameter, the anisotropies in the momentum
matrix elements and the spin-orbit splitting parameters, respectively, since these
are significant physical features of tetragonal semiconductors [36]. In the absence of
crystal field splitting, together with the assumptions of isotropic effective mass and
isotropic spin-orbit splitting parameter, Eq. (1) converts into the well-known form
of the three-band Kane model (Eq. (6)). The three-band Kane model is the most
valid model for I11-V compound semiconductors, ternary and quaternary materials
and they find extensive applications in the field of solid state science and technology.
It is worth noting that the full three-band Kane model must be used as such for
studying the electronic properties of n-InAs where the spin-orbit splitting parameter
(A) is of the order of band-gap (Eg). However, for many important semiconductors
A Eg (e.g. InSh, etc.). Under this condition Eq. (6) gets simplified into the form

= E(\ + aE) which is our Eqg. (8). This is the well-known two-band Kane
model [41]. Also, under the condition Eg —% 0o as for parabolic semiconductors,

the above equation transforms into the well-known form = E. The basic
form of Eqg. (2a) remains unaltered for our proposed dispersion relation, the three-
band Kane model, the two-band Kane model and that of parabolic energy bands in
QWW of semiconductors under cross-field configuration. The functions of Eq. (2a)
are band structure dependent quantities. The above statement is also true in the
presence of magnetic field only. This peculiarity of the transcendental nature of our
present problem which is even valid for parabolic energy bands is not at all true in
the bulk case. From the expressions of DMR and electron concentration as given
by Egs (5) and (3) we can get the corresponding expressions for QWW?s of even
parabolic semiconductors in the absence of cross-field configuration. It is worth
remarking that the quantization of the energy in transverse plane of the direction
of application of the magnetic field as valid for 3D electron gases in a cross-field
configuration is not at all valid for QWW under the same physical conditions.
Besides, the subband energies can be calculated from Eq. (2a) whose importance is
well known in semiconductor science.

In recent years, the mobility of the electrons in QWW has been studied exten-
sively but the diffusion constant (a very important device parameter which cannot
be easily experimentally determined) of such materials has relatively been less in-
vestigated. Thus the theoretical results of this work will be useful in determining
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the diffusion constant both in the presence and absence of cross-field configuration
even for parabolic semiconductors. We note that the basic dispersion relation as
given by Eq. (2a) covers various semiconductors under different physical conditions.
Besides, the study of the transport phenomena and the formulation of the electronic
properties of semiconductors are based on the dispersion relations in such materials.
Finally, it may be remarked that the basic purpose of our present paper is not only
to investigate the DMR in QWW of non-parabolic semiconductors under cross-field
configuration but also to suggest an experimental method of determining the DMR
in degenerate materials having arbitrary dispersion laws.
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We have shown that, by using a one-dimensional lattice gas model with the next-
nearest neighbour interactions and calculating the thermodynamic potential of the system
by means of the transfer matrix method, we can find numerically for enzyme kinetics
some new diagrams of saturation curve. These diagrams in the limit of no interactions
between sites reduce to the classical Michaelis-Henri diagrams and in the limit of the
nearest neighbour interactions to some other diagrams which we have obtained before by
using a correlated walks theory. These new diagrams of saturation curve can be useful for
the experimental investigation.

1. Introduction

The Ising and related models like lattice gas have been applied with some
success to a number of biological systems [1]. The number of articles using these
models to derive enzyme Kinetics equations is numerous and diverse. However, in
[2] we have studied a lattice gas model with nearest neighbour interaction to find
an equation for enzyme Kinetics by using a correlated walks theory or variational
procedures.

In the present paper, to study the saturation curves in the enzyme kinetics, we
have used a one-dimensional lattice gas with the nearest-neighbour interaction and
the next-neighbour interaction. The grand canonical partition function is calculated
by means of the transfer matrix method. But the variations of the number density
(or the average fraction of occupied sites) versus the fugacity, i.e. the saturation
curves, are obtained numerically for different values of temperature and interactions
constants.2

2. The model and the Hamiltonian of the system

We consider an enzyme with N sites for substrate. We number the sites by
an index i —1,2,..., N and associate with each site a parameter <- which takes
two values: -fl, if the i-th site is occupied by substrate and 0, if the rth site is
unoccupied by substrate. So, a configuration of the molecule is specified by the
values of cr,, <72,..., §v and we can interpret it as a lattice gas model. For the
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next-nearest-neighbour interactions, following [3], we assume that the energy Jij of
interaction between particles situated at the sites i and j in the system is given by:

oo (ifi,j are on the same sites),

—J1 (ifi,j are on the nearest neighbouring sites),
—J2 (ifi,j are on second nearest neighbouring sites),
0 (otherwise).

To each site i, as we have mentioned before, we assign a variable a{, defined

by:
{ 1 (ifsite i is occupied),

0 (ifsite i is unoccupied),

and assume the periodic boundary condition that <i+Ar= 04 for i = 1,2,..., N.
The Hamiltonian A in a given configuration {<} = {<i, 92, ..., o’\} is given

by:
N N
H = (1/2) Jij(Ti(m = -J\ 22 < - Ji M2 <« (2.1)
I,j 1=1 *=1

and the grand canonical partition function of this system is given by:

N
Z(T,N,up) =2exp{(J2~i - H)/kT}, 2.2)
{a} i=1

where fi is the chemical potential, k the Boltzmann constant and T the absolute
temperature. The sum {<} is taken over all the configurations.

3. The transfer matrix method

The grand canonical partition function of the system is calculated by means
of the transfer matrix method ([3]-[5]). By using this method, we have:

Z(T,N,a) =Tr{TN), (3.1)
where
1 1 0 92
0 0 1 X .
a ay 0 0 (32)
0 0 aarlV2 axy,

is the transfer matrix of this system with:

x = exp(Ji/kT),
<y = exp(J2KT), 33)
a = exp(fi/kT).

Acta Physica Hungarica 72, 1992



A LATTICE GAS MODEL FOR ENZYME KINETICS 163

The eigenvalues of the transfer matrix (3.2) are determined as the roots of
the following quartic equation for IT;

M —1 + axy) M3+a(x —)j/ M2+a(y —1)(A + axy) N—a2y —1)2x = 0. (3.4)
Denoting:
t=kT/J1(Ji > 0), x =K = exp(l/<)

and (3.5)
y =exp(J2ZKT) = exp(e/t) = Ke, (e =J2/\),

the equation (3.4) can be written:

M+ al3+6 M2+cM+d =0, (3.6)
where
"az= {1+ aK1#),
b=a(K - 1)Af 3.7

c= a(Kc—1)(1 + aK 1+e),
.d=—a2(Kc- 1)2A.

Since the maximum eigenvalue Oi = Ttrax is equal to the grand partition
function per site in the thermodynamic limit, the equations of state are derived as:

( p —fcTInfWx,
\ Q= a(d/da)(Bp) = a(6/6a)(In 'max)

where B = VKT, p denotes the pressure and g is the number density or the average
fraction of occupied sites.

4. The @G- diagrams

In general, it is very complicated to solve analytically the equation (3.6). For
the special case e = 0 (J2—0) or y = 1 this equation can be solved analytically
and we find for the density:

KDi + FKD.2+ 21- AY] (4.1)
B~ a Di(Di + D2)

where D\ = [4a+ (I —A")2]Y/2and D2 = 1+ A'a. We have found the same equation
(4.1) for enzyme kinetics by using a correlated walks theory [1] or the model of
partition points [6]. So, it seems reasonable to interpret the second equation of
(3.8), for the average fraction of occupied sites, as an equation for enzyme kinetics
if a is interpreted as a measure of the concentration of substrate [1].
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For the other cases (e ¢ 0) we have found numerically the maximum eigen-
value flmex of (3.6) and Inflmax. By a special differentiation program, we have
calculated (6/6a)(InDmax) and then the density g= a(6/6a)(Innmax) [7]. For the
program calibration we have used the case ¢ = 0 (J2 = 0) which is analytically
known by us (|11], [6]).

Fig. la. Variation of the saturation curve at some fixed reduced temperaturestin the Q—ot diagram
for the case e = 0 (J2=0)

Fig. Ib. Fig. la plotted on a scale so that half-saturation always occurs at concentration unity
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Fig.2. Variation of some rescaled saturation curves at some reduced temperatures t in the Q-a
diagram (the half-saturation occurs at concentration unity), a) t = —0.1; b) e = 0.1;¢) c= 0.3.
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In Fig. la we have represented diagrammatically, for the case e = 0, the
numerical variation of the function g —/(0) (the saturation curve) at some fixed
reduced temperatures t in the g —a diagram. It is to be noted that in the limit
K = exp(l/lt) —1 (Ji —%0 or T —mo00) these curves reduce to the classical
Michaelis-Henri saturation curve with the equation /(a) = a/(l + a), which fits
to the myoglobin saturation curve and the initial reaction rate curve for classical
enzymes extremely well. In this last equation the “units” are chosen so that half-
saturation occurs at concentration unity. In Fig. Ib are replotted, for e = 0, the
rescaled curves g = /(a) on the concentration scale chosen so that half-saturation
always occurs at concentration unity.

Fig. 3. Some of the non-rescaled saturation curves at a chosen reduced temperature t = 1 for
different values of the interaction parameter t

In Fig. 2a, b, c are replotted, following the same procedure, the rescaled
curves g = /(a) for e = —0.1 (J2 < 0 be. the next-nearest-neighbour interaction
is repulsive), e = 0.1 and e = 0.3, respectively. To represent diagrammatically the
variation of the saturation curve from the values e of the interaction constants in
Fig. 3 are plotted in the g—a diagram some of the non-rescaled functions g = /(a)
at a chosen reduced temperature (t = 1). It is clearly visible from this Figure that,
in the case of repulsive next-nearest-neighbour interactions (e < 0), the saturation is
“slower” than in the case of attractive next-nearest-neighbour interactions (e > 0).
In all these cases the nearest neighbour interactions are attractive (J\ > 0). By
fitting these theoretical curves to experimental ones, it is possible to determine the
“adjustable” parameters K and e (i.e. the interaction constants J\ and J?).

In the particular case, when we confine ourselves to hard-core nearest-neighbour
interaction (J\ ——00 or x = 0), Eq. (3.4) is reduced to the cubic equation:

Mn3- M2- ayn+o(y —1) = 0. (4.2
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Denoting < = kT/Ji (/2 > 0), and following the same numerical procedure,
we can find non-rescaled saturation curves at some fixed reduced temperatures <
(Fig. 4). It is clearly visible from this Figure that, for a hard-core nearest-neighbour
interaction, the saturation value in the g —a diagram is 0.5.

Fig. 4. Variation of the saturation curve at some fixed reduced temperatures 12 in the q—a diagram
for the case J\ — 00 and J2 > 0

5. Conclusion

In this paper, by using a one-dimensional lattice gets model with the next-
nearest-neighbour interactions, we have demonstrated the influence of this interac-
tion in the process of the saturation for the enzyme kinetics curves. It is obtained
numerically and represented diagrammatically how slower is the saturation in the
case of repulsive next-nearest-neighbour interactions in comparison with the case
of attractive ones. Also we have shown that the saturation curves in the limit of
the only nearest-neighbour interactions (J2 = 0) reduce to some other diagrams
which we have found before by using a correlated Walks theory, while in the limit
of no interactions (J\ = 0,72 —0) between sites to the classical Michaelis-Henri di-
agrams. These new diagrams of saturation curve can be useful for the experimental
investigation and by their fitting to experimental diagrams, it is possible to value
the interaction constants.
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HEJTPHHHOE U3/TYUYEHUE
MAJIbIMA YHEPHBLIMI ObIPAMU

A. Tl. Tpovwumenko nu B. C. Typun

ACTpOHOMUHeCKas cekuns MUHCKOro OTAeneHns ACTPOHOMO-Teojesnyeckoro obujecTsa
Munck-12, benopyccus

(Moctynuno 7 utona 1992)

Mpon3BoaNTCA pacyeT MHTEHCUMBHOCTM U CnekTpa M3NydyeHUsa 3a cyeT apdek-
Ta XOKMHra gns 6e3mMaccoBblX M MACCUBHbIX HEMTPUHO ManbiMW YepHbLIMUW fblpamu ¢
maccamu 10e—1016 r, KOTOpble MOTYT NOKanM30BaTbCA BHYTPU KOMMNAKTHbIX HeGECHbIX
Ten, B yacTHocTu, B 3emne. OCHOBHbIMWU OCOBEHHOCTAMM HEATPUHHOTO M3Ny4YeHMUA
OT TaKMX YepHbIX Ablp, N0 KOTOPbIM OHO B NPUHLWUME MOXET OblTb 3apPerucTpUpPoOBaHoO
HENTPUHHBIMU feTeKTOpaMu, ABNAOTCA BbICOKME 3HEPTUMN YacTuL, TENN0BON sHepre-
TUYECKUX CNEeKTP, KPaTKOBPEMEHHOCTb NM60 BblpaXeHHas TeHAEHLUMA K MOBbIWEHMNIO
WHTEHCWBHOCTW W 3HEPruM 4yacTul, a TakXe HanpaBNieHHbI XapakKTep, CBA3aHHbIN
C pacnonoXeHWem WUCTOYHMKA B Heapax 3emnu, Hanpumep B6NM3N BYNKaHOB WUAN B
obnacTu LeHTpa 3emMnu.

1. BBefeHue

YepHble gbipbl (U ) cuntaroTca TpafjULMUOHHO 06beKTaMu M3yyeHUsa ac-
TPOU3NKWN 3Be3d WU ranakTUK, a TakKXe UX CKOMMeHWW, rage MOryT peanunso-
BaTbCA TeOpeTMUYeCKMEe KOHCTPYKLUWN CBA3AHHbIX C HUMW Mofeneli. XoTA camu
no cebe peweHUsa ypaBHeHUl 06w, el Teopun oTHocuTenbHOoCcTU (OTO) He Ha-
KnajblBal T ABHbIX OrpaHMyeHunin Ha maccy Y [, HO NpuM paccMOTPeHUM acTpo-
hun3nyecKknx mofeneih Bo3HMKaeT BeMYMHA MaCChl, Bblle KOTOPOW MOXET Npo-
NCXOANTb Heo6paTMMbIA rpaBUTaLWOHHbBIA Konnanc Nojg FOpU3OHT co6bITU,
npuBoaAW M K popMmupoBaHui Y . OTo Tak Ha3biBaeMblli npesen YaHppace-
Kapa, cocTaBnswwmn 2—5M@ [1]. Ob6pa3oBaHMe TaKMX MacCUBHbIX 06bEKTOB,
KaK M3BeCTHO, XOPOLW 0 BANWCbIBaeTCsA B TeOpPUIO 3Be34HOW 3Bonwouum [1] n kpo-
Me TOro BMOJ/IHE BEPOATHO U AN 60/iee MAcCUBHbIX TeN TUNa Afjep ranakTuk,
LEeHTPOB WAapoBblX CKOMNMEHUN, KBazapos u ap. [2-4].

FfnnoTe3bl 0 BO3MOXHOIM peanbHocTU U [ manoli maccbl BblCKa3blBasauch,
HauyuMHasa ¢ 1966 ropga, oTBOAS UM, B OCHOBHOM, KOCMO/NOrM4Yeckoe MPouMcxo-
XpaeHue [5,6], NOCKONbKY HEMOHATHbI MeXaHW3Mbl, KOTOpble MOoraum 6bl npuse-
CTW K HeobXxofgmMON ANA Konnanca ManbiX Macc KOHUeHTpauuum maTepuun. B
page pa6oT [7,8] o6oCcHOBbLIBATCA MAEN O BO3ZMOXHOCTU NMPUCYTCTBUA MalblX
Y/ BHYTPU 3HAUYUTE/IbHO MEHEE MACCUBHbLIX, HEXENWN 3Be3A4bl, KOCMUYECKNX 06 -
beKTOB: B nnaHetax ConHeyHol cuctembl [7-9] n, B yacTHocTu, B 3emne [7, 8,
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10-12]. HecmoTpsa Ha CBOK HeO6bLIYHOCTb, TakKuMe MPeANOSIOXKEHUSA He NPOTU-
BopeyaT HabnwjaeMblM PakTamM U faxe MOTyT NMOMOYb O0OBACHUTL HEKOTOPbLIe
HEMOHATHbIe ABMEHUSA, CBSA3aHHbIe C Pa3NMUYHbIMKN TenaMun CONHEYHOW CUCTEMBbI
[8-10]. BecbMa cyu,ecTBEHHbIM NpU 3TOM SIBASeTcA TOT akT, yTo Y [I manoi
Maccbl (108 — 1015 r) umeloT pa3mMepbl MeHblLle aTOMapHbIX WU, NO-BUAUMOMY,
BecbMa cnabo B3aMMOfeliCTBYT C BelW,eCTBOM Tex Ten, B KOTOPbIX HaxogAT-
ca [13, 14]. Mo3TOMY BO3MOXHO UX ANUTeNbHOe CyU,ecTBOBaHWEe BHYTPU NOA-
06HbIX TeNn 6e3 ABHbIX MPOABAEHUIA.

FnnoTtesa o HanMuum MUKpo-Y /[ BHYTPU NaaHeT M UX CNYTHUKOB Hawu-
6onee pasyMHO yBsi3blBaeTCca C npoueccamMu 3apofjblweobpasosaHna [7, 8] npu
MX yyacTuUu, KoTopble 3PMEKTUBHO MOTF/IN NMPUBECTU K KOHAEHCALWWN Bew ecTBa
n obpasoBaHWA 3TUX HebecHbIXx Ten. OpfHaKo, cBfi3aHHAasA C KOCMOTFOHWen 3a-
flada 3acnyxuBaeT OTAENbHOF0 PacCMOTPeEHUSA, U B faHHON paboTe Mbl 6yaem
fjonyckaTb BO3MOXHOe Hannyuune manblx Y/ B 3emne, He Kacadcb Bonpoca 06
UX MPONCXOXAEHUMN.

OfHMUM nN3 XapaKTepHbIX CBOWCTB Manblx U/Jl, B TOM 4yucne oTnumyato-
wee mx ot Y/l 3Be3fHON MaccChbl, ABNAETCA XOKUHTOBCKOe M3nyyeHne. dpdekT
XOKWHra MOXeT 06bITb 3ameTeH gnA Y [ c maccoir He 6onee 1020 — 1025 1 m
3aK/n0YaeTca B WU3Ny4YeHWM Lenoro Habopa 3N1eMeHTapHbIX 4YacTul, NpuUYem
YeM MeHblle Macca fblpbl, TeM 60NblWe BEPOATHOCTb WM3TYyYEHUA MaCCUBHbIX
yacTuu M 4YacTul ¢ BbICOKMM 3HavyeHuem cnuHa [15]. Ho ocHoBHaa gons m3ny-
YyaeMblX KBAHTOB MPUXOAUTCA Ha 6e3MaccoBble YacTULbl, U MOTOK U3NYyUYeHUSA
pe3ko cnafjaet NS POTOHOB U rPaBUTOHOB. NMOCKONbKY HeN3BECTHbI 6e3macco-
Bble CKansApHble YacTULbl, TO CNeAyeT 0XMufaTb, YTO HEMTPUHO Kak pa3 u 6yayT
3aHMUMaTb OCHOBHYIO AONK B MU3nyyeHuu mMmanbix Y c maccamum 1012 — 1018 r,
KOTOpble Hanbosnee BepOATHbI BHYTPU NAaHeTHbIX Ten Tuna 3emnun. M3nyde-
HWe HEMTPUHO 3a cyeT ahdekTa XOKMHIa MOXeT 0KasaTbCA OfAHMUM M3 Habnto-
faTenbHbIX NPOSIBNEHUMA U yfo6HbIM CpeAcTBOM noucka Manbix Y 4 [8, 10].
Mpn BbICOKON NMpOHMKalLWeh cnoco6HOCTU, N3BECTHOW ANA HEATPUHO, N XOpoO-
WO M3YYEHHOM HEATPUHHBLIM M3NYYeHNEM KOCMMWYECKOTO MPOMCXOXAeHNA 06Ha-
py>XXeHne NOBbIWEHHOFO0 NOTOKa HEWTPUHO U3 Heap 3eMnU 6bI0 6bl BECOMbIM
CBMAETEeNbCTBOM B NONb3y Hanuuma Y [ B Hawell nnaHeTe. Takoe NpeBbllWeHNE
noToKa HelTPUHO Hapj (OHOBbIM cnefyeT 0XWfaTb, Hanpumep, B6AM3N feic-
TBYO LW UX BY/NKaHoB, u B paboTtax [8, 10] yXe BbINOJ/IHEHbl HEKOTOPbIE OLEHKMU
JHepreTUkKN Mmkpo-Y/l B cpaBHEHWW C TaKOBON ANA O0O6bACHEHWA 3HepPreTUKWU
BY/1KaHO0B.2

2. MOTOK HEWTPUHO OT HeBpalwarweica Y/

B CBA3M C NMPUHLMUNUANLHON BO3MOXHOCTbI 3KCMNEPUMEHTaNbHOW peru-
cTpauuMmum M3Ny4YeHWUss 4YacTul BbICOKMX 3HEPruin, B TOM uucie HelTpUHO, OT
3eMHbIX U I ™Mbl npoBeseM 60/siee TOUHbIEe pacyeTbl XapaKTepPUCTUK U3NYUYEHUS
HEeATPUHHOTO NOTOKA U COCPEAOTOUYMM BHMMAaHWE HA M3NYyYeHWW OT HeBpalja-
loueica U/Jl, Tak KakK MHTerpasbHble XapaKTepUCTUKMN WU3/1yYeHUs Mano 3aBu-
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CAT 0T (pakTa BpauweHus. Kpome Toro, 6bICTpo Bpawakouasaca u 1em 6onee
3apseHHaa Y[ BHYTPWU NNOTHbIX He6ecHbIXx Ten 6yaeT 6bicTpo cHpacbiBaThb
MOMEHT BpalleHNa U 3apsfj N3-3a B3aUMOLENCTBUSA C OKPYXAK LW MM BeL,ecTBOM.

O6uwuve hpopMynbl AN U3NYyUYeHUS 6e3MaCCOBHbIX YacTuL C onpefeneHHbl -
MW KBaHTOBbIMWU uYuMcnamu oT Y [ nonydeHbl B pa6oTe [15], cornacHo KoTopbiM
yMeHbl eHUe maccbl Y /[l 3a cUeT M3yYeHUs OTHOT0 BMAa Y4acTUL C KBAHTOBbIMYU
uucnamu 1, T,p npoucxogut no 3akoHy

(?dn; = --a-Y) i Mudrmp{exp(8TrMwu)-\-1}~1udu, (1)
1Tp

roe M - macca U/ B gaHHbIi MOMeHT, U - aHeprus yacTuy (MCNONb30BaHI
reomeTpnsoBaHHble eanHuLbl G = C= 1). YunTeiBas OMUHUPYIO W NIT BKNag OT
Mog ¢ /= S—1/2 gpna 6e3mMaccoBOro HEMTPUHO

Mulmp = M2, (2)
a NS MAacCMBHbIX YacTuUL ¢ Maccoi nokoAa P u cnmHom 1/2

r 2w+ p)Mn3[1+ (1 - p2/n2\
WTp 1—exp{—=2trM 1+ (1 —p2M2D\(\ —p2/b12)-1/2} 13

cnektp usnyuenus ON/dtdu sapgaeTcs noguHTerpanbHbIM BbipaxeHuem
(1) ¢ cooTBeTCcTBYlO W el nogcTaHoBKOM (2) unu (3):

dN/dtdu = Twimp/(exp(8nMu) +1). (4)

Huxe Mbl npegcTtaBuM pes3ynbTaTbl pacyeToB And napameTrpos Y[, KoTopble
npeAnoONOXUTENIbHO MOFAM 6bl HAXOANTLCA B Hefpax 3emnu.

CnekTp u3ny4vyeHusa 6e3mMaccoBOro HeWTPUMHO wWBapuwunbgoBckoin Y [
npegcrtaBnaeT coboli MOYTM CUMMMETPUYUYHYIO KONOKON006pasHyw KpUBYH, NO-
NOXeHWe MaKCMMyMa KOTOpPOW onpepensierca Mmaccon Y. Ans YO pasznuu-
HblX Macc CrneKTpbl nNpuBegeHbl Ha puc. 1. MOXHO BU[LETb, YTO 3HepreTuka
M3N1lyYeHHbIX YacTul BecbMa CYWEeCcTBEHHO 3aBUCUT OT 3TOr0 efUMHCTBEHHOTO
3fjecb napameTtpa Y[: Tak, eCnU OCHOBHAaA [ONA HeWTPWUHO, M3nyyaemasn Abl-
poit ¢ M > 1016 r nonapgaeT B o6nacTb aHepruii meHee 10 M 3B, To nepexoj
kK U ¢ M < 1012 r paeT OCHOBHOI BKNajg OT HEWTPUHO C 3Heprusamu 60-
nee 1 IMsB, a ana Ul ¢ M < 1010 r - n3nyyawTCca HENTPUHO C IHEPTrUAMMU
6onee 1 TaB. 3To 06CTOATENLCTBO BaXHO ANA aHanm3a npobnemMmbl perncr-
pauvm HeRTPWHO, BO3HUKAKLWMX NPU KBAHTOBOM uMcnapeHnun mMukpo-Y [, Tak
KaK B OT/INYMe OT COSIHEYHbIX, KOrfja sHepruun He npesbliwatT 15 MaB, B cny-
yae Y /[I ykasaHHOro fjuManasoHa mMacc crneagyeT 0XupaTb 3HayuTenbHo (Ha 3—4
nopsagka) 6osee aHepreTMYecKMX 4acTuLl, KOTOPble MOTryT 6bITb U ferye 3ape-
rMCTPUpPOBaHbl M3-3a 60NbLIEro CeYeHUA NOrMOLWEHNA B Bel ecTBe (CM. HUXE).
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noTok u3nyyeHms (dN/dtdw)

aHeprusa(w)

«loTr

Puc. 1. CkopocCTb M3ny4yeHns 6e3mMaccoBbIX HeWTpuHO Y[ pa3nuyHbiX mMacc (4ymcna okono
KpuBbIX, B r. dN/dtdu), yactuy/cek-MaB)
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MonoxeHre MakCMMyMa Ha CnekTpe onpegensieT 06nacTb 3HEPrUin HEWTPUHO,
KOTOpble clieflyeT OXuaaTb OT COOTBETCBYHOLWMX YJ1, 1 MOXeT 6biTb onpeje-
NEHO M3 TPaHCLEeHAEHTHOro ypaBHeHusa 1Nk —2) = —x, rae x = 8nMuTrnx, 4To
faeT (B reoMeTpuU30BaHHbIX eAuHULAX)

uw = 1,8414/8»M.

MoNbHbIA MOTOK M31y4YaeMOl 3HEPruM 3a CYET paccMaTpMBaeMoro npo-
Llecca B BUAe HEWTPMHO (MAKM MOTOK YacTuu) MO BCEMY CMEKTPY NM6O No He-
KOTOPOMY CMEKTPa/ibHOMY WHTEpBany MofiyvaeTcsl Mpu UHTErpupoBaHWMW Bbl-
paxkeHunin ans dN/dudt n TakXe CUIbHO BO3pacTaeT C YMeHbLUeHWEM MaccChl

yna.

Ecnn gonyckatb BO3MOXHOCTb MacChl MOKOS Yy HEATPWHO, YTO BMOJIHE
BEPOSAITHO MO COBPEMEHHbIM faHHbIM: T(ne) < 17 3B; m(i/) < 0,27 M3B;
T(yT) < 35 MaB [15, 16], To npeacTaBnseT MHTepec NpoaHaln3nMpoBaTb Xa-
pakTep U3Ny4YeHMs 3TUX YacTul, 3a cyeT agdekTa XOKNHra, T.e. 4acTuL, ¢ Temu
)Ke KBaHTOBbIMMW ymciaMu, HO 061afarLLMX HEHYNEBO Maccoi Nokos no ¢op-
myne (2). Ha puc. 2a nokasaHO BAUSIHWE 3TON HEHyMeBOM MacChbl MOKOS Ha
CNEeKTP M3NYYEHUS, KOTOPOEe MPOSBASETCA TOMbKO AN OTHOCMTE/NIbHO MacCuB-
Hbix U ¢ M > 1014 r gns macc NoKos B yKasaHHbIX npefenax. [Ans HEATPUHO
4YeTBEPTOro MOKoMeHus [17], ANA KOTOPOro OLeHKa MacCbl 3HaYNTENbHO 60/b-
we: T(y4) ~ 45 3B, CNeKTp M3/y4YeHNS MOXET CYLLECTBEHHO M3MEHMUTbLCS, HO
ncnyckaHue t/4 Torga 6yfneT NPoOUMCXOAUTb Hapsady C APYrUMU TSHXeNbIMU Yac-
TUUaMK cnuHa 1/2 npoToHaMu, HEMTPOHaMK, MKOOHaMK U ap. Bce 3HaunTensHO
MEHbLLUME Macchl ANns ve n ana Mup meHee 1014 —1015 r npakKTUYECKU He
M3MEHAIOT CNEKTP U 06WMIA NOTOK U3Ny4vyaeMblX HENTpUHO. B uenom, xapak-
Tep CnekTpa CXO4eH C TakoBbIM /18 6e3MaccoBblX 4acTul, a 3HayeHus Ans
MOSIHOTO NOTOKa W NonoXeHue Makcumyma cnektpa dN/dtdui oTnmuaroTcs He-
cyllectBeHHO (puc. 26). Bug cnektpos dM/dtdui nogobeH TakoBbIM AN18 Ymcna
4yacTul, W ero MHTerpMpoBaHue faeT CKOpocTb noTepu maccu Y/, dM/dt, ko-
TOpas OKasblBaeTcs 006paTHO MPONOPLUOHaNbHOW M 2. B 06bIYHbLIX efuHuLaxX
AN NOTOKa 6e3MaccoBblX HEWTPUHO MONy4vaeTcs

dN/dt = 7,275 «1033/m cek-1,

a Ana MacCUBHbIX C maccoil nokos 10 MaB
dN/dt = 1,133- 1034/m cek"1,

a C Maccoil MoKosi, COOTBETCTBYHOLLEN BepXHeli OLEHKe Ans T,
dN/dt = 1.151 «1034/m cek-1.

