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STRONGLY NONLINEAR AND OTHER CONTROL SYSTEMS

A . V a n e c e k

(P ra g u e )

(Received D ecem ber 22, 1989)

T h e  contro l system s are d iv ided  in to  two classes: th e  strongly n o n lin e a r system s a n d  
the  o th e r  system s. F irstly , the  con tro l system s a re  em b ed d ed  into d y n am ica l system s w ith  
p aram eters. To analyse th e  non linear control sy s tem s, th e  invariant m anifo lds are u sed . 
T he frac ta l dim ension of th e  system s’ a ttrac to rs  as o p p o sed  to the  en tire  dim ension is u se d  
for th e  system s division in to  two classes. As ap p lications , v ita l and  a n ti-v ita l  goals o f th e  
control system s are  s ta te d .

1. Introduction

At a seminar Theory of Strongly Nonlinear Processes (Prague), it only grad
ually became clear what is the main topic of this seminar attended mainly by 
physicists — it was the turbulence. The turbulence is, mainly in engineering, con
sidered as a negative phenomenon, as it makes noise and dangerous strain. The 
turbulence is a chaotic process with negative evaluation, at least in engineering. 
At the opposite, in the physics of atmosphere, the turbulence is considered as a 
positive phenomenon — it allows the mixing of air stratas. Only of minor impor
tance is that its chaotic behaviour makes impossible, due to inexact knowledge of 
the initial conditions, the weather prediction for more than a few days. But the 
negative evaluation of chaos in general, based on its abasement of human pride in 
that it makes impossible the long term scientific prediction, in the evaluation of 
chaos entirely dominates. After several signs of the possible turns of the evaluation 
of chaos, the real change of the evaluation paradigma was caused by Goldberger 
[7, 22]. On the basis of the spectrum of ECG during a heart failure, Goldberger 
observed that there occurs some sort of pathological periodicity, the spectrum be
ing concentrated to some narrow frequency band. On the opposite, Goldberger 
observed, on the basis of the spectrum of ECG of a healthy heart, the wide-band 
spectrum of the type 1 / /  — it is such what Mandelbrot connected with fractals.

The author’s field of interest are the controlled systems — the dynamical 
systems with parameters, parametrized in such a way to behave properly, especially

l A kadém ia i  K iadó ,  Budapest  
P erg a m o n  Press, Oxford
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to reach the given asymptotic goals. The author’s interest in the synthesis of the 
chaos was awakened only by the new paradigma — the evaluation of the chaos as 
a positive phenomenon. The Dynamical Systems theorists are concerned only with 
the analysis. In the entire Control Theory, systems to be synthesized are always the 
ones with point attracting, equilibrium state. On the opposite, the newly proposed 
control synthesis should change the system parameters in such a way, that the 
equilibrium states are the bounded, persisting, non-periodic cycles. According to 
the new paradigma, these are connected with the ‘health’, at the difference to the 
periodic cycles connected, according to the new paradigma, with the ‘illness’, and 
at the difference to the point attractor connected with the ‘death’.

2. Control sy stem s as dynamical system s w ith  parameters

D e f i n i t i o n  1. Dynamical systems with parameters are defined as systems 
of differential equations

dx/dt =  f (x ,  К )

where the time t G R, the state vector x £ Rn, the vector field /  £ Lip, the 
parameter matrix К  of the time invariant parameters, dK/dt — 0.

Fact. The control systems can be described as dynamical systems with pa
rameters.

Method. The consistent usage of the state description of control systems. 
Example 1. Linear control system with right state feedback:

dx/dt = (F + G K ) x .

The parameter of this linear dynamical system (being linear in the state x) is matrix 
К . The control is introduced because

is not sufficiently damped and may be even unstable. The state feedback parameter 
К is introduced in such a way to make

e (F+GA')t

properly and quickly damped.
Example 2. Nonlinear control system with both left and right state feedback:

dy/dt f(y)  + 9(Krz)
dz/dt f(z) + g(Krz) + K,(h(y) -  h(z))_

or
dx/dt = F(x, K)
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where F € Lip, F(0,0) = О, К  = [K[KT\, xi — y, x 2 = г. Traditionally, we are 
introducing the control because

lim [I + F(-,0)t/N]N
/V—*■ OO

is not sufficiently damped and may be even unstable. The state feedback parameter 
К  is introduced in such a way to make

lim [I + F(-,K)t/N]N
N -*oo

properly and quickly damped. (Here we have used the nonlinear response written 
in the closed form with the help of the limit form of the Euler integration formula, 
see Arnold [2].)

Note. The embedding of control systems into dynamical systems with pa
rameters entails that for a description of the systems, the states are sufficient and 
the inputs and outputs are not needed for this purpose. So, we are leaving the 
State Theory according to Kalman and Zadeh which is a hybrid theory, mixing 
the internal and external description. (Here we are speaking about control in the 
narrow sense: in the case we need also to follow, we model the object to be followed 
by some other dynamical system as was observed early by Luenberger.) From the 
system theory we are eliminating its basic problem, i.e. the problem of the minimal 
realization of the internal description from idealized external description which is 
the prototype of the identification problem. The control system is originated by 
the connection of the controlled plant and the regulator. The controlled plant is 
originated from the connection of elementary blocks. The only measurements we 
need for such a modelling are scalar, static ones. This approach to the modelling is 
perhaps the only one which has been successfully tested in physics. According to 
Tonti [20], the fundament of this approach, i.e. the fundament of the internal mod
elling, is a cohomology of a cell complex. This cell complex we are always building 
from the boundary elements: the edges from the vertices, the faces from the edges, 
the space cubes from the faces, the time-space hypercubes from the cubes, and the 
cell complex from hypercubes. In such a way we obtain some nonlinear partial dif
ferential equations. For the dynamical systems, the cell complex is two-dimensional 
and the differential equations are the ordinary ones. For example for a dynamical 
electrical circuit, we are connecting such a circuit from RLC  elements and the only 
measurements for modelling are the static scalar ones of usually linear LC  elements 
and of generally nonlinear characteristic of R. Finally, let us note that according to 
Vinogradov [19] the conservation laws of physics are just the group cohomologies 
and that there exists the so-called cohomological physics (Stasheff [17]).
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3. The invariant sets — The basis of control system s analysis

D e f i n i t i o n  2  [4 ]. The invariant set M  of the dynamical system is a set of 
elements of which are the whole trajectories, such that M  is the solution of the 
equation:

tp(M) — M, t € R
where <p is the mapping of M  by the trajectories.

Example 3. For n — 2 the stationary point, the trajectory, the plane filled by 
trajectories are the examples of invariant sets of dimensions 0, 1, 2, respectively. 

Centre Manifold Theorem (Kelley [10]). Let us suppose the dynamical system

dx/dt — f{x),  x £ R "

where /(ж) of smoothness class Cr (r > 2) is zero at the origin: /(0) = 0, and its 
linear part is Fx. Then the invariant set of the dynamical system can be resolved 
into the three locally disjoint (up to the origin) manifolds

W*, W a, Wc

of smoothness classes Cr , Cr , CT~1, respectively. The invariant set of the linearized 
dynamical system dx/dt  = Fx can be resolved into three linear spaces

T \  T a, Tc.

Spaces T l (i — s, a, c) are the tangent spaces to the manifolds W l in the origin. 
The manifold Ws is stable, the manifold W a is anti-stable (i.e. stable for t —> — oo). 
The asymptotic behaviour on the central manifold W c is determined by the higher 
than the linear part Fx  order part of f (x) .

Applications of the Centre Manifold Theorem. We shall apply the theorem 
for the control systems, limiting ourselves to the hyperbolic systems, i.e. systems 
without centre manifold. Their stability, unstability and anti-stability is locally 
determined by the eigenvalues of their linearization. Further, we shall suppose 
the semi-simplicity of the linearized system, i.e. the eigenvectors of the linearized 
system matrix F are forming the basis. We shall search for those initial segments 
of the n solutions of the dx/dt =  Fx + o(x) equation which are naturally connected 
with those n solutions of the dx/dt = Fx  equation which are the most elementary 
invariant sets of dx/dt =  Fx, the eigenvectors of both F  and eFt. Using the Picard 
integration method (for the method see e.g. [1]), we obtain the n curved segments: 
we shall call them the initial segments of the eigencurves or just eigencurves. The 
Picard iterative construction of the solution of nonlinear differential equation:

t
Xjfc+l(f) = xk(t) + J  f (xk(r))dr

to
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will give us the eigencurve v obeying the eigen-equation
f(-)v =  s ( >

which is the generalization of the classical eigen-equation Fv = sv. The situation 
is illustrated on the upper part of the figure. The field s(-) corresponding to the 
eigencurve v is the restriction of the vector field /(•) on v. The gradient of the 
eigencurve at the equilibrium point is the eigenvalue. Similarly, for the eigenplane 
on which all the oscillating solutions of the equation dx/dt  = Fx lay for a couple of 
complex conjugate eigenvalues. Now, for the Picard construction of the eigensur- 
face, we need one parametrical set of solutions lying on the eigenplane as a set of 
initial iterations. At the end of iterations, the partial derivatives of the eigensurface 
in the origin are the real and imaginary parts of complex conjugate eigenvalues (see 
the lower part of the figure).

From the Linear Control Theory (see e.g. Kailath [10]), we know that the 
fundamental conditions for the eigenstructure changeability are given by the con
ditions of Popov [15] and Moore [12]. Here we shall generalize them for nonlinear 
control systems. For the right state feedback:

dx/dt = f(x)  + g(K(x)); f ,g  £ Lip, ff(0) = 0,
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we have the eigen-equation [/(•) + ff(A'(-))]n = s(-)v. Equivalently, [Is (-) — /(•)]« = 
= g(K(-))v and v — [Js(-) — /(•)]-1^(A'(-))íi. From the last equation, we have the 
eigenfunction changeability from right:

v e  Im[(/s -  / ) -1£i].

For the left state feedback:

dx/dt = f(x) + Lh(x); f, h G Lip, h{0) = 0,

we have the eigen-equation [/(•) + Lh(-)\v — s(-)v from which follows the right 
eigencurve changeability:

v £ Ker h.

We shall introduce the left eigencurve w of /  as the right eigencurve of transposed 
/ ,  i.e. of / '.  So, we shall obtain the eigenfunction changeability from left:

w G Im[(/s —

and, finally, the left eigencurve changeability:

w £ Ker g'.

For f ( x )  — Fx, g(x) = Gx, h(x) = Hx, s(x) = sx, f(v)  = Fv, f ' (w ) = F'w, we 
have the Popov-Moore conditions.

Up to now, our results, based on the Centre Manifold Theorem, has been only 
of local nature — even if the vicinity of the origin may be very broad. Now, we 
shall sketch the globalization of the local results but again for hyperbolic systems 
(i.e. with no centre manifold). The common point of both the stable and anti
stable manifolds and of the stable and anti-stable spaces is the equilibrium state. 
The nonlinear systems have generally more than one equilibrium state, i.e. more 
than one solutions x of dx/dt = 0 or f{x)  = 0. The global behaviour is determined 
by patching the neighbouring manifolds containing various equilibrium states. In
variant manifolds of nonlinear systems with more than one equilibrium states are 
the manifolds with boundaries. The nonlinear systems which will interest us most 
— the strongly nonlinear systems — will be the ones with several (at least two) 
equilibrium states.

4. The attractors —  T he basis o f control system s goals

D e f i n i t i o n  3. The attractor of the dynamical system is such an invariant set 
of the system which is compact and stable, i.e. all trajectories from some vicinity
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of the attractor converge to the attractor for t —> +oo. The repellor of the system 
is such an invariant set which is anti-stable.

Example 4. The attractors of integer dimension D are the sink, the cycle, 
and the torus with £> = 0,1, 2, respectively.

Review of Lyapunov exponents and the fractal dimension of attractors [3]. 
The Lyapunov exponent LE is a generalization of the real part of the eigenvalue for 
non-stationary linear systems which was obtained as a time-mean of the eigenvalue. 
The non-stationary linear system dx/dt = A(t)x we shall obtain as the linearization 
of the nonlinear system in the vicinity of its solution. The г-th solution zq(i) has 
г-th LE

A, = ^lim^sup — In \xi(t)\

where i — 1 ,.. . ,  n. After the diagonalization, the г-th solution is

Ui(t) = exp di(t)dt

and its LE is the real part of the mean value of the eigenvalue. To derive the dimen
sion of the attractor using LE, let us integrate the original differential equation on 
the attractor and at the same time let us integrate its non-stationary linearization. 
For simplicity, let us assume n — 3 and the ordering of LE’s: Ai > 0, A2 > 0, 
A3 < 0. In the vicinity of the trajectory of the attractor, let us introduce the cube 
with edge e. In the proper coordinates, the г-th edge of the cube is in the mean 
evolving as eexp(Aj<). The number of the cubes with the edge £exp(A3f) which are 
needed to cover the attractor is

3
N(t) = e exp(A;<)/£ exp(A3<) =  exp((Aj + A2 -  2A3)f).

x=i

The Lyapunov dimension of the attractor is

„  In N(t)  ,  A! —f- A2Dl = -  lim ------- — = 2 + ~.<̂ 00 lnexp(A3t) IA31

In fact, by the theorem of Haken [3], A2 = 0.
Example 6. The Lorentz attractor [1, 2, 16, 18], is an attractor of the set 

of three Lorentz bilinear differential equations for some fixed values of the three 
parameters. It is some non-periodic, bounded, non-vanishing trajectory with axis 
symmetry. Its Lyapunov exponents are Aj =  1.37, A2 = 0, A3 = —22.37. Dl — 
= 2 + (1.37 + 0)/22.37 = 2.06. The repellor is 00.

Example 7. The double scroll attractor of Chua-Matsumoto-Komuro [3, 11] 
is an attractor of the three differential equations, the first with slight nonlinearity,
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the second and the third one being linear. Again, it is some non-periodic, bounded, 
non-vanishing trajectory, now with centre-symmetry. Its Lyapunov exponents are 
Aj = 0.23, A2 =  0, and A3 = —1.78 and its dimension is Dl = 2.13.

Comment on Examples 6, 7. Both dynamical systems have three equilibrium 
points, each of these six equilibrium points are hyperbolic, and each six points have 
both stable and anti-stable eigenvalues repell, after some time, the trajectories from 
the vicinity of the equilibrium point, the stable eigenvalues attract, for some time, 
the trajectories in the vicinity of their equilibrium points. After that time, the 
anti-stable eigenvalues again repell, etc. Generalizing both examples, we write the

Scenario of the synthesis of control systems with fractal dimension of attrac
tors or the chaotic systems or, by definition, the strongly nonlinear systems:

A. Introduce the state space Rn with the co-dimension of the state trajectories 
at least 2, i.e. the state space of dimension at least n = 3.

B. Introduce the vector field of at least 2 equilibrium points.
C. Parametrize the vector field in the vicinity of each of the equilibrium points 

to obtain both stable eigenvalues and anti-stable eigenvalues of the linearized sys
tems near each of the equilibrium points, i.e. make some generalized shift of eigen
values — the shiftability conditions are the generalized Popov conditions.

D. If needed, use the parametrization, moreover, even to generalized eigen
vectors adjustment — the adjustability conditions are the generalized Moore con
ditions.

Systems in which such parametrizations, leading to non-vanishing, persist
ing, and non-periodic attractor trajectories are impossible, we shall call weakly 
nonlinear systems, the special weakly nonlinear systems being the linear systems.

Note on the Scenario. Our Scenario is in concordance with the known analysis 
of the birth of bounded, non-vanishing and non-periodic trajectories. This analysis 
is based on homo- and heteroclinic trajectories and on the Smale horseshoe. The 
heteroclinic trajectory is a loop containing at least two equilibrium points. Homeo- 
clinic trajectory is a loop containing just one equilibrium point; if it lays also in the 
vicinity of the other equilibrium state, it is near to our scenario. The Smale horse
shoe is the special case of the Poincaré mapping which is based on the expansion 
(anti-stability), contraction (stability) and on the folding or the transition between 
the areas of two equilibrium points.

5. Conclusion

The positive properties of the Strongly Nonlinear Systems:
-  Qualitatively higher possibilities of systems “far from equilibrium” (Pri- 

gogine); in our interpretation the systems with the trajectories in the areas of 
several equilibrium points.
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-  The making possible of mixing and in this way enlarging the capacity of 
absorbtion of the incoming thermal or kinetic energy (Ottino [13]) and with this 
connected functionality and adaptivity (Garfinkel [5]).

-  The sensitivity on initial conditions and at the same time high structural 
stability (Palus et a 1. [14]).

-  Convergence to the attractor and at the same time divergence within the 
attractor.

-  Healthy, at the difference to epileptic state of the brain (Haken [8], Freeman
[6])-

-  Healthy state of the heart (Goldberger [7]).
These properties motivate the synthesis of the control of strongly nonlinear 

systems as the stabilization on the chaotic or fractal attractor. At the difference 
to the much publicized analysis of specific cases and to the synthesis of weakly 
nonlinear and linear control systems, we do not know much more than we presented 
in our Scenario, and the germ of theory based on the generalization of linear control 
synthesis based on the generalized eigenstructure.
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С тр о го  н ел и н ей н ы е и  д р у ги е  си стем ы  у п р а в л е н и я

А. В А Н Е Ч Е К

(Прага)

Системы управления можно разбить на два класса: строго нелинейные и дру
гие. Отправным пунктом является вложение систем управления в множестве дина
мических систем с параметрами. Иля анализа нелинейных систем применены инва
риантные многообразия. Фрактальная размерность атракторов системы в отличие от 
целочисленной размерности использована для классификации принадлежности сис
тем к двум классам. В качестве примера применения формулируются задачи систем, 
целью которых является или выживание, или успокоение процесса.

Antonín Vanécek
Institute of Information Theory and Automation 
Czechoslovak Academy of Sciences 
CS 182 08 Prague 8, Czechoslovakia
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OPTIMAL INPUTS FOR GUARANTEED IDENTIFICATION

A. B. K u r z h a n s k i , B. N. P s c h e n i c h n y i , V. G. P o k o t i l o

(Laxenburg, Kitv)

(Received D ecem ber 19, 1989)

T h is paper d eals w ith  the problem  of identifying a  fin ite  dim ensional vector p a r 
a m e te r  on  the basis o f  observations th a t  a re  g enera ted  by  an  infin ite  d im ensional in p u t 
a n d  co rru p ted  by a n  unknow n b u t bounded  “noise” . T h e  specific p rob lem  solved h e re  is 
one of selecting an  o p tim a l inpu t th a t  w ould ensure th e  sm allest w orst-case e rro r for th e  
iden tification  procedure . T his is taken  as th e  d iam e te r of the  sm allest ba ll th a t  w ould  
co n ta in  th e  set of s ta te s  consistent w ith  th e  m easu rem en t an d  th e  given constrain ts on  th e  
unknow ns. The p a p e r continues the  investigation  of [1-8].

1. Assume the following notations: H stands for a Hilbert space, Rn for the 
n-dimensional Euclidean space, the respective inner products for those spaces being 
(•, •) and (•, •) and the norms being || • || and | • |.

The problem under discussion is as follows. Consider a system

m

У = Y l Ziai + C (!)
2 —  1

where
y ,a iX & H ,  Z{ G R (i -  1 ,... ,m).

With y, a, given, one is to identify the unknown vector г = (zi , . . . ,  zm) under the 
restriction 1|£|| < 1.

Here у is the available measurement, at are the given inputs, £ is the un
known but bounded disturbance. We further assume the elements a, to be linearly 
independent.

Also denote Hm the Hilbert space of columns so that x € H m if

x — Xi e H.

A ka d ém ia i  Kiadó, B ud a p es t  
Pergam on  Press, Oxford



If C is a matrix of dimension к x m with elements Cij G H, then Cx is a 
column with к elements
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^  ^  '  Cij Xj ^  , i —  1 1 • • • i  k,

so that
Cx € H k.

Let the asterisk indicate the transpose for a vector or a matrix. Then for 
tpi G R, űj G H we will have tp* =  V’iOi-

The operations on matrices whose elements belong to H are performed ac
cording to the standard rules of “ordinary” matrix calculations except that the 
products of the respective elements are taken as scalar products in H , e.g.

a* a =  ^2(ai,ai) = ^ | | a i | !
* = 1 1 — 1

aa =

Finally, assume

(c t i , a i )  j • • • j (a i , ^n )

z =  I ■ 'j G Rm.
• Zm '

Formula (1) may now be rewritten as

у = z*a + C- ( 2)

2. Given y,a, let us find the set of states of system (2) consistent with the 
constraint ||£|| < 1:

z(y) = {z : 3C G H, ПСИ < 1 , у = z*a + C}- 

From (2) it follows that

IICII2 — yy — 2a*z -I- z*aa*z < 1

or, taking,
p -- Aq, p = ay, A = aa*
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that
(2 -  q)'A(z -q )  < 1 -  h2(y), (3)

where h2(y) = yy — q*p and, obviously, 0 < h2(y) < 1.
Inequality (3) describes an ellipsoid E(q, A) in IRn whose matrix A and center 

q depends upon the measurement y. The diameter of this ellipsoid is defined as 
twice the radius r(y) of the smallest ball that includes it.

According to a well-known property of the eigenvalues of a positive definite 
quadratic form, we have, [9]

r(y) = (1 — h2(y)) \~ l (a), 

where A (a) is the smallest eigenvalue of the form

х'аа* x.

It is clear that the diameter d(y) = 2r(y) will be the largest iff h2(y) — 0 
which happens if and only if у — 0 (the “worst-case” realization).

Our objective will now be to select the input a in such a way that the “worst- 
case” diameter d(0) would be as small as possible.

Hence, we are to minimize A_1(a) — the inverse of the smallest eigenvalue 
A(a) of the matrix A — аа* of the ellipsoid

E(0,A) = 8(A) = {x : x'Ax  < 1}

(the location of the center does not matter and may be taken to be the origin).
As A — аа* is invertible, the minimization of A-1 (a) is equivalent to the 

maximization of A(a). The procedure makes sense (the solution remains in H m) 
once the admissible values of a are bounded by a certain set A4.

The problem to be discussed is, therefore, as follows: specify an element 
a 6 A4 such that A(a) would attain its maximal value.

Remark 2.1. The center q — A~lay could be presented as by where b = A-1 a 
is a vector biorthogonal to a, i.e.

ab* = ba* = A~laa* — Im,

where Im is an m-dimensional unit matrix.
3. According to the theory of necessary conditions of optimality let us first 

investigate the local behaviour of A(a) by calculating the directional derivative

A'(a, a) = lim7i0
A(a + 7a) — A(a)

Ä 5 6 tfm.

Due to the extremal properties of the eigenvalues of A we have

A(a) = minKV’, Ai!))\ |Vj = 1} =
= min{(^*a,V>*a)| It̂ l = !}• (4)
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Denote

ф(а) = {V" € Rm : ( ip ,  A i p )  =  Л(а), \ip\ = 1}.
Clearly, Ф(а) is the set of normalized eigenvectors corresponding to the minimal 
eigenvalue Л(a) of A.

Since
— (V>*(a + у a),ip* (a +  7ö)|7=0 =

= 2(ip*a, ip*a) = 2a*ip ■ ip* a,

it follows from [10] that

А'(а,а) = min{2a*V> • ip* ä \ ip £ Ф(а)}. (5)

Denote

<9A(a) =  со {2a * ip ip *  : ip  £  Ф(а)} =  
=  2a*co { ip ip *  : ip £  Ф(а)} ( 6)

Relations (5), (6) yield
T h e o r e m  1 . The following formula is true

А'(а,а) -  min{u>a | w £ 5A(a)}. (7)

Let us discuss the latter relation in more detail.
According to the terminology of convex analysis [11, 12] the set d\(a)  is 

defined as the subdifferential (of function A(a) at. point a) and its elements as the 
respective subgradients. The finite dimensionality of <9A(a) also implies that <9A(a) 
is a convex compact set.

Following [11, 12] it is possible to indicate that if an m x m-dimensional matrix

Г £ со {ipip* : Ф(а)},

then there exists an integer к < m2 + 1 such that

к
Г = y ^ i P l i P ,  € Ф(a); j  = 1 (8)

j =1

к
У ъ  = i ; ту > o , j  -  l , . . . Д-.
}=1

Therefore, all the elements of dX(a) turn to have the form 2а* Г where Г is 
given by relation (8).
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4. Let us now proceed with the necessary conditions of optimality for the 
basic problem which is to maximize A(a) under the restriction a G M.  For doing 
this we will need the notion of tangent cone [12].

Recall that a tangent cone К (a) to set АЛ at point a is a convex cone such 
that 5 G К м  (a) yields the existence of a function 4>{cr) : [0,1] —* # m that ensures 
for a sufficiently small e > 0 the inclusion

a + aa + ф(а) G M .; a < e;

and

With M  convex

lim ф(<т)<т 1 =  0.<7->0

Km  (a) = {a G Hm : a = -y(w — a), 7 > 0, w G M}.

Denote K m (a) to be the adjoint cone for Ь м ( а) so that

K*M ={ui* G Hm : w*a > 0, Va G KM (a)}i 
w* = (wi, . . . ,wm), Wi G H.

T h e o r e m  2. Once the element a delivers the maximum of function A(a) on 
the set M. there exists an array of values 7j > 0, j  < к < m 2 + 1 and normalized 
eigenvectors ipj of the matrix A = aa* : \ipj \ =  1, Aipj = A(a)ipj, that

к
—а*Г G 1<м(а), Т = ^ , Ъ М г  (9)

3 =  1

Proof. According to the theory of necessary conditions of optimality at point 
a, one must have [10, 12]

(-д\(а))Г)К*м (а)ф<Ь.

But the elements of <9A(a) are of the form 2a* Г, the structure of Г being defined by 
(8). As K*M (a) is a cone, its elements could be multiplied by any positive constant 
with the resulting element still in I\*M{a). The multiplier 2 and the normalizing 
relation for the sum of 7у ’s being equal to unity may, therefore, be substituted by 
the requirement that 7; > 0 for all j  = 1, . . . ,  k.

Consider some specific properties of the matrix

k
r  = X^7jV7V7* 

j = 1

2
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that may facilitate the further analysis:
(a) Matrix Г is symmetric and positive definite. Indeed, once W  6 Rm we 

have к к
(W,TW) = ' E ' j j W W j W  = £ 7; ( v r ^ ) 2 > 0. 

i =1 1=1
(b) For each column Г», i — 1 , m,  of the matrix Г (Г = Ti , . . . ,  Гт ) we 

have АГi = Л(а)Гi . By direct calculation

к к
AT = jAipjip] = A ( a ) ^ 7j'l’j'Pj = л(а)г

j=i j=i

and further, due to the rules of matrix multiplication

AT = (ATU. . . ,ATm) = Л(а)(Гь  . • • , Гт )

which proves the assertion.
(c) If there exists an eigenvector ip such that

Агр — Xip, X > A(a),

then Tip = 0 (matrix Г is degenerate). Under the conditions of the above 
(ipj,ip) = 0. Therefore,

к
Tip = ^ 7jipj(ip*j,ip) = 0. 

i=i

Let us now specify some particular cases.
5. Suppose

M  = { a e H m : f  (a) < 0}

with /(a) =  f ( a \ , ... ,am) assumed to be a smooth function with a non-degenerate 
gradient

f ( a) =  ( f [ ( a ) , . . . , f M )

stands for the partial derivative of /  in а*).
As it is well known [12] in this case

Ат (а) =  { - с / 'И  : a > 0, erf (a) -  0}.

On the other hand, matrix Г is non-zero as for example

к
(V’l.rV’i) =  > 7iIV'iI2 = 7i > o.

1 = 1
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Therefore, at least one of its vector columns is non-zero, for example, Г1 ф 0. 
The necessary condition for the case under consideration yields

а*Г = af'(a), a > 0. (10)

If a =  0, then а*Г = 0, hence a*Ti = 0, I?! ф 0, i.e. the a;’s are linearly 
dependent which contradicts the condition that A(a) > 0.

We have just proved
Corollary 1. If M. — {a £ Hm : f(a)  < 0} then the maximizing point for A(a), 

a £ Ad, satisfies the relations

а*Г = <т/'(а), a > 0, f(a) — 0,
m

Г = ,7j > 0, aa*ipj =  A (a)ipj, \xp>\ = 1.
;=1

Particularly, if
m

f ( a) = X > H 2 -  1 = a*a -  1
i—1

then
/'(a ) = 2(ab . .. , am) = 2a* 

and the necessary condition yields

а*Г = 2era*, a > 0, a*a = 1.

If matrix Г would be degenerate we would have Гг/> — 0 for a certain ip £ Rm, 
\ip\ = 1. Therefore,

a*Tip = 2 era* ip = 0,

i.e. a*ip — 0, a i , . . . ,  am would be linearly dependent and A(a) = 0 which contradicts 
the maximality of A(a) > 0. Matrix Г is, therefore, non-degenerate.

From the representation (8) of matrix Г it follows that it may be non-de
generate only if among the vectors ipj, j  = there exists a subset of m
linearly independent vectors. In this case all of the latter eigenvectors of A would 
correspond to A(a). This is possible only if

A — a ■ a* = X(a)Im,

i.e.
(a: 1 aj ) = 0, i ф j, ||ai||2 = A(a).

Hence, the solution to the basic problem results in an array of orthogonal 
vectors a, with equal norms.

2
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Since m
У " I|a;||2 = m\(a) = 1,
i = l

we have
Л(а) -  m_1.

6. Consider a specific problem of controlling the observation process when 

a e H m, H = L2[0,T].

The set M  is the set of solutions to the m-dimensional differential system

ä = Ca +  Bu, t G [0,T], a[0] = ao, (11)

with control u(t) selected from a convex set U of functions that ensure the existence 
of solutions to (11).

On the interval [0,T] we are, therefore, considering the measured signal

y(t) = a- ( t) z+at) ,  C(-) € L2[0,T],

Tj  C2{t)dt < 1.
о

The optimal control problem now consists in the selection of a control tt( ) € U 
that would maximize the minimal eigenvalue of the matrix A with elements

T

J  a.i(t)a.j(t) dt.
о

Once uo(£) is the optimal control and a°(t) the respective solution to system 
(11), the adjoint cone would be determined as

T

К'м(- )= {Г( - ) :  J r ( t ) ( a ( t ) - a ° ( t ) ) d t >  0}, (12)
о

where the inequality should be fulfilled for all the solutions a(t) to equation (11) 
generated by all the controls u(-) G U.

Moreover,

/  V'i(i) \
№ )  =

\  Фт (t) /
€ I/2[0,T]; i — 1, . . . ,  m.
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Since t

о
this may be substituted into the inequality which yields (12). After an obvious 
calculation this yields

ip* (<t) (exp C(t — r)) dt B(u(r) — Uo(r))dr > 0, (13)

Denoting

u(r) g U.

T

(14)

we come to
T h e o r e m  3 . The inclusion ip*(-) G К ^ ( а ° ( - ) )  holds if and only if the inequal

ity
TJ  гр*(т)В(и(т) — uo(r))dT < 0 (15)

о

is true for any u(-) 6 U.
Passing to the necessary conditions of optimality we have to check the condition 

of Theorem 2 which is

-а°*(*)Г = ф*(г), Г ( - ) е  К*м(а°(.)).

Combining this with (14) we come to the relation

%P'
1

(r) = j  a°*(t)T(expC(t -  r)) dt (16)

which should be coupled with inequality (15).
The principal result now sounds as follows.
T h e o r e m  4 .  In order that the control и G U and the respective trajectory 

ao(<), t G [0,71 would determine the maximum for the minimal eigenvalue of the 
matrix
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it is necessary that one could indicate such numbers j j  > 0 and such eigenvectors 
rpj of the matrix A (i = 1, . . . ,  k) that the following relations would be true:

1. ä°(t) =  Ca°(t) + Bu0(t ) , t  <E[0,T],
2. Г(т)  = -а*(г)Г -  Г(т)С, т е [О,Г], Г ( Т )  = О,
з Г = Е*=1
4. / 0Т 1P*(t)Bu(t)dt < / 0Т гр*(t)Buo(t) dt; u(-) G I/.

The proof follows from above having in view that relation (2) is obtained by a 
direct differentiation of (16) in r.
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О п ти м ал ьн ы е входы  в за д а ч е  гар а н ти р о в ан н о й  и д ен ти ф и кац и и

А. Б .  К У Р Ж А Н С К И Й ,  Б  Н П Ш Е Н И Ч Н Ы Й ,  В Г  П О К О Т И Л О

(Лаксенбург, Киев)

В данной статье рассматривается задача об идентификации конечномерного век
торного параметра на основе наблюдений, порожденных бесконечномерным входом, в



K U R Z H A N S K I ,  P S C H E N I C H N Y I ,  P O K O T I L O :  O P T I M A L  I N P U T S  F O R  I D E N T I F I C A T I O N 2 3

условиях неопределенных помех. Предполагается, что информация о помехах исчер
пывается заданием априорного ограничения на их реализации. Специфика задачи, 
изложенной в данной работе, состоит в выборе оптимального входа, который бы обе
спечил наименьшее значение гарантированной ошибки процесса идентификации. При 
этом последняя определяется как диам етр наименьшего шара, содержащего область 
идентифицируемых параметров, совместимых с результатами наблюдений. Работа 
продолжает исследования [1-8].
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THE FUNCTION OF AN OPTIMAL GUARANTEED RESULT OF 
CONTROL PROBLEMS WITH A VECTOR CRITERION

A . M .  T a r a s ’e v

(Sverd lovsk)

(Received Ja n u a ry  24, 1990)

A control system  whose dynam ics is subject to  u n c e r ta in  d istu rbances is  considered. 
Q uality  of tra jec to ries of the  system  is evaluated by a  te rm in al vector c rite rio n . The 
vector m ulti-valued function  of op tim al guaranteed  re su lt o f th e  given p ro b lem  is defined. 
P ro p ertie s of th is fu n c tio n  are exam ined. Necessary a n d  sufficient conditions fo r a  vector 
m ulti-valued function  to  be the  function  o f th e  optim al g u a ran tee d  result a re  given.

1. Introduction

In this paper we consider a control system whose dynamics is described by 
an ordinary differential equation. It is supposed that the right-hand side of the 
system depends not only on the control but also on uncontrollable disturbances. 
The control is formed as a function of position. On the motions of the system 
a vector functional is defined. Quality of the control is evaluated by the vector 
which componentwise majorizes the values of the vector functional calculated on the 
motions corresponding to this control and an arbitrary disturbance. This estimating 
vector is guaranteed by the considered control. Therefore, it is called the guaranteed 
result.

Such a problem statement can arise in applications when quality of the process 
is evaluated by several criteria. Besides, each criterion is important for evaluation 
and should not be worsened at the expense of improving of others. For example, in 
the aircraft landing problem the role of such criteria can be assigned to the lateral 
and vertical deviations from the glide path, the lateral and vertical components of 
the velocity vector at the moment of landing, etc.

The optimal guaranteed result is defined as the set of all Pareto minimums 
among guaranteed results. The multi-valued function that associates with initial 
positions the corresponding optimal guaranteed result is called the function of op
timal guaranteed result (FOGR). Properties of the vector multi-valued FOGR are 
analysed in the present paper. Investigations are developed within the framework

Akadém ia i  K ia d ó ,  Budapest  
Pergamon Press ,  Oxford
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of the approach proposed in [1,2]. The properties of stability are formulated for the 
FOGR. The infinitesimal form of the stability properties is studied. We formulate 
the necessary and sufficient conditions for a vector multi-valued function to be the 
FOGR.

The definition of the FOGR accepted in the present paper is similar to the 
definition of the optimal guaranteed estimate proposed in [3]. The above mentioned 
paper deals with multi-criteria problems of guaranteed control within the framework 
of the first direct Pontryagin method.

It should be mentioned that there are other approaches to the analysis of 
multi-criteria control problems under indeterminacy. The definition of equilibrium 
as generalization of the concepts of Pareto optimality and Nash equilibrium lies on 
the basis of one of them [4]. Note that in the present paper, in contrast to [4], we 
consider the control problem in which the opimal guaranteed result is ensured by 
one participant independently of a disturbance realization. In [4], on the contrary, 
all participants are equivalent. This is expressed in the symmetric definition of 
equilibrium for them.

2. Statem ent of th e  problem, m ain definitions

We consider the control system whose dynamics is described by the general 
differential equation

i: = f( t ,x,u,v) .  (1)

Here t £ [to, *9] = T, x £ Rn is an n-dimensional phase vector, и £ P C 
is a p-dimensional vector of control from the compact set P, v £ Q C is a 
^-dimensional vector of disturbances from the compact set Q.

It is supposed that the function /  : T  x Rn x P x Q —*• R" is continuous 
of all arguments, locally Lipschitz continuous with respect to x, and satisfies the 
condition of extendability of solutions of system (1).

Assume that the vector cost functional is determined on the motions x(-) of 
system (1) by the relation

J (z(-)) = <t(z(^)) =  (<Т!(х(г?)),. . .  , am{x(d))). (2)

Here Gi : Rn —► R1, i = 1, . . . ,  m are continuous functions.
Let us fix an arbitrary position (t,,x*) £ T  x Rn. Let U = !/(•): T  —> R" —<• 

—> P  be a positional control strategy. The set of the motions generated by the 
strategy U from the position (f*,x*) is defined as the set of all limits of the Euler 
splines constructed by virtue of U (see [1], p. 32). This set is a compactum in the 
space of continuous functions. Denote it by the symbol X(t , ,  xv, U).
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The aim of control is to “minimize” the cost functional (2) in the sense stated 
below.

Let us introduce an order ratio on ra-dimensional vectors. For a = (a1;. . . ,  
a m ) ,  b — ,bm) we shall assume

a < b if a ,  <  6 , - , i =  1 , . . . ,  m,  
a b if for some j  E {1 ,..., m }, a,j > bj.

Let us pass to the definition of the vector guaranteed result. Now, we shall 
introduce notations. For a position (i*,x*) £ T x  Rn and strategy U assume

£(<*,x„, U) = {s £ Rn : s = <r(x(d)), x(-) E X(t, ,x*,U)},

S m a x(G,x„,£7) — {s° E R m  : S < s° for all s E £(<*,£„, 17)},

, 2* ) = [̂ J Smax(i» , X* , {/),
U

S rn a x  = {(t,x,s) E T  X  Rn X  Rm : s E Emax(i,x)}. (3)

Thus, Emax(G,x», U) is the set of vector results guaranteed by a strategy U 
at a position (<*, x„) by all components simultaneously. The set £ max(G,x*) is the 
collection of all guaranteed results at a position (f*,#*).

D E FIN ITIO N  1 . The set of Pareto minimums from the set of guaranteed results 
^max}!»,£*) we shall call the optimal guaranteed result, i.e.

c(t*,X*) — E L*max(G, X * )  . S £ s  for all S E -̂max ( G  , ^ * *  )  \  } } •

D e f i n i t i o n  2. The multi-valued mapping ( t ,x)  —► c(t,x) that associates 
with initial position (i,x) £ T x R "  the corresponding optimal guaranteed result 
c(t,x) is called the function of the optimal guaranteed result (FOGR).

3. Properties of the FO G R

With a view to investigate the properties of FOGR we shall consider the 
auxiliary augmented system

x = f ( t ,x ,u,v) ,  t ET,  x E R", и E P, v EQ
si — 0

sm -  0 . (4)



We pose for it the problem of pursuit with the target set

M  = {(x,s) £ Rn x Rm : a(x) < s} (5)

at the given instant tf.
In the followings, constructions of the positional differential games theory [1] 

are used.
Let (<*, x„ st ) £ T  x R" x Rm, UT : T  x Rn x Rm —*■ P be a positional strategy 

of control for system (4), У(<*,ж*,«*,1/Г) the set of the motions constructed by 
passing to the limit from the Euler splines of system (4) corresponding to Ur. The 
aim of the control Ur is to lead the motions of the corresponding set У ( t , , х», s*, Ur ) 
to the target set M at the instant Ű.

In the auxiliary differential game arbitrary information may be used by form
ing the vector of disturbances v, i.e. it may turn out to be very unfavourable. For 
the theorem on alternative to be true ([1], p. 367) it is sufficient to assume that 
the vector of disturbances is formed as the function of positions (t , x ) e T x R "  
and vectors of control и £ P. Such a function Vu : T  x Rn x P —> Q is 
called a counter-strategy. The set of motions generated by a counter-strategy 
Vu is defined by passing to the limit from the Euler splines constructed accord
ing to Vu. This set is a compactum in the space of continuous functions. Let 
( t , ,x , ,St)  £ T x R" x Rm, VJ : T x Rn x Rm x P —► Q be some counter-strategy 
in system (4), y(f»,a;*,s«, V£) be the set of motions constructed by passing to the 
limit from the Euler splines of system (4).

Remark 1. The specific character of system (4) implies that its last m co
ordinates do not change and are identically equal to the vector s„. From here 
it follows, firstly, that the positional strategy Ur '■ T  x Rn x Rm —► P  really de
pends on the first n +  1 coordinates (t , x) £ T  x R" only, and the counter-strategy 
Уиг : T  x Rn x Rm x P —> Q depends only on positions (t,x) £ T  x Rn and vectors 
of control и £ P. Therefore, we may assume Ur = U : T x Rn —>• P, У„ = 
= yu : T  x Rn x P —* Q. Secondly, the following relations are true

Y(U,x„s*,Ur) = Y ( t t , x t ,St,U) = {(x( ),s.) : x(-) £ X(tm, x*, U)}, (6)

where , ж,, U) is the set of motions of system (1) corresponding to the positional 
strategy U

Y(tt ,X t ,s t , V^) =  Y(tt,Xt, s„,Vu) =  {(*(•),s*) : ar(-) £ Vu)}, (7)

where X ( t t , xt , Vu) is the set of motions of system (1) corresponding to the counter- 
strategy Vu.

The theorem on alternative asserts that for problem (4), (5) there exists a 
closed set Wu С T  X Rn X Rm called the positional absorption set (the maximal 
u-stable bridge) with the following properties. If a position (<», z„, s„) belongs to

2 8  T A R A S ’EV: T H E  F U N C T I O N  O F  AN O P T I M A L  RESU LT O F  C O N T R O L  P R O B L E M S
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Wu then there exists a positional control strategy Ur =  U : T  x Rn —*■ P such 
that for any motion y(-) G Y(<*, x», s*, Í7r ) the inclusion y(fl) G M  is true. If 
a position (f*, x,, s.) does not belong to Wu then there exists a counter-strategy 
Vur = Vu : T  x Rn x P —♦ <5 such that for any motion y(-) G Y(t»,xt ,s*,V*) the 
relation y(i9) ф M is true.

The following statement may be proved with the help of the theorem on 
alternative.

Lemma 1. The set of vectors Emax determined by (3) and the positional 
absorption set Wu of the augmented problem (4), (5) coincide.

The theorem on alternative, Lemma 1 and Remark 1 imply the following 
result.

T heorem  1. For the FOGR (t , x ) —► c(t, x) at any position (t , , x„) G T  x Rn 
alternative takes place

1) for any optimal guaranteed vector s° G c(tt , x») there exists a positional 
strategy U : T  x Rn —> P such that the vector inequality ir(x(i9)) < s° is true for 
all motions x ()  G X(t„, x„, U)\

2) for all vectors s which are not guaranteed at a position (i.e. s° ^
^  s for all s° G c(t*,x*)) there exists a counter-strategy Vu : T  x Rn x P —* Q such 
that tr(x(i?)) ^  s for all x(-) G X(i*,x„, V )̂.

Let us formulate some properties of the vector multi-valued FOGR. Proofs of 
these properties are not complicated, therefore, will be omitted here.

Property 1. For any position (í„,x„) G T  x Rn the set £ max(G,x,) is com
pletely determined by its Pareto points, namely, by the vector values of the FOGR 
c(t»,x»), and the following equality takes place

Emax(G,x.) = {s G Rm : s° < s, s° G c(t„,x„)}. (8)

Property 2. Let Wj : T  x Rn —+ R1 be the function of the optimal guaranteed 
result of the control problem for system (1) with the scalar criterion

J(x(-)) = <?i(x(tf)), i= l , . . . ,m . (9)
Here functions <Tj : Rn —+ R1, i = 1 ,.. . ,  m are the components of the vector 

function а : Rn —► Rm from the functional (2).
Then, for any position (t„,x*) G Г х  Rn, and vector s G c(<»,x») the vector 

inequality u>o(f*,x„) < s is true. Here u>o(t*,x„) = (wi(<*,x*),. . .  ,wm(t.,x»)).
Property 3. For any position (t„,x„) G T x R" and index i G { l,...,m }  

there exist numbers s°, j  = 1 , . . . ,  m, j  ф i such that s° = (s°, . . . ,  s°_lt x*), 
s°+1, . . . ,  s^,) is a vector of the optimal guaranteed result, i.e. s° G c(t», x»).

Property 4. For all positions (i»,x„) G f x R "  the optim al guaranteed result 
c(<»,x») is a bounded set.

Property 5. The epigraph epic = {(t,x,s) £ T  x Rn x Rm : s° < s, 
s° G c(t, x)} = Emax of the FOGR (t,x) —> c(t,x) is a closed set. In this sense the
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function (t , x ) —> c(t,x) is lower semi-continuous, i.e. for any position (t*,x,) G 
G T  x R" and sequences {(tjt,xjt) G T  x Rn}, {s* G c(tk, x k)}, (tk, x k) -* (f*,x„), 
Sjt —> s», for к —+ oo there exists a vector s° G c(<*,x,,) satisfying the vector 
inequality so < s,.

Remark 2. It follows from lemma 1 that for the construction of the vector 
multi-valued FOGR (t, x) —* c(t, x) the algorithms and programs destined for solv
ing guaranteed control problems of the form (4), (5) may be used. Such algorithms 
and programs, for example [5], have been developed in the Dynamic System De
partment of the Institute of Mathematics and Mechanics of the Urals Branch of 
the USSR Academy of Sciences.

The property of u-stability is one of the basic properties of the positional 
absorption set Wu. This property is the base of step-by-step back procedures 
for constructing the set Wu. If the program absorption set has the property of 
u-stability then it coincides with the positional absorption set. It is found that 
the property of u-stability may be formulated for the vector multi-valued functions 
including the FOGR (t , x ) —► c(t,x).

For this purpose we shall introduce the following notations. Denote by SC  
the class of vector multi-valued functions (t, x) —► u(t,x)  satisfying the following 
conditions:

a) for all (t , x ) G T x Rn the set u>(t,x) C Rm is bounded;
b) for all (t , x ) G T  x Rn the set ui(t,x) has the property of regularity: 

5(i) ^  s(2) for s(i) ^  s(2)i s(*) (= w(<,x), i = U 2;
c) the epigraph W — epi ш — {(<, x, s) G T  x Rn x R m : s° < s, s° G w(i, x)} 

is a closed set, i.e. a function (t,x) —► u(t,x)  is lower semi-continuous.
Note that the FOGR (t,x) —> c(t,x) belongs to the class SC, i.e. c G SC.
Suppose that the set W  = epiw C T x R" x Rm has the property of u-stability 

for the augmented system (4). Let us remind the formulation of the property of 
u-stability for the set W: for any position (t„, x*,s„) G VU(t* < i9), moment t G 

and unit vector / G S  = {r G Rn : ||r|| =  1} there exists a solution (x( ),s( )) 
of the differential inclusion

i ( r )  G F ( t , x ( t ) , 1 )s(r) = 0 (10)
x(i*) = X», s(tt ) — s , , r  G [<», i]

such that (t,x(t),s(t)) G W.
Here

F ( r , j / , / )  =  n ( r ,y , / ) n G ( r ,y ) ,  (11)

G(r,y) = co{/ G R" : /  = f (r ,y ,u,v) ,  и G P, v G Q}, 
n (r ,y ,l) -{ > 'G R n : (l , r )> H (T ,y , l )}, (12)
H(r,y,l) = m inm ax(/,/(r,y, u,u)), (т,у,1) G T  x R" x S.u£P v£Q
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Taking into account that s(r) = s, when r  £ [<*, г9] it is possible to express the 
property of u-stability of the set W in terms of a vector multi-valued function
(t , x) —► w(t,x), и £ SC.

Definition 3. We shall say that a function (f,x) —♦ u(t,x) : T  x Rn —+ 
—► 2K , ш £ SC has the property of u-stability if, for any position (f»,x,) £ T x 
xRn (<„ < tf), vector s„ £ w(i»,x»), moment t £ and vector / £ S there
exist a solution x(-) of the differential inclusion

x(r) £ F(t, x ( t ) ,  /), x(tm) = x,, г  £

and a vector s £ ui(t,x(t)) such that s < s».
Remark 3. Since the positional absoption set Wu = Emax of the auxiliary 

problem (4), (5) is the epigraph of the FOGR (t , x ) —► c(t, x), c £ SC and the set 
Wu is a u-stable bridge (the maximal relative to the inclusion u-stable bridge) then 
the FOGR (t, x) —► c(t, x) is a u-stable function in the sense of Definition 3.

4. Infinitesimal constructions

Stability properties may be defined by different equivalent ways. The infini
tesimal form [6-8] is convenient for the property of u-stability. Infinitesimal con
structions may be used also for the definition of the property of u-stability of vector 
multi-valued functions w £ SC.

Let R = R1 U {+oo} U {—oo), T° =  [to, *5).
Define the lower derivative of a vector multi-valued function w £ SC  at a 

position (i»,x»,s,) ((f„,x») £ T° x Rn, s, £ u>(t*,x*)) in a given direction (1,Л), 
h £ Rn.

Let

Duj(t„, x , , s„) = < (h, d) £ R'1 x Rm : h — lim —-----
I t k -  U

d = lim ^ — 71 , tk -*■ U, tk £ (<„, tf],к —► oo t к — l*

Xk € Rn, Sk G ,

dw(t*,x,, s.)|(h) = {d£  (R)m : (h , d) £ Du>(t*, x„, s„)}.

Remark 4. For all (f .,x .)  £ T° x Rn, s. £ uj(t.,x,),  h £ R" the sets 
D w (í,,x ,,s,), dio(t,,xt ,s,)\(h) are closed.

Definition  4. The set of all Pareto minimal points from the set 
Őu>(<», х», s„)|(/i) is called the lower derivative , х», s„)|(/i) of a function
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(t, x) —► w(t,x),u> £ SC  at a position (<», x,,s„ )((<», г , ) б Т ° х  Rn, s, £ w(t*,x,)) 
in a direction (1 ,h), h G Rn, i.e.

Ő_w(<.,x,,s,)|(/í) = {d° G Őw(<„,x„,s,)|(/i) :
d d° for all d G du>(t+ , x , , s,)\(h) \  {d0}}.

Now, remind [7] the definition of the derivative of a multi-valued mapping 
t —* VF(<) : T —* 2B + at a point (<», x„, s*), (x,,s») G W(t*). Here W(t) is a 
closed set in Rn x Rm for all t G T.

The derivative of a multi-valued mapping t —*■ W(t) at a point (<»,x„,s*), 
(x»,s„) G W(t») is the set

D W (<*, x , , s , ) = I  (h,d) G Rn x Rm : h — lim —------ -, d = lim k k ̂ k—*oo tf- — t  + к—юо tk — t*

tk - » t t k  € (xk,ipk) € W(tk)
Y

(14)

Let и be a function of the class SC  and the set W  = {(f, x,s)  G T  x Rn x Rm : 
s° < s, s° G w(t,x)} its epigraph. Define the multi-valued mapping t —» IT(i) by 
the formula

W(t) = {(*,*) G  Rn X  Rm : ( t,x,s)  G W}. (15)

It is possible to prove the following statement.
Lemma 2. Let ш G SC, W  be the epigraph of the function u>, and the multi

valued mapping t —+ W(t) determined by (15), (t*,x») G T° x Rn , s* G w(t*,x*).
Then

D W (t , , x t ,sm) = {(fi,a) : h £ R n, d < a, d £ ö_w(f», x„, s»)|(fi)}. (16)

Lemma 2 states, in fact, that the set £)FF(f*,x*,s*) coincides with the epi
graph of the lower derivative h —► ő_w(í»,x»,s„)|(/i). This means that statements 
operating with the notion of the derivative IHU(f*, x„, s„) of a multi-valued map- 
pingt —► W(t) maybe re-formulated for the lower derivative h —» cLw(<*,x»,s„)|(/i) 
of a function (t , x) —► w(f, x), w G SC. Using this argument we shall transfer the 
infinitesimal formulation of the property of u-stability of a closed set in terms of the 
derivative of a multi-valued mapping to the lower derivative h —► d-Ui(tt , x*, s»)|(fi) 
of a function w G SC.

Now, we shall cite [7] the infinitesimal form of the property of u-stability of 
a closed set W  С T  x R" x Rm. A set IT is a u-stable bridge if, for any position 
(í,,x„,s„) G d W , and 1 £ S

DW (f„,x,,s») П FR(t* ,x , , l )  ф 0. (17)
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Here

FR(t , ,x , , l )  = {(/,0) £ Rn x Rm : /  £ F(U ,x„I ) t 0 £ Rm}, (18) 

dW  is the boundary of a set W .
Taking into account the inclusion DW(t*,x*,sm) C DW(t , , x», s*) for s, < s* 

and formula (18) we may write the property of u-stability of a function ui £ SC in 
the following equivalent to Definition 3.

Definition  5. A function ш £ SC  has the property of u-stability if, for 
any position (f,,x*) £ T° x Rn, the vector value sm £ and vector / £ S
there exist a vector /  £ F(f»,x»,/) and a vector value of the lower derivative 
d £ d-uj(t, , X», s*)|(/) such that

d < 0. (19)

Here 0 £ Rm is the m-dimensional zero-vector.
Remark 5. The convex compact set F(t , ,x , , l )  (11) appearing in relation (18) 

and Definition 5 may be replaced according to [7-9] by the half-space П(<»,х,,/) 
of (12), ( l , , i , , l ) £ T x R n x S without losing the equivalence of definitions.

Remark 6. The property of u-stability of the FOGR (f,x) —► c(t,x) (see 
Remark 3) may be written in the equivalent infinitesimal form (19).

5. Necessary and sufficient conditions

To formulate the necessary and sufficient conditions which the vector multi
valued FOGR (t,x) —* c(t,x) must satisfy we introduce the notion of a u-stable 
function. Let us cite [1] the definition of the property of u-stability of a closed set 
Wv. A closed set Wv C T x  Rn x Rm is called и-stable for the augmented system (4) 
if, for any position (f„,x„, s„) £ Wv, moment t £ (f„, i?], and control vector и £ P 
there exists a solution x(-) of the differential inclusion

x(r) £ F(t, x(t) , u), x(t*) = X. (20)

such that (<,x(f),s,) £ Wv.
Here F(t , у, и) = со{ / : /  = f (r ,y ,u,v) ,  v £ Q ) .
D e f i n i t i o n  6 . A vector multi-valued function (t , x) —* ui(t,x) : T  x R n —> 

—*■ 2R , ш £ SC  is called и-stable if, for any position ( t , , x*, s*) from the hypograph 
hypoai = {(t,x,s) : so s for all so G w(f,x)} ((f*, x«, s„) £ hypow) there exists 
a u-stable set Wv satisfying the following inclusions (tm, x»,s„) £ Wv C hypow.

Remark 7. The epigraph Wu = Smax = epic of the FOGR (t,x) —*■ c(t,x) is 
the positional absorption set of the augmented problem (4), (5). The complement

3



hypo c = (Tx Rn x Rm)\epi c of the set epi c represents the union of v-stable bridges 
[1]. Therefore, the FOGR (t , x) —► c(t, x ) is v-stable in the sense of Definition 6.

Remarks 3 and 7 indicate the necessity of the properties of u- and instability 
for the FOGR (t , x) —► c(t, x). Let us formulate the statement about sufficiency of 
these conditions.

T heorem 2. For a vector multi-valued function (f, x )  —+ u i ( t , x )  : T  x Rn —► 
—► 2r ™ ‘, w £ S C  to be the FOGR (i, x) —*■ c(t,  x)  it is necessary and sufficient that 
the following conditions are satisfied

1) the boundary condition =  <r(a:), x £ R";
2) the property of u-stability in the sense of Definitions 3 or 5;
3) the property of instability in the sense of Definition 6.
This statement may be proved by using the theorem on alternative and prop

erties of functions u> £ SC.
Remark 8. Program constructions (maximin program functions) are often 

used for estimating the optimal guaranteed result in problems with a scalar crite
rion. Program constructions are called so because maximum and minimum oper
ations determining them are fulfilled on the sets of program controls (depending 
on time) only. If, in general, verification of the и-stable property of a function 
w £ SC  in the sense of Definition 6 seems to be very hard then the maximin pro
gram function (t,x) —► рт(<,ж) is «-stable automatically, by definition. When, 
in addition, the maximin program function (t,x) —► pm(f,ai) is м-stable then it is 
said that it is regular [1, 2, 10] since it coincides, by Theorem 2, with the FOGR 
(t, x) —+ c(t, x). For obtaining convenient for testing conditions of regularity of the 
maximin program function (f, x) —> pm(f, ж) in linear problems with a vector crite
rion it is possible to use the infinitesimal form (19) of м-stability. These conditions 
of regularity are contained in [11]. Detailed proofs of the statements of the present 
paper can be found there.
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6. Conclusions

The notion of the vector multi-valued function of optimal guaranteed result 
(FOGR) is introduced for a control problem with a vector criterion. It is defined 
as the aggregate of the best (minimal in the Pareto sense) points from the set of 
guaranteed (maximal by all components) vector results. This definition coincides 
with the known definition of the guaranteed result [1, 2] for a control problem with 
scalar criterion — a vector criterion of one component (m = 1).

Functional properties of the vector multi-valued FOGR are analysed in the 
present paper. The so-called stability properties are formulated. Necessary and 
sufficient conditions characterizing the FOGR are obtained. The infinitesimal form 
of the stability properties is studied. The method of construction of the FOGR is 
outlined.
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Knowing the FOGR enables us to solve the problem. The method of extremal 
aiming to the epigraph of the FOGR [1, 2] can be used for constructing the solving 
control procedures in this case.

As for the transformation of the vector criterion to the scalar one the following 
should be stated. The scalarization of the vector criterion leads to the scalar control 
problem the solution of which depends on the coefficients of the scalar transforma
tion. The choice of these coefficients a priori does not completely take into account 
the essence of the control problem. Meanwhile, the construction of the vector mul
ti-valued FOGR provides the complete solution of the vector control problem, since 
all vector optimal guaranteed results and corresponding optimal solving strategies 
are determined. One can choose among them the results corresponding to the 
essence (dynamics and aims) of the control problem.
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Основной чертой рассматриваемой в работе постановки задачи управления яв
ляется применение векторного критерия для оценки качества процесса. При исследо
вании задачи введено понятие векторной многозначной функции оптимального гаран
тированного результата. И зучаю тся свойства ©той функции. Рассматривается инфи
нитезимальная форма свойств стабильности. Приводятся необходимые и достаточные 
условия, которым должна удовлетворять векторная многозначная функция оптим аль
ного гарантированного результата.

А. М. Тарасьев
Институт математики и механики УрО АН СССР 
СССР, 620219, Свердловск, ГСП-384, 
ул. С. Ковалевской, 16.
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ASYMPTOTIC BEHAVIOUR OF A COMPLEX RENEWABLE 
STANDBY SYSTEM WITH FAST REPAIR

A. I. C h e r n y a k , J. S z t r i k

(K iev) (Debrecen)

(Received D ecem ber 21, 1989)

T h e  present p a p e r is concerned w ith a n  asym pto tic  analysis of a  complex renew able 
stan d b y  system  o p erating  in  random  environm ents. Supposing “fast repair” it is show n th a t  
th e  tim e to  the  first sy s tem  failure converges in d istribu tion , u n d e r appropria te  no rm ing , 
to  an  exponentially  d is tr ib u te d  random  variable.

1. Introduction

In this paper we deal with a special queueing problem which is of consider
able importance in reliability theory. In many models of practical interest “small 
parameters” are usually present, e.g. the failure rate of the elements are much small
er than their repair rates. (This is termed in reliability theory as “fast repair” .) 
This situation enables us to use approximate methods in reliability calculations. 
For good reviews and materials the interested reader is referred to, among others 
[3-8, 11-14, 16]. It is also well known that the great majority of problems can be 
treated by the help of Semi-Markov Processes (SMP), Semi-Regenerative Processes 
or, more generally, processes with an embedded point process (cf. Franken et a 1. 
[5]). For those models, mostly stationary reliability measures are obtained, and 
characteristics like time to the first system failure are difficult to obtain. Since the 
failure-free operation of the system corresponds to sojourn time problems we can 
use the results obtained for SMP. It is easy to see that in the case of “fast repair” 
the exit from a given subset of the state space of the underlying SMP is a “rare” 
event, that is, it occurs with a small probability. Thus, it is natural to investigate 
the asymptotic behavior of sojourn time in a given subset, provided that the prob
ability of exit from it tends to zero (see Anisimov [1-2], Keilson [9], Korolyuk and 
Turbin [10]).

The aim of the present paper is to deal with an asymptotic analysis of a 
complex renewable standby system operating in random environments. Supposing 
“fast repair” it is shown that the time to the first system failure converges in

A k a d é m ia i  Kiadó, B ud a p es t  
Pergam on Press, Oxford
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distribution, under appropiate norming, to an exponentially distributed random 
variable.

The main contribution of our paper is the following. The failure and repair 
intensities of the elements depend on the number of the failed elements and the state 
of the given random environment. As a result of this assumption, the corresponding 
subset of the limiting Markov process—constructed to this problem—is not a simple 
essential class of states. Hence, the “classical” methods cannot be applied. Using 
the results of Anisimov [1-2] the asymptotic exponentiality is proved.

2. The m athem atical model

Let us consider a renewable system consisting of ni operating units, n2 loaded 
standby units, 713 lightly loaded standby units, and r repair crews. The operating 
elements are assumed to be embedded in a random environment governed by an 
irreducible, aperiodic Markov chain t > 0) with state space {1 ,..., ri} and
with transition density matrix

«,'!].> Ú.Í1 Ti, a.( i )  _

Whenever Ai(£) = i 1 and at time t there are s elements at the repair facility, the 
probability of failure of each operating unit in the interval (t,t +  h) is

A(»'i, s)h + o(/i), ii = 1,7*1, s =  0,ni + n2 + n3 — 1.
Similarly, the loaded standby units are supposed to be embedded in a random 
environment governed by an irreducible, aperiodic Markov chain (X2(£), t > 0) 
with state space {1,... , 7*2} and with transition density matrix

( 2 )I- • . 
> 2 j 2 *2,J2 = 1Т2, a( 2 ) _= E

2
z(2)>2}

Whenever A2(t) — г2 and at time t there are s elements at the repair facility, the 
probability of failure of each loaded standby unit in the interval (t,t + h) is

ß(i2,s)h + o(h), 72 =  1,7*2, S = 0,77l +  n 2 +  713 -  1.

Furthermore, the lightly loaded standby elements are also supposed to be em
bedded in a random environment governed by an irreducible, aperiodic Markov 
chain (A3(£), t > 0) with state space {1 ,..., r3} and with transition density matrix

i{3)* 3J31 *3, ja = Тт-з, „(3)
£  «13

3
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Whenever X 3(<) = i3 and at time t there are s elements at the repair facility, the 
probability of failure of each lightly loaded standby unit in the interval (t,t + h) is

v(i3,s)h + o(h), г3 = 1,г3, s = 0, n4 +  n2 + n3 -  1.
When the elements fail they enter a repair facility and will be immediately served, 
unless all the repairmen are busy, otherwise they wait in a queue in the order of 
their breakdowns. The repair facility is supposed to be embedded in a random 
environment, governed by an irreducible, aperiodic Markov chain (X4(t), t > 0) 
with state space 7*4} and with transition density matrix

Whenever X4(f) = г4 and at time t there are s elements at the repair facility, the 
probability of repair of each unit under service in the interval (t,t + h) is

/z(i4,s,e)/i + o(h), г4 =  1, r4, s = 1, n4 +  n2 + n3.
Each operating unit that fails is instantaneously replaced by a unit from the loaded 
standby; each unit that fails or that is put into operation from the loaded standby 
is immediately replaced by a unit from the light standby. Each unit after renewal 
is put into the light standby.

The environmental processes and all the random variables are assumed to be 
independent of each other.

Let us consider the system assuming “fast repair” , that is, /i(i4, s,£) —+ 00 as 
e —► 0. For simplicity, let /j(í4,s,£) = /i(i4,s)/e.

The system is said to be failed iff the number of failed elements is m + 1, 
1 < m < ni + n2 + П3.

Let Yc(i) denote the number of failed elements at time t and let 

(m) =  inf(t : Ye(t) = m + 1/У£ (0) < m)

that is, the instant at which the system breaks down for the first time. Hence, our 
goal is to determine the distribution of fie (rn). We have

T heorem 1. For the system in question, under the above assumptions, in
dependently of the initial state, the distribution of the normalized random variable 
emQc(m) converges weakly to an exponentially distributed random variable with 
parameter

r i  r 2 r 3 r 4 П  T i* !)  *2) *3) *4) s )

Л =  Е Е Е Е  п < ; > п < х Ч >  ----------------------
*,=i <2=113=1 »4=1 П  min(s,r)/i(i4, s)

5 = 1
where 7 (ii,Í2, h , 4 ,s) is defined later.
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Proof. The method of investigation is based on Anisimov [1, 2]. Construct 
the following multi-dimensional Markov chain

Zc(t) = (X1(t),X2(t) ,X3(t),X4(t),Ye(t))

with state space

((*!»*2, *3,*4 : s), *1 =  1,*T, i2 = l , r 2, г'з = l , r 3, г4 =  l , r 4, s = 0, гц +  n2 + n3)

where
Xi(<), X 2(t), X3(t), X 4(t): governing Markov chains, 
Yc(t): the number of failed elements at time t.

Let us single out the subset of states

(“ m) = ((*i,*2 ,*3 , *4 : q), *i = l,ri, i2 = l,r2 i3 =  l ,r3, i4 = l,r4, q -  0,m).

Let

{**iA(*i,s) + n2ß(i2,s) + (n3 -  s)i/(i3,s), 0 < s < n 3, 
n l X(i1,s) + (n2 +  n3 -  s)ß(i2,s), n3 < s < n2 + n3,

(**1 + n2 + n3 -  s)\(ii , s), n2 + n3 < S < Til + n2 + n3,
and

+ аь .'2 + а1з»'з +  ai!.'4 +Т(*1,*2,*з, *4, s) +min(s, r)fi(i4,s)/e = R(i i , *2,*3,*4, s).

Hence, the problem is to determine the distribution of the first exit of Ze(t) from 
(am). It is easy to see that the sojourn time rc( i i , i2,i3,i4,s) of Z€(t) in state 
(*i,*2,*3,*4,s) is exponentially distributed with parameter R(i\ , i2, i3, i4, s). Fur
thermore, it can readily be verified that the transition probabilities for the em
bedded Markov chain, as e —♦ 0, are

P r [ ( * l , * 2 , * 3 ,  * 4 , s ) ,  0 ' i , * 2 , * 3 , * 4 , s ) ]  =  o ( l ) ,  « >  1,

Pc [ (*1 ,  *2, *3, *4, s ) ,  ( * 1 , Í 2 ,  *3, *4, *)] =  0 ( 1 ) ,  S >  1,

Pc [ (*1 ,  *2, *3, *4, * ) ,  ( * 1 ,* 2 ,  J 3 , * 4 , S ) ]  =  0 ( 1 ) ,  S >  1,

Pc [ (*1 ,  *2 , *3, *4, s ) ,  ( * ' l , * 2 , * 3 , Í 4 ,  S)] =  0 ( 1 ) ,  S >  1,

Pc [ (*1, *2 , *3, *4, s ) , ( * ' l , * 2 , * 3 , * 4 , S +  1 ) ]  =

= 7[(*1,*2,*з,*4,* )е /min(s,r)p(i4,s)](l + o(l)), l < s < n1 + n2 + n3,
Pc [(*1, *2, *3, *4, S ) ,  ( * 1 ,* 2 , * 3 , * 4 , S  — I ) ]  —► 1, 1 <  S <  **i +  П 2 +  П3 ,
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р Л ( * 1 , ii ,  *3 , * 4 , 0 ) ,  ( л , *2 , *з,  *4 , 0 ) ]  =  i3, *4 , 0 ) ,

РЛ(*1 > *2 , *3) *4| 0 ) ,  (*1 , J 2 ,  *'з, *4 , 0 )] =  a\l)h / R ( i 1, г'2) *3, * 4 , 0 ) ,

РЛ(*1 - *2, *3, * 4 ,0 ) , (*1, *2, j 3, *4 ,0 )] = a ^ J j R ^ x  , i2,i3, * 4 ,0 ) ,

Р Л (* 1 ,* 2 ,* 3 ,* 4 ,0 ) ,  (*1, *2 , *3, J 4 ,0 )]  — /  - ß ( * l , *2, *3, *4, 0 ) ,

Р Л (* 1 , *2, *3, * 4 ,0 ), (* 1 , *2, *3, *4, 1)] =  7 ( * 1 , *2, *3, * 4 ,0 ) / Ä ( * b  *2, *3, * 4 ,0 ).

This agrees with conditions (l)-(4) in Anisimov [1] p. 151, but here the zero 
level is the set

((*1, *2, *3, *4 : s), *! = l , n ,  *2 = l , r 2, *3 = 1,2*3, *4 = 1,**4, S = 0, 1) 
while the g-th level is the set

((*1, *2, *3, *4 : q +  1), *1 =  1, 2*1 , *2 =  l , r 2 , *3 =  1,2-3, *4 =  1 ,2 4).

Denote by П £ ( * 1 , *2, *з, *4, s) the stationary distribution of the Markov chain with 
transition matrix

_______________ р Л (*1 , *2, *3, *4, g), ( i l ,  J~2, J 3 , Í 4 ,  г)]________________
Г 1  r 2  r 3  Г 4

1 -  Ц  E  £  £  Ре[(*1,*2,*3,*4,«),(^1,^2,*3,^4, 2П+ 1)]
X = 1 *2 = 1 *3=1 *4 = 1

*1,Л  =  1,21, *2, Í2 =  1,2*2, *3,Í3 =  1,2*3, *4 ,Í4  =  1,**4, S , Z  <  ГП,

and let
n 0 (* 'i ,* 2 ,* 3 ,* 4 ,s )  =  lim n e(*i, *2, *3, *4, s), s =  0 ,1.£ —,0

Furthermore, denote by (П*^, Л =  1,2*), к =  1,4 the steady-state distribution of 
the governing Markov chain (Xk(t), t > 0), к = 1,4, respectively. Clearly,

П <*V • (*),“я* , A; =  1 ,4 . ( 1 )

S in ce  th e  level 0 is in  th e  l im it  a n d  form s a n  e s s e n t ia l  c lass , t h e  p ro b a b il itie s  
П о(*1 , *2 , *3 , *4 , 0 ) a n d  IIo (* i, *2 , *з, *4 ,1 )  sa tisfy  t h e  fo llow ing  s y s te m  o f  e q u a tio n s

П0(*1 , * 2 1 *3, *4, 0) = 53 поО',*2,*з,*4,0)аЛ1)/й(л *2,*3,*4,0) + 
j& 1

+ Y  По(*ь Л *з, *4,0)aji2)/Ä(*'i, j ,  *'з, *4,0)+ 
j Лз

+  По(*! , *2, i ,  *4 ,0 ) a (j f 3 / R ( h , *2, Л  *4,0 ) +  (2 )

+  5 3  По(*1 ,* 2 , i s , i , 0 ) a j g / Ä ( i i ,  *2 , *3, Л 0) +  П 0 (*1 , *2 , *3, *4, 1 ),
;*> 4
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П о (* 1 )  *2i z3i *4, 1)  =  M i l ,  Í2 , «3, Í 4 , 0 ) 7 ( < 1 , *2, Í3,  * 4 , 0 ) / Я ( * 1 , i 2) i 3 , * 4 , 0 ) .  ( 3 )

It is not difficult to verify that the solution of (2), (3) subject to (1) is

П 0 (»1, *2, *3, * 4 , 0 )  =  , *2, i3 , * 4 ,0 ) ,

n 0 (* l ,  *2, *3, **4,1)  =  , *'2, i s ,  * 4 ,0 ) ,

where

В =
r-i r 2 r3 r tE E E E nil )n g )n g )n g )(7(i1, *2, *3, *4,0) +  R(i l , *2, *3, *4,0))

.*1 =  1 *2 =  1 *3 =  1 *4—1

By the help of formulas 5.48, 5.49 in Anisimov [1] we get

Пе(*1,*2,*3,*4,д) =
Í - 1

П  7 (*’l , * 2,*3,*4, s )
= e ^ B B ^ n g ’l l j f  -------------------- x (1 +  0(1)), q > 1,

П  min(s,r)/r(i4,s)
5 = 1

and the probability of exit from (orm) is

* .« « „ »  = E  E  E  E  n ‘:>ng>n!fn<:>x
4  =  1 t 2 =  1 *3 =  1 *4 =  1 

m
П  7 (* l,* 2,*3,* 4, s )

x ^ --------------------  x (l + o(l)).
П  min(s,r)/i(i4,s)5 = 1

T a k in g  in to  a c c o u n t  t h e  e x p o n e n t ia l i t y  o f  Te ( i \ ,  *2, *3, *4, s) fo r  fixed в  w e  h a v e  

£ ’e x p { i£ m 0( r e ( i i , *2 ,* 3 , *4, 0)}  =  1 +  (em0i/R(ii,  *'2,* з ,  *4 , 0)(1 +  o ( l ) ) ,

E exp(í£mör£(j 'i ,*2,*3,»4,«))} =  1 +  o(em ), s > 0.

By using Corollary 5.6 in Anisimov [1] we obtain the statement, q.e.d.
Thus, for the time to the first system failure we have

P(i2£(m) > t) ~  exp(-£mAi).
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In particular, if

n2 = n3 = 0, -  X(s), / z ( i4 , s )  =  ij,(s)

we get the result of Sztrik [15].
Furthermore, if

A ( Í ! , s ) = A ,  / ? ( i 2 , s )  =  ß, i/(i3,s) = u, fi(i4,s) = n

then the problem coincides with the model treated in Gnedenko et al. [8] or Ushakov
[1 6 1 -
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при соответствующем нормировании слабо сходится к показательному закону.
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OPTIMIZATION AND STOCHASTIC DYNAMICS IN THE STATE
SPACE

A. A. K r a s o v s k i i

(M o s c o w )

(Received D ecem ber 27, 1989)

A com parison  is m ade betw een th e  F okker-P lanck-K olm ogorov  equation  an d  B ell
m an  eq u atio n  applied to  a  controlled system  o p tim al in  term s of som e special поп-d a ss ic a l 
goal functionals to  establish  sim ple relationships link ing  the  s ta te  sp ace  probability  d e n 
sity  w ith  th e  Bellm an function . A general form  of th e  probability  density  is found fo r a  
linear p lan t a n d  a  linear observation  function, w ith  th e  m inim al co n d itio n a l m a th em atica l 
ex p ecta tion  of th e  qu ad ratic  functional. An ap p ro x im ate  general so lu tio n  is obtained fo r a  
non-linear p lan t, under th e  condition  of m in im ization  of conditional m athem atical ex p ec
ta tio n  of th e  generalized work functional. T he re su lts  ob ta in ed  m ay b e  app lied  to efficiency 
studies in  th e  design of op tim al contro l system s, a n d  to  choosing th e  goal functionals.

1. In troduction

A certain degree of similarity between the Bellman equation [1, 6] in the 
theory of optimal controlled dynamic systems, and the Fokker-Planck-Kolmogorov 
equation [2, 3] (FPK equation) has been repeatedly noted in the literature, and used 
for the design of heuristic control algorithm [3-5]. It is quite probable, however, 
that under certain conditions this similarity is considerably deeper than previously 
assumed. This similarity may be used to obtain a good number of both theoretical 
and practical results.

Consider a Markovian continuous time process described by the following 
vector-valued stochastic differential equation (in the Langeven form):

x = F (x ,i )+ £(*). (1)

where x 6 R"; F is the differentiable vector-valued function of the above arguments, 
and £(f) is the vector-valued Gaussian white noise with the intensity matrix Q.

A k a d é m ia i  Kiadó, B udapes t  
P erg a m o n  Press, Oxford
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The FPK equation written for the logarithmic probability density lnp(x,f) 
where p(x, t) is the unconditional probability density in the state space is expressed 
as [4, 5]

ő lnp  őlnp
dt + дх F(x, t) -  tv ^ - ^ F ( x ,f ) ^  +0.5

« ‘ ( О ) '

dlnp  ( ő ln p \
дх -Q дх ) +

( 2)

with superscript T  meaning transposition.
The mathematical expectation of terms in the right-hand part of equation (2)

OO OO rj,

J  tr (JLF(X,<)) P(x ’*)d x -  0 5 J  p(x,/)dx

has been considered in [4, 5] as the entropy stability index. Therefore, the value

x(x ,l) = tr ( - £ F (x , i ) ) + ° . 5 ^ £ « ( ^ )  (3)

may quite naturally be referred to as the differential entropy stability index.
If we take a linear system F(x,<) =  A(t)x and the normal central probability 

distribution
lnp(x,<) =  —0.5xTP _1(f)x — 0.5 ln(2n7Tn |P(<)|),

where P(t) = M[x(t)xT(<)] is the covariance matrix, and |P(i)| is the principal 
determinant of this matrix, then the index of differential entropy stability (3) is 
expressed as

x(x, t) = - trA ( t)  + 0.5xTp - 1(t)Q P -1(t)x. (4)

Thus, in this case x + tr A is a quadratic form relative to x.

2. Controlled stochastic system s optim al in term s of a special 
non-classical functional

The equation describing a plant with linear control action u £ Rr is written 
in the form

x =  f(x,<) + <p(x,t)u + Z(t), (5)

where f(x , t) and <p(x, t) are the ( n x  1) vector-valued function and (nx r) functional 
matrix, respectively.
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As a minimizing functional, let us consider the functional of the form

I  —M
‘2

Vg(x(<2)) + J Qg[x(e),e]de+

* 2 *2 
+0.5 J  uT(0)A'_1u(0) d6 -  0.5 J и1р(в)К~1и ор(9)

( 6)

dd

Here Vs and Q6 are the given scalar functions of the above vector-valued arguments, 
and К  is a non-singular symmetric matrix of the given coefficients.

Functional (6) refers to the class of the so-called non-classical functional [3, 8] 
since, along with the synthesized control u, it contains optimal control uop which is 
unknown prior to solving the synthesis problem. However, this non-classical func
tional can not be regarded as the well-known generalized work functional (GWF) 
described in [3, 7, 8] since the last two terms in the right-hand part of (6) are 
subtracted from each other, rather than added. As a consequence, in this case the 
cost of synthesized control exceeds that of the optimal control (instead of the sum 
of these costs in GWF).

For the problem min I  in (5) and (6), the functional Bellman equation is
U

represented as

отг /
—  + min < Qg(x, t) + 0.5uTA'_1u -  0.5и^рА'-1

dV
+ m *. <)+*>(*.<)»] + о* tr I

d2V N

Чор~Ь

It solution is sought in the form

u = uT
op —Kip1 (x, t) (7)

where

dV d V . dV , T , J d V \
ä -  + ä T f(x ’<)- 5 7 , ’(x ' i)i' v  (x’4 a G +

+0.5 tr d2V \  
дхдхтJ -Q g(x,<),

( 8)

V(x,t?) = Vg(x). (9)
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Let us take, as the integrand function Qg(x,t)  of the minimized functional 
(6) the differential entropy stability index (3) for closed-loop system, for which

F(x, t) = f(x, t) + <p(x, t)u, summed up with quantity tr ^  • Then equa

tion (8) will take up the form

dV
dt

dV
+ -fa [f(x, t) + <p(x, t)u op] = tr <9x

F(x, t) -0 .5 dlnp
őx Q

—0.5 tr d2V \
Q dxdxT )  tT [ Q dxdKT ) '

d2 lnp \
( 10)

Comparison of equation (2) and (10) shows that for a controlled stochastic sys
tem (5), (7) and (8), optimal in the sense of minimization of functional (6), with

<3g(x, t) = x(x > 0  + (^Q ß g T ^ fhe following solution for the probability density
in the state space is true:

lnp(x,<) = -C(x,<), (11)
lnp(x,f2) = -Vg(x). (12)

This result may, in principle, be used for two purposes. First, after the above 
optimization problem is solved, i.e. the Bellman function V(x, t)  is found, formula
(11) immediately gives us the expression exp(—C(x, <)) that describes the behaviour 
of the probability density in the synthesized optimal control under final condition
(12) and initial condition p(x,f) =  exp(—F(x, t)). Second, relationship (12) yields 
the “terminal” part of the minimized functional obtained directly from the desirable 
probability distribution at the finite time instant t = The latter consideration 
is quite valuable for us, like any other regulation that facilitates the selection of the 
minimized functional.

However, the above approach is also characterized by certain drawbacks. The 
solution of the nonlinear equation with partial derivatives (8) is a problem no less 
difficult than that of the analogous nonlinear Bellman equation in the tradition
al optimization statement, where the minimized functional does not contain any 
optimal control u op (see (6)).

Furthermore, because functional (6) includes the difference in control costs, 
this optimization problem is likely to feature some undesirable solutions.

3. Controllable sem i-stochastic system s

Let us call a dynamic system with random initial conditions and no noise a 
semi-stochastic system. For such a system, equation (5) will be replaced by

X = f(x,<) + <p(x,t)u. (14)



K R A S  О VS KII: O P T I M I Z A T I O N  AND S T O C H A S T I C  D Y N A M IC S  IN T H E  STA TE S P A C E 4 9

For a closed-loop system, the right-hand part of equation (14), like before, will 
be denoted as F(x,f). The differential entropy stability index of the closed-loop
system, (3), in this case takes up the form x(x,i) =  — tr ^^ -F (x ,f)^  while the
FPK equation written with respect to the regular probability density p(x, f) takes 
up the form

|  + g F(>c,l) =  - p t, ( | - F ( , , l )) .  (15)

Let us specify the minimized functional as

I  =M
<2

8̂(х(*2)) -  J  P ( M )  t r  

*1
<9xF(x,0) d6+

t2 Í2
+0.5 J  и т(в)К-1u(0) d0 — 0.5 J \1^р(в)К ~1иор(в) de .

11 t j

(16)

This is a non-classical functional that differs from (6) only in the form of its inte
grand function

Qg = -p(x , t) tr ^ J^F(x, t ) j  ■

The Bellman equation for problem (14), (16) is as follows:

d V  f  i d  \
-ßj- + min j —p(x,i)tr ( —  F (x ,f)j + 0.5 u TA'_1u —

д V 1-0 .5u„pA'-1Uop + [f(x,<) + ¥>(x,t)u] j  = 0

and its solution is

u = uop - -K<pT(x,t)

where V — V(x, t) satisfies the equation

^  + ^ f ( x 1< ) - ^ (x ,( )AVr (x ,i)

= p(x,<)tr

(17)

(18)

under the boundary condition

V(x,f2) = V'g(x).

4
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The comparison between (15) and (18) shows that in controlled semi-stochastic 
system (14), (17), (18) optimal in the sense of functional (16), where p(x,<2) = 
= — V'g(x), and p(x,t) =  —V(x,t) the current probability density in the state space 
is

p(x,f) = -V (x,f). (19)

It will be interesting to note the following. The terminal term of the goal functional 
here is the density of the final probability distribution with the opposite sign, 
whereas in the previous case it was equal to the logarithm of p(x, <2) taken with the 
opposite sign (12). For the one-dimensional distribution, this is illustrated in Fig. 1. 
Curve 1 here corresponds to case (12) and curve 2, to the case under consideration. 
Function Vg(x) that corresponds to the first case infinitely grows with the increase 
of norm x. This may have a negative effect on the nature of transients in the 
closed-loop system, for at the initial stage of the transient processes, when norm x 
is large enough, the terminal term of the functional may “suppress” all the other 
terms. From this viewpoint, the second case has a certain advantage.

Fig. 1

The efficiency of a system is generally best expressed in probabilistic mea
sures over probabilistic spaces. Therefore, besides selecting of a certain part of the 
goal functional, the above relationship may be employed for pre-estimation of the 
efficiency of the types of optimal systems considered. However, the potential of
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such usage is rather limited. This results not only from the specific form of func
tion Qg and control costs in functional (6) and (16) under consideration, but also 
from the unconditional mathematical expectation in these functionals. The use of 
the unconditional mathematical expectation means that averaging is carried out 
throughout the entire probabilistic state space, whereas an actual control realized 
under concrete observation conditions is characterized by the conditional mathe
matical expectation [3]. Consider the solution to the general problem in the linear 
quadratic case.

4. General solution in linear quadratic case

It is common knowledge, that for process

x = A(t)x + B(t) u + £(t) (20)

and for the observation equation

z = H(t)x + rj(t), (21)

where £(<) and r](t) are independent vector-valued white Gaussian noises with in
tensity matrices Q and R, respectively, and A, B, and H are specified matrices, 
depending, in the general case, on time, the control optimal in the sense of mini
mizing the functional

Ic = Mc
* 2

0.5xT(t2)>?gx(<2) + 0.5 J  x T(0)ßx.(9) de+ 
11

I 2
+0.5 J  ит(в)К~1и(в) I

( 22)

where Mc stands for the conditional (in observing (21)) mathematical expectation, 
and Sg, ß, and К  are specified symmetric coefficients matrices -  such a control is

u = —K B T S x , (23)
S  +  S A  +  A T S  -  S B K B T S  = - ß ,  S(t2) = Sg.  (24)

Variable x refers to the conditional mathematical expectation of the state vector. 
It serves as the output value of the Kalman-Beaucy filter (KBF):

x = A x +  B u  + P H T R - \ z  -  H x ) ,  (25)
P  = A P  + P A T -  P H T R ~ l H P  + Q.  (26)



Expressions (23) through (26) correspond to the separation principle [1, 3, 6]. Ex
pressions (23), (25) and (26) remain true in minimizing the non-classical functional 
of generalized work
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Mc
12

).5xT(<2)5'gx(<2) + 0.5 J  x T (9)ßx(6) d6+

12 ь 2
+0.5 J  ит(в)К~1и(в) de + 0.5 J  uJp(ö)/v-1uOp(Ö)d0

(27)

However, matrix Riccati equation (24) is in this case replaced by the matrix Lya
punov equation

S + SA  +  AT S = —ß, S(t2) = Ss . (28)

Let us denote the error of estimating the state vector in the KBF as Ax = x — x. 
Substituting (23) into (25) and subtracting it from (20), we obtain

Ax = (+ — P H T R_1 H)Ax  + PHT R~lr) — £, (29)
k = - B K B T S A x  + ( A -  B K B TS)x + £. (30)

Present the covariance matrix of vector (Ax, x) in the block form:

Ax Ax t \ = М(ц) •^(12)
X X / _M(2i) ■ (̂22).

M(i2) — Mf21y

Using (29) and (30), we obtain the equations for the blocks of this covariance 
matrix:

M(11) = { A -  PHTR~l H)M(n) +  M(n)(AT -  H T R - 1HP)+
+ PHT R~lH P  + Q, (31)

M(12) = (A -  PHTR - l )M{u) + M(12)(AT -  S B K B T)—
-  M{n)SBI<BT -  Q, (32) 

M(22) = ( A -  B K B TS)M(22) + M(22)(At -  S B K B T)—
-  M(21)S B K B T -  B K B TS M {12) + Q. (33)

Comparison of (31) and (32) with (25) shows that these matrix equations have the 
following solutions: M(U) = P, M(12) = — P.

Presenting M(22) in the form

M( 22) =  Mc[xxT] =  P  + Д (34)
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we may find from (33) that

D = (A — B K B TS)D +  D{AT -  S B I \ BT ) +  PHTR - l H P , 

D(U) = Do =  P(h)  -  М22(П).
(35)

Obviously, all the processes taking place in this system are Gaussian, and with a 
central initial distribution the current probability density in the state space of an 
optimal closed-loop system is expressed by the formula

p(x,<) = (2nirn |P(f) + D (t ) \ )~ *  exp {—0.5 x T [P(t)  +  £»(t)]_1x} .

Expressions (23), (25), (26), (34), (35), and (24) (for the case of minimizing the 
classical functional (22) or (28) (for the case of non-classical generalized work func
tional (27)), along with the initial conditions

P{ti) = Po, D(U) = D0 (36)

describe the general complete solution to the problem under study.
This solution, of course, may be obtained in a different way through solving 

the corresponding Bellman equations and the FPK-equation in quadratic forms. 
However, because expressions (23), (24) or (28), (25), and (26) are commonly 
known, this way seems to be more convenient.

Probability density distribution may serve to estimate the efficiency of the 
designed optimal control system, and to choose the coefficients of the minimized 
functional. The respective technology demands a special description. Here, it is 
apt to note only the fact that, as compared with the statistical trials method, the 
suggested approach results in considerable savings of computer time.

5. General approximate solution for nonlinear case

The principle of separation of nonlinear systems remains true in an approx
imate case, which appears to be more accurate with the increase of estimation 
accuracy under the observation conditions considered [3].

Let us write down the corresponding expressions applying to the case of the 
generalized work goal functional with quadratic costs of the control and the gen
eralized Kalman-Beaucy filter of linear approximation as a system of suboptimal 
estimation.

For the system

x =  F(x, u, t) + £(t) =  f(x, t) + tp(x, t )u + £(t) (37)



and for the observation condition

5 4  K R A S O V S K I I :  O P T I M I Z A T I O N  AND S T O C H A S T I C  D Y N A M IC S  IN T H E  STATE S P A C E

z = h(x ,t) +  rj(t) (38)

suboptimal, in terms of minimizing the functional

{
l  2 * 2

*gM*a)] +  J  Qg[x(fl),Ö] d0 + 0.5 J ит(в)К~1и(в) dd +

ti <i

+ 0.5 j  и1р(в)К~1иор(в) d ő l

is the control

where x is the output value of the generalized KBF:

x = F (x ,u ,f) + Ph?(x, t)R~1[ z — h(x,<)],

P = Fi(x, t )P + PF?(x,t) -  P h l ( x , t ) R - 1hi (x,t)P + Q , 
P(ti) = Po,

(39)

(40)

(41)

(42)
(43)

while 17(x,i) is the solution to the linear equation in partial derivatives

dV dV rl . л  . .—  + — ! Ш )  = - 0 , ( * л ) (44)

under boundary condition V (x,t2) = ^g(x).
Resting upon the use of expressions (40) and (44), the algorithm of optimal 

(suboptimal) control with prediction model is designed [3, 7, 8]. For this particular 
case, the analytical form of this algorithm is as follows:

u = uop = —K<pT(k, t)
d_

dx

*2
^ g[ ( X (x ,M 2) ] -  J Qg[X(k,t,6)] dd} (45)

where x = X(xo,to,t) is the general solution to the equation of the free motion of 
the system

X =  f(x, t)

under initial condition x(to) = Xq.



K R A S O V S K II :  O P T I M I Z A T I O N  A N D  S T O C H A S T I C  D Y N A M I C S  IN T H E  S T A T E  S P A C E 5 5

The algorithm with a prediction model utilizing the generalized work principle 
is, in the opinion of the author, the most efficient algorithm among the present-day 
algorithms of optimization “in the large” of complex multi-dimensional nonlinear 
processes. The capabilities of this class of algorithms are further extended by the 
latest findings in the area of fast piecewise-linear approximation of multi-argument 
functions an a rarefied net [9] and in the area of fast two-channel numerical inte
gration of differential equations [10].

In the suboptimal control and estimation problem treated here, subjected 
to simultaneous numerical integration are process equations (37) in which u is 
expressed by formula (45), and estimation equations (42) and (43) in which the 
measurement vector is described by formula (38).

The numerical integration is carried out in real time, or in some other time 
basis, with the use of definite difference schemes and specified initial conditions of 
the form x(tj) = x0, x(fi) = Xo- Reproduced are realizations of practically white 
noise £(t), r](t). As a result of a single-step numerical modeling (integration) we 
obtain realizations of vector-valued functions x(t), x(t) and u(<) which are taken as 
basic (reference) functions and designated as x r(t), xr(f) and u r(<). The problem 
of stochastic dynamics is further stated as the problem of finding the statistical 
characteristics of deviations

Дх(() = x(t) -  x(f), Ax{(t) = x(t) -  x 6(t)

in a linear Gaussian approximation (owing to the negligibility of M[||Ax||], 
М[||Дхг||]). In this case, one can immediately use expressions of the type (34) 
and (35)

M(22) = M (A x6 A x J ) = P + D, (46)

P = Ti[x(f),t]P-(- P f T [x(<),<] -  Ph*[x(f),t]P~1h*[x(f),f].P-|-<3, (47)

where
F[x(<), <] =f[x(t), t] +  <^[*(0, t]u(t),

ß
D +  ¥>[x(i),<]u[x(f),f]}D+

+  0 ^ ^ { f [x(f)T] + ^[x(f),f]u [x(<),f]}) +

+ [*(<)> <]R-1h*[x(0. *]-P(0-

(48)

The control u found here is calculated by formula (45) at the previous step (in 
finding the realizations x(<) and u(f)).

Expression (47) coincides with equation (42), which is numerically integrated 
also at the first step. Thus, in order to approximately find the probability dis
tribution that characterizes scattering of trajectories in the state space relative to



5 6 K R A S O V S K II :  O P T I M I Z A T I O N  AND S T O C H A S T I C  D Y N A M IC S  IN T H E  S T A TE S P A C E

the basic trajectory, it suffices to numerically integrate only the Lyapunov matrix 
equation (48).

Having fulfilled this operation of numerical integration, we obtain the follow
ing probability distribution:

This distribution may be used to both estimate the efficiency of the subopti- 
mal control system, and choose (update) the minimized goal functional.

The simplest illustration of a reference trajectory and of trajectory scattering 
in the three-dimensional state space is depicted in Fig. 2. Basic trajectory 1 is 
obtained by numerical integration of equations (37), (41), (42), and (45) under 
certain initial conditions, while the tube of trajectories 2 is found by numerical 
integration of equation (48), also under given initial (or final) condition.
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О п ти м и зац и я  и  сто х асти ческая  д и н а м и к а  в п р о стр ан ств е  со сто ян и й

А. А. К Р А С О В С К И Й

(М осква)

С о п о с та в л я ю тс я  ур авн ен и е  Ф о к к е р а -П л а н к а -К о л м о го р о в а  и у р а в н ен и е  В е л л м а 
н а  д л я  у п р а в л я ем о й  с то х а сти ч ес к о й  систем ы , о п т и м а л ь н о й  в о т н о ш е н и и  н екоторы х  
сп ец и альн о  по д о бр ан н ы х  н ек л асси ч еск и х  ц ел ев ы х  ф у н к ц и о н ал о в . Д л я  так и х  ф ункц и
о н алов  п о л у ч ен ы  п росты е со о тн о ш ен и я  м еж ду п л о т н о с т ь ю  в е р о я т н о с т и  в п р о с тр а н 
ств е  со сто ян и й  и функцией В е л л м а н а . Д л я  л и н е й н о г о  о б ъ ек т а  и л и н ей н о й  ф ункции 
н аб л ю д ен и я  при  м и н и м и зац и и  условн ого  м а т е м а т и ч е с к о г о  о ж и д а н и я  к в а д р а т и ч н о го  
ф ункц ионала  п о л у ч ен о  в общ ем  ви д е  решение д л я  п л о т н о с т и  в е р о я т н о с т и  в п р о с тр а н 
ств е  со сто ян и й .

П р и бл и ж ен н о е  общ ее реш ение найдено д л я  с л у ч а я  н ел и н ей н о го  о б ъ ек т а  (с л и 
нейно вх о дящ и м  у п р ав л ен и ем ) п р и  м и н и м и зац и и  у с л о в н о го  м а т е м а т и ч е с к о г о  о ж и д а 
ни я ф ункц ионала  обобщ енной р а б о т ы . П ол у ч ен н ы е  р е з у л ь т а т ы  м о г у т  б ы ть  и с п о л ь зо 
ван ы  при и ссл ед о в ан и и  эф ф екти вн о сти  с и н т е зи р о в а н н ы х  с и с т е м  о п ти м а л ь н о го  
у п р а в л ен и я  и в ы б о р е  целевы х ф ункционалов.

А. А. Красовский 
СССР, Москва, 125083,
Петровско-Разумовская аллея, 16
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INFINITE-DIMENSIONAL SYSTEMS: APPROXIMATE 
CONTROLLABILITY AND OBSERVABILITY. 

PART I

S. K . K o r o v i n , M. G. N ik it in a  a n d  S. V. N i k i t i n

(Moscow)

(Received December 27, 1989)

In m ost applications it is sufficient to know t h a t  the  system  is approxim ately  con
trollable in the  sense th a t it can  be  m ade to change a n y  s ta te  for any d esired  one w ith som e 
(generally, as low as desired) e rro r. This paper p ro p o ses  a  new p ra c tic a b le  way to analyse 
approxim ate controllability a n d  observability.

Introduction

The mathematical theory of the infinite-dimensional system finds numerous 
applications. Some industrial and physical processes are described as distributed 
parameter systems. The mathematical theory of infinite-dimensional systems is 
concerned with various open-loop systems that are subjected to exogenous signals 
(or having an input) and whose state is observable (or having an output). The 
state-of-the-art in this field has been described in surveys [27, 36].

Control of distributed parameter systems has been the subject of numerous 
books [1-4, 7, 8, 20]. The subject of this article is the approximate controllability, 
observability, and stabilization of infinite-dimensional systems whose input and 
output are assumed finite-dimensional. Papers on these systems [19, 21-23, 32, 
33, 37-39] concentrate on controllability and observability which have been shown 
to be dual [36]. Infinite-dimensional analogs of ranking observability and global 
controllability criteria have been formulated that are important mainly for the 
theory, since their direct application assumes a family of functions which makes a 
basic and complex problem in itself in every specific case [6].

In most applications it is sufficient to know that the system is approximately 
controllable in the sense that it can be made to change any state for any desired 
one with some (generally, as low as desired) error. Approximate controllability has 
recently become the subject of research [41, 42]. Criteria for approximate and ac
curate controllability through pulsed signals have been obtained [9]. Approximate 
reachability of zero has been studied [11] through reduction to analysis of dense

A k a d é m ia i  Kiadó, B udapes t  
P erg a m o n  Press, Oxford
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solvability of some equation. This paper proposes a practical way to analyse ap
proximate controllability with the use of the conventional Fourier procedure. The 
method is, in a sense, an extension of the procedure proposed in [41]. Criteria 
of the simultaneous controllability and observability of a family of finite-dimen
sional systems are proved in Section 2. Application of these criteria to control
lability (observability) analysis of finite-dimensional Fourier approximations leads 
to practicable sufficient conditions of approximate controllability (observability) of 
infinite-dimensional systems in Section 3. A new modification of the well-known 
Kalman criterion is proposed in Section 3, which is the core of the theory described 
in Sections 3 and 4.

1. Problem statem ent

A linear stationary control system is analysed in the form

£(C, A, B) : x = Ax + Bu,
У = Cx,

where A is a linear endomorphism of the Hilbert space H over a field of complex 
numbers, in other words, A E End(ff) or

A : V(A) С H — 1(A) С H,

T>(A) is the domain of the operator A, and 1(A) its range; В and C are linear 
operators, В : V(B)  C U —* 1(B) С Я and C : V(C) С Я  —*■ 1(C) C Y  where

m
U and Y  are complex finite-dimensional Hilbert spaces, or Bu = where

>=i
6,- E Я, i =  1, 2 . . . ,  m, and C is a finite number of linear functionals c* E H *.

The operator A is assumed to meet the following conditions: 
al) A is an infinitesimal generator of the Co-semi-group ел< in Я; 
a2) the operator spectrum a(A) is a discrete set from C and every A E <r(A) 

has a finite multiplicity;
a3) V(A)  = Я (the domain V(A) is dense everywhere in Я) and there exists 

a basis {6 } Я which consists of eigen- and adjoint vectors of the operator A, or
span is dense everywhere in Я (spanZ is the set of all possible linear

c 1 ; к
combinations from Z with factors from K).

This paper will concentrate on the approximate control of the state, and ob
servability of an infinite-dimensional process £(C, A,B)  with a finite-dimensional 
input. Special attention will be given to the analysis of controllability. The pro
posed spectral form of the controllability criterion for finite-dimensional systems is 
practicable in applications.
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In applications the system need not necessarily be accurately controllable or 
observable, e.g. in the sense of the definitions from [1, 20, 36] and approximate 
controllability and observability are sufficient. A weaker variety of controllability 
and observability is introduced in

Definition  1. If for any two points zi, гг E Я and e > 0 there are T  > 0, 
z\ € 0 £(zi), *2 £ Ot(z2) (here 0 £(z) — {x £ H : \\x — z\\h < e) and a control 
u(t) : [0,T] —+ U such that

exp Zi = Z2,

with exp I J ( A x ( t ) + Bu(r))dr  ] denoting the flow in H  generated by the system 
\°  /

x = Ax + Bu(t), then E(C, A, B) is approximately controllable.
This fact is denoted as an inclusion

Z(C,A,B) е Л У ( н )

Definition  2. The system E(C, A , B) is approximately observable if the 
conjugate system

Z(B*,A*,C*) : é = A*t + C*u,
У — B*i

is approximately controllable. If E(ß*, A*,C*) G АУ(Н),  then E(C,A,B)  £ 
G ATi(H). Practicable methods of analysing approximate controllability and ob
servability are developed in Section 3.

2. Structural features of controllable and observable system s

The objective of this Section is to obtain a form of the rank Kalman-Krasovsky 
controllability condition which would be better suited for computation. What is 
important is that for an infinite-dimensional system these rank conditions can not 
be checked. On the other hand, in numerous problems the operator has been 
thoroughly studied and its eigenvalues and eigenvectors are computable. This is 
so, in particular in some mathematical-physics problems. Consequently, it would be 
useful to express the controllability and observability conditions as characteristics 
of the process. In this Section the controllability criterion will be formulated in 
terms of the spectrum and invariant subspaces of A.

5
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For this purpose we will need the following
Definition 3. The Jordan index IJ(A,A) of the number A G <r(A) is the 

number of Jordan cells that are associated with the eigenvalue A, or

IJ( A, A) -{
0 for A ^ <r(A),
the number of Jordan cells associated with A G cr(A).

We will need the following notation. Let A be a linear operator mapping 
C" into Cn with <r(A) — {A1(. . . ,  Aj,}, А* ф Aj, \ < i < j  < и. Then Aa) is 
understood as an adjoint vector of power j  which is associated with the eigenvalue 
Aa G a(A) i.e. (AaE  -  А)>^(Xa) = 0 while (AaE -  A y - % j ( X a) ф 0.
i — 1 , . . IJ(Aa , A)} are dimensions of the Jordan cells with eigenvalue Aa in their 
diagonals.

f 'l U(*aA)
By virtue of the above, < £ii(Aa ) , ...  (Aa ) > are bases of eigenvalue

subspaces of A. Let us consider a finite-dimensional system E(C, A, B). Associate 
it with a totality of numbers

<Pij -  det[{^li l(A1),^2,i(^i), ■ • • ,^ | 1(Ai ),^ i .2(Ai ), ... 2(Ai ), . . . ,

{íl,l(^c«),Í2,l(^a)> • • • > j (^a)i • • • j £l,i (̂ or)) • • • ! , (^a)i >

• • • i }
{ í l , l ( - ^ > / ) l  • • • , ( ^ 1 / ) )  • • • • • • > £ м £ 1, , * | / ( ' ^ 1 ' ) } ]  I

1 < а < г / ,  1 < г < IJ(Aa , А), 1 < j  < тп,

where /с,- = IJ(Aa ,A) and bj is the j-th column of the matrix В = {b\, .. . ,bj,  
. ..  ,bm}. In the above notation the rank Kalman-Krasovsky criterion can be made 
to take the form of

T heorem 1. A finite-dimensional system T,(C, A, В ) is controllable iff

rank 1 < j  < m, 1 < г < IJ(Aa , A)} > IJ(Aa , A) (1)

for every 1 < a < i/.
Proof. The necessity of the conditions (1) follows from the obvious fact that 

the controllability of the system entails that of every subsystem. Assume that at 
least one condition of (1) is not met. For instance rank{^>L}jj < IJ (Ax, A). There
fore, if IJ(Ab A) =  1, then <pjj = 0 and there exists an uncontrollable subsystem 
which is associated with the above Jordan cell of A. If, however, IJ(Ai,A) > 2, 
then there exist at least two Jordan cells, Ji(Aj) and ./2(^1) (that are associated 
with one Ai) which must be handled by one control, which is impossible by the 
Kalman-Krasovsky criterion. This proves the necessity of the condition (1).
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Let us prove the inverse implication for the case when the input is one variable 
or В — b 6 C" (for a multi-dimensional input the proof is similar). The control 
system is

x = Ax + bu, x G Cn.
Then the system

z —\ z  +  pu, 
x —Ax + bu, (2)

where Л € С, г € C and p 6 C \  {0} is controllable iff A ^ <r(A). Indeed, the 
Kalman matrix for this system has the form

К  = A nP 
Anb

Xn~1p
An~ 4

A P 
Ab

Multiply the second column of the matrix К by A and subtract the product 
from the first one, then multiply the third column by A and subtract it from the 
second one, etc. Finally, multiply the last column by A and subtract it from the 
last but one. As a result we have

|det A'| = |p| • \det(Anb -  XAn~1b, Ап~Ч -  XAn~2b, . . . ,  Ab 
= \p\ ■ |det (An~4,  An~ \ .. .,Ab,b) I • |Рл(А)|,

Xb)\ =

Pa {A) is the characteristic polynomial of the matrix A.
Consequently, the system (20) is controllable iff A ^ <r{A).
Let us show that when a controllable Jordan cell J (A) is added to the system, 

controllability is preserved iff A ^ a (A). Take up the case where J(A) is a Jordan 
cell of order 2 x 2 . In a general situation the reasoning is similar. For the system

ii  =  Azi + z2 + p\u, 
z2 = Xz2 Apiu,  рзфО, 
i i  = Ax + bu

(3)

the Kalman matrix is

/A "+V i + (n + l)A> 2 Anpi +  n \ n lp2 ■ Xpi +  p2 Pi
К  = A”+1p2 \ ПР2 Xp2 P2

V An+1b Anb Ab b

Multiply the second row by P1/P2 and subtract the product from the first one. 
Following this, multiply the second column by A and subtract it from the first one, 
the third column by A and subtract it from the second one, etc. Finally, multiply 
the last one by A and subtract it from the last but one. As a result we have

det К = det
A> 2  

0
An+4 - X A nb

vn-l P2
0

Anb - X A n~1b

5!
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Using the reasoning of the proof of controllability for the system (2) we have

|det K\ = Ы 2 • |det(j4n-16, An~2b , A b , b ) \  • |РЛ(А)|2,

where PA(A) is the characteristic polynomial of the matrix A. Consequently, the 
system (30) is controllable iff A ^ <r(A) and pi ф 0. Proof that the system

z = J ( \ ) z  + pu, z E Cl, 
x -  Ax + bu, x E C 1,

is controllable iff p; ф 0 and Л ф <x(T) is the same. In this case condition (1) 
transforms into the requirement that pi ф 0 and so |det/\| = \p\\l ■ |Рл(А)|г x 
x|det(T"_16, . . . ,  Ab, 6)|.

Because any linear system can be obtained by adding subsystems with Jordan 
cells, sufficiency of condition (1) is proved in the one-dimensional case. In the 
general case the proof is analogous. This proves the Theorem.

The Theorem makes possible a relatively simple analysis of a high-dimen
sional linear system which is decomposed into subsystems that are associated with 
different Jordan cells of the operator A.

Then elements <pfj (condition (1)) are determinants of matrices that are made 
of eigen- and adjoint vectors that are associated with given Xa, with the adjoint 
vector of the maximal power replaced by the j-th column of the matrix В . Con
sequently, a certain independence of condition al) of the dimension of the system 
£(C, A, B) offers Theorem 1 certain advantages over the Kalman-Krasovsky crite
rion. True, with n < 4 (n being the dimension of the system £(C, A, B)), condition
(1) requires a larger computer load than computation of the Kalman matrix rank.

Corollary 1. If E (C,A,B)  has one input, the system is controllable iff A € 
E <t(A) is associated with a unique eigenvector and conditions (1) hold which in 
this case take the form <р(\а) ф 0 for any \ a E &(A) = {Ai, Аг, . . . ,  A„} where

^(Acr) = det {fi(Ai), • • • ,£/л (Ai ),£ i (A2), • • • .^ (А г ) , • • • ,£i(Aa), • • • ,£/i„-i(Aa), 
b, £i(Aor-t-i) , . . . ,  (Aa+i), •••)£/j„(Ai,)} .

Consider simple examples which illustrate the application of the criterion and 
Corollary 1.

