516921, 0
%20 e 1
ACADEMY OF SCIENCES OF THE USSR
HUNGARIAN ACADEMY OF SCIENCES
CZECHOSLOVAK ACADEMY OF SCIENCES

AKALEMNA HAYK CCCP 1991
BEHI'EPCKAA AKAAEMUA HAYK
UEXOCJ/IOBALKAA AKAAEMUA HAYK

AKADEMIAI KIADO, BUDAPEST
DISTRIBUTED OUTSIDE THE COMECON-COUNTRIES
BY PERGAMON PRESS, OXFORD



PROBLEMS OF CONTROL AND
INFORMATION THEORY

An international bi-monthly sponsored jointly by
the Presidium of the Academy of Sciences of the
USSR, of the Hungarian Academy of Sciences and
of the Czechoslovak Academy of Sciences. The six
issues published per year make up a volume of some
480 pp It offers publicity for original papers and
short communication of the following topics:

- theory of control processes
theory of adaptive systems
— theory of estimation and identification
theory of controlling robot-technologic and
flexible manufacturing systems
- information theory
— information-theoretic aspects of multiple access
networks.

While this bi-monthly is mainly a publication forum
of the research results achieved in the socialist
countries, also papers of international interest from
other countries are welcome.

MPOBNEMbI YTMPABAEHWNA
M TEOPUN MHOPOPMALNN

MexayHapoaHblIi xypHan Akagemun Hayk CCCP,
BeHrepckoin Akafemun HayK U YexocnoalKow
Axafemmn HayK BbIXOAUT 6 pa3 B rof 06LuM
06beMOM 480 neyaTHbIX CTpaHuL,.

B xypHane ny6nuKylTCA  OpUrMHa/IbHbIE
Hay4Hble CTaTbW U CTaTbl 0630PHOM0 XapakTepa no
cnegytolwmMm npobnemam ynpasneHUs U Teopuu
NHhopmaLmu:

— Teopust MPOLLECCOB YTMPaB/eHUs;

— Teopus afanTMBHBIX CUCTEM;

— Teopus OLEHMBAHUS W UAEHTU(UKALMWK;

— Teopust ynpaBfieHUsi POGOTOTEXHUYECKUMU 1
TMOKMMI NPOU3BOACTBEHHLIMU CUCTEMAMU;

— Teopust NHopMaLmy;

— Teopus MH(opMaumn B 06/1acTU ceTeid C MHO-
YKECTBEHHbIM JOCTYNOM.

Lienbio  XypHana SBNSeTC  03HAKOM/EHWe
Hay4HO OGLLECTBEHHOCTM PAa3NMUHBIX CTPaH C
BaKHEMLIMMM Npo6aemMamm, NMEIOLLMM aKTyasb-
HblA 1 MEPCMeKTUBHLIA XapakTep, HayuHbIMM
[OCTXKEHUAMM  YUEHbIX  COLIMANNCTMYECKUX 1
APYTUX CTPaH.

Distributors

For the Soviet Union:
SOYUZPECHATY, Moscow 123 308 USSR

For Albania, Bulgaria, China, Cuba, Czech and Slovak Federal Republic, Korean People’s Republic,
Mongolia, Poland, Rumania, Vietnam and Yugoslavia:

KULTURA Hungarian Foreign Trading Co.
P. O. Box 149, H-1389 Budapest, Hungary

For all other countries:

PERGAMON PRESS PLC Headington Hill Hall, Oxford 0X3 OBW, England

or

PERGAMON PRESS INC, Maxwell House, Fairview Park, Elmsford, NY 10523, USA
1991 Subscription Rate DM 627,— per annum including postage and insurance.

© Akadémiai Kiado, Budapest



PROBLEMS OF CONTROL AND INFORMATION THEORY. VOL. 20 (1991)

SUBJECT INDEX

Ca.rbon.zz, A., Gyérfi, L., van der Menten, E. C.\ Nonparametric entropy estimation based on
randomly censored data. 20, 6, pp. 441451

Chentsov, A. G On the construction of solution to nonregular problems of optimal control. 20,
2, pp. 129-143

Chernyak, A. I., Sztrik, J.: Asymptotic behaviour of a complex renewable standby system with
fast repair. 20, 1, pp. 37-44

Emelyanov, S. V., Zhivoglyadov, P. V., Korovin, S. A.: Analysis of admissible perturbations and
stabilization of uncertain discrete-time plants. 20, 5, pp. 353-371

En-hui Yang: Universell almost sure data compression for abstract alphabets and arbitrary fidelity
criterions. 20, 6, pp. 397-408

Faragé, A., Linder, T., Lugosi, G.: Nearest neighbor search and classification in 0(1) time. 20,
6, pp. 383-395

Ferrante, M.: On finite dimensional filtering in discrete time. 20, 4, pp. 257-265

Gabasov, R., Kirillova, F. M.: Optimization of dynamical systems with identification of input
perturbations. 20, S, pp. 233-244

Gabasov, R., Kirillova, F. M., Gaishun, P. V., Prischepova, S. V.: Synthesis of optimal controls
on nonexact measurements of output signals. 20, 6, pp. 409427

Haroutunian, E. A., Marouiian, R. S h (A. A)-achievable rates for multiple descriptions of
random varying source. 20, 2, pp. 165-178

Hulk6é, G.: Lumped input and distributed output systems at the control of distributed parameter
systems. 20, 2, pp. 113-128

Ishii, H., Menaldi, J-L., Zaremba, L.: Viscosity solutions of the Bellman equation on an attainable
set. 20, 5, pp. 317-328

Korbicz, J., Podladchikov, V., Bidynk, P.: Suboptimal control algorithm for discrete systems.
20, 4, pp. 281-290

Korovin, S. A', Nikitina, M. G., Nikitin, S. V Infinite-dimensional systems: Approximate
controllability and observability. Part I. 20, 1, pp. 59-76

Korovin, S. K., Nikitina, M. G., Nikitin, S. V.: Infinite-dimensional systems: Design of Sakawa
controllers. Part Il. 20, 2, pp. 97-111

Kramosil, /.: Definition and recognition of classical sets by the rough ones. 20, 2, pp. 77-95

Krasovskii, A. A.: Optimization and stochastic dynamics in the state space. 20, 1, pp. 45-57

Kurzhanski, A. B.. Pschenichnyi, B. N., Pokotilo. V. G.: Optimal inputs for guaranteed identi-
fication. 20, 1, pp. 12-23



Lemos, J. M.: Long-range adaptive control of ARMAX plants with accessible disturbances. 20,
2, pp. 145-164

Linder, T.: On asymptotically optimal companding quantization. 20, 6, pp. 475—484

Lugosi, G.: Pattern classification from distorted sample. 20, 6, pp. 465-473

Malanowski, A': Stability and sensitivity analysis of discrete optimal control problems. 20, 3,
pp. 187-200

Martos, B.: Viable control trajectories in linear systems. 20, 4mPP- 267-280

Mildes, J., Mészaros, A.: A decoupling pole-placement controller for a class of multivariable
systems. 20, 4, pp. 291-298

Morvai, G.: Empirical log-optimal portfolio selection. 20, 6, pp. 453-463

Nguyen Van Su: Null-controllability of infinite-dimensional discrete-time system with restrained
control. 20, 3, pp. 215-232

Otdhal, A.: Parameter estimation for nearest neighbor Gaussian random fields in the plane. 20,
6, pp. 429-439

Payageorgiou, N. S.: Relaxability and well-posedness for infinite dimensional optimal control
problems. 20, 3, pp. 201-214

Papageorgiou, N. S.: On the optimal control and relaxation of finite dimensional sytems driven
by maximal monotone differential inclusions. 20, 4, pp. 245-255

Rosinovi, D.: On decentralized stabilization of large-scale linear discrete systems. 20, 5, pp. 329-
339

Shiryaev, V. I.: Minimax filtering in real time of multistage systems. 20, 5, pp. 309-316

Smagina, Ye. M.: A method of desinging of observable output ensuring given zeros location. 20,
5, pp. 299-307

Studniarski, M.: The discrete maximum principle as a sufficient optimality condition. 20, 3,
pp. 179-186

Taras’ev, A. M.: The function of an optimal guaranteed result of control problems with a vector
criterion. 20, 1, pp. 25-36

Timofeev, A. V.: Non-asymptotic solution of confidence estimation parameter task of a non-linear
regression by means of sequential analysis. 20, 5, pp. 341-351

Vanicek, A.: Strongly nonlinear and other control systems. 20, 1, pp. 3-12

Vesely, V., Bare, V., Hindi, K. S.: A decentralized control scheme for continuous-time systems
through partial aggregation. 20, 6, pp. 373-381



PROBLEMS OF CONTROL AND INFORMATION, VOL. 20 (1991)

AUTHOR INDEX

Bare, V. 20, 6, pp. 373-381
Bidyuk, P. 20, 4, pp. 281-290
Carbonez, A. 20, 6, pp. 441-451
Chentsov, A. G. 20, 2, pp. 129-143
Chernyak, A. I. 20, 1, pp. 37-44
Emelyanov, S. V. 20, 5, pp. 353-371
En-hui Yang 20, 6, pp. 397-408
Farag6, A. 20, 6, pp. 383-395
Ferrante, M. 20, 4, pp. 257-265
Gabasov. R. 20, 3, pp. 233-244;

20, 5, pp. 409-427
Gaishun, P. V. 20, 6, pp. 409-427
Gyorfi, L. 20, 6, pp. 441-451
Haroutunian, E. A. 20, 2, pp. 165-178
Hindi, K. S. 20, 5, pp. 373-381
Hulké6, G. 20, 2, pp. 113-128
Ishii, H. 20, 5, pp. 317-328
Kirillova, F. M. 20, 3, pp. 233-244;

20, 6, pp. 409-427
Korbicz, J. 20, 4, PP- 281-290
Korovin, S. K. 20, 1, pp. 59-76;

20, 2, pp. 97-111; 20, 5, pp. 353-371
Kramosil, 1. 20, 2, pp. 77-95
Krasovskii, A. A. 20, 1, pp. 45-57
Kurzhanski, A. B. 20, 1, pp. 12-23
Lemos, J. M. 20, 2, pp. 145-164
Linder, T. 20, 6, pp. 383-395;

20, 6, pp. 475-484
Lugosi, G. 20, 6. pp. 383-395;

20, 6, pp. 465-473
Malanowski, K. 20, 3, pp. 187-200

Maroutian, R. Sh. 20, 2. pp. 165-178
Martos, B. 20, 4* PP- 267-280
Menaldi, J-L. 20, 5, pp. 317-328
Mészaros, A. 20, 4> PP- 291-298
vem der Meulen, E. C. 20, 6,

pp. 4417151
Mildes, J. 20, 4, pp. 291-298
Morvai, G. 20, 6, pp. 453-463
Nguyen Van Su 20, 3, pp. 215-232
Nikitin, S. V. 20, 1, pp. 59-76;

20, 2, pp. 97-111
Nikitina, M. G. 20, 1, pp. 59-76;

20, 2, pp. 97-111
Otéahal, A. 20, B, pp. 429439
Papageorgiou, N. S. 20, 3, pp. 201-214;

20, 4, pp. 245-255
Podladchikov, V. 20, 4> PP- 281-290
Pokotilo, V. G. 20, 1, pp. 12-23
Prischepova, S. V. 20, 6, pp. 409-427
Pschenichnyi, B. N. 20, 1, pp. 12-23
Rosinova, D. 20, 5, pp. 329-339
Shiryaev, V. I. 20, 5, pp. 309-316
Smagina, Ye. M. 20, 5, pp. 299-307
Studniarski, M. 20, 3, pp. 179-186
Sztrik, J. 20, 1, pp. 3744
Taras’ev, A. M. 20, 1, pp. 25-36
Timofeev, A. V. 20, 5, pp. 341-351
Vanecek. A. 20, 1, pp. 3-12
Vesely, V. 20, 6, pp. 373-381
Zaremba, L. 20, 5 pp. 317-328
Zhivoglyadov, P. V. 20, 5, pp. 353-371






PROBLEMS OF CONTROL
AND INFORMATION THEORY

NMPOBJIEMbI YTIPABJIEHWA
N TEOPUN MHDPOPMALINA

EDITOR

N. N. KRASOVSKII (USSR)

COORDINATING EDITORS
USSR
S. V. EMELYANOV
E. P. POPOV

V. S. PUGACHEV

V. 1. SIFOROV

K. V. FROLOV

A B KURZHANSKI

. A. OVSEEVICH

E. D. TERYAEV
R Z. KHASMINSKII
HUNGARY
T. VAMOS
A PREKOPA
S. CsIBI
. CSISZAR
L. REVICZKY
L. GYORFI
J. KOCSIS
CZECHOSLOVAKIA
j. beneS
V. STREJC
. VAJDA

PEOAKTOP XYPHANIA

H. H. KPACOBCKWI (CCCP)
YNEHbI PE,EI,AKLI,I/IOHHOI7I KONNErnm
CCCP

C. B EME/IbAHOB

E M. MOMoB

B. C. MYrAYEB

B . CM®OPOB

K. B ®POJIOB

A B. KYPXAHCKW
V. A. OBCEEBWY

E . TEPSIEB

P. 3. XACbMWHCKW
BHP

T. BAMOLLI

A MPEKOMNA

L YMBM

V. YACAP

N. KEBULIKUA

N. AbEP®U

S1. KoumL

Yccp

. BEHELL

B CTPEWL,

V. BANOA

AKADEMIAI KIADO

PUBLISHING HOUSE OF THE HUNGARIAN ACADEMY OF SCIENCES
BUDAPEST



\>*



Problems of Control and Information Theory, Vol. 20(1), pp. 3-12 (1991)

STRONGLY NONLINEAR AND OTHER CONTROL SYSTEMS

A. Vanecek

(Prague)

(Received December 22, 1989)

The control systems are divided into two classes: the strongly nonlinear systems and
the other systems. Firstly, the control systems are embedded into dynamical systems with
parameters. To analyse the nonlinear control systems, the invariant manifolds are used.
The fractal dimension of the systems’ attractors as opposed to the entire dimension is used
for the systems division into two classes. As applications, vital and anti-vital goals of the
control systems are stated.

1. Introduction

At a seminar Theory of Strongly Nonlinear Processes (Prague), it only grad-
ually became clear what is the main topic of this seminar attended mainly by
physicists — it was the turbulence. The turbulence is, mainly in engineering, con-
sidered as a negative phenomenon, as it makes noise and dangerous strain. The
turbulence is a chaotic process with negative evaluation, at least in engineering.
At the opposite, in the physics of atmosphere, the turbulence is considered as a
positive phenomenon — it allows the mixing of air stratas. Only of minor impor-
tance is that its chaotic behaviour makes impossible, due to inexact knowledge of
the initial conditions, the weather prediction for more than a few days. But the
negative evaluation of chaos in general, based on its abasement of human pride in
that it makes impossible the long term scientific prediction, in the evaluation of
chaos entirely dominates. After several signs of the possible turns of the evaluation
of chaos, the real change of the evaluation paradigma was caused by Goldberger
[7, 22]. On the basis of the spectrum of ECG during a heart failure, Goldberger
observed that there occurs some sort of pathological periodicity, the spectrum be-
ing concentrated to some narrow frequency band. On the opposite, Goldberger
observed, on the basis of the spectrum of ECG of a healthy heart, the wide-band
spectrum of the type 1// — it is such what Mandelbrot connected with fractals.

The author’s field of interest are the controlled systems — the dynamical
systems with parameters, parametrized in such a way to behave properly, especially

| Akadémiai Kiad6, Budapest
Pergamon Press, Oxford



4 VANECEK: STRONGLY NONLINEAR AND OTHER CONTROL SYSTEMS

to reach the given asymptotic goals. The author’s interest in the synthesis of the
chaos was awakened only by the new paradigma — the evaluation of the chaos as
a positive phenomenon. The Dynamical Systems theorists are concerned only with
the analysis. In the entire Control Theory, systems to be synthesized are always the
ones with point attracting, equilibrium state. On the opposite, the newly proposed
control synthesis should change the system parameters in such a way, that the
equilibrium states are the bounded, persisting, non-periodic cycles. According to
the new paradigma, these are connected with the ‘health’, at the difference to the
periodic cycles connected, according to the new paradigma, with the ‘illness’, and
at the difference to the point attractor connected with the ‘death’.

2. Control systems as dynamical systems with parameters

Definition 1. Dynamical systems with parameters are defined as systems
of differential equations

dx/dt = f(x, K)

where the time t G R, the state vector x £ Rn, the vector field / £ Lip, the
parameter matrix K of the time invariant parameters, dK/dt —O0.

Fact. The control systems can be described as dynamical systems with pa-
rameters.

Method. The consistent usage of the state description of control systems.
Example 1 Linear control system with right state feedback:

dx/dt = (F+ G K)x.

The parameter of this linear dynamical system (being linear in the state x) is matrix
K. The control is introduced because

is not sufficiently damped and may be even unstable. The state feedback parameter
K is introduced in such a way to make

e(F+GAt

properly and quickly damped.
Example 2. Nonlinear control system with both left and right state feedback:

dy/dt f(y) + 9(Krz)
dz/dt f(z) + g(Krz) + K,(h(y) - h(2))_

or
dx/dt = F(x, K)
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where F € Lip, F(0,0) = Q K = [K[KT\, xi —y, x2 = r. Traditionally, we are
introducing the control because

Jim [1+ F(-,0)t/NIN

is not sufficiently damped and may be even unstable. The state feedback parameter
K is introduced in such a way to make

lim [I + F(-,K)t/NIN
N-*00

properly and quickly damped. (Here we have used the nonlinear response written
in the closed form with the help of the limit form of the Euler integration formula,
see Arnold [2].)

Note. The embedding of control systems into dynamical systems with pa-
rameters entails that for a description of the systems, the states are sufficient and
the inputs and outputs are not needed for this purpose. So, we are leaving the
State Theory according to Kalman and Zadeh which is a hybrid theory, mixing
the internal and external description. (Here we are speaking about control in the
narrow sense; in the case we need also to follow, we model the object to be followed
by some other dynamical system as was observed early by Luenberger.) From the
system theory we are eliminating its basic problem, i.e. the problem of the minimal
realization of the internal description from idealized external description which is
the prototype of the identification problem. The control system is originated by
the connection of the controlled plant and the regulator. The controlled plant is
originated from the connection of elementary blocks. The only measurements we
need for such a modelling are scalar, static ones. This approach to the modelling is
perhaps the only one which has been successfully tested in physics. According to
Tonti [20], the fundament of this approach, i.e. the fundament of the internal mod-
elling, is a cohomology of a cell complex. This cell complex we are always building
from the boundary elements: the edges from the vertices, the faces from the edges,
the space cubes from the faces, the time-space hypercubes from the cubes, and the
cell complex from hypercubes. In such a way we obtain some nonlinear partial dif-
ferential equations. For the dynamical systems, the cell complex is two-dimensional
and the differential equations are the ordinary ones. For example for a dynamical
electrical circuit, we are connecting such a circuit from RLC elements and the only
measurements for modelling are the static scalar ones of usually linear LC elements
and of generally nonlinear characteristic of R. Finally, let us note that according to
Vinogradov [19] the conservation laws of physics are just the group cohomologies
and that there exists the so-called cohomological physics (Stasheff [17]).
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3. The invariant sets — The basis of control systems analysis

Definition 2 [4]. The invariant set M of the dynamical system is a set of
elements of which are the whole trajectories, such that M is the solution of the
equation;

tp(M) —M, t€R

where <pis the mapping of M by the trajectories.
Example 3. For n —2 the stationary point, the trajectory, the plane filled by
trajectories are the examples of invariant sets of dimensions 0, 1, 2, respectively.
Centre Manifold Theorem (Kelley [10]). Let us suppose the dynamical system

dx/dt —f{x), XER™

where /(>x) of smoothness class Cr (r > 2) is zero at the origin: /(0) = 0, and its
linear part is Fx. Then the invariant set of the dynamical system can be resolved
into the three locally disjoint (up to the origin) manifolds

W*, Wa, Wc

of smoothness classes Cr, Cr, CT~1, respectively. The invariant set of the linearized
dynamical system dx/dt = Fx can be resolved into three linear spaces

T\ Ta, Tc

Spaces Tl (i —s, a, c) are the tangent spaces to the manifolds W1 in the origin.
The manifold Ws is stable, the manifold W a is anti-stable (i.e. stable for t ——e0).
The asymptotic behaviour on the central manifold W c is determined by the higher
than the linear part Fx order part of f(x).

Applications of the Centre Manifold Theorem. We shall apply the theorem
for the control systems, limiting ourselves to the hyperbolic systems, i.e. systems
without centre manifold. Their stability, unstability and anti-stability is locally
determined by the eigenvalues of their linearization. Further, we shall suppose
the semi-simplicity of the linearized system, i.e. the eigenvectors of the linearized
system matrix F are forming the basis. We shall search for those initial segments
of the n solutions of the dx/dt = Fx + o(x) equation which are naturally connected
with those n solutions of the dx/dt = Fx equation which are the most elementary
invariant sets of dx/dt = Fx, the eigenvectors of both F and eFt. Using the Picard
integration method (for the method see e.g. [1]), we obtain the n curved segments:
we shall call them the initial segments of the eigencurves or just eigencurves. The
Picard iterative construction of the solution of nonlinear differential equation:

t
HeHI(F) = xk(t) + J f(xk(r))dr

to
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will give us the eigencurve v obeying the eigen-equation
f(-)v = s(>

which is the generalization of the classical eigen-equation Fv = sv. The situation
is illustrated on the upper part of the figure. The field s(-) corresponding to the
eigencurve v is the restriction of the vector field /(*) on v. The gradient of the
eigencurve at the equilibrium point is the eigenvalue. Similarly, for the eigenplane
on which all the oscillating solutions of the equation dx/dt = Fx lay for a couple of
complex conjugate eigenvalues. Now, for the Picard construction of the eigensur-
face, we need one parametrical set of solutions lying on the eigenplane as a set of
initial iterations. At the end of iterations, the partial derivatives of the eigensurface

in the origin are the real and imaginary parts of complex conjugate eigenvalues (see
the lower part of the figure).

From the Linear Control Theory (see e.g. Kailath [10]), we know that the
fundamental conditions for the eigenstructure changeability are given by the con-

ditions of Popov [15] and Moore [12]. Here we shall generalize them for nonlinear
control systems. For the right state feedback:

dx/dt = f(x) +g(K(x)); f.g £Lip, ff0) =0,
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we have the eigen-equation [/(¢) + ff(A'(-))]n = s(-)v. Equivalently, [Is(-) —/(*)]« =
= g(K(-))v and v —[Js(-) —/(*)]-1"(A'(-))ii. From the last equation, we have the
eigenfunction changeability from right:

ve Im[(/s - /)-14]
For the left state feedback:
dx/dt = f(x) + Lh(x); f, hGLip, h{0)=0,

we have the eigen-equation [/(*) + Lh(-)\v. — s(-)v from which follows the right
eigencurve changeability:
v £ Ker h.

We shall introduce the left eigencurve w of / as the right eigencurve of transposed
/, i.e. of /'. So, we shall obtain the eigenfunction changeability from left:

w G Im[(/s —
and, finally, the left eigencurve changeability:
w £ Kerg'.

For f(x) —Fx, g(x) = Gx, h(x) = Hx, s(x) = sx, f(v) = Fv, f'(w) = F'w, we
have the Popov-Moore conditions.

Up to now, our results, based on the Centre Manifold Theorem, has been only
of local nature — even if the vicinity of the origin may be very broad. Now, we
shall sketch the globalization of the local results but again for hyperbolic systems
(i.e. with no centre manifold). The common point of both the stable and anti-
stable manifolds and of the stable and anti-stable spaces is the equilibrium state.
The nonlinear systems have generally more than one equilibrium state, i.e. more
than one solutions x of dx/dt = 0 or f{x) = 0. The global behaviour is determined
by patching the neighbouring manifolds containing various equilibrium states. In-
variant manifolds of nonlinear systems with more than one equilibrium states are
the manifolds with boundaries. The nonlinear systems which will interest us most
— the strongly nonlinear systems — will be the ones with several (at least two)
equilibrium states.

4. The attractors — The basis of control systems goals

Definition 3. The attractor of the dynamical system is such an invariant set
of the system which is compact and stable, i.e. all trajectories from some vicinity
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of the attractor converge to the attractor for t —+00. The repellor of the system
is such an invariant set which is anti-stable.

Example 4. The attractors of integer dimension D are the sink, the cycle,
and the torus with £5= 0,1, 2, respectively.

Review of Lyapunov exponents and the fractal dimension of attractors [3].
The Lyapunov exponent LE is a generalization of the real part of the eigenvalue for
non-stationary linear systems which was obtained as a time-mean of the eigenvalue.
The non-stationary linear system dx/dt = A(t)x we shall obtain as the linearization
of the nonlinear system in the vicinity of its solution. The r-th solution zq(i) has
rth LE

A = MNMim~sup —In \Xi(D\

where i —1,..., n. After the diagonalization, the r-th solution is
Ui(t) = exp di(t)dt

and its LE is the real part of the mean value of the eigenvalue. To derive the dimen-
sion of the attractor using LE, let us integrate the original differential equation on
the attractor and at the same time let us integrate its non-stationary linearization.
For simplicity, let us assume n — 3 and the ordering of LE’s: Al > 0, A2 > (,
A3 < 0. In the vicinity of the trajectory of the attractor, let us introduce the cube
with edge e. In the proper coordinates, the ~th edge of the cube is in the mean
evolving as eexp(Aj<). The number of the cubes with the edge £exp(A3f) which are
needed to cover the attractor is

3
N(t) = eexp(A<)/Eexp(A3) = exp((Aj + A2- 2A3)f).
X=i
The Lyapunov dimension of the attractor is
a . InN(t) _ _ , AFA
Orv=- Winexpaad 2% we1™

In fact, by the theorem of Haken [3], A2 = 0.

Example 6. The Lorentz attractor [1, 2, 16, 18], is an attractor of the set
of three Lorentz bilinear differential equations for some fixed values of the three
parameters. It is some non-periodic, bounded, non-vanishing trajectory with axis
symmetry. Its Lyapunov exponents are Aj = 1.37, 2= 0, 3= —2237. DI —
= 2+ (1.37 + 0)/22.37 = 2.06. The repellor is 00.

Example 7. The double scroll attractor of Chua-Matsumoto-Komuro [3, 11]
is an attractor of the three differential equations, the first with slight nonlinearity,
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the second and the third one being linear. Again, it is some non-periodic, bounded,
non-vanishing trajectory, now with centre-symmetry. Its Lyapunov exponents are
A =023 A= 0, and A3= —1.78 and its dimension is D1 = 2.13.

Comment on Examples 6, 7. Both dynamical systems have three equilibrium
points, each of these six equilibrium points are hyperbolic, and each six points have
both stable and anti-stable eigenvalues repell, after some time, the trajectories from
the vicinity of the equilibrium point, the stable eigenvalues attract, for some time,
the trajectories in the vicinity of their equilibrium points. After that time, the
anti-stable eigenvalues again repell, etc. Generalizing both examples, we write the

Scenario of the synthesis of control systems with fractal dimension of attrac-
tors or the chaotic systems or, by definition, the strongly nonlinear systems:

A. Introduce the state space Rn with the co-dimension of the state trajectories
at least 2, i.e. the state space of dimension at least n = 3.

B. Introduce the vector field of at least 2 equilibrium points.

C. Parametrize the vector field in the vicinity of each of the equilibrium points
to obtain both stable eigenvalues and anti-stable eigenvalues of the linearized sys-
tems near each of the equilibrium points, i.e. make some generalized shift of eigen-
values — the shiftability conditions are the generalized Popov conditions.

D. If needed, use the parametrization, moreover, even to generalized eigen-
vectors adjustment — the adjustability conditions are the generalized Moore con-
ditions.

Systems in which such parametrizations, leading to non-vanishing, persist-
ing, and non-periodic attractor trajectories are impossible, we shall call weakly
nonlinear systems, the special weakly nonlinear systems being the linear systems.

Note on the Scenario. Our Scenario is in concordance with the known analysis
of the birth of bounded, non-vanishing and non-periodic trajectories. This analysis
is based on homo- and heteroclinic trajectories and on the Smale horseshoe. The
heteroclinic trajectory is a loop containing at least two equilibrium points. Homeo-
clinic trajectory is a loop containing just one equilibrium point; if it lays also in the
vicinity of the other equilibrium state, it is near to our scenario. The Smale horse-
shoe is the special case of the Poincaré mapping which is based on the expansion
(anti-stability), contraction (stability) and on the folding or the transition between
the areas of two equilibrium points.

5. Conclusion

The positive properties of the Strongly Nonlinear Systems:

- Qualitatively higher possibilities of systems “far from equilibrium” (Pri-
gogine); in our interpretation the systems with the trajectories in the areas of
several equilibrium points.
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- The making possible of mixing and in this way enlarging the capacity of
absorbtion of the incoming thermal or kinetic energy (Ottino [13]) and with this
connected functionality and adaptivity (Garfinkel [5]).

- The sensitivity on initial conditions and at the same time high structural
stability (Palus et al [14]).

- Convergence to the attractor and at the same time divergence within the
attractor.

- Healthy, at the difference to epileptic state ofthe brain (Haken [8], Freeman

B])-
&) - Healthy state of the heart (Goldberger [7]).

These properties motivate the synthesis of the control of strongly nonlinear
systems as the stabilization on the chaotic or fractal attractor. At the difference
to the much publicized analysis of specific cases and to the synthesis of weakly
nonlinear and linear control systems, we do not know much more than we presented
in our Scenario, and the germ of theory based on the generalization of linear control
synthesis based on the generalized eigenstructure.
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CTpOro HenWHelHble W ApYyrue CUCTEMbl YNpaBieHUs

A. BAHEYEK

(Mpara)

CUCTeMbl YNpaBieHMst MOXHO Pa3buTb Ha fBa Knacca: CTPOr0 HenuHelHble U Apy-

rme. OTNPaBHbIM MYHKTOM SIBNSATCS BOXEHWE CUCTEM YMpaBfeHWs B MHOXECTBE [MHa-
MUYECKMX CUCTEM C napameTpamu. Mns aHanmsa HeNUHEAHbIX CUCTEM MNPUMEHEHbl UHBA-
pUaHTHbIe MHOTo06pasnus. dpakTanbHas pa3MepHOCTb aTPaKTOPOB CUCTEMbI B OTAMUME OT
LLe/IOYMCNEHHOM Pa3MepHOCTM MCMONb30BaHa AN KnacCMpUKauum MpPUHaANeXHOCTU CuUC-
TeM K ABYM Knaccam. B kauecTBe npumepa npuMeHeHUs GOPMynMpyloTca 3ajayn CUCTEM,
LeNblo KOTOPbIX SABAAETCA UKW BbXKMBaHWE, UMW YCMOKOEHWe Npouecca.

Antonin Vanécek

Institute of Information Theory and Automation
Czechoslovak Academy of Sciences

CS 182 08 Prague 8, Czechoslovakia
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OPTIMAL INPUTS FOR GUARANTEED IDENTIFICATION

A. B. Kurzhanski, B. N. Pschenichnyi, V. G Pokotilo

(Laxenburg, Kitv)

(Received December 19, 1989)

This paper deals with the problem of identifying a finite dimensional vector par-
ameter on the basis of observations that are generated by an infinite dimensional input
and corrupted by an unknown but bounded “noise”. The specific problem solved here is
one of selecting an optimal input that would ensure the smallest worst-case error for the
identification procedure. This is taken as the diameter of the smallest ball that would
contain the set of states consistent with the measurement and the given constraints on the
unknowns. The paper continues the investigation of [1-8].

1. Assume the following notations: H stands for a Hilbert space, Rn for the
n-dimensional Euclidean space, the respective inner products for those spaces being
(%, ¢ and (s, ) and the norms being | «|| and | «|.

The problem under discussion is as follows. Consider a system

m
Y=Y | Ziai+ C Q)
where
y,aiX&H, ZGR (i- 1,...,m).
With y, a, given, one is to identify the unknown vector r = (zi,..., zm) under the

restriction g < 1

Here y is the available measurement, at are the given inputs, £ is the un-
known but bounded disturbance. We further assume the elements a, to be linearly
independent.

Also denote Hm the Hilbert space of columns so that x € Hm if

X — xi e H
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If C is a matrix of dimension k x m with elements Cij G H, then Cx is a
column with kK elements

CipXe . i ek

so that
Cx € Hk.

Let the asterisk indicate the transpose for a vector or a matrix. Then for
tpi GR, (j GH we will have tp* = ViOi-

The operations on matrices whose elements belong to H are performed ac-
cording to the standard rules of “ordinary” matrix calculations except that the
products of the respective elements are taken as scalar products in H, e.g.

ata = "2(ai,ai) = " ||ai|!

*=1 =
(cti,ai) jeeej (ai,™n)
aa =
Finally, assume
z= | m'j GRm.
/m'

Formula (1) may now be rewritten as
y=z*a+ G (2)

2. Given y,a, let us find the set of states of system (2) consistent with t
constraint ||£]| < 1:

z(y) = {z :3CGH, MN<1l, y=z*a+ C}
From (2) it follows that
AR —yy —2a*z -I- z*aa*z < 1

or, taking,
P -Ag p=ay, A=aa*
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that
2- ) Az -q) < 1- h2(y), ©)
where h2(y) = yy —¢*p and, obviously, 0 < h2(y) < 1.
Inequality (3) describes an ellipsoid E(g, A) in IR whose matrix A and center
g depends upon the measurement y. The diameter of this ellipsoid is defined as
twice the radius r(y) of the smallest ball that includes it.

According to a well-known property of the eigenvalues of a positive definite
quadratic form, we have, [9]

ry) = @—h2(y))\~Il (),
where A(a) is the smallest eigenvalue of the form

x'aa* X.

It is clear that the diameter d(y) = 2r(y) will be the largest iff h2(y) — 0
which happens if and only if y —O0 (the “worst-case” realization).

Our objective will now be to select the input a in such a way that the “worst-
case” diameter d(0) would be as small as possible.

Hence, we are to minimize A 1(a) — the inverse of the smallest eigenvalue
A(a) of the matrix A —aa* of the ellipsoid

E(0,A) =8(A) = {x :xX'Ax < I}

(the location of the center does not matter and may be taken to be the origin).

As A — aa* is invertible, the minimization of A1 (a) is equivalent to the
maximization of A(@). The procedure makes sense (the solution remains in Hm)
once the admissible values of a are bounded by a certain set A4.

The problem to be discussed is, therefore, as follows: specify an element
a 6 A4 such that A(a) would attain its maximal value.

Remark 2.1. The center g —A~lay could be presented as by where b= A-1a
is a vector biorthogonal to a, i.e.

ab* = ba* = A~laa* —Im,

where Im is an m-dimensional unit matrix.

3. According to the theory of necessary conditions of optimality let us first

investigate the local behaviour of A(a) by calculating the directional derivative

A, a) = lim Aar 72) —A@ 56 tfm.

Due to the extremal properties of the eigenvalues of A we have

A@)

minK\V, AN\ |Vj = 1} =
min{("*a,V>*a)| It\ = 1} 4)
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Denote

d(@) = V'€ Rm:(ip, Aip) = N(a), \ip\ = 1}.

Clearly, ®(a) is the set of normalized eigenvectors corresponding to the minimal
eigenvalue f1(a) of A.
Since

— (WHa+ ya),ip*(a+ 76)|7-0 =
= 2(ip*a, ip*a) = 2a*ip Wp*a,
it follows from [10] that
A'(a,a) = min{2a*V> «ip*a \ip £ ®(a)}. (5)

Denote

co {2a*ipip* :ip £ o(a)} =
2a*co {Ipip* :ip £ @(a)} (6)

<9A(a)

Relations (5), (6) yield
Theorem 1. The following formula is true

A'(a,a) - min{u>a | w £ 5A(a)}. )

Let us discuss the latter relation in more detail.

According to the terminology of convex analysis [11, 12] the set d\(a) is
defined as the subdifferential (of function A(a) a. point a) and its elements as the
respective subgradients. The finite dimensionality of <OA@) also implies that <0A(3)
iS a convex compact set.

Following [11, 12] it is possible to indicate that if an m x m-dimensional matrix

I £ co {ipip* : ®(a)},

then there exists an integer kK < m2+ 1such that

K
Fr=y~iPIliP, € d@),;j=1 (8)

j=1

K

Y b =iy >0, j- 0

jait

Therefore, all the elements of dX(a) turn to have the form 2a*I” where I is
given by relation (8).
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4. Let us now proceed with the necessary conditions of optimality for the
basic problem which is to maximize A(a) under the restriction a GM. For doing
this we will need the notion of tangent cone [12].
Recall that a tangent cone K (a) to set A/l at point a is a convex cone such
that 5 GKwm (a) yields the existence of a function 4{a) : [0,1] —*# m that ensures
for a sufficiently small e > 0 the inclusion

a+taa+@@ GM.; a<eg

and
%Wr 1= 0.
With M convex

Km@ ={aGHm:a=-yw—a), 7>0 wGM}.
Denote Km (a) to be the adjoint cone for bm(a) so that

KM ={ui* GHm :w*a > 0, VaGKM (a)}i
w* = (wi,...,wm), W GH.

Theorem 2. Once the element a delivers the maximum of function A(a) on
the set M. there exists an array of values 7] > 0,j < k < m2+ 1 and normalized
eigenvectors ipj of the matrix A = aa* :\ipj\= 1, Aipj = A(a)ipj, that

K
—a*T Gl<m@), T=",bMr (9)

3=1

Proof. According to the theory of necessary conditions of optimality at point
a, one must have [10, 12]

(-A\(a))M)K*m (a)ip<b.

But the elements of <OA@) are of the form 2a* ", the structure of I' being defined by
(8). As KM (a) is a cone, its elements could be multiplied by any positive constant
with the resulting element still in M{a). The multiplier 2 and the normalizing
relation for the sum of 7y’s being equal to unity may, therefore, be substituted by
the requirement that 7, > Ofor allj = 1,..., k.

Consider some specific properties of the matrix

k

r = XATVIVT
j=1
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that may facilitate the further analysis:
(@) Matrix I is symmetric and positive definite. Indeed, once W 6 Rm we

have K K
(W,TW) ='E'jjWW jW =£ 7 (vr™)2>0.
i=1 1=1

(b) For each column I'» i —1 ,m of the matrix ' (F = Ti,..., ['T) we
have Al = JI(a)li. By direct calculation

K K
AT = jAipiip] = A (a)"7'17'Pj = n(a)r
J=1 J=i

and further, due to the rules of matrix multiplication
AT = (ATU...,ATm) = 1(a)(Tb .**,I'T)

which proves the assertion.
(c) If there exists an eigenvector ip such that

Ap—Xip,  X> AQ),

then Tip = 0 (matrix I is degenerate). Under the conditions of the above
(ipj,ip) = 0. Therefore,

K
Tip= " Tjipj(ip*j,ip) = 0
i=i
Let us now specify some particular cases.

5. Suppose
M ={aeHm:f(a) < (O}

with /(a) = f(a\,... ,am) assumed to be a smooth function with a non-degenerate
gradient
f(a)=(fl(a),....fM)

stands for the partial derivative of / in a*).
As it is well known [12] in this case

At(a)= {-c/'W :a > 0,erf(a) - O}

On the other hand, matrix I' is non-zero as for example

K
V9LrVi) = > T7ilViR=7i > o
1=1
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Therefore, at least one of its vector columns is non-zero, for example, 'l ¢ 0.
The necessary condition for the case under consideration yields

a*I = af'(a), a>0. (10)

If a = 0 then a* = 0, hence a*Ti = 0, I ¢ O, i.e. the a;’s are linearly
dependent which contradicts the condition that A(a) > O.
We have just proved

Corollary L If M. —{a £ Hm :f(a) < 0} then the maximizing point for A(a),
a £ Ad, satisfies the relations

a*l = <1/'(@), a > 0, f(a) —0,

M= 7 >0, aa*ipj = A@)ipj, W = L
=1
Particularly, if N
f(a)=X>H2- 1=a*- 1
i—

then
/'(a) = 2(ab ... ,am) = 2a*

and the necessary condition yields
a*[ = 2era*, a> 0, a*a= 1

If matrix " would be degenerate we would have I>—0 for a certain ip £ Rm,
\ip = 1. Therefore,

a*Tip = 2era*ip = 0,
i.e. a*ip —0, ai,..., am would be linearly dependent and A(a) = 0 which contradicts
the maximality of A(@) > 0. Matrix I is, therefore, non-degenerate.
From the representation (8) of matrix I it follows that it may be non-de-
generate only if among the vectors ipj, j = there exists a subset of m

linearly independent vectors. In this case all of the latter eigenvectors of A would
correspond to A(a). This is possible only if

A —am* = X(a)lm,

(a:la)) = 0, i pj, [laill2= A).

Hence, the solution to the basic problem results in an array of orthogonal
vectors a, with equal norms.

2
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Since m

Y llaf2= m\(a) = 1.
i=
we have
N@ - m_1.
6. Consider a specific problem of controlling the observation process when
aeHm, H=L2[0T].
The set M s the set of solutions to the m-dimensional differential system
d= Ca+ Bu, t G[0,T], a[0] = ao, (11)

with control u(t) selected from a convex set U of functions that ensure the existence
of solutions to (11).
On the interval [0,T] we are, therefore, considering the measured signal

y(t) = a-(t)z+at), C(-) € L2[0,T],
T

J crar <1
0

The optimal control problem now consists in the selection of a control tt( ) € U
that would maximize the minimal eigenvalue of the matrix A with elements

.
J ai(daj) dt
0

Once uo(f) is the optimal control and a°(t) the respective solution to system
(11), the adjoint cone would be determined as

T
K'M(-)={TI(-): Jr(t)(a(t)-a°(t))dt> 0}, (12)

0
where the inequality should be fulfilled for all the solutions a(t) to equation (11)

generated by all the controls u(-) G U.
Moreover,

[ V'i(i) \
Ne) = € 1/2[0T]; i—1,...,m
\ o1 (t)/
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Since

0]

this may be substituted into the inequality which yields (12). After an obvious
calculation this yields

ip*(<) (exp C(t —r)) dt  B(u(r) —Uo(r))dr > 0, (13)

u(r) g U
Denoting

(14)

we come to
Theorem 3. The inclusion ip*(-) 6 K ~(a°(-)) holds if and only if the inequal-

ity
\]r rp*(T)Bn(T) —uo(r))dT <0 (15)
is true for any u(-) 6 U.

Passing to the necessary conditions of optimality we have to check the condition
of Theorem 2 which is

%) = df(r), T (-)e Km(@()).
Combining this with (14) we come to the relation

1
W (r)=j a°*)T(expC(t - r)) dt (16)

which should be coupled with inequality (15).

The principal result now sounds as follows.

Theorem 4. In order that the control n G U and the respective trajectory
ao(<), t G [0,71 would determine the maximum for the minimal eigenvalue of the
matrix
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it is necessary that one could indicate such numbers jj > 0 and such eigenvectors
m of the matrix A (i = 1,..., k) that the following relations would be true:

1 a°(t) = Ca°(t) + BuQ(t),t <E[0,T],

2. (1) = -a*(n)f - I(T)C, Te [O], I (T) =Q
3 = E*=1

4. /@ P*(t)Bu(t)dt < /O rp*(t)Buo(t) dt; u(-) GI/.

The proof follows from above having in view that relation (2) is obtained by a

direct differentiation of (16) in r.
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OnTMManbHble BXOAbl B 3ajauye rapaHTUpPOBaHHOW WAEHTUDUKALNUM

A. B. KYPXAHCKUN, b H MWEHWYHbBIA, B T MOKOTUNO

(NakceHb6ypr, Knes)

B naHHOW cTaTbe paccmaTpuBaeTcs 3agada 06 UAEHTU(HUKALUU KOHEYHOMEPHOTO BeEK-

TOPHOTO MapameTpa Ha OCHOBE HabMtOAeHUI, MOPOXAEHHbIX 6ECKOHEUHOMEPHBIM BXO40M, B
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yCNnoBuUAX HeonpedeneHHbIX MoMmex. Mpefgnonaraetcs, 4To MHpoOpPMaLMs O NoMexax ucyep-
NbiBaeTCs 3afiaHWEM anpuopHOro OrpaHMYeHUs Ha MX peanmsauuun. Cneuuduka sagauu,
N3N0XXEHHOW B faHHON paboTe, COCTOUT B BbIGOpPe ONTUMaNbHOTO BX0Aa, KOTOPbLIA 6bl 06e-
cneynn HaMMmeHbllee 3HaYeHWe rapaHTMPOBaHHOMW OWMGKK nmpouecca nAaeHTUGMKauum. Mpu
3TOM MOCNefHAs onpejensieTcs Kak AMameTp HaMMeHbLUEro liapa, Cofepxalero o6nactb
UAEHTU(GULUPYEMBIX NapaMeTpoB, COBMECTUMbIX C pe3ynbTaTamu HabnwopeHunin. PaboTa
npogonkaeTr nccnegosaHus [1-8].






Problems of Control and Information Theory, Vol. 20(1), pp. 25-36 (1990)

THE FUNCTION OF AN OPTIMAL GUARANTEED RESULT OF
CONTROL PROBLEMS WITH AVECTOR CRITERION

A. M. Taras’ev

(Sverdlovsk)

(Received January 24, 1990)

A control system whose dynamics is subject to uncertain disturbances is considered.
Quality of trajectories of the system is evaluated by a terminal vector criterion. The
vector multi-valued function of optimal guaranteed result of the given problem is defined.
Properties of this function are examined. Necessary and sufficient conditions for a vector
multi-valued function to be the function of the optimal guaranteed result are given.

1. Introduction

In this paper we consider a control system whose dynamics is described by
an ordinary differential equation. It is supposed that the right-hand side of the
system depends not only on the control but also on uncontrollable disturbances.
The control is formed as a function of position. On the motions of the system
a vector functional is defined. Quality of the control is evaluated by the vector
which componentwise majorizes the values of the vector functional calculated on the
motions corresponding to this control and an arbitrary disturbance. This estimating
vector is guaranteed by the considered control. Therefore, it is called the guaranteed
result.

Such a problem statement can arise in applications when quality of the process
is evaluated by several criteria. Besides, each criterion is important for evaluation
and should not be worsened at the expense of improving of others. For example, in
the aircraft landing problem the role of such criteria can be assigned to the lateral
and vertical deviations from the glide path, the lateral and vertical components of
the velocity vector at the moment of landing, etc.

The optimal guaranteed result is defined as the set of all Pareto minimums
among guaranteed results. The multi-valued function that associates with initial
positions the corresponding optimal guaranteed result is called the function of op-
timal guaranteed result (FOGR). Properties of the vector multi-valued FOGR are
analysed in the present paper. Investigations are developed within the framework
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of the approach proposed in [1,2]. The properties of stability are formulated for the
FOGR. The infinitesimal form of the stability properties is studied. We formulate
the necessary and sufficient conditions for a vector multi-valued function to be the
FOGR.

The definition of the FOGR accepted in the present paper is similar to the
definition of the optimal guaranteed estimate proposed in [3]. The above mentioned
paper deals with multi-criteria problems of guaranteed control within the framework
of the first direct Pontryagin method.

It should be mentioned that there are other approaches to the analysis of
multi-criteria control problems under indeterminacy. The definition of equilibrium
as generalization of the concepts of Pareto optimality and Nash equilibrium lies on
the basis of one of them [4]. Note that in the present paper, in contrast to [4], we
consider the control problem in which the opimal guaranteed result is ensured by
one participant independently of a disturbance realization. In [4], on the contrary,
all participants are equivalent. This is expressed in the symmetric definition of
equilibrium for them.

2. Statement of the problem, main definitions

We consider the control system whose dynamics is described by the general
differential equation

ir = f(t,x,u,v). (D

Here t £ Jto,™ = T, x £ Rn is an n-dimensional phase vector, 1 £ P C
is a p-dimensional vector of control from the compact set P, v £ Q C is a
A-dimensional vector of disturbances from the compact set Q.

It is supposed that the function / : T X Rn x P x Q —*R" is continuous
of all arguments, locally Lipschitz continuous with respect to x, and satisfies the
condition of extendability of solutions of system (1).

Assume that the vector cost functional is determined on the motions x(-) of
system (1) by the relation

J(z()) = <t(z() = (<TUX(?)).... ,am{x(d))). (2)

Here G :Rn —»R1, i = 1,..., m are continuous functions.

Let us fix an arbitrary position (t,,x*) £T x Rn. Let U= 1/(¢): T -R" —<
—> P be a positional control strategy. The set of the motions generated by the
strategy U from the position (f*,x*) is defined as the set of all limits of the Euler
splines constructed by virtue of U (see [1], p. 32). This set is a compactum in the
space of continuous functions. Denote it by the symbol X(t,, xv, U).
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The aim of control is to “minimize” the cost functional (2) in the sense stated
below.

Let us introduce an order ratio on ra-dimensional vectors. For a = (al;...,
am), b— ,bm) we shall assume

a<bife < o, 0- 1 ..,m
a bifforsomej E {1,..., m}, aj >bj.

Let us pass to the definition of the vector guaranteed result. Now, we shall
introduce notations. For a position (i*,x*) £T x Rn and strategy U assume

£(<*X,, U) = {s £ Rn: s = <r(x(d)), x(-) EX(t,,x*,U)},
smaX(G,X,,£7) —{s° Ex~» : S<s° forall s E £(<*,£,, 17},

,2) = [N Smax(i», X*, {)),
U

smax = {(t,x,s) ET x Rnx Rm: s E Emax(i,x)}. (3)

Thus, Emax(G,x», U) is the set of vector results guaranteed by a strategy U
at a position (<*, x,,) by all components simultaneously. The set £ max(G,x*) is the
collection of all guaranteed results at a position (f*,#*).

DEFINITION 1. The set of Pareto minimums from the set of guaranteed results
~max}!»,£*) we shall call the optimal guaranteed result, i.e.

c(t*X*) —  EL*max(G,x-, . SEs forall SE ™Mrexs ) \ .
Definition 2. The multi-valued mapping (t,x) —»c(t,x) that associates

with initial position (i,x) £TxR"™ the corresponding optimal guaranteed result
c(t,x) is called the function of the optimal guaranteed result (FOGR).

3. Properties of the FOGR

With a view to investigate the properties of FOGR we shall consider the
auxiliary augmented system

x = f(t,x,u,v), tET, xER", MEP, VEQ
si —0

Sm - o (4)
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We pose for it the problem of pursuit with the target set
M = {(x,5) £ Rn x Rm:a(x) < s} ")

at the given instant tf.

In the followings, constructions of the positional differential games theory [1]
are used.

Let (<5 X,,St) £ET x R" xRm, UT : T x Rn x Rm —#P be a positional strategy
of control for system (4), Y(<*x*«* 1) the set of the motions constructed by
passing to the limit from the Euler splines of system (4) corresponding to Ur. The
aim of the control Ur is to lead the motions of the corresponding set ¥(t,, x»,s*, Ur)
to the target set M at the instant U

In the auxiliary differential game arbitrary information may be used by form-
ing the vector of disturbances v, i.e. it may turn out to be very unfavourable. For
the theorem on alternative to be true ([1], p. 367) it is sufficient to assume that
the vector of disturbances is formed as the function of positions (t,x) e TxR"
and vectors of control m £ P. Such a function M\u : T XRnx P —Q is
called a counter-strategy. The set of motions generated by a counter-strategy
W is defined by passing to the limit from the Euler splines constructed accord-
ing to Vu. This set is a compactum in the space of continuous functions. Let
(t,,x,,St) ET xR" x Rm, VJ:T x Rn x Rm x P —Q be some counter-strategy
in system (4), y(f»,a;*,s«, VE) be the set of motions constructed by passing to the
limit from the Euler splines of system (4).

Remark 1 The specific character of system (4) implies that its last m co-
ordinates do not change and are identically equal to the vector s,,. From here
it follows, firstly, that the positional strategy Ur WT x Rn x Rm —»P really de-
pends on the first n+ 1 coordinates (t,x) £ T x R" only, and the counter-strategy
Mr:T x Rn x Rmx P —=Q depends only on positions (t,x) £T x Rn and vectors
of control n £ P. Therefore, we may assume Ur = U : TxRn —P, V¥, =
=yu: T xRnx P—=>Q. Secondly, the following relations are true

Y(U,x,,s*,Ur) = Y(tt,xt,St,U) = {(x(),s.) : x(-) £ X(tmx*, U)}, (6)

where 2K, U) is the set of motions of system (1) corresponding to the positional
strategy U

Y (tt,Xt,st, V) = Y(tt,Xt, s,,,Vu) = {(*(*),s*) : ar(-) £ v} (@)

where X (tt,xt, W) is the set of motions of system (1) corresponding to the counter-
strategy WuU.

The theorem on alternative asserts that for problem (4), (5) there exists a
closed set Wu C T X Rn XRm called the positional absorption set (the maximal
u-stable bridge) with the following properties. If a position (<»z,,, s,,) belongs to
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Wu then there exists a positional control strategy Ur = U : T x Rn —aP such
that for any motion y(-) G Y(<* x», s* I7) the inclusion y(fl) G M is true. If
a position (f*, x,, s.) does not belong to Wu then there exists a counter-strategy
Mr= W : T xRnx P —<5such that for any motion y(-) G Y(t»,xt,s*,V*) the
relation y(i9) M is true.

The following statement may be proved with the help of the theorem on
alternative.

Lemma 1 The set of vectors Emex determined by (3) and the positional
absorption set Wu of the augmented problem (4), (5) coincide.

The theorem on alternative, Lemma 1 and Remark 1 imply the following
result.

Theorem 1. For the FOGR (t,x) —¥e(t, X) at any position (t,,x,) GT x Rn
alternative takes place

1) for any optimal guaranteed vector s° G c(tt,x») there exists a positional
strategy U : T x Rn—=P such that the vector inequality ir(x(i9)) < s° is true for
all motions x() GX(t,,, X,,, U\

2) for all vectors s which are not guaranteed at a position (i.e. s° N
A s for all s° G(t*,x*)) there exists a counter-strategy Vu : T X Rnx P —=*Q such
that tr(x(i?)) ~ s for all x(-) G X(i*,x,,, VM.

Let us formulate some properties of the vector multi-valued FOGR. Proofs of
these properties are not complicated, therefore, will be omitted here.

Property 1 For any position (i,,,X,,) GT x Rn the set £ max(G,x,) is com-
pletely determined by its Pareto points, namely, by the vector values of the FOGR
c(t»,x»), and the following equality takes place

Emax(G,x.) = {sSGRm: s° <s, s° Gc(t,,,X,,)}. 8

Property 2 Let W : T x Rn —+R1be the function of the optimal guaranteed
result of the control problem for system (1) with the scalar criterion

)=, i-1..m. 9

Here functions <j : Rn —+R1, i =1,..., m are the components of the vector
function a : Rn —»Rm from the functional (2).

Then, for any position (t,,,x*) GI'x Rn, and vector s G ¢c(<»x») the vector
inequality u>o(f*x,,) < s is true. Here u>o(t*,x,,) = (Wi(<*,x*),... ,wm(t.,x»)).

Property 3. For any position (t,,,x,,) GT x R" and index i G {l,....m}
there exist numbers s°, j = 1,..., m, j ¢ i such that s®° = (s°, ..., s°_It X*),
s°+1,..., %)) is a vector of the optimal guaranteed result, i.e. s° Gc(t»,x»).

Property 4. For all positions (i»,x,) GfxR" the optimal guaranteed result
c(<»x») is a bounded set.

Property 5 The epigraph epic = {(t,x,s) £ T X Rn x Rm : s° < s,
s® Gc(t, X)} = Enmax of the FOGR (t,x) —c(t,x) is a closed set. In this sense the
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function (t,x) —c(t,x) is lower semi-continuous, i.e. for any position (t*,x,) G
GT x R" and sequences {(tjt,xjt) GT x Rn}, {s* Gc(tk,xk)}, (tk,xk) -* (f*x,,),
St —s», for kK —+ 00 there exists a vector s° G c(<*\Xx,,) satisfying the vector
inequality so <s,.

Remark 2. It follows from lemma 1 that for the construction of the vector
multi-valued FOGR (t, x) —*c(t, x) the algorithms and programs destined for solv-
ing guaranteed control problems of the form (4), (5) may be used. Such algorithms
and programs, for example [5], have been developed in the Dynamic System De-
partment of the Institute of Mathematics and Mechanics of the Urals Branch of
the USSR Academy of Sciences.

The property of u-stability is one of the basic properties of the positional
absorption set Wu. This property is the base of step-by-step back procedures
for constructing the set Wu. If the program absorption set has the property of
u-stability then it coincides with the positional absorption set. It is found that
the property of u-stability may be formulated for the vector multi-valued functions
including the FOGR (t,x) —¥e(t,x).

For this purpose we shall introduce the following notations. Denote by SC
the class of vector multi-valued functions (t, x) —»u(t,x) satisfying the following
conditions:

a) for all (t,x) GT x Rn the set u>(t,x) C Rm is bounded;

b) for all (t,x) G T x Rn the set ui(t,x) has the property of regularity:
5(i) ~ s(2) for s(i) * s(2i s(* Ew(<x), i= U2

c) the epigraph W —epi w—{(<,x,s) GT X Rn x rRm : s° <5, s° Gw(i, X)}
is a closed set, i.e. a function (t,x) —»(t,x) is lower semi-continuous.

Note that the FOGR (t,x) —c(t,x) belongs to the class SC, i.e. ¢ GSC.

Suppose that the set W = epiw C Tx R" x Rmhas the property of u-stability
for the augmented system (4). Let us remind the formulation of the property of
u-stability for the set W: for any position (t,,, x*,s,,) G VUt* < i9), moment t G

and unit vector / GS = {r GRn : ||r|| = 1} there exists a solution (x( ),s( ))

of the differential inclusion
i G_F( t,x(t),1)
é(b—e (10)

X(i*) = X», s(tt) —s,, r G[ 1]

such that (t,x(t),s(t)) GW.
Here

F(r,j/,1) = n(r,y,)nG (r,y), (11)
G(r,y) = co{/ GR" : / = f(r,y,u,v), nGP, v GQ},

n(r,y,)-{>'GRn: (I,r)>H(T,y,D} 12)
H(ry,1) = Hkig%@((/,/(r,y, u,u)), (ty,) GT x R" x S.
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Taking into account that s(r) = s, when r £ [<519 it is possible to express the
property of u-stability of the set W in terms of a vector multi-valued function
(t,x) —»wv(t,x), n £ SC.

Definition 3. We shall say that a function (f,x) —eu(t,x) : T X Rn —
—»2K , Ww £ SC has the property of u-stability if, for any position (f»,x,) £ T x

XRn (s, < tf), vector s,, £ w(i»x»), moment t £ and vector / £ S there
exist a solution x(-) of the differential inclusion

x(r) £ F(t,x(x). /), x(tm =x,, T £

and a vector s £ ui(t,x(t)) such that s < s».

Remark 3. Since the positional absoption set Wu = Enex of the auxiliary
problem (4), (5) is the epigraph of the FOGR (t,x) —¥¢(t, X), c£ SC and the set
Wu is a u-stable bridge (the maximal relative to the inclusion u-stable bridge) then
the FOGR (t,x) —¥€(t, X) is a u-stable function in the sense of Definition 3.

4. Infinitesimal constructions

Stability properties may be defined by different equivalent ways. The infini-
tesimal form [6-8] is convenient for the property of u-stability. Infinitesimal con-
structions may be used also for the definition of the property of u-stability of vector
multi-valued functions w £ SC.

Let R = R1U{+o00} U {—e0), T° = [to, %9
Define the lower derivative of a vector multi-valued function w £ SC at a

position (i»,x»,s,) ((f,,x») £ T° x Rn, s, £ u>(t*x*)) in a given direction (1,/1),
h £ Rn.

Let

Duj(t,,,X,,S,,) = <|(h, d) £ R1x Rm: h— lim U

d: Kllr.[]o /t\K_—|7*1, tk j'Ul tk £ (<m tr_li

XK€Rn, kG

dw(t*,x,, s.)|(h) = {d€ R)m: (h,d) £ DU(t%, x,,, S.)}-

Remark 4. For all (f.,x.) £ T° x Rn, s. £ uj(t.,x,), h £ R" the sets
Dw(i,,x,,s,), dio(t,,xt,s,)\(h) are closed.

Definition 4. The set of all Pareto minimal points from the set
Qu(<, x», 8,,)|(/i) is called the lower derivative ,X», s8,)|(/i) of a function
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(t, X) —»w(t,x),u> £ SC at a position (<»,X,,s,, )((<», 1,)6 T °x Rn, s, £ w(t*,x,))
in a direction (1,h), h GRn, i.e.

O_W(<. X, )| = {d° GOW(<,,x,.,s)|(/i) :
d d° foralld Gads(t+,x,,s)\(h) \ {dO}}.

Now, remind [7] the definition of the derivative of a multi-valued mapping
2V : T —=*2B+ at a point (<, X, $*), (X,,5») G W(t*). Here W(t) is a
closed set in Rn x Rmfor allt GT.
The derivative of a multi-valued mapping t —aW(t) at a point (<»,X,,,5*),
(x»,S,,) GW(t») is the set

DW(<*x,,s,) = 1,(h,d) GRn x Rm:h —k|l_ng g d= ||<E+noolil§ i

tk-»ttk € (xk,ipk) € W(tk)Y (14)

Let u be a function of the class SC and the set W = {(f,x,s) GT xRnxRm :
s° <, s° Gw(t,x)} its epigraph. Define the multi-valued mapping t —» IT(i) by
the formula

W(t) = {(**) « Rn Rm: (t,x,s) GWs}. (15)

It is possible to prove the following statement.

Lemma 2. Let wGSC, W be the epigraph of the function ux and the multi-
valued mapping t — W(t) determined by (15), (t*,x») GT® x Rn, s* Gw(t*x*).

Then

DW(t,,xt,sm = {(fi,a) : hERN, d<a, d£ 6 w(f» x,, »)[(f)}.  (16)

Lemma 2 states, in fact, that the set £)FF(f*,x*,s*) coincides with the epi-
graph of the lower derivative h —»6_w(i»,x»,s,,)|(/i). This means that statements
operating with the notion of the derivative IHU(f*, x,,, s,)) of a multi-valued map-
pingt —»W(t) maybe re-formulated for the lower derivative h —» cLw(<* x»,s,,)|(/i)
of a function (t,x) —»w(f, x), w G SC. Using this argument we shall transfer the
infinitesimal formulation of the property of u-stability of a closed set in terms of the
derivative of a multi-valued mapping to the lower derivative h —»d-Ui(tt , x*, s»)|(fi)
of a function w G SC.

Now, we shall cite [7] the infinitesimal form of the property of u-stability of
aclosed set W CT x R" x Rm. Aset IT is a u-stable bridge if, for any position
(i,,X,,,S,,) GdW,and 1£ S

DW (f,,,x,,5») MFR(t*,x,,1) & 0. (17)
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Here
FR(t,,x,,) ={(/,0) ERn xRm:/ £ F(U,x,, D)t 0£ Rm}, (18)

dW is the boundary of a set W.

Taking into account the inclusion DW(t*,x*,sm) C DW(t,,x», s*) fors, < s*
and formula (18) we may write the property of u-stability of a function u £ SC in
the following equivalent to Definition 3.

Definition 5. A function w £ SC has the property of u-stability if, for
any position (f,,x*) £ T° x Rn, the vector value sm£ and vector / £ S
there exist a vector / £ F(f»,x»,/) and a vector value of the lower derivative
d £ d-uj(t, ,%», s*)|(/) such that

d<o. (19)

Here 0 £ Rm is the m-dimensional zero-vector.

Remark 5. The convex compact set F(t,,x,,l) (11) appearing in relation (18)
and Definition 5 may be replaced according to [7-9] by the half-space M(<»,x,,/)
of (12), (I,,i,,1)ET xR n x S without losing the equivalence of definitions.

Remark 6. The property of u-stability of the FOGR (f,x) —»c(t,x) (see
Remark 3) may be written in the equivalent infinitesimal form (19).

5. Necessary and sufficient conditions

To formulate the necessary and sufficient conditions which the vector multi-
valued FOGR (t,x) —* c(t,x) must satisfy we introduce the notion of a u-stable
function. Let us cite [1] the definition of the property of u-stability of a closed set
Wv. A closed set Wv C Tx Rnx Rmis called wstable for the augmented system (4)
if, for any position (f,,,X,,, s,) £ Wv, moment t £ (f,,, i?], and control vector n £ P
there exists a solution x(-) of the differential inclusion

x(r) £ F(t,x(t),u), x(t*) = X. (20)

such that (<,x(f),s,) £ Wv.

Here F(t,y, n) =co{/ :/ = f(r,y,u,v), VE Q).

Definition 6. A vector multi-valued function (t,x) —*ui(t,x) : T XRn —
—4#PR , w£ SC is called wstable if, for any position (t,,x*,s*) from the hypograph
hypoai = {(t,x,s) : so s forall so Gw(f,x)} ((f*, x«, s,,) £ hypow) there exists
a u-stable set Wv satisfying the following inclusions (tm x»,s,,) £ Wv C hypow.

Remark 7. The epigraph Wu = Smax = epic of the FOGR (t,x) —ic(t,x) is
the positional absorption set of the augmented problem (4), (5). The complement

3
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hypoc = (Tx RnxRm)\epi c of the set epi ¢ represents the union of v-stable bridges
[1]. Therefore, the FOGR (t,x) —¥e(t, x) is v-stable in the sense of Definition 6.

Remarks 3 and 7 indicate the necessity of the properties of u- and instability
for the FOGR (t,x) —»¢(t,x). Let us formulate the statement about sufficiency of
these conditions.

Theorem 2. For a vector multi-valued function (f, x) —+ui(t,x) : T X Rn —»
—»2r ™ w £ sc to be the FOGR (i, x) —i#c(t, x) it is necessary and sufficient that
the following conditions are satisfied

1) the boundary condition = <(@), x £ R";

2) the property of u-stability in the sense of Definitions 3 or 5;

3) the property of instability in the sense of Definition 6.

This statement may be proved by using the theorem on alternative and prop-
erties of functions £ SC.

Remark 8 Program constructions (maximin program functions) are often
used for estimating the optimal guaranteed result in problems with a scalar crite-
rion. Program constructions are called so because maximum and minimum oper-
ations determining them are fulfilled on the sets of program controls (depending
on time) only. If, in general, verification of the n-stable property of a function
w £ SC in the sense of Definition 6 seems to be very hard then the maximin pro-
gram function (t,x) —»pT(<,X) is «-stable automatically, by definition. When,
in addition, the maximin program function (t,x) —»pm(f,ai) is mstable then it is
said that it is regular [1, 2, 10] since it coincides, by Theorem 2, with the FOGR
(t, x) —+c(t, ). For obtaining convenient for testing conditions of regularity of the
maximin program function (f,x) —pm(f, %) in linear problems with a vector crite-
rion it is possible to use the infinitesimal form (19) of m-stability. These conditions
of regularity are contained in [11]. Detailed proofs of the statements of the present
paper can be found there.

6. Conclusions

The notion of the vector multi-valued function of optimal guaranteed result
(FOGR) is introduced for a control problem with a vector criterion. It is defined
as the aggregate of the best (minimal in the Pareto sense) points from the set of
guaranteed (maximal by all components) vector results. This definition coincides
with the known definition of the guaranteed result [1, 2] for a control problem with
scalar criterion — a vector criterion of one component (m = 1).

Functional properties of the vector multi-valued FOGR are analysed in the
present paper. The so-called stability properties are formulated. Necessary and
sufficient conditions characterizing the FOGR are obtained. The infinitesimal form
of the stability properties is studied. The method of construction of the FOGR is
outlined.
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Knowing the FOGR enables us to solve the problem. The method of extremal
aiming to the epigraph of the FOGR [1, 2] can be used for constructing the solving
control procedures in this case.

As for the transformation of the vector criterion to the scalar one the following
should be stated. The scalarization of the vector criterion leads to the scalar control
problem the solution of which depends on the coefficients of the scalar transforma-
tion. The choice of these coefficients a priori does not completely take into account
the essence of the control problem. Meanwhile, the construction of the vector mul-
ti-valued FOGR provides the complete solution of the vector control problem, since
all vector optimal guaranteed results and corresponding optimal solving strategies
are determined. One can choose among them the results corresponding to the
essence (dynamics and aims) of the control problem.
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NHcTuTyT matematnkm n mexaHnku ¥YpO AH CCCP
CCCP, 620219, Csepgniosck, 'CI1-384,

yn. C. KoBaneBckoi, 16.
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ASYMPTOTIC BEHAVIOUR OF A COMPLEX RENEWABLE
STANDBY SYSTEM WITH FAST REPAIR

A. L Chernyak, J. Sztrik

(Kiev) (Debrecen)

(Received December 21, 1989)

The present paper is concerned with an asymptotic analysis of a complex renewable
standby system operating in random environments. Supposing “fast repair” it is shown that
the time to the first system failure converges in distribution, under appropriate norming,
to an exponentially distributed random variable.

1. Introduction

In this paper we deal with a special queueing problem which is of consider-
able importance in reliability theory. In many models of practical interest “small
parameters™ are usually present, e.g. the failure rate of the elements are much small-
er than their repair rates. (This is termed in reliability theory as “fast repair”.)
This situation enables us to use approximate methods in reliability calculations.
For good reviews and materials the interested reader is referred to, among others
[3-8, 11-14, 16]. It is also well known that the great majority of problems can be
treated by the help of Semi-Markov Processes (SMP), Semi-Regenerative Processes
or, more generally, processes with an embedded point process (cf. Franken et al
[5]). For those models, mostly stationary reliability measures are obtained, and
characteristics like time to the first system failure are difficult to obtain. Since the
failure-free operation of the system corresponds to sojourn time problems we can
use the results obtained for SMP. It is easy to see that in the case of “fast repair”
the exit from a given subset of the state space of the underlying SMP is a “rare”
event, that is, it occurs with a small probability. Thus, it is natural to investigate
the asymptotic behavior of sojourn time in a given subset, provided that the prob-
ability of exit from it tends to zero (see Anisimov [1-2], Keilson [9], Korolyuk and
Turbin [10]).

The aim of the present paper is to deal with an asymptotic analysis of a
complex renewable standby system operating in random environments. Supposing
“fast repair” it is shown that the time to the first system failure converges in
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distribution, under appropiate norming, to an exponentially distributed random
variable.

The main contribution of our paper is the following. The failure and repair
intensities of the elements depend on the number of the failed elements and the state
of the given random environment. As a result of this assumption, the corresponding
subset of the limiting Markov process—constructed to this problem—is not a simple
essential class of states. Hence, the “classical” methods cannot be applied. Using
the results of Anisimov [1-2] the asymptotic exponentiality is proved.

2. The mathematical model

Let us consider a renewable system consisting of ni operating units, n2 loaded
standby units, 713 lightly loaded standby units, and r repair crews. The operating
elements are assumed to be embedded in a random environment governed by an
irreducible, aperiodic Markov chain t > 0) with state space {1,..., ri} and
with transition density matrix

«'"M> U1 Ti, a®

Whenever Ai(£) = iland at time t there are s elements at the repair facility, the
probability of failure of each operating unit in the interval (t,t + h) is

AP, s)h +o(fi), ii =17, s=0,ni+n2+n3—L
Similarly, the loaded standby units are supposed to be embedded in a random

environment governed by an irreducible, aperiodic Markov chain (X2(f), t > 0)
with state space {1,... ,72} and with transition density matrix

K2e 202 = 172, & :Ezﬂ,Q

Whenever A2(t) —r2 and at time t there are s elements at the repair facility, the
probability of failure of each loaded standby unit in the interval (t,t + h) is

B(i2,5)h +o(h), 7= 172 S=0771+n2+ 8- 1

Furthermore, the lightly loaded standby elements are also supposed to be em-
bedded in a random environment governed by an irreducible, aperiodic Markov
chain (A3(£), t > 0) with state space {1,..., r3} and with transition density matrix

I'@gl *3,]3 = Tr3, »3) £ 3((13
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Whenever X3(<) = i3 and at time t there are s elements at the repair facility, the
probability of failure of each lightly loaded standby unit in the interval (t,t + h) is

v(i3,s)h +o(h), @B=1r3, s=0,nd4+ n2+n3- 1.

When the elements fail they enter a repair facility and will be immediately served,
unless all the repairmen are busy, otherwise they wait in a queue in the order of
their breakdowns. The repair facility is supposed to be embedded in a random
environment, governed by an irreducible, aperiodic Markov chain (X4(t), t > 0)
with state space 7} and with transition density matrix

Whenever X4(f) = 4 and at time t there are s elements at the repair facility, the
probability of repair of each unit under service in the interval (t,t + h) is

/z(i4,s,e)/i + o(h), ™= 1,r4, s=1,n4+ n2+ n3.

Each operating unit that fails is instantaneously replaced by a unit from the loaded
standby; each unit that fails or that is put into operation from the loaded standby
is immediately replaced by a unit from the light standby. Each unit after renewal
is put into the light standby.

The environmental processes and all the random variables are assumed to be
independent of each other.

Let us consider the system assuming “fast repair”, that is, /i(i4,s,£) —00 as
e —»0. For simplicity, let /j(i4,s,E) = /i(i4,s)/e.

The system is said to be failed iff the number of failed elements is m + 1,
1<m<ni+n2+ B

Let Yc(i) denote the number of failed elements at time t and let

(m) = inf(t : Ye(t) = m + 1/Y£E(0) < m)

that is, the instant at which the system breaks down for the first time. Hence, our
goal is to determine the distribution of fie(rn). We have

Theorem 1. For the system in question, under the above assumptions, in-
dependently of the initial state, the distribution of the normalized random variable
emQc(m) converges weakly to an exponentially distributed random variable with
parameter

ri r2 r3 r4 MM Ti*l) *2) *3) *4) s)
N=E E E E n<;>n<x4> e —omemeee
* =i =113 7A=1 El:lmm(s,r)/l(m, S)

where 7 (ii,i2,h,4 ,s) is defined later.
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Proof. The method of investigation is based on Anisimov [1, 2]. Construct
the following multi-dimensional Markov chain

Zc(t) = (XA(t),X2(t), X3(t),X4(t),Ye(t))
with state space
((*!»*2,*)3*4 :s), 1= 1*T, i2=1,r2, r3=1,r3, 4= I,r4,s=0,r4 + n2+n3)
where
Xi(<), X 2(t), X3(t), X4(t): governing Markov chains,

Yc(t): the number of failed elements at time t.
Let us single out the subset of states

(“m) = ((*1,%2,% %4 :()*i: Lri, i2=1,r2i3= 1,r3,i4=1,r4, q- O,m).

Let
IA(*i,S) + n2B(i2,8) + (n3- s)i/(i3,s), 0 <s <n3,
IX(il,s) + (n2+ n3- s)R(i2,s), n3<s <n2+n3,
** + n2+ n3- s)\(ii,s), N2+ n3<S<Til + n2+n3,
and

+ab.2+ abn+ ail'4+T(*1,*2,*3, 4, s) +min(s, rfi(i4,s)/e = R(ii,*2,*3,*4,5).

Hence, the problem is to determine the distribution of the first exit of Ze(t) from
(am). It is easy to see that the sojourn time rc(ii,i2,i3,i4,s) of Z£€(t) in state
(*i,*%2,*3,*4,s) is exponentially distributed with parameter R(i\,i2,i3,i4,s). Fur-
thermore, it can readily be verified that the transition probabilities for the em-
bedded Markov chain, as e —0, are

Pri(*1,*2,*3, *4,s), 0'i,*2,*3,*4,5)] = o(l), «> 1,
Pc [(*1, *2, *3, *4,s), (*1,12, *3,*4,*)] = 0(1), S> 1,
Pc [(*1, *2, *3, *4, *), (*1,%2,33,%4,S)] = 0(1), S> 1,
Pc [(*1, *2,*3, *4,s), (*'1,*2,*3,i4, S)]=0(1), S> 1,
Pc [(*1, *2,*3, *4,s), (*',*2,*3,*4,S+ 1)] =
= 7[(*1,*2,*3,*4,*)e/min(s,nNp(i4,5)](1 + o(l)), | <s<nl+n2+n3,

Pc [(*1, *2, *3, *4, S), (*1,%2,*3,*4,S — 1)] —»1, 1< S< * + M2+ M3,



CHERNYAK, SZTRIK: ASYMPTOTIC BEHAVIOUR OF A SYSTEM 41

pN(*1, 00, *3,%4,0),(n ,*2,*3, *4,0)] = i3,%,0),
PI(*1 >*2, *3)*4] 0), (*1,32, =3, *4,0)] = a\lh /R (i1, r2) *3, *4,0),
P(*1 -*2, *3,%4,0), (*1, *2,] 3, *4,00] =a*JjR"X ,i2,i3,%4,0),
PN(*1,%2,%3,%4,0), (*1,*2,*3,14,0)] — I -B(*1,*2,*3, *4,0),
PI(*1,*2, *3,%4,0), (*1,%2, *3, *4, 1)] = 7(*1,*2, *3, *4,0)/A (*b *2, *3, *4,0).

This agrees with conditions (I)-(4) in Anisimov [1] p. 151, but here the zero
level is the set

((*1,%2*3, % :s), ¥ =1,n, 2=1,r2, 3= 1,23 == 1*4, s=0,1)
while the g-th level is the set
((*1,%2,*3,%4 1q+ 1), *L = 1,21, =2 = |,r2, *3= 123, *4 = 1,24).

Denote by ne(+1,72,*3,,s) the stationary distribution of the Markov chain with
transition matrix

pN1(*1,*2, *3, *4, g), (il, 32,13,14, )]

r3

1- U E £ Pe[(*L*2%3%4.«) (NLA2*3M, 2N 1
15 g 1= Pl N )

*1. 01 = 1,21, *2,i2 = 1,2*%2, *3,i3 = 1,2*3, *4,i4 = 1**4, s,z < M,
and let
no(*i,*2,*3,%4,5) = Eﬂbne(*i,*z,*s, *4,s), s=0,L

Furthermore, denote by (M*~, 1 = 1,2*), k = 1,4 the steady-state distribution of
the governing Markov chain (Xk(t), t > 0), k = 1,4, respectively. Clearly,

A<*V o (*)"g*, A= 1.4, (1)
Since the level 0 is in the limit and forms an essential class, the probabilities

Mo(*1,*,*3,%,0) and llo(*i,*2,*3, ®,1) satisfy the following system of equations

MOC%,-21%3 %4, 0) = 53 10O, *2,*3,*4,0)a/Tii (1 *2,*3*4,0)+

j&1
+ Y TMo(*bJ1*3,%,0)ajiY A%, j, *34,0)+
jn3
+ Mo(*!,*2,i, *4,0)aff3/R (h,*2, /71 *4,0)+ )

+ 53 Mo(*1,%2,is,i,0)ajg/A (ii, *2,*3,710) + MO(*1,%2,*3 *4, 1),
>4
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Mo(*1) *2i z3i *4, 1) = M il, 12, «3,14,0)7(<1,*2, 13, *4,0)/9(*1,i2)i3,%4,0).

It is not difficult to verify that the solution of (2), (3) subject to (1) is
No(»l, *2, *3, *4,0) = ,*2,13,%4,0),

n 0(*I, *2, *3, **4,1) = ,*2,is, *4,0),

where

E E E E nilng)ng)ng)(7(il,*2 %3 *4,0) + R(il,*2*3 *4,0))

Fl=1*2=1*3=1*4—1

By the help of formulas 5.48, 5.49 in Anisimov [1] we get

Me(*1,*2,*3,*4,0) =
II;Il 7(*1,*2,*3,*4,5)
=e"BBAng’lljf = e x(1+0(1), 9>1
0 min(s,r)/r(i4,s
iy (s,1)/r(i4,s)

and the probability of exit from (om) is

o, » = E E E E n“>ng>nlfn<i>x
4=112=1%3=1%=1
m
N 7(*1,%2,*3,%4,s)
X N o x (I + o(l)).

é‘I:lmin(s,r)/i(i4,s)

(3)

Taking into account the exponentiality of Te(i\, *2,%3,%,s) for fixed B we have

£exp{iEmO(re(ii,*2,*3,%4,0)} = 1+ (emOi/R(ii, *2,*3, *,0)(1 + o(l)),

E exp(iEmOr£(j'i,*2,*3,»4,«))} = 1+ o(em), s> 0.

By using Corollary 5.6 in Anisimov [1] we obtain the statement, g.e.d.
Thus, for the time to the first system failure we have

P(i2€(m) > t) ~ exp(-EmAI).
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In particular, if

n2=n3=0, - X(s), iz(ia,s) = ij,(s)

we get the result of Sztrik [15].

Furthermore, if

A(in,s)y=A, 2¢i2,s) = B, i/(i3,5) =u, fi(i4,s) =n

then the problem coincides with the model treated in Gnedenko et al. [8] or Ushakov

[161-
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OPTIMIZATION AND STOCHASTIC DYNAMICS IN THE STATE
SPACE

A. A. Krasovskii

(Moscow)

(Received December 27, 1989)

A comparison is made between the Fokker-Planck-Kolmogorov equation and Bell-
man equation applied to a controlled system optimal in terms of some special non-dassical
goal functionals to establish simple relationships linking the state space probability den-
sity with the Bellman function. A general form of the probability density is found for a
linear plant and a linear observation function, with the minimal conditional mathematical
expectation of the quadratic functional. An approximate general solution is obtained for a
non-linear plant, under the condition of minimization of conditional mathematical expec-
tation of the generalized work functional. The results obtained may be applied to efficiency
studies in the design of optimal control systems, and to choosing the goal functionals.

1. Introduction

A certain degree of similarity between the Bellman equation [1, 6] in the
theory of optimal controlled dynamic systems, and the Fokker-Planck-Kolmogorov
equation [2, 3] (FPK equation) has been repeatedly noted in the literature, and used
for the design of heuristic control algorithm [3-5]. It is quite probable, however,
that under certain conditions this similarity is considerably deeper than previously
assumed. This similarity may be used to obtain a good number of both theoretical
and practical results.

Consider a Markovian continuous time process described by the following
vector-valued stochastic differential equation (in the Langeven form):

x = F(x,i)+ £0%). 1)

where x 6 R"; F is the differentiable vector-valued function of the above arguments,
and £(f) is the vector-valued Gaussian white noise with the intensity matrix Q.

Akadémiai Kiad6, Budapest
Pergamon Press, Oxford



46 KRASOVSKI!: OPTIMIZATION AND STOCHASTIC DYNAMICS IN THE STATE SPACE

The FPK equation written for the logarithmic probability density Inp(x,f)
where p(x, t) is the unconditional probability density in the state space is expressed

as [4, 9]
Olnp  OINP L 1y - v AAE(x, )R +0.5 dﬁl&pQO'”p\

dt AX AX )
« “(0);

with superscript T meaning transposition.
The mathematical expectation of terms in the right-hand part of equation (2)

(2)

]

® ®
1 r (LK) pix+ax- 0B, 0.(x./)dx

has been considered in [4, 5] as the entropy stability index. Therefore, the value

x(x,N=tr(-£F (x,i))+°.5"E£« (™) (3

may quite naturally be referred to as the differential entropy stability index.
If we take a linear system F(x,<) = A(t)x and the normal central probability
distribution

Inp(x,<) = —0.5xTP_1(f)x —0.5 In(2n7h[P(<)]),

where P(t) = M[x(t)xT(<)] is the covariance matrix, and |P(i)| is the principal
determinant of this matrix, then the index of differential entropy stability (3) is
expressed as

X(x,t) = -trA(t) + 0.5xTp -1(t)QP-1(t)x. 4

Thus, in this case x + tr A is a quadratic form relative to x.

2. Controlled stochastic systems optimal in terms of a special
non-classical functional

The equation describing a plant with linear control action u £ Rr is written
in the form

x = f(x,<) + <p(x,t)u + Z(t), Q)

where f(x, t) and <p(x, t) are the (nx 1) vector-valued function and (nxr) functional
matrix, respectively.
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As a minimizing functional, let us consider the functional of the form

2
I M Vg(x(<2)) + \] Qalx(e),e]de+

+0.5 Jzu T(0)A'_1u(0)d6 - 0.5 \]Zmlp(s) K~Inop(9) dd

Here Vs and Q6 are the given scalar functions of the above vector-valued arguments,
and K is a non-singular symmetric matrix of the given coefficients.

Functional (6) refers to the class of the so-called non-classical functional [3, §
since, along with the synthesized control u, it contains optimal control uop which is
unknown prior to solving the synthesis problem. However, this non-classical func-
tional can not be regarded as the well-known generalized work functional (GWF)
described in [3, 7, 8] since the last two terms in the right-hand part of (6) are
subtracted from each other, rather than added. As a consequence, in this case the
cost of synthesized control exceeds that of the optimal control (instead of the sum
of these costs in GWF).

For the problem mUin I in (5) and (6), the functional Bellman equation is
represented as

oTr /
— + min <Qg(x,t) + 0.5uTA"_1u - 0.51"pA'-1 Yyypb
+ av m*. )+*>(*<)»] + o* tr | d2v- N

It solution is sought in the form

u=ug, —Kipl(x,t) )
where
dv. . d Vv . dv , T, JdVvV\
a- +aTf(x’<)-57 ,’(x'i)i'v (x4 a G
(8)
d2v \
+0.5 tr XX T -Q g(x,9),

V(x,t?) = W(x). ©)
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Let us take, as the integrand function Qg(x,t) of the minimized functional
(6) the differential entropy stability index (3) for closed-loop system, for which

F(x, t) = f(x,t) + <p(x, t)u, summed up with quantity tr  ~ * Then equa-
tion (8) will take up the form

av

dinp
dt >

av
+ -fa [f(x, t) + <p(x, t)uop] = tr 4)(F(x, t) -0. 6x
da2v \ d2Inp \
QdxdxT) tT[QdxdKT)"
Comparison of equation (2) and (10) shows that for a controlled stochastic sys-
tem (5), (7) and (8), optimal in the sense of minimization of functional (6), with

—05tr (10

<P(x, t) = x(x0 + ("QB g T~ fhe following solution for the probability density
in the state space is true:

Inp(x,<) = -C(x,<), (11)
Inp(x,f2) = -Vg(x). (12)

This result may, in principle, be used for two purposes. First, after the above
optimization problem is solved, i.e. the Bellman function V(x,t) is found, formula
(12) immediately gives us the expression exp(—C€(x, <)) that describes the behaviour
of the probability density in the synthesized optimal control under final condition
(12) and initial condition p(x,f) = exp(—(x, t)). Second, relationship (12) yields
the “terminal” part ofthe minimized functional obtained directly from the desirable
probability distribution at the finite time instant t = The latter consideration
is quite valuable for us, like any other regulation that facilitates the selection of the
minimized functional.

However, the above approach is also characterized by certain drawbacks. The
solution of the nonlinear equation with partial derivatives (8) is a problem no less
difficult than that of the analogous nonlinear Bellman equation in the tradition-
al optimization statement, where the minimized functional does not contain any
optimal control uop (see (6)).

Furthermore, because functional (6) includes the difference in control costs,
this optimization problem is likely to feature some undesirable solutions.

3. Controllable semi-stochastic systems

Let us call a dynamic system with random initial conditions and no noise a
semi-stochastic system. For such a system, equation (5) will be replaced by

X = f(x,<) + <p(x,tu. (14)
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For a closed-loop system, the right-hand part of equation (14), like before, will
be denoted as F(x,f). The differential entropy stability index of the closed-loop

system, (3), in this case takes up the form x(x,i) = —tr A" -F(x,f)* while the

FPK equation written with respect to the regular probability density p(x, f) takes
up the form

| +g9 FGeh=-pt, ([-F(.1). (15)

Let us specify the minimized functional as

I =M 7g(x(*2)) - \FP(M o g F(x,0) db+
1 (16)

J ¥
+0.5V nT(B)K-1u(0) d0 —0.5V \1*p(B)K ~Iop(s) de
1 tj

This is a non-classical functional that differs from (6) only in the form of its inte-
grand function

Qg = -p(x, t) tr "INF(x,1)] =

The Bellman equation for problem (14), (16) is as follows:
B+ min  —pitr (= FOGH] + 0.5uTA Tu—
-0.5u,,pA-1Ump + AV [f(x,<) + ¥>(X,t)U]Jl =0

and its solution is
u=um --K<pT(x,t) )]
where V. — V(x, t) satisfies the equation
AN E(x I ) - (XGOAVE(XG)

(18)
= p(X,<)tr

under the boundary condition

V(x,f2) = Vo).
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The comparison between (15) and (18) shows that in controlled semi-stochastic
system (14), (17), (18) optimal in the sense of functional (16), where p(x,<2 =
= —Vg(x), and p(x,t) = —V(x,t) the current probability density in the state space
is

p(x,f) = -V (x,f). (19)

It will be interesting to note the following. The terminal term of the goal functional
here is the density of the final probability distribution with the opposite sign,
whereas in the previous case it was equal to the logarithm of p(x, <2) taken with the
opposite sign (12). For the one-dimensional distribution, this is illustrated in Fig. 1
Curve 1here corresponds to case (12) and curve 2, to the case under consideration.
Function Vg(x) that corresponds to the first case infinitely grows with the increase
of norm x. This may have a negative effect on the nature of transients in the
closed-loop system, for at the initial stage of the transient processes, when norm x
is large enough, the terminal term of the functional may “suppress” all the other
terms. From this viewpoint, the second case has a certain advantage.

Fig. 1

The efficiency of a system is generally best expressed in probabilistic mea-
sures over probabilistic spaces. Therefore, besides selecting of a certain part of the
goal functional, the above relationship may be employed for pre-estimation of the
efficiency of the types of optimal systems considered. However, the potential of
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such usage is rather limited. This results not only from the specific form of func-
tion Qg and control costs in functional (6) and (16) under consideration, but also
from the unconditional mathematical expectation in these functionals. The use of
the unconditional mathematical expectation means that averaging is carried out
throughout the entire probabilistic state space, whereas an actual control realized
under concrete observation conditions is characterized by the conditional mathe-
matical expectation [3]. Consider the solution to the general problem in the linear
quadratic case.

4. General solution in linear quadratic case

It is common knowledge, that for process
x = A(t)x + B(t)u + £() (20)
and for the observation equation
Z = H(t)x + rj(t), (21)

where £(<) and r](t) are independent vector-valued white Gaussian noises with in-
tensity matrices Q and R, respectively, and A, B, and H are specified matrices,
depending, in the general case, on time, the control optimal in the sense of mini-
mizing the functional

Ic = Mc 0.5xT(t2>gx(<2) + 0.5 JZXT(O)BX.(Q) de+

n (22)

2
+0.5\] nT(8) K~Wm(B) |
where Mc stands for the conditional (in observing (21)) mathematical expectation,
and Sg, B, and K are specified symmetric coefficients matrices - such a control is

u=—KBTSx, (23)
S +SA +ATS - SBKBTS = -0, S(t2) = sg. (24)

Variable x refers to the conditional mathematical expectation of the state vector.
It serves as the output value of the Kalman-Beaucy filter (KBF):

X=Ax+ Bu+PHTR-\z - Hx), (25)
AP + PAT- PHTR~IHP + Q. (26)
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Expressions (23) through (26) correspond to the separation principle [1, 3, 6]. Ex-
pressions (23), (25) and (26) remain true in minimizing the non-classical functional
of generalized work
2
Mc ).5xT(<)5'gx(<2) + 0.5J xT(9)Rx(6) d6+
D 0 27
+0.5J) uT(B)K~(B) de +05J ulp(6)/v-1u(0)do

However, matrix Riccati equation (24) is in this case replaced by the matrix Lya-
punov equation

S+SA+ATS =—8,  S(t2) = Ss. (28)

Let us denote the error of estimating the state vector in the KBF as Ax = x —x.
Substituting (23) into (25) and subtracting it from (20), we obtain

Ax = (+ —PHTR_1H)Ax + PHTR~I) —£, (29)
k=-BKBTSAxX + (A- BKBTS)x +£, (30)

Present the covariance matrix of vector (Ax, x) in the block form:

Ax  Ax - M@ 12 —
. . t\ M) w2 M(i2) —Mf21y

Using (29) and (30), we obtain the equations for the blocks of this covariance
matrix:

M(L1) = {A- PHTR~IH)M(n) + M(n)(AT - HTR - IHP)+

+ PHTR~IHP +Q, (31)
M(12) = (A- PHTR-1)M{u) + M(12)(AT- SBKBT)—

- M{n)SBI<BT - Q, (32)
M(2) = (A- BKBTS)M(2) + M(22)(At - SBKBT)—

- M@DSBKBT - BKBTSM{12) + Q. (33)

Comparison of (31) and (32) with (25) shows that these matrix equations have the
following solutions: M(U) = P, M(12 = —P.
Presenting M(2) in the form

M(22) = Mc[xxT]= P + [ (34)
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we may find from (33) that

D = (A—BKBTS)D + D{AT- SBI\BT) + PHTR-IHP,

(35)
D(U) = Do = P(h) - M22(N).
Obviously, all the processes taking place in this system are Gaussian, and with a
central initial distribution the current probability density in the state space of an
optimal closed-loop system is expressed by the formula

pP(X,<) = (2nim|P(f) + D(t)\)~* exp {—O.5x T[P(t) + £»()]_1x} .

Expressions (23), (25), (26), (34), (35), and (24) (for the case of minimizing the
classical functional (22) or (28) (for the case of non-classical generalized work func-
tional (27)), along with the initial conditions

P{ti) =Po,  D(U) = DO (36)

describe the general complete solution to the problem under study.

This solution, of course, may be obtained in a different way through solving
the corresponding Bellman equations and the FPK-equation in quadratic forms.
However, because expressions (23), (24) or (28), (25), and (26) are commonly
known, this way seems to be more convenient.

Probability density distribution may serve to estimate the efficiency of the
designed optimal control system, and to choose the coefficients of the minimized
functional. The respective technology demands a special description. Here, it is
apt to note only the fact that, as compared with the statistical trials method, the
suggested approach results in considerable savings of computer time.

5. General approximate solution for nonlinear case

The principle of separation of nonlinear systems remains true in an approx-
imate case, which appears to be more accurate with the increase of estimation
accuracy under the observation conditions considered [3].

Let us write down the corresponding expressions applying to the case of the
generalized work goal functional with quadratic costs of the control and the gen-
eralized Kalman-Beaucy filter of linear approximation as a system of suboptimal
estimation.

For the system

X = F(x, u,t) +£0t) = f(x, t) +tp(x, t)u + £(t) (37)



54 KRASOVSKII: OPTIMIZATION AND STOCHASTIC DYNAMICS IN THE STATE SPACE

and for the observation condition
z = h(x,t) + rjt) (38)

suboptimal, in terms of minimizing the functional
gM*a)] + \] Qg[x(fl),0] do + 0.5\] nT(8)K~1n(B) dd +
ti 4 (39)
+ 05 nlp(B)K~mop() dél

is the control

(40)
where x is the output value of the generalized KBF:
x = F(x,u,f) + Ph?(x,t)R~1z —h(x,<)], (41)
P =Fi(x,t)P + PF?(x,t) - Phl(x,t)R-1hi (x,t)P +Q, 42
P(ti) = Po, (43)

while 17(x,i) is the solution to the linear equation in partial derivatives
dv. dVr . .y
— +—!L|-|) =-0,(*n) (44)

under boundary condition V (x,t2) = *g(x).

Resting upon the use of expressions (40) and (44), the algorithm of optimal
(suboptimal) control with prediction model is designed [3, 7, 8]. For this particular
case, the analytical form of this algorithm is as follows:

u=uop= —KpT(k,t) dd; gl(X (x,M2)]- \]QQg[X(k,t,G)] dd} (45)

where x = X(xo,to,t) is the general solution to the equation of the free motion of
the system

X= f(x, 1)

under initial condition x(to) = Xg



KRASOVSKII: OPTIMIZATION AND STOCHASTIC DYNAMICS IN THE STATE SPACE 55

The algorithm with a prediction model utilizing the generalized work principle
is, in the opinion of the author, the most efficient algorithm among the present-day
algorithms of optimization “in the large” of complex multi-dimensional nonlinear
processes. The capabilities of this class of algorithms are further extended by the
latest findings in the area of fast piecewise-linear approximation of multi-argument
functions an a rarefied net [9] and in the area of fast two-channel numerical inte-
gration of differential equations [10].

In the suboptimal control and estimation problem treated here, subjected
to simultaneous numerical integration are process equations (37) in which u is
expressed by formula (45), and estimation equations (42) and (43) in which the
measurement vector is described by formula (38).

