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RIESZ BASES OF EXPONENTIALS AND SINE-TYPE
FUNCTIONS

S. A. AVDONIN (Leningrad) and I. JOÓ (Budapest)

The notion of sine-type functions has been introduced by B. Ja. Levin [1] in 
connection with the description of bases from exponentials e'a*x, Я„£С, n£Z, into 
the space L2(0,a) (0< a< °° everywhere in this paper). This notion appears in 
almost every work devoted to this problem. In a sense, the nearness of the A„’s 
to the zeros of a sine-type function is a known ([2], [3]) sufficient condition for (eu"x) 
to have the Riesz property in L2(0, a).

In the present paper we prove that in some sense the nearness of {/,,} to the 
zeros of a sine-type function is also necessary for the Riesz basis property. Our 
investigations are based on the necessary and sufficient conditions of the Riesz 
basis property of (eu»x) given by B. S. Pavlov [4] and on the equivalent form of 
these conditions obtained by S. V. Hruscev [5].

1. The problem of description of the Riesz bases from exponentials has a long 
history. The first result of this type seems to be obtained by R. Paley and N. Wiener
[6]. They proved that {eanx} is a Riesz basis in L 2(0, 2n) if sup |Я„ —n\=:d<n~2.

л E Z
R. J. Duffin and J. J. Eachus [7] proved the same statement for d ^ -тг1 log 2. In 
these terms the problem was solved by M. I. Kadec [8]. Namely, he obtained the 
result for i/<l/4. The examples of A. E. Ingham [9] and N. Levinson [10] show that 
Kadec’s result cannot be improved.

All the investigations mentioned above are based on the fact that {eu-x} is 
close to the orthonormal basis {einx}. A different approach to the description of 
the Riesz bases from exponentials was developed by B. Ja. Levin [1]. In this approach 
the main role is played by the “generator function” of {eu»x}. This function was 
also used earlier by R. E. A. C. Paley and N. Wiener [6].

D efinition 1. Let Л:={Я„}сС, 0. The generator function of (Л, a) ( ifit
exists) is defined as an entire function F of exponential type with conjugate diagram 
[0, i'a] and with nullset Л [11].

We shall restrict ourselves to a special class of Л 's for which {eiX«x} is a Riesz 
basis. In this case we have a simple formula for F in terms of Л and we do not need 
the notion of the “conjugate diagramm”. Given / ,  g: X-~R+ we write f(x )x g (x )  
(xdX) if there exist constants clf c2>0 suchthat c1^ f(x )jg (x )^c2 (х^Х).

D efinition 2 [1]. An entire function F of exponential type is called to be of 
sine type if

1) the zeros of F lie in {z€C: \y \^h , z —x+ iy}  for some h>0,
2) there is j 0€R such that |Е(х+гу0) |Х 1 (x€i?) holds.

l*



4 S. A. AVDONIN and  1. JOÓ

Note that 1) and 2) imply 2) for any y0, |y0|
B. Ja. Levin [1] and V. D. Golovin [12] obtained the first results for the basis 

problem of exponentials in terms of the generator function.
Theorem A [1], [12]. {eiXn*} is a Riesz basis in L2(0, a) i f
1) the generator function o f ({A„}, a) is o f sine type and
2) {A_} is separate, i.e. inf |A„—Am|> 0 .n^m
V. E. Katznelson [2] generalized Kadec’s theorem for zeros of sine type functions.
Theorem В [2]. Suppose the generator function of ({A„}, a) is of sine type and 

{<)„} is a bounded sequence o f complex numbers with

(П IR ed JS d  inf |Re(Am-A„)|, d <  1/4.mez,m^n 'А
I f  the sequence {A„+<5„} is separate, then {ei(;»+ä«)x} is a Riesz basis in L 2(0,a).

This theorem has been strengthened in [3]. Namely condition (1) for {<5„} can 
be replaced by its averaged analogue. To formulate this result we need the following

D efinition 3 [3]. Let Л = {А„} be a separate set with |Im A„| A parti
tion A = U  Aj is called to be a /-partition, if there exists an increasing sequence

j  € Z
(аД _/£Z, such that /,-:=а,-+1 — const  and Aj={X„£A: a ^ R e  A„<aJ+]}.

T heorem  C [3]. I f  we replace condition (1) in Theorem В by

(2) I 2  Re<5J — dlj, d <  1/4, j£Z ,
n:Xn£Aj

for some J-partition o f Л, then the statement o f Theorem В remains valid.
We shall prove below that, roughly speaking, the hypotheses of Theorem C 

are also necessary for the Riesz bases property of exponentials. [3] also contains the 
following generalization of Theorem A.

Theorem D [3]. Let Л = {А„} be a separate set with |Im  A„|s/i<oo. Suppose 
the generator function Fл o f (A, a) satisfies |Тл(х+(у0)|х |.х |1' (x£R) for some 
a f(—1/2, 1/2) and for some y0, \y0\>h. Then {eu-x} is a Riesz basis in L2(0, a).

In [3] Theorem D is also proved for more general functions than |x|a and these 
results show that \FA\ can oscillate.

In all the papers mentioned which follow Levin’s method, the main role is 
played by properties of the generator function FÁ. The main technical tool is an 
estimation of infinite products. B. S. Pavlov suggested a “geometrical approach” 
(in the sense of the geometry of Hilbert spaces) for the investigation of the basis 
problem for exponentials. First he proved Theorem A [13] with the help of his method 
and then he obtained a complete description of Riesz bases of the form {eu"x} in 
L2(0, a) [4] in terms of the generator function FA. The core of Pavlov’s method 
is the following. He considers the functions {ea»x} in L2 (0, oo) (since the operator 
of multiplication by e~(h+i)x is bounded and invertible in L2(0, a) we may assume 
without loss of generality that 0<c>^lm ?.n^2h+S). Denote by Ел the closure

Acta M athematica Hungarica 51, 1988



RIESZ BASES OF EXPONENTIALS AND SINE-TYPE FUNCTIONS 5

of the linear hull of {eiA"x} in L2(0, °°). It is well known [20] that {eu«x} is an uncon
ditional basis (not necessarily normed Riesz basis) in Ел if and only if the Carleson 
condition [14]

(C) inf П"6Z k^n
> 0

holds. Furthermore, if 0<<5^Im ?.„^2h+S then (C) is equivalent to inf \An—2 J  >0Пт̂т
(cf. e.g. [15]). Consider now the orthogonal projection of L2(0, <=>) onto L2(0, a) 
defined as multiplication by the characteristic function y[0, a] of [0, a]. If the 
restriction of this projection to Ел is an isomorphism, then it transforms the Riesz 
basis {eiA"*} of Ел onto the Riesz basis {е'л»х%[0,а]} of L2{0, a). The condition of 
the existence of the inverse of the projection just mentioned can be expressed in 
terms of the generator function FA of ({A„}, a).

Theorem E [4]. {eanx} is a Riesz basis in L2(0, a) i f  and only i f  1) the set {/.„} 
is separate and |Im A„|s/i-e n£Z; 1) for some y0, |y0|>/i, the function w(x):= 
:= |F/1(x +  ry0)l2 statisfies the Muckenhoupt condition

(A*) sup 1 C v )  /Í -V* .

where J  denotes the set all finite intervals on R and FA is the generator function o f
(W> «)•

It is well known ([16], [17]) that the condition (A2) is equivalent to that of
H. Helson and G. Szegő [16]:

D efinition 4 [16]. A non-negative function w satisfies the Helson—Szegő 
(shortly (HS)) condition, if there exist functions u ,v ^L ^ (  R) suchthat IMIl“(R)< 
< 7t/2 and
(HS) w(x) =  exp {m(x) + t(x)},
where

(5) S «  =  I p . v . / [ _ i 7 + T ^ r ]» (0 *

is the conform-invariant form of the Hilbert transform of v. Hence, one can replace 
condition 2) in Theorem E by (HS) for the function |Ел(х+гу0)|2. S. V. Hruscev [5] 
has proved, that the latter form of the condition of the Riesz basis property for 
{eu-*} is very convenient from the point of view of verification. He has derived 
in this way all the known sufficient conditions for the basis property of {eiA»*}.

In the present paper we shall also use the “HS-form” of the conditions of the 
Riesz basis property.

Finally, we mention the fundamental work [18] which, besides the results 
mentioned above, also contains some new forms of the conditions of the basis 
property of exponentials. Connections of this problem with the theory of Hankel 
operators, the functional model of Nagy—Foia§, as well as applications to the 
theory of interpolation and to the spectral theory of operators can also be found 
in [18].

Acta Mathematica Hungarica 51,1988



6 S , A . A V D O N IN  and I. JOÓ

2. The aim of the present paper is to describe Riesz bases of the form {e'V} 
in L2(0, a) in term of the nearness of A„’s to the zeros of sine-type functions.

Now we give some simple geometrical properties of {/„} which are necessary 
for the Riesz basis property of {eiX»x}. The proofs of these statements are given in
[4], [5], [18]. In what follows, suppose that ReA„^ReAra if and only if n^m . 
Since the norms of the elements of any Riesz basis are bounded from below and
above it follows that for any Riesz basis {ea"x} we have sup |Im A„|<°°. Fur-

n€ z
thermore

1) lim —  =  2n/a, n -± - n

2) 3 limR—oo 2п:|Л„|а«
<  oo.

Consequently, the generator function FA belongs to the Cartwright class [11] and 
has the form

(4) FA(.z) = e~*z p . v . n U — f \ :=  e' 2 *’Jim П
n V R -~°° n:\kn\-&R v

Here without loss of generality we may suppose that 0  ̂{A„} (otherwise one can 
shift a finite number of A„’s without affecting the Riesz basis property) and F(0) = 1.

The sequence {/.„} is called standard in [5] if it is separate, satisfies 1), 2) and 
sup |Im A„| °°. In what follows we assume that {A„} is standard.
n £ Z

It follows from (4) (cf. e.g. [3]) that for any yx, y2 with lŷ l >/i, \y2\ >h we have

(5) \Fa(x + iy d I x F J x + i y 2)\ (x€R).
Hence, if the (HS) condition
(6) \FA{x+iy)\2 = exp {m(x) + í5(x)} (*GR), 1 u\\г.“(ю <  ” , M  l“(r> <  я/2,
for |ТЛ|2 holds for some yx, \yx\>h, then it also holds for any y 2, \y2\ >h.

For our further considerations it is convenient to define the set {A„ := ln—i(d+h)}, 
6 >0. The transformation of {A„} to {!„} corresponds to the operator of multiplica
tion by ê h+0)x: L2(0, a)—Z.2(0, a).

This operator is a bounded operator with bounded inverse. Consequently 
{eiXnx} is a Riesz basis in L2(0, a) if and only if {ea*x} is a Riesz basis. For brevity 
we use in our work the notation {A„} instead of {!„} and assume that

(7) — 2h — S ^  Im A„ ^  — 5, n£Z.
In view of (5) one can consider FA only on the real line, i.e. consider condition (HS) 
in the form
(8) |Тл(х)|2 =  ехр{м(л:) + 1;(х)} (x€R), IHU~(r> IMU~<R) <  Ф -

It is known [1, 18/III] that zero set {/i„} of any sine-type function satisfies 
sup |/r„+j — ̂ „|<°°. All known examples of the Riesz bases {eun*} have analogous
property and we include it into the conditions of the following

Acta Mathematica Hungarica 51,1988



RIESZ BASES O F  EXPONENTIALS A N D  SINE-TYPE FU N C TIO N S 7

Theorem. Consider the following statements:
1) is a Riesz basis in L2(0, a);
2) there exists a sine-type function with zero set {/i„}crR such that fo r some 

d W ,  1/4)

(9) dRe(A„_1 A„) = Re(^n—/„) =  d Re(A„+1—Ап) (и£Z).

Then

a) 2) implies 1);
b) 1) implies 2) i f  sup |An+1—A„|<

n€Z

Proof, a) Suppose there exists a sine-type function having zeros pn satisfying
(9) . Let Л=  (J Л: be some /-partition of Л. Summing up the inequalities (9) for

yez
every n for which A„€A j , we obtain for some 0 < /< l /4  the inequalities

(10) /[max (Re A j^ ^ — max (Re Л̂ )] 2  Re <5„ —
n\X„iAj

S  /  [min (Re Лу+1) —min (Re Л^],

where «5n:= /n-An.
Since {/!„} are the roots of a sine-type function, we have sup |/in+1 —

n€Z
and consequently, taking into account (9), we get

sup |A„—/i„| <oo, sup|A„+1—A„|
n € z  n £ Z

Taking the union of some Л7- if necessary, we arrive to a /-partition of A for which 
we obtain by (10) the following inequalities with some Zj€(0,1/4):

(<*1 (ßJmzl -  /max) = 2 ” Re = <*1 (/4a* ~  /4 « )п:Л„е Aj

where р]тлх:=тах {pn: A„£ Aj}. Applying Theorem C we obtain that {ea*x} is a 
Riesz basis in L2(0, a).

To prove the statement of Theorem b) we need some lemmas.
We know ([21]) that 1) implies sup |An+1 —A„|<«>.

n£Z

Lemma 1. Condition (HS) holds for [Тл (х) |2 i f  and only i f  there exist u,v£L°°(R) 
with differentiable v and such that v'£L°°(R), |M|l~(R)<Ji/2,

(11) Ií ’aWI2 =  ехр|и(х)+-^ 

where
(12) K(x) = {í€R: M ё  1, \x -t\  s  1}.

Acta  Mathematica Hungarica 51,1988



8 S. A . A V D O N IN  and I. JO Ő

Proof. Suppose (8) is fulfilled. Since u, г?£ВМО, they can be extended by 
Poisson’s formula for y=-0 as harmonic functions [19]:

(13) Ф ,У )  =  ix _ £ + y .  “ (»■»

and similar holds for v. The resulting function exp {u(x, y)+ v(x, y)j coincides 
with \FA(x+iy)\2 on the halfplane y>0 (cf. 18/III, the proof of the Theorem 8). 
Since the harmonic continuation and the operation " defined in (3) commute, we 
have for any fixed # > 0

FA(x+iH)I2 =  exp {u(x, H)+[v(x, #)]} (x€R).
v(x) can not be smooth (v£L°° (R) only), but v(x, H) is smooth, namely it fol
lows from (13) that v(x, H) is differentiable and for any x£R

\v(x,H)\ s= ||r(OIU“(R), it/(x i/)| S  2 |]u(-)||x,“(R).
I t is obvious that for any f( t)  with \ f ( t ) \ ^ M  (t£R) we have

X  +  l

F(x):=  p.v. /

Indeed, by p.v. J  — =1 we obtain

№ 1  =
r / ( * - 0  jp.v. J —------d t p.v. /  t o - O - f M  i t  

-1
S3 J  M dt = 2M.

Apply this to f(t)= v(t,H ), then we obtain from the (HS) condition for |Тл(х)|2 
the following expression for \FA(x+iH )\2:

\F(x+iH)\2 = exp (x€R)

where и and v satisfy the conditions of Lemma 1. In order to complete the proof 
of (HS)=>(11) it is enough to use (5). The converse, i.e. (HS)<=(11) follows from

JC + l
the boundedness of p.v. J  v i t^ ^ x - t ) -1 dt for v with the properties in Lemma 1.

X —  1
Lemma 1 is proved.

Before formulating Lemma 2 we need some notations. Suppose 

( * ) 0 <  inf (An+1 -  A„) == sup (An+1 -  A„) <  °°, {A„} <z R.
"€Z n€ Z

Define
Щ  := Я„ +  (Яп+1—Я„)(г—n), n ^ t ^ n + 1,

D(x) := {n£Z:  |и| S  1, \x — и| ё  1},
Da(x) :=  {n£Z: |A„| ^  l, |x-A „| S  1},

Кл(х):= {t€R: \Щ \ s  1, |x -A (í)| ^  1},

A c ta  Mathematica Hungarica 51, 1988
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and for v„, <5„, v(í), <5(0£R, d> 0 (и€Z, ?€R)

(14) 2  J - L - + 1 ) ,  I v j á á ;
B i ß ( i )  \ X — n  П )

(15) <тл(х ,Ш ) :=  2  г . ( - Л - + Т - ) ,я6Вл(д:) 'А An "n '

(16)

\ Л| + 1_  Kl

I(x, v) := f  v(i) Í—3 7 + 7-1 dt, |v(i)| ^  d;КЫ \X  l l )

(17) , л М := /  а д [ _ 1 й -+ 1 ^ ] Л , | | |^  d a.e. on R.

Lemma 2. For any function <p o f the form  (13+z), l ^ / s 4 ,  and for any 
j£  {1, 2, 3, 4} there exists a function ф of the form  (13+j) such that exp <p(x)X 
Xexp ф(х) (x£R).

Proof. It is enough to prove the cases ( /,/)—(1, 3), (3,1), (2, 4), (4,2), (3,4),
(4,3).

1) The cases (1, 3) and (3,1). In these cases for a given {v„} define v(/):=v„,
П + 1

+ 1, and for a given v(/) consider vn:= J  v(t) dt, resp. Obviously

n + l

/
n

v ( 0
t

v(0 , v(0
и «

and

7  v(t)~—— I =g dm axf-7 , 7 - 1 },J nt \ [ n2 3 (n + 1)2J

7 1 v(i) v„ Г 1 1 1
■I x  — t n l x —и 2 Lx — n — 1 2 J

After this it is enough to take into account

sup 2
jc£R n(D(x) \x — n[

2) The cases (2, 4) and (4, 2). In these cases define ő(t):=ön, n ^ t< n  + l and
n+l

Sn:= J  ö(t) dt, resp. The necessary estimates follow analogously as in 1) using (*).
П
3) The cases (3, 4) and (4, 3). In these cases we use the change of variable t=X(f) 

and т=А(Г) and use the functions <5(t):=A'(t)v(A(t)) and v(t)=<5(A- 1 (t))/А'(A- 1 (z)), 
resp. Lemma 2 is proved.

We also need the following three lemmas from [3] for standard sequences {/„).

Acta Mathematica Hungarica 51,1988
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Lemma 3. Let F and G be generator functions with zeros and Re A„ respec
tively. Then for any H(LR with \H \>sup |Im AJ the relation

n€ z

(18) |F (x + i tf ) |x |G (x + it f ) | (*€R)
holds.

Lemma 4. Let F and G be generator functions with zeros A„ and A„-f-<5„ respectively, 
where {<5„} is a bounded sequence. Then for any H fR  with \H\ =» sup (|Im A„| +  |Im (5„|)

niZ
the estimate

(19)
F(x + iH) 
G (x+iH ) exp Re 1

x  + iH—).n
holds.

L emma 5. Suppose the conditions o f Lemma 4 are fulfilled and 
(j£  Z) holds for some J-partition of {A„}. Then we have

z
Aj

Re <5„=0

(20) \F (x+ iH )\x \G (x+ iH )\ (x€R)

for any #€R , |ff|>sup(|ImA„|-f|Imc>„|).
n £ Z

Now we can prove statement b) of the Theorem. Suppose that {eu»*} is a Riesz 
basis in L2(0, a) and denote by FA the generator function of ({A„}a). Then |Тл(х)|2 
satisfies (HS) and hence, according to Lemma 1, it also satisfies (11). First suppose 
that {Re A„} is separate. Then by (5) using Lemmas 2, 3 we obtain

l^(*)l Xexp{ 2  (*€R),1в€О л о ( * ) ^ _ AB /.„ )  J

where Л°:= {A°}:= {Re A„}, {(5“}cR  and for some d f(0 ,  1/4)

<3n°
30 3°An + 1 An

(«€ z).

According to Lemma 4 the generator function G of ({A®+<5°}, a) is a sine-type 
function.

Now we show that there exists {<5„}c:R such that for some d£(0, 1/4)

(21) d W - i - W  d(AS+1-A») (neZ)

holds, further for some /-partition Л =  IJ Aj of Л
H z

(22) 2  ( * . - « )  =  0 (j€Z)
n:*„€Aj

is fulfilled.

Acta Mathematica Hungarica 51, 1988
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Let A — (J Л, be an arbitrary /-partition of A 
je z

V.(0 := j  [(Яв0- а-А»)+г(А»+1-Я»_1)], í£[0, 1],

Sj(t) := 2  [7-(0— Ü€Z).

Estimate 5^(0) and S; (l). Obviously

Sj(0) = 2  [|(Я»-1-Ал0)—d  = 1 тах(Л5_1-шахЛ5) -  2  ^
n:Xn£Ajl4 i * ":Я„€Л,|

S  ^ -(тахЛ 5_х-т а х Л р + й 1 2  =
4  n:Xn eA j

= (max Л?_ !—max Л°)+ dt (min Л®+1 — min Л°).

Noting that / x< l/4  and taking the union of some Aj if necessary, we obtain

Sj(0) ^  (d i-4 -)  jnf (max A) -  max Л?_х) + 2dx sup (AJ+1-A®) <  0. v q jje  z n€Z

On the other hand

Sj( 1 )=  2  i(;-n + 1- ^ ) 4 - d  = -j- (min Л°+1 —min A]) — 2  «  S
n:XniAj  L 4 J 4  л:А„£Лу

Й -^-(min Л^+1— ттЛ 5) — / х( т т  Л5+1 — min AJ) ~=

S  (j  -  dx) inf (A°+1 - К )  >  0 0'£Z)

because {AJJ} is separate. Consequently, for every y£Z there exists i,-£[a, ß]cz(0, 1) 
suchthat Sj(tj)= 0. (We have used S)(0)=O (l) and 5'J(1) =  0 (1) which follow 
from the definition of the /-partition.) Now let 8n:=y„(tj) for those n for which 
l n£Aj, j f Z .  It is easy to see that (21) and (22) hold. Now from Lemma 5 we 
obtain statement b) of the Theorem (with /i„:=Re A„+(5„) for the case when the 
set {Re A„} is separate.

Consider the case when {Re /„} is not separate.
1) Construct a /-partition Л =  1J Äj such that inf (min Re Л)+1—max Re Л ■)>

j 6Z
>0. Such a /-partition exists since {A„} is separate and sup |Im A„| < «>.

n£Z

2) Construct a /-partition Л = (J A, where
J€ z

Aj =  A3j-i{JA3jU A 3j +1, jdZ.

Acta Mathematica Hungarica 51, 1988



12 S. A . AVDONIN and I .  JOÓ

We have sup card Л;< °° and
К z

(23) inf (max Re Л ,—min Re Л,) >  0.
J*£Z

3) Construct v={vn}„ezc R  and a /-partition v= (J Vj suchthat
a  z

a) card Vj = card A j , min v7- = min Re Aj, max v} =  max Re A j,
Vj is separate (consequently v is separate too),

b) 2  (ReAn-v„) =  0 (;€Z).
rt:X„eAj

According to Lemma 5

1^(х+01 X  |F/1(x+ i)| (x6R)
where Fv and FA are generator functions of (v, a) and (A , a) respectively. Hence 
{eivn*} is a Riesz basis in L2(0, a).

4) According to the statement of the separate case (which is proved) there exists 
a sine-type function with zero set { (Jc R  such that

(25) d iv n - i-v j ==&,-уп=э d(vB+1-v n) (ЖЕZ)

for some /6(0, 1/4).
5) From (25) it follows that

/(m axvj.i-m axvy) =£ 2  (4~v„) ^  /(minvm -m inv ,) ( j6Z).
n:v„€v^

Taking into account (24) we have

/(maxRe maxRe Л^) ^  ^  (<?„ —Re2„) s  d (min Re Л*+1—min Re ЛЛ.

6) Now we show that there exists {/(„}c:R such that for some dx6(0, 1/4)

(26) dx Re Д„) ^  Re (^„—-A„) s  dx R e(Я„+1—/„) (n£Z)

and for some /-partition Л =  (J Aj
iez

(27) 2" ( f t , - «  =  0 0'6Z).п:Я„€ Aj

From (27) and Lemma 5 it follows that {/i„} is the zero set of a sine-type function.
The proof of (26), (27) is analogous to that of (21), (22). Consider the/-partition 

Л =  (J Л; constructed in 2) and let
Z

y„(0 := 2° + ~ [ ( ; . r 1- ; . “) + ; (;.°+1-;.«_1)], /6[o, i],

5j(0 := 2  к , - у и(0] O'ez),

ЛсГа Mathematica ffungarica 51, 1988
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where
A°:=ReA„, Л ^:=R eЛ J.

Estimate S '/0) and Sj(l):

5 /0 ) =  2  U n -K  + U w -K -X )]  S
n:A„€Ajt 4  J

Í5 d (max Л?_x — max Л?)+-^- (max Л? — max А°^г).

Noting that d< 1/4 we obtain inf S/O) >0. On the other hand

5 / 1 ) =  2  k - A 2 - l ( ^ +1-A»)l ^
n:A„6AjL 4  J

S  d  (min Л°+! —min Л?)— (min TJ+1 — min Л9).

Hence supS'jiO^O. Consequently for every y'£Z there exists fy£[a, /?]c(0, 1)
J*€Z

such that Sj(tj)=0.
Now let /i„:=y„(ij) for those n for which A„€ Лу, y£Z. Conditions (26), (27) 

hold. The Theorem is proved.
Remarks. 1. According to Lemma 3 we can prescribe {1тд„} (with 

sup |Im p„\<°°) arbitrarily.
n £ Z

2. Inequalities (9) in the conditions of the Theorem can be replaced by

d(ßn-x-Vn) ^  Re(A„-/i„) =  d(ßn+1- n n) («6Z).

3. In the proof of the Theorem (see Lemmas 1, 2) we have also proved the 
following statement which is interesting in itself. {eu»x} is a Riesz basis in L 2(0, a) 
if and only if there exists {(5n}cR , sup |<5„|<1/4 such that

n £ Z

|^ ( * ) |x e x p {  2  d A - ^ —  + -У}-ln€D(x) \X  — n П))
Here Fa is the generator function of ({Я,,}, a), and we do not suppose that
sup|2„+i-A„|<oo.
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ON LINKING JORDAN CURVES
M. BOGNÁR (Budapest)

The aim of this paper is to define the notion of the linking Jordan curve and 
to show that under certain conditions we can find such a curve.

The subject is based on the axiomatization of the linking theory which is 
described in [4], [5] and [6]. In a certain sense this paper is a continuation of the 
previous one [6].

1. Introduction

1.1. First recall some notions and notations from [4] and [5].
By a homology theory we always mean a partially exact homology theory defined 

on the category of compact pairs. For a homology theory H  and a compact space 
X  we denote by Ht(X) the (-dimensional homology group Ht(X) for (>0 and 
the reduced zero-dimensional homology group for (=0. If f:  X->-Y is a con
tinuous mapping then H ,(f)  or also H (f)  will denote the map of Ht(X) into 
Ht(Y ) defined by the induced map /* : H,(X)—Ht(Y).

1.2. A mapping o: A X B ^C  where A, В and C are abelian groups is said to 
be a bihomomorphism if the following condition is satisfied:

v(a + a', b + b') = v(a, b) + v(a', b) + x>(a, b') + v(a', b').

We say that a bihomomorphism о: AXB-+C is trivial if v (A x B ) = 0.

1.3. Now suppose given two homology theories H  and H', an abelian group 
C, the n-dimensional euclidean space Rn and integers t, t' satisfying t+ t'= n  — 1.

D e fin itio n . The map 93 =  93H,H-iC,t,,' which makes each ordered pair (N, N') 
of disjoint compact subsets of R" correspond to a bihomomorphism vNtN-: Ht(N)X  
XH ,',(N ')^C  will be called a theory o f linking of compacts in Rn for the homology 
theories H  and H ' if for any compacts M, M ', N  and N ' in R" satisfying M cN , 
M 'czN ' and of course NC\N'=&, the condition

O  =  (<)(«)>

is satisfied for every u^H fM )  and u f f f t'.(M') where i: M a N  and i '\M 'c zN ' 
are the inclusion maps. The group C is said to be the range of the theory 5B.

Notice as a direct consequence of this definition that if 5B =  5Bh,h',c,»,«' is a 
theory of linking of compacts in Rn and M, N, N ' are compacts in R" such that
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M (zNczRn\ N '  then
ÜM.JV'O. « ') =  vNiir( Ht ( i) ( ü) ,  и' )

holds for every u£Ht(M ) and u'£H,'.(N') where i: M czN  is the inclusion map. 
Likewise the relation

«') = %,*-(«, Я,'(ООО)
holds for every м6Я ,(Я) and ufiH(.(M ') where M 'czN ' is the inclusion 
map and N'c:R,r\ N .

1.4. We shall say that the theory of linking 93 =  93я.я'.с.м' of compacts in 
Rn is degenerate if for every pair of nonintersecting compact subsets M, M ' of Rn 
°м M' is a trivial bihomomorphism.

2. Linking Jordan curves

2.1. Let p be a prime and G' an elementary cyclic /7-group, i.e. G' is isomorphic 
to the group Zp of integers mod p. Let H ' be a continuous homology theory defined 
on the category sJc of all compact pairs and based on the coefficient group G'. Thus 
H ' is isomorphic on sdc to the Cech homology theory over G'. We shall keep it 
fixed in the sequel.

Let R" be the и-euclidean space where n ̂ 2 , and let P be a compact sub
space of R".

Let Я  be a homology theory and let и be an element of Я„_2(Р). Let C be 
an abelian group and let 93 = 93H,H',c,n-s,i be a theory of linking of compacts 
in Rn.

D ef in it io n . A Jordan curve J  of Rn\ P  is said to be a linking Jordan curve of 
и (with respect to 93 =  93//.//.|Ci„_2.1) if there is a u'£H[(J) suchthat vPtJ(u, и')^0.

2.2. R em ark . Let /  be a linking Jordan curve of u. Then for each nonzero 
element u[ of H[(J) we have v>PtJ(u, u[)^0.

In fact, select u'£H l(J) suchthat d p >j ( m, m ' ) ^ 0 .  Since Я ((/)  is isomorphic 
to Zp it follows the existence of an integer m such that u'=mu[. Consequently

0 7í vPiJ(u, u') = mvPiJ(u, ui)

implies Dp. j  (и, и[)^0  indeed.
Now we can state the following theorem.
2.3. Theorem. Let p and H '  be the same as in 2.1. Suppose that G is an elementary 

cyclic p-group and H  is a continuous homology theory defined on the category o f all 
compact pairs and based on the coefficient group G. (We shall keep it fixed in the 
sequel, too.) Let C be an abelian group. Suppose that 93 = 93H,H'c,n-z,i A a non
degenerate theory o f linking for compacts in R" where n ~2. Let P be a compact set 
in Rn and щ a nonzero element o f Д ,_ 2(Р). Then there exists a linking Jordan curve 
o f Щ with respect to 93.

Acta Mathematica Hungarica 51, 1988
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Proof. Let S and S ' be spheres of dimensions n—2 and 1, respectively, con
tained in Rn such that they are mutually linked, i.e.

(a) the center of S  belongs to S ' and the center of S '  belongs to S,
(b) the planes R and R' supporting S  and S', respectively, intersect in a line,
(c) R and R' are perpendicular in the natural sense that any vectors a in R 

and a' in R' which are perpendicular to the line RPiR' are mutually perpendicular.
Observe that if (N , N') is an ordered pair of disjoint compact sets of Rn then 

vN N> will denote in the sequel the value of the theory 93 я я - c 21 on the pair 
(N ,N  0. ’

The uniqueness and existence theorem of the theory of linking (see [5] and [6]) 
shows that t>Sjs<: f ln- 2(S )X H ((S ')—C is_a nontrivial bihomomorphism (see [5] 
Corollary 2). Thus we can select u1£Hn_2(S) and ui(_H{(S') such that 
Ds,s'(Mi> mO ^ 0* Hence u ^ O , uizO  and since the groups H„_2(S) and H i (S') 
are isomorphic to G and G', respectively, and thus they are isomorphic to Z p it 
follows that щ and u[ are generators of H„^2(S) and H[(S'), respectively.

Let b=vs,s'(ui>MD and let В be the subgroup of C generated by b. Since

pb = t)s.s'0 «i> «Q =  »s,s'(0, «0 =  0
and b^ 0 it follows that В is isomorphic to Z p.

Observe that for every pair (N , N') of disjoint compacts in Rn we have

(see Corollary 1 of [5]).
Now let К  be the continuous group of rotations of a circle which we will con

sider as an additive group of real numbers defined up to an additive integer and 
let i//: B-^K be a nonzero homomorphism. There exists obviously such a homo
morphism and this homomorphism is a monomorphic mapping. Further if for any 
v(:_Hn̂ 2(S) and v'^H l(S ') we introduce the product

vv' = \l/(t)s,s (v, v'j)
then the compact discrete groups H„^2(S) and H[(S') form a couple (see [8] Defini
tion 3) and the groups Hn_2(S) and H [(S') are orthogonal in the sense that to 
each nonzero element v of H„-2(S) one can find a v'^H[{S') with vv 'Z 0 and 
to each nonzero element v' of H i (S') there is a v£Hn_2(S) such that vv'ZO.

In the paper [6], starting from a bihomomorphism o0: Hn^2(S )X H [(S ')^C , 
we have constructed a bihomomorphism оа: GXG'-^C (see [6] 19-—22). In the 
same way starting from os>s- we get a bihomomorphism t>2: GXG'-*B, where 
for gtG  and g'^G'

t>2(g. g') =  »S,s’('-(g), A'(g'))
and

2: G -  Hn. 2(S), X': G' H((S')
are isomorphisms.

These isomorphisms X and X' can be constructed in the following way.
Let q and q' be the centers and R and R ' the supporting planes of S  and S ', 

respectively. Let <r and a be simplexes of dimensions n— 1 and 2, respectively, 
lying in R" such that

(a') The supporting plane of a is R and that of a' is R'.

2 Acta M athematica Hungarica 51, 1988
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(b') Let <т and a be the boundaries of и and a' in R and R', respectively. Then
<гП<г' =  0, crfl Ö '= {q}, aC\o'= {q'}.

(c') q is the interior point of a 1-face a[ of a' (with respect to the supporting 
line of (rí). There exist obviously such simplexes a and a'.

Now let f x\ á ^ S  and : ö'-*Sf be projections with centers q and q', respec
tively, i.e. for and x'&&' x  and f,(x)  lie on the same ray issuing from q while 
x' and f i  {pc') He on the same ray issuing from q'.

Let us take an ordering A°< A1<...<A"~1 of the vertices of a and an ordering 
ß ° < ß l of the vertices of a[. Let us take an ordering D°<D1̂ D 2 of the vertices 
of a' such that D1=B° and D2= B 1. Thus we get ordered simplexes s, s{ and s' 
(see [7] p. 55). The spaces |x|, |х(| and |s'| of s, xi and s' are the simplexes a, a'x and 
a’, respectively (see [7] p. 55). Let t, t[ and t ' be the orientations of a, and a' 
taking the value +1 on the sequences \A°, ..., Aa~1\, |ß°, ß 1!, \D°, D1, D2\, respec
tively (see [2] p. 4).

Select the orientation § of Rn such that the intersection number tx t{  of t 
and t[ should be +1 (see [2] p. 10).

Let the mappings cp: G —7/„_г((т, á) and cp': G'->H2(<j\  &') be defined by 
the relations

<p(g) = gs and cp'(g') = g' s' (g£G, g'€G')
(see [7] p. 80).

Let
д: Ян-Лет, о) -  Д ,_2(<г) and d': H2(a', o') -  H ^ö')

be the boundary operators of the compact pairs {a, a) and {a', o'), respectively. 
Then

Я =  Йщ-*Шд<Р, A' = fU b’<p' = H{{fi)d'cp'.
Since all the mappings cp, cp', d, d', /7„-2( / i) and are clearly isomorphisms it 
follows that Я and k' are isomorphisms.

Now introducing the product g g ' ( p 2{g, g')) for gdG  and g'£G' it fol
lows that G and G' form a couple and the groups G and G' are orthogonal with 
respect to this multiplication.

Now let Q be a compact metric space, Г  an abehan group and m a nonnegative 
integer. In [6] 24, there was defined the isomorphism

rjm,Q,r-Sm(Q ,r ) ^ H } n{Q,r)
where H„(Q, Г) is the m-dimensional reduced Cech homology group of Q over 
the group Г  and Am{Q, Г) is the /и-th reduced homology group of Q over Г, i.e. 
the group of the homology classes of the normal proper cycles (in [9] true cycles) 
of Q. (The terminology is taken from [2].)

Moreover in [6], Section 29 we have defined the isomorphisms
h0: G = H0(P0) -  Щ (Р0, G) and h'0: G' = Щ (Р0) -  Щ(Р0, G')

where P0=  {0} is the fixed one point space and for any abefian group Г, Щ  (P0, Г) 
is the 0-dimensional Cech homology group of P0 over Г. (Observe that for any 
homology theory H" the group HŐ{P0) is the coefficient group of H ".)
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Let h: G) and h’: G') be the extensions of these iso
morphisms (see [7] p. 287) where Л'1(., G) and H ' ( . ,  G') are the Cech homology 
theories over the groups G and G', respectively. Since by hypothesis the homology 
theories H  and H ' are continuous it follows that h and h' are isomorphisms (see
[7] p. 288).

We also remark that for any compact T2 -space Q and for any nonnegative 
integer m we have obviously

(1) h(m, Q, 0)(i5ra(ß)) =  G).
Now the uniqueness theorem and the proof of the existence theorem of the 

theory of linking (see [6]) show that for each compact subset N ' of Rn\ P  and for 
every u'£Hl (Nr) we have
(2) vP,N(u0, u') = v(t]-}2,PiGh (n -2 , P, 0)(m„), nr,N’,G’h'(\, N ', 0)(w'))
(see Sections 27 and 30 in [6]) where for w£Än~2(P, G) and w'£Al (N', G') starting 
from the bihomomorphism o2 the linking coefficient о (w, w') is defined in the 
usual way (see [3]). In details this means the following:

у ^
Let Xе— 2  g^i an<3 x'q'= 2  gjt j4 be two chains in P" in relative general

i = l  J =  1
position (see [3] p. 73) where q+q'—n and g;€G and g'jdG' hold for i= l , . . . ,y  
and y = l ,  ..., y'. Then the intersection number xqXx 'q’ of the chains xq and x'q’ 
is defined by the relation

xqx x 'q’ = 2  2  n x t ' / ^ i g t ,  g'j)-
i= 1 J= 1

Chapter XV of [3] deals with the particular case G=G' where G is a ring with 
unity and x>2(a,b)=ab for a,b£G. However the main results of this chapter 
remain true also after our modification. In particular we can define the linking 
number u (zf,z |'_1) of two nonintersecting cycles z? and z%~x in Rn with q+q' = n 
and with z\ a normal cycle if q=0 so as it is done in [3] p. 80. Likewise we can 
define the linking number ю(з4, zq’~r) of the normal proper cycle 3® of the compact 
subset Q of Rn and of the cycle z9'-1 of the open set Q=R!r\Q .  Furthermore we 
can define the linking number »(39, з'9' -1) of the normal proper cycles 39 and з'9'-1 
of the disjoint compact subsets Q and Q' of R" so as it is done in [3] p. 86. Now let 
3n-2£w and 3'^w '. Then by definition we have

(3) D(w, w') =  о(з"-2, з'1).

Let us compare these considerations with the notions of [9]. In [9] one starts 
from the bihomomorphism i/m2: GXG'-+K where G and G' form an orthogonal 
couple with respect to the multiplication

g g '  = \]/n2( g ,  g ' )  (g£G, g'eG').

Thus we get the index of intersection X (x9,x 'q’) with respect to [9] of the chains 

x4 = 2  gSi and x'q' = 2  gjt'Z
i = i  j = 1
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lying in relative general position in Rn and satisfying the condition q+q' = n as 
follows:

X(x*, x'<) = 2  2  g ig jW X t'f).
i = l  J=1

Consequently

X(xq, x 'n  = 2 2  Ф Ы ёь  gj))tiqx t j 9’ =
i = l  J = 1

=  Ф [ 2  2  tlX t'fo Á g i, gj-)) =  ф(хчх х '“').
4 = 1 j = 1 >

Hence denoting the coefficient of linking defined in [9] by o' and taking also th® 
disagreement between the Definition XV. 1.42 of [3] and Definition 2 of [9] into 
account we get the relation

u'(zf, zf'“ 1) =  ( - 1  )4+V(o(zf, zi'“ 1))
for any two nonintersecting cycles zf and zf'-1 of jR". Also, it is supposed that 
q+q' — n, zf is a cycle over the group G and it is normal if q=0. Moreover zif-1 
is a cycle over the group G' and it is normal if q' —1=0.

Consequently if 34 is a proper cycle of a compact set О in Rn over the group 
G and it is normal in the case q — 0 and z'4'-1 is a cycle in Rn\ Q  over the group 
G' and it is normal in the case q' —1=0 and q+q' = n we then have

z'«'-1) =  (-l)« + V (o (3«, z'4'“ 1)).
Now since h(n — 2,P ,9)\ G) is an isomorphism and иаХ0

by hypothesis, taking also (1) into account it follows that

0 A h ( n - 2, P, V>)(u0)£ÜU(.P, G)
and thus
(4) w0 = r i~ \P'Gh (n -2 , P, 0)(«o) A 0.

Since G is a compact T0-topological group it follows that the group Ä"~2(P, G) 
can be considered as a compact T,,-topological group satisfying the second axiom 
of countability (see [9]).

Let 3(C2 be a proper cycle of the homology class waf A n~~{P, G). Then applying 
the theorem of duality of Pontrjagin (see [9]) taking also wQxO into account we 
can state that there exists a cycle z'1 of Rn\ P  over the group G' such that

0'(3Г 2, z'1) =  ( - l y - V O ^ S - 2, z'*)) x  0
and thus »(38-2, z '^^O  which yields zn X0.

The proof of the theorem of duality of Pontrjagin also shows that z'1 can be 
selected such that it should be a cycle of a finite 1-dimensional euclidean complex 
K ' lying in Rn\P .

We now interrupt the proof of the theorem and formulate a lemma which we 
shall use in the sequel.

To prepare it first observe that every finite 1-dimensional euclidean complex 
K" (in terms of [1] a triangulation of dimension 1) lying in R" can be considered as
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a finite graph. The edges of this graph are the 1-simplexes of K" and the vertices 
are the O-simplexes. The proper faces of a 1-simplex are the endpoints of this edge.

Let Г be an abelian group. For any 1-chain x1 of K "  over the group Г we use 
the notation |x4 for the subcomplex of K "  consisting of all edges of K "  on which 
x1 does not vanish and of all endpoints of such edges, while the body x 1 of x1 is 
the body of the complex |xx| i.e. the subspace of R" consisting of all points of all Simp
lexes of lx1! (cf. [1] p. 136).

We now turn to the formulation of the lemma.
Lemma. Let K" be a finite \-dimensional euclidean complex lying in R“. Let Г 

be an abelian group and let z be a nonzero 1-cycle of K " over Г. Then z' can be repre
sented in the form

z = z1 + ... + zs
such that for i= 1, ..., .v z[ is a nonzero cycle of K" and \z[\ is a circuit of the 
graph K".

The proof is quite simple, thus it will be omitted.
Continuing the proof of the theorem, consider now a representation

z'1 = zi1 + ... + z's1
of z'1 as it is required in the preceding lemma. We then have

О ^  о (зГ 2, z'1) = и(зГ2, z f+. - .  + z '1) = 2  °(ЗГ* г.'1)-
i = l

Consequently there exists an i such that о(з5-2, z,'1) ̂ 0 . Since |z,T| is a circuit of 
K' it follows that the body of z'f is a Jordan curve J  contained in Rn\ P .

Now for any nonnegative integer у  let z'fy be the barycentric subdivision of 
order у of the cycle z-1. Then

t f  = (z'f = z'f0, . . . , z 'd , . . . )
is a proper cycle of /  over the group G'. Moreover we have

0 *  u(Зо 2, z'i1) = Ч зГ 2, 3Ó1)
(see also [3j p. 86 and [6] 42). Let w'0 be the homology class of 3Ó1 in the 
group A1(J,G'). Then (3) shows that d(iv0, wó)=o(3S~2, 3Ó1) and thus о(и’0, w^^O. 

Let
u'o = h'(l, J, 0)-1i?i,J>c.(w;).

Then u'nfH[{J)  and by (2) and (4) we have r>p,j (m0, Щ) = ü(vvo> wo)- Consequently 
oP j(un. u'0) ^ 0. /  is a linking Jordan curve of w0 with respect to 9S indeed.

The proof of the Theorem is complete.
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PROXIMITIES, SCREENS, MEROTOPIES, 
UNIFORMITIES. Ill

Á. CSÁSZÁR (Budapest), member of the Academy

9. Semi-merotopies. The category Scr can be brought into connection with 
another important topological category introduced by M. Katetov ([14], [15]), namely 
that of merotopies. For our purposes, it will be useful to study a somewhat more 
general concept.

If X is a given set, we say that a subset 931^0 of exp exp X is a semi-merotopy 
on X  iff

Ml. irt5̂ 0 for m£931,
М2. For x£X, there is m£93t such that m is fixed at x,
М3. If тп^ЗЗ!, rrt2€exp exp X, m ^ tttä , then тп2€991.

931 is said to be a merotopy on X  iff, moreover,
M4. If m=m l Um2( l  then either тп^ЗЛ or т 2£9Л.
If 931 and 931' are semi-merotopies on X  and Y, respectively, and / :  X~*Y, 

then/  will be said to be (9Л, W)-continuous iff т€9Я implies /(т)£9Я'. Then the 
semi-merotopies and (9Я, 93T)-continuous maps constitute a concrete category Smer. 
The full subcategory of Smer the objects of which are the merotopies will be denoted 
by Mer (by [11], p. 75, Smer is isomorphic to P-Near).

We show that Smer is a strongly topological category. Observe first that, if 
931, 931' are semi-merotopies on X, then {0}£9Я, {{х}}б9Л for x£X, and 931 is 
coarser than 931' iff 931Z) 93Г.

(9.1) Lemma. Let 9310 be a semi-merotopy on X, g: Z-»-X, and define g - 1(93l0) 
to be the collection o f all elements m£exp exp X  such that g(nx)£9310. Then
is a semi-merotopy on Z  such that g is (931, 93l0)-continuous iff 931 is finer than g -1(9310).

P roof. g({0})={0}, g({{z}})={{g(z)}} for z£Z, g(0)=0, implies
gimjj-cgimjj). g is (931, 9310)-continuous iff 931cg_1(9310). □

(9.2) Lemma. I f  g: Z —X, / :  X —Y, and 9310 is a semi-merotopy on Y, then
( / o g ) - 1(9310) = g - 1( / - 1 (9 « o ))-  □

(9.3) Lemma. Let 931,- be a semi-merotopy on X  for idl. I f  7=0, let 
93l =  sup {931г: /£/} denote the set o f all non-empty elements o f exp exp X. I f  /Х0, 
then 931= П 931; is a semi-merotopy on X, and a semi-merotopy 931' on X  is finer

i i l
than every 931г iff 931' is finer than 931, so that we can define 931=sup {931г: г£7}.

P roof. The case 7=0 is obvious. If 7^0, then 0$931, {0}£93l, {{x}}£93! for 
x£X, and m1<m 2€exp exp X, т^ЗЗ! implies m2£931, so that föl is a semi-merotopy 
on X. □
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(9.4) Lemma. I f  SR, is a semi-merotopy on X  for id I, g: Z-+X, then

sup {g-1(9Jii): *€/} =  g -1(suP {®if: *'€/})• □

(9.5) Theorem: (cf. [11], 6.4). The category Smer is strongly topological.

Proof. (0.1). □

A set S c  SR will be called a base for the semi-merotopy SR iff, for rnGSR, 
there is bd© such that b<trt.

(9.6) Lemma. I f f B is a base for the semi-merotopy SR on X  then
Bl. Ь?^0 for bd©,
B2. For xdX,  there is a bd© fixed at x.

Conversely i f  © is a subset o f exp exp X satisfying Bl and B2, then © is a base 
for one and only one semi-merotopy SR, composed o f all mdexp exp X such that 
b< m  for some bd©- □

(9.7) Lemma. I f  <3 is a screen on X, then it is a base for a merotopy on X.

P roof. S  satisfies Bl and B2. If s£S, s< m = tn 1Urrt2dexp exp X, and, 
indirectly, we assume that neither mx nor m2 is finer than s, then there are S f s  
such that Si does not contain any subset belonging to m; (/=1,2). Then S = Sr П
i)5 26s does not contain any subset belonging to m; a contradiction. □

(9.8) Lemma. I f  © is a base for a semi-merotopy SR, then SR is the smallest 
semi-merotopy containing S. Conversely if  SR is a semi-merotopy on X, gcSR, 
and SR is the smallest semi-merotopy containing g , then © = gU{x: xdX} (where 
x=  {Adexp X: xf_A}) is a base for  SR. I f  the elements o f g  are filters in X, and 
SR is the smallest merotopy containing g, then © is a base for SR again.

P roof. If SR 'c©  is a semi-merotopy, and © is a base for SR, then by (9.6) 
SR' з  SR. If SR is the smallest semi-merotopy containing ]y, then by (9.6) © is a 
base for a semi-merotopy SR'. Since xdX  implies {{x}}€SR and {{x}}<x, ©cSR 
and SR'cSR (because SR 'cg), while SR'cSR by (9.6). Hence © is a base for SR. 
If 5  is composed of filters and SR is the smallest merotopy containing g, then © 
is a screen, hence SR' is a merotopy by (9.7), and SR'cSRcSR' again. □

A merotopy SR is said to be a filter-merotopy ([14], 2.1) iff there is a set g  of 
filters such that SR is the smallest merotopy containing g.

(9.9) Lemma. A semi-merotopy is a filter-merotopy iff there is a base for SR 
composed of filters.

Proof. (9.7), (9.8). □

The full subcategory of Smer the objects of which are the filter-merotopies 
will be denoted by Fmer. We now examine the subcategories Mer and Fmer of 
Smer.
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(9.10) Lemma. Let 931 be a semi-merotopy on X. The union 9314 o f all merotopies 
contained in 931 is the coarsest merotopy finer than 931. 9914 is composed o f all systems

П
m€9Jt such that, whenever m = |J  mi9 N, there is an i satisfying

1
n

P roof. If 93Tc931 is a merotopy and mG931', m = IJ ni;, then there is an i
1

such that тп;£93Г; this can be shown by an easy induction on n. Therefore it suffices 
to check that the systems m£931 described in the last sentence of the statement 
constitute a merotopy 93l0.

Now {{x}}€9310 for x£X, and m£93l0, m< m'  implies m'G9310; in fact, if
П П

mr= (J m,-, we can write m= (J m; in such a manner that 1П(< т , ' (Л/Gm belongs 
1 1

to mf iff it has a subset belonging to mi). Now т г£931 for at least one i, and m,'G93l 
for the same i. Finally if mG9310, m=m'Um", then either m'G9310 or m"G93l0;

m n
otherwise we would have m '= U  mi, m "=U  m'j> nt,'(£931, mj ff for every i and ./,

1 1
in contradiction with mG931„. □

(9.11) Lemma. Let Ш be a semi-merotopy on X. The filters belonging to 931 
constitute a screen, hence a base for a filter-merotopy 931Л which is the coarsest filter
mer о topy finer than 931.

