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CASCADE EQUAL-WEIGHT CODES AND MAXIMAL
PACKINGS

V. A ZINOVIEV
(Received April 30, 1982)

The general method of construction of equal-weight codes with given weight and minimal
distance is presented. The power of such code differs from upper Johnson bound only by the
multiplicative constant which does not depend on the length ofthe code. This constant tends to unity
when some conditions between the weight and distance are valid.

1. Introduction

Denote by A(n, d, w),d = 2d, the maximal possible power of binary equal-weight
code of length n, Hamming distance d and weight of the code words w. This value is
studied also in combinatorics under the name maximal packing m(n,w,k),\<k<w<n
[1-5]. Define this value. Let E" be the set ofall the binary vectors of length nand  be
the subset of E" containing all such vectors of weight w. Say that the vector
X=(X,, .- ,X,), X £ EW, covers the vector y=(yL, ..., V,,), y e Ek, k<w, if the equality
X' Y,= Y is valid for all i= 1, ..., n. Define

m(n, w, k)= max |[V\:V "E w
Vv

and any vectory, y e EX, is covered at most by one vector x,x eV The problem consists
in studying of the value m(n, w, k) as a function of parameters n, w, k.
Firstly, let us note (it is known rather well) that the following equality is valid

m(n, w, k)=A(n, 2w—k+ 1), w). 1

It is necessary to note that in combinatorics this value is studied mainly for fixed
(or slowly growing) parameters wand k and for growing n, but in the coding theory (see,
for example, references in [6]) this value is considered mainly for the cases, when wand
K depend linearly on n, when n grows to infinity. Nevertheless, the known results of
error correcting codes allow us to obtain bounds for the value m(n, w, k) for fixed wand
K which had been shown in [5].

From the well-known Johnson upper bound [7]

12
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Let us define

w, Ky=m(n, w, k)

Erdos and Hanani [1] suggested that for fixed w and K
lim uy(n, w, k)=1
Jin u( )

and they proved it for the case k=2 and all w and for the case k=3 and w=q or
w=q+ 1, where g is a prime power. Kuzurin [3] proved this conjecture for the case
when k=w—L1 Furthermore, he proved it not only for fixed w but for w= 0(n) (he
showed that in these cases usual limits also exist).

In [5] it was shown that

lim fi(n, w,w—2)= 1, when w=0(n)

n~* 0o
and for k<w —3 when w—k is fixed
"anq(n' w,k)> I/(w—k)\, when w=0(n). (13
n-
In terms of codes the result obtained in [5] means: for length n= 25—,
$s=23 .
A(n,20,w)=>Q/(n+ 1) i. 149
In [8], Graham and Sloane gave several constructions for equal-weight codes,

using some mapping from E',to Galois fields GF (g). In particular they proved, that ifg
is a prime power such that g>n then

A(n,20, w)> (Ajjqi . (L5)

Note that bound (1.4) is coincident with (1.5) for thecase q=n+ 1=2Sand they
are good for the small Q It is possible to see from the following asymptotic expression of
upper bound (1.2) and lower bounds (1.4) and (1.5) that, when w is fixed and n-* oo:

nw >H/W\<A(n, 26, w)Enw' d+1(6-\)\/w\. (1.6)

We need also the result of Kuzurin [4]. Let g =q(a) denote maximal prime power
which is not more than a From the number theory it is known [9] that for every e> 0 it
is possible to find ae such as for any a>acthe following unequality is valid:

M a)-al<a7/12+E.
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Kuzurin proved the following result. Let w= w(n) and k = k{n) of positive integers have
the properties:

(1) w(n)->00, when n-+o0o and constant c,c>1/\2, exists such that for enough
large n the following unequality is valid

wédnc-w' ~c—n—w)<0;

(2) k(n)/y/w(n) =0 when n-+00 ;
(3) k(n)/(nfw(n))* c—»Owhen 00 .

Then
lim m(n, w, k)wk/nk= 1. ()]
n @

Let us emphasize that all lower bounds (1.4)-( 1.6) and Kuzurin’s theorem are existence
theorems stating that to construct corresponding codes it is necessary to make an
overall choice over all possible vectors of Ew.

The aim of this paper is to present a general and quite simple method of
constructing ofequal-weight codes with given weight and minimal distance. The power
of such code differs from upper Johnson bound (1.2) only in a multiplicative constant,
which does not depend from the length of the code. Unlike the codes satisfying lower
bounds (1.4) and (1.5), this constant grows to unity when the weight of the code words
grows and some conditions between length, weight and distance are valid. On the other
side the codes and equivalent maximal packings obtained are good for some finite
lengths. It is also essential that this method is constructive in such a sense that for the
construction of code we have no overall choice in the set  and the complexity of the
construction of the code is not more than cn2 binary operations, where the constant ¢
does not depend on n, w,and §and the binary operation is the arithmetic operation in
GF(2). In particular, the result of Kuzurin mentioned above is obtained constructively.

The results ofthis paper have been partially published in [ 10] without proofs and
presented at the International Symposium of Information Theory (Oberwolfach, FRG,
4-10 April, 1982). The author sincerely thanks V. I. Levenshtein and L. A Bassalygo for
their useful comments which helped much to improve the present paper.

2. The main construction

Theorem 1 Let qis a prime power such that g+ 1> w Then for any § 1< &< w
and n=qw

A(n, 2d, W) > (n/w)w~i+' (2.1
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bound (22) is better than bounds (1.4), (1.5) when 5> 1/2 + w/ln wand the complexity of
the construction of such a code is not more than cn3 binary operations, where ¢ does
not depend on n, w, %

Proof. Let w be given, 5 be any integer, 1< 5<w, and q be prime power such that
g+ 1>w Consider MDS code (see [6]) R over Galya field GF(g) with the following
parameters: the length n’=w;, the number of information symbol k—w—6 + 1, the code
(Hamming) distance d' =ri—k+ 1= & The code R with parameters n', k, d' isdenote by
R =R(ri, K, d). Now, construct the cascade constant weight code [11] using the code R
as outer code and the trivial constant weight code whose code words form the identity
matrix Iq of order g as inner code. In other words, we perform the following
transformation over all words of code R. Denote by a,,a2, .. .,ccq the elements of
GF(g) ordered in some fixed manner. In the code word (a,, ..., aw) e R we replace each
element a; by the i-th row of matrix Iq(or by bynary vector of length g and weight 1,
where the unit is in the position with number i). It is clear that the resultant binary code
(denote this code by C) has length n=n'q=waq, each code word has weight w, the
distance between any two different words is not less then 2d' =25 and the power of the
code is equal gk=qw S+I. It corresponds to lower bound (2.1). Compare values (1.4),
(15) and (2.1). We have

l<nw~s+Il/w!,

when w> 1. The condition
(nfw)w~>+1> nw~i+1/w!
is equivalent to

W > ww~i+1,

and is valid, when 5> 1/2+ w/In w. The value of complexity of the construction follows
immediately from [12]. According to our terms, this complexity is not more than cn3.
The theorem is proved.

Theorem 2. Letq=qx. . .qs,where foreach i,i=1, ..., s, qtis a prime power such
that qt+ 1> w. Then for every 5 1<5<w, and n=qw, inequality (2.1) is valid.
Proof. Consider for each i, i=1, the MDS code Rj=Rj(w, k, 5,

ft=w+ 1—<§ over GF(ij,). Then the direct product of codes R{, ..., Rsis MDS code
R=R(w,k,5) over the alphabet of size q=q{ ... gsand further considerations are
similar to the proof of theorem 1

In terms of maximal packings, Theorems 1and 2 can be formulated in the
following manner. For any w and k, \<k<w, and for suitable n, n=qw, where g
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satisfies the conditions of Theorem lor 2,

w—1 w—2 +
u(m, w, K) > H w—k+\ 22)
w

In the next paragraph we shall get rid of the discreteness of bounds (2.1) and (2.2)
on n and obtain lower bounds for A(n, 26, w) and m{n, w, k) which conform to n.

3. Modification of the main construction

In this paragraph, for given wlet the number qsatisfy the conditions of theorem 1
and k, 6 are any numbers, \ <k,S<w,k +S=w+\. The following simple lemmas yield
the values similar to (2.1) for any length n.

Lemma 1 Let n=qw+y. Then

31

Proof. For n'=qw let us construct a cascade constant weight code satisfing (2.1),
using Theorem 1 Addition to this code y zero positions gives the value (3.1).
Lemma 2. Let n=qw—y, where y<k(g—1) and y= for+ f, where 0<t<k. Then

(3.2)

Proof. Consider MDS code R =R(w,k,6) over GF("). Let a,, ...,a, denote
elements of GF(q). Fix the first k positions of the code R. In the first k—t positions fix
g—r elements alf ...,a4 r and in the following t positions fix q——1 elements
a,, ..., a,_r_,, Form the new code (denote it by R(y)) ofthe same length wtake as code
vectors all such words from R which have in the first fixed k positions only the fixed
elements. As any k positions of MDS code R{w, k, 6) (see [6]) contain each vector of
length k over GF(q) exactly once, the power of code R(y) is equal to (q—k~{q—r—1).
Conversion of the code R{y) into cascade constant weight code, using the proof of
Theorem 1 (considering only that the first k positions of the code R(y) have the
alphabets of sizes g—r and q—r—1), gives value (3.2).

Lemma 3. Let n=vw—y=(q(v) —A)w—y, where y<w and q(v) is the minimum
prime power such that q(v)>v. Then

(3.3)
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Proof. Let n=vw—y=(q(v)—A)w—y and let g =q(v). Consider the partition of
space all qwvectors of length wover GF(q) onqwk cosets of MDS code R = R(w, k, &).
In the first y positions of such vectors fix —aA —1elements of GF(q) and in last w—y
positions of such vectors fix g—A elements of GF(q). In every coset let’s consider all
vectors over fixed elements of GF(q). As there are (q—A —1f(q —A)w~ysuch vectors in
all and they are distributed in g~k different cosets then there exists wittingly the code
(denote it by R(d)) of length w with code distance d and of power (Q—A—I)y
(g—A)wy/gw~k This code R(d) has the alphabet of the size q—A—1in the first
y positions and the alphabet of the size g - Ain the last w—y positions. Conversion of
the code R(d) into cascade code gives the value (3.3).

4. Asymptotic bounds of A (n, 2d, w)

In this paragraph, let w= w(n), k = k(n) denote the sequences of positive integers,
which are growing if n grows. It is clear from (3.1) that if yic= 0(n) when n->00 then the
lower bound A(n, 2d, w) has the order (n/w)\ k=w + 1—S. Let us estimate at growth ofy
in Lemma 1 Theorem lisapplied, when w(n) grows not more than ~Jnj2. It means that
the number v, v= [n/w], grows when n grows. It is known [9] that for any £> 0 as small
as possible it is possible to find ve such that for any v>vethe following inequality is
valid: \q(v) —v\<q(v) 7112 +ewhere q(v) is the closest to v prime power such that q(v)>v.
So for n, n<vow large enough, the number y in Lemma 1 satisfies the inequality
y> weq(w)7/12+£ and the number A in Lemma 3 satisfies the inequality A<q(v)Il12 +e
Thus from this considerations and Lemmas 1 and 3 we have the following results.

Lemma 4. Let (1) *(n)<~/n/2; @fc(")=0(("]j) 5 2"E
Then
Iri{anA(n, 2d, w) d—w+1—Kk, 4.0

moreover the complexity of the construction for the length n is not more then cn3
binary operations.

Lemma 5. Let (1) w(n)= 0(v/h); (2) w(n)—k(n)=0

Then the inequality (4.1) is valid.
Let us consider the asymptotic of the upper Johnson bound (1.2). From (1.2) we
have
w w w
Aln, 2d, w) < wlw—1 w—2' w—k+ 1’

k=w+ 1—d. (4.2)
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So the following result is valid.
Lemma 6. Let /c(n) = O(v/w(n)). Then

lim A{n, 20 w) <1, lk=w+I1—6. (4.3)

From Lemmas 4 and 6 we have the following result, which is coincident with the result
of Kuzurin [4] and which is its constructive analog.
Theorem 3. Let

(1) w(n)-»00 if n—00 moreover w(n)<"/n/2;

(2) fo(n)= O(v/w(nj);
(3) k(n)=0((n/Mn))sll2 &. Then

(44)

moreover the complexity of the code construction for length n is not more then cn3
binary operations.
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KackafHble PaBHOBECHbIE KOfibl U MAaKCUMa/TbHbIE
YMaKkoBKM

B. A. 3UIHOBbLEB

(Mocksa)

B pa6oTe NpeaoxeH KackafHblii MeTOZ MOCTPOEHUS LIMPOKOrO Kacca fBONUYHbBIX PABHOBECHBIX
KOJOB WM 3KBMBAIEHTHbIX UM MaKCUMabHbIX YNakoBOK. MOLWHOCTb Takoro Koja wm
COOTBETCTBYHOLLEN MaKCUMaNbHOW YNaKoBKY NULLIbL Ha MY/bTUMUKATUBHYIO KOHCTaHTY OT/MYaeTcs oT
BEpXHeii rpaHuLbl [)KOoHCoHa. Korga ffiMHa KoAa HeorpaHMUYeHHO Bo3pacTaeT, 3Ta KOHCTaHTa CTPEMUTCS K
efMHULE NPY COOTBETCTBYIOLLMX OrpaHUYeHUsX Ha POCT Beca U PacCTOSHUS.

B. A. 3vHOBLEB

MHCTUTYT npobnem nepegayn uHgopmaymm AH CCCP
CCCP, 101447, Mocksa, 'CI1-4

yn. Epmonosoii, 19.
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CONTROL OF NONSTATIONARY DYNAMIC
SYSTEMS WITH QUASICONTINUOUS
GENERATION OF THE CONTROL SIGNAL

S. V. YEMELYANOV, S. K. KOROVIN, B. V. ULANOV

(Moscow)
(Received February 5, 1982)

The paper is concerned with the control of nonstationary linear dynamic systems. The
proposed control algorithm employs coordinate parametric and parametric feedbacks. The
proposed relations lead to systems featuring the desired properties. Examples are given.

1 Introduction

Several algorithms for the control of dynamic systems where coordinate,
coordinate parametric, and parametric feedback loops are used [1]. These algorithms
either make the dynamic properties of the processes little dependent on the dynamic
system parameters which vary within any known limited range, the dynamic system
being described by one differential equation, or, generally speaking, limit the effect of
variable system parameters on the dynamic properties of the processes and change
these properties in the desired direction.

When the dynamic system is described by a set of differential equations of a
general form which is linear in state coordinates and control, these effects are achieved
without using sliding modes in the coordinate feedback loop and with finite gains in
that loop. Mathematically speaking, these algorithms expand the phase space (viz.
increase the dimensionality by a unity through addition of a new, parametric
coordinate) of the dynamic system and so a closed-loop dynamic system (control
system) in the expanded phase space is described by a set of common differential
equation with a discontinuous right-hand side.

When some algorithms of [1] are used, the right-hand side of the resultant set of
differential equations which describe a closed-loop dynamic system has a discontinuity
along each solution of the set when the solution goes through a certain manifold and
the parametric coordinate reaches certain boundary values.

Other algorithms of [1] in a closed loop lead, starting with a certain time, to a
sliding mode or motion along a set on which the right-hand side of the set of differential
equations undergoes discontinuities; the sliding mode starts in the coordinate-
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parametric feedback loop and in actual control system an infinite number of relay-like
switchings occurs in that loop.

In this paper we will design a control system which incorporates coordinate,
coordinate-parametric, and parametric feedback loop; a new, parametric coordinate
will be introduced to generate a continuous control signal and each solution of the
resultant set of differential equations belongs to the discontinuity set of the right-hand
side in the equation for variation of the parametric coordinate over a maximum of one
time interval until the describing point of the control coordinates (or the error
coordinate and its derivatives) reaches some vicinity of zero in the state space of the
dynamic system to be controlled; then the solution can reach that set while the
describing point stays in some larger vicinity of zero, which, as will be seen from the
relations to be given below, can be made as small as desired by a proper choice of some
parameter in the coordinate-parametric feedback loop; the equation whereby control
signals are generated will be referred to as quasilinear. This control system either makes
the dynamic properties of the processes little dependent on the parameters of the
system to be controlled which vary within any known range or, in a general case,
insures that the dynamic properties of the processes change in the desired direction.

2. Equations of a closed loop dynamic system
and statement of the problem

The dynamic system is described by a differential equation (in the vector matrix
form)

X =A(t)x+b(t)u, f>f0, @
where f0 is the initial time; x=(x,, .. .,x/eR " (hereafter T is the transposition
symbol); at each fixed time t A(t)=(alAf) is an (nxn) matrix; b(t)
=(h,(i), ..., b(t)Te R" and u is a scalar control.

It is assumed that ay(f) i,j=1, ..., n) and h,(f) (i=I, ..., n) are functions on

[f0, 00), measurable for the Lebesgue measure and such that almost everywhere on
[f0, 00) the relations hold

aij <aift)<a*j , ij=1.... n,
bf <bj(t)<bf , i=1 ...,n, @
where afl, aj (i,j—1 ..., n)and bf ,b* (/= 1, ..., n) are known constants.

The initial conditions x(t0)=x0 and control u=u(r) or u=u(x,t) with t>t0
defines the solution of equation (1), x(r) being the process.

It is required to obtain a control n which would solve the control problem (under
any initial conditions x(f)->0 as f->00) and constrain the dependence of properties of
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equation (1) on the parameters ay(i) (i,j= 1, . . n) and bt(t) (i= 1 . . n) which vary
within (2). The control n should be generated continuously until, for instance, x(i)
reaches a certain vicinity of zero in the space of x’s which is denoted as R".

For the problem to be solved the control should be generated in the following

way
n=(K°u, mx), €)
—a(dgc) + /n5||X|)  with [li|<1, 4
0 with  1zI> 1, 1/z(ig)|—1> @
where jieR, Wx=(|x!|, . . [x,)reR" (I=n—1 or n below);, [x'| = £ [x,|[;
KO=(K?, ..., KOre R1a>0, and O>0 are some constant vector and numbers; in (3) and
S
hereafter (+,*) isascalar product: (r, w) = £ r-w, for the vectors r=(r,, ...,K3s)TeRs
i—1
and w=(w!, ...,ws)TeR5; e(X)=(c,x) where c=(cu ...,cn)Te R" is some constant
vector.

Equations (1) and (4) and relations (3) and (4) define a dynamic (n+ I)-st order
system which will be denoted as (S). We will be concerned with the properties of the
solutions to the system (S) for which the initial values (x(i0), n(t0)) e V={x, /1):|u\< 1}
such solutions are referred to as K-solutions.

Equations (3) and (4), whereby the control uis generated, are activated when the
control system employs loops of coordinate-parametric (for determining the
parametric coordinate u in equation (4)) and parametric (for determining the
parameter v in the setpoint equation <2(f)=ewWO0)+ vI*’(01 of the coordinate-
parametric loop \ =pu) feedbacks (for a structural diagram, see Fig. 1). The equation

Fig. 1
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for LL(4) is chosen so that, as will be shown below, if at a certain time for a F-solution of
the system (S) (x(t), n(t)) with x(i) outside a certain vicinity of zero in R" the inequality
holds

le(x(£)) + m())<Bl'(DINl ~ 2 ’ (5)

then (with certain relations between parameters of the system (S)) it holds also at all
subsequent times until x(t) reaches a specified vicinity of zero in R". The right-hand side
of equation (4) has a discontinuity on the sets {(x,u):u- —1} and {(x,n):fi= 1};
however, under certain conditions for each F-solution of the system (S) (X(£), n(t)) no
derivative n(t) exists (or the right-hand side of equation (4) has a discontinuity) at a
maximum of one time following which the solution on a certain time interval belongs to
one of these sets until x(t) stays in some vicinity of zero of the space R". Once this
vicinity is reached, x(i) stays at all subsequent times in some larger vicinity of zero in R"
which may be made as small as desired by choosing the parameter a. Therefore the law
whereby the control nisgenerated, i.e. (3) and (4), will be referred to as quasicontinuous.

For any F-solution of the system (S) (x(f), /r(f)), it follows from (4) that |/z(r)| < 1
and, consequently, with inequality (5) true for the F-solution of the system (S) the
inclusion holds

x(r)eG3, = {x:le(x)| < [<5[]x"|I}, (6)

and by choosing the parameters c, (i= 1, ..., n) and 0 the dynamic properties of the
vector function x(i) can be influenced.

In this context the following problems are discussed: determining the conditions
under which for F-solutions the inequality (5) can hold at a certain time; determining
the conditions under which inequality (5) can be maintained over a certain time
interval; determining F-solutions if (5) does not hold at any finite time; on feasibility
of x(t)->0 as f-»o0 for F-solutions if the inclusion (6) holds; finally, determining
the behaviour of F-solutions of the system (S) when x(t) reaches a certain vicinity of
zero in R".

The subsequent Section will be devoted to qualitative study of properties of
F-solutions for the system (S).

3. Studying the behaviour of F-solutions in the system

S
The notation to be used hereafter is: x'= (xb .. .,x,,_)T, |It?]| = _£_1|r|(| is the
i

norm of the vector v=(vit .. -,vs)Te Rs, the norms of matrices coincide with those of
vectors and are denoted as || ¢|; t/K= {x:||x||<R} and BR={x:||x||<R} where R isa
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certain positive number; a{t) (i= 1, ..., n)is the i-th column of the matrix A(t). Assume
that c,,= 1 Below the argument may be omitted in functions of time t.

Assume that for the controlled dynamic system it is true that |(c, b(t))\ > const >0
almost everywhere on [t0O, 00).

To solve the first of the problems formulated at the end of the preceding section,
let us take up the equation

x=A()x+ b(r) (k°u, mx), 4= —sgn e(x), t <t0 ]

(the notation is as for the system (S)) of the theory of variable structure systems [2, 3].
Solutions of equation (7) are said to hit the hyperplane e(x) = 0 if for any solution x(t)
of (7) either there is a finite time t, such that e(x(t!)) =0 or e(x(f))->0 as t-t00. The
question whether solutions ofequation (7) hit the hyperplane e(x) = 0 isanswered in the
theory of variable structure systems [2, 3]. Solutions of equation (7) are said to feature
O-hitting of the hyperplane e(x) = 0 if for each solution x(f) either there is time tx such
that e(x(t))) = 0 or |[x(t)||—=0as t-*oo0.

It is easily found that for any solution of the system (S), i.e. a differential relation
(x(®), n(t)) holds (almost everywhere on [i0, 00))

X(f) = [TOx'(t) + h{t)s{x(t)) + hI1[OEX()). ®
where
A=A’-(a")'c'7 @b (b’c'TA"—b'c'T(@")'c'T+ ban—a,,,b'c'l
h=(a") 1 (b'c'T(ary + b'am), hl b
M) | b

here A'(t) =(aij(t))1j! , is an (n—1) x (—1) matrix;
(@an)'(0 = (flir(i). **+>an- i.n(0)r >b'(t)= (b,(t), .. .,b,,_1(1)7,
a'‘M =(ani(0, mmmann- I(t))T, c'=(cb ...,c,,.0)T.

By virtue of (2) and of the assumption vrai max||fi(t)|| < oo, vrai an AlL(r)|| < oo.
a0 r

Assume furthermore that hl(t) is a function absolutely continuous on [i0, 00) and
. dhl(t)

vrtxi max
lito dt

< 00.

Iffor the solution x(f) ofequation (7) e(x(f)) maintains sign of [t0, 00), then for x(f)
the differential relation (8) is true. Then holds the following

Theorem 1 For the Cauchy matrix op(t, t’) of the equation x' = A(t)x” holds the
inequality ||<p(t, t")||<C O0exp(—SO(t—t")) with t>t">t0 where CO and  are some
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positive numbers. Then, iffor the absolutely continuous vector function x(i), t>1t0 (8)
holds and £(x(i))-»0 as t->00 then x(i-*0) as t-»00.

Proof. If for an absolutely continuous vector function x(t), t>1t0 (8) holds and
g(x(i))->0 as t~*oo then x'(i) is a solution of some equation of the form

XM TIOX' + MMO + JIHOXW. t>t0, z(t)-»0 as t—*co ©)

where %{)is a certain absolutely continuous function on [t0, 00). For equation (9) write
the Cauchy formula (with t>10)

X(0) = <PUX (i) + ] o) (h(Tx()+ A1) (O)T

where >1t0. Thence, integrating by parts, we have
X'(t) = (p(t, 1,)x'(t,) + (p(t, o “(TX(T) ot 91 [(p(t.)h(r)x(2)-
T)1°(M)] dr,

and with due regard for the conditions of the Theorem and the fact that — (p(t, t) =

= —{pt, dr(r) (with t,r>1t0), we have

X < COlX'(if)ll exp (—a0( —f1)) +

+ CO|lh2(P)[|- [x(t,)exp(-ao(t-i,)) +
r
+ IMDIFNDE + $CoNm + A()hI(r)-

IX(T)|exp(-<50(f-r))dT. (10,

The last four summands in the right-hand side of inequality (10) are as small as desired
with £<ij if ij is large enough; the first summand in the right-hand side of (10) is as
small as desired with if t2is large enough; consequently, ||x'(t)|| is as small as
desired starting with some time and so ||x'(i)||-»0as f->o0; since e(x(r))->0 as i-»00 then
|[x(t)||->0 as t-Foo. This proves the Theorem.

It is easily seen that with the conditions of Theorem 1 true and solutions of
equation (7) hitting the hyperplane &)= 0 for these also O-hitting of the hyperplane
e(x)=0 occurs.

For the system (S) the following Theorem holds.
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Theorem 2. If for solutions of equation (7) O-hitting of the hyperplane e(x)=0
occurs, then for any number p>0 given in advance and for any K-solution of the
system (S), (x(t),/r(i)) there is time t, such that either the inequality

le(x(tD) + /r(EDEGIXDIL < [I1x"(tDI| holds or [[x(f,)[I<p.

Proof. Assume that the opposite is true, or that for a F-solution of the system (S),
(x(f), Ai)) with t>1t0 it is true that

EC(D) + 14nN<SIX @Il > ~Ix (D1 (11)

and
[Ix(NI>Pp. (12)
Truth of inequality (11) signifies that with t>t0 x(t) pD3(t)= {x:le(x)+

o N
DN < 21x'||}. With t>t0 take up the set Ddft) = {x:|e(x)+
+/r()&||x'||<&1|x|[} and choose <& so that with t<t0 DSI(t)cD'3(t).

Let x e Dsft). Then —§, ||x|| <e(x) + /X())<5||x|| < (5, ||x]| and since for F-solutions
(O then  [e(x)[<a[ix|| +allx|  but [e(x)[>[Ix]|-[[x"[|-C|[x"|  where

C= max IQ|; from the latter two inequalities we have
i 1

i= 1. n-

(1-<5,)[Ix]I<(C + I+«5)]|x"[]. (13)

Choose <5l:0<<51< 1; then from (13) ||x|| < " 1 :’\ [|X'|| and so for x e D3ft) we have
~0

A ! [ A t!
o) WO« CHM I (14)

Consequently, if § is determined from the inequality 0<<5, < 1and § Cf—f\‘i < >
then from (14) with t> t0it follows that the inclusion Dit(t) c DU(t) holds. Assume that a
such O! has been chosen. Then with t>t0it is true that if x (f)| D3(t) then x(t) $ Dit ().
Therefore, if with t>1t0 the inequalities (11) and (12) hold, then 2
EE(x(t)) + /i(NElx' (1) 1> <& Ix(t) 1> & . (15)
For specificity assume that
e(x(t)) + /L(t)<5|)x'(H1>0 (16)

with t>10 (the case of the opposite sign of the inequality is treated in the same way).
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By virtue of (15), (16) and equation (4), ~(i)= —1 with t>t'>t0
| here t'—t0 < —2—). Therefore e{x{t))—<5||x'()II> <Gip with t>t'\ thence
y *b\Pj) {{0)—<SlIx (i) P
e(x()>0 with t>t'. 17

It is obvious that x(t) with 1>t satisfies equation (7). Consequently, by virtue of the
Theorem conditions for x(t) as a solution of equation (7) (with t>t"), either a time fj
exists such that e(x(ii)) = 0 which isin conflict with (17) or || x(t)|| 0 as t-+ oo which isin
conflict with (12). These conflicts show that at certain time t, at least one of inequalities
(11) and (12) does not hold. This proves the Theorem.