The numerical integration is carried out in real time, or in some other time
basis, with the use of definite difference schemes and specified initial conditions of
the form x(tj) = x0, x(fi) = Xo- Reproduced are realizations of practically white
noise £(t), r](t). As a result of a single-step numerical modeling (integration) we
obtain realizations of vector-valued functions x(t), x(t) and u(<) which are taken as
basic (reference) functions and designated as xr(t), xr(f) and ur(<). The problem
of stochastic dynamics is further stated as the problem of finding the statistical
characteristics of deviations

Ax((O) = x(1) - x(f),  Ax{(t) = x(t) - x6(t)

in a linear Gaussian approximation (owing to the negligibility of MI||AX][],
MI|IAxr|D). In this case, one can immediately use expressions of the type (34)
and (35)

M(2) = M(Ax6AxJ) =P + D, (46)
P = Ti[x(f),{]P-(- PFT[x(Q),<] - Ph*[x(f),t]P~1n*[x(f),fl.P-|-<3, (47)

where
FIX(<), 9 =f[x(t), t] + <~[*(O, tJu(t),
R

D + ¥>[x(i),<]ulx(f),f]}D+
(48)
+ 04~ {FIXOT] + ~x(f).flulx(<).f]})  +

+ [*(<><]R-1h*[x(0. *]-P(0-

The control u found here is calculated by formula (45) at the previous step (in
finding the realizations x(<) and u(f)).

Expression (47) coincides with equation (42), which is numerically integrated
also at the first step. Thus, in order to approximately find the probability dis-
tribution that characterizes scattering of trajectories in the state space relative to
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the basic trajectory, it suffices to numerically integrate only the Lyapunov matrix
equation (48).

Having fulfilled this operation of numerical integration, we obtain the follow-
ing probability distribution:

p(AXx,t) —2nim\P(t) + D(t)])- 2x
(49)

Fig. 2

This distribution may be used to both estimate the efficiency of the subopti-
mal control system, and choose (update) the minimized goal functional.

The simplest illustration of a reference trajectory and of trajectory scattering
in the three-dimensional state space is depicted in Fig. 2. Basic trajectory 1 is
obtained by numerical integration of equations (37), (41), (42), and (45) under
certain initial conditions, while the tube of trajectories 2 is found by numerical
integration of equation (48), also under given initial (or final) condition.
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OI'ITVIMVI3aLI,VIFI N CToXxaCcTnyeckKkad ouHaMmmnKa B NpoCcTpaHCTBE COCTOSIHMN

A. A. KPACOBCKUM

(MockBa)

ConocTtaBndawTCcA ypaBHeHune ® okkepa-lMnaHka-Konmoroposa n ypaBHeHne Bennma-
Ha ANf ynpaBnsieMOW CTOXacTUYECKOW CUCTeMbl, ONTUManbHON B OTHOWEHUN HEKOTOPbIX
cneynanbHo NOAO6GPAHHLIX HEKNACCMYECKUX LeneBblX (GYHKUMOHANOB. A na Takux QpyHKUK-
OHaNnoB MONY4YeHbl NPOCTble COOTHOLW EHWUA MeXAY NNOTHOCTbIO BEPOATHOCTM B MPOCTpPaH-
CTBe COCTOSHWUI M (GyHKUMel BennmaHa. ONA NUHeRHOro ob6bekTa M NIMHEWHOW GYHKLWK
HabnwoaeHNs Npu MUHUMMU3ALUM YCNOBHOFO MaTeMaTUYECKOr0 OXMUAAHUA KBaLpaTUUYHOTO
(hYHKLMWOHana NnonyyeHo B 06l emM BUAe pelleHWe ANA NNOTHOCTU BEPOATHOCTW B NPOCTPaH-
CTBE COCTOAHUNA.

MpunbnmxeHHoe obuiee peweHne HalifjeHO ANA cnyyas HenuHelHoro o6bekTa (C NKn-
HeliHO BXOAAWMUM ynpaBaeHUeM) NPU MUHWMMU3ALUWN YCNOBHOFO MaTeMaTUUYeCKOro oXxwupa-
HWS PyHKLMOHana 0606UeHHO pa6oTbl. MonyYeHHble pe3ynbTaTbl MOTYT 6bITb MCNONb30-
BaHbl MNpu unccnefoBaHUM 3PHEKTUBHOCTU CUHTE3UPOBAHHbLIX CUCTEM ONTUMaNbHOrO
ynpaBneHns u Bbibope LeneBblX PYHKLUOHANOB.
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In most applications it is sufficient to know that the system is approximately con-
trollable in the sense that it can be made to change any state for any desired one with some
(generally, as low as desired) error. This paper proposes a new practicable way to analyse
approximate controllability and observability.

Introduction

The mathematical theory of the infinite-dimensional system finds numerous
applications. Some industrial and physical processes are described as distributed
parameter systems. The mathematical theory of infinite-dimensional systems is
concerned with various open-loop systems that are subjected to exogenous signals
(or having an input) and whose state is observable (or having an output). The
state-of-the-art in this field has been described in surveys [27, 36].

Control of distributed parameter systems has been the subject of numerous
books [1-4, 7, 8, 20]. The subject of this article is the approximate controllability,
observability, and stabilization of infinite-dimensional systems whose input and
output are assumed finite-dimensional. Papers on these systems [19, 21-23, 32,
33, 37-39] concentrate on controllability and observability which have been shown
to be dual [36]. Infinite-dimensional analogs of ranking observability and global
controllability criteria have been formulated that are important mainly for the
theory, since their direct application assumes a family of functions which makes a
basic and complex problem in itself in every specific case [6].

In most applications it is sufficient to know that the system is approximately
controllable in the sense that it can be made to change any state for any desired
one with some (generally, as low as desired) error. Approximate controllability has
recently become the subject of research [41, 42]. Criteria for approximate and ac-
curate controllability through pulsed signals have been obtained [9]. Approximate
reachability of zero has been studied [11] through reduction to analysis of dense

Akadémiai Kiad6, Budapest
Pergamon Press, Oxford
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solvability of some equation. This paper proposes a practical way to analyse ap-
proximate controllability with the use of the conventional Fourier procedure. The
method is, in a sense, an extension of the procedure proposed in [41]. Criteria
of the simultaneous controllability and observability of a family of finite-dimen-
sional systems are proved in Section 2. Application of these criteria to control-
lability (observability) analysis of finite-dimensional Fourier approximations leads
to practicable sufficient conditions of approximate controllability (observability) of
infinite-dimensional systems in Section 3. A new modification of the well-known
Kalman criterion is proposed in Section 3, which is the core of the theory described
in Sections 3 and 4.

1. Problem statement

A linear stationary control system is analysed in the form

£(C, A B) : x = Ax + Bu,
Y= Cx,

where A is a linear endomorphism of the Hilbert space H over a field of complex
numbers, in other words, A E End(ff) or

A :V(A) CH —1(A) CH,

T>(A) is the domain of the operator A, and 1(A) its range; B and C are linear
operators, B : V(B) CU—=*1(B) C4d and C :V(C) C 4 —il(C%]C Y where

U and Y are complex finite-dimensional Hilbert spaces, or Bu = where

>

6-EdA,i=12...,m and C is a finite number of linear functionals ; EH*.

The operator A is assumed to meet the following conditions:

al) A is an infinitesimal generator of the Co-semi-group e/x in 4;

a2) the operator spectrum a(A) is a discrete set from C and every AE <r(A)
has a finite multiplicity;

a3) V(A) = A (the domain V(A) is dense everywhere in ) and there exists
a basis {6 } 9 which consists of eigen- and adjoint vectors of the operator A, or
span is dense everywhere in A (spanZ is the set of all possible linear

C ) K

combinations from Z with factors from K).

This paper will concentrate on the approximate control of the state, and ob-
servability of an infinite-dimensional process £(C, A,B) with a finite-dimensional
input. Special attention will be given to the analysis of controllability. The pro-
posed spectral form of the controllability criterion for finite-dimensional systems is
practicable in applications.
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In applications the system need not necessarily be accurately controllable or
observable, e.g. in the sense of the definitions from [1, 20, 36] and approximate
controllability and observability are sufficient. A weaker variety of controllability
and observability is introduced in

Definition 1. If for any two points zi, rr E A and e > O there are T > 0,
Z\ € 0£(zi), *2 £ Ot(z2) (here 0£(z) —{x £ H : \W\x —z\h < €) and a control
u(t) : [0,T] —+U such that

exp Zi = 22,

with exp |3 (A x(t) + Bu(r))dr ] denoting the flow in H generated by the system

\°
x = Ax + Bu(t), then E(C, A, B) is approximately controllable.
This fact is denoted as an inclusion

Z(C,A,B) eNlY (H)

Definition 2. The system E(C, A,B) is approximately observable if the
conjugate system
Z(B*,A*,C*) :é = A*t + C*uy,
Y —B*i

is approximately controllable. If E(R*, A*,C*) G AY(H), then E(C,A,B) £
G ATi(H). Practicable methods of analysing approximate controllability and ob-
servability are developed in Section 3.

2. Structural features of controllable and observable systems

The objective of this Section isto obtain a form of the rank Kalman-Krasovsky
controllability condition which would be better suited for computation. What is
important is that for an infinite-dimensional system these rank conditions can not
be checked. On the other hand, in numerous problems the operator has been
thoroughly studied and its eigenvalues and eigenvectors are computable. This is
so, in particular in some mathematical-physics problems. Consequently, it would be
useful to express the controllability and observability conditions as characteristics
of the process. In this Section the controllability criterion will be formulated in
terms of the spectrum and invariant subspaces of A.
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For this purpose we will need the following
Definition 3. The Jordan index 1J(A,A) of the number A G <(A) is the
number of Jordan cells that are associated with the eigenvalue A or

(A A) 0 for AN <r(A),
_{ the number of Jordan cells associated with AG cr(A).

We will need the following notation. Let A be a linear operator mapping
C" into Cn with <r(A) —{AL(..., A,}, XD A}, \ <i<j <u Then Aa) is
understood as an adjoint vector of power j which is associated with the eigenvalue
Aa G a(A) ie. (AaE - A)>"(Xa) = 0 while (AaE - Ay-%j(Xa) ¢ O.
i— 1,..1(Aa,A)} are dimensions of the Jordan cells with eigenvalue Aa in their
diagonals. I

By virtue of the above, LEii(Aa) (Aa) I>U( aA)are bases of eigenvalue

subspaces of A. Let us consider a finite-dimensional system E(C, A, B). Associate
it with a totality of numbers

<Hj - det[{Mil(AD,A2i(Mi), we,A | UMD A2AAD, . 2AA), ...,
{iL1(*c),i21(Pa)> see>  j(Pa)i sesjELi(ON)) eee!  (A)i >
...i}

LIl I (-A>T)1 o ee (ML) e e e sEMEL, F[/("AL)}] L

l<a<r/, 1<r<l(Aa,A), 1<j<mm

where - = 1J(Aa,A) and bj is the j-th column of the matrix B = {b\,...,bj,
... ,bm}. In the above notation the rank Kalman-Krasovsky criterion can be made
to take the form of

Theorem 1. A finite-dimensional system T,(C, A, B ) is controllable iff
rank 1<j<m, 1<r< l(Aa,A)} > 1J(Aa,A) 1)

forevery 1<a < il.

Proof. The necessity of the conditions (1) follows from the obvious fact that
the controllability of the system entails that of every subsystem. Assume that at
least one condition of (1) is not met. For instance rank{">L}jj < 1J(Ax,A). There-
fore, if IJ(Ab A) = 1, then gjj = 0 and there exists an uncontrollable subsystem
which is associated with the above Jordan cell of A. If, however, 1J(Ai,A) > 2,
then there exist at least two Jordan cells, Ji(Aj) and ./2("1) (that are associated
with one Ai) which must be handled by one control, which is impossible by the
Kalman-Krasovsky criterion. This proves the necessity of the condition (1).
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Let us prove the inverse implication for the case when the input is one variable
or B —b6 C" (for a multi-dimensional input the proof is similar). The control
system is

Xx=Ax + bu, x GCn.

Then the system
z\z + puy,

X —AX + by, O

where € C, 1 € Cand p 6 C\ {0} is controllable iff A" <r(A). Indeed, the
Kalman matrix for this system has the form

K= AP X1~Ip AP
Anb An~4 Ab

Multiply the second column of the matrix K by Aand subtract the product
from the first one, then multiply the third column by A and subtract it from the
second one, etc. Finally, multiply the last column by A and subtract it from the
last but one. As a result we have

|det A'| = |p| *\det(Anb- XAn~1b, An~Y - XAn~2b,..., Ab Xb)\ =
= \p\ mdet(An~4, An~ \ .. .,Ab,b) I+|Pn(A)|,
Pa{A) is the characteristic polynomial of the matrix A.
Consequently, the system (20) is controllable iff AN <r{A).
Let us show that when a controllable Jordan cell J (A) is added to the system,

controllability is preserved iff A a(A). Take up the case where J(A) is a Jordan
cell of order 2x2. In a general situation the reasoning is similar. For the system

ii = Azi + 22+ p\u,
72 = Xz2 Apiu, p3¢O, ©))
ii =Ax + bu

the Kalman matrix is

IA"+Vi+ (n+ 1)A>2 Awpi+n\n lpz =  Xpi+p2 Ppj
K= Ar+1p2 \P2 Xp2 P2
Y, An+lb Anb Ab b

Multiply the second row by P1/P2 and subtract the product from the first one.
Following this, multiply the second column by Aand subtract it from the first one,
the third column by Aand subtract it from the second one, etc. Finally, multiply
the last one by Aand subtract it from the last but one. As a result we have

A2 vn—IP2

det K = det 0 0
An+4 -X Anb Anb-XAn~1b

51
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Using the reasoning of the proof of controllability for the system (2) we have
|det K\ = bl 2e|det(j4n-16,An~2b,Ab,b)\ *|PJI(A)|2,

where PA(A) is the characteristic polynomial of the matrix A. Consequently, the
system (30) is controllable iff A <(A) and pi ¢ 0. Proof that the system

z=J(\)z+puy, zECI,
X - AX + by, XxXEC]

is controllable iff p; ¢ 0 and /1 g <x(T) is the same. In this case condition (1)
transforms into the requirement that pi ¢ 0 and so |det/\| = \p\l mPa(A)|r x
x|det(T"_16,..., Ab, 6)|.

Because any linear system can be obtained by adding subsystems with Jordan
cells, sufficiency of condition (1) is proved in the one-dimensional case. In the
general case the proof is analogous. This proves the Theorem.

The Theorem makes possible a relatively simple analysis of a high-dimen-
sional linear system which is decomposed into subsystems that are associated with
different Jordan cells of the operator A.

Then elements gfj (condition (1)) are determinants of matrices that are made
of eigen- and adjoint vectors that are associated with given Xa, with the adjoint
vector of the maximal power replaced by the j-th column of the matrix B. Con-
sequently, a certain independence of condition al) of the dimension of the system
£(C, A, B) offers Theorem 1 certain advantages over the Kalman-Krasovsky crite-
rion. True, with n < 4 (n being the dimension of the system £(C, A, B)), condition
(1) requires a larger computer load than computation of the Kalman matrix rank.

Corollary 1L If E(C,A,B) has one input, the system is controllable iff A€
E €(A) is associated with a unique eigenvector and conditions (1) hold which in
this case take the form <p(\a) ¢ O for any \a E &(A) = {Ai,Ar,..., A} where

NACr) = det {fi(AQ), *o, £ (A ),£i (A2), s A(AT), *oe £i(A), *o+ £li,-i(AQ),
b, £i(Aor-t) ..., (Ra+i), *s*)E/j,.(A)} .

Consider simple examples which illustrate the application of the criterion and
Corollary 1

Example 1L Because any matrix over a field of the complex numbers is re-
ducible to the Jordan form, take up controllability of the system x = Ax Abu whose
matrix A consists of two Jordan cells which are associated with different eigenvalues

/at 1 0 0 161
0 A1 0 O &
A= 0 0 A 0 0 . b= I
0 0 0 A 1 0%}
\0 0 0 0 A \Db j
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The eigenvector which is associated with Ai is (1, 0, 0, 0, 0)T. The adjoint vectors
are (0, 1,0,0,0)T and (0, 0, 1, 0, 0)T. The eigenvector which is associated with
Ais (0, 0, 0, 1, 0)T and the adjoint vector is (0, 0, 0, 0, 1)T. By virtue of Corol-
lary 1it is necessary to check when the determinants made of eigen- and adjoint
vectors for Al and A2 are nonzero

b. O

62 O

B(A) ks O
0

64

OO OO
OO O RO

bb

0
0

1

— 63,

y>(A2) —

OO OO

0

1

0
0

OO R, OO

Consequently, the system is controllable iff 63 ¢ 0 and & ¢b 0.
Example 2. The matrix A consists of two Jordan cells that are associated

with one eigenvalue A

coo X
coOoO Pk

\

OO>HO

O PpOOO

o

—

EHOO

(bl

, B =

B3
=7
\W

° = ° OO0

d1\

dz

da
(14

s/

b:

>3

64

bs

The eigenvectors are in_this case (1, 0, 0, 0, 0)T, (0, 0,0, 1, 0)T and the
adjoint vectors (0 1,0,0 o)T( 0,0,10,0)T and (0,0,c0,i)T

Then
1 06 0O
0 162 00

"MA)= 0 0 pg 0O
00 10
00 p5 0 1
100 0 n
0 10 0 b2

"NAA)= 0 0 1 0 M
000 1 &
0000 @&

1
0
BLA) = 0
0
0
AR = &

OO O RO

ail
d2
da
(14
ds

OB OO0

O OO0OOoO

Consequently, the system specified by the matrix A and the input matrix B is

controllable iff

or at least equal to the number of Jordan cells that are associated with a given A
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Fig. 1

Remark. In this Example the matrix B can not, by virtue of Corollary 5 below,
consists of one column, since otherwise the system is certainly uncontrollable.

Corollary 2. If the system E(C, A, B) is controllable, then, for any AG C,
(A, A) < rank B.

This proposition immediately follows from conditions (1).

The above results make it possible to analyse the simultaneous controllability
of a finite totality of independent processes, Fig. 1

The state of the family {E(C]j, J1-, #i)}f=1 is obviously controllable if so is the
component process

ii —AiIXi + B{n,

For convenience, E(C, A,B) will be said to have no internal resonance if all the
eigenvalues of the operator are different. For the totality {F(C,-, Ai, Bi)}?=1 the no-
tion of external resonance is important. The totality ofthe systems {S(Ci, Ai,

has no external resonance if <t(JT) M<1(/l;) = Oforall 1< i <j < /9 (A, Ai)
will be referred to as multiplicity of the internal resonance of frequency for the i-th
system. 1J(A, A) is the multiplicity of the resonance of frequency A for the system
of Fig. Lwhere A is a block diagonal matrix associated with the system

ii = AiXi +BiU, i=12,../?.
Using this terminology, let us formulate

Corollary 3. If every process E(Ci, Ai, Bi) of the family © = {E(Cj, Ai, Bt)}f
is controllable and no external resonance is present, the family © is controllable.
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The necessary condition for the controllability of the family © is proved by
Corollary 4. If the family © = {E(Cj, Ai, 0,)}f=1 is controllable, then the
multiplicity of the resonance of any frequency A 6 lthr(Ai) does not exceed

m;o\x rank Bi.

In the application necessary conditions are very important, which can only
be checked if the properties of the operator A are known. This includes Corollary
2 re-formulated into

Corollary 5. If rank8 < max 1J(A,T), the system H(C,A,B) is not con-

y AR (AT) y ( )

trollable.

Theorem 1 and its Corollaries are very helpful in analysing finite-dimen-
sional systems because checking the rank Kalman-Krasovsky criterion reduces to
analysing the spectra of subsystems.

Propositions, dual of Theorem 1 and its Corollaries, define the spectral ob-
servability criterion for linear systems. The system £(C, A, B) is well-known [1, 36]
to be observable iff the system T,(B*, A*,C*) is controllable (A* being an operator
conjugate with A). This proposition and Theorem lyield the form of the observabil-
ity criterion for finite-dimensional linear stationary systems. Let us limit ourselves
here to formulating the observability criterion for the family {£(C*, Ai,

This criterion is dual of controllability of a family of systems. The structure of a
system made of subsystems is shown in Fig. 2

is observable
if so is the system
X —AX{ +B{Ui, *=12../?
B

="'£lyi
y ::1)’
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where the first components of the vector yi are those of the output of the i-th
subsystem and the remaining ones are equal to zero. The dimension of every yr
(1 < 1< R) is equal to the highest dimension of the subsystem outputs.

Using propositions dual of Theorem 1 and Corollaries 1 and 2 we have the
following results on simultaneous observability.

Theorem 2. With © = {E(C,-, being a family of finite-dimen-
sional systems the following propositions are true:

bl) if every system £(C,-, A* £,) of the family © = {£(C), Ait£,)}f=1 is
observable and no external resonance occurs, then the family © is observable;

b2) if the family © = {E(Ci, A-, Bj)}f=1 is observable, then the multiplicity
of the resonance of any frequency AgLf €(A,") does not exceed max rank Ct.

These results make it possible to analyse the approximate observability and
controllability of infinite-dimensional systems. However, let us first take up cases
of observable and controllable finite-dimensional systems.

Example 3. A system of N oscillators has the form

?
= Xi(<) +w2Xi(t) = biu®t), i= 1,2,
N

y(t) =
11

where y is the system output. By virtue of Corollary 3 of Theorem 1 and of
Theorem 2 this system is controllable and observable iff the natural frequencies of
the oscillators are different (in- d Wj for i ¢ j, or there is no resonance) and b, ¢ 0,
ddpOforanyi=1,2 ,N.
Example 4. Consider a family of differential equations of the form
dn'xAt) dn* IXi(t) ,
dint  kO«,—4* dtn'~I " A hiUi(t),
N @)
t) =Y I CiXir
y(t) 8

where
addpo, §d0, ajGC, anip0 (O<j<n-r=1.2,.,N).
Let us see if the system is controllable. Every r-th subsystem is obviously

controllable in an n-dimensional space of variables (xth1), EXi(t),..., dn’_1

By virtue of Corollaries 3 and 4, for controllability of the family it is necessary and
sufficient that for any 1< i <j < N the polynomials

9i(A) —anii\n' + alll IVIT 1+ ... + aoi —0,

=an,j*r>4"an,-ij"ni 1+ eee+ 00 —O0
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have no common roots. The latter is not true unless the resultant Res(gt,gj) of the
polynomials <, and g3 is nonzero. Consequently, N differential equations such as
(4) are not controllable iffforany 1<i<j <N

Res(9i,9j) =
ali Qai 0
0 «2i ay doi
an,i dn,—di aoi 1
anjj arij-lj alj a0j 0
0 drijj a2j a\j doj
an,j anj-1Ij aq 1

If Res(gi,gj) ¢ O with any 1 < i <j <N, then by Theorem 2, this family is
observable. What is more, this is the necessary condition for observability.

3. Approximate controllability and observability

Now, let us proceed to the approximate controllability of infinite-dimensional
systems.

By Condition a2) the eigenvalues of the operator can be enumerated. Let us
assume that the inequality Re A> 0 holds only for the finite part of the sets cr(A).
Enumerate the set <r(A) as follows

Re\x> ReA2>ReAB> ... >ReM > 0> ReA+i > ... (5)

Every eigenvalue A € <i(A) repeats the number of times equal to its multiplicity.
Let £(A,) be adjoint or eigenvector which is associated with A and in the basis
{£(Aj)} the first eigenvectors and then adjoint vectors are written in an increasing
order of their power. This is always possible by virtue of Assumption a3). The
sufficient condition of approximate controllability is formulated as
m
Theorem 3. Let Bu=  bllllwhere 6 e H (i= 1,2,...,ra), A satisfy al,
»=]
a2 and a3, there exists only a finite set of A€ d(A) such that Re A> 0 over a(A),
the enumeration (5) be introduced, and a(A) C RaB = {r € C; —a < Réz < [}
for some real a, > 0. If for a natural N the system

xn = AnXn + Bfju (6a)

(where H = H” 0 Hs is the spectral decomposition associated with the basis
{E(™>)}li! {£(i)}?7iv+i; consequently, A = AN © AN and B\ = P\ B where
is a natural mapping on Hn) is globally controllable, then the system

X —AX + Bu (6b)
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is approximately controllable.
Proof. Take any two points z1, z2 6 H and design a control which moves

N

the system (6a) from zjy into zRl, where ZN =  zN £(Aj), i = 1,2 are elements
i=i 3

with the first N coordinates of the point z*. By the condition of the Theorem the

system = AMx”™ + B”u is controllable; therefore, at any T ¢ 0 the matrix

UN(T) = \] e-A" TBNB Me~A" TdT
0
is nonsingular. Consequently, the control
UN(t) = BNe-A»'UU\T) (e~A»TzR - zN)
moves the system £(4/y, BH) from the state ZJ& into zR within time T. Denote
()
zZn— E  rJTOW)

j=N+1

Then to show that

fN = eANTzN +\] eA"(T-~B NBNe-A»Tdr UMN(T) (e~A”T1z\ - z») + o(l) (7)
0

as N —»00 (here B4 = (I —Pn)B, | is an identity mapping and o(l) —a0 as
N —*00) is to prove the Theorem. Let us first show that at some T

Uncoil <7(T)
with any natural N. It is well-known that

IUM(T)ir 1> | pin, @ Un {T)2)en

where (-,-)cN is a standard scalar product in CN. At the same time
(z,UN(T)z)cN = J T \ (e~ANT»N,z)\7dT>

J 1=1

1 r
=10

1 m
>f E (0 ar \[ANX-ANtON,z) - <% ,z>]|)*
i=1
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(the latter inequality follows from the fact that

T

i |(e AntbN,z)\dr > maxr j (e ANTBEN,z)dr

where bN is the th column of the matrix

Bn —{/Jvises>h™,
Denote

m 2/
Cn(T) =" ( minamaxT ,2) - ANIBN,2) j) § T.

Then
1

It is easily seen that
0 < CN+L(T) <CN(T), CN(T+ AT) > CN{T)

at any AT > 0.
Consequently, there is a limit

Jlim CN{T) = Coofm).

Let us show that at some T it is true that Coo(T) > 0. Assume that the
opposite is true, i.e. Coo(T) = 0 at any T. From the weak compactness of the
sphere in H follows the existence of |i(T)| = 1 such that

(A~le~Athi, z[T)) —(A_16j,f(T)) = 0

withany 0<t < T, 1< i <m. Again, from the weak compactness of the sphere
in H we have the existence of a point |z(00)| = 1 such that

(A~1e~Mbi, r(o0)) = (A _16-z(00)) =0, i=1,2,...,m

at any 0 < t < 0o. The latter equality, together with the finiteness of the eigenvalues
for which Re A > 0 entail z(oo) = 0, is in conflict with the equality £(oc) = 1
Consequently, there exists T > 0 such that Coo(T) > 0. This implies a limited
norm of the operator over N, i.e.

Uncoil <c-\T)
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for any natural number N. From the latter inequality, the formula for control, the
condition cr(A) C lNMa,/3, and the fact that 6, £ H it follows that

T

Lfonj/ \eAN(T- /BNBNe-A"T\drC-\T)\\e-ANTzR - ~[|} = 0.
0

This proves the truth of the relation (7) and the Theorem.

This Theorem reduces the analysis of the approximate controllability of an
infinite-dimensional system to that of the controllability of a totality of finite-di-
mensional systems. Numerous examples show that the controllability of the resul-
tant finite-dimensional systems is most easily analysed by the method of Section 2.
From Theorem 3 immediately follows the sufficient condition for the approximate
controllability.

Corollary 1. If all the condition of Theorem 3 hold and for any N the system

xn —Anxn + Bnu,

y =Cnxn

is observable, where Cjv = CPn and Par is a natural mapping of H on #jy, then
the system S(C, A, B) is approximately observable.

Theorem 3 and its Corollaries are applicable to various oscillatory systems.
For parabolic systems and diffusion systems a weaker version of Theorem 3 holds.
To formulate this we will need

Definition 4. The point zO £ H is approximately reachable within T > 0 if,
for any point 2€ A and any e > 0, there are a control n : [0,T] —%U and a point
2 £ Oc(z) such that

T
exp MJ (Ax(r) + Bu(t)) dr'j r £ Oc(zo).
0

A weaker analogue of Theorem 3 for parabolic systems is

Theorem 4. If al, a2, a3 hold, only a finite number of eigenvalues /1£ cr(A)
satisfy the inequality Re A> O, the elements of <r(A) are numerated as above, and
there is 6 > 0 such that from A ¢ A it follows that |& —Aj| > 6 > 0 where 6 is
independent of i and j.

If for any natural N the system

xn — A”MXU + Bnu

is controllable (Agr and B are as in the condition of Theorem 3), then for the
system (6b) the zero element of the Hilbert space is approximately reachable.
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Example which illustrate the application of the above methods are reported

in Part 11 of the present article. In [11] sufficient conditions for approximate reacha-
bility of zero within finite time have also been obtained but with weaker constraints
imposed on the operator.
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beckOHeYHOMepHble CUCTEeMbl: aNnNpPpoOKCUMaTUBHAaaA yNnpaBnsaeMoCTb U
Habnto gaemocTb. YacTtb |

C. K. KOPOBVH, M. T HUKUTUHA, C B HUKWUTUH
(Mocksa)

Pa6oTa nocBslieHa annpoKCUMMaTUBHOW ynpaBnsemMocTu M HabnopgaemocTun 6ecko-
HEYHOMEPHbIX CUCTEM C KOHEYHOMEPHbIM BXOAOM W BbIXOAOM. [lnA aHanusa ynpaBnseMocTy
(Habnwo gaemocTn) cucTem 60NbWON pasmepHocTH Buaa i = Ax + Bu npegnoxeHa mMoau-
thukauns kputepus KanmaHa, nossonsiollas no crnekTpanbHblM cCBOWCTBaM onepatopa A
CyAuTb 06 ynpaBnsemocTu (HabniwopgaemocTu) cuctem. MNpuBefeHbl KpuUTepuu ynpasnse-
mMocTu (HabniofaemMocTn) cemeiicTBa KOHEYHOMEPHbIX cucTeM. MpeanoXeH MeToj aHanusa
annpoKcMMaTMBHOW ynpaBnsemocTn (HabnogaemMocTn) 6eCKOHEYHOMEPHbBIX CUCTEM, OCHO-
BaHHbI# Ha npoueaype ®ypbe. MeTod NpocT M yao6eH B npuMeHeHUN. Pe3ynbTaTbl paGoThl
UANIOCTPUPOBAHbI MpUMepamMmu.

C. K. KoposuH
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Problems of Control and Information Theory, Vol. 20(2), pp. 77-95 (1991)

DEFINITION AND RECOGNITION OF CLASSICAL SETS BY
THE ROUGH ONES

I. Kramosil
(Prague)

(Received November 28, 1990)

Rough sets are a rather new branch of modem mathematics with interesting ap-
plications. Here we show how rough sets can be used to describe and solve the problem

of statistical induction in a way as a general as possible, covering a number of important
particular cases.

1. A model of statistical induction based on rough sets

From the viewpoint of its origins the notion of rough sets naturally follows
from that of indiscernibility relation. Let A be a nonempty set, let A be a nonempty
collection of predicates applicable to all elements of X . Hence for each x £ X, A £
£ A, A(x) is a well-formed formula of a formalized language which is either true or
false; the truth-value of A(x) is denoted by Tv(A(x)). Define for each x,y £ X,

l« [« (VAEM)(TMA(X)) = TV(A{y))). )

Evidently, « is an equivalence relation on X. It is called indiscernibility
relation on X with respect to A, in order to pick up the fact that if x K y, then
there is no possibility to discern between x and y using the predicates from A . The
definition can be extended to empty set A of predicates setting, in this case r a vy,
for each x,y £ X. In general, any equivalence relation on X can be taken as an
indiscernibility relation.

Let A be an indiscernibility relation on A, let V C X. Set

K={x-.xEV, (WEX)(ya x=y£V)} )
V —{x:x£ X, (By £ V)(y s&sx)}. 3)

Denoting, for all x £ X, by [X] the corresponding equivalence class, i.e.
n = {Ymye X, ysax}, (4)

Akadémiai Kiad6, Budapest
Pergamon Press, Oxford



78 KRAMOSIL: DEFINITION AND RECOGNITION OF CLASSICAL SETS BY THE ROUGH ONES

we may write
V= U{[x]:[x]cV}, V=U{[x]:[z]nV?<b}. )

Informally, Y_is the set of all elements which can be surely stated to be in V on the
ground of the truth-values of the predicates generating the indiscernibility relation
in question. X —V is the set of elements which are certainly not in V, and for
elements from V—V the membership relation with respect to V cannot be evaluated
within the given framework. The pair (V, V) is called rough set generated by V
and cf., e.g. [4]. Evidently, each pair (LLL, W), [V C W of subsets of X can be
taken as rough set generated by a set W, W C W C W, and by the equivalence
(indiscernibility) relation « such that x « y iff either x,y £ W, or x,y £ W —W,
or, finally, x,y € X —W.

In order to avoid the technical difficultes connected with the measurability of
the corresponding mappings let us limit ourselves, in the sequel, only to finite or
countably infinite spaces. Let A — {aj,a2,...} be a nonempty countable set, let
v = {(1£(*), E("))}":1 be asequence of rough sets in A, i.e. V (i) C V(i) C A for all
i=1,2,.... Suppose that (J°lj VI(i) = p|“ j V(r) and denote by V this subset of A\
we say that V defines V. Perhaps a weaker way of definition of V by {(\V2(0> V(i))}
could be also considered but here we prefer the most simple, even if also a rather
restrictive one.

Denoting by xv the characteristic function (identifier) of W as a subset of A
and supposing that v defines V we immediately have

XV(i)= | 54p, XV()(@) = LJnf_Xvp(x) (6)

for each x E A. For the sake of unambiguity let us recall explicitly, that y x» ") =
= 1, ifx GZ(0> XvioOO= 0, if x GA - V_(i). _

Take an x £ A, if Vis finite, or, what is the same, if V.(i) = 0and V(r) = A
for all but a finite number of indices, then xv'(z) can be effectively computed by
(6) using Xv(i) or Xv(>)- If V is infinite, this method is theoretically ineffective; in
practice, it is ineffective also for finite but very large V’s. However, an immediately
and intuitive idea yields that if we “sample at random” a finite number ii,r'r, m min
of indices, then

15L<J|:j)< r]X vXx)(*®), (M
or
8)

approximate, under certain regularity conditions and in a reasonable sense, the
desired value yy(z)- In fact,

9P Xu(-)(x) *Xv(x) < inf XyE]IJ')(Z)- 9
i<i<n r<}<n >
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If the set A is finite, such an approximative decision can be taken, sequentially,
for all x £ A, in order to obtain an approximation for the set V as a whole. In the
opposite case, i.e. for an infinite A, we may, again, apply the same elementary idea
of statistical approximation, sampling at random some Xi, X2, ..., xm from A and
approximating V either by

ka :k <m, Msup Xvii3){xk) - lj (HO)

or
{xI :Ar<m,i mffiXv(i)(~) = 1}. ()

These informal reasonings can be formalized as follows.

Let (ft, S, P) be an abstract probability space, hence, ft isa nonempty set, S is
a cr-field of subsets of ft, and P is a probability measure on S. Let N = {0,1,2,...}
be the set of non-negative integers, let N+ = N —{0}. Let X = be a
sequence of random variables (i.e. measurable mappings) defined on (CI,S,P) and
taking their values in N+, let ¥ = be another such sequence of random
variables. Let V= {(L1.(0>Y(0)}?=1 be a sequence of rough sets which defines the
set V C A —{ai,®2,. «.}» Set, by induction,

Vo=0 Y=/, (12)
V< = VEiW) = V,,j_i(w) U {a(Xtuo},
if a(Xi(w)) 6 K(Yi(w)), (13)

Y*i = y*,i-i otherwise.

For the sake of notational simplicity we write a(i) instead of oq for the elements of
the basic space A.

K =y*N = K-iH -{«Ne("))}<
if a(X,H)<E N-¥Y(¥YHun0O), (14)
¥* = V* j otherwise.

Evidently, y,i(w) C V C V*w) for each w£ ft and i = 1,2,..., so that the sets
Y, , and V* may serve as first and very rough approximations of the unknown set
V. Given a random variable Z which takes (CI,S,P) into A, the quality of the
approximation (¥Y.~Y,*) of ¥ can be quantitatively measured by

P({bl:bleM,ageyYl-Y.,.-»; (15)

the closer to zero this value may be, the better the approximation. In what follows,
we shall investigate the conditions under which the value of (15) can be as close to
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zero as desired taking i large enough, and with respect to a sufficiently large class
of random variables Z.

It is perhaps worth of explicit introducing that the stochastical nature of this
approximation process is principial, its deterministic alternative being, evidently,
of almost no worth and sense.

2. Basic theorem for the proposed statistical induction model

The pair (X,Y) of sequences of random variables defined above, with each X-
and Y* taking (fi«i> P) into N+, is called regular, if the vector random variables
(Xi,Y(), i —1,2,..., are mutually statistically independent; in symbols, if for all
m G N+, <i,”2,---,im) G (N+)m, and (zi,z2,..., zm) G (N+ x N+)m,

pm{w:wen,
\'=i
(16)

= 6 Ne,(w).yu(w)) =1z}
j-1

and if, moreover, for all z GN+ x N+,

AP (fw :«Gfi, (XMu),Y{") =1}) = oo. (17)
i=1

In what follows, we shall omit the symbols ...n :n Gfieeein expressions like

(16) or (17), supposing that no misunderstanding menaces. Sequence X is called

independent identically and non-trivially distributed (i.i.n.d.-sequence, in short),

if the random variables Xi are statistically independent and if, moreover, for each
i,j GN+

P{BA =j}) =P{{X,n =j}) >0 (18)

A very simple example of regular pairs of sequences can be obtained as follows.
Two i.i.n.d.-sequences X and Y are called independent, if {Ai, Y\, X2,Y2,...} isa
sequence of mutually statistically independent random variables.

Lemma 1 Let X, ¥ be independent i.i.n.d.-sequences, then (X,Y) is a regular
pair of sequences. O
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Proof. Let m E N+, (*i,...,*m) E Nm, (zi,...,zm) E (N+ X N+)m, let
Zi = (n],ni) for each i < m, then

\'=i
=ni} n {ln)
/rn m \
= Dp>) =" 0p@yrn =n = 9

=SpE==Ps =)=
:|r'n| PO~ >» =Ip

so that (16) holds. Moreover, for each (n"1),*2)) E N+ x N+,

(ele]

Ap (X W) =n(D)yjW=1@}) =
=l
=25 ({8 A =" (e ) =@ = @)
= jE:i P({BA = «()» «PHYi(*)= »(2) = °°
due to (18), so that (17) holds. The lemma is proved. O

Theorem 1 (soundness theorem). LetV = {(H(*)>y0))}/\| be a se-
quence of rough sets which defines the set V C A = {01,02,...}, let (X,¥),
X — Y = {Ti}i=i, he a regular pair of systems of random variables
with each Xi and \} taking (Q,S,P) into N+, then

P({ limV,,W= IlimV » =1}) = 1 (22)
\' n —*o00 n —»00 !
O
Proof. Due to the definition of ¥*,, and V*, a necessary (but not sufficient)
condition for a E VJ reads that a £ H(i) for some i £ N+, hence, a £ Lr) =

= Y.) so that W, C V. Dually, a necessary (but not sufficient) condition for a £
£ A —V* reads that a € A —V(i) for some i £ N+, hence a £ (J°Nj(A —V(i)) =



82 KRAMOSIL: DEFINITION AND RECOGNITION OF CLASSICAL SETS BY THE ROUGH ONES

=A—f|“iV(i) =A—V,sothat A—Vv* CA—V and V C V*. Consequently, for
eachw £ Q, N£ N+,

V.., w)CV.,+iH C lim V*,C limV » CVJ+» CV*w). (22)
n—*co n—mwo
Set, for each j £ N+,
A(j) = {i:if N+,aj£ V(i) U(A- 7(i))}. (23)
Ifaj €V, then Aj) = {i :a £ Y(N} b 0, as (JEli Y (i) = V implies that
there exists i £ N+ such that aj £ V_(i). A necessary and sufficient condition for

aj £ ("Lj V*,,(w)(= NTn o ¥ ,(a])) reads that there exists i £ N+ such that
JA(W) =j and Yi(uj) £ A(j). The probability of this random event reads:

pUIL* (W)=, y<(w)E A()}" =

=p (n-n(n-{Xi(w)=i, WLWE£X(j}H] =

1=1

(24)
=1-1 - {Afiw) =J, Yi(®) £ Aj)}D)
FHNE®
=1- 1'-_'-'.1 1- =J. Yi{u) £ A(j)})).
This value is one iff DML -P{X|(n>) = h E A(j>)}) = oo, which is true because
of (17) and of the fact that A(j) ¢ 0. Hence,
»N =y})=1. (25)

Ifaj £ A—V,then the necessary andsufficient condition for aj_£ A—imri_ 00 V*(w)
formally is the same as above, but now A(j) —(r :a3 £ A —Y(n}. Hence,

p({v= UWnV>)}) =1, (26)

and thetheorem isproved. O
Common sense and mathematician’ everyday experience yield that limit re-
sults like (21) are important when the theoretical or philosophical correctness and
soundness of an algorithm are investigated, but from the practical point of view the
non-limit properties are ultimately decisive. Therefore, in the sequel, an appropri-
ately defined “speed of convergence” of ¥*n and V* to V will be investigated.
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3. Some results concerning the speed of convergence

Considering the same model and notations as above, an element aj £ A is
called undecided in the n-th step, if a; £ V*(w) - Wiraw). Set, for each £> 0,

L(e,j) = min{n :P({a7 £ V;(w) - V», (W} < £, (27)

hence, L(e,j) denotes the (minimal) number of steps necessary to decide about aj
with the probability at least 1—e. If Z is a random variable taking (4, S, P) into
N+ then LEz(£) will denote the expected value of L(e,j) with respect to Z, i.e.,

LEz(e) = TZ[lL(e,J')P({Z(U,) =i (28)
J:

Theorem 2. Under the conditions of Theorem 1, L (¢,]) is finite for alle > 0
and for all j £ N+. If, moreover, for all i £ N+ and for X(j) defined by (23),

P({BA =], Yi(w £ Aj)}) > Qj (29)

for some Qj > 0, then L(e,j) < QJ1In(l/e). O

Proof. Fix j £ N+, then aj £ VAwW) —V, ,,(w) iff for no i < n the ran-
dom events Xi(ui) =j, F)(w) £ A(j) simultaneously occur. Due to the supposed
statistical independence of vector random variables ( )

n

p(Wjev»-v.,,H}) . WEA(j)})). (0

Hence, this probability is majorized by ane > 0, if

n
Jr>(1-P({X ,(W=1], Yi{u) £ A(§)})) < Ine. (31)
—
As In(l —) < —x for each 0 < x < 1, a sufficient condition for (31) reads
n
£>({ap =j, M) £ Aj)}) > In(l/£))- (32)

Relation (17) together with the fact that A(j) ¢ O for each j £ N+ imply that there
exists a finite no satisfying (32), evidently L(e,j) < no- Under the supplementary
condition (29) a sufficient condition for (32) reads noQj > In(l/e) from which the
assertion immediately follows.
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As can be easily seen, the conditions of Theorem 2 do not permit to state
that LEz{z) < oo for all random variables Z, neither when (29) holds. Or, take X
and 3’ in such a way that

P{X.H =], Ww) £ Aj)}) =2-* (33)

for all r= 2* k £ N+, this probability being equal to a 6Z >0 independently of
i for all other pairs z = (nl,n2) £ N+ x N+ of indices. Suppose that (16) holds,
then, evidently, (17) holds as well and (X,Y) satisfies the conditions of Theorem
1 Let Z take (CI,S,P) into N+ in such a way that for all K £ N+

P({Z(u) = 2*}) =2-*; (34)

for other indices their probability of sampling by Z is trivially zero. Then L(e, 2k) =
= 2klIn(l/e), so that LEz(e) = oo by (28).

Corollary. If the conditions of Theorem 2 and (29) hold, then for each a £ A
the probability that a will not be decided yet in the n-th step tends exponentially
to zero with n increasing (an immediate consequence of (30)).

Let us consider the case with finite sets A and V and with uniform probability
distribution over these sets. This situation can be formally embedded within the
presented formalization as follows.

Theorem 3. Let X —{A*}-~, 3;= be two sequences of statistically
independent random variables taking (CI,S,P) into N+ and such that, for each
I € n+t,

P{X{W=j}) =UN, if 1<j<N,
PAYiW) = K}) = Um, if 1< k<m, (35)
P{AH=j}) =P{bBWN =*} =0 if j >N, k>m.

Mutual statistical independence of all A,’s and Y<s also supposed. Let A be a
random variable taking (12,5,P) into A, statistically independent of each A* and
Yi and with the uniform probability distribution over {1,2,... ,m}. Let

Vi< N)@Lk<m[0j £ (z(0 M(A-7(*)))] (36)
Then, for eachj <N,

P{<4 € v¥w) - V...(W}H = P{Z(u=>) £ V*(w) - V..,(W)}) <

<(@-H )Y, 0

L(e,j) < mN In(l/e). (38)
O
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Proof. An easy calculation yields
P{ag 6V »-V »}) <
n

N

n(i-p{E{Xin = B g 6ac?)}) =

r11_1( 1-P({X ,H=j»/X({"H 6 A(i)})) = (39)
n
= card(A(j) N{1,2........ m})j <
i—1
< (- (mN)_ Dn
due to (36).

p(Ne )€ vih - v.,,(«)}) =

(Ne ) = GWh(W - *."(")}) =

11
m
o
N
I
i
a
<
=)
<
>
z

E.NA(i-( rT .
1—+

as the supposed statistical independence of random variables Z and A), Y) implies
that the random events Z(w) = a; and g 6 V*(u-) —V, n(") are also statistically
independent. (38) immediately follows from Theorem 2, setting Qj —(mN)-1. O

4. Statistical decision functions defined by rough sets

The pair (V, ,(w), V*(W)) defined above by V = |(LU(r), V)] , X —
—{ A)j and T = {7i}j"ij can be taken as a rough set which approximates,
in the reasonable sense explained and proved above, the subset V C A completely
defined by U*“ 1VI(i) or by HAV"t). From another point view, (V, n(t®), V*(w))
may be seen as a definition of a three-valued failure-proof decision function for
the membership predicate for V, if a £ V*w) —V,n(w) we are not able to de-
cide. However, admitting the possibility of a probabilistically quantifiable error
connected with the decisions, we may use (V,,,{<*>), V*(u)) in order to define a clas-
sical two-valued statistical decision function for the membership predicate for V as
follows.
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Let Z be a random variable taking P) into N set

p= “(1-i.)6V..WD (40)
2 ({«« €(V.,Hu(A-v;M))D

Let Up be a random variable taking (fl,S,P) into the binary set {0,1} in such
a way that P({Up(u) = 1}) = p. Both the random variables U, Z are mutually
statistically independent and are also statistically independent of each X{ and ¥).
Let D = {do, d{\ be a binary set of decisions, do means “the tested element of A is
in A—V", d\ means disin V”. Foraf A, m £ N+, decision function 6z (a, n, )
reads

6z{a,n,u) =di, or 6z(a,n,u) =1, (41)
if either 0 £ V*>n(w) or a £ V*(w) —V*,,,(w) and Up(® = 1,

6z(a,n,u)=d0 or 6z(a,n,u))-0 (42

otherwise, i.e. if either a£ A —V*(w) or a £ VMw) —\V*jn(w) and Up(u) = 0.

Intuitively, 6Z decides in a very simple way. If an element was already decided
when forming (Y*,,,(w), V*(w)),6z repeats this decision, in the other case it flips a
coin. The probabilities of the two results are in proportion to the sizes of the two
corresponding sets of already decided elements, the size being quantified by the
probability of sampling generated by Z. For example, supposing that A is finite
and Z samples each element with the same probability, then the coin yields both
the answers with probabilities defined by the ratios of the two results among the
already obtained ones.

Evidently, 6Z admits both kinds of wrong decision. An element a £ A —V,
being in V*(uj) —Win(w), may be wrongly proclaimed to be in V and vice versa;
at VN (\V*w) —V,in(w)) may be, again wrongly, proclaimed to be in A —V.
In order to be able to define rigorously the probabilities of both kinds of error
as corresponding conditional probabilities we suppose that the decision function
Sz is applied to the element of A sampled by An+i, i.e., to the first element in
the sequence (axiO)> axX2(w), *+*) n°f more tested by the three-valued failure-proof
decision function mentioned above. Set

PEi = PSi(Z.n) = P({6z (@XnH(W),n,Lj) = I}/{aXn+IM £ A- V}), (43)
PE2= PE2(Z,n) = P({62(@Xm+/w),n,w) = 0}{ax,+IM £Y}),  (44)

the other parameters not being explicitly introduced, PE\, (PE2, resp.) is called
the probability of the first (second, resp.) kind of error for the decision function
iiz (+ n, ¢ and with respect to X n+\. It is quite reasonable to expect that both PE\
and PE2 tend to zero with n increasing; in the next chapter we shall see under
which conditions this is true.
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5. Basic theorem for the proposed statistical decision function

Theorem 4. Let V, x, vy as in Theorem 1, but with regularity condition
replaced by a weaker one

oo

=bapg en™} =o0 (45)
i=1

for each i GN+. Let there exist a sequence Cj,c2, ... of positive reals and two other
positive reals Qi, Q2 such that

Qi <P({X,H =i})/a <Q2 (46)

for all i, n GN+, then
ﬂl_irﬂo PEX{Xn+u n) =ﬂ1im PE2(Xn+l,n) = 0. 47
L]

Proof. For Xn = ax,,, (43) implies

PE~AXn+un) = P({6xnmd (Xn+1(w),n,n) = I}/{Xn+l(u) eA-V}) =
P(iexnd nw) =1 Xn+iH G4- V}) (48)
PH{X,+1W G -V}

Due to (46), for V = {i :i GN+,a, GV},

p ({X,+1H g4-F})= E p({Xn+l(u) = a}) =
a&A —V

= E A({~n+iH =f}) <Qi( E ¢*)>0’

I6N+-V iEN+-V
(49)
moreover,
p({éx,+1(xn+l,n,w) = 1, Xn+l(w) GA -V}) =
=p ("l (X, *+i,nu>) = L xn+lw)Gd-v;H}) + (50)

+ P({«*nH (*,+1) nw) =1, X, +1(W)G A-y;H-1/}).
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If a £ A —V*W), then 6x,,+(o,n,w) = 0 so that the first summand vanishes.
Hence,

PEAXn+i, n) =
= (p{{xn+l(w)eA-v})ylx
X P({5xntl (An+1(w), n,w) = I, X n+i(w) £ A £ V*w) - V'}) =

- (p{XntIH6 A-V })) Ix (61
x E P {*"+i(<*>) = ijr>+l(a,n,w) = 1, a€ V¥w) - V'} =
aeA-V

= (p({X,+*N e, 4-1/}))N

XE ?2({"+:M1 =B,ag =laev» —V},
aeA-V

where
= P{Xn+1(")€ Y., U3})

P Pn p({xn+tlb) e (Y.,,u (N-y*M )}’

A short reviewing of the proof of Theorem 1yields that even under the weak-
ened conditions (45), V»>n(u>) and V*(w) tend to V almost surely with n increasing,

so that pn tends to P({ An+j(w) £ ¥Y}). The supposed statistical independence of
the random variable Wo yields that

(52)

PAM(X,+Ln)=p(p({Xn+IlH €A -y })) "({In+iM €vi(w)-y}). (53)
Due to (49) and (52), PEX(X,,+i, n) tends to zero iff

Um P({Xn+1w) £ v;(w) - V}) = 0. (54)
However,

E Nn +1N =a,atKNMN-N) =

aeA-V
= P({"iH =]j - {*<0*0 = h € Aj

j6||\El+_V ({"i i) rl):rll {*< Aj) (55)
= E - PEXi(U) = ], Yi(u) € AO)}))

j6N+-V
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Given £ > 0, take a finite set B C N+ —V such that

Ec>(1-() E g, (56)

i€B i€bj+-V
hence,
E ¢<(2) E c¢ (57)
EN+-V)-£ I6N+-V
where 1
=% fD E  Cj (58)
Now, (45) implies that
Aim O A({"N =;, YM GA(j} =0 (59)

n OOI I

for each j , take no G N+ such that
n(i-p({*,-H =3 b(w)e\n)}))<£/2 (60)
1=1

for all j € B and n > Ug. Now, the last expression in (55) can be written as

E P{Xn+i(«)=jH)n(I-P({Xi(W =i, Y*b) GA())}) +
*=

J6(N+-Vr)nB

|, y M gao-)}))

+ E p({*»+iH=N)TL1- = <
je(N+-vr)-B =
7)) E pxtiH=1})+ E  p({"ntlH =n)<(61)
JE(N+-V)nS jE(N+-V)-.B
7)) E (@Y (te)<
ie(N+-v)ns jE(N+ v) B
(*72) E (<§‘*)+ (*72) E &K=
J6MF \&

due to the definition ofs'. Hence, (54) holds and, consequently, PE\(Xn+1,n) —a0
for n —moo. For PE2(Xn+i, n), the proof is quite analogous with A —V and V,
and V' (w) —V and V —V*n(w), mutually replaced. O
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As an illustration of this general result, consider the finite case with A =
={au a2 ...,arrb Y = {<Z(1), V), (Z(2), V(2)),(K(m),V (m))} such that
Ur=iH 0 = flini ¥Y(*) = V. Let X and ¥ generate two sequences of statistically
independent, uniformly and identically distributed random samples from the cor-
responding sample spaces, as formally described by the conditions (35) of Theorem
3. In this case, using the same way of reasoning sis in the proof of Theorem 4 and
setting v = card V, A@*) = A(i),

PE2(Xn+1,n) =
p{{xn+l(uj) gv.,.,H}) p({xn+l(i) ev,tn@o)-v})
P({Xn+mm1 G(V.,,H UA- v;(w))}) P{Xn+1(w) GA- ¥Y})
E p{i,*1H =a,«G KH-f})

V \ aiA-V
~N) 1- (vVIN) (62)
= INI'IIl---ﬁT'_l

x £ [p({Intl(W = a}) _[[l(I - (PEX;M) = ah)PHY (b) GA@)}))) <

afA-V i=

“In A N, A N\ Nm AN\ NmJ
aEA —Vv
An analogous calculation yields

pA(xn+ln)«n (63)

™v Nm

where an « bn means that limn_oo((in/frn) = 1-

6. Frequential approximation of the statistical decision function

When applying the decision function 6 defined above, the weak point is how to
determine the value p to construct the random variable Up. Or, this value is defined
as the ratio of two abstract probability values, in general, not immediately obtain-
able from the observations and data being at our disposal. A strong temptation
would bring us to the idea to replace the value p by

_ card Y«

P card Win(w) + card(A - V*(w))’ 9
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but a short re-consideration yields that such a simplification may imply a serious
and undesirable modification of the statistical decision function 6. For example,
let {a,0} = V C A = {01,02,...}, let P({Xi(u) —aio}) = 0.9 for each i E N+,
let P({Xj(w) = a}) > 0 and independent of i for each a E A, let there exist, for
infinitely many a E A, an index i(a) such that a £ V(z(0)). Then p —0.9 for
n — 00, but p — 0, as card V*in(> < 1 for each n and cardv*(w) —»00 with
probability 1, if n —00.

This difficulty can be solved in two ways. Either, (64) is applied only in the
case of uniformly distributed and statistically independent random variables Xi,
when, due to the strong law of large numbers, p and p tend, with probability one
(almost surely), to the same value. Or, we may slightly modify the definition of
the induction processes by computing, together with \&,n(w) and V*(w), also the
values

M

v(n,u) = Xau Y .(w))(H), (65)
1=1

and
n

w(Nn,u) = ¥Y-"Xa- yrry.Gun(-~(‘4)-
-

So, the values v(n,u) and w(n,w) express the numbers of cases, when at random
sampled element X,(w) E A was decided (positively, in the case of t>(h,w), or nega-
tively, in the case of w(nui)), using at random sampled rough set
L)), V(Yi(w))). Evidently, repeated decisions concerning the elements al-
ready decided are repeatedly registered by v(n,u) and xv(n,ui). Now, set

) (67)
n o ov(nUl) ¢+ I(nLo)

and define the decision function 6* in the same way as 6, just with p replaced by
p*. Let PEi(Xn+i,n,S) and PEi(Xn+i, n, 6%), i = 1,2, denote the corresponding
probabilities of errors of both kinds.

Let Ev,n(P,ty be the expected value of the probability of decidability of an
at random sampled element X n(u>) E v, i.e.,

Ev,n(P,A) = E

. pxnwy £ 1) P (LYIVH e AD, 68)

analogously,

Ea-va(P a)= 7 PgxXnU) = 1> 5ovh) EAQD.  (69)
BN+-V PH{XnwW) £ N+ - V})
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Theorem 5. Let X and ¥ be independent i.i.n.d. sequences (cf. (18)), let
V ®0, let

EYN(p,\) = EA val(p, A)>0, (70)

then, for both i = 1,2 and for each kK G N+,
PE<(Xk,n,6%*) «,, PEi(Xk,n, 8). (71).
O

Remark. Condition (70) means that the ability ofsystem X , Y, V to decide the
membership relation for V is “in average” the same for elements as well as for non-
elements of v. Assertion (71) immediately implies that limn_ * pei(xk,n, 6*) —
= limn_oo PEi(Xk,n,6) (= 0 as Theorem 4 yields), but it is stronger, as it claims
the speed of convergence to be qualitatively the same for both the decision functions
6 and 6* and for both kinds of probabilities of errors.

Proof. Due to (65), n~1v(n, u) denotes the relative frequency of indices i < n
for which Xi(w) G H(Tj(w)). The fact that X and ¥ are independent i.i.n.d.
sequences and strong law of large numbers (cf. [1], e.g.) imply that

p({nnn n-yn.w) = P{XiM € Z(VIH)})}) = 1 (72)
However,

p({a>m €1m )} ) =x>{*i(W=j, ageTm)>) =

jev
=XJp({XiH =j,B A4 GXU)}) = (73)
fev
= £[P({ATUN =N)P({Y'H GXU)P] = (EVAPX~APUXA") €V}) > 0,
lev
due to (68). Quite similarly, (69) yields
p ({ Um n-xui(nw) = P({XXu)e A -MBA)})}) =1 (74)
and

PAH G i-"M )}) =(£a_y.1(3,A))P{*w) GA-V}) >0 (75
Hence, with probability one,

o v(n,u)
lim p*(w) = nl_l*r(l;lo v(n,U>) - w(n,u)

. n- lu(n, w

- nl—lgo]o fl~1v(n, w) + n_1Ui(n,w) "
lim (Py,1(P,A))P({AL(u;)G V})

| ™ (Pvi(P,A)P({A'H GV}) + (Pn_ya(P, A)P{Xx(w) GA- V})
P({Ai W) GK})
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due to (70). But, limn_00pn = P({Xi(w) G VQ) as well (cf. the proof of Theorem
4), so that

P({ lim pn(s) = lim pn}) = 1 (7)

Referring, again, to the prof of Theorem 4, we can easily obtain that for each
M e n+,

PE\(Xk ,n,6) = (1 —Pn)Kn, (78)
PE2(Xk,n,6) =pnLn, (79)
for appropriate  Kn,Lnindependently of pn and with positive limit values for

n —*o0. For 6% the situation is more difficult, as p* is a random variable. Instead
of (51) we obtain

pear» M*) = |[{[p((apen-y})]'1 (80)
o J2 = 1, a€ V;(w) - V}} }dFpn(u),
atA-Vv

where Fpn is the distribution function of the random variable p*. Following the
pattern of the proof of Theorem 4 we obtain that

PBAb.M*) =V (I-p*n(u))KndFPin(u) = (1- EP*( ))Kn, (81)
with the same Kn as in (78), where

EPn(-) = J Pn (w)dFPRn(u) (82
is the expected value of the random variable p”~(). Quite analogously,

PLX,,,n,6*)=(EpX-))bn. (83)

Set po = lim,,..;» p,,, take an e > 0. Due to the Jegorov theorem ([1], e.g.) and
(77) there exists measurable Qc Ci2 such that P(QQ > 1—e/2) and p£(w) —»0
uniformly on Qe. So, take n0such that |p™(w) —Po| < e/2 for each n > n0 and each
bl GDe. Then E(\p*(-) - p0|) < (e/2)P(Qe) + e/2 < e, hence, \E"n(-) -p 0] < £, so
that Bo*h —po for n —»o0. This fact and (78), (79), (81), (83) imply the assertion
(72). O

7. Comments, remarks, and conclusions

The results presented above are very elementary and perhaps even trivial, and
they could be developed in more details or replaced by more sophisticated ones.

2*
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Nevertheless, some basic ideas of statistical induction through rough sets seem to
be illustrated, by these results, in a degree sufficient enough to subject them to a
brief discussion.

First ofall, let us pick up the fact, that our presentation of statistical induction
through rough sets as a part of artificial intelligence is quite legitimate. Rough sets
can be taken as the most general tools, at least within the framework of classical set-
theoretic language, to describe and to deal with incomplete knowledge expressible,
otherwise, in the three-valued Lukasiewicz logic with the third value interpreted as
“it is not known, whether...” There are numerous particular cases in which such
a situation may occur, remember, e.g., missing values of some observations in the
GUHA method, undecidability of certain assertions in formalized theories because
of theoretical or time-space limitations, etc. The case when a system of rough sets
defines a (classical) set can be seen as a process of appropriate combination of pieces
of partial or uncertain knowledge to obtain the complete knowledge, and processes
like this are fully covered by the domain of artifical intelligence. If such a process
yields this complete knowledge only asymptotically, as it is the case even A or V
are infinite, our approach offers, at a level as general as possible, an approximative
statistical solution reasonable from the point of view of simple statistical qualitative
criteria. The same approach can be applied in the case of practical intractability,
when the sets A and V are finite but too large to be checked systematically. The
notions and apparatus of rough sets enable us to pick out what is common for
many processes of statistical approximative combination of partial (incomplete)
knowledge and what is, in particular problems, often hidden behind the specific
features of the problem in question.

A further development may proceed at least in the two following directions.
Either, a supplementary structure may be imposed on the sets A and V, and the
properties of elements of A and V, or some relations among these elements, involved
by this structure, can be used to propose more sophisticated statistical induction
procedures than the most simple one described above. These auxiliary structures
on A and V may be more or less closely inspired by and connected with the intended
practical applications, but they may be also rather general. For example, the set
A may be equipped by a topological structure according to which the elements
of A which are “close” to elements of V are also in V with a greater probability
than those which are rather isolated from elements of V. An appropriate union of
neighbourhoods of elements of \& n (> will then serve as a reasonable approximation
of V. Or, going in the opposite direction, we may still weaken the conditions of
the model investigated above. For example, we may consider the case when, given
at Aand (V,V) £ V the answers whether a £ V and a £ A —V are charged with
positive probabilities of error. This error cumulates with that one connected with
the decision function D and deteriorates the statistical qualities of the induction
procedure in question. Both these modifications will be investigated in the next
future.



KRAMOSIL: DEFINITION AND RECOGNITION OF CLASSICAL SETS BY THE ROUGH ONES 95

Being rather trivial, the contribution is almost self-explanatory. All the refer-
ences, if any, concerning the most simple combinatorial probability can be consulted
with any textbook of elementary probability theory; let us introduce [1] as a very
good one. [4] is a foundatory paper on rough sets and [3] is an example of latest
contibutions to this theory. Finally, [Z] is mentioned as it contains a more detailed
of references accessible in our country.
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OnpegeneHne W pacno3HaBaHMe KNacCUUYECKUX MHOXECTB MOCPEeACTBOM
rpy6biX MHOXeCTB

WBAH KPAMOCUN
(Mpara)

Fpy6ble MHOXeCcTBa ABNAOTCA OTHOCUTENbHO HOBOW 06nacTblo COBpPeMeHHOW MaTe-
MaTUKW C UHTEPECHbBIMU NMpUMeHeHUsMMW. B paboTe nokasaHo, KakuM 06pa3oM BO3MOXHO
BOCMNONb30BaTbCA TPYyGbIMW MHOXeCTBaMMW, 4TO6bl omucaTb W pewuTb npobnemy craTtu-
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YacTHbIX CNy4yaes.
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In this paper the design of a finite-dimensional Sakawa controller is described. A lower
estimate is proposed for the dimension of this controller in a closed-loop infinite-dimensioned
system. Case studies are reported of designing such finite-dimensioned controllers, and a
relation is established between the controller parameters and the spectral properties of the
associated elliptic operator.

1. Introduction

The stabilizability of distributed parameter systems has been investigated in a
number of papers [2-5, 7, 8,11-14,17-23]. Stabilization criteria have been obtained
[2, 3, 8] with a finite-dimensional input, and extended to a wider range of processes
with some conditions on input operator compactness [17]. For finite-dimensional
input and output systems adaptive controllers [9] and Pi-controllers [15] have been
obtained. In [10] the stabilizability of parabolic distributed systems, with certain
conditions imposed on the operator spectrum, is studied through controllability
and observability analysis of some linear finite-dimensional systems. Existence
has been proved [11] of stabilizing feedback for a nonlinear oscillatory distributed
parameter system with a specified indicator of exponential stability. Existence
has been proved of and an explicit form proposed [19, 20] for finite-dimensional
stabilizing feedback for an infinite-dimensional system. For these findings to be
applied, however, the dimension of the controller has to be known which would
provide the desired exponential stability. This dimension is determined in [21] by
selection with subsequent computer modeling of the process. In this paper a lower
estimate is proposed for the dimension of this controller in a closed-loop infinite-
dimensional system, case studies are reported of designing such finite-dimensional
controllers, and the relation is established between the controller parameters and
spectral properties of the associated elliptic operator.

Akadémiai Kiad6, Budapest
Pergamon Press, Oxford
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2. Design of Sakawa controllers

This Section will describe the design of finite-dimensional Sakawa controllers
[19-21].

A controller has been proposed [19, 20] for the stabilization of distributed
parameter system. In [21] these methods are used to offset bending oscillations
of a flexible element in a manipulator tracking the desired path. These papers
do not, however, provide any estimates of the controller state space dimension
which depends on feedback gains, the observer parameters as well as on the process
parameters. The lower estimate of the controller dimension must be known for the
design.

In this Section this estimate is computed for the Sakawa controller which
provides //-exponential stability of a closed-loop system. By assumption the input
of the system £(C, A, B) is finite-dimensional and, therefore, this system is assumed
to be stabilizable by finite-dimensional feedback.

This stabilizability has been shown [2, 3, 8, 17] possible iff

el) for some 7 GR, 7 < // the subset 47 = {A £ cr(A); Re J1> 7} of spectrum
c(A) is finite and, moreover, the multiplicity of every eigenvalue is also finite and
can be separated by a simple closed-loop from the remainder of the spectrum <r(A)
or has a spectral decomposition [3, A= An ® An and H = ffjv ® A /v, where N
is the dimension of the invariant subspace Hm associated with the set <7;

e2) (At Bn) is a controllable pair with Bn = Pn B, where P H —Hwm is
a natural mapping of H on Hn\

e3) An —{l —Pn)A is an infinitesimal generator of a 7-exponentially stable
semi-group eAbIT or a negative 7-type of a semi-group.

In the design of finite-dimensional linear stabilizing feedback let us start, as in
the preceding Section, with a finite-dimensional system E(C, A, B). For this system
£(C, A, B) linear dynamic and static feedback are designed in various ways. One
of them is very efficient in stabilizing finite-dimensional approximations of infinite-
dimensional systems with a discrete spectrum.

Linear stabilizing output y = Cx feedback has the form

n - Kz,
z= Az + BKz + L(Cz —y),

where the operators K:CN —Cm and L: C1 —  are chosen so as to make
systems

x = (A+ BK)x,

z=(A+LC)z

/[-exponential.
Let us show the parameters K and L are related with the spectral properties
of the operator A, in particular its resolvent 72(A A) = (XI —A)-1.
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Theorem 1. Any number /1G <A+ BK) \ (T(A) satisfies the relation
det(L - KR(X,A)B) =0
and the eigenvectors £(A) associated with this Aare computed by the formula

£(A) = A(AJ1)BC, 1)

where ( is some nontrivial solution of the system of equations
C= KR(X,A)BC )

If AGa(A + BK) M<r(A), then the associated eigenvector £(A) satisfies the
relations

(i(X),BKZ(A>= 0,

where £(A) is any solution of the equation (A/ —A*)£(A) = 0.
Proof. If AGcr(A+ BK) \ cr(A) and (A + BK)£(X) = AE(A), then

*A) = R(X, ABKL(A), KE(X) h 0, 3)

because in the opposite case AG <r(A). Left-multiplying (3) by K we can see that
the homogeneous system of linear equations

(1 - KR(X,A)BK = 0

has a nontrivial solution ( = AE(A). Consequently, with det(7 —KR(X, A)B) =0
with AGcr(A+ BK) \ <r(A).

Let us check that with AG cr(A + BK) \ cr(A) the eigenvector £(A) is com-
puted by formulas (1) and (2). It is easily seen that (XI - (A + BK))R(X,A)£ —
—BKR(X, A)BC, —0. This proves the truth of formula (1).

If AG<(A + BK) Mtr(A) then

BAE(A) = (A/-A)E(A). (4)

Because det(AL —A) = 0 the system (4) is solvable iff for any solution £(A) of the
adjoint equation (XI —A*)E(A) = 0. It is true that <¥(A), BA’E(A)* — 0, which
proves the Theorem.

Theorem 1 is formulated in a most straightforward way when the input is
one-dimensional, or B = 6 G C". More specifically, the following proposition is
true.

Corollary 1 If the input is one-dimensional, then
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1) any number £ a(A + bk) \ a(A) satisfies the relation (k, R(A A)b)k —1,
and the eigenvector £(A) associated with this Ais computed by the formula £(A) =
N

= R(X,A)b, with (p,q)K = "P i?i hereafter;

t—+
2) if A6 cr(A+ &) M<r(A) then the associated eigenvector satisfies the relation
o<* £(*))« = 0,

where £(A) is any solution of the equation (XI —A*)£(A) = 0.

Propositions following from the Theorem 1and Corollary 1are naturally true
which lead to the same results for the system z = Az+LCz. Let us use these results
to compute the dimension of the Sakawa controllers for /i-exponential stabilizability
of the infinite-dimensional system E(C, A, b), where C € H,b£ H. Recall the main
stages of the design of Sakawa controllers.

Operator A is assumed to have no multiple eigenvalues and satisfy al)-a3)
[23], el)-e3) and ReAn —%—e0 as n —*00. Then elements of cr(A) are enumerated

Re Al > ReA2>ReA3> ... > ReA,>0> Re A+i > ... 5)

A Sakawa controller is designed for a fixed 4 £ R. The system with this
controller in the closed-loop is required to be p-exponentially stable. The design
proceeds in the following stages.

Stage 1 Under the conditions of (5) and with ReA,, —* —e0 as n —»00,
choose a natural N such that with n> N, ReAn < L.

Stage 2. The spectral decomposition of AisA = An 0 A, H —Hn ®dgr,
where N is chosen at Stage 1. For a finite-dimensional system E(CV, Ajv, bn) (here
Cjv = PnC, btf = Pfi/b, and Pn'-H — Hk is a natural mapping ) a stabilizing
dynamic feedback is designed

N
u -
1=1

i = ANz +bNu+ IN(""2cizi —yJ,
T2 '

where the parameters (jkj,..., Jgy) and (I\, mm » )7 are chosen by conventional
methods [1] so as to make the closed-loop A-dimensional system p-exponentially

stable and, as before, (c,x)* is understood as the sum "*axi ory = (c, r)«.
=1
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Stage 3. The feedback (6) is modified

N

u= E**2<
»=1

o !
Z = Afif+mz + bN+m U + IN (E cizi - YY),

t=1

where /A denotes an (N + m)-dimensional vector whose first N coordinates are
(h, mm In)T and the latter m ones are zero, z £ CN+m, and A = Ay+T 0 A~ +m
is the associated spectral decomposition of A. This dynamic feedback is referred to
as a Sakawa controller [19]. It has been shown in [19, 20] that the feedback system
E(C, A, B) is /i-exponentially stable for m being fairly large.

Let us determine the lower estimate of m with which //-exponential stability
is ensured for the closed-loop system.

Theorem 2. For the system E(C,A,b), (c.b £ H) conditions al)-a3) [23]
hold, in (5) the elements of o-(A) are enumerated and ReAn —»—00 as n — 00
or, for any fixed // £ R, there exists Ay such that ReAjy < // and if the system
£(Cjv, Apfjbpf) is controllable and observable, then there exists a Sakawa controller
(7) which //-exponentially stabilizes the system £(C, A, b) when the natural number
m satisfies the conditions

N Cﬂi N N|f; N /\ik
>
1 I, -A02 *E E1 .17:?.

=z

i=1 a p=1 1I-
E I/ ((*i- A)n-- A)@>, - X]) f] }
1A 1 J (82)
(// ReAr+T+1)
N L < o
biki E bl 2
wp - A2 iI=7V+m+l
\N~ - iR -
1=1 é‘t (Al-Ai) " P /
('L —max{maxRewj, max Re A})2 (8b)
 E IM2
i/=N+m+1

with bi = (6,£(A,)) and ¢ = (c,f(Aj)), where (s, ¢ is a scalar product in H, £(A)) is
the eigenvector of the operator A associated with & £ <1(A), — (kr, k™) and
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IN = (/x,..., IN)T are parameters of the feedback and the controller, respectively.
N is chosen so that Re Aw < /i{Ai,..., Xn } are eigenvalues of the operator An +
+1n Gh , {wi>e+twk} are the eigenvalues of the operator An + 6vfch; it is assumed
that
[{Ab ... AV} U{a»!,... wiv} ] Mcr(d) =0, A A, un

with i g j and {Ai,..., AV N{y,...,wjv} = 0

Proof. From a3) it follows that a basis {"(A;)},“ ! can be chosen in H where
{A}"1 is the spectrum of the operator A with the enumeration (5). Let the
parameters kn and In and natural numbers N and m be such that are formulated

in the Theorem. The system £(C, A, 6) in the basis {"A«)}?” is represented in the
form:

/N+m
Z = AZ + bi(kN, z)e az r= 1,2,....iV,
=i
Zj = AZj + bj(fcjv) 2)ki j= N+ +m,
xu —\ vxv Fbu(kjsj)*)ri ¥=1,.,,N+m,
% = XAXB - bR (kfif , 29r, H=N+m+1,..., 00,

3 — (cN+m , XN+m )jS T (cN+m , %N+m)tl,
i=l
where xjvHTl = (xN+m+1,...) and xar+t = (x1,.... xN+m). Following the substi-

tution a = zN+m —XN+m, C = XN+m, and xN+m = XN+m, the equations of the
system take the form

, N N+m 4
d, — Ajoj + I, ( Ci T ~ A~ Cotid li(xN+m,CN+m)IK: i 1)

4=1 «=N-1-1
4 =\jofj, j=N+1,.,N+m, (9b)
O = AG + bj((kN,a)K+ (kN,Ok), j =1,...,N +m, (90
ij = \jij +bj((kN,oi)u + (fcjv,O)n), j —N +m+ 1,... oo. (9d)

Because Re Ajv+i < /1 the system (9) is exponentially stable iff so is the system
£= Sng+ fV(C/V+m, XN+m)«,
Xj = AXj + bj(kN,0*. J—N +m+ 1,... 00,
where £ = (a,£)T, & = (Jbi,..., JKjv,Ibi, e¢*«&V) and the matrix is block-wise
[ —£0(A) + (nen | 0 \
Sn =
V.  f>NN | —£qA) + 6orAmT/
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where .
Jw —A
UA) = \| , A= {Ai,..., AT}
I 0 w— Ar)
The eigenvalues of the operator Sn'.C2N —+C2N are or a spectrum

associated with the vector /gj are {A,}* Mer(A) = 0 and it follows from Corollary
1 of Theorem 1 that {A,}-" are roots of the equation

(ciV Ej~1(AV;vjiis = 1,
where {wj}” are eigenvalues associated with the vector fgyv, or roots of the equa-
tion

(fc/v,£-1 (A)6jv)iR = 1.

The eigenvalues of the operator Sn are assumed to be enumerated in the
order in which they are listed. Let Earbe a matrix whose columns are eigenvectors
of the operator Sn, or Sjv = {£i,... ,£2iv} or

c ¢ —1I Aifi, withl<i<N
N ' 1£>1 with N+ 1< i< 2N.

Then the rows fo the matrix E* 1are transposed eigenvectors of the operator

Sj/ (where T denotes transposition, (S,j)T = Sji). Indeed, if Sj*yj = then
2N

(ME)m ;\:1 i {S (wn —H {jj 'SnEv)k _Il-'ij Kv 6 a(5'r).

Consequently, if x,, ¢ then (jj,Ev)s —O0and (yj,£i,)w ® 0 with xu—  The

latter follows from the fact that the vectors {£r} ~ are linearly independent. In
the light of the above, {7,}?” can be taken such that (7 ,£j)b = O with i ¢pj and

(7<£s)<«= 1 Th -
) hi'\
A —

\7In)
The matrices Ear and Eg,1 are computed by using Corollary 1 of Theorem 1

>
«c 84 7
( qg'WiN \ Wt —AI
{BEr\u)BL4n(kn,S;4n)) >=
bN
\ tk—Arr / k=TN,
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-1
U* - A ANy °Jle o p)
k=1,N_
< T _ V. N !
(AE;M)A-"Blb*,er(\)kn)) (s-HWnf E A 7
i=I,N
where the matices .4, B, and «4-1, B~I| have the form
( h / ft. fti \
Ai —Ai AN —Ai uh —Ai N — Al
A= . B =
In In 6or 6nl
V Ai — Aai Anr — Agr |/ v U\ —Agr wiv —Ajv /
(B~y =
/ *i \ / K\ \
u\ —Ai -1 rar —Ai N AL -1
(E-h=> ) E *7
kfj Visi (wi —A,)2/ KN =i (wiv- AJ)2
\ U\ —Aar J UN - Aagr
M 1T =
cl
(-1 . : -1
AL-A . Gl  4-1 Alv - Al N ri
. _ E 7T
cjv ith (Ai - A))2 c'n i=i (Atv- A))2
Al — ATy Al - Agr

Once the coordinates p —E are changed, the matrix of the operator Spj becomes
diagonal and the system equations take the form

A o\

p= Ui P “p " (cN+m ) Ygr+rn)in '

VO LItf)
ij = ajij +h(ETKN,p)K, j=N+m+ 1,...00; /, = (/b..-InJi,-mIn)Tm
Take the Lyapunov function in the form V = (||p|| + par+T||), where ||p||2= (p,p)w
and |pkar+ 712 = (xfj+mlijv+m)*- Having differentiated it by virtue of the system
we have
dd\t/ < "max|maxReAi,maxRew,j- + ||6,V+m| « W RKN\) «||p||-

f( R e j mmAAML*T VAV|) " IIAN+m-
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Consequently, if

R-eAN tmtl + |[cjv+tm| <P /M| < M
(10
max | max Re\itmaxRew,| + ||6M+T|| ¢ |[HX&r]| < M

\Y% - .
then i—t < nV, or the system is /i-exponentially stable. From the latter two

inequalities a natural number m is chosen. For this purpose squares of the norms
IF2nr |2 and IIEM/jvII2 are computed. We have

FAVIR=X S —7)

t=i /t=i

. 5\/( tN
*|+ xiy *+A

LY T
IHARIR= X | /| £>*/& - A)2+ X NX N
=l =1 =1 A2 2

X1/ (VWi-ANP)A/T-AT) 2

N
X XM ./[(wp-A)):
1=

From these relations and inequalities (10) follows the truth of the Theorem.

This theorem makes it possible to analyse the stabilizability of and design
stabilization algorithms for a wide range of systems. In the following Sections
examples are provided illustrating the application of the results. For computation
inequalities (8) have to be made cruder and the computation simpler. It is easily
shown that for P£ M 12, P * lijvlI2 the following estimates hold

N N
HaH2<NBIM M2y ) (aw) x AV oK - A2 N,

P2(AA) i/=i n=i /
N N -2 N N
PbI2<X x caift-A )3 +X X imid-m 2-im 2x 1)
=i 1=l p:lj:i
1
N N

X PAAAPZ2BA) X AJ(TT-A ) X W /(M- A)2

*= 1 i=i
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where p(w, A = | m_inN Iw, —A3—1
<i,j<
Conditions (8) may be simplified by using these equations.

3. Examples

Take up diffusional equations

dv  d2v
ft=W +nv) +9{xu’ 19
u(0,t) = v(t) =0 atanyt >0, (19

u(x,0) = p(x) with any x £ (0,ir),

n

2 f
y = — | p{x)vdx is the system output. Functions g(x) and p(x) reflect the prop-

0
erties of the input and output, respectively, or the resolution of the measuring
equipment and the nature of the control action. Function /(v) is assumed to be
uniformly Lipschitz, or |[/(u)] < F\W\ with any v £ R where F £ R+.

It is assumed that g(x) and p(x) belong to, at least, £2(0,%) and tp(x) £
£ # 2(0,F). Then solution of the problem (12) is understood in a generalized sense.
Design a Sakawa controller for the system (12) in the case of

p(x) = 10sinx + f-J sinix,
i=2

g(x) = 5sinx + AD ((—1
1=2

F= 1

It is required to stabilize the system (12) /i-exponentially with p ——2. To do
this it is sufficient to design /i-exponentially stabilizing feedback for the linear part
of the system (12) assuming that p = —3. The Hilbert space H willbe  0,%) with

a scalar product (v,w) = —VJ vwdx. The operator A D(A)= {,(0)

0
=u(f) =0 d—Z\é E /-2(0, %)} is dense everywhere, its spectrum a(A) is discrete,
<1(/) = {—n2; n = 1,2,...} and the eigenfunctions

sinx, sin2x, ..., sinnx
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add up to a basis T2(0, ir). In this basis the linear part of the system (12) has the
form

iTi =-TI+ s
<An =-n2T,+ (1) 2« n=2..00 (13)
»-ior. +

Because every subsystem is controllable and external resonance does not occur,
any TV-dimensional subsystem of the system (13) is controllable and observable.
Consequently, all conditions of Theorem 2 are met and a Sakawa controller can be
designed.

Stage 1 For B = —3 with n = 2 we have A2 = —4 < —3. Consequently,
V= 2
Stage 2. The system £(CV, Alv,&ai) (TV= 2) has the form

AT 1= -T1+5,
+T2=-4T2++ u, (14)

y= 10T! + -~ r2.

Using Corollary 3 of Theorem 3 [23] we see that the system (14) is controllable and
observable. By conventional techniques the feedback is designed

m=-2zi+ 2\/3z2,

21=-z\ + 5u - —2(102i + —’l=22— ¥),

R=-4,+7T

The system (14) with this feedback is easily shown to be 3-exponentially stable and
with the notation of Theorem 2 we have uq = —6, w2 = —7, Al = 4, A2 = -5,
A = —, and 2= 4.

Stage 3. The natural number m in (17) must be chosen so that conditions (8)
of Theorem 2 hold. Using inequalities (11) we have

Ne»11 < 130,
INe , ||< 201604.
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Now, the number m is found from the inequalities

130< o

] U'l
X ()
201604 < (2 +m + 1)2- 3)2 /

v=2+m+l

From these inequalities it follows that m > 6. Consequently, the final form of the
3-exponentially stabilizing feedback is

n -—2zi +2\/3r2,
2 /14 I | I I

Zi= -Zx + 5m - - \10zi + -1 22+ - B+ 04 A+ -
i, =-4r, + -"«, b—255+
i3=-923+1iy,
I .
4= —1674 + ", i — —492z7+ ){]]\ U,

1
= 6429+
?0 27 0743

Sakawa controllers are designed in a similar way for systems of the form

dv

Lv + g(x)u,
0,

Bv\dd

y= i px)v(tx)dx,
n

where L and B are certain linear differential operators and the stationary problem

Lv —0,
onjan =0

is elliptical.

Z5
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Let us now consider the approximate controllability and observability of the
system

div k(x) grad v + g(x)u,
ulan = j

Y=V p(x)v(t,x)dx,

n

where i1 C R" is a limited region with a smooth boundary dCl. The Hilbert
space H will be the space T2(fi) with a scalar product (v, w) = f v(x)w(x) dx. In

(15)

n

this case al)-a3) [23] are easily shown to hold, where Av = div Af)gradv and
D(A) = =0, Av £ L2(fi)}. It is well known that a(A) = {Ai,J2,-*®is a
discrete set 0> Al > A2> ... > A —»—00 as n —*00 and the set of eigenfunctions
{£(A)}£i form a base in Tr(")- In this base the problem (15) re-arranges into

Ti = —ATi + giU,

9 i=12,...00,
y =Y | piTi'
i=1
where o
»= £ THAS.
1=1
divAr(x)grad®(Aj) = A-i(A)), (16)
i(A)]an = 0,

P =/ p(x)i(\i)dx, gi = f g(x)E(\i)dx.
n n

For this system all conditions of Theorem 3 [23] are met and so the system is
approximately controllable and observable iff for any N the system

Ti =- A+ afn, i=1,2,...,N,
N

y =Y | pii
1=

is controllable and observable. The latter is true iffp- 0 Oand gi o O forany 1,2,....

Consequently, the system (20) is approximately controllable and observable iff for
any natural i

J POOEC)DXx 0, I g(x)E(\i)dx O,
n n

3*



no KOROVIN et nl.: INFINITE-DIMENSIONAL SYSTEMS, Il

where £(A,) is a solution of the elliptical boundary-value problem (14).

4. Conclusions

The findings of this paper are applicable to the analysis of a broad class of
distributed parameter systems. Thus, if the stationary part of the equation system
is elliptical, then the methods devised above make it possible to investigate its
controllability and to design, in numerous cases, a finite-dimensional stabilizing
feedback. Sakawa basic ideas not only make it possible to design linear dynamic
feedbacks such as (5) but also open up vistas for using various well-tried finite-
dimensional controllers in infinite-dimensional cases. Thus, infinite-dimensional
systems under compact uncertainty can be stabilized by using Sakawa modification
of the adaptive Nussbaum controllers [6, 16] or binary stabilization algorithms.
Especially promising is the adaptive tuning of the natural parameter m from (5)
in the case of a nonlinear uniformly Lipschitz disturbance but with the Lipschitz
constant unknown.
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LUMPED INPUT AND DISTRIBUTED OUTPUT SYSTEMS
AT THE CONTROL OF DISTRIBUTED PARAMETER SYSTEMS
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The paper deals with fundamental problems of control of some classes of Distributed
Parameter Systems by means of Lumped Input and Distributed Output Systems.

Keywords: Lumped Parameter Systems, Distributed Param eter Systems, Distribut-
ed Input and Distributed Output System, Lumped Input and Distributed Output System,
Distributed Parameter System of Control.

1. Introduction

Distributed Parameter Systems (DPS) are mostly interpreted as Distribut-
ed input and Distributed output Systems (DDS) by means of Partial Differential
Equations (PDE).

Many times it is advantageous to interpret some classes of DPS as Lumped
input and Distributed output Systems (LDS), Hulko, (1979-1990).

LDS is a new concept in Systems and Control theory. The fundamental
problems of control of some classes of DPS are formulated and soluted by means
of LDS in the paper.

For illustration some results will be indicated from engineering practice: Self-
tuning control of a temperature field at fluidized combustion in energetics.

2. Distributed input and distributed output systems

Systems the state quantities of which are given by quantity fields, by infinite-
dimensional quantities or by spatial distributed parameters are DPS.

In the present theory of DPS these systems are mostly interpreted by means
of PDE. It is well demonstrated, for example by the definition in Systems and
Control Encyclopedia: “Distributed systems are systems which can be described
or modelled by partial differential equations.”; Lions (1987).

Akadémiai Kiad6, Budapest
Pergamon Press, Oxford
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If we consider state quantities X(x,i) identical with output quantities Y (x,t)
then partial differential relations

PLY(x,H)] = QLU(x,1)] (2.1)

—at the specified conditions—give in the input/output relation Distributed input
and Distributed output System (DDS). (Figure 1. x—space axis co-ordinate, t—
time axis co-ordinate.) The present DPS theory is in fact the theory of DDS.

At attempts of applying DDS theory results principal difficulties arise in cur-
rent engineering conditions. For example: How to generate in the direct way the
infinite-dimensional input quantity U{x,t)I\

3. Lumped input and distributed output systems

The study of the operation of various classes of DPS in technology, the live
and lifeless nature shows that U(x,t) is very often generated indirectly by means
of some generators {G,}, = G of distributed input quantities {i/j(a:,t)}j. Then
U(x,t) —Y,Ui{x,t). Figure 2a, Figure 9, Hulké, Mikulecky (1984), Hulké, Kocsis
(1985), Hulkd et al (1985-1988), Hulkd et al (1983-1989).

The system between the vector U(f) = {£/1(<)}, and Y (x,t) is an LDS, Hulkd
(1987-1990), Figure 2.

Real LDS occurs frequently in practice, when

* the controlled quantity is given as the quantity field Y (x,t) and

* practically manipulable input quantities are at disposal only as lumped quan-
tities {L7,(t)}, Figure 9.

UIxF) Y\x,t)
OPS

) obe )

Fig. 1. Distributed Parameter System (DPS) as Distributed input and Distributed output
System (DDS), U (x,t)/Y (x,t) — Distributed Input/Output Quantities

Generally, control problems of LDS can not be solved on the basis of PDE
theory results.
Let us model the LDS dynamics by Multi Input and Distributed Output

(MIDO) system: n

Y(x,k) =Y, 9H(x,i,k)®Ui(K), (3.1)
i—1
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a)
Uit ppg Tun
W) / ©)
u’Jt) LDS

Fig. 2. Distributed Parameter System (DPS) as Lumped input and Distributed output System
(LDS). {t/,(i)L = U(t) — Lumﬁd input quantities; {G,}, = G — Generators of distributed
input quantities: A U, (x,t) =mU(x,t) — Distributed input quantity; V(x,t) —

>
Distributed output quantity

Multi Input and Multi Distributed Output (MIMDO) system:

IYl('\/l)I 'gH(X,I,k) IUX(k)_
= ®
Yn(x,k)m gH(x,n,k)_ Un(k)_

Multi Input and Multi Output (MIMO) system:

Yi(xi, k)"  "gH{xi, I k) "Vi(ky
_ ®
Yn(Xn) _ gH(xn,n, k) Un(k)_

where {gH(x,i,k)}itk are discrete pulse (weighting) characteristics of LDS system
and of shapers {#m}< = H: HLDS. “®” is the convolution sum sign, Figures 3, 4.
Let us introduce the reduced characteristics

{gHR(x, i, K) = gH(x, i, kK)/gH(xi, i, (3.4)

Figure 4. Let us transcribe models (3.1-3) by means of them:
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L (/r) (V119] U,.\K)
Fig. s. Input/output quantities of LDS Fig. 4- t-th distributed pulse
and pulse shapers {//,}, = H. HLDS. characteristics: gH (x,i,t)
n
Y(x k) = A2gHR(X,i,K)gH (xi,i,K)® LK), (3.5)

1=l
YiGtfc)  gHR(x, 1,k) gH(xi, 1,K)

= ® (3.6)
ri'l Lo.]l:&ril gHR(X, n, k) gH(X,,, n,k) Un(k)_
Yi(*i,k)m "gH(xi, ik) "uw
= ® (3.7).
Yn(xn) k)" _gH(xn,n, k) Un(k).

So, the HLDS dynamics is decomposed into
* the time, finite-dimensional components (TC):

{gH(xi,i,k)}i=ijrk, (3.8)
* the space, infinite-dimensional components (SC):

{gHR(x, t, * (3.9
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The time component of the output quantity, trajectories {Yi(xt, F)}, (3.7)
are given by the time, finite-dimensional components of the HLDS dynamics, (3.8).
Linear combinations of elements of space components of HLDS dynamics,
(3.9) are shifted on trajectories (3.7) and they give distributed quantities {¥Y)(k, &k«

Their sum gives the whole distributed output quantity: Y(x,k) = _1Y{(x,k).
»=
Let us consider the actions of step functions {Ui(k) = I(fc)}i=i,n on the
MIMDO model inputs at zero steady state. We obtain on the outputs distributed

transient characteristics {hH(X, i, &}e* Let us define reduced courses of these
characteristics at + = oo (Figure 5a).

{hHR(x, i, 00) = hH(x,i,00)/hH(xi,i,00)}i. (3.10)

At actions of constant input quantities {{/,(00)},- the output quantity can be ex-
pressed on MIDO model output level by means of {hHR(x, i, 00)},:

M
Y (x,00) = hHR(x, i, 00)hH(xi,i, 00)[/,(00) =
*—
n
= "2hHR(x,i,00)Yi(xi,00), (3.11)
i=i
Fig. 5a. Fig. 5b. Steady values of input/output

hHR(x,i,00) = hH (x,i,00)/hH(xi,i,00) quantities
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where {¥(x,,00) = hH(xi, i, 00)C/,(00)}j are output quantities on the MIMO
model output level (Figure 5b).

4. LDS control

Let us start from the following Distributed Parameter Discrete Control System
(DPDCS), Figure 6 in the analysis of fundamental problems of LDS control.

The dynamics of controlled system HLDS is described by discrete MIDO,
MIMDO, and MIMO models. The output quantity Y(x,k) is modelled by means
of a MIDO system in block MHLDS: YM(x,k). At the same time, the relation

Y(x,k) = YM(x,k) 4.1)

is assumed. The sampling “K” is considered only in time discretion.
Let us start from the following formulation of control task according to limited

extent of this paper:

FR: The aim of the LDS control is to secure that at disturbances and desired
quantity changes

a: In “x” direction the controlled system output quantity — on MIDO model

output level; in time t = oo: Y(x, 00) will in the "-neighbourhood of the
steady desired quantity 1T(x,00)

IVE(x,00) - ¥ (x,00)|| = |E7(K 00)|| < 6 4.2

where 6 is a given real positive number and

B: in time direction the control process is of prescribed quality. For example
{Ei(xi, 00) = 0}j-i>non the MIMO model output values level.
First let us solve this elementary task:

FI: The aim of the LDS control is to transfer of the distributed output quantity
from the infinite-dimensional steady-state value: ¥ (x,00) = 0

a: in “x” direction into ~-neighbourhood of the desired quantity 1¥Y(x,00); on
the MIDO model output level

[W(x,00) - Y (x,00)|| = ||£'(x,00)]| < 6 (4.3)

when 6 is a given real positive number and
R: in the time direction so that {Ei(xi, oco)}*=IM on the MIMO model output
values level.

Theorem TFI. Let the controlled HLDS dynamics be represented by discrete
MIDO, MIMDO, and MIMO models. The control problem FI has the solution in
DPDCS, (Figure 6) if

a : |[VF(x,00) —E E6i(I(hHR)x,i,00)lI < 6 (4.4)
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Fig. 6a. Discrete Distributed Parameter System of Control: TC/SC — Time/Space Components
of HLDS dynamics; TS/SS — Time/Space Componets of Control Synthesis

Fig. 6b. i-th lumped control system from the set {gH (x,,r, K)-, Ar},

and
& : regulators {A }i=i> are of Pl (proportional and integral) type.