Example 1. Because any matrix over a field of the complex numbers is re
ducible to the Jordan form, take up controllability of the system x = Ax Abu whose 
matrix A consists of two Jordan cells which are associated with different eigenvalues

/A t 1 0 0 1 ЬЛ
0 Ai 1 0 0 &2

A = 0 0 Ai 0 0 , Ь = Ьз
0 0 0 Аг 1 b4

\  0 0 0 0 Аг) \ b j
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The eigenvector which is associated with Ai is (1, 0, 0, 0, 0 )T. The adjoint vectors 
are (0, 1, 0, 0, 0)T and (0, 0, 1, 0, 0)T. The eigenvector which is associated with 
A2 is (0, 0, 0, 1, 0)T and the adjoint vector is (0, 0, 0, 0, 1 )T. By virtue of Corol
lary 1 it is necessary to check when the determinants made of eigen- and adjoint 
vectors for Ai and A2 are nonzero

¥>(Ai )

• ^ 1 0 b 1 0 0 1 0 0 0 b 1
0 1 6 2 0 0 0 1 0 0
0 0 Ьз 0 0 — 6 3 , y>(A2 ) — 0 0 1 0 f>3
0 0 6 4 1 0 0 0 0 1 6 4

0 0 bb 0 1 0 0 0 0 bs

Consequently, the system is controllable iff 63 ф 0 and 65 ф 0.
Example 2. The matrix A consists of two Jordan cells that are associated 

with one eigenvalue A:

( Xl
1 0 0 ° \ (bl d 1 \

0 A 1 0 0 d-z
0 0 A 0 0 , B = Ьз da
0 0 0 A 1 • Ь4 (I4

\  0 0 0 0 A / W d$ /

The eigenvectors are in this case (1, 0, 0, 0, 0)T, (0, 0, 0, 1, 0)T and the
adjoint vectors (0 1, 0,0 0 )T ( 0, 0, 1, 0, 0 )T and ( 0, 0, c1, 0, i ) T

Then

1 0 61 0 0 1 0 oil 0 0
0 1 62 0 0 0 1 d2 0 0

^n(A) = 0 0 ba 0 0 = Ьз, 9512(A) = 0 0 da 0 0
0 0 64 1 0 0 0 (I4 1 0
0 0 b5 0 1 0 0 d5 0 1
1 0 0 0 bl
0 1 0 0 b2

^ 2l(A) = 0 0 1 0 ba — Ьъ, ^ 22(A) = d5
0 0 0 1 64
0 0 0 0 65

Consequently, the system specified by the matrix A and the input matrix В is 
controllable iff

or at least equal to the number of Jordan cells that are associated with a given A.
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Fig. 1

Remark. In this Example the matrix В can not, by virtue of Corollary 5 below, 
consists of one column, since otherwise the system is certainly uncontrollable.

Corollary 2. If the system E(C, A, B) is controllable, then, for any A G C, 
IJ(A, A) < rank B.

This proposition immediately follows from conditions (1).
The above results make it possible to analyse the simultaneous controllability 

of a finite totality of independent processes, Fig. 1.
The state of the family {E(Cj, Л,-, # i)} f=1 is obviously controllable if so is the 

component process

i i  — AiXi + В{и,

For convenience, E(C, A,B)  will be said to have no internal resonance if all the 
eigenvalues of the operator are different. For the totality {F(C,-, Ai, Bi)}?=1 the no
tion of external resonance is important. The totality of the systems {S(Ci, Ai , 
has no external resonance if <т(Л;) П <т(Л; ) =  0 for all 1 < i < j  < /9, IJ(A, Ai) 
will be referred to as multiplicity of the internal resonance of frequency for the i-th 
system. IJ(A, A) is the multiplicity of the resonance of frequency A for the system 
of Fig. 1 where A is a block diagonal matrix associated with the system

i i  = AiXi + BiU, i = 1,2,...,/? .

Using this terminology, let us formulate
Corollary 3. If every process E(Ci, Ai, Bi) of the family © =  {E(Cj, Ai, ß t)}f 

is controllable and no external resonance is present, the family © is controllable.
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The necessary condition for the controllability of the family © is proved by
Corollary 4. If the family © = {E(Cj, Ai, 0,)}f=1 is controllable, then the 

multiplicity of the resonance of any frequency A 6 Ucr(Ai) does not exceedt
max rank Bi. i

In the application necessary conditions are very important, which can only 
be checked if the properties of the operator A are known. This includes Corollary 
2 re-formulated into

Corollary 5. If rankß < max IJ(A,T), the system H(C,A,B) is not con-Ag<7(v4)
trollable.

Theorem 1 and its Corollaries are very helpful in analysing finite-dimen
sional systems because checking the rank Kalman-Krasovsky criterion reduces to 
analysing the spectra of subsystems.

Propositions, dual of Theorem 1 and its Corollaries, define the spectral ob
servability criterion for linear systems. The system £(C, A, В ) is well-known [1, 36] 
to be observable iff the system T,(B*, A* ,C*) is controllable (A* being an operator 
conjugate with A). This proposition and Theorem 1 yield the form of the observabil
ity criterion for finite-dimensional linear stationary systems. Let us limit ourselves 
here to formulating the observability criterion for the family {£(С*, Ai,
This criterion is dual of controllability of a family of systems. The structure of a 
system made of subsystems is shown in Fig. 2.

if so is the system
X{ — AiX{ -f- B{Ui,

is observable

ß
y = ' £ / yi

: = 1

* = 1,2, . . . , /?
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where the first components of the vector yi are those of the output of the i-th 
subsystem and the remaining ones are equal to zero. The dimension of every уг 
(1 < 1 < ß) is equal to the highest dimension of the subsystem outputs.

Using propositions dual of Theorem 1 and Corollaries 1 and 2 we have the 
following results on simultaneous observability.

T h e o r e m  2. With © =  {E(C,-, being a family of finite-dimen
sional systems the following propositions are true:

bl) if every system £(C,-, A*, £ ,) of the family © = {£(С), Ait £,)}f=1 is 
observable and no external resonance occurs, then the family © is observable;

b2) if the family © = {E(Ci, A,-, Bj)}f=1 is observable, then the multiplicity
of the resonance of any frequency A gU  <t(A,') does not exceed max rank Ct.i i

These results make it possible to analyse the approximate observability and 
controllability of infinite-dimensional systems. However, let us first take up cases 
of observable and controllable finite-dimensional systems.

Example 3. A system of N  oscillators has the form

d? ,
—  Xi(<) + w?Xi(t) = biu(t), i =  1,2,

N

y(t) =
1 — 1

where у is the system output. By virtue of Corollary 3 of Theorem 1 and of 
Theorem 2 this system is controllable and observable iff the natural frequencies of 
the oscillators are different (in,- ф Wj for i ф j, or there is no resonance) and b, ф 0, 
Ci ф 0 for any i = 1 , 2 ,N.

Example 4. Consider a family of differential equations of the form

dn' xAt) dn‘ 1Xi(t) ,
dint к0«,—1 * dtn'~l ' A biUi(t),

N

y(t) = Y l CiXi^ ’
1 — 1

(4)

where

Ci ф 0, 6j ф 0, a,j G C, anii ф 0 (0 < j  < n,-, г = 1 ,2 ,... ,  N).

Let us see if the system is controllable. Every г-th subsystem is obviously
d dn'_1controllable in an n-dimensional space of variables (хф1), —Xi(t) , . . . ,

By virtue of Corollaries 3 and 4, for controllability of the family it is necessary and 
sufficient that for any 1 < i < j  < N  the polynomials

9i(A) —anii \ n' +  аП1_1 Л̂Г1' 1 + . . .  + aoi — 0,

=an,j^n> 4" an , - i j ^ ni 1 + • • • + o,oj — 0
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have no common roots. The latter is not true unless the resultant Res(gt ,gj)  of the 
polynomials </, and g3 is nonzero. Consequently, N  differential equations such as 
(4) are not controllable iff for any 1 < i < j  < N

Res (9i,gj) =
a l i Q qí 0

0

a n , i dn , — 1 i

«2 i а ц d o i

a 0 i 1
a n j j  a r i j - l j a 1j a 0 j 0

0 d r i j j a 2 j a \  j d o  j

a n , j a n j - l j ClQ j 1

If Res(gi,gj) ф 0 with any 1 < i < j  < N, then by Theorem 2, this family is 
observable. What is more, this is the necessary condition for observability.

3. Approxim ate controllability and observability

Now, let us proceed to the approximate controllability of infinite-dimensional 
systems.

By Condition a2) the eigenvalues of the operator can be enumerated. Let us 
assume that the inequality Re A > 0 holds only for the finite part of the sets cr(A). 
Enumerate the set <r(A) as follows

Re\ x > Re A2 > Re A3 > ... > Re An > 0 > Re An+i > . . .  (5)

Every eigenvalue А, € <т(А) repeats the number of times equal to its multiplicity. 
Let £(A,) be adjoint or eigenvector which is associated with A; and in the basis 
{£(Aj)} the first eigenvectors and then adjoint vectors are written in an increasing 
order of their power. This is always possible by virtue of Assumption a3). The 
sufficient condition of approximate controllability is formulated as

m
T h e o r e m  3. Let Bu =  Ь{Щ where 6; E  H  (i =  1,2 ,... , ra), A satisfy al,

»=i
a2 and a3, there exists only a finite set of A € d(A) such that Re A > 0 over a(A), 
the enumeration (5) be introduced, and a(A) C R a,ß = {г € С; —a < Réz < ß} 
for some real a, ß  > 0. If for a natural N the system

x n  = A n Xn + Bf j u  (6a)

(where H = H^  0  H s  is the spectral decomposition associated with the basis 
{£(^>)}ili! {£(^i)}?^iv+i; consequently, A = AN © ÄN and B,\ = P.\ B where 
is a natural mapping on Hn ) is globally controllable, then the system

x — Ax + Bu (6b)
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is approximately controllable.
Proof. Take any two points z1, z2 6 H and design a control which moves

N
the system (6a) from zjy into z2N, where z'N = zlN £(Aj), i = 1,2 are elements

i=i 3
with the first N  coordinates of the point z*. By the condition of the Theorem the 
system = A ^ x ^  + B ^ u  is controllable; therefore, at any T  ф 0 the matrix

T

UN(T) = J  e-A" TBNB mNe~A" TdT 
о

is nonsingular. Consequently, the control

UN(t) = B*Ne -A» 'U ü \ T )  (e~A»T z2N -  z lN) 

moves the system £(Д/у, Вн)  from the state z]L4 into z2N within time T. Denote
OO

z'n — E  гЛГ,£С\»')-
j = N  + 1

Then to show that
T

f N  = eAN Tz lN + J  eA" ( T - ^ B N B*N e - A » Td r  U ^ ( T )  (е ~ А” тz \  -  z ^ )  +  o(l) (7) 
о

as N  —► oo (here Вдг = (I — Pn )B, I  is an identity mapping and o(l) —*■ 0 as 
N  —* oo) is to prove the Theorem. Let us first show that at some T

U n c o i l  < 7(T)

with any natural N. It is well-known that

l|t/7V1(T) ir 1 > . ,min (z , U n { T ) z ) c n , blCN=l

where (-,-)cN is a standard scalar product in CN. At the same time

p  TTl

(z,UN(T)z)cN = T \  (e~ANT»N,z)\7dT>J
J  1 =  1

1 m  Г

* = 1 0
1 m

> f  E  ( 0̂ a<xr \{A-NXe -ANtb'N,z) -  < ^ % ,z > | ) ‘
i  =  1
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(the latter inequality follows from the fact that 

T

j  |(e Ant blN, z)\dr > maxr j  (e ANTb'N ,z )dr

where b’N is the г-th column of the matrix

Bn — { ̂ ]v 1 • • • > b™}.

Denote
m 2 /

Cn (T) = ^  (  m inomaxT , z) -  {A~Nl b'N ,z) j )  j  T.

Then
IIWCHII <

1
CN(T)'

It is easily seen that

0 < CN+1(T) < CN(T), CN(T + AT) > CN{T)

at any AT > 0.
Consequently, there is a limit

lim CN{T) = C00{T).
N —+00

Let us show that at some T it is true that Coo(T) > 0. Assume that the 
opposite is true, i.e. Coo(T) = 0 at any T. From the weak compactness of the 
sphere in H follows the existence of |i(T)| =  1 such that

(A~1e~Atbi, z[T)) — (A_16j,f(T)) =  0

with any 0 < t < T, 1 < i < m. Again, from the weak compactness of the sphere 
in H we have the existence of a point |z(oo)| = 1 such that

(A~1e~Mbi, г(оо)) = (A_16,-, z(oo)) = 0, i =  1, 2, . . .  ,m

at any 0 < t < oo. The latter equality, together with the finiteness of the eigenvalues 
for which Re A > 0 entail z(oo) = 0, is in conflict with the equality £(oc) = 1. 
Consequently, there exists T > 0 such that Coo(T) > 0. This implies a limited 
norm of the operator over N, i.e.

U n c o i l  < c - \ T )
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for any natural number N. From the latter inequality, the formula for control, the 
condition cr(A) С Па,/з, and the fact that 6; £ H it follows that

T

„ f o n j  / \\eÁN(T- T)BNB*Ne - A" T\\drC- \T) \ \e -ANTz2N -  ^ | |}  = 0.
о

This proves the truth of the relation (7) and the Theorem.
This Theorem reduces the analysis of the approximate controllability of an 

infinite-dimensional system to that of the controllability of a totality of finite-di
mensional systems. Numerous examples show that the controllability of the resul
tant finite-dimensional systems is most easily analysed by the method of Section 2. 
From Theorem 3 immediately follows the sufficient condition for the approximate 
controllability.

Corollary 1. If all the condition of Theorem 3 hold and for any N the system

xn  —Anxn  + Bn u , 
у =Cnxn

is observable, where Cjv = CPn  and Рдг is a natural mapping of H on #jy, then 
the system S(C, A, B) is approximately observable.

Theorem 3 and its Corollaries are applicable to various oscillatory systems. 
For parabolic systems and diffusion systems a weaker version of Theorem 3 holds. 
To formulate this we will need

Definition 4. The point z0 £ H is approximately reachable within T  > 0 if, 
for any point 2 € Я and any e > 0, there are a control и : [0,T] —*• U and a point 
2 £ Oc(z) such that

T

exp  ̂J (Ax(r) + B u(t)) dr'j г £ Oc(zo). 
о

A weaker analogue of Theorem 3 for parabolic systems is
T heorem 4. If al, a2, a3 hold, only a finite number of eigenvalues Л £ cr(A) 

satisfy the inequality Re A > 0, the elements of <r(A) are numerated as above, and 
there is 6 > 0 such that from A j ф A* it follows that | Ay — Aj| > 6 > 0 where 6 is 
independent of i and j.

If for any natural N the system

x n  — А ^ х ц  +  B n u

is controllable (Адг and Вдг are as in the condition of Theorem 3), then for the 
system (6b) the zero element of the Hilbert space is approximately reachable.
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Example which illustrate the application of the above methods are reported 
in Part II of the present article. In [11] sufficient conditions for approximate reacha
bility of zero within finite time have also been obtained but with weaker constraints 
imposed on the operator.
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Б еско н еч н о м ер н ы е систем ы : ап п р о к си м ати в н ая  у п р а в л я е м о с т ь  и 
н аб лю д аем о сть . Ч а с т ь  I

С. К. К О Р О В И Н , М. Г  Н И К И Т И Н А , С В Н И К И Т И Н

(М о ск ва)

Р а б о т а  п о свящ ена ап п р о к си м ати в н о й  у п р а в л я е м о с т и  и н а б л ю д а е м о с т и  б еск о 
нечн о м ер н ы х  систем  с к о н ечном ерны м  входом  и вы ходом . Д л я  а н а л и з а  у п р а в л я е м о с т и  
(н а б л ю д а е м о с т и )  си стем  бо л ьш о й  р а зм ер н о сти  в и д а  i  =  А х  +  В и  п р ед л о ж ен а  м о д и 
ф и кац и я  к р и т е р и я  К а л м а н а , п о зво л яю щ ая  по с п ек т р ал ь н ы м  с в о й с т в а м  о п е р а т о р а  А 
с у д и т ь  об у п р а в л я ем о с ти  (н а б л ю д а е м о с т и ) си ст е м . П р и в е д е н ы  к р и тер и и  у п р а в л я е 
м о сти  (н а б л ю д а е м о с т и )  с ем е й с тв а  конечном ерны х  си стем . П р е д л о ж ен  м ет о д  а н а л и з а  
а п п р о к с и м ат и в н о й  у п р а в л я е м о с ти  (н а б л ю д а е м о с т и )  б еск о н еч н о м ер н ы х  с и ст е м , о сн о
ван ны й  на п р о ц еду р е  Ф урье. М е т о д  прост и у до б ен  в п р и м ен ен и и . Р е зу л ь т а т ы  р а б о т ы  
и л л ю с т р и р о в а н ы  п р и м ер ам и .

С. К. Коровин
ВНИИ системных исследований 
СССР, 117312, Москва, В-312, 
пр. бОлетия Октября, 9
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DEFINITION AND RECOGNITION OF CLASSICAL SETS BY
THE ROUGH ONES

I. Kramosil

(P r a g u e )

(Received N ovem ber 28, 1990)

R ough sets a re  a  ra th e r  new branch  of m o d em  m ath e m a tic s  w ith in te res tin g  ap 
p lications. Here we show how rough se ts can be used  to  describe  a n d  solve th e  problem  
of s ta tis tica l in d u ctio n  in  a  way as a  general as possible, covering a  num ber of im p o rta n t 
p a r ticu la r  cases.

1. A m o d e l o f  s ta t is t ic a l in d u c tio n  b a se d  o n  ro u g h  se ts

From the viewpoint of its origins the notion of rough sets naturally follows 
from that of indiscernibility relation. Let A be a nonempty set, let A be a nonempty 
collection of predicates applicable to all elements of X . Hence for each x £ X, A £ 
£ A,  A(x) is a well-formed formula of a formalized language which is either true or 
false; the truth-value of A(x) is denoted by Tv(A(x)). Define for each x,y £ X,

I « / «  (VA E Л)(7МА(х)) = Tv(A{y))). (1)

Evidently, «  is an equivalence relation on X.  It is called indiscernibility 
relation on X with respect to A, in order to pick up the fact that if x к  y, then 
there is no possibility to discern between x and у using the predicates from A . The 
definition can be extended to empty set A of predicates setting, in this case r  a  y, 
for each x,y £ X.  In general, any equivalence relation on X  can be taken as an 
indiscernibility relation.

Let Ä be an indiscernibility relation on A, let V С X.  Set

K = { x - . x £ V ,  (Vy £ X)(y я  X => у £ V)} (2)
V — {x : x £ X , (By £ V)(y äs x)}. (3)

Denoting, for all x £ X,  by [x] the corresponding equivalence class, i.e.

И  =  {У ■ У €  X, у sa х } ,  (4)

A k a d é m ia i  Kiadó, B udapes t  
Pergam on Press,  Oxford
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we may write

V = U{[x]:[x]cV},  V = U{[x]:[z]nV?<b}.  (5)

Informally, Y_ is the set of all elements which can be surely stated to be in V on the 
ground of the truth-values of the predicates generating the indiscernibility relation 
in question. X  — V  is the set of elements which are certainly not in V,  and for 
elements from V —V the membership relation with respect to V cannot be evaluated 
within the given framework. The pair (V, V) is called rough set generated by V 
and cf., e.g. [4]. Evidently, each pair (Щ_, W), [V C W  of subsets of X  can be 
taken as rough set generated by a set W, W  C W C W, and by the equivalence 
(indiscernibility) relation «  such that x «  у iff either x, у £ W_, or x,y £ W — W_, 
or, finally, x, у  € X  — W .

In order to avoid the technical difficultes connected with the measurability of 
the corresponding mappings let us limit ourselves, in the sequel, only to finite or 
countably infinite spaces. Let A — {aj,a2, ...}  be a nonempty countable set, let 
V =  {(!£(*), Е(г))}^;1 be a sequence of rough sets in A, i.e. V_(i) C V(i) C A for all 
i =  1 ,2 ,.... Suppose that (J°lj Vl(i) = p|“  j V (г) and denote by V this subset of A\ 
we say that V defines V. Perhaps a weaker way of definition of V by {(V2(0> V’(i))} 
could be also considered but here we prefer the most simple, even if also a rather 
restrictive one.

Denoting by x v  the characteristic function (identifier) of V7 as a subset of A 
and supposing that V defines V we immediately have

X v (i)=  sup Xv(i)(z) = inf Xvm(x ) (6)l<i<oo 1<<oo V '

for each x E A. For the sake of unambiguity let us recall explicitly, that у х » ^ )  = 
= 1, if x G Z(0> XvíoOO = 0, if x G A -  V_(i). _

Take an x £ A, if V is finite, or, what is the same, if V_(i) = 0 and V (г) = A 
for all but a finite number of indices, then xv'(z) can be effectively computed by 
(6) using Xv(i) or Xv(>)- If V is infinite, this method is theoretically ineffective; in 
practice, it is ineffective also for finite but very large V’s. However, an immediately 
and intuitive idea yields that if we “sample at random” a finite number ii , г'г, ■. ■, in 
of indices, then

sup Xvx)(*), (7)
1 < j< n

or

(8)
approximate, under certain regularity conditions and in a reasonable sense, the 
desired value yy(z)- In fact,

SUP Хц(.-)(х ) ^X v(x) < inf Xy(lj)(z). 
i<i<n г<}<п (]>

( 9)
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If the set A is finite, such an approximative decision can be taken, sequentially, 
for all x  £ A, in order to obtain an approximation for the set V  as a whole. In the 
opposite case, i.e. for an infinite A, we may, again, apply the same elementary idea 
of statistical approximation, sampling at random some Xi, X 2 , . . . ,  x m  from A  and 
approximating V either by

I xk :k < m, ^sup Xvii3){x k) -  1 j (Ю)

or
{x l :Är<m, i mffjXv(ii)( ^ ) =  l } .  (П)

These informal reasonings can be formalized as follows.
Let (ft, S, P) be an abstract probability space, hence, ft is a nonempty set, S  is 

a cr-field of subsets of ft, and P is a probability measure on S. Let N = { 0 , 1,2,...} 
be the set of non-negative integers, let N + = N — {0 } .  Let X  = be a
sequence of random variables (i.e. measurable mappings) defined on (Cl,S,P) and 
taking their values in N + , let У =  be another such sequence of random
variables. Let V =  {(И.(0> У(0)}?=1 be a sequence of rough sets which defines the 
set V C A — {ai, <22,. • .}• Set, by induction,

V*o = 0, У0* = Л ,  (12)
V.,< = V*,i(w) =  V„,j_i(w) U {a(Xt(uO)},

if a(Xi(w)) 6 K(Yi(w)), (13)
У* i = y*,i-i otherwise.

For the sake of notational simplicity we write a(i) instead of oq for the elements of 
the basic space A.

К  = у* И  = K - i H -{«№ ("))}<
if а(Х,Н)<Е Л-У(УНиО), (14)

У* = V*_j otherwise.

Evidently, y,i(w) С V  C V*(w) for each ш £ ft and i = 1,2,. . . ,  so that the sets 
У, , and V* may serve as first and very rough approximations of the unknown set 
V. Given a random variable Z which takes (Cl,S,P) into A, the quality of the 
approximation (У.^У,*) of У can be quantitatively measured by

Р ( { ы : ы е П , а д е У Г - У . , . - » ;  (15)

the closer to zero this value may be, the better the approximation. In what follows, 
we shall investigate the conditions under which the value of (15) can be as close to
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zero as desired taking i large enough, and with respect to a sufficiently large class 
of random variables Z.

It is perhaps worth of explicit introducing that the stochastical nature of this 
approximation process is principial, its deterministic alternative being, evidently, 
of almost no worth and sense.

2. B asic th e o r e m  for th e  p r o p o se d  s ta t is t ic a l  in d u ctio n  m o d e l

The pair (X , У) of sequences of random variables defined above, with each X,- 
and У* taking (fi,«i>, P) into N+ , is called regular, if the vector random variables 
(Xi ,Y (), i — 1,2, . . . ,  are mutually statistically independent; in symbols, if for all 
m G N+ , <z'i, *2, - - - ,im) G (N+ )m, and (zi,z2, . . . ,  zm) G (N+ x N+)m,

p m { w : w e n ,
\ '= i

= 6 № ,(w) .yu (w)) = zi })
j - 1

( 16)

and if, moreover, for all z G N+ x N+,

^ Р ( { ш  :« G f i,  ( Х ^ ( и ) ,У { ^ )  = z } )  = oo. 
i =1

(17)

In what follows, we shall omit the symbols . . . и  : и  G fi • • • in expressions like 
(16) or (17), supposing that no misunderstanding menaces. Sequence X  is called 
independent identically and поп-trivially distributed (i.i.n.d.-sequence, in short), 
if the random variables Xi are statistically independent and if, moreover, for each 
i , j  G N+

Р ( { В Д  = j})  = P{{X, И  = j}) > 0. (18)

A very simple example of regular pairs of sequences can be obtained as follows. 
Two i.i.n.d.-sequences X  and Y are called independent, if {Ai, Y\, X 2, Y2, ...} is a 
sequence of mutually statistically independent random variables.

Lemma 1. Let X, У be independent i.i.n.d.-sequences, then (X , У) is a regular 
pair of sequences. □
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Proof. Let m E N+ , (*i,...,*m) E Nm, (z i , . . . , z m) E (N+ x N + )m, let 
Zi = (n],ni)  for each i < m, then

\ '= i

= nj} n  { Щ и )

/ г п  m  \

= П р  ({ * * > )  = " ;} ) П р ({у^ и  = ni2})) =
7 = 1  j = 1 J

m

= П(р ({*•» = »]>) • p  = ”2})) =
i=i

m

= П Р 0 ^ »  = П)>

(19)

so that (16) holds. Moreover, for each (n^1) , ^ 2)) E N+ x N+ ,

OO

^ p ( { X j (u;) = n(1),yj (w) = rl(2)}) =
;=i

OO

= 2 > ( { В Д  = ” (1)»  • p ( № )  =  ^ (2)l)  = (2°)
j= 1

OO

=  E  Р ( { В Д  =  « (1 )»  • P({Yi(“) =  » (2))  =  ° °
j=i

due to (18), so that (17) holds. The lemma is proved. □
T h e o r e m  1 ( s o u n d n e s s  t h e o r e m ) .  Let V =  {(H(*)>y 0 ))} ^ i be a se

quence of rough sets which defines the set V C A =  {01,02, .. .},  let (Х,У),  
X — У = {Tí}i=i, he a regular pair of systems of random variables
with each Xi and V} taking (Q,S,P ) into N+, then

P({  lim V.,„(w) =  lim V »  = 1/} )  = 1. (21)
\  n —*-oo n —►OO /

□
Proof. Due to the definition of У*,„ and V*, a necessary (but not sufficient) 

condition for a E VJ reads that a £ H(i) for some i £ N+ , hence, a £ Ц(г) = 
= Y.) so that V»(„ С V . Dually, a necessary (but not sufficient) condition for a £ 
£ A — V* reads that a € A — V(i) for some i £ N+, hence a £ (J°^j(.A — V(i)) =
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= A — f |“ i V(i) = A — V , so that A — V* C A — V and V С V*. Consequently, for 
each ш £  Q, n £ N + ,

V.,„(w) C V .,„+ iH  C lim V*,„ C lim V »  C V J + »  C V*(w). (22)
n —*co n  —► oo

Set, for each j  £ N+,

A (j) = { i : i £  N+, a j £  V(i) U ( A -  7(i))}. (23)

If aj € V, then A (j) = {i : aj £ У(г)} ф 0, as (Jt°li Y_(i) = V implies that 
there exists i £ N+ such that aj £ V_(i). A necessary and sufficient condition for 
aj £ (J^Lj V* „(w)(= И тп_юо У» „(а|)) reads that there exists i £ N+ such that 
JA,(w) = j  and Yi(uj) £ A(j). The probability of this random event reads:

p ( j J { * , ( W) =  j ,  y < ( w ) €  A ( j ) } ^  =

= p ( n - n ( n - { X i ( w ) = i ,  Щ Ш) £ X(j)})] =
(24)

= 1 -  Щ 1 -  = J. Yi{u) £ A (j)})).
1 =  1

This value is one iff ]Г)П=1 -Р({Х|(и>) =  h  E A(j>)}) = oo, which is true because
of (17) and of the fact that A(j) ф 0. Hence,

1=1

= 1- jP(n(ß-\= i
{Afj(w) = j, Yi(u>) £ A(j )})

» И  = у } ) = 1 .  (25)

If aj £ A — V, then the necessary and sufficient condition for aj_£ A — limri_ 00 V*(w)
formally is the same as above, but now A (j) — (г : a3 £ A — У(г)}. Hence,

p ( { v =  Шп V > ) } )  = 1 , (26)

and the theorem is proved. □
Common sense and mathematician’s everyday experience yield that limit re

sults like (21) are important when the theoretical or philosophical correctness and 
soundness of an algorithm are investigated, but from the practical point of view the 
non-limit properties are ultimately decisive. Therefore, in the sequel, an appropri
ately defined “speed of convergence” of У* n and V *  to V  will be investigated.
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3. S o m e resu lts  con cern in g  th e  sp e e d  o f  c o n v erg en ce

Considering the same model and notations as above, an element a.j £ A is 
called undecided in the n-th step, if a; £ V*(w) -  V»ira(w). Set, for each £ > 0,

L(e,j) = min{n : P({a7 £ V;(w) -  V»,„(w)}) < £>, (27)

hence, L(e,j)  denotes the (minimal) number of steps necessary to decide about aj 
with the probability at least 1 — e. If Z is a random variable taking (Cl, S, P) into 
N+ , then LEz (£) will denote the expected value of L(e,j) with respect to Z, i.e.,

L E z ( e )  =  f 2 [ L ( e , j ) P ( { Z ( u , )  =  j } )  . 
j= 1

(28)

T heorem  2. Under the conditions of Theorem 1, L ( e , j )  is finite for all e  >  0 
and for all j  £ N+ . If, moreover, for all i £ N + and for X(j) defined by (23),

Р ( { В Д  = j, Yi(u0 £ A (j)}) > Qj (29)

for some Qj > 0, then L(e,j) < Q J1 ln(l/e). □
Proof. Fix j  £ N+ , then a.j £ V (̂w) — V, „(w) iff for no i < n the ran

dom events Xi(ui) = j, F)(w) £ A (j) simultaneously occur. Due to the supposed 
statistical independence of vector random variables ( ) ,

П

p (Wj e v » - v . , „ H } )  W € A ( j ) } ) ) .  (30)
*=1

Hence, this probability is majorized by an e > 0, if

n
] r > ( l - P ( { X , ( W) = j, Yi{u) £ A(j)})) < lne. (31)
1 — 1

As ln(l — x )  < — x  for each 0 < x < 1, a sufficient condition for (31) reads

n
£ > ( { а д  = j ,  Yj(u>) £ A (j)}) > ln(l/£))- (32)
i=l

Relation (17) together with the fact that A (j) ф 0 for each j  £ N+ imply that there 
exists a finite no satisfying (32), evidently L(e, j ) < no- Under the supplementary 
condition (29) a sufficient condition for (32) reads noQj > ln(l/e) from which the 
assertion immediately follows.



As can be easily seen, the conditions of Theorem 2 do not permit to state 
that LEz{z) < oo for all random variables Z , neither when (29) holds. Or, take X  
and З’ in such a way that

P ({ X ,H  = j, Щш) £ A(j)}) = 2-* (33)

for all г = 2*, к £ N+ , this probability being equal to a 6Z > 0  independently of 
i for all other pairs z =  (nl , n2) £ N+ x N+ of indices. Suppose that (16) holds, 
then, evidently, (17) holds as well and (Х,У)  satisfies the conditions of Theorem
1. Let Z  take (Cl,S,P) into N+ in such a way that for all к £ N +

P({Z(u)  = 2*}) =2-*;  (34)

for other indices their probability of sampling by Z  is trivially zero. Then L(e, 2k) = 
= 2k ln(l/e), so that LEz(e)  = oo by (28).

Corollary. If the conditions of Theorem 2 and (29) hold, then for each а £ A 
the probability that a will not be decided yet in the n-th step tends exponentially 
to zero with n increasing (an immediate consequence of (30)).

Let us consider the case with finite sets A and V and with uniform probability 
distribution over these sets. This situation can be formally embedded within the 
presented formalization as follows.

T h e o r e m  3. Let X — { А * } - ^ ,  3 ; =  be two sequences of statistically
independent random variables taking (Cl,S,P) into N+ and such that, for each
i e  n + ,
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Р({Х{(Ш) = j })  = l /N,  if 1 < j < N ,
P({Yi(w) = к}) =  1/m, if 1 < к < m, (35)
P ({ A ,H  =  j})  = Р({ЪИ  = *}) = 0 if j  > N, к > m.

Mutual statistical independence of all A ,’s and Y<’s also supposed. Let A be a 
random variable taking (Í2,5,P) into A, statistically independent of each A* and 
Yi and with the uniform probability distribution over {1,2, . . .  ,m}. Let

(Vi < N)(3l, к < m) [0j £ ( z ( 0  П ( A -  7 (* )))]  (36)

Then, for each j  < N,

P({<4 € V*(w) -  V.,„(W)}) = P({Z(u>) £ V*(w) -  V.,„(w)}) <
< (1 -  H ) ' 1)",

(37)

L(e,j) < m N  ln(l/e). (38)

□
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Proof. An easy calculation yields

P({aj 6 V » - V » } )  <
n

<  n ( i  -  p({Xi  и = в д  6  а с ? ) } ) )  =
»=i
n

= n ( 1 - P ( { X , H = j » / >( { ^ H 6 A(i)})) = (39)
1 = 1 
n

= card(A(j) П{1,2........m })j <
i — 1

< (1 -  (m N )_1)n

due to (36).

p ( № ) € v ; h - v . ,  „ ( « ) } )  =
N

= £ > ( № )  = G Vn(W) -  * ."(")}) = 
j= 1 

N

=  E P « Z H  =  €  v ; h - v . , „ h } )  -
;=i

= E 7V_1( i - ( ^ r T .
i—i

as the supposed statistical independence of random variables Z and A), Y) implies 
that the random events Z(w) =  a; and aj 6 V*(u-) — V, n(^) are also statistically 
independent. (38) immediately follows from Theorem 2, setting Qj — (mN)- 1 . □

4. S ta t is t ic a l d ec is io n  fu n ctio n s  d efin ed  by r o u g h  sets

The pair (V, „(w), V*(w)) defined above by V = |(Ц (г), V(i)) j- , X  —
— { A ) j  and T =  {^i}j^ij can be taken as a rough set which approximates, 
in the reasonable sense explained and proved above, the subset V C A, completely 
defined by U,“ 1Vl(i) or by H ^V ^t). From another point view, (V, n(u>), V*(w)) 
may be seen as a definition of a three-valued failure-proof decision function for 
the membership predicate for V, if a £ V*(w) — V„n(w) we are not able to de
cide. However, admitting the possibility of a probabilistically quantifiable error 
connected with the decisions, we may use (V„,„(<*>), V*(u)) in order to define a clas
sical two-valued statistical decision function for the membership predicate for V  as 
follows.
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Let Z  be a random variable taking P) into N set

p = ' ’( l - i . ) 6 V ..W D  (40)
? ( { « «  €  ( V . . „ H  и ( A -  v ; M ) ) D

Let Up be a random variable taking ( fl ,S,P)  into the binary set {0,1} in such 
a way that P({Up(u) = 1}) =  p. Both the random variables U, Z are mutually 
statistically independent and are also statistically independent of each X{ and У). 
Let D = {do, d{\ be a binary set of decisions, do means “the tested element of A is 
in A — V" , d\ means .is in V”. For a £ A, m  £ N+, decision function 6z (a, n , •) 
reads

6z {a, n,u)  = di, or 6z (a,n,u) = 1, (41)

if either о £ V*>n(w) or a £ V*(w) — V*,„(w) and Up(u>) = 1,

6z ( a , n , u ) = d 0 or 6z (a,n,u))-  0 (42)

otherwise, i.e. if either a £ A — V*(w) or a £ V^(w) — V*jn(w) and Up(u) = 0.
Intuitively, 6Z decides in a very simple way. If an element was already decided 

when forming (У*,„(ш), V*(w)),őz repeats this decision, in the other case it flips a 
coin. The probabilities of the two results are in proportion to the sizes of the two 
corresponding sets of already decided elements, the size being quantified by the 
probability of sampling generated by Z. For example, supposing that A is finite 
and Z  samples each element with the same probability, then the coin yields both 
the answers with probabilities defined by the ratios of the two results among the 
already obtained ones.

Evidently, 6Z admits both kinds of wrong decision. An element a £ A — V, 
being in V*(üj) — V»in(w), may be wrongly proclaimed to be in V and vice versa; 
a £  V П (V*(w) — V„in(w)) may be, again wrongly, proclaimed to be in A — V. 
In order to be able to define rigorously the probabilities of both kinds of error 
as corresponding conditional probabilities we suppose that the decision function 
Sz  is applied to the element of A sampled by An+i, i.e., to the first element in 
the sequence (axiO)> aX'2(w), • • •) n°f more tested by the three-valued failure-proof 
decision function mentioned above. Set

PEi =  PS i(Z .n) = P({6z (aXn+l(w),n,Lj) = l}/{aXn+lM £ A -  V}),  (43)
PE2 = P E 2(Z,n) =  Р({62 (аХп+Лш),п,ш) = 0}/{ax„+lM £ У}), (44)

the other parameters not being explicitly introduced, PE\, (P E 2, resp.) is called 
the probability of the first (second, resp.) kind of error for the decision function 
iiz (•, n, •) and with respect to X n+\. It is quite reasonable to expect that both PE\  
and PE2 tend to zero with n increasing; in the next chapter we shall see under 
which conditions this is true.
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5. Basic theorem  for the proposed statistical decision function

T h e o r e m  4. Let V, X ,  У  as in Theorem 1, but with regularity condition 
replaced by a weaker one

OO

=  b а д  e  л (*)}) =  oo (45)
j =  1

for each i G N+ . Let there exist a sequence Cj, c2, ... of positive reals and two other 
positive reals Q i ,  Q2 such that

Qi < P({X„ Н  = i } ) /a  < Q2 (46)

for all i, n G N+, then

lim PEx{Xn+u n) = lim PE2(Xn+1 ,n) = 0. (47)
T l  — ► OO f l  —► 0 0

□
Proof. For X n = ax„, (43) implies

PE^Xn+un)  = P({6xn+1 (Хп+1(ш),п,и) = l} /{ X n+1(u) e A - V } )  =

P ( i 6x n+1 n,w) =  1, X n + iH  G .4 -  V }) (48)

P ( { X „ +1(W) G Л - V})

Due to (46), for V = {i : i G N+ ,a, G V},

p ({X „+1H g 4 - F } ) =  E  p ( { X n+1(u) =  a} )  =
a&A — V

= E  ^ ( { ^ n + i H  =  f})  < Q i (  E  c* ) > 0 ’
Í6N + -V i€N + -V

(49)
moreover,

p({éx„+1(x n+1,n ,w) = 1, Xn+1(w) G A - V})  =

= p ({^*n+1 (x„+i,n,u>) = 1, x n+1(w) G d - v ; H } )  +

+  P ({ « * n+I ( * „ +1) n,w) = 1 ,  X „+1(w)G A - y ; H - I / } ) .

(50)
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If a £ A — V*(w), then 6х„+.(о,п,ш) =  0 so that the first summand vanishes. 
Hence,

PE^Xn+i,  n) =

= ( p { { x n+l( w ) e A - v } ) y l x

x •P({,5xn+1 (Än+1(w), п,ш) = l,X n+i(w) £ A £ V*(w) -  V"}) =

-  (p({Xn+1H 6 A - V } ) ) _Ix (51)

x E  P ({*"+i(<*>) =  ijr»+l(a,n,w) =  1, a €  V*(w) -  V"}) =
a e A - V

=  ( р ( { Х „ +1И е , 4 - 1 / } ) ) Л

X E  ? ( { ^ + 1Й  = в , а д  = 1. a e v »  — V}),
a e A - V

where
= P({X n+1(^ )€  У .,„И })

P Рп р ( { х п+1(ы) e  ( у . , „ и  и ( л - у * М ) ) } ) '
(52)

A short reviewing of the proof of Theorem 1 yields that even under the weak
ened conditions (45), V»>n(u>) and V*(w) tend to V almost surely with n increasing, 
so that pn tends to P({ An+j(w) £ У}). The supposed statistical independence of 
the random variable Up yields that

P ^ i(X „+1,n )= p (p ({ X n+1H € A - y } ) )  ^ ( { I n + i M  € v ;(w )-y } ) . (53)

Due to (49) and (52), PEx(X„+i, n) tends to zero iff

nUm P({Xn+1(w) £ v;(w) -  V }) = 0. (54)

However,

E  ^ п +1 И  =  а , а £ К И - И )  =
a e A - V

= E  P ( { ^ i H  = j )  n П  -  {*<0*0 = h  € A(j)
j 6N + _V »' = i

= E  -  P({Xi(U) =  j, Yí(uj) € AO)}))

(55)

j 6 N + - V
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Given £ > 0, take a finite set В C N+ — V such that

E c- > (i - (̂ /2)) E c„
i € B  i € bj + - V

hence,

where

E  c- <(£'/2) E  c-
«€(N + -V )-£ Í6N+-V

* '= * f <?2 E  c. j
-1

Now, (45) implies that

nlim П ^ ( { ^ И  = ; ,  У М  G A(j)}) = 0
" °°i=l

for each j , take no G N+ such that

n ( i - p ( { * , - H
1=1

= 3, Ъ(ш) е \ и ) } ) ) < £'/2

(56)

(57)

(58)

(59)

(60)

for all j  € В and n > Uq. Now, the last expression in (55) can be written as

E  P({Xn+i ( « ) = j } ) n ( l - P ( { X i(W) = i, У*(ы) G A(j)}))
j 6 (N + -Vr) n ß *=1

+  E  p ( { * » + i H = Л )  Г Ц 1 -  = i, у м  g a о -)} ) )
j e ( N + - v r) - B 1=1

+

<

<(*72) E  p({xn+iH=i})+ E  р({^п+1н =л)<(61)
j€ (N  + - V ) n S  j € ( N  + - V ) - . B

<(*72) E  (<3̂ ;)+ E  ( te )<
ie(N+-v)ns j É(N+_v)_B

<(*72) E  (<3**) + (*72) E  (<?2C;) = *,
J6N + -V J6M + _V>

due to the definition of s'. Hence, (54) holds and, consequently, PE\(Xn+1, n) —*■ 0 
for n —*■ oo. For PE 2(Xn+i, n), the proof is quite analogous with A — V and V, 
and V’(w) — V and V — V*n(w), mutually replaced. □



As an illustration of this general result, consider the finite case with A = 
= {au a2, . . . ,  алгЬ_У = {<Z(1), V(l)), (Z(2), V(2) ) ,(K (m ) ,V (m ))}  such that 
Ur=i H 0  = fli^i У(*) = V’. Let X  and У generate two sequences of statistically 
independent, uniformly and identically distributed random samples from the cor
responding sample spaces, as formally described by the conditions (35) of Theorem
3. In this case, using the same way of reasoning sis in the proof of Theorem 4 and 
setting v = card V, А(а*) = A(i),
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РЕ2(Хп+1, n) =
p { { x n+l(uj) g v . ,„ H } )  p ( { x n+1(Lü) e v , tn(L0) - v } )

Р ( { Х п+1 и  G (V .,„H  U (A -  v;(w)))}) P({Xn+1(w) G A -  У})
E  p ( { i „ +1H  =  a , « G K H - f } )

V \  a i A - V

,~N )  1 -  (v/N)  ~

=  I TT I I 1 ----7T ' _1

(62)

N N

x £  [ p ( { ln+1(W) = a}) [ [ ( I  -  (Р({Х;(И) = а})Р({У,(Ы) G Ä(a)})))
a £ A - V i=1

<

“ In A  N ^  N \  N m  \ N  \  Nm JN ,
'  a £ A  — V

An analogous calculation yields

р ^ ( х п+1>п )« п
TV Nm (63)

where an «  bn means that limn_oo(űn/frn) = 1-

6. Frequential approximation of th e  statistical decision function

When applying the decision function 6 defined above, the weak point is how to 
determine the value p to construct the random variable Up. Or, this value is defined 
as the ratio of two abstract probability values, in general, not immediately obtain
able from the observations and data being at our disposal. A strong temptation 
would bring us to the idea to replace the value p by

.  _  ________card У«|П(и>)________
P card V*in(w) + card(A -  V*(w)) ’

(64)
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but a short re-consideration yields that such a simplification may imply a serious 
and undesirable modification of the statistical decision function 6. For example, 
let {a,0} = V C A = {01, 02,...} , let P ( { X i ( u )  — aio}) = 0.9 for each i E N+, 
let P({Xj(w) = a}) > 0 and independent of i for each a E A, let there exist, for 
infinitely many a E A, an index i(a) such that a £ V(z(o)). Then p —> 0.9 for 
n —+ 00, but p  —♦ 0, as card V*in(o>) < 1 for each n and cardV*(w) —► 00 with 
probability 1, if n —* 00.

This difficulty can be solved in two ways. Either, (64) is applied only in the 
case of uniformly distributed and statistically independent random variables Xi, 
when, due to the strong law of large numbers, p and p tend, with probability one 
(almost surely), to the same value. Or, we may slightly modify the definition of 
the induction processes by computing, together with V» ,n(w) and V“(w), also the 
values П

v(n,u) = Х дц(У .(ш ))(йН ), (65)
1=1

and
n

w(n,u)  =  У~^Х4 - уггу.Сшп(-^(‘4>))-  
I—1

So, the values v(n,u) and w(n,w) express the numbers of cases, when at random 
sampled element X,(w) E A was decided (positively, in the case of t>(n,w), or nega
tively, in the case of w(n,ui)), using at random sampled rough set 
(Ц(У)(ш)), V(Yi(w))). Evidently, repeated decisions concerning the elements al
ready decided are repeatedly registered by v(n,u)  and xv(n,ui). Now, set

n v(n,Ul)  +  lL>(n,Lű)
(67)

and define the decision function 6* in the same way as 6, just with p  replaced by 
p*.  Let P E i ( X n+i , n , S )  and P E i ( X n+i, n, 6*), i = 1,2, denote the corresponding 
probabilities of errors of both kinds.

Let Ev,n(P,ty be the expected value of the probability of decidability of an 
at random sampled element X n (u>) E V,  i.e.,

Ev,n(P, A) =  E  ! } )  P ( { y j v H  e  A(»)}),. -  P({Xn(W) E 1/})
( 68)

analogously,

E a - v ,u (P,  A )  =  7 "

Í6N + -V

p g x n(u,) =  1 »
P ( { X n(u>) £  N +  -  V } )

P({Yn(u) E A(i)}). (69)

2



9 2  K R A M O S IL :  D E F I N I T I O N  AND R E C O G N I T I O N  O F C L A S S I C A L  SETS BY  T H E  R O U G H  ONES

T heorem 5. Let X  and У be independent i.i.n.d. sequences (cf. (18)), let 
V Ф 0, let

ЕУЛ(р,\)  = EA_v>l(p, A )> 0 , (70)
then, for both i =  1,2 and for each к G N+,

РЕ<(Хк,п ,6*) «„ PEi(Xk,n,  8). (71).
□

Remark. Condition (70) means that the ability of system X , У, V to decide the 
membership relation for V is “in average” the same for elements as well as for non
elements of V .  Assertion (71) immediately implies that limn_ * P E i ( X k , n ,  6 * )  — 

= limn_oo PEi(Xk,n,6)  (= 0 as Theorem 4 yields), but it is stronger, as it claims 
the speed of convergence to be qualitatively the same for both the decision functions 
6 and 6* and for both kinds of probabilities of errors.

Proof. Due to (65), n~1v(n, u)  denotes the relative frequency of indices i < n 
for which Xi(w) G H(Tj(w)). The fact that X  and У are independent i.i.n.d. 
sequences and strong law of large numbers (cf. [1], e.g.) imply that

p ( { nlnn n - y n .w )  =  P({XiM  € Z (V iH )})}) =  1. (72)

However,

p ({ä xm  € т м ) } )  = x > ( { * i ( w) = j,  aj e т м ) > )  =
jev

= XJ p ({X i H  = j, В Д  G XU)})  = (73)
f€V

=  £ [ P ( { А г И  = Л ) Р ( { У ! Н  G XU)})] =  ( E v A P X ^ P U X ^ )  € V}) >  0, 
i ev

due to (68). Quite similarly, (69) yields

p ({ Um n - xu;(n,w) = P({X1( u ) e  А - П В Д ) } ) } )  = 1 (74)

and
P ^ H G i - ^ M ) } )  = (£ д _ у ,1 (Я ,А ) )Р ({^(w ) G A - V } )  > 0  (75) 

Hence, with probability one,

lim p*(w) =  lim
v(n,u)

= lim

n-*oo v(n,U>) -(- w(n,u) 
n - 1u(n, w)

n->oo fl~1v(n, w) + n_1Ui(n,w)
(76)

. lim ________________ (Py,1(P,A))P({Ä1(u;)G V})_________________
™  (P v,i (P ,A ))P ({A !H  G V}) + (Рл_уд(Р, A))P({Xx(w) G A -  V})  

= P({Äi (w) G K})
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due to (70). But, limn_ 00pn = P({Xi(w) G VQ) as well (cf. the proof of Theorem 
4), so that

P({ lim р*п(ы) = lim pn}) = 1. (77)

Referring, again, to the prof of Theorem 4, we can easily obtain that for each
M e  n +,

РЕ\(Хк ,n,6) = (1 — Pn)К n, (78)
PE2(Xk,n,6) = pnLn, (79)

for appropriate Kn, Ln independently of pn and with positive limit values for
n —* oo. For 6*, the situation is more difficult, as p* is a random variable. Instead 
of (51) we obtain

р в д г » , М * )  =  | { [ р ( ( а д е л - у } ) ] ' 1 (80)

■ [ J 2  = 1, a € V;(w) -  V})} }dFp,n(u),
a £ A - V

where Fp n is the distribution function of the random variable p*. Following the 
pattern of the proof of Theorem 4 we obtain that

Р В Д ь .М * )  = J ( l-p*n(u))KndFPin(u) = ( 1 -  EP*( ))Kn , (81)

with the same Kn as in (78), where

EPn(-) = J  Pn (w)dFPtn(u) (82)

is the expected value of the random variable p^(). Quite analogously,

РЩ Х„,п ,6*)=(ЕрХ-) )Ьп . (83)

Set po = lim,,..;» p„, take an e > 0. Due to the Jegorov theorem ([1], e.g.) and 
(77) there exists measurable Qc CÍ2 such that P(QC) > 1 — (e/2) and p£(w) —► Po 
uniformly on Qe. So, take n0 such that |p^(w) —Po| < e/2 for each n > n0 and each 
ы G De. Then E(\p*(-) -  p0|) < (e/2)P(Qe) + e/2 < e, hence, \Ep*n(-) - p 0| < £, so 
that Ep*n —+ po for n —► oo. This fact and (78), (79), (81), (83) imply the assertion 
(71). □

7. Comments, remarks, and conclusions

The results presented above are very elementary and perhaps even trivial, and 
they could be developed in more details or replaced by more sophisticated ones.

2*



Nevertheless, some basic ideas of statistical induction through rough sets seem to 
be illustrated, by these results, in a degree sufficient enough to subject them to a 
brief discussion.

First of all, let us pick up the fact, that our presentation of statistical induction 
through rough sets as a part of artificial intelligence is quite legitimate. Rough sets 
can be taken as the most general tools, at least within the framework of classical set- 
theoretic language, to describe and to deal with incomplete knowledge expressible, 
otherwise, in the three-valued Lukasiewicz logic with the third value interpreted as 
“it is not known, w hether...” There are numerous particular cases in which such 
a situation may occur, remember, e.g., missing values of some observations in the 
GUHA method, undecidability of certain assertions in formalized theories because 
of theoretical or time-space limitations, etc. The case when a system of rough sets 
defines a (classical) set can be seen as a process of appropriate combination of pieces 
of partial or uncertain knowledge to obtain the complete knowledge, and processes 
like this are fully covered by the domain of artifical intelligence. If such a process 
yields this complete knowledge only asymptotically, as it is the case even A or V 
are infinite, our approach offers, at a level as general as possible, an approximative 
statistical solution reasonable from the point of view of simple statistical qualitative 
criteria. The same approach can be applied in the case of practical intractability, 
when the sets A and V are finite but too large to be checked systematically. The 
notions and apparatus of rough sets enable us to pick out what is common for 
many processes of statistical approximative combination of partial (incomplete) 
knowledge and what is, in particular problems, often hidden behind the specific 
features of the problem in question.

A further development may proceed at least in the two following directions. 
Either, a supplementary structure may be imposed on the sets A and V, and the 
properties of elements of A and V, or some relations among these elements, involved 
by this structure, can be used to propose more sophisticated statistical induction 
procedures than the most simple one described above. These auxiliary structures 
on A and V may be more or less closely inspired by and connected with the intended 
practical applications, but they may be also rather general. For example, the set 
A may be equipped by a topological structure according to which the elements 
of A which are “close” to elements of V are also in V with a greater probability 
than those which are rather isolated from elements of V . An appropriate union of 
neighbourhoods of elements of V» n (u>) will then serve as a reasonable approximation 
of V. Or, going in the opposite direction, we may still weaken the conditions of 
the model investigated above. For example, we may consider the case when, given 
a £ A and (V_, V) £ V the answers whether a £ V  and a £ A — V are charged with 
positive probabilities of error. This error cumulates with that one connected with 
the decision function D and deteriorates the statistical qualities of the induction 
procedure in question. Both these modifications will be investigated in the next 
future.
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Being rather trivial, the contribution is almost self-explanatory. All the refer
ences, if any, concerning the most simple combinatorial probability can be consulted 
with any textbook of elementary probability theory; let us introduce [1] as a very 
good one. [4] is a foundatory paper on rough sets and [3] is an example of latest 
contibutions to this theory. Finally, [2] is mentioned as it contains a more detailed 
of references accessible in our country.
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О п р ед ел ен и е и  р асп о зн ав ан и е  кл асси ч ески х  м н о ж еств  п о ср ед ство м
гр у б ы х  м н ож еств

И В А Н  К Р А М О С И Л

(П р а га )

Г р у б ы е  м н о ж ества  я в л я ю т с я  о тн о си тел ьн о  новой  о б л а с т ь ю  соврем ен ной  м а т е 
м ат и к и  с и н тер есн ы м и  п р и м ен ен и ям и . В р а б о те  по казан о , к ак и м  о б р азо м  в о зм о ж н о  
в о сп о л ь зо в а ть ся  гр у б ы м и  м н о ж ествам и , ч то б ы  о п и с а т ь  и р е ш и т ь  проблем у  с т а т и 
с ти ч еск о й  и н ду кц и и  сам ы м  общ им  образом , п о к р ы в аю щ и м  б о л ь ш о е  чи сл о  в аж н ы х  
ч астн ы х  с л у ч ае в .

Ivan Kramosil
Institute of Information Theory and Automation
Czechoslovak Academy of Sciences
Pod Vodárenskou vézí 4
18208 Praha 8
Czechoslovakia
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INFINITE-DIMENSIONAL SYSTEMS: 
DESIGN OF SAKAWA CONTROLLERS. 

PART II

S. K. K o r o v i n , M. G. N i k i t i n a  a n d  S. V. N i k i t i n

(M o s c o w )

(Received Decem ber 27, 1989)

In  th is  p a p e r the  design of a  finite-dim ensional Sakawa controller is described. A lower 
estim ate  is proposed for the  d im ension of this co n tro ller in  a  closed-loop infinite-dim ensioned 
system . Case studies are rep o rted  of designing such  finite-dim ensioned controllers, a n d  a  
re la tion  is estab lished  betw een th e  controller p a ram e te rs  and  the  sp e c tra l properties o f th e  
associated  elliptic operator.

1. Introduction

The stabilizability of distributed parameter systems has been investigated in a 
number of papers [2-5, 7, 8,11-14,17-23]. Stabilization criteria have been obtained 
[2, 3, 8] with a finite-dimensional input, and extended to a wider range of processes 
with some conditions on input operator compactness [17]. For finite-dimensional 
input and output systems adaptive controllers [9] and Pi-controllers [15] have been 
obtained. In [10] the stabilizability of parabolic distributed systems, with certain 
conditions imposed on the operator spectrum, is studied through controllability 
and observability analysis of some linear finite-dimensional systems. Existence 
has been proved [11] of stabilizing feedback for a nonlinear oscillatory distributed 
parameter system with a specified indicator of exponential stability. Existence 
has been proved of and an explicit form proposed [19, 20] for finite-dimensional 
stabilizing feedback for an infinite-dimensional system. For these findings to be 
applied, however, the dimension of the controller has to be known which would 
provide the desired exponential stability. This dimension is determined in [21] by 
selection with subsequent computer modeling of the process. In this paper a lower 
estimate is proposed for the dimension of this controller in a closed-loop infinite
dimensional system, case studies are reported of designing such finite-dimensional 
controllers, and the relation is established between the controller parameters and 
spectral properties of the associated elliptic operator.

A k a d é m ia i  Kiadó, B u d a p e s t  
Pergam on  Press, O x ford
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2. D esign of Sakawa controllers

This Section will describe the design of finite-dimensional Sakawa controllers 
[19-21].

A controller has been proposed [19, 20] for the stabilization of distributed 
parameter system. In [21] these methods are used to offset bending oscillations 
of a flexible element in a manipulator tracking the desired path. These papers 
do not, however, provide any estimates of the controller state space dimension 
which depends on feedback gains, the observer parameters as well as on the process 
parameters. The lower estimate of the controller dimension must be known for the 
design.

In this Section this estimate is computed for the Sakawa controller which 
provides //-exponential stability of a closed-loop system. By assumption the input 
of the system £(C, A, B) is finite-dimensional and, therefore, this system is assumed 
to be stabilizable by finite-dimensional feedback.

This stabilizability has been shown [2, 3, 8, 17] possible iff
el) for some 7 G R, 7 < // the subset <r7 =  {A £ cr(A); Re Л > 7} of spectrum 

c (A) is finite and, moreover, the multiplicity of every eigenvalue is also finite and 
can be separated by a simple closed-loop from the remainder of the spectrum <r(A) 
or has a spectral decomposition [3], A = A n  ® Ä n  and H =  ffjv ® Я /v, where N 
is the dimension of the invariant subspace Нм associated with the set <t7;

e2) (Atv, Bn ) is a controllable pair with Bn  =  Pn B, where Pдг: H —>• Нм is 
a natural mapping of H on Hn \

e3) A n  — {I — Pn )A is an infinitesimal generator of a 7-exponentially stable 
semi-group еАыТ or a negative 7-type of a semi-group.

In the design of finite-dimensional linear stabilizing feedback let us start, as in 
the preceding Section, with a finite-dimensional system E(C, A, B). For this system 
£(C, A, B) linear dynamic and static feedback are designed in various ways. One 
of them is very efficient in stabilizing finite-dimensional approximations of infinite
dimensional systems with a discrete spectrum.

Linear stabilizing output у = Cx feedback has the form

и -  Kz,
z =  Az + BKz  +  L(Cz — y),

where the operators K:CN —> Cm and L: C1 —► are chosen so as to make
systems

x = (A + BK)x,  
z = (A + LC)z

//-exponential.
Let us show the parameters К and L are related with the spectral properties 

of the operator A, in particular its resolvent 7?(A, A) = (XI — A)-1 .
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Theorem 1. Any number Л G <т(А + BK) \  (т(А) satisfies the relation 

det(L -  KR(X,A)B)  =  0

and the eigenvectors £(A) associated with this A are computed by the formula

£(А) = Я(А,Л)ВС, (1)

where (  is some nontrivial solution of the system of equations

C = KR(X,A)BC  (2)

If A G a(A +  BK)  П <r(A), then the associated eigenvector £(A) satisfies the 
relations

(i(X),BKZ( A)> = 0,

where £(A) is any solution of the equation (А/ — A*)£(A) = 0.
Proof. If A G cr(A + BK) \  cr(A) and (A + BK)£(X) = A£(A), then

*(A) = R(X, А)ВКЦ(A), K£(X) ф 0, (3)

because in the opposite case A G <r(A). Left-multiplying (3) by К we can see that 
the homogeneous system of linear equations

(I -  KR(X,A)BK  = 0

has a nontrivial solution (  = A£(A). Consequently, with det(7 — KR(X, A)B) = 0 
with A G cr(A + BK) \  <r(A).

Let us check that with A G cr(A + BK) \  cr(A) the eigenvector £(A) is com
puted by formulas (1) and (2). It is easily seen that (XI -  ( A  + BK))R(X,A)£ — 
— BKR(X, A)BC, — 0. This proves the truth of formula (1).

If A G <t(A + BK)  П tr(A) then

BA£(A) = (A/-A)£(A). (4)

Because det(AL — A) = 0 the system (4) is solvable iff for any solution £(A) of the 
adjoint equation (XI — A*)£(A) = 0. It is true that <̂ £(A), BA’£(A)^ — 0, which 
proves the Theorem.

Theorem 1 is formulated in a most straightforward way when the input is 
one-dimensional, or В = 6 G C". More specifically, the following proposition is 
true.

Corollary 1. If the input is one-dimensional, then
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1) any number Л £ a(A + bk) \  a(A) satisfies the relation (k, R(А, А)Ь)к — 1,
and the eigenvector £(A) associated with this A is computed by the formula £(A) =

N

= R(X,A)b, with (p,q)K = ^ P i? i  hereafter;
t—i

2) if A 6 cr(A + &fc) П<г(А) then the associated eigenvector satisfies the relation

• < * , £ ( * ) ) «  =  o ,

where £(A) is any solution of the equation (XI — A*)£(A) = 0.
Propositions following from the Theorem 1 and Corollary 1 are naturally true 

which lead to the same results for the system z = Az + LCz.  Let us use these results 
to compute the dimension of the Sakawa controllers for /i-exponential stabilizability 
of the infinite-dimensional system E(C, A, b), where C € H , b £ H . Recall the main 
stages of the design of Sakawa controllers.

Operator A is assumed to have no multiple eigenvalues and satisfy al)-a3) 
[23], el)-e3) and ReAn —*• —oo as n —* oo. Then elements of cr(A) are enumerated

Re Ai > Re A2 > Re A3 > . . .  > Re A„ > 0 > Re A„+i > . . .  (5)

A Sakawa controller is designed for a fixed ц  £ R. The system with this 
controller in the closed-loop is required to be p-exponentially stable. The design 
proceeds in the following stages.

Stage 1. Under the conditions of (5) and with ReA„ —* —oo as n —► oo, 
choose a natural N  such that with n >  N,  ReAn < ц.

Stage 2. The spectral decomposition of A is A = A n 0  A ^ , H — Hn  ® Ядг, 
where N  is chosen at Stage 1. For a finite-dimensional system E(CV, Ajv, bn) (here 
Cjv = Pn C, btf = Pfi/b, and Pn '-H —+ Hк  is a natural mapping ) a stabilizing 
dynamic feedback is designed

N

u -
1=1

i  = ANz + bNu + IN ('^2cizi — у J , 
'T — 1 '

( 6)

where the parameters (jkj,. . . ,  Jfejy) and (l\, ■ ■ ■ J n ) T  are chosen by conventional 
methods [1] so as to make the closed-loop A-dimensional system p-exponentially

OO

stable and, as before, (c,x)* is understood as the sum ' ^ a x i  or у = (с, г)«.
: = 1

TOO
w p ' l  , , y

Vto
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Stage 3. The feedback (6) is modified 

N

u = E * * 2«’
»=1

Z  =  A f i f + m Z  +  b N + m U  +  l N  ( 2̂ ° i z i -  У ) ,
TV+m
£
t =  l

(7)

where /^  denotes an (N + m)-dimensional vector whose first N  coordinates are 
(h, ■ ■ ■) In )T and the latter m ones are zero, z £ CN+m, and A  = Ду+т 0  Ä ^ +m 
is the associated spectral decomposition of A.  This dynamic feedback is referred to 
as a Sakawa controller [19]. It has been shown in [19, 20] that the feedback system 
E(C, A, B) is /i-exponentially stable for m being fairly large.

Let us determine the lower estimate of m with which //-exponential stability 
is ensured for the closed-loop system.

T heorem 2. For the system E(C, A , b ) ,  (C , b  £  H )  conditions al)-a3) [23] 
hold, in (5) the elements of o- ( A)  are enumerated and ReAn —► —oo as n  —* oo 
or, for any fixed // £ R, there exists Ajy such that ReAjy < // and if the system 
£(C jv, Apfjbpf) is controllable and observable, then there exists a Sakawa controller 
(7) which //-exponentially stabilizes the system £(C, A ,  b) when the natural number 
m satisfies the conditions

N

£  1
i =  1

N C{liy >
á t  (A; -A O 2

N

+ £
P=1

N  N

E'£ E ^*
ti- 1 i/=i

E l  /  ( (* i -  А„)(л ,-  -  A,)(a>, -  Xj) • f ]  }
/=1 /   ̂ 1=1 J

(8a)

N bi ki
( w p  -  A , ) 2

<
(// Re Адг+т+1)

00
E Ы 2

i/ = 7V+m+l

N£
1=1

N I h\   ̂ */i * fi
á t  (A ,-A ,) " P  /

(/1 — max{maxRewj, max Re A;})2

+  N  <

(8b)

E  IM2
i /= N + m + 1

with bi = (6,£(A,)) and с* = (c,f(Aj)), where (•, •) is a scalar product in H, £(A,) is 
the eigenvector of the operator A associated with A* £ <т(А), — (кг, k^)  and
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lN = (/x, . . . ,  lN)T are parameters of the feedback and the controller, respectively. 
N  is chosen so that Re Aw < /i{Ai,. . . ,  Xn } are eigenvalues of the operator An + 
+1n Cn , {wi > • • • t w7v} are the eigenvalues of the operator A n + 6;vfc/v; it is assumed 
that

[{Ab ... ,Äjv}] U {a»!,... ,wjv}] П cr(A) = 0, Ä{ ф А; , и, ф u>j

with i ф j  and {Ai,. . . ,  Ajv}] П { ц , . . . ,  wjv} =  0-
Proof. From a3) it follows that a basis { (̂A;)},“ ! can be chosen in H  where 

{А,}^1 is the spectrum of the operator A with the enumeration (5). Let the 
parameters Icn and In and natural numbers N  and m be such that are formulated 
in the Theorem. The system £(C, A, 6) in the basis {^A«)}?^ is represented in the 
form:

/ N + m

Zi = AiZi + bi(kN, z)e CiZi
'  i=i

Zj = AjZj + bj(fcjv) 2)ki 

x u — \ vxv -}- bu(kjsj) *)r i

%/i =  X^ Xß -j- bß (kfif , 2̂ )r ,
0 0

г =  1 , 2 , . . .  .iV,

j  =  N  +  + m,

1/ = 1 ,.. , ,N  + m,

H = N  + m + 1 ,.. . ,  00,

}  '  — ( c N + m  , X N + m  )jS T  (cN + m  , % N + m ) t l  ,
i/=l

where xjv+rTl = (xN+m+1, ...)  and хдг+т  =  (x1, . . . .  xN+m). Following the substi
tution a  =  ZN + m  — x N + m  , C =  X N + m , and X N + m  =  X N + m ,  the equations of the 
system take the form

,  N  N + m  4

d ,  — A jO j  +  l, ( Cj T  ^   ̂ C{Oti J Ii ( x N +m  , CN  + m  ) IK : i 1)
4 = 1  «=N-1-1 '

áj = \jOtj, j  = N + 1 , .. . ,  N  + m, (9b)
Ő = Aj Cj + bj((kN,a)K + (kN,C)k), j  = l , . . . , N  + m, (9c)
i j  =  \ j i j  + bj((kN,oi)u + (fcjv,C)n), j  — N  + m +  1, . . .  oo. (9d)

Because Re Ajv+i < /1 the system (9) is exponentially stable iff so is the system

£ =  S n £  +  /jV (c/V +m , X N + m )«  , 

xj =  AjXj +  bj(kN,0 * . J — N + m +  1, . . .  oo,

where £ =  (a,£)T, &n = (Jbi,. . . ,  Jkjv,lbi, • • •« &iv) and the matrix is block-wise

/  — £0(A) + (ncn I 0 \
S n  =

V f>N̂ N I —£q(A ) +  6дгАглг/
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where

U A )  = I
/  ш — Ai

° )
, A = {Ai,. . . ,  Адг}

\l  0 Ш — Адг /

The eigenvalues of the operator Sn '.C2N —+ C2N are or a spectrum
associated with the vector /дj are {A ,}^ П er(A) = 0 and it follows from Corollary 
1 of Theorem 1 that {A,}-^ are roots of the equation

(ciV,£j~1(A)/;v)iis = 1,

where {w j}^ are eigenvalues associated with the vector fcjv, or roots of the equa
tion

( f c / v , £ - 1 (A)6jv) iR  =  1.

The eigenvalues of the operator Sn are assumed to be enumerated in the 
order in which they are listed. Let Едг be a matrix whose columns are eigenvectors 
of the operator Sn , or Sjv =  {£i,...  ,£2iv} or

c c. — Í  Ai£i, with 1 < i < N  
N ' 1 £ >  1 with N + 1 < i < 2N.

Then the rows fo the matrix E^ 1 are transposed eigenvectors of the operator 
Sj/ (where T  denotes transposition, (S,j)T = Sji). Indeed, if Sj^yj = then

2N

(Tj>£) и ^ — {S ,(,и)л — {jj ! Sn £v)k — " Kv 6 сг(5'лг).\ij Hj Hj»=1

Consequently, if х„ ф then (jj,£v)s — 0 and (yj,£i,)w Ф 0 with xu — The 
latter follows from the fact that the vectors {£г} ^  are linearly independent. In 
the light of the above, {7, }?^ can be taken such that (7» ,£j )b = 0 with i ф j  and 
(7<>£•)« = 1- Then hi \

—лт* —
\7  I n )

The matrices Едт and Ед,1 are computed by using Corollary 1 of Theorem 1.
'

(  0 ^
>

61
(  q ' W i N  \ Wit — Ai
{ B £ r \ u ) B L4 n(kn, S ; 4 n) ) >=_

bN
\ u>k — Адг / k=TN,
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<
U *  -  Ax CiV ° ) Í e - ^

-1
Afc Aj J O* A.)

T  _ V  N

k = l , N _

7( А £ ; ^ ) А - ' Ы ь * , е ^ ( \ ) к п ) )  ( s - H W n f  E  Ä  

where the matices .4, ß, and «4-1 , B~l have the form

,

i = l , N

(  h /  ft. fti \

A i  — Ai A N — Ai ш\ — A i U>N — A l

A =
In In

, ß  =
бдг 6л1

V A i  — Aaí Адг — Адг / \  u\  — Адг w/v — Ajv /

( B ~ y  =
/  * i  \ / к\ \

u\ — Ai

kfj
( E - h *  )
V i= i  (w i  — A , ) 2 /

-1

\  U \  — Адг J

M _1)T =
(  -  1 \

A i - A i

c j v

. ' A i  — A fsj /

f  Cjlj  4 - 1 
i t l  (A i  -  A , ) 2

^ д г  —Ai

kN
UN - Адг

Cl

Ajv - Ai

c' n
Адг - Адг

JV A.Í..
E  * ’<=i (wjv -  Aj)2

- l

N  r í .

E  7Г
i = i  (A tv -  A , ) 2

- l
.

Once the coordinates p — E are changed, the matrix of the operator Spj becomes 
diagonal and the system equations take the form

A  о \

p = *N
U>i P “b  ^  ( cN + m  ) %дг+гп)|й '

V 0 Lltf )
i j  =  A j i j  + bj (ETkN,p)K, j  =  N + m +  1, . .  .oo; /„ =  (/b .. - J n J i ,- ■ ■ J n )T ■

Take the Lyapunov function in the form V = (||р|| + рлг+т||), where ||p||2 = (р,р)ш 
and ||ждг+ т ||2 = (xfj+mlijv+m)*- Having differentiated it by virtue of the system 
we have

dV
dt < ^max|maxReAi,maxRew,j- +  ||6,V+m|| • \\^TNkN\\) • ||p||-

-f ( R e j  ■+■ I |̂ 7V-4-m 11 * 11 “ TV ^v||) ’ II^N+m||-
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Consequently, if

R-eA^ +m+1 + ||cjv+m|| • Р л /M I  < M>

max I  max Re \ it maxRew,| + ||6м+ т || • ||НХ'&лг|| < Mi
( 10)

dVthen —— < nV, or the system is /i-exponentially stable. From the latter twoat _
inequalities a natural number m is chosen. For this purpose squares of the norms 
II—̂ л г ||2 and llE^/jvll2 are computed. We have

N

ii-nMi2 = X
N

N

У! — A )̂
t=i /t=i

jv t
* i + X xí)

i /  =  l  i  =  l

IH^/n II2 = X l  /  £ > * / &  -  A,)2 +  X
j=l ' 1 = 1 p= 1

xX! /  ((V W i-A ^r^)í^/ft-A i)2}
j=i ' 1 !=i J

N

x X M ./ ( w p -A ,) :

+ Af,

tv лг
X ̂ ' X ^ x
/1=1 1/=1

N

1=1

From these relations and inequalities (10) follows the truth of the Theorem.
This theorem makes it possible to analyse the stabilizability of and design 

stabilization algorithms for a wide range of systems. In the following Sections 
examples are provided illustrating the application of the results. For computation 
inequalities (8) have to be made cruder and the computation simpler. It is easily 
shown that for P £ M I2, P * 1 ijvll2 the following estimates hold

'H ^ H 2 < N 1Ы М 1М 12
p2(A,A)

N

1 + X ( m(A, wv)
N

N

Рл/Ы12 < X
;=i

N

X e A / f t - A ,)3
i=i

X ^ V K -  AM)2 +N,
i/=i n=i /
- 2  N  N

+ X X i m i 4 - m 2 - i m 2x (и )
p=1j=i

Р4(А,А)р2(ыД)
N

X ^ / ( Í í - A . ) :
* =  1

N

X W . / ( ^ -  A,)2
i = i

— l

x
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where р(ш, A) = min Iw; — А,-1.
l < i , j < N  3

Conditions (8) may be simplified by using these equations.

3. Examples

Take up diffusional equations 

dv d2v
f t = W + n v )  + 9{x)u’

u(0, t) = v(tt, t) = 0 at any t > 0, 
u(x,0) = <p(x) with any x £ (0,ir),

( 12)

л
2 f

у = — I p{x)vdx is the system output. Functions g(x) and p(x) reflect the prop- 
o

erties of the input and output, respectively, or the resolution of the measuring 
equipment and the nature of the control action. Function / ( v) is assumed to be 
uniformly Lipschitz, or |/(u)| < F\v\ with any v £ R where F £ R+ .

It is assumed that g(x) and p(x) belong to, at least, £ 2(0, 7r) and tp(x) £ 
£ # 2(0,7r). Then solution of the problem (12) is understood in a generalized sense. 
Design a Sakawa controller for the system (12) in the case of

p(x) = 10 sin x + f -  J sin ix,
i =  2

00 ( 1g(x) = 5 sinx + ^  ( -

F =  1.
1=2

It is required to stabilize the system (12) /i-exponentially with p — —2. To do 
this it is sufficient to design /i-exponentially stabilizing feedback for the linear part 
of the system (12) assuming that p = —3. The Hilbert space H will be 0,7r) with

D(A) = {,(0)a scalar product (v,w) = — J  vwdx.  The operator A
0

d2v= u(7r) = 0; — 2 E /-2(0,7r)} is dense everywhere, its spectrum a(A) is discrete, 
<т(Л) = {—n2; n = 1,2,...}  and the eigenfunctions

sinx, sin2x, . . . , sin nx



K O R O V I N  et «I.: I N F I N I T E - D I M E N S I O N A L  S Y S T E M S ,  II 1 0 7

add up to a basis T2(0, ir). In this basis the linear part of the system (12) has the 
form

j T i  = - T l +  5 « ,

< ^ n  = - n 2T „+  ( I )  2 «, n =  2, . . .  oo (13)

» - i o r .  +

Because every subsystem is controllable and external resonance does not occur, 
any TV-dimensional subsystem of the system (13) is controllable and observable. 
Consequently, all conditions of Theorem 2 are met and a Sakawa controller can be 
designed.

Stage 1. For ß = — 3 with n = 2 we have A2 = —4 < —3. Consequently,
TV =  2.

Stage 2. The system £(CV, A/v,&ai) (TV = 2) has the form 

^ Г 1 = - Г 1 + 5„,

± T 2 = - 4 T 2 + ± u , (14)

y =  10T! + - ^ r 2.

Using Corollary 3 of Theorem 3 [23] we see that the system (14) is controllable and 
observable. By conventional techniques the feedback is designed

и  =  - 2 z i  +  2 \ / 3 z 2 ,

2 121 = - z \  + 5u -  -(10zi + -^=z2 -  y),

i2 = -4!, + 7T
The system (14) with this feedback is easily shown to be 3-exponentially stable and 
with the notation of Theorem 2 we have uq = —6, w2 =  —7, Ai = —4, A2 = —5, 
Ai = —1, and A2 = —4.

Stage 3. The natural number m  in (17) must be chosen so that conditions (8) 
of Theorem 2 hold. Using inequalities (11) we have

3

№ » 1 1  < 130, 
l № „ | | <  201604.
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Now, the number m is found from the inequalities

1130 <— oox: (i) u- 1

201604 < ((2 + m + l )2 -  3)2 /
v  =  2 + m + l

v - l

From these inequalities it follows that m > 6. Consequently, the final form of the 
3-exponentially stabilizing feedback is

и - — 2zi -I- 2\/Зг2,
2 / 1Я l l l l

Z i  =  - Z x  +  5  и  -  -  \ 1 0  Z i  +  - Д  z2 +  -  Z3 +  д д  Z4 +  -  z5 +

i ,  = - 4 г ,  + - ^ « ,

i3 = - 9  z3 + i  u,

Zb — —25 Z5 +

l / 1 \
z4 = —16 z4 + и ,  z i  — —49 z7 +  y - j  U,

zg  = -64  Zg + 1
27n/3

Sakawa controllers are designed in a similar way for systems of the form

dv— = Lv + g(x)u,

Bv\dd = 0,

y =  j  p(x)v(t,x)dx, 
n

where L and В are certain linear differential operators and the stationary problem

Lv — 0, 
ön |an = 0

is elliptical.
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Let us now consider the approximate controllability and observability of the 
system

= div k(x) grad v + g(x)u,

u|an = 0, (15)

У= J  p(x)v(t,x)dx, 
n

where Í1 C R" is a limited region with a smooth boundary dCl. The Hilbert 
space H will be the space T2(fi) with a scalar product (v, w) = f  v(x)w(x) dx. In

n
this case al)-a3) [23] are easily shown to hold, where Av = div Ar(ai) grad v and 
D(A) = = 0, Av £ L2(fi)}. It is well known that a(A) = {Ai, Л2, - • ■} is a
discrete set 0 > Ai > A2 > . . .  > An —► —oo as n —* oo and the set of eigenfunctions 
{£(A,)}£i form a base in Тг(^)- In this base the problem (15) re-arranges into

Ti =  —A, Ti +  giU,
CX)

у = Y l piTi'
i = 1

i = 1, 2,. ..oo,

where
OO

» = £ T<*(A<).
1 =  1

divAr(x)grad^(Aj) = A,-í(Aj), (16)
í(A,)|an = 0,

Pi =  / p(x)i ( \ i )dx,  gi =  f  g(x)£(\ i )dx.  
n n

For this system all conditions of Theorem 3 [23] are met and so the system is 
approximately controllable and observable iff for any N  the system

Ti = -  A,!) + д{и, i = 1 ,2 ,. . . ,  N,
N

у = Y l piTi
i=l

is controllable and observable. The latter is true iff р,- ф 0 and gi ф 0 for any 1,2,.... 
Consequently, the system (20) is approximately controllable and observable iff for 
any natural i

J P(x)£(\i)dx ф 0, J g(x)£(\ i )dx ф 0,
n n

3*
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where £(A,) is a solution of the elliptical boundary-value problem (14).

4. Conclusions

The findings of this paper are applicable to the analysis of a broad class of 
distributed parameter systems. Thus, if the stationary part of the equation system 
is elliptical, then the methods devised above make it possible to investigate its 
controllability and to design, in numerous cases, a finite-dimensional stabilizing 
feedback. Sakawa’s basic ideas not only make it possible to design linear dynamic 
feedbacks such as (5) but also open up vistas for using various well-tried finite
dimensional controllers in infinite-dimensional cases. Thus, infinite-dimensional 
systems under compact uncertainty can be stabilized by using Sakawa modification 
of the adaptive Nussbaum controllers [6, 16] or binary stabilization algorithms. 
Especially promising is the adaptive tuning of the natural parameter m from (5) 
in the case of a nonlinear uniformly Lipschitz disturbance but with the Lipschitz 
constant unknown.
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LUMPED INPUT AND DISTRIBUTED OUTPUT SYSTEMS 
AT THE CONTROL OF DISTRIBUTED PARAMETER SYSTEMS

G. Hulko
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T he p ap er deals w ith  fundam ental p rob lem s of control o f som e classes of D istrib u ted  
P a ra m e te r System s by m eans of Lumped In p u t  an d  D istrib u ted  O u tp u t  System s.

K e y w o rd s :  Lum ped P aram eter S ystem s, D istributed  P a ra m e te r  Systems, D is tr ib u t
ed  In p u t a n d  D istribu ted  O u tp u t  System, L u m p ed  Input a n d  D is tr ib u te d  O u tp u t System , 
D istrib u ted  P aram eter System  of Control.

1. Introduction

Distributed Parameter Systems (DPS) are mostly interpreted as Distribut
ed input and Distributed output Systems (DDS) by means of Partial Differential 
Equations (PDE).

Many times it is advantageous to interpret some classes of DPS as Lumped 
input and Distributed output Systems (LDS), Hulkó, (1979-1990).

LDS is a new concept in Systems and Control theory. The fundamental 
problems of control of some classes of DPS are formulated and soluted by means 
of LDS in the paper.

For illustration some results will be indicated from engineering practice: Self
tuning control of a temperature field at fluidized combustion in energetics.

2. Distributed input and distributed output system s

Systems the state quantities of which are given by quantity fields, by infinite
dimensional quantities or by spatial distributed parameters are DPS.

In the present theory of DPS these systems are mostly interpreted by means 
of PDE. It is well demonstrated, for example by the definition in Systems and 
Control Encyclopedia: “Distributed systems are systems which can be described 
or modelled by partial differential equations.” ; Lions (1987).

Akadémiai Kiadó, Budapest 
Pergamon Press, Oxford
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If we consider state quantities X(x, i)  identical with output quantities Y(x , t )  
then partial differential relations

P[Y(x,t)] = Q[U(x,t)] (2.1)

—at the specified conditions—give in the input/output relation Distributed input 
and Distributed output System (DDS). (Figure 1. x—space axis co-ordinate, t— 
time axis co-ordinate.) The present DPS theory is in fact the theory of DDS.

At attempts of applying DDS theory results principal difficulties arise in cur
rent engineering conditions. For example: How to generate in the direct way the 
infinite-dimensional input quantity U{x,t)l\

3. Lumped input and distributed output system s

The study of the operation of various classes of DPS in technology, the live 
and lifeless nature shows that U(x,t) is very often generated indirectly by means 
of some generators {G,}, = G of distributed input quantities {i/j(a:,t)}j. Then 
U(x,t) — Y,Ui{x,t). Figure 2a, Figure 9, Hulkó, Mikulecky (1984), Hulkó, Kocsis 
(1985), Hulkó et a1. (1985-1988), Hulkó et a1. (1983-1989).

The system between the vector U(f) = {£Л(<)}, and Y(x, t)  is an LDS, Hulkó 
(1987-1990), Figure 2.

Real LDS occurs frequently in practice, when
* the controlled quantity is given as the quantity field Y(x, t)  and
* practically manipulable input quantities are at disposal only as lumped quan

tities {L7,(t)}i, Figure 9.

U l x F )
OPS

/
DDS

Y \ x , t )

) )
Fig. 1. D istribu ted  P aram ete r S y stem  (D PS) as D is tr ib u te d  in p u t a n d  D istrib u ted  o u tp u t 

System  (D D S), U ( x , t ) / Y ( x , t )  — D istrib u ted  In p u t/O u tp u t  Q u an tities

Generally, control problems of LDS can not be solved on the basis of PDE 
theory results.

Let us model the LDS dynamics by Multi Input and Distributed Output 
(MIDO) system:

П
Y(x,k)  = Y , 9 H(x,i,k)®Ui(k),

Í — 1
(3.1)
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a)

Uj(t)
иг»)
u„l t)

DPS
/

L D S

ru,n
c)

Fig. 2. D istrib u ted  P a ram e te r System  (D PS) as Lum ped in p u t a n d  D istribu ted  o u tp u t  System  
(LDS). { t / ,( i)L  =  U (t)  — L um ped inpu t quan titie s; {G ,}, =  G  —  G enerators o f d istribu tedП
in p u t q u an tities: ^  U ,(x ,t)  =■ U (x ,t )  — D is tr ib u te d  input q u an tity ; V ( x , t )  —

>=i
D istribu ted  o u tp u t quantity

Multi Input and Multi Distributed Output (MIMDO) system:

'Y i(M ) ' 'gH(x, l ,k) 'Ux(k)-
= ®

Yn(x ,k)m gH(x,n,k)_ Un(k)_

Multi Input and Multi Output (MIMO) system:

Y i(x i ,k )" ' gH{x i, l ,k) 'V i ( k y
— ®

Yn(Xn) _ gH(xn, n, k) _ Un(k)_

where {gH(x,i,k)}itk are discrete pulse (weighting) characteristics of LDS system 
and of shapers {#,■}< = H: HLDS. “®” is the convolution sum sign, Figures 3, 4. 

Let us introduce the reduced characteristics

{gHR(x, i, k) = gH(x, i, k)/gH(xi, i, 

Figure 4. Let us transcribe models (3.1-3) by means of them:

(3.4)
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Ц ( / г )  Uj[k) U„\k)

F i g .  S .  In p u t/o u tp u t q u a n titie s  of LDS 
an d  p u lse  shapers { / / ,} ,  =  H .  HLDS.

Fig. 4- t-th  d is tr ib u te d  pulse 
characteristics: g H ( x , i , t )

n

У(x, k) = ^2gHR(x , i ,k )gH(xi , i , k )®  Щ(к),
i=i

' Yi(:t,fc)' gHR(x,  l,k) gH(xi,  1, k)
= ®

1--- £ IT ?r-
 

1__ gHR(x,  n, k) gH(x„, n,k) Un(k)_

Y i (* i , k )m ' gH(x i, i,k) ' u w
= ®

Yn(xn) k)" _gH (xn, n, k) Un(k).

(3.5)

(3.6)

(3.7).

So, the HLDS dynamics is decomposed into
* the time, finite-dimensional components (TC):

{gH(xi, i,k)}i=i}n-k , (3.8)

* the space, infinite-dimensional components (SC):

{gHR(x,  t, * ( 3 .9)
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The time component of the output quantity, trajectories {Yi(xt, F)}i, (3.7) 
are given by the time, finite-dimensional components of the HLDS dynamics, (3.8).

Linear combinations of elements of space components of HLDS dynamics, 
(3.9) are shifted on trajectories (3.7) and they give distributed quantities {У)(ж, &)}« •

П

Their sum gives the whole distributed output quantity: Y(x,k)  = Y{(x,k).
»=1

Let us consider the actions of step functions {Ui(k) = l(fc)}i=i,n on the 
MIMDO model inputs at zero steady state. We obtain on the outputs distributed 
transient characteristics {hH(x, i, &)},•,*• Let us define reduced courses of these 
characteristics at t  = oo (Figure 5a).

{hHR(x, i, oo) =  hH(x,i,oo)/hH(xi,i,oo)}i.  (3.10)

At actions of constant input quantities {{/,(oo)},- the output quantity can be ex
pressed on MIDO model output level by means of {hHR(x,  i, oo)},:

П
Y (x, oo) = ^  hHR(x,  i, oo)hH(xi,i,  oo)[/,(oo) =

*=i
n

= ^2hHR(x, i ,oo)Yi(x i,oo), (3.11)
i'=i

F i g .  5 a .

h H R ( x , i , o o )  =  h H ( x , i , o o ) / h H ( x i , i , o o )
F i g .  5 b .  S teady values o f  in p u t/o u tp u t 

q u an titie s
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where {У(х,,оо) = hH(xi, i, oo)C/,(oo)}j are output quantities on the MIMO 
model output level (Figure 5b).

4. LDS control

Let us start from the following Distributed Parameter Discrete Control System 
(DPDCS), Figure 6 in the analysis of fundamental problems of LDS control.

The dynamics of controlled system HLDS is described by discrete MIDO, 
MIMDO, and MIMO models. The output quantity Y(x,k)  is modelled by means 
of a MIDO system in block MHLDS: YM(x,k) .  At the same time, the relation

Y(x,k)  = YM(x,k)  (4.1)

is assumed. The sampling “K ” is considered only in time discretion.
Let us start from the following formulation of control task according to limited 

extent of this paper:
FR: The aim of the LDS control is to secure that at disturbances and desired 

quantity changes
a: In “x” direction the controlled system output quantity — on MIDO model 

output level; in time t = oo: У(х, oo) will in the ^-neighbourhood of the 
steady desired quantity IT(x,oo)

||VF(x,oo) -  У(х,оо)|| = ||£7(ж, oo)|| < <5. (4.2)

where 6 is a given real positive number and 
в: in time direction the control process is of prescribed quality. For example 

{Ei(xi, oo) = 0 } j-i>n on the MIMO model output values level.
First let us solve this elementary task:

FI: The aim of the LDS control is to transfer of the distributed output quantity 
from the infinite-dimensional steady-state value: У(х,оо) = 0 

a: in “x” direction into ^-neighbourhood of the desired quantity 1У(х,оо); on 
the MIDO model output level

||W(x,oo) -  Y(x,oo)|| = ||£'(x,oo)|| < 6 (4.3)

when 6 is a given real positive number and 
ß : in the time direction so that { É í ( x í , оо)}*=1)П on the MIMO model output 

values level.
T h e o r e m  TFI. Let the controlled HLDS dynamics be represented by discrete 

MIDO, MIMDO, and MIMO models. The control problem FI has the solution in 
DPDCS, (Figure 6) if

a  : ||VF(x,oo) — E E6i( l (hHR)x, i ,oо )II < 6 (4.4)
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Fig. 6a. D iscrete D istribu ted  P a ra m e te r System  of C o n tro l: T C /S C  —  T im e/S p ace  C om ponen ts 
of HLDS dynamics; T S /S S  — T im e/S pace  C om ponets of C on tro l Synthesis

Fig. 6b. i- th  lum ped  control system  fro m  th e  set { g H (x , , г, к)-, Яг},

and

ß  : regulators {Ä,}i=i >n are of PI (proportional and integral) type.

In the followings the constructive proof of the assertions of the theorem is 
given from the assumptions. With regard to the limited extent of this paper it is 
assumed that the used mathematical objects have the necessary properties for the 
considered operations. At the same time these operations and formulated problems 
indeed have solutions. For example, the i-controllability is assumed at the given 
control task. The problems of controllability is not studied here. Changes of 
the desired quantity and disturbances are assumed as distributed step functions. 
Further, the suitable relation between the sampling interval T  and sampling time 
r  is assumed.
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Proof. DPDCS is in zero steady-state in point “0”:

{M (0 )} i =  U(0) =  {tt(0)}i = o, (4.5)

W(x,  0) = E(x,  0) = Z(x,  0) = V(x, 0) = Y(x, 0) = Y M ( x , 0) = 0. (4.6)

A distributed step function of desired quantity VF(x,l) =  VF(x,<) = W(x,oo) 
operates on the DPDCS in the first sampling interval 1 = (0,1), Figure 7. Then in 
point 1 we obtain:

W (x,l) = W (x,l) = W(x,  oo); (4.7)

further,
£7(x,l) = W(x,  1) =  W(x,  oo). (4.8)

Let the following quantities be defined:

Д£'(х, к) = E(x,k) — E(x,k — 1), (4.9)
AYM(x ,  k) = YM(x,  к) -  YM(x,  к -  1). (4.10)

These quantities are compared in block ▲:

Z(x, k) = AE(x,  k) +  AYM(x ,  k). (4.11)

Fig. 7. C hanges o f d is trib u ted  d is tu rb an ces and  desired  qu an titie s
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Then we obtain on the output of this block:

Z(x,  1) = E(x,  1) =  W(x,oo). (4.12)

Let us solve this approximation task in block SS

П
\\Z(x,l) -  E6i(l)hHR(x,  i, oo)|| < 6. (4.13)

>=i

This task has the solution according to relations (4.4), (4.12) and it gives the vector

t 6 i(í) = {É61( \ ) , . . . , É6n(\)}. (4.14)

At the same time the approximation deviation is R(x,  1), Figure 8a. Compo
nents of this vector give lumped desired quantities of single discrete control loops 
{gH(xi,i,k); Ri}i in block TS, Figure 6b:

{wi(i) = M -(i)}i- (415)

The vector of the lumped input quantities:

U(2) = {C/1(2),...,C/„(2)} (4.16)

is obtained from these discrete loops for interval 2 = (1,2). The MIMO model is 
diagonal, therefore, the single components {[/;(2)}i are obtained from single one
dimensional discrete control loops {gH(xi, i, k); R,},, Figure 6b. We obtain, after 
applying vector U(2) in interval 2, in point 2:

E(x,2) = W(x,oo) — Y(x,2). (4.17)

Further, by relations (4.9), (4.10), (4.12):

AE(x,  2) = E{x, 2) -  E(x, 1) = W(x,  oo) -  Y (x, 2) -  W{x,  oc) = (4.18) 
= - Y ( x ,  2)

AYM(x,2)  = Y M ( x , 2 ) - Y M ( x , l ) .  (4.19)

Since U (l) = 0 and УM(x, 1) = 0 then

AYM(x,2)  = YM(x,2) .  (4.20)

Comparing AE(x,  2) and AYM(x ,  2) we obtain:

AE(x,2)  + AYM(x,2)  = - Y ( x ,  2) + У M(x,  2) = Z(x,  2). (4.21)
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1*4*,°°) = f (X, 1 ) = Z(*,1 )

With regard to relation (4.1)
Z(x, 2) =  0. (4.22)

The SS block input quantity is zero, therefore, the output quantity is zero, too. 
The the lumped desired quantities {W,(Ar)}, * remain unchanged in block TS:

{Wi( 2) = Wi( 1) =  É6í(1)}í . (4.23)

At this procedure it holds for the further steps к = 3 ,4 ,...

{Z(x,ik) = 0}; k = 3 ,4 ,... (4.24)

{Wi(*) = Wi(l) = ... = £ ii( l)} ; * = 3 ,4 ,...  (4.25)

On the basis of PI type of regulator {Äj}i we obtain in t —» oo on the MIMO level, 
Figure 6b:

{*;•(*,•, oo) =  Wi(oo) = . ..  =  w ,(l) = M (l)} ,'. (4.26)

On the MIDO model output level this means:
П П

У (*,00) =  ^ 2  Yi(xi, oo)hHR(x, i, oo) =  ^  E6i(l)hHR(x,  i, oo); (4.27) 
«=1 «=1

(Figure 8b). So, with regard to relation (4.4) FI: a holds:

||W(x,oo)-y(*,oo)|| < <5-
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With regard to relation (4.26) the following relations hold in control loops 
{gH(xi,i, k); P ,},:

É i ( x i , o o )  =  W i -  Y i ( x i ,  oo) = É 6 i (  1) -  Y í ( x í , oo) = 0};. (4.28)

This means that FI: ß also hold, Figure 8b. ■
Let us show that DPDCS gives the solution of the more general problem FR:, 

too. Starting out from the solution of FI: Up to interval “k” let the DPDCS operate 
so that at the proof of Theorem TFI a disturbance P(x,k) appears on the HLDS 
output in this interval, Figure 7. Then we obtain in point “k":

E(x, k) — W(x,oo) — Y(x,k)  — P(x, k). (4-29)

Since

E ( x , k -  1) = W [ x , o o ) - Y { x , k -  1), (4.30)
ДУМ(х, к) = YM(x,  к) -  YM(x,  к -  1) (4.31)

for
AE(x,  k) + AYM(x,  k) =  —P(x,k). (4.32)

In point “jfc” Z(x,k)  is given by

Z(x,k)  = - P( x , k )  + R(x, l).  (4.33)

In point “fc” Z(x,k)  is approximated in block SS and a vector {P6,(fc)}t is ob
tained. Lumped desired quantities are modified in control loops of block TS: 
{gH(xi,i,k); R i } i , Figure 6b.

{Wi(k) = M -(l) +  ÉSi(k)}i (4.34)

and U(k + 1) is generated, etc.
П

The deviation between Z(x,k)  and ^  E6i(k)hHR(i, koo) let be marked by
1 = 1

R(x,k).  Then this deviation is added to the further distributed disturbance, which 
acts e.g. in the interval h (Л > к): Q(x,h)

Z(x, h) = —Q(x, h) +  R(x, h) (4.35)

etc.
Further, changes of the desired quantity: W(x,p) , . . .  ,W(x,q) ,  p > h, are 

evaluated by the above scheme, too. These distributed step functions act in further 
time intervals on DPDCS. Then the steady distributed desired quantity is

?
W(x,oo) = VU(x,r), (4.36)

Г — 1

4
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where q is a finite integer.
This means that the relation

I\W{x, oo) -  Y(x,  oo)|| = ||£ (x , oo)|| < 6 (4.37)

is fulfilled in time t —► oo at the action of further disturbances of desired quantities. 
This finally, means the FR: a fulfilment.

At the control, on the MIMO level, given conditions are held, which refer to 
PI type of regulators { Äi},:

Ei(xi, oo) — W,(oo) — У)(х,-,оо) - 0 (4.38)

in time direction. It means that FR: ß hold.
The approximated values Ya(x,  k) ,YMa(x,  к), gHRa(x, i, fc), hHRa(x, i, oo), 

. ..  etc. are considered, when “7\” is for space/time sampling. The given accuracy 
of the approximation e is secured by an appropriorate choise of sampling in space 
direction {zj}j, Figure 4:

||Уa(x, к) -  У (*, jfc)|| = IIYMa(x,  к) -  YM{x,  fc)|| < c. 

Then tasks of further type are solved, instead of type (4.13);

W(x,oo) -]TE6i (k)hHRa(x , i ,oc)
t = 1

< S — e.

(4.39)

(4.40)

(The control deviation E(x,k)  is continuously evaluated in practice in block 
at A  the control process. When e.g. ||jE7(x , o o ) | |  > 6 at some steady-state then the 
output quantity of A is considered:

Z(x,  oo) = E(x,  oo),

etc.)

5. S e lf-tu n in g  con tro l o f  tem p era tu re  f ie ld s  at f lu id iz e d  co m b u stio n  in
en erg etic s

The concise example of self-tuning control of fluidized fireplace as LDS is 
indicated in this Section, Hulkó et al. (1983-89). This problem can not be solved 
on the basis of PDE theory. Here we show the possibility of PDE utilization to a 
priori information expression.

Large quantity of sulphur is often produced at the low-grade fuel combustion 
in the fluidized layer, Figure 9. It considerably deteriorates the quantity of envi- 
roment by emissions into the atmosphere and devastates the nature, for example,
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ttt ftt ttt
l/,(f) • • • Ui ( f )  ■ ■ • Un [ t )

Fig. 9. S ta tio n ary  fluidized layer in  fireplace w ith  p n eum atic  haulage: t/,(< ) — supplied q u an tity  
of fuel an d  additives, «'-th lu m p ed  input quan tity ; G, — t- th  subsystem  of pneum atic hau lage,

П

t- th  genera to r of th e  d is tr ib u te d  in p u t quan tity : Ul (x , <); U (x ,t )  — ^  U ,(x ,t)  — d is tr ib u te
t=  1

in p u t q uan tity ; FL — fluidized layer; P  — high-pressure  p a r ts  o f s team  generator;
•  — m easuring  p o in ts : x \ , . . x m ; Y (x, £) — tem p e ra tu re  field o f th e  fluidized layer,

d istribu ted  o u tp u t q u an tity

in the form of acid rains. The effective desulfurization is reached by suitable cal
careous additives at the optimum desulphurization temperature Topt- The control 
of temperature field will be solved by a system of self-tuning control because of the 
considerable fluctuation of the low-grade fuel calorific value.

Let us interpret the fluidized fireplace as an LDS, Figures 2, 9. Let us represent 
the FL as DDS. Its dynamics is approximated by a parabolic PDE of second order. 
Let us relate the Green function G(x,£,t) to this PDE.

The dynamics of generators {G;}, let be given, for example, by relation:

I

Ui ( x , t )  =  J  G i ( x , i , T ) U i ( T ) d r (5.1)

Then distributed weighting characteristics of LDS are

L

g(x, i,t) = J G(x, t , t )Gi(Z, i , t )dt (5.2)

which represent the controlled system’s a priori information.
The actual courses of {gH(xi, i, F)},- and {hHR(x,  i, oo)}t- are determined by 

on-line identification procedures.

4:
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Fig. 1 Oa. S tead y -s ta te  of tem p era tu re  
field a t se lf-tun ing  control

Fig. 10b. D erivation  of con tro l a t  х 'з: Tapi —  
У ( х з ,к )  =  Е (х з ,к ) .  P I  —  prelim inary  

identification; S.T. C O N T R O L  —  self-tuning 
contro l

Tasks of self-tuning control synthesis are solved in Section 4.
Typical courses of controlled quantities are shown in Figure 10 at self-tuning 

control of fluidized fireplace.

6. Conclusion

Fundamental problems of control of some classes of DPS are analysed by 
means of LDS in this paper. LDS is a new concept of system and control theory. 
DPDCS was designed for quantity fields control i.e. control of DPS.

Further results and research on these fundamental structures lead to
* MIDO, MIMDO and MIMO systems/models identification;
* LDS deterministic, stochastic, and adaptive control, control of nonlinear LDS;
* optimal design of machines and machineries for quantity fields interactions as 

distributed objects;
* algorithmization of tasks of optimal control and optimal design problems, 

Hulkó (1979-90).
These are only the basic structures of LDS theory but already these results 

give for the control practice of various classes of DPS the same possibilities which 
are at the diposal for the control of lumped parameter systems.



H U L K Ó :  L U M P E D  I N P U T  A ND D I S T R I B U T E D  O U T P U T  S Y S T E M S 1 2 7

References

1. B utkovskij, A . G., C haracteristics of D istribu ted  P a ra m e te r System s, N auka, Moskow, 1979 
(in  R ussian).

2. Lions, J. L ., In : Systems an d  C on tro l Encyclopedia —  C om prehensive u se r ’s guide, Pergam on 
Press, O xford, 1987.

3. Hulkó, G., O n  N onparam etric  R epresen tation  of D istrib u ted  P a ra m e te r System s, Proc. 5 th  
IFAC Sym posium  on Identification  an d  Systems P a ra m e te r  E stim a tio n , D arm stad t, 1979.

4. Hulkó, G., Sapák , L., On M ultilevel D ecom position of D istrib u ted  P a ra m e te r  System s, P roc. 
2nd IFAC Sym posium  on L arge Scale Systems T heory  a n d  A pplications, Toulouse, 1980.

5. Hulkó, G., R ohal-Ilkiv , B ., Sapák, L., On A daptive C ontro l of D istr ib u ted  P aram e te r System s, 
P reprin ts 8 th  W orld Congress o f IFAC, Kyoto, 1981.

6. Hulkó, G., Sapák , L., R ohaí-líkiv , B ., Towards New A daptive  C ontrol A lgorithm s for D is trib u t
ed P a ram e te r System s, P rep rin ts  IFAC W orkshop on A daptive  C ontro l a n d  Signal Processing, 
San Fransisco, 1983.

7. Hulkó, G., M iku lecky, M ., D is tr ib u te d  and  N o n param etric  M odels of B lood C irculation  a n d  
H epatob iliary  T ransport, In: P re p rin ts  “In terna tiona l Sym posium  on M ath em atica l M odelling 
of Liver Dye E xcertion” , Sm olenice, Czechoslovakia, 1984.

8. Hulkó, G., D istrib u ted  P a ra m e te r System  — H ierarchical C ontrol, In: P re p rin ts  of E u ropean  
W orkshop on  th e  Real T im e C o n tro l of Large Settle System s, P a tra s , 1984.

9. Hulkó, G., K ocsis, M., Q uan tity  fields control in nu c lear energy, In: P re p rin ts  of “A utom atized  
system s of co n tro l in  nuclear energy sym posium ” , T ale , Czechoslovakia, 1985.

10. Hulkó, G., C on tro l of D istrib u ted  Param ete r System s by  M eans M u lti-In p u t an d  M ulti D is
trib u ted  O u tp u t  System s, P re p rin ts  10th W orld C ongress of IFAC, M ünchen, 1987.

11. Hulkó, G., D istrib u ted  P a ra m e te r  System s C ontro l by  M eans of M u lti-In p u t and M ulti D is
trib u te d  O u tp u t  Systems L, II., P roc. IM A C S/IFA C  Sym posium  “D is tr ib u ted  P a ram e te r 
System s ’87” , Hiroshim a, 1987.

12. Hulkó, G., C o n tro l of L um ped In p u t and D istrib u ted  O u tp u t System s, P re p rin ts  5 th  IF A C / 
IM A C S /IF IP  Sym posium  on  C o n tro l of D istribu ted  P a ra m e te r System s, Perp ignan , 1989.

13. Hulkó, G. e t a  I., Identification of Lum ped Input a n d  D istrib u ted  O u tp u t System s, P rep rin ts  
5 th  IF A C /IM A C S /IF IP  Sym posium  on  Control of D is tr ib u ted  P a ra m e te r System s, Perp ignan , 
1989.

14. Hulkó, G. e t a 1., New Engineering  M ethods for Q u an tities  Fields —  D istrib u ted  P a ram e te r 
System s C on tro l, P reprin ts o f IFAC Sym posium  on Low Cost A u to m atio n , M ilano, 1989.

15. Hulkó, G. e t a 1., Control of rolling-m ill h eat furnaces as d is tr ib u ted  p a ra m e te r  system s, R e
search p ro g ram  reports, B ratislava, 1985-88.

16. Hulkó, G. e t al., T em pera tu re  fields control of fluidized fireplaces, R esearch  program  re p o rts  
for Slovak E nerge tic  E ngineering W orks, B ratislava, 1983-88.

17. Hulkó, G. e t al., C om puter-A ided Design of D istrib u ted  P a ram e te r System s of C ontrol, 1 1 th  
W orld C ongress of IFAC, T allinn , 1990 (accepted for p resen ta tion ).



1 2 8 H ULKÓ : L U M P E D  I N P U T  A N D  D I S T R I B U T E D  O U T P U T  S Y S T E M S

С и стем ы  со сосредоточенн ы м  вх о д о м  и р асп р ед ел ен н ы м  вы х о д о м  
п ри  у п р ав л ен и и  си стем ам и  с р а с п р е д е л е н н ы м и  п ар ам ет р ам и

Г. ХУЛКО

(Б р а т и с л а в а )

В с т а т ь е  изло ж ен а  н о в а я  концепция у п р а в л ен и я  с и с т е м а м и  с р асп р ед ел ен н ы м и  
п а р а м е тр а м и  на базе си стем  со  с о ср ед о то ч ен н ы м  входом  и с р а сп р е д е л ен н ы м  вы х о 
дом .

G. Hulkó
Department of Automatic Control and Measurements
Slovak Technical University
Nám. Slobody, c. 17
812 31 Bratislava, Czechoslovakia



Problems of Control and In form ation  Theory, Vol. 20(2), pp. 12 9 -1 4 3  (1991)

ON THE CONSTRUCTION OF SOLUTION TO NONREGULAR 
PROBLEMS OF OPTIMAL CONTROL

A. G. C h e n t s o v

( S v e r d lo v s k )

(Received Ja n u a ry  20, 1990)

In  th is paper a  problem  of a sy m p to tica l o p tim iza tion  under p e rtu rb e d  constra in ts 
is investigated . C ond itions of partial s ta b ili ty  and non-sensitiv ity  with resp ec t to  certain  
kinds o f p e rtu rb a tio n s  a re  obtained. A co rrec t extension in  a  special class of vector-valued 
fm itely-additive m easures is suggested; n a tu ra l  relations betw een  exact, generalized  and 
approx im ate  solutions a re  stated; the  re la tio n s  are expressed  in term s of c losures o f adm is
sible se ts  an d  the  se ts o f optim al and  “a lm o s t” optim al so lu tions. A pplications to  certain  
problem s of optim al co n tro l are considered.

1. Introduction

The need to investigate extremal problems with approximate methods, to re
alize algorithms under conditions deviating from “nominal” ones, to seek a priori 
estimations for the result and its dependence on the parameters of a problem, as 
well as a number of other questions of practical importance, motivate a special con
sideration of perturbations of an initial optimization problem within a certain class 
corresponding to a concrete situation arising in practice. An entire investigation 
implies certain stability, or non-sensitivity with respect to small perturbations of 
data. If this does not take place, a special regularization of the problem is need
ed, otherwise a solution found without taking perturbations into account can loose 
practical importance.

In general, various components of an extremal problem can be perturbed; in 
this paper, however, we consider perturbations of the entire system of constraints 
determining the admissible set (the set of all admissible elements) of the problem. 
To illustrate the sense of the questions treated below, let us consider the following 
example relating to optimal control. (More general statements concerned with 
perturbations of control problems will be considered after the formulation of the 
basic extremal problem.) Let a system described by a vector differential equation

x(<) =  A°(<)x(<) -I- /(<)b°(i), x(fo) =  x0,

Akadémiai Kiadó, Budapest 
Pergamon Press, Oxford
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be given. The matrix A°(t) is assumed (for simplicity) to be continuous on a given 
interval T o  — [to,*9o], a control f (t )  is scalar and non-negative, b °(t)  being, in 
general, non-continuous, is such that there exists a solution x y  =  ( x y  (t), t < t  <  i 9 q )  

generated by a control /  which is piece-wise constant and continuous from the right 
on [t,i?o[- Let /  satisfy the constraint

J  f(t)dt < c.
to

Besides, let the following constraint on possible laws of resource expenditure be 
imposed. Assume that a partition of [to, $o[ with points to < t\ < . . .  < tm = do 
is fixed, and a control at each interval [ti-\,ti[ may take one of two forms: 1) 
pause implying the integral (/(<),f,_i < t < t,) to be no larger than a given a, 
a > 0; 2) impulse implying the above integral to be no smaller than 6, b > a. 
In addition, we require each two impulses to be separated in time by at least one 
pause. The physical sense of this condition is obvious: the intervals of intensive 
work must be separated by the intervals of “reduction” needed for restoration of 
the capacity for work. Within the framework of the possibilities provided by the 
imposed constraints, there is, naturally, a certain space for choice. If integrals 
over the intervals are considered as m-dimensional vectors, the additional
constraint on control functions /  is reduced to the condition

G Y.