Let us proceed to generation of the control uin the case of /=n—L1

The relations with which inequality (5) is maintained are given by

Theorem 3. Let for the system (S) (with I=n—1) the following relations hold

f sgn (c, h)> via/ma 1 c,al-am()\, i=lI, 18
xfsgn (6 0> vigfmax | 3. K 0\, i (18)

almost everywhere on [t0, oo) for all c:c=c+ o where

3
ff=((7,,...,iT,_|,O)r, 0i=+-06, i=i,---,«—;
max { vrai max |(c, al—<3’c, + b} < (19)
oci=I,..., n—Il,cef f o
pé
2("+1 +-S

where
Mr={cc=c+ % —I<dA<1,

cr= (etl, . ..,cT,,_,,0)r, cr, = + ~<5,

i=1...,n—1}, C= max |c,|, p=const>0.
i=1 1

I=1.... n-

Then, if for a K-solution (x(i), p(t)) of the system (S) at certain time r, the
inequality holds

le(x(t)) + fiEDB|IX'(i)ll < - NXC)I

then |e(x(i)) + /r(i) x SIX'(HI —x'G)II
with te [fb t2] if x(t) hUp with te [tj, 2.
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Proof. Consider a K-solution (x(f), /r(t)) in question. Assume that the opposite is
true, or that there is a time t' and an interval (f, t' + A) (where A>0) such that

|BX(r)) + MEYa[IX @Il = 1 13C (20)

and
Ifi(x(t)) + AO<SIX' DNl > {]x" (DI (21)

with te (f, t' +A) (here (f\t'+d)c[t,, t2]). Let for specificity

e(x()) + Ir()<5|X'()|>0 with te [t t'+A) (22)
(the case of opposite sign is treated in the same way). Let A be so small that |[X'(t))|| ¢ O
with fe[i', t' +A) the choice of such A is possible since from (20) it follows that

[[X'(r")]| & O because otherwise x(t) = 0 but x(t)£ Up with te [t,, f2]). With due regard
for (20) and the fact that for a Ksolution (x(i), p(t)) we find that the equality holds

WxttOlifl + 2~ jil|x (i)l (23)
with re[l',r'-M) where «*) . A XO1- 1as But always
<5]Ix (D)l
e [Ix(DI-Ix*DH-ClIx' DI (C= . max e, (24)
From (23) and (24) we have that |x'(f)|| > X (with te [t', t' + A)) and
C+l+l 1+
since ||x(i)||>p (with te [t,,t2]), then |X'(t)|| > with te [, t'+A)
C+l+l 1

and consequently, by virtue of (21) and (22)

E(X(i) + /rO)<5[X D] > dp with te [, t +A).  (25)

2/ C+1+1 1+ 7)<5

Let us consider the following possibilities:
1° Let —I</t(f")<I; then with A reasonably small —1<”M(t)< 1 with te
e[t', t' + A). Therefore with te [f', t'+ A) p(t) = —a(E(X(t)) + p(t)S\x'(H)II) and with these t

2%
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we have

E((i) + MOSX (DIl he(0)+MO<5LLX(0]| .
WV [EX(T)) + /I(T)<5Ix'(TI)

IxX'WII
ex(@)+ n(oX(MA N1
[1>"()l X ()1
n—1
rZ Qgca‘- a'a+buk®sgn x;)- aeX) + /r<s|x|]) sgn xjx,
~i=1 dt +
- IoIx,l

e(x(f)) + MO<S|Ix' ()|
q(el!
where the integrand is a generalized derivative of the function in the left-hand side of
equalities (26); furthermore, c=c+ Aa where a(t)=(gl(t), ..., a,_"f), 0)r, af(i)=

(26)

=6sgn x(t) (i=1, ..., n—D, Ali) = (bY virtue of 23) WO I<1 + "y 4 x,in

n=1 n=l
(26) is replaced by using the equation x,,= —AJG|X|— Z CX= — Z £.xSince
i=1 i=1
inequalities (19) and (25) hold and co(i)-»l as the integrand in (26) with te
e[t', t' + A) is nonnegative if A is reasonably small and so by virtue of (26) and (22) with
these t c

Mx()) + MO<SIX'OIll <-[Ix"(t)]]

which is in conflict with (21).

2° Let p(t') =1 Then by virtue of (22) and equation (4) —1<RB(t)< 1 with te
e(t', t' +A) if A is reasonably small and, consequently, /i(t)= —oc(EX()) + /z())<5IX D))
with these t; reasoning as in Case 1° we come in conflict with inequality (21).

3° Let /z(f)= —1 Then by virtue of (22) and equation (4) /i(t)=0 with te
e(t', '+ A). Then with te (f, t' + A) we have

e(x(D) + i<S[X O  EMX(X) + /r(F)<SIX(I")
11x011 lIX(t)

dt
HX'W I I (FN
n-1
i Z (ca‘~a"C—bx° sgn Xi)xf

) - (27
bom o ZRTTT .

+
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where the integrand is a generalized derivative of the function in the left-hand side of
inequalities (27); furthermore, c=c +/m where

<= (<T,@), .. .<T,,_1(f),0)&
p(x(t))

aft)=Ssgnxi(t) (=1.. n—1), A(t):.<é|.|*.(];)il

(it is easily seen that by virtue of (20) and (22), Af) ->" as f—=7?); with coordinate

n-1
notation in the integrand of (27) x,, is replaced by — £ cx-.
i=1

3
Allowing for relation (18) and the fact that x(t) -»- as t->t', we have a negative
quantity in the integrand of (27). Consequently, by virtue of (27) and (22), with these f
lex()-M kIl S
Nr (011 ‘2’

which is conflict with the inequality (21).

The conflicts of Cases 1°-3° prove Theorem 3.

Theorem 3 provides conditions and relations with which for \-solutions of the
system (S) inclusion (6) holds. Let us see whether it is possible for V-solutions that x(i)
-»0 as t-* oo if (6) holds. This equation is answered by

Theorem 4. Assume that for the Cauchy matrix <, t') of the equation x' = A(t)x,
t>t0(A(0 from (8)) it is true that ||"(t, f)I] <COexp (—&B(r-f')) with t>t">t0where
COand SO are some positive constants. Assume also that the inequality holds

vTati max ||/if(f)] < 1 (28)
<a<0

where hl(t) from (8). Then, if for an absolutely continuous vector function x(t), t1 <t<t2
(C>i0) a differential relation (8)and the inclusion x (r)eC |r = |x:le(x)] < ~a||x"|||

with te [ij,t2] hold, then for x(t) with t e [t,, t2] the estimate is true

Co( 1 + ~Svrai max LJi1l

KOl < (C+ 1+-S s 113, ljx
1 —- Svrai max Lj1|
2 igio

X exp (29)
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where

COvidmax h+ARN e
iSO (20)

1—-6 wctimax P 1A
2 taio

Proof. Proceeding from (8) write for x(f) an integral Volterra equation
(i6[«,12])

t
X'(t) = gt tDx(tl) + illqo(t T) J(M)B(X(T))4*
+ RAT)E(X(T)))0T

where, integrating part-wise, we have

x(i) = <ff + o XMIUXLLX(X)
+ Pt MAMe(M) df - e(x(T))*(<p(i, TYi*(r))dr

therefore, with due regard for the conditions of the Theorem and the fact that

% (p(t, )= —{t, X)A (1) (t, > t0) we have
IX'(t)]| < CO( 1+ -O via/max P'Il Ijx'(f,)|| x
xexp(—S(t—ij)) + -<5||x'(0ll via/ max ||n1| +
2 t"to
+ - 6COvTedmax  h(x)+A(x)hfx)-
2 io

dh\x)

A exp (- - M)ar. o1
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Taking into account (28) and using the Gronwall-Bellman lemma we have from (31)

CO(1+ - 3vtaimax |
2 1a<0

IIXMIl < X
—- 6 vztxi max L1
2 tNio

X||X'(f,)|lexp”-"<50- A"<5M M (t-t,)j (32

with 6 [tj, i2] where M is as in (30) and since with xe G |A||x|| <AC+1+ » <5||x]||

we have (29) from (32) and the Theorem is proved.

Remarks: 1) Theorem 4 determines the behaviour of the n-dimensional vector
function x(t) by the consideration of an (n—1I)-st order system; 2) in the case where the
matrix A(t) and vector b(t) have a structure

| 0 =m
0
0
At) =
0 0 1
-fl,(0 -0 20

the conditions of Theorem 4 are easily verifiable and the differential relation (8) takes
the form

x,(i)=xi+Lf), i=1, ..., n=2,
n-1
*»-i(0=- ,Zlc,x,(t) + e(x(1)),
=
and, consequently, over a time interval where x(0 eC2r x'(f) is a solution of some
system of the form

X, =xi+l, i=1...,n—=2

n-I 3
A -l1=- X OX+ MX> me-" Xn-iA\>P(Xi, m. m* -)! < X'
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and so over that time interval the dynamic properties of the process x(t) are little

dependent on parameters of the system which is described by equation (1), and these

properties can be influenced by choosing the parameters ¢, (i=1, . . n—1)and &
If the conditions of Theorems 3 and 4, and the inequality

(33)
1—- (BVTd max ||/il]
2 iito

are true when the inequality (5) holds for the F-solution of the system (S) (x(t), n(t)) at
time ij with x(ij) ¢ Up,it follows from the assertions of Theorems 3 and 4 that there is
time t' such that x(r') e Bp. Let us forego for a time being further (with t > t) behaviour
of F-solution (x(f), /i(7)) and consider the times at which no derivative of n(t) exists
(following that time an equality n(t) = —21or //({) = 1is maintained over a certain period
in sliding mode). Let us give the following

Definition. On the solution of the system (S) (x(r), //(f)) a //-discontinuity occurs at
time t'>t0 if either //(t)= 1and e(x(i) + /rt)<T|x(f)]| <O with te(f', f' + d') while with
te(t', t'—d")//(t)< 1, where A' is a certain positive number or //(f)= —1 and
e(x(®) + IN<GIX®)] <0 with te(t',t' + A") while with fe(t',t'-d")//(t)> -1 where A’
is a certain positive number.

Then holds the following

Theorem 5. Assume that for the system (S) with I=n—1 relations (18), (19) and

(34)

hold almost everywhere on [i0O, oo) for all c:c=c+0 where o=(ol,....u.~.0)7,
aj= +0, i=1 ..., n—1.

Then on any F-solution of the system (S) (x(f),/z(t)) a /i-disruption occurs
maximum once in [t0,t,) if x(r) $ Vpwith te [i0, t,].

Proof of Theorem 5 will be preceded by three lemmas.

Lemma 1 If for solution of the system (S) (x(t)/r(r)) le(x(r))+~@GIX'®) >

> 2 IMOIIl with te [r,, t7], then on that solution a /r-disruption can occur maximum

once in [r,, t2].

Proof. Assume that with te [r,, 2 e(x(f) F/z(i)}<51x'(() I > 0 (the case of opposite
sign is treated in the same way). If fi(t)> —1 with ie[f,,f2], then no /r-disruptions
occur with [fj, tZ]. If /r(t)> —1 with te [t,, t') (here [f,, [2=0) and g(t)= —1 where
t' e [i1 f2], then by virtue of equation (4) and the above assumption n(t)= —1 with
te [t', tZ]. Consequently on [it,i2] a //-disruption can only occur at time t'.
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Lemma 2. If for the system (S) (34) holds and for the solution
WO»MO) M*(0))1 < <5|I*(i)ll and |e(x(i)) + ~O)<5|X'(A|Il < ~|x'(t)]| with te[tLli2],

then with te [tj, i2) there are no /(-disruptions on (x(t), n(t)).

Proof. With the conditions ofthe Lemma holding it is true that e(x(t))| < &||x'(Oll
with 16 [tj, t2]. Indeed, assume that the opposite is true. Let t' e [i,, t2) and A= const
>0 exist such that t'+ A<t2,

e(x(i)) + <slx()I=0 and
£(x(i)) + <X <0 with te(t', t'+A) (35)

(the case of e(x(t")) —<5|Ix'(f)|| =0 and £(x(f)) —BLx'(i)|| >0 with te(t',t" +A) is treated
similarly).
By virtue of (35) and the fact that by the condition of the Lemma

0 1
2 W) <E(x(i) + /i)<5|IX'(1")|| we find that /r(f) >  Consequently, then

Ir(f)-»K with t->t' where K>~ (36)
But since

e(x(O) + <SlIXOI = [exmM)+AX T)FKIT (37)

(here the integrand is a generalized derivative of the function in the left-hand side of
equality (37)), then expressing the integrand in coordinates and allowing for relation
(34) and truth of (36) we have from (37) that £(x(i))+ (5||x'(t)|[>0 with t{t>t") near
t' contrary to (37). Consequently, [fi(x(t))|<4|x'())|| with re[r,, r2]. Then it is easily
seen that there are no /i-disruption on the solution (x(f), /i(t)) with te [f,, i2).

Lemma 3. If for K-solution of the system (S) (x(f), /i(t)) £(x(f) + (5/x'(t)|| <0 or
E(X(1) —<5|IX(®)||>0 with i€[i!,t2] then on this solution a A-disruption occurs
maximum once in [ij,i2].

Proof. Since for K-solutions \n(t)\< 1, then, by virtue of the conditions of the
Lemma, £(x(t)) + /i{)<5|x'(t)|| maintains sign on [t1(t2]. Then proceed as in proof of
Lemma 1

Proof of Theorem 5. Let (x(i), /r(f)) be K-solution of the system (S) for which

X(t)<€UP  with te [tO,t*] m (38)
Let us show that on this K-solution (x(t), n(t)) a /-disruption occurs maximum once in

[tox» t*).
Let us take up the following possibilities.
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Lemma 1

le(x@)l > G x'(i) With te[i0,i*], then apply Lemma 3. If |e(x(r)|<a||x'(i")|| and
le(x(N)| ><5||x'(i)|| with fe[rO,f') (here t'e [i0,/,]), then with fj there are no
/[-disruptions, by virtue of Lemma 2. On [t0, t') by virtue of Lemma 3 a //-disruption
can occur maximum once.

3° Let

(39)

By virtue of Lemma 1 a //-disruption can occur maximum once in [IO,i").
Ifit does not occur in [t0, i*), then in considering a K-solution on [L, r*] the reasoning
is as in Case 2°. Assume that at time t" e (f0, i') a //-disruption occurs. Let /z(t")=1
and £(x(f) + //(F)<5|)x'(F)II<0 with te(t",t" +A) and with te(t",t" - A) //(i)< 1 where
A= const > 0 (the case of opposite sign is treated similarly). Then by virtue of (39) with
ie(t",f) e(x()+ <5||x'(r)]|<0. With re(f",i") there are clearly no //-disruptions. If
e(x(f) + <5|Ix'(H|| <0 with fe [f', t) where t' <t<tt and e(x(()) + ||x'(I")|| =0 then there
are clearly no //-disruptions with t e [t', t), which is also true by virtue of Lemma 2 with
te U, t"). Therefore ifon [i0, r') there is an //-disruption then there is none on [r', f*).

Consequently, in all cases 1°-3° on the K-solution (x(t),//(f)) an //-disruption
occurs maximum once in [f0, r*) if x(t) pUp with t€ [i0, t*].

Now let us consider the behaviour of K-solutions (x(i), //(f)) following the
moment of reaching the set Bp. The following Theorem holds.

Theoremd. Let for the system (S) (with | = n—1)the conditions of Theorems 3 and
4 and the inequality (33) and

vzai max (c, a"(f)) <0, (40)
1glo

and inequality (18) with c= c hold. Then for any K-solution of the system (S) (x(t), /(0) it
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follows from x(t') e Bp that x(i) e Br with t>t"' where

CO( 1+ «Svroei max Li/L1

r=(C+l + 2~ 3c 'oto
1 — Ovrai max \\h |
2 (gro
2C|C+ 1+ -
cc E /4P
T "PexP\adp Jl’

where C=max(l,C), P= <via/ max ||a'+bic?A||J> (in the case of
i

max :
=l...n;-1SJSI( i8(0
I=n- 1k°=0)

Furthermore, for any K-solution (x(i), p(t)) there exists time tt such that x(f) e Br
with t>t+.

To prove Theorem 6, three Lemmas are needed.

Lemma 4. Let the conditions of Theorem 4 and inequality (33) hold. Let for the
solution of the system (S) (x(t), p(t)) x(f) e C |nwith te [I,, t2]. Then for this solution

CO( 1+ - Svmi max ||hl\
2 <0 .
IWOIl < (C+1 +-S Iwti)ll

1 —-S vrai TaxU il
2 i"io Ll

with te [tIfi2] where C = max |c,|.
i=1l.n~1

Proof. Truth ofthe Lemma follows from the fact that under its condition (29) and
(33) are true.
Lemma 5. LeCt for solution of the system (S) (x(f), pit)) with te[i,,f2] |e(x()+

+MUB|XB|| > 2 HYOH » IIx(n)[|> p and -1</i(i)<].

4P
Then for this solution ||x(t)|| < ||x(r,)||lexp <tXTp\j with te[i,,i2] where

P= max <vrai max Ia' + bK?A||
*=1..n;-l [ tzo

(in the case of /=n—1 k®=0).
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Proof. Write for x(t) an integral equation (with te [t,, t2])

x(r)=x(i,) + 3 AD)X(X)dx + 3b(l’)(K°LI,(X), mx(x))dx,
ti
whence

t
IWOIIMWDIK T P\x(x)\dx (41)

where P is defined in the formulation ofthe Lemma. By virtue of the Lemma conditions
and equation (4) for te [f1?i2]

4 @)

Using the GronwalLBellman lemma for the inequality (41) and bearing in mind (42),
we arrive at the assertions of the Lemma.

Lemma 6. Let for the system (S) (with /= n—1)inequalities (18) hold with ¢ = cand
(40). Let for the solution of the system (S) (x(f), [x(t)x(t)EGIs and ~(i)= - sgn (e(x(f) +
+ 7MI)<5||X'(1)][) with t e [ij, f2]. Then for this solution

with ie [i!,i2] where C= max |c,|,C = max(l,C).
1

i= 1. n-

Proof. It is easily checked that

Therefore under the conditions ofthe Lemma for the solution of the system (S) x(t) ¢pSd
with ie[i!,i2]. Since n(t)= - sgn (e(x(t)) + /i(Ha||x'(D)|]) with f6 [tLfZ] it follows that

—sgn e(x(t)) with te [rLrZ]. Consequently, with (18) at c=c and (40) true, it is
easily seen that for this solution almost everywhere on [ij,i2] e(x(f)) e(x(t)) * 0 and so
le(x(n))| 2 [E(x(7))| with te[t,,t2]. Now one can see that with fe[f,f2]

whence follows the truth of the Lemma.
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The assertions of Lemma 6 follows from the fact that with (18) at ¢ = ¢ (40) true,
solutions of equation (7) (with [——1) reach the hyperplane r(x)=0 of Theorems 1-4
and Lemmas 4-6.

Let us take up the case of control generation with I=n. In this case sufficient
conditions for solutions of equation (7) to reach the hyperplane g(xX)= 0 can be insured
by choosing the vector k0. All the results for this case are summarized in one Theorem
(the results are proved almost identically with Theorems 3, 5 and 6).

Theorem 7. Let for the system (S) (with 1=n) the relations hold

/c? sgn (¢, b) > viod max--—--— X
«glu I(c,6)|
x|(c, @ —and + bK°Ci/i)\, /=1,..,,n—1 (43)

almost everywhere on [tO, oo) for all A=%+1 and cic=c+< where

3
a=(T, .. .<x, 10)Ta= +-0,/=1, = n—I;

max X
a 0= 1. n- .- 1£J| S 1 -1 l.cel

(44)

p6

where

Z = lc\c=c+ko, —1<4A<1l, o0—0
i=1..n—1> C= max |[c,|, p=const>0.
i 1

Then follows from the assertion of Theorem 3.
If, furthermore, the relations hold

K-
~ >
, SO (c,b) ,2,m0ax|(c,b)| X

x \(c,a*—anci+bK°ciA)\, i=lI, 1
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a=(au ... ,n—1,0)r, af= £S, i=1 . . n—1 then follows the truth of Theorem 5
Moreover, if relations (43) and (44), the conditions of Theorem 4, inequality (33)
and the inequality

)cf sgn (¢, b) > vmi max

I 1o, gr (@)1 T=hean

almost everywhere on [t0, 00) hold, then Theorem 6 is true.

4. Conclusions

The results of Section 3 show that in control of a dynamic system described by
equation (1) through formulation of a control signal by law (3), (4), Section 2, a
continuous control signal is generated and for every F-solution (x(t), n(t)), t>t0 of the
system (S) as defined in Section 2, provided that the conditions of Theorems 3-6 (with
I=n—1) or of Theorem 7 (with /= n) on [t0, r,,) there is maximum one time at which no
derivative of the arbitrary newly introduced parametric coordinate /i(i) exists if
x(t) pUpwith te [tO, t*] and on [r0, i,,) the F-solution belongs to the discontinuity set
of the right-hand side in the equation for variation of the parametric coordinate (4) on
maximum one time interval; once the point x(t) reaches the set Bp, which is true for any
F-solution, at all subsequent times x(i) e Brwhile with the parameter a properly chosen
r can be made as small as desired; this way to generate a control signal is referred to as
quasicontinuous.

Theorems of Section 3 provide relations for the design ofa control system which
insures change of the dynamic properties of the processes in the desired direction.

5. Examples

Let us consider a two-dimensional dynamic system to be controlled (the notation
is as in Sections 1land 2)

(E.I)
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The control signal for the system (E.I) is designed by the algorithm

u= K?n\xl\,
E2)
—dcIx 1+x2+ ho\x 1)  with pI<l,
B = 0 with [p|> 1, [i(rO)|< 1.

Specifying the range of the parameters a-(f) (i= 1,2) let us determine the values of
the parameters in (E.2) with which the algorithm of generating the control signal (E.2) is
quasicontinuous and the processes to be controlled in the closed-loop system feature
the desired dynamic properties which are defined as noted in Remark 2 of Section 2 by
the equation A

xI=-clIxi+tl/(xl,t), MxJI < -<5|x,], (E3)

where @ is some continuous function of the real argument. Note that with the
conditions of Theorems in Sect. 3 valid, the process (X, (t), X 2(t)) with arbitrary initial
values reaches a closed sphere Bpand then stays inside the sphere Br\ furthermore,
following each time t>t0 there are times in which (x,(f), X 2(i)) belongs to Bp.

1° Let in (E.l) with almost all t>t0:

10<a,(f)<10, b5<a2(f)< 10

Let in (E.2) ct=2 and 3 =1, then the zero solution of (E.3) is exponentially stable.
In this case the relation (40) holds and relations (18) and (34) are satisfied with k°= 79.
Then relation (19) is satisfied with ap>1116 and the assertion of Theorem 6 with this

choice of Cj,<5, k?, a and p is true with r = 25p exp S*)P/. Assuming that p = 1/10 and
ap = 1116 determine a= 11 160 and have r< 2.5 exp . If p = 1/25, then assuming that

ap=1116 determine a=27.900 and have r< exp”j. With p=1/50 and assuming
again that ap=1116 determine a=55.800 and have r<0.5e x p . With p= 1/100

and ap = 1116 we have a= 111.600 and r<0.25 exp
2° Assume that in (E.I) with almost all t>t0:
—100<a,(t)< 100, 5<a2(t)< 10.
Assume that in (E.2) c,=2 and 3= 1 In this case (40) holds. Relations (18) and
(34) hold with Ki=259 and (19) hold, then Theorem 6 holds with r=25pexp
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Let P —Jqg then a=35.460 with ap = 3546 and r<2.5exp”y). Let p= 1/25, then

. 1
a= 88.65 with ap = 3546 and r<exp”y

3° Assume that with the parameters af(t) (i= 1,2) as in 2°, in(E.2)c! = 3and 6= 1
Relation (40) holds. With k? = 265 (18) and (34) hold. Let cop> 4488; then (19) is valid.

; /1460 .
With suchcL, Q K°,oiand p we can presume that r = 81p exp \Ap With p= 1/81 and
ap = 4488 we have a=219.912 and r<exp
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YnpaBneHne HeCTaUVOHAPHBIMU AUHAMNYECKUMM
crcTeEMaMU MY KBa3VHEMNPePbIBHOM (HOpMUPOBaHUM
YNPaB/ISItOLLEro BO3AENCTBIS

C. B. EME/IbAHOB, C. K KOPOBWH. b. B. YJIAHOB

(Mocksa)

PaccMaTpuBaeTcs 3ajada ynpaneHWs AMHAMUYECKUMU CUCTEMaMu, NNHEHHbIMU Mo KOOpAMHATaM
COCTOSIHWA U MO ynpaBneHwio. MpeanaraeTcs anroputM OPMUPOBAHUS YNPaBASIOLLETO BO3AEACTBYS,
HasblBaeMblii KBa3HENPEePbIBHbIM, C UCMO/Mb30BaHWEM [ONONHUTENbHO NapaMeTpuyeckoil KOOpAUHaTbI
(Umetoweit auddepeHLUManbHBIA 3aKOH  U3MEHEeHWs), MpUM KOTOPOM  BbipabaTbiBAeTCs HenpepbIBHbIiA
CUTHaN YNpaBNeHnst 1 NPW HeKOTOPbIX COOTHOLLIEHNAX, JaBaeMblX B paGoTe, BCAKOE PeLleHme notyyaemoit
cucTeMbl AUt hepeHLnanbHbLIX YpaBHeHNI NPUHALNEXUT MHOXECTBY pa3pbiBa NPaBoii YacTu ypaBHeHUs
M3MEHEeHWs NapaMeTpPUYEcKoii KoopanHaThl He Gosee, YeM Ha OLLHOM MPOMEXYTKE BPeMEeHU, Noka BEeKTop
perynmpyembix KOOPAWHAT He AOCTUFHET HEKOTOPOW OKPECTHOCTW HyNs, Mocie nonajaHus B KOTOPYHO
3TOT BEKTOpP BO BCE MOCNefytoLiMe MOMEHTbI BPEMEHW He MOKUAAeT HEeKOTOpoll 60/bLueii OKPEeCTHOCTH
Hynsi, KoTopas MOXeT 6biTb CAenaHa Kak YrofHo Manoii 3a cueT BbiGopa HEKOTOpPOro napameTpa
anropuTMa ynpaeneHus. B cucTeme ynpasneHUs OpMMpOBaHUe YnpaBsioLLero BO3aeicTBUS peanu-
3yeTcs C MCMOMb30BaHWEM KOHTYPOB KOOPAMHATHO-NMapaMeTpUUeckoil v napameTpuyeckoil 06paTHbIX
CBSI3€iA.
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UNIVERSAL CONSISTENCY RESULTS
FOR WOLVERTON-WAGNER REGRESSION
FUNCTION ESTIMATE WITH APPLICATION

IN DISCRIMINATION

A KRZY2AK, m.pawlak

(Wroclaw)
(Received January 1, 1982)

In the paper the pointwise consistency of recursive regression function estimate motivated by
Wolverton and Wagner [13] was examined.

Moreover, for classification rule resulting from this estimate weak and strong Bayes risk
consistencies were studied. The results obtained are universal, i.e. they do not require any
assumptions about the underlying distributions.

1. Introduction

Let (X, ¥), (XL YY), .. .(X,,, ¥,) be a sequence of independent and identically

distributed random vectors from Rdx R and let 4 be the probability measure of X.
Estimate the regression function m(x) = E(Y/X =x), by

n
m,,(x) = ii(lwm(x)Yi

(1

and {h(n)} is a sequence of positive numbers while K is a given nonnegative function on

The recursive computation of (1) can be carried out as follows

Wo(x) = 0oM = Q.
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Asymptotical properties of (1) were studied by Greblicki [5], Ahmad and Lin [1],
Devroye and Wagner [2] as well as Greblicki and Krzyzak [6].

Devroye and Wagner [2] assumed absolute continuity of measure * while other
authors put additional assumptions on u,

In practice, however, we hardly have any information about underlying
distributions. Therefore, the most reasonable approach is to study universal
consistency because the obtained results are valid for all possible distributions. Results
ofthis type were but recently obtained by Stone [11], Devroye and Wagner [3], Gyorfi
[8] and Devroye [4].

In Sections 2 and 3 we will examine the pointwise weak consistency

m,,(x)-*m(x) in probability mod 1, asn-t00 @
as well as pointwise strong consistency
m,,(x)-*m(x) as. mody as n->00 ©))

of estimate (2).

In section 4 we will show how to apply these results to obtain universal weak and
strong consistency of the discrimination rule derived from estimate ().