In the followings the constructive proof of the assertions of the theorem is
given from the assumptions. With regard to the limited extent of this paper it is
assumed that the used mathematical objects have the necessary properties for the
considered operations. At the same time these operations and formulated problems
indeed have solutions. For example, the i-controllability is assumed at the given
control task. The problems of controllability is not studied here. Changes of
the desired quantity and disturbances are assumed as distributed step functions.
Further, the suitable relation between the sampling interval T and sampling time
r is assumed.
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Proof. DPDCS is in zero steady-state in point “0”:
{M (0)}i = U(0) = {tt(0)}i = o, (4.5)

W(x, 0) = E(x,0) = Z(x, 0) = V(x,0) = Y(x,0) = YM(x,0) = 0. (4.6)
A distributed step function of desired quantity VF(x,I) = VF(x<) = W(x,00)

operates on the DPDCS in the first sampling interval 1 = (0,1), Figure 7. Then in
point 1 we obtain:

W(x,l) = W(x,l) = W(x, 00); 4.7
further,
£7(x,1) = W(x, 1) = W(x, 00). (4.8)

Let the following quantities be defined:

LOE'(X, K) = E(x,k) —E(x,k —1), (4.9
AYM(X, k) = YM(X, K) - YM(X, k- 1). (4.10)

These quantities are compared in block A

Z(x, k) = AE(x, k) + AYM(X, k). (4.11)

Fig. 7. Changes of distributed disturbances and desired quantities
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Then we obtain on the output of this block:
Z(x, 1) = E(x, 1) = W(x,00). (4.12)

Let us solve this approximation task in block SS
M
WZ(x,1) - E6i(I)hHR(x, i, 00)|| < 6 (4.13)
>
This task has the solution according to relations (4.4), (4.12) and it gives the vector
t6i(i) = {E61(\),...,E6n(\)}. (4.14)

At the same time the approximation deviation is R(x, 1), Figure 8a. Compo-
nents of this vector give lumped desired quantities of single discrete control loops
{gH(xi,i,k); Ri}i in block TS, Figure 6b:

{wi(i) = M-(i)}i- (415)
The vector of the lumped input quantities:
u(2) = {d12),...,C/,,(2)} (4.16)

is obtained from these discrete loops for interval 2 = (1,2). The MIMO model is
diagonal, therefore, the single components {[/;(2)}i are obtained from single one-
dimensional discrete control loops {gH(xi, i, K); R,},, Figure 6b. We obtain, after
applying vector U(2) in interval 2, in point 2

E(x,2) = W(x,00) —Y (x,2). (4.17)

Further, by relations (4.9), (4.10), (4.12):

AE(X, 2) = E{x, 2) - E(x, 1) = W(x, 00) - Y (X,2) - W{X, oc) = (4.18)
=-Y(x, 2
AYM(x,2) =YM(X,2)-YM(x,I). (4.19)

Since U (I) = 0and YM(X, 1) = 0 then
AYM(x,2) = YM(x,2). (4.20)
Comparing AE(x, 2) and AYM(x, 2) we obtain:

AE(Xx,2) + AYM(X,2) =-Y(x, 2) + YM(X, 2) = Z(X, 2). (4.21)
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14%) =f (X 1)=Z(*,1)

With regard to relation (4.1)
Z(x,2) = 0. (4.22)

The SS block input quantity is zero, therefore, the output quantity is zero, too.
The the lumped desired quantities {W, (A}, * remain unchanged in block TS:

{Wi(2) = Wi(1) = E6i(1)}. (4.23)
At this procedure it holds for the further steps kK = 3,4,...
{Z(x,ik) =0}, k=3,4,.. (4.24)

{Wi(Y) = Wi(l) = ... = £ii()}; *=3.4,... (4.25)

On the basis of PI type of regulator {Aj}i we obtain int —» 00 on the MIMO level,
Figure 6b:

{*o(*,00) = Wi(00) = ... = w,(I) = M (D}, (4.26)
On the MIDO model output level this means:
Mn M
Y (*,00) = A2 Yi(xi, 00)hHR(x, i,00) = * EG6i(l)hHR(X, i, 00); (4.27)
«=1 «1

(Figure 8b). So, with regard to relation (4.4) FI: a holds:

IW(x,00)-y(*,00)|| <&
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With regard to relation (4.26) the following relations hold in control loops
{gH(xi,i, K); P,}.

Ei(xi,00) = W i- Yi(xi, 00) = E6i(1)- Yi(xi,00) = O}. (4.28)

This means that Fl: B also hold, Figure 8b. ]

Let us show that DPDCS gives the solution of the more general problem FR:,
too. Starting out from the solution of FI: Up to interval “k” let the DPDCS operate
so that at the proof of Theorem TFI a disturbance P(x,k) appears on the HLDS
output in this interval, Figure 7. Then we obtain in point “k":

E(x, k) —W(x,00) —Y(x,k) —P(x, k). (4-29)
Since
E(x,k- 1) = W[x,00)-Y{x,k- 1), (4.30)
AYM(X, K) = YM(X, K) - YM(X, K- 1) (4.31)
for
AE(X, k) + AYM(x, k) = —P(x,k). (4.32)

In point “&’ Z(x,k) is given by
Z(x,k) =-P(x,k) + R(x,I). (4.33)

In point “f&" Z(x,k) is approximated in block SS and a vector {P6,(fc)}t is ob-
tained. Lumped desired quantities are modified in control loops of block TS:
{gH(xi,i,k); Ri}i, Figure 6b.

{Wi(k) =M-() + ESi(k)}i (4.34)
and U(k + 1) is generated, etc.

M
The deviation between Z(x,k) and i\_lEGi(k)hHR(i, koo) let be marked by

R(x,k). Then this deviation is added to the further distributed disturbance, which
acts e.g. in the interval h (J1 > K): Q(x,h)

Z(x, h) = —Q(x, h) + R(x, h) (4.35)

etc.

Further, changes of the desired quantity: W(x,p),... ,\W(x,q), p > h, are
evaluated by the above scheme, too. These distributed step functions act in further
time intervals on DPDCS. Then the steady distributed desired quantity is

?
W(x,00) = VU(x,r), (4.36)

r—1
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where q is a finite integer.
This means that the relation

MW{x, 0o) - Y(x, 00)|| = ||E(x, o0)|| < 6 (4.37)

is fulfilled in time t —oo at the action of further disturbances of desired quantities.
This finally, means the FR: a fulfilment.

At the control, on the MIMO level, given conditions are held, which refer to
PI type of regulators {Ai},:

Ei(xi, 00) —W,(00) —Y)(x,-,00) - 0 (4.38)

in time direction. It means that FR: 3 hold.

The approximated values Ya(x, k),YMa(x, K), gHRa(x, i, fc), hHRa(x, i, 00),
... etc. are considered, when “7\” is for space/time sampling. The given accuracy
of the approximation e is secured by an appropriorate choise of sampling in space
direction {zj}j, Figure 4

IYa(x, K) - Y (*, jil = IYMa(x, K) - YM{x, f|| < c. (4.39)

Then tasks of further type are solved, instead of type (4.13);

W(x,00)-]TE6i(k)hHRa(x,i,0c) <S—e. (4.40)
t=1

(The control deviation E(x,k) is continuously evaluated in practice in block
at A the control process. When e.g. ||jEx,00)|| > 6 at some steady-state then the
output quantity of A is considered:

Z(x, 00) = E(x, 00),

etc.)

5. Self-tuning control of temperature fields at fluidized combustion in
energetics

The concise example of self-tuning control of fluidized fireplace as LDS is
indicated in this Section, Hulké et al. (1983-89). This problem can not be solved
on the basis of PDE theory. Here we show the possibility of PDE utilization to a
priori information expression.

Large quantity of sulphur is often produced at the low-grade fuel combustion
in the fluidized layer, Figure 9. It considerably deteriorates the quantity of envi-
roment by emissions into the atmosphere and devastates the nature, for example,



HULKO: LUMPED INPUT AND DISTRIBUTED OUTPUT SYSTEMS 125

ttt ftt ttt
I,(f) « « o uih = = - Un[t)
Fig. 9. Stationary fluidized layer in fireplace with pneumatic haulage: t/,(<) — supplied quantity
of fuel and additives, «-th lumped input quantity; G, —t-th subsystenlj‘ of pneumatic haulage,

t-th generator of the distributed input quantity: Ul(x, <); U (x,t) —~ U, (x,t) — distribute
t=1
input quantity; FL — fluidized layer; P — high-pressure parts of steam generator;
¢ — measuring points: x\, . . xm;Y (x,£) — temperature field of the fluidized layer,

distributed output quantity

in the form of acid rains. The effective desulfurization is reached by suitable cal-
careous additives at the optimum desulphurization temperature Topt- The control
of temperature field will be solved by a system of self-tuning control because of the
considerable fluctuation of the low-grade fuel calorific value.

Let us interpret the fluidized fireplace as an LDS, Figures 2, 9. Let us represent
the FL as DDS. Its dynamics is approximated by a parabolic PDE of second order.
Let us relate the Green function G(x,£,t) to this PDE.

The dynamics of generators {G;}, let be given, for example, by relation:

Ui(x,t) = \] Gi(x,i,T)Ui(T)dr (5.1)
Then distributed weighting characteristics of LDS are
g(x, i,t) = JG(x,t,t)Gi(Z,i,t)dt (5.2

which represent the controlled system’s a priori information.
The actual courses of {gH(xi, i, F)},- and {hHR(X, i, 00)}t are determined by
on-line identification procedures.

4:
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Fig. 10a Steady-state of temperature Fig. 10b. Derivation of control at x'3: Tapi —
field at self-tuning control Y (x3,k) = E(x3,k). Pl — preliminary
identification; S.T. CONTROL — self-tuning
control

Tasks of self-tuning control synthesis are solved in Section 4.
Typical courses of controlled quantities are shown in Figure 10 at self-tuning

control of fluidized fireplace.

6. Conclusion

Fundamental problems of control of some classes of DPS are analysed by

means of LDS in this paper. LDS is a new concept of system and control theory.
DPDCS was designed for quantity fields control i.e. control of DPS.

*

*

*

Further results and research on these fundamental structures lead to

MIDO, MIMDO and MIMO systems/models identification;

LDS deterministic, stochastic, and adaptive control, control of nonlinear LDS;
optimal design of machines and machineries for quantity fields interactions as
distributed objects;

algorithmization of tasks of optimal control and optimal design problems,
Hulko (1979-90).

These are only the basic structures of LDS theory but already these results

give for the control practice of various classes of DPS the same possibilities which
are at the diposal for the control of lumped parameter systems.
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ON THE CONSTRUCTION OF SOLUTION TO NONREGULAR
PROBLEMS OF OPTIMAL CONTROL

A. G. Chentsov
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In this paper a problem of asymptotical optimization under perturbed constraints
is investigated. Conditions of partial stability and non-sensitivity with respect to certain
kinds of perturbations are obtained. A correct extension in a special class of vector-valued
fmitely-additive measures is suggested; natural relations between exact, generalized and
approximate solutions are stated; the relations are expressed in terms of closures of admis-
sible sets and the sets of optimal and “almost” optimal solutions. Applications to certain
problems of optimal control are considered.

1. Introduction

The need to investigate extremal problems with approximate methods, to re-
alize algorithms under conditions deviating from “nominal” ones, to seek a priori
estimations for the result and its dependence on the parameters of a problem, as
well as a number of other questions of practical importance, motivate a special con-
sideration of perturbations of an initial optimization problem within a certain class
corresponding to a concrete situation arising in practice. An entire investigation
implies certain stability, or non-sensitivity with respect to small perturbations of
data. If this does not take place, a special regularization of the problem is need-
ed, otherwise a solution found without taking perturbations into account can loose
practical importance.

In general, various components of an extremal problem can be perturbed; in
this paper, however, we consider perturbations of the entire system of constraints
determining the admissible set (the set of all admissible elements) of the problem.
To illustrate the sense of the questions treated below, let us consider the following
example relating to optimal control. (More general statements concerned with
perturbations of control problems will be considered after the formulation of the
basic extremal problem.) Let a system described by a vector differential equation

X(<) = A°(Qx(<) +/(<)be(i), x(fo) = xO0,

Akadémiai Kiaddé, Budapest
Pergamon Press, Oxford
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be given. The matrix A°(t) is assumed (for simplicity) to be continuous on a given
interval T0 — [to,*90], a control f(t) is scalar and non-negative, b°(t) being, in
general, non-continuous, is such that there exists a solutionxy = (xy (t), t <t < isq)
generated by a control / which is piece-wise constant and continuous from the right
on [ti?0[- Let / satisfy the constraint

\] f(t)dt < c.

to

Besides, let the following constraint on possible laws of resource expenditure be
imposed. Assume that a partition of [to, $o[ with points to <t\ < ... <tm = do
is fixed, and a control at each interval [ti-\,ti[ may take one of two forms: 1)
pause implying the integral (/(<),f,_i <t <t,) to be no larger than a given a,
a > 0; 2) impulse implying the above integral to be no smaller than 6, b > a
In addition, we require each two impulses to be separated in time by at least one
pause. The physical sense of this condition is obvious: the intervals of intensive
work must be separated by the intervals of “reduction” needed for restoration of
the capacity for work. Within the framework of the possibilities provided by the
imposed constraints, there is, naturally, a certain space for choice. If integrals
over the intervals are considered as m-dimensional vectors, the additional
constraint on control functions / is reduced to the condition

GY.

Here Y is the set of all vectors y from the m-dimensional space having non-negative
components and satisfying the following conditions: 1) each component (coordi-
nate) yi of y either no larger than a or satisfies the inequality b < yr, 2) for any yk
and yi, k <, such that

(b < 2)&(6 < i),
there exists an integer r, K < r < | such that yr < a The set Y is, in general,
not convex, but it is closed. Indeed, ify = (j/i,..., ym) is the limit of a sequence
(yQ) GY;j —12;...) then, due to the convergence y\3 —»y- (j —» 00) taking
place for each integer i, 1 < i < m, and according to 1) and the inequality b—a > 0
we have (yi <a)V (6 < y,) for the components of y, since otherwise there exists a 6,
6 > Osuch that an interval [r,—<§ yi + i[ does not contain a single point among y "\
y) the fact t/i,..., ym are non-negative is obvious, too. If two components yu
and t/i, where k < |, lie in [6,00[, then there exists an integer r between k and /
such that yr < a. Indeed, assume to the contrary, that yr > aforany r, Kk <r<|
(I = k+ 1is not excluded). Then (as it was stated already) b<vy,, k <i </ On
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the other hand, for all sufficiently large j, the deviations |y-p —yk ilp” - vl
are smaller than 6—a, which implies (so far asyi) e ¥) that b<y® ..., b<W\”?;
here condition 1) used in the definition of ¥ is taken into account. This contradicts
condition 2). So, the assumption is wrong, and yr < a for a certain r, K <r <.
The proof of the closedness of ¥ was given in detail, for it is important for further
investigation.

Having constraints upon (open-loop) controls specified, introduce for any con-
trol /, a quality functional identifying it with a value of a certain continuous func-
tion go of a phase state at the terminal instant; in other words, our goal in the
considered problem is the minimization of a value <70(x/(i?0)) by a rational choice
of /. We obtained a dynamical optimization problem of a certain practical inter-
est. However, the natural question arises: to what extent is the problem sensitive
to the perturbations, from the point of view of its optimal result (value) and the
solutions / close to the value with respect to the criterion <?0(x/(i?0))? How does
the result depend on the “energetic” parameter ¢ and the set ¥? Stability with
respect to a corresponding class of possible perturbations is of special importance.
Several properties weaker than stability may be of interest, too. Thus, the above
example provides a non-linear infinite dimensional problem of dynamical optimiza-
tion; this problem is, in general, not convex which complicates its investigation to
a considerable extent. We see that the statement of the problem is simple enough;
nevertheless, the question of its stability is actual even for the following “incom-
plete” class of perturbations: c is replaced by c+ e where e > 0, and ¥ is replaced
by its e-neighbourhood. Indeed, the considered question transforms in this case
to the following one: how close are the results of the problem of minimization of
o (x/(t?0)), if all the constraints are kept, except the latter two which are disturbed
slightly. The question can be formulated, however, in a more general form, for the
problems analogous to the considered one may appear in other, more complicated
situations. The investigation carried out below and involving the above example
is qualitative, it does not have a purpose to provide algorithms. However, the in-
vestigation, in its general form, needs using rather abstract mathematical tools.
Besides, the initial problem can be considered not necessarily as that of optimal
control. Having in mind various applications, we formulate it in an abstract form
typical for the general theory of extremal problems. Namely, in this paper we
consider a non-linear infinite-dimensional extremal problem

W (f)-*inf, = (/1,...,/r),
fi €B+(E,C),--.,feB+(E,£),

629 < ¢ [ SKIFCT(EX) € Y, (11)

Here (E,C) is a measurable space with a semi-algebra [1, p. 40] of sets (E ¢ 0),
Bq(E,C) is the positive (in the sense of the point-wise order) cone in the lattice
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Bo(E,C) of all £-step functionals on E, 1) is a positive (real-valued) finitely-additive
measure [2, ch. Ill, IV] on £, ¢ G [0,00[, 5 is a matrix-valued mapping on E,
whose components admit uniform approximation (on E) by elements of BO(E,C),
Y is a non-empty closed set in a corresponding finite-dimensional space. In the
sequel conditions on W will be formulated, which will imply the respresentation
IV(f) = w(f *r), where f » g is the indefinite (component-wise) integral of f, and
w is continuous in an appropriate (*-weak) sense. Note that the functional W can
be, in particular, be of the form

W(f)=goljs(x)f(x)g(dx)j, (1.2)

where f corresponds to (1.1), S is a matrix-valued mapping on E (satisfying condi-
tions analogous to those imposed on S in (1.1)), and go is a continuous function on
a corresponding finite-dimensional space. This is, in particular, the case considered
in the above example of a control problem.

Formulations (1.1), (1.2) can, in particular, be provided by a more general
optimal control problem for a system

X(<) = A°(t)x(t) + Be(t)f(t), x(t0) =xo (1.3)

Here A°(-) and -8°( ) are matrix-valued functions, the first one is continuous, and
the second one is Borel measurable; x(t) is realized in an appropriate finite-dimen-
sional space; xo is a given initial state; f corresponds to (1.1), provided E coincides
with an interval T = [<0, $0[ (<0 < ™0)i | is the trace of the Lebesgue measure on
the corresponding semi-algebra £. The latter is determined in accordance with the
sense of the considered problem; in some cases C may coincide with the tr-algebra
of all Borel subsets of T. At the same time, if only piece-wise constant and con-
tinuous from the right vector-functions f are admissible, such a broad measurable
space is not needed, and, provided the components of B°(-) admit uniform approx-
imation by step-functions of the above type, one can identify C with the family of
all half-open intervals [a,6[, to <a < b < do, and A with the function of length.
The condition of non-negativeness of fi corresponds to the assumption that these
functions are resources for a control device; in this case the c-constraint in (1.1)
provides a condition on the entire resource, and the Y-constraint provides (as in
the example) the admissible set of resource expenditure laws. We have a finite sys-
tem of “shields” which can not be used in an arbitrary way (for instance, as it was
mentioned, a prolonged “extremal” resource expenditure may not be admissible).
As for (1.2), not that for the control system (1.3), this condition is satisfied, if the
quality of a process is estimated by a continuous function of a terminal state. Ifthe
dependence on a trajectory is more complicated, a representation of W in terms of
a special functional w should be used instead of (1.2).
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The general extremal problem (1.1) is not stable, if only relaxation of the
constraints is admissible (this is a typical class of perturbations considered in the
theory of extension, see [3, ch. I11]). This gives reason to investigate various methods
of asymptotical optimization under the “weak” perturbations of the constraints.
Two kinds of such perturbations will be considered: 1) “entire” relaxation implying
perturbations of both c¢- and Y-constraints, and 2) “partial” relaxation keeping c-
constraints unperturbed. The rate of perturbation will be characterized by a scalar
parameter e, e > 0. However, in a formal statement of the problem e is normally
not fixed. In this case the “limit” situation corresponding to e J 0 is of practical
interest. Every e-perturbed problem is characterized by a finite or infinite value
monotonically depending on e, £ > 0; the smaller is an e, the more “hard” is
an e-perturbed problem and, consequently, the worse is the quality provided by
a value. The limits of such e-values (corresponding to the cases 1) and 2)) as
e ] 0, characterize a special optimality of the problem (1.1) which may differ from
the “usual” optimality. Further, we investigate conditions and possible variants of
partial stability and non-sensitivity to the perturbations of certain kinds; besides,
we consider the optimization in a class of approximate solutions, having a sense
of special regularization. Here we find natural analogies with the theory of ill-
posed problems [4, 5]. However, the most important analogies concern numerous
investigations on extensions of extremal problem [1, 6- 10] (see, in particular, [1,
ch. 111]). The basic element here is the compactification of solutions of a problem,
it is close to the extensions or compactifications of topological spaces (see, for
instance, [11, 12]). In standard procedures of extension of an extremal problem a
considerable role plays “convexivization” realized usually with the help of measures
(as a rule, Borel, regular, non-negative and normed) [13-16, 3, 6, 8, 1]. Sometimes
it is necessary to apply finitely-additive measures; this is connected with using non-
continuous functionals in the statement of a problem. Such a situation takes place
in the problem (1.1); usage of finitely-additive measures is advisable here also in
the cases, where the measure 1 is countably-additive, as in the control problem for
the system (1.3). Extensions (of extremal problems) within the class of finitely-
additive measures were considered in [17-20] and other papers. Here we follow the
approach of [21-23] embedding “ordinary” solutions f into a corresponding space
of finitely-additive measures through the indefinite integrals. As the final result for
the problem (1.1) we obtain conditions of “partial” stability and regularizability
with respect to the perturbations of certain classes; all conditions are given in
terms of the initial problem and can be verified directly. The next Section contains
a list of general mathematical notions and, by first reading, can be omitted without
prejudice to understanding of the main results.
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2. Finitely-additive measures

In what follows we use quantors, connectives, special symbols =, def, etc.
For an arbitrary set H, 2H stands for the set of all non-empty subsets of H, and
Fin(A) stands for the set of all finite sets from 2a . If A and B are non-empty sets,
denote by BA the set of all mappings from A to B; if g GBAand G G 2A, then
(9 1G) GBGis, as usual, [2, p. 13[ the trace or the contraction of g to the set G. If
(T,7), T d 0, is a topological space, then C(T, r) is def the set of all r-continuous
functionals on T, and cl(-,r) is the operator of closure in (T,t). In the sequel, R is
the real line, AT = {1;2;...}. Weset Mt GAf : Lk ={r : TGAT,i <& Rk = R1lk
(*-dimensional arithmetical space). Fix positive integers n GAf and r GAI; we let
for brevity 97 = Rn, 97 = Rr, fixing the n-dimensional and r-dimensional spaces,
respectively, which will be used for the description of the problem (1.1). Besides, in
(1.1) 5 is a mapping with values in Wi = RlinxI>r,i.e. 5 G LLIE. Other assumptions
and notations of Section 1 we keep without additional explanations (note only that
Y G2 is closed in 97, which is equipped for definiteness with the sup-norm || ¢||,,).
The mentioned notations are general: we fix certain notations connected with the
finitely-additive measures [2, ch. I, IV] (for details see also [24, 25]). Let (add)+[£]
be the set of all non-negative finitely-additive measures on £, and A(£) be the set
of all measures

A- v, (n,v) G(add)+[£] x (add)+[£],

it is a linear subspace RE equipped with the traditional norm (variation). Besides,
note that ) G (add)+[£] (see ch. 1); denote (add)+[£; ] the set of all measures
fi G(add)+[£] such that VE G£ from r](L) = 0, it follows that /i(L) = 0. Assume
also that V6 G [0,00]:

Mb] = {* G (add)+[£] | u(E) < 6}, (2.1)

—N —(add)+ [E;77] ( | N[6] =
= {R G ] IVL GE : (/2(£) = 0) = (//(£) = O)}. 2.2)

Further, we shall introduce “vector” analogue of the sets (2.1), (2.2), necessary for
an extension of the problem (1.2).

Denote by B(£) the set of all bounded functionals on E equipped with the
natural sup-norm || || [2, p. 261], and denote by B(E,C) the closure of BO(E,C)
(see Section 1) in (B(E"), || «|)); if £ is a a-algebra of sets, then B(E,C) coincides
with the set of all £-measurable functionals from B(E). In this connection B*(E, £)
(topologically conjugate to B(E,C)) and A(£) with the norm defined as variation
are isometrically isomorphic, that allows us to consider the pair (B(E,C), A(E))
as a duality and the simplest integral [24, p. 75] (used below) as a bilinear form,
respectively. We equip A(£) with the natural *-weak topology r,,(£), and interpret
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B(E,C) as a pre-conjugate space. The conditions of compactness in (A(£),r*(£))
are determined by the well-known Alaoglu’s theorem [2, p. 459]. In what follows
Vf £ B(E,C) the measure f*// E A(E) is the indefinite //-integral off [24, p. 76]; we
shall need (as in Section 1) a vector analogue of this notion implying component-
wise integration. Now, consider subspaces (A(E), r«(£)), important in further
investigation. Namely, denote by r*(£) the trace of ©(£) at the (non-empty) set

(add)+[£; j\. Besides, V6 £ [0,00[ denote by ri[£] the trace of r«(£) at M[6]. At
last, V6 £ [0,00[ consider (following [21, 22]) the topology r°(£) of the set M[],
generated by the base of the sets

(v £ 6] I'iX £ X :p(X) = m(X)},

{p,X) £ M[6] x Fin(£);

note that r&[£] C r~(£). Thus, in the last case we actually consider [6] as a
subspace of the Tikhonov’s product of £ samples of the real line with the discrete
topology. The indicated structure was introduced in [21, 22]. It is convenient
for us to pass Vb £ [0,00[ to the relative topology E[b] setting f°[£] to be def
the trace of t°(C) at £[6] so that (Efe], f°[£]) is a subspace of (M[6], r*(£)).
Now, consider vector analogue of the notions from [21, 22] (for details, see [23]).
In this connection we need to use vector functions on E and vector measures.
Further, we denote components of a vector function and a vector measure by a
letter and initial object equipping it with a subindex. The same agreement we set
for components of matrix-valued functions. By (77-add)+ [£; /] we denote the set of
all functions p £ TZC such that pi £ (add)+[E;//] (i £ 1,r); the needed set of vector
measures is defined. Let Bq[E;C; 2] be the set of all functions from TZE, whose
components belong to BA(E,C) and B[E\ be the set of all functions from
YIE with components from B(E,C). All components of S are assumed to lie in
B(E,C) :Sij £B(E,C) fori £ 1I,n,j £ I,r. Integration of vector functions with
respect to the measure /7 is component-wise, we keep all the above notations for
definite and indefinite //-integrals, this will not lead to ambiquity: Vf £ Bq[E\ QTZ]
we have f * /[ £ (7£-add)+[£;//]. The topologization of (77-add)+[£;/] is realized
through the r-multiple product of r*(£), it is identically characterized by the class
of convergence: a directedness [11, p. 96] //*) in (77-add)+[E; /] converges to a
measure p from this set in the sense of the topology ©[)(£) in question, iff Vi £ I,r

the directedness (p[a”) converges to pi in the sense of r* (£). Note that V6 £ [0, oc[:

S*M = j kGn- add)+[£}/?] | £>,-(£) < bj (2.3)

is a non-empty and compact set in the sense of 0*(£). Consider also an oth-
er topological lattice, introducing V6 £ [0,00[ the set E”[6] of all measures p £
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(7E-add)+[£; f\ such that Vi 6 |,r :/jj G S[6]; we topologize this set through the
product of r samples of the topologies f&[£]. Namely, we equip M) £ [0,00[ the set
E£[6] with the topology 0 4[£] determined identically by the following convergence;
a directedness (//*)) in EE[6] converges (in the sense of 0°[£]) to a u £ EN[6], iff

Vi £ |,r the directedness (/4°~) converges to /i; in the sense of f°[£]. Besides, as-
sume that VB £ [0, oo[ »?E(E) is def the trace of 0*(£) at Em[6] and  [£] is the trace
of 0 4[£] at ETr[6]; as the result we obtain the compactum (Es[6], (4(£)) and the

auxiliary topological space (S-*b], [£]) with a “degenerate” type of convergence
(see [24]). The indicated constructions concern an extension of the problem (1.1).
In order to give a more brief characterization of the problem, assume in addition
that

the latter is a subset of (2.3); moreover, we have the following important property
of density [23]:

s*[6] = cI(MA/°[£]) = d(m ;,a4). (2.4)

Now, we end the list of notions concerned with measures and pass to the exact
statement of the extremal problems.

3. Asymptotical optimization

Fix a functional
w £ C(('&-add)+ [Es7], ©*(£)), (3.1

W = (u;(f *N)FeBHSAE 7] (3.2)

This will be used as the criterion for the problem (1.1).
Let us consider Ve £ [0,00[ the problem

w({) —>inf, f £ m;+£,
J 5(x)/(x)r?(dx) £ Yc (3.3)

where
Ye={z:z£ Tt y|Q\f/||y- < f}
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Then (1.1) is (3.3) with e = 0. Let us also introduce Vs £ [0,00[ the problem
w(f) —+inf, fewm;,

J S(X)/(X)7?(dx) £ Yt. (3.4)
E
Further, (3.3) and (3.4) will define two families of relaxed perturbed problems. If
e £ [0,00][, then denote by N[e] (by /1,[e]) the set of all admissible elements for the
problem (3.3) (for the problem (3.4)). Finally, put F = /0] getting the set of all
admissible elements for the non-perturbed problem.
Now, let us introduce a generalized construction putting

tyi £ (7?-add)+ [£;77]

"
J 5(x)//(dx) = ]. Sj,-(X)Aij(dx)

E VvV 1E / iei,n
and obtaining, naturally, a vector from Ul. The problems

w{n) —+min, £ ETgc+ ¢\, \] S(x)/i(dx) £ Yc (3.5)
E

where e £ [0,00[ will be called generalized ones (however, the case e = 0 will more
frequently be used). Denote Ve £ [0,00[by E~(r) the set of all admissible elements
for the problem (3.5).

Theorem 3.1. The set of admissible elements for the generalized problem
and those for the perturbed problems are connected by the following limit relation

S*(0)= D cl{f~ :f €EA[e]}, ©;(£)) =

- perccrs SWSPQOF e

£>0

fEPIE) = ] ddf*7:f £ A +1(E)). (3.6)

0<£<1

Only the first two equalities in (3.6) are actually to be proved. Denote the
second and the third intersections in (3.6) by Ai and A2, respectively. The inclusion
A\ C H)j(O) follows from the definition of the *-weak topology, here the property
of continuous dependence of an integral on a corresponding measure and the fact
that Y is closed are used. The inclusion E~(0) C A2 follows from (2.4). At last
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Axe] C Ale] for e > 0 passing to the closures of the corresponding sets, we get
A2 CAi.

Theorem 3.2. LetVie I,nj'61l,r: g BO(E,C).
Then

0r.(0) = cl({f*i):fEF}, tRé(E)) =
=cl{f :f & F}, d°[£]).

The proof exploits (2.4) and the embedding d*(£) C t’£[(] is deduced easily
from the definitions

Theorem 3.3. The following three conditions are equivalent:

1) HE>0) ¢ O;

2) el 0 0 (£>0);

3 Afe] / 0 (e>0).

Theorem 3.4. IfVig I,n, j g I,r the inclusion g BO(E,C) is true,
then the conditions F ¢ 0 and H~(0) ¢ O are equivalent.

Theorem 3.3 is a trivial corollary of Theorem 3.1, and Theorem 3.4 follows
from Theorem 3.2. We assume in the sequel the following condition to be fulfilled:

Condition 3.1. H~(0) ¢ O.

Now, Ve g]0,00[ we have: fe] g 2M*+*, A*e] g 2M’. Taking into account
(3.1) and (3.2) and the fact that a continuous functional on a compact space is
bounded [11, 12], we get that the “ordinary” e-values

ve A inf W), v*A inf W)
f6A[e] fEA.[t]

are finite for e > 0. More than that, since Vi <  for 6 > 0, the set {v* : £ 9]0, oo[}
(and, consequently, the set {v£ : e G]0,00[}) is bounded above, so

V= R, V*= v g R -7
MR Vg e
are asymptotical values from Section 1 Besides
ife] = min w(n) g R 3-8
1= o, W) g (39)
is obviously the value of the problem (3.5), where e > 0. A connection between

(3.7) and (3.8) will be considered in the next Section, devoted to the application of
compactifications for the description of asymptotical values of practical interest.

4. Asymptotics and extensions

Expressing of various asymptotical values (3.7) in terms of generalized (com-
pactificated) problems traditionally played a considerable role in investigations on
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extremal problems (see [3]). This investigation has, in addition, the purpose to
compare various variants of perturbed problems; from this point of view i[0] (3.8)
plays the role of a “mediator” that is seen from the following assertion on an
asymptotical non-sensitivity to the perturbations of the energetic parameter “c”.

Theorem 4.1. The values (3.7) coincide and are determined by (3.8) for
£=0;ie. V= V* —5[0].

The proof exploits Theorem 3.1 and concretizes [27]. Note that the problem
(1.1) in “rigid” statement is unstable provided the parameter c, ¢ > 0, allowed to
grow, and therefore, the “relaxation” of the ¥Y-restriction has a sense of a special
regularization [4]. As shows [18], the opposite combination, i.e. a regularization of
a non-continuous dependence from Y for a perturbation of a form Y —Y£ (£ > 0)
through an additional perturbation of the parameter c, is, in general, impossible.

Theorem 4.2. Let uo GE!j(0) be a solution of the problem (3.5) for e = O:
w(fJo) = i[0]. Let, in addition, (fa) be a directedness [11, p. 96] in M* such that
(fa *v) converges to fio in i9*%(£). Then (fa) is an optimal approximate solution
[27], i.e.

1) Ve G[0,00[ inclusions fa G A,[e] take place starting from a certain instant
[11, p. 96];

2) (H"fa)) converges to V*.

The proof follows rather evidently from the definition of the *-weak topology
(3.1) and (3.2). Note that, as it is seen from (2.4) and (3.5), a directedness (fa)
can be built up constructively (the “component-wise” variant of an approximate
directedness [21] for the “scalar” modification of (2.4) can be applied), provided
a solution fio of (3.5) is fixed; the existence of follows from the well-known
properties of continuous functionals on compact spaces [11, p. 217].

5. Some questions, connected with stability

For each problem (3.5) (by Condition 3.1) we have H”(e) ¢ 0 for £ > 0.
Introduce VE G [0,00[ the (non-empty) set VE] of all solutions of (3.5); V[e] is the
set of all no G S)*(£) such that iv(Bo) = i[e]. As £ 1 0 the directedness («[e], £ > 0)
converges to U[0] (the ordering of the semi-axis [0,00[ is dual to the natural one),
so i[0] = sup({i[£] : £ G]O,00[}). Thus, the generalized problem is always stable
with respect to the value.

Theorem 5.1. Let &* be an arbitrary 0* (£)-neighbourhood [28, p. 19] of
the set V[0]. Then 36 G]0,00[: VE G]0,6[ it holds V[E] C H,.

The proof utilizes standard representations of the compactness in terms of
converging subdirectedness [12, p. 203] (the opposite assumption leads easily to a
contradiction). Note that, as it is shown in [18], the initial problem (1.1) is not
stable in the above sense (even with respect to the value). In the sequel we suppose
the following condition (together with Condition 3.1) to be fulfilled:

5
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Condition 5.1. The matrix-valued function 5 is a step-function: Sij G
GBo(E,C) fori Gl,n and j Gl,r.

According to Theorem 34 F ¢ 0, this allows us to introduce the ordinary
value V° = inf{VL(f) :f GF}) GR and to extend the dependence z *ve :]0,00[—>
—»R to the point e = 0; namely, we put vo = ve |£=0= V0.

Theorem 5.2. Ordinary, generalized and asymptotical values coincide: V° =
= 5[0 =V =V~

The proof follows evidently from Theorems 3.2 and 4.1 (see [23]).

Theorem 5.3. Let p° GV[0]; (fa) be a directedness in M* such that (fa *ri)
converges to p° in d°[£], Then (f,) is asymptotically optimal as a “precision”
solution:

1) fa G F, starting from a certain instant [11, p. 96];

2) (W(fa) converges to V°.

Remark. The direction (fa) from Theorem 5.3 can be constructed for any p°
from the (non-empty) set V[0] if one uses the corresponding construction from [21]
applied there for proving an equality similar to (2.4).

Let Ve G [0,00[, 6 G]O,00[: Ve() = {f GA¢] | FU(f) < vt + 6} and besides
VX G]0,00[: v[x] = Vo(X) = Ve(X) |ei-o the last set is that of all x-optimal solutions
of (1.1); the sense of Vc(6) is analogous and concerns (3.3).

Theorem 5.4. Let X g]0,00[, 7 G]x,00[. Then

Mc{f*l:fc U wX)}

£>0 0<»<C

©:(E)) Cel{f*1,:f GVM M M - (5.1)

The proof uses essentially (2.4) (for details see [23]). Due to the relations of
the topologies we mentioned while discussing Theorem 3.2, the right-hand side of
(5.1) can be made “more rough”, i.e. replaced by its closure in 0Jj(E) with keeping
the enclosure. In general, (5.1) is an indirect characteristic of stability in “bad”
functional spaces of step-mappings. A regularizing increment 7 —x > 0 has no
essential influence on the sense of the statement, important only for small x and 7.

Using Theorem 3.2 and the obvious (see Theorem 5.2) equality ve = i[e]
(e > 0) we obtain the equality

V[0]= (JcI({f*,:f GVM),

Q:(C))=\Jc\({f*rr.feV[6]}, (5.2)
i>0

reccyy= Ucl({F*r2:fGVIa]},tf°(£))
i>0

that characterizes the generalized solution for the most important variant of the
problem (3.5) (case z = 0), as the limits of “almost” optimal ordinary solutions.
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The representation of the form (5.2) is frequently not true for a general ex-

tremal problem with constraints (it can also be violated for the considered problem,
if Condition 5.1 is not fulfilled; see an example from [18]).

L
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O KOHCTPYKLMUN pelleHnin HeperynspHbiX 3afay onTMManbHOro
ynpaBneHus

|
A. T. YEHLOB

(CBepanoBck)

PaccmaTpuBaeTcs acMMnNTOTMYecKkas NOCTAHOBKA HENWHEWHOW aKCcTpeManbHON 3aja-
4u, a Takxe ee pacllupeHuWe [0 CTaHAAPTHON 3ajgayum Ha MUHUMYM QYHKLWOHana, Henpe-
pbLIBHOTO Ha KOMMakTe. Mccneayetcs Bonpoc 06 ycTOWYMBOCTM NO pe3ynbTaTy B YyCNOBUAX
BO3MYL €HNIA NONHON CUCTEMbl OrpaHWYeHUn CTPYKTYypbl aCUMNTOTUYECKM ONTUMANbHbIX
NPUGAMXKEHHbIX pelwleHnii. OCHOBHBIM MHCTPYMEHTOM WCCNeAOBaHWA SBAATCA NpoLueay-

pbl KOMNakTMduKaumm npoctpaHcTBa pewenni f = (/i,...,/r) ncxoaHoh 3agaym B Knacce
BEKTOPHbIX KOHEYHO-afAUTUBHbLIX Mep A4 = (A1,...,47T). [pn 3TOM WHTerpanbHble OrpaHu-
YeHMA Ha CyMMY NONHbIX uMNynbcoB ft > O, r=1,..., T, ecTeCTBEHHbIM 06pa3omM NepexoanaT
B COOTBETCTBYylolUlee ycnoBue Ha cymmy BenuumH Rt(E), rgae E — o6nacTb onpeaeneHus
/*; Kpome TOro, KOMMOHEHTbI LW ,.. .,AT BEKTOPHOW Mepbl [OMXKHbI YJOBNETBOPATb YCNO-
BUIO «3aHyneHusa»: Bt(L) = 0, ecnn rj(L) = 0, rae n — HeoTpuUaTenbHasa ckKanapHas

KOHEYHO-aAAMTMBHAA Mepa, yuyacTBYlOl a8 B MHTErpanbHOM OrpaHuuyeHWu Ha BbiGOp .
LononHUTeNbHble OFPpaHWUYeHUs Ha MHTerpaHT f, UMelOLW e CMbICN BKAOYEHUS, HA YPOBHE
MCXOAHOW NOCTAaHOBKMW BO3MYyLLalOTCA A0 €-OKPECTHOCTell; B 0606LeHHOl 3ajauye aHanormy-
HOe OrpaHU4YeHWe NepexofuUT B «06bIYHOE» BKAKOUYEHUE ANA MHTerpana MaTpUUYHO3HAUYHOM
(hYHKLWU NO BEKTOPHOW Mepe 4. Mpu HEKOTOPbLIX CNeLuanbHbIX YCNOBUAX, TapaHTUPYIO LW NX
YyCTONYMBOCTb MO pe3ynbTaTy UM CBOAAW MXCA K TPeGOBaHWIO CTYMeHYaToOCTU YNOMSAHYTOMN
MaTPUUYHO3HAYHON (YHKLUM, NONYUYEHbl YTBEPXAEHUA, UMelOLl e CMbliCN «cnabo» peryns-
PU3NPOBAHHOW TOMONOTMYECKON YCTOWUYMBOCTM NOYTW OMTUMANbHbIX PelWeHUin UCXOZHOW
3ajauyyM Npu MX NOTpyXeHWu B KoOMNnakTudukatop. Kpome Toro, B nocnefjHemM ciny4vae uc-
nonb3yeTcs U HECKONbKO 6o/nee CMNbHAA HYNbMepHas TOMONOrMsA, oTBevalo W as npoussese-
HWI0O NOANPOCTPAHCTB COOTBETCTBYOWEN (M3MEePUMOI CTPYKTYpPe NPOCTPaHCTBA peleHuni)
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TUXOHOBCKOW CTeneHW NPsAMOi C AMCKPeTHOW Tononorueid. Mpu Tex >Xe YCNOBUAX CTy-

MeHYaToOCTW YCTAHOBMNEHO, UTO 3KCTPEManbHbie TOUKM KOMMNaKTU(uUKatopa u 0606ueHHbIe
npefens NOYTM ONTUMaNbHbLIX PEWEHUA HEBO3MYLLEHHOW MCXOfHOIN 3ajauyu — CyTb OAHO
M TO Xe. YNOMAHYTOe A0CTaTO4YHOE YCN0BUe (CTYMEeHYaToCTb) CYW eCTBEHHO M He MOXeT
6bITb 0CNna6neHo faxe 40 TpeGOBaHUSA PAaBHOMEPHOW HeNnpepbIBHOCTH.

A. T. YeHuos

MHcTuTyT Matematnkm n mexaHukn ¥YpO AH CCCP
620219, CBepAnosCK,
rCrn-384,

yn. C. Koanesckolii, 16.
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LONG-RANGE ADAPTIVE CONTROL OF ARMAX PLANTS
WITH ACCESSIBLE DISTURBANCES

J. M. Lemos

(Lisbon)

(Received April 11, 1990)

Feedforward adaptive control of ARMAX plants is considered in order to reduce
the influence of disturbances that can be measured. The algorithm used is an extension
of the long-range, multipredictive adaptive control algorithm named MUSMAR. Three
main results are presented: first, a parametrization of multipredictive models, identifyable
by standard RLS, is developed for ARMAX plants with ARMA accessible disturbances,
working in closed-loop. Second, the algorithm, resulting from coupling this implicit plant
representation with a multistep quadratic cost, is shown to present a robust tuning property
of the controller gains. Third, a simulation example is presented.

Keywords: Adaptive control. Predictive control. Self-tuning. Feedforward control.
Convergence analysis. Linear Quadratic Stochastic control.

1. Introduction

There are many practical situations in which the control performance can be
greatly improved by exploiting the knowledge of the accessible disturbances acting
on the plant. Examples with industrial relevance include drum boiler level and
pressure control in power plants [1], control of gas-cooled reactors in nuclear power
stations [2], frequency control of hydro power stations [3] and the bottom temper-
ature control of glass furnaces [4]. More exotic applications are the exploitation of
auxiliary signals for time-series forecasting [5] and active sound [6].

Al the above examples include feedforward terms of one form or another, to
cancel out in antecipation the effects of the accessible disturbances. As opposite to
feedback, however, feedforward action requires greater precision in the models used
for control purposes. Thus, in performing feedforward control of uncertain and/or
time-varying plants, one is naturally lead to the use of adaptive techniques.

Several kinds of adaptive feedforward controllers can be envisaged, by ex-
tending in a natural way adaptive feedback controllers. Clarke-Gawthrop type

Akadémiai Kiad6, Budapest
Pergamon Press, Oxford
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controllers [4], LQG feedforward controllers [3, 2], explicit criterion minimization
[3, 6] and multistep predictive control [7], are all possibilities.

The work reported in this paper is concerned with the latest class of feedfor-
ward controllers. The algorithm to be discussed and analysed is an extension of
the long-range multipredictive adaptive controller named MUSMAR [8].

2. Problem formulation

With relation to long-range multipredictive feedforward controllers, three
problems are solved in this paper.

The first is the modelling problem. For the least-squares plus minimum vari-
ance self-tuner, it is a classic result that ARMAX plants controlled by this algorithm
admit in closed-loop an ARX model correctly describing its output [9]. In [10], this
result is extended to multipredictive models (i.e. models describing the output over
a certain horizon) by applying Implicit Modelling Theory [11]. The first problem
considered in this paper is the development of multipredictive models for ARMAX
plants with ARMA accessible disturbances, working in closed-loop. The models
to obtain are such that its residuo is orthogonal to the subspace generated by the
available data, thus being amenable of identification by standard Recursive Least
Squares (RLS).

The second problem is to develop an adaptive control algorithm, by coupling
the models above with a control law obtained by the minimization of a multistep
quadratic cost function of the type

JT = M| x jljl2(<+ fc)y+ pn2(f+ ifc-1)] 1/ 1 (1)

in which y =y —r is the tracking error of the output of the plant y with respect to
the reference r to be tracked, u is the plant input, p is a non-negative control weight
and P is the information pattern available at time t. V contains observations of
the past values of u, y, the accessible disturbance v and the reference r, this last
taken in this paper as zero.

Finally, the third problem is the assessment of the resulting controller perfor-
mance in the presence of unmodelled plant dynamics.

3. Modelling issues

Consider the SISO plant described by the ARMAX model with accessible
disturbance

A(@)y(t) = B(a)u(t) + D(a)v(t) + C{a)e(t). (2)
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in which A and B are polynomials in the forward shift operator g, such that dA —
—dB —d > 1, dA denoting the degree of A, A is monic and all the common
factors between A and B are stable. The innovations signal {e} is a sequence of
independent identically distributed random variables with zero mean and variance
erj;. Further, dD = dC —dA = n. Polynomial C is Hurwitz and v is the accessible
disturbance modelled as the AR process

Av(Q)v(t) = gn”ev(t) ©)

with Av an Hurwitz polynomial of degree nv and {et,} is a white noise sequence
with variance independent of {e}.
The input is given by the stabilizing control law [12]

R(q)u(t) = —=S(a)y(t) + M (g)v(t) + C(a)rj(t) 4)
where R and S are coprime polynomials, such that R is monic and
dR =riR, dS —tir—1, dM =p

where ng and p are the orders of the optimal controllers [12].

The sequence {73 is a zero mean white dither noise, uncorrelated with {e}
and {eb} such that <j = E[rfi] <Tmin(cr?, cr).

Remark 1. The above formulation encompasses the situation in which the
output of the ARMA plant

= B(a)u(t) +C(a)e{t) ©)

is to follow a reference vt given by the output of (3). Multiplying (5) by Av, (3) by
A and subtracting both equations, produces

M<DAV(Q)y(t) = B(q)Av(g)u(t) - A(a)Av{g)v(t) + C{a)Av(q)e(t) (6)

in which y(t) = y(t) —u(<) is the tracking error. Equation (6) is of the form (2)
and the results obtained for one case may be specialized for the other.

3.1. Implicit models

The first step in solving the modelling problem is to study under what con-
ditions the plant (2, 3) coupled with the controller defined by (4) admits an ARX
representation. This ARX model is only valid for the controlled system, and thus
is called an implicit model [11]. The following theorem, which extends to plants
with accessible disturbances similar results given in [10], provides an answer to this
problem. In order to improve clarity, the results in this section are self-contained.
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Proposition 1. The controlled system obtained by coupling (2, 3) with the
controller defined by (4) admits, in stochastic steady state (s.s.s.) an ARX repre-
sentation

A(Q)y(t) = B(a)u(t) +V(a)v(t) = q(t) +e(t) ()
with A(q) monic, iffthe characteristic polynomial of the closed-loop system satisfies:
) 3Q{a) :A(q)R(a) + B(a)S(a) = C(a)Q(a) (@)
and
gcd(R, S) = ged(i2,S, Q) 9)
i) 3Qv(q) : D(a)R(q) +B(a)M(a) = C(q)Qv(a) (t0)
and
gcd(R, M) = ged(fi, M, Qv). (11)
Further, under these conditions, the following identities hold:
A(9)R(q) + B(a)S(q) = Q(a) (12)
V(9)R(a) + B(q)M(a) = Qv(q) (13)
R(q) = B(a)-C(q)B(q) (14)
S?)=-") + C(OM(?) (15)
M{q) = -D(a) + C(a)V{q). (16)
L]

Proof. The proof follows similar ones found in [10, 11] and is given in the
Appendix.

3.2. The T-UCPP property

Implicit models are not unique [10]. Among the possible models are of special
interest here the ones that correctly describe the closed-loop system, no matter
what the inputs over a certain time interval are. In order to formalize this idea,
the following concept is used:

Definition 1 [10, 11]. An ARX implicit model is said to enjoy the uncon-
strained control prediction property of order r (or to be r-UCPP) if it correctly
gives the output up to time t + 1 for an arbitrary input sequence between the
instants i — + 1 and t.

Proposition 1. Let the inputs of the ARMAX pint (2) be given up to time
t —r by a control law of the form (4) satisfying:

) 3Q(a) :A(a)R(a) +B(q)S(a) = Q(a)C(q) (17)
i) 3Qv(9) : D(a)R(a) + B(q)M(a) = Qv(q)C(a). (18)
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Then, there exist an implicit -UCPP ARX model giving the correct output
up to time i + 1 no matter what the inputs fromt —r + 1up to t are used.
A model (1, B) enjoys the r-UCPP property if

A(rD)=Qub(ri+r (TR (ri) (19)
where dQR(g_1) = 0 and

Qb(g I)— 1+ mmm j21q 1 (20)

satisfies
= Q%(q~1)cr{g-1) + 9- (t+1)Gb (i _1) (21)

with Gg(q~1) —0.
In addition, (19) is satisfied if and only if

A (9-1) = Qa(9-1)+ 9-(t+1)Oa (9~1) (22)
and

Tn{g-1) = Qh(q-1) + {T+1)6b(9~1) (23)

with dGA(q * = 0, dQ™Mq * = 0, where dX*(q *) denotes the value of the
smallest exponent in g~1 with nonzero coefficient in the polynomial A'*( ~1), and

Qa(®@ 1)= 1+ ai9 1+ ...+ aTq T (24)
Qd(9 1)= 1+ "9 1+ - .+ B9 t (25)

satisfy
nuyri= Q-Ag-~C'ig-1) + 9-(T+1)G ;(rd) (26)
D”M"g-)=QUQg-'WQg-)+q-~G bfqg-1) (27)

dCrA(g-1)= 0, d&D(g~I) = 0.
Further, under (19) or, equivalently (22, 23):

(Ga- QaC)R = (GB- GbC)S (28)

and
(GO - GVC)R = (Go - GbC)M. (29)
Od

Proof. See the Appendix.
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Proposition 3. The plant (2) working in closed-loop under the control law (4)
satisfying (8-11) admits the r-UCPP implicit model given by:

yt+T + « Qi+r-i + eomt+ atr-ivVt+i —

= RIUt+T-1 + eeot O0T-1U +1 + 0T U +
tToti-(t + Tit+r-1 + seoet Te-iriti+ E£TSt+ el+r (30)
with
: 0° D n 0]
(31)
c &0 <=j i=0

ETis a vector whose entries are made up by the last hr —1 coefficients of A, the
last hr coefficients of B, the last hr + nv + 1 coefficients of V , and

St [i/t o« myt—fIR+ 111t —1 « « « Ut—ARVt mmmVt—HR— V] - (32)

This model is denoted M T.

O

Proof. See the Appendix.

Consider T r-UCPP implicit models, for r = 1,. .. ,T. Using this pencil of
models, yt+1 is eliminated from M 2 using M\, then yt+1 and yt+2 are eliminated
from M 3 using Mi and M 2, and so on. Also, project “future” samples of the
accessible disturbance, vt+T, mmvt+ in the samples of v in s(. In this way, the
following multipredictor model correctly describing the output of the plant from
t+ luptot+ T, is obtained:

Yt = WUt + ITJ( + St (33)

with W a Toeplitz lower triangular matrix of parameters, I a matrix of parameters
of convenient dimensions

Yt = [jit+i ...oyt+Td (34)
U=K...ut+r-!]’ (35)

and E a vector of residues orthogonal to the data in each predictor.

By performing the minimization of (1) with respect to Ut using (33), it is
possible to derive a control law which approximates the steady state LQS control
if T is large enough. A better choice is to assume that a fixed gain is acting on
the plant from <+ | tof + T —1, the following multipredictor model being thus
obtained:

yt+, = Ok + iplist + 1'f(t) (36)

LLki-i - Ab-iut. <tidist. A i(f) @37)
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NUW L [e<]m (38)

Here, 6i and p, are vectors and ®, and ®r are matrices of parameters whose
entries depend on W and T, and the gain acting on the plant on steady-state. The
exact form of this dependence is given by lengthy expressions which are omitted,
since they are irrelevant hereafter.

Two points are, however, to be remarked: first, the imposition of a constant
feedback allows a tighter approximation of the LQS control with respect to what
is obtained by leaving all the entries in Wt free. Second, models (37, 38) will give
rise to an adaptive algorithm with its only possible equilibrium points given by the
local minima of the LQS steady-state cost.

4. The adaptive feedforward controller

Using the predictive models (36, 37) to minimize the multistep quadratic cost
(1), the following adaptive feedforward control algorithm is derived:

MUSMAR with feedforward

At each sampling period t, recursively execute the following steps:

1. Using standard RLS, estimate the parameters in the predictive models (36,
37).

2. Calculate the vector of updated feedback gains by

1 T1
f(t) = —7ITD % W i+i(f) + PR{l)<txi\ (39)
i-0

(0 = BE7HL(M)+e2(*)] (4°)

where [0,(<) Vi(f)]; [/h(0 $(<)]' are RLS estimates of the homonimous pa-
rameters of (36, 37) and p is as in (1).
3. Apply to the plant the control given by

L= f(t)st+ W (41)

with it a low intensity dither noise injected in order to fulfill a persistent
excitation condition.

Equations (39, 40) are obtained simply by minimizing (1) with respect fo /,
assuming u(t) given by (41) with = 0 and that (37, 38) hold. Since st contains
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samples of the accessible disturbance, it is remarked that the above algorithm
actually includes feedforward terms.

5. Robustness analysis

This Section is concerned with the robustness properties against unmodelled
plant dynamics of MUSMAR with feedforward. Available theoretic results for the
regulation problem [13] are extended to plants with accessible AR disturbances.
The main conclusion is that, in the presence of any structural mismatching between
the plant and their models, as T increases, MUSMAR equilibrium points approach
the local minima of the steady-state LQ criterion. No assumption is made on the
regressor complexity. The main interest is in the possible convergence points of the
MUSMAR feedback gain vector /. The analysis is based on the O.D.E. approach
described in [14] whose applicability rely on the following assumption:

The sequence of regulator parameters f(t) € Ds and ||st|| is bounded for
inBnitely many t, w. p. one. Here, Ds is a compact set in which f(t) defines a
closed-loop system with poles strictly inside the unit circle.

Since the multipredictor coefficients of (36, 37) are estimated via a standard
RLS algorithm, the asymptotic average evolution of their estimates is described by
the following set of O.D.E.%:

(42)
X[yt+i+i(/(r)) - (0<+i(r)/(r)-]-&+i(r))'st(/(T) - 0,(N]}
= R~\r)E {zt(f(r))x 43)
*ut+.(/(r)) - (Pi(T)f(r |+ &(r))'st(/(r)) - PI(MrIt]}
R(r) = -R(t) + Rz(r) (44)
where
* =M (45)
_ . _ PMRs(Mf(T)+ rf  F(MA,(T)
R2(t) = E[zt(f(T))z't(f(T))] = (46)
(t) = E[zt(f(T))z't(f(T))] (M (T) R*(T)
Ra(r) 4 E[st(f(r))s"t(f(r))] (47)

and /(r) is, as in (39), with t replaced by r. In the above equations, dot denotes
derivative with respect to r and £[] expectation with respect to the probability
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density function induced on {u} and {y} by {e} and {/}, assuming the system in
the s.s.s. corresponding to the constant control law

L= f\r)st«1]e (48)

By using similar arguments as in [13] it is shown that the corresponding
O.D.E. for /(r) can be written as

I(r) = +o(l/(n)) (49)
where /(r) = /(r) —/*; f* denotes any equilibrium point of (40); o(|z|) is such

that Iin}) 12| =%

T-1
p(m) = 2°~[Rynii + |-, T)Rys{i + 1;t) + pRUh(i-, T)Ru,(i;T) (50)
t=10
and
Ryri(i+ 1;r) = E[yt+i+1(f(r)) ] (51)
Rys(i + 1, t) = E[yt+i+1(f(r))st(T)} (52)

with similar definitions for 1WAr; r) and Rus(i;r).

In order to give a convenient interpretation to (50), the following lemma is
introduced.

Lemma 1 Let Q*(q~l;r) = Q*(g~1;/(t)) be the closed-loop characteristic
polynomial corresponding to /(r). Then

. q-'B'ig-1)
2y + 1ir) = (53)
QLT ey
A2 (r+ Iir) = o4
C+HED= v, (54)
where denotes the r-th impulse response sample associated with the trans-

fer function H*(g~1).
Proof. See the Appendix.
According to (53, 54), (50) is rewritten as
T goBia-y A )
- o ) JIt+i+i(r)st(r) + i
PO =YLIE" 59 1,4 Ji+i U P g pyg, UEHIOSUD)

SOOI kst e A

p(t) = E\y,(T) LQ*(Q'Ur) Q*(?-l;T). T-l *<<(r)']}
(95
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where H \T denotes the truncation to the power q~T of the power series expansion
in g~ of the transfer function H.
Consider the unconditional cost

+P i\ (56)

as a function of the constant gains /(r). As shown in [3] for plants with accessible
disturbances,

dJ(f(r))
df{)
- 'q-'B'jq-1) . * Allg-1)
= i) SD M s

Thus, comparing (55) with (57), the former is seen to be a good approximation
to the latter, whenever

VI(/(r)) 4
(57)

IAIQ*(T 1;)]12(T-1)» | (38)
where A[Q] denotes any root of Q. Therefore, in a neighbourhood of any equilibrium
point satisfying (58), O.D.E. (50) can be approximated by

HE) = -Hr)]-1R7r)TvI(F(T)) + o(/(r)]). (9)

The above results are summarized in the following

Proposition 4. Consider the MUSMAR algorithm with p > 0 for any i/o
transport delay smaller or equal than T, arbitrary C innovation polynomial with
no root outside the unit circle, and any regressor complexity. Then, amongst the
equilibria f* giving rise to a closed-loop system with well damped modes relatively
to the control horizon T such that (55) can be replaced by (57), the only MUS-
MAR possible converging points approach to local minima or edge points of the
unconditional cost (56).

Proof. The proof is done recalling [14] that the only possible converging points
of a recursive stochastic algorithm are the locally stable equilibrium points of the
associated O.D.E. Since in (59) a(r) > 0 and Rs(r) > 0O, the conclusion follows.

O

According to the Remark 1 of Chapter 2, substituting y for y, the above

analysis encompasses the servo problem.

6. Simulation example

Consider the nonminimum-phase plant

W2 ~ [-5yt+i + 0.7yx—ut+l + 2ir - U4 -f e*42 (60)
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where {e(} is a zero mean, unit variance, white noise Gaussian sequence. Figure 1
displays the results obtained by controlling this plant using MUSMAR, with and
without feedforward. The improvement in the figure of merit obtained by using
feedforward is of about 10. The structure of the feedforward controller is defined
by

T=3 p= 10-5, = 10-4,

= [ityt-1Ut Je
Without feedforward, the term in vt is removed from the pseudostate.

7. Conclusion and final remarks

A long-range adaptive controller for ARMAX plants subject to accessible
disturbances, modelled as AR signals, has been developed and analysed. The final
algorithm turns out to be a modification of the MUSMAR controller, obtained by
the incorporation of feedforward terms in a natural way.

Although related to other feedforward algorithms, this new controller is devel-
oped from a distinct standpoint, and presents a number of important advantages.
Indeed, it includes the Clarke-Gawthrop type feedforward controller of [4] as a spe-
cial case, obtained by choosing the optimization horizon T = 1. By extending T,
important properties are acquired by the algorithm, e.g. a tight approximation to
the LQS feedforward control is yielded. However, this approximation is obtained
by implicit methods, as opposite to [2], in which involved Diophantine equations
are to be solved. A close connection with the explicit minimization methods of [J]
also exist since, as shown in Section 4, the controller gains progress in the opposite
of a modified gradient direction.

Besides the derivation of the algorithm, two orders of questions have been
considered. The first involves modelling issues and is concerned with conditions
under which an ARMAX plant with an AR accessible disturbance can be correctly
described in closed-loop by ARX models. The relevance of this result stems from
the fact that standard recursive least squares may be used for identification, thus
yielding simpler and less restrictive algorithms.

The second aspect is the tuning ability of the algorithm in the presence of
unmodelled plant dynamics. It is shown, that, even in the presence of unmodelled
plant dynamics, the only possible convergence points of the gains tightly approxi-
mate the local minima of the LQS steady state cost. It is remarked that, although
this result does not ensure convergence (it only characterizes the possible points
of convergence), there is enough simulation evidence that MUSMAR will actually
converge, whenever a minimum exists. The robustness properties of MUSMAR are
not unexpected. Indeed, since MUSMAR does not rely on a single plant model (as
it happens e.g. in both [2, 3]), but on a set of separately identified models, it is ex-
pected that the redundancy, thereby introduced renders, algorithm is more robust

6
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with respect to deviations to ideal behaviour caused by nonlinearities, unmodelled
plant dynamics or uncertain i/o transport delay than algorithms relying on the
extrapolation of a single predictive model.

Appendix

Proof of Proposition 1

(only if)

Assume that an ARX implicit model exists, characterized by A, B and T=
Using (4) in (2) multiplied by R(q) and then (3), the following closed-loop model
is obtained:

BM + DR gne BC

CR (61)
v - AR +BS AW " AR +BMY * AR + BS KO-
On the other way, using (4) in (7) multiplied by R(q), and then (3):
BM +VR q"l* . CB+R R (62)
YO= g +Bs "X§ (0 + AR + s AR + Bge(.

Let Q(q) and Qv(q) be given by (12) and (13). Due to the fact that {e}, {e,.}
and {rj} are uncorrelated, the transfer functions from the corresponding signals to
the output must be equal.

Thus, from {e} to {j/} and by (12):

CR _R
ARTBS OQ
which yields (8).
From {e,} to {?/} and by (13)
BM TDR Qv
AR+BS Q

and, from (8) this yields (9).
From {7} to {t/}, (8) and by (12)

BC CB+R
CQ~ Q
which yields (14).
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MUSMAR with feedforward MUSMAR with feedforward

997 1993 2989 3985
Discrete time Discrete time

MUSMAR with feedforward

MUSMAR MUSMAR without feedforward

1 997 1993 2989 1985
Discrete time

Fig. 1. Comparison of MUSMAR with and without feedforward

6*
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Multiplying (14) by S and M and using (12) and (13), respectively, (15) and
(16) are obtained.

(if)
In closed-loop, the plant (2) with the controller (4) is characterized by the
transfer functions from {e,}, {€} and {«} to the output and the input. These are

BM + DR oH/ . BC .. CR
YA~ AR+BS 'Avev® + AR+BST + AR + BSC ( ~
AM-DS 97 AC fj4 CcS
~ AR+BS "Av6W + AR+ BS” AR +BSer' ( ~

Consider an implicit model given by (7) with the control law (4). For such a
model, the same transfer functions are

BM +VR o’ CB+R R
t
Y ~ AR+BS Av  +AR+B S/ + AR +8s°V (65)
AM-VS 9« AC-Sou.
t).
¥~ AR +BS e( + AR+8b? AR +B°V (66)

For these models to be identical, the following conditions must be simultaneously
satisfied:

AR +BS = C(AR + BS) (67)
BM + DR= C(VR +BM) (68)
AM -DS = C(AM +VS) (69)
B—CB+R (70)
A=AC-S. (72)

To see that they can be simultaneously satisfied, consider the Diophantine equation

XA-YB =0 (72)

Al its solutions are given by
X = LB (73)
Y =LA (74)

for any polynomial L.
Take (67) and write it as

(A- CA)R- (-B +CB) = 0. (75)
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The solution of equation (75) satisfy

A-CA =1LS (76)
-B +CB =LR (77
for any L.

Similarly, for (68)
(D-VC)R-(-B+CB)M =0 (78)

whose solutions satisfy
D-VC =LM (79)
-B +CB =LR (80)

again for any L.
Comparing (70) with (77) and (71) with (76) it is concluded that a choice of
L ——1 is compatible with all the conditions.

O

Proof of Proposition 2

According to (12), all possible B have the form
B—X + LR (81)

with L generic. Let L*(g-1) be found by long division of QB{q~l) —AT*(g_1) by
R*(q~l) so as to satisfy

QbOT1)- X'ig-1) = L4g-")R*(q-1) - 9- (t+1)$b(«_1)

with dL —r and dQB(g~l) = 0.
With this choice, B verifies

3b0OT1)- ~A(«l 1)+ L*(g-1)A*(g_1) = V (r p***«"1)- q-"Gsig-1)

which proves that a B can be found in the form (19).
In order to prove (22, 23), note that (8) imply:

AR +BS = C(AR +BS) (82)
DR A BN = C(VR +BM) (83)
(BC - B)S =-(AC - A)R (84)

(BC —B)M ——(VC - D)R (85)



160 LEMOS: ADAPTIVE CONTROL OF ARMAX PLANTS

[R*(r1)C*(?-1)-5* (g- 1)15*(?-1) =
=-[A*(q-DC'(a-1)-A-{q-DIR'(a-1)

(86)

. 87)
=-[D'ig-"C"q-1) - D*(a~DIR/(a~1).
if ~ (T 1) is, as in (19), the above equations become
9 (r+)[™MN9-DC*(r)- GM?-D N -] =
= -U*(9'DC*(«?>-) - A'i,-1) 1" -1)
A-"+'YPBr"CYa-1)- GUQg-'Wiq-1) =
= -[D'ig-~C'ig-1) - iTig-'"Wiq-1).
Write JT*(g-1) and D*(g~1), as in (26, 27), and use it in (88, 89) to get:

B-(T+1)1/(9_1)C*(9-1) - Gb(«* 1)]S*(«"1) =

(90)
=-[M*(9_1)- QUqg-'VC'ig-1) - r (T+L)c”™ (r D]A*(9-1)
9- (T+1)[A*(9- 1)C*(?_1) - G bir1) ]~ (I 1) =
(T+1)[**(9- DC*(?_1) ir)]nr(ra (1)
=-[(r>*(9_1)- QbOry) ~ -1)-g-"GUQg-"W i-1).
Using the fact that R is monic, (22, 23) are obtained.
O
Proof of proposition 3
Since (equation 8)
AR +BS =CQ
for some polynomial Q, the degree of Q is determined as follows:
From the structure of the control law
dR = nR (92)
dS=nR- 1 (93)

Since it is assumed that dB < n —1, the term AR has a higher degree than

BS. In order to equate the coefficients of the highest powers of AR and CQ, since
dC = n, it must be true that

dQ =nR. (94)
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Once dQ is known, equation (10) is used to relate the degrees of A and B.

AR +BS = Q.
Since
dQ - nR
d(AR) —dA +nR
d(BS) —dB +nR —\
it must be

dB = dA+ 1 (95)

in order that the coefficients of the highest powers of q_1 in AR and BS cancel out.
By (19) and (22)

N4-r1) - Qan-1)+ a-(T+1)E/n(n-1) (96)
AT 1) = Qbfo"1) + <I(r+1)E6(<l]) (97)
and since dQA —dQR = r, relation (95) gives
dgB=dgA + 1 (98)
Equations (22), (26), (21) and (19) used in (82) give

(Ga - GaC)R =(GB - GbC)S (99)

From (26), (21):
Ga = (A-QAC)qT+ (100)
GB = (B-Q BC)qT+1. (101)

Multiply (100) by R, (101) by S, subtract and use (8) to get
GaR-G bS =C[Q-QAR + QBS]qT+L (102)
From (102) and (99):
GAR —GBS —known polynomial. (103)

Equation (103) is used to obtain the minimum degree of Gb by equating the
number of equations to the number of unknowns.

The number of equations is equal to the number of coefficients, which in turn
is given by the degree plus one. Thus:

Number of equations = (dGe + nR—1) + 1= Gb + nR (104)
Number of unknowns = dGA + 1+ dGe + 1= 2dGe + 1- (105)
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Equating the number of equations to the number of unknowns:

9Qb + NR —2<9(7/B + 1

3b=nR- 1 (106)

From (19)
dB =T+ 1+8Qb=ng+r. (107)

To get the degree of V, a similar technique is applied to (83). Write it as
{Gd - QVC)R = (GB - GbC)M. (108)
From (19) and (27)

Gd = ~(D + CQD)qT+ (109)
GB = (B -Q BC)qT+L (110)
From (108):
QpR —GRM = known polynomial. (HI)
Then:
Number of unknowns = dGv + 1+ 8Gb + 1= Gv + 8Gb + 2 (112)

Number of equations = dQe + ng +n, - 1+ 1= BQo+ng+ nv. (113)

Equating the number of unknowns to the number of equations, the minimum
degree for cv is obtained:

dV = T+riR + nv- 1 (114)

Finally, by (107, 95):
an=ng+r- 1 (115)

Thus, there exist finite orders for A, B and D given by (107), (i14) and (115)

such that (7) enjoys the =UCPP property. Writing (7) for t replaced by t + r
yields (32).

O

Proof of Lemma 1

In closed-loop

R*(g~I\r)ut - ryyt + M*(g-1;nist + qt.
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Consequently, if

11.

r) = v4*(9-1)-R*(g_1;r) + g-~I r),

q~1B*(q~1)C*(q~1) C*(q~1)R*(q~1;r)

y,M - — ouPY P + "(rV)

A-1B*(a-IM*(a-\T) + 11 (5-")BI(a-1-T) gn*
Q'ig-'ir) A'v(qg-")ev(t)

- cr{g-")s*(q-'-tT)
Ut{T)- Q*(<rVvV) 4.+ g*(«-1;r) e+
ndyrYymuryY bPUrl) - 1% an" o om

Q'(g-uUT) " As(g-Nev(h

Since {iy} is uncorrelated with both {e} and {e,,}, the lemma follows.
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ApfanTuBHOE ynpaB/ieHWe WNPOKOro gnanasoHa gna cuctem ARMAX ¢
LOCTYMHbLIMMW NOMEXamMu

N M. EMOC
(NuccaboH)

PaccmaTtpuBaeTca afanTuBHOe ynpaBieHne ¢ NpaAMoii cBA3blo agns cuctem ARMAX ¢
Lenblo YMEHbW UTb BANAHNE U3MepAeMblX NOMeX. icnonb3yemblii anropuTm npeacraBnseT
c060M paclwMpeHHbIN MynbTUNpPeACcKa3blBalOWMA afanTUBHbIA anropuTM ynpaBneHus Wun-
poKOro gnmanasoHa, KoTopblii 0603HayeH MUSMAR. lMoka3aHbl TPU OCHOBHbIE pe3ynbTaThbl:
nepeoe, napameTpu3aynma MynbTunpefcKasblBalo WX mMoaeneil, KoTopble BO3MOXHO UAEH-
TMUuLMpoBaTb NPN NOMOLWM CTAaHAAPTHbBIX HAaUMEHbLW NX KBagpaToB agna cuctem ARMAX c
n3mepsemMblMun nomexamu Tuna ARMA, Bo3AeNCTBYIOWMMN B 3aMKHYTOW Lenu ynpaBneHuns;
BTOpOE, MOKa3blBaeTCa anropuTM, BblTeKalo W MR M3 COegNHEHUA HEABHOrO NpeAcTaBaeHUn
CUCTEMbl C MYNbTUCTYNEHYaTbIM KBajpaTHbIM KpUTepueM U ero pobacTHble CBOWCTBA Ha-
CTPONKN YCUNEHWUS PerynaTopoB; TpeTbe, MOKa3aH NMPUMep CUMYNALUK.

J. M. Lemos

INESC,

Rua Alves Redol, 9, Apartado 10105,
1017 Lisboa

Portugal
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(E, A-ACHIEVABLE RATES FOR MULTIPLE DESCRIPTIONS
OF RANDOM VARYING SOURCE

E. A Haroutunian, R. Sh. Maroutian

(Yerevan)

(Received November 28. 1989)

We study the coding by two encoders and two decoders of discrete random varying
memoryless souroes, when both decoders use side information about source states. We
derive the inner and outer bounds for the (E, [ )-achievable rates region, that is the rates
achievable for a given pair of exponents E = (E\, Ez) of the probabilities of exceeding the
distortion levels 4 = (A41,/2), respectively.

1. Introduction. Problem statement. Formulation of results

A random varying memoryless source {A, Y} is a sequence of independent
identically distributed pairs of random variables {(A-, ¥ *)}” given by the proba-
bility distribution

p*ow* = {P’o0 Xex,yey}.

The signals x of alphabet X of the principal source {A} must be transmitted
to the receivers. The information about signals y £ ¥ of the additional source {¥},
considered as the states of the source {A}, can be used for the better transmission
of the principal source.

Multiple description of a discrete memoryless source is a simultaneous en-
coding of the source by several encoders and, correspondingly, decoding by several
decorders, each of which is connected to a part of the encoders [1-5].

In the present paper we study the problem of the multiple description of
random varying sources by two encoders and two decoders. One of the decoders is
connected only with the first encoder, and the other one with both encoders. It is
supposed that both decoders have the full information about the additional source
(see Fig. 1).

Let U, V be two finite reproduction alphabets on the first and second decoders,
respectively, and X x U —»[0,00), d2;X x V —%[0,00) be the corresponding
distortion measures. For the length n sequences x £ Xn, u £ Un, v £ Vn of

Akadémiat Kiadé, Budapest
Pergamon Press, Oxford
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Fig. 1

distortions are defined as the average of the distortions between their corresponding
elements, i.e.

di(x,u) = ﬁ\{gi(xi,u,),

d2(x,u) = I_|>1A’:]l_(12(x{,|>|).

An (/,F) = (/i,12,R, F2) block code of length n is formed by two encoding
functions fi: Xn “m {/1,... JE(,)}, /22T" -» {fcb ..., £%(,)}, and two decoding
functions Fi: {li,..., /,()} xT" “mW", F2 {/b eee, k(n)} * {*1, ee, KK(N)} x P" —
—+if". Probabilities ei>n and e2n of exceeding the distortion levels 41> 0 and
A2 >0, given on the first and second decoders, respectively, are defined as

ei,n =el(fl,F1,dLAun) 4 £ P*(X)W*{dLx, BA"X),Yy)) >

€2, = e2(f1,12,F2,d2, 2,0) 4 £>*(*)1T ({d2x, F2(f1(x),f2(x),y)) > L2}x).

X

Our aim is to study the characteristics of codes ensuring the exponential
decrease of probabilities ei>nand e2,n with given exponents E\ > 0 and E2 > 0,
respectively,

Bj.n < exp(—nEj), j - 1,2 (1.1)

Two non-negative numbers f2j, 12 are called (E, A)-achievable pairs of rates,
if for any £ > 0 and for all n > n(e, R\,R2) there exists a code (/, F) satisfying
(1.1) and such that

n—log L(n) <Ri +e¢, 0 log K(n) < R2+e

The region of all (E, A)-achievable rate pairs is denoted by XX(E,A).
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Let P 4 {P(x), x E X) be a probability distribution on X, W = {W(?|a:), x E
G-i'ji/G”™Jbea matrix of the conditional probabilities on ¥ for given x £ X , and
Q = {<2n,rpx), x GX, n GU, v E V} be a matrix of conditional probabilities of
pairs (u,«)gWx V for given x E X.

We shall use the following notations: for divergences

D(P| \N =T .PC)°*W,-
X
D(P oW\P* oW ') +J2 M*)Ly\*) 15 p A | A bl x )’

D{WWW\n 4 Y ,P(x)W (y\x)log""r

for entropies
HP(X) 4 -£p (*) log P{x),
HP,w(Y\X) 4 Y,n*)my\*)logW (y\x),
X,y
for mutual information
IPW(X AY) = HP(X) - HP,w{X\Y).
Let
B(E) = {P, W: D(P o WA\\P* 0 W") < E}
and
MP)Q(X,U)="Y, P(x)Q(u,v\x)d(x,u).
X,u,v
Define the function
®(P) =QP 4 {QP(u,vI*), xGX, nGU, vGV}
determining the correspondence of a Q to each P, such that, if D(P\\P*) < Ei,
then MP.4P)di(X, U) < Ai, and if D(P\\P*) < E2, then MPA(P)d2(X,V) < [2.
Let VR(E,A) be the set of all such functions & for given E = (£1,E2) and /1 =
= (Ab " 2r
Denote by XXr(E, A, ®) the set of all pairs Ri, R2such that the two following
inequalities hold

R\ > m‘r(\sup BED IP4(P)(X AU) —IPg(P) w{Y A UM\

+ Ei -D (P o W\\PmoW*y, 1p,®(P)(X Aif)},

max
P D(P\\P')<E

. . o .
Ri + R2> mm|<p,vr\]/1e@ZE3)|P’m§/P)(x AUV) IP%F\W(Y A UV)

+E2-D(PoW\\P* oW™); IPOF)(X AUV)}.

max
P D(P\\P’)<Ez
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Consider the “random coding” region

sy = W *r@En,e),

®EAN(E,4)
and the “sphere packing” region
K*P(E,A) = U N.pE7, 4.9),
®6®1(E,11)

where 38p(£',[,®) is the set of all pairs R\,R” such that the two following in-
equalites hold

Rl - pweB{EDilpdp~ X AU)~ 1P,i-{P),W{y AU)],
Ri + R2>p A o d(P)(A NTUV) —IpA(p)tw (Y AUV)].

The following theorems will be proved in Section 3 and Section 4, respectively.
Theorem 1. For positive Ei, £2, 41, A2 the following inclusion holds

N(E.L) D <ATEL).

Theorem 2. For positive £1, £2, Ai, A 2 the following inclusion holds

<AEL) C™ pE4).

Remark. Asin [4] it can be proved that in the Theorems it is sufficient to use
the sets U and Vwith \W < |T|+2and |V| < (|T|+ 1)2. Here and later we denote
by |A| the cardinality of the finite set A.

Now, let us carry out the comparison of our result with earlier known ones.
Gray and Wyner [1] first considered the problem of the multiple descriptions of
a standard source for the same diagrammé of encoders and decoders as our ones.
They found the region of achievable rates for a given distortion levels. Ifin Theorem
land 2 one takes £1 —<0, £2 —40 and |M = 1, then he obtains the result of [1].

Multiple descriptions for sources with two encoders and three decoders are
considered in papers of EI Gamal, Cover [2], Ahlswede [3], Gelfand, Pinsker [5].
Heegard and Berger [4] describe the set of achievable rates of random varying
source coding for given distortion criterion, when the side information can be absent
at one of the decoders. In [6, 7] for some models of discrete memoryless sources
the problem of determination of the £-achievable rates is considered. The same
problem as in this paper but in the case of absence of the additional information
on the decoders is studied in [8].

The works [9-12] (see also [13, 14]) were devoted to the study of the coding
problem for correlated sources.
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The region of (E,A)-achievable rates for some models of random varying
sources is determined in [15].
The result of this paper were presented in the IXth All-Union conference on
coding theory and information transmission in Odessa [16].

The proof of Theorem 1uses the Lemma of Section 2, which is a generalization
of the covering lemma from [17].

2. Typical sequences and the Covering Lemma

Let us denote the number of positions with x in x by n(x|ai). The sequence
X G Xn has the type P if n(xpx) = nP(x) for all x G X. The set of all sequences
of type P is denoted by Tp(X). The number of different types of sequences in X n

is less than (n -(-D)1*'1.
We shall use the following well-known combinatorial relations [13]:
(n 4 1)-1*lexp{nHp(X)} < \TP(X)\ < exp{nHP(X)},
for x GTP(X)

P*(x) - exp{-n(D(P|[P*) + Hp(X))},
(n + D)“# lexp{-nD{P\\P*)} < P'(TP(X)) < exp{-nD(F||F*)}.

One says that a sequence y & ¥Yn has conditional type W for given x G Xn,
if n(x, ypk, y) = n(xja:)VV(y|x) for every x G X, y G Y- Denote the set of these
sequences by 7V (Y|x). It is known [13] that if x G Tp(X), then

(n+ D-1*Hylexp{nApy (Y |X)} < |TW(Y|X)| < expITiPprYIX)},
for y GTiv(Y|x)

W'(y\x) = exp{-n(£>(W]|W*|P) + HP,w(Y\X)},

and

(n + 1)-larllylexp{-nD(W[W*[P)} < W{Tw (Y[x)[x) <
<exp{-nD(W|W*|P)}.

Denote Q\ = {<3i(x|u), x GX, it GUj, where

Qi(*lu) = XI vianp(@) ("1} via)/*(in)
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We say that x G Tp(X) has conditional type Qj, for given u GUn, if n(x, ujar, u) =
= n(u|u)<3i(x|u), for all x G X, n GU. The set of sequences x G Tp(X), having
conditional type Qx for given u G Un, is denoted by Tpg(X\u). A sequence
u G Un has type Q2 = {<3r(«), «GW} where Q2(w) = Q(u, nja;)P(x), if

n(ulu) = nQ2u), for all 1 GU. The set of sequences u GUn having type Q2 is
denoted by Tpq (V).
The family
{7>.a(Xng j=TJ}

is named a covering of Tp(X), if

J
Tp(X) C [J TPig(X\uj), where uj GTPiq(U), forj - 1,J.
i=1

It is clear that

TPIQIW(Y Ju) = (3 TW(Y|X).
xX6Tp,Q(X|u)

A covering {TpQw (Y|u,-), j = 1,J} of Tpq{Y) is called a-balanced [17] if for
eachy GTPIWy ) |[{un,:y GTPig:WY [uj)}| < a
Now, we shall prove a modification of the Covering Lemma 3 from [17].
Lemma. For e > 0 and any types P, Q, for large enough n there exists a
covering {TpQ(A|uj), j = 1, J(P,Q)} of Tp(X) such that u; GTp,q(V)

J(P, Q) =exp{nlpa(X Ni7) + 2en}

and for all conditional types W there exist a(P, Q, W)-balanc.ed covering
{7p.cS,iv(ylu,), j = 1,J(P,Q)} of Tow(Y) with the same {uj, j = 1,J(P,Q)}
and J(P, Q) such that

a(P,Q, W) = exp{7z[/p,Q(A AU) - IPgw (Y A17)]+ 4en}.

Proof. We prove the existence of coverings by the method of random selec-
tion. Let {£j,] = 1,J(P, Q)} be a sequence of random variables independent and
uniformly distributed over Tpq (U).

Let us denote by

. J(P.Q)
mx(x) = < L ifx* (J Ipa(X|Ca
J=!
.0, otherwise;

_ fI, ify tTp,Qw(Y\t}),
WyJd) = \ 0, otherwise.
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Upperbound now the following expression

JP Q)
PfieTP(n) ((>|}+Elj AY Lj) > 1+

eTPW(Y) ]—1

Q
+ RE ~y.)e
N >£Tp|W(Y) 1=1

As in the proof of Lemma 4.1 from Chapter 2 of [13] we can obtain

r 1 rJPQ 1
Pr £ iMx)> 1 < |7>(X)|Pr x<f£ vy 7>1q(* N) <
'*GTp(dr) ' h i=l 4
< T p(x)I( - JTP.Q(AuU)ITp (A )r)-I(p'<) <

< [Tp(A)| exp{— (P, Q) exp{—nlp a (x A U) + ne} },

and

Pr| E E <bly,J1 > 1f <
L 1=1 yeTPw(Y) J

< \Tp,w(Y)\exp{-J(P, <5)exp{-n[/p.Q.w(y A[/)+e]}}.

As it holds from the Covering Lemma 3 [17], we have for a > 0

Pr Y, V20)<J(P,Q)-a(P,W,Q)\<
Lj=l J
JP.Q
<exp{-a(J(P,Q) - a(P,W,Q))} M exp{acp?(yJ)}.
I=i
Then we obtain

M exp{aip2(y.j)} = |[TpQ.iv(EU)I[Tp,iV(y ) r1+
+ea([rp,w(y)|-ITp,Qiv(y|u))|Tp, W (y)rl

and if we take

a = log[(J(P, Q) - a(P,Q, W))\TPQW (¥ |n)|]-
A\og[a(P,Q,W)(\TRPIW(Y)\-\T PiQIW(Y\n)\)]
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then

4 E Mvl)< J{P,Q)~a(P,Q,W)\<
A=l J

< exp{J(P, Q)[N(A) - Xnlpg W(Y N1 G},

where h(A) = —Alog A—(1 —A) log(l —A), A= a(P, Q, W)/J(P, Q). Hence, if we
choose
J(P, Q) = exp{tilpg (X A7) + 2en},

and
a(P,Q, W) =expjn~"Q~ AC/) - Ip,Qw(Y Q) + 4en},

then the statement of the Lemma holds.

3. Proofof Theorem 1

We have Xn—(JTp(X), with P running over all possible types on Xn. For
each type P choose sg)me conditional type Q such that Q — ®(P) for some fixed
& G9Ji(P, A). Let, according to the Lemma,

WP.e(P)) e ipis(p)([), - 1,J(P, ®(P))

be a covering for Tp(X) and a(P,Q, W)-balanced covering for Tpw(Y)-
Consider the covering of Tp(X), consisting of disjoint components

Ci{P, ®) =

= Tpah(p){X[n; (A Ap)) \ [J 3% (p)(XM_,-(ped(p))),
j'(PMP)KXPMP))
i=17(P,®(P)).

For each type P and conditional type W define following sets

Si(y, P, d, W) =
= {Uj(PxPy) 1Y e M, P(P)("InSIPEPY)) i = e (™)}
From the Lemma we have that

5i(y, P, d, W) <
< exp{n[7pip(p)(X AU) —7p,$(p)W(E /1 C/)] + 4eti) .
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Further, by the Lemma, for every fixed usp &(P)) € Pp_ PP){U) there exist
coverings

{2p. & (p) (T MAsTh(5)),Y5(p(p)), A(P.®(P)) = 1,C(P,®(P))}

for Tpd(p)(X|[n;(pdh(p))), and for each conditional type W there exist
exp{n[7pd(p)(X AV\U) —7p,da(p),1y(Y AV\U)] + 4e}-balanced coverings

{Tp,®(A). (Y n;(P.®(P)!Yp, F))), g(P, ®(-P)) = 1,G(P, ®(P))}
of 7>1h(p)=y (¥ [ (p I(p))), where

7pr(p),w(NMu,v) = "J Tw{Y |x),
XETPAP(-X|u,v)
and
C(P,®(P)) = exP{n[/pIp(p)(X AV\U) + 2c]}.
Let
CjAPMP)) =
= Cj(P, ®(P))I {Tp t(p) (X; (p(p)),¥T(p t(p)))\
\ U 2>, @ (P)(MmAP,P(P)) vj'(P,*(P)))i
YP.OP)X,(N®(P))
and

52(y,u, P, ®d,W) 4
= {yr(P,0(P)) : Y £ ?p,®(P),N'O'In>10(P,d(P)))> a(P,P(P)) = 1,G(P,d(P))}.
We have

IS2y, u, P, &, W)I < exp{n[7pd(p)(X AV\U) - IPMP),w(Y AU) + 4e]}.

Now, using the random coding method we shall prove the existence of code
(/,F) satisfying the conditions of Theorem 1. Let {G(u), u € W") be the
family of independent, identically distributed random variables with distribution
Pr{f£(u) = [} = £-1(n), / = 1,L(n) and {r?(v), v E V’} be the family of indepen-
dent, identically distributed random variables with distribution Pr{r?(v) = k} —
—K~1(n), k = I,K(n).

Consider the following coding functions

li(x) = CusPOP))> if x GCj(P, ®(P)), and
Ir(x) = »(Vi(pr(p))), iFx GQ,j(P, ®(P)),
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and decoding functions (with some fixed vectors uo and vo)
fu, ifu 6 Si(y, P, ®, W) N/ f 1(i),
Fi(l,y)=1 where [Si(y, P, ®, W\ >~ (y, P, &, W) |
(ug, otherwise;
and
v, ifve 52(y,u, P, ®,PY)/2 1(A),
F2(lk,y)4 where u = Pi(/,y);

<2(y wn,P,®,1P)| > |S2(y,u, P',®, W"];
_vq, otherwise.

Define now

1, ifC(Uj) = C(uj), Xe C(P,<>) and
V=Sixy) = U, up6 Si(y, P, d, W),
0, otherwise;

f1, ifv(vg) =r/(vg), x € Ca,n(P,®),
Axy) = < \g, Vgi GS2(y,Uj,P, ®, W), u; G51(y,P,®, W),
(0, otherwise.

Let

ei(C, 7 = "P* (X)W (y[x)v?i(x,y)
Xy
and

e2«,r?) = MPH(X)NM*(Y|X)v?i(x,y)v?2(X,y).
Xy
Now, we upperbound

Pr{ei(C) i) > exp(—nPi)} + Pr{e2(£,if) > exp(-nP2)}.
As it is shown in [15] for large enough n
Pr{ei(C»?) > exp(-nPi)} <

< exp4Ln P,V\/,Eaﬁ +C)}_Ip,op(p)’(x nu)—
-lp,*(P)MY AU) + Pi - D(P oWA\P* oW ) + 2¢] - logL(n)}.
Similarly, for large enough n
Pr{e2(£, nj) > exp(—nP2)} < exp{n(P2+ e)} x

X £ £ E P*(xX)W*{y\x)M<pi(x,y)Mtp2(x,y) <
p,w gB(E2+E) xeTpCX) ye Tw(y [X)

<exp{n Pyl\/@éa(xﬂﬁ)[/pgo(pq(A nfv) —Ip,qogp) w(Y IPV) + P2—

—D{PoW|P*oTl) + 2e]- logL(n) - logA'(n)}.
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Finally, we obtain that for

L(n) >
> expl nP_ngf;léiwtlpm(P)(x nen —1pih (p)A(Y nm) + Ei—
D{PoW\\P* o W) + 3e]},
and
L(n)K(n) >

>expln  max_ [IpMP)(X n UV)- IpMP),w(Y 1UV) + E2-

P,WeB(E3+e)

D{PoW\\P* oPY¥*) + 3e]},

there exists a code (/, F) with rates satisfying the conditions of the Theorem.

4, Proof of Theorem 2

Let rates Ai, R2 be (E, A)-achievable for some code (f,F). Denote by
G—{(x,y) :(bg Fi(/i(x),y)) < Ai}.
Consider some type P oW GB(E\ —¢), fore > 0. Then

IGi OTP'W(X,Y)\ = P* o W*{Gi N Tpyv{X, Y))(P* 0o W*(x, y))“1,
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where (X,y) GTpw(X,Y). It follows from Section 2 and inequality P(A MB) >
> P(A) + P{B) —1that for types P, W G B{E\ —e¢) and for sufficiently large n

IGi ITPIW(X,Y)I > exp{n(HP]WX, Y) - €)}.

(4.1)

Denote by J1(y) the set of those u G Un, which for given y and some x G Xn

satisfies the condition u = Fi(/i(x),y). Then

IGICTp,w (X,Y)\< E I{x:ai(x,u)< AJl.
y:3X,(x,y)6G I uEA(y)

4.2
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Let @ = {Q'(u|x,y)} be some conditional type in Un for given x G Xn and

y er
If (x,y, u) GTptQw(X, Y, U), then

di(x,u) ) =

n(x,y,«|x,y,«)iii(x,y) = Mp'Q’<nd\{X,U) < A\.

X,y,U

For fixed y and u the set of those x, for which di(x, u) < Ai, can be covered
by the collection of conditional types Tp ¢* w{X |y, u). Hence, from (4.2) we obtain

\G\ MTptw (X, ¥)| <

< 'y Y' (n+1)171 max [Tpwo'(X|y, u)| <
Frae>««.-0W ly 4.3)

< Liexp{n Lﬂ P|No(Y )+ . HPWQI(X\Y, U) - e/2] }.

Q pa/ Tv%fi({xuj)<,A|
From (4.1) and (4.3) we have

hlog Li >
HPiIW (X, Y) —Hp w(Y HRQW{X\YU (4.4)
” N K - =
W( , ) pW( ) Q-Apri'ang?((XtU)<A1 FkQ’ { ) e
@ MD,Q'tvr\mr,]&kaA’ Ip?l,w(x AU\Y) —s.
Denote by

QHX) = JT"Q'(ulx>y)*(yIx)-
We have from (4.4) that
- log Lx >

> max min
~ P,WeB(EI-c)Q;MPiQdI(X,U)<bl

~|p’\y)\k$ 1—c)Q:MthE ((T)gnAjVW(x *U)-1p,Q.w(Y AU)-e].

Similarly, we obtain that

Ipo'w (X AU\Y)— (4.5)

7 + >
(4.6)

> ma min I X AUV) —I Y NTUV) —.
~ P,WeB()E(3-e)Q:Mp'QdiEX,V)<A3 pq( ) qu( )
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Taking into account the continuity of the right-side of (4.5) and (4.6) by Ei

and Ei, respectively, and the arbitrariness of e, we obtain the statement of The-
orem 2.
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(E*, A)-[OCTUXMMbIE CKOPOCTW MHOXECTBEHHOIO OMUCAHWA CNy4aiiHo
MEHSIOLLEerocs MCTOYHMKA

E. A APYTIOHAH, P W MAPYTHAH
(EpeBaH)

MHOXeCTBEHHOE OMMCaHWe MCTOYHWUKA — 3TO €ro KOAMPOBaHWe OJHOBPEMEHHO He-
CKOMbKUMWU KOAepamMu U [eKOAMpaBaHWe COOTBETCTBEHHO HECKONbKMMM fAekogepamu, Ka-
XAbli M3 KOTOPbIX CBA3aH C 4acTbl0 M3 KOAEpPOB. M3yuaeTcs 3agaya MHOXECTBEHHOrO
onucaHusa CAy4yaiiHO MEHALWEeroca WCTOYHWKA ABYMs KoAepamu U ABYMsS AeKOfepamu,
OfMH W3 KOTOPbIX CBA3AH NULWb C NEePBbIM KOAEPOM, a BTOPOK — C 06eumMun. HaiifeHbl BHY-
TPeHsAs W BHewHsas rpaHuubl (E,1)-40CTUXMUMBIX CKOPOCTENA, TO eCTb CKOPOCTEN, AOCTH-

XMWMbIX Npu 3af,laHHON nape 3aKCNoHeHT E = (E\,E2) BepoATHOCTeN NpeBbllWEHNA, COOTBET-
CTBEHHO, ypOBHel nckaxeHua A = (Ai, 42).
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THE DISCRETE MAXIMUM PRINCIPLE AS A SUFFICIENT
OPTIMALITY CONDITION

Marcin Studniarski

(Lodz)

(Received October 22, 1991)

We present an example showing that the validity of the maximum principle in the
subdifferential form for convex nondifferentiable discrete-time control problems is not suf-
ficient for optimality. We also prove that the desired sufficiency property can be achieved
under some additional assumption concerning the objective function.

1. Introduction

In some recent publications, e.g. [2-6, 9, 11], various kinds of generalized
subdifferentials were used to formulate the maximum principle for certain classes
of nonsmooth and nonconvex discrete-time optimal control problems. All those
generalized subdifferentials, except for the ones considered in [4], reduce to the
usual subdifferentials (cf. [7]) when the control problem is convex. In this case, the
natural question arises whether the necessary optimality conditions formulated in
the subdifferential form are also sufficient for optimality or not. Unfortunately, the
answer is not as simple as in the case of convex programming problems.

It is known that if the functions appearing in the problem are both convex
and differentiable, then the discrete maximum principle is actually a sufficient op-
timality condition (cf. [1, § 13]). For the nondifferetiable case, the authors of [5]
claim (Theorem 5) that the same conclusion is true for the “weak” maximum prin-
ciple. In this paper we present an example which shows that the validity of the
“strong” maximum principle for convex problems is not sufficient for optimality.
However, the same example can also be used to prove that the above-mentioned
statement in [5] is false (see Remark 3.2 below). Further, WE show that the desired
sufficiency property can be achieved under some additional assumption concerning
the objective function. This assumption is always satisfied when the function is
differentiable.