P roof. By x€93t for x£X  and (9.7), 93F is a filter-merotopy contained in 931. 
If 93Tc93l is a filter-merotopy, then there is a base 23'c93T for 931' composed o f 
filters, so that 9й'с931Л □

(9.12) Lemma. I f  93! is a semi-merotopy on X, and g: Z-+X, then

g_1(9314) = g-4931)4, g-HäWO =  g_1(93l)L
P roof. If 9BÍ is a merotopy, then clearly g -1(931) is a merotopy as well. Hence 

g - 1(93i4) is a merotopy contained in g -1(931), and g _1(93i)43 g_1(99i4).
On the other hand, let 93i'c:g“ 1(93i) be a merotopy, and define

93 = {g(m'):m'G931'}U{x: xGZ}.
Then 23 c: 931 is a base for a semi-merotopy 93l„c:931. 93i0 is a merotopy; in fact» 
g(m ')<m =m 1Um2, m'G93T implies m '=tniU m 2 where m- is composed of those 
M'£ m' for which g(93l') contains a subset belonging to m;. Then m,'G931' for some 
i, and g(m,')< mi€9310. If x<m=rr t1Um2, then either {x} or 0 belongs to m, 
hence to m; for some i, and х<т,С9310. Now we have 23c93l0c:99l4, and clearly 

so that g~1 (93Í)4 c g ~1 (9314).
Now let 931 be a filter-merotopy with a base 23 composed of filters. Then the 

filters in Z generated by the filter bases of the form g~*(b), bG23, constitute a 
base 23' for g_1 (931); in fact, b< g(g - 1(b)) shows g_1(b)Gg_1(93l) for b€23, and 
g_1(b)<b'Gg_1(931) for the filter b' generated by g_1(b). Hence 23'cg_1(931). 
On the other hand, if m'£g- 1(93l), then b<g(m') for some b£23, hence g_1(b)< 
< m', and b '< g_ 1(b)<m', b'€23' for b' as above (except when 06g- 1(b); in 
this case 0Gm', b '< m ' for an arbitrary b' obtained from a b£23 such that b<x,  
x=g(z), zGZ). Therefore g- 1(93l) is a filter-merotopy provided so is 931.
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Now, as in the first part of the proof, we get

g - x(® tO  c

If s'€g_1(äR) is a filter, then g(s ')69K is a filter base that generates in A' a 
filter s such that and sCJJF, s<g(s,)<EsJJf/ . Thus s/€g_ 1(®l/ ) for
every filter s' from g~1 (9Л), and g_1(aii)-/' c g ~ 1(3R/). □

Since obviously 9Л=9Л‘1 for a merotopy, 9Л=9Л/  for a filter-merotopy, we 
obtain from (0.3):

(9.13) Theorem. The subcategories Mer and Fmer are bicoreflective in Smer 
and in every full subcategory o f Smer containing them, the coreflections o f 9Л are 
9Л4 and 9ЛЛ respectively. Both Mer and Fmer are strongly topological with the oper
ations

\M cr (9«) =  s s L W  =  g i « ,
supMer{931;: i f j )  = ( П 9Л,)? ( /  И 0),

i a

supFmer{an;: i€ /} =  ( П ЩУ (I *  0).
i e i

supMer{9Л,-: i€ /} =  supFmer{aR;: i f j }  = 5ир8тсг{9Л,-: /€/> 
for 1= 0. □

(For Mer, see [11], 7.2.)
The relationship between filter-merotopies and screens can be expressed in a 

more precise way:
(9.14) Lemma. I f  SR is a filter-merotopy on X, the filters that belong to 9Л con

stitute an ascending screen 0  (9Л) on X. I f  0  is an ascending screen on X, it is a base 
for a filter-merotopy 9Л(0) on X. We have

9Л(0(9Л)) =  931, 0(9Л(0)) =  0  

for every filter-merotopy 9Л and every ascending screen 0 .
P roof. 0(9Л) is a screen since х£9Л for xdX,  and it is obviously ascending. 

The second statement is contained in (9.7). The equalities are straightforward. □
(9.15) Lemma. Let 9Л and 9Л' be filter-merotopies on X  and Y, respectively. 

A map f:  X-*Y is (931, W')-continuous iff it is (0(9Л), <S(flR'))-continuous.
P roof. If /  is (9Л, 9Л')-сопйпиои5, s£ 0(931), then /(е)£9Л', hence s '< /(s) 

for some е'£0(9Л'), a n d / i s  (0(9Л), 0(93r))-continuous.
Conversely, if /  is (0(9Л), 0 (93r))-continuous, т€9Л, then s< m  for some 

5£0 (9Л), hence s '< /(s) forsome s'£0(93l'), and s '</( s )< /(rrt) implies/(т)£9Л' 
so that /  is (9Л, 93T)-continuous. □

(9.16) Theorem. We induce an isomorphism F: Fmer-^Ascr by defining F(931) =
= 0(9Л). □
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M ore generally, the second p a r t of (9.12) can  be com pleted in  the following 
m an n e r:

(9.17) Lemma. Let the screen <3 be a base for the filter-merotopy 93t on X, 
g: Z -X ;  then g ^ ( S )  is a base for gFl£er(93t).

P roof. I f  and  s ' denotes the filter generated in Z  by  g _1(s), then s£93t 
im plies g (g _1(s))€93t by s < g ( g ^ 1(s)), hence g ^ ^ K g ^ O 11*)’ an d  5'^8ш ег(9Л) =

=«£,<»*) ЬУ (9ЛЗ) aIld
Conversely, if tn '€g^er(®l), then g(rtt')£93l and there is an s£<» such 

that s<g(nt'). Then g^1 (s)< g~ 1 (g(rrt'))< m' and the filter s' generated by g-1 (s) 
satisfies s'Ggg^O»), s'<rrt' (if 0£nt', the same is true for a filter s£<3 fixed at x 
for some x£g(Z)). □

A similar statement holds for the operation sup:
(9.18) Lemma. Let 2>г (id I) be a screen on X  and a base for a filter-merotopy 

93Í,. Then supScr {S; : /£/} is a base for supFmer (931г: /£/}.
P roof. The case 7 = 0  is obvious. Assume / Z 0 .
If the filter s is generated by the finite intersections of 1J st where s;£ S ;,

i€i
then s;c s  for each i, hence s belongs to p) SR, and also to (П 9Ji;p  =  
=supFmer{aWi: /€/} (by (9.13)).

Conversely, if m £(f) ®f;)/ , then there is a filter s£ f) 931г satisfying s<m .
i£I >€i

For every /, there is s;£S; suchthat s;<s. Then the finite intersections of IJ s;
iei

belong to s, and the filter generated by them is an element of supScr {®г: z£/} 
coarser than s and nt. □

10. Semi-merotopies and semi-proximities. We know that proximities can be 
induced by screens; now we show that semi-proximities are in a similar relation
ship with semi-merotopies.

(10.1) Lemma. Let 931 be a semi-merotopy on X, and define, for P, 0, A, B a X , 

PdQ iff P, Qdscc m for some m£9Jl, 

iff m£93l, A£secm implies {B}<m.
Then 5 is a semi-proximity on X, and <  is the symmetric semi-topogenous order 
on X  associated with S.

Proof. _P1, P2, P4 are obvious, xdPDQ  implies P, Qdsec x, x£931. Clearly 
A<B  iff ÄÖX-B. □

We say that 931 induces ő and and we write <5=<5(9Ji), <  =  <(931). We also 
say that 931 is compatible with 5 and < . If 931 is a filter-merotopy and S  = S(93l), 
then clearly <5(93i) =  <5(8); in this case, <5 (931) is a proximity. We have, more gen
erally:
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(10.2) L emma. I f  SOI is a merotopy on X, then S (99!) is a proximity.
Proof. Assume PdQ, PbR for <5—<5(93!), but PSQÖR. Then there is m699i 

such that P, О U Ж  sec m. Now (3UP6secm imphes, for every M fm , either 
or Л П М #0; denote by nt1 the collection of the M6m of the first 

type, by m2 that of the M £m of the second type. Hence rn =  m1Um2, and т;б991 
for some i. Thus either P, (36 sec m, or P, P6sec m2, a contradiction. □

The question arises whether every semi-proximity admits compatible semi- 
merotopies. The answer to this question (similar to the one answered in (6.11)) is 
quite elementary.

(10.3) L emma. I f  931 is a semi-merotopy then every m693! is S0Oi)-com- 
pressed. □

(10.4) L emma. I f  5 is a semi-proximity on X, and PÖQ, then there exists a Ь-com
pressed ОМпбехр exp X  such that P, (36sec m.

Proof. Let m denote the system of all subsets M czX  such that M lT iV  
^d A M O Q . Then P, (36secm, and 3f6m because P ^ 0 ^ Q .  We show that m 
is (5-compressed.

In fact, suppose T6sec m. Then either A z)P  or Az>Q; indeed, P —AA  
zjátjSjLQ—A  would imply {p,q}£m for some p£P —A, q£Q—A, but {p,q}C\ 
DA = 0. Similarly, ß6secm implies either B z)P  or Bz)Q. Now if A, ß6sec m, 
then A zdP, B z>P or Az^Q, BzdQ implies AbB since P ^ 0 , QA0, while AzdP, 
Bz>Q or A zdQ,B^>P implies ASB according to PdQ. □

(10.5) T heorem. I f  6 is an arbitrary semi-proximity on X, then the collection 
o f all b-compressed systems (Mm6exp exp X  is a semi-merotopy 931 such that 
0=0(401).

Proof, {{x}} is ^-compressed for x£X, hence 93Í is a semi-merotopy. By (10.4) 
PSQ implies P, (36 sec m for some m6931, and conversely, Р, (36 seem, m69J! 
implies PbQ since m is (»-compressed. □

Let us write 93i(<5)=93! for this 93i. We say that a semi-merotopy 931 on X  is 
saturated iff it is of the form 93l(<5), i.e. iff it is composed of all <5(93l)-compressed, 
non-empty systems of subsets of X.

We introduce a functor F: Smer^Sprox by F(93!) =  <5 (93!):
(10.6) Lemma. I f  / :  X —Y is (93Í, 40i')-continuous, where 93! and 931' are semi- 

merotopies on X  and Y, respectively, then f  is (<5(93i), b(40Vf)-continuous. The converse 
is true provided 93Г is saturated.

P roof. If P, (36secm, m693l, then /(P ) ,/ ( 0 6  sec/(m), /(m)693!' provided 
/ i s  (93Í, 93l')-continuous. If / i s  (<5 (sJJi), b (9Ji'))-conti nuous and m693L then m is 
<5(99l)-compressed by (10.3), hence /(m ) is á(93l')-compressed, and /(m)693l'. □

(10.7) T heorem. /'(93!) =  <5 (93!) induces an isomorphism onto Sprox from the 
full subcategory o f Smer the objects o f which are the saturated semi-merotopies. □

Let us examine the behaviour of the functor F with respect to the usual opera
tions.
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(10.8) Lemma. I f  Ш is a semi-merotopy on X, g: Z-+ X, then S(g  1(®l))=
= r 1( ^ P ) .

P roof. Let us write 5=5(SR), g _1(SW)=8W'. If P8($W)Q, then there is т'бУЛ' 
such that P,Qe seem', hence g(mO€901, g(P), g(ß)€sec g(m'), and g(P)Sg(Q), 
P g -W Q -

Conversely if Pg~1(S)Q, then g(P)Sg(Q), hence g(P), g(Q)£sec rrt for some 
т£УЛ, P, Qgsecg_1(m), and m <g(g-1 (in))€®i, g-1 (m)6®l\ so that PS (’ИГ) О. □

In contrast to the situation concerning screens and proximities (cf. (8.5)), 
we have:

(10.9) Lemma. For semi-merotopies УЛ; on X, (5г =  <5(ЗЛ,), УЛ =  sup {УЛ,: i£l}, 
ő = ö (УЛ), the equality

S — SUP.SproX{Ü; •
is valid.

P roof. The case 7=0 is obvious. Assume 7^0. Let us denote by S' the right 
hand side. By (10.6) each <5, is coarser than S, hence so is S'. On the other hand, 
if AS' B, then Adi В for every i, hence there is тп;£®1; satisfying A, Be seem,-.
Define m = U mi- Clearly m;<m, hence т£УЛ; for every /, and т€ 9 Л =  |") УЛ,-, 

ier i€i
further А, Ввsec m, so that ASB. □

Unfortunately, the behaviour of S (УЛ) with respect to УЛ4 and УЖ is less advan
tageous.

(10.10) Example. Let X = Y~ R, Z = X X Y , and let p1 and p2 be the projec
tions from Z onto X  and Y, respectively. Let УЛ be composed of all systems 
mgexpexpZ such that, for every e>0, there are УЛ^пг having projections 
Pk(Mk) with diameters less than e (k =  1,2). Clearly УЛ is a semi-merotopy on Z. 
Set <5=<5(УИ); we show <54 <̂5(УЛ4)=<5'.

For this purpose, consider

A =  {(x, x): x£R}, В = {(x, у): \x - y \  ^  1}.

As in (8.5), we can show that, whenever
m n

A = [J A it B = U B j,
l l

there are i, j  and xls x3£R such that (xl5 Xj), (x2, x^)eA(, (xl5 x2)€By-. Then 

{{(xi, Xi), (Xi, x2)}, {(x2,x 2), (Xj, Х2)}}€УЛ; 

hence AiSBj. Therefore ASqB.
On the other hand, suppose A, В6seem, т£УЛ4. Then M em  implies that 

at least one of the projections p fM ) and p2(M) has a diameter >  ~ . Consequently
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we can set m=mxUm2 such that pk(M ) has a diameter if M ^m k. Thus

ntt$SR for k=  1,2, and, a fortiori, mfc$93ie: a contradiction. Therefore Ad'B. □
(10.11) Example. Let X=R. If a=(a„) and ß = (b„) are two sequences in R 

suchthat | z z „ | | h „ |  — °°, set

b(cc,ß) =  {{a„, bn}: n£N}.

Then all systems b(oc, ß), together with the systems {{л}} for x£R, constitute 
a base for a semi-merotopy 9И on X. In fact, 9Л is a merotopy. If 
Urrta, then clearly either {{x}}<m1 or {{x}}-=m2. If b(<x, ß)< m = nq Um2, 
then we can set such that {{a„, b„j: n€Aj}-=nt;. Now either N, or
N2 is infinite, say, N k. Then the subsequences a! and ß' of a and ß composed of 
the a„ and bn, respectively, satisfying n£Nx, yield a system b(«', ß') such that 
b (a', ß') <  nq, hence rtqCäR.

Thus d = d (90T) is a proximity; it can be easily described: Ад В iff either А П В A 0 
or A and В are unbounded. In fact, A Í)B=0, AdB implies A, BP sec m for some 
тп€9Л satisfying b(a, for suitable sequences a, ß. Then A, IIPsec b(a, ß),
and A, В are unbounded. Conversely, if A and В are unbounded, A  contains all 
elements of a sequence a, В does the same for a sequence ß, and A, B £sec b(a, ß).

Since a system b (a, ß) contains disjoint elements, no filter s can fulfil b(a, /?)<s, 
and 9Л does not contain any other filters than x (x£X). Therefore A S (5)i/ ) В iff 
АГ)Вт±0, and <H9EK)«=<HaR)̂ <5(9RO. □

A positive result can be obtained for saturated semi-merotopies.
(10.12) Lemma. Let ö be a semi-proximity on X. A filter in X  is ő-compressed 

iff it is decompressed.
P roof. A  <T'-co impressed system  is b-com pressed, o f  course. Conversely, if  a  

filter s in X  is <5-co impressed, AőqB, A € sec s, then

m tt
A =  U At, В =  (J B j, AfiBj for every i and j.

1 1
Now A;£secs for at least one i because otherwise X —Afis  would follow for

m
each i, hence X —A=C\ (X—A ^ds: a contradiction. For this i, X —Bjds for

П
every j,  and X —B = f] (X —Bj)ds, so that s is ^-compressed. □

(10.13) Theorem. Let d be a semi-proximity on X, 901=9Л(<5). Then d9— 
= d(m q)=b(m f ).

P roof. By (10.12) the decompressed filters are precisely the filters contained 
in 9Л, i.e. they are by (9.11) the elements of a screen 6 , which is a base for 9ИЛ 
By (6.11), <54= 0 (в )  and clearly <5(®) = (5(5Ш/), hence dq=d(SHf ). Now d(ЯЛ9) 
is a proximity by (10.2), finer than <5(5Ш)=(5 by (10.6), hence finer than dq. At the 
same time <5(9Л?) is coarser than ő(9)l/ ), i.e. than dq, and <5(9Л4)=<5?. □
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The good behaviour of the operation sup with respect to the categories Smer 
and Sprox is no more valid for Mer and Prox.

(10.14) Example. Let X —Y = R ,Z —X X Y , and letp1 andp2 be the projections 
(as in (10.10)). Let 501; be the collection of all systems m€exp exp Z  such that, 
for £>0, there is an M 6rrt such that the diameter of p fM ) is less than г 0 = 1,2). 
Clearly 50l; is a merotopy on Z  for i= l ,  2, and 501ХП5012 =  501 where S0Í is the same 
as in (10.10). Hence, for 5г=5(501;), we have

supSprox{<5i, 52} =  с5(1Ш) =  5

by (10.9). Now we know from (10.10) that
süpped !, 52} = 6q X <50-01")

where 5Dl«=supMer {9Jlx, 50l2}. □
A similar negative result is valid for Fmer and Prox, namely that, if 5D1; is a 

filter-merotopy on X  for i£I, 5,=5(501г), 50l=supFmer {50l; : /€/}, then, in general,

supProx {5;: i f j )  X 5(501).
According to (9.16) this is shown by (8.5); for the sake of completeness, let us for
mulate it again in the language of filter-merotopies:

(10.15) Example. For X, Y, Z, p1, p2 as in (8.5), let S ; denote the ascending 
screen composed of all filters s in Z  such that pt(s) converges with respect to the 
usual topology c of R (/ =  1, 2). is a base for a filter-merotopy SOI; on Z  by (9.7). 
Clearly 5(501;)=5(<S;)=5;, where PötQ ifi' с(р ;(Р ))П ф ;(0)т*0 . By (8.5), AS'В 
for the sets A and В in (8.5) and <5'=supProx (5X, <52}. On the other hand, a base for

supFmer{SOli, 30l2} =  (a»inSK2y  =  SOI

is composed of the filters s in Z such that both px(s) and p2(s) converge; therefore 
A B B Í ot 5=0(501). □

If <5 is a semi-proximity, then 501(5) is a semi-merotopy without being a merotopy 
in general ((10.5), (10.2)). The situation is still the same if 5 is a proximity:

(10.16) Example. Let X={a,b,c}, |T | =3 , and let 5 be the discrete proximity 
on X. Then m={{a, b}, {a, c}, {b, c}} is 5-compressed. In fact, if РП (2=0, then 
one of the sets P and Q has cardinality s i ,  say, P c  (a); therefore P fl {b, c}=0 
and, a fortiori, P^secm.

Now {{a, h}} is not 5-compressed because {a)S{b}. Similarly {{a, c}} and 
{{&, c}} are not 5-compressed, so that тп£5Ш(5) is the union of three subsets not 
belonging to 501(5). □

Hence, for a proximity 5, we have in general

501(5) 9* 501(5)«.

The latter is, of course, the coarsest merotopy compatible with 5 ((10.5), (10.13),
(10.3), (9.10)).
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Let us now brifly examine the connection of semi-merotopies and semi-closures. 
I f  99t is a semi-merotopy on X, 5=S(M ), let us write с(9Jt)= c&.

In contrast to the situation illustrated by (10.10), we can now state:
(10.17) Lemma. I f  931 is a semi-merotopy on X, c=c(99l), then cq=c(fRq).
P roof. Set c'=c(dAq); then c' is a closure by (10.2) and (3.10), finer than c 

by (10.6) and (3.10), hence finer than cq. Conversely cq is finer than c'. Assume, in 
fact, x£cq(A), and define

rrt =  {{x, a}: a£A}.
Then because xdc(A), hence there is m0£99i such that m0 is fixed at x

П
and A£secrrt0; clearly m0<m . Moreover, nt(E93t4; indeed, if n t= IJ т г, then

1
A = \J A t,

1
m; =  {{x, a}: a6A;},

and x£c(Ai) for some i. Choose m'f991 fixed at x  and such that A^secm', 
then obviously т ' < т (, т г£991. By (9.10) m€99l4. m is fixed at x. Acrqcm, so 
that xec'(A). □

An example based on the same idea as (10.11) (but slightly more complicated) 
shows that the behaviour of c(9Jl) with respect to 99E is still bad:

(10.18) Example. Let AT=R, and denote a and ß two sequences а = (a„) and 
ß —(bn) in R with the same limit with respect to the usual topology c of R: a„-*x, 
b„~*x. Denote b(a, ß)={{an, bn): n£N}, and let 93 be the collection of all systems 
Ь(а, ß). Then © is a base for a semi-merotopy 911 on X  (observe that {{x}}=b(a, ß) 
for a„=b„=x). Similarly to the argument in (10.11), it turns out that 991 is a merotopy. 
For <5 = <5(931), clearly Ад В iff с(Л)Пс(В)А:0, hence cs = c. On the other hand, 
if b(a, /l)<s for a filter s, then b(a, ß) cannot contain two disjoint elements, so 
that, for every n, either an= x  or bn= x  (if «„—x, fin—x), and necessarily s=x^ 
Hence 991-̂  induces the proximity S' = S (991̂ ) for which Ад'В iff АГ\В^0, and 
e0, is the discrete topology on R. □

If 991 is a semi-merotopy on X  and g: Z —X, then g_1(c(99l)) = c(g_1(99l)) 
by (10.8) and (3.9). If 99l; is a semi-merotopy on X  for id I, then

c(supsmcr{991;: i f j} )  = supsd{c(99i;): id j)

by (10.9) and (3.9); if every 99if is a merotopy, then
c(supMer{991,: i6/}) =  supci{c(99í,): id j)

by the previous equality and (10.17). However, if every 9Jt; is a filter-merotopy, 
then, in general,

c(supFmer{99li: i€ /}) A supa {c(991,): iC/};

this fact is shown by (8.6), if we define 9Лг to be the filter-merotopy for which S ; 
is a base (/=1,2). In fact, obviously сг.=с(991г) for Si=d(Q i), and sup {Sx, S 2}
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-IQ О KoOf» f/ЛГ

(9й1ПЯВа) '  =  supf^ í SR,, 5Ш2}
(see (9.18)).

Part IV will deal with the relation of merotopies to uniformities.
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ALMOST SURE LIMIT POINTS OF SAMPLE 
EXTREMES OF A N  I.I.D. SEQUENCE

S. S. N A Y A K  (Mysore)

1. Introduction

Let {X„, /2=1} be a sequence of independent and identically distributed (i.i.d.) 
random variables (r.v.’s.) with a common distribution function (d.f.) F. Define 
F„=max (Xx, X2, ..., Xn). Laurens De Haan and Arie Hordijk [1] have studied the 
behaviour of the sequence {F„} under the following assumptions:

(a) F(x) has a positive derivative f(x )  for all real x and lim g(x)/x=c (Oss c<  °=).
X-+ co

(b) F(x) has a positive derivative /(x ) for all real x and F(x) is twice differen
tiable with lim g'(x)=0, where

X -* -o o

( {1 -  Ях)} log log {1/(1 -  F(x))}
gW  f ( x )

Let {b„} and {c„} be two sequences of real numbers defined by 1 — F(b„)—l/n  and 
c„=g(b„). The above authors have established that under (a),

(1.1) lim sup YJb„ = ec a.s., lim inf Yjb„ = 1 a.s.,
П -+ °о  П-+- oo

(1.2) 1 — F(bnx) = for all x > 0 ,n

where for all x>0, lim rn(x)— — (log x)/c and under (b),

(1.3) limsup(T„-h„)/c„ =  1 a.s., lim inf(Y„-  b,,)/c„ =  0 a.s.,
H—*• oo It-*- co

(los nY”(x)(1.4) 1 — F(h„ +  c„x) = -------------- for all real xn

where lim /•* (x)= — x for all real x.II—► OO
Wichura [8] has proved the above results in the functional form. In this paper, 

the almost sure limit sets of the random vector consisting of the first two largest 
values (properly normalised) in a random sample are derived under (a) and (b). This 
problem has been considered by Vishnu Hebbar [6] for Gaussian sequences under 
certain conditions on the covariance function. He has also studied some related pro
blems for Gaussian sequences (see [5], [7]). The almost sure limit sets of the random 
vector containing p (S 2) independent copies of T„ are studied by S. S. Nayak [4]
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under the assumptions (a) and (b). For a good review of multivariate extreme values 
see [2].

In this paper, we assume that 0< c<  =». A generic constant is denoted by the 
letter d with a suffix. Some preliminary lemmas are given in the next section and the 
main problem is considered in the last section.

2. Preliminary lemmas

Lemma 2 .1 . Let {An} be a sequence o f events in a probability space. I f

(i) Z P ( A „ ) = c °  and 
n=r

(ii) l i m i n f  2 2  (P(AjC\Ak) - P ( A j ) P ( A k) ) / ( 2  p (Aj))2 =  ° /n—~ iaj'<lis/i j - 1
then P(An i.o .)= l.

Proof. See Ortega and Wschebor [3], Lemma 1, p. 86.

Lemma 2 .2 . Let S„ be the second largest among Xt, X2, ..., X„. Then under (a), 
for all 1 we have

P(YJb„ >  xL, SJbn >  x2) ~  (log n)rA*d+rnixj as л -  oo.

Proof. The joint probability density (p.d.f.) of Yn and S„ is n(n~ l)T"~2(y) •
• f (x)f(y) f°r Х>У and zero otherwise. Assume that n is sufficiently large so that 

h„>0. Hence we have

(2.1) P(YJb„ >  xu  SJbn >  x 2) = l-F "(b„ x1) - n ( l - F ( b nx 1))Fn- 1(bnx2).

Write u„=l — F(b„Xi) and vn= l — F(bnx 2). By (1.2), observe that for all х г>  1 
and x2> l ,  nun-► 0 and nv„-~0 as n The right side of (2.1) can be written as

nu„ -  (nUn)2 + ^  ~  (* + ° (1))(им«)3 ~

\ l ~ nvn+ ^ 2  ~ niunvn as

since, for all x x>-x2>~0, u jv n-+ 0 as which is a consequence of (1.2). The proof 
is complete.

Lemma 2 .3 . Let {nk} be a monotonically increasing subsequence o f {«}. Then 
under (a), for all 1 and positive integers s and t such that lim nJn,=tx(-=: o°)

S ,  f —oo

we have
1 -  F"s(b„tx) ~  (njn,) (log nl)r"‘(x) as s, t °°.
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Proof . Let xt= 1 — F(bn x). Since lim ns/nt= a (<  °°), by (1.2) it follows that
'  S, t  00

for all x > l ,  nsxt->-0 as s,t-»°°. Hence,
Fn.(b„tx) = (1-*,)"* =  l - n sx,(l+o(l)).

This along with (1.2) implies the lemma.
The proofs of the following two lemmas, being similar to those of the above two 

lemmas, are omitted.
Lemma 2.4. Under (b), we have for all xti> x2>0

P(Yn > Ь я+сяХ!, S„ > b n+cnxd  ~  (log л)г»(дс‘)+г*(*«) as n -«>.
Lemma 2.5. Let {nk} be a monotonically increasing subsequence o f {«}. Then 

under (Ъ), for all x>0 and positive integers sand t such that lim njn ,—/?(<<*>) we have

1 -  Fns(b„t +c„tx) ~  (njn,) (log n,)r”'w as s , t -°° .

3. Almost sure limit points

Theorem  3.1. Let Y„ and S„ be the first two largest values among Xu X2, ..., X„. 
Then under (a), the set o f all almost sure limit points o f (YJbn, SJb„) is

S = {(*i> *г)'- 1 ^ х 2 ^ х г ^  ec, xxx2 S. ec}.
P roof. Let e> 0  be arbitrarily fixed. For all x, and x 2 satisfying 1 and

l< x 1x2~=:ec define a positive valued function h(x1, x2)=h by:
max(l, c/logXiixa+e), c/logx2(*i + e)) <  h(xi,  x2) <  c/logx1x2.

Let nfc=[exp kh] where [w] is the greatest integer less than or equal to u. The theorem 
will be established through the following lemmas.

Lemma 3.1. For e> 0  and all x, and x 2 such that x ^ x 2̂ l  and x1x 2< ec 
we have

(0 P(YnJb„k >  *j+£, S„Jbnk >  x2 i.o.) =  0 and
(Ü) F(YJb„k >  хг, SJb„k >  x2+s i.o.) =  0.
P roof . By Lemma 2.2 and (1.2) we have

p (YJb„k >  Xi+e, SJb„k >  x2) <  djfc«' 1-а/с)Ю8*,(*i+«))

fur £j>0 and all k ^ k x. By choosing £x such that 0<e1̂ ( l /c ) lo g x 2(x1+e)—l/h, 
we notice that 2 p (Y„Jb„k> x i+e, S„Jb„k> x 2)< °° and hence by the Borel—Can- 
telli lemma we get (i).

If Xi> x2+c then the proof of (ii) is similar to that of (i). Let l< x 2<x:aS  
^ x2+ e and XiX2< ec. Then

p (Y jb nk >  x lt SJb„k >  x 2+ e)  = P(SnJb„k >  x2+e) =
=  1 -  nk F ^ - 1(b„k(x2+£)) + (nk-  i)F"Jb„k(x2 +  £)).
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Let x£=l — F(b„fc(x2+e)). Since x2> l ,  by (1.2) it follows that пкх%-+ 0 as к — «>. 
In terms of xk the above probability can be written as

But, by (1.2) we have

(икх£)2 <  d2 k2h(-e» ~OF)108 (*•+*))

for г2>0 and all k= k2. Since xx = x2 + £, we can choose £2> 0  such that 
Z(n*4)a< ~ - Now an application of the Borel—Cantelli lemma completes the proof.

Lemma 3 .2 . For all X i> x 2=~l with x xx 2-= ec we have

By (1.2) and Lemma 2.2 we have

P(Ek) >  dgfc- **»+0ogxtx̂ /e)

for £3>0 and all к~ к л and all xx and x2 satisfying x1> x 2> l ,  xx x2< ec'. We 
can choose £3> 0  such that

Let s and t be two positive integers with t. Denote the first m axim um and 
the second maximum among X„s+1, Х„з+2, .... X„t by and S'„t-„3 respectively. 
Let s and t be sufficiently large so that bn > 0 and b„t> 0. Hence for s and t large,

1 - n k( 1 - x ^ - 1 + (« * -1) (1 -лей* =

= 1 - ( 1  - x t ) ”* -n kx U  1 -x*)"V(l —Xfc) ~  (nkx t m  as к

P{YJb„k >  xl5 SnJb„k >  x2 i.o.) = 1.

P roof. Define

=  {YnJb„k >  xl5 S„k/b„k >  x2}.

(3.1) ^  P(Ek) = oo for all Xi >  x2 >  1 with xx x2 <  ec.

Let

and

Then we have

(3.2) P(EsC\Et) = Р Ш + Р Ш -

We evaluate P(At) and P(A2) as follows: Note that max(T„ , Y ' )= Y ' if4 A ‘‘s' nt ns' П( — 1ls *
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and only if max(Ynj, S’„t- ns)= S„t. Hence

P(AX) = P{Y„t >  bn xx, S„s >  b„x2, У„'_л> >  batxlt 

max (У„4, >  b„,x2, Y„t <  Y„t- B,) =

= -P(yB, >  max(b„sxu  b„tx2), S„s >  b„x2, У„4- л, >  bn,xl5 Y„s <  Ул,-„,)+

+ P{b„sXi <  =  b„tx2, S„s >  b„sx2, Y,it-n, >■ b,hx 1, Snc-n„ >■ b„tx2, Y„s <  Y„t^„ ĵ.
Observe that У„а and У'(_л> are independent and so also are Sn> and S't_„s. By 
using the independence and the fact that xx> x 2 we obtain

=  P(Y„S >  max (b„t X i, b„tx2), S„s >  b„sx2, Ул,- П, >  Ь„ех1; У„, <  У « '-0+

+  P(b„sx1 <  7„s ^  b„tx2, S., >  b„sx2) P( Y't_nj >  bntX!, >  b„tx2) =
=  P U 2)+P(T 3)PC44)) say.

Let g„(x,y) be the joint p.d.f. of Y„ and Sn. Note that gn(x, y)= n(n—l)F n~2(y) ■ 
■f(x)f(y) for x> y  and zero otherwise. Put i?„=max(bKtx1, b„tx2). Then we get

p(A2) =  f  f  j  g„s(x, У) dx dP (Y't-„s iSu) =
bn*i v ьп*г

=  ^ 1 .  (1 _  F H k'X d) -  v z r r x f  0  -  Fn‘~n' +1(bn,Xi)) +Ylt ilf ns~r 1
+ (1 -  Fn‘~n* (b^Xj)) (ns F(v) F n.~1(b„bX2) -  Fn*(v)).

b n t X i  X

P(A3) =  /  /  g„s(x, у ) dy dx =

=  Fn’(bntx2)-F"s(b„sx 1) - n sFn*-1(.bnsx 2) {F(bntx2)~Fib^x^j)
and

со X

Р(Л4) =  /  /  &,е-».(х, y) dy dx =
bnt*S

=  1 (b„,Xi)- (« ,-« ,)  P v " .  - 1 (b„t x2) (1 -  P(b„t x j).
Observing that max (Yn>, У',_„.)= Ул> if and only if max (S',,, У;(_Л>) ^ 5 Л(, we have 

? № ) =  P(Y„, >  b„txl5 S„, >  b„ax2, m a x Y ' _ B.) >  b„tx2, Y„. ^  Yn'_„,). 

Since X!>x2 and b„s<b„t, after some simplification we get

PCBi) = P(Y„. >  b^Xj, S„, >  b„tx2, Y„, S  УЛе_п<) +

+P(Y„t >  b„txl , b„sx2 <  s  b„tx2, Y„t-„a >  b„tx2, Уп, ё  УЛе- л>) =
=  P(.B^+P(BS), say.
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Consider

P(Bz) =  / P(Y„. >  max(x, b„tXl), S„t >  b„tx2)dP (Y 't_B> S r )  =
—  oo

— Р(Уп,-пг — b„tXi) J  j  gBj(n, v)dvdu+
”  n  и п х г

Let

and

+  /  /  /  gn,(u> v) d t ; dP(Y '.„я ^ x )  =
\ xl  x bn xt

=  ( l - F " ‘(b„tx1) - n s( l - F ( b ntx1))F n. - 1(bntx2j)F'’‘- ns(bntx1) +

+  ( l —Fnt - n.(britx1)) (1 - n sFn*-1(b„tx2)) +

+ \ - n ,+ 1  C1 - - i MMi ) ) .

bntxi
h  =  P(Y„3 >  bBtxl5 b„,x2 <  SB# s§ fc„tx2) f  dP(Y 't_B> 3= x)

b„x.

h  =  /  ^(^п. >  *, Ьл,х2 <  5'„ж =£ bBtX2) dP(Y't_„' s§ x).
V е»

Then P(Ba)= I1+ I2. Since x !> x 2, for all х ^ 6 В[хг we have

~ *V.
W *  >  b„sx2 <  5„, S  b„,x2) =  f  f  g„M(u, V) dv du =

* 4 х*

=  ns(F",~1(b,x2) —Fn‘- 1(b„txsi)) (l —F(x)).

Hence, /j and 12 will simphfy to

h  =  n,(l -  F(betxJ) (F”. - 1(b„tx2) -F '’.-H bnx2)) (F *-”.Q>e,x1) - F * - .( b mtx j)

and
fa =  n,(n ,-ns) (F"‘~1(bntx2) — Fn-~1(b„tX2))X

x  П  - F nt~n'{bntx x) 1 - f ’”.-".+1(bBtx1) 1
l  л, —лв и, —nB+ l  J '

Substituting these probabilities in (3.2) we get that for sufficiently large s and t
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(y< /) and for all x x> x2> 1 with x xx2< ec,
P(EsnE t) = (1 xt) ) ( l - F 4 v ) - n s( l - F ( v ) ) F ^ ( b nsx 2)) +

+ ( l - F nt~n‘(bntx1) - ( n t- n s) (1 -F (b atxJ)F*t-’. - 1(betx J  X

X (Fn*(b„tx^) -  Fn’(bnx  i) -  ns(F(b„tx2) -  F(h„,x1)) i’n*-1(bIfl*2)) +

+ ( l - F n-(h„tx1) - n ,( l  -  F{bnx1))F ^-1(bn x 2))Fnt-n-(bnx 1)  +

+ и»(1 -  E(bntx1))(F n*-1(bntx2) -  F " .-1(b„'Xid)(Fn' - n.(bBtxd -  F ^ -n*(b„tx2)) =

=  C l  C2+  C3 C4+ C5+ и,(1 -  F(bn xx)) C6 C7, say.

By noting that v^b„tx 2 and using (1.2) we majorize the above terms and write

(3.3) F(FSDF() S  Q(1 -F ".(b„^2)) +  C3C4+C 5+ C 7(ns/«f)(logn() 4 (4

Note that P(ES) is obtained from (2.1) by replacing n by ns. From the proof of Lemma 
2.2 we notice that

F(Fs)~(log ns)rns(Xl)+4 (x,) as s — сю.

We now find the estimates for Cx, C3, C4, C5 and C7. We illustrate the method by 
estimating C5. By Lemma 2.3 we have

l — Fn‘~n’(b„tx1) ~  ——— (log nt)'nSXl> as s, t -* oo.
nt

In applying Lemma 2.3, we have used the fact that us/n,-*-0. This is implied by the 
observation lim ns/ns+1—0 which is a consequence o f the fact that /г=> 1. Also

S-*>co

note that (logn,)r"t(x,)->-0 as t— °° because 1. Thus F”t~n*(bntx^)-*-\ as 
s , t -*■<*>. Hence as we have

C5~  1 -* Ч Ь „* 1 )-и .(1  -F (b ntXl))Fn'- '( b ntx2).
Let

a =  (log nt)'"t<Xl> and b Q o g * )4 W .
«t n,

Since Xi=-x2> l  and nJnt-»Q as by (1.2) it follows that nsat->-0,
(ns—l)bt->-0 as i, i —°° and aJbt->-0 as /-><=. By (1.2) we have

1 -  F".(b„tx1) - n s( l -  F(b„tx1))Fn. - 1(&IIt*2) =

=  1 -(1  - a t)" .-n ,a t(l -b ,)”- -1 =

=  - ”*(”2 ^ a« ( l+ Q(l))+ ”» K - l ) fl«b,(l+o(l))~Hga,b, as s, i -»•
Thus

C5 ~  («s/«,)2(log и,)ч(*»)+Ч (**) ~  (nJnt)2P(E,) as s, t -  00.
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Similarly we obtain as s,

C1(l-F " .(b ntx i))~(nJnt)P(E,), C3~ P (E t), C ^ P (E S) and C7~ (lo g л,)Ч<Ч
Using these estimates in (3.3), its right side becomes P(ES) P(Et)(1 +  (2 + njn,) ■
■ (njn, P(Es)j). We now show that nJnt P(Es)-+ 0 as . Note that

ns/n,P(Es) S  n jns+1P(E^) ~  n j ns+1(log na)r"* (x,)+4 (x,) as s

By (1.2) we now get
nJn,P(Es) <  d4m!/((s +  l)'1 —sfc)mJ_',(£i+(l0BXiJC«)/c)

for all s^Sx, г4> 0  and any integer m ^ l .  Since (l+ x)h— l~ /ix  as x—0, 
the above expression is less than

d5m\/hms ^ 1}m~ĥ i+̂ °e xixi>lc>

for all s ^ s 2. This tends to zero by choosing m such that
m >  h(e4 +  (log xxx2)/c)/(/i — 1).

Thus we have shown that for any e5>  0, there corresponds a positive integer i3 
such that for all i £ r 3 and all x1> x 2>  1 with x4x2< e c we have

/>(£,П£,)<(1+£6)Р(£,)Р(£,).

This along with (3.1) implies that

(3.4) lim inf 2  2  {P(EsC\Et) -P (E s)P (E ,))K Z  P(Es) f  =§ e5.
l e s e t - : *  s =  l

Since s5> 0  isarbitrary, by (3.1), (3.4) and Lemma 2.1 we conclude that P(Eki.o.)— 1 
for all x4 and x2 such that x4> x 2>- 1 and x1x2-=ec. The proof of the lemma is com
plete.

Lemma 3.3. For all X!=-x2S l  with XxX2=ec and e>0 we have

P(Yn >  bn(x!+e), S„ >  b„(x2+e) i.o.) = 0.

Proof. Define n;fc=[exp к]. Note that for any x with x+£=»0, (x+e)br is 
monotonically increasing in r. Hence

P{Y„ => (xx+e)bn, Sn >■ (x2+ e)bn for infinitely many rí) S.

= P(Ymk+1>(xx+e)bmk, Smk+1 (x2+e)b„k for infinitely many k).

By proceeding as in the proof of Lemma 2.2 we get that

p (Ymk+1 >  (.Xx+e)bmk, Smk+1 >  (*a+ fi)b ,J~

~ ( m*+i/m*)2(l°g mt)rmfc(Xl+')+rmfc<x,+e) as к -+ <*>.
<  defc*«- d/c>IO*(*i+«)(*i+«) for e6 >  0 and all l £ l c 4.
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The last inequality follows from (1.2). Choose £6>0 such that 0<e6-=c(l/c)•
• log (xi+£)(x2+ e)— 1. This is possible since Xjx2=ec. Now an appeal to  the 
Borel—Cantelli lemma completes the proof.

Lemma 3.4. For e > 0 , P(Sn<(l — s)bn i .o .)= 0 .

Proof. It is enough to prove the lemma when 0< £ <  1. Define mk=[ek]. Let 
ak(x) = (log In view of (1.2), observe that for all x such that 0 < x <  1,

—► CO and ak(x)/mk+1-*0 as k-+°°. We have for all real x

P(S„ =  x) — F"(x) + n ( \ -Т (х ))Т "-1(х).
Hence, for all x such that 0-=x< 1, by (1.2) we now get that

P(Smk Ь„к+1х) = (1 - a k(x)/mk+1)m*+(ink/mk+1) ( l - a k(x)/mk+1)mk- 1ak(x) ~

~  K /f f l t+ iK M (l- а к(х)/тк+1)тк ~  (rnjmk+j)ak(x)e-(m*lm* + as 

because mkak(x)/mk+1->-0 as k-+°°. Consider

2  T(^mt <  (1 — e)hmfc+1) <  ^  +  ̂ 2 < % ( 1 - « ) в - ^ +^ а - )

d7+d8 2  v'.(mk+1/mk)vak - e )  <  da + d io ^  ^

Here v is any integer greater than 1. Note that

lo g (l-e )
0 as к —

Let e7 be such that 0<e7- lo g (l-s ) . Choose the integer f such that v-

>1 — 1 ——j . Then there corresponds a positive integer k7 such that
for all k ^ k 7 we have (f— l)r,„k+1(l —e) > 1. This implies that P(S*-=(1 —£)bmk+1)<
< со for all e such that 0 < e <  1. Since

P(Sn-=(l — £)h„ for infinitely many n )sP (S mfc< ( l  — e)bmk+1 for infinitely many k ),

an application of the Borel—Cantelli lemma completes the proof.
Lemma 3.5. No point o f  the set {(x1 ;x 2) :  l S x ^ x ^ e ' }  is a limit point o f 

( Y J b „ , S J b n).

P r o o f . If possible, let (xk, x 2) with X ! < x 2 be a limit point of ( Y J b n, S J b n). 
Then there is a subsequence {a>k} such that

lim УШк/Ьак = xk and lim S aJ b ak =  x2.

Since a.s., we should have x7S x 2 which is a contradiction. The proof of
the lemma is complete.
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Let us now complete the proof of the theorem. Lemmas 3.3, 3.4 and 3.5 along 
with (1.1) imply that the limit set is contained in S. By Lemmas 3.1 and 3.2 we get 
that every point in the set Sx=  {(xj, x2): x1x2< ec} is a limit point of
(YJbn, SJbn). By continuity considerations it now follows that S  is the required limit 
set.

Corollary 3.1. Every point in the interval [1, ec/2J is a limit point o f SJbn.
Theorem 3.2. Let Y„ and Sn be the first two largest values among Xlt X2, ..., X„. 

Then under (b), the set o f all almost sure limit points o f ((Yn—b„)/c„, (S„—b„)/c„) is

S* — {(*i> a:2): 0 á  r ,  á  Jt! á  1, л^+Хг =  !}•
Proof. Let s> 0  be arbitrarily fixed. For all x x and x2 satisfying lS x ^ x ^ s O , 

0< xy+ x2 <  1, define a positive valued function h (xx, x2)=h by
max(l, (хг +  л:2+е)_1) <  h(xlf x 2) < fo+Xa)-1.

Let и*.=[ехp kh]. The rest of the proof is similar to  that of the previous theorem with 
the change that (1.3), (1.4) and Lemmas 2.4 and 2.5 are to be used in place of (1.1),
(1.2) and Lemmas 2.2 and 2.3 respectively.

Corollary  3.2. Every point o f  the interval [0, 1/2] is a limit point o f (Sn—b„)/cn.
R emark 3.1. The method in the proofs of the above two theorems leads to many 

complicated terms when we consider three or more largest values in a sample. We 
strongly believe that the limit sets in the case of p (S  2) largest values Y f \  i=  
=  1, 2, ...,p  are as follows:

Under (a), the almost sure limit set of (Y^/bn , i—\, 2, ...,p ) is
p

S(p) =  {(*!, x2, ..., xp): ec s  xx s  x2 =  -.. л-р S i ,  JJ xt == ec},
i —1

and under (b), the set of all almost sure limit points of ((Y(f ~ b n)/cn, i= 1, 2, ..., p) 
is

p
S*(p) = - , x p): 1 SX jSX a ^  ... ^X pSO ,

i — 1

The author has verified the truth of these statements for p=3. For obtaining S(3), 
the fimction h(xx, x2, x3)=h should satisfy

3 3
m ax(l, max c/(logxf +  e +  У. log (x,■+£))) <  h <  c l f f  logx{

1SÍS3 j - l . J t l  i = l

where ес= хх> х 2> х3Ш\, x 1x 2x 3̂ e c and e> 0.
For obtaining S*(3), the function h(x1, x 2, x 3)=h is chosen such that

max (1 ,(e+ xx+ x 2+x3)_1) <  h <  (xi+ x2+ x3) _1,
where lS x i> x 2> x 3sO, 0< x1+ x 2+ x3< l  and e>0. In either case nt =[exp kh].

Acknowledgement. The author is grateful to Dr. N. R. Mohan for his encoura
gement and many helpful comments.
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A NOTE ON INVERSE-CLOSED SUBALGEBRAS OF C( X)

J. L. BLASCO (Burjasot)

Introduction

All topological spaces are assumed to be Tychonoff. As usual, C(X) will denote 
the ring of all continuous real-valued functions on a topological space X. An algebra 
on I  is a subring of С (X) which contains the constants, separate points and closed 
sets, and is closed under uniform convergence and inversion in C(X). In [5], Hager and 
Johnson have proved that if the Hewitt realcompactification vX is Lindelöf, then 
each algebra on X  is isomorphic to C (Y) for any space Y  and they ask whether the 
converse of this assertion holds. From ([3], Theorem 10) the answer is yes if X  is 
paracompact. In this paper we provide another partial answer to the above question 
by showing the equivalence when X  is a Hausdorff topological group.

It is known that an algebra A on X  is a C{Y) if and only if the collection Z(A) 
of all zero-sets of functions in A is a complete base on X  ([2], Theorem 5). We shall 
prove our result by using a method provided in ([3], Theorem 2) for constructing 
noncomplete bases.

Preliminaries

The set of points of X  where a member /  of C(X) is equal to zero is called the 
zero-set of /  and will be denoted by Z (/). We write Z (X )  for the family of all zero- 
sets in X. Let M  be a nonempty subset of X. The ß-closure of M  in X  is the set 
Q(M, X ) of all points p £ X  for which each Gs -set about p meets M. We write ßX  
for the Stone—Cech compactification of X. It is known that vX is the O-closure of X  
in ßX.

A subset В of X  is said to be z-separated from M  if there is a zero-set Z  in X  
such that BczZ  and Z D M = 0 1. The following result is needed:

(FI) [7] A space X  is Lindelöf i f  and only i f  there is a Hausdorff compactification 
К of X  such that every compact subset o f K ~ X  is z-separated from X.

We will write v(X, S>) for the Wallman realcompactification associated with a 
given base St on X. For definitions and basic results the reader is referred to [1],
[2] and [9]. A base S> on X  is called complete ifit coincides with the trace on X  of all 
zero-sets in v(X,2). For later use, the following fundamental result is needed:

1 This notion is due to E. F. Steiner [8] who uses the term separating nest generated intersec
tion ring. An equivalent concept is the strong delta normal base dueto R. A. Aló and H. L. Shapiro [1].
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(F2) ([3], Theorem 2) Let К  be a Hausdorff compactification o f X  such that there 
exist two compact subsets and C2 o f  K~Q(X, К ) which are disjoint and homeo- 
morphic. I fC 2 is not z-separated from X, then the family {ZHX: Z fZ (K )}  contains 
a noncomplete base on X.

The results

If there exists a locally finite family of open sets of a space X  which is not counta
ble, then by ([10], Theorem 2.6) there is an uncountable discrete family of open 
sets of X. On the other hand, in the proof of Corollary 4 of [3] we see that there is a 
noncomplete base on X  if X  has an uncountable C-embedded closed discrete subset. 
Consequently, we have the following

P roposition 1. I f  each base on X  is complete, then each locally finite family o f 
open sets o f X  is countable.

We leave the verification of the following simple lemma to the reader.
Lemma 2. Let X  be a space and let cp be an automorphism o f ßX  such that 

<p(X)=X. I f  E  is a subset o f X, then

<p(dvxE ) = clvX(p(E) and (p(clßXE ~  clvXE) =  clßX(p(E) ~  c\vXcp(E).
Lemma 3. In a topological group G, the family o f  all symmetric neighborhoods o f  

the identity e which are zero-sets is a base o f neighborhoods o f e.
P roof. Let W  be a neighborhood of e. Since G is completely regular there exists 

f£C(G) suchthat /(c )=0 and f(G ~ W )= {l) . Put F= {x£G: f(x)t& 1/2}. Then 
F  is a neighborhood of e and a zero-set of G. Since the map x-*x~' is an automor
phism of G, the function g{x)= f(x~r) is continuous on G. Therefore the set {x£G: 
g(x)S  1/2}= T -1 is a zero-set of G and a neighborhood of e. Then the set ТП F “1 
is a zero-set of G and a symmetric neighborhood of e which is contained in W. □

Let G be a topological group and let a£G. Consider the map La: G -G  
given by La(x)=ax. This function is an automorphism of G and from the properties 
of the Stone—Cech compactification, La can be extended to an automorphism 
Lßa of ßG.

The following theorem is the main result.
Theorem 4. For every topological group G the following statements are equivalent:
(1) vG is Lindelöf.
(2) Each algebra on G is a C(Y).
(3) Each base on G is complete.
Proof. (1)=>(2) follows from ([5], 4.4).
(2) =>(3) is an inmediate consequence of ([2], Theorem 5).
(3) =>-(l). Suppose that vG is not Lindelöf and let W  be a neighborhood of e 

such that G~W?±0. By Lemma 3 there exists a symmetric neighborhood V of e 
suchthat V£Z(G) and V 2czW. The family У={хУ: x£G} is a uniform cover of 
G and therefore is a normal cover. According to ([6], Theorem 1.2) it has a locally
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finite open refinement °U. From (3) and Proposition 1 it follows that °U is countable, 
therefore there is a sequence {x„: n£N), xn(G, such that G =  U {xnV: b£N}. 
Since vG=Q{G, ßG) we have vG=U  {cl„G (xnV): n£N). By assumption vG 
is not Lindelöf, therefore there exists m£N  such that clvG(xmV) is not Lindelöf. 
By Lemma 2

LßXm(clDGV ) = d vG(xmV)
hence clvGV is not Lindelöf. Then by FI, there exists a compact subset К  of clpoF ~  
~ d vG V which is not z-separated from d vG V.