Here Y  is the set of all vectors у from the m-dimensional space having non-negative 
components and satisfying the following conditions: 1) each component (coordi
nate) yi of у either no larger than a or satisfies the inequality b < уг, 2) for any yk 
and yi, к < l, such that

(b < 2/*)&(6 < yi),

there exists an integer г, к < r < l such that yr < a. The set Y  is, in general, 
not convex, but it is closed. Indeed, if у = (j/i,. . . ,  ym) is the limit of a sequence 
(y(J) G Y ; j  — 1; 2 ;...)  then, due to the convergence y\3 —► у,- (j —» oo) taking 
place for each integer i, 1 < i < m, and according to 1) and the inequality b— a > 0 
we have (yi < a)V(6 < y,) for the components of y, since otherwise there exists а 6, 
6 > 0 such that an interval [r/, — <5, yi +  i[ does not contain a single point among у ^ \  
у) the fact t/i, . . . ,  ym are non-negative is obvious, too. If two components yu 
and t/i, where к < l, lie in [6,oo[, then there exists an integer r between к and / 
such that yr < a. Indeed, assume to the contrary, that yr > a for any г, к < r < l 
(I = к + 1 is not excluded). Then (as it was stated already) b < у,, к < i < /. On
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the other hand, for all sufficiently large j, the deviations |y-p — yk , |j/p  ̂ -  y;| 
are smaller than 6 — a, which implies (so far as yü) e У) that b < y^ , . . . ,  b < y\ ^ ; 
here condition 1) used in the definition of У is taken into account. This contradicts 
condition 2). So, the assumption is wrong, and yr < a for a certain г, к < r < l. 
The proof of the closedness of У was given in detail, for it is important for further 
investigation.

Having constraints upon (open-loop) controls specified, introduce for any con
trol / ,  a quality functional identifying it with a value of a certain continuous func
tion go of a phase state at the terminal instant; in other words, our goal in the 
considered problem is the minimization of a value <7o(x/(i?o)) by a rational choice 
of / .  We obtained a dynamical optimization problem of a certain practical inter
est. However, the natural question arises: to what extent is the problem sensitive 
to the perturbations, from the point of view of its optimal result (value) and the 
solutions /  close to the value with respect to the criterion <?o(x/(i?o))? How does 
the result depend on the “energetic” parameter c and the set У? Stability with 
respect to a corresponding class of possible perturbations is of special importance. 
Several properties weaker than stability may be of interest, too. Thus, the above 
example provides a non-linear infinite dimensional problem of dynamical optimiza
tion; this problem is, in general, not convex which complicates its investigation to 
a considerable extent. We see that the statement of the problem is simple enough; 
nevertheless, the question of its stability is actual even for the following “incom
plete” class of perturbations: c is replaced by c + e where e > 0, and У is replaced 
by its e-neighbourhood. Indeed, the considered question transforms in this case 
to the following one: how close are the results of the problem of minimization of 
<7o(x/(t?o)), if all the constraints are kept, except the latter two which are disturbed 
slightly. The question can be formulated, however, in a more general form, for the 
problems analogous to the considered one may appear in other, more complicated 
situations. The investigation carried out below and involving the above example 
is qualitative, it does not have a purpose to provide algorithms. However, the in
vestigation, in its general form, needs using rather abstract mathematical tools. 
Besides, the initial problem can be considered not necessarily as that of optimal 
control. Having in mind various applications, we formulate it in an abstract form 
typical for the general theory of extremal problems. Namely, in this paper we 
consider a non-linear infinite-dimensional extremal problem

W (f)-* in f, f  =  ( / ! , . . . ,  / г ) ,

f i  € B + ( E , C) , - - . , f e B + ( E , £ ) ,

/i(x)»?(dx) < c, / S(x)f(x)ij(dx) € У. ( 11 )

Here (E,C) is a measurable space with a semi-algebra [1, p. 40] of sets (E ф 0), 
B q (E,C)  is the positive (in the sense of the point-wise order) cone in the lattice
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Bo(E, C) of all £-step functionals on E, r) is a positive (real-valued) finitely-additive 
measure [2, ch. Ill, IV] on £, c G [0,oo[, 5 is a matrix-valued mapping on E, 
whose components admit uniform approximation (on E)  by elements of B0(E,C), 
У is a non-empty closed set in a corresponding finite-dimensional space. In the 
sequel conditions on W  will be formulated, which will imply the respresentation 
IV(f) =  w ( f  * г)), where f  * g is the indefinite (component-wise) integral of f, and 
w is continuous in an appropriate (*-weak) sense. Note that the functional W  can 
be, in particular, be of the form

W ( f ) = g o l j s ( x ) f ( x ) g ( d x ) j ,  (1 .2)

where f  corresponds to (1.1), S is a matrix-valued mapping on E (satisfying condi
tions analogous to those imposed on S  in (1.1)), and go is a continuous function on 
a corresponding finite-dimensional space. This is, in particular, the case considered 
in the above example of a control problem.

Formulations (1.1), (1.2) can, in particular, be provided by a more general 
optimal control problem for a system

x(<) =  A°(t)x(t) +  B°(t)f(t), x( t0) = xo (1.3)

Here A°(-) and -8°( ) are matrix-valued functions, the first one is continuous, and 
the second one is Borel measurable; x(t)  is realized in an appropriate finite-dimen
sional space; xo is a given initial state; f  corresponds to (1.1), provided E coincides 
with an interval T = [<0, $o[ (<o < ^o)i l  is the trace of the Lebesgue measure on 
the corresponding semi-algebra £. The latter is determined in accordance with the 
sense of the considered problem; in some cases C may coincide with the tr-algebra 
of all Borel subsets of T . At the same time, if only piece-wise constant and con
tinuous from the right vector-functions f  are admissible, such a broad measurable 
space is not needed, and, provided the components of B°(-) admit uniform approx
imation by step-functions of the above type, one can identify C with the family of 
all half-open intervals [a,6[, to < a < b < do, and r\ with the function of length. 
The condition of non-negativeness of fi corresponds to the assumption that these 
functions are resources for a control device; in this case the c-constraint in (1.1) 
provides a condition on the entire resource, and the У-constraint provides (as in 
the example) the admissible set of resource expenditure laws. We have a finite sys
tem of “shields” which can not be used in an arbitrary way (for instance, as it was 
mentioned, a prolonged “extremal” resource expenditure may not be admissible). 
As for (1.2), not that for the control system (1.3), this condition is satisfied, if the 
quality of a process is estimated by a continuous function of a terminal state. If the 
dependence on a trajectory is more complicated, a representation of W  in terms of 
a special functional w should be used instead of (1.2).
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The general extremal problem (1.1) is not stable, if only relaxation of the 
constraints is admissible (this is a typical class of perturbations considered in the 
theory of extension, see [3, ch. III]). This gives reason to investigate various methods 
of asymptotical optimization under the “weak” perturbations of the constraints. 
Two kinds of such perturbations will be considered: 1) “entire” relaxation implying 
perturbations of both c- and У-constraints, and 2) “partial” relaxation keeping c- 
constraints unperturbed. The rate of perturbation will be characterized by a scalar 
parameter e, e > 0. However, in a formal statement of the problem e is normally 
not fixed. In this case the “limit” situation corresponding to e J. 0 is of practical 
interest. Every e-perturbed problem is characterized by a finite or infinite value 
monotonically depending on e, £ > 0; the smaller is an e, the more “hard” is 
an e-perturbed problem and, consequently, the worse is the quality provided by 
a value. The limits of such e-values (corresponding to the cases 1) and 2)) as 
e ]. 0, characterize a special optimality of the problem (1.1) which may differ from 
the “usual” optimality. Further, we investigate conditions and possible variants of 
partial stability and non-sensitivity to the perturbations of certain kinds; besides, 
we consider the optimization in a class of approximate solutions, having a sense 
of special regularization. Here we find natural analogies with the theory of ill- 
posed problems [4, 5]. However, the most important analogies concern numerous 
investigations on extensions of extremal problem [1, 6- 10] (see, in particular, [1, 
ch. III]). The basic element here is the compactification of solutions of a problem, 
it is close to the extensions or compactifications of topological spaces (see, for 
instance, [11, 12]). In standard procedures of extension of an extremal problem a 
considerable role plays “convexivization” realized usually with the help of measures 
(as a rule, Borel, regular, non-negative and normed) [13-16, 3, 6, 8, 1]. Sometimes 
it is necessary to apply finitely-additive measures; this is connected with using non- 
continuous functionals in the statement of a problem. Such a situation takes place 
in the problem (1.1); usage of finitely-additive measures is advisable here also in 
the cases, where the measure rj is countably-additive, as in the control problem for 
the system (1.3). Extensions (of extremal problems) within the class of finitely- 
additive measures were considered in [17-20] and other papers. Here we follow the 
approach of [21-23] embedding “ordinary” solutions f  into a corresponding space 
of finitely-additive measures through the indefinite integrals. As the final result for 
the problem (1.1) we obtain conditions of “partial” stability and regularizability 
with respect to the perturbations of certain classes; all conditions are given in 
terms of the initial problem and can be verified directly. The next Section contains 
a list of general mathematical notions and, by first reading, can be omitted without 
prejudice to understanding of the main results.
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2. Finitely-additive measures

In what follows we use quantors, connectives, special symbols = , def, etc. 
For an arbitrary set H , 2H stands for the set of all non-empty subsets of H,  and 
Fin(Я) stands for the set of all finite sets from 2я . If A and В are non-empty sets, 
denote by B A the set of all mappings from A to B; if g G BA and G G 2A, then 
(g I G) G B G is, as usual, [2, p. 13[ the trace or the contraction of g to the set G. If 
(T, т), T ф 0, is a topological space, then C(T, r) is def the set of all r-continuous 
functionals on T, and cl(-,r) is the operator of closure in (T , t ). In the sequel, R is 
the real line, AT = {1;2;...}. We set Vfc G Af : 1, к = {г : г G AT, i < &}. Rk = R1,k 
(^-dimensional arithmetical space). Fix positive integers n G Af and r G AÍ; we let 
for brevity 97 = Rn, 97 = Rr, fixing the n-dimensional and r-dimensional spaces, 
respectively, which will be used for the description of the problem (1.1). Besides, in
(1.1) 5 is a mapping with values in WÍ = Rlinxl>r, i.e. 5  G ШЕ. Other assumptions 
and notations of Section 1 we keep without additional explanations (note only that 
Y  G 2^ is closed in 97, which is equipped for definiteness with the sup-norm || • ||„). 
The mentioned notations are general: we fix certain notations connected with the 
finitely-additive measures [2, ch. Ill, IV] (for details see also [24, 25]). Let (add)+[£] 
be the set of all non-negative finitely-additive measures on £, and A(£) be the set 
of all measures

A* -  v, (n,v) G (add)+[£] x (add)+[£],

it is a linear subspace R£ equipped with the traditional norm (variation). Besides, 
note that r) G (add)+[£] (see ch. 1); denote (add)+ [£; rj] the set of all measures 
fi G (add)+ [£] such that V£ G £ from r](L) = 0, it follows that /i(L) = 0. Assume 
also that V6 G [0,oo[:

П[Ь] = {/* G (add)+[£] | ц(Е) < 6}, (2.1)

—И  — ( a d d ) + [£;77] ( | П [6] =

= {ß G П[Ь] I VL G £ : (/?(£) = 0) => (//(£) = 0)}. (2.2)

Further, we shall introduce “vector” analogue of the sets (2.1), (2.2), necessary for 
an extension of the problem (1.1).

Denote by B(£) the set of all bounded functionals on E equipped with the 
natural sup-norm || • || [2, p. 261], and denote by B(E,C)  the closure of B0(E,C) 
(see Section 1) in (B(£'), || • ||); if £ is a а-algebra of sets, then B(E,C)  coincides 
with the set of all £-measurable functionals from В(E). In this connection B*(E,  £) 
(topologically conjugate to B(E,C)) and A(£) with the norm defined as variation 
are isometrically isomorphic, that allows us to consider the pair (B(E, C ), A(£)) 
as a duality and the simplest integral [24, p. 75] (used below) as a bilinear form, 
respectively. We equip A(£) with the natural *-weak topology r„(£), and interpret
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B(E,C) as a pre-conjugate space. The conditions of compactness in (A(£),r*(£)) 
are determined by the well-known Alaoglu’s theorem [2, p. 459]. In what follows 
Vf £ B(E,C)  the measure f  *// E A(£) is the indefinite //-integral o ff [24, p. 76]; we 
shall need (as in Section 1) a vector analogue of this notion implying component
wise integration. Now, consider subspaces (A(£), r«(£)), important in further 
investigation. Namely, denote by r*(£) the trace of t»(£) at the (non-empty) set 
(add)+[£; rj\. Besides, V6 £ [0 ,oo[ denote by rb*[£] the trace of r«(£) at П[6]. At 
last, V6 £ [0,oo[ consider (following [21, 22]) the topology r°(£) of the set П[6], 
generated by the base of the sets

{и £ П[6] I 'iX  £ X  : p(X) = m(X)},

{p,X) £ П[6] x  Fin(£);

note that r4* [£] C r^(£). Thus, in the last case we actually consider П[6] as a 
subspace of the Tikhonov’s product of £  samples of the real line with the discrete 
topology. The indicated structure was introduced in [21, 22]. It is convenient 
for us to pass Vb £ [0,oo[ to the relative topology E[b] setting f°[£] to be def 
the trace of t°(C) at £[6] so that (E[fe], f°[£]) is a subspace of (П[6], г^(£)). 
Now, consider vector analogue of the notions from [21, 22] (for details, see [23]). 
In this connection we need to use vector functions on E and vector measures. 
Further, we denote components of a vector function and a vector measure by a 
letter and initial object equipping it with a subindex. The same agreement we set 
for components of matrix-valued functions. By (77-add)+ [£; //] we denote the set of 
all functions p £ TZC such that pi £ (add)+[£;//] (i £ 1, r); the needed set of vector 
measures is defined. Let Bq [E;C; 72.] be the set of all functions from TZE, whose 
components belong to B^(E,C)  and B[E\ be the set of all functions from
У1Е with components from B(E,C).  All components of S are assumed to lie in 
B(E,C) : Sij  £ B(E,C)  for i £ l,n , j  £ l ,r . Integration of vector functions with 
respect to the measure /7 is component-wise, we keep all the above notations for 
definite and indefinite //-integrals, this will not lead to ambiquity: Vf £ Bq [E\ C\TZ] 
we have f  * // £ (7£-add)+ [£;//]. The topologization of (77-add)+[£;//] is realized 
through the r-multiple product of r*(£), it is identically characterized by the class 
of convergence: a directedness [11, p. 96] / / “) in (77-add)+ [£; //] converges to a 
measure p from this set in the sense of the topology ©[)(£) in question, iff Vi £ l , r  
the directedness (p[a )̂ converges to pi in the sense of r* (£). Note that V6 £ [0, oc[:

S*M  = j /х G { П -  add)+[£;/?] | £ > , - ( £ )  < b j  (2.3)

is a non-empty and compact set in the sense of 0*(£). Consider also an oth
er topological lattice, introducing V6 £ [0,oo[ the set E^[6] of all measures p £
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(7£-add)+[£; rj\ such that Vi 6 l , r  : /jj G S[6]; we topologize this set through the 
product of r samples of the topologies f4°[£]. Namely, we equip VI) £ [0,oo[ the set 
E£[6] with the topology 0 4[£] determined identically by the following convergence; 
a directedness ( / /“)) in E£[6] converges (in the sense of 0°[£]) to а ц £ E^[6], iff 
Vi £ l , r  the directedness (/4°^) converges to /i; in the sense of f °[£]. Besides, as
sume that V6 £ [0, oo[ »?£(£) is def the trace of 0*(£) at Етг[6] and [£] is the trace 
of 0 4[£] at Етг[6]; as the result we obtain the compactum (Ея[6], ü4(£)) and the 
auxiliary topological space (S-^fb], [£]) with a “degenerate” type of convergence
(see [24]). The indicated constructions concern an extension of the problem (1.1). 
In order to give a more brief characterization of the problem, assume in addition 
that

the latter is a subset of (2.3); moreover, we have the following important property 
of density [23]:

s*[6] = cl(M4V °[£ ]) = cl ( м ; , а д ) .  (2.4)

Now, we end the list of notions concerned with measures and pass to the exact 
statement of the extremal problems.

3. A sym ptotical optim ization

Fix a functional

w £ C(('&-add)+[£577], ©*(£)),

W  = (u;(f * ^))ГбВ+[Я;£;7г]-

This will be used as the criterion for the problem (1.1). 
Let us consider Ve £ [0,oo[ the problem

w({)  — > inf, f  £ m ;+£ ,

J  5(x)/(x)r?(dx) £ Yc

Yc = {z : z £ Tt, inf ||y -у ev < £}•

(3.1)

(3.2)

(3.3)

where



C H E N T S O V :  C O N S T R U C T I O N  O F  S O L U T IO N  T O  N O N R E G U L A R  P R O B L E M S 1 3 7

Then (1.1) is (3.3) with e = 0. Let us also introduce Vs £ [0,oo[ the problem

w(f) —+ inf, f е м; ,

J  S(x)/(x)7?(dx) £ Yt . (3.4)
E

Further, (3.3) and (3.4) will define two families of relaxed perturbed problems. If 
e £ [0,oo[, then denote by Л[е] (by Л,[е]) the set of all admissible elements for the 
problem (3.3) (for the problem (3.4)). Finally, put F = Л[0] getting the set of all 
admissible elements for the non-perturbed problem.

Now, let us introduce a generalized construction putting

tyi £ (7?-add)+ [£;77]

J  5(x)//(dx) = 1^2 J  Sj,,-(x)Aij(dx)
E V 1E /  iei,n

and obtaining, naturally, a vector from Ül. The problems

w{n) —+ min, Ц £ ETC[c + e\, J  S(x)/i(dx) £ Yc
E

(3.5)

where e £ [0,oo[ will be called generalized ones (however, the case e = 0 will more 
frequently be used). Denote Ve £ [0,oo[by Е^(г) the set of all admissible elements 
for the problem (3.5).

T heorem 3.1. The set of admissible elements for the generalized problem 
and those for the perturbed problems are connected by the following limit relation

S*(0)=  D cl({f ^ : f  €A[e]}, ©;(£)) =
£ > 0

= f ) c l ( { f ^ : f  e \ t[s]},Q;(C))= П  cl({f * f? :
£ > 0  £ > 0

f £ Л*[г]},1?*(£)) = f ]  cl({f * »7 : f  £ A[e]},t?*+1(£)). (3.6)
0 < £ < 1

Only the first two equalities in (3.6) are actually to be proved. Denote the 
second and the third intersections in (3.6) by Ai  and A 2, respectively. The inclusion 
A\  C H)j(O) follows from the definition of the *-weak topology, here the property 
of continuous dependence of an integral on a corresponding measure and the fact 
that Y  is closed are used. The inclusion E^(0) C A2 follows from (2.4). At last
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A*[e] С A[e] for e > 0 passing to the closures of the corresponding sets, we get 
A2 C A i .

T heorem  3.2. Let Vi e  l , n j ' 6 l , r :  g B0(E,C).
Then

0 r.(O) = c l ({f* i ) : f£F},  tfe*(£)) =
= cl({f : f  ё  F}, d°[£]).

The proof exploits (2.4) and the embedding d*(£) C t?£[(] is deduced easily 
from the definitions

T heorem  3.3. The following three conditions are equivalent:
1) H£>(0) ф 0;
2) Л[е] ф 0 (£>0);
3) A*[e] /  0 (e > 0).
T h e o r e m  3.4. If Vi g l ,n,  j  g l , r  the inclusion g B0(E,C) is true, 

then the conditions F ф 0 and H^(0) ф 0 are equivalent.
Theorem 3.3 is a trivial corollary of Theorem 3.1, and Theorem 3.4 follows 

from Theorem 3.2. We assume in the sequel the following condition to be fulfilled: 
Condition 3.1. H^(0) ф 0.
Now, Ve g]0,oo[ we have: Л[е] g 2M*+*, A*[e] g 2M’ . Taking into account

(3.1) and (3.2) and the fact that a continuous functional on a compact space is 
bounded [11, 12], we get that the “ordinary” e-values

ve A inf W(f), v* A inf W(f) 
f6A [e]  f € A . [ t ]

are finite for e > 0. More than that, since Vf < for 6 > 0, the set {v* : £ g]0, oo[} 
(and, consequently, the set {v£ : e G]0,oo[}) is bounded above, so

V = sup vc g R, V* = sup v* g R (3-7)
£>0 e>0

are asymptotical values from Section 1. Besides

ife] = min w(n) g R (3-8)
меа^(«)

is obviously the value of the problem (3.5), where e > 0. A connection between 
(3.7) and (3.8) will be considered in the next Section, devoted to the application of 
compactifications for the description of asymptotical values of practical interest.

4. Asym ptotics and extensions

Expressing of various asymptotical values (3.7) in terms of generalized (com- 
pactificated) problems traditionally played a considerable role in investigations on
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extremal problems (see [3]). This investigation has, in addition, the purpose to 
compare various variants of perturbed problems; from this point of view i[0] (3.8) 
plays the role of a “mediator” that is seen from the following assertion on an 
asymptotical non-sensitivity to the perturbations of the energetic parameter “c” .

T heorem 4.1. The values (3.7) coincide and are determined by (3.8) for 
£ =  0; i.e. V =  V* — 5[0].

The proof exploits Theorem 3.1 and concretizes [27]. Note that the problem
(1.1) in “rigid” statement is unstable provided the parameter с, c > 0, allowed to 
grow, and therefore, the “relaxation” of the У-restriction has a sense of a special 
regularization [4]. As shows [18], the opposite combination, i.e. a regularization of 
a non-continuous dependence from Y  for a perturbation of a form Y  —> Y£ (£ > 0) 
through an additional perturbation of the parameter c, is, in general, impossible.

T h e o r e m  4.2. Let цо G E!)j(0) be a solution of the problem (3.5) for e = 0: 
w(fJo) = i[0]. Let, in addition, (fa) be a directedness [11, p. 96] in M* such that 
(fa * v) converges to fio in i9*(£). Then (fa) is an optimal approximate solution 
[27], i.e.

1) Ve G [0,oo[ inclusions fa G A,[e] take place starting from a certain instant 
[11, p. 96];

2) (H^fa)) converges to V*.
The proof follows rather evidently from the definition of the *-weak topology

(3.1) and (3.2). Note that, as it is seen from (2.4) and (3.5), a directedness (fa) 
can be built up constructively (the “component-wise” variant of an approximate 
directedness [21] for the “scalar” modification of (2.4) can be applied), provided 
a solution fio of (3.5) is fixed; the existence of follows from the well-known 
properties of continuous functionals on compact spaces [11, p. 217].

5. Some questions, connected w ith  stability

For each problem (3.5) (by Condition 3.1) we have H^(e) ф 0 for £ > 0. 
Introduce V£ G [0,oo[ the (non-empty) set V[£] of all solutions of (3.5); V[e] is the 
set of all no G S)*(£) such that iv(ßo) = й[е]. As £ J. 0 the directedness («[e], £ > 0) 
converges to ü[0] (the ordering of the semi-axis [0,oo[ is dual to the natural one), 
so i[0] = sup({i[£] : £ G]0,oo[}). Thus, the generalized problem is always stable 
with respect to the value.

T h e o r e m  5.1. Let Я* be an arbitrary 0* (£)-neighbourhood [28, p. 19] of 
the set V[0]. Then 36 G]0,oo[: V£ G]0,6[ it holds V[£] С H,.

The proof utilizes standard representations of the compactness in terms of 
converging subdirectedness [12, p. 203] (the opposite assumption leads easily to a 
contradiction). Note that, as it is shown in [18], the initial problem (1.1) is not 
stable in the above sense (even with respect to the value). In the sequel we suppose 
the following condition (together with Condition 3.1) to be fulfilled:

5
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Condition 5.1. The matrix-valued function 5 is a step-function: Síj G 
G Bo(E,C) for i G l,n  and j  G l,r.

According to Theorem 3.4 F ф 0, this allows us to introduce the ordinary 
value V° = inf({VL(f) : f  G F}) G R and to extend the dependence z * ve :]0,oo[—► 
—► R to the point e = 0; namely, we put vo = ve |£=o= V0.

T heorem 5.2. Ordinary, generalized and asymptotical values coincide: V° =
= 5[0] = V = V*.

The proof follows evidently from Theorems 3.2 and 4.1 (see [23]).
T heorem 5.3. Let p° G V[0]; (fa ) be a directedness in M* such that (fa *ri) 

converges to p° in d°[£], Then (f„) is asymptotically optimal as a “precision” 
solution:

1) fa G F, starting from a certain instant [11, p. 96];
2) (W(fa) converges to V°.
Remark. The direction (fa) from Theorem 5.3 can be constructed for any p° 

from the (non-empty) set V[0] if one uses the corresponding construction from [21] 
applied there for proving an equality similar to (2.4).

Let Ve G [0,oo[, 6 G]0,oo[: Ve(<5) = {f G A[e] | FU(f) < vt + 6} and besides 
Vx G]0,oo[: V [x] = Vo(x) =  Ve(x) |ei - o  the last set is that of all x-optimal solutions 
of (1.1); the sense of Vc(6) is analogous and concerns (3.3).

T heorem 5.4. Let x g ] 0 , o o [, 7 G]x,oo[. Then

П cl({f *1 : f G U v»(x)},
£ > 0  0<»<C

© ;(£)) C cl({f * I, : f  G V M M M -  (5.1)
The proof uses essentially (2.4) (for details see [23]). Due to the relations of 

the topologies we mentioned while discussing Theorem 3.2, the right-hand side of
(5.1) can be made “more rough”, i.e. replaced by its closure in 0Jj(£) with keeping 
the enclosure. In general, (5.1) is an indirect characteristic of stability in “bad” 
functional spaces of step-mappings. A regularizing increment 7 — x > 0 has no 
essential influence on the sense of the statement, important only for small x and 7 .

Using Theorem 3.2 and the obvious (see Theorem 5.2) equality ve =  i[e] 
(e > 0) we obtain the equality

V[0]= ( J c l ( { f * , : f  GVM),
i > 0

Q; ( C) )=\ Jc \ ( { f *r r . f eV[6] } ,  (5.2)
i > 0

r c ( C ) ) =  Ucl({f*r?:fGV[á]}, t f°(£))
i > 0

that characterizes the generalized solution for the most important variant of the 
problem (3.5) (case z =  0), as the limits of “almost” optimal ordinary solutions.
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The representation of the form (5.2) is frequently not true for a general ex
tremal problem with constraints (it can also be violated for the considered problem, 
if Condition 5.1 is not fulfilled; see an example from [18]).
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О конструкции решений нерегулярных задач оптимального
управления i '

А. Г. Ч Е Н Ц О В  

(С в ер д л о вс к )

Р а с с м а т р и в а е т с я  а с и м п т о т и ч е с к а я  п о стан овка  нелинейной  э к с т р е м а л ь н о й  з а д а 
ч и , а  такж е ее р а с ш и р е н и е  до с т а н д а р т н о й  за д а ч и  н а  м иним ум  ф у н к ц и о н ал а , неп р е
р ы в н о го  на к о м п ак те . И ссл ед у ется  в о п р о с  об у с то й ч и в о с ти  по р е з у л ь т а т у  в у с л о в и я х  
во зм у щ ен и й  по л н о й  си стем ы  о г р а н и ч е н и й  с т р у к т у р ы  а с и м п то т и ч е с к и  о п ти м ал ь н ы х  
п р и б л и ж ен н ы х  р е ш е н и й . О сновны м  и н стр у м ен то м  и ссл ед о в ан и я  я в л я ю т с я  п р о ц ед у 
р ы  к о м п ак ти ф и к ац и и  п р о с тр а н с тв а  р еш ений  f  =  ( / i , . . . , / r )  и сх о дн о й  за д а ч и  в кл ассе  
век то р н ы х  к о н еч н о -ад д и ти в н ы х  м е р  д  =  (д 1 , . . . , д г ). П р и  этом  и н т е г р а л ь н ы е  о г р а н и 
ч е н и я  на сумму п о л н ы х  и м п ульсов  f t >  О, г =  1 , . . . ,  г , естеств ен н ы м  о б р а зо м  п ер ех о д я т  
в с о о тв е тс тв у ю щ ее  у сло в и е  на с у м м у  вели чин  ß t (E ) ,  где  Е  —  о б л а с т ь  о п р ед ел ен и я  
/* ; кром е то го , ко м п о н ен ты  щ , . .  . , д г векторной  м е р ы  долж ны  у д о в л е т в о р я т ь  у с л о 
в и ю  « за н у л е н и я » : ß t (L )  =  0, е с л и  rj(L) = 0, гд е  77 —  н е о т р и ц а т е л ь н а я  с к а л я р н а я  
к о н е ч н о -а д д и ти в н ая  м ера , у ч а с т в у ю щ а я  в и н т е гр а л ь н о м  о г р а н и ч е н и и  на вы бор  Í .  
Д о п о л н и т ел ь н ы е  о гр ан и ч е н и я  на  и н т е г р а н т  f ,  и м е ю щ и е  смы сл в к л ю ч е н и я , на у р овн е  
и сх о д н о й  п о стан о в к и  в о зм у щ аю тся  д о  е -о кр естн о стей ; в обобщ енной  з а д а ч е  а н а л о г и ч 
ное о гр ан и ч ен и е  п е р ех о д и т  в « о б ы ч н о е »  в к л ю ч ен и е  д л я  и н т е г р а л а  м а т р и ч н о зн а ч н о й  
ф ункц ии  по в ек т о р н о й  м ере д. П ри  н еко то р ы х  с п ец и а л ь н ы х  у с л о в и я х , г а р а н т и р у ю щ и х  
у с то й ч и в о с ть  по р е з у л ь т а т у  и с в о д я щ и х с я  к т р е б о в а н и ю  с т у п е н ч а т о с т и  у п о м ян у то й  
м а т р и ч н о зн а ч н о й  ф ункц ии , п о л у ч ен ы  у т в е р ж д ен и я , им ею щ и е с м ы с л  « с л аб о »  р е гу л я -  
р и зи р о в ан н о й  т о п о л о ги ч ес к о й  у с то й ч и в о с ти  п о ч ти  о п т и м а л ь н ы х  реш ений  исхо дн о й  
з а д а ч и  при их п о гр у ж е н и и  в к о м п ак ти ф и к ато р . К р о м е  того, в п о сл ед н ем  с л у ч ае  и с 
п о л ь зу е т с я  и н е с к о л ь к о  более с и л ь н а я  н ульм ерн ая  т о п о л о ги я , о т в е ч а ю щ а я  п р о и зв ед е 
н и ю  п о д п р о ст р а н ст в  с о о тв е тс тв у ю щ ей  (и зм ер и м о й  с тр у к т у р е  п р о с т р а н с т в а  реш ен и й )
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ти х о н о в ск о й  степ ен и  прям ой  с д и ск р етн о й  т о п о л о ги е й . П ри  тех  ж е у сл о в и я х  с т у 
п е н ч а т о с т и  у стан о в л ен о , ч т о  э к с тр е м а л ь н ы е  т о ч к и  к о м п а к ти ф и к а т о р а  и обобщ енны е 
п р е д е л ы  п о ч ти  о п т и м а л ь н ы х  р еш ен и й  невозм ущ енной  исходной  з а д а ч и  —  су ть  одно 
и т о  ж е. У п о м я н у то е  д о с та то ч н о е  услови е  (с т у п е н ч а т о с т ь )  су щ еств ен н о  и не м о ж ет  
б ы т ь  о сл аб л ен о  д а ж е  до т р е б о в а н и я  р авн о м ер н о й  н еп р ер ы в н о сти .

А. Г. Ченцов
Институт математики и механики УрО АН СССР 
620219, Свердловск,
ГСП-384,
ул. С. Ковалевской, 16.
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LONG-RANGE ADAPTIVE CONTROL OF ARMAX PLANTS 
WITH ACCESSIBLE DISTURBANCES

J. M . L e m o s

(Lisbon)

(R eceived April 11, 1990)

Feedforw ard adaptive co n tro l of ARMAX p la n ts  is considered in  order to  reduce  
the  influence o f d isturbances th a t  can  be m easured . T h e  a lgorithm  u sed  is an  ex tension  
of the  long-range, m ultip red ictive  adaptive co n tro l a lgorithm  n a m e d  MUSMAR. T h ree  
m ain resu lts  a re  presented: first, a  param etriza tion  o f m ultip red ic tive  m odels, identifyable 
by s tan d ard  R LS, is developed fo r ARMAX p la n ts  w ith  ARMA accessible d istu rbances, 
working in  closed-loop. Second, th e  algorithm, re su ltin g  from  coupling  th is im plicit p lan t 
represen tation  w ith  a  m ultistep  q u ad ra tic  cost, is show n to  present a  ro b u s t tun ing  p ro p e rty  
of th e  contro ller gains. T h ird , a  sim ulation exam ple is presented.

K e y w o rd s :  Adaptive con tro l. Predictive co n tro l. Self-tuning. Feedforw ard con tro l. 
Convergence analysis. L inear Q u ad ra tic  S tochastic con tro l.

1. Introduction

There are many practical situations in which the control performance can be 
greatly improved by exploiting the knowledge of the accessible disturbances acting 
on the plant. Examples with industrial relevance include drum boiler level and 
pressure control in power plants [1], control of gas-cooled reactors in nuclear power 
stations [2], frequency control of hydro power stations [3] and the bottom temper
ature control of glass furnaces [4]. More exotic applications are the exploitation of 
auxiliary signals for time-series forecasting [5] and active sound [6].

All the above examples include feedforward terms of one form or another, to 
cancel out in antecipation the effects of the accessible disturbances. As opposite to 
feedback, however, feedforward action requires greater precision in the models used 
for control purposes. Thus, in performing feedforward control of uncertain and/or 
time-varying plants, one is naturally lead to the use of adaptive techniques.

Several kinds of adaptive feedforward controllers can be envisaged, by ex
tending in a natural way adaptive feedback controllers. Clarke-Gawthrop type

Akadémiai Kiadó, Budapest 
Pergamon Press, Oxford
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controllers [4], LQG feedforward controllers [3, 2], explicit criterion minimization 
[3, 6] and multistep predictive control [7], are all possibilities.

The work reported in this paper is concerned with the latest class of feedfor
ward controllers. The algorithm to be discussed and analysed is an extension of 
the long-range multipredictive adaptive controller named MUSMAR [8].

2. Problem formulation

With relation to long-range multipredictive feedforward controllers, three 
problems are solved in this paper.

The first is the modelling problem. For the least-squares plus minimum vari
ance self-tuner, it is a classic result that ARMAX plants controlled by this algorithm 
admit in closed-loop an ARX model correctly describing its output [9]. In [10], this 
result is extended to multipredictive models (i.e. models describing the output over 
a certain horizon) by applying Implicit Modelling Theory [11]. The first problem 
considered in this paper is the development of multipredictive models for ARMAX 
plants with ARM A accessible disturbances, working in closed-loop. The models 
to obtain are such that its residuo is orthogonal to the subspace generated by the 
available data, thus being amenable of identification by standard Recursive Least 
Squares (RLS).

The second problem is to develop an adaptive control algorithm, by coupling 
the models above with a control law obtained by the minimization of a multistep 
quadratic cost function of the type

J T  =  ^ | x j [ j / 2 (< +  fc)  +  p n 2 ( f  +  i f c - 1 ) ]  I / ‘ I  ( 1 )

in which у = y — r is the tracking error of the output of the plant у with respect to 
the reference r to be tracked, и is the plant input, p is a non-negative control weight 
and P  is the information pattern available at time t. V contains observations of 
the past values of u, y, the accessible disturbance v and the reference r, this last 
taken in this paper as zero.

Finally, the third problem is the assessment of the resulting controller perfor
mance in the presence of unmodelled plant dynamics.

3. M odelling issues

Consider the SISO plant described by the ARMAX model with accessible 
disturbance

A(q)y(t) = B(q)u(t) +  D(q)v(t) +  C{q)e(t).  ( 2)
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in which A and В are polynomials in the forward shift operator q, such that dA — 
—dB — d > 1, dA denoting the degree of A, A is monic and all the common 
factors between A and В are stable. The innovations signal {e} is a sequence of 
independent identically distributed random variables with zero mean and variance 
erj;. Further, dD = dC — dA = n. Polynomial C is Hurwitz and v is the accessible 
disturbance modelled as the AR process

Av(q)v(t) = qn" ev(t) (3)

with Av an Hurwitz polynomial of degree nv and {et,} is a white noise sequence 
with variance independent of {e}.

The input is given by the stabilizing control law [12]

R(q)u(t) = —S(q)y(t) + M  (q)v(t) + C(q)rj(t) (4)

where R and S  are coprime polynomials, such that R is monic and

dR = riR, dS — tir — 1, dM = p

where пд and p are the orders of the optimal controllers [12].
The sequence {77} is a zero mean white dither noise, uncorrelated with {e} 

and {еь} such that <r;j = E[rfi] <C min(cr ,̂ cr )̂.
Remark 1. The above formulation encompasses the situation in which the 

output of the ARMA plant

= B(q)u(t) +C(q)e{t) (5)

is to follow a reference vt given by the output of (3). Multiplying (5) by A v, (3) by 
A and subtracting both equations, produces

M<l)A v(q)y(t) = B(q)Av(q)u(t) -  A(q)Av{q)v(t) +  C{q)Av (q)e(t) (6)

in which y(t) = y(t) — u(<) is the tracking error. Equation (6) is of the form (2) 
and the results obtained for one case may be specialized for the other.

3.1. Implicit models

The first step in solving the modelling problem is to study under what con
ditions the plant (2, 3) coupled with the controller defined by (4) admits an ARX 
representation. This ARX model is only valid for the controlled system, and thus 
is called an implicit model [11]. The following theorem, which extends to plants 
with accessible disturbances similar results given in [10], provides an answer to this 
problem. In order to improve clarity, the results in this section are self-contained.
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Proposition 1. The controlled system obtained by coupling (2, 3) with the 
controller defined by (4) admits, in stochastic steady state (s.s.s.) an ARX repre
sentation

A(q)y(t) = B(q)u(t) + V(q)v(t) = q(t) + e(t) (7)
with A(q) monic, iff the characteristic polynomial of the closed-loop system satisfies:

i) 3Q{q) : A(q)R(q) + B(q)S(q) = C(q)Q(q) (8)

and
gcd(R, S)  = gcd(i2,S, Q) (9)

ii) 3Qv(q) : D(q)R(q) + B(q)M(q) = C(q)Qv(q) (Ю)
and

gcd(R, M)  =  gcd(fí, M, Qv). (11)
Further, under these conditions, the following identities hold:

A(q)R(q) + B(q)S(q) = Q(q) (12)
V(q)R(q) + B(q)M(q) = Qv(q) (13)

R(q) = B(q)-C(q)B(q)  (14)
S(?) =  - ^ )  + C(9M(?) (15)

M{q) = -D(q) + C(q)V{q). (16)

□
Proof. The proof follows similar ones found in [10, 11] and is given in the 

Appendix.

3.2. The T-UCPP property

Implicit models are not unique [10]. Among the possible models are of special 
interest here the ones that correctly describe the closed-loop system, no matter 
what the inputs over a certain time interval are. In order to formalize this idea, 
the following concept is used:

D e f i n i t i o n  1 [10, 11]. An ARX implicit model is said to enjoy the uncon
strained control prediction property of order r  (or to be r-UCPP) if it correctly 
gives the output up to time t +  1 for an arbitrary input sequence between the 
instants i — г + 1 and t .

Proposition 1. Let the inputs of the ARMAX pint (2) be given up to time 
t — r  by a control law of the form (4) satisfying:

i) 3Q(q) : A(q)R(q) + B(q)S(q) = Q(q)C(q) 
ii) 3Qv(9) : D(q)R(q) + B(q)M(q) = Qv(q)C(q).

(17)
(18)
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Then, there exist an implicit r-UCPP ARX model giving the correct output 
up to time i +  1 no matter what the inputs from t — r + 1 up to t are used.

A model (Л, B) enjoys the r-UCPP property if

^ ( r 1) =  Q b ( r 1) +  r (T+1)ö ß ( r 1) (19)

where dQß(q_1) =  0 and

Qb (q l ) — 1 +  ■ ■ ■ + /?тq 1 (20)

satisfies
= Q%(q~l ) c r { q -1) +  9- (t+1)G b ( í _ 1 ) (21)

with Gg(q~1) — 0.
In addition, (19) is satisfied if and only if

^ ( 9 - 1) =  Qa (9-1) + 9- (t+1)Oa (9~1) (22)

and
T>m(q-1) =  Q h (q-1) + q{T+1)6b(9~1) (23)

with dGA(q *) =  0, dQ^{q *) =  0, where dX*(q  *) denotes the value of the 
smallest exponent in q~1 with nonzero coefficient in the polynomial A'* ( ~ 1) , and

Qa (9 1) =  l  +  a i 9 1 +  . . .  +  a Tq T 
Qd (9 1) =  1 +  ^i 9 1 +  - . +  i5t 9 t

(24)
(25)

satisfy

Л Ч Г 1) =  Q -A q-^C ' iq -1) +  9-(T+1)G ; ( r 1) 
D ^ q - 1) = Q U q - ' W q - 1) +  q - ^ G b f q - 1)

(26)
(27)

dCrA( q - 1) =  0, dG*D(q~l ) =  0.

Further, under (19) or, equivalently (22, 23):

(Ga -  Qa C)R  =  (GB -  GbC)S (28)

and
(G0 -  GvC)R =  (Go -  GbC)M. (29)

Proof. See the Appendix.
□
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Proposition 3. The plant (2) working in closed-loop under the control law (4) 
satisfying (8-11) admits the r-UCPP implicit model given by:

yt+т + «12/i+r-i + • • ■ + atr-iVt+i —

with

=  ß l U t + T - l  +  • • • +  0 Т - 1 Щ + 1  +  0 т Щ  +

+ T o ü í - ( - t  +  T i ^ + r - 1  +  • • • +  T t - i ^ í + i  +  £ 'TSt  +  e 1 + r

, 0° D 00 n  00

C «' = 0 <=i

(30)

(31)
i  =  0

ET is a vector whose entries are made up by the last hr — 1 coefficients of A , the 
last hr coefficients of B, the last hr + nv +  1 coefficients of V , and

St   [j/t • • ■ yt — flR +  l l l t  — 1 • • • Ut — nRVt ■ ■ ■ Vt — HR — n v] • (32)

This model is denoted M T.
□

Proof. See the Appendix.
Consider T  r-UCPP implicit models, for r  =  1,. .. ,T. Using this pencil of 

models, yt+1 is eliminated from М 2 using M \,  then yt + 1 and yt+2 are eliminated 
from М 3 using M i  and М 2, and so on. Also, project “future” samples of the 
accessible disturbance, vt+T, ■ ■ ■ ,vt+i in the samples of v in s(. In this way, the 
following multipredictor model correctly describing the output of the plant from 
t + 1 up to t + T, is obtained:

Yt = WUt +  ITJ( + St (33)

with W  a Toeplitz lower triangular matrix of parameters, П a matrix of parameters 
of convenient dimensions

Yt = [j/t+i . . .  yt+т]' (34)

Ut = K . . . u t +т-!]' (35)

and E a vector of residues orthogonal to the data in each predictor.
By performing the minimization of (1) with respect to Ut using (33), it is 

possible to derive a control law which approximates the steady state LQS control 
if T  is large enough. A better choice is to assume that a fixed gain is acting on 
the plant from < + l to f  +  T —1, the following multipredictor model being thus 
obtained:

yt+, = OiUt +  ip'iSt +  I 'f ( t )  

Щ+i-i =  Ab-i ut +  <t>i-is t +  ,̂“_ i(f)

(36)

(37)
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^“-lW  -L [«<,««]■ (38)
Here, 6i and p, are vectors and Ф, and Фг are matrices of parameters whose 

entries depend on W  and П, and the gain acting on the plant on steady-state. The 
exact form of this dependence is given by lengthy expressions which are omitted, 
since they are irrelevant hereafter.

Two points are, however, to be remarked: first, the imposition of a constant 
feedback allows a tighter approximation of the LQS control with respect to what 
is obtained by leaving all the entries in Ut free. Second, models (37, 38) will give 
rise to an adaptive algorithm with its only possible equilibrium points given by the 
local minima of the LQS steady-state cost.

4. T he adaptive feedforward controller

Using the predictive models (36, 37) to minimize the multistep quadratic cost 
(1), the following adaptive feedforward control algorithm is derived:

MUSMAR with feedforward

At each sampling period t, recursively execute the following steps:
1. Using standard RLS, estimate the parameters in the predictive models (36, 

37).
2. Calculate the vector of updated feedback gains by

1 T_1
f ( t )  = ----7TT D % W i+ i(f) +  PRi{l)<t>x{i)\ (39)

' i-0

*(о  = Е[*?+1(*)+«*?(*)] (4°)
«=0

where [0,(<) V’i(f)]; [/h(0 $(<)]' are RLS estimates of the homonimous pa
rameters of (36, 37) and p is as in (1).

3. Apply to the plant the control given by

Щ =  f'(t)st + Vt (41)

with r/t a low intensity dither noise injected in order to fulfill a persistent 
excitation condition.

Equations (39, 40) are obtained simply by minimizing (1) with respect fo / ,  
assuming u(t) given by (41) with r] = 0 and that (37, 38) hold. Since st contains
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samples of the accessible disturbance, it is remarked that the above algorithm 
actually includes feedforward terms.

The main conclusion is that, in the presence of any structural mismatching between 
the plant and their models, as T  increases, MUSMAR equilibrium points approach 
the local minima of the steady-state LQ criterion. No assumption is made on the 
regressor complexity. The main interest is in the possible convergence points of the 
MUSMAR feedback gain vector / .  The analysis is based on the O.D.E. approach 
described in [14] whose applicability rely on the following assumption:

The sequence of regulator parameters f(t )  € Ds and ||st || is bounded for 
inßnitely many t, w. p. one. Here, Ds is a compact set in which f ( t )  defines a 
closed-loop system with poles strictly inside the unit circle.

Since the multipredictor coefficients of (36, 37) are estimated via a standard 
RLS algorithm, the asymptotic average evolution of their estimates is described by 
the following set of O.D.E.’s:

5. R o b u stn e ss  a n a ly s is

This Section is concerned with the robustness properties against unmodelled 
plant dynamics of MUSMAR with feedforward. Available theoretic results for the 
regulation problem [13] are extended to plants with accessible AR disturbances.

(42)

x[yt+i+ i(/(r)) -  (0<+i(r)/(r)-|-&+i(r))'st(/(T) -  0,(r)]} 

=  R~ \ r ) E  {zt(f(r))x

*[ut+ .( /(r ))  -  (P i ( T ) f ( r ) +  & (r))'st( / ( r ) )  -  Pi(T)r]t)]}

R(r) =  - R ( t) + Rz(r)

(43)

(44)

where

R2(t) = E[zt(f(T))z't (f(T))] =

*  = M '

’ f'(T)Rs(T) f (T) + rf Г(т)Я,(т)'

(45)

(46)
R>(T)f (T) R*(T) .

Ra(r) 4  E[st(f(r))s't(f(r))] (47)

and /( r )  is, as in (39), with t replaced by r. In the above equations, dot denotes 
derivative with respect to r  and £[•] expectation with respect to the probability
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density function induced on {u} and {y} by {e} and {r/}, assuming the system in 
the s.s.s. corresponding to the constant control law

Щ = f \ r ) s t + T ] t -  (48)

By using similar arguments as in [13] it is shown that the corresponding 
O.D.E. for / ( r )  can be written as

/( r )  = + o(|/(r)|) (49)

where /( r )  = / ( r )  — /*; f* denotes any equilibrium point of (40); o(|z|) is such

that lim =  °5о |z|

T-l
р(т) = 2 ^ [ R y n i i  + l-,T)Rys{i + 1;t) + pRUn(i-,T)Ru,(i;T) (50)

t =  10

and

Ryri(i+ l ; r )  =  E [ y t + i + l ( f ( r ) )  T)t] (51)
Rys(i + 1; t) =  E [ y t + i + 1 ( f ( r ) ) s t (T)} (52)

with similar definitions for Ли)?(г; r) and Rus(i;r).
In order to give a convenient interpretation to (50), the following lemma is 

introduced.
Lemma 1. Let Q*(q~l ;r) = Q*(q~1;/ ( t)) be the closed-loop characteristic 

polynomial corresponding to /( r ) .  Then

2Луг,(»' + l ;r )  =
q - ' B ' i q - 1)

. Q*(?_1;T) •ч-i
(53)

^ 2Ли„(г +  l;r )  =
.^ ( « T V ) ] ,

(54)

where denotes the г-th impulse response sample associated with the trans
fer function H*(q~1).

Proof. See the Appendix.
According to (53, 54), (50) is rewritten as

T-l
p(t) = Y 1 E '

q - ' B ' i q - 1)
i=0

p(t) = Е\у,(т)

. <5’ (9_1;t-) Ji+i
5-1ő*(5_1)l

J/t+i+i(r)st(r) + p

L Q*(q-U,r)
It st(r) + рщ(т)

A*(q ) 
.<3*(9"1; r )J, 

A-(q-')

Ut+i(r )st(T)

Q*(?-1 ; T).
T-l * « ( r )']}

( 55 )
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where H \т denotes the truncation to the power q~T of the power series expansion 
in q~l of the transfer function H .

Consider the unconditional cost

+Pu2t\ (56)

as a function of the constant gains /(r) . As shown in [3] for plants with accessible 
disturbances,

V J ( / ( r ) )  4
dJ(f(r))

d f{T)

= E ' q - 'B ' j q - 1)
. Q*(q~1\T) St(T) +  рщ(т)

’ А Ц д-1) 
.Q'iq-'-'T) st ( r) }■

(57)

Thus, comparing (55) with (57), the former is seen to be a good approximation 
to the latter, whenever

|A[Q*(‘T 1;r)] |2(T- 1)» l  (58)
where A[Q] denotes any root of Q. Therefore, in a neighbourhood of any equilibrium 
point satisfying (58), O.D.E. (50) can be approximated by

Hr) = - H r ) ] - 1R71(r)TvJ( f (T) )  + o (|/(r) |). (59)

The above results are summarized in the following
Proposition 4. Consider the MUSMAR algorithm with p > 0 for any i/o 

transport delay smaller or equal than T, arbitrary C innovation polynomial with 
no root outside the unit circle, and any regressor complexity. Then, amongst the 
equilibria f* giving rise to a closed-loop system with well damped modes relatively 
to the control horizon T  such that (55) can be replaced by (57), the only MUS
MAR possible converging points approach to local minima or edge points of the 
unconditional cost (56).

Proof. The proof is done recalling [14] that the only possible converging points 
of a recursive stochastic algorithm are the locally stable equilibrium points of the 
associated O.D.E. Since in (59) a(r) > 0 and Rs(r) > 0, the conclusion follows.

□
According to the Remark 1 of Chapter 2, substituting у for y, the above 

analysis encompasses the servo problem.

6. Simulation example

Consider the nonminimum-phase plant

Vt+2 ~ l-5yt+i + 0.7yx — ut+1 + 2йг -(- U(4.i -f e*42 (60)
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where {e(} is a zero mean, unit variance, white noise Gaussian sequence. Figure 1 
displays the results obtained by controlling this plant using MUSMAR, with and 
without feedforward. The improvement in the figure of merit obtained by using 
feedforward is of about 10. The structure of the feedforward controller is defined
by

T =  3, p = 10-5 , = 10-4 ,

«1 = [i/t yt-lUt  !><]'•
Without feedforward, the term in vt is removed from the pseudostate.

7. Conclusion and final remarks

A long-range adaptive controller for ARMAX plants subject to accessible 
disturbances, modelled as AR signals, has been developed and analysed. The final 
algorithm turns out to be a modification of the MUSMAR controller, obtained by 
the incorporation of feedforward terms in a natural way.

Although related to other feedforward algorithms, this new controller is devel
oped from a distinct standpoint, and presents a number of important advantages. 
Indeed, it includes the Clarke-Gawthrop type feedforward controller of [4] as a spe
cial case, obtained by choosing the optimization horizon T  = 1. By extending T, 
important properties are acquired by the algorithm, e.g. a tight approximation to 
the LQS feedforward control is yielded. However, this approximation is obtained 
by implicit methods, as opposite to [2], in which involved Diophantine equations 
are to be solved. A close connection with the explicit minimization methods of [3] 
also exist since, as shown in Section 4, the controller gains progress in the opposite 
of a modified gradient direction.

Besides the derivation of the algorithm, two orders of questions have been 
considered. The first involves modelling issues and is concerned with conditions 
under which an ARMAX plant with an AR accessible disturbance can be correctly 
described in closed-loop by ARX models. The relevance of this result stems from 
the fact that standard recursive least squares may be used for identification, thus 
yielding simpler and less restrictive algorithms.

The second aspect is the tuning ability of the algorithm in the presence of 
unmodelled plant dynamics. It is shown, that, even in the presence of unmodelled 
plant dynamics, the only possible convergence points of the gains tightly approxi
mate the local minima of the LQS steady state cost. It is remarked that, although 
this result does not ensure convergence (it only characterizes the possible points 
of convergence), there is enough simulation evidence that MUSMAR will actually 
converge, whenever a minimum exists. The robustness properties of MUSMAR are 
not unexpected. Indeed, since MUSMAR does not rely on a single plant model (as 
it happens e.g. in both [2, 3]), but on a set of separately identified models, it is ex
pected that the redundancy, thereby introduced renders, algorithm is more robust

6
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with respect to deviations to ideal behaviour caused by nonlinearities, unmodelled 
plant dynamics or uncertain i/o transport delay than algorithms relying on the 
extrapolation of a single predictive model.

Appendix

P ro o f o f  Proposition  1

(only if)
Assume that an ARX implicit model exists, characterized by А, В and T>. 

Using (4) in (2) multiplied by R(q) and then (3), the following closed-loop model 
is obtained:

B M  + DR qn•
y ( l )  ~  A D  , D O  A e « ( 0  +

BC
M t )  +

CR
КО-а д  + BS  A „“vv'/ ' AR + B S ', y ' AR + B S '

On the other way, using (4) in (7) multiplied by R(q), and then (3):

BM + VR q"■ ..  C B + R  R
У(0 = xo , • V e * ( 0  + 4o , , Dae(t).A R  + BS Av AR + BS AR + BS

(61)

(62)

Let Q(q) and Qv(q) be given by (12) and (13). Due to the fact that {e}, {e„} 
and {rj} are uncorrelated, the transfer functions from the corresponding signals to 
the output must be equal.

Thus, from {e} to {j/} and by (12):

CR _ R 
AR  T BS Q

which yields (8).
From {e„} to {?/} and by (13)

B M  T DR Qv
AR + BS Q

and, from (8) this yields (9).
From {»?} to {t/}, (8) and by (12)

BC CB + R 
C Q ~  Q

which yields (14).
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MUSMAR with feedforward

997 1993 2989 3985

MUSMAR with feedforward

Discrete time Discrete time

MUSMAR with feedforward

MUSMAR MUSMAR without feedforward

Л rHi ifi
4 f 1 h %1

Mb

__1__

W У 1
4

1 997 1993 2989 :985
Discrete t i m e

F i g .  1 .  C om parison of M USM AR w ith a n d  w ithou t feedforw ard

6*
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Multiplying (14) by S  and M and using (12) and (13), respectively, (15) and 
(16) are obtained.

(if)
In closed-loop, the plant (2) with the controller (4) is characterized by the 

transfer functions from {e„}, {e} and { tj}  to the output and the input. These are

. . BM + DR qHv . BC . . CR
У̂ ~  A R + B S  ' Av ev^ +  A R + B S T>̂  +  AR +  B S Ĉ  ( ^

. .  A M - D S  9"” AC  /j4 CS
~ A R + B S  ' Av 6v^ +  AR + B S ^  A R  + B S e^ '  ( ^

Consider an implicit model given by (7) with the control law (4). For such a 
model, the same transfer functions are

BM + V R  qn’ CB + R R
У ~  AR  + BS Av + A R  + B S ^  + A R  + BS

A M - V S  9n« A C - S o u .
У̂ ~  A R  + BS  e*( + A R  + ß 'b’? A R  + B

e(t)

e(t).

(65)

( 66)

For these models to be identical, the following conditions must be simultaneously 
satisfied:

AR + BS = C(AR + BS) (67)
B M  + D R =  C(VR + BM) (68)
AM - D S  = C(AM  + VS)  (69)

В — CB + R (70)
A = A C - S .  (71)

To see that they can be simultaneously satisfied, consider the Diophantine equation

X A - Y B  = 0. (72)

All its solutions are given by

X  =  LB  (73)
Y  = LA (74)

for any polynomial L.
Take (67) and write it as

(A -  CA)R -  (- В  + СБ) =  0 . (75)
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The solution of equation (75) satisfy

A - C A  = LS (76)
- B  + CB = LR (77)

for any L.
Similarly, for (68)

( D - V C ) R - ( - B + C B ) M  = 0 (78)

whose solutions satisfy

D - V C  = LM (79)
- B  + CB = LR (80)

again for any L.
Comparing (70) with (77) and (71) with (76) it is concluded that a choice of 

L — — 1 is compatible with all the conditions.
□

Proof of Proposition 2

According to (12), all possible В have the form

В — X  + LR (81)

with L generic. Let L*(g-1 ) be found by long division of QB{q~l ) — AT*(g_1) by 
R*(q~l ) so as to satisfy

QbOT1) -  X ' i q - 1) = L4q- ' )R*(q-1) -  9- (t+1)$b(«_1)

with dL — T  and dQB(q~l ) = 0.
With this choice, В verifies

З Ь О Г 1 ) -  ^ ( « Г 1) +  L * ( g - 1 ) Ä * ( g _ 1 )  =  V ( Г 1) * * * « " 1 ) -  q - ^ G s i q - 1)

which proves that a В can be found in the form (19).
In order to prove (22, 23), note that (8) imply:

AR + BS = C(AR + BS) (82)
DR A BN  = C(VR + BM) (83)

(BC -  B)S = - ( A C  -  A)R (84)
(BC — B)M — —(VC -  D)R (85)
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[ ß * ( r 1)C *(?-1) - 5 * ( g- 1)]5*(?-1) =
= -[A*(q-1)C'(q- l ) - A - { q - 1)]R'(q-1)

= - [ D ' i q - ^ C ^ q - 1) -  D* (q~1)]R,‘(q~1). 

if ^ ( T 1) is, as in (19), the above equations become

(87)

( 8 6 )

9- (r+1)[^(9- 1)C*(r1) -  GM?-1) ] ^ - 1) =
= - И * ( 9 '1)С*(«?-1) -  A 'i , - 1) ] ^ -1 )

Я - ^ + ' Ч Р в ^ С Ч я - 1) -  G U q - ' W i q - 1) =
= - [ D ' i q - ^ C ' i q - 1) -  i T i q - ' W i q - 1). 

Write Л*(д-1) and D*(q~1), as in (26, 27), and use it in (88, 89) to get:

в -(т+1)1й(9_1)С*(9-1) -  Gb(«‘ 1)]S*(«"1) =

= -[M*(9_1) -  Q U q - 'V C ' iq - 1) -  г (т+1)с ^ ( г 1)]Д*(9-1)
9 - (T+1)[ ^ * ( 9- 1) C * ( ? _ 1 ) - G b i r 1) ] ^ ’ ( Г 1) =

= -[(г>* (9_1) -  QbOr1) ^ -1) -  q - ^ G U q - ' W ü - 1).

(90)

(91)

Using the fact that R is monic, (22, 23) are obtained.
□

Proof of proposition 3

Since (equation 8)
A R  + BS  = CQ

for some polynomial Q, the degree of Q is determined as follows: 
From the structure of the control law

dR  = nR (92)
dS = nR -  1. (93)

Since it is assumed that dB < n — 1, the term AR  has a higher degree than 
BS.  In order to equate the coefficients of the highest powers of A R  and CQ, since 
dC = n, it must be true that

dQ = nR. (94)
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Once dQ is known, equation (10) is used to relate the degrees of A  and B.

AR + BS = Q.

Since
dQ - nR

d(AR) — dA + nR 
d(BS) — dB + nR — \

it must be
dB = dA +  1 (95)

in order that the coefficients of the highest powers of q_1 in A R  and BS cancel out. 
By (19) and (22)

ЛЧ-Г1) -  Qa^ - 1) + д -(т+1)£/д(д-1) (96)
^ ( Г 1) = Qbfo"1) + <Г(т+1)£ б (<Г1) (97)

and since dQA — dQR = r, relation (95) gives

dgB = dgA + 1. (98)

Equations (22), (26), (21) and (19) used in (82) give

(Ga -  Ga C)R = (GB -  GbC)S (99)

From (26), (21):

G a  = ( A - Q AC)qT + l (100)
GB = ( B - Q BC)qT+1. (101)

Multiply (100) by R, (101) by S, subtract and use (8) to get

Ga R - G b S  = C [ Q - Q AR + QBS]qT+1. (102)

From (102) and (99):

GAR — GBS — known polynomial. (103)

Equation (103) is used to obtain the minimum degree of Gb by equating the 
number of equations to the number of unknowns.

The number of equations is equal to the number of coefficients, which in turn 
is given by the degree plus one. Thus:

Number of equations = (dGe + nR — 1) + 1 = Gb + nR (104)
Number of unknowns = dGA + 1 + dGe + 1 = 2dGe + 1- (105)
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Equating the number of equations to the number of unknowns:

9Qb + nR — 2<9(7в + 1

3Qb = nR -  1. (106)

From (19)
d B  = г + 1 + 8Qb = пд + r. (107)

To get the degree of V,  a similar technique is applied to (83). Write it as

{Gd -  QVC)R =  (GB -  GbC)M. (108)

From (19) and (27)

Gd = ~(D + CQD)qT+1 (109)
GB = ( B - Q BC)qT+1. (110)

From (108):
QpR — GßM = known polynomial. (H I)

Then:

Number of unknowns = dGv + 1 + 8Gb + 1 = Gv + 8Gb + 2 (112)
Number of equations = dQe +  пд +  n„ -  1 + 1 = BQb + пд + nv. (113)

Equating the number of unknowns to the number of equations, the minimum 
degree for G v  is obtained:

d V  = T + r i R  +  n v -  1. (114)

Finally, by (107, 95):
дЛ = пд + r  -  1. (115)

Thus, there exist finite orders for A, В and D given by (107), (Í14) and (115) 
such that (7) enjoys the т-UCPP property. Writing (7) for t replaced by t + r  
yields (32).

□

Proof of Lemma 1

In closed-loop

R*(q~l \r)ut -  r)yt + M*(g-1 ; r)i>t + qt.
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Consequently, if

r )  =  v4*(9-1 )-R*(g_1 ; r )  +  q~l r) ,  

q~1B*(q~1)C*(q~1) C* (q ~1) R * ( q ~ 1;r )

y ,M  -  — о ч Р Ч ]̂— + ' ( r V )  e,+
д-1В*(д-')М*(д-'\т) + 1Г(д-')ВГ(д-1-т) qn*

Q ' i q - ' i r )  A'v ( q - ' ) ev ( t )

_  c r { q- ' ) s * ( q - ' - t T)

Ut{T)-  Q *(<rV ) 4 ,+  g*(« -l ;r )  e‘+
л Ч г Ч м ч г У Ь Р Ч г 1) ^ - 1;?-) яп" m

Q ' ( q - U,T)  ' A ; ( q - I ) e v ( h

Since {ту} is uncorrelated with both {e} and {e„}, the lemma follows.
□
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Адаптивное управление широкого диапазона для систем ARMAX с
доступными помехами

И  М. Л Е М О С

(Л и ссаб о н )

Р а с с м а т р и в а е т с я  ад ап ти вн о е  у п р ав л ен и е  с п р я м о й  с в я зью  д л я  си ст е м  ARMAX с 
ц е л ь ю  у м ен ьш и ть  в л и я н и е  и зм е р я е м ы х  помех. И с п о л ь зу е м ы й  а л г о р и т м  п р е д с т а в л я е т  
собой  р асш и р ен н ы й  м у л ь т и п р е д с к а зы в а ю щ и й  а д а п т и в н ы й  а л г о р и т м  у п р ав л ен и я  ш и 
р о к о го  д и ап а зо н а , к о то р ы й  о б о зн ач ен  MUSM AR. П о к а за н ы  тр и  о сн о в н ы е  р е зу л ь т а т ы : 
п ер в о е , п а р а м е т р и за ц и я  м у л ь т и п р е д с к а зы в а ю щ и х  м о д е л ей , к о то р ы е  возм ож но  и д ен 
ти ф и ц и р о в ат ь  пр и  пом ощ и с т а н д а р т н ы х  наим ен ьш и х  к в а д р а т о в  д л я  си стем  ARMAX с 
и зм ер я ем ы м и  п о м ех ам и  т и п а  A RM A, в о зд е й с т в у ю щ и м и  в за м к н у то й  цепи  у п р а в л ен и я ; 
в то р о е , п о к а зы в ае тс я  а л г о р и т м , в ы те к аю щ и й  и з  со ед и н ен и я  н еяв н о го  п р е д с та в л ен и я  
с и ст е м ы  с м у л ь т и с ту п е н ч а т ы м  к в а д р а т н ы м  к р и т е р и е м  и его  р о б а с т н ы е  св о й ств а  н а 
с тр о й к и  у си л ен и я  р е гу л я т о р о в ; т р е т ь е ,  показан  п р и м е р  с и м у л я ц и и .

J. М. Lemos 
INESC,
Rua Alves Redol, 9, Apartado 10105,
1017 Lisboa 
Portugal
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(E,  A)-ACHIEVABLE RATES FOR MULTIPLE DESCRIPTIONS 
OF RANDOM VARYING SOURCE

E. A. H a r o u t u n i a n , R. Sh. M a r o u t i a n

( Y erevan)

(Received N ovem ber 28. 1989)

We stu d y  th e  coding by two encoders a n d  two decoders o f discrete ra n d o m  varying 
m em oryless souroes, w hen b o th  decoders u se  side in fo rm atio n  abou t source s ta te s . We 
derive th e  in n er a n d  o u te r  bo u n d s for th e  (E , Д )- achievable ra te s  region, th a t  is th e  ra tes 
achievable for a  given p a ir  of exponents E  =  ( E \ ,  E 2 ) of th e  p robabilities of exceeding the 
d is to rtio n  levels Д  =  (Д 1 , Д 2 ), respectively.

1. Introduction. Problem statem ent. Formulation of results

A random varying memoryless source {А, У} is a sequence of independent 
identically distributed pairs of random variables {(A,-, У *)}^ given by the proba
bility distribution

p* о w*  =  { P ’ о x e x , y e y } .

The signals x of alphabet X  of the principal source {A} must be transmitted 
to the receivers. The information about signals у £ У of the additional source {У}, 
considered as the states of the source {A}, can be used for the better transmission 
of the principal source.

Multiple description of a discrete memoryless source is a simultaneous en
coding of the source by several encoders and, correspondingly, decoding by several 
decorders, each of which is connected to a part of the encoders [1-5].

In the present paper we study the problem of the multiple description of 
random varying sources by two encoders and two decoders. One of the decoders is 
connected only with the first encoder, and the other one with both encoders. It is 
supposed that both decoders have the full information about the additional source 
(see Fig. 1).

Let U, V be two finite reproduction alphabets on the first and second decoders, 
respectively, and X  x U —► [0,oo), d2; X  x V —*• [0,oo) be the corresponding 
distortion measures. For the length n sequences x £ X n, u £ Un , v £ Vn of

Akadémiát Kiadó, Budapest 
Pergamon Press, Oxford
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F ig .  1

distortions are defined as the average of the distortions between their corresponding 
elements, i.e.

1 rdi(x,u) = - V d i( x i ,u ,) ,  
n z '*=1

d2(x,u) = ~У](12(х{,ы).
П Á '

1=1

An (/, F) =  ( / i ,  / 2, F\, F2) block code of length n is formed by two encoding 
functions f i : X n -*■ {/1, . . .  ,/£(„)}, / 2:T" -► {fcb . . . ,  £*(„)}, and two decoding 
functions Fi: {li , . . . ,  //,(„)} x T" -*■ W", F2: {/b • • •, k(n)} * {*1, • • •, kK(n)} x }>" — 
—+ if". Probabilities ei>n and e2>n of exceeding the distortion levels Д1 > 0 and 
A 2 > 0, given on the first and second decoders, respectively, are defined as

ei,n = e 1( f1,F1,d1, A u n) 4  £  P*(x)W*({d1(x, В Д ^ х ), у)) >

e2,„ = e 2 ( f 1 , f 2 , F 2 , d 2 , Д2,п) 4  £ > * ( * ) 1 Г  ({d2(x, F 2( f l ( x ) , f 2 ( x ) , y ) )  > Д 2}|х).
X

Our aim is to study the characteristics of codes ensuring the exponential 
decrease of probabilities ei>n and e2,n with given exponents E\ > 0 and E2 > 0, 
respectively,

ßj.n < exp(—n£j), j  -  1,2. (1.1)

Two non-negative numbers f2j, Д2 are called (E, A)-achievable pairs of rates, 
if for any £ > 0 and for all n > n(e, R \ , R2) there exists a code (/, F) satisfying 
(1.1) and such that

— log L(n) < Ri + e, -  log K(n)  < R2 + e. n n

The region of all (E, A)-achievable rate pairs is denoted by Ж(Е,А).
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Let P 4  {P(x), x E X )  be a probability distribution on X, W  = { W(?/|a:), x E 
G - i ' j i / G ^ J b e a  matrix of the conditional probabilities on У for given x £ X , and 
Q = {<2(и,г|ж), x G X, и G U, v E V} be a matrix of conditional probabilities of 
pairs (u, « ) g W x V for given x E X.

We shall use the following notations: for divergences

D(P| \ П  = Т . Р(’ ) ' ° * Ш , -
x ' '

D(P о W\\P* o W ' ) ± J 2  П*)Щу\*)  1оё р ^ | ^ Ы х ) ’ 

D { W \ \ W \ n  4  Y , P ( x ) W ( y \ x ) l o g ^ ^ r

for entropies
HP(X)  4  - £ p ( * )  log P{x),

X

HP,w(Y\X)  4  Y , n * ) m y \* ) l o g W ( y \x ) ,
x,y

for mutual information
IP)W(X A Y )  = HP(X) -  HP,w{X\Y).

Let
B(E) = {P, W: D(P о W\\P* о W") < E }

and
MP)Qd(X,U)= Y ,  P(x)Q(u,v\x)d(x,u).

x,u,v

Define the function
Ф(P) = QP 4  {QP(u,vI*), x G X, и G U, v G V} 

determining the correspondence of a Q to each P, such that, if D(P\\P*) < E i, 
then MP:<b(P)di(X, U) < Äi, and if D(P\\P*) < E2, then MP ^(P)d2(X,V)  < Д 2. 
Let VR(E,A) be the set of all such functions Ф for given E = (£ 1, E2) and Л = 
= (Аь ^ 2)-

Denote by Жг(Е, А, Ф) the set of all pairs Ri, R2 such that the two following 
inequalities hold

R\ > min̂ s max IP ф(Р)(Х A U) — IP ф(Р) w {Y A U)-\-
íp.weBtE,) ’ v ’ ’Vp,WiB(Ex)

+ Ei - D ( P o  W\\PmoW*y, max
P D (P\\P ')< E

1 р , Ф ( Р ) ( Х  A i f ) } ,

Ri + R2 >  min I  max IP ф(Р ) ( Х  A UV) — IP ф(Р\ w ( Y  A UV)+ 
<p,weB(E3) ’ v K

+ E2 -D (P o W \ \P *  oW*); max IP Ф(Р)(Х A UV)}.
4  "  P D(P\\P’ )<Ez ’ ( ’ J
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Consider the “random coding” region

*г(Я ,Д ) = и *г(£,Л ,Ф ),
ФёЯП(£,Д)

and the “sphere packing” region

K*P(E,A) = U  Л .р(£7, Д.Ф),
Ф6®1(£,Д)

where 5Н8р(£',Д,Ф) is the set of all pairs R\,R^  such that the two following in- 
equalites hold

Rl -  pweB{E1)iIp'9f(~p^ X  A U ) ~ 1P,i-{P),w{y A U)],

Ri  + R2 > p ^ р,ф(Р)(А Л UV) — Ip^(p)tw (У A UV)].

The following theorems will be proved in Section 3 and Section 4, respectively.
T heorem  1. For positive Ei, £ 2, Д 1, Д2 the following inclusion holds

И (£,Д ) D <ЯГ(£,Д ).

T heorem  2. For positive £ 1; £ 2, A i, Д 2 the following inclusion holds 

<Я(£,Д) С ^ р(£,Д).

Remark. As in [4] it can be proved that in the Theorems it is sufficient to use 
the sets U and V with \U\ < |T| + 2 and |V| < ( |T |+  l)2. Here and later we denote 
by |A| the cardinality of the finite set A.

Now, let us carry out the comparison of our result with earlier known ones. 
Gray and Wyner [1] first considered the problem of the multiple descriptions of 
a standard source for the same diagrammé of encoders and decoders as our ones. 
They found the region of achievable rates for a given distortion levels. If in Theorem 
1 and 2 one takes £1 —<- 0, £2 —̂► 0 and |JV| = 1, then he obtains the result of [1].

Multiple descriptions for sources with two encoders and three decoders are 
considered in papers of El Gamal, Cover [2], Ahlswede [3], Gelfand, Pinsker [5]. 
Heegard and Berger [4] describe the set of achievable rates of random varying 
source coding for given distortion criterion, when the side information can be absent 
at one of the decoders. In [6, 7] for some models of discrete memoryless sources 
the problem of determination of the £-achievable rates is considered. The same 
problem as in this paper but in the case of absence of the additional information 
on the decoders is studied in [8].

The works [9-12] (see also [13, 14]) were devoted to the study of the coding 
problem for correlated sources.
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The region of (E , A)-achievable rates for some models of random varying 
sources is determined in [15].

The result of this paper were presented in the IXth All-Union conference on 
coding theory and information transmission in Odessa [16].

The proof of Theorem 1 uses the Lemma of Section 2, which is a generalization 
of the covering lemma from [17].

2. Typical sequences and the Covering Lemma

Let us denote the number of positions with x in x by n(x|ai). The sequence 
x G X n has the type P if п(х|ж) =  nP(x) for all x G X . The set of all sequences 
of type P is denoted by Tp(X). The number of different types of sequences in X n 
is less than (n -(-1)1'*’!.

We shall use the following well-known combinatorial relations [13]:

(n -I- l ) -1* 1 exp{nHp(X)} < \TP(X)\ < exp{nHP(X)},  

for x G TP(X)

P*(x) -  exp{-n(D(P||P*) +  Hp(X))},
(n + l)“ 1* 1 exp{-nD{P\\P*)} < P'(TP(X))  < exp{-nD(F||F*)}.

One says that a sequence у & Уn has conditional type W  for given x G X n, 
if n(x, у|ж, у) = n(x|a:)VV(y|x) for every x G X, у G У- Denote the set of these 
sequences by 7V(Y |x). It is known [13] that if x G Tp(X),  then

(n +  l)-l*H y l ехр{пЯ р1у(У |Х )}  < |7W (Y |x)| <  ex p ÍT iP p ^ Y lX )} , 

for у G Tív(Y|x)

W'(y\x)  = exp{-n(£>(W||W*|P) +  HP,w(Y\X)},

and

(n + 1)-|дг||у1 exp{-nD(W||W*|P)} < W { T w ( Y |x)|x) < 
<exp{-nD(W |W *|P)}.

Denote Q \  =  {<3i(x|u), x  G X ,  it G U j ,  where

Qi(*|u) = XI v|ar)Jp(a:) (^1} vlar)/’(;r))
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We say that x G Tp(X)  has conditional type Qj, for given u  G Un, if n(x, u|ar, u) = 
= n(u|u)<3i(x|u), for all x G X, и G U. The set of sequences x G Tp(X),  having 
conditional type Qx for given u G Un, is denoted by Tp g(X\u).  A sequence 
u G Un has type Q2 = {<3г(«), « G W}  where Q2 (w) = Q(u, и|а;)Р(ж), if

X  ,V

n(u|u) =  nQ2(u), for all и G U. The set of sequences u  G Un having type Q2 is 
denoted by Tp q (U).

The family
{7 > ,д (Х |и Д  j = T J }  

is named a covering of Tp(X),  if 

J

Tp (X) C [ J  TPiq (X\uj), where uj G TPiq (U), for j  -  1 , J. 
i =1

It is clear that

TPiQiW(Y |u ) =  ( J  7W(Y|x).
x6Tp,Q(X|u)

A covering {TpQ w ( Y |u,-), j  = 1, J} of Tp q{Y) is called a-balanced [17] if for 
each у G TP}W(y ) |{и ,:у  G TPiq:W(Y |uj)}| < a.

Now, we shall prove a modification of the Covering Lemma 3 from [17]. 
Lemma. For e > 0 and any types P, Q, for large enough n there exists a 

covering {TpQ(A |uj), j  =  1, J(P,Q)} of Tp(X)  such that u; G Tp,q (U)

J(P, Q) = exp{п1рд(Х  Л Í7) + 2en}

and for all conditional types W there exist a(P, Q, W )-balanc.ed covering 
{7p,c5,iv(y|u,), j  = 1 ,J(P,Q)} of Tp w (Y )  with the same {uj, j  = 1 ,J(P,Q)} 
and J(P, Q) such that

a(P,Q, W) = exp{7z[/p,Q(A A U) -  IP,q,w (Y A 17)] + 4en}.

Proof. We prove the existence of coverings by the method of random selec
tion. Let {£j , j  = 1 ,J(P, Q)} be a sequence of random variables independent and 
uniformly distributed over Tp q (U).

Let us denote by

■фх(х) =

W y J )  =

J(P,Q)
< 1. i f x *  ( J  Гр,д (Х |СД

J = !
. 0, otherwise;

f l ,  if у t T p , Q,w (Y\t}),
\  0, otherwise.
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Upperbound now the following expression

J(.P,Q)
Pr ^ ( У , j )  > 1 f +{ E *«>i}+Ep' E E

кхетР(л-) > w  e T P,w ( Y )  j= 1

(J(P,Q)

+ E E Рг E ^ (y , j )<
^  У£TpiW(Y) 1=1

and

As in the proof of Lemma 4.1 from Chapter 2 of [13] we can obtain

Г 1 Г J(P,Q) 1
Pr £  i M x ) >  1 <  | 7 > ( X ) | P r  x<£ у  7 > 1<г( * ^ )  <

'•хбТр(ДГ) '   ̂ j = l -1

<  | T p ( x ) | ( i  -  | T P ,Q ( A : | u ) | | T p ( A : ) r 1)-/ ( p '<?) <

< |Tp(A')| exp{—J (P, Q) exp{—nlp q ( X  A  U) + ne} },

Pr|  E  E  <Ыу ,Л  >  1 f <
L 1 = 1 y € T P,w (Y )  J

< \Tp,w(Y)\exp{-J(P, <5)exp{-n[/p,Q,w(y A[ / )+e ] }} .

As it holds from the Covering Lemma 3 [17], we have for a > 0

Pr Y ,  V-2(yJ ) < J ( P , Q ) - a ( P , W , Q ) \ <
L j =l J

J(P,Q)
<exp{-a(J(P,Q)  -  a(P,W,Q))} M  ехр{аф?(у J ) } .

l=i

Then we obtain

M exp{aip2(y, j)} = |TpQ,iv(E|u)||Tp,iV( y ) r 1 +
+  ea ( |rp ,w (y ) |- |T p ,Q,iv(y|u)|)|Tp,Vv ( y ) r 1

and if we take

7

a = log[(J(P, Q) -  a(P, Q, W))\TP,Q,w  (У |и)|]- 
-\og[a(P,Q,W)(\TPiW( Y ) \ - \ T PiQiW(Y\n)\)]
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then

4  E  M v J ) <  J { P , Q ) ~ a ( P , Q ,W ) \ <
^ j = l  J

< exp{J(P, Q)[h(A) -  Xnlpq W(Y Л C/)]},

where h(A) = —A log A — (1 — A) log(l — A), A = a(P, Q, W)/J(P,  Q). Hence, if we 
choose

J(P, Q) = exp{tiIp q (X  A 17) + 2en},

and
a(P,Q, W) = e x p j n ^ Q ^  AC/) -  Ip,Q,w(Y Л C/)] + 4en}, 

then the statement of the Lemma holds.

3. P r o o f  o f  T h eo rem  1

We have X n — (JTp(X), with P running over all possible types on X n. For 
p

each type P choose some conditional type Q such that Q — Ф(P) for some fixed 
Ф G 9Ji(P, A). Let, according to the Lemma,

{и;(Р,Ф(Р)) e  ip i$(p)([/), j -  1 ,J(P , Ф(Р))

be a covering for Tp(X)  and a(P,Q, W)-balanced covering for Tp w(Y)-  
Consider the covering of Tp(X), consisting of disjoint components

Cj{P, Ф) =
= Трф(р){Х|и; (Я Ф(р))) \  [ J  ЗяФ(р)(Х|и_,-(рф(р))),

j'(PMP)KXPMP))
j  =  1,7(Р,Ф (Р)).

For each type P and conditional type W  define following sets

Si(y, P, Ф, W) = ___________
= {uj(P,«>(P>)) : У e ^я,Ф(Р)(^1иЛР’,Ф(Р>)))’ i  =  ф(^*))}-

From the Lemma we have that 

5i(y, P, Ф, W) <
< exp{n[7p :ф(р )(Х AU) — 7p,$(p),w(E Л C/)] + 4 eti) .
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Further, by the Lemma, for every fixed uя р ,ф(Р)) € Рр_Ф(P){U) there exist 
coverings

{2р,ф(р)(Л'|идя1ф(я)),У5(р1ф(р))), д(Р,Ф(Р)) = 1,С(Р,Ф(Р))}

for Трф(р)(Х|и;(рф(р))), and for each conditional type W there exist 
ехр{п[7рф(р)(Х A V\U) — 7р,ф(р),1у(У A V\U)] + 4e}-balanced coverings

{Тр,Ф(Я),и^(У|и;(Р,Ф(Р))! Уд(р,Ф(Р))), g(P, Ф(-Р)) = 1,G(P, Ф(Р))} 

of 7>1ф(р)>1у(У |^(р1ф(р))), where

7 p ^ ( p ) , w ( ^ | u , v )  =  l^J Tw{Y  |x ) ,
х€7’р,Ф(Р)(-Х’ |u,v)

and
С(Р,Ф(Р)) = ехР{п[/р1ф(р )(Х A V\U) + 2c]}.

Let

C j A P M P ) )  =
= Cj(P, Ф(Р))П {Тр ф(р)(Х|и; (р ф(р)),Уг(р ф(р)))\

\  U  ?>,Ф(Р)(^|иЯР,Ф(Р))' vj'(P,*(P)))i
}'(Р,Ф(Р)Х,(ЛФ(Р))

and

52(y, u, P, Ф, W) 4  ___________
= {уг(Р,ф(Р)) : У £ ?р,Ф(Р),И'О'1и>''г0(Р,Ф(Р)))> д(Р,Ф(Р)) = 1,G(P,Ф(Р))}.

We have

|S2(y, u, P, Ф, W )I < ехр{п[7рф(р)(Х A V\U) -  IPMP),w(Y  A V\U) + 4e]}.

Now, using the random coding method we shall prove the existence of code 
( / , F) satisfying the conditions of Theorem 1. Let {G(u), u € W") be the 
family of independent, identically distributed random variables with distribution 
Pr{£(u) = /} = £ -1(n), / = 1, L(n) and {r?(v), v E V”} be the family of indepen
dent, identically distributed random variables with distribution Pr{r?(v) =  k} — 
— K~1(n), к = l,K(n).

Consider the following coding functions

/i(x) = С(иЯР,Ф(Р)))> if x G Cj(P, Ф(P)), and 
/г(х) = »?(vi (p^(p))), if x G Q ,j(P , Ф(Р)),
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and decoding functions (with some fixed vectors uo and vo)
f u ,  if u 6 Si(y, P, Ф, W) П / f 1(i),

Fi(l ,y)= l  where |Si(y, P, Ф, W)\ > ^ ( y ,  P ', Ф, W )  |; 
( uq, otherwise;

and

F 2 ( l , k , y ) ±
V, if V €  52(y, U, P, Ф,РУ)П/2 1(Ar), 

where u = Pi(/,y);
|<?2(у ,и ,Р ,Ф ,1Р)| > |S2(y,u, Р ',Ф , W')|;

_ vq, otherwise.
Define now

V=>i(x,y) =

Let

and

1, if C(Uj) = C(uj'), X e  Cj(P,<i>) and 
Uj, u j> 6 Si(y, P, Ф, W),

0, otherwise;
f 1, if v(vg) = r/(vg.), x € Сд,д(Р,Ф),

^ 2(x,y) = < \ g , Vgi G S2(y,Uj ,P, Ф, W), u; G 51(у,Р,Ф, W),
( 0, otherwise.

ei(C, 77) = ^P * (x )W (y |x )v ? i(x ,y )
x>y

e2 «,r?) =  ^ P *(x)^ *(y |x)v?i(x ,y)v?2(x ,y ).
Х.У

Now, we upperbound
Pr{ei(C) rí) > exp(—nPi)} + Pr{e2(£, if) > ex p (-n P 2)}.

As it is shown in [15] for large enough n
Pr{ei(C.»?) > exp(-nPi)} <

< exp4 n max \Ip ф(p)(X Л U)—~  L P,W,B(Ei +c)L ’ ;

- Ip ,* (P)M Y  A U) +  Pi -  D(P о W\\P* о W )  + 2e] -  logL(n)}. 

Similarly, for large enough n
Pr{e2(£, rj) > exp(—nP2)} < exp{n(P2 +  e)} x 

x £  £  E  P*(x)W*{y\x)M<pi(x,y)Mtp2(x,y) <
p,w gB(£2+E) xeTpCX) yeTw(y |x)

<exp{n max [/рф (рч(А Л f/V) — Ip ф(р) w (Y  Л PV) + P 2— 
t P,1V€B(£2+í ) ’ ' 4

—D{P о W||P* о Г )  + 2 е ]- log L(n) -  log A'(n)}.
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Finally, we obtain that for

L(n) >

> exp I n maxP.WeBiEi+e) [ 1 р , Ф (Р ) (Х  Л  £ / )  — 1 р :ф ( р ) ^ ( У  л и )  +  E i  —
■£)
D{PoW\\P* о W )  + 3e]},

and

L(n)K(n) >

> exp I n max 
P , W e B ( E 3+e)

[IpMP)(X  л UV) -  IpMP),w(Y Л UV) + E2-

D{PoW\\P* оРУ*) + Зе]},

there exists a code (/, F) with rates satisfying the conditions of the Theorem.

4. P roof of Theorem  2

Let rates Äi, R2 be (E, A)-achievable for some code (f , F ). Denote by

Gi = {(x,y) : di(x; Fi(/i(x), y)) < Ai}.

Consider some type P о W  G B(E\ — e) ,  for e > 0. Then

|Gi П TP'W(X,Y)\ = P* о W*{Gi П Tpyv{X, Y))(P* о W*(x, y))“ 1,

where (x,y) G Tpw(X ,Y) .  It follows from Section 2 and inequality P(A П B) > 
> P(A) +  P{B) — 1 that for types P, W  G B{E\ — e) and for sufficiently large n

Denote by Л(у) the set of those u G Un, which for given у and some x G X n 
satisfies the condition u = F i(/i(x),y). Then

IGiCTp,w (X ,Y ) \<  E  l { x : á i ( x , u ) <  AJI .  (4.2)

|Gi П TPiW(X ,Y )I > exp{n(HP]W(X, Y)  -  e)}. (4.1)

y :3 x ,(x ,y )6 G l uEA(y)
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Let Q' = {Q '(u|x,y)} be some conditional type in Un for given x G X n and
y e r

If (x, y, u) G TptQ<w (X, У, U), then 

1 "
di(x,u) =  =

n .=l

=  n (x ,y ,« |x ,y ,«)ííi(x ,y) =  Mp'Q’<wd\{X,U) < A\.
X,y,U

For fixed у and u the set of those x, for which di(x, u) < Ai, can be covered 
by the collection of conditional types Tp q* w{X  |y, u). Hence, from (4.2) we obtain

\G\  П Tptw ( X ,  У ) |  <

< 'У' У '  (n + 1)1^1  max |Tpw o'(X |y, u)| <
,* * « > « « .- ö w  |y ,4.3)

< Li exp{ п [я Р|№(У )+  max HP:W:QI(X\Y, U) -  e/2] }.
** L Q pq/ wdi{XtU)<.Ai

From (4.1) and (4.3) we have

-  log Li > n
> HPiw (X ,Y )  — Hp w(Y)  — max HP<Q,,W{X\YU) -  e =

Q .A fp Q i'W d i( X tU )< A  1

— min Ip q1 w (X  A U\Y) — s.
Q' M p,Q' tw * Á X V ) < A ,  4  ’

(4.4)

Denote by
Q H X) = ]T^Q'(ulx > y)^(y lx)-

We have from (4.4) that

-  log Lx > n
> max min Ip o ' w ( X  AU\Y)—
~  P ,W e B ( E l -c )Q ;M PiQd l (X ,U )< b l ’

~ р ^ Ж  Г г т г л  V w ( x  * U ) - Ip ,Q .w (Y  A U ) - e ] .P , W 1 — c)  Q : M p tQ d \ ( X Aj  

Similarly, we obtain that 

i?i + >

> max min Ip q(X A UV) — Ip q w(Y  Л UV) — e.
~  P ,W e B (E 3-e )Q :M p 'Q d i(X ,V )< A 3

(4.5)

(4.6)
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Taking into account the continuity of the right-side of (4.5) and (4.6) by E i 
and Ei, respectively, and the arbitrariness of e, we obtain the statement of The
orem 2.

References

1. Gray, R . M ., W yner, A . D., Source C oding for a  Sim ple N etw ork. Bell System  Technical 
Jou rna l 58 (1974), 9, pp . 1681-1721.

2. E l Gam al, A ., Cover, T ., Achievable ra te s  fo r m ultiple d esc rip tions, IE EE  T rans. Inform . The
ory 28 (1982), 6, pp . 851-857.

3. Ahlsw ede, R ., T he ra te -d is to rtio n  region for m ultiple d esc rip tions w ithout excess ra te . IEEE 
T rans. Inform. Theory, 31 (1985), 6, pp . 721-726.

4. Heegard, C., Berger, T ., R a te -d isto rtio n  w hen side in fo rm atio n  m ay be absen t. IE E E  Trans. 
Inform . Theory, 31 (1985), 5, pp. 727-734.

5. Gelfand, S. 1., P insker, M. S., Source coding w ithout red u n d an cy  for netw ork w ith  two encoders 
an d  th ree  receivers. P rob lem s of C ontrol a n d  Inform ation T h eory , 14 (1985), 5, pp . 319-328.

6. H aroutunian, E. A ., M ekaush, B ., E stim a tes  for op tim al ra te s  o f codes w ith given erro r prob
ab ility  exponent for several sources. V lth  In tern , sym posium  on  inform ation  theory . Thesis 
of re p o rt. M oscow-Tashkent, (1984), P a r t  I, pp . 22-23 (in R u ssian ).

7. H aroutunian, E. A ., R ate-reliability  function . Journal of In fo rm atio n  Processing  an d  C yber
netics, (1989) (in R ussian).

8. M arutian, R . Sh., Achievable ra tes  for m ultip le  descriptions w ith  given exponent a n d  d isto rtion  
levels. “Problem y peredachi inform atsii” , (1989) (in R ussian).

9. Slepian, D., Wolf, J. K ., Noiseless coding of correlated  in fo rm atio n  source. IE E E  T rans. Inform. 
Theory, 25 (1973), 4, pp . 471-480.

10. W yner, A. D., Z iv, J., A  theorem  on th e  en tropy  of certa in  b in a ry  sequences a n d  application. 
P a rt 2. IE E E  Trans. Inform . Theory, 19 (1973), 6, pp. 769-778.

11. Ahlsw ede, R ., Körner, J., Source coding w ith  side in fo rm ation  a t  th e  decoder a n d  a  converse 
for degraded broadcast channels. IE E E  T rans. Inform. T heory , 21 (1975), 6, p p . 629-657.

12. Gelfand, S. I., P insker, M. S., Source cod ing  under observations w ith  unoom plete inform ation. 
Problem y peredachi inform atsii, 15 (1979), 2, pp. 45-58 (in  R ussian).

13. Csiszár, L , Körner, J., Inform ation  theory. Coding theorem s fo r discrete m em oryless system s. 
Akadém iai Kiadó, B u d ap es t. 1981.

14. Kolesnik, B. D., Poltirev, G. Sh., H andbook  of Inform ation  T heory , Moscow, N auka, 1982 (in 
R ussian).

15. H aroutunian, E. A ., M arutian , R . Sh ., E -o p tim al ra te s  of co d in g  for random ly varying source, 
Problem y peredachi inform atsii, (1989) (in  R ussian).

16. H aroutunian, E. A ., M arutian, R . Sh., (E , Д (-achievable ra te s  m ultipble  descrip tions for ran 
dom ly varying source, IX th  All-Union conference on coding th eo ry  and  in fo rm ation  transm is
sion, Odessa, 1988, pp . 6-9 (in  R ussian).

17. Ahlsw ede, R ., Coloring hypergraphs: a  new  approach to  m u lti-u se r source co d in g T I. Journal 
of C om bin. Inform ation  a n d  System  Sciences, 5 (1980), 3, p p . 220-268.



1 7 8  H A R O U T U N I A N ,  M A R O U T I A N :  ( £ , Д ) - A C H IE V A B L E  R A T E S  F O R  M U L T I P L E  D E S C R I P T I O N S

(£*, А)-достижимые скорости множественного описания случайно 
меняющегося источника

Е. А А Р У Т Ю Н Я Н ,  Р  Ш  М А Р У Т Я Н

(Е р ев ан )

М нож ественное опи сание и с т о ч н и к а  —  эт о  его  к о д и р о в ан и е  о д н о вр ем ен н о  не
ск о л ь к и м и  к о д ер ам и  и д е к о д и р а в ан и е  со о тв етств ен н о  н еск о л ьки м и  д е к о д е р а м и , к а 
ж д ы й  и з  которы х с в я з а н  с ч а с т ь ю  и з  кодеров. И з у ч а е т с я  з а д а ч а  м но ж ествен н о го  
о п и сан и я  сл у ч ай н о  м ен яю щ его ся  и с то ч н и к а  д в у м я  к о д ер ам и  и д в у м я  д е к о д е р ам и , 
о д и н  и з  которы х с в я з а н  ли ш ь с п е р в ы м  кодером , а  в т о р о й  —  с о б еи м и . Н ай ден ы  вну- 
т р е н я я  и внеш няя г р а н и ц ы  (Е , Л )-д о с ти ж и м ы х  с к о р о с т е й , то  е сть  с к о р о с т е й , д о с ти 
ж и м ы х  при зад ан н о й  п ар е  эк сп о н ен т  Е  =  ( Е \ ,Е 2 ) в е р о я т н о с те й  п р е в ы ш е н и я , со о тв ет 
с тв ен н о , уровней  и с к аж е н и я  А =  ( A i ,  Д 2 ).
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Problems of Control and In formation  Theory, Vol. 20(3), pp. 179-186 (1991)

THE DISCRETE MAXIMUM PRINCIPLE AS A SUFFICIENT 
OPTIMALITY CONDITION

M a r c in  S t u d n i a r s k i

(Lodz)

(Received O cto b er 22, 1991)

W e present an  exam ple  showing th a t  th e  validity of th e  m ax im um  principle in th e  
subdifferential form for convex nondifferentiable d iscrete-tim e con tro l problem s is n o t suf
ficient fo r optim ality. We also prove th a t  th e  desired sufficiency p ro p e rty  can be achieved 
under som e additional assum ption  concerning the  objective function .

1. Introduction

In some recent publications, e.g. [2-6, 9, 11], various kinds of generalized 
subdifferentials were used to formulate the maximum principle for certain classes 
of nonsmooth and nonconvex discrete-time optimal control problems. All those 
generalized sub differentials, except for the ones considered in [4], reduce to the 
usual sub differentials (cf. [7]) when the control problem is convex. In this case, the 
natural question arises whether the necessary optimality conditions formulated in 
the sub differential form are also sufficient for optimality or not. Unfortunately, the 
answer is not as simple as in the case of convex programming problems.

It is known that if the functions appearing in the problem are both convex 
and differentiable, then the discrete maximum principle is actually a sufficient op
timality condition (cf. [1, § 13]). For the nondifferetiable case, the authors of [5] 
claim (Theorem 5) that the same conclusion is true for the “weak” maximum prin
ciple. In this paper we present an example which shows that the validity of the 
“strong” maximum principle for convex problems is not sufficient for optimality. 
However, the same example can also be used to prove that the above-mentioned 
statement in [5] is false (see Remark 3.2 below). Further, wTe show- that the desired 
sufficiency property can be achieved under some additional assumption concerning 
the objective function. This assumption is always satisfied when the function is 
differentiable.

1 Akadémiai Kiadó, Budapest 
Pergamon Press, Oxford
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In the paper we make use of some notions and theorems of convex analysis 
which can be found in Chapter V of [7]. In particular, we recall that the subdiffer
ential of a convex function /  : Rn —► R U {+00} at x is defined by

d f ( x ) : = { z e R n : f (x  + h ) - f ( x ) > ( z , h ) y h E R n} (1.1)

(we assume that the value f ( x)  is finite). Moreover, we have, by [7, Thm. 23.2],

df(x)  = {z G R" : f ' (x-v)  > (*,«),Vt> G R"} (1.2)

where the directional derivative /'(x; v) is defined by

f \ x ; v )  := \im+(f(x + \v)  -  f ( x ) ) / \ .  (1.3)

The above limit always exists and has the following property (cf. [7, Thm. 23.1]): 

f '(x; t>) = inf (/(*  + An) -  /(* ) ) /A. (1.4)

Let us now consider the Cartesian product X  = X i x .. .x Xk where Xi = Rm*, 
i = 1 ,..., ifc, and let /  : X  —+ R be a convex function. The derivative of the 
function f ( x  1, . . . ,  Xi_i, -,x,+i , . . . ,  Xk) at Xj in the direction v will be denoted by 
/ '  ( x j , ... ,Xk',v), while its subdifferential at x* -  by dXtf ( x  1, . . .  ,Xk) (this set will 
be called the partial subdifferential of /  with respect to Xj). It is easy to prove 
(cf. [8, Lemma 2]) that

pr , (d f (x i , . . . ,X k) )CdxJ ( x i , . . . , x k,), i = l , . . . , * .  (1.5)

For a convex set A C R", we shall denote by N(x \ A) the normal cone to A
at x G A, i.e.

N(x I A) : = {z G Rn : (a — x, z) < 0, Va G A}.

It is easy to verify that if A — A\ x . . .  x Ak С X,  then

рг,- N((xi , . . . ,  xjt) I A) =  N(x{ I Ai), i = l , . . . , * .  (1.6)

Throughout the paper, AT will denote the transpose of a matrix A, and ri U 
will denote the relative interior of a set U.

2.  The discrete maximum principle for convex problems

In this section we consider a convex version of the discrete-time optimal con
trol problem examined in [9]. Theorem 2.1 below contains a maximum principle
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formulated under an additional regularity condition (a variant of the Slater con
dition) which ensures that the multiplier corresponding to the objective function 
can be chosen as 1. In the next section we shall show that even this strengthened
maximum principle may not be sufficient for optimality.

Let us consider the following problem:
лг- i

minimize J (x ,u ): = fi(xj,Uj) subject to (2.1)
»'=o

Xi+i =  AiXi + В{щ +  a, i =  0 , 1 , . . .  ,N  -  1, (2.2)
u , e t / i C R r , 1 =  0 , 1 , . . . ,  AT— 1, (2.3)

Eqxo = do, E^xn — du,  (2.4)
</.(*.) < 0 ,  i =  1 , . . . , Л Г - 1 ,  (2.5)

where x = (x0, xb . . . ,  x N), u  =  (u0,u  b  . . . ,  u jv -i), £ Rn, щ £  Rr , Ait Bit 
Eo and En  are given matrices of dimensions n x n, n x r, n x m 0 and n x mjv, 
respectively, a  are given vectors in Rn , the sets U, are convex and closed, while the 
functions fi : Rn x Rr —+ R and g, : Rn —♦ R are convex.

By the optimal value of problem (2.1)—(2.5) we shall mean the infimum of J  
over the set of all pairs (x, u) satisfying conditions (2.2)-(2.5) (such pairs will be 
called admissible).

T heorem  2.1. Suppose that the optimal value of problem (2.1)—(2.5) is 
greater than —oo. Let us define

I : =  {i £ {1 ,..., N — 1} : gi is not affine}.

Suppose that there exist an admissible pair (x, u) such th a t

Uj e r i f / ,  for i =  0 , 1 , . . . ,  N — 1, (2.6)
gi(xj) < 0 for i £ I. (2.7)

If (x,u) is an optimal pair for problem (2.1)—(2.5), then there exist elements

Pi £ R”, i — 1,... ,N, l0 £ Rmo, Ij v é R” " , Pi > 0, i = 1 ,...,А Г - 1, (2.8)

such that
A qPi -  E^lo G őXo/o(xo ,ü0), (2.9)

Afpi+i -  Pi £ dXtfi(xi,üi) + mdgi(xi), i =  1 , . . .  ,N -  1, (2.10)

PN = - E j , l N , (2.11)

(P i + i , A i X i  + B i i i i  +  Ci) -  Л(*<,«,-) =
max{(pi+i , J4ixi + В{щ + а) -  / {(х{, щ)}, (2.12)

u , 6  U х
г = 0,1,. . . , N - 1
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Hi9i(xi) = 0, i — 1) • ■ • jN  1. (2.13)

Proof. We omit the proof since it is entirely analogous to that of [9, Theorem 
4.5]. Let us only note two essential differences. Firstly, instead of applying the 
Fritz John optimality conditions for locally Lipschitzian programming problems, 
one should apply the Kuhn-Tucker optimality conditions for convex programming 
problems, described in [7, Theorems 28.1 and 28.2]. Secondly, one should use the 
partial subdifferentials instead of partial generalized gradients and, consequently, 
apply inclusions (1.5) instead of [9, Propsition 2.2]. ■

3. A n  ex a m p le

We shall give here an example of a convex discrete-time control problem for 
which there exists an admissible but not optimal pair (x ,  il) satisfying the discrete 
maximum principle of Theorem 2.1.

Example 3.1. We consider the following particular case of problem (2.1)-(2.5) 
(with TV = 3, n = r — 1) :

minimize J(x, u) = maxjzo, «о} + max{xi, tii} subject to 
zi+i =  Xi + i = 0,1,2,

iq € [-2,2] C R, г = 0,1,2,
xo =  0, x3 = 0.

Since each admissible trajectory x =  (xq, ... ,x3) is contained in the set {0}x 
x [—2, 2] x [—4,4] x {0}, the set of all admissible pairs (x,u) is compact, and so, the 
optimal value of the problem is greater than —oo. Furthermore, assumptions (2.6) 
and (2.7) are trivially satisfied (we may assume all g, to be identically zero, hence 
affine).

Let x and u be zero vectors in R4 and R3, respectively. Then the pair (x, u) 
is admissible. But it is not optimal since we can find another admissible pair (x, Ü) 
with x = (0, —1, —2,0), u = (-1 ,-1 ,2 ) , for which

7(x,ü) =  —1 < 0 = J(x, u).

Let us now verify that (x ,u) satisfies conditions (2.9)-(2.12). We have 

dxJi(xi ,üi)  = 5(max{0,tq})(0) = [0,1] for i = 0,1,

dxj 2 ( x 2,u2) = {0}.
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Hence (2.9)-(2.12) reduce to

To satisfy all these conditions, one can choose, for instance,

P i  =  P2 =  P3 =  lo =  / 3  =  0

or
P l= P 2 = P 3  = l, /o = 0 , /3 = -1.

Remark 3.2. It is not difficult to show that the pair (x, u) =  (0,0) in Example 
3.1 satisfies also the “weak” maximum principle of [5, Theorem 2] with ß° = —1. 
Consequently, the sufficient optimality conditions stated in [5, Theorem 5] are false.

In this section we shall impose an additional assumption on the functions /, 
occurring in (2.1). Under this assumption, the validity of the maximum principle 
will suffice for optimality in problem (2.1)—(2.5).

T heorem 4 . 1 .  Let (x, u)  be an admissible pair for problem ( 2 . 1 ) —(2.5) .  Sup
pose that there exist elements ( 2 . 8 )  such that conditions ( 2 . 9 ) - ( 2 . 1 3 )  are satisfied. 
Suppose also that, for each i £ { 0 , 1 , . . ., N — 1 }  and for each (г,- ,  щ)  £  Rn x R r , 
we have

Then (x,u) is optimal for problem (2.1)—(2.5).
Proof. Problem (2.1)—(2.5) can be considered as a convex programming prob

lem on the space X  : = ( R n ) W+1 x ( R r ) N . Let L : X  —> R U { + o o }  be the “extended” 
Lagrange function for (2.1)—(2.5) with multipliers (2.8), i.e.

4. W h e n  is t h e  m a x im u m  p r in c ip le  suffic ient?

L = L 1 + L2 + 6 ( \ A ) (4.2)
where

N - 1

(4.3)t=0
+(Io, E qXo —  do) +  (In , —  d^)

N - l

i= l
(4.4)
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A :=  (Rn)7V+1 X ? X u , . .. x Un - i , (4.5)

б((х,и) 1 A) : = f °\  +oo
if
if

(x,u) G A, 
(x,u) £ A. (4.6)

In order to prove that (x, u) is an optimal pair, it suffices to verify that L attains its 
global minimum at (x,u), which is equivalent, by (1.4), to the following condition:

Z/((x,u);(x ,u )) > 0 for all (x .u jG X . (4-7)

Since L\ is affine, thus differentiable, we have, for all (x,u) G X,

N  N - 1

L'i((x,ü);(x,u)) =  ]T (L 1)'C](x,ii;:ri )+  Y  (L i)'u (x ,ü ;и,). (4.8)
i—0 «=0

Next, from (4.1) and (4.4) we obtain

N - 1 N - l

L'2((x,u);(x ,u)) =  Y  //((*<.“<);(*<,“<)) + ^i9'Sßi\xi)
*=0 *=0

N - l  N - l  N - l

> Y  (Л)*Д*й «*•;*») + Y  (/»)!*(*<.««;«.•)+ Y  (4.9)
*=0 *=0 t=0

N  N - l= X ] ( i 2)l,i(x ,ü ;z i ) +  Y  ;«<)•
•=0 i=0

Moreover, it is easy to verify that

(«(■ I Л))'((х,й);(х,и)) =  Y W -  I (4-10)
•=o

Conditions (4.8)—(4.10) imply

N  N - l

L'((x,ü),(x, и)) > Y LTi(x. й ; 1») + У2 (411)
i=0 >=0

By using the same method as in the proofs of [9, Theorems 3.1 and 4.5], it can be 
shown that conditions (2.9)-(2.12) are equivalent to

0 € <9X|(Li + L2)(x , u ), i = 0 ,1 ,... ,7V. (4.12)

0 € 0 „ j(L1 +  L2)(x,ü)+ tf(ifc|ffO > * = 0 ,1 , . . . ,  fV— 1. (4.13)
(The equvalence follows from the fact that, by the convexity of the problem, we
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can use the Moreau-Rockafellar theorem [7, Theorem 23.8]. Consequently, the 
inclusions such as [9, (3.10)] can be replaced by equalities.) Further, observe that

& ,(6(-M ))(x ,ü) =  {0}, i = 0,1 , . . . ,  N,  (4.14)

ő u, ( í ( -  | Л ) ) ( х >й )  =  0 ( г ( - | ^ ) ) ( й О  =  Лг(«.- \Ui), i =  0 , 1 , . . . ,  N — 1. (4.15)

It follows from (4.2), (4.12)-(4.15) and the Moreau-Rockafellax theorem that

0 е З ,,1 (х ,й ) , i - o , i , . . . , tv,
0 е й „ , 1 ( х , й ) ,  г =  0 , 1 , . . . ,  N  — 1.

This means, by (1.2), that the right-hand side of (4.11) is always nonnegative, and 
so, (4.7) holds. ■

Finally, we shall specify several simple conditions which ensure that assump
tion (4.1) is fulfilled.