1 Akadémiai Kiad6, Budapest
Pergamon Press, Oxford



180 STUDNIARSKL THE MAXIMUM PRINCIPLE AS AN OPTIMALITY CONDITION
In the paper we make use of some notions and theorems of convex analysis
which can be found in Chapter V of [7]. In particular, we recall that the subdiffer-
ential of a convex function / : Rn —R U {+00} at x is defined by
df(x):={zeRn:f(x +h)-f(x)>(z,h)yhERnN} (1.1)
(we assume that the value f(x) is finite). Moreover, we have, by [7, Thm. 23.2],
df(x) = {z GR" :f'(x-v) > (*,«),¥>GR"} (1.2)

where the directional derivative /'(x; v) is defined by

f\x;v) := \imHF(x + \v) - f(x))/\. (1.3)

The above limit always exists and has the following property (cf. [7, Thm. 23.1]):
f'(x; ) = inf(/(* + An) - /(*))/A (1.4)

Let us now consider the Cartesian product X = X ix.. .x Xk where Xi = Rm*,
i=1,.,ik and let / : X — R be a convex function. The derivative of the
function f(x 1,..., Xi_i, -,X,*i,..., Xk) at X in the direction v will be denoted by
/" (xj,... ,Xk',v), while its subdifferential at x* - by dXtf(x 1,... ,Xk) (this set will
be called the partial subdifferential of / with respect to Xj). It is easy to prove
(cf. [8, Lemma 2]) that

pr,(df(xi,...,Xk))CdxJ (xi,...,xk,), i=1,....,*. (1.5)
For a convex set A C R", we shall denote by N(x \ A) the normal cone to A

at x GA, i.e.
N(x 1A) := {z GRn: (a—x, z) <0, Va GA}

It is easy to verify that if A —A\ x ... x Ak C X, then
pr- N((xi, ..., xjt) 1A) = N(x{ 1Ai), i=1,...,*. (1.6)

Throughout the paper, AT will denote the transpose of a matrix A, and ri U
will denote the relative interior of a set U.

2. The discrete maximum principle for convex problems

In this section we consider a convex version of the discrete-time optimal con-
trol problem examined in [9]. Theorem 2.1 below contains a maximum principle
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formulated under an additional regularity condition (a variant of the Slater con-
dition) which ensures that the multiplier corresponding to the objective function
can be chosen as 1 In the next section we shall show that even this strengthened
maximum principle may not be sufficient for optimality.

Let us consider the following problem:

=i
minimize J(x,u): = fi(xj,Uj) subject to 2.1
»=0
Xiti = AIXi + B{w+a, i=0,1,...,N- 1 (2.2)
u,et/iCrRr, 1=0,1,..., AT—1, (2.3)
Egw = do, E”xn —du, (2.4)
</(*)<0, i=1,., 0T-1, (2.5)

where x = (x0,xb ..., xN), u = (uUO,ub ..., ujv-i), £ Rn, w £ Rr, Ait Bit
Eo and En are given matrices of dimensions n x n, n x r, n x m0 and n x mjv,
respectively, a are given vectors in Rn, the sets U, are convex and closed, while the
functions fi : Rn x Rr —+R and g, :Rn —R are convex.

By the optimal value of problem (2.1)—2.5) we shall mean the infimum of J

over the set of all pairs (X, u) satisfying conditions (2.2)-(2.5) (such pairs will be
called admissible).

Theorem 2.1. Suppose that the optimal value of problem (2.1)—2.5) is
greater than —e0. Let us define

I :={i £ {1,...,N —1}:gi is not affine}.
Suppose that there exist an admissible pair (X, u) such that

Ujerif/, for i=20,1,..., N —1, (2.6)
gi(xj)) <0 for if I 2.7)

If (X,U) is an optimal pair for problem (2.1)—2.5), then there exist elements

R£R”, i—1,...,N, I0£Rmo, ljvéR"", Pi>0 i=1,. ,Al-1 (28
such that
AgPi - E*o G 6Xdo(xo,00), (2.9
Afpi+i - B £ dXtfi(xi,0i) + mdgi(xi), i= 1,... ,N- 1, (2.10)
PN =-Ej,IN, (2.11)

(Pi+iaixi + Biiii + ci) - JI(*<«-) =
max{(pi, Hixi + B{uy + a) - /{(x{, )}, 2.12)
| r=0,1, ..,N-1
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Hioi(xi) =0, i—1)-mjN L1 (2.13)

Proof. We omit the proof since it is entirely analogous to that of [9, Theorem
4.5]. Let us only note two essential differences. Firstly, instead of applying the
Fritz John optimality conditions for locally Lipschitzian programming problems,
one should apply the Kuhn-Tucker optimality conditions for convex programming
problems, described in [7, Theorems 28.1 and 28.2]. Secondly, one should use the
partial subdifferentials instead of partial generalized gradients and, consequently,
apply inclusions (1.5) instead of [9, Propsition 22]. m

3. An example

We shall give here an example of a convex discrete-time control problem for
which there exists an admissible but not optimal pair (x, il) satisfying the discrete
maximum principle of Theorem 2.1.

Example 3.1. We consider the following particular case of problem (2.1)-(2.5)
(with V=3, n=r—1):

minimize J(x, u) = maxjzo, «o} + max{xi, tii} subject to

Zi+i= Xi + i=0,1,2,
ig€[-22]CR, r=0,1,2,
xo=0, x3=0.

Since each admissible trajectory x = (xq,...,Xx3) is contained in the set {O}x
X [2, 2] x [4,4] x {0}, the set of all admissible pairs (x,u) is compact, and so, the
optimal value of the problem is greater than —eo. Furthermore, assumptions (2.6)
and (2.7) are trivially satisfied (we may assume all g, to be identically zero, hence
affine).

Let x and u be zero vectors in R4 and R3, respectively. Then the pair (x, u)
is admissible. But it is not optimal since we can find another admissible pair (x, U)
with x = (0,—,—2,0), u = (-1,-1,2), for which

7(x,0) = —1< 0= J(x, u).
Let us now verify that (x,u) satisfies conditions (2.9)-(2.12). We have
dxJi(xi,0i) =5(max{0,tq})(0) = [0,1] for i=0,1,

dxj2 (x2,u2) = {0}
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Hence (2.9)-(2.12) reduce to

To satisfy all these conditions, one can choose, for instance,

Pi=P2=P3=1lo=1/1 =0

or
PI=P2=P3 =1, /o=0, [3=-1.
Remark 3.2. It is not difficult to show that the pair (x, u) = (0,0) in Example
3.1 satisfies also the “weak” maximum principle of [5 Theorem 2] with 3° = —1L

Consequently, the sufficient optimality conditions stated in [5, Theorem 5] are false.

4. When is the maximum principle sufficient?

In this section we shall impose an additional assumption on the functions /,
occurring in (2.1). Under this assumption, the validity of the maximum principle
will suffice for optimality in problem (2.1)—2.5).

Theorem 4.1. Let (x, u) be an admissible pair for problem (2.1)—2.5). Sup-
pose that there exist elements (2.8) such that conditions (2.9)-(2.13) are satisfied.
Suppose also that, for each i £ {0,1,..., N —1} and for each (r,-, W) £ Rn X Rr,
we have

Then (x,u) is optimal for problem (2.1)—2.5).

Proof. Problem (2.1)—2.5) can be considered as a convex programming prob-
lem on the space X := (Rn)w+1 X (Rr)N. Let L : X —RuU{+00} be the “extended”
Lagrange function for (2.1)—2.5) with multipliers (2.8), i.e.

L=L1+L2+6(\A) (4.2)
where -
+(lo,EgXo — do) + (In, —dan)

(4.4)
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A:= RN)ML « o «U,..xUn-i, (4.5)

e if (x,u) GA,
6((x,n) 1A) := ( +o0 if (x,u) £ A

In order to prove that (x, u) is an optimal pair, it suffices to verify that L attains its
global minimum at (x,u), which is equivalent, by (1.4), to the following condition:

(4.6)

ZI((x,u);(x,u)) >0 forall (x.ujGX. @-7

Since L\ is affine, thus differentiable, we have, for all (x,u) G X,

N N-1
Li((x,0);(x,u)) = 1T (LY'A(x,ii;:ri)+ Yy (Li)u (x,u;n,). (4.8)
i—0 «0
Next, from (4.1) and (4.4) we obtain
N-1 N-1

L2((x,u);(x,u)) = Y [((*<.“<);(*<,“<) + A9'SRi\Xi)
*=0 *=0

I N-IN -1
> ’Y:O (M*O*0 )+ Y (/»)!*(*<.««;«_-)+*=‘(wa=0 (4.9
- N NY/I
=X 1(i 2li(x,0;zi)+ Y <)o
=0 i=0
Moreover, it is easy to verify that
(«@m 11)'((x,4);(x,n)) = YW - 1| (4-10)
=0
Conditions (4.8)—4.10) imply
N N-1
L'((x,0),(x,n)) > Y LTi(x.n;1»+ Y2 (411)
i=0 >0

By using the same method as in the proofs of [9, Theorems 3.1 and 4.5], it can be
shown that conditions (2.9)-(2.12) are equivalent to

0€ &|(Li + LY)(x,u), i=0,1,. 7V (4.12)

0€0,,j(L1+ L2)(x,u)+tf(ifc/ffO> *=0,1,..., fvV—L (4.13)
(The equvalence follows from the fact that, by the convexity of the problem, we
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can use the Moreau-Rockafellar theorem [7, Theorem 23.8]. Consequently, the
inclusions such as [9, (3.10)] can be replaced by equalities.) Further, observe that

&,(6(-M))(x,i) = {0}, i=0,1,..., N, (4.14)

ou,(i(- [M))(x>) = 0(r(-|™))(MO = Mr(«- \Ui), i=0,1,...,N—1 (4.15)
It follows from (4.2), (4.12)-(4.15) and the Moreau-Rockafellax theorem that

0e3,,1(x,in), i-0,i,...,tv
Oeit,,1(x,in), r=20,1,..., N —1.

This means, by (1.2), that the right-hand side of (4.11) is always nonnegative, and
so, (4.7) holds. m
Finally, we shall specify several simple conditions which ensure that assump-
tion (4.1) is fulfilled.
Proposition 4.2. Let/ : Rn X Rr — R be a convex function, and let
(k1) GRn x Rr. Suppose that one of the following conditions holds:
(@) / is Gateaux differentiable at (x,u);
(b) for each u € Rr, the function /'(-,i;n) is lower semicontinuous at x;
(c) for each x GRn, the function fA(x, -;x) is lower semicontinuous at u;
(d) f(x,u) = #(z) + h(u) where g and h are convex functions on Rn and Rr,
respectively.
Then

I'((x,i);(x,m)) > I'(x,i;x) + fu(xvi-,u) forall (i,«)GR"XRT,

Proof. Since cases (a) and (d) are obvious, and cases (c) is analogous to (b),
we shall only prove case (b).
For each (x,u) GRn x Rr and each A> 0 we have, by (1.4),

(f(x +\x,0+ \u) - f(x, u))/A
= (f{x + Ax,ii + Au) - f(x + Xx,U))/X + (f(x + Xx,u) - f(x,u))/X (4.16)
> /0(z + Ax,i; v) + FX(x,U;X).

But the lower semicontinuity assumption implies

liminf/'(z + Az,u;u) >/"'(z,u; u).

Hence, taking the upper limit of both sides of (4.16) as A—>0+, we get the desired
inequality. m

Remark 4.3. Sufficient optimality conditions for nonconvex discrete-time con-
trol systems under separability assumptions similar to that of Proposition 4.2(d)
were considered in [10].
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STABILITY AND SENSITIVITY ANALYSIS
OF DISCRETE OPTIMAL CONTROL PROBLEMS

K. Matanowski

(Warsaw)

(Received November 1, 1990)

A family of discrete optimal control problem subject to state and control constraints
is considered. All data of the problems depend on a parameter. Using the known sen-
sitivity and stability results for mathematical programming problems, the conditions are
formulated under which the solutions to optimal control problems are Lipschitz continuous
and directionally differentiable functions of the parameter. The directional derivatives are
characterized as the solutions to auxiliary quadratic optimal control problems.

1. Introduction

Mathematical models of humerous dynamic systems are built in discrete form,
using difference equations. Many technological, economic, social or biological sys-
tems are discrete by their very nature. On the other hand, discrete models are often
used for continuous control processes. It takes place, for example, if process mea-
surements are performed or control action is executed at some sampled moments
and we restrict ourselves to the analysis of system behaviour at these moments on-
ly. Such situations occur, almost as a rule, in computerized on-line control. Hence,
control of discrete systems, including optimal control, has an important practical
significance.

Usually we do not know the exact values of parameters of control systems, or
these values are subject to perturbations. Therefore, it is important to know how
the calculated control depend on the parameters of the model.

In optimal control, like in other optimization problems, we are interested
in the stability and sensitivity of obtained solutions, i.e., in their continuity and
differentiability with respect to parameters of the system, These properties can
be investigated either for the optimal controls or for the so-called optimal value
function, which to every value of the parameter assigns the optimal value of the
cost functional.

This paper is devoted to the sensivitity and stability analysis of optimal con-
trol of discrete systems. This analysis is of importance not only for discrete but

Akadémiat Kiad6, Budapest
Pergamon Press, Oxford



188 MALANOWSKI: STABILITY AND SENSITIVITY OP CONTROL PROBLEMS

also for continuous optimal control problems, since they can be approximated by
discrete ones (see [4]).

It is well known (see [2]) that discrete optimal control problems can be refor-
mulated as mathematical programs with a specific structure.

Accordingly, in our analysis, we shall use the known stability and sensitivity
results for mathematical programming problems and specialize them for optimal
control.

We are going to characterize a class of discrete optimal control problems, de-
pending on a parameter, that have locally isolated local solutions, which are locally
Lipschitz continuous and directionally differentiable functions of the parameter.

It is known (see [8, 11]) that mathematical programming problems possess the
above properties if the linear independence and the strong second order sufficient
conditions are satisfied, whereas the strict complementarity is not required. |If
additionally the strict complementarity holds, then the solution becomes a Fréchet
differentiable function of the parameters [5].

Therefore, the main part of the paper (Sections 3 and 4) is devoted to the
analysis of linear independence and strong second order sufficient conditions for
discrete optimal control problems.

In Section 5 the principal results is formulated. In particular, the direction-
al derivative of the optimal control is characterized as a solution to an auxiliary
optimal control problem.

It seems that the above results are not only interesting from theoretical point
of view, but, like in case of mathematical programming, they may find practical ap-
plications in the stability and sensitivity methodology approach to optimal control
problems (see [5]). Some notation:

Rn is an n-dimensional Euclidean space with the inner product denoted by
(% ¢ and the norm

M = (x,x)*.

Iff :H —*Rk, where H is a Banach space, is sufficiently regular, then
dhf(h, g) = ligg z{f(h + ag) - i(M]

denotes the directional derivative of f at h in the direction g.
If f : Rn x Rm —»R* is sufficiently regular, then G xf(x, u), Z%uf(x, u) denote
the first and the second Fréchet derivatives, with respect to the appropriate variable.
Superscript T denotes transposition, ¢ is a generic constant, not necessarily
the same in two different places.

2. Problem statement and preliminary results

Let H denote an open set in a Banach space, which will be called the set of
feasible parameters. Let h E H be a fixed value of the parameter.
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For each h belonging to a neighbourhood G C H of h we consider the following
state and control constrained discrete optimal control problem:
(Oft) minimize
N-1

P(x, u, fi) := dx (Xt,1ij, /i) + ~(xar,/r) (2.2
»0
subject to
Xi+i- X- = t.x-uj, h), i=0,..7V-1 2.2)
x0 - t(/i), (2.2a)
= »n Lo =° - T j=1,2,....%* 2.3)
Xi(xi,A)<0, i=0,1,..., N-1,N,-  3=1,2,.../. (2.4)
where
XY — WF T Jeemrn ] € RV(AMD)
UT = [uJ,uf,. yn-.jl € RmAr,
0i(Cj*1): RN x Rmx G - Ry, *=0,1,.. *,7V-.1,
rP(-,-):Rn X G -.R 1,
f.(-,v): Rn x RmXG — R == 0,1,. -/V-- 1
t-) :G — RS
oH; 9T xG.5RL  *=0,1, -m7V.1  3€/N:= {12, .. %}
<tt-+*) :Rnx G- R1, i=0,l, ..,7V, 3g L:={1.2,.. -3
Denote

B,(u,, h) = K& (ut,h),9i(ui, h),..., 9-(ui, N)]T,

X, (X,, h) = [X,-(x,-,J1),x?(X,-, 1),.. *,xi(xi, DT,
eT(u,h) = o (uo, /1), (ub A),..., ),
XT(x, h)y = [xo (x0,h), Xi(xi,h),..., Xn (*n,h)}

It is well known (see e.g. [2]) that (On) is equivalent to a mathematical program-

ming problem with a specific structure. Indeed, puttinga T = [xj,uj, x[,uf,...,
GX := Rn(wH+mAr we can reformulate (On) as follows:

(Oft) minimize @ (a,/1) (2-5)

subject to

r(a, h) - 0, (2.6
s(a,h) <0, 2.7)
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where

d(--) X x G —=R1,
®(a,N) = $(x,u,l/i).

r-,-) : X xG—» corresponds to state eqaution (2.2)
and initial condition (2.2a),
s(-, ¢ : X x G —+RfcWH (W+1) corresponds to control
and state constraints (2.3), (2.4).

Let us assume that for each h £ G the feasible set of (Oh) is nonempty and that
there exists a local minimizer (x(/i), u(h). We are interested in the stability and
sensitivity analysis of (x(-),u(-)) in a neighbourhood of h, i.e. in the continuity and
differentiability properties of (x(-),u( )) treated as a function of the parameter h.

In our analysis we shall use known sensitivity and stability results for mathe-
matical programming problems obtained in [8, 11]. Using the specific structure of
the functions ®(-,-), r(-,-) and s(-, ) in (Og) we shall reformulate these results in
terms of the original data of (Op).

We start with recalling some definitions. Let

1= {l,..., nJVv+1)>,
and
J={l,....kN +I(N + 1)}

be the sets of indices of equality and inequality constraints, respectively.
Let a(h) be a local solution to (Og). Denote by

Jh={j€31r@U), h) - 0}

the set of indices of all inequality type constraints active at h.

Definition 2.1. Let assume that r(-,h) and s(-.ft) are of class C1 We say
that the linear independence condition (LI) is satisfied at a (h) if the gradients of
all constraints active at a(/i) are linearly independent.

It is well known (see [7] and also [1]) that (LI) is equivalent to the condition
that the mapping

T/, h) : Rn(MH)HMAT X RKN+I(N+1) _ARKN+I(N +1)

'Dar(a(h),h), 0 (2.8)

T(ot(h),h) Das{a(h),h), S(a(h),h)

is surjective.
Here S(a(h),h) denotes a [kKN + I(N + 1)] x [KN + I(N «- 1)] dimensional
diagonal matrix with s*(a(h),h) as diagonal elements.
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Let us introduce the Lagrangean associated with (Ch)'-

¢ : X X Rn(iV+1) X ukN+,(N+1) x G —+R1,
c>A) := o(a,h) + (£,r(a,h)) + (c,s(a,h)),

where £ G Rn(JV+]) and £ G RKN+I(N+1) are Lagrange multipliers associated with
(2.6) and (2.7), respectively.

It is well known (see e.g. [2]) that if the functions ®(-,h), r(-,h) and s(-,h)
are Clin a neighbourhood of a(h) and linear independence condition hold at a(h),
then there exist unique Lagrange multipliers £(h) and C(A), such that the following
Kuhn-Tucker conditions hold:

DaC(a(h),i(h)X{h),h) = 0,
<C(A)e(a(A),A)> =0, CI(A)"0.

Definition 2.2. Let ®(-,H), r(-,/i) and s(-,h) be C2in a neighbourhood of
a(h). We say that the strong second order sufficient conditions (SC) is satisfied at
ot(h), if

(",CE(a(A)A(A),((A),A)MN)>0

for all non-zero

Re{REX\(R,D ari(a(h),h))=0, iE I,
{8, Das*(a(h),h)) = 0, j EJh)

" h §s h@h>

We can formulate now the stability and sensitivity results obtained in [8, 11]. For
our purpose they will take on the form:

Theorem 2.3. Assume that the functions ®(-, m), r(-,-) and s(-, ) are c2in a
neighbourhood of a(h,_h). Moreover, (LI) and (SC) hold at a(h). Then there exist
neighbourhoods G of h in H and C of a(h) in X, such that each h E G, a(h) is
the unique minimizer of (Oh) in C and (£(/1),C(A)) are the unique associated La-
grange multipliers. The functions <*(+), £(¢), £(*) are Lipschitz continuous on G and
directionally differentiable at h. The directional derivatives dh<*(h,g), dh£(h,qg),
dhC(h,g) are given by the solution and the associated Lagrange multipliers of the
following quadratic programming problem.

(QOA ) minimize

\(8, D1aC[h)R) + (8, DIhC[h)g) (2.10)

subject to
Dar,(a(h),h)B + Dhr’(a(h),ft)</ = 0 iei, (2.13
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Dan (a(h), MR + D A(a(m).h)gl - O OrTER 2.12)
’ ’ g|<o, for j £ Jh\ Jh’ '
where

C[h]:=C(a (h),Z(h)X(h),h).

Remark 2.4. Note that by the strong second order sufficient condition, (QO" g)
has a unique solution, whereas by the linear independence condition the associated
Lagrange multipliers are unique.

Remark 2.5. The result proved in [11] is stronger that in Theorem 2.3. Name-
ly, it is shown there that y(-) is Bouligand differentiable at h, which is stronger that
directional differentiability. However, to avoid technical definitions we restricted
ourselves to directional derivatives.

We are going to apply Theorem 2.3 to discrete optimal control problem (Oft).
In order to do that we have to express all assumptions of Theorem 3.1 in terms of
the original data of (Oft).

It is obvious that the condition of regularity is satisfied if all involved functions
are of class C2in a neighbourhood of (x(A), u(A), h). Hence, it remains to analyse
linear independence and strong second order sufficient conditions.

3. Linear independence

To simplify notation we put

Ai(h) = [Dxft(xj(A),Uj(A), A), (3.1a)
Bi(h) = [Dufi(xI(h),u<(A), A, (3.1b)
Ci(h) = [Dhfi(xi(h),Ui(h),h)], (3.1¢)
Qi{h) = [DuOi(ui(fi),/i)], (3. 1d)
A-(A) = [AcXi(*i(A),A)]. (3-le)

Let us introduce the following subsets of the active constraints indices:

Ki(h) : ={jeK |0*(ui(h), h) =0}, i=01,....N - 1
Li(h) := {j e L \xI(xi(h), h) =0}, *=0,1,...,N.
It turns out that thanks to the structure of (Oft) the linear independence
condition (LI) can be checked independently on each stage r=0,1,..., JT—1, as

it is formulated in the following
P roposition 3.1. Assume that

Xo(<(ri)y.n) <0, j €L (3.2)
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Then the linear independence condition (LI) for (Oh) is satisfied at (x(h),u(h)
if and only if the following mappings

F-U) :Rm#l+1 —Rt+1  i=0,1,..., N

Fi(hy: = Qi(h) e{(h) 0 (3.3)
T _A-+1(1)B<(h) 0 Xi+1(h)
are surjective.
Here 0j(/i) and Xi{h) are (k x k) and (/ x /)-diagonal matrices, whose diagonal
elements are ~(ui(/i),/i) and xj(ui(h), h), respectively.
Proof. It follows from (2.8) that for discrete optimal control problem (0/,)
the linear independence condition is satisfied if and only if the system of equations

yi+i - Y. - Ai(h)y, - Bi(h)vi = a, (3.42)

Yo = b0 (3.4b)
0.(h)vi + 0i(fi)M, = ci (3.4c)
Ai(h)yi + Xi(h)vi = di i=0,,.JV—1 (3.4d)

has a solution for arbitrary a; £ R", bo € R4, ct £ Rfc, dt £ From (3.4d) we
have

Ao(fi)yo + Xo(h)i/0 —do (3.5)
and
Ai+i(h)y,+i - Ai(h)yi + Xi+i(h)ui+i - Xi{h)i>i = di+1 - di
o AH(f)[yH - ¥+ X1+1(/i)(ili+i - ui) =
= (d<+1 - di) + [A-(A) - Ai+l(h)}yt+ [Xi(h) - Xi+1(h)]ui, (3.6)
i=1,2,...,AT- 1

Multiplying (3.4a) by A,-+i(h) and subtracting from (3.6) we obtain

Aj+i(h)Bi(h)\i + Xi+i(h)(ui+i - Ui) =
= [Ai(h) - Ai+i(h) - Ai+i(h)Ai(h)]yi + PT.0T) - X{+(k)]n{+
+[dj+i —d- —Ai+i(/i)a,] =
= [,-(N)Y» + Af(h)ui + di,
where
ANh) := Ai+1(A) - Ai+1(A) - Ai+1(h)AIi(h),
Afth):=Xi(h)-Xi+l(h),
di := di+l - d-- A(/i)a,.
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Equations (3.4c) and (3.7) can be rewritten in the form

v,

RO
1 7i4\ - Vi
fii(A) fi) 0 v, (3.8)
Ni+l(h)Bi(h) 0  Xi+l(h) V{+1>’-_ .
[_A[(/i)yi 4 + d,

It is easy to see that (3.8) has a solution for any right-hand side, i.e., for any (c,-, dj),
if and only if Ti(h) is surjective. In this case (3.8) is satisfied if we put

vV, P

Ri = Ti(h)(Ti(h)Tj(h))-1

Vitl o Vi A}(h)yi + A?(h)vi - di

. . 3.9
e- (h) + e} (h)yi +e\2(h)vi

e2(h) + e?1(NMyi + e}2(h)vi
e2() + e?1(J1)* + e23(/1)*/4]

From (3.4a) and (3.9) we obtain
Y+1 -y, - [Ai(h) + S,(/)ejlUNYX - Bi(h)er2(h)vi = a, + 5<(/N)e-(J1) = a,
<<t - Vi - en(h)yi - ef2(h)il- = ef(fi)

On the other hand, (3.4b), together with (3.5) and (3.2), yields 10
Yo = b0,
ilo = X0 —/Jlo(/1)b(] := do.
It is obvious that (3.10) has a unique solution (yi,Vi) for any &i, e-, do, i.e. for
any at, bo, c,, dt. Having yi, rq we find v and  from (3.9). O

Remark 3.2. Condition (3.3) is a discrete analégon of Hager’s constraint
qualifications for continuous optimal control problems [6]. It was first introduced
in [10], however, the proof given there is completely different from the proof of
Proposition 3.1.

4. Second order sufficient condition

In this section we are going to analyse the second order sufficient condition
for (O/,). Like in case of (Oh) let us introduce the Lagrangean

£m - - - -9 :RN(N+) X RmMN X Rn X Rn* X R*N X r'(n+1l) x c-~rR1
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£(x,u,p,p, ,p,h): =d(x,u, h)y + (p,x0- t(h))+

N-1
+OXA(p,, X HLl~ Xi-fi(xi,ui/i))+ (4.1)
«0
JVv-1 N
»=0 i=0

Let us assume that the linear independence condition (LI) holds for (Oh) i.e., (3.2)
and (3.5) are satisfied. Then, in particular, the Lagrange multipliers p(h), p(h),
Ny and p(h) are defined uniquely.

For the sake of simplicity we denote

Pi(h) = D Ix C(x(h),u(h),p(h),p(h),X(h),p(h),h), (4.2a)
Qi(h) = DItUC(x(h), u (), p(h), p(), A(ft), p(h), h), (4.2b)
Ri(h) = DI1>uC(x(h), u(h), pU), pUm), A(/i), p(h), h). 4.20)

It follows from Definition 2.2 that the strong second order sufficient condition (SC)
for (Oh) amounts to

N-1
£[<z,-, Pi(h)zi) + 2(r,, Q,(/i)wt) + (wt,Ri(h)wi)] + >0 (43)
i=0

for all (z, w) ™ 0 such that

zi+1-Zi = ~(h)zi+ 5i(/i)wi, i-0,1,... ,N—1 4.4

0= 0, (4.4a)

(Du~(u,(h),/i),w,) =0, i=0,1,...,0V-1, j e K-(h) (4.5a)
{DxXi{x-i{h),h),zi) = 0, i=01—, j e Lgh) (4.5b)

where Ai(h), B,(h) are given in (3.1) and

= | AF(A) > 0}, (4.6a)
Lt(h) = {jeLi\d(h)>0}. (4.6b)

Lemma 4.1. Suppose that (3.2) and (3.5) hold. Then (SC) is satisfied if and
only if the following quadratic optimal control problem:
(QCh.a) minimize

ar-1

YAz FY (/) zi) + 2(zi, Qi(h)wi) + (wi,Ri{h)wi)] + (zN,PN(h)zN)  (4.7)
i=0
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subject to
zi+i - ii - Ai(h)Z + Bi(h)w, 4.8)
20 = a, (4.83)
(Ai#j(u;(fi),h),w,) =0, i=0,1,.,V- 1 jeK-(h), (4.9a)

(AcXi(xi(/i),/),zZi) = 0, i=0,1,....V j £ Lie(h) (4.9b)
has a unique solution for any aER".

Proof. First, let us consider the homogeneous case a = 0. Problem (QCAQ)
has a solution if and only if the cost functional is non-negative for all feasible
controls. Indeed, suppose that there exists a feasible w for which the cost functional
is negative, then scaling w we can make the cost functional arbitrary negative, i.e.,
(QCh0) has no solution.

Hence, if (QChO0) has a solution, then w = 0 is such a solution. If the
solution is unique, then (SC) holds. Certainly, if (SC) holds then (QC#0) has a
unique solution w = 0.

Therefore, to complete the proof it is enough to show that (LI) and (SC) imply
the existence and uniqueness of the solution of (Q/, a) f°r an arbitrary a 6 Rn. To do
that let us note that using the same argument as in the proof of Proposition 3.1, we
find that forany a£ R " there exists a pair (z(fi), w(/i)) satisfying (4.8) and (4.9).
Let us introduce new variables y = z—z(h) and v = w —w(/i). Problem (QCha)
formulated in terms of (y, v) has homogeneous constraints and the quadratic term
in the cost functional is given by (4.7). Hence, by (SC) it has a unique solution.
[

By Lemma 4.1 the second order sufficient condition can be verified by studying
the existence and uniqueness of the auxiliary quadratic optimal control problem
(QCha). Unfortunately, this last problem is fairly complicated.

Below we are going to formulate an explicit sufficient (but not necessary)
criterion of (SC).

Namely, (SC) is obviously satisfied if

(SC)

N-1
1T[(zi,Pi(/0z.) + 2(zi,Q,(fi)wj) + (wi,Ai(fiyw,)] + (ZN,PN(h)zN) >0
i=0

for all (z,u) & O such that

Zi+1 - zi = Ai(h)zi + Bi(h)wi,
z0=0.

The following proposition provides a criterion of (SC).
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Proposition 4.2. (SC) issatisfied ifthe matrices ), i= N, N —1,...,2,1,0
given by the following recursive formulas

En - PN,
Ei~i = P_i+ (/+ Ai-i)TEi(l + Ai_i) + [<5_i + (Aj_i + DTEIBi-i]x n
X [B, i+ + (/ + Ai- i)t EiBi-i]T
i=N -

are well defined. Here the arguments J1are omitted for the sake of simplicity.

Proof. By Lemma 4.1 (SC) is equivalent to the condition that the following
quadratic optimal control problem

(QCft,a) minimize

N-1
Voz,w) = ~2[(zi, Pi(h)zi) + 2(zi,Qi(h)wi) + (W, A,(/i)wD] + (zjv, PN(h)zN)

i=0

(4.11)

subject to
Zi+i - z, = Ai(h)zi + Bi(h)w,-, (4.12)
20 = a, (4.12a)

has a unique solution for any a £ Rn.

It is well known in optimal control theory (see e.g. [3*9]) that the above
condition is satisfied if (4.10) holds.

The proof of this result is performed in a standard way using Bellman’s prin-
ciple of optimality and will not be repeated here. O

5. Stability and sensitivity results

Now, we are in a position to specialize the stability and sensitivity results of
mathematical programming problems, given in Theorem 2.1, for discrete optimal
control problems.

Using Proposition 3.2, Lemma 4.1 and Proposition 4.2 we obtain:

Theorem 5.1. Assume that

(i) the functions <*(-, ¢ °), Vi(v, ), f<(-, ¢ ), t( ), 0/(-, ) and *,(+, ¢) are C2in a

neighbourhood of (x(/i), u(/i), h),

(U) Xo(4(W>M< 0 for J £
(1ii) for h = h matrices (3.3) have full row rank,
(iv) quadratic optimal control problem (QC"a) has a unique solution for any

a GRn,

or in particular
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(iv() for h = h matrices (4.10) are well defined.

Then there exist neighbourhoods G of h in H and U of (x(h), u(h)) in
ftn(N-+i)+mN' 8uc* for /j g (5, (x(ft),u(h)) is the unique minimizer of (Oh) in
U and (p(h),p(h), \(h), p(h)) are the unique associated Lagrange multipliers.

The functions x( ), u( ), p( ), p( ), A(), p() are Lipschitz continuous on G
and directionally differentiable at h.

The directional derivatives dhx(h,g), dhu(h,g), dhp(h,g), dhp(h,q),
6hA(fi,g), dhp{h,g) are given by the solution and the associated Lagrange multi-
pliers of the following quadratic optimal control problem:

(QOI g) minimize

nr-1

+ (YXQ.()v,> + i(v], Ri(h)\i)+
+(yi,Si(h)g) + (wt,Ti(h)g)] + (YN,PN(h)yN) + (yN,SN(h)g)

subject to

YU - yt= Ai(h)yi + Bi{h)\i + Ci(h)g,

y0= Dht(h)g,
o forj e K-(h
(0wAm, (1) J1),y<) + (Dh~(u,(h),fi),i) | <~ fE:; e Ei{(h))\ Kt(h)

i=0,1,...,
(DW)P)M)*@MDQ o) £ i) i

where
Si(h) = DMhC(x(h), u(ft), p(h),p(h), \(h),p(h), h),
Ti(h) = D I'hC(x(h),u(h),p(h),p(h),Mh),p(h),h),

and Pi(h), Qi(h), Ri(h) are given by (4.2).

Note that due to the equivalence of Problems (on) and (on) other sensitivity
results known in mathematical programming can be also specialized for discrete
optimal control problems. In particular, using the well-known result concerning
continuous differentiability with respect to the parameter of the solutions to math-
ematical programming problems (see [5]), we obtain

Corottary 5.2. Ifin addition to assumptions (i)-(iv) of Theorem 5.1 the
strict complementary holds at h, i.e.,

(v) Ki(h) =Kifh), i=0,1,...,N —1 and
£ =L2U), i=1,2,..., TV
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then (x(-),u(-)) is Fréchet differentiable on a neighbourhood of h. The derivative
is given by the solution of (QQj, g) where inequality type constraints disappear.
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AHanms ycToumMBoCT N YYBCTBUTENbHOCTU AUCKPETHbLIX 3ajay
ONTUManbHOrO ynpaBneHNs

K. MATAHOBCKWN

(Bapwasa)

PaccmaTpuBaeTcs CeMeliCTBO [MCKPETHbIX 3ajay ONTUMaNbHOro YnpaBieHWUs npu
Ha MUYMKU OrpaHUYeHUn ynpasjeHUs U COCTOSAHMA. MoKa3aTenb KayecTBa W OrpaHUueHus
3aBUCAT OT napameTpa.

Mcnonb3ys M3BeCTHble pe3ynbTaTbl MO YCTOWYMBOCTM WM UYBCTBUTENbHOCTU 3ajay
MaTeMaTu4yecKoro NPporpaMMmMpoOBaHNS HAaXOAATCS YCNOBWUSA, MPN KOTOPbIX pelweHus 3agau
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ONTUMaNnbHOTO ynpaB/feHNA ABNA TCA HEMPEPbIBHbBIMMU MO JTUNW ULy u AM(pd)epeHLl,MpyeMbl-
MU No HanpaBneHwur (*)yHKLl,I/IHMM napametpa. pon3BogHas Mo HanpaB/eHUIO XapakKTepu-

3yeTcs B BUAE pEelIeHMs BCMOMOraTenbHOW NMWHEeWHO-KBagpaTUYeCcKOlW 3ajaynm onNnTUManb-
HOro ynpasneHua.
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RELAXABILITY AND WELL-POSEDNESS
FOR INFINITE DIMENSIONAL
OPTIMAL CONTROL PROBLEMS*
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In this paper we investigate the relation between the notions of “weli-posedness in the
sense of performance convergence” and “relaxability” for a large class of nonlinear infinite-
dimensional optimal control problems. We show that relaxability implies well-posedness
and the two are equivalent for semilinear systems. In doing this we also prove two new
density results concerning the original and relaxed trajectories, which are of independent
interest.

Keywords and -phrases: Relaxability, well-posedness, Arzela-Ascoli theorem,
evolution operator, compact embedding, monotone operator, measurable multifunction,
weak norm, Aumann’s selection theorem.
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1. Introduction

In a recent paper, Dontchev and Morduhovic [11] established the equivalence
between “performance well-posedness” and “regularity in the sense of relaxation”
(what we call in this paper “relaxability”), for a large class of finite-dimensional,
non-linear, optimal control problems. The result of Dontchev and Morduhovic also
can be viewed as a generalization of an earlier important work by Clarke [7].

The purpose of this paper is to extend the work of Dontchev and Morduhovic
[11] to nonlinear, infinite-dimensional, control systems (distributed parameter sys
tems). In this process, we obtain a density result concerning the original and
relaxed trajectories, which corrects an earlier attempt for an analogous theorem by
Ahmed [1], which appears to have a serious gap in the proof. Moreover, we extend
the finite-dimensional work of Gamkrelidze [14].

*Revised version
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2. Preliminaries

Let be a a-finite measure space and X a separable Banach space.
Throughout this paper we will be using the following notations:

Pf(c)(X) = {A C X :nonempty, closed, (convex)}
and Pwk(c)(-"0 —{A C X :nonempty, weakly compact, (convex)}.

A multifunction F : [l —»Pf(X) is said to be measurable if and only if
for all z G X, 1j —»d(z,F(u>)) —inf{]]2 —x|| : x G F(w)} is measurable. Other
equivalent definitions of measurability can be found in Wagner [21]. A multifunction
G : Q —m2X \ {0} is said to be graph measurable, if GtG = {(«,x) GO x X :
x G Gu)} G E x B(X), with B(X) being the Borel cr-field of X. For closed
valued multifunctions, measurabitity implies graph measurability and the two are
equivalent if £ is /i-complete. By SF 1< p < oo we will denote the set of LP(X)~
selectors of F(-), i.e. SF= {7 GL?(X) :/(w) G F(uj) p- a.e}. Itiseasy to see
that if F( ) is Lp-integrably bounded i.e. bi — |F(w)| = sup{||X|| : x GF(w)} G Lp,
then SF ¢ 0.

Next, let ¥, Z be Hausdorff topological spaces. A multifunction G : Y —»
2Z\ {0} is said to be upper semicontinuous (u.s.c.) (resp. lower semicontinuous
(I.s.c.)), iffor all U Cc Z open, F+(U) = {y GY : F(y) C U} (resp. F~(U) =
{t/ GY :F(y) MU ¢ 0}) is open. Other equivalent definitions of upper and lower
semicontinuity can be found in Delahaye and Denel [8]. If Y is a metric space, then
on Pf(y) we can define a metric /r(- -), known as the Hausdorff metric, by setting
h(A,B) = max{sup(d(a, B) :a G A),sup(d(6, A) :bGB)}. It is well known that if
Y is complete, then so is the metric space (Pf(Y), h).

Finally, recall that if V, W are Polish spaces (i.e. complete, separable, metriz-
able spaces), a function / : i1 x V —»W is said to be “Carathéodory function” if
and only if (i) u —ef(ui,v) is measurable and (ii) v —f(u>,v) is continuous. It is
a well-known fact from measure theory that such a function is jointly measurable.

Now, let us introduce the problem that we will be studying in this paper.
Let E C R be a nonempty parameter set containing zero as a limit point. Let
T —[06] and let (X,H,X*) be a Gelfand triplet of spaces, i.e. H is a separable
Hilbert space and X is a dense subspace of H carrying the structure of a separable
reflexive Banach space, which embeds continuously in H. lIdentifying H with its
dual (pivot space), we have X with all embeddings being continuous
and dense and also assumed to be compact. By (e) we will denote the duality
brackets for the pair (X,X*) and by (s, ¢ the inner product in H. The two are
compatible, in the sense that if x GX Cc A and h GH Cc X*, then (x, h) = (x,h).
Also by Yell (resp. Iel, ll o||d), we will denote the norm in X (resp. in A, X*). Also
let ¥ be another separable Banach space, modelling the control space. Finally,
by Xy, we will denote X with the weak topology and by (resp. — > we will
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denote the strong (resp. weak) convergence. We will consider the following family of
infinite-dimensional optimal control problems, with state and control constraints:

J(tx,e) = g(x(b)) —inf
s.t. x(t) + A(t, x(t)) = f(t, x(t)), u(t),e) a.e.
x(0) = X0, x(t)EK(t,e)
: u(t)GU(t) a.e., «(*) is measurable

(P(e)).

These form a family of perturbed problems, the original one corresponding
to £= 0. Denote the value of P(e) by m{e) and the value of the original problem
(e = 0), by m. Following Dontchev and Morduhovic [11], we say that the family
{P(e) ® G E} is “well-posed” in the sense of performance convergence if and only
if m(e) -*mas£-*0.

To problem P(O), we can associate a new, augmented system, with convexified
dynamics, known as the “relaxed system” (see Clarke [6] and Warga [22]). This
has the following form:

J1(n) = g(x(b)) —»inf
s.t. x(t) + A(t, x(t)) G convF(i, x(<)) a.e.
x(0) = x0, x(t) GK(t)
u(t) G U(t) a.e,, u() is measurable

where F(t,x) = \J{f(t,x,u) = f(t,x,u, 0) :n GU(t)}. We will denote the value of
this problem by mr. Both equations in P(e) and Pr should be interpreted in the
distributional sense.

We say that problem P(0) is “relaxable” (or in the terminology of Dontchev
and Morduhovic [11], “regular in the sense of relaxation”), if m —mr.

In this paper we investigate the relation between the notions of well-posedness
and relaxability. To avoid trivialities, we will assume that all systems considered
here have admissible “state-control” pairs, i.e. there exists a pair of functions
(X(-),u(-)) satisfying the constraints in P(e) and PT.

3. Main theorems

In the first theorem we prove that relaxability implies well-posedness. For
this we will need the following set of hypotheses:

H(j4)i: A :T x X —»X* is an operator s.t.
(1) t —mA(t, x) is measurable,
(2) x —+A(t, x) is monotone and sequentially weakly continuous,
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(3) (A(t,x),x) >c||x||p a.e. withc>0and 1< p < 00,
@ AGX)* < cia + ||x]lp_1) with ci > 0.

H(Ni;/ :TxHXxYx E —=*X*isamapping s.t.
(1) t —af(t,x,u,e) is measurable,
(2) (x,u,e) ¥ (t,x,u,e) is sequentially continuous from AxY ,, x {0} into X*,,
(3) (f(t,x,n,e),x) > c'||x|]|pae,c >Q
4) ||/(farti,£)], < 32(0+ c2||*||p-1 a.e. with g2{) € L\, c2> 0, I/p+1/g = L

H(t/): U : T —* Pwkc(T) is integrably bounded, U(t) C W a.e. with W £
Pwkc(n

As it was illustrated with an example by Dontchev and Morduhovic [11] (sec-
tion 3), since the notion of well-posedness is defined through performance conver-
gence, we need the following additional hypothesis:

Ho: There exists a minimizing sequence {un}n>i for P(0) s.t. if x,,(-,€) and
*,(*) n > 1, solve the dynamics of P(e) and P (0), respectively, with control un(-),
then xn(t,e) € K(t,e) forallt £ T and x,,(b,e) —Xx,,(b) as e —»0.

Also we need hypotheses for the viability domains K(t,e) and the cost func-
tional g(-):

H(A)i: K :T x E —»Pf(H) is u.s.c in the e-variable.
H(3): g( ) is continuous from H into R.

Because of hypotheses H(A)i and H(/)i and using theorem 4.2, p. 167, of
Barbu [4], we deduce that given an admissible control n 6 Sy, both the perturbed
and original problems have a unique trajectory zr(-) G W(T) = {z € LP(X), z £
Lg(X*)} C C(T, H). Also in [19] we proved that x( ) £ C(T, Xw) (Xw is the space
with the weak topology).

Now, we are ready for our first theorem.

Theorem 1. If hypotheses H(A)b H(/)i, H(t/), HO, H(A"i and H(") hold,
then relaxability implies well-posedness.

Proof. Let {an},,>i be the minimizing sequence for problem P(0) postulated
by hypothesis HO. For any n > 1 we have g(xn(b,e)) —g(xn(b)) as e —»0. Also
note that m(e) < g(xn(b,£)). So we get

Eﬂbm(e) <m. (@)

On the other hand, let en £ E, £, —%0. Choose admissible state-control pairs
(xn,ILn) s.t.
J{un,£n) < m(en) + " )

From [19] (see also [3]), we know that {x,,}n>i is relatively sequentially weakly
compact in L4(X*) and {x,,},,>i is relatively sequentially compact in C(T, Aw). So,
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by passing to a subsequence if necessary, we may assume that x,, —#x in C(T, Xw)

and xn— *z = x in Lq(X*). Also because of hypotheses H(A) (4) and H(/) (4),
we see that for every t £ T, {X,(<)}n>1 is bounded and because of the reflexivity
of X *, w-compact. Thus, we can apply theorem 3.1 of [16] and get that:

z(<) £ convwlim(F(t, x,,(f)) —A(t, xn(t)) ae.

where recall that F(t,x) = f(t,x,U(t)). Since x,, —x in C(T, Xw) and by hypo-
thesis X 4% H compactly, we have that for alH £ T xn(t) — *x(t) in H. Also be-
cause of hypotheses H(/) (2) and H({7), through proposition 1, p. 47, of Aubin and
Cellina [2], we get that F(t, ¢) is u.s.c. from H into X” and so from Delahaye and
Denel [8] we deduce that w-limF(t, xn(t)) C F(t,x(t)). Furthermore, hypothesis
H(A) (2) tells us that A(t, x,,(t)) A(t, x(t)) in X ““. Finally, we have:

i(t) £ conv(F(i, x(t)) —A(t,x(t))) ae
> x(Q + A(t, x{t)) £ conv F(t, x(t)) ae.

Thus, % ) satisfies the dynamics of the relaxed problem. Furthermore, using
hypothesis H(Ff)i and the compact embedding of X in H, we have:

x(t) £ lim/f(t,e,,) C K(t)
=z( ) is a viable, relaxed trajectory.

Now, note that by passing to the limit in (2), we get:
iim”~(u,,,£n) = lim<Az,,(6,£n)) = g(x(b)) < imim(£:n).
Since by hypothesis relaxability holds, we can write that:

mr=m< g{X(b)) < Iimm(E,,)
=m < limm(e,,).

(0)

From (1) and (3) above we conclude that m(e) —»m and so well-posedness
holds.

Q.E.D.

Our goal now is to show that the converse of the above theorem also holds,
namely that well-posedness implies relaxability.

To this end, we prove a density result of the trajectories of P(0) in the tra-
jectories of Pr. Another result of this kind for semilinear systems was obtained
by Ahmed [1]. However, it appears that his proof has a serious gap, that makes
his theorem incorrect. Namely, in the second half of page 292 of [1], the author
claims that yn -*-*y in LP(E) (we use the notation of [1]). Unfortunately, such a
conclusion is not justified by the hypotheses on the sequence {th}n>i- Additional
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hypotheses of strong compactness and p-equi-integrability are needed in order to
have the desired strong convergence of the t/,,’s. Furthermore, it is well-known from
the theory of differential inclusions, that in order to have a density result of the
original trajectories into those of the convexified (relaxed) system, we need a Lip-
schitz hypothesis in the state variable on the orientor field (in the case of differential
inclusions originating from control problems, a dissipativity hypothesis can also do
the job).

Here we provide density results for both semilinear and strongly nonlinear
distributed parameter control systems. Another such density theorem for infinite-
dimensional differential inclusions was recently obtained by the author in [18]. How-
ever, the hypotheses there are such that limit its applicability to control systems
satisfying stricter hypotheses.

Although the converse of theorem 1 will be stated only for semilinear systems,
we prove density results for both the strongly nonlinear and semilinear cases.

We start with the nonlinear one.

H(A)2: A :T x X —*X* is an operator s.t.
(1) t —A(t,x) is measurable,
(2) x —»A(t,x) is monotone and weakly sequentially continuous,
(3) (A(t,x),x) < ci||x||p a.e. with ci > 0and 1< p < 00,
@ JAEX)], < c2(l + [|x||p_1) with c2> 0.

H(N2: f :Tx HXxY x E—»# isamapping s.t.
(1) t —»f(t,x,u,e) is measurable,
(2 (x,u,e) =%/(<, x, u,e) is sequentially continuous from H x vy w x {0} into H,
(3) \f(t,x,u,e) —f(t,x",u,e)\ < fc(<)|x'-x| ae.,
(4) (f(t,x,u,e),x) > c3||x||p a.e. with c3> 0,
(5) \f(t,x,u,e)\ < r(t) + c4|x||p-1 a.e., with 4> 0, r( ) € L\.
Let So be the set of trajectories of the original evolution and Sr the set of
trajectories of the relaxed one. The next theorm relates those two sets.

Theorem 2. If hypotheses H(A)2, H(/)2 and H(f/) hold, then so = sr, the
closure taken in C(T, Aw).

Proof. Set /(<, x, u) = f(t, x, u, 0) and define:
F(t, x) = f(t,x,U(t)) and Fc(t, X) —convF(f,x).
We have:

GrF = {(<x,z2)eTx X x H:z£ F(t,X)}
= {(f,x,2£T x X x H:z=1(t,x,u), n£ Ut}

Set K(t, x, 2,u) = 2—f(t, x,u) and q(t,u) = d(u,U(t)). Then we have:

GrF ={(<x2z) £T x X x H :k(t, x,z,u) = 0, q(t, u) —0}
= projTXIFXA{(<, x, 2,u) £T XX x H x W : k(t, x, z,u) = 0, q(t, u) = O}.
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Note that both k and g are B(T) x B{X) x B{H) x 6(W)-measurable. Also
since by hypothesis Y is separable, is weakly compactly generated and so it admits
a Kadec norm (see Diestel [10]). Thus, we can apply corollary 2.4 of Edgar [13] and
get that B(Y) = B(YW), where Ym denotes the Banach space Y equipped with the
weak topology. Hence, B(Y) MW = B(YW MW =>B(W) = O(ITW. But recall
that Wy, is a compact, Polish space (see Dunford and Schwartz [12], theorem 3,
p. 434). So, the Arsenin-Novikov theorem (see, for example, Dellacherie [9]), tells
us that:

ProytxXxa{(">x>r,u) GT x X x A x W :k(t, x, z,u) = 0, q(t, u) —0}
GB{T) x B{X) x A(H)
=GrF GB(T) x B(X) x B(H).

So, F(¢, ¢ is graph measurable. Hence, we can apply theorem 2 of Chuong
[5] and get that X" is dense in 5]* x* for the weak norm | «||w defined by

\\n\\w = sup ds :M'6 T Next, let x(-) GSr. Then x(<) + A(t,x(t)) =

g(t) a.e., x(0) —xo with <X G fd-x())- "et 9n G XM st K <iw *0.
Because of H (/)2 (5) we see that {&h, <7},> G L2{H) and is bounded there. Let

v : T —=H be a step function i.e. v(t) = I?—I <(*) mk and by (e, -)o denote
the inner product in L2(H). We have:
m | £ m
On- g,v)o<Y\ [/ (fin(s) - 9(s))ds eJut]|< - ijfwyY X —o0.

*=1 U-,
Since step functions are dense in L2(H) and {<7,, <>i is L2-bounded we get
that gn g in L2 (and, in particular gn g in LI(H)).
Now, consider the multifunction Ln : T —2W\ {0} n > 1, defined by:
Ln(t) = {u€U(t) :gn(t) = f(t,z(i),u)}.
Clearly, Ln ¢ O for all t G T \ Nn, where Nn is a Lebesque null set. Set

Ln{t) — {0} for t G Nn. Also let {xmhmn>i be dense in A and consider the
following functions:

In a1 (xm,gn(t) - f(t,x(t),u)) fort GT\ Nn
fort £ Nn.

For all n,m > 1, JI£,(-,-) is a Carathéodory function, hence B(T) x B(W)-
measurable, with B(T) being the Lebesque completion of B(T). The observe that:
GrLn fl {(«) GTx W :h”(t,u) =0} NGrd

m>1
BGrL, GB(T) x B(W) foralln>1
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Apply Aumann’s selection theorem (see for example Wagner [21]), to get
ttn : T —W n > 1 measurable s.t. u,(t) E Ln(t) forallt ET. So, we have:

g,,(t) = f(t,x(t),un(t)) a.e. and u,,(t) E U(t) ae.

Let yn(-) be the unique trajectory of the original system corresponding to the
control function un(-). Again, we may assume that yn —*y in C(T, Xy,). We have:

- Vn()2=2(i(i) - y..{t), x(t) - yn(t))
= 2(-A(t,x(1)) + g(t) +A(ty..(1) - f(t,yn(t),un(t)),x(t) - J.(<I)>
< d9(t) - f{t, Un(t), un(t)),x(t) - yn(t)) (since A(t, ® is monotone)
= k(0 - yn(0I2<
t
< J\g{s) - f(s>P), un(s)), x(s) - yn(s)) ds+

0
t

+J (I(*- *(s), «n(s)) - f(s, yn(s), un(s)), a:(s) - V,,(s)) ds
0
t t
< J(9(s) - gn(s),x(s) - yn(s)) ds + J k(s)\x(s) - yn(s)\2ds.
0 0

Recall that gn g in LI(H). Alsoyn —wy in C(T, Xw) and since X embeds
compactly into A, we have yn(t)— >y(t) in H. Thus, by passing to the limit as
n —*0o in the last inequality, we get

=(o-ycorz< HNS)-Y (S5

0]

Invoking Gronwall’s inequality, we get that x = y. So, x E So and since
So C Sr and the latter is sequentially compact in C(T, Xw) (see [19]), we conclude
that indeed So = Sc, the closure taken in the C(T, Aw) topology.
Q.E.D.
If the system is semilinear, we can improve our density result.

H(A)3: A :T x X x X* is an operator s.t.
(1) t —A(t)x is measurable,
(2) x —+A(t)x is linear, monotone,
(3) NA(t)x - A®)*|. < K\f- 1\° m|x||, b> 0, a G(0,1],
4 (A(t)x,x) > Cx||x||2 a.e., G > 0 (i.e. A(t)(-) is strongly monotone),
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B) JJA®X]||, < c2||x||, c2> 0 (i.e. A(<)() is continuous).

Because of H(A)3 (2) (3) the family of linear operators (A(t)(-) :t £ T)
generates a strongly continuous evolution operator @ : A = {(t,s) :0<s <t <
6} —C(H), with respect to which a trajectory of P(0) is a solution of x(t) =

t

P(<,0)x0 + /P (<,«)/(«, X(s),u(s))ds, t £ T, u £ Sy (see Tanabe [20]). We will
0
need the following hypothesis on ®(-,-):
Hc: &(<, s) is compact for t —s > Q.

Theorem 3. If hypotheses H(A)3, H (/)2 (with p = 2), H(t/) and Hc hold,
then Sr = So, the closure taken in C(T,H).

Proof. A straightforward application of Gronwall’s inequality tells us that for
every X( ) £ Src C(T,H), we have [x(<)| < M forallt £T.

Next, we will show that So is relatively compact in C(T, H). To this end, let
y() £ Soand lett',t £T,t <t'. Setting as before f(t, x, u) = /(<, X, u,0), we have:

[y (0 - y(01 < I$(<". 0)*0 - (<, 0)xo] + \] o<, )l = [/(S, y(s), U(S))| ds+
t

t
+~] I$(**.s) - D(M)]| «|f(s,y(s),u(s))\ds.

0

Recalling that t —* ®(<,0)xo0 is continuous, given e > 0 we can find 6i > 0
s.t. ||P(<',0)x0 —P(<,0)x0| < ef3 fort' - t < <&, Also since ||P(<,s)|| < Mi for
(t,s) £ A and |/(s,y(s),u(s))| < ys) + c4lly(s)ll < g2(s) + cAM = tp(s) a.e.,
ip(-) € £+« So, we can find 62> 0 s.t.

\I |P(<,8)[| *\f(s,x(s),u(s))\ds < \I M\ip(s) ds < e/3.
t t

Finally, for ef > 0, write

t
J LL>) - (%, 9)l| = 1/(s, y(«), «(Dl ds =

0]

t3t

= J W, s)-®(t,s)\\-\f(s,y(s),u(s))\ds+
0

+3 wws) -

t—el
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t t
Note that f |P(<,s) —D(< s)\\ m/(s, y(s), tx(s))|ds < f 2M\ip(s)ds.
t-el t-e'
t
Pick s' > 0 so that f 2M\rp(s)ds < e/6. Also because of hypothesis Hc,

t-e
from proposition 2.1 of [17], we know that t —+ (< s) is continuous in the operator
norm topology, uniformly for all s G (0,<) s.t. t —s is bounded away from zero. So

we can find 63 > 0s.t. f [|P(<,s) —B(< S)|| *|/(s, y(s), u(s))|ds < f [d(<,s)—

[0} [0}
d< HV'(s) ds < e/ 6 for t* —t < 63. Therefore, finally, for ¢ —min(<$i,s2,5s) We
have:

[ly(0 - y(t)|| < £fort' - t <. and all y(-) G So,
=> S0 is equicontinuous in C(T,H).

Also note that if = {$€H :Jul <ip(s)}, then s —S(t, s)B (if)(s) is
measurable and by hypothesis Hc, Pkc(H)-valued. Applying Radstrom’s embedding
theorem (see, for example, Klein and Thompson [15]), we have that ®(<,0)xo +

IO (t,5)B(rP)(s)ds E Pkc(51). Thus, {y(f) :y()€ S0} € Pk(sA) for all t G T.

anoking the Arzela-Ascoh theorem, we deduce that So is relatively compact in
C(T, H) as claimed.
Next, let x(-) G Sr. Then by definition we have:

X(t) = d(<,0)x0 + \]<<$(t,s)g(s)ds, t€T, g()€ Sjc(r()),
0

where Fc(t, X) = conv/(<, x, U(t)). Since convergence of L2(#)-bounded sequences
in the weak norm || ¢|lw, imphes weak convergence in T1(f), we can find g,, G
Sir(.r()) st. g - -+9 in P1(HA). As in the proof of theorem 2, an application
of Aumann’s selection theorem, gives us un G Sy s.t. gn(s) = f(s,x(s),un(s)).
Let yn(-) be the original trajectories corresponding to the control functions un().
We have seen in the first part of the proof that {yn}n>i is relatively compact in
C(T, H). So, by passing to a subsequence if necessary we may assume that yn —+y
in C(T, H).
Now, note that;

M*F(s)-yn(s)2=
2(X(s) - yn(s), X(s) - ¥x(8)) =
2(-A(s)a:(s) + g(s) + A(s)Y..(s) = (S, ¥u(S), Un(S)), &(S) - ¥..(S)).
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Exploiting the monotonicity of A(s)(-), we get that:

- yn(s)2 < 2(g(s) - f(s,yn(s), un(s)),x(s) - V¥.(9)).

Integrating both sides we have:

N<) - yn(012 <

<2 \I(Q(S) gn(s), X(s) - yn(s)) ds+J (gn(s) - f(s, yn(s), un(s)), x(s) - yn(s)) ds.
0 0

t
Since gn—=*¢g in Lx(#) and yn —y in C(T,#), we see that 2f(g(s) —
0

9..(s), X(s) —y..(s)) ds —»0. Also recalling that 5, (s) = f(s, x(s), u,,(s)) and using
the Lipschitzness of the vector field f(t, mu) we have

t
(on(s) - f(s,Y,(s),un(s)),x(s) - V¥.(s)) ds < 2\] 1:(s)|x(s) - j/,(s)|2ds.

0 (0]

So, in the limit we get:

k(0 - y(012< 23 *(*)K(*) - y(«)I2ds.
0

Apply Gronwall’s inequality to get that x —y =>So —Sr, the closure taken
in C(T, H).

Q.E.D.

Remark. Instead of the Lipschitzness of f(t, -,u) we could have assumed
dissipativity for the vector field.

With these density results (which are actually interesting in their own), we
can prove a converse of theorem 1. We were able to do this only for the semilinear
case. It will be interesting to know whether our result can be extended to strongly
nonlinear systems.

For the converse of theorem 1, we will need the following new hypotheses:

H(AY2: K : Tx E-+ P{(H) and int K(t, €) ¢ 0.

Hi: There exists a relaxed optimal trajectory y( ) s.t. y(t) £ int K(t,e) and
dH(y(t),bd K(t,e)) > a(e) > 0, forallt £T and all e £ £2{0} is a neighbourhood
of zero (here dj/(-, *) stands for the distance function in the space H).

Now, we are ready for the converse of theorem 1 for semilinear systems.

3’



212 PAPAGEORG IOU: WELL-POSEDNESS AND RELAXATION

Theorem 4. If hypotheses H(J1)3, H(/)2, H(U), Hc, H(A)2 H($) and Hi
hold, then well-posedness implies relaxabihty.

Proof. It is clear from the definitions that mr < m. Suppose that strict
inequality holds i.e. 0 < 6 — m —mT. Using hypothesis Hi, we know that
there exists relaxed viable trajectory y(-) s.t. mT—y(b) and y(t) £ intK(t,e),

d(y(t), bd K(t,e)) >a(e) > 0forallt £T and all e £ E\ {0} in a neighbourhood
of zero.

Invoking theorem 3, we can find xn £ So s.t. xn —»y in C(T,H). Then

xn(t)—+y(t) in H, uniformly in t. Also xn(b) y(b) in H. Given the con-
tinuity of <Xm), we deduce that there exists x(-) £ S s.t. x(t) £ intA'(i,e),
dH(x(t), bd A'(i,€)) > a(e)/2 for allt £ T and all e £ E \ {0} near zero, while
\g(x(b)) - g\ < 6/2.

Let «(*) £ Sy be the control function generating z( ) and let x{-,e) be the
trajectory of the e-perturbed evolution, also produced by control u(-). From propo-
sition 5.5.1 of Tanabe [20], we know that:

t
x(t,e) = @ (mo)y*o+ / o (@,s)f(s,x(s,e),u(s),£)ds

0
t

and x(t) = &<, 0)xo + J $(t, s)f(s,x(s),u(s)) ds.
0

Hence, we have:

\X(t,e) - x(<)l <
t
M/ |/(s, z:(s,€), u(s), e) - /(s, X(s), u(s))| ds <

0
t

M J \f(s,x(s,e),u(s),e) - f(s,x(s),u(s),e)\ds+
0

t
M J \f(s,x(s),u(s),e) - f(s,x(s),u(s))\ds <
0

t t
M J k(s)\x(s,e) - x(s)\ds + M J \f(s, x(s),u(s),e) - f(s,x(s),u(s))\ds.
0 0
Note that /t |/(s, X(8), u(s), €) —f(s, x(s), u(s))| ds — 0 as £ —0. So, through
0

Gronwall’s inequality, we get that x(-,e) —*x(-) in C(T, H) dse —+0. So, x(t,e) £
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forall f€ T and all e £ E in a neighbourhood of zero. Thus, for all e £ E

sufficiently close to zero, we have:

m(e) < ff(j/(6)) + 6/2 = mr + 6/2 —m —6/2
=>tlgn'9m(e)_< m —&/2.

But because of the well-posedness hypothesis we have:

m _éiﬂbm(e)i m —6/2

a contradition. So, m = mr i.e. P(0) is relaxable.

10.

11.

12.

Q.E.D.
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NULL-CONTROLLABILITY
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The present paper is concerned with the null-controllability of the system
®fcti = Axk + Buk,
xkex, «»eilet/, Aeux,x), BeLMu,X),

where X and U are Hilbert spaces, Q is a convex set, intQ ¢ 0, 0 6 fl.

Here we consider the case of semi-infinite operator A. For such systems, a necessary
and sufficient condition is given. The obtained result can be applied to the investigation of
null-controllability of delay system (or neutral systems) of the form

x(t) = L(xt) + Bou(i),
x(t)eR", u(<)encRm, x,(S) = x(t+8), ee [-fi,o]
It will be also shown that the exact and approximate null-controllability of delay systems

with infinitely many commensurate delays are equivalent. This fact has been known only
for systems with unconstrained control.

1. Introduction

This paper is concerned with the null-controllability of infinite-dimensional

discrete-time linear system described by

(A, B, fi) An+1 — AXxn T Bun,

where xn £ X,un £ClcU,X and U grelHiIbert spaces, A £ L(X,X), B £
L(U, V), Qis a convex set, intfi / 0and O£IL.

In recent years, the study of the linear discrete-time systems in infinite-dimen-

sional spaces has attracted the attention of many authors (see [4-5], [9], [19-21],
[23-28)).

The question of the null-controllability for systems of the form (A, B, fi) with-

out any further condition for A — even more for systems given in Banach spaces X ,

Akadémiai Kiad6, Budapest
Pergamon Press, Oxford
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U — has not been solved yet. In [28], the authors have studied the local null-con-
trollability of system (A, B, fi) under the additional assumption that the operator
A satisfies the so-called finite condition. In this paper, we consider the case when
operator A satisfies the semi-finite condition. In the first part of this paper, a nec-
essary and sufficient condition for local null-controllability of such systems is given.
It the second part, the obtained result will be applied to the investigation of the
null-controllability of delay system of the form

(L,Bo,n)  x(t) - L(xt)+Bou(t),

where x(<) € R”, u(-) belongs to a given set of admissible controls, xt(9) —x(t-\-9),
9 E [-/i,0].

[The]controllability of delay systems was intensively investigated in the liter-
ature [1-2], [4-6], [12], [15-20], [22-24], [26], [29]. Most of them deals with delay
system with unconstrained control; e.g. [1-2], [12], [15-19], [22-23]. The case of
delay systems with constrained control has been studied in recent years by [4], [6],
[24], [26]. In [4], the set of admissible control functions is the closed unit ball of
the function space with zero in its interior, in [6] it is a closed convex cone also in
the function space with vertex at zero. The papers [24], [26] consider admissible
control functions, all components of which are positive.

In this paper, we shall give necessary and sufficient conditions for the local and
global controllability of system (L,Bo,D) under much weaker restrictions for the
set of admissible controls. Moreover, we shall show that the exact and approximate
null-controllability of delay systems with finitely many commensurate delay are
equivalent. This fact was known [5] for systems with unconstrained control.

2. Notations, definitions

Let X be a Hilbert space. The (s, ¢) denotes the inner product in X. IfH C X,
then K is the closure of K, sp{A} is the span of A, int A' is the interior of K and
ri K is the relative interior of K in X . IfA 6 L(X,X), then A* denotes the adjoint
of A, Ker A and ImT are the kernel and the range of A, cr(A) is the spectrum of
A. Let C be the set of complex numbers. We shall denote

Dr:={AeC :|A <1},
Dr:={AeC :|A <r}

Bc denotes an open ball of radius e centered at the origin.
Let Un = UxU x ... x [/, where the direct product is taken n-times, and let
us consider the operator Fn : Un —»X defined by

Fn(u”~) = An~IBuo+ An~2Bw + ... +
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where - (U, ..., i) £ Un. Clearly,

Fn(Un) = An~1BU + An~2BU + ... + BU,
and i

F,,(Qn) = An~IBfl + An~2BI2 + ... + B,

where Dn = Dx D x ... x D. (Here the direct product is also taken n-times.)
We need some definitions in following.
Definition 1. The set

5,(D") :={x€X :-Anxe Fn(f2n)}

is called the null-controllability set of (J1, B,fl) after n step. Furthermore, the set

[e]e]

s(ii):= U s"(Qn)

is called the null-controllability set after varying step.
Definition 2. System (T,5,D) is said to be locally controllable (LC) if
0 £ int5(D). System (A, B, D) issaid to be globally controllable (GC) if 5(D) = X.
Definition 3. We say that the operator A satisfies the spectrum decomposi-
tion condition if for some positive number r < 1the set g\ = cr(J)\ Dr consists of
finite number of points and the corresponding eigenspace X\ is finite-dimensional.
Definition 4. We say that the operator A satisfies the semi-finite condition
if there exists number m such that

Ker Am = Ker IT+1 = KerAm+2 = ...
ImAM —ImAm+l = 1TIT+2= ...

Now, let M be a closed A-variant subspace of X . We shall denote by X the
factor space X/M equipped with the usual factor norm (it is known that X is a
Hilbert space), and by P the canonical projection P . X —%X. We shall define the
factor system (/1, B, D) of (J1, B, D) with respect to M by

(d,5,D) xn —Axn 4 Bud,

where xn £ X, u,, £ DC U, x :=Px, Ax P(Ax) and En := P(Bu).

3. Main results

To obtain the main result, we need the following lemma.
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____Lemma 1. Consider the system (A,B,fl) and suppose that Ker/l = {0},
1Th = X, intfi ¢ 0. If there exists number k such that UTV¥* C Fk(Uk), then
intSk(flk) ¢ O.

Proof. Consider the factor space Uk/Ker Fk equipped with the usual factor
norm and let P the canonical projection P : Uk —»Uk/ Kér Fk- Let us define the
operator Fk : Uk/ Ker Fk —iX as follows:

for all 0 € Uk/ Ker Fk, i —n + Ker Fk we take F*(i; = FkU.

Then Fk is well-defined, linear, bounded one-to-one operator and Fk — FkP. More-
over,

1TN* C Fk(Uk/Ker Fk). @

In fact,
ImJT* C Fk(Uk) = Fk(P(UK)) = Fk(Uk/Ker Fk).

By assumption 17/1 = X, therefore

Fk(Uk/Ker Fk) = X.

Since FK is a linear, bounded, one-to-one operator and the range of Fk is dense X ,
Halmos’ problem 42 [11] and Theorem 16, pp. 254 [8] can be applied to verify the
relation

Uk/ Ker Fk » X, 2

where ri is an isometric isomorphism between the two spaces.

On the other side, from (1), it follows by the factorization theorem of Douglas
[7] that there exists a linear, bounded operator ¢ : X —* Uk/ Ker Fk such that
Ak = FkC. o

Now, we consider the Hilbert space ¢ X and the restriction of operator Fk to
CX (Fk:CX-> X).

Since

X = ImAk = ImFkC C Fk(CX)

we have
Fk(CX) = X.

Applying again the same results as above, we obtain that c x is isometrically
isomorphic with X :

cX n X Q)
From (2) and (3) it follows that
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But CX C UK/ Ker Fk, therefore, it can be easily seen that

CX = Uk/ Ker Fk-
Let fi* := P(fi*). Since intfi / Oand P isopen, int fi* is not empty in Uk/ Ker Fk.

Hence, CX MMint fi* ¢ 0. Consequently, the inverse image C~1(int fi*) has a non-
empty interior in X. It is easy to see that

—€-"Nintn*) C S*(fifg. 4
In fact, if
X G (—€ _1(intfi*)),
then
—Cx —«<*)  for some Uk Gintfi*.
Hence,

-FkCx = Fkik = Fk(uk)
for some u G intQ*. But FkC = Ak, therefore,

Akx + =0
This means that t G and (4) shows that
intsen*) ¢ 0.

The proof of Lemma 1is complete.
Theorem 1. Consider the system (A,B,il). Suppose that Ker A ¢ {0},
1TN = X, 0 Gfi and intfi ¢ 0. Then the system (A, 6,fi) is LC iff
(@) There exists number K such that 11/1* C Fk(UK),
(b) There is no eigenvector x* of A*, A*x* = Ax*, A> 0 such that (x*, 5fi) > 0.
Proof. Necessity. If system {A, 6,fi) is LC, then the system (A,B,U) with

unconstrained control is GC, i.e. S(U) = Tj Sn(Un) = X. By the theorem of
n=1

Fuhrman [9], we obtain that there exists number k such that
Im J* C Fk(Uk).

In order to prove condition (b), we assume the contrary: let us suppose there exists
A> 0such that 1’x* = AX* and

(x*,Sfi) > 0. (5)
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Then, for all x £ S(Q), there exists n and «o, ui,..., un-i GIsuch that

<**.*) - - 'A<A*"X*,X> ft A<X*,A"). (6)

But
(x*,Anx) - (x*,An~1Buo0+ mm+ S«n-i)

= <A*V,BuO)+ ...+ (**Bu,_i) (7
= Xn~I(x\BuQ) +... + (x*,Bun_J).
From (5), (6), (7) it follows that

(x*x) > 0 for all x £ S(il).

This contradicts the condition 0 £ int S(f2).
Sufficiency. By Lemma 1 it has been proved that int Sk(Qk) ¢ 0. For every / > Kk,
let us define the set 5/ by

5 := {X£ X :-AKXE F,(«)}.

It iseasy to see that SJ C S[+1, §{ is convex and ASI C Sf+1. Since Sk — Sk (Qk), it

follows that intS/ ¢ 0. Setting S' — (J S,, we will show that 0 £ int S'. Assuming
r>k

the contrary, we readily verify that the cone C = (J AS' is convex, not dense in X

A0

and A-invariant, i.e. AC C C. By the Krein-Rutman’s theorem [13], there exists
A> 0 and x* £ X*such that A*x* = Ax* and (x*,c) < 0 forall c£ C. On the
other hand, since AkBEI C Fjt+i(f2fc+l), it follows that —BQ C Sk+1 C S' C C.
Hence, (x*,Bu) > 0 for all u £ O. This contradicts the assumption (b) of the
theorem. Thus, 0 £ intS'. In view of Lemma 1 of [25], there exists m > K such
that 0 £ int

If m = k then the assertion of the theorem is immediate, since Sk = Sjt(fi).

If m > k we consider operator Am~k : X —*X. Since 0 £ int5, we have
0 £ int((Am~i)-1571). On the other hand, it is easy to see that (Am~t)~1S" C
Sm(Q). Therefore, 0 £ intSm(Qm), and the sufficiency is proved. The proof of
Theorem 1is complete.

We remark that Theorem 1can be strengthened by assuming only that fi has
non-empty relative interior. Now, we formulate the modified version of Theorem 1

Corollary 1 Consider the system (A, B,Q). Assume that KerA = {0},
ImMA = X, 0£Mand riQ / 0. Then the system (A, B,Q) is LC iff

(@) There exists number k such that ImA* C Fk(Vvk), where v = sp{Q}.
(b) There is no eigenvector x* of A*, A*x* = Ax*, A> 0 such that (x*,BIM) > 0.

Lemma 2. Let M be a closed A-invariant subspace contained in the control-
lability set S(il) of system (A, B, il). Then the system (A, B, I2) is LC iff the factor
system (A, B,Q) with respect to M is LC.
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Proof. Sufficiency is immediate form the fact that P is an open operator form
X onto X and the set PS(PI) belongs to the controllability set S(Pl) of the system
(A,a,n).

In order to prove the necessity, we take e > 0 such that BE C S(PI) and set
£\ = e/||P||. We shall show that BA C S(i2). In fact, for any x E X with ||x|| < £\,
we have Px E S(PI), therefore,

AkPx fmAk "Buq Bilk4 —0
for some k and some u, € N, i = 0,1,...,Jfc —1 From this it follows that
Akx + AK "Bugm(m... -f Bilk— d Al d

that is x E S(Q). The proof is complete.

Theorem 2. Consider the system (A,R,Q). Assume that 0 E A, intfi ¢ 0,
A is convex and operator A satisfies the semi-finite condition. Then the system
(A,B, N) is LC iff

(@) There exists number k such that ImA* C Fk(UKk),
(b) There is no eigenvector x* of A*, A*x* —Ax*, J1> 0 such that (x*, BPl) > 0.

Proof. The proof of necessity is analogous to that of Theorem 1.

In order to prove the sufficiency we set | —max(m, k), where m is the number
which is to be found in the definition of the semi-finite condition and let M —
Ker AL It can be easily verified that M has the properties required in Lemma 2
Consider the factor system (A,B,Pl) with respect to M:

n+i ==Axn T Bu,,, xnf£ X) unEHRdU

From the semi-finite condition concerning operator A, it follows that Ker A = {0}

and Im A = X. In the same way as in the proof of the Theorem 2.3 [28], it can be
shown that conditions (a) and (b) are fulfilled also for the factor system (A, B,PI):
(@) There exists number K such that Im i4 C Fk(un), where

FK(UK) = A*-1 BU + ... + BU,

(b) There is no eigenvector x* of A*, A*x* = Jix*, A> 0 such that (x*, BPI) > 0.

Thus, making use of Theorem 1, it follows that the system (A,B,Pl) is LC.
Consequently, by Lemma 2, we conclude that the system (A,B,Pl) is LC. This
completes the proof.

Remark. In the case, when riil ¢ 0, Theorem 2 remains true if we replace
Uk in condition (a) by Vk, where V = sp{Q}.

In [27], it has been proved that, under certain condition detailed below, system
(A, B,PI) is GC iff it is LC and <r(A) ¢ D\. Taking into consideration this result,
we obtain the following corollary of Theorem 2.
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Corollary 2. Assume that the conditions of Theorem 2 are fulfilled, 2 is
bounded and the operator A satisfies the spectrum decomposition condition. Then
the system (A, B, Q) is GC iff

(@) There exists number Kk such that ImA* C Fk(Uk),
(b) There is no eigenvector x* of A*, A*x* = Ax*, A> 0such that (x*,BQ) >0,
(c) o(A) C Di.

4. Application

In this Section we shall use the result obtained in the first Section to ex-
amine the null-controllability of linear autonomous retarded functional differential
equation of the form:

(L,Bo,M)  Z(t) = L(Zt) + BOu(t),

where Z(<) ERn, Zt(9) = Z(t+ 9), 9 E [-#10], L is a bounded linear operator from
C = ¢{[h,0],Rn) into Rn given by

0]

LU®) = J <Ur]EdE), dec,
-h

where () is an n x n matrix function of bounded variation such that Tj@) = 0 for
B > 0, r](8) = T—h) for 9 <—h and 1) is left-sided continuous on (—h, 0). Bo is an
n X m matrix.

Moreover, u(-) E M is an admissible control if Q has the following properties:

nc (J L2([o,T],Rm); (8a)
>0
MML2([0, h],Rm) is convex (8b)
and its interior relative to L2([0,/1],Rm) is non-empty;
0EO; (8c)
Ifu( ) EQ then uj-) E£2([0, /T, Rm)
defined by Uj(0) = u(ih + 0), B E [QJ] (8d)

is such that u, E fi, for each i E N.

Let M2 := Rn x L2([-/i,0],R"). Clearly, M2 is a Hilbert space.
If M C Af2 is a subset of M2, then the negative polar cone of M is defined by

M® = {/ E M2: (f,x) <0 ViE M}
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The inner product in Rn is denoted by (¢, )r«.
It is well known [3] that the homogeneous equation

m = L(Zt) ©)

induces a strongly continuous semigroup {S(t), t > 0} on M2, by means of which
the solution of (9) with the initial condition Z(0) = &°, Z(9) = di(s), 9 £ [ 0],
where b= (¢°,th1) 6 M2 can be given as S()<£ = (Z(f), Zt) £ M2.

Let Z(t) be a solution of the equation

Z(t) = L(Zt) + Bou(t)

corresponding to the initial condition o — (¢0°,(p1) £ M2 and to some control
u(-) € L2(J0,T],Rm). Then x(<) = (Z(i),Zt) will be the mild solution of the
abstract differential equation

x(t) = Ax(t) + Bu(t), t £ [0,T]
x(0) = o,

where A is the infinitesimal generator of S(t), B : Rm —M2 is a bounded, linear
operator defined by
Bn —(Sou, 0).

This mild solution can be expressed by
X S(t -8)Bu(B) de.

Let {S+(i), t > 0} denote the strongly continuous semigroup induced by the

transposed equation:
Z<Q = L+(Zf), Z«)€Rn,

0
b+®= Jdrfwwo), dec.
-h
The corresponding infinitesimal generator of S+(f) is denoted by A+.
For a given system (L,S0,Q) we define the following sets:
1

where

RT ;= 1J S(T—9)Bu(9)do:u( )£ ML2([0,T],Rm)],
Nt := {P€ M2:—bB(1)p £ Rt}
N := (J NT,

Cre—{®dGM2:—  £Rt}
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Definition 5. System (L,Bo,£l) is said to be locally controllable (LC) if
0 € int TV. System (L, Bo, M) is said to be globally controllable (GC) if V= M2-

Definition 6. System (L,Bo0,£l) is said to be approximately locally control-
lable (ALC) at time T > h if 0 € intCr-

Let (A) be the characteristic matrix of (9):

0
O(A) = A7T—J dr)(e)exe.
-h

Then €(A) —<r(A+) is a point spectrum (see [10], [14], [23]) and it is given by
<r(A) = {A6 C : det 4(A) = 0}.
If A6 &(A) then the corresponding eigenspace is given by
Ker(Af —A+) = {(¢°, pD) € M2:AT(X)p° =0, th\B) = p°exs, BE[-H,0].

Now, we can give the discretization for the retarded system (L,B0o,Q), i.e. we are
going to construct a linear discrete-time system which is equivalent to the retarded
system (L, Bqg, Q) from the controllability point of view.
Let us denote
U :=L2([0,h],Rm),

fi :=finL 2([0,/i],Rm).
We define the operator

A :M2—M2by A := S(h)

and h
B:U-—»M2byBu():=J S{h- B)Bu(s) de.
0

It has been proved [10], [23] that the operator A is compact, therefore, it satisfies
the spectrum decomposition condition. Moreover, (see [23]) there exists To > 0
such that for all t > To

Ker S(t) = KerS(To)
and
ImS(t) = ImS(To).

Hence, it follows that there exists number no such that, for n > no, we have

KerAn= KerAn+l = KerAn+2 = ...
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and
Im.4" = Im 4n+l —ImAN+2 =

It means that the operator A satisfies the semi-finite condition.

Now, we consider the discrete-time system associated with the system
(£,Bo,0)
(AR,0) xn+l = N1x,, + 5u,,,

where xn GM2,u, GI2C V.

Lemma 3. The system (L,Bq,El) is LC or GC iff the system is LC
or GC, respectively.

Proof. The reachable set of (.4,5,0) in time K is:

Ro:={0} fork=0
and
R% := Ak- 1BCl + Ak~2Bn+ ... + BO for k>1.

It suffices to show that
Rkh = R%e (10)

Let ¢ G Rkh, then there exists u(-) G QM L2([0, kh],Rm) such that

®=J S(kh - B)Bu(6)do

0

Defining a control sequence u, G N, i = 1,2,... ,k by Uj(0) = u((i —D/1+ 0),
9 G [0,A], we can easily show that

@®=>tt_15ui + Ak~2B\i2 + eee+ Buk,

thus G Rk- Conversely, let b £ R, then there exists a control sequence u, G Q,
i=1,2,..., Ksuch that

® = Ak- IBui + Ak~2Bu2 + ... + 5ut.

Taking u(<) = u,(< —(@{ —1N) for i —Dh <t < ih, i = 1,2,...,£ we have
u( ) GfinL 2(]0,ib/i],Rm) and
kh
®=1J s(kh- e)Bu(e) de.
0

Hence, ¢ G Rkh- The proof of Lemma 3 is complete.

4
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By Theorem 2, Corollary 2 and Lemma 3, we obtain the following.
Theorem 3. Assume that int Q ¢ 0. Then the system (L,Bo, d) is LC iff
(@) The system (L, BO, (J 12([0,T],Rm) is GC,
T>0

(b) Ker(A7* - 5*(J1)) M_(B0)° = {0}, VA > 0.
Theorem 4. Ifintfi ¢ 0and Q is bounded in | 2([0, /1],Rm) then the system
(L,Bo,ql) is GC iff
(@ The system (L, BO, (J 12([0,T],Rm) is GC,

T>0
(b) Ker(A7* - S*(h)) M (BCl)° = {0}, VA > Q,
() {Ac C:detA(A)= 0} CC_,where C_ :={AgC :ReA<0}.
Now, we introduce the operator D : U —* M2 by
(JDu)° = 0,
(Bu)I*) = BOu(fl), -h<e6 <0.
In [26], pp. 16, it has been proved that the condition
Ker(A7* —S*(h)) N(Bf2)° = {0}, VA>0
is equivalent to
Ker(AJ* - A+)D(DQ)° ={0}, VAG R,

where (DQ)° is the negative polar cone of DCl. It follows from the definition of D
that this condition can be expressed as follows:
(b If A(A) = 0for some real A then there is no vector ¢° GR" such that

NTA = 0

and
[0}

i (poexe, Bou(-fl))B-dd <0, for all u(-) GA. (11)

This version of condition (b) is more convenient for calculations.
Let us consider how to use this result for the verification of the controllability

of concrete systems with retarded arguments.
Example 1 Let

X = (1~ x(*)+ (~01 !')x(<_1)+(3 ~01) x(<_ 2+ (0)u

[26], and let d be an arbitrary set which satisfies the requirements (8a)-(8d) with
m = 1. An easy calculation shows that

A+e-A |+e"2A
AA)= .1 A-e~-A
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thus,
det A(A) = A2+ L1

Since there is no real Asatisfying equation det 4T (A) = 0, condition (b") evidently
holds.
It is known [5], [23], [30], that condition (a) holds iff

rank(4(A),Bo) = n, forall Ae C.

In our case
L 1+ e~2
(ﬂ(A),50): (At G_A A-e-A )

which has full rank for all A€ C.

This example shows that the controllability property of some systems can be
verified “almost” independently ofthe control restraint set ft (ft has to have only the
properties (8a)-(8d)). Nevertheless, it should be noted that in [26], the approximate
local controllability of this system was only obtained under more special control
constraint set ft (namely, ft consists of functions, all component of which take
values from the cone K = [a£Rr" :a, > 0,i—1,2,...,n}).

Example 2. Let

= (i 0)*<)+ (o i)eC” 1)+(6 ol) x('-2)+(0) (t)
Let h = 2n and let us define the set fty by
i

2jir
ftr = l«(m) € L2([0,T],R) : J  |u(0) - sin#|2d6 < / sin2p de,
20-1)» 20—2)*
i=1,2...% 2(@G- Du< T <amn,
T T
J  \u(t)~ Hn9\2d9< | sin2
2(«l)* 20- 1)*
and let
ft= (J ftT.
T>0
Then
ft —ft2Tre

First of all we have to show that ft has the required properties (8a)-(8d). Condition
(8a) and (8c) is evident. We observe that ft2ir is a closed ball in Z2([0, 274, R) around

a1
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the center uqg, ug(t) —sint, and with the radius y»>k Thus, (8b) is also true. (It has
to be emphasized that the origin does not belong to the interior of U. Therefore,
the controllability problem for this system could not be solved on the basis of the
previous results.)

In consequence of the construction of Qt, the condition expressed by (8d)
also holds true.

Condition (a) of Theorem 3 can be verified on the same way as in the previous
Example.

Now, we shall examine the condition (b"). Since

we have
det A(A) = A2- 1,

therefore,
detAA) =0 iff A=1 A=-41

OT(ADN = o

AT (X2)P x= 0.
Let us choose the control function n £ d

9¢ [0,21r]

9 e [rr, 27r].

Then

T
/ e ASsined9 < 0.
0

Let us now take the control function u£il

9 ¢ [o,n
9e [ 211].
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In the same way as above we see that

0
J (¢ xexs,BoLL-8))n3M > 0.

—2t

An analogous computation with the same choise for U and i1 shows that relation
(11) does not hold for the pair (\2,®-\) i.e. condition (b") also holds. Therefore,
the system of this example is locally null-controllable.

In the following, the case of delay systems is considered when the delays are
commensurate, that is the system can be written as

(A(2), B(2), fl)  Jc(®) = A(2)x(t) + B(Z)u(t)

where x(<) E R", the set of admissible controls is the same as in the general case,
Z is the right-shift operator i.e. Zx(t) — z(t —h) for delay duration h > 0,
A(Z) E Rnxn[Z], B(Z) E Rnxm[Z] and R**J[Z] denotes i x j matrices composed
of real polynomials in Z.

It this case, the spectrum of system (A(Z), B(Z), i) is given by

cr(A) = {1£ C :det(A/ - A(e-A¥) = 0},
and
O(A) = A7- A(e~Xh)

is the characteristic polynomial of the system.
From [5], [23], [30] we know that the system (A(Z), B(Z), [J Z,2([0,T],Rm))
T>0

i.e. the system with unconstrained control is GC iff this is AGC. A necessary and
sufficient condition for AGC is

rank[A/ - A(e~Xh), B(e~Xh)] = n

for all AE C. Thus, we have the following.

Corollary 3. Assume that intfi ¢ 0. Then the system (A(Z), B(Z), fi) is
ALC iffit is LC.

Proof. The sufficiency of the Corollary is immediate. Assume that the system
(A(Z), B(2), fi) is ALC. Consider the discrete-time system (A,B,Q) associated
with the system (A(Z), B(Z), IN):

(A,B, M) :xn]i=Axn+ Bun
where xn E M2,u,, 6 n C U.
Since the system (A(Z), B(2),£1) is ALC it follows that
(@) The system {A, B, U) is AGC,

5
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(b) Ker(A/* - S*(h)) M (Bfi)° = {0} for all A> 0.
Condition (a) means that the system (A(2Z), B(Z), (J £2([0, T3, Rm)) is AGC.

T>0

Hence, by [5] and [30] it is GC, too, thus the system (A,B,U) is GC. By Theorem
3 we have that the system (A, B, ft) is LC, thus, the system (A(Z), B(Z), ft) is LC.
The proof is complete.
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Hynb-ynpaBnsaeMmocTb
NUHENHBIX OUCKPETHbLIX CUCTEM GECKOHEYHON pasmMepHOCTM
C OrpaHUYeHUAMN Ha ynpasfieHue

HFYEH BAH CY
(BypanewT)

HacTtoswas pa6oTa nocBsAl eHa BONPOCY HYAb-ynpaBAsieMOCTU CUCTEMb

rA-fi —A%Kh Ruk} xk CX, Lhe N CU, AEL(X X), BELU,X)

rae X M U — runb6epToBbl NPOCTPaHCTBa, M — BbINYKI0E MHOXECTBO C HENYCTOW BHYT-
pPeHHOCTbIO, cogepxauiee 0.

34ech paccmaTpuBaeTCca CAyuvail nony-koHeuHoro omepatopa A. [Ns TakuxX CUCTEM

3afaéTca HEo6X0AWMOE M [OCTATOYHOE YCNOBUE HYNb-yNnpaBiAfieMocTu. MONyuYeHHbI pe-

5
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3yNbTaT UCNONb3YETCs AN UCCNEA0BAHUS HYNb-YNpPaBisieMOCT CUCTEM C 3anasfblBaHNEM
cneaylouero suaa:

x(t) = L(xt) + Bou(i), x(t) 6 R, u(t)yer ¢ RM, xt(9 = x(t+ i), ee [-/10]

[loka3blBaeTCsi, YTO HY/Nb-yNpaBnfieMoCTb B TOYHOM K I'IpM6/'II/I)KeHHOM CMblICNne 3KBUBa-
NEeHTHblI B Cy4Yae KOHEYHOro Yyncna conamepumumMbl X 3anasjblBaHMit. 3T0T (*)aKT 6bln N3BECTEH
TONbKO ANA cUcTemMbl 6e3 OFpaHM‘{eHMﬁ OTHOCWUTENbHO yﬂpaBﬂeHMVI.

Nguyen Van Su

Technical University of Budapest
Faculty of Mechanical Engineering
Department of Mathematics
Budapest, Stoczek u. 2.
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OPTIMIZATION OF DYNAMICAL SYSTEMS
WITH IDENTIFICATION OF INPUT PERTURBATIONS

R. Gabasov, F. M. Kirillova

(Minsk)

(Received June 12. 1990)

A finite algorithm for the construction of optimal control of dynamic systems with
perturbations that identifies acting perturbations with help of observations over resulting
processes as it operates, is proposed.

1. Introduction

A real control system is functioning, as a rule, in the presence of noise. This
leads to the necessity of introduction of uncertainties of corresponding optimiza-
tion problems [1, 2] into the mathematical model. The models of stochastic optimal
control [3-5] are the more developed ones for optimal control under conditions of
uncertainty. Lately, in connection with the development of the modern theory of
extremal problems it became possible to investigate models in which other represen-
tations on the nature of perturbations and on the principles of control are admitted,
under conditions of uncertainty not emphasizing the relative frequency of arising
of these or those values of perturbations. In the new approaches the structure of
large numbers of the possible values of perturbations is taken into consideration in
detail. The latter is practically ignored in probabilistic models. Appreciating the
quality of control, it is necessary to perform the conditions not as a whole but in
all possible situations [6, 7).

In this paper the authors, based on the results on the constructive theory
of extremal problems [8, 9], substantiate a finite algorithm for optimal control
construction by dynamic systems with perturbations.

2. Statement of the problem

Consider the family of ~-vector function *;(/), tET —[0,C] :

u(t) = Up(t) + (1)
i~

Akadémiai Kiadd. Budapest
Pergamon Press. Oxford
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defined with the fixed piecewise continuous p-vector function u>o(t), wi(<),... ,uq(t),
t 6 T, and g-vector of parameters w = (uq, ... ,w(), which may take any value from
the set

W={u€W::Gw=/,d <w<d} (/ €R. 2

We shall consider that the functions (1) describe perturbations acting to dy-
namic system of control

x(t) = A()x £b()u + V(tu(t), x(0) = xo (i £ R", nER) 3)

with piecewise continuous elements A(t), b(t), T>(t), t ET.
To every piecewise control u(-) = (u(t), t € T) it corresponds the only move-
ment
X(t) = X(ila;0,'u(-)) = X(rou(-),w), W W}, te€T,

consisting of all the trajectories x(<) = x(t\xq,u(-),w), t € T, of the system (3)
generated by the fixed initial state xo, control u(-) and different parameter vectors
wE€W.

In the following we shall call W a priori distribution of parameters, X(t),
t ET, the a priori movement of the system (3).

Let the terminal set in the space of states of the system (3) be given

m
X* = p| XI, X: ={x € Rn: Kx ></,}.
i

The control u(t), t € T, is constrained by
H<)l <1, tGT, @

and motion X(f| «(*)), t € T, corresponding to it will be called a priori admissible
if a terminal inclusion is fulfilled

X(i*[a(-)) C X*. (5)

The quality ofthe a priori admissible control (°( ) will be estimated according
to the functional value

J(0) = \%W/Hox(t*lxo,U(-),w). (6)
G°(-) will be called an a priori optimal control if

3(u°) = maxJ(u). 7

The efficiency (7) of control by the system under conditions of uncertainty
(2) s less than the efficiency of control in the case when perturbation w*(f), t ET,
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is known, i.e. if the uncertainty of a problem is absent. Therefore, to increase the
control efficiency we shall introduce the procedure of observation over the control
process.
Consider the following types of linear inertia-free measuring systems:
1) direct complete
y —Cw (y —RS5, det C / 0); (8)
2) direct incomplete exact: (8) for y £ R1, rank C —I < d
3) indirect incomplete exact

y~ Kx (y£R); ©
4) mixed inexact incomplete
y = Kx +Cw+£, (10)

In case (10) we shall assume that in the process of dimensions any piecewise
continuous function of errors of f (f), t £ T, satisfying inequalities

£.<N<C, (11)
may be implemented.
lget for the chosen control u*( ) the measuring device have a registered signal
y*(0, eT.
The set W of vectors, w £ W, that together with some possible error function
of dimensions £(<), t £ T, are able to generate signal y*(f), t £ T, will be called a
posteriori distribution of parameters w. The a posteriori motion X (t|xo, u*(-)) =
{x(tlxo, <()>wrw € W}, t £ T, a posteriori admissible control U*(t), t £ T,
(X (i*|x0,«I*(s)) C X*) and a posteriori optimal control 0°(-)(J(U°) = @%.))d(ﬁ*))

correspond to it. Since W C W then J(u°) > i.e. the control efficiency
while using observation is increasing. Below methods for constructing of optimal
controls at different ways of data obtaining on control processes are presented.

3. Construction of a priori optimal controls

Investigate the control problem (1)~(7) without using observation over the
control process.

In accordance with the control problem (1)-(7) calculate the following esti-
mates of a priori distribution W :

& = min /i(x(t*|x0,u( ),u)), i= 0,m. (12)

In accord with Cauchy formula [10] we have
<
la0,w( ), in) = F(t*)x0 + J F(t*)F~1(t)b(t)u(t)dt+
0
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+J FAF-HtWyunrdt +2W jj F(fF-\t)V(ty>j{t)dt.