Pick y£G ~W . Then VDyV=0, and since V, yV  are zero-sets of G it follows 
that d ßGv n d ß G(yV )^0 . Moreover, by Lemma 2 L$(K) is a compact subset of 
dße(yV )~ dvG(yV). Hence К  and L%(K) are disjoint, homeomorphic, compact 
subsets of ßG~  vG. Finally, since F is not z-separated from cloG V and vG=Q (G, ßG), 
it follows that К  is not z-separated from G. The proof is concluded by applying F2 
to ßG. □
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ON PARA-UNIFORM NEARNESS SPACES 
AND D-COMPLETE REGULARITY

H. BRANDENBURG (Berlin)

1. Introduction

A topological space X  is called D-completely regular if it has an Fa -base, i.e. 
a base 38 for the open sets such that for each B f 38 there exists a countable subcollec
tion stf of 38 satisfying B=  U {X\A\Aax3}. Clearly, every perfect space (i.e. closed 
sets are G3’s) is D-completely regular, hence every semi-stratifiable space, every semi- 
metrizable space, and every er-space. D-completely regular spaces were introduced 
in [1], where it was shown that they are precisely those topological spaces which can 
be embedded into products of developable spaces (see also [5, Theorem 3.5] and [2, 
Theorem 3]). In particular, every completely regular space is D-completely regular. 
However, there exist regular Tx -spaces which are not D-completely regular (e.g. see 
[6, Example 7.7]).

Since completely regular spaces are uniformizable, it is tempting to ask whether 
D-complete regularity can be characterized in a similar way by means of some kind 
of generalized uniform structure. Our main result yields an affirmative answer to 
this question: As a suitable generalization of uniform spaces we introduce para-uni
form nearness spaces. We prove that a nearness space [7] is para-uniform if and only 
if it can be embedded into a product of nearness spaces which have a countable base 
(Theorem 1). From [3, Theorem 1] it follows that a topological nearness space is para- 
uniform if and only if its induced topology is D-paracompact in the sense of С. M. 
Pareek [8] (Theorem 2). Finally we show that a topological space X  is D-completely 
regular if and only if it is para-uniformizable, i.e. iff there exists a para-uniform near
ness structure on X  which induces the topology of X  (Theorem 3).

2. Results

We recall some definitions from the theory of nearness spaces. Let X  be a set 
and consider a nonempty collection p of covers of X. For each subset A o f X  the 
interior of A with respect to p is defined as

intß A = {xaA\ there exists а ‘Шар such that St (x, °U) c  A},

where St (x, <Ш)= U {Ua<Ш|xaU). Following H. Herrlich [7] the pair (X, p) is called 
a nearness space (and p is a nearness structure on Y), if the following conditions are 
satisfied:

(N.l) if ‘Шар and °U refines i r , then ap;
(N.2) if <ш,гар, then ш г \г = { т \у \и а ш , v a r } a p ;
(N.3) if Шар, then Ы 1,<Ш={1гЛ11и\иаШ}ар.

4* Akadémiai Kiadó, Budapest 
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Any subcollection ß of p with the property that for each f d p  there exists a °Udß 
which refines "V is called a base of p. It is a subbase of p if the collection of all covers 
of the form alt1/\ ndN, itidß , forms a base of p. The following simple ob
servation will be useful later:

P roposition 1. Let ß be a nonempty collection o f  covers o f a set X. I f  ß satisfies 
condition (*), then ß is a subbase o f a nearness structure on X:
(* ) For each f  dß there exists a °Udß which refines intß f  = {intß V \V d f} .

Proof. Clearly, the collection p(ß) consisting of all covers of X  which are refined 
by a cover of the form Их1\ n€N, aU fß , satisfies the axioms (N.l) and
(N.2) for a nearness structure. In order to show that it also satisfies (N.3) consider 
an arbitrary fd p (ß ) .  There exist °UX, ..., %„dß suchthat <if1A...A<2fB refines f .  
Using (* ) we can find i f  г, ..., if„ d ß  suchthat i f  г refines int^ for each id {1, ... 
..., n). Since it is easily seen that i f  f\if„ refines in t^ j f  — {int„((3) V\ V d f ) ,  
we conclude that i n t ^  f  dp(ß), i.e. that p(ß) is a nearness structure for which ß is 
a subbase. □

We call a collection ß of covers of a set kernel-normal if it is nonempty and 
satisfies (*) in the preceding Proposition. Note, that if X={a, b, c, d), it={{a, d), 
{b, d}, {b, c}}, and f  = {{a, b), {a, c}, {c, d}}, then /?= {it, f }  is a subbase of a 
nearness structure on X  (namely the discrete nearness structure) which is not kernel- 
normal. A cover i t  of a nearness space (X, p) is called kernel-normal if there exists a 
countable kernel-normal subcollection of p containing it. Finally we say that a near
ness space (X , p) is para-uniform, if each i t  dp is kernel-normal. Clearly, every uni
form (nearness) space [7] is para-uniform, for if i t  dp is a normal cover in the sense 
of J. W. Tukey [9], then it is easily seen that ÚU is kernel-normal. If p is the collection 
of all covers of the set N of natural numbers which are refined by some cover of N 
which is open with respect to the со-finite topology on N, then (N, p) is a para-uni
form nearness space which is not uniform.

Proposition 2. (i) Every subspace o f a para-uniform nearness space is para- 
uniform.

(ii) Every product of para-uniform nearness spaces is para-uniform.
(iii) Every sum o f para-uniform nearness spaces is para-uniform.
Proof. All assertions follow directly from the definitions. As a sample we prove

(ii): Let ((A';, P i ) ) i e I  be a family of para-uniform nearness spaces. Moreover let p  
be the product nearness structure [7] on f j  Xt with respect to this family and consi-

• €/
der an arbitrary f  dp. Then there exist г), ..., ind j  and covers i l ikdpiv . . . , i l indpin 
suchthat PT1 ••■Apr1 ̂  refines^where for eachk£{l,..., n), pik: JJ Xt-*Xik
is the projection and p r1 i t ik= (p.- 1 [T/]| U d if,}-  Every i t ik belongs to some countable 
kernel-normal subcollection ßik of pik.

If
ß =  { n u i P i ^ A - A P i ^ W . v  - , В Д y ,

then ßis  a countable subcollection of p containing f ,  which is easily seen to be ker
nel-normal. Hence the product (J[ Xit p) is para-uniform. □

h i
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Recall that a mapping/ from a nearness space (Z, p) into a nearness space (Y, rf) 
is called uniformly continuous if f f laU = {f~1[U'\\U(:kl}^p for each aU^r\. (X, p) 
and (Y, t\) are isomorphic if there exists a bijective mapping/from X  onto 7  such that 
both / a n d / -1 are uniformly continuous with respect to p and q. Our first theorem 
shows that the class of para-uniform nearness spaces is precisely the epireflective 
hull in the category of nearness spaces of the class of nearness spaces having a counta
ble base.

Theorem 1. The following conditions are equivalent for a nearness space (X, p):
(i) (X, p) is para-uniform.

(ii) (X, p) is isomorphic to a subspace o f a product o f nearness spaces which have 
a countable base.

(iii) For every 'Vdp there exists a countable subcollection £ o f p containing a 
which refines int  ̂ У  =  {int,« Vjkd'F'}.

Proof, (i) implies (ii): Assumint (i) we can find a countable kernel-normal sub
collection ßifii) of p containing atl for each äUdp- By virtue of Proposition 1 every 
ß{rJU) is a subbase of a nearness structure p{all) on X  which has a countable base. 
Since the identity id: (Z, p)-*(X, p(di)) is uniformly continuous for each aUdp, 
the mapping /  from (Z, p) into f f  (Z, p(fil)), defined by x>—«-(x^)*efI, where
xeu=x for each didp, is uniformly continuous. More precisely, it can be easily 
shown that (Z, p) is isomorphic to the subspace f [ X ] of ]] (Z, p(W)), which proves

“UCn
the implication.

That (ii) implies (i) follows from Proposition 2 and the observation that every 
nearness space with a countable base is para-uniform. Clearly, condition (iii) is 
formally weaker than (i). Hence it only remains to verify that (iii) implies (i). To 
this end consider an arbitrary Tldp. For technical reasons we define n)= {Z} 
for each u€N. Using complete induction and (iii) it can be shown for each k d N 
there exists a ak{k,k)dp  and a sequence fí(k)=(őd(k, n))n>k in p such that

(a) aU=aU{\, 1) and dl(k, k )—T/(k—l, k) for each 1;
(b) dl(k, k + 1) refines int^(k) tfl(k, к) for each k€N;
(c) :jU{k, n) refines ;U(k— 1, n) for each kd N and for each nS/c.

We define ß= {dl{k, k)|kgN} and claim that ß is kernel-normal. To prove this 
assertion we note that inti№) Aczmtß A for every subset A of Z  and for each kd N. 
For if xfEint p(k) A, there exists an n> k  suchthat St (x, °U(k, n))czA. Condition 
(c) implies that

St (x, °ll(n, «)) c  St (x, Ш(п — 1, n)) er ... cr St (x, °U(k, n)).

Therefore x€intß A. In particular it follows that intßWaU{k,k) refines intßal/{k ,k )  
for each kd N. By virtue of (a) and (b) (k+1, k+ (k, k+  \ ) refines
intßm ^ (k ,k ) .  Hence ad (k + 1, k+  1) refines int^ %(k, k) for each k€N, which 
proves that ß is kernel-normal. Since didß, the proof is complete. □

Every nearness structure p on a set Z  induces a topology on Z  which is given 
by xll= {A cX \in tltA=A}. If every r„-open cover of Z  belongs to p, then (Z, p)
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is called a topological nearness space. It is wellknown that a topological nearness 
space is uniform if and only if  its induced topology is fully normal in the sense of
J. W. Tukey [9]. Fully normal spaces are precisely those topological spaces which 
admit an ^/-mapping onto a metrizable space for every open cover si, where a con
tinuous mapping/ from a topological space X  onto a topological space Y  is called an 
^-mapping if there exists an open cover á? of Y  such that refines the
open cover s i  of X. In [8] С. M. Pareek has initiated the study of those topological 
spaces which admit an ^-m apping onto a developable Tl -space for every open cover 
si, which he called D-paracompact. Every D-paracompact space is subparacompact, 
but there exist subparacompact spaces which are not D-paracompact (see [3] and [4] 
for recent results on D-paracompactness). Using the main result of [3] we can now 
prove:

Theorem 2. A topological nearness space is para-uniform i f  and only i f  its induced 
topology is D-paracompact.

Proof. Let (X, p) be a topological nearness space and consider an arbitrary 
т„-ореп cover s i  of X. If  (X, p) is para-uniform, there exists a countable kernel- 
normal subcollection ß of p  containing si. Since {intM őU\all£p \ is a countable collec
tion of т„-ореп covers containing s i  which is also kernel-normal, it follows from [3, 
Theorem 1] that (X, t„) is D-paracompact. Conversely, if (X, rß) is supposed to be 
D-paracompact, then, by virtue of [3, Theorem 1], there exists a countable kernel- 
normal collection t](ad) of тд-ореп covers of X  containing int,, °U for each aU(ip. 
Since (X, p) is topological, the countable kernel-normal collection {iS}Ur](it) 
belongs to p for each aU(ip, hence (X, p) is para-uniform. □

Our main result shows that para-uniform nearness structures are well-chosen in 
order to prove an external characterization of D-completely regular spaces similar to 
the classical characterization of complete regularity by means of uniformities:

Theorem 3. A topological space is D-completely regular i f  and only i f  it is para- 
uniformizable, i.e. i f  and only i f  its topology is induced by a para-uniform nearness 
structure.

Proof. Let (X, t) be a topological space. If there exists a para-uniform nearness 
structure p on X  such that t= t„, then for every V ^ p  we can find a countable 
kernel-normal subcollection £(тС) of p containing V . By virtue of Proposition 1, 
every с,(У) is a subbase o f a nearness structure p ( 'f)  on X  which has a countable 
base and is contained in p. Therefore, if тд(у) denotes the topology on X  induced by 
p i'f) , then for each ’f f p .  We claim that U {xpif'V£p} is an
F„-base of x. In fact, from т = т д it follows that if A€r and x€A, then there exists 
а У ^р  suchthat St (x, i / ')czA. Consequently xGint „ ^ V c A  for some V ^’f ,  
which shows that J 1 is a base of t. In order to verify that 3S is an F„ -base consider 
an arbitrary There exists a У dp such that B£ L e t  ßi'f') be a counta
ble base of р{У). For each W £ß(X~) define

D(tT) =  U { m fm W \W £ir, m f (r}V C \{X \B ) A 0}.
Then {D('#'')|#''£j8(iU)} is a countable subcollection of á? satisfying B= 

= U {X \ß(iF ')\itr €.ß(ir )}. Hence @1 is an Fff-base, i.e. (X, z) is D-completely 
regular.
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To prove the converse implication assume now that (Z, t) is D-completely regu
lar. Let 38 be an Fa -base of (Z, z). We may assume that 38 is closed with respect to 
the formation of finite intersections. If  ß is the collection of all finite covers of X  con
sisting of sets from 38, then it is easily seen that °U= {int  ̂и \и ^ Щ  for each ^aß . 
Consequently ß is kernel-normal and hence a subbase of a nearness structure fi(ß) 
on X  (Proposition 1). In fact, because of our assumption on 38 it is already a base of 
H(ß). We claim that z= zll(ß). Clearly, т„(йст . On the other hand, if U£z and 
xdU, then there exists а B£38 such that xZBczU. Moreover, since 38 is an Fe- 
base, x £ X \A c 3 8  for some A£38. In particular, °U= {A, B} belongs to ß. Now 
St (x, f ) c [ / ,  which shows that x£int„(/г)[/. This implies z=zMß), which proves 
our claim.

We complete the proof by showing that (Z, ß)) is para-uniform. To this end
consider an arbitrary ' V Since ß is a base of n(ß), there exists a °Ü3ß which 
refines У . For each U3l°U we can find a countable subcollection 38u of 38 such that 
Ü— U {X\B\B^38U}. If £ is the countable subcollection of n(ß) consisting of "Г 
and of all covers of the form {U, B}, and B£38v , then Z" =  (int{ V\V^ V}.
Therefore we infer from Theorem 1 (iii) that (Z, ß(ß)) is para-uniform. □

We conclude this note by mentioning an open problem which arises naturally 
in connection with Proposition 2:

P roblem. D oes there  exist a  para-uniform  nearness space the com pletion  o f  
w hich (see 7, §5) is n o t para-uniform ?
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ON RINGS WITH UNIQUE MINIMAL SUBRINGS

Y. HIRANO (Okayama)

§1-

In this note, we consider which rings have a unique minimal subring. This pro
blem was raised by Szász [5, Problem 80]. In §2, we consider this problem under 
some additional assumptions on rings. Kruse and Price [3] determined the structure 
of nilpotent p-rings with unique minimal subring. Using their result, we shall comple
tely determine the structure of right (or left) artinian rings with unique minimal sub
ring. In §3, we shall consider the problem under general situation.

Throughout this note, all rings are associative. For any subset A of a ring R, 
[A] (resp (A)) denotes the subring (resp. two-sided ideal) of R generated by A. We 
denote by T(R) the torsion ideal of a ring R ; T(R)— {a(zR\na=0 for some non-zero 
integer n). We say that R is torsion-free if T(R)=0. For any prime p, we set Rp= 
= {a£R\pna=0 for some n}. A ring R is called a p-ring if R=  Rp. R+ denotes the 
additive group of R. Given a, b in R, we write a—ab (resp. a—ba) formally as a(l — b) 
(resp. (1 — b)a).

§2.

We begin with the following lemma.
Lemma 1. I f  S is a ring having no non-trivial subring, then S  is either a field o f  

order p or a null ring o f order p for some p.
Proof. By hypothesis, S=[x] for any non-zero x€ S. If  x 2A0, then x<E[x2], 

and so we can write x= xy  for some y£[x]. In this case, у  is an idempotent, and 
S = Z y^Z /(p )  for some prime p. If x2=0, then S 2—0, and so S + has no non
trivial subgroup. In this case, S' is a null ring of order p for some prime p.

First we shall consider the case that the unique minimal subring is a field. We 
consider the following condition:

(*) I f  a, b are non-zero elements o f a ring R such that ab— 0, then either [a] or 
[b\ is infinite.

Proposition 1. The following statements are equivalent:
1) R has a unique minimal subring S, and S is a field.
2) R has a non-zero finite subring, and R satisfies the condition (*).
Proof. 1)=>2). Let a, b be non-zero elements of R such that [a] and [b] are finite. 

Then the field S  is contained in both of [a] and [£>], and so SQ [a] [b\. Hence, we have 
ab^O. This shows that R satisfies (*).

2)=>1). The condition (*) implies that any finite subring of К is a field. There
fore, by our hypothesis, there exists at least one minimal subring 5. We shall show
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that S  is the unique minimal subring of R. Let e be the identity element of S and let /  
be any idempotent of R such that [ /]  is a minimal subring. Then g= e+ ef—efe is 
an idempotent, and eg=g, ge~e. Hence [e,g] is a finite field. Thus we see that 
g —e, and so ef=efe. Similarly, we have fe=efe, and hence e f—fe. Therefore, 
[e,f] is finite, and so we conclude that e—f.

A ring R is called я-regular if  for every a£R  there exists a positive integer n 
(depending on a) and an element x£R  such that anxan= a". For example, right 
(or left) artinian rings are я-regular (see e.g. [2]).

Corollary 1. Let R be a n-regular ring. Then the following conditions are equi
valent:

1) R has a unique minimal subring S, and S=GF(p).
2) R is a direct sum o f a division ring o f characteristic p and a torsion-free ring.
Proof. In view of Lemma 1, it suffices to prove that 1) implies 2). Let e be the 

identity of S. Since eR{\—e) is square zero and peR{l—e)=0, we have that 
e /?(l—e)=0. Similarly, we have ( l —e)Re=0, and so e is a central idempotent. By 
Proposition 1, R  satisfies (* ) and any non-zero subring of ( l—e)R  is infinite. To show 
that (1—e)R is torsion-free, let a be an element of T(() —e)R). Since ( l—e)R is also 
я -regular, there exists a positive integer n and an element x £ ( l—e)R such that 
anxd '—an. If a" then [a"x] is a non-zero finite subring of (1 —<?)P. This contra
diction shows that an—0. Thus, [a] is finite, and hence a= 0. Therefore, ( l —e)R  
is torsion-free. Since pe=0, eR  does not have non-zero nilpotent elements. Thus eR 
is a я-regular ring without non-zero nilpotent elements. Similarly, we see that eR has 
no non-trivial idempotents. Hence eR is a division ring.

Kruse and Price [3] determined the structure of nilpotent /7-rings with unique 
minimal subring. The result is the following.

Proposition 2. A nilpotent p-ring N contains only one subring S o f order p i f  
and only i f  N  and S satisfy one o f  the following conditions:

(1) N + is cyclic or quasi-cyclic.
(2) Let U= {a£N\pa=0}. Then U+ has rank 2 or 3, U2= S , and b£U2, b2 = 0 

implies b£S. There is, moreover, an ideal C o f N  such that N —C+U, CC\U=S, 
and C + is cyclic or quasi-cyclic.

Given a commutative ring F and an F-algebra A, we denote by Foe A the ring 
whose additive group is the direct sum of F  and A with multiplication given by

(/, « ) ( / ',  a') = ( f f ',  fa ' + f'a + a a').

A  ring R is called a local ring if R/J is a division ring, where J  denotes the Jacobson 
radical of R.

Proposition 3. Let R be a local ring o f characteristic pn (nS2) with nilpotent 
Jacobson radical J. Then R has a unique minimal subring S i f  and only i f  R and S satisfy 
one o f the following conditions:

(3) * - Z / ( p " ) .
(4) Let U={a<iR\pa=0}. Then U + has rank 2 or 3, U2= S, and b ill, b2= 0 

implies bdS. Moreover, R  is isomorphic to the ring (Z/(/>n)oc C)/((p"-1 • 1, j)), 
where s is a non-zero element o f  S.
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P roof. It suffices to prove the only if part. Clearly, S is a null ring of order p. 
If a is an invertible element of R, then pn~1aA  0. Conversely, let a be an element 
with pn~1a A 0. Then [p',_1a]= S= [p"_1> 1], and hence pn~1(a—r • 1)=0 for some 
0 Since the (additive) order of the invertible elements of R is pn, we conclude 
that a - r - l £ j ,  and so a is invertible. Thus we have shown that R/J^G F(p) and 
the characteristic of J  is pn~x. By our hypothesis, J  and S satisfy either (1) or (2) in 
Proposition 2. First, we consider the case that they satisfy (1). In this case, / + is 
cyclic and generated by p • 1, because the characteristic of J  equals the order of p • 1. 
Then R + is also a cyclic group generated by 1, and so R is isomorphic to Zl(pn). 
Next, assume that (2) is satisfied. Then U={a^R\pa=0}—{a^J\pa=0} satisfies 
the same condition as in (2). Moreover, we have that f?=[l]+í7 and [Í]0 í7=  S. 
Since [l]^Z /(pB), we have the natural epimorphism ф: Z/(p")ozU-*(l)+U=R. 
Since [1]Ш7=[р"_1- 1] =  S, Ker (i/i)3(pn_1- 1, i) for some non-zero s£S. Com
paring the orders of R and (Z/(p")oc C/)/((p"_1 • 1, s)), we have the desired isomor
phism. Hence, in this case, R satisfies (4).

We can now prove the main theorem.
T heorem 1. A right artinian ring R has a unique minimal subring i f  and only i f  R 

satisfies one of the following conditions:
(i) R is a direct sum o f a division ring o f characteristic p(A0) and a torsion-free 

ring with right identity.
(ii) For some prime p, Rp is non-zero and satisfies one o f (1)—(4), and R is a di

rect sum o f Rp and a torsion-free ring with right identity.
P roof. It suffices to prove the only if part. By hypothesis, there exists a prime p 

such that RpA 0 and R/Rp is torsion-free. By [4, Satz 4] or [6, Theorem 5], R is a 
direct sum of Rp and a torsion-free ring with right identity. Since Rp is artinian, either 
Rp has a non-zero idempotent or Rp is nilpotent. If Rp is nilpotent, then Rp satisfies
(1) or (2). If Rp has a non-zero idempotent e, then e must be the identity of Rp, 
because if e is not an identity of Rp both of eRp and (1 — e)Rp contain minimal sub
rings. Since Rp is an artinian ring without non-trivial idempotents, Rp is a local ring 
of characteristic p" for some n s l .  If n= 1, then Rp has the minimal subring 
S^G F (p) generated by the identity of Rp. In this case, R satisfies (i) by Corollary 1. 
If nS2, then, by Proposition 3, Rp satisfies (3) or (4).

C orollary 2. A finite ring R has a unique minimal subring i f  and only i f  R satis
fies one o f the following conditions:

(a) R is a finite field.
(b) R is a nilpotent p-ring with cyclic additive group.
(c) R is a nilpotent p-ring, and satisfies (2).
(d) R^Z/(p") for some prime p and n^2.
(e) Rsi(ZI(pn)ccU)/((pn~1 • 1, j )), where s is a non-zero element o f S and U is 

the same as in (4).

§3.

Throughout this section, R denotes a ring with unique minimal subring S. We 
consider the torsion ideal T=T(R). We can easily see that T=  © Rq, where q

9
runs over all primes. Thus there exists a prime p such that SQ R p. If qA-p, then any
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non-zero element of Rq generates an infinite multiplicative subsemigroup. For exam
ple, consider the polynomial ring over the field K=GF(q). Then the ring 
xK[x\ has characteristic q, and any non-zero element of xK[x] generates an infinite 
subsemigroup.

By Lemma 1, the unique minimal subring S is either a field or a null ring of 
order p.

Case 1: S is isomorphic to GF(p). In this case, Rp has no non-zero nilpotent 
elements, because if Rp contains a non-zero nilpotent element, then Rp contains a null 
subring of order p, which contradicts the hypothesis. Let e be the identity of S. Then 
e is a central idempotent of R, and any non-zero subring of (\ — e)R is infinite. By 
Proposition 1, any finite subring of eR is a field containing S. However, eR is not 
necessarily a domain. As an example, consider the ring GF{p)[x, y\j(xy).

Case 2: S is a null ring of order p. In this case, S  is an ideal of R. To see this, let 
iS= [̂ ] and let a£R. If s a s 0, then [sas] =  [j], and so isas=s for some 0< i< p . 
Then e=isa is a nonzero idempotent, and [e]=GF(p), which is a contradicition. 
Hence, sa and as are nilpotent and hence sa, as£ S. Therefore, S is a two-sided ideal 
of R. We denote by P the prime radical of Rp. Since P is locally nilpotent (see e.g., 
[1, p. 51]), any finitely generated subring is a nilpotent p-ring with unique minimal 
subring, and hence satisfies (1) or (2) in Proposition 2. Since P is the direct limit of 
its finitely generated subrings, P also satisfies (1) or (2).

Summarizing the above results, we obtain the following theorem.
T heorem  2. Let R be a ring with unique minimal subring S. I f  S=GF(p), then 

R decomposes as follows: R= R' ®D, where R' is a ring all o f whose non-zero subrings 
are infinite, D has characteristic p and any finite subring o f D is a field containg S. I f  
S is a null ring o f order p, then S is an ideal o f R, T(R)/Rp has no non-zero nilpotent 
elements and the prime radical o f Rp is a nil p-ring satisfying (1) or (2).
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JORDAN DERIVATIONS AND JORDAN 
HOMOMORPHISMS ON PRIME RINGS OF 

CHARACTERISTIC 2

R. AWTAR (Ile-Ife)

Throughout this paper we assume that tp is an additive mapping from a ring R 
onto a non-commutative prime ring S  o f characteristic 2 and tp is a monomorphism 
satisfying the following conditions:

(i) (p{xy+yx)=(p{x)(p{y)+<p{y)q>{x), i.e., <p[x, y\=[(p(x), <?(»], where [x, y] 
denotes the commutator xy—yx, for all x,y£R.

(ii) (p(x3)=cp(x)3 for all x£R.

We denote the center of a ring R by Z(R). For x, y£R , let S(x, y)=<p(xyx)+ 
+ (p(x)q>(y)(p(x). For any subset A of R, we denote R —A = {x£R\x$A}.

We begin with the following lemma.

Lemma 1. For all x ,y£ R , <p(x2) +  <p(x)2£Z(S).

P roof . See [1, page 851, lines 17—19].

Lemma 2. For all x, y<~R,

cp(xyx+yxy) = (p(x)(p(y)cp(x)+tp(y)(p(x)(p(y),

i.e., ő(x,y)= ö(y,x).

P roof. See [1, page 851 lines 13—24]. By linearizing Lemma 2 on x, we get

Lemma 3. For all x ,y ,z£ R ,
<p(xyz+zyx) = (p{x)(p{y)(p(z)-\-(p{z)<p (y) tp (x).

Lemma 4. For all x, y, z£R, [ö(x, y), cp(z)]=5(x,[y, z]).

P roof. See [1, page 850 lines 4—13].

Lemma 5. For x ,y£ R , d{x,y) commutes with cp(x) and (p(y).

P roof. Let z=y in Lemma 4. Then [<5(x, y), (p(y)] = 0. After interchanging x 
andy, we get [<5(y, x), tp (x)] =  0 and in view of Lemma 2, we get the desired conclu
sion that [<5(x,y), (p(x)]=0.

Lemma 6. For all x£R , tp (x2) = tp (x )2.
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P roof. From Lemmas 5, 4 and 3, for all x, y£R , we get
0 = [<5(x, y), (p(x)] = ő(x, [у, л]) = (p(x[y, x]x)+(p(x)cp[y, x]cp(x) =

= <P(x2y x + xyx2) +  <p(x)[<p(y),<p(л)] <p(x) = (p(x2) (p(y)(p{x) + (p(x)(p(y)cp(x2) +
+<p(x)cp (y) <p (x)2+ (P (x)2 (P (y) (p (x) =  {<p (x2) + (p (x)2} [(p (pc), cp (y)],

by Lemma 1. Put Я(x) = <p(x2) +  <p (x)2, so Я is an additive mapping from R into S. 
I f  Я(x) ^  0, since S'is prime and X(x)£Z(S), then [<p(x), <p(y)]=0 and so x£Z(R). 
Hence R—Z ( R ) ^ КегЯ. Since R —Z  generates R  under addition, so jR^K erЯ. 
Hence Я(х)=<р(х2)+<р(х)2= 0 for all x£R.

Lemma 7. For x,y£R , i f  xy= yx  then cp(xy)=(p(x)(p(y).
P roof. Since cp is a monomorphism and by Lemma 6 <p(x2)= cp (x)2, so the proof 

follows from Lemma 5 of [1].
Lemma 8. For fixed x(LR, i f  6(x,y) and 0(x2, y) are in Z (S )  for all y£R then 

S(x,y)= 0 for all y£R.
Proof. See [1, page 850, Hnes 31—38 and page 851, line 1].
Now we are in a position to prove the main lemma of this paper.
Lemma 9. For all x ,y£R , <5 (x, y)—<p (xyx)+(p{x)(p(y)(p (x)=0.
Proof Since the charactristic of S is 2, so [y, z]=[z, y] in S which together with 

Lemmas 2 and 4 shows that <5(x, [y,z]) is symmetrical in x, у  and z. So, for all
x, y, z£R

[<5(x2, y), cp(z)] =  [<5 (y, z), <p(x2)] =  [<5(y, z), cp(x)2] =

=  [[<5(y, z), <p(x)], <p(x)] =  [ő(x, [y, z]), <?>(*)] =  0,

by Lemmas 1 and 5. Thus <5(x2, y)£Z(S) for all x, y£R. Linearizing it on x, 
yields S([x,y], z )eZ (S )  for all x, y, z£R. From the above, we have <5([x, y]2, z)£ 
£Z(S) for all x, y, z£R. Hence by Lemma 8, <5([x, y], z)= 0 and so [<5(x, y), (p(z)]= 
— 0 by Lemma 4. Thus <5(x, y )€Z (S ) for all x, ydR . Again in view of Lemma 8, we 
get the desired conclusion that <5(x, y)=0 for all x, y^R.

From this point the proof given by Simley [3] can be used to prove the following 
result which extends some due to  Herstein and Kleinfeld [1, Theorem 2].

Theorem 1. I f  cp is an additive mapping from a ring R onto a non-commutative 
prime ring S  o f  characteristic 2; moreover, <p is a monomorphism satisfying (p(xy + 
+yx)=<p(x)(p(y)+(p(y)(p(x) and cp(x3)=(p(x)3 for all x ,y£R , then cp is either 
an isomorphism or an anti-isomorphism.

The next lemma is an analogoue of Lemma 9 for Jordan (Lie) derivations. The 
proof is almost identical in pattern with Lemma 9 and so will be omitted.

Lemma 10. Let Rbe a non-commutative prime ring o f characteristic 2 and le t,' be 
an additive mapping from R into itself such that (xy+ yx)'= x 'y+ xy'+ y'x+ yx ' and 
(x3)/=x2x,+ x x ,x + x ,x2 for all x, y£R. Then (xyx)'= x'yx+ xy'x+ xyx' for all 
x,y£R .
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Now, the proof given by Herstein [2, Theorem 4.1] can be used to show the 
following theorem which generalizes one due to Herstein [2, Theorem 4.1].

T heorem  2. Let Rbe a non-commutative prime ring of characteristic 2, and le t, ' 
be an additive mapping from R into itself satisfying (xy+ yx)'—x'y+ xy'+ y 'x+ yx ' 
and (x3) '= xlx '+ xx'x+ x'x2 for all x, y£R. Then ' is a derivation o f R.
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A NOTE ON RINGS WITH CHAIN CONDITIONS

DINH VAN HU Y NH  (Hanoi)

1. Introduction

In this note we consider associative rings (not necessary with identity) and study 
the question: When does the chain condition on the one side imply the same chain 
condition on the other side?

We will give a new solution for the following problem raised by A. Kertész [10, 
Problem 95]: Which right artinian rings are left artinian? This problem was solved 
by Widiger [11, Theorem 1]. He explicitly gave there three classes of rings such that a 
right artinian ring A is left artinian if and only if A has no homomorphic images 
contained in one of these three classes. We will prove that a right artinian ring A is 
left artinian if and only if J/(J2+D) is a finitely generated left Л-module, where J 
and D are the Jacobson radical and the maximal divisible torsion ideal of A, respecti
vely (Theorem 1). (If, for example, the left (or right) annihilator of A is zero, then 
D ~{0).) Comparing with Widiger’s solution our criterion seems to be easier to test 
because for verifying whether A is left artinian or not we only need to consider the 
left Л-module M =J/(J2+D) which is a direct sum of simple left Л-modules 
with AM — Mi and of a finite trivial left Л-module E : M =  Mt®E. Then Л

ta
is left artinian if and only if the index set /  is finite.

An interesting result of Lenagan [9, Proposition] stated that if I is an ideal of 
a right noetherian ring Л (with identity) such that AI  is artinian, then IA is also arti
nian. We will prove that a similar result holds also for almost right noetherian rings 
under an additional condition (* ) (Theorem 3). We can do that because fortunately 
every semiprime almost right noetherian ring is right Goldie ([8, Lemma 3]). We 
guess moreover that every semiprime almost right noetherian ring is right noetherian, 
but we are unable to show that.

2. A condition for right artinian rings to be left artinian

It is known that there are right artinian rings which are not left artinian. For 
example the matrix ring

is right but not left artinian, where Q is the field of rational numbers. It is also known 
that if a right artinian ring Л is left artinian then A/D is left (and right) noetherian. 
Hence J/(J2+D ) is a finitely generated left Л-module. The following theorem shows 
that this condition is even sufficient.

5
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T heorem 1. Let A be a right artinian ring. Then A is left artinian i f  and only i f  
J /(J2+D) is a finitely generated left А -module, where J  and D are the Jacobson radical 
and the maximal divisible torsion ideal o f A, respectively.

As is well-known, for a right artinian ring A, if D = (0) then A is right noetherian 
(Fuchs and Szele). A ring A is called restricted right noetherian if every factor ring 
of A by a nonzero ideal is right noetherian. Such a ring is denoted by RN-ring for 
short. A PRN-ring is an RN-ring which is not right noetherian (properly restricted 
right noetherian).

For the proof of Theorem 1 we shall prove the following Lemma which is also 
of its own interest.

L emma 2. The prime radical o f  a PRN-ring is a zero ring.
P roof. Let A be a PRN-ring and N  be the prime radical of A. (If A/N  is right 

artinian then the statement is proved by Widiger [12, Satz 22].) Let В and C be two 
non-zero ideals of A. Then by assumption, A/В and A/C are right noetherian. Hence 
we must have
(1) ЯПСА(О).

In case 7W(0), i.e. A is non-prime, there are non-zero ideals В and C of A with 
BC=(0). By (1), D —B O C x i0) but £>2=(0). From this it is easy to verify that N  
is nilpotent. There exists a positive integer m such that NmA (0), jVm+1=(0). We 
assume in contrary that m g 2.

As is well-known, we can embedd A into a ring A*—A X Z  with identity such 
that every right (left) ideal of A is a right (left) ideal of A*, where Z  is the ring of all 
integers. Further, since / / A ^ Z ,  for every ideal /A (0) of A, A*/1 is right noethe
rian. Considering the factor rings A*/N2 and A*/Nm we get

(2) N  = x1A *+ ...+ xkA* + N* (x:t£N , i = l ,2 , . . . ,k )  
and
(3) N " - 1 = yiA *+ ...+ yhA*+Nm y j£ N m- \  j  = l , . . . ,h )

respectively. Now, Nm= N - iVm_1. For x£N m we have x~ab  with a£N, bZNm~1. 
By (2) and (3)

a = x1a1+ ...+ xkak + a' (a^A*, a '£N 2), 

b = j i  bk+ ... +yh bh+ b' (Jbj€. A*, b '€N m).
Then
(4) ab = (x1(a1y1b1)+... + x 1(a1yhbh))+ ...+ (xk(aky1b1)+ ...+ x k(akyllbh)).

Since every a^jb^  is contained in Nm~l we get by (3)

(5) atyjbj = yiclfi + ...+ yhc!f + ct (cfpeA*, c/,6 N m).

Putting (5) in (4) we get

* = x1y 1d11+ ...+ x1yhdlh+ x 2y1d21 + ...+ x 2yhd2h+ ...+ xky1dkl+ ...+ xkyhdkh
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with dLj= Ci/> + ...  +  cfp dA*. Hence Nm is a finitely generated right Л-module, 
namely it is generated by x^j-dN"1 (i= 1, к; j=  1, h). Since Nm ■ N — (0),
Nm is a finitely generated right module over the right noetherian ring A*/N. Hence 
N m is a noetherian right Л-module, implying that A* is right noetherian, a contra
diction.

R em arks. A ring A is called a PK-ring if (i) every factor ring of A by a non-zero 
ideal of A has right Krull dimension and (ii) A does not have right Krull dimension.

Q uestio n . Is the prime radical of a PK-ring a zero ring? (For the modules and 
rings with Krull dimension we refer to Gordon and Robson [6].)

Using the third Theorem of Goldie (cf. Herstein [7, Theorem 4.8]), Lemma 2 
and a method of Widiger [13, Satz 5], one can describe the structure of all non-prime 
PRN-rings with identity whose left ideals are principal.

Proof of Theorem 1. Let A be a right artinian ring, J  and D be the Jacobson 
radical and the maximal divisible torsion ideal of Л, respectively. If A is left artinian, 
then Л/D is left noetherian. Hence (J/D)J((J2+D)/D) is a finitely generated left A/D- 
module, therefore J/(J2+D) is a finitely generated left Л-module.

Conversely, assume that J/(J2+D) is a finitely generated left Л-module. If A/D  
is left artinian, then A is also left artinian. Hence we can assume without loss of 
generality that D=(0). Hence A is right noetherian. If A is not left noetherian, there 
exists an ideal В of A which is maximal with respect to the condition that A'= A/B  
is not left noetherian. Clearly, A' is then a PRN-ring. By Lemma 2, J '2=(0), where 
J '  is the Jacobson radical of A'. By the Wedderburn—Artin Theorem we have

A/J(B) = B/J(B)® C/J(B),

where J(B)—BC\J, the Jacobson radical of В and C is an ideal of A containing 7(B). 
Evidently, it holds C/J{B)^A '. Hence J 2QJ(B). The left Л-module J/J(B) is 
not finitely generated because otherwise C/J(B) is left noetherian. Hence J/J2 is as a 
left Л-module not finitely generated. This contradicts the assumption. Thus A is 
left noetherian which implies that A is left artinian.

The proof of Theorem 1 is complete.

3. Almost artinian ideals in almost noetherian rings

In this section all rings are without identity, unless the result coincides with 
those of Lenagan [9, Proposition], because an almost right noetherian ring with two 
sided identity is right noetherian.

Following Cater [1], we say that a right Л-module M  is almost artinian (resp. 
almost noetherian) if for each infinite descending (resp. ascending) chain ...
(resp. MxQM^Q...) of submodules Mt of M  there exist positive integers m, q such 
that MmAqQ M i (resp. M tAq Q M m) for all i, or equivalently, there exists a positive 
integer p such that М рАр^ М ( (resp. MtApQM p) for all i. If Aa is almost artinian 
(resp. almost noetherian) we say that A is an almost right artinian (resp. almost 
right noetherian) ring. Almost artinian (resp. almost noetherian) rings and modules 
have been studied in [1], [8], [3], [4].
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T heorem  3. Let A be an almost right noetherian ring and I be an ideal o f A such 
that AI is almost artinian. I f  for any infinite descending chain o f ideals 7; o f A contained 
ini,

(*) h  §  h  §  -
there exists a positive integer p such that IpA pQIi for all i, then IA is almost artinian.

P roof . Let 70= { x ;x E 7 , xA — (0)} and 7 j= {x ; x € / ,  х Л С / . J ,  /= 1 ,2 ,. . . .  
Then each It is an ideal of A m i  with

(1) h  S / i i  - .
and 7;Л ^ 7 ;_2 for /= 2 , 3, .... Since A is almost right noetherian, (1) consists of 
only finitely many numbers. Let Ipo be the greatest number in (1) and put A '—A/IPo. 
Then Ä  is almost right noetherian and the image Г  of I  in Ä  has the same properties 
as 7 which are stated in Theorem 3. We have moreover
(2) x€7', xA' =  (0) implies x =  0.

Hence for every non-zero ideal N ' of A ' contained in Г, N'A'A(0). By (* ) we 
can use [8, Proposition 1 (1)] to get a minimal ideal N ' of A ' in Г. A.N is almost arti
nian. We first prove that N A> is almost artinian, too.

If A 'N '= (0), N ' is a minimal right ideal of A', proving the statement. If 
/ jVV(O), for every non-zero submodule N- of A,N \ A'N- 7 (̂0). Hence by [8, 
Proposition 1 (1)], A’N ' contains a minimal submodule N[ with A'N^—N^. From 
this the socle SocQJV') is a non-zero ideal of Ä  in N', therefore Soc (A-N')=N', 
then
(3) A’N ' — WÍ ® ... ® N f
where each N- is a simple left Л'-module with N't =  A'N[. Now, let us consider the 
factor ring S=A'/r(N '), where r(N ')=  {x; х£Л', N 'x= (0)}. Then S  is a prime 
almost right noetherian ring. By [8, Lemma 3], S is a prime right Goldie ring which 
has a simple artinian quotient ring Q(S). From this, (3) and (2) we can follow the 
proof of Lenagan in [9] for obtaining that NA. is artinian.

Now, let Nx be the complete inverse image of N ' in A. Then by an easy induction 
on p0 (cf. (1)) we get that is an almost artinian right ^-module. If Nxfil,  we find 
an ascending chain

(4) IP  g  I P  g
of ideals 7/X) of A in 7 with 70(1)= {x; xE7, x A / fN f  and 7;(1)={x; x f l ,  xA  Q I[i\), 
i= l ,2 ,  .... Since ipAQ ^iPz  (/=2,3, ...), (4) must stop at some px. If I f  I ^1, 
by the previous way we find an ideal N 2 of A in 7 such that N2 zd I f  and N2/ I f  
is minimal in А/ I f ,  N J I f .  А /1рА(0) and N2/Nx is an almost artinian right A- 
module. This implies that N2 is an almost artinian right Л-module by [1, Proposition
7]. So we finally find an ascending chain

(5) ...

with NtA ^  Nt_x for all /=2,3 , .... Since A is almost right noetherian, (5) must 
stop at some t. Then N, is an almost right Л-module, and either Nt—I, or there is a
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positive integer p, with
Nt £  / «  £  ... £  NO) = I,

where /0(,) = {x ; xZ l, xAQ N ,}; ip =  {x; x£l, xAQ Iph} i=  1, 2, ...,pt. From 
this it is easy to see that IA is almost right artinian.

The proof of Theorem is complete.
Remarks. The following example shows that without (* ) the statement of 

Theorem 3 is not true in general.
Example 1. Let Z  be the ring of all integers. Then the matrix ring

is right noetherian. The ideal 1= \%  oj °f is an almost artinian left Z-module, but 
IA is not almost artinian. The reason is that I  does not satisfy the condition (*).

By the result of Lenagan [9] and the proof given there one sees that if I  is an 
ideal of a (right and left) noetherian ring A such that lA (and then implying AI) is 
artinian then A/r(I) and Ajl(l) are artinian rings. In our case the same result does not 
hold in general.

Example 2. As is well-known, there exist simple (right and left) noetherian 
rings with identity which are not (right and left) artinian (see for example [5, Theorem 
7.45, p. 362]). Let A be such a ring. Then A contains a maximal right ideal R. Then 
M =A/R  is a unital simple right Z-module and so the matrix ring

is right noetherian and almost left noetherian. For the ideal H «  Q j of Ä, z l  is
almost artinian, and IA is simple. Clearly Alr(I) = A so that Ä/r(I) is not (almost) 
right (or left) artinian.

By Theorem 3, it is not difficult to show that an almost left artinian ring is almost 
right artinian if and only if it is almost right noetherian. We point out that this is 
also an easy consequence of [8, Theorem 4, l)<=>-3)].
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SUMM ABILITY AND AM ARTS OF FINITE ORDER 
IN FRÉCHET SPACES

DINH QUANG LUU (Hanoi)

§1. Introduction

The extension of Bochner integrals in Banach spaces to locally convex spaces 
(l.c.s’s) is well-known (see, [1, 4, 6]). Thus it is natural to study vector-valued asymp
totic martingales (amarts) in such spaces, see [6,7,8, 11, 12] etc. The class of 
vector-valued amarts of finite order [9] is here extended to Fréchet spaces and will be 
more precisely characterized. Theorem 2.1.3 in [13] and Theorem 1 in [14, 1.6] will 
be applied to obtain some other characterizations of absolutely summing operators 
in Fréchet spaces. In particular, some special properties of amarts of finite order in 
nuclear Fréchet spaces are given.

§2. Preliminaries

Let E  be a Fréchet space with the О-neighborhood base U(E). For each U^U(E), 
let U° and pv denote the polar and the continuous seminorm, associated with U, 
resp. Given a vector measure p: si-*E, where (Q, s i, P) is a fixed probability space, 
the total [/-variation VD(p) and the [/-semi-variation Sv (p) of p are defined by

Vv(p) =  sup { 2  Р и(и(А^)\(А$=1£П № , fi)} 
i=i

and
Sv(p) = sup (IO , e>|(ß)|e£ U0},

resp. where П (si, Q) is the collection of all finite ^/-measurable partitions of Q. 
By V(si, E ) or S(si, E ) we denote the space of all F-equivalence or 5-equivalence 
classes of 5-valued F-bounded or 5-bounded measures, resp. Thus V(si, E) or 
S(si, E) is topologized by the family of seminorms (Vv\U^U(E)) or (SV\U£U(E)), 
resp. Moreover, using the same arguments given in [13] for the spaces lj/(E) and 
№ } ,  we can establish easily the following result:

Lemma 2.1. Both (V(.vf, E), V-topology) and (S(sd, E), S-topology) are Fréchet 
spaces.

For definition of Bochner integrable functions / :  £l-*E, we refer to [3, 4]. Let 
L1{si,E )  be the space of such functions. It is known that every f^ L ^ s d , E) is 
Pettis integrable. Define

Ва( Л  =  / P u ( f ) d P
n
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and
Pu(f) =  sup { /  Ke, />1 dP, e i Я«} (U i U(E), f i L f d ,  E )). 

n
Thus the Bochner topology or the Pettis topology o f L f id ,  E) are given by the family 
o f seminorms (Bv\U iU (E )) or (Pv\Ui U(E)), resp. Moreover, with the identifi
cation

/ — pf : d -+ E :  pf (A) =  f  fd P  {A id )
A

one can regard {Lx ( d ,  E ), Bochner topology) as a closed linear subspace o f 
(V (d , E), F-topology) and

Ba( f)  = Vv(jif ) (U iU {E), f i L f i d ,  E)).
Finally, as in the Banach space case (see, e.g. [2]) we get the following result:

Lemma 2.2. Let p iS { d ,E ) ,  U iU (E) and fiL fiS d , E), where 38 is a sub o- 
field o f d .  Then

0) Su(f) ^  Vv{f),
(ii) qv(p) 5= Sv (fi) 4qv(p),

where qv{fi) = sup {Pu(p(A))\Aid},

(hi) du i f )  —  du(hf) — P uif) — 4q®(jif),

where qj*(fi) = sup {pu(p(A))\Ai38}.

§3. Summability and amarts of finite order

Let X, Y  be linear topological spaces. By Ti3£ (X, Y ) we mean a linear conti
nuous operator from X  into Y. In particular, if X  and Y  are locally convex spaces 
whose topologies are generated by the family of seminorms {p} and {q}, resp. then by 
Theorem 1 in [14, 1.6], TiSP (X, Y) i f  and only i f  for every qi{q) there is some 
p i  [p] and ß(q, p)> 0 such that q(Tx)Sß{q, p)p(x) (xiX ). Let (1ЦХ), e-topo
logy) or (lh {Y}, Я -topology) be the space of all summable or absolutely summable 
sequences in X  or in Y, resp. (see [13]). Then TiSP (X, Y) is said to be absolutely 
summing if it maps ls(X ) into Ij, {T}.

T heorem 3.1. Let E, F be Fréchet spaces and TiJP(E, F). Then the following 
conditions are equivalent:

(i) T  is absolutely summing.
(ii) T°iSP({S{d, E), S-topology), (V (d , F), V-topology)), where (T°p)(A) = 

= T(p(A)) ( p iS ( d ,E ) ,  A id ) .
(iii) T 1i3P({L1{ d ,  E), Pettis topology), ( L f d ,  F), Bochner topology)), 

where (7’1/)((w )= 7’(/(co)) ( f i L f d ,  E), coiQ).
(iv) T 1 satisfies (iii) for the special probability space (N, 38 (N), y), where N — 

=  {1,2, ...}, 38 (N) the о-field o f all subsets o f N  and y: 38{N)-*[Q, 1], given by 
y{Z)— 2 2 -" (Z i& (N )) .

n € Z

Acta Mathematica Hungarica 51, 1988



SUM M ABILITY A N D  AMARTS O F F IN IT E  O RDER IN  FR É C H E T  SPACES 73

Proof. Let T£3?{E, F) be absolutely summing. Thus by Theorem 2.1.3 in
[13], Г “lifts” to an operator TN££P(l\(E), PN {/*’}) given by

TA(xn)) = (Tx„) ((xn)O lAE)y
Consequently, by Theorem 1 in [14, 1.6], for each C£U(F) one can choose some 
U£U(E) and /1(С, C/)>0 such that

Пс((Тх„)) ^  ß (C, (/)% «*„» ( (x ^ J A E )).
Equivalently,

2  P c(T x„) =3 ß(C, U) sup { 2  \(xn, e)\ [e<E U0} ((x„)£ 1ЦЕ)).
N N

Let {xj))=x be a finite sequence of E. Then the element {xk, x 2, ..., xk, 0, ..., 0...)£ 
€/jv (E). Hence, the last inequality yields

(3.1) Í  pc(Txj) ^  ß(C, U) sup { Í  I(xj, e>||ee C/0}.
j=i j=1

Now let E) and (Л,)*=1€Л (s4, £2). Applying (3.1) to the finite sequence
(ji(Aj))kJ=1 of E, we get

Í  P c((T »(A ))  = Í  pc(T(p(Aj))) ß(C, U) sup { Í  \(p(Aj), e)||e£ U° ^
7=1  7 = i  7 = 1

^  ß(C, U) sup {\(p, e>|(Ű)|e€ C/0} = ß(C, U )Sv(ji).
This implies that

FC(TV) = sup { 2 рс{ (Т » (А ;)) \(А ^ =1£П Ы , Q)} S  
j = 1

— ß(C, U)Sv(p) {pdS(s*,E)).

Consequently, by Theorem 1 in [14,1.6], T° satisfies (ii), noting that the linearity of 
T° is automatically satisfied.

As the implications (ii)-*(iii)->-(iv) are easy, it remains to prove (iv)->(i). Suppose 
that T fails to be absolutely summing. Then by definition there is some (xn)fJl-(E) 
such that {Tx„)<{PN{/’}. Equivalently, there is some C£U(F) such that 
ZPc(Tx„)=  °°. Therefore, one can choose a strictly increasing sequence (nk) o f N
N

such that

2  P c (T x j)^ k  (k e N ).
7 = n fc+ l

Now define f k: Q-+E by

fk =  "2 2JX jlU) (k£N)
j=nk+l

where lA is the characteristic function of A^stf. Obviously, each f k£L\[&{N), E) 
and, by [13, 1.2.6] (f k) is convergent to 0 in the Pettis topology. On the other hand,
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since

f  PciT1 f к)dy = "z pc(.TXj)s=k (k£N),
N J=nk+1

the sequence (T lf k) fails to be convergent in the Bochner topology of Li(0>(N ), F). 
This contradicts (4) and therefore completes the proof.