L ns peleHns Bonpoca 0 perncTpauum HeMTPUHHOTO MoToKa oT Y[, Ha-
XOAAWMXCA NPeLnoN0XKUTENbHO BHYTPU MAaHeT, pacCMOTPMM OLEHKU Ans ce-
YEHWIA NOT/OLLEHUS HEMTPMHO, HanpuMmep /e, 3a CYET B3aMMOAENCTBMIA C 3NeK-
TPOHAMU B HEBbIPOXJAEHHOM 3/IEKTPOHHOM rase (B3auMOZENCTBUSA C HYKOHaMU
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Puc. 2. CkopocTb M3nyyeHUsa mMaccuBHbIX (T = 10 M3B) HeliTpuHo Y[ pasnuyHoin mac-
Ccbl (a) MW BAMAHWE MacCbl MOKOS HEWTPMHO Ha BWUJS 3HEpreTMyeckoro cnektpa gna 4 c
M = 1014 r (B OTHOCUTENbHbLIX efguHuuax) - (6)

MMEKT MEHbLUNE CEYEHMs), KOTOpble MOTYT MMETb MeCTO MpU ero AeTeKTu-
poBaHUKU. BenuumHa ceyeHUs B CUbHOW CTEMEHW 3aBUCUT OT 3HEPreTUKU K
onpefenseTcs cornacHo cnegytowmm gopmynam [18]:

asal,7«10~44(E,,/Tc2)2, Ev<CTC2, (5)
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a&0,85+10 44(E,,/TC2), E, "TCcC2 (6)

rae T - Macca 3/eKTpoHa.

MOXHO 3ameTuTb, 4TO B 060MX cAy4vasx 6osee BepOATHO [AeTEeKTMpPO-
BaHMe 4acTul ¢ 60/ee BbICOKOW 3Hepruei, [oNs KOTopbix Benuka gng Y
MeHbLUeA Maccbl. B oTanumMe OT 3Hepruidi COMHEYHbIX HENTPUHO 3eMHble Y[,
MOFYT U3ny4yaTb HEWTPMHO C 3Heprusimm 6onee 103 MaB, uTo Ha 2-3 mopsigka
MOBbILIAET cedeHue nornouleHns. CnefoBaTe/lbHO, NPY NOMELLEHUN AeTeKTopa
HEeATPMHO Ha 6/AM3KOM PaccTOSHMM OT MpeAnofiaraemMoro mMecTa floKanusauum
(BbIXOAa Ha NOBEPXHOCTb) Y[l [eTEKTOPbl YXKe CYLLEeCTBYIOLWNX KOHCTPYKLNIA
OOMKHbI (PUKCUPOBaTb Pe3KOoe MpeBbllleHMe MOTOKA YacTul, MO CPaBHEHUIO ¢
(DOHOBbLIM W COJIHEYHbIM, NPUYEM HanNpaBAeHHOCTb 3TOr0 BbICOKOr0 MOTOKa 6y-
[eT CBUAETeNbCTBOBATb O BO3MOXHOM PacrOfIOKEHUN ero UCTOYHMKa - YU/[.
OfHVUM M3 npefnonaraeMbiX MeCcT Ha 3eMJjie ABNSKOTCA AelCTBYIOLLME BY/Ka-
Hbl [8, 10], o4HaKO cyulecTBYOLMEe HEWTPUHHbIE AETEKTOPbl pacnonaratTcs
6€30THOCUTENLHO K Fe0/IONMYECKOli aKTUBHOCTH, B CBSI3U C YEM UMMU W HE MOT-
N BbITb 3apPerMCcTPUPOBaHbI @aHOMA/IbHO BbICOKME MOTOKM OT /I0Ka/IM30BaHHbIX
MCTOYHUKOB, TaK KakK OHW ObICTPO YObIBalOT MpU yAaneHWM OT UCTOYHMKA.

MpuBeaeHHbIE Bbille (GOpMy/bl OTpaXKalT BKNaL B U3TyYEHUE OT OLHOrO
M3 BMAOB YacTuy cnuHa 1/2, a B geictButensHocTn Y. 6yget manyuvatb u
apyrve vactuubl [14, 19]. Ans ydeTa U3NYYEHUA HEATPUHO U AHTUHEWTPUHO
Tpex NOKONIEHUI B cny4vae MX 6€3MacCOBOCTU BbIYUC/IEHHbIE 3HAYEHUS NOTOKa
cnefyetT YMHOXWUTb Ha 6. Ecnu e HEATPUHO MMEKOT HEHYNEBYHD Maccy Mno-
KOS, TO BKMaf KaXA0oro OyaeT He3HauuTe/lbHO pa3nmyaTbes, W ANna npobnaembl
perucTpaunmn Heo6XoAUMO KaXKAbliA TUN HEWTPUHO paccMaTpuBaTb B OTAENb-
HOCTU. TOCKOMbKY YeTBEPTbIA BO3MOXHbIA TUMN HEATPUHO, MO-BUAMMOMY, eClu
M cyllecTBYeT, TO 06n1afaeT HaAMHOro 60NbLUe Maccoi MOoKos, HeXenu ocTanb-
Hble (> 45 M3B) [17], To ero BKnag B usny4veHune Y 6yaet nposiBAATLCA YXKe
nocne HYKJOHOB M runepoHos gna Y cM < 1010r.

3. B3pbiBbl MUKPO-Y [ 1 BCNNECKU HENTPUHO

Kak MoXHo yb6eantbea, and Y[, ¢ maccamu, Hanbonee MHTEPECHLIMU C
TOUYKM 3peHus obcyxaaemonn mogenu Y/, B 3emne, 06K NOTOK N3NyYaeMbIX
4acTWL W, B YAaCTHOCTW HEATPUHO, CTO/b 3HAYMTENIEH, YTO UX Macca MOXeT
[l0BOJIbHO ObICTPO Y6bIBaThb, TakK YTO B TeYEHME HEKOTOPOro BpemeHn Y[ non-
HOCTbO “CropuTt” (KOHEYHOE COCTOSIHME NpW 3TOM - 3TO CheuunabHbIA BONPOC
[20]), m3ny4yasa Ha nocnefHeM 3Tane OYeHb 3HEPreTUYHble YacTuubl. Mpy 3TOM
B 06/1aCTM paccMaTpMBaEMOro UHTepBana Macc elle ocTaeTcs CrnpaBesnBbIM
noaxof 6e3 KBAHTOBAHWA rpaBUTaLMW M KBa3UCTaLMOHapHOe MNPUBAMXKEHME,
MCNoMb30BaHHOe MpW Bbi6Ope pe3ynbTaTa O XOKUHTOBCKOM M3YYeHUU (XOTHA
CKOPOCTb M3/yYeHUS 3HAYMUTENbHO BO3pacTaeT), TaK Kak XapakTepHoe Bpems
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XU3HM Y/ elle Ha MHOro nopsgkoB 60/blUe XapaKTepPHbIX BPEMEH KBAHTOBO-
rpaBUTaUMOHHBLIX 3(geKToB - tpi ~ 10~44 ¢, 1 BPEMEHN HaXOXAeHWs KBaHTOB
Ha macwabax Y4 - rg/c.

B cBa3n ¢ Tem, uto Y[ wn3nyvaeT He TONbKO HEWTPUMHO, TOYHO Ornpe-
[LennTb Temn NOTepPM MAcCChbl 3a CYET TAKOro W3/lydeHUs U Bpems XusHu Y/
[LOBO/IbHO TPYAHO, HO MOXHO MCMNONb30BaTh OLUEHKM [21] Ha OCHOBaHMU BK/IO-
YeHWUs B COCTaB M3NY4YaloLUXCA — YacTUL, MOJeNn 31eKTpocnaboro B3aMmo-
aeicTema [22], B KOTOPO (hepMMOHBI CO cnuHOM 1/2 cocTaBnawT 90 BUAOB
yacTuy u3 104. 310 NO3BONAET CUUTATh 0OLWMIA MOTOK M3NyYeHUs Npmban3m-
TenbHO B 102 pa3 60/blue, YeM 3a CYeT UCMYCKaHMS HEMTPUHO TONbKO OAHOMO
Tvna. Torga Ansd BpeMeHW cyuwiecTBoBaHus UJ[ nonyuvaetca r = M3/3a, rge
BennymHa a sa 10~3. Ana U/l 13 paccmatpuBaemoro guanasoHa macc, BUAM-
MO, MCMNOMb30BaHWEe TaKOW MoAenu AonycTUMO, Tak KakK “addekTbl” Benmkoro
06beanHeHUsa ByayT gaBaTb BKNag npu sHeprusax okono 1015 MaB. Ana 4
¢ M = 108 T 1 mMeHee Ans a cnefyeTt UCNOMb30BaTh 60MblINE 3HAYeHUs. Bpe-
MA cyuiectBoBaHus Y]l ¢ maccamm 108 —109 r okasbiBaetcsa 0,001 —1 cek
(He TOMbKO 3a CYET M3Ny4yeHWda V), U Takoil Y[, cOoOTBETCBYET M3MyyeHue U
C aHeprusmu 6onee 106 M3aB, uTo 6yAeT BbIrNALETb KaK [JOBO/bHO KpaTKo-
BPEMEHHbIN BCN/eCK NPU ero AeTeKTUPOBaHMM, a He Kakon-nnbo ctaumoHap-
HbIA NOTOK, KOTOPbIA O6bIYHO PErUCTPUPYeTCH B 3KCMEPUMEHTAX C HEMTPUHO
BHE3EMHOr0 MPOUCXOXAEHUSA N HENTPUHHBIMU MyYKamu, NMPON3BOAALLUMUCA Ha
yckopuTtenax. Moatomy “curHan” o HeATPUHHOM noToke oT Y[, manoli mac-
Cbl MOXXHO /1IETKO BbIZe/INTb Ha (hOHE MANOUM3MEHSAIOLEroca KocMuyeckoro. Ho,
OYEBMHO, YTO 3TO 06CTOATENLCTBO MPeAbABNAET CneyunanbHble TpeboBaHMA K
perucpupytowein annapatype 1 yc/lioBUAM NOCTAHOBKM 3KCMEPUMEHTA.

U/ c maccoi 1012r, cyulecTBytoLme AeCATKN NET, MOXHO CUMTaTb npea-
B3PbIBHbIMU, TaK KakK B TeyeHue OaMKaiilumx neT Habao4eHWA 3a NOTOKOM 13-
Ny4YyeHns OT HUX OyaeT PUKCUPOBATLCA POCT 3HEPrMM U MHTEHCUBHOCTW, BCe
6onee pe3kunid, n 3atem — Bcnneck (puc. 3). Yxe ana v ¢ Mwu 10i r r oka-
3aeTcs He 60/iee HeCKONbKUX CYTOK. Takoe Bpemsi MOXeT 0Ka3aTbCA MabiM,
4yTo6bl OAHO3HAYHO 3aMKCMpoBaTb MUKPO-Y [, B TOM UM UHOM MeCTe U AN
N3yYeHUs CBONCTB HEUTPUHHOIO U3NYUYeHUS.

Takum 06pa3oM, HECMOTPA Ha NPUOUKEHHbIA XapakTep OLEHOK, MOX-
HO NpPefioXUTb Hanbosee BepoOsATHLIA AmanasoH macc Y[ (1011 —1012 r), u
paccMOTpeHHble 0COBGEHHOCTU WX M3yYeHUs, KOTOpoe NOATBEPAMN0 Bbl 06CY-
XKAAaeMyt0 Tunoresy.

Mpy BbICOKON MHTEHCMBHOCTU KBAHTOBOIO M31y4YeHUst oT MuMKpo-U[ Ta-
KUX MAacC, HaxoAALWMXCA MPeAnosioKUTENIbHO BHYTPM 3eMin, 3HauYUTeNbHas
4yacTb OyJeT nepexoAuTb B TEMNOBY SHEPTUIO B pe3ynbTaTe B3auMOLENCTBUA
4acTuL, C BELLECTBOM, HO He ByfeT CKa3blBaTbCA Ha 06LLeM TEN/I0BOM MOTOKe 13
3eMHbIX Heap, Tak Kak Ans BbiXofa TenjoBoi BOHbI HA MOBEPXHOCTL TpebyeTcs
6onee 3HaunTenbHOe Bpemsa. Ecnm B 06nacTu LeHTpa Halweld niaHeTbl UMEKT-
cs U, c npefB3pbIBHOW MacCOi, TO MOXHO BECTM 3KCMEPUMEHT MO UccefoBa-
HWIO MOCNEAHNX 3TanOB UX UCMapPeHUs, NPUYEM HEWTPUHHbIE AETEKTOPbl MOTYT
Haxo4uUTbCS B NOOOIN TOUKE 3eMHON MOBEPXHOCTU, & HE TO/IbKO B reonoruye-
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x 107

Bpemsi (C)

Puc. 3. M3meHeHune maccbl Y[ c HayanbHOW Maccoit 1012 r (a) M aHeprum, COOTBETCBYIO L el
Wma, (6) co BpemeHeM. 3HauyeHWs MONHOrO MNOTOKa MNPOMNOPLMOHANbHbLI  u/max:
dN/dt = 2,9407 «1017 swrnx (YacTuu/cek).

CKN aKTUBHbIX 06/1acTAX, TaK KaK OCOOEHHOCTU HECTaUMOHApPHOro U3ny4YeHus
OyayT BblAeNATb U3NyyYeHUe OT TakuxX 06BLEKTOB Ha obLiem (oHe. Mpuuem cne-
AyeT 3aMeTuTb, YTO 06nacTb AApa 3em/n OKa3biBaeTCs BblAEeNEHHON KaK Hau-
6onee ApeBHAS NoTeHUManbHas fma, cobuparowas Hambonee crapble U —
MeHee MacCUBHbIE U KOPOTKOXMBYLLME; N KOHLEHTpaumsa Takux U/ B obnactu
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A4pa MOXET 0Ka3aTbCsi MaKCUMa/lbHOW, UYTO ClefyeT yuuTbiBaTb Npu Bbibope
Hanpas/ieHUs LeTEKTUPOBAHMA NPEAN0NaraeMoro HeWTPMHHOIO MOTOKa.

O[fHOW 13 XxapaKTepHbIX 0COBEHHOCTEN M3ydYeHns oT MUKpPo-Y /[ 13 Heap
3eMv MOXeT ObITb OAMHOYHOCTb COObLITUA B3pbIBA €€ Ha MOCNefHUX CTaAuUaX
N3Ny4YeHUs, TaK Kak no mepe NpuOANXEHUS K KOHEYHOU (pa3e BAUSHWE pa3nun-
yns B maccax Y[ Ha cnekTp M3nyyeHus OyAeT CKasblBaTbCsi BCe OCTpee, U
4yTo6bl Y[ B3pbIBaAINCL OLHOBPEMEHHO, MX MAacCChl AO/MKHbI OKa3aTbCA Mpak-
TUYECKN PaBHbIMU, YTO MasiOBEPOATHO AadKe Mpu MX MakCMMalbHOM 4YuCfe B
3emne go 108—109, orpaHMYeHHbIM MacCoi caMoi MIaHETbl N ee 3HePreTUKONA.
PacnpegeneHsbl xxe Y/ no HayasbHbIM MaccaM MOryT 6biTb BECbMA LUIMPOKO —
ot 10131 go 1027 r [8]. Mo3TOMy OT B3pbIBOB COBOKYMHOCTM Y[l cnefyeT OXu-
faTb HEKOPpPenmpoBaHHble OAVHOYHbIE BCMIECKU HEATPUHHOIO U3NYUYEHUS, CY-
LLeCTBEHHO MpeBbllatoLne hoHOBbIV YPOBEHb, MPUYEM BCM/ECKY LOMKHO npesd-
WecTBOBaTL 60fee nnaBHOe BO3pacTaHWe KaK MHTEHCUBHOCTW TakK WU 3HEPruu
N3ny4yaeMbiX 4YacTuL. YPOBEHb (hOHA MOXET ObiTb 06pa3oBaH AOMOMHUTENLHO
K KOCMWUYECKOMY M mn3nydermem Y c M > 1012 .

Mpo6nema KBaHTOBOrO M3ny4yeHUa OT MaibiXx Y[, B TOM yucne u Hel-
TpUHHOro [23] B CBOe BpeMs Bbi3blBasa 3HAYMTESIbHbIA WUHTEpeC, Npu pony-
LeHUn npomcxoxgeHns Y/ Bcneactsme BonbLIOro B3pbiBa, HO, KaK MOKasa-
nm pacyetbl [23-25], Bknag Y[, B KOCMWYECKWMA (JOH OKasblBaeTCsi A0BOSIb-
HO Ma/biM, a onpefesneHne BepxHero Habn4aTeNbLHOro npejena Ha BCbILWKY
N3Ny4YeHUs B ONTUYECKOM, pajuo- M ramma-fguanasoHax He Aasio OCHOBaHWUI
4NA YyTBEPXAEeHUS Takol rmnoTesbl. Apyrumu cnosamun, MUKpo-4Y/zl nckanm He
Tam, TAe UX MOXHO 3aperucTpuposaTb MMEKOWMMUCA CpPeAcTBamMu Ha 3emine
1 B BAMXaNlLieM KOCMOCe, NOCKO/IbKY Hambosee XxapaKTepHOe NposiBieHue Ta-
KUX 00bEKTOB CleflyeT OXuiaTb Ha MajblX PacCTOAHUAX, YTO BO3MOXHO A/is
KocMuuecknx Y[ TonAbKO Npu MX camoM GamdKaiweM pacnofioxeHun ot 3em-
. HeobxoAnMmMo OTMETUTb, UTO runoTesa o Y/, B Hegpax 3eMAn COBEPLLEHHO
He WCK/Il0YaeT U BO3MOXHOCTU 06pa3oBaHus Y[, KOCMONOrM4eckoro npouc-
XOX[EHWA, B TOM YMC/E U TaKUX, KOTOPbIE MOIM WU MONacTb BHYTPU 3emMiu
N Apyrux HebecHbix Ten. Oxugatb npucytceuve Y[, B KOHAEHCUPOBAHHbIX Te-
nax 6onee BepOATHO, HEXENN OAMHOYHBIX U U30/IMPOBAHHLIX, TakK Kak 3a Au-
Te/lbHOE BPEMSA WX CYyL,eCTBOBaHWSA BMOMIHE peasieH rpaBUTALMOHHLIA 3axBar,
a 3T0 06CTOATENbCTBO B OTHOWWEHWM 3eMAN JaeT BO3MOXHOCTb MOCTaHOBKM
3KCNepumeHTa no ux perucrtpauun. Cnegyetr OTMETUTbL HEKOTOPYHO aHanoruto
HEATPUHHOTO NPOSBAEHUS MUKPO-Y[ C ApyrvM rMnoTeTUYECKUM O6BLEKTOM
— MaKCUMOHaMn — 4yacTuLuaMmn NAaHKOBCKOM mMacchl (0kono 10-5 r), koTopble
TaKXXe JO/DKHbI UMETb BbICOKYIO MPOHMKAIOLIYKO CMOCOBHOCTL B BELLECTBE 3eM-
AN N MOTYT CNYXWUTb WCTOYHWKAMW BbICOKOIHEPTETUYHOTO U3YYEHWS, HEMAT-
PUHHAaA KOMMOHEHTA KOTOPOro MOXET BbITb 3apernctpmposaHa [26]. OgHako, B
oTnnymne ot Y/ npuHUMnnanbHas BO3MOXXHOCTb CYLLECTBOBAHMUS MAKCMMOHOB
(NNaHKeoHOB) OCTaeTCA OTKPbITON.

Kpome TOro, conoctaefeHue TeopeTMUYeCKUX U Hab/logaemblX XapakTte-
PUCTUK U3NTYYEHUA MUKPO-Y [ npu MX perucrpaumm MOXET 0Ka3aTbCH BeCb-
Ma NOMe3HbIM AN YTOUYHEHUS TEOPETMYECKUX MOMOXEHU OTHOCUTENbHO B3a-
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MMOAENCTBUIA MPU CBEPXBLICOKMX 3HEPruax, X.e. YJ, MOryt okasaTbCd Mo-
ne3Hoii “nabopaTopuein” Ana (U3NKM BbICOKMX 3HEPruii, Teopuin Benukoro
00beMHEHNA N efUHbIX TEOPUNA, U HENTPUHHBLIA IKCNEPUMEHT C U3NYYEHUEM
oT U/, MOXeT M03BO/IMTbL MPOABUHYTHCA B 06/1aCTb SHEPIUiA, YeM C HEATPUH-
HbIMWU My4YKaMu, NOAy4YaeMbiMU Ha yckopuTensax [27]. Mpu aTom cpefcTBa pe-
rMCTpaLMmn BbICOKOIHEPTETUYHbIX HEATPUHHBIX MYYKOB [28], BUAMMO, AOMKHBI
0Ka3aTbCsl MOME3HbIMU U AN U3TyYEHUs OT MUKpOo-Y/[l, Tak Kak MOTOK M3ny-
yeHns oT Y[, Kak MOXHO BUAETb U3 AaHHON paboThl, MO 3HEPreTUKe OKa3sblBa-
eTCA JOBO/IbHO 6/M3KMM K NOy4YaeMOMY MCKYCCTBEHHO. B yacTHOCTW, BecbMa
nonynspHble MHOTOMEPHbIe 00beAnHeHHble Teopun Tuna Kanyubl - KneliHa
[29] 6e3 BO3MOXHOCTM HEMOCPEACTBEHHOW 3KCMEPMMEHTaNbHOW BeputmKalmm
NPMBOAAT K 3HAUYUTENIbHOMY Pa3HO0Opa3vio CXeM W MOAXOA0B K MOCTPOEHWIO
TOA UAN WHOA MOAeNu, a pacCMOTPeHMe 0COGeHHOCTel uanyyeHns Y B mx
MHOrOMepHON TpakToBKe [30-32], HanpaBfeHHOe Ha MOUCK 3KCNEPUMEHTANbHO
npoBepsieMbIX (DAKTOB, MOXET MOCAY>XWTb CPefCTBOM BblGOpa OnpeaeneHHOA
TEOPETMYECKOI CXeMbl C AOMOMHNTENbHBIMU M3MEPEHUAMM NPOCTpaHCTBa-Bpe-
MEHMW.

4. 3aKnwyeHune

Hanbonee xapakTepHbIMU CBOMCTBAMU MOTOKA HEATPUHHOIO WM3yUYeHUs
OT MMKpo-Y[, npeanonoXuTesibHO HaxoAAaWmMxXcs B Heppax 3eman, MOXHO
cuuTaTb crnegyloLme:

1. 3Heprumn HeTPUHO AO/KHbI MPEBbILIATL 3HEPTMU COMHEYHbIX HEATPUHO
Ha 2—3 nopsjka v 6onee, NpUYeM No Mepe pacxofoBaHus macchbl Y[ [0MKHO
NMEeTb MeCTO CMeLleHne B 061acTb 60/51€e BbICOKUX SHEPTUIA HEMTPUHO;

2. U3NyYeHne JO/MKHO UMeTb TEMNJ0BON 3HepreTUYeCKuUid CNekTp, Makcu-
MYM KOTOPOro 3aBUCWUT OT 3HauyeHWs maccbl Y (M Apyrux ee napameTpos);

3. Npu ManbiX mMaccax UJl — KpaTKOBPEMEHHbI XapaKTep W3/y4YeHus,
BO3pacTaloWnin B TeHeHNe HECKOIbKUX CYTOK C BbICOKO3HEPreTUYHbLIM BCM/le-
CKOM B KOHLE;

4. BblpaXKeHHas HanpaB/fIeHHOCTb U3/YYeHUs U pe3Koe YyOblBaHWe UHTEH-
CMBHOCTU B 3aBUCUMMOCTWM OT PaccTOfHUA L0 NpeAnonaraeMoro UCTOYHMKa.

Mo aTum XapakTepuctukam Y[ B Hegpax 3emninm mMoryT 6biTb 3aperucr-
pYpoBaHbl HENTPUHHLIMW feTeKTopaMu, B TOM YMUC/IE U CYLLECTBYIOLWMMU, MpU
COOTBETCTBYHLLEM aHa/IM3e 3KCMNepUMEHTaIbHbIX JaHHbIX U BbIOOpPE YC/MOBUIA
4N9 perncrpaymm ykasaHHbIX O0COOGEHHOCTENA.

Ha ocHOBaHUW NOJYYEHHbIX JaHHbIX MOXHO NPeSI0XUTb UCNO/b30BaHue
HEATPUHHBIX AeTeKTopoB (Hanpumep, KamuokaHae, IMB) ans permcrpauumn Ha-
npaBneHHOro n3 Heap 3eMaM NOTOKa YyacTul, B obnactu aHepruin 10—100 MaB,
a TakXXe NOUCK KPaTKOBPEMEHHbIX UM 3aMETHO MEHSIOLLMXCA CO BPEMEHEM M0-
TOKOB HEMTPWHO CBEPXBbLICOKUX 3Hepruii 100 3B - 1 TaB u 6onee) B Npoek-
Tax AymaHa n Baikanbckom [33, 34].
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Tabnuua 1
WHTepBan 3HEPreTMYecKOro cnekTpa HENTPUHHOIO U3Ny4YeHUS,
N BpeMsa cyuwectBoBaHMA MUKpo-Y /[ pasnnmyHbiX macc

M (r) Abl (M3B) r=M3ml,74 «}030/a
(cek)

109 107 - 108 0,1-1

1010 T08,. o7 300 - 1000

o 1 10s - 10e 2106 (20 cyT)

10 12 0 » O 2 109 (55 ner)

1,96 <1013 03 - 5103 ~ 1014(4 +106 ner)

5,9 ml014 50 - 500 ~ K0 18(310 10 ner)

1018 1-10 ~ 5+1021(1,5 <1014 neT)
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The elastic and thermodynamic properties of metallic glasses (Ca7oMg;to, M g 70 Znjo>
CusiZru and Pd775Sile.5Cu6) are obtained from dispersion relations in the low momen-
tum region derived by us for various dielectric screenings, adopting a simple model given by
Bhatia and Singh. This model assumes a central force, effective between nearest neighbours
and a volume dependent force. For elastic properties, elastif: constants Cu and C44 are ob-
tained from slopes of longitudinal and transverse dispersion relations, respectively, whereas
C17 is found by the requirement that elastic anisotropy for disordered systems, like metallic
glass, is to be zero. For thermodynamic properties, Debye temperature is calculated for the
glasses for various dielectric screenings.1

1. Introduction

The advent of metallic glasses [1] has been one of the most exciting events in
the fields of the material science and engineering. In recent years, metallic glasses
have exhibited a remarkable and widespread development and a broad spectrum
of applications [2-5]. This has motivated us to study the elastic and thermo-
dynamic properties of binary (Ca70Mg3o, Mg70Zn0 and Cu57Zr43) and ternary
(Pd77.5Sii6.5Cu6) metallic glasses for various dielectric screenings due to conduction
electrons through one of their dynamical properties, viz. the dispersion relation.

Theoretically, dispersion relations for the glass Ca7oMg3o have been derived
by Hafner [6] taking S(q,w), by Bhatia and Singh [7] using a model approach.
In this approach a central force, effective between the nearest neighbours, and a
volume dependent force is assumed. Saxena et al [8] derived them by choosing
an interatomic potential and employing the method as proposed by Hubbard and
Beeby [9]. Suck et al [10] derived them experimentally by taking neutron inelastic
scattering data on S(q,u>). The dynamical properties of the glass Mg70Zn3o have
been studied theoretically by von Heimendahl [11] using the equation of motion
method, by Tomanek [12] using a model calculation, by Saxena et al [13] using the
interatomic potential and employing the method proposed by Takeno and Goda
[14], by Agarwal and Kachhava [15] using the model approach. Experimentally,
the dispersion relation of longitudinal phonon frequencies for Mg70Zn3o glass was
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determined by Suck et al [16] for a few momentum transfers near ¢p (= 2.61 x
1010 m-1, at which the first peak is found in static structure factor calculation)
for the first time. Theoretically the vibrational dynamics of the glass Cus7Zr43 has
been studied by Kobayashi and Takeuchi [17] using recursion method and by us
[28] using the model approach; while no experimental data are available for the
glass. The phonon dispersion relations for the glass Pd77.5Sii6.5Cu6 were derived
by Agarwal and Kachhava [19] for the first time using the model approach, while
no experimental data are available. We have experimental data for Ca7oMg3o only
for lower wavelengths and for Mg70Zn3o only for a few momentum transfers around
gp. However, no experimental data are available for higher wavelengths, where
the first peak is observed in the above theories. Moreover, the screening due to
conduction electrons in this region contributes quite significantly to the phonon
frequencies. In other words, in this region the w —q relations are sensitive to
the dielectric screening due to conduction electrons. For the other regions, the
w — relations given by Bhatia and Singh [7] for Ca7oMg3o glass and by Agarwal
and Kachhava [15] for Mg70Zn3o glass are in good agreement with the available
experimental data. Dispersion relations of metallic glasses for various dielectric
screenings due to conduction electrons in the region of higher wavelength are derived
[20] following the model given by Bhatia and Singh [7]. To evaluate the elastic
moduli of metallic glasses as Young’s modulus (E), Bulk modulus (B) and Shear
modulus (G) for various screenings, elastic constant Cu is obtained by taking the
slope of corresponding longitudinal dispersion relation, < +. is obtained by taking the
slope of transverse dispersion relation, whereas C12 is obtained by the requirement
that elastic anisotropy, for disordered systems, like metallic glasses, is to be zero.
Corresponding sound velocities are used to calculate Debye temperature for various
dielectric screenings.

2. Theory

Consider a metallic glass having the coordination number TV, the nearest
neighbour distance a and mean atomic density p — '{M, in which wy is the ion
density and M = ~3, CiMi is the mean atomic mass. 1/, is the atomic mass of the
i-th component of metallic glass with concentration C-. ne is the electron number
density so that ne = n,z and z = C,z- is the mean valence of glassy system.
kp —(3ir2ne)1"3 is the Fermi wave number.