Using (12), we obtain

t*
=1 + KF(f)xo+ J tiF(f)F~1(t)b(t)u(t)dt+

0
<

+) hriEitAE-titWuondt,
13
7j —mina(tuy, Gw=/, d?*<w<d* r—0,m
f
a, =(a0-, j =1g), atj=J F(t*)F~1(t)D(t)wj (t)dt.
0

Using estimates (12), the conditions of the a priori admissibility of control
«(*) will be written in the form

t*

MF(f)xo+ M\ J F(t*)F-\t)b(t)u(t) dt+

0]
<&

+hiJ F{F)F-\t)V{t)wo(t)dt >g{, i =T~"

Find the value of a quality criterion on the a priori admissible control
ter,

J() = 40 = 70 + HOF (f)x0+ J HOF(F)F-\t)b(t)u(t)dt+
0

1 HOF{f)F~\t)V{t)wo(t)dt.
0
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According to (7) the a priori optimal control Uo(/), / € T. is the solution of
problem

J HOF(IMF 1(H)b(t)u(t)dt + HOF (F)x0+
0

+b'0f F(t*) F~1(t)V(t)*i)o(t) dt — max,
0

HOF(t")x0 + hiJ F(t*)F~1(i)b{L)u(t)dt +
0

+/1- JF(t*)F~I (OV(t)*;0(1)cH > gite
0
i=l,m lu(/)l< 1l teT.

In dynamical statement it has the form
Jo(u) = Hox(tm) — max
i = A(t)x +b(tu(t)+V(t)u)ot), x(0)=xo. (14)
»=1Im; u()] <1 /6T.

Problem (14) will be called a determined problem of optimal control accompanying
problem (1)—) for construction of the a priori optimal control under uncertainty
conditions.
So, to construct an a priori optimal control u°(t), i £ T, of problem (1)-(7)
we need to solve:
1) (m + I)-problems of linear programming (13).
2) one problem of optimal control (14). The value of quality criterion on i7°( )
equals to J(ii°) = + Jo(“0)

4. Optimization of perturbed dynamical control systems
by means of observation results

Let us add to the control procedure the operations on processing of output
signals of measuring device (9) or (10). In Section 1 there was introduced the
notion of the a posteriori distribution IT of parameters, that in a general (i.e. non-
constructive) form contains the complete results of the uncertain elements' removal
from the set W by means of data in the observed signal y(i). t € T. It is sufficient
to introduce only separate numerical characteristics (estimates) of the set IT, both
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for solving practical filtration problems, wherein the whole probability distribution
function is seldom used, and they are restricted only by some simplest numerical
characteristics (mathematical expectation, variance, etc.) and for problems (1)-(7),
(9) or (10).

Count the following estimates

<o = min /i[x(<*| xo, i=0,m. (15)

We call the calculation of estimates (15) identification problems accompanying
the dynamic system optimization problem under uncertainty conditions.

Consider the case of indirect incomplete exact measuring (9). Let the con-
trol u*(f), t+ £ T, be given onto the input of system (3). It generates trajectory
X(<[X0, «*(s),w(-)), t € T (xo0,uo(t),t £ T, are given) with some value of parameter
w G W. The measuring device (9) yields the necessary signal y*(t), t £ T. All
conditions being highly general [10], hence such momentstj £ 7, j = I,p, and sets

Cj, \Cj\ <I,j= lp; _sz |£j] = g will be found that the matrix is non-singular
j=1

P= (K(Cj)pii)y

Here K(Cj) is a submatrix of matrix K containing rows with indices from Cj. Form
signal

t t
vty = J AML)T_A(NDb(u(r)dr + KF(t)x0+ J KF(1)F~1(t)V(t)uio(t) dr.
0 0
Assume
y*(t) - v(t) = z(1).
Compose n-vector zop = (z,(ta), S G Cj, j = I,p) and find the unknown

parameter w° —P~1zop.

Therefore, the a posteriori parameters’ distribution degenerates into a fixed
element w° (uncertainty of the problem (1)—7) disappears) for exact dimensions
(9) of support signals j/*(i), s £ Cj, t GT, in support moments tj, j —1,p,

w° being constructed, the problem (1)—€7), (9) comes to the following one

Hox(t*) —mmax, x = A(t)x + b(t)u(t) + V(t)uj°(b),

Uo(t): uo(t) + wfwj(t), (16)
j=i
X(0) = xa, (<) > i=1m WY <T <GT,
that will be called a determined problem of optimal control accompanying that of
(N-(7) with measuring device (9).
We shall call the solution of problem (16) an ideal optimal control and denote
byu°(t), te T.
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The value J(ii®) —J(H°) characterizes the increase of control efficiency while
using measuring device (9).

Consider the most interesting case when problem (I)-(7) is connected with
measuring device (10).

Let un(t), t € T, be some control restricted by (4), a(i|x0,u*(-),w), t &
T, some system trajectory generated by this control, given by initial state xq,
its unknown value of parameter w G W, yn(t), t G T, be an observed signal of
measuring device (10) caused by trajectory x(<pkO,n™( ),%), t GT, and unknown
error function of measuring £(t), t € T. Assume

2(t) =y*(t) - 1| KFE@Q)F-\T)b(r)u*(T) dr - KF(t)x0-
0

- J KF(t)F-\r)V{T)uo{T) dr.
0

For the a posteriori distribution of terminal states X (t*) calculate the follow-

ing estimates
a- = min h(@(@i*| xq, «*(¢>w)> *= 0,m. a7

Using Cauchy formula [10] from (17) we obtain

r
ai = ji+h'F(f)xo+J hjF(tm)F-1(t)b(t)u*(t)dt+
o

@
+5 heiew itw wow at, 1= (M

0
7i = minapié, wWG W.
Calculation of numbers ji, i = 0,m, in a detailed notation comes to problems
7-=minal>, Gw=/, d, <w <d* i=0m,
t.<z(t)-Kw'd<C, (18)
&
d=(dj,j =~q), dj =3 F{H)F-\t)V(t)wj{t)dt.
0

We call problem (18) the problem of identification, accompanying that of an
optimal control (1)-(7) with measuring device (9).
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The finite algorithm to solve linear problems (18) is described in [9].
Knowing estimates 7j, i = I,m, write the conditions of control u(t), t £ T,

the a posteriori admissibility

Hi F(t*)x0 + Hi I F(t* ) F~1 (©)b{i)u(L) dt+
0
t*

+Kj F(t*)F~1()T>(tuo(i)dt > gt, i- L.m,
0

where yt — gt- i =1,m.
The a posteriori optimal control u°(t), t € T, is the solution of the problem

Jo(u) - \T HOF(F)F  1(t)b(t)u(t)dt + HOF(t*)x0+
0

+ J HOF(t*) F~1(t)V(1)%0(1) dt — max,
0 (19)

Ji'F(f*)x0 + h' \IT(/‘ YF - 1(f)6()i/(/)d/+
0
r

+h[§ F{t*)F~1()V(O)ydo(i) dt > gi, 2= Im, M) <1 i€T.

The dynamical form of problem (19) is as follows

Jo(u) = Hox(tn) —mmax, i = A(t)n + b(i)u + TLEO(/). i*0) = xa,
hiX(t%) > gif i= 1, m; |u(f)| <1, i €T

We call it a determined problem of optimal control, accompanying that of
(N-(7) with measuring device (10). This problem can also be solved by applying
methods from [9].

The value of quality criterion on an a posterjori optimal control u°(t), t GT,
is equal to J(i°) = Jo(u°) + 70- Value J(u®) —J(u°) characterizes the increase
of control efficiency at the expense of observation results by means of measuring
device (10). Number J(u°) — is equal to the loss of control efficiency because

of errors in measuring device (10).
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From (19) it can be seen that the problem of identification of parameters w
does not depend on control, i.e. the problem of control and that of identification
are separate ones.

5. Example*

Consider a problem on acceleration of a mass point on horizontal section of
path when an unknown constant force affects it. The mathematical simulation of
the problem is as follows:

r2(1) —»max, = x2, x2= un+w, xx(0) - x2(0) =0,
*ji(l) < 0.5; Ju(<)] <1, te T =101, 0< W< 1
It presents a special case of problem (3):
n=2 Jlo= (0,1), A= jj, 6= & , w=#m={«; €ERX: 0< W< 1}

O()= MO-tGT, u(t) =in}, g= 1, 4yo(t) =0, wi(t) = 1, t€T,;
p= 1, m=1 hi =(-1,0), gx= -0.5.

First, construct the a priori optimal control. Since a fundamental matrix of

solutions F(t), t £ T, has the form F(t) = Q then
t t

Xi(<)y= J(t~ tu(t)dr+w—, x2(t) = J u(r)dT + wt.
0 0

According to (12) the a priori estimates & x, a0 are equal to
| |
ax=J(1 —t)u(t)dt + 7i, d0=Ju(t)dt + 7o,
0 0

= 0.5, 70= rmin w = 0.
o<lik1

Hence, gi = —0.5+ 0.5 = 0 and an a priori optimal control G°(t), t £ T, is the
solution of the accompanying (14) determined problem

x2(l) —smax, ii = x2, x2=u, xi(0) = x2(0) = 0,
*i(1) <0, Ju(<)| <1, te T

Example is calculated by S. V. Prishchepova
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Solution of the problem has the form
(°(<) = -1, t£[0,1 - >/2/2], u°(t) = 1, t £ [1- >/5/2,1].

The value of quality criterion is equal to =\/2 —1« 0.414. Assume a signal
t

y*(t) = f(t —r+ Du(r) dr, t £ [0,1], is written on a measuring device y —X\ + x2.
0

Then w = 0 and control (i°(i), t £ T, is the solution of the determined problem
r2(l) -*max, ii = x4 x2=u, xi(0)=x20)=0,

iy <05 Ju(i)] <1, tE£T,

and has the form u°(<) = 1,t £ T. The value of quality criterion on it is equal to
J(«°) = L.
Now, consider measuring device

y=zi+X2+E, (20)

operating with errors £(<), t £Tt, satisfying restrictions —0.2 < £(<) < 0.1, t £ [0,1].
Assume that a signal y*(t) = f(t —r + Du(r) dr, t £ T, is written again. In this

0
case the accompanying identification problems have the form

7i = max -02< g*?+ t] w<0.1 t£[01

o<w<l| Z
70 —min w, —0.2< +tjw<0.1 t£[0,1; O<w<1l

Hence, 7i = 0.0333*70 = 0. Then 4§ = —0.5 + 0.0333 ss 0.47. The a posteri-
ori optimal control u°(t), t £ T, is the solution of the accompanying determined
problem

x2(l) —max, x1= z2, xi =u, xi(0) = x2(0) = 0,
*I(< 0,47, NO1 <1, <g€[0,1],

and has the form

u°(<) = -1, tEJ[0,77]; u°(<) = 1, tE [ti, 1]
M=1- >/097 ~ 1- 0.9849 = 0.0151.
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The quality criterion on it takes the value J(0°) = 2\/0.97 —1 = 0.9698. The in-
crease of control efficiency at the expense of observation by means of the measuring
device (20) is as follows:

J(U°) - J(0°) = 0.9698 - 0.414 = 0.5558.

The control efficiency loss because of dimension error is equal to

J(it°) - J(U°) = 1- 0.9698 = 0.0302.
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OnTuMu3ayns gUHAMMUYECKNX CUCTEM
C UaeHTU(UKaLneh BXOAHbIX BO3AEKCTBUIA

P. TABACOB, *. M. KWPUT/TOBA

(MunHCK)

B pa60Te nccnepyeTca 3afjadya ONTUManbHOro ynpasneHusa NNHEWHOW cuctemol npu

ycnoBuun AeliCTBUA Ha Hee HEeW3BECTHbIX BO3MYWeHWi. [Ana aphekTUBHOro Bbibopa yn-
paBneHus CcUCTeMON NpoBoaMTCSH HabnwpeHue 3a AMHAMMWKOW CUCTeMbl; MpuU aToM pac-
CMaTpPUBAOTCA YeTbipe BO3MOXHbIX TUMA NUHEWHbIX «GE3UHEPLUOHHbIX W3MEPUTEbHbIX
ycTpoOWCTB*. [Ans paccMaTpuBaeMblX ClyyaeB, C y4eTOM NUHeWHOCTW 3afayun, cTposATCH
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Problems of Control and Information Theory, Vol. 20(4), VP- 245-255 (1991)

ON THE OPTIMAL CONTROL AND RELAXATION OF
FINITE DIMENSIONAL SYTEMS DRIVEN BY
MAXIMAL MONOTONE DIFFERENTIAL INCLUSIONS*

N. S Papageorgiou**

(Athens)

(Received November 1, 1990)

In this paper we examine finite dimensional optimal control problems driven by
maximal monotone differential inclusions and having state dependent control constraints.
First, with the help of a convexity hypothesis, we prove the existence of optimal admissible
pairs. Then we drop convexity hypothesis and we look at the relaxed system. For that
system we establish the existence of optimal solutions under minimal hypotheses. Finally,
by stengthening our hypotheses we show that the original trajectories are dense in the
relaxed ones for the topology of uniform convergence and that the two problems relaxed
and original have the same value.

Keywords and -phrases: Monotone operator, orientor field, optimal pair, minimiz-
ing sequence, transition probabilities, relaxed system, selection theorem, Hausdorff metric,
density result, relaxability.

AMS Subject Classification (1980): 49 A 20

1. Introduction

In this paper we examine the following finite dimensional optimal control
problem:

J(x, u) = j L{t)x(t), u(t)) dt —»inf=m
' 0 *)
s. t. X(<) € Ax(t) +f(t, x(<), u(i)) a e
x(0) = x0, u(t) ¢ U(f,x(i)) a. e

where A : Rn —* 2*" is a maximal monotone operator. First, with the aid of a
convexity hypothesis on an appropriate orientor field, we establish the existence

*Revised version

**Research supported by N.S.F. Grant D.M.S.-8802688.

1 Akadémiai Kiad6, Budapest
Pergamon Press, Oxford
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of optimal solutions for (*). Then we remove this convexity hypothesis. Now,
the system may fail to have an optimal solution. Nevertheless, it is important
to study the asymptotic behaviour of the minimizing sequences. This leads us to
the introduction of a larger system, which is known in the literature as “relaxed
system” and which captures the asymptotic behaviour of the minimizing sequences.
For this augmented system, we prove the existence of optimal solutions, we show
that its set of trajectories is the closure in the topology of uniform convergence of
the set of trajectories of the original system and, finally, we prove that under mild
hypotheses original and relaxed problems have equal values.

The problem studied here can be viewed as an extension of the works of
Berkovitz [5], Cesari [6], Gamkrelidze [9], Pappas [15] and Warga [19], where A = 0,
in their study of the relaxed problem the control constraint set was state indepen-
dent (open-loop) and the hypotheses on the data were stronger.

An important special case of the problem studied here is when A = dSjc, where
6ji (*) is the indicator function of a nonempty, closed convex set K (i.e. 6k (x) = 0
if x GK and +o0 if x £ K) and gbk () denotes the subdifferential of % () in the
sense of convex analysis. Recall the gok(x) = Nk (x), x GK, the normal cone to
K at x. Such differential inclusions are called “differential variational inequalities”
(see Aubin-Cellina [1]) and play an important role in mathematical economics,
in the study of planning procedures (see Aubin-Cellina [1], chapter 5). Another
important class of systems covered by our work are the gradient systems.

Throughout this work by .Pfc)(Rn) we will denote the family of nonempty,
closed (convex) subsets of Rn. Let (fi, E) be a measurable space. A multifunction
F : Q —#Pf(Rn) is said to be measurable, if for all x G Rn, 1 —»d(x,F(u)) =
inf{|[x —z|| : z G F(w)} is measurable. A multifunction F : 2 —+2* \ {0} is
said to be graph measurable, if GrP = {(bi)x) £ OX R" : x GPW} G E x
B(Rn), with _B(Rn) being the Borel cr-field of Rn. For closed-valued multifunctions,
measurability implies graph measurability. The converse is true if E is complete
with respect to a given measure p(-). For more details we refer to Wagner [18]. By
ST we will denote the set of integrable selectors of F(-) i.e. S = {g GL1(Rn) :
g{u) GF(w) /i-a. e.}. This set may be empty. It is nonempty if and only if F(-) is
measurable and w —*inf{|z| : z GF(w)} GL\.

2. Existence theorem

For (*) let T = [0,6] be the time horizon, Rn the state space and R* the
control space. We will need the following hypotheses on the data of (*).

H(A): A :Rn—2“" is a maximal monotone operator.

H(/): / :T xR*x Rnisamaps. t.
(1) t B»f(t,x,u) is measurable,
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(2) (X,U) If(t,x,u) is continuous,
() V(<,x, u)| < a(t) + 6(<)(x| + |u]) a e with a( ), 6() GL\.

H(i7): U:T x Rnx —% is a multifunction s. t.
(1) U(-, ¢ is graph measurable,
(2) foreveryt ET, GiU(t,*) = {(x, u) ERn x Rk) :v E U(t, )} is closed,
(3) \U(t,x)\ = sup{jv| :vE U(t, x)} <M forall (i,x) ET x Rn.

H(L): L :I x Rn x Rk->R = RU {+o00} is an integrand s. t.
(1) (i,x,u)  L(t, x, u) is measurable,
(2 (x,u)  L(t,x,u)isls. c,
(3) 4>(t) —M{\x\ + |u]) < L(t,x,u) a. e. with p[-) ELL, M > 0.

As we already mentioned in the introduction, in order to get an existence
result we need a convexity hypothesis on an appropriate orientor field (recall “prop-
erty Q of Cesari [6]). So, we introduce the following hypothesis:

Hec: Q(t, x) = {(v, ) ERnXxR :v E Ax +f(t, x, n), n E U(t,x), L(t,x, n) < T}
is convex for all (i, xX) ET x Rn.

Also in order to avoid trivial situations, we will need the following admissi-
bility hypothesis:

Ha: There exists an admissible “state-control” pair (x,u)s. t. J(x,u) < +oo0.

Theorem 2.1. If hypotheses H(A), H(/), H(f/), H(L), Hc and Ha hold, then
(*) admits an optimal admissible pair.

Proof. Let M(t,x,v) —{u E U(t,x) :v E Ax + f(t,x,u)}. It is easy to
see that this set is for almost all t E [0,6] compact, may be empty in R*. Set
p(t,x,v) = uierl(f*[L(t,x,u) + f>|\/$[,x,u,l(u)] (recall that by convention 6j(-) = +00).

Hence, p(t,x, v) represents the minimum cost needed to produce velocity v at time
t ET, state x E Rn and using all admissible controls U(t,x).

Claim #1: (t,x, v) —<p(t, x, V) is measurable.

Given Ne R we need to show that A* = {(i,x, V) ETXR" x r" :p(t, X, V) <A} E
B(T) x B(Rn) x 5(Rn). To this end note that Aa = projTxR,xB,.{(i, x, v, n) E
TXRnXRnxBm wmL(t, x, ) < J1 n E M(i, x,v)}, where Bm = {UERI :|w]|< Af}.
Also GrM = {(<i,ti,v)ETXR"XR"Xx Bm W € Ax + /(<, x,u), n E U(t, a)} =
{(i,x,«,u) ET x Rn x Rn x Bm m(x,v —f(t,x,u)) E GrA, (t,x,u,v) E Gri/},
where U(t,x) = U(t,x) x Rn. Observe that (t,x,v,u) — (x,v —f(t,x,u)) is
measurable (hypothesis H(/) (1)) and Gr A is closed (since A is maximal monotone,
see Barbu [4]). So {(t,x,v,u) ET x Rn x R" x Bm m(x,v —f(t,x,u)) E GrA} E
B(T) x B(R") x B(Rn) x B(Bm m Also since t/(-, *) is graph measurable (hypothesis
H(i7) (1)), {/(=,*) is, too, and of course (t,x, v, u) —=(i, X, u, v) is measurable. Thus,
{(t,x,v,u) ETXRNXRNxBM : (u,ti) E U(t,x)} E B(T) x5(R")x5(Rn)xB(BM)-
Therefore, we deduce that Gr ME B(T) x B(Rn) x B(Rn) x B(Bm)- Using this
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fact, hypothesis H(L) and Novikov’s theorem (see Levin [10], lemma 2.2), we get
that Jin GB(T) x jB(Rn) x B(Rn), establishing claim #1.

Claim #2: (x,v) —*p(t,x,v) is L s. c..

To prove this claim, we need to show that for every AGR, the set K\ = {(x,v) G
R" x R" : p(t,x,v) < A}is closed. So, let {(x,,ti,)}n>i C K\ and assume that
(xn,vn) —»{x, ti) as n —»o0. Since A< 00, M(t,xn,v,,) & 0 and so by Weierstrass
theorem we can find u,, G M(t,xn,vn) n > 1s. t. p(t,xn,vn) = L(t,x,un). By
posing to asubsequence if necessary, we may assume that u,, —*u as n —%00. Then
using hypothesis H(E) (2), we have L(t,x,u) < limL(t, x,,, u,,) = limp(t.x,,,v,,) <
A So, to prove our claim, it suffices to show that u G M(t,x, v). Note that
for every n > 1v, G Axn+ f(t,xn,un) = (x,,,vn - f(t,x,,,un)) G GrA and
(xn,vn - f(t,xn,un)) -»(x,v - f(t,x,u)) as n —+o0 (hypothesis H(/) (2)). Since
Gryl is closed (x,v —f(t,x,u) G GrA ==v G Ax + f(t,x,u). Also because of
hypothesis H{7) (2), we have n G U(t,x). Hence, n G M(t,x, v) and so p(t,x,v) <
L(t, x,u) <A=>K\ is closed and the claim is proved.

Claim #3: p(t,x, ¢ is convex.

Note that epip(i, x, ¢ = Q{t, X). Then the claim follows from hypothesis Hc.

Let {S(t)}t£T be the semigroup of nonlinear contractions generated by A. Then
from theorem 2.1, p. 124 of Barbu [4], for any trajectory x( ) G C(T, R"), we have

[2(<)-S(i)iro] < | 1/(s,2(s),u(s))] ds = x(OI < [5(1)x0]+ [JI(s,a:(s),u(s))liis <

N + ft @gs) + 6(s))(Ix(s) + ju(*®)|) ds < N +tf (a(s) + 6(s)|x(s)|) ds, where a(s) =
0 0

a(s) + b(s)M. Then invoking Gronwall’s inequality, we get |x(i)] < N\, Ni > 0.
Thus, for every admissible pair (x,u) we have \f(t,x,u) < a(l) + 6(f)(iVvi+ M)
(hypotheses H(/) (3) and H([/) (3)). So, corollary 2.3.1, p. 67 of Vrabie [17], tells
us that the set of admissible trajectories of (*) is relatively compact in C(T, Rn).
So, if {(xn,un)}n>i is a minimizing sequence for (*), by passing to a subsequence
if necessary, we may assume that xn —x in C(T, Rn) as n —»o00. Also from lemma
3.1 of Colombo-Fonda-Ornelas [7] and the Dunford-Pettis compactness criterion,
we have that x,, X in L1(Rn) as n -* oo. Then because of claims #1, #2, #3
and because of hypothesis H(L) (3), we can apply theorem 2.1 of Balder [3] and
get that

\] p(t, x(t), —(t)) dt < hm \]:p(t, xn(t), —xn(i)) dt

0 0
b

< hrn/ L{t, x,,(i), un(t)) dt = m > oo (hypotesis Ha),
0

=p(t, x(t), -x(t)) < 00 a. e..
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By modifying the function on a set of measure zero, we can say that p(t,x(t),
—x(t)) is finite for every t £ T, hence M(t,x(t),—x(t)) ¢ O for every t £T. Let
R(t) = {uG M(t, x(t), —x(i)) :p(t, x(t), -x(t)) = L(t, x(t), u)}. From Weierstrass
theorem R(t) ¢p O for all t 6 T. Also because of hypothesis H(L) (1), claim #1 and
the graph measurability of M(-, ¢ ¢) we have GrR £ B(T) x B(Rf). Applying the
Lusin-Yankov-Aumann selection theorem (see Levin [10] theorem 1 and Wagner
[18] theorem 5.8), we get u : T —Rr=* measurable set u(t) £ R(t) for all t 6 T.

Then p(t, x(t), -x(i)) = L(t, x(t), u(t)) a. e. :'>fb L(t, x(t), u(t)) dt < m. Butu(t) £
0

b
M (t,x(t), —x(t)) a. e.. So, (1, n) is admissible, thus J(x, u) = f L(t, x(t), u(t)) dt =
0

m. Hence, (x,u) is optimal.
Q.E.D.

3. Relaxed problem

Now, we remove hypothesis Hc. Then in order to be able to guarantee optimal
solution, we need to pass to a larger system, known as the “relaxed system”. This
is the following:

b
Mx, A=/ 1 L(t x(i), WA (du) dt = mr

< OBM O ;
s. t. —x(t) £ Ax(t) +B/ f(t,x(t),u)X(t) (du)
M

x(0) = x0, AQ) £ Ss(.,r ()

Here S(i,x) = {p £ M\(Bm) mn(U(t,x)) = 1}, with M\(Bm) being the
space of probability measures on the compact metric space Bm — {n £ R* :
lul < M}. Also 5s(.,*(.)) is the set of measurable selectors of E(-,x(-)). Thus, the
elements of Ss(.iX-)) are transition probabilities. Note that (*) embeds into (*)r by
sending the original control u(-) in 5U.)( ) the Dirac transition probability at u(-).
Finally, by M(Bjvf) we will denote the space of bounded regular Borel measures,
endowed with the weak (harrow) topology. From the Dinculeanu-Foias theorem we
get LY(T,C(Bm))* —L°° (T, M(Bm)) (see theorem 18, p. 268 of Warga [19]).

Theorem 3.1. If hypotheses H(A), H(/), H{7), H(L) and Ha hold, then
(*)r admits an optimal admissible pair.

Proof. Let {(xn,A,)}n>i be a minimizing sequence for problem (*)r. As
before, by passing to a subsequence if necessary, we may assume that xn —»x
in C(T,r”) and xn-"-+x in LI(T,r”). Also from Alaoglu’s theorem, we may
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assume that An Nin L°°(T, M(Bwm))m Then since L(-, ¢ ¢ is a normal integrand
(hypothesis H(L)), as in the proof of theorem 3.2 of [8], we have

b b
// L(t,x(t)u)X(t) (du) dt < lim // L(t, xn(t), WAn(Q (du) dt = mr.

0 BM OBM

Also for every h £ L1(T,C(Bm)) we have

(X,h) < IimIdE(tirn(t))(h(i))d< < \])\ima"ttXnW)(h(t))d

0 0]

where (e, ¢) denotes the duality brackets for the pair (L1(T, C(Bm)), L°°(T, M(Bm)))
and <7E(t|!,,(<))(*) the support functions of the set E(t,x,,(t)).

We claim that limE(<, xn(t)) C E(t,x(t)) for all t £ T. To fpis end let
H £ limE(i, x,,(f)). By definition we can find yl'k € E(t,xnk(t)) N> 1s. t.
Hnk — >/r in M\.(Bm ). Then from theorem 2 of Lucchetti-Salinetti-Wets [11], we
have lim/rn(i/(i,xn(<)) < n(U(t,x)) = n(U(t,x)) = 1= £ E(i,x(<)). Thus, the
claim follows and from it we get (see proposition 3.1 in [12])

lim<r£t m(Q)(fi(i)) < <«2(tr@)(h(®)  (X.h) < JD (X x®)(h(1)) dt.

0]

Since h 6 L1(T,C(Bm)) was arbitrary, from the last inequality we deduce
that A(-) € Sjj(.,<(m).

Note that because of hypothesis H (/) (2) and since A,  Ain L°°(T, M(Bm)),
) = Bfo(t,xn(t),u)Xn(t)(du) —»r](t) = B1;\/If(t,x(t)u)X(t)(du). Let A the

realization of A on L1(T, R"). We know that A is maximal monotone (see Barbu

[4]). So, GrA is semiclosed. Also note that (X55,—X,, —%) "+ (2, — —1) in
L1(T, Rn) x LL(T, R™). Hence, (x,,,—xn—i1n) £ GrA. Therefore, —x(t) € Ax(t) +
ff(t, x(t),u)X(t) (du), x(0) = xo = (x,X) is an admissible relaxed pair. So,

bm
Jr(x, A) = mri.e. (x,A) is optimal for (*)r.
Q.E.D.

4. A density result

In this section we compare the sets of trajectories of (*) and (*)r. Denote the
first by P(x0) and the latter by PT(x0). Our goal is to show that P (x0) is dense
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in Pr(xo) for the C(T, R")-topology. For this we will need the following stronger
hypotheses.

H(i:/ :T x Rnx R* —»Rk is a map s. t.
(1) t—»f(t, x, it) is measurable,
(2) K(t,x,u) - f(t,y,v)\ <F[ar- W+ Ju- ti]] a. e. with fc-) € L\,
(3) K(t,x,u) <a(t) +6(t)(x| + M) a-e. with a(-), &) E L\.

H(f)i: U :T x Rn —»Pfc(R*) is a multifunction s. t.

(1) t —»U(t,x) is measurable,

(2) h(U(t,x),U(t,y)) < r(i)|Jx —t| a e with r() € L+ and /i(-,-) being the
Hausdorff metric on P{c(Rk),

(3) \U(t, x)\< M.

Theorem 4.1. If hypotheses H(JT), H(/)i and H({7)i hold, then Pr(x0) =
P (xo0), the closure taken in C(T, Rn).

Proof. Let i : LLT, R”) —»C(T, Rn) be the map that each Ji(-) E LL(T, R")
assigns the unique solution of the evolution —x(t) E Ax(t) + h(t) a. e, x(0) =
xom\We know (see Vrabie [17], corollary 2.3.1, p. 67), that r]() is weakly-strongly
continuous. Let F(t,x) = f(t,x,U(t,x)). Clearly, is compact-valued in R".
Fixie R" and let un:T —*REs. t. U(t,x) = {un(i)}n>i- Such a sequence exists
because of H(t/)i (1) (see Wagner [18]). So, F(t,x) = {/(i,x,u,,(<))},,>i and for
every n > 1 t —f(t,x,un(t)) is mecisurable (hypotheses H(/) (1) and (2)). Thus,
again by Wagner [18] (theorem 4.2), we deduce that t — F(t,x) is measurable.
Now, fixier. Let x,yERn and z E F(t, x). We have z = f(t, x,v), v E U(t,x).
Let w E U(t)y) s. t. d(v,U(t,y)) = Ju—». Then we can write

d{z,F(t,y)) < \f(t,x,v) - f(t,y,w)l
< jb@®)(x —y| + Ju—H) a-e- (hypothesis H (/)i (2))
< k(t)(\x-y\ + h(U(t,x),U(t,y))) a e
< fe(Q(x —y| + r(01x —) a- e- (hypothesis H(i7)i (2))
< 1)\ - j/| a. e., where /(<) = k(t)(1+ [|r]|TO.

Using the Lusin-Yankov-Aumann selection theorem we can easily check that
every trajectory of the differential inclusion —x(t) E Ax(t) + F(t,x(t)) a. e. x(0) =
xo is an admissible trajectory of (*) and, of course, vice versa.

Finally, from [14] we know that convF(t,x) = 1 J f(t,x,u)\(du) : A€

£(<,*)} and S A F(.1(0) = {B/m £(t,x(t),u)X(t)(du) : A() £ 52(E()}.

Next, let x(-) E Pr(x0). Then x = r)(g) with g E f(,() Lete> 0.
We can find U, a balanced convex weak neighbourhood of the origin in L1(T, Rn)
s. t. if j! ELI(T,R"), g- g\ Eli, then |x - < g where zx —r](gi). This
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is possible since T]() is weakly-strongly continuous. From proposition 4.1 of [13],
we know that we can choose gi E 5. *()m Through the Lusin-Yankov-Aumann

selction theorem, we can find g2 : T —»R” measurable s. t. d(gi(t), F(t, 2\ (t))) =

bI0-02(01.02(0 e Sh;*i(-)y Wehave \9i(0-52(01 < <
I()WX(L) - ZiI(Q| < I(t)e a. e.. So, if z2(t) = 7M52), we have \z2(t) - x(<)| < [z2(<) -

*1(01 + I%i(0 - *(01 < 6|Hi[s] - g(s)\ds + e < effl(s)ds + 1).
Suppose that we obtained € LXT, Rn) s. t. KfcH(t) —F(*)| <
fi(O(fcéljT (f4s)ds) , 9k+i(t) e F(t,Zk(t)) a. e. zk =r](gk) k= 1,2,..., n- 1
Then we can write

oo VO YOBCT (O] ¢

:VI/<['<<*)J:E07"£/'H u

0]

Hence, we have

*1 1/ ¢ \
ket -x (V< (A2 <0 I(s)ds)’ < eexp]|
»=1q H

Once again the Lusin-Yankov-Aumann selection theorem gives us gn+i £
SFt,™(?)) S L

[</n+i(0 - gn(t)I < h(F(t, zn(t)), F(t, zn-i(t))) < I(t)\zn(t) - zn_i(t)|

and so the induction is completed.

It is clear from this construction that gn—>g in L1(T,Rn), g E LLT, R").
Then zn = T)(gn) z - m and g(t) E limF(t, z,,(<)) = F(t,z(t)) = z(-) E
P(x0). In the limit as n -* 00 we have ||x —z|loo < eexp ||/|[i. Since e > 0 was
arbitrary and from the observation at the beginning of the proof, we conclude that
Pr(zo) Q P(xo), the closure in C(T, R"). But it is easy to check that Pr(xo) is
closed. So, Pr(x0) = P(xo0).

Q.E.D.
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Remark. There is a counter-example due to Pliss (see Aubin-Cellina [4]),
which illustrates that simple continuity of the orientor field x —=*F(t,x) = f(t,x,
U(t,x)) is not enough to give us the above density result.

5. Relation between original and relaxed problems

The aim in this Section is to prove that m = mr. We were able to prove
this only for open-loop systems (i.e. U(t,x) = 17(f), independent of x). It will be
very interesting to know whether it can be also proved by closed-loop (feedback)
systems.

We will need the following stronger hypothesis on the cost integrand L(t, x,u).

H(L)i: L :T x R" x R* —%R s an integrand s. t.
(1) f—eL(t, X, u) is measurable,
(2) (z,u) —»L(t,x,u) is continuous,
(3) \L(t,x,u)\ <ai(f) + 6i(f)(Jz| + |u]) a. e. with a” ), &i(-) 6 L\.

Also the hypothesis on the control constraints set has now the following sim-
pler form

H(C7)2: U WT —* pfc(R*) is a measurable multifunction s. t. |17(f)] < M for
allfeT.

Theorem 5.1. If hypotheses H(A), H (/)i, H(i/)i, H(L)i and Hahold, then
m —mt.

Proof. Let (X, A) be an optimal admissible pair for (*)r. From theorem 3.1 we
know that such a pair exists. Invoking corollary 3 of Balder [2], we can find ti,, 6 Sy

s. t. 6UWl -+ Ain /°°(T, where 6Lh denotes the Dirac transition probability
concentrated at un(-). Let x,, (3 ¢ c(t, Rn) be the unique original trajectory
generated by control «,(¢). Let Ln :T —L1YT, C(Bm)) be defined by Ln(f)( ) =
L(t, xn(f),9and L : T —L LT, C(Bm)) by L(f)() = L(t, x(f), ). Using hypothesis
H(L), it is easy to check that Ln L in L1(T, C(Bm))- Then, if as before by (e, ¢
we denote the duallty brackets for the pair (L1(T, C(Bm)) Le°(T,C(Bm))), we

have (L,,,6Un) = / L(t,xn(t),un(t))dt -* (LX) - f fL(t x(t),u)\(t) (du) dt =

oBM
mc m<mr. Smce we always have mr < m, we conclude m = mr.

Q.E.D.
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O6 onTUManbHOM YMpPaBAeHUN U pefnakcaunum KOHEYHOMEPHbIX CUCTEM
C MaKCMMa/ibHO MOHOTOHHbIM OMepaTopoM,
BO3JeNCTBYHOLWEM Ha (ha30Bble CKOPOCTU CUCTEM

H C. TANATEOPInNny

(At unHbI)

B ctaTtbe paccmaTpuBaeTCcsas Kpyr BOMPOCOB, CBA3aHHbIX C pelweHWem 3afjay ONTu-
ManbHOro ynpasneHusa ,D,VI(*)Q)epeHLI,I/IaI'IbeIMM BKNHOYEeHNAMM B NPOCTPAHCTBO KOHEUHOW
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pasmMepHOCTW. MHOro3HayHoCTb B YpaBHEHUN AUHAMUKWK yl'lpaB]'IﬂeMOVI CUCTeMbl Bbl3BaHa
MHOTFo3Ha4YHbIM MaKCMManbHO MOHOTOHHbIM (BOOﬁLLI,e rosops, HEOFpaHI/ILleHHbIM) onepa-
TOpOM, BOBﬂ,eVICTByK)LLI,MM Ha Cb’clBOBbIe CKOpPOCTW CUCTEMBbI.

Nikolaos S. Papageorgiou
National Technical University
Department of Mathematics
Zografou Campus
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ON FINITE DIMENSIONAL FILTERING IN DISCRETE TIME

M. Ferrante

(Trieste)

(Received June 12, 1990)

In this paper we prove that, under suitable regularity assumptions, a necessary con-
dition for the existence of a finite-dimensional filter in discrete time is the possibility of
finding a convenient decomposition of the filter system s(r,y) into a sum of a term de-
pending only on the first variable plus one depending only on the second one. We also give
additional results concerning the observation, prediction and filtering distributions.

Keywords: Nonlinear filtering, finite dimensional filters, exponential class of distri-
butions.

1. Introduction

Let (A,,.Y,,)nem be a discrete time stochastic process, where Xn £ X C Rp,
pE£N,and Yn £Y CRm, m £ N. The component Yn can only be observed, while
the component X n (signal or state process) is unobservable. We assume

A.l: (Xn) is a Markov process with transition kernel Pxn(* Ixn-i = x,,_i) and
initial distribution Px0()>

A.2. (Yn) satisfies the following “conditional independence property”:
PyN- A" 1=2z"-\ Y""1- y""1, Xn=xn)=Py/lel = xn)

where Xn_1  (Xi,... ,Xn_i) and, analogously, for xn~1, Yn_1, yn~1

We shall assume that all distributions have strictly positive densities with re-
spect to the same dominating measure which, to fix ideas, we shall take as Lebesgue
measure. We shall denote by p(zn|z,,_i), p(zo), p(yn|zn) the densities correspond-
ing to PXn(ml Xn_i = x,, i), Pmr,,(-)> Pvn(- Ix n = Zn), respectively.

We shall consider the filtering problem for (X,,,Yn)n6N, which in its most
complete form, consists in computing, for each step n, the conditional density
p(xniyn) of x,, given yn. By Bayes rule, we have the following relation

Akadémiai Kiadd, Budapest
Pergamon Press, Oxford
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;T P(YniXn)p(Xnlyl m
I p(yn\xn)p(xn\yn- 1)dxn" (1)
X
We shall call p(x,,]j/n) the filtering, p(x,,|i/n) the observation and p(x,,|lyn X)
the prediction density. Moreover,

Pixnlt/ 1 *) = \] p{yn\xn_i)p(xn-i\yn 1)dxn_; (2)
X

Definition 1.1 (e.g. Sawitzki (1981), Van Schuppen (1979)). Let {p(x;r), 26
Z CR1} k > 0, be a family of densities on A" parametrized by 2 6 Z. We say that
a sequence of measurable functions

ipn : ZxY —=Z
is a finite dimensional (k-dimensional) filter system for (X,,,Yn) ifVn> 1
{p(*n-i|3/n-1 =p(x,,_1;2) for some 2€ Z} ={p(a;.|pn) = p(xn\tm(z,y..))}. (3)

We say that {<Pn}n6\ is minimal if K is the minimum positive integer for which the
previous condition holds.

Remark 1.1. Notice that, if for all n the filtering densities belong to the
same family on X parametrized by z€ Z, then by (2) also the prediction densities
belong, for all n, to the same family of densities on X parametrized by 2£ Z. We
denote this latter family by

{p'(xX\z), 26 zcr=*}.

We give also the following

Definition 1.2 (e.g. Barndorff-Nielsen (1978)). We shall say that a family
{p(x\ 2), 26 Z C R1}of densities on A is of exponential class of order q if q is the
smallest positive integer such that there exist 3+ 1 pairs of functions (a,(x), b,(z)),
i=0,..., g such that for all z GZ we have the representation

q
p(x;2) = al(x)6o (r)exp|*0,(x)6,(2)|. 4)

»=
Remark 1.2. Notice that if {p(x;z), 2 6 Z C R;} is of exponential class
of order g, then the functions a,(x), 6,(2) of the previous representation are not

constant for every t G(1,..., Q).

It is possible to prove (e.g. Ferrante (1989) and Ferrante, Runggaldier (1990),
which extend to the multidimensional case results contained in Sawitzki (1981))
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that a necessary condition for the existence of a finite-dimensional filter system in
discrete time, is that, under suitable regularity assumptions, the filtering, observa-
tion and prediction densities are all of exponential class. The regularity assumptions
mentioned above can be summarized in the following two:

B.I Z and ¥ are connected sets with nonempty interior;

B.2 vh(-, ® is differentiable and, at every step n, there exist 20 € int(Z) and
20 Gint(y) such that

A0 W GY' open and dense in ¥

=K Vz E Z' open and dense in Z

y-Yo

where K = dim(Z). (For a generic subset X of a linear space we denote by

dim(X) the dimension of its affine hull.)

Remark 1.3. Ifdim(Z) = k > m = dim(y), the assumption B.2 is replaced by
a slightly stronger assumption (see Ferrante (1989)), since it does not make sense
in this case to ask that rank (f*ipn(z, y)) [y=yo = k, being the matrix of rank at
most m < k. .

More precisely, the above mentioned results lead to the following representa-
tion for the prediction, observation and filtering densities, respectively:

p(x-2) = a(x)b(rexp[fFa. 2.

1=1

ply;x) = C(X)d(Y)exp*{_’l‘7i(x)<$i(Y)j ©)

pCsv>(ty)) = *(xM<p(23)) e x p |* TIX)<7i("(z, )

where, letting Kk =dimZ, m —dimy,

T —J°.. ifm >k
Pu maqici/m} and V= i eNam > g ifm <

we have g\ <p,gi< K, @B <p.

Remark 1.4. Notice that if we assume that the filter system is minimal, then
we have 8 > K (otherwise we could choose (<1(y>z yv))...., agi(<p(z,y)) as filter
system and Kk would not be minimal). Moreover, if vm = K then we have that
B =k
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In the present paper we are interested in giving further characterizations of
the relations (5) based always only on the assumption that there exists a finite-
dimensional filter as well as on the assumptions B.l and B.2. In particular, we
shall prove that every ai(tp(z,y)) can be written as the sum of a function of y
plus a function of z (except for a constant) and that a;(X), 7;(X) are functions of
r(x) = (77(x),..., r3(x)) only. In this way we prove that every partially observable
stochastic process admitting a finite-dimensional filter, has a filter system consisting
of functions that can be decomposed in the way described above.

The interest of our results consists in having found a necessary condition on
the filter system itself, assuming just that there exists a finite-dimensional filter
in addition to some regularity assumption. Moreover, it is important to note that
the technical results obtained here are exactly what one can expect from this sort
of problem (similar results have been obtained for particular models in Sawitzki
(1979)).

It is interesting to note that the natural assumption, made in Bather (1965)
and Spizzichino (1988), namely that the filter system gn can be decomposed into a
sum of two terms, both depending on a single variable, is now, under suitable reg-
ularity assumptions, a necessary condition for the existence of a finite-dimensional
filter and thus the only one possible if one tries to find finite-dimensional filters in
discrete time.

To conclude notice that the most important example of a finite-dimensional
filter in discrete time, namely the Kalman-Bucy filter, valid for a linear Gaussian
model, satisfies all our assumptions.

2. Main results

We prove the following

Theorem 2.1. Let/ be a function from X x Z into R and suppose that there
exist a(x), ai(x),...,a?x) : X —#R and Bi(z),... ,Rqi(z) :Z —=*R, gi > 1, with
a(x) > 0 W such that

/(x,z) = a(x)exp|* a,(X)/?,(2) J- VXEX and V: EZ (6a)
i=i

with gi the minimum positive integer for which the previous property holds.

Let g be a function from X x Y into R and suppose that there exist c(x),
7i(z),---,7ia(*) : X -* Rand 6i(y),... 6R(Y) :Y — R, g2> 1, with ¢(x) > 0 Wx
such that

g(x,y) = ¢ (x)exrp_f‘ 7,(x)01(i/)} VXETand WEY (6b)
i=i
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with 92 the minimum positive integer for which the previous property holds.
If there exist functions t(x) and r,(x) from X into R i E (1,...,93) with
3 > 1, and functions r(z,y) and ¥;(z,y) fromZ x Y intoR, i E (1,...,93), for
which
%
f(x.2)g{x, y) = <(Z)r(z,y)expl_“ITj(X)(ﬂ(z,j/)l V(xy,z) EX xY xZ (7)
1=
with 93 the minimum positive integer for which that holds, then there exist an
invertible 93 x 93 matrix A, a B x 91 matrix B, a 93 x @ matrix C and a constant
vector P E R% such that

i) Vi(*>12),---,<rta(z,y)) = *~IB\Bi(z),...,R8qi{z))+
+A-1Ct(61(y),...,60M + A~1P

Moreover, for all x E X

i) (U1i%). eee.a4i(*)) = ‘(J- 159)°bl *), =, r@(2)) + A
*(71(*¥)i e+, 78/1X)) = *(>I~1C)t(i-i@), . .. ,r2(2)) + M

with [1 and M appropriate constant vectors.

Remark 2.1. Notice that the opposite implication of Theorem 2.1 is always
true, namely, if there exist two functions / and g satisfying (6a) and (6b) respec-
tively, and (Ti(z,y), Ti(x) for which i) and ii) hold, then by a convenient choice of
t(x) and r(z,y) equation (7) holds.

Remark 2.2. The requirement that 93 is the minimum positive integer for
which (7) holds implies that none of the functions Ti(x),... ,T7%B(x) is constant
(and so for 91 and 92).

Proof. Evaluating (7) for a fixed value x E X , we obtain

a(x)exp{ £ «< ®)A(r)}c(*)exp{ﬁTi—(*)<5.—bI} =
=l 1=

?3

= <(x)r(z,y)exp_|"|T 1(x)cr,(z,y)j.
i=

Let us now divide (7( by the previous relation and pass to the logarithm obtaining
aX)ec(x)<(x) 4«
10g a(i)c(i)f(x) # £ M *) = aNOMWIKR-E £ L (TiC) - 7<() 6i(y) =

} (8)
= "2 bl X)~ Ti(x))<n(z,y).

1—%
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Putting (0COO)
o alx)e(x)t(x
PO =100 2 00760<69
a(x) = (ai(x),..., ad (x)) and, analogously for B(z), j(x), 6(y), r(x), <r(zy),
relation (8) becomes

P(x) + (a(x) - a(x)./?(2)) + (7(x) - y(x).6(y)) = (r(x) - r(x).a(z)y)). (9

Let us now prove that there exist Xi,... ,XB € X \ {x} such that (€(xi) —
r(x),..., r(xi3) —r(x)) are linearly dependent for every possible choice of Xi,...,
x4, there exist an orthogonal matrix Q and a vector b € R3 such that

Q(t(x) —r(x)) + 6= f(x) with fi3(x) = 0 W GX.
But this leads to a contradiction: in fact we then have (recall that x £ X is fixed)

fO)r(z,y)exp{(r(x).(r(z,i)} =
= t(x)r(z,y)exp{(r(x) - r(x).a(z.y))}exp {(r(x), ¥z y))} =
= t)ri(z,y)exp {(r(x) - r(x),1QQ<r(z,y))} x
exp {(b,Q<r{z,y))}exp {(-6, Q<r(zy))} =
= t0)r2{z, y) exp {(Q(r(x) - t(x) +hb Qa(z, y))} =
=t(x)ra(z,y)exp {(r(x),Q(r(z.,y)} =
15-1
= <(x)r2(z,y)exp| ~(r,(x),Q<r(z,y). ]

*=1

where )
ri(z,y) = r(z,y) exp {(r(x),<r(z,y))}
r-i(z,y) = F'(r.y) exp {(-b,Qa(z, y))} .
But we required g3 to be the minimum positive integer for which two functions t(x)
and r(y,z) satisfying (7) exist.
Let, therefore, A = “(r (xi) ~ r (x)>eee, T(x4) —r(x)) be a g8 x g3 matrix with
linearly independent columns. Then det(A) ¢ 0and so A is invertible.
Defining now B = t(a(x1)-a(x),..., a(x?)- a(x)), C= “(7(xi)-7(x), ee*>
7(x«d) - 7(x)) and P = *("(xi), we. -P(xi3))- from (9) we have

P +BR(z) + Co6(y) =Aa(z, y) (10)

and so
€(z,y) = A~IBRBR(z) + A~ICs(y) + A~IP (11)

which gives i).



To obtain ii), replacing cr(z,y) in (9) by its expression (11), we have
P(x) + (a(x) - a(x),B(z)) + (J(x) - j(x), 6(y)) =
= (t(x)- r(X),A-'BR(z) + A~1Cs(y) + A~1P).
From (12) we immediately obtain that
(a(x) - a(x) - (A_1B)(r(x) - r(x),B(z))+
+(Y(X) - 7(x) - ‘(U1 1C)(r(x) - r(x)):«3(y)) + PBx) =0 Vxj/,z

where Ri(x) = P(x) —(r(x) —r(x), A~IP).

Recall that, by Remark 2.2, B(z) and 6(y) ¢ constant in every component
(that means that Ri(z) ¢ constant Vi and 8Xd constant Vi). We now show ii) again
by contradiction: let us suppose that there exists Xi € A such that

(13)

a(xi)- a(x) - *(J1.10)(T(x1) - r(x)) ¢ (0,..., 0).

Calling (Ri,..., Rqi) the previous vector and fixing in (13) and y £ ¥, we
have that

RiBi(z) + ... + Rqifqi(z) + E =0 with Ri ¢ O for some i € (1, * -9i)-
Then, for that i
Ri(z) = (14)
= --RIBI(z) —. —Ri-iRi-i(z)- —Ri+iRi+i(z)~...- J*-Rqifyl(z)-
and we obtain that
a

a(x)expl|ral(x)A(z)| =
i=i

/(x,2)

a(x)exp{"(oy(x) - *-A;0,()1/?; () lexpl-a,(x)"-E}.
S| 1 !

But this is a contradiction; in fact g\ was supposed to be the minimum positive
integer for which the previous representation would be possible.
So, we obtain that

a(x) = t(A~1B)r(x) + 4 with A = a(x) - AA_1R)r(x).
Analogously,

7(x) = *(A-1C)r(x) + if with if = j(x) - *(4_1C)r(x)
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and this concludes the proof.

Corottary 2.1. Let (Xn,Yn) be a discrete time, partially observable stochas-
tic process for which A.l and A.2 hold. If there exists a finite-dimensional filter
system for which B.l and B.2 are satisfied at every step n, then we have that,
calling ipn : Z x Y —=*Z the filter system, there exists an : Z —*Ri3 of class C1
such that

am(<Pn(z,y)) = MnR,,(z) + Nnen(y) + C,,, V(z,y) GZ xY

with Mn a 53 x gi matrix, Nn a o6 x ? matrix and Cn a vector in R;s.
Moreover, the function a(x) and y(x) in (5) depend both linearly on r(x).
Proof. Under our assumptions we have from Ferrante (1989) and Ferrante
Runggaldier (1989) that, at every step n, relations (5) hold, from which, by the
Bayes’ rule we obtain

t)r(ip(z,y)) exp{(r(2), e (z,y))} =
a(x) exp{(a(x)./?(r))}c(x) exp{(7(x), a(y))}

s(<fi(zy)) wf p(y.x)p(x;2) dx
With F{<p(zy)) = —rmmmmme- Bty .

Letting qi, g2, B in (5) represent their minimal possible values, Theorem 2.1
then implies

APz y)) = MB(z) +N6(y) +C, V(zy) EZ xY

with M a g3 x gi matrix, N a 33 x 92 matrix and C a vector in R?3. Moreover, we
can prove, in force of the last part of Theorem 2.1, that

a@) = MT(x) + A, -y() = 1Vr(x) +

and this concludes the proof.

Remark 2.3. Notice that Corollary 2.1 states that every discrete time, partial-
ly observable stochastic process that admits a finite-dimensional filter, also admits
a filter system consisting of functions that can be decomposed into the sum of two
functions, each depending only on a single variable.

Moreover, if the minimal filter system has dimension Kk and Kk mod m = 0,
then the filter system, decomposed as above, is still minimal.
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O KOHEYHOMEPHOIN (PUNbTPALUMN B UCKPETHOM BPEMEHMU

M. ®EPPAHTE
(TpuecT)

B cTaTbe A0Ka3blBaeTCs, YTO MNPU MOAXOAAUUX MPEAMNONOKEHUAX O PErynspHoOCTy
HEO6X0AMMbBIM YCNOBMWEM CYLECTBOBAHUSA KOHEUYHOMEPHOro (UNbLTPA B AWCKPETHOM Bpe-
MEHW ABNAETCH BO3MOXHOCTb HAXOX/AEHNSA YA06HOTO Pa3noXeHnsa cucTemMbl punbTpa s(z,y)
B CYMMY M3 ufeHa, 3aBUCALLEr0 TONbKO OT MEepBOM NMepeMeHHOR NAC YieHa, 3aBUCALLETO
TONbKO OT BTOPOi. [laloTca Takxe AOMNONHUTENbHblEe pe3ynbTaTbl ANs pacnpegeneHunii
Ha6nlo AeHUsA, NpeacKasaHna U GuUabTpayuu.
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We consider a linear differential system with decoupled control, the system being
asymptotically stable. The state is constrained to a proper subset of the state space, the
viability set, with non-empty interior. We determine a subset of the control space, the
set of viable controls, such that any control trajectory taking its course within this subset
generates viable state trajectory (sufficient viability conditions). Finally, we apply these
results to interval shaped viability sets and determine viable control sets of maximum
radius.

Keywords. Multivariable control system; viability theory; linear differential equa-
tions; matrix algebra; state-space methods.

1. Introduction

Motivation

In controlled systems it is a frequent occurrence, that the state trajectory
is restricted to a subset of the state space, the viability set [6], [1]. The known
results of viability theory refer to conditions under which the existence of viable
trajectories can be decided. In the analysis of linear controlled economic systems
[3], [B] the necessity emerged to go beyond existence and determine a subset of
control trajectories that generate viable state trajectories. The state constraints
defining the viability set were given usually in the form of inequalities (e.g. non-
negativity constraints, budget constraints) which implied nonlinearity ofthe system

1Abridged version of this paper was originally published in the Proceedings of the IFAC
Symposium on Dynamic Modelling and Control of National Economies, 27-29 June 1989, Edin-
burgh, UK, copyright IFAC 1990, published by Pergamon Press, Oxford. Valuable comments on
an earlier draft by V. Kertész, A. Lee and A. Simonovits are gratefully acknowledged.
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and prevented the use of standard (e.g. Laplace-transform) techniques. Although
the motivation came from economics, it is expected that the present viability results
prove to be applicable to physical or biological systems, too.

The problem setting

Consider the time-invariant linear inhomogeneous differential equation sys-

tem:

X(<) = AX(t) + U(t), O = (1)
where .. .

t € R+ := (0,00), (positive) time

X iR —»Rn, state vector

R+ —Rn control vector

A £ R"Xn, system matrix.

The time functions t —* x(t), t —u(t) will be called state trajectory and control
trajectory and denoted as x(-) and u( ), respectively. A trajectory pair «(*), x(-) is
called a solution if they jointly satisfy (1) for all t £ R+, and then we also say that
the control trajectory «(e) generates the state trajectory x(-).

Let us denote by

X = {X(t) :t € r+}
Vo= {u(f) :t £ rR+}

the range of a particular state (control) trajectory, these are subsets of the state
(control) space, respectively.

Viability concepts

Let X C Rn denote a given proper subset of the state space, the viability set.
A state trajectory is said to be viable if x(i) £ X, W, or more concisely: x C X. A
control trajectory u(-) is said to be viable if it generates a viable state trajectory.
Then we also say that the solution is viable.

We give sufficient but not necessary conditions for a solution to be viable.
More precisely, we determine U C Rn, a subset of the control space, called viable
control set, such that any control trajectory whose range is contained in it, is a
viable control trajectory, i.e. it generates viable state trajectory. We are not able
to determine all viable solutions, but we try to define a possibly large viable control
set.
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2. Notations and assumptions

Vector and matrix norms ([4] Chaps 6 and 7)

For any (real or complex) n-vector g E Cn and square matrix G E Cnx" let us
denote by g+ and G+, respectively, the non-negative vector and matrix consisting
of the absolute values (moduli) of the components or entries of g and G

i+:=[Ifll].  \ff=fo] 6 Cn
G+:= [IGdI], VG = [GA] E Cnxn. 0

Let us denote by ||"|| and ||G|| a vector norm and a matrix norm, respectively.
Throughout the paper the following properties will be assumed of these norms:
a) The vector norm is an absolute norm, i.e..

bl = |<#+|, VgECn. (@)
b) The matrix norm is induced by the vector norm:
IG]| :=max{||Gflr|| :\g\ = 1}. 5)
(5) implies ([4], Th. 6.3.1.)
[IGHfll < ||G|| s1bL, V}6C", VGe Cnx". (6)

For any diagonal matrix H := diag{xi, X2, mXn} (4) and (5) imply ([4], Th.
6.4.1.):

It = max [Xee @

The interval norm

A special norm which will be applied in Chap. 4 of the paper is the interval

norm or g-norm. Let g E R" be a positive vector and define for any g E Cn,
G E Cnxn:

(®)
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lGlI, ::max££éi|G 0. 9
* ]

It is easy to see that ||sr||g satisfies (4) and ||G||? satisfies (5). (Moreover, ||G||g is
an absolute matrix norm since ||G|| = ||G+||.) The interval norm is nothing else
than a scale-transformed DK norm.

The spectrum of the system matrix and the stability of the system

Let usdenote byAi,..A,, £ C the eigenvalues of Aithe set ofthe eigen-
values is called the spectrum of A and any diagonalmatrix J1 £C"x"formed
from the eigenvalues (in different successions) is called a spectral matrix of A:
N = diag{Aj,..., A,}. In connection with the spectrum of the system matrix the
following two parameters shall be needed in the sequel:

p:=max|Aj| (10)

the spectral radius of A, and

p:= miin(—Re Xj) (11)

the degree of stability of A (Rex —real part of x).
Assumption “A”: The system (1) is asymptotically stable i.e.

p >0. (12)

This stability assumption seems to be essential for the subsequent analysis, since
it guarantees that the state range is bounded whenever the control range is such.
([7], Chap. 7.)

The set of modal matrices and the simplicity of A

Let us denote the set of diagonal matrices by J1. Let us consider now the
(possibly empty) set of such non-singular matrices (the modal matrices of A) that
applied as similarity transformation on A result in a diagonal matrix

C:= {L GC"X" :L~IAL £ 7} . (13)

Assumption “B”: The system matrix A is simple (i.e. diagonalizable by a
similarity transformation)

cohr. (14)
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This simplicity assumption is rather technical. | guess that it can be dispensed
with on the account of more complicated formulae.
Under Assumption ”B” any modal matrix produces a spectral decom-
position of A:
A =LAL~\ (15)
where /1 is a spectral matrix of A.

The modal condition number

Besides the two parameters p and p characterizing A a third, perhaps less
known parameter, the modal condition number Kk, plays important role in the
sequel ([4], pp. 222, 232).

K= inf{IL| «[|Z_1] :Le £} (16)
Since ||L|| <||L-1]| > |ILL_1|| = WL, = 1, we have
k>1 @an

under Assumption "B”.

The numerical value of k depends also on the choice of the matrix norm. While
the parameters p and p are easy to calculate, it is hard to solve the minimum
problem (16) in this generality. But for the interval norm (9) and for system
matrices of distinct eigenvalues we have the following simple formula:

K= \WL+K-H\g, (18)

forany L £ C, and K = L~I. (This formula is adirect consequence of [2, p. 80,
Theorem 1. a].)

Assumptions on the viability set

Assumption “C”: The interior X° of the viability set is non-empty: X° & o.

Assumption “D”: The initial point zObelongs to the interior of A :1x06 X°.

It is to be noted that no closedness assumption is made on X at this point,
in contrast to the common practice in viability theory.

Clearance, nest, nestpoints

For any d 6 Rn, $> 0 let us denote by B(d,6) the open ball and by B(d,S)
the closed ball with center d and radius 6. (The shape of the ball depends on the
chosen vector norm.)

B(d,a):={y€R":||j/-d]||<&} (19)
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B(<f.6):={ileR" :[ly-d||<«}- (20)

If d £ X° we can take the supremum of such radii 6 that B(d, 6) is contained in X,
denote it by 0(d) and call it the clearance of d:

6(d) :=sup £&5:B(d, 6) C X) . (21)

If we additionally assume that the viability set is closed, then we also use the
following equivalent definition:

6>(d) =max{<5 : B(d,6) C X) . (22)
The clearance is thus the distance of d from the closest boundary point of X. The
larger is 0(d) the “more interior” isd to X.
The following subset V of X° will be called the nest
V = {de AD:«||zo-d]||< 0(d)}, (23)
i.e. dis a nestpoint (d £ V) ifits /cfold distance from the initial point xg does not

exceed its clearance. The nest is non-empty since X0 £ V.

3. Sufficient viability conditions

Two lemmas

Before wording the basic results of the present paper we establish two lemmas.
Lemma 1. Forany d £ R’

I*(f) - d\ < 0(d), Vi ==>x C B(d,0(d)) => x C X, (24)

and if X is closed, then
*(<) - d|| < 0(d), V i*iC B(d,0(d) =>£CX. (25)

Proof. The lemma follows immediately from definitions (2), (19), (20), (21)
and (22). [ |

This lemma bears the promise, that if we can construct control trajectories
such that the generated state trajectory satisfies the premissa for some d, then a
sufficient viability condition is established. As we will see soon the nest is just the
set of such points d.
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Lemma 2. Under Assumptions “A” and “B” the following estimations hold
true for all t E R+:

llexp(AD)| < kexp(-pt) (26)
J llexp [A(t - )] Idr < ~ [1- exp(—#i)] (27
0
J NAexp[A(t- n)]ldr<y [1- exp(-pt)]e (28)
0

Proof. It is well known that if A —LAL~I (15) then exp(A<) = L exp(At)L_1,
hence

llexp(A<)|| = [IXexp(A<)L-1]| < [IL|| «[lexp(A<)[| [IL_1]I. (29)
Since this inequality holds for all L E C, we get from definition (16) that
llexp(A<)I| < /cllexp(/1<). (30)
Applying (7) and (11)

llexp(A<)|| = miax lexp(A<)| = mjaxexp(Re Xjt) = exp(—y.t) (31)

results. Eg. (26) is the consequence of (30) and (31).
By a similar reasoning we establish that

[|Aexp(A<)|| < Kpexp(—j.t). (32)
Namely,

[|Aexp(A<)|| = WLAL I)[Lexp(At)L 4= ||[LAexp(At)L J|l < A
< «||N]| *lexp Aq| = Kpexp(-pt),

where ||A|| = p is the consequence of (7) and (10).

Now, we simply substitute (i —r) for t into (26) and (32) and integrate on
both sides of both inequalities from r = 0 to r = t whereupon (27) and (28) result,
respectively. [
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Theorem 1. Viable control trajectories. Letassumptions “A” to “D”
hold and let d € V be any nestpoint (23). Then «(¢) is a viable control trajectory
(i.e. it generates a viable state trajectory) if its range @ satisfies 1 C U\(d) or
U C U2(d), where

U\(d) :

B(—Ad, —0@)" (34)

ui(d) :

{u:-A~lu€r(d, ~f(d))}. (35)

If the viability set X is closed, then #(e,*) can be replaced by B(-, ¢) in (34) and
(35).

Interpretation of Theorem 1 The set U\(d) is constructed in the following
way. We select a nestpoint d in the state space and via premultiplication by (—A)
transfer it to the control space. Furthermore, we determine the clearance 9(d) of
d and multiply it by p/k. The former will be the center, the latter the radius of
a ball in the control space, this ball is Ui(d). For forming the set Ui(d) we also
take a nestpoint, and form a ball around it in the state space, whose radius is its
clearance reduced by the factor p/kp. This ball is then mapped into the control
space, the matrix of the mapping is (—A). In this way we obtain U*d) which need
not be a ball.

Proof of Theorem 1 Let us write system (1) in the following equivalent form:

—[9 " d\= Al - dl + [0+ Ad\, *(0+) = z0, (36)

then the explicit solution of this differential equation can be written as

« - d = D00 +Jt epac NI +taa o, @)
0

With the help of (6), the triangle inequality, and the integral inequality

I t
J f(r)dr <1 I(r)dr, (38)

(where t € R+ and / : R+ —R") from (37) we get:

10 - IHI < llexp(A<)|| «|far0- d|| + J llexp [A(f- D] *[ju(r) + Ad\dr. (39)
0
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From assumption d GV (23) yields:

I*o-d|[< ;8(d), (40)
while conditions i1 C U\(d), i C~(d) can be expressed as
[lu(r) + Ad|| < 78(d), Vr (41)
and
IA_Lu(r) +d < W&(d), VI, (42)

respectively.
Considering first the case U C U\(d), we apply (40), (41), (26) and (27) to
inequality (39):

la:(<) —dll < - 9(d) weexp(-pf) + --9(d) " [1—exp(—nt)] = 9(d).  (43)

(43) and (24) gives x C X, i.e. viability. If X is closed and we relax B to B in
(34) then inequalities (41) and (43) become non-strict and the application of (25)
instead of (24) leads to the same result.

The other case: i C bib(A) proves the same way except that the last term of
(37) has to be written in the form

\IAexp i< —)] e [A~1u(t) + d]dr
0

and the reference to (27) and (41) must be changed to (28) and (42), respectively,
in the proof. [

The problem of the best nestpoint

As seen from Theorem 1, the larger is 9(d) the larger will be both U\(d) and
Ut(d). Thus, in order to enlarge the available set of viable controls we may want to
find the best nestpoint, i.e. the one with the largest clearance. Hence, the following
optimization problem is to be solved:

'Find d* GV and 9 := 9(d*) such that
9* = max{0(d) :d € V}”. (44)
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This problem, of course, can not be solved without the specification of the viability
set.

Having finished the discussion of Theorem 1 we have to emphasize that all the
parameters which occur in it are calculable relatively simply. One exception is the
clearance 9(d) whose value depends on the unspecified shape of the viability set.
Furthermore, we still have a freedom in the choice of the norm. By an appropriate
choice which takes the shape of X into account we can highly improve upon the
“roughness” of our estimations, which is caused just by the estimation in norm. In
the sequel we deal with a specification of the viability set, where not only 9(d) will
be easily calculable, but a best nestpoint, an explicit solution of problem (44) will
also be found.

4. Interval shaped viability sets

Interval

We discuss the case when the viability set is a closed interval (parallelepiped).
Let 6 be any point in Rn :b£ Rn, and p a non-negative vector in Rn :p > 0.
We define the closed interval (with center b and half-diagonal p) as

1(6,p) ;- {yGR"mb-p<y<b +p}. (45)

The viability set

Assumption “E”: The viability set is an interval:

X —I(c, q), (46)

where q > 0.

g > 0 implies that Z(c, g) has a non-empty interior, hence Assumption “E”
implies Assumption “C”.

In the sequel we will use the interval vector-norm || W|9 as defined in (8) where
g will be the same positive n-vector that appears in the definition (46) of X. The
following lemma clarifies the connection between intervals and the closed balls in
interval norm.

Lemma 3. In the interval norm || «||? the closed balls of center y and radius
6 are intervals with center y and half-diagonal Sg;

B(y,S) = 1(y,60). (47)
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Proof. By the virtue of definitions (20), (8) and (45) we have:

ZEB(Y,5 <>|z- t||?<6 <=

mgx 5 —<p<=\z —tfil< qu, Vi <=> (48)

<>y -6q<z<y +6q<=>z£I(y,60Q).

A
Substituting y = ¢, 6 = linto (47) from (46) we get
X = B(c, 1) (49)
i.e. the viability set is represented as a unit ball with center cin the g-norm.
The calculation of the clearance
Lemma 4. The clearance of a point y £ I(c,q) is
B{y) = 1- llc—yllg. (50)

Proof. By the virtue of (22), (47), (45) and (8) we have

B(y, 6) ¢ X <=>1(y, &) ¢ I(c, g
y-6q>c- ql
yteég<c+q
4=>-(1- %; > (- thl, Vi<=>1—5> |c—\g< 6 <1—]c —y|9.

Hence, we get (50) for 9(y) = maxo.
The calculation of the maximum clearance of nestpomts

For sake of brevity let us introduce the following notation for the initial clear-
ance

B0 :=B(x0) = 1- ||c- 10||}, (51)
which can be calculated from the given data of X and xq.
We now turn to the solution of the problem of the best nestpoint (44) for the

case of interval shaped viability set.

3



278 MARTOS: VIABLE CONTROL TRAJECTORIES IN LINEAR SYSTEMS

Lemma 5. For the viability set X = I{c,q) the maximum clearance of a
nestpoint is

B =minjl.-"j-j (52)

which is taken at a best nestpoint

A + «-o0!-1 53)

Interpretation of Lemma 5. Two cases are to be distinguished,
a) If

00> 1--~ (54)

K
then 9 = 1from (52) and d* = ¢ from (53). Thus, in this case the center of the
viability set is the (unique) best nestpoint. This case occurs if |[c —xo| < 1/«,
i.e. if the initial point is close enough to the center of X .

b) If, on the contrary, 6o < 1—I//c, then

r = A ™d = (55)

In this case an optimal nestpoint occurs in the interior of the line segment connect-
ing the initial point xo with the center c. d* of (55) will usually not be an unique
best nestpoint since the interval norm is not strictly monotonic in the modulus of
the components.

Proof of Lemma 5. Let us first assume c£D, i.e. (23)

Icjc- x0]|, <9(c) = 1. (56)
In this case we have for all d EV from (50):
9(d) = 1—lc —dH, < 1= 9(c). (57)

Hence, dm= cis an optimal nestpoint and 9 = 1 its clearance. Uniqueness follows
from the fact that equality in (57) occurs only at d —c. On the other hand, (56)
can also be written in the alternative forms |jc —x0||, < I//c or 1 < k9¢/{k —1),
and hence, (52)-(53) yield the same result.

Consider now the other case ¢ ~ V, which implies that 1> k9g/{k—1) holds.
The following triangle inequality

|[c-d{|?+ [|d-xol], > [[c-*o]], (58)
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can be written in the following form in view of notations (50) and (51)

||[d-*o]||f > e(d)-0o. (59)
On the other hand, d EV implies (23)

|[d -x0ff, < ~9(d) (60)
which with (59) gives 9(d) —9qg < 9(d)/k or rearranged:
6(d) < —K-—£90 (61)

foralld 6 V. (N.B. K > 1, since for Kk = 1:c EV holds.) Subtituting from (55)
y = d* into (50) we see that the r.h.s. upper bound of 9(d) is assumed at this point
d’. Furthermore, d = d* satisfies (60), hence d* of (55) is an optimal nestpoint
with clearance 8* = k90/(k —1) as the lemma tells us. |

Combining Lemma 3 and Lemma 5 with Theorem 1 we get the following
viability conditions for X —J(c,q).

Theorem 2. Viable control trajectories for interval shaped vi-
ability SETS. Under assumptions “A”, “B”, “D” and “E” u( ) is a viable control
trajectory if its range satisfies 1 C U{ or i1 C LL,, where

" | —Ac,Rq , if 99> 1—\/k
= i\ (62)
X(—Ad*, -—--—-- otherwise,
if 99> 1—1/k
e lu :—A  Ex[d* _ /A otherwise )
' plk-
and
o= — OHI) ° (64)

d -*et(«- 1)(1-»0< 1n)- (65)

Concluding remarks

Extensions to coupled controls, control space constraints, polyhedral or com-
pact-convex viability sets, and, finally, to viable feedback rules will be dealt with
in subsequent papers.
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SUBOPTIMAL CONTROL ALGORITHM
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An approach for the realization of a suboptimal control for linear discrete-time sys-
tems is proposed, when a control interval is divided into two sub-intervals. For the first
sub-interval the vector of feedback coefficients with regard to state is assumed as constant,
and then for the other one the exact optimal control law is used. The moment of switching
the control modes is determined on the basis of acceptable deviations of the control system
quality index from the optimal control. Finally, a simple example is used to demonstrate
some features of the present approach for controller design.

1. Introduction

The problem of controller design for linear systems has been considered by
a large numbers of researchers in the past thirty years. The analytical controller
design problem was considered primarily by Letov (1960) for continuous time-in-
variant systems and solved simultaneously for nonstationary systems by Kalman
(1960).

Today there exist a large number of analytical controller design procedures.
For example, Repin-Tretyakov’s method (Repin and Tretyakov, 1963), Newton-
Raphson’s method (Wonham, 1979), the method of diagonalization (Kwakernaak
and Sivan, 1972) and some other authors (Yosida and Lopara, 1989) found a very
wide range of applications in different fields.

The Repin-Tretyakov’s method supposes the matrix Riccati equation solu-
tion, then required matrix P > 0 can be found as — m(;lo P{t). The New-

ton-Raphson’s method or quasi-linearization method represents an iterational pro-
cedure for matrix P > 0 computation. At each step of this procedure the Lya-
punov’ equation is solved and then P can be found as = Alggo Px,\ —1,2,....

Krasovsky (1967) introduced the following generalized work functional

Akadémiai Kiad6, Budapest
Pergamon Press, Oxford
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n
where V = £2 pijXiij is the chosen Lyapunov function, x is the state vector, &jt-are

the elements of control matrix B of the state space model, v denote controls, dfj
are elements of non-negative definite matrix Q, which satisfies the observability
condition of the system, and Pii are elements of P. The controls are calculated
from expression

This approach is known as Lyapunov’s functions based controller synthesis or an-
alytical controller design using generalized work functional.

Several iterational controller design procedures were proposed by Aleksandrov
(1986). They are shown to be applicable to continuous and discrete-time SISO and
MIMO systems. A number of computationally efficient controller design procedures
for discrete-time systems are presented by Iserman (1981). Most of them are ready
for real-time applications using microprocessor hardware.

Our goal is to develop a computationally efficient suboptimal control algo-
rithm, preserving the required control quality. When developing controllers for
constant parameter systems, in many cases a variation of the feedback coefficients
only over some insignificant part of the control interval in vicinity of the final mo-
ment of time is taken into consideration. Such a choice of the coefficients may be
regarded as expedient from the point of view of practical applications, because for
many control systems the feedback coefficient can be considered practically con-
stant over the entire interval and the realization of the variable coefficient is rather
complicated.

It is known that the optimal feedback coefficient is constant over the entire
interval if the weighing matrix of final state coincides with a steady-state solution
of Riccati equation (Andreyev, 1976). However, for large deviations of the above
values, the realization of the constant coefficient may lead to a considerable change
of the system state vector in comparison with the optimal law. Therefore, it is nec-
essary to study the degree of these variations, when changing the optimal control
law into a stationary one, since allowances for the control system quality charac-
teristics determining the possibility of achieving the control objective can be found
in advance.

We present an analytical solution of Riccati equations as an explicit function
of system parameters and find the controller transition matrix. Then these solutions
are used to obtain an expression for the relative variation of the quality index due
to suboptimal control over the part of the whole control interval. The expression for
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the relative variation of the quality index can be used for determining the minimum
length of the controls sequence based on varying optimal feedback gains.

2. Problem formulation

Consider a linear discrete-time system with constant parameters
Xk+1 = Xk +BUK, k=1,2,..., Ki —1, @)

where Xk is the state vector, Wk is the controls vector, hand B are the transient
matrices of discrete states and control, respectively.

Problem solution for constructing of an optimal linear controller for the qual-
ity index of the following form

Ky-1
J= SXKI + £ {XT+1QXi+1 + UfRUi}, )
i=0

is determined by the relationship (Kwakernaak and Sivan, 1972)
Wk = - L kXK, )

where Lk = [A+ BT(Q + Pk+i)B]~IBT(Q + Px+\)dh, and Pk is a solution of the
discrete Riccati equation

Pk = 4T(Q + Pk#)(<t>- BLK)

with the final condition Pr-, = S.

We consider here the stationary controller problem solution for system (1),
defined over a semi-infinite interval. In this case the control that minimizes the
criterion

Ji = £{*<+iG*i+i + UIRUI}, (4)
&0
has the form
(k = - L 00Xk, )

where LTO= [A+ BT(Q + P00)B]~1BT(Q + Poo)¢ and is the solution of the
Riccati algebraic equation Poo = @T{A + Poo)(® - PL00).

The problem has been set here to study an effect of the substitution of the
optimal control law (3) for system (1) by a suboptimal one on the control system
properties. Thus, we can formulate our problem as follows:

a) to study analytically the variations of values of the quality index (2) and the
state vector X at the final moment of the control interval K\ due to the
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non-optimality of control signals over the entire control interval, i.e. when the
control is performed with constant gain L ;

b) to accomplish a suboptimal controller synthesis accounting for an application
of the stationary control law (5) with subsequent switching to the optimal
law (3) in the vicinity of the final moment of the control interval so that to
minimize the state vector deviation from the optimal value;

c) as a result of the suboptimal controller application to reduce the comput-
er time necessary for the control actions computation in comparison to the
optimal controller.

3. Characteristics of the suboptimal controller

Let us define state variation Ag-,, if the control G% is determined according
to the suboptimal law (5) over the entire interval. As shown in the Appendix the
transient matrices of the optimal closed control system rpkl0 and the stationary
one are connected by the relationship

mKI,0= (S~ Poo)-LiT(-KI\P 0- PTO, (6)

where ft = - BR-IBT(j)-\P0 - Q).
Multiplying both parts of formula (6) on the left-hand side by the matrix
QKI(Po - Poo)_1ftT(Jfl)(5 - Poo)

we obtain
ftK I(~0-Poor 1ftT(JfI)(5-P oo )~ 1, = fiiCl. (7

It is shown in the Appendix that

(Pt-Pool 1= ft*-KI(5 - Poo)ftT(k- XI) + feHifc, 1<1)QT~ ®)
K,
where E(fc,Ali) = £ B{R + PTPOOP)-1Pr ftT(-i), k = 0,1,..., Kx.
i=k+

Substituting expression (8), when k = 0, into equation (7) we obtain the
following relationship connecting the final state vectors X k1 for the optimal control
law and Ag-, for the stationary one

[7 + ft**S(0, T fO ftAiS - Poo)] Ag-, = A *,.

Using formulas (6) and (8) after some transformations we obtain the expres-
sion defining the final state deviation due to the unoptimality of the controls t/-
(*=0,1...A1—1)

Ajf, - A* = ftK* [ft-ifl(5-P00)-L7T(- if ) H-1(0,Ai) + 7]"1A0.  (9)
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Let us determine the value of the quality index under unoptimal control

KI-1
J = X$xSXKI + Y, {xJ+iQ*i+i + UjRUI). (10)

1=0

ki —1 (00] 49)
Since £ {*}=£{*}- £ {3} then
»=0

i=0 i—Ki
J =L SXKI + X%PocXo + X KI PocXKim

Taking into consideration that X ki = QKIXo, the quality index can be ob-
tained as follows

J = XKi + POOJ AO.

The deviation of the actual value of the quality index from its minimal value can
be found in the following way

J- J = XjMXo,

where M —QT(KI\S —Po0)QKI —(Po —Poc)-
Changing in the latter expression (Po - Poo) in accordance with formula (8)
and applying the lemma on the matrix inversion, we obtain

M = QT'KI\S - Poo)i)**[n_JCI(5 - Poo)"Ifi:r( A',)HO Af) + J]_1.  (11)

The relative variation of the quality index will be 6J = (J —J)/J.

4. Suboptimal controller

If the feedback coefficient is chosen to be constant over the whole interval,
then as it follows from the relationships (9)—€L1), the actual quality characteristics
may essentially differ from the optimal ones. Let us analyse characteristics of the
controller, the feedback coefficient of which is chosen to be constant up to some
moment of time k, when the quality index is less sensitive to the non-optimality
of the control law and then switching to the optimal control is performed. Let the
stationary control law be realized until the moment k —1 (0 < k < Ki) is reached.
Starting with the moment K the sequence of controls Ui (i = k, Ife+1,..., K\ —1) is
optimal. Determine the final state deviation XxI —X 1| due to the non-optimality
of the controls (7- (i = 0,1,..., kK—1).
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Using formula (9), we obtain
X  —Xkx='®K.KN [*~k(S —P0o0)~IQTE 1(0A)+7 X0,
or taking into account expressions (6) and (8) we have
XKI - X KI ={ - Poo)fiT(- i)H(0, k) + /1 X
x [M-* + E(k, Ki){ITW(S - Poo)] }*'XO.
The quality index for the controller under consideration has the form

Ki-I Ki-I
J = XKiSXKI + {UjRUI + XjQXi}+ RUI + ®Xi}-

«'=0 i=k

where Ui is the sequence of suboptimal controls defined by expression (5) and U is
the sequence of optimal controls defined by formula (3). The final expression can
be written as

J =Xj(Pk- Poo)** + X0 Px Xo.

The quality index deviation from its minimum value is equal to
J—J —XI(Pk- Poo)Xk+ XT(PO- P M .
Taking into account that Xk = £lkX o, we obtain
J- J = X%MXO0, (13)

where
M = UT"\P k - Poo)ul- (Po - Poo)-

Using formula (8) we get
M =[a-K'(s - Poo)-1iiT(_KI) + 3 (fc,a'i)]-1-
- [0~(5 - P«,)™-*0 + 3(0, if)]

Denote Z = —Poo)~10T(~KI" + E(k,Ki). Taking into consideration that
3(0, A'i) = 3(0,k) + E(k,Ki) and applying the lemma on matrix inversion to
expression (14), it can be written

M =[ZE~\0,k)Z + Z]-1 (15)
The relative variation of the quality index can be found as

XTM X0

6J = —
Xq[QU*O(S- + px -M 1x0'
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The obtained formulas (12), (13) and (15) define the final state and quality
index variation of the controller suboptimal over an interval due to the non-optimal-
ity of a sequence of controls t/- (i = 0,1,..., k—1) in the form of explicit functions
of the parameters of system (1), weighing matrices S, Q and R in index (2) and
steady-state solution of the Riccati equation P The given expressions can be
used for a non-recursive algebraic solution of the problem of determining the mini-
mum length K\ —k of the sequence of optimal controls [7- (i = K, k+ 1,..., K\ —1)
with varying coefficient L , which is to be realized for ensuring acceptable quality
of control based on the assigned in advance allowances for deviations of quality
characteristics from optimal.

5. Example

Let us consider a discrete form of the angular velocity stabilization problem
(Kwakernaak and Sivan, 1972). The system is described by the difference equation

fjfcH = e~aAUk + —(I - e~aAt) L,

where [< is the sampling period. The optimal control Lik minimizes the criterion

J - *i(k1+ ’_\_20 {*2+ PPi }'

If values of parameters are equaltoa —0.5s_1,« = 150 rad/s2, p— 1000, k \ = 20,
At —0.1's, wi —8.65, then the steady solution of Riccati equation is the following:
Poo = 3.257758. The transient matrix scalar in this case of the closed-loop control
system

_ e~aAt 2 (1 ~aA (1 ~Poo)e -aAt
§2(I—e-aAty 5 4 woay(l - e-*192(1 + Poo)

with the above parameter values equals ft = 0.8044.
In accordance with formula (9) the final state deviation £(20) from the optimal
value £(20) is given by

£(20)-£(20) = 0.004693£0.

Let us assume that the control quality is acceptable only in the case when the
final state deviation does not exceed 0.003 £0. In this case the stationary controller
can not be realized over the entire control interval. It is necessary to use the
controller suboptimal over an interval considered in Section 3. Now, determine the
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minimum number of the variable coefficient realizations. According to expression
(12) we obtain the deviation £(20) —£(20) = 0.002987£(0) with k = 11, and with
k — 12 the deviation is equal to £(20) —£(20) = 0.0030047£(0).

In such a way, the suboptimal controller allows for realization of the stationary
law of control Ui (i = 0,1,2,..., 10) and optimal one Ui (i = 11,12....... 19).

Similarly, a relative variation of the quality index due to the unoptimality
of control can be found. Using expressions (10) and (11) we obtain 6J = 0.506.
Suppose that the system quality is acceptable if the quality index deviation does
not exceed 10 % of its optimal value, i.e. it is necessary to satisfy the condition
8J < 0.1. From formulas (13) and (15) it follows that the required condition is
satisfied when k = 19, i.e. switching to optimal control is to be done only when
K = 19

6. Conclusion

The analytical relationships characterizing a decrease of quality indices of
a control system were obtained when the constant feedback coefficient over the
whole control interval is used. These relationships make it possible to select the
maximum interval, based on assigned allowances of quality characteristics, over
which it is acceptable to use the stationary law of control with subsequent switching
to the optimal one, when approaching the final moment of time. Such a suboptimal
controller allows to decrease substantially the required computing time, preserving
optimality of control at the end of the control interval.

Appendix

An explicit form of the Riccati equation

A solution of the discrete Riccati equation in the problems of optimal filtering and the
transient matrix of the optimal filter is obtained by Ortanidis (1982) in the form of explicit
functions of steady-state solution of Riccati equation. The approach suggested here is based on
constructing and solving an equation for the difference of Riccati equation solutions P* and its
steady-state solution value Poo*

To obtain the Riccati equation in control problems let us consider the difference of the
feedback coefficient L* and its steady-state value Loo

L* = Lk - Loo = [+ BT(Q + P*+1)6] BTIQ + Pk+\)do—

- [fi+ BT(Q + Poo)l] B T(Q + Poo)d.



KORBICZ, PODLADCHIKOV, BIDYUK: SUBOPTIMAL CONTROL ALGORITHM 289

After simple transfomations it is possible to get an expression for L” in the form of the
feedback coefficient of the system allowing an explicit solution of the Riccati equation of transient
matrix

Lk=(R+ BTPk+IB)-1B TPk+1n, (A.l)

where 1 = ¢ —BLX is the transient matrix of a closed control system in steady-state mode,
Pk = Pk -Poo-,R =R + B TPk_1B.

The difference of the Riccati equation solution and its steady state value will be written as
follows

pk —aT{Q *wPfc+l + Poo){4>—BLk —BL00) — {Q 4*Poo){®—BLgo) —
= OTPK+/IP - BLKk)- ¢pT(Q + Poc)BLk.

From relationship (A.l) and taking into consideration that ¢T(Q + Poo)B = L AR, after trans-
formations we obtain

Pk = nTPk+i(n - BLK).

Applying the lemma on matrix inversion, put down for P~ 1

P-1=n-1(p-'1+BR-1BT)-1, (A.2)
on solving of which we get

(Pk-P00)-1 =n (S -P00)-1nT(*-icr _ ML k,K1)AT(K\ (A.3)

i
where S(k,K\) = Q~'B[R+BT(Q + Po0)B]-1BTQT(-).
t=le+ |
Using equation (A.2) the transient matrix of a closed-loop can be written as

AKuk =(S- P00)~1InT(k~KI)(P - Poo). (A.4)
Relationships (A.3) and (A.4) define the Riccati equation solution and transient matrix in
the form of explicit functions of the steady-state solution of the Riccati equation.
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ANTopuTM Cy6ONTUManbHOro ynpaBieHUs AUCKPETHbIX CUCTEM

0. KOPBEMY, B H NOANAAYMNKOB, M. N. BUAKOK

(3eneHa-l'ypa, Kues)

PaccmaTpuBaeTcs npo6aema aHanUTUYECKOrO KOHCTPYMPOBaHMUA cy6OMTUManLHOro
NUHeHoro perynatopa. MpeanoxeH NoAxoj K aHalMTUUYECKOMY WCCNeAO0BaHUID W3MeHe-
HUA (YHKLUMOHaNa KayecTBa W BEKTOpa COCTOAHUSA NMHENHON ANCKPETHON cUCTeMbl Npu uc-
NoNb30BaHWM HEOMTUMAIbHOTO YNPaBAEHUS C NOCTOSHHbIM KO3(puLMeHTOM 06paTHO CBS-
3n. KoHcTpympyeTcs cy6onTMManbHbIl perynaTop, B KOTOPOM Ha MepBoM MOAUHTepBane
NCMNONb3YeTCs NOCTOSHHbLIA KO3IP(MULMEHT 06pPaTHOI CBA3M, a Ha BTOPOM — ONTUMabHbINA,
BbIUYMC/IAEMbI/ C MOMOLLbIO peLleHNs ypaBHeHUs Pukkatu. Mpeanaraetcs MeToAMKa BbIBO-
[la MOMEeHTa NepektYeHUs CUCTEMbl YN paB/iieHUs 0T Cy60NTUMaNbHOI0 Ha ONTUMaNbHbI
perynstop.
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A DECOUPLING POLE-PLACEMENT CONTROLLER
FOR A CLASS OF MULTIVARIABLE SYSTEMS

J. MIKLES, A. MESZAROS

(Bratislava)

(Received December 4, 1990)

The design problem of controller for discrete-time linear MIMO systems is discussed.
A pole-placement problem formulation and its solution is given. The resulting closed-loop
system will be stable and decoupled. The controller design requires no apriori information
either about stability or minimum phase of controlled plants. The designed controller
consists of a feedback part, a feedforward part and a new precompensator and is suitable
for control of systems with differing dead-times in each path.

1. Introduction

The deterministic tracking problem is one of the most significant ones in op-
timal control. The presented work is devoted to control algorithm design for multi-
variable discrete-time systems. The algorithm is based on explicit pole-placement
design which, in addition to its other advantages, results in a decoupled control sys-
tem. The autonomous state is achieved by using a suitably designed feedforward
compensator part.

Recently, several works have appeared being dedicated to multi-input, multi-
output (MIMO) control systems and taking into account also the decoupling effect.
Deterministic decoupling design problems are discussed e.g. in [1], [5], [6], [8], [10],
[12], [13] and [17] while the authors of [4], [7], [9] and [11] deal with decoupling
aspects for stochastic systems. In [1], a deterministic discrete-time linear minimum
phase system is considered and a regulator with decoupling influence to the overall
system is proposed. A decoupled control system can be designed as well on the
basis of state space approach as it has been shown in [5]. The decoupling effect can
be also guarenteed by a suitable design of the system precompensator as a result
of the left matrix denominator factorization of the controlled system [6]. The regu-
lator proposed in [8] results from the assumption that the left matrix denominator
of the controlled system transfer function is a diagonal polynomial matrix. The
authors of [10] suggest a feedback controller which yields a decoupled closed-loop

Akadémiai Kiad6, Budapest
Pergamon Press, Oxford
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system with higher order tracking. In [12] the decoupling is ensured by means of
the feedforward part of the controller which has a transfer matrix, such as it is in
[3], in the form of a simple polynomial matrix. To achieve a decoupled control sys-
tem [13], like [8], came out from the assumption that the left matrix denominator
of the controlled system description is a diagonal polynomial matrix. In [14] the
problem of decoupling a linear continuous system by dynamic compensation into
multi-input, multi-output subsystem is solved by the transfer matrix method. The
decoupling is ensured, similarly as in [12], by means of the feedforward part of the
controller. When comparing this with our results it is obvious that the regulator
proposed here covers both the decoupling effect and the tracking problem for dis-
crete systems (see Note 1). In [17] the closed-loop system is decoupled via internal
loop while tracking is ensured using external decoupling loops. In comparison with
[, [7], [12), [13] and [14] the regulator designed herein has a precompensator which
changes basically the solvability conditions of the decoupling tracking problem
(see Note 2).

The controller introduced in this paper consists of a feedback part, a feedfor-
ward part and a precompensator. The feedback part is carried out on the basis of
explicit pole-placement design (of course, implicit approach defined by a criterion
function can be used as well) as it has been shown in [Z and [18]. The precom-
pensator ensures usually integral action. The decoupling behaviour is created by
a suitable feedforward part. The introduced precompensator has significantly sim-
plified the solvability conditions of the problem [18]. Finally, a simple example is
given.

2. Formulation

The configuration illustrated in Fig. 1 is considered; S is the plant to be
controlled, Cb is the feedback part of the controller, Cp is the feedforward part of
it, and Pc is the precompensator.

Fig. 1. System configuration
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Consider a controllable and observable linear discrete-time invariant system
so that it is minimal, modelled by equation

Apdy =Bd-"n (1

where y is the r-vector output sequence and u is the r-vector input sequence. Jlb
and B1 are polynomial matrices in z~I, which is to be interpreted as the delay
operator. The Jlb is an r x r matrix with J1(0) invertible and the Bb is an
r x r matrix with bb(0) = 0- The J/lb and bb are of arbitrary relative degrees.
N~Bb is a matrix fraction representation of the transfer matrix and reflects
the input-output properties of the system. Jlb and S1 are relatively left prime.
The assumption B1(O) = 0 means that the present value of u can not affect the
present value of y. All time-delays of the controlled system are absorbed into the
B¢ - 1.

Further, consider a reference r-vector sequence w modelled by the equation
Kiz-*w =b ¢ -1) (2)

where K and L1 are r x r and r x 1 polynomial matrices in the delay operator z~1,
respectively. It is assumed that K(0) is invertible, K(z~1) = diag{&}. K and ¢
are relatively left prime, A*K and bb are relatively left prime.

For future purposes, let us define relatively right prime polynomial matrices
Ns and 5 r of dimensions r x r such that

N~1Bb = BrAAL ®3)

The controller is another dynamical system, so that it is minimal, of the form

Mot =-cL_y+Yp-D~* (4)
K(z~Du = (5)

where the pairs of matrices Z21, C1 and D1>M are relatively left prime polynomial
matrices in the delay operator r-1. £55, CI and M are r x r polynomial matrices,
with -pi (o) invertible.

Further, let us define relatively right prime polynomial matrices o » and c »
being, both, of dimension r x r, by

DZ1Ch = CKD4 1. (6)

Finally, let us introduce a stable polynomial matrix Mr = diag{m} of dimen-
sion (r x r).

Then, the decoupling tracking problem using pole-placement design can be
formulated as follows.
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Given a system (1) and a class of references (2), it is desired to find a linear
control law (4), (5) so as to make the sequence U and the tracking error e = w —y,
both being vectors of stable sequences, independently of L1- Simultaneously, the
decoupling of the overall system must be ensured in accordance with the equation

y =G(z-1)w (7

where G(z 1) is a diagonal matrix.

3. Solution

Theorem. The decoupling pole-placement tracking problem has a solution if
and only if A" and BL are relatively left prime. Then DL and C1 (or equivalently
Dr and Cr) are as a solution of the equation

DA"KAr+ Ci1Sr = Mr (8)
(or equivalently
A1KDr + BICr - Mr). 9
Ul is given in the form
M = adj Br diag | | diag{rj} (10)

where brj is the greatest common divisor of y-th column elements of the matrix
adj Br,j = 1,2,... 1, and rj is given by the equation

diag{fc} diag {s; } + Or VL = diag{m}. (11)
Proof. The proof will be divided into two parts. First, we shall construct the
controller, provided it exists, and then we shall establish the solvability.
Concerning the first part, we start by deriving ii and e
In accordance with equations (1), (2), (4), (5) the U sequence is given by
i=(A+A1ICIA-ITE£151)-1U1IMA-1LI . (12)

Using (3) and (6) and considering the assumption K = diag{£} we get

n=Ar(DIKAr+CIBr)-WILI. 13)
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Similarly, through elementary algebraic operations, it can be derived
e = (r- Br(DIKAr+ C15r)-1VL)A-1 1. (14)

If equation (8) holds true, it yields

U= NkM-V ILI (15)
e= (A-M-'BMK-"'L1 (16)
y= ACrVMiw. a7

The simultaneous satisfaction of equations (8) and (9) is a result of the general
Bezout identity. In equation (15), (i is a vector of stable sequences, independently
of L1- Since (11) holds true, e is a vector of stable sequences, independently of L1 -

The introduction of det BR/brj = br\j yields

Mry = BRadjBRdiagj j diag{r-j}w (18)
Mry = det BRdiag diag{r; yw (19)
Mry = diag {ftrijfj} w. (20)

From equation (20) it follows that the overall system is decoupled.
The second part of the proof is connected with the solvability of the problem.
The decoupling pole-placement tracking problem has a solution if the general
pole-placement tracking problem given by equations (8) and (9) and extended by
the equation

|<S+BRVL = Mr (21)

is solvable. The solutions of (21), M, and S have no constraints. The only condition
having to be fulfilled is that MT must be a stable matrix. The general pole-place-
ment tracking problem has a solution if and only if A*K and BR are relatively left
prime [18]. This completes the proof of the theorem.