2. Weak consistency
In what follows Sx r will denote the closed sphere with radius r centered at x and

1Ais the indicator function of a set A.
Theorem 1 IFEY2< 00

h(n)—=0, n 2£ h di)~*0 as n->00 )
T h A0, 5
"« 1z h-d@

there exist positive numbers a, r such that
K(x)<alwy;r[|ETXX). ©)
K(x) depends only on ||x|| and decreases as ||x|| increases, that is
K(x) = <p(JIx|l) where (), t>0 )

is monotone decreasing then (2) holds.
To prove Theorem 1we introduce the following lemmas.
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Lemma 1 Let K be nonnegative /i-integrable function with compact support and
satisfy condition (7), then for every function/ e L(fi)

LLL )/(>) p(dy)
f(x)modfi as/j->0. )
J K(r)ady)
Proof. The proof is motivated by the argument of Wheeden and Zygmund

[12, pp. 156-157].
Let x e Rdand

E = <(y,t):yeRd, t>0, X XY sy

be a subset of Rd+l, then

K XY _ |’4 LE(y, t)dt

Therefore by Fubini’s theorem

®
Kl 1/i(dy) = j Ne,) dt
where E, = ty:K ( 1> t}, and
If.K(~n~ (y)p (dy) = f(yMdy) )dt=
0 E
O

=1 E) gy fOIN(@) dt <

Et

- aB ), ON®)  HEX
E,
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By (7) E, is a sphere centere d at x and with radius hp *(i). The left side of (8) is
dominated by

1 _ 1
LB R} f(y)n(dy)= AT f(y)/2(dy) ©

0 <r”ch Sxr

where c is equal to radius of support of K. (9) tends to f(x) mod v if/i->0 by theorem
10.49 of Wheeden and Zygmund [12, p. 189]. g.ed.
Lemma 2. Let fi(n)->0 as n->00 and there exist positive constants B, r such that

K (x)>/i/llWigr|(X)
then

lim n 1ThJ(i)EK\$X-X‘)>OmodL|,. 10
~a-~ , h{i) 1

Proof.

M 1X h di)EK[Xh *' )> Bn 1X h d(i)p(sxre.)e

Proposition follows by measure-theoretic result of Devroye [4]:

hd(n)

im exists for each xe R modfx. ()
»COMXI*([D)

g.ed.
Conclusion. From inequality (10) it follows that

| h~d(i)EK. (X~ X 00 mod ix as n-+0o . (12
V h()

Lemma 3. If

fin)->0,n 2 £ h di)-+0 as n-tc

¥m Lhan < 00 (13)
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then
—hfan) RV 0 mod asn->00.
i h~d(j)EK
Proof. Consider the quotient
n2 h d(n)
h~d(n) 1

By lemma 2 and (13) the above expression is bounded mod u. g.e.d.
Remark 1 Condition (13) is satisfied for h(n)=cn a ¢>0, a>0.
Let h~dn) vary regularly with exponent b (see Loéve [10], p. 354), ie.

y
h d{n)=nbVhfor be R and -» 1 as n->o00 for every /> 1

Karamata theorem ([10], p. 356) states that

li P ¢ »)
0, h g
i=1

if h~d(n) varies regularly with exponent —1<b<oo.
Therefore condition (13) imposes restriction on the regular variation of the
sequence {/i(n)}; however, it does not determine its rate of convergence to zero.
Proof of theorem 1 In the proofwe use the easily verified equivalence suggested
by L. Gyorfi
A+B (14)
1+C

where

X - X, \
J
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RN 0 h(i)

Z h~*WK

Z h* (i)EK No )
We prove that A tends to m(x) mod 1, and B, C tend to O in probability mod /1

K fx-X,

E T(X()
Ki)

X-Xi
EK
W

Zn d(j)EKfi?)

By Toeplitz lemma (Loéve, p. 250), Lemma 1 and Conclusion the above
expression tends to m{x) mod g as n->co.
By Chebyshev’s inequality

Z h2i)EK®
P{B>t} <t (0
Z h J(i)EK
(i) m B
at
< L (x=Xi
VA h~dEK "
EK2(~r"Ag(Xj)
*

4 Y wEKLW El (1L

h()
h d@)
. X-X
Z h~d(i)EK

where g(X) =E(Y2\X).
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By Toeplitz lemma as well as Lemmas 1and 3the above expression tends to 0

mod /I. Consistency of term C may be shown similarily to that of term B by replacing
1fori= 1,2, . . n It concludes the proof of Theorem 1

Remark 1. Weak consistency may be also proved by considering the following
type of convergence E\mn(x) —m(x)|p->0 mod p as n-+oo for p> 1

It was obtained under the moment assumption E\ Y\p< 00, p> 1land a slightly
different condition imposed on K and {h(n)} by Krzyzak and Pawlak [9].

Remark 2. If we additionally assume in (6) that there exists a positive constant d
such that K(x)>d/{j'|)*||sr|, then condition (7) may be deleted.

3. Strong consistency

Theorem 2. If EY2< 00, the monotonic sequence {h(n)} satisfies the following
conditions

®
/i(n)->0 as n-yoo, Y1 n~2h~d(n)<cc (15)
im ¢ (16)

n- ‘itzlh J(i)

and the kernel K satisfies conditions (6), (7) of Theorem 1, then (3) holds.

Proof. In the proof we use equality (14). It is sufficient to show that term 0
and C—0a.s. mod p as n~*oo.

We apply Kolmogorov’s second moment version of the strong law of large
numbers (Loéve [10], p. 250).

To show that B->0 as. mod p as n-»00 we should verify whether

h~2d(n)EK2
ek

7 b2 < oo mod p (17)

where

K= Z h~di)EK *

To prove that C->0 a.s. mod p as n~*oo, it is sufficient to assume in (17) Yn=1
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The sum on the left side of (17) may be upper bounded as follows:

hd(n)
a X n 2h d(n)Mn(x)Un(x)- .- (18)

X,
EK

where

ek 7 g(xn

M..(x) =
Ek1 X%
un(x) =
n 12 hi)ek X0
By Lemma 1, M,,(x)-+"(X) mod L as n->00.
Moreover
hJ(n) h*{n)
- *. 1
EK X-X, RI*{Sxrig,)
for some ,r> 0 and by (11) it is bounded mod u.
u,,(X) may be estimated as follows
n 1i|—| h d(i)

by the monotonicity of the sequence {h(n)} and assumption (16). It concludes the proof
of Theorem 2.

Remark 3. If the measure v is atomic then the monotonicity assumption on the
sequence {h(n)| in Theorem 2 may be deleted. Moreover, for absolutely continuous
measures L conditions (5) and (16) in Theorems land 2 are redundant. In the latter case
the assumptions on the sequence {/i(n)} are the same as in Devroye, Wagner [2].
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4. Nonparametric discrimination

In discrimination Tisa{l, .. ,,M} valued random variable and X takes values
in RJ.

Given a sequence {(X2?yt), ... ,(X,, Y,)}= \hof independent random couples
and X we estimate Y, say Y=1i/(X, K)= dr(X). The probability of error for the given
estimate and learning sequence \., is

LPn) =L, = P{ip,,(X)" Y i} .
Uep*)=1* = ipch-‘inf | P{b(X)*¥}

Let

denote the Bayes probability oferror. The Bayes classification rule is defined as follows:

... L PIX)>Pj(X) j<i

* =

I/*X) =i if ‘D W Sply) j>i

where PA) is the aposteriori probability of the event {¥ =i} given X.
An unknown P, can be estimated by

oM X 2.

PinW = X —

X-
J  Xh dsK e

and  can then be picked such that

(Pin(X)>Pjn(X), j<i

)= pigx)>PIX), j>i, (19)
The classification rula ifi,, is called weakly (strongly) universally Bayes risk consistent if
L,,-»L* in probability (a.s.) for all distributions of (X, ¥).

Using the bound of Gyorfi [7]

O<Ln-L*< X ilP.-.M-P.MIMd*)

and Theorems 1, 2 and Lebesque’s Dominated Convergence Theorem, we get

Theorem 3. If kernel K satisfies conditions (6), (7) of Theorem 1 and for the
sequence {h(n)} conditions (4), (5), ((15), (16)) hold then the discrimination rule (19) is
universally weakly (strongly) Bayes risk consistent.
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OKCTPEMAJIbHbIE CBOVICTBA 3/11MCONA0B,
ATTIPOKCUMUWPYHOLWMX OBJIACTU JOCTVNXNMOCTU

A. . OBCEEBWY
(Mocksa)

(MocTynuna B pefakumio 6 sHBaps 1982 r.)

WccneayeTcs aBontouus 06nacTeit JOCTMXMMOCTY YNpaBNsieMbX CUCTEM W 3MNANCOMAOB,
annpoKCUMUPYIOLLMX 3TV 06M1aCTU CHapyXu U W3HYTpW. HalifieHbl HEKOTOpble 3KCTPeMasbHbIe
CBOIiCTBA paccMaTpyBaeMbIX 3/1/IMNCONOB.

1 BsegeHve

PaccMOTpUM NNHelHYI0 YNPaBAsSEMYIO CUCTEMY
X=A(t)x+u, ueU(t), x(s)eD(s) (1.1

3pech X 6 R""— hasoBbIil BekTOp, A(t) —3agaHHasA n X «-mMatpuua, U(t) — 3amMmKHyTas
061acTb A40NYCTUMbIX 3Ha4YeHW ynpasneHns, D(s)— 3aMKHYTOe MHOXECTBO, OTKya
HaunHaeTcs ABWXeHWe B MOMEHT S (HayasibHas 06/1acTb).

MHoecTBO koHUOB X(f) TpaekTOpuiA, HaumHatowmxcs B D{s) n ygosneTtBops-
owmx (1.1) 4ns HeKOTOPOI n3mepumoii BekTop-thyHKumn u(t) e U(t) — gonyctumoro
ynpaBneHus, Ha3blBaeTca 061acTblo0 AOCTMXMMOCTH

D(t) = D(s, ) = D(s, D(s), 1)
cuctemsl (1.1)

3HaHue obnacTeli JOCTMXMMOCTM HEO6XOLMMO B TeOpUW YMpPaBneHWUs npu
rapaHTMPOBaHHOM OLLEHVBaHWUM ((hMbTpaLmn) AUHAMUYECKMUX CUCTEM, B AU hepeH-
UManbHbIX Urpax (cm., Hanpumep, [1,2, 3]). Tak, 3agaya MUHUMU3ALUN TEPMUHASb-
Horo dyHkumoHana F(x(T)), rge T — (DMKCUMPOBaHHbIA MOMEHT, 3KBMBA/IEHTHA
MUHUMM3aUUKU PyHKUMKM F(X) Ha o6nactu goctmkumocTtun D(T).

OfHako 3heKTMBHOE NOCTPOeHMe 061acTeil JOCTVXKMMOCTMU CTaNKMBAETCS C
60NbWNUMU TPYLHOCTAMM, CBA3aHHBLIMU C HEOOXOAMMOCTbIO BECKOHEYHOro uvucna
napameTpoB Ansa 3agaHusa obnactm B R B page paboT pasHbiXx aBTOpOB (CM.,
Hanpumep, [4, 5]) 6bl1 pa3BUT METOA NPMOAKEHWA 06/1acTe [OCTMXKMMOCTM
obnactsmun 3agaHHoli ¢opmbl. B uyacTHocTU, B [5, 6] NonyyeHbl OObIKHOBEHHbIE
anddepeHumanbHble YpaBHEHWS, ONUCHIBAIOLLME 3BOMKOLMIO 3N1IUMCOMAOB, annpok-
CUMUPYIOLUX CHAPYXW U U3HYTPU 061aCTN SOCTUXUMOCTH.
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B Hauane HacTosuwleli paboTbl MPUBELEHO YpaBHEHME 3BOMOLMU 06acTei
Joctmwkumoctn (pasgen 2). Ha ero ocHoBe CTaBUTCS W peluaeTcsa 3afgadya o
Hamny4Lem NpUGIMKEHNM 06nacTeld JOCTUXKMMOCTU anmncongamu (pasgensi 3, 4).
MokaszaHo, YTO peLleHWe 3afayn MOyYaeTcs MHTErPMPOBaHMEM YMOMSAHYTBLIX Bbllle
anddepeHLManbHbIX YpaBHEHWIA.

2. YpaBHeHUs 3BOMOLUMM 06/1aCTeN JOCTKMMOCTU
C nobbiM nogMHOXecTBOM DaR" cBf3aHa ero ornopHast yHKUWs
H(O=H") =sup(x, £
xeD

roe €i?", (, ) — ckanapHoe npousseseHne. Ecnu D 3aMKHYTO M Bbinykno, To HD
3agaet D ogHo3HayHoO [6]. 3ameTum, yTo ecnu obnactu ynpasneHus (/(f) v HayanbHas
obnacte D(s) cuctembl (1.1) 3aMKHYTble W BbINyK/ble, TO TaKO >Xe ABNSETCS W
061acTb goctkumoctn D(t). MoaTomy cnegytolee npefsioXxeHue, OnNucbiBatoLLee
3BO/IOLMIO OMOPHOI (yHKUMM obnacTu goctvxumocTu D(t), onpegenser B 3TOM
Cyyae 3BOMKOLNI0 06/1acTe JOCTYXKMMOCTHU.

Mpepno>keHve. TycTb PyHKUMM A(t) 1 mHoxectBa U(t) B (1.1) nsmepumo [7]
3aBucAT oT |, H(t,£) =HDI)E — onopHasa ¢yHKuMsa obnacTn gocTmkmmoctn Z)(t),
h(t, ») —Hu{t)(i) — onopHaa dyHkuua ob6nactu ynpasneHus (/(f).

Torpa

dH ( aH \
~ar(’o =) ("& Y +h('® (2

roe o/of os3Havaet rpaguveHT no

(3mecb (A(nH/OE), £)=(oH/p™, A*£) noHMMaeTCs Kak NpoOM3BOAHAs MO Ha-
npasneHnto \IrE~H(£+eA*£)-H(&) npu mO). CooTBeTCTBYIOWMNIA Npegen cy-
LWecTBYyeT Ans Nboi BbINYKIoA dyHKuun [7]).

3ameuaHue. AHanoruyHas opmyna npu HeCKOMbKO MHbIX MPeAnOoNoKeHNaX
nonydyeHa B [8]. Ana ygo6cTBa umTatens 3fecb, 04HaKo, NPMBOAMTCA AOKa3aTeNbCT-
Bo. OTMeTUM, 4TO 3aBucMMOCTb D(t) 0T HauanbHOl o6nactu D(S) 1 MOMeHTa S B
cnydae, Korga D(s) COCTOMT M3 O4HON TOYKM X OMMWCbIBAETCA XOPOLLO M3BECTHbLIM
ypaBHeHueM BennmaHa.

JokazaTenbcTBO. [MOKaXeM cHayana, YTto JOCTaTOYHO PacCMOTPETb Cyyail
AN=0 B (1.1), (2.1). OeirictButenbHo, nmycTb Matpuua P(t) (pyHaameHTanbHas
mMaTpuLua) ABnfeTca pelweHvem 3agadm Kowwm:

P=A(t)P, P(s)=I (2.2
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roe 1 — eguvHuuHas matpuua. Torga 3aMeHa nepeMeHHbIX X = P(t)y npeobpa3syet
cuctemy (1.1) B

Y=V, veV(t)=P{)~1Ut), y{s)eD(s) 23)

O6nactun goctmxunmocTtu D(t) ans (1.1) nepexodaT npu 3TOM B 06/1aCTM JOCTUXMMOC-
™ D°(t) = P(t)~1D{t) apna (2.3), a cooTBeTCTBYOWME onopHble (yHKumMn H(t, G B

Ho(t,") = sup (y.£)= sup (x, P(i)*-1£)=H(t, P(t)*~‘£).
y<=D°(t) xeD(t)

Mpsmas BbiKNagka nokasbiBaeT, 4To npeobpasoBaHme
H(t, o -»H°(t, ~)=H(C,P(1)*U)
nepesoauT pelleHuns (2.1) B peLueHus

HO
Adt V,Z)=h°(t, 0 = HKWO- 24)
B cuny obpatumocTn P ocTaeTca fokasatb opmyny (2.4) 4Ns ONOPHbIX (yHKLUNI
H°(t, £) obnacTeii goctmxummoctn D°(t) cuctembl (2.3).

Vimeem

a°(r, £)=sup (j*¥{r) dt, £

rge sup 6epetcs NO BCEBO3MOXHbIM M3MepUMbIM BeKTOp-yHKUuAM r(i)e V(t). A3
TeopeMbl 06 M3MepyMOM Bblb6ope [7] cnesyeT, 4To

sup (I v dt, i) =1 sup (v, £)dr = j h°(z, £) dr,
s s ve V(z) s
4yTO 1 TpeboBasochb A0KasaTb.

B panbHeliwem 6ygeM paccmaTpvBaTb TOMbKO CAydvaid, Korga o6nactu
ynpasneHns U(t) n HavanbHaa obnactb D(S) 3aMKHYTbI U BbIMYK/IbI.

Onpegenenne 1 MycTb U(t),t>S — CceMeNCTBO 3aMKHYTbIX BbIMYK/bIX MHO-
XecTB, H(t, =Hm (£) — coOTBETCTBYIOLLEE CEMENCTBO OMOPHBLIX (yHKUMiA. CKa-
Xem, uto B(f) — cemeiicTBO 06nacTeit Cy6A40CTVIXKMMOCTH (COOTBETCTBEHHO Cynep-
poctmwxkumocTun) ana (1.1), ecnm BbINOAHEHO AuddepeHUnanbHOe HepaBeHCTBO

™ (ra tj +h(t O,Hs, O=HDOY{ (2.5

(COOTBETCTBEHHO CO 3HAKOM >).
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BrtoueHve B, ¢ B2 3aMKHYTBIX BbIMYK/bIX MHOXECTB 3KBMBa/EHTHO Hepa-
BeHCTBY HI{(") <H 20 gna ux onopHbIX PYHKUMIA, MO3TOMY 13 TEOPEMbI 1creayeT,
uto O(f) c: D(t) B cnyuae cy6aocTxUMOCTY 1 12(t) =D(t) B Cryyae cynepaoCcTUKUMOC-
Tn. bonee Toro, ecnn T< tn E)(T, )= D(T, B(r), t)— 061aCTb AOCTVXKMMOCTN B MOMEHT
| cuctemsl

X =A(t)x +u, ne Ut), x(1) e B(r) (2.6)

To D(x,t)*>2(t) B cnyvae cy6gocTvkumoctn wm o ((i, i)cB(i) B cnyvae
CynepAoCTVXUMOCTH.

Onpegenenmne 2. Myctb K(B) — o6bem MHOXecTBa 13, £ — HEKOTOpbIA Knacc
BbINYK/bIX MHOXeCTB. Ckaxem, 4To cemeiictBo R(i) e E obnactein cy6- (cynep-)
[LOCTDKMMOCTM NIOKa/IbHO HamnyyliyMmM 06pasoM NpubamkaeT 061actu SOCTUXKM-
moctu D(t) cuctemsl (1.1), ecnm npu 1>s

£ v(mi,=r

fJocTuraet makcMMmyma (MMHUMYMa) Cpeaw BCex CeMeicTsB obnacTteid cy6- (cynep-)
JOCTMXMMOCTM M3 E ang cuctembl (2.6).

Takum obpa3om, cemeinictBo R(f) faeT HaMnyudLWyO OKa/bHY annpoKcMMma-
UM 06M1acTM JOCTVXKUMOCTM NO KpuTepuio o6bema. Tenepb MOXHO TOYHO
chopmynupoBath 3agady O MpMOAVKEHWM o6nacTeli AOCTMXMMOCTM 06nacTam
3aflaHHO (hopMbl. 3afava COCTOMT B 3(PEKTUBHOM MOCTPOEHUM NOKaNbHO HauIyy-
Lero cemeiictsa obnacTei cy6- U CynepfoCTMXXUMOCTM U3 3afjaHHOro Knacca E. B
CnedytollemM pasfene 3TOT BOMPOC pellaeTcs Aas cnyyas, korga E — knacc Bcex
3/1IMMNCONL0B.

3. YpaBHeHVIst 3BOSIHOLMN anMPOKCUMUPYHOLLWX 3/1/IMMCOULOB.

O603Ha4YMM 3AUNCOnA
{x6 R", (Q~*x—), x —a)< 1}

yepes E(a, Q). 3gecb ae R', Q — nNOMOXUTENLHO OMpefeneHHas CUMMETpPUYecKas
maTpuua. MNpeanonoxum, YT0 HavanbHbIi MOMeHT s=0, HayanbHasa obnacTs ((0)
cuctemsl (1.1) ectb annuncoung E(a0, QO), a o6nacTtu ynpasneHuns U(r)— annunconil
E(b(t), G(f)). Torga 3BOMOLUUIO 3NIUNCOUA0B, NOKA/IbHO HaunyylnMm o6pas3om
NprbAMXKarLWmMX 061acTu JOCTVXXUMOCTM CUCTEMbI

x=A(t)x +u,une Eb(t), G(f)), x(0) e E(a0, Q0) (3.

MOXHO onucaTb guddepeHumnansHeiMu ypasHeHUaMK (3.3), (3.4) u3 Teopembl 1
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MpeaBapuTenbHO NpUBeSEM [BE NeMMbI.
Nemma 1 [3]. OnopHas yHkuua H(E) snnunconga E(a, Q) 3agaetca chopmynol

WO=(a, £)+WNY'2
Nemma 2[9]. MycTb A(t) — cemeiicTBO 06paTUMbIX MaTpUL, rNagKo 3aBUCALLNX

oT i. Torpga

aIog det /4(t)=Tr At) 1A (t)

CnepcTsue. MycTb E(a(t), Qt)) — cemeitictBo annunconpos, V() — o6bem
E(a(t), Qft)). Torpa

it V() =\v(t)TrQ(trl Q) (3.2)

[OevicteutensHo, K(i)= U;,[det Q(i)]¥2 rge (¥,,— 06bem egnHuuHoro wapa £(0, /), n
thopmyna (3.2) nonyyaetca n3 neMmbl 2. BeefieM 0603HaveHune {a, B}=ixR + *ot* gns
maTpuy a, .

Teopema 1 1) Myctb a_(i),B -(f) — peweHne 3agaun Kowwwn.

a- = A(a_+b(t), a (0)=ao
={A(1),Q-} + 2R -I(RQR*)II2(RG(t)R*)II2R*~1 (33
6-(0)=Ro,

roe R — Takas HeBblpOXAeHWs maTpuua, 4to Q°=RQ_R* n G°=RG(t)R* —
amaroHanbHble matpuubl. Torga £(a_(i), B_(i)) — N0OKanbHO Hanay4liee CEMENCTBO
anamMnconganbHbiX obnactelt cy640CTMXKMMOCTM ANa cucTembl (3.1).

2) Nyctb a+Ht),Q+H{t) peweHune 3agaum Kowwn

a+=A(t)a++b(t), aH0)=a0
6 += {A(), Q+}+hQ++h IG1), R +0)=R0 (3.4)
A=[n-1Tr(R;1C(t)]1a

rae Tr o6o3HavaeT cneg. Torga E(a+t), Q+(t)) — nokanbHO Hamnyudllee CeMeCTBO
3NNUNCOMAOB CYMNepAoCTUXKMMOCTU Ana cuctemsl (3.1).

3ameuaHue. Xopolwo M3BecTHO (cM., Hanpumep, [9]), uto ecm A n B aBe
CUMMETPUYECKME MaTPpuULbl, O4HA U3 KOTOPbIX MOMOXWUTENIbHO OMpefefieHHas, To
CYLLECTBbIET Takas HeBblpoXaeHHasa matpuua R, uto RAR* n RBR* — gunaroHans-
Hble. BoipaxkeHne R~I1(RAR*)il2(RBR*)il2R*~| HecMOTps Ha BO3MOXHYIO HEOAHO3-
HayHOCTb R, 3aBUCUT TONIbKO OT J1 M B 1 noaToMmy npasas 4yacTb (3.3) KOPPEKTHO
onpegeneHa. [JokasaTenbCTBO TeOPEMbl Pa3obbeM Ha CKOMbKO LUAros.
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LLar 1. ¥YnpouweHue cuctemsl (3.1). Myctb matpuuHasa dyHkuua P(t) (pyHaa-
MeHTanbHas MaTpuua) SBseTcsa pelleHuem 3agaum Kowm:

P=A(t)P, P(0)=/. (3.5

Cpoenaem 3aMeHy nepemeHHbIX X = P(t)y. Torga ynpasnsemas cuctema (3.1) npeobpa-
3yeTca B
Y=V, Ve V(t) = P(t)- 1u(t) = E(bj (0), G, (1))

b, ()= P()- Ib(t), G. ()= P(t)- 1G(i)P(t)* - 1 (3.6)
y(0) e E(a0, QO) .

OuesugHo, P(t) nepesBoauT annuncoufbl B anauncougbl, a obnactu cyb- (cynep-)
JOCTMXMMOCTU cucTeMbl (3.6) B cooTBeTCTBYHOLWME 06nacTh gns (3.1). (snauncong
E(a{t),Q{t)) nonyyaetca nmog geiictBuem P{1) u3 anauncomga E(P~la,p 1Q P *1)
HeTpyaHo nposepuTb npsAMbIMK Bbiknagkamu, yuto ecim R(f), a(t) yaosneTsopsatoT
andepeHunanbHbiM - ypaBHeHusaM (3.3) wam  (3.4), To napameTpbl  P(t)~la(t),
P(t)~'Q(t}P(t)* 1annmncompa P 1E(a,Q) yLOBNeTBOPSAOT CUCTEME, aHANOTMYHON
(3.3) nm (3.4), B kotopoit /1(f)= Q a G=Gt 3agaHo B (3.6). CnegoBatesibHO, B Cuy
obpatumocTun P(t), ganbHelillee A0Ka3aTeNbCTBO TEOPEMbl 40CTATOYHO MPOBECTY,
nonaras /I(t)=0 B (3.1). 3ameHa nepemeHHbIX X = Y+ r(f) roe

r==6(f), r(0)=ao,
MO3BOMSAET MOC/Ee 3TOr0 NPOBOAUTL AOKA3aTEIbCTBO TO/IbKO A8 CUCTEMbI BMAA
x=wu,u e £(0, G(i)), x(0) 6 £(0, BO) * (37

LLlar 2. Mepedopmynuposka 3agaun. Myctb £(a(f), B(F)) — cemeiticTBO annmn-
COMA0B CY6A0CTMXUMOCTM 418 cucTeMbl (3.7). CornacHo neMme 1uonpegeneHumio 1,
3TO O3HauvaeT

jtMtU) + mtK,0mA<(G(tK,0112, a(0)=0, (3.8)
R(0)=Ro.
MHa4ye roeop4,
(4,0 + \ Ne Z r 1(QZ,2)<(Gll,1))i12, VEeK". (3.9)

dopmyna (3.2) no3songeT nepenucatb yCN0BME /IOKaNbHON onTUManbHoCcTK (onpe-
nenenve 2) cemeiicta £(a(i), B(t)) B Buge:

Tr& ‘B-nnax no anRB (3.10)
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npun hmkcrpoBaHHOM Q = Q(t) cpeay BCEBO3MOXXHbLIX BEKTOPOB & M CUMMETPUYECKNX
matpuy Q, 48 KOTOPbIX BbIMOAHEHO HepaBeHCTBO (3.9). Ana cnyyas cynepaocTmxiu-
MOCTU Wwax B (3.10) HY>KHO 3aMeHUTb Ha Min, a TaKXKe U3MEHUTb 3HaK > Ha < B (3.9).
3ameHss B (3.9) £ Ha £ 1 cknafblBas NosyyYeHHOe HepaBeHCTBO ¢ (3.9), umeem

y Ne 1)-111 1)< M J1)u2. (3.12)

Moatomy, ecnu napa (& Q) poctasnsetr makcumym B (3.10), To napa (0, Q) Takxe
[0CTaBNAET 3TOT MakcumyMm. B pganbHeliwem nonaraem 5= 0.