R em ark . I f  E, F are Banach spaces, the theorem has been proved recently by 
Bru—Heinrich [2], using Proposition 2.2.1 in [13] which cannot be applied to Fréchet 
spaces.

Combining Theorem 4.2.5 in [13] and the theorem, one can prove easily the follow
ing corollary in which the equivalence (i)—>-(iii) has been recently proved by Egghe
[7] who used directly Proposition 4.1.5 in [13].

C o r o l l a r y  3.2. For a Fréchet space E, the following properties are equivalent:
(i) E is nuclear.

(ii) (V ( s i , E), V-topology) = (S(sI, E), S-topology).
(iii) (Lj E), Pettis topology)= (Lx (.я/, E), Bochner topology).
(iv) (L1 (£P(N), E), Pettis topology)=(L1(^>(N), E), Bochner topology). 
Hereafter, let (j/„) be a sequence of sub-er-fields of sd with I= \J  and

N
sd=a(I). A sequence (fn) in Lx(sl, E) is said to be adapted to if each
f ^ L f i s d E )  and it has a property (*) if so has the sequence (p„) of measures, 
associated with (s ln), given by

/V -* E: p„(A) = Jf„dP (nCzN, Acsdn).
A

A  sequence (p„) in S(sd,E) is said to be adapted to Ш п), if each p f  Sn(E) = 
= S(j/„ , E). We shall study only such sequences of measures. Let T°° be the set of 
all bounded stopping times. Given (p„), (f„) and т£T°°, we define jr/r, pT and f  
as in [2].

Defin itio n  3.3 (see [11]). A sequence (pn) in  S(sd, E) is sa id  to  be a m artingale, 
if

Pm .n  =  P m U n =  Pn

Defin itio n  3.4. A sequence (p„) in S(.sd, E ) is said to be an amart o f  finite 
order, if for every d£N  the net (p f  Ü))ZÍTd converges in E, where Td is the subset 
of all bounded stopping times each of which takes essentially at most d values. 
Moreover, if the net is convergent for d=  °o, then as in [2, 11], (p„) is called an 
amart.

Obviously, by definition, every amart is that o f finite order. The remark at the 
end shows that there is a real-valued amart o f  finite order which fails to be an amart.

Lemma 3.5. Let (pn) be a sequence in S(stf, E). Then the following assertions are 
equivalent:

(i) (pn) is an amart o f  finite order.
(ii) lim sup ЗДОЧя- аО  =  0 (Uf- U{E)).m̂ N тшп
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(iii) (p„) has a (weak) Riesz decomposition: jin~a„+ß„ (n£N), where (a„) 
is a martingale and (/?„) a Pettis potential, i.e.

lim Sl{ßn) = 0 (UeU(E)).
n£N

(iv) There is a finitely additive measure I —E such that each p00<n= 
= / ícoU„€S,( ^ b, E ) and

-/!=», n) = 0 ( u e u (E )).
n t N

Proof, (i) —(ii). Let (pn) be as in (i). Then by definition, the net (pz(Q))zeT2 
converges in E. Thus, for each U€U(E) and e>-0, one can choose some r(e)€T 2 
such that if ег, т^Г 2 with а, т^т(е) then
(3.2) p v(ga(Q )-pz(Qj) 4~1e.
Now let m,n(LN with гаёпйт(в) and A istfn. Define

a = m \Q and x =  и1л +  т1 п\д .
Obviously а ,г £T2, ег£тёт(е). Hence by (3.2)

Pt/(/'m04)-1u„(/0) =  Ри(раФ)~Рт№)) =  4 - 1e.
Therefore by Lemma 2.2, it follows that

Sv(Vm,n-Pn) S  4q$"(pm,n-ii„) = 4s\ip{pv(pm(Ä )-p nU ))\A £sfn} S  6.
This proves (ii).

Since the next implications (ii)—(iii)—(iv) can be established easily, using the 
arguments, similar to those given in the proof of Theorem 2.2 in [11], it remains to 
prove (iv)—(i). Let (p„) satisfy (iv). We shall show that (pn) is an amart of finite order. 
Indeed, let d£N  be any but fixed. For each U£U(E) and e> 0 , choose n(e)£N  
such that

sup SZ(ßn-goo,„) S  d~xE.
n ̂  w(e)

Let z£Td with тёи(е). Obviously,

Pp(/it( i2 ) -^ (ß ) )  =2 2  Pu{Pn({* =  и })-М {т =  Л») ^
n^n(e)

sup q fr(g„ -p~ ,n) S  d sup ==e.
n^n(e) n ^ n (e )

This means that the net (gz(Q))ziTd converges in E  (exactly to /^ (fl)). This proves
(i) and the lemma.

R em a rk . The inspection of the proof shows that a sequence (p n)  in S ( s / ,  E ) 
is an amart of finite order if and only if for some d£{2, 3, ...} the net (pz(Q))ziTa 
converges in E . Therefore the notion of amarts of order d introduced in [9] must be 
omitted.

D e f in it io n  3.6. Following [10], call a sequence (pn) in V(.s?, E ) an Ll-amart, if 

lim sup VZ(pim,„-/!„) =  0 (U£ U(E)).
n*N m^n
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Clearly, by Lemmas 3.5 and 2.2, every U-amart is an amart o f  finite order. We shall 
see later that the converse is true i f  and only i f  the Fréchet space E is nuclear. More 
generally using Lemma 3.5, Definition 3.6, and Theorem 3.1 we can prove easily the 
following theorem which gives an answer to the question what operators map amarts 
of finite order into D-amarts.

T heo rem  3.7. Let E, F be Fréchet spaces and TZHd(E, F ). Then the following 
conditions are equivalent:

(i) T  is absolutely summing.
(ii) T  maps E-valued amarts o f finite order in S(sd, E) into F-valued L'-amarts 

in V (f/, F).
(iii) T  maps E-valued amarts o f finite order in Lfisd, E) into F-valued L 1-amarts 

in E fsd , F ).
C o r o l l a r y  3.8. For a Fréchet Banach space E, the following conditions are 

equivalent:
(i) E  is nuclear.
(ii) Every amart o f finite order in S(sd, E ) is an L1-amart in V{si, E).

(iii) Every amart o f finite order (/„) in Lfisd, E) has a (strong) Riesz decompo
sition f„=g„ + h„ (n£N), where (g„) is a martingale and (hn) is an V-potential, i.e.

lirn f  Pu(fn)dP = 0 (UeU(E)).
я

(iv) Every Pettis uniformly integrable amart of finite order in Lfisd, E ) is con
vergent in the Bochner topology.

P r o o f . (i)-e>(ii) follows from Theorem 4.2.5 in [13] and Theorem 3.7.
(i)-(iii). Let (f„) be an amart of finite order in L fs d , E). Suppose that E  is 

nuclear. Then by (i)«=>(ii), (f„) must be D-amart, i.e. if (p„) is the sequence of measures 
associated with (f n) then
(3.3) lim sup F S ( /v „ - /0  =  0 (Ue U(E)).

”£N msn
Now remark that E  is a nuclear Fréchet space, then by [3, 4], E  has the Radon— 
Nikodym property. Therefore, one can define the conditional expectation operator 
on L fsd ,E ) .  Let Esif i f m) —f m̂n be the .^„-conditional expectation of/„, (m ^n£N ). 
It is clear that (3.3) is equivalent to

lim sup Bv(/m,„ -/„ )  =  0 (n£N).
"ZN msn

Therefore, as for L1-amarts with values in Banach spaces (see [10]), one can show 
that for each n£N, the sequence is Cauchy in the Bochner topology. But
as it has been noted in [3, 4], the class L fs d n, E) with the Bochner topology is a 
Fréchet space, every sequence must be convergent to some g ,fL l (s /n, E)
in the Bochner topology. It is not hard to show that the sequence (g„) must be a 
martingale. Moreover, if we put h„=f„—g„ (n£N), then (h„) must be an ^ -po ten
tial. This proves (i)-*-(iii).

(i)—(iv). Let (/„) be a Pettis uniformly integrable amart of finite order. Then 
by (i)-^(iii), (/„) must be written in a form f„—gn+hn (n£N), where (gn) is a
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martingale and (h„) an ^-potential. On the other hand, by (1) and Corollary 3.2 
( f „ )  must be uniformly integrable in the Bochner topology, i.e. every sequence 
(Puifn)) is uniformly integrable. Hence so is the martingale (gn). To finish the proof 
we note that by [3], every nuclear Fréchet space has the Radon—Nikodym property. 
Therefore, by Theorem 2.1 [12], (g„) must be convergent to some f ^ L x(s4, E) 
in the Bochner topology, hence so does the amart of finite order (f n) which 
completes the proof of (i)—(iv).

Finally, taking E— F, and T =the identical operator, the example given in the 
proof of Theorem 3.1 proves (iii)-^(i), (iv)->-(i) and the corollary.

R em ark . The corollary seems to be new even for the real-valued case. Further, 
since every real-valued ZZ-amart is an amart of finite order then by [10], there is a 
nonnegative real-valued amart of finite order which fails to be an amart. Finally, 
many results and references, related to amarts in Banach spaces can be found in [5].
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COGENERATORS OF RADICALS

W. G. LEAVITT (Lincoln)

1. Radical and semisimple classes

All rings considered will be contained in some universal class W  of not necessa
rily associative rings. For a class M  of rings we write, as usual, UM= {R£W\ all 
0?±R/I$M} and SM = {R£W\ if CM/ci? then I$M}. It is well-known that 
every class M  generates a radical class LM  (the “ lower radical”) which is the smallest 
radical class containing M. It can be obtained by simply intersecting all the radical 
classes containing M  (see [4]) or can be constructed by the Kurosh (see [1]) or some 
other construction (such as in [7]). There are a number of equivalent definitions of 
a radical class (such as that it is closed under homomorphisms, homomorphic ex
tensions, and unions of ascending chains of ideals). An easy criterion is:

P roposition 1. A class P is a radical class i f  and only i f  P= USP.
P roof. This can be checked directly or one can note that for P homomorphi- 

cally closed USP is the first Kurosh step. Thus from P= USP it follows that P is 
homomorphically closed and all Kurosh steps are equal, that is P=LP  is radical. 
Conversely P=LP  implies P—USP.

The concept dual to that of a radical is that of a semisimple class (sometimes 
called “Coradical” ; see_[6; p. 781]. Note that in [6] notations M*  and M* are used 
for SM  and UM, and M is used for LM.). There are also various characterizations 
of a semisimple class, one of which is:

P roposition 2. M  is a semisimple class i f  and only i f  M= SUM.
P roof. Conditions such as those of [6; p. 781] or [3; p. 312] can be checked, or 

one can note the equivalence to a characterization such as that of [8; p. 21].
It is, of course, well-known that if P is a radical class then SP  is semisimple 

(sometimes called the “P-free” class), and when M  is semisimple then UM is radical.
As we noted, every class is contained in a smallest radical and dually we would 

like to have, for any class M, the largest radical relative to which every R ^M  is 
semisimple, or equivalently the smallest semisimple class containing M. In a univer
sal class in which semisimple classes are hereditary (such as the class of all associative 
or all alternative rings) this is simply SUM where M is the hereditary closure of M. 
However such a smallest semisimple class does not in general exist:

Example 1. Let a ring R be generated over Z 2 by symbols x, y, z  where x 2= x, 
xy—yx= xz= zx= y2—y, yz= zy—z, and z2— 0. It is clear that R has only one 
proper ideal I — {y, z, y+z, 0} and I  only the ideal J = {z, ()}. Also_ IjJ^áRjl^í 
= Z2£íJ, since J=Z'l (the zero ring on Z2). Let M={R) and M={R, I, J }, 
M '=  {R, I/J}. We have M c M c S U M  and M czM 1czSUM1, so SUM  and SU M 1
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are semisimple classes containing M. They are incomparable since Z^ZSUM  
and ZfcfySUM1, while Z26 SU M 1 and_Z2$ SUM. Now suppose there is a radical 
P such that M Q SP  with SPQ SU M  and SP Q SU M \ Then R£SP  would 
imply I$P  so either I f  SP  from which J$P  so J£ S P  contradicting SPQ  
Я SUM 1, or else l/J^S P  contradicting SP^ESUM. Thus M  is not contained in a 
smallest semisimple class.

A class M  is called “regular” (see 8; p. 21) if M f  SUM. It is well-known that:
P roposition  3. Every regular class M  is contained in a smallest semisimple 

class SUM where UM is radical.
When UM  is radical it is called the “upper radical” defined by M. More generally, 

we have
P roposition  4 [2; p. 219]. A class M  defines an upper radical UM i f  and only 

i f  every O ^R dM  has an image 0AR/l€SU M .
Remark that while every class is contained in a smallest radical, not every class 

contains a largest radical (for an example see [5; p. 684]). It is also true that not every 
class contains a largest semisimple class (an example will be given later).

2. Cogenerating classes
We will call a class M  coregular if S U M fM .  Thus a class is semisimple if and 

only if it is both regular and coregular.
Lemma 1. For M  any class, SUM is coregular.
Proof. If A^SU SU M  then if O A lc A  we have some O ^fJcSU M . But 

then / / /  has an image in M, and so Ac SUM.
Proposition  5. Every coregular class M  contains a largest semisimple class 

SLUM.
P roof. For an arbitrary class M  we have UMQ LUM  so that S L U M S U M ,  

and if M  is coregular SLUM f^M. Now if SPQ M  for a radical P then UM QP  
so LUM f  P. Then S P f  SLUM  so SLUM  is the largest semisimple class contained 
in M.

The following example shows that not every class contains a largest semisimple 
class. Note that the construction can take place in any universal class W (including 
the class of all associative rings).

Example 2. Let V and T  be any two radicals with F D T = 0  (such as LA, LB 
with A and В hereditary and AC\B = (), say A={Z,} and B={Z3}). Let M  be 
any class with SV  U S T ^ M A W .  Then U(SV U ST)Q USV= V  and 
U (SV D ST)Q T, so U(SV  U ST )—0. Thus if SV Ö ST Q Q Q M  with Q semi
simple then UQQU(SV  U ST)=0 so the contradiction W = SUQ=QQ M.

A  class M  will be said to “cogenerate” a radical M  (see [6; p. 780]) if M  is the 
smallest radical class such that S M ^M , or equivalently if SM  is the largest semi
simple class contained in M. Thus Example 2 shows that not every class is a cogenera
tor. However it is immediate from Proposition 5 that:
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P roposition 6. Every coregular class M  cogenerates a radical M =LUM .

C orollary 1. For M  an arbitrary class SUM is a cogenerator.
We also have
P roposition 7 [6; 0.16*, p. 783]. l f M  cogenerates a radical M then L U M Q M  

and LU M =M  if  and only i f  SLUM Q M.
Proof. Since S M Q M  we have U M Q M  so LUM QM . Thus SM Q  SLUM  

and if SLUM QM  then SLUM =SM , so LUM=M.
Lemma 2. The union o f any class o f  regular classes is regular.
P roof. Let Q = U Q i  where each Qt is regular. If Rc Q then RfQi  for some i. 

Then RZQtQSUQi^SUQ. Thus QQSUQ.
We can thus generalize Proposition 6 to:
P roposition 8. I f  SU NQ M  for every regular class N Q M  then M  is a co

generator.
Proof . Let {Qi} be the class of all semisimple subclasses of M. By Lemma 2 the 

union Q= U Qi is regular, so the semisimple class SUQQM. Sinceevery QtQQQ  
QSUQ we have UQ—M.

A class N  will be called “M-regular” if NQ SU NQ M . Then the criterion for 
a cogenerator is:

T h eorem  1. A class M  is a cogenerator i f  and only i f  every union o f M-regular 
classes is M-regular.

Proof. Suppose first that M  cogenerates M. Let {Nt} be any class of M-regular 
classes then N = U N t is regular by Lemma 2. Now SM  contains all semisimple 
subclasses of M  so all SUNtQSM. Thus we have N=  U Ni<Q U SUNtQ SM , so 
that N Q SU N Q SU SM Q  SMQM, that is N  is M-regular.

On the other hand, suppose every union of M-regular classes is M-regular. 
Let Q— U Qi where {Qi} is the class of all semisimple subclasses of M. Since every Qt 
is M-regular it follows that Q is M-regular. Thus QQ SU Q Q M  so SUQ is one of the 
{Qi}, that is SUQQQ. Therefore Q=SUQ  is the largest semisimple class contained 
in M, that is M=UQ.

C orollary 2. M  is a cogenerator i f  and only i f  SU Q Q M  where Q is the union 
o f all the semisimple subclasses o f M.

Corollary 3. M is a cogenerator i f  and only i f  the union o f all the semisimple 
subclasses o f M  is semisimple.

Remark that while every coregular class is a cogenerator, the converse is not 
true:

Example 3. Take any radical, say the Jacobson radical J, and let M — SJÖ  {B} 
where В is some simple radical ring. Then SJ  is the largest semisimple class contained 
in M  but rings like B@B are in SUM but not in M.

Lemma 3 . I f  M is homomorphically closed then SM  is coregular.
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P roof. Let AdSUSM. If A ^ S M  then there is some 0 ^ /< Л  with IdM. 
But every non-zero ideal of A has a non-zero image in SM, contradicting Id_M.

P roposition 9. I f  M is homomorphically closed then SM is a cogenerator with 
SM=LUSM.

Proof. This follows from  L em m a 3 and  P roposition  6.

P roposition 10 [6; 0.16, p. 783]. I f  SM is a cogenerator then SM  £  LM.
P roof. Since M Q LM  we have SL M Q SM  and since SLM  is semisimple 

SLM Q SSM . Thus SM Q LM .
Note that not all classes of form SM  are cogenerators:

Example 4. Again take V = L {Z 2}, T = L {Z 3} and let M =  { Z ,® Z 3}. If 
A dSV  then A dSM  since otherwise Z2®Z3<iA giving the contradiction Z«<iA. 
Thus SV ^zSM  and similarly STQ SM . Therefore SE U S T f  SM  so, as in 
Example 2, SM  is not a cogenerator.

We can improve Proposition 9 to:
P roposition 11 [6; 0.16, p. 783]. I f  M  is homomorphically closed then SM is a 

cogenerator with SM  =  LM.

Proof. It follows from Propositions 9 and 10 that SM  is a cogenerator with 
SM — LUSM  d  LM. But USM is the first Kurosh step so if M  is homomorphically 
closed M Q USM. Thus LM  g  LUSM  so SM = LM.

Note that SM  can be a cogenerator even if M  is not homomorphically closed:

Example 5. Let V be a vector space of dimension S  Xi and let A be the ring 
of all linear transformations of rank Then we have where В is
the set of all linear formations of V of rank s ' and C those of finite rank. It is 
known that С, B/C, and A/В are simple non-isomorphic rings. Let M  = {A, A/B, 
B/C} so that M  is not homomorphically closed. It is easily checked that MQ USM  
so SU SM Q SM , that is SM  is coregular hence a cogenerator. Note that in this 
case LUSM= LM. However SM  can be a cogenerator even if LUSM A LM :

Example 6. Let M=  {Z2, Z2® Z3} so if A d SM  then Oa Io A with either 
1=Z2 or i= Z 2© Z3. But in the latter case Z2s/< aA . Thus in cither case A has 
an ideal in USM  so A^SU SM . Therefore SU SM fz SM  so SM  is a cogenerator 
with SM = LU SM aLM . The last inclusion is proper since Z3©LM but 
Z ^L U SM .

On [6; p. 781] two properties were considered, namely;
CI. M  is closed under subdirect products.
CII. If T o /c y t  with A /If M  and I/J£M  then there exists some C c T  

with CQ J  such that AjC^M.

P roposition 12. I f  M  satisfies Cl and CII then M  is coregular.

Proof. Let A£SUM  and suppose 0 wi th /  minimal relative to 
A/I£M. Then from AASUM  there is some 0 И/ / /€ M, so by CII the minimality 
of /  would be contradicted. Thus 7=0, so AdM  and hence SUM f M .
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C orollary 4 [6; 0.16*, p. 783]. I f  M  satisfies СI and CI I then M cogenerates 
M —LUM.

L emma 4. For M  an arbitrary class, M  U SUM is a coregular class.
P ro o f . If AdSU (M  U SUM) then for every 0^1<зА  either /  has an image 

in M  or an image in SUM. But every ring in SUM has an image in M  so, in any case, 
/  has an image in M, that is AfSU M . Thus SU(M ö  SUM )Q SU M Q M  U SUM.

Remark that a coregular class need not satisfy C II:
E xample 7. Let А, В, C be as in Example 5. Let N= {A/C, C} and 

M= N  U SUN. Then M  is coregular by Lemma 4. But A fiN  and since both B$ N 
and B/C$N  we have AdSUN. Thus A$M.

It is also true that a coregular class need not satisfy C l:
E xam ple  8. Let A = Z 2[x, e,f]  where x2=x, xe=ex=e, x f—fx = fi  and 

e2—f 2—ef=fe=  0. Set f  — {0, e) and / 2={0,/} so A / f ^ A /h .  Let N= {A/I1} 
and M =N{JSU N  is coregular. Since 0 = /1П/2= П {I<iA\A/IdM} it follows that 
A is a subdirect sum of members of M. However A $N  and A$SUN  since f< iA  
has no image in N. Thus A^M.

We conclude with a smallest theorem:

T heorem  2. Every class M is contained in a smallest coregular class M  U SUM.

P ro o f . By Lemma 4 M U  SUM  is coregular and suppose M ^ N  where 
S U N ^N . Then SU M ^S U N Q N  so M D SU M ^N .

Remark that it is an open question as to whether or not every class is contained 
in a smallest cogenerator. However Example 2 shows that there are classes which do 
not contain a largest cogenerator, or even a largest coregular class.
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A LIMIT THEOREM FOR PROBABILITIES RELATED 
TO THE RANDOM BOMBARDMENT OF A SQUARE

R. ISAAC (New York)

§0. Introduction and notation

Consider the unit square S  bombarded by darts (i.e. points) thrown indepen
dently and uniformly onto S. A и-square (US) is a square with dimensions uXu, 
0< и <  1, lying within S and with sides parallel to those of S. Say that an и-success 
occurs if there exists at least one US which contains none of the first и darts in its 
interior. L e t (и)=.P(и-success); in this paper we shall prove that for any и, 0 < и <  1

( a i> ° - = а д < "
exists (Theorem 5.1). This improves the result of [2]:

(0.2) If u—-̂ - there exist constants A>~0 and such that for all и>1

A -c B.

This problem is in the class of problems in geometric probability (discussed, for 
example, in [3] and [4]) dealing with prescribed geometric conditions required to hold 
after random bombardment of a geometric figure. This will be described further in 
Section 6.

The author is indebted to Dr. Leopold Flatto for suggesting the problem. Dr. 
Flatto obtained the upper bound В in (0.2) using the clever idea of using a grid to 
discretize the problem. This basic idea is at the heart of this paper as well as of [2].

The outline of the paper is as follows: in Section 1 we prove the extension of 
(0.2) for general и ; this result will be required for the proof of (0.1). Section 2 discusses 
refinements of a grid. The important point here is that a sequence of refinements will 
yield a monotone sequence of probabilities and will allow us in Section 3 to approxi
mate p„(u) for each fixed и in a useful way. In Section 4 a ratio inequality is proved 
setting the stage for the proof of (0.1) in Section 5. It is in Section 5 that (1.1), the 
extension of (0.2), is crucially used. Section 6 is devoted to a discussion of related 
problems and applications.

We remark that the precise values of L(u) remain undetermined, although by 
using the idea in section one for calculating the upper and lower bounds we can get 
rough bounds on L(u).

Throughout this paper we will suppress the dependence upon и in the notation 
(writing “pn” for “pn(uY\ for example). This simplifies the exposition considerably
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and causes no confusion, since we may consider и chosen in the unit interval and 
fixed at the outset.

A summary of necessary definitions and notations follows.
S : the unit square, taken as target for a sequence of n independent and uniformly 

distributed points (referred to as “darts”). It will be convenient to speak in terms of 
the pattern of darts “at time n”, that is, the pattern after the n-th dart is thrown.

u-square (US): a square with dimensions мХи, ()<и< 1, lying within S  and 
with sides parallel to those of S.

A: any integer used to define a grid on S.
grid (or N-grid): the sides of S are subdivided into A equal parts by lattice points 

denoted by the Cartesian pairs (/,_/), 0=51, j= N  (the origin (0,0) is thus the lower 
left vertex of S). Drawing vertical and horizontal lines through opposite lattice points 
we obtain the grid.

tile: each of the squares of dimension — x  composing an A-grid.
interior canonical square (ICS): this depends on given A and u. We must have 

AmS 2 and then, given an А-grid, an ICS is any square with vertices on lattice points
and length of edge= [An — 1] • ([x] is the greatest integer ^x .) An ICS contains
exactly [Am— l]2 tiles.

exterior canonical square (ECS): analogous to ICS, except that length of edge= 
= [Am+ 1 ]--^ t. An ECS contains exactly [Аи+ l]2 tiles.

intact: refers to an area within S that has not been hit by any darts (at time ri).
_ fl

c : used throughout for the ratio — .
pn: the probability of an n-success, that is, that there exists at least one intact 

US at time n.
rNi „: the probability of at least one intact ICS formed from an А-grid at time n. 
qN'„: the probability of at least one intact ECS formed from an А-grid at time n. 
llv : abbreviation for the lower left vertex of a US, ICS, or ECS.
Nj (respectively, NE) : the total number of ICS’s (respectively, ECS’s )= (A + 1 — 

— [Am—l])2 (respectively, (A + 1 —[Ам+1])2) formed from an A-grid.
fram e : Given an ICS /  and any US Q with Qz^I, a frame of /  is the region

4 иQ ~I. If the grid size = A, the area of a frame ё  — ;

(0.3) Let the collection of A — ICS’s be counted off in any way, that is, assign to each 
A-ICS a unique integer i, l í f é A j .  The collection of A-ICS’s can therefore be 
represented as

{4 , l ^ i S  A,}.

(0.4) Let R be any region of S. Define the events IRn—R is intact at time n, 
H R n^R  is hit by time n, i.e. R is not intact at time n.
Thus we can write etc. Moreover, by putting Rn=IN n or jR„=US„
we mean that at least one A-ICS or at least one US (respectively) is intact or not 
intact after the и-th dart is thrown.
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§1. Bounds for p„

In this section we shall prove the following extension of (0.2):
T heorem 1.1. Given и fixed, 0 < м <  1, there exist constants A> 0 and B<°° 

(depending upon u) such that for all n>  1

( 1 . 1) Pn
„2 (1_ m2)b B.

If u= —, (0.2) is obtained. The proof to follow is essentially the argument
of [2] changed in obvious ways; for further details the reader can consult [2].

The event that there is an «-success is the union of an uncountable number of 
events of the form ilUx is intact” where Ux is a specific US. This uncountable union 
turns out to be measurable so that pn is indeed defined; this will follow from Proposi
tion 3.1. (1.1) will be shown by finding bounds on rNn and qNt„. The reason this can 
be done is given in the following lemma.

Lemma 1.1. Let Ux be any US. Then for any N-grid there always exists an ICS 
I  with l a  Ux. I f  E  is any ECS determined from an N-grid, there always exists a US

2
Ua with Ed>U2■ Thus, for all n and all TVS— we have

(1-2) P n< rNi„.
P r o o f . If (a, b) are the coordinates of the llv of Ux according to the grid carte

sian system (see Section 0), there are numbers к and l, O^k, /<  1 such that (a+k, 
b+ l) is a lattice point. A simple computation verifies that the ICS I  with llv at this 
lattice point is entirely contained within Ux. Similarly, let E have llv (a, b). Then 
the US U2 with llv also at (a, b) is certainly contained within E. (1.2) is a consequ
ence of these relations.

P ro po sitio n  2.1. There exists a constant B< such that 

(1.3) pn <  Bn2(l — и2)", « s i .

P ro o f . For a given TV-grid let {/j,, l d i ^ N t} be the set of all ICS’s. Letting i 
range over all i£Nj we obtain

(1.4) A <  r ,. ,  £  I  ( l - Ц - Ч  j )  j  S  ^ ( l - ( " - 4 )  ) =

ssA X I - m2)" ! 1 + N ( l - u )  N 2(l — u)
If TV and «-*-°° suchthat cN=n with c constant, then there is certainly a con 

stant В such that for « S i the right side of (1.4) ^ B n 2(l — и2)".
P ro po sitio n  2.2. There exists a constant A>  0 such that

(1.5) p„ > T n 2( l - u 2)", « S i .

Acta Mathematica Hungarica 51, 1988



8 8 R . ISAAC

P roof. References to “intact” below always refer to a fixed number of darts n. 
The notation E{ refers to an ECS relative to a fixed iV-grid.

Let i0 be a fixed integer, 1 ̂ i 0̂ N E, and consider the ECS Eio. Let t be another 
integer and put

piait = P(Eio and E, are both intact) =  (1 — area of E JJE t)n. 
First we find an upper bound for

Pio 2  P i o , f  
Í

The computation is broken up into two cases, an “essential” part in which the two 
ECS’s are close together, and an “inessential” part in which the two are “far” apart. 
Let us suppose that the llv of Eio is the origin (0, 0) and the llv of the fixed ECS Eto 
has coordinates (j, k).

Case 1: both j  and к are =u\fN  . The length of edge of an ECS satisfies the ine
qualities

и < [Nu+1] =  length ^  и + - ^ - .

ßTherefore for fixed N  and и the length can be represented as it + d~  for fixed ß, 
O ^ ß S l .

The part of E,o not overlapping with Eio consists of two rectangles with areas 
and ^ - + 0( 1 ) ,  and these rectangles overlap in a rectangle with area

jk  
N 2 ‘

N
It follows that

(I w2)”expf ^2duß + du(j + k ) - - ^ ~ j 2

where we have set d= (l — u2) 1 and used the relation (1 — q)nS.e~qn valid for 
1 (which will be true for N  large enough). Since we are in Case 1, jk S N u 2

so the above inequality becomes upon placing c= 2 —

(1.6) piot ,0 ^  (1 — u-)n exp ( — 2dußc) exp (d u2 c) exp (—du(j + k)c).

To find an upper bound for

2  Pio, t ter
where T  is the set of indices t such that the pair Eio and E,o fall into Case 1 (/0?То)> 
we shall sum the terms exp (—du(j+k)c) appearing in (1.6) over all possible pairs 
(j, k) for O^j, k^c со. The matrix of (j, k) pairs that arises is miJ=(i>j) ,  / ё 0 and 
у'ёО, with the single term (0, 0) missing. If we add row j  of this matrix, 1, and
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assume c is so large that we get geometric series of ratio less than 1, we have the sum
(1.7) exp (—d«(sc))(l —exp (—due))-1
and the sum for s=0 is the same as that for s= 1. Since the llv of Eio is (0, 0), E, 
is necessarily positioned “northeast” of E ig. For Eio in a general position, however, 
E, could have one of four directions relative to Eio. Therefore we throw in the factor 
4 and add over each row sum to obtain from (1.6) and (1.7)
(1.8) 2 Pia.t — 4(1 -  w2)" exp(-ldußc) exp (du2c) X

ter
x{exp( — dnc)[(l — exp (duc))~2+(l — exp (—dire))-1]} S  

^ 8 (1  - n 2)”exp (—2dußc) exp (— d(u— w2)c)(l — exp(— duc))~2.

Case 2: at least one of j, k> u\'N . In this case the two ECS’s are far apart: 
the area of Eig\JEto is larger than

u2 + 2 uß 
N +  nmax 2 uß

-  U + N ~ +

u2 ijN 
N

where we recall that the length of edge of E,0 is и + . As in (1.6) we may now obtain
for N  large enough

Pio,t„- [1~[u2 + ̂ n ~+ U )) — (1 —w2)nexp( —2dM^c)exp( —c(m2c ]/N ).

Let T ' be the set of indices t such that the pair Eio and Eto fall into Case 2. From the 
above we have

(1.9) 2  Pio.t — NE(l — u2y e x p (—2dußc)exp(—du2c Y N ) ^
ti т

=. K N 2(\ — u2)n exp (—2dußc) exp (—du2c }fN ) 
where the constant К  can be taken as (2—и)2.

TlEstimatingp „ .  Let n and N  be considered fixed but large with c~ -j^  chosen so 
large that the coefficients of (1—u2)" exp (—2dußc) in (1.8) and (1.9) are each less

g
than —. Therefore we obtain 4

(1.10) pio = 2 P io .t  =  2 P io .t+  2  P io.t <  у  (1 - u 2)nexp(-dußc).
i#i0 ter t e r

Moreover,

P(Eio is intact at time n) =

(1 - u 2)n (1 — u2)n exp (—2dußc)(l — A„)

Acta Mathematica Hungarica 51, 1988



90 R . ISAAC

where A„—0 as n — °°. By a well-known inequality of Bonferroni ([1], p. 100) 
(1.11) pn =- qN n ^  2  P(Ei is intact at time ri)— 2  Pi =*■

>*ЛГЕ is)VE

>  NE(l -  и2)" exp ( -  2dußc) (l -  К  - у )  S  (1 -e )  {~ J —  exp (~2dußc)n2(l -  и2)"

for n large enough. Now let n and N  increase so that c remains fixed. Since N is 
changing, ß will vary but always 1 (see Case 1) so that the minimum value for 
the coefficient of «2(1 — м2)и in (1.11) is

A  = (1 — e) - — ’ exp ( - 2 due)

for all n and N  sufficiently large. Since pnA  0 for each n, the constant Ax can be repla
ced by a constant A so that (1.11) becomes

pn >  An2( 1 — и2)", n =  1
and the proof of (1.5) is finished.

§2. The refinement lemma

The lemma of this section will be useful in the sequel. Let N2 and Nx be two in
tegers such that each tile of the Л^-grid is a union of tiles of the iV2-grid. We say that 
the iV2-grid is a refinement of the A^-grid.

Lemma 2.1. Let s be given, 0 <  e <  1. There exist sequences of numbers {<$„} and 
{con} satisfying:

(a) lim <5„=£.
(b) co„ is a sequence o f non-decreasing integers with oon\°°.
(c) n1+dn = 2“», п ш  1.

2
Moreover, consider the grid numbers iV(n)=n1+án=2“» S —. I f  s ^ t  the N(s) grid 
is a refinement o f the N(t ) grid and

(d) rN(s)<n =s rN(t)-n for each fixed n.

P ro o f . Let к — ?П ^ and choose con = \ W |  where the brackets, as usual, 1 “h s L /c J
denote the “greatest integer” function. Taking logarithms of both sides of (c) shows 
that

with (S„, n s 2 defined by the equation. This implies

In 2
к

In 2 
In n = 1 +<5n

In 2
к 1 +e
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proving (a). Letting <5X= 0  we observe (c) remains true for n=l. (b) is immediate 
from the definition of con. If

N(s) = s1+s» =  2ю» =  2f  ■ 2mt = 2'(f1+A) =  2f N(t)
where / ^ 0 .  If /=  0, N (s)=N(t) and there is nothing to prove. If / > 0, then the 
N(s) grid is obtained from the N(t) grid by halving each tile edge in the N (t) grid/  
times. Thus the N(s) grid is a refinement of the N(t) grid and a computation shows 
each N(s) ICS contains an N(t) ICS, yielding (d).

In the applications of Lemma 2.1 the particular value of e will be unimportant. 
When the lemma is invoked we will assume that some a has been chosen to define 
appropriate sequences {<5„} and {m„}. Whatever e is chosen we have for all sufficiently 
large n

(2Л) n1+S" ~  n1+t/2 ‘

§3. Approximation of pn

The main result of this section is Proposition 3.2 which shows, loosely speaking, 
that one can uniformly approximate the terms p„ by the terms rNm„ where Nn is a 
sequence of grid numbers to be determined.

L em m a  3.1. Let A and В be disjoint regions o f S, area (A)Sa, area (В)ШЬ< 1, 
a + b ^ l .  Then

P(IAn\IB „ )^ [  1— ^ )  •

P r o o f . Let area (A)=x, area (B)=y. We have

p (ia .\ IB.) = =  ( i  B (■ — •

P ro po sitio n  3.1. For each fixed n, the sequence N(k)=k1+9k, where ök is as 
defined in Lemma 2.1, satisfies: as k-~°° we have

(3T) r N ( k ) , n  1 Pn •
P r o o f . Fix n. The events / Ц . ,  form a decreasing sequence by Lemma 2.1 and

П //*(*>,„ = ius„
к

and this implies
(3.2) rN(k) n\P(yj) S pn.

If V„ occurs there is an intact N(k)-ICS for each k. Let us consider the set of 
all possible sequences of ICS’s where the кл  term of the sequence is an intact 
N(k)-ICS. We call such sequences configurations. There are a countable number of 
possible configurations Ct. If a given configuration Q  occurs, there will be an intact 
US if, in addition to Cj( a frame around at least one of the ICS’s composing Ch
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is intact. This frame has area disjoint from C; at most 4 и
W )

for an iV(/c)-ICScCf.
We may assume the union of the areas of all ICS’s in the configuration is 1, for 
b— 1 implies all darts have fallen into an area of probability 0. Apply Lemma 3.1 
to obtain

(3.3) P(IUS„| C;) & P jan intact frame of area ё  disjoint from C,| C,j s

^  f i ___Ifi____
-  \ N{k) 1 - b )

(3.3) is valid for all N (k) s i n c e  each Ct contains an A(/c)-ICS. Thus

(3.4) P ( IU S J Q = 1 .
Now since there are a countable number of configurations we have, using (3.4)

(3.3) P(HUS„|F„) S  2  ^(HUS„| = 0
T P y V n )

where T  is the countable set of indices corresponding to all possible configurations.
(3.5) is equivalent to
(3.6)
proving

P(IUSJF„) -  1

Pn = P  (IUS„) £  P(Vn)
which, in conjunction with (3.2), proves (3.1).

P ro po sitio n  3.2. Given e>0 there exists a subsequence in such that N(i„) 
satisfies

(3.7) Pn

rlv(i„),n
1—e for all n.

P ro o f . For each fixed n, sp„>0. Proposition 3.1 implies the existence of an 
integer k0(n) such that for all k ^ k 0(n)

Therefore, if k ^ k 0(n)
r N(k), n ~ P n  *= EPn 

Pn  1 1 —e.
r N(.k),n l + e

Choose the sequence {/„} inductively as follows: set

(a) ij. =  fc„(l) 
and
(b) if л >  1 let i„ =  max(i„_1,fc0(n))+l. 

This sequence clearly yields (3.7).
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§4. A ratio inequality

The principal result to be proved now (Corollary 4.1) gives an important upper 
bound for the ratio of terms rM>m and rNt„ for and M  and N  certain values
that depend upon m and n. The upper bound is independent of M  and N. Below we 
use the notation of (0.3).

P roposition 4.1. Let N(n)=n1+>* where <5„ is a sequence defined in Lemma 
2.1. Let u2—'h —и- Then

for all sufficiently large n.

P r o o f . Let Ninfi— N and fix an index i. Say that dart n+ 1 bingos if all PN 
for /< г  are hit by time n+ 1 but not all are hit by time n, that is, the event

We will say that an ICS is hit uniquely (by time n+ 1) if exactly one of the darts s, 
l ^ s ^ n + l  hits the ICS.

Consider the set of ICS’s IJN for /<  i that are hit uniquely by a given dart x, 
1 S x S n + 1. An ICS IkN is a leader (or leader for dart x) if /& is hit uniquely by dart 
x  but IJN for /<  к is not hit uniquely by dart x. We observe that if /£- is a leader for 
dart x then:

(a) some PN for /<  к may be hit by dart x, but not uniquely.
(b) some PN for к may be leaders, but not for dart x.

Define the event

(4.3) „LI’k =  In is the j th leader, l á s á / !  +  l.

Notice that if l^ x S n + 1

This follows because, first, the left side of (4.4) has the same value by symmetry for 
anyx, lS x ^ n + l ,  and, second, the events “dart x hits /&” for 1 ^ х = и +  1 define 
a conditional partition of the universe given sL/&. If dart n + 1 bingos then dart n + 1 
hits some ICS uniquely and this event can be decomposed in terms of j lh leaders 
to yield from (4.4)
(4.5) P(dart n + 1 bingos at leader .v | irNtn+1,H IJN>n+1 for j  <  i) =

(4.1) r A(n2),n  + 1 , s  

r N(ni),n

(4.2) HPN,„+X for all j  -= i ~  HPN,n for all j  <  i

occurs.

XP(dart л + 1 hits I kN \ lPNt„+1, HIjN n+1 for j < i , f f i I kN) ^ — í—-Xconditionaln -j- 1
probability of at least s leaders.
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Put, for a moment, 7jy>n+1 =  W. Using a variation of the argument leading to
(1.8) we have

P(at least s leaders | IW ) á

S  P(W  and at least one other ICS are avoided by n darts | IW ) <

<  exp ( — ktt/N) c  (ji +  l)-1

provided N, n get large at an appropriate rate, e.g. N = n112. Thus

P(n +  1 bingos I IW ) <  (n +  l)-1

for large n when this rate holds. But it is seen that for fixed n the inequality remains 
valid when N  is taken larger (because, roughly, it becomes harder to bingo when 
sets get larger). At the rate given above, one also has

implying
P(HIJN,n+1 fo ry<  i \ IW )  -  1

P(n+  1 bingos I IW, HIJN'„+1 for j  <  /') <  (и+ 1)_1

at this rate, and again the inequality still holds for larger N  when n is fixed.
It follows that

(4.6)

P (IIN,n+1,H IN,„ for j  - i) — p(H P  for I -c i \ //• HP  for i -< i) — 57777 7777 f„r ; .  ;\ юг J <  M "N.n+i, ior —

=  1-P(dart и+1 bingos | I I ‘Nfn + 1, HIJNt„+1 for j  <  i) £  1 — 

Moreover,

1
n + l n + 1

( Л  1 \  P ( ^ N , n  +  l y  H P n , 4  f°r  j  ~ 0 _  p ( j l i  I j t i  i r j j  Í- ; л
(4-7) P(lPN,n,HlJN,n for j  <  i) -  1 tor J <  0

=  P(dart n+  1 avoids I ‘N) = 1 — -jt;

rS ( l - u 2) + 2 mA 
~ N ~

l - u 2 + 4u_
N = (> -“■) { ' + Ц Й

where the length of edge of an ICS =  m- — is such that 1^71^2 by virtue of the 
inequalities

2 „  1 1
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and we have set (1 — u2)~1=d as in Section 1. Now write

(4.8) rN<n+1 = Z  P (H kn+i, H lkn+i for j  <  i) =
i

P(IIkn+ i,H IJN'„ for j  <  0 P (IIk n+i,H Ii ,n +i for j  <  0 
T  for j  <  0 P(IIkn + l ,H Ik n  for J <  0

ХР(П кп, PtIjN,„ for J <  0 —

^  2  (1 -  K2) (l + ^ )  ( - ^ - )  for J <  i) =

\

where we have used (4.6) and (4.7). Since N= N (« i)=N(n)=n1+S«, by (2.1)

, Adu , 1 и +  1
1 + — S l + -  = ----------N  n n

for n sufficiently large, and so for such n (4.8) implies

Г|У(П1),п + 1 ... / j _  u2\ [ £ ± 1 ](4.9)
N(m),n

According to Lemma 2.1 we have

(4-10) r N(n2),n + l  — r N(m),n + l

and replacing in (4.9) gives (4.1).
Corollary 4.1. Let п2>пг and m> n with and n2~m. Then

(4.11) 5 s ( l-u 2r -n i— ]
ГА(П1),п v и >

for all sufficiently large m and n.
Case 1: m >n1. Let n ^ n .  For О ^ к ^ щ —n— 1

rrN M , n  + k + 1 ^  / j _  u 2\ ( n  +  k + 1 )
rNln,'l.n + k '  П -*r к J(4.12)
1 N(n{),n + к

by (4.8) and the relation N ^ ^ S N in  + k). Similarly, for n ^ j ^ m — 1
. . , 2

r N(j  + l ) , j1Ы±1_ S ( l _ M2) ÍZ+1] 
' n  ;  \  J  J(4.13)

r N ( j ) , j

where we again use (4.10). Multiply all the terms appearing in (4.12) and (4.13) to 
obtain a collapsing product, yielding

v2
r N(m), m

r N(ni),n
; (1 — u2)m~n
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and then (4.10) allows us to replace N(m) by N(n2) to get (4.11). If nv= n  we obtain 
the same result by multiplying the terms of the form (4.13) together.

Case 2: тШщ. For 0 = /:= m —/?— 1 we only have terms of the form (4.12), 
the product giving

r N(nj),m _  u 2y n - n  (  m

rJV(ni),n '  П

Again (4.10) allows us to replace N(nt) by N(n2) to get (4.11).

§5. Proof of main theorem

Let us set

Pn n2( l - u 2)n

T heorem  5.1. For each и there exists a number L, 0< L < c° (L depending upon 
u) such that
(5.1) lim pn = L.

/I—► 00

P roof. If the limit fails to  exist tw o subsequences {иг} and {mf} may be deter
mined so that we have by (1.1)

Pn, “*■ F-i, pm. -*■ L 2, 0 <  Lx <  L 2 <  °°.

Let £ be chosen so small that (1 — £)-1< — By Proposition (3.2) there is a subse- 
quence i„t with
(5.2) — —  >  1 -£  for all щ.

Without loss of generality it may be assumed that for each i. Thus
г'И(£и;, and so that Corollary 4.1 applies. Using (4.11) and (5.2) we have

(1
_Pms-----  3  s  (1 — lpyni~ni (ЛЬ.)
- e )  1P„l r N(in ) ,n , У « i  /

which implies

Let i —*• CO, We obtain
- ^ S ( l - e ) - 1.
Pn,

b .  == (1 — e)- i
A

h .
Li ’

a contradiction. This is true regardless of the fixed и chosen, 0 1 ,  and the proof 
is complete.
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§6. Related problems and applications

The random bombardment problem of this paper is one of a large class of bom
bardment and related covering problems well known in geometric probability; see [3] 
and [4] for discussions and further references. The one-dimensional analog of the 
square bombardment is treated in [3], p. 31, where the probability that n random 
points on an interval fall such that the largest interval between two adjacent points 
exceeds a fixed value и is calculated explicitly. More generally ([3], p. 28) the joint 
distribution of the length of intervals between adjacent points is obtained. From for
mula (2.38) of [3] it follows that the one-dimensional analog of (0.1) is

n-~ n(l —u)n
In this case, of course, we have an explicit expression for the error term.

The dual nature of bombardment and covering problems is striking in the one
dimensional case if we consider random arcs of length и on a unit circumference and 
ask for the probability that n such arcs completely cover the circumference. If each 
arc is determined by its most clockwise endpoint, these points determine n intervals 
whose joint distribution is that of the n intervals formed by n— 1 random points in 
an interval of unit length ([3], p. 33). In the case of a square this duality cannot be 
fully realized. If Q is the uXu square centered on the origin of the unit square S and 
Xt , X2, ..., Xn are the positions of the n random darts, then if the union of the squares 
Q+Xi does not cover S, each point у  in this uncovered region is such that Q +y 
is not hit by any of the darts. The only problem is that Q+y will not be entirely 
within S  if у  is too close to the edge of S. We obtain the duality when we consider a 
torus rather than a square as in the one-dimensional case where we consider a unit 
circumference rather than a unit interval. A solution to the problem when the duality 
is complete is given in [4].

Another related problem concerns n cylinders of a fixed length that strike a 
sphere at random and stand up perpendicularly from the surface. The cylinder throws 
a “shadow” on the sphere in the form of a circular cap. One is required to find the 
probability that the entire surface of the sphere is shaded. This problem has been 
used to model the attack of a virus by antibodies (see [3], p. 111 and [5], Chap. 4).

The problem treated in this paper is clearly applicable to a variety of detection 
problems. Here is a possible medical application. Suppose that cancer cells are dis
tributed at random throughout a region of tissue where the cells play the role of the 
darts and the region is S. A biopsy is performed, that is, a small sample of tissue is 
taken from S  for examination. The biopsy may be negative because the sample (or 
US) does not contain any cancer cells. p„ is then a measure of the sensitivity of the 
biopsy as a test for detecting disease (suggested by Professor Valerie Miké).
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GENERATING COTORSION THEORIES AND 
INJECTIVE CLASSES

H. P. GOETERS (Middletown)*

Several authors have studied injective classes of abelian groups, a problem pro
posed in [4] (Problem 46). Here we study ways of generating injective classes, and in 
the process, give characterizations of the cotorsion theories in the category TF.

1. TF will denote the category of all torsion-free abelian groups of finite rank 
and homomorphisms. The term group will mean a member of obj TF (unless speci
fied otherwise). In particular, an exact sequence 0—T —P —C^O  of groups, will 
mean A, B, CG obj TF. The symbols n, Z, Z p, Q and Z p will denote the set of primes, 
integers, integers localized at p, rationale and p-adic integers, respectively. If h, h 
7t—{0,1, 2, ...}U{°°}, we declare them equivalent provided Xp\h(p)—h'(p)|<°°. 
An equivalence class is called a type. Let 0 denote the type determined by the zero 
map, and ^  the type containing h where h{p)= °° for every p. An idempotent type 
is the type of a function h where h(p)—0 o r  oo. The support of a group G is defined 
as supp G= {plpGyíG}. Generally, the notation will be that of [4] and [5] or [1].

2. Cotorsion theories in TF. Cotorsion theories in s í i  (the category of all 
abelian groups) were studied in [7]. Here, we describe the cotorsion theories in TF.

D e f in it io n . An ordered pair (J*, ^ )  of classes of groups (in TF) is called a 
cotorsion theory if:

i) Ext(zf, F )= 0  for all and
ii) Ext (F, X ) = 0 for all X£<g implies FG

iii) Ext (A, F )= 0  for all A^IF  implies FG* .̂

Given a class H  of groups, we define the following classes. Let P(H) (dually, 
1(H)) be the class of all those groups F satisfying Ext (F, X)=0  (resp. Ext (X, F )=  0) 
for all X£H.

Clearly, (P(H ), IP(H )) and (PI(H ), 1(H)) are cotorsion theories. The former is 
called the cotorsion theory generated by H, and the latter, the cotorsion theory co
generated by H. Moreover, by observing that both I  and P reverse containment, if 
(J*, (é) is any cotorsion theory then (,F, ^ ) —(P(^), /P (<<i))=(P/(Jzr), I(&)). (Ge
nerally, we define a partial order “ s ” by (3F, <? ) ^ ( J 5'', 4P) iff or equi
valently, iff Under this relation, (SF, 4>)= (# '', # ') iff (ё= (в', or, iff

* This note is part o f my thesis, written while attending the University of Connecticut. I would 
like to extend my gratitude to my thesis advisor, William J. Wickless, for his help and guidance then 
and now.
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3F—S''.) Hence, we need only consider cotorsion theories (со) generated by classes 
of groups.

The next result is captured from the proof of Theorem 12 in [11]. Let Sein, 
and let t be a type. We will write t ~s0 if, for every h£t, ^

pts
Lemma 1. Let A, Y£TF. Then Ext (Y, A) = () iff O T(Y )~ s0 for S = s u p p T .