P r o p o s i t i o n  4.2. Let /  : Rn x Rr —+ R be a convex function, and let 
(ж, й) G Rn x Rr . Suppose that one of the following conditions holds:

(a) /  is Gateaux differentiable at (x,u);
(b) for each и € Rr , the function /'(- ,й ;и ) is lower semicontinuous at x;
(c) for each x G Rn, the function f^(x, -;x) is lower semicontinuous at u;
(d) f (x ,u )  = #(z) + h(u) where g and h are convex functions on Rn and Rr , 

respectively.
Then

/'((х ,й);(х ,и)) > /'(х ,й ;х ) + f'u(x,vi-,u) for all ( i ,« )G R " x R r ,

Proof. Since cases (a) and (d) are obvious, and cases (c) is analogous to (b), 
we shall only prove case (b).

For each (x , u) G Rn x Rr and each A > 0 we have, by (1.4),

( f(x  + \ x , ü +  \u)  -  f(x, u))/A
= (f{x + Ах,й + Au) -  f ( x  + Xx,U))/X + ( f(x + Xx,u) -  f (x ,u)) /X  (4.16) 

> /Ó(z + Ax,ü; и) + f'x(x,ü;x).

But the lower semicontinuity assumption implies

liminf / '( z  + Az,u; u) > / ' (z,u; u).

Hence, taking the upper limit of both sides of (4.16) as A —> 0+, we get the desired 
inequality. ■

Remark 4.3. Sufficient optimality conditions for nonconvex discrete-time con
trol systems under separability assumptions similar to that of Proposition 4.2(d) 
were considered in [10].
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Д и ск р етн ы й  п р ин ц ип  м ак си м у м а  как  н еоб ходи м ое у слови е
о п ти м ал ьн о сти

М . С Т У Д Н Я Р С К И

(Лодзь)

В работе представлен пример, который показывает, что принцип максимума в 
субдифференциальной форме для выпуклых недифференцируемых проблем управле
ния с дискретным временем не всегда является достаточным условием оптимальнос
ти. Показано также, что это желаемое свойство достаточности может быть установ
лено при некотором дополнительном предположении о целевой функции.
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STABILITY AND SENSITIVITY ANALYSIS 
OF DISCRETE OPTIMAL CONTROL PROBLEMS

K. M a l a n o w s k i

( W a rs a w )

(Received N ovem ber 1, 1990)

A fam ily of discrete o p tim al control p rob lem  subject to  s ta te  a n d  control co n stra in ts  
is considered . All d a ta  of th e  problem s d ep en d  on a  p a ram ete r. U sing the  know n sen
sitiv ity  a n d  stab ility  resu lts for m athem atical program m ing  prob lem s, the  conditions a re  
fo rm ula ted  un d er which th e  solutions to o p tim al con tro l problem s are  L ipschitz con tinuous 
and  d irectionally  differentiable functions of th e  p a ram ete r. T h e  d irec tio n a l derivatives a re  
characterized  as the so lu tions to  auxiliary q u a d ra tic  o p tim al co n tro l problem s.

1. Introduction

Mathematical models of numerous dynamic systems are built in discrete form, 
using difference equations. Many technological, economic, social or biological sys
tems are discrete by their very nature. On the other hand, discrete models are often 
used for continuous control processes. It takes place, for example, if process mea
surements are performed or control action is executed at some sampled moments 
and we restrict ourselves to the analysis of system behaviour at these moments on
ly. Such situations occur, almost as a rule, in computerized on-line control. Hence, 
control of discrete systems, including optimal control, has an important practical 
significance.

Usually we do not know the exact values of parameters of control systems, or 
these values are subject to perturbations. Therefore, it is important to know how 
the calculated control depend on the parameters of the model.

In optimal control, like in other optimization problems, we are interested 
in the stability and sensitivity of obtained solutions, i.e., in their continuity and 
differentiability with respect to parameters of the system, These properties can 
be investigated either for the optimal controls or for the so-called optimal value 
function, which to every value of the parameter assigns the optimal value of the 
cost functional.

This paper is devoted to the sensivitity and stability analysis of optimal con
trol of discrete systems. This analysis is of importance not only for discrete but

Akadémiát Kiadó, Budapest 
Pergamon Press, Oxford
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also for continuous optimal control problems, since they can be approximated by 
discrete ones (see [4]).

It is well known (see [2]) that discrete optimal control problems can be refor
mulated as mathematical programs with a specific structure.

Accordingly, in our analysis, we shall use the known stability and sensitivity 
results for mathematical programming problems and specialize them for optimal 
control.

We are going to characterize a class of discrete optimal control problems, de
pending on a parameter, that have locally isolated local solutions, which are locally 
Lipschitz continuous and directionally differentiable functions of the parameter.

It is known (see [8, 11]) that mathematical programming problems possess the 
above properties if the linear independence and the strong second order sufficient 
conditions are satisfied, whereas the strict complementarity is not required. If 
additionally the strict complementarity holds, then the solution becomes a Fréchet 
differentiable function of the parameters [5].

Therefore, the main part of the paper (Sections 3 and 4) is devoted to the 
analysis of linear independence and strong second order sufficient conditions for 
discrete optimal control problems.

In Section 5 the principal results is formulated. In particular, the direction
al derivative of the optimal control is characterized as a solution to an auxiliary 
optimal control problem.

It seems that the above results are not only interesting from theoretical point 
of view, but, like in case of mathematical programming, they may find practical ap
plications in the stability and sensitivity methodology approach to optimal control 
problems (see [5]). Some notation:

Rn is an n-dimensional Euclidean space with the inner product denoted by 
(•, •) and the norm

M  =  ( x , x ) * .

If f  : H —* Rk, where H is a Banach space, is sufficiently regular, then 

dhf(h, g) = lim — [f(h + ag) -  i(h)]aqo a
denotes the directional derivative of f  at h in the direction g.

If f  : Rn x Rm —► R* is sufficiently regular, then ű xf(x, u), Z?£uf(x, u) denote 
the first and the second Fréchet derivatives, with respect to the appropriate variable.

Superscript T  denotes transposition, c is a generic constant, not necessarily 
the same in two different places.

2. Problem statem ent and preliminary results

Let H denote an open set in a Banach space, which will be called the set of 
feasible parameters. Let h E H be a fixed value of the parameter.
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For each h belonging to a neighbourhood G С H of h we consider the following 
state and control constrained discrete optimal control problem:

(Oft) minimize
N- 1

Ф(х, u, /i) :=  фх (xt-, iij, /i) + ^(хдг,/г) 
»=0

(2.1)

subject to

x i+i -  X,- =  f , ( x , - , U j ,  h), i = 0,.. . , 7 V -  1 (2.2)
x0 - t(/i), (2.2a)

i-H1оIIоVII
S

'

сь j  =  1 ,2 , . . . , * , (2.3)

XÍ(x í ,A ) < 0 ,  i  =  0 , l , . . . , N - l , N , - 3 = 1 ,2 ,...,/. (2.4)

where
Tx J -  [yT YT— Lx 0 1 X1 J • • ■ * n ] € R"(Ar+1) )

UT =  [ u J ,u f , . U N - .j] €  RmAr,

0 i ( ’j *1 ) : Rn x Rm x G - R 1, * =  0 , 1 , . . • ,7V-- 1 ,

r P ( - , - ) : R n X G - . R 1,

f .( - ,V ): Rn x Rm X G — R". *■ =  0 , 1 , . . -,7V--  1.

t(-) : G — R’n>
O H ; •) : Г  x G -> R1, * =  0 ,1 , . •■,7V - 1 ,  3 € /V : = {1 ,2 ,. • • , * }

xtt- ,•) : Rn x G - R1, i =  0 , l , . ..,7V, 3 € L : = { 1 ,2 , . . - , /} •

Denote
в,(и„ h) = [<?• (ut, h),9i(ui,  h ) , . . . ,  9-(ui, h )]T ,

X,(x,, h) = [х,-(х,-,Л),х?(х,-, Л),.. • ,xi(xi, Л)]Т, 

e T(u,h)  =  [»o (u0, Л), (u b  A),. . . ,  , Л)],

XT(x, h) = [xo (x0, h), X i ( x i , h ) , . . . ,  Xn (*-n  , h)}.

It is well known (see e.g. [2]) that (Ол) is equivalent to a mathematical program
ming problem with a specific structure. Indeed, putting a T = [x j, u j,  x [ , u f , . . . ,  

G X  :=  Rn(w-H)+mAr we can reformulate (Ол) as follows:

(Őft) minimize Ф(а,Л) (2-5)

subject to

r (a , h) - 0, 
s(a,h)  < 0,

( 2 .6)

(2.7)
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where

Ф(-,-) '■ X  x G —+ R1,
Ф( а, И)  : =  $ (x ,u ,/i).

r(-,-) : X  x G —► corresponds to state eqaution (2.2)
and initial condition (2.2a), 

s(-, •) : X  x G —+ RfcW+,(W+1) corresponds to control
and state constraints (2.3), (2.4).

Let us assume that for each h £ G the feasible set of (Oh) is nonempty and that 
there exists a local minimizer (x(/i), u(h) .  We are interested in the stability and 
sensitivity analysis of (x(-),u(-)) in a neighbourhood of h, i.e. in the continuity and 
differentiability properties of (x(-),u( )) treated as a function of the parameter h.

In our analysis we shall use known sensitivity and stability results for mathe
matical programming problems obtained in [8, 11]. Using the specific structure of 
the functions Ф(-,-), r(-,-) and s(-, ) in (Од) we shall reformulate these results in 
terms of the original data of (Од).

We start with recalling some definitions. Let

1 =  { l , . . . , n ( J V + l ) > ,
and

J = { l , . . . , k N  + l(N + l)}

be the sets of indices of equality and inequality constraints, respectively. 
Let a(h) be a local solution to (Од). Denote by

Jh = {j  € J I ^(а(Л ), h) - 0}

the set of indices of all inequality type constraints active at h.
D e f i n i t i o n  2.1. Let assume that r(-,h) and s ( - , f t )  are of class C1. We say 

that the linear independence condition (LI) is satisfied at a (h) if the gradients of 
all constraints active at a(/i) are linearly independent.

It is well known (see [7] and also [1]) that (LI) is equivalent to the condition 
that the mapping

T(a(/l), h) : Rn(JV+l)+mAT x R k N + l(N + 1) _ ^ R k N + l(N  + 1)

T(ot(h),h) ' Dar(a(h),h), 0
Das{a(h),h), S (a (h ) ,h )

( 2 .8 )

is surjective.
Here S(a(h),h)  denotes a [kN + l(N + 1)] x [kN + l(N  -(- 1)] dimensional 

diagonal matrix with s^(a(h),h) as diagonal elements.
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Let us introduce the Lagrangean associated with (Oh)'-

•, •) : X x Rn(iV+1) x u kN+,(N+1) x G —+ R1,
C>A) : =  Ф(a,h)  +  (£,r(a,h))  +  ( C ,s(a,h)),

where £ G Rn(JV+1) and £ G RkN+l(N+1) are Lagrange multipliers associated with 
(2.6) and (2.7), respectively.

It is well known (see e.g. [2]) that if the functions Ф(-,h), r (-,h) and s(-,h) 
are C1 in a neighbourhood of a(h) and linear independence condition hold at a(h),  
then there exist unique Lagrange multipliers £(h) and C(A), such that the following 
Kuhn-Tucker conditions hold:

DaC(a(h),i (h)X{h),h)  = 0,

<C(A),e(a(A),A)> = 0, CJ'(A )^ 0 .

D e f i n i t i o n  2.2. Let Ф(-,Н), r(-,/i) and s(-,h) be C2 in a neighbourhood of 
a(h). We say that the strong second order sufficient conditions (SC) is satisfied at 
ot(h), if

( ^ ,C £ ( a ( A ) >í(A ),((A ),A )^)>0
for all non-zero

ß e { ß € X \ ( ß , D ari(a (h),h))=0,  iE  I,
{ß, Das*(a(h),h)) =  0, j  E J ch)

where Jh -  {j 6 Jh I Cj(h) > 0}.
We can formulate now the stability and sensitivity results obtained in [8, 11]. For 
our purpose they will take on the form:

T h e o r e m  2.3. Assume that the functions Ф(-, ■), r(-, •) and s ( - ,  •) are C 2 in a 
neighbourhood of a(h,_h). Moreover, (LI) and (SC) hold at a(h). Then there exist 
neighbourhoods G of h in H and C of a(h) in X, such that each h E G, a(h) is 
the unique minimizer of (Őh) in C and (£(Л),С(А)) are the unique associated La
grange multipliers. The functions <*(•), £(•), £(•) are Lipschitz continuous on G and 
directionally differentiable at h. The directional derivatives dh<*(h,g), dh£(h,g), 
dhC(h,g) are given by the solution and the associated Lagrange multipliers of the 
following quadratic programming problem.

(QOÄ ) minimize

\ ( ß ,  D laC[h)ß) + (ß, D lhC[h)g) (2.10)

Dar, (a(h),h)ß + Dhr’(a(h),ft)</ =  0
subject to

i e i , (2. 11)
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- - . _ - f =  0, for j  € Jh
Da^ ( a (h),h)ß + D ^ ( a (h),h)g{ \  (2.12)

l< 0 ,  for j  £ Jh \  Jh’
where

C[h]:=C(a (h),Z(h)X(h),h).

Remark 2.4. Note that by the strong second order sufficient condition, (QO^ g) 
has a unique solution, whereas by the linear independence condition the associated 
Lagrange multipliers are unique.

Remark 2.5. The result proved in [11] is stronger that in Theorem 2.3. Name
ly, it is shown there that y(-) is Bouligand differentiable at h , which is stronger that 
directional differentiability. However, to avoid technical definitions we restricted 
ourselves to directional derivatives.

We are going to apply Theorem 2.3 to discrete optimal control problem (Oft). 
In order to do that we have to express all assumptions of Theorem 3.1 in terms of 
the original data of (Oft).

It is obvious that the condition of regularity is satisfied if all involved functions 
are of class C2 in a neighbourhood of (x(A), u(A), h). Hence, it remains to analyse 
linear independence and strong second order sufficient conditions.

3. Linear independence

To simplify notation we put

Ai(h) =  [Dxft(x j(A ),U j(A ) ,  A)], (3.1a)
Bi(h) = [Dufi(xl(h),u<(A), A)], (3.1b)
Ci(h) = [Dhfi(xi(h),Ui(h),h)], (3.1c)
Qi{h) = [Du0 í (uí(/i),/i)], (3. Id)
A,-(A) = [A c X i(* i (A ) ,A ) ] . (3-le)

Let us introduce the following subsets of the active constraints indices:

Ki(h) : = { j e K  |0*(ui(h), h) = 0}, i = 0,1 , . . . , N  -  1,
Li(h) : = {j e  L \ xl(xi(h), h) =0}, * =  0 ,1 , . . . ,N.

It turns out that thanks to the structure of (Oft) the linear independence 
condition (LI) can be checked independently on each stage г = 0 ,1 , . . . ,  ЛГ — 1, as 
it is formulated in the following

P roposition 3 .Í .  Assume that

X o ( < ( / i ) , h )  < 0, j  € L. (3.2)
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Then the linear independence condition (LI) for (Oh) is satisfied at (x(h), u(h) 
if and only if the following mappings

Г,-(Л) : Rm+l+1 — Rt+1 i =  0,1 , . . . ,  N
Q i(h) e{(h) 0

_А,-+1(Л)Б<( h )  0 X i+1(h)Г i(h): =
(3.3)

are surjective.
Here 0j(/i) and Xi{h) are (к x к) and (/ x /)-diagonal matrices, whose diagonal 

elements are ^(ui(/i),/i) and xj(ui(h), h), respectively.
Proof. It follows from (2.8) that for discrete optimal control problem (0/,) 

the linear independence condition is satisfied if and only if the system of equations

yi+i -  У. -  Ai(h)y, -  Bi(h)vi =  a, (3.4a)
Уо =  b 0 (3.4b)

0 .(h )v i  +  0i(fi)M, =  c i (3.4c)
Ai(h)yi + Xi(h)vi = di i =  0 , l , . . . ,J V —1 (3.4d)

has a solution for arbitrary a; £  R", bo €  R4, ct- £ Rfc, d t- £ From (3.4d) we 
have

Ao(fi)yo + Xo(h)i/0 — do (3.5)

and
A i+ i(h )y ,+i -  A i ( h ) y i  + X i+i(h)ui+i -  Xi{h)i>i = d i+1 -  di

or
A»+i(fi)[y»+i -  Ух] +  X 1+1(/i)(i/i+ i -  Ui)  =

=  (d<+1 -  di) +  [A,-(A) -  Ai+l(h)}yt +  [Xi(h) -  Xi+1(h)]ui, (3.6)
i = 1 ,2 , . . . ,AT- 1.

Multiplying (3.4a) by A,-+i(h) and subtracting from (3.6) we obtain

Aj+i(h)Bi(h)\i + X i+i(h)(ui+i -  Ui) =
= [Ai(h) -  Ai+i(h) -  Ai+i(h)Ai(h)]yi + [J’T, (Л) -  Х {+1(к)]и{ + 

+[dj+i — d,- — Ai+ i(/i)a,] =

= Д,-(Л)У» + Af(h)ui +  di,

where
A }(h) : =  A i+ 1(A) -  A i+ 1(A) -  A i+1(h)Ai(h),
A f t h ) : = X i ( h ) - X i+1(h), 

di : =  d i+1 -  d,- -  A(/i)a, .
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Equations (3.4c) and (3.7) can be rewritten in the form

Г.’(Л)
v ,
У»

l ”i+\ -  vi

fii(A) ffi(h) 0 
Л i+l(h)Bi(h) 0 X i+1(h)

v ,
У.

V { + 1 -  Vi

(3.8)

|_A[(/i)yi 4- +  d,

It is easy to see that (3.8) has a solution for any right-hand side, i.e., for any (c,-, dj), 
if and only if Ti(h) is surjective. In this case (3.8) is satisfied if we put

(3.9)

V, P

Ri

Vi + l  -  Vi
= Tj(h)(Ti(h)Tj(h))-1 A}(h)yi +  A?(h)vi -(- d i

e- (h) + e}l (h)yi + e\2(h)vi 
e2(h) + е,?1(Л)у i + e}2(h)vi 
е?(Л) + е?1(Л)* + е?3(Л)*/4]

From (3.4a) and (3.9) we obtain

У.+1  -  У, -  [ A i ( h )  + S,(/*)ej1 (Л)]Ух -  B i ( h ) e } 2 ( h ) v i  = a, + 5<(Л)е-(Л) 
«'<+1 -  Vi -  e^(h)yi -  ef2(h)i/,- =  ef(fi)

On the other hand, (3.4b), together with (3.5) and (3.2), yields

=  a,

(3.10)

Уо = b 0,
i/o = X 0 — Ло(Л)Ь0] : = do.

It is obvious that (3.10) has a unique solution (yi ,Vi) for any äi, e,-, do, i.e. for 
any at , bo, c,, d t. Having yi, rq we find v* and from (3.9). □

Remark 3.2. Condition (3.3) is a discrete analógon of Hager’s constraint 
qualifications for continuous optimal control problems [6]. It was first introduced 
in [10], however, the proof given there is completely different from the proof of 
Proposition 3.1.

4 . S eco n d  o r d e r  sufficient c o n d i t io n

In this section we are going to analyse the second order sufficient condition 
for (О/,). Like in case of (Oh) let us introduce the Lagrangean

£(■, -, -, -, -, •) : Rn(N+1) x RmN x Rn x Rn* x R*N x r '(n+1) x G - ^ R 1
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£(x, u, p, p, Л, p,h):  = ф(х, u, h) +  (p , x0 -  t (h))+
N - 1

+  X ^ ( p , , x ‘+ 1 ~  Xi - f i ( x i , u i , / i ) ) +  (4.1)
«=0
JV-1 N

»=0 i'=0

Let us assume that the linear independence condition (LI) holds for (Oh) i.e., (3.2) 
and (3.5) are satisfied. Then, in particular, the Lagrange multipliers p(h), p(h), 
Л(Л) and p(h) are defined uniquely.

For the sake of simplicity we denote

Pi(h) =  D l x C(x(h),u(h),p(h),p(h),X(h),p(h),h),  (4.2a)
Qi(h) = D l tUC(x(h), u (Л), p(h), p (Л), A(ft), p(h), h), (4.2b)
Ri(h) = D l >uC(x(h), u (h), р(Л), р(Л), A(/i), p(h), h). (4.2c)

It follows from Definition 2.2 that the strong second order sufficient condition (SC) 
for (Oh) amounts to

N - 1

£[<z,-, Pi(h)zi) + 2(г,, Q,(/i)wt) + (wt , Ri(h)wi)] +  > 0 (4.3)
i=0

for all (z, w) ^  0 such that

zi+1-Z i = ^ ,(h)zi + 5 i(/i)wi, i -  0 ,1 ,...  ,N  — 1 (4.4)
zo =  0 ,  (4.4a)

(Du^(u ,(h),/i),w ,) =  0, i =  0 ,1 , . . . , JV- 1, j  e К -(h) (4.5a)

{DxXi{x-i{h),h),Zi) = 0, i =  0,1, — , JV, j  e Lci(h) (4.5b)

where Ai(h), B,(h) are given in (3.1) and

= I Af'(A) > 0}, (4.6a)
Lt(h) = { j e L i \ d ( h ) > 0 } .  (4.6b)

Lemma 4.1. Suppose that (3.2) and (3.5) hold. Then (SC) is satisfied if and 
only if the following quadratic optimal control problem:

(QCh.a) minimize

дг-1
y ^ [ ( z j , F ) ( / t ) z i )  +  2 ( z i , Qi ( h) wi )  +  ( w i , R i { h ) w i ) ]  +  ( z N , P N ( h ) z N ) ( 4 . 7 )
i =  0

2
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subject to

zi+i -  ii -  Ai(h)Z; + Bi(h)w, (4.8)
z0 =  a, (4.8a)

(A i#j(u;(/i),h),w,) = 0, i =  0 ,1 , . . . ,TV -  1, j e K - ( h ) ,  (4.9a) 

(AcXi(xi(/i),/i),Zi) = 0, i =  0 ,1 , . . . ,TV, j  £ Lci(h) (4.9b)

has a unique solution for any a £ R " .
Proof. First, let us consider the homogeneous case a = 0. Problem (QCA 0) 

has a solution if and only if the cost functional is non-negative for all feasible 
controls. Indeed, suppose that there exists a feasible w for which the cost functional 
is negative, then scaling w we can make the cost functional arbitrary negative, i.e., 
(QCh 0) has no solution.

Hence, if (QCh 0) has a solution, then w =  0 is such a solution. If the 
solution is unique, then (SC) holds. Certainly, if (SC) holds then (QCfe 0) has a 
unique solution w = 0.

Therefore, to complete the proof it is enough to show that (LI) and (SC) imply 
the existence and uniqueness of the solution of (Q/, a) f°r an arbitrary a  6 Rn. To do 
that let us note that using the same argument as in the proof of Proposition 3.1, we 
find that for any a £ R "  there exists a pair (z(fi), w(/i)) satisfying (4.8) and (4.9). 
Let us introduce new variables у =  z — z(h) and v =  w — w(/i). Problem (QCh a) 
formulated in terms of (y, v) has homogeneous constraints and the quadratic term 
in the cost functional is given by (4.7). Hence, by (SC) it has a unique solution.
□

By Lemma 4.1 the second order sufficient condition can be verified by studying 
the existence and uniqueness of the auxiliary quadratic optimal control problem 
(QCh a). Unfortunately, this last problem is fairly complicated.

Below we are going to formulate an explicit sufficient (but not necessary) 
criterion of (SC).

Namely, (SC) is obviously satisfied if
(SC)

N - 1

] T [ ( z i , P i ( / 0 z . )  +  2 ( z i , Q , ( f i ) w j )  +  ( w i , Ä i ( f i ) w , ) ]  +  (zN,PN(h)zN) > 0
i=0

for all (z,u) ф 0 such that

Zi+1 -  Zi =  Ai(h)Zi  + Bi(h)Wi, 

z0 = 0.

The following proposition provides a criterion of (SC).
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P r o p o s i t i o n  4.2. (SC) is satisfied if the matrices £ ) ,  i =  N ,  N  — 1 , . . .  ,2 ,1 ,0  
given by the following recursive formulas

En -  PN,
Ei~i = P,_i + ( /  +  Ai- i )T Ei(I + Ai_i) + [<5,_i +  (Aj_i + I)T E iB i- i]x  ̂

x [ß,_i + + (/ + A í- i )t E iBi-i]T
i =  N -

are well defined. Here the arguments Л are omitted for the sake of simplicity.
Proof. By Lemma 4.1 (SC) is equivalent to the condition that the following 

quadratic optimal control problem 
(QCft,a) minimize

N - 1

Vo(z, w) = ^2[(zi,  Pi(h)zi) + 2(zi,Qi(h)wi) + (w,-, Ä,(/i)w{)] + (zjv, PN(h)zN)
i = 0

(4.11)
subject to

Zi+i -  z, = Ai(h)zi + Bi(h)w,-, (4.12)
Zo = a, (4.12a)

has a unique solution for any a £ Rn.
It is well known in optimal control theory (see e.g. [3,* 9]) that the above 

condition is satisfied if (4.10) holds.
The proof of this result is performed in a standard way using Bellman’s prin

ciple of optimality and will not be repeated here. □

5. Stability and  sensitivity resu lts

Now, we are in a position to specialize the stability and sensitivity results of 
mathematical programming problems, given in Theorem 2.1, for discrete optimal 
control problems.

Using Proposition 3.2, Lemma 4.1 and Proposition 4.2 we obtain:
T h e o r e m  5.1. Assume that

(i) the functions <^(-, •, •), V i(v, ), f<(-, •, ), t( ), 0/(-, •) and *,(•, •) are C2 in a 
neighbourhood of (x(/i), u(/i), h),

(Ü) Хо(4(М>_М < 0 for J £
(iii) for h = h matrices (3.3) have full row rank,
(iv) quadratic optimal control problem (QC^ a) has a unique solution for any 

a G Rn,
or in particular
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(iv() for h = h matrices (4.10) are well defined.
Then there exist neighbourhoods G of h in H and U of (x(h), u(h)) in 

ftn(N+i)+mN' 8ис^ for /j g (5, (x(ft),u(h)) is the unique minimizer of (Oh) in 
U and (p(h),p(h), \ (h) ,  p(h)) are the unique associated Lagrange multipliers.

The functions x( ), u( ), p( ), p( ), A( ), p( ) are Lipschitz continuous on G 
and directionally differentiable at h.

The directional derivatives dhx(h,g), dhu(h,g), dhp(h,g), dhp(h,g), 
őhA(fi,g), dhp{h,g) are given by the solution and the associated Lagrange multi
pliers of the following quadratic optimal control problem:

(QOI g) minimize

ЛГ-1

+ (уX, Q.(*)v,> + i(v j, Ri(h)\i)+

+(y i,Si(h)g) + (w t ,Ti(h)g)] + (yN,PN(h)yN) + (y N,SN(h)g)

subject to

У.-И -  yt = Ai(h)yi + Bi{h)\i +  Ci(h)g, 
y0 =  Dht(h)g,

(0 и^(и,(Л),Л),у<) + (Dh^(u,(h),fi),í) I  < ^’

i =  0 ,1 ,. . . ,  ЛГ — 1

(DxXi(Xi(h),h),yi) + (DhXl(Mh),h),g)
i =  0 ,1 ,. . . ,  AT- 1.

for j  e  К -(h)
for j  e Ki{h) \  Kt(h),

for j  £ L1(h)
for j  £ Li(h) \  Li(h),

where
Si(h) = D^ihC(x(h), u(ft), p(h),p(h), \(h) ,p(h) , h),
Ti(h) = D l hC(x(h),u(h),p(h),p(h),Mh),p(h),h),

and Pi(h), Qi(h), Ri(h) are given by (4.2).
Note that due to the equivalence of Problems ( O h )  and ( O h )  other sensitivity 

results known in mathematical programming can be also specialized for discrete 
optimal control problems. In particular, using the well-known result concerning 
continuous differentiability with respect to the parameter of the solutions to math
ematical programming problems (see [5]), we obtain

C o r o l l a r y  5.2. Ifin addition to assumptions (i)-(iv) of Theorem 5.1 the 
strict complementary holds at h, i.e.,

(v) Ki(h) = K ci{h), i = 0,1, . . . , N  — 1 and 
£,(Л) = L?(Ü), i = 1 ,2 ,. . . ,  TV



M A L A N O W S K I :  S T A B IL IT Y  A N D  S E N S I T I V I T Y  O F  C O N T R O L  P R O B L E M S 1 9 9

then (x(-),u(-)) is Fréchet differentiable on a neighbourhood of h .  The derivative 
is given by the solution of (QOj, g) where inequality type constraints disappear.
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Анализ устойчивости и чувствительности дискретных задач 
оптимального управления

К. М А Л А Н О В С К И

(В а р ш а в а )

Р а с с м а т р и в а е т с я  сем ейство  д и ск р е тн ы х  за д а ч  о п т и м а л ь н о г о  у п р а в л е н и я  при 
н а л и ч и и  о гр ан и ч ен и й  у п р ав л ен и я  и с о сто я н и я . П о к а з а т е л ь  к ач е с т в а  и о гр ан и ч е н и я  
з а в и с я т  о т  п а р ам е тр а .

И с п о л ьзу я  и зве с тн ы е  р е з у л ь т а т ы  по у с то й ч и в о с ти  и ч у в с т в и т е л ь н о с т и  за д а ч  
м ат е м ат и ч е с к о го  п р о гр ам м и р о в а н и я  н а х о д я т ся  у с л о в и я , п р и  к о то р ы х  реш ен и я  за д а ч
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о п т и м а л ь н о го  у п р а в л е н и я  я в л я ю т с я  н еп р ер ы вн ы м и  по Л и п ш и ц у  и д и ф ф ер ен ц и р у ем ы 
ми по н ап р ав л ен и ю  ф у н кц и ям и  п а р а м е т р а . П р о и зв о д н а я  по н а п р а в л е н и ю  х а р а к т е р и 
з у е т с я  в виде реш ен и я  в с п о м о га те л ьн о й  л и н е й н о -к в а д р а т и ч е с к о й  з а д а ч и  о п т и м а л ь 
н ого  у п р ав л ен и я .

Kazimierz Malanowski 
Systems Research Institute 
Polish Academy of Sciences 
Warsaw 
Poland
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RELAXABILITY AND WELL-POSEDNESS 
FOR INFINITE DIMENSIONAL 

OPTIMAL CONTROL PROBLEMS*

N. S. P a p a g e o r g i o u **

(A t h e n s )

(Received N ovem ber 1, 1990)

In  th is p ap er we investigate th e  re la tion  betw een the  no tio n s o f “weli-posedness in  the 
sense of perform ance convergence” and  “re lax ab ility ” for a  large  c lass of n onlinear infinite
d im ensional optim al con tro l problem s. We show th a t  re laxab ility  implies well-posedness 
an d  th e  two are equivalent for sem ilinear system s. In doing th is  we also prove tw o new 
density  resu lts  concerning th e  original an d  re lax ed  tra jec to ries, w hich  are of indep en d en t 
in te res t.

K e y w o rd s  a n d  - p h r a s e s :  R elaxability , well-posedness, Arzela-Ascoli theorem , 
evolution  operator, com pact em bedding, m o n o to n e  operato r, m easurab le  m ultifunction , 
weak norm , A um ann’s selection theorem.

A M S  S u b je c t  C la s s if ic a tio n  (1 9 8 0 ) : 49 A 20, 49 C 15

1. Introduction

In a recent paper, Dontchev and Morduhovic [11] established the equivalence 
between “performance well-posedness” and “regularity in the sense of relaxation” 
(what we call in this paper “relaxability”), for a large class of finite-dimensional, 
non-linear, optimal control problems. The result of Dontchev and Morduhovic also 
can be viewed as a generalization of an earlier important work by Clarke [7].

The purpose of this paper is to extend the work of Dontchev and Morduhovic
[11] to nonlinear, infinite-dimensional, control systems (distributed parameter sys
tems). In this process, we obtain a density result concerning the original and 
relaxed trajectories, which corrects an earlier attempt for an analogous theorem by 
Ahmed [1], which appears to have a serious gap in the proof. Moreover, we extend 
the finite-dimensional work of Gamkrelidze [14].

•R ev ised  version

••R esearch  supported  by N .S .F . G ran t D .M .S.-8802688.

Akadémiai Kiadó, Budapest 
Pergamon Press, Oxford
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2. P re l im in a r ie s

Let be a сг-finite measure space and X  a separable Banach space.
Throughout this paper we will be using the following notations:

Pf(c)(X) = {А С X  : nonempty, closed, (convex)} 
and Pwk(c)(-^0 — {А С. X  : nonempty, weakly compact, (convex)}.

A multifunction F : ÍÍ —► Pf(X) is said to be measurable if and only if 
for all z G X , lj —► d(z,F(u>)) — inf{||2 — x|| : x G F(w)} is measurable. Other 
equivalent definitions of measurability can be found in Wagner [21]. A multifunction 
G : Q —*■ 2X \  {0} is said to be graph measurable, if GtG =  {(«, x) G О x X  : 
x G G(u>)} G E x B(X),  with B(X)  being the Borel cr-field of X.  For closed 
valued multifunctions, measurabitity implies graph measurability and the two are 
equivalent if £ is /i-complete. By SF 1 < p < oo we will denote the set of LP(X)~ 
selectors of F(-), i.e. SPF = { /  G L?(X) : /(w) G F(uj) p -  a.e.}. It is easy to see 
that if F( ) is Lp-integrably bounded i.e. ы —♦ |F(w)| = sup{||x|| : x G F(w)} G Lp+, 
then SF ф 0.

Next, let У, Z  be Hausdorff topological spaces. A multifunction G : У —► 
2Z \  {0} is said to be upper semicontinuous (u.s.c.) (resp. lower semicontinuous 
(l.s.c.)), if for all U C Z open, F+(U) = {y G У : F(y) C U} (resp. F~(U) = 
{t/ G У : F(y) П U ф 0}) is open. Other equivalent definitions of upper and lower 
semicontinuity can be found in Delahaye and Denel [8]. If У is a metric space, then 
on Pf(y) we can define a metric /г(-, -), known as the Hausdorff metric, by setting 
h(A,B) = max{sup(d(a, B) : a G A),sup(d(6, A) : b G B)}. It is well known that if 
У is complete, then so is the metric space (Pf(Y), h).

Finally, recall that if V, W  are Polish spaces (i.e. complete, separable, metriz- 
able spaces), a function /  : Í1 x V —► W is said to be “Carathéodory function” if 
and only if (i) ui —♦ f(ui,v) is measurable and (ii) v —*■ f(u>,v) is continuous. It is 
a well-known fact from measure theory that such a function is jointly measurable.

Now, let us introduce the problem that we will be studying in this paper. 
Let E C R be a nonempty parameter set containing zero as a limit point. Let 
T  — [0,6] and let (X,H,X*)  be a Gelfand triplet of spaces, i.e. H is a separable 
Hilbert space and X  is a dense subspace of H carrying the structure of a separable 
reflexive Banach space, which embeds continuously in H . Identifying H with its 
dual (pivot space), we have X  with all embeddings being continuous
and dense and also assumed to be compact. By (•,•) we will denote the duality 
brackets for the pair (X , X *) and by (•, •) the inner product in H. The two are 
compatible, in the sense that if x G X  С Я and h G H С X * , then (x, h) = (x , h). 
Also by У • II (resp. I • I, II • ||ф), we will denote the norm in X  (resp. in Я, X*). Also 
let У be another separable Banach space, modelling the control space. Finally, 
by Xy, we will denote X  with the weak topology and by (resp. — >) we will
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denote the strong (resp. weak) convergence. We will consider the following family of 
infinite-dimensional optimal control problems, with state and control constraints:

J(tx,e) =  g(x(b)) —♦ inf 
s.t. x(t) + A(t, x(t)) = f( t ,  x(t)), u(t),e) a.e.

(P(e)).
x(0) = Xo, x ( t )E K( t ,e )

, u(t)GU(t)  a.e., «(•) is measurable

These form a family of perturbed problems, the original one corresponding 
to £ = 0. Denote the value of P(e) by m{e) and the value of the original problem 
(e = 0), by m. Following Dontchev and Morduhovic [11], we say that the family 
{P(e) ■ £ G E} is “well-posed” in the sense of performance convergence if and only 
if m(e) -* m a s £ -* 0 .

To problem Р(О), we can associate a new, augmented system, with convexified 
dynamics, known as the “relaxed system” (see Clarke [6] and Warga [22]). This 
has the following form:

Л(и) = g(x(b)) —► inf 
s.t. x(t) +  A(t, x(t)) G convF(i, x(<)) a.e.

( P r ).
x(0) = x0, x(t) G K(t) 

u(t) G U(t) a.e., u( ) is measurable

where F(t,x)  = \J{f( t ,x ,u)  = f(t ,x ,u,  0) : и G U(t)}. We will denote the value of 
this problem by mr. Both equations in P(e) and Pr should be interpreted in the 
distributional sense.

We say that problem P(0) is “relaxable” (or in the terminology of Dontchev 
and Morduhovic [11], “regular in the sense of relaxation”), if m — mr.

In this paper we investigate the relation between the notions of well-posedness 
and relaxability. To avoid trivialities, we will assume that all systems considered 
here have admissible “state-control” pairs, i.e. there exists a pair of functions 
(x(-),u(-)) satisfying the constraints in P(e) and PT.

3. Main theorem s

In the first theorem we prove that relaxability implies well-posedness. For 
this we will need the following set of hypotheses:

H(j4)i : A :T  x X  —► X* is an operator s.t.
(1) t —*■ A(t, x) is measurable,
(2) x —+ A(t, x) is monotone and sequentially weakly continuous,
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(3) (A(t,x),x) > c||x||p a.e. with c > 0 and 1 < p < oo,
(4) ||A(í,x)||* < C i ( l  + ||x||p_1) with ci > 0.

H (/)i; /  : T x H x У x E —* X * is a mapping s.t.
(1) t —*■ f ( t ,x ,u ,e)  is measurable,
(2) (x, u,e) —► f ( t , x,u,e) is sequentially continuous from Я х У „ х  {0} into Х^,,
(3) (f(t, х, и ,  е), х) > с'||х||р а.е., с' > О,
(4) ||/(f,ar,ti,£:)||, < 32(0 + с2||*||р-1 а.е. with д2{ )  € L\,  с2 > 0, l/p + 1 /g  = 1.

H(t/): U : Т  —* Pwkc(T) is integrably bounded, U(t) C W  a.e. with W  £ 
Pwkc(n

As it was illustrated with an example by Dontchev and Morduhovic [11] (sec
tion 3), since the notion of well-posedness is defined through performance conver
gence, we need the following additional hypothesis:

Ho: There exists a minimizing sequence {un}n>i for P(0) s.t. if x„(-,e) and 
*„(•) n > 1, solve the dynamics of P(e) and P (0), respectively, with control un(-), 
then xn(t,e) € K(t, e ) for all t £ T  and x„(b,e) —> x„(b) as e —► 0.

Also we need hypotheses for the viability domains K(t,e) and the cost func
tional g(-):

H(A)i: К : T  x E —► Pf(H) is u.s.c in the e-variable.

Н(з): g( ) is continuous from H into R.
Because of hypotheses H(A)i and H(/)i and using theorem 4.2, p. 167, of 

Barbu [4], we deduce that given an admissible control и 6 Sy,  both the perturbed 
and original problems have a unique trajectory zr(-) G W(T) = {z € LP(X), z £ 
Lq(X*)} С C(T, H). Also in [19] we proved that x( ) £ C(T, X w) (Xw is the space 
with the weak topology).

Now, we are ready for our first theorem.
T heorem 1. If hypotheses H(A)b H (/)i, H(t/), H0, H(A')i and H(^) hold, 

then relaxability implies well-posedness.
Proof. Let {a:n}„>i be the minimizing sequence for problem P(0) postulated 

by hypothesis H0. For any n > 1 we have g(xn(b,e)) —> g(xn(b)) as e —► 0. Also 
note that m(e) < g(xn(b,£)). So we get

lim m(e) < m. (1)£ — 0

On the other hand, let en £ E, £„ —*• 0. Choose admissible state-control pairs 
(xn, ILn) S . t .

J{un,£n) <  m(en) +  (2)n
From [19] (see also [3]), we know that {x„}n>i is relatively sequentially weakly 

compact in L4(X*) and {x„}„>i is relatively sequentially compact in C(T, Aw). So,
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by passing to a subsequence if necessary, we may assume that x„ —*■ x in C(T, X w) 
and xn — *z = x in Lq(X*). Also because of hypotheses H(A) (4) and H(/) (4), 
we see that for every t £ T, {х„(<)}п>1 is bounded and because of the reflexivity 
of X *, w-compact. Thus, we can apply theorem 3.1 of [16] and get that:

z(<) £ conv w- lim(F(t, x„(f)) — A(t, xn(t))) a.e.

where recall that F(t,x)  = f(t ,x,U(t)).  Since x„ —+ x in C(T, X w) and by hypo
thesis X  4-*- H compactly, we have that for alH £ T  x n(t) — *x(t) in H . Also be
cause of hypotheses H(/) (2) and H({7), through proposition 1, p. 47, of Aubin and 
Cellina [2], we get that F(t, •) is u.s.c. from H into X ^ and so from Delahaye and 
Denel [8] we deduce that w-lim F(t, xn(t)) C F(t,x(t)).  Furthermore, hypothesis 
H(A) (2) tells us that A(t, x„(t)) A(t, x(t)) in X “. Finally, we have:

i (t )  £ conv(F(i, x(t)) — A(t , x(t))) a.e.
=>• x (<) + A(t, x{t)) £ conv F(t, x(t)) a.e.

Thus, ж( ) satisfies the dynamics of the relaxed problem. Furthermore, using 
hypothesis H(Ff )i and the compact embedding of X  in H , we have:

x(t) £ lim /f (t,e„) C K(t)
=> z( ) is a viable, relaxed trajectory.

Now, note that by passing to the limit in (2), we get:

iim^(u„,£n) = lim<7(z„(6,£n)) = g(x(b)) < imim(£:n ).

Since by hypothesis relaxability holds, we can write that: 

mr = m < g{x(b)) < limm(£„)
(o )

=> m < limm(e„ ).

From (1) and (3) above we conclude that m(e) —► m and so well-posedness 
holds.

Q.E.D.
Our goal now is to show that the converse of the above theorem also holds, 

namely that well-posedness implies relaxability.
To this end, we prove a density result of the trajectories of P(0) in the tra

jectories of Pr. Another result of this kind for semilinear systems was obtained 
by Ahmed [1]. However, it appears that his proof has a serious gap, that makes 
his theorem incorrect. Namely, in the second half of page 292 of [1], the author 
claims that yn -^-*y in LP(E) (we use the notation of [1]). Unfortunately, such a 
conclusion is not justified by the hypotheses on the sequence {t/n}n>i- Additional
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hypotheses of strong compactness and p-equi-integrability are needed in order to 
have the desired strong convergence of the t/„’s. Furthermore, it is well-known from 
the theory of differential inclusions, that in order to have a density result of the 
original trajectories into those of the convexified (relaxed) system, we need a Lip- 
schitz hypothesis in the state variable on the orientor field (in the case of differential 
inclusions originating from control problems, a dissipativity hypothesis can also do 
the job).

Here we provide density results for both semilinear and strongly nonlinear 
distributed parameter control systems. Another such density theorem for infinite
dimensional differential inclusions was recently obtained by the author in [18]. How
ever, the hypotheses there are such that limit its applicability to control systems 
satisfying stricter hypotheses.

Although the converse of theorem 1 will be stated only for semilinear systems, 
we prove density results for both the strongly nonlinear and semilinear cases.

We start with the nonlinear one.
H(A)2: A : T  x  X  —* X* is an operator s.t.

(1) t —♦ A(t,x) is measurable,
(2) x —► A(t,x) is monotone and weakly sequentially continuous,
(3) (A(t, x), x) < ci||x ||p a.e. with ci > 0 and 1 < p < oo,
(4) ||A(f,x)||, < c2(l +  ||x||p_1) with c2 > 0.

H (/)2: f  :T  x H x Y  x  E —► #  is a mapping s.t.
(1) t —» f ( t ,x ,u,e)  is measurable,
(2) (x, u,e) —*• /(<, x, u,e) is sequentially continuous from H x Y w x  {0} into H ,
(3) \ f(t,x,u,e) — f( t ,x ' ,u ,e) \  < fc(<)|x '-x | a.e.,
(4) ( f( t ,x,u,e) ,x)  > c3||x||p a.e. with c3 > 0,
(5) \f(t,x,u,e)\ < r(t) +  c4||x||p-1 a.e., with c4 > 0, r( ) € L\.

Let So be the set of trajectories of the original evolution and Sr the set of 
trajectories of the relaxed one. The next theorm relates those two sets.

T h e o r e m  2. I f  hypotheses H(A)2, H(/)2 and H(f/) hold, then S o  =  S r , the 
closure taken in C(T, Aw).

Proof. Set /(<, x, u) = f(t, x, u, 0) and define:

F(t, x) = f( t,x,U(t))  and Fc(t, x) — convF(f,x).

We have:

G rF = {(<,x , z ) e T x  X  x H : z £ F(t , x)}
= {(f,x,2) £ T  x X  x H : z = f ( t ,x ,u ) ,  и £ U(t)}.

Set k(t, x, 2, u) = 2 — f(t, x, u) and q(t, u) = d(u,U(t)). Then we have:

Gr F = {(<, x,z) £ T  x X  x H : k(t, x, z, u) = 0, q(t, u) — 0}
=  projTxJf хЯ{(<, x, 2, u) £ T  X X  x H x W : k(t, x, z,u) = 0, q(t, u) = 0}.
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Note that both к and q are B(T)  x B{X)  x B{H ) x ő(W)-measurable. Also 
since by hypothesis Y  is separable, is weakly compactly generated and so it admits 
a Kadec norm (see Diestel [10]). Thus, we can apply corollary 2.4 of Edgar [13] and 
get that B(Y)  = B(YW), where Ym denotes the Banach space Y  equipped with the 
weak topology. Hence, B(Y)  П W  = B(YW) П W => B(W ) = Ő(ITW). But recall 
that Wy, is a compact, Polish space (see Dunford and Schwartz [12], theorem 3, 
p. 434). So, the Arsenin-Novikov theorem (see, for example, Dellacherie [9]), tells 
us that:

Рго)тхХхя{(^>х> г, u) G T  x X  x Я x W : k(t, x, z,u) = 0, q(t, u) — 0} 
G B{T) x B{X) x Я(Я)

=> G rF  G B(T)  x B(X)  x B(H).
So, F (•, •) is graph measurable. Hence, we can apply theorem 2 of Chuong 

[5] and get that x^  is dense in 5 ]^  x^  for the weak norm || • ||w defined by

\\h\\w = sup ds : M ' 6 T Next, let x(-) G Sr. Then x(<) + A(t,x(t)) =

g(t) a.e., x(0) — xo with <?(•) G ^ fc(-,x( ))- ^et 9n G x  ̂^  s.t. ||<7n <jf||w * 0. 
Because of H (/)2 (5) we see that {<7n, <7}„>i G L2{H) and is bounded there. Let
v : T  —>■ H be a step function i.e. v(t) = ^  ,<*](*) ■ vk and by (•, -)o denote

k=l
the inner product in L2(H). We have:

m  I £ m

(9n -  g,v)0 < Y \  /  (ffn(s) -  9(s))ds • |ut | < -  ijr||w Y  Î JfcI — 0.
*=1 U-,

Since step functions are dense in L2(H) and {<7„, <7}n>i is L2-bounded we get 
that gn g in L2 (and, in particular gn g in L l (H)).

Now, consider the multifunction Ln :T  —> 2W \  {0} n > 1, defined by:
Ln(t) = {u € U ( t )  : gn(t) = f ( t , z(i),u)}.

Clearly, Ln ф 0 for all t G T  \  Nn, where Nn is a Lebesque null set. Set 
Ln{t) — {0} for t G Nn. Also let {xm}m>i be dense in Я  and consider the 
following functions:

/.n л _  Í (xm,gn(t) -  f ( t , x(t), u)) for t G T  \  Nn
for t £ Nn .

For all n,m > 1, Л£,(-,-) is a Carathéodory function, hence B(T) x B(W)-  
measurable, with B(T) being the Lebesque completion of B(T). The observe that:

Gr Ln f |  {(<,«) G T x  W :h^ ( t ,u )  = 0}
m> 1

=Ф- Gr L„ G B(T)  x B(W) for all n > 1.

П Gr Я
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Apply Aumann’s selection theorem (see for example Wagner [21]), to get 
ttn : T —* W  n > 1 measurable s.t. u„(t) E Ln(t) for all t E T. So, we have:

g„(t) = f ( t ,x ( t ) ,un(t)) a.e. and u„(t) E U(t) a.e.

Let yn(-) be the unique trajectory of the original system corresponding to the 
control function un(-). Again, we may assume that yn —* у in C(T, Xy,). We have:

-  Vn(t)I2 = 2(i(i) -  y„{t), x(t) -  yn(t))

= 2(-A(t,x(t))  + g(t) +A(t,y„(t)) -  f ( t ,yn(t),un (t)),x(t) -  j/„(<)>
< Í9 (t) -  f{t, Un(t), un(t)),x(t) -  yn(t)) (since A(t, ■) is monotone)

=> k (0  -  yn(0l2 <
t

< J\g{s)  -  f ( s > Ф ) ,  un(s)), x(s) -  yn(s)) ds+
0

t

+ J (/(*- *(s), «n(s)) -  f(s,  yn(s), un(s)), a:(s) -  y„(s)) ds 
0

t t

< J ( 9(s) -  gn(s),x(s) -  yn(s)) ds + J  k(s)\x(s) -  yn(s)\2 ds. 
о о

Recall that gn g in Ll (H). Also yn —i► у in C(T, X w) and since X  embeds 
compactly into Я, we have yn(t)— >y(t) in H. Thus, by passing to the limit as 
n —* oo in the last inequality, we get

t

l* (0 -y (0 l2 < J  Hs)\x(s) -y (s)\2 ds-
о

Invoking Gronwall’s inequality, we get that x =  y. So, x E So and since 
So C Sr and the latter is sequentially compact in C(T, Xw) (see [19]), we conclude 
that indeed So = Sc, the closure taken in the C(T, Aw) topology.

Q.E.D.
If the system is semilinear, we can improve our density result.

Н(А)з: A :T  x X  x X* is an operator s.t.
(1) t —+ A(t)x is measurable,
(2) x —+ A(t)x is linear, monotone,
(3) IIA(t')x -  A(i)*||. < k\f - 1\° ■ ||x||, Jb > 0, a G (0,1],
(4) (A(t)x,x) > Cx||x||2 a.e., Ci > 0 (i.e. A(t)(-) is strongly monotone),
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(5) ||A(t)x||, < c2||x||, c2 > 0 (i.e. A(<)() is continuous).
Because of Н(А)з (2) (3) the family of linear operators (A(t)(-) : t £ T) 

generates a strongly continuous evolution operator Ф : A = {(t, s) : 0 < s < t < 
6} —► C(H), with respect to which a trajectory of P(0) is a solution of x(t) =

t
Ф(<,0)хо +  /Ф(<,«)/(«, x(s), u(s)) ds, t £ T, и  £ Sy (see Tanabe [20]). We will 

о
need the following hypothesis on Ф(-,-):

Hc: Ф(<, s) is compact for t — s > 0.
Theorem 3. If hypotheses Н(А)з, H (/)2 (with p  = 2), H(t/) and Hc hold, 

then Sr = So, the closure taken in C(T,H).
Proof. A straightforward application of Gronwall’s inequality tells us that for 

every x( ) £ Sr C C(T,H),  we have |x(<)| < M for all t £ T.
Next, we will show that So is relatively compact in C(T, H).  To this end, let 

y () £ So and let t ' ,t £ T , t  < t'. Setting as before f(t,  x, u) = /(<, x, u,0), we have:

| y ( 0  -  у (01  <  !$(<'. 0 )*o  -  Ф(<, 0 ) x o| +  J  ||Ф(<', s ) | |  • |/(s, y ( s ) ,  u(s))| ds+
t

t

+  J  | | $ ( * ' , s )  -  Ф(М)|| • | f(s,y(s),u(s))\ds.  
о

Recalling that t —* Ф(<,0)хо is continuous, given e > 0 we can find 6i > 0 
s.t. ||Ф(<',0)хо — Ф(<, 0)xo|| < e/3 for t' -  t < <5i. Also since ||Ф(<, s)|| < Mi for 
('t , s ) £ A and |/(s,y(s),u(s))| < y2(s) + c4||y(s)|| < g2(s) + c4M = tp(s) a.e., 
ip(-) €  £+• So, we can find 62 > 0 s.t.

t' t'J  ||Ф(</, s)|| • \f(s,x(s),u(s))\ds < J  M\ip(s) ds < e/3.
t t

Finally, for ef > 0, write
tJ  ЦФ(<'> *) -  $(*, s)|| • l/(s, y(«), «(*))l ds =

о
t-t'

= J  \ \W,s) -®( t , s ) \ \ - \ f ( s , y(s ) ,u(s) ) \ds+
0

t

+ J  \ \ W , s )  -
t — c1

3
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t t
Note that f  ||Ф(<', s) — Ф(<, s)\\ ■ |/(s , y(s), tx(s))| ds < f  2M\ip(s)ds.

t - e 1 t -e '
t

Pick s' > 0 so that f  2M\rp(s) ds < e / 6 . Also because of hypothesis Hc,
t -e '

from proposition 2.1 of [17], we know that t —+ Ф(<, s) is continuous in the operator 
norm topology, uniformly for all s G (0,<) s.t. t — s is bounded away from zero. So

we can find 63 > 0 s.t. f  ||Ф(<', s) — Ф(<, s)|| • |/(s, y(s), u(s))| ds < f  ||Ф(<', s ) — 
о о

Ф(<, s)HV’(s) ds < e/ 6 for t' — t < 63. Therefore, finally, for 6  — min(<$i, 6 2 , 6 3 ) we 
have:

||y (0  -  y(t)|| < £ for t' -  t < 6  and all y(-) G So,
=> So is equicontinuous in C(T,H).

Also note that if =  {1; € H : |u| < i p ( s ) } ,  then s  —*• S(t, s ) B ( iJj ) ( s )  is
measurable and by hypothesis Hc, Pkc(H)-valued. Applying Radstrom’s embedding 
theorem (see, for example, Klein and Thompson [15]), we have that Ф(<,0)хо +

/Ф (t,s)B(rP)(s)ds E Ркс(Я). Thus, {y(f) : y( ) € S0} € Рк(Я) for all t G T.
0Invoking the Arzela-Ascoh theorem, we deduce that So is relatively compact in 
C(T, H) as claimed.

Next, let ж(-) G Sr. Then by definition we have:

<
x(t) = Ф(<,0)хо + J  <$(t,s)g(s)ds, t € T ,  g( ) €  Sj.c(. r( )),

0

where Fc(t, x) = conv/(<, x, U(t)). Since convergence of L2(#)-bounded sequences 
in the weak norm || • ||w, imphes weak convergence in Т1(Я), we can find g„ G 
Sjr(. r (.)) s.t. gn — - + 9  in Р 1(Я). As in the proof of theorem 2, an application 
of Aumann’s selection theorem, gives us un G Sy s.t. gn(s) = f(s ,x(s) ,un(s)). 
Let yn(-) be the original trajectories corresponding to the control functions un( ). 
We have seen in the first part of the proof that {yn } n > i  is relatively compact in 
C(T, H). So, by passing to a subsequence if necessary we may assume that yn —+ у 
in C(T, H).

Now, note that:

^ l* ( s ) - y n ( s)|2 =
2(x(s) -  yn(s), x(s) -  y„(s)) =

2(-A(s)a:(s) +  g(s) + A(s)y„(s) -  /(s , y„(s), u„(s)), a:(s) -  y„(s)).
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Exploiting the monotonicity of A(s)(-), we get that:

-  У п ( в ) | 2  < 2(g(s) -  f ( s , yn(s), un(s)),x(s) -  y„(s)).

Integrating both sides we have:

N<) -  yn(012 <
t <

< 2  J  (g(s) -  gn(s), x(s) -  yn(s)) ds +  J  (gn(s) -  f (s ,  yn(s), un(s)) , x(s) -  yn(s)) ds. 
о 0

t
Since gn ——*g in Lx( # )  and yn —> у in C(T, # ) ,  we see tha t 2 f(g(s)  —

о
g„(s), x(s) — y„(s)) ds —► 0. Also recalling that 5f„(s) =  f(s,  x(s), u„(s)) and using 
the Lipschitzness of the vector field f(t,  ■,u) we have

t t

2 J (9n(s) -  f (s ,y„(s) ,un(s)),x(s) -  y„(s)) ds < 2 J  I:(s)|x(s) -  j/„(s)|2 ds. 
о о

So, in the limit we get:

k (0  -  y(0l2 < 2 J *(*)k(*) -  y(«)l2 ds.
о

Apply Gronwall’s inequality to get that x — у => So — Sr, the closure taken 
in C(T, H).

Q.E.D.
Remark. Instead of the Lipschitzness of f ( t ,  -,u) we could have assumed 

dissipativity for the vector field.
With these density results (which are actually interesting in their own), we 

can prove a converse of theorem 1. We were able to do this only for the semilinear 
case. It will be interesting to know whether our result can be extended to strongly 
nonlinear systems.

For the converse of theorem 1, we will need the following new hypotheses: 
H(A')2: К : T x  E-+ P{(H) and int K(t, e) ф 0.

Hi: There exists a relaxed optimal trajectory y( ) s.t. y(t) £ int K(t,e) and 
dH(y(t),bd K(t,e)) > a(e) > 0, for all t £ T  and all e £ £^{0} is a neighbourhood 
of zero (here dj/(-, •) stands for the distance function in the space H).

Now, we are ready for the converse of theorem 1 for semilinear systems.

3 ’
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T heorem  4. If hypotheses Н(Л)3, H (/)2, Н(U), Нс, Н(А')2 Н($) and Hi 
hold, then well-posedness implies relaxabihty.

Proof. It is clear from the definitions that mr < m. Suppose that strict 
inequality holds i.e. 0 < 6 — m — mT. Using hypothesis Hi, we know that 
there exists relaxed viable trajectory y(-) s.t. mT — y(b) and y(t) £ int K(t,e),  
d(y(t), bd K(t,e)) > a(e) > 0 for all t £ T and all e £ E  \  {0} in a neighbourhood 
of zero.

Invoking theorem 3, we can find xn £ So s.t. xn —► у in C(T,H).  Then 
xn(t)—+y(t)  in H,  uniformly in t. Also xn(b) y(b) in H.  Given the con
tinuity of <?(■), we deduce that there exists x(-) £ S  s.t. x(t) £ intA'(i,e), 
dH(x(t), bd A '(i,  e)) > a(e)/2 for all t £  T  and all e £  E \  {0} near zero, while 
\g(x(b)) -  g(y{b))\ < 6 /2 .

Let «(•) £ Sy be the control function generating z( ) and let x{-,e) be the 
trajectory of the e-perturbed evolution, also produced by control u(-). From propo
sition 5.5.1 of Tanabe [20], we know that:

t

x(t,e) =  Ф ( и 0 ) * о +  / ф (1 , s)f(s,x(s,e),u(s),£)ds  
о

t

and x(t) = Ф(<, 0)xo + J  $(t,  s)f(s,x(s),u(s)) ds.
о

Hence, we have:

\x(t,e) -  x (< ) |  <
t

M /  |/(s , z:(s, e), u(s), e) -  /( s ,  x(s), u(s))| ds < 
о
t

M J \f(s,x(s,e),u(s),e) -  f(s,x(s),u(s),e)\ds+
0

t

M J \f(s,x(s),u(s),e) -  f(s,x(s),u(s))\ds <
0

t t

M J  k(s)\x(s,e) -  x(s)\ds + M J \f(s, x(s),u(s),e) -  f(s,x(s),u(s))\ds.  
о о

t
Note that /  |/(s, x(s), u(s), e) — f(s, x(s),  u(s))| ds —» 0 as £ —♦ 0. So, through

о
Gronwall’s inequality, we get that x(-,e) —*• x(-) in C(T, H)  cis e —+ 0. So, x(t,e)  £
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for all f € T  and all e £ E in a neighbourhood of zero. Thus, for all e £ E 
sufficiently close to zero, we have:

m(e) < ff(j/(6)) + 6/2  = mr + 6/2  — m — 6/2
=> lim m(e) < m  — 6/ 2 . t —►o — '

But because of the well-posedness hypothesis we have: 

m — lim m(e) < m — 6/2e—0 ' —

a contradition. So, m =  mr i.e. P(0) is relaxable.
Q.E.D.

A ck n o w led g em en t

T he a u th o r would like to  th an k  th e  referee for his co nstructive  rem arks.
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О к о р р ектн о сти  и  у сто й ч и в о сти  о п т и м ал ьн о го  зн а ч е н и я  
ф ун кц и он ала  к а ч е с т в а

д л я  систем  с н ел и н ей н ы м и  р асп р ед ел ен н ы м и  п а р а м е т р а м и

Н. С.  П А П А Г Е О Р Г И У

(А ф ины )

В ста ть е  р а с с м а т р и в а е т с я  в за и м о с в я з ь  с л е д у ю щ и х  двух  п о н я т и й  д л я  н ел и н ей 
ны х  у п р ав л я ем ы х  с и с т е м  в г и л ь б е р т о в о м  п р о с тр а н с тв е : к о р р ек т н о с ти  (н еп р ер ы вн о й  
за в и с и м о с т и  о п т и м а л ь н о г о  зн а ч е н и я  ф ункц ионала  к а ч е с т в а  о т  п а р а м е т р а  з а д а ч и )  и 
у с то й ч и в о с ти  о п т и м а л ь н о г о  зн а ч е н и я  ф унц кионала  к а ч е с т в а  по о тн о ш ен и ю  к овы пу- 
к л е н и ю  за д а ч и .

В тео р ем ах  1 и 3 у к а зы в а ю т с я  с о о тв е тс тв у ю щ и е  у сл о в и я , п р и  кото р ы х  и з  ко р 
р е к т н о с ти  сл ед у ет  у с то й ч и в о с ть , и н ао б о р о т . В т е о р е м а х  2 и 2 ' у к а з ы в а ю т с я  у сл о в и я  
п л о т н о с ти  м н о ж ества  т р а е к то р и й  и сх о д н о й  з а д а ч и  во  м н ож естве  т р а е к т о р и й  овы пу- 
к л ен н о й  за д а ч и .

Nikolaos S. Papageorgiou 
National Technical University 
Department of Mathematics 
Zografou Campus 
Athens 157 73, Greece
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T h e  p resen t paper is concerned w ith th e  nu ll-con tro llab ility  o f th e  system  

®fc+i =  A x k +  B u k ,
xk e x ,  « » e i l e t / ,  А е ц х , х ) ,  в е ц и , х ) ,

where X  a n d  U  are H ilbert spaces, Q is a  convex se t, in t Q ф 0, 0 6  fl.
Here we consider th e  case  of semi-infinite o p e ra to r  A. For such  system s, a  necessary  

and  sufficient condition is given. The obtained re su lt  can  be app lied  to  th e  investigation  of 
null-contro llability  of delay sy s tem  (or neu tra l system s) of th e  form

x (t)  =  L ( x t ) +  B o u ( i) ,

x ( t ) e R " ,  u ( < ) e n c R m, x ,(S ) =  x ( t  +  в), е е  [ - f i , о].

It will be a lso shown th a t  th e  exact and ap p ro x im ate  nu ll-con tro llab ility  of delay system s 
w ith infinitely  m any com m ensurate  delays a re  equ ivalen t. T h is fa c t h a s  been known on ly  
for system s w ith  unconstrained  control.

1. Introduction

This paper is concerned with the null-controllability of infinite-dimensional 
discrete-time linear system described by

(A , B ,  f i )  ^ n + 1  — A x n T  B u n ,

where xn £ X , u n £ C l c U , X  and U are Hilbert spaces, A £ L(X,X),  В £ 
L(U, V), Q is a convex set, int fi /  0 and Ö£Í1.

In recent years, the study of the linear discrete-time systems in infinite-dimen
sional spaces has attracted the attention of many authors (see [4-5], [9], [19-21], 
[23-28]).

The question of the null-controllability for systems of the form (A, B, fi) with
out any further condition for A — even more for systems given in Banach spaces X ,

Akadémiai Kiadó, Budapest 
Pergamon Press, Oxford
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U — has not been solved yet. In [28], the authors have studied the local null-con
trollability of system (A, B, fi) under the additional assumption that the operator 
A satisfies the so-called finite condition. In this paper, we consider the case when 
operator A satisfies the semi-finite condition. In the first part of this paper, a nec
essary and sufficient condition for local null-controllability of such systems is given. 
It the second part, the obtained result will be applied to the investigation of the 
null-controllability of delay system of the form

(L ,B 0 , n ) x(t) -  L(xt) + B 0u(t),

where x(<) € R”, u(-) belongs to a given set of admissible controls, x t(9) — x(t- \-9), 
9 E [-/i,0].

The controllability of delay systems was intensively investigated in the liter
ature [1-2], [4-6], [12], [15-20], [22-24], [26], [29]. Most of them deals with delay 
system with unconstrained control; e.g. [1-2], [12], [15-19], [22-23]. The case of 
delay systems with constrained control has been studied in recent years by [4], [6], 
[24], [26]. In [4], the set of admissible control functions is the closed unit ball of 
the function space with zero in its interior, in [6] it is a closed convex cone also in 
the function space with vertex at zero. The papers [24], [26] consider admissible 
control functions, all components of which are positive.

In this paper, we shall give necessary and sufficient conditions for the local and 
global controllability of system (L,Bo,D) under much weaker restrictions for the 
set of admissible controls. Moreover, we shall show that the exact and approximate 
null-controllability of delay systems with finitely many commensurate delay are 
equivalent. This fact was known [5] for systems with unconstrained control.

2. Notations, definitions

Let X  be a Hilbert space. The (•, •) denotes the inner product in X . If H  С X , 
then К  is the closure of K,  sp{A'} is the span of A, int A' is the interior of К  and 
ri К  is the relative interior of К in X . If A 6 L(X,X) ,  then A* denotes the adjoint 
of A, Ker A and ImT are the kernel and the range of A, cr(A) is the spectrum of 
A. Let C be the set of complex numbers. We shall denote

Dr := { A e C  : |A| < r},
Dr := { A e C  : |A| < r}.

Bc denotes an open ball of radius e centered at the origin.
Let Un = U x U  x . . .  x [/, where the direct product is taken n-times, and let 

us consider the operator Fn : Un —► X  defined by

Fn( u ^ )  =  An~lBuо + Ап~2Вщ  + ...  +



N G U Y E N  VAN SU: N U L L - C O N T R O L L A B I L I T Y  OF D I S C R E T E - T I M E  S Y S T E M 2 1 7

where - (u0, щ , . . . ,  i) £ Un. Clearly,

Fn(Un) = An~1BU +  An~2BU + . . .  + BU,

and
F„(Qn) = An~lBfl  +  An~2BÍ2 +  . . .  +  BS2,

where Dn =  D x D x . . .  x D. (Here the direct product is also taken n-times.)
We need some definitions in following.
D e f i n i t i o n  1. The set

5„(D") := { x € X  : -A nx e Fn(f2n)}

is called the null-controllability set of (Л, B,fl) after n step. Furthermore, the set

OO

S( i i ) : =  U S"(Qn)
n = l

is called the null-controllability set after varying step.
D e f i n i t i o n  2. System (T ,5,D ) is said to be locally controllable (LC) if 

0 £ int 5(D). System (A, B, D) is said to be globally controllable (GC) if 5(D) = X.
D e f i n i t i o n  3 . We say that the operator A satisfies the spectrum decomposi

tion condition if for some positive number r < 1 the set <j\ = сг(Л) \  Dr consists of 
finite number of points and the corresponding eigenspace X\  is finite-dimensional.

D e f i n i t i o n  4. We say that the operator A satisfies the semi-finite condition 
if there exists number m such that

Ker Am = Кег Лт+1 = Ker Am+2 = ...
Im Am — Im Am+l =  1тЛ т +2 = . . .

Now, let M be a closed A-variant subspace of X . We shall denote by X  the 
factor space X/M  equipped with the usual factor norm (it is known that X  is a 
Hilbert space), and by P  the canonical projection P . X  —*• X.  We shall define the 
factor system (Л, B, D) of (Л, B, D) with respect to M  by

(tÍ,5 ,D ) x n — Axn 4- B u rI,

where xn £ X,  u„ £ D C U, x : = Px, Äx  P(Ax) and Én := P(Bu).

3. M ain results

To obtain the main result, we need the following lemma.
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_____ L e m m a  1. Consider the system (A,B,f l)  and suppose that КегЛ = {0},
1тЛ  = X,  int fi ф 0. If there exists number к such that 1ГПЛ* C Fk ( Uk), then 
intSk(flk) ф 0.

Proof. Consider the factor space Uk/Ker Fk equipped with the usual factor 
norm and let P the canonical projection P : Uk —► Uk/  Kér Fk- Let us define the 
operator Fk : Uk/  Ker Fk —*■ X  as follows:

for all ü € Uk/  Ker Fk, ü — и + Ker Fk we take F*ű; = FkU.

Then Fk is well-defined, linear, bounded one-to-one operator and Fk — FkP.  More
over,

1тЛ* C Fk( U k/ K e r  Fk).  (1)

In fact,
Im Л* C Fk( U k) = Fk( P ( U k)) = Fk( U k/ K e r  Fk).

By assumption 1тЛ  =  X,  therefore

Fk( U k / K e r  Fk) =  X .

Since Fk is a linear, bounded, one-to-one operator and the range of Fk is dense X , 
Halmos’ problem 42 [11] and Theorem 16, pp. 254 [8] can be applied to verify the 
relation

U k /  Ke r  Fk » X ,  (2)

where rí is an isometric isomorphism between the two spaces.
On the other side, from (1), it follows by the factorization theorem of Douglas 

[7] that there exists a linear, bounded operator С  : X  —* U k/  Ker Fk such that
Ak = FkC.  _____

Now, we consider the Hilbert space C X  and the restriction of operator Fk to 
C X  ( Fk : C X - >  X ) .

Since ______ _______
X  = Im Ak = Im FkC  C Fk( C X )

we have _______
Fk ( C X )  =  X.

Applying again the same results as above, we obtain that C X  is isometrically 
isomorphic with X :

C X  и  X. (3)

From (2) and (3) it follows that
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But CX  C Uk/  Ker Fk, therefore, it can be easily seen that

CX = Uk/  Ker Fk-

Let fi* : = P(fi*). Since intfi /  0 and P  is open, int fi* is not empty in Uk/  Ker Fk. 
Hence, C X  П int fi* ф 0. Consequently, the inverse image C~1 (int fi*) has a non
empty interior in X. It is easy to see that

—C -^ in tn * ) C S*(fifc). (4)

In fact, if

then

Hence,

x G (—C _1(int fi*)),

—Cx — «<*) for some ük G intfi*.

- F kCx = Fkük = Fk(uk) 

for some u G  intQ*. But FkC = Ak, therefore,

Akx + =  0.

This means that t  G and (4) shows that

in t s e n * )  ф 0.

The proof of Lemma 1 is complete.
T h e o r e m  1. Consider the system (A,B,i l).  Suppose that Ker А ф {0}, 

1тЛ  = X,  0 G fi and int fi ф 0. Then the system (A, ő ,f i)  is LC iff
(a) There exists number к such that 1тЛ* C Fk(Uk),
(b) There is no eigenvector x* of A*, A*x* = Ax*, A > 0 such that (x*, 5fi) > 0. 

Proof. Necessity. If system {A, ő ,fi)  is LC, then the system (A , B , U ) with
OO

unconstrained control is GC, i.e. S(U) = |J  Sn(Un) = X.  By the theorem of
n  =  l

Fuhrman [9], we obtain that there exists number к such that

Im Л* C Fk(Uk).

In order to prove condition (b), we assume the contrary: let us suppose there exists 
A > 0 such that Л’х* = Ax* and

( x * , S f i )  >  0. ( 5 )
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Then, for all x £ S(Q), there exists n and «o, u i , . . . ,  un- i  G П such that

<**.*) = =  -^<A*"x*,x> = ^<x*,A "). (6)

But
(x*,Anx) -  (x*,An~1B u 0 + ■■ ■ + S « n-i)

=  < A * V , B u 0) +  . . . +  ( * * , B u „ _ i )  (7)
= Xn~l ( x \ B u 0) + .. .  + (x*,Bun_1).

From (5), (6), (7) it follows that

(x*,x) > 0 for all x £ S(il).

This contradicts the condition 0 £ int S(f2).
Sufficiency. By Lemma 1 it has been proved that int Sk(Qk) ф 0. For every / > k, 
let us define the set 5/ by

5 , '  : =  {x £  X  : - A kx £  F , ( « ' ) } .

It is easy to see that SJ C S[+1, S{ is convex and A SI C Sf+1. Since S'k — Sk (Qk), it 
follows that int S'/ ф 0. Setting S' — (J S',, we will show that 0 £ int S'. Assuming

r>k
the contrary, we readily verify that the cone C = (J A S'  is convex, not dense in X

A>0
and А-invariant, i.e. АС  С C. By the Krein-Rutman’s theorem [13], there exists 
A > 0 and x* £ X * such that A*x* = Ax* and (x*,c) < 0 for all c £ C. On the 
other hand, since AkB£l C Fjt+i(f2fc+1), it follows that —BQ C S 'k+1 C S'  С C. 
Hence, (x * , B u ) > 0 for all и  £  О. This contradicts the assumption (b) of the 
theorem. Thus, 0 £ int S '. In view of Lemma 1 of [25], there exists m > к such 
that 0 £ int .

If m = к then the assertion of the theorem is immediate, since S'k =  S’jt(fi). 
If m > к we consider operator Am~k : X  —* X .  Since 0 £ int 5, we have 

0 £ int((Am~i )-15^1). On the other hand, it is easy to see that (Am~t )~1Ŝ n C 
Sm(Q). Therefore, 0 £ in tSm(Qm), and the sufficiency is proved. The proof of 
Theorem 1 is complete.

We remark that Theorem 1 can be strengthened by assuming only that fi has 
non-empty relative interior. Now, we formulate the modified version of Theorem 1.

Corollary 1. Consider the system (A, B,Q). Assume that Ker A = {0}, 
ImA = X,  0 £ П and riQ /  0. Then the system (A, B,Q)  is LC iff _____

(a) There exists number к such that ImA* C F k ( V k),  where V = sp{Q}.
(b) There is no eigenvector x* of A*, A*x* = Ax*, A > 0 such that (х*,БП) > 0. 

L e m m a  2. Let M  be a closed А-invariant subspace contained in the control
lability set S(il) of system (А, В, ÍI). Then the system (A, B, Í2) is LC iff the factor 
system (A, B,Q) with respect to M  is LC.
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Proof. Sufficiency is immediate form the fact that P  is an open operator form 
X  onto X  and the set PS(Pl) belongs to the controllability set S(Pl) of the system
(Ä ,ä ,n ) .

In order to prove the necessity, we take e >  0 such that B£ C S(Pl) and set 
£\ = e /||P ||. We shall show that BCl C S(i2). In fact, for any x E X  with ||x|| < £\, 
we have Px E S(Pl), therefore,

A k Px -{■ Äk  ̂B uq Bilk— l — 0

for some к and some u, € П, i = 0,l,...,Jfc — 1. From this it follows that

Ak x +  Aк  ̂Buq ■(■... -f Bilk—I d AI d

that is x E S(Q). The proof is complete.
T h e o r e m  2. Consider the system (A,ß,Q). Assume that 0 E Pi, in tfi ф  0, 

Pl is convex and operator A satisfies the semi-finite condition. Then the system 
(A,B,  П) is LC iff

(a) There exists number к such that ImA* C Fk( Uk),
(b) There is no eigenvector x‘ of A*, A* x* — Ax*, Л > 0 such that (x*, BPl) > 0. 

Proof. The proof of necessity is analogous to that of Theorem 1.
In order to prove the sufficiency we set l — max(m, k ) , where m is the number 

which is to be found in the definition of the semi-finite condition and let M — 
Ker A1. It can be easily verified that M  has the properties required in Lemma 2. 
Consider the factor system (A,B,Pl) with respect to M:

^n+i '—* Axn T Bu„, xn £ X ) un E Pl d U.

From the semi-finite condition concerning operator A, it follows that Ker A =  {0} 
and lm A = X.  In the same way as in the proof of the Theorem 2.3 [28], it can be 
shown that conditions (a) and (b) are fulfilled also for the factor system (A, B,Pl):

(a) There exists number к such that I m i 4 C Fk( Un),  where

Fk(Uk) =  A * - 1  BU + ...  +  BU,

(b) There is no eigenvector x* of Á*, Á*x* = Лх*, A > 0 such that (x*, BPl) > 0. 
Thus, making use of Theorem 1, it follows that the system (A,B,Pl) is LC.

Consequently, by Lemma 2 ,  we conclude that the system (A,B,Pl) is LC. This 
completes the proof.

Remark. In the case, when riil ф 0, Theorem 2 remains true if we replace 
U k in condition (a) by V k, where V = sp{Q}.

In [27], it has been proved that, under certain condition detailed below, system 
(A, B,Pl) is GC iff it is LC and <т(А) c  D\. Taking into consideration this result, 
we obtain the following corollary of Theorem 2.



22 2 N G U Y E N  VAN SU: N U L L - C O N T R O L L A B I L I T Y  O F  D I S C R E T E - T I M E  S Y S T E M

Corollary 2. Assume that the conditions of Theorem 2 are fulfilled, Í2 is 
bounded and the operator A satisfies the spectrum decomposition condition. Then 
the system (A, В , Q) is GC iff

(a) There exists number к such that ImA* C Fk(Uk),
(b) There is no eigenvector x* of A*, A*x* = Ax*, A > 0 such that ( x * , B Q )  > 0,
(c) o(A) C Di.

4 .  Application

In this Section we shall use the result obtained in the first Section to ex
amine the null-controllability of linear autonomous retarded functional differential 
equation of the form:

(L,B о,П) Z(t) = L(Zt ) +  B0u(t),

where Z(<) E Rn, Zt(9) = Z(t + 9), 9 E [—Л, 0], L is a bounded linear operator from 
C =  C{[—h,0],Rn) into Rn given by

о
ЦФ) = J <1г](в)ф(в), ф е с ,

-h

where tj( ) is an n x n matrix function of bounded variation such that т](в) = 0 for 
в > 0, г](в) = T](—h) for 9 < —h and r) is left-sided continuous on (—h, 0). Bo is an 
n x m matrix.

Moreover, u(-) E П is an admissible control if Q has the following properties:

ПС ( J  L2([0,T],Rm);
т> о

П П L2([0, h],Rm) is convex 
and its interior relative to L2([0,Л],Rm) is non-empty;

0 E 0;

If u( ) E Q then U j ( - )  E £ 2([0, Л], Rm) 
defined by Uj(0) = u (ih + 0), в E [О, Л] 

is such that u , E fi, for each i E N.

Let M2 :=  Rn x L2([-/i,0],R"). Clearly, M2 is a Hilbert space.
If M C Af2 is a subset of M2, then the negative polar cone of M

(8a)

(8b)

(8c)

(8d) 

is defined by

M° = { / E M2 : (f,x)  < 0  V iE  M}.
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The inner product in Rn is denoted by (•, )r«.
It is well known [3] that the homogeneous equation

m  = L(Zt ) (9)
induces a strongly continuous semigroup {S(t), t > 0} on M2, by means of which 
the solution of (9) with the initial condition Z(0) = ф° , Z(9) = ф1(в), 9 £ [—Л, 0], 
where ф = (ф°,ф1) 6 М2 can be given as S(í)<£ =  (Z(f), Zt) £ M2.

Let Z(t) be a solution of the equation

Z (t) = L(Zt) + B0u(t)

corresponding to the initial condition ф — (ф° ,ф1) £ M2 and to some control 
u(-) € L2([0,T],Rm). Then x(<) = (Z(i),Zt) will be the mild solution of the 
abstract differential equation

x(t) = Ax(t) + Bu(t), t £ [0,T] 
x(0) = ф,

where A is the infinitesimal generator of S(t), В : Rm —+ M2 is a bounded, linear 
operator defined by

Bn — (Sou, 0).
This mild solution can be expressed by

x S(t - в )В и (в )  de.

Let {S+(i), t > 0} denote the strongly continuous semigroup induced by the 
transposed equation:

Z(<) = L+(Zf), Z « )€ R n,
where 0

Ь+Ф= J d r f w w o ) ,  ф е с .
-h

The corresponding infinitesimal generator of S+(f) is denoted by A +. 
For a given system (L ,S0,Q) we define the following sets:

1

RT ;=  I J  S(T — 9)Bu(9) d0 : u( ) £ П L2([0,T], Rm ) | ,  

Nt : =  {Ф € M2 : — Б(1)ф £ Rt },

N  :=  ( J  NT,
т> о

Ст '■ — {Ф G М2 : — £ Rt }-
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D e f in it io n  5. System (L,Bo,£l) is said to be locally controllable (LC) if 
0 € int TV. System (L, Во, П) is said to be globally controllable (GC) if TV = М2- 

D e f in it io n  6. System (L,B0,£l) is said to be approximately locally control
lable (ALC) at time T > h if 0 € intCr-

Let Д(А) be the characteristic matrix of (9):

о
Д(А) = A7— J  dr)(e)exe.

-h

Then <t(A) — <r(A+) is a point spectrum (see [10], [14], [23]) and it is given by

<r(A) = {A 6 C : det Д(А) =  0}.

If A 6 &(A) then the corresponding eigenspace is given by

Ker(Af — A+) = {(ф°, ф1) € М2 : А т (Х)ф° = 0, ф \ в )  = ф°ехв, в£[-Н,0].

Now, we can give the discretization for the retarded system (L,Bo,Q), i.e. we are 
going to construct a linear discrete-time system which is equivalent to the retarded 
system (L, Bq, Q) from the controllability point of view.

Let us denote
U : = L 2([0,h],Rm),
fi : = f i n L 2([0,/i],Rm).

We define the operator

A : М2 — M2 by A : = S(h) 

and h
В : U —► M2 by Bu( ) := J  S{h -  в)Ви(в) de.

о

It has been proved [10], [23] that the operator A  is compact, therefore, it satisfies 
the spectrum decomposition condition. Moreover, (see [23]) there exists To > 0 
such that for all t > To

Ker S(t) = KerS(To)
and

Im S(t) = ImS(To).

Hence, it follows that there exists number no such that, for n > no, we have 

Ker A n = Ker A n+1 = Ker A n+2 = . ..
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and
Im .4" =  Im _4n+1 — I m A n+2 = ___

It means th a t the operator A  satisfies the semi-finite condition.
Now, we consider the discrete-time system associated with the system

( £ , B o , o )

( A ß ,Ö )  xn+1 =  Л х„ +  5 u „ , 

where xn G M 2, u„ G Í2 С V .
Lemma 3. The system (L ,B q,£1) is LC or GC iff the system is LC

or GC, respectively.
Proof. The reachable set of ( .4 ,5 ,0 )  in tim e к is:

R% : = { 0} for к =  0
and

R% : = A k- 1BCl + A k~2B n + . . .  + BÖ for k > l .

It suffices to show that
Rkh = R% • (10)

Let ф G Rkh, then there exists u(-) G Q П L2([0, kh],Rm) such th a t

k h

ф = J  S(kh -  в)Ви(6) dO.
о

Defining a control sequence u , G П, i = 1,2, . . .  ,k by Uj(0) = u ((i — 1)Л + 0), 
9 G [0,A], we can easily show th a t

Ф =  >tt_ 1 5 u i  +  A k~2B\i2 +  • • • +  Buk,

thus ф G Rk- Conversely, let ф £ R^, then there exists a control sequence u , G Q, 
i = 1 ,2 ,..., к such that

ф = A k- l Bui  + A k~2Bu2 +  . . .  + 5 u t .

Taking u(<) =  u,(< — (i — 1)Л) for (i — 1 )h < t < ih, i = 1,2, . . . ,£  we have 
u( ) G f in L 2([0,ib/i],Rm) and

kh
Ф = J  s(kh  -  e)Bu(e) de.

о

Hence, ф G Rkh- The proof of Lemma 3 is complete.

4
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By Theorem 2, Corollary 2 and Lemma 3, we obtain the following.
T h e o r e m  3. Assume that int Q ф 0. Then the system (L , Bo, Cl) is LC iff

(a) The system (L, B0, (J Í 2([0,T],Rm) is GC,
т >  о

(b) Ker(A7* -  5*(Л)) П_(В0)° = {0}, VA > 0.
T h e o r e m  4. If intfi ф 0 and Q is bounded in I 2([0, Л],Rm) then the system 

(L,B0,Cl) is GC iff
(a) The system (L, B0, (J I 2([0,T],Rm) is GC,

т >  о
(b) Ker(A7* -  S*(h)) П (BCl)° = {0}, VA > 0,
(c) {A G C : det A(A) =  0} C C_ , where C_ := { A g C :R eA <0}.

Now, we introduce the operator D : U —* M2 by

(JDu)° =  0,

(B u)1̂ )  =  B0u(fl), - h < 6  < 0.

In [26], pp. 16, it has been proved that the condition

Ker(A7* — S*(h)) П (Bf2)° =  {0}, VA > 0

is equivalent to
Ker(AJ* -  A+)D(DQ)° = {0}, VA G R,

where (DQ)° is the negative polar cone of DCl. It follows from the definition of D 
that this condition can be expressed as follows:
(b') If A(A) = 0 for some real A, then there is no vector ф° G R" such that

ЛТ(А )ф° = 0

and
о

j (ф°exe, B0u(-fl))B- dd < 0, for all u(-) G Cl. (11)
- л

This version of condition (b) is more convenient for calculations.
Let us consider how to use this result for the verification of the controllability 

of concrete systems with retarded arguments.
Example 1. Let

x = ( i  ~o1) x(*) + (~o1 ! ) х ( < _ 1 ) + ( з  ~o1) x ( < _ 2) + ( o ) u
[26], and let Cl be an arbitrary set which satisfies the requirements (8a)-(8d) with 
m = 1. An easy calculation shows that

A ( A )  =
A + e-A 

-1
l + e " 2A
A -e ~ A
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thus,
det Д(А) = A2 + 1.

Since there is no real A satisfying equation det ДГ(А) =  0, condition (b') evidently 
holds.

It is known [5], [23], [30], that condition (a) holds iff 

гапк(Д(А), Bo) =  n, for all A e  C.

In our case

( Д ( А ) , 5 0 ) =  ( Ä t ei _A
1 + е~2Л 
A - e - A )

which has full rank for all A € C.
This example shows that the controllability property of some systems can be 

verified “almost” independently of the control restraint set ft (ft has to have only the 
properties (8a)-(8d)). Nevertheless, it should be noted that in [26], the approximate 
local controllability of this system was only obtained under more special control 
constraint set ft (namely, ft consists of functions, all component of which take 
values from the cone К  = [a £ R" : a, > 0, i — 1 ,2 ,..., n}).

Example 2. Let

=  ( i  0 ) * <' ) + ( о ‘ i ) ’c(' ” 1 ) + ( ő  o1 ) x ( ' - 2 ) + ( ö )
l(t).

Let h = 2n and let us define the set fty by

2jir2 j *  2jir

ftr = !«(■) € L2([0,T],R) : J  |u(0) -  sin#|2 d6 < /  sin2 в de,
20-1)»

j  =  1,2, . . . ,*; 2( i -  1)tt < T  < 2i?r,
T  T

J  \u(t)~ Hin 9\2 d9< I  sin2

20—1)*

2(«-l)*

and let

Then

2 0 - 1 ) *

f t  =  ( J  f t T .
T >  0

ft — ft'2Tr •

First of all we have to show that ft has the required properties (8a)-(8d). Condition 
(8a) and (8c) is evident. We observe that ft2ir is a closed ball in Z,2([0, 27t], R) around

4 !
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the center uq, uq(t) — sint, and with the radius у/ж. Thus, (8b) is also true. (It has

previous results.)
In consequence of the construction of Qt , the condition expressed by (8d) 

also holds true.
Condition (a) of Theorem 3 can be verified on the same way as in the previous 

Example.
Now, we shall examine the condition (b'). Since

to be emphasized that the origin does not belong to the interior of Ú. Therefore, 
the controllability problem for this system could not be solved on the basis of the

we have
det Д(А) = A2 -  1,

therefore,
det A(A) = 0 iff Ai = 1, A2 = — 1.

Д т (А !)^ = о

А т (Х2)Ф°_х =  0.

Let us choose the control function и £ Cl

9 €  [ 0 , 2тг]
9  e  [тг, 2 7 г] .

Then о о

Т

/ е ASsin в d9 < 0.
о

Let us now take the control function u £ i l

9 e  [о ,  л-]
9 e  [л-, 2тг].
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In the same way as above we see that

о
J  (ф°_хехв,В 0Ц - в ) ) л3М > 0.

— 2 t

An analogous computation with the same choise for ü and й shows that relation
(11) does not hold for the pair ( \ 2,Ф-\) i.e. condition (b') also holds. Therefore, 
the system of this example is locally null-controllable.

In the following, the case of delay systems is considered when the delays are 
commensurate, that is the system can be written as

(A(Z), B(Z), fl) jc(t) = A(Z)x(t) +  B(Z)u(t)

where x(<) E R", the set of admissible controls is the same as in the general case, 
Z  is the right-shift operator i.e. Zx(t) — z(t — h) for delay duration h > 0, 
A(Z) E Rnxn[Z], B(Z) E Rnxm[Z] and R‘*J[Z] denotes i x j  matrices composed 
of real polynomials in Z.

It this case, the spectrum of system (A(Z ), B (Z ), ÍÍ) is given by 

cr(A) = {Л £ C : det(A/ -  A(e-A/*)) =  0},
and

Д(А) = A7 -  A(e~Xh)

is the characteristic polynomial of the system.
From [5], [23], [30] we know that the system (A ( Z ), B(Z), [J Z,2([0,T],Rm))

т> о
i.e. the system with unconstrained control is GC iff this is AGC. A necessary and 
sufficient condition for AGC is

rank[A/ -  A(e~Xh), B(e~Xh)] = n

for all A E C. Thus, we have the following.
Corollary 3. Assume that intfi ф 0. Then the system (A(Z), B(Z),  fi) is 

ALC iff it is LC.
Proof. The sufficiency of the Corollary is immediate. Assume that the system 

(A(Z), B(Z), fi) is ALC. Consider the discrete-time system (A,B ,Q ) associated 
with the system (A(Z), B(Z),  П):

(А, В, П) : xn_|_i =  A x n + Bun

where x n E М2, u „  6  П C U.
Since the system (A(Z ), B(Z),£l) is ALC it follows that 

(a) The system {A, B, U) is AGC,

5
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(b) Ker(A/* -  S*(h)) П (Bfi)° = {0} for all A > 0.
Condition (a) means that the system (A(Z), B(Z),  (J £2([0, T1], Rm)) is AGC.

T > 0
Hence, by [5] and [30] it is GC, too, thus the system (A ,B ,U ) is GC. By Theorem 
3 we have that the system (A , B, ft) is LC, thus, the system (A(Z), B(Z),  ft) is LC. 
The proof is complete.
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Нуль-управляемость
линейных дискретных систем бесконечной размерности 

с ограничениями на управление

Н Г У Е Н  В А Н  С У

(Б у д а п е ш т )

Н а с т о я щ а я  р а б о та  п о с в я щ е н а  вопросу н у л ь -у п р а в л я е м о с т и  си стем ы

r^ - f i  — А%к h  R u k } х к С X , Uh €  II С U, А £ L ( X ,  X ) ,  В  £  L(U, X ),

где  X  и U —  ги л ь б е р т о в ы  п р о с тр а н с тв а , П —  в ы п у к л о е  м н о ж ес т в о  с непустой  в н у т 
р ен н о стью , со д ер ж ащ ее  0.

З д е с ь  р а с с м а т р и в а е т с я  с л у ч а й  п о л у -к о н ечн о го  о п е р а т о р а  А. Д л я  так и х  си ст е м  
за д а ё т с я  н ео бх о ди м о е  и д о с та т о ч н о е  усло ви е  н у л ь -у п р а в л я е м о с т и . П о л у ч ен н ы й  р е 

5'



2 3 2 N G U Y E N  VAN SU: N U L L - C O N T R O L L A B I L I T Y  O F  D I S C R E T E - T I M E  S Y S T E M

з у л ь т а т  и с п о л ь зу ет ся  д л я  и с сл е д о в а н и я  н у л ь -у п р а в л я е м о с т и  с и ст е м  с за п а зд ы в ан и е м  
след у ю щ его  в и д а :

x ( t )  =  L ( x t ) +  B 0u ( i ) ,  x ( t )  6  R", u ( t )  e ß c  Rm, x t (9) =  x ( t  +  i ) ,  е е  [ - / 1, 0 ].

Д о к а зы в а е тс я , ч т о  н у л ь -у п р а в л я е м о с т ь  в то ч н о м  и п р и б л и ж ен н о м  см ы сле э к в и в а 
л ен тн ы  в с л у ч а е  конечного  ч и с л а  со и зм ер и м ы х  за п а зд ы в а н и й . Э т о т  ф акт б ы л  и зв е с те н  
то л ьк о  д л я  с и сте м ы  без о гр а н и ч е н и й  о т н о с и те л ь н о  у п р а в л ен и й .

Nguyen Van Su
Technical University of Budapest 
Faculty of Mechanical Engineering 
Department of Mathematics 
Budapest, Stoczek u. 2.
H -llll, Hungary
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OPTIMIZATION OF DYNAMICAL SYSTEMS 
WITH IDENTIFICATION OF INPUT PERTURBATIONS

R. G a b a s o v , F. M. K irillo va

(Minsk)

(Received June 12. 1990)

A finite algorithm for the construction of optimal control of dynamic systems with 
perturbations that identifies acting perturbations with help of observations over resulting 
processes as it operates, is proposed.

1. Introduction

A real control system is functioning, as a rule, in the presence of noise. This 
leads to the necessity of introduction of uncertainties of corresponding optimiza
tion problems [1, 2] into the mathematical model. The models of stochastic optimal 
control [3-5] are the more developed ones for optimal control under conditions of 
uncertainty. Lately, in connection with the development of the modern theory of 
extremal problems it became possible to investigate models in which other represen
tations on the nature of perturbations and on the principles of control are admitted, 
under conditions of uncertainty not emphasizing the relative frequency of arising 
of these or those values of perturbations. In the new approaches the structure of 
large numbers of the possible values of perturbations is taken into consideration in 
detail. The latter is practically ignored in probabilistic models. Appreciating the 
quality of control, it is necessary to perform the conditions not as a whole but in 
all possible situations [6, 7].

In this paper the authors, based on the results on the constructive theory 
of extremal problems [8, 9], substantiate a finite algorithm for optimal control 
construction by dynamic systems with perturbations.

2. Statem ent of the problem

Consider the family of ^-vector function *;(/), t £ T  — [0,C] :
я

u(t) =  Up(t) +  (1 )
Í — 1

Akadémiai Kiadó. Budapest 
Pergamon Press. Oxford



2 3 4 G A B A S O V ,  K I R I L L O V A :  O P T I M I Z A T I O N  O F  D Y N A M IC A L  S Y S T E M S

defined with the fixed piecewise continuous p-vector function u>o(t), wi(<),... , u q(t), 
t 6 T, and q-vector of parameters w = (uq, . . .  ,wq), which may take any value from 
the set

W = {u; € W  : Gw = /, d, < w < d*} ( /  € R'). (2)

We shall consider that the functions (1) describe perturbations acting to dy
namic system of control

x(t) = A(t)x -(- b(t)u +  V(t)u(t), x(0) = xo ( i  £ R", и E R) (3)

with piecewise continuous elements A(t), b(t), T>(t), t ET.
To every piecewise control u(-) = (u(t), t € T) it corresponds the only move

ment
X(t) = X(i|a;o,'u(-)) = {x(<| г0, u(-), w), w £ W},  t € T,

consisting of all the trajectories x(<) = x(t\xq, u ( - ) , w ), t € T, of the system (3) 
generated by the fixed initial state xo, control u(-) and different parameter vectors 
w € W.

In the following we shall call W a priori distribution of parameters, X(t),  
t ET ,  the a priori movement of the system (3).

Let the terminal set in the space of states of the system (3) be given

m

X* = p |  ХГ, X: = {x € Rn : Kx  ></,}.
i=i

The control ü(t), t € T, is constrained by

H<)I < 1 , t G T, (4)

and motion X(f| «(•)), t € T, corresponding to it will be called a priori admissible 
if a terminal inclusion is fulfilled

X(í*|ú(-)) C X*. (5)

The quality of the a priori admissible control ü°( ) will be estimated according 
to the functional value

J(ü) = min h'0x(t*I x0, ü(-), w).w£W

ű°(-) will be called an a priori optimal control if

J(ü°) = maxJ(ü).
ü ( )

( 6 )

(7)

The efficiency (7) of control by the system under conditions of uncertainty
(2) is less than the efficiency of control in the case when perturbation w*(f), t ET,
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is known, i.e. if the uncertainty of a problem is absent. Therefore, to increase the 
control efficiency we shall introduce the procedure of observation over the control 
process.

Consider the following types of linear inertia-free measuring systems:
1) direct complete

у — Cw (у — R5, det C  /  0); (8)
2) direct incomplete exact: (8) for у £ R1, rank C — l < q\
3) indirect incomplete exact

у ~ Kx (y £ R'); (9)
4) mixed inexact incomplete

у = Kx  + Cw + £. (10)

In case (10) we shall assume that in the process of dimensions any piecewise 
continuous function of errors of f  (f), t £ T, satisfying inequalities

£. < № < C ,  (11)
may be implemented.

Let for the chosen control u*( ) the measuring device have a registered signal
y*(0, * e T.

The set W  of vectors, w £ W,  that together with some possible error function 
of dimensions £(<), t £ T, are able to generate signal y*(f), t £ T, will be called a 
posteriori distribution of parameters w. The a posteriori motion X ( t | xo, u*(-)) = 
{x(tIxo, «*(•)> w)> w € W}, t £ T, a posteriori admissible control ü*(t), t £ T,
(X(i*|xo,«!*(•)) С X*) and a posteriori optimal control ü°(-)(J(ü°) =  maxJ(ű*))

«*(■)
correspond to it. Since W  C W  then J(u°) > i.e. the control efficiency
while using observation is increasing. Below methods for constructing of optimal 
controls at different ways of data obtaining on control processes are presented.

3. Construction o f a priori optim al controls

Investigate the control problem (1)~(7) without using observation over the 
control process.

In accordance with the control problem (l)-(7) calculate the following esti
mates of a priori distribution W :

äi = min /i(x(t*|x0,u( ),u)), i =  0,m. (12)

In accord with Cauchy formula [10] we have
<•

I ar0, w( ), in) = F(t*)x0 + J  F(t*)F~1(t)b(t)u(t)dt+
о
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+ J  F ^ F - H t W y u ^ d t  + ^ W j  j  F(f )F- \ t )V( ty>j{ t)d t .
о

Using (12), we obtain

= ъ  +  KF( f ) x  о + J  tiiF ( f ) F~ 1(t)b(t)u(t)dt+
о

<•
+ J  h ' i F i t ^ F - ' i t W u o ^ d t ,

J= 1

t*

(13)

7j — min a(tu, Gw = / ,  d* < w < d*, г — 0,m 

f
a, = (a 0-, j  = lg ) ,  at j = J  F(t*)F~1(t)‘D(t)wj (t)dt.

о

Using estimates (12), the conditions of the a priori admissibility of control 
«(•) will be written in the form

t*
h \F ( f ) x  о + h\ J  F(t*)F~\t)b(t)u(t) dt+

о
<*

+h'i J  F{F)F-\ t )V{ t)w0(t)dt >g {, i = T~^.

Find the value of a quality criterion on the a priori admissible control
t e r ,

J(ü) = á 0 =  7 0  + h'0F( f )x 0 +  J  h'0F(f )F- \ t )b( t )u( t )d t+
о

+ J  h'0F{ f )F ~ \ t )V { t )w o( t )d t .  
о
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According to (7) the a priori optimal control üo(/), / € T.  is the solution of 
problem

J  h'0F(1m)F 1(t)b(t)u(t)dt + h'0F(F)x0+
о

<*
+b'0 J  F(t*)F~l(t)V(t)*i)o(t) dt — max, 

о
t *

h'0F(t")x0 +  hi J F(t‘ )F~1(i)b{1)u(t)dt +
о

t*

+Л- J  F(t*)F~l(t)V(t)*;o(1)cH > gi%
о

i = l ,  m; Iu(/ )I < 1. t e T .

In dynamical statement it has the form

J0(u) = h'0x(tm) — max

i  = A(t)x + b(t)u(t)+V(t)u)0(t)-, x ( 0 ) = x o. (14)

» = l,m; |u(/)| < 1, / 6 T.

Problem (14) will be called a determined problem of optimal control accompanying 
problem (1)—(7) for construction of the a priori optimal control under uncert ainty 
conditions.

So, to construct an a priori optimal control u°(t), i £ T, of problem (l)-(7) 
we need to solve:

1) (m + l)-problems of linear programming (13).
2) one problem of optimal control (14). The value of quality criterion on i7°( )

equals to J(ii°) = + Jo(“0)-

4. Optim ization of perturbed dynam ical control system s 
by m eans of observation results

Let us add to the control procedure the operations on processing of output 
signals of measuring device (9) or (10). In Section 1 there was introduced the 
notion of the a posteriori distribution IT of parameters, that in a general (i.e. non
constructive) form contains the complete results of the uncertain elements' removal 
from the set W  by means of data in the observed signal y(i). t € T . It is sufficient 
to introduce only separate numerical characteristics (estimates) of the set IT, both
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for solving practical filtration problems, wherein the whole probability distribution 
function is seldom used, and they are restricted only by some simplest numerical 
characteristics (mathematical expectation, variance, etc.) and for problems (l)-(7), 
(9) or (10).

Count the following estimates

<*,• = min /i[x(<*| xo, i = 0,m. (15)

We call the calculation of estimates (15) identificat ion problems accompanying 
the dynamic system optimization problem under uncertainty conditions.

Consider the case of indirect incomplete exact measuring (9). Let the con
trol u*(f), t  £ T, be given onto the input of system (3). It generates trajectory 
x(<|x0, «*(•), w(-)), t  € T  ( x 0 , u 0( t ) , t  £ T, are given) with some value of parameter 
w G W. The measuring device (9) yields the necessary signal y*(t), t  £ T. All 
conditions being highly general [10], hence such moments t j  £ T ,  j  = l,p, and sets 

_______ p

Cj, \Cj\ < l , j =  l,p; 5Z |£ j| = q, will be found that the matrix is non-singular 
j =1

P= (K(Cj)pi i )y

Here K(Cj ) is a submatrix of matrix К  containing rows with indices from Cj . Form 
signal

t t
v ( t )  =  J  А^(<)Т_1(г)Ь(г)и(г) d r  + K F ( t ) x 0 +  J  K F ( í ) F ~ 1( t ) V ( t )uj0( t ) d r .  

о 0
Assume

y * ( t )  -  v ( t )  =  z ( t ) .

Compose n-vector zop = ( z , ( t a), s G Cj, j  = l,p) and find the unknown 
parameter w° — P~1zop.

Therefore, the a posteriori parameters’ distribution degenerates into a fixed 
element w° (uncertainty of the problem (1)—(7) disappears) for exact dimensions 
(9) of support signals j/*(í), s £ Cj, t  G T, in support moments tj, j  — 1, p,

w° being constructed, the problem (1)—(7), (9) comes to the following one

h'0x(t*) —*■ max, x = A(t)x +  b(t)u(t) + V(t)uj°(t),

u°(t)  =  u 0 ( t )  +  w f w j ( t ) ,  ( 1 6 )

j=i
x(0) = xq, Л(х(<*) > i = 1, m; |w(<)| < T < G T,

that will be called a determined problem of optimal control accompanying that of
(l)-(7) with measuring device (9).

We shall call the solution of problem (16) an ideal optimal control and denote 
by ü ° ( t ) ,  t e  T.
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The value J(ii°) — J(H°) characterizes the increase of control efficiency while 
using measuring device (9).

Consider the most interesting case when problem (l)-(7) is connected with 
measuring device (10).

Let um(t), t € T,  be some control restricted by ( 4 ) ,  a;(í| x 0, u*(-),  w),  t G  

T ,  some system trajectory generated by this control, given by initial state xq, 
its unknown value of parameter w G W , ym(t), t G T, be an observed signal of 
measuring device (10) caused by trajectory х(<|ж0,и”'( ) ,1е), t G T, and unknown 
error function of measuring £(t), t € T. Assume

t

z(t) =y*(t) -  I К F(t)F-\T)b(r)u*(T) dr -  KF(t)x0-
0

t

-  J  KF(t )F- \r )V{T)u 0{T) dr. 
о

For the a posteriori distribution of terminal states X  (t*) calculate the follow
ing estimates

a,- = min h(a:(i*| xq, «*(•)> w)> * = 0,m. (17)

Using Cauchy formula [10] from (17) we obtain

Г
ái = j i + h ' F ( f ) x 0 + J  h,iF(tm) F - 1(t)b(t)u*(t)dt+

о

«•
+ J  h ' i F W ' i t W u o W d t ,  i = 0[m;

о

7 i =  m i n a p i é ,  w  G W .

Calculation of numbers ji ,  i =  0,m, in a detailed notation comes to problems 

7 ,- = min a(u>, Gw = / ,  d, < w < d*, i = 0,m,

t . < z ( t ) - K w ' d < C ,  (18)
«*

d = ( d j , j  = ~ q ), dj = J  F{f)F- \ t )V( t)wj{ t )d t .
о

We call problem (18) the problem of identification, accompanying that of an 
optimal control (l)-(7) with measuring device (9).
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The finite algorithm to solve linear problems (18) is described in [9]. 
Knowing estimates 7j, i = l,m , write the conditions of control u(t), t £ T, 

the a posteriori admissibility

i*
h'iF(t*)x0 + h'i J  F(t* )F~l(t)b{i)u(1) dt+

0
t*

+K j  F(t*)F~1(t)T>(t)u0(i)dt > gt, i -  l.m,
0

where yt- -- gt -  -y,-, i = 1, m.
The a posteriori optimal control u°(t), t € T, is the solution of the problem

«•
J0(u) -  J  h'0F(F)F 1(t)b(t)u(t)dt + h'0F(t*)x0+

0
f

+ J  h'0F(t*)F~l(t)V(1)*j0(1) dt — max,
0

t*
/i'F(f*)x0 + h' J  T ( / ‘ ) F - 1(f)6(f)i/(/)d/+

0
r

+h[ j  F{t*)F~ 1 (t)V(t)yJo(i) dt > gi, ? = l,m , |и(/)| < 1, i € T.

(19)

The dynamical form of problem (19) is as follows

Jo(u) = h'0x(tm) —<■ max, i  = A(t )л + b(i)u + T>{1)u>0(/). j*(0) =  xq, 

hiX(t*) > gif i = 1, m; |u(f)| < 1 , i € T.

We call it a determined problem of optimal control, accompanying that of
(l)-(7) with measuring device (10). This problem can also be solved by applying 
methods from [9].

The value of quality criterion on an a posterjori optimal control u°(t), t G T, 
is equal to J(ü°) = Jo(ü°) + 70- Value J(u°) — J(u°) characterizes the increase 
of control efficiency at the expense of observation results by means of measuring 
device (10). Number J(u°) — is equal to the loss of control efficiency because 
of errors in measuring device (10).
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From (19) it can be seen that the problem of identification of parameters w  
does not depend on control, i.e. the problem of control and that of identification 
are separate ones.

5. E xam p le*

Consider a problem on acceleration of a mass point on horizontal section of 
path when an unknown constant force affects it. The m athem atical simulation of 
the problem is as follows:

г 2(1) —► max, =  x2, x2 =  и +  w, x x(0) -  x 2(0) =  0,

* i ( l )  <  0.5;  |u(<)| < 1 ,  t e  T  =  [0,1],  0  <  w <  1.

It presents a special case of problem (3):

n =  2, Ло =  (0 ,1 ) ,  A =  j j ,  6 =  ф ,  u> = # ■ = { « ;  € R X : 0 <  w <  1}

Ö(-) =  M O - t G T, u(t) = in}, g =  1, uj0(t) = 0, w i(t) =  1, t € T; 
p =  1, m =  1, hi = ( - 1 ,0 ) ,  gx =  -0 .5 .

First, construct the a priori optimal control. Since a fundamental m atrix  of 

solutions F(t) , t £ T, has the form F(t) =  Q  then

t t
X\ (<) =  J ( t ~  t )u(t) dr + w—, x 2(t) =  J  u(r)dT + wt.

о о

According to  (12) the a priori estimates á x, á 0 are equal to

l l
qx = J ( 1  — t)u(t)dt  + 7i, d0 = J u ( t ) d t  + 7o,

о о
w

7 i =  m ax — =  0.5, 7o =  rnin w =  0.o<w<i 2 о<ш<1

Hence, gi =  —0.5 +  0.5 =  0 and an a priori optimal control ü°(t), t £ T, is the 
solution of the accompanying (14) determined problem

x2(l) —*• max, i i  =  x2, x 2 =  u, xi(0) =  x 2(0) =  0,
* i ( l )  <  0, |u(<)|  < 1 ,  t €  T.

E xam ple  is calcu la ted  by S. V. P rishchepova
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Solution of the problem has the form

ű°(<) =  -1 , t £ [0,1 -  >/2/2], u°(t) =  1, t £ [1 -  > /5/2 ,1].