MycTb R — Takas HeBblpOXAeHHasa maTpuua, uTo = RQR*, GI=RGR* —
AvaroHanbHble Matpuubl. Monoxum C=RQR*, £=Rri. Torga TTQ~IQ=TrQilC
N 3KcTpemanbHasa 3agada (3.9), (3.10) ceogmTcs K cnegyrowein. Haintn cummetpuyec-
Kyto matpuuy C, JOCTaBNAIOLWLYI0 MakCUMyM

TrRi 1C—»max
(3.12)
(Ghr,)<2(Glr,,r)I'2(Q1r, u)112 Vile R"

roe Gl,Q1— 3afaHHble AMaroHanbHble MaTpulbl. B ciyyae cynepaoCTUXUMOCTM
MPUXOAMM K 3ajaqe

TrQ, 1C-nnin
(3.13)
(Cil, iN>2(G 1, iNY2(6 iV. MY2-VIe R*

[ns fokasatenbCTBa TEOPEMbI HYXHO YCTaHOBMTb, YTO OAHO W3 PELLEHWA 3agaun
(3.12) paetca opmynoli

C=2Q\I2G\12 (3.14)
a 3agaum (3.13) — copmynoli
C=hQl+h IGt,h=\h I Tr(Rf1G,)]12. (3.15)

B camoMm fiene, u3 (3.14), (3.15) ¢ yuetom cBasn C = RQR* 1 aHanornyHbix hopmyn ans
Qx, G, BbITeKaloT ypaBHeHus (3.3), (3.4) ona B KoTopbIX Y= 0. N3 Toro ¢akra,
yTo =0, BbITEKAET TakXkKe CNpaBea/IMBOCTb ypaBHeHuin (3.3), (3.4) gna a_, a+ npwu
A=0, b=0, a0=0.

LLar 3. PeweHue npeobpasoBaHHOW 3agayn. [lokaxem, 4TO peweHne C
akcTpemanbHoOi 3agaum (3.12) uam (3.13) MOXHO ucKaTb CpPean AnarOHasIbHbIX
matpuu,. JeicTtBuTensHo, nyctb C — HeKoTopoe pelleHwe, ' — rpynna guaroHans-
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HbIX MaTpuL C AuaroHanbHbiMK 3nemeHTamu +1. Torpga, ecim ge I, 1o g*Cp —
TakxKe, Kak U C, ABNSeTCA pelueHnemM, NoCKOobKy

a*=8~1=5, g~IGkg=G, g*IQig=Qi
TTQ;IC=TT(g-iQ;ig-iCg)=TT(Q;lg 1Cg).

HepaseHcTBO (3.12) 1 (3.13) nnHeiHbl Mo C, N03TOMY KOMOUHaL WA

Cr2mrg*Ca (3.16)

peLueHuin a*Ca Takke ecTb peleHne. Ho C, — 3To AnaroHasbHas MaTpuLa c TEMU e
AnaroHanbHbIMKU 37eMeHTaMu, 4to U C. B caMom fene, MaTPUYHbIii 3/1IEMEHT

(Ci)o=2-" X 0, cu=Cy(2-" X gua»)= Cu<Pu,
nelr pel

Ecrmi=j, 10 (pj=2 "X 1= 1- Ec/m Xe i pj, TO NOCTaBMM B COOTBETCTBUE MaTpULLe
p=diag (gd e ' matpuuy Aa°=diag (g e [N, 3agaHHy0 (HOpPMynoi AKK=AKK npu

K, 2= —qgjj. OueBngHo, pasdmsas X BMBA HA CYMMbl MO Napam COOTBeTCTBytO-

ael”
LUMX 3n1emMeHTOoB, noayumm <y = 0.

MoaToMy B fa/bHeleM MOXHO OrpaHWYMUTLCS MOMCKOM AnaroHanbHOM
maTpuubl C=(c,<by). O603HaYMM Yepes p, 0, I BEKTOPbI C KOMNOHeHTamn pi= (G i,
9i=(6i)io G=(Ri DH="I1- Torga 3agaumn (3.12), (3.13) cBOAATCA K CneayoLum
[BYM 3afiayam:

(r,c_)->Tax
(3.17)
(c-, X)< 2(p, x)112(q, x)112

roe X e R" — npoun3Bo/bHbIA BEKTOP C HEOTpULLATENbHLIMW KOMMNOHEHTaMU (KBagpa-
TaMu KOMMOHEHT BekTopa A u3 (3.12)),

(r, c+)—»min
(3.18)
(c+,x)> 2(p, x)1,2(q, X)1/2, Vxe R", x, > 0.
MogcTtaBum B (3.17)x = e;— i-nopT. Monyunm (c_),<2p*/2"1/2. Tak Kak F— BEKTOpe

NONOXMUTENbHBIMU KOMMOHEHTAMU, TO BEKTOP C_ C KOMMOHeHTamu (c_), = 2p2/2n//2,
YAOBMETBOPAOLWMIA orpaHnyeHnto (3.17), saBnseTcs peweHnem 3agaum (3.17). Takum
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06pa3om, Hy>KHO NMPOBEPUTL HEPaBEHCTBO

r
| pli2al X< VX, xf>0.

Ho 310 ecTb HepaBeHCTBO KoWWn-BYHAKOBCKOro /11 BEKTOPOB C KOMMOHEHTaMu
(P.X)112, (<2,X)1/2.

Takum o6pasom, 3agaya (3.17) pelueHa v ee peLLeHne ¢_ NpPUBOAUT B TOYHOCTM
K hopmyne (3.14).

Mepeligem K peweHnto 3agaum (3.18). Monaras B (3.18) x =r, noAy4um

(r, c+)> 2(p, NN2(q, r)il2=2nl12(p, r)112 (3.19)

C gpyroit ctopoHbl, nonarasg h=n~1/2(p,r) n c+=hq +h~Ip, umeem
(r,c+)=2nY2p, r)1/2. (3.20)
MposepuM orpaHuyeHve (3.18) anga c+
(c+,X)=h(g, x) + /T Up, x)> 2[%, x)] V2[/i* 1(p, x)]1/2=
= 2(q, X) V2(p, x)1/2.

M3 nonyuyeHHoro HepaBeHcTBa U (3.19), (3.20) cnegyeTt, UTO C+ — peLleHUe 3afadn
(3.18). HeTpynHO npoBepuTb, YTO OHO NPUBOAMT K hopmyne (3.15).

Teopema foKa3aHa.

3ameuaHue. YpasHeHus (3.3), (3.4) 6binm nonydeHbl paHee B pabotax [5, 6] ¢
MOMOLLbK KOHEYHOPA3HOCTHOM annpokcuMauun ynpasnsemol cuctembl (3.1),
OfHaKO B HMX He OblNIO BbIACHEHO, B KAKOM CMbIC/Ie peLleHuns 3TUX ypaBHEHUI aaloT
Haunyullee npubavxeHWe K 061acTam AOCTMXMMOCTU. Teopema 1 pelsaet 3ToT
BOMPOC, YCTaHaBNMBas 3KCTPeMasibHble CBOWCTBA 3MAMNCOMA0B, OMMUCLIBAEMbIX
ypaBHeHusAMM (3.3), (3.4).

4. EQVHCTBEHHOCTb JIOK/TbHO OMTUMMA/TIBHOA 31/MNconaasibHOM
annpoKcuMaLmm

B Teopeme 1 6bISI0 NoOKaszaHO, YTO ypaBHeHUs (3.3), (3.4) galT NoKanbHO
OnTUMabHble CeMelicTBa anaMncongos. [okaxem Temnepb, YTO APYTUX SI0KANbHO
ONTUMa/bHbIX CEMEACTB 3N/IMNCOULOB HeT.

Teopema 2. MycTb E(a(t), Qt)) — NokanbHO onTUManbHOe CEMENCTBO 31NM-
COMAOB Cy6- (cynep-) AOCTMXXKMMOCTW Ansi ynpasnsemol cuctembl (3.1). Torga
(at), Q(t)) — mHTerpanbHas kpusas cuctemsl (3.3) (COOTBETCTBEHHO (3.4)).

4
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[JokasaTenbCcTBO. PaccyaeHns u3 waros 11 2 B 4OKa3aTeNbCTBe Npeablay-
LLieil Teopembl MOKa3bIBAKOT, YTO B C/lyyae Cy6A0CTUXKMMOCTI A0OCTATOYHO YCTaHO-
BUTb €MHCTBEHHOCTb PeLleHUs 3KCTPEMasnbHON 3adaqn:

TrQ ‘C-ynax no dC
4.1

d 2 +\ (6i, IT UCI, £)<(GE, {I/2, VZeRn,
roe Q, G — 3aflaHHble MNOMOXWTENbHble AuaroHanbHble MaTpuubl, d m1 C —

NepeMEHHbIE BEKTOP N CMMMETPUYECKAA MaTpuua. B cny4dae CcynepaoCTMXnmMocTun
HY>XHO YCTaHOBUTb €ANHCTBEHHOCTbL B aHalorYHolA 3afiavye

Tr<2 ‘C-ywn no d C
4.2

aa + v$.

Kak 6b110 0TMeYeHO npu AokasatenbcTBe TeopemMbl 1 (cm. (3.11)), pelleHus 3atady
(4.1), (4.2) saBnaOTCA TakXe pelleHUAMU 3adad

TrQ 1C-unax
4.3
(C{£)<W, 0 UAC{H)' =IO
Tr Q~AC-nnin
(4.4)

(Cr)> LW, HY/2(GH, £)12= DIO

JokaxeM BHavane eIMHCTBEHHOCTb pelleHus 3aaay (4.3), (4.4). Myctb C — pelueHne
(4.3). Torga nonyumm u3 (4.3) npu £=¢;, rge e,—i-n opt, yto Cu=(Cei,ei)<0(ei).
Mockonbky C peanunsyeT makcumym Bennumnsl X Qa 1Cu, Qif> 0, a gns peweHus C_
= 20 1/2G12 3apaumn (4.3), ykazaHHoro B (3.14), umeem EQH1(e-)ii =Y,Qul”(ei>To
Heobxoaumo (Celed= d(e). U3 (4.3) cnepyeT Toraa, 4uTo

(Cx, x)—Ce,, )< P(x)—P{e() VxeR™ (4.5)

Monoxum x= +cy, rge yeR",e — BeLLleCTBEHHOE YUC/IO, U YCTPEMUM £ K HYIO.
Torpa u3 (4.5) cnefyet, uTo

2e(ehy) < £(grad d(e), y) - o(e) (4.6)
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MocKonbKy I. MOXeT 6bITb /II060r0 3HaKa, a y — NpPOn3BO/bHbIN BEKTOP, TO M3 (4.6)
nonyyaem, yto Ce;= (1/2) grad ®(e,) (34ecb UCMonb3oBaH «npuem MUHTU», U3BECT-
HbIli B TEOPUM MOHOTOHHbIX onepaTopos [10]). Tem cambim MaTpuua C onpegeneHa
ofHo3HayHo, C= C .TlycTb Tenepb C — HEKOTOpOe pelleHue 3agaum (4.4), C+=hQ
+h~xG — pewleHmne ykaszaHHoe B (3.15), X — MHOXEeCTBO Takux BeKTOpoB xe R,
wTto x\ =Qul, T.e. X;=xB;712 Torga un3 (4.4) n (3.20) umeem ana xe X :

Cx,x)> PX)=(C+x,X)=Trf_1C+. @.7)
Monoxum B 0603HaYeHnax u3 (3.16)
Co=2"£p*Cp. 4.8)
o*r

Torpa u3 (4.7) cnefyeT, 4uTto
(CVXATrR-'C +.VxeX. 4.9

M3 (4.8), paccyxfasa aHanormyHo wary 3 gokasartenbCTBa TeopeMbl 1, nonyyaem

TrR“1C°=TrR 1C. (4.10)

Kpome TOro, NOCKOJIbKY C° — anaroHanobHas MaTtpuua, TO

(C°x,x)=Tr Q~IC°, Vxe A". (4.12)

M3 (4.9), (4.10) n (4.11) nonyyaem, 41O
TrB_1C>TrR “‘C+ (4.12)

npuyem, NMeeT MeCTO CTPOroe HepaBeHCTBO, ecim (Cx, X) ¢ P(X) XxoTs 6bl 419 04HOr0
xeX. Ho TrR-1C+=Tr R _1C, nockonbky C,C+ — peweHus 3agauu (4.4).
CnepoBaTenbHO, (Cx, X) = @(X) Vxe X. To Xe paccyxeHue, 4To 1 B JOKa3aTeNbCTBE
€ANHCTBEHHOCTU pelleHns 3adayn (4.3), NOKa3bIBaeT, 4To

Cx=(12) grad ®(x), VxeX.

MockonbKy 13 BekTOpoB X e ! MOXHO Bblfenutb 6asuc R*, To C onpegeneHa
0AHO3HayHo, C=C+.

OcTaeTca nokasaTb, YTO BEKTOPbI d B (4.1), (4.2) LO/MKHBI 6bITb HYNEBbIMU. U3
MPUBELEHHBIX BbILIE PacCyXAeHWi u orpaHnyeHmns (4.1) noayuum, yto (d, te,)<0,
oTkyga d =0. AHanornyHo B 3agaue (4.2) umeem (d, £ x) <0, Vxe X, ncnegosaTenbHO
d=0.

Teopema foKa3aHa.

ABTOp 6narogaput @®. J1. YUepHOYCbKO 3a MOe3Hble 06CYXAEHNS.
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Extremal properties of ellipsoids approximating
attainability sets

A. I. OVSEEVICH

(Moscow)

The paper is devoted to approximate construction of attainable sets of the control dynamic systems.
It continues investigations by different authors (see, e.g. [4, 5, 6]) connected with approximation of

attainable sets by ellipsoids.

The main result consists of statement and solution of the problem on best local approximation of

attainability sets of linear control system by ellipsoids. In particular the system of ordinary differential

equations for approximating ellipsoid's parameters is obtained. The corresponding equations were obtained

before in [5, 6] by finite-difference approximation of the dynamic system. It was not revealed however in

[5,

6] in what sense the resulting ellipsoids were optimal.

A. W. Osceesny

MHCTUTYT nNpobneM MexaHWKu
CCCP, 117526 Mocksa B-526,
npocn. BepHaackoro, 101
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CONTRIBUTION TO SIMULATION
OF DISTRIBUTED PARAMETER SYSTEMS

Z. VOSTRY
(Prague)
(Received February 2, 1982)

In this paper new approach to digital simulation of some distributed parameter systems with
continuous control law and restrictions is discussed from the point of view of boundary conditions
determination and transformation. The main idea of this paper is the recomputation of simple
boundary conditions into points with complicated boundary conditions in order to simplify the
simulation.

It is not possible to describe many real systems as systems with lumped
parameters. Their dynamic behaviour is then usually described in a way of
mathematical-physical analysis, by partial differential equations. The control of such
systems is not easy, especially if they are nonlinear. The existence of a corresponding
simulation model is an efficient aid for the designer in this case. Considering more
complicated systems or so-called large scale systems, digital simulation models will be
used. The developing of a suitable model brings many problems to be solved: time and
space discretisation, frequency analysis, simplification of partial differential equations,
choice of integration method, etc. Work on space discretisation problem includes
decision making about the state of model and about choice of input and output
variables.

It is necessary to join initial and boundary conditions to the system of equations
describing the system dynamics, to make the simulation model complete.

The initial conditions determination makes usually no problems. They are given
as some equilibrium solution depending on the physical and technological sense of the
solved problem.

Considering the boundary conditions, quite a different situation exists. Their
importance follows from the tasks of simulation. Two main purposes of simulation are
as follow:

i) to observe and study the dynamics of a system when the boundary conditions are
given. Let us note that some of real controlled systems with continuous controllers
may be, from the simulation point of view, considered as systems with static
boundary conditions. The last ones define relations between input and output
variables together with restrictions following from the system’s dynamic behaviour
and technology.
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ii) to determine boundary conditions with the aim to obtain desired behaviour.
Especially time optimal control may be solved using simulation model. Special
boundary conditions and restrictions determination follow then from maximum
principle.

These two tasks may be interpreted in terms of control analysis if a system
including controller is given, or in terms of system synthesis if a system and control
requirements are given

The boundary conditions represent that part of the described real system which
is available by the designer for experiments on the computer.

The boundary conditions can be given either as input variables function of time,
or as a relation between input and output variables. The former case corresponds to the
input variables representing the influence of uncontrolled surroundings (e.g. weather),
the latter one the input variables used for control.

In the first case the introduction of boundary conditions in a simulation process
makes no difficulties.

But in the second case ifthe relation between input and output variables is given
in complicated form including nonequalities, hard difficulties may arise. For
illustration let us note that in solution of time optimal control the input variable is
usually defined as a maximum of some input variable function, output variable
function and function of both.

Digital simulation model of any real dynamic system can be represented in a
form corresponding to the structure in Fig. 1, where ul5u2are arbitrarily chosen input
variables and y2, y2 are output variables. How did we separated input and output
variables into two groups denoted u,, y, and u2, y2?

The vectors U and yt include such input and output variables for which it holds

ut -Fa(r)y! =c(f) @
where a(i) is time dependent matrix,
c(i) is time dependent vector.

The vectors u2 and y2 consist of such input and output variables for which it holds

/(u2y2)=0, @
ey <0 )

where the functions / and g are nonlinear.

This second case could be. naturally, transformed to Eqg. (1) if the function / isin
the full range of its arguments well linearisable and inequality (3) does not exist.

Why do we separate the input and output variables into two groups ult yt and
“22 Y2

Two different combinations ofthe above-mentioned boundary condition classes
can be met:
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i) the vectors u2and y2are empty. In this case there are no difficulties in the boundary
conditions implementation.

i) the vectors ul(y1(u2,y2or u2, y2only exist in a solved simulation problem. For this
most frequent case our method was elaborated. It is based on the idea how to
decrease the difficulties arising from (2), (3) using boundary condition of type ().
Here the reason for classification of boundary conditions into two groups can be
seen.

Fig. 1

System if in Fig. 1represents for example a gas pipe line, river channel, electric
line, etc. A dynamic system with distributed parameters is usually described by partial
differential equation. It follows from practical experience with solution and simulation
of such systems that implicit integration method and linearisation is the adequate
choice to obtain a system of linear algebraic equations in each integration step. The
model of the system in Fig. 1 is then described by the following set of algebraic
equations

VI
Yy tc @
\7)

where y is a vector of inner variables (state) in time t + At
ylIf y2 are output variable vectors in time
Uj, u2 are input variable vectors in time
At is integration step
A, B are matrices of coefficients (they are computed for nonlinear system in each
integration step)

The vector C is given as

A ur
C=E ¢ +F +G (5)
ll2
-Y*2.

where E, F (similar A, B) are matrices of coefficients computed in each time-step,
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G is a vector given by terms from linearisation,

Y Y Y* are variables like y4, y2, y but in time t,
uf, uf are variables like Uj, u2 but in time t.

Let us rearrange (4) by dividing matrix B into [B,,B2] and matrix A into
[A! A A2], the dimensions being given by uj,u2and y,, y, y2respectively. We can then
write

«1
[-B., ALA A7 1 -c+B2u2. 6
Yy
¥2
Adding (1) and (6) we obtain
o 2 o °©7 « = ¢ + 0 ©
A> A A2 M Cc B2
Yy
¥2

It would be now necessary to solve this system of equations together with
boundary conditions of type (2), (3). Such a solution will be cumbersome due to the high
dimension of the matrix on the left-hand side of Eq. (7). (In real cases the number of
variables may be several hundreds — because of space discretisation.)

The situation will be easier when interpreting Eq. (7) like a system of linear
equations with parameter u2.

Note

The left-hand side matrix in (7) has to have full rank. It is not full either in cases of
wrong elaboration of this matrix, or due to discontinuity of the solution (e.g. in the case
of critical flow in river channel or pipeline).

Compute the last n rows of the matrix

'L a 0 01
—Bj. Aj, A A2_

where n is the dimension of the vector y2.
Multiplying (7) by those rows we obtain the linear function

y2=c2+b2u2. (8)
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In this way the boundary condition in the form (1) was recomputed into points with
boundary condition of the form (2), (3). Solution of boundary conditions (2), (3)
together with condition (8) gives the values u,, y,. Putting then u, into (7) we can
compute uy, y,, ¥. Thus the integration step is ended.

Point out how efficient the simulation is with complicated boundary conditions
if our approach is used.

The efficiency is achieved by transformation of the whole dynamic simulation
model (4) with joined boundary conditions of type (1) to a simple and much smaller
system of linear equation (8) with variables u,, y, only. In this way the dynamics of the
simulated distributed parameter system is in each integration step recomputed to the
small system of linear equations (8).

Examples of application
1. The water flow in a river channel represents a classical example of distributed

parameter system. The unsteady one-dimension shallow-water flow in river channel is
described by Saint-Venant equations

00 aS
E+a—t=0
©)
0Z 19U UJU _  U|U|
x goat  gox  CR

where S cross section [m?]
Q flow rate [m3s ']
x the distance of the cross section from a given point
t time [s]
U mean value of the speed of flow [ms ']
Z water level elevation [m]
C speed coefficient
R hydraulic diameter [m]
g acceleration of gravity [ms 2].

To obtain the system of equations for only two variables (Q, Z), it is necessary to
join complementary equations describing other variables as a function of Q, Z and
geometrical parameters of real channel.

The practical task to simulate and control the system of water channels with 27
built-in gates on river Labe was solved.
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That part of the whole complex of solved problems which illustrate the use of our
method will be given now.

The basic problem is to simulate the section of river between two gates. This
system is schematically shown in Fig. 2. The boundary condition u,, which means flow
rate at the beginning of the simulated section, depends on the situation of the foregoing
(upper) section. For the purpose of simulation of this section there is no other
possibility than formulate the input variable u, asa function of time, to be able to

Fig. 2

prepare different simulation experiments under different conditions. Another situation
is in downstream flow rate u2min this case the boundary condition is given as
3
»=Ky2- h)2> f°r Y2nh
(m
u2=0, for y2<h

where y2 is level elevation,
h is gates elevation.

This is a real example of a complicated boundary condition with restriction.

The first problem is to simulate dynamic behavious of the described section, the
gates level being fixed.

For the upstream boundary condition, according to the above described
method, we write

Ui+arrCi (12)

where a, =0 and = f(t).

By time and space discretisation and using implicit integration method, Egs. (9),
(10) were transformed to form (4). Following the above described procedure we obtain
finally

yr=c2+b2u2 (13)

Hence, we see that the whole problem was reduced to solution of Egs. (11) and
(13). The simple form of Eq. (13) makes it easy to check the conditions given in (11). In
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the case when u2>0, Eqg. (13) and the first of (11) will be solved using, e.g. Newton
method. Moreover the described procedure ensures the convergence of the solution.

2. The second example concerns the same system as in Example 1. Now the gate
is controlled by a real controller working in pulse regime and maintaining the water
elevation y2on a constant value. As soon as the gate position is higher than the water
level (h>y2), that is when u2=0, the controlled value of the water level cannot be
maintained by any controller action.

The simulation of the mentioned controller action including different technical
restrictions will be cumbersome. Moreover, it leads to extremely short integration step.

Seeking some way how to define boundary conditions one could try to use the
boundary condition y2= const. However, there exists such a real boundary condition
n! that the gate stops the water flow. The maintaining ofy2=const, leads to a solution
giving negative water flow over the gate. It means fictive water flow from lover to higher
position! Such result, of course, is physically impossible.

Therefore it is necessary to formulate the boundary condition as a relation
between u2 and y2 respecting the restriction. Such formulation is shown in Fig. 3.

const

Fig. 3

The solution proceeds in the same manner as in the previous example. The final
solution, using the boundary condition in Fig. 3, is then simple because it is given as
intersection of straight lines.

3 The described method was used in the solution of dynamic description of large
intricate pipe line networks for gas distribution [1]. The use of the method allowed us
to work out special decomposition technics for connected subsystems with distributed
parameters where the graph of connection is tree.



62 VOSTRY: SIMULATION OF DISTRIBUTED PARAMETER SYSTEMS
Reference

1 Kralik, J., Stiegler, P., Vostry, Z., Zavorka, J., Modelling the dynamics of large scale systems with
application to gas distribution networks. Academia (to be appeared).

Bknag B MOJENMPOBaHME CUCTEM C PaCMpPOCTPaHeHHBIMA
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EXTREMAL PROPERTIES OF ELLIPSOIDS,
APPROXIMATING ATTAINABILITY SETS

A. I. OVSEEV1CH
(Moscow)

The evolution of attainability sets and its approximating ellipsoids is investigated. Some
extremal properties of ellipsoids under consideration are found.

Introduction

Consider the linear control system
X=A(t)x +u, ueU(t), x(s)eE)(s) (1)

Here x 6 R" is a phase vector, A(t) is a given nx n-matrix, U(t) is a closed domain of
admissible control values, D(s) is a closed set, where motion begins at the moment s
(initial domain).

The set of ends x(t) of trajectories beginning in D(s) and satisfying (1.1) for some
measurable vector-function u(t) e U(t) (admissible control), iscalled the attainability set

D(t) = D(s, ) =Dfs, ), 1)

for the system (1.1)

One needs to know attainability sets for the purposes of control, filtration of
dynamic systems, differential games (see, e.g. [1,2, 3]). For example, the minimisation
of the terminal functional F(x(T)), where T is a fixed moment, is equivalent to
minimisation of the function F(x) on the attainability set D(T).

The effective construction of attainability sets encounters, however, with
considerable difficulties, due to the infinity of parameters identifying domain in R".

The method of approximating attainability sets by prescribed shape domains
was developed in a number of papers by different authors (see, e.g. [4,5]). In particular,
ordinary differential equations describing evolution of ellipsoids approximating
attainability sets either inside or outside were obtained in [5, 6].

The present paper begins with an equation of evolution of attainability set
(Section 2). On this ground the problem of the best approximation of attainability sets
by ellipsoids is posed and solved (Sections 3 and 4). It is shown that the solution is
obtained by integration of the differential equations mentioned above.
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2. Evolution equation of attainability sets
To any subset DcR" one may correspond the support function
BA=af=supm

where f e ", (, )isthe scalar product. For D being convex and closed, HDdetermines D
uniquely [6]. We note that ifthe domains U(t) and the initial domain D(s) of system (1.1)
are closed and convex, then so are the attainability sets D(t). Therefore, the following
proposition describing the evolution of the support function of the attainability set
determines in this case the evolution of the attainability set itself.

Proposition. Let the function A{t) and set U(t) in (1.1) be measurable [7] in t,
H(t, f) = Hw (£) be the support function of the attainability set D{t), h(t, f) = H Ut)(f) be
the support function of the domain U(t).

Then

2.0

where d/df denotes the gradient with respect to £ (Here (A(dH/8f), f) =(dH/df, A*f) is
the directional derivative \ime~I(H(f + eA*f) —H(f)) as sjO.)

The corresponding limit does exist for any convex function [7]).

Remark. An analogous formula is obtained in [8] under slightly different
assumptions. We give the proof, however, for the reader’s convenience. Note that the
well-known Bellman equation describes the dependence of D(t) on the initial domain
D(s) and the moment s, provided D(s) consist of a single point x.

Proof. We show first, that it is sufficient to consider the case A(t) =0 in (1.1), (2.1).
Indeed, let P(t) (fundamental matrix) be the solution of Cauchy problem:

P=AM)P, P@E)=/ (22
where | is the unit matrix. Then the change of variables transforms the system (1.1) into
y=v, veV(t)=P{t) 1UL), y{s)eD(s) (233

The attainability set D(f) for (1.1) changes then to the attainability set D°(t) = P(t) 1D{t)
for (2.3) and the corresponding support function H(t, If) to H°(t, f) = H(t, P{t)* If).
The straightforward calculation shows, that the substitution

f) =H(t, P(t)*- 11

transforms the solution of (2.1) into the solution of

(f, 0 =ho(t,f) = HWI)(f). (2.4)
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In view of invertibility of P it remains to prove formula (2.4) for the support function
He(t, £) of the attainability set D°(t) of system (2.3).
In fact

He(t, £)—sup (Jr(r) dr, £)

where sup is taken over all measurable vector-functions v(t) e \t). It follows from the
measurable choise theorem [6] that

sup (j v dr, £) = J suEJ)(v, Hdr = Jh°(x, £) dr
s s ve V(t s

g-e.d.

We consider in what follows the case of convex closed domains U(t) and initial
domain IX3).

Definition 1 Let Q(t), t>s be a family of closed convex sets, H(t, £)= AATXE) be
the corresponding family of support functions.

We say that fi(t) is a family of subattainability sets (resp. superattainability sets)
for (1.1) if the differential inequality

— (L, 0<TAM)— Oy +ht1),Hs £)=Hag«) (2.5)

holds (resp. with the sign >).

The inclusion i rc i1 2 of closed convex sets is equivalent to the inequality
HOI(Z)<Ha(Q for their support functions. Therefore, it follows from proposition 1,
that Q(t) a D(t)in the subattainability case and i2(t)=>D(t) in the superattainability case.
Moreover, ifT< tand D(t, t) = D(x, Q(X), t) is the attainability set at the moment t for the
system

X =A(t)x +u, ne U(t), x(x) e 4(x) (26)

then D(x, t)=Q(t) in the subattainability case and D(x, t)a Q(t) in the superattainability
case.