The proof is immediate from the proof of the above theorem so it is omitted; 
The next result is the dual to a result in [11].
Theorem 2. The cotorsion-freeclass P (H ) (generated by H ) is the class o f those 

groups Y for which OT(Y) ~supp/i0 for every A£H. The cotorsion closure o f H, 
IP(H), is the class o f those groups X  satisfying: X fJP(H ) iff
(* ) i f  t is a type with t ~suppX0 for every A£H then í~ supPxÖ-

Proof. Since Р (Я )=  f )  P({A}), the first statement follows directly from 
лен

Lemma 1.
Assume (* ) holds for a group X  and let YZP(H). By Lemma 1, O T(Y)~  

~supp.r0 for every A£H. Thus, by (* ), O T(Y)~sappX0, i.e. Ext (F, F ) = 0.
Since Y  was arbitrary, XfflP(H).

Conversely, let X£lP{H) and let t be a type with t~ supp̂ 0 for every A£H. 
If IF is a rank 1 group of type t, then by Lemma 1, W^P(H). Consequently, 
Ext (IF, A) =  0 and again invoking Lemma 1, we have that OT{W) = t ^ uppXQ. □

Given an ordered pair (#", F) of classes of groups, we can say that (J% (d) is 
a cotorsion theory iff

i) If Y£3P then Xe<£ iff O T (F)~suppX0 and
ii) If Хе%  then iff OT(Y) ~ suppX0.
Example 3. P({Z}) is the class of all (finite rank) free groups since supp Z= n  

and therefore OT(A)~sappZ0 iff OT(A)=0=IT(A) ([1] p. 15).
We can show that if Я  is a finite set then Y£IP(H) iff supp YQ  (J  supp X.

хен
This is not true if the set of isomorphism classes on H  is infinite, however, for let 
H ={Zp\pZn}. Then n c \J  supp Zp, but Z$IP(H).

P

Theorem 4. The class IP(H) is the class o f those groups Y satisfying:
i) supp Y Q (J supp X  and

x i H
ii) i f  C is an infinite subset o f supp Y, then there exists an X f H with supp XOC 

infinite.

fying
Since

Proof. Suppose supp Y  satisfies conditions i) and ii), and let r be a  type satis-
t 
t

suppxO for all XfM- For lift,  let C= {/j|/?€supp Y and h(p)X0}. 
su.ppxO, Cflsupp X  is finite for all XfJI. Thus C is finite. If p£C, then

— - - - ■ - Ö.pGsuppTf for some X£H. Therefore, /г(р)<°°, and consequently, t~ suppr 
Conversely, if Y£lP(H ) and C is an infinite subset of supp Y, let h(p)=

= {o Then M^upprÖ which implies [h] y-supp y Ö for some X fH . For
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this X, supp XC\C is infinite. If /?€supp Y, let t be the idempotent type with_sup- 
port=7i\{p} (г~л\ {р}0 and l(p)=  °°). Then / ^ suppy0 so that i ^ suppX0 for 
some X£Hv I.e. /»(EsuppX. □

If Я  is a class of groups, let K = {S ^n \X € H  with supp X= S}. For each S£K, 
let Xs be any subgroup of Q with supp X?= S. Then 1P(H)=IP({XS\S£K}) using 
Theorem 4. Hence, every cotorsion theory is generated by a set of rank 1 groups. This 
is analogous to the result proved in [7] about cotorsion theories in s i6 (the category 
of abelian groups).

In that paper, L. Salce asks for a characterization of all cotorsion theories in síó  
as well as answers several other unsolved problems. The questions have easy answers 
in TF. For instance: We say that a cotorsion theory (J% Yd) has enough injectives 
(projectives) if for any group G, there is an exact sequence 0->-G-+C-~X-+0 (-+C— 
-+X—b-+0) where C ^ Y  and He asks if all cotorsion theories in s i  6 have
enough injectives.

C o ro lla ry  5. Let 0->-A-+B->-C-+0 be an exact sequence. Then B flP(H ) 
(Я€Р(Я)) i f f  A ,c e iP (H )  (А ,с е Р (Ю ).

The proof follows from Theorems 2 and 4 and properties of Ext, after noting 
that ОТ(А)ШОТ(В) and supp CCsupp B.

As a consequence, we can see that no cotorsion theory in TF save (obj TtF, 2d), 
(2d= class of divisible groups) has enough projectives. Also, no cotorsion theory 
except (#", obj TF), (#"= class of free groups) has enough injectives.

However, questions about cotorsion theories in síó  are hard to answer if one 
renders judgement from the status of Whitehead’s conjecture (i.e. in síó, (P({Z}) is 
the class of all free groups). This is known to be independent of the ZFC axioms of 
set theory.

Let X  and C be groups. It is well known that X  is injective with respect to every 
exact sequence 0—A->-B^-C->-0 iff Ext (C, X)=0. Hence, if i  is the class of all 
exact sequences 0-+A-*B-*C'-*0 where C'£P(H), then the class of all groups 
injective with respect to each E<djd is just 1P(H), for any class of groups H. In 
this way, Я  generates the injective clas IP(H).

3. Some injective classes. We generate an injective class I'C(H) which, generally, 
is unequal to IP(H). Let C(H) be the class of these groups A such that for any pure 
embedding a: A-+B, В any group, each X^H  is injective with respect to 0-+A-L-B. 
For i  equal to the class of all exact sequences 0-+A-+B->-C-*-0 with AFC(H), let 
I'C(H) denote the class of all groups injective with respect to each ЕР_ё‘.

For each XdH, write X=D x@Rx where Dx is divisible and Rx reduced. 
For any exact sequence E 0-+А-+В-+С-+0, X  is injective with respect to E  iff Rx 
is. Hence if HR = class of all Rx, X£H  and HR^ {  0} then C(FI R) — C(H). Since if 
H contains only divisible groups, C (# )= ob j TF and I'C(H) is the class of all 
divisible groups, we will assume, without loss of generality, that Я  contains only 
reduced groups.

The following appears in the literature.

D e f in it io n . For a class of groups Я, let HL be the class of groups G satisfying 
Hom(X, G )=0 for all X£H, and dually, ±H the class of groups G satisfying
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Н от (G, Х) = 0 for all X fH . We will write Xх and XX  for {X}x and 1 {X} respec
tively.

We will show that XH=C(H) and (modulo divisible summands) (XH)X = 
=I'C(H). We need some results which were offered by W. Wickless.

P ro po sitio n  6 . Let R be a reduced group and let s and t be types with 
s < t. There are at most countable inany rank 2 subgroups U o f R, such that A® 
®Bt±U, with A and В both rank 1 pure subgroups o f R o f type S and U cohomogeneous 
o f type t (i.e. 0 A f  Horn (U, Q)=> type f(U )= t).

Before proving this we will recall the characterization of groups put forth in [3]. 
For the moment, let A = {a)* and B = (b )* and regard U as a subgroup of QU= 
= Qa®Qb. Let A0= {x£Qa\y£Qb with x+ydU } and B0= {ydQb\xdQa with 
x+ydU ). The following hold:

i) U /A ^B 0 under the isomorphism (x4-y)+ A-»Y
ii) U/BsíA0 under the isomorphism (x+ y)+ A —X  and

iii) U /A ® B ^A JA  under the isomorphism (x+ y)+ A ® B ^x+ A .
Conversely, given a rational vector space Qa®Qb and subgroups O xA ^  

^ A 0SQ a, OAB-XB^AOb with AJA=°BJA, then U= {(x,y)\0(x+A)—y+ B ) 
is a rank 2 group; A, В <\U and i)—iii) hold. Moreover, U is uniquely determined by 
the quintuple (A0, A, B0, В, в).

Suppose t—type A0 and j= type A with t>s. Let h0 and h be the height 
vector of a in A0 and A respectively. Define t—s=[h0—h]. We have that AJA = 

® Z{pha(-p)~h(p)), i.e. for k=h0—h £ t—s, A J A ss®  Z(pk(p>).
P P

Furthermore, End(®  Z(pfc(p))) is an uncountable group since t—sA 0.
p

This implies that there are uncountably many rank 2 groups U homogeneous of 
type s, cohomogeneous of type t (one fore each quintuple (A0, A, B0, В, в), 
6€Aut (AJA)).

P ro o f  of P r o po sitio n  6. Let A and В be pure rank 1 subgroups o f  type s 
and let h£t — s with U/A®B = (f) Z (p h(p>). We note that U jA® B^(A® B)JA® B,

p
the latter being a fixed torsion group of p-rank 1 for every p. Let / :  (A®B)JA®B~* 
-+Q/Z be a fixed embedding. Then f(U /A ® B )—Q) Z (p h(p>). Moreover, the tota-

P
lity of groups U' (as in the statement) is the set of all / _1(® Z (ph’{py)) where

p
h'dt—s. Since t—s is at most countable (any h 'd t—s is a rational multiple of h) 
and there are at most countably many pairs A and В with A, В <iR, the proposition 
follows. □

We make one further observation: it is a consequence that there are at most 
countably subgroups U of R, cohomogeneous of type t containing A ® В with type 
A = s= typeB  and A and В almost pure in R (i.e. (A )JA  and (B)JB  are finite). 

The next lemma is due to W. Wickless and is almost the dual to a result in [9].
Lemma 7. Let Y  be a reduced group. There is a rank 2 group A, homogeneous to 

type Ö, with Н о т  (A, T )= 0.
P ro o f . Let V be a rational vector space with basis {a, b). We construct A by
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defining its localizations Ap with Z pa®Zpb= A p Ŝ Qa®Qb. Let S = supp Y. By 
the hypothesis, SA&. If q$S  let Aq=Zpa®Zqb. Let p£S. There are uncountable 
many groups U with Zpa,Z pb<U, Z pa®Zpb ^ U ,  and U being cohomogeneous 
of type °° (see the discussion following Proposition 6). Let U be one such group. 
Write Yp=Dp®Rp where Dp is divisible and Rp is reduced. If O^/gHom (U, R)p, 
then /is  an embedding (since every factor of U is divisible). Also, since Rp is reduced, 
f ( Z pa) and f ( Z pb) are almost pure in Rp (iff (Z pa) were not almost pure, it would be 
divisible). By the remark after Proposition 6, Rp contains at most countably many 
groups/(17). Since there are uncountable many choices for U, there is a group U0 
with Zpa, Z pb ^ U 0, Zpa® Zpb= U0= Qa®Qb, U0 cohomogeneous of type ~  
and U0 is not isomorphic to any subgroup of Rp. Let Ap— U0.

Take A = f] A p. We will first show that Za, Zb<iA. If m y= na, write m —
P

= P‘‘... Pss. For each i, let y± = (PI1... P?‘... P /)  (where '  means that the z'th term is 
deleted). Since Z Pia<iAPi and P fy— na, yi=(n/p*‘)a£ZPia. But this says that 
p f‘ divides n. Since i was arbitrary, m\n and therefore y=(n/m)a£Za. Similarly 
ZfcoT, so that A is homogeneous of type 0.

Let /€H om  (A, Y). Consider / p£Hom (Ap, Y). By construction, f p(Ap) ^ D p 
for every p. It follows that f(A ) — f] f p(Ap)QC) Dp = 0. □

p p
If R= Q containing Z  consider A<S>R (A as above). Since A = A X Z  is a full 

subgroup of A<g)R and Horn (A<8>Z, Y )= 0 we must have Horn (A®R, Y )= 0. 
Hence, given any type t, there is a homogeneous, rank 2 group B, of type t with 
HomCB, T)=0.

We use this to get the following:
L emma 8. Let Y and A be groups, QAfd Horn (A, Y) and assume that Y is redu

ced. There exists a group C and a pure embedding i: A-+C so that f£ i*  (Hom(C, T)) 
(where i*: Hom(C, 7 )-H o m  (A, Y) by i*(g)=gi).

P roof. Pick a(ET\Ker/  and let i=type ( a ) # . Let В be a group which is 
homogeneous of type t and satisfies Н от (B, Y )—0. In particular, the diagram:
(1) 0 -► (a>+ —* В

f

Y
cannot be completed, where к is any pure embedding. Let C be the pushout of

0 -*■ (a>* —-  B,
1
A

where i is the inclusion map. We have the following commutative diagram:

0 - < » > ,—  - o
1 1 I

o -  A —  C-»C/gA 0.
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Since B/(d)^C/gA, g is a pure embedding. Also, any completion of

0 -*■ A —* C,
■I
У

would yield a completion of (1), which is impossible. □
We now invoke the assumption that H  contains only reduced groups.
T heorem  9. ±H=C(H).
P roof. “ 3 ” If Н от (А, У)=0 for every Y£H, then clearly Y is injective 

with respect to any embedding a: A-+B, for any YfH .
“g ” If A£C(H) and Y£H  is such that Horn (A, У )^0, then let 0 *  

^ /4  Horn (A, Y). Let C and i be as in Lemma 8. Then, the diagram

0 - A - ^ C
f

Y
cannot be completed, a contradiction. □

For instance, C({Z})= -‘-Z, the class of groups which have no free summands. 
While C({ö})=obj TF, and ±Q=0.

Th eorem  10. I f  Y is a reduced group then Y £l'C(H ) i f f  Y f f1!!)1.
The proof is analogous to the one above. If Y is reduced and X s Y  then 

Horn (A, I )S H o m  (A, Y). Consequently, if Y fl'C (H ), Horn (A, X)—0 for every 
A£C(H), which implies that Х£ГС(Н).

Generally, if Y is not divisible, write Y= D ® R  where R is reduced and nonzero. 
If YO 'C (H ) then R ^ H ) ^ .  Since (±Н )± П ±Н=0, R $ XH. Hence, there is an 
Xf_H with Horn (R, X )^ 0 ,  and consequently, Horn (У, X)?±0. In particular, if 
Я  is a set o f rank 1 groups, then there is a pure subgroup Я  of У of corank 1 and 
X^H  with type Y/K S type X.

C o r o l l a r y  11. I f  H is a set of rank 1 groups and Y is a group with O T(Y  
^type X fo r  some X£H, then Y^I'C(H ).

P ro o f . If  {yi-.y„} is a maximally linearly independent subset of У, let У;= 
= (у1...у{~-Уп>* and У(— У/У;- Then the map / :  У-*_®Уг; defined by f(a)=  
=  (а+Ух)®...®(а+У„) is a monomorphism. Since type Угё type A, wecan embed, 
® У; into X n. Since У is isomorphic to a subgroup of X", Y^I'C(H ). □

The converse is not true as Example 13 shows.
C o r o l l a r y  12. Let H  be a set o f rankl groups and Y a reduced group in I'C(H). 

I f Y  is a Butler group then O T (Y )^ type Aj V... V type Xn for some Xu  ..., A„f Я.
Pr o o f . Since У is a reduced Butler group there are subgroups Cx, ..., C„ of Q 

and a surjection / :  Cx® . . .®Си-«-У. Since each subgroup of У is in I'C(H),
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/(С()€/'С(Я). Hence, by Corollary 11, there exists X fH  with type Х,шtype/(C{) 
for i=  1, 2, ..., n. That means O T(Y)^O T(C 1®...(&Gn) = ' f  type C ^

i=i
— V type /(С;)з= V type A;. □

i=l i=l
E xam ple  13. Let X ^ Q  containing Z  and having type t, where t is any type 

such that there is a type s with 0< sä t,  supp s —n and r=t+s=~t. For example, 
if t is a nonzero type with supp t— n, take s—t. □

Let В be a rank 1 group of type s and A ^ B ,  a rank 1 group of type t with
вА/В sí XjZ  (because of the conditions on s and t, such a pair exists).

If Y  is any rank 2 group determined by the quintuple (А, В, X, Z, 0) then 
Y ( fxX )x . To see this we note that C £XX  implies C/K£XX  for any K*aC (gene
rally, XH  is closed under torsion free factors). We show that Y  has no subgroups 
other than 0 in XX  which will imply that Horn (С, У)=0 for every Cd XX.

If Y£R, R a rank 1 subgroup of Y, write y —(ß, b)£A®X. If 0, define 
/ :  RX  by f ( z ,x ) —x. Since f ( y )= b z 0 ,  Horn (R, X)Z0. If b — 0 then type (y)# =  
—s= ty p e B '^ t,  hence R can be imbedded in X.

If C ^ Y ,  rank C —2 let f :  C-*(C+A)/A be the natural map. Let g: Y/B = X  
and consider /gd Н о т  (C, A). Since C is rank 2, fgZO.

Thus, no subgroup of Y  is in XA, and consequently. Yd(xX )x . But O T(Y)— 
= r= s+ t> t. □

A type t satisfies the hypothesis of Example 13 iff t is not idempotent. If t is 
idempotent, then an analogous example cannot be found.

P ro po sitio n  14. Let X  be a subring o f Q. I f  G is a reduced rank 2 group then 
Gd(xA)x i f f  O T(G )^type X

P ro o f . Assume Gd(J A)x. Since G$XX, there is a pure subgroup В of G 
with G/В isomorphic to a subgroup of X.

Let a £ G \B  and A = (a \.  Let A' and В ' be rank 1 groups with A '/A ^B '/B . 
(See the remarks following Proposition 6.) It follows that type A' — type A = type B ' — 
type B.

Since G /B ^A ' and A, B ^(XX )X, type A ’, type A, type 5  =5type X. If 5 =  
=  supp X  then since type_ X  is idempotent, type A '—type A ~s0 and type i?~s0. 
Consequently, type 2T~S0 which implies that type 5 '^ type X. Thus, OT(G)~ 
=type 5 'Vtype A '^  type X.

The other implication is covered by Corollary 11. □

Let Я  be any class of reduced groups. For any groups A and B, An is a full sub
group of A ® В for n=rankü. Consequently, if A £XH, then A ® B £ XH for any 
B. In fact, every Cd XH is A ®B for some A and B.

There is a natural isomorphism between Horn (A ®B, F ) and Horn (A, 
Н о т (Д  Y)) (see [6] p. 37). If Х£ГС(Н), A £ XH  and В is any group, then 0=  
=  Н о т (A®B, X )ssН от (А, Н о т  (В, X)). Consequently, Н от (В, X)£l'C (H ) for 
any A d//C(Я) and any B. But Н о т  (В, X) does not necessarily fill out I'C (H ) 
as В and X  vary.
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P roposition  15. Let X  be a rank 1 group. There exists an M f ( x X)  with 
Mfk Н о т  (В, X) for any group B.

We refer to P. Warfield’s paper [8], where the following is found.
Corollary . I f  M  is any group and X  is rank 1, then there is a group В with 

M ^H om  (В, X) iff M  is locally free over R(M), R(M )=  R(X) and OT{M )=£ 
S  type X  (here, R (M) is the subring o f Q generated by 1 and 1/p for every p $ supp M).

Pro o f . Case 1: 7r\supp X=Q. From Example 13, we know there is a group G 
with but OT(G)>type X. Take this G as M.

Case 2: 7i\supp X ^ 0 .  Let p f  7t\supp X. There is no В with Н от (B, X ) ^ Z  
since R (Z )—Z Q Z pQ R(X). But Z  is a subgroup of X  so that Z f( xX )x . □

Assume each group in H  has no free summands. If one were so inclined, one 
could show (in an analogous manner) that the class H x is the class of groups U such 
that each X fH  is projective with respect to any surjection V — U-*0. Also,thatfor 
S, the class of all exact sequences 0-*-Ж— V-+U—0 with Uf Hx, X(HX) is the 
class of all groups projective with respect to each E f S  (modulo free summands). 
The following replaces Lemma 7 in the analogue. It is found in the paper [9].

Lemma. Let Y be a group and U and V  rank 1 groups with type U<  type V. 
There is a rank 2 group and a surjection H: G^-V such that

i) G is homogeneous o f type=type U,
ii) G is cohomogeneous o f type—type V,

iii) given any map f :  Y-+V, hf(Y) is not quasi-equal to V.
As this is not central to our theme, generating injective classes, we will refrain 

from further discussion of this.
4. Relations and applications. The following is a consequence of the results 

presented.
Lemma 16. ХН П Р (Н )= 0.

P roof. If A fP{H ) then ОТ (A) ~supX Ö for every Xf H.  This implies that 
O T(A )^IT(X ) for every X£H. Consequently, rank (Horn (A, T))=(rank A) ■ 
•(rankX) (see [8]), and thus Horn (A, X )A 0  for every X f  H. □

Hence Н от (C, X )—0— Ext (С, X) implies C =0 for any group X. (See [4] 
p. 225.) The dual statement НА П/ ( / / ) = 0 also holds.

By construction H Q rC (H )f)IP (H ). Moreover, let S’(H) be the class of all 
exact sequences E  in TF  relative to which each X fH  is injective. Let A  (S‘(H)) 
be the class of all groups Y  injective with respect to each EfS{H ). J(£'{H )) is 
called the injective class generated by H. (If A  (£(H j) can be determined for an arbit
rary class H, Problem 46 in [4] would be answered in TF). Since I'C(H) and IP(H) 
are both injective classes (generated by / / )  of smaller classes of exact sequence, a 
direct verification shows that У(£(Н ))^ГС(Н )Г\1Р(Н ).

P roposition  17. I f X  is a subring o f Q then A(£{{X})) is the class o f all R®D 
where R = X m and D ^ Q n for some integers m and n.
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P r o o f . Let /?€/,С({Аг})П/Р({А'}) be a reduced group. We will show, by in
duction on n= rank R, that R is quasi-isomorphic to X".

If n= \, then type Tintype X  by the remark preceding Corollary 11, and 
supp RQsupp X  by Theorem 4. But type .Retype X  implies that supp Rsssupp X. 
Hence supp R=supp X  and since X  has indempotent type, type R=type X.

Both classes, I'C (H ) and IP(H) are closed under quasi-isomorphisms. If Y  is 
quasi-isomorphic to C@B then Q Horn (A, Y) = 0  Horn (A, C)(BQ Horn (A, B). 
Also, supp T—supp CUsupp B. Hence Y f l ’C(H) (Y£lP(H)) iff C, B fJ'C (H ) 
(С, В€/Р(Я)).

Inductively, since R/'C({X}) there is a B<iR, of corank 1 with type R /B ^  
Stype X.

Choose a £R \B . Since R(IP({X}), so is (a)*, and therefore (я)*£/'С({Аг})П 
f)IP({X}). By the above, type (a)*=type X  and therefore type A=type (a)* =  
=type R/B. The last equality guarantees a quasi-splitting of 0—В ̂ R-+ R/B ̂ 0 . 
Since B(J'C{{X})P\1P{{X)), by the inductive hypothesis R is quasi-isomorphic 
to X \

Since the inner type and outer type are quasi-isomorphism invariant 
R ^X " . □

This proposition was originally proved in [10] using different techniques. Unfor
tunately, .f((j({X})) is properly contained in J'C ({X})ПIP{{X}) if X  is a rank 1 
group without idempotent type. As an example, let X  be the subgroup of Q generated 
by l/p for every p£n. Then Z ^ X  so that Z^I'C({X}). Also supp Z=supp X  
so that Z<9JP{{X}). But let G be a rank 2 group, homogeneous of type 0, and coho
mogen eous of type =  type X. Since OT(G)—type X, E: 0-+Z—G--X-+0 is in 
£({X}) (Proposition 1. 7, [10]). But Z  is not injective with respect to E  since Z  is not 
a summand of G.
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THE ORDER OF APPROXIMATION 
IN THE CENTRAL LIMIT THEOREM FOR RANDOM

SUMMATION

A. К RAJKA and Z. RYCHLIK (Lublin)

1. Introduction. Let {Xn, 1} be a sequence of independent random variables 
suchthat EX„ =  a„ and E (Xn — anf  = cr;; < n S l .  Let us put

s„= Zxk, An = 2 aki 4 = 2  4, «=!•
k = 1 fc=l k  =  l

In various fields of applications, e.g., in random walk problems, in sequential 
analysis, in the theory of Markov chains, in connection with Monte Carlo Methods 
and in the theory of queues (cf. [6]) one has to deal with a random summation index 
N„, n ^ l ,  instead of the constant summation index n.

Several authors (cf. e.g., [1], [12], [10], [3], [2], [5]) have investigated the asymptotic 
distribution SNn for n^-oo. For example, from the results of [2] or [5] we can derive 
the following

T heorem  1. Let {X,,, 1} be a sequence o f  independent random variables such
that EXn=an, o1 2X„ = gI<°°, n £ l ,  and let {Nn, 1} be a sequence of positive 
integer-valued random variables. I f  there exists a sequence {kn, n ^  1} o f positive 
integers such that kn-*■°° as and s%Js\n-^* к as n-+ °°, for some positive
random variable A, then (Sn—An)/s„ —► N (0, 1) implies

(1) ( \ - а „ ) /% Л  m o
and

(2) {SNn- A Nr)l>}l*skn̂  TV(0,1),

where N(0, 1) denotes a standard normal random variable with the distribution cp(x).

Now the question arises whether convergence orders are also available in (1) and
(2). For the case of a fixed summation index n this problem was solved by the theorem 
of Berry—Esséen and its generalizations. In the case when {Xn, « S 1} is a sequence 
of independent and identically distributed random variables the rate of convergence 
in (1) and (2) have been studied in [9], [8] and [4].

The purpose of this paper is to give the rate of convergence in (1) and (2) in the 
case when {Xn, n ^  1} is a sequence of independent random variables not necessarily 
identically distributed. This case has been considered in [14] and [13] but under much 
stronger assumptions on the random variables {Xn, я ё  1} as well as on the random 
variables {A„, n S 1}.
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2. Rate of convergence. Let

(3) Tn = max{fc: sf S  Aŝ }, s§ =  0, 
and

(4 )  A H( h )  =  2  ( M _ 1 / ( s l _ i  <  Я*2 ^  sÖ ,
k = l

where hk= L k+Bk and

=  s L 2 1 в д - а ;) 2/(|ЯГ; - а ;| ^  sk),
i = 1

в к = sfc- 3 2 ,£|лг,-в||»ад-в ,| < sk).
i=1

T h eo rem  2. L et {T ,,, и ̂  1} be a sequence o f independent random variables such 
that EXn = a„, E(Xn—a„)2—a^< °o, n ^ l ,  and let {N„, n ^  1} be a sequence o f 
positive integer-valued random variables. Assume {e„, n S  1} is a sequence with

(5) hl S  e„ -*■ 0 as a —

I f  there exist constants Cx an<i C2 sac/г i/iat

(6) ^ ( l4 n/ 4 „ - l |  >  Сге„) = 0(ej/2) 
and

(7) p ( 4 w  <  а д / 2) =  о й '2),
then
(8) sup |P(SW„-Af, <  xsT )-i»(x)| =  0(ej/2) 
and
(9) sup |Р(5^п- Л №п <  xs*n)-<p(x)| =  0(еУ2)

provided the positive random variable Я in (3) is independent o f {Xn, n ^ l} .
If, in addition, there exists a constant C0 such that <rk+iSk 1hk21̂ C 0, for every 

: 1 the ft
sup |P (5Wb- ^ Nii <  ^„Я 1/2)-ф (х )| =  0(ej/2).

We remark that in accordance with the result presented in [8] the assumption 
“Я is independent of {Xn, n ^  1}” can not, in general, be omitted.

Let G denote the class of functions g(x) satisfying the conditions:
(a) g(x) is nonnegative, even and non-descreasing on (0, °°) with lim g(x)=
(b) The function x/g(x) does not decrease on (0, °°).
Let us observe that for every function g£G, by (a),

Lk — 2  В Д - а ()2£(ЛГг- а г) / ( № - а ;| ^  s*)/s|g(s*),
1 = 1
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and, by (b),

Bk =5 J  E iX i- a t fg iX i - a m X i- a b  <  sk)/sig(sk).
1 =  1

Thus, for every g£G, we get

К  =  Lk+Bk Ш К =  2  E(Xt—ai)2g(Xi -  a,)/si g (sk)
i=l

and A„(h)sA„(h*), so that from Theorem 2 we immediately get

Theorem 3. Let {X„,n^ 1} be a sequence o f independent random variables such 
that EXk—0, o2Xk=ok and EXkg(Xk)< ■=<=, k ^ \ ,  for some function gdG, and let 
{N„, n ^ l}  be a sequence o f positive integer-valued random variables. Assume {e*, 

1} is a sequence with

К  = 2  EXk g (Xk)/s2 g (s„) =  E*V\ л £  1,
it=i

and s£-»-0 as n-*-°°. I f  (6) and (7) hold with {e*, nS l}  and {h * ,n ^  1} instead o f  
{e„ ,  /151} and {/i„,nSl}, respectively, then (8) and (9) hold with {e*, n ^  1}.

Let us observe that if {T„,nSl} is a sequence of independent and identically 
distributed random variables such that EXk= 0, EX \= \  and Е\Хк\г+6-< <=°, for 
some 0< <5̂  1, then Theorem 3 gives the results presented in [9], [8] (one dimensional 
case) and [4]. In this case, in Theorem 3, g(x)=  |x|á, Т„—[пЦ, s%n—N„,

К  = 2  E\Xk\2+íln1+s'2 = E \X ^ +llnsi \
k=l

so that the assumptions of Theorem 3 reduce to those given in [9], [8] and [4].
We would also like to mention that, in general, the bounds О (e*/2) and О (г*1/2) 

in Theorems 2 and 3, respectively, cannot be improved neither by assuming that 
P{\s%Js\n— 1|>C j £„)=0 nor by imposing that P{\s2NJs%n— 1|>0)=О(гУ2). This 
fact can be proved similarly as in [9].

Let us observe that condition (7) is always fulfilled if Я is bounded away from 
zero and the sequence {e„, wS 1} is nonincreasing and satisfies (5). Namely, if C2<  1 
is a constant such that P(A3/2< C 2) =  0, then by our assumptions

P{An(h) <  CJe'J*) == P (№  <  C2).

This inequality follows from the following relations. We have

P =  P(An(h) <  C2£ -^ )  = /  1 ( 2  K 11(4-1 <  xsl ё  si) <  C28„-1/a) dF fx),
0 k~1

where Fx is the distribution function of the random variable X. But the sequence 
{s2,n ^ l}  is nondecreasing, so that for every x > 0  there exists exactly one k= k(x)

Acta Mathematica Hungarica 51,1988
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such that Hence
со оо

р = /  <  C2e-'f*)dFx(x) =  /  7(й*-& <  Cie>-Vt; Sfc(x) S O M  +
О о

+ /  НК(х) <  C2e„-1/2; s*(x) <  s„)dF;.(x) =  Рг + Р,-
О

On the other hand sk(x)̂ s„  implies k(x)'^n  and, in consequence, skM^ e n. Thus, 
by (5),

I  (fin' ^ 2  h/i(x)  5 — *n) —  <  ^fc(x) 5 ^ft(x) — ^n) =

— f  (Xi '  ^fc(x) ? ^k(x) — ^n) - / ( e „  <  % ( x ) , ^'Ил') — En)  b ,

so that P1=0. Furthermore for the sake of simplicity we may and do assume 
EXk= 0, f c s l .  Then, taking into account (5), we get

P2 =  /  Д е»/2 <  C2hk(x); skM <  sn)dFx(x) s

«X)
^ /  f(£y2 < c 2 { 2  /(1 1̂ S  Sj/ÍW+ [*«.) + .2  EXf ■

0 i_1 ,==1
• I(sHx) =S I X[\ <  J„)/sI(x)]}, sk(x) <  s„) dFA(x) =S
00 fc(jc)

s  /  / ( ^ /2< c 2{L„x-1+[i?*(x)+ 2  
0 l~1

— I îl <  s„)/sf(X)]}, sk(x) <  s„) c/F;.(x) sä f  7(eJ/2 - С^А.-х^ + Д.х-3/*}) dFA(x) =S
0

^  /  /(£y2 <  C2hnx~312) dFx(pc) + I  Key2 <  C2h„x^)dFx{x) ^
0 1 

1 00
=ä /  7(x3/2 <  C2) dFx(x) + f  I(x  <  C2)dFx(x) = P(A3/2 < C2) + 0.

(> 1
3. Proof of Theorem 2. Without loss of generality we may and do assume that 

EXk= 0, 1. Let S'j-n =  Z1+ ... + Л'Гп, where T0=0. Then using the fact that A
is independent of {X „ ,n^  1} we get

( 10) |P(SVn <  xs T n )  - cp(x)| = I 2  P (Tn =  k)(P(Sk <  xSf^) (p(x))I S

P(An(h) <  CJ#*)+  2  P(Tn = Л)|Р(5к < Jcs*)-9(*)l-
k£D„

Here and in what follows,
Dn = {k: hk ^  £v2/C2}.
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But by Theorem 8 [11, p. 148], there exists an absolute constant C such that for every 
i t s  1
(11) sup IP(Sk <  xst)-<jo(x)| ^  Chk,

X

so that by (10), (7) and (11)
(12) sup |T(SY <  xsT „)-<р(х)| =  О (el12).

X

Let
/„ =  {/c S I : |sf-s|.J — C 1ens \ J .

Then, according to (6),
(13) P(NAI„) = 0(elП  
Let us put

A„(x) = [max Sk <  xsrJ , B,.(x) = [min Sk <  xsT ].
k £ I n "  k a „

Then, by (13), we get

(14) Р(Тй(х))-0(е£/2) =s P(SNn <  xsTn) S  P{Bn(x)) + 0(e)J%

On the other hand

(15) P{An(x)) ^  P(STn <  xsTn) S  P(P„(x)), 

so that (12), (14) and (15) yield

(16) sup |Р(5*п <  xsTn)-<p(x)\ =  sup [P(Bn(x))~P(An(x))] + 0(el12).

Thus (16) yields (8) if it is shown that

(17) sup (P(Bn(x)) -  P{A„(x))) = О(e]12).

But (17) is bounded from above by

(18) P(A„(h) <  C2/sl12) + sup 2  p (Tn = k)(p (. mm S', <  xsk) -

— P( max S: <  xsT),
T е ц к ,  и> '  '

where I  (к, n) = {i: s |(l — Cke„) ^  sf S  sKl + Qe,,)}. Furthermore, for every
p£l(k, n) we have
(19) P( min S', <  xs*)-P( max S, <  xs*) =i6 /(fc,«) * € I(k, n)

=P( min S, <  Xife =S S )  +  P(Sp < xs* ^  max S’,).
i£ l(k ,n)  * 1 *6 /(ft,«)

At first we prove that

(20) sup PCSp < xsk =£ max S',) = 0(ej/2).
X / € /(fc, n)
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Let us put p(k, n)=p=m in {*: i£l(k,n)} and q(k, п)=д=тих {г: it I  (к, n)}, 
and let P„ denote the distribution of X„. Then using Fubini’s theorem and Theorem 8 
[11, p. 148] we get

P(Sp xsk Ш max S:)
* p S i S 4  ‘'

zq): 2  zt xsk = max У. zA = 
K P ^ i ^ q  f t Í  '

= / 'p 1*...*Pp{(z1, zp): xs jsp-  max . 2  zjsp  SJ v * p^j^q i=p+i r
p

= 2 Ф р  <  xsk/Sp}dPp+1* ...*P q(zp+1, ..., zq) si 
1 =  1

— Chp+ f  I(p(xsk/sp)-cp(xsk/ s p -  max 2" ^/5р)|^Рр+1*...*Рв(гр+1, •••> z«) -
P—J —® i = p+l

Si Chp + E( max |S, -  Sp|)/sp.P^j^q
Furthermore, hp= Lp+Bp,

Bp si 2U V sp)3 si P , ( l - C l£n) - 3/2,
and

L P =  5 - 2 2  £ X ? / ( l * i l  S  s t ) + s p- 2 2  ^ i 2 / ( S p  S  |L ,. | <  s* )

^ L , ( s , / Sp)2 +  5 t ( s J s p)3 S L k( l +  - C l£„ ) - 3/2,
so that

hp =  2 ^ (1  — Cl£„)-3/2.

On the other hand, by Holder’s inequality, and then by Doob’s one [7 p. 15]
E( max \Sj—Sp\)/sp si (E(Sq- S pY)^l2sp s= (2Cl£„ ) ^ /2 ( l - Q O 1/'2 = а д 2).

Thus (20) is proved. Similarly we prove that P( min )Si<x5JtS S p)= 0 (£y2). In
fact it is enough to replace in (20) X; by — T;. Hence (18), (19) and (20) give (17) 
what proves (8). On the other hand, by (6),

P (IW srn- i |  >  (Qe„)1/2) ^  т (14„/4„- Ч >  =  O f f l ,
so that (9) follows from (8) and Lemma 10 [9]. The last assertion of Theorem 2 is 
also a consequence of Lemma 10 [9], (7) and (8). Namely, if ak+1sk 1hkf 1S C 0, 
icssl, then

p( l № 2o i/a- i l  >  с 0с 2а д 2) S p(i;.s2/.4„-i| s  c2c2- 2o  =
=  P ( K - s h  S  Co2C2- 2£ns20  =

— 2  — sk+ C 2C2 2e„s| ,  s2 =  As2 < sk+1) s i
k = l

=  2  №  — T +1 C2 2 E„, Sk S i As2 s2+1) Si p(d„(/t) <  а д 2) = а д 2).
k = l
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К ТЕОРИИ ИНТЕРПОЛЯЦИИ С ГРАНИЧНЫМИ 
УСЛОВИЯМИ

Д . Л. БЕРМАН (Ленинград)

1. Обозначим через С множество всех функций, непрерывных в [—1, 1]. 
Пусть задана матрица чисел
(М) {х£в)}, fc =  1,2, п, п = 1, 2, —1 <  х<в) <  x<ü\ <  ... <  х1(п) <  1
и пусть Hn( f , x ) — полином степени 2п — 1, однозначно определяющийся из 
условий

(1) Яяа 4 я))= /(4 И)), K i f ,  4°) = о, к = 1, 2, ...,«.
Классическая теорема Л. Фейера [1] утверждает, что если п-я строчка матрицы 
(М) состоит из чисел

(2) 4 Я) =  cos <2fc-2^1 — , к =  1,2,..., п,

то для любой / € С выполняется равномерно в [—1, 1] соотношение
(3) Hn(f, х) -  f(x ), п -  со.
Рассмотрим полином Fn(f, х) степени 2и +  3, который однозначно определя
ется из условий

тп(/,4',)) = / ( 4 п)Х K ( f  4 п>) = о, k = 1,2,..., и
и из граничных условий F„(/, ± 1 )= /(± 1 ), F '( /,  ±1)=0. Оказалось, что про
цесс {Т„(/, х)}, построенный для /(х )= |х | при узлах (2), расходится в точке 
х=0, [2—3]. В [4] было доказано, что он расходится всюду в (—1, 1). Такое же 
утверждение имеет место для /(х )= х 2 и для f(x )= x  при х^О  [5—6]. Все 
эти результаты являются неожиданными, если учесть результат Л. Фейера (3).

Рассмотрим процесс {Qn(f, х)}, где полином (?„(/, х) степени 2и+1, одно
значно определяется из «внутренних» условий

Qn(f, 4°) -  /(4°), Q'nif, 4 п)) = о
и из граничных условий Q„(f, 1)= /(1), Q'„( /, 1)=0. Известно [7], что при узлах
(2) процесс {Q„(/, х)}, построенный для /(х )= х 2, расходится всюду в [—1, 1). 
В связи с указанными фактами естественно поставить следующую задачу. 
Пусть Pn,q(f, х) алгебраический полином степени 2n+q, который однозначно 
определяется из «внутренних» условий

xí">) = /(х<">), P'n,q( f  х<») =  0, к =  1, 2, ..., n,

%
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и из граничных условий P„,q(f, 1)=/(1), Pi%(f, 1) =  0, s= \,2 ,.. .,q ,  где 
/6  С. Требуется определить для каких функций сходится интерполяционный 
процесс {P„,q(f, х)}? Аналогичные задачи могут быть поставлены для левого 
конца отрезка [—1,1] и для обоих концов отрезка [—1, 1]. В данной статье 
будет рассмотрен только тот случай, когда граничные условия относятся к 
правому концу отрезка [— 1, 1]. Для процесса {Qn(f, х)} эта задача изучалась в
[15] и [16], то есть она изучалась для q=  1. Здесь будет рассмотрен случай про
извольного натурального q.

2. Пусть Р„,г(/, х) обозначает полином степени 2n + i, однозначно Опре
деляющийся из условий

(4) pn,i(f *£">) = Я*£>); P M  4"J) = o, к = i , «;
Л,it/; !)= /(!);  PHHf, 1) =  0, j =  1,2, ...,/.

Л ем м а 1. Пусть полиномы Pn>i и Р„,,+1 построены для п-ой строчки мат
рицы (М). Тогда

(5)
Pn,i + l ( f  x)-Pn,i(f’ Х)

ü)2„(x) ( x - l ) ,+1
< (\)  0+1)! P i T 4 f ,  1), OJ„(x) = lJ ( x - x (kn)).

4=1

Д оказательство . Из определения полиномов РпЛ и Р„>1+1 следует, что

(6) Pn,i+i(f, x)-P„'i(f, х) =  Л1ш Д х )(х -1 ) ;+1

где постоянное Аг определяется из равенства

(7) - P i t t e d ,  1) = Л К ( х ) ( х - 1 У + ^ ] ^ ) .
Очевидно, что из (6) и (7) следует (5).

Т еорем а 1. Для любой f£C  выполняется равенство

( 8)

P£t1}( f  1) =  0 + 1 ) ! ( i  hP ( i ) + ( i + 1) i  f j r i i y i ?  Hin)0 ) ] 2) .
где

l(A(x) con(x)
( x - x A ) < ( x (kn)) fc*°(x) =  4 B)(x)[iin)(x)]2, con(x) =  JJ(x-xjin)),

(9) 4 n)(* ) =  (*4л)-x)oj"(x(kn)){A(x<kny))~1 +  I •

Д оказательство . Найдем полином х) по интерполяционной фор
муле Эрмита [8]. По этой формуле, исходя из условий (4), получим, что

1 }(i) 
-0>«(x)il ’

где А (х) =  col (х) (х —1),+1 и {</>(х)}!ф есть частная сумма разложения функции 
ср{х) в ряд Тейлора около точки хг до степени (х—хг)5 включительно. После

Acta Mathematica Hungarica 51, 1988



К  ТЕОРИИ И Н Т Е РП О Л Я Ц И И  С ГРА Н И Ч Н Ы М И  У СЛОВИЯМ И 119

простых вычислений получим, что

f ( x - x k)2]
Г  - 1 Í{ A(x) J

°>'п(хк)
<(*к)

( Х - Х к)

Поэтому из (10) выводим, что

(11) />„.,(/, х) = 2  í ^ r ]  +1f ( x M x ) H i  + 1) i  Í - J 4 )  +1 f(x k)H(x) +
k = 1 V — 1 /  fc=i V X k  —  1 /

+/(i)ffl!W

Продифференцируем (11) (i +  l) раз и положим x —l, тогда имеем

( 12) p i T 4 f ,  í) =  o -м)! í 4. / f a )
(** -i)i+1 ^* (l)+ 0 + l)

n

2

fc =  l

f(x k)
(* » -l )i+1

(■+1)

X = 1
Положим в (12) /(jt) =  l. В силу единственности полинома Pn>i имеем, что 
в этом случае P„,i(f, Jt) =  l. Поэтому Ph\tk)if ,  *)=0. Отсюда и из (12) вытекает, 
что

Г f  1 l (i)l (i+1)

(1з) к м Ы , ] , „ - 0  + 1)! ( ÍVfc = i
Ki о

( ^ - i y +l + 0  + 1)
n

2
k=l

Ili i) )
(*4- i ) ,+1J*

Из (12) и (13) следует (8).
Будем говорить, что матрица узлов (М) обладает свойством (F), если вы

полняются условия:

1) M ")( l)s0 ,fe =  1, я =  1 ,2 ,...; 2) lim Í4">/ií">(l) =  l;/1-00 t = l

3) 2 [ /< "> (1 )]^ С ,л =  1 ,2 ,...,
ifc=i

где постоянное С > 0 не зависит от «.
Л ем ма 2. Пусть матрица узлов (М ) обладает свойством (F) и пусть 

/ (‘+1)(х) непрерывна в [—1,1]. Тогда, если f '{ \ )—f" ( \ )  = ...= f{i+1'>(\)= 0 , то

lim P<ttl4 f  1) -  О, 1 = 0 ,1 ,. . . .
П-*-оо

Д оказательство . Согласно теореме 1 достаточно доказать, что правая 
часть из равенства (8) стремится к нулю, когда Рассмотрим только вто
рую сумму из правой части равенства (8), ибо первая сумма из (8) рассматри
вается аналогично. Так как / '(1 )= /" (1 )= ... = / w(l)= 0 , то

/(**) - л о + ^ Л г * * - 11* 1’ Хк<Ск<  L
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Поэтому
=  1) ,2(] 1

qn~ Á ( x k- l ) i + l k { )  ( i + l ) ! Ä2 f (i+1)(ck)IK  1).

По условию /< ‘+1)(1)=0. Следовательно,

Чп =  i ( / (i+1)( 0 - / (i+1>(D)/i(i).

Так как / (,+1)(л:) непрерывна в [—1. 1], то по е> 0 найдется <5>0 такое, что 
| / (,+1)( 1 ) - / (,+1)(^)1<е, если 1— ск<5. Поэтому

Е » 211 / + + 1 )[|

где | | / (t+1)|| =  max  ̂| / (1+1)(х)|. При этом учтено, что из хк <  1 следует, что

1 — 1 —xk. По условию теоремы 2  Ukn)(l)]2SC , n= 1, 2, .fc—1
водим, что

(14) Се 2 ||/(‘+1>|| ^  
Ш ~  0  +  1)! + (1+1)!

Из тождества

х = 2  xkhk(x)+ 2  ( x - x k)ll(x)
к= 1 к = 1

следует, что

(15) 2  (1 -* * )£ 0 ) = 1 - 2  xkhk(l).
к=1 k = l

Из условия 2) матрицы узлов, обладающей свойством (F) и
ЧТО

(16) lim 2?(1-х£°)[/£°(1)]а =  0.
л- ° °  t = i

Так как

2  [ r c o p s j i o - x ^ t r o ) ] 2,1 ~хк>5 О к=1

то из (16) следует, что

lim 2  № °(I)]2 -  0.и—“

Отсюда и из (14) выводим, что q„-»0, п-+<=°. 
Теперь можно доказать следующую теорему
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Теорема 2. Пусть матрица узлов (М) удовлетворяет условиям:

1) hj,n)(x) £= 0, |х| =  1, к = 1 ,. . . ,п ,  п =  1 ,2 ,—;

2) lim 2  (Лп}УНп)(х) = х \  i = 1, 2.t=i

3) i[/í"> (i)]2s c ,

где постоянное С > 0  не зависит от п.
4) выполняется неравенство |со„(Х)| sC|co„(l)|, |х| S 1, где С > 0 — коне-

п
танта и тп (х) = JJ (х—х ^ ) .

Пусть / (1)(x) непрерывна в Г—1, 1]. Тогда, если /'(1)= /"(1) = ... = / (i)(]) =  0, 
т о  равномерно в [ — 1, 1] выполняется соотношение

Р„,М, Х) -  /(У), Я -  со, i =  0, 1, ....

Д оказательство . Доказательство будем вести по индукции. Установим 
сперва справедливость теоремы при i=0 и /= 1 . Известно [9], что полином 
//„ (/, х), который однозначно определяется из условий (1) может быть предс
тавлен в виде

#„(/, х) = 2  f(Xkn))K n)(x),
k =1

где hin4x) определяется согласно (9). Поэтому из условия 1) теоремы 2 следует, 
что оператор Н М , х) — положительный. Стало быть, в силу условия 2) теоремып
2 и равенства 2  А*0(*) = !> согласно теореме П. П. Коровкина [10],заключал а
ем, что для любой /€  С выполняется равномерно в [—1,1] соотношение 

(17) Н М , х)-* f(x), Л - о о .

В соответствии с принятыми нами обозначениями полином Р„_0(/, х) степени 
2п и однозначно определяется из условий P,u0( f  xk)= f(xk), P'n,o(f, **)=0, k — 1, ..., n, P „ M , 1)=/(1)- Поэтому

Pn,M , x ) - H M  x) = - ||y -  ( f ( l ) -H M ,  I))-

Отсюда и из условия 4) теоремы 2 выводим, что

\Рп,М , х ) - н м , х)\ == c \ f ( \ ) - H M ,  1)1, W si.
Следовательно, из (17) вытекает, что для любой /£ С  выполняется равномерно 
в [—1,1] соотношение

Ря,М > х ) f{x), л — о°.
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При г'=0 равенство (5) принимает вид:

(18)

Очевидно, что матрица узлов из теоремы 2 обладает свойством (F). Стало быть, 
применима лемма 2. То есть lim Р'„ 0( / ,  1)=0. Поэтому из условия 4) теоремы
2 и из (18) следует, что для любой /£ С  выполняется равномерно в [—1,1] 
соотношение Рп г(/, х)-»Дх), и—<». Итак, теорема 2 доказана для г'=0 и для 
.1= 1.

Пусть теорема 2 справедлива при i=m. Докажем, что она справедлива и 
при г '= т  +  1. Согласно лемме 1

По условию / ,(1 )= /,/(1) =  ... = / (т+1)(1)=0. Поэтому согласно лемме 2 
lim Р ^ +1)(/> 1)=0. Отсюда и из (19) заключаем, что из равномерной сходи-
мости в [— 1, 1] процесса {Р„,т (/, х)} следует равномерная сходимость в [—1,1] 
процесса {Р„, т+1(/, х) }.

3. Пусть п-я строчка матрицы (М) состоит из корней полинома ш„(х) =
=  И  (х — х (кп)). Согласно Л. Фейеру (9] матрица узлов (М) называется о-нор-
мальной, если существует такое число q >0, что всюду в [—1,1] выполняется 
неравенство »̂ п)(х )> е> 0 , к=1, п=1,2, ...,где v(kn>(x) определяется согласно
(9). Л. Фейер [9] доказал, что, если матрица (М) состоит из корней полиномов 
Якоби J„(Xn’ßn\x ), где — 1 -<«„,/?„< —у < 0 , й= 1, 2 ,..., а у — сколь угодно малое 
фиксированное число, то она g-нормальная.

Г. Грюнвальд [11] доказал, что при g-нормальной матрице узлов (М) 
для любой f£C  выполняется в [—1,1] равномерно соотношение //„(/, х)-» 
-*/(х), Поэтому из теоремы 2 вытекает

Т еорем а 3. Пусть интерполяционный процесс {Р„.г(/,х)} построен для 
Q-нормальной матрицы узлов (М), удовлетворяющей условию 4) из теоремы 2. 
Пусть / (,)(х) непрерывна в [—1, I] и / ,(1 )= ///(1 )= . ..= /(,)(1)=0. Тогда процесс 

х)} удовлетворяет равномерно в [—1,1] соотношению

Теорема 3 позволяет изучить поведение интерполяционного процесса 
{Pn,i(f, х)}, построенного при ультрасферических узлах. Имеет место

Применим к (5) условие 4) из теоремы 2, тогда получим, что

(19)

П

Рп, .■(/. X) -Д х ) ,  п -  i = 0, 1, 2 ,....
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Теорема 4. Пусть п-я строчка матрицы (М) состоит из корней ультра- 
сферических полиномов J jx\ х), где

(20) -у = 5 < х < 0 .

Пусть /Щ х) непрерывна в [—1, 1] и f'(X )= f"{\)= ...= f^ l\ l ) —0. Тогда процесс 
{P„ti(f,x )}  удовлетворяет равномерно в [—1,1] соотношению РПуг(/, л:)—/(У), 

/= 0 ,1 ,....

Д оказательство . Теорема 4 следует из теоремы 3, ибо при выполнении 
(20) матрица узлов (М) ^-нормальная (Л. Фейер [9]). Выполняется условие 3)

" 1из теоремы 2, ибо согласно [9] при (20) — 1/2<а<0, ^ / |( 1 )  S -----. Усло-
к=1 <*■

вие 4) из теоремы 2 также выполняется, ибо известно [12], что при ,

1Л(а)(*)1 ?£ |/„(e)(l)|, W S 1 ,  п = 1 , 2 .......