The value of quality criterion is equal to = \/2 — 1 «  0.414. Assume a signal
t

y*(t) = f ( t  — r +  l)u(r) dr, t £ [0,1], is written on a measuring device у — X\ + x2.
о

Then w = 0 and control ű°(í), t £ T, is the solution of the determined problem 

r 2(l) -* max, i i  =  x2l x2 = u, xi(0) = x2(0) = 0,

* i ( l )  < 0.5, |u(i)| < 1 , t £ T,

and has the form u°(<) = 1, t £ T. The value of quality criterion on it is equal to
J(«°) = l.

Now, consider measuring device

y = z i + x 2 + £ , (20)

operating with errors £(<), t £ T ,  satisfying restrictions —0.2 < £(<) < 0.1, t £ [0,1].
t

Assume that a signal y*(t) =  f ( t  — r + l)u(r) dr, t £ T, is written again. In this
о

case the accompanying identification problems have the form

7i = max - 0.2 < (*— + t] w < 0.1, t £ [0, 1];
0 < w < l  Z \  2 J

7o — min w, —0.2 < + t'j w < 0.1, t £ [0, 1]; 0 < w < 1.

Hence, 7i = 0.0333,̂ 70 = 0. Then ~g\ = —0.5 + 0.0333 ss 0.47. The a posteri
ori optimal control u°(t), t £ T, is the solution of the accompanying determined 
problem

x2(l) —> max, x  1 =  z 2, xi = u, xi(0) =  x2(0) =  0, 
* !(!)<  0,47, N01 < 1 , <€[0,1],

and has the form

u°(<) =  - l ,  t £ [ 0 , 7 7 ]; u°(<)  =  1 , t £ [t i , 1 ],

П =  1 -  >/097 ~ 1 -  0.9849 = 0.0151.
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The quality criterion on it takes the value J(ú°) = 2\/0.97 — 1 =  0.9698. The in
crease of control efficiency at the expense of observation by means of the measuring 
device (20) is as follows:

J(ü°) -  J(ü°) = 0.9698 -  0.414 = 0.5558.

The control efficiency loss because of dimension error is equal to

J(it°) -  J(ü°) = 1 -  0.9698 = 0.0302.
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Оптимизация динамических систем 
с идентификацией входных воздействий

Р. ГАБАСОВ, *. М. КИРИЛЛОВА

(М инск)

В р а б о те  и с сл е д у е тс я  з а д а ч а  о п ти м ал ь н о го  у п р а в л е н и я  л и н е й н о й  систем ой  п р и  
у с л о в и и  д е й с т в и я  на  нее н еи зв естн ы х  во зм у щ ен и й . Д л я  аф ф е к т и в н о го  вы бора  у п 
р а в л е н и я  си стем о й  п р о в о д и тся  н аб л ю д ен и е  за  д и н а м и к о й  с и с т е м ы ; при атом  р а с 
с м а т р и в а ю т с я  ч е т ы р е  возм ож н ы х т и п а  линейн ы х  « б е зи н ер ц и о н н ы х  и зм е р и тел ь н ы х  
у с т р о й с т в * . Д л я  р а с с м а т р и в а е м ы х  с л у ч аев , с у ч е т о м  л и н е й н о сти  з а д а ч и , с т р о я т с я
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к о н с тр у к т и в н ы е  а л г о р и т м ы  у п р а в л ен и я . Р а б о т о с п о с о б н о с т ь  п р е д л а га е м ы х  а л г о р и т 
мов п р о и л л ю с т р и р о в а н а  н а  с о д е р ж а т е л ь н о м  пр и м ер е .

Р. Габасов
Белорусский госуниверситет
СССР, Минск, Университетский городок

Ф. М. Кириллова
Институт математики АН БССР
С С С Р ,  М и н с к ,  С у р г а н о в а ,  11

Typesetting by TYPOT^X Kft, Budapest 
PRINTED IN HUNGARY 

Akadémiai Kiadó és Nyomda Vállalat, Budapest

M A G Y A R
T U D O M Á N Y O S  A K A D É M I A  

K Ö N Y V T Á R A



NOTE TO CONTRIBUTORS
Two copies o f the manuscript (each complete with figures, tables and references) are to be sent to

Authors are requested to retain a third copy o f the submitted typescript to be able to check the proofs.
The papers, preferably in English or Russian, should be typed double spaced on one side o f good-quality 

paper with wide margins (4—5 cm). The first page o f the paper should carry the title, the author(s)’ names and 
the name o f the town where they are active. The name and address o f the author to whom the proofs should 
be sent should be given at the end of the paper. An abstract should head the paper. English papers should 
also have a Russian abstract.

The papers should not exceed 15 pages (25 x 50 characters per page) including tables and references. The 
proper location of the tables and figures must be indicated on the margin.

Mathematical notations should follow up-to-date usage. Equations longer than half a line should not be 
incorporated in the text. In-text equations must be typed on a single line except that one level o f subscripting 
and/or superscripting is permissible. Use / instead o f horizontal bars. Displayed equations should be written 
so as to require the fewest possible lines. Therefore use “exp” for the exponential function whenever the 
exponent requires more than a single line. Matrices should, if possible, not be written in full. Use subscript 
notations instead such as A = ||ay || . Write diagonal matrices as diag (d, , d2 , . . .  d„).

The authors will be sent galley proofs to be returned by next mail. Rejected manuscripts will be returned. 
Authors will receive 100 reprints free of charge. Additional reprints may be ordered.

Рукописи статей в трех экземплярах на русском языке и в трех на английском следует направлять 
по адресу: 117312 Москва В-312, просп. 60 летия Октября, 9, М Н ИИП У. Редакция журнала 
«Проблемы управления и теории информации» (зав. редакцией Н. И. Родионова).

Объём статьи не должен превышать 15 печатных страниц (25 строк по 50 букв). Статье должна 
предшествовать аннотация объемом 50-100 слов и приложено резю ме-реферат объемом не менее 
10-15% объема статьи на русском языке в трех экземплярах, на котором напечатан служебный 
адрес автора (фамилия, название учреждения, адрес).

При написании статьи авторам надо строго придерживаться следующей формы: введение 
(постановка задачи), основное содержание, примеры практического использования, обсуждение 
результатов, выводы и литература.

Статьи должны быть отпечатаны с промежутком в два интервала, последовательность таблиц и 
рисунков должна быть отмечена на полях. Математические обозначения рекомендуется давать в 
соответствии с современными требованиями и традициями. Разметку букв следует производить 
только во втором экземпляре и русского, и английского варианта статьи.

Авторам высылается верстка, которую необходимо незамедлительно проверить и возвратить в 
редакцию.

После публикации авторам  высылаются бесплатно 100 оттисков их статей.
Рукописи непринятых статей возвращаются авторам.

E D. Teryaev coordinating editor 
Departm ent o f Mechanics and Control Processes 
Academy o f Sciences o f the USSR 
Leninsky Prospect 14, Moscow V-71, USSR

or to V. Strejc
UTIA CSAV 
182 08 Prague 8
Pod vodárenskou vézi 4, Czechoslovakia

or to L. G yörki
Technical University of Budapest 
H -1111 Budapest, Stoczek u. 2, Hungary

К СВЕДЕНИЮ АВТОРОВ



CONTENTS СОДЕРЖ АНИЕ

Studniarski. M The discrete maximum principle as a sufficient optimality condition 
(Студнярски M. Дискретный принцип максимума как необходимые ус
ловие оптимальности) 179

Malanowski, К.: Stability and sensitivity analysis of discrete optimal control problems 
(Малановски К. Анализ устойчивости и чувствительности дискретных 
задач оптимального управления) 187

Papageorgiou, S.. Relaxability and well-posedness for infinite dimensional optimal 
control problems (Папагеоргиу H . С. О  корректности и устойчивости 
оптимального значения функционала качества для систем с нелиней
ными распрегеленными параметрами) 201

Nguyen Van Su: Null-controllability of infinite-dimensional discrete-time system with 
restrained control (Н г у й е н  В а н  Су Нуль-управляемость линейных дискрет
ных систем бесконечной размерности с ограничениями на управление) 215 

Gabasov, R., Kirillova, F. М Optimization of dynamical systems with identification 
of input perturbations (Габасов, P., Кириллова, Ф M. Оптимизация дина
мических систем с идентификацией входных воздействий) 233

HU ISSN 0370-2529 Index 26 660



316920
V O L .

Т О М 20 N U M BER
Н О М Е Р 4

lCADEMY o f  SCIENCES OF THE USSR 
IUNGARIAN ACADEMY OF SCIENCES 
:ZECHOSI OVAK ACADEMY OF SCIENCES

АКАДЕМИЯ НАУК С С С Р  1991
ВЕНЕЕРСКАЯ АКАДЕМИЯ НАУК 
ЧЕХОСЛОВАЦКАЯ АКАДЕМИЯ НАУК
iKADÉMIAI KIADÓ, BUDAPEST
IISTRIBUTED OUTSIDE THE COMECON-CÖUNTRIES
>Y PERGAMON PRESS, OXFORD



An international bi-monthly sponsored jointly by 
the Presidium of the Academy of Sciences o f the 
USSR, o f the Hungarian Academy o f Sciences and 
of the Czechoslovak Academy o f Sciences. The six 
issues published per year m ake up a volume of some 
480 pp. It offers publicity for original papers and 
short communication of the following topics:

— theory of control processes
— theory of adaptive systems
— theory of estimation and identification 

theory of controlling robot-technologic and 
flexible manufacturing systems 
information theory

— information-theoretic aspects o f multiple access 
networks.

While this bi-monthly is mainly a publication forum 
of the research results achieved in the socialist 
countries, also papers of international interest from 
other countries are welcome.

P R O B L E M S  O F  C O N T R O L  A N D
I N F O R M A T I O N  T H E O R Y

ПРОБЛЕМЫ УПРАВЛЕНИЯ  
И ТЕОРИИ ИНФОРМАЦИИ

Международный журнал Академии наук СССР, 
Венгерской Академии наук и Чехословацкой 
Академии наук выходит 6 раз в год общим 
объемом 480 печатных страниц.

В журнале публикуются оригинальные 
научные статьи и статьи обзорного характера по 
следующим проблемам управления и теории 
информации:

— теория процессов управления;
— теория адаптивных систем;
— теория оценивания и идентификации;
— теория управления робототехническими и 

гибкими производственными системами;
-  теория информации;

—  теория информации в области сетей с мно
жественным доступом.

Целью журнала является ознакомление 
научной общественности различных стран с 
важнейшими проблемами, имеющими актуаль
ный и перспективный характер, научными 
достижениями ученых социалистических и 
других стран.

For the Soviet Union:
D istributors

SOYUZPECHATY, M oscow 123 308 USSR

For Albania, Bulgaria, C hina, Cuba, Czech and Slovak Federal Republic, Korean People’s Republic, 
M ongolia, Poland, Rum ania, Vietnam and Yugoslavia:

K U LTURA Hungarian Foreign Trading Co.
P. O. Box 149, H-1389 Budapest, Hungary

For all other countries:
PERGA M ON PRESS PLC Headington Hill Hall, Oxford 0X 3 OBW, England 

or
PERGA M ON PRESS INC, Maxwell House, Fairview Park, Elmsford, NY 10523, USA 

1991 Subscription Rate DM  627,— per annum including postage and insurance.

©  Akadémiai Kiadó, Budapest



PROBLEMS OF CONTROL 
AND INFORMATION THEORY
ПРОБЛЕМЫ УПРАВЛЕНИЯ 
И ТЕОРИИ ИНФОРМАЦИИ

EDITOR

N. N. KRASOVSKII (USSR)
COORDINATING EDITORS 

USSR

S. V. EMELYANOV 
E. P. POPOV 

V. S. PUGACHEV 
V. I. SIFOROV
K. V. FROLOV 

A B. KURZHANSKI
I. A. OVSEEVICH 

E. D. TERYAEV
R. Z. KHASMINSK.il

HUNGARY

T. VÁMOS 
A. PRÉKOPA

S. CSIBI 
I. CSISZÁR

L. KEVICZKY
L. GYÖRFI

J. KOCSIS
CZECHOSLOVAKIA

j. b e n e S
V. STREJC 

I. VAJDA

РЕДАКТОР ЖУРНАЛА

H. Н. КРАСОВСКИЙ (СССР)
ЧЛЕНЫ РЕДАКЦИОННОЙ КОЛЛЕГИИ

СССР

С. В. ЕМЕЛЬЯНОВ 
Е. П. ПОПОВ 
В. С. ПУГАЧЕВ 
В. И. СИФОРОВ
К. В. ФРОЛОВ 
А. Б КУРЖАНСКИЙ 
И. А. ОВСЕЕВИЧ 
Е. Д. ТЕРЯЕВ 
Р. 3. ХАСЬМИНСКИЙ
ВНР

Т. ВАМОШ
A. ПРЕКОПА 
Ш. ЧИБИ
И. ЧИСАР 
Л. КЕВИЦКИ 
Л. ДЬЕРФИ 
Я. КОЧИШ
ЧССР

Й. БЕНЕШ
B. СТРЕЙЦ 
И. ВАЙДА

AKADÉMIAI KIADÓ
PUBLISHING HOUSE OF THE HUNGARIAN ACADEMY OF SCIENCES 

BUDAPEST

MAGYAR
TUDOMÁNYOS AKADÉMIA 

KÖNYVTARA ^



Typesetting by TYPOTgX Kft, Budapest 
PRINTED IN HUNGARY 

Akadémiai Kiadó és Nyomda Vállalat, Budapest



Problems of Control and In form ation  Theory, Vol. 20(4), VP- 245-255 (1991)

ON THE OPTIMAL CONTROL AND RELAXATION OF 
FINITE DIMENSIONAL SYTEMS DRIVEN BY 

MAXIMAL MONOTONE DIFFERENTIAL INCLUSIONS*

N . S. P a p a g e o r g i o u **

(A t h e n s )

(Received N ovem ber 1, 1990)

In  th is  pap er we exam ine finite d im ensional optim al con tro l problem s d riv en  by 
m axim al m onotone d ifferential inclusions a n d  h av ing  s ta te  dep en d en t control co n stra in ts. 
F irs t, w ith  th e  help  of a  convexity  hypothesis, we prove the ex istence of op tim al adm issib le  
pairs. T h e n  we drop convexity  hypothesis a n d  we look a t th e  re laxed  system . F or th a t  
system  we establish  th e  existence of optim al so lu tions under m in im al hypotheses. F inally , 
by sten g th en in g  our hy p o th eses we show th a t  th e  original tra jec to rie s  are dense in  th e  
relaxed ones for th e  topology of uniform  convergence and  th a t  th e  two problem s re laxed  
a n d  orig inal have the  sam e value.

K e y w o r d s  a n d  - p h r a s e s :  M onotone o p era to r, orient o r field , op tim al p a ir, m in im iz
ing sequence, transition  probab ilities , relaxed system , selection theorem , H ausdorff m e tric , 
density  re su lt, relaxability.

A M S  S u b je c t  C la s s i f ic a tio n  (1 9 8 0 ): 49 A 20

1. Introduction

In this paper we examine the following finite dimensional optimal control 
problem:

J(x, u) = j  L{t) x(t), u(t)) dt —► inf = m 
' 0 (*) 

s. t. x(<) € Ax(t) + f(t, x(<), u(i)) a. e. 
x(0) = x0, u(t) G U(f, x(i)) a. e.

where A : Rn —* 2*" is a maximal monotone operator. First, with the aid of a 
convexity hypothesis on an appropriate orientor field, we establish the existence

* Revised version

**Research su p p o rted  by N .S .F . G ran t D .M .S.-8802688.

1 Akadémiai Kiadó, Budapest 
Pergamon Press, Oxford
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of optimal solutions for (*). Then we remove this convexity hypothesis. Now, 
the system may fail to have an optimal solution. Nevertheless, it is important 
to study the asymptotic behaviour of the minimizing sequences. This leads us to 
the introduction of a larger system, which is known in the literature as “relaxed 
system” and which captures the asymptotic behaviour of the minimizing sequences. 
For this augmented system, we prove the existence of optimal solutions, we show 
that its set of trajectories is the closure in the topology of uniform convergence of 
the set of trajectories of the original system and, finally, we prove that under mild 
hypotheses original and relaxed problems have equal values.

The problem studied here can be viewed as an extension of the works of 
Berkovitz [5], Cesari [6], Gamkrelidze [9], Pappas [15] and Warga [19], where A = 0, 
in their study of the relaxed problem the control constraint set was state indepen
dent (open-loop) and the hypotheses on the data were stronger.

An important special case of the problem studied here is when A = dSjc, where 
6ji (•) is the indicator function of a nonempty, closed convex set К  (i.e. 6k (x) =  0 
if x G К  and +oo if x £ K) and дЬк (•) denotes the subdifferential of %(•) in the 
sense of convex analysis. Recall the дбк(х) =  Nk (x), x G К , the normal cone to 
К  at x. Such differential inclusions are called “differential variational inequalities” 
(see Aubin-Cellina [1]) and play an important role in mathematical economics, 
in the study of planning procedures (see Aubin-Cellina [1], chapter 5). Another 
important class of systems covered by our work are the gradient systems.

Throughout this work by .Pf(c)(Rn) we will denote the family of nonempty, 
closed (convex) subsets of Rn. Let (fi, E) be a measurable space. A multifunction 
F : Q —*• Pf(Rn) is said to be measurable, if for all x G Rn, и  —► d(x,F(u)) = 
inf{||x — z|| : z G F(w)} is measurable. A multifunction F : Í2 —+ 2* \  {0} is 
said to be graph measurable, if G rP  = {(ы,ж) £ О x R" : x G P(w)} G E x 
B(Rn), with _B(Rn) being the Borel cr-field of Rn. For closed-valued multifunctions, 
measurability implies graph measurability. The converse is true if E is complete 
with respect to a given measure p(-). For more details we refer to Wagner [18]. By 
S f  we will denote the set of integrable selectors of F(-) i.e. S = {g G L1(Rn) : 
g{u) G F(w) /i-а. e.}. This set may be empty. It is nonempty if and only if F(-) is 
measurable and w —* inf{|z| : z G F(w)} G L \ .

2. Existence theorem

For (*) let T  = [0,6] be the time horizon, Rn the state space and R* the 
control space. We will need the following hypotheses on the data of (*).

H(A): A : Rn — 2“ " is a maximal monotone operator.

H(/): /  : T  x R* x Rn is a map s. t. 
(1) t I—► f ( t , x ,u )  is measurable,
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(2) (X,U) I—► f ( t ,x ,u )  is continuous,
(3) I/(<, x, u)| < a(t) + 6(<)(|x| + |u|) a. e. with a( ), 6() G L\.

H(Í7): U : T  x Rn x —*• is a multifunction s. t.
(1) U(-, •) is graph measurable,
(2) for every t E T, GiU(t , •) = {(x, u) E Rn x Rk) : v E U(t, г)} is closed,
(3) \U(t,x)\ = sup{|v| : v E U(t, x)} < M  for all (i, x) E T  x Rn.

H(L): L : Г x Rn x Rk ->R = RU {+oo} is an integrand s. t.
(1) (i, x, u) L(t, x, u) is measurable,
(2) (x, u) L(t, x, u) is 1. s. c.,
(3) 4>(t) — M{\x\ + |u|) < L(t,x,u) a. e. with ф{-) E L 1, M  > 0.

As we already mentioned in the introduction, in order to get an existence 
result we need a convexity hypothesis on an appropriate orientor field (recall “prop
erty Q” of Cesari [6]). So, we introduce the following hypothesis:

Hc: Q(t, x) = {(v, rj) E Rn xR : v E Ax + f(t, x, и), и E U(t,x), L(t,x, и) < T]} 
is convex for all (i, x) E T  x Rn.

Also in order to avoid trivial situations, we will need the following admissi
bility hypothesis:

Ha: There exists an admissible “state-control” pair (x ,u ) s. t. J(x,u) < +oo.

T h e o r e m  2.1. I f hypotheses H(A), H(/), H(f/), H(L), Hc and Ha hold, then 
(*) admits an optimal admissible pair.

Proof. Let M(t,x,v )  — {u E U(t,x) : v E Ax  +  f ( t ,x ,u)} .  It is easy to 
see that this set is for almost all t E [0,6] compact, may be empty in R*. Set
p(t,x,v) = inf [L(t,x,u) + f>M(t x ul(u)] (recall that by convention 6j(-) = +oo). ue«* v ’ ’ '
Hence, p(t,x, v) represents the minimum cost needed to produce velocity v at time 
t E T, state x E Rn and using all admissible controls U(t,x).
Claim #1: (t , x, v) —<• p(t, x, v) is measurable.
Given Л E R we need to show that A* = {(i, x, v) E T x R "  x R" : p(t, x, v) < Á} E 
B(T) x B(Rn) x 5(Rn). To this end note that Aa = projTxR„xB„{(i, x, v, и) E 
Tx Rn xRn x Bm '■ L(t, x, и) < Л, и E M(i, x,v)}, where B m  = {uE R i :|w |<  Af}. 
Also Gr M  = {(<, i , t i ,v ) E T x R " x R " x  Bm '■ v € Ax  + /(<, x, u), и E U(t, a;)} = 
{(i,x,«,u) E T x Rn x Rn x Bm ■ (x,v — f(t ,x ,u))  E Gr A, (t , x ,u ,v ) E Gri/}, 
where U(t,x) = U(t,x) x Rn . Observe that ( t ,x ,v ,u)  —+ (x,v — f ( t , x , u )) is 
measurable (hypothesis H(/) (1)) and Gr A is closed (since A is maximal monotone, 
see Barbu [4]). So {(t,x,v,u)  E T x Rn x R" x Bm ■ (x,v  — f(t ,x ,u))  E GrA} E 
B(T) x B(R") x B(Rn) x B(Bm )■ Also since t/(-, •) is graph measurable (hypothesis 
H(i7) (1)), {/(•,•) is, too, and of course (t , x, v, u) —> (i, x, u, v) is measurable. Thus, 
{(t,x,v,u)  E TxRnxRn xBM : (u,ti) E Ü(t,x)} E B(T) x 5 (R ")x5(R n) xB(BM)- 
Therefore, we deduce that Gr M E B(T) x  B(Rn) x ß(R n) x B(Bm )- Using this
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fact, hypothesis H(L) and Novikov’s theorem (see Levin [10], lemma 2.2), we get 
that Лл G B(T) x jB(Rn) x B(Rn), establishing claim #1.
Claim #2: (x ,v ) —* p(t,x,v) is 1. s. c..
To prove this claim, we need to show that for every A G R, the set K \  =  {(x, v) G 
R" x R" : p(t,x,v) < A} is closed. So, let {(x„, ti„)}n>i C K\  and assume that 
(xn,vn) —► (x, ti) as n —► oo. Since A < oo, M(t,xn,v„) ф 0 and so by Weierstrass 
theorem we can find u„ G M (t ,xn,vn) n > 1 s. t. p(t,xn,vn) = L(t ,x ,un). By 
posing to a subsequence if necessary, we may assume that u„ —* и as n —*• oo. Then 
using hypothesis H(£) (2), we have L(t,x,u)  < !imL(t, x„, u„) = lim p(t.x„,v„) < 
A. So, to prove our claim, it suffices to show that u G M (t,x, v). Note that 
for every n > 1 v„ G Axn + f ( t , x n,un) => (x„,vn -  f ( t ,x„ ,un)) G GrA and 
(xn ,vn -  f ( t , x n,un)) -► (x,v -  f ( t , x , u )) as n —+ oo (hypothesis H (/) (2)). Since 
Gryl is closed (x,v — f( t ,x ,u )  G GrA => v G Ax  + f (t ,x,u) .  Also because of 
hypothesis H({7) (2), we have и G U(t,x). Hence, и G M(t,x,  v) and so p(t,x,v) < 
L(t, x,u) < A =>• K \  is closed and the claim is proved.
Claim #3: p(t,x, •) is convex.
Note that epip(i, x, •) = Q{t, x). Then the claim follows from hypothesis Hc.
Let {S(t)}t£T be the semigroup of nonlinear contractions generated by A. Then 
from theorem 2.1, p. 124 of Barbu [4], for any trajectory x( ) G C(T, R"), we have

| z ( < ) - S ( i ) ; r o |  <  /  | / ( s , z ( s ) , u ( s ) ) |  ds =► lx (OI <  | 5 ( í ) x 0 | + / | / ( s , a : ( s ) , u ( s ) ) | i i s  <  
0 0 

t t
N + f  (a(s) + 6(s))(|x(s) + |u(*)|) ds < N + f  (a(s) +  6(s)|x(s)|) ds, where a(s) = 

о о
a(s) + b(s)M. Then invoking Gronwall’s inequality, we get |x(i)| < N\, Ni > 0. 
Thus, for every admissible pair (x,u) we have \ f (t ,x ,u)  < a(l) + 6(f)(iV1 + M) 
(hypotheses H(/) (3) and H([/) (3)). So, corollary 2.3.1, p. 67 of Vrabie [17], tells 
us that the set of admissible trajectories of (*) is relatively compact in C(T, Rn). 
So, if {(xn,un)}n>i is a minimizing sequence for (*), by passing to a subsequence 
if necessary, we may assume that xn —> x in C(T, Rn) as n —» oo. Also from lemma 
3.1 of Colombo-Fonda-Ornelas [7] and the Dunford-Pettis compactness criterion, 
we have that x„ x in L1(Rn) as n -* oo. Then because of claims #1, #2, #3 
and because of hypothesis H(L) (3), we can apply theorem 2.1 of Balder [3] and 
get that

í  ьJ  p(t, x(t), —x(t)) dt < hm J p(t, xn(t), —xn(i)) dt 
о 0

b

L{t, x„(i), un(t)) dt = m > oo (hypotesis Ha), 
о

=> p(t, x(t), -x( t))  < 00 a. e..

< hrn /
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By modifying the function on a set of measure zero, we can say that p(t,x(t), 
—x(t)) is finite for every t £ T, hence M(t,x(t) ,—x(t)) ф 0 for every t £ T .  Let 
R(t) =  {uG M(t, x(t), — x(i)) : p(t, x(t), -x(t)) = L(t, x(t), u)}. From Weierstrass 
theorem R(t) ф 0 for all t 6 T. Also because of hypothesis H(L) (1), claim #1 and 
the graph measurability of M(-, •, •) we have Gr R £ B(T)  x B ( R fc).  Applying the 
Lusin-Yankov-Aumann selection theorem (see Levin [10] theorem 1 and Wagner 
[18] theorem 5.8), we get u : T  —> R* measurable set u(t) £ R(t) for all t 6 T.

ь
Then p(t, x(t), -x (i)) = L(t, x(t), u(t)) a. e. => f  L(t, x(t), u(t)) dt < m. But u(t) £

о
b

M(t , x(t), —x(t)) a. e.. So, (я, и) is admissible, thus J(x, u) = f  L(t, x(t), u(t)) dt =
о

m. Hence, (x ,u ) is optimal.
Q.E.D.

3. Relaxed problem

Now, we remove hypothesis Hc. Then in order to be able to guarantee optimal 
solution, we need to pass to a larger system, known as the “relaxed system”. This 
is the following:

" b '
M X ,  A) = / /  L(t, x(i), u)A(<) (du) dt =  mr 

о B M
<

s. t. — x(t) £ Ax(t) +
В M

. x(0) = xo, A(-) £ Ss(.,r (.))

Here S(i,x) = {p £ M\(Bm ) ■ n(U(t,x)) = 1}, with M\(Bm ) being the 
space of probability measures on the compact metric space Bm — {n £ R* : 
|u| < M}. Also 5s(.,*(.)) is the set of measurable selectors of E(-,x(-)). Thus, the 
elements of Ss(.iX(-)) are transition probabilities. Note that (*) embeds into (*)r by 
sending the original control u(-) in 5U(.)( ) the Dirac transition probability at u(-). 
Finally, by M(Bjvf) we will denote the space of bounded regular Borel measures, 
endowed with the weak (narrow) topology. From the Dinculeanu-Foias theorem we 
get L1(T,C(Bm ))* — L°° (T, M(Bm )) (see theorem 18, p. 268 of Warga [19]).

T heorem  3.1. I f hypotheses H(A), H(/), H({7), H(L) and Ha hold, then 
(*)r admits an optimal admissible pair.

Proof. Let {(xn,A„)}n>i be a minimizing sequence for problem (*)r. As 
before, by passing to a subsequence if necessary, we may assume that xn —► x 
in C(T, R ” ) and xn -^-+x in Ll (T, R ” ).  Also from Alaoglu’s theorem, we may

/ f(t,x(t),u)X(t) (du) O r
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assume that An Л in L°°(T, М (В м ))■ Then since L(-, •, •) is a normal integrand 
(hypothesis H(L)), as in the proof of theorem 3.2 of [8], we have

b

/ /
0 B M

L(t,x(t)u)X(t) (du) dt < lim
n —♦■СЮ

b

/ /
О в м

L(t, xn(t), u)An(<) (du) dt = mr.

Also for every h £ L 1(T,C(Bm )) we have

ь b
(X,h) < lim J  <TE(tirn(t))(h(i))d< < J \ i m a ^ ttXnW)(h(t)) dt

о о

where (•, •) denotes the duality brackets for the pair (L1(T, C(Bm )), L°°(T, M(Bm ))) 
and <7£(t|!„(<))(•) the support functions of the set E(t,x„(t)).

We claim that limE(<, xn(t)) С E(t,x(t)) for all t £ T. To this end let 
H £ limE(i, x„(f)). By definition we can find цПк € E(t,xnk(t)) к > 1 s. t. 
Hnk — > /r in M\.(Bm ). Then from theorem 2 of Lucchetti-Salinetti-Wets [11], we 
have lim/rn(i/(i,xn(<)) < n(U(t,x)) => n(U(t,x)) = 1 => £ E(i,x(<)). Thus, the
claim follows and from it we get (see proposition 3.1 in [12])

b
lim<r£(t rn(())(fi(i)) < <r2(tir(<))(h(t)) (X,h) < J  (Tx(t x(t))(h(t)) dt.

о

Since h 6 L1(T,C(Bm )) was arbitrary, from the last inequality we deduce 
that A(-) € Sjj(.,*(■)).

Note that because of hypothesis H (/) (2) and since A„ A in L°°(T, M(Bm )), 
T)n(t) = f  f ( t , x n(t),u)Xn(t)(du) —► r](t) = f  f(t,x(t)u)X(t)(du). Let Ä the

В M В M
realization of A on L1(T, R"). We know that A is maximal monotone (see Barbu
[4]). So, GrÄ is semiclosed. Also note that (x„,—x„ — %) ^ + ( z ,  —x — r/) in 
L1(T, Rn) x L1(T, R"). Hence, (x„,—x n — rjn) £ GrÁ. Therefore, —x(t) € Ax(t) +  
f  f ( t ,  x(t),u)X(t) (du), x(0) = xo => (x,X) is an admissible relaxed pair. So, 

b m

Jr(x, A) = mr i.e. (x , A) is optimal for (*)r.
Q.E.D.

4. A density result

In this section we compare the sets of trajectories of (*) and (*)r . Denote the 
first by P(xo) and the latter by PT(x0). Our goal is to show that P (x0) is dense
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in Pr(xo) for the C(T, R")-topology. For this we will need the following stronger 
hypotheses.

H (/)i: /  : T  x Rn x R* —► Rk is a map s. t.
(1) t —► f(t ,  x, it) is measurable,
(2) If ( t ,x ,u)  -  f(t ,y,v)\ < F(<)[|ar -  y\ + |u -  ti|] a. e. with fc(-) € L \ ,
(3) If ( t ,x ,u )  < a(t) + 6(t)(|x| +  M) a- e. with a(-), &(•) E L\ .

H(f/)i: U : T  x Rn —► Pfc(R*) is a multifunction s. t.
(1) t —► U(t,x) is measurable,
(2) h(U(t,x),U(t,y)) < r(i)|x — t/| a. e. with r( ) € L+ and /i(-,-) being the 

Hausdorff metric on P{c(Rk),
(3) \U(t, x) \< M .

_______T h e o r e m  4.1. If hypotheses Н(Л), H (/)i and H({7)i hold, then Pr(x0) =
P(xo), the closure taken in C(T, Rn).

Proof. Let ri : L1(T, R”) —► C(T, Rn) be the map that each Л(-) E L1(T, R") 
assigns the unique solution of the evolution — x(t) E Ax(t) + h(t) a. e., ж(0) = 
xo■ We know (see Vrabie [17], corollary 2.3.1, p. 67), that r]( ) is weakly-strongly 
continuous. Let F(t,x)  = f( t ,x ,U(t ,x)) .  Clearly, is compact-valued in R".
Fix i é R" and let un : T —* Rfc s. t. U(t,x) = {un(i)}n>i- Such a sequence exists 
because of H(t/)i (1) (see Wagner [18]). So, F(t ,x)  = { /(i,x ,u„(<))}„>i and for 
every n > 1, t —*• f ( t , x , u n(t)) is mecisurable (hypotheses H(/) (1) and (2)). Thus, 
again by Wagner [18] (theorem 4.2), we deduce that t —+ F(t,x)  is measurable. 
Now, f i x i e r .  Let x , y E R n and z E F(t, x). We have z = f(t, x,v),  v E U(t,x). 
Let w E U(t,y) s. t. d(v,U(t,y)) = |u — u>|. Then we can write

d{z,F(t,y)) < \f(t,x,v) -  f ( t , y ,w )I
< jb(t)(|x — y| +  |u — H) a- e- (hypothesis H (/)i (2))
< k( t) ( \x -y\  + h(U(t,x),U(t,y))) a. e.
< fc(<)(|x — y| +  r(0 lx — У\) a - e- (hypothesis H(i7)i (2))
< l(t)\x -  j/| a. e., where /(<) =  k(t)( 1 + ||r||TO).

Using the Lusin-Yankov-Aumann selection theorem we can easily check that 
every trajectory of the differential inclusion —x(t) E Ax(t) + F(t , x(t)) a. e. x(0) = 
xo is an admissible trajectory of (*) and, of course, vice versa.

Finally, from [14] we know that cönvF(t ,x )  = l J  f ( t ,x ,u ) \ (du )  : A €

£(<,*)} and S ^ F(. I(0) = { /  f(t,x(t),u)X(t)(du)  : A( ) £ 52(.f,(.))}.
Bm

Next, let x(-) E Pr(x0). Then x = r)(g) with g E f (.,„(.))• Let e > 0.
We can find U, a balanced convex weak neighbourhood of the origin in L1(T, Rn) 
s. t. if j! E Ll (T, R"), g -  g\ E l i , then ||x -  < e, where zx — r](gi). This
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is possible since т]() is weakly-strongly continuous. From proposition 4.1 of [13], 
we know that we can choose gi E 5 ^ . *( ))■ Through the Lusin-Yankov-Aumann 
selction theorem, we can find g2 : T  —► R” measurable s. t. d(gi(t), F(t, z\ (t))) =
ЫО-02(О1.02(О e Sh;*i(-)y Wehave \9i(0-52(01 < <
l(t)\x(t) -  Zi(<)| < l(t)e a. e.. So, if z2(t) = 77(52), we have \z2(t) -  x(<)| < |z2(<) -

* l(0 l  +  l*i(0 -  *(01 < /  I f f i ( s )  -  g2(s)\ds +  e < e f f l ( s ) ds  +  l ) .
0 X0 7 

Suppose that we obtained € LX(T, Rn) s. t. |<7fc+i(t) — <7*(*)| <

fí(0(fcéljT ( f 4 s) ds)  , 9k+i(t) e F(t,Zk(t)) a. e. zk = r](gk) к =  1 , 2 , . . . ,  n -  1. 

Then we can write

l*fc+i(0 -  **(01 < J  \9k+i(s) -gk(s)\ds<c J  (J l(r) dr'j ds
о о 0

t  S J  Í  J  J.

= й / < / ' « * )  = É / " ( / ' H  ■
о 0 о 0

Hence, we have

*+1 1 /  Г \ q
\zk+1 - x ( t ) \ < ( ^ 2 - i  l(s)ds) < e exp |

»=1 q' H  '

Once again the Lusin-Yankov-Aumann selection theorem gives us gn+i £ 
SFt,*»(•)) S- L

|</n+i(0 -  gn(t)I < h(F(t, zn(t)), F(t, zn- i(t)))  < l(t)\zn(t) -  zn_i(t)|

о

and so the induction is completed.
It is clear from this construction that gn — > g in L1(T,Rn), g E L1(T, R"). 

Then zn = T)(gn) z -  ■q(g) and g(t) E limF(t, z„(<)) = F(t,z(t)) => z(-) E 
P(xo). In the limit as n -* oo we have ||x — z||oo < eexp ||/||i. Since e > 0 was 
arbitrary and from the observation at the beginning of the proof, we conclude that 
Pr(zo) Q P(xo), the closure in C(T, R"). But it is easy to check that Pr(xo) is 
closed. So, Pr(x0) = P(xo).

Q.E.D.
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Remark. There is a counter-example due to Pliss (see Aubin-Cellina [4]), 
which illustrates that simple continuity of the orientor field x —* F(t,x) = f( t ,x ,  
U(t,x)) is not enough to give us the above density result.

5. Relation betw een original and relaxed problems

The aim in this Section is to prove that m = mr. We were able to prove 
this only for open-loop systems (i.e. U(t,x) = 17(f), independent of x). It will be 
very interesting to know whether it can be also proved by closed-loop (feedback) 
systems.

We will need the following stronger hypothesis on the cost integrand L(t, x,u).

H(L)i: L : T  x R" x R* —*• R is an integrand s. t.
(1) f —♦ L(t, x, u) is measurable,
(2) (z,u) —» L(t,x,u)  is continuous,
(3) \L(t,x,u)\ < ai(f) + 6i(f)(|z| + |u|) a. e. with a ^  ), &i(-) 6 L\ .

Also the hypothesis on the control constraints set has now the following sim
pler form

H(C7)2: U '■ T  —* Pfc (R*) is a measurable multifunction s. t. |17(f)| <  M  for 
all f e T.

T heorem  5.1. If  hypotheses H(A), H (/)i, H(i/)i, H(L)i and Ha hold, then 
m — mt .

Proof. Let (x, A) be an optimal admissible pair for (*)r. From theorem 3.1 we 
know that such a pair exists. Invoking corollary 3 of Balder [2], we can find ti„ 6 Sy
s. t. 6Utl - -̂+ A in /°°(Т, where 6Un denotes the Dirac transition probability
concentrated at un(-). Let x„( J  €  C ( T ,  Rn) be the unique original trajectory 
generated by control «„(•). Let Ln :T  —*• L1(T, C(Bm )) be defined by Ln(f)( ) = 
L(t, xn(f), •) and L :T  —> L1(T, C(Bm )) by L(f)() = L(t, x(f), •). Using hypothesis 
H(L), it is easy to check that Ln L in L1(T, C(Bm ))- Then, if as before by (•, •) 
we denote the duality brackets for the pair (L1(T, C(Bm )), L°°(T,C(Bm ))), we 

ь „ 6
have (L„,6Un) = / L(t,xn(t),un(t))dt -* (L,X) -  f  f  L(t, x(t),u)\(t) (du) dt = 

о о B M
mc m < mr. Since we always have mr < m, we conclude m =  mr.

Q.E.D.
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Об оптимальном управлении и релаксации конечномерных систем 
с максимально монотонным оператором, 

воздействующем на фазовые скорости систем

Н С. П А П А Г Е О Р Г И У

(А ф и н ы )

В с т а т ь е  р а с с м а т р и в а е т с я  к руг в о п р о со в , связан н ы х  с реш ением  за д а ч  о п т и 
м ал ь н о го  у п р а в л ен и я  д и ф ф ер ен ц и ал ь н ы м и  в к л ю ч е н и я м и  в п р о с тр а н с тв о  ко н еч н о й



P A P A G E O R G I U :  O P T I M A L  C O N T R O L  AND R E L A X A T I O N 2 5 5

р а зм ер н о ст и . М н о го зн ач н о сть  в у р авн ен и и  д и н ам и к и  у п р а в л я е м о й  с и с т е м ы  вы зван а  
м н о го зн ач н ы м  м ак с и м а л ьн о  м онотонны м  (вообщ е го в о р я , н ео гр а н и ч е н н ы м ) опера
т о р о м , в о зд е й с тв у ю щ и м  н а  ф азовы е с к о р о с т и  систем ы .
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ON FINITE DIMENSIONAL FILTERING IN DISCRETE TIME

M. F e r r a n t e

( Trieste)

(Received Ju n e  12, 1990)

In  th is  p ap er we prove th a t, un d er su itab le  regularity  assum ptions, a  necessary con
d ition  fo r th e  existence of a  finite-dim ensional filter in  discrete tim e is the  possib ility  o f 
finding a  convenient decom position  of th e  filte r system  s ( r ,  y) in to  a  sum  of a  te rm  d e
pen d in g  o n ly  on th e  first variable plus one depend ing  only on th e  second  one. We also  give 
a d d itio n a l resu lts  concerning th e  observation, p red ic tio n  and  filtering  distributions.

K e y w o r d s :  N onlinear filtering, finite dim ensional filters, exponen tial class of d is tr i
bu tions.

1. Introduction

Let (А„,У„)пем be a discrete time stochastic process, where X n £ X  C Rp, 
p £ N, and Yn £ Y  C Rm, m £ N. The component Yn can only be observed, while 
the component X n (signal or state process) is unobservable. We assume
A.l: (Xn) is a Markov process with transition kernel Pxn(' I X n - i  = x„_i) and 

initial distribution Px0()>
A.2: (Yn) satisfies the following “conditional independence property”:

РуЛ- I A "’ 1 = z " - \  У ""1 -  у""1, X n = xn) = РуЛ • I = xn)

where X n_1 (X i,. . .  ,Xn_i) and, analogously, for xn~1, Yn_1, yn~1.
We shall assume that all distributions have strictly positive densities with re

spect to the same dominating measure which, to fix ideas, we shall take as Lebesgue 
measure. We shall denote by p(zn|z„_i), p(zo), p(yn |zn) the densities correspond
ing to PXn(■ I Xn_i = x„_i), Рлг„(-)> Pvn(- I x n = Zn), respectively.

We shall consider the filtering problem for (X„,Yn)n6N, which in its most 
complete form, consists in computing, for each step n, the conditional density 
p(xn\yn) of x„ given yn. By Bayes rule, we have the following relation

Akadémiai Kiadó, Budapest 
Pergamon Press, Oxford
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/  I Т . Ч  Р ( У п \ Х п ) р ( Х п \ у П M
I  p(yn\xn)p(xn\yn- 1)dxn ' 
X

(1)

We shall call p(x„|j/n) the filtering, p(x„|i/n) the observation and p(x„|yn x) 
the prediction density. Moreover,

Pixnlt/ 1 *) =  J  p{yn\xn_i)p(xn-i \yn 1)dxn_ i .  (2)
x

D e f in it io n  1.1 (e.g. Sawitzki (1981), Van Schuppen (1979)). Let {р(х;г), 2 6 
Z  C R1} к > 0, be a family of densities on A' parametrized by 2 6 Z. We say that 
a sequence of measurable functions

ipn : Z x Y  —> Z

is a finite dimensional (k-dimensional) filter system for (X„,Yn) if Vn > 1

{p(*n-i|3/n-1 =p(x„_1; 2) for some 2 € Z} => {p(a;„|pn) =  p(xn\tpn(z, y„))}. (3)

We say that {<Pn}n6\  is minimal if к is the minimum positive integer for which the 
previous condition holds.

Remark 1.1. Notice that, if for all n the filtering densities belong to the 
same family on X  parametrized by z € Z , then by (2) also the prediction densities 
belong, for all n, to the same family of densities on X  parametrized by 2 £ Z. We 
denote this latter family by

{p'(x\z), 2 6 Z C R * } .

We give also the following
D e f in it io n  1.2 (e.g. Barndorff-Nielsen (1978)). We shall say that a family 

{p(x\ 2), 2 6 Z  C R1} of densities on A' is of exponential class of order q if q is the 
smallest positive integer such that there exist 3 + 1 pairs of functions (a,(x), b,(z)), 
i = 0 ,.. . ,  q, such that for all z G Z we have the representation

q
p(x;z) = а0(х)6о (г )е х р |^ о ,(х )6,(2) | .  (4)

»=i
Remark 1.2. Notice that if {p(x;z), 2 6 Z C R; } is of exponential class 

of order q, then the functions a,(x), 6,(2) of the previous representation are not 
constant for every t G (1, . . . ,  q).

It is possible to prove (e.g. Ferrante (1989) and Ferrante, Runggaldier (1990), 
which extend to the multidimensional case results contained in Sawitzki (1981))
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that a necessary condition for the existence of a finite-dimensional filter system in 
discrete time, is that, under suitable regularity assumptions, the filtering, observa
tion and prediction densities are all of exponential class. The regularity assumptions 
mentioned above can be summarized in the following two:

B.l Z  and У are connected sets with nonempty interior;

B.2 v?n(-, ■) is differentiable and, at every step n, there exist Zo € int(Z) and 
2/0 G int(y) such that

^  0 Vy G Y ' open and dense in У
г = г „

= к Vz E Z' open and dense in Z
У ~ У о

where к = dim(Z). (For a generic subset X  of a linear space we denote by 
dim(X) the dimension of its affine hull.)
Remark 1.3. If dim(Z) = к > m = dim(y), the assumption B.2 is replaced by 

a slightly stronger assumption (see Ferrante (1989)), since it does not make sense 
in this case to ask that rank (f^ipn(z, у)) |у=уо = к, being the matrix of rank at 
most m < k. .

More precisely, the above mentioned results lead to the following representa
tion for the prediction, observation and filtering densities, respectively:

r qi 1p(x-z)  =  а(х)Ь(г)ехр |]Га,(х)/?,(г)|
1 =  1

p(y;x) = c (x )d (y )ex p { ^ 7i(x)<$i(y)j (5)
* = 1

p(*;v>(*,y)) =  *(хМ<р(2> !/)) e x p |^  Tj(x)<7j(^(z, у)) I
i = l

where, letting к = dim Z, m  — dimy,

P ■ max{jfc, i/m} and v : = J ° . .
1 min{n € N : nm > fc},

if m > к 
if m < к

we have q\ < p , q i <  к, q3 < p.
Remark 1.4. Notice that if we assume that the filter system is minimal, then 

we have q3 > к (otherwise we could choose (<r1(y>(z, y ) ) , . . . ,  crqi(<p(z, y ) )  as filter 
system and к would not be minimal). Moreover, if vm  = к then we have that 
q3 = k.

2
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In the present paper we are interested in giving further characterizations of 
the relations (5) based always only on the assumption that there exists a finite
dimensional filter as well as on the assumptions B.l and B.2. In particular, we 
shall prove that every a i ( t p ( z , y ) )  can be written as the sum of a function of у  
plus a function of z  (except for a constant) and that a;(x), 7;(x) are functions of 
r(x) = (77 (x),. . . ,  r33(x)) only. In this way we prove that every partially observable 
stochastic process admitting a finite-dimensional filter, has a filter system consisting 
of functions that can be decomposed in the way described above.

The interest of our results consists in having found a necessary condition on 
the filter system itself, assuming just that there exists a finite-dimensional filter 
in addition to some regularity assumption. Moreover, it is important to note that 
the technical results obtained here are exactly what one can expect from this sort 
of problem (similar results have been obtained for particular models in Sawitzki 
(1979)).

It is interesting to note that the natural assumption, made in Bather (1965) 
and Spizzichino (1988), namely that the filter system <pn can be decomposed into a 
sum of two terms, both depending on a single variable, is now, under suitable reg
ularity assumptions, a necessary condition for the existence of a finite-dimensional 
filter and thus the only one possible if one tries to find finite-dimensional filters in 
discrete time.

To conclude notice that the most important example of a finite-dimensional 
filter in discrete time, namely the Kalman-Bucy filter, valid for a linear Gaussian 
model, satisfies all our assumptions.

2. Main results

We prove the following
Theorem 2.1. Let /  be a function from X  x Z  into R and suppose that there 

exist a(x), a i(x ) ,... ,a?1(x) : X  —*■ R and ßi(z) ,. .. ,ßqi(z) : Z  —* R, qi > 1, with 
a(x) > 0 Vx such that

/(x ,z ) = a (x )ex p |^ ^  a,(x)/?,(z) j- Vx £ X  and V: E Z (6a)
i=i

with qi the minimum positive integer for which the previous property holds.
Let g be a function from X  x Y  into R and suppose that there exist c(x), 

7i(z),---,7ia(*) : X  -* R and 6i (y) , . .. ,6q2(y) : Y  — R, g2 > 1, with c(x) > 0 Vx 
such that

r 42 1g(x,y) = c ( x ) e x p j ^ 7,(x)01(i/)j 
i=i

Vx £ Л' and Vy £ Y (6b)
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with 92 the minimum positive integer for which the previous property holds.
If there exist functions t(x) and r,(x) from X  into R, i E (1 ,...,9з) with 

9з > 1, and functions r(z,y) and <7;(z ,y ) from Z x Y  into R, i E (1,. . . , 93), for 
which

Я 3
f(x,z)g{x, y) =  < (z)r(z ,y )exp |^T j(x)(71(z, j/ ) | V(x,y, z) E X  x Y  x Z (7)

i = l

with 9з the minimum positive integer for which that holds, then there exist an 
invertible 93 x 93 matrix A, a 93 x 91 matrix B, a 93 x 92 matrix C  and a constant 
vector P E R?3 such that

i) V i(* > 2/),---,<rta(z,y)) = ^ ~ lB \ ß i ( z ) , . . . , ß qi{z))+

+ A - 1Ct(61( y ) , . . . , 6gM  + A~1P

Moreover, for all x E X

ii) ‘(“ li*). • • •. a4i (*)) = ‘(Л- 1Я)‘Ы * ) ,  ■ ■ -, rq3(z)) + A

*(7l(*)i • • • ,7дЛх)) = *(>l~1C)t(i-i(ar), . .. , r ?,(z)) + П

with Д and П appropriate constant vectors.
Remark 2.1. Notice that the opposite implication of Theorem 2.1 is always 

true, namely, if there exist two functions /  and g satisfying (6a) and (6b) respec
tively, and (Ti(z,y), Ti(x) for which i) and ii) hold, then by a convenient choice of 
t(x) and r(z,y) equation (7) holds.

Remark 2.2. The requirement that 93 is the minimum positive integer for 
which (7) holds implies that none of the functions Ti(x),... ,тЯз(х) is constant 
(and so for 91 and 92).

Proof. Evaluating (7) for a fixed value x E X , we obtain

;=i i = l
a(x)exp { £ « <  ®)А(г)}с(*)ехр{£т.-(*)<5.-Ы} =

?3

= < (x )r(z ,y )ex p |^ T 1(x)cr,(z,y)j.
i = l

Let us now divide (7( by the previous relation and pass to the logarithm obtaining

a(x)c(x)<(x) 91 92
r -  ai\x ))PiK*)-r

i= 1
l0g a ( i)c ( i) f (x )  +  £ M * )  “  а*(£М W  +  £  (Ti(*) -  7<(*)) 6i(y) =

Я  3
(8)

= ^2 Ы Х) ~  Ti(x))<n(z,y).
1 — 1

2
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Putting
P(x) = log a(x)c(x)t(x)

a(x)7(x)<(x)
a(x) = (a i(x ),. . . ,  aqi (x)) and, analogously for ß(z), j(x) ,  6(y), r(x), <r(z,y), 
relation (8) becomes

P(x) + (a(x) -  a(x),/?(z)) + (7(x) -  y(x),6(y)) = (r(x) -  r(x),a(z,y)). (9)

Let us now prove that there exist x i , . . .  , x?3 € X  \  {x} such that (t(xi) — 
r(x ),. . . ,  r(x i3) — r(x)) are linearly dependent for every possible choice of Xi,. . . ,  
хЧз, there exist an orthogonal matrix Q and a vector b € R33 such that

Q(t(x) — r(x)) + 6 = f(x) with fi3(x) =  0 Vx G X.

But this leads to a contradiction: in fact we then have (recall that x £ X  is fixed)

f(x)r(z,y)exp{(r(x),(r(z,i/))} =
= t(x)r(z,y)exp{(r(x) -  r(x),a(z,y))}exp {(r(x), <r(z, y))} =

= t(x)r1(z,y)exp {(r(x) -  r(x),1 QQ<r(z,y))} x
exp {(b, Q<r{z,y))}exp {(-6, Q<r(z,y))} =

= t(x)r2{z, y) exp {(Q(r(x) -  t(x) + b, Qa(z, y))} =
= t(x)r2(z,y)exp {(r(x),Q(r(z,y))} =

Í5-!
=  < ( x ) r 2 ( z , y ) e x p |  ^ ( r , ( x ) , Q < r ( z , y ) ,  j  

* = 1

where
ri(z,y)  = r(z, y) exp {(r(x),<r(z,y))} 
r-i(z,y) = Г!(г,у) exp {(-b,Qa(z,  y))} .

But we required q3 to be the minimum positive integer for which two functions t(x) 
and r(y,z) satisfying (7) exist.

Let, therefore, A = ‘(r (xi) ~ r (x)> • • •, т(хЧь) — r(x)) be a q3 x q3 matrix with 
linearly independent columns. Then det(A) ф 0 and so A is invertible.

Defining now В =  t(a(x1) - a ( x ) , . . . ,  a(x?3) -  a(x)), C = ‘(7 (x i) -7 (x), • • • > 
7(х«з) -  7(x)) and P =  *(^(xi), ■ • •. -P(xi3))- from (9) we have

P + Bß(z) +  C6(y) = Aa(z, y) (10)

and so
<r(z ,y) = A~l Bß(z)  + A~lC6(y) +  A~lP (11)

which gives i).
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To obtain ii), replacing cr(z,y) in (9) by its expression (11), we have

P(x) + (a(x) -  a(x),ß(z)) + (j(x) -  j(x), 6(y)) =
= ( t ( x ) -  r(x), A- 'Bß(z)  +  A~1C6(y) + A ~ 1P).

From (12) we immediately obtain that

(a(x) -  a(x) -  г(А_1В)(г(х) -  r(x),ß(z))+
(13)

+ (y(x) -  7(x) - ‘(Л гС)(г(х) -  r(x)),«$(y)) + Pßx)  = 0 Vx,j/,z

where ßi(x) = P(x) — (r(x) — r(x), A~l P).
Recall that, by Remark 2.2, ß(z) and 6(y) ф constant in every component 

(that means that ßi(z) ф constant Vi and 8X ф constant Vi). We now show ii) again 
by contradiction: let us suppose that there exists Xi € A’ such that

q ( x i ) -  a(x) -  *(Л_10 )(т(х1) -  r(x)) ф (0 ,. .. ,  0).

Calling ( R i , . . . ,  Rqi) the previous vector and fixing in (13) and у £ У , we 
have that

Rißi(z) + . . .  +  Rqißqi(z) + E = 0 with Ri ф 0 for some i € (1, •• -9i)- 

Then, for that i

ßi(z) = (14)

= - - R l ß l ( z )  — . . — R i - i ß i - i ( z ) -  — Ri+ißi + i ( z )~ . . . -  J^-Rqißq1( z ) -

and we obtain that
Qi

/(x ,z) = a ( x ) e x p |^ a !(x)Ä (z)| = 
i=i

= a (x )ex p { ^ (o y (x ) -  ^-Д ; о,(х)]/?; ( ; ) |е х р |- а ,( х )^ -Е } .
з= 1 1 !3*>

But this is a contradiction; in fact q\ was supposed to be the minimum positive 
integer for which the previous representation would be possible.

So, we obtain that

a(x) = t (A~1B)r(x) + Д with A = a(x) -  ?(A_1ß)r(x). 

Analogously,

7(x) = *(А-1С)г(х) + if with if =  j (x)  -  *(.4_1С)г(х)
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and this concludes the proof.
C o r o l l a r y  2.1. Let (X n , Yn) be a discrete time, partially observable stochas

tic process for which A.l and A.2 hold. If there exists a finite-dimensional filter 
system for which B.l and B.2 are satisfied at every step n, then we have that, 
calling ipn : Z  x Y  —* Z  the filter system, there exists crn : Z  —* Ri3 of class C1 
such that

<rn ( <P n ( z , y ) )  = Mnß„(z) + Nn6n(y) + C„, V(z,y) G Z x Y

with Mn а 5з x qi matrix, Nn a q$ x q? matrix and Cn a vector in R, s .
Moreover, the function a(x) and y(x) in (5) depend both linearly on r(x). 
Proof. Under our assumptions we have from Ferrante (1989) and Ferrante 

Runggaldier (1989) that, at every step n, relations (5) hold, from which, by the 
Bayes’ rule we obtain

t(x)r(ip(z,y)) exp{(r(z ) ,  (t(<p(z, y)))} =  
a(x) ехр{(а(ж),/?(г))}с(х) ехр{(7(ж), á(y))}

s(<fi(z,y)) ■ f  p(y,x)p(x;z) dx
with r{<p(z,y)) =  ------------- Л , ,, ,------------- •b(z)d(y)

Letting qi, q-2, 93 in (5) represent their minimal possible values, Theorem 2.1 
then implies

<r(<p(z, y)) =  Mß(z) + N 6(y) + C, V(z, у) E Z  x Y

with M  a дз x qi matrix, N  a 33 x 92 matrix and C a vector in R?3. Moreover, we 
can prove, in force of the last part of Theorem 2.1, that

а(а:) =  Мт(х) + Д; -у(х) = IVr(x) +

and this concludes the proof.
Remark 2.3. Notice that Corollary 2.1 states that every discrete time, partial

ly observable stochastic process that admits a finite-dimensional filter, also admits 
a filter system consisting of functions that can be decomposed into the sum of two 
functions, each depending only on a single variable.

Moreover, if the minimal filter system has dimension к and к mod m = 0, 
then the filter system, decomposed as above, is still minimal.
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VIABLE CONTROL TRAJECTORIES IN LINEAR SYSTEMS1

B. M a r t o s
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W e consider a  linear differential system  w ith  decoupled co n tro l, th e  system  being  
asym p to tica lly  stable. T he s ta te  is constrained  to  a  p roper subset o f th e  s ta te  space, th e  
viability  se t, w ith  non-em pty  in terio r. We de term ine  a  subset o f th e  contro l space, th e  
set of v iable controls, such th a t  any control tra jec to ry  taking its  course  w ithin th is  su b se t 
generates viable s ta te  tra jec to ry  (sufficient v iab ility  conditions). F inally , we ap p ly  these  
resu lts to  in te rv al shaped  v iab ility  sets an d  de term ine  viable co n tro l sets of m ax im um  
radius.

K e y w o r d s .  M ultivariable control system ; viability  theory; lin ea r differential eq u a 
tions; m a tr ix  algebra; sta te -sp ace  m ethods.

1. In tro d u ctio n

M otiva tion

In controlled systems it is a frequent occurrence, that the state trajectory 
is restricted to a subset of the state space, the viability set [6], [1]. The known 
results of viability theory refer to conditions under which the existence of viable 
trajectories can be decided. In the analysis of linear controlled economic systems
[3], [5] the necessity emerged to go beyond existence and determine a subset of 
control trajectories that generate viable state trajectories. The state constraints 
defining the viability set were given usually in the form of inequalities (e.g. non
negativity constraints, budget constraints) which implied nonlinearity of the system

1 A bridged version of th is  p a p e r  was originally published  in the  P roceedings of th e  IFAC 
Sym posium  on  D ynam ic M odelling a n d  Control of N a tio n a l Economies, 2 7 -2 9  June  1989, E d in 
burgh , UK, copyright IFAC 1990, published  by Pergam on  Press, Oxford. V aluable com m ents on  
an  earlier d ra ft b y  V. K ertész, A. Lee an d  A. Sim onovits are  gratefully  acknowledged.

A k a d é m i a i  K i a d ó ,  B u d a p e s t  
P e r g a m o n  P r e s s ,  O x f o r d
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and prevented the use of standard (e.g. Laplace-transform) techniques. Although 
the motivation came from economics, it is expected that the present viability results 
prove to be applicable to physical or biological systems, too.

The problem setting

Consider the time-invariant linear inhomogeneous differential equation sys
tem:

where

x(<) =  Ax(t) + u(t), H о II H о

t € R+ : = (0, oo), (positive) time
x : R_|_ —► Rn, state vector
и  : R+ — Rn control vector
A £ R"xn, system matrix.

( 1 )

The time functions t —* x(t), t —> u(t) will be called state trajectory and control 
trajectory and denoted as x(-) and u( ), respectively. A trajectory pair «(•), x(-) is 
called a solution if they jointly satisfy (1) for all t £ R+, and then we also say that 
the control trajectory «(•) generates the state trajectory x(-).

Let us denote by

x :=  {x(t) : t € R + }  

v. :=  {u(f) : t £ R + }

the range of a particular state (control) trajectory, these are subsets of the state 
(control) space, respectively.

Viability concepts

Let X  C Rn denote a given proper subset of the state space, the viability set. 
A state trajectory is said to be viable if x(í) £ X,  Vf, or more concisely: x С X.  A 
control trajectory u(-) is said to be viable if it generates a viable state trajectory. 
Then we also say that the solution is viable.

We give sufficient but not necessary conditions for a solution to be viable. 
More precisely, we determine U C Rn, a subset of the control space, called viable 
control set, such that any control trajectory whose range is contained in it, is a 
viable control trajectory, i.e. it generates viable state trajectory. We are not able 
to determine all viable solutions, but we try to define a possibly large viable control 
set.
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2. N otations and assum ptions

Vector and matrix norms ([4] Chaps 6 and 7)

For any (real or complex) n-vector g E Cn and square matrix G E Cnx" let us 
denote by g+ and G+ , respectively, the non-negative vector and matrix consisting 
of the absolute values (moduli) of the components or entries of g and G

i + : =[lfll]. Vjf = fo] 6 Cn
G+ :=  [IG.dl], VG = [G,-j] E Cnxn. ( )

Let us denote by ||^|| and ||G|| a vector norm and a matrix norm, respectively. 
Throughout the paper the following properties will be assumed of these norms:

a) The vector norm is an absolute norm, i.e.:

1Ы1 = ||<7+||, VgECn. (4)

b) The matrix norm is induced by the vector norm:

||G|| :=max{||Gflr|| : \\g\\ =  1} . (5)

(5) implies ([4], Th. 6.3.1.)

I I G f f l l  < ||G|| • 1Ы1, V }6C ", VG e Cnx”. (6)

For any diagonal matrix H :=  diag{xi,X2, ■ ■ • Xn} (4) and (5) imply ([4], Th. 
6.4.1.):

||tf|| = max |Xt I •
t (7)

The interval norm

A special norm which will be applied in Chap. 4 of the paper is the interval 
norm or q-norm. Let q E R" be a positive vector and define for any д E Cn,
G E Cnxn:

M (8)
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IIGII, := m a x £ £ - |G 0-|. (9)
* j 9i

It is easy to see that ||sr||g satisfies (4) and ||G||? satisfies (5). (Moreover, ||G||g is 
an absolute matrix norm since ||G|| =  ||G+||.) The interval norm is nothing else 
than a scale-transformed 1Ж norm.

The spec trum  o f  the sys tem  m a tr ix  and the stability o f  the s y s te m

Let us denote by Ai,...A„ £ C the eigenvalues of A, the set of the eigen
values is called the spectrum of A and any diagonal matrix Л £ C"x" formed
from the eigenvalues (in different successions) is called a spectral matrix of A: 
Л = diag{Aj,. . . ,  A„}. In connection with the spectrum of the system matrix the 
following two parameters shall be needed in the sequel:

p:=max|Aj |  (10)

the spectral radius of A, and

p : = min(— Re Xj) (11)
i

the degree of stability of A (Rex — real part of x).
A s s u m p t i o n  “ A ” : The system (1) is asymptotically stable i.e.

p >0 .  (12)

This stability assumption seems to be essential for the subsequent analysis, since 
it guarantees that the state range is bounded whenever the control range is such. 
([7], Chap. 7.)

T h e  set o f  modal m atrices  and the simplic ity  o f  A

Let us denote the set of diagonal matrices by Л. Let us consider now the 
(possibly empty) set of such non-singular matrices (the modal matrices of A) that 
applied as similarity transformation on A result in a diagonal matrix

C := {L G C"x" : L~lAL £ ?f} . (13)

A s s u m p t i o n  “B” : The system matrix A is simple (i.e. diagonalizable by a 
similarity transformation)

с ф г . (14)
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This simplicity assumption is rather technical. I guess that it can be dispensed 
with on the account of more complicated formulae.

Under Assumption ”B” any modal matrix produces a spectral decom
position of A :

A = LAL~\  (15)
where Л is a spectral matrix of A.

The modal condition number

Besides the two parameters p and p characterizing A a third, perhaps less 
known parameter, the modal condition number к, plays important role in the 
sequel ([4], pp. 222, 232).

к :=  inf{||L|| • ||Z,_1|| : L e £} (16)
Since ||L|| • ||L-1 || > ||LL_1|| = Ц̂ Ц = 1, we have

k >1 (17)
under Assumption ”B”.

The numerical value of к depends also on the choice of the matrix norm. While 
the parameters p and p are easy to calculate, it is hard to solve the minimum 
problem (16) in this generality. But for the interval norm (9) and for system 
matrices of distinct eigenvalues we have the following simple formula:

K = \\L+K+\\q, (18)
for any L £ C, and К  = L~l . (This formula is a direct consequence of [2, p. 80,
Theorem II. a.].)

Assumptions on the viability set

A ssumption “C” : The interior X° of the viability set is non-empty: X° ф 0. 
Assumption “D” : The initial point z0 belongs to the interior of A : x0 6 X ° . 
It is to be noted that no closedness assumption is made on X  at this point, 

in contrast to the common practice in viability theory.

Clearance, nest, nestpoints

For any d 6 Rn, <5 > 0 let us denote by B(d,6 ) the open ball and by B(d,S) 
the closed ball with center d and radius 6. (The shape of the ball depends on the 
chosen vector norm.)

B ( d , á ) : = { y € R " : | | j / - d | | < á } (19)
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ß(< f,6 ):= {j/eR " : | |y - d | |< « } -  (20)

If d £ X°  we can take the supremum of such radii 6 that B(d, 6) is contained in X , 
denote it by 0(d) and call it the clearance of d:

6 (d) : = sup {<5 : B(d, 6) С X)  . (21)

If we additionally assume that the viability set is closed, then we also use the 
following equivalent definition:

6>(d) =max{<5 : B(d,6) C X)  . (22)

The clearance is thus the distance of d from the closest boundary point of X. The 
larger is 0(d) the “more interior” is d to X .

The following subset V  of X° will be called the nest

V  :=  {de A10 : « | |z o - d ||<  0(d)}, (23)

i.e. d is a nestpoint (d £ V)  if its /с-fold distance from the initial point xq does not 
exceed its clearance. The nest is non-empty since x0 £ V.

3. S u ffic ie n t v ia b i l i t y  c o n d it io n s

Two lemmas

Before wording the basic results of the present paper we establish two lemmas.
L e m m a  1. For any d £ R"

||*(f) -  d\\ < 0(d), Vi ==> x C B(d, 0(d)) = >  x С X, (24)

and if X  is closed, then

||*(<) -  d|| < 0(d), V i ^ i C  B(d, 0(d)) = > £ C X .  (25)

Proof. The lemma follows immediately from definitions (2), (19), (20), (21) 
and (22). ■

This lemma bears the promise, that if we can construct control trajectories 
such that the generated state trajectory satisfies the premissa for some d, then a 
sufficient viability condition is established. As we will see soon the nest is just the 
set of such points d.
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L e m m a  2. Under Assumptions “A” and “B” the following estimations hold 
true for all t E R+:

||exp(Ai)|| < к exp(-pt) (26)

J  II exp [A(t -  г)] II dr < ^  [1 -  exp (—/rí)] (27)
0

J  IIA exp [A(t -  г)] II dr < у  [1 -  e x p (-p t)] • (28)
о

Proof. It is well known that if A — LAL~l (15) then exp(A<) = L exp(At)L_1, 
hence

II exp(A<)|| = ||Xexp(A<)L-1 || < ||L|| • || exp(A<)|| ||L_1||. (29)

Since this inequality holds for all L E C, we get from definition (16) that

||ехр(А<)|| < /с||ехр(Л<)||. (30)

Applying (7) and (11)

II exp(A<)|| = max I exp(A,<)| =  maxexp(Re Xjt) = exp(—y.t) (31)
i j

results. Eq. (26) is the consequence of (30) and (31).
By a similar reasoning we establish that

||Aexp(A<)|| < Kpexp(—fj.t). (32)

Namely,

||Aexp(A<)|| =  \\(LAL l )[Lexp(At)L ЧЦ = ||LAexp(At)L J|l < ^
< «||Л|| • IIexp A<|| = Kpexp(-pt),

where ||A|| = p is the consequence of (7) and (10).
Now, we simply substitute (i — r) for t into (26) and (32) and integrate on 

both sides of both inequalities from r  = 0 to r  = t whereupon (27) and (28) result, 
respectively. ■
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T heorem 1: V iable  control t r a je c t o r ie s . Let assumptions “A” to “D” 
hold and let d € V  be any nestpoint (23). Then «(•) is a viable control trajectory 
(i.e. it generates a viable state trajectory) if its range ű satisfies й C U\(d) or 
ü C U2(d), where

U \ ( d )  : = В  ( —A d ,  —0(d)^ (34)

Ui(d) : = {u : - A ~ l u € ß ( d ,  ^ ff(d )) } . (35)

If the viability set X  is closed, then #(•,•) can be replaced by B(-, •) in (34) and 
(35).

Interpretation of Theorem 1. The set U\(d) is constructed in the following 
way. We select a nestpoint d in the state space and via premultiplication by (—A) 
transfer it to the control space. Furthermore, we determine the clearance 9(d) of 
d and multiply it by р/к . The former will be the center, the latter the radius of 
a ball in the control space, this ball is Ui(d). For forming the set Ui(d) we also 
take a nestpoint, and form a ball around it in the state space, whose radius is its 
clearance reduced by the factor р/кр. This ball is then mapped into the control 
space, the matrix of the mapping is (—A). In this way we obtain U^d)  which need 
not be a ball.

Proof of Theorem 1. Let us write system (1) in the following equivalent form:

— [*(<) - d\ = A [z(<) -  d] + [„(*) + A d\ , *(0+) = z 0,

then the explicit solution of this differential equation can be written as

t

x(t) -  d = exp(j4f)(x0 — d) + J  exp [A(t — r)] [ti(r) + Ad\ dr.
о

With the help of (6), the triangle inequality, and the integral inequality

I t
J  f ( r ) d r  < J  II f ( r ) dr ,

(36)

(37)

(38)

(where t € R+ and /  : R+ —► R") from (37) we get:

1И 0 -  IHI < II exp(A<)|| • ||ar0 -  d|| +  J II exp [A(f -  r)] || • ||u(r) + Ad\\ dr. (39)
0
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From assumption d G V (23) yields:

||* o -d ||<  -9(d),К (40)

while conditions й C U\(d), ü C ^ (d )  can be expressed as

||u(r) + Ad|| < -9(d),  Vr
/С

(41)

and

||A_1u(r) + d|| < — 6>(d), Vr, к р (42)

respectively.
Considering first the case ü C U\(d), we apply (40), (41), (26) and (27) to 

inequality (39):

||a:(<) — d|| < -9(d) ■ /cexp(-pf) + —9(d) ■ -  [1 — exp(—nt)] = 9(d). (43)
к, к p

(43) and (24) gives x C X,  i.e. viability. If X  is closed and we relax В to В in 
(34) then inequalities (41) and (43) become non-strict and the application of (25) 
instead of (24) leads to the same result.

The other case: й С Ыъ(А) proves the same way except that the last term of 
(37) has to be written in the form

tJ  A exp [j4(< — r)] • [A ~ 1u(t) + of] dr 
о

and the reference to (27) and (41) must be changed to (28) and (42), respectively, 
in the proof. ■

The problem of the best nestpoint

As seen from Theorem 1, the larger is 9(d) the larger will be both U\(d) and 
Ut(d). Thus, in order to enlarge the available set of viable controls we may want to 
find the best nestpoint, i.e. the one with the largest clearance. Hence, the following 
optimization problem is to be solved:

3

'Find d* G V  and 9* : =  9(d*) such that 
9* = max{0(d) : d € V }”. (44)
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This problem, of course, can not be solved without the specification of the viability 
set.

Having finished the discussion of Theorem 1 we have to emphasize that all the 
parameters which occur in it are calculable relatively simply. One exception is the 
clearance 9(d) whose value depends on the unspecified shape of the viability set. 
Furthermore, we still have a freedom in the choice of the norm. By an appropriate 
choice which takes the shape of X  into account we can highly improve upon the 
“roughness” of our estimations, which is caused just by the estimation in norm. In 
the sequel we deal with a specification of the viability set, where not only 9(d) will 
be easily calculable, but a best nestpoint, an explicit solution of problem (44) will 
also be found.

4. Interval shaped viability sets

Interval

We discuss the case when the viability set is a closed interval (parallelepiped). 
Let 6 be any point in Rn : b £ Rn, and p a non-negative vector in Rn : p > 0. 

We define the closed interval (with center b and half-diagonal p) as

1(6, p) : -  {y G R" ■ b - p < y < b  + p}.  (45)

The viability set

Assumption “E” : The viability set is an interval:

X — I(c, q), (46)

where q > 0.
q > 0 implies that Z(c, q) has a non-empty interior, hence Assumption “E” 

implies Assumption “C” .
In the sequel we will use the interval vector-norm || ■ ||9 as defined in (8) where 

q will be the same positive n-vector that appears in the definition (46) of X.  The 
following lemma clarifies the connection between intervals and the closed balls in 
interval norm.

Lemma 3. In the interval norm || • ||? the closed balls of center у and radius 
6 are intervals with center у and half-diagonal Sq:

B(y,S) = I(y,6q). (47)
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Proof. By the virtue of definitions (20), (8) and (45) we have:

z £ B(y, 5) <=>• ||z -  t/||? < 6 <=>

max —— — < 6 <=> \zí — t/i I < 6qi, Vi <=> (48)
*' 9«
<=> y - 6q < z < y  + 6q <̂ => z £ I ( y , 6q).

Я
Substituting у = с, 6 = 1 into (47) from (46) we get

X = B(c, 1) (49)

i.e. the viability set is represented as a unit ball with center c in the g-norm.

The calculation of the clearance

Lemma 4. The clearance of a point у £ l(c,q) is

в{у) = 1 -  ||c — y||g.

Proof. By the virtue of (22), (47), (45) and (8) we have

(50)

B(y, 6) с  X  <=> I(y , óq) c  I(c, q) 
у -  6q > c -  q I
у + 6q < c + q

4=>- (1 -  % ; > (с* -  t/i I, Vi <=> 1 — <5 > ||c — y\\q < 

Hence, we get (50) for 9(y) = maxó.

6 < 1 — ||c — y||9.

The calculation of the maximum clearance of nestpomts

For sake of brevity let us introduce the following notation for the initial clear
ance

в0 := в(х0) = 1 -  | |c -  10||}, (51)

which can be calculated from the given data of X and x q .

We now turn to the solution of the problem of the best nestpoint (44) for the 
case of interval shaped viability set.

3 '
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Lemma 5. For the viability set X  = l{c,q) the maximum clearance of a 
nestpoint is

в* = m i n j l . - ^ j - j  (52)

which is taken at a best nestpoint

^  + « -  о! - 1  <53)

Interpretation of Lemma 5. Two cases are to be distinguished,
a) If

0o > l - ~ ,  (54)К

then 9* = 1 from (52) and d* = c from (53). Thus, in this case the center of the 
viability set is the (unique) best nestpoint. This case occurs if ||c — Xo||  <  1/«,
i.e. if the initial point is close enough to the center of X .

b) If, on the contrary, öo < 1 — l//c, then

r  = Ä  ™d = (55)

In this case an optimal nestpoint occurs in the interior of the line segment connect
ing the initial point xo with the center c. d* of (55) will usually not be an unique 
best nestpoint since the interval norm is not strictly monotonic in the modulus of 
the components.

Proof of Lemma 5. Let us first assume c £ D ,  i.e. (23)

/с||с -  х0||, < 9(c) = 1. (56)

In this case we have for all d E V  from (50):

9(d) = 1 — ||c — dH, < 1 = 9(c). (57)

Hence, dm = c is an optimal nestpoint and 9* = 1 its clearance. Uniqueness follows 
from the fact that equality in (57) occurs only at d — c. On the other hand, (56) 
can also be written in the alternative forms ||c — х0||, < l//c or 1 < k9q/{k — 1), 
and hence, (52)-(53) yield the same result.

Consider now the other case с ^ V, which implies that 1 > k9q/{k — 1) holds. 
The following triangle inequality

| | c - d | |? +  | |d -x o | | ,  > | |c -* o | | , (58)
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can be written in the following form in view of notations (50) and (51)

||d -* o ||f > e ( d ) - 0 o. (59)

On the other hand, d EV  implies (23)

| |d - x 0||, < ^9(d) (60)

which with (59) gives 9(d) — 9q < 9(d)/к  or rearranged:

6(d) <  — - — r 9 0 (61)K, 1

for all d 6 V. (N.B. к > 1, since for к = 1 : с (E V  holds.) Subtituting from (55) 
у = d* into (50) we see that the r.h.s. upper bound of 9(d) is assumed at this point 
d’ . Furthermore, d = d* satisfies (60), hence d* of (55) is an optimal nestpoint 
with clearance в* = к90/(к  — 1) as the lemma tells us. ■

Combining Lemma 3 and Lemma 5 with Theorem 1 we get the following 
viability conditions for X — J(c,q).

T heorem  2: V iable control tra jecto ries  f o r  interval shaped  vi
ability SETS. Under assumptions “A” , “B” , “D” and “E” u( ) is a viable control 
trajectory if its range satisfies й C U{ or й С Щ , where

l ( —A c , —q), if 9q > 1 — \ / k
;/* _  V К /— ' / liOq \

X ( —Ad*, -----otherwise,

Щ =
|u  : — A £ x [ d *, ^  otherwiseр ( к  -  1)

if 9q > 1 — 1/ k

(62)

(63)

and

о II 1 0 1 H о
> о

(64)

d - * • + ( « - 1)(1 - » 0)<с 1л)- (65)

Concluding remarks

Extensions to coupled controls, control space constraints, polyhedral or com
pact-convex viability sets, and, finally, to viable feedback rules will be dealt with 
in subsequent papers.
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Траектории управления выживаемости 
в линейных системах

Б. МАРТОШ

(Б у д а п е ш т )

Р а с с м а т р и в а е т с я  си стем а  л и н е й н ы х  д и ф ф ер ен ц и ал ь н ы х  у р а в н е н и й  с н е св я зан 
ны м  у п р авл ен и ем , я в л я ю щ а я с я  а си м п то т и ч е с к и  у с т о й ч и в о й . С о с т о я н и я  о г р а н и ч и в а 
ю т с я  собствен ны м  п о д м н о ж ество м  п р о с т р а н с т в а  с о с т о я н и й  (м н о ж еств о м  в ы ж и ваем о 
с т и )  с непустой в н у т р ен н о ст ь ю . П о д м н о ж ество  п р о с т р а н с т в а  у п р а в л е н и й  (м н о ж ество  
у п р а в л ен и й  в ы ж и в а е м о с т и )  о п р е д е л я е т с я  таким  о б р а зо м , что  л ю б а я  т р а е к т о р и я  у п 
р а в л е н и я , берущ ая сво е  н ачал о  и з э т о г о  м н о ж ества , г ен е р и р у е т  ф а зо в у ю  т р а е к т о р и ю  
в ы ж и в а ем о с ти  (д о с т а т о ч н ы е  у с л о в и я  в ы ж и в а ем о с т и ) . В з а к л ю ч е н и и  э т и  р е зу л ь т а т ы  
б ы л и  прим енены  д л я  м нож еств  в ы ж и в а ем о с т и , о б р а зо в а н н ы х  и н т е р в а л а м и , и б ы л и  
о п р е д е л ен ы  м н о ж ества  у п р а в л ен и я  м а к с и м а л ьн о го  р а д и у с а .

Béla Martos 
Institute of Economics 
Hungarian Academy of Sciences 
P.O.B. 262. H-1502, Budapest, Hungary
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SUBOPTIMAL CONTROL ALGORITHM 
FOR DISCRETE SYSTEMS
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A n approach for th e  realization  of a  suboptim al con tro l for linear d iscrete-tim e sys
tem s is proposed, w hen a  control in te rval is divided in to  tw o sub-intervals. For the  first 
sub-in terval th e  vector of feedback coefficients w ith reg ard  to  s ta te  is assum ed  as constan t, 
and  th e n  for th e  o th e r one th e  exact o p tim a l control law is used. T he m o m en t of sw itching 
the  con tro l m odes is de term ined  on th e  b asis of accep tab le  deviations of th e  con tro l system  
quality  index from  th e  op tim al control. Finally, a  sim ple exam ple is u sed  to  dem onstra te  
some featu res of the  p resen t approach fo r contro ller design.

1. Introduction

The problem of controller design for linear systems has been considered by 
a large numbers of researchers in the past thirty years. The analytical controller 
design problem was considered primarily by Letov (I960) for continuous time-in
variant systems and solved simultaneously for nonstationary systems by Kalman 
(1960).

Today there exist a large number of analytical controller design procedures. 
For example, Repin-Tretyakov’s method (Repin and Tretyakov, 1963), Newton- 
Raphson’s method (Wonham, 1979), the method of diagonalization (Kwakernaak 
and Sivan, 1972) and some other authors (Yosida and Lopara, 1989) found a very 
wide range of applications in different fields.

The Repin-Tretyakov’s method supposes the matrix Riccati equation solu
tion, then required matrix P > 0 can be found as — lim P{t). The New-1 —*  OO

ton-Raphson’s method or quasi-linearization method represents an iterational pro
cedure for matrix P > 0 computation. At each step of this procedure the Lya
punov’s equation is solved and then P can be found as = lim Px , \  — 1,2,....

Л —* oo
Krasovsky (1967) introduced the following generalized work functional

Akadémiai Kiadó, Budapest 
Pergamon Press, Oxford
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n
where V  = £2 pijXiij is the chosen Lyapunov function, x is the state vector, &jt,-are

the elements of control matrix В of the state space model, u*, denote controls, qtj 
are elements of non-negative definite matrix Q, which satisfies the observability 
condition of the system, and Pii are elements of P. The controls are calculated 
from expression

This approach is known as Lyapunov’s functions based controller synthesis or an
alytical controller design using generalized work functional.

Several iterational controller design procedures were proposed by Aleksandrov 
(1986). They are shown to be applicable to continuous and discrete-time SISO and 
MIMO systems. A number of computationally efficient controller design procedures 
for discrete-time systems are presented by Iserman (1981). Most of them are ready 
for real-time applications using microprocessor hardware.

Our goal is to develop a computationally efficient suboptimal control algo
rithm, preserving the required control quality. When developing controllers for 
constant parameter systems, in many cases a variation of the feedback coefficients 
only over some insignificant part of the control interval in vicinity of the final mo
ment of time is taken into consideration. Such a choice of the coefficients may be 
regarded as expedient from the point of view of practical applications, because for 
many control systems the feedback coefficient can be considered practically con
stant over the entire interval and the realization of the variable coefficient is rather 
complicated.

It is known that the optimal feedback coefficient is constant over the entire 
interval if the weighing matrix of final state coincides with a steady-state solution 
of Riccati equation (Andreyev, 1976). However, for large deviations of the above 
values, the realization of the constant coefficient may lead to a considerable change 
of the system state vector in comparison with the optimal law. Therefore, it is nec
essary to study the degree of these variations, when changing the optimal control 
law into a stationary one, since allowances for the control system quality charac
teristics determining the possibility of achieving the control objective can be found 
in advance.

We present an analytical solution of Riccati equations as an explicit function 
of system parameters and find the controller transition matrix. Then these solutions 
are used to obtain an expression for the relative variation of the quality index due 
to suboptimal control over the part of the whole control interval. The expression for

, , m .
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the relative variation of the quality index can be used for determining the minimum 
length of the controls sequence based on varying optimal feedback gains.

2. Problem formulation

Consider a linear discrete-time system with constant parameters

X k+1 = фХк + BUk, к = 1,2, . . . ,  Ki  — 1, (1)

where Xk is the state vector, Uk is the controls vector, ф and В are the transient 
matrices of discrete states and control, respectively.

Problem solution for constructing of an optimal linear controller for the qual
ity index of the following form

Ky- 1
J  = S X Kl + £  {XT+1QXi+1 + U f  RUi} , (2)

i = 0

is determined by the relationship (Kwakernaak and Sivan, 1972)

Uk = - L kXk, (3)

where Lk = [Я + BT(Q + Pk+i)B]~l B T (Q + Рк+\)ф, and Pk is a solution of the 
discrete Riccati equation

Pk =  4>T(Q +  Pk+i)(<t> -  BLk)

with the final condition Pr-, =: S.
We consider here the stationary controller problem solution for system (1), 

defined over a semi-infinite interval. In this case the control that minimizes the 
criterion

OO

Ji = £ { * < + iG * í+ i + Ül RUi}, (4)
«' = 0

has the form
Ük = - L 00X k, (5)

where LTO = [Ä+ BT (Q + P00)B]~1BT(Q + Роо)ф and is the solution of the 
Riccati algebraic equation Poo = ФТ{Я + Роо)(Ф -  PLoo).

The problem has been set here to study an effect of the substitution of the 
optimal control law (3) for system (1) by a suboptimal one on the control system 
properties. Thus, we can formulate our problem as follows:

a) to study analytically the variations of values of the quality index (2) and the 
state vector X  at the final moment of the control interval K\ due to the

4



2 8 4 K O R B IC Z ,  P O D L A D C H I K O V ,  B I D Y UK : S U B O P T I M A L  C O N T R O L  A L G O R I T H M

non-optimality of control signals over the entire control interval, i.e. when the 
control is performed with constant gain L ;

b) to accomplish a sub optimal controller synthesis accounting for an application 
of the stationary control law (5) with subsequent switching to the optimal 
law (3) in the vicinity of the final moment of the control interval so that to 
minimize the state vector deviation from the optimal value;

c) as a result of the suboptimal controller application to reduce the comput
er time necessary for the control actions computation in comparison to the 
optimal controller.

3. Characteristics o f the suboptim al controller

Let us define state variation Ад-,, if the control C/*, is determined according 
to the suboptimal law (5) over the entire interval. As shown in the Appendix the 
transient matrices of the optimal closed control system грк1 0 and the stationary 
one are connected by the relationship

rPKl,0 =  ( S ~  Poo) - 1iiT(‘- K l\ P 0 -  PTO), (6)

where ft = ф -  B R - lB T(j)-\P00 -  Q).
Multiplying both parts of formula (6) on the left-hand side by the matrix

QKl(Po -  Poo)_1ftT(Jfl)(5  -  Poo)

we obtain
f t K l ( ^ 0 - P o o r 1 f t T ( J f l ) ( 5 - P o o ) ^ 1,„ =  f i i C l . ( 7 )

It is shown in the Appendix that

( P t - Р о о Г 1 = ft*-Kl(5  -  Poo)ftT(k- Xl) + ft*H(jfc, I<1)QT^  (8)

к ,
where E(fc,A'i) = £  B{R + P TP00P ) - 1P r ftT(- i), k = 0,1, . . . ,  K x.

i = k +1
Substituting expression (8), when k = 0, into equation (7) we obtain the 

following relationship connecting the final state vectors X k 1 for the optimal control 
law and Ад-, for the stationary one

[7 +  ft* ‘S(0, T f O f t ^ i S  -  Poo)] Ад-, =  Ä * , .

Using formulas (6) and (8) after some transformations we obtain the expres
sion defining the final state deviation due to the unoptimality of the controls t/,-
(* =  0, 1.......Ä"! — 1)

Ajf, -  A* = f t K‘ [ft-if l( 5 - P o o ) - 1i7T(- if,)H -1(0 ,A i) +  7 ]"1Ao. (9)
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Let us determine the value of the quality index under unoptimal control

Kl - 1
J  =  X $ xSXKl +  Y ,  {xJ+iQ*i+i +  ÜjRÜi).  (10)

1 =  0

K \  — 1 oo oo
Since £  { • } = £ { • } -  £  {•}, then

»=0 i = 0  i —K i

J = Ц  SXKl + X% Рос Xo + X TKl PocXKi ■

Taking into consideration that X ki  = QKlXo, the quality index can be ob
tained as follows

J  =  X TKi +  P00] A'0.

The deviation of the actual value of the quality index from its minimal value can 
be found in the following way

J  -  J  = XjMXo,

where M — QT(Kl\ S  — Poo)QKl — (Po — Рос)-
Changing in the latter expression (Po -  Poo) in accordance with formula (8) 

and applying the lemma on the matrix inversion, we obtain

M = QT('Kl\ S  -  Poo)i)*‘ [n_JCl(5  -  Poo)"1fi:r(_A' ,)H(0, A'i) + J ]_1. (11)

The relative variation of the quality index will be 6J = (J — J)/J.

4. Suboptim al controller

If the feedback coefficient is chosen to be constant over the whole interval, 
then as it follows from the relationships (9)—(11), the actual quality characteristics 
may essentially differ from the optimal ones. Let us analyse characteristics of the 
controller, the feedback coefficient of which is chosen to be constant up to some 
moment of time k, when the quality index is less sensitive to the non-optimality 
of the control law and then switching to the optimal control is performed. Let the 
stationary control law be realized until the moment к — 1 (0 < к < Ki)  is reached. 
Starting with the moment к the sequence of controls Ui (i = k, lfe+1,. . . ,  K\ — 1) is 
optimal. Determine the final state deviation X x l — X ^ l due to the non-optimality 
of the controls (7,- (i = 0,1, . . . ,  к — 1).

4 '
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Using formula (9), we obtain

X — X k x = 'Ф к .к^  [^~k(S — Poo)~lQTE 1(0,A;) + 7] X 0, 

or taking into account expressions (6) and (8) we have

X Kl - X Kl = { -  Poo)fiT(- i:)H(0, k) +  /] X

x [П-* + E(k, Ki){lTW (S  -  Poo)] }“ 'X 0.

The quality index for the controller under consideration has the form

Ki- l  Ki- l
J  = X TKiS X Kl + {ÜjRÜi +  X j Q X i } +  RUi + ®X i} -

« '= 0  i = k

where Ui is the sequence of suboptimal controls defined by expression (5) and Uj is 
the sequence of optimal controls defined by formula (3). The final expression can 
be written as

J = X j ( P k -  Poo)** + X 70 Px X o.

The quality index deviation from its minimum value is equal to

J — J — X l (P k -  Poo)Xk + X0T(P0 -  P M .

Taking into account that X k = £lkX o, we obtain

J -  J  = X%MX0, (13)

where
M  = üT^ \ P k -  Роо)и1 -  (Po -  Poo)- 

Using formula (8) we get

M = [ a - K' ( s  -  P o o ) - 1 i i T (_ K l)  +  3  (Jfc, a ' i ) ] - 1 -

-  [ 0 ^ (5  -  P « , ) ^ - * 0 +  3(0, it)]

Denote Z = — Poo)~l0.T('~Kl  ̂ + E(k,Ki). Taking into consideration that
3(0, A'i) = 3(0, k) + E(k,Ki)  and applying the lemma on matrix inversion to 
expression (14), it can be written

M = [ZE~\0 ,k)Z  + Z ] -1. (15)

The relative variation of the quality index can be found as

_____________ XpT M X  о_____________
X q [ Q U * 0 ( S  -  +  p x - M ] x o '

6J  =



K O R B I C Z ,  P O D L A D C H I K O V ,  B ID YUK: S U B O P T I M A L  C O N T R O L  A L G O R I T H M 2 8 7

The obtained formulas (12), (13) and (15) define the final state and quality 
index variation of the controller suboptimal over an interval due to the non-optimal
ity of a sequence of controls t/,- (i = 0,1, . . . ,  к — 1) in the form of explicit functions 
of the parameters of system (1), weighing matrices S , Q and R in index (2) and 
steady-state solution of the Riccati equation P The given expressions can be 
used for a non-recursive algebraic solution of the problem of determining the mini
mum length K\ — k of the sequence of optimal controls [7,- (i = к, к + 1 , . . . ,  K\ — 1) 
with varying coefficient L , which is to be realized for ensuring acceptable quality 
of control based on the assigned in advance allowances for deviations of quality 
characteristics from optimal.

5. Exam ple

Let us consider a discrete form of the angular velocity stabilization problem 
(Kwakernaak and Sivan, 1972). The system is described by the difference equation

£jfc+i = е~аАЧк +  — (l -  e~aAt) Цк,

where Д< is the sampling period. The optimal control Цк minimizes the criterion

J  -  *i(k 1 + ^ 2  {̂*2 + PPi } '
:=0

If values of parameters are equal to a  — 0.5 s_1, к  =  150 rad/s2, p — 1000, K \  = 20, 
At — 0.1 s, tti — 8.65, then the steady solution of Riccati equation is the following: 
Poo = 3.257758. The transient matrix scalar in this case of the closed-loop control 
system

f t  =  e~aAt T2 (l — e~aAty
(1  ~ P o o ) e -a At

a p +  * 2/ a 2 ( l  -  е - “ д <)2(1 +  Poo)

with the above parameter values equals ft = 0.8044.
In accordance with formula (9) the final state deviation £(20) from the optimal 

value £(20) is given by

£(20)-£(20) = 0.004693 £0 .

Let us assume that the control quality is acceptable only in the case when the 
final state deviation does not exceed 0.003 £0. In this case the stationary controller 
can not be realized over the entire control interval. It is necessary to use the 
controller suboptimal over an interval considered in Section 3. Now, determine the
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minimum number of the variable coefficient realizations. According to expression
(12) we obtain the deviation £(20) — £(20) = 0.002987£(0) with к =  11, and with 
k — 12 the deviation is equal to £(20) — £(20) = 0.0030047£(0).

In such a way, the suboptimal controller allows for realization of the stationary 
law of control Üi (i =  0,1,2, . . . ,  10) and optimal one Ui (i = 11,12....... 19).

Similarly, a relative variation of the quality index due to the unoptimality 
of control can be found. Using expressions (10) and (11) we obtain 6J  = 0.506. 
Suppose that the system quality is acceptable if the quality index deviation does 
not exceed 10 % of its optimal value, i.e. it is necessary to satisfy the condition 
8J  < 0.1. From formulas (13) and (15) it follows that the required condition is 
satisfied when к = 19, i.e. switching to optimal control is to be done only when 
к = 19.

6. Conclusion

The analytical relationships characterizing a decrease of quality indices of 
a control system were obtained when the constant feedback coefficient over the 
whole control interval is used. These relationships make it possible to select the 
maximum interval, based on assigned allowances of quality characteristics, over 
which it is acceptable to use the stationary law of control with subsequent switching 
to the optimal one, when approaching the final moment of time. Such a suboptimal 
controller allows to decrease substantially the required computing time, preserving 
optimality of control at the end of the control interval.

Appendix

An explicit form of the Riccati equation

A solution of th e  d iscrete  R iccati eq u a tio n  in  the p rob lem s of optim al filte rin g  and th e  
tran s ien t m atrix  of th e  o p tim al filter is o b ta in e d  by O rtan id is  (1982) in the  fo rm  of explicit 
functions of s tead y -s ta te  so lu tion  of R iccati equation . T he a p p ro ac h  suggested h e re  is based on  
co n stru c tin g  and  solving a n  equation  for th e  difference of R icca ti equation  so lu tions P * and its  
s te ad y -s ta te  solution value  Poo •

To o b ta in  the  R iccati equation  in  co n tro l problem s le t u s  consider the  d ifference of th e  
feedback coefficient L* a n d  its  stead y -s ta te  value  Loo

L* =  L k -  Loo =  [ я  +  B T (Q  +  P*+1)ő ]  B T IQ  +  Рк+\)Ф—

-  [fi +  B T (Q  +  Poo)ß] B T (Q  +  Роо)ф.
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A fter sim ple tran sfom ations it is po ss ib le  to get an  expression  for L^  in  th e  form  of the  
feedback coefficient of th e  sy s tem  allowing a n  explicit solution o f th e  Riccati e q u a tio n  of transient 
m atrix

L k = (R +  B T P k + lB ) - 1 2 3 4 5 6 7 8B T Pk+ 1n ,  (A .l)

where Í1 =  ф — B L X  is th e  transient m a tr ix  of a  closed c o n tro l system  in  s te a d y -s ta te  mode, 
Pk = P k - P o o - ,R  = R + B T P k _ 1B.

T he difference of th e  R iccati equation  so lu tio n  and its  s te a d y  sta te  value w ill b e  w ritten  as 
follows

p k — ФТ{Q *+■ Pfc+1 + Poo){4> — BLk — BLoo) — {Q 4* Роо){Ф — B L qo) —

=  ФтРк+ЛФ -  B L k ) -  фт(Q  +  P oc)B L k .

From  re la tio n sh ip  (A .l)  a n d  tak ing  into considera tion  th a t фт (Q + Poo)В  =  L ^ R ,  after trans- 
form ations we obtain

Pk = nTPk+i(n -  BLk).
A pplying th e  lem m a on m a tr ix  inversion, p u t  down for P ^ 1

P - 1 = n - 1( p - ' 1 + B R - 1B T ) - 1 , (A .2)
on  solving of which we get

(Pk - P o o ) -1  = n ( S - P 00) - 1 n T(* - ic^  _  П кЩ к ,К 1)Пт(к\  (A.3)
■fii

where S(k ,K\ )  = Q~ ' B[R + B T (Q  + Poo)B]-1 BTQT( - ) .
t =  /e +  l

Using equation  (A .2) th e  transient m a tr ix  of a closed-loop can be w ritten  as

^ K u k = (S -  P00)~1n T(k~Kl ) (P -  Poo). (A .4)
R elationships (A .3) a n d  (A.4) define th e  Riccati e q u a tio n  solution and  tra n s ie n t m atrix  in  

th e  form  of explicit fu n c tio n s of the s te a d y -s ta te  solution of th e  Riccati equation .
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Алгоритм субоптимального управления дискретных систем

Ю. КОРБИЧ, В Н ПОДЛАДЧИКОВ, П. И. БИДЮК

(Зелена-Гура, Киев)

Рассматривается проблема аналитического конструирования субоптимального 
линейного регулятора. Предложен подход к аналитическому исследованию измене
ния функционала качества и вектора состояния линейной дискретной системы при ис
пользовании неоптимального управления с постоянным коэффициентом обратной свя
зи. Конструируется субоптимальный регулятор, в котором на первом подинтервале 
используется постоянный коэффициент обратной связи, а на втором — оптимальный, 
вычисляемый с помощью решения уравнения Риккати. Предлагается методика выво
да момента переключения системы управления от субоптимального на оптимальный 
регулятор.
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A DECOUPLING POLE-PLACEMENT CONTROLLER 
FOR A CLASS OF MULTIVARIABLE SYSTEMS

J. MlKLES, A. MÉSZÁROS

( B ra tis la va )

(Received D ecem ber 4, 1990)

T h e  design prob lem  of controller fo r discrete-tim e lin ea r M IM O system s is discussed. 
A pole-placem ent p rob lem  form ulation  a n d  i ts  solution is given. T he resulting  closed-loop 
sy s tem  will be stab le  a n d  decoupled. T h e  con tro ller design requ ires no a priori in fo rm ation  
e ith e r ab o u t stab ility  o r  m inim um  p h ase  of controlled p lan ts . T he designed contro ller 
consists of a  feedback p a r t,  a  feedforw ard p a r t  and  a  new p recom pensator a n d  is suitable 
for con tro l of system s w ith  differing d ead -tim es in each p a th .

1. Introduction

The deterministic tracking problem is one of the most significant ones in op
timal control. The presented work is devoted to control algorithm design for multi- 
variable discrete-time systems. The algorithm is based on explicit pole-placement 
design which, in addition to its other advantages, results in a decoupled control sys
tem. The autonomous state is achieved by using a suitably designed feedforward 
compensator part.

Recently, several works have appeared being dedicated to multi-input, multi
output (MIMO) control systems and taking into account also the decoupling effect. 
Deterministic decoupling design problems are discussed e.g. in [1], [5], [6], [8], [10],
[12], [13] and [17] while the authors of [4], [7], [9] and [11] deal with decoupling 
aspects for stochastic systems. In [1], a deterministic discrete-time linear minimum 
phase system is considered and a regulator with decoupling influence to the overall 
system is proposed. A decoupled control system can be designed as well on the 
basis of state space approach as it has been shown in [5]. The decoupling effect can 
be also guarenteed by a suitable design of the system precompensator as a result 
of the left matrix denominator factorization of the controlled system [6]. The regu
lator proposed in [8] results from the assumption that the left matrix denominator 
of the controlled system transfer function is a diagonal polynomial matrix. The 
authors of [10] suggest a feedback controller which yields a decoupled closed-loop

Akadémiai Kiadó, Budapest 
Pergamon Press, Oxford
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system with higher order tracking. In [12] the decoupling is ensured by means of 
the feedforward part of the controller which has a transfer matrix, such as it is in 
[3], in the form of a simple polynomial matrix. To achieve a decoupled control sys
tem [13], like [8], came out from the assumption that the left matrix denominator 
of the controlled system description is a diagonal polynomial matrix. In [14] the 
problem of decoupling a linear continuous system by dynamic compensation into 
multi-input, multi-output subsystem is solved by the transfer matrix method. The 
decoupling is ensured, similarly as in [12], by means of the feedforward part of the 
controller. When comparing this with our results it is obvious that the regulator 
proposed here covers both the decoupling effect and the tracking problem for dis
crete systems (see Note 1). In [17] the closed-loop system is decoupled via internal 
loop while tracking is ensured using external decoupling loops. In comparison with 
[1], [7], [12], [13] and [14] the regulator designed herein has a precompensator which 
changes basically the solvability conditions of the decoupling tracking problem 
(see Note 2).

The controller introduced in this paper consists of a feedback part, a feedfor
ward part and a precompensator. The feedback part is carried out on the basis of 
explicit pole-placement design (of course, implicit approach defined by a criterion 
function can be used as well) as it has been shown in [2] and [18]. The precom
pensator ensures usually integral action. The decoupling behaviour is created by 
a suitable feedforward part. The introduced precompensator has significantly sim
plified the solvability conditions of the problem [18]. Finally, a simple example is 
given.

2. Formulation

The configuration illustrated in Fig. 1 is considered; S is the plant to be 
controlled, Cb is the feedback part of the controller, Cp is the feedforward part of 
it, and Pc is the precompensator.

Fig. 1. System  configuration
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Consider a controllable and observable linear discrete-time invariant system 
so that it is minimal, modelled by equation

А ф ф у  =  В ф - ^ и  ( 1)

where у is the r-vector output sequence and u is the r-vector input sequence. Ль 
and Вl are polynomial matrices in z~l , which is to be interpreted as the delay 
operator. The Ль is an г x г matrix with Ль(0) invertible and the Бь is an 
r x r matrix with Бь(0) = 0- The Ль and Бь are of arbitrary relative degrees. 
Л ^ Б ь  is a matrix fraction representation of the transfer matrix and reflects 
the input-output properties of the system. Ль and Sl are relatively left prime. 
The assumption -Bl(O) = 0 means that the present value of u can not affect the 
present value of y. All time-delays of the controlled system are absorbed into the
в ф - 1).

Further, consider a reference r-vector sequence w modelled by the equation

K i z - ^ w  = Ь ф - 1) ( 2)

where К  and Ll are r x r and r x 1 polynomial matrices in the delay operator z ~ l , 
respectively. It is assumed that K(0) is invertible, K(z~1) = diag{&}. К  and ф  
are relatively left prime, A^K  and Бь are relatively left prime.

For future purposes, let us define relatively right prime polynomial matrices 
Ля and 5 r of dimensions r x r such that

Л^1Бь = БкЛЯ1. (3)

The controller is another dynamical system, so that it is minimal, of the form

И ф ф й  = - C L(* _1 )y  + У ф - 1)*  (4)
K(z~ l)u = ü (5)

where the pairs of matrices Z?l , Cl and Dl> Vl are relatively left prime polynomial 
matrices in the delay operator г-1 . £>ь, Cl and Vl are r x r polynomial matrices, 
with - D l ( O )  invertible.

Further, let us define relatively right prime polynomial matrices D r  and C r  

being, both, of dimension r x r, by

DZ1Ch = CKDä 1. (6)

Finally, let us introduce a stable polynomial matrix Mr =  diag{m} of dimen
sion (r x r).

Then, the decoupling tracking problem using pole-placement design can be 
formulated as follows.
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Given a system (1) and a class of references (2), it is desired to find a linear 
control law (4), (5) so as to make the sequence ü and the tracking error e = w — y, 
both being vectors of stable sequences, independently of Ll - Simultaneously, the 
decoupling of the overall system must be ensured in accordance with the equation

у = G(z-1 )w (7)

where G(z 1) is a diagonal matrix.

3. Solution

Theorem. The decoupling pole-placement tracking problem has a solution if 
and only if A' and BL are relatively left prime. Then DL and Cl (or equivalently 
D r and Cr) are as a solution of the equation

D ^ K A r + ClS r = Mr (8)

(or equivalently

A l K D r + BlCr  -  Mr). (9)

Ul is given in the form

Vl = adj Br diag |  |  diag {rj } (10)

where brj is the greatest common divisor of у-th column elements of the matrix 
adj Br , j  = 1, 2, . . .  r, and rj is given by the equation

diag{fc} diag {s; } + Őr VL =  diag{m}. (11)

Proof. The proof will be divided into two parts. First, we shall construct the 
controller, provided it exists, and then we shall establish the solvability.

Concerning the first part, we start by deriving й and e
In accordance with equations (1), (2), (4), (5) the ü sequence is given by

й = (A + L>l 1ClA -1T£15 l ) - 1Űl 1VlA '-1Ll . (12)

Using (3) and (6) and considering the assumption К = diag{£} we get

й = A r (D l K A r + Cl B r ) - W lLl . (13)
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Similarly, through elementary algebraic operations, it can be derived

e = (Jr -  Br (DlKAr + Cl5 r) - 1VL)A'-1I l. (14)

If equation (8) holds true, it yields

Ü = ЛкМ- V lLl (15)
e =  (A -  M - ' B M K - ' L l (16)
у = A C ^ rVlw. (17)

The simultaneous satisfaction of equations (8) and (9) is a result of the general 
Bezout identity. In equation (15), ű is a vector of stable sequences, independently 
of Ll- Since (11) holds true, e is a vector of stable sequences, independently of Ll - 

The introduction of det BR/brj = br\j yields

Mry = BR adj BR diag j  j  diag{r-j }w (18)

Mrу  =  det B R diag diag{r; }w (19)

Mrу = diag {ftrijfj} w. (20)

From equation (20) it follows that the overall system is decoupled.
The second part of the proof is connected with the solvability of the problem. 
The decoupling pole-placement tracking problem has a solution if the general 

pole-placement tracking problem given by equations (8) and (9) and extended by 
the equation

I<S+BRVL = Mr (21)

is solvable. The solutions of (21), Vi, and S  have no constraints. The only condition 
having to be fulfilled is that MT must be a stable matrix. The general pole-place
ment tracking problem has a solution if and only if A^K  and BR are relatively left 
prime [18]. This completes the proof of the theorem.

Note 1. In [14] a regulator is proposed the feedforward part of which is 
given by the right inverse of the left matrix numerator of the continuous controlled 
system transfer matrix. The regulator given by eqs. (8), (9), (10) solves besides 
the decoupling problem also the discrete tracking problem for the class of reference 
sequences given by (2). All the polynomial matrices of the regulator are solutions 
of polynomial matrix Diophantine equations.

Note 2. In the case of a controller without a precompensator, i.e. when u  =  ü , 
there exists an additional solvability condition in the tracking problem: that К  
must be a right divisor of A l [15], [16]. Using a precompensator of the form [5] 
this additional condition disappears.
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л _  /1  + 2 z - 1 
A l ' 0 .3z-1

0 .2z"1 0.1z“ 1
0 .1 z -1 0.3z"1

4. Exam ple

Let us consider a controlled system described by matrices

Bh =
.o z  i T U . i i  /

Further, it is given

, , -1 „  / 1  + 0.25 z"1 0
1 2 ’ Mr ~ y  о 1 + 0.25z"1

After a short calculation procedure the following matrices can be determined

0. _  I —1 + 0.2z_1 - 0 .6 -
R ~  1 2 + O.lz"1 0.2 + 0

1.14z-1 \  
1.28z"1 J ’ BR = 0.5 г '1

0.1 z " 1
0

The feedback part of the controller can be calculated from (8) which in this case 
takes the form

di d2\ A - z - 1 0 W - l  + O ^z-1 
1 — z"1 J ^ 2 + O.lz"1

- 0 .6 -  1. MZ-
^3 d j V o О. 2 + 0.28z-

+ 1
f  Cl + c2z~ 
^c5 + c6z"

1 c3 + c4z " 1 \  /  0 
1 c7 + cgz~1 J  \0 .5 z -1

-  0.1 z " 1 \
o ) ~

/1  + 0.25 z - 1 0 \— Il 0 1 + 0.25 z"1У

r\ and Г2 result from (10) as follows

(1 -  z_1) s i - O . l z - V x  = 1 + 0.25z-1 

(1 -  z -1 )s2 + 0.5 z-1 r2 = 1 + 0.25 z " 1
rj = -12.5,

VL = 0
r2 = 2.5 
2.5'

-12.5 0

5. Conclusion

From the presented theory as well as the illustrated example, it follows that 
a matrix Diophantine equation and r scalar Diophantine equations have to be 
solved in order to obtain a regulator which insures a stable and decoupled overall
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system. By extending the right side of equation (1) by vector e(f), a nonzero initial 
condition influence on the control system as well as both, deterministic or stochastic 
disturbances can be treated. However, each of these cases needs a special analysis. 
Furthermore, the designed algorithm can serve as a good basis for multivariable 
self-tuning control.
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A METHOD OF DESIGNING OF OBSERVABLE OUTPUT 
ENSURING GIVEN ZEROS LOCATION

Y e . M . S m a g in a

( Tomsk)

(Received June 12, 1990)

T his p ap er deals w ith th e  p rob lem  of choosing a n  observable (o u tp u t)  vector in  
linear tim e-invariant system  ensuring  a rb itrary  zeros lo ca tio n . The co nd itions required for 
th e  so lu tion  of th is p rob lem  un d er n a tu ra l  conditions o n  th e  m atrix  o f th e  output: rank- 
fullness a n d  system  observability a re  given. The sim ple  analytic  m e th o d  of the solution 
which can  easily be  p rogram m ed for com puter is p resen ted .