One of the simplest methods of evaluating the phonon frequencies is the force
constant model in which the force constants 8 and 6 are derived from the interatomic
potential W(r), as

R =(pa2/(2M))[(1/r)(dW(r)/dr)\r=a, 1)
6 =(pa3/(2M))[d/dr{(I/r)(dW(r)/dr)]]r=a. )

The contribution of the conduction electrons to the phonon frequencies is explicitly
represented by force constant ke which can be written on the basis of the Thomas-
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Fermi model as
Ke = 47rmn?22e2/ A'"F. ?3)

Here e is the charge of electron and Kj.F—AkF/(nao) is the Thomas-Fermi screen-
ing length, in which ao is the Bohr radius.

The expressions for the longitudinal (u1) and transverse phonon frequencies
(uit) given by Bhatia and Singh [7] can be written as

w| —C[Rlo + + KeKTF[G(qr,)]2/(pc(q)) (4)

and
u} = C[(R+6/2)10-6b/2], (5)

with C = 2N/(pa?). Here

In = JI' sin0 cos" 0 sin2 ~igacosO” dO, (6)
o

where ¢ is the momentum wave vector and 0 is the angle between the unit vector
along the displacement of the wave and the vector joining the atom at origin to one
of its nearest neighbours.

The cancellation effects of kinetic and potential energies inside the core of
ions making the effective potential weak in core gives a shape factor, [G(grs)]2, as
in Eg. (4), and is of the form [21]

[G(gr.)12 = B(sin(or,) - (ars)cos(qr,))/(ar.)3]2, @)

where r, = [3/7Trn;)]Y/3 is the radius of Wigner-Seitz sphere.

In Eq. (4), f(q) is the dielectric screening function. To know the dielectric
screening dependence of the phonon dispersion curve for longitudinal mode of vi-
brations we consider the screening functions [22, 23] due to Hartree (H), Hubbard
(HB), Geldart and Vosko (GV) and Self-Consistent Screening due to Shaw [24]
(SCS) and Overhauser (OH). Representing the Hartree function by eH(<?) and

eH(?) = 1+ Qo(q), )
where
<20(g) = (A'xf/q2)f(x) with x =q/kF 9)
and
f(x) =05+ ((4- x2)/(8%)) In . (10)

The HB, GV, SCS and OH screening functions are given by

«?) = 1+ Qo(9)/(i - f(a)Qo()). (m
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Fig. 1. Dispersion relations for Ca7oMg3o- X (—) and u>x (—) on the basis of Eqs (4) and (5)

derived by Bhatia and Singh (Ref. [7]); uq, (- ) and bij (- ) by Saxena et al (Ref. [8]); »,

those due to Hafner (Ref. [6]) from calculations of 5(q,w); o experimental points from neutron
scattering (Ref. [10])

where
Inb(i) —0.522/(¢2+ & + atf)» (12)
lav(i)= OV /[(12+ vkl) with v- 2/(1+ .153("/44)), (13)
fscs(q) = AlL —exp(—B(qg/kp)2)] with A=1 and B =0.535
(14)
and

JoH(?) = 0.275 (9/*£)7[1 + 2.5 (q/kF)2 + 09375 (q/kF)4]1/2. (15)

For the limiting case ¢ —% 0 (low momentum region) Eqgs (4) and (5) provide
longitudinal and transverse sound velocities, respectively, as Vj,(0) = w>b/a and
Vx(0) = wT/y as

pVt3(0) = tfQ /2 + |i) +«., (16)

PVY(0) = iI\rQ /2+]_5). (17)
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Fig. 2. Dispersion relations for Mg70Zn3o- ivy (—) and u>y (—) on the basis of Eqs (4) and (5)

derived by Agarwal and Kachhava (Ref. [15]); w/, () and wy (-----) by Saxena et al (Ref. [13]);

- . -.-due to molecular dynamics (Ref. [11]); . ... model calculations of Tomanek (Ref. [12], ®;
experimented data from Suck et al (Ref. [16])

The elastic moduli E, B and G for glassy materials are given as [25]

E - (Cn —C12XC1 + 2C'i2)/(Cn + C12), (18)
B=(Cn + 2C1)/3, (19)
G = 3EB/(9B - E), (20)

where Cuy, = pVE(0O) and ¢:12 = c1: —2C4 in which c.. = pV*(0). The Debye
temperature is defined as [6]

h 9n,lU3 1 11"1/3 /N
~Irr T1r TI3 + TI3 . (21)3

3. Calculations, results and discussion

To calculate the elastic moduli and Debye temperature of metallic glasses us-
ing the screening used by Bhatia and Singh (ABB-RNS) [7], the values of Vi(0),
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Fig. 3. uiL —4 dispersion relations for Cu57Zr43 on the basis of Eq. (4) derived by us (Ref. [18]).
Vertical bars denote the positions of the first moment; crosses denote the peak positions (Ref. [17])

Ve (0) and n- for glasses Ca7oMg30 and Mg70Znd) are taken from Hafner [6] and
Vitek [26], respectively, while Vt(0) kr(0) and p are taken from Kobayashi and
Takeuchi [17] for Cu57Zr43 and from Golding et al [27] for Pd77.5Sii6.5Cu6. Re-
lation p —riiM is used to calculate p or n-, as the case may be. The nearest
neighbour distance a is calculated by the relation n,a3 = y/2 for FCC structure as
for Ca70Mg30, Cu57Zr43 and Pd77.5Sii6.5Cu6 and by n,a3 = (4/\/3)(c/a) for HCP
structure as for Mg70Zn3o. Ke is calculated by using Eq. (3).

By substituting the values of p, VI(0), Vk (0) and ke in Egs (16) and (17), 18
and 6 are found and hence the ujl~4 dispersion curves are obtained on the basis of
Eq. (4) corresponding to various forms of screening given by Egs (8, 12-15). ujt—q
dispersion curve is obtained on the basis of Eq. (5) which does not involve screening
function.

To calculate elastic moduli and Debye temperature of glassy materials for
various dielectric screenings due to conduction electrons, longitudinal sound velocity
for a particular dielectric screening is obtained by taking slope of corresponding w/,—
g (longitudinal dispersion relations) curve whereas transverse dispersion relations
are screening independent and transverse sound velocity is obtained by taking slope
of e —q (transverse dispersion relations) curve, in the higher wavelength region.
The results for elastic moduli (E, B and G) and Debye temperature (Qa ) for these
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Fig. 4. uj —q dispersion relations for Cu57Zr43 on the basis of Eq. (5) derived by us (Ref. [18]).
Vertical bars denote the positions of the first moment; crosses denote the peak positions (Ref. [17])

different screenings are calculated using Eqs (18-21) and are given in Table I.

Figure 1 gives n —qrelations for the metallic glass Ca70Mg3o both for longi-
tudinal and transverse phonons. In this Figure as well as in Figs 2, 3and 5, curves
A, B, C, D and E represent w j- qdispersion relations on the basis of Eq. (4) with
Hartree, Hubbard, Overhauser, Geldart-Vosko and self-consistent dielectric screen-
ing due to conduction electrons, respectively. It is apparent from the Figure that no
experimental data are available for lower momentum (g —<0) region. Figure 2 gives
u) —q relations for Mg70Zn3o and shows that no experimental data are available at
lower g values. Figures 3-4 give n —qrelations for Cus7Zr43 and Fig. 5 gives w —
relations for Pd77.5Sii6.5Cu6; while no experimental data are available for these two
glasses.

It is apparent from  —¢ curves ofthe glassy materials that they are screening
sensitive in low momentum region. The difference in wj* —q relations begins right
from the starting value of g and it becomes maximum at the first peak of the wb~4
curve, again it tends to decrease and all the v —q relations seem to converge at
the g values, where the first peak of static structure factor calculation is found as is
obvious in Ca7oMg3oat g = 2.0 x 1010m-1 and in Mg7oZn3oat g —2.6 x 1010 m_1.
After this q value ut —q relations are screening independent. The position of the
first peak is independent of the screening; however, the height of the peak strongly
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1Sy
ABB-RNS
H

HB

OH

GV

Ses

Ca7oMg30

E B G

(1010 Nm - 2)
190 240 0.69
1.89 2.26  0.69
1.86 1.98 0.69
185 1.85 0.69
1.77 1.35 0.69
1.75 123 0.69

Table 1

Elastic moduli (E, B and G) and Debye temperature (0d) for metallic glasses

K

261.87
261.36
260.24
259.58
256.29
255.28

Mg70Zn30

E B G oD

(1010 Nm _ 2y (K)
6.01 8.25 2.17 351.11
5.99 8.04 217 350.83
5.87 6.40 2.17 348.25
581 4.37 217 347.06
548 3.76  2.17 340.88
522 2.89 217 336.82

Cub7 Zr43

E B G
(1010 Nm _ 7)
5.79 581  2.17
549 3.93 2.16
551 3.98 217
578 5.79  2.16
448 159 217
491 222 216

Od

K

339.26
338.16
333.39
333.08
320.23
325.17

Ca70Mg3o, Mg70Zn30, Cus7Zr43 and Pd77.5Sii6.sCu6 using different dielectric functions c(q)
including that used by Bhatia and Singh (ABB-RNS) [7]

Pd77.5Sii6.5Cu6

E B G
(1010 Nm'_ 5y
9.60 18.30 3.39
9.57 17.26 3.39
9.41 13.66 3.39
9.38 13.06 3.39
9.06 9.06 3.39
8.88 7.62 3.40

0D

K

312.05
311.67
309.78
309.44
305.69
303.60

061

d

e 18 IVMEVOV 'O
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Fig. 5. Dispersion relations for Pd775Sii6.5Cue derived by Agarwal and Kachhava (Ref. [19])

depends on the screening. Most of the thermodynamical, transport and elastic
properties of the substance are derived from this part of the curve. Therefore, to
determine the appropriateness of particular screening due to conduction electrons,
accurate experimental data of phonon frequencies are needed in this low momentum
region and specially around the first peak of the ujl —q curve.
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TRAVELLING WAVE SOLUTIONS
OF DENSITY DEPENDENT
DIFFUSION EQUATIONS
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Travelling wave solutions for two nonlinear diffusion equations have been found by
a direct method. The behaviour of solutions for these equations with ¢ and the parameter
a in the problem varying have been investigated numerically as a boundary value problem.
The equilibrium solutions (c = 0) of these equations have been found in terms of Weierstrass
elliptic functions.

1. Introduction

The prototype for the spatial diffusion of biological populations in population
dynamics is taken as [1]

W= (u2)xx + F(u). (1.1)

The first term on the right-hand side of Eq. (1.1) represents density dependent
diffusion and the second term describes population supply due to births and deaths.
The phenomena like flow of liquids in porous media, the transport of thermal energy
in plasma etc. have also (1.1) as the governing equation. The exact solutions for
Eqg. (1.1) have been presented by Gurtin and MacCamy [2], Newman [3] and Hosono
[4. Gurtin and MacCamy considered the case F(u) = /m and then by variable
transformations, w = myv and r = (eM—1)/p reduced (1.1) to

wT = (W2)*, (12)

for which similarity solutions are known. Newman considered the case with F(u) =
u(u —1) and Hosono showed that the travelling wave solutions 1 — u(x —ct) of
Eqg. (1.1) with F(u) —u(u—)(a —it) varies its profile with the sign of the velocity c.
Satsuma [5] chose the same F(u) as that of Hosono and found an explicit expression
for the travelling wave solution using Painlevé analysis. Ablowitz and Zeppetella
[6] used the same method to obtain a travelling wave solution of Fisher’s equation

L= uxx +u(l - u). 1.3)
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194 E. V. KRISHNAN

In this paper, we have found explicit travelling wave solutions of

w = + su(l —u), (1.4)
W —vuxx + su(l —u)(a —it). (1.5)

by a direct method [7]. Here, v is the coefficient of diffusion and s is the ad-
vantageous selection intensity in the propagation of a mutant gene. Also, we have
investigated the numerical solutions of these equations as a boundary value problem
using a deferred correction technique and Newton iteration. We have investigated
the analytical solutions of these equations in terms of Weierstrass elliptic functions
when ¢ = 0, that is, the travelling wave solutions in an equilibrium state.

Here, we have taken the diffusion term as a linear one which is the case in
Fisher’s equation. We intend to consider the nonlinear case (u2)xx elsewhere.

2. Direct method and Fisher’s equation

In the direct method the solution is expressed as the sum of hyperbolic func-

tions in the form m

u(z) = ogtanh’ fiz, (2-1)
i=0
where the expansion coefficient {a,}™, order of expansion m, and wave number p
are to be determined. The essential idea is that we balance the highest nonlinear
term and derivative term for the above combination and then equate the like powers
of the function on both sides of the equation. It can be immediately seen that a
derivative term unz of nth order has highest power in tanh ur of m+n. Therefore, for
equations in u possessing a highest derivative term of order d and highest nonlinear
term uh, we have,
T méi- (22>
The coefficients {a,} are found by solving a coupled set of nonlinear algebraic
equations. To be exact, consider the case that the nonlinear differential equation
for n has highest derivative term of order d. There result m + d + 1 equations for
the (m - 1) at’s, single wave number p and any constants of integration.
The equation proposed by Fisher to describe the propagation of a mutant
gene with an advantageous selection intensity s is given by [§]

W = vuxx + su(l —u), (2-3)
where v is the coefficient of diffusion. Considering the travelling wave solution

n—u(z) = u(x —ct), (2-4)
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TRAVELLING WAVE SOLUTIONS 195

Eg. (2.3) reduces to
vuzz + cuz + su(l —u) = 0. (2-5)

Consistent with Eqg. (2.2), we have m = 2 and so we assume a solution of Eq. (2.5)
in the form

u(z) = ao + ai tanh(ixz) + a2tanh2(pz), (2-6)

where ao, ai, a2and p are parameters to be determined later.
Substituting (2.6) in Eq. (2.5) and equating like powers of tanh(pz) on both
sides, we get

RaZi2zv —sa* = 0 (2-7)
2ai/x2v —2a2cy, —2sailiz= 0, (2-8)
—8a2fjv —adJi + sa2 —sa2—2sa0a2 = 0, (2-9)
—2aip2u + 2a2cp + sai —2saoai= 0, (210)
2a2fi2v + aic/z + sao —sa2= 0. (2.11)
From Eq. (2.7)—2.11), we get
p = (s/24V)1 2, (2.12)
. 1 . c2 ~N10n
e — > (2.13)
- - £ . K14
« = (2.15)
c= IOfxv. (2.16)

Therefore, for the existence of the travelling wave solution of (2.5) in the form
(2.6), the parameters s and v should be of the same signs. Now, using expressions
(2.12)-(2.16) it may easily be seen that

a0 — (2.17)
ai =-1i, (2.18)
a2=j. (2.19)

Hence, our required solution is,
«(2)=5--tanh(— )2 +itanh’ (= )2 (2.20)
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So, the Fisher’s equation (2.3) has the explicit solution

1 1 /s \12 1 lj \/2
“(***)=J - 0tanh\24") (*-d)+ Jtanh (— j (x- ct) (2.21
where
(2.22)
3. Equation with higher nonlinearity
The equation under consideration is
L = vuxx + sw(l —u)(a —u), (3.1)
which is assumed to have a travelling wave solution in the form
n=u(z) = u(x —ct), (3.2)
so that (3.1) reduces to
vuzz + cuz+ su(l —u)(a- u) = 0. (3.3)
Here, m = 1 and so we assume a solution of Eq. (3.3) in the form
u(z) = a0+ ai tanh(pz), (3.9)

where ao, ai and p are parameters which will be determined later. Substituting
(3.4) in (3.3) and equating like powers of tanh(pz) on both sides, we get

saf + 2up2ai = o, (3.5)
3aga2s —s(a + l)a2—ca\fx —o, (3-6)
3agai« —2saoai(a + 1) + asai —2tfizai= 0, (3.7
sag - s(a 4 l)a2 + asaos4- cau—o. (3.8)
From Eg. (3.5)—3.8) we get

(3.9

a4l ¢ f-—--r—
0= " 3~ + 38v - 8/2v> (3.10)
a2= 2ao(a + 1) —3ag —a, (3.12)
8dg —8(a + Nug -f2(024 30 4" l)ug —ct(o 4 1) = 0. (3.12)
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Expressions (3.9) and (3.10) clearly indicate that for a solution in the form (3.4) to
exist, s and v should be of opposite signs.

The quadratic expression in ao on the R. H. S. of (3.11) takes both negative
and positive values. But since it is an expression for a2, it should take only positive
values and the condition for it is

1~ -«+1l<al0<CE™1+"\/a2- a+ 1 (3.13)
For different values of a, one can find the domain for the function /(ao) given by
/(a0) = —3a2+ 2a0(a + 1) —a. (3.14)

For any value of a, one can easily see that the cubic equation (3.12) in ao has three
real roots because the maximum and minimum of the cubic expression in (3.12)
have different signs for all values of a. Now, corresponding to the three values of
ao, provided they lie in the domain of /(ao), we can write down explicit solutions
in the form (3.4). We shall try a simple case when a = 2, say. When a = 2, we
can see that ao should be between 1—1/n/3 and 1+ 1/ n/3, i.e. between 0.423 and
1.577. Now, the cubic equation (3.12) becomes

4oq —12a0 + 11a0—3 = 0, (3.15)

which has 3 real roots 1/2, 1 and 3/2, all of them lying between 0.423 and 1.577.
When a0 —1, we get ¢ = 0 which is the case of standing waves. When a0 —1/2,
we obtain

4 (3.16)
y/—s/8v, (3.17)
_925“, (3.18)
For ao =3/2, we get
i, (3.19)
y/-s/8v, (3.20)
. (3.21)

The pairs of values a0 = 1/2, aj = 1/2 and ao = 3/2, a\ = —1/2 will yield the same
solution with [L—\J—sj8v and c2= —9sv/2 given by

1 1 (_g V2
«(*.0 = 2+ 2tanh \:, (- o) (322)
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Table |
Solutions with ¢ = 2.1 to 2.9
z u(c = 2.1) u(c = 2.3) u(c = 2.5) u(c = 2.7) u(c = 2.9)
-5.00 1.0 10 1.0 10 10
-4.38 0.360 0.304 0.261 0.226 0.197
-3.75 0.143 0.100 0.730 X 10, 0.542 X 10_|1 0.407 X 10_1
-3.13 0.578 X 10“1 0.337 X 10-1 0.207 X 10~I 0.132 X 10«1 0.850 X 10~2
-2.50 0.246 X 10«1 0.115 X 10_1 0.593 X 10~2 0.320 X 10-2 0.178 X 102
-1.88 0.104 X 101 0.390 X 10“2 0.169 X 10~2 0.771 X 103 0.368 X 10“3
-1.25 0.437 X 10~2 0.132 X 10~2 0.472 X 10-3 0.177 X 10-3 0.655 X 10“4
-0.625 0.184 X 10~2 0.449 X 10~3 0.134 X 10“3 0.435 X 10-4  0.148 X 10-4
0 0.771 X 10~3 0.153 X 10“3 0.384 X 10-4 0.105 X 10-4  0.316 X 10“5
0.625 0.321 X 10“3 0.523 X 10-4 0.112 X 10~4 0.279 x 10“5 0.802 x 10-6
1.25 0.132 X 10~3 0.178 X 10-4 0.327 X 10~s 0.715 x 10~6 0.163 X 10-6
1.88 0.534 x 10~4 0.606 x 10 i 0.959 x 10-6 0.185 x 10“6 0.410 x 10"7
2.50 0.210 x 10~4 0.204 X 10-5 0.281 X 10-6 0.484 x 10-7 0.103 X 10-7
3.13 0.786 X 10~5 0.666 X 10"6 0.824 x 10-7 0.131 X 10~7  0.257 x 10“8
3.75 0.266 x 10~5 0.204 x 10“e 0.240 x 10~7 0.381 x 10-8 0.778 x 10“8
4.38 0.711 x 10~6 0.557 x io-7 0.770 X 10“8 0.161 x i0-8 0.468 x 10“9
5.00 0.0 0.00 0.0 0.0 0.0

4. Numerical solution

In this Section we consider the two equations

®u du ,

dS +CTz+U{1l- u) =0 (41)

d2u du ,
+c +u(l~u)a-u)="°> (4-2)

and solve them numerically as boundary value problems using a deferred correction
technique and Newton iteration. For these equations the solutions of biological
interest satisfy u(—eo0) = 1and u(+o0) = 0. In our analysis, we have observed that
the dependent variable n decays sufficiently rapidly from 1 to 0 when we take the
values of z from —5to 5.

First we considered the Eq. (4.1) and chose the values of ¢ as 2.1, 2.3, 2.5,
2.7 and 2.9. The boundary conditions were u(—5) = 1 and u(+5) = 0. We could
conclude that the solution decays faster when c increases. This is shown in Table I.

The second equation under consideration was (4.2) for which we took c to be
3.1 and 3.2 and varied a with values 1.5, 1.6, 1.7, 1.8 and 1.9. We could observe
that the solution decays slower when a increases. This shown in Tables Il and III.

Table | shows that as the travelling wave velocity increases, the solution decays
faster.

Table Il shows that as the parameter a increases, the decay is slower.

Table 111 also shows that as the parameter a increases, the decay is slower.
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-5.00
-4.38
-3.75
-3.13
-2.50
-1.88
-1.25
-0.625

0.625
1.25
1.88
2.50
3.13
3.75
4.38
5.00

-5.00
-4.38
-3.75
-3.13
-2.50
-1.88
-1.25
-0.625

0.625
1.25
1.88
2.50
3.13
3.75
4.38
5.00

Here, we have considered the analytical solution of two equations

ti(a

1.0

0.183
0.373
0.163
0.163
0.344
0.832
0.188
0.503
0.112
0.259
0.580
0.121
0.236
0.436
0.778

u(a
1.0
0.171
0.322
0.619
0.119
0.228
0.499
0.554
0.244
0.146
0.807
0.158
0.222
0.381
0.160
0.141
0.0

= 1.5)

Xio 1
X10-2
Xio -2
Xio-3
X10-4
Xio -4
X10~4
Xiowa
X 10-®
X10-7
X10*7
X 10-8

X 10~9
x 10-10

= 1.5)

x 10-1
x 10-2
x 10-2
x 10-3
x 10~4
x 10-4
X 10“ 4
X 10“6
X10-7
x 10-7
108
io-9
10“9
10“9

X
X
X
X

TRAVELLING WAVE SOLUTIONS

Table Il
Solutions with ¢ = 3.1 fora = 1.5 to 1.9

tiga = 1.6) v = 1.7) ti(a = 1.8)
1.0 1.0 1.0

0.188 0.192 0.197

0.393 X0 1 0.415 X101 0.440 X 10«1
0.847 X102 0.926 X 10“2 0.102 X0 -1
0.184 X0 -2 0.208 X102 0.238 X0 -2
0.401 X0+ 3 0.471 X103 0.559 X0 -3
0.984 X 10-4 0.118 X 10+ 3 0.143 X 10~3
0.230 X 10-4 0.285 X104 0.359 X 10-4
0.613 X 10“4 0.762 X104 0.967 X 10~4
0.142 X 10~4 0.184 X 10~4 0.242 X 10“4
0.336 X 10-® 0.446 X 10~6 0.607 X 10~6
0.780 X10-7 0.107 X 10~6 0.150 X 10-6
0.172 X10-7 0.248 X 10-7 0.365 X 10“7
0.361 X 10“8 0.552 X 10“ 8 0.856 X 10“8
0.719 X 10-9 0.118 X 108 0.193 X |- -8
0.137 X10~9 0.236 X 10“9 0.403 X 10“9
000 0.0 0.0

Table 111
Solutions with ¢ = 3.2 fora = 15to 1.9

u(a = 1.6) u(a = 1.7) u(o = 1.8)
1.0 1.0 1.0
0.175 0.178 0.182
0.338 x 10“1 0.356 x 10“1 0.375 x 10~I
0.670 x 10-2 0.728 x 10“2 0.795 x 10“1
0.133 x 10“2 0.150 X 10-2 0.169 x 10~2
0.263 x 10-3 0.306 x 10“3 0.358 x 10-3
0.580 x 10-4 0.684 X10-4 0.815 x 10-4
0.742 x 10“4 0.997 X 10~4 0.132 x 10“4
0.285 x 10“4 0.313 x 10-4 0.386 x 10-4
0.252 x 10-6 0.494 X 10-6 0.688 x 10-6
0.962 x i0-7 0.124 x 10-6 0.166 x 10-6
0.215 x 10“7 0.259 X 10“7 0.373 x i0-7
0.381 x 10O-8 0.497 x 10“8 0.801 X 10“8
0.772 x 10-9 0.110 x 10~8 0.190 x 10~8
0.279 x 10-9 0.375 X 10-9 0.617 x 10'9
0.209 x 10-9 0.251 x 10-9 0.364 X 10"9
0.00 0.0 0.0

5. Analytical solution with c= O

ut= uxx + u(l - u),

ut = Uxx + it(l - u)(a - u),

1.0

0.202
0.469
0.113
0.275
0.673
0.177
0.461
0.126
0.329
0.850
0.218
0.552
0.136
0.320
0.691

u(a
1.0
0.187
0.397
0.872
0.193
0.424
0.986
0.177
0.489
0.965
0.231
0.545
0.127
0.319
0.100
0.526
0.0

X 10_1
X 10_1
X 10-2
X 10-3
X 10~3
X 10-4
X 104
X 10“4
X 10~6
X 1046
X 10-7
X 1047
X 10“8
X 10-9

(5.1)
(5.2)
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with ¢ = 0, in terms of Weierstrass elliptic functions. This is more of mathematical
interest because ¢ = 0 means that we are dealing with standing waves. For Eq. (5.1),
it is a straight-forward exercise but for (5.2) it is found that it is not possible to
express the solution in terms of Weierstrass elliptic functions for certain values of a.

The equations under consideration, using the usual notation in variable z, can
be written as

ANo+u(l-uw=0, (5.3)
M L0 - w@- u=o (5.4)
The solution of (5.3) can be written explicitly as [9]

uiz) = 6F(z)+i, (5.5)

where P(z) is the Weierstrass elliptic function with the invariants of the elliptic
function given by

a2 and g3 < l,
12 216

Now, Eg. (5.4) can be shown to have solutions in terms of Weierstrass elliptic func-
tions. For this purpose, we consider the (2k)tb order ordinary differential equation

(5.6)

d2ku _ _
dzk = I(u;r + 1), (5.7)

where /(u;r + 1) isan (r + 1) degree polynomial in u.
We assume that
n=AQ"s\z) (5.8)

is a solution of (5.7) where A is an arbitrary constant and Q"2s\z) is the (2s)th
derivative of the elliptic function Q(z) = I/P(z), P(z) being the Weierstrass elliptic
function. One can easily prove that the (2s)th derivative of Q(z) is a (2s-1-1) degree
polynomial in Q(z) itself. So for (5.8) to be a solution of (5.7), we should have the
relation

2 K—r = 2rs. (5-9)

So, it is necessary that 2k > r for us to assume a solution in the form (5.8). But it
is in no way a sufficient condition for the existence of the periodic wave solution in
the form (5.8). In the case of equation (5.4), we have, K =1, r = 2and so s = 0.
Thus we can assume a solution of (5.4) in the form

u(z) P (2) -+ (5.10)

where /1, U are constants.
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TRAVELLING WAVE SOLUTIONS 201

Substitution of (5.10) in (5.4) give rise to 4 equations

1= —ay + (1+a)p2—p3, (5.11)
0=—a+ 2p(l +a) —3p2, (5.12)
N2 = Al+a) - 3Ap, (5.13)
203 - A2. (5.14)

There are 4 equations in 4 unknowns J1 p, g2, a3 which can be expressed in terms
of the coefficient a in the equation (5.4):

(1+a)+Vo2—a+1

N 4 1 (5.15)
no(@+ I)(a-2)(2a-5i)+ 2(a2- a+ 1)312 (5.16)
- (a+ (a—2)(2a —1)\/a8i—a +1+2(@2—a+ )2 (5.17)
@+ 1)2(a- 2)2(2a- 1)2+ 4(a2- a + 1)3
% ~ 5832
. 4(0 + 1)(a - 2)(2§8ézl)(a2- a+hyz (5.18)

The condition g\ —27g\ > 0 requires that for positive a, it should be between 0.5
and 2.2 with the exception of 1and for negative a, it should be less than —0.9.

Therefore, (5.10) is a solution of the Eqg. (5.4) with the expressions for p, A
(2 and 03 given by (5.15)—5.18) for the values of a specified as above.6

6. Conclusion

We have derived the solutions expressed in terms of hyperbolic functions for
two diffusion equations both of which satisfy the boundary conditions of biological
interest, namely, u(—00) = 1 and u(oo) = 0, and u(x) > 0. For the equation with
cubic nonlinearity, this solution is identified with a kink solution.

The numerical solutions presented in the paper are an obvious confirmation
of the asymptotic behaviour of the solutions of equations (2.3) and (3.1). We have
found that as the travelling wave velocity increases, the solution decays faster and
as the parameter a increases the decay is slower.

For the standing waves, the solution we have obtained in terms of the recip-
rocal of the Weierstrass elliptic function is a new one. For equations of the type
(5.4) with third degree in u, it is not possible to represent the solution in positive
powers of p(z) and this seems to be the most direct representation.
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A configuration of cosmic strings immersed in an axial magnetic field is studied in
a stationary Godel cosmology. Strings oriented along the z direction require an axial mag-
netic field to support the resultant geometry while radially directed strings and azimuthal
wrapped strings do not require an axial magnetic field to support the geometry but lead to
a state of compression in the absence of the magnetic field.