В связи с этой теоремой возникает вопрос о поведении процесса {P„}i(f, х)},
когда неравенство (20) заменяется условием а€(—1, °°)\^—у ,  oj. Возможно,
что для решения этого вопроса будут полезны исследования J. Szabados [13] и 
Р. Vértesi [15, 17]. В заключение выражаю благодарность рецензенту за внима
ние к моей работе.
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HYPERSTONEAN COVER AND SECOND 
DUAL EXTENSION

V. K. ZAHAROV (Leningrad)

Introduction

It is known in functional analysis that the most remarkable extension of the 
family C (S ) of all continuous functions on a compact space S  is the second dual 
C(S)". The second dual was extensively investigated as a vector-lattice extension of 
C(S) ([1]—[13]) and as a ring extension of C (S) allotted by Arens product ([8]—[10],
[13], [14]—[20]). However the natural question, what properties distinguish the se
cond dual extension C (S)" among all other extensions of C(S), had no answer.

In this connection the following problems arise: first to select some categories 
connected with the second dual extension, secondly to select characteristic properties 
of this extension within the scope of these categories and thirdly to prove that the 
selected properties characterize this extension in these categories.

The paper is devoted to a solution of the mentioned problems. Two new cate
gories of extensions of the family C (S ) are introduced: the category of vector-lattice 
extensions inheriting Lebesgue decomposition and the category of C-ring extensions 
inheriting Lebesgue decomposition. A series of properties is introduced for objects of 
the given categories.

In order to prove that the chosen properties characterize the second dual exten
sion it was required to characterize the hyperstonean cover of S, which is defined in 
the following way: the lattice algebra C(S)" is isomorphic to a lattice algebra C(R) 
for some compact R and the natural imbedding и: C (S )^C (S )"  generates a sur
jective continuous mapping q \ R-»S. The space R with this mapping is called the 
hyperstonean cover o f S. This cover was considered in the papers [16], [18], [4], [5],
[21], [8]—[12], [22]—[29]. As far as the hyperstonean cover is defined in non-topologi- 
cal terms and at the same time is a topological invariant, at the IVth Prague Con
ference in 1976 the following problem was set up by J. Flachsmeyer ([21]): “Is there 
a nice topological descriptive characterization of the hyperstonean cover induced by 
the second functional dual of C(S)? This question is far from being answered.” The 
second section of the paper is devoted to a solution of this problem. For this purpose 
a new topological category of perfect preimages lifting Kelley covering and some new 
topological properties of objects of this category are introduced. And within the scope 
of this category some descriptive topological characterization of the hyperstonean 
cover is given (see also [29]).

Finally with the help of this result some vector-lattice and C-ring characteriza
tions of the second dual extension are given (see also [30]). Note that these charac
terizations are formulated in terms of the space S  only without using measures on S 
and real numbers, although it has been noted in ([10], p. 234) that there is no hope for 
such description of C(S)".

In the given paper a detailed account of the mentioned results is represented
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(Theorems 1—3). The account is led at once for a general case of a completely regular 
space. As far as in this case the notion of the second dual and the definition of the 
hyperstonean cover require additional more precise definitions, they are transferred 
to the introductions to each section.

We shall adhere the terminology accepted in the books [31]—[37].
The author expresses his profound gratitude to Á. Császár, E. Makai, A. V. 

Mihalev and V. I. Ponomarev for their help during fulfilling this work at the time of 
the author’s staying in the Budapest L. Eötvös University and in the Moscow Uni
versity in 1983—84.

§1. Basic categories and properties

1.1. Kelley ideals

Let T  be a completely regular space and # (T )  the field of all subsets of T.
1.1.1. A subset E  of T  will be called a Ka-set if E — U Fk for some sequence of 

compact subsets Fk. The set of all the /^-subsets of T  will be denoted by Ж„{Т).
A e-ideal N  in (P(T) will be called regular (or more exactly compactly regular) 

if the following conditions are fulfilled:
a) for any P(LN there exists a sequence of open sets Gk such that P c  f\Gk(( /V;
b) for any open set G in T  there exists a K„ -set E cG  such that G \E £ N ;
c) for any K„-set E  there exists a disjoint K„-set E' such that T\(E{JE ')£N .

1.1.2. Let 28 be some subset of (PIT) and {Bp\p^m }  a finite sequence of ele
ments of St. The number

bvi-Sp} =  max j-Jj-131 ^  px < . . .< p, m(Bn C\...C\BPl$ iV)j

will be called the intersection number of the sequence {Bp} with respect to the ideal N.
We shall say that (M has a nonzero intersection number with respect to N  if iN {В.}ё—r
for some natural number r and any finite sequence {Bp} in (Ш.

A regular rr-idcal N  will be called Kelley ideal if ,tf'a( T ) \N  is the union of a 
sequence of subsets ЛГк, which satisfy the following conditions:

a) if E^Jif and E'£3f„(T) is equivalent to E  with respect to N, then E'£Jfk;
b) every Жк has a nonzero intersection number with respect to N;
c) if {Ek\k< + °°} is an increasing sequence in : f„ (T )\N  and UEk£3fm 

then Е^аХщ for some k0.

1.1.3. Let (M(T) be the u-field of all Borel subsets of T. Let v be a Radon mea
sure on T, i.e. a bounded countably additive real-valued function v on the field 
:B(T) such that vB=sup {vK\K<zB & К is compact} for any Borel set B. The set 
of all Radon measures on T  will be denoted by M (T). Let n=  {//fM(P)|/i<scv<Kv} 
be the class of all measures coabsolutely continuous with measure v and let J i(T )  
be the set of all such classes.
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Lemma. For any Kelley ideal N there exists a measure vf_M(T) such that 
N — {P^^(T)\3B£äS(T)(Pc:B  & vB=0)}. The mapping (: N^—n is a bijection bet
ween jV~(T) and

Proof. Let v be a measure, N0={B£ä8(T)\vB=0) the corresponding ideal and 
v a strictly positive cr-additive measure on the Boolean algebra d8N(T)=t%(T)/N0, 
resp. According to Kelley’s criterion (see [38] or [37], §. 42), ^ ( Г ) \{ 0 }  is a union 
of some sequence of subsets Sk satisfying the Kelley conditions:

a) any gk has a nonzero intersection number, i.e.

i{B„} = m ax{-^-P l S P i  ^  m(Bn A...ABp, ^  0)J a  -I

for some natural number r—r(k) and any finite sequence {Bp\p^m }  in Sk\_
b) _if 4- <=»} is an increasing sequence in J fiv(7’)\{0} and sup BpdSk 

then Bpo£gk for some p0.
Consider the cr-ideal N={P£0>(T)\3B£NO (PczB)}. It is clear that A is regular. 

Let Жк = {ЕаЖ„(Т)\Е££к}. Then Jfa(T )\N =  UX k and every Жк satisfies the 
conditions from the definition of Kelley ideals. Hence N  is a Kelley ideal.

Conversely, let A be a Kelley ideal. Then $Ta(T )\N =  0Жк and Жк satisfy the 
conditions from the definition of Kelley ideals. Let i%k = {B(i@l(T)\3E£Жк (Ec^B & 
5 \F £A )} . Consider the set Л (Т , N)={P{JE\PeN & Е€Ж„(Т)}. Then Jt(T , N) 
is a e-field. In fact, for E there is a disjoint K„-set E ’ such that P '= T \(E (JE ')(iN . 
Let E '—{JFk and PczO G ^N . Consider the sets Fki = Fk\G i ,  Q = (P '\P )U 
U((nGfc\ P ) n £ )  and B '= \J \J  FkiUQ. Then B 'U B = T  and В 'ПЯ=0, i.e.

к i
B ' is the complement to the set B = E  U P. Besides Jt(T , N ) is closed under coun
table unions. Since Л (T, N ) contains all open sets and is a cr-field we conclude that 

(T, N). Therefore for any B£38(T) there exists a Ka-set EczB such 
that R \E £N . Consequently U39k= 8S(T)\N  and SSk contains together with each 
of its elements all of its classes of_A-equivalence. Let N0=NC\&(T), fflN(T)=  
= t%(T)\N0 and £к={В\В£@к}={Е\ЕеЛГк}. Then áfiV(T)\{0}= U^t . Let {£„}
be a finite sequence in gk. Then {Ер}аЖк and i {Ep} = iN {Ep}^ -^ .  Consequently,
Sk has a nonzero intersection number. Let {£,,} be an increasing sequence in 3éN(T) \ N  
and sup Ep£S'k. Then we can choose Ep such that they are increasing. As U Ep£éűk 
then U Ер£Жк. Hence ЕРо£Жк and therefore Epo£SJk. Thus S'k satisfy the above 
mentioned Kelley conditions a) and b). By virtue of Kelley’s criterion there exists a 
finite strictly positive cr-additive measure v on the Boolean algebra 3$N(T). Carry 
over this measure on &(T) by setting \>B = vB. Then Nn= {B£i%(T)\vB=0}-, con
sequently N  has the form specified in the lemma. As for any B£3S(T) there exists a 
Kff-set E={JFkc B  suchthat B \E £ N 0, then vB=vUFt =sup vFk, i.e. the mea
sure v is compactly regular. The lemma is proved.
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1.2. Category of perfect preimages lifting Kelley covering

We shall suppose that all spaces considered are completely regular and all 
mappings considered are perfect.

Let T  and R be completely regular spaces and q: R ^-T  a surjective perfect 
mapping.

1.2.1. Let TN denote the support of the Kelley ideal N, i.e. the complement to 
the union of all open elements from N. The covering {TN\Nd.A/'(T)} will be called 
the Kelley covering o f the space T.

The preimage R will be called lifting Kelley covering if R has a family of closed 
subsets {Rjv|A£./F(T)} such that U RN is dense in R, qRn — Tn and Л ^с A2 
implies Rn., cz RNi . The mapping TN̂ R N will be called the lifting o f the Kelley 
covering and the defined preimage will be denoted by {R, q: R-+T, TN>-+RN).

A perfect mapping y: R->-R suchthat q = q о у and yRNciRN will be called 
a mapping (or a morphism) of the preimage {R, q : R-»T, Tn>-*Rn} into the pre
image {R, q: R^»T, Tni->-Rn} and will be denoted by {y}: {R, q: R-+T, TNt-+RN}-*- 
-+ {R, q: R —T, 7jv~Rv}.

The preimage {R, q: R^-T, Tn^ R n} will be called larger than the preimage 
{R, q : R —T, Tn<-<-Rn} if there exists a mapping {y} of the first preimage into the 
second one suchthat the mapping y: R-*R is surjective and yRN—RN.

1.2.2. Let {R, о: R-+T, TN<->-RN} be a perfect preimage of T lifting Kelley 
covering.

The preimage R will be called saturated if for any RN and any open set G inter
secting Rn there exists an RM such that 0 ^ R Mc R vnG and M^>N.

The preimage R will be called а-filled if U Ryk is dense in RN for any sequence of 
ideals Nk such that !~]Nk=N. Any saturated preimage is cr-filled.

The preimage R will be called disjoined if GT\RN=0 implies (cl G) П R,v=0 
for an open set G in R.

1.3. Category of vector-lattice extensions inheriting Lebesgue decomposition

We shall suppose that all vector lattices considered are Archimedian, have fixed 
strong units and are uniformly complete with respect to their units and that all 
vector-lattice homomorphisms considered preserve these units.

Let T  be a completely regular space and C*(T ) the vector lattice of all bounded 
continuous functions on T. Let A be a vector lattice and u: C*(T)-+X an injective 
vector-lattice homomorphism. We shall say that X  is an extension o f C*(T) and 
shall identify C*{T) with its image in X.

1.3.1. The extension X  is called Dedekind complete if any subset of X, which is 
bounded above, has a supremum in X. An ideal Y  is called a component of X  if 
y ^ Y ,  x £ X  and x = supy^ imply х£Г.

1.3.2. For any Kelley ideal N £^V(T) consider the ideal C%{T) = 
= {/€C*(T)|/(7’iV)=0} in C*(T). The family {C*N{T)\N£jr(T)} will be called 
the Lebesgue decomposition o f  the vector lattice C*(T).
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The extension X  of C*(T) will be called inheriting Lebesgue decomposition if X  
has a family of uniformly closed ideals {XN\X(iJi{T)} such that C\XN— {0}, 
ufZXy iff feC*N(T) and Nxc N., implies XNld X N,. The mapping C*N{T)>-+XN 
will be called the inheritance o f Lebesgue decomposition and the defined extension 
will be denoted by {X,u: C*(T)-»X, C% (T)^XN}.

A vector-lattice homomorphism v: X-+X such that vou—й and vXNc:XN 
will be called a morphism o f the extension {X, u: C*(T)-*X, C%(T)>-*XN} into the 
extension {Х,й: C*(T)—X, C%(T)^-*XN} and will be denoted by {г}: {X, u: 
C*(T)-+X, C*n(T )~ X n}-~{X,u: C*(T)-~X, C*n (T )~ X n}.

The extension {X, C*(T)-+X, C%(T)>-*XN} will be called larger than the
extension {X, и: C*(T)— X, C%(T)i-*XN} if there exists a morphism {t?} from the 
second extension into the first one such that the homomorphism v: X-*X  is in
jective and vx(:XN iff xdXN.

1.3.3. Let {X, u: C *(T )^X , C*N(T)>-+XN} be an extension of C *(T) inherit
ing Lebesgue decomposition.

The extension X  will be called saturated if for any XN and any proper component 
Y  such that Y‘l= T|Vy€ T(|x| A |y| = 0)} cf XN there exists an XM such that XN\J 
U f c I M and Mz>N.

The extension X  will be called o-jilled if F X Nk=XN for any sequence of ideals 
Nk such that f)Nk=N.

The extension X  will be called component if every ideal XN is a component of X.
Lemma. Any saturated extension X  is a-filled.
P roof. On the strength of Yosida’s theorem ([36], § 45) there is a compact R 

such that the vector lattice X  is isomorphic to the vector lattice C (R). Consider the 
non-empty closed subsets RN = {s£R\4x£XN(x(s)= 0)}. Let DNk=N. Then 
U RNk is dense in RN. In fact, assume that there exists an open set G such that 
GnCRjvXUÄjvJ?^. Take a regular closed set FcG  such that flint FV0. 
Consider the proper component Y={yeX\y(F)=0}. Then there exists an M zdN  
such that XN{J Y d Хм ^ X .  Therefore RMczG.

Assume that for any к  there exists a set PkZM such that T \P k£Nk. Then 
P=U Pk£M  and T \P £ N  imply \еС*м(Т). But this is impossible because XM 
is a proper ideal. Therefore there exists a number к such that T \P $  Nk for any 
P^M.

Consider the bijection £: ЛЛ-wi from Section 1.3. Let nk=l^Nk and m=£M. Then 
mt =nt Am^0. Take the proper ideal Mk=.ti~1mk. Then RMkd R Nk(~]RM—0. 
From this contradiction we conclude that such a set G does not exist.

Now take a 0 ё  x£ П XN . Then x(R N) = 0. Consider the functions x p=

VO. From the property R, г Del coz xp—& we conclude that x„eXN.

As this ideal is uniformly closed we get x£X N. The lemma is proved.
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1.4. Category of C-ring extensions inheriting Lebesgue decomposition

We shall assume that all rings considered are commutative with a unit and all 
ring homomorphisms are unitary.

1.4.1. A ring X  will be called C-ring if X  has the following properties ([39]):
a) for any x ,y  there exists z such that x 2+ y2= z2;
b) for any x there exist у  and z such that x —y 2—z2 and yz=0;
c) if for x and for any n ^ l  there exists y=y(n) such that n(x2+ y2) = l  

then x=0;
d) for any x there exists (1 +  x2)-1;
e) for any x there exist у  and n£N such that x2+y2= n l;
f) if {x„} is a sequence such that for any k=  1 there exists n0=n0(k) such that 

that т ,я ё и 0 implies k((xm — x„)2+y-)= 1 then there exists x such that for any 
k ^ l  there exists m=m(k) suchthat к ((x—xm)2 + z2) = 1.

A ring ideal Y  of the C-ring X  will be called a C-ideal if for any sequence {>'„} 
and any x such that for any k-= 1 there exists т —т(к) suchthat k((x—y m)2 + 
+  z2)= l, the condition { ;„ } c f  implies xG Y.

The importance of the class of C-rings follows from the following.
Delfosse’s theorem ([39]). A commutative ring X  with a unit is a C-ring iff X  is 

isomorphic to a ring С (K) o f all continuous functions on some compact space K.
Corollary. With respect to an order defined by the cone P= {x£X\3yf_X(x= 

= y2)} the C-ring X  is a lattice ring and the ring isomorphism X=C(K) is a lattice
ring isomorphism.

1.4.2. Let T  be a completely regular space and C*(T) the C-ring of all bounded 
continuous functions on T. Let X  be a C-ring and u\ C*(T)-+X an injective ring 
homomorphism. We shall say that X  is a C-ring extension ofC*(T) and shall identify 
C*(T) with its image in X.

1.4.3. If  Y  and Z  are modules over the C-ring X  then the set of all module 
homomorphisms from Y into Z  is denoted by Horn* (7, Z). Let Y  and Z be ring 
ideals in the C-ring X. A  homomorphism g£Homx (7, Z) will be called bounded if 
there is a natural number n such that \gy\-^.n\y\ for any у £7. The subset of 
Homx(7, Z ) consisting of all the bounded homomorphisms will be denoted by 
Horn J(7 ,Z ).

The annihilator and the second annihilator of a subset 7  of X  will be denoted 
as usual by 7* and Y**.

The extension X  will be called continuing if for any ring ideal 7  of the ring X  
and for any homomorphism g£Homx (7, 7**) there exists a homomorphism 
Л£Нот|(Х, 7**) extending

A ring ideal Z  in X  will be called a segment o f  X  if for any ring ideal 7  of A and 
for any pair of homomorphisms g£Homx (7, 7**) and Л£Нотх (X, Y**) such 
that h extends g, the condition g T c Z  implies hXczZ.

1.4.4. For any Kelley ideal А£Ж (Т) consider the C-ideal C^(T) = 
=  { /G C * (r)\/(T iV)= 0} in the C-ring C*(T). The family {C*(T)\NeW(T)} will 
be called the Lebesgue decomposition of the C-ring C*(T).
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The extension X  of C*(T) will be called inheriting Lebesgue decomposition if X  
has a family ofC-ideals {X^N^jV 'iT)} suchthat Г) Av=  {0}, uf£XN iff fdC ^(T) 
and iVjCZh/a implies XNic XNi. The mapping C*N( T ) ^ X N will be called the inhe
ritance o f Lebesgue decomposition and the defined extension will be denoted by 
{X,u: C*(T)-~X, C*N(T )~ X N}.

A ring homomorphism v: X-+X such that vou=u and vXNczXN will be 
called a morphism o f the extension {X, и : C*(T)^-X, C%(T)i-*-XN} into the exten
sion {X,ii: C *(T)^X , C*N(T )^ X N} and will be denoted by {г}: {X, и : C*(T)-+X, 
C*N(T )~ X N}^{X,Ú : C*(T)—X, C*N(T )~ X N}.

The partial preorder on C-ring extensions of C*(T) inheriting Lebesgue de
composition is defined as in Section 1.3.2.

1.4.5. Let {X, u: C*(T)-+X, C*N{ T )^ X N) be an extension of C*(T) inheriting 
Lebesgue decomposition.

A ring ideal Y  in X  is called an annihilator ideal if y=Y**.
The extension X  will be called saturated if for any XN and any proper annihilator 

ideal Y  such that Y* cp XN there exists an Aw such that Xn{JY(z Xm and M о  N.
The extension X  will be called a-filled if CiXNk—XN for any sequence of ideals 

Nk such that C\Nk=N. Any saturated extension is u-filled.
The extension X  will be called segment if any XN is a segment of X.

§2. Hyperstonean cover
Let T  be a completely regular space and C*(T) the vector lattice of all bounded 

continuous functions on T. An order bounded functional (p on C*(T) is called tight 
(or else with Prohorov property) if for any e>0 there is a compact set K —K (e) such 
that |<p/|<e for any f£C*(T) such that \ f \ ^ x ( T \K ) .  Let С*(Г)‘ denote the 
vector lattice of all order bounded tight functionals on C *(T). This vector lattice is 
remarkable by the fact that according to Riesz—Prohorov’s theorem ([34], IX, § 5, 
n.2) it coincides with the vector lattice M (T ) of all bounded Radon measures on T. 
Further let C*(Ty' denote the vector lattice of all order bounded functionals on 
C*(Ty. In the case of a compact space S  this coincides with the usual second dual 
C(S)". The vector lattice С*(ТУ' will be called the second tight dual o f  C*(T).

The vector lattice C*(T)’' is isomoprhic by some isomorphism v: С*(ТУ' — 
-C (R 0) to a vector lattice C (Rn) for some compact space R0 (see [15], [4]), and the 

canonical injection и: С*(Т)-+С*{Т)г' generates a surjective continuous mapping 
(j0: R„—ßT  suchthat vuf=f'oQ0, where ff iC (ß T )  is the extension of the function 
f£C*(T) (see [4]). Consider the subspace R s q ^ T  and the mapping Q = o0\R. The 
space R with the mapping q : R-+T will be called the hyperstonean cover o f T.

2.1. Construction and properties of hyperstonean cover

Since the hyperstonean cover R is defined in non-topological terms it is a natural 
question to find a purely topological construction for R. Kelley ideals give us such a 
possibility.

Lemma 1. I f  Nt and N.> are Kelley ideals then is a Kelley ideal too.
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P r o o f . It is clear that ЛГ =  ПiV2 is a regular c-ideal. Further for Nk there
exists a sequence .'X'j and for N2 there exists a sequence Жк satisfying the conditions
a) —c) from the definition of Kelley ideals. Denote Жк UЖк by Жк. Let {Bp\p ^  
^т }а Ж к. Then {Bp\p^m }  can be represented as a union of two disjoint sequences
{В^ЛГ^и^пц} and {Be£Jt?\v^m 2}. Since iNl and iN, {Bv} ^  — ,

T j  F 2
there exist sequences ...^и^Ш шх and 1 ...<Viz=m2 such that

, - ^ - s  — , Bm П ... П (£ Nk and В П ... П2?„. $ N». Then these inter-
m i  r i  n h  r 2 1 2

sections do not belong to N. Therefore

• r d i ~ iiV/g _  (^A^XmjV ш2) _ 1
lN\Bp\ -  m -  mr^  -  2Тк Г2 ‘

Hence Jfk has a non-zero intersection number with respect to N, i.e. condition
b) is fulfilled. The validity of conditions a) and c) is evident. The lemma is proved.

Consider the set R'0 of all the ultrafilters from jV{T). Associate the set R*>N 
of all the ultrafilters not containing N  with the ideal N. Consider the topology in R'0 
with the open base {jRoJA£,/f/'(7’)}. Denote by Ac(R'n) the set of all compact open 
subsets of R'0.

Lemma 2. The space R'(l is locally compact and extremally disconnected. The 
mapping N i-+Ron is a bijection between J i{T ) and AC(R^), Ron̂ R » ní—R°n1Cíní 
for any N i and Nn and R«Ni П Р»л-2 = 0 iff there exists a P£N1 such that T \P £ N 2.

P r o o f . The direct proof of this lemma is highly laborious. Therefore we shall 
adduce a roundabout proof with the help of the lemma from Section 1.1.3. As A2c  At 
is equivalent to np^n2 then the bijection £ is anti-isotone. Therefore t,{Ni r\N2)— 
== nf\J n2. Let P’0 denote the set of all maximal ideals in the lattice Л  (T). Consider 
in PÓ the topology with the open base {P0„\n£Jf (T7)} where P0n consists of all the 
maximal ideals not containing n. As the lattice J t  (T) has a least element and relative 
complements, by virtue of Stone’s theorem (see [36], § 6—8) the mapping n ^ P 0n 
is an isomorphism between the lattices J t(T )  and Ac(Pf). Therefore the space P'0 
is locally compact and zerodimensional. As the lattice Jt{T) is complete the space 
Pq is extremally disconnected. The bijection £ generates a homeomorphism it: P'0-+- 
— R^ such that nP0„—R«N. Consequently the space R'0 possesses the mentioned 
properties too. Further

R o n ,  U  R » N t  —  7 Г ( Л ) Щ  ^  P O n .) =  Я ( Р OnxV „ 2)  =  ■

Let there exist a P£Nt such that T \P £ N 2. Then n1An2=0. Therefore 
Ро^1ПРо^=л(РоП1ПРоп,)=л(РОп1Лп2)=0- The lemma is proved.

Let s£ P,j and let s correspond to an ultrafilter 0S. Consider the set Ps = 
= r\{TN\N$6s} and the subspace Р ' =  {.у6/^ |Р ,^0}. Let RN = RoNn R '.

Lemma 3. For any s£R' the set Ps consists o f  one point only. The mapping 
q' : R '-*T suchthat q's= Ps is surjective and continuous and q'Rn= T n . Moreover, 
Rn is dense in RoN.

P ro o f . Let s£RN and let t t ^ t 2 belong to Ps. Since N $9S, thus PsczTN.
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Consider an open set Gx such that and t2$F1=c\G 1. Then t2(zG2 and
lA  F2~cl G2. Consider the Kelley ideals N1 = {P£&>(T)\PC\Fa N} and N2 = 
= {P€&>(T)\Pr\GAN}. As GeGjfTTjv, thus tx^TNl. TNlc F  implies t2<i TNl; 
similarly t2£TN2 and ty (j TN„. Further TN— T íVjOíVj— TNlÖTNi. It follows from 
N$6S that either N} (f 0S or N2(f 0S because of But this means that the
points G and t2 belong either to TNi or to TN„. From this contradiction it follows that 
Ps consists of one point only. Therefore the mapping g' is defined correctly. Moreover, 
q'Rnc:Tn .

Check that q'Rn=Tn . Let t£TN; consider an open set G containing t and 
the Kelley ideal Ng={P£(P(T)\PC\G£N}. If AG X̂ G 2 then N ^ n e ^ N Ci 
implies R0v П R0K d í .„ ^0. The same is valid for finite intersections.

_ NG1 NG,. A G , n C 2
Besides RoNaaRoN. By virtue of compactness of R»N there exists a point s£ 
£r\{RoNa\t£G}<^RoN. Consider the ultrafilter 05={Л/ТЛ/'(7’)|.Ком$.у}. Assume 
that MC{ 0S and Consider the set G0 = T \ T M. According to the previous
lemma RoMC]RON =0. Hence t£TM because this intersection contains the point s.
Consequently Ps= С\{Тм\М§ 05}ЭЛ Therefore s^RoNf\ R'= RN, and g's=t.

As U TN= T, the mapping g' is surjective. Check now its continuity. Let s£RN 
and V be a neighbourhood of the point t=g's. Consider an open set G such that 
F=clGczV  and i£G. Consider the Kelley ideals jVj.= {P(üP(T)\PC\F(LN} and 
N2={P£0>(T)\Pn(T\F)eN}. Then iV=iVxniV2 imphes RN=RNl\JRNl. Let 
U be an arbitrary neighbourhood of t. By t€.UC\GC\TN, t£ TNl. Assume that 
s$R Nl; then s£RN, implies t£TN,,. But ТНш c c l (T \F )$ t,  whence s£RNl and 
в'RNl—TNlcz FczV.

Check now the density of RN in RoN. Take an arbitrary basic open set RoM from 
Ron and let t£TM. According to the property proved above there exists a point 
s£RM such that g's—t. Therefore RoMf]RN= Ru ^0. From here the required 
density follows. The lemma is proved.

Corollary 1. The space R' is extremally disconnected.

Corollary 2. The mapping N>—-Rn is injective, RNlGRNi= RNinN, for any 
Nt , No and RNlC\RNi—Q if f  there exists a P£NX suchthat T \P £ N 2.

Let s£ R'0 and let s correspond to an ultrafilter 6S from J f(T )  and consider the 
set p ; = n { c v r w|iVi0s}.

Lemma. 4. For any s£R'0 the set P's consists o f one point. The mapping q'0: 
R'0-+ßT suchthat g'0s=P' is surjective and continuous, g'=g'0\R', g'0RoN=clpTTN 
and RN=RoNr\(e'0)~1Tfi.

P roof. Let s£ R'0 and assume that Nx, N2$ 0S and cl Пс1 Tjvj= 0. Then 
N = N XC\NA9S implies sf_Ros . By Lemma 2, Rofl — RoNi[jRoNt and RoNif]RoNi^ 0. 
Assumping s£R oNj we get N A 6 S but this is false. Hence P '^Q .  In just the same 
way as in the previous lemma it is checked that q'0Ron= c\T n , consequently the 
mapping g'0 is surjective.

Let s£R', then g'0s—g's. Consequently g'=g'0\R' and q'0Rn= q'Rn= Tn . 
Let s fR »n and g'0s£TN. Then we have Ps— П{ГПс1 TM\M$.0,}=Tf)g'os= g'0s.
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Hence s(:_R'C)RaN=RN and RN = RoN П (oá) ~17jy • In just the same way as in the 
proof of the previous lemma it is checked that the mapping g'0 is continuous.

Let R0=ßR^)=ßR' and q0: R0̂ -ßT be the extension of the mappings q'0 and 
q'. Consider the subspace R ~ g (y1T  and the surjective perfect mapping q: R-»T  
such that q = q0\R.

Lemma 5. The space R is extremally disconnected, for any N  the set RN is open- 
closed in R, U {Rn\N£.,V'(L)} is dense in R and qRn=Tn . For any set Rn and any 
open-closed set U in R there exists an ideal M zoN  such that RM— UП RN.

Proof. A s R'a is locally compact, If, is open in R0. Therefore RoN is open and 
compact in R0. From the previous lemma we have

R n =  Ron П (qo) 1TN — RoN П gn 1TN =  Ron П g0 1T  — RoN П R.

Hence Rn is open-closed in R.
Let U be an open-closed set in R. Then V = clRo U is open-closed in Ra. It fol

lows from Lemma 2 that V il R«n= Rom for some ideal M  о  N. From here RM— 
= Rr\RoM— Rr)VC\RN= U r\ Rn . The lemma is proved.

For any Borel set В in T  and any Kelley ideal N  consider the ideal NB = 
=={Pe0>(T)\Pr)B£N}.

Lemma 6. The ideal NB is a Kelley ideal.
P roof. At first we verify the regularity. Let P£NB. Then there exists a sequence 

of open sets Gk such that PC\Bcz П Gk£N. As it has been established in the proof of 
the lemma from Section 1.1.3, for В there exists a K„-set UFj<zB such that 
B \(JF jZN . Then P c  П f](GkU (P \F j))= H  and Hr\Bcz(C]Gk)iJ(P i]B \lJF j)^N  
implies H £N B. Let G be an open set in T. As above for the Borel set GOB 
there exists a Ka-set EczGOB  suchthat GC\B\E€N. Then G \E £N B. Conse
quently conditions a) and b) from the definition of the regularity are fulfilled. The 
third condition is evident.

Further as N  is a Kelley ideal, ^fa( T ) \ N — LhFk and each set Jfk has a non
zero intersection number with respect to N. Consider the sets

<rfc =  {E e ,r jT ) \E n u F je jrkj.

Let EeS’k and E 'a E £N b, then (E ' П U Fj) a (EC\ U Fj)£N  implies E'£<5k. 
Further let {Ep}cz$k, then íNb{Ep}= ín {EpП U Fj} means that i k has a non-zero 
intersection number with respect to NB. As the third condition from the definition of 
Kelley ideals is obvious the lemma is proved.

Denote by A(PV) the set of all open-closed subsets from the space RN. Denote by 
@N(T) the set of all classes of A-equivalence В of elements B£@)(T). Let Bt£B. 
Then NBl= N B. Therefore we can define correctly the mapping iN: 3HN{T)— 
-  A (R N) by setting iNB = RNb .

Lemma 7. The mapping iN: 3}N(T) A(RN) is an isomorphism o f Boolean 
algebras.

Proof. Let 2MC; for example C \B fN .  Then C \B £ N B and C \B $ N c. 
By Lemma 2, P°.yb ̂  R°sc • By Lemma 3, iNB^=iNC, thus iN is injective.
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Let U be an open-closed subset in RN and let V be its relative complement. Then 
by Lemma 5 U=RM, V=RL and MC\L~z> N. By Corollary 2 to Lemma 3 and the 
regularity of the ideals, there exists a Borel set В such that B£L  and C = T \B £ M . 
Then RMc RNbc Rc and RLa R NcczRN. Since CZNB and T \C £ N c, we have 

Hence U=Rm=RNb, and_z;V is_surjective.
If B ^ C  then Nbd Nc implies iNB c iNC. Conversely, if iNBcziNC then 

Byc= RNc lJRNg= RNcnNB implies Nc ciNB. Consider the set P = B \C . Then 
P f)B £N  because of P£NC. Hence BSC. Thus the given mapping is isotonic. 
From here and the bijectivity established above it follows that this mapping is an 
isomorphism. The lemma is proved.

Corollary. The space RN satisfies the Souslin condition, i.e. there exists in RN 
at most a countable set o f mutually disjoint open subsets.

Lemma 8. In the space RN, any meager set is nowhere dense.
P roof. Let Fk be a sequence of closed nowhere dense subsets in RN. Assume 

that clUFfc is not nowhere dense, i.e. there is an open-closed set U in RN such that 
UczdU Fk. We may assume that FkczU and therefore U— cl UFk. According 
to the previous corollary, for every к there exists a sequence {Vkj} of decreasing open- 
closed subsets in U with nowhere dense intersection, containing the set Fk. Let Vk]= 
— iNBkJ and U—iNB. We may assume that Bz)BkJz>BkJ+1. Take v££N, then 
inf vBkj=v(CiBkj)=0  for every k. Take some j k such that vBkj< vB/2k+1, and con
sider B0={JBkjcB . We have \B 0̂ j£ v B kjk-<\B. Denote B1= B \B 0, then 
F = /wB i^0. So we get d  Fkf]V(z{J (VkJkf]V)=Q and FcC / but this is impos
sible. The lemma is proved.

Corollary. The space RN is Baire.
Now we need a classification of Borel sets. The classification of Young [40], 

used usually in mathematical literature, is not suitable for us since it is valid only for 
such spaces whose open sets have the type Fa. It can be checked that the following 
classification used for the first time in [41] is valid: dS(T)= U {^a(T)la<ft,i} where 
d#0 (T) consists of all open sets and

0 a(T) = {U(AU (T \C k))\3ßk <  a3yk <  а{Bk£<%ßlc(T), Ск£ЯУк(Т))}.
к

Denote by qn the restriction of q on RN.
Lemma 9. The set iNBAojlB is nowhere dense in the space RN for any Borel 

set B.
P roof. Let G be an open set in T. Check that iNG~cl q̂ G . Let x ig ^ 1G(T 

f}iN(T \G ). Then qns£TNt^ gczT \G  but this is impossible. On the other hand 
assume that there exists 0 ̂  I /= iNB suchthat U aiNG \d  q̂ G . We can suppose 
that B cG . Since B$N, there exists a compact set f c ß  such that F<1 N. Let 
V=iNF. Then Q^QNV=Tf,FczFczG. But V czUczq^ 1(T \G )  imphes QNV a  
a  T \G .  From this contradiction we conclude that the assertion of the lemma is 
valid for sets of class zero. By induction, using Lemma 8 it is proved that the same is 
valid for all other classes. The lemma is proved.
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C o ro llary  1. Let В be a Borel set. Then BdN  iff o f  В is nowhere dense in 
the space RN.

C o ro llary  2. Let В be a Borel set. Then iNB A ß fB ^  RM for any MzoN.

L emma 10. There exists a unique surjective homomorphism o f the Boolean 
algebras j N: dH(R)-»A(RN) such that j NBA(BC]Rw) is a nowhere-dense set in the 
space Rn. Moreover j NB = cl int (FH F;v)=int cl (В П RN).

P roof. Let G be an open set in R. Then j NG=cl (GORf). By induction and 
using Lemma 8, j N is defined for all other classes. The uniqueness of j N follows from 
the corollary to Lemma 8.

From here and Lemma 8 it follows that B'= B  Pl R ^— UAF for the set U=jNB 
and some nowhere dense set F. Since U \c l  F e in t B 'c tB 'a c l B 'c  t/Ucl F, we get 
c lin tF '~ in t B '~ B '~ U  and int cl B '~ c l B '~ B ' ~  U relatively to the first category. 
Consequently U=cl int F '= in t cl B '. The lemma is proved.

C o r o lla r y . I f  B£&(T) then j N(Q~1B )—iNB.

Consider the ideals N'={P£0>(R)\ int cl (F(TFN)=0} on R for all NiJF(T).

L emma 11. The ideal N ' is a Kelley ideal.

P ro o f . Let PZN', i.e. P (jR NczF for some closed nowhere dense set F from 
Rn . By the corollary to Lemma 7 there exists a sequence Vk of decreasing open-closed 
sets in Rn with a nowhere dense intersection, containing the set F. Let Gk= (R \R N) U 
(JVk. Then P c  (jGk£N'. Let G be an open set in R. By what has been said above 
there exists in G'=GC) RN a sequence Uk of open-closed sets such that G '\  U Uk 
is nowhere dense. But Uk—iNBk where it can be supposed that Bk is a F„-set. As 
the mapping q is perfect, Ek=Q~1BkF]Uk is a F ff-set in R. Let E = \JE k, then 
EczG and G \E £ N '. At last let E  be a Ka-set in R. Then there exists a sequence of 
open-closed sets Wk such that U Wk is dense in G= RN\ c \  (E П RN). But Wk= 
— iNBk where Bk can be supposed to be a K„-set. Consider the Ka-set F '=  U(i?~1Bk П 
C\Wk). Then G \E '  is a meager set. By Lemma 10 the set c l(£ ПR f \ ( E ПRN) 
is the same. Therefore R \(E U E ')£ N '. Consequently N' is a regular ideal.

Let jra(T ) \N =  UJfk and consider the sets 3k=(E£ctra(R)\3F£tfk(F £ ifjNE]}. 
Then ^ra( R j \N '—{j<fk. Let E A E fN '  and E£tFk. Then j NE = jNE ' imphes 
E'd<$k. Let {Ep} be a finite sequence from Sk and Fp£ i f j NEp. Then the intersec
tion number of {Ep} with respect to N ' is equal to that of {Ep} with respect to N. 
Consequently each S°k has a non-zero intersection number with respect to N'. Further 
let {Ep} be an increasing sequence from Jta(R ) \N '  and UEp££k. Then the cor
responding sequence {Fp} can be chosen to be increasing. As iN UFp=sup jNEp= 
=jN UFp, U Fp£JiTk. Therefore Fpf j f k implies Epf S k. The lemma is proved.

Finally, having all the necessary apparatus we can prove that the preimage R 
constructed above is the hyperstonean cover of T. For that we need in addition a 
concrete expression of the essential upper integral by means of the corresponding 
measure on £%(T). According to ([34], IX, § 3, №  2) for a given measure v€M(F) 
the essential upper integral v is constructed on the set B*(T) of all bounded Borel 
functions on T. Also for v the abstract Lebesgue integral Jxd v  on B*{T) can be
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constructed ([42]) by the formula

J x d v  =  sup { Z  l^f{x(t)\t£Bk}vBk\Bk£ ^ (T ) , BkПBj = 0, U {Bk\k ё  m} =  Г}.

It can be checked that vx~  J  xdv.
P ro po sitio n  1. The space R with the mapping q : R-+T is the hyperstonean 

cover o f T.
P roof. By the Riesz—Prohorov theorem, for any functional cp£C*(T)' there 

is a unique measure v£M(T) such that (pf= J f  dv for any function f£C*(T), 
and the mapping cp^v is a vector-lattice isomorphism between С*(Т)г and M (T ) 
(see [34], IX, § 5, №  3).

Define for v the corresponding measure v' on R. We shall apply a method used 
for the first time in the paper [43]. For every Bd&(R) we put v'B = v{i^\jNB) where 
N  is a Kelley ideal such that v£fN. The function V is a bounded Borel measure. It 
is clear that v'PfN'. Let Bfútf(R). Then it follows from the proof of the lemma in 
Section 1.1.3 and from Lemma 11 that there exists a Ka-set E a B  such that 
B \E £ N '. Consequently v'B=v'E. But E— U Fk for some increasing sequence of 
compact sets, therefore v'B=sup v'Fk.

Let v<s:/i and p'B— 0. Then the set В П RM is nowhere dense. Therefore so is 
the set BClRN because RN is an open-closed subset in RM. Hence v'B= 0, and 
v'<s:p'.

The mapping v>-+v' from M (T ) into M(R) is linear and monotone. In fact let 
T b e a  Borel set on R. For p and v consider the measure X=\p\ +  |v|. Since p, v and 
p+  v are absolutely continuous with respect to X, just the same is valid for their ima
ges in M(R). For A  and X there exists a Borel set В on T such that A ^ g _1B with 
respect to X'. Therefore A ~ q_1B also with respect to p', v' and {p + v)'. From here 
we have (p+v)'A =  (p + v)' (g~1B)=(p + v)B=p \ q ~ 1B ) + v ' ( q ~ 1B ) = p'A +  v'A. The 
preservation of the order is checked similarly.

The functional (p'£C*(R)' corresponds to the measure v' on R  such that <p'f— 
J f  dv' for any f£C*(R). Let feC*(R). Consider the mapping C * (7 7 -R  
such that x(p = cp'f. It follows from what has been said above that % is an order 
bounded linear functional. Therefore we can define correctly the linear monotone 
mapping w: C*(R)->-C*(T)t' by setting wf=x. The mapping w is isotone. In fact 
let wfSwg. Then cp'fScp'g for any positive tight functional q>. Assume that 
f(t)>-g(t) for all t from some open-closed set U. It follows from Lemma 5 that 
0ARNoc:U  for some measure v0££lV0. Then (p'0( f —g)>~0 but this is impossible. 
Hence /S g .  Further if wf— 0 then cp'f—0 for any cp. From the density of the union 
of the supports of all measures v' (Lemmas 5 and 11) it follows that /^ 0 .  Conse
quently the mapping w is injective.

Now we check surjectivity. Let х^С*(Т)'' = М (Т)'. We shall use the reasoning 
from the proof of Proposition 27.2.2 from [35]. Let p£M(T) and M„={v6M(7’)|v<g; 
<scp}. Let B\ denote the vector lattice of classes of ^-equivalence je" of all Borel 
functions x  on T  integrable with respect to p, and let B* denote the vector sublattice 
of all bounded classes. By virtue of Radon—Nikodym theorem the mapping uß: 
Bl~»Mß such that (ußy) В = j  у у(В) dp is a vector-lattice isomoprhism. Let wß be 
an isomorphism between B* and the vector lattice of all order bounded functionals on 
B\ such that (wßx)y=Jyxdp. Consider the elements xß = wß 1(xouß)dB*. Let
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jU<s:v. Then with respect to ц. In fact, take an arbitrary л<зс/г. Then X—upy
and X=uvz. By Radon—Nikodym theorem jgdX = Jgyd/i and JgdX=Jgzdv  
for any g£B\. Therefore xX = (xouß)y — (\vßxß)y = J y x ß dy. On the other hand 
xX—(xouv)z = (wyxv)z= Jzxvdv=JxvdX—J x vyd/i. Hence Jyxpdg= J y x vd/u. As 
we took X arbitrarily, у runs through all Bp. Therefore x ß ~  xv with respect to g. 

However for xv there exists a sequence of step Borel functions xk such that
\xv—xk\^-j^  1. Let xk~ 2 a px(Bp) for some finite Borel partition {Bp}, and con
sider the sets Up=iNBp and the function fk = 2 aPx(Up)XC*(R). As Up^  g~1Bp,

2fkr"XkoQ with respect to v'. The inequality \xkoQ—XjOQ\^— 1 for all j= k  implies
К

2
Ifk(.s) —f j ( s)\—~£ for апУ S^BN. Therefore there exists a function f v£C*(R) 

4
suchthat | / v—/ J s —1. It is clear that f v~ x vog with respect to v'. Let M u N .
Then xvoßM~ x (1~ qn~ f ß\RM and x vogM~ f v\RN with respect to the first category 
in RM. Therefore f ß\RM—f v\RM. Let M  and N  be arbitrary Kelley ideals. Then by 
Lemma 5 RMC\RN=RL for some ideal L d JVUM. Consequently / Д|/?МПЛ№= 
~ f  \Rl~ Í v\Rm П Rx ■ Thus we can define correctly the function f£C*(R) by setting 

f \R N= fv\RN. It is clear that /~ x voq with respect to v'.
Hence (wf)(p—J (xvo g)dv'. But J (xo  g)dv'=Jxdv for any Borel function x. 

In fact for x  there exists a sequence xk o f Borel step functions such that \x—xk\^
ä -^-1. By Levi’s theorem ([42], 12.22) J x d v  = lim J x k dv. But xk = 2 aPX(Bp) for

some finite Borel partition {Bp}. As \ход — хко д \^^ -1 ,  by Levi’s theorem 

J  (xo Q)dv' =  lim f  (xkoQ)dV =  lim J  2  apx(e~1Bp)dv' =
= lim 21 aPv'(q~1Bp)=1 im ^  ap vßp = hm J x k dv = J  xdv.

Consequently (wf)(p= f x v dv=xv, i.e. w f= x. Hence the mapping w is surjective.
Hence and from the isotony of w it follows that w is a vector lattice isomor

phism. Since R0—ßR, there is an isomorphism ß : C*(R)->-C(R0). Consider the 
isomorphism v : C*(Ty'-+C(R„) by setting v=ßow_1.

Let feC *(T), then (w(foQ ))o=J(fog) dv'= ffdv=cpf=(uf)e, i.e. w(fog)=uf. 
Hence vu f= f'og0, w here/' denotes the extension of/ on ßT.

Thus the space R0, the mapping q0: R„^ßT, the space R = qü1T  and the 
mapping q= q0\R satisfy the initial definition of the hyperstonean cover. The pro
position is proved.

2.2. Uniqueness of the definition of hyperstonean cover

At first sight there are several possibilities to extend the notion of hyperstonean 
cover from compact spaces to completely regular spaces. Now we shall show that the 
definition of the hyperstonean cover of a completely regular space accepted above is 
not only natural but also the only possible one.
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Similarly to the hyperstonean cover hS= R  of a compact space S, it would be 
possible to look for the “hyperstonean cover” of a completely regular T  as for a 
continuous preimage hT  of T relative to a mapping q: hT-*T  such that C*(hT)s; 
^ C*(T)". However, no such preimage exists. In fact, consider the mapping q0 : 
ßhT-*ßT extending the mapping q. As C(ßhT)^C*(hT)^C*(T)"^C(ßT)", 
R0=ßhT=hßT. Let sZ ß T \T , and consider the Kelley ideal N= {Pk&(ßT)\s$ P}. 
Then according to Lemma 5, there exists an open-closed set RoN in R0 such that 
q0Ron= s . Consequently RoNf)hT=0. But this contradicts the equality R0=ßhT. 
Hence in fact a continuous preimage of T  realizing the second dual C*(T)" does not 
exist.

Also analogously to the hyperstonean cover of a compact space, it would be 
possible to look for the “hyperstonean cover” of a completely regular space T  as for 
a continuous preimage hT  relative to a mapping q : hT^-T  such that every order 
bounded functional <p on C *(T) can be extended to an order continuous functional 
<p' on C*(hT). However, such preimage does not exist either. In fact, consider e0: 
ßliT-*ßT. As cpf'=cpf= cp'(fo g)=<p'(f'о qq), where/'denotes the extension of the 
function f£C*(T) on ßT, every order bounded functional on C(ßT) extends to an 
order continuous functional on C (ßliT). Consider a point s£ ß T \T  and the point 
functional cps on C(ßT) corresponding to this point. Since the functional <p's is order 
continuous on C(ßhT), supp cp's= ß h T \{J  {cozgjg^O, (p'sg=0} has a non-empty 
interior in ßhT. Further for any t ^ s  there exists a function g£C(ßT) such that 
s^cozg^t. Then (p'sigoQ^^cpsg—O implies coz (g-og0)(Tsupp q>'s=&. Hence 
supp cp'sc T h e r e f o r e  supp (p'sCViT=0 but this is impossible. Consequently 
a continuous preimage of T  improving all the functionals at the same time in fact 
does not exist.

2.3. Characterization of hyperstonean cover

It follows from Section 2.1 that the hyperstonean cover is a perfect saturated 
extremally disconnected disjoined preimage of T  lifting Kelley covering.

The following lemma shows an intrinsic structure of saturated preimages.

Lemma 12. Let R be a saturated preimage o f T lifting Kelley covering. Then for 
any open set Gfrom R and any Kelley ideal N  there exists a Ka -set E—E(G, N ) from 
T such that GAq^ E ^ p RM for any M zdN.

P roof. We can assume R NC\G?±$. Consider the nonempty set Г = { М £  
£ jf(T ) \R MczGriRN, MrDN} and the bijection from Section 1.1.3. Let £M=m 
and £N=n. As тШп and the lattice Jt(T )  is complete, there exists и„= 
=sup {т\М £Г}.  Denote by щ  the complement of n0 to n and consider the ideals 
A0=£~bi0 and N1=C~1n1. There exists a Borel set B^Nj^ such that T \B £ N 0. 
It is clear that we can suppose BczTNo. For В there exists a Ka-set EczB such that 
B \E £ N 0. Then T \E £ N 0 and E£Nt .

Assume that there exists an M o A  such that R ^ czGAq^ E  and RMC\(G\ 
\ д ~ 1Е)?±(д. Then there exists an M xzzM  such that RMiaGC)RM. Therefore 
МХСГ. As RMi C}q~'lE —Q, E£Mx and T \E d N (> means that т1Лп0=0. But 
this contradicts the inequality тх^ п 0. Consequently i?MC ß_1£ \G .  In this
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case TM£NX and T \ T M£M  means that n1Am=0. But then n—n fln x and 
m ^ n  imply m S n 0. Therefore there exists an M v£ Г such that ш.,=тЛш1^0. 
Consequently 07±RM2c:RMC]RMlcz(Q~1E \G )n G  = 0. It follows from the contra
diction thus obtained that such an ideal M  does not exist. The lemma is proved.

Uniqueness is understood up to isomorphism in the category of the perfect prei
mages of T  lifting Kelley covering.

T heorem  1. Let R be the hyperstonean cover o f T. Then
1) R is the unique largest among all perfect saturated preimages o f T lifting Kelley 

covering;
2) R is the unique smallest among all perfect о-filled extremally disconnected 

disjoined preimages o f T lifting Kelley covering; moreover R is the unique universal 
among all such preimages;

3) R is the unique perfect saturated extremally disconnected disjoined preimage o f  
T lifting Kelley covering.

P roof. Let {R, q: R-*T, Tn>->-Rn} be a preimage of T  having the properties 
from 1).

A family e= {BN£d$(T)\N£jV(T)} will be called a Bore! pseudoset if iV jCft 
implies BNlABNf N 2. The pseudosets 0={BN) and 0'={B'N} will be called equi
valent if BnAB'n£N  for any N. Define 0VÖ' as {BN UB'N}. The Boolean algebra of 
classes of equivalences Ű of all Borel pseudosets в will be denoted by *P.

Let G be an open set from R. Then by the previous lemma for any N  there exists 
a K„-set En such that GAq~1EnL> RM for any Mz>N. Let Nlc N 2. Assume that 
E = E Ni\ E Nf  N2. Then there exists a closed set Fc;E  also not belonging to this 
ideal. Consider the ideal L={P£^>(T)\PÍ]F£N2} zdN2. Then RL cz q ~1ENj\Q~1ENj. 
If jRLnG7i 0 we shall take an RMc R LC\G. Then RmczG \ q~1En. but this is 
impossible. If RL(jG=0  then RLdQ~LENf s,G but this is impossible, too. Hence 
E £N 2 and 0={Ey} is a Borel pseudoset.