1. Introduction

In some problems of estimation and filtering it is assumed that it is possible to 
choose sensors in the systems forming the desirable vector of observations (output) 
[1]. It is known that system zeros greatly influence the dynamic behaviour of any 
control or estimation (filtering) system [2]. Zeros are invariant relative to both the 
state and output feedback and they can be shifted only by proper choice of the 
input or output system-matrix. Therefore, in filtering (estimate, control) systems 
the problem of choosing the vector of an observation (output) ensuring arbitrary 
zero location arises. For the first time conditions of the solution of this problem were 
proposed by H. H. Rosenbrock [3]. But there the restrictions on the choice of the 
output (observable) matrix were not taken into account, i.e. fullness-rank and the 
observability of the system. This problem with such restrictions was considered 
lately [4], where an iterative method of the solution was proposed. This paper 
presents further developments of the results in [5] which enable us to formulate and 
prove the sufficient conditions of the solution and propose a simple computation 
method.

2. S tatem ent of the problem

Consider a linear time-invariant system described by the differential equations
x = Ax + Eu, ( 1 )

1 Akadémiai Kiadó, Budapest 
Pergamon Press, Oxford
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У =  Hx,  (2)
where x is an n-vector of system state, и is an r-vector of arbitrary input, у is an 
r-vector of observable output, A, E, H  are real constant matrices of appropriate
sizes.

The behaviour of any dynamic system depends both on its poles and zeros. 
The zeros of system (1), (2) are defined as complex numbers s = s,- satisfying the 
following rank-inequality

rank P (s)|ä-j, = rank sí I  -  A 
H

- E '
0 < n + r. (3)

It is assumed that rank E  = r and the pair (A, E) is completely controllable. Let 
<p(s) be a zero polynomial of the system (1), (2)*. It is obvious that <p(s) = det P(s). 
We denote the desirable zero polynomial as

V>*(s) =  №  -  *). 
* = 1

(4)

where s; (i = 1,/t) are given distinct real or complex-conjugate numbers, p is the 
number of zeros. As the maximum number of zeros in an n-order system with r 
inputs and outputs is n — r, we put /i =  n — r. We consider the problem of defining 
of such output matrix H  ensuring the coincidence of the zero polinomial system (1), 
(2) with polynomial (4) and at same the time satisfying the following conditions:

pair {A, H)  is observable; (5a)
rank H — r; (5b)
rank (HE) — r. (5c)

The necessity of the conditions a) and b) is clear. Condition c) follows from 
the proposed method of the zero assignment. This condition ensures that n-order 
system with r inputs and r outputs have exactly n — r zeros [2].

Usually, this problem is considered for systems with the same number of 
inputs and outputs since otherwise the system “almost always” has no zeros and 
the problem of zero assignment does not arise.

3. T he main result

First, we note that securing the condition (5a) depends on the location of the 
desirable zeros on the complex plane and the controllability of the pair (A, E),

* M atrix  transfer fu n c tio n  of the sy s tem  ( l ) ,  (2) from y(s) to  u (s)  is given b y  H ( s l  — A )~  1E .

MAGYAR
TUDOMÁNYOS AKADÉMIA 

KÖNYVTÁRA
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T h e o r e m . The problem of defining matrix H ensuring both setting of zero 
polynomial for system (1), (2) and the simultaneous fulfilment of condition (5a), 
has a solution if the pair of matrices (A, E) is controllable and any given set of 
distinct zeros s,- does not coincide with every set of eigenvalues of the matrix A.

This result is proved in [4]. It implies that a matrix H  ensuring condition 
(5a), always exists if the conditions of the Theorem are true.

Now, it is necessary to define the form of the matrix H,  satisfying condi
tions (5b), (5c). For this purpose we transform the system (1), (2) into canonical 
Yokoyama, Kinnen [5] form. This transformation always exists if the pair (A , E) is 
completely controllable. The nonsingular transformation matrix is denoted by N.  
The canonical system output matrix C will be

C = H N ~ l . (6)

Let us carry out the partition of the matrix N ~ l into v blocks P, of dimension
n x /,■

N - 1 = [P1)P2, . . . ,P , ] ,  (7)

where и is the smallest integer (i/ < n) such that rank[P, Л Р ,. . .  , A v~l E] = n and 
integer numbers l{ {l\ < < . . .  < lv = r, /i +  /2 +  ...  + /„ =  n) are characteristic
for the controllability of the pair (A , E):

li = rankfP, A E , ... ,AU~' — E] —ra n k fP ^ P ,. . . ,  Av~i~1 E], l„ = r, i=  l , v - l .  

Let us carry out the partition of matrix C into 1/ blocks

C = [C1,C2, . . . , a ] ,  (8)

where

Ci = HPit i = l , i / . (9)

If det Cv ф 0 then system zeros of (1), (2) are eigenvalues of the ((n — r) x 
(n — r)) matrix [6]:

0 [OJ/J 0 0 1 } h
0 0 [0Л ] • 0 } h

0 0 0 •• [0

Ql - Q 2 - Q 3 . —Qv-i  ■

(10)

h-ih i.
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where

Qi — Cv 1C i ,  1 =  r ,  ( 1 1 a )

Qi = [0,lK-1\C;1Cl , /„_! < r, (lib )

7;t is the unity (/,■ x if) matrix.
A s s e r t i o n  1. Matrix C„ of dimension r  x r is nonsingular if and only if 

det(HE) ф 0.
Proof. Using (7), (9) we define the matrix Cv

C„ = HP„

From canonical Yokoyama, Kinnen form [5] we can write

NE = 0
Gv ’

( 12)

where G„ is an (r x r) nonsingular matrix. Defining the matrix E and using the 
block partition N ~ l (7) we get

E = PVGU.

Multiplication of both sides of the last expression by H from the left, together with 
(12) give the following rank equalities

rank(#i?) = rank(#P„G„) = rank(C„G„) = rankCV,

which prove the assertion.
A s s e r t i o n  2 . For any given polynomial tp* (s) of order n — r one can always 

find an (/„_! x (n -  r)) submatrix Q — [ -Q b -Q 2, • • •, — Qv-i]  such that roots of 
polynomials det(s/„_r — Z) and v?*(s) coincide.

the following equality holds

det(s/„_r — Z) = det

= s

? = [--9b-- 92, • • • -g „_ r] is a

■ s -1 0 0
0 s -1  .. 0

0 0 0 .. -1
-9i 92 93 •• £ “f" Я.ТХ — Г -

r + <Zn- rs" - r- i  + ■• +  9i •

That is, the vector row [ — ? i ,  — • • • > ~ 9 n - r ]  always exists for which the
right-side of the last expression is a desirable polynomial.
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Consider the case /„_ i > 1. We set the first /„_i — 1 rows of the sub matrix 
Q in such a way that every row has only one unit element and the rest are zeros. 
Unit elements are situated in such a way that the first n — r  — 1 rows of Z  form 
a submatrix with one unit element in the every but the first column. The other 
elements of this submatrix are zeros. The last row elements of the submatrix Z  are 
uncertain. Denote these elements as —9 i , —9 2 , •••, ~ 9 n - r  ■ One can easily verify 
that qi can be defined so that the Assertion 2 is fulfilled. Indeed, this matrix Z  
can be transformed by permutation of the first row to the companion form Z * . 
Therefore, the following equalities are true

det(sln_r - Z )  = ( - 1 ) “  det(s/„_r -  Z*)  =

" s - 1 0 . . . 0 ■
0 s - 1  . . . 0

- 9 i 92 93 S Я.П — Г -

s " - r +  In -
n - r - l_r o +  • • • +  9i)>

where a is the number of row permutations. It is obvious that elements qi (i — 
l ,n  — r) can be fixed so that the roots of the polynomial det(s/n_r — Z )  coincide 
with the roots of <p*(s), i.e.

det(sfn_r -  Z )  — <p*(s). (13)

The proof is complete.
So, by making use of Assertion 2 we can always find a submatrix Q ensuring 

the validity of (13). With the help of Q we can define matrix C.
Case 1. /„_! = r. From (11a) we get Ci =  C„Qi (i = 1, v — 1) and it implies 

the following structure of the matrix

C  = C u[Qlt Q 2 , • • • ,  Q v - i ,  I r ] = Cv[ - Q ,  Ir].  (14)

In (14) the (r x r) submatrix C v is chosen according to the condition that rank C v = 
r. By Assertion 1 it implies condition (5c). Moreover, it is obvious that this matrix 
C  (14) has the full rank.

The matrix output H  of the system (1), (2) will satisfy conditions (5a)-(5c) 
and it is defined by (6) as

H  =  C N (15)
Case 2. i < r. From expression ( lib )  it follows that the upper blocks 

Qi = [Ir- t„_1,0]C~1Ci  of the submatrix C ~ 1Ci  are arbitrary. Combining (lib ) 
and the last equality

q : = Qi
Qi

-  C ~ l Ci
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we consider the matrix

Q' = Q
Q = [ - Q \ - Q i ........ - Q t - 1]

Since Q* = C„ 1 [C i , . . .  ,CV_i],  then the matrix C has the form

c  = c v[Q{, q ; ......., i r] = c„ [ -g * , / r]. (i6)

Matrix H is defined by (15).
So, we come to the following summarizing algorithm for zero placement:

1. Calculation of the eigenvalues of matrix A,
2 . Setting of the desirable zeros sT ,S 2  • • •, s n - r  ( s f  ^  s j ) ,  which do not coincide 

with the eigenvalues of matrix A ,
3. Verification of the controllability of the pair (A ,E ). If pair (A ,E ) is not 

controllable then the problem has no solution,
4. Definition of integers v, li, h ,  . . . ,  К and matrices N, TV-1 ,
5. From condition (13) finding the (/„_i x (n — r)) submatrix Q, if i < r that 

forming matrix Q*,
6. From the condition rankC„ = r designing submatrix C„,
7. Calculation of matrix C from (14) or (16) and matrix H  from (15).

Remark. The problem of finding submatrix Q ensuring the fulfilment of con
dition (13) coincides with that of a state feedback eigenvalue assignment (modal 
control by state feedback) [6]. To satisfy condition (13) only one row of the subma
trix is needed. Therefore, if r > 1 then Q has ( ( r— 1) x (n — r)) free elements. These 
elements can be used to satisfy supplementary requirements to the system (as in 
[7]). For example, the problems of minimization of a performance I  = tr H H T or 
ensuring the structure restriction on the matrix H  can be considered in a similar 
way.

4. Numerical exam ples

Example 1. Consider system (1), (2) with n = 4, r = 2 and

■2 1 0 0- ■1 0-
0 1 0 0 , E = 0 0
0 2 0 0 0 1

.1 1 0 0. .0 1.

(17)

Let the desired zeros be si = — 1, s2 = —2, (v?*(s) = s2 + 3s +  2).
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Check the conditions of the theorem. One can verify that the pair (17) is 
completely controllable and eigenvalues of matrix A do not coincide with sj", sj. 
Since the rankfT?, .4E] = 4 then for this system we get i/ = 2, l\ =  /2 = 2.

We find the matrix of transformation N  and N ~1 as

■0 0 - 1 - r ■ 0 1 1 0 -

0 1 0 0
,  N - 1 =

0 1 0 0
1 - 1 0 0 - 1 - 1 0 1

. 0 1 0 1 . .  0 - 1 0 1 .

Since in this case n — r = 2, \ = l\ = r = 2, then the upper block in matrix Z
is absent. This matrix has following form

Z = Q = - Q 1.= - q  1
. - 9 3

- 9 2
- 9 4

We set gj = 1, g2 = 1 and define a polynomial as

det(«7 — Q) = det s + 1 
93

1
s  +  94

s2 + s(l + q4) — 9з + 94.

By making comparison of the right-hand part of the last expression with the poly
nomial <p*(s) we obtain the following equations: 1 + 94 = 3, —93 +  94 = 2. Hence 
9з = 0, 94 = 2. Thus, we get

Q =
- 1

0

Putting Cv =  I2 and substituting these C„ and Q into (14) yields

1 o' '1 1 1 o' 1 1 1 o'
0 1 0 2 0 1 0̂ 2 0 1

Matrix H can be found by (15)

H = 1 0
0 3

-1
0

1
1 ' (18)

Substituting (18) into correlation (3) shows that zero polynomial coincides with 
the desirable one.

Example 2. Consider the system in Example 1 with the matrix

ET = 1 0  0 0 
0 0 0 1
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Let the desired zero polynomial be as follows y>*(s) = s2 +  3s + 2. One can easily 
verify that for this system the conditions of the Theorem holds. But since the rank 
[E,AE,A2E] = 4, then v =  3, ly = /2 = 1, /3 = 2. The transformation matrix N  
and N~l are as follows [6]

-0 0 0.5 0- -0 0 1 0-
0 1 0 0 , N - 1 = 0 1 0 0
1 0 0 0 2 0 0 0

.0 1 0 1. .0 -1 0 1.

As in this case n — r — 2, lv- \  = /2 = l < r  = 2 and, therefore, 
Z has the form

, where [ - 51, -q2] = Q 

Substituting 51 and q2 in (13) yields the equation

Z = 0
- 9 1 -92

the (2 x 2) matrix

det(s/ 2 — Z) = det s
92

-1
s +  92

= s2 + sq2 + 91= <p’(s).

From here it follows that qi = 2, q2 = 3. Thus, we obtain Q = [-2 ,-3 ]. Put 
Q — [1 1] and form the matrix

1
-2

Putting C„ = 0
1 and substituting Cu and Q* in (16) yields

'1 o' 1 1 1 o' 1 1 1 o'
_0 1 2 3 0 1 2 3 0 1

Using (15) we find the matrix

H — CN = '1
0

1
4

0.5
1

0
1 '

5. Conclusion

The problem of system zero placement in linear system using observable (out
put) vectors is considered. Conditions for complete zero placement are given. A 
computational algorithm for zero placement has been developed.
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М етод проектирования наблюдаемого выхода, 
обеспечивающего заданные нули

Е. М. С М А Г И Н А

(Т о м ск )

Л л я  с и с т е м ы  оц ен и ван и я  и /и л и  ф и л ь т р а ц и и  р а с с м а т р и в а е т с я  проблем а в ы б о р а  
век то р а  н а б л ю д е н и я  (в ы х о д а ) , о б есп еч и в аю щ его  заданны е н у л и . П р е д л а га е т с я  а н а 
л и т и ч е с к и й  м е т о д  реш ения д а н н о й  зад ач и , о сн о в ан н ы й  на о п р е д е л ен и и  нулей  в т е р 
м инах  со б ств ен н ы х  чи сел  сп ец и ал ь н о й  м а т р и ц ы , сф о р м и р о ван н о й  на основе м а т р и ц ы  
вы х о да  с и с т е м ы . П о л у ч ен ы  пр о сты е  у сл о в и я  р азр еш и м о сти  п р о б л е м ы  з а д а н и я  ну
лей  при с л е д у ю щ и х  е стес тв е н н ы х  о гр ан и ч ен и я х  на  м атр и ц ы  в ы х о д а : п о лнота  р а н г а ,  
н а б л ю д а е м о с т ь  систем ы  о ц е н и в а н и я  или ф и л ь т р а ц и и . П р ед л о ж ен  ал го р и тм  р е ш е н и я  
вы бо р а  м а т р и ц ы  н аб л ю д ен и я  (в ы х о д а), л егк о  р е ал и зу ем ы й  н а  Э Ц В М . М ето д  и л л ю 
с тр и р у е т ся  д в у м я  ч и сл о в ы м и  при м ерам и .

Е. М. Смагина
Сибирский физико-технический институт 
им. В. Д. Кузнецова
СССР, 634050, г. Томск, пл. Революции, 1.
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MINIMAX FILTERING IN REAL TIME 
OF MULTISTAGE SYSTEMS

V. I. S h ir y a e v

( T c h e l y a b i n a k )

(Received S eptem ber 9, 1990)

For nonlinear m ultistage  system s w ith  geometric restric tio n s in s ta tis tica lly  uncertain  
situ a tio n s there has b een  developed a n  estim ation  a lgorithm  realized in re a l tim e. For this 
p u rpose  th e  basic calculations are be ing  m ade on the  b asis  of a  priori a n d  a  posteriori 
d a ta  separa tion  before th e  results of th e  nex t m easurem ent a re  obtained. T h e  volume of 
calculations perform ed in  real tim e does n o t m uch exceed th e  K alm an filter.

1. Introduction

This paper is devoted to the problems of dynamics estimation of phase vector 
of linear control multistage systems functioning in jerks, by the results of process 
parameter measurement under additive disturbances influence [1, 2]. Actual for 
the supplements [3, 4] are the problems when jerks and disturbance information are 
almost unavailable and reduced to either determining their coordinate measurement 
areas or the whole class of feasible distribution functions determining the deviation 
realization if the latter are of statistical origin.

The above mentioned situations resulted in the filtration theory development 
in a game-like organization [5-11]. In [6-8] minimax filtration determinative corre
lations are given for systems containing deviations and disturbances of both feasible 
and uncertain character at the same time. In this case, filtration algorithm is re
duced to making information sets and their Tchebyshev centers, taken for phase 
vector estimation. However, constructive procedures of making both information 
sets and their Tchebyshev centers are not indicated for real time. Therefore, real
ization of the algorithm in real time is possible only for symmetrical areas of jerks 
and disturbance alterations of uncertain character.

In this paper a minimax filtration algorithm is given, when deviations and 
disturbance alteration areas are either convex polygons or can be approximated by 
them. Our paper develops the approach [6-9], [13-15] and adjoins [10] on convex 
polygon use in the optimal systems theory.

Akadémiai Kiadó, Budapest 
Pergamon Press, Oxford
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2. Prelim inary problem form ulation

Let the process dynamics be described by a linear n-vector system

Xk+i — AkXk + BkUk + Ck^k, к — 0,1......  (2.1)

After each stage in the system the r-vector parameter yk measurement is 
performed, where у*-parameter is connected with x^-vector by a linear correlation

Ук = GkXk + HkVk + rjk, k = 1 ,2 ,—  (2.2)

Here £i, r)k are independent Gaussian sequences, at that

М^к-Мт]к - 0 ,  M ik^ ' i -Q kh i ,  Mriky'i = Rk^ki,

where M  is the expectation, the prime (') denotes the transpose, Ski is the Kronecker 
symbol, Qk and Rk are the assigned n x n and r x r positively defined covariations 
matrices. The и к G Uk, Vk G Vjt determinative influences are not known a priori.

Let us assume that the (2.1) system starting point xo is a Gaussian vector 
independent of rjk with the known positively defined covariation matrice

M(x0 — M x0)(x0 -  Mx0)' = P0,

but with the a priori unknown average value Mxо G X q, the known convex compact 
from Rn. The matrices Ak, Bk,  Ck,  Gk, Hk of corresponding measure and the 
convex compacts Uk, Vk are assumed to be known.

On the known realizations of observations yiv(') = {j/i.......Улг} it is necessary
for each TV > 1 to find the estimate x*(-) = x*N(y^(-)), being the Tchebyshev center 
of the set [6]

X n  — { xn = M[xfi  I yiv(-)> & v ( 0 ]  : Zn  £  Hn } ,

where M  [• | Улг(-), £/v(-)] is the operator of the conditional expectation taken under 
fixed Cn()> XN — M  [xjv I yw('),Gv(-)] is a solution of the known problem of the 
optimal average quadratic linear filtration, E дг =  { G v O  € Uj, j  = 0,N — 1\ 
Vj G Vj j  = 1, TV; M x 0 G A0}.

3. Minimax filte r determ inative equation

The solution of the problem formulation includes the description of Xjv sets 
change dynamics, determining the estimate x*N of the vector xjy. For the sets Xk,  
starting from the known X 0 there are [6, 8, 15] equations
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A4+i — X k+1 + A k+iyk+l-,

Xk+i = AkXk + I44+ii > 
Wk+I = BkUk + Hk+i ( - V k+i).,

(3.1)

Here matrices Ak, B k , Hk+i, A*+i are of the form A k — FkAk,  Bk — FkBk,  
H k = Ak+iHk, Fk = I  -  A*+iGjfc+i, At+i = Pk+iGk+iRkh, 7 is a single n x  n 
matrix, the matrix of covariations Pk satisfies the recurrent correlations of Riccati 
type [6].

In (3.1) the set sum is understood in the sense of Minkovsky [10] and finding 
it in real time (at the rate of obtaining the measurement results Ук+i) is difficult.

Note that the set Wk is completely identified by the a priori data. Operations 
over the sets [6-9] are performed with the help of the basic functions. This poses 
very strict requirements for the use of high speed computers realizing the algorithm 
of minimax estimation in real-time systems and, therefore, restricts their utilization 
except for some cases. Thus, for symmetrical sets X q, Uk, 14 equation for [6, 7] 
estimation has the form

xit+i — Akxl + Bkul — Hk+iv*k+1 + Ak+iyk+i, £ — 0 ,1 ,. .. ,  (3.2)

where uk, are the Tchebyshev centers of the sets Uk, l4 + i, respectively.
Let us consider the minimax algorithm development under the non-symmetri- 

cal sets Xo, Uk, 14. Let Xk+1 be the center of the set X k+i, then, for the estimation 
of x*k+l from (3.1), we directly get

xit+i -  x!t+i + Ai+ij/jfc+i, (3.3)

where xk+1 can be calculated before the measurement results are obtained. In this 
case the estimation problem is reduced to developing the set X k+\ and finding its 
center x£+i- If, for the period of time [k,k + 1], these problems can not be solved 
let us present the system (3.1) in the form of [6, 15]

Xk+\ = Xk+i + Lk+i, к = 0 ,1 ,...;
Lk+i = A kLk + Ak+iyk+i, L0 = 0; >
Xk+i — AkXk+i + И4+1, X o = X q-

(3.4)

From (3.4) it follows that the set Äi+jis completely specified by the a priori data. 
And we get the informational set Xk+i by displacing the set Xk+i on the vector 
Afc+i) which is specified above the measurement results. It is obvious that this 
statement is also true for the Tchebyshev centers xit+i> x*k+1 of the sets A4+i, 
Xk+i, respectively

xi+i — xifc+i +  Lk+i- (3.5)
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Formulation of the results:
T h e o r e m  3.1. If system (2.1) is given, calculating equalities (2.2) and ex

ecute supposition p. 310. Then follows the optimal estimation of the expression 
correction (3.5), and for informational set, the true recurrent correlation (3.4).

The advantages of the presentation of the filter in the form of (3.4), (3.5) 
lie in the fact that the sequences of the sets X, (i = 0 ,1 ...)  and their centers x * 
(i = 0 ,1 ...)  do not depend on the signal realized and are completely identified 
by the a priori data. Consequently, from (3.4), the sequences X,-, x* (i = 0,1 ...) 
can be determined before designing the filter, and thus, the volume of calculations 
being performed in real time can be significantly reduced. The sequence of centers 
is to be entered into the computer, by which the filter will be realized. Then the 
realization of the filter functioning in real-time is reduced to the calculation of 
AkLk, and before obtaining the results of the next calculation у*+1 we shall get 
the estimate xfc+i directly from (3.5).

Thus, to realize algorithms (3.1)—(3.5), the function development of the sets 
Х* or Xfc and their centers must be found. The solution of these problems we shall 
consider later.

4. D esign of the sets Xj, and finding their Tchebyshev centers

To realize algorithms (3.1), (3.3), and functions (3.4), (3.6), the sets Xt+i 
and Xk+i are he developed as well as their Tchebyshev centers are to be found. 
Consider only the development of the set X t+i, since the development of X*+i is 
similar. Let us present the sets Xo, Uk, V* (Jfc = 0 ,1 ...)  in practical calculations 
in the form of polyhedra or ellipsoids.

The set Xjt is a Minkovsky-type sum of the sets Л^Х*, BkUk, Hk+iVk+i- 
The ways of development of the set sum for convex polyhedra are given in [10, 15], 
for the ellipsoid in [12]. If the polyhedra are defined by their apexes the problem is 
reduced to designing a convex cover [10, 15, 16]. The number of the vertex points 
of the polyhedron Xt+i grows enormously with the increase of к and the initial 
polyhedron is to be approximated by the one with less apexes or by an ellipsoid.

The Tchebyshev center of the set X* under the known vertex points ж; (l = 
1,L), is the point x* for which it is true that

min max ||x/ -  z\\2 = ||ж  ̂ -  ж*||2, (4.1)
zeXk  i = i ,l

where (i = l,m) are the extreme vertex points. From (4.1) it follows that 
the point x* is the center of the surrounded hypersphere of the minimal radius 
f>k = ||ж(; — **|| going through the extreme vertex points. This property allows us 
to develop a recurrent algorithm for finding x* and 8^.
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5. Exam ple

Let us consider the model (2.1), (2.2) employed in the navigational and radio- 
locational information processing systems, where the matrices and the vectors are 
of the form

'1 10' 
0 1 , Bk =

'o'
1 . G'k =

T
0 o° II 1 0.1 ' 

0.1 0.11

Ck = Bk, Hk = 1, Qk = 9 • 10 2, Rk = 1, X k  E R2; ик,ук,Ук,^к,Пк £ R1-
The set Xo (Fig. 1) is defined by its vertex points a^1) = [1,2]', x ^  — [1, — 1]', 

ad3) [ -1 ,-1 ] '. The sets [/*., Vjt are the segments of the form f/j, € [—0.913; 0.913], 
Vk E [—1.075; 1.075]. To simplify the calculations of the matrices A jt, A k  it was 
assumed that all к are equal to

' 0.928 ' _ ' 0.007 0.7'
0.0804 , and A 4 = -0.08 0.2

and Xk = 0, Vk = 1.

2
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The sets Xk (k = 0,3) and their centers x£ are given on Fig. 1. In this 
example both the influence of the set AT on X 3 and the difference between X 2 and 
X 3 are not relatively large, although the number of the vertex points in the set Xj, 
increases with k. The set Xk, according to (3.4), is obtained by shifting the sets Xk 
on the vector Lk- In Table 1 the centers x*k of the sets Xk, one of the realizations of 
measurement j/t, vectors Lk and their coordinate estimates хк = £*k + Lk (k = 0, 3) 
are shown.

T a b le  1

к 0 1 2 3
xt 0 0,35 0,1 0,01

0,5 0,11 -0,05 0,015
Ук - 2,38 0,23 0,52
Lk 0 2,209 0,501 0,433

0 0,191 -0,12 -0,022
xt 0 2,559 0,601 0,443

0,5 0,301 -0,17 -0,07

6. C on c lus ion s

An algorithm of minimax estimation has been developed. Its peculiar feature 
is that, on the basis of splitting the a priori and a posteriori data, the most labor 
consuming, as far as calculations are concerned, operations of designing the sets 
Xk, finding their Tchebyshev centers are performed by means of the a priori data 
beforehand (in the process of designing the filter, before the results of the next 
measurement are obtained). This enables us to realize the algorithm in real-time.
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М инимаксная фильтрация в реальном времени 
многошаговых систем

В И.  Ш И Р Я Е В  

(Ч е л я б и н с к )

Р а с с м а т р и в а е т с я  м и н и м ак сн ая  з а д а ч а  оценивания ф а зо в о го  со сто ян и я  д л я  л и 
нейны х м н о го ш аго вы х  с и стем  в и д а  (2 .1 ), подверж енн ы х в о зд е й с т в и ю  как с л у ч а й н ы х , 
т а к  и н ео п р ед елен н ы х  во зм у щ ен и й . П роцесс н аб л ю д ен и я  со п р о в о ж д ае тс я  по м ех ам и  
как  с л у ч а й н о г о , т а к  и неопр еделен н о го  х а р а к т е р а . С л у ч а й н ы е  возм ущ ени я и пом ехи 
я в л я ю т с я  н езав и си м ы м и  гау ссо в ск и м и  п о с л е д о в а т е л ь н о с т я м и  с нулевы м  с р е д н и м  и 
и звестн ы м и  м ат р и ц а м и  к о в ар и ац и й . О т н о с и т ел ьн о  во зм ущ ен и й  н ео п р ед елен н о го  х а 
р а к т е р а  и з в е с т н ы  то л ьк о  в ы п у к л ы е  к о м п ак ты , к оторы м  они п р и н ад л еж ат .

З а  м и н и м ак сн у ю  оценку п р и н и м ается  ч еб ы ш евски й  ц ен тр  ин ф о р м ац и о н н о го  м но
ж ес тв а , у д о в л е тв о р я ю щ и й  соотнош ен ию  (3 .3 ) . Н а  основе р а зд е л е н и я  ап р и о р н ы х  и 
ап о стер и о р н ы х  данны х д л я  ин ф орм ац ионны х м нож еств  п о л у ч ен ы  соотнош ен ия (3 .1 ),

2
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(3 .4 ) . Э то  п о зв о л я е т  п р о и зв ести  о сновной  объ ем  в ы ч и с л ен и й , с в я з а н н ы й  с п о стр о 
ением  и н ф орм ац ионны х м н ож еств  за р ан ее , до п о сту п л ен и я  р е з у л ь т а т о в  очер едн о го  
и зм е р е н и я  как  в з а д а ч е  ф и л ь т р а ц и и , т а к  и в з а д а ч е  с гл а ж и в а н и я . П о л у ч ен ы  оценки 
д л я  чебы ш евски х  р а д и у с о в  м н о ж ес тв , что  п о зв о л я е т  оценить и о ш и б к и  о ц енивания  
по ап ри орн ы м  д а н н ы м .

Р а с см о тр ен ы  способ ы  п о с т р о е н и я  и н ф орм ац ионного  м н о ж ества , которое я в л я 
е тс я  сум м ой  по М и нковском у  с о ст ав л я ю щ и х  м н о ж ес тв  в за д а ч е  ф и л ь тр а ц и и  и ге о 
м етр и ч ес к о й  р а зн о с т ь ю  м н о ж еств  в за д а ч е  с г л а ж и в а н и я . В ы п у кл ы е  к о м п акты , о п р е
д е л я ю щ и е  гео м е тр и ч ес к и е  о г р а н и ч е н и я , п р е д л а га е т с я  ап п р о к с и м и р о в ат ь  вы п у к л ы 
м и м н о го гр ан н и к ам и  при  за д а н и и  м ного гр ан н и ко в  у гл о в ы м и  т о ч к а м и . Ч еб ы ш ев ск и й  
ц ен тр  м н о го гр ан н и к а  я в л я е т с я  ц ен тр о м  оп и сы ваю щ ей  его ги п ер сф ер ы  м и н и м ак сн о 
го  р а д и у с а . Э то с в о й с т в о  п о з в о л я е т  п о стр о и ть  а л г о р и т м  н ах о ж д ен и я  чебы ш евски х  
ц е н т р а  и р а д и у с а  м н о го гр ан н и к а .

П р е д л а га ем ы й  под х о д  п о з в о л я е т  п о стр о и ть  м ини м аксны е а л г о р и т м ы  о ц ен и в а 
н и я  д л я  систем  с г ео м е тр и ч ес к и м и  о гр ан и ч е н и я м и , р е ал и зу ем ы е  в р еал ьн о м  врем ен и .

В. И. Ширяев
Челябинский политехнический институт 
СССР, 454 080 Челябинск, пр. Ленина, 76
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VISCOSITY SOLUTIONS OF THE BELLMAN EQUATION 
ON AN ATTAINABLE SET
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By a n  ap p ro p ria te  m odification of th e  viscosity so lu tio n  concept, we in tro d u ce  a 
no tion  so lu tion  of a  P D E  th a t  is applicable, am ong others, to  th e  Bellm an eq u atio n  a n d  first 
general classes of o p tim a l contro l problem s w ith  the  only re s tr ic tio n  on a  payoff functional 
th a t  th e  stopp ing  tim e is b o u nded  by a  fixed num ber T . We consider th is P D E  on  the 
a tta in a b le  se t from  По, a  set of given in itia l conditions. We prove b o th  ex istence and 
uniqueness resu lts  fo r o p tim al control p rob lem s. T he app ro ach  is illu stra ted  w ith  several 
exam ples a n d  com m ents.

1. Introduction

Consider an object whose dynamics are described by a system of differential 
equations

= (t,x) <E [0,T] x R", A( t )eU ( t ) ,  x(t„) = *<,. (1)

The values of each piecewise continuous control A(-) are selected by an agent who 
tries to make the cost

C = C[x(-,i0,x0,A(-))] = д(т,х(т)) + J  h(t,x(t),\{t))dt  (2)
<0

of transferring the object from a given initial state (<o,Zo) G fio to a given terminal 
set Г C Rn+1 as small as possible; here x(t,to,xo, A( )) stands for the value of the 
unique trajectory x(-, t0, x0, A( )) at time t > t0 that results from the control A( ) 
and the initial point Xo at to- The stopping time is the first moment t > to for 
which x (t,t0,x0, A()) £ Г. We consider the optimal cost function

и(<о,*о) = inf{U[x(-,<0,x0, A(-))] : A(-) £ Л) (3)

A k a d é m i a i  Kiadó, Budapest 
Pergamon Press, Oxford



on Cl, the attainable set form Do, he., on the set

f i= { ( i ,z ) :  x = x(i,t0, *o, A(-)), (to,x0) £ Cl0, to < i  < r, A(-) £ Л}, (4)
with Л standing for the space of all piecewise continuous controls A( ). It follows 
from this definition that Cl is invariant under the flow generated by equation (1),
i.e., Cl = {(<, x) : x =  x(t, t,x, A(-)), (f,*) £ Cl, A(-) £ Л}. It has been known [6] 
that u(t,x) : Cl —* R satisfies the Bellman equation provided it is differentiable. 
Since usually this is not the case, the natural question arises how to overtake this 
difficulty. Several authors worked out around this problem in the 60’s and the 70’s 
[13, 16, 17, 18, 24, 29].

From the general theory of PDE point of view, this problem was practically 
solved by M. G. Crandall and P. L. Lions who did a pioneering work (see, for 
example, [8-11, 25-28]) by developing a new approach based on their viscosity 
solution concept, and by their continuators; see, e.g. Ishii [19-23] and Sauganidis 
[30-32]. Independently of Crandall and Lions, a different approach to the problem 
of solving the Bellman equation has been found by Subbotin [34-38] who proved 
in [37] that his solution concept is equivalent to that of Crandall and Lions, when 
applied to fixed time duration problems; an interesting feature of viscosity solutions 
was discovered in [38] where Subbotin pointed out a close relationship between 
differential games and viscosity solutions.

The viscosity solution theory was applied in [5] to prove that the value of a 
differential game with fixed time duration is the only viscosity solution to the Isaacs 
equation. The natural question arises how to extend this result to control problems 
and differential games with a variable time of duration. A few authors have already 
started to work around this problem. It has been proved, for example, that given a 
partial differential equation wt + H{t , x, Dw) =  0 with u>(0, x) = g(x), one can find 
a differential game with the property that its upper value is the viscosity solution 
to this PDE [15]; see also [14], where a similar result was obtained. In the latter 
paper the authors were able to apply the viscosity solution concept to differential 
games with variable times of duration. However, the terminal set was assumed to 
coincide with the boundary of Cl, what considerable restricts the applicability of 
these results to differential games.

Some other results in this direction have been obtained quite recently. For 
example, time-optimal control problems have been studied in [33] (a linear case) 
and [2] (a nonlinear case). So-called generalized time-optimal control problems, as 
well as generalized pursuit-evasion games (h(t, x , X) > ho > 0) have been studied in 
the viscosity solution framework by Bárdi and Soravia [3]; see also another paper 
by the same authors [4], and a paper by Berkovitz [7], both dealing with differential 
games.

In this paper we introduce a modification of the viscosity solution concept 
(Definitions 2.1, 2.2) that is suitable for a board class of nonlinear problems occur
ring in optimal control theory with the only restriction on a payoff functional of 
the form (2) that the stopping time r  is bounded from above by a given number T.
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The main results of Section 3 are Theorem 3.1 (an existence result) and Theo
rem 3.2 (a uniqueness result) referring to the partial differential equation (12) that 
encompasses the Bellman equation, defined on the attainable set Cl. We do not as
sume Cl is open or closed (Comment 3.1); also, the continuity of a viscosity solution 
is not required (Example 3.1) and the terminal set Г need not be the boundary of 
Cl (Example 2.1) or even its part (Example 2.2). A preliminary version of these 
results was announced in [39].

2. Assum ptions and the viscosity solution concept

In Sections 2 and 3 we need the following assumptions; below Q = [0,T] x Rn.

The multifunction U : [0,T] —► R* is continuous (in the

Hausdorff metrics sense), all closed-valued sets U(t) lie in a
_ . ( 5 )

fixed ball U C R* and, for each A £ U(t), there is a selection

A(t) from U(t) that is continuous at i  and satisfies X(t) = A.
The function f  : Q x U  —* R", g : Q —► R and h : Q x U  —► R

t . ( 6 )are continuous.
The function f ( t ,x ,  A) is Lipschitz in x, i.e. for all x £ Rn, 

x  £  Rn, A £  U(t) one has

T (7)

II f ( t ,  x, A) -  f (t ,  x, A) 11 < k(t) ||x -  i | | ,  J  k(t) dt < oo.
о

Г is a closed subset of R"+1. (8)
There exists a T > 0 such that, for each x(-,to,xo, A(-))

with (to, xo) € Clo, one has r((-, to, x q , A(-)) < T  and inf{i : (9)

(t ,x)  £ Cl0} = 0.

It is well known that under assumptions (5)-(7) equation (1) has a unique so
lution on [to,T] for each (to,xo) £ Q and any control function A( ) £ A. Besides [12, 
pp. 14-16], the solutions of equation (1) starting from any bounded domain remain 
uniformly bounded and equicontinuous, which implies the optimal cost function is 
locally bounded. In particular, it yields the following two properties:

(*) For each (t, x) £ Cl there is a constants К > 0 such that |u(f,x)| < К  on the 
set {(f,x) £ Í2 : dist[(f, x), (t, x)] < 1); and



(**) For each 6 > 0 there is an t  > 0 such that if (t, ж) £ fi, dist[(i, ж), Г] > <5 and 
||(f, x)ll < 1/6 then dist[(i', x(t', t, x, A())), Г] > <5/2 for each control function 
A(-) £ Л and t < t '  < t + e.

Property (**) will be used in the proofs of Lemma 3.1 and Theorem 3.1. Let 
us note that condition (5) implies [1, p. 53] the continuity of the Bellman function

H ( t , x ,p ) ~  inf { f ( t , x , \ )p  + h( t ,x , \ )} .  (10)
A €  U y t )

Observe also that because of the continuous dependence of solutions x(-,fo> xo, A(-)) 
on (to,io), the set

QT = {(Lx) € Q ■ r{x(-,t,x,X(-))) < T, A( ) £ Л, 0 < t < T}

is closed; actually, it is the largest set of initial conditions satisfying (9).
The function w* : П —+ R satisfying

w*(t, x) = limsup{in(<, J ж') : (t',x') £ 0, \t' — t \<e ,  \\x' — x\\ < e) < oo (11) 
£ —  0
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is said to be the upper semi-continuous (use) envelope of a function w : Í2 —► R.  In 
a similar fashion we define the lsc envelope tu»( ) of a function w(-). Let us note 
that property (*) implies that the optimal cost function has both the use and lsc 
envelope.

D e f i n i t i o n  2.1a. Let H : Q x Rn —*• R be a locally bounded function. A 
function w : Q —► R is said to be a viscosity subsolution of the equation

wt(t ,x) + H(t,x,ws (t,x)) = 0, (i, ж) £ П \  Г,
w(t,x)  = g(t,x),  ( i , r ) £ f c 9

if iv(t,x) < g(t,x) on Г and, for each СХ(Й \  Г) function ip, one has x) + 
H*(t, x, <px(i, x)) > 0 at each point (f, x) £ Ö. \  Г which is a local maximum of the 
function w* (t, ж) — <p(t, ж) : Q \ r  R,  where H*(t,x,p)  = limsup{Lf(s, y, q) :

(s,y) £ fi, | s -  i |+  ||г/ -  ж I] -I- ||g - p | |  < e}.
D e f i n i t i o n  2.1b. With H(t,x,p)  being as previously, a function w( ) is said 

to be a viscosity supersolution of equation (12) if w(t, x) > g(t,x) on Г and, for 
each Сг(0 \  Г) function <p, one has x) + Ht(i,x,ipx(i}x)) < 0 at each point 
(f, ж) £ Ö \  Г which is a local minimum of w„(t, x) — ip(t,x) : Q \  Г —> R with 
Hm(t,x,p) = liminf{H(s,y,q) : (s ,y ) £ Í1, |s -  t\ + ||y -  ж|| +  ||g -  p|| < e}.

D e f i n i t i o n  2.2. A function w : D —► R is said to be a viscosity solution of 
(12) if ui(-) is both a viscosity subsolution and a viscosity supersolution of (12).



The assumption below will be used in our uniqueness theorem only.

(i) Я G C(ft x Rn);

(ii) for each real R > 0 there is a function w r (-) G C[0, oo) 
such that гпд(О) = 0 and for each p, q with ||p|| <
R, ||9|| < R  the “Hamiltonian” H appearing in (12) 
satisfies the inequality \H(t,x,p + q) — H(t, x,p)\ <

w ii( IW I) ;
(iii) there is a function m(-) G C[0,oo), m(0) =  0, for 

which IH(t,x,p)  -  H(t,y,p)\ < m(||x -  y||(l + ||9||)).

Observe that each local extremum of w* — p (w, — p) is always a global 
extremum of w* — p' (u>„ — p1 with, possible, another C1(0 \  Г) function p' (and, 
of course, vice versa).

Remark 2.1 Although our setting has one basic restriction (the Hamiltonian 
H(t, x, w, wx) does not depend in our paper on w, as in some other publications, it 
does cover the basic equations in control theory and differential games, such as the 
Bellman and Isaacs equations. In our approach the terminal set Г may be either a 
subset of dft, the boundary of ft (Example 2.1) or not (Example 2.2).

Example 2.1 Consider an optimal control problem given by x = u, x(0) = 0 G 
По = {0}, и G U -  {(иь u2) : uj+u^ < 1} and Г = {(<, xb z 2) : t = 1, x\ + x\ < 1} 
with any payoff functional. It is obvious the attainable set Í2 is the truncated cone 
with vertex 0 G R3 and the base Г, therefore, Г С ŐQ, although Г ф dCl.

Example 2.2 (a cone with an interior “stick”). Let everything will be the 
same as in Example 2.1 except for the terminal set Г1 that is now defined as fol
lows; Г1 = Г U [|d,d] with d = (0,0,1). It is obvious that each interior point of 
the segment [|d,d] does not belong to dCl (it does belong to the interior of Í2), 
so Г1 is not contained in ŐÍI. If we set g = 0, h = 1 then the value function 
u(t,x) =dist[(t, x), Г1], (t,x) G fi, and the resulting Hamiltonian (cf. (10)) is given 
by the formula H(t,x,q) = 1 — ||9||, which implies condition (13) is satisfied. As 
we shall see later (Theorem 3.3), this value function is the unique bounded, con
tinuous solution of the Bellman equation wt(t,x)  + 1 — \\(dw/dx)(t, x)|| = 0 with 
the boundary condition w(t,x) = 0 on Г1.

Remark 2.2. We intentionally consider extrema on Cl \  Г rather than on ft or 
ft because, otherwise, we would have no continuous viscosity solution if ft were a 
compact set and H G C(ft x Rn).

Proof. Assume on the contrary that a continuous solution w : ft —* R exists. 
Set A = m ax{|#(t,x, 0)| : (t,x) G ft} and consider the “test” function Ф : ft x ft —► 
R given by
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<£(f ,x , s ,z )  =  w(t,x) -  w(s,z) +  Í A +  - J  (t +  s) (14)



3 2 2 IS H II ,  M E N A L D I ,  Z A R E M B A :  V IS C O S IT Y  S O L U T I O N S  O F  T H E  B E L L M A N  E Q U A T I O N

which must attain the global maximum at some point (<o, zo, «о,zo). Therefore, the 
function w — ip = w* — <p : Cl —► R with the C°°(f2) function <p(t, x) = w(sq,Zq) — 
(A + 1/2)(t + s0) attains the maximum in Q at (<о,г0). According to Definition
2.1, we derive the inequality: — (A + 1/2) + H(to, xq, 0) > 0. On the other hand, the 
function w — ip =  : Cl —► R with ^{s,z)  =  tx(fo,zo) + (A+l/2)(<o + s) attains
the minimum in О at (so,xo), which implies (A + \)  + H(s0, zq, 0) < 0. Combining 
the last two inequalities, and taking into account that \H(t, x , 0) — H(s, z, 0)| < 2A, 
we easily obtain a contradiction (2A + 1 < 2A).

3. Basic results

We start with a lemma, known as the optimality principle of dynamic pro
gramming, that was originally formulated and proved by R. Bellman [6] under 
strong regularity assumptions. Given ( i , i )  É 2 \ Г  one can alvays find a <5 such 
that ||(f,x)|| < 1/(5 and dist[(f, x), Г] > <5; denote by £(t,r ) the largest 6 with the 
properties above.

Lemma 3.1. If conditions (5)-(8) hold then, for each (t , x) € Q\T, the equality

t+e

inf {u(t + £,x(t + £ , t ,x , \ (  )) + /  h(s, x(s), A(s)) ds] = u(t,x) (15) 
• Ч ) е л  J

t

is satisfied for all positive £ < £, where £ depends on 6(t,x) = 6, as specified in 
property (**).

Proof. For 0 < £ < £, let Л£(Л£) be the space of all portions of control 
functions A(-) 6 Л on the segment [t,t+£) (resp. [f+e,T]). By At (-), A'(-) we denote 
generic elements of Ae (resp. A£) so that one can write down any control A( ) in 
the form A(-) = (A£( ), A£(-)). We thus have u(t, x) = inf{C(x(-, t, x, A£( ), A£(-))) : 
A£(•) £ Л£А£(-) £ A£} and, consequently, (15) because the right hand side of the 
last equality equals

t+e

inf {u(t + £, x[t +  £, t, X ,  A£(.)]) + /  h(s, x(s), A£(s)) ds,
t

where, clearly, A£(-) may be replaced by A(-) £ Л.
T heorem  3.1. If conditions (5)-(8) hold then u(t, x) is a solution of equation 

(12) with H(t,x,p)  given by (10).
Proof. We shall show that u(-) is a viscosity subsolution of (12) with H(t , x, p) 

given by (10). The remaining part of the proof may be carried out analogously. 
First of all, observe that u(t,x) — g(t,x) for (f, x) £ Г. Assume now that u* — <p : 
П \  Г —► R, ip £ Cl (Ü \  Г), attains its maximum at (i,x) £ Í2 \  Г.
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Consider first the more difficult case when (t, x) £ Í2. Since (u* — <p){t,x) is 
finite, we may assume (и* — <p)(i, x) — 0 so that, locally in ÍÍ \  Г, one и* = и < <p. 
By the definition of u*(t,x), we can choose a sequence (tk,Xk) £ 0 \ Г  such that 
(ti, Xk) —► (f, x) as к —*■ oo and (u* x ) < (u — <p)(tk, xjt) + l/F  for each natural
number к (к £ N for short). Since, for some 6 > 0, ||(t*, x t)|| < 1/6, к — 1 ,2 ,..., it 
follows from property (**) that there is an £ > 0 for which x{t,tk, Xk, A()) £ fl \  Г 
for each A(-) £ Л, each к £ N and < < < < * + £ , 0 < e < £. Fix Ä £ U(t) and, 
by virtue of (5), choose a control A(-) that is continuous at i  with A(t) — A. By 
Lemma 3.1, we have

u{tk,Xk) < u(tk +e,x( tk +£))  + J h(t,x(t),X(t))dt,
ik

where x{t) =  x(t, tk, Xk, A(')). Using the fact (it* — ip) attains its maximum in Í2 \  Г 
at (t , x), we easily derive

tk+f
<p(tk,xk) -  ^ < 4>(h +£,x( tk +  e)) + J h(t,x( t) ,\( t))dt

and consequently
< k + £

c  J  v(t,x(t)) + {<Px{t,x(t)),f(t,x(t),\(t)))+h(t,x(t),\(t))dt
tk

for к £ N. Letting к go to oo and e go to zero we obtain x) + (<px (t,x), 
f ( t ,x ,  A)) +  h(t,x, A > 0. Since A £ U(t) was arbitrary, we conclude ipt (i,x) + 
H m(i,x,tpx(t,x)) > 0 (here #*(•) = Я(-)), as required.

In the easy case (t , x) £ И\Г the inequality (u—p)(i, x) > (u—ip)(t+e, x(i+e)) 
holds locally for any trajectory x(-,f, x, A(-)) of equation (1) with a control A(-) 
satisfying A(t) = A. We use Lemma 3.1 again and proceed similarly as in the first 
part of the proof.

As an illustration of this theorem we present the following example.
Example 3.1. Let f ( t , x ,  A) = A, A £ {1}, (io,^o) 6 fio = parallelogram 

ABCD,  where A = (1,1) В = (0,1), C =  (-1,0), D =  (0,0). Set g : R2 —* R, 
g(x,t) — x + t, h — 0 and Г = {(x,i) : (x, 1),0 < x < 1} U {(0,f) : 0 < t < 1} 
(Г is the union of two segments AB and BD).  The optimal cost function u(x,t) 
is defined on the closed set fi (here Q =  ilo); note that the adjective optimal is 
meaningless in this case because the controller has no choise in selecting control 
functions. It is obvious that

u f x i l - f * - *  (x,t) £ BCD  
4 X , t )  ~ \ 2  + x - t ,  (t, x) £ ABD,
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where BCD (resp. ABD)  stands for the triangle BCD  (resp. the triangle ABD  
without the side BD). Therefore, u(x, t) is C°° at each point of П = ABCD  except 
for the points (0,<), 0 < t < 1, where u(x,i) is discontinuous with a “jump” 2 — 21. 
It is easy to see that 0 < u(x,t) < 2 on 0; also, assumptions (5)-(9) and (13), with 
H(t,x,p) = p, are satisfied. By Theorem 3.1, n(x,t)  is a solution of the Bellman 
equation

w t ( t , x )  +  ^ ( t , x ) - 0  ( < , * ) €  Í1 \  Г

with w(t,x) = x + t on Г. According to Definition 2.1, if we choose ip(t, x) — 
u(x, t) then we shall obtain ut(x,t) +  H*(t,x,ux(x,t)) = ut(x,t) +  ux(x,t) — 0 for 
(x,t) G П \  Г; in this particular case, the Bellman equation is also satisfied on the 
side AB  (which belongs to Г). Summing up, although the optimal cost function is 
discontinuous on a part of Г, it satisfies the Bellman equation in the classical sense 
at each other point of Cl.

Comment 3.1. We could, of course, remove the side [AD) from Cl = ABCD  
and next repeat the whole reasoning, obtaining the same solution u(t , x) on ABCD,  
despite the fact that the original domain was not closed. This circumstance, how
ever, does not cause any trouble because u(t,x) has use and lsc envelopes (as a 
bounded function); as a matter of fact, u*(x,i) =  u*(x,<) = 2 for (x , t ) G [AD).

Now, we shall give a uniqueness result. In applications, it practically requires 
the continuity and boundedness of a viscosity solution to be unique.

Theorem 3.2. Assume Q C Q = [0,Т] x R” and u(-), w(-) satisfy, re
spectively, the inequalities vt(t,x) + H(t,x,vx(t,x)) > 0 in Ö \  Г and wt(t,x) -f 
H(t,x ,wx(t,x)) < 0 in D \ r  in the viscosity solution sense (Definition 2.1). In 
addition, assume that conditions (9), (13) hold and there exists /*(•) G C[0,oo), 
p(0) = 0, such that

v ( t , x )  -  w ( t , y )  < p(||a; -  y||) if ( i , r ) G f i n r  or ( ( ,y ) G f in r .  (17)

Finally, let u( ), — w ( - )  be bounded from above and upper semi-continuous on Ö. 
Then v ( t ,  x) < w ( t ,  x )  on Cl.

Proof. Suppose sup{(v — w ) ( t ,  x) : (í, x) G 9} > 0. Let e, a, ß, 7 G (0,1] and 
A > 0 be given. Define

<f>(i, x, s ,  y) = u(i, x) -  tu(s, y) -  e ( T  + 1 -  f) -  | | x  -  y | |2 -  ^ ( t  -  s) 2 -  -y||x||2

and next fix s and 7 so small that sup Ф(<, x, t ,  x) : ( t , x) G Cl] > 0 and consequently 
sup{Ф(<,х,в,у) : (í,x) G П, (s,y) G Ü} > 0. Since Ф is use, there must exist a 
global maximum point of Ф on fi x fl. Let (i, x, s ,  y )  be such a point. Using the 
boundedness of v ( t , x )  and —w ( t ,  x), we have

0 <  Ф ( t , x , s ,  у )  <  C  — ^ | | x  -  y | | 2 -  i ( i -  s ) 2 -  7 | | x | | 2 (1 8 )
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for some C > 0 so that

| |* - у | |< ( « С е лт)*, \ \ i - s \ \< (ß C )K  7l|í|| = 7>(7lkl|2) '< ( 7 C ) " .  (19)

Now, let us fix Л > 0 so large that

m(2r) < e + Ar for 0 < r < C (20)

and next a > 0 so small that
AT

fi(s) < e + -— s2, 0 < s < ( C e AT)». (21)a

In view of (19) we can choose a sequence of ß  converging to zero such that the 
corresponding coordinates x, y, i  and s are convergent (because x and у lie in a 
compact set). Letting x — limx, у = limy and t = limi = lims = I, we conclude, 
using the use of Ф that Ф(<, x,s,y) > Ит{Ф(?, x, s, y) > 0 : ß  —> 0}. It follows from 
(18), (19) that

e - p - y | | 2 < C , \ \ x - y \ \< { C e XT) ^  7 l |i | |< ( 7 C ) t

If ( i , i)  £ Й П Г  or (í, y) G П П Г then by assumption (17) and inequality (21) we 
have

e Ai
v(t, x) -  w(t, y) < y(\\x -  y||) < £ + --- | |í  - y||2,a

so that Ф( t ,x, t ,y)  < 0, a contradiction with <l(í,í,í,y) > 0. We thus see that 
both (t, x) and (t , y) are in П \  Г. Therefore, almost all (t, x) and (s, y) are in Cl \  Г 
and, since v(t,x) and w(t, x) are, respectively, sub- and supersolutions, we have the 
following two inequalities:

- e  -  —---- | |i  -  y||2 + | ( i  -  s) + H(t, x, —  (x -  y) +  27||x||) > 0a p a

- ( f -  s) + H(s,y,-----(x -  y)) > 0 .ß a
Subtracting the former inequality from the latter, and next letting ß go to zero (< 
and s will tend to the same limit), we arrive at

e + —---- ||x -  y||2 < ^ л (27||х||) + m (||i -  y|| + ^ — \\x -  y||2)a a

with R — 2 max(C, C A); clearly, we have made use here of assumption (13). Finally, 
sending 7 to zero and next a to zero, we obtain £ + At < m(2r) for some г £ [0, C], 
a contradiction with (20), which completes the proof.
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The first part of the theorem below is exactly the content of Theorem 3.1, 
while the second one follows from Theorem 3.2 by a contradiction argument.

T h e o r e m  3.3. If assumptions (5)-(8) hold then u(t,x) is a solution of the 
Bellman equation

wt(t ,x)+  inf i f ( t , x , X ) ~ ( t , x )  + h( t , x ,X ) \  = 0, (< ,х )е П \Г  (22)лeu(t) ( ox )

with the boundary conditions iv(t, x) =  g{t, x) on Г in the sense of Definitions 2.1,
2.2. If, in addition,

(i) conditions (9), (13) are satisfied,
(ii) u{t,x) is bounded and continuous on Cl,

(iii) g : Г —+ R is uniformly continuous,

then u(t, x) is the unique solution of the Bellman equation in the class of bounded 
continuous functions on Cl.
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Вязкие решение уравнений Веллмана 
на множестве достижимости

Г  И Ш И И ,  Д Ж - Л .  М Е Н А Л Ь Д И ,  Л .  З А Р Е М Б А

(Т о к и о , Д е тр о й т , С т . Д ж о н с )

В р аботе  р а с с м а т р и в а е т с я  з а д а ч а  о п т и м а л ь н о го  у п р а в л ен и я , в ко то р о й  м и н и 
м и зи р у ем ы й  ф у н к ц и о н ал  и ф ункц ия о п ти м а л ь н о го  р е з у л ь т а т а  р а зр ы в н ы .

П оказано, ч т о  ф ункция о п т и м а л ь н о г о  р е з у л ь т а т а  с о в п ад ае т  с в я зк и м и  р еш е
н и я м и  с о о тв е тс тв у ю щ его  у р а в н ен и я  В елл м ан а . В я зк о е  реш ение о п р ед ел ен о  на б азе  
к о н стр у к ц и и , в в ед ен н о й  К р эн д а л л о м  и Л ионсом , с и сп о л ьзо ван и ем  ее м о д и ф и к ац и и , 
п р едл о ж ен н о й  И ш и и .

П ри  д о п о л н и т ел ь н ы х  у с л о в и я х , о б есп еч и в аю щ и х  н еп р ер ы вн ы е  ф ункции о п т и 
м ал ь н о г о  р е з у л ь т а т а ,  доказано , ч т о  вязкое  р еш ен и е единственн о.

Leszek Zaremba
Memorial University of Newfoundland 
Department of Mathematics and Statistics 
St. John’s, Nfld, Canada AIC 5S7
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ON DECENTRALIZED STABILIZATION 
OF LARGE-SCALE LINEAR DISCRETE SYSTEMS

D. R o s in o v á

(Bratislava)

(R eceived Septem ber 9, 1990)

In  th is  p a p e r  the  decen tra lized  stabilization  p ro b lem  of large-scale lin ea r d iscrete non- 
delayed system s is studied. We p re sen t the su bsystem s dom inancy ap p ro ach  which yields 
a  simple co n tro l procedure em ploying local feedback controllers w ith  m in im al knowledge of 
in terconnections. Sufficient cond itions for stab ilizab ility  of a  com plex system  are derived 
providing w ider class of stab ilizab le  systems th a n  th o se  m entioned in  th e  lite ra tu re .

1. Introduction

We consider the stabilization problem of discrete-time decentralized systems. 
Various decentralized control techniques have been developed so far, however, most 
of them for continuous systems and their extension for discrete-time requires if 
possible, nontrivial additional assumptions and modifications. Furthermore, there 
is a fundamental difference in stabilizability conditions between continuous and 
discrete-time systems [7], [5]. In continuous large-scale systems controllability of 
all single subsystems implies stabilizability of the global system while in discrete 
systems stabilizability of the global systems requires also some constraints on the 
interconnection magnitudes.

In practice the exact mathematical models of interconnections in large-scale 
systems are rare to know and often only constraints on their magnitudes are used 
in control algorithms. From practical point of view minimization of the necessary 
information about the interactions, required in control algorithm, is very useful.

In this note the subsystem dominancy approach for discrete-time systems is 
presented which extends the subsystem quality control principle from [3] and [9]. 
This approach yields from Lyapunov theory and comparison principle for discrete
time systems. A sufficient condition for stabilizability of decentrally controlled 
system is derived which is less strict than those mentioned in the literature. Subsys
tems dominancy approach provides a simple procedure for decentralized controller

3 Akadémiai Kiadó, Budapest 
Pergamon Press, Oxford
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design on subsystem level, which does not directly employ the interconnection mod
el.

2. Problem  Form ulation and Prelim inaries

Consider the large-scale discrete-time dynamical system given by:
N

Xi(k + 1) = AiXi(k) + AijXj(k) + BiUi(k)Ц ( 1 )J**
Vi(k) = CiXi(k) i =

where N  is the number of subsystems, x,-(Ar) £ Rn', u, £ Rm‘, у,- £ Rp' represent 
state, input, and output vector of the г-th subsystem, respectively. Ai, A i j , B, , C{ 
are constant real matrices of appropriate dimensions.

Remark 2.1. System (1) corresponds with a decentralized continuous system 
converted with small sampling period. When considering longer sampling periods 
Bij ф 0 for i ф j  can occur and the matrix В in discrete version would not have 
block diagonal form.

Our aim is to stabilize the global system (1) by local controllers:
Ui(k) — K{Xi(k) г = 1 ,..., N  (2a)

or: Ui(k) = К'{у((к) = K[CiXi(k) = KiXi(k) (2b)
control law (2b) can be employed when all the subsystems are observable.

In further consideration we use this notation:
AM(X), Ат (ЛГ): maximum and minimum eigenvalue of square matrix X, 
respectively,
||X||: Euclidean norm of vector X  for matrix X: ||X|| = \ 1f/í2(XT X)
A = (a,j)nxm: n x m matrix A  with elements aij
К = diag(BTt): block diagonal matrix К  with matrices Ki as blocks on the 
diagonal of К .
We will consider the notion of stabilization as it was introduced in [5]. 
D e f i n i t i o n  2.1. The discrete system (1) is stabilizable by the local feedback 

control (2a) or (2b) if every solution x(k) of the closed-loop discrete system:
N

Xi(k + 1) = (Ai + BjKi)xi(k) -f y^yAjjXj(k) (3a)
J = 1 3*i

N
or: Xi{k + 1) = (Ai + BiKiCi)xi(k) + ^  AijXj(k) (3b)

j - 1

i = 1 ,.. . ,  TV
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starting from arbitrary initial xo(0) converges asymptotically to x(k) = 0 as к —► oo.
DEFINITION 2.2. The discrete system (1) is said to have a degree of stability 

a > 1 if there exists ß > 0 such tha t the solution x(k) of the closed-loop system 
(3a) or (3b) satisfies:

H*(*2)||<iS||*(*1)||(l/a)*»-‘‘
for all ki, k2 > 0, k2 > ki.

Because of the linearity of the system (1), the asymptotic stability implies the 
global exponential stability.

To analyse the stability of the system (1), the second Lyapunov method can 
be employed, with the use of vector Lyapunov function and the discrete version of 
the comparison principle [11]. Vector Lyapunov function for the system (1) is:

v(k) = [tq(zi(fc)), v2(x2( k ) ) , v N (xN(k))]T (4)

where v,(x;(fc)) =  t>,•(£) is the Lyapunov function of the г-th subsystem. For a 
linear system appropriate subsystem Lyapunov function is:

t>i(k) = (xf(k)PiXi(k))1/2 i = l ,2 ,. . . ,  TV (5)

where Р,- is a symmetric positive definite matrix. For a symmetric positive definite 
matrix Y :

•^m(V)|M|2 < xTYX < Лм(Т)||х||2

e-g- Â /2||x|| < {xTYx)1/2 < А^2(У)||х||.  ̂ ^

Square matrix A  is called M -matrix iff: а , > 0 for all nondiagonal elements of A
[10] .

D e f i n i t i o n  2.3. Square matrixT =  (aij)nxm is diagonally dominant if there 
exist dj > 0, j  = 1 ,.. . ,  n such that:

П

d.-|a,i| > dj\ajj\ i =  1 ,2 ,.... гг
J = 1

or (7)
П

dj I aii I ^  У ] di I a.ij I j  — 1, 2 ,..., n
i = X

Square matrix A is negative diagonally dominant if it is diagonally dominant and 
ац < 0 for all i.

Lemma 2.1. [10] M-matrix is stable iff it is negative diagonally dominant.

3;
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3. Subsystem s Dom inancy Approach, Stabilization Condition

Subsystems dominancy approach (SDA) is based on the fact, that in the de
centralized control scheme (l)-(3) the subsystems play an active role in the control 
procedure while the interconnections make up a passive part of the global system as 
only the diagonal blocks in system matrix can be changed via decentralized control. 
The main idea of using this approach is to design local controllers on subsystem 
level without directly employing the interconnection model. SDA is approved by 
practical experience and can be derived using the second Lyapunov method. This 
approach yields the sufficient condition for stability of the system (3) and pro
vides simple control algorithms. The second Lyapunov method in connection with 
vector Lyapunov function (4) and the discrete comparison principle enables us to 
determine the stability of large-scale system in terms of negative definiteness of a 
constant matrix (the so-called aggregation matrix). For the system (3) with vector 
Lyapunov function defined in (4) and (5), aggregation matrix W can be found in 
the following form [8]:

Av(k) = v(k + 1) -  v(k) < W[||*1(*)||,. . . ,  \\xN(k)\\]T (8)

where W is an N  x N  constant real matrix with elements:

wa =  A^2 [(Ai +  BiKi fP i iA i  + BiKi)\  -  A ) l \ P i )

Щ  = \ M{Pi)/Kl2{Pi) • At f iA i jA i j )  i ф j, i =  1, 2 ,..., N

Substituting for ||x,(F)|| in (8) its upper boundary from (5) and (6) we obtain:

Av(k) < W0v where W0 =  (woij)NxN

_  {&i  P i  S i )Won =  -------------------------

Wo i j  =
A m {Pí)

A X { P i )

Am/ 2 ( P i ) A i . / 2 ( P j )
XM 2 ( A I j A i j )

( 10)

( 11)

From (10) and (11) the sufficient condition for stability of the system (3) is negative 
definiteness of Wo [6]. Having in mind that Wo is an M-matrix and Lemma 2.1 
holds, obviously negative definiteness of Wo is equivalent to negative definiteness 
of W in (9) and also to negative definiteness of W'  = (w^ n x N-

. 1 /2
( P i )

IÜ;

.i/2
ЛМ

_  A 1/2
( P i )

W ( s T S i )

A ^(4 -A -;).

A m (Pi) 
Am (P,-)

(12a)

(12b)
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From Lemma 2.1 for stable W  must be w'H < 0, together with (12a) we obtain:

S i )  <  1 that implies : S j  S i  —  I i  —  — Q i  (13)

where Ii is an n, x n,- identity matrix, Qi is symmetric positive definite rii x n; 
matrix. Therefore, in (12a) P, = 7,- can be considered to determine the stability 
condition and we reach the following theorem.

T heorem  3.1. The system (3) is asymptotically stable if there exist real 
positive q i , . . .  , q N  such that:

N

® > 1 > | |^ - | |+ « 1 № + а д 1 1  * '= i, (l4)
i=l

Proof. Evidently, W  given in (12a), (12b) is M-matrix. Considering P, = J; 
in (12a) and applying (7) and Lemma 2.1 for W  we obtain (14).

Theorem 3.1 provides the sufficient condition for the stability of discrete large- 
scale decentralized system and also approves subsystem dominancy approach as it 
is stated in the following corollaries.

Corollary 3.1. Let the matrix norm ЦТ; + BíK í \\ can be made arbitrarily 
small by choosing appropriate A',. If there exist qi,. ■. ,qN > 0 such that:

N
qi > 2 > | |A y | |  for *= 1,. ..,7V (15)

> = 1 J*«

N
(for special case, qi  = 1 for all i : 1 > ^  IH*ill) ^ еп the system (1) is stabiliz-

i=i
able via decentralized control and its stability is determined by local subsystems 
feedback matrices {Ai + BiKi) i.e. by w'{i in aggregation matrix (12a), (12b).

Corollary 3.2. Let for the global system (1) the inequality (15) holds. Then 
local controllers can be designed like for isolated subsystems and the sufficient 
condition for keeping the stability of the global system is obtained from (14):

N

ЦА,-+  M | |  < l - X > ; / 9 i ) I H o - | l  (16)
i=1J/-

for some real positive qj, j  = 1 ,.. .,  TV;

for qi = 1 for all i:
N

| |Л  + М | | < 1 - £ | И 0-||.
i=i

(17)
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Condition (16) (or (17)) can be treated for each subsystem independently and 
it determines the class of stabilizing matrices К  =  diag(ÍL, ). Condition (16) (or 
(17)) guarantees the stability of the global system and indicates a procedure which 
stabilizes the system or shifts its stability degree. Such a procedure is given in the 
following corollary.

Corollary 3.3. Let the closed-loop system is given by (3a) or (3b), where 
Ki(oti),  i =  1 ,... ,1V is a function of real parameter a,-. The global system is 
stabilizable by means of A',(a,) if there exist a*, i = 1 ,..., N  for which (14) holds. 
If, furthermore,

(dw'iJdoti) < 0 for a,- £ (a,o, <**) for some a,o, i =  1 , .. .  ,1V

where u>j,- is given in (12a); the stabilization procedure starts with K{(a;o) and oti 
is changed: а,- «— a,- -f Дa,-, a,- € (a,o,a*) until the given system is stable (or (14) 
holds for some <?,•, i = 1 ,..., IV).

Remark 3.1. Because a,- does not influence w-j in (12b), for w'lt < 0 and 
constant P,-: (dw^/daii) < 0 implies d(Avi/vi)/doci > 0, where A ví/ ví is a measure 
of stability and its upper bound is given by the value of the i-th row of W'.

Procedure stated in Corollary 3.3 provides the systematic way how to “im
prove” the values of parametrized feedback matrices Ki(oti) in the direction to 
system stability region. This property is important for practical applications of de
centralized control, it enables the “tuning” of the system via appropriate changes of 
parameters a<. (When prescribing the demanded system behavior, its limitations 
which follow from decentralized control structure as we mentioned above must be 
considered.)

Stabilizable class of decentralized systems stated in Theorem 3.1 and Corollar
ies 3.1 and 3.2 is wider than those presented in Lee, Radovic [4]. (Though stability 
conditions stated in [4] are obtained for a more general delay case, they claim to 
be less strict than ones developed so far for the nondelay case.) In [4] the authors 
require

\\Ai +  B{Ki\\ +
N

i=13*i

1 / 2

< 1 for each i (18)

where Nj  is the cardinality of a set:

Ji = {j\Aij ф 0, j = l , . . . , N ) .

In [5] Lee and Radovic presented another result for CCM model where stability of 
the global system is guaranteed if there exist positive definite symmetric Q; for all 
i, such that:

N

Qi -  £  NjLj{(Ii + BjPj  Bj )Lji > 0
; ' = i
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where Р,- is the solution of the Riccati equation:

and stabilizing gains are:

(19)

However, the analysis and use of (19) for decentralized control design is not simple 
and in [5] the control algorithm is proposed only for the upper triangular A.

In (16) the multiplying of the interconnection matrices by Nj  is not required 
and the introduction of 5,- further extends the stabilizable class of systems in com
parison to (18). For instance, following (16) systems with upper triangular matrices 
A are obviously stabilizable, although it is not the case of (18). In comparison to 
(19) our results given in Theorem 3.1 and its corollaries are relatively simple and 
easily applicable for control algorithm design. Furthermore, (16) enables us to avoid 
a direct employment of the interconnections in a design of feedback matrix К .

Following Theorem 3.1 and its corollaries the reasonable way to stabilize the 
system seems to minimize matrix norms of subsystem matrices (minimization of w'u 
in (12a)), which is close to minimization of stability degrees of subsystems, though 
there is a certain gap between these two procedures. Theorem 3.1 provides only 
the sufficient condition for stabilizability giving upper bounds on system behaviour. 
Therefore, a stability degree of the global system does not exactly follow stability 
degrees of isolated subsystems, though in bounds mentioned above both tendencies 
are connected. Because of these reasons we propose control algorithms with local 
parameters on subsystem level, which can be changed “to tune” the global system 
behaviour in the desired way. This “tuning” can be carried out according to a 
certain objective which can be tested in the system.

Minimization of w'i{ (or ЦА,- + R, A',j|) in (12b) w. r. t. Ki yields control law:

4. Decentralized Control Algorithm s for Stabilization

Ki = - { B j B i ) - l BjAi  
or: Ki = - (B f J3j) - 1 B jA iC j (C iC j )~ 1Ci

for output feedback which can be parametrized (see Corollary 3.3):

Ki = - ai(B j B , ) - l B jA i  a ~  1 
or: Ki = -ац(В?Bi)-xB jA iC j { C iC j ) - l Ci

( 20 )

ai = 1 brings the greatest possible stability degree for subsystems. However, in 
practice such a control law probably will not provide the best results for the global
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system because of high feedback gains which can cause overshoot and nonlinear 
behaviour following from constrains on signals in the control loop (in such cases 
the solution would be different from that expected). We must consider also the 
difference between the local and global stability degree. The advantage of the use 
of Corollary 3.3 and parametrized control law is in the possibility to determine the 
appropriate a,- for the global system. We tested a,- £ (0.9 — 1.3) for (20) with good 
results for the global system stability degree.

Remark 4.1. For square invertible matrix R; and a,- =  1 (20) place all sub
system poles to zero.

The second control algorithm is based on subsystem controller design using 
a corresponding Riccati equation. Subsystem stability degree or* is being increased 
until condition (17) holds.

Ki = +  otfBj P i B i ^ B j  P,A,
or: Ki = - a l i U  + a } B j R B , ) - 1 B jP iA iC j{C iC j ) - lCi

for output feedback where
Pi =  a j A f  PiAi -  a f A j Р . В Д  +  a j B j P lBl)~1B j  P , A ,  + C j C ,

Having in mind (13) the use of Pi = J, in computation of the aggregation matrix 
W  in (12a) is recommended. It provides a less strict stability condition than the 
original Pi.

We can observe that for stabilizable systems (20) and (21) provide the way 
to the stabilization and enable to increase the stability degree of the global system 
(as far as it is possible) by means of changing parameters a,-.

5. C o n c lu sio n s

A new method for the decentralized stabilizing problem is presented, based 
on subsystems dominancy approach introduced here. Sufficient conditions for de
centralized stabilization are derived in simple form. Two control algorithms are 
designed, where the interconnection model is not required directly in control law. 
The computation of constant feedback matrices is carried out on subsystem level. 
Parameters are introduced into control law in order to enable the shifting of the 
stability degree of the whole system. The designed algorithms provide the approach 
which is relatively simple to be implemented in practice. The results are illustrated 
on an example in the Appendix.

A ppendix

T he follow ing exam ple illu s tra te s  the re su lts  o f th e  designed co n tro l algorithm s. Im prove
m ent against s im ilar results in  lite ra tu re  are also m entioned.
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E xam ple . F irs t su bsystem  S i :

xi(fc +  1 ) =
0.85
0.2
0.1
0.2

0.3
0.5

xi(fc)+

хз(к) +

- 0 .4  -0 .3 5
0.2 0.4

0.8 0.1
0.6 0.5

x 2 (fc) +

Ul(fc)

Second subsystem  S2:

x2(k + l) = -0 .2 5  - 0 .4
0.1 - 0 .3

xi(fc)+ 0.6
0.1

0.3
0.6

x 2 (fc)+
- 0.2
0.02 *з(&)+ 0.6

0.5
u 2 (fc )

T h ird  subsystem  S3 :

x 3(fc +  1) =  [0.05 0.1]xi(fc) +  [-0 .0 5  0 .l]x 2 (fc) +  0 .4 x 3 (fc) +  0 .4u 3 (Jk) 

T h e  given system  is u n s ta b le  w ith  eigenvalues:

1.155; 0.561 ±  0.429«; 0.442; 0.252 

T h e  subsystem s are  s tab le  w ith  eigenvalues:

S i : 0 .976; 0 .374 S 2  : 0 .773; 0 .427  S 3  : 0 .400 

a) from  (2 0 ) we go t n e x t results:

а ,  =  1  for « =  1 ,2 ,3  :

-1 .1 9 1 -0 .2 9 4 0 0 0

1.029 -0 .6 4 7 0 0 0

0 0 -0 .6 7 2 -0 .7 8 7 0

0 0 0 0 - 1

sp e c tra l rad ius of th e  con tro lled  system  (1 /s ta b ility  degree):

global system : 0.542; S i : 0.000; S2 0 .403 ; S 3  : 0.000;

aggregation  m atrix :

W  =
‘-1.000 

0.524 
0.112

0.682 0.224
-0 .5 9 2  0.201
0.112  - 1.000

Sufficient cond ition  (14) is fulfilled e.g. for gi =  0.8, g2  =  1, 9 3  =  0.3. (C ondition  (18) from  [4] 
does n o t hold.)

a ,  =  1 . 2  for < =  1 ,2 ,3 :

-1 .4 2 9 -0 .3 5 3 0 0  0

1.235 -0 .7 7 6 0 0  0

0 0 -0 .8 0 7 -0 .9 4 4  0
0 0 0

csrH1О
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sp e c tra l rad iu s  of the con tro lled  system:

global system : 0.505; S i : 0.195; S2 : 0.406; S3  : 0.800

-0 .8 0 4 0.682 0.224 '
W  = 0.524 -0 .5 9 0 0 . 2 0 0

. 0 . 1 1 2 0 . 1 1 2 -0 .9 2 0 .

th e  previous case, (14) is fulfilled.
b ) from  (2 1 ) we o b ta in  these results:

a ;  =  2.4 for «' =  1 , 2 3 :

" 0.933 0.343 0 0  0

К  =
-0 .4 0 2  0.383 

0  0

0  0  0  

0.773 0.539 0
0 0 0 0 0 .595.

■ 2.525 0.0142 0 0 0

0.0142 1.348 0 0 0

P  = 0 0 5.429 -2 .8 1 3 0

0 0 -2 .8 1 3 4.202 0

. 0 0 0 0 1.595

sp e c tra l rad ius:

global system : 0.519; S i : 0.172; S2  : 0.360; S3 : 0.162

( 22)

for P  fro m  (22) the respec tive  aggregation m a tr ix  is no t negative  definite so i t  was com puted  for 
vecto r Lyapunov function  w ith  P, =  I, (see (13)):

-0 .7 6 8
0.524
0.112

0.682
-0 .5 4 9
0.112

0.224
0.054

-0 .8 3 8

For th is  W  (14) is fulfilled. I f  a ,  are fu r th e r  increased, th e  g lobal system  rem a in s stab le , b u t  its  
s ta b ility  degree slightly decreases.
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Децентрализованная стабилизация 
сложных линейных дискретных систем
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С т а т ь я  р а с с м а т р и в а е т  с та б и л и за ц и ю  с л о ж н ы х  л инейн ы х  д и ск р е тн ы х  си ст е м  
при  помощ и п р и н ц и п а  д о м и н и р у ю щ и х  п о д систем . Н а  это м  п од ходе  п ри ведены  п р о с ты е  
зак о н ы  у п р а в л е н и я , которы е м ож но и с п о л ь зо в а т ь  с м и н и м ал ь н ы м  знанием  с в я з е й  
м еж ду  п о д си с т ем а м и . П р и вед ен о  достато чн о е  у с л о в и е  с та б и л и зи р у е м о с т и  с и с т е м ы  
м енее стр о го , ч е м  услови я в л и т е р а т у р е .
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NON-ASYMPTOTIC SOLUTION OF 
CONFIDENCE ESTIMATION PARAMETER TASK 

OF A NON-LINEAR REGRESSION BY MEANS 
OF SEQUENTIAL ANALYSIS

A. V .  T i m o f e e v

( T o mi k )

(Received F ebruary  8 , 1991)

T his p ap er p resen ts  a sequential p la n  used for o b ta in in g  the confidence interval w ith  
necessary size for volum e param eters o f non-linear regression . The d is tr ib u tio n s  of the  
observation  noises a re  supposed to  be  unknow n. The p la n  described in  th is  p a p e r enables 
us to  o b ta in  the  confidence estim ates o f th e  unknown p a ram ete rs  in n o n -asy m p to tic  s ta te . 
E stim a tio n  for the  m ean  observation tim e  have been c ite d  in  the  suggested sequential p lan .

1. Statem ent of the problem

Consider the process {(t/(zt), ж<)}(6м is being observed. This process is de
scribed by the following equation

y(xt) = f t (xt ,e*)+t(t),  t e  N (1)

where N = {1,2,...} is an index set, {xt}teN is a set of input variables and 

V< G N : xt € X  = [a, 6], |a| < oo, |6| < oo;

т ь  are independent random variables (random measurement errors) and 

V i € N :  [E£(t) = 0, E£\ t)  < И  < oo] .

Here E  stands for expectation. The value <r, functions {/t(-)}tef*J into which 
the estimated parameter в* G 0  enters non-linearly as well as a compact в D N are 
known to the statistician.

Observing the process {(y(xt), Xt)}tei4i it is necessary to build in в such a 
closed interval 2 = [c, d] that

P«-(6* € 2) > Pc, 0 < |c — d| < 6 < oo, Pc £ [0,1]

Akadémiai Kiadó, Budapest 
Pergamon Press, Oxford
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Values Pc and <5 are supposed to be prescribed.

2. M e th o d  o f  s o lu tio n

Let function (/t(-))iем are continuously differentiable function on the 0  and

V(n G N, 0 G 0 ) : c„(0) =
’dfi(xi,9)2' 2'

90

0.5

(n2( l - P c) ) - 0'5.

Suppose the estimations 0+ and 9n are defined as follows

»„+=argi„f д Щ
89 -  2 • c„(0)

0— a rg m f
8 Щ

89 + 2 • cn(0)

for any n > 1.
Here

П

ln(0) = ^ ( y ( x i )  -  fi(xi,9))2/(n ■ a). 
i=1

Values 0+ and 9~ can be used as limits of confidence interval in time moment n.
The solution of the given task will be found by means of sequential analysis. 

For the sequential plan of confidence estimation of 0* by observation (1) let us 
consider the form of the pair (d, r ) where the value dn = |0+ — 0~ | characterizes 
the achieved accuracy of the confidence estimation for time moment n, and r  is the 
moment of observation stop

r  = inf {n > l|dn < 5} .

Thus, the required accuracy of confidence estimation will be achieved at the 
time moment r.

Let us define the following value for some finite А, В > 0

pc(A,B) = inf {n e N|n > 2B2((A26<t~12~1 -  e)2(l -  Pc))-1 } .

Here 0 < £ < A6/2.
T h e o r e m  1 . Let for some positive values l and L the recording is acceptable

0 < / < dfi(x,  0) < L < oo89
V(f G N; x GX; 0 G 0 ) :
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Then the next statements are true.
1) Рв.{т <а)  = 1,в* G 0,
2) Е,.т < pt (l, L) + 2L4£~4 (ir2/2 -  3Pt(/,L )/(l + Pe(l,L))

+2[53 -  0.25 + 1/(2(Pe(l, L) + 1 )(Pc(l, L) + 2))]), 0* G 0,
where

OO

S3 = E  k~3 ~  1.2020569.
*=i

3) Pe. (P  e[0 i(r),0h( r ) ] )> P c, 0* € 0 .
Неге E is the mean observation time in the sequential plan (dn, r ), 0i(n) = 
min(0*, 0~), 0h(n) = max(6>;,0-).

Proof of the Theorem. From the Theorem statement follows that

V № ,M 0 ;  x e X; t E N) : \Мх,вг) -  f(x,e)\ < L\0! -  e2\.

Let us consider the following representation for some 0

)-5 dIn} P  = -  ft(xt,0))(m7)_1 + ^ / t'(a:t ,6>X(i)(ncr)_1
t  =  1 t  =  l

= Л„(0‘ ,0) + Хп(0). 

dft(xu 9)

( 2)

(90
Here f[{xt,9) =

Using the finite increment formula and the condition of the Theorem we come 
to the conclusion that

V(x,y £ l |  < G N; 0b 02 G 0 ) : \ft(x,9i) -  / t (x,02)| > 1|0! -  02|. 

That is why

V(n G N, 0 G 0) : Rn{9* ,9) > l2a~l \9* -  0|.

It may be occur that

d ln(9n)

(3)

A(0n+) = 

A(0-) =

89

dln(9~)
89

-  2c„(0+) 

+ 2c„(0n )

Ф o. 

Ф

because of the 0  array restrictivity. For example, let us assume that

n =  1 ,  / i ( x , 0 )  =  0, 0* =  1 ,  <7* =  1, £(1) =  0, 

0 = arg inf (0) = 1 -  (2/(1 -  Pc)05) + ф



3 4 4 T I M O F E E V :  N O N - A S Y M P T O T I C  S O L U T I O N .  . .

with some ф > 0.
In this case we have

= 2(y(*0 -  0) = -2(0* + i( l)  -  0) =  2(1 -  0),

Cl(0) = c1 =  (2 /(1 -P c))0-5,

that is why
0“ = 0 and A(0~) = |2(1 -  0 + 2Cl| = 2ф > 0.

Consider the events:

: {ft,(0*,0+) = cn(0+) -  Xnißt) -  A(0„+)/2 < P S a ^ - 1} ,

: {ft,(0* A “ ) = -сп(в~) -  Xn(0~) -  A(0-)/2 < - Р б е - Ъ - 1} .

Taking into consideration (3) it can be clearly seen that 

W+ = u ,(n ) :{ |0 * -0 + |< 0 /2 }  

u ;  =u(n)-.{\e* - e ; \ <  6/2}

Here the recording ui — w2 denotes that event w2 is being conditioned by event w\. 
Further,

• w“ = wi(n) • й2(п) = w3(n) : {|0* -  0+1 + |0* -  0“ I < <5}
= Ö4(n): {|0+ -0„-|<<5} (4)
= w5(n) : {r < 0} .

It is evident that

V(n > pe(l, L), 0 £ 0) : (c„(0) < /2<5сг-1 2-1 } .

So

V(n > pc(l, L), 0* £ 0) :

f t - (<*£«») > f t-  ( { - X » №  < /3«<r-12 -1 -  c„(0+)}
X { - X n ( 0 ; ) < / 20<T-12 - 1 - c „ ( 0 - ) } )

> f t -  ({lx„(0n )l < í20<t- 12-1 — cn(0“ )}

X { lx n (0 „ -) |< /20<r-12 - 1 - c n(0 - )} )  ^

> 1 -  [pt . (|x„(0+)| > PStr- ' i -1 -  2° 5 • L(( 1 -  Pc)»»)-0-5)

+ ft* (lXn(0„-)l > l 26 a - l 2 - 1 -  2° 5 • L((l -  Pc)n ) -0-5)

= 1 -  [ft* (IXn(0n+)| > e) +  ft* (IXn(0-)| > e)] .
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It is easy to see that

V(n G N; в \ в  G 0) :

Eg-(xn(e))4 < n~3L4 + 3n(n — 1 )L4n~4 = L4(3n~2 — 2n-3).

Using the Chebychev’s inequality we have 

V(0 G 0 , n G N; ö,6»* G 0) :

i V ( | X n ( 0 ) |  >  t) < Ee.{xn{0))4e - 4 < Z , V 4 ( 3 n - 2 -  2 n~3)

From (4) follows that for any a G]0,1[ true implication

[Pe- (w+ш~ ) > » ) ] = >  [Pe- (r < n) > a] => [P9. (r > n) < 1 -  a ] .

From (4) and (7) we get

Pe- (r > n ) <  Pe- (|x„(0+)| > e)  + Pe- (lxn(ö-)| > e)  < 2L4e -4(3n-2 -  2n " 3). 

Further,

( 6)

(7)

£ e. r =  ^ P fl. ( r > n )  </>,(/, L) + J 2  (3n-2 — 2n~3)2L4E~
n=p.(l,L)+lП — 1

=  p e (l ,  L )  +  2 L 4e

< oo.

4 _ — 4
P . U . L )

7 Г2 / 6  —  n '

M = 1
+ 2

p . ( ' . i )

s 3 -  £ - 3
( 8)

There has been taken into account that k~2 = 7t2/6. From (8) and the
ifc=i

Borel-Cantelli lemma we obtain that P $ - ( t  < oo) = 1. Thus, the first statement of 
the Theorem has been proved.

Taking into consideration (8) and the fact that

Vp > 1 : l n~3 > £  (n(n + l)(n + 2 ))-1 = 0.25 -  l/(2(p + 1 ){p + 2)), 
ln = l n = l

y  n~2 >  y  И " + 1 ))- 1 = p / ( p +  X) )  ’
n  =  l n =  l

we come to the conclusion that the second statement of Theorem is also true. 
From the condition of the Theorem we get that functions {/t(-)}(gN are strictly 
monotonous in в. Let us consider the function

IW ,*)  = (/*(*«.П-Л(*«,*))а/ 2, s e e ,  t e  n .

4
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From strictly monotonicity of the functions {/i(-))teN  ̂ follows that

V(0 G 0, x G X, t e N) :
dut {e\e)  _ dft {xu o) 

de oe U t ( x t , e* ) - M x t, e ) )>  о

with fixed 9* G 0 . Using the statement B.3.6 [2, p. 450] now we conclude that 
Ut(9*,9) is a convex function in 9. Function

Фп(в*, в) =  M M **  ,0),и2( в \ в ) . . .  un(9*, 0)) = £  ««(0*, Ofr-1* - 1
t=l

is a linear combination of convex functions and hn(■) is not decreasing with every 
of the function-independent variables. It can be deduced that Фп(0*,0) is a convex 
function in 9 if we use the statement of Theorem B.7.a [2, p. 470] in this case. From 
here we easily come to the conclusion that

Rn{ e \ e ) d$n(9\9)
de n € N

is a monotonic function in 9 with fixed 9* G 0 . So, taking into account the 
representation (2) we have

“ o(n) : ( { Ы 0 + ) |  <  cn(0+)} • { |x „ (0 - | < c„(0~)})
Э wi(n) : {sign [P„(0‘ ,0+)] = -  sign [Д„(|Г,0-)]} (9)
Э  w 2( n )  : {0* G [ 0 i ( n ) , 0 h ( n ) ] }

Now, using the Lyapunov inequality [1] it can be written 

Vi G N : E i 2{t) < ( ^ “(i))0'5 < <r2.

From here we obtain

V(n G N; 0*, 9 G 0) : \ Ee-Xn(9) = 0, Ee. x l (9) < £
t=i

'dftjx i,0)
de

T 2
- 2

• ( i o )

An application of Chebychev’s inequality yields

V(n G N; 0*,0 G 0 ) : М Ы * ) |  > M*)) < (1 -  Pc)/2.

Using the Boolean inequality it is easy to see that

P'- (Й>(п)) > 1 -  [Ре- (|Xn(0+)| > c„0+)) +  P,. (|X „(0-)| >  c„(0-))] 
> Pc. ( И )
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From (11) and (9) we obtain that

V(n £ N; 0* ,0 E Q) : Pe. (w2(n)) > Pc.

As Pe. (r < oo) =  1, 9* G 0  and r  6 N we finally conclude that

Pe. (w2(r)) > Pc-

Thus, the Theorem has been completely proved.

3. Linear regression

Let in (1)
V n e N :  = xte*

and 9* 6 R1. In this case we have

9+ = arg inf 
«ек1

д Щ
дв 2cn{9)

It is clearly seen that we come to the following conclusions

e$ =  +  -  Pc))  a ^ ’
1 =  1 * = 1 /  \*= 1

n \ "I / „
2 \

-0.5

5 > ? ( 1 - P C) av/2.
1 =  1 \i = l

We define

j n = y x i

It is easily seen that

0+ =

1 = 1

<£_1 -  ( /n - l( l  -  Pc)) ° b<rV2 Jn- lJn % пУ n') J n

+  (t( j„(1 - P c)) ° \ n / 5

=0+ -2«7(л ( 1 - Р с) ) ‘ 05(тУ2 

Jn — Jn — i T xn, J0 — 0, n > 1.

( 12)

(13)

(14)
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Equations (11)—(14) describe the recurrent algorithm intended for the calcula
tion of values 0+, 0~ on each of the sequential plan (r, <f„) steps. From the essence 
of a set problem we have:

Vn £ N : min(|a|, |6|) < |x„| < max(|a|, |6|).

From here follows that all the statements of Theorem 1 are true for the algorithm 
(12)—(14) with

L = max(|a|, |i>|) and / = min(|a|, |6|).

Now, let us assume that
V n £ N :  Ei(t)  = «г2

and {£t(0}(£N 's a Gaussian sequence. In this case [3]

P (0* € [ßn -  I n , ßn + 7n]) > Pc

where n 6 N

7„ = <r{7(Pc) ^ ^ x ? j  ,

and for a value U{PC) the following notation is possible

2Ф(С/(Рс) ) - 1  = Рс

where Ф( ) is the standard distribution function.
The confidence interval size for value 0* is equal to 27„ in this case. For 

concrete values n £ N ,  Pc G]0,1[, (xl t x 2 ■ ■. xn) we have the relatively large value

еп = \ К - в - \ - 2 1п\. (16)

This is the peculiar charge for the security of a successful plan (dn, r) working with 
large noise distribution class.

If we can cancel the non-parametricity in the set problem, the value en could 
be notably decreased. The distribution of the observation noise are supposed to 
be known in this case. Let us assume that variables {£(í)|í € N} have Gaussian 
distributions and equation (15) is true. It is easy to see that almost all information 
about noise distributions is taken into account related to the choice of {cn(-)}neN- 
Substituting (2/(1 — Pc))-0 5 into the other coefficient, a more complete accounting 
for the Gaussian nature of the noise distribution into the sequence {cn(')}neN> ^ 
is possible to increase the effectiveness of the method.

ßn -  X ]xi2/(x')(
1 =  1 u'=i

(15)
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From the proof of Theorem 1 follows that inequality (11) should be true for 
the sequence {c„(-)}neN- In the Gaussian case it is possible that

Vc„(0) = (  V 2
\dfi(xi}e)

Iái 90

0.5

u(( 1 +  Pc)/2).

Indeed, it is easy to see that

V(0 G 0, n G N) : P(|x„(0)| > c„(0)) = 2Ф (  cn(g) \
\ i / E e. X2n(0))

1

= 2Ф([/((1 +  Рс) /2 ) ) -1  
= (l + Pc)/2,

accounting for both the Gaussian nature of the value Xn(0), # G 0  and the truth 
of the following statement

V 0 G0 :  E,.xl(0)  = 2 ^
* = 1

1 2

de
, - 2

Using the Boolean inequality we obtain (11).
In the linear regression case it can be written:

- 0 . 5

£ * = ( r ( C f ( ( l + P c ) / 2 ) - t f ( P c ) ) ^ g * ? J  -

Value e* is approximately only one eighteenth of en in (16) with Pc =  0.95. 
It is an excellent advantage!

4. A practical example

Let us check the Theorem statement for a case of log-linear model regression 
function widely used in economics. Thus, we consider that

y(xt) = A ■ exp(9*xt ) +  f (<), t G N,

where в* G [a,/?], a > 0, ß < oo, 0 < A < oo, N = {1,2...} is an index set,

Vl G N : í j  G \CUC2], C2 < 00, Ci > 0 
Vi GN:  [Ei(t) = 0, E£4(t) < <r4 < 00]
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In this case it is easy to see that

V(t G N; в £ [a,0], x G [Ci,C2]) :

Ci exp(aCi) < ^ ( A - e x  p(Ö*z)) < C2exp(/?C2) < oo.

Thus, all the statements of the Theorem have been proved for the considered
case.

4. Conclusions

The suggested algorithm enables us not only to build a confidence interval for 
the estimated parameter of the nonlinear regression but also to control the quality 
estimation in arbitrary observation time moments. These results are important 
for practice where the sample volume obtained by statisticians are always upper 
bounded. The solution has been obtained with nonparametric a priori uncertainty 
relative to the noise distributions with a limited fourth moment. So, the suggested 
plan of estimation is of working capacity in the case of arbitrary noise distribution 
with limited fourth moment.
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Неасимптотическое решение 
задачи доверительного оценивания параметра 

нелинейной регрессии 
с позиций последовательного анализа

А В. Т И М О Ф Е Е В

(Т ом ск)

В с т а т ь е  п р е д л а га е т с я  п о с л ед о в а т ел ьн ы й  п л а н , п о зв о л я ю щ и й  за  конечное ч и 
сл о  н аб л ю д ен и й  в у сл о в и ях  а п р и о р н о й  о п р ед ел ен н о сти  о т н о си те л ь н о  р а сп р е д е л ен и я
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ш ум ов п о стр о и ть  д о в е р и т ел ь н ы й  и н т е р в а л  ф и к си р о в ан н о го  р азм ер а  д л я  п а р ам е тр а , 
нел и н ей н о  в х о д я ш его  в ур авн ен и е  р е гр е сс и и . Г р а н и ц ы  д о в е р и т ел ь н о го  и н те р в а л а  в 
к аж д ы й  м ом ент в р ем ен и  н аб л ю д ен и я  о п р е д е л я ю тс я  и з  реш ения д в у х  о п т и м и зац и о н 
ных за д а ч  на м и н и м у м  некоторы х ф ункционалов с п ец и а л ь н о  в ы б р а н н о й  с тр у к ту р ы . 
П р и в о д я т с я  оценки свер х у  д л я  с р е д н е г о  врем ени н а б л ю д е н и я  в п р ед л о ж ен н о м  после
д о в а те л ь н о м  пл ан е .
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ANALYSIS OF ADMISSIBLE PERTURBATIONS
AND

STABILIZATION OF UNCERTAIN DISCRETE-TIME PLANTS

S. V. E m e l y a n o v , P. V. Z h i v o g l y a d o v , S. K .  K o r o v in

(M o s c o w )

(Received Ju n e  12, 1990)

For s tab iliza tion  of s ta tio n a ry  and n o n sta tio n a ry  d iscre te-tim e plants u n d e r co m p act 
uncerta in ty , solvability c rite ria  are proved th a t  are necessary o r  necessary a n d  sufficient 
stab ilizab ility  conditions. For p lants under s ta tio n a ry  u n certa in ty  a  stabiliza tion  m e th o d  
is p ro p o sed  w hich reduces design  of feedback to  fin ite  choice of p a ram ete rs  th ro u g h  p ro p e r 
p a ram etriza tio n  an d  quan tifica tion  of u n c erta in ty  factors. E x am p les a re  provided.

1. Introduction

Robustness of dynamic systems in the face of variations of its operator has 
been moving to the top of research agenda. Unlike the problem of robust stability 
for a stationary linear system where the results are nearly exhaustive [1, 2, 6], 
stabilization remains an underexplored field. The conditions for solvability of this 
problem is the subject of this article.

Various aspects of control of uncertain discrete-time plants have been analyzed 
[3-5, 7, 8], but stabilization of a discrete-time dynamic plant under a compact, in 
particular, interval uncertainty has to be studied more thoroughly, especially as far 
as nonstationary plants are concerned.

The specific of the plant and assumptions on the features of uncertainties 
largely dictate the choice of the technique for design of feedback. Thus min-max 
control combined with recurrent estimation of unknown parameters has been used 
[7] for the stabilization of an uncertain stationary plant; also, a dividing manifold 
can serve the purpose [4]. Various stabilization techniques which call for accumu
lation of information have been proposed [3].

This article will address both stationary and nonstationary discrete-time dy
namic plants. Perturbations must have certain asymptotic properties if an uncer
tain nonstationary plant is to be stabilized. Stabilizability criteria will be formu
lated and proved for various ways to describe the uncertainty. A localization method 
will be proposed for stabilization of plants under stationary uncertainty. Prop-
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er parametrization and quantification of uncertainty factors reduces the design of 
feedback to a finite choice of parameters for which numerous efficient localization 
methods will be proposed.

Section 2 will state in formal terms the control problem. Stabilizability criteria 
for uncertain nonstationary plants are formulated in Section 3. Section 4 will 
describe the localization method and various ways to obtain feedbacks. Examples 
of applying the findings are provided in Section 5. The Appendix will contain 
proofs of Theorems and comments.
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2. Problem statem ent

The discrete-time plants of this article are described by the formula

Et(AÍ, B, L ) : xt+i — A(t)x t +  But + £t ,
( 1 )

A(t) e M  C Rnxn, 6  € L C R", t E IN,

where x £ Rn; R, N are sets of real and natural numbers, respectively; A(t) is the 
matrix of plant parameters; и £ Rm is the control vector; is an unobservable 
disturbance; the pair {A, В } is stabilizable for any matrix A from M; the compact 
sets M  and L reflect the uncertainty of the plant. The plant will be denoted as 
E((M, B), if & =  0 and E(M, B, L ) if A(t) = A — const.

It is required to:

1. Asymptotically stabilize the process in zero in the absence of an exogenous 
disturbance (£t = 0), or to obtain feedback such that the origin of coordinates 
of R" is the globally asymptotically stable equilibrium position of a closed- 
loop system;

2. ^-stabilize the plant in the presence of an exogenous disturbance when feed
back is such that in the vicinity of the origin of coordinates of Rn there exists 
a global stable attractor whose size is dependent on the three-tuple (M, B,L).

The stabilization problem is stated in the narrow sense in that the stabilizing 
feedback is to be linear and stationary.

3. Stabilization of nonstationary plants

It is required to stabilize the nonstationary plant £<(M, B, L). For conveni
ence, equation (1) will be used also in its equivalent form

xt+1 — (A +  AA(t))xt + But +  £(, (i £ í  C R",
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where A E RnXn is a known (nominal) matrix, AA(t) E M C Rnxn, í E N; ДЛ(<) 
is the matrix of parametric perturbations.

The definitions below will specify the geometrical and asymptotic properties 
of the perturbations.

D e f i n i t i o n  1. The compact set L C R n , n  E N is symmetrizable if there 
exists a symmetry center of the convex hull L* E convi, or for any L1 = (L* + 
ДL) E conv L the inclusion holds

L2 = (L‘ -  AL) E conv L.

D e f i n i t i o n  2. If it is symmetrizable, the compact set L C Rn, n E N  is even 
and for any L 1 =  (L* + AL) E conv L the inclusions holds

Li = (L* + PiAL) E conv L\ i = l, . . . ,2 n 

where P{ E Rnxn are matrices of the form

d ia g (± l,...,± l) .

Because in addition to the geometrical properties of the set M  the asymptotic 
behaviour of sequences made of elements of M  is also important for this problem, 
the following definitions will also be useful.

D e f i n i t i o n  3. The sequence of matrices S = {S(to), S(to + 1 ),... ,S(to +  
i ) , ...}, S(i) E Rnxn is recurrently stable if the discrete-time process

zi+i= 5 ( i ) z t , z E Rn; t = t0, t0 + 1 ,...

is uniformly asymptotically stable, otherwise S  is a recurrently unstable sequence.
The set of all sequences made of elements of the compact M  C Rnxn will be 

denoted as S m -
DEFINITION 4. If any sequence 5  E S m  is recurrently stable, then so is M .
D e f i n i t i o n  5. The uncertain plant X)((M, B.L) is M-stabilizable (asymptot

ically M-stabilizable) if with any sequence AA(t) E M; t = t0, t0 +  1 ,...; t0 > 0; 
the problem of its e-stabilization (asymptotic stabilization) is solvable.

Definitions such as 1 and 2 are also applicable to the matrix set M  C Rnx". 
The most important stabilizability condition will be shown to be “proper” asymp
totic behaviour of the parametric perturbations AA(t) E M; therefore without loss 
of generality, assume that = 0.

The following result is the most inportant for linear systems.
T h e o r e m  1 ( R e c u r r e n t  s t a b i l i t y  o f  t h e  p e r t u r b a t i o n s ) .  If for some 

even set M  C Rnx”, M* = 0 the uncertain plant

Et(M, B) : xt+i = {A + AA(t))xt + But, x £ R", и E Rm

4



is asymptotically Afi-stabilizable, then M  is a recurrently stable set. The inverse is 
also true, if M  is a recurrently unstable even set (M* = 0), then the plant E<(M, B) 
is asymptotically M-nonstabilizable.

This Theorem is proved in the Appendix.
Theorem 1 confines parametric uncertainty to recurrently stable sets. If the 

compact set M  is assumed to be only symmetrizable, a similar result is true for 
plants whose feedback is stationary and linear щ = Kit-

To improve the usefulness of the recurrent stability condition, let us specify 
the form of a priori estimates of uncertainty.
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3a. Interval estimates

For E u n d e r  interval uncertainty

A ( t ) e A r e I (  Rnx"), А1 = [А~,А+), m(A) = ±(A+ + A -),

W(A) = (A+ -  A~), w(aij) = w(afj) -  Ц а “.) > 0 , W* = \w {A ) ,

where m(A) € RnXn and W(A)  6 Rnxn are matrices of mean values and width of 
the interval matrix А/ and 7(Rnxn) is the set of real interval n x n matrices holds 

T h e o r e m  2. Stability of the matrix W* is the necessary condition for the 
asymptotic A/-stabilizability of Et(Ai ,B).

Using m(A) as the matrix of nominal values and denoting AA(t) = A(t) — 
m(A) it follows from the inequality |A(f) — m(A)| < W* which holds at any t € N 
that any sequence of the perturbations is recurrently stable.

3b. Metric estimates

If uncertainty of E<(M, B) is specified in the form

Д A{t) <= Q = {ДА G Rnx" : ||ДА|| < a, a  > 0}, t e  N

where || ДА|| = max ЦДАуЦ is the operator norm, then the necessary stabilizability
IHI=i

condition is proved by
T h e o r e m  3 . The condition 0 < a < 1 is necessary for asymptotic Q-stabi- 

lizability of E((Q, В ).
If follows from Theorem 3 that with a > 1 for any stabilization control u(xt) 

at least one strategy of the perturbations behaviour can be obtained, in particular

( a l  if (A + al)xt + But t  ßM(xt),
AA(t) = < —a l  if (A — al)xt + Вщ £ ßM(xt),

(. —a l , a l  in the remaining cases,
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such that ||zt+i|| > а||ж<||, t G N on the paths of a closed-loop system. Here 

M (x t) = {x € Rn; N |  < \\xt\\}, 0 < ß < 1.

Remark 1. If the norm is chosen so that Q C Rnxn is an even set (for instance
П

ЦДЛЦоо = max Y  |Aay|> ||Aj4|| is a spectral norm, etc.), then with stability in
* 7 = 1

this norm of the matrix W *, or W* G Q the truth of Theorem 2 follows directly 
from Theorem 3.

Remark 2. The condition of recurrent stability of the perturbations formu
lated in Theorems 1-3 also hold for nonlinear plants subjected to additive pertur
bations

xt+1 = F(xu ut) + AF(t)xu x G Rn, и G Rm, f  : R” x Rm -* Rn,
1) AF(t) G M  C R"x",

2) AF(t) G f /G  7(Rnxn),

3) Д F{t) e Q C  Rnxn; t G N.

3c. Necessary and sufficient conditions

Under additional aissumptions, recurrent stability M  entails M-stabilizability; 
specifically, the following propositions are true.

Proposition 1. When rang[B] = rang[ő|yl] recurrent stability of the set M in 
Theorem 1 is necessary and sufficient for asymptotic M-stabilizability of the plant.

Proposition 2. With {A, В } being a controllable pair, ДД(<) =  a(t)D, 
KOI < a, t G N, ii(z() = Kit ,  Ал =  (A + B K ) a nilpotent matrix, for any 
matrix D G Rnxn such that [zlA,ű] = A AD -  DAл = 0 the plant T,t(M,B)  is 
asymptotically M-stabilizable iff

ap(D) < 1,

where p(D) is the spectral radius of D.
For instance, with AA(t) = a(t)I  the condition 0 < a < 1 is necessary and 

sufficient. If the plant (1) has a canonical form
1 r 1 1 x t+1 1°  И 1

1
In-1  1

l « í  1 o |

Ц(С,Ь) :  1 • 

1
=  1 ' | | 1

1
1 ’ l +  l 

1 1 1

1 • щ , 
1

( 2 )

1
1 жИ-1

1------------------

a n - l ( 0

------------------------- 1

, . . . ,  a 0 ( i )
1 1 1 

| * ? |  1

1
11

5



then the above conditions of recurrent stability of the perturbations become neces
sary and sufficient stabilizability conditions. For convenience, let us use an equiv
alent presentation of equation (2) as an autoregression equation

% t+i — A t X t  +  Щ', < = i o i  +

where x G R, и € R, X t = (zt_n+1, . . .  xt)T is a vector from R”; At = {an_i(t), 
. . . ,  ao(t)) is a vector of plant parameters; Ä[  G С C Rn, i€ N  and C is a compact 
symmetrizable set which reflects uncertainty of the plant description.

Denote
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Cf = {CA GR"; CA = A T - C * ,  At € C}, M =

where C* is the symmetry center of conv C .
The solvability condition of the C-stabilization problem is provided by 
T h e o r e m  4. With С C Rn being a compact even set, the uncertain plant 

S£(C, b) is asymptotically C-stabilizable iff M is a recurrently stable set.
Recurrent stability of the set M  is equivalent to asymptotic stability of the 

plant Ef(C, b) having linear feedback

u*(Xt) = - ( C ' ) TX t (3)

which is the best in a certain sense. In particular, nonstabilizability of the plant 
by u*(Xt) suggests essential C-nonstabilizability.

In the case of independent (interval) perturbations of parameters of (C, b) 
use the following notation

AT G C = Cl € / ( Rn),
ai(t) ec i  =  [ c - ,ct] ,

™ ( c . )  =  +  c~ ) ,

w(c0  = (ct  -  CD  > * = o,  l, — , n — l

m(c,), w(c{) being the mean and width, respectively, of the interval number c,-. Let 
us compile a polynomial of the form

G(z) = z" + /?oz"_1 + ...  + /?„_i, ßi = -^ui(c,); i = 0 ,1 ,. . . ,  n -  1.