Note 1 In [14] a regulator is proposed the feedforward part of which is
given by the right inverse of the left matrix numerator of the continuous controlled
system transfer matrix. The regulator given by egs. (8), (9), (10) solves besides
the decoupling problem also the discrete tracking problem for the class of reference
sequences given by (2). All the polynomial matrices of the regulator are solutions
of polynomial matrix Diophantine equations.

Note 2. In the case of a controller without a precompensator, i.e. when u = 1,
there exists an additional solvability condition in the tracking problem: that K
must be a right divisor of A1 [15], [16]. Using a precompensator of the form [5]
this additional condition disappears.
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4. Example

Let us consider a controlled system described by matrices

n_/1+2z-1 0.2z"1 0.1z"1
Al ' 0@3z-1 iTuU.ii / 0.1z-1 0.3z"1

Further, it is given

-1 v /1 +025z"1 0
1 2 Mr ~y 0 1+ 0.25z"1

After a short calculation procedure the following matrices can be determined

. 1—+02z1 -0.6- 1.14z-1\ BR = 0 01z"1
R~ 1 2+0.z"1 02+ 0..282"1 ]’ T 05r'l o0

The feedback part of the controller can be calculated from (8) which in this case
takes the form

di d2\ A-z-1 0 W-I +0”*z-1 -0.6- LMZ-
B dj v o 1—"1J ~ 2+ 0.1z"1 02+ 0.28z-

fd+cz~1 c3+c4z"1\ / 0  -01z"1\
+ D5+ c6z"1 7+ cgz~1J \0.5z-1 o )~
{1 +025z-1 0 \
—| 0 1+ 025z"1y

r\ and 2 result from (10) as follows

1+ 0.25z-1

1- z_1Dsi-0.1z-Vx
(- z-1)s2+05z-1r2= 1+ 0252"1
rj =-12.5, r2=25

0 25
ML= 125 o0

5. Conclusion

From the presented theory as well as the illustrated example, it follows that
a matrix Diophantine equation and r scalar Diophantine equations have to be
solved in order to obtain a regulator which insures a stable and decoupled overall
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system. By extending the right side of equation (1) by vector e(f), a nonzero initial
condition influence on the control system as well as both, deterministic or stochastic
disturbances can be treated. However, each of these cases needs a special analysis.
Furthermore, the designed algorithm can serve as a good basis for multivariable
self-tuning control.
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O pasHeceHUW MNOMKOCOB
O[lHOTO Kflacca MHOFOMEpPHbIX CUCTEM yMNpaB/ieHus

M. MUKNEW, A MECAPOL

(Bpatucnasa)

PaccmatpuBaeTcsa npo6nema KOHCTPYKLUWUU KOHTpOnnepa ANA AUCKPETHOW NUHeWHON
MIMO cucTemsbl. [laeTca popMynmpoBKa npobnembl pacnpefjeneHuns MNofOCOB U ee pelwe-
HWi. PesynbTupytowas cucrtema 3aMKHYTOR uenu 6yper ctabunbHa u pasopBaHa. Ans
KOHCTPYKLWN KOHTpO/NNepa He HYXHa anpuopHas MHpopmauus HW 06 YyCTOWUYMBOCTM, HK
0 MUHUManbHOW (hase ynpaBnsaemMol cuctembl. KOHCTPYMPOBAHHbIN KOHTpPOANep COCTOMT
M3 yacTm o6paTHOW CBA3M, M3 4acTW NPAMON CBA3M W M3 HOBOrO NpekoMneHcatopa, K
npurogeH AN ynpaBneHWs CUCTEMbl C pa3biMW MNOCTOAHHbBIMW BPEMEHW B KOHTypax.

J. Mikies and A. Mészaros
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A METHOD OF DESIGNING OF OBSERVABLE OUTPUT
ENSURING GIVEN ZEROS LOCATION

Ye. M. Smagina

( Tomsk)

(Received June 12, 1990)

This paper deals with the problem of choosing an observable (output) vector in
linear time-invariant system ensuring arbitrary zeros location. The conditions required for
the solution of this problem under natural conditions on the matrix of the output: rank-
fullness and system observability are given. The simple analytic method of the solution
which can easily be programmed for computer is presented.

1. Introduction

In some problems of estimation and filtering it is assumed that it is possible to
choose sensors in the systems forming the desirable vector of observations (output)
[1]. It is known that system zeros greatly influence the dynamic behaviour of any
control or estimation (filtering) system [2]. Zeros are invariant relative to both the
state and output feedback and they can be shifted only by proper choice of the
input or output system-matrix. Therefore, in filtering (estimate, control) systems
the problem of choosing the vector of an observation (output) ensuring arbitrary
zero location arises. For the first time conditions of the solution of this problem were
proposed by H. H. Rosenbrock [3]. But there the restrictions on the choice of the
output (observable) matrix were not taken into account, i.e. fullness-rank and the
observability of the system. This problem with such restrictions was considered
lately [4], where an iterative method of the solution was proposed. This paper
presents further developments of the results in [5] which enable us to formulate and
prove the sufficient conditions of the solution and propose a simple computation
method.

2. Statement of the problem

Consider a linear time-invariant system described by the differential equations

x = Ax + Eu, (1)

1 Akadémiai Kiadd, Budapest
Pergamon Press, Oxford
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Y= HX, ¥}

where x is an n-vector of system state, u is an r-vector of arbitrary input, y is an
r-vector of observable output, A, E, H are real constant matrices of appropriate
sizes.

The behaviour of any dynamic system depends both on its poles and zeros.
The zeros of system (1), (2) are defined as complex numbers s = s- satisfying the
following rank-inequality

. sil - A -E'
rank P(s)|a-j, = rank H 0 <n+r ©)

It is assumed that rank E = r and the pair (A, E) is completely controllable. Let
<(s) be a zero polynomial of the system (1), (2)*. It is obvious that <p(s) = det P(s).
We denote the desirable zero polynomial as

O o) (4)

where s; (i = 1,/t) are given distinct real or complex-conjugate numbers, p is the
number of zeros. As the maximum number of zeros in an n-order system with r
inputs and outputs is n —r, we put /i = n—. We consider the problem of defining
of such output matrix H ensuring the coincidence of the zero polinomial system (1),
(2) with polynomial (4) and at same the time satisfying the following conditions:

pair {A, H) is observable; (5a)
rank H —r; (5b)
rank(HE) —r. (5¢c)

The necessity of the conditions a) and b) is clear. Condition c) follows from
the proposed method of the zero assignment. This condition ensures that n-order
system with r inputs and r outputs have exactly n—r zeros [2].

Usually, this problem is considered for systems with the same number of
inputs and outputs since otherwise the system “almost always” has no zeros and
the problem of zero assignment does not arise.

3. The main result

First, we note that securing the condition (5a) depends on the location of the
desirable zeros on the complex plane and the controllability of the pair (A, E),

* Matrix transfer function of the system (1), (2) from y(s) to u(s) is given by H (sl —A)~1E.

MAGYAR
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Theorem. The problem of defining matrix H ensuring both setting of zero
polynomial for system (1), (2) and the simultaneous fulfilment of condition (5a),
has a solution if the pair of matrices (A, E) is controllable and any given set of
distinct zeros s- does not coincide with every set of eigenvalues of the matrix A.

This result is proved in [4]. It implies that a matrix H ensuring condition
(5a), always exists if the conditions of the Theorem are true.

Now, it is necessary to define the form of the matrix H, satisfying condi-
tions (5b), (5c). For this purpose we transform the system (1), (2) into canonical
Yokoyama, Kinnen [5] form. This transformation always exists if the pair (A, E) is
completely controllable. The nonsingular transformation matrix is denoted by N.
The canonical system output matrix C will be

C=HN-~I. 6)

Let us carry out the partition of the matrix N~1I into v blocks P, of dimension
nx/m

N-1= [P1)P2...,P,], @)
where 1 is the smallest integer (i/ < n) such that rank[P, 1P,... ,Av~IE] = n and
integer numbers { {\ < < ... <lv=r, /i + 2+ ... +/, = n) are characteristic
for the controllability of the pair (A,E):

li = rankfP, AE,... ,AU"—E] —ankfP~P,..., Av~i~1E], I,=r i=1,v-1I.
Let us carry out the partition of matrix C into ¥ blocks
C=[CLC2...,a], (8)
where
Ci =HPit i=1,i/. 9)

If det Cv b O then system zeros of (1), (2) are eigenvalues of the ((n —r) X
(n —)) matrix [6]:

0 [0J/] 0 0 11n
0 0 [0N] - 0 }h
(10)
0 0 0 « |0
Ql -Q2 -Q3 . —Qv-i m
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where

Qi —Cvci, 1=, (11a)
Qi = [0,IK-1C;1Cl, [/, !'<r, (lib)

7;t is the unity (mx if) matrix.

Assertion 1. Matrix C,, of dimension r x r is nonsingular if and only if
det(HE) o 0.

Proof. Using (7), (9) we define the matrix Cv

C.,=HP, (12

From canonical Yokoyama, Kinnen form [5] we can write

where G,, is an (r x r) nonsingular matrix. Defining the matrix E and using the
block partition N~1 (7) we get
E = PVGU

Multiplication of both sides of the last expression by H from the left, together with
(12) give the following rank equalities

rank(#i?) = rank(#P,,G,,) = rank(C,,G,,) = rankCV,

which prove the assertion.

Assertion 2. For any given polynomial tp*(s) of order n —r one can always
find an (/,,_! x (n - r)) submatrix Q —[-Qb -Q 2, +=s, —Qv-i] such that roots of
polynomials det(s/,,_r —Z) and v?*(s) coincide.

? = [-9b--92,eee -g,,_r]is a
the following equality holds

ms -1 O 0
0 s -1 0

det(s/,,_r —Z) = det
0 0 0 . -1

O 92 B e E£AXF-

S r+<Arrs"-r-i+ m+ Qje

That is, the vector row [—»i, — ...>-9n-r; always exists for which the
right-side of the last expression is a desirable polynomial.
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Consider the case /,,_i > 1 We set the first /,,_i —1 rows of the submatrix
Q in such a way that every row has only one unit element and the rest are zeros.
Unit elements are situated in such a way that the first n —r —1 rows of z form
a submatrix with one unit element in the every but the first column. The other
elements of this submatrix are zeros. The last row elements of the submatrix z are
uncertain. Denote these elements as —9i,—s2, **s, ~9n-r m One can easily verify
that gi can be defined so that the Assertion 2 is fulfilled. Indeed, this matrix z
can be transformed by permutation of the first row to the companion form z*.
Therefore, the following equalities are true

det(sln_r-z) = (-1)~det(s/,,_r- z*) =

-1 0 0 [ ]
0 S
-9i 92 93 s Aar—r-
" n-r-1I
S"-I'+ |n-_ro + eee+ Qi)

where a is the number of row permutations. It is obvious that elements qgi (i —
I,n —) can be fixed so that the roots of the polynomial det(s/n_r —z) coincide
with the roots of <pX(s), i.e.

det(sfn_r - z) —<p*(). (13)

The proof is complete.

So, by making use of Assertion 2 we can always find a submatrix Q ensuring
the validity of (13). With the help of Q we can define matrix C.

Case 1 /,,_! =r. From (11a) we get Ci = C,,Qi (i = 1,v —1) and it implies
the following structure of the matrix

C = Cu[QltqQ2, e+, Qv-i, Ir]=CV[-Q, Ir]. (14)

In (14) the (r x r) submatrix Cv is chosen according to the condition that rank Cv =
r. By Assertion 1 it implies condition (5c). Moreover, it is obvious that this matrix
C (14) has the full rank.

The matrix output H of the system (1), (2) will satisfy conditions (5a)-(5c)
and it is defined by (6) as

H=CN (15)

Case 2 i < r. From expression (lib) it follows that the upper blocks
Qi = [Ir-t,,_1,0]1C~1Ci of the submatrix C~1Ci are arbitrary. Combining (lib)
and the last equality

q: = Qi' - C~ICi
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we consider the matrix

Q = 8 = [-0Q\-Qi-Qt-1]

Since Q* = C,, 1[Ci,... ,CcV_i], then the matrix C has the form

c =cv[Q{,a;....... Jr]=c,[-g*,/r]. (i6)

Matrix H is defined by (15).
So, we come to the following summarizing algorithm for zero placement:

1 Calculation of the eigenvalues of matrix A,

2. Setting of the desirable zeros sT,s2 **¢,sn-r (sf ~ sj), which do not coincide
with the eigenvalues of matrix A,

3. Verification of the controllability of the pair (A,E). If pair (A,E) is not
controllable then the problem has no solution,

4. Definition of integers v, li, h, ..., K and matrices N, TV1,

5. From condition (13) finding the (/,,_i X (n —)) submatrix Q, if i < r that
forming matrix Q*,

6. From the condition rankC,, = r designing submatrix C,,,

7. Calculation of matrix C from (14) or (16) and matrix H from (15).

Remark. The problem of finding submatrix Q ensuring the fulfilment of con-
dition (13) coincides with that of a state feedback eigenvalue assignment (modal
control by state feedback) [6]. To satisfy condition (13) only one row of the subma-
trix is needed. Therefore, ifr > 1then Q has ((r—L) x (n—)) free elements. These
elements can be used to satisfy supplementary requirements to the system (as in
[7]). For example, the problems of minimization of a performance | = trHHT or
ensuring the structure restriction on the matrix H can be considered in a similar
way.

4. Numerical examples

Example 1 Consider system (1), (2) with n=4, r =2 and

o
T

(17)

Foo®
(SN RPN
cooo
cocoo
SCoof
P o

Let the desired zeros be si = —1, s2= —2, (V?*(s) = s2+ 3s + 2).
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Check the conditions of the theorem. One can verify that the pair (17) is
completely controllable and eigenvalues of matrix A do not coincide with ", sj.
Since the rankfT?, .4E] = 4 then for this system we get i/ =2, \ = /2= 2

We find the matrix of transformation N and N~1as

u0 0 -1 r m 0 1 1 0.
01 0 o0 0 1 0 0

10 ' N-l= 1 01
0o 1 0 1 0 -1 0 1.

Since in this case n — = 2, \' = I\ = r = 2, then the upper block in matrix Z
is absent. This matrix has following form

Z:Q:-Ql: -ql 92

.-93 -94
We set gj = 1, g2= 1and define a polynomial as

s+ 1 1
93 s+ 94

det(«7 —Q) = det s2+ s(l + ) —93 + A

By making comparison of the right-hand part of the last expression with the poly-
nomial <p*(s) we obtain the following equations: 1+ A = 3 —93+ % = 2. Hence
93 =0, %= 2 Thus, we get

-1

Q= o
Putting Cv = 12 and substituting these C,, and Q into (14) yields
1 0 17 110 1110
01 0201 NV 201
Matrix H can be found by (15)
S =

Substituting (18) into correlation (3) shows that zero polynomial coincides with
the desirable one.
Example 2. Consider the system in Example 1 with the matrix
_ 10 0O
ET = 0 00 1
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Let the desired zero polynomial be as follows y>*(s) = s2+ 3s + 2. One can easily
verify that for this system the conditions of the Theorem holds. But since the rank
[E,AE,A2E] = 4, thenv = 3, ly = =1, /3 = 2 The transformation matrix N
and N~I are as follows [6]

0 0 05 O- 0 0 1 O
01 0 O 0 1 00O
10 0 0 N'1‘2000
01 0 1 0 -1 0 1L

As in this case n —r —2, Iv-\ = /2= | < r = 2 and, therefore, the (2 x 2) matrix
Z has the form
Z= 0 , Where [-51,-92] = Q
-91 -92

Substituting 51 and g2 in (13) yields the equation

det(s/2—2Z) = det Q‘Z '192 = 52+ sg2+ 91= <P (s).
From here it follows that gi = 2, g2 = 3. Thus, we obtain Q = [-2,-3]. Put
Q —[1 1 and form the matrix

1
-2
Putting C,, = 2 and substituting Cu and Q*in (16) yields
17T o 11190 111 0o
01 2301 2301
Using (15) we find the matrix
_'1 1 05 0
H=CN="% 4 1 1

5. Conclusion

The problem of system zero placement in linear system using observable (out-
put) vectors is considered. Conditions for complete zero placement are given. A
computational algorithm for zero placement has been developed.



YE. M. SMAGINA: A METHOD OF DESIGNING OF OBSERVABLE OUTPUT 307

References

1. Arbel, A., Sensor placement in optimal filtering and smoothing problems, IEEE Trans. Autém.
Control, 1982, AC-27, I, pp. 94-98

2. Smagina, Ye. M., Zeros of multi-dimensional systems: Definitions, classification, applications.
Avtomatika i Telemekhanika, 1985, 12, pp. 5-33.

3. Rosenbrock, H. H.} State-space and multivariable theory. Wiley, 1970.

4. CmaruHa E. M., O6ecneyeHue 3afaHHblX Hyneih NUHENHOW MHOTFOMEPHON CUCTEMBbI.
B c6. ABTOMaTMyeckoe ynpaBneHue 06beKTaMuW C NepemMeHHbIMW XapakKTepucTukKamu.
Hosocubupck, 1986, c. 145—151.

5. Yokoyama, R., Kinnen, E., Phase-variable canonical form for linear multi-input, multi-output
systems, Intern. J. Control, 1973, 17, 6, pp. 1297-1312.

6. Smagina, Ye. M., Computing and specification of zeros in a linear multidimensional systems.
Avtomatika i Telemekhanika, 1987, 12, pp. 165—173.

7. CmarnHa E. M., CMHTe3 cuctem ONTUMaNbHOro MoOfalbHOro ynpasneHusa. W3sectua
BY3o0B. MpubopoctpoeHue, 1981, 7, c. 32-36.

MeTof NPOEKTMPOBaHMA HabNOLaeMOro BbiXoAa,
o6ecrneynBatoLLEero 3ajaHHble HyNmn

E. M. CMATUHA

(Tomck)

Jina cuctembl OLEHWBAHMA n/unu GunbTpaymm paccmaTpuBaeTcs npobnema Bbl6opa
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Fornonlinear multistage systems with geometric restrictions in statistically uncertain
situations there has been developed an estimation algorithm realized in real time. For this
purpose the basic calculations are being made on the basis of a priori and a posteriori
data separation before the results of the next measurement are obtained. The volume of
calculations performed in real time does not much exceed the Kalman filter.

1. Introduction

This paper is devoted to the problems of dynamics estimation of phase vector
of linear control multistage systems functioning in jerks, by the results of process
parameter measurement under additive disturbances influence [1, 2]. Actual for
the supplements [3, 4] are the problems when jerks and disturbance information are
almost unavailable and reduced to either determining their coordinate measurement
areas or the whole class of feasible distribution functions determining the deviation
realization if the latter are of statistical origin.

The above mentioned situations resulted in the filtration theory development
in a game-like organization [5-11]. In [6-8] minimax filtration determinative corre-
lations are given for systems containing deviations and disturbances of both feasible
and uncertain character at the same time. In this case, filtration algorithm is re-
duced to making information sets and their Tchebyshev centers, taken for phase
vector estimation. However, constructive procedures of making both information
sets and their Tchebyshev centers are not indicated for real time. Therefore, real-
ization of the algorithm in real time is possible only for symmetrical areas of jerks
and disturbance alterations of uncertain character.

In this paper a minimax filtration algorithm is given, when deviations and
disturbance alteration areas are either convex polygons or can be approximated by
them. Our paper develops the approach [6-9], [13-15] and adjoins [10] on convex
polygon use in the optimal systems theory.

Akadémiai Kiadé, Budapest
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2. Preliminary problem formulation

Let the process dynamics be described by a linear n-vector system

Xk+i —AkXk + BKUK + Ck’k, K —O0,1...... 2.1)

After each stage in the system the r-vector parameter yk measurement is
performed, where y*-parameter is connected with x*-vector by a linear correlation

Yk = GkXk + HkVK +1jk k= 1,2,— 2.2)

Here £i, rk are independent Gaussian sequences, at that

MAK-MT]K-0, Mik™i-Qkhi, Mriky'i = Rk”ki,

where M is the expectation, the prime (') denotes the transpose, Ski is the Kronecker
symbol, Qk and Rk are the assigned n x n and r x r positively defined covariations
matrices. The uk G Uk, \k G\jt determinative influences are not known a priori.
Let us assume that the (2.1) system starting point xo is a Gaussian vector
independent of  rjk with the known positively defined covariation matrice

M(x0—Mx0)(x0- MxQ)' = PO,

but with the a priori unknown average value Mxo G X g, the known convex compact
from Rn. The matrices Ak, Bk, Ck, Gk, Hk of corresponding measure and the
convex compacts Uk, VK are assumed to be known.

On the known realizations of observations yiv(") = {j/i...... ¥} it is necessary
for each TV> 1to find the estimate x*(-) = ¥N(y”(-)), being the Tchebyshev center
of the set [g]

Xn —{xn = M[xfi 1yiv-)> &v(0] :Zn £ Hn},

where M [+ | ¥nr(-), £/v(-)] is the operator of the conditional expectation taken under
fixed Cn()> XN — M [qgv lyw("),Gv(-)] is a solution of the known problem of the
optimal average quadratic linear filtration, Egr = {GvoO €U, j=0N-=-0
Vi GVjj=1TV. Mx0GAOQ}

3. Minimax filter determinative equation

The solution of the problem formulation includes the description of Xjv sets
change dynamics, determining the estimate ¥N of the vector xjy. For the sets Xk,
starting from the known X O there are [6, 8, 15] equations



SHIRYAEV: MINIMAX FILTERING IN REAL TIME OF MULTISTAGE SYSTEMS 311

Ad+i —Xk+l + Ak+Hyk+l;

Xk+i = AkXk + 144+ii > (3.1)
Wk+l = BkWK + Hk+i (-Vk+i).,

Here matrices Ak, Bk, Hk+i, A*+i are of the form Ak —FkAk, Bk —FkBk,
Hk = Ak+iHk, Fk = 1 - A*+iGfcti, At+i = Pk+iGk+iRkh, 7 is a single nx n
matrix, the matrix of covariations Pk satisfies the recurrent correlations of Riccati
type [6]

In (3.1) the set sum is understood in the sense of Minkovsky [10] and finding
it in real time (at the rate of obtaining the measurement results Yi+i) is difficult.

Note that the set Wk is completely identified by the a priori data. Operations
over the sets [6-9] are performed with the help of the basic functions. This poses
very strict requirements for the use of high speed computers realizing the algorithm
of minimax estimation in real-time systems and, therefore, restricts their utilization
except for some cases. Thus, for symmetrical sets X g, Uk, 14 equation for [6, 7]
estimation has the form

xit+i —Akxl + Bkul —Hk+Hv*k+1 + Ak+iyk+i, £—0,1,..., (3.2)

where uk, are the Tchebyshev centers of the sets Uk, 14+1i, respectively.

Let us consider the minimax algorithm development under the non-symmetri-
cal sets Xo, Uk, 14. Let Xk+1 be the center of the set X k+i, then, for the estimation
of Y&+l from (3.1), we directly get

XitHi - xItH + AiHj/jfcH, (3.3)

where xk+1 can be calculated before the measurement results are obtained. In this

case the estimation problem is reduced to developing the set Xk+\ and finding its
center x£+i- If, for the period of time [k,k + 1], these problems can not be solved
let us present the system (3.1) in the form of [6, 15]

Xk+\ = Xk+i + Lk+i, k=0,1,...;
Lk+i = AkLk + Ak+iyk+i, LO=0; > (3.4
Xk+i —AKXk+i + N4+1, Xo=Xg-

From (3.4) it follows that the set Ai+jis completely specified by the a priori data.
And we get the informational set Xk+i by displacing the set Xk+i on the vector
AfcH) which is specified above the measurement results. It is obvious that this
statement is also true for the Tchebyshev centers XxitH> @k+1 of the sets A4+i,
Xk+i, respectively

Xi+i —xifcH + LKk+i- (3.5)
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Formulation of the results:

Theorem 3.1. If system (2.1) is given, calculating equalities (2.2) and ex-
ecute supposition p. 310. Then follows the optimal estimation of the expression
correction (3.5), and for informational set, the true recurrent correlation (3.4).

The advantages of the presentation of the filter in the form of (3.4), (3.5)
lie in the fact that the sequences of the sets X, (i = 0,1...) and their centers x*
(i = 0,1...) do not depend on the signal realized and are completely identified
by the a priori data. Consequently, from (3.4), the sequences X-, x* (i = 0,1 ...)
can be determined before designing the filter, and thus, the volume of calculations
being performed in real time can be significantly reduced. The sequence of centers
is to be entered into the computer, by which the filter will be realized. Then the
realization of the filter functioning in real-time is reduced to the calculation of
AkLk, and before obtaining the results of the next calculation y*+1 we shall get
the estimate xfcH directly from (3.5).

Thus, to realize algorithms (3.1)—3.5), the function development of the sets
X* or Xfc and their centers must be found. The solution of these problems we shall
consider later.

4. Design of the sets Xj, and finding their Tchebyshev centers

To realize algorithms (3.1), (3.3), and functions (3.4), (3.6), the sets Xt+i
and Xk+i are  he developed as well as their Tchebyshev centers are to be found.
Consider only the development of the set Xt+i, since the development of X*+i is
similar. Let us present the sets Xo, Uk, V* (ft= 0,1...) in practical calculations
in the form of polyhedra or ellipsoids.

The set Xjt is a Minkovsky-type sum of the sets /1"X*, BkUK, Hk+iVk+i-
The ways of development of the set sum for convex polyhedra are given in [10, 15],
for the ellipsoid in [12]. If the polyhedra are defined by their apexes the problem is
reduced to designing a convex cover [10, 15, 16]. The number of the vertex points
of the polyhedron Xt+i grows enormously with the increase of k and the initial
polyhedron is to be approximated by the one with less apexes or by an ellipsoid.

The Tchebyshev center of the set X* under the known vertex points »x (I =
1,L), is the point x* for which it is true that

min max ||x/ - z\\2 = |px™ - x*||2, 4.2)
zeXk i=i,l
where (i = I,m) are the extreme vertex points. From (4.1) it follows that

the point x* is the center of the surrounded hypersphere of the minimal radius
= |p; —**|| going through the extreme vertex points. This property allows us
to develop a recurrent algorithm for finding x* and 8".
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5. Example

Let us consider the model (2.1), (2.2) employed in the navigational and radio-
locational information processing systems, where the matrices and the vectors are
of the form

110 0" W T ., _ 1 01
1 . Bk= . Gk= 0 e 0.1 0.11

Ck =Bk, Hk = 1, Qk = 9«10 2, Rk = 1, xx E R2; uk,yk,Yk,"k,lNk £ R1-

The set Xo (Fig. 1) is defined by its vertex points a*1) = [1,2]', x * —[1, ],
add) [-1,-1]'. The sets [/*, \{t are the segments of the form f/j, € [0.913; 0.913],
vk E [—1.075; 1.075]. To simplify the calculations of the matrices Ajt, Ak it was
assumed that all k are equal to

' 0.028 " 10007 0.7
0.0804 ' A4 A4=" 108 02

and Xk =0, Vk = 1
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The sets Xk (k = 0,3) and their centers X£ are given on Fig. 1L In this
example both the influence of the set AT on X3 and the difference between X2 and
X3 are not relatively large, although the number of the vertex points in the set Xj,
increases with k. The set Xk, according to (3.4), is obtained by shifting the sets Xk
on the vector Lk- In Table 1the centers ¥k of the sets Xk, one of the realizations of
measurement j/t, vectors Lk and their coordinate estimates xk = £k+ Lk (k = 0, 3)
are shown.

Table 1
K 0 1 2 3
xt 0 035 01 0,01
05 0,11 -0,05 0,015
YK - 2,38 0,23 0,52
Lk 0 2,209 0,501 0,433
0 0,191 -0,12 -0,022
« 0 2559 0,601 0,443
0,5 0,301 -0,17 -0,07

6. Conclusions

An algorithm of minimax estimation has been developed. Its peculiar feature
is that, on the basis of splitting the a priori and a posteriori data, the most labor
consuming, as far as calculations are concerned, operations of designing the sets
Xk, finding their Tchebyshev centers are performed by means of the a priori data
beforehand (in the process of designing the filter, before the results of the next
measurement are obtained). This enables us to realize the algorithm in real-time.
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MuHMMaKCHas GuUAbTpauns B peasbHOM BPEMEHM
MHOTOLIAroBbIX CUCTEM

B N WWNPAEB

(YenabuHck)

PaccmaTpuBaeTca MUHMMAaKCHasa 3ajaya OLeHMBaHUA cba3osoro COCTOAHMA ANA NK-

HeliHbIX MHOTOWAaroBblX cucTem Buaa (2.1), NOABEPXKEHHbIX BO3AEHCTBUIO KaK CAydaiHbIX,
TakK W HeompejeneHHbIX BO3MYyu eHW. Mpouecc HabnAeHUS COMPOBOXAAETCA MOMEXamu
KaK CnyyalHOro, Tak W HeonpeAeneHHOro xapaktepa. CnyuyaliHble BO3MYL|EHWUS U MOMEXU
ABNAOTCA HE3aBUCUMbIMU raycCOBCKMMMW MNOCNELO0BATENbHOCTAMMN C HYNEBbIM CPEAHUM U
M3BECTHLIMUM MaTpuiamMu KoBapuauuit. OTHOCUTENbHO BO3MYL EHUI HEONPEAENeHHOro Xa-
pakTepa M3BECTHbI TONbKO BbIMYK/Nble KOMMNAKTbl, KOTOPbIM OHU MpUHagNexar.

3a MUHUMAKCHY0 OLEHKY NMPUHUMAeTCs YebbllleBCKUI LEHTP MHPOPMALMOHHOTO MHO-

XecTBa, YAOBAETBOPSAO WM cooTHoweHUio (3.3). Ha ocHoBe pasfeNeHUs anpuopHbIX W
anocTepMOpPHbIX JaHHBbIX A4NA UHOOPMALMOHHBIX MHOXECTB MOJYy4YeHbl COOTHOWeHNs (3.1),
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(3.4). 3T0 No3BONAET MPOW3BECTW OCHOBHON 06bEM BbIYMCNEHWIA, CBA3aHHbLIA C NOCTPO-
eHneM WMH(HOPMALMOHHBIX MHOXECTB 3apaHee, A0 NOCTYNAeHUs pe3ynbTaTOB OYepefHOro
M3MepeHNs Kak B 3ajaye GuUAbTpauumM, Tak M B 3ajgave crnaxuBaHus. MonyyeHbl OLEHKN
ANns 4ebblWEBCKMX pajMycoB MHOXECTB, YTO NO3BONAET OLEHWTb W OWMUGKN OLEHWBAHUA
no anpuoOpHbLIM JaHHbIM.

PaccmoTpeHbl cnocobbl MOCTPOEHWA MHPOPMALMOHHOFO MHOXEeCTBa, KOTOpOe ABMSA-
eTcs CyMMOW No MWHKOBCKOMY COCTaBNSAIOLWMUX MHOXECTB B 3afjaye (GuabTpayuum u reo-
MeTPUYECKO# pasHOCTbI0O MHOXECTB B 3afjayde CrnaxuBaHnsa. Bbinyknble KOMMNakThl, onpe-
fensollne reoMmeTpuyeckue orpaHuMuYyeHus, npegnaraetcsd annpokCUMUPOBAaTb BblNYK/bl-
MU MHOTOTpaHHUMKaMu Mpu 3aflaHWUU MHOTOTPaHHUKOB YrNOBbIMW TOYKamMu. YebblleBCKUIA
LLeHTP MHOTOTrpaHHWKa SABNAETCA LEHTPOM OnucbiBatoLeid ero runepchepbl MUHUMAKCHO-
ro pagmyca. 3T0 CBOWCTBO NO3BONAET MOCTPOUTb anrOPUTM HaXOXAEHWS YebblLleBCKUX
LeHTpa U pajgumyca MHOTOTpaHHWKa.

Mpepanaraemblii NOAXOA NO3BONAET NOCTPOUTb MUHMMAKCHble anropuTMbl OLeHUBa-
HUA NS CUCTEM C TEOMETPUYECKUMMW OTPAaHWYEHUAMMN, peann3yemMble B peabHOM BPeMEHU.

B. N. Lunpses
UenabUHCKUIA NOANTEXHUYECKUA UHCTUTYT
CCCP, 454 080 UenabuHck, np. SleHnHa, 76
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By an appropriate modification of the viscosity solution concept, we introduce a
notion solution ofa PDE that is applicable, among others, to the Bellman equation and first
general classes of optimal control problems with the only restriction on a payoff functional
that the stopping time is bounded by a fixed number T. We consider this PDE on the
attainable set from Mo, a set of given initial conditions. We prove both existence and
uniqueness results for optimal control problems. The approach is illustrated with several
examples and comments.

1. Introduction

Consider an object whose dynamics are described by a system of differential
equations

= (tx) €[0,T] x R*, AteU(), x(t)=*. ()

The values of each piecewise continuous control A(-) are selected by an agent who
tries to make the cost

C = CX(~i0,X0,AM)] = a(Tx(T) + I h(t,x(t),\{t))dt @)
9

of transferring the object from a given initial state (<0,Z0) G fio to a given terminal
set ' C Rn+1 as small as possible; here x(t,to,xo, A()) stands for the value of the
unique trajectory X(-, t0,x0, A()) at time t > tO that results from the control A()
and the initial point Xo at to- The stopping time is the first moment t > to for
which x(t,t0,x0,A()) £ . We consider the optimal cost function

n(<0,%0) = inf{U[X(-,<0,x0, A())] : A() £ /) ?)

Akadémiai Kiad6, Budapest
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on A, the attainable set form Do, he., on the set
fi={(i,z): x =x(i,t0,*0, A(-), (to,x0) £ A0, to<i<r, AF) £/}, (4

with J1 standing for the space of all piecewise continuous controls A(). It follows
from this definition that @ is invariant under the flow generated by equation (1),
ie., A= {<x) :x = x(t, t,x, A(-), (f*) £ 4, A-) £ [1}. It has been known [6]
that u(t,x) : @ —* R satisfies the Bellman equation provided it is differentiable.
Since usually this is not the case, the natural question arises how to overtake this
difficulty. Several authors worked out around this problem in the 60’ and the 70’
[13, 16, 17, 18, 24, 29].

From the general theory of PDE point of view, this problem was practically
solved by M. G. Crandall and P. L. Lions who did a pioneering work (see, for
example, [8-11, 25-28]) by developing a new approach based on their viscosity
solution concept, and by their continuators; see, e.g. Ishii [19-23] and Sauganidis
[30-32]. Independently of Crandall and Lions, a different approach to the problem
of solving the Bellman equation has been found by Subbotin [34-38] who proved
in [37] that his solution concept is equivalent to that of Crandall and Lions, when
applied to fixed time duration problems; an interesting feature of viscosity solutions
was discovered in [38] where Subbotin pointed out a close relationship between
differential games and viscosity solutions.

The viscosity solution theory was applied in [5] to prove that the value of a
differential game with fixed time duration is the only viscosity solution to the Isaacs
equation. The natural question arises how to extend this result to control problems
and differential games with a variable time of duration. A few authors have already
started to work around this problem. It has been proved, for example, that given a
partial differential equation wt + H{t,x, Dw) = 0 with u0, x) = g(x), one can find
a differential game with the property that its upper value is the viscosity solution
to this PDE [15]; see also [14], where a similar result was obtained. In the latter
paper the authors were able to apply the viscosity solution concept to differential
games with variable times of duration. However, the terminal set was assumed to
coincide with the boundary of d, what considerable restricts the applicability of
these results to differential games.

Some other results in this direction have been obtained quite recently. For
example, time-optimal control problems have been studied in [33] (a linear case)
and [2] (a nonlinear case). So-called generalized time-optimal control problems, as
well as generalized pursuit-evasion games (h(t, x, X) > ho > 0) have been studied in
the viscosity solution framework by Bardi and Soravia [3]; see also another paper
by the same authors [4], and a paper by Berkovitz [7], both dealing with differential
games.

In this paper we introduce a modification of the viscosity solution concept
(Definitions 2.1, 2.2) that is suitable for a board class of nonlinear problems occur-
ring in optimal control theory with the only restriction on a payoff functional of
the form (2) that the stopping time r is bounded from above by a given number T.
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The main results of Section 3 are Theorem 3.1 (an existence result) and Theo-
rem 3.2 (a uniqueness result) referring to the partial differential equation (12) that
encompasses the Bellman equation, defined on the attainable set d. We do not as-
sume Q is open or closed (Comment 3.1); also, the continuity of a viscosity solution
is not required (Example 3.1) and the terminal set " need not be the boundary of
d (Example 2.1) or even its part (Example 2.2). A preliminary version of these
results was announced in [39].

2. Assumptions and the viscosity solution concept

In Sections 2 and 3 we need the following assumptions; below Q = [0,T] x Rn.
The multifunction U : [0,T] —»R* is continuous (in the
Hausdorff metrics sense), all closed-valued sets U(t) lie in a
fixed ball U C R* and, for each A£ U(t), there is a selection

A(t) from U(t) that is continuous at i and satisfies X(t) = A
The functionf :QxU —*R", g:Q—Rand h:QxU —»R

(5)

are continuous. 6)
The function f(t,x, A) is Lipschitz in x, i.e. for all x £ Rn,
x £ Rn, A U(t)one has

T )

f(t, x, A- f(t, x, AL< k@) |]x - i]], I k(t) dt < oo.

0
I"is aclosed subsetof R"+1. 8)
There exists a T > 0 such that, for each x(-,to,xo0, A(-))
with (to, xo) € Ao, one has r((-, 10, xa, A(-)) < T and inf{i : 9
(t,x) £ A0} = 0.

It is well known that under assumptions (5)-(7) equation (1) has a unigue so-
lution on [to,T] for each (to,x0) £ Q and any control function A() £ A. Besides [12,
pp. 14-16], the solutions of equation (1) starting from any bounded domain remain
uniformly bounded and equicontinuous, which implies the optimal cost function is
locally bounded. In particular, it yields the following two properties:

(*) For each (t, x) £ Q there is a constants K > 0 such that |u(f,x)| < K on the
set {(f,x) £ 12 : dist[(f, x), (t, X)] < 1); and
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(**) For each 6 > Othere is ant > 0such that if (t, ) £ fi, dist[(i,>), ] > $and
[|(f, Il < 1/6 then dist[(i', x(t", t, x, A())), 1 > &2 for each control function
AF) £ Nandt <t' <t+e

Property (**) will be used in the proofs of Lemma 3.1 and Theorem 3.1. Let
us note that condition (5) implies [1, p. 53] the continuity of the Bellman function

H(tx,p)~ inf {f(tx,\)p +h(tx,\)}. (10)

Observe also that because of the continuous dependence of solutions x(-,fo> xo, A(-))
on (to,io), the set

QT = {(Lx) € Q wr{x(-,t,x,X(-))) <T, A) £/, 0<t<T}

is closed; actually, it is the largest set of initial conditions satisfying (9).
The function w* : M —+R satisfying

w*(t, X) = limsup{in(<,x) : (t',x") £ 0, t' —t\<e, W' —x\\<e) <00 (11)
e—0

is said to be the upper semi-continuous (use) envelope of a function w : 2 —r. In
a similar fashion we define the Isc envelope tux ) of a function w(-). Let us note
that property (*) implies that the optimal cost function has both the use and Isc
envelope.

Definition 2.1a. Let H : Q X Rn —% R be a locally bounded function. A
function w : Q —»Ris said to be a viscosity subsolution of the equation

wt(t,x) + H(t,x,ws(t,x)) =0, (i, £ N\ T,
w(t,x) = g(t,x), (i,r)£fc9

if iv(t,x) < g(t,x) on ' and, for each CXI\ I) function ip, one has X) +
H*(t, x, 9x(i,x)) > 0 at each point (f,x) £ O\ I which is a local maximum of the
function w*(t,>¥) —<p(t,x) : Q \r R, where H*(t,x,p) = limsup{Lf(s,y, Q) :

(s,y) £ fi, [s- Q[+ [I/- x0+lg-p]| < e}

Definition 2.1b. With H(t,x,p) being as previously, a function w( ) is said
to be a viscosity supersolution of equation (12) if w(t, x) > g(t,x) on I" and, for
each Cr(0 \ I) function < one has x) + Ht(i,x,ipx(i}x)) < 0 at each point
(f, ) £ O\ I which is a local minimum of w,,(t, x) —ip(t,x) : Q\ I —R with
Hm(t,x,p) = liminf{H(s,y,q) :(s,y) £ I, [s- t+ [ly - >4 + [lg- pll < e}.

Definition 2.2. A function w : D —»R is said to be a viscosity solution of
(12) if ui(-) is both a viscosity subsolution and a viscosity supersolution of (12).
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The assumption below will be used in our uniqueness theorem only.

(i) 9 GC(ft x Rn);

(ii) for eachreal R > Othere is a function w r (-) G C[0, oo)
such that rmp(©) = 0 and for each p, q with ||p|| <
R, ||9] < R the “Hamiltonian” H appearing in (12)
satisfies the inequality \H(t,x,p + q) —H(t, x,p)\ <

wii(IWl);
(iii) there is a function m(-) G C[0,00), m(0) = O, for
which IH(t,x,p) - H(t,y,p)\ < m(|x - ylI(l + [[9]])).

Observe that each local extremum of w* —p (w, —p) is always a global
extremum of w* —p"' (>, —p Lwith, possible, another C1(0 \ I") function p' (and,
of course, vice versa).

Remark 2.1 Although our setting has one basic restriction (the Hamiltonian
H(t, x, w, wx) does not depend in our paper on w, as in some other publications, it
does cover the basic equations in control theory and differential games, such as the
Bellman and Isaacs equations. In our approach the terminal set I' may be either a
subset of dft, the boundary of ft (Example 2.1) or not (Example 2.2).

Example 2.1 Consider an optimal control problem given by x = u, x(0) = 0 G
M={0},nGU- {Mbu2) :uj+ur <and I = {(<xbz2) :t =1 x\+x\ < 1}
with any payoff functional. It is obvious the attainable set i2 is the truncated cone
with vertex 0 GR3 and the base I, therefore, I C OQ, although I” ¢ dCl.

Example 2.2 (a cone with an interior “stick”). Let everything will be the
same as in Example 2.1 except for the terminal set "1 that is now defined as fol-
lows; M'1= T U]J|d,d] with d = (0,0,1). It is obvious that each interior point of
the segment [|d,d] does not belong to dCl (it does belong to the interior of i2),
so L is not contained in Oil. If we set g = 0, h = 1 then the value function
u(t,x) =dist[(t, x), I'1, (t,x) Gfi, and the resulting Hamiltonian (cf. (10)) is given
by the formula H(t,x,q) = 1—|9||, which implies condition (13) is satisfied. As
we shall see later (Theorem 3.3), this value function is the unique bounded, con-
tinuous solution of the Bellman equation wt(t,x) + 1—\(dw/dx)(t, x)|| = 0 with
the boundary condition w(t,x) = 0on 'L

Remark 2.2. We intentionally consider extrema on d\ I" rather than on ft or
ft because, otherwise, we would have no continuous viscosity solution if ft were a
compact set and H GC(ft x Rn).

Proof. Assume on the contrary that a continuous solution w : ft —*R exists.
Set A = max{|#(t,x, 0)| : (t,x) Gft} and consider the “test” function @ : ft x ft —»
R given by

<£(f,x,5,2) = W(t,X) - W(S,2)+ TA+ -J (t+ s) (14)
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which must attain the global maximum at some point (<o, zo, «0,z0). Therefore, the

function w —ip = w* —<p: Cl —»R with the C°°(f2) function <, x) = w(sq,Zq) —
(A + 1/2)(t + s0) attains the maximum in Q at (<o,r0). According to Definition

2.1, we derive the inequality: —A+ 1/2) + H(to, xq,0) > 0. On the other hand, the
function w—ip = :c —»R with *{s,z) = tx(fo,z0) + (A+1/2)(<0 + s) attains

the minimum in O at (so,xo0), which implies (A + \) + H(s0,zq,0) < 0. Combining

the last two inequalities, and taking into account that \H(t, x,0) —H(s, z, 0)| < 2A,

we easily obtain a contradiction (2A+ 1< 2A).

3. Basic results

We start with a lemma, known as the optimality principle of dynamic pro-
gramming, that was originally formulated and proved by R. Bellman [6] under
strong regularity assumptions. Given (i,i) E 2\I" one can alvays find a $such
that ||(f,x)|| < 25 and dist[(f,x), ] > <& denote by £(tr) the largest 6 with the
properties above.

Lemma 3.1. If conditions (5)-(8) hold then, for each (t,x) € Q\T, the equality

t+e

A Lt EX(E+ELXN) + NS X(8), A®) ds] = u(tx)  (19)
t

is satisfied for all positive £ < £, where £ depends on 6(tx) = 6, as specified in
property (**).

Proof. For 0 < £ < £ let NNE(JIE) be the space of all portions of control
functions A(-) 6 J1on the segment [t,t+£) (resp. [f+e,T]). By At(-), A'(-) we denote
generic elements of Ae (resp. AE£) so that one can write down any control A() in
the form A(-) = (AE(), AE(-)). We thus have u(t, x) = inf{C(x(-, t, x, AE( ), AE(-))) :
AE(s) £ NEAE(-) £ AE} and, consequently, (15) because the right hand side of the
last equality equals

t+e
inf {u(t +£ X[t + £ 1, AQ)]) + / h(s, x(s), A(s)) ds,
t

where, clearly, AE(-) may be replaced by A(-) £ /.

Theorem 3.1. If conditions (5)-(8) hold then u(t, x) is a solution of equation
(12) with H(t,x,p) given by (10).

Proof. We shall show that u(-) is a viscosity subsolution of (12) with H(t,x, p)
given by (10). The remaining part of the proof may be carried out analogously.
First of all, observe that u(t,x) —g(t,x) for (f,x) £ I. Assume now that u* —<p:
M\ T —R, ip£ CI(U\ IN), attains its maximum at (i,x) £ 2\ T.
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Consider first the more difficult case when (t,x) £ 12. Since (U* —<p){t,x) is
finite, we may assume (1* —<p)(i, X) —O0 so that, locally in I\ T, one v* = nu <
By the definition of u*(t,x), we can choose a sequence (tk,Xk) £ 0\I" such that
(ti, Xk) —»(f, x) as kK —m00 and (u* X) < (u—<p)(tk, xjt) + I/F for each natural
number k (k £ N for short). Since, for some 6 > 0, ||(t*, xt)|| < 1/6, k —1,2,..., it
follows from property (**) that there is an £ > 0 for which x{t,tk,Xk, A()) £ fI\ I
for each A(-) £ /I, each kK £ N and <<<<*+£, 0< e < £ Fix A£ U(t) and,
by virtue of (5), choose a control A(-) that is continuous at i with Alt) —A By
Lemma 3.1, we have

uftk,XKk) < u(tk+e,x(tk+£)) + \] h(t,x(t),X(t))dt,
ik

where x{t) = x(t, tk, Xk, A(")). Using the fact (it —ip) attains its maximum in 2\ I
at (t,x), we easily derive

tj+f
<p(tk,xK) - ~ < 4> +£,x(tk+ €)) + J h(t,x(1),\(1))dt

and consequently

<k+£

¢ 3 v(tx(1) + {<Px{t,x(1),f(t,x(t),\(1)))+h(t,x(t),\(t))dt
tk

for Kk £ N. Letting K go to 0o and e go to zero we obtain X) + (9% (t,x),
f(t,x, A) + h(t,x, A> 0. Since A£ U(t) was arbitrary, we conclude ipt(i,x) +
Hn(i,x, tpx(t,x)) > 0 (here #*() = A(-)), as required.

In the easy case (t,x) £ M\I" the inequality (u—p)(i, x) > (u—ip)(t+e,x(i+e))
holds locally for any trajectory x(-,f, x, A(-)) of equation (1) with a control A(-)
satisfying A(t) = A We use Lemma 3.1 again and proceed similarly as in the first
part of the proof.

As an illustration of this theorem we present the following example.

Example 3.1. Let f(t,x, A = A A£ {1}, (i0o,”0) 6 fio = parallelogram
ABCD, where A =(1,1) B = (0,1), C = (-1,0), D = (0,0). Setg : R2—=*R,
g(x,t) —x +t,h—0and I = {(x,i) : (x,),0<x< JU{OS) :0<t <1}
(T is the union of two segments AB and BD). The optimal cost function u(x,t)
is defined on the closed set fi (here Q = ilo); note that the adjective optimal is
meaningless in this case because the controller has no choise in selecting control
functions. It is obvious that
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where BCD (resp. ABD) stands for the triangle BCD (resp. the triangle ABD
without the side BD). Therefore, u(x,t) is C°° at each point of 1= ABCD except
for the points (0,<), 0 < t < 1, where u(x,i) is discontinuous with a ‘jump” 2—21
It is easy to see that 0 < u(x,t) < 2on 0; also, assumptions (5)-(9) and (13), with
H(t,x,p) = p, are satisfied. By Theorem 3.1, n(x,t) is a solution of the Bellman
equation

wt(t,x) + ~ (t,x)-0 (<,*)€ 11\ T

with w(t,x) = x + t on . According to Definition 2.1, if we choose ip(t,X) —
u(x,t) then we shall obtain ut(x,t) + H*(t,x,ux(x,t)) = ut(x,t) + ux(x,t) —O0 for
(x,t) G\ T; in this particular case, the Bellman equation is also satisfied on the
side AB (which belongs to I'). Summing up, although the optimal cost function is
discontinuous on a part of I, it satisfies the Bellman equation in the classical sense
at each other point of A.

Comment 3.1. We could, of course, remove the side [AD) from d = ABCD
and next repeat the whole reasoning, obtaining the same solution u(t,x) on ABCD,
despite the fact that the original domain was not closed. This circumstance, how-
ever, does not cause any trouble because u(t,x) has use and Isc envelopes (as a
bounded function); as a matter of fact, u*(x,i) = u*(x,<) = 2 for (x,t) G[AD).

Now, we shall give a uniqueness result. In applications, it practically requires
the continuity and boundedness of a viscosity solution to be unique.

Theorem 3.2. Assume Q C Q = [0,T] x R” and u(-), w(-) satisfy, re-
spectively, the inequalities vt(t,x) + H(t,x,vx(t,x)) > 0in O\ I and wt(t,x) -f
H(t,x,wx(t,x)) < 0in D \r in the viscosity solution sense (Definition 2.1). In
addition, assume that conditions (9), (13) hold and there exists /*(*) G C[0,00),
p(0) = 0, such that

vit,x) = w(t,y) <p(la;- y|) if (i,r)Gfinr or ((,y)Gfinr. 17

Finally, let u(), —w(-) be bounded from above and upper semi-continuous on O.
Then v(t, X) < w(t, x) 0On cl.

Proof. Suppose sup{(v—w)(t, X) : (i,x) G9} > 0. Lete, a, B, 7 G(0,1] and
A> 0 be given. Define

<, X, s, y) = u(i,x) - tu(s,y)- et +1- f)- lIx - yll2- ~(t - 8)2- -yIx|]2

and next fix s and 7 so small that sup ®(< x,t, X) :(t,X) Gecip > 0 and consequently
sup{®(<,x,8,y) : (i,x) G, (s,y) GU} > 0. Since ® is use, there must exist a
global maximum point of ® on fi x fl. Let (i, X, s, y) be such a point. Using the
boundedness of v(t,x) and —w(t, X), we have

0< ®(t,x,s,y) <C —~ [|x - yl2- i(i-s)2- 7]x]|2 (18)
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for some C > 0 so that
[I*-y]|I<(«CenT)*, Wi-sW<(BC)K 7Ili|]| = 7>(7Ikl|2'<(7C)". (19

Now, let us fix J1> 0 so large that

m@2r) <e+Arfor0O<r<C (20)
and next a > 0 so small that
AT
fi(s) <e+ -a—sz, 0<s<(CeA». (21)

In view of (19) we can choose a sequence of 3 converging to zero such that the
corresponding coordinates x, y, i and s are convergent (because x and y lie in a
compact set). Letting x —limx, y = limy and t =limi = lims = I, we conclude,
using the use of ® that d(<, x,s,y) > UT{P(?, X, s,y) > 0: R —0}. It follows from
(18), (19) that

e-p-y|l2<C, \Wx-y\W\<{CeXT)N 7l]i||<(7C)t

If (i,i) £WNT or (i,y) GMNMT then by assumption (17) and inequality (21) we
have

eA
v(t, X) - w(t, y) <y - yl) < £+ ][ T yll2,

so that &(t,x,t,y) < 0, a contradiction with <I(i,i,i,y) > 0. We thus see that
both (t, X) and (t,y) are in M\ . Therefore, almost all (t, x) and (s,y) are in A\ I
and, since v(t,x) and w(t, x) are, respectively, sub- and supersolutions, we have the
following two inequalities:

e —g=lli - yIRE i - 9+ H(L X — (X y) + 27 > 0

R(F- 9+ H(sy5(c- ¥) > 0.

Subtracting the former inequality from the latter, and next letting B go to zero (<
and s will tend to the same limit), we arrive at

e+ —Ix- ylR< An@TIKD + m(lli - i+ N — - YR

with R —2max(C, C A); clearly, we have made use here of assumption (13). Finally,
sending 7 to zero and next a to zero, we obtain £+ Ac < m(2r) for some r £ [0, C],
a contradiction with (20), which completes the proof.
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The first part of the theorem below is exactly the content of Theorem 3.1,
while the second one follows from Theorem 3.2 by a contradiction argument.

Theorem 3.3. If assumptions (5)-(8) hold then u(t,x) is a solution of the
Bellman equation

WE(tX)+ g TF(EX X5 (6X) R0 =0 (<x)emT (22)

with the boundary conditions iv(t, X) = ¢ft, X) on I in the sense of Definitions 2.1,
2.2. If, in addition,

(i) conditions (9), (13) are satisfied,
(if) u{t,x) is bounded and continuous on d,
(iii) g : T —R is uniformly continuous,

then u(t, x) is the unique solution of the Bellman equation in the class of bounded
continuous functions on d.
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Baskue peweHne ypaBHeHUI A BennmaHa
Ha MHOXeCTBe LOCTUXUMOCTHK

I WWWUK, AX-N. MEHANbAW, N1. 3APEMBA
(Tokuno, fetpoiit, CT. [XKOHC)

B pa6oTe paccmaTpuBaeTCcs 3agaya ONTUMANbHOIO ynpasBieHWs, B KOTOPON MUHWN-
MU3NPYEMbIi YHKUMOHAN M PYHKLUMA ONTUMANbHOTO pe3ynbTata paspbiBHbI.

Moka3aHo, 4TO (YHKUMS ONTUMAaNbLHOro pesynbTata COBMagaeT C BA3KUMMW pewe-
HUAMMWN COOTBETCTBYIOW Er0 ypaBHeHUs BennmaHa. BA3koe peweHue onpegeneHo Ha 6ase
KOHCTPYKUMM, BBeAEeHHON KpaHgannom M JINOHCOM, C MCNO/Mb30BaHWEM ee MOAU(UKALUN,
npeanoXeHHon Nwuu.

Mpu AONONHUTENbHBIX YCNOBUAX, 06€CNEYNBAOLUX HEMPEPLIBHbIE (BYHKLUM ONTH-
ManbHOro pesynbTaTa, 40Ka3aHO, YTO BA3KOE PEWEHWE efUHCTBEHHO.

Leszek Zaremba

Memorial University of Newfoundland
Department of Mathematics and Statistics
St. John’s, Nfld, Canada AIC 557
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In this paper the decentralized stabilization problem oflarge-scale linear discrete non-
delayed systems is studied. We present the subsystems dominancy approach which yields
a simple control procedure employing local feedback controllers with minimal knowledge of
interconnections. Sufficient conditions for stabilizability of a complex system are derived
providing wider class of stabilizable systems than those mentioned in the literature.

1. Introduction

We consider the stabilization problem of discrete-time decentralized systems.
Various decentralized control techniques have been developed so far, however, most
of them for continuous systems and their extension for discrete-time requires if
possible, nontrivial additional assumptions and modifications. Furthermore, there
is a fundamental difference in stabilizability conditions between continuous and
discrete-time systems [7], [5]. In continuous large-scale systems controllability of
all single subsystems implies stabilizability of the global system while in discrete
systems stabilizability of the global systems requires also some constraints on the
interconnection magnitudes.

In practice the exact mathematical models of interconnections in large-scale
systems are rare to know and often only constraints on their magnitudes are used
in control algorithms. From practical point of view minimization of the necessary
information about the interactions, required in control algorithm, is very useful.

In this note the subsystem dominancy approach for discrete-time systems is
presented which extends the subsystem quality control principle from [3] and [9].
This approach yields from Lyapunov theory and comparison principle for discrete-
time systems. A sufficient condition for stabilizability of decentrally controlled
system is derived which is less strict than those mentioned in the literature. Subsys-
tems dominancy approach provides a simple procedure for decentralized controller

3 Akadémiai Kiadd, Budapest
Pergamon Press, Oxford
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design on subsystem level, which does not directly employ the interconnection mod-
el.

2. Problem Formulation and Preliminaries

Consider the large-scale discrete-time dynamical system given by:
N
Xi(k + 1) = AiXi(k) + AijXj(k) + BiUi(k)

L g

Vi(k) = CiXi(k) i =
where N is the number of subsystems, x-(A) £ Rn', u, £ Rm‘, y- £ Rp' represent
state, input, and output vector of the ~th subsystem, respectively. Ai, Aij, B,,
are constant real matrices of appropriate dimensions.

Remark 2.1. System (1) corresponds with a decentralized continuous system
converted with small sampling period. When considering longer sampling periods
Bij ¢ O fori ¢ j can occur and the matrix B in discrete version would not have
block diagonal form.

Our aim is to stabilize the global system (1) by local controllers:

Ui(k) —K{Xi(k) r=1,.,N (2a)
or: Ui(k) = K{y((K) = K[CiXi(k) = KiXi(k) (2b)

control law (2b) can be employed when all the subsystems are observable.
In further consideration we use this notation:

AM(X), Ar (JT): maximum and minimum eigenvalue of square matrix X,
respectively,

[IX||: Euclidean norm of vector X for matrix X: [|X]|| = \#i2(XT X)

A = (a,j)nxm: n x m matrix A with elements aij

K = diag(BTt): block diagonal matrix K with matrices Ki as blocks on the
diagonal of K .

We will consider the notion of stabilization as it was introduced in [5].
Definition 2.1. The discrete system (1) is stabilizable by the local feedback
control (2a) or (2b) if every solution x(k) of the closed-loop discrete system:

N
Xi(k + 1) = (A + BjKi)xi(k) -f y yAjjXj(k) (3a)
N
or: Xi{k + 1) = (A + BiKiCi)xi(k) + ~ AijXj(k) (3b)
ji-1

i=1,.., 1V
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starting from arbitrary initial xo(0) converges asymptotically to x(k) = 0as K —»0o0.
DEFINITION 2.2. The discrete system (1) is said to have a degree of stability

a > 1if there exists B > 0 such that the solution x(k) of the closed-loop system
(3a) or (3b) satisfies:

H*(*2)||<iS||*(*D)||(1/a)*»-**
for all ki, k2> 0, k2 > ki.

Because of the linearity of the system (1), the asymptotic stability implies the
global exponential stability.

To analyse the stability of the system (1), the second Lyapunov method can
be employed, with the use of vector Lyapunov function and the discrete version of
the comparison principle [11]. Vector Lyapunov function for the system (1) is:

v(k) = [tq(zi(fc)), v2(x2( k ) ) , v N(xN(K))IT 4

where v,(x;(fc)) = t>«f) is the Lyapunov function of the r~th subsystem. For a
linear system appropriate subsystem Lyapunov function is:

BiK) = (xF(K)PIXi(K)V2 i=1,2,..., V ©)

where P- is a symmetric positive definite matrix. For a symmetric positive definite
matrix Y :
*m(V)|M|2 < XTYX < JIm(T)||x]|2

eg AY2||x|| < {XTYX)L2 < A*2AY)|Ixl- n A
Square matrix A is called M-matrix iff. a , > 0 for all nondiagonal elements of A
110.

Definition 2.3. Square matrixT = (aij)nxm is diagonally dominant if there
existdj >0,j = 1,..., nsuch that:

d-ail > di\gj\ i=1,2,...m
J=1

or )
Mn
djlaii 1™ Y Jdilaijl j —1,2,...,n
I=X

Square matrix A is negative diagonally dominant if it is diagonally dominant and
ay < 0for all i.
Lemma 2.1. [10] M-matrix is stable iff it is negative diagonally dominant.

3,
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3. Subsystems Dominancy Approach, Stabilization Condition

Subsystems dominancy approach (SDA) is based on the fact, that in the de-
centralized control scheme (I)-(3) the subsystems play an active role in the control
procedure while the interconnections make up a passive part of the global system as
only the diagonal blocks in system matrix can be changed via decentralized control.
The main idea of using this approach is to design local controllers on subsystem
level without directly employing the interconnection model. SDA is approved by
practical experience and can be derived using the second Lyapunov method. This
approach vyields the sufficient condition for stability of the system (3) and pro-
vides simple control algorithms. The second Lyapunov method in connection with
vector Lyapunov function (4) and the discrete comparison principle enables us to
determine the stability of large-scale system in terms of negative definiteness of a
constant matrix (the so-called aggregation matrix). For the system (3) with vector
Lyapunov function defined in (4) and (5), aggregation matrix W can be found in
the following form [8]:

Av(k) = v(k + 1) - v(k) <WI[|[*1(™)]],..., N W\]T 8
where W is an N x N constant real matrix with elements:

wa = AM2[(Ai + BiKifPiiAi + BiKi)\ - AN\Pi)
W, = \M{Pi)/KI2{Pi) *AfiAijAij) idj, i=12,.,N

Substituting for ||x,(F)|| in (8) its upper boundary from (5) and (6) we obtain:

Av(k) < WOv where WO = (woij)NxN (10
WwWon = —...t&i_PiSi)
AX{Pi) (11
B Am {Pi)
Woij = XM 2(A 1jA ij)

AW2 (PD)AII2(P])

From (10) and (11) the sufficient condition for stability of the system (3) is negative
definiteness of Wo [6]. Having in mind that Wo is an M-matrix and Lemma 2.1
holds, obviously negative definiteness of Wb is equivalent to negative definiteness
of W in (9) and also to negative definiteness of W' = (w* nxN-

.1/2

(Pi) ; Am (Pi)
/2 W (sTSi) (12a)
]'iM (Pi) An(P,)

I - AA17/\2(4—A—;). (12b)
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From Lemma 2.1 for stable W must be wH < 0, together with (12a) we obtain:
Si) < 1 thatimplies: §]Si—1i — =Qi (13)

where li is an n, x n- identity matrix, Qi is symmetric positive definite rii x n;
matrix. Therefore, in (12a) P, = 7- can be considered to determine the stability
condition and we reach the following theorem.

Theorem 3.1. The system (3) is asymptotically stable if there exist real
positive (1,... ,(N such that:

N
®>1> [+ «1Ne +apll *'=i, (14)
1=

Proof. Evidently, W given in (12a), (12b) is M-matrix. Considering P, = J,
in (12a) and applying (7) and Lemma 2.1 for W we obtain (14).

Theorem 3.1 provides the sufficient condition for the stability of discrete large-
scale decentralized system and also approves subsystem dominancy approach as it
is stated in the following corollaries.

Corollary 3.1. Let the matrix norm UT; + BiKi\ can be made arbitrarily
small by choosing appropriate A,. If there exist gi,. m,gN > 0 such that:

N
g>2>||Ay]|| for *=1,..,7V (15)
F
) N
(for special case, (I = 1for all i : 1> ~ [H*ill) ~ en the system (1) is stabiliz-
i=i

able via decentralized control and its stability is determined by local subsystems
feedback matrices {Ai + BiKi) i.e. by wW{i in aggregation matrix (12a), (12b).
Corollary 3.2. Let for the global system (1) the inequality (15) holds. Then
local controllers can be designed like for isolated subsystems and the sufficient
condition for keeping the stability of the global system is obtained from (14):

N
UA-+ M || < 1-X>;/9i)IHo-]l (16)
7t
for some real positive qj, j = 1,..., TV

for g = 1for all i:
N

[N +M ||<1-£|WN O a7
i=i
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Condition (16) (or (17)) can be treated for each subsystem independently and
it determines the class of stabilizing matrices K = diag(IL,). Condition (16) (or
(17)) guarantees the stability of the global system and indicates a procedure which
stabilizes the system or shifts its stability degree. Such a procedure is given in the
following corollary.

Corollary 3.3. Let the closed-loop system is given by (3a) or (3b), where
Ki(oti), i = 1,...,1V is a function of real parameter a-. The global system is
stabilizable by means of A',(a,) if there exist a*, i = 1,..., N for which (14) holds.
If, furthermore,

(dw'iJdoti) < Ofor a- £ (a,0, <" for some a0, i=1,...,1V

where W is given in (12a); the stabilization procedure starts with K{(a;0) and ati
is changed: a- «—a,- -f la-, a- € (a,0,a*) until the given system is stable (or (14)
holds for some <+ i = 1,..., IV).

Remark 3.1. Because a- does not influence w-j in (12b), for wit < 0 and
constant P- (dw”/daii) < Oimplies d(Avi/vi)/doci > 0, where A vi/ vi is a measure
of stability and its upper bound is given by the value of the i-th row of W".

Procedure stated in Corollary 3.3 provides the systematic way how to “im-
prove” the values of parametrized feedback matrices Ki(oti) in the direction to
system stability region. This property is important for practical applications of de-
centralized control, it enables the “tuning” of the system via appropriate changes of
parameters a<. (When prescribing the demanded system behavior, its limitations
which follow from decentralized control structure as we mentioned above must be
considered.)

Stabilizable class of decentralized systems stated in Theorem 3.1 and Corollar-
ies 3.1 and 3.2 is wider than those presented in Lee, Radovic [4]. (Though stability
conditions stated in [4] are obtained for a more general delay case, they claim to
be less strict than ones developed so far for the nondelay case.) In [4] the authors
require

N 1/2
WA + B{Ki\\ + < 1 foreach i (18)
5
where Nj is the cardinality of a set:
Ji = {jl\Aij @0, j=1,...,N).

In [5] Lee and Radovic presented another result for CCM model where stability of
the global system is guaranteed if there exist positive definite symmetric Q; for all

i, such that:
N

Qi- £ NjLj{(li + BjPj Bj)Lji >0
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where P- is the solution of the Riccati equation:

and stabilizing gains are:
(19)

However, the analysis and use of (19) for decentralized control design is not simple
and in [5] the control algorithm is proposed only for the upper triangular A.

In (16) the multiplying of the interconnection matrices by Nj is not required
and the introduction of 5 further extends the stabilizable class of systems in com-
parison to (18). For instance, following (16) systems with upper triangular matrices
A are obviously stabilizable, although it is not the case of (18). In comparison to
(19) our results given in Theorem 3.1 and its corollaries are relatively simple and
easily applicable for control algorithm design. Furthermore, (16) enables us to avoid
a direct employment of the interconnections in a design of feedback matrix K.

4. Decentralized Control Algorithms for Stabilization

Following Theorem 3.1 and its corollaries the reasonable way to stabilize the
system seems to minimize matrix norms of subsystem matrices (minimization of wu
in (12a)), which is close to minimization of stability degrees of subsystems, though
there is a certain gap between these two procedures. Theorem 3.1 provides only
the sufficient condition for stabilizability giving upper bounds on system behaviour.
Therefore, a stability degree of the global system does not exactly follow stability
degrees of isolated subsystems, though in bounds mentioned above both tendencies
are connected. Because of these reasons we propose control algorithms with local
parameters on subsystem level, which can be changed “to tune” the global system
behaviour in the desired way. This “tuning” can be carried out according to a
certain objective which can be tested in the system.

Minimization of wi{ (or LI + R, Aj|) in (12b) w. r. t. Ki yields control law:

Ki
or: Ki

-{BjBi)-IBjAi
- (BfJ3))-1BjAiCj(CiCj)~1Ci

for output feedback which can be parametrized (see Corollary 3.3):

Ki
or: Ki

- ai(BjB,)-1BjAi a~1

20
_au(B?Bi)-xBjAiCj{CiC])-ICi (e

ai = 1 brings the greatest possible stability degree for subsystems. However, in
practice such a control law probably will not provide the best results for the global
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system because of high feedback gains which can cause overshoot and nonlinear
behaviour following from constrains on signals in the control loop (in such cases
the solution would be different from that expected). We must consider also the
difference between the local and global stability degree. The advantage of the use
of Corollary 3.3 and parametrized control law is in the possibility to determine the
appropriate a- for the global system. We tested a- £ (0.9 —1.3) for (20) with good
results for the global system stability degree.

Remark 4.1. For square invertible matrix R; and a- = 1 (20) place all sub-
system poles to zero.

The second control algorithm is based on subsystem controller design using
a corresponding Riccati equation. Subsystem stability degree a* is being increased
until condition (17) holds.

Ki = + otfBjPiBi"BjPA,
or: Ki =-aliuU +a}BjRB,)-1BjPiAiICj{CiCj)-ICi
for output feedback where
Pi = ajAfPiAi - afAjr.Ba + ajBjPIBI)~1Bjr.a, + Cjc,

Having in mind (13) the use of Pi = J, in computation of the aggregation matrix
W in (12a) is recommended. It provides a less strict stability condition than the
original Pi.

We can observe that for stabilizable systems (20) and (21) provide the way
to the stabilization and enable to increase the stability degree of the global system
(as far as it is possible) by means of changing parameters a,-.

5. Conclusions

A new method for the decentralized stabilizing problem is presented, based
on subsystems dominancy approach introduced here. Sufficient conditions for de-
centralized stabilization are derived in simple form. Two control algorithms are
designed, where the interconnection model is not required directly in control law.
The computation of constant feedback matrices is carried out on subsystem level.
Parameters are introduced into control law in order to enable the shifting of the
stability degree of the whole system. The designed algorithms provide the approach
which is relatively simple to be implemented in practice. The results are illustrated
on an example in the Appendix.

Appendix

The following example illustrates the results of the designed control algorithms. Improve-
ment against similar results in literature are also mentioned.
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Example. First subsystem Si:

0.85 0.3 - -0.4 -0.35

i = +

xi(fc + 1) 02 05 Xl(fC) 0.2 0.4 x 2 (fc) +
01 0.8 0.1
0.2 X3(K) + 0.6 0.5 U(fC)

Second subsystem S2:
-0.25 -0.4 . 0.6 0.3 - 0.2 0.6
+1) = + *
x2(k+ 1) 01 03 xi(fc) 01 o0s X2t oo, & o w2

Third subsystem Ss:
x3(fc + 1) = [0.05 0.1]xi(fc) + [-0.05 0.1]x2 (fc) + 0.4x3 (fc) + 0.4us (K)
The given system is unstable with eigenvalues:
1.155; 0.561 + 0.429«; 0.442; 0.252
The subsystems are stable with eigenvalues:

Si : 0.976; 0.374 S» : 0.773; 0.427 Ss : 0.400
a) from (20) we got next results:

a, =1 for «=1,2,3:

-1.191 -0.294 0 0 0
1.029 -0.647 0 0 0
0 0 -0.672 -0.787 0
0 0 0 0 -1

spectral radius of the controlled system (1/stability degree):

global system: 0.542; Si : 0.000; S2 0.403; Sz : 0.000;

aggregation matrix:
*-1.000 0682 0.224

W = 0.524 -0.592 0.201
0.112 0.112 - 1.000

Sufficient condition (14) is fulfilled e.g. for gi = 0.8, g2 = 1, 93 = 0.3. (Condition (18) from [4]
does not hold.)
a, = 1.2 for <=1,2,3:

-1.429 -0.353 0 0 0
1235 -0.776 0 0 0
0 0 -0.807 -0.944 0

0 0 0 (@] - 38
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spectral radius of the controlled system:

global system: 0.505; Si : 0.195; S2 : 0.406; Ss : 0.800

-0.804 0.682 0.224 '
W = 0.524 -0.590 o0.200
L0112 0.112 -0.920.

the previous case, (14) is fulfilled.
b) from (21) we obtain these results:

a; = 24 for &= 1,2 3:

" 0.933 0.343 0 0 0
-0.402 0.383 0 0 0
K= 0 0 0.773 0539 0
0 0 0 0 0.595. (22
m2.525 0.0142 0 0 0
0.0142 1.348 0 0 0
P = 0 0 5429 -2.813 0
0 0 -2.813  4.202 0
0 0 0 0 1.595

spectral radius:
global system: 0.519; Si : 0.172; Sz : 0.360; Ss : 0.162

for P from (22) the respective aggregation matrix is not negative definite so it was computed for
vector Lyapunov function with P, = I, (see (13)):

-0.768  0.682 0.224
0.524  -0.549 0.054
0.112 0.112 -0.838

For this W (14) is fulfilled. If a, are further increased, the global system remains stable, but its
stability degree slightly decreases.
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NON-ASYMPTOTIC SOLUTION OF
CONFIDENCE ESTIMATION PARAMETER TASK
OF A NON-LINEAR REGRESSION BY MEANS
OF SEQUENTIAL ANALYSIS

A. V. Timofeev
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This paper presents a sequential plan used for obtaining the confidence interval with
necessary size for volume parameters of non-linear regression. The distributions of the
observation noises are supposed to be unknown. The plan described in this paper enables
us to obtain the confidence estimates of the unknown parameters in non-asymptotic state.
Estimation for the mean observation time have been cited in the suggested sequential plan.

1. Statement of the problem

Consider the process {(t/(zt), x<)}(6m is being observed. This process is de-
scribed by the following equation

y(xt) =ft(xt,e*)+t(t), te N )
where N = {1,2,...} is an index set, {xt}teN is a set of input variables and
WWGN :xt€X =1[a,6], |a <oo, |6 < oo
T b are independent random variables (random measurement errors) and
VIi€EN: [EE(t) =0, EEM) < U < o0 .
Here E stands for expectation. The value <, functions {/t(-)}tef*J into which

the estimated parameter 8* GO enters non-linearly as well as a compact 8 D N are
known to the statistician.

Observing the process {(y(xt), Xt)}teid it is necessary to build in B such a
closed interval 2 = [c, d] that
P«-(6* € 2) > Pc, 0<|c—d| <6< 00, PcE[01]

Akadémiai Kiad6, Budapest
Pergamon Press, Oxford
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Values Pc and $are supposed to be prescribed.

2. Method of solution

Let function (/t(-))iem are continuously differentiable function on the 0 and

5

“dfi(xi,9)2' 2 ° ,
(n2(1-P c))-05.

V(n GN, 0GO0) : c,(0) = %

Suppose the estimations 0+ and 9n are defined as follows

. AL

»11+=arg|11 89

- 2+c,(0)

0— argmf Sg;' + 2+cn(0)

forany n > 1
Here

In(0) = ~(y(xi) - fi(xi,9))2/(n ma).
i=1

Values 0+ and 9~ can be used as limits of confidence interval in time moment n.

The solution of the given task will be found by means of sequential analysis.
For the sequential plan of confidence estimation of 0* by observation (1) let us
consider the form of the pair (d, r) where the value dn = |0+ —0~ | characterizes
the achieved accuracy of the confidence estimation for time moment n, and r is the
moment of observation stop

r =inf{n > ljdn < 5}.

Thus, the required accuracy of confidence estimation will be achieved at the
time moment r.
Let us define the following value for some finite A, B >0

pc(A,B) = inf{ne Njn > 2B2((A2%6t~12~1- €)2(l - Pc))-1}.

Here 0 < £ < A6/2.
Theorem 1. Let for some positive values | and L the recording is acceptable

dfi(x, 0)

<L<
89 L <o0

VfGN; xGX;0G0) : 0</<
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343
Then the next statements are true.
1) Pe.{T<a) = 1,8* GO,
2) E,. T <pt(l,L) + 2L4E~4 (ir2/2 - 3Pt(/,L)/(I + Pe(l,L))
+2[53- 0.25+ 1/(2(Pe(l, L) + 1)(Pc(l, L) + 2))]), 0~ GO,
where -
S3= *E—i k~3 ~ 1.2020569.
3) Pe.(P e[0i(r),0h(r)])>Pc, 0*€0.
Here E is the mean observation time in the sequential plan (dn,r), Oi(n) =
min(0*,0~), Oh(n) = max(6>;,0-).
Proof of the Theorem. From the Theorem statement follows that
VN ,MO; xeX; t EN) :\Mx,sr) - f(x,e)\ <L\0! - e2\
Let us consider the following representation for some 0
)y5dn}P = - ft(xt,0))(m7)_1 + ~ /t(a:t,6>X(i)(ncr)_1
t=1 t=1
= N,,(0*,0) + Xn(0). (2)

Here f[{xt,g) = 9Mt(Xu9)

Using the finite'increment formula and the condition ofthe Theorem we come
to the conclusion that

V(x,y £ 1| <GN; 0b 02 GO0) :\ft(x,9i) - /t(x,02)| > 1j0! - 02|
That is why

V(n GN, 0G0) : Rn{9*,9) > I2a~I9*- Q|
It may be occur that

©)

Aom = "IV 204 oo

A(0-) = d'“é99~) +2¢,(0n) o

because of the 0 array restrictivity. For example, let us assume that

n= 1 /i(x,0) =0, 0*=1 <*= 1, £1) = 0,
O=arginf(0) = 1- (2/(1 - Pc)05) + ¢



344 TIMOFEEV: NON-ASYMPTOTIC SOLUTION. . .

with some ¢ > 0.
In this case we have

=2(y(*0 - 0)=-2(0* +i(l) - 0) = 2(1- 0),
Cl(O) = c1= (2/(1-Pc))05,

that is why
0“=0and A(0~) =]2(1- 0+ 2Cl|= 2 > 0.

Consider the events:
: {ft,(0*,0+) = cn(0+) - XniBt) - AOQ+)/2 < PSa”-1},
{ft,(0*A“) = -cn(B~) - Xn(0~) - A(0-)/2 <-Pb6e-b-1}.
Taking into consideration (3) it can be clearly seen that
W+=u,(n):{|0*-0+|<0/2}
u; =u(n)-.{\e* -e;\< 6/2}

Here the recording ui —w2 denotes that event w2 is being conditioned by event wA.
Further,

W = wi(n) -|/1(|'): Wa(n) : {[0% - 0+1+ [0% - 0% 1< 5}
= O4(n): {0+ -0,-1<<5} @
=wh(n) : {r < 0}.

It is evident that
V(n > pe(l,L), 0£0) : (c,(0) </2&F-12-1}.
So
V(n > pc(l, L), 0*£0) :
ft-(<*E£w») > ft- ({-X»Ne < /[3«<r-12-1- c,,(0+)}
X {-Xn(0;)</20<T-12-1-¢c,,(0-)})
>ft- ({Ix,(0n )l < i0x- 12-1 —en(0)}
X {Ixn(0,,-)|</20<r-12-1-c n(0-)}) n
> 1- [pt. (|x,,(0+)] > PStr-"i-1- 2°5e¢L((1- Pc)»»)-0b)
+ ft* (IXn(0,-) > 126a-12-1- 2°5L((l - Pc)n)-05)

= 1- [ft* (IXn(OR)| > €) + ft* (IXn(0-)] > €)] .
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It is easy to see that

V(n GN; B\B GO) :

(6)
Eg-(xn(e))4 < n~3L4+ 3n(n —1)L4n~4 = L4(3n~2—2n-3).
Using the Chebychev’s inequality we have
VOGO, nGN; 66> GO0) :
@)

ivV(IXn(0)| > t) < Ee{xn{0))4e-4< z,v 4(3n-2- 2n~3)
From (4) follows that for any a G]O,1] true implication
[Pe-(WHur-)>»)]=> [Pe-(r < n) >a] =[P (r >n) < 1- a].
From (4) and (7) we get

Pe- (r>n)< Pe-(|x,,(0+)| >e) + Pe- (Ixn(9-)| > e) < 2L4e-4(3n-2- 2n"3).
Further,

£er= AP fl(r>n) </>(/, L)+ J2  (3n-2 —2n~3)2L4E-
1

n=p.(l,L)+I
P.U.L) p('l) (8)
= pe(l, L) + 2Lﬁ€—4 r2le — 0 + 2 33- £ -3
M1

< 00.

There has been taken into account that - k~2 = #2/6. From (8) and the

Borel-Cantelli lemma we obtain that ps-(+ < 00) = 1 Thus, the first statement of
the Theorem has been proved.

Taking into consideration (8) and the fact that

Vo> 1:1 n~3>£ (n(n+ 1)(n+ 2))-1=025- 1/(2(p + D{p + 2)),
In=

| n=I
}lz.n~2> y:.” TH1)-1=p/(p+ Q)

we come to the conclusion that the second statement of Theorem is also true.

From the condition of the Theorem we get that functions {/t(-)}(gN are strictly
monotonous in B. Let us consider the function

IW,*) = (I*(*«.T-N1(*«,*))dl 2, See, [e n.
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From strictly monotonicity of the functions {/i(-))teN  ~ follows that

dut{e\e) _ dft{xuo)

VOGO, xGX, teN): de o6

Ut(xt,e*)-Mxt,e))> o0
with fixed 9 G 0. Using the statement B.3.6 [2, p. 450] now we conclude that
Ut(9*,9) is a convex function in 9. Function

dn(s*,B) = MM** 0),u2(s\B)... un(9*,0)) = £ ««(0*,Ofr-1*-1
t=l

is a linear combination of convex functions and hn(m is not decreasing with every
of the function-independent variables. It can be deduced that ®n(0*,0) is a convex
function in 9 if we use the statement of Theorem B.7.a [2, p. 470] in this case. From
here we easily come to the conclusion that

d$n(9\9)
de

is a monotonic function in 9 with fixed 9 G 0. So, taking into account the
representation (2) we have

Rn{e\e) n€N

“o(n) : ({bl 0+)] < cn(0+)} «{|x,.(0-] < ¢c,(0~)})
3 wi(n) : {sign [P,,(0%,0+)] = - sign [A.,(I1,0-)]} ©)

9 w2(n) :{0* G [0i(n),0h(n)]}
Now, using the Lyapunov inequality [1] it can be written
ViGN : Ei2{t) < (™ “(i))05< «2.
From here we obtain

'dftjxi,0) 12,

V(n GN; 0%,9G0) : \ Ee-Xn(9) =0, Ee.xI(9) < £ de < (io)

t=i
An application of Chebychev’s inequality yields
V(n GN; 0*,0G0) : M bl *)| > M*)) < (1- Pc)/2.
Using the Boolean inequality it is easy to see that

P'- (W>(n)) > 1- [Pe- (IXn(0+)| > ¢,,0+)) + P,. (]X,.,(0-)| > ¢,(0-))]

> Pc. )
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From (11) and (9) we obtain that
V(n £N; 0,0 EQ) : Pe. (w2(n)) > Pc.
As Pe. (r <o0)= 1, 9 GO and r 6 N we finally conclude that
Pe. (W2(r)) > Pc-

Thus, the Theorem has been completely proved.

3. Linear regression
Let in (1)
VneN: = Xxte*

and 9° 6 R1. In this case we have

e e AL
H =arg «Iglil " 2cn{9)

It is clearly seen that we come to the following conclusions

= + - P AN
e$ 1=1 =1 / \*=1 ) a

n \\I /., 0.5
2 5>?(1-PQ av/2.

1=1 \i=l
We define
jn=y Xi

It is easily seen that

O+= <€ 1- (/In-I(I - Pc)) °b<iV2 JIn-1In %Y n)Jn
(12

+ @€(j,.,(1-Pc) °\n/5

=0+ -2«7(n (1-P¢g)"“056Y2 (13)
Jn—In—+Txn, J0—0, n>1 (14)
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Equations (11)—14) describe the recurrent algorithm intended for the calcula-
tion of values 0+, O~ on each of the sequential plan (r, <f,) steps. From the essence
of a set problem we have:

Vn £ N : min(fal, 6]) < [x,,| < max(]al, |6]).

From here follows that all the statements of Theorem 1 are true for the algorithm
(12)—14) with
L = max(lal, [i¥) and /= min(|al, |6]).

Now, let us assume that
VnEN: Ei(t) = «2 (15)

and {£t(0}(EN 's a Gaussian sequence. In this case [3]
PO €[B- In,Bn+ 7n]) > Pc

where n 6 N

Bn - X IXi2i(x')( 7,= 1P~ x?j
1=1 u=l

and for a value U{PQ the following notation is possible
20(C/(Pc))-1 = Pc

where &( ) is the standard distribution function.
The confidence interval size for value 0* is equal to 27,, in this case. For
concrete values n£N, Pc G]O,1[, (xItx2mmxn) we have the relatively large value

en=\K-B-\-21n\ (16)

This is the peculiar charge for the security of a successful plan (dn,r) working with
large noise distribution class.

If we can cancel the non-parametricity in the set problem, the value en could
be notably decreased. The distribution of the observation noise are supposed to
be known in this case. Let us assume that variables {£(i)|i € N} have Gaussian
distributions and equation (15) is true. It is easy to see that almost all information
about noise distributions is taken into account related to the choice of {cn(-)}neN-
Substituting (2/(1 —Pc))-0 5into the other coefficient, a more complete accounting

for the Gaussian nature of the noise distribution into the sequence {cn(')}neN>~
is possible to increase the effectiveness of the method.



TIMOFEEV: NON-ASYMPTOTIC SOLUTION. .. 349

From the proof of Theorem 1 follows that inequality (11) should be true for
the sequence {c,,(-)}neN- In the Gaussian case it is possible that

- - 05
Ve.0) = (¥i2 \df'g;'}e) U(1+ Poyr2).

Indeed, it is easy to see that

_ —p( Cn(@ \
V(0GO, nGN) : P(,(0)] > c,(0) = 201~ X8(0)) '

= 20([/((L + Pc)/2))-1
= (I + Po)/2,

accounting for both the Gaussian nature of the value Xn(0), # G0 and the truth
of the following statement

12 ,
V0GO: E,.xI(0) =2*’;l de ’

Using the Boolean inequality we obtain (11).
In the linear regression case it can be written:

£*=(r(Cf((1+Pc)/2)-tf(Pc))rg*?d -

Value €* is approximately only one eighteenth of en in (16) with Pc = 0.95.
It is an excellent advantage!

4. A practical example

Let us check the Theorem statement for a case of log-linear model regression
function widely used in economics. Thus, we consider that

y(xt) = A mexp(9*xt) + f(<), t GN,
where B* G[a,/?], a> 0,8 <00, 0<A <o00, N={1,2...} is an index set,

MIGN: ij G\CUCZ, C2<00, Ci >0
ViGN: [Ei(t) =0, E£4(t) < ¥4 < 00]
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In this case it is easy to see that
V({t GN; B £ [a,0], x G[Ci,C2)) :
Ciexp(aCi) < ~(A-exp(©*z)) < C2exp(/?C2) < oo.

Thus, all the statements of the Theorem have been proved for the considered
case.

4. Conclusions

The suggested algorithm enables us not only to build a confidence interval for
the estimated parameter of the nonlinear regression but also to control the quality
estimation in arbitrary observation time moments. These results are important
for practice where the sample volume obtained by statisticians are always upper
bounded. The solution has been obtained with nonparametric a priori uncertainty
relative to the noise distributions with a limited fourth moment. So, the suggested
plan of estimation is of working capacity in the case of arbitrary noise distribution
with limited fourth moment.
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C MO3MLMA NocnesoBaTeNbHOr0 aHanmnsa
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cno HabnwgeHWih B ycnoBuAX anpmopHoﬁ onpefeneHHOCTN OTHOCUTENbHO pacnpeaeneHna
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ANALYSIS OF ADMISSIBLE PERTURBATIONS
AND
STABILIZATION OF UNCERTAIN DISCRETE-TIME PLANTS

S. V. Emelyanov, P. V. Zhivoglyadov, S. K. Korovin

(Moscow)

(Received June 12, 1990)

For stabilization of stationary and nonstationary discrete-time plants under compact
uncertainty, solvability criteria are proved that are necessary or necessary and sufficient
stabilizability conditions. For plants under stationary uncertainty a stabilization method
is proposed which reduces design of feedback to finite choice of parameters through proper
parametrization and quantification of uncertainty factors. Examples are provided.

1. Introduction

Robustness of dynamic systems in the face of variations of its operator has
been moving to the top of research agenda. Unlike the problem of robust stability
for a stationary linear system where the results are nearly exhaustive [1, 2, 6],
stabilization remains an underexplored field. The conditions for solvability of this
problem is the subject of this article.

Various aspects of control of uncertain discrete-time plants have been analyzed
[3-5, 7, 8], but stabilization of a discrete-time dynamic plant under a compact, in
particular, interval uncertainty has to be studied more thoroughly, especially as far
as nonstationary plants are concerned.

The specific of the plant and assumptions on the features of uncertainties
largely dictate the choice of the technique for design of feedback. Thus min-max
control combined with recurrent estimation of unknown parameters has been used
[7] for the stabilization of an uncertain stationary plant; also, a dividing manifold
can serve the purpose [4]. Various stabilization techniques which call for accumu-
lation of information have been proposed [3].

This article will address both stationary and nonstationary discrete-time dy-
namic plants. Perturbations must have certain asymptotic properties if an uncer-
tain nonstationary plant is to be stabilized. Stabilizability criteria will be formu-
lated and proved for various ways to describe the uncertainty. A localization method
will be proposed for stabilization of plants under stationary uncertainty. Prop-

Akadémiai Kiad6, Budapest
Pergamon Press, Oxford
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er parametrization and quantification of uncertainty factors reduces the design of
feedback to a finite choice of parameters for which numerous efficient localization
methods will be proposed.

Section 2 will state in formal terms the control problem. Stabilizability criteria
for uncertain nonstationary plants are formulated in Section 3. Section 4 will
describe the localization method and various ways to obtain feedbacks. Examples
of applying the findings are provided in Section 5. The Appendix will contain
proofs of Theorems and comments.

2. Problem statement

The discrete-time plants of this article are described by the formula

Et(Al, B, L) : xt+i —A(t)xt + But + £,

Af)e M CRnxn, 6 €ELCR", tEIN )
where x £ Rn; R, N are sets of real and natural numbers, respectively; A(t) is the
matrix of plant parameters; u £ Rm is the control vector; is an unobservable
disturbance; the pair {A, B} is stabilizable for any matrix A from M; the compact
sets M and L reflect the uncertainty of the plant. The plant will be denoted as
E((M, B), if & = 0 and E(M, B, L) if A(t) = A —const.

It is required to:

1 Asymptotically stabilize the process in zero in the absence of an exogenous
disturbance (£t = 0), or to obtain feedback such that the origin of coordinates
of R" is the globally asymptotically stable equilibrium position of a closed-
loop system;

2. M-stabilize the plant in the presence of an exogenous disturbance when feed-
back is such that in the vicinity of the origin of coordinates of Rn there exists
a global stable attractor whose size is dependent on the three-tuple (M, B,L).

The stabilization problem is stated in the narrow sense in that the stabilizing
feedback is to be linear and stationary.

3. Stabilization of nonstationary plants

It is required to stabilize the nonstationary plant £<(M, B, L). For conveni-
ence, equation (1) will be used also in its equivalent form

xt+1 —(A + AA(t))xt+ But+ £, (i£i CR",
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where A E RnXn is a known (nominal) matrix, AA(t) EM C Rnxn, i EN; AN(<)
is the matrix of parametric perturbations.

The definitions below will specify the geometrical and asymptotic properties
of the perturbations.

Definition 1. The compact set L C rn, n E N is symmetrizable if there
exists a symmetry center of the convex hull L* E convi, or for any L1= (L* +
OL) E convL the inclusion holds

L2=(L- AL) Econv L.

Definition 2. Ifitis symmetrizable, the compact set L C Rn, n E N is even
and forany L1= (L*+ AL) E conv L the inclusions holds

Li = (L* + PiAL) Econvl\ i=1,...,2n
where P{ E Rnxn are matrices of the form
diag(zl,...,xl).

Because in addition to the geometrical properties of the set M the asymptotic
behaviour of sequences made of elements of M is also important for this problem,
the following definitions will also be useful.

Definition 3. The sequence of matrices S = {S(to), S(to + 1),... ,S(to +
i),...}, S(i) E Rnxn is recurrently stable if the discrete-time process

zi+i=5(i)zt, zERn; t=1t0, t0O+1,...

is uniformly asymptotically stable, otherwise S is a recurrently unstable sequence.

The set of all sequences made of elements of the compact M C Rnxn will be
denoted as Sm -

DEFINITION 4. If any sequence 5 ESm is recurrently stable, then so is M.

Definition 5. The uncertain plant X)((M, B.L) is M-stabilizable (asymptot-
ically M-stabilizable) if with any sequence AA(t) E M; t = t0,t0+ 1,...; t0> Q;
the problem of its e-stabilization (asymptotic stabilization) is solvable.

Definitions such as 1 and 2 are also applicable to the matrix set M C Rnx".
The most important stabilizability condition will be shown to be “proper” asymp-
totic behaviour of the parametric perturbations AA(t) E M; therefore without loss
of generality, assume that = 0.

The following result is the most inportant for linear systems.

Theorem 1 (Recurrent stability of the perturbations). If for some
even set M C Rnx”, M* = 0 the uncertain plant

Et(M, B) :xt+Hi = {A+ AA(t))xt+ But, x£R", WERmM
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is asymptotically Afi-stabilizable, then M is a recurrently stable set. The inverse is
also true, if M is a recurrently unstable even set (M* = 0), then the plant E<(M, B)
is asymptotically M-nonstabilizable.

This Theorem is proved in the Appendix.

Theorem 1 confines parametric uncertainty to recurrently stable sets. If the
compact set M is assumed to be only symmetrizable, a similar result is true for
plants whose feedback is stationary and linear w, = Kit-

To improve the usefulness of the recurrent stability condition, let us specify
the form of a priori estimates of uncertainty.

3a. Interval estimates

ForE u n d e r interval uncertainty
A(t)eArel(Rnx"), Al=[A~A+), m(A) = x(A+ + A-),
W(A) = (A+- A~),  w(aij) = w(afj) - La“)>0, W*=1\w{A),

where m(A) € Rnxn and W(A) 6 Rnxn are matrices of mean values and width of
the interval matrix A/ and 7(Rnxn) is the set of real interval n x n matrices holds
Theorem 2. Stability of the matrix W* is the necessary condition for the
asymptotic A/-stabilizability of Et(Ai,B).
Using m(A) as the matrix of nominal values and denoting AA(t) = A(t) —
m(A) it follows from the inequality |A(f) —m(A)| < W* which holds at any t € N
that any sequence of the perturbations is recurrently stable.

3b. Metric estimates

If uncertainty of E<(M, B) is specified in the form
OA{t) <Q = {0A GRnx" : ||BA| <a, a >0}, te N
where [|[AA|| = max LIAAYLL is the operator norm, then the necessary stabilizability

IHI=
condition is proved Iby

Theorem 3. The condition o < a < 1 is necessary for asymptotic Q-stabi-
lizability of E((Q, B).

If follows from Theorem 3 that with a > 1 for any stabilization control u(xt)
at least one strategy of the perturbations behaviour can be obtained, in particular

( al if (A+ al)xt+ Butt BM(xt),
AA(t) = < —al if (A —al)xt+ Buw £ BM(xt),
(—al,al in the remaining cases,
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such that ||zt+i|| > apk<||, t GN on the paths of a closed-loop system. Here
M(xt) = {x€Rn;N| <Wt\\},}, 0<RB <1
Remark 1 Ilflthe norm is chosen so that Q C Rnxn is an even set (for instance
U/Ipo = m2x7\£l|Aay|> ||Aj4|| is a spectral norm, etc.), then with stability in

this norm of the matrix W*, or W* G Q the truth of Theorem 2 follows directly
from Theorem 3.

Remark 2 The condition of recurrent stability of the perturbations formu-
lated in Theorems 1-3 also hold for nonlinear plants subjected to additive pertur-
bations

xt+l = F(xu ut) + AF(t)xu x GRn, nGRm, f :R” x Rm-* Rn,
1) AF(t) GM C R"X",
2) AF(t) Gf/G 7(Rnxn),
3) OFt) eQC Rnxn; tGN.

3c. Necessary and sufficient conditions

Under additional aissumptions, recurrent stability M entails M-stabilizability;
specifically, the following propositions are true.

Proposition 1 When rang[B] = rang[6]yl] recurrent stability of the set M in
Theorem 1is necessary and sufficient for asymptotic M-stabilizability of the plant.