Let for G there exist a Borel set В such that GAq~xB ^ R m for all MzzN. 
Then by analogous arguments EyABfN. Therefore we can define correctly the 
mapping к : У (/?)-*■ Ч' by setting kG=B where (S{jK) denotes the lattice of all 
open sets in R.

Now we verify that A: is a lattice homomorphism. Let AG1= 0 1, AG2= 02, 
0\ = {L’M and 02={E%). Assume that jRx,c(G1UG2)Ae_1(£'^U£'|) for some L idiV. 
Further temporarily we shall omit the index N. If RLC\ ((Gx U G2) \ q _1 (i?1 U £ 2)) И 0 
then there exists an RLl<zRLC\(G\UG2). Let R ^C lG ^Q , then there exists an 
R ^ c zR ^ n G i. Therefore RLiczG j\Q ~1E1 but this is impossible. Hence RLa  
aQ ~1(E1{JE2y\(G 1UG2). Then for example E 1^L . Therefore there exists an 
Mz>L  such that TMa E l. Hence Rm(Zq~1E 1MGx but this is impossible. Thus 
k(G1ÖG2)—kG1\/kG 2. Now check the preservation of intersection. Assume that 
RL(z(Gi r\G2)AQ~1(Ey ПE%). Further again we shall omit the index N  temporarily. 
If RlП{(GxПG2) \ e ~1(E1 C\E2) ) ^ 0 then there exists an RLlc: RLf](Gi r\G2). 
Hence it follows that JRt l f le _1£ '1?£0. Assume that E 1L L l , then there exists an 
ideal L2zzL1 such that TL2c .E \ E l. In this case R j^a G fyQ ^E 1 but this is im
possible. Hence E 1$L 1. But then similarly T ^czE 1 for some L2z>L1. In this 
case R ^ c д~гЕ гПRLl. As R ^H  q~1(E1C\E2)^ 9 ,  we have f?L2c G 2\ g _1is2 but 
this is impossible. Thus RLcz q ~ 1( E 1 D E^ffG x  П G2). Hence it follows that
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RLf]G17i Q. Therefore RLiczRIjC\G1 for some L p L .  In this case RLlcg ~ 1E ‘i\ G 2 
but this is impossible. It follows from the contradiction thus obtained that 
k(G1f] G2)=kGx A kG, . It is clear that к preserves the unit.

Let G ^0, then GПRN# 0  for some ideal. Therefore there exists an 
RMaGClRN. In this case RMr\g~1EM7i 0. Assume that EM£M, then there exists 
an ideal L zdM  such that TLc zT \E M. Therefore Rlc: G \ q~1Em but this is 
impossible. Hence EM$M  and k G (). Conversely let kG?±0, then En$N  for 
some ideal. Therefore there exists an ideal L zdN  such that TLa E N. In this case 

i.e. G?£0.
Now let {R, q: R-+T, TN ̂ R N} be a preimage of T  with the properties from 2). 

Denote q\Rn by qn. Let В be a Borel set not belonging to some ideal N. Then there 
exist A^-sets 0H-Ei= [JFjCzB and E2=U  Fkcz T \B  suchthat 7^^(E1IJE2)£N. 
Consider the open-closed sets Uj=int g ^F j and U = clU U j^9  from Rs . Consi
der the ideals М]={Р£&>(Т)\РГ\ Fj€N} and M k = {P^S?(T)\PC\FkiN}. Then it 
follows from the property of disjointedness that Rj = RMjczUj and Rk= RMlc<zz 
<zRN\U j .  Therefore U Rj czl/cz A v\  U Rk. Assume that for В there exist other Ka- 
sets Ei = UFpczB and E2= Ö Fq<zT\B  such that Т \ ( Е [ и E'2)£N. Let U', 
M p, Mq, Rp and Rq be the corresponding sets. Consider the ideals MJp={P^SP(T)\ 
Pn(FjC]Fp)eN} and Mkq= {P ^ (T )\P f] (F kf]Fq)^N}. Denote the sets RMra by 
Rrs. Then Rrs<^R,r\Rs. Therefore Rjpc: U cz R \(J  Rkq and similarly RJpczU'ci 
czR \(JR kq. Hence U AU 'cRN\ ( URjp)U( U Rkq). As (ПMjp) П(ПMkq)= N  and 
R is <T-filled, ( U Rjp)U(URkq) is dense in RN. Therefore U—U'. Thus we get the 
mapping B*-*-U. Let B-+U, B '^ U '  and BAB'£N. Consider the A^-sets £ j =  
= {JFj(zBr\B' and E2= U FkczT \B  IJB' such that Tr\ ( E 1ö  E2)^N. Then 
U Aj-cC/cÄjyXU Rk and" U Rj(zU'cz RN\ U  Rk means that U= V .  Thus we get 
the mapping B>-+U from -MN(T) into A(RN). This mapping will be denoted by iN. 
If iNB=0 then URj=0 implies Fj£N. Consequently B = 0.

We now check_that_this mapping is a Boolean homomorphism. Let iNBk= Uk, 
iNB2~  U2 and iN(Bíy B2) = U. Take corresponding Ka-sets such that UFjCz B ĵcz 
czT \[JF k and \JFpczB2c T \ U F q, and consider the sets Fjp =  ПFp. Analo
gously, define the sets FJq, Fkp and Fkq. Consider the ideals M rs = {Pf^(T)\PC \Frs£ 
£N} for /-,se{j,k ,p ,q}. Denote RMrs by A„ and (U RJp) U ( U RJq)U(U Rkp) U 
U (U Rkq) by Q. Then by the definition of iN we have (URJP) U( URjq)zzUkzzRN\  
\ ( U ü tp) U ( U « 4  (UA,p)U (URkp)c  t/2 c=RN\ ( U  Ял ) U (U Rkq) and (URJP)U
U (U Aje)U ( URkp)ciUc RN\ U R kq. Hence we obtain P ^U A iU .U U ^czR ^Q . 
As ( ПMjp) П( ПMJq)П(ПM kp)П(ПMkq)= N  then Q is dense in RN. Therefore 
P—0. Consequently iN preserves supremum. Evidently this mapping preserves 
unit and complement as well.

Let 06 4* and d={BN} and consider the open-closed sets UN=iNBN and 
U =cl U UN. Define the mapping i: Ч'—А (R) setting id=U. Let Nz>M and take 
A^-sets £ j s  [J Fj (Z В M and E2 =U Fkcz T \ B M suchthat T \ ( E k U E2) 6 M. Con
sider the ideals M ' = {P£^>(T)\Pr\Fj£M} and M J ~ { P ^ (T ) \P f]  F ^N }. Simi
larly define the ideals M'k and Mk. Let R}, R'k, Rj and Rk be the corresponding sets. 
Then U Rj a  UM zz RM\  U Rk. By what has been proved above {JR'j <z Un czRn\  
\ U Rk. As Rj CRj ORv and R"czRkc:Rw, UR'j zzUMí)R NczRN\ URk . There
fore UMr\Rfi=UN.

From this property we obtain UN c  ( U UM) П RN a  (U UMn n) П RN = UN. There
fore {7ПАя=с1((иСм)ПАл)=С/л. Hence the injectivity of i follows. Moreover,
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from this property and the homomorphy of iN it follows that i is a Boolean homo
morphism.

Now let {Ä, q: R-*T, Tn^ R n} and {R, q: R-*T, Tn>-+Rn} be preimages 
with the properties from 1) and 2), resp. Consider the mappings к : 'S(R)^ 4? and 
i: 4*-+A(R) defined above. Consider the unit preserving lattice homomorphism 
or g(R)->-A(R) suchthat ct = iok. Let t£R  and consider the sets Г = {G irS(R )\ti 
6aG} and P=i?_1£>i. Assume that P flc lG  =  0 for some G6T. Then gt£C = 
= T \c le G  imphes i6i?_1Cc:cl Q ^C —iC. Denote p-1C by Glt then кСл=С. 
Therefore C AkG=k(Gi nG ) — 0 and iC (T aG =  0, but this is false. Hence P П cl G ̂  
7̂ 0 for any G6T. Let Gi ,G 26T. Then G1C\G2d r  implies PlTcl Gxflcl G2^0 . 
Therefore Р,=  П{РПс1 G|G6f}Tí0 by virtue of compactness of P. Assume that 
there exist sl t st£Pt. Then there exist open sets G\ and G2 such that s1£G1, x26G2, 
Ji^clGa, ^(fclG i and G1UG2=/L Hence R = aG1 U aG2. Assume that i6aGi, 
then Ja^clG! but this is false. Hence P, consists of one point only. Therefore we 
can define correctly the mapping у: R-*R by setting yt= P t. This mapping is 
continuous. In fact, let C be a neighbourhood of a point s=yt. Consider an open set 
G such that s6 G c  cl GczC. Then there exists an open set G\ such that .sytf cl Gy 
and GUGi =  Ä. Hence R —aGUocGi. If tiaG t then s i  cl G\ but this is false. 
Hence HaG. Let h6aG, then у h id  G cC . This gives the continuity of у because 
the set aG is open. . m о

This mapping is surjective. In fact, consider a point s£R, the set Г =  
=  {G6^(/?)l^€G} and the set Р=д~гдх. Assume that aG(TP=0 for some 
G if .  Then qs£ C = T \qocG. Therefore s ig ~ 1C = G1. On the other hand q~1CC\ 
PlocG = 0 implies a(G1ilG)=ikGi noeG=iCriaC=d g~1CDaG = 0. Hence v/e 
obtain G1f]G2=0, but this is false. We conclude from this contradiction that there 
exists a point t£ П {aG(T.P|G6T}. Consequently y/6 {cl G П G ir}= s.

The property poy=p follows from the definition of y. In turn this property 
implies the perfectness of у ([31], VI, § 2, 56).

Prove that yRN—RN. Assume that there exists an open set G such that 
GPlÄjv^fi and clGfjy#N=0, and a point t£aGP\RN. Then yt£dG nyi?JV=0,_but 
this is impossible. Therefore ocGr\RN— 0. Consider an {EN}ikG. Then iNEN= 
= ikGC\Rs~0 implies ENiN .  Further there exists an ideal MzoN  such that 
RM(zGC\RN. Then EN£M  means that there exists an ideal M xzoM such that 
TMlc T \ E N. As a result we obtain RMic: G \ q~1En, but this is impossible. From 
this contradiction we conclude that RNa y R N.

Conversely, assume that there exists an open set G such that GC\yRN^ 0  and 
GC\Rn=0. Consider an {EN}ikG. Assume that En$N. Then there exists an ideal 
M zdN  such that TMczEN. This implies Rm <̂ q~1En\ G  but this is impossible. 
Therefore En£N  and ikGORN—iNEN=0. Let 16y“ 'G, then there exists an open 
set Gi such that y/^d G± and G UGi=i?. Hence aG UaGi= R. This shows that 
t£ocG. Therefore y_1GcaG. So we have obtained GP\yRN=& but this contradicts 
our assumption.

Thus R is larger than R. Now let R be the hyperstonean cover of T. As R  has 
the properties from 1) and 2) simultaneously, we get that the hyperstonean cover is
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the largest of all preimages with the properties from 1) and the smallest of all prei
mages with the properties from 2). Let R  be some other largest preimage of T. Then 
there are mappings y: R-+R and <5: R-+R such that R is larger than R relative to 
у and R is larger than R relative to <5. Let id RN, then t— П {RM}- This implies 
öytd П {Яд*} =  t. As URN is dense in R we conclude that áoy=id. This means that 
у and S are mutually inverse homeomorphisms and therefore the preimages R and R 
are isomorphic.

The uniqueness of the smallest preimage and assertion 3) are checked in a simi
lar manner. The theorem is proved.

Note that if a perfect preimage of T  lifting Kelley covering is smaller than the 
hyperstonean cover then it is saturated. This assertion is a converse to the first 
assertion of the theorem.

Further the theorem will be used essentially for a characterization of the second 
dual extension C *{T )dC *(T f.

§3. Second dual extension as a vector lattice

Let T  be a completely regular space and C*(T)U the second tight dual to C*(T) 
described in the introduction to § 2. The second dual can be defined in a different way. 
Let ß denote the strict topology on C*(T) introduced by Giles (see [44], II, 1). Let 
C*(T)ß denote the vector lattice of order bounded functionals on C*(T) continuous 
with respect to the topology ß. Then by the Buck—Giles theorem (see [36], II, 3.3) 
the vector lattice C*(T)ß coincides with the vector lattice M (T) of all bounded Radon 
measures on T, consequently by the Riesz—Prohorov theorem (see [34], IX, § 5, 2) 
it coincides with the vector lattice C The vector lattice C*(T)ß/ of all order
bounded functionals on C*(T)ß will be called the second strict dual to C*(T). From 
the coincidence of С*(Т)г and C*(T f  it follows that the second tight dual and the 
second strict dual coincide. Therefore we shall not distinguish them further and shall 
call simply the second dual to C*(T).

Let и: С*(Т)-+С*(ТУ' be the canonical imbedding, and £: N ^ n  the bijec- 
tion from Section 1.1.3. Let v£n=(N  and cpv be the functional on C*(T) correspond
ing to v. Consider the vector-lattice ideal С*(Г)]( =  {хбС*(Г)<,|\/р€и(|х||(р¥| =  0)} 
in С*(ТУ'. Then {С*(ТУ\ u: C \T )-* C * {T y , C%(T)~C*(T)%} is an ex
tension of C*(T) inheriting Lebesgue decomposition. This extension will be called 
the second dual extension o f C*(T).

3.1. Functional description of the second dual extension by functions on hyperstonean
cover

Let R  be the hyperstonean cover of T  and q: R-*T  the canonical mapping. 
Consider the injective vector-lattice homomorphism (p: C*(T)-+C*(R) such that 
(pf=foq. For a Kelley ideal N  consider the ideal C%{R)={f^C*(Pi)\f(RN)=0}. 
Then (C*(R), cp: С*(Г)—C*(R), C%(T)̂ ->-C*N(R)} is a vector-lattice extension of 
C*(T) inheriting Lebesgue decomposition.
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P roposition  2. The extensions C*(T)U and C*(R) are isomorphic saturated 
Dedekind complete component extensions o f C*(T) inheriting Lebesgue decomposition.

P roof. Denote C*{T)U by X, C*(T)% by XN, C*(R) by Ф and C*N(R) by Ф*. 
In the proof of Proposition 1 it has been established that there exists a vector-lattice 
isomorphism vr: Ф-»Х such that <i>vf —<p'v(wf) and wocp—u, where <pv and cp'v 
are the functionals on Ф and X, respectively, extending the functional cpv. Let /6  Фы, 
then Rn—supp V for any v£n= £N, where V denotes the measure on R defined in 
the proof of Proposition 1. Therefore (wf)(cpv)=(p'v(wf)=  <pv/=  f fd v '— 0 for any 
v£n. Hence wfdXN. Conversely, consider the vector-lattice isomorphism y=w_1. 
Let 0< x£XN, then fvx  dv'=<py(vx)=(p'v(wvx)=xcpv=0  for v'>0. As supp V— 
— Rn , (vx)(Rn)=0 and vx£XN for any x> 0  and hence for any x. Therefore 
the given extensions are isomorphic.

Let Y  be a proper component of Ф such that Yd ф Ф;Ч-. Consider the non
empty set P={x6Ä|Vg€T(g(‘y)=0)}. Then Y= { /£ Ф|/(Р)=0}. By assumption 
P i)R N=0 from the inclusion U {coz g\g£Yd}c:P we obtain Ydc. Фу but this is 
false. Consequently PC) Rs ^0 . As P is a regular closed set, int PC\RNИ 0. There
fore there exists a proper ideal M zdN  such that f?Mc:int Pf]RN. Hence we obtain 
ФN(JYc:Фм . This means that Ф is saturated.

Since the space R is extremally disconnected and the sets RN are open-closed, 
Ф is Dedekind complete and component. The proposition is proved.

3.2. Characterization of the second dual extension as a vector lattice

In what follows uniqueness is understood up to isomorphism in the category of 
the vector-lattice extensions of C*(T) inheriting Lebesgue decomposition.

Theorem 2. 1) C*(T)tr is the unique largest o f all saturated extensions o f C*(T) 
inheriting Lebesgue decomposition;

2) C*(TJ' is the unique smallest o f all о-filled Dedekind complete component 
extensions o f C*(T) inheriting Lebesgue decomposition; moreover C*{T)U is the unique 
universal among all such extensions;

3) C*(T)‘' is the unique saturated Dedekind complete component extension o f  
C*(T) inheriting Lebesgue decomposition.

P roof. Let {X, u: C*(T)—X, C%(T)>-+XN} be an extension having the pro
perties from 1). By Yosida’s theorem ([36], § 45) there is a unique compact R0 such 
that the vector lattice X  is isomorphic to the vector lattice C (R0) relative to an iso
morphism r0. Then the mapping и generates a unique surjective continuous mapping 
Qn: R0->-ßT such that r0uf=f'oQ0 where f  denotes the extension of a function 
Д С *(Г) on ßT.

Consider the space and the perfect mapping q: R—T  which is the
restriction of q0. Consider the vector lattice Ф consisting of the restrictions on R of 
all functions from C(R„), the homomorphism г: Х-*Ф such that rx=r0x\R, and 
the homomorphism cp: С*(Т)-~Ф such that (pf=fog.

For a Kelley ideal N  consider the ideals SoN=r0XN and Фм=гХ!Я and the 
closed subsets RoN= {s£Ru\\/f£Фол.(/(х)=О)}т£0 and RN=Ro^r\R. Then U/?ojV 
is dense in R0 and q0Ron—cl TN. It is clear that YxciV2 implies RNl^ R N... Take
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for N  a proper ideal Mz>N such that TM is a compact set. Then RM=RoM. It 
follows from this fact that Rn t±& for any N.

Let O sf£C (R0) and f(RoN)=0. Consider the functions
From the property 7Ц,Г)с1 coz / fc=0 we conclude that f kd <PoN. This implies that /  
belongs to this ideal also. Therefore 4>oN= {fűC(R0)\f(RoN)=0}.

Let C be the cozero-set of a function f£C (R 0) suchthat Cn/?oJV7i 0. Take a 
sequence of compact sets Fk such that FkŰ N  and T \[J  FkűN. Consider the proper 
ideals Nk= {Pű^>(T)\Pn FkűN}. Then f)N k=N. As X  is er-filled we have /$  Фоцк 
for some к. Therefore С П i?;V ̂  С П RoNk ̂  0. This means that RN is dense in RoN. 
As a consequence we get <PN= {f£<P\f(RN)=0} and qRn= T n .

Moreover, we have established that R is dense in R0. Hence the triplet (Ф, q>: 
С*(Т)-+Ф, Cx(T)^+<PN) is an extension isomorphic to the initial one.

In addition we get that U RN is dense in R. Consequently R is a preimage of T 
lifting Kelley covering.

Let G be an open set in R and GC\RN^Q. Take a proper regular closed set 
F e d  such that int FCiRn^Q. Consider the proper component Y = {fű Ф \/(Т )= 0} . 
As Yd ф (I>N we get by virtue of the saturatedness of Ф that there exists an ideal Фм 
containing the set Фл,U Y. This means that RM(zRNf]G. Thus R is a saturated 
preimage.

Now let {V, űr. C*(T)-*X, C*N(T)^+XN} be an extension having the proper
ties from 2). Consider, as above, the isomorphic extension {Ф,ф: С*(Т)-~Ф, 
С%(Т)^Фх\ for the corresponding preimage {R ,q: R-»T, Tn>-*Rn}.

Let C\Nk—N, then Ф„= ПФ^ implies that URNk is dense in RN. This means
that the preimage R is cr-filled. As Ф is Dedekind complete, R is extremally disconnec-• O
ted. As Фдг is a component, RN is open-closed. Hence the preimage R is disjoined.

By Theorem 1 there exists a mapping y: R-»R such that R is larger than R 
relative to y.

Let Д Ф . As R0 is an extremally disconnected compact, R0—ßR (see [31], 
VI, § 5, 173). Therefore Ф=С*(К). Consequently foyűS. This means that we can 
define correctly the injective vector-lattice homomorphism v: Ф-+Ф by setting 
vf=foy. Then (p = vog. Let fű  Фц, then (yf)(RN)=0 implies vfűS N. Thus the 
extension Ф is larger than the extension Ф. This fact is valid for the initial extensions
X  and X, too.

Now let Ф be the extension from Proposition 2 isomorphic to the second dual 
extension C*(T)U. As Ф has the properties from 1) and 2) simultaneously we get 
that Ф is the largest of all extensions with the properties from 1) and the smallest of 
all extensions with the properties from 2).

Let X  be some other largest extension of C*(T). Consider, as above, the isomor
phic extension {Ф, ф: С*{Т)-~Ф, С (̂Т)<->-Фн} for the preimage {R, q : R-»T, 
TN̂ R N}. Take some mapping w: Ф-+Ф such that Ф is larger than Ф relative to w. 
Define the surjective perfect mapping <5: R-^R  by setting Ss= П {cl coz/П  £>_10.?|5б 
€coz wf). Then qoő= q. We check that wf=foő for any Os/бФ. Assume that 
there exists a point s such that (wf)(s)?±(foö)(s). If (wf)(s)>(fo§)(s) then we
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shall consider the function g= f; otherwise g= —f.  Denote the number 
((wg)(s)+(goő)(s))/2 by a. Consider the function h= (g—al)VO. Take a neighbour
hood G of 5 such that (wg)(t)>a for any tdG. Also take a neighbourhood U of the 
point ös such that g(r)<a for any rd U. Then U czR\coz h and GÍ)ő~1U c  
crcoz wh. Therefore ös$c\cozh  and Ssdclcozh but this is impossible. From this 
contradiction we conclude that such point does not exist.

We now check that 0RNa R N. Assume that there exists a point sdSRN\ R N. 
Take a function ДФлг such that sdcozf then for some point td RN such that 
s—St we get 0. On the other hand, wfd <PN implies (w f)(t)= 0. It follows
from this contradiction that this inclusion is valid.

Now take the mapping v: Ф—Ф defined above. Let sd RN. By virtue of the 
saturatedness of the hyperstonean cover we have х=П{7?м}. Then őysd П {RM}=v. 
From this fact we conclude that Sys=s for any point sdR, i.e. (wvf)(s)—f(s). 
Thus v and w are mutually inverse isomorphisms of the vector lattices, and the exten
sions Ф and Ф are isomorphic.

The uniqueness of the smallest extension and assertion 3) are checked in a simi
lar way. The theorem is proved.

Note that the class of saturated extensions of C*(T) inheriting Lebesgue decom
position contains extensions not isomorphic to С*(ТУ'. The most important such 
extensions are the vector lattices B*(T) of all bounded Borel functions and the vector 
lattice L*(T) of all bounded universally measurable (see [34], V, § 3, 4) functions 
on T.

§4. Second dual extension as a C-ring

Let Г be a completely regular space and С*(Г)" the second tight dual to C*(T) 
described in the introduction to § 2. Provide it by the Arens product in the following 
way. For fg d C * (T )  and idC *(T){ define {•fdC*(TJ  by setting ( i- f)g =  
= Щв). For ф ес*(т у  define i/г.{еС*(Г)‘ by setting •/)• For
(pdC*{TY define (рф£С*(ТУ' by setting (qnj/)£=<p(ijj • £). Then C*(T)f' is a 
C-ring, containing C*(T) as a C-subring. In the case of a compact space S the possi
bility of converting C*(S)" into a ring extending the ring C(S) has been proved in 
different ways by Vulih [14], Kakutani [15], Arens [16] and Grothendieck [17]. Howe
ver it follows from Vulih’s theorem (see [14] or [45], V. 8.2) that all these ring structures 
on C(S)" coincide.

Let и: С*(Т)-^С*(ТУ' be the canonical imbedding. Consider in С*(Т)и the 
C-ideals C*(T)% introduced in the previous section. Then {С*(Т)и , и:

С * (Т У С и  (Т)^+С*(Туу,} is a C-ring extension of С*(Г) inheriting Lebesgue 
decomposition. This extension will be called the second dual extension o f C*(T).

4 . 1 .  Functional description of the second dual 
extension by functions on hyperstonean cover

Let R be the hyperstonean cover of T and q : R-*T  the canonical mapping. 
Consider the injective ring homomorphism cp: C*(T)-»C*(R) suchthat cpf=fog. 
For a Kelley ideal N  consider the C-ideal C%(R) = {fdC*(R)\f(RN)=0}. Then
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{С*(Д), <P- C*(T)-+C*(R), C*n(T)~C*n (R)} is a C-ring extension of С*(Г) in
heriting Lebesgue decomposition.

P ro po sitio n  3. The extensions С*(ТУ' and C*(R) are isomorphic saturated 
continuing segment extensions o f C*(T) inheriting Lebesgue decomposition.

P ro o f . Denote C*(R) by Ф and C%(R) by Фп. In just the same way as in the 
proof of Proposition 2 it is established that the given extensions are isomorphic and 
Ф is a saturated extension.

Let Y  be a ring ideal in the ring Ф and (Г, Y**). Let уг, у2<z Y  and
Rcoz yxC\coz y 2, then (g y f  (^O/^i(̂ ’)=(&У2)(s)/y2(s). Consequently we can define 
correctly the function z by setting z(r)= (gy)(s)/y(.sj for any y£ Y  and for any 
I€cozy and z(t)= 0 for any C=cl {cozy\y£Y}. As the function z is bounded 
and continuous on a dense subset of R and the space R is extremally disconnected 
then z can be extended to a continuous function on the whole space R (see [31], VI, 
§ 5, 158 and 173).

As zRY** we can define correctly the homomorphism /ifHomJ (Ф, Y**) 
by setting hf=fz. Let y £ Y  and s£cozyx for some y f  Y. Then yi(i)(hy)(i)=

implies (hy)(s)=(gy)(s). As hy and gy belong to 
Y** we have (hy)(s)—0—(gy)(s) for all s$U. This means that hy—gy. Thus Ф 
is continuing.

Now let g and h be the homomorphisms from the definition of the segment and 
gYc:ФN. Let /£Ф and s£RNC\cozy for some y£Y. Then y(s)(hf)(s) — 
=f(s)(gy)(s)=0  and consequently (hf)(s)=0. If sdRN\ U  then (hf)(s)—0 for 
hff_Y**. Hence hf£Фм. This means that Фм is a segment of Ф. The proposition is 
proved.

4.2. Characterization of the second dual extension as a C-ring

In what follows uniqueness is understood up to isomorphism in the category of 
the C-ring extensions of C*(T) inheriting Lebesgue decomposition.

T h eorem  3. 1) C*(T)‘' is the unique largest o f all saturated extensions o f C*(T) 
inheriting Lebesgue decomposition;

2) C*(TY is the unique smallest o f all о-filled continuing segment extensions o f 
C*(T) inheriting Lebesgue decomposition; moreover C*{T)V is the unique universal 
among all such extensions;

3) С*(ТУ' is the unique saturated continuing segment extension ofC*(T) inheriting 
Lebesgue decomposition.

P r o o f . Let {X, и: С * ( Г ) —X, C% (T)^XN) be an extension having the pro
perties from 1). By Delfosse’s theorem ([39]) there is a compact R0 such that the lattice 
ring X  is isomorphic to the lattice ring C(R0) relative to an isomorphism r0. The 
lattice-ring homomorphism и generates a unique surjective continuous mapping 
e0: R0-*ßT such that rnuf—f'oQ0 where f '  denotes the extension of a function 
f£C*(T) on ßT. Further by completely the same arguments as in the proof of Theo
rem 2 we obtain the preimage {R, q : R —T, Tn>-̂ Rn} of T  and the corresponding 
extension {Ф, (p: С*(Т)—Ф, С„(Т)>-+Фц} isomorphic to the initial one.

10* A d a  Mathematica Hungarica 51, 1988



148 V. К . ZA H A RO V

In just the same way as in the proof of Theorem 2 it is established that the prei
mage R is saturated.

Now let {X, й: C*(T)-*X, C*N{T)^~XN} be an extension having the pro
perties from 2). Consider the isomorphic extension {Ф, ф: С*(Т)]^Ф, С^(Г)>-—фу} 
for the corresponding preimage {R, q: R —T, Tn>-*-Rn}. Then the preimage R  is 
rr-filled.

Let G be an open set from R. Consider the ring ideal Y  = {yté\coz yczG} of 
the ring Ф, and define the homomorphism Ноггц (Y, Y**) by setting gy=y. 
Then there exists a bounded Ф-module homomorphism h : Ф^-Y** extending g. Con
sider the function и=Л1бФ and the set U=cl G. It is clear that u (R \U )~ 0 .
Let s£G, then cozу  for some y£Y. Therefore y(.v)M(.v)=(gy)(.5)=y(i) implies

•и( j) =  1. Since the function и is continuous we conclude that u=x(U ) and UfA(R). 
This means that the preimage R  is extremally disconnected.

Let GC\Rn=Q. Then gYc:ФN implies u dSN and UPiRn=&. Hence the prei
mage R is disjoined.

The rest of the proof is exactly the same as that of Theorem 2.
Note that the class of saturated extension of C*(T) inheriting Lebesgue decom

position contains extensions not isomorphic to C*(T)V. The most important such 
extensions are the C-ring B*{T) of all bounded Borel functions and the C-ring L*(T) 
of all bounded universally measurable (see [34], V, § 3. 4) functions on T.
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PROXIMITIES, SCREENS, MEROTOPIES, 
UNIFORMITIES. IV

Á. CSÁSZÁR (Budapest), member of the Academy

11. Semi-uniformities. It is well-known that uniformities can be defined in two 
completely equivalent manners, introduced in [24] and [23], respectively. In order to 
recall and generalize these definitions, let X  be a set and a, b£exp X; we say that a 
refines b, or that a is a refinement of b, denoted by a<scb, iff Af_a implies the exis
tence of B£b suchthat A cB . aA0  is a cover of X  iff U a = X

Now, according to [23], £  is a uniformity on X  iff <£^0 is a set whose elements 
are covers of X, and the following conditions U1—U3 are fulfilled:

Ul. e€(E, c<scc' implies c'£(E,
U2. cl5 e2G(E implies the existence of c£(£ suchthat с<зссг for 1=1,2,
U3. c£(£ implies the existence of cfic such that c*«c, where c*={C*: C£c'}> 

C *=U {C '€c': С 'П С*0}.
On the other hand, according to [24], 41 is a W-uniformity on X x 0  iff ^  is a 

filter in X X X  satisfying

Wl. Ax = {(x,x): x£X }(zU  for U£<V,
W2. Ud °U implies UC\U~l£4l for U~1={(y,x): (x, y)6 (/},
W3. implies the existence of U fiW  suchthat U 'oU 'aU  where U 'oU '=

= {(jc, z): there is y £ X  such that (x, y)£ СГ, (y, z)6 (/'}.

For convenience, if X=0, the set {0} is considered to be a JF-uniformity on X. 
The equivalence of these two definitions (for X ^ 0 )  is established if we assign, 

to a uniformity (£ on X, the IF-uniformity Ф о п !  composed of those sets U a X x X  
that contain a subset of the form U {CxC:  c} for some c£(i, and conversely,
to a JF-uniformity ÓU, we assign the uniformity £ composed of the covers c that pos
sess a refinement of the form c'={CczX: CXCcC/} for some U£4t. These ope
rations are inverse to each other; we say that the corresponding (£ and °U are asso
ciated with each other.

Let сбехр exp X, UczXXX,  and a 6 exp exp X. We say that a is c-Cauchy iff 
there exist Cdc and Лба such that AczC, and that a is U-Cauchy iff there is 
Лба such that A X A a U .  For a uniformity (£ on X, we say that a is (Í-Cauchy iff 
it is c-Cauchy for every еб<£. Similarly, for a IF-uniformity 4l, we say that a is 41- 
Cauchy iff it is (/-Cauchy for every U(i°U. It is easily seen that, if C and 4l are asso
ciated with each other, then C-Cauchy means the same as 4K-Cauchy.

A set (Ex0 of covers of X  will be said to be a semi-uniformity iff it fulfils Ul 
and a pseudo-uniformity iff it satisfies U l and U2 (“quasi-uniformity” in [13]). Simi
larly, we say that an ascending system 41X0 in X x X  is a W-semi-uniformity iff
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it fulfils W1 and W2, and that a filter in XX X  satisfying W1 and W2 is a W- 
pseudo-uniformity (“semi-uniformity” in [1]).

It is well-known (cf. e.g. [16]) that pseudo-uniformities are closely related to 
merotopies. We shall show that the same holds for semi-uniformities and semi- 
merotopies.

If G and G' are semi-uniformities on X  and Y, respectively, and f :  X ^ Y ,  then 
f  is said to be (G, (Z')-continuous iff c'€ G' implies the existence of c€ G such that
/ ( c ) «  c'.

(11.1) L em m a . The semi-uniformities and the (G, (Z')-continuous maps constitute 
a concrete category Sunif. □

The definition of a G-Cauchy system can be obviously generalized for the case 
when G is a semi-uniformity.

(11.2) L em m a . Let G be a semi-uniformity on X. Then the (Z-Cauchy systems 
constitute a semi-merotopy on X  denoted by 9Ji(G).

P roof. {0} is G-Cauchy, and the same holds for {{x}} if x£X.  If tn is 
G-Cauchy, then m X 0  because G 00. If m is G-Cauchy and then m' is
G-Cauchy. □

(11.3) L em m a . I f  G is a pseudo-uniformity, then 991(G) is a merotopy.
Proof. Let m = m 1Unt2 be G-Cauchy, and assume that neither mx nor nt2 is 

G-Cauchy. Then there are C!,c2€G such that no C£c; contains any subset M£т г. 
Choose c£G, с<ксг for i=l ,  2. Then no C£c contains any subset M f m :  a con
tradiction. □

(11.4) L em m a . Let 9Я be a semi-merotopy on X. Then those c £ e x p  exp X for 
which every m£9Jl is c-Cauchy constitute a semi-uniformity G(9Jt) on X.

P roof. {2f}£G(99l) since m X 0  for mf'DL 991/-0 and {{x}}£99l for x£X  
imply that every c6G(9JI) is a cover of X. If c«:c' and m is c-Cauchy then m is c'- 
Cauchy as well. □

(11.5) L em m a . 7/991 is a merotopy, then G(99I) is a pseudo-uniformity.
Proof. Let cx, c2£G(99i) and define

с = {СХПС2: Cfc,  (i =  1, 2)}.
Then c is a cover of X, с<кс; (г—1,2). Assume c G(SJJ(). Then there is m<E9Ji 
such that no set C£c contains a subset M£m.  Now for Mdm,  either 
or A /cC2€m2 is impossible (otherwise MczC1DC2̂ c would hold). Thus m= 
=  m1Um2 and, for M€nt;, M cC ^C j is impossible, so that mf is not cr Cauchy; 
this contradicts the fact that either т х or rtt2 belongs to 991. □

(11.6) L em m a . I f  G is a semi-uniformity, 991 a semi-merotopy on X, then
G (991(G)) =  G, 991(G(991)) =  SR.

Proof. By definition, GcG(99l(G)). If c /e x p  exp X, c'$G, then c€G, 
c<scc' is impossible, hence every c€G contains an element C£c that is not a subset of
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any C 'f  c'. Let nt denote the collection of these sets C. Then mf 931(d) but m is 
not c'-Cauchy, so that c 'f d  (931(d)).

Similarly, 931 cz 931 (d (931)) by definition. If tn 'f  exp exp X, in 'f 931, then in<m ' 
is impossible for m f 931, so that every in f  931 contains an element M f  m that does 
not contain any subset M 'f  m'. The collection c of these sets M  belongs to d(931), 
but m' is not c-Cauchy, m 'f 931(d(931)). □

(11.7) L emma. Let d  and d ' be semi-uniformities on X  and Y, respectively. A 
map f :  X-+Y is (d, (i')-continuous iff it is (931(d), Ш(*И'))-сопПпиот.

P r o o f . If cfd,  c'f d ', /(c)<s:c', and in is c-Cauchy, then clearly / ( m) is /(c)- 
Cauchy and c'-Cauchy. Hence (d, d')-continuity implies (931(d), 93l(d'))-continuity.

Conversely, assume that, for a c'f d', there is no cfd  satisfying /(c)<scc'. 
Then we can choose from every cfd  a set C fc such that/(C ) is not a subset of any 
C 'f  c'. The collection m of these sets C belongs to 931(d), and/(m) is not c'-Cauchy. 
Therefore (931(d), 931 (d'))-continuity implies (d, d')-continuity. □

(11.8) Theorem ([11], 3.3—3.6). The functor F defined by F(d)= 931(d) indu
ces an isomorphism from  Sunif onto Smer that carries onto Mer the full subcategory 
Psunif o f  Sunif the objects o f which are the pseudo-uniformities. Hence Sunif is a 
strongly topological category and Psunif is a strongly topological bicoreflective sub
category o f  Sunif. □

The part concerning Psunif and Mer is well-known as it was mentioned above; 
it motivates the fact that sometimes (e.g. in [12]) pseudo-uniformities are called mero- 
topies.

Since 931 is a filter-merotopy iff 931=931/ we obtain:
(11.9) C o ro llary . With the notations o f (11.8), a semi-uniformity d  belongs to 

F -1 (Finer) iff every (£-Cauchy system is finer than some (£-Cauchy filter. □
On the other hand, [20] contains a characterization of those merotopies that 

belong to F(Unif) (using W-uniformities instead of uniformities).
In order to examine the category Unif as a subcategory of Psunif, let us first 

describe the fundamental operations in Sunif.

(11.10) Lemma. I f  d  is a semi-uniformity on X, g: Z-+X, then gsunii(d) is 
composed o f those c'f exp exp Z for which there is a c fd  such that g _1(c)«:c'.

P roof. By (11.8) an d  (11.6)

giUV = 4ssL (m m .
By (9.1) c'f gsimii(d) iff g(m')f 931(d) implies that m' is c'-Cauchy. If cfd,  g ^ /c )« ; 
<kc', and y(nt') is d-Cauchy, then there are M' fm'  and C fc suchthat g(M')czC, 
i.e. A f 'c g -1(C), and then М 'с £ _1(С)сгС' for some C ' fc'. On the other hand, 
if there does not exist a cfd  satisfying g -1(c)«:c', then there is, for every cfd, 
a set Cfc such that g _1(C) is not a subset of any C ' fc' . These sets g~l (C) consti
tute a system rrt' satisfying g(in')f 931(d) that is not c'-Cauchy. □

(1 1 .1 1 ) Lemma. I f  d ; is a semi-uniformity on X  for i f / ,  then supsunit ( d ;:
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i£ /} = (J  G, i f  /И0, and it is composed o f all c£exp exp X such that Xdc i f  
ia

P roof. By (11.8) an d  (11.6) again,

suPsun:i{®>: i6 /}  =  ^ ( supSmcr{®l(Gi): id I}).

If 1=9, then {{A'}} belongs to the sup at the right-hand side, and this system is c- 
Cauchy iff Xdc, for such a e, every non-empty element of exp exp X  is c-Cauchy 
as well.

If 1^9, then the sup at the right-hand side is f) 931 (G,). If c'd U then
ta  ia

every rrt that is G; -Cauchy for each id I  is c'-Cauchy, too. If c'$ (J Gi5 then
c-src', c d&i is impossible, hence, for each cdGj, id I, there is C£c that is not a 
subset of any C'dc'. These sets C constitute a system rrt£ f) 99l(G,) that is not

ta
c'-Cauchy. □

(11.12) Lemma. The Psunif-coreflection o f a semi-uniformity £  on X  is the col
lection G4 o f all c£exp exp X  such that there are cf€G (i= 1, ..., n; nd N) satisfying

{П Q: QdCi (i =  1,..., и)} <sc c.

P roof. By (11.8) and (11.6) the coreflection in question is G(991(G)4). Choose 
c,iG for i = l ,  ..., n and set

(11.2.1) с' =  {П Q : Qdc, (i =  1, ..., «)}.

If c'«scc, and rn6931(C)4, then m is c-Cauchy; in fact nt is c'-Cauchy, otherwise 
there would be, for every Mdvn., at least one i such that MczCdCi is impossible.

П
Denote by the collection of all Mdvx for which this holds for i. Then rrt = 1J m;

1
so that, by (9.10), m;€93l(G) for at least one i. For this i, m is not c;-Cauchy: a 
contradiction.

On the other hand, assume that c£exp exp X  has no refinement of the form
(11.12.1) . Then, for every finite subset {c,: i= 1, ..., n} of C, there are С;£с; such

П
that C]Ci is not a subset of any Cgc. Let m denote the system composed of all 

1
n  n

these intersections f) C;. Then m6 9Л ((£)". In fact, if [J and no 
1 1

belonged to 931(G), then, for each i, there would be a ctd G suchthat Mem,-, Cdc(,
n

MczC  is impossible. Now the intersection f) С,- corresponding to this choice of the
1

covers Cj cannot belong to m: a contradiction. Thus we obtained a system 991(G)4 
that is not c-Cauchy. □

O f course, (11.10)—(11.13) could be checked directly, without referring to (11.8).
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(11.13) L emma. I f  (E is a uniformity on X, g: Z —X , then g su L f(® ) =  gp»unii(& ) 
is a uniformity.

P roof. The equality results from (11.8) and (9.13). For c,'€ ^ _1(C)=^siiii№). 
choose a c€© suchthat g - 1(e)<K c" (see (11.10)), then select cf (£  satisfying the 
condition in U3. Clearly g - 1(c')£g-1(£) fulfils the condition in U3 for g _1(c) 
and, a fortiori, for c". □

(11.14) Lemma. Let be a uniformity on X  for i£l. Then suppsunif {£;: /£7}= 
=  (supsunii {C;: i€7})4 is a uniformity.

P roof. By (11.8), (9.13) and (11.12), then equality is valid. The case 7=0 is 
obvious. Assume 7^0.

Denoting the common value of both sides by (£, for c£(£, choose ik£ l (k=l,  ... 
..., rí) and Cjfc£(£;k such that

c' =  { П Ck: C*€ cik (к =  1,.. .,  и)} «  t.

For each cifc, select C;k£(£i(< satisfying U3. Then it is easily seen that

с" =  {  П  C f .  C le c ' ik ( f c = l ,  . . . , « ) } € ( £
k = l

fulfils U3 for the given c. □
(11.15) T heorem  ([12]). The category Unif is a bireflective subcategory o f every 

fu ll subcategory o/Psunif in which it is contained. Unif is strongly topological with the 
operations

£ u n i f ( ^ )  =  £ psun if№ ) =  if Sunil (^")>

suPuniii®i: *€/} =  supP8unif{£,: i€ 7 } -(su p Suni[{ei: i£7})4.

P ro o f . (0.2), (11.13), (11.14). □

12. IF-semi-uniformities. In contrast to the equivalence of uniformities and 
Ж-uniformities, we shall see that semi-uniformities and Ж-semi-uniformities (and 
similarly, pseudo-uniformities and Ж-pseudo-uniformities) are essentially different 
concepts.

If / :  X — Y  and °U, 'V are Ж-semi-uniformities on X  and Y, respectively, we 
say that / i s  , y)-continuous iff, for VCYV, there is U íőU such that (x,y)€U  
implies (f(x),f(yj)dV.  This can be easier formulated if we denote, for / :  X-»Y,  
by f+ the map from X X X  into Y X Y  defined by f+(x,y)—(f(x) ,f(y));  then the 
(W, ^-continuity o f/ means that V t'V  implies the existence of u k aU such that 
/ + (C/)cK, or that f+ 1(V)£cll whenever V^'V  (because Ш is ascending).

(12.1) Lem m a. The W-semi-uniformities and the ifU, i r)-continuous maps con
stitute a concrete category Wsunif. □

(12.2) Lemma. I f  4l is a W-semi-uniformity on X, g: Z —X, then all sets 
U ' a Z X Z  suchthat U' ZDg+'iU) for some Lie'll constitute a W-semi-uniformity
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g 1(ŰU) on Z  that is the coarsest W-semi-uniformity 4l' on Z  such that g is (fill', all)- 
continuous. □

(12.3) Lemma. I f  is a W-semi-uniformity on X for i f f  then s u p { ^ ; : i f l }=
= U is the coarsest W-semi-uniformity on X  finer than each provided /Й 0; 

iil
for /= 0 ,  let sup \fUi: i f i }  denote {TX T ) ,  i. e. the coarsest W-semi-uniformity 
on X. □

(12.4) Lemma. I f  g: Z —X, f:  X-+Y, and W is a W-semi-uniformity on Y,
then (fo g )~ \y )= g -1{ f - \ i r )). □

(12.5) Lemma. I f  g: Z-+X, and 4ii is a W-semi-uniformity on Xfor i f f  then
g —1(su p { flit: i f l } )  =  s u p f e " 1^ , ) :  i£ /} .  □

(12.6) T heo rem . The category Wsunif is strongly topological. □
Let Wpsunif and Wunif denote the fu ll subcategories o f  Wsunif the objects o f  

which are th e  Ж -pesudo-uniform ities a n d  Ж -uniform ities, respectively.

(12.7) Lemma. I f  ŐU is a W-semi-uniformity on X, then the collection o f all inter-
П

sections П  Ui, where U f  °U, n€N , is the coarsest W-pseudo-uniformity fftlq finer 
1

than 41. □
(12.8) L em m a . °Uq =  aU for every W-pseudo-uniformity 4l. I f  41 is a W-semi- 

uniformity on X, g: Z-*X, then

g ~ W  = g“1 W -  □
(12.9) T h eorem . Wpsunif is a bicoreflective subcategory o f  Wsunif and strongly 

topological with the operations

gWpsunifĈ O =  g Wsunif

SUP Wpsunif * € / }  =  (и Ц Ч м ^ Ф ,:  i f i } ) 4.

The 'Wpsvaúf-coreflection o f a W-semi-uniformity 41 is 4/,q.
Proof. (0.3), (12.7), (12.8). □

(12.10) L em m a . I f  ÚU is a W-uniformity on X, g: Z —X, then g~x(°U) is a W- 
uniformity on Z.

Proof. U ^ U ^ U , U1, i / c l x l  im plies

g + W J o g + W J c z  g~+ \ U ) .  □

(12.11) Lemma. I f  fli is a W-uniformity on Xfor i f f  then sup\yp8unif (Щ: i f l}  
is a W-uniformity as well.

Proof. U}oU}czUi, U-, U iC iX x X  ( i = l ,  . . . , rí) im plies

( n  u ' i ) ° ( П  u ; ) c z ( \  U f  □
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(12.12) T heorem . W unif is a bireflective subcategory o f every full subcateg
ory o f  W psunif in which it is contained, and it is strongly topological with the 
operations

g W u n i l ( ^ )  =  8  Wpsunif ( ;̂ )  =  8 w L n i f ( ^ ) >

SUP Wu n if{ ^ i: i f  I } =  SUP WpSu m f { ^ : i € / }  =  ( s u p w s u n if i^ :  i £ / } ) ?.

P ro o f . (0.2), (12.10), (12.11). □

Now we investigate the connection of IF-semi-unifounities and semi-merotopies.
(12.13) L em m a . I f  di is a W-semi-uniformity on X, then the °U-Cauchy systems 

constitute a semi-merotopy Ш(йй) on X.
P r o o f . aU X 0 implies m ^ 0  for a ^-Cauchy system m. If  m is ^-Cauchy and 

m <m ', then m' is ^-Cauchy, {{x}} is ^-Cauchy for x£Ar because Ax czU for
ue<%. □

(12.14) L em m a . Let 931 be a semi-merotopy on Xxfi. Then the collection o f  all 
sets UczXXX for which every m£93l is U-Cauchy is a W-semi-uniformity °U(93!) 
on X.

P ro o f . Clearly JX IC ® , and U c U ' c X X X  implies U f  ÓU. If
x£X, then {{x}}£93l, hence Ax a U  for U£°U. If m is U-Cauchy, then it is 
U П U -1-Cauchy as well. □

(12.15) L em m a . For a W-semi-uniformity aU on X, we have dl.
P ro o f. Obviously úllc:öU{fi\{aU.)). Conversely, if U f  úU, [ / 'c lX L ,  then 

U—U'x№ for UdW (because °U is ascending). Choose (а, у)€(!7Пt / -1)— U' 
for U£ °U. The collection of the sets {x,y} is ^-Cauchy without being U'-Cauchy, 
hence ^(93!(^)). □

On the other hand, we can only state:

(12.16) L em m a . For a semi-merotopy 93! on X, we have 93! c  93! (93!)). □

The sign c  cannot be replaced by =  in general.

(12.17) E xa m ple . Let X  be an infinite set and 3  the collection of all filters
Ä={S:  i c S c I } ,  where A is a subset of X  containing two elements at most. 
Clearly <3 is a screen on X  and it is a base for a filter-merotopy 93! on X. Now U£ °U (93!) 
necessarily contains every ( a ,  y)£XXX,  hence ^ (93!)= {XXX},  and every 
m£exp exp X, mX0  is f/(93!)-Cauchy. For m={T}, m is not finer than any ele
ment of 3 . □

(12.18) Lemma. For a semi-merotopy 93! on X, there exists a W-semi-uniformity 
on X  such that 93!=93!(^) iff 93!=93! (4^ (93!)), and then Ti (93!) is the unique W-

semi-uniformity looked for.

P ro o f . By (12.15), 93l=93!(^) implies óU=íil(fÜl), hence the condition is 
necessary. It is sufficient by (12.14). □
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(12.19) Let °U and У  be W-semi-uniformities on X  and Y, respectively, and 
f :  X-+Y. f i s  (fii, yyconűnuous iff it is (Ш(ай), т(У))-сопИпиош. More generally, 
г/9К and 91Г are semi-merotopies on X  and Y, respectively, then the (®i, sM')-continuity 
o f f  implies its {fU (9Л), 41 (Wl'j)-continuity.

Proof. For У£У,  mg exp exp X  is / + 1(F)-Cauchy iff /(m ) is F-Cauchy. 
Hence the (°U, ^-continuity of /  implies its (Ш(У), ädftF^-continuity. If /  is 
(9K, 9K')-continuous and Fg ̂ (9И'), then mg9Jl implies /(m )gäd', hence / ( m) 
is F-Cauchy and m i s / / 1(F)-Cauchy so that / + 1(F )g ‘̂ (9K). I f / i s  (ЩЩ, Щ У ))- 
continuous, then it is, by the above result, (fU (9К(Ф)), ÚU(9Ji('F')))-continuous, i.e. 
(°U, "//-continuous by (12.15). □

(12.20) T heorem. The functor F defined by F (У)=Ш(аи) is an isomorphism 
o/Wsunif onto the full subcategory o/Smer the objects o f which are the semi-merotopies 
911 satisfying 9Л=9К(^(9Л)).

Proof. (12.13), (12.18), (12.19). □
(12.21) Lemma. I f  °U is a W-pseudo-uniformity on X, then Ш(аМ) is a merotopy.
Proof. If  Tl is a fF-pseudo-uniformity, т£Ш(У),  and m = m 1Utn2, assume 

that т ^ Ш ( ^ )  for *= 1, 2. Then there are Ut suchthat U, does not contain 
any subset M X M  where M gm; . Now U1C\U,ffad does not contain any M X M  
for Л/gm : a contradiction. □

(12.22) Lemma. //ЭК is a merotopy on X, then °U(9Л) is a W-pseudo-uniformity.