1. Introduction

Modern cosmology has flowered greatly in the past two decades because of
the host of new phenomena and topological defects that arise from spontaneously
broken gauge theories [1]. It was Coleman’ [Z] great insight in observing that a
radiatively corrected Higgs potential could serve as a source to drive inflation that
led Guth [3] to propose inflation as a cure for the cosmological puzzles of flatness,
horizon and absence of monopoles from the present universe. With the attention
directed towards the Higgs sector of particle theories, it was soon apparent that
topological defects such as domain walls [4], monopoles [5] and strings [6] all would
figure into such major questions as the origin of large scale structure and the baryon
asymmetry of the universe. With all these developments it seems imperative to ask
what topological defects in cosmology can support a given cosmological metric.
Topological defects such as strings and domain walls destroy local isotropy “unless
there is a cloud of them having random orientation” and it seems of particular
importance to ask what isometry in the metric can support a specific orientation
of the defects. In this note we confine our attention to cosmic strings and ask what
direction of orientation of the strings is allowed in an axial magnetic field with
the metric having the isometry of the stationary Godel metric. The Godel metric
represents a cylindrically symmetric rotating geometry with the matter rotating
relative to the compass of inertia [7]. In the present case the matter is the energy
density of the matter attached to strings. Panov has pointed out that due to bulging
in the equatorial plane of the universe it might be difficult to observe rotation, he
also pointed out that too much rotation would prevent inflation and certain rotating
Bianchi type IX cosmologies approach the de Sitter inflationary cosmology for long
times [8]. In subsequent investigations Panov has studied rotating Bianchi type
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VIII cosmologies with a perfect fluid and heat flow [9] along with the problem of
spontaneous symmetry breaking in a Godel universe with rotation [10]. Along the
same line of investigation, Patel [11] has studied a rotating cosmology with a source-
free electromagnetic field and a cosmology admitting shear and bulk viscosity along
with heat flow and a scalar field [12]. Koijam [13] has demonstrated how a scalar
field in a rotating cosmology with perfect fluid will damp the rotation and Dunn [14]
has found homogeneous and inhomogeneous solutions to a Godel metric containing
two fluids plus an electromagnetic field. Observational limits on rotation in the
universe were first pointed out by Birch [15] and Soleng [16] has remarked that
higher order terms in the aberration might be used to detect rotation.

If we turn to the problem of galaxy formation J. Silk [17] has shown that
rotation in a Godel universe prevents gravitational instability at large scales, thus
an upper limit is set for scale of large scale structure with the Jeans length providing
a lower limit for the scale of larger scale structure.

Since both rotation and cosmic strings could figure into the dynamical state
of affairs prior to inflation we will in this paper study how different orientations
of strings effect the stationary Godel metric in the presence of an axial magnetic
field. Israel [18] has given arguments for why strings should not be curved although
circular loops of strings have been studied in the literature [19] and Tsoubelis [20]
has studied a cylindrically symmetric shell of straight strings in general relativity.
In what follows we represent the uniform distribution of strings by a specific form
for the energy momentum tensor, we also allow for an axial magnetic field. Our
analysis might also apply to the primitive structure of a super-cluster if in fact
strings are instrumental in generating large scale structure. If certain orientations
of strings are allowed in a stationary Godel cosmology, it suggests that the resulting
structure of the configuration will have specific characteristics that may determine
its influence on light propagation and gravitational effects produced exterior to the
configuration. Korotkii and Obukhov [21] have discussed the rotation of the plane
of polarization of electromagnetic waves produced by cosmological rotation which
might provide an observational test for our above model. As a preliminary study to
any work on light propagation in rotating cosmologies, as well as work on structure
formation, we discuss and derive criteria specifying which orientation of strings are
permitted in an axial magnetic field in a stationary Godel space time.

2. Cosmic strings and an axial magnetic field
in a stationary Godel space time

We begin our analysis by writing the following form for the stationary Godel
metric
(ds)2= (dt)2 —dr2—dz2 —I(d(f))2+ 2m(d<)(dd>), 2.1

(I,m = functions of r), for the Ricci components of the metric we have calculated
themtobe (x° =t, xl=r, x2= 12, x3=0), (c= 1),

fee = - \'5r|22> g%%)
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_ D" (m)2
Rn ~ D 2D2" (23)
R22 = 0, (2.9)
” 1. (mm"2 D'mm'
R33 = -2 (m")3- + —p— + DD - mm (2.5)
D'm'" (m)2m m"
RS- 2p 202 2 (2.6
here
o oo |
D2=/+ m2 and pll=y2=— yw_l+m2
1 03 m
B=- 4 me C [+ m2 @7)
For the energy momentum tensor of the cosmic strings we have [22]
Toms = (p+ A)NEF, - XXXV, (2.8)

where J1= string tension, p = energy density of particles attached to strings, U —
four velocity of strings, Xwu = vector specifying direction of strings.
For an axial magnetic field we have /\3 = rBz, where

_ BALU _ dAv
dxv  axk

here AR is the electromagnetic four potential, the Maxwell equations give using

Fi3=rBz, yl—g=(+m2)V2,

Ayl=1irn =o

d I rB2yi+m2\ _

dr » 1+m2 J (2:9)
for the (31) component, this gives
rBz —Ry/l + m2, (K = constant). (2.10)

For the energy momentum tensor of the electromagnetic field we have

2 d
Tiiv ~ sf=gdg»v 1671
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using Eg. (2.10) we find

(rBz)2 _ 1 (rB,y (rBr)2
00 87r(/ + w2)’ 1 8i/+ m2’ 22 87r(/ + m2) "’
Tas = (rB2)2 2/ _ T (rBr)2 )11
B gex J+m2 BT grg+m2 (e 1D

T=1 ~ v=0

For the cosmic strings we first choose
ut1= (1,0,0,0), XxB= (0, 0,1,0) (2.12)

(strings co-moving oriented in the z direction).
Using Eq. (2.7), Eg. (2.8) and Eqg. (2.1) we find for the string component of
the energy momentum tensor

Too—(p+A, Ty —0 T2=- TIB=(p+Am2
T = (p+ Am, T = Tfigl/ —p + 2A (2.13)

We now add together the components in Eg. (2.11) and Eq. (2.13) for cosmic strings
in an axial magnetic field and insert them into the Einstein equations using Eq. (2.2),
Eq. (2.3), Eq. (2.4), Eq. (2.5) and Eg. (2.6), we take the form of the Einstein
equations to read

Riu— 1 Tpm — > (*="~r)c=L (214)
The result is
(m"H2
2D?2 i+ Bi+ L<)~j(i+2A)(1) (215)
D" (m) _
p 22 K (2.16)
0= -k s (B)R) 5P + 2AK-1) (2.17)
)2 (mm’ .
2D2 + D + DD mm

=« B2 (k) s e A2 -(p + 28
Br v 1+ m3) (2.18)
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D' mY)2m m"
2D m (21;2 2 >+ Am+ o - Mp+ 2Am - (219)
From Eq. (2.17) we have
Ne )2 _
47c(/ + m) Re- (220
using Eq. (2.10) this gives
p= (a constant) (2.21

inserting (p+ 2A) from Eq. (2.17) into Eg. (2.15) and using pc from Eq. (2.21) gives

K)z =
5D k(pc) = —kpc. (2.22
Eq. (2.16) becomes
D" (m")2
D - 2D2 -K[X + K]
or '
= —kX after using Eq. (2.22). (2.23)

If no magnetic field is present, we have Bz = 0, pc = 0 from Eq. (2.21) and m' =0,
inserting m' = 0 and pc = 0 into Eq. (2.18) gives again

D"_
= kX, (224

Since the mass density of particles attached to strings is zero, the only logical choice
for Ais A= 0 since otherwise we would have massless strings which is an unlikely
possibility.

Thus if the magnetic field is zero it implies pc = X = 0 which in turn implies
D = r from Eq. (2.24), D2 =r2, m —O0 from Eq. (2.21) and Eq. (2.22) and we have
the Minkowski metric with no rotation. If, however, Bz ¢ 0 have upon substituting

from Eq. (2.23) into Eq. (2.18)

(mH2 (mm)2  D'mm’

" -k[pcD2+ PcmZ]+ DD", (2.2
) oD2 + D + DD mm [pc m2] , (2.25)

where we have used | —D —m2, inserting
m! = V2D"/Kic,
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T_\] V2D\/kpedr + Co

(Co = integration constant) into Eg. (2.25) we may obtain a solution for D in terms

of a power series
(e 0]

D = 72 air*,

(2.26)

with non-zero coefficients.
To obtain the string tension we use the relation

1

(?) «

after the solution for D is found. The power series for D will start with a constant
term and the higher powers of the series will be calculated in terms of ao and Co-
Thus cosmic strings in the presence of an axial magnetic field when the strings
are pointed in the r direction can support a Godel metric with solution given by
Eg. (2.26). When the axial magnetic field vanishes both the string tension and the
energy density of the particles attached to the string vanishes and the metric is that
of Minkowski space time. Thus the axial magnetic field is needed to support the
string.

We now turn to the case of cosmic strings oriented along the radial direction,
for this configuration we have

A=

=(0,1,0,0), 17 = (1,0,0,0).

Using Eq. (2.7) and Eq. (2.8) we find for the cosmic string components of the energy
momentum tensor

TR =(p+ Am2, TB=(p+ Am, (2.27)
T=T"rff=p +2A

the components of the energy momentum tensor due to the axial magnetic field are
the same as in Eqg. (2.11), adding together the components of the energy momen-
tum tensor in Eq. (2.11) and Eq.(2.27) for the axial magnetic field and the strings
pointing in the r direction and inserting them into the Einstein equations we have

(2.28)
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£1 M ! _
£1 M=k A (2.29)
0= -k mnmz 1 (2.30)

8rr(/ + w2) 2P+ 2N

om . ~(TIT')_ D ng+ DD" - mm" (2.31)

O 1+712) + (p+ A)t2 —-(p + 2A) —/

__P_I__ 771 _ ___(_I')_g:r_-_l___l_'__ -K ( + A)m + m \ + 2A m
302 502 2 P 8ir {p+28)(m)
(2.32)
from Eq. (2.30) we have
0rBz)2
(» + 2A) 41+ m2) (2.33)
inserting Eqg. (2.33) into Eq. (2.28) and EQ.(2.29) we obtain
my2_ , A. £B22
2D2 A7 + m2) (2:34)
D" K)2_ ,\ n, (rB,)2 ~
D 202 < [ tam(+w. (2:35)
Equating (2.34) and Eqg. (2.35) we find
D"
—=0 or D=ar+h, (2.36)

for an empty Godel universe we have a=1,6 = 0,7 = 0,p = A= Br = 0, however,
forad 1, 6 0, m may have other solutions, from Eq. (2.34) and Eq. (230) we
have using Eq. (2.10)

(K)2 1 ({m")2\

4T k\ 2D2) (237)

(2.38)

Inserting Eq. (2.33), Eq. (2.37) and Egq. (2.38) into EQ. (2.31) we have using
Eq. (2.36)
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(mH2 1 (mm"')2 amm
2 2°Nr + by +-~Thb+f,- mm"
= —k[p(m2+ (ar + 6)2) + Am2+ 2A(ar + ft)7], (2.39)

with A p given by Eq. (2.37) and Eq. (2.38) in terms of D = ar + ftand m'. A
non-zero solution for m can be obtained from Eq. (2.39) by a power series expansion
forad 1, g 0.

Thus cosmic strings in the presence of an axial magnetic field can exist point-
ing in the r direction and serve as a source to the stationary Godel metric. We
would find that Eq. (2.39) would also have a non-trivial solution for m if the mag-
netic field vanishes also, only in that case from Eq. (2.37) the string tension would
be negative which is highly unphysical which suggests and necessitates compressive
forces within the string.

For strings wrapped in the ¢ direction have

= (0,001, (2.40)
_ (p+ VI —AM2
Til =T2=0H, TR= pm2+/A(m2— /), T®B= Am,
7= P- m2)+AR) (2.41)
| 4-m2

The Einstein equations read in this case

(mr - I(p+ A- Am2+ (rBz)2 _ 1»

D" (m")2 irBz?

D 202 K 8ir(l {-m2) I(T)(-1) (2.43)
_ (rBz)2

0=-k 4ir(/ + m2) [(T)(-1) (2.44)

(m)2  (mm"2 , D'mm’
) opp H-5 kDD —mm (2.45)

=~k pmz+ Amz—)+ (rfl%?Zr)z (4-TTb )-K<-"»
mi N "

?ZQ' (n;[))zm ;‘1 -k (pAmM+ Sjr((,r_m;) 5<T)(m) .  (2.46)
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From Eqg. (2.44) and Eq. (2.42) we may solve for p, Ain terms of m', D and
K, by substituting these values of p, Ainto Eg. (2.43) and Eq. (2.45) we have
two independent differential equations for D and m that have non-trivial power
series solutions about r —0. They also have the trivial solution D —r, m = 0,
p= A= Bz =0. Thus cosmic strings can coexist with an axial magnetic field when
they are wrapped in azimuthal direction. Also, Eq. (2.43) and Eq. (2.45) possess
non-trivial solutions when Bz = 0, only in this case the string tension would be
negative requiring a state of compression within the string.

3. Conclusion

Our analysis has demonstrated that only strings oriented in the z direction
require an axial magnetic field to support the geometry while radially wrapped
and azimuthally wrapped strings do not require a magnetic field to support the
geometry. If cosmological rotation exists the r oriented strings would be most
likely since they do not require a detailed dynamical mechanism to generate them
except that a z component magnetic field must be present. As mentioned earlier
any rotation of the universe as a whole would lead to a rotation of the plane of
polarization of electromagnetic waves [20] and studying higher order terms in the
aberration of light might also provide a probe to cosmological rotation [16]. It would
be interesting to study models with a non-stationary Godel metric admitting bulk
and shear viscosity in the presence of an axial magnetic field and cosmic strings
to see what static and dynamic effects would be generated as well as the effect
that such cosmologies would have on the propagation of light and the generation of
density perturbations to seed large scale structure.

Recently Monteiro [23] has discussed stable causal Godel type models gen-
erated by a spin fluid with a strong spin vorticity coupling and Obukhov [24] has
discussed new observational data pointing to rotation of the universe with more di-
rect inference coming from observational data. Lastly, Singh et al [25] have recently
discussed spin generated torsion in a cylindrically symmetric space-time with a z
component magnetic field and it is hoped that studies of torsion in a Godel space-
time may reveal an intimate connection between torsion, rotation in the universe
and the avoidance of closed time-like curves in cosmology.
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The present investigation used modified generalised Morse potential to explain the
lattice dynamical behaviour of some fee metals. This potential is controlled by factor P,
used in the above modification. Theoretical and experimental findings are very close to
each other and this agreement provides a satisfactory explanation of the above model.

1. Introduction

In the recent past, a number of authors [1-9] have put much emphasis on
lattice dynamical studies based on Morse potential [10]. These studies [1-9] explain
excellently the lattice dynamical behaviour of all types of cubic metals. It has
now been proved that the Morse potential has a peculiar nature to explain these
properties well, i.e. elastic, lattice dynamical and thermal. The three body forces
derived by Mishra et al [3-5] explain the above properties in a broad manner. Mishra
[6] used a modified empirical Morse potential and applied it on fee cobalt. Theories
given by Agarwal et al [/] and Aradhana and Rathore [9] added a new dimension
to this type of study. But it is yet to know how they have developed a modified
Born-Mayer potential [11] and then added to the Morse potential.

In the present communication, we have dealt with the specific nature of the
generalised Morse potential which will be controlled by factor P also in the paired
part of the potential. Then this two body part has been added to the modified
three body generalised part. We have found that factor P is very important and
may provide us a correct scheme to predict the lattice dynamical behaviour of Cu,
Al, Ag and Pt. The subject matter of the present investigation is important and
useful in many respects. The present scheme uses a minimal number of parameters
for expressing two and three body forces. The results obtained are excellent and
surprising to report and are very close to the experimental findings.
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2. Theoretical formulation
2.1. Two body part
Following Milstein [12], the attractive and the repulsive character of the two

body potential are blended to form a generalised exponential pair potential which
assumes the following forms for the atoms located at r

o*r) = D (P - i)-1 [exp{-Pa(r0- r)}- Pexp{-a(r0- r)}], @)
where D is the dissociation energy, a the parameter which measures the hardness
of the potential, ro the equilibrium distance and P is the exponent acquiring values
within the different ranges.

The average interaction energy cohesive due to the potential may be expressed
as

&) = D{2{P - 1)} 1*[exp{-P(ro-7v)a}-Pexp{-(ro-rf)a}]. (2
J

The quotient 2 in Eq. (2) takes care of the double counts. Putting
B =exp(ar0) 3)

we have a more compact form of the potential, i.e.

®b,) = D{2(p - DN}-1~ [Rpexp(-Parj) - BP exp(-arj)] . @

This distance r;- may be written as
rji = (ml + m\ + Wa)1"2a = Mja, )

where (mi, m2,m3) are integers denoting the co-ordinates of the J-th atom of the
solids and a is the semi lattice constant. We have evaluated the present € up to

eight nearest neighbours (140 atoms) for the fee metals Cu, Al, Ag and Pt.

2.2. Three body part of the generalised and modified Morse potential

For the present purpose, the three body potential signifies an extra interac-
tion energy affecting the pair owing to the presence of the third particle. In essence
it is a distance dependent three body potential, which arises due to the deformation
of the electron shells caused by (s-d) hybridisation. The short range three body ex-
ponential potential, capable of expressing the repulsive as well as attractive nature,
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Fig. 1. Phonon dispersion curve for Cu (P = 2.25); ( ) present study, —e —«— study
due to Verma [22], (x —x —x —x) prediction due to Animalu [15], (------------ ) prediction due to
Sharma and Joshi [16], (A A A A) experimental points [14]

coupling the atom (m,k) with its two common nearest neighbours (ri = I2) may
easily be written as

4(ritr3) = ${2(P_1)} 1 1C [/?PexP {-aP (ri+ r2)}~'P/?exp{-a(ri-r2)}] .
k" mk
. (6)
where r\ and r2 are the separations of the atoms (m'k") and (m"k") from the atom

(mk), Q is the deformation parameter. Prime on the first summation denotes,
m'k' ¢ m"k".
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[ >

— PYO. —» M- P'Uro,
Fig. 2. Phonon dispersion curve for Al (P = 2.25); ( ) present study, study
due to Verma [22], (x —x —x —Xx) Behari and Tripathi scheme [18], (----------- ) prediction due to

Wang and Overhauser [19], (AAAA) experimental points [20]

2.3. The total potential

The total potential, responsible for the resultant interactions coupling the
atoms of the crystalline solids may now be written as

dxy(n,runr2) = d(rx)+d(rurdy (73

3. Parameter evaluation

Singh and Rathore [2Z] have studied the lattice dynamics of some cubic metals
based on the generalised Morse potential. According to this study, cohesive energy,

Acta Physica Hungarica 72, 1992



LATTICE DYNAMICAL STUDY OF SOME FCC METALS 217

— slgm— - e ¢
Fig. 3. Phonon dispersion curve for Ag (P = 2.25); ( ) present study, (x —x —x —x) predic-
tion due to Animalu [15], (---------—-- ) prediction due to Mohammad et al [I],

(A A A A) experimental points [23]

lattice constant and compressibility are the input data for the empirical Morse
potential. Compressibility and cohesive energy are, respectively, the sum of ionic
interactions and interactions due to the electrons. Mishra and Rathore [3] have
separated two and three body parts for compressibility. Mishra [6] has recently
succeeded in elaborating the ionic behaviour and the behaviour due to electrons
on the most significant contribution to the binding energy, which arises from the
interaction between the metal ions and the electrons are not included in the potential
[3], even though the potential is fitted to the total cohesive energy. In this note the
following procedure has been adopted to separate the ionic interaction and the
interaction due to electrons in terms of cohesive energy

dxy = dx + dy, ®)

where dxy is the total cohesive energy, dx the energy due to the ions and dy the
energy due to electrons.
Further
qy = Ej + En+ Ec, ©))

where Ej (Fermi energy) = —2.21/r 2 Rydberg, En (exchange energy) = —0.916/r
Rydberg, Ec (correlation energy) = [0.06221nr —0.096] Rydberg, while 1 Rydberg
= 21.79 x 10“ 12 erg.
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Fig. 4. Phonon dispersion curve for Pt (P = 2.25); ( ) present study, (x —x —x —x) Rajput
study [27], (D—DO—@O—@) vrati study [24], (A 4 4 o) experimental points [25]

Table |
Input data used in the paper

Metals Two body lonic part of Semi lattice P
bulk modulus cohesive energy constant (a)
Kkx(x 1012 dyne/cm2) i£(x1012 erg) (nm)
Cu 0.927 2.472 0.1805 2.25
Al 0.368 2.386 0.2025 2.25
Ag 0.645 2.076 0.2045 2.25
Pt 1.085 4.111 0.1960 2.25

Hence the energy due to electrons

@y = ‘2-221 A A+ (0.0622InT - 0.096) Rydberg, (10

Here r is the dimensionless quantity and may be varied like 2, 3, 4 or 5 while
In is the natural log. (Table I).

The three parameters (D, a and ro) depending on the two body potential with
the appropriate value of P are evaluated by the procedure laid down by Girifalco
and Weizer [13]. The deforming parameter Q is evaluated from the knowledge of
measured Cauchy’s discrepancy in the second order elastic constants (Table II).
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Table 11
Computed parameters

Metals D a o Cauchy’s discrepancy
(xlIO®erg) W "1 H (x10 12 dyne/cm2)
Cu 5.201 0.1331 0.2848 0.443 Ref. [21]
Al 5.709 0.1111 0.3324 0.354 Ref. [21]
Ag 4.070 0.1250 0.3140 0.362 Ref. [21]
Pt 0.468 0.0789 0.3501 1.742 Ref. [26]
Table 11

Computed force constants (x1O4 dyne/cm)

Metals oil Rl «2 02 03
Cu -0.194 2.693 0.074 -0.091 0.072
Al -0.201 2.150 0.037 -0.016 0.064
Ag -0.122 2.211 0.033 -0.113 0.069
Pt -2.507 0.278 18.300 0.801 2.530

4. Dynamical matrix

The elements of the diagonal and off diagonal matrix may be given, after
solving the usual secular determinant, as

Da'a'(<l) = 4¢u2i + 2ai)y — 2¢2i + ai)CQ(COi+ Cr)
—Aa\Cp'(r' + 4/72Sai + 402(5™ + S?/),
Da'p'{a) = 2¢2i — ai)Sa'Spi + 4rsp(car+ cre) - 2], (11)

where Ca<= cos("p-), Sa>= sin(aga'/2). Hence <1, »2 are the first and R\, /2
are the second derivatives of the potential 5§ while /23 is the second derivative of

Dbl (Table N1)-

5. Discussion

The findings on Cu very close to the experimental points [14] in comparison to
the theoretical studies given by Animalu [15] using the TMMP model and another
study due to Sharma and Joshi [16]. The above theories are inefficient on the several
grounds which are well explained by Prakash and Upadhyaya [17].

For the metal Al we have better results than the other recent studies given by
Behari and Tripathi [18] and Wang and Overhauser [19]. Experimental points [20]
are in good agreement with this approach for Al. The curves (1 and 2) have been
compared with the recent study of Verma [22] also, which is lacking on the ground
of parameter evaluation.

The dispersion curve of Ag is very close to the experimental points [23] in
comparison to the theoretical studies given by Animalu [15] and by Mohammad et
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al [1]. The deficiencies of the these studies [L and 5] have already been pointed out
by Mishra et al [3-5]. Again the phonon dispersion curve for Pt has been compared
with the theoretical study of Rajput [27] and with the study of Vrati [24] also.
Experimental points [25] are very well satisfied. We find that our calculations are
in better agreement than others.

Finally we have drawn the conclusion that the present investigation provides
us the satisfactory type of scheme which is centered around a more correct proce-
dure. In actual practice, the lattice dynamical properties based on Morse potential
have been computed in a proper manner for the first time, free from all deficien-
cies. The used input parameters are purely ionic for the two body part while the
deforming parameter Q is explaining the three body part satisfactorily.

One more interesting conclusion has also been drawn that the variation of P
for different values in the generalised Morse potential gives a very resonable ionic
as well as three body part. If the value of P is varied, the results obtained are
suddenly disturbed.
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MAGNETIC EFFECT ON LOW REYNOLDS NUMBER FLOW
IN A HEATED TUBE OF SLOWLY VARYING SECTION*

A. Ogulu and M. A. Alabraba

Department of Physics, Rivers State University of Science and Technology
Port-Harcourt, Nigeria

(Received 22 September 1992)

A mathematical model is advanced for blood flow in an axisymmetric heated tube
in the presence of a uniform magnetic field. The radius of the tube is assumed to to vary
slowly in the axial direction. Using asymptotic series analysis about a small parameter, e,
solutions are obtained for the velocity components, temperature and pressure. The effect
of the magnetic field on the axial velocity is discussed quantitatively.

1. Introduction

The study of physiological fluid dynamics is growing in popularity because the
flow of blood through arteries gives an indication of the presence of cardiovascular
diseases.

Unsteady low Reynolds number flow in a heated tube of slowly varying section
was studied by [2]. Fluid motion established by an oscillatory pressure gradient
superimposed on a mean, in a tube of slowly varying section was studied in that
paper when the temperature of the tube wall varied with the axial distance. Mishra
and Chauhan [8] proposed a mathematical model for pulsatile blood flow in a small
diameter tube whose walls pulsated. In their study they modelled blood as a two
layered fluid by considering core fluid as a micro-polar covered by a very thin cell
free layer of Newtonian fluid. Blood flow through blood vessels under the action of
a periodic accelerating field was the object of [9].

More recently Ogulu and Bestman [10, 11] studied blood flow in a heated tube
of slowly varying section in the presence of radiative heat transfer; first considering
blood as a Newtonian viscous fluid with constant viscosity and later the viscosity
was varied as the temperature. They showed that the variation of blood viscosity
had no appreciable effect on the velocity and temperature distributions.

In all the literature cited none considered the effect of a magnetic field on
blood flow so it is the object of this study to look at the effect of a uniform magnetic
field on blood flow. Magnetic resonance imaging (MRI) [7] is a well established
technique for blood flow measurements where a static magnetic field is obtained
by the flow of a current driven through large copper coils. This is one area of
application of this study.

*This work is dedicated to the memory of Prof. A. R. Bestman.
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The subsequent analysis is divided into four sections. In Section 2 the problem
is put in mathematical terms. In Section 3 the leading approximations are presented
with solutions. This is followed in Section 4 by the higher approximations. Finally,
a quantitative discussion of the results is presented in Section 5.

2. Mathematical formulation

We consider blood flow in cylindrical polar coordinates (r',<f>z) with corre-
sponding velocity components (u', v',w") such that r' = 0 is the axis of symmetry
of the tube. The tube wall is defined as

r' = a0s(ez'/a0). 2.1)

Here £is a small parameter and ao a suitable constant. Also we apply a uniform
magnetic field (0, 0, Hz). The equations of continuity, momentum and energy are
therefore

1d.,, ldv' dw'
rrdrr T )+ r7~gp + dzz ~ °- (2.23)
( ,du" Vvdv' yR ,du'\ dp'
R di +*W +/* +Wd?) ~~d?+
2, « 2 dv'  d2u'\
+4 V «-p2-"éd +a”)+nang’ (2.20)
avtovidyt oy <V\ _ _}_W_+
p°° d? +~~d>+ ~ +Wdz') r o>
I 2, v 2 du d2v'\ (2.20)

( ,dw' V' dw' ,dw'\ dp' (2, daw'\ ,
P " N +/2K +™a?)° “37+'4v 7 +J7t) - HW- (22)

( ,dT v'dT!' Ld T\ 1 e, d2T )\
peecp{u fr7 + "-dd+wd 7 j-k{v T+ dz2)1+
16« >sr\\
LA V13 = > 9 (r>sr
* 3T rdr \. r' dd (V 3r' d¢)>>+ d7 371j]

(2.2¢)
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where

2 _ d2 1 d I d
dr'2  r'dr  r2dp2’
and p' is the pressure, a is the Stefan-Boltzmann constant, a is the absorption
coefficient, p is the molecular viscosity and ¢ is the specific heat capacity. The
undisturbed fluid density is denoted by p00, T' is temperature, Hz the magnetic
field vector and (pacosd, —pgsin dy 0) the buoyancy force terms.

In (2.2) we have assumed that the density of the fluid is constant and equal
to its value in the undisturbed fluid except in the buoyancy force terms, that is, we
have made the Boussinesq approximation. Also we can assume that the induced
magnetic field is negligible and in the energy equation (2.2e) viscous dissipation is
neglected since the low Reynolds assumption necessarily entails low flow velocities.

The differential approximation for the radiative flux adopted here is that
proposed by Cheng for a grey gas. It is

d ) odT _
dr -3agr- 16aT i 0. (2.3)

The boundary condition on the velocity at the wall is the conventional no-slip
condition, while for the magnetic field we assume that the wall is a perfect insulator.
Thus

Uw=v=0=w'=4¢d2, T =Tw on r' =5s(2) (2.4a)
u, v, w, T', Hz< o0 on r=0. (2.4b)

It is now convenient to introduce the following non-dimensional quantities:

r- _r;l_, 2= _Zg_' (U,V,W)— _(_L_’___V__(:_:y_v_z (5' = U@p
_ (p' -poo) | 2 gBT"aI _ .
P I"ﬁc% )er ) }Pr Poo)
Pa= l6<6raQ7£ | M,Z_ HZaI (2.5)
aK "

We only consider the optically thin limit of Eq. (2.3) since blood can be
regarded as an optically thin fluid (a < 1). Bestman [3] showed that the optically
thin limit of (2.3) in suitable non-dimensional variables is

J =1'w - 1) (2.6)
With the help of (2.5) Egs (2.2a-€) incorporating (2.6) become
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0y + 3?; + ?ﬁ -0 2.73)

rr

_,/ du vdu W2 du\ dp f 2 11 2e dv
ReE \ud*+rd” "~V +wd?)~~d? +€V ~" ju~Tbop+

2d2u
+ e Q2 ~ G>E0COS<E, (2.70)

[ dv Vdv uv dv\ 1dp f 2 11

RE{udi+rdj +v +wd 1)-—dj +e{ ~~A
2edu  2d2v .
+7 p'q)+‘ A +B/\T q) . (27C)

., 1 dw Vdw dw\ dp _2 2d2w = ,,2 .
Ad  «f+ra?+7?i) ="<fe+ +< (2'7d)

Prd.c (« N + +“37) - Vz0 + +<’1 " - jfi.(04- 1). (27c)

subject to the boundary conditions

v—U—0—w —M on r=5s(z) (2.8a)
u,v,w,Q,M<oo on r=0. (2.8b)
In these equations Re is the Reynolds number, Pr the Prandtl number and
Gr the Grashof number or free convection parameter.
If the pressure gradients are eliminated from Egs (2.7b,c) we get

Md ( f dv. vdv uv <OWj 1d f du wvdu v du

eE [rdr ( \ dr,” rde Ar ANWdAz) Jrdd \dr rdqo+wr_
R (P OV LT (S Y
r20z22 { é (rv)-Ji}" (29)

Equation (2.9) will be found useful in subsequent analysis.
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3. Leading approximate solutions

The mathematical statement of the problem is to solve (2.7) and (2.9) subject
to (2.8). This problem is nonlinear and coupled and not amenable to closed form
analytical treatment. We are interested in low Reynolds number situations such that
tR —o(l) rather than cR = 0(1) and larger. We therefore adopt an asymptotic
analysis similar to that in [1] by expanding the velocity components and temperature
in the form

V=t/°) + et/)+ e2i/2+ ..., (3.1a)
n=t/°)+et/)+ex/2)+ ..., (3.1b)
w = u/°)(r,z) +ew™Mr, by z) + e2u/+ ..., (3.1¢)

while the pressure is expanded as

p= +p))+ ep)2) + ---- (3.2)
For the temperature we have
0=0(@)(r,2) +e0@)(r,dhz) + e20)2)+ (3.2a)
Bestman [4] has shown that approximate solutions in the form (3.1) and (3.2) agree
well with numerical results when the Reynolds number is fairly low.