The following Theorem is true.
T h e o r e m  5. Asymptotic stability of the polynomial G(z) is the necessary 

and sufficient condition of asymptotic C/-stabilizability of E£(C/, b).

0!  In-1
й т '
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Because the parallelepiped representing interval uncertainty is an even set in 
the parameter space, Theorem 5 is proved by nothing that the polynomial G(z) 
defines the comparison system for E£ (C/,6) whose feedback is

n— 1
n*(Xt) = ~(C*)TX t = - J 2  m(ci)xt_j.

i=0

This Theorem provides an exhaustive solution of the stabilization problem 
for a discrete interval plant having a canonical form. In obtaining u*(X<), for an 
arbitrary Y  £ R, Y  ^  0 the optimization problems are solved

АУ —» min, АУ —» max, A T £ C.
A  A

The minimum and maximum of the function /(A ) = АУ are obtained with 
certain values of (A~)T £ C and (A+)T £ C. The set C is even and its center 
of symmetry is provided by the equality C* = | ( A + + A~)T while the stabilizing 
control is

“‘№ )  = -^ (A + + A -)X t .

These results are extended to the case of ф 0 while asymptotic stability of 
the closed-loop system is replaced by dissipativity.

4. Stabilization of stationary  plants

In the problem of stabilizing an uncertain stationary plant E(M, B,L) the 
perturbations must satisfy less restrictive constraints. The conditions below make 
it possible to obtain asymptotic stabilization or e-stabilization of E(M, B, L) with 
any intensity of exogenous disturbances by using a localization method.

For convenience, the plants will be scalar

E(Af, 6,1) : £(+1 — Axf + bu,( + , A £ M  C Rnxn, (i £ í  C R",

where x £ Rn; и £ R is scalar control; and £ is an unobservable disturbance.

Ja. The approach

On M  define a finite decomposition into possibly intersecting sets Mi C R"xn, 
s

or M  = (J Mi, and assume a parametric family of feedback functions u(K, x), 
1=0

К  £ Í2. Under certain conditions M  and its decomposition induce on the set 0 a

5
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s
subset ClM C Í) and its decomposition L1M =  У П,- so that for any pairs {K, A},

i= 0
К G fii, A G М,- the closed-loop system

xt+i =  Axt +bu(K,x t)+^t ,  it G L

has a globally stable attractor in the vicinity of the origin of coordinates of Rn. In 
this procedure the parametrization and quantification reduce the feedback design
to a finite problem of choice of parameters. MT — (J M, will denote the union of

i
sets such that A & Mi and, consequently, fir = (Jfl;. The plant can be stabilized

t
if a finite number of measurements of the state path suggests some element К  G 
Qr . This technique will be referred to as localization whose efficiency depends 
on “proper” decomposition of M, choice of the parametric set u(K,x),  and the 
localization procedure, or the measurement technique and ways to use information 
for finding elements of Qr.

Jb. Localization methods

Let us have a look at localization methods in which the quadratic and linear 
forms of the state vector are measured and a comparison system is used.

Defin itio n  6. For positive definite matrix HT = H and number e > 0 
the plant E(M, b,L) is (Я, e)-quadratically stabilizable by feedback u(x) with any 
A G M  and G L if

1) there exists a globally stable attractor A£ G ő c(0);
2) for every Xo there exists a time tc(xo) such that for xt(xo) ^ A£ at t > tc(xo)

the inequality holds

((Ax, + bu(xt ) + it), H(Axt +  bu(xt) + it)) -  (x,, Hxt) < 0.

Here B£(0) = {xG Rn, (x,Hx) < e}.
Let ||А||я = ||5 -1A5||, 5T5 = H  is the Я-norm of matrix A and dM is 

the boundary of M.  The solvability condition of the (Я, e)-quadratic stabilization 
problem is provided by

T heorem  6. The plant E (M,b,L)  is (Я ,e)-quadratically stabilizable with 
some e >  0 iff

max ||(/ -  (6т Я Ь )-166т Я)А||я < 1. (4)
A £ o M

Without loss of generality it will be assumed hereafter that M  = conv{Aj}(n, А,- G 
Rnxn; i = 1,. . . ,  m are known matrices. Because feedback ut = —(bTHb)~xbTHAxt
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is optimal in terms of decrease of the quadratic form (x,Hx)  on the plant paths 
£*+1 = Axt + Ьщ it follows from the inequalities

| | ( 7 - ( 6 т Я 6 ) - 166т Я ) сопу{ Л ; } ^ | | я  <  m a x  ||(7 -  (bT Hb)~4bT Н)А{\\н  < 1
l < * < m

that linear feedbacks

u(K,z)  = Kx,  К  6 Vм = conv{7t';}™, I<i = -(b1 НЬ)~ЧТ НА{; i = 1 , . . . ,

would be sufficient with subsequent localization of the vector К  from 
M  is decomposed as follows

Mi  =
t= 0

A e Rnxn; A = Ai + ДА, A' =  ^ / i ijA;-,
j =i

Д А  =  ^ A / X j A j ,  \Aßj \  e  [— r , r ] ,  j  = 1 , . .. , i  

j=i

(5)

where r > 0 is such that for any | Д/ij | < r, j  = 1 ,.. .,  m:

(At +  XI AnjAj )TH(Äi  +  XI A »jAj) ~ H
j=1 i=i

m

where Ä; = (7 — (bTHb)~1bbTH)A{, 0 < ß* < 1 — max ||А,||я and the basic1 < * < m
vectors of the decomposition /i* = (//*1, . ..  can be computed recurrently.

Assume for simplicity that 1/r is an integer; then the basic vectors /z* = 
(/!*1, . . . ,  ц'т)т, i = 0 , . . . ,  s can be obtained by the recurrent procedure

0 • 
о

• 
О • 

о

/  =

1

, i*1 = +
r

—r

is "i" и

1
0

r
0

1 — r

0 0 0

^ / r+2 =

r
—r

.......  A '*=
r

1 — r 
0

, p2/r+2 =
r + 1

0
—r
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r r 1
1 — r —r 0

0 0
, — fis 1 +

0 0 0

Let L =  {£ 6 Rn; {£, H£) < a, a > 0}. For localization on a finite set 

K = { K i } 5, K,  = —(bTHb)~1bTH A i-, i = 0 , . . . , s  

use the function

<Pt(K) = (((Л + bK)xt + 6), H((A  + bK)xt + б )) -  (1 -  ß*)(xt ,H x t) -  a

which is equal to the difference between the decrease of the quadratic form (x,Hx) 
on the paths of E(M, 6,L) with feedback ut = Kxt  and an estimate of minimal 
decrease of this form among all systems of the form

m
x t+1 = (Ä' + A A )x t +£,, £, G L, A A = ^  AfijAj, \Apj\ < r, j  = 0,.. .  ,s.

3 = 1

By щ , u(+, (щ < u+) let us denote real (by virtue of (4)) zeros of the function 
ipt(K). Then holds

T h e o r e m  7 . When E(M, b,L) satisfies the following inequality condition
max ||( / — (bTHb)~1bbTН)А\\н <  1 with some matrix H = H T > 0, there are 

A £ d M
positive numbers ß*, a, r and s such that feedback u(x) from the set

' ut = К(ж(,

H(u) = <
K ‘ e  Slt(K) = Qt-i(K)  П n t(K), fio(AT) =  K,

n,(I<) = {KT e Rn; u("_i < Kxt-!  < u + i) ,
u t i  = ««-1 -  (bT Hb)~l bT Hxt ±  ((bTH b)- \bTHxt)2-

-  (bTH b ) - \ ( x t , Hxt) -  (1 -  ß*)(xt. u Я г ,.! )  -  a))>

( 6)

(H , e)-stabilizes the plant E(M, b, L ) and for arbitrary initial conditions the in
equality

(x t+i, Hxt+i) -  (xt ,Hxt) < -ß*(x t ,H x t) + a

is disturbed a maximum of a finite number of times.
Dissipativity of a closed-loop system follows from the fact that the sequence 

Qt(A'); t = 0 ,1 ,... in (6) has the following properties:
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1) Qt(K)  C Slt-xiK) C . . . C  Üo(K),
2) fit+1(A') C Qt(K) if ^ (K () > 0, K ( £ Qt(K), щ = K*xt.

Let us consider a localization method in which the linear form cr =  cx is 
measured. Let

G — {x £ Rn;<r — cx — 0},
Сд = {xt £ Rn; |(T(| < A ||x(_i|| + c0, A > 0, c0 > 0}.

Definition  7. The set G is the stabilizing set of E(M ,6) if for any matrix 
A £ M  there exists feedback u(x) such that the equation xt+\ =  Axt +  &u(xt) is 
asymptotically stable in zero with xt £ G at every t > 0

Defin itio n  8. The set G& is the stabilizing set of E(AÍ, b, L) if for any matrix 
A £ M  there are numbers A > 0, Co > 0 and s(xo) > 0 and feedback u(x) such 
that every solution xt(xo) of the equation x(+i = Axt + bu(xt) +£t, £< £ L belongs 
to the sphere 0 г(*о)(0) = {x £ Rn; (x, x) < e(x0)} with x( £ G& at every t > 0.

Definition  9. E(M,b) is globally G-stabilizable by feedback tt(x) with any 
matrix A E M if the set G is

1) the stabilizing set of E (M,b) and
2) finitely attracting set of the closed-loop control system.

Definition  10. E(M, b.L) is globally GA-stabilizable by u(x) with any A £ 
M  and £ L if there are numbers A > 0 and Co > 0 such that the set G& is (1) 
the stabilizing set of E(M, b, L) and (2) the finitely attracting set of the closed-loop 
control system.

Let A^ be an arbitrary martix of the parametric family M  = {A £ Rnx"; A =
m  m

Au = Pi-A-i, А» = 1) 0 < Hi < 1}. When the feedback is a member in the
t=i i—i

parametric family u\  =  —(cb)~lcA\x the closed-loop system equation with = 0 
takes the form

m
xt+i = PA^xt -  (c6)"16 c ^ (A l- -  fii)AiXU P = ( / -  (c6)_16c). (7)

*=i

m
It follows from the equality <r<+1 = — -  /1,)су1;х< that the linear form a =

1 = 1
ex contains information on the unknown vector /i =  (/ii, ■ • ■ ,/rm)T| besides, if
|^шах(АА/г)| < 1, then there is a number A > 0 such that with |crt+1| < A||xt||
equation (7) is asymptotically stable. In the subsequent discussion E (M,b,L)  are
such that cb ф 0, max |Атах(РЛ)| < 1.A£M

Because the properties of the linear system are continuously dependent on 
the parameters, there are positive numbers A, aq, «2, r, cq > max|c£| such that
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for any Ац G M, |At- — /i, | = |Д/к,-| < г; i = 1 ,.. .,  m  every solution of the equation
m

xt+\ = (PA^ +  ^2 A/i,\Af)xt +£t, G L at t > 0 belongs to the stabilizing set Ga 
*=i

m m
for which the inequality holds (((РА^+ Дан̂ ) х*+£*), U((PAß + Y2 Дя;Д')х< +

t=1 1=1
£*)) — {xt ,Uxt) < — a i(x t, Xj) + ö2 and U = UT > 0 is the solution of the Lyapunov 
equation Á^PTUPA)1 — U = —a xI.

Note that if E(M,b,L)  is (Я, e)-quadratically stabilizable with some matrix 
H = H T > 0, then it is sufficient that the vector cT G Rn in linear form a — cx be 
chosen in the form с — 6ТЯ  and the condition max |Amax(P.A)| < 1 holds by virtueA £ M
of (4).

For instance, if A = Aq -f bAA, AAT G Q C Rn where Q is an arbitrary 
compact set and A q is a known matrix, there is certainly a matrix H — HT > 0 
such that the pair {Ло,6} is Я -quadratically stabilizable and from the equality 
P(Aq + bAA) = PAo which holds for any AAT G Q follows the truth of the 
condition max |Атах(РЛ)| < 1 with c = bTH . Consequently, M can be decomposedA£ M
as in equation (5). When the localizing function

<Pt(K) = Ic(A +  bK)xt + c£,| -  Д||х,|| -  c0

is used, holds
T heorem 8. If for E(M, b, L) and some vector cT G R", (cb ф 0) the inequal

ity m ax |Amax(PA)| < 1 holds where P = (7 — (cb)~1bc), positive numbers Д, Co, A£M
r, c*i, c*2, s exist such that feedback u(x) from the set 

' щ = K*xt,
K ‘ G n t{I<) = Qt-i{I<) П Clt (K),  По (К) =  К ,

С д Ы  =  -  „
П,(А') = {KT G Rn;u(--i < # xt - i  < u + J ,

. uf-l =  И( - 1  -  (c6 )"V ( ±  |(с6)- 1 |(Д ||х1_ 1|| +  Co),

globally GA-stabilizes S(M,  6, L) and there exists a m atrix U —  UT >  0 such that 
the inequality

(xt+i, Uxt+1) -  (xt ,Uxt) < xt) + a2

is disturbed on solutions of a closed-loop system a maximum of a finite number of 
times.

For G-stabilization of E(M, b) which is a limit case of GA-stabilization, there 
exists a unique feedback ut = —(cb)~1 cAxt which ensures motion in the manifold
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a = cx = 0. Let £(ti) denote the set of feedbacks which result from Сд(и) as a 
consequence of a limit transition as Д —» 0 and cq —► 0:

C ( u )

' ut = K*xt,
K ‘ £  !2 ,(K )  =  i i t_ i ( К )  П Qt( K ) ,
Q0(K) = {I<T £ Rn\K = -{cb)~lcA, A £ M],

, Ö , ( Ä )  =  {ЯГТ €  Rn ; / ,f x (_ 1 =  « , _ !  -  (c6)_ 1 <rt } ,

Solvability of the G-stabilization problem is defined by
T h e o r e m  9. If for some vector cT £ R", (c6 yA 0) the inequality condition

max |Лтах(РЛ)| < 1 holds, then E(M, b) with ut =  u(xt) £ £(u) is asymptotically A£M
stable and any motion path of the closed-loop system belongs to the hyperplane 
и — 0 with a possible exception of a finite number of points q < n where n is the 
system dimension.

Localization with the use of a comparison system is a convenient tool if the 
parameters and exogenous disturbances of £(M, b, L ) satisfy the matching condi
tions, namely,

A = A0 + bAA, ( t = bit , AAT £ Q = convfQ J^, |£«| < £, £ > 0,

where {Ло, 6} is the controllable pair and Q{ £ Rn; i = 1 ,m are known vectors. 
Such a plant is described by a scalar n-th order difference equation

Vt+i — A,iYt + щ + it,
m  m

where у £ R, Yt = (yt , . . . ,  yt- n+i)T is a vector from Rn, AM = t*iAi, £  /h = 1,
1=1 1=1

о <Hi<  1 , A f  £ Rn; a convex combination of vectors Д-; i = 1 , . . . ,  m  is in one-to- 
one correspondence with a convex combination of matrices Aq +  b Q f ; i — 1 ,..., m. 
Introduce the following exponentially stable comparison system

z<+1 — BZt + Ф(,

where z £ R, Zt =  (zt , . . . ,  zt - n + i) T , В =  ( ß o , . . . ,  ß n - i )  is a vector of positive 
parameters, and |£t | <  Ф< <  oo is the m ajorant o f disturbance. The stabilization 
problem is understood in  the fo llow ing sense.

D e f in it io n  11. The p lant

2/i+i = ApYt + ut + i t , A ^ e  conv{^,}^, |£t | < £

is globally P-stabilizable by u(x) with any A^ £ conv{j4,}y, it £ [—£,£] if
1) there exists a stable attractor whose size is dictated by the pair {j3,£}; and
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2) for every Yo there is a time i(Yo) such that at every t > <(Yo) the magnitude 
of the solution yt is majored by the associated solution of the comparison 
system, or \yt\ < zt with Zt(Yo) = |Yt(yo)|.

When the control is ид = — A \ Y  the closed-loop system equation is

m
Vt+i — — W i Y t  + it-

i - 1

5
Assume that the set conv{A;}jn = (J J, is decomposed as follows J, =  {AT £

i—O
m

R”; A =  A' + AA, AA  = 22 Др;Д, Apt £ [—r,-,r,]}, where the parameters r; > 0
t = l

in the inequalities |Д/х,| =  |/i,- — A,j < г,-; i =  1 ,..., m are such that the inequality
m

holds I 22 < B. For localization on the set Q.q(K)  = {—A‘}J it would be
i=i

sufficient to use the localizing function tpt(K) = \{A^ — K)Yt +£t| — B\Yt \ — 
Then the set of feedback takes the form

(Щ =: K ‘Y(,
= I K ‘ € = Qt-i(K)  П Йt(K), Qo{K) = {-A*}0,

U ~ Clt(K) = {KT £ Rn;u t--i < KYt-i  < « + J ,
, uf-i  = Щ-1 -  Vt ±  (jB|Yt | + Ф,).

5. E x a m p les

Example 1. For an uncertain plant

0 1
ai(0  ao(t) + 0

1

where a\(t) £ [—£,£], a0(t) £ [0.2,1.4], ( £ N , £ > 0  the polynomial G(z) = z2 — 
I u(ao)z— = z2 — 0.6z—e has roots zi = 0.3-(-\/0.09 -(- e, z-x — 0.3—-\/0.09 — t
and by Theorem 5 the plant is stabilizable iff 0 < £ < 0.4.

Example 2. In developing a localization algorithm for an (H, e)-quadratically 
stabilizable plant

x t + i  =  A^xt + Ьщ +  x e  Rn , u G R  

A„ £ M  -  conv{Ab A0}, ||f ||я < «, ot > 0,
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because A^ — A q + p(A\ — Ло),  ||Л м||я  < 1 for any p € [0 , 1] let us obtain estimates 
of the parameters So and in the inequalities |A/ii| < 6,-, i =  0,1, with which

(Äi  +  A m ( A !  -  A 0))T H( Äi  +  А / ц ( А !  -  A 0)) - H <  - f t H ,  

0 <  ßi < 1 - | |Л | |я ;  i = 0,l.

Specify a decomposition

в + 1
M = [J Mi, Mi — {Л; A = Ац, ц' < ц < /»,+1; pl = sat(iá)}

1=0

where s = [1/6], 6 = min{6o, 6i}, sat(-) is the saturation function. With a localizing 
function

M A) = (((A, + bK\)xi + &), H((Aß + bK\)xt + 6)> -  (1 -  ß*){xu H xt) -  a

where ß* — min{/?o, ßi), K \  = —(bTHb)~1bTHA\,  the localization algorithm has 
the form

Í «t = ~{bTHb)~lbTHA\,
I a* e З Д  = fit- i( / i)n [A ‘ i (2], а д  = ЫУо+\

where Aj, Â  are zeros of the function tpt(A).
Example 3. Let x<+1 = (Ло + bAA)xt + but + it, ДЛ £ conv{Qi, Qo) and 

Ло be a known matrix. For an arbitrary matrix H = HT > 0 such that the pair 
{Ло,6} is Я -quadratically stabilizable choose a vector c in a linear form а =  cx so 
that c = bTH . Let H — I, ||£t || < a, a > 0 and P = (I — (c6)_16c). Estimate 
the parameter Д in the inequality |<т<+1| < Д||х(|| so that every solution of the 
equation x(+i = PAoxt + (c6)_16<r<+1 satisfies the inequality

(x1+i,x t+1) -  (xt, xt) < - ß ( x t , x t), 0 < ß < 1 -  ||РЛ0||.

To do this, it is sufficient that Д is chosen from the equality 0 < Д < ß\\b\\. Because 
Лм = (Ло + bQо) + pb(Q 1 — Qo), by selecting the decomposition step 6 so that 
0 < 6 < Д||сЬ(<Зо -  Qi)||-1 the set fi0(p) = {/»'}0+1, /»’ = sat(i6); i = 0 , . . . ,  s 4- 1 
is obtained.

If (pt = |с(Л^ + bK\)xt +  c£t | -  A||*t|| -  Co, where 

I<\ = ~(cb)~1cA\,c0 > max|c£|

then the relation (8) where A] and Â  are replaced by zeros of the function y>t (A) 
may be used for localization.
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6. C on clu sion

In the problem of robust stabilization for a nonstationary uncertain discrete
time plant the admissible parametric perturbations have to satisfy requirements, 
much more restrictive than in continuous stabilization. This is true, in particular, of 
the asymptotic and geometric features. In these terms the necessary and sufficient 
stabilizability conditions are formulated.

The problem of stabilizing a stationary discrete-time process is solved by 
a newly proposed and refined localization method which reduces the design of 
feedback to a finite problem of parameters choice by proper parametrization and 
quantification of uncertainty factors.

A p p en d ix

Proof of Theorem 1. A ssum e th a t  there  exists a  recurrently  u n s ta b le  sequence of th e  
p e rtu rb a tio n s S  =  { S (to ), S(to +  1 ) , . . .  S (to  +  t ) , . . .} ,  S  G Sjvf. In troduce  a  m ajoring  sequence 
S* =  {)5 (to )|, |5 ( to  +  1 ) | , . . . ,  |S (to  +  Oli • • •} wbich  is recu rren tly  u n stab le  and , because th e  set 
M  £  R nxn  is even, is nonem pty, o r  5*  G Sjvf. T he key po in t of the  p ro o f is th a t  by v ir tu e  of 
no n sta tio n arity  o f th e  p lan t an d  evenness of M  for any x  €  R n , и £ Rm, t  £  N , f  >  f о th e re  is a  
m a trix  ДА(<) £  M  such  th a t

k t + 1 1 =  |Д Л ( 0 | • M  +  \A x ,  +  B u , |.

T h e  operation  | ■ | is understood  com ponent-w ise. W ith o u t loss of generality  assum e th a t  to =  0. 
In  a  recurrent fo rm  th e  sequence

k i l  =  |Д Л (0 ) ||х 0| +  \Ax0 + B u 0 |,

\x2\ = |Д Л (1 ) | • |Д Л (0)| • |x 0 | +  |Д Л (1 )| • |Л х0 +  B u 0 | +  |A xi +  В щ |,

N - l  N - l

I*n | =  J " J  |Д ^ (О П г о| +  |Д Л (0 1 И х о  +  B u  о I -I- . . .  +  I d r y _ i  +  B u jv _ i I- 
1=0 1=1

As TV —► oo going to  th e  lim it we have

N - 1

lim  |дгjvI =  lirn  ] [  |A A ( t) | |r o | +  lim  Д ^ ,  
N —* oo N  —* oo A X  N —♦ ooi= 1

N - l  N - l

^ N  =  |Д ^ ( 0 1 И хо +  B u o| -I- |Д А ( |) ||А х 1 + B u \  I -f . . .  +  \A xjv_ i  +  В и н - i  |.
i=l »=2
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Because Д ат >  0, lim  Д ат >  0 we have
N — * o o

N - 1
lim  |хдг| >  h m  TT |Д А (1') ||х о | > 0  xo Ф 0, (9)

N - * o o  N —>oo J-Xi=0

if a  m atrix  sequence ДА* =  {| Д А (0 ) |, |Д А (1 ) |,. . .  | Д (*")| , . . . }  is recu rren tly  unstable. F ro m  (9) 
i t  follows th a t  th e  p lan t is M -nonstab ilizab le  w ith  any  feedback u (x t ).

P ro o f o f  Theorem 2 p ro ceed s as above. Indeed , representing  th e  p lan t equation  in  an  
equivalent form  of a  difference inclusion

x t+ i G A / x t +  B u t  =  [ - I F * ,  W * ] x t +  m (A )x t +  B u t

and  denoting x f , . =  m ax 
i + 1  A ( t ) € A r

x'N  =  (VF*)n |x0 | +  ( V F '^ - 'M A J x o  +  B u o\ +  • • • +  |т ( А ) х 1у _ !  +  ő u a i- i I,

lim  x j^  >  lim  (1 Г * )^ |х о  > 0 ,  хо Ф 0
TV—* oo TV—► со

if the  condition  of asym ptotic  s ta b ility  is not m et fo r th e  m atrix  W * .
To prove Theorem 3 i t  is sufficient to derive a t  least one beh av io u ra l strategy of th e  p e r

tu rbations Д А  = {Д А (0), Д А ( 1 ) , . . . ,  Д А ( |) , . . .} such  th a t  | |x t+ i || > a | |x t | | ,  i f  N w ith  a  > 1 
and  with any feedback u (x t) . O ne of such strategies is given in the  b o d y  of th e  next.

Proo f  o f  Theorem 4 is fa c ilita te d  by using  a n  equivalent rep re se n ta tio n  of the  eq u atio n  
describing E £(C , i>) as an  au to reg ression

xq+ i =  A t X t  +  u t, i  =  0 , 1 . . . ,

where x G R , и  G R , X t =  (x t _ „ + i , . . . ,  x t )T , A t  =  ( a n - i ( t ) , . . . , a o ( t ) ) ,  A f  G С  C R '1.
Assum e th a t  there  ex ists stab ilizing  feedback u ( X t )• R epresent u [ X t )  as a  sum

|x t+ i  I w ith fixed (x t, u t )  we have

u (X t ) =  u * ( X t ) +  A u ( X t), u ' ( X t )  -  a rg m in m ax  |X t+ i |,
ui A t

A u ( X t ) = u ( X t ) ~  u ' ( X t ) .

In troduce  a  non-negative fu n c tio n  fo ■ R n X R "  —* R in th e  fo rm

f o ( Y )  =  m ax A Y  -  m in  A Y , A T G C 
A  A

where Y  =  ( y i , ■ • ■, Уп)Т ■ F rom  analysis of the fu n c tio n  f o ( Y )  w ith  th e  se t C  assum ed even it 
follows th a t

y . d M Y ) / d y , > 0 ,  f o (Y )  = fo ( \Y \ ) ,  F yM ), t =  (10)

Because th e  p lant is n o n sta tio n ary , there ex is ts  a  vector A j  6 ЭС  su ch  th a t

|x t+ i( u ( X t ) ) | =  “  [m ax  A X t — m in  А х Л  +  |A u (X t) |.
2 \  A  A  /
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From  th e  definition of th e  m in-m ax control it follows th a t

|*,+ l(u(X ,))|>  |*,+ i(u*(*,))|t

|z t+ 2 (u (-^ t+ l) ,  “ № ) ) l  >  |®t+2(u*(-X’t+ l).u (-X 't)) |.

By v ir tu e  of (10) the  equalities hold

|* ,+ a (« * (X ,+ 1) , « ( * ,) ) !  > |**+ a ( u * ( j r ,+ i) Iu * ( X ,) ) |1 

|x t+ 2(u (X t+ 1 ) , u № ) ) |  >  |x t+ 2 (u * (X t+1) ,u * (X t ) ) |.

E x ten d in g  th is reasoning to  a rb itra ry  tim es we arrive a t a  conclusion  th a t there  alw ays 
exists a  s tra teg y  {A  о , . . . ,  А  jy } such  th a t  on the p a th s  of the  closed-loop system

|x jy (u (X ^ f_ l) , . . .  ,и (Л о )) | >  . . . ,  и * (Я о )) |. (11)

T he m ajo rin g  condition  (11) holds for any feedback  u (X i). If u ' ( X t )  is no t a  stab iliz ing  
control, th en

lim |xjy(u(Xjv_i),... u(A'o))! > lim |x̂ (tt*(Jfw_!),... u*(X0))| > 0
N — * o o  N — * o o

and  feedback u(JYt) does no t stab ilize  E£(C , 6) e ith e r. Assum ing th a t th e  se t C  is even th e  co n tro l 
« • ( * , )  = - ( С * ) * * ,  is linear, w hence im m ediately follows the requirem ent th a t  M  be recu rren tly  
stable.

P ro o f  o f  Theorem  5 can  be  o b ta ined  in  two ways. F irs t, d irectly  fro m  T heorem  4, b ecause  
n  —  1

u* (X t) =  — Y2 m (ci)x t —1 And th e  polynom ial G(z)  d ic ta te s  the com parison  m odel for the  closed- 
»=0

loop system  an d , second, as a  p a r tic u la r  case in th e  p ro o f of T heorem  2.
Proo f  o f  Theorem  6. N ecessity  of condition  (4) follows from  optim ality , in term s of re 

duction of th e  q u ad ra tic  form  (x , H x ) on the p a th s  o f th e  plant x t+ i  =  A x \  -f but of feedback  
ut  =  —(b}H b ) ~ 1bT H A x t .  To prove sufficiency, feedback u(x) £ is u sed  which satisfies th e
conditions of (H y c )-quadra tic  stabilizability .

To prove Theorems 7 a n d  8  i t  is sufficient to  n o te  th a t by v ir tu e  of th e  decom position  
the sequence of th e  set Q t(K ) i  t  =  0 , 1 , . . .  has p ro p e rtie s  1 and 2, w hence i t  follows th a t  w ith  
u(x) £ H ( u )  a n d  u (x) £ С д(и ) f° r  the  num ber of tim es when th e  inequality  ipt <  0 does n o t 
hold, th e  e s tim a te  q <  s is true .

P ro o f  o f  Theorem  9. W ith  t \ , Í2 , . . . ,  being  a rb itra ry  tim e, t x >  0; i = 1 , . . . ,  n , com pose 
an equation  K X  = B q, where

X = Ixt1xt2 . . .  xtn B i =

u ( x t i ) - ( c i> )  V t j  + l

U(X>n) -  (Cb) 1<rt„ + l

If d e t X  ф 0, th en  th e  desired  vector is К  — B o X ~ 1 =  — (ci>) 1 cA.  T o prove the  T heorem , 
it is sufficient to  show th a t  if on  th e  p a th s  of the sy s tem  =  A x t  +  b u t} A  £ M  whose feedback  
is u(x )  £ C(u) th e  inequalities h o ld  |<Xté + i | >  0; t =  1 , . . . ,  n  with some t ,  >  0; t =  1 , . . . ,  n , th e n  
the vectors a re  linearly  independen t.
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С. В Е М Е Л Ь Я Н О В , П. В Ж И В О Г Л Я Д О В , С. К . К О Р О В И Н

(М о с к в а )

Р а с с м а т р и в а е т с я  з а д а ч а  с та б и л и за ц и и  стац и о н ар н ы х  и н естац и о н ар н ы х  д и с 
кретн ы х  о б ъ е к т о в  с к о м п ак тн о й  н ео п р еделен н о стью . В т е р м и н а х  а си м п то т и ч е с к и х  
сво й ств  д о п у сти м ы х  во зм у щ ен и й  сф о р м у л и р о в ан ы  к р и т ер и и  с та б и л и зи р у е м о с т и  не
стац и о н ар н о го  д и ск р етн о го  о б ъ е к т а . Д л я  с т а б и л и за ц и и  о б ъ е к т о в  со ста ц и о н ар н о й  не
о п р ед ел ен н о стью  п р едл о ж ен  м ето д  л о к а л и з а ц и и , сво д ящ и й  за д а ч у  с и н т еза  о б р а тн о й  
связи  к з а д а ч е  конечного в ы б о р а  п а р ам е тр о в . П ри ведены  п р и м ер ы .
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T a k in g  F a rew ell

With the appearance of this last, sixth issue of its twentieth volume the Edi
tors announce the termination of the journal Problems of Control and Information
Theory.

While such a step is necessarily made with uneasy feelings, it is still firmly 
hoped no additional undue inconvenience is being caused by this neither to the 
readers/subscribers nor to the potential authors. Care has been taken throughout 
1991 for making no further announcement concerning the Journal, and of course 
no further call was made for future subscriptions for 1992. Manuscripts, submitted 
next to the deadline of this present sixth issue, have been promptly returned to 
their authors, informing these about the termination with apologies.

The Hungarian Academy of Sciences branch of the Editorial Board, directly 
responsible for the technical process, came up with the idea of stopping the Journal 
by the end of 1991; as it became obvious already in 1990 that even for keeping the 
outputs of the consecutive issues strictly according to schedule, unconventional 
extra care and interventions were needed, because of the devaluation and decay of 
the financial backgrounds. In addition it has been realized by all of us that there 
is no more real need, for operating an additional anonymously reviewed inter- 
academic publication channel in English, in addition to those classically existing 
at each place, specifically for those working in Control and Information Theory at 
the sponsoring Academies; and for those either visiting at or со-working with these 
communities from abroad. This is no more indispensable, as all renowned journals 
in the field became globally accessible in the meantime by authors from any part of 
the world, at least by those with something really significant to say. Such a journal 
as the Problems of Control and Information Theory can hardly make a sense in the 
future within such an active arena without a truely global publicity, and a truely 
global editorial activity.

While even several members of the present Editorial Board are willing to start 
further activities towards these ambitious objectives, under a more constrained pro
file within Control Theory, an entirely new endeavor appears as most appropriate 
even for this purpose; and not just some slight furtherings along the existing lines. 
This is while the Editorial Board unanimously proposed the sponsoring Academies 
to stop, by the end of 1991, the operations of the present Journal; even though all of 
its members still so much enjoy of acting together. A steady academic give-and-take 
is existing within this community apart from any editorial activity anyhow.

This final Editorial is, also to acknowledge that long list of soul-seeking con
tributions included in the past twenty volumes, due not only to the schools at the 
sponsoring Academies, but also from many other centers, nearby and overseas. We



particularly recollect those ones that actually provoked fair further reflections from 
their field. We also wish to thank for the competent technical support, regularly 
received from the Publishing House and the Press of the Hungarian Academy of 
Sciences, and particularly for the support due to the desc-top publishing group we 
were associated with.

Finally let us express in this final Editorial our deep feelings and appreciation 
towards those with whom we were honored to co-work in the present capacity 
for long whiles, who however passed by in the meantime. More distinctly, our 
commemoration is of late F. Csáki (Editor), B. N. Petrov (Editor), G. Bognár 
(Editor), L. Kalmár, M. A. Gavrilov and A. M. Letov, all forming personalities of 
their times.

The Editorial Board
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A DECENTRALIZED CONTROL SCHEME 
FOR CONTINUOUS-TIME SYSTEMS 

THROUGH PARTIAL AGGREGATION

V . V e s e l y , V . B a r c , K .  S. H i n d i

(Bratislava, Manchester)

(Received February 21, 1991)

A new m ethod  for designing a control law fo r a  subsystem  connected  to a  large-scale 
system  such th a t th e  in te rac tion  is m inim ized, is p roposed. T h e  m eth o d  yields a  ro b u s t 
design while ensuring th e  best possible conditions fo r th e  stab ility  o f  th e  overall system . T he 
conditions for a  successful design are  no t too s tro n g  a n d  can  be easily  m et. The ca lcu la tio n  
of th e  con tro l law requires only m odest co m puta tion .

1. In tr o d u c tio n

In many cases, when the subsystem is to be connected to an already exist
ing large-scale system, the objective is to design the control of the subsystem to 
optimize a given objective function while ensuring that the overall system remains 
stable. The design control of a new power station to be integrated within an ex
isting power system is one example. The second example we can take from the 
control of industrial processes when the subsystems can be jointed or disconnected 
in a prescribed way. In this case

-  the first/last subsystem stability,
-  the prescribed way jointed/disconnected subsystem stability and
-  the complex system stability 

must be ensured by control system.
Two approaches have so far been adopted. The first is to design a decentral

ized controller for the subsystem concerned, checking overall stability a posteriori. 
If stability is not attained, the design must be repeated, which may require a num
ber of design iterations [1, 2]. The second approach, i.e. the centralized approach, is 
to make a design taking the whole system into consideration, utilizing only the out
put of the subsystem. Thus, this approach necessitates working with a high-order 
mathematical model of the overall system.

The approach described in this paper is based on considering a detailed model 
of the subsystem and an aggregate model of the large-scale system. The interaction

Akadémiai Kiadó, Budapest 
Pergamon Press, Oxford
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between the two is minimized, while augmenting the subsystem to cater for the 
dynamics of the large-scale system.

2. Problem statem ent

Suppose that a large-scale system can be divided into two subsystems, the 
first of which is to be controlled while the second is already controlled. Let us 
consider a linear time-invariant system Si

Si : i j  = А ц х х + A x2x2 + Biux2 — A2iXi + A22x2 (2-1)
yi - С1X1

where
£1 6 Rni, x 2 £ Rn2 are the state vectors of the two subsystems, respectively; 
и £ Rmi is the control vector of the first subsystem, Ац, A 12, A21, A2 2 , В i are 
constant matrices having appropriate dimensions.

We assume that ni <C П2, matrix A22 is stable, and the triplet (Лц, Bi,Ci)  
is controllable/observable, and

и = К Cxxi  (2.2)
It is required that и is determined such that an objective function for the first 
subsystem is optimized, while:

(a) minimizing interaction with the second subsystem, and
(b) ensuring the best possible conditions from the viewpoint of the first subsys

tem, for the stability of the overall system. Assuming this conditions, the 
first subsystem’s feedback matrix К must be chosen so that the contribution 
of the first subsystem to the stability of the whole dynamical system will be 
positive.
The objective function is:

00

J = J  (x] Q1X1 + uTRu) dt (2.3)
t - t0

where Q1 and R are positive definite matrices.

3. The m ain result

Let us define a new state vector гq(f) as follows
V\ =  Lx 2 (3.1)



VESELY , B A R C ,  HINDI: A D E C E N T R A L I Z E D  C O N T R O L  S C H E M E 3 7 5

where tq (E Rn‘. Matrix L will be referred to as the aggregation matrix. The 
dimension of matrix L and the magnitude of this elements are determined by the 
requirements following from the aggregation objective. In our case, this objective 
is to retain those properties of the aggregated system portion, which are essential 
when considering the stability of the whole system [6]. Letting

L — ^ 12,

the most simple but not optimal results are obtained.
Multiplying equation (2.1) by Л12,

hi = А 12Л21Х1 + A 12A22X2

Let
A12A22 — \M A \ 2  +  E]

It is now possible to minimize an interaction between the augmented system and 
the second subsystem by

min ||£j| = \\A12A 22 -  M A 12IIM

from which
M =  Ai2A22A^2 
E  — A \ 2 A 2 2 [ I  ~  A l 2A n ]

where Л^2 is the pseudo-inverse of A\2- Now, (2.1) can be written as:

S2 : xi = Ацху  + vi + B\u
v 1 =  A12A21X1 +  M  ui +  E x 2 
X2 =  A 21X1 +  A22X2

Let z\ = and Z2 — X2, then

where

S 2 : Z \  — D \ Z \  +  D 2 Z2 +  B u i
Z2 = D 3 z ,  +  D 4 Z2 

y\ = Cz\

D1 Л ц I 
Л-12 Л21 M D2

0
E D3 = [A2i 0]

D4 — A22 в в  1 
о C = [C 1 0]

(3.2)

(3.3a)
(3.3b)

(3.4a)
(3.4b)
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Since Z?2 is small, by virtue of minimizing ||£j|, it is now possible to find the 
condition for tearing the two subsystems apart, while maintaining the stability 
of the overall system. Let us consider that the conditions for tearing the two 
subsystems hold (see the next Section). For system S3

S3 : ii — D \ Z \  + Bu  (3.4)

we can find the control law 
function

(2.2), which will minimize the next augmented objective

Ji
OO

j (z^Qzi + uTRu) di 
t=t0

(3.5)

where
0Q2

Matrix Q2 is a positive definite one associated with the extra state vector tq(t). 
The state vector tq(<) is regarded as the interaction between the original first sub
system and the other part of the system. An appropriate choice of Q2 leads to a 
minimization of this interaction.

Let us consider a Lyapunov function of the system (3.4) with control law (2.2) 
in the form

Hi = zf Pz\ (3.6)
For Bellman-Lyapunov equation we have

B(x) = (2Pzi)T(DxZi + Bu) -I- z^Qzi +  uTRu =
= zl [(Dl + BKC)TP + P(Dj + В КС)  +  Q + Ст Л'т ЙЛ'С]г1

(3.7)

To minimize (3.5) we obtain

min Jj = Vi(<0) =  zf(í0)Ps1(í(0) < Tr(P)\\zi(t0)\\ (3.8)

under the condition B(x) = 0.
To minimize Tr||P ||, we write the following Lagrangian function: 

L = min max{Tr[P +  W((Di + B K C )T P + P(D1 +  BKC)+ 

+ Q + CT K T RKC))}
(3.9)

where Tr[ ] = trace[-] and IT is a matrix of Lagrangian multipliers. The necessary 
conditions for optimality are:

V PL = 1 + W(Di +  B K C f  + (Di + B K C )W  = 0 (3.10a)
V WL = P { D \  + В КС)  +  ( Di  + BKC)T P + Q + Ст К т RKC  = 0 (3.10b) 
V KL = RKCW CT +  B TPWCT = 0, (3.10c)
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from which
К = - R - 1B T [PWCT(CWCT )~1] (3.11)

which, when C is an identity matrix, reduces to the well-known equation for the 
linear quadratic problem

К  = —R~lBTP. (3.12)

The three nonlinear matrix equations (3.10) can be solved by a two-level 
iteration process, similar to that employed by Xinogalis [3] to solve a set of similar 
equations. The solution steps are as follows:

1. Choose K l such that (D\ + В КС)  is stable.
2. Substitute this value of A'1 in (3.10a) and (3.10b) to calculate W 1 and P1.
3. Substitute it in (3.10c) to find A'2.
4. If 11 AT1 — AT2|| < £, where £ is a small positive number, then stop; else set

К 1 = A'2 and go to Step 2.
For the industrial process mentioned above, which can be jointed/disconnected 

a control law will be determined by the next way.
1. For the first isolated subsystem a control law can be determined such that 

the corresponding objective function is optimized by centralized approaches.
2. The second subsystem is jointed to the first one. The mathematical model 

of two subsystems is given by (2.1). The first subsystem model and its control law 
are switch on the matrix A22. The controller for the first subsystem can be de
termined by Eqs (3.10) and (3.11) through minimizing the corresponding objective 
function. So, we have got a new subsystem and a new control law calculation for 
the next jointed subsystem can be repeated.

4. S ta b ility  analysis

In order to check sufficient stability conditions for the interconnected system, 
the Lyapunov function for subsystems are constructed which are followed by check 
up that some linear combination of them is the Lyapunov function for the global 
system.

V = a1z j H 1z1 + a2z*H2z2 (4.1)

where cq, oq are positive constants and

(Di +  BKC)T P\ +  Pi(Di + В КС)  =  -  Ai (4.2a)
D \P 2 + P2D4 = - Я 2 (4.2b)

Lemma. If Du = Di +  BKC  and D4 are stable, then the condition



3 7 8 V E S E L Y ,  B Á R Ó ,  HINDI: A D E C E N T R A L I Z E D  C O N T R O L  S C H E M E

ensures that the global system is stable, too. It makes the disconnection of the two 
subsystems (3.4) possible. The way of the proof of this Lemma is similar to that 

in In order to maximize the right-side of inequality (4.3) the optimization tech
nique can be used for finding

max Amin( Pi)
. Ajif(Pi) .

г = 1,2 (4.4)

under the conditions (4.2).
Let us consider the non-singular constant matrices Tj , j  = 1 and 4, and let

z\ -  T\Z\ 
z2 = T452

(4.5)

For the disconnected two subsystems (3.4) with controller (2.2) using (4.3)
get

•2i = L\Z\
22 = L422

we can

(4.6)

where

and

Lx = T ~ \ D x  + BKC)TX 
L4 = T4 1D4T4

L = diag < (Tj Wj
, .t —i ) * • * I

(Tl u»1 p p
l -Wj (Tj J — ( j l l  ( J 1up J p+i1 (4.7)

where <тр, a‘q ± jui'q are eigenvalues' of matrix L; with crq < 0 for q = 1,2, . . . ,  щ — p 
and 0 < p < П{/2- For Lyapunov matrix equation (4.2), we obtain

L j  Pi + P, L{ = -H i (4.8)

where
Pi = Т / PiTi 
Hi = t J  HíTí

i -  1,4

Lemma [6]. Let us consider that Hi = c,L,- then from Eq. (4.8) for Pi we
obtain

Pi = ~Ci [diag{-cr,1,-cr,1, . . . , - c r ; , - ( 7 ‘ ,-cr))+1,.. . ,- (7 ;_ p}]_1 

where Cj > 0 is an arbitrary constant, and

'Amin (Hi)'

(4.9)

Am {Pí)
= —2 и»мmax (4.10)
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where агм is the maximal eigenvalue of matrix Li. Applying Eq. (4.10) to Eq. (4.3), 
we obtain

(4.11)

where crlM, a\j  are the maximal eigenvalues of matrix (Hi + В КС)  and matrix £>4, 
respectively.

Condition (4.11) gives a more agreeable result than the one given by (4.3) 
(see example).

5. A practical exam ple

Let us consider the linear invariant dynamical system (2.1) with

Г-0.9 0.3 0.7 0.12 0.2 0.31 0 •
0.1 -1.7 -0.1 0 0 0.22 0.2
0.6 0 -0.4 0.19 0.05 -0.05 0

A = 0.6 1.0 0 -0.36 0.4 0.11 - 0.01
-0.7 0.28 -0.3 0.22 - 0.1 0.2 0

0.3 0 0.6 - 0.01 0.42 -1.2 0
L 0.82 -0.15 -0.025 0 0.1 0.6 - 3.6 .

Bi =
' 1.2 0 
0.1 0 
0 0.7

B2 -
1.2 0 
0 0.3 B3 '0.4

" 0.85

The matrices C , Q, R are identities.
1. For the first isolated subsystem the feedback matrix К i can be determined 

by the centralized approach. We have got

К  i -0.6526 -0.0956 -0.4596 
0.2663 -0.0211 -0.7099

2. The first and second subsystems are jointed now. The feedback matrix Л'2 
can be determined by (3.10). We have got

К  2 -0.8716 -0.4595 
-0.0969 -0.6275

In order to check the two jointed subsystems stability we use (4.3). We obtain

||H2|| = 0.3452 < ^ m in  min m
4 ||Л 1 М № У 1

0.8759
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or for Eq. (4.11)
0.3452 < 1.346

The two jointed subsystems are stable. Now, we connect to the jointed subsystems 
the third one.

3. For the feedback matrix А'з from (3.10), we obtain 

А'з = [-0.2574 -0.1308]

In order to check the stability of the overall system we use Eqs (4.3) and (4.11). 
We obtain these inequalities

0.5104 < 0.7716 Eq. (4.3)
0.5104 < 0.927 Eq. (4.11)

The three jointed subsystems are stable. As we can see from this practical example 
condition (4.11) gives a more agreeable result then condition (4.3).

5. Conclusions

A new method for designing a control law for a subsystem connected to a 
large-scale system such that the interaction is minimized, has been proposed. The 
method yields a robust design which optimizes an objective function for the sub
system while ensuring the best possible conditions for the stability of the overall 
system. The conditions for a successful design are not too strong and can be easily 
met (i.e. that Ац, В C, must be stabilizable and Л22 must be stable). In addition, 
the calculation of the control law requires only modest computation.

The suggested approach is not contingent upon deriving a control law through 
optimizing an objective function, and, therefore, can also be used if a different 
control design method, say a frequency response method is desired.
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NEAREST NEIGHBOR SEARCH AND 
CLASSIFICATION IN 0(1) TIME

A. F a r a g ó , T. L i n d e r , G. L u g o s i

( B u d a p est)

(Received February 21, 1991)

A m eth o d  of finding th e  nearest neighbor is presented. T h e  effectiveness o f th e  
a lgorithm  has been  shown in  co m puter sim ulations. T h is  paper gives a  probabilistic  analysis 
of th e  perform ance. T he a lg o rith m  is shown to  have 0 ( 1 )  expected asy m pto tic  com plexity, 
m easured  in  th e  num ber of d istance  calculations fo r n  sam ple poin ts. A reduced com plexity  
classification ru le  is derived w hich has the sam e e rro r  probability  as th a t  of the  nearest 
neighbor d iscrim ination  rule.

1. Introduction

Similar versions of a Nearest Neighbor algorithm have been presented inde
pendently by several authors (Vidal [1], Motoishi and Uemura [2], Faragó et al. [3]) 
which finds the nearest neighbor considerably faster than the exhaustive search at 
the price of 0 (n 2) memory requirement. We will refer to this algorithm as Geo
metric Search (GS). The effectiveness of the algorithm is proved in Vidal [1] via 
extensive computer simulations. However, no exact analysis of the performance 
of this type of algorithms have been published. This paper is devoted to filling 
this gap. In Section 2 we present GS and mention that, in a given probabilistic 
model, the number of necessary distance calculations tends to zero compared to 
the number of sample points. In Section 3 we propose a modified version of GS, 
called Modified Geometric Search (MGS), which requires 0(n)  storage capacity, 
and its average complexity (measured in distance calculations) is 0 (1), that is, 
asymptotically constant. In Section 4 we introduce a nonparametric classification 
rule derived from MGS, which has the same asymptotic error probability as that of 
the Nearest Neighbor classification rule and requires no more than d + 1 distance 
calculations in a d-dimensional Euclidean space.

Akadémiai Kiadó, Budapest 
Pergamon Press, Oxford
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2. Geometric Search

Let X, X i , X 2, . ■ ., X n be i.i.d. random variables taking their values from Rd. 
Assume that the X{ have a common density /  of compact support (all random 
variables are defined on the same probability space (fi, A,V)) .  Let p be a metric 
on Rd. The task is to determine the nearest neighbor of the observation point X  
among the sample points X \ , X ? ,. . . ,  X n. Denote the nearest neighbor by X ^ N. 
The algorithm “Geometric Search” uses the distances between the sample points 
Xi, X 2 , ■ ■ ■ , X n, thus they must be calculated and stored in a preprocessing stage.

Algorithm 2.1 (Geometric Search)

Initialization. Set T  <— X 1, T NN <— ATi, Rmin «— 00, T  <— {Ti,. . . ,  Tn}.
Step 1. Calculate p(X,T).
Step 2. If p( X, T)  < Rmin then Ämin «— p{X,T)  and T NN <— T.
Step 3. Update T in the following way: Exclude all sample points T* E T from T, 

for which
p(X,T)  + Rmin < P(T,T*) 

or
P{X,T)  — -Rmin > p{T,Tm) 

holds. Delete T  from T, as well.
Step 4. If T  is empty then STOP, the last value of T NN is the nearest neighbor and 

its distance from X  is -Rmin- If T is not empty then go to Step 5.
Step 5. If the distances p ( X , X i 1), p (X,Xi 7) , . . .  , p(X,Xim) have already been evalu

ated, then
T  «- arg min7m(U), иет

where
ym(U) = max|p(U,A'tj - p ( X , X t j )\.j <m

Go to Step 1.
It follows from elementary geometric arguments, using the triangle inequality, 

that Step 3 never excludes the true nearest neighbor. Since Step 5 effects only the 
order of distance calculations, the reader can immediately check that the algorithm 
ends with the correct nearest neighbor. The idea of the exclusion in Step 3 also ap
pears in other nearest neighbor algorithms which use branch and bound techniques 
to reduce complexity ([4], [5]).

Although Algorithm 2.1 finds the nearest neighbor for any metric on Rd, for 
the analysis we need to assume that the metric is of the form

p(x,y)  = (x -  y , x  -  y)l /2 = ||a: -  2/Ц,
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where (•, •) is an arbitrary inner product in Rd and || • || is the corresponding norm. 
It is readily verified that every inner product in Rd can be written in the form: 
(ar, у) = xT Ry, where R  is a positive definite symmetric matrix.

T h e o r e m  1. Denote by Nn the number of distance calculations performed 
by GS (Algorithm 2.1). Then

lim ^  = 0n — oo n

with probability 1.
We omit the proof of Theorem 1 for the ideas in it are similar to those in the 

proof of Theorem 3.
As a measure of complexity we have considered only the number of distance 

computations. We find it a reasonable assumption for this is the most time consum
ing part of the computation, especially when the distance measure is a complicated 
one. All the simulation results show that the processing time is essentially deter
mined by the number of distance computations.

3. Finding the Nearest Neighbor in 0(1) Time

A serious drawback of Algorithm 2.1 is its 0(n2) memory requirement. In 
the sequel we present a modified version of GS with memory requirement linear in 
the number of points. Now, instead of computing the distances between the points 
X i , X 2, ■ ■ ■ , X n, the preprocessing is the following:

Let p i , ...  ,Pd+1 be d+ 1 points in Rd of pairwise equal distances whose convex 
hull V  contains the support of the density of X . (Therefore, Xi  £ V with probability 
1.) Denote by si,S2> • • •, s<i+i the hyperplanes whose finite segments are the faces 
of the regular simplex V. Calculate and store the n(d -f 1) distances p(si ,Xj),  
1 < i < d+1; 1 < j  < n, i.e. the distances of the points Xj  from all the hyperplanes. 
Having this done, we propose the following algorithm:

Algorithm 3.1

Initialization. T  <— {Xi, X 2, . . . ,  X n] .
Step 1. Calculate the distances p(X,s,), i = 1, . . . , d + 1.
Step 2. Calculate the values

hx(Xi)  = max И*,-, Sj) -  p(X, Sj)|, (1);<d+ 1

determine their minimum and put

Xn arg min hx(U). (2)
t/er

2
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Step 3. T  <— T — £/, where U consists of the X , for which

h x (x i) > (3)

Step 4. Calculate the distances of the elements of T  from X,  and put

X n N <- arg min p(X, U). 
ueT

Before analysing the complexity, we verify that the algorithm works properly. 
T heorem 2. Algorithm 3.1. always finds the nearest neighbor of X.
The proof of the theorem uses the following lemma:
Lemma 1. For each point у inside V

- y  p(X,y) < hx(y) < p{X,y), 

where hx  is defined as in (1).
Proof. Denote by Sj(A), j  = 1 ,... ,d + 1 the hyperplane that contains X  and 

is parallel to Sj. Then clearly,

|p(2/,s>) -  =  P ( y , s j ( X ) ) ,

therefore,
hx (y) = max p(y,Sj(X)).

j < d  +  l

Since X  G Sj(X) for all j  thus

P{y,si(X))  < P(y,X)

for all j  which proves the second inequality.
To prove the first inequality let sJy(A) = arg maxy p(sj(X),  y), that is hx(y) — 

p(sjv(A),i/). Then it is easy to check that у falls in a right cone centered at X  
with base parallel to Sjy(A) and angle which is twice the angle ad between an edge 
of V  and the corresponding height of V . (Every distance and angle is understood 
in the given metric and inner product.) We will prove that angle qj is not greater 
than 7t/ 4. Then it follows that denoting the projection of у onto Sjy(A) by v the 
angle Xyv  is not greater than n/4,  thus we have

P{y,v) -  p(y, X) cos(Xуv) > p{y,X) cos(?r/4) = V2
2 p(X,y) ,

and the statement is proved.
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All we have to prove is a j  < 7t/ 4. Let mi be the altitude and rk be the 
circumradius of the ^-dimensional regular simplex with edge of length 1. Thus 
ak, the angle of interest, is just the angle between an edge and the corresponding 
height. Using elementary plane geometry we can write the following two equalities:

cos2(a fc) + r2K cos2(7t/2  — 2ak) = 1 
sin (ai+i) = rk

After elementary steps we get

cos2(ajt+i) = 1 - 1
cos2(ajt)

Now, it is obvious that cos(ajt) monotonically decreases to 1/2, thus cos2(at) > 1 /2  
for all к and the lemma is proved. □

Proof of Theorem 2. We need to check that Algorithm 3.1 does not exclude 
the nearest neighbor in Step 3., that is,

T hx {XnNN ) < hx(X*n).

Applying Lemma 1

h x ( X » N) < p (X ? N,X) < p(X*,X)  < ^ h x (X-n)A
2

thus, the algorithm never excludes the nearest neighbor. □
Now, we can turn to the complexity analysis of Algorithm 3.1. As the mea

sure of complexity again, the number of distance calculations are considered. The 
following theorem states that on the average, the algorithm executes no more than 
a constant number of distance calculations.

Introduce the following notations: Let r be the ball of radius r centered 
at x, and let Л be the Lebesgue measure on Rd and let Px denote the probability 
measure on 7Zd induced by X.  In addition to the compact support condition we 
need a regularity condition imposed on the density. We assume that there exist 
functions Ci(z),C2(x) > 0 and constant Го > 0 such that for almost all x (mod Px ) 
and all r < ro

c i ( x ) f ( x ) < ^  J f ( y ) dy  < c 2(x)f(x)  (4)
*’Г Sx,,

R4
(5)

2
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Notice that this condition holds if e.g. the support of the density is a convex set 
and a < f (x)  < b for almost all x (mod P x )  for some a,b > 0.

T h e o r e m  3. Denoting by Mn the number of distance calculations performed 
by Algorithm 3.1, we have

lim E(Mn) < Cd,
П —ЮО

where cj = d + 2d + 1 is a constant depending on the dimension d only.
The following lemmas show that having Step 3 of Algorithm 3.1 executed, the 

number of the remaining points, on the average, is not greater than 2d.
Lemma 2. If у £ V and ^ hx{y) < h x ( X *), then

p (y ,X )< 2 p (X ? N ,X).

Proof. Applying Lemma 1, the condition and the minimality of hx(X*)  we 
can write

^ p ( y , X )  < hx (y) < f y x ( X - n) < ^ h x (X »N) < ^ = p ( X ™ tX),

which completes the proof. □
Lemma 3. Let Z be a random variable taking its values in Rd. Assume there 

exists a compact set A £ Rd with PZ(A) = 1. Then for any у > 0 there is an 
б = e(y) > 0 such that

P r {Pz(Sz .y)  >  e }  =  1.

Proof. For any set H  € Rd define the quantity

р (Я )=  inf Pz (Sx,y).
x £ H

If p{A) > 0, then c = fi(A) will clearly satisfy the requirement, so assume that 
p(A) = 0. Then there are sequences xn 6 A, en >0 with

lim £„ = 0 and Pz{SXn y) < £„.
n  —► oo

Now, cover A by a finite number of open balls of radius у / 2, all centered in A. 
Then at least one of these balls contains infinitely many of the points xn . Let Bq 
be such a ball. As Bo has radius у/2

Bo £ Sx nt ,y

holds for some infinite subsequence {xn<} of {x„} which implies

Pz{Bo) < Pz ( SXn, y) < £„',
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that is, Pz (Bq) = 0 must hold.
Now, replace A by A\  =  A —Bq and repeat the whole procedure. If p{A\) > 0, 

then the proof is finished, otherwise we can delete a ball B\ of radius у/ 2 centered 
in A\ with Pz(B i) = 0. Continuing in this manner we must get stuck after a finite 
number of such deletions by the boundedness of A, and the procedure yields a set 
Ai 6 A with Pz(Ai) = 1 and p(Ai) > 0, which completes the proof. □

Let X „ N(x) be the nearest neighbor of the point x, and let the random 
variable Rn(x) = p(x, X „ N(x)) be its distance to x. The next lemma states that 
the average number of points not excluded in Step 3 of Algorithm 3.1 asymptotically 
does not increase with n.

Lemma 4. For all с > 1

lim E
n —* oo <»=i

{■Х.€~х,ся„ ( X ) }
—  C

Proof.

^  hx,eSx,CRn(x)} \ ~  n E  ( ^ { * » € - S . X , cR „ ( X ) } )

= nPr{A„ € Sx,cRn(X),X„ =  XnViV}
+  n P r { A ' „  €  SXiCRn(x), X n ф X ™ }

The i.i.d. property of the X,- implies that the first term in the brackets is 1/n, while 
the second term is the following:

Pr{xn e s X}CRn(x)x n ^ x ^ N }

— E  ( ^ { X „ 6 S x , c R „ _ j ( X ) } )  — E  ^ { XneSx.R„_1iX)}')

-  E  (■^{x„e5x,cR„_1(x)}) —

thus, we have

E 7
t«=i

{Х ,е5 х ,сл п(х)} = nPr{X„ € 0х,сяв_,(Х)}-

Now, for arbitrary у > 0

nPr{xn e Sjr.eÄ.-ifx)} < «Рг{х„ e s X  cRn_ l (X ), R n - i ( x )  <  y }
+ пРг{Лп_!(Х) > у}.

(6 )
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First, we treat the second term of (6). By Lemma 3 there exists an e > 0 (inde
pendent of n) with

Pr{Än_!pO  > у) = E (  1 -  PxiSx.y))'1- 1 < (1 -  0 " “ 1-

which implies
lim nPr{Ä„_i(X) > у} = 0.

The first term of (6) can be written as

J  n Pr{X„ e SX:CRn_^x),Rn~i{x) < y} f ( x )d x
Kd

(7)

We will show that n Pr{X„ £ SX]CRn_1(x), Rn-i(x)  < y} —♦ cd as n —> oo for almost 
all x (mod Px),  and use Lebesgue’s dominated convergence theorem to finish the 
proof. We can write

lim nPr{X„ € Д„_i(x) < y}
n —*oo

Pr{Xn € 5Г|Сдп_1(г), Rn-i(x)  < y} 
~  n ™  P v {x n € 5х,Яп_1(х)}

lim Pr{^n £ SXiCRn_l(x), Rn- i(x)  < y] 
n—»oo P г { Tfi £ S x , R n- i ( x ) i  R ji — i (*e) ^2/}

( 8)

The last equality is true because Pr{Ä„_i(x) > у} tends to zero exponentially fast 
for almost all x (mod Px) (see Cover, Hart [6]). Introducing the notation F„_i(y) = 
Pr{J?n_!(x) < y}, Lebesgue’s density theorem implies (Wheeden, Zygmund [7]) 
that for almost all x (mod Л)

P r { - ^ n  6  SxcRn_l (x)  j Rn —1 ( ^ ) ^  2/}

Pr{Xn € 5XiHn_j(x)i R n - i(x) < y}

/  /  f (z)dzdFn_i(t)
_ 0 •S’x.cf

/  /  f (z)dzdFn-i( t)
0 Sx,<

f ( f ( x) + h'x(t))X(SX:t) dFn-i(t)
-  cd^ --------------------------------------

f ( f (x)  + hx(t))A(Sx t) dF„-x(t)
о

(10)
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where hr (t), h'x(t) —> 0 as t —* oo. Obviously, (10) is arbitrarily close to cd if у is 
small enough and f{x)  > 0. Therefore, the limit in (8) is cd for almost all x (mod 
Px)- On the other hand, using condition (4) we can upper bound (9) as follows:

I  f  f(z)dzdF„.i(t )
0 < dc2(g)
У -  C r,(x)’
f  f  f {z)dzdFn. x(t) Ц ;
0 s,,t

which is integrable by condition (5), therefore, the dominated convergence theorem 
can be applied to complete the proof. □

Proof of Theorem 3. Since the number of distance calculations is d + 1 (in 
Step 1) plus the number of points not excluded in Step 3, Lemmas 2 and 4 readily 
imply the theorem. □

4. A fast nonparametric classification algorithm

We have seen that Algorithm3.1 finds nearest neighbor after d+ l+2d distance 
calculations, on the average. In many cases the nearest neighbor is used to classify 
the input vector X  into one of M categories, that is,the task is to estimate the 
value of the random variable У £ {0, 1,.. ., M — 1} through X , using independent 
copies of (X, У) : £„ = (X i, У1) , . . . ,  (Xn , Уп). Cover and Hart’s [6] well known 
result states that if the estimation is Y ^ N, the label of X ^ N, then the asymptotic 
error probability of the nearest neighbor classification rule is

lim P r { Y f N /  У} =  E
n —► OO

M-l
E  P-2W
i= 0

( 11)

if the pi(x) = Рг{У =  i \X — z} a posteriori probabilities are continuous. In 
this Section we propose a classification rule which provides the same asymptotic 
error probability as that of the nearest neighbor classification and calculates only 
(deterministically) d+ 1 distances, and we also drop the continuity condition of the 
Pi(x). This classification rule is simply the truncated version of Algorithm 3.1:

Classification rule 4.1. Estimate У by Y*, where Y* is the label of X * =
= arg min hx{U), the point obtained after executing the first two steps of Algorithm

UtT
3.1.

Clearly, d + 1 distance calculations are necessary to obtain Y*. We have the 
following theorem for the probability of misclassification:

T h e o r e m  4 .

lim Рг{Уп* ф У) = E
n —► OO

M - l

1 -  E P? W •
i =  0

( 12)
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First, we prove the theorem for continuous a posteriori probabilities.
Lemma 5. If the Pi(x) a posteriori probability functions are continuous, then 

(12) holds.
Proof. In the proof of (11) the only property of the nearest neighbor Cover 

and Hart used was that p ( X , X „ N) —* 0 as n —► oo with probability 1. But, by 
Lemma 2 p ( X , X *) < “2.p{X, X „ N), thus p ( X , X *) —+ 0 as n —*• oo with probability 
1, therefore, the statement can be proved in the same way. □

Lemma 6. If /  is a non-negative measurable function on R'*, then

E[f(K)] < 2d+1E [ f ( X ) } .

Proof. We use Stone’s technique [8] to prove the statement. Put

^in{%t % 1) • • • j Xn ) 1, if hx(xi) < hx{xj) for all i ф j  
0, otherwise

then exploit the i.i.d. property of the X,

E[f(X*n)} =  E ^ / ( X , ) w , n ( X , X i , . . . , X „ ) J

П
=  Y ,  E( f (X)win(Xi , X l t . . . , X , . . . , Xn) )

1 =  1
/  n \

= E Í f ( X)

Therefore, it is enough to prove that

П
, £ b  . . . , Ж, . . . , Xn ) <  2 d + 1 .

* = 1

n
Here u>in(xi, x \ , . . . ,  x , . . . ,  x„) is just the number of the Xj for which hx(x) <

Z = 1
hXj(x) for all j  ф i. We can upper bound this number as follows. Let и and и; be 
the following d + 1 dimensional vectors:

и = (u(1),u (2), . . . , u (d+1)) = (p(x,si),p(x,s2) , .. .,p (x ,sd+J)),

and

Щ = (u-1),u[2), . . . , u ^ +1)) = (p(xi ,s l ),p(xi ,s2) , . .. ,p(xi,sd+l)),
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for i = 1,2,. ..  ,n. Observe that

hx{xi) = max \p(x{, sj) -  p(x, s, )| j<d+ 1
= max — u«)| = ||u — u,j|oo.

Thus, it is obvious that x* = x, iff u, is the nearest neighbor of и (with respect to the 
maximum norm) among the points u\,U2 , ... ,un. Therefore, )Г)"=1 w,n(xj, x \ , ... ,x, 
. . . ,  xn) is just the number of и,• for which и is the nearest neighbor of щ among 
u i , . . . ,  u;_ 1, u, ut+i , . . .  ,un. An elementary argument shows that this is not greater 
than the number of orthants of Rd+1, that is, 2d+1. □

Lemma 7. Let Z , Z \ , ... ,Zn be random variables taking their values from 
the set { 0 ,1 ,... , M  -  1} such that (X ,Y, Z),(X1,Y1, Z ^ , ... , (Xn ,Yn , Zn) form an 
i.i.d. sequence. Put qi(x) = Pr{Z = i\X = x), i = 0 , . . . ,  M  -  1. Denoting by Z* 
the label of X* we have

Л / - 1
limsup I Pr{T„* ф Y)  -  Pr{Z'n ф Y}\ < 2d+1 ^  E\Pi(X) -  ?,(A)|.

Proof.

I M Y :  Ф Y}  -  Pr{ z :  ФУ} \ =  IE( Рг{Уп‘ Ф Y\X, X*n} -  ?v{Z'n ф Y\X,  A*})|
/М-  1

= Я £  = т ы х * п) -  4i(x*))
\  i=0 )

< E (  £  Ip,(A-*) -  .
i  =  0

Applying Lemma 6 the proof is completed. □
Proof of Theorem 4. Since the set of continuous functions is dense in L\(Px),

it is easy to see that for every e ;> 0 there exists non-negative continuous functions 
M- 1

qi(x)  with Y: Qi(x ) = 1 such that 
, '= o

M-l
Y . E \ M X ) - qi( X ) \ < ^ - ^ .

Now, the random variables Z ,Z \ , . ..  ,Z n can be defined such that P r{Z = i\X = 
x} — qi(x ) and (X ,Y, Z) ,(Xi ,Y\ ,  Z i ) , ...  ,(Xn,Yn, Zn) form an i.i.d. sequence. 
Then from Lemma 7

2-1+1 €
limsup I Pr{Vn* ф У} -  Pr{Z* ф У}| <
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On the other hand,

M-l
< 2  £  E\Pi(X) -  qi(X)\

i—0 
2e

<  2 +  2d + 1 '

Therefore, by the triangle inequality, using Lemma 5 and the continuity of the 
qi(x), we have

M-l
£ £ ( l - p ? P O ) ( l - 9?(X))

i = 0

limsup
n —► oo

M - l
Р г{У „* # У }-£  £ ( l - , p , 2(X))

t= 0
<

2c
2 +  2d+1 + 2 + 2 ^ !

2d+i

Since c is arbitrary, the proof is completed. □
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Поиск ближайщего соседа и классификация за время 0(1)

А Ф А Р А Г О ,  Т. Л И Н Д Е Р  и Г Л У Г О Ш И

(Б у д а п е ш т )

П р е д с та в л ен  м е т о д  п о и ск а  б л и ж ай щ его  »со седа« . Э ф ф ек ти в н о сть  а л г о р и т м а  по
к азан а  с пом ощ ью  к о м п ью тер н ы х  в ы ч и сл ен и й . В ста стье  д а е т с я  в ер о я т н о с тн ы й  а н а 
л и з  его  р е зу л ь т а т и в н о с т и . П о к азан о , ч то  а л г о р и т м  им еет а с и м т о т и ч е с к у ю  с л о ж н о с т ь  
0 (1 ) ,  к о то р а я  и зм е р я е тс я  по ч и сл у  в ы ч и с л я ем ы х  р ассто ян и й  д о  п  вы бранны х т о ч ек .

В ы вед енн ое п р а в и л о  к л асси ф и к ац и и  пониж енной с л о ж н о с ти  им еет т у  ж е  в ер о 
я т н о с т ь  о ш и бки , ч т о  и п р а в и л о  о тб о р а  б л и ж ай щ его  соседа.

A. Faragó, Т. Linder, G. Lugosi 
Technical University of Budapest 
H-1521 Budapest 
Stoczek u. 2.
Hungary





Problems of Control and Information T h eo ry , Vol. 20(6), pp. 397-406 (1991)

UNIVERSAL ALMOST SURE DATA COMPRESSION 
FOR ABSTRACT ALPHABETS AND ARBITRARY 

FIDELITY CRITERIONS

E n - h u i  Y a n g

( Tianjin)

(Received Decem ber 30, 1990)

T he prob lem  of universal a lm ost sure d a ta  com pression  for a b s trac t source a lphabets 
is considered. U nder certain  m ild  conditions on fidelity  criterions, u n iv ersa l alm ost sure 
d a ta  com pression theorem s a re  estab lished  for a b s tra c t source a lp h a b e ts  a n d  reproducing 
a lphabets. T he m ethods are d is to rtio n  program -size com plex ity  o riented , a n d  the  construc
tions of th e  un iversal sequence of codes used are b a sed  on d isto rtion  C h a itin  complexity. 
These resu lts  a re  th e  generalization  of th e  universal a lm o st sure d a ta  com pression theorem  
of O m ste in -S h ie lds for finite a lp h a b e ts  and the  fidelity  criterion  of H am m ing  distance to  
ab strac t a lp h ab ets  an d  a rb itra ry  fidelity criterions a n d , th is  au tho r believe, should have a  
profound im pact on the  developm ent of theory of d is to rtio n  program -size complexity.

Keywords and phrases: B ounded d is to rtio n  variable ra te  code, C haitin  com
plexity, d is to rtio n  C haitin  com plexity, operational r a te  d isto rtion  function , universal d a ta  
compression.

1. Introduction

Let A and A be two abstract alphabets, henceforth called the source alphabet 
and the reproducing alphabet, respectively. Let A  and A  be <r-fields of subsets 
of A and A, respectively. We denote by (Л00, ^ 00) the infinite Cartesian product
o°
x (Л*, Ak) and by {An, An) for each positive integer n , the n-fold Cartesian prod-

Ar=1
n - л \uct x (Ak,Ak), where (Ak,Ak) = (A,A) for each positive integer к. (A00, ^ 00)

k = l

and (An,A n) are defined similarly. If x = (x;) is a finite or infinite sequence from 
A or Л, let x£, = (xm, xm+i , . . . ,  xn) and, for simplicity, write x" as x". For our 
purposes, a source p is a stationary, ergodic process {X n} taking values in the 
source alphabet Л.

Let p : A x A —► [0, oo) be a single-letter distortion measure for which there 
exists a finite subset A C A such that

sup inf p(x, y) < D, (1)
x£ A  y£Ä

Akadémiai Kiadó, Budapest 
Pergamon Press, Oxford
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where D > 0 is a fixed real number, and let Fp = {p{xn, yn)\p(xn ,yn) = (1 /n)  x 
J3"_i p(xi, у,-)} be the single-letter fidelity criterion generated by p. A D-bounded 
distortion variable rate code Cn of order n is a quadruple (ф,А,п,т), where A is a 
finite subset of An, ф is a measurable mapping from An to Ä such that, for every 
xn € An, p(xn, ф(хп)) < D, and г is a length function from Ä to {1,2,...} which 
satisfies the Kraft inequality, that is,

£  2 - ^ n> < l.
yn£Ä

Following [1], we refer to l(C„,xn) — т(ф(хп)) as the length function and 
r(Cn ,xn) = т(ф(хп))/п as its associated compression factor. The expected com
pression factor, R(Cn) =  E p(r(Cn,xn)), is called the rate of the code Cn.

The operational rate-distortion function R(p,D) is defined as follows. Let

Rn(p, D) = inf{ß(Cn)|Cn is a D-bounded distortion variable rate code of order n}.

This is well-defined since (1) guarantees that there exists for each positive integer 
n at least one D-bounded distortion variable rate code of order n. The operational 
rate-distortion function is then defined by

R(p,D)=  lim Rn(p,D).n—►OO

Standard subadditivity arguments can be used to show that the above limit does 
exist and R(p,D) = inf{7?n(p, D)|n is a positive integer}. If there exists a letter 
6* £ A for which

Epp(X, b*) < oo,
and if (1) is a strict inequality, then it follows from [2] that our definition is equiv
alent to the usual mutual information definition of the rate-distortion function.

When A and A are the same finite alphabet, and the single-letter distortion 
measure p is the Hamming distance on A, that is

P(x v) =  /  1 if x #  УP\ ’У) I  о otherwise,

Ornstein and Shield [1] and Shield [3] proved the following theorem.
T h e o r e m  1. Let A and A be the same finite alphabet, and let the single

letter distortion measure p be the Hamming distance on A. Then for any D > 0 
there exists a sequence {£„} of D-bounded distortion variable rate codes such that 
for any ergodic source p, the sample compression factor r(C„,x) converges almost 
surely to R(p, D).

Note that in the case of Theorem 1, our definition of D-bounded distortion 
variable rate codes is equivalent to the Ornstein-Shields’s definition of D-semifaith- 
ful codes in [1].
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Theorem 1 is the first general result of the theory of universal almost sure 
data compression. In this paper, we generalize Theorem 1 to the very general case 
of abstract alphabets and arbitrary distortion measures. Specifically, we prove the 
following theorems.

T h e r o e m  2 .  Let the source alphabet A, the reproducing alphabet A, and 
the single-letter distortion measure p satisfy the assumption (1). If A is finite, then 
there exists a sequence {Cn} of D-bounded distortion variable rate codes such that 
for any ergodic source p with the source alphabet A, the sample compression factor 
r(C„,xn) converges almost surely to R(p,D).

T h e o r e m  3. Suppose the assumption (1 )  holds. If A is countably infinite, 
then there exists a sequence {Cn} of D-bounded distortion variable rate codes such 
that for any ergodic source p, the sample compression factor r(Cn,xn) converges 
almost surely to R(p, D).

T h e o r e m  4 .  Suppose the assumption ( 1 )  holds. In addition, suppose there 
exists a denumerable subset Ä C A such that for any ergodic source p,i?(p, D, Ä) = 
R(p,D) where Я(р, D, A) is the operational rate-distortion function for the repro
ducing alphabet A. Then there is a sequence {Cn} of D-bounded distortion vari
able rate codes such that for any ergodic source p, the sample compression factor 
r(Cn ,xn) converges almost surely to R(p,D).

The reasons why we state separately the Theorems 2 and 3 can be seen in the 
following Sections. Theorem 4 follows directly from Theorems 2 and 3. Since the re
producing alphabet A in Theorem 4 is abstract, so far Theorem 4 can be considered 
as the most general result of the theory of universal almost sure data compression. 
From [2], the following two examples satisfy the conditions of Theorem 4, and hence 
the corresponding universal almost sure data compression theorems hold.

Example 1. Л is a separable metric space, p is bounded, and p(x, •) is contin
uous for each x G A. In addition, there exists a finite subset A C A such that

sup inf p(x,y) < D. 
те AyeÄ

Example 2. A is a totally bounded metric space, A is a Borel subset of A, 
and p is the metric on A.

The proofs of Theorems 2 and 3 are given in Section 2 and 3, respectively. The 
methods used in the proofs are distortion program-size complexity oriented, and 
the constructions of codes described are based on distortion Chaitin complexity. 
The concept of distortion Chaitin complexity was first proposed in [4], and for 
some basic properties of this concept the reader is suggested to refer to [4].
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2. Proof of Theorem  2

Throughout this Section the reproducing alphabet A is assumed to be finite. 
We begin this Section by reviewing some basic properties used in this paper of 
distortion Chaitin complexity.

For each positive integer n and each x" £ An, the D-distortion Chaitin com
plexity Co(xn) of xn is defined by

Cd (i ") = min{C(i/")|yn £ Än and p(xn,yn) < D}

and the ö-distortion conditional Chaitin complexity Сд(хп|п) of xn given the 
length n is defined by

C ß(zn|n) = min{C(i/"|n)|i/" £ An andp(x",y") < D),

where C(y") and C(y"|n) are the Chaitin complexity (see [5], p. 331) of yn £ A n 
and the conditional Chaitin complexity (in old fashion, see the appendix of [5], 
p. 338) of yn £ An given the length n, respectively. (For some properties of Chaitin 
complexity and conditional Chaitin complexity, please refer to [5]. While only 
binary alphabet was dealt with in [5], most of the results in [5], including the 
definitions of Chaitin complexity and conditional Chaitin complexity, can be easily 
extended to the case of any finite alphabet.) It is easy to see that both C.c>(xn) 
and Cß(xn|n) are ^"-measurable. The following properties were proved in [4]. 

Property 1. For any x £ Л°°,

limsup - C d ( x " )  = limsup —Сд(х"|n),
n —► oo Tl n —»oo Tl

and

liminf - С д ( х " )  = liminf — C ű ( x " | n ) .
n —► oo 71 n —► oo /I

Property 2. Vx, у £ A*, С д(г*у) < Сд(х) + Cp (у) + 0(1), where А* is the 
set of all finite sequences from A, and the symbol denotes the concatenation 
between finite sequences.

Property 3. Let m be a fixed integer. For any x £ Л°° and n > m,

1 "
Cfl(x"|n) < — ^ C D(x'+m-1|m) + 0(1).

;=i

From Property 2, it follows that for each positive integer n and each x" £ An,

C D(x " )< C o (x") + 0(l),

M A G Y A R
IttDOMANYOS A K A D É M IA  

KÖNYVTARA
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and hence for any x € A°°

liminf — Сд(а:п|п) < liminf—Cß(xl?+1|n)- (2)rj—>oo n n—>00 n

Based on distortion Chaitin complexity, next we describe for each positive 
integer n a D-bounded distortion variable rate code Cn of order n. Toward this 
end, let фп : An —► An be a measurable mapping such that for each xn £ An, 
p{xn, фп(хп) < D and С(фп(хп)\п) — CD(xn\n). The code Cn is now furnished 
by Cn =  (фп ,Ап,тг, C(-|n)), where C( |n) is the measure of conditional Chaitin 
complexity. Henceforth, the code C„ = (фп, An, n, C(-|n)) is said to be generated 
by the measure Cß( |n) of D-distortion conditional Chaitin complexity. It is easy 
to see that the compression factor r{Cn , x n) equals Co(xn\n)/n. To complete the 
proof of Theorem 2, it is enough to show that

lim — Cű(zn |n) = R(p,D) a.s.. (3)n—>oo n

We first prove that

liminf - С о ( х п |n) > R(p, D) a.s. (4)
n  — o o  n

To this end, we make use of the sample path covering argument originated by 
Ornstein and Weiss [6] and modified by Shields [7]. For any x £ Л°°, let f (x)  = 
lim inf (l/n)Cn(a;n|n). By stationarity, it follows from (2) that f ( x ) is invariant

n —*oo
almost surely. The ergodicity of /i then guarantees that f ( x )  is constant almost 
surely. Let H denote this constant so that H = liminfn_ O0(l/n)C£)(xn |n) with 
probability one. Inequality (4) is valid once we show that H  > R{p,D). Let e be 
any positive number, then for almost every x £ Л°°, C o(xn|n) < n(H +  e) for 
infinitely many indices n. As in [7], let us fix a positive number 6, choose M  > 3/(5, 
and define Mn(x) — m(n, x) — n + 1, where m(n, x) is the least integer m > n such 
that

Cd (x™\m — n + l ) < ( m - n  + 1 )(H + e) and m — n + 1 > M .

In what follows, when the infinite sequence x £ A°° is clear from the context, we 
shall write Mn(x) and m (n ,x ) for convenience as Mn and m(n), respectively. It is 
easy to see that Mn is almost surely finite and that {Mn} is stationary and ergodic. 
Thus, there exists an integer L such that Pr{Mn > L) < <52/3. We define gn to be 
the characteristic function of the event {Mn > L}. that is, gn equals 1 if Mn > L 
and 0 otherwise, so that for any K,

£ ( j ? í > ) < í 2/ 3.

3
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For К > L, let Gk be the event

1
К -  L + 1

K - L + l

£  9 i < 6 / 3.
i — 1

From Markov inequality it follows that Pr{Gj<} > 1 — 6. As in [7], we can identify 
Gk with a measurable subset of AK . For each xK = (xx, x2, ■ ■ ■, x k ) £ Gk we 
define a sequence of nonoverlapping intervals [n,-, m,] inductively, letting

and

nx = тт{п|у„(:гя ) = 0}, mi = m(n  i)

7ij = min{n|n > 771,-_ 1 + 1, gn{xK ) — 0}, mi = m(n:).

The construction stops the first time n; or m; exceeds K — L+1. A similar argument 
to [7] can be used to prove that there are at most 6К  indices n in [1,L\] but not in 
Ui[rii,mi] in case К > 3L/6. We define iрк to be a measurable mapping from AK 
to AK such that

(i) if xK = (xx, x 2, . . . , x K) & GK , then (грк(хк )){ = <(z.) for 1 < г < К;
(ii) if xK E Gk  , then

(Фк(хк = t(xj), j  <£ Uj[n,-,m,],

where t : A —♦ A is a measurable mapping such that for any x E A, p{x, t(x)) — 
min{p(x,у) \y E A], and фп : An —► An is the measurable mapping of the 
code Cn = (фп, Än, n, C(-|n)). Let Fk = {Фк{хк )\хк E Gk }- The following 
lemma gives an upper bound to the cardinality \Fk \ of Fk ■ (If 5 is a finite 
set, |5| denotes the cardinality of S; all logarithms are to base 2.)
Lemma 1. If 6 is small enough then \Fk \ < 2K(-H+2t\
Proof. For each xK E Gk we call {[n,-, m,]} as in [7] the block decompositions 

of [1, A'] associated with xK. The number of possible block decomposition is upper 
bounded by 2KHG), where H(6) = —6 lógó —(1 — 6) log(l — 6). Since m, -n ,  + 1 > M 
and M > 3/6, there are at most 2(т ‘~п,+ 1Ья+£+<5/3) sequences from Ä such 
that

С(у” '|т,- -  щ +  1) < (mi -  щ + 1 )(Я +  í ).

Therefore, corresponding to any given block decomposition {[ni, т,]}, if we let

FAr({Km,-]}) =
— {'Фк(хК)\xK G Gk has the given block decomposition {[wj.m,]}},
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then
|*И{[п,-,пц]})| < \Á\6K Д 2(т ' - п'+1)(Я+£+г/3)

<  2 ^ ( H + £ + < / 3 + i  log |Д |)

This implies
If k \ <

< 2«(i)Ä'2Ä'(H+e+i /3+<iogM|)

where the summation is over all possible block decompositions. Letting 6 small 
enough yields the lemma.

To sum up, we have obtained for each positive integer К > 3L/<5 a measurable 
mapping ipx from AK —► AK, a measurable subset Gk C Ak  with probability 
P r{GK } > 1 — 5, and a subset Fk  C AK of cardinality at most 2K(H+2c) such that

(i) for any xK € AK , p(xK ,ipK(xK)) < D\
(ii) for any xK e Gk , Фк (хк ) € Fk -

For each К > 3L/8 we define a length function tk : A K —► { 1 , 2 , . . .} so that

тк ( у К) < К  lo g |i | + 2, if yK e ÁK 
тк(уК) < К ( Н  + 2 c ) + 2, if yK € FK.

Therefore, we obtain for each К > ЪЬ/8 a D-bounded distortion variable rate code 
C'K = (ipк  )AK , K , tk ) of order К with expected compression factor

F(C'K) = [  TK(ipK(xK) ) dy+  Í -prK(iPK(xK))dy  
J  K  J a k - G k  Л

G K

< j r (K(H  + 2f) + 2 )Pr{GK) + j f ( K  log | i |  + 2)6

< t f +  2e + 6 1 o g |i |+4/ЛГ.

From the definition of R(p,D) it follows that

R(p, D) < H + 2c + 6 log | i |  +  4/К.

Letting К —<■ oo and then letting e and 8 —* 0 yield

R(H, D) < H

which completes the proof of (4).
We next turn to prove that

limsup —C /j(гГ1|п) < R(p, D) a.s..
n —oo n (5)

3:
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Toward this end, we take arbitrarily a D-bounded distortion variable rate code 
Cm = (^,А т ,т ,т )  of order m. A similar- argument to the proof of the Theorem 3 
of [4] can be used to prove that for any x G A°° and n > 2m,

1 n — m-f 1
С д ( * » < -  £  7-(V’(x*+m- 1)) +  0(1).

X —  1

Hence,

- C D(x"|n) < -  +  0 (l) /n .n n r—'1 =  1

From the ergodic theorem it follows that

limsup — C/)(xn |n) < a.s..
П  —► OO П

Since C'm is taken arbitrarily, from the above inequality (5) follows. The proof of 
(3), hence the proof of Theorem 2, is now complete.

Note that when A and A are the same finite alphabet, and when p is the Ham
ming distance on A and D = 0, the identity (3), hence Theorem 2, was established 
in [8].

3. P roof of Theorem 3

Throughout this Section we assume that the reproducing alphabet A is count
ably infinite. Let A be a finite subset of A satisfying

sup inf p{x, y) < D. (6)
x£A y€Ä

For convenience we write A as AU{ai, a2,...}  and denote by An the finite alphabet 
ÄU{ai, Ü2, ■ ■ ■, an}. Let R(p, D, A,) denote the operational rate-distortion function 
for the reproducing alphabet A; and let C‘0 ( ) denote the measure of distortion 
Chaitin complexity for the reproducing alphabet A, , that is, for each positive integer 
n and each xn G A",

= min{C‘(j/'1)|2/n G A", p(xn ,y n)< D ) ,

where C*(-) is measure of Chaitin complexity defined on the set of all finite se
quences from Aj. From Property 2, there exists a constant d,- depending only on 
A, such that for each n and each xn G A",

C'D(xn) < C lD(xn2) + dt . (7)
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We next construct for each n a ű-bounded distortion variable rate code C„ of 
order n. Let 1 = ni < 712 < ...  < n; < ... be an unbounded sequence of integers 
such that

max \dj |/n,- -> ;^oo0,
j<>

and let i(n) — max{i|n > n,}. As in the above Section, we define ф'п to be a 
measurable mapping from A" —► (A,)n so that

p(xnM z n) ) < D  and C*(<(*")) =C'D(xn).

Let tpn : An —* (Aqn))n be a measurable mapping so that for any xn £ A",

ipn{xn) = ф%*"\хп),

where

j ( xn) = min{.;'|l < j  < i(n), CjD(xn) = min{C^(xn)|l < к < г'(п)}}.

We define rn to be a length function from (A:(n))n —> {1,2,...} so that

Tn(yn) -  min{CJ(i/n) |% n) < j  < i(n)} + flog *(«Я ,

where k(yn) = min{^|i/n £ (Aj)"}. Here [r] denotes the least integer m such that 
m > r. The code Cn is now defined to be (A,-(„))n, n,r„). It is not hard to see 
that for each xn £ An,

тп(фп(хп))=  min CJD(xn) + flogj'(n)].
7 <«(«)

Let S(xn) = min; <i(„) C1D(xn). The compression factor then is given by

r(Cn,x n) -  —(S(xn) + flogi(n)]). n

To complete the proof of Theorem 3, it is now enough to prove that

lim r{Cn,xn) = R(y,D) a. s.. (8)П—► OO

We first prove that

limsup r(Cn, xn) < R(fi, D) a. s.. (9)
n —► OO

For each j , it is easy to see that

limsup r(C„, xn) < limsup — &D(xn).
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From (3) and Property 1,

Hm —CL(xn) = R(fi, D,Aj )  a. s..
n —oo n U

and hence
limsupr(Cn,x") < R(/u, D,Aj)  a. s..

n  — *■ OO

Letting j  —► oo yields (9), since

■R(/4, D,Aj ) * j —.oo R (/L  L))-

We next need to show that

liminf r(Cn, xn) > a. s.. (10)

To this end, as in the previous Section we make use of the sample path covering 
arguments. From (7),

and hence

S(xn) < S(x£) +  max |d; | 

lim in f-S (xn) < lim inf-5(x5)
n  — *■ o o  71 n  —» o o n

so that
liminf r(Cn , x") < liminf r(Cn_i, x£),
П —*■ oo n  —* oo

from which it follows that liminfn_oo r(Cn , x") is invariant with probability one. 
The ergodicity of /i then tells us that liminfn—oc r(C„, xn) is a constant almost 
surely. Let H denote this constant so that H — liminf„_00 r(Cn , x n ) with proba
bility one. Thus, (10) is established once we show that H > R{n,D). Let c be any 
positive number, then for almost all x E A 00, r(Cn , xn) < H  + e for infinitely many 
indices n. For each n we define m(n) to be the least integer m > n  such that

r(Cm_n+i , x(?) < H + í and m -  n + 1 > M,

where M  > 3/6 and 6 is a positive number to be specified later. The number 
L, the random variables M„ and gn, the measurable subset Gk C A k , and, for 
each x K — (xj,X2, . . . , x x )  G Gk , the intervals [n,-,m;] are then defined similarly 
as in the previous Section, replacing C o(x"|n) by nr(C„,xn). Recall that Cn = 
(ipn,{Aitn))n ,n,rn). We then define грк to be a measurable mapping from AK —> 
(Aí(l )J so that

(i) for x K -  (xb x2l. .. , x k) GK, (i>K (xK))i = i(xj) for 1 < i<I<;



YANG: U N I V E R S A L  A L M O S T  S U R E  DATA C O M P R E S S I O N 4 0 7

(ii) for x K = (xb x2, . . .  , X K ) G GK,

( f e ( l K) ) n =  VVn.-n. + l iC .') .

( f e ( x K)). = f(arj), j  0 Ui[n,-, m,],

where f : A —> A is a measurable mapping such that p(x, i(x)) = min{p(x, y)| 
у 6 A}. Let Ffc = {фк(хк )\хк  6 G#}. A similar argument to the proof of 
Lemma 1 can lead to

\FK\ < 2H(6'>K \A\6K2K(-H+c+6/3'>.

If 6 is small enough then |F/c|  <  2я (я+2с). Let ак ■ (А)я  U Fk  —1• {1,2,...} 
be a length function so that

<7к(уК) < ГА'log 1̂411 + 1, yK &FK ,
<rK(yK) < \I<(H + 2e)l + 1, yK £ F K .

Then we obtain a G-bounded distortion variable rate code C'K  = (фк, {A)K U 
Fk , K , ctk) of order К  with expected compression factor

R(C'k) = J ^к(Фк(хк))с1р + J  <̂TK(ipK(xK))d/i
GK A k - G k

< H + 2( + 2 /К + á(log |A| + 2/ К)
< Я + 2е + 4 /Л '+ <5 log |А|.

From the definition of R(p, D) it follows that

R{p, D) < H + 2c + 6 log | i |  + 4/ К .

Letting К  —► 0 and then letting c and 6 —*■ 0 yield

R(p,D) < H

which completes the proof of (10). The proof of (8), hence the proof of Theorem 
3, is now complete.
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У н и в е р с а л ь н о е  п о ч т и  в с ю д у  с ж а т и е  д а н н ы х  д л я  а б с т р а к т н ы х  
а л ф а в и т о в  и  п р о и з в о л ь н ы х  к р и т е р и е в  в е р н о с т и

Е Н - Х У - Я Н Г

(Т я н ь я н )

В р а б о т е  р ассм о тр ен о  обобщ ение р е з у л ь т а т а  у О р н с т е й н а  и Ш и л ь д с а  [1] о сх о 
д и м о сти  п о ч т и  всю ду д л я  н е к о то р о й  п о с л ед о в а т ел ь н о ст и  к о д о в  п о к а за те л я  с ж а т и я  к 
ra te -d is to rtio n  функции д л я  к о н еч н о го  а л ф а в и т а . В к ач естве  к р и т е р и я  вер н о сти  и э р г о -  
ди ческ о го  и с то ч н и к а  на с л у ч а й  а б ст р а к т н о го  а л ф а в и т а  и п р о и зв о л ь н о г о  а д д и т и в н о г о  
по р а зм ер н о ст и  к р и т ер и я  в е р н о с т и  вы бр ан о  р а сс то я н и е  Х э м м и н г а  с д о п о л н и т ел ь н ы м  
сво й ство м  su p  in f f ( x , y )  < 1 д л я  а л ф ав и то в  А ,  А.  К ром е т о го , р а б о т а  п р е д с т а в л я е т

р а зв и ти е  р е зу л ь т а т о в  а в т о р а  [4] о с в о й ст в ах  сл о ж н о сти  Ч а й т и н а  [5].
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SYNTHESIS OF OPTIMAL CONTROLS 
ON NONEXACT MEASUREMENTS OF OUTPUT SIGNALS

R. G a b a s o v , F .  M. K ir il l o v a , P .  V. G a i s h u n , S. V. P r i s c h e p o v a

( Mi nsk )

(Received M ay 27, 1991)

A m ethod  of syn thesis of d iscrete e stim a to r an d  re g u la to r optim izing th e  behaviour 
of dynam ic system s u n d e r incomplete a n d  inexact o bservations on th e  con tro l process is 
proposed.

1. Introduction

Feedback controls are convenient for parrying of unexpected perturbations 
arising in control processes of dynamic systems. In the first classical statements 
of the synthesis problem the nature of perturbations was not described and it was 
supposed that exact and complete state measurements are possible [1]. Taking 
into account the random nature of active perturbations the synthesis problem is 
investigated in the theory of stochastic control [2, 3]. Another approach to the 
perturbation registration in the control process is developed on the base of the 
guaranteed control theory [4].

Perturbations created by the interested participants of the optimization pro
cess are considered in the game approaches [5, 6].

In this paper the problem of optimal control synthesis is studied on the base 
of extremal problem solution suggested by the authors [7, 8].

2. Statement o f  the problem

Consider a discrete linear system the behaviour of which on the discrete in
terval T(t„) = {<»,<* + h, — h) is described by the equation

x(t +  h) = A(t, h) x(t) + b(t, h)u(t) (2.1)

Here x(t) is the state n-vector of the discrete system (2.1) at the moment t,u(t) 
is the value of the one-dimensional controlling influence; symbols A(t,h), b(t,h)

Akadémiai Kiadó, Budapest 
Pergamon Press, Oxford
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denote the parameters of the optimization object and the input device, respectively 
(matrix A(t,h), t E T(tt ), is supposed nondegenerate).

Suppose that the initial state of system (2.1) is known inexactly. The a priori 
information about it has the form

x(t„) = 2 E X,  = {z E Rn : Gz = / ,  d, < z < d*},
( /  E Rn, rankG = r < n).

To each control u(t), t E T(i,), limited by the restrictions 

u*(<) < u(t) < u*(f), t G

it corresponds the totality of trajectories of system (1)

*(*!«(•)) = {*(*!*.“(■)). í € r ( í , )  = T (t,)u í* .

Let in the space of states of discrete systems the terminal set

X* — {x G Rn : h\x > gi, i = l,m}. (2.4)

Following the principle of getting the guaranteed result, let us call the control it(-) = 
= (u(t), t G T(t„)), admissible if the corresponding movement X(í|u( )), t G T(<,), 
satisfies the terminal inclusion

( 2 . 2 )

(2.3)

X ( i * K ) ) c r .  (2.5)

In the frames of the accepted approach the value of quality criterion on the 
admissible control is called the number

J(u(-)) = min h'0x(t* \z, u( )) (2-6)
rex.

The admissible control w°(<), t E T(t,), having the property

J(ii°()) = max J(u(-)) (2.7)
u ( ' )

we shall call optimal.
Because of the indefiniteness (2.2) mentioned above the problem (2.1)—(2.7) 

not always has the solution as it is often impossible to supply demand (2.5). On 
the other hand if the admissible controls exists then, for the same reasons, the 
efficiency (2.7) of optimal control may be low.

With the purpose of increasing the control efficiency the procedure of discrete 
system optimization is supplemented by the measuring device described by the 
equation

y(t) = c'(t)x(t) + £(t), (y G R 1). ( 2 . 8 )
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Suppose the measurement errors £(t), t £ T(f„) satisfy the restrictions

t € T { U ) .  (2.9)

Let the measuring device (2.8), (2.9) recorded the signal y T(-) — (j/(<), t =  
t* , t *  -f h, . . . ,  r), r -  the given time moment from T ( t ») U t* , corresponding to the 
chosen control u( t ) ,  t £ T(<,). Verify with it the a priori distribution X,  of the 
initial states.

Call the set X l  = Ä*(yT(-)) the a posteriori distribution of initial states 
corresponding to the observation process till the moment r if it consists of those 
and only those initial states x(í*) £ X » which can generate observated signal yT(-) 
together with some measurement errors £(i), t > t , ,  and the used control u(').

In itself set X l  is not necessary for solution of the synthesis problem. We 
need its following numerical characteristics (estimates) connected with the terminal 
discrete system states

á j (<*) = á j (<*|u(-)) = min h\x{t*\z, u(-)), i — 0 , m (2 -1 0)
z e x ' i

The calculation of the estimates i =  0,m, we shall call т-observation prob
lems accompanying the original problem (2 .1)—(2 .7).

The control ű(-) = (ü(t), t £ T(t,)), with the known starting part u(t),t» < 
< t < T — h, is called r-a posteriori admissible if

> gi, i =  (2 .1 1 )

define the r-a posteriori optimal control by the equality

* 5 (* V O )  = max » 5 (<*|h(-)) (2 .12)
u ( )

We shall call the search of controls u°(<), t = r, т + h, — h, as r-problem 
of optimal control accompanying the problem (2.1)—(2.7).

As a whole we shall call the problem (2.1)—(2.12) by the problem of optimal 
control on incomplete and inexact measurements of systems states.

In this paper solutions of two types are given: program solution for any fixed 
r £ T(f„) and feedback optimal solution consisting of the optimal estimator and 
the optimal regulator.

3. Program solution o f r-observation problem

Let except of the mathematical model (2.1)-(2.7) and the control u(t) used 
on the interval {i„, t, — h, . . . , r — h), the signal y(t), t„ < t < r, written with the 
device (2.8), (2.9), is known.
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Denote through F(t,r),  t , r  £ T(<»), the fundamental matrix of system (1) 
solutions

F(t + h,r) = A{t,h)F(t,r),  F(r + h,r) = E,
F(t, г  — h) = F(t, t )A(t , h), F(t, t — h) = E.

(E is a unit diagonal n x n matrix).
Let xu(t), t* < t < T, be a control system trajectory

xu(t + h) = A(t, h)xu(t) + b(t, h)u(t), x(t , ) = 0, (3.2)

and let
Vo(t) = y{t) -  c'xu(t), t * < t  < t. (3.3)

Since
áj(t*) =  á j ( * > ( • ) )  = m i n  / i { F ( f , í „  -  h)z + h ' x u (<*),  

г e x ;

the problem of r-observation (2 .10) is reduced to the following extremal problems

7 J(t*) = min /i(F(<*,i, — h)z,
Z

£.{t) < y0 (t) -  c'(t)F(t, t.  -  h)z < C(t),  U < t < r , (3.4)
Gz — f, d, < z < d*, i — 0, m

At the same time
<*ir( 0  = h'iXu{t*) +  i = 0, m. (3.5)

Denote
a'(t) = (ai(t),a2(<),... ,an(i))' = -c'(t)F(t, t .  -  h)

___  (3.6)
г/,- = — h\F{t*, i ,  — h), i = 0, m.

Then problem (3.4) will be written in the form

7 i = max T]'{z,
Z

í . ( 0  < yo{t) + a'(t)z < C(t), t, < t < r, (3.7)
Gz — f , d, < z < d*, i — 0, m.

By virtue of uniformity of the problem (3.7), in the sequel index i will be omitted 
and we shall speak of arbitrary problem family (3.7).

Solve the problem (3.7) with methods of the linear programming [8]. Let 
{z(t ), S,sup(r)} be an optimal feasible solution of problem (3.7). According to 
[9] the optimal support 5sup(r) = {JSuP(t'),T’sup(r)) is a totality from the set 
ЛиР(г ) C J =  {1 ,2 ,. . .  ,n} of supporting indices of the feasible solution z(r) and 
the set jTsup(r) C TT = {<:<»< t < r} of supporting moments i* < 9\ = 0\{t) <
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. ..  < 9\ = 9i(t) < r. At the same time the relations r + |Tsup(r)| = |Лир(г)|> 
det Р ф 0 , 0 < 1 < п  — r,

P = Р(т) = P ({Tsup(r), M),  Jsup(r))
Qj ( 0  • j  £ Jsup(t)

t e Tsup(r) 
G ( M , J sup( r ) )

are carried out.
Introduce the notations

Q = Q(r) = Q(jsu p ( r ) ,  {Tsup(r), M}) = p - \ r )  =
( ( 9 j ( 0  ■  ̂ £  T sup( r ) ) ,  ( ? jt  : i €  Л / ) )

J  €  ■fsup(7’)

Construct the sets T}v = TV(r) = Tr \T sup(r); JN = Jn (t) = J \  Jsupr). To 
every moments of time i 6  Tr and indices j  £ J , i 6  M add the numbers

u{t) = u(t|t), A j  = Aj(r), Щ 
"(0 = 0, t e Тлг(г); Aj(r) = 0, j  € Jsup(r);

H =  ^ ( r )  =  (/i,(r), i E M); iysup = (i^(Tsup(r)) =  (i/(01(r )) , i /(02(r)) , . . . , i / ( i9 i (T)));
uN = (̂Тлг(г)) = (i;{t), t 6  T/v(r)); Asup = (i'{Tsup{r)), ц{т)) = {vSuP,p);

Asup — rlsuPQ{T)’ VsuP — (Pj I j  6  </sup('7" ) ) i

Ajv =  A (T N ( r ) )  =  ( I/ ( T w ( r ) ) , / r ( r ) ) ;

A = A(TT) = (A(<), t € TT) =; (A(Tsup(r)), A(7jv(r))) = (Asup, Ajv);
Д У „ )  =  Д 'М -М г))  = (Д; (г), j  E

= vL pa (tsuP{t), Jn {t)) + h'G(M, Jn (t)) -  t)'n ,
Vn  = tin(t ) = (rij, j  e

Feasible solution z(t) is optimal iff there exists a support 5sup(r) when

Д2 ( г ) < 0  if Zj (r) = d]\

Aj(t) > 0 if zj (r) = d,j ; jeJjv(T),
Aj(t) = 0 if d, 3 < zj (r) < dj] 

v (0k ( t ) ) > O  if y0 (9K(r)) + а'(вк (т))г{т) -  С(дк(т));

Н в к П )  < 0 if у0 (9к (т)) + a '(M r)M r) = Ь(0к(т)У, К = ~1. 

v(0K(t)) = 0 if £.(ек (т)) < у0 (9к (т)) + а!(9к (т))г(т) < С{9к (т))\
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4. Synthesis o f optimal estimator

Let on the measuring results of output signals y( t ) ,  t* < t < т — h , and also on 
the values of controlling influence u( t ) ,  t„ < t  < r — 2 h, produced with the regulator 
(see below). It is solved the problem (20) of finding the estimators, i.e. the problem

T)1 z —► max, Gz = / ,  dt < z < d*,

(*(t) < yo(t) + a'(t)z < C(t),  t.  < t < T - h ,
(4.1)

and let {z(r — h),5SUp(T — h)} be the optimal support feasible solution of the 
problem (4.1).

Give the estimates found from (4.1) (at rj = гц, i = 0,m) to the regulator. 
Denote controlling influence for the moment of time r  — h worked out with regulator 
through u(t — h). Write the signal у{т) of the measuring device (2.8), (2.9) at the 
moment r. Proceeding from this information we find the optimal feasible solution 
{z(r), Ssup(r)} of the problem

rj1 z —> max, Gz = / ,  d m < z < d *, 

Ш  < Vo(t) +  a\ t ) z  < C(t) ,  t* < t  < t,
(4.2)

where у0(т) = у(т) -  c'(r)x„(r); xu(r)  = A{t -  h,h)xu( r - h )  +  b(r — h,h)u(r -  h).
Call the construction of the optimal feasible solution {z(r), Ssup(r)} of the 

problem (4.2) for any j/(r) proceeding from the optimal feasible solution {z(r — 
h), SSUp(T — Л)} of the problem (4.1) as an optimal estimator synthesis of discrete 
control system (2.1) at the moment r with measuring device (2.8), (2.9).

Begin with the solution of the synthesis problem. According to the informa
tion available to the moment r — h calculate the value

w(t -  h) -  у0(т) + а'(т)г(т -  h). (4.3)

If £*(r) < W(T -  h) < xi*(r) then ( z(t), Ssup(r)} = { z(t -  /i),5sup(r -  
h)}. Therefore, the problem of optimal estimator synthesis at the moment r does 
not occur (or in another words, it is solved trivially). It occurs at w(t — h) £ 
K .(r),r(r)]. Let, for definiteness w (t -  h) > £*(r).

Imbed the problem (4.2) in the family of extremal problems depending on the 
parameter p

у'z —* max, Gz = / ,  d, < z < d*,

{•(0 < iA>(0 + a'(t)z < П 0 ,  t . < t < T - h ,  (4.4)
£ .(r ) < у(т) + а'(т)г < p.

The problem (4.4) at p — w (t — h) has the solution {z(r — h), Ssup(r — h)}. To 
find {z(r), 5sup(r)} we shall iteratively decrease the parameter p : w(r — h) — p0 >
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pi > . . . >  Pp — C { T)t constructing simultaneously the solutions {zx,S,^p} = 
{z(t -  h\pK), Ssup(r -  h\pK)} of the problem (4.4). Then let (z(r), 5sup(r)} = 
{ -̂•STup}-

Proceeding to the description of the optimal estimator algorithm denote 
through p, p the sets of supporting moments of time and indices from J 
on the k-th iteration step of the algorithm and let

T$ = [ ( ( i , ) u ( u 4 u { i i M e O ) n n
b f Up =  { T £ p ,M } .

We call the totality
CK{r — h) = {zK- S * p; T * ; 2/(Xjv )i < P); *»(TsKup); F(Ts* , t .  -  Л);

QK = Q(^p,ifup); A* =  (vK(TsKup),pK(M))- AK(J«y, PK}
as the state of the algorithm on the fc-th iteration step at the moment r — h.

Compose from the components
z° = z ( t  -  h)- S°up = Ssup(r -  h),

T°N = [({L} U {<. + h) U {t ±  h, t E Tsup(r -  h)}) П Tr]; 
y(Tjif)', u(Tsup(r — h))\ xu(Tsup(r — h)); F(Tsup(r -  h),t* -  h);

Q° = Q(t -  h)', A0 = A(r -  h)\ A°(j£r) = A(r -  h)JN(r -  h))\ p0 = w (t -  h),
the zero state of the algorithm.

Iteration of the algorithm CK(r — h) —> CK+1(r — /1) consists of the following
steps.

Step 1. Verify the condition т G Tŝ p. If it is fulfilled we proceed to the step
2. Otherwise we proceed to step 5.