Definition 2. Let V(Q) be the volume of the set 2, E be a class of convex sets. We
say that the family B(t) e E of sub (super) attainability sets is the best local
approximation of the attainability sets D(t) of system (1.1) if for x>s

~ K(0(n)U

is maximal (minimal) over all the sub- (super-) attainability families belonging to E for
the system (2.6).

1>
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3. Evolution equations for approximating ellipsoids

Denote the ellipsoid
{xeR",(B-‘(x—a),x—a)< 1}

by E(a,Q). Here aeR", Q is a positive definite symmetric matrix. Suppose that the
initial moment s= 0, the initial domain D(s) of system (1.1) is the ellipsoid E(a0, Q0)and
the control domains U(t) are the ellipsoids E(b(t), Gt)). Then the evolution of ellipsoids
approximating the attainability set of the system

x = A(t)x +u, ne E(b(t), Gt)), x(0) e E(a0, Q0) 3.1)

in the locally best way may be described by equations (3.3), (3.4) in Theorem 1
At first we present two lemmas.

Lemma 1 [3]. The support function H(£) of the ellipsoid E(a, Q) is given by the
formula

H(Z)=(a, £)+NeJ1) 112

Lemma 2 [9]. Let A(t) be a family of invertible matrices smoothly depending on t.
Then

At log det A(t) = Tr At)“ 1A (1)

Corollary. Let E(a(t),Q(t)) be the family of ellipsoids, V(t) be the volume of
E(a(t), Qt)). Then

fVO = V(D) TrQ~1Q0) @2

Indeed, V(t)=wn[det Q(f)]¥2,  being the volume of unit sphere £(0,1), and formula
(3.2) follows from Lemma 2. Introduce the notation {a, B} =x +R*a*, for matrices
a, i

Theorem 1 1) Let a_(t), B_(t) be the solution of the Cauchy problem

a_=Alt)a_+b(r), a(0)=ao
Q-={A1), Q }+2R~IIRQR*r2RG(t)R*)II2R*~1 (33
6-(0) = Ro
where R isa nonsingular matrix such that G°- RG(t)R* and Q° =RQ R* are diagonal

matrices. Then E(a_(r), Q_(1)) is the subattainable best local ellipsoidal approximation
for system (3.1).
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2) Let aHt), QHt) be the solution of the Cauchy problem
&+ =/I(i)a++b(t), aH0)=ao
0 += {A(t), Q+}+ hQ++h- 16(1), Q+0) = Qo 34)
h=[n"*Tr(6; Gf)]12

where Tr denotes the trace. Then E(aHt), B8+(i)) is the best local ellipsoidal
superattanable approximation for the system (3.1).

Remark. It iswell known that (see, e.g. [9]) if A and B are two symmetric matrices,
one of which being positive definite, then there exist a nonsingular matrix R such that
RAR* and RBR* are diagonal. The expression R '(RAR*)II2(RBR*)12R* 1in spite
of possible nonuniqueness of R, depends only on A and B and is equal to
Bi 2(B 112AB 112)il2B112 if B is positive definite. We divide the proof into several
steps.

Step 1 Simplification of system (3.1). Let the matrix function (fundamental
matrix P(t) be the solution of the Cauchy problem

P=A(t)P, PO)=1. (3.5)
Under the change of variables x = P(t)y control system (3.1) takes the form:
Y=v,ve V()= P() 1U(t)=E(b, (t), C,(0)
bi(t)="P (t)Ib(t),GI® =P (1)1 G(t)P(t)*' (3.6)
y(0) e E(a0, 60) *

Obviously P{t) maps each ellipsoid onto an ellipsoid and sub- (super-) attainability
domains for system (3.6) onto the corresponding domains for (3.2). It is not difficult to
verify by direct calculations that if ((t), a(t) satisfy equations (3.3) or (3.4), then the
parameters P(t) la(t), P (t) 1Q(t)P(t)* 1of the ellipsoid P 1E(a, Q) satisfy a system,
similar to (3.3) or (3.4), where JI(r) =0, and G= G, is given by (3.6). Consequently it is
sufficient to prove the theorem, assuming 4(i)=0 in (3.1).

Setting x =y + r(i), where f = b(i), r(0) = a0, we can restrict ourselves to the system
of the following form

x=u,ue E(0, G(t)),x(0)e £(0, QO). (3.7

Step 2. Reformulation of the problem. Let E(a(t), 6(f)) be a subattainability
family of ellipsoids for system (3.7). According to lemma land definition 1, this means
that

X W), £)+ (B()E £)12) <(G(I)£ o0 '12- (38)
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Otherwise .
(406 + 2Ne £) VLI £)<(GZ, Zm . (3.9

Formula (3.2) allows us to rewrite the condition of the best local approximation of the
family E{a(t), Q(t)) (definition 2) in the form

Tr Q~'()-»rnax , (3.10)

where maximum is taken over all symmetric matrices 8 and vectors &, satisfying (3.9),
provided Q—Q(t) is fixed. Max in (3.10) has to be replaced by min and the sign > in (3.9)
by < in the super-attainability case.

Replacing Zin (3.9) by —Z and adding the resulting inequality to (3.9), one gets

\(QZ, z r m (fc, 2)<(GZ, Z)m - (3.11)

Therefore, if the pair (4,Q) provides maximum in (3.10), then the pair (0,0) also
provides this maximum. In what follows we suppose a=0.

Let R be a nonsingular matrix such that Qt=RQR*, G, =RGR* are diagonal
matrices. Then Tr Q 1@=Tr Q [ 1C, where C = R()R* and the extremal problem (3.9)
is reduced to the following one. Find the symmetric matrix C, providing maximum

Tr 1C-*max

(3.12)
(Cil, 1)< 2(G, i/, N2(Q, T, )12, Vil 6 R"

where GI,Q1 are given diagonal matrices. The superattainability case leads to the
problem

Tr Qt 1C—min
(3.13)
(Crj, iN>2(G,il, iIN2(R 11, )12, il e R™.

To prove the theorem one needs to establish that there is a solution o problem (3.12) of
the form

C=2R}/2Gj/2 (3.14)
and there is a solution of problem (3.13) of the form
C=hQl+n ‘G, (3.15)

Indeed, in view of C= R()R* and similar formulae for ,, Gt it follows from (3.14) and



OVSEEVICH: ELLIPSOIDS. APPROXIMATING ATTAINABILITY SETS 7

(3.15) that equations (3.3), (3.4) for Qwith A(t) =0 hold. Since asOequations (3.3), (3.4)
hold for a+ where A= 0, b=0, a0=0.

Step 3. The solution of the transformed problem. We show that solution C of
extremal problem (3.12) or (3.13) may be found among diagonal matrices. Indeed, let C
be a solution and I be the group of diagonal matrices, with diagonal elements + 1 If
pel, then g*Cg* is the solution together with C, since

6*=0_1=0, g~1G1g=G, g~IQig=Qt

TrRj ‘C=Tr(g IBr 1)(g ICY=Tr(Qilg ICg)
Inequalities (3.12) and (3.13) are linear in C, that is why the combination

Cl=2~"'En*Cp (3.16)
ger
of solutions g*Cq is also the solution.
But Cvisdiagonal matrix with the same diagonal elements as C. Indeed, a matrix
element

(C)y=2~" X a,mCn=Cuy(2-' X 9a9"C umm
ael aerl

Ifi=j, then (m=2~nYj 1= 1 Ifid, then we associate to the matrix g=d\ag(gkkle I

pel
the matrix ¢° =diag (g°k), given by g°k =gkk,for Ko, g~ = - g n . Dividing X 9u9jj™ to
gzi

sums over the corresponding pairs, one gets qu=0.

We may therefore restrict ourselves to the search of the diagonal matrix
C=(c,(50). Denote by p, g, r the vectors with the components pi=(Gl)ih gi=(Qi)u,
ri=(Qil)u=qgkl. Then the problems (3.12), (3.13) are reduced to the following:

(r,c_)-»max
(3.17)
(c_ x)<2(p, x)1,2(q, X)12

where x e R" is an arbitrary vector with nonnegative components (squares of the
components of g in (3.12))
(r, c+)->min
(3.18)
(c+, x) > 2(p, X)2(ijf x)1/2, Vxe R", x> 0

Substituting x = e, the i-th unit vector into (3.17) we have (c-)i<2p},2ql12 Since
the vector r has positive components, vector c¢_ satisfying restriction (3.17) with the
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components (c_)r= 2p//2p?/2 is the solution of problem (3.17). Therefore, one has to
check the inequality

Ipli2gli2xi< (1pixil12(Eqlxi) 112

But it is the Cauchy-Buniakovsky inequality for vectors with the components
(P12, (qgixiy112.
Thus, problem (3.17) is solved and its solution leads precisely to formula (3.14).
Now we pass to the solution of problem (3.18). Setting x =r in (3.18) one gets

(r,cH)>2(p, NI/2(q, r)12= 2n",2{p, r)12 (319

On the other hand, putting h=n~ 1/2(p, r)1/2, c+=hqg +h 1p, one gets
(r,c+)=2n12p, r) /2. (3.20)

We check the restriction (3.18) for c+:
(c+x) =h(g, x) +h~1(p, x)> 2[h(q, x) ] V2[/T" 1(p, x)]12=
=2(q, x)12(p, x)112.

By the resulting inequality and (3.19), (3.20) it follows that c+is the solution of problem
(3.18). It is not difficult to verify that it leads to formula (3.18).

The theorem is proved.

Remark. Equations (3.3), (3.4) were obtained in [3, 4, 5] with the help of finite-
difference approximation of the control system (3.1). It was not revealed, however, in
what sense the solutions of these equations lead to the best approximations of
attainability domains. Theorem 1 answers this question, by establishing extremal
properties of ellipsoids, described by equations (3.3), (3.4).

4. Uniqueness of the best local ellipsoidal
approximation

It was shown in theorem 1 that equations (3.3), (3.4) give the locally optimal
ellipsoidal families. Next, we show that there is no other locally optimal ellipsoidal
family.

Theorem 2. Let E(a(t), Q(t)) be a locally optimal ellipsoidal sub- (super-)
attainability family for the control system (3.1). Then (a(t), Q(t)) is the integral curve of
system (3.3) (resp. (3.4)).

Proof. The arguments from steps 1,2 used in the proofofthe proceeding theorem
show that in the subattainability case it is sufficient to establish the uniqueness of the
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solution of the extremal problem

Tr Q@ 1C->max
4.2)

(do +\m, Oml2CE B<(GIt)12, eR

where Q, G are given positive diagonal matrices. In the superattainability case one
needs to establish the uniqueness in the similar problem

Tr _1C-*min
(4.3
d, 6 +~BR{, O*1AC{,0NG{, 0112

As it was mentioned in the proofoftheorem 1(cf. (3.11)), the solutions of problems (4.1),
(4.2) are also the solution of problems

TrQ 1C->max
4.3
(C{,0 < 2 NUAGI,HIR=«(O
TrQ 'C-nnin
44

(CUNW T H)12G{{)12=d46.

We prove first the uniqueness of solutions of problems (4.3), (4.4).

Let C be a solution of (4.3). Then by (4.3), with €=eh where e, is the i-th unit
vector, we have C,, = (Ceh e;)< ®(g)). Since the maximum of Z Qu 1C,,, Qu> 0 is attained
at C and since Z Qul(C-)u=2Z Qu 1d(g,) for the solution C~ =2QIMMGI/2 (pointed in
(3.14)) of problem (4.3) it is necessary (Ce,e,) = ®(g,). It follows then from (4.3) that

(Cx,X)—{(Cej, e < D(X)- Pe) VxeR" 45)
Put x=e,+ ey, where y e R", e is a real number. We have by (4.5) that

2(e-y) < e(grad ), y)+ o(a) (4.6)

as e tends to zero.

Since £ is of any sign and y is an arbitrary vector one gets from (4.6) that
Ce,= 1/2 grad ®(e,) (here we use “Minty trick” known in the monotone operators’s
theory).
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Thus the matrix C is determined uniquely, C=C_ Next let C be a solution of
problem (4.4), C+=hQ +h 1G be the solution mentioned in (3.15), X be the set of
vectors x e R”such that xf =Qu\ i.e.x,= + Qu 12 Then by (4.4) and (3.20) we have for
x e X:

(Cx,x)>4Hx)=(C+x,x)=TtQ 'C+ @7
Put

c°=2-" X e*Cg 48)

in the notations of (3.16)
Then it follows from (4.7) that

(Cx,x)>TrR'C + 4.9
By (4.8), arguing similarly as in step 3 in the proof of theorem 1, we obtain
Tr3_1C?=TrR_1C. (4.10)
Moreover, since C° is a diagonal matrix,
C°x,x)=TrB 1C°,Wxe . (4.11)
One gets from (4.9), (4.10) and (4.11) that
TrR _1IC>TrR“1C+ (4.12)

and moreover, the strict inequality takes place if (Cx, X)#®(x) for some xeX.
But TrB’C+=T r B 1C, since C,C+ are solutions of problem (4.4). Consequently
(Cx, x) = d(x) Vx € X. The same arquments as in the proof of the uniqueness of solution
of problem (4.3), show that Cx = (1/2) grad ®(x),¥xe X Since the basis of R" may be
picked out of X, C is determined uniquely, C=C+

It remains to show that the vectors d in (4.1), (4.2) are equal to zero. By the above
arquments and constraint (4.1), we obtain that (d, + e() <0, hence d= 0. Similarly in the
problem (4.2) we have (d, +x)<0, Vx 6 A and consequently d=0.

The theorem is proved.

The author thanks F. L. Chernousko for useful discussions.
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K CBEAEHNIO ABTOPOB

Pykonucm ctateii B Tpex 3K3emMnaspax Ha
PYCCKOM f3blke W B Tpex Ha aHrinickom
cnefyet HanpasnaTb no agpecy: 117901 rcCri-1
MockBa-B-71, /leHUHCKuUin npocnekT, 14, kopn. 4,
komu. 18. Pepakuus >xypHana «[lpobnemsbl
ynpaBneHns 1 Teopun nHpopmaunm» (3as. pejak-
umneid H. WN. PognoHoBa, Ten. 237-99-53).

O61bEM CTaTbM He 4O/MKEH NpeBblwaTh 15 neyar-
HbIX cTpaHuy (25 ctpok no 50 6ykB). CraTtbe
[OMKHA npejwecTsoBaTb aHHoOTauus 06bLEMOM
50—100 cnoB M MNPUNOXEHO pestoMe - pedepar
06beMOM He MeHee 10-15% ob6bema CcTaTbW Ha
PYCCKOM W Ha aHTNNACKOM A3biKe (B TPEX IK3eM-
nnspax Kaxfblil), Ha KOTOPOM HameyaTaH Cny-
XebHbli agpec aBTopa (pamwunus, HasBaHue
yupexneHus, agpec).

Mpu HanucaHUW cTaTbyM aBTOpaM Hago CTPOro
NpuAepXuBaThca crnefytolieil hopmbl: BBeAeHME
(nocTaHOBKa 3afjaun), OCHOBHOE COAepXaHue, Npu-
Mepbl MpPaKTUYECKOro WCMONb30BaHUA, 06CYX-
[eHue pe3ynbTaToB, BbIBOAbI U NMUTepaTypa.

CTaTby AO/MKHbI 6bITb OTMeYaTaHbl C MpoMe-
XYTKOM B [lBa WHTepBana, nocjefoBaTeNbHOCTb
TabMnL N PUCYHKOB JOMKHa 6biTb OTMeYeHa Ha
nonsx. MaTtemaTuueckme 0603HaYeHUs PEKOMEH-
AyeTcs faBaTb B COOTBETCTBUM C COBPEMEHHbLIMU
TpeGoBaHMAMW B Tpaguuusmu. Pa3MmeTKy 6YKB
cnefyeT Mpou3BOAUTL TONMbKO BO BTOPOM 3K3eM-
naspe N PyccKoro, M aHrAWiicKoro BapuaHTa
cTaThy.

ABTOpaM BbICbINIAETCA BEPCTKA, KOTOPY Heo6-
XOAUMO He3aMeANNTeNbHO MNpPoBepUTL U BO3-
BpaTUTb B pefakuuio.

Mocne ny6nnkaumy aBTopam BbicbinatoTca bec-
nnatHo 100 OTTUCKOB WX cTaTeld.

PyKonucu HenpuHATLIX CTaTeil Bo3BpaliatoTcs
aBTOpaMm.
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Problems of Control and Information Theory, Vol. 12 (2), pp. 63— 77 (1983)

APPLICATION OF NEW FEEDBACK TYPES IN THE
PROBLEM OF SIGNAL DIFFERENTIATION

S. V. YEMEL’YANOV, A. A SOLOVIEV
(Moscow)

(Received January 20, 1982)

Difficulties of obtaining signal derivative information are well known in control system
design. In case when the object’s inner coordinates and parameters are not accessible for measuring,
the derivative value can be obtained only by direct signal differentiation. In the paper the possibility
of application of new feedback types, i.e. coordinate-parametric (CPF) and parametric (PF), for
differentiating device design is considered.

1. Introduction

The general structure of the differentiating element is shown in Fig. 1 The
element input is signal/(i). The output signal z(f) is

2 =K({/(n)-y(), @

where y{t) varies in accordance with
)

Using the equation we obtain after differentiating (1) the equation which
connects the input and output signals of the element

So the element transmissive function is

®

If K-roo, then WI(p)-rTip and for the output signal z(i) the relation
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> Xt .k z(t)

()
1
Tip

Fig. 1

is valid. But there is always limitation on the module of the output in the practical
realization of an amplification section. Because of this the size of the amplifier linear
zone decreases when the ampification factor increases (K-*o00). As a result, the
amplification section begins working as a relay and its output signal has the
information only about the input signal sign. In this case a sliding mode is possible [1],
the signal z(f) will consist of high-frequency oscillations and relation (4) will be valid
only for its average value. Real amplifiers have also their own noise.

Due to this fact the use of the element shown in Fig. 1with the output signal z(t) as
differentiating element is limited.

In the paper the problem of differentiating device design is formulated and the
attempt to solve it by using coordinate-parametric and parametric feedbacks [2] is
made.

2. The formulation of the problem

By differentiating device we understand an element with the transmissive
function which can be made as approximating the transmissive function of differentiat-
ing section as we wish. The problem of designing such a device consists in the synthesis
of the structure scheme of the element with relationship between the input and the
output signals, which can be represented by the transmissive function

, <p TpP
wtp)- m Sp+I'

The structure scheme has to contain only amplification, integration and relay sections.
Choosing finite values of amplification factors of amplification sections and time
constants of integration sections there must be a possibility to obtain in (5) any value
including quantum libet small of §(6< 1) and any value including quantum libet large
of TD (TD$>1). The element output signal must not be the output signal of the
amplification section if ic is formed of some signals; then none of these signals may be
the output signals of amplification sections.

)
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The problem formulated is solved by the next restrictions.

1. The input signals (1) to which the differentiating elements is applied depend
on time in such a way that for all « ~ to (t0 is the moment when the signal begins to act as
input of the element) the inequalities are valid

al ‘" , A v #2—"1 1/
ol/+a0[</+ 2 " (/ifioys — A" 1/+ flol s )

where a0,al <a2 are constants; the parameter values of the element sections are
defined by values of these constants. The region G of the plane (/,/ ) in which
inequalities (6) are valid is shown in Fig. 2.

2. The input and output signals of the element are connected in accordance with
the transmissive function W*{p) (5) not for all t~t0 but for i2ii* where The
moment « can both be equal and non-equal to the moment to.

As a result of solving the formulated problem not only the structure scheme will
be constructed but also the method of calculation of the element sections’ parameters
by values of T%,6*,a0,ai and a2 where 5**.6 will be given.

3. Stages of the synthesis of the differentiating element structure scheme
The scheme in Fig. 1with the output signal z(i) does not give the solution of the

problem formulated. For this scheme the signal x(f) = /(i) —y(i) (Fig. 1) could suite the
differentiation problem output signal. In this case the element’s transmissive function is
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1
Vio(p) = ﬂ(gg “ @

Asa result ofthe comparison of (7) with (5) we observe that it is impossible to choose the
constants T, and K so that the transmissive function W2(p) coincides with W*(p) when
the values of $and Tg are not equal and the value Ois close to zero and the value of
Tg is large.

3.1. Introduction of coordinate-parametric feedback (CPF)

Let us modify the scheme of Fig. 1by introducing the CPF loop [2] to control the
factor K (Fig. 3). In accordance with the scheme of Fig. 3, the factor K can be seen as
K = KG+ K\(t), 8
where Kc=const, and
if e(t)x(t)>0,
if e(t)x(t)<O0. )
Here AK =const, and
e(i) = x(i)-w(f) (10)
(e(t) is an error in the CPF loop, w(i) is a setpoint signal in the CPF loop).

Fig. 3
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In the case shown in Fig. 3, there is

By differentiating the relation x(f) = /(f) —y(t) we obtain the following equation, taking
into account (1), (2) and (8),

x=/~ (12

From (9) it follows that (12) is a non-linear differential equation with a breaking right-
hand part. The right-hand part of (12) has a break on the plane e= 0. Thus there may
arise a specific type of movement, the sliding mode [3]. In this case

e=0,
from (10) and (11) we get
x(f)=w(i)=7/(f).

The last correlation which approximates the movement in the sliding mode is a linear
differential equation which connects the input (/(f)) and output (x(f)) signals of the
element. Therefore when the sliding mode arises the connection between x(t) and /(f)
can be represented by the transmissive function

But the structure scheme in Fig. 3is not the solution of the formulated problem as it has
a differentiating section with the transmissive function Tp.

Let us replace the differentiating section by the section with the transmissive
function in the scheme of Fig. 3

_ Tp+B 13
Lu'p)_sz+C' ( )

From (13) it follows that now the change of the signals w(t) will depend on the
equation

w= A +Bf—Cw). (14)

In general, the movement will be formed by a non-linear system of two
differential equation, (12) and (14), and correlations (9) and (10).

As it was mentioned above, due to the break of the right-hand part of (12) a
sliding mode may occur on the plane e= 0. Then e= 0 and e= 0 [3]. It follows from (10)
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and (14) that the connection between the signals x(f) and /(t) can be approximated by
the equations

x(t) = w(t)
and
x=w="-(Tf+Bf-Cx). (15)
*2
Since (15) is a linear differential equation, in this case the connection between the
signals x(t) and f(t) can be represented by a transmissive function which is the

same as that of >FH(p) (13). So the whole element will function as a section with the
transmissive function WA(p). It is connected with the signal w(t) depending on time
which is defined only by parameters of the section with the transmissive function W4(p)
(13) if the dependence on time of f(t) is set. In order to change the time signal w(t)
depending on other element parameter values, it is necessary to introduce a parametric
feedback (PF) [2].

3.2. Introduction of the parametric feedback (PF)
Let us introduce the parametric feedback as it is shown in Fig. 4.

Now the parameter value Cisnot constant and it depends on time in accordance
with the change of K\t), i.e.

Fig. 4
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AC
c=c0+ ; KA, (16)

where AC =const, CO= const.
The movement in this case may be described by a system of nonlinear differential
equations

£ £+ 17)

AC
t2ak KAD) X,
where KAt) is determined from (9).

The right-hand parts ofsystem (17) have a break on the plane e= 0. Asa reason of
this, a sliding mode may arise on the plane. Let us determine KAt) from the equations
e=0 and e=0 and substitute it into the first equation of (17); then we see that if such type
of movement arises, the connection between x(f) and /(f) signals is approximated by
the equation

1 T,AC\
=  mac T+Air)f+B/ 18)
T2+
AK

Since (18) is a linear differential equation the connection between x(f) and /(f)
signals may be presented by a transmissive function

. TiAC\
_x®) T+AT * P+B
W) = f(p) TrAC\ . .AC (19)

T +~A\r)P+Co+ K'AK

So if the sliding mode arises as a result of the introduction of the parametric
feedback, it is possible to obtain the transmissive function W5(p) approximating
connection between x(f) and /(f) which differs from the transmissive function W4(p)
(13). As the connection between x(f) and /(f) signals correspond to the transmissive
function WAp) (19) only when e=0, it is necessary to ensure the existence of the time
moment when £=0.



70 YEMEL'YANOV, SOLOVIEV: NEW FEEDBACK TYPES IN SIGNAL DIFFERENTIATION
3.3. Ensuring of hit on the plane e=0

The hit of the imaging point of system (17) on the plane r=0 can be obtained by
using the sum of f(t) and u(f)= £f)—/(f) as an input signal of the section with the
transmissive function W4(p) instead of f(t). The same is valid for the substitution ofthe
input signal of the section, / (f), by e(f). In this case the second equation of system (17) is
as follows

AC
£+
7k KM

(20

AC \

+- tJ k)

KM)

When the sliding mode arises the connection between the output x(f) and input
/(f) is approximated by the linear differential equation

1 VTtAC AC
X = . CO0+Kc X
TtAC\_ AK | K

and can be represented by the transmissive function

L AC

x(P) "Ik P

f(p) 7ACN\ AC
T2+ AK ) p+Co+Kdl k

W 6(p) = 21

L follows from (20) that by a suitable choice of the factor B the hit of system (17) of
the imaging point on the plane £=0 can be ensured without influencing the
transmissive function (21) which does not depend on B. Note that W6(p) does not
depend on T, therefore if T=0 in W4(p) (13) then the connection between x(t) and /(f)
will be the same as in the case when T has any non-zero value when the sliding mode
arises. Comparing (21) with (5) we observe a coincidence between W6(p) (21) and W*(p)
(5). It cannot be obtained for any positive values of T%and Oifwe limit ourselves to only
positive values of Tiy T2, AC, AK, COand Kc. Therefore for a successful solution of the
differentiation problem it is necessary to change the CPF’s sign and make it positive.
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3.4. Replacement of negative CPF by positive one

In Fig. 5 the structural scheme of the element is shown which enables us to solve
the formulated signal differentiation problem.

In this case the movement can be described by a system of nonlinear differential
equations

A KM)
x~t+T\= (TF+TEC

(22
B 17/ AC

T I 4rAce+JKKM EFfFE -

AC
TTak KO X

Fig. 5
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where V0 is a constant signal, the necessity of its introduction will be explained below,

] —AK, it x(ie()>o0,
{ AK, it x(t)e(t)<0. @)

So, as compared with the schemes examined above, the sign ofthe CPF has been
changed.

The right-hand parts of (22) have a break on the plane e= 0. Therefore a sliding
mode can arise in the system on this plane. The conditions of its appearance look like

[3].

lim £<0,
£-0 +
(24)
lim £>0.
£-0-
Using (22) and (23) the inequalities (24) are transformed into
(AC  AK\. . ,, VO Kc (25)

T2 Ty) X<M+Ty T,

In such a way, if at any moment of time f*”~i0 there is £(t*)=0 and the values
x(f*t and / (t*) satisfy inequalities (25), then a sliding mode arises. A law of time
dependence for the signal x(f) in this case can be obtained by determining K ,,(f) from the
equations . =0 and £= 0 and substituting it into the first equation of system (22). After
the necessary transformations we have

ATDF —x+y AVg) (26)
where
I ! (@)
D ke AK
Ty °TyAC
t2ak
S 28
T 1yAc (8)

Obviously, the moment t* may exist only in the case when the region in the space
(/, xX) determined by the inequalities (25) is not empty. A necessary and sufficient
condition for this is the inequality
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Equation (26) approximates the law of time dependence for x(t) as long as
conditions (25) of the sliding mode existence are correct. It can be proved that
inequalities (25) will be correct for x(t), which satisfies equation (26) for all t Sit* if the
next inequalites are correct

+ Co_(AC_AK\
tl T2 \t2 tJ (30)
and

AC -
T2 @D
Inequalities (31) define some region on the plane (/, /) which is the same as the
region G shaded in Fig. 2 and defined by inequalities (6). Obviously the region Gj is not
empty only in the case when

AOO. @32

For the input signals under consideration, inequalities (6) are correct for all i~t0.
Therefore, inequalities (31) are also correct for these signals for all t* tOif the region G
coincides with the region Gror liesinside the region G,. Not that ifa0®0 such a mutual
arrangement of the regions Gand G, is only possible if there is a non-zero signal FO.
This explains its introduction.