When (3.1) and (3.2) are substituted in (2.7) we find that the leading terms
satisfy the equations

1d . 1<9t°)  Gul°)
ror r ap 0z

6p)°) 1dp)°)

dr N (3.3)

=i, tif - e(0(0)4- 1))

dp)°) _ oy _
W = VV©°) - Mulo).

()
—T&z is the externally applied pressure gradient which is constant for a healthy
person. Suppose we call this constant K, then (3.3e) becomes

(V2- M2u/°) = K. (3.4)
In the light of (3.1c) (3.4) becomes

dve)  1duf)

dr2 r oar - MWO=K (3.9)
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(3.5) is a modified Bessel equation of order zero whose solution is elementary. It is

(h(Mr) \
\lo(Ms) ) (36)
where In is a modified Bessel function of the first kind of order n. Subsequently, kn
will represent a modified Bessel function of the second kind of order n.

Next we substitute (3.1) in (2.7a), the result is

1d rol\  1ldv(°) 6=

rorrU )+r~w ~ dz~' (3.72)

To obtain another equation linking u(®) and t/°) we substitute (3.1) in (2.9), the
leading term of which subject to (3.2a) is

10u(®) ) -
Coah | sin ¢o (3.7b)
Putting ") = V(°)(r, 2) sindy = U”°\r, z) cos hin (3.7a,b) we get
ror r az (382)
00(°)
dr (3.8b)
The solution for 0(°) is given in [11], it is
0(°) = __ET!_ 10 2(-R112r) (3.9)

miRi/») 0 (2 m
Solving (3.8a,b) simultaneously, the final results are

K
y(°) =

\ &
2M?2

Subsequently subscript w will represent condition at the wall. The leading solutions
are now complete.
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4. Higher approximations

The equations governing the next approximations are

1d fl ldvtd) dwW
—ra(ru(lj)+ -r-zo(g'-+ —ORZ— =0, (4.1a8)
dpM 1dpM
dr r ¢ (4.10)
awi?) _ ’O)dWD;] oW B
Re (n( T O - hv3 AT - moawdd), (4.1¢)
RePr +-O» ) =ve*D- "na(0O@IA> I,
(4.1d)
subject to the conditions
t() u@=o=ui)=M; Qi)=0ow on r=s(2), (4.23)
u(l), t/1), u/1), 0\ M <oo on = o0 (4.2b)
Also, an equation corresponding to (3.7b) is
dviey  WeO>  u(°*M°)
(0)
Re o " or ode T
i A 01+ =
Trd) dr r &> dz)
_2fi6, lduidl ~ ie«l) . . i30(9) n
Y, >-;w }+ 4 ~ sm*+;:-4rc’s4 (4.3)
pil) is independent of r and ¢
We put
wil) = U)A(r, 2) + w2*\(r, 2) cos th (4.9)
Substitute (4.4) in (4.1c) to get
7Ly Wiy 2@ (4.52)
and
Ladwi?)y  dpil) @ew>nr 1 « (i)
ReH) 4z & * @t - MwY (4.50)
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We put dp/dz = Substitute form and w in (4.5a) and after some algebra
we obtain
s20(Mr)\ (pfl* ReKh{Ms) ReK |
lo(Ms) / [ 3 + 3M27Q(A7s) 3M212{Ms)J +
( lo(Mr)\ \  ReK _ ReKh(Ms)\

+ v 10(Ms)J \M22{Ms) M23(Ms) J " (4.6a)

Next we substitute for u/°) in (4.5b) and after some algebra we get

) Pfl), 4,f ReK2 ReK 2h{Ms)r
"$)~~Pr(r—5)+|32 ¢ {S\I\SAS) ~ 32M3/0(Ms) (r2—s2). (4.6b)

We put 0011 = 0jX\(r,z) + 02%(r,z) cosO and by a simple separation of
variables technique (4.1e) becomes

<) @ fl* lief*

RePriu(0) 4z dr2 Codr 4/fa0W 30 ) (4.73)
and
00(°) d2Qe} 1do®) .
<> - AQND)- °
RePru dr 612t 6r 071)-44a0(°)30'D). (4.7b)

Without giving a descriptive method of solution, we directly write the simplified
solutions for the perturbed temperature as

() _ 1RePrKQwWR1Ds f  h{2fr) 1
1 3 M2 r Ti(2: sy

where £ = R 2Q7*)3d2 and

(D  2RePrQws f h((r) _ h((e) _ 11/2(Cr)h(Ms)
9 M2Ra 1/1/27) jil2(is) [lo/2(is)/o(Ms)
[N(AMN(M s)] 4RePrkQwr [ /x2(™)  Tx/2(£r)
70/2(M)70(Ms)J 9 M2r7as  \/ Q2(is) 7Q/2(Es)
[L2(M)7i(Ms) + J12(N)/L(Ms)l + RePrKQ@r
11/2(Cs)IO{Ms)  TQ/2(£s)70(Ms) J m 2R 1/as
i o2("r)  li(Ms)  h(Ms)I10/2(Zr)\
1 70/2(is) "o(Ms) 70(Ms)7a/2(is)d
* = 3/2Try2. (4.8b)

(4.8a)
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Finally, we assume G>  Re so that (4.3) now becomes

fid. (1. l6tiwl A~ jéow ., WM™
Y )-;-er} =-0'1"ftr "M +r~arc” *I' (9
We now put
0i1) = ©"(r,z) + ©2\(I, Z) cos B (4.10a)
v = WM,z o W2MT, 2) cos D (4.10b)
i/0) = Ugl\ t,2) + n[r\r, z) coscp+ U"\r, z)cos 2y (4.10c)
Dk1*= A ()(r, ) sin o+ Vj~(r, 2) sin 2<¢ (4.10d)

Substitute (4.10c) in (4.1a) to get

(i)
(4.11)

Integration of (4.11) subject to (4.2) gives
uh)- A 22 rays RO Rz*mrg’ (1- 252) (4.11a)

Imposition of the appropriate boundary condition on (4.11a) leads to Reynolds
equation in lubrication theory. Integration of the Reynolds equation gives

ReKs ReKs3
100/ M

»(1)

and
m _ ReKs2 3ReKs2sz

Pz ~ 10M ™

so to terms of order e, the free convection currents have no effect on the pressure
distribution.
To continue the solutions we substitute (4.10c,d) in (4.3) to obtain

(4.12a)
where
d2 1d
ves (0 4+ -fr ~ — ) Sin<
Let us now say
=+ = * m
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then (4.12a) becomes

Y*®(r) = —Gr dr

After substitution we can show that

19 A () = 2 AerrUrOoeASJiI(,r_j__
o(r)=r ~ nfir " TA T FguneEyzncy
RePrGre wK slo(Cr) f1i 1) N RePrGre wKsl1(Cr) f 2 1)

12MD(°)3/2i(Cs) \r C) ~ 12M()F2i(Cs) 1Cr Q1 (4135

A'is an arbitrary constant obtained on imposition of concomitant boundary condi-
tions. To obtain another equation linking and V"1#*we substitute (4.10c,d) in
(4.1a). The result is

1a 1,,(0) _ slo(Mr) fI0(Ms)p$ - h(Ms)pil)
rdrfrul > r 1 - 3 \ WmT)

To simplify the algebra involved in the simultaneous solution of (4.13a,b) we appeal
to [1] for limiting form for small argument. The results are

(i) _ j pWIpjMs) - p~AhjMs) '22sr 52 s2 srlo(Mr)
IS(Ms) T6" - 27 + J
RePrGrKQwR &2 N 1
3M2/i(Cs) {* 160(a)s/2p 1/2  20,,0(°)3/2 40a0(°)3
. pi<}|o(Ms)—p'(@ll(Msi)}L(..* £ 287
1 2{Ms) J Voo + 9 27) +
RePrGrKQwR &/2s f 125 S ry

3M2h(Cs) \ 72[1a0(03 18 + 12 " 3.
Finally, using the same method, we can show that

(i) RePrGrKQwR&2 113s4 s2 3r2 s2r2 2rs 4r3s1
2 - M 21((s) 12295 18 18 30 + "9" + 135/

(D RePrGrKQwR1R2f 13s4 s2 2r2 s2r2 s r3s)
uz2 -~ m 2a (Cs) V2295 18 9 90 + 9+ 135J ¢

The solutions are now complete.
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Fig. 1. Velocity profile; M > 0.8

5. Discussion

In this numerical discussion we present results of the effect of a uniform mag-
netic field on the axial velocity for flow in a locally dilating tube of the form s = ez,
where z = 0 is taken as the inlet to the aorta. We discuss only the axial velocity
since in systematic flow the nutrients are convected in the axial direction.

Typical values of the parameters of the problem for blood are as follows; the
constant pressure in the left ventricle of the heart, K = —1, Reynolds number for
blood = 40, radiation parameter = 0.5 and the small parameter e —0.001. These
values are given in the literature, see for instance Ogulu and Bestman [10]. Figures
land 2 are plots at z = 0 of the axial velocity with radial distance with symmetry
about r = 0.

We observe that the application of a uniform magnetic field has a definite
effect on the velocity of blood flow. It induces a flow potential which is most
pronounced in the major blood vessels around the heart and in the heart itself.

In Fig. 1, M > 0.8 and shows a steady decrease in velocity with increase
in magnetic parameter. This means that the flow at the entrance of the aorta is
reduced. For a normal flow, the heart does not experience a pressure differential
since the inflow rate of blood equals the outflow rate and so for M > 0.8 more blood
arrives at tin. heart than is leaving. This imposes extra burden on the heart which
has to pump at a faster rate to nullify the pressure differential. In Fig. 2, M < 0.5
and shows a steady increase in velocity with increase in magnetic parameter within
the range 0.25 < M < 0.5. This means that the heart has to pump at a slower rate.
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Fig. 2. Velocity profile; M < 0.5

M —0.25 is a critical value where there is a flow reversal from r ~ 0.7 to the wall
where r = 1. For m < 0.25 the blood flow is completely reversed, this means a lot
of pressure hits to be applied to overcome the flow reversal.
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A classical experiment, which can easily be performed in the classroom is reported
here showing that light scattered in all directions is coherent whereas the usual interfero-
meters offer interference within a restricted spatial angle only. The historical background
of this experiment is given together with a brief survey of the early experiments and exper-
imentators among whom is Schrodinger.

1. Introduction

Early quantum theory dealt with a concept, the so-called “Nadelstrahlung”
(needle radiation), the existence of which was denied by the same authors who
had used it [1]. According to this idea the light emitted by an atom (at rest) is
a wave, but it is concentrated in a narrow, directed bundle. This picture enabled
the dual nature of light to be explained in a simple way: on one side the wave
nature remained thereby allowing interference phenomena to be interpreted, on the
other side the energy, concentrated in the cone, accounted for local effects, e.g. the
photoeffect. This working hypothesis was immediately rejected by Jordan referring
to the experiments described in Section 2.

Though the nonexistence of Nadelstrahlung was proven its ghost has started
to haunt again. On a previous occasion [Z] it helped to explain certain optical
phenomena without introducing the concept of the photon but it was also used [3]
to prove the existence of the photon.

In most cases Einstein’s paper [4] published in 1917 is mentioned as the source
of the concept. In this work Einstein continued his previous article [5] in which he
had deduced the law of black-body radiation. He had, in his earlier work, assumed
the existence of spontaneous and induced atomic transitions and had required that
the energy distribution of excited molecules should obey Boltzmann’s law. Now he
wanted to find full equilibrium between radiation and absorbing/emitting molecules.
He showed that the momentum distribution of molecules remains Maxwellian if the
exchange of energy hi/ between the radiation field and the molecule is followed by
momentum exchange of value hi//c. As the momentum change of the molecule has
a definite direction an opposite one is to be attributed to the emitted light.

This assumption by no means contradicts the main body of experience: two-
beam interference of quasimonochromatic light can be observed if the size of the
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light source is small and the cone within the interfering light emerging from the
source is limited. In the case of Young’s interferometer if the source is relatively far
from the screen with a double-slit, the lateral size Ax of the source and the angle
[a under which the double slit is seen from the source must obey the relation

Ax +[la < /2, @

where Ais the wavelength. This relation was known long ago [6], nowadays it is
interpreted as the uncertainty relation between location and momentum. For a
source of 0.1 mm width (i.e. for a fairly open exit slit of a monochromator) and
visible light the opening of the light cone must be less than 10 minutes of arc.

2. Early experiments

Some years prior to Einstein’s statement on the directed nature of emitted
light Selényi showed [7] that interference can be observed for angles up to 100
degrees. This wide angle interference (WAI) experiment was performed with an
interferometer developed by Selényi himself. This interferometer was more similar
to a Fizeau type device (i.e. interferometer with amplitude division), and for this
configuration Eq. (1) is not applicable. In Selényi’s experiment the light source was
a thin layer (less than A/4 thick) either of sulphur particles or of fluorescein, coating
the surface of a thin mica sheet, illuminated by the focused beam of an arc lamp. In
the former case the light was coherently scattered, in the latter incoherently. The
sheet was attached to a 45° glass prism by immersion liquid (see Fig. 1), the coating
layer faced the prism.

b\

Fig. 1. Selényi’s experimental setup

Interference took place between the light emitted directly from the scatter-
ing/luminating secondary source and the light reflected from the rear side of the
sheet (see insert on Fig. 2). The prism coupled out the light reflected from the rear
surface of the sheet even when the light was totally reflected on this surface. The
interference pattern was observed through the side of the prism with the naked eye
or by a telescope. It was photographed or studied by means of a spectroscope.
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Fig. 2. Experimental setup. L — incident beam, P — rhombic prism, G — glass plate,
| — bromonaphthalene fluid, L\ — lens for observing interference field and imaging of the
light spots

In the following Section we show that this experiment with coherently scat-
tered light can easily be repeated by contemporary means and can be demonstrated
in the classroom.

Schrodinger’s [8] name cannot be overlooked in the history of WAI experi-
ments: he performed another experiment. He was unaware of Selényi’s work but
knew of Einstein’s. Schrédinger observed WAI using a Young’s interferometer and
a platinum wire of 2—4 pm thickness as a light source.l Interference was measured
up to 29°.

WAL was found for X-rays, too. Kossel and Woges [9] excited X-ray lumines-
cence in a monocrystal of copper (for the Ka line /1= 0.15 nm) and studied the
scattering in the same crystal. The exciting electron beam was focused therefore
the source of X-rays could be regarded as a point; for a point source the diffraction
pattern forms rings. In the experiment the rings occurred in pairs, each black ring
was followed by a white one. The first weis explained as the location of maximum
intensity fringes caused by the interference between the direct and scattered wave,
the second by minimum intensity. The interfering waves correspond to those in
Selényi’s experiment.

1There was no electronic control at that time and the thin wire often burned out. No
wonder Schrédinger preferred theoretical physics!
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Some decades later WAI was applied for enhancing the intensity of Raman
scattered light [10], where valuable gain was achieved for measuring very weak light
signals.

We started to perform WAI experiments in which any interaction between ra-
diating molecules can be excluded up to the limit when a single molecule radiates.
The reason for these novel experiments is that the early ones had been performed
with macroscopic light sources: the number of simultaneously emitting molecules
was high, but the mean intensity was low, i.e. the probability of observing a light
quantum was very small. However, our attention was drawn to an unsuccessful
repetition of Selényi’s experiment [11], so we started to repeat them with contem-
porary tools. In the present paper we show that light scattered by a rough surface
interferes at wide angles, too. The result of the experiment seems to be trivial from
the point of view of the dominating theories. However, we feel that this experiment
may help people to understand the meaning of the wave nature of light or, at least,
the profound sense of Huygens’ principle.

3. The recent experiment

The experimental arrangement is shown in Fig. 2. The geometry of the mea-
surement is the same as that used by Selényi. The beam of a 20 mW He-Ne leiser
is focused by the lens L onto a ground glass scattering surface, which weis produced
by slight etching of one surface of a glass plate (n = 1.52, nominal thickness 180
microns). The mean diameter of the scattering objects is about one micron. This
plate is attached to a 45° rhombic prism (n = 1.57) by bromonaphthalene fluid
(n = 1.66). Because of the different indices of refraction the light is scattered in all
directions by the rough surface. Scattered light is observed through the 45° tilted
plane of the rhombus. The interference arises from the light scattered forward into
the direction of the observer (see insert) and that reflected from the back surface
into the same direction. The path difference is given by

As = 2nd cos/?,

where n is the refractive index of the plate, d its thickness, and B the angle between
the surface normal and the direction of observation defined by the laws of geomet-
rical optics. The angle between the interfering rays is 180° —2R. If the interference
is observed perpendicularly to the prism surface and observation is perfected in the
focal plane of a lens, the fringe spacing is given by

AX = .
X odsin4s° (2)
/ being the focal length of the lens L\.

In principle, focusing of the incident laser light by the lens L is not necessary:
in this geometry interference can also be observed for an extended light spot. Fo-
cusing is used because the thickness d of the glass plate is not constant, therefore
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a spot of 10 microns diameter is used. Moreover, the coherence area is limited by
the speckle due to the rough surface.

Fig. 3. a - Interference pattern when the angle between interfering waves was 90°, b - the same
for 136°

Interference was observed for 0° < 3 < 135°. Observation under larger angles
was hindered by the high intensity light pencil of unscattered light. The interference
pattern shown in Fig. 3, photograph 3a was taken when the angle between the
interfering rays was 90°, that of 3b for an angle of 134°. Figure 3a exhibits good
contrast because the interfering beams were of the same intensity, for 134° the
backward scattered beam is no longer totally reflected.

The scattering surface can be observed by a microscope. As a consequence
of the reflection on the back surface two separate light spots must occur, A and
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Fig. 4. Configuration of light spots in the near field: A illuminated spot, Alits virtual image,
B the parasite spot

Fig. 5. Photograph of the near field

Al (Fig. 4), but a third one B appeared halfway between A and A! (Fig. 5). This
spot was caused by the light scattered from the surface on which the light first
impinges on the glass plate. Some scattering from this surface always takes place.
The brightness of the spot changes when shifting the glass sheet, but this scattering
can hardly be avoided even after the most thorough cleaning of the surface. The
intensity of this parasitic source is often commensurable with that of sources A
and A'. The occurrence of the third spot may lead one to doubt the correctness of
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Table |
Measured and calculated fringe separation (in microns)
Direct scan Calculated
1st run 243+2 241 0.6
2nd run 241%2.5 244.5+1.3

Selenyi’s first experiment because purely the forward scattered light emerging from
A and B can produce interference, too. (This was not the case for the fluorescent
light of the second experiment of Selényi).

The fringe spacing does not differ from that given by (2) if the three spots
are present; only the modulation of the interference field changes, the intensity of
every even fringe is higher. If only A and B produced the interference, the fringe
separation would be twice that given by (2). The interference pattern in the focal
plane of lens L (Fig. 2) can be scanned and the fringe spacing established. After-
wards the separation of the two spots A and A' can be measured by a microscope,
thus the distance d in Eqg. (2) and the expected fringe separation can be calculated.

The results of two independent measurements are represented in Table I. From
the very good coincidence of measured and calculated data it can be concluded
that wide angle interference takes place when light is coherently scattered. We
emphasize that the work reported here is the first step of a series of experiments on
WAI. The next step will be performed using light incoherently scattered by a small
number of atoms, for the last step a special light source is under development where
only a single atom radiates. It is expected that the interference will not depend
substantially on the intensity of the scattered light.

Note added in proof

The authors have been informed during the preparation of the manuscript that an article
on WAI had been published (Ming Lai and J.-C. Diels, American J. Phys., 58, 928, 1990). The
authors of this article were unaware of the works of Selényi and Schrodinger and stated that it
was the first experiment about WAL
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Afterintroducing the quaternions and some oftheirimportant properties the Maxwell
Equations are translated by quaternion representation. The derivation of the wave equation
is also discussed.

1. Introduction

The abstract structure of quaternions or hypercomplex numbers has been
applied successfully in several disciplines, e.g. quantum theory [3], engineering
and even teaching practice. Algebra must use a larger set of numbers than the
real numbers in order to solve the simple second order equation x2+ 1 = 0. For
this G. Cardano and R. Bombelli, Italian mathematicians, introduced the complex
numbers in the 16th century. The complex numbers have the form a + bl where a
and b are real numbers and the symbol i stands for t2 = —1. The symbol i for the
(—)° 5 was first used by L. Euler in the 18th century. It is obvious that the real
numbers (R) constitute a subset of the complex numbers (C). It is worth noting
that other types of numbers are also defined [1]. These are the hyperbolic complex
numbers, a + bE where E2 = 1, and the Study numbers, a + b(i where fi2 = 0.
The interesting property of the hyperbolic complex and Study numbers is that in
some cases of nonzero () numbers (a ¢ O ¢ bor at least one of these nonzero)
the division (or multiplicative inverse) cannot be evaluated [1]. However, in case of
complex numbers the division can always be evaluated. If we define the numbers
a+ bl+ cj where i2 = j2 = —1 then one has trouble with the division in the set
again. But introducing a new term with symbol k, the

Q=a+ bl+cj + dk 1)
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type numbers allow us to evaluate the division in the set again [1]. The most
interesting representatives of this set are the quaternions (“quadruple numbers”).
These quaternions have the following sum and product properties: Sum of two
quaternions is like the sum of two four dimensional vectors. The product is like
the product of two four term sums but applying the following definition: i2=j2=
k2 = —1, ij = K, ji = —k, etc. The product rule between the i,j,k symbols of
quaternions can be kept in mind with the help of Fig. 1. Following the arrows the
product of two symbols in that order is the third symbol and the opposite order in
the product yields the negative (additive inverse) of the third symbol.

k2=-1
K. )i=-k
i Kj=-i

ik =-j

Fig. 1. The product rule of the quaternions

It can be proven that the quaternions obey additive commutativity, additive
associativity and multiplicative associativity, this latter being

(Qi *<2) *Q3 —Qi *(Qz2 * Q3) (2)

(multiplication is marked by asterisk), however, do not generally obey multiplicative
commutativity (this can be understood by Fig. 1). Eq. (2) will have great impor-
tance in Section 2. The definition of the conjugate of a quaternion is analogous to
the complex conjugate, i.e. the conjugate ofa quaternion in Eq. (1) is noted by Qc
and in it the b, c and d values change sign but a is the same. It can be proved easily
that Q + Qc = 2a and Q *Qc = a2+ b2+ c2+ d2. The latter defines the square
of the absolute value of the quaternions. Several properties similar to the case of
complex numbers can be proven. Ifei, e2, e3 are the Cartesian unit vectors, then
6ei + ce2-fde3 are the general three dimensional vectors from the origin to the point
(6, c, d). Formally a quaternion is a (Descartes) sum of the real number a and the
vector bei -fce2+ de3 (See Eq. (1)). The term ais called the real part (ReQ) of the
quaternion and the rest in Eqg. (1) is called the vectorial (or imaginary) part (ImQ
or VeQ). Let us consider two purely imaginary quaternions gi = b\i +c\j +d"k and
92 = b2i+cZ+d2k. The product of these quaternions g\*q2= Re(gi*g2)+Im(¢i*92)
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where the real part is Re(gi * 92) = —(s1e2 + G + 0\d2) and the imaginary is
Im(oi *92) = (c\d2- d\Ci)i + (diaz - b\d2)j + (61 c2 —Cib2)k. From vector alge-
bra the geometrical meaning of the right hand sides are known: the scalar or dot
product of the two vectors vi = 91 and V2 = 92 is ViVz = Re(oi * (2) and the
vector product of these two is Vi x V2 = Im(si * §2). (The v; = o-for i = 1,2 is
an equivalence relation between the three dimensional vectors (R3) and the purely
imaginary quaternions (Im{<3}).) Finally, the product of two quaternions, having
only imaginary parts ,i.e. @a —0 in Eq. (1) (using the equivalence v,- = 9-again):

9i *92 = -V 1V2 + Vi Xv2. 3)

The associative property in Eq. (2) and the product property in Eq. (3) of the
quaternions are powerful tools in those processes where vector fields are necessary
for description. A typical example is the Maxwell equations of electromagnetism,
which will be shown in the next Section.

The quaternions form a subalgebra of the Clifford algebra of the three-dimen-
sional Euclidean space, and electrodynamics can be formulated in the powerful
Clifford algebra language [6,7,8].

2. Applications

2.1. Quaternion representation of the Maxwell equations

When the operator Nabla or del, Vv = e\(d/dx) \-e2(d/dy) e”(d/dz), oper-
ates on a scalar function (for example on the electric potential) U(X, Y, Z), it gives
the gradient pf the function((grad U = VU) pointing to that direction at any
considered point where the slope of the surface is the highest; and the “a physi-
cal flow” is —(const.Vf7). On a vector function (for example on the electric field)
E = (Ei, E2 E3), where £, = E{(X,y,Z) for i = 1,2,3, the Nabla can operate on
two ways: divE = VE and curl E = V x E, i.e. the scalar and vector product of
the two vectors (considering V as a vector). Gauss’s Theorem says that the flux
integral of a vector function E extended over a closed surface 5 is equal to the
volume integral of divE extended over the volume bounded by the surface. Stokes’s
Theorem says that the circulation integral of a vector function E extended along a
closed curve G is equal to the scalar surface integral of curl E extended over any
surface bounded by the curve. The sign of div E tells if the vector space is a “foun-
tain” or a “sink” at the given point. For example a rotating disc defines a velocity
vector space, where the curl at the center of the disc is nonzero and is related to
the angular velocity.

The Maxwell equations (named by Pauli) show the div and the curl of electric
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field and magnetic induction. At constant permittivity these are [2]:

VE = ple, 4
VB = 0, (5)
V XE = -OB/dt, (6)
V x B = pJ +pedE/dt. )

(The order of the above four equations is different with different authors, and the
electric displacement vector (D) and magnetic field vector (H) can also be used in
the above field equations. The integral representations of Eqs (4-7) are also used
as counterpart.)

With Eqg. (3) the above four equations can be written in more compact form:

V *E = -p/e - dB/dt, 8)
V *B = pJ + pedE/dt. 9
With Eqs(3-7) the products: E*E = -EE + ExE = -E 2and similarly B*B =
—B2 sincethe vector product of parallel vectors is zero and thedot product is the
square of the absolute value. With these the energy density of the electrostatic field

is w= —eE *E/2 and of the magnetostatic field is w = —B *B/2p. Two excellent
works [4,5] also point out the advantage of the compact forms in Eqgs (8-9).

2.2. The electromagnetic wave equation
(the consequences of the products V *V *E and V *V *B)
From the associativity in Eg. (2) we have
V*(V*E) = (V* V)*E. (10)

Applying the rule in Eqg. (3) on the left hand side and Eq. (4) with no charge (p —0)
and Eqg. (6)

V *(V*E) = V*(-VE + V x E) = V *(-dB/dt). (12)

Applying Eqg. (3) again on the right hand side and using Eqgs (5) and (7) with no
current (J = 0):

V *(V*E) = -(-d(VB)/dt + d(V x B/dt) = -ped2E/dt2, (12)

where p = 0 and J = 0 were used because we are considering the electromagnetic
wave. Using Eqg. (3) the right hand side of Eq. (10) becomes

(V*V)*E = (-VV + V x V) *E = (-VV) *E = -] E, (13)
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where we used that V XV = 0 by the parallelity, and V2= [ is the Laplacian.
From Egs (10), (12) and (13)

Hed2E/dt2= AE, (14a)

which is the well-known wave equation with ¢ = (pe)-0 5, the speed of light. Sim-
ilarly to Eqg. (10) for B with Egs (3), (4) and (7) with no current (J = 0) and no
charge (p = 0) again in the electromagnetic waves, one obtains

Hed2B/dt2 = AB. (14b)

Unfortunately the associativity property in Eq. (2) is strictly true for vectors,
but generally not if differential operator(s) as imaginary quaternions are among the
variables like in Eq. (10). Eg. (10) is accidentally true for any E vectors but for
example E * (V *B) and (E *V) * B are not equal generally. The relationships
in that case are more complex [9]. The reason is the non-commutative property of
the product of the differential operators with functions (which is not source of error
in case of the product of function vector components being those commutative).
In this manner a note must also be made on Eq. (10) since that holds only if in
V *E the vector product V x E in Eqg. (11) is forced/defined to be not differential
operator (i.e. not E\d/dx), but dE\/dX, etc.
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Notations

Although the notations are defined in the text, the following summary may make the
reading of this paper easier:

B = magnetic induction

C = set of complex numbers

c = speed of light

E = electric field

el,e2,e3 = Cartesian unit vectors in the three dimensional space

c = permittivity

i = (—1)° 5 imaginary unit or symbol of complex numbers, i - symbol
of quaternions, respectively (sometimes subscript)

i-, ji- and /fc-symbol of quaternions, respectively, see Eq. (1)

], K -
J = electric current density
= permeability
Qc = conjugate of quaternion Q
Qi *Q2 = product of two quaternions @ 1 and Q2
{Q} = set of quaternions or hypercomplex numbers (notation for elements

appearing in this work: Q, Q i, Q2, Qs, A1»A2)
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R = set of real numbers (notation for elements appearing in this work:
a, b, c, d)

p = charge density

t = time

V1v2 = the scalar or dot product of two (three) dimensional vectors

vi x v2 = the vector product of two three dimensional vectors

\% = ei(d/dx) + er(d/dy) -fes(d/dz), the Nabla or del operator

Jil =V2= (g2/4x2)+(p2/py2) -f(d2/dz2),the Laplacian
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It is shown that dimensional analysis can be used (i) to calculate the energy levels in
a one-dimensional potential Y (x) ~ Ix]*, and (ii) to estimate the value of the gravitational
constant G.