JR■'sup
Calculate

Step 2. Let g*(r) = QK(J*p) r) = qK (0,(r

(•z f - d ] ) ! q K

h)) = 9* = (<7yi,j € J,sup /

ц  at q f t < 0 ,
ß f  =  ( * f  -  >/9/i at 9p > 0,

oo at gjj = 0 ,
Estimate

A(txu(t)

j  e Jŝ p (4.5)

h, h)xu(t — h) + b(t — h, h)u(t — h), 
A~1{t, h)x(t + h) — b(t, h)u(t),
(ter*)

when t — h = в E T^p, 
when t + h = в G Ts*up,

xu(t*) = 0; xu(t. + h) = 6 (t,,/i)u(t.), (4.6)
2/ o(<)  =  y (< )  -  c ' ( i ) x u ( f ) ,

(t e T $ )
, f -c'(t)A(< -  ft, /i)F(< -  h,t* -  h), when t — h = в E T^p, 

a * ~ \ - c ' ( t )A~ 1 (t,h)F(t + ИАф — h), when t + h — в E T*p,
( t e T * ) .
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Construct

( [yo(0 +  a\ t ) zK -  í ' Í O l / a s u p í O s f . 
ßK(t)= I [yo(t) + a'(t)zK - U t ) ] K u P(t)gf,  

{  oo,

ß K { r )  =  P K  - V ( t ), 

ß j i  =  m in /? /, j  <E J * p ; 

ß K ( t ° )  = mm ß K(t), t G Tfi ;
^  = min {/?*,/?*(<°),/?*(т)}

when a'up(t)q? < 0 ; 
when a£up(<)g,* > 0; (4.7) 
w h e n  a suP (*)9iK =  0,

(4.8)

(4.9)

Let

„ A  + 1  _  / „ A > 1  : c- TK \ — -К aK „к  л  „  OK^sup ( j  ) J  ^  ^sup) ^sup ß o  9sup / 1 P K  +  1 P K  ß o

Here „К _  („К ■ c- jK  \ .  „ А  _  /  A  ; jK 7sup I J J £ ‘'sup) I ŝup V̂J ) 7 G ‘'Slip)»
2 K  +  1  _  /  A  +  l  K y  ,K _  , К ■ f- ; A nz  Csup > 1̂V /> \ ĵ ’ J “N )'

The following cases are possible
a )  ß o  =  ß!f0 ; b ) ß ?  = ß K ( t 0 )-, c) ß ?  =  ß K ( r ) .

If the case a) is realized we proceed to step 3. In case b) we proceed to step 4. In 
case c) we proceed correlation (4.27) of step 6 .

Step 3. Estimate

Д А * '  =  ( Д „ *  V 7  =  ( Д  ! / * ( ! * , ) ,  ( Д / i f .  j  6  M ) ) '  =  

=  e 'j0Q K ( J s u p > L * p) sign qfo , 

eio =  (e; : ei  =  0 , j  Ф j o ,  ej o =  1, j  e  J * p ),

Д6*' =  A i* '(J) = AA*'p*(Lfup,J);

x Í —i/*(f)|Ai/*(f), when i/K(t)AvK(t) < 0 , 
\  oo, when vK(t)AvK(t) > 0 ,
( t  G T * p );

at _  f - A j / A i f , when Д;Д<5* < 0 , K
J \  oo, when AjASj" > 0 ,  ̂ ^ ’

**(t°) = тт<7*(<), t 6T*p; 
о-* =  m in  <t* ,  j  E  / * ;

<7* = m i n ( ff* ( i 0) , ^ }

(4.10)

(4.11)

(4.12)
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Let

c i f + l  _  (rpK + l jK + l i .
J s u p  l J S U D  > “ s u p  J l
T K +1  
1 sup
j K + l
“ sup

nK \ t°-  “ sup \  L >

JK \ 7°*J sup \J I

t'hen и,к  _  „ к  I . о
* Л ( П ,

-‘ sup “‘ s u p ’
j K + 1  _  j i í  I J  ■ 
‘' s u p  ‘' s u p  ^  •/* ’ when aft - CTjк

Let the situation (4.13) be realized. Then

QK+1 = QK+1(J«P,L«V) = QK(Js*i P\jo,L*p\t0)- 
-  QKVZP\jo, t°)QKUo, ifup \ f°)/«&0.

9jV„ = QKUo,t°),
vK+l(TsKu + l) = uK(TsKup \ t°) + ^  АiA(7* \ t°), 
цк+1(М) = fiK + Uq Ацк,
Л *+v r 1 \ io )  = л Ч / £ )  + < л ^ ) ,

If situation (4.14) is realized then

Q K+1 = Q K+1(JsKu+ \ L “ +l )

= QK(J*p> Lsup) -  Q K (JsKuP, L K p)[PK ( L « p, j . )  -  P K ( L “ p, j 0)]x 

x QK{jo, L*)/[QKUo, L « ) P K ( L “ j.)];

j  v K + 1 { T sKuP+ 1 ) =  ^ Й Р) +  ^  A i S { T . K p ),

I цк+1(М) = liK -\-<т*Ацк ,
' AK+1 (J*+l \  jo) = AK (j f t  \ j *)  + <T(f A 6 K(jf i  \ j . ) ,  

A jo +1 =  a <f s i g n g j^ , .

Proceed to step 6 .
Step 4. Having estimated according to (4.5) and preserved a(t°), 

construct

ДА*' = (AvK, Ацк )' = (AvK(T£p) , ( A t f , j  £ M))'

=  а 5ир(<0)< 5 ^  ^ ( “ s u p ^ 0 ) ? ^ ) -

A ^ ' = A 6 K(J) = ДАK'PK(L*p,J) -  a'(t°)Sign(a'up(<0) # )

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

zu(t°),

(4.19)

4



4 1 8 G A B A S O V  et  al.: SY N T H E S IS  O F  O P T I M A L  C O N T R O L S

Following (4.10)—(4.12), (4.19), find <7*. 
Change the support S * p —>■ S*p 1:

? £ p + 1  =  (T ’/u p  \  П  и  <°; J * p+ 1  =  J * p; a *  =  < г*  ( Г )

T * p+1 =  ^ p U i ° ;  ^ p +1 =  / i p U j . ;  4  =  " M ? 1 =  { ^ p + 1 , M } .

If the situation (4.20) is realized then having put PK(t°, / * p) = (a; (
Л*Р) we get

= QK (J?»P, L i P) -  QK(J“ P, t ' ) [PK (t ' ,JsKup) -  P K ( t ° jKp)]x

' ^ +1№uP+1 \  *°) = * Л ^ Р \  n  + \  П .
^ + x(<°) = - o ^ s i g n ^ ^ i 0 ) ^ ) ,

’ / +1(1 ) = /  + ^ Д / ,
. Д^+1( ^ +1) -  ДК( ^ )  + <т0* Д 6*(,/*).

Let the situation (4.21) is realized. Then
QK + l = Q K+l{j K  + l ' LK + l ) =

QK+1(JsKuP, L * )  + QK(J* L * ) P K(LK j , )PK(t°, JsKup)QK(J“p,L
P K { t \ j K ) Q K { J « L “ ) I W ,

- Q K(JsKup,L^up)PK(L^pJ . ) / W
l / W P K it0, j £ P) = iai { t ° ) , j e J *sup /

W =  P K(t0J . ) - P K( t ° J * p)QK(J*p,LKp) P{ L * p,j.y,

vK+1(TsKup+1  \  t°) = vK(TsKup) +  a « A v K(TKp), 
vK+1 (t°) = -<70Ksign {a'sup(t°)qF), 

pK+1(M) = pK +  a*  A p K ,
A K+\ J « +1) = A K(J% \ j . )  +  4 A 6 K (J% \ j , ) .

Proceed to step 6 .
Step 5. Introduce moment r in the support. For this case estimate 

ДА*' = (AvK,ApK)' =  (Дг/*(Т*р), (Apj , j  € M))'

= <4jp(T)QK sign(C(T) -  w{t -  h))>
A 6K‘ = A 6 K‘(J) = Д А *> *(L *up, J) -  a'(r) sign(C(r) -  w ( t  -  h)).

(4.20)

(4.21)

S°), j  e

(4.22)

(4.23)

V ) / W ,

(4.24)

(4.25)

(4.26)
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Calculate according (4.10)—(4.12), (4.19) the value aff. Change the support
o K  
*^sup

K + l ,.K+ 1
) r  

,K
V

‘S'sup1 according to (4.20), (4.21). Following (4.22)-(4.27) construct QK+1, 
Д £ +1. Let Ss%  =  S ™ ;  QK+1 = QK \ PK = PK+1- 

k +'-,A% = A « +1

vk  =  vk + iQ K+1 = Q K
* and proceed to step 2 .

Step 6 . If Pk +i > V ( T) then ЛГ-th iteration of the algorithm CK(r — h) —► 
C^+1(r — h) at the moment т — h is completed.

At
Pk +i < V ( t), (4.27)

the work of the optimal estimator at the moment т — h is completed (К + 1 = p). 
Zero state of the algorithm at moment r:

C°(t) = CK+1(r -  h) \  pK+1) U (po = w(t)).

The work of the algorithm for the case w(r — h) > £*(r) is described completely. 
The case w(r — h) < £*(r) is analysed similarly.

Remark. While realizing step 5 in the recount formulae of the potentials and 
estimations (4.23), (4.25) we suppose

s i g n K u p H i f )  =
sign(£*(r) — w(t — h)), when w(r — h) > £*(r); 
sign(£„(r) — w(t -  h)), when w(r -  h) < £»(r).

5. Program solution of the r-control problem

According to (2.12) the r-a posteriori optimal control =  r,r + h , . . . ,
t* — h, is the solution of the following extremal problem

/igz(i*) —► max, x(t + h) = A(t, h)x(t) + b(t,h)u(t)\
x{t) = 0; A(-i(i*) > gj, i = l , m  (5.1)

u( t )  < u(t) < u’ (i), T < t  <t*  — h,

т- h

where gj = gi — yj~h — Ĵxu(i), y j~h is the estimator value of i-th observation
_  i = 0

problem (3.7), i = l,m.
The solution of the terminal control problem (5.1) [7,8] is the totality of 

{ű°(-|r),5sup(r)} where 5sup(r) = { /SuP(t), Tsup(r)}, /sup(r) C l -  { l , 2 . . . ,m},  
Tsup{t) = {ti , . . . ,  T)}, T < T i ( r )  < . . .  < п(т) < t* -  h. Along with this the
relations

det P(r) 7Í 0, P(t)
■h[F(t\t)b(t,h), t £ T sup(ry  

i  £  I s u p { x )

4*
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are fulfilled.
The vector of the potentials

v' =  v'(t) =  csupQ (r) , Csup =  (c(t); t E Tsup(r) ) , 

c(t) = hoF^* ,t)b(t,h), T < t < t * - h ,  Q( t) = P~1(t),

corresponds to the support 5sup(r). The co-trajectory = 4>(t\T), r < t  < t* — h, 
accompanying the support Ssup(r) as the solution of the conjugated system

rp'(t ~h )  =  Xp'(t)A(t, h), * - h )  = h'Q-  v'(IsuP)H(IsuPJ),

H(Isup,J) = h ' i ( J )
i  G fsupi7")

is constructed with the help of the vector i/(r). 
The co-trajectory generates the co-control

A(t) — A(t|r), г  < t  <  f* — h : A(<) = —ip'(t)b(t,h) (5.2)
According to the construction at the supporting moments co-control (5.2) is 

equal to zero
A(t) = 0, t E Tsup(r).

The optimal control ű°(í), t E Ty(r) = T(r) \  Tsup(r) at nonsupporting 
moments of time has the form

{ = u,(t), when A(t) > 0 ;
=  u*(<), when A(<) < 0 ;

€ [u.(<),u*(<)], when A(<) = 0,< 6 Tn (t).Without loss of generality we can consider that the equations Л-ж°(<*) =  g \ , i E 
h u P ( f )  (^(0 < 0, i E fSup(r )) are fulfilled for the trajectory x°(t), t E T(t) 
generated with the control ü°(t),t E T(r), of the problem (5.1).

The totality of the optimal control values at the support moment ü°up =  
(ú°(t), t E Tsup(r)) is calculated according to the formula

«su p  =  Q(t)9(t), д(т)
9i(r)

i  £  I s u P {T ) .

9i(T) — 9i 'У H{I&uPt
t e T N (r )

Later on it will be necessary the additional information about the optimal 
support control {u°(-|r),5sup(r)}:

Tn+(t) = { tE Tn (t) : A (t) > 0, A(t)A(< -  h) < 0}U 
U {i € Tn (t) : A ( t )  > 0 , ( t  — h) E  Tsup(r)}, 

Tn . ( t) = { t E  TN(r) : A (t) < 0, A ( t ) A ( t  -  h) < 0}U 
U {< G TN(r) : A ( t )  < 0, ( t -  h) E  Tsup(r)}.
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Limit oneself to the case when the number of elements |7jv+(t)| + |Tjv-(r)| 
exceeds |Tsup(r)| by not more then four units (rn £ TV+r) иТдг-(г), rjv — h ^
?sup(r ))-

Suppose that the masses of information F(t* ,t), t £ Tsup(r) U гдг U (t* — h) 
are known.

6. Optim al regulator synthesis

Proceed to the description of acting the optimal regulator algorithm.
We call the totality CK(r) =  ( /> ( ( ) ,  t £ Г(г +  Л); WK;SsKup = {IsKup,T«p}, 

QK(t), t £ T * p U r , U  (Г -  A);tf*(i), T*_ U (Г -
/1); j/*; as the state of the algorithm on fc-th iteration at the moment r. As 
the initial state C°(r) at the moment r choose the totality with the following 
components:

u(0)(t) = u°(t|r), t £ T(r + A); W° = Hx°(tm) -  gT;
Ssup — 5 's u p ( l ‘) — { Л и р ( Г )1 2 s u p ( r ) } ;  =  Tn +(t );

Tn -  = Tn - ( t)] Ag° = y - * h - y - h-,
= F ( f , t ), t £ rsup(r) U rjv U (<* -  A);

= V>(t|r), í £ Tn+(t) U Tn - ( t) U (t* -  /1); 
i/° = i/(r); <5° -  Q(t).

Iteration of the algorithm CK(r) —* Ck +1 (t)(Ck (t) —+ C°(r + h)) consists of the 
following steps.

Step 1. If / = 0 proceed to step 2. Let compare r with n . If r < t\ proceed 
to step 8 .

Step 2. Calculate the vectors

A “ * (Ts%)  = QKAgK(IsKupy, AuK(T$ ) =  0 , T *  = T(t + h ) \ T s 

A W K(I%)= H(I%,J)<j>K(t)b(t,h)AuK(T),

к .
sup I

teTK^  sup

Д ^ к (4ир) = 0, i% =  I \  I «p.
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Step 3. Calculate the numbers aK, ßK , 6K:

a K = a ( t, )  =  m i n a ( t ) ,  t € T*p : 
' u . ( t ) - u W ( t )

A uK(t)
a(t) =  u*( t ) -u(K\ t )

A uK(t)

when AuK(t) <0; t E Tŝ ,

when AuK(t) > 0; 

when AuK(t) = 0;oo,
ßK = ß(io) = min ß(i), i €  I* :

f  - W f when AW^ — A g f  < 0; 

when AW?  — A g f  > 0.
ß(i) =  < AW? -  Aflf ’

oo

Let вк  = min{l, aK, ßK}. If 9K = 1 proceed to Step 4. At 9K < 1 proceed to 
step 5.

Step 4. At 9K < 1 proceed to step 5.
Step 4. Let u°(r +  Л|г + h) = + h) + A uk (t + h). If т + h =t*  — Ih

the algorithm completes the work: ü0(T +  ih\r +  ih) = и̂ к \т + ih)-\-Аик (т +  ih),

At г + h < t* — Ih construct the initial state C°(r +  h) for the moment т + h 
with the following components:

Ago = r ~ h -  h~tT\ t € T°up U r , U  (<* -  /i);
iP°(t) = rpK (t), t G T£+ UT£_ U(<* -  h); v° =  vK \ Q° = QK .

Step 5. Calculate A K(t) = —ipK(t)'b(t,h), t E Tjy+ UT$_ U (<* — h). 
In case вк = ßK = ß(i0) let

* *  ( 0  = К  -  pK(I«P)'H(I*p, J)\QK(t), * € т«+ U T*_ U (t* -  h), 
4>K(t) = A~l (e,h)<t>K (в), t = в + h, в E T“p.

u(0)(t) = u(K)(<) + AuK{t), t £ T ( r  + 2Л); VF° = W* + Д ^ ;

/**(0 = W j Km t , h ) ,  t E Ts* ]Q K(rs* , i ) ,  i € l “p,

In case вк = a K = a(r5) let

» К Ц * р )  =  P9{t , ) ,

i K{t) =  рд(т>)н(1ыР, J)<t>K(t), t e T $ + и  r * _  и  ( Г  -  Л ), 

<£*(<) = А~1 (в, Л)**(0), t = 0 +  h, в G Г*р, р = -  sign Дик (г,).
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Calculate SK (t) = K̂(t)'b(t, ft), t £ Tft+ U Tß_  U (<’ -  h). Transition to step 6 . 
Step 6 . Calculate crK = min{<r(<), t £ Tjf + U T$_ U (t* — h)\uj(i), i £ Lfp}

s(t), i € Tv+ C :

<r(t) = s(t) =  0 either t £ T $ + , 6 K(t) < 0 or t £ T$_, 6 K(t) > 0;

A K(t — h) rPK(t)'A(t,h)b(t-h,h)
a ( > ~ 6 K( t - h ) ~  i K{t)'A{t,h)b(t-h,h) ( , ~ '

either t £ T$+, 6 K (t — h) > 0 or t £ T$+, 6 K(t — ft) > 0 
or í  £ Tf_, SK(t -  ft) < 0, (t -  ft) g Tsf p;

A K(t -2h)  xPK(t ) 'A(t ,h)A(t-h,h)b(t -2h,h)  
a[ > 6K( t -2h)  í K{t ) 'A{t ,h)A(t -h,h)b{t -2h,h) '  ®U

either t £ T$+, 6 K (t — 2h) > 0 or t £ T$_,
6 K(t -  2ft) < 0,f -  2ft £ Tsf p, Í -  ft G Tsf p;

<х(Г - h )  =  when А^(Г -  ft)ft*(<* -  ft) < 0 , <* -  ft 0  Tsf p,

cr{t) — oo in other cases;

w(i) = — V J '!):, either uK(i)pK(i) < 0  or г/К(г) = 0 , /iK(i) > 0 ; 
ft (»)

w(i) = oo in other cases.

Proceed to step 7.
Step 7. Transform the set S f p = { / f p, Tsf p} and the matrix QK.
1) Let QK = ß(io) < 1, crK -  w(i,). Then

C t 1 =  Ä  \  г'*) U *0- T sup+1 =  T s* p ,

<5A:+1(rj . i) = Ф*(Т7>0 + 3 * (г;>г'0 Г*(0|г*(*.). i ф
QK + 1 (7J.L) = Q*(7-J,*.)|r*(i.),

where r* = (rK(i), г G /sf p) =  [/г'о̂ (< )6(<, ft), t £ T*p\QK (Tsf p, 7*p).
2) Let = /?(г'о) < 1, сгх  = и(tg ). Then

f t ?  =  C P U го, Tsf p+1 -  T sKup U (iff -

Qk +1(tj á ) = <3/f(7j>í) + rf  (ri)rf  -  5( )̂)>
<3 K+1(tff -  s(<ff),*) = -r%(i)\p6 (tg -  s(tg)),

QK+1(Tj , i0) =  - r f  (r; )|p<5(<sr -  s(fff)), QK+1(tg -  s(<ff),i0) =  1И(<</-  «(<</)), 
r\ = (г-f  (Гг), J = 1 . 0  =  Q K h ( I * p, J )<t > K { t 9  -  s(tg))b(tg -  s(tg),h), 

r f  = (rf (i), i =  ТЛ) = №„**(*)*(*. O, i € Tsf p]Q*
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3) Let вк — aK — a(rs) < 1, <7 = w(i.). Then

tK+1   tK \ ■ rpK+\   rpK \ rp
■‘sup ■‘sup \ ‘*5 -‘ sup -‘ sup \  Х s ■)

QK+\ T s% \ ts, C p \ k ) =

Q k ( t * p  \ \ *' .) -  Q K ( T Sup \ T , , K ) Q K ( Tt , i * p  \ i . ) \ p p ( u )-

4) Let 9K = aK = a (r ,) < 1, 6  = 6 (tg). Then

4ip+1 = J£P, TsKup = (T*p \  г.) U (tg -  s(tg)),
Q K + 1 ( T j , i )  =  Q K (Tj , i ) - Q K ( T „ i ) r K (Tj ) \ r K ( T , ) ,  i  Ф  s ,  

Q K + \ T „ i )  =  Q K ( T „ i ) \ r K ( T , ) ,

rK = (rK (Tj), j  -  1,1) = QKH(I*p,J)<l)K(tg -  s(tg))b(tg -  s(tg),h).

Matrix <j>K(tg — s(tg)) is calculated in a standard way:

<fiK(tg -  s(tg)) = <t>K(tg) = А~1(гд)фк (гд -  h), when tg -  h G T*p, s(tg) =  0; 
<fiK(tg -  s(tg)) = <j>K(TN), when tg -  s(tg) =  tn ,
<t>K(tg -  s(tg)) = фк (tg)A(tg), when tg = rN , s(tg) = h,
фК^д -  s(tg)) = фк ^д -  h)A(tg -  h), when tg -  h £ T*p, s(tg) = 2h.

Let

UK+1 (t) =  u(K\ t )  +  eK AuK(t), t € T(r  +  h); AgA' +1 =  (1 - 6 K)AgK -, 
xPK+1 (t) = rl>K (t) + aKi K(t), t G Tft+ U T$_ U (t* -  /1); 

uk +i _  VK +  w k + 1 - щ к  + eK A W K

In cases 1), 3): ( Г * * 1 U T ^ + 1 ) =  (T$+ U T$_),  
in case 2) (T* + x U T^ 1 =  ( T * +  U T * _ )  U (f  <7 -  s(t</) + h), 
on case 4) (T *?1 U Г * * 1) =  ( T * + U T * _ )  \  ( r ,  +  A) U (t<? -  s(t</) +  A).
Proceed to step 2.

Step S. Let s = 1, 0° =  a 0 = a ^ )  =  0, Au^°\ri) =  g(ri)Ag°(I°up) and 
proceed to step 5.

7. Exam ple

Illustrate the results by an example of optimization of mechanical movement.
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It is necessary at a given moment to transpose a material point which begins 
its movement along a rectilinear path from some neighbourhood of the given point 
to a certain region and provide at the moment the velocity the guaranteed value 
of which is maximal. Besides it is necessary to take into account that all the 
information about the control result comes from a device which is able to measure 
the summarized value of the position and velocity from the point with limited 
exactness.

The mathematical model of the problem has the form

ж2 (3 ) —► max, x\(t + h) — x\(t)-\-hx2 (t), 
x2{t + h) = x2 (t) + hu(t), |* i(0 )| < 1 , x2(0 ) = 0 ,

* i ( 3 ) < l ,  0  < u(t) < 1 , t = 0 , MA, . . . , 3 ;  
h = 0.5; 2/ = xi + x2 +£,  0 < £ < 1 .

Present the results of the optimal estimator and the regulator work for the 
case when the point actually began movement from the point £i(0 ) = 0  and the 
following measuring errors were realized

€(0) = 1/2, €(0.5) = 1/4, €(1) = 1/2, €(1.5) = 1/5. €(2) = 1/4,

but this information is not known by either the estimator or the regulator.
The a priori optimal control u°(-) constructed at the moment t = 0 without 

the results of observation has the form represented at Fig. 1.

The guaranteed value of the quality criterion is equal to J(ű°(-)) =  1/2.
If the initial state aii(O) =  0 would be known for the regulator at the moment 

t — 0 then the optimal control u°(-) has the form shown at Fig. 2. The value of the 
quality criterion would reach J(ü°(-)) = 9/4.



426 G A B A S O V  et  al .:  S Y N T H E S IS  O F  O P T I M A L  C O N T R O L S

After processing the signal y(0) = 1/2 with the estimator the regulator, acting 
according to the algorithm described above, produced the control presented
at Fig. 3 (J(«“(-)) =  3/4).

QJO)

1 -

0 1 IS  2
-I------ ►
3 1

F i g .  3 F i g .  4

Making an analogous signal processing y(0.5) =  1/4, y(l) =  1/2, y(1.5) = 1/5, 
y(2) = 1/4, the regulator constructed a priori optimal controls presented at Fig. 4 
(ű°( ) = ű§(-) = йз( ) = й (̂*)). It is clear that the processing of measurings 
y(t),t > 1 , does not influence the form of the synthesized control.

The value of the quality criterion on the constructed control is equal to 
J(«°(.)) = 3/2.

The value J(ü°(-)) — = 1 characterizes the increase of control effi
ciency at the expense of measuring device.

The loss of efficiency because of the errors of the measuring device equals to
J ( u ° ( . ) ) - J ( ü ° ( . ) )  =  3 / 4 .
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С и н т е з  о п т и м а л ь н ы х  у п р а в л е н и и  п о  н е т о ч н ы м  и з м е р е н и я м  
в ы х о д н ы х  с и г н а л о в

Р  Г А Б А С О В ,  * .  М. К И Р И Л Л О В А ,  П. В. Г А Й Ш У Н ,  С. В  П Р И Щ Е П О В А

(М и н ск)

В с т а т ь е  п р ед л о ж ен  м етод  с и н т еза  д и ск р етн ы х  э с т и м а т о р а  и р е г у л я т о р а , оп
т и м и зи р у ю щ и х  поведение д и н ам и ч еск о й  си стем ы  в у с л о в и я х  неполного и неточного 
н а б л ю д е н и я  за  процессом  у п р а в л ен и я . С и н тез  о с у щ е с т в л я е т с я  в р е ж и м е  реальн ого  
вр ем ен и  по м ере п о сту п л ен и я  о ч ер ед н о го  с и гн а л а  от  и зм е р и т е л ь н о го  у с т р о й с т в а . В 
основе р а б о ты  а л г о р и т м а  л еж и т  процесс к оррекц и и  о ч е р е д н о го  о п о р н о го  реш ения 
з а д а ч и .

Р. Габасов, Ф. М. Кириллова 
П. В. Гайшун, С. В. Пргацепова 
Институт математики АН БССР 
220604 Минск, Сурганова 11
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PARAMETER ESTIMATION FOR NEAREST NEIGHBOR 
GAUSSIAN RANDOM FIELDS IN THE PLANE

A n t o n í n  O t á h a l

( Prague)

(Received Decem ber 30, 1990)

A p aram ete r-estim a tio n  m eth o d  for b o th  sc a la r  and  vector-valued G auss-M arkov 
random  fields is presented.

Introduction

Stationary Gauss-Markov random fields represent a rather nice model of spa
tial randomness as it is possible to get some, more or less explicit, results in their 
statistical analysis. Kiinsch (1981) developed ideas of Dobrushin (1980) and applied 
them to asymptotic statistical analysis or, as he chose to call it, thermodynamics 
of stationary Gaussian fields. The last term indicates that the Gaussian (and the 
Gauss-Markov) fields can be viewed in frame of statistical physics generalizations, 
a Gaussian field being considered as a Gibbs field corresponding to given potentials 
(interactions).

Both Kiinsch (1981) and Janzura (1988), who gave some deeper asymptotic 
results for the Gauss-Markov fields, considered what we might call “fitting-of-mo- 
ments” estimates of parameters. Namely, the lags corresponding to non-vanishing 
interactions were taken, the corresponding sample covariances were calculated and 
the interactions estimates were fitted to these sample covariances. This is quite a 
natural way of doing it and both the mentioned authors proved good asymptotic 
properties (such as consistency, asymptotic normality etc.) of the estimates.

What we concentrate on in the present paper is how to actually calculate these 
estimates. We confine our effort to the nearest neighbor model in the plane that 
is not only the simplest non-trivial case but also the most interesting one from the 
practical point of view. We consider both the scalar and the vector-valued cases.

First, the general set-up is formulated, then the estimation procedures are 
derived. The first one concerns the scalar case estimates. The vector-valued field 
estimating procedure is based on that the problem is, in a sense, transformed to a 
set of scalar ones.

Akadémiai Kiadó, Budapest 
Pergamon Press, Oxford
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1. Problem Formulation

A system X  = £ T) of n-dimensional (column) random vectors in
dexed by two-component integer vectors is a vector-valued random Held in the 
plane. That is, T = Z 2 where Z is the set of all integers and, for every t £ T, 
it is X(t)  = (Xx(i),. . . ,  (Xn(t))* where asterisk means matrix transposition. The 
field X  is Gaussian if all finite-dimensional distributions of all variables in X  are 
Gaussian. It is stationary if the mean value is constant, say EX(<) = 0 for every 
t £ T, and the second moments are shift-invariant, in other words, the covariances 
depend on the lags only: EX(<) • X(s)* = R(t -  s) where R is an n x n matrix 
covariance function. If a matrix function /  exists such that

holds for every t £ T, we call /  a spectral density of the field X.
Let us denote U £ U the set of all U = (Uq,U\, U2 ) such that Uq,U\, U2 are 

symmetric real n X n-matrices and Uq ±  U\ ±  U2 is a positive definite matrix for 
every choice of signs. For U £ U we define-

where 1 denotes the matrix inversion. From the properties of the set U it follows 
that the matrix function fu is positive definite for every U £ U , and every x,y £

We say that a Gaussian stationary vector-valued random field is a nearest 
neighbor one if it has a spectral density which is, for some U £ U, expressed in the 
form fu.  In other words, the considered field is nearest neighbor if its covariance 
function is given

for every t £ T .
We denote A = {(0,0), (0,1)(1,0)}. Let us consider a finite large subset M of 

the index set T; M is typically a rectangle and “large” means that |M( |/|M | «  1 
for t £ A where Mt — {s £ M : s + t £ M) and | • | denotes the cardinality of a set. 
We define sample covariances

7Г 7Г

—  7Г —  7Г

fu(x,y) — (Uq + Ui cos x + U2 cos y) 1

R(t) = (2|M<| ) ~ 1 (X(s + t)X(sY + X(s)X(s  + <)*)
л 6 Ail
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for t E A. An estimate Ü of U € U is then defined by equations
Rú (t) = R(t), t € A.

The estimate U is defined with a probability near to 1 for large M.  This and some 
good asymptotic properties of U were proved in a scalar case by Janzura (1988). 
It is not difficult to generalize those results to the vector case.

2. Scalar E stim ate

The above considerations simplify for the scalar case n =  1; namely, scalar 
values take places of n x n-matrices. Let us white ro, ri,r2 for i?(0,0), 72(1,0), 
72(0,1), respectively. The estimate U we represent as a triplet (uo,ui,U2 ) and we 
put p — Г1/Г2 , <y = Г2 /Г0 , a — ui/uo, ß = U2/uo- The condition U £ U  takes the 
form |a| + \ß\ < 1 .

If we denote

/o (a ,/3 )

h ( a , ß )

dx dy
1 + a cos x + ß cos у

cos x dx dy 
1 + a  cos x + ß cos у

I2 (a,ß) = (2 *y /
cos у dx dy 

1 + a cos x + ß cos у

then и о, a, ß are given by the following basic system of equations
r0uo = Io(at,ß)

pro uq = Ii{a,ß)
(тг0 и 0 =  h { a , ß )

and the original parameters uj, U2 are expressed as ui = a ■ uo, U2 — ß ■ no-
Generally, the integrals 7o, I2 are not integrable explicitly. Let us denote [cf. 

e.g. Bateman (1953), Chap. XIII]
i r/2

F(k) =  (2 /n) J  (1  — k2 sin2 tp)* d<p
0

and
ж/ 2

H(k,p) = (2 /я-) J  (1  — (p — 1) sin2 <p)( 1 -  к2 sin2 ip) 2 dp 
0
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the “normed” complete elliptic integrals of the first and third kinds, respectively. 
After some integration and substitution we get, for а ф 0, ß ф О,

70 (о,/3) = т ■ F(k)
I i ( a , ß )  =  a “ 1m((/?- l)F(k) +  (1 -  а -  ß)H(k.p))
I2 (a,ß) = ß~l m{{a -  l)F(k) + (1 -  а -  ß)H(k, q))

where
m =  (1 -  (а  -  ß)2)*, 
к2 = 4\aß\m2,
p =  (1 -  а  -  ß) / ( l  + a -  ß), 
q = (1 -  a -  ß) / { \  - a  + ß).

The cases a — 0, ß =  0 are trivial: suppose that one of the correlations p, a 
vanishes, say a = 0. Then ß has to vanish, both Io and h  are explicity integrable 
and the corresponding solution of the basic system is

a = —2p /(l — p2), ß = 0 , u0 = (l + /)2 )/[r0(l - p 2)];

and symmetrically for p = 0 .
If none of the correlations vanishes we may consider the case a > 0, ß > 0 only. 

In fact, any other case is reduced to this one by taking into account the following 
rules (that are easy to derive from the expressions of the integrals): 7o(±a, dtß) = 
I 0 ( a , ß ) ,  I i ( a  ±  ß )  = h ( a , ß ) ,  I 2 ( ± a , ß )  = I 2 ( a , ß ) ,  for every choice of signs and 
h ( - a , ß )  =  —I \ ( a , ß ) ,  / 2 ( а ,  - ß )  =  h { a , ß ) .

At this moment we have to stop thinking about an explicit solution of the 
basic system. Instead we describe a numerical procedure which converges to the 
solution.

The procedure needs evaluations of complete elliptic integrals. Though gen
eral numerical integration could be used, it is much better to apply specialized 
procedures of Bullirsch (1965) which are very fast and accurate.

The solution (for the mentioned case p > 0, c > 0) is found in two main steps.

2.1. Isotropic Approximation

We put г = (p + <r)/2 and solve an equation in £

F(£)-( l  +  r £ )  = l

to which the basic system reduces for p = a = r, no being separated as rouo(l + 
r£) = 1 . The equation is solved iteratively

£ n + !  =  F - 1  ( 1 / ( 1  +  r  • £ „ ) )
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with an initial value £o = —2 r/(l +  r2) which would correspond to a vanishing 
correlation. The inversation F~l is again computed iteratively, by the regula falsi 
method. The initial pair of values T\ =  (1 — 4 • exp{ — тгт})*, т2 =  (1 — ехр{7г(1  — 
г)})a, follows from Tricomi’s inequality

2 • ln4 < ír • F(k) + ln(l -  к2) < тг; 

cf. Bateman (1953), 13.8.9.

2.2. G eneral Case

Again we separate uo as

l/u 0 = r0 ■ ( 1  + p ■ a + a ■ ß)

using an obvious identity 7o + a • I\ +  0 ■ I2 = 1. Thus, the basic system reduces to

f (a ,ß ) :=  h(a,ß)  -  p / ( l + p a  +  aß) = 0 

f (a ,ß) := I2(a,ß) -  <r/( 1 + pa +  aß) = 0 .

Now, take initial values c*o = ßo — £/2 which correspond to the isotropic approxi
mation solution and we iterate “Newton-like”

cn • J  (on, ßn j h) ( f ( < * n , ß n ) \  
\ g ( c * n , ß n )  J  '

Here J(a,ß,h) is a ’’difference Jacobi matrix”,

J(a,ß, f (a + h,ß) 
g(a -(- h,0 )

f ( a , ß  + h) \  
g(a,ß + h) J - ( l / h ) ( f ( a , ß )

V £7(or, /9)
n « , ß ) \  
9 ( < * , ß )  J

and cn = 2 1 where j  is the minimal non-negative integer for which the corre
sponding new values a n+i, ßn+i fulfil the regularity condition |on+i| + |A,+i| < 1.

2.3. R em arks

1. Theoretically, the conditions |p| < l,|<r| < 1 are necessary and sufficient for 
the feasibility of computations. Practically, the nearer the values \p\, |<r| are 
to the bound 1 the higher accuracy of computations is needed. For example 
FORTRAN double precision (i.e. 8 hexadecimal digits accuracy) is still able 
to manage the situation when both the correlations are (in absolute value) 
about 0.9.

5
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2. All the considered iterations terminate when the consecutive values differ 
less than some e > 0. In the mentioned (i.e. FORTRAN double precision) 
implementation, c = 1 0 ~ 8 and h =  1 0 - 6  have proved to be useful.

3. Vector Estimate

We want to solve the general system of equations

Rú(t) = R(t), t e  A

with nxn  matrices on both sides. This is a difficult task even for moderate values of 
n. That is why we consider a more restricted problem: we suppose the separability 
of channels of the given vector-valued field. Namely, we suppose that there exists a 
regular n x n  matrix L for which all the matrices L ■ R(t) • L* are diagonal for every 
t G T. In other words, we suppose an existence of a regular linear transformation 
with transforms the original field onto a new one and this new one is an n-tuple of 
mutually (stochastically) independent scalar-valued random fields (channels).

A matrix L separates channels of a nearest neighbor field if and only if its 
spectral density fa corresponds to such U = (f/о, (7i, f/г , ) € U that the matrices 
L ■ Uj • L * , j  =  0,1,2, are diagonal. In fact, diagonal Uj ’s obviously lead to a 
covariance function which has diagonal R(t)’s; on the other hand, every separated 
channel is a nearest neighbor scalar field. Hence, our statement follows from that 
the correspondence between spectral densities and covariance functions is one-to- 
one, cf. Stein, Weiss (1971), Thm. VII.1.7.

Let us define a “correlation” function on T by means of p(t) = Я(0 )~з • R(t) ■ 
R(0 )~ 2 . It is easy to see that a random field has separable channels if and only if 
there exists an orthogonal matrix Q such that matrices Q ■ p(t) ■ Q* are diagonal 
for all t 6  T. For a nearest neighbor field it is the same as that the matrices p(0,1) 
and p( 1, 0) form a reducible pair what means there exists an orthogonal matrix Q 
for which both Q ■ p(0, 1) • Q* and Q ■ p( 1,0) ■ Q* are diagonal.

Sample correlation function p is defined in a natural way on the base of the 
above defined sample covariance function.

p(t) = R(t)R( О)"*;

this is a reasonable definition because R(0 ) is a positive definite matrix with prob
ability 1. Clearly, p(0,1) and /3(1,0) need not form a reducible pair. So as to meet 
the separability-of-channels assumption we should find a new pair of matrices, say 
/5(0, 1) and /5(1,0), which would be, in some sense, the best approximation of the 
original one in the class of reducible pairs.
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3.1. Reducible Approximation Problem

For an n X n matrix V = (vjk) we define a diagonal matrix A(R) whose 
main diagonal is the same as that of V i.e. A(V)jk = bjkVjk where 6  is the usual 
Kronecker symbol. By a norm of V we understand ||T|| = 2 .

Let there be given two symmetric n x n matrices E, F. For an orthogonal 
n x n matrix Q we denote Eq = QEQ*, Fq — QFQ* and put

c(E, F, Q) =  IIE q -  A (£ q )||2 + IIFQ -  A(Fq)||2.

The problem of reducible approximation consists in:

(RA) find an orthogonal n x n matrix Q° such that c(E, F, Q°) = min c(E, F, Q) 
where the minimum is taken over all orthogonal matrices Q.

Before going into solution of (RA) we introduce some symbolics. Let us take 
two integers l, m such that 1 < l < m < n.

If V = (Vjk) is an n x n matrix then Ptm(V) denotes the corresponding 
2 x 2  submatrix: writing W = Pim(V) we put Wu = оц, W\2  = v/m, w21 = vmi,
^ 2 2  — Vmm  •

The other way round, if IT is a 2 x 2 matrix then V = P{^{W) denotes such 
an n x n matrix for which ьц = и>ц, vim — ui\2 , vmi = W21 , vmm — W2 2 , and 
vjk = Sjk for (j, k) £ {(1, 1), (l ,m), (m,l), (m,m)}.

For a real number z we denote H(z) the corresponding planar rotation matrix

H(z)
Í cos г 
\  — sin z

sin z
cos z

and, on the base of this, we define a so-called Givens matrix G(l,m, z) = P^(H(z)) .
The problem (RA) will be solved iteratively: in every step a Givens matrix 

will be determined and the desired orthogonal matrix Q° will be approximated by a 
product of thus obtained sequence of Givens matrices. The method generalizes the 
known Jacobi method for diagonalization of a real symmetric matrix, cf. Wilkinson 
(1965), Chap. 5.

3.2. Small Reducible Approximation

As a starting point, the problem (RA) will be solved in case E, F are sym
metric 2 x 2  matrices. In this case it is possible to solve (RA) explicitly; we may 
restrict the minimization onto the above defined planar rotation matrices H(z), so 
we look for a real Zq which minimizes the criterion c(E, F, H(z)).

5 ;
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Let us denote
P  —  ( е ц  — e22 ) / 2  

9 =  ( / n  — / 22У 2 

x = p2 + q2 -  e22 -  f \ 2 

у = 2 (p • ei2 + g ■ / 12)-
If we express the criterion c in terms of x, y, z it is not difficult to derive

1 . if x = у = 0 then the criterion value is independent of 2 and we may put
20 = 0 ,

2 . if x2 + y2 > 0 then the criterion is minimized by that real 20 for which

coszo = (h + h(/i + Ж ■ /г/(х2 + y7)h)h)h
sin Zo =  (h -  h(h +  x ■ h/(x2 +  y2)h)h)h ■ ( -  sgn y)

where h = |  and sgn is the usual sign function. These expressions are not 
the most elegant ones; but viewed as a recipe for computation those very 
expressions are the most stable ones from the numerical point of view when 
being repeatedly used in the later solution of the general problem.
The decrement of the criterion value which corresponds to the optimal Zq is

c(E, F, H(0 )) -  c(E, F  Я Ы ) = (x2 + y2)* -  x.

3 . 3  R e d u c i b l e  A p p r o x i m a t i o n  P r o c e d u r e

For n > 2, (RA) is solved iteratively.
As an initialization, we put — E, F = F, = I where /  is an

identity n x n matrix.
The TV-th iteration step consists of several substeps. Let us for a while denote 

D = {(l, m): 1 < l < m < n, l,m integers}.
1. Choice of 2 x 2  submatrices. For (l, m) £ D we take the corresponding 2 x 2  

submatrices Р;т (£,(лг̂ ), Р|т (Т^лг̂ ). For these 2 x 2  matrices we determine 
p, q, x, у as in 3.2. Further, we denote Д/т  the corresponding criterion 
decrement, Д;т  =  (x2 + r/2) 2 — x. Now, we take (j,k) such that Ajk = 
max{ Д;т : (/, m) 6  D).

2. Small solution. For the chosen (j, к) we solve the small reducible approxima
tion problem on the matrices Pjk{E^N )̂, Pjk(F^Nl) what provides a planar 
rotation matrix H ( z q ) .

3. Innovation. We take a Givens matrix G = V  (H(zo)) and put

E(n+1> = g  e (n) g ,

F<n +» = G - f W - G ,
q ( N - M )  _  q  q ( N )



Termination. If, in the 1-st substep of the ЛГ-th iteration step, the maximal 
possible criterion decrement Ajk is “almost zero”, i.e. Ajk < e where e is some 
pre-defined small positive number, the iterations terminate and the matrix 

is taken for a solution of the problem (RA).
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3-4■ Convergence of Iterations

It is easy to see that the criterion c(E, F, Q) decreases during the iterations; 
in fact, the actual decrement is equal to Ajk in every iteration step. From this 
the convergence of iterations follows. As for the convergence rate, any theoretical 
bounds would be extremely difficult to derive. An implementation shows that 
the convergence is very quick even for every small values of e (it was put e =
i o - 8 . ( I №  +  I № ) -

Another open (and difficult) question consists in that it is not a priori known 
whether the iterations terminate in the very minimum of the criterion.

3.5. Separable-channels Estimate

Let us put p(0,l) = E and /5(1,0) = F in the problem (RA). We denote 
r(0,1) = A(E^N )̂, r(l,0) = A(F(n )), and Q = where the superscript
denotes the matrices given by the terminal iteration step of the above described 
procedure. The matrices /5(0,1) = Q* ■ r(0,1) • Q and /5(1,0) = Q* • r(l,0) ■ Q 
represent the reducible pair that is the best approximation of /5(0,1) and /5(1,0).

Now, it is obvious how to use the scalar estimation procedure in estimating 
parameters of a separable-channels nearest neighbor random field. In fact, for 
j  — l , . . . , n  we put p = r(0 , l)jj, a = r(l ,0 )jj, r0 — 1 and apply the scalar 
estimation procedure, getting values uJ0, u\ , Ц. Depending on further analysis 
purposes either these values may be taken as the final result or, if we tend to get 
an estimate independent of the channels separation, we can go back putting, for
fc =  0 , l , 2 ,

Uk =  M-
/« 1 о \

V 0 « 2 /

• M *

where M — R(0)з • Q*.

3.6. Remark

Absolute values of eigenvalues of /5(0,1), /5(1,0) have to be less than 1. This 
implies that the terminal criterion value in reducible approximation of these matri
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ces can not be too large and, consequently, the pair /5(0,1), /5(1,0) can not depart 
too far from />(0,1), /5(1, 0). In other words, the reducible approximation could be 
taken as a means of an approximate estimation procedure for vector-valued near
est neighbor random fields, without even mentioning the separability-of-channels 
assumption.

4. Application Range

From the estimation problem formulation it follows that the considered type 
of random fields is a suitable model in digital image processing. Here the interac
tions could represent a good characterization e.g. of textures. More generally, the 
interactions could serve as some global characteristics of any planar data, providing 
the stationarity assumption is acceptable.

The results concerning the vector-valued fields would be easily generalized for 
Gauss-Markov fields, for which the interactions are not restricted to the nearest 
neighbors, as well as for d-dimensional index set Zd. Only a generalization of the 
reducible approximation procedure to more than two matrices would be needed 
and that could be easily done. Of course, the more interactions are taken into 
consideration the more restrictive it is to suppose that the channels are separable.
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NONPARAMETRIC ENTROPY ESTIMATION 
BASED ON RANDOMLY CENSORED DATA

A. C a r b o n e z , L. G y ö r f i , E. C. v a n  d e r  M e u l e n
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(R eceived O ctober 1, 1991)

T he Shannon  entropy of a  random  variable X  w ith  density fu n c tio n  f ( x )  is defined 
as H( f )  = -  f  f ( x ) l o g f ( x ) d x .

B ased on random ly censored  observations a  nonparam etric  e s tim a to r  for H ( f )  is 
proposed if H ( f )  is finite a n d  is nonnegative. T h is  entropy e s tim a to r is h istogram -based 
in the sense th a t  it involves a  histogram -based d en sity  estim ator f n co n stru c ted  from th e  
censored d a ta .  We prove th e  a . s. consistency of th is  estim ator.

1. Introduction

The entropy of a probability density function f(x) of a nonnegative random 
variable X is defined by

-poo

H(f) =  -  J  f{x)logf(x)dx.  (1 )
о

In the literature, several estimators of entropy have been proposed for non-censored 
observations. Typically, these estimators are based on obtaining first (cf. Györfi and 
van der Meulen [5]) a suitable density estimate f n(x) for f(x) and then substituting 
fn for /  in an entropy-like functional. In the random censorship model, one observes 
random variables Z, — min(A,-, Yf) and indicator variables <5; = I[Xi < YR * =  
l , . . . , n .  The random variables X{ of interest, and the censoring variables Y;, 
are i.i.d. and nonnegative. Moreover X{ and Yj are independent for all i. We 
assume F(x) — P[X > x], G(x) = P[Y > x] and K(x) — P[Z > x] = F(x)G(x) 
are continuous. The product-limit estimator Fn (Kaplan and Meier [7]), which is 
based on the observations (Zi ,6i), i = 1,.. .,  n, is often used to estimate F(x). Here 
the nonnegative random variable X  is supposed to have a density function /  with 
probability measure ft defined on the Borel sets of R.

Akadémiai Kiadó, Budapest 
Pergamon Press, Oxford
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The notion of fair censoring was introduced in the paper by Carbonez, Györfi 
and van der Meulen [1]): censoring is called fair if for any T  for which F(T) > 0, 
it holds that G(T) > 0.

Define T* = sup{T : 0 < F{T)G(T) < 1}. Let Vn = be a
partition of the real line n > 1 , with Inj —

Remark. In the uncensored case, the a. s. L\ rate of convergence of a density 
estimate implies the a. s. convergence of the corresponding entropy estimate (see 
Theorem 2, Györfi and van der Meulen [6]).

Given the partition Vn, the intervals Inj have length hn, X(Inj) =  hn, 0 < 
hn < 1, where \ (Inj) denotes the Lebesgue measure of Inj and with Kaplan-Meier 
measure fin(Inj) =  i,„) -  Fn(tj,n)-

The histogram estimate of f(x) in this censored situation then has the fol
lowing form:

' • « - а д # -  (2)
Now choose 0 < an < 1, 0 < 6n < 1/2 and introduce the notations

Tn — { j  • fin(Inj) ^
Tn = K - \ b n)

Gn =  {j : Inj c  [0 ,T „ ]}

where
1 n

K " ( x ) =  -
»=1

then our estimate of # ( / )  is defined by

HП -  £
j e ^ „ n ö n

ßn (Inj) log ßnjlnj  ) 
X(Inj)

(3)

2. M ain result

We then have the following Theorem which states the a. s. consistency of the 
randomly censored version of the histogram-based entropy estimate.

T h e o r e m . Assume that the censoring is fair, and if Vo denotes the partition 
of R by unit intervals that

-  X] <  o o ,
A iV  о

( 4 )
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and

and that

-̂1

0 <  an <  1, lim a n  =  0,
n — ►OO

(5)
0 <  6 „  <  1/2, lim 6 n  =  0,

n  — ► OO
(6)

oo 1

2 hoh eXP( C ^nbn alhl) <  OO
n  = l ап Пп°п

(7)

is an integer such that

lim hn =  0. (8)

Then, if
T *

H(f )  = — J f(x) log f (x)  dx is finite,
о

lim Hn = H{f ) a. s.
(9)

In order to prove this Theorem, we need the following lemma’s.
Lemma 1 (Rényi [8], Csiszár [2, 3]). If H( f )  is finite, then under conditions

(4) and (8) we have

lim -  V p ( / nj)logn —► oo z '
P ( ^ n j )  ... T T ( t \
Ж Г ) - н и )

( 10)

Lemma 2 (extension of Lemma 4 of Györfi and van der Meulen [5]). For each 
e > 0 and every interval I C [0,T], T < T*, K{T)  < 1/2,

log

2 exp

f i n ( I )

nK{T)
16

> £ <

(hm r  + 77
11520

K(THI)S,
exp < — n K ( T f  

' 288 ( » m y
( И )

where <5e = 1 — 2 f.
Proof. First observe that as in Györfi and van der Meulen [5],

{ lQg 7^  > i}  С { \ Ш  -  ц(1)I > , ( / ) ( !  -  2 - f)}.

Lemma 1 from Carbonez, Györfi and van der Meulen [1], states that

P [ \ f i n ( I ) - t i I ) \  >e]<

2exp(-ne2G(T)/16) + 11520
G(T)e

2,2
exp < —np G( Ty t

288
( 1 2 )
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where p = min-f/t^T), 1 — K(T)}  > О, К(Т)  < 1 /2  therefore р — К(Т).  Moreover 
G(T) > К(Т) so (12) implies (11).

Lemma 3. If conditions (5), (6), (7) and (8) hold for all C\ > 0 then

< oo (13)

where cn = log ---- (-log — .
Cln

Lemma 4 (Theorem 1 of Carbonez, Györfi and van der Meulen [1]). Assume
that the censoring is fair. If

lim hn = 0
M —► OO

(14)

and
lim nhn — oo

П - + 0 0
(15)

then
+  oo 

r

Jn= j  \fn — /1 —+ 0 a. s. as n —* oo (16)
о

for all / .

3. Proof of the theorem

Since
Hn = -  M / n ; ) l o g < ^ ,  

j €F„  nd„ nj

(17)

we can write
Hn - H ( f )  = Un + Vn + Wn + Zn. (18)

Hereby, we put

Un = £  i - ß n M  + ^ i n j ) ) l o g ^ Y -  
j  e^„né„ nj

(19)

v„  = -  E
j€^„ng„

(20)

Wn = E  "('" '» '»ел ( / / ) • (21)

= - £ > ( / „ , )  log f ^ - t f ( / ) , ( 2 2 )



C A R B O N E Z ,  G Y O R F I ,  VAN D E R  M E U L E N : N O N P  A R A M E T R I C  E N T R O P Y  E S T I M A T I O N 4 4 5

and thus
\ Hn - H ( f ) \  < \un\ + \vn\ + \wn\ + \z n\.

(I) Observe that \Un\ = U+ + U~ = U+ + (~Un)+.
Introduce the notations

Tn = K ~ 1(bn/2),
Qn =  {j : Inj C  [ 0 , T „ ] } .

Obviously
P(\Un\ > ( ) <  P(\Un\ > e , T n < T„) + P(Tn > Tn). 

So for Tn < Tn we have Qn C Qn, therefore for T„ < Tn

\Un\< E  M i n i ) - M i n j ) ) + {
i 6^„n0„  ̂ A\ ^ i )  J

je^„ne„ »• ■>

+ E  ( / i „ ( /n i ) - ^ n ; ) ) + { l o g ^ ^ }  
re^„ne„ 1 J

+ E  ( М / п ; ) - М ^ ) Г  {bg
jer„nen AOn-" -1

For j  E T n-

and

fin( Inj ) 

A {Inj)

+
< log

1
A (Inj)

= { bg A(/nj)

< log

M i n i )

A ( / n j )  ..

Therefore, with the notations

: j  £  -^r. r\Qn,H(Inj) > fin (Inj)} 

Bn =  [ J  {Inj '■ j  £ Tn E\ Gn, Н( Inj )<-■ fin (Inj ) }

, 1 , 1
c n = log — + log — hn an

( 2 3 )
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we get that for Tn < Tn

\Un\< fln{Inj))+ log
je^„ne„ "

+ Y2 -  M I nj))~ log^-
j€^„ne„ n

T  'У ' {ßn{ Inj ) — ^n(Inj ))"*" log  
j е?ппеп n

+ (MJn j )  -  log 7 -

j€^nne„
+  Cn ^   ̂ ( f i n ( I n j )  ~

j € J r„r\On

=  c n ^  '  ( p ( ^ n j )  ~~ ß n ( I n j ) )

+  C n  ^  '  { f i n i l n j )  ~  ^ { I n j ) )
i6^nnen,A„(/nj)>/i(/„y)

— cn(/i(j4n) /in( ̂ 4П)) + cn (/in (5 n) î(f?n)).

Thus

P ( |tf„ |> e , t n < T n)

< P f  |//(Л„) -  /х„(Л„)| > ) + P ( |p(-Sn) -  /in(B„)| > ^ T2c„

< 2sup P Ifi(A) -  а»„(Л)| >

< 4 exp nK{Tn) /_е_ 
16 \2сп

2cn

+  2 -

(24)

11520
В Д )

exp < —n-
2c„

к(тпу
288 V2cn

-  4 exp / _ ü * 2 f l l  + 92160c" exp i - n  -^ 2— 1
P \  128c2J bnt P \  294912c2j

On the other hand

P(Tn > Tn) = P(I<-l (bn) > K - \ b n/2))
= P(bn < K ^ K - ' i b n / m
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= P(bn -  bn/2 < Kn( K - \ b n/ 2)) -  K ( K - \ b n/2))) (25)
< exp{—2n(fe„ -  bn/ 2)2}
= exp(—n62/2)

where the first inequality is HoefFding’s inequality. (7), (24), (25) and Lemma 3 
imply that

£ > ( |£ / „ |> 0 < ° o. (26)
n

(II) Let Cn = {j : n { I nj )  > anhn}. Then

Vn — У ^(Inj)  l o g

je?nnc„

= MA.j)log
J'6^„ncn

An (fnj ) 
b*(Ir.j )

ßjlnj)

< /^(^j)i°g

An( Aij )

n(lnj )

(27)

j e f nng„nc„

< V  Kin:)
j e c nng„

An (i)nj ,

log njlnj )
An (Inj )

(28)

Therefore, proceeding in the same way as in (I), applying Lemma 2 to (28) yields

P(Vn > e ) <  P(Vn X , T n < Tn) + P(Tn > Tn)

log :< £  '
j e c nne„

< J 2  { 2 exp
j e c nngn ''

11520

MAij )
A(^nj)

л т а
i6

> eJ + P(Tn > Tn) 

( K I n j ) (  l - 2 - f ) ) 2

+ 777K(Tn)KInj)( 1 - 2 - )
+ exp[—n62/2]

1
o,nhn

+

Г77 exP ~ n;4 i ^ (/i(/nj' )(1" 2' £))2

< 2exp |- n ^ ( a „ / i „ ( l  -  2 £))2

23040
6ncirl/irl(l 2 

+ exp(—n62/2)
:7 ' еХр^ П7 Ш 8 ^ /|“*1 “ 2 f^ 2

where in the last inequality we used that for j  £ £„ П £n,/r(7n; ) > anhn and 
K{Tn) = 6n/2.
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lim V„+ = 0 a. s. (29)

On the other hand, by (27),

- p . ~  E  ^

^  1 H n ( I n j )

< E  M /nJ) l o g ^
/  . И ( I n  j  )

je^„ne„

(30)

je^„ng„

where the latter inequality follows from the so-called Log-Sum Inequality (Csiszár 
and Körner [4], p. 48). Continuing (30) we have that

^  1 ßnilnj)

ng„
V ' I T T  -  £  M ini) log— = — —
E  i€^„ncn E

j e ^ nngn je^„ng„ (31)

< log • 1
E  vVnj)

j€?n ПСп

Now, we can show that (cf. (39) below)

E  /i(fni) —► 1 a. s., as n —*■ oo,

hence (30) and (31) imply that

I { - V n>C} < ' { 1> 2‘„(Uj e r n n ó n i n, )}  -+  0  a - s- 

Combining this last result with (29) yields the proof of the fact that

(III) We also have

lim Vn = 0 a. s.
n —*-oo

lim Z„ =  0
n  —► OO

(32)

(33)
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by Lemma 1 and (8).
(IV) Finally introduce the notations

An = U  Inj- 
nc„

and

then

9n(x) if x £ I,nj

W- =  T ,  lo* A IM
j g r  пПбп

Л п

f  f  — f  ffn implies that
A n An

= J  f{x)\oggn(x)dx
A n= J  f {x) \ogf (x)dx -  J f (x)  log dx-

J f(x)  log y  \  dx > 0
9n{x)

and in the same way

/  f i x ) l°g dx > 0.J  9n(x)
A n

Thus (34), (35) and (36) imply that

\wn\< [  f{x)\ \ogf(x)\dx + Í  f (x)  log dx
J  J  9n(x)

A n= J  \ \ogf{x)\n(dx) + Zn.

(34)

(35)

(36)

(37)

Since # ( / )  is finite, "(A) = J  |log/(x)|p(dx)
A

is absolutely continuous with respect to ц.

6



Moreover, we observe that
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^
цтп

u
Ц Т  «

Inj'j — A*({x : f n(x) <  a„})

= J  f ( x ) dx
/„(r)<a„

< J  f ( x ) dx  + J  f(x) dx

j/(I )<a» з/(*)>°»>/»(*)

< I  f ( x ) dx  + 2 j \ f { x )  -  f n(x)\dx.

Therefore, by Lemma 4 and (5) we have that

J "  n(Inj) —1• 0 a. s., n —* oo.
Ц Т п

(38)

On the other hand,
! > ( / » ; )  < М [Г „ ,Г ])-+ °

a. s. since 6n —► 0, therefore by (38)

ц(Ап) —+ 0 a. s. n —*■ oo. (39)

Hence, (33), (37) and (39) imply that

lim |Wn| = 0 a. s. (40)
f l  — *• OO

Now, from (26), (32), (33) and (40) it follows that

lim Hn = # ( / )  a. s. (41)
n  —►OO

and thus the proof of the Theorem is complete.
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EMPIRICAL LOG-OPTIMAL PORTFOLIO SELECTION

G u sztá v  M o r v á i1

(Budapest)

(Received October 1, 1991)

We show that the empirical log-optimal portfolio performs asymptotically under 
certain conditions as well as the optimal one.

1. In t r o d u c t io n

Let X E Rm denote a random stock market return vector, where X{ is the 
value of one unit investment in stock i at the end of the trading day. We require 
that X{ > 0 for i — 1 , 2 that is, an investor can not loose more than the

m
invested capital. Let b, 6; > 0, ^  6; = 1, denote a portfolio, that is, an allocation

i  =  l

of investor’s capital across the investment alternatives. Let В denote the set of 
such portfolios. Thus 6, is the proportion of current capital invested in stock i.

m
The resulting wealth is S  = ^  NX* = bX. This is the wealth resulting from a

> = i
unit investment allocated to the m stocks according to portfolio b. If the current 
capital is reallocated according to portfolio b, at time i in repeated investments 
against stock vectors X i ,  X 2 , . ..  then the wealth Sn at time n is given by

П
S n  = П Ь-Х«

i = l

Suppose the stock market process Xj, X2, . . .  is independent and identically dis
tributed. A portfolio b* is called log-optimal if LTnb’X = sup L'lnbX. Let В*

bes

denote the set of log-optimal portfolios. It can be shown that limsup — lnSn <
71—► OO lb

1 This paper was prepared under the auspices of E. C. TEMPUS Office grant IMG-HVS- 
0062-90.

Akadémiai Kiadó, Budapest 
Pergamon Press, Oxford
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lim — In5* = i?lnb*X a. s., where Sn, S* denote capitals achieved by an arbi-
n —► oo TL
trary and the log-optimal portfolio in n repeated games, respectively. For more 
about the log-optimal portfolio see [1]—[8].

If the probability distribution of the stocks is not known in advance, consider 
as a goal to find a portfolio selector £>(•) which achieves the same asymptotic capital 
growth rate as the log-optimal portfolio does, that is,

lim -  ln5„ =  E 'lnb’X a. s.,
n —+ oo Tl

where Sn = П Ь (Х 1,Х 2, . . . ,Х ,_ 1)Х,.
•=i

2. T he empirical log-optimal portfolio

We suppose that the sequence of random stock market variables Xi, X 2, . ..  
is stationary and ergodic. We examine the performance of the following portfolio 
selector:

b ()  = ( l /m ,l /m , . . . , l /m )  for n = 0
1 -n , f

b (X i,X 2, ... ,Xn) = a rg m a x -y ^ ln b X i = argmax / lnbx/in(dx) for n > 1ьев n ъев J

where
1 n

M ' 4) = -  У2 ^{х.бЛ}n í—'i=i
and

r / 1  if X, G A \
{Х,6Л} \  0 if X, g A J '

In other words, we choose the log-optimal portfolio according to the empirical 
distribution of the past.

The following theorem implies that the asymptotically optimal growth rate is 
achieved by the proposed portfolio selector if the sequence of random stock vectors 
is independent and identically distributed rather than merely ergodic. The portfolio 
selector proposed in Cover [9] achieves this goal but our selector is much simpler.

T h e o r e m  1. Suppose the sequence of random stock market variables X i, 
X2, ... ,  is stationary, ergodic, and E | In Xj  | < oo for j  = 1 ,2 ,..., m. Then

lim — ln5„ = E'lrib'X a. s., 
n — oo n
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where Sn = J~[ b (X ], X2, • - •, X,_i)X,- and E In b*X = sup Ein ЬХ.
i—l bgs

Let /1 denote the distribution of the random stock vector X.
Lemma 1. Suppose —oo < sup E lnbX  < oo. Let {bn} be a fixed sequence

ь tB
of portfolios. If lim flnb,jX fi(dx) — E lnb*X  then the accumulation points of

n —♦OO

{bn} are log-optimal according to the true distribution p.
Proof. Suppose b' is an accumulation point which is not log-optimal.
Let {bn>} be a subsequence of {bn} converging to b'. Since the function 

E lnbX  is continuous in b,

E ln b 'X =  / In lim bnix/r(oix) = lim / lnbnix/i(clx). 
J • —oo * — J

Since b' is not log-optimal, E lnb 'X  < E ln b ’X. Thus

lim / Inbn,x/i(dx) < Elnb*X .•—oo J

But this contradicts the assumption lim f  In b nx fi(dx) = Elnb*X.n  —► OO
Lemma 2 (Cover [8]). Suppose —oo < sup E lnbX  < oo. Let L be the

ь е в
subspace of Rm of least dimension satisfying P(X  € L) = 1. Each log-optimal 
portfolio b* € B m has the same orthogonal projection bjr onto L.

Lemma 3. Suppose —oo < sup E lnbX  < oo. Let the process X j, X2, ..., be
ь ев

stationary and ergodic. Consider any function b*(-) such that b*(X j, X2, . . . ,  X;) 6 
B* for all i. Let b* be a log-optimal portfolio. Then

1lim -  V ln b * (X 1,X 2, . . . ,X ,_ 1)X, = Elnb*X a. s.n —*OQ П i — l

i — l

Proof.

1 "lim -  V ln b * (X l lX2, . . . ,X i_1)Xi =n —> 0 0  n f —

1 "lim -  V ln ( b LX, + (b*(Xl lX 2, . . .  .X i.j)  -  bL)X;) =
П  — 0 0  n i = l 1

1 n
lim - V ln b b X ,  =n—>!» П 'i — l

E ln b LX = 

E In b*X a. s.,



4 5 6 MORVÁI: E M P I R I C A L  L O G - O P T I M A L  P O R T F O L I O  S E L E C T I O N

since (b*(X i, X2,.. .  ,X ;_i) — b^)x = 0 for x £ L and P(X  £ L) = 1 by Lemma 
2, where b^ is the unique projection of the log-optimal portfolios.

Lemma 4. Suppose —00 < sup is InbX  < 00. Then the set of log-optimal
b g J 3

portfolios B* is closed.
Proof. Suppose b' is from the boundary of B* but b ' ^ B*. Let b* be a 

sequence converging to b'. By the continuity of the function LdnbX, ETnb'X = 
E\n lim b*X = lim £Tnb*X = £Tnb*X. Thus b' is log-optimal. But this

П —► OO П—»OO
contradicts the assumption b ' ^ 5*.

Lemma 5.
m

W . }  InbX -  / {X€A<} lnb'X  < —||b -  b'||, 

where 0 < e < 1 and

f 1 if X  £ [e, l/e]m 1 
{хел,} | o  if X 0  [e, l/e]m J

Proof.

^{XE4t} InbX -  /{X€At} lnb 'X  =
bx

^{хел,} In -  ^{хел,} In ( 1 +
, , ( b - b ') X  

b'X
<

/
/{хел,} In 1 +

V

E f c - v i t1=1________
rn
E  b'c

< I{хел,} In 1 + — — í— <

E  I b i -b i ' \
W , } 1̂ ------ < ^ l |b -b ' || .

Lemma 6. For 0 < e < 1

limsupsup /  /{хел,} lnbx/2„(dx) -  /  /{х€А(} Inbx/i(dx) < 0 a. s. 
n—► 00 ьев J J

Proof. We cover the simplex В = < b : fc, = 1, 6,- > 0 for i = 1 ,2 ,. . . ,  m
l i=l

by regions Dj with diameter A, where j  = 1 ,2 ,..., r(A). Let bJ denote a portfolio 
from the region Dj.

SUP М{хел«} 1 nbx/x„(dx)- / / {x£At} In bx p(dx) = 
b £ ß  J J
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max sup Í 7{ x eA,} ln bx ßn(dx) — If  7{ x g 4 ,}  Inbxfl(dx) <j b g ß j  J J

max sup f  7{ х е л е} ln bx ßn(dx) — jf  f { x g n , }  lu b j x ß n(dx)+j b g ű j  J J

max sup Í 7{ х е л с} lnb ,xp (dx)— Î  / { x g 4 ,}  In bx fl(dx) +j bg D j J J

max sup í  7{xe-4,} ln b; x ßn(dx) —J  / { x g 4 , }  lnbjx/x((fx).
j b g ű j  J

From Lemma 5,

sup 
b gD,

J  7{=cg4,} lnbx/i„(dx) -  J  I{x€At]lnbjXiln(dx) <

Similarly,

sup / lnb; x /{x6^ t}/i(dx) -  /  ln b x I {x€At]fi(dx) < ™A. 
ьeD, J J £

Thus

2mA

sup /  /{хбл,} 1пЬ х£п(Лс) -  /  / {х6Ле} ln b x /i(d x ) <
Ъ £ В  J  J

+ max J  /{х6Л<) lnb; xpn(dx) -  J  I{xeA<) In b; x/r(dx),

By the strong law of large numbers for ergodic sequence,

lim max /  Iix^A iln b j x  fin(dx) — / Т х6Л л In b,x p(dx) = 0
n —* o o j j x eJ I х c J

henc

2mAlimsupsup /  /{х6Л<} lnbx/i„(dx) -  Iix e A \ \nbx fi{dx) < 
n — oo bgß J J

Since Д was arbitrary,

limsupsup / f{xg^e} In bx /}n(dx) — / /{х€Л( j lnbxp(dx) < 0 
n->oo bgB J  J

Lemma 7. Under the conditions of Theorem 1,

limsupsup / lnbx ß n(dx) -  / ln b x /r(d x )< 0  a. s. 
n -*oo  bg b J  J

a. s.,

a. s.

a. s.
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Proof.

sup / In Ьх/}п(Лс) — :(  ln bx n(dx) <
ьев 7 J

sup Î {xe4 ,} lnbx/i„(dx) - j  f{xeAc} lnbx/i(dx)+
ьев 7

sup
ьев j

f  I{xgA.) lnbx/in(<fx) - J  h^gA.) In bx/i(dx).

From Lemma 6, for arbitrary e > 0,

limsup sup / I{xeA'} lnbx/}„(dx) — / /{x6Ae} lnbx/i(dx) < 0
n-+ oo bei? J J

Furthermore,

sup /  \nbx fin{dx) -  /  I{xgAt] lnbx/i(c/x) <
ьев J J

SUP M{x^«} lu b e /?п(Лс) + sup I,xgA\ \nbxn(dx)  
ьев I у be в J

<

bei /  ^ { х ^ Л е }

m
In ^  6 , X , fin{dx) +  sup Í  I { xgA ' }

m
In 6,X:

J t = l ьев у t = l
n(dx) <

sup / IsxgA \ maxi max Inx;, — min In x* >/?n(c?x)+
b e B  J ' % CJ t i  =  l , 2 , . . . , m  1 =  1 , 2 ,.,.,m J

sup / I t x g A \  max< max lnx*, — min lnx, > f i ( d x )  <
b e B  J e f i = l , 2 , . . . , m  i =  l , 2 , . . . , m  J

/ m  » m

h x g A . }  I 1П ^ i l p ' n C c f x )  +  у  I {x gA,}  I l n
i = l

It follows that

limsup sup / I(x$At) ln bx f in(dx) — /  I { x g A t ] In bx [i{dx) < 
n—>oo bei? J '  J

f  m
2 / ^ |ln x ,|/ i( ( fx )  a. s.,

since

limn—►oo/ I { x g A t }

m * m

^2\ \nXi \ f in(dx) = I{xeA , ) Y l
i' =  l  J  i  =  l

In X; |/i(dx) a. s.
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Thus for arbitrary e > 0,

/ . » m
In bx fin(dx) — / lnbx/i(dx) < 2 / I{-xgAe} / 2  I In z ,|fj.(dx)

J J
a. s.

Since e > 0 was arbitrary and by assumption £i|lnXi| < oo for i = 1 ,2 ,... ,  m,
m

lim 2 f  I{xgAt} $2 I In £i|/j(dx) = 0 by the Lebesgue dominated convergence theo- 
£̂ ° : = 1
rem. Thus

lim sup sup / lnbx /in(dx)— / In bx/j(dx) < 0 
n —»oo b€ß J  j

a. s.

Lemma 8. Under the conditions of Theorem 1, the accumulation points of 
b( ) are log-optimal with probability one.

Proof. By the definition of log-optimality,

0 < J  In b"x /i(dx) — J  In b (X iX 2 ■ • •, X„)x /r(dx) =

J  ln b*x fi(dx) — J  In b*x/in(dx)-f J  lnb*x/i„(dx)—

J  lnb(X 1X 2... ,X „ )x /in(dx) + J  ln b (X 1X2 ... ,X „ )x /in(cfx)-

/ In b(X iX 2... ,  X „)x fi(dx).

Since
/ In b*x p.n(dx) — J  lnb(XiX2 . .. , X n)x nn(dx) < 0  

by the definition of b( ), and

lim / Inb*x u(dx) — / In b*x fin(dx) = 0 a. s.
n~°° J  J

by ergodicity, we have,

0 < limsup / Inb*x fr(dx) — / In b (X i, X2, . . . ,  X„)x n(dx) < 
n —>oo 7 7

limsup / In b (X i, X2, . . . ,  X n)x/in(dx 
n—»oo 7 - /

lnb(X b X 2, . .. ,X n)x/i(dx) <

limsup sup / l n b x / i n ( d x ) — / l n b x / x ( d x )  <  
n — oo ъ е в  J  J

a. s.
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where the last step follows from Lemma 7. 
Thus we have,

and

hence

liminf J lnb(X 1; X 2, . . .  ,Xn)x/i(dx) > J lnb*x ^i(dx) a. s

J  l n b ( X i ,  X 2 , . . .  , X „ ) x ^ ( d x )  <  J  l n b * x p ( d x )

l i m  ^ l n b ( X i , X 2 , . . .  , X „ ) x / i ( d x )  =  y ^ l n b * x p ( c / x ) a. s.

Now the statement follows from Lemma 1.
Lemma 9. Let the process X b X2, . . . ,  X„ be stationary and ergodic. Suppose

that
—00 < sup E  In bx < 00. 

ь

Consider a portfolio selector b(-) such that Р(Ь(Х ь X2, . . . ,  X,_i)X, = О) = 0 
for all t and the accumulation points of b(-) are log-optimum with probability one. 
Then

1 "
lim — y ^ ln b (X i, X2, ...  ,X ,_ i)X , = £ lnb*X  a. s. n—00 n i_i

Proof. Let b*' be a log-optimum portfolio such that bj' = 0 => b* = 0 for j  = 
1 ,2 ,..., m  and for all b* 6 B*, where B* denotes the set of log-optimal portfolios. 
Such a portfolio exists, since suppose 6* j  =  0 and b*2 ■ ф 0 for some j. Then for 
any Л € (0,1), AbJ + (1 — A)b|; E В* and contains less number of zeros than bj 
does. (Note E(Xb\X  + (1 -  A)b^X) = P ln b JX  = Plnb^X  by Lemma 2.) If this 
new portfolio does not satisfy the condition we can repeat this procedure. After at 
most m steps we get a proper portfolio.

Since b*X = b*'X a. s. (see Lemma 2),

1 у ^ 1пЬ(Хь Х2, . . . ,Х ,_ 1)Х,- _  1 v ^ h ib (x 1, x 2, . . . , x , - 1)x, 
n r—i  b*X, n1=1 b*X,

1 n
- r  inn i = l

1 =  1

b*(X i,X 2, . . .  ,X,_i)X, 
b*'X,

b*'X,

+

b(X 1,X 2, . . . , X l-i)X t - b 4 X 1,X 2, . . . , X , - 1)X,
b*'X<



MORVÁI: E M P I R I C A L  L O G - O P T I M A L  P O R T F O L I O  S E L E C T I O N 4 6 1

where b*(Xi, X2, . . . ,  X ,_i) denotes the closest log-optimal portfolio to 
b (X i,X 2, . ..  ,X,_i) in Euclidean distance. (Such a portfolio exists since the set of 
log-optimal portfolios is closed by Lemma 4.) Thus

1 A .  b(X 1.X 2,.. . ,X ,- -1)X,- _
n-Eln b-xl

; ? >  1 +1 =  1

(b(xbx2,...,xi_1)-b*(x1,x2,...,xi_1))xi'
1+ b*'X,

>

1 г , . . Ь » 1 Д : ( “ | ....... . 1 , <aX,fa) \
4 - J l ,  I S ™ 'i=l

where a; =  1 if by ф 0, aj = 0 if by =  0 and к(ш) is an integer such that 
||b(X 1(w),X2(w),...  ,X,(w)) — b*(Xi(w), X 2(w),... ,Xi(w))|| < e for г > t(w), 
where 0 < e < 0.5minje / by, I  = {j : by ф 0}.

Thus
l y - j  b(X 1,X 2, . . . ,X ,_ 1)X,- ^

n k n b 'X ,
k ( w )

Í P l .
t= l

b(Xi(u;),X2(o>), . . . ,  Xi_1(tj))X,(uj)
b*'X,(w)

1 у -a Í  caX,(w) \  1 ^  (  caXj(ui
Ч 1 -  + » S ‘4 1 -  b ^ x T

i

u>)J '

Thus

liminf — V  In
n —• 0 0  П '

I f ,  Ь(Х1,Х 2,...,Х ,-_1)Х,- . ( .  eaX
i=l b*X, > Ein 1 - b*'X a. s.

Expanding the function In ^1 — into Taylor series around 0 in the interval

[0, e], we have, 

Thus

In (1

-(■-si) l n ( l )  +
—yaX

b*'X -  taX

eaX \
b * 'x j

^  eaX ^  eaX

for some t 6 [0, e]. 

eaX 2caX
b*'X -  taX -  b*'X -  eaX -  0.5b*'X b*'X

Since E ■ -T. < 1 for j  = 1 ,2 ,... ,m by log-optimality (see Bell and Cover [7]),D Л.
hence

2caX л
E ^ x  -  2em < °°-
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Since t weis arbitrary,

lim £ ln  ( l -  =  E ln 1 =  0
í-*o V b*'X)

by the Lebesgue dominated convergence theorem. The upper bound follows simi
larly,

1 ^ ,  b ( X 1, X 2 , . . . , X i _ 1) X <limsup -  > In ---------- —  -------------  =rwoo n t—* b*Xji=l

limsup — V" In I 1 +
(b(X i, X 2, .. . , X i - X) -Ь * (Х |,Х 2.......X,..!)) X,'

b*'X,
<

limsup i g l n  ( l  + = £1” ( l  + É § )  .

where e = ( l , l , . . . , l ) .  Since e was arbitrary,

!is£ l n ( 1 + p| ) = 0  as"
by the Lebesgue dominated convergence theorem. Hence

1
lim - y ^ ln b ( X b X 2)...,X ,_ i)X i =  £ lnb*X  a. s.n—► oo n X — 1

Proof of Theorem 1. The accumulation points of b( ) are log-optimal by 
Lemma 8. Then the theorem follows from Lemma 9.
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Показано, что эмпирический лог-оптимальный портфель ведет себя асимпто
тически как оптимально при некоторых условиях.
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PATTERN CLASSIFICATION FROM DISTORTED SAMPLE

G á b o r  L u g o s i

(Budapest)

(Received O ctober 1, 1991)

In nonparam etric  p a tte rn  classification  the  o p tim a l (Bayesian) decision on  th e  cate
gory of the  observed vector is designed from  a long tra in in g  sequence, th a t  is, independent 
p a irs  of observations a n d  corresponding labels. In m any  p ra c tic a l s ituations, however, due 
to  feature ex tractio n , q u an tization , o r noise, th e  observed vector and  th e  tra in in g  sequence 
m ay  be d isto rted . In  th is p ap er we show  how asym p to tica lly  op tim al decisions can  be 
derived from -disto rted  tra in in g  or m ad e  from  slightly d is to r te d  observation.

1. In troduction

The usual pattern classification problem is the following: Let the random 
variable pair (X , Y ) be such that the observation X  takes its values from Rá, the 
set of d-dimensional real vectors, while the value of the label Y  is from the set {0,1}. 
The task is to estimate the value of the label Y  knowing only the observation X,  
that is, to find a measurable decision function g : Rd —♦ {0,1} so as the error 
probability of the decision Pg(X,Y)  = Pr{p(A) ф У} be minimal. It is well 
known that the optimal solution is given by the Bayes-decision:

g*(x) =  arg maxp.-(x),
( = 0,1

where pt{x) = Рг{У =  i \ X  = x}, i =  0,1 are the a posteriori probabilities. The 
error probability of this decision is the Bayes-risk: P B(X, Y)  = Pr{g"(X) ф У}. 
It is well known that

Pg(X, Y)  = l - E ( Pg{X)(X)),

and
PB(X, Y) = 1 -  r(m axpipO ).t

If the a posteriori probabilities are not known, then we have to approxi
mate the optimal decision. Assume that we are given a training sequence =

7 Akadémiai Kiadó, Budapest 
Pergamon Press, Oxford
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((Xi ,Ух),... ,(X„, У„)), where the pairs (X,-,Yi) are independent and have the 
same distribution as (Х,У), and £„ is independent from (Л',У). In this case we 
estimate У in the form <;n(X, £n), a measurable function of the observation and 
the training sequence. The error probability is Pr{<7„(X,£n) Ф У}- Due to the 
results of nonparametric pattern recognition and regression estimation (e.g. Stone 
[7], Devroye, Györfi [1]) it is well known that there exist decision rules such that 
lim Pr{<7„(X,6,) ф У}—PB(X,Y)  = 0 regardless of the underlying distribution of

n — ►OO

(Х,У). In many practical cases, however, either the observation X or the training 
vectors are available only in distorted form: T ( X , p) or T(Xi,pi) (i — 1, ...,n), re
spectively. Here p , p i , . ..  ,/i„ are independent random variables taking their values 
from a measurable space (S , S ) and, by assumption, independent from (X , У, f„), 
while T  is an Revalued mapping defined on (Rd x S). Our question is whether it 
is possible to obtain a decision rule with error probability close to the Bayes-risk 
if the distortion is small, that is, if Ep(X, T(X, p)) is small, where p denotes the 
Euclidean metric. The next theorem is an important good news.

T heorem 1 (Faragó, Györfi [2]). Given e >  0 there exists a 6 > 0 such that 
for every function T  and random variable p satisfying Ep(X. T(X. p)) < 6,

PB( T ( X , p ) , Y ) - P B{ X , Y ) < (  holds.

The theorem states that the risk of the best decision from distorted observa
tion is close to the optimum if the distortion is sufficiently small. This optimum can 
be approximated arbitrarily well if the training pairs are of the form (Т(Х*, Pi), У,) 
(i =  1,...,n). We are interested if the asymptotic error probability can be close 
to the Bayes-risk when the training is errorless but the observation is distorted, 
(Section 3) and when the training is distorted but the observation is not (Section
4) for sufficiently small distortion. As we will see, the answer is affirmative in both 
cases if the decision rule is based on the proposed randomization of the training.

2. P re lim in a ry  r e su lts

Before stating our results we need some key lemmas. Assume that the random 
variable £ takes its values from the measurable space (S, S) and it is independent 
from the pair (X, У) (typically £ plays the role of the training sequence) and let 
the measurable real valued functions q^x,  s), i = 0,1, be defined on Rd x S. Define 
the decision g as follows:

g(x,s) = arg max q{(x, s).

Using these notations we have the following:
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Lemma 1 (Devroye, Györfi [1]).

Pr{д(Х, 0  Ф Y)  -  PB(X,Y)  < e ( ^ 2 \ p, (X)  -  q , ( X , 0 1
4  = 0

The statement of the lemma indicates that the error probability of decision 
g is very close to the Bayes-risk if the g; are good L\ approximations of the a 
posteriori probabilities.

The next lemma states that every decision based on maximization of measur
able functions can be arbitrarily approximated by approximating the functions in 
Li sense.

Lemma 2 (Lugosi [5]). Let qo(x) and q\{x) be real valued measurable functions 
defined on Rd. Let the decision function g be the following:

g(x) = arg max qi(x).

If this maximum is unique almost everywhere (mod Px),  then for any sequence of 
measurable functions cfcn\ x ,  s) (i — 0,1; n = 1 ,2 ,...), for which

lim E Í ^ l q ^ x )  -  cfcn)(x,s) \ )  =0 ,
n —»oo V * /x* = 0 7

lim \Pg( X , Y ) -  P-ĝ ( X , Y ) \  = 0
n —►OO

holds, where
g(n)(x,s) = argmax^n^(x, s) i

(Pz denotes the measure induced by a random variable Z).
We need one more technical lemma:
Lemma 3 (Faragó, Györfi [2]). Let q : Rd —*■ R+ be a bounded continuous 

function. Then for all e > 0 there is a 6 > 0 such that Ep(X,T(X,  p)) < 6 implies 
E\q(X) -q(T(X,p) ) \  < c.

3. Errorless training, distorted observation

In this section we deal with the following problem: a decision designed from 
the training £n — ((^ i, Yj ),•■•, {Xn , Yn)) is made from the distorted observation 
T ( X ,  p). First we consider the decision rule obtained by the maximization of an Lj- 
consistent estimator Pin(x) of the a posteriori probabilities Pi(x) = Pr{Y = i | X  =

r-
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x ) , i — 0,1, (by Li-consistency we mean that lim E
n  —* o o

that is, our decision is of the form
\ p i { X ) - p in =  0 ) ,

gn(x) = arg maxpin(x). 
i=0,l

(In the notation we suppressed the dependence of gn and on £„.) Our goal is 
to analyze the asymptotic behavior of the decisions, therefore, by Lemma 2 it is 
enough to investigate the performance of the decision

g(x) = arg maxp,(x).
t =  0 , l

The following lemma is a good news for smooth a posteriori probability func
tions:

Lemma 4. If the functions Pi(x) are continuous (i = 0,1), then for all e > 0 
there is a 6 > 0 such that if Ep(X, T(X,  p)) < 6, then

Pg( T ( X , p ) , Y ) - P B( X , Y ) < e .

Proof. It follows from Lemma 1 that

Pg(T(X,p) ,  Y)  -  P B(X, Y)  < е ( Т  \Pi(X)  -  pt(T(X, p) ) \ )  ,
'»=о '

the continuity and Lemma 3 give the desired result.
The following counterexample shows the necessity of the smoothness condition 

in Lemma 4.
Example. Let X  be a real valued random variable and

Y  _  f 1 if X  is irrational 
10 otherwise.

Assume furthermore that Pr{Y = 0} = Pr{Y = 1} = 1/2. Consider the following 
sequence of transformations:

{
7Г

x — — if JC is rational 
Г in

------ otherwise.n

It is clear that on one hand PB(X, Y)  = 0, and on the other hand
Р,(ТП(Х),У) = РгЫ ТЛХ)) Y} = 1
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for every n, while lim Ep(X,T„(X)) = 0.
n —■ oo

In the remaining part of the section we show that there exists a randomized 
classification rule with asymptotic error probability close to the Bayes-risk for all 
distributions if the distortion is sufficiently small. The idea of the method is adding 
small “noise” to the training observations, estimating the a posteriori probabilities 
from the “noisy” sample and making the decision by maximizing them. This means 
that instead of the training £n we use the data

«» =  ((Xi +  l/bTl +!/„,У*))

to estimate the functions

р,(г) =  Рг{У = i \ X  + v = x] (i = 0,1),

where the Revalued random variables г/, v i , . . . , vn are i.i.d., independent from 
(^n,X, Y)  with expected value zero, uniformly continuous density and

V e ( H \ 2) < E P(x,T(x,p)) .

If the applied estimation of the functions Pi(x) is Тоо-consistent, that is, for the 
estimator р[п\ х , ш„ )

sup
X

P .(* )-P in)(*,w„)
i=0

0

holds almost surely, then for all e > 0 there is a 6 and n such that if E p (X , T(X, p)) < 
6 then l

]ГЕ\р<(Т(Х,р))-р<п)(Т(Х,р) ,Шп)\ < e.
i=0

In this case, by Lemma 2, the asymptotic error probability of the decision obtained 
by the maximization of the estimated functions is equal to that of decision

g(x) = arg max pi (г), 
*=o,i

thus, it is enough to investigate its error probability P-g(T(X , p) ,Y) .  Note that 
the uniform continuity of the density of v implies that the distribution of X  + v 
and the conditional distributions of X  +  и given Y  = i, i = 0,1, are absolutely 
continuous with uniformly continuous density (e.g. Wheeden, Zygmund [8]), there
fore density estimation methods -consistent for uniformly continuous densities 
are appropriate for our purpose. Such methods are kernel density estimation, his
togram estimation and k-NN estimation (see Mack, Rosenblatt [6], Härdle, Janssen,

8
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Serfling [4], Györfi, Härdle, Sarda, Vieu [3]). The main result of this section is the 
following theorem:

T h e o r e m  2.  For every e >  0 there is a 6 > 0 such that if E p ( X , T ( X ,  p ) )  < 8,
then

P~g( T ( X , p ) , Y ) - P B( X , Y ) < e .

Proof. Since Ep(X + и, X)  < Ep(X,T(X,p)) ,  using Theorem 1, for every e 
there is a 8\ > 0 such that if Ep(X,T(X,  p)) < 61, then

P B(X + u,Y) — P B(X, Y) < e/2.

The continuity of the density of и implies the continuity of pi(x), i = 0,1, therefore, 
using Lemma 4, we conclude that there is a 8? > 0 such that Ep(X, T(X,  p)) < 8 
implies

Pg(T(X,p) ,Y)  -  PB(X + v,Y) < e/2,

since Ep(X +v , T(X , У )) < 2 Ep(X, T ( X , p)) by the triangle inequality. The choice 
8 = min(<5i,(52) completes the proof.

4. D istorted training, errorless observation

In the sequel we deal with the situation when the observation X  is known 
but instead of knowing the training sequence we have its distorted form (n = 
( T (X\ , pi ) ,Y\ ) , ... , (T (Xn , pn),Yn). First we show under certain conditions that 
we can get an asymptotically good decision by estimating the probabilities Рг{У = 
i I T{X,p)  = ж} from £n . However, this method does not work in general, but, as 
we will see, the randomization of the training helps just as in Section 3. Introduce 
some notations: Let T C be the set of the possible values of T(X, p), furthermore

qi(x) = Pr{ Y = i I T(X,  p) -  x) (i = 0,1; x E T),

{arg max о, (ж) if x € T
- 0,1

— 1 otherwise.

Note that X  ^ T means error in the decision (</(Х) ф Y). Introducing the following 
function

<j(x,s) = arg maxg,(T(x, s))
1= 0,1

it is clear that Pr{g(X,p) фY}  = PB( T( X ,p),Y).
Lemma 5. If Pr{X £ T }  = 1, then for all e > 0 there exists a <5 > 0 such that 

from Ep(T(X,p) ,X)  < 6

Pg( X , Y ) ~  PB( X , Y ) < t  follows.
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Proof.
Pg( X , Y ) - P B(X,Y)
< I Pg(X, Y)  -  PB(T(X,p) ,Y)  I + PB (T(X,  p),Y) -  PB( X , Y)

Fix an arbitrary e > 0. Theorem 1 implies that there exists a 8\ > 0 such that if 
Ep{T(X,ß) ,X)  < <5Ь then PB (T(X, p),Y) — Рв {X, Y) < e/2. Thus, we have to 
prove that the first term on the right hand side of (1) is small too, that is, there is 
a 82 > 0 such that Ep(T(X, p), X)  < 82 implies

\Pg( X , Y ) - P B(T(X,p) , Y) \<t /2 .  (2)

Let qo{x) and qi(x) be nonnegative continuous functions defined on Rd. Introduce 
the following notations:

h(x) — argma xqi(x),
>=0,1

h(x,s) = arg max9,(T(x, s)).
1= 0,1

Then applying the triangle inequality we have 

\Pg( X , Y ) - P B(T(X,p) ,Y)\

< \Pg( X , Y ) ~  Ph(X,Y)\  + \Ph(X,Y)  -  Pr{h(X,n) ф Y}\  (3)
+ \ P r { h ( X , p ) ^ Y } - P B( T ( Xiti),Y)\

In the remaining part of the proof we show that the continuous functions iji(x) can 
be chosen such that for some 84 > 0 all three terms on the right hand side of (3) 
are smaller than e/6 if Ep(T(X, p) ,X)  < 82■ We look at the right hand side of (3) 
term by term.

(i) The first term: By Lemma 2 there exists a <53 > 0 such that if

е ( ^ 2 Ы Х ) - ъ (Х)\] < 83> (4)
'S = 0  '

then \Pg{ X , Y ) ~  Ph(X,Y)\<e/&.
(ii) The third term: By Lemma 1

|РГ{Л (Л » ф У} -  PB(T(X, P) ,Y)I < е ( ^ 2 Ы П Х , р )) -  q,(T(x,p))\
\  = 0

Thus, we have to show that the qi(x) can be chosen such that

E ( ^ | g,(T (X ,/i ) ) - g , ( ^ , / i ) ) | )  < e/6 (5)
4 = 0  ^

8*
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and (4) hold. This is possible since the set of continuous functions is dense in the 
space of integrable functions with respect to Px + Рт(Х,ц)- Assume, therefore, that 
the functions 5,(x) satisfy (4) and (5).

(iii) The second term: By Lemma 2 there is a 64 > 0 such that

\Ph( X , Y ) - P r { h ( X , p ) ^ Y } \ < € / Q  if ^ f e | g , ( A ) - 9,(T(A,/i))A < S4. (6)
' I—0 '

Now, because of the continuity of <ji(x) we can use Lemma 3 which states that for 
this 64 there exists a <55 > 0 such that (6) holds if Ep(T(X , p), X) < 65. Now, we 
can see that by choosing 62 = 65 (2) holds, which completes the proof. Finally, we 
note that the condition of the applicability of Lemma 2 is that decision h is unique 
almost surely (mod Px)- However, this can always be achieved by an arbitrarily 
small change in <ji(x).

The condition in Lemma 5 (Pr{X E T} = 1) does not hold in many important 
cases, e.g. if T(X,p)  is a quantization of A (does not depend on p). To overcome 
this difficulty we can apply the same randomization as in Section 3, that is, instead 
of <(„ we can use the “noisy” training

tin = ( (T(X1, p1) + v1,Y1) .......(T(Xn,Pn) + «/в,У»)),
where 1/, i q , . . ., vn are i.i.d. random variables with zero mean, everywhere positive 
density and \JE(||i/||2) < Ep(X,T(X,  p)). If we use to estimate the functions 
q,;{x) — Рг{У = i\T(X, p) + 1/ = x} in an Li-consistent way, then by Lemma 2 it 
is enough to deal with the error probability P-g{X , Y ) of the decision rule

g(x) = arg max qi(x).
1= 0,1

ft is clear that <ji(x), г = 0,1, and g(x) are defined everywhere. The following theo
rem states that, without any additional condition the asymptotic error probability 
of the randomized decision is close to the Bayes-risk.

T h e o r e m  3. Given t  >  0 there exists a 6 > 0 such that E p ( X , T ( X , p ) )  < 6 
implies

Pi ( X , Y ) ~  P B(X, Y)<c .

Proof. Introducing the notation T ( X , (p, г/)) = T(X,  p) + 1/, it is clear that 

Ep(X,T(X, (p,v) ) )  < 2Ep(X,T(X,p)) ,  

from which using Lemma 5 the statement follows.
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Классификация образов из искаженных выборок

Г .  Л У Г О Ш И

(Б у д а п е ш т )

В за д а ч а х  н еп ар ам етр и ч еск о й  к л ас си ф и к а ц и и  о б р а зо в  реш ение о к а т е го р и и  на
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ON ASYMPTOTICALLY OPTIMAL 
COMPANDING QUANTIZATION

T a m á s  L i n d e r

(B udapest)

(Received O c to b er 1, 1991)

T h e  validity  of B e n n e tt’s formula for com panding q u an tizers  is shown un d er precise 
conditions for r th  power d is to rtio n  m easures. U sing these con d itio n s it is shown rigorously  
th a t  c e rta in  com panders a re  asym ptotically  o p tim a l, i.e., th e ir  d is to r tio n  and th e  d is to r tio n  
of o p tim al quantizers decrease  to zero a t  th e  sam e ra te , as th e  num ber of q u a n tiz a tio n  
levels increases to  infinity. Som e defects in  p rev ious derivations concerning com panders a re  
po in ted  o u t.

1. Introduction

The design of optimal TV-level scalar quantizers for mean-squared distortion 
measure was first considered by Lloyd [8] and Max [9]. In general, the resulting iter
ative algorithms give suboptimal quantizers. Necessary conditions for the so-called 
Lloyd-Max algorithm to converge to the global optimum was given by Thrushkin 
[11] and Kieffer [7], the later proving exponential rate of convergence.

A parallel approach for scalar quantization is Bennett’s companding quantiz
er. Bennett [1] modeled a nonuniform TV-level scalar quantizer by a memoryless 
nonlinearity G( ) followed by an TV-level uniform quantizer Qn ,u , which is followed 
by the inverse of the nonlinearity G-1. Formally, the TV-level companding quantizer 
(also called compander) Qn ,g is defined by

Qn ,g (x) = (1)

where G : R  — *■ [0,1] is onto and increasing, and Qn,u is the TV-level uniform 
quantizer on [0,1], i.e.,

_ . .  n — 1 1 ( n — l n
QN,U(X) = - I r  + —  if

for n = 1 ,... ,TV — 1. Clearly, all TV-level scalar quantizers can be implemented this 
way. From now on we assume that the quantized random variable X  has a density

A k a d é m i á t  K i a d ó ,  B u d a p e s t  
P e r g a m o n  P r e s s ,  O x f o r d
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/ .  Bennett demonstrated that for large TV the mean-squared error D(Qn ,g ) = 
E\X — Q;v,g(2 0 |2 satisfies

L

» ' » » V h / h ' ' 1 ,2)
— L

where g is the derivative of G, and [— L, L] is the (bounded) support of / ,  the 
density of the random variable being quantized- Note that g is a probability density 
function, i.e, g > 0 and f  g — 1.

Bennett’s formula, when formally generalized for rth power distortions 
D(Qn,g ) = E\X  -  Qjv.GpOr, г > 0, gives

К

(See Gish and Pierce [4], or Gray and Gray [5] for details.) Although this formula 
has been widely used in the engineering literature, the only results claiming to give 
sufficient conditions for it to hold appeared in Cambanis and Gerr [3], and Bucklew 
and Wise [2]. It is easily seen via Holder’s inequality that the right-hand side of (3) is 
minimal iff g(x) =  / ( ж)1̂ г+1^/ f  f ( z ) 1̂ r+1  ̂dz , suggesting that if this generalized

Bennett’s formula holds, then the companding quantizers with this characteristics 
are nearly optimal for large N.  This near optimality of the quantizers Qn ,g was 
first rigorously dealt with by Cambanis and Gerr [3]. They called a sequence of 
quantizers QmN asymptotically optimal if the distortion of QmN tends to zero at the 
same rate as the distortion of the TV-level optimal quantizer, as N  —» oo. Formally

lim
N —*oo

D(Qn )
inf D(Qn ) = 1,

where the infimum is taken over all TV-level quantizers Qдг. Now, from Zador [14] 
(c.f. [13]), we have

lim TVr inf -D(Qtv)
N - ~  oo Q n  V '

(4)

if X  has density / .  While the precise conditions for this are hard to deduce from 
the paper, Bucklew and Wise [2, Theorem 2] give the following simple and general 
condition for the validity of (4): £’|A'|r+e < oo, for some e > 0. If we substitute 
g(x) = /(x )1/G+1)/ J  /(z )1/,(r+1) dz into (3), then we obtain 

£

lim NrD(QN C )
/V — oo
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This shows that the optimal choice of compander characteristics results in asymp
totically optimal quantizers if (3) with this choice holds.

In what follows we derive precise conditions for (3) to hold, thus giving suf
ficient conditions for a sequence of companding quantizers being asymptotically 
optimal.

2. Main result

Bennett’s integral (2) is a formula that can be found in most of the engi
neering literature dealing with quantization. The companding approach to scalar 
quantization and the derivation of the optimal compander characteristics is studied 
from a more practical point of view in Jayant and Noll [6]. Interestingly enough, 
only two results [2] and [3] present sufficient conditions for (3). In [3, Theorem 1] 
these sufficient conditions were the following:

(a) f (x)  and G'(x) = g(x) are continuous,
(b) E\X\r < oo,
(c) f{x)/[g(x)Y is Riemann integrable on R,

The conditions that /  be continuous and (c) are rather restrictive. In addition, there 
is a gap in the proof concerning the convergence of Riemann sums with increasing 
support to an improper Riemann integral.

In Bucklew and Wise [2, Theorem 1] the conditions for (3) were the following:

G\x)  — g(x) is continuous and positive, 
there exists an M > 0 such that з(ж) is increasing 
if x < —M  and g{x) is decreasing if x > M,

j  /(z)/[<7(a:)]r+t dx < oo for some t > 0
R

These conditions do not involve the smoothness and Riemann integrability of /.  
Although they are not directly comparable, conditions (A)-(C) are more appealing

(A)

(B)

(C)
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than conditions (a)-(d). However, the proof in [2, Theorem 1] is not complete 
either. Namely, they use the following proposition at the end of the proof:

Let p(x) > 0 be integrable on [0,1], and let q(x) > 0 be continuous and 
monotone decreasing in (0,1). Define the function qN(x) by

j «(*)
4 n { x ) = <

sup з(х) if x £
UelTT1.*)

n — 1
N ' n = 2 , .. .  ,7V,

and assume that

Then it is asserted that

dx < oo. (5)

lim
N  —мэо

I

/ qN(x)p{x)
0

dx = (6)

Were the integrands in (5) and (6) qi4 (x) and q(x) alone, this claim would surely 
hold, for the shift of ддг(х) to the left by l /N would allow us to use the dominated
convergence theorem. But p(x) is not translation invariant, thus this trick does not

l
apply. Indeed, consider p(x) = e-1/ r and q(x) = el x̂ . Then f  q(x)p(x) dx = 1 thus

о
(5) is satisfied. But, since p(x) = e~l/x is convex in (0, 1/2], it is lower bounded by 

p(l/7V) + p'{l/N)(x -  l /N)  = e~N + { x -  1 / N)N2e~N

in the interval [l/N,2/N],  Thus we have

2 / N  2 / N

/  q/v{x)p(x) dx < j  [ \ -\-{x — \ /  N)n2)dx 
l / N  l / N

I I I
2 + N ^  2

(7)

as JV - to o . For (6) to hold it is necessary that the left-hand side of (7) tend to 
zero, thus (6) does not hold with the above conditions in general.

In what follows we give rather general sufficient conditions for (3). Our con
ditions will be almost the same as (A)-(C), except that we relax (C) and impose a 
new tail condition to avoid the convergence problem above.
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Denote the inverse of G by S, and let S' = s. A simple change of variables 
shows that

1

к о

where p(x) = f(S(x))/g(S(x)),  a probability density function with support [0,1]. 
We need the following conditions:

(CO [  /(*)
J  [< /(*)]r

dx < oo,

For some c > 0
6

J  W * /2 )]rp(x) dx < oo

(D)
and

1
J  [s((* + l)/2))]rp(z)dz < oo.

1 - Í

T h e o r e m  1. Suppose that the conditions (A), (B), (CO and (D) hold. Then

lim NrD{QNG) = ----- f / ^ - d x .  (8)
N - , oo (r +  l)2r J [</(x)]r v ;

Proof. Note that the quantization intervals of <5n,g arе Д д  = (—oo, S(l /N)) ,

2...... N  — 1, and INiN S N - l
N

The corresponding levels are yn,N — S 2 n -  1
N n  — 1 , . . . , N .  First we consider

the quantizer Qn ,g with the same quantization intervals as Q/v,g> but with levels 
at the midpoints of the intervals, except for the two unbounded intervals, where 
the levels are unchanged. Thus

Qn ,g (x) y\,N — S( l /2N)

Vn .n S 2N — 1 \
2N J

if X  E I n , N  П  =  2 ,... , N  -  1,

i f  X £  1 1,7V,

if x e In ,n -
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Let us define the function sjv : (0,1) —> (0, сю) by

/ Ч r n -  1 n sup s(x) it x £n - 1 n_N > N

sN(x) = <

N ’ TV , n = 2 , . . . , N - l ,

s(l /2N)

2 TV- 1
2 TV

if x G 

if x £

1 J_
277’ 1v
N  -  1 27V -  1

TV

s(x) if X e ( о, -  ) u

2 TV 
27V- 1 

27V ’

First we show that

Jim , J [8N(G(x))Yf(x) dx = J[s(G(x))Yf(x) dx. (9)
К  9S

Note that sai(x) —► s(x) as TV —♦ oo for all x G (0,1) by the continuity of s. By 
change of variables

J[ sN(G(x))]r f (x)  dx = J [sN(y)Yp(y) dy. 
к 0

Let 0 < e < 1/2 be such that (D) is satisfied and s(x) is decreasing in (0, e) and s(x)
1 i + 1 i 1

is increasing in (1 — c, 1). The inequalities -  < — and — 1 - 7+1
TV + 1 >

1 — — valid for i > 1 show that s(x/ 2) > sjv(x) and s((x+ l)/2) > s(x) if x £ (0, c)
or x E (1 -  f, 1), respectively. Then by (D) and the continuity of s, the dominated 
convergence theorem implies that

and

e e
lim [sjv(x)Yp (x) dx = /  [s(x)lrp(x) dx , JV—oo J J

о 0

1 1
lim / (x)]rp(x) dx — / [s(x)lrp(x) dx.

N  —  oo J  J
1-í 1 — e

( 10)

( 11 )

1-C 1-Í
Since s is bounded on [e, 1 — e], lim f  srNp = f  srp clearly holds. (10), (11)Л/-00 ( f
and this observation proves (9).
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The remaining part of the proof is done in two steps. The first step is to prove
that

Jim NrD(QN a)  = . ^N —► oo (Г -fV/ /(*)
[ff(g)]r

dx. ( 12)

Let x G In'N for n =  1 ,.. . ,  N.  Then by the mean-value theorem of differentiation

(13)w r |g-Q M ,G(g)lr < N r[Kin,N)Y 
<  [s n ( G ( x ) ) Y ,

where A stands for the Lebesgue measure. Furthermore, some simple calculations 
using the monotonicity of s(x) near 0 and 1 show that (13) holds for all x G (0,1),
if N  is large enough. Let А ц Л= /  f (x)dx .  Then Лдг j 1 as N  —♦ oo.

R\ ( / i  ,n M I n ,n )
Define the piecewise constant density f n  by

Í n (x)
Í ~Л—777--- 7 /  f ( y ) dy lf x e In,N, П = 2,.. . , N  -  1,— / Лдг Á(In N) J

1 n.N
I 0 if x  G I i ,n  U I n ,n -

Now by (13) we have

N r J  \x —Qn ,g{x)\t f (x)  dx -  N' Q n ,g { x ) \ t Zn (x ) dx
(14)

/ [ s / v ( G ( z ) ) ] r | / ( z )  -  Í n (x ) I dx.
R

But from the definition of /дг and from the fact that sn is piecewise constant on 
the support of /дг, we have

J [ s N{G{x))]r\f(x) -  f N(x)\dx < ( 1 + J [ sN(G(x))Yf(x)dx
R R

< 3 J[ sN(G(x))Yf{x)dx ,
R

(15)

if N  is large enough. From Lebesgue’s differentiation theorem [12] / д г  —> /  as 
N  —* oo a.e. A. Considering (9), (15), (14) and this fact, a generalization of the 
dominated convergence theorem (see Royden [10]) implies that

lim N r [  \x -  QN G(x)\r f (x)  dx = lim N r [  \x -  QN G(x)\r f N (x) dx, (16)/V—► oo J N—*oo J
R  IK
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provided that the limit on the right-hand side exists. To prove that the right-hand
side is (r + l)2r / f / g r , define sN by

sN(x) = <
N\ ( I„ iN) if x £ n — 1 n

0

N ' N
1

n = 2,. . .  ,N — l,

if x € [ 0, — ) U
N  -  1

N -1 ■

Then s n (x) < s n (x ) for all x £ (0,1) by (13). Since the y n , N ,  n = 2, . . . ,  IV — 1 
are the midpoints of the corresponding In,N, and since /jv(x) is constant on In,N> 
we obtain

N r J  1* -  QN,c(x)\rf N(x) dx = {r-+\ ^ ~  J [ s N (G(x))Yf(x)dx.  (17)

Now since ijv(x) —+ s(x) as N —* oo for all x € (0,1), the generalized dominated 
convergence theorem implies that (17) tends to

(r +V  / [ * № » № > ' i ,  = 4*.

which, when combined with (16) proves (12).
The next step is to prove that

lim N rD(Qm,g ) = bin N rD(Qn ,g )-

Clearly, the quantity of interest is

N r I|x — Qiv,G(:c)r — |x -  Q/v,G( x ) r |  =  I Iх — Уп.агГ -  |z -  Уп,лг|

if x £ 1„д. By a first order Taylor expansion

I* -  V n . N  Г -  \x -  y„,7v|r | < \yn,N -  Vn.NHnr-1N
1

(18)

(19)

( 20)

where 0 <  £„,n  <  A ( IniN ) <  — s n ( G ( x ) ) .  The difference \yn,N — Уп,лг|  can be 
estimated as follows. If n = 1 or n =  N,  the difference is 0. Otherwise we have

yn,N =  S ( — j  +  ^ « ( í n . i v )  and У".w =  s ~ N ~ J  + ‘[N S('T,n’N '> f°r S°me

Уп , N  ) , N  £

have

n — 1 n
N  ’ N

by the mean-value theorem of differentiation. Thus we

N r I \ x -  Уп.лгГ -  I* -  V n , N |г I < -  *(ir*,Ar)|[siv(G(a;))]r 1

< r[sN(G(x))]r.
(21)
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The continuity of s(z) and the first inequality in (21) show that the right-hand side 
tends to zero as N  —► oo. On the other hand, (9) and the second inequality in (21) 
allow us to use again the generalized dominated convergence theorem to conclude
that

lim [  N rЛГ-оо J I* -  <Элг,б(*)Г -  \x -  QN,c(x)\r f {x)  dx =  0

which implies (18). This and (12) yield the theorem. □
To obtain provenly asymptotically optimal companders one should only check 

whether /  and the optimal choice of g satisfy the conditions of the theorem. Ad
mittedly, there is a discrepancy between the conditions for /  and g, since for the 
former the conditions are much less restrictive. Unfortunately, condition (D) can 
not be interpreted in an easy way, in general.

It should be mentioned, that Bennett’s formula is conjectured to be true with 
the only condition (C'), but no proof has been given to date.

For some regular densities such as Gaussian, Rayleigh, and Laplacian, the 
asymptotically optimal quantizers were computed for different values of r in [3]. 
These numerical results show that the performance of these quantizers compare fa
vorably with the performance of optimal quantizers even for moderately low number 
of quantization levels, thus showing the applicability of the asymptotic theory.

3. Conclusion

The validity of Bennett’s formula was established under precise sufficient con
ditions, giving a justification for the claim that the optimal compander character
istics yield nearly optimal quantizers. These quantizers are easy to compute if the 
density of the random variable being quantized is known, and their implementation 
is straightforward.
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