If the input signal / (t) satisfies inequalities (31) for all t Si t0, the existence of the
moment t*~t0 for which e(t*)=0 and inequalities (25) are correct is ensured by the
inequality

> N +
B s C 0+AC, (33

where a and TDare defined by (27) and (28).
The signal
p(M) = x(1)-K1 (34)

is used as the output signal, where VI is the constant signal.
VoTD

i
f(t) are connected by the linear differential equation

From (26) and (34) we obtain that when VI = for t” r* the signals u(r) and
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Therefore, for t* t* the connection between the output and input signals / (t) can
be represented by the transmissive function

tip) TpP
WEP= (o) <Tp+ 1 (36)

The element with the structure scheme shown in Fig. 5 solves the formulated
signal differentiation problem. Actually, for the values of the constants a0, a, and a2it is
possible to choose values of CO, AC, T 2and V0. So for any signal for which inequalities
(6) are correct for t”~ r 0 inequalities (31) will be correct. Then the values of Kc, AK, Tj
and B are chosen so that TD= Tg, aTD"6* and the moment t* exists. The scheme in
Fig. 5 has only amplification, integration and relay sections. The algorithm for
calculation ofthe values ofthe constants C0,AC,T2,V0,K ¢,AK,T1and B according to
the values a0, a2 a2, T%and O¢is given below. It follows from the algorithm that all the
values of the amplification factors of the amplification sections (CO, AC, K¢, AK and B)
are limited even in the case when ooand S*-*0.

4. Method for calculation of values of the differentiating element constants

Values of the differentiating element constants can be calculated successively
with the help of these formulas

min{<5*,T £}, 1 min {(5*Tg} ’

&= 37)

If 4= min & T3}

where y is any positive number less than 1

T2=d, (38)

80-_ a 42ra>12, (39

ns a2~a\T (40)
AC= 2 72’

Vo=ao (41)
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a2-ai( 0
2 Yy TI 42
Ty, CS)
the value B is chosen in such a way that the inequality is correct
B>|-C0+dC. (44)
Mind that the constant signal value of K is defined by
(45)

T

Note that as a result the constant T, may be given any positive value. Therefore,
if necessary, it is possible to decrease Kc(43) and AK (42) as required by decreasing
the value of T,.

The constant values defined by formulas (37)—43) solve the formulated problem.
Actually, it follows from (39H4 1) that inequalities (31) follow from inequalities (6), i.e. if
inequalities (6) are correct for f(t) for i~ f0 then inequalities (31) are correct, too.
From (27), (28), (42) and (43) we obtain

(46)

from (37) it follows that 0<a”~a*, ie. the transmissive function W6(p) (36) coincides
with the transmissive function W*(p) (5) required. Inequality (32) follows from (40) and
also from the inequality a2>ai- Inequality (29) follows from (40), (42) and the
inequality <5>0. Using (39) (40), (42) and (43), we obtain

(47)

and inequality (30) follows from (37) and (47).

For the choice of constant values, inequality (33) follows from inequality (44) and
(38), therefore the choice of B in accordance with (44) ensures existence of the time
moment t*.

It follows from the formulas (42) and (43) that even if 00 and <5»0
simultaneously the values of AK and Kcremain limited. It follows from (38H40) and
(44) that the values of CO, AC and B do not depend on T%when <5->0 remains limited.
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Conclusion

The suggested differentiating element can be used for solving the problem of
differentiation of signals from rather a wide class. Note that if for example the
considered signals which have the values of / (i) and f (i) belong to some limited set in
space (/,/), then it is possible to choose the constants a0, a, and a2in such a way that
for any signal of the kind inequalities (6) are correct and consequently we may
differentiate any of such signals having the same values of the constants of the
differentiating element.

Mind that for solving the signal differentiating problem the positive coordinate-
parametric feedback was used, as compared to the object control problem, where
negative coordinate-parametric feedback was used [2]. In the case of the signal
differentiation problem the existence of the movement along the plane e=0 is achieved
by the parametric feedback which is negative as is object control.
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MpriMeHeHMe HOBbIX TUMOB 0BPATHbLIX CBA3EM A1 PeLLleHns 3ataqun
AnbthepeHUMpPOBaHKA cuUrHana

C B. EME/bSIHOB. A A CO/IOBbEB
(Mocksa)

B ctatbe paccmaTpuBaeTcs 3ajaya AuddepeHLMpOBaHUA CUrHana W AenaeTcs MoOnMbiTKa ee
peLLeHNs Ha OCHOBE MCMONb30BaHUA KOOPAWHATHO-MapamMeTpuyeckux M napameTpuyeckmx 06paTHbIX
cBsAseil. CUHTe3MpyeTCs CTPYKTYpHas CXeMa 3/1EMeHTa, CBA3b MeXay BxofHbIM /(f) u BbixogHbIM ifi)
CUTHaaMU KOTOPOro MOXET OblTb annpoKCHMMPOBaHa C MOMOLLbI0 NepeAaToyHol (yHkumm W(p) =

KP Tl
= /(P)): ———9—3—1. CTpYKTypHasi CXxema 3/1eMeHTa COAEPXUT TONbKO YCUAUTENbHbIE, UHTErpUpyoLLme 1
0 p +
peneiitble 3BeHbA, MPUYEM 3a CYET BbIGOPA KOHEUHBIX 3HAUEHNI KOI(MMULIMEHTOB YCUIIEHNS YCUNTENbHbIX
3BEHbEB W MOCTOAHHbIX BPEMEHN WHTErpupyrowmnx 3BeHbEB CYLIECTBYET BO3MOXXHOCTb MOMYYUTbL B
yKa3aHHOIi nepeaaTouHol (yHKLMM Nt060e, B TOM YCe CKOJb YIOAHO Manoe 3HaueHue 6 1 nto6oe, B TOM
uycne CKofb YroAHO 60MbLUoe 3HaveHure I,,. 3a4ada peLueHa npyu orpaHNYeHnax Ha BXOAHOI curHan /(r)
BMaa
«itaz2,; Aar
539} +ag)c L

I/ +°0l </ Y /+aol
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rae a0, a, <a2— nocTosHHble. MPUBOANTCS METOJ pacyeTa 3HaYeHUil NapamMeTPoB 3BEHbEB, BXOAALLMX B
CTPYKTYPHYIO CXEMY 3MeMeHTa MO 3HaYeHUsIM MOCTOAHHBbIX a0, a,, a2, 3a4ak0LLyMX OrpaHNYeHs Ha BXOLHOI
CUTrHan, 1 TpeGyembiM 3HaUeHWsM Tn 1 § onpeaensiowmM nepeaaTouHyto (hyHKLMIO 3NeMeHTa.

C. B. EmenbsHoB
BcecotosHblit HUW cucteMHbIX nccnegoBaHuii
CCCP, 119034, Mocksa [-34, yn. Pbineesa, 29
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CTOXACTUYECKUNIN MPOrPAMMHbIA CUHTE3 OIHOIO
FTAPAHTUPYHOLWLEIO YTIPABJIEHUA

H. H. KPACOBCKWI, B. E. TPETbAKOB
(CBepanoBck)

(MocTynuna B pegakumio 14 anpens 1982 r.)

B pa6oTe OMUCLIBAETCS MOCTPOEHUE OMTUMAAbLHOrO rapaHTUPYIOLLEro ynpaBneHus Ans
NINHEHOI cUCTeMbI NPY YCNOBMU, UTO NOKa3aTesb KauecTBa NPoLecca YnpaeieHUs CKNafblBaeTcs
13 TEPMUHANBHOTO YNIeHa U UHTEerpana oT KBagpaTU4HOW )OpMbl OTHOCUTENLHO YMPaBASIOLLEro
BO3felicTBus 1 nomexu. Llenb pa6oTbl — MPOAEMOHCTPUPOBAThL Ha 3TOW 3afaye BO3MOXHOCTM
MeTo/a CTOXacTUYECKOro NPOrpamMMHOI0 CUHTE3a, NPea/IoXKeHHOro B paGoTax [1-2].

1. PaccMOTpUM CUCTEMY, OMUCLIBAEMYH) YpaBHEHMEM
x= [4f)x+ B(i)x+ C()p, uef, vei, Ly

e X —N-MepHbIii (Pa30BbIi BEKTOP, U—P-MEPHBLII BEKTOP YNPaBieHNs, v—"-MepHbIii
BeKTOp HeonpepaeneHHoi nomexu, (P u fi cyTb HekoTopble kommakTbl; A(t), B(t),
C(t) — HenpepbIBHble MaTPULLbI-YHKLUK; BPeMs | MeHseTca B npegenax i0igiiS9.

Byfem HasbiBaTb cTpatervein ynpaeneHus gyHkumio u( *)= {«(1,x, €) e ?/}, rge
e>0 — napameTp TouHOCTW. [lycTb peanusosanacb ucxofHasa nosuuyus {i*x*},
U e [*0»9]. Bblbepem £>0 1 Kakoe-HUOYab pasbueHune Aa{T,} nonyuHTtepsana [t,,, 9]
Ha nonywHTepsanbl [T(Ti+1), 10=T* TT=19, ri+l— OsmxeHnem x[ ]=
=X [m,(,xdh u( Wr(m).£ fa] = {x[f,ttx,, u().£[*].eld, i, <if—9}, nopoxaeHHbIM
npu 3TUX YycnoBusx cTpaTerveli u(m) 6yaemM HasbiBaTb peLUEHWe MOLIaroBoro
ypaBHeHUs

x[t] = A(t) x[t] + B(t) u(t,, x[1,], H+ C(0«m , (12
*[*]=**>  Tfgi<Ti+i, i=0,..., m-1.

3pecb peanmsauueii nomexu r[ o] = {r[i] e G, i*~i5[9} moxeT 6bITb Nt06as
n3mepumas YyHKUMA co 3HadeHusaMu B 1.
MycTb 3afjaH NOKa3aTeNb KayecTBa Npouecca ynpaBneHus

Y(1+], Vi[m] »[m])= JR(L ult], 4O) dt + [x[9]1, 13)

R(t, n, V)= <M em>+ <«P((h *T) . (1.4
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3pece M= {p7(), y=1 2 Py 4=0, y=1 2, . . v} —
HemnpepbIBHbIE CUMMETPUYHbIE MATPULLbI-YHKLUK; |X | — €BKIMA0BA HOpMa, <ee>—
ckansipHoe npoussegeHue n[ ¢ = {uftj e " t< 3} — peanusayus cTpareruu u( m
BA,O0/b NOPOXAEHHOIO €et0 ABVXKeHUs X[ M.

FapaHTMpOBaHHbIM pe3ynbTaToMm [3, 4] p(t".x u( m) ona cTpaterun u( m) 6yaem
Ha3blBaTb BENUYNHY

)= E% lim Vf-:lljgﬁy(X[ 1ul *1.:[D). (L5)

TpebyeTcs HailTV onNTUManbHOE rapaHTUpyloLLee ynpaeineHne — CTpaTeruto
n°( ), KoTopas 4N BCAKOW BO3MOXHOW MCXofgHoi nosuumm {f*x#} obecneumsaet
MWHUMa/bHbIA rapaHTUPOBaHHbIN pesynbTat

P°(M*) = P(i*x*“°(-)) = min p(tmx*u( m)). (1.6)

Takum obpasom, cTpaterus u°( ) o6nagaert cnefyrowum cBOMCTBOM. KakoBa
6bl HM 6blna ucxogHas nosuums {i*x*} n kakum 6bl yncnom (>0 HU 3aganwnce,
HaligeTcs uncno &C) > 0 n 3atem tyHKumsa <5, €)> 0 Tak, YTO AN BCAKOrO ABVKEHMS
[T =* S *me(), [ '], & 6yfeT rapaHTUpOBaHO HEPABEHCTBO

I R(LUCTHIVIE) de+ IXST1Ep° (txI+( (L.7)

KakoBa 6bl HM 6bina nomexa r[ ], ecnm Tonbko e”e(C) m aMa(C, e). U HukKakas
cTpartervs u( W) He MOXeT rapaHTMpoBaTb HepaBeHCTBO Y(X[-, t"X,, u( m), r[ <], ¢,

«[*], «t-])<p°(t*x*)-C npu BCEX BO3MOXHbIX peanusauusax nomexu r[ ] wu
pas3bueHnax As ¢ JOCTATOYHO ManbiM warom £>0.

OnTumanbHoe rapaHTupytowee ynpasneHue u°(i,x,e) cyuwectsyeT. OHO
CTpouTCS No BenmuumHe p°(t, X) cnegyrownm o6pasom [2]. Bnosmuun {1,x,}, f*~ 72 9
MCKOMOE 3HayeHune M°(T, X,, €) OnpeaenseTca U3 ycnosus

max [<(x, - W) «(B(t°(T, xt, €) + C((p)> +
vea (1.8)

+ CcteR(T, ue (e, Xt, €), )] = min max [<xt—wt) «
ue™ vsa

*(B(T)H + C(T)r)>+ ctR(T, u, U)] ,
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rage {Wt, ej — COonyTCTBYHOLWaa To4Ka, yA0BAeETBOpAtOLL,ad YyCNOBUIO

p°(T, Wwt)- ct = min 0°(T, W)- c] (19

npu |[xt—w|2+ c27e(l + [T—,])exp2L [T—*]-
3gecb i*max ||[/4(D)]| npwn 1VH — eBkNMAoBa HopMma mMaTpuubl A
Takum 06pa3om, NOCTPOEHME ONTUMANbHOIO rapaHTUPYHOLLEro YnpaBieHus
u°(t, x, e) ceogutcs k BbIYUCNEHUIO yHKLUN p° =p°(t, X).

2. Onvwem npoueaypy BbIYUCIEHUA OMTMMaNbHOIO FapaHTUPOBaHHOTIO
pesynbTata p°(t, X) (1.6), OCHOBaHHYIO Ha METOAe CTOXacCTUUYECKOro NporpaMmMHoOro
cuHTesa [1, 2).

PaccmoTpum w-mofenb [2], oTBevaloulyto ypaBHeHuto (1.1) n nokasaTento
kauvectBa (1.3), (1.4). CocTosHME 3TOW MOAENN B TEKYLLMA MOMEHT BpeMeHM t Byaem
xapaktepusoBaTb (n+ 1)-mMepHbiM BekTOpom  Y[r] = {w]r], , QO rpe w—
N-MepHbIi BEKTOp. M3meHeHne (hasoBoro Bektopa y[i], f*~ ™ 3 B w-mopenu
OyfeT onpefenaTbCa YpaBHEHUAMM

w=/I(w+/ + C(d,
2.0

rge ynpasfieHVWe V CTECHEHO ycnoBmeM ve 2., a (n+ 1(-MepHbIi BEKTOP ynpaBfieHus
g={f,9n+1} — ycnosuem

NeF(t);  F()=cof/i:/i = {B(nu,
(2.2
(Plum) ,ne P}.

3pecb co{...} — 3aMKHyTas Bbinyknasa obonoyka MHoxecTsa {...}.

Bbibepem B kayecTBe 06a30BOro0 BEPOATHOCTHOIO 3fIEMEHTa CTaHAAPTHbIN
npouecc GPOYHOBCKOro ABMXXeHWs Z[t, col, roe o ecTb 37eMeHTapHoe
cobbITME M3 COOTBETCTBYHOLLEro BepoATHOCTHOro npoctpaHctea {B, n/, P}
(5], cTp. 39).

Bygem HasbiBaTb Heynpexpgawowumu nporpammamu  <?(1*[«19), iXf,[]3)

thyHkuuM g(t, co)e F(i), v(t, « ) e, HeynpexzatoLme rno OTHOLEHUIO K
npoueccy z[i, co] (T.e. MO OTHOWeHWO K cemeiicTBy <5-anredp {Ff}, cBA3aHHbIX C
NPOLECCOM [, COJ, ([5], ctp. 100)). WHaue rosops, HeynpexgjawoLiue

nporpammbl g(tn m$) v iXi,,[ *]19) — aT0 hyHKLUM ABYX aprYMEHTOB t 1 C0, KOTOPbIE
noyTM  HaBepHOe  oOnpefensloTca  paBeHcTBamu  g(t, 00)= 3,,(C, r(cqy *Jr, w)),
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v(t, )=V, z(i,,,[-]t, @), rae cumsonom z(t, []t, 00 npu UKCMPOBAHHOM COE i
0603HayeHa peann3aLns OGPOYHOBCKOIO [ABWXKEHUSA z[t, as] Ha OTpesKe
CofepxaTenbHO 3T0 03HAYaeT, YTO BE/IMYMHBI BO3LENCTBUIA M VB MOMEHT BPEMEHM t
onpegenatoTcs nporpammamu g(t,,l «J#) v o(l,,[ *1$) nuwb Ha ocHOBaHUW MCTOPUK
OpOyHOBCKOro ABwdeHua z[t, co], i*~ T |, KoTOopas peann3oBanacb K MOMEHTY
BpeMeHn t.

Mpn 3agaHHON wcxogHoi nosmumm {i*,y* = {w'y,+1#}} napa nporpamm
[ 1)>f(i#[' 1®} onpegenser B w-mogenu (2.1) cnydvailHoe [JBWXKeHWE
y[f,co] =y[f, co, r,y*, g(i*[-]19), u(f,[-]3)], koTOopoe npu onpegenseTcs
KaK peLlleHue MHTerpasbHOro ypaBHEHUS

nwie, co] + 1 (r, 00+ C(X)v(z, c0)

i = dz. 2.
yit, ] =y* + L,,+1(T,00) + <YUTMT, cO) mp, 00) (23)
PaccmMoTpUM BEIMHKHY
P*(t*y*) = SWP  inf M{yn+1[9,<0] + |w[S,co]|}, (2.4)
t>(1( 15) g(r[ 13)
roe M — maTtematmnyeckoe oxugaHve. CrnpaBefnuBO CRegytollee YTBEPXKAEHNME,

KOTOpOe [oOKa3biBaeTcd MNoJOOGHO TOMY, KaK OOOCHOBbLIBAETCA aHanornyHoe
yTBepXeHne B cTaTbe [1].

Teopema 2.1. [nd BCAKOW BO3MOXHON WCXOAHOW  MO3MLMK
ONMTMMa/bHbLIA  rapaHTUpPOBaHHbIA  pesynbTaT p°(f*x*) (1.6) onpegensetcs
paBeHCTBOM

Po(t**-)zp*(i",{**. 0}) (25)

Mepexog K 3afave, 4BOVICTBEHHOI MO OTHOLWIEHNIO K 3agadve (2.4), NPUBOANT K
cnegytouleii  KOHCTpykumn. TycTb  (n+1)-mepHas  BekTop-PyHKuma rft, co] =
= {sit, co], rn+J[i, col}, r[i#, co] = {s[t»], rn+1[tj} ecTb HeynmpexaaroLiee cnyyaiHoe
peLleHve g dy3nMoHHOro ypaBHeHUA

ds —A'(t)sdt + m(t, co)dz[t, co]
dr 26
A+ an+1(, mezlt o] ]

rae {m(t, co), gn+i(t, co)}=q(t, co) ecTb HEKOTOPaa HeynpexaatoLlas Mo OTHOLIEHUIO K
npoueccy z[f, co] (n+ 1(-mepHas BEKTOP-PYHKUNWS; BEPXHUIA UHAEKC LUTPUX O3HAYaeT
TpaHcrnoHuposaHue. Myctb ||y (-)||, v ||r()11* — HopMbl B npocTpaHcTBax (n+1)-
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MEPHBIX CMyYaiiHbIX BE/MYUH Y(a3) U (a3), coell, onpefeneHHble COOTHOLLEHNAMN
bl «)H*= M{\yn+.M 1} +(M{bl(0)\2})12, 27
MKe)1r = max {vraisup |rn+ ,(co)| ,(M{|s(co)|2})V2}, (2.8)

rge |3 — no-npexxkHeMy eBKNUAOBa HOpMa BekTopa X. CrpaBea/iBo YTBEPXKAEHNE.
Nemma 2.1. BennunHa p*{t+yt) (2.4) paBHa TOYHOI BEpXHE rpaHM Tex uwncen B,
LN KOTOpPbIX CrpaBesMBO HepPaBeHCTBO

&

[<I**] ' Y*) + M{ If r\r/gx min [<s[r, a3] *

3P i
IIr[. 1*s 1 ued>

e(B(x)u --C(h)> +r,+j[T, og] *R(x, U, i;)]dt} - (2.9

—yf(T)lg% M{<r[9, co] *y(a3)>}] >0,

roe YR — MHOXECTBO B MPOCTPAHCTBE C/lyyaiiHbIX BeUUMH Y{ W), onpegeneHHoe
COOTHOLLUEHWNEM

V= {yi-y.M{yn+I(a) + \w((0)\}£R}. (2.10)

B HepaseHcTBe (2.9) r[9, ¢] = {r[3, a3], 0; e Q] ecTb 3neMeHT peLleHUs rt, ],
i* N tU SypaBHeHus (2.6), MOPOXXAEHHOTO HEKOTOPLIM HavyanbHbIM ycioBuem r[f,,] n
HEKOTOPOI Heynpexgatowein QyHkumein (ynpasneHnem) q(t, . CTtano 6biTb,
MCKOMbIMU B [BOWCTBEHHOW 3agade (2.9) ABNAKOTCA HavanbHOe ycnosue r[r™] u
Heynpexgarouiee ynpasneHume d(t, 0 418 CTOXaCTUHECKONR cuctemsl (2.6).

CnpaBegnnBoCTb NemMmbl 2.1 fOKa3blBaeTCs NOAOOHO TOMY, Kak 3TO AenaeTtcs
MpW aHanornyYHbIX 06CTOATENbCTBAX B MaTeMaTU4YecKoin Teopmmn ynpasneHus [4] Ha
OCHOBaHUW TEOPEM O pa3feNeHUn BbIMYKIbIX MHOXECTB. 34ecb, OfHaKo,
COOTBETCTBYHOLLME MOCTPOEHUSA  paccMaTpuBaroTcad B (DYHKLMOHA/bHOM
MPOCTPaHCTBE CNyYaliHbIX BenYuH Y(*) ¢ HopMoW |ly( *)||d (2.7).

M3 Buga nocnefHero B (2.9) cnaraemoro

max M{<r[3, a3] *y(a3)>} =

= max M{re+1[3,a3]-yn+1(a3)+ <5[4,a3]-»Lb1)>} (2.11)

n onpefeneHns MHoxectsa YR (2.10) cnegyeT, 4TO AN8 MaKCUMUUPYHOLLNX
anemeHTOB r[9, a3] = {s[9, a3], rn+, [3, a3]} npu NouTK Bcex a3 JO/HKHO BbINOJHATLCA
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HepaBeHCTBO |s[9, co] | i£ L B camom gene, ecim 6bl Ha MHOXeCTBe & ¢ Q HeHyneBoW
Mepbl MMeNo 6bl MecTO HepaBeHCTBO [S[3,€0]| > 1, TO, NocKonbKy C yyeTom (2.8)
vraisup rn+1[.9, co] A 1, BennumHbl W(CO) 1 yrH1(ca) Ha MHOXecTBe € MOXXHO 6bIno Obl
BbibpaTb Tak, u4TO BenmumHa (2.11) cpenaeTtcqd  CKOMb  YrO4HO  GOJMbLUOWA.
CnepoBatenbHO, 3aneMeHTbl r[3,co], Ans Kotopbix |S[9, c0]|> 1 Ha &, He moryT
paccMaTpMBaTbCA B KauyecTBe MakCUMM3MpPYOLWMX Ans (2.9).

[anbHeAwnin aHanu3 HepaBeHcTBa (2.9) nokasbiBaeT, 4TO [BOWCTBEHHas
3afava (2.9) pegyuupyetcsa K cnydato ru+l[T,co] = 1, (B ypaBHeHUU (2.6)

g,+1(t,co)sO, r,+i[i»]=1), max M{(r[9,co~\ mjia»))} =R, n TOrga BenuyMHa

(24) onpepenseTca paBeHCTBOM

P*(1*Yy*) = sup [<a[t.]-w*>+"+u +

vraisup Is[d, co]| g 1

S
+ M{ Jmax min [<s[t, oo *(B()u+ C(p> +
*ued ued*

+ R(r, y, v)]dx}) m 2.12

Cpenaem Tenepb OLHO MpeAnosioOXeHWe O KsagpaTuyHoin copme R(t, u, W)
MpumeM, 4To 3a4aya Ha MaKCUMWH NOJ 3HAKOM MHTerpana B (2.12) UMeeT peLueHne
{1, ), M|(T, cO)}, KOTOpoe coBmafaeT ¢ peweHuem {n°(T, c0), r°(T, CO)} Takoi >xe
3afa4M Ha MaKCUMWH, HO yXe 6e3 anpuopHbix orpaHuyeHunii uef, véil. 3To
NPesnonoXeHve CyLWeCcTBEHHO YNpoLwiaeT panbHelilive BbIKNagku u obneryaet
nony4yeHne aheKTUBHOIO pelleHns. OHO BbINONHAETCH, ecim B (1.4) npu
maTpuua (1) onpefeneHHO-NOMOXNUTENbHE, Y'(T) — onpefeneHHO-0TpULaTe/lbHa U
abCoNTHbIE 3HaveHUs onpegenutene |d(T)| n [*P(T)] He MeHee MONOXKMTENbHOIO
ymcna N, focTaTOYHO 60/BLLIOr0 MO CpaBHEHUIO € pasMmepamu & u J. Tpu 3TOM
peweHune {m°(T, co), n°(T, O} 3aa4n Ha MAKCUMUH MO U U I B BblpaXXeHun (2.12) 6e3
anpuopHbIX OFPaHUYEHU Ha U U V UMeeT BUf

ne(r,co) = - ~d ‘MBUGCT, o] ,

(2.13)

p°(T, 00 = - M ~I)C(v)s[t o ,

n nocne noactaHoBkn (2.13) B (2.12) gna p*(tny+) (2.4) nonyyaem BblpaXeHNe
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P*(t+yJ= sup [<s[i*]-w*>+};,+1*+
vraisup Is[£, co] I 1
(2.14)
+ IJ M{G(t, s[t, ca])}dr] ,
rae G(t,s) eCTb KBagpaTuyHas opma
G(t,s)= <K(t)s-s> (215)
m =- [BM®- Y T)B'(TM)+ C(M)V -LT)C'(T)] . (2.16)

MTaK, 3afaya 0 BblYMCNEHUU ONTUMANbLHOIO rapaHTUPOBAHHOIO pesynbTara
pO(t+xj cornacHo (2.5), (2.6), (2.14), (2.15) csoauTCcA nNpM CcheNaHHOM
NPeanosIoKEHNN O XapakTepe KsagpaTuyHol ¢opmbl R(t,u,v) (1.4) Kk 3agaye 06
ONTUMaNbHOM MPOrpaMMHOM ynpasneHun m(t, c0) CTOXACTUYECKOR CMCTEMOIA

ds= —A'(t)sdt + m{t, w) dz[t, co] , s[i*a>] =s]i,,.] (2.17)

npy ycnosum makcumyma (2.14) npu orpaHudeHum vraisup|s[3, co]| »# 1 B Takoii
3afjaye WCKOMbIMU SBNAKOTCA HayanbHoe ycnosue S[i,] W Heynpexpatollee
ynpasneHme m(-) = {m(t, a), t,,,"t<9, coeR}. CTporo rosops, 34ecb peyb MAeT
NMWb O Makcummusmpytowein ana (2.14) nocnegosatensHocTn ynpasneHuid T 0)( ),
7=1,2, . . TaK Kak He YyTBepX[aeTcs, UYTO BepxHAs rpaHb B (2.14) pocturaercs
Ha HeKOTOpPOM pelleHnn s°( ) ypaBHeHus (2.17) npu KakoM-TO ONTUMasSbHOM
ynpasfieHun T°( °).