1. Introduction

The end of the sixties and the beginning of the seventies was a good time to
be a graduate student and to work on critical phenomena. Simple approaches to
the theory of phase transitions such as the Landau theory or the high-temperature
series were easily understandable, some of the exact solutions (e.g. the solution of
the spherical model) were also manageable, and then there was the scaling theory
that was technically simple but carried some mystique for a beginner. An important
aspect of the good feelings was the fact that the problem was clearly formulated and
sounded like what ambitious students wanted to hear: Give a method of calculating
the critical exponents and you will be remembered forever. There was excitement
in the air.

At the E6tvos University in Budapest, it was Péter Szépfalusy who generated
the excitement. In the spring of 1971 he gave a course on phase transitions that
was attended by a number of graduate and undergraduate students (Imre Kondor,
Laszl6 Sasvari, Pal Rujan, Gabor Forgacs among them) who later made their name
in statistical physics. In one of his lectures, Péter Szépfalusy made the side-remark
that the scaling theory can be viewed as a generalized dimensional analysis. This
remark set off a long debate among the students and in an attempt to understand
it, we tried for a while to solve every problem by dimensional considerations. |
remember vividly how Péter Gnadig showed us a dimensional-analyis proof of the
Pythagorean theorem and how he calculated the deflection of light passing near
the sun by the same method. Although our debates subsided with the appearence
of Wilson’s work [1] that showed how scaling and non-trivial scaling dimensions
can emerge from a relatively simple mathematical structure, | remained addicted

“Dedicated to Prof. P. Szépfalusy on his 60th birthday
““Permanent address: Institute for Theoretical Physics, Edtvés University, 1088 Budapest,
Puskin u. 5—%, Hungary.
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to dimensional analysis. During the past 20 years, | collected [Z] and made up
many examples of naive dimensional analysis that were extremely helpful in both
illuminating subtle points and enlivening long lectures. Below you will find two of
my favorites that contain some unexpected twists. It is a great pleasure to dedicate
them to Péter Szépfalusy on this auspicious occasion.

2. Energy levels in a potential V(x) = «z|l

Consider the quantum-mechanical problem of determining the energy of the
stationary states of a particle of mass m in an attractive potential V(x) = s>|z|fc The
task is to find the quantum-number dependence of the energy by using dimensional
analysis. The unconventional feature of this problem is, of course, the fact that the
quantum number is a dimensionless quantity so, in principle, dimensional analysis
cannot help.

The first steps of our analysis go along the usual route. The relevant physical
quantities that determine the energy are identified as the mass (m), the coupling
constant (g), and since the problem is quantum-mechanical, the Planck constant
(h). The dimensions of m and h are known to be [m] = M and [/i] = ML?T~I
where M, L, and T denote the dimensions of mass, length and time, respectively,

and the dimension of g is obtained from the condition that is energy
ML k~2
[ff] = T2 (1)

A short calculation leads to the conclusion that there is only one way to combine
m, g and h into a quantity that has the dimension of energy. As a consequence,
the expression for the energy of the n-th quantum level will necessarily have the

following prefactor
g2/ (k+2)h2/(k+2)
En m*/(*+2)
Of course, the above argument does not yield the quantum-number dependence of
En. We can add, however, the following observation: In the quasi-classical limit (n
is large), the Planck constant and the quantum number n enter the theory through
the Bohr-Sommerfeld quantization rule for the action

©)

where n = 1,2.... Since h and n appear only in the combination nh, it is clear
that every quantity calculated in the quasi-classical limit will depend on n through
nh. In particular, Eq. (2) then yields the desired result about the n-dependence of
the energy

En~ n2¥/(*+2). @)
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Familiar examples (harmonic oscillator: k = 2, En ~ n; square well: K —* co,
E,, ~ n2; Coulomb potential: Kk = —1, En ~ n~2) are easily recovered. Using
the WKB approximation [3], one can show that Eq. (4) gives the correct large-
n asymptotics of En for arbitrary k, and furthermore, that the E,, ~ n2i/(*+2)
behaviour sets in for small values of n.

3. An estimate of the gravitational constant G

A conventional dimensional analysis consists of two steps: (i) identification of
the relevant physical constants, and (ii) construction of the desired physical quantity
from given constants. Clearly, the physical constants are considered to be primary
and given, and all the other quantities are assumed to be derivatives, i.e. expressable
through the constants. One may try to reverse the above logic, however, and ask
the following question: Which properties of the physical universe determine the
known physical constants? Using this reversed logics we shall estimate the value of
the gravitational constant G.

One expects that G depends on some very general features of the universe.
The dimension of G is given by

L3
[G] = MT2’ (5)

thus we have to come up with some mass, length and time characterizing the uni-
verse. The mass and the length are obvious; we have to take the mass and the
radius of the universe, respectively. Since [G] contains M and L only in the com-
bination M/L3, actually we need only the density of the universe (p). As to the
characteristic time, the only one that pertains to the present state of the universe is
the inverse of the rate of the expansion or, in other words, the inverse of the Hubble
constant (H~I). (Alternatively, one could think of the lifetime, r, of the universe
but H~I and r are equal within a factor of the order 2.) Thus we arrive at the
following expression for G:

(6)
Estimates of H are in a narrow range [4]
16*HT8s-1<H <32mHI18s 1, 7
but p is less well known (and its upper limit is rather speculative)
3 «UTBkg/m3< p<5+HI®B kg/m3. (8

Choosing H and p values appropriately from the above ranges, Eq. (6) reproduces
the measured value of G (6.67 «10-11 m3kg_1s~2). It is clear, however, that the
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two orders of magnitude uncertainty in p translates into a two orders of magnitude
uncertainty in G. Of course, one should not expect Eg. (6) to be exact (Note
that dimensional analysis does not give the numerical coefficient in front of H2/ p).
Nevertheless, it seems to be quite remarkable that a simple dimensional analysis
can translate the large-scale properties of the universe into a constant, G, that is
measured on the length-scale of a meter and the result turns out to be a correct
order-of-magnitude estimate.
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The equations which describe the hydrostatic equilibrium of a relativistic stellar
configuration in D space-time dimensions (D > 4) with a spherical symmetric gravitational
field are obtained. W ith suitable transformations, the equations of mass continuity and of
hydrostatic equilibrium are given in a non-dimensional form. With the obtained equations
the homogeneous stellar model is studied and some stability criteria are obtained in D
(D > 4) space-time dimensions.

1. Introduction

The Oppenheimer-Volkoff equation is the main theoretical tool in the study
of astrophysical relativistic objects such as collapsing stars [1], neutron stars [2] or
strange quark stars [3].

Lately, there has been an increasing interest in the study of gazeous spheres in
D space-time dimensions. So, Krori et al [4] have extended the interior Schwarzschild
solution with vanishing normal pressure of Florides [5] to D space-time dimensions
in the presence of a cosmological constant. Wolf [6] has extended the binding en-
ergy calculations of Wright [7] to D space-time dimensions with the condition of
vanishing normal pressure. He finds that a gazeous sphere with D > 4 is unstable
in the post-Newtonian degree of approximation.

The purpose of the present paper is to obtain a generalization of the
Oppenheimer-Volkoff equation in D space-time dimensions, D > 4 and to obtain
its solution in the case of a homogeneous gaseous sphere.

The present paper is organized as follows. In Section 2, using the Einstein
field equations we deduce the Oppenheimer-Volkoff equation in D space-time di-
mensions. A non-dimensional form of this equation is obtained in Section 3. The
case of a homogeneous gaseous sphere is analysed in Section 4. The results are
summarized in Section 5.

2. Oppenheimer-Volkoff equation in D space-time dimensions

In D space-time dimensions the spherically symmetric metric takes the form:
ds2 =ev(dxa)2 —exdr2—2d 02 —r2sin20id 0 2—r2sin20] sin2©2d©3 —...
—2sin20i .. .sin2&D-3dip2. (2-1)
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X° = et, X1=1T, x1= ©!, x3=102, .. x°~2=0©G_3, ZzD 1 =
(r is the radial coordinate in D space-time dimensions) with domain:
0<r<o0 0<0,<T(i=1 D3, 0< p<2u

The Einstein equations are:
R*- \re? = (2.2
where the components of the energy-momentum tensor are:
P _pc2, % FPF__p 23)
Using (2.1) the field equations become:

{V- 2)Ae"n (D—2)E> —3)(e~A—1) 8nGp

2r 2r2 ~ 2 (2.49)
(£)-2)1/'e-n (U —=2)(D —3)(e_.n—1) 8*Gp
2r + 2r2 ~ (2.40)
"2 ¥y (D—=3)(t/ —A)~
T + 71 4 4r *
P-3 -4)(e~n-1 8:rG
L (P38 ) &8 240)
From T*k —O0 it follows:
_ 2P
v = D+ pc2’ (2.5)
From Eq. (2.4a) we obtain immediately:
f(r P —3e—-A) ., sus 2 P2
o = (£>- 3)rD"4 © £>. 2pr (2.6
x 8uG 2 1
A=
1 ~ D—2rD-3 prD 2dr
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and 2GF(D)M
e"'n=1 {S_ 3) 2.7
where:
F(D) = (b —2)20-5 28
M(r) = | 72D~2rD-~2dr. 2.9)
ci Jo

Using (2.9) and (2.5) in Eqg. (2.4b) we obtain the Oppenheimer-Volkoff equa-
tion in D space-time dimensions:

dp G(p + pc2)[(D - 3)F(D)M + (8tr/cd)(L/(E>- 2)rp-y]

dr -2 (i ZGF(D)j (2.10)

3. Non-dimensional form of the Oppenheimer-Volkoff equation

To obtain the non-dimensional form of the Oppenheimer-Volkoff equation
(2.10) and of the mass continuity equation:

Nr [:rttZd—V D-2 (3.1)

we shall introduce Ureche’ [8] non-dimensional independent variable T and the
non-dimensional functions ®(r¢), P(r)), m{rj) by means of the transformations:

r—ar, p=lcd, p—pcc2P, M = M*m. (3-2)
Here a is a scale factor (a characteristic length), pc the central density and

M* a characteristic mass.
Using (3.2) in Egs (3.1) and (2.10) we obtain:

‘;r; »D-2¢, (3.32)
O Y 6
where we have taken:
- T2D~2pcaD- \ (3.4a)
az= 2D~2nGpc (3.40)
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The system (3.3a)~(3.3b)must be integrated with the boundary conditions:
Af(0) =0, P(R) = 0, P(R) = 0, (3.5)

where R is the radius of the gaseous sphere, together with an equation of state of
the form:

P = p(p)- (3.6)
In the new variables, the equation of state (3.6) becomes
P=P(®), (3.7)
while the boundary conditions (3.5) will become:
m(0) = 0, d(17) = 0, P(r)s) —0, (3.8)

where s = R/a is the value of the non-dimensional radial coordinate p at the
surface of the gaseous sphere.

If we suppose that m is an increasing (non-decreasing) function of 4, while
® and P are decreasing (non-increasing) function of the same argument, then from
the transformations (3.2) it follows that:

®e [0,1], P £ [0,PG, (3.9)

where Pcis the value of P in the centre of the star.

4. Homogeneous gaseous sphere in D space-time dimensions

We shall consider now the case of a homogeneous gaseous sphere in D space-
time dimensions, that is, we suppose p =const. In this case ®= 1, 4§ £ [0, 77].

The differential system (3.3a) and (3.3b)can be easily integrated, using the
boundary conditions:

m(0) = 0, P(0) = Pc 4.2)
to give the exact solution:
-1
m(>d = D .V (4.2a)
p(n) = §5F(1 + Ac)- (§5F + Pe)(1- saW )12 (4.2b)

(SEfF+P c)(1-"y/2-(i +pc)

The radius R of the gaseous sphere can be obtained from the condition
P(r)a) = 0 and is given by:

D-3 [(A4-3) + (P-1)P Q2
T 4F)I(D-3) + (D-2)PQPC “3
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where

Rg = 2GF(D)MS (4.4)

is the X)-dimensional gravitational (Schwarzschild) radius of the sphere and M, is
the total mass of the sphere.

We can generalize the classical restriction for the upper limit of the general
theory of relativity in D space-time dimensions in the form:

p <jyzripcl (45)
which gives:
Pc €[0,1/3]. (4.6)
If we use the restriction
p<pc2 4.7
then
Pc €[0,1]. (4.8)

Using the restriction (4.5) we obtain the following criterion of stability for a
homogeneous gaseous sphere in D space-time dimensions:

o_ (D- 2)2(D- )2
R™=3> 4F(D)[(D-1)(D-3) + (D-2)} (49)
while using the restriction (4.7) we obtain:
Rd~3> _(D-2)2 n (4.10)

F{D)(2D-b) 9

This expression generalizes to D space-time dimensions the criteria given by
Ureche [8].
From (2.7) it follows immediately:

Gpr2
4(0 - WD - 2)c2 (411)
and from (2.5) we obtain:
no= [Perped2 (4.12)

[P(0) + pc2B

So, the problem of the homogeneous sphere in D space-time dimensions is
completely solved.
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5. Conclusions

In the present paper we have obtained the Oppenheimer-Volkoff equation in
D space-time dimensions and found some stability criteria for homogeneous gaseous
spheres. This represents the starting point upon which calculations of the internal
structure and stability in higher dimensions can be made. Other factors influencing
stability and structure in D space-time dimensions such as cosmological constant,
scalar or vector fields will be investigated in a future paper.
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Une théorie thermocinétique de la fusion des métaux permet d’exprimer I'amplitude
des vibrations thermiques responsables de la dilatation de coefficient linéaire a et la tempé-
rature de fusion Tj en fonction de caractéristiques du réseau. Le produit a «Tf apparaft
comme un invariant structural. Les résultats sont comparés a des données expérimentales.

Introduction

Poursuivons I’étude du phénoméne complexe de fusion, pour lequel il n’existe
que diverses approches souvent anciennes et incomplétes [1], par une théorie ther-
mocinétique qui, a partir de |’expérience, considére le point de fusion comme le point
a partir duquel I’énergie thermique apportée a un réseau cristallin n’augmente plus
que I’énergie potentielle W des atomes et non leur énergie cinétique moyenne.

Pour cela, on reprend le modéle du solide constitué d’oscillateurs anhar-
moniques identiques ou la force rappelant chaque atome vers sa position d’équilibre
est:

FHr)=~—"r- =~Ki(r- rQ)+ KXr- r0)2+ ...

avec K1et K2 constants (K2 <CKi), r: distance interatomique et ro cette distance
a I’équilibre (r —o = x) [2]. Nous considérons essentiellement les métaux.

Amplitude des oscillations atomiques

Exprimons les constantes Al et K2 en fonction de caractéristiques des métaux.

Pour des petits déplacements atomiques, on se limite au second ordre du
développement et on admet que les valeurs moyennes des énergies cinétique et po-
tentielle sont les mémes que pour un oscillateur harmonique. Loin du zéro absolu,
ce principe de I’équipartition de I’énergie s’écrit:

Af(U-T6)2= \KT, X*= KT/Ki

ou K est la constante de Boltzmann et T la température absolue. Une solution de
la forme:
X(t) = r —ro = (r —ro) -h ai cosuit + a2cos 2ut
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de 1’équation de mouvement md2{r —ro)/dt2 = F(r) pour un oscillateur de masse
m donne, avec w = (A'i/m)1/2, comme dans le cas harmonique pour un seul degré
de liberté

a\ =2x2=2KT/K\

avec une bonne approximation.

Le carré de I'amplitude ai de la fréquence fondamentale est proportionnelle
a KT (et dépend des conditions initiales du mouvement).

La dilatation ou élongation moyenne constante de l’oscillateur est:

X=r-r0=a2K2/ 2K1.

On sait que la compressibilité (considérée comme indépendante de la température)
est:

A=-inr =3(-2C)/E

si G et E sont les modules de Poisson et d”Young, respectivement. Considérons
une chaine de n oscillateurs constituant un échantillon (section r2, largeur / = nro)
d’une substance polycristalline quasi isotrope. Son allongement Al est dd a une fore"
K = E r2”- soit Ali = E ro- Avec une bonne approximation: 3(1 —2G) ~ 1(car
dans les structures compactes G > | et le nombre d’atomes croit alors que c’est
I'inverse dans les structures non compactes) d’ou K\ —wg/ x (ro étant le diametre
atomique) et ai = (2A'Tx/ro)1 exprimant I’'amplitude des oscillations thermiques
des noyaux du réseau cristallin.

La valeur de ai est une valeur moyenne comme les autres constantes macro-
scopiques des métaux. Les valeurs ainsi calculées sont en accord satisfaisant avec
celles déduites de I’étude expérimentale aux rayons X [3] comme le montre les ex-
emples de KC1 (cubique simple): ro = 0.628 nm, x = 5,7 «1013 m2-N_1 et de Al
(cubique a faces centrées): ro = 0.284 nm, x = 1,37 1013 m2-N-1.

a (nm)
KC1 Al
T K calculé expéri. calculé expéri.
86 0.0146 0.0149 0.0107 0.0110
290 0.0265 0.0255 0.0190 0.0175

Des résultats analogues sont obtenus & l’aide de la formule de Debye-Waller:

ou Na est le nombre d’Avogadro et n = Lp- avec 04 latempérature de Debye diffi-
cile a déterminer avec précision [4]. Notre expression précédente de ai, équivalente
dés que T est assez élevée (u petit) a lI'avantage d’étre indépendante de Qjj.

Si a est le coefficient de dilatation linéaire du métal: a = les expressions
précédentes de X\, A'i et ai permettent de calculer la seconde constante K2 —
roakK Ll K = arg/A'x2.
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Fusion a la température Ty

L annulation de la force Fgx) entre un couple d’atomes a la fusion montre
que |x| < R'i/K'2- Le mouvement stable d’un chaine d’oscillateurs anharmoniques
est dailleurs limité a || < K1/ 2K2, car dF~/dx = 0 pour x = A'i/2AV On
ne peut jamais avoir x > K1/2K2 ou les atomes ne seraient plus rappelés a leur
position d’équilibre stable (dF/dx serait négatif). En conséquence pour T = Ty :
*Imaxi —K12K2= (4/3)5:-fa.\] d’apres la solution x(t) adoptée précédemment.
En remplagant x, K\ et A2 en fonction des grandeurs caractéristiques du métal:

KX 4
ai' = 271" 3roaT/’

ou le second terme |roarTy est trés petit. Soit, en premiére approximation:

3A*
A~ 40a2ry

Comparons quelques résultats expérimentaux moyens avec les valeurs de Tj cal-
culées a I’aide de cette expression [4,5] (tableau I).

Nos résultats sont toujours supérieures aux valeurs expérimentales par un
facteur ' = Ty calculé/Ty expérimental qui dépend de la symétrie cristalline et
croit avec elle (1,66 pour les cubiques a corps centrés; 1,16 pour les cubiques a
faces centrées et 1,36 pour les hexagonaux). En effet, notre détermination de Ty
résulte de la distribution statistique de Maxwell des amplitudes de vibration des
atomes puisque nous avons posé a la fusion aiy = —|x soit environ 57 %
des noeuds du réseau cristallin ayant atteint (ou dépassé) la valeur de I’amplitude
critique aiy précédente. Or la fusion doit se produire pour un nombre plus faible
d’oscillateurs vibrant & I’'amplitude critique, ceci d’autant plus que la symétrie du
réseau est grande. On doit donc écrire avec le facteur " de la symétrie cristalline:

T —— 3A*
S I 40a2m

(Mo donne une valeur discordante due a une transformation allotropique).

Conséquences

Adoptons a nouveau pour I’énergie potentielle I’expression VF(r) = —a/rm+
6/rn [1]. On peut alors considérer que la force élémentaire F(r) résulte du dévelop-
pement en série de Taylor de F(r) = —a'/rm {-b'/rn avec F(ro) —0, m' = m + 1,
nNn=n+1..)
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M étaux

Na

Fe

Al
Ni
Cu
Pd

Ag

Zn
Cd

Tableau 1

Comparaison des valeurs de Tj et valeurs de a *Tj

a *106 K“1 X HL013 m2 *N~I ro ©1010 m
calculé
70,5 15,9 3,7 620
85 33 4,59 512
12,4 0,55 2,49 3245
55 0,36 2,72 7402
26 138 2,86 1160
16 0,54 2,48 2140
16,6 0,75 2,56 1682
11,5 0,54 2,74 2105
18,6 1,01 2,88 1165
31 1,72 2,74 972
32 2,25 3,04 785

17 K
expérimental

371
337
1808 .
2890

933
1726
1356
1825
1235,5

693
594

Tycalculé
Tyexpérimental

1,67
1,52
1,79

(2,61)

1,24
1,24
1,24
1,15
0,95

1,40
1,32

a -Tf expé %

2,60
2,86
2,24

(1,56)

2,42
2,76
2,25
2,09
2,29

2,14
1,90

¢9¢
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Il en résulte:
K x n'—m: , n'(n'+ 1) —m*(m* + 1) ,
_N H = m————— VAN i B N R
rJ+Ta et /i2 irUO+2 «
Ki _ 2r0 _r0/x 40p m

Ki 1+n'+m  arlK\2 ar® 3 noe

D’ou: a T] = 4érfi+n'-t-m'J’ cest une constante qui dépend de la symétrie du réseau
que multiplie la constante 7 de Grineisen [5]. Le produit a -Tj apparait comme une
constante pour chaque type de structure en accord avec des résultats précédents [6]

car I’expression de Tj est aussi égale a 4 (I-iV+m’;Y* ~k™ effet>"es exposants nl
et mlsont caractéristiques de chaque structure cristalline en accord avec la théorie
de Wigner et Seitz.

On vérifie (tableau 1) que de produit aTj, représentant le pourcentage total
de la dilatation linéaire jusqu’a Tj est sensiblement constant pour chague structure.
Il croit avec la symétrie de la structure: 2,57 % pour les cubiques a corps centrés,
2,36 % pour les cubiques a faces centrées et 2,02 % pour les hexagonaux. Ceci est en
accord avec le fait que 7 dépend plus de la symétrie que de la température a laquelle
les valeurs de ro, X e*a sQlI* considérées et avec le fait que la fusion intervient pour
des vibrations atteignant, comme nous |’avons montré [1], une certaine fraction de
I’écart interatomique indépendamment de la nature de I’'atome. Ceci est également
en accord avec des invariants connus pour des structures de méme type: V/xTf,
aV/x, VIXL °u V est le volume atomique et L la chaleur de sublimation.

Il en résulte toutefois une légére dispersion des valeurs par I’influence de la
température (surtout sur a) et des valeurs plus discordantes se rapportant vraisem-
blablement a des transformations allotropiques qui peuvent étre ainsi détectées (cas
de Mo) ou a des effets magnétiques (cas de Ni).
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Two possibilities of Dyson fermion-boson realization for two-particle operators at
finite temperature are derived using the thermal-field dynamic formalism. The nature of
spurious states appearance in an odd-particle system is investigated. It is further observed
that the matrix element of the pairing interaction between the fermion-boson basis is
identical to the corresponding fermion matrix element.

Recently, very excited nuclei can be produced in heavy-ion collision and their
properties can be studied experimentally as function of temperature. Experimental
evidences have suggested that a nuclear system is thermally equilibrated rapidly
after the formation of a compound nucleus from heavy-ion reactions [1]. The large
nuclear state density equally populates individual highly-excited states. Conse-
quently, average properties of the system are usually measured. This is why the
statistical extension of different approaches can be appropriate to be applied to
study collective states at finite temperature. One of such extensions is thermal-field
Dyson mapping (TFDM) [2].

The Dyson boson mapping [3] is quite applicable to the description of nuclear
collective motion, especially to the analysis of mode-mode coupling in cold nuclei
[4]. The Dyson boson mapping has a big merit that a mapped operator is written
in a form of a finite series of boson operators and then there is no ambiguity in
the mapped operator. On the other hand, it has an outward demerit in that the
transformation is non-unitary and the mapped Hamiltonian is not Hermitean, thus
unphysical (spurious) states appear. Recently, it has been shown [Z] that while
carrying out the calculations of the matrix elements with a physical Hamiltonian,
in even-particle hot system (the particle in the single particle shell model state),
in the ideal thermal boson basis state one can separate the physical an unphysical
components and need not worry about the spurious state using the TFDM. The
purpose of the present paper is to generalize the TFDM to be applicable to an
odd-particle hot system.
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266 E. M. GALINSKY and R. B. BEGZHANOV

There are two ways to formulate the TFDM: 1) thermalization after Dyson
mapping (TFDM-1); 2) Dyson mapping after thermalization (TFDM-II). Thermal-
field boson realization applied to an even - A hot system has been worked out in
[2] and [5]. We start with the two-particle operators

A+(jj"\n) = gnjmal g'm>

m

Ali) = Y2, @

mm'

mm'

where a*m, ajm are single-particle creation and annihilation operators, respectively,
satisfying the usual commutation relations for fermions, J1 denotes multipolarity
excitation and 1 denotes r-projection in the laboratory system of A The usual time-
reversed notation (~) is used for the annihilation operator, 5jm = (—1Y~Ta,-T.

Applying the ansatz thermalization [6] and Dyson mapping for odd-particle
system [7], we obtained TFDM-I and TFDM-II for the operators (1)

[A+(ji'"\ V)] tFDM-1 = \A+Uj"\"TFD M -| ~ 070 i)*

JJg1

oo - naye - e - )Xo nyren (N (MG
ST A e A A 0T T K (T)Bp(T)\jhot
+ y/it- ndiynii(l- 0T1)eBjLT)sj (r)]jalat-
- M(1 - nj,)nnnz, [6+ (i) TR, (T)B+ (T)} 2B @

- «j-diL - o it \BI{F (ML
~ - V' [blo ) r[/E(T)B+(MLjaAXE
+ \IndinhV - nj")[bjio i) r[RjI(T)Rj<(T)\j -

[BJlo i1y« [RIAT) Ry (T)1yalnn.

[AGI'N ) x dDM.i = [A(jj"; Ali)tfdm-i =
= y/l - nx bXu{jf)r+ x/n\ btuV f)t, ©)

[B(jf> /" tfdm-i = [B(jf> )tfam-i+ S/V-1n;)0 ~ )
* [BF(DR),(M\X» - yIV-n)r [BHT)BHT\X, + Injil-nj.)* (4)
* [Bj(T)Rjt(T)]xfi - yfir-[RjiT)RtAT)U,
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[A+ jil o thdmad 7 /(1 = "]) (1 = nj>)*
£ CUATIRUT[BismTTU K-
J|J|J|
-yl - t)n A (T . (T)IX, - A(1-Tn,)nAP+(TW(T)]X,,

*E GRS UTINO-

qul
-~ - )OI (MW - y/(1-1n.) B[#(T) %, (T) 14,

NQIFDMII — VIieFDMIL +\J{ 1- ) —aj')*

* [BF{T)Rj.{T)U - v/(! - E GE,(U'ii)*

*KUhhKWTfrinJtU - v2At/"cmcow ,

OIS

*[[BXOilr>XO'NM)1TIn43(jlii) €]Am+ \/ (1 - - nj2)nj3*
*[[6X (~i)t6X (A1) t]i4e30'ii1)t]ah + n/(1 - njInjr1- My,)*
*[[6£0 n)Tb3000T0«30’00 7]+ O™~ TljAnjrrids*

* i 1Gi1) T2 (iiD T1iibj3GijD TH + i/nji(l - nj2)(l - nj3)*
*[fijiUjlhbj~j'j*MjihaUljIMxti + \A j,(1- nj3)nj3*

* [[ji Oil Yebj3(j'i Yeli%j3 (ilii A + Vny, 711 - njd)+
*[[*0'iI0OTbhaO'iiWw A*aO liDTIAM + y/nj3nj3nj3*

« [fr/>0il )t O'ii)T]N6§3(il il )t]Ai},

where

267

6

)
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Aj)]xFd M-I —— ~ nJi)(I —nJa)*
AJlj1
* + \/(I - nJi)nja[d1(jjl) Toj3('jI) T\ti+
+ x/nj,(1 - nj2by, (jjO)TOI2G' D)t ]4 + v/"3i  [Xioil)rbj3(j'j'i)t]al},
U e i (jj[)tPsM3= 72 (i iDTm
M M i

i)ti &m (iTi)tj R2m(T)i bjm(T) are the creation and annihilation operators
of thermal bosons and fermions, respectively. Expressions \A+{LI'\ *p Jltfdm-II'
[AGj"; A )]tfdm-il” \P(33'\ AN]tfdm-ii are 8iven in - but the explicit forms for
the coefficients C*j2 3i(jj'jij[), G)II7{jj'k) and D~j*jj'ji) are given in [89],
rij in the occupation number of fermions with energy £j at temperature T

tij = [exp(E/T) + 1]-1
and n\ is the occupation number of bosons with energy ui\ at temperature T
n\ = [exp(b/T) - 1]-1.