Proposition 2 With {A, B} being a controllable pair, AA(<) = a(t)D,
KOl < a, t GN, ii(z() = Kit, An = (A + BK) a nilpotent matrix, for any
matrix D G Rnxn such that [zZIAG] = AAD - DAn = 0 the plant T,t(M,B) is
asymptotically M-stabilizable iff

ap(D) <1,

where p(D) is the spectral radius of D.
For instance, with AA(t) = a(t)l the condition 0 < a < 1is necessary and
sufficient. If the plant (1) has a canonical form

ktrt 12w Tiei 1 ol
1
In-1 1
U(C,b):1 « =1 11 1+ Ly, (2)
1 11 1 11
Lo, T Y1111
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then the above conditions of recurrent stability of the perturbations become neces-
sary and sufficient stabilizability conditions. For convenience, let us use an equiv-
alent presentation of equation (2) as an autoregression equation

%t+i —AtXt + W, <=ioi +

where x GR, n € R, Xt = (zt_n+1,... xt)T is a vector from R”; At = {an_i(t),
..., ao(t)) is a vector of plant parameters; Al GC C Rn, i€ N and C is a compact
symmetrizable set which reflects uncertainty of the plant description.

Denote

0! In-1

v}

nm 7'

Cf = {CAGR"; CA=AT -C*, At € C}, M =

where C* is the symmetry center of conv C.
The solvability condition of the C-stabilization problem is provided by
Theorem 4. With C C Rn being a compact even set, the uncertain plant
SE(C, b) is asymptotically C-stabilizable iff M is a recurrently stable set.
Recurrent stability of the set M is equivalent to asymptotic stability of the
plant Ef(C, b) having linear feedback

u*(Xt) = -(C")TXt 3)

which is the best in a certain sense. In particular, nonstabilizability of the plant
by u*(Xt) suggests essential C-nonstabilizability.

In the case of independent (interval) perturbations of parameters of (C, b)
use the following notation

AT GC = CI € /(Rn),

ai(t) eci = [c-,ct],

™(c.) = + C~),

w(0 = (ct - @ > *=o0, |, — ,n—l

m(c,), w(c{) being the mean and width, respectively, of the interval number ¢- Let
us compile a polynomial of the form

G()=z"+/[0z" 1+ ... +/?, i, B =-7ui(c,); i=0,1,....,n-1

The following Theorem is true.

Theorem 5. Asymptotic stability of the polynomial G(z) is the necessary
and sufficient condition of asymptotic C/-stabilizability of EE(C/, b).
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Because the parallelepiped representing interval uncertainty is an even set in
the parameter space, Theorem 5 is proved by nothing that the polynomial G(z)
defines the comparison system for E£(C/,6) whose feedback is

n—i
N*(Xt) = ~(C*)TXt=-J2 m(ci)xt_j.
i=0

This Theorem provides an exhaustive solution of the stabilization problem
for a discrete interval plant having a canonical form. In obtaining u*(X<), for an
arbitrary Y £ R, Y ~ 0 the optimization problems are solved

AY —»nlin, AY —»mgx, ATE£C

The minimum and maximum of the function /(A) = AY are obtained with
certain values of (A~)T £ C and (A+)T £ C. The set C is even and its center
of symmetry is provided by the equality C* = |(A + + A~)T while the stabilizing
control is

“*Ne) = -"(A++ A-)Xt.
These results are extended to the case of ¢ 0 while asymptotic stability of
the closed-loop system is replaced by dissipativity.

4. Stabilization of stationary plants

In the problem of stabilizing an uncertain stationary plant E(M, B,L) the
perturbations must satisfy less restrictive constraints. The conditions below make
it possible to obtain asymptotic stabilization or e-stabilization of E(M, B, L) with
any intensity of exogenous disturbances by using a localization method.

For convenience, the plants will be scalar

E(Af, 6,1) :£(+1 —AXf + bu(+ , AEM CRnxn, (i £i CR",

where x £ Rn; un £ R is scalar control; and £ is an unobservable disturbance.
Ja. The approach

On M define a finite decomposition into possibly intersecting sets Mi C R"xn,

S
orM = 1(:;lOMi, and assume a parametric family of feedback functions u(K, x),
K £ 2 Under certain conditions M and its decomposition induce on the set 0 a

5



360 EMELYANOV, ZHIVOGLYADOV, KOROVIN: ANALYSIS OF ADMISSIBLE PERTURBATIONS

<K»n

subset AM C 1) and its decomposition LIM =
K Gfii, A G M- the closed-loop system

- so that for any pairs {K, A},

o

xt+i= Axt+bu(K,xt)+/t, it GL

has a globally stable attractor in the vicinity of the origin of coordinates of Rn. In
this procedure the parametrization and quantification reduce the feedback design
to a finite problem of choice of parameters. MT—(J M, will denote the union of

i
sets such that A &Mi and, consequently, fir = i;lfl;. The plant can be stabilized

if a finite number of measurements of the state path suggests some element K G
Qr. This technique will be referred to as localization whose efficiency depends
on “proper” decomposition of M, choice of the parametric set u(K,x), and the
localization procedure, or the measurement technique and ways to use information
for finding elements of Qr.

Jb. Localization methods

Let us have a look at localization methods in which the quadratic and linear
forms of the state vector are measured and a comparison system is used.

Definition 6. For positive definite matrix HT = H and number e > 0
the plant E(M, b,L) is (A, e)-quadratically stabilizable by feedback u(x) with any
AGM and GL if

1) there exists a globally stable attractor A£ G6¢(0);

2) for every Xo there exists a time tc(xo) such that for xt(xo) » A£at t > tc(xo)
the inequality holds

((Ax, + bu(xt) +it), H(Axt + bu(xt) +it)) - (x,, Hxt) <O0.

Here BE(0) = {xG Rn, (x,Hx) < e}.

Let ||Alls = ||5-1A5]|, 5T5 = H is the A-norm of matrix A and dM is
the boundary of M. The solvability condition of the (A, e)-quadratic stabilization
problem is provided by

Theorem 6. The plant E(M,b,L) is (A,e)-quadratically stabilizable with
some e > 0 iff

max [|(/ - (6rAb)-166T A)A|]a < 1 @

Ato

Without loss of generality it will be assumed hereafter that M = conv{Aj}(n, A- G
Rnxn;i = 1,..., m are known matrices. Because feedback ut = —(bTHb)~xbT HAxt
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is optimal in terms of decrease of the quadratic form (x,Hx) on the plant paths
£%+1 = Axt + buy it follows from the inequalities

[1(7-(6796)-1667 5 ) cony{N1:}"||n < max (7 - (bTHb)~4bTH)A{\H < 1

that linear feedbacks
u(K,z) = Kx, K 6 VM =conv{7t;}™, I = -(b1Hb)~YTHA{; i=1,...,

would be sufficient with subsequent localization of the vector K from
M is decomposed as follows

Ae Rnxn; A =Ai+ A, A" =" [iijA-
j=i
=0 OA = “AIXjAj, \AB\ e [—r.r], J = 1,....i

j=i

where r > 0 is such that for any |[4/ij|<r, j=1,...,m:

(At + X1 AnjAj)TH(Ai + XI A»jAj) ~ H m
j:l i=i

where A; = (7 —(bTHb)~1bTH)A{, 0 < B* < l—lfy,@XmllA,llﬂ and the basic

vectors of the decomposition /i* = (//*1, ... can be computed recurrently.
Assume for simplicity that 1/r is an integer; then the basic vectors /7 =
("™1,...,u'T)T,i=0,..., s can be obtained by the recurrent procedure

0 o @] ?
/| = . ifl= o+ - =
r
r 1
1 0
— 0 1—r
0 0 0
M= A = , p2r+2 =
r r r+1
y 1—r 0
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r r 1
1—r — 0
0 0
, —fis 1+
0 0 0

Let L = {£6 Rn;{£, HE) <a, a > 0}. For localization on a finite set
K={Ki}5 K, = —(bTHb)~1bTHAi; i=0,...,s
use the function
<Pt(K) = ((1+ bK)xt+6), H((A + bK)xt + 6)) - (1- B*)(xt,Hxt) - a

which is equal to the difference between the decrease of the quadratic form (x,Hx)
on the paths of E(M, 6,L) with feedback ut = Kxt and an estimate of minimal
decrease of this form among all systems of the form

m
xt+l = (A" + AA)xt +£,, £ GL, AA=" AfijAj, \Apj\ <r, j =0,... 5.
3=1
By w , uf, (i < u+) let us denote real (by virtue of (4)) zeros of the function
ipt(K). Then holds

Theorem 7. When E(M, b,L) satisfies the following inequality condition
Jhax [|(/ —(bTHb)~1bbTH)A\\H < 1 with some matrix H = HT > 0, there are

positive numbers B*, a, r and s such that feedback u(x) from the set

"ut = KOK,
K*e SIt(K) = Qt-i(K) Mnt(K), fio(AT) = K,
H(u) = <n,(I<) = {KT e Rn;u(_i < Kxt-! <u+i), (6)

Uti = ««-1- (BTHD)~IBTHxt2 ((BTHb)-\bTHxt)2-
- (GTHDb)-\(xt,Hxt)- (1- B¥)(xt. u Air,.1) - a)>

(H,e)-stabilizes the plant E(M, b, L) and for arbitrary initial conditions the in-
equality

(xt=+i, Hxt+i) - (xt,Hxt) <-B*(xt,Hxt)+a
is disturbed a maximum of a finite number of times.

Dissipativity of a closed-loop system follows from the fact that the sequence
Qt(A); t=0,1,... in (6) has the following properties:
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1) Qt(K) C Slt-xiK) C...C Uo(K),
2) fit+1(A) C Qt(K) if *(K () > 0, K( £ Qt(K), i = K*xt.
Let us consider a localization method in which the linear form o = cx is
measured. Let

G —{x £ Rn;<r —cx —0},
Ca = {xt £ Rn;|(T| < A[IxCi|| + 0, A >0, c0> O}

Definition 7. The set G is the stabilizing set of E(M,6) if for any matrix
A £ M there exists feedback u(x) such that the equation xt-H = Axtt &u(xt) is
asymptotically stable in zero with xt £ G at everyt > 0

Definition 8. The set G& is the stabilizing set of E(AI, b,L) iffor any matrix
A £ M there are numbers A > 0, @ > 0 and s(xo) > 0 and feedback u(x) such
that every solution xt(xo) of the equation x(+i = Axt + bu(xt) +£t, & £ L belongs
to the sphere 0r(*0)(0) = {X £ Rn; (x, X) < e(x0)} with x( £ G& at every t > 0.

Definition 9. E(M,b) is globally G-stabilizable by feedback tt(x) with any
matrix A E M if the set G is

1) the stabilizing set of E(M,b) and
2) finitely attracting set of the closed-loop control system.

Definition 10. E(M, b.L) is globally GA-stabilizable by u(x) with any A £
M and £ L if there are numbers A > 0 and @ > 0 such that the set G& is (1)
the stabilizing set of E(M, b, L) and (2) the finitely attracting set of the closed-loop
control system.
Let A™ be an arbitrary martix of the parametric family M = {A £ Rnx"; A =
m

m

Au = Pi-Ai, . . A = 1) 0< H < 1}. When the feedback is a member in the
i—

t=i
parametric family u\ = —(cb)~IcA\x the closed-loop system equation with =0
takes the form

m
xt+i = PAMXE - (c6)"16c (A k- fi)AIXU P = (/- (c6)_16c). )

*:i

m
It follows from the equality <<l = =1 f1,)od;x<that the linear form a =

ex contains information on the unknown vector /i = (/ii, ®wm/rm)T| besides, if
|Mwax(AA/T)| < 1, then there is a number A > 0 such that with |at+1] < A||xt||
equation (7) is asymptotically stable. In the subsequent discussion E(M,b,L) are
such that cb ¢ 0, 3% |Atax(PN)| < 1

Because the properties of the linear system are continuously dependent on
the parameters, there are positive numbers A, aq, «2, r, a3 > max|c£| such that
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for any Ay GM, |At—/i,|= |0k < r; i=1,..., m every solution of the equation
m

xtH = (PAN + 72 Ali\Afxt +£t, G L att > 0 belongs to the stabilizing set Ga
=i

m m
for which the inequality holds (((PA"+t_1,£l,am ) X*+£%), U((PAB+11(12 ha;0")x<+
£%)) —{xt,Uxt) < —ai(xt, )+ o62and U = UT > 0 is the solution of the Lyapunov
equation AAPTUPANL—U = —axl.
Note that if E(M,b,L) is (4, e)-quadratically stabilizable with some matrix

H = HT > 0, then it is sufficient that the vector ¢cT G Rn in linear form a —cx be
chosen in the form ¢ —6T4A and the condition max |Amax(P.A)| < 1 holds by virtue

of (4).

For instance, if A = Ag-f bAA, AAT G Q C Rn where Q is an arbitrary
compact set and Agis a known matrix, there is certainly a matrix H —HT >0
such that the pair {/10,6} is fA-quadratically stabilizable and from the equality
P(Aqg+ bAA) = PAo which holds for any AAT G Q follows the truth of the
condition[\rm( |Atax(PJ1)| < 1with ¢ = bTH. Consequently, M can be decomposed

as in equation (5). When the localizing function
<PYK) = Ic(A + bK)xt+ cE[- A[x,[[ - c0

is used, holds

Theorem 8. Iffor E(M, b, L) and some vector cT GR", (cb ¢ 0) the inequal-
ity R |Amax(PA)| < 1 holds where P = (7 —(cb)~1bc), positive numbers 4, O,

r, c*i, ¢2, s exist such that feedback u(x) from the set

" = K*xt,

K*Gnt{l9) = Qt-i{l<) Mat(K), Mo(K) = K,
M(A) = {KT GRnuf-i < # xt-i <u+J,
cuf-l = -1 - (6)"V(E |(c6)-1|(A|IxL 1 + co),

cabl =

globally GA-stabilizes S(M, 6,L) and there exists a matrix U— UT > 0 such that
the inequality

(xt+i, Uxt+D) - (xt,Uxt) < xt) + a2

is disturbed on solutions of a closed-loop system a maximum of a finite number of
times.

For G-stabilization of E(M, b) which is a limit case of GA-stabilization, there
exists a unique feedback ut = —(cb)~1cAxt which ensures motion in the manifold
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a = cx = 0. Let £(ti) denote the set of feedbacks which result from Ca(n) as a
consequence of a limit transition as [, —»0 and oq —»0:

"ut = K*xt,

K*£ 12,(K) = iit_i(K) N Qt(K),

QO(K) = {I<T £ Rn\K = -{ch)~IcA, A £ M],

,O,(A) = {ArT € Rn;/fx(_1= «,_! - (c6)_1at},

C(u)

Solvability of the G-stabilization problem is defined by

Theorem 9. If for some vector cT £ R", (c6 YAOQ) the inequality condition
m |frax(PJ1)| < 1 holds, then E(M, b) with ut = u(xt) £ £(u) is asymptotically
stable and any motion path of the closed-loop system belongs to the hyperplane
n —O0 with a possible exception of a finite number of points g < n where n is the
system dimension.

Localization with the use of a comparison system is a convenient tool if the
parameters and exogenous disturbances of £(M, b, L) satisfy the matching condi-
tions, namely,

A = A0+ bAA, (t=bit, AAT£ Q= convfQJ*, |E{ < £ £> 0,

where {J1o, 6} is the controllable pair and Q{ £ Rn;i =1 ,m are known vectors.
Such a plant is described by a scalar n-th order difference equation

ViH —AiYt + W +it,

m

m
where y £ R, Yt = (yt,..., yt- n+i)T is a vector from Rn, AM= ~ t*iAi,l§1 /h =1,

0 <Hi< 1,Af £ Rn; aconvex combination of vectors A1-;i= 1,..., m is in one-to-
one correspondence with a convex combination of matrices Ag+ bQf;i —1,..., m.
Introduce the following exponentially stable comparison system

<tl —BZt + @,
where z £ R, Zt = (zt,..., zt-n+i)T, B = (Ro,..., Bn-i) is a vector of positive
parameters, and |£t| < ®< < 00 is the majorant of disturbance. The stabilization

problem is understood in the following sense.
Definition 11. The plant

2/i+i = ApYt +ut+it, A”e conv{"}", |[Et]|<E

is globally P-stabilizable by u(x) with any A* £ conv{j4,}y, it £ [-££] if
1) there exists a stable attractor whose size is dictated by the pair {j3,£}; and
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2) for every Yo there is a time i(Y0) such that at every t > <(Y0) the magnitude
of the solution yt is majored by the associated solution of the comparison
system, or \yt\ < zt with Zt(Yo) = |Yt(yo)|.

When the control is ug = —A\Y the closed-loop system equation is

m

Vt+H — —WiYt +it-
i- 1

5
Assume that the set conv{A;}jn = .(_JQJ, is decomposed as follows J, = {AT £
i

m
R”: A= A"+AA, AA = t2_2I Op;A, Apt £ [—+,-r]}, where the parameters r; > 0
in the inequalities |A/x,| = Ji- —Aj < r- i = 1,..., m are such that the inequality
m
holds 122 < B. For localization on the set Qq(K) = {—A‘} it would be
i=i

sufficient to use the localizing function tpt(K) = \{A* —K)Yt +£t|] —B\Yt\—
Then the set of feedback takes the form
(L = K*Y(,
= K€ = Qt-i(K) NWt(K), Qo{K) = {-A*}0,
U~ at(K) = {KTE£Rn;ut-i < KYt-i < «+1J,
yuf-i = W-1- M+ (jB|Yt|+ @,).

5. Examples

Example 1 For an uncertain plant

0 1 N 0
ai(0  ao(t) 1

where a\(t) £ [£,£], aO(t) £ [0.2,1.4], (EN, £>0 the polynomial G(z) = z2—
lu(ao)z— = 72—0.6z—e has roots zi = 0.3-(-V0.09 -, zx—0.3—\/0.09 —t
and by Theorem 5 the plant is stabilizable iff 0 < £ <0.4.

Example 2. In developing a localization algorithm for an (H, e)-quadratically
stabilizable plant

xt+i = AXt+ by + xe Rn, UuGR
A, £M - conv{Ab A0}, |[|flls <«, a>0,
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because A* —Aq+p(A\ —No), ||[Nm||s < 1for any p € [0, 1] let us obtain estimates
of the parameters Soand  in the inequalities |A/ii| < 6~ i = 0,1, with which

(Ai + Am(A! - A0))TH(Ai + A/Uu(Al - A0)) -H < -ftH,

O< Bi<1-||N]la; i=0,l
Specify a decomposition
B+1
M =1[J Mi, Mi —{/1; A=Ay, 4 <u < Mm+1; pl = sat(id)}
1=0

where s = [1/6], 6 = min{60, 6i}, sat(-) is the saturation function. With a localizing
function

M A) = (((A, +bK\)xi + &), H((AR + bK\)xt + 6)> - (1 - B*){xuHxt) - a

where 8* —min{/?0, Bi), K\ = —bTHb)~1bTHA\, the localization algorithm has
the form i
| «t = ~{bTHb)~IGTHA\,

la*e 3 1 =fiti(/i)n[A* i@, a g = blYoH

where Aj, A" are zeros of the function tpt(A).

Example 3. Let x<tl = (Jlo + bAA)xt + but +it, 471 £ conv{Qi, Qo) and
Jlo be a known matrix. For an arbitrary matrix H = HT > 0 such that the pair
{No,6} is A -quadratically stabilizable choose a vector cin a linear form a = ¢x so
that c = bTH. Let H —1, ||Et] < a, a > 0and P = (I —(c6)_16c). Estimate
the parameter [ in the inequality |<<+1] < A||x(|| so that every solution of the
equation x(+i = PAoxt + (c6)_16%<tl satisfies the inequality

(X1H,xt+1) - (xt,xt) <-B(xt,xt), 0<B < 1- [|PAQ.

To do this, it is sufficient that [ is chosen from the equality 0 < [ < R\b\\. Because
Jim = (Jlo + bQo) + pb(Q1l—Qo), by selecting the decomposition step 6 so that
0< 6 < [cb(<30 - Qi)||-1 the set fiO(p) = {»}0+1,» = sat(i6); i=0,...,541
is obtained.

If (ot = [c(N™ + bK\)xt + c£t|- All*t|| - Go where

IA = ~(cb)~1cA\,c0 > max|cE|

then the relation (8) where A] and A are replaced by zeros of the function yt(A)
may be used for localization.
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6. Conclusion

In the problem of robust stabilization for a nonstationary uncertain discrete-
time plant the admissible parametric perturbations have to satisfy requirements,
much more restrictive than in continuous stabilization. This is true, in particular, of
the asymptotic and geometric features. In these terms the necessary and sufficient
stabilizability conditions are formulated.

The problem of stabilizing a stationary discrete-time process is solved by
a newly proposed and refined localization method which reduces the design of
feedback to a finite problem of parameters choice by proper parametrization and
quantification of uncertainty factors.

Appendix

Proof of Theorem 1. Assume that there exists a recurrently unstable sequence of the
perturbations S = {S(to), S(to + 1),... S(to + t),...}, S G Sjvf. Introduce a majoring sequence
S* = {)5(to)],|5(to + 1)|,..., |S(to + Oli *«+} which is recurrently unstable and, because the set
M £ Rnxn is even, is nonempty, or 5* G Sjvf. The key point of the proof is that by virtue of
nonstationarity of the plant and evenness of M for any x € Rn,u £ RM,t £ N, f > fo there is a
matrix OA(<) £ M such that

kt+11= |4N(0| *M + \AX, + Bu,|.

The operation | m is understood component-wise. W ithout loss of generality assume that to = 0.
In a recurrent form the sequence

kil = |4J1(0)[|x0] + \AXO + Bu0|,

W2\= |40 (1)] =|8A(0)] « [xO] + |AA(1)] «|N1x0 + BUO| + |Axi + Bu],

N -1 N -1
I*n|= J"J |47(OMNro| + |41 (01Nxo + Buol--... + dry _i + Bujv_il
1=0 1=1

As TV —»00 going to the limit we have
N -1
lim jvl = lirn AA (t)||lro] + lim N,
Jim i ,ien /%é IAA@lIro + tim A

N -1 N -1
AN = |A~(01U xo+ Buo| - [AA(DIJAx1 + Bu\1-f ... + \AXxjv_i + BUH-i |.
= »2
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Because far > 0, lim [ar > 0 we have
N -*o00

N-1
lim |xarl > hm TT |AA@)|x0l >0 xo ® 0, (9)
“¥00

N —00 \i%

if a matrix sequence OA* = {|4A(0)], |BAA(L)],... |4 *),...} is recurrently unstable. From (9)
it follows that the plant is M-nonstabilizable with any feedback u(xt).

Proof of Theorem 2 proceeds as above. Indeed, representing the plant equation in an
equivalent form of a difference inclusion

N

xt+i GA/xt+ But = [-IF*, W*]xt + m(A)xt + But

and denoting x f,. = max |xt+i | with fixed (xt, ut) we have
i+1 A(t)EAT

XN = (VF*)n |x0| + (VF'*-'"M AJxo + Buo\ + eee+ |[T(A)Xx1y_! + Suai-il,

lim xj* > _lim (1r*)*|xo >0, xo0o ®0
TV—*00 TV—e0

if the condition of asymptotic stability is not met for the matrix W *.

To prove Theorem 3 it is sufficient to derive at least one behavioural strategy of the per-
turbations A = {AA(0), LA (L),..., BLA(]),...} such that ||xt+i]| > af|xt]|, i f N with a > 1
and with any feedback u(xt). One of such strategies is given in the body of the next.

Proof of Theorem 4 is facilitated by using an equivalent representation of the equation
describing E£(C, i) as an autoregression

xgq+i = AtXt+ut, i=0,1...,

where x GR, un GR, Xt= (xt_, +i,..., xt)T,At = (an-i(t),...,ao(t)), Af GC CR'L
Assume that there exists stabilizing feedback u(Xt)s Represent u[Xt) as a sum

u(Xt) = u*(Xt) + Au(Xt), u'(Xt) - argmu'%nmax X t+i],
At
Au(Xt) =u(Xt)~ u'(Xt).
Introduce a non-negative function fo mRn x R" — R in the form

fo(Y) = max AY - minAY, ATGC
A A

where Y = (yi,mmYn)TmFrom analysis of the function fo(Y) with the set C assumed even it
follows that
y.dMY)/dy,>0, fo(Y)=fo(\Y\), FyM), t= (10)

Because the plant is nonstationary, there exists a vector Aj 6 9C such that

xt+i(u(Xt))| = “ (max AXt —min Ax/J1 + |[Au(Xt)|.
2V A A /
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From the definition of the min-max control it follows that

[*+1u(X))> [*+i(u*())[t
[Zt+2(u(-At+1), “Ne )1 > [@t+2(u*(-Xt+1).u(-X "))].

By virtue of (10) the equalities hold

[* +a(«x (X, +1),«(*))! > *+a(u*(jr+i)lu*(X,))|1
[Xt+2(u(Xt+1),uNe ))| > |xt+2(u*(Xt+1),u*(Xt))|.

Extending this reasoning to arbitrary times we arrive at a conclusion that there always
exists a strategy {Ao,..., Ajy} such that on the paths of the closed-loop system

IXjy (u(X~f_1),... .u(No))| > .o, W*(50))]. (11)

The majoring condition (11) holds for any feedback u(Xi). If u'(Xt) is not a stabilizing
control, then

N Imﬂw0 [Xjy(UOKGv_i),... A)! > ||rpu ANt _1),... u*(X0))| >0

and feedback u(JYt) does not stabilize EE(C, 6) either. Assuming that the set C is even the control
«e(*,) = -(C*)** islinear, whence immediately follows the requirement that M be recurrently
stable.

Proof of Theorem 5 can be obtained in two ways. First, directly from Theorem 4, because
n-1
u* (Xt) = — \;ZOm (ci)xt—1 And the polynomial G(z) dictates the comparison model for the closed-
>

loop system and, second, as a particular case in the proof of Theorem 2.

Proof of Theorem 6. Necessity of condition (4) follows from optimality, in terms of re-
duction of the quadratic form (x,H x) on the paths of the plant xt+i = Ax\ -f but of feedback
ut = —(b}Hb)~1bTHAXt. To prove sufficiency, feedback u(x) £ is used which satisfies the
conditions of (H yc)-quadratic stabilizability.

To prove Theorems 7 and 8 it is sufficient to note that by virtue of the decomposition
the sequence of the set Qt(K)i t = 0,1,... has properties 1 and 2, whence it follows that with
u(x) £ H(u) and u(x) £ Cg(n) f°r the number of times when the inequality ipt < 0 does not
hold, the estimate q < s is true.

Proofof Theorem 9. With t\,i2,..., being arbitrary time, tx> 0;i = 1,..., n, compose
an equation KX = Bgq, where

u(xti)-(ci>) Vitj+lI
X = Ixtlxt2 ... xtn Bi =

X - (@ 1<, +

If det X ¢ 0, then the desired vectoris K —BoX~1= —ci>) 1cA. To prove the Theorem,
it is sufficient to show that if on the paths of the system = Axt + but}A £ M whose feedback
is u(x) £ C(u) the inequalities hold |<X+i|> 0;t = 1,..., n with somet, > 0;t = 1,...,n, then
the vectors are linearly independent.
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Taking Farewell

With the appearance of this last, sixth issue of its twentieth volume the Edi-
tors announce the termination of the journal Problems of Control and Information
Theory.

While such a step is necessarily made with uneasy feelings, it is still firmly
hoped no additional undue inconvenience is being caused by this neither to the
readers/subscribers nor to the potential authors. Care has been taken throughout
1991 for making no further announcement concerning the Journal, and of course
no further call was made for future subscriptions for 1992. Manuscripts, submitted
next to the deadline of this present sixth issue, have been promptly returned to
their authors, informing these about the termination with apologies.

The Hungarian Academy of Sciences branch of the Editorial Board, directly
responsible for the technical process, came up with the idea of stopping the Journal
by the end of 1991; as it became obvious already in 1990 that even for keeping the
outputs of the consecutive issues strictly according to schedule, unconventional
extra care and interventions were needed, because of the devaluation and decay of
the financial backgrounds. In addition it has been realized by all of us that there
is no more real need, for operating an additional anonymously reviewed inter-
academic publication channel in English, in addition to those classically existing
at each place, specifically for those working in Control and Information Theory at
the sponsoring Academies; and for those either visiting at or co-working with these
communities from abroad. This is no more indispensable, as all renowned journals
in the field became globally accessible in the meantime by authors from any part of
the world, at least by those with something really significant to say. Such a journal
as the Problems of Control and Information Theory can hardly make a sense in the
future within such an active arena without a truely global publicity, and a truely
global editorial activity.

While even several members of the present Editorial Board are willing to start
further activities towards these ambitious objectives, under a more constrained pro-
file within Control Theory, an entirely new endeavor appears as most appropriate
even for this purpose; and not just some slight furtherings along the existing lines.
This is while the Editorial Board unanimously proposed the sponsoring Academies
to stop, by the end of 1991, the operations of the present Journal; even though all of
its members still so much enjoy of acting together. A steady academic give-and-take
is existing within this community apart from any editorial activity anyhow.

This final Editorial is, also to acknowledge that long list of soul-seeking con-
tributions included in the past twenty volumes, due not only to the schools at the
sponsoring Academies, but also from many other centers, nearby and overseas. We



particularly recollect those ones that actually provoked fair further reflections from
their field. We also wish to thank for the competent technical support, regularly
received from the Publishing House and the Press of the Hungarian Academy of
Sciences, and particularly for the support due to the desc-top publishing group we
were associated with.

Finally let us express in this final Editorial our deep feelings and appreciation
towards those with whom we were honored to co-work in the present capacity
for long whiles, who however passed by in the meantime. More distinctly, our
commemoration is of late F. Cséki (Editor), B. N. Petrov (Editor), G. Bognar
(Editor), L. Kalmar, M. A. Gavrilov and A. M. Letov, all forming personalities of
their times.

The Editorial Board
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A DECENTRALIZED CONTROL SCHEME
FOR CONTINUOUS-TIME SYSTEMS
THROUGH PARTIAL AGGREGATION

V. Vesely, V. Barc, K. S. Hindi

(Bratislava, Manchester)

(Received February 21, 1991)

A new method for designing a control law for a subsystem connected to a large-scale
system such that the interaction is minimized, is proposed. The method yields a robust
design while ensuring the best possible conditions for the stability of the overall system. The
conditions for a successful design are not too strong and can be easily met. The calculation
of the control law requires only modest computation.

1. Introduction

In many cases, when the subsystem is to be connected to an already exist-
ing large-scale system, the objective is to design the control of the subsystem to
optimize a given objective function while ensuring that the overall system remains
stable. The design control of a new power station to be integrated within an ex-
isting power system is one example. The second example we can take from the
control of industrial processes when the subsystems can be jointed or disconnected
in a prescribed way. In this case

- the first/last subsystem stability,
- the prescribed way jointed/disconnected subsystem stability and
- the complex system stability

must be ensured by control system.

Two approaches have so far been adopted. The first is to design a decentral-
ized controller for the subsystem concerned, checking overall stability a posteriori.
If stability is not attained, the design must be repeated, which may require a num-
ber of design iterations [1, 2]. The second approach, i.e. the centralized approach, is
to make a design taking the whole system into consideration, utilizing only the out-
put of the subsystem. Thus, this approach necessitates working with a high-order
mathematical model of the overall system.

The approach described in this paper is based on considering a detailed model
of the subsystem and an aggregate model of the large-scale system. The interaction

Akadémiai Kiad6, Budapest
Pergamon Press, Oxford
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between the two is minimized, while augmenting the subsystem to cater for the
dynamics of the large-scale system.

2. Problem statement

Suppose that a large-scale system can be divided into two subsystems, the
first of which is to be controlled while the second is already controlled. Let us
consider a linear time-invariant system Si

Si : i)'§= KEX?%? Biu o

J
yi - C1X1

where
£1 6 Rni, x2 £ Rn2 are the state vectors of the two subsystems, respectively;
n £ Rmi is the control vector of the first subsystem, Ay, A1z, A21, A22, Bi are
constant matrices having appropriate dimensions.

We assume that ni <C I'2, matrix A22 is stable, and the triplet (/lu, Bi,Ci)
is controllable/observable, and

n =K Cxxi (2.2)
It is required that n is determined such that an objective function for the first
subsystem is optimized, while:
(@) minimizing interaction with the second subsystem, and
(b) ensuring the best possible conditions from the viewpoint of the first subsys-
tem, for the stability of the overall system. Assuming this conditions, the
first subsystem’s feedback matrix K must be chosen so that the contribution
of the first subsystem to the stability of the whole dynamical system will be
positive.
The objective function is:
J =J (x] Q1X1+ uTRu)dt (2.3)
t-t0
where Q1 and R are positive definite matrices.

3. The main result

Let us define a new state vector m(f) as follows
M- Lx2 (3.2
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where tq E Rn‘. Matrix L will be referred to as the aggregation matrix. The
dimension of matrix L and the magnitude of this elements are determined by the
requirements following from the aggregation objective. In our case, this objective
is to retain those properties of the aggregated system portion, which are essential
when considering the stability of the whole system [6]. Letting

L —"12,

the most simple but not optimal results are obtained.
Multiplying equation (2.1) by /112,

hi = A12J121X1+ A12A22X2

Let
A12A22 —\M A2 + E]

It is now possible to minimize an interaction between the augmented system and
the second subsystem by

min [I£j] = WA12A22 - MAL2I

from which
M = Ai2A22AN2
(3.2
E —A\2A22[l ~ AlI2An]
where /1”2 is the pseudo-inverse of A\2- Now, (2.1) can be written as:
S2: xi =Auxy + vi + Blu
vl= A12A21X1 + M ui + Ex2 (3.39)
X2 = A21X1 + A22X2 (3.3b)
Let 2\ = and 22 — X2, then
§2: I\ =DIZ\ + D2l + Bui (3.4a)
l2=Dsl, + Dal2 (3.4b)
W = Cz\
where
Ny I 0 _ .
D1 NN M D2 E D3=[A2i Q]

D4 —A22 B 301 c=I[Cl q
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Since Z2 is small, by virtue of minimizing ||£]j|, it is now possible to find the
condition for tearing the two subsystems apart, while maintaining the stability
of the overall system. Let us consider that the conditions for tearing the two
subsystems hold (see the next Section). For system S3

S3: ii —D\z\ + Bu (3.4)

we can find the control law (2.2), which will minimize the next augmented objective
function

J j (2*Qzi + uTRu) di (3.5)

t=to

Matrix Q2 is a positive definite one associated with the extra state vector tq(t).
The state vector tq(<) is regarded as the interaction between the original first sub-
system and the other part of the system. An appropriate choice of Q2 leads to a
minimization of this interaction.

Let us consider a Lyapunov function of the system (3.4) with control law (2.2)
in the form

where

H = zfPz\ (3.6)
For Bellman-Lyapunov equation we have
B(x) = (2Pzi)T(DxZi + Bu) 4 z"Qzi + uTRu = ) 3.7)
= zI[(DI + BKC)TP + P(Dj + BKC) + Q + CTT'T /T'C]r1
To minimize (3.5) we obtain
minJj = Vi(<0) = zf(i0)Ps1(i(0) < Tr(P)\zi(tO\ (3.8)
under the condition B(x) = 0.
To minimize Tr||P||, we write the following Lagrangian function:
L = min max{Tr[P + W((Di + BKC)TP + P(D1+ BKC)+ 9)

+Q+ CTKTRKC))}

where Tr[] = trace[-] and IT is a matrix of Lagrangian multipliers. The necessary
conditions for optimality are:

VPL =1+ W(Di+ BKCf + (Di + BKC)W =0 (3.10a)
VWL = p{D\ + BKC) + (Di + BKC)TP + Q+ CTKTRKC = 0 (3.10b)
VKL = RKCWCT + BTPWCT = 0, (3.10¢)
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from which
K =-R-IBT[PWCT(CWCT)~]] (3.12)

which, when C is an identity matrix, reduces to the well-known equation for the
linear quadratic problem
K = —R~IBTP. (3.12)

The three nonlinear matrix equations (3.10) can be solved by a two-level
iteration process, similar to that employed by Xinogalis [3] to solve a set of similar
equations. The solution steps are as follows:

1. Choose K1 such that (D\ + BKC) is stable.

2. Substitute this value of A'lin (3.10a) and (3.10b) to calculate W1 and P1.
3. Substitute it in (3.10c) to find A'2.

4. If 1ATL —AR|| < £, where £ is a small positive number, then stop; else set

K1= A2and go to Step 2

For the industrial process mentioned above, which can bejointed/disconnected
a control law will be determined by the next way.

1. For the first isolated subsystem a control law can be determined such that
the corresponding objective function is optimized by centralized approaches.

2. The second subsystem isjointed to the first one. The mathematical model
of two subsystems is given by (2.1). The first subsystem model and its control law
are switch on the matrix A2 The controller for the first subsystem can be de-
termined by Egs (3.10) and (3.11) through minimizing the corresponding objective
function. So, we have got a new subsystem and a new control law calculation for
the next jointed subsystem can be repeated.

4. Stability analysis

In order to check sufficient stability conditions for the interconnected system,
the Lyapunov function for subsystems are constructed which are followed by check
up that some linear combination of them is the Lyapunov function for the global
system.

V =alzjH 1z1+ a2z*H22 4.0

where cg, oq are positive constants and

(Di + BKC)TP\ + Pi(Di + BKC) = - Ai (4.23)
D\P2+ P2D4 = -9 2 (4.2b)

Lemma. If Du = Di + BKC and D4 are stable, then the condition
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ensures that the global system is stable, too. It makes the disconnection of the two
subsystems (3.4) possible. The way of the proof of this Lemma is similar to that
" In order to maximize the right-side of inequality (4.3) the optimization tech-

nique can be used for finding
AMI(PT) 210 (44)
. Ajif(PI) .

under the conditions (4.2).
Let us consider the non-singular constant matrices Tj,j = 1and 4, and let

7\ - 2

4.5
z2 = T452 (43)

For the disconnected two subsystems (3.4) with controller (2.2) using (4.3) we can
get

2i = L\2\
2= L42 (46)
where
Ix = T~\Dx + BKC)TX
L4 = T4 1D4T4
and
. W
L = dlag T -V’\(./I} \g_\] ) * e *| _(% u%\] p+|1 (47)

where <p, afj+ jui'q are eigenvalues' of matrix L; with ag<O0forg= 1,2,..., w—p
and 0 < p < I'{/2- For Lyapunov matrix equation (4.2), we obtain

LjPi + PL{=-Hi (4.8)
where
Pi =T/ PiTi .
. i- 14
Hi = tJ HiTi

Lemma [6]. Let us consider that Hi = cL- then from Eq. (4.8) for Pi we
obtain

Pi = ~d [diag{-crl-crl,...,-cr;,-(7“,-cr)+1,...,-(7;_p}] 1 4.9
where G > 0 is an arbitrary constant, and
X ‘Amin(Hi)" _
Am {Pi)

ma —2um (4.10)
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where am is the maximal eigenvalue of matrix Li. Applying Eq. (4.10) to Eq. (4.3),
we obtain

(4.11)

where M, a\j are the maximal eigenvalues of matrix (Hi + BKC) and matrix £+4,
respectively.

Condition (4.11) gives a more agreeable result than the one given by (4.3)
(see example).

5. A practical example

Let us consider the linear invariant dynamical system (2.1) with

r-0.9 0.3 0.7 012 02 0.31 0 -

01 -1.7 -0.1 0 0 0.22 0.2
0.6 0 -0.4 0.19 0.05 -0.05 0
A= 0.6 10 0 -0.36 0.4 011 - 0.01
-0.7 028 -0.3 022 -01 0.2 0
0.3 0 0.6 - 0.01 042 -1.2 0
L 082 -0.15 -0.025 0 0.1 06 -36.
'12 0
. 12 0 '0.4
Bi= 01 O B2- B3 .,
0 07 0 03 0.85

The matrices C, Q, R are identities.

1. For the first isolated subsystem the feedback matrix Ki can be determined
by the centralized approach. We have got

Ki -0.6526 -0.0956 -0.4596
' 0.2663 -0.0211 -0.7099

2. The first and second subsystems are jointed now. The feedback matrix /12
can be determined by (3.10). We have got

-0.8716 -0.4595

K2 0.0969 -0.6275

In order to check the two jointed subsystems stability we use (4.3). We obtain

IH2| = 0.3452 < "™" min M 0.8759
ANIMNe Y1
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or for Eq. (4.11)
0.3452 < 1.346

The two jointed subsystems are stable. Now, we connect to the jointed subsystems
the third one.
3. For the feedback matrix A3 from (3.10), we obtain

A3 = [-0.2574 -0.1308]

In order to check the stability of the overall system we use Egs (4.3) and (4.11).
We obtain these inequalities

05104 < 0.7716 Eq. (4.3)
05104 < 0.927 Eq. (4.12)

The three jointed subsystems are stable. As we can see from this practical example
condition (4.11) gives a more agreeable result then condition (4.3).

5. Conclusions

A new method for designing a control law for a subsystem connected to a
large-scale system such that the interaction is minimized, has been proposed. The
method yields a robust design which optimizes an objective function for the sub-
system while ensuring the best possible conditions for the stability of the overall
system. The conditions for a successful design are not too strong and can be easily
met (i.e. that Au, B C, must be stabilizable and /12 must be stable). In addition,
the calculation of the control law requires only modest computation.

The suggested approach is not contingent upon deriving a control law through
optimizing an objective function, and, therefore, can also be used if a different
control design method, say a frequency response method is desired.
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NEAREST NEIGHBOR SEARCH AND
CLASSIFICATION IN 0(1) TIME
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A method of finding the nearest neighbor is presented. The effectiveness of the
algorithm has been shown in computer simulations. This paper gives a probabilistic analysis
of the performance. The algorithm is shown to have 0(1) expected asymptotic complexity,
measured in the number of distance calculations for n sample points. A reduced complexity
classification rule is derived which has the same error probability as that of the nearest
neighbor discrimination rule.

1. Introduction

Similar versions of a Nearest Neighbor algorithm have been presented inde-
pendently by several authors (Vidal [1], Motoishi and Uemura [2], Faragé et al. [3])
which finds the nearest neighbor considerably faster than the exhaustive search at
the price of 0(n2) memory requirement. We will refer to this algorithm as Geo-
metric Search (GS). The effectiveness of the algorithm is proved in Vidal [1] via
extensive computer simulations. However, no exact analysis of the performance
of this type of algorithms have been published. This paper is devoted to filling
this gap. In Section 2 we present GS and mention that, in a given probabilistic
model, the number of necessary distance calculations tends to zero compared to
the number of sample points. In Section 3 we propose a modified version of GS,
called Modified Geometric Search (MGS), which requires 0(n) storage capacity,
and its average complexity (measured in distance calculations) is 0 (1), that is,
asymptotically constant. In Section 4 we introduce a nonparametric classification
rule derived from MGS, which has the same asymptotic error probability as that of
the Nearest Neighbor classification rule and requires no more than d + 1 distance
calculations in a d-dimensional Euclidean space.

Akadémiai Kiad6, Budapest
Pergamon Press, Oxford
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2. Geometric Search

Let X, Xi,X2,.m, Xn be i.i.d. random variables taking their values from Rd.
Assume that the X{ have a common density / of compact support (all random
variables are defined on the same probability space (fi, A,V)). Let p be a metric
on Rd. The task is to determine the nearest neighbor of the observation point X
among the sample points X\,X?,..., Xn. Denote the nearest neighbor by X~ N.
The algorithm “Geometric Search” uses the distances between the sample points
Xi, X2, mm X n, thus they must be calculated and stored in a preprocessing stage.

Algorithm 2.1 (Geometric Search)

Initialization. Set T <X 1, TNN <—ATi, Rmin «—00, T <—{Ti,..., Tn}
Step 1. Calculate p(X,T).
Step 2. If p(X,T) < Rmin then Amin «—p{X,T) and TNN <-T.
Step 3. Update T in the following way: Exclude all sample points T* E T from T,
for which
p(X,T) + Rmin < P(T,T*)

or
P{X,T) —-rmin > p{T,TM

holds. Delete T from T, as well.

Step 4. If T is empty then STOP, the last value of TNN is the nearest neighbor and
its distance from X is -Rmin- If T is not empty then go to Step 5.

Step 5. If the distances p (X, Xi1), p(X,Xi7),... ,p(X,Xim) have already been evalu-

ated, then
T «- arW?m(U),
where _
ym(U) =fn<%%<lp(U,AtJ -p (X, X\
Go to Step 1

It follows from elementary geometric arguments, using the triangle inequality,
that Step 3 never excludes the true nearest neighbor. Since Step 5 effects only the
order of distance calculations, the reader can immediately check that the algorithm
ends with the correct nearest neighbor. The idea of the exclusion in Step 3 also ap-
pears in other nearest neighbor algorithms which use branch and bound techniques
to reduce complexity ([4], [5]).

Although Algorithm 2.1 finds the nearest neighbor for any metric on Rd, for
the analysis we need to assume that the metric is of the form

p(x,y) = (x- y,x - y)l/2=|a- 2
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where (¢, ¢ is an arbitrary inner product in Rdand || «|| is the corresponding norm.
It is readily verified that every inner product in Rd can be written in the form:
(@, y) = xTRy, where R is a positive definite symmetric matrix.

Theorem 1 Denote by Nn the number of distance calculations performed

by GS (Algorithm 2.1). Then
lim~ =0
nN—00 n

with probability 1

We omit the proof of Theorem 1 for the ideas in it are similar to those in the
proof of Theorem 3.

As a measure of complexity we have considered only the number of distance
computations. We find it a reasonable assumption for this is the most time consum-
ing part of the computation, especially when the distance measure is a complicated
one. All the simulation results show that the processing time is essentially deter-
mined by the number of distance computations.

3. Finding the Nearest Neighbor in 0(1) Time

A serious drawback of Algorithm 2.1 is its 0(n2) memory requirement. In
the sequel we present a modified version of GS with memory requirement linear in
the number of points. Now, instead of computing the distances between the points
Xi, X2, mm Xn, the preprocessing is the following:

Let pi,... ,Pd+1be d+ 1points in Rd of pairwise equal distances whose convex
hull V contains the support of the density of X . (Therefore, Xi £ V with probability
1) Denote by si,S2>es, s<i+ the hyperplanes whose finite segments are the faces
of the regular simplex V. Calculate and store the n(d -f 1) distances p(si,Xj),
1<i<d+1 1<j <n, ie. the distances of the points Xj from all the hyperplanes.
Having this done, we propose the following algorithm:

Algorithm 3.1

Initialization. T <—{Xi, X2,..., Xn].
Step 1 Calculate the distances p(X,s,), i=1,...,d+ 1
Step 2. Calculate the values

hx(Xi) = max, 1* -, Si) - p(X, S)), M
determine their minimum and put

Xn argen;in hx(U). 2
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Step 3. T <-T —£/, where U consists of the X, for which
hx(x i) > Q)

Step 4. Calculate the distances of the elements of T from X, and put

Xn N <-argminp(X, U).
LY

Before analysing the complexity, we verify that the algorithm works properly.
Theorem 2. Algorithm 3.1. always finds the nearest neighbor of X.

The proof of the theorem uses the following lemma:

Lemma 1 For each point y inside V

-y p(X,y) <hx(y) <p{Xyy),

where hx is defined as in (1).
Proof. Denote by Sj(A), j = 1,... ,d+ 1the hyperplane that contains X and
is parallel to Sj. Then clearly,

Ip(2/,s>) - = P(y,sj(X)),

therefore,
hx (y) = max p(y,Sj(X)).

Since X GSj(X) for all j thus

P{y,si(X)) < P(y,X)

for all j which proves the second inequality.

To prove the first inequality let sJy(A) = arg maxy p(sj(X), y), that is hx(y) —
p(sjv(A),i/). Then it is easy to check that y falls in a right cone centered at X
with base parallel to Sjy(A) and angle which is twice the angle ad between an edge
of V and the corresponding height of V. (Every distance and angle is understood
in the given metric and inner product.) We will prove that angle qj is not greater
than & 4. Then it follows that denoting the projection ofy onto Sjy(A) by v the
angle Xyv is not greater than n/4, thus we have

2
PIV.Y) - Py, X) COS(XyY) > ply,X) cos(?ri4) = ' p(X,y),

and the statement is proved.
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All we have to prove is aj < & 4. Let mi be the altitude and rk be the
circumradius of the ~-dimensional regular simplex with edge of length 1. Thus
ak, the angle of interest, is just the angle between an edge and the corresponding
height. Using elementary plane geometry we can write the following two equalities:

cos2(af)) + rK cos2(f/2 —2ak) = 1
sin(ai+i) = rk

After elementary steps we get

- 1
2(ajt+i) = 1- .
cos2(ajt+) cos2(ajt)
Now, it is obvious that cos(ajt) monotonically decreases to 1/2, thus cos2(at) >1/2
for all k and the lemma is proved. O
Proof of Theorem 2 We need to check that Algorithm 3.1 does not exclude
the nearest neighbor in Step 3., that is,

T hx {XAN) < hx(X*n).
Applying Lemma 1
hx(X»N) <p(X?N,X) <p(X*X) < Azh X (X-n)

thus, the algorithm never excludes the nearest neighbor. O

Now, we can turn to the complexity analysis of Algorithm 3.1. As the mea-
sure of complexity again, the number of distance calculations are considered. The
following theorem states that on the average, the algorithm executes no more than
a constant number of distance calculations.

Introduce the following notations: Let  r be the ball of radius r centered
at x, and let J1be the Lebesgue measure on Rd and let Px denote the probability
measure on 7Zd induced by X. In addition to the compact support condition we
need a regularity condition imposed on the density. We assume that there exist
functions Ci(z),C2(x) > 0and constant [0 > 0 such that for almost all x (mod Px )
and all r <ro

ci(x)f(x)<n \] f(y)dy <c2(x)f(x) 4)
*T &,

(5)
R4
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Notice that this condition holds if e.g. the support of the density is a convex set
and a < f(x) < bfor almost all x (mod Px) for some a,b > 0.
Theorem 3. Denoting by Mn the number of distance calculations performed
by Algorithm 3.1, we have
nIirK1)10 E(Mn) < O
where ¢j = d + 2d + 1is a constant depending on the dimension d only.
The following lemmas show that having Step 3 of Algorithm 3.1 executed, the

number of the remaining points, on the average, is not greater than 2d.
Lemma 2. Ify £V and * hx{y) < hx(X?*), then

p(y,X)<2p(X?N,X).

Proof. Applying Lemma 1, the condition and the minimality of hx(X*) we
can write

"p(y.X) <hx(y) < fyx(X-n) < h x(X»N) < *=p(X™tX),

which completes the proof. O

Lemma 3. Let Z be a random variable taking its values in Rd. Assume there
exists a compact set A £ Rd with PZ(A) = 1. Then for any y > 0 there is an
6= e(y) > 0 such that

Pr{Pz(Sz.y) > e} = 1.
Proof. For any set H € Rd define the quantity

p(A)= inf Pz (Sxy).

If p{A) > 0, then ¢ = fi(A) will clearly satisfy the requirement, so assume that
p(A) = 0. Then there are sequences xn 6 A, en >0 with

nI|_r'g0 £,=0 and Pz{SXy)<fE,.
Now, cover A by a finite number of open balls of radius y/2, all centered in A
Then at least one of these balls contains infinitely many of the points xn. Let Bq
be such a ball. As Bo has radius y/2
Bo £ Sxnty

holds for some infinite subsequence {xn< of {x,} which implies

Pz{Bo) < Pz(SXn, y)<§£,,
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that is, Pz (Bg) = 0 must hold.

Now, replace A by A\ = A—Bqgand repeat the whole procedure. If p{A\) > 0,
then the proof is finished, otherwise we can delete a ball B\ of radius y/2 centered
in A\ with Pz(Bi) = 0. Continuing in this manner we must get stuck after a finite
number of such deletions by the boundedness of A, and the procedure yields a set
Ai 6 A with Pz(Ai) = 1and p(Ai) > 0, which completes the proof. O

Let X,, N(x) be the nearest neighbor of the point x, and let the random
variable Rn(x) = p(x, X,, N(x)) be its distance to x. The next lemma states that
the average number of points not excluded in Step 3 of Algorithm 3.1 asymptotically
does not increase with n.

Lemma 4. Forallc> 1

n||_*l’lg0 E . {mX.€~x,cq,, (x )} ¢
<>
Proof.
A hx,eSxRnEO} \ ~ nE (“{*»€-5.X R, (X)})

= nPr{A,, € Sx,cRn(X),X,, = XMV}
+ nPr{A", € SXiCRn(x),Xn p X ™ }

The i.i.d. property of the X- implies that the first term in the brackets is 1/n, while
the second term is the following:

Pr{xnes X}CRn(x)x n * x * N}
—E (~¢{x.65x,cR._i(x)}) — E M{XneSx.R,,_1iX)}")
- E (@\{x.e5xcR,_1x)}) —
thus, we have
tE_ Zix,e5x,cnn(x)} = NPr{X,, € 0x,caB_,(X)}-
«=1

Now, for arbitrary y > 0

nPr{xn e SjreA.-ifx)} < «Pr{x, e sX cRn_I(X),Rn-i(x) <y}

+nPr{/in_!I(X) > y} (&)
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First, we treat the second term of (6). By Lemma 3 there exists an e > 0 (inde-
pendent of n) with

Pr{An_1pO >y) =E(1- PxiSx.y))':-1< (1- 0"“1-

which implies
lim nPr{A,_i(X) >y} =0

The first term of (6) can be written as

\] nPr{X,, e SXN *x),Rn~i{x) <y}f(x)dx @)
Kd

We will show that n Pr{X,, £ SX|JG _1(x), Rn-i(x) <y} —ecdas n —o0 for almost
all x (mod Px), and use Lebesgue’s dominated convergence theorem to finish the
proof. We can write

lim nPr{X, € A.._i(x) <y}
Pr{Xn € 5MNCan_1(r), Rn-i(x) <y}
~n™ Pv{xn € 5x,9n_1(x)}
lim Pr{"n £ SXICRn_I(x), Rn-i(x) <y]
n—0 Pr{Tfi £ sx,Rn-i(x)i rRji—i(®) "2/}

(8)

The last equality is true because Pr{A, _i(x) > y} tends to zero exponentially fast
for almost all x (mod Px) (see Cover, Hart [6]). Introducing the notation F,,_i(y) =
Pr{J?n_I(x) < y}, Lebesgue’s density theorem implies (Wheeden, Zygmund [7])
that for almost all x (mod /)

Pr{-~n 6 SXCRN_lx)jRN—(~) ~ 23
Pr{Xn € 5XHn_j(x)iRn-i(x) < y}
[ | f(z)dzdFn_i(t)
0 &cf
[ | f(z)dzdFn-i(t)
0 X<

f(F(X) + HX(D))X(SXt) dFn-i(t)

- cdn (10)
f(F(x) + hx(£))A(Sx t) dF,,-x(t)
0
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where hr(t), Hx(t) —0 as t —*o00. Obviously, (10) is arbitrarily close to cd if y is
small enough and f{x) > 0. Therefore, the limit in (8) is cd for almost all x (mod
Px)- On the other hand, using condition (4) we can upper bound (9) as follows:

I f f(z)dzdF,,.i(t)
0 < dc2(g)

fygtf{z)dzan. )~ ¢
0 )

which is integrable by condition (5), therefore, the dominated convergence theorem
can be applied to complete the proof. O

Proof of Theorem 3. Since the number of distance calculations is d + 1 (in
Step 1) plus the number of points not excluded in Step 3, Lemmas 2 and 4 readily
imply the theorem. O

4. A fast nonparametric classification algorithm

We have seen that Algorithm3.1 finds nearest neighbor after d+1+2d distance
calculations, on the average. In many cases the nearest neighbor is used to classify
the input vector X into one of M categories, that is,the task is to estimate the
value of the random variable ¥ £ {0, 1,.. ., M —1} through X, using independent
copies of (X, Y) : £, = (Xi,YD),..., (Xn,Y). Cover and Hart’s [6] well known
result states that if the estimation is Y ~ N, the label of X * N, then the asymptotic
error probability of the nearest neighbor classification rule is

M-I
M, PHYINT Y} = E E Row (11
i=0
if the pi(x) = Pr{¥ = i\X — 2z} a posteriori probabilities are continuous. In
this Section we propose a classification rule which provides the same asymptotic
error probability as that of the nearest neighbor classification and calculates only
(deterministically) d+ 1 distances, and we also drop the continuity condition of the
Pi(x). This classification rule is simply the truncated version of Algorithm 3.1:

Classification rule 4.1. Estimate ¥ by Y*, where Y* is the label of X * =

= argtr?_in hx{U), the point obtained after executing the first two steps of Algorithm

3L
Clearly, d + 1 distance calculations are necessary to obtain Y*. We have the
following theorem for the probability of misclassification:
Theorem 4.
M-I
Iim Preytoy)=E 1. E e\ e (12)

i=0
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First, we prove the theorem for continuous a posteriori probabilities.

Lemma 5. If the Pi(x) a posteriori probability functions are continuous, then
(12) holds.

Proof. In the proof of (11) the only property of the nearest neighbor Cover
and Hart used was that p(X,X,,N) —*<0 as n —»00 with probability 1. But, by
Lemma 2p(X,X*) < 2p{X, X,,N), thus p(X,X*) —+0 as n —%00 with probability
1, therefore, the statement can be proved in the same way. O

Lemma 6. If/ is a non-negative measurable function on R*, then

H:f(|§]§(1+15[f(><)}.

Proof. We use Stone’s technique [8] to prove the statement. Put

. 1 if hx(xi) < hx{xj) forall i dj
Mn{%t %) +- -5 Xn) 0, other(wige ) @

then exploit the i.i.d. property of the X,

E[f(X*n)}= E ~/(X )w,n (X ,Xi,..., X, )3
Mn
=Y, E(f(X)win(Xi,XIt...,X,...,Xn))
1=1
/ n \
= Eif(X)

Therefore, it is enough to prove that

n

JED LXK L, Xn) < 2d+1.
*=1

n
Here win(xi, x\,..., X,..., X,,) is just the number of the Xj for which hx(x) <

hXj(x)_for all j & i. We can upper bound this number as follows. Let n and u; be
the following d + 1 dimensional vectors:

n=(u@),u()),...,u(d+1) = (p(x,si),p(x,s2),.. .,p(x,sd+J)),
and

W= (u-1),uf2),...,u”+1)) = (p(xi,sl),p(xi,s2),... ,p(xi,sd+l)),
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fori=1,2,...,n. Observe that
hx{xi) = j@g}l\p(x{, sj) - p(x, s,)l

= max —u«)| = |lu —u,j|oo.

Thus, it is obvious that x* = x, iffu, is the nearest neighbor of n (with respect to the
maximum norm) among the points u\,Uz2, ... ,un. Therefore, )=l w,n(xj, x\,... ,X,
..., Xn) is just the number of ns for which n is the nearest neighbor of w, among
ui,..., u;_1,u, ut+i,... ,un. Anelementary argument shows that this is not greater
than the number of orthants of Rd+1, that is, 2d+1. O

Lemma 7. Let Z,Z\,...,Zn be random variables taking their values from
the set {0,1,...,M - 1} such that (X,Y, Z),(XL1YL1,Z*,... ,(Xn,Yn,Zn) form an
i.i.d. sequence. Put qi(x) = Pr{Z =i\X =x),i=0,..., M- 1L Denoting by Z*
the label of X* we have

nil-1
limsup IPH{T,* d Y) - Pr{Znd Y} <20+l ~ E\PI(X) - ?,(A)|.

Proof.
IMY: ®Y} - Pr{z: ®¥Y}\= IE( Pr{¥1i ®Y\X, X*n} - 2{Z'n b Y\X, A*})|
/IM-1

q £ =T bl X *n)- 4i(x*))
\ i=0

N

E(E bAY-
i=0
Applying Lemma 6 the proof is completed. O

Proof of Theorem 4. Since the set of continuous functions is dense in L\(Px),
it is easy toMseei that for every e >0 there exists non-negative continuous functions

gi(x) with Y: Qi(x) = 1lsuch that

M-I
Y.E\M X)-qi(X)\< A-n,

Now, the random variables Z,Z\,... ,Zn can be defined such that Pr{Z = i\X =

x} — qi(x) and (X,Y, Z),(Xi,Y\, Zi),... ,(Xn,Yn, Zn) form an i.i.d. sequence.
Then from Lemma 7

. 21H€
limsup IPr{Vr*ch ¥Y}- Pr{Z* b Y} <
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On the other hand,

M-I M-I
££(1-p?2P O )(1-92(X)) <2 £ E\Pi(X) - gi(X)\
i=0 i—0
2
< 2+ 2d+1

Therefore, by the triangle inequality, using Lemma 5 and the continuity of the
gi(x), we have

M -1 2 20+
. . i i
Ilnm_s'yop Pr{y,*#Y}-£ io(l P L2(X)) < 94+ 204 4 24 2N
Since c is arbitrary, the proof is completed. O

Acknowledgement

The authors wish to express their thanks to Laci Gyorfi for his valuable help
and encouragement.

References

1. Vidal, E., An algorithm for finding nearest neighbours in (approximately) constant average
time. Pattern Recognition Letters, 4 (1986), pp. 145-157.

2. Motoishi, K. and Uemura, N., On a fast vector quantization algorithm. The V IIth Symposium
on Information Theory and Its Applications, Kinugava, Japan, in Japanese, 1984.

3. Farago6, A., Linder, T., Lugosi, G. and Pikier, T., On the algorithmic problems of the nearest
neighbor method (in Hungarian). Hiradastechnika (Telecommunication), Vol. X X X 1 X (1986),
No. 8.

4. Fukunaga, K. and Narendra, P. M., A branch and bound algorithm for finding k-nearest
neighbors. IEEE Trans. Comput., Vol. 24 (1975), pp. 750-753.

5. Kamgar-Parsi, B., Kanal, L. N., An improved branch and bound algorithm for computing
K-nearest neighbors. Pattern Recognition Letters, 3 (1985), pp. 7-12.

6. Cover, T. M., Hart, P. E., Nearest neighbor pattern classification. IEEE Trans, on Information
Theory, Vol. IT-13 (1967), pp. 21-27.

7. Wheeden, R. L., Zygmund, A., Measure and integral. Marcel Dekker, New York, 1977.

8. Stone, C.  Consistent nonparametric regression. Annals of Statistics, Vol. 8 (1977), pp. 1348-
1360.

9. Linder, T., Lugosi, G., Classification with a low complexity nearest neighbor algorithm. IEEE
International Symposium on Information Theory, San Diego, CA, 1990.



FARAGO, LINDER, LUGOSI: NEAREST NEIGHBOR SEARCH 395

Mounck 6numxanwero cocefa n kKnaccupukaumsa 3a spemsa 0(1)

A O®APATO, T. IMHAEP u I NYrowm
(BypanewT)

MpepcTaBneH MeTO4 noucka 6amxaiuiero »cocefa«. MHEKTUBHOCTbL aNropmMTMa no-
KazaHa C NOMOLW b0 KOMMNbIOTEPHbIX BblUMCNeHUA. B cTacTbe faeTcs BepPOATHOCTHbLIN aHa-
Nn3 ero pe3ynbTaTUBHOCTM. MOKa3aHO, YTO anrOpPUTM WMEET aCUMTOTUYECKYH CMOXHOCTb
0(1), koTopas M3MepseTCs NO YUCNY BbIYUCAAEMbIX PACCTOAHWIA A0 N BbIGPAHHbIX TOYeK.

BbiBejeHHOe MpaBMA0 KnacCUUKaLUyM MOHMKEHHOW CNOXHOCTW MMeeT Ty Xe Bepo-
ATHOCTb OWMOGKK, YTO M NpaBuNo oTbopa Gamxaliwero coceaa.

A. Farag6, T. Linder, G. Lugosi
Technical University of Budapest
H-1521 Budapest

Stoczek u. 2.

Hungary






Problems of Control and Information Theory, Vol. 20(6), pp. 397-406 (1991)

UNIVERSAL ALMOST SURE DATA COMPRESSION
FOR ABSTRACT ALPHABETS AND ARBITRARY
FIDELITY CRITERIONS

En-hui Yang
(Tianjin)

(Received December 30, 1990)

The problem of universal almost sure data compression for abstract source alphabets
is considered. Under certain mild conditions on fidelity criterions, universal almost sure
data compression theorems are established for abstract source alphabets and reproducing
alphabets. The methods are distortion program-size complexity oriented, and the construc-
tions of the universal sequence of codes used are based on distortion Chaitin complexity.
These results are the generalization of the universal almost sure data compression theorem
of Omstein-Shields for finite alphabets and the fidelity criterion of Hamming distance to
abstract alphabets and arbitrary fidelity criterions and, this author believe, should have a
profound impact on the development of theory of distortion program-size complexity.

Keywords and phrases: Bounded distortion variable rate code, Chaitin com-
plexity, distortion Chaitin complexity, operational rate distortion function, universal data
compression.

1. Introduction

Let A and A be two abstract alphabets, henceforth called the source alphabet
and the reproducing alphabet, respectively. Let A and A be <rfields of subsets
of A and A, respectively. We denote by (/100,” 00) the infinite Cartesian product

Ai(—l(n*’ Ak) and by {An,An) for each positive integer n, the n-fold Cartesian prod-

uct kg (Ak,Ak), where (Ak,Ak) = (A,A) for each positive integer k. (A0D, ’{1003

and (An,An) are defined similarly. If x = (x;) is a finite or infinite sequence from
A or J1, let xE, = (xm,xm+i,..., xn) and, for simplicity, write x" as x". For our
purposes, a source p is a stationary, ergodic process {Xn} taking values in the
source alphabet J1.

Let p : A x A —»[0,00) be a single-letter distortion measure for which there
exists a finite subset A C A such that

sup inf p(x, y) < D, 1)
XEA yEA

Akadémiai Kiad6, Budapest
Pergamon Press, Oxford
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where D > 0 is a fixed real number, and let Fp = {p{xn, yn)\p(xn,yn) = (1/n) x
J3"_i p(xi, y,-)} be the single-letter fidelity criterion generated by p. A D-bounded
distortion variable rate code Cn of order n is a quadruple (¢,A,n,T), where Ais a
finite subset of An, dpis a measurable mapping from An to A such that, for every
xn € An,p(xn,d(xn)) < D, and r is a length function from A to {1,2,...} which
satisfies the Kraft inequality, that is,

£ 2-"n><I.
yn£A

Following [1], we refer to I(C,,,xn) — T(p(xn)) as the length function and
r(Cn,xn) = T(d(xn))/n as its associated compression factor. The expected com-
pression factor, R(Cn) = Ep(r(Cn,xn)), is called the rate of the code Cn.

The operational rate-distortion function R(p,D) is defined as follows. Let

Rn(p, D) = inf{B(Cn)|Cn is a D-bounded distortion variable rate code of order n}.

This is well-defined since (1) guarantees that there exists for each positive integer
n at least one D-bounded distortion variable rate code of order n. The operational
rate-distortion function is then defined by

R(p.D)= liggRn(p.D).

Standard subadditivity arguments can be used to show that the above limit does
exist and R(p,D) = inf{7?n(p, D)|n is a positive integer}. If there exists a letter
6 £ A for which

Epp(X, b*) < oo,

and if (1) is a strict inequality, then it follows from [2] that our definition is equiv-
alent to the usual mutual information definition of the rate-distortion function.

When A and A are the same finite alphabet, and the single-letter distortion
measure p is the Hamming distance on A, that is

By =18 SifbRuite,

Ornstein and Shield [1] and Shield [3] proved the following theorem.

Theorem 1. Let A and A be the same finite alphabet, and let the single-
letter distortion measure p be the Hamming distance on A. Then for any D > 0
there exists a sequence {£,.} of D-bounded distortion variable rate codes such that
for any ergodic source p, the sample compression factor r(C,,,x) converges almost
surely to R(p, D).

Note that in the case of Theorem 1, our definition of D-bounded distortion
variable rate codes is equivalent to the Ornstein-Shields’s definition of D-semifaith-
ful codes in [1].
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Theorem 1 is the first general result of the theory of universal almost sure
data compression. In this paper, we generalize Theorem 1 to the very general case
of abstract alphabets and arbitrary distortion measures. Specifically, we prove the
following theorems.

Theroem 2. Let the source alphabet A, the reproducing alphabet A, and
the single-letter distortion measure p satisfy the assumption (1). If A is finite, then
there exists a sequence {Cn} of D-bounded distortion variable rate codes such that
for any ergodic source p with the source alphabet A, the sample compression factor
r(C,,,xn) converges almost surely to R(p,D).

Theorem 3. Suppose the assumption (1) holds. If A is countably infinite,
then there exists a sequence {On} of D-bounded distortion variable rate codes such
that for any ergodic source p, the sample compression factor r(Cn,xn) converges
almost surely to R(p, D).

Theorem 4. Suppose the assumption (1) holds. In addition, suppose there
exists a denumerable subset A C A such that for any ergodic source p,i?(p, D, A) =
R(p,D) where A(p, D, A) is the operational rate-distortion function for the repro-
ducing alphabet A. Then there is a sequence {On} of D-bounded distortion vari-
able rate codes such that for any ergodic source p, the sample compression factor
r(Cn,xn) converges almost surely to R(p,D).

The reasons why we state separately the Theorems 2 and 3 can be seen in the
following Sections. Theorem 4 follows directly from Theorems 2 and 3. Since the re-
producing alphabet A in Theorem 4 is abstract, so far Theorem 4 can be considered
as the most general result of the theory of universal almost sure data compression.
From [2], the following two examples satisfy the conditions of Theorem 4, and hence
the corresponding universal almost sure data compression theorems hold.

Example 1 /1 is a separable metric space, p is bounded, and p(x, ) is contin-
uous for each x G A. In addition, there exists a finite subset A C A such that

sup inf p(x,y) < D.
'nepAyeAp( )

Example 2. A is a totally bounded metric space, A is a Borel subset of A,
and p is the metric on A.

The proofs of Theorems 2 and 3 are given in Section 2 and 3, respectively. The
methods used in the proofs are distortion program-size complexity oriented, and
the constructions of codes described are based on distortion Chaitin complexity.
The concept of distortion Chaitin complexity was first proposed in [4], and for
some basic properties of this concept the reader is suggested to refer to [4].
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2. Proof of Theorem 2

Throughout this Section the reproducing alphabet A is assumed to be finite.
We begin this Section by reviewing some basic properties used in this paper of
distortion Chaitin complexity.

For each positive integer n and each x" £ An, the D-distortion Chaitin com-
plexity Co(xn) of xn is defined by

Cd(i") = min{C(i/")|lyn £ An and p(xn,yn) < D}

and the 6-distortion conditional Chaitin complexity Ca(xn|n) of xn given the
length n is defined by

CRB(zn|n) = min{C(i/"|n)|i/" £ An andp(x",y") < D),

where C(y") and C(y"|n) are the Chaitin complexity (see [5], p. 331) ofyn £ An
and the conditional Chaitin complexity (in old fashion, see the appendix of [5],
p. 338) of yn £ An given the length n, respectively. (For some properties of Chaitin
complexity and conditional Chaitin complexity, please refer to [5]. While only
binary alphabet was dealt with in [5], most of the results in [5], including the
definitions of Chaitin complexity and conditional Chaitin complexity, can be easily
extended to the case of any finite alphabet.) It is easy to see that both C.c>(xn)
and CR(xn|n) are *"-measurable. The following properties were proved in [4].
Property 1L For any x £ J1°°,

limsup - ¢ o (x") = limsup —C a(x"|n),
n—wo TI n—»00 Tl

and

Ir|1n_1érgf -Ca(x") lepf“—cu(x In).

Property 2 Vx,y £ A*, Ca(r*y) < Ca(x) + Cp(y) + 0(1), where A*is the
set of all finite sequences from A, and the symbol denotes the concatenation
between finite sequences.

Property 3. Let m be a fixed integer. For any x £ /1°° and n > m,

cmwm)<iwp|mxﬂmum+oay
=i

From Property 2, it follows that for each positive integer n and each x" £ An,

CD(x")<Co (x") + 0(l),

MAGYAR
IttDOMANYOS AKADEM IA
KONYVTARA
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and hence for any x € A°°

I'Hgi&f n—C,q(a:rl|n) < Iﬁwfn—cri(xl?ﬂm)- 2

Based on distortion Chaitin complexity, next we describe for each positive
integer n a D-bounded distortion variable rate code Cn of order n. Toward this
end, let ¢n : An —»An be a measurable mapping such that for each xn £ An,
p{xn,dn(xn) < D and C(cn(xn)\n) — CD(xn\n). The code O is now furnished
by O = (¢n,An,m, C(-|n)), where C( |n) is the measure of conditional Chaitin
complexity. Henceforth, the code C, = (¢, An,n, C(-|n)) is said to be generated
by the measure CR( |n) of D-distortion conditional Chaitin complexity. It is easy
to see that the compression factor r{Cn,xn) equals Co(xn\n)/n. To complete the
proof of Theorem 2, it is enough to show that

n@mFCG(znm) = R(p,D) as.. (3

We first prove that
Iirginf hCo(xn|n) > R(p, D) as. 4

To this end, we make use of the sample path covering argument originated by
Ornstein and Weiss [6] and modified by Shields [7]. For any x £ /1°°, let f(x) =
Iimni_rlgo(lln)Cn(a;n|n). By stationarity, it follows from (2) that f(x) is invariant
almost surely. The ergodicity of /i then guarantees that f(x) is constant almost
surely. Let H denote this constant so that H = liminfn_ QXI/n)C£)(xn|n) with
probability one. Inequality (4) is valid once we show that H > R{p,D). Let e be
any positive number, then for almost every x £ /1°°, Co(xn|n) < n(H + e) for
infinitely many indices n. As in [7], let us fix a positive number 6, choose M > 3/(5,
and define Mn(x) —m(n, x) —n+ 1, where m(n, X) is the least integer m > n such
that
Cdx™m-—u+I1)<(m-n+1DH+¢e) and m—n+1>M.

In what follows, when the infinite sequence x £ A°° is clear from the context, we
shall write Mn(x) and m(n,x) for convenience as Mn and m(n), respectively. It is
easy to see that Mn is almost surely finite and that {Mn} is stationary and ergodic.
Thus, there exists an integer L such that Pr{Mn > L) < &/3. Wke define gn to be
the characteristic function of the event {Mn > L}. that is, gn equals 1if Mn > L
and 0 otherwise, so that for any K,

£ (j?2i>)<i23.
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For K > L, let Gk be the event
K-L+1

K-L+1 £, 9i<6/3

From Markov inequality it follows that Pr{Gj<} > 1—6. As in [7], we can identify
Gk with a measurable subset of AK. For each xK = (xx,x2,mm xk) £ Gk we
define a sequence of nonoverlapping intervals [n-, m,] inductively, letting

nx= T17{nly, (:ra) = 0}, mi = m(ni)
and
7ij = min{n|n > 7- 1+ 1, gn{xK) —0}, mi

m(n:).

The construction stops the first time n; or m; exceeds K —+1. A similar argument
to [7] can be used to prove that there are at most 6K indices n in [1,L\] but not in
Ui[rii,mi] in case K > 3L/6. We define ipk to be a measurable mapping from AK
to AK such that

(i) ifxK = (xx,x2,...,xK) &GK, then (rpk(xk )){=<(z) for 1< r< K;

(i) if xK E Gk , then

(PK(xK = t(xj), j <€Uj[n,-m],

where t : A —A isameasurable mapping such that for any x E A, p{x,t(x)) —

min{p(x,y)\y E A], and dn : An —»An is the measurable mapping of the

code On = (o, An,n, C(-|n)). Let Fk = {®Pk{xk)\xk E Gk }- The following
lemma gives an upper bound to the cardinality \Fk\ of Fk m(If 5 is a finite

set, |5| denotes the cardinality of S; all logarithms are to base 2.)

Lemma 1 If 6 is small enough then \Fk \ < 2K(H+2t\

Proof. For each xK E Gk we call {[n-, m,]} as in [7] the block decompositions
of [1, A] associated with xK. The number of possible block decomposition is upper
bounded by 2KHG), where H(6) = —616g6—1—6) log(l—6). Since m,-n,+1> M
and M > 3/6, there are at most 2(T ‘~n,+ 1bs+£+<5/ 3) sequences from A such
that

Cly"'|t-- w+ < (mi-w+ (A +i)

Therefore, corresponding to any given block decomposition {[ni, T,]}, if we let

FAr{Km,-]}) =
—{'Pk(xK)\xK G Gk has the given block decomposition {[wj.m,]}},
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then
FU{[n,-,nu]})| < \A\BK [, 2(T'- n'+1)(F+E+r/3)

< 2A(H+£+</3+i log |4])
This implies
Ifk\<

< 2«(i)A'2 A(H+eti /3+<iogM|)

where the summation is over all possible block decompositions. Letting 6 small
enough yields the lemma.

To sum up, we have obtained for each positive integer K > 3L/<5 a measurable
mapping ipx from AK —»AK, a measurable subset Gk C Ak with probability
Pr{GK} > 1-—5 and a subset Fk C AK of cardinality at most 2K(H+2c) such that

(i) for any xK € AK, p(xK,ipK(xK)) < D\
(ii) for any xK e Gk, @ (xK) € Fk -
For each K > 3L/8 we define a length function tk : AK —{1,2,...} so that
®K(YyK)<K logl|i| +2 if yK e AK
TK(YK)<K(H +2¢c)+2, if yK € FK.

Therefore, we obtain for each K > Bbb/8 a D-bounded distortion variable rate code
CK = (ipk )AK,K, tk) of order K with expected compression factor

RCK)= [ TKGpK(XK))dy+ | -prKPK(xK))dy

Jak-G k
G K

<jr(K(H + 2f) + 2)Pr{GK) + jf(K log |i]| + 2)6
<tf+ 2e+6Llog]|i|+4/Nr.
From the definition of R(p,D) it follows that
R(p, D) <H +2c +6log|i| + 4/K.
Letting K —ao0 and then letting e and 8 —0 yield
R(H, D) <H

which completes the proof of (4).
We next turn to prove that

limsup n—C/j(rl'Jll'l) <R(p, D) as.. ©)
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Toward this end, we take arbitrarily a D-bounded distortion variable rate code
On = (AT ,7,7) of order m. A similar- argument to the proof of the Theorem 3
of [4] can be used to prove that for any x GA°® and n > 2m,

1 n—mfl
Ca(*»<- £ V(x*+m- 1)) + 0(1).

X—1
Hence,

hC D(x"|n) <r—”1:_,1 + 0(D)/n.

From the ergodic theorem it follows that

limsup —€/)(xn|n) < a.s..

n—»0o0 N

Since Om is taken arbitrarily, from the above inequality (5) follows. The proof of
(3), hence the proof of Theorem 2, is now complete.

Note that when A and A are the same finite alphabet, and when p is the Ham-
ming distance on A and D = 0, the identity (3), hence Theorem 2, was established
in [8].

3. Proof of Theorem 3

Throughout this Section we assume that the reproducing alphabet A is count-
ably infinite. Let A be a finite subset of A satisfying

inf p{x, D. 6
iﬁﬁ >55/1;|<3{>< y) < (6)

For convenience we write A as AU{ai, a2,...} and denote by An the finite alphabet
AU{ai, Lo, mman}. Let R(p, D, A,)) denote the operational rate-distortion function
for the reproducing alphabet A; and let CO () denote the measure of distortion
Chaitin complexity for the reproducing alphabet A, , that is, for each positive integer
n and each xn GA",

= min{C‘(j/'})|Zn GA", p(xn,yn)<D),

where C*(-) is measure of Chaitin complexity defined on the set of all finite se-
quences from Aj. From Property 2, there exists a constant d- depending only on
A, such that for each n and each xn G A",

CD(xn) < CD(xR) + dt. )
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We next construct for each n a (i-bounded distortion variable rate code C,, of
order n. Let 1=ni < 72< ... < n; < ... be an unbounded sequence of integers
such that

max \dj |/n,- -> ;*000,
J<>

and let i(n) — max{ijn > n,}. As in the above Section, we define ¢n to be a
measurable mapping from A" —»{(A,)n so that

p(xnM z n))<D and C*(<(*")) =C'D(xn).
Let t;m : An —*(Aqgn))n be a measurable mapping so that for any xn £ A",
ipn{xn) = ¢%*"\xn),

where

j(xn) = min{;;]l <j <i(n), CP(xn) =min{CA(xn)|l < k < r(m}}
We define rn to be a length function from (A:(n))n —{1,2,...} so that

T(yn) - min{CJ(i/n)|% n) <j < i(n)} + flog*(«A,

where k(yn) = min{"|i/n £ (Aj)"}. Here [r] denotes the least integer m such that
m >r. The code O is now defined to be (A-(G))n,n,r,). It is not hard to see

that for each xn £ An,

m(cpn(xn))= _min_ CD(xn) + flogj'(n)].
7<«(«)
Let S(xn) = min;<i(,) CD(xn). The compression factor then is given by

r(Cn,xn) - F(S(xn)+ flogi(n)]).
To complete the proof of Theorem 3, it is now enough to prove that
|im r{Cn,xn) = R(y,D) a. s. (8)
We first prove that
limsup r(Cn,xn) < R(fi, D) a. s. 9)
n —0
For each j, it is easy to see that

limsup r(C,,,xn) < limsup —&D(xn).
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From (3) and Property 1,
nliryo n_Cb(X”) = R(fi, D,Aj) a s..

and hence
limsupr(Cn,x") < R(/u, D,Aj) a. s..

n —mwO0

Letting ] —»o0 yields (9), since
mr(4, D,Aj) *j—oo0R(/L L))-
We next need to show that

liminf r(Cn,xn) > a. S. (10)

To this end, as in the previous Section we make use of the sample path covering
arguments. From (7),
S(xn) < S(x£) + max |d; |

and hence
liminf-S(xn) < liminf-5(x5)

so that
liminf r(Cn,x") < liminfr(Cn_i, X£),
N—moo n —*00

from which it follows that liminfn_oo r(Cn,x") is invariant with probability one.
The ergodicity of /i then tells us that liminfn—ecr(C,,, xn) is a constant almost
surely. Let H denote this constant so that H —liminf,_00r(Cn,xn) with proba-
bility one. Thus, (10) is established once we show that H > R{n,D). Let c be any
positive number, then for almost all x E AQO, r(Cn,xn) < H + e for infinitely many
indices n. For each n we define m(n) to be the least integer m>n such that

r(Cm n+i,x(?)<H+i and m- n+ 1> M,

where M > 3/6 and 6 is a positive number to be specified later. The number
L, the random variables M,, and gn, the measurable subset Gk C Ak, and, for
each xK — (xj,X2,...,xx) GGk, the intervals [n,-m;] are then defined similarly
as in the previous Section, replacing Co(x"|n) by nr(C,,,xn). Recall that Ch =
(@ipn,{Aitn))n,n,rn). We then define rpk to be a measurable mapping from AK —
(Ai(1)J so that

() for xK - (xbx2l... ,xk) GK, (i>K(xK))i =i(xj) for 1<i<I<;
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(i) for xK = (xb x2,... ,xx) GGK,

(fe (1K))n

WWn.-n.+liC.").

(fe(xK)). = f(arj), j 0 uiln,-, m,],

where f : A—A is a measurable mapping such that p(x, i(x)) = min{p(x, y)|

y 6 A}. Let Ffc = {(pk(xK)\xk 6 G#}. A similar argument to the proof of
Lemma 1 can lead to

\FK\ < 2H(BK \A\GK2K(+H+c+6/3>

If 6 is small enough then |F/c| < 24 (a+2c). Let ak m(A)a U Fk —2{1,2,...}
be a length function so that

%q'A'Iogmh 1, yK &FK,

K (yK) < \I<(H + 2e)l + 1, yK £FK.

Then we obtain a G-bounded distortion variable rate code ck = (dk, {A)K U
Fk ,K,ctk) of order K with expected compression factor

04T e K

Ak-G Kk
<H+2(+2/K +4(log |A| + 2/K)
<9+ 2+ 4/1'+ Slog |A|
From the definition of R(p, D) it follows that

R{p,D) <H+ 2+ 6log|i| + 4/K.
Letting K —»0 and then letting ¢ and 6 —#0 yield
R(p,D) <H

which completes the proof of (10). The proof of (8), hence the proof of Theorem
3, is now complete.

References

Ornstein, D. and Shields, R, Universal almost sure data compression. Annals of Prob., 18
(1990), pp. 441-452.



408

YANG: UNIVERSAL ALMOST SURE DATA COMPRESSION

Yang En-hui and Shen Shi-yi, Bounded distortion variable rate source coding. Submitted for
publication

Shields, P., Universal almost sure data compression using Markov types. Probl. Control In-
form. Theory, Vol. 19 (1990), pp. 269-277.

Yang En-hui and Shen Shi-yi, Distortion program-size complexity with respect to a fidelity
criterion and rate distortion function. IEEE Trans. Inform. Theory, to appear.

. Chaitin, G. J., A theory of program-size formally identical to information theory. J. ACM,

Vol. 22 (1975), pp. 329-340.

. Omstein, D. and Weiss, B., The Shannon-McM illan-Breiman theorem for a class of amenable

groups. Israel J. Math., Vol. 44 (1983), pp. 56-60.
Shields, P., The ergodic and entropy theorems revisited. IEEE Irans. Inform. Theory, 1T-33
(1987), pp. 263-266.

Yang En-hui, The proof of Levin’s conjecture. Chinese Science Bulletin, Vol. 34 (1989),
pp. 1761-1765.

YHuBepcanbHOe MOUYTW BCHOAY CXaTue faHHbIX AN abCTPaKTHbBIX
anaBUTOB M NMPOU3BONMbHbLIX KPUTEPUEB BEPHOCTH

EH-XY-AHI

(TAHbBAH)

B pa6boTe paccmoTpeHO obobuieHue pesynbTtata y OpHcTeliHa n Wunbgca [1] o cxo-

AWMOCTW NOYTW BCOAY ANA HEKOTOPOW nocnefoBaTeNbHOCTM KOAOB MoKasaTens cxatus K
rate-distortion yHKUWM 4N KOHEYHOTro andaBuTa. B KayecTBe KpUTepMs BEPHOCTM U 3pro-
AMNYeCKOro MCTOYHUKA Ha cnyyval abcTpakTHOro andasuTa M MPOU3BONBHOTO aAAUTUBHOTO
no pasMepHOCTU KPUTepus BEPHOCTU BbiGpaHO paccTosHWe X3MMUHTa C JONONHUTENbHBIM
cgoiicteom sup inf f(x,y) < 1 ansa andasutoB A, A. Kpome Toro, pa6oTta npepgcrasnser

pa3BuTMe pesynbTaToB aBTopa [4] o cBoWcTBax cnoXxHocTn YaiTuHa [5].
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A method of synthesis of discrete estimator and regulator optimizing the behaviour
of dynamic systems under incomplete and inexact observations on the control process is
proposed.

1. Introduction

Feedback controls are convenient for parrying of unexpected perturbations
arising in control processes of dynamic systems. In the first classical statements
of the synthesis problem the nature of perturbations was not described and it was
supposed that exact and complete state measurements are possible [1]. Taking
into account the random nature of active perturbations the synthesis problem is
investigated in the theory of stochastic control [2, 3]. Another approach to the
perturbation registration in the control process is developed on the base of the
guaranteed control theory [4].

Perturbations created by the interested participants of the optimization pro-
cess are considered in the game approaches [5, 6].

In this paper the problem of optimal control synthesis is studied on the base
of extremal problem solution suggested by the authors [7, 8].

2. Statement of the problem

Consider a discrete linear system the behaviour of which on the discrete in-
terval T(t,,) = {<»<+ h, —h) is described by the equation

x(t + h) = A(t, h)x(t) + b(t, hyu(t) (2.1)

Here x(t) is the state n-vector of the discrete system (2.1) at the moment t,u(t)
is the value of the one-dimensional controlling influence; symbols A(t,h), b(t,h)
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denote the parameters of the optimization object and the input device, respectively
(matrix A(t,h), t E T(tt), is supposed nondegenerate).

Suppose that the initial state of system (2.1) is known inexactly. The a priori
information about it has the form

X(t,,) = 2EX, ={zERn:Gz =/, d, <z <d*},

(/ ERn, rankG = r < n). @2
To each control u(t), t ET(i,), limited by the restrictions
U< < u(t) <u*(f), t G (2.3)
it corresponds the totality of trajectories of system (1)
*(*la(®)) = L (). (€r(i,) =T(t,)ui*.
Let in the space of states of discrete systems the terminal set
X* —{x GRn :h\x > gi, i = I,m}. (2.4)

Following the principle of getting the guaranteed result, let us call the control it(-) =
= (u(t), t GT(t,,)), admissible if the corresponding movement X (iju( )), t GT(<,),
satisfies the terminal inclusion

X (i*K))cr. (29

In the frames of the accepted approach the value of quality criterion on the
admissible control is called the number

JUE)) = min Hox(t*\z, u( ) (2-6)
rex.

The admissible control w°(<), t E T(t,), having the property
I () = max J(u(-)) 2.7)

we shall call optimal.

Because of the indefiniteness (2.2) mentioned above the problem (2.1)—2.7)
not always has the solution as it is often impossible to supply demand (2.5). On
the other hand if the admissible controls exists then, for the same reasons, the
efficiency (2.7) of optimal control may be low.

With the purpose of increasing the control efficiency the procedure of discrete
system optimization is supplemented by the measuring device described by the
equation

y(t) = c'(t)x(t) +£(t), (y GR). (2.8)
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Suppose the measurement errors £(t), t £ T(f,,) satisfy the restrictions
tET{U). (2.9)

Let the measuring device (2.8), (2.9) recorded the signal y7(-) — (j/(<), t =
t*,t* -f h,..., r), r - the given time moment from T (t») Ut*, corresponding to the
chosen control u(t), t £ T(<,). Verify with it the a priori distribution X, of the
initial states.

Call the set XI = A*(yT(-)) the a posteriori distribution of initial states
corresponding to the observation process till the moment r if it consists of those
and only those initial states x(i*) £ X» which can generate observated signal yT(-)
together with some measurement errors £(i), t >t,, and the used control u(").

In itself set X is not necessary for solution of the synthesis problem. We
need its following numerical characteristics (estimates) connected with the terminal
discrete system states

4j(< = &) (<fu() = min Ax{t"z, u(), « —o,m (2-10)

The calculation of the estimates i = 0,m, we shall call T-observation prob-
lems accompanying the original problem (2.1)—.7).

The control (i(-) = (u(t), t £ T(t,)), with the known starting part u(t),t» <
<t < tv—h, is called r-a posteriori admissible if

> gi, i = (2.11)

define the r-a posteriori optimal control by the equality
*5(*VO) = m(e}x»5(<*|h(—)) (2.12)

We shall call the search of controls u°(<), t = r, T+ h, —h, as r-problem
of optimal control accompanying the problem (2.1)—2.7).

As a whole we shall call the problem (2.1)—(.12) by the problem of optimal
control on incomplete and inexact measurements of systems states.

In this paper solutions of two types are given: program solution for any fixed
r £ T(f,) and feedback optimal solution consisting of the optimal estimator and
the optimal regulator.

3. Program solution of r-observation problem

Let except of the mathematical model (2.1)-(2.7) and the control u(t) used
on the interval {i,,, t, —h,...,r —h), the signal y(t), t,, <t < r, written with the
device (2.8), (2.9), is known.
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Denote through F(t,r), t,r £ T(<»), the fundamental matrix of system (1)

solutions
F(t + h,r) = A{t,h)F(t,r), F(r+ h,r) =E

F(t, r —h) = F(t, ©)A(t,h), Ftt—h) = E

(E is a unit diagonal n x n matrix).
Let xu(t), t* < t < T, be a control system trajectory

xu(t + h) = A(t, h)xu(t) + b(t, hyu(t), x(t,)=0, (3.2
and let
Vo(t) = y{t) - c'xu(t), t*<t < t. (3.3)
Since
aj(t*) = aj(*>(+)) = min Ji{F(f,i. - h)Z + h'xu(<®),
rex;

the problem of r-observation (2.10) is reduced to the following extremal problems

73(t9) = min /i(F(<*,i, —h)z,

£{t) <yo(t) - c'(F(t, t. - h)z<C(t), U<t<r, (3.9
Gz —f, d <z<d*i—0m

At the same time

<r(0 = hiXut*) + i=0,m (3.5)
penote a'(t) = (ai(t),a2(<),... ,an(i))' = -c'(t)F(t,t. - h)
r-= —h\F{t*,i, —h), : = O, m. 39
Then problem (3.4) will be written in the form
7i = mzax]{z,
i.(0 <yoft)y+a'(t)z <C(t), t, <t<r, (3.7

Gz —f,d <z<di—0 m

By virtue of uniformity of the problem (3.7), in the sequel index i will be omitted
and we shall speak of arbitrary problem family (3.7).

Solve the problem (3.7) with methods of the linear programming [s]. Let
{z(t), Ssup(r)} be an optimal feasible solution of problem (3.7). According to
[9 the optimal support 5sup(r) = {JSP(¥),Tsup(r)) is a totality from the set
NvP(r) ¢ J = {1,2,... ,n} of supporting indices of the feasible solution z(r) and
the set jBup(r) C TT= {<:<»< t < r} of supporting moments i* < 9\ = O\{t) <
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. < 9 = 9(t) <r. At the same time the relations r + [Tsup(r)| = |/vp(r)>
dethJ0,0<l<n —r,

Qo *j £ Jsup(t)

P = P(T) = P ({Tsup(r), M), Jsup(r)) t e Tsup(r)
G (M ,Jsup(r))

are carried out.
Introduce the notations
Q=0Q(r) = Q(jsup(r), {Tsup(r), M}) = p-\r) =

((9j (0 w™£ Tsup(r)), (?jt =i € N/))
J € mfsup(7)

Construct the sets Tiv = TV(r) = Tr\Tsup(r); JN = JIn(t) = J\ Jsupr). To
every moments of time i 6 Tr and indices j £ J,i6 M add the numbers

uft) = u(tly), Aj = Aj(r), L,
"(0 =0 te Tar(r); Aj(r) =0,j € Jsup(r);

H= ~(r) = (/i,(r), i EM); isup = (i(Tsup(r)) = (i/(01(r)),i/(02(r)),..., i/(i9i(T)));
uN = NTar(r)) = (;{t), t 6 T/V(r)); Asup = (iI'{Tsup({r)), u{m) = {vaP,p);
Asup — HSUPQ{T)” VeUP —(Pj1j 6 </sup('7))i
Ajv = A(TN (r)) = (I(Tw(r))./r(r));

A= ATT) = (AR, t € TT) 5 (A(Tsup(r)), A(7jv(r))) = (Asup, Av);

AY.)=40M-Mr)) = (4;(r),]E
= vLpa (tslP{t), In{t)) + "'G(M, In(t)) - th,
Vn = tin(t) = (rij, j e

Feasible solution z(t) is optimal iff there exists a support 5sup(r) when

L2(r)<0 if Z(r) = d\

Aj(e)> 0 if z(r) = d,j; jedjv(T),

Aj(t)=0 if ds <z(r)<dj
v(0k (£))>0 if yo(9K(r)) + a'(Bk (T)r{T) - C(aK(T));
HekM) <0 if yo(k (M) +a'(Mr)Mr) = b(0k(T)Y, K=~1
v(OK(t)) = 0 if £.(exk (M) < yo(% (T)) + al(% (M))r(T) < C{9x (M)\
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4. Synthesis of optimal estimator

Let on the measuring results of output signals y(t), t* <t < T—h, and also on
the values of controlling influence u(t), t,, <t < r—2h, produced with the regulator
(see below). It is solved the problem (20) of finding the estimators, i.e. the problem

Tz —»max, Gz =/, dt < z < d*, an
(*(t) <yo(t) + a'(t)z < C(t), t. <t<T-h, '

and let {z(r —h),53p(T —h)} be the optimal support feasible solution of the
problem (4.1).