3. Monoxum s[t,(a] = X'[9,7)/(T,w), roe 2, 7] — dhyHAameHTabHas maTpuLa
pelweHnin ns ypaeBHeHus x =A(t)x. Torga 3agaya 06 OTbICKaHUM ONTUManbHOro
rapaHTMpoBaHHOro pesynbTata p°(i*x,,) ¢ yuetom (2.5), (2.14), (2.17) TpaHchopmu-
pyeTcs B 3agavy

Pe(t*xJ = sup [</[t*] X[9, t,,]ic>+
vraisup 11[9, to]] ;£ 1

(32)

+ I M{G*(t,1(z.(0))3ar,
u

dl=at, co)dz[i, o), /[i,,, col = /[{..] , (32)
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roe a(t, 0)=[X'[At] Im{t, co) n
c.(r, 0= <#c,(m)/e/>, K, (T) = X[9, TIK(T)X'[9, T] . (3.3)
MpumMeHss ¢opmyny 3ameHbl nepeMeHHblx W10 (5], cTp. 141) npwu

(hDMKCMPOBAHHOM T K KBaApaTU4HOM hopme C,, (t, /(E, co)), nocnefyroLinum
yCpeAHeHMeM Mnoslyyaem

AHC. (T, (T, co))} = G, (£, [[?*])+ | AT{G*(t,e(i. ©))}«e (3-4)

MoactaBnas (3.4) B (3:1) M MeHAS NOPAAOK WHTErpupoBaHMA Mo i u
OKOHYaTe/IbHO Haxo4uM, 4TO

po(i*x*) = vraisopTH® [ ~ 1 [<U>*]-B[ *.]*> +

+H(t,/[t)) + LM{H(t, a(t, conrice1 . (35)
roe

H(t,B)=<Il(T)a-a>, () = }/C ,(". (3.6)

Takum 06pa3oM, 3afavya O BbIYUCMEHWM BeUYMHBLI P°(r*x*) okasblBaeTcs
3KBMBANEHTHOW 3afjaye OMNpefeneHns MakCUMWU3MPYHOLLeli nocnefoBaTe/ibHOCTH
an)( W)= {aU(t, co), t,,"t<9, coeR},j=1,2,... Ana HeynpexjawolLlero ynpasneHus
a( W 1 HavanbHOro ycnosus /°[i*] ana croxactuueckoi cuctemsl (3.2) Npu ycnosuu
MaKCMMM3auuu BenuUYmnHbl (3.5).

PewieHue aToin 3agaun (3.5), (3.6), (3.2) TakoBo. Ecnm kBagpaTnyHas gopma
H(T, @) npn Bcex Te [t,,9] ABNAETCA 3HAKOOTPULATENbHON, TO ONTUMaNbHbIM OyfeT
TpuBManbHoe ynpasneHue a(t,co)=0, n Torga /(T, «) = /[(*] npn Bcex Te [f,, 3] u
coed. DTa cuTyaLusa oTBeyaeT perynapHomy cnydato [4]. 3geck 3afaya 0 BbIUMCIEHUN
pO(f,,xj paspeLuaeTca Ha OCHOBe LETEPMUHUPOBAHHOM NPOrPaMMHOI KOHCTPYKLMU,
T.6. CBOAUTCA K OTbICKAHUIO MaKcumMuanpytowero sektopa /0= /°[i*] npwn |/[t*]|* 1
13 ycnosus (3.5), rae nonoxeHo a(t, 0)s0.

MycTb, 0fHaKo, KBaapaTtuyHas gopma H(T, a) (3.6) Mpy HEKOTOPbIX 3HAYEHUAX
ie[t*9] u a MOXeT NPUHUMATbL MONOXWUTENbHbIE 3HaYeHWUs. TlycTb nNpu 3TOM
T, = T,[i,,]e[t*, 9] ecTb Takoe 3Ha4yeHWe T, NP KOTOPOM MaKCMManbHOE COOCTBEH-
Hoe 3HauyeHue A(T) KBagpaTudHoi Gopmbl H(T, a) gocTuraeT Makcumyma, T.e.

AMi,]) = wax AT, AT= wax AT, a). (37

1918 1
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Torpa 3agaya (3.5) npu orpaHuyeHun
9
vraisup|/[$, (o]| = vraisup|/[i#] + j a(t, co)dz[t, co]| ~ 1 (3.8

VIMEeT C/IefYyHoLLYI0 MaKCYMU3NPYIOLLYIO NOCNeA0BaTeNIbHOCTb au\ *). 3aMeTuM, 4To
T,<9, nockonbky A9=0, ¥ 3agagum MOCNeL0BaTeNIbHOCTb 3HAYeHWA Tj=
=T"+Ej€ Ej>0, limgj—O0 npu j-* oo. Monaraem a(B(t,<y) =0 npu "
T'+Ej*<3. MNpu T1,Sif<T,-1-€7 ynpaBneHune ai)(i, w) BbIGUpaeTCcs cnegyowmm
06pa3oM. PaccmMOTpVMM COOTBETCTBYHOLLYHO MaKCUMU3MPYIOLLYIO MOC/efoBa-
TenbHocTb  0)[t*]. Bbibupas ©3 Hee CXOAAWYKOCA MNOANOCNEA0BaTENbHOCTb
(nycTb TakoBOWM ABNSETCA YXXe cama nocnegoBatenbHocTs /O)[i*]), 0603Ha-
umm lim A [t*] =i°[i,] npm j—o0. B paccmaTpusaemom cnyuae |/°[i*]|<I.
MycTb e — eJMHNYHbIA CO6CTBEHHbIN BEKTOP, KOTOPbIA B COOTBETCTBMU C (3.7) y,0B-
NeTBOPSAET YCNOBUIO

H(™<?)= J1(T.,). (3.9)
OI'Ipe,EI,enI/IM NONMIOXUTENbHbIE YNCNa a+ M a' U3 yCHOBMVI
|/°[ij+a+e[=1, |/O[r,]-<le|=1. (3.10)

Pa3obbem Bce npocTpaHcTBO B Ha ABa nogmHoxecTBa Bf n Bf cnegyowmum
obpasom
Bf ={co:z[T*+exza»]-z[T,,ai]*z*},
(3.12)
Bf ={w z\t,,+£j,w1 — 21, ca] < z<1p,

rae uncno z* BbiGpaHo U3 ycnoBus

. -}e 22idr=a /(a++a).
SfbfEf]

Wmeem P(Bf)=a /(a++a ), P(Bj )—a+/(a +a+). Bbibepem BeKTOpHYIO
CNyYaiiHyt0 BEIMUUHY
[°>M =/°[tJ +a+e, coeBf,

(3.12)
oYW= /°[f#] —a e, coeBj .

Vmeem M{/T(0)}=/did]. CornacHo ([5], cTp. 186) cywecTByeT Cry4aiiHblli
npouecc /u)[t, co], KoTopblil ya0BNETBOPSET yCN0BUAM (3.2) 1 YyCN0BUIO

(3.13)
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Mpun 3Tom [ns cooTBeTCTBYHOLWeEro ynpasneHus al)(t,co) cnpasenvBo
paBeHCTBO

M {Ne «]|2}=|/°[v]]2+ r*|§ M{|aU[t, co]|2}dr= 1. (3.14)

OTctoaa BbITEKAET, UTO ynpasneHue a0)[T, a3] AaeT BENUUMHY

*p= <I°[tj mX[9, *,]*,> + H(t, /°[r*]) +
+ AT, [I*]) (@- 1°[i*] 2)+ £<F, (3.15)

rge lim (g=0 npwm j-* co.
Ctano 6bITb, 419 NOCTPOEHHOW nocnegosatensHocTu anm,( ),j= 1,2,... umeeT
MECTO COOTHOLLEHWE

lim xY=<I°[td X[9,tt]xt) +
J00

+f(t,, 1°[t]) + ATL D (1-1/°[1*]1)=x°. (3.16)

3Ta BenmumHa x° (3.16) 1 paBHa BepXxHeli rpaHy B COOTHOLWEHUN (3.5). B camom
fene, Ansa TOro, Ytobbl y6eanTLCa B TOM, YTO NPW AaHHOM 3HadeHun /O[i*] Hukakas
BO3MOXHaaA nocnefoBaTesibHOCTL au(m) He MOXeT ana (3.5) gaTb BeAnUUHY,
6onblyto, Yem X° (3.16), LOCTATOUHO 3aMeTUTb, YTO U MPU YCNOBUKN TOJLKO (3.14),
6onee WIMPOKOM, Hexenu ycnosue (3.8), Helb3 MOCTPOUTL MOC/EA0BaTe/IbHOCTD
am\ ¢), 7=1,2, ..., OalOWyl0 3HadeHue 6osbluee, Yem Xx° (3.16). 3TO nocnegHee
YTBEPXAEHNe NPOBEPSAETCH YXKe HENnocpefCTBEHHO No (3.5) u (3.14).

NTak, BenMuMHa ONTMMANbHOIO rapaHTUPOBAHHOrO pesynbTata pe(tnx j
onpesenseTca paBeHCTBOM

= max [</**[9,t] x,>+
lilai
+tfM -A (at,])|/]12) + A(T,[iJ), (3.17)
rge ¢ yuetom (2.16), (3.3), (3.6)
tf(t*,0=<Ht*)/m/>,

r(tj = - LLX[Q’t] *(B(Mp-(MB(M) +

+ C(M)V - “(M)C(M))X'[9, 1] dz, (3.18)

n uucno A(t*[f*]) onpegensetca us ycnosuin (3.7).
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3ameTum B 3akntouveHue, uto npu At,[i,])>0 makcumym B (3.5) He poc-
TUraeTcs Ha KakoM-1160 JonycTumoM ynpasfeHun a( m. 13 npuBeLeHHOro Bbllle
MOCTPOEHNA MaKCUMU3MPYKOLen nocnegoBatesibHocTM aU)(t, c0) BMAHO, 4TO B
JaHHOM cnyvae 60/iee COOTBETCTBYeT AyXYy 3afadyu BbibOp B KavecTse 6a30BOro
BEPOATHOCTHOIO 3neMeHTa He OpOyHOBCKOro mnpouecca z[t,co], a HekoTOporo
npouecca z[t,co] ¢ He3aBUCUMbIMM MNPUPALLEHUAMM, AOMYCKAOWUMN Pa3pbiBbl.
OpfHako, Takoi BblbOp npuBen 6bl K 6onee TrPOMO3AKMM MPOMEXYTOUHbIM
BbIKNaLKaMm.

4. MocTaHoBKa ncxofgHoi 3agayun (1.1)—€1.6) He UCKIOYaeT TOro, 4YTO Momexa
[ *] B o6bekTe (1.1) MOXET 6bIThb, B YACTHOCTW, TOW WM UHOI peann3alueii Kakoro-
TO ynpasneHus v, POPMUPYEMOro No NPUHLMNY 06paTHO cBA3K. M03TOMYy, Ha3blBas
cTpaTerueii ynpasneHms vpyHkumto r( )= {r(f, x, €) e J}, MOXXHO NocTaBMTb 3a4avy o
BbI6OPE ONTMMaNbLHOW cTpaTeruu r°( m), KoTopas A1 BCAKOM BO3MOXHOM MCXOLHOM
nosuuum {f*x,,} obecneunBaeT MakCUMabHbIii rapaHTUPOBaHHbIV pe3ynbTaTt

Po(t*x*) = P(Fx*tf(-)) = m ?Xpi"x*"-)), (4.1)

rae p(i,, X*v( W) ecTb rapaHTMpOBaHHbIM pe3ynbTaT 418 BbI6paHHONR cTpaTernm r( ¢),
onpegensieMbllii C NOHATHbIMU WM3MeHeHUAMU Mofo6HO (1.5). Mpu 3TOM ABVXKEHME
X[ *], nopoxpeHHoe cTpaterveii W m), ¢opmMupyeTca 34ecb KaK  pelleHune
COOTBETCTBYIOLLEr0 NOLIAroBOro ypaBHeHUs No cxeme, Nogo6Hoi (1.2).

M3BecTHO ([2], cTp. 581), uTo cTpaterus r°( *) cyLiecTsyeT 1 BenmunHa po(f*x*)
(4.1) coBnagaet ¢ BeIMUMHON p°(t*X,,) (1.6), KOTOpas, Kak NOKa3aHO, BbIYUCASETCS MO
thopmyne (3.17). OnTuManbHOE rapaHTUpyloLLee ynpaeneHue vo(t, X, €) onpegensercs
no BenuumHe pO(i*x*)=P°(i*x*) (317), kak u ynpaBneHne u°(t,x,e), MyTem
3KCTPEMASIbHOTO HaBefeHMs 06beKTa Ha CONYTCTBYIOLWLYH TOUKY, HalfeHHYH W13
ycnosusa (1.9), B KOTOPOM TOMbKO Min 3aMeHSeTca Tenepb Ha Lax.

Takum 06pa3om, Hapsagy ¢ HepaBeHCTBOM (1.7)

y(x[ m], n°[*],»[]) * P°(F*x*) + C, (4.2)
KOTOpoe obecneynBaeTca cTparterveli u°( W), MMeeM HepaBeHCTBO
Y *], m[ <], 0°[«]) " P*(t+xm)- C, (4.3)

rapaHTUpoBaHHOe cTpaTerveil v°(m ana nw060K  M3MepPUMOW  peanmsaumm
nie]]={ « [ * 1 ecmm Tonbko e”(() n 0"<5((,e).

Ho 13 pe3ynbTaToB HaCTOsALWLE CTaTby BbITEKAaeT, 4TO YyMpaBneHue V,
rapaHTMpytoLlee pesynibTat He MeHbLWWIA, Yem p°(i"x") —C MOXeT 6bITb MOCTPOEHO
4ns paHHon nexogHoin nosvuyun {i"x,} n kak geyxwarosas B{i*x*} — npoueaypa
[2]. meHHo, Ha nepBom ware (i*, = ?*[(,,]) 3Ta npoueaypa Ha3Ha4yaeT ynpasneHue
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v Kak yHKUMo BpeMeHu no qopmyne r°(1)=(—1/2)9,_1(1). C'(T)X'[9, T}/°[r*]. Ha
BTOpOM ware [T1,,9] B 3aBMCMMOCTM OT peanu3oBasweica nosmuun {xUr, ]} Ha-
3Ha4yaeTcs 04HO M3 AByx ynpasneHuin re(t)=(—L2)P_1(T)C'(T)X'[3,T]*("(T*] +
+a+te) unu ro(t= —L2PH “ A7) o T] «(/°[i*] —a~¢€), Fge uncna a+mna- onpegene-
Hbl ycnosuamu (3.10), a eAVHUYHBIA COBCTBEHHLIN BEKTOP € — ycnoBuem (3.9).

Oba ykKaszaHHbIX crocoba NOCTPOEHMS ONTUMANbHOIO rapaHTUPYHLEero
ynpaBfeHns v° OCHOBaHbl Ha NpuHUMNE 06paTHOW cBA3nW. OfHAKO, pe3ynbTaThl,
CBSi3aHHble C MPOrpaMMHO CTOXAacTMYECKON KOHCTpyKumein (2.3), (2.4), pawT
OCHOBaHWe NS MOMbITKW CTPOUTb M B peasbHOM 00bekTe (1.1) onTumanbHoe
rapaHTupylollee ynpasneHve v° ans fgaHHoi ucxogHoi nosumuum {i*x,}, Kak
MaKCUMU3MPYoLWYo B (2.4) (an 61M3KYH0 K Hell Mo pe3ynbTaTy) HeynpexgaroLyo
nporpammy n°(t*[-]19). 3ameTm nNpu 3TOM, YTO B OCHOBE MOCTPOEHUA yrpaBeHns
i»°[t, co] Ha ocHoBe nporpammbl r°(i*[ «].9) nexart NWWb CBEAEHMS O peann3ayuu
BUHepPOBCKOro npouecca z (i*[]t, co), KOTOpbIE MOXHO 4YepnaTb U3 HEKOTOPOro
MCTOYHMKA CNyYaliHbIX MPOLECCOB, HMKAK HE CBS3aHHOIO C 3BoNoUMel o6bekTa (1.1).

N3 Teopembl 2.1 BbITEKaeT, YTO Kakum Obl CMOCOOOM, He 3aBUCALUM OT
OynyLuero peanusaumm BUHEPOBCKOro npoLecca, HA (hopMUpoBanoch ynpas/eHue u,
yeynpexgawouwas nporpamma t>°(i*[W9) (unm 6nuskas K Heli No pesynbTarty)
rapaHTUpyeT BbINOIHEHNE HEpPaBEHCTBA

M{y(xt - co],v°l,col ul sl p°M ,)-C . 4.9

Takas cTaTUCTWYecKas OUEeHKa MOMYYWUTCA, ecnu, Hanpumep, w[ ¢ co] cyTb
peanusauun 160 No3NLMOHHON cTpaTeruy u( m), unn m[-, co] — peanvsalmm N60i
Heynpexgatowein nporpammbl 1 (rf]9) Ha Tom >xe camom npouecce z[i, co], nm
[ mco*] — peanu3aunm HEKOTOPOI CTOXACTUYECKON NPOrpaMMbl N0 HE3aBUCUMbIM
oT z[t, w] cnyyaliHbiM COBbITUAM K Ap.

Ecnw xe ynpasneHus u[ « col =u°[ ¢ co] NOpoXXaeHbl ONTUMaSIbHON cTpaTeruer
n°( m), To Hapagy c (4.4) c BepoATHOCTbIO 1npu of ] = r°[ ¢ co] 6yaeT BbINONHATLCA
HepaBeHCTBO (4.2). OTclofa CrefyeT, YTo B TaKOM C/yyae And No6blX CKO/b YrOAHO
Manblx uucen rj>0 u a>0 MOXHO [ANS [aHHOW Mo3nLMK yKasaTb
CTOXACTUYECKYIO Heyrnpexjawollyto nporpammy o°(t#[ 19), KoTtopas rapaHTupyet
BbINO/IHEHWE HepaBeHCTBa

P(y(X[ ¢ co], n°[ < co], re[ & co])*p0(t,Xt)-r)"-CcC.

Takum 06pa3om nonyyaercsa, YTO €Cnu ynpasneHue u bygeT GopMmMpoBaThCs
ONTMMasnbHbIM 06pa3oM, TO MOXHO C BEPOATHOCTbIO, CKONb YrogHO 6/U3KOIA K
eMHULE, FapaHTMpPOBaTb pe3ynbTaT, CKOMb YrogHo 6am3kuil K pe(ttxj, opmmpys B
06beKTe ynpasfieHWe vV He MO MPMHUMNY 06paTHOl CBA3W, HO TO/IbKO Ha OCHOBE
CBefeHWii 0 peannsaunn He3aBMCMMOTO OT 06bekTa CnyyaHOro mpouecca z[t, col.
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5. B kauyecTBe unaCTpauumM paccCMOTPUM ABa MOLENbHbIX NpuMepa. lMepsblii
M3 HUX HOCMT (opmanbHbIi xapakTep. MycTb cuctema (1.1) n dyHkuymoHan (1.3)
NMeKT BUA
Xx=2m+y/N\ —01'sintv), x[r*]=x*

y= I)(IUIIZ-IHIZ)??“c+ Ix[9]l,

rge X, u, v-n-mepHble BekTopbl, 9=51, 0
Mo ¢opmyne (3.18) Haxogum, 4To

L) = -Il- [e 01(*(cosi, +0lsintj +e °-5E,

roe E — eguHnyHas matpuua.
13 ¢opmyn (3.7) nonyyaem, 4to

)= Lél [e O-lt(cosT+01sinT) +e 0754 (6.1)

n,cnegosatesibHO,
A, Of, £«
Aarn, n<t/
amay) = A (52)
q3m, T, <t, A3n

A, 3n<tPx2

rae umcno Tj e (1, 2n) ygosneTsopseT ycnosuio ¢-0,1" (cos xt +0,1 sin TY)= —e-0,3%
a uncno 12e(3n, 4m) —ycnosuto e~0/12(cos T2+ 0,1 sin T2)= —e~0,5n.

Mpu Bcex Te(T2,50) KBagpatuyHas opma A(T,a) = <I(T)aa> =4A(1)||a]2 B
cooTBeTcTBUM C (5.1) ABNAETCA 3HAKOOTPULLATENLHONM 1, 3HAYUT, BeNMUmMHa p° (t"X]
BbIYMC/ISETCS B 3TOM cfiydae no gopmyne (3.17), rae nonoxeHo A(TAr,,]) =0. Takum
obpa3om, B paccmaTpvBaeMOM MPUMEPE UMEEM

o) = g [</+%,>+ (1 -

-ATACD)-1Z + AFAL), (5.3)

rae A(Tp[1d]) mpy 0~ i#A r 2 onpegenseTca cooTHoweHusmm (5.2), a npu t,, (T2, 5n)
nonaraetca A(tArA)=0. Pewas 3agauy (5.3), Haxo4uM, 4YTO
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£ Ks) o=r*=n,
A0K*) —A (1) ’ IXJE2(Ka)-2K"))
pegex,) = + st3m) Ti<t, 37T,
” 4<XK35)-XKn) T [xdi20K39)->K1,))
T2<E*=Af1>
D) IX* |7 -2 1

n P°(r*>x,,) = [x*-1-XK**) [nd Bcex oCTaNibHbIX MO3NLWIA.

CogepxXaHue BTOPOro npumMepa cocTtouT B cnegytowem. MycTb OT ropu3oH-
TanbHOI OCK noja [eliCTBMEM YMPaBASIOLWEr0 YCUIUs U, BblpabaTbiBAEMOTO
3NeKTpoaBUraTeniem, nepeMeLLaeTcs MexaHuuecknii 06beKT maccbl T=\. TpebyeTcs
3a Bpems 7M=#—" nepeBecT OOBLEKT M3 HEKOTOPOIM MPOM3BOMILHON MO3MLMM
{r,"0,xi<] = x1",xi[t,] =x2*} B cocTosHue x"3] =x,[3] =0.

Mpun aTOM B MpoLecce ynpaB/eHNs Ha BbIMONHEHWNE 3a4aHNA TPaTUTCA 3Heprus
CTOMMOCTbIO

W = l" - u 2if\dt, (5.4)

—r

a 3a HeTOYHOe BbIMOJIHEHWe 3alaHunsA B3uMaeTcs wrpad (xf[9] + x?[9]) V2 Mpeano-
NOXWUM, YTO Ha 0ObLEeKT AeliCTBYeT elle HeonpeeneHHas Nomexa, Mo3BONAOLLas,
04HaKo, NMPOM3BOANTL 0T6OP MOLLHOCTH

wyv =\)v 2{t\ dt, (5.5)
A

KOTOpasi MocTynaeT B 3/1eKTPOABUraTe/lb, BbipabaThbiBAKOLLMIA yNpaBAsioLLEe YCune
n. Torga ecTecTBEHHO OLEHUTb CTOMMOCTb 3afaHUsi BEe/IMUMHON
y = Wu-W v+ (xi[9]+x?[i>]).,/2. (5.6)

3anucbiBas ypaBHeHUs ABWXKeHMs 06bekTa W TpakTys BennumHy y (5.6) Kak
061Kt pacxop CpesCcTB Ha BbINO/HEHME 3aaHNs, MPUXOAUM K U3YUEHHOI ke 3afjaue
ynpaBneHns ¢ ONTUMAasbHbIM TapaHTUPOBAHHBLIM Pe3ynbTaToM A8 clyyasd, Korja
cuctema (1.1) u dyHkumoHan (1.3) nmeroT BUS,

X,=X2, X2=u+v,

»

Y= |[3F T (“2- (5.7)
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MycTb gna onpegeneHHocTn 9= 3. 114 BblUACAEHUS ONTUMANbHOIO rapaHTun-
poBaHHOro pesynbtata p°(f*x*) (34ecb — MWHUMANBLHOIO rapaHTUPOBAHHOIO
pacxofa CpefcTB) Haa/eXuT CHOBa BOCMO/b30BaThes hopmynoli (3.17), B KOTOPOI
Tenepb

AlL),

) (5.9)

1<i,n9 =3,
roe
A= (-1/8)[y I(T) + y22(I")-{[ym (I") -y 2X(T)]2+ 4y?2(I") } V2,

T=9—T,yn(M=T44-2T3I3,y,A1)= TA3- 72,y22(1)=T2/2- 27T.

KBagpatunuHasa ¢opma H(t+,1) ana naHHOro npumepa B cootTBeTcTBUM C (3.18)
VMeeT BUA

W0 = -\iyn(TJIIN\ +2y1( W 2+y2(TJin. (5.9)

3agava (3.17) mpu ATVi*]) (5.8) n H(r,,/) (5.9) ecTb HecnoxHasd 3agaya
KBagpaTuyHOro nporpaMMupoBaHUs, KOTOpas MOXeT OblTb peLleHa C MpuBle-
YEHVMEM CKPOMHBIX BbIYUCAUTENbHBIX CPEACTB, a, Hampumep, npu i, =0, x2,=0,
T.e., KOrga OOBLEKT HAYMHAeT [ABMXKEHWE W3 COCTAHMSA MOKOS, MMeeT MeCcTo npo-
cTas opmyna

4*i* *1*1AN
(9+ 16ﬂ(1))+ A1), 1*1*17(9+1641)),
Po(t*xJd =
X, *|-9/16, S TV 1EED )
rae $(1)=0,76.
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A stochastic program synthesis of a guaranteeing control

N. N. KRASOVSKI), V. E. TRET YAKOV
(Sverdlovsk)

In the paper the optimal guaranteeing positional control is constructed by a method of a stochastic
program synthesis in the case when an equation of object motion and a quality index ofa process of control
have the forms:

x =A(t)x +B(t)u+ C(r)n, ueP, csi
y(X[],M[],e[])=1t<J(r, ult], v[thdt + X[9] |
R(t, u, V)= (<PRueu>+ <P(t)v m>.

Heret0Sr, g 9,tt g tg 9,t0and 9 are fixed, x isan n-dimensional phase vector, uisan p-dimensional
vector of control, vis an g-dimensional vector of an undetermined noise; A(t), B(t), C(t), <@, 'P(t) are matrix-
valued functions, 9 and 3 are some compacts; |x| is the Euclidean norm, < «> is the scalar product. The
symmetric matrices <Rt) and V'(t) satisfy some conditions being fulfilled, in particular, if for r0g r< 9 the
matrix <RY) is positive definite, 'P(t) is negative definite and the absolute values of determinations | ®(;)| and
I7(t)lare not less than a number N which is sufficiently large in comparison with the dimensions of 3Pand 3.

The optimal guaranteeing control is constructed from a value of guaranteed result p°(t, x) by the
extremal method as in [2]. According to the idea of the stochastic synthesis in [1] p°(t, X) is a stochastic
program maximin of the mean value of the quality index of process over non-anticipatory programs.

The standard process of Brownian motion is chosen as a basic probabilistic element. By passing to
the dual problem the search of X is reduced to a problem of optimal program control of a diffusive stochastic
system, which is an analogy of the conjugate system from the maximum principle of L. S. Pontryagin.

The solution of the latter problem leads to the result

his >
H(t/)=<At,)//>,
&
r(tx= { "[8.71(BM@-11)B'(r) + C(x)¥"-,(nC'(7)N1-[A7] T,
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where X[i, 7] is a fundamental matrix of solutions of the equation x = A(t)x and J1(t4r,]) is found from the
conditions

LOIGD) = max AfM), )= max AT, a).

lalgl

If the quadratic form H(t, a) for f,,S T < 8 is of negative sign, there is a regular case and then we set

nrr])=0

N. N. Krasovskii

Institute of Mathematics and Mechanics of
Ural Scientific Centre of Academy of Sciences
USSR, 620066, Sverdlovsk, K-66

S. Kovalevskaya Street, 16
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ON EQUATIONS OF ELLIPSOIDS APPROXIMATING
REACHABLE SETS
F. L. CHERNOUSKO

(Moscow)

(Received January 20, 1982)

The paper is devoted to the analysis of nonlinear differential equations which describe
evolution of optimal ellipsoids approximating reachable sets of controlled systems. Two different
simplified forms of these equations are presented. Asymptotic behaviour of ellipsoids near the initial
point and at infinity is studied. Some numerical examples are given.

1. Ellipsoidal bounds for reachable sets

We consider a controlled system described by differential inclusion and initial
condition

xeX(x,t), x(s)eM, tTzs. Yy

Here tistime; x is an n-vector of state variables; X isa set dependingon x, t;M isa
given initial set. The reachable set I(t, s, M) for system (1.1) for t Sis is a set of all vectors
x(t) which are values of all functions x(r) satisfying (1.1) for Te [s, t]. Reachable sets are
important in different problems of control theory [1-5].

This paper follows the approach [6-9] where two-sided ellipsoidal bounds for
reachable sets were obtained which are optimal in the sense of volume of sets. At first we
summarize the principal results of this approach which are used below.