It is clear from (5)-(7) that in the zero-temperature limit T —» 0. These
formulae transform completely into the usual Dyson mapping for these operators
given in [9]. Then, we consider a system consisting of P + 1 identical nucleons, where
P is the number of nucleon pairs, each of which occupies time-reversed orbits, the
unpaired nucleon occupying one j-shell. Namely, we will deal with the simple case
of three-level (three-j) model, where P nucleon pairs occupying two j-levels winch
can have the same or different degeneracies are available. Let AE be the distance
between the levels. As a residual interaction, we use a pairing force with constant
matrix elements G. For this case the algebraic expressions for the same matrix are
available. This model is an extension of the model for an even-particle system [10].
The Hamiltonian of the system is

HF = EijiB(jiji :00) + AE\j3B(j3j3\00) —j 2B(j2j2\00)] - G/A*
* {\JIA+UdI;00) + j2A+ (1212;00)][3iA (jui;00) - KA(j2J2;00)]+
+ M +01i;00) + I3A+(I313;n)11jiA(jiji.00) +j3a(j3j3;00)]+ (8)
+ \J2A+(j2 2;00) + j3A+(j33; 00)][j2A(i22; 00) - j3A(j3)3;00)]},

where j = \J4j + 1. We can introduce an orthonormal basis for this system

IS,p-S >=1/(VS\(P - sy.)a+mi (A+(j2j2;00))4
*(N+bl3;00))p-5|0>, )
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where ajm|0 >= 0, i.e. |0 > is fermion vacuum, the unpaired nucleon occupying
the ji-level, 5 nucleon pair occupying the jVievel.

The thermal fermion-boson basis states corresponding with these states (9)
are

IS,p-S) = U(y/SKP - S)".)Rtimi(T)(bto(hh)T)S*
*(~obl 3)T)p-5[0> [0) (10)

where m(T)|O >, 600(U)t|0) = 0, i.e. |6 > and |©) are thermal fermion and
thermal boson vacuum, respectively.

Using the expressions (2)—8), (10) we can receive the matrix element of the
thermal fermion-boson image Hfb Hamiltonian of the system Il+ in this basis
(10), for the case of TFDM-I and TFDM-II, respectively,

Hi = {EI +AE[ZP-2{S-1)]}6.,., (11)

Hi = -G/2{S[j2+ (1 - n<Q)2(I - )] + (P - B)[33 + (1- nA)2(l -P +S)}-
- An(2>5(5 + 1)+ nB3>[A(P - 5)(P - S+ 1)- 1+ n(d35S2- 5 - 3) +
*[(P-$)2

Hi = —G/4{[\J(I - n)(*)( - n@) + \AiQ6R)]5(P - 5+ 1)j23-

- [M(-n(2)(I-n(8)[nja+ P-S + nB)(P - 5+ 3)5H31+ VnWnW*
[nh +2S- 1+ n@)2 - 9)]i{"WS(P - s+1 ) } 6 , (12)

H{ = -G/4{[™/(l - n(2)(i - n@)) + >N<YnBV (S + 1)(P- S)hh-

- M@ - n)(I - n@)[Nj3+ 5 + n(AS + 332 1 + \/n(dnEB)*

*[fij, + 2(P- 5) + (5 -P + 2)1hj;IW(S+I)(P - 5)}i..,,+1,
n@3) = ,,£*>,

(S',P - 5'|A#,|5, P - 5) = Hil+ Hil+ Hil+ Hil, (13)

where
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Hil={£1 + OE£[3(1- 2nh){P - S) - (1- 2njs)S + 2(1- 2m; 1)]}0,,.,
Hil=-G/2{sQl +1- S)(I - nhf +(P-5)0i +1-P - S)(I - nj3)4

+ (5+1)01 - S)nA + (P - S+ 1)01-P - S)n% + 4[Sy/nh (1-ni3)+ (P- S)*

*\JnhO - nj3)]2+ nii(5nii - 4)}<5,, (14)
Hil= -6 /4{(1 - nh - nj3 + 2nj2nj3)Q S(P- S + \)hh~

- (1-nj3- nj3- 2nhnj3)(P - S)y/S(P - S+ 1)j2j3

H{r=-G/4{(1 - nh - nj3+ 2nh nj3W (S + 1)(P - S)j33-

- (' - nj3- rij3- 2nj3nj3)S\/(S+ 1)(P - 5)j2i3 1}51,.+i-

Here after the brackets < eee > denote the average value over the grand
canonical ensemble [11]. It is clear from (11)—€14) that due to the nonunitary
character of the Dyson mapping, the matrix elements Hss' o Ha8 for S = S’, thus
spurious states appear.

Using the expressions (2)—8), the Hermitization prescription [12] and in-

troducing bi-orthonormal fermion-boson basis (for the even-particle system bi-
orthonormal boson basis was introduced [13])

B Ami(PKKoUd2)T)sK (j33)T)P-S

SSP-S = 75,p- [0 0),
| Jr =7s.p-s YIS\(P - 5)1 > I0)
o (b00(j3 3)T)P~S (b0o(j2j2)T)SRjimi(T)
L(S,P S\—7J.p_s(6|< 0] y/S\(P— 5)| (15)

where

| Qj-S)\%sj 1

7s,p-S = .
03-P +53)\jl(p-s)?2\

we receive the matrix element of the thermal fermion-boson image Hamiltonian (8)
in this basis (15), for the case of TFDM-1 and TFDM-II, respectively,

L(S\ P - S'\HpB\S,P - S)r = Hi + Hi + Hi, (16)

where
H{ = {£i + AE[3P - 2(5 - 1)]}«S5,
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A7=-G/2{5[31 + (L- n<)(I - 5)] + {P - sNjI + (L- nB>)(I - P + 5)]+
+ N2>[(25+ 1)2+ n2>(352+ 5 + 1) - 1]+ n@)[(2P -25 + )2+ n>*
*[3(P —5)2+ P - 5 —I]}i53, 17)

Hi = -C/4[*(1-n(*))(1-n(3))+

+ \Vn@)n@)][Ms(i2- 5+ 1)(P - 5+ 1@E2- P + S)*

*«.,-1+J(S+ 1)62- 5)(P - S)0I -P +S + )5s.,i+i]
1(S',P- S\HFB\S,P- S)R=A77+A77+ A77, (18)

where

H11 = {Ei + OA[3(L - 2nj3){P - S) + (L - 2n:J5 + 2(1 - ne)]}«,..,

H1l= —G/2{5[31 + 1- 5)(L - nj3)2+ (- S){B + 1- P - 5)(L - nj3)2+
+(5+ 1)(i2- S)nl +{P-S+ I)(i| - P - S)n]3+ 4[52n>3(l - nh )+

+ (P -5)2ni3(1-n i3)]i,., (19)

Hil=-G/4[l - nj3- nj3+ 2nj3nj3|[*S(j% - 5+ 1)(P-S -f1)01 - P + §)*
* + M(5+ 1)61 - S)(P - 5)61 - P + 5+ D)i,.,,+1.
Using the expressions (8)-(9) we receive the fermion matrix element

<S',P- S\HF\s,P - s >= {Ei + AA[3P - 2(5 - 1)]-
- G/2[sQl +1- 5)+(P-5)62+ 1- P- 5)]},j< - G/4*

*[y/sQl - 5+ 1)(P - 5+ 1)61 - P + 5)«,.., i+ (20)
+ yJ(S+ 1)61 - S)(P - 5)Us - ~ + 5+ )~ *+i]-

It is clear from (16)—19) that in the zero-temperature limit n —»0 and these for-
mulae transform into (20). Therefore, the matrix element of the pairing interaction
between the thermal fermion-boson basis states turns out to be equivalent to the
corresponding fermion matrix element.

It should be noted that the above analysis shows some distinctions between the
characteristic features of the TFDM-1 and TFDM-I1. Namely, in the case TFDM-
I the thermal effect is taken into account only through the interactions between
bosons, since the boson operators in this scheme are the image of the fermion
pairs at T = 0. The bosons in the case TFDM-II already include the effect of
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272 E. M. GALINSKY and R. B. BEGZHANOV

temperature, since they are the image of the thermal pair-operators. These two
schemes (TFDM-I and TFDM-II) should be equivalent in principle, if one does
not make any approximation. However, if one performs some approximation [12]
to diagonalize the Hamiltonian, the results become different from each other, i.e.
Hk ¢ H]/, where K = 1,2,3. Furthermore, there is a conceptual difference in the
nature of the boson Hilbert subspace of the fermion-boson Hilbert space. In fact,
the thermal boson vacuum |0) must be defined in TFDM-1 and the temperature
plays a definite role through the Bose-Einstein distribution function in the thermal
Bogoliubov transformation [6]. One the other hand, the boson part image of the
system in TFDM-II has nothing to do with the boson version of thermal field
dynamics (TFD). In other words, the Hamiltonian in TFDM-II is not a thermal
Hamiltonian in the sense of TFD although it is a faithful representation of the
thermal Hamiltonian Hp: the Bose-Einstein distribution function never appears in
TFDM-II.

In conclusion, in this paper we derived the Dyson fermion-boson realization
for two-particle operators at finite temperature, in an odd-particle system, for the
TFDM-I and TFDM-I1I. Due to the nonunitary character of the Dyson mapping the
spurious states appear. Using the Hermitization prescription [12] it was shown that
the physical subspace does not mix with the unphysical one. Thus, one need not
worry about the spurious states while carrying out the calculations in the fermion-
boson basis states, for an odd-particle system, at T ¢ 0. Let us note that in the
description of features of the giant multipole resonance (GMR), in hot odd nuclei,
such as an enhancement in the broadening of the resonance and down shift of its
centroid energy with increasing temperature [14], TFDM can be applied. It should
be very desirable to investigate the influence of the effects ofthe quantal and thermal
fluctuations [15], as well as shape changes [16] on the GMR, energy centroid in these
nuclei. The calculations of these features of GMR and the influence of these effects
on the GMR, in realistic hot odd nuclei, within the framework TFDM are the goal
for our future study.
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In previous work, non-linear phenomenological equations exhibiting reciprocity have
been derived as first moments of a kinetic equation obtained from the Liouville equation
via Grabert projection operators. In the derivation, a Markovian approximation and Grad-
type ansatz based on information theory were used to derive self-consistent first-moment
equations. It is possible to generalize the Grabert operators so that the previous derivation,
after replacement of the old by the new operators, is free of these approximations.

1. Introduction

The Grad approach [1] to solution of the Boltzmann equation [2Z] in a dilute
gas expands the singlet distribution function /(c), for v the particle velocity and
¢ = V—V), in tensor Hermite functions with coefficients which are tensor moments
of /. This involves an approximation, since only finite numbers of moments and
polynomials are used. On substituting the expansion back into the Boltzmann
equation and taking moments of the result, one obtains a self-consistent set of
generalized hydrodynamic equations for the moments in question. The latter may
include the heat flux and viscous pressure, and so these self-consistent equations
have the form of kinetic equations derived from extended thermodynamics[3].The
latter appears, therefore, [4,5] to receive a statistical basis from the coincidence in
form between its equations and those of Grad theory.

To establish a statistical basis for non-equilibrium thermodynamics in dense
fluids, in contrast to the dilute gas, we replace the gas-kinetic Boltzmann equa-
tion with an equation derived via projection operators from the classical Liouville
equation. The derivation starts [6] with the operator identity,

exp (itt) = exp (ILOP + i | - du{exp(iLu)}PL(I —P)-
0
exp{ii(l - P)(t- W} + (1- P)exp{iL(l - P)t), )

where L is the self-adjoint Liouville operator and P an arbitrary time-independent
projection operator. The solution of the Liouville equation is

/(<) = exp (-ILD)T(O) @
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where /(0) is the phase-space distribution att = 0. We define a set of state variables

ai'\]fAi(x)dx (i=1,...,n), 3)

where the {A} are dynamical functions of phase, x. The values {a,} can also be
calculated from

ak = \] g({aj})akda, (4a)

g=V /dadx, (4b)

da = daj, (4c)
j

aa =T S(Aj - aj) = 6(A - a). (4d)

J

According to the maximum entropy formalism [7,8]

/(0) = Z "lexp (-BH - (4e)
]

where H is the Hamiltonian and the bar in {A-} denotes initial (< = 0) values,
chosen to satisfy (3) identically when a(<) = a(0). Z is a normalization factor.
With (4e) as initial state, we can use these results to derive from (1) the equations

dg/dt = - J2 (d/dak)\*kg) + [ ds J~Zd/dak)

J daK'ij(a,a',s)(d/da'JjO)[g(ak'J,t-s)/pp(a')], (52)

Ak =il Ak, (5b)

Pp = j PRAadx, pp = Zcexp (—351), B = (/cT)_L1, (5¢)

K = ppl\] poibaAkdx, (5d)
Dkj(s) =\] dpod>aiAj(1 - P)exp[ii(l - P)s\ipaAk. (5e)

Zc is the canonical partition function and kK the Boltzmann constant. Previous
derivations [6] of (5a) have used /(0) = ppp”1(ci)S(A —&), corresponding to ini-
tial value a = a(0), but the derivation can be carried through with (4e) instead.
Eq. (5a) serves to replace the Kinetic theory Boltzmann equation when we discuss
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the statistical basis for non-equilibrium thermodynamics in dense fluids. It can
hold, of course, as well for gases.

A set of generalized hydrodynamic equations can be derived for the set {a*}
by multiplying (5a) by each at in turn and integrating over a-space. To obtain
equations having the structure [3] of non-equilibrium thermodynamics, i.e. closed
equations for the moments {at}, two more approximations have been made in
existing derivations [9]. One is the Markovian approximation:

g(alit - S) - g(a',t), (6)

which rests on the assumption that the time-correlation in D decays rapidly with
increasing s. The other approximation introduces an ansatz for g which depends
parametrically on {at} into the right-hand member of (5a). This is what Grad [1]
does in the Kkinetic theory Boltzmann equation. To obtain an ansatz for g(t), we
have extended [9] the maximum entropy distribution (4e) to arbitrary states and
times, replacing —»2({at}) for t > 0. Thus, in the right-hand side of (5a), we
have introduced [9]

g~ g=2~1 | dxipaexp(-BH - JP/1: M) @
J i
= ZcPf3exp [BF(a) +~ Aj(a)(aj - a-)].
j

This ansatz resembles a similar exponential expression proposed in the “modified
moment method” [10] to extend the gas-kinetic Grad theory [1] to the non-linear
regime.

With the foregoing approximations, it has been shown [9] that the terms in
the kinetic equations for {djt} can be grouped in the general, non-linear case so that
they exhibit reciprocity. While the approximations appear reasonable, gis not an
exact solution to (5a), and the s-dependence of the D-matrix is not known. This
makes arbitrary any assumptions about rapidity of decay of the time-correlation.
We seek here to show that validity of Onsager reciprocity does not depend on (6)
and (7). To do this, we exploit the flexibility which we shall show to exist in the
definition of P. The earliest derivation using projection operators of this kind was
by Zwanzig [11,12] who assumed a micro-canonical shell ensemble. His projection
operator was extended by Grabert [6] for use in a canonical ensemble. A further
generalization has been found [13] which adds terms to the exponents in (4e) and
(7). The coefficients in these terms can be adjusted to satisfy conditions such
as the requirement that the trace of thermodynamic pressure equals the trace of
the momentum flux. Such conditions characterize particular phénoménologies and
apply to non-linear terms. They are not sufficiently general for our present purposes.
In the following sections we develop a new, generalized P. This is constructed to
make the functions {a*(<)} calculated from (5a), (6), and (7) agree with a result
which is free of the Grad and Markovian approximations. This implies that exact
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equations for {a*} can be cast in a form which is identical, except for definitions of
the projection operators, to the one used in earlier proofs [9] of Onsager reciprocity.

In the following Section, we discuss the form assumed by (5a) when the func-
tions {Ah} include a function A even under pj —* —pj (j = 1 with N
the total number of particles, plus higher derivatives Ap = (iL)pA (p > 1). We
develop an exact solution in powers of t to a generalized version of (5a). The first
moment of this solution yields an exact ~-expansion of a, = (Aj). In Section 3, we
generalize the projection operator of Grabert [6] so that arbitrary functions with
adjustable parameters appear therein. The parameters can be adjusted to make as
many terms as desired in the 1-expansion for a agree with the exact result, calcu-
lated as in Section 2 without the Markovian approximation and Grad-type ansatz
for g ~ g. The procedure is illustrated in Sections 4 and 5 to 0(t4) for a particular
model involving a binary mixture of particles of types A and B, with A proportional
to the mass centre of component A. Algebraic equations are derived whose solution
yields projection operators which compensate to this order for effects produced by
Grad and Markovian approximations in the calculation of a. In Section 4, a = (A)
is the only variable. In Section 5, § — (A) is added. The new projection operator
for the latter case is shown to differ from the one used in Section 4. In Section 6 a
summary is given with references to applications of reciprocity to linear and non-
linear transport and to chemical reactions. This provides background to show the
importance of the present results.

2. Generalized Grabert equation and solutions

In the present Section, we generalize (5a) by supposing that, if A(x) is a
function even under reversal of signs of particle momenta, we have a set of derivative
functions

Ar(x) = (iDr-1Ax) (r=1,...,n). )]

With ipa = Hr 6(Ar —ar), a product of Dirac deltas, (5a) becomes:

A =-32(dldai)(v*9) +jo d«C(3a,) J da'Dij(a,a\t-s)-

m(d/ da'j)[g(a", s)/ pR(a’)\, (%)

Vi | dxpBOOAI)\paE), (9b)

Dij =0 (i # ndj), (9)

Dnn(a,a",s) =\] dxppipalAn+i(l - P)exp[iL(l - P)s\ipaAn-+i. (9d)

Eqg. (9a) has previously been derived [9] for the case n — 2 which corresponds to
most existing cases considered in extended thermodynamics.
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We can find an exact solution to (9a) of the form

g(a,t)= J2 Gm(a)tm. (10)
m>0

Such an expansion is not of practical use when we describe the approach to a steady
state where t —00. Here, however, we want only to show that we can find a P such
that a solution using g and the Markovian approximation will have the same first
moment as Eq. (10) when the latter is calculated using the projection operator of
Grabert and no approximations. If this case can be shown for the first few terms
in (10), we can easily see that the result can be generalized to higher order in t.
However, the general case, involving high powers of t, would be intractably messy
if we tried to carry it out in practice.
Substitution of (10) into (9a) and comparison of powers of t yields:

~PR1(z/da'j)Dij(a,a’,t —s) = E fi[ft)a, a)(Ar!)_1(<- s)k, (11a)
k>0

Gm+i(a) = -A(d/8a,-)[(m + 1)-1v,*Gm]+

fE E [ da'Qik\a,a")ymI\{(m + 1)\}~1Gm‘(a). (lib)

i mil+tk+Il=m

Eq. (11a) defines the functions Eq. (lib) can be contrasted with the result of
using the Markovian approximation (6), but not the ansatz (7). This result is:

Gffi(a) = - y > /6akm+ )" 1Cn] + £ E FM "L
s(wacy) | danfda,a’)Gnia). (12)

Depending on n, the first few G ~\a) have the same first moments as the
corresponding exact functions, Gm. We can assert that

at = E a*A (139)
js0

X4 = J Gj(a)akda, (13b)

a[* =J GMa)akda=akj (j +k- 2<n). (13c)

In Section 4, we consider the case where n = land A is proportional to the posi-
tion of the mass centre of one of the components of a binary mixture of A and B
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particles. The criterion (13c) asserts that akj = if J S 2. Thus the Marko-
vian approximation has no effect on the calculation of a to 0(t2). If we use this
approximation to derive a generalized hydrodynamic equation for a, the 0 (t4) term
in the solution of the latter will differ from the corresponding term in the exact,
non-Markovian result. The 0(f2) term can also differ from the exact result because
we use the Grad-type ansatz. To make the Markovian result (lib) yield an 0(t4)
term which agrees with the one calculated from (12), we need to modify the projec-
tion operator P in (12) so that it differs from the Grabert projection operator, Pg,
used in (lib). The necessary modification is developed in Section 3 and a detailed
illustration of its use described in Section 4. Section 5 describes an extension of this
calculation to the case n —2, with A and A the two functions designated A\ and
A2in (8). For that case, the criterion (13c) says that the Markovian approximation
has no effect ifj < 3 (k=1 orj < 2 (k = 2). It is again necessary to modify the
projection operator in (12) to make = ak4.

It should be remembered at this point that in derivations [9] of extended
thermodynamics we use the maximum entropy g of (7) as well as the Markovian
approximation (6) in the right-hand member of (5a). The projection operators P
developed in Section 4 and 5 are designed to compensate to 0(t4) for the use of this
additional approximation as well as for the Markovian approximation. Since this
procedure can be extended to higher orders in f, the illustrations in Sections 4 and
5 argue strongly that an approximate generalized hydrodynamic equation for a(t)
based on (6) and (7) can yield an exact result for a to any desired order in t if we
redefine P properly.

3. Generalized projection operators

We consider here how we can define a projection operator P which has all the
mathematical properties of the operator Pg defined by Grabert [6] but which also
contains adjustable parameters. The parameters can be determined so that the first
moment a of g calculated using (5a), (6), and (7) agrees to any desired order in t
with the result of using Pg in (5a) without either the Markovian approximation (6)
or the maximum entropy ansatz (7). If this can be done, we can construct an exact
equation for a(t) in which the coefficients depend on the new operator P in the
same way as in an earlier demonstration [9] of Onsager reciprocity which appeared
to rest on (6) and (7).

In the notation of Egs (3) and (4a-d), we define [6] the Grabert Pg by:

PgX(x) =\] dap~\a)rpa(x)Tr(pRipax), (14

where \ is an arbitrary function of the phase co-ordinates x. The transposed oper-
ator has the form:

PJX:FBj da ra(x)p~1(a) Tr(rtax). (15)
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One can demonstrate that these operators have the mathematical properties:

$= A (16a)

Pada = oy, (16b)
Pi(ppx) = RRPgX, (16¢)
a= j gada = \] PJIf(x)A(x)dx, (16d)

where f(x) is the solution (2) of the Liouville equation. The derivation [9] of
kinetic equations for a in which the coefficients exhibit reciprocity depends only on
the fact that P has properties (15) and (16a-d). It can go through unchanged with
any other projection operator which exhibits these same properties. We can thus
look for generalizations of Pg which obey (16a-d).
One generalization already developed [13] replaces p0 in the definition (14) of
Pg with
PR = 2 xexp(-/?4 - ~ 7,4(X)), ()
r

where Z is a normalizing factor, and the functions Bi(x) are constants of the mo-
tion. The {} are functions which vanish in equilibrium so that p0O approaches the
equilibrium canonical distribution. Such a generalization of Pg yields corrections to
higher-order terms in the generalized hydrodynamic equations for &. The set {y,}
can be determined e.g. to make the thermodynamic pressure equal the trace of the
momentum flux tensor. The latter condition characterizes certain statistical and
phenomenological treatments [10] and so it must be imposed when we discuss the
statistical foundations of the latter.

In the present paper, we explore a different generalization of Pg which is not

designed like (17) to make corrections to small, non-linear terms. We define P so
that

Px(x) = \] da J dx*6(d(x) - (x)pp(x")x(x)pa(x)pa(x)-  (18a)
«{V X" 6((x) - (x™)PO(X")ha(x"")}~1,
PTX(X) = pB\] da\] dx'B(th(x) - t(x"))x(x")da(x")da(x)-
B{J dx" 6((x) - D(x")pp(x")a(x")}~1m (18b)

d(x) is an arbitrary phase function. One can readily verify that P and PT obey
(16a-d). One can therefore use P instead of Pgin (1) and (5a-e).

We can exploit the arbitrariness of the ¢(x) by determining them so that
the first moment equations derived from (5a), after application of (6) and (7), are
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in fact exact equations for a in the sense that their solutions agree with (10).
These equations can thus be cast in a form in which the coefficients have the same
dependence on P they would have when (6) and (7) are used. In Sections 4 and 5,
we choose ¢(x) to be a linear combination of a set {<£ (x)} of independent functions:

dx) = diMx)- (19)

The coefficients {d,} are evaluated so that the set {afj } defined in (13b), when G is
calculated from (6), (7), and the new P operator, will be exact to any desired value
of j. If there are several variables, with a- = (A,-(x)), where i indexes the members
of the set, we can understand 6(cp(x) —d(x')) to mean

6((x) - d(x)) =4 i(*(@?) - ®Kx)). (20)

The number of factors in the product depends on the number of independent state
variables. We replace (19) in this case by

DX) = N N KPK(X). (21)
K

The tilde distinguishes the functions in the argument of the i-functions in (20) from
those appearing in the right-hand member of (21), corresponding to df in (19). It
is seen in Sections 4 and 5 that the set {0,} will not be the same when there are
both odd and even variables as they are when all the variables are even under
time-reversal.

4. lllustration for single relaxing variable

We proceed here to consider a simple model belonging to unextended ther-
modynamics for which we evaluate the d-parameters in (19). Two such parameters
only are introduced. Adjustment of these serves to make a(t), calculated from the
first moment of (5a) when (6) and (7) are used, agree to 0(t4) with the exact t-
expansion of a(i) calculated without approximations by the scheme described in
(lib). In practice, we want to obtain phenomenological equations for a which are
valid at long times, and so the first two powers of t do not interest us. However, we
illustrate via this calculation a procedure which, in principle, can be extended to all
orders. The illustration given here shows that, if a finite number of d-parameters
are used, then the coefficients in the "-expansion of a are all algebraic functions of
finite order. Calculations analogous to those given here can be carried out to any
specified order in t.

The model for which we describe this illustration is a binary mixture of Na
particles of type A and NB of type B with pairwise interactions and masses rnA
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and TB- The system is contained in finite volume V which exchanges heat with a
reservoir at temperature T. We have just one thermodynamic state variable,

N

A= £ xit (22)
_il:NB+l
a _J fAdx :\] g(a)ada, (23)

Na times the »component of the mass centre ofthe A particles. Here N = NaANb,
and the particles are numbered in sequence: 1,..., Nb,Nb A 1 . All the B
particles are enumerated at the beginning of the sequence. The configuration co-
ordinates of particle i are r; = (x,, yt,z,"). This choice permits exact evaluation of
the integrals in PA.

To define a suitable ¢ for this case, introduce:

Pi =Pix/imf (i= (242)
d(x) = PN + di-Pjv- 1+ d2pN-2- (24b)

The coefficient of Pjv can be equated to unity without loss of generality, since the
{a*,} depend on ratios of the other coefficients to this one. The ddefined in (24b)
is used in calculating the D defined in (5e) which in turn is used in (5a) together
with (6) and (7) to obtain an equation for & in which the coefficients depend on d\
and d2. To calculate D, we need initially to evaluate PA which is done easily if we
can express pp and A in terms of o By taking tto depend only on momenta, we
choose the simplest form which leads to a dependence of D on d\ and d2.
To calculate PA, we use;

A —mA2"2, Pi, (25a)
itA

N-3
—2 Xl pj + + Pn-i+ Pn)

i=1

N -3
— - A P2+ -[Par-r(1 4+ M) 2 + A<Ml + <) 2 A dVd2(\A d\) 2Fjv-1]2

2 U -

+ 2[Av-i{l + A1 —d\d2(l + d%) 1}2 —dd\{\ + d\) !-
m{l + d\ —d~dKI + dl) 1}~5]2+ 27201 £2) (25h)

We have, on putting da = 6{A —a) into (18a):

s

PA- [ JJ dPiAexp(—RKx)/ | dPi exp (—2AX)
i<N-2 i<N-2
—mA2<(L+ di A <ML + df A d2). (26)
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These results are used in calculating the coefficients in the kinetic equation for
&. Substitute for g from (6) and (7) into the right-hand member of (5a), multiply
by a, and integrate over a-space. We get [for A cf. 30b]

t
= /\(a)/ ds/da da'D(a,d’,s) = Ma)[Dit + Dst* +...]. (27)
0
From (5e), we see after some lengthy calculations that

D, =(27rmAxT)‘N‘/2(21rmBK.T)‘NB/2/exp{—BKI}A(l — P)A]] dpui
1€EA
:m;llcT[NA—(l-f-dl+d2)2/(1+df+d%)]. (28)

When the exponent in D(a,a’,s) as defined in (5e) is expanded, the second
non-vanishing term, with an integrand of second-order in L which is even under
momentum reversal, is O(s?). This yields after another lengthy calculation:

D3 = (1/3) / psA(1 — P)iL(1 — P)Adz
N-3

= (1/3)m; kT + d3)~ {1 + &2 - &3d3(1 + d3)~}[ ., "B (29a)
i=Np+1

+(1—d2)(1+d2)_1(BN 9 +dzBN)+{1 —d; —d1d2(1-—d2)(1 +d2)_13
A1+d} —did3(1+ d3) "' }{BNn-1+di By — d1(Bn-2 + daBy)(1 + d2)~1}),

B; = -m3'8(F?), Np41 <i<N-3, (29b)

By_3 = —pm; (F7)(1+ d3)~'[1 = dy — dydo{1 — dy — dyd(1 — d3)-
(1 4+ d3)" 1M1 + &2 - did3(1 +d3)71) Y, (29¢)

Bn-1 = —Bm3 (F2)(1 4 d3)7![(1 — d1)(1 + d3) + (1 — d3)*d; (29d)
—d}{1 —dy — didy(1 — d3)(1 + d3) "' }{1 + d} — d}d}(1 + d3)~'}"Y),

By = —Bm3 (FH)(1 4 d3)"!d2(1 = d2) + di {1 — dy — d1da(1 — d2)(1 + d3)~1}-

1+ d - d3d3(1 + d2)71)7Y). (29¢)

Fy here denotes the force on particle 1 and (F?) an equilibrium canonical average.
To obtain the coefficient a, of t" in (13a), we require the corresponding
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coefficient /in in the <-expansion of J1from a self-consistency condition:

a=2z~I \] dx A exp (—2# —A), (30a)

n=~A0)(a-aoy, (30b)
j>i

AL) = -«N12>0l\ (30c)

AQ) =0, (30d)

ABQ) = "AN(Ad)o - (1/3)((i2)0)2}. (30e)

The subscript zero in (30c,e) indicates equilibrium averages calculated with the
equilibrium canonical distribution, pp, defined in (5¢c). From (27) after integration
with respect to t, we find:

a=a+ MD,t2+ (1/4)f4(A2D1+ AD3) + ..., (31a)

A= A)(“- ao)J, (31b)
i>i

A2 = Y2 A(nSi« - ao)d-la:, (31c)
>1

where a is the arbitrary initial value of a, and A= A(a) at t = 0. These equations
yield [(cf. (133)]:

«=\*D It (32a)
ad = (1/4)(A2£)1+AD3). (320)

D\ and Z8in (32a,b) are functions of d\ and d2 given by (28) and (29a-e). We
can evaluate d\ and d2 to make (32a,b) agree with the exact expression, calculated
without the Markovian approximation and Grad ansatz from (10) and (lib). The
exact calculation gives:

a2= "NakTX/rna, (33a)

{NAK T\/nm A)[-m-AIR(Ft)i + |\ 2NAK/Tm-A"

- \{TAIMAKT)(PgA'PsA"){]. (33h)

Al= (ib)2A, and subscript i indicates an average over the initial (f = 0) ensemble
characterized by the i -+ 0 limit of (7). The equation a2 = a2 has the solution
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d\ = —1 + d2). Putting this into the equation »4 = a\, we find

d2—d2o+ 0(Na 1), (34a)
p=xrnHP ,A*PtA")/NA(Ff), (34b)
1+ p)2(1+ d\g)3 = (1 + d2o+ d\0)2. (34c)

(34c) has a real solution for p small, p should be small because mAPgA” is the mean
force on A resulting from displacement of the mass centre and large equilibrium
fluctuations in the latter are not probable. From these calculations, it is clear that
we can go to higher order by adding terms to ¢ in (24b) with additional coefficients
di for i > 2.