Give the estimates found from (4.1) (at j = ry i = 0,m) to the regulator.
Denote controlling influence for the moment of time r —h worked out with regulator
through u(t —h). Write the signal y{T) of the measuring device (2.8), (2.9) at the
moment r. Proceeding from this information we find the optimal feasible solution
{z(r), Ssup(r)} of the problem

jz —max, Gz =/, im< z<(*
4.2
L < Vo(t) + a\t)z < C(t), t* <t <,

where yo(T) = y(T) - ¢'(rx,,(r); xu(r) = A{t- h,h)xu(r-h) + b(r —h,h)u(r - h).
Call the construction of the optimal feasible solution {z(r), Ssup(r)} of the
problem (4.2) for any j/(r) proceeding from the optimal feasible solution {z(r —
h), S p(T —/)} of the problem (4.1) as an optimal estimator synthesis of discrete
control system (2.1) at the moment r with measuring device (2.8), (2.9).
Begin with the solution of the synthesis problem. According to the informa-
tion available to the moment r —h calculate the value

w(t - h) - yo(T) + a'(mr(T- h). (4.3)

If £5(r) < W(T- h) < xi*(r) then (z(t), Ssup(r)} = {z(t - /i),5sup(r -
h)}. Therefore, the problem of optimal estimator synthesis at the moment r does
not occur (or in another words, it is solved trivially). It occurs at w(t —h) £
K.(r),r(r)]. Let, for definiteness w(t - h) > £*(r).

Imbed the problem (4.2) in the family of extremal problems depending on the
parameter p

y'z—=*max, Gz =/, d, < z < d*,
{+(0 <iA(0+ a'(t)z<MNO0, t.<t<T-h, 4.9
£.(r) <y(m+a(mr <p

The problem (4.4) at p —w (t —h) has the solution {z(r —h), Ssup(r —h)}. To
find {z(r), 5sup(r)} we shall iteratively decrease the parameter p : w(r —h) —p0 >
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pi >...> P —C{Tt constructing simultaneously the solutions {zx,S,~p}
{z(t - h\pK), Ssup(r - h\pK)} of the problem (4.4). Then let (z(r), 5sup(r)}
~eSTu

t Pr%ceeding to the description of the optimal estimator algorithm denote
through  p, p the sets of supporting moments of time and indices from J

on the k-th iteration step of the algorithm and let
T$=[((i,)u(udu{iiMeO)nn
bflp = {T£p.M}.
We call the totality
CK{r —h) = {zK-S*p; T*;209v)i < P); *»(Tdfp); F(Ts ,t. - JI;
QK = Q("p,ifup); A* = (VK(T¥ip),pK(M))- AK(J«y, PK}
as the state of the algorithm on the fc-th iteration step at the moment r —h.
Compose from the components
z° = .« - h)- S°w = Ssup(r - h),
T™=[{L} U{< +h)U{t+ h tETsup(r - h)}) OTr];
y(Tjif)", u(Tsup(r —h))\ xu(Tsup(r —h)); F(Tsup(r - h),t* - h);
Q° = Q(t- h), A= A(r- h\ A°(GEr) = A(r - h)IN(r - h))\ po = w(t - h),
the zero state of the algorithm.

Iteration of the algorithm CK(r —h) —CK+1(r —/1) consists of the following
steps.

Step 1 Verify the condition TG T p. Ifit is fulfilled we proceed to the step
2. Otherwise we proceed to step 5.

Step 2. Let g*(r) = QK(JBpP ) = aK(O,(r h)) = 9* = (W;J €‘lp’

Calculate

@f-d1)1qk at(ft <o,

sf = (*F-  >/9/i at9p >0, e JEp (4.5)
00 at gjj = o,
Estimate
¢ A(t  h h)xu(t —h) + b(t —h, h)u(t —h), when t —h =8 E T"p,
xu(t) ~1{th)x(t + h) —b(t, hyu(t), when t+ h= 8 GTetp,
xu(t*) = 0; xu(t. + h) = s(t,,/i)u(t.), (4.6)
2o(<) = y(<) - c'(i)xu(f),
(teT$)

, f-c'(Y)A(< - ft,/i)F(<- ht* - h), whent—h=B8ET"p,
a* ~ \-c'"(t)A~1(t,h)F(t + NAp—h), whent+ h —8 ET*p,

(teT *).
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Construct

( [yo(0 + a\t)zK - i"fol/asupiosf. When a'up(t)q? <o,
RK(t)= 1 [yo(t) + a'(t)zK -U t)]KuP(t)gf, when afup(<)g,* > 0; (4.7)

{ oo, when asuP(*)9iK = 0,
BK{r) = PK -V (t), (4.8)
Rji = min/?/, j €J*p;
RK (t°) = mmBK(t), t GTfi; (4.9

A= min{/?*,12%(<°),/7*(T)}
Let

ST I S j?"msu\p)__t‘(sup gk ofip/1 Prs1 P XK
Here .
Ko1- CK P& &gyt Ap - w768
2K + 1 K K -
z © Csup | v oW J.f “N Y
The following cases are possible
a) Bo = RIfO; b)BR? =R K(t0), Cc) B? = BK(r).
If the case a) is realized we proceed to step 3. In case b) we proceed to step 4. In

case ¢) We proceed correlation (4.27) of step 6.
Step 3. Estimate

BA* = (B,* V 7 = (BU*(1*), (B/if. | 6 M)) =
= e'J0Q K (Jsup>L * p) sign qgfo, (4.10)
eio = (e; :ei = 0,j @ jo, ejo = 1,j e J*p),
06* = Ai*'(J) = AA*p*(Lfup,J);
X T—i*(F)AI/*(F), when ilK(1)AVK() < o,
\ 00, when vK(t)AvK(t) > o,
(t GT *p); (4.10)
a_f-Aj/AiIf, when O;0<5* <o, K
J \ oo, when AjASj" >0, 2 ne
=H(t°) = TI<TH(S), L6T*p
0-* = min<*, j E /*; (4.12)

<7* =min (ff* (i0) ,~ }
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Let
cife 1 (er+| jK+I\
Jsup 13sup >“sup JI

Tt Wt thenut - xS (4.13)
d §u5' 945 \J™4

—"sup sup
Js'§;1 = Ailp N when aft - qK (4.14)

Let the situation (4.13) be realized. Then

(- - (RO PH)-

fup\ £)/«&0. (4.15)

N*+v r 1\io) =nY/E) +< n ™),
If situation (4.14) is realized then

QK+1 = +1(J4+ \L “ +1)

suR) & JHP,LKp)[PK(L«p,j.) - PK(L“p,jo)]x (4.17)
X &I%«)PK(L“ DI B

j VK+1{T¥R1) = ~ N P)+ ~ AiS{T.Kp),
I uk+1(M) = 1K -\-<T*AUK ,
" AK+(JI*H N jo) = AK(jft \j*) + <TFAK(jfi \j.),

(4.18)

Ajo+l = a<fsigngj”,.

Proceed to step 6.
Step 4. Having estimated according to (4.5) and preserved a(t®), zu(t°),
construct

NA* = (AVK,AuK ) = (AVK(TEp), (Atf,j £ M)’
= abup(<0)<5”r ™ ( “sup”0)?”)- (4-19)
AN = AcK(J) = JAK'PK(L*p,J) - a'(t°)Sign(a'up(<0) # )

4
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Following (4.10)—4.12), (4.19), find «*.
Change the support S*p —sS*p1:

2£p+1 = (Tlup \' N u <% J*pl = J*p; a* = <r*(I) (4-20)

T*pl=ApUi°; Ap+l = /ipUj.; 4 ="M 21= {~Ap+1,M}. (4.21)
If the situation (4.20) is realized then having put PK(t°,/* p) = (a;(%°), j e
J1*P) we get

= QK@I™P,LiP) - QK(J“P,t")[PK(t',J%ip) - PK(t°jKp)x  (4.22)

"N +1Neup1 \ *) =* 1 AP\ n + \ .
At ox(<°) = -0AsignANi0)A),
w1 )=/l +~ 4/,
CANHL(N +D) - OK(N) + <F Oe*(,/*).
Let the situation (4.21) is realized. Then
QK+l =QK+I{jK +I"LK+l) =

(4.23)

QK+1(J¥P,L*) + QK(J* L*)PK(LK j,)PK(t°, J8p)QK(I“p,L v)/w .
PK{t\jK)QK{J«L“ )IW,

- Q K(J¥ip, LMup) PK(L™MpJ ) /W
QKO%p uﬁ)w( Pd-) PKit0,j£P) = iai {t°),jeJ & (4.24)

W = PK(t0J .) - P K(t°J*p)QK (J*p,LKp)P{L*P.j.y,

VK+1(Tslr1 \ t°) = vK(Tkip) + a«AvK(TKp),
vK+1(t°) = -<7&sign{dsup(t°)qF),
pK+1(M) = pK + a* ApK,
AKH\ J « +1) = AK(J%\j.) + 4 A6 K(I%\]j,).

Proceed to step s.
Step 5. Introduce moment r in the support. For this case estimate

(4.25)

OA*" = (AVK,ApK) = (Ar/*(T*p), (Apj,j € M)’
= <4jp(T)QK sign(C(T) - wit - h))> (4.26)
AsK* = AsK*‘(J) = ga*>*(L*up,J) - a'(r)sign(C(r) - + (. - h)).
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Calculate according (4.10)—4.12), (4.19) the value aff. Change the support
SKp  Ssupt according to (4.20), (4.21). Following (4.22)-(4.27) construct QK+1,
VKHL K nesl Let S8 = 5™ ; QK = QK\ PK = PK+1- VK = Vvk+i
K k+'-,A% = A«+Iand proceed to step 2.

Step 6. If Pk+i > V(T) then JT-th iteration of the algorithm CK(r —h) —»
C~+1(r —h) at the moment T—h is completed.

At

Pk +i <V (1), (4.27)

the work of the optimal estimator at the moment T—h is completed (K + 1 = p).
Zero state of the algorithm at moment r:

Co(t) = CK+1(r - h)\ pK+1) U (po = w(t)).

The work of the algorithm for the case w(r —h) > £*(r) is described completely.
The case w(r —h) < £%(r) is analysed similarly.

Remark. While realizing step 5 in the recount formulae of the potentials and
estimations (4.23), (4.25) we suppose

sign(£*(r) —w(t —h)), when w(r —h) > £*(r);
signKupHif) = gign(E, (r) —w(t - h)), when w(r - h) < £»(r).

5. Program solution of the r-control problem

According to (2.12) the r-a posteriori optimal control = r,r+h,
t* —h, is the solution of the following extremal problem

figz(i*) —»max, x(t + h) = A(t, h)x(t) + b(t,h)u(t)\
x{t) = 0; A(-i(i*) >gj, i=Il,m (5.1)
u(t) <u) <u (i), T<t <t* —h,

T-h

where gj = gi —yj~h— . ~Jxu(i), yj~his the estimator value of i-th observation
1=

problem (3.7), i = I,m.

The solution of the terminal control problem (5.1) [7,8] is the totality of
{G°(-|r),5sup(r)} where 5sup(r) = {/SP(x), Tsup(r)}, /sup(r) C 1 - {I,2...,m},
Tsup{t) = {d,..., DL T< 1i(r) < ... < N(T) < t*- h Along with this the
relations
mh[F(t\t)b(t,h), t£Tsup(ry

i £ Isup{x)

detP(r) 710, P(t)

4*
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are fulfilled.
The vector of the potentials

V' = v'(t) = csupQ (r), Csup = (c(t); t E Tsup(r)),

c(t) = hoF~* t)b(t,h), T<t<t*-h, Q(t)= P~1(t),
corresponds to the support 5sup(r). The co-trajectory = (0T), r <t < t*—h,
accompanying the support Ssup(r) as the solution of the conjugated system

rp't ~h) = Xp'(t)A(t, h), *-h) = HQ- v'(IssP)H(IsWPJ),
_ h'i(J)
H(lsup.J) i G fsupi7)
is constructed with the help of the vector i/(r).
The co-trajectory generates the co-control
A) —Ar), r <t < FF—h :AQ = —ip'(t)b(t,h) (52

According to the construction at the supporting moments co-control (5.2) is
equal to zero
A() =0, tETsup(r).
The optimal control G°(i), t E Ty(r) = T(r) \ Tsup(r) at nonsupporting
moments of time has the form

u,(t), when A(t) > o;
u*(<), when A(<) < o;

Without loss of gener. USUN Bnsiddreh4he e%ﬁa%o-lr-{‘s(H}w(d) =g\,i E
hupct)y (MO < 0, i E faup(r)) are fulfilled for the trajectory x°(t), t E T(t)
generated with the control G°(t),t ET(r), of the problem (5.1).

The totality of the optimal control values at the support moment U°yp =
(G°(t), t E Tsup(r)) is calculated according to the formula

«sup = Q(t)g(t)’ 'U'(T) i £9|I5(Urg{T)'

9i(T) —i Y HI&Pt
te TN(r)

Later on it will be necessary the additional information about the optimal
support control {u°(-|r),5sup(n}:
Tn+(t) = {tE Tn(t) :A(t) > 0, A(YA(< - h) < OJU
UL €Tn(t) A > o, —h) e Tsup(r)},
Tn.(t) = {te TN(r) :A(t) <0, a(t)a(t - h)y < QU
U{<GTN(r) : a(t) <0, (t- h) e Tsup(r)}.
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Linrﬁ)ﬁjlf to the case when the number of el tg |7iv(€)| + ETjv-(n)]

exceeds by not more then four units (rn £ nTar-(r), —h ~
?sup(r))-

Suppose that the masses of information F(t*,t), t £ Tsup(r) U rar U (t* —h)
are known.

6. Optimal regulator synthesis

Proceed to the description of acting the optimal regulator algorithm.
Wk call the totality CK(r) = (/> ((), t £ F(r+ JI); WK;S&p = {lp, T«p},
QK(),t £ 7+p Ur,U (I - A);tf*(i), T*_ U( -
h); jI*; as the state of the algorithm on fc-th iteration at the moment r. As

the initial state C°(r) at the moment r choose the totality with the following
components:

u(@)(t) = u°(tlr), t £ T(r+ A); W° = Hx°(tm)- ¢T;
Ssup — 5'sup(lY) — {Nup(r)12sup(r)}; = Tn+(t);
Tn- =Tn-(t)] Ag° =y-*h-y - h;
=F(f,t), tErsup(r) UrjvU (< - A);
=Vo(N, i £ Tn+() UTn-(t) U (t* - /1);

iI° = il(n; & - Q(r).

Iteration of the algorithm CK(r) —=*Ck+1(t)(Ck () —+C*°(r + h)) consists of the
following steps.

Step 1 If/ = 0 proceed to step 2. Let compare r with n. If r < €\ proceed
to step s.

Step 2 Calculate the vectors

A“x (T9) = QKAgK (I4py, AuK(Ts ) = o, T* = T(t+ h)\Tgp;

AWK (1%)= H(1%J)<j>K (t)b(t,h) AuK (T),
teTK,

ONK(Anp) =0, i% =1\ l«p.
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Step 3. Calculate the numbers aK, BK, sK:

ak = a(e) = mina(t), t€T*p:

"u.(t)-uW(t) .
AUK (1) when AuK(t) <0; tETS,
a(t) =  u*(t)-u(K\t) !
AUK(0) when AuK(t) > 0;
00, when AuK(t) = 0;
BK = B(io) = minB(i), i€ I* :
f -Wf

N < -
B() = < AW? - Afif - WENAWS —AgT <0,
00 when AW? —Agf > 0.
Let Bk = min{l,aK,BK}. If 9K = 1 proceed to Step 4. At 9K < 1 proceed to
step 5.
Step 4. At 9K < 1 proceed to step 5.

Step 4. Let u°(r + Jlr+ h) = +h) + Auk (t+ h). If T+ h=t* —Ih
the algorithm completes the work: G0(T + ih\r + ih) = WX\ T + ih)-\-Auk (T+ ih),

At r + h < t* —lh construct the initial state C°(r + h) for the moment T+ h
with the following components:

u@)(®) = u(K)<Q + AuK{t), tET (r + 2J0); VP = W* + 1 ©;
Ago=r~h- T\ t€ TwpUr,U (<- )
iP°(t) = K (t), t GTE+ UTE_ U(<* - h); v° = vK\ Q° = QK.

Step 5. Calculate AK(t) = —ipK(t)'b(t,h), t E Tjy+ UT$_ U (<* —h).
In case Bk = RK = R3(i0) let
[**(0 =W jKmt,h), tET§]QK(rs* , 1 €1%p,
*x (0 = K - pK(1«P)"H(1*p, )\QK(t), *€T UT*_ U(t*- h),
4K (t) = A~l(eh<tK (), t =B+ h, B ET“p.

In case Bk = aK = a(rb) let

»KLU*p) = P9{t,),
i K{t) = pa(™)H(1bIP, J<K (), te TS+u r*_ n (r - N),
<EX<) = A~1(8, JI)**(0), t = 0+ h, B GI'*p, p = - sign Aunk(r,).



GABASOV et al.: SYNTHESIS OF OPTIMAL CONTROLS 423

Calculate SK(t) = ~K(t)'b(t, ft), t £ TR+ UTR_ U(< - h). Transition to step 6.
Step 6. Calculate aK = min{<r(<), t £ Tjf+ UT$_ U (t* —h)\uj(i), i £ Lfp}

s(t), i € Tv+ C

() = s(t) = Oeither t £ T$+,6K(t) <Oort £TS$_, sK(t) > G;
AK(t —h) K (t)"A(t,h)b(t-h,h)
a(>~ sK(t-h)~ iK{t)'A{t,h)b(t-h,h) (, ~
either t £ T$+, s K(t —h) >0o0r t £ T$+,sK(t —ft) > 0
ori £ Tf , K(t- f)y<0, (t- ft) g Tfp;
AK(t-2h) XK (t)"A(t,h)A(t-h,h)b(t-2h,h)
a[ > 6K (t-2h) i K{t)'A{t,h)A(t-h,h)b{t-2h,h)" ®J
either t £ T$+,sK(t —2h) >0o0r t £ T$_,
sK(t - 2ft) <0,f- 2ft £ Tfp, - ft GT p;

A -h) = when AN - ft)ft*(<* - ft) < o, < - fto T p,
cr{t) —oo in other cases;
w(i) = _%t/‘] (3 either uK (i)pK(i) < o or rK(r) = o, /iK(i) > o;
w(i) = oo in other cases.

Proceed to step 7.
Step 7. Transform the set Sfp= {/fp, Tf p} and the matrix QK.

1) Let QK = B(io) < 1, aK - w(i,). Then

cCti= A \ i*) U *0- Tspt+l = Tstp,
SBAH(G.01) = O*(T7>0+ 3*(r;>ror*(0r*(*.). i o
QK+1(7J.L) = Q*(7-3,*.)|r*(i.),
where r* = (rK(i), rG/§ p) = [F'o™N(<)s(< ft), t £ T*pP\QK (TS p, 7*p).
2) Let = Arg < 1 ax = naue). Then
ft? =c pUro, TEfpl - Tsp U (iff -
Qk+1(ga) = If(F>0) + rf (i) rf - 5(M)>
S KHI(HF - s(<Ff),*) = -r%(i)\ps (tg - s(tg)),
QK+1(Tj,i0) = -r f (r; )pS(sr - s(fff)), QK+1(tg - s(<ff),i0) = 1N(<</- «(<)),
= @fF@Im), J=1.0 = QKh (I*p,))<t>K{tI - s(tg))b(tg - s(tg),h),
rf = (rf (i), i = T/ = No,,**(*)*(*. O, i € Tf p|Q™*
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3) Let Bk —aK —a(rs) < 1, «=w(i.). Then
NI A A N
QKN\T& \t5,C p\ k) =

Qk(t *p\ \ )- QK(TSup \T,,K)Q K (Tt,i*p Vi.)\pp(u)-

4) Let 9K = aK = a(r,) < 1,6 =6(tg). Then

dipr1 = JEP, T&p = (T*p\ r.) U(tg - s(tg)),
QK+1(Tj,i) = QK (Tj,i)-Q K(T,,i)rK (Tj)\rK(T,), i & s,
QK+\T, i) = QK (T, i)\rK(T,),

rK = (rK(T)), j - 11) = QKH(I*p,J)<K(tg - s(tg))b(tg - s(tg),h).
Matrix $K(tg —s(tg)) is calculated in a standard way:

4K (tg - s(tg)) = ¢K(tg) = A~1(rp)dk (rg - h), whentg - h GT*p, s(tg) = 0;
dK(tg - s(tg)) = $K(TN), when tg - s(tg) =

K(tg - s(tg)) = dx (tg)A(tg), whentg = rN,s(tg) = h,

KA - s(tg)) = gk~ - h)A(tg - h), when tg - h£ T*p, s(tg) = 2h

Let

UK+1(t) = u(K\t) + eKAuK(t), t € T(r + h); Aga+1 = (1 - sK)AgK;
HK+1(t) = BK(t) + aKiK(t), t GTft+ UT$_ U (t* - h);
uk+i _ VK + wk+1 -1 K + eKAWK

Incases 1), 3): (Fr**1uUT~+1)= (T$+ U T$ ),
incase 2) (T*+XUTr 1= (T*+UT*_) U (fg- s(t</) + h),
oncase 4) (T*?21lur*=1)= (T*+UT*_)\ (r, + A) U< - s(t</) + A).
Proceed to step 2.
Step S. Lets =1 0°=ao=a”) = 0, Aur\ri) = g(ri)Ag°(I°up) and
proceed to step 5.

7. Example

Illustrate the results by an example of optimization of mechanical movement.
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It is necessary at a given moment to transpose a material point which begins
its movement along a rectilinear path from some neighbourhood of the given point
to a certain region and provide at the moment the velocity the guaranteed value
of which is maximal. Besides it is necessary to take into account that all the
information about the control result comes from a device which is able to measure
the summarized value of the position and velocity from the point with limited

exactness.
The mathematical model of the problem has the form

»(3) —»max, x\(t + h) —x\(t)-\-hxz (1),
x2{t + h) = x2(t) + hu(t), |*i(o)] <1, x2(0)=o,
*i(3)<l, o<ut)<i, t=0,MA,...,3;
h=05 2=xi+x2+£, O0<£<1.

Present the results of the optimal estimator and the regulator work for the
case when the point actually began movement from the point £i(0) = o and the
following measuring errors were realized

€(0) = 1/2, €(0.5) = 1/4, €Q1) = 1/2, €(1.5) = 1/5. €(2) = 1/4,

but this information is not known by either the estimator or the regulator.
The a priori optimal control u°(-) constructed at the moment t = 0 without
the results of observation has the form represented at Fig. 1.

The guaranteed value of the quality criterion is equal to J(G°(-)) = 1/2.
If the initial state aii(O) = 0 would be known for the regulator at the moment
t —0 then the optimal control u°(-) has the form shown at Fig. 2. The value of the

quality criterion would reach J(°(-)) = 9/4.
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After processing the signal y(0) = 1/2 with the estimator the regulator, acting
according to the algorithm described above, produced the control presented
at Fig. 3 (J(«“(-)) = 3/4).

Fig. 3 Fig. 4

Making an analogous signal processing y(0.5) = 1/4, y(I) = 1/2, y(1.5) = 1/5,
y(2) = 1/4, the regulator constructed a priori optimal controls presented at Fig. 4
(G°() = G8(-) = m3() = wW\*). It is clear that the processing of measurings
y(t),t > 1, does not influence the form of the synthesized control.

The value of the quality criterion on the constructed control is equal to
J(«°(.)) = 3/2.

The value J(U°(-)) — = 1 characterizes the increase of control effi-
ciency at the expense of measuring device.

The loss of efficiency because of the errors of the measuring device equals to
J(ue(.))-J(u°(.)) = 3/4.
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CUHTE3 oNTMMAaNbHbIX YyNpaBNeHUN MO HETOYHLIM N3MEPEHUAM
BblX0OAHbIX CUTHanNoOB

P FTABACOB, *. M. KUPUIIOBA, M. B. TANWYH, C. B NPULLEMNOBA

(M uHCcK)
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Ha6nl0 AeHNs 3a NpoueccoMm ynpaBneHus. CUHTE3 OCYL,eCTBAAETCSA B PEXWUME peanbHOro
BpeMeHW Mo Mepe MOCTYNNEHWA O4YepedaHOro CUrHasa OT M3MEPUTENbHOro ycTpoiicTea. B
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PARAMETER ESTIMATION FOR NEAREST NEIGHBOR
GAUSSIAN RANDOM FIELDS IN THE PLANE
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A parameter-estimation method for both scalar and vector-valued Gauss-Markov
random fields is presented.

Introduction

Stationary Gauss-Markov random fields represent a rather nice model of spa-
tial randomness as it is possible to get some, more or less explicit, results in their
statistical analysis. Kiinsch (1981) developed ideas of Dobrushin (1980) and applied
them to asymptotic statistical analysis or, as he chose to call it, thermodynamics
of stationary Gaussian fields. The last term indicates that the Gaussian (and the
Gauss-Markov) fields can be viewed in frame of statistical physics generalizations,
a Gaussian field being considered as a Gibbs field corresponding to given potentials
(interactions).

Both Kiinsch (1981) and Janzura (1988), who gave some deeper asymptotic
results for the Gauss-Markov fields, considered what we might call “fitting-of-mo-
ments” estimates of parameters. Namely, the lags corresponding to non-vanishing
interactions were taken, the corresponding sample covariances were calculated and
the interactions estimates were fitted to these sample covariances. This is quite a
natural way of doing it and both the mentioned authors proved good asymptotic
properties (such as consistency, asymptotic normality etc.) of the estimates.

What we concentrate on in the present paper is how to actually calculate these
estimates. We confine our effort to the nearest neighbor model in the plane that
is not only the simplest non-trivial case but also the most interesting one from the
practical point of view. We consider both the scalar and the vector-valued cases.

First, the general set-up is formulated, then the estimation procedures are
derived. The first one concerns the scalar case estimates. The vector-valued field
estimating procedure is based on that the problem is, in a sense, transformed to a
set of scalar ones.

Akadémiai Kiad6, Budapest
Pergamon Press, Oxford
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1. Problem Formulation

A system X = £ T) of n-dimensional (column) random vectors in-
dexed by two-component integer vectors is a vector-valued random Held in the
plane. That is, T = Z2 where Z is the set of all integers and, for every t £ T,
it is X(t) = (Xx(i),..., (Xn(t))* where asterisk means matrix transposition. The
field X is Gaussian if all finite-dimensional distributions of all variables in X are
Gaussian. It is stationary if the mean value is constant, say EX(<) = 0 for every
t £ T, and the second moments are shift-invariant, in other words, the covariances
depend on the lags only: EX(<) «X(s)* = R(t - s) where R is an n x n matrix
covariance function. If a matrix function / exists such that

m T

—m =

holds for every t £ T, we call / a spectral density of the field X.

Let us denote U £ U the set of all U = (Ug,U\, W:) such that Ug,U\, U: are
symmetric real n x n-matrices and Ug+ W + W is a positive definite matrix for
every choice of signs. For U £ U we define-

fu(x,y) —(Ug+ Ui cosx + Wz cosy) 1

where 1 denotes the matrix inversion. From the properties of the set U it follows
that the matrix function fu is positive definite for every U £ U, and every X,y £

We say that a Gaussian stationary vector-valued random field is a nearest
neighbor one if it has a spectral density which is, for some U £ U, expressed in the
form fu. In other words, the considered field is nearest neighbor if its covariance
function is given

forevery t £ T.

We denote A = {(0,0), (0,1)(1,0)}. Let us consider a finite large subset M of
the index set T; M is typically a rectangle and “large” means that |[M(|/|M| « 1
fort £ A where Mt —{s £ M:s+ t £ M) and | ¢| denotes the cardinality of a set.
Wk define sample covariances

R(t) = @2Ma-~1 (X(s + 1)X(sY + X(s)X(s + <9*)
né Ail
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for t EA. An estimate U of U € U is then defined by equations
Ra(t) = R(t), t€A
The estimate U is defined with a probability near to 1for large M. This and some

good asymptotic properties of U were proved in a scalar case by Janzura (1988).
It is not difficult to generalize those results to the vector case.

2. Scalar Estimate

The above considerations simplify for the scalar case n = 1, namely, scalar
values take places of n x n-matrices. Let us white ro, ri,r2 for i?(0,0), 72(1,0),
72(0,1), respectively. The estimate U we represent as a triplet (uo,ui,U2) and we

put p —Ii/I2, 9= 2/To, a —uif/uo, B = W/uo- The condition U £U takes the
form |a| + \B\ < 1.

If we denote
dx dy
/o(a,/3)
1+ acosx+ R cosy
cos x dx dy
h(a,R)

1+ acosx+ [cosy

cos y dx dy

2@B) = @™ [+ acosx + R cosy

then wo, a, R are given by the following basic system of equations
rOuo = lo(at,R)
proug = li{a,R)
(rrOm0 = h{a,R)

and the original parameters uj, Lk are expressed as ui = a muo, b —3 mo-
Generally, the integrals 70, 12 are not integrable explicitly. Let us denote [cf.
e.g. Bateman (1953), Chap. XllI]

F(k) = (2/n) J (1 —k2 sin: tp)* dp

and

H(k,p) = (2/9) j (1 —(p—1)sin2 <)(1 - K2sinzip)2 dp

0
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the “hormed” complete elliptic integrals of the first and third kinds, respectively.
After some integration and substitution we get, fora ¢ 0, B ¢ Q

70(0,/3) = T w=(K)
tia,g) = a“1m((/?- DF(k) + (1- a- B)H(K.p))
I2(a,B) = B~Im{{a - DF(k) + 1- a- B)H(k, q)
where
m= (1- (a- RB)D*,
K2 = 4\all\m2,

p=@-a- B)(l +a- B),
g=@-a- RB)/{\-a +R).

The cases a —0, B = 0 are trivial: suppose that one of the correlations p, a
vanishes, say a = 0. Then B has to vanish, both lo and h are explicity integrable
and the corresponding solution of the basic system is

a=—2p/(l —p2), B=o0, uo=(l+N)[ro(l -p2);

and symmetrically forp = o.

If none of the correlations vanishes we may consider the case a > 0, 8 > 0 only.
In fact, any other case is reduced to this one by taking into account the following
rules (that are easy to derive from the expressions of the integrals): 7o(za, dtf) =
10(a,B), li(a = B) = h(a,B), I12(xa,B) = 12(a,s), for every choice of signs and
h(-a,8) = —I\(a,B), /2(a, -8) = h{a,B).

At this moment we have to stop thinking about an explicit solution of the
basic system. Instead we describe a numerical procedure which converges to the
solution.

The procedure needs evaluations of complete elliptic integrals. Though gen-
eral numerical integration could be used, it is much better to apply specialized
procedures of Bullirsch (1965) which are very fast and accurate.

The solution (for the mentioned case p > 0, ¢ > 0) is found in two main steps.

2.1. Isotropic Approximation

We put 1 = (p + <r)/2 and solve an equation in £
F(E)-(1 +r£) =1

to which the basic system reduces for p = a = r, no being separated as rouo(l +
rf) = 1. The equation is solved iteratively

En+l = F-1 (1/(1 + 1 *£,))
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with an initial value £0 = —r/(l + r2) which would correspond to a vanishing
correlation. The inversation F~I is again computed iteratively, by the regula falsi
method. The initial pair of values T\ = (1 —4 eexp{—TT}H*, T = (1L —exp{m@ —
r)})a, follows from Tricomi’s inequality

2 eInd < ireF(k) + In(l - K2) < T;

cf. Bateman (1953), 13.8.9.
2.2. General Case

Again we separate Uo as
[fuo=rom: +pm+a md)
using an obvious identity 70+ a «I\ + 0 ml2 = 1. Thus, the basic system reduces to

f(a,R):
f(a,R):

h(a,B) - p/(I+pa + aB) =o
I2(a,R) - <r/(1+ pa+ aB) =o.

Now, take initial values c®o = Bo —£/2 which correspond to the isotropic approxi-
mation solution and we iterate “Newton-like”

. f(<*n,Bn)\
. anihy
cn =3 (on.Bnjh) \g(c*n,Bn) J "
Here J(a,B,h) is a "difference Jacobi matrix”,

f(a+hR) f(a,B +h)\ f(a,B «,B)\
J(a.B, g(@a+hyo) g(a,B+h)J -(17h) \(/Eggr, /9)) $(<*,B))J

and cn = 2 1 where j is the minimal non-negative integer for which the corre-
sponding new values an+i, Bn+i fulfil the regularity condition jon+i| + |A+i| < 1.

2.3. Remarks

1. Theoretically, the conditions |p| < l|<r| < 1 are necessary and sufficient for
the feasibility of computations. Practically, the nearer the values \p\, |4 are
to the bound 1 the higher accuracy of computations is needed. For example
FORTRAN double precision (i.e. 8 hexadecimal digits accuracy) is still able
to manage the situation when both the correlations are (in absolute value)
about 0.9.
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2. All the considered iterations terminate when the consecutive values differ
less than some e > 0. In the mentioned (i.e. FORTRAN double precision)
implementation, ¢ = 10~8 and h = 10-6 have proved to be useful.

3. Vector Estimate

We want to solve the general system of equations
Ra(t) = R(t), te A

with nxn matrices on both sides. This is a difficult task even for moderate values of
n. That is why we consider a more restricted problem: we suppose the separability
of channels of the given vector-valued field. Namely, we suppose that there exists a
regular nxn matrix L for which all the matrices L mR(t) <L* are diagonal for every
t GT. In other words, we suppose an existence of a regular linear transformation
with transforms the original field onto a new one and this new one is an n-tuple of
mutually (stochastically) independent scalar-valued random fields (channels).

A matrix L separates channels of a nearest neighbor field if and only if its
spectral density fa corresponds to such u = (f/o, (7i, fir,) € U that the matrices
L myj oL*, j = 0,1,2, are diagonal. In fact, diagonal uj’s obviously lead to a
covariance function which has diagonal R(t)’; on the other hand, every separated
channel is a nearest neighbor scalar field. Hence, our statement follows from that
the correspondence between spectral densities and covariance functions is one-to-
one, cf. Stein, Weiss (1971), Thm. VII.17.

Let us define a “torrelation” function on T by means of p(t) = HA(0)~3 *R(t) m
R(o)~2. It is easy to see that a random field has separable channels if and only if
there exists an orthogonal matrix Q such that matrices Q mp(t) mQ* are diagonal
for all t 6 T. For a nearest neighbor field it is the same as that the matrices p(0,1)
and p(1, 0) form a reducible pair what means there exists an orthogonal matrix Q
for which both Q m(0, 1) «Q* and Q mp( 1,0) mQ* are diagonal.

Sample correlation function p is defined in a natural way on the base of the
above defined sample covariance function.

p(t) = R(HR(O'™,

this is a reasonable definition because R(0) is a positive definite matrix with prob-
ability 1 Clearly, p(0,1) and /3(1,0) need not form a reducible pair. So as to meet
the separability-of-channels assumption we should find a new pair of matrices, say
/50, 1) and /5(1,0), which would be, in some sense, the best approximation of the
original one in the class of reducible pairs.
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3.1. Reducible Approximation Problem

For an n X n matrix V = (vjk) we define a diagonal matrix A(R) whose
main diagonal is the same as that of V i.e. A(V)jk = bjkVjk where & is the usual
Kronecker symbol. By a norm of V we understand ||T|| = 2.

Let there be given two symmetric n x n matrices E, F. For an orthogonal
n x n matrix Q we denote Eq = QEQ*, Fq —QFQ* and put

¢(E, F Q) = lEq- A(£g)l|l2+ IFQ- A(Fa)ll2
The problem of reducible approximation consists in:

(RA) find an orthogonal n x n matrix Q° such that c(E, F Q°) = minc(E,F, Q)
where the minimum is taken over all orthogonal matrices Q.

Before going into solution of (RA) we introduce some symbolics. Let us take
two integers I, msuch that 1 <l <m < n.

If V = (MK is an n x n matrix then Ptm(V) denotes the corresponding
2x 2 submatrix: writing W = Pim(V) we put Wu = ou, Wz = vim, w21 = vmi,
N22 —Vmm e

The other way round, if IT is a 2 x 2 matrix then V = P{{W) denotes such
an n x n matrix for which sy = >, vim —ui\2, vmi = W1, vimm — W2, and
vijk = §k for (j, k) £ {(1,2), (I,m), (m,1), (m,m)}.

For a real number z we denote H(z) the corresponding planar rotation matrix

I cosr sinz
HZ)  \ —sinz cosz
and, on the base of this, we define aso-called Givens matrix G(I,m, z) = P~(H(z)).
The problem (RA) will be solved iteratively: in every step a Givens matrix
will be determined and the desired orthogonal matrix Q° will be approximated by a
product of thus obtained sequence of Givens matrices. The method generalizes the
known Jacobi method for diagonalization of a real symmetric matrix, cf. Wilkinson
(1965), Chap. 5.

3.2. Small Reducible Approximation

As a starting point, the problem (RA) will be solved in case E, F are sym-
metric 2x 2 matrices. In this case it is possible to solve (RA) explicitly; we may
restrict the minimization onto the above defined planar rotation matrices H(z), so
we look for a real Zqgwhich minimizes the criterion c(E, F, H(2)).

5;
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Let us denote
P — (ey —e22)/2
9= (/n —/22Y2
X=p2+q2- e2- f\2
y=2(peeiz+ gwi2)
If we express the criterion ¢ in terms of x, y, z it is not difficult to derive
1. if x = y = o then the criterion value is independent of 2 and we may put
20=0,
2. if x2+ y2 > o then the criterion is minimized by that real 20 for which

coszo = (h+ h(/i + X®/r/(x2 + y7)h)h)h
sinzo = (h- h(h+ x sh/(x2+ y2)h)h)h= . sgny)

where h = | and sgn is the usual sign function. These expressions are not
the most elegant ones; but viewed as a recipe for computation those very
expressions are the most stable ones from the numerical point of view when
being repeatedly used in the later solution of the general problem.

The decrement of the criterion value which corresponds to the optimal Zg is

¢(E F, H()) - c(E, F Abl) = (x2+ y2)* - x

3.3 Reducible Approximation Procedure

For n > 2, (RA) is solved iteratively.

As an initialization, we put —E F = F = | where / is an
identity n x n matrix.

The TVAh iteration step consists of several substeps. Let us for a while denote
D={(I,m: 1<I<m<n I,m integers}.

1 Choice of 2x2 submatrices. For (I, m) £ D we take the corresponding 2 x 2
submatrices P;T (£,(m), P|T (TV). For these 2x2 matrices we determine
p, G X Yy as in 3.2. Further, we denote [/t the corresponding criterion
decrement, ;T = (x2 + r2)2 —x. Now, we take (j,k) such that Ajk =
max{4;T :(/, m) 6 D).

2. Small solution. For the chosen (j, K) we solve the small reducible approxima-
tion problem on the matrices Pik{E™N"), Pjk(F~NI) what provides a planar
rotation matrix w (.q).

3. Innovation. We take a Givens matrix G=V (H(zo)) and put

E(n+1>=g e(n) g,
n+»=G-fW-G,

q (N-M) _ a a (N)
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Termination. If, in the 1-st substep of the JT-th iteration step, the maximal

possible criterion decrement Ajk is “almost zero”, i.e. Ajk < e where eis some

pre-defined small positive number, the iterations terminate and the matrix
is taken for a solution of the problem (RA).

3/m Convergence of Iterations

It is easy to see that the criterion c(E, F, Q) decreases during the iterations;
in fact, the actual decrement is equal to Ajk in every iteration step. From this
the convergence of iterations follows. As for the convergence rate, any theoretical
bounds would be extremely difficult to derive. An implementation shows that
the convergence is very quick even for every small values of e (it was put e =
io-8 I Ne + 1 Ne -

A(nother open (and difficult) question consists in that it is not a priori known
whether the iterations terminate in the very minimum of the criterion.

3.5. Separable-channels Estimate

Let us put p(0,1) = E and /5(1,0) = F in the problem (RA). We denote
r(0,) = A(E™NY, r(1,0) = A(F(n)), and Q = where the superscript
denotes the matrices given by the terminal iteration step of the above described
procedure. The matrices /5(0,1) = Q* mr(0,1) «Q and /5(1,0) = Q* «r(l,0) mQ
represent the reducible pair that is the best approximation of /5(0,1) and /5(1,0).

Now, it is obvious how to use the scalar estimation procedure in estimating
parameters of a separable-channels nearest neighbor random field. In fact, for
j —1,....,n we put p = r(o,Djj, a = r(l,0)jj, ro —1 and apply the scalar
estlmatlon procedure, getting values ud, u\, L|. Depending on further analysis
purposes either these values may be taken as the final result or, if we tend to get
an estimate independent of the channels separation, we can go back putting, for
fc=0,1,2,

[«1 o\
Uk = M- M*
VO «2/
where M —R(0)3 «Q*
3.6. Remark

Absolute values of eigenvalues of /5(0,1), /5(1,0) have to be less than 1 This
implies that the terminal criterion value in reducible approximation of these matri-
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ces can not be too large and, consequently, the pair /5(0,1), /5(1,0) can not depart
too far from /~0,1), /5(1, 0). In other words, the reducible approximation could be
taken as a means of an approximate estimation procedure for vector-valued near-
est neighbor random fields, without even mentioning the separability-of-channels
assumption.

4. Application Range

From the estimation problem formulation it follows that the considered type
of random fields is a suitable model in digital image processing. Here the interac-
tions could represent a good characterization e.g. of textures. More generally, the
interactions could serve as some global characteristics of any planar data, providing
the stationarity assumption is acceptable.

The results concerning the vector-valued fields would be easily generalized for
Gauss-Markov fields, for which the interactions are not restricted to the nearest
neighbors, as well as for d-dimensional index set Zd. Only a generalization of the
reducible approximation procedure to more than two matrices would be needed
and that could be easily done. Of course, the more interactions are taken into
consideration the more restrictive it is to suppose that the channels are separable.
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(Leuven, Budapest)
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The Shannon entropy of a random variable X with density function f(x) is defined
as H(f) = - f f(x)logf(x)dx.

Based on randomly censored observations a nonparametric estimator for H(f) is
proposed if H(f) is finite and is nonnegative. This entropy estimator is histogram-based
in the sense that it involves a histogram-based density estimator fn constructed from the
censored data. We prove the a. s. consistency of this estimator.

1. Introduction

The entropy of a probability density function f(x) of a nonnegative random
variable X is defined by

H(f) = - J f{x)logf(x)dx. (1)
0

In the literature, several estimators of entropy have been proposed for non-censored
observations. Typically, these estimators are based on obtaining first (cf. Gyorfi and
van der Meulen [5]) a suitable density estimate fn(x) for f(x) and then substituting
fn for / in an entropy-like functional. In the random censorship model, one observes
random variables Z, —min(A,-, Yf) and indicator variables § = I[Xi < YR *=
I,...,n. The random variables X{ of interest, and the censoring variables Y;,
are i.i.d and nonnegative. Moreover X{ and Yj are independent for all i. We
assume F(x) —P[X > X], G(x) = P[Y > X] and K(x) —P[Z > X] = F(X)G(x)
are continuous. The product-limit estimator Fn (Kaplan and Meier [7]), which is
based on the observations (Zi ,6i), i = 1,..., n, is often used to estimate F(x). Here
the nonnegative random variable X is supposed to have a density function / with
probability measure ft defined on the Borel sets of R

Akadémiai Kiad6, Budapest
Pergamon Press, Oxford
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The notion of fair censoring was introduced in the paper by Carbonez, Gyorfi
and van der Meulen [1]): censoring is called fair if for any T for which F(T) > 0,
it holds that G(T) > Q.

Define T* = sup{T :0 < F{T)G(T) < 1}. Let Vn = be a
partition of the real line n > 1, with Inj —

Remark. In the uncensored case, the a. s. L\ rate of convergence of a density
estimate implies the a. s. convergence of the corresponding entropy estimate (see
Theorem 2, Gyorfi and van der Meulen [6]).

Given the partition Vn, the intervals Inj have length hn, X(Inj) = hn, 0 <
hn < 1, where \(1nj) denotes the Lebesgue measure of Inj and with Kaplan-Meier
measure fin(Inj) = i,,,) - Fn(tj,n)-

The histogram estimate of f(x) in this censored situation then has the fol-
lowing form:

e« -ap # - &)
Now choose 0< an< 1, 0< sn < 1/2 and introduce the notations

-h—(j jr('j)"
G

1 n
K"(x) = -

where

then our estimate of # (/) is defined by

Bnjlnj)

Hooo g Bnnjlog ) o 3)

jeN,ndn

2. Main result

We then have the following Theorem which states the a. s. consistency of the
randomly censored version of the histogram-based entropy estimate.

Theorem. Assume that the censoring is fair, and if Vo denotes the partition
of R by unit intervals that

)(] < oo, (4)

AiVo
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and
O< an< 1 lim an = 0 (5)
O0< 6, < 1/2, lim 6n - 0, (6)
and that o )
2hoh &XP( C Anbnalhl) < 0o (M
« =l annnen
"1 is an integer such that
lim hn- 0. )]
Then, if

H(f) = —\] f(x) log f(x) dx is finite,
0 ©)
lim Hn = H{f)a s.

In order to prove this Theorem, we need the following lemma.
Lemma 1 (Rényi [8], Csiszar [2, 3]). If H(f) is finite, then under conditions
(4) and (8) we have

lim - V.p (/nj)log P ("1)) - TT(1 (10)
Aim - V.p (/nj) 9 FY - i)

Lemma 2 (extension of Lemma 4 of Gyorfi and van der Meulen [5]). For each
e> 0and every interval | C [0,T], T <T*, K{T) < 1/2,

log >f <
fin(I)

, nK{T) 11520
ZP e (Mo RrHns,

K(Tf )
exp <—h 288 (»my

where €= 1—2 f.
Proof. First observe that as in Gyorfi and van der Meulen [5],

{I@™ >i} c{\w - uw)I>,(H - 2-Hh
Lemma 1 from Carbonez, Gyorfi and van der Meulen [1], states that

P[\fin(1)-til)\ >e]<
11520 G(Ty42 (12)

2exp(-ne2G(T)/16) + G(Me exp <—hp 288
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where p = min-ft"T), 1—K(T)} > Q K(T) <1/2 therefore p —K(T). Moreover
G(T) > K(T) so (12) implies (11).

Lemma 3. If conditions (5), (6), (7) and (8) hold for all C\ > 0 then

< 00

where cn = log -— (-log —.
an

(13)

Lemma 4 (Theorem 1 of Carbonez, Gyorfi and van der Meulen [1]). Assume
that the censoring is fair. If

and

then

for all /.

Since

We can write

Hereby, we put

lim hn = 0
Ijm nhn —oo
¥ oo
Jn= \fn—/1—<+0 a. s. asn—*00
0

3. Proof of the theorem

Hn = - M /n;)log<”™,
j€F,, nd,, nj

Hn-H(f) =W+ W+ Wn+ Zn.

£ i-BnM +7inj))log™yY -

jen,.né,,
- E
j€7.ng,,
E (s t»en(/])e

“E£>(/,,) logf~ -tf(/),

nj

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)
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and thus
\Hn - H (f)\ < \un\+ \vn\+\wn\+ \zn\

() Observe that \Uh\ = U+ + U~ = U+ + (~Un)+.
Introduce the notations
Tn =K~ 1(bn/2),

= {:Injc qor,13

Obviously
POAUN >()< PA\Un\>e,Tn <T,) + P(Tn >Tn).

So for Tn < Tn we have Qn C Qn, therefore for T,, < Tn

\Un\« E  Mini)- Minj))+
i 6,00, ) M+ A7) J

jen.ne,, » -

+ E (/i,(/ni)-~n;))+{log”™"}
re®, ne,, 1 J

+ E (M /n;)-M ™I {bg

jer,,nen AOn-" 1
Forj ETn-
fin(Inj)
A{Inj) 19, (1nj)
and
_ A(/nj)
=109 i)
< log A(/nj) ..

Therefore, with the notations

:j £ -~ 1\Qn,H(Inj) > fin(Inj)}

Bn = [s{Inj W £TnBGn H(Inj )<mfin(Inj)}

1

cn = Iogm

+ Iog%

445

(23)
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we get that for Tn < Tn

\Un\< fIn{Inj))+ log

jet.ne,

+ Y2 - M Inj))~ logn-
J€",ne,, n

T Y {&n{Inj) —n(Inj )= log
je?nnen n

+ (MJnj) - log 7-
J€Mnne,,

+ Cn Ao~ (fin(ing) ~

j€Jr,r\On
= c¢n n (p(~nj) —RBn(Inj))
+ cn {finilnj) - ~{Inj))

i6"nnen,A,,(/nj)>/i(/,,y)
—n(fi(jan)  /in(M0) + en(/in(5n)  Ai(fn)).

Thus

P(|tf,|>e, tn<Tn)
< P f|n,,) - x,,,) > 2 )+ P (|p(-Sn) - /in(B,,)| > T
<2sup P fKi(A) - a,(1)| > o

o emie us o N
P 1 \2en Ca 288" V2en
C”

- 4exB/_U*2fII + 92160c" exp i-n -Nn2— 1
\™ 128c2J bnt \ 294912c2

On the other hand

P(Tn > Tn) = P(I<-1(bn) > K-\bn/2))
=P(bn <K"K-'ibn/m

(24)
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= P(bn - bn/2 <Kn(K-\bn/2) - K(K-\bn/2))) (25)
< exp{—2n(fe,, - bn/2)2}
= exp(—n62/2)

where the first inequality is HoefFding’s inequality. (7), (24), (25) and Lemma 3
imply that
£>(|E/,,|>0<°o0. (26)

n

(1) Let Cn = {j :n{Inj) > anhn}. Then

Mi— Y (i g )
je?nnc,
. Bjlnj
:J'BA”nchA.J)Iog ArJI(nAJq)) 27)
.o n(Inj)
) jefnng,nc,, T An(iny,
S icomg, ™) Iog::il(:]ij)) (28)

jecnng,,

Therefore, proceeding in the same way as in (I), applying Lemma 2 to (28) yields

P(Vn>e)< P(Vn X, Tn<Tn)+P(Tn > Tn)

< £ ' log X'ﬁ']_) >el + P(Tn>Tn)
jecme, ("nj)
< J2 {2exp ”iTGa (KInj)(l-2-1))2
jecnngn
11520

* Rlryking) (-2 &P —na i~ (ignyat 2 g2
+ exp[—n62/2]
< onhn 2exp |-n™(a,, /i, (I - 2 £)2
N 23040
enarlfirl(l 2:7' eXpr M7 LU 8A/|*1% 2 A2
+ exp(—n62/2)

where in the last inequality we used that for j £ £,, M£n,/r(7n;) > anhn and
K{Tn) = én/2.
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It follows from (7) and the Borel-Cantelli lemma that

lim \+=0 a.s (29)
On the other hand, by (27),
-p .~ E N
A1 Hn(Inj) (30)
< E M/nJ)log”
je’\,,ng,, /. n(inj)
jer,.ne,,

where the latter inequality follows from the so-called Log-Sum Inequality (Csiszar
and Korner [4], p. 48). Continuing (30) we have that

A1 Bnilnj)
\"A ITT - £ Mini) log—= — —
ng,, E i€”,,ncn E
je~nngn jen.ng,, (31)
< loge 1 "
E

JE?nIMh

Now, we can show that (cf. (39) below)

E J/i(fni) 1 a.s., as n—mo,

hence (30) and (31) imply that
1{-Vn>C} < '{1>2,(Ujernnénin)} -+ 0 a-S-
Combining this last result with (29) yields the proof of the fact that
nIi_*m{]OVn =0 as. (32)

(111) We also have
limZ,=0 (33)

n —»00
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by Lemma 1 and (8).
(IV) Finally introduce the notations

An= U Inj-
ne,,
and
an(x) if x £ Inj
then
W-= T, lo* AIM
j\j;rnl‘ﬁn
=V f{x)\oggn(x)dx
A
—J f{x)\ogf(x)dx - ¥ f(x) log ax-
in

f f —f ffn implies that
An An

\] f(x) log 9n¥x§ dx >0

and in the same way

J/ fix)I°g an(x) dx > 0.
An

Thus (34), (35) and (36) imply that

\Wn\<AJ[ f{x)\\ogf(x)\dx +Ji f(x) log on(x) dx

_J Wogf{x)\n(dx) + Zn.

Since # (/) is finite, n
(IA) = \] [log/(x)|p(dx)
A

is absolutely continuous with respect to u,

6
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(34)

(35)

(36)

(37)
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Moreover, we observe that

A U o = aex o < ad)

uTn T«
= 'j f(x)dx
/,(r)<a,
< 7 fx)dx + J f(x) dx
j/(1)<a 3(*)>o>1n(*)

< 1 f(x)dx + 2 j\i{x) - fa(x)\dx.

Therefore, by Lemma 4 and (5) we have that

J" n(lnj)) 20 a. s, n—*o00. (38)
U Tn

On the other hand,
I>(/»;) <M [, ])-+°

a. s. since 6n —»0, therefore by (38)
u(An) —+0 a.s. n—mo. (39)
Hence, (33), (37) and (39) imply that
flljpowo Wn|=0 as. (40)
Now, from (26), (32), (33) and (40) it follows that
|1m00 Hn=#(/) as. (41)

and thus the proof of the Theorem is complete.
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We show that the empirical log-optimal portfolio performs asymptotically under
certain conditions as well as the optimal one.

1. Introduction

Let X E Rm denote a random stock market return vector, where X{ is the
value of one unit investment in stock i at the end of the trading day. We require
that X{ > 0fori —1 , 2 thatis, an investor can not loose more than the

m

invested capital. Let b, 6> 0, 6 = 1, denote a portfolio, that is, an allocation
of investor’s capital across theiinlvestment alternatives. Let B denote the set of
such portfolios. Thus 6, is the proportion of current capital invested in stock i.
The resulting wealth is S = ’T_ NX* = bX. This is the wealth resulting from a
unit investment allocated to t?eI m stocks according to portfolio b. If the current

capital is reallocated according to portfolio b, at time i in repeated investments
against stock vectors X i, X 2,... then the wealth Sn at time n is given by
N
sn =1 b-X«

Suppose the stock market process Xj, X2,... is independent and identically dis-
tributed. A portfolio b* is called log-optimal if LTnb’X = gup L'InbX. Let B*
es

denote the set of log-optimal portfolios. It can be shown that limsup FInSn <

71—»00

1 This paper was prepared under the auspices of E. C. TEMPUS Office grant IMG-HVS-
0062-90.
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lim flns* = i?Inb*X a. s., where Sn, S* denote capitals achieved by an arbi-

?r?a?f/ and the log-optimal portfolio in n repeated games, respectively. For more
about the log-optimal portfolio see [1]—{8].

If the probability distribution of the stocks is not known in advance, consider
as a goal to find a portfolio selector £5+) which achieves the same asymptotic capital
growth rate as the log-optimal portfolio does, that is,

lim - In5,, = E'Inb’X a. s.,

n—00 T

where Sn = MNb(X1,X2,...,.X, 1X,.

o—|
2. The empirical log-optimal portfolio

We suppose that the sequence of random stock market variables Xi, X2,...
is stationary and ergodic. We examine the performance of the following portfolio
selector:

bO = (/m,1/m,....1I/m) forn =0

: _ 1-n . j .
b(Xi,X2,...,Xn) = arggwegxn-y InbXi = argT&%( Inbx/in(dx) forn > 1

where
Md) = & Y2 AX6T
= - X.
&

and
r /1 if X, GA\

X&M \0 if X, gAJ"

In other words, we choose the log-optimal portfolio according to the empirical
distribution of the past.

The following theorem implies that the asymptotically optimal growth rate is
achieved by the proposed portfolio selector if the sequence of random stock vectors
is independent and identically distributed rather than merely ergodic. The portfolio
selector proposed in Cover [9] achieves this goal but our selector is much simpler.

Theorem 1. Suppose the sequence of random stock market variables Xi,
X2,..., is stationary, ergodic, and E|InXj|< oo forj = 1,2,..., m. Then

lim —n5,, = E'lrib'X a. s.,
n—oo N



MORVAI: EMPIRICAL LOG-OPTIMAL PORTFOLIO SELECTION 455

where Sn = Jib(X] ,X2,0-0. X, )X,- and ElInb*X = gup Ein bX.

Let /1 denote the distribution of the random stock v%ctor X.
Lemma 1 Suppose —e0 < Sltjg ElnbX < 00. Let {bn} be a fixed sequence
b
of portfolios. If lim flnb,jX fi(dx) —EInb*X then the accumulation points of

n —00

{bn} are log-optimal according to the true distribution p.

Proof. Suppose b' is an accumulation point which is not log-optimal.

Let {bn>} be a subsequence of {bn} converging to b'. Since the function
ElnbX is continuous in b,

Elnb'X= /[ In lim bnix/r(oix) = lim ./ Inbnix/i(cIx).
J  e—m *=

J
Since b' is not log-optimal, EInb'X < Elnb’X. Thus

‘Il_n&)f Inbn,x/i(dx) < EInb*X.

But this contradicts the assumption n“% fInbnx fi(dx) = EInb*X.
Lemma 2 (Cover [8]). Suppose —e0 < sup EInbX < oo. Let L be the

bes
subspace of Rm of least dimension satisfying P(X € L) = 1 Each log-optimal
portfolio b* € B mhas the same orthogonal projection bjr onto L.

Lemma 3. Suppose —60 < sup EInbX < oo. Let the process Xj, X2, ..., be
beB
stationary and ergodic. Consider any function b*(-) such that b*(Xj,X2,..., X;) 6

B* for all i. Let b* be a log-optimal portfolio. Then

nIl[;BQ—l.llVInb*(Xl,XZ,...,X,_1)X, = Elnb*X a. S.
i—+

Proof.

im —lVInb *(X11X2,....X i_DXi=
L S

lim Hlvm(be, + (b*(XI1X2,... .Xi.j) - bL)X;) =
oo Moy

n@»%\/ﬂfbbx, -

ElnbLX =
E Inb*X a. s,
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since (b*(Xi,X2,... , X;_i) —bM)x =0for x £ Land P(X £ L) = 1by Lemma
2, where b” is the unique projection of the log-optimal portfolios.
Lemma 4. Suppose —00 < sup is InbX < 00. Then the set of log-optimal

A . bgJ3
portfolios B* is closed.

Proof. Suppose b' is from the boundary of B* but b' ~ B*. Let b* be a
sequence converging to b'. By the continuity of the function LdnbX, ETnb'X =
E\n n"—%b*x = nﬂ% £Tnb*X = £Tnb*X. Thus b' is log-optimal. But this

contradicts the assumption b' » 5*,
Lemma 5.

W .} InbX - /{XEAG Inb'X < b - b,

where 0 < e< land

f1 if X £[gl/elm1
{xen,} |o if X O [el/elm]

Proof.

NXEA}IINbX - {XEATHIND'X =

bx -b'
~Nxen,} In - Mxen}In(1+ (bbt')X)X <

/ .

iE_lfc-vH

I{xen} I 1+ Tp—— <I{xen} I 1+ —_—— <

Vv E b'c

E Ibi-bi"\

TV O — <Mib-b'||.

Lemma 6 ForO<e< 1

I'H]SEPSL,%%J/ {xen,} Inbx/2,,(dx) - J/ H{x€A(} Inbx/i(dx) <0 a. s.

Proof. We cover the simplexB=<b: =1 6 >0fori=1,2,...,m

1=
by regions Dj with diameter A, where j = 1,2,..., r(A). Let bJ denote a portfolio
from the region Dj.

SLPJM{xen«} Ihbx/x,,(dx)- J/ [{EAL} Inbx p(dx) =

b £R
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max sup 7{XEA} In bx Bn(dx) — [7{xg4,} Inbxfl(dx) <
bgRj J J

J

mJax bsup f 7¢xeney INOXBN(AX) — | f{xgn.} lubjxBn(dx)+
gdj J

m_ax SUIS)J 7txenc} Inb ,xp(dx)— r\/{xg4,} Inbx fl(dx) +

mJax bsup | 7{xe-4,} Inb;x Bn(dx) —J I{xg4.} Inbjx/x((fx).
gdj J

From Lemma 5,

Sup \] 7=t } Inbx/i, (dx) - \] I{x€At]InbjXiln(dx) <

Similarly,
SUB [ Inb;x/{x6"t}/i(dx) - / InbxI{x€At]fi(dx) < ™A,
beD, J J £
Thus
sup / {x6n} 1nbx£n(/Ic) - / /{x6M1e} Inbx/i(dx) <
BEB J
2mA J J
+ max V /{x6/K<) Inb; xpn(dx) - I{xeA<) Inb; x/r(dx),

By the strong law of large numbers for ergodic sequence,
lim max / lix*A ilnbjx fin(dx) —/ Tx6/1 ninb,x p(dx) = 0 a. s,
n—+ o0 0 j J Xx el I x cJ
henc
. . . . 2mA
limsupsup / {06/} Inbx/i,(dx) - _ lixe A\\nbx fi{dx) < a. s
N—oo bgBJ J

Since [ was arbitrary,

Iimsup%té% J/ f{xg”e}In bx /i (dx) —J/ {x€N(j Inbxp(dx) < 0 a s

n->00

Lemma 7. Under the conditions of Theorem 1,

Ilmsupsgép / Inbx B n(dx)- / Inbx/r(dx)<0 a. s

n-*oo
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Proof.
sup / Inbx/3n(ic) — ( Inbx n(dx) <
beB 7 J
Egg 7I’\{xe4,}|nbx/i,,(dx) - j f{xeAc}Inbx/i(dx)+
Egg f I{xgA.) Inbx/in(<fx) - \] h*gA.) Inbx/i(dx).

From Lemma 6, for arbitrary e > 0,

Iirr}nfgf) ng?f I{xeA'} Inbx/},,(dx) —f /{x6Ae}Inbx/i(dx) < 0

Furthermore,
Egg J/ \nbx fin{dx) - J/ I{xgAt] Inbx/i(c/x) <
SP M{x"«} lube/m(c) + sup _ I,xgA\\nbxn(dx) <
beB ly beB J
m m
nexnney N~ ex, fin{dx) + sup i v In 6X n(dx) <
bei j {x"ne} t=|6X {dx) begyl 1{xgA'} = (dx)

sugf stgA\maxi max Inx;, — min  InxX* >M(c?X)+
be % d ti=1,2,..., m 1=1,2 m J

sugf [txgA \ max< max Inx*, — min
be e fi=1,2 i 2

,,,,, m i=1,2,...,m

Inx, J>fi(dx) <

m

m
/hng.} 110 ~ilp'ncefx) + y  1{xgA,} I'ln
i=l

It follows that

limsup s [ 1(x$AL) Inbxfin(dx) — / 1{xgAt] Inbx [i{dx) <
Imsup sup, . (x$At) Inbxfin(dx) ; {xgAt] Inbx [i{dx)

f m
2/ AMiInx, [/i((Fx) a. s.,
since
m * m
nli_rp@/ 1ixgaey P2\\nXiVfin(dx) = I{xeA,)YI InX|i(dx) a s
=1

J i=1
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Thus for arbitrary e > 0,

. » m
/nbx fin(dx) — / Inbx/i(dx) < 2 / {-xgAe} /2 lInz,|fj.(dx) a. s.
J J

Since e > 0 was arbitrary and by assumption £i|lnXi| < oo for i = 1,2,..., m,
m

E\ng 2f I{ngt}_§2l lIn£i}/j(dx) = 0 by the Lebesgue dominated convergence theo-
rem. Thus

limsup sup / Inbx/in(dx)—/ Inbx/j(dx) <0 a. s
p €rr>” (dx) j j(dx)

n —»00 b

Lemma 8 Under the conditions of Theorem 1, the accumulation points of
b( ) are log-optimal with probability one.
Proof. By the definition of log-optimality,

0< \] Inb"x /i(dx) J Inb(XiX 2 me X,)x /r(dx) =
\] In b*xﬁ(d()—\] Inb*x/in(dx)—f\] Inb*x/i,, (dx)—
\] Inb(XlXZ...,X,,)x/in(dx)+\] Inb (X 1X2...,X ,,)x/in(cfx)-
[ INDOXiX2..., X, )x fi(d).

Since J
/ Inb*x pn(dx) —V Inb(XiX2... ,Xn)xnn(dx) <0

by the definition of b( ), and
lim / Inb*x u(dx) —/ Inb*x fin(dx) =0 a.s.
g, | (dx) ] (dx)
by ergodicity, we have,
0 < limsup f Inb*x fr(dx) —/ Inb(Xi, X2,..., X,,)x n(dx) <
n—o 7 7

li [ Inb(Xi,X2,..., Xn)x/in(d Inb(Xb X2,... ,Xn)x/i(dx) <
Ir?lielxj)pY nb(Xi n)x/in(dx / nb( n)x/i(dx)

limsup sup / Inbx/in(dx)— / Inbx/x(dx) < a. s
n—oo bes J J
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where the last step follows from Lemma 7.
Thus we have,

liminfJ Inb(XL X2, ... Xn)x/i(dx) > J Inb*x %i(dx) a s

and J J
Inb(Xi, X2,... ,X,)x"~(dx) < Inb*xp(dx)

hence
lim ~Alnb (X i,X2,...,X,,)x/i(dx) = y~lnb*xp(c/x) a. s

Now the statement follows from Lemma 1.
Lemma 9. Let the process Xb X2, ..., X,, be stationary and ergodic. Suppose
that

—00 < sup E Inbx < 00.
b

Consider a portfolio selector b(-) such that P(b(Xb X2,..., X, )X, = 0 = 0

for all t and the accumulation points of b(-) are log-optimum with probability one.
Then

.1 . .
nh_rT&)n—}/_’\iMb(Xl, X2,...,X, )X, = £lnb*X a s

Proof. Let b*' be a log-optimum portfolio such that bj' = 0 = = 0 for j =
1,2,...,m and for all b* 6 B*, where B* denotes the set of log-optimal portfolios.
Such a portfolio exists, since suppose 6%j = 0 and 2 mdy O for some j. Then for
any 1€ (0,1), AbJ + (1 —A)b|; E B* and contains less number of zeros than bj
does. (Note E(Xb\X + (1- A)b"X) = PInbJX = PInb”"X by Lemma 2.) If this
new portfolio does not satisfy the condition we can repeat this procedure. After at
most m steps we get a proper portfolio.
Since b*X = b*'X a. s. (see Lemma 2),

1y Minb(Xb X2,...,X, DX- _ 1v” hib(x1,x2,...,x,-Dx,

n 'iﬂ b*X, n_. b*'X,
1 rn i b*(Xi,X2,... X, _i)X, N
n. b*'X,

i=I
b(X1X2,...,X I-i)Xt-b4 X 1,X2,...,X ,-DX,
b*'X<
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where b*(Xi, X2,..., X,_i) denotes the closest log-optimal portfolio to
b(Xi,X2,... ,X,_ i) in Euclidean distance. (Such a portfolio exists since the set of
log-optimal portfolios is closed by Lemma 4.) Thus

1A . D(XLX2,...,X,--DX- _

n-Eln b-x
(b(xbx2...,xi_D-b*(x1x2...,xi_D)xi"
L 1+ b*'X, g
1r,..b»2.0 (" 1 <aX,fa) \

i= 4-J|, | s~
where a; = 1ifby ¢ 0, aj = 0if by = 0 and k(w) is an integer such that

[lb(XLw),X2(W),... , X,(w)) —b*(Xi(w), X2(w),... . Xi(w))|| < eforr > t(w),
where 0 < e < 0.5minje/ by, | = {j :by ¢ 0}.

Thus
ly -j b(X1X2,...,X, DX-~
nk n b"X,
S (X(U;), X 2(09), ..., XI_ ()X, (uj)
P I. b
t:| XI(W)
lya | caX,w)\ 1~ ( caXj(ui
y 1- +»S ‘4 1- b~A"XT
Thus
e, B(XL X2, X - DX- o (L, eaX
I f—V'lI - - . S.
AN I b*X, ZEIN L gy 28
Expanding the function In "1 — into Taylor series around 0 in the interval
. —yaX
0, €], we have, , €]
[0, €], we have '(.‘S|) () + pase - tax for some t 6 [0, €]
Thus
eaX\ 7 eaX A eaX eaX 2caX
In (1

b*'xj b*'X - taX - b*X - eaX - 0.5b*X  b*X

Since E ISE < 1forj = 1,2,...,m by log-optimality (see Bell and Cover [7]),

hence
2caX n

EN x - 2em < °°-
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Since t weis arbitrary,

Il_llgﬁh‘l (\/I- =EIn1=0

by the Lebesgue dominated convergence theorem. The upper bound follows simi-
larly,

Iimsup—l ; ,Inb(x1,x 2, Xi X<
Woo N {=* b*Xj
_ (b(Xi, X2,.. ., Xi-X -b*(X],X2...... X,.nH) X,
limsup —V"In | 1+ b*X.
limsupig In (I + =£1”(l+E §) .
where e = (I,1,...,1). Since e was arbitrary,

!i&ln(l-l'p|) -

by the Lebesgue dominated convergence theorem. Hence
.1 N
v A = *
nI|m y Inb(XbX2)..,X, i)Xi=£Inb*X a.s.

Proof of Theorem 1 The accumulation points of b( ) are log-optimal by
Lemma 8. Then the theorem follows from Lemma 9.
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In nonparametric pattern classification the optimal (Bayesian) decision on the cate-
gory of the observed vector is designed from a long training sequence, that is, independent
pairs of observations and corresponding labels. In many practical situations, however, due
to feature extraction, quantization, or noise, the observed vector and the training sequence
may be distorted. In this paper we show how asymptotically optimal decisions can be
derived from-distorted training or made from slightly distorted observation.

1. Introduction

The usual pattern classification problem is the following: Let the random
variable pair (X,Y) be such that the observation X takes its values from R4, the
set of d-dimensional real vectors, while the value of the label Y is from the set {0,1}.
The task is to estimate the value of the label Y knowing only the observation X,
that is, to find a measurable decision function g : Rd — {0,1} so as the error
probability of the decision Pg(X,Y) = Pr{p(A) & ¥} be minimal. It is well
known that the optimal solution is given by the Bayes-decision:

g*(x) = arg maxp.-(x),
(=01

where pt{x) = Pr{¥ = i \X =x}, i = 0,1 are the a posteriori probabilities. The
error probability of this decision is the Bayes-risk: PB(X,Y) = Pr{g"(X) ¢ Y}.

It is well known that
I- E (Pg{X)(X)),

Pg(X.Y)
and
PB(X,Y) =1- r(m?xpipO).
If the a posteriori probabilities are not known, then we have to approxi-
mate the optimal decision. Assume that we are given a training sequence =

7 Akadémiai Kiad6, Budapest
Pergamon Press, Oxford
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((Xi,¥X),... ,(X,,, ¥,.)), where the pairs (X,-Yi) are independent and have the
same distribution as (X,Y), and £, is independent from (/1.,Y). In this case we
estimate Y in the form <sn(X, £n), a measurable function of the observation and
the training sequence. The error probability is Pr{<7,(X,En) ® ¥Y}- Due to the
results of nonparametric pattern recognition and regression estimation (e.g. Stone
[7], Devroye, Gyorfi [1]) it is well known that there exist decision rules such that
lim Pr{<7,,(X,6,) ® ¥Y}—PB(X,Y) = 0regardless of the underlying distribution of

(X,¥). In many practical cases, however, either the observation X or the training
vectors are available only in distorted form: T(X,p) or T(Xi,pi) (i —1,...,n), re-
spectively. Here p,pi,... /i, are independent random variables taking their values
from a measurable space (S,S) and, by assumption, independent from (X,Y,f,,),
while T is an Revalued mapping defined on (Rd x S). Our question is whether it
is possible to obtain a decision rule with error probability close to the Bayes-risk
if the distortion is small, that is, if Ep(X, T(X, p)) is small, where p denotes the
Euclidean metric. The next theorem is an important good news.

Theorem 1 (Faragd, Gyorfi [2]). Given e > 0O there exists a 6 > 0 such that
for every function T and random variable p satisfying Ep(X. T(X. p)) < 6,

PB(T(X,p),Y)-PB{X,Y)<(  holds.

The theorem states that the risk of the best decision from distorted observa-
tion is close to the optimum if the distortion is sufficiently small. This optimum can
be approximated arbitrarily well if the training pairs are of the form (T(X*,Pi), ¥,)
(i = 1,...,n). We are interested if the asymptotic error probability can be close
to the Bayes-risk when the training is errorless but the observation is distorted,
(Section 3) and when the training is distorted but the observation is not (Section
4) for sufficiently small distortion. As we will see, the answer is affirmative in both
cases if the decision rule is based on the proposed randomization of the training.

2. Preliminary results

Before stating our results we need some key lemmas. Assume that the random
variable £ takes its values from the measurable space (S, S) and it is independent
from the pair (X, Y) (typically £ plays the role of the training sequence) and let
the measurable real valued functions g”x, s), i = 0,1, be defined on Rd x S. Define
the decision g as follows:

g(x,s) = arg max g{(X, s).

Using these notations we have the following:
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Lemma 1 (Devroye, Gyorfi [1]).

Pr{a(X,0 ®Y) - PB(X,Y) <e ("2\p,(X) - q,(X,01
4 =0

The statement of the lemma indicates that the error probability of decision
g is very close to the Bayes-risk if the g are good L\ approximations of the a
posteriori probabilities.

The next lemma states that every decision based on maximization of measur-
able functions can be arbitrarily approximated by approximating the functions in
Li sense.

Lemma 2 (Lugosi [5]). Let go(x) and q\{x) be real valued measurable functions
defined on Rd. Let the decision function g be the following:

g(x) = arg max qi(x).

If this maximum is unique almost everywhere (mod Px), then for any sequence of
measurable functions dn\x, s) (i —0,1; n= 1,2,...), for which

n —00

lim Eirlg”x) - dm)(x,s)\) =0,
%=0 7
lim \Pg(X,Y)- R (X,Y)\ =0

holds, where
g(n)(x,s) = argimax"n"(x, S)

(Pz denotes the measure induced by a random variable Z).

We need one more technical lemma:

Lemma 3 (Farag6, Gyorfi [2]). Let q : Rd —R+ be a bounded continuous
function. Then for all e > 0 there is a 6 > Osuch that Ep(X,T(X, p)) < 6 implies

E\a(X)-a(T(X,p))\ <c
3. Errorless training, distorted observation

In this section we deal with the following problem: a decision designed from
the training £n —(("i, Yj),*me, {Xn, Yn)) is made from the distorted observation
T(X, p). First we consider the decision rule obtained by the maximization ofan Lj-
consistent estimator Pin(x) of the a posteriori probabilities Pi(x) = Pr{Y =i |X =

I-
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x), 1 —0,1, (by Li-consistency we mean that lim E \pi{X)-pin = 0),
that is, our decision is of the form

gn(x) = arg Bnlaxpin(x).
i=0,

(In the notation we suppressed the dependence of gn and on £,.) Our goal is
to analyze the asymptotic behavior of the decisions, therefore, by Lemma 2 it is
enough to investigate the performance of the decision

g(x) = arg maxp,(x).
t=0,l

The following lemma is a good news for smooth a posteriori probability func-
tions:

Lemma 4. If the functions Pi(x) are continuous (i = 0,1), then for all e >0
there is a 6 > 0 such that if Ep(X, T(X, p)) < 6, then

Pg(T(le)lY)'PB(X,Y)<e

Proof. It follows from Lemma 1 that

Pg(T(X,p), Y) - PB(X,Y) <e (T Wi(X) - pt(T(X,p))\) ,
=0 ;
the continuity and Lemma 3 give the desired result.
The following counterexample shows the necessity of the smoothness condition

in Lemma 4.
Example. Let X be a real valued random variable and

Y _ f1 if X is irrational
10 otherwise.

Assume furthermore that Pr{Y = 0} = Pr{YY = 1} = 1/2. Consider the following
sequence of transformations:

T it JC is rational

in
---  otherwise.

It is clear that on one hand PB

(X, Y) = 0,_and on the other hand
TN(X),Y) =

PrulTIX)) Y} =1
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for every n, while nllrl)o Ep(X,T,,(X)) =0.

In the remaining part of the section we show that there exists a randomized
classification rule with asymptotic error probability close to the Bayes-risk for all
distributions if the distortion is sufficiently small. The idea of the method is adding
small “noise” to the training observations, estimating the a posteriori probabilities
from the “noisy” sample and making the decision by maximizing them. This means
that instead of the training £n we use the data

«» = ((Xi + 1/bTI +!/,,,Y*))

to estimate the functions
p,()=Pr{Y=i\X +v=x] (i=0,1),

where the Revalued random variables r/, vi,...,vn are i.i.d.,, independent from
(™, X, Y) with expected value zero, uniformly continuous density and

Ve (H\2 <EP(X,T(x,p)).

If the applied estimation of the functions Pi(x) is Too-consistent, that is, for the
estimator p[n\x,uw,,)

sup P.(*)-Pin)(*,w,, 0
* =0

holds almost surely, then for all e > Othere isa6and n such that if Ep (X, T(X, p)) <
6 then
I

ITE\p<(T(X,p))-p<n)(T(X,p), L)\ <e.

i=0
In this case, by Lemma 2, the asymptotic error probability of the decision obtained
by the maximization of the estimated functions is equal to that of decision

gx) = arg maxpi(r),

thus, it is enough to investigate its error probability Pg(T(X,p),Y). Note that
the uniform continuity of the density of v implies that the distribution of X + v
and the conditional distributions of X + ngiven Y =i, i = 0,1, are absolutely
continuous with uniformly continuous density (e.g. Wheeden, Zygmund [8]), there-
fore density estimation methods -consistent for uniformly continuous densities
are appropriate for our purpose. Such methods are kernel density estimation, his-
togram estimation and k-NN estimation (see Mack, Rosenblatt [6], Hardle, Janssen,

8
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Serfling [4], Gyorfi, Hérdle, Sarda, Vieu [3]). The main result of this section is the
following theorem:
Theorem 2. FOreverye> othereisae > osuch thatifep(x,T(x, p)) <8,
then
Pg(T(X,p),Y)-PB(X,Y)<e.

Proof. Since Ep(X + 1, X) < Ep(X,T(X,p)), using Theorem 1, for every e
there is a 8\ > 0 such that if Ep(X,T(X, p)) <61, then

PB(X +u,Y) —PB(X,Y) <e/2.

The continuity of the density of n implies the continuity of pi(x), i = 0,1, therefore,
using Lemma 4, we conclude that there is a 8 > 0 such that Ep(X, T(X, p)) <8
implies

Pg(T(X,p),Y) - PB(X +v,Y) <e/2,
since Ep(X +v,T(X,Y)) < 2Ep(X, T(X,p)) by the triangle inequality. The choice
8 = min(<5i,(52) completes the proof.

4. Distorted training, errorless observation

In the sequel we deal with the situation when the observation X is known
but instead of knowing the training sequence  we have its distorted form (n =
(T(X\,pi),Y\),... ,(T(Xn,pn),Yn). First we show under certain conditions that
we can get an asymptotically good decision by estimating the probabilities Pr{¥ =
i IT{X,p) = x} from £n. However, this method does not work in general, but, as
we will see, the randomization of the training helps just as in Section 3. Introduce
some notations: Let T C  be the set of the possible values of T(X, p), furthermore

qi(x) = Pr{Y=1iIT(X,p) - x) (i=0,1; xET),
maxo,(K) ifxX€T
01
1 otherwise.

Note that X A T means error in the decision (</(X) ¢ Y). Introducing the following
function
J(xs) = arg maxg,(T(x, s))
1=0,1

it is clear that Pr{g(X,p) Y} = PB(T(X,p),Y).
Lemma 5. If Pr{X £T} = 1 then for all e > 0 there exists a $> 0 such that
from Ep(T(X,p),X) <6

Pg(X,Y)~ PB(X,Y)<t follows.
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Proof.
Pg(X,Y)-PB(X,Y)
< IPg(X,Y) - PB(T(X,p),Y) I+ PB(T(X, p),Y) - PB(X,Y)

Fix an arbitrary e > 0. Theorem 1 implies that there exists a 8\ > 0 such that if
Ep{T(X,R),X) < & then PB(T(X,p),Y) —PB{X, Y) <e/2. Thus, we have to
prove that the first term on the right hand side of (1) is small too, that is, there is
a 82 > 0 such that Ep(T(X,p), X) < 82 implies

\Pg(X,Y)-PB(T(X,p),Y)\<t/2. @)

Let go{x) and qi(x) be nonnegative continuous functions defined on Rd. Introduce
the following notations:

h(x) —arg_maxqi(x),
h(x,s) = arg_max9,(T(x, s)).

Then applying the triangle inequality we have
< \Pg(X,Y)~ Ph(X,Y)\ +\Ph(X,Y) - Pr{h(X,n) ¢ YH (3)
+\Pr{h(X,p)"Y}-PB(T(Xiti),Y)\
In the remaining part of the proof we show that the continuous functions iji(x) can
be chosen such that for some 84 > 0 all three terms on the right hand side of (3)
are smaller than e/6 if Ep(T(X, p),X) < 82mWe look at the right hand side of (3)

term by term.
(i) The first term: By Lemma 2 there exists a € > 0 such that if

e ("2bl X)-v(X)\] <83 4)
s :

then \Pg{X,Y)~ Ph(X,Y)\<e/&.
(ii) The third term: By Lemma 1

[PC{N(N» d Y} - PB(T(X,P),Y)I<e("2bIMX,p))- q,(T(x,p))\
\ =0

Thus, we have to show that the gi(x) can be chosen such that

E (" 1a.(T(XA))-g.("./i))]) <el6 ©)
4=0 A
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and (4) hold. This is possible since the set of continuous functions is dense in the
space of integrable functions with respect to Px + PT(X,u)- Assume, therefore, that
the functions 5,(x) satisfy (4) and (5).

(iii) The second term: By Lemma 2 there is a 64 > 0 such that

\Ph(X,Y)-Pr{h(X,p)"YIN<€/Q if ~felg,(A )-9(T(A/i)A <S4 (6)
o :

Now, because of the continuity of <i(X) we can use Lemma 3 which states that for
this 64 there exists a & > 0 such that (6) holds if Ep(T(X,p), X) < 65. Now, we
can see that by choosing & = 65 (2) holds, which completes the proof. Finally, we
note that the condition of the applicability of Lemma 2 is that decision h is unique
almost surely (mod Px)- However, this can always be achieved by an arbitrarily
small change in Fi(x).

The condition in Lemma 5 (Pr{X E T} = 1) does not hold in many important
cases, e.g. if T(X,p) is a quantization of A (does not depend on p). To overcome
this difficulty we can apply the same randomization as in Section 3, that is, instead
of <, we can use the “noisy” training

tin=((T(X1,pD) +v1,Y1)....... (T(Xn,Pn) + «B,Y»)),

where 1, iq,..., vn are i.i.d. random variables with zero mean, everywhere positive
density and \JE(||i/||2) < Ep(X,T(X, p)). If we use to estimate the functions
;) —Pr{¥Y = I\T(X, p) + ¥ = x} in an Li-consistent way, then by Lemma 2 it
is enough to deal with the error probability Rg{X,Y) of the decision rule

g(x) = arg max qi(x).
1=0,1

ft is clear that i(x), r= 0,1, and g(x) are defined everywhere. The following theo-
rem states that, without any additional condition the asymptotic error probability
of the randomized decision is close to the Bayes-risk.
Theorem 3. Given t > 0 there exists a 6 > 0 such that Ep (X ,T(X,p)) < 6
implies
Pi(X,Y)~ PB(X,Y)<c.
Proof. Introducing the notation T (X, (p, I/)) = T(X, p) + 1, it is clear that

Ep(X,T(X,(p,v))) <2Ep(X,T(X,p)),
from which using Lemma 5 the statement follows.
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The validity of Bennett’s formula for companding quantizers is shown under precise
conditions for rth power distortion measures. Using these conditions it is shown rigorously
that certain companders are asymptotically optimal, i.e., their distortion and the distortion
of optimal quantizers decrease to zero at the same rate, as the number of quantization
levels increases to infinity. Some defects in previous derivations concerning companders are
pointed out.

1. Introduction

The design of optimal TV-level scalar quantizers for mean-squared distortion
measure was first considered by Lloyd [8] and Max [9]. In general, the resulting iter-
ative algorithms give suboptimal quantizers. Necessary conditions for the so-called
Lloyd-Max algorithm to converge to the global optimum was given by Thrushkin
[11] and Kieffer [7], the later proving exponential rate of convergence.

A parallel approach for scalar quantization is Bennett’s companding quantiz-
er. Bennett [1] modeled a nonuniform TV-level scalar quantizer by a memoryless
nonlinearity G( ) followed by an TV-level uniform quantizer Qn ,u, which is followed
by the inverse of the nonlinearity G-1. Formally, the TV-level companding quantizer
(also called compander) Qn,g is defined by

Qng(x) = @)

where G : = —= [0,1] is onto and increasing, and Qn,u is the T\-level uniform
quantizer on [0,1], i.e.,

oNU) = ML i (n—I n

forn=1,... TV—L Clearly, all TV-level scalar quantizers can be implemented this
way. From now on we assume that the quantized random variable X has a density

Akadémiat Kiadé, Budapest
Pergamon Press, Oxford
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/. Bennett demonstrated that for large TV the mean-squared error D(Qn,g) =
E\X —Q;v,g(20]2 satisfies

L
» "» » V h_/Lh "1 2)

where g is the derivative of G, and [, L] is the (bounded) support of /, the
density of the random variable being quantized- Note that g is a probability density
function, i.e, g> 0and f g—1

Bennett’s formula, when formally generalized for rth power distortions
D(Qn,g) = E\X - Qjv.GpOr, r > 0, gives

K

(See Gish and Pierce [4], or Gray and Gray [5] for details.) Although this formula
has been widely used in the engineering literature, the only results claiming to give
sufficient conditions for it to hold appeared in Cambanis and Gerr [3], and Bucklew
and Wise [2]. It is easily seen via Holder’s inequality that the right-hand side of (3) is
minimal iff g(x) = /(W)W r+17/ f f(z) 2 r+17dz, suggesting that if this generalized

Bennett’s formula holds, then the companding quantizers with this characteristics
are nearly optimal for large N. This near optimality of the quantizers Qn,g was
first rigorously dealt with by Cambanis and Gerr [3]. They called a sequence of
quantizers QM asymptotically optimal if the distortion of QM tends to zero at the
same rate as the distortion of the T\-level optimal quantizer, as N —00. Formally

i D -
N“—r*rlo inf |(3Q(821 ) =1

where the infimum is taken over all TV-level quantizers Qar. Now, from Zador [14]
(c.f. [13]), we have

Jim T inf -D(Qe) @)

if X has density /. While the precise conditions for this are hard to deduce from
the paper, Bucklew and Wise [2, Theorem 2] give the following simple and general
condition for the validity of (4): £’A’'|rte < oo, for some e > 0. If we substitute
g(x) = /(x)l/G+l)/g/(z)]/,(r+l) dz into (3), then we obtain

Aim NrD(QNC)
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This shows that the optimal choice of compander characteristics results in asymp-
totically optimal quantizers if (3) with this choice holds.

In what follows we derive precise conditions for (3) to hold, thus giving suf-
ficient conditions for a sequence of companding quantizers being asymptotically
optimal.

2. Main result

Bennett’s integral (2) is a formula that can be found in most of the engi-
neering literature dealing with quantization. The companding approach to scalar
quantization and the derivation of the optimal compander characteristics is studied
from a more practical point of view in Jayant and Noll [6]. Interestingly enough,
only two results [Z] and [3] present sufficient conditions for (3). In [3, Theorem 1J]
these sufficient conditions were the following:

@) f(x) and G'(x) = g(x) are continuous,
(b) E\X\r < 00,
() f{x)/[9(x)Y is Riemann integrable on R,

The conditions that / be continuous and (c) are rather restrictive. In addition, there
is a gap in the proof concerning the convergence of Riemann sums with increasing
support to an improper Riemann integral.

In Bucklew and Wise [2, Theorem 1] the conditions for (3) were the following:

(A G\x) —g(x) is continuous and positive,

5 there exists an M > 0 such that 3(x) is increasing
®) if x <—M and g{x) is decreasing if x > M,

(©) i 1(2)/[<7@)]r+tdx < oo for some t > 0

R

These conditions do not involve the smoothness and Riemann integrability of /.
Although they are not directly comparable, conditions (A)-(C) are more appealing
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than conditions (a)-(d). However, the proof in [2, Theorem 1] is not complete
either. Namely, they use the following proposition at the end of the proof:

Let p(x) > 0 be integrable on [0,1], and let g(x) > 0 be continuous and
monotone decreasing in (0,1). Define the function gN(x) by

J «()
4n {x) = < . n _l
sup  3(x) ifx £ N n=2,..,.
UelTT1.%)
and assume that
dx < oo. (5)
Then it is asserted that
Jim é AN (x)p{x) dx = (6)

Were the integrands in (5) and (6) gis (X) and g(x) alone, this claim would surely
hold, for the shift of aar(x) to the left by I/N would allow us to use the dominated
convergence theorem. But p(x) is not translation invariant, thlus this trick does not

apply. Indeed, consider p(x) = e-1/r and g(x) = el’x. Then f q(x)p(x) dx = 1thus
0
(5) s satisfied. But, since p(x) = e~I/x is convex in (0, 1/2], it is lower bounded by
p(/7V) + p"{I/IN)(x - I/N) =e~N+{x- IN)N2e~N

in the interval [I/N,2/N], Thus we have

[ g/v{X)p(x) dx < ] [\—\—{x—\/N)nZ)dx
I/N I/N (7)
[
2 +N~ 2

as JV -too. For (6) to hold it is necessary that the left-hand side of (7) tend to
zero, thus (6) does not hold with the above conditions in general.

In what follows we give rather general sufficient conditions for (3). Our con-
ditions will be almost the same as (A)-(C), except that we relax (C) and impose a
new tail condition to avoid the convergence problem above.
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Denote the inverse of G by S, and let S' =s. A simple change of variables

shows that .

K 0

where p(x) = f(S(x))/g(S(x)), a probability density function with support [0,1].
We need the following conditions:

(co [ /) dx < oo,
[</()]r

For some c> 0

6

J W */2)]rP(X) dx < 0o

(D)
and
1

3 [s(C* + 1)/2))]rp(z)dz < oo.

-7

Theorem 1. Suppose that the conditions (A), (B), (CO and (D) hold. Then

Jim, NFR{QNG) = 4477 3 981 2

Proof. Note that the quantization intervals of <n,g are 4 o = (—0, S(I/N)),
2...N —Land ININ S

2n- 1
N
the quantizer Qn,g with the same quantization intervals as Q/v,g>but with levels

at the midpoints of the intervals, except for the two unbounded intervals, where
the levels are unchanged. Thus

N

The corresponding levels are yn,N —S n —1,...,n. First we consider

ifx Einn n=2,...,N- 1

Qn,g(x) y\,N —S(1/2N) if X £ 11,7V,

2N —1
Van S ON j ifxe In,n-
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Let us define the function sjv : (0,1) —(0, ct0) by

botifxe "IN h-2 N-I,

?ﬁﬂjgrs N "V
. 1]
s(1/2N) ifx G L
SN(Y) = < 2717’ v
2TV-1 ity £ N-12NV-1
2V v 2V
s(x) if Xe (o,- )u 272\7/\;1,
First we show that
Jim, J BN(G(x))Yf(x)dx = J[s(G(x))Yf(x) dx. 9
K (<Y

Note that sai(x) —»s(x) as Tv—o00 for all x G (0,1) by the continuity of s. By
change of variables

JISN(GO))]rf(x) dx = J [EN(y)Yp(y) dy.
K 0

Let 0 < e < 1/2 be such that (D) is satisfied and s(x) is decreasing in (0, €) and s(x)
li+ i 1
is increasing in (1—e, 1). The inequalities - <—and = 1- 7;\} r1 >

1—— valid for i > 1show that s(x/2) > sjv(x) and s((x+ 1)/2) > s(x) ifx £ (0, ¢)

or Xx E (1 - f, 1), respectively. Then by (D) and the continuity of s, the dominated
convergence theorem implies that

€ €
]I'!m 3 [siv(x)Yp(x) dx =J/ [s()Irp(x) dx, (10
0 0
and
1 1
Nlingo J/ ()]rp(x) dx — J/ [s()Irp(x) dx. (11
1-i -

1-

1-C T
Since s is bounded on [e, 1 —¢], dle f( sNp = ff srp clearly holds. (10), (11)

and this observation proves (9).
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The remaining part of the proof is done in two steps. The first step is to prove
that

. A I(*
,&%NrD(QNa)—(r_fV [ﬁ((g))]rdx- (12

Let x GIn'Nfor n= 1,..., N. Then by the mean-value theorem of differentiation

wr|g-QM,G(g)Ir <N Tr[Kin,N)Y

< [sn (G(x))Y,

(13)

where Astands for the Lebesgue measure. Furthermore, some simple calculations
using the monotonicity of s(x) near 0 and 1show that (13) holds for all x G (0,1),

if N is large enough. Let Au & / f(x)dx. Then flor j 1as N —eo0.
R\(/i,nMIn,n)
Define the piecewise constant density fn by

i _/i fﬁmﬁ_m § f(y)dy IfxeInN M=2..N- 1
n(x) nN
10 ifoli,n Uln,n-

Now by (13) we have

N I’\] X —Qn ,g{x)\tf(x) dx - N' Q n g {x)\tZn (x) dx
(14)

IIsIvV(G (z)1rl/(z) - Tn (x)1dx.
R

But from the definition of /gr and from the fact that sn is piecewise constant on
the support of /ar, we have

JLsN{GD))INVF(x) - IN(O\dx < (1+ J[SN(G(x))Yf(x)dx
< 3J[sN(G(x))YF{x)dx,
R

(15)

if N is large enough. From Lebesgue’s differentiation theorem [12] /ar — / as
N —*o00 a.e. A Considering (9), (15), (14) and this fact, a generalization of the
dominated convergence theorem (see Royden [10]) implies that

Al NTS LW QN GOW(x) dx = Jigg Nr [ - QNGOOWTN () dx,  (16)

R
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provided that the limit on the right-hand side exists. To prove that the right-hand

side is (r + 2r/ f/gr, define sN by
N\(1,,iN) if x £ ”N_l,lil‘ n=2...N—I
SN(X) = < 1. N-1
0 ifx€[0=)U "\ "1 m

Then sn(x) <sn(x) for all x £ (0,1) by (13). Since the yn.n, N = 2,..., IV—1
are the midpoints of the corresponding In,N, and since /jv(x) is constant on In,N>
we obtain

Nrd - ON,cOOVFFNG) dx = {r-0\ & ~  J[sN(G(X)Yf(x)dx.  (17)

Now since ijv(x) —+s(x) as N —* oo for all x € (0,1), the generalized dominated
convergence theorem implies that (17) tends to

(r+V /[*NQ »Ne >'j, = 4%

which, when combined with (16) proves (12).
The next step is to prove that

lim NrD(Qm,g) = bin NrD(Qn,g) (18)
Clearly, the quantity of interest is

N Ix —Qiv,G(:c)r —|x - Qv,G(x)r| = I Ix —Yhal - |z- Y 19
if x £ 1,,4. By a first order Taylor expansion

P van T - W= Y, 7V < YN - Vn.NHER (20)

. 1 .
where 0 < £,n < A(ININ) < —sn (6 (x)). The difference \yn,N — vn,nr| can be
estimated as follows. If n = 1or n = N, the difference is 0. Otherwise we have

yn,N =S (— j + A(((in.iv) and Y"w = s ~N~J + [NS'T,n’N>f°I' S)me
yaN) N E nN—l1I: by the mean-value theorem of differentiation. Thus we

have

Nt hx-Murl - I vn,N[rl < - *(ire, A)|siv(G@))]Ir 1
< r[sN(G(x))]r.

cah)



LINDER: ON ASYMPTOTICALLY OPTIMAL COMPANDING QUANTIZATION 483

The continuity of s(z) and the first inequality in (21) show that the right-hand side
tends to zero as N —»00. On the other hand, (9) and the second inequality in (21)
allow us to use again the generalized dominated convergence theorem to conclude
that

I.IIU_‘SOJ Nr I*- <omr6(*)r- - QN,c(x)\r f{x) dx = 0

which implies (18). This and (12) yield the theorem. O

To obtain provenly asymptotically optimal companders one should only check
whether / and the optimal choice of g satisfy the conditions of the theorem. Ad-
mittedly, there is a discrepancy between the conditions for / and g, since for the
former the conditions are much less restrictive. Unfortunately, condition (D) can
not be interpreted in an easy way, in general.

It should be mentioned, that Bennett’s formula is conjectured to be true with
the only condition (C"), but no proof has been given to date.

For some regular densities such as Gaussian, Rayleigh, and Laplacian, the
asymptotically optimal quantizers were computed for different values of r in [3].
These numerical results show that the performance of these quantizers compare fa-
vorably with the performance of optimal quantizers even for moderately low number
of quantization levels, thus showing the applicability of the asymptotic theory.

3. Conclusion

The validity of Bennett’s formula was established under precise sufficient con-
ditions, giving a justification for the claim that the optimal compander character-
istics yield nearly optimal quantizers. These quantizers are easy to compute if the
density of the random variable being quantized is known, and their implementation
is straightforward.
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