We denote with E(a, Q) an ellipsoid in «-space defined by the inequality

E(a, Q= (x- a)TQ~\x - )it 1}« (12

Here, a is an «-vector of the centre of an ellipsoid, Q is a symmetrical positive-
definite n x n-matrix. We assume that the following two-sided ellipsoidal bounds are
true for the sets X, M in (1.1)

E(A~({t)x+Tf "(r), G-(f))cX(x, t)=E(A +(Nx+/ +(f), GH({)
E{ad ,Qd)<=MczE(azZ,Q£), ths. (1.3)

Here A +,G = are given n xu-matrices depending on f, f * are given n-vector
functions, tq are given «-vectors, g are given n x «-matrices. The matrices G*, Qo are
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symmetrical and positive-definite. We introduce two systems corresponding to
estimates (1.3)

xeE(A ~(t)x+f “(f), G“(t), x(s)e E(a0,R0O),

x e E(AHt)x+f Ht), GH1), x{s)e E(a$,Q8%). 14

Systems (1.4) are equivalent to the linear controlled systems
x=Azx(t)x+f Ht)+u, wne£0, Gx(()X xieE""01l) (1.5)

with ellipsoidal bounds on control u.
We denote by D”i, s, M) reachable sets for systems (1.4). It follows from (1.3)

D (t,s, E(@0,Q0))"D(t,s,M)"D+Ht,s,E(az,QZ)). (1.6)
Here, the sets D + are not ellipsoids in the general case. We introduce ellipsoidal
approximations E(a~(t),Q (t)),E(aHt),QHt) of these sets satisfying the following
conditions:
1) initial conditions
a~(s)=ad,Q(s)=Qo, ad(s)=ai, 06oHs)=Ro> -7
2) inclusion conditions for all Te [s, i]
E(a-m, Q ()&=D-(t r, E(a~), Q~),
E(aH(t),QH1))"D+t,x,E(a Hz),QHX)). (18)
3) optimality conditions for the increment of the state volume
i5* ->max, i3t-»min. (1.9
Conditions (1.9) mean that the volumes v~,v+ of ellipsoids
E(a~(t), Q~(1)), E(aHt), QHt)) increase with maximal (for v~) or minimal (for u+)
velocity possible for ellipsoids satisfying (1.7), (1.8). It was shown [6-10] that ellipsoids

defined by (1.7)—€1.9) are unique and their parameters a+, Q + satisfy the following
equations and initial conditions

a=Aa+f a(s)= ao0. (110)
6 =AQ-+Q AT+2R-'(RQRTIZRGRMII2(R T, Q(s)=Q0, (111

Q+=AQ++Q +AT+hQ++h~IG,
h={n~1 Tr[(R+)_IG]}V2, B Hs)=ROe (1.12)
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Here the dependence of A, f G, R,hont and indices " in (1.11), +in (1.12) after
A, G, QOare not indicated. The linear equation (1.10) is valid for both a~, a+if we put
corresponding indices  +after A, f a0. The matrix R(t) in (1.11) is such a matrix that
both matrices RQ RT, RGRr are diagonal for ts.

After the initial problems (1.10)-(1.12) for vectors a+(t)and symmetrical positive-
definite matrices Q=(t) are solved, we have the estimates following from (1.6), (1.8)

E@@-(f, Q (M)c Dt s M) «E(aHt),Q+?*)). (1.13)

If we have only internal or external estimate (1.3), then we can obtain only
internal or external estimate (1.13), respectively. If system (1.1) is linear and similar to

()
X =A(t)x +f(t) +u,ue £(0, G(i)), x(s)e £(a0, Qo) (1.14)

then both systems (1.4) coincide with (1.14). In this case we need not put indices  +
after A,G,f a0, Q0 in (1.10.12), and a~(t) =a+Ht) =a(t).

Two-sided estimates (1.13) can be useful in different problems of control and state
estimation [6-9]. We consider below some properties of nonlinear equations (1.11),
(1.12).

2. Transformations of equations

We substitute (V(t) is a non-degenerate nxn matrix)
Q== V(t)Z+VT(t) (2.1)

into systems (1.11), (1.12). Then for new variables Z 1(f)we obtain the same equations as
(1.12), (1.12) with matrices A(t), G(t) replaced by

A=K I(AV-V), GUr)=K-'G(T-17. (2.2
An arbitrary matrix V(t) can be chosen in such a way that the equations for Z*
are simpler than (1.11), (1.12). We consider two possibilities.
1 In order to obtain A,(t)=0 we take
V=A()V, ths, V()=I, (2.3)
where 1is an identity n x n-matrix. Therefore, V(t) is the fundamental matrix of system
(1.14). Then the functions Z + satisfy the equations
i =2arl(alr-k[)VAalc,k[)VAkrr,
2+=hz++/i ‘G,, *={nITr[(Z+)~‘G,]}1/2,
Z“(s)=Z +s)= CO. (24)



100 CHERNOUSKO: EQUATIONS OF ELLIPSOIDS APPROXIMATING REACHABLE SETS

The matrix is such that both matrices R{Z R\,R1GIR] are diagonal for
th s
2) In order to obtain G{=1 we take

K(f)=[G(N]1/2. (25)

Besides we require that the matrix R, what arises in the equation for Z is
orthogonal: K,A[ =/. Therefore, A, is an orthogonal matrix which transforms the
symmetrical matrix Z’ into diagonal matrix: R,Z*“K[ is diagonal. Under these
conditions the system (1.11) takes the form

Z =AIZ +Z AT+2R7(RIZ RDIl2RI. (26)

Itisknown [11] that g(RZR ~1)= Rg(Z)R ~1for arbitrary function gand matrices R, Z,
where R is non-degenerate. Therefore we obtain from (2.6), (1.12), (2.2) in the case (2.5)

2 =/f,Z +Z Al+2(Z )12,
Z+= [, Z++Z+Aj+hZ++/T 1,

h={n~ITr[(Z+)~*]}12, /1,0=G-1R AG]:IZ—bjt-(GJIZ)I,
Z'(s)= Z +(s)= Z0= G~ 1/2(s)00G- 1/2(s). 2.7

The obtained results are summarized in the following theorem.

Theorem 1 Transformations (2.1), (2.3) and (2.1), (2.5) reduce systems (1.11), (1.12)
to the forms (2.4) and (2.7) respectively.

Theorem 1makes it possible to take either A=0o0r G=1 in (1.11), (1.12) without
loss of generality, i.e. to consider simplified but equivalent systems (2.4) or (2.7) instead
of (1.11), (1.12).

3. Coincidence of ellipsoids

We shall find conditions under which both ellipsoids in (1.13) coincide and
present the reachable set. It follows from (1.3) that it is necessary for such coincidence
that the system (1.1) has the form (1.14), i.e.

X(x, t) =E(A(t)x + f(t),G(t)), t"s,
M =E(a0,Q0). (31)

Under conditions (3.1) we obtain from (1.10) that a”(t) =at) and the initial

conditions in (1.11), (1.12) coincide. In order that Q (t)=QH1) it is necessary and
sufficient that the right-hand parts of systems (1.11), (1.12) are equal. This condition is
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equivalent to equality of right-hand parts of systems (2.7) forZ = Z +=2Z. We obtain
from this condition that 2Z12=hZ +h~Il, or

Z0) =/, QM)=/2)G®), AL, t s (3.2)

where Ais a scalar function (see also (2.1), (25)). The matrix Z from (3.2) must satisfy
equations and initial conditions (2.7). Inserting (3.2) into (2.7) we find that equations
(2.7) are satisfied if

Ai + Al =fit)l, QO0=j-0G(s),

n=28-15-1), D= A(). (3.3)

Substituting A x from (2.7) into (3.3), we obtain
AG + GAT—G=n(t)G, t"s. (3.4

The last two equations (3.3) constitute a linear initial problem for A By integrating it we
find

1
AN= jexp ) dt2+ Dexp 3.5

As a result we have the following theorem.

Theorem 2. The internal and external ellipsoids (1.13) coincide (a~=a+
Q~=Q+) for all t~s, if and only if conditions (3.1) (for all x), (3.4) (for some scalar
function and QO0=alG(s) (for some constant $02;0) are satisfied. Under these
conditions the common centre a(t) of both ellipsoids (1.13) satisfies (1.10), and their
matrix Q is given by (3.2), where () is given by (3.5).

4. Asymptotic expansions near the initial point

The important particular case arises when the initial point in (1.1) is-fixed:
x(s) = a0. In this case the initial ellipsoids E(iq, Qq) in (1.3) degenerate into the point
a0, and the initial conditions (1.11), (1.12) for both matrices Q1 are zero: B 0o=0. The
initial conditions (2.7) are also zero

Z(s)= Z +(s)=0. @)

Equations (1.11), (1.12), (2.7) have singularities when Q=->0, Z £~*0. We shall
find asymptotic solutions of such singular initial problems using equations (2.7) and
initial conditions (4.1). Let the following expansion exist for the matrix A x(t) from (2.7)
in the neighbourhood of the initial point

Allt)=Alo+A110+0(e2, d=t-s” 0. 4.2)
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Here A 10, AI{ are constant matrices. We shall seek the solutions of equations
(2.7) with initial conditions (4.1) as power series

Z+()=Z%0+ Z1 B2+Z%B3+ Zt 04+ O(05). 43)

Here Zf.Z 1, ... are unknown constant symmetrical matrices. We insert
expansions (4.2), (4.3) into equations (2.7) and expand both parts of these equations into
power series in 0. Making equal coefficients of these expansions for both parts of
equations we find the unknown coefficients (4.3). After straightforward but rather
lengthy calculations we obtain

Zr=7,+=0, Z2=722%2=/, 7Z3=Z3=Do, Z*=T2Do+J D"

Z:=jD 2+ jD I+7n-2TtD0)2- | n-1DOTrDO. @49
Here DO,Di are symmetrical matrices

DO=j (AL0+AL0), AAYyMu+/T,)- 45)

Theorem 3. Under condition (4.2) the solutions ofequations (2.7) with zero initial
conditions (4.1) have asymptotic expansions (4.3) in the neighbourhood of the initial
point with coefficients defined by (4.4), (4.5).

The expansions for Z~, Z +coincide up to the terms O(03) and differ in 0(04).
It follows from (4.3), (4.4) that

ZHi)-z~(t)=+ e\D0- n-41xD0)2+ 0(95.

Therefore Z + —Z~ is a non-negative matrix for small 8. It is evident for all 0, because
the external ellipsoid contains the internal one.

Using transformation (2.1), (2.5) we obtain from (4.3), (4.4) asymptotic expansions
for the solutions of equations (1.11), (1.12) with zero initial conditions. The obtained
solutions are useful for starting numerical integration of equations (1.11), (1.12) or (2.7)
with zero initial conditions.
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5. Asymptotic behaviour at infinity

We consider equations of ellipsoids in the form (2.7) for the constant diagonal
matrix A,

A/r)=diag {a,, .\ .a,}, a "a2™ ..."a,. (5.1

Here a,, .. .,a, are constants. We assume that initial conditions (2.7) for the
matrices z + are also diagonal. Then equations (2.7) have diagonal solutions

Z £(f) = diag{[y*(1)]2 ....[y"i)] 2}. (52)

Here yf 20 are semi-axes ofellipsoids, i= 1, ..., n. Inserting (5.1), (5.2) into (2.7),

we obtain
Yi =1Y1 +1, f=1----- (563

Y?="yt +y [Jyr+(hy?r7], (5.4

We shall study the asymptotic behaviour at t -* 0o of positive (yf > 0) solutions of
systems (5.3), (5.4). System (5.3) consists of independent linear equations. All its positive
solutions are monotone functions of t and

y- >+00 for i—+co, (a,"0),

yf-»afl for t-y + 0o, (af<0). (5.5)

Let some solutions of the nonlinear system (5.4) have the limits
Yit-Y*>o, ieJ; yf-*+cc, ied’, (5.6)
when t—»+ 00. Here J isa set of such indices i from {1, ..., n} for which the limit ofyf is

finite when t-* + 00; the set J* includes all the other indicesi 6 {1, . .,,n}. One ofthe two
sets J, ' may be empty.

Substituting limits (5.6) into equations (5.4) and solving these equations with
respect to yf we obtain

yr = L-h*(2ai+h*)y 112, ieJd, 5.7

where h=* is the limiting value of h for t-> + o0o. Substituting (5.7) into formula (5.4) for h,
we obtain the algebraic equation for h*. Its solution is

h*=- (5.8)
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where visa number of elements in J, 0" j g n. From equations (5.4) forie J' and (5.7) it
follows that the limits (5.6) exist only if

at< —h*/2, ied, —h*/2, ieJ'. (5.9
Therefore (see enumeration (5.1)) we have

J={1l....v}, J={v+U (5.10)
Now conditions (5.9), (5.8) can be written as

(n+ v)av< _Xlaj =(n+wvav+l, v~/I. (5.11)
J:

For v=0, (5.11) must be replaced by a, 0. We shall prove that there exists only
one integer v, 0ii vii u, satisfying (5.11). Let the contrary be true, and inequalities (5.11)
be satisfied for some v and for vt=v+s, 1 Then

)(1 <*i>(«+ v+ S)avH]. (5.12)
j=

It follows from inequalities (5.1), (5.12) that

)V( <>(n+v)avis+ sav+S_(aV+j + .. +aw)n

=i

A(n + v)av+s™(n + v)av+l | (5.13)

But (5.13) contradicts the right inequality (5.11). Therefore the integer v defined
by conditions (5.11) is unique. We obtain the following theorem.

Theorem 4. All positive diagonal solutions (5.2) of equations (2.7), (5.1) for Z
have the asymptotic behaviour (5.5) when f-> + 0o. For positive diagonal solutions (5.2)
ofequations (2.7), (5.1) for Z +, there exists a unique asymptotic behaviour of the form
(5.6) when i->+ o00; here y?,h*,J,J',v are unique and defined by (5.7), (5.8), (5.10),
(5.12).

It is interesting to compare these results with the asymptotic behaviour of
reachable sets of the system

n
xi=aixi+ ui, é“azl «=1eme.n (5-14)

corresponding to the case (5.1) (see (1.14) with A=A1G=I). For arbitrary initial
conditions, there exists the limit of the reachable set when t-» + 00. DX is a convex
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set independent of initial conditions and symmetrical with respect to all axes x,. The
lengths yf of semi-axes contained by £k are

yf=+co, a"0; y?=-a{l, af<0. (5.15)

They are equal to semi-axes of limiting internal ellipsoid (5.5). Semi-axes of the limiting
external ellipsoid (5.6) are greater (yf >y°), and sometimes even y,+-» + 00 when y? is
finite.

As an illustration we consider a two-dimensional example: n= 2, o~ a 2. From
(5.12) we obtain

v=0 for ogq"O; v=1 for a,<0, a,"3a2,

v=2  for 3a2<a,?£a2. (5.16)

Fig. 1L Numerical example: €¢=0,8=1 T =2
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Limits (5.6), calculated according to (5.7), (5.8), (5.10), (5.16), are
DIt <, Yr ->+ "»(<*1MN0).
2) yf-* —3oLil/2y/2, y.-*+co(ai <0, a”3ar),
3 Yl -2[(al+a2)(3a, —a2)]~1/2,
¥2->2[(al+a2)(3a2- a 1)]“12(3a2<al™a?2) (5.17)
for three respective cases (5.16). The complete analysis of singular points and phase
trajectories of system (5.4) showed that all its positive solutions have limits (5.17) when

i—»+ 00. Ifaj <0, a2<0 and |ocj/a2|*3 then we have y2 -» + oo from (5.17). However,
in this case y2is finite, 2 -+y\=—a2\ see (5.5), (5.15).
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Fig. 3. Numerical example: k= 1,/i=0.5, T —2

6. Numerical examples

We present here some numerical examples ofapproximating ellipsoids for a two-
dimensional system with a scalar control function

XX=x2, x2=—kxx—Bx2+u, |m|["1,
*10)=3c20)=0, 0Ut"T. 6.2

Here B, K, T are constants. System (1.10) for example (6.1) has a zero solution a(t) = 0.



108 CHERNOUSKO: EQUATIONS OF ELLIPSOIDS APPROXIMATING REACHABLE SETS

Fig. 4. Numerical example: k= —1, =05, T=2

Systems (1.11), (M 2) for example (6.1) were integrated numerically. Some results are
presented in Figs 1-4. Exact reachable sets shown here between internal and external
ellipsoids were also obtained numerically.

7. Conclusions

Optimal two-sided ellipsoidal estimates of reachable sets (1.13) can be used for
evaluating of these sets in the presence of control or disturbances. These estimates give
rough but simple and guaranteed bounds for reachable sets. Numerical examples and
asymptotic analysis show that these bounds are not too far from exact reachable sets,
see also [9]. The ellipsoidal estimates of reachable sets can be used also for two-sided
estimation in optimal control and differential games, for guaranteed filtering in the
presence of measurement errors etc., see [6-9].
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In order to obtain ellipsoids approximating reachable sets, it is necessary to
integrate certain nonlinear systems of differential equations (1.11), (1.12). It was shown
in this paper that these systems can be simplified essentially. The simplified versions
(2.4), (2.7) of these systems depend only on one matrix (Gi or Al), and equation (2.7) for
Z does not contain the matrices R,Rt. Some general properties of equations of
ellipsoids including the asymptotic behaviour of their solutions near the initial point
and at infinity were established. These properties are useful for qualitative analysis and
for numerical integration of equations of ellipsoids.

The author is grateful to A. 1. Ovseevich for useful discussion and to
B. R. Klepfish for computer programming and calculations of numerical examples.
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O6 ypaBHEHVISIX 3/1/TAMNCOVZOB, anMpPOKCUMUPYHOLLMX 06/1aCTV AOCTKUMOCTY
® /1. YEPHOYCbKO

(Mocksa)

MHOXeCTBa AOCTUXXMMOCTI UTPaoT BXXHYIO PO/ib BO MHOTUX 3ajauyax Teopumn ynpasnequs [1-5].
B pa6otax [6-9] npegnoxkeH MeTOf anmnpoOKCUMaLWKM MHOXECTB LOCTMXMMOCTM, COCTOSLUA B
MOCTPOEHNM ONTUMANbHBIX (B CMbIC/E 06bEMa) ABYCTOPOHHMX 3UNCONAANBbHBIX OLEHOK 3TUX MHOXECTB.
3BO/IOLMS BHELIHEr0 W BHYTPEHHErO annpoKCUMUPYIOLWMX 3N/IMMNCOUAOB OMUCLIBAETCA CheluanbHbIMMU
HE/IMHEWHbIMW CUCTEMAMU OBbIKHOBEHHbIX AU((EpeHLManbHbIX YypaBHeHWiA, BbiBefeHHbIMU B [6, 7].
[JaHHas pa6oTa MocBslLeHa UCCNef0BaHUIO 3TUX AU epeHLManbHbIX YpaBHEHNIA.

B Hauane pa6oTbl M31araloTCs OCHOBHbIE NPEANONOXEHUs W MPUBOAATCH CUCTEMbI YpaBHEHWIA
anaunconaoB. [lanee ykasaHbl Npeo6pasoBaHusi, MO3BOSIOLME YNPOCTUThL YPaBHEHWs 3NNUNCONA0B, Y



no CHERNOUSKO: EQUATIONS OF ELLIPSOIDS APPROXIMATING REACHABLE SETS

NPUBOAATCS ABe YNPOLEHHbIe (OPMbl YpaBHEHWIA, 3KBMUBANEHTHbIE WCXOAHOW. YCTaHOBNEHbI Heo6-
XOAUMbIE U [OCTaTOUYHbIE YCMOBWS TOTO, YTO BHELUHWIA W BHYTPEHHWI annuncomabl COBNAafaloT U TeMm
CaMbIM TOYHO MpPEACTaBAAOT MHOXECTBO AOCTUXMMOCTM.

WccnegoBaHa acMMNTOTHKA PeLUeHWit ypaBHEHWH 3NMNCOMAOB B6AM3M HauyanbHOM TOUKM W HA
GECKOHEYHOCTU. B. MepBOM CcNyyae MOCTPOEHbI PA3NOXEHWUS MATPUL, BHYTPEHHErO 1 BHELUHEro
3N/IMNCOUAOB MO CTEMeHsIM BPeMeHu Ans Cydasi, Korfja HauasbHas TOYKa (MKCMpoBaHa. [ns BTOpPOro
Cyyas NpU HEKOTOPbIX [AOMOMHUTENbHBIX MPEANONOXEHUAX YKasaHbl MpefenbHble pelleHus Ans
BHYTPEHHEr0 W BHELUHEro 3MAMMNCOMAOB NP HEOrpaHWYeHHOM BO3pPacTaHWU BpeMeHW. BbisicHseTcs, B
YaCTHOCTY, MPU KaKMX YCMOBUAX OCU anmnpOKCUMUPYHOLLMX 3//IUMCOUAOB OCTAKOTCS OrpaHNUYeHHbIMU UK,
Hao60opOT, HeorpaHWyeHHo Bo3pacTaloT. Bonee MoApo6HO paccMOTpeH Cydall CMCTEMbl BTOPOrO
nopszka. MpUBOAATCS YMCIEHHBIE NPUMEPbI MOCTPOEHUS 3NIUNCOMA0B, aNMPOKCUMUPYIOLLIMX MHOXECTBA
[OCTUXUMOCTH.

@. J1. YepHoycbKo

WHcTUTYT npobnem mexaHukn AH CCCP
CCCP, Mocksa, 117526,

npocn. BepHaackoro, 101
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N -PERSON NONLINEAR QUALITATIVE
DIFFERENTIAL GAMES WITH INCOMPLETE
INFORMATION, SURVEY OF RESULTS

ZS. LIPCSEY
(Budapest)
(Received May 3, 1982)

In this paper the author investigates nonlinear JV-person differential games. Theorems 4.2
and 4.3 show that the method of synthetizing strategies as described here makes possible the evasion
and capture for a coalition having approximate information about the phase point and a boundary
point of the target set nearest to it. It is also shown that the coalition may evade of or capture the
opponent coalition without having information about its choice of strategy and together with
theorems 3.1 and 3.2 theorem 4.2 and 4.3 suggest an alternative theorem.

1 Introduction

The proofs of the theorems and statements of present paper can be found in [7].

In our paper we deal with qualitative A-person cooperative differential games
having dynamics such as x =/(x, ub .. .,uN,t). With our approach to the problem we
follow the view of Pontriagin who (instead of seeking saddle points) constructs strategy
for evasion and capture under certain assumptions about the players. His work
concerns the linear games. A most representative summary of this work can be found in
[5] and an other paper treating the problem on the same basis is [2].

We used as a basis the formalism exposed by A. Blaquire and P. Caussin
published in [1] at the statement of the problem in Section 2. Methods of both works
[2] and [5] are based on the use of the closed formulae of the solutions of the linear
differential equations. As in our case such formulae cannot be given, we based our
investigations on local properties ofthe dynamic / like Krasovskii in his book [3]. But
while Krasovskii works with saddle points of local functionals formed from the
distance of the phase point and the target set, we define the concept of superiority in
Section 3 with the help of the same functional. A coalition may have superiority at a
point even in the case if the functional does not have a saddle point.

We show that ifa coalition has superiority at a certain point then a mapping V
can be constructed to select the strategy V(U) for the coalition ifthe opponent coalition
chooses the strategy U. Moreover we show that this rule V for choosing the strategy is
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valid in some sense in an open neighbourhood too. The pair (V,G) is called a local
strategy.

In Section 4, we give a construction for the synthesis of given families of local
strategies. The well-known problem of discontinuity surfaces (see e.g. [1]) does not
occur. With the help of the synthetised strategy we prove one theorem about evasion
and one about capture (Theorems 4.2 and 4.3).

In both cases we work with approximate information z(t) about the phase point
z(t) and an estimation y(z(t)) of a boundary point of the target set nearest to z(t). The
latter is important because the superiority conditions are imposed on the boundary of
the terminal set. This idea is used in the work [4] of Lagunov.

Theorems 4.2 and 4.3 together with Theorems 3.1 and 3.2 give almost a pair of
alternative theorems. In subsequent papers this question will be dealt with more
exactly.

2. Qualitative differential games

In this section we shall give a definition of the N-person qualitative differential
games and expose the problem considered in our paper.

Let us denote by </\/>the set of the N players. The letters H, Uh ie <N> denote
real separable Hilbert spaces. Let the sets C,c Uhie </\/>be compact. Let E denote the
product space Rx H and G c£ be an open set.

Let us consider the continuous function

f:Gx XCt-*H (2.1)
ied\&
satisfying a local Lipschitzian condition for each fixed

Ue X xCj.
iedw

Then we can form the mapping F as follows:

F:Gx XCt -»E
BAL

Fr=(1,/)e (2.2

If we denote by R the extended real line R:=Ruf{ +oo}u{—o0}
then let [t0,tj c: R, tOe R be a closed interval.

Definition 2.1. Let us call strategies for the player ie<N) Borel measurable
mappings Sf: = §1S;: [io, i(s)] ¢ [t0, 11] >C,} 2.3)

and let D(Si):=It0,t(Si)].
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Definition 2.2. The product set S:= XSt is called the set of situations. The
ie<\>

domain of a situation se S,s= Xst is given by D(s):= Q ().

i6 <Iv> ie<N>

Let Oc Gbe aclosed setand the set Ois decomposed into the union 'e2/I\I> 0, of not
i

necessarily non-empty closed sets 0;,/e <N>
Let us suppose that a point (i0, x0)= z0e G\O exists and let us consider the set of
the solutions of the initial value problems

z(i0)=zo
z=F(z, 9), seS. (2.9

Let D(z, s) denote the domain of the maximal solution. Now we define a function
S-»[10, ii] as follows: If z is the solution of (2.4) for a fixed seS then

t*(s): = sup {t|te [r0,ij), z(t)i& if te[i0, r] <<z 9)} (2.5
For t*(s)< oo let z(i*(s)) denote limit <Ili!.r2>z(t)eG if it exists in G

If Xey Xxg\o denote the characteristic functions of the sets 0,, G\O, ie <N) then

he. if
Ugld if 0,=0

(2.6

for i6 <N).
With the help of the functions given in (2.5) and (2.6) we can give a family
{Hi}ie<\> of functions called payoff functions as follows:

Hj :S-*R

lim f;(z(t) if z(t*(s)) does not exist in G

H,(s): or t*(s)=o0. 2.7
1-(z(t*(s))) if  z(t*(s)) exists

with the solution z of (2.4) associated to se S for each seS.

Definition 2.3. The game (S,,S2,.. ,SN(HI ...H N} given above is
called qualitative differential game.

Ifwe take 0-= 0 for each ie (N >then the studying of the qualitative game defined
above can be considered as investigation of the existence of the playable strategies for a
qualitative differential game given by the boundary value problem z(t0) = z0, z(t*(s)) e 0
for the solutions of (2.4) and some additional family of payoff functions.
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Definition 2.4. The non-empty subsets of the set of players <JV> are called
coalitions.
If Kc:<iV) is a coalition then

UK:= X C,
ieK
Ui:= C,. 2.8
! ie<é\K ’ @8)
The payoff function XX Kof the coalition K ¢ <)V> is defined as follows:
)KKZ:_£KH> (29

The aim of the coalition K, Xc<iV) is to maximize the payoff function > Kand to
minimize the payoff function by a suitable choice of the strategies.

Roughly saying, the qualitative cooperative game described above is a pursuing-
evading game for the coalition K with the target set (J 0, for K and with the target set

ieK
Y 0, for any other coalition K'c <JV), K'nK =0.

ieK'

The choice of the strategies for K is based on the following informational
assumptions:

a) We have an approximate information z(f) about the position z(t) for each
fe[tO0,ii].

b) We have approximate information about one of the nearest points to z(f) of
the target set for each te [f0,i,].

c) At the selection of the strategies in the moment t, t e [10,i,] we deal with both
cases as to have or have no information about the choice of the coalition <N }\K in the
same moment for each te [t0,t,].

In the next section we define the concepts of superiorities and local strategies.

In Section 4, we show a method for the synthesis of the local strategies and using
the global strategy obtained this way we prove our theorems about the capture and the
evasion. The notations of this section are valid throuhout the whole paper.
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3. The superiority and the local strategies

In this section, first we shall define four concepts of superiority. Then using these
concepts we shall construct local strategies.

From now on we use the following notations in the paper. If A, B and C are sets
and @ is a mapping ®:A x B-*C then

P(K W): ={c|c= &> w),ve VCA,weWcB} (3.2)

with non-empty sets Yc: A, WcB. If any of V,W has only one element then it is
denoted by the element itself or that in brackets { }.
Moreover let ae A be a fixed element. Then we use the following abbreviated
notation:
o I(a,H):={ble B, ®da b)e HcC}. (3.2
Let K, K" be two coalitions satisfying the condition KnK' =< Letee E and x0e G=E
be a unit element and a fixed point respectively. Let us use the following notation:

{enrc}:={xIx6E, (x,e)"c}, ceR. (3-3)

Definition 3.1. The coalition K has weak superiority over K' at the point x0in the
direction e if there exists such ce R,c> 0 that an element ut>)e UK can be selected to
each ve VK satisfying the relation

% .(Ox{®),D})c{r~c>0). (34

Definition 3.2. The coalition K has weak superiority for evasion over K' at the
point x0in the direction e if such an element u(v