5. Example of coupled odd and even variables

In the statistical derivation [9] of reciprocity in non-linear extended thermo-
dynamics, one assumes a set of variables of type a = (A) which are even under
time-reversal plus a set of type f] = (A) which are odd. We proceed here to consider
the model of Section 4 with just two such variables, A being given by (22). For this
case, the amplitude g for the probability that A have a numerical value within da
of a and A a value within dv of v is:

9(a,v) =\] f{x)xpa(x)dx, (35a)
ipa = 6(A - a)6(A - V), (35h)

a = ¥ ag(a,v)dadv, (35¢)
N~V vg(a,v)dadv. (35d)

Eq. (5a) is replaced by:

dg/dt = —(d/da)(vg) —(d/dv)(qg) + J% ds(d/dv)da‘'dv'D(a, a', t - s)-

m(d/dv*)[g(as)IpB{a)], (36a)
D(a,a',s) =V dx ppda' A1 —P) exp[iL(l —P)s\ipaA*, (36b)
q=V dxpplpptaA], (36¢)

where A* = (iL)2A replaces A in (5e) in accord with (9a). P is an arbitrary
projection operator for which we use (18a) plus (34b). This definition will satisfy
(16a-c). The derivation of (36a) assumed g = -gas in (7) or (3) below, at t = 0.
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In order to derive a phenomenological equation of extended thermodynamics
for I which can be integrated to yield a(t), since g = &, we need again to make the
Markovian approximation (6) and invoke the Grad-type ansatz which replaces with
F the Helmholtz free energy (cf. [9]):

g—*9 = zcPR exp[RF(a, n) + A(@)(a - a) + X(g)(g - D] (37)

in the right-hand side of (36a). A(a) is given by (30a-e) and Aby an analogous
condition [cf. 46a-d below] which implies A= 0att = 0if g(0) = 0. PR and all
other functions in this Section are calculated using (35b) in place of (4d). Otherwise
definitions such as (5¢) and (14) remain intact. The equation for g is the first
moment of (36a), with (36b) for D. The question again arises whether we can find
tin (18a) so that the approximations (6) and (37) will yield a first moment equation
for r) which is exact. That is, the solution of this equation for a(t) agrees, to an
arbitrary given order in t, with the first moment equation obtained by using Pg and
no approximations in (36a).

We shall seek a function ¢(x) which contains a single adjustable parameter
d\. This is adjusted to make a(t), calculated via (6) and (37), agree to 0(t4) with
the exact result. As in Section 4, the method can be extended to higher order in t
by introducing parameters dt with i > 2 into ¢y but doing this in practice is more
difficult in the present case. By considering coupled odd an even parameters here, we
accomplish two objectives: (1) We show that earlier demonstrations [9] of reciprocity
in extended thermodynamics are not limited by the Markovian approximation and
Grad ansatz for g. (2) We see that the choice of ¢pdepends drastically on the choice
of variables and can differ radically in the present Section from its form in Section 4.

The reason for this difference stems from the fact that D in (36b) depends on

[cf. (9)]

VA -

= i (33)
where H is the force on particle i stemming from interactions with the remaining
particles. If we took thto be a function of momenta as in (24b) and P from (18a),
then PAt would not depend on ¢ which would also be true of D. To introduce
adjustable parameters into the ~-expansion of a, we must have a ¢ which depends
on configuration co-ordinates and not solely on momenta.

We choose

d(x) —Fn + diFff-i. (39)
To calculate PA”, one must calculate averages (Fjv), (F*-i), and (Fj) forj < TV—1
subject to the restriction that dpand A have specified values imposed by the ~-factors

in P. To do this, we invoke fluctuation theory. Let rpi represent the numerical value
of A, and tgj (j = 2,..., ¥4+i) the values of FRi-j+2, respectively. We introduce
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the distribution function:

Fi<md) = Qexpl-~iyV ir], (40a)
A= det(/lj), ’ (40b)
Cp = OATr~2(nr+1). (40c)

According to fluctuation theory, the argument of the exponent should be AS/k,
AS being the entropy fluctuation at constant internal energy. In practice, the
coefficients should be evaluated so that, e.g.

{FiFj)o=J p/rpw-i+iipN-j+i dip, (41)

where subscript zero denotes an equilibrium canonical average. The elements of

fall into four groups, according to whether they couple A to itself, A to members of
the set {Fi}, or the forces F, to one another. Thus

‘APik'Pi'Pk= Paa’Pl +'YjPasMk + 'Y p8]'PI+ APk (42)
ik k>l oo |<kfr>l

In taking dbto be a sum of terms whose values have a Gaussian distribution, we set
up a calculation formally analogous to the one in Section 4 where momenta played
a mathematical role similar to the one played by the F's here.

Into Eq. (42) substitute

2= ®- diip3. (43)

The values ip3 and ip = ipk (k > 3) which make (42) an extremum subject to fixed
ipi and cpare given by:

2 = 2)J1( + Ji) + (N )21 + d2)+
+ RIFfiflf {(NA - 2)(1 + d2) - 2d1}] =

= -rPifiafpjjil - Ji) + 4[-dXx{NA- 2+  (fijf )i

+fEfplf {(NA- 2)dx-1}1], (44a)
27[(MIN2( + di) - TMIN2(NA ~ 2)di(l + dx)+

+ BEFH//{(NA —=2)(1 + d\) - 2<fi}] =

= Vilral [—A 1 (1 + dl) + ~°Tjid\{™ + di)]+

+ 2<A(peN2di(l + di) —p°jfpdi( 1+ d2)]. (44b)
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When (42) is expressed in terms of ip., &y ipaand ip, we get a new distribution in
which the values (44a,b) give respectively (F/v-i) and (Fj) for j < N —1 subject
to fixed ip. and h We thus obtain:

PAf= mALNA - 2)ip+ TALp+ (1- d.)ip3} (45)

Eq. (45) is used to calculate the leading term in D which has a simple algebraic
dependence on d..

When D is calculated using (45), we obtain a corresponding first moment
equation for ) by multiplying (36a) by v and integrating over a and v space. We
introduce the notation:

(46a)

>j
Al = -(1 2)0) 1= -mA/(NAKT), (46b)
~2) = 0, (46¢)
cay - N (T Bo-(113)((i2)0)2), (46d)

where (46b-d) follow from a consistency condition analogous to (30a). Subscript
zero on an angular bracket denotes an equilibrium canonical average. Similarly, Ay)
are defined as in (30c-e). If Ais the i -> 0 limit of Aas in Section 4, we can write
the solution of the first-moment equation for a(t) in the form (assuming & = 0 at
t=0):

a(t) = a+ QR+ add+ 0(i6), (47c)
«2 = (NAnT/mA), (47b)
a4 = (U12)X[*"AQ)(NIm/cT/Ta)2- (~(1 - P)Af)i
+ (3/2)A(B)(N1TakT/Ta)2a?2]. (47c)
Subscript i denotes an average in the t —O0 initial ensemble, given by setting A= A
and A= 0in (37).
Using result (45), we find that:
("(1 - P)A)i = (Na/aD iF » + (2NA/mI)(FNFN”) i+ m-2[(*y)2(] + d\)
-ifijfd.il +di)(NA- 2)+ Ajffif {(NA- 2)(1 + d\) - 2d}]~1-
BQ NakT(Xa—D[(1- d.fAjfij +(Na- 2)™; {~(1 +J2)- fijd.il +d.)}]
+ KT(1+ d.)[\NA(FN)i - BNB(FNBFN)IJ[(NA- 2){A&/i°/ (1 + d\)
- ifijfd.il +d)}+@- d){ifijfiNA- 2)d. - ifijfd.
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On substitution from (48) into (47c), we obtain an explicit dependence of «4 on d\,
and we can evaluate d\ to make this expression for »4 agree with an exact result,
¢4, calculated using Pg and without (6) and (37).

We do not have to calculate an exact asince (42a) is exact by the criterion
in (13c). To calculate a\ we use

4 = (1/4)\] vG dadv (49)

from the fact that a is the first wmoment of g, and we obtain a(t) from it by
integration. According to (lib), with F = F(a, 0), we have

Gi = -v{d/da)G0- (6/0i»)(iG0), (50a)
Go = Zcppexp [RF - A(a- a)], (50b)

2G2 = —(d/daJ(VG\) - (d/dv)(qGi)

+ {d/dv) V da'dv'D a'Kd/dv'ftGoW/pRia")], (50c)
3G3 = ~(d/da)(vG7) - (d/dv)(qG2)
+\{d/dv) j da,dv'Di (a,a’)(d/dv')[G1(a,)/pO(@)\. (50d)

Using (50a-d) in (49), we can simplify the latter. Useful intermediate results
are:

\] /2Goda dv = (A2A)i = (AVA/cT/m?)(At)-, (51a)

(A)i = | A'ppexp (~XiA)dx/ I p Oexp(-A.,i) dx

= AV p0A2dx = NakTX/ rna, (51b)
PR'dpBR/da = (ma/NAKT)q, (51c)
POldpR/dv = -Bm Av/NA- (51d)

After lengthy calculations, we obtain:
= (NCa/24/2Tn)A2(A»)< - (A24)(A*P,A")i + (A24)(A*(1 - P)AY{. (52)

The subscript i denotes averages carried out as in (50b) with the initial distribution
g(t = 0). When A= 0, the initial distribution is obtained by setting A= A a =
T—0in (3).

Equating a4 given by (47c) and (48) to a\ in (52), we evaluate d\ to make
them agree. The equation for d\ is cubic and should have a real root provided paf,
pjj and p°fj do not vanish. We can extend this work to higher order by adding
values of spatial derivatives of the {Ft} to the set {ipi} in (40a).
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6. Summary and discussion

We have sought here to deal with a possible objection to attempts [4,5,9]
to base a statistical derivation of non-equilibrium thermodynamics on the Grad
approach to solution of the gas-kinetic Boltzmann equation. In the latter, one
introduces an ansatz for the distribution, the latter being the function g in the
present paper. This ansatz depends parametrically on a number of moments. The
form of the ansatz g is chosen to satisfy a consistency condition such as (30a) which
gives the first moments exactly. However, if g depends on only a finite number of
moments, it cannot solve exactly the equation for g. On substituting 7 for g in (5a)
or (36a) and taking first moments, one obtains closed, self-consistent generalized
hydrodynamic equations for these moments. When there are several variables, e.g.
« and 7 in Section 5, the coefficients in the coupled equations for & and 7 have been
shown [9] to exhibit Onsager reciprocity in the non-linear regime.

These coefficients, calculated from (5a) and (36a), depend on the projection
operator P which is arbitrary save for the requirement that it satisfies (16a-c). We
seek to show, accordingly, that we can determine P defined in (18a) so that the
solution a(t) of the first-moment generalized hydrodynamic equation agrees exactly
to any desired order in ¢t with the first moment of a solution to (5a) or (36a) obtained
without approximation and with use of the Grabert 139 of (14). Alternatively, one
could use as “exact solution” a t-expansion for a(t) fitted to the result of a molecular
dynamic simulation. If this is done, the Markovian approximation (6) and the use
of a Grad-type ansatz for g do not affect the validity of the demonstration [9] of
reciprocity. The latter demonstration does not depend on the precise form of P so
long as it satisfies (16a-c).

To generalize the Grabert P,, we determine ¢(z) in (18a) so that the coeffi-
cient oj (j =0,...,v) of the O(t’) term, to any given order v, in the solution of the
generalized hydrodynamic equation agrees with the coefficient af in the t-expansion
of the exact result. If there are several variables, {ak(t)}, one can introduce a set
{¢x(z)} of more than one undetermined function in (18a), with 6(¢(z) — ¢(z'))
representing a product of factors §(éx(z) — ¢i(z')).

The process of choosing the function ¢ is illustrated in Section 4 for the case
where there is one variable a = (fi), with A proportional to the mass centre of
one component of a binary mixture. Such a model may appear artificial, but the
integrals to be evaluated can be done exactly, and one obtains algebraic equations
of finite order for the parameters d; and ds in ¢. This model belongs to classical
unextended thermodynamics and adds weight to the use of reciprocity in classical
nonlinear problems.

In extended thermodynamics, we require at least two state variables, a and
n = &. We take in Section 5 the same model for /i used in Section 4. However, D in
(36a) depends on A! = (iL)2A rather than on A as in (5a) and in the unextended
model of Section 4. If PA! is to depend on ¢, then ¢ must depend on config-
uration co-ordinates and not solely on momenta as in Section 4. Otherwise, the
¢-dependence cancels between numerator and denominator in P. Since A' is a sum
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of forces Fi, the integrals in PA™ can be evaluated using a Gaussian fluctuation-
theoretic distribution for the values of the forces. This is justifiable because in P
we are calculating averages of fluctuations in a constrained equilibrium state. As
argued in Section 2, ¢2 = a\ automatically, and so we need only one parameter d\
to make aj —aj forj = 2,4.

The foregoing calculations are the latest in a series designed to show that
the original formulation of de Groot [14], which postulated a Gibbs equation and
reciprocity, can be carried over to the extended and non-linear regimes. These
papers began by generalizing the work of Zwanzig [12] to the linear extended case
[15]. A similar procedure was used [16] to justify use of reciprocity in the non-
linear extended regime for a microcanonically-distributed system. By making use
of the work of Grabert, the latter calculation was generalized [9] to the case of a
system in equilibrium with a heat bath. In the present paper, we show that one
can relax the Markovian approximation and the ansatz (37) of [9]. This paves the
way for re-erecting reciprocity to the status of a basic postulate of non-equilibrium
thermodynamics.

The resulting formalism, starting with an application [17] to viscoelasticity,
was used to calculate liquid transport coefficients from molecular models [18]. More
recent applications [19-22] have estimated the magnitude of non-linear effects in
chemical reactions and steady-state transport. The aims of these applications differ
from those in alternative formulations [3] which do not use reciprocity. There one is
interested in the rigorous derivation of rheological kinetic equations with coefficients
fitted to experiment rather than estimated from microscopic models.
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This work applies the shell model to study the behaviour of the intemuclear interac-
tions of diatomic alkali halide molecules from data given by the dynamical models for alkali
halide crystals. Our interest is to test the breathing shell model when core holes have been
introduced. This will provide another source of information on the nature of the interaction
potential between anion and cation systems and give insight into the rate of relaxation in
determining shifts in Auger and photoelectron spectroscopy.

Introduction

It is well known that environmental shifts in photoelectron (PES) and Auger
(AES) spectroscopies are due both to chemical shifts characterising the initial state
and to final state relaxation shifts [1-5]. In specifying shifts in elemental solids and
related compounds the free atom is often used as reference; then PES and AES
are combined to isolate the so called extra-atomic relaxation, a quantity which is
independent of experimental energy reference [6-10]. The modified Auger parameter
al1[11-15] gives similar information.

Alkali halide molecules are attractive systems for investigation, because the
interatomic forces are well understood in the initial state, and it appears that chemi-
cal shift and relaxation are of comparable importance in their electron spectroscopy.
Recently Banna et al [16-19] have made elegant measurements of the binding en-
ergies of various Cs halide molecules in gas phase, while Aksela et al [20-21] have
performed innovative experiments to provide corresponding Auger data. The Cs
binding energies and Auger shifts are small relative to the free Cs atom, but show
a distinctive trend through the molecular series. It is the objective of this paper
to gain insight into the interactions in inner core ionised alkali halide molecules
through a hierarchy of potential models, (1) rigid ion models with no electronic po-
larisation; (2) Rittner potential models [1]; (3) a shell model of the type previously
used by Sangster [12-15] in evaluating initial state properties.

It will be shown that repulsive and polarisation potentials are intimately
linked, and that an understanding of how repulsive interactions change in the pres-
ence of core holes is of crucial importance in interpreting the electron spectroscopic
data.
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(a) Rittner model

The influential Rittner potential [1] assumes the ions to be polarisable spher-
ical charge distributions with full ionicity, and it is usually of the form:

_ 1 1 <++a  2ata_ C
U = - 47rCO I’_h 2r4 r7 re © RO, (1)

where a+ and a_ are the polarisabilities of the alkali ion and halogen ion, respec-
tively, R(r) is a two parameter repulsion term (usually Born-Mayer). The second
and third terms represent a dipole-dipole and a quasi-elastic energy stored in the
induced dipole moments, and are valid for internuclear separation large compared
with ion dimension.

The Rittner model and its modified version have been employed by a number
of investigators in the calculation of the molecular properties (dissociation energies,
vibrational frequencies, and other physical properties) through analytical modelling
of the interionic forces in diatomic ionic molecules and by using formulae such as
those of Dunham [2Z] and Varshni and Shukla [3].

In spite of the success of the Rittner model and its related modifications,
however, the model is inconsistent in that it does not include the higher order po-
larisabilities, while the exponential form of the repulsion interaction may lead to an
inaccurate representation to the attractive potential as was discussed by Brewer and
Brackett [4]. Another question concerns the value of the polarisability of the alkali
halide ions used, since it is known that the polarisability of an anion is decreased
in the Coulomb field of a cation, while that of a cation increased in the Coulomb
field of an anion. Shanker et al [5] used values calculated for ions in molecular alkali
halides. Recently Szymaski and Matthew [6] compared various different sets of the
polarisabilities in different environments, and found that binding energy predictions
are relatively intensive to the polarisability value chosen. The more rapidly varying
repulsive potential is capable of compensating for changes in the attractive polar-
isation term. On the other hand, Szymanski and Matthew found that the use of
various models for the repulsive term leads to a wide variation in calculated binding
energies.

(b) The shell model

In order to analyse the interactions in alkali halide molecules in a more con-
sistent way, it is important to go beyond the Rittner model. A quantum mechanical
calculations has been attempted by Brumer and Karplus [7], and also by Matcha [8].
Another approach is to use what is called the shell model. The simplest form of the
shell model was first formulated by Dick and Overhauser [9] to account for dielectric
properties of alkali halides. It separates the ion into a core and a shell coupled by
a spring and has proved a very useful classical parameterisation of inter-ionic force
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constants. Cochran [10] has reviewed the use of such model in the parameterisa-
tion of the lattice dynamics of ionic crystals, while Schroder [11] has extended the
model by introducing shell breathing. Sangster [12], however, used the breathing
shell model to study the properties of diatomic molecules. The information required
to parameterise the model is available from data of elastic and dielectric constants
from dynamical models of alkali-halide crystals. The diatomic molecule was con-
sidered to contain a positive ion, which to first order can be considered as a point
charge (+e) and a negative ion contains a rigid shell of charge (Y €) and a core of
charge (Xe), where X + ¥ = —1. In the presence of an electric field the shell centre
will be displaced by distance w, and the total potential ®(J, w, C) can be described
by the different contributions; electrostatic, polarisation, deformation, and short
range interactions:

® (A, w,C) = pea(r, w) + ~pol(w) + ~def(C) + o), (2)

where §po\(w) — \kw2, "def(C) = for anisotropic deformation, <>dHf(&) =
\Gi(p —jig—h)2 for anisotropic deformation and

dw((AN) = B+- exp(_a+_r)____c___ - R

(See Sangster [15] for details of the various parameters).

Results and discussion

The main objective of this work is to apply the Rittner model and the shell
model to the problem where the alkali ion in a diatomic molecule has one core hole
(XPS final state, Auger initial state), or two core holes (Auger final state). Recent
experimental and theoretical data [16-21] make it possible to test both these models
for XPS and Auger transitions. The excited states involved are very short lived
so that change in nuclear position during the transitions may be neglected. The
different parameters of the shell model (do, wo, Ro and D) for some alkali halide
molecules are shown in Tables | and Il with the alkali ion having one or two core
holes. In the various different contributions to Eq. (2), the Coulomb charge is now
increased by one or two, while for the short range interaction three assumptions
have been considered: (i) full repulsion as in the ground state; (ii) half repulsion
i.e. 19+~ in Eq. (2) reduced to half the ground state value; (iii) zero repulsion.

Table Il shows the calculated binding energies for CsX structure obtained
using both the shell model with the same assumption as discussed above, and the
Rittner model. These are compared with the experimental data of Mathews et al
[17]. In general there is 0.5 eV shift between the Rittner model values and the
experimental ones, while the shell model values suggest that CsCl and CsBr have
lost some of the repulsion in the final state, while for CsF and Csl full repulsion
gives better agreement with experiment. However, in the shell model calculations
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Table I
Shell model values for intemuclear distances and binding energies
for some alkali halide molecules when the alkali ion has one core hole

d0 (nm) wo (nm) Ro (nm) D (eV)

(a) full repulsion
NaCl 0.243 0.031 0.212 13.60
LiF 0.156 0.042 0.114 20.45
Kl 0.307 0.040 0.267 11.03
NaBr 0.253 0.049 0.204 13.61
Nal 0.276 0.067 0.209 12.86
KBr 0.286 0.032 0.254 11.55
CsF 0.234 0.013 0.221 11.48
CsCl 0.304 0.022 0.282 9.79
CsBr 0.318 0.027 0.291 9.57
Csl 0.342 0.033 0.309 9.20

(b) half repulsion
NacCl 0.243 0.039 0.204 1451
Kl 0.307 0.048 0.259 11.81
NaBr 0.253 0.069 0.184 15.24
KBr 0.286 0.039 0.247 12.30
CsF 0.234 0.018 0.216 12.33
CsClI 0.304 0.027 0.277 10.30
CsBr 0.318 0.034 0.284 10.10
Csl 0.342 0.041 0.301 9.70

(c) zero repulsion
NacCl 0.243 0.054 0.189 15.78
Kl 0.307 0.062 0.245 12.74
KBr 0.286 0.050 0.236 13.34
CsF 0.234 0.027 0.207 13.42
CsCl 0.304 0.033 0.271 10.84
CsBr 0.318 0.044 0.274 10.72
Csl 0.342 0.054 0.288 10.35

it was assumed that only the negative ions are polarisable and an extension of the
Sangster model is needed for dealing with the Cs halides.

For the Auger transition, Aksela and Aksela [20] have reported a theoreti-
cal relativistic Auger energy for free Cs+: M4 N45 Nss"G”j) = 552.52 eV. This
calculated value exceeds the experimental value by approximately 1.7 eV. Using a
corrected Auger energy estimated (550.8 eV), we have calculated Auger energies
for CsX molecules using both the Rittner model and the shell model. For the shell
model the binding energy values listed in Tables I, Il have been used. For the
Rittner model, full repulsion in assumed in these calculations. These results are
shown in Table IV together with the theoretical and experimental data of Aksela
et al [21]. It is clear from these data that the relaxation energies calculated in the
shell model are similar to the ionic model if the same repulsion assumptions are
assumed, but for detailed comparison to gain insight into the various interaction
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Table 11
Shell model values for internuclear distances and binding energies
for some alkali halide molecules when the alkali ion has two core holes

do (nm) too (nm) Ro (nm) D (eV)
(a) full repulsion
NaCl 0.243 0.053 0.190 23.40
Kl 0.307 0.074 0.233 19.75
KBr 0.286 0.057 0.229 20.15
CsF 0.234 0.026 0.208 18.54
CsCl 0.304 0.038 0.266 15.90
CsBr 0.318 0.047 0.271 15.70
Csl 0.342 0.057 0.285 15.30
(b) halfrepulsion
NacCl 0.243 0.069 0.174 25.75
Kl 0.307 0.101 0.206 21.93
KBr 0.286 0.073 0.213 21.96
CsF 0.234 0.034 0.200 19.74
CsClI 0.304 0.046 0.258 16.70
CsBr 0.318 0.060 0.258 16.70
Csl 0.342 0.073 0.269 16.40
(c) zero repulsion
CsF 0.243 0.052 0.182 21.60
CsCl 0.307 0.064 0.240 17.90
Table 111
Calculated (Cs3d5/2) binding energies in CsX (X = F, Cl, Br or 1) (eV)
Shell model Rittner Expt.
(a) (b) (©) model (d)
CsF 731.1 730.2 729.1 730.6 731.1
CsCl 732.0 731.6 731.0 731.2 731.7
CsBr 732.1 731.6 731.0 7314 731.7
Csl 732.3 731.8 731.1 731.6 732.2

(a) using full repulsion
(b) using half repulsion
(c) using zero repulsion
(d) Experimental values of Mathews et al [17]

terms in the Auger transition, more experimental data and theoretical calculations
are required.

Summary

In this work two models of the environmental shift in the photoelectron and
Auger spectra of alkali halide molecules have been compared:
(1) the ionic model;
(2) the shell model.
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Table 1V
Calculated Auger energies J2aug (MiN”sNj.s :1G4) (eV)
Shell model Rittner
W (b) © (d) © model ® C)
Cs(CsF) 557.9 559.1 560.9 558.2 560.0 557.8 557.2 558.64
Cs(CsCl) 556.9 557.7 558.9 557.2 557.0 557.1 556.0 558.59
Cs(CsBr) 557.0 558.0 - 557.4 - 556.8 555.8 558.77
Cs(Csl) 557.0 558.0 - 557.5 - 556.6 555.4 559.00

(a) using full repulsion initial state and full repulsion final state

(b) using full repulsion initial state and half repulsion final state
(c) using full repulsion initial state and zero repulsion final state
(d) using half repulsion initial state and half repulsion final state
(e) using half repulsion initial state and zero repulsion final state
(f) theoretical data of Aksela et al [21]

(g) experimental data of Aksela et al [21]

Though very similar in many ways the basic difference between them is that
for the Rittner model the polarisation/relaxation contribution to the binding energy
is independent of the repulsive contribution, while in the shell model the repulsion
energy between shell changes when a shell is displaced in an electric field. For the
ground state the two models give comparable predictions of binding energy, even so
the shell model has been parameterised from crystal data.

In the final state of photoelectron emission or Auger emission the difficulty is
in estimating the residual repulsion energy between ions. The ion with the core hole
shrinks, decreasing overlap, but the neighbouring ion deforms tending to increase
overlap. The excited states are short lived so that changes in nuclear positions
are not involved. From the work by Brewer and Brackett [4] and Szymanski and
Matthew [6] on the ground state it is clear that the repulsive potential is not wholly
repulsive, but mops up deficiencies in the attractive components in the potential.
This may happen to an even greater extent in the excited states, where higher order
polarisabilities, not considered explicitly in the potential, will become increasingly
important (see Matthew and Szymanski [22]).

The various different possibilities considered in the shell model suggest that
repulsive energy is still of some importance even in the highly compressed Auger
final state, but more work needs to be done on the question.

It is worth pointing out that when one or two core holes are introduced the
displacement w of the shell relative to the core may be quite large (Tables I, 1),
and indeed divergence occurs in the calculation for some molecules not listed. This
reflects the fact that higher order polarisability terms, neglected in the formalism,
are not important.
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BOOK REVIEWS

George de Hevesy, 1885-1966, Festschrift. Ed. Gydrgy Marx
Akadémiai Kiadé, Budapest, 1988

The George de Hevesy’s centennial was celebrated at an international conference held in
Budapest in 1985. Hevesy, one of the most outstanding scientists of Hungarian origin, received
the Nobel Prize from chemistry in 1943 “for his work on the use of isotopes as tracers in the study
of chemical processes” and was famous also for the discovery of hafnium (1923) and for neutron
activation analysis (1934). He was born in Budapest. In 1918-19, for a short period of time, he
became Professor of Physics at the Budapest University. After 1920 he worked in Copenhagen,
Freiburg and Stockholm, died in Freiburg in 1966.

The thin (165 pages) volume the texts of some of the lectures delivered at the Conference,
together with the chronology of Hevesy’s life and the bibliography of his printed works which
consists of 397 items. The significance of the book and the event was underlined by the list of the
distinguished authors, including two Nobel prize winners: Rudolf L. Mdssbauer and Kai Siegbhahn.
The former wrote about the history of his gamma resonance method, the latter about electron
spectroscopy with special regard to the purpose of chemical analysis. Vitalii 1. Goldanski’s paper
also discusses the Mdssbauer spectroscopy, but its more advanced form. Ferenc Mezei spoke and
wrote about his major work on the neutron spin echo.

All these papers are more or less connected to Hevesy’s favourite subjects (particularly,
spectroscopy), while the one, co-authored by Gustav Arrhenius and Hilde Levi, is connected to
Hevesy not only by the subject (cosmochemistry and geochemistry) but by the authors’personality
also. Levi was Hevesy’s collaborator for a while, and Arrhenius is his son-in-law. The volume
contains two papers on George de Hevesy himself: by Gydrgy Marx on his scientific achievements
of highest significance, and by G&bor Pallé on his times and works in Hungary.

G. Pall6
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CORRIGENDA

EVALUATION OF EXPLICIT EXPRESSIONS
FOR MEAN CHARACTERISTICS OF ATOMIC SPECTRA

R. Karazija

Institute of Theoretical Physics and Astronomy
2600 Vilnius, Lithuania

(Acta Phys. Hung., 70, pp. 367-379, 1991)

The equation (28) for N multiplier should read:

*=<ArsSnE) ' wE> . @

where h is the number of loops in the diagram.
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