Proof. Let Ul t l72g^(9K), and assume С/ П i /g  °1/(Ш). Then there is mgtüí 
suchthat M X M c z U 1C\U2 is impossible for M gm. Hence m = m 1Urn2 where mf 
is the set of those Afgrn for which M X M  is not a subset of Ut . Thus т /9 К  for 
at least one i, in contradiction with the fact that т г is not {/-Cauchy. □

(12.23) Lemma. Let aU be a W-semi-uniformity on X. °U is a W-pseudo-unifor
mity iff ЗЛ(У) is a merotopy.

Proof. (12.21), (12.15), (12.22). □

(12.24) T heorem. The functor F defined in (12.20) induces an isomorphism from
Wpsunif onto the full subcategory o f  Mer the objects o f which are the merotopies 9JÍ 
satisfying (9Ji)).

Proof. (12.20), (12.23). □

Let us denote by Wsmer and Wmer the subcategories F(Wsunif) and F(Wpsunif) 
of Smer and Mer, respectively. They are proper subcategories by (12.17).

(12.25) Lemma. Let atl be a W-semi-uniformity on X, g: Z-+X. Then

= 9K(gwLni,W)-
Proof. Just as in (12.19), m gexpexpZ is g_1(^)-Cauchy iff g(m) is aU- 

Cauchy. □
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(12.26) L emma. Let Щ be a W-semi-uniformity on X  for i£l. Then

suPsm eriW ): *€/} =  Щ щ ъ Гшта{%: *€/}).
Proof. (12.3), (9.3). □
(12.27) Theorem. Wsmer is a bireflective subcategory in every fu ll subcategory 

o f Smer in which it is contained. The reflection in Wsmer of a semi-merotopy 931 is 
9R(«(3R)).

Proof. (0.2), (12.25), (12.26), (12.16) can be completed by the observation that, 
if H is a Ж-semi-uniformity, 931 is a semi-merotopy on X, and 93t(4äi) is coarser than 
9Л, then 9R(4O =aR(«0 R(<lr)))3 9 R («(9R)) by (12.15) and (12.19). □

(12.28) L emma. I f  Щ is a W-semi-uniformity on X, then 9Л(^в)=931(^)?.
Proof. By (12.7) and (12.23) 931(45̂ ) is a merotopy on X, finer than 931(450 by 

(12.19), hence 931(^«)c93l(^) and 93l(^?)c931(^)? by (9.10). Conversely, for 
т€931(450®> assume m(f4Bl(fltq). Then there are (i= l, ..., n) such that

n
M XM czf^  Ui is impossible for M£m. Denote by inf the set of those m 

1 n
for which My.MczUi does not hold. Then m =  (J m; and т 4£931(450 for at

1
least one i; this is in contradiction with the fact that т г is not E/j-Cauchy. □

(12.29) Lemma. I f  % is a W-pseudo-uniformity on X, g: Z-*X, then

« & (« (* ) )  =  S E L m n  =  3St(g™ (®)) =  9Jl(g-ipsunif(^)).

P roof. (9.13) and  (12.25) show the first two equalities; the th ird  one results 
from (12.9). □

(12.30) L emma. I f  45̂  is a W-pseudo-uniformity on X  for i£l, then 

supMer{93t(^): ie /}  =  (supSmer{93l(^(): i(G/})« =  93t(supWs,mif{ (̂: i£l})q =

= 93i((SUPWsumf{ î: i€ /})e) =  931 (supWpsunifi^d i€/}).
Proof. (9.13), (9.3), (12.26), (12.28), (12.9). □
(12.31) Theorem. Wmer is a bireflective subcategory o f every full subcategory o f 

Mer in which it is contained. The reflection in Wmer o f a merotopy 93Í is 931(45̂ (931)).
Proof. (0.2), (12.29), (12.30), (12.27), (12.22), (12.21). □
(12.32) Theorem. Wmer is a bicoreflective subcategory of every fu ll subcategory

o f Wsmer in which it is contained. The 'Wmer-coreflection of Ш — where °U
is a W-semi-uniformity, is 93P=93t(45fe)-

Proof. (12.20), (12.24), (12.9), (12.28). □

13. Characterization of Wsmer. Our next purpose is to characterize, based on 
an idea of [20], those semi-merotopies 931 that can be written in the form 931(450 for 
some IL-semi-uniformity 455.
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For a given set X, let us denote by the collection of all mGexp exp X  such 
that each MGm has two elements at most. For mG®x, let B{m ) c I X F  be defi
ned by

£(m) =  {(*, У): {x, j}€tn} =  B(m)-1.

For a semi-merotopy SOi, we define

0 (m) = (ß(m): т^ЭЛГ)©*}.

(13.1) Lemma. Let 931 be a semi-merotopy on X  and U~U~1a X x X .  Then 
C/G^(931) iff C/€sec Я(Щ).

P roof. If C/G^(93l), inG93?n ©*, B=B(m), there is {x,y}Gm such that 
{x,y}X {x,y } c U  so that (x,y)£U(~)B. Conversely assume t/G sec á?(93?), mG93t, 
but (M XM )—Í/X0 for every MGnt. Then, for MGm, there is (x, y)G 
G(MXM)— U; the sets {x,y} obtained from these pairs (x, y) constitute a 
system m* finer than rrt, hence belonging to 93ifl©x. Clearly f/hß(nt*)=0: a 
contradiction. □

(13.2) Lemma. Let °U be a W-semi-uniformity on X, mG ©x- Then mG93i(^) 
iff B(m)Gsec °U.

P roof. B(m)Gsec^ iff В (т)П  t/X 0 for every U^°ll such that U=U~1. 
For such a set U, (x, y)GB(m)n?7 holds iff {x, y}X (x, y}c:U. □

(13.3) Lemma. Let 931 be a semi-merotopy on X. I f  m'G 93*Г1931(^(931)), then 
m'G93i.

P roof. By (13.2), B(m')Gsec 4äf(99?). Then there is mG93llT©x such that 
B(m')zDB(m). In fact, in the opposite case there would be, for every тб931П©х, 
a pair (x, y)GB(m)—B(m'), and then these pairs (x, y) and the corresponding pairs 
(y, x) would constitute a set U such that U=U~1 and C/Gsec ^(93?), whence 
£/G^(931), t/f)B(m,)=0: a contradiction. Now B(m)cB(m')  implies m em ' 
so that m'G93i. □

(13.4) Lemma. I f  Ü is a W-semi-uniformity on X  und 93i=93f(^), then 93? ful
fils the following condition:

WM. mGexp exp A", nt í  9J? implies the existence o f such that m<m',
m'$93?.

P roof. If m is not ^-Cauchy, then there is Ui'% suchthat MG rrt, M x M c f /  
is impossible. Select, for MGm, x, yGM suchthat (x, y)G U. The corresponding 
sets {x, y) constitute a system m'G ©* suchthat m <m ' and m' is not (7-Cauchy. □

(13.5) Theorem. A semi-merotopy 93? on X  can be written in the form 9J? = 9Jt (Gt') 
for some W-semi-uniformity aU iff it satisfies WM.

Proof. By (13.4) WM is necessary. Conversely, by (13.3) every element of 
93ХП93?(^(93?)) belongs to 93?, so that, if 93? satisfies WM, then 93? {fU (93?)) c  93?. 
By (12.16) 93?=93? (93?)). □
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(13.6) Corollary. For a merotopy SR on X, there is a W-pseudo-uniformity °U 
such that SR=SR(í5íO iff SR satisfies WM.

Proof. (13.5), (12.18), (12.22). □
14. IT-semi-uniformities and semi-proximities. Now let aU  be a IL-semi-unifor- 

mity on X, We denote by b(fU) the semi-proximity <5 (SR).
(14.1) Lemma. For a W-semi-uniformity fJll on X, Ab(W)B iff A x B f s c c  aU.
Proof. If Ab(U)B, then there is m£SR(4ä?) such that A,B£seem and, for 

FKl°U, there exists M€m satisfying M X M c U .  Then clearly (AXB)C)U Xfi.
Conversely, if A xB ^sec  W, select, for U^°U, U—XJ~X a pair (x, y)£_ 

€(АХВ)Пи.  Then the corresponding sets {x,y} constitute a system тСШ(%) such 
that A, Beseem,  so that AbffU)B. □

(14.2) Lemma. 1/Ш is a semi-merotopy on X, ÚU =  aU (SR), then Ь(У/) = Ь(Ш).
Proof. By (12.16) 9Jl(^f) is coarser than SR, hence <5{aU) is coarser than <5(9)1). 

Conversely suppose Ад(Ж)В. Then
V = (X X X ) - (A x B )e W .

In fact,
V =  ( ( з г -л )х х )и (х х (х —в)),

and if m£SR satisfies Afscc  m, then Beseem, hence M a X —B, MX,Mcz 
c l X ( T - 5 )  for some M £m; similarly ^4^sec m implies M clX—A, MX,Me: 
cz(X—A ) X X  for a suitable M6m.

Now (A xB ) f )V = 0  implies Ab(aU)B by (14.1). □
(14.3) Lemma. Let ő be a semi-proximity on X. Then SR=SR(<5) = SR(i80 for 

л11=аИ(Ш), and aU is the coarsest W-semi-uniformity such that 5(U)=b.

Proof. By (10.5) and (10.3) SR is the coarsest semi-merotopy satisfying <5 (SR)=<5. 
By (14.2) <5 W = <5 (SR (<&))=<5, and by (12.16) Щ ^ )  is coarser than SR. Hence 

If aW is a fT-semi-uniformity such that b(úU')=b, then 9Jl(ad') is finer 
than SR, hence ^ (S R ^ '))  is finer than 6U(SR) =  ÖU (cf. (12.15)). □

(14.4) Corollary. For every semi-proximity b, there are W-semi-uniformities
Щ such that b(^)= b. □

(14.5) Lemma. Let ö be a proximity on X. Then SR=SR(<5)4 is the coarsest 
merotopy such that <5(SR) =  <5, and ÚU = óU (SR) is the coarsest W-pseudo-uniformity 
satisfying b(áU)—b. We have also SR(^)=SR.

Proof. By (10.5) <5(SR(<5))=<5 and by (10.13) <5(SR)=<5(SR(<5)4)=<54=<5. SR 
is a merotopy and if a merotopy SR'satisfies <5(SR')=:<5, then, by (10.3), SR'is finer 
than SR(<5), hence finer than SR(<5)4=SR.

^  is a Ж-pseudo-uniformity by (12.22), and by (14.2) <5(^)=<5(SR)=<5. S R ) 
is a merotopy by (12.21), satisfies <5(SR(%j)=S(°U(SR(úUfi)—b(aU)=b by (14.2) 
and (12.15), hence SR(^)=SR. If a IT-pseudo-uniformity óW satisfies b(aU')=b,
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then the merotopy 1ßl(4t') (see (12.23)) is, by a similar argument, finer than 
^=<Яг(931). □

(14.6) Corollary. For every proximity 5 on X, there exist W-pseudo-unifor
mities 41 such that 5 (4l)=d. □

Another proof of (14.6) is obtained from the following:
(14.7) Lemma. Let bbea proximity on X, £  the screen composed o f all b-compres- 

sed filters, 931 the filter-merotopy for which £  is a base, aU=aU(931). Then b(4t)=b, 
931 is the coarsest filter-merotopy compatible with 5, and 3  is composed o f all 41- 
Cauchy filters.

Proof. Ud4l iff every s € £  is C-Cauchy, and <5=<5(£) by (6.11). Clearly 
<5(£)=<5(931), hence by (14.2) b(4t)=b.

Every sd £  is obviously ^-Cauchy. Conversely, a ^-Cauchy filter s is <5-com- 
pressed by b(°U)= S(Ш(4^))= S and (10.3). If a filter-merotopy 931' with a base £ '  
composed of filters satisfies ő (9310=<5, then every s € £ ' is ^-compressed, £ 'c £ ,  
93Tc:99l. □

The merotopy 93Í in (14.7) need not coincide with 93l(<5); in fact, by (10.16), the 
latter is not a merotopy in general. The author does not know whether the merotopy 
93Í in (14.7) is always equal to 93i(<5)4, or whether at least 931=931(^(931)); by (12.17), 
a filter-merotopy 931 need not fulfil the last equality.

If 41 is a IF-semi-uniformity on X, let us denote by £  (fill) the screen composed 
of all 41-Cauchy filters. For the IT-pseudo-uniformity 4l in (14.7), we had <5(£(^))= 
=  b (41). This equality need not hold in general.

(14.8) Example. Let 4l denote the Euclidean IT-uniformity on T =  R, then 
b(U) is the Euclidean proximity by (14.1), while Ab(<5(4t))B iff there is a convergent 
filter s such that A, Bdsec s, i.e. iff c(A)C\c(B)x0 for the usual topology c of R. □

In this example, b(4t) and Ő (<5(4t)) are distinct but they induce the same topo
logy. This is always true if 41 is a IF-uniformity: the above argument shows that 
Ab(<5(4t))B iff с'(А)Пс'(В)А0 where c' is the topology of the completion aW of 
41, and it is well-known that c' is an extension of cd for b=b(4t).

However, for Ж-pseudo-uniformities 41, csAcy , in general, where b—b(4t), 
b'=b(G(4t)).

(14.9) Example. For T =  R, define on X x X  a topology for which (x,y) is 
isolated if x A y  and a neighbourhood base of (x, x) is composed of the sets Ve(x, x) 
(£>0), where

Vt (x,x) =  {(f,x): x ^  t <  x+e}U{(x, f ) : x S ( <  x-t-e}.

Since the symmetry map cp(x, y)=(y,  x) is a homeomorphism for this topology, it 
is easily seen that the neighbourhoods of the diagonal Ax constitute a fT-pseudo- 
uniformity °U on X. If

U =  U K(x)(x,x), e(x) >  0 for xdX,
x ( X
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then U(x)—[x, x+e(x)) so that, for <5=<5(®), cd is the Sorgenfrey topology on X. 
On the other hand, °U is obviously finer than the Euclidean IL-uniformity of R, 
hence a ^-Cauchy filter s is convergent with respect to the Euclidean topology of R; 
suppose s —x. Now

U = V i ( x , x ) U  U  V , , - X, ( y , y ) &
У*х I 2 I

and S£s, SXSczU  implies S=  {x} so that s=x, and ő'=á(© (® )) is the discrete 
proximity, cs,Xcs is the discrete topology. □

Another case when ő(‘%)=ő( <Z(W)) is furnished by the following:
(14.10) L emma. Let c be an Si-topology on X, and let °U be composed o f the neigh

bourhoods o f A x with respect to the product topology. Then is a W-pseudo-unifor
mity on X, and ő(U)=S(<5(‘%))=őc.

P r o o f . Clearly Щ is a lE-pseudo-uniformity on X. If A5CB, i.e. if c(A)C) 
Г\с(В)Х0, then the c-neighbourhood filter s of some х£с(А)Г\с(В) is clearly 
^-Cauchy and satisfies A, B£secs; hence <5C is finer than <5(S(^)). The proximity 
<5(S(^)) is obviously finer than b(aU), and the latter is finer than <5C because if 
c(A)C\c(B)=$, we can find for x£X  a c-neighbourhood Vx such that either 
VXDA=Q or Vxr\B=Q, so that U= \J (VxX V x)€Щ fulfils {AxB)CMJ=Q. □

xiX
It is not surprising that, in (14.9), a IL-pseudo-uniformity on X was defined as 

the collection of all neighbourhoods of Ax with respect to some topology on XxX:
(14.11) L emma. I f  c + is a topology on X x X  such that the map q>: X X X — 

— X x X  defined by cp(x, y)=(y,  x) is (c+, c^-continuous, then the c+ -neighbour
hoods o f A x constitute a W-pseudo-uniformity on X. □

(14.12) L emma. I f  Ш is a W-pseudo-uniformity on X, then there exists a T0- 
topology on X x X  such that cp in (14.11) is (c+, c+)-continuous and <41 is the collection 
o f all c+ -neighbourhoods o f Ax .

P r o o f . Let the points of (XXX)— Ax be isolated for c+ , and, for x£X,  let 
the system

{U- F:  Ui®, F<zAx is finite, ( x , r ) | f )
be a c+-neighbourhood base of (x, x). Clearly c+ is a T0-topology on X X X  and <p 
is (c+, c+)-continuous. Every £/€^ is a c+-neighbourhood of Ax and, if V is a 
c+ -neighbourhood of Ax, then, for x£X, there are U^°U and a finite set FczAx 
suchthat ( x ,x ) f t / - F c F ;  now U c V  because U— AxaV ,  AxcV.  □

(14.13) C o ro llary . I f  °U is a separated W-pseudo-uniformity on X  (i.e. a W- 
pseudo-uniformity such that C]^—Ax), then the topology c+ constructed in (14.12) 
isTx. □
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SOLVING THE FARTHEST POINT PROBLEM 
IN FINITE CODIMENSIONAL SUBSPACE OF C(ű)

Á. P. BOSZNAY (Budapest)

Introduction

Let (X , II • II) be a real normed linear space, &?±K<zX a bounded set. Let us 
define the mapping QK: X-*2K by

0 x00 =  {y£K; |x -y || =  sup ||x—fc|)}.
k £ K

We call К  a uniquely remotal set, if for all x£X, QK(x) consists of exactly one 
element. In this case we denote by QK(x) this element of K.

The following problem is called the farthest point problem. The problem — as 
far as we know — is open.

Let К be a uniquely remotal set in (X , || • ||). Is К a singleton?
There are many special cases in which the problem is solved affirmatively.
This is the case for finite dimensional X  [1], for norm-compact К  [1], for norm- 

continuous QK [2], in the Banach spaces c0, c [7]; with a suitable renorming in all 
normed linear spaces [5].

In [4] we have given a positive answer in many special finite codimensional sub
spaces of C[0, 1], including C. In this note we give a general solution for all finite 
codimensional subspaces of C (i2), where £2 is a compact metric space.

The result

T heorem . Let (X, || • ||) be a finite codimensional subspace o f  C(i2), where Q is a 
compact metric space. Let K(zX be a uniquely remotal set. Then К is a singleton.

P roof. We need several lemmas.
L emma 1 [6, Lemma 1.2]. With the assumptions o f the Theorem, for all £=►0 

and Fczß infinite and open, there exists an f£ X  with the properties ||/ || =  1, 
f ( Q \V ) = 0, f ^ - e .

In fact, this is a special case of Lemma 1.2 in [6].
L emma 2. With the assumptions o f the Theorem, let us assume that the set 

QK(X)= {QK(x); x£X} is countable. Then К is a singleton.
P roof of L em m a 2. Let us assume that <2хОЮ= {kx, k2, k 3, ...} .  It is easy 

to show that the sets ÖxH&n) are disjoint and closed, and also |J  ö k 1(^n)= A.
n=l

Using a lemma of Asplund [7], all but one of the sets are void. This implies
the assertion of the Lemma.
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L emma 3. Let Vx, V2czQ be open infinite sets such that F 1flF2=0, and let 
Л , / .€ *  besuchthat  Ц/ J  =  ||/2|| =  1,

/ 1( ß \F 1) =  0, f 2(Q \V 2) = 0, f u f , S - ± .

Then there exist c1; c2€R + such that

llci / i  —Ök(ci / i)I! — ci f i ( a)i) — 6 k(ci/ i) ( ^ i) 

for some co1£V1, and

Ika/ä- QuifiifzA — C2fÁ(°2) ~Qk(C2Á)(í°2)

for some co2£V2, and S k(ci/ i) = 6 x(c2/ 2)-
P roof of Lemma 3. First, we shall verify that if  clt c2> 3  sup ||fe|| then

кек
( 1 )  llc i / i  — 6 k ( ci / i )II =  ci f i ( t ^ i ) ~ 2 k (Cl / l) ( o> i)

for some co1£V1, and

(2) IÎ 2^2 Öjc(c2̂ 2)II -=  бк^а/аН ^а)

for some co2£V2,
By

IÖk(ci/ i)M | sup Иfe|| (co£(2),
k £ K

we have
(3) |c i/i(co )-ß K(c1/ 1)(cü)| s  sup IIfell for coe£2\Vi.

k £ K

Also c1f 1(co')=c1 for some a>'£V1. Using this,

(4) c J f o o ^ - Q ^ c J ^ i o j ' )  ==■ d - s u p  ||fc||.
кек

On the other hand Ci/i(cu")S — ~  for arbitrary a>"c Q, so,

(5) Q k ( ci f i )^")~Cif fico")  Ш sup ||fc|| + ^ - .
k £ K  J

Using cx> 3  sup ||fe||, (3), (4) and (5) imply (1). The proof of (2) is similar.
k€K

Because of continuity we can fix cx, c2 so that

l k i / i - ß K(ci/i)|| =  ||c2/ 2- ß x(c2/ 2)|[.

We now show that QK(d /i )= QK(c2/ 2). Introducing the element f= c1f 1+c2f 2£X, 
ci > c2 =- 3 sup II fe|| and VxHV2=0  implies that

k £ K

(6) \ \f -Q A f)\\ = Cifi(co) + c2f 2 (со) -  QK ( /)  (со)
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for some co£VxUF2. Assuming that co£Vx, cxf x (со)+ c2/ 2(m)= cxf x(со), so

(7) cxf x (cü) + c2/ 2 ( c o ) -Q K ( / )  (w) =  cxf x(co)—0 к ( / )  (ю) =£

— Ilci / i —ßx(/)ll — llci/i~ß*:(ci/i)ll = Ci / jCcüi) — Öx(ci/ i)(cíIi).
Thus QK(f )=  QK(cifi)- For <u2eK2 we have

Ci/i(m2)+ c2/ 2(co2) - ß K(c2/ 2)(cu2) =  c2f 2(co2) - Q K(c2f 2)(co2) =

=  ci /(T h )—ßxCci/iXcfi)- 
By (2), (6) and (7), the latter implies

llciA + c2/a —бк(са/а)1 = II cxf x + c2f 2—QK(cxf x + c2 / 2) ||, 

and finally we get S k( / ) —Ök(c2/ 2)- Lemma 3 is proved.
Lemma 4. Lei ДА' he arbitrary,

II/-Ö k(/)II = / M - 6 k( /)(« )  /or some

TTien min A: (со) =QK(f) (со).
The proof of Lemma 4 is left to the reader.
Lemma 5. Let us introduce the set Qda Q  in the following way: Qd= {cod Q, 

со is not isolated, 3x£X such that x (со) — QK(x)(со)= [|x — Qk(*)||}• Then there 
exists an element kd£K such that

inf к (со) = kd(co)
for all cod Qd.

P roof of L emma 5. Let dx, d2£Qd be fixed, let e > 0  be such that dist_(c/j, d2) >  
> 2e, Vx, V2 are open infinite nonempty sets with_the properties VxDV2=0, 
diam (Vx)< e, diam (K2)<e, dxdVx, d2dV2. Let Д  Vx, d£Qd. Then there exists 
an open infinite nonempty set 17 such that Д  U, UC\Vx=<d. We can choose the dia
meter of U arbitrarily small. Lemma 3 implies that there exist d[ fVx, d'£ U, gx, gdX  
such that

l!gi~ßx(gi)ll =  g i№ )-ßx(g i)№ ), 
llg-ßx(g)ll =  g(d')~QK(g)(d'), QK(gi) =  ßx(g)- 

Using Lemma 4,
(8) min k(d') = QK(g)(d') = QK(g)(d') = QK(gx)(d'),

(9) min kid'j) = QK (g) № ) =  QK (gi) №)•
k £ K

From the uniqueness of QK(g) and QK(gi) it follows that no other element of К  
but QK (g)= Qk (gi) can stay on the right side of (8) and (9).

Let the diameter of U tend to 0. Elementary continuity reasoning shows that

min k(d) = ß f/g i)(d) = QK(g)(d).
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So,
(10) min k (d )  = Q K( g i ) ( d ) ,  

when d f  Q d\  V1.
Now let d $ V 2, d d  Q d . Repeating the same arguments as above, we have a 

g2aX, such that

(11) min к  (d ) = Q K (g2) (d ) ,

when i/£ßd\ F 2. Now let f . , f 2 fulfill the requirements of Lemma 3, with open in
finite sets Vi, V2■ Using (10) and (11), Lemma 3 implies

Qk(C l /l )  =  (2к(&2)> Qk(C2Íí)  =  Qk(Si) and Qk(c l /l)  =  Qk(C2Á)-

Finally, we have QK(gi)= Qk(S2)- Lemma 5 is proved.

L em m a 6 . L e t us in tro d u ce  th e  s e t Q v a £ 2  in the fo l lo w in g  w a y: S2V=  (cu€ ß, 
со is n o t iso la te d , 3 x a X  su ch  th a t Q K(x )(c o )—x (co )—\\x— Q K(x)\\}. Then th ere  
e x is ts  an e le m e n t k f K  su ch  th a t

sup к (со) = k u(co)
k£K

f o r  a ll  c o a Q y .

P roof o f  L emma 6. Similar to the proof of Lemma 5.
Finally, we shall prove the Theorem. Let x £ X  be such that

1 * - б ж ( * ) 1  =  x ( c o ) - Q K(x)(co)

for some со a ß. We consider now two cases.
C a se  I: co€ßd. Here using Lemma 5 one can prove elementarily that 

Q K( x ) = k d .

C a se  I I : со is an isolated point. Using the fact that the set of isolated points in ß  
is at most countable, one can easily prove that Q K(x )  is an element of a fixed count
able set (i.e., the set { к а К \  ^(cu)= mf/:(cu) and со is isolated}). For an x a X  with
property

l * - ß x ( * ) l l  =  Q k ( x ) ( c o ) - x ( c o )

we can proceed on the same way. Summing up, Q K(X )  is countable. Applying Lem
ma 2, the Theorem is proved.
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VIBRATING STRINGS WITH FREE ENDS

M. HORVÁTH (Budapest)

In this paper we shall consider the equation

( 1) ( р ( х ) Щ ^ - ) + 0 ( х - а ) т

0 <  x < 1, 0 < ( < Г
which describes the forced motion of a string with density q  (x )  and modulus of elas
ticity p{x). At time t the external force f ( t  ) is given at the point 0 < a<  1 of the 
string. This equation was investigated by many authors. In the case p —Q = 1, A. G. 
Butkowski [1] considered the control problem of the string. Roughly speaking, the 
string is called controllable at time 7V0 if for each initial conditions

that if we allow distributions f ( t )  as controls then the string will be controllable in 
finite time for exactly those points 0 1  which can not be well approximated by 
rational numbers. D. L. Russell [2] obtained another controllability result in the case 
of Sturm—Liouville boundary conditions. He supposed also that the spatial distri
bution of external forces is a function g (x)£L2(0, 1) (that is, in [2] the right hand 
side of (1) is g(x)/(/)).

I. Joó [3], [4] investigated the structure of the set of reachable movement states

т ( - , 0) = у0. M -.O ) = Ti

given in somefunction spaces |herey,means , we can find a control f ( t )  such thatgiven in some

y ( - , T )  = yt( - , T )  = 0.

Butkowskii proved for the case of fixed endpoints
y(0, -) =  y( 1, •) =  ()

®a(T):= { (Я •, T), y , (■, T)): / № Щ 0 ,  T)}

where the boundary is fixed:

y(0, 0  =  T(1, 0  — 0

and at t = 0 the string is relaxed:

j ( - 90) = y,(-,  0) = 0.
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The aim of the present paper is to generalize the results of I. Joó for the case of 
strongly regular boundary conditions (cf. [5]). The Schrödinger equations with 
strongly regular boundary conditions have discrete spectrum and the asymptotic 
properties of the eigenvalues and eigenfunctions are well-known, cf. [5].

Introduce the following notations: уу-=у(1), y í :=y'(0, i—0, 1. The strongly 
regular boundary conditions are equivalent to one of the following three cases:

(I) Ux(y) =  y 0 = 0, U2(y) =  У! = 0.

WÁy) = a1y'0 + b1yi + a0y0 + b0y1 = 0,
\U2(y) = c0y0 + d0y1 = 0

if we have biCo +  tqd,, ^  0, #  ± b 1‘, c0 ^  ± d 0.

,1П) i^iOO =  у'о+ссцуо + х^у ! = 0,
W 2(y) = yi + a21y0 + cc22y1 = 0.

Remark that the boundary conditions adjoint to Ux and U2 with respect to some 
Schrödinger operator

Ly = y"+ qy
have the form

(I*) To = 0, yi = 0,
(II*) d0y'o+coyi + c1yo+d1y1 = 0, b1y0+a1y1 — 0,

(III*) У0+РиУо + ßizyi — 0> У1 +РиУо +РаУ1 — 0.
Consider the equation (1) with strongly regular boundary conditions

0 i(K -,O ) =  o, u2(y(-,  о) =  о, о

We suppose p, e€C2[0,1], /(r)€T 2(0, T), p >  0, q >  0, p(0) =  p(  1), e(0) = e(l). 
The initial conditions are given by

T(-.O) =  То€Я, y(( .,0 )€ Z 2(0, 1)

where the space Я  consists of the functions h £ H \ 0,1) for which U1(h)—U2(h)=0 
in case of (I), U2(h)=0 in case of (II) and H = H \ 0, 1) in case of (III). First apply 
the transform

u(x*, t) = y{q>{x*), t) i{poq>)(Qo(p)(x*)
where

г ' 1 and »4*):= /

For convenience, write x instead of x*; then u(x, t ) satisfies the equation

, 4 ő (x -a ')  ,  , ? лГя(10 utt- u xx-q (x )u  =  - ф )  / ,  a := J [/ -
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in (x, i)€(0> 0X(O, T), where

,€C[0,I], ы / ß .  « (« ):-  j / Щ .

It is easy to see that u(x, t) satisfies some strongly regular boundary conditions
(2) F1(h( - ,0 )  = 0, V2(u(-,t)) = 0, 0 < Г < Г  
and some initial conditions

(3) u ( - ,0) = u0€H,, «,(•, 0) =  щеЬх(0, 0;

here ffjCff'fO ,!) is defined with Fj and F2 just as H Q H \ 0,1)- It will be conve
nient to use the following definition which is obtained from (F) by twofold integra
tion by parts:

D efinition  ([3]). The solution o f  (F ), (2), (3) is a function

u(x, t)£L*((0, Z)X(0, T))
satisfying the equality

í r  I T , , ч
(4) J  j  u(zn- z xx-q z )d td x  =  j  [uxz ( - , 0 ) - u 0zt(- ,0)]dx+ J  Л  ’ f d t

for all z£C2([0, /]Х[0, Г]) with the properties

z ( - , T )  = zt( - , T ) =  0, W1(z(- , t ))  = W2(z( - , t ))  = 0, 0

where lFt and 1F2 are the (strongly regular) boundary conditions adjoint to V1 
and F2.

Consider the Schrödinger operator Ly:=y"+qy and the boundary conditions 
F i(y )= F 2(y)=0. An eigenfunction (of order 0) with the eigenvalue Я is a function 
y£C 2[0,/] suchthat

y"+qy + by = 0, Vi(y) = V2(y) = 0.

An eigenfunction of order /'S 1 is a function yf_C2[0, /] satisfying y"+qy+ky=y*, 
V1(y)= V2(y)—0, where y* is an eigenfunction of order i— 1. Mihajlov and Kessel
mann ([6], [7]) proved that if Vx and F 2 are strongly regular then the eigenfunctions 
(vn) of order SO of the operator L  form a Riesz basis in L2( 0, /) and its biorthogonal 
system is the system (w„) of the eigenfunctions of order SO of L with the conditions 
IV1= W 2= 0. This means that

<»„, wk) =  0„fk, n, к = 1 ,2 ,  ....

In order to study the equation (4) we need some preliminary investigations. 
Using the asymptotic formulae given in [5, Ch. II, 4.9] and writing the eigenfunctions 
in the form

У = У1 U1(y2) - y 2 FiUi) or у = У! U2(y2) —y2 U2(y,)
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where yx, y 2 are the basic solutions of Ly+2y—0 given in [5, Ch. II, 4.5] we have 
the following estimates: in case (I)

(5) ^  =

/ \ • nn ( 1 I tfn(*) nn „ { 1 \Ш - ш  —  х + о [ - у  - ^ - » c o s - j - x  + o f - J ;
in case (II)

(6) yin = a „  + o ( l ) ,

f„(*) =  c„ sin ctnx  + d0 sin an( x - l )  + 0

V"^Y — c0cosa„x +  ííocosa/i(Á — O +

where (for n=2m,2m+l)

1 ( ,  In Si I 1 L  In s2 \
«2m =  T { 2 m n + ~ J ~ ) ’ a2m + l =  J  \ 2 m n + - j - J

and slt s2 are the roots of the equation

(b1c0 + a1d0)^s + Y ^  + '2(aiCo+bido) =  0 

(it follows from (II) that s17i s2, s2, s2^ l ) \  or equivalently 

(6') v„ (x) = űj cos a„ x + bx cos an (x — /) + О ^ j ,

v'„(x)

in case (III)

(7)

v' (x) , . , _ „  ( 1 4
— y = - =  öl sman^+fe jSmaníx-O +O^—J;

{ v' 4“
L emma 1. For large N the system I JL- 1 is a Riesz basis in L 2(0, /)  (in

V\ К 'n=N
its spanned sub space).

P ro o f . In case (I) and (III) we have only to refer to (5), (7) and the following 
well-known theorem of Bari: If q>x, <p2, ... forms a Riesz basis in some Banach space
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in its closed linear hull V(cp„: n s l )  and if 2  Il<?>n—*Anll2< 00 then for large N  the
n=1

system i/tjv, 1j/N+1, ... is also a Riesz basis in V(\j/n: n ^ N ) .  In case (II) considerthe 
boundary conditions

V\.= c0y'o+d0yi = 0, V2:= a1y0+b1y1 = 0.

This is strongly regular since so are Vx and V2. Using (6), (6') and the above mentioned 
results of Mihajlov and Kesselmann on the eigenfunctions in the boundary problem 
Vx—V2=0 we see that the Bari theorem can be applied again. Lemma 1 is proved.

Lemma 2. The following assertions are equivalent for a function 2  ся»„(| #*((), /):

(0 2  cnVn€H„

(ii) 2  сп К = ( 2  cnv„Y,
(hi) Z k M c nl2< ~ .
P r o o f . (ii)-t*(iii) is an easy consequence of Lemma 1. Indeed, (ii) holds if and 

only if 2  cnvn converges in norm and this is equivalent to (iii) by Lemma 1.
(i)-o(iii). Consider the system w1,w 2>... of all eigenfunctions (of order SO) 

of the boundary value problem

Ly = y"+qy, Wx(y) =  W f y )  = 0

where Wx, W2 are adjoint to Vx, V2. Syppose

(8) w"+qv/n+ lnYin = Qn- 1wn- 1, n = 1 ,2,...

where w0=0 and 0„_!=O or 1. Let (р^Н\0, /), ( p = 2 cnvni then for large n

]/lncn =  YXn(<p, w„> =  -^=-<p, 0„_iwn_x-qw n) + (p' ,  -^=-]

holds. Here the first and second member on the right hand side belong to l2, hence
(iii) holds if and only if

In case (I), (9) means by (5) that

M O + ( - l ) > ( 0 ) ) e / 2 h e . <p(0) =  (p ( l )  =  0 .

In case (II) observe first that Wx, W2 have the form

Wx(y) =  d0y0+c0yi+ß0y0+ßxyx = 0, W2(y) = b1y0+a1y 1 = 0. 

Hence, supposing c0^0 , say,

<(Q  _  d0 w 'M  ( h
y j n Co f t  + U j ’
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SO

c° V ’i t l = ~ т г  ц ,,к ',+с"'г,<0))+оШ =
=  ( -1 )”Co ^sin (d0(p(l) + c0(p (0)) + О ^ j

by (6). Since s ^ ±  1 is a consequence of the conditions given in (II) we see that
(9)o(p£H,. In case (III) the same assertion easily follows from (7). Lemma 2 is 
proved.

( v' 4 ”
T heorem  1. In case (I) and (II) the system I---- , ”__. forms a Riesz basis

и + |А , |Л _1
in L?(0, l) in v ( ---- % = :  n ^ l l .

y i  + Y\U )
P r o o f . From Lemma 1 it follows that we have only to verify the linear inde-

v'pendence of all ----- ” , i.e. the following property:
1 +  /IAJ

2  |c„|2 < “  and 2  cn -— гт=г 
" = ! " = i 1 + 1 /К ]

= 0

imply c„ = 0 for all n. But 2  c n - -=0 implies 2 ■ v =  const.

Lemma 2 states that const £Ht and this is possible only when const=0. 
Hence the Riesz basis property of (f„)^Lí implies c„—0 for all и. Theorem 1 is proved.

T heorem  2. The equation (4) has a unique solution и€ L2((0, /)Х(0, T)), which 
has the expansion

( 10) u(x, t) =  2  Cn ( t)v«(x)

converging in L2, for each initial condition uif H l, m1$L2(0, /) and for each control 
/€ L 2(0, T). The coefficients c„(t) have the form (15), (16), (17). Further the series
(10) can be differentiated term by term, i.e.

and

( 11)

( 12)

« е я 1« 0, /)Х(0,Г))

U,(x, t) = 2  c'n(t)vn(x), 

«*(*» 0 = 2  Cn(0v'n(x).
P r o o f . Define

z(x,t):= wn(x)b(t)

where (w„) is the system described in (8) and b£C2[0, T], b(T)=b'(T)=0.  Suppose 

(13) u0(x) =: 2  c„,oV„(x), u fx )  =: 2  c'„,0vn(x).
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Then (4) gives

/  [ca (i)b" (0+ c„ (0 ь (0 -  - 1 ! (0 b (0] dt =
0 _____

— c'n,ob(0)—c„t0b '(0 )+ ~ ^ ~ -  f  f(t)b(t)dt

i.e. the boundary value problem

(14) c n + K c n ^ n - l ^ n -
w„(a')
a (a) f, c„(0) =  cn0, c'(0) =  c'n>l

Its solution can be given as follows. If Ax=0 and the eigenvectors wx, wNo form 
a chain (i.e. =  ... =  0í,o_1= 1, 0^о=О) then for 1 ̂ n S N 0 we have

(15)
fin  —2

c n ( 0  =  с п ,о + ^ л ,о  +  ••• +  c i,o  ( 2 и — 2 ) !

f in - 1

(2» - l ) ! 4

+  / л о [а ( < - « + А - гíSr-+-+A'%^r]',í wn(aQ ) a(a) J’
Suppose that for и^лГ0+1, л„^0 and for nSlVi+1 all eigenvalues are 

simple. Then using the symbols

c:= FWffo + l'
, v4:=

'̂ -Vi fyvi-l
^Ai-l fyvi-2 0

0 • . 6n0+l 
^No + l '

, ß:=
ßui )

W 0+h

[ CNi, 0 \
Co.-

we can write

, *= Г
VcWo+l,0/\ с Ао +  1 ,0 /

c"+Ac = ßf, c(0) = c0, c'(0) =  Cq.

Since detyMO, there is a matrix В such that A = B 2. Define b1:=c'+iBc, 
b2:=c'—iBc, then

Hence

(16)

b'u2 T iBb12 — ß f  and blt2(0) — c'0± iBc0.

b U O  = e±iB,b U 0)+  j  f(x )e ±iB<t~i)ßdx,
0

c ^ ß - i h z h . ,  C' =  ^ 1+^L.
2i 2
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The same arguments show that for n ^ N x

(17) c'n( t)± i  / W O  =  [c ;„ ± i П псп,0 + - ^ ^  f  f ä e ^ ' d x ]

From wn(a')=0( 1) it follows that

2 k„(0 l2< ~ , /  2 M 0l2<*i<~.
0

Now define the function u(x, t) by (10), (15), (16) and (17). Then u£L2((О, /)Х(0, T)) 
and it satisfies (4) for z(x, t)=w„(x)b(t), n£N. Moreover it turned out that if a 
solution of (Г), (2), (3) exists then it is uniquely determined by its coefficients. We 
shall prove (4) for an arbitrary z(x, t) with the properties indicated there. Expand 
z(x, t) with respect to the system (w„):

z(x, t) = : 2 d„{t)vin{x).
It is easy to see that dnZC2[0, T], dn(T)=d'n(T)=0 further

ztt(x, 0  =  2 d"(t)wn(x), z(x, 0 =  2  dn(t)wn(x) 
are convergent series in L2((0, /)Х(0, T)). The convergence of 

z(x, 0) =  2 dn(0)wn(x), z,(x, 0) = 2 d'„(0)wn(x)

in L2(0, l) are obvious and since (v„, zxx( •, t))=(v", z ( •, ?)) implies

/ Z \ U 2\d„it)\4t <=o,
0

the series
zxx(x, 0 =  2  dn(t)w"(x)

is also convergent in L2((0, /)Х(0, T)). These considerations imply that (4) is satis
fied for all z(x, t). The existence of a solution of (4) is proved.

Finally the relations (11) and (12) are consequences of the estimates

2  (Ш  • |c„(0 l2+ K ( 0 l2)

/  2  (1Л.1 k ( 0 l2+ K ( 0 l2) dt <  oo.
о

which follow from the formulae (5), (6), (7) and from the Bari theorem mentioned in 
proving Lemma 1. Theorem 2 is proved.

Lemma 3. I f  <5>sup jlm  |, then the map

L: Ht -  h, 2  cnVn — ((iá + /2„)cn)r=iП = 1
is an isomorphism (onto l2).
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P ro o f . L  is linear, one-to-one and onto by Lemma 2. It follows from the open 
mapping principle that it is enough to prove the continuity of L~l. But

is an (onto) isomorphism and for all a and T, I[SJa{Tj)=fMa(T).
Theorem 3. Suppose that Лп^ 0  and щ=иг=0. Then for a.e. a€ (0 , 1) the 

following assertions are valid:
(i) 3>a (T) increases strongly with T  for T<21,
(ii) 3>а\т) is closed in Ht(BL2(0,1) i f  T’< 21.
P ro o f . We shall prove the same properties for iMa(T). From (17) we know that 

for large n

It is known from the theory of exponential bases (cf. for example [8]) that for large N
(e±ifr„x)r=N

is a Riesz basis in L2(0, 21) (in its span which has a finite codimension). For n= 
=  1, ..., 2N  we have also

HZ cnr„||i*(0>,) 52 const 2  k l 2 
since (vn) is a Riesz basis and

\ \ 2  CnVnWhw,D -  Const 2 ’( l +  |A„|)|c,I|2

since is a Riesz basis in its span by Lemma 1. These inequalities imply the

continuity of L~l and the proof is complete.
Now define the reachability set ([3], [4])

®a(T):= {(«(•, T), u,( ■, Т))ен ,©L2(0, l): f £ L 2(О, Г)}.
Define further

@a(T):=  {(у„)Г=2̂ 2-‘ y2n-= c'n(T) + i ]/lncn(T),

У2П+1-  c'n( T ) - i  yTncn(T); f € L 2(0, T)}.
We see from Lemma 3 that if then

/ :  H,®L2(0, 0  -  h,

with some hn£L2(0, 21).
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The rest of the proof is similar to that of Theorem 1 in [4]. For every 0< T-<21 
we have an e=e(7’)> 0  such that there exists a sequence

<*) < = { ,* №

such that (e±l^nkx) is a (complete) Riesz basis in L2(0, T). Now the properties (18) 
and (19) can be easily verified using only the coordinates nk. Theorem 3 is proved.
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ON A CONJECTURE ABOUT FUNCTIONS 
NOT BELONGING TO U

Z. MAGYAR (Budapest)

1, Joó has called the author’s attention to the following problem (cf. [2]). Let 
3F denote the set of those continuous real functions/on R+ which are bounded, 
strictly positive and satisfy

+~
f  f 2(x)dx = + ” .
о

If o O  and f(i$F then let xn(c) be defined by
Xn(c)
/  f ( t )d t  = nc (n = 1,2, 3,...).
0

Q u e stio n . Is it true for any fas*’ that h(c):= 2  f ( xn(c))= +  °° for almost
/1=1

every c?
The answer is no. Namely, there is an /£  J* satisfying /t(c)< +  <=o for almost 

every c.

R emarks. 1. M. Horváth, independently of the author, got the same result.
2. Our construction yields as a secondary product an example of a set of infinite 

measure in R+ which intersects the series nc only in finite set for almost every c 
(cf. [3]).

P ro o f . We give a concrete /£ # "  of this property.
If r, s> 0, r ^ s  then let gr<s be “the thorn-function of height 1, width 2s and 

center r”, that is

(1) gr,s(*) =  max (0, l - s - 4 * - r |) .
+ 00

Then it is clear that J  g2tS(x)dx=2s/3. Therefore if we have a family {(rh st); 
0

(£/} where I  is an index set satisfying

(2) 2  St = + °°
• €/

and

(3) |гг- г г | S  S i+ s r , if i ^  i'i f  i ^  i'
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then the function /  defined by

(4) f (x )  =  (x + l) -x+  £  gr„„(x) (*€R+)
idl

belongs to S'.
We construct a family satisfying (2) and (3) in the following way. Let N(k):= 

:=[exp(2*)] for k=  1 ,2 ,3 ,.. .  and let /:={(&, m); k =  1, 2,..., m= 1, ..., N(k)}. 
We define an ordering on I by setting
(5) (k, m) <  (fc', m') if к < k'  or [/c =  k'  and m >  m'].

Now let

(6) St,™ =  ('» • 211) - 1 
and

(7) rt = exp -  4j- +  2  s;) - 1 ’ where i =  (k, m).V m z j < I )
Then

JVC*)
2  St,™ =  2 - ‘ (l + ... + l/N(k)) ^  2-k ■ \og(N(k) +1) S  1,

m=1
and hence we get (2). We see also that

N(k)
2  sk,m < 2_ t(l +log N(k)) <  2.

m=l
This implies that for all i£l, and rf—Г;>,тг+ Sj if _/<i. Thus (3) holds,

X
and setting F(x):= J  f ( t )d t  (where/is defined by (4)) we infer that 

о
(8) F(rk' J  = m-i.{N(k)\)
and
(9) lo g (x + l) ^  F(x) S  2 -lo g (x + l) for all xgR+.

We want to prove that li(c)= 2  f ( ^ ~ l (nc)) is finite for almost every c>0.
W = 1

Denote the interval {F(rktm- s k<m), F(rkjm+sktJ )  by Bktm. Then we get from (8) 
that
(10) Bktmc ( m - H N ( k ) \ - 2 - k) ,m - \N ( .k ) l+ 2-k)).
On the other hand, writing B= (J Bk m, clearly f ( F ~ 1(x))=(F~1(x)+ l)~l

(k,m)eJ
whenever x  í  B, and hence we infer by (9) that

(11) / ( F - ^ x ) )  =£ e x p (-x /2) if x iB .

This implies that /i(c) is finite if c satisfies the following condition:
(12) there is an n0(c) such that nc$B if n> /i0(c).
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We assert that (12) holds for almost every c. It is enough to prove this assertion 
on the interval [2M, 2M+1], where M  is an arbitrary integer. Fix an M, and define a 
probability measure P on the Borel subsets of [2M, 2M+1]=Q by setting P(A):= 
:=2~M ■ 2(A), where Я is the Lebesgue measure. Let

, m)
(13) Ak:={c£Q;3n: nc£ (J Bkn) .

m=l
Then we see from (10) that in case cf_Ak there are n, m such that |ис—m- 1iV(fc)!|< 
< m _1- 2~k, and hence there is another positive integer n satisfying

(14) \nc-N(k)\\  <  2~k.

Let
Ak,„ =  (n~1(^ (ik )!-2 -‘), n-4iV(fe)!+2-k)) ПО.

It follows from (14) that P(Ak)S  2  Р(АкуП). On the other hand, if АкуЯ?*0 then
П= 1

(15) 2~M- \ N ( k ) \ - \ )  <  n <  2~M(N(k)\ + l).
Since P(i4ti,)S n - 1-2x~k -2~M, we have by (15)

2 П А , п ) ^  {2- M(AT(fc)! +  l ) -
П — 1

2-M-j ( щ ку  _  i) + 1} . 2- M . 2* + ty - \N (k ) l  - 1)-1̂ -*  S  CM ■ 2~k 

where CM depends only on M. Thus P(Ak) ^ C M ■ 2~k, and hence 2  Р(Лк)< + °°.
k = 1oo oo

This implies P(H)=0, where H — П 1J Ak. Observe that each element of
j = 1 k = j

Q \ H  satisfies (12). Thus our proof is complete.
b „  F-ЧпЪ)

Remark. If 0 ^ a < b  are arbitrary then J  h ( c ) d c = 2 n ~ lm f  P ( { ) d t
a n—1 F _1(/zfl)

for any /£#". It is not very hard to show that the right side of this equality is
•+■ 00

S  /  /* (i)(l—a/b—a/F(t)) dt = + °° if /€#".

Thus our construction yields a Borel measurable function h whose integral on each 
interval equals +  although h is finite a.e.
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ON FUNCTIONS ADDITIVE WITH RESPECT TO 
INTERVAL FILLING SEQUENCES

Z. DARŐCZY (Debrecen), corresponding member of the Academy and 
I. KÁTAI (Budapest), member of the Academy

Acta M ath . Hung.
51 (1—2) (1988), 185—200.

1. Introduction

The notion of functions additive with respect to interval filling sequences has 
been introduced in [4]; earlier we have investigated important special cases ([1], [2],
[3]). In this paper we consider the following problem: What can be said about the 
structure of an additive and continuous function which is positive for positive values 
of the variable? Our main result will say that in case of smooth interval filling sequen
ces these functions are linear. With the help of this we are going to prove that if a 
function additive and continuous with respect to a smooth interval filling sequence is 
differentiable on a set o f positive measure, then it is linear. This result is important 
because earlier we have shown ([3]) that there exists a function additive and conti
nuous with respect to a smooth interval filling sequence, which is nowhere differen
tiable.

Many steps of the method of proof here employed are effective also for non
smooth interval filling sequences. These partial results will be formulated also without 
the condition of smoothness. Nevertheless, up to now we have not yet succeeded in 
eliminating smoothness from our main result. Since no counterexample is known, it 
can be guessed that our main results will turn out to be valid also for non-smooth 
interval filling sequences.

2. Interval filling sequences

Let A denote the set of those real sequences {/„}, for which the conditions
2„>A„+1=-0 (n£N) and L:= ^  /.„< °° are satisfied.

/1 =  1

D e f in it io n  2.1. The sequence { / „ } ( d  is said to be interval filling, if for any 
x€[0, L] there exists a sequence £„£{0,1} (n£N), suchthat x —

We have ([1], [3]) the following

T heo rem  2.2. The sequence {Я„}€ Л is interval filling i f  and only i f

2  h
i= n + l

(2. 1)

holds for any n£ N.

Akadémiai Kiadó, Budapest 
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Let {/,„}€ Л be interval filling and x€[0, L], Let moreover be, by induction
on n,

n—1
1 for

(2.2) £n(x):= »=1
л- i

0 for 2  е1(х)Л1+ Л „ ^хi_1
und

1=1

1 for
11 — 1
2  е*(*)Аг + А„<х

(2.3) b„(x):= ■ i=1 
n—1

0 for 2  е*(х)А; + А„ S  x.;_1
Then ([1], [3], [4])

1 = 1

<2.4) x  = i
n = l

=  2  еп(х)лп.
л = 1

The first of the representations (2.4) will be called the regular, and the second one the 
quasiregular expansion of x ([1], [4]).

D efinition  2.3. Let {А„}£Л be an interval filling sequence. We call the number 
x€[0, L] finite if there exists N  such that en (x)=0  for n>iV. If x is finite and 
£„(r)= l, moreover £„(x)= 0 for n> m, then we say that x has length m, and write 
h(x)=m. We define /i(0)=0.

Let
<2.5) VN:= (x | xi[0,L], h(x) tV}
and
(2.6) UN:= {x 1 x£[0, L\, IIX,

D efinition  2.4. Let {A„}6 Л be an interval filhng sequence and xP]0, L], 
The number
(2.7) bN(x):=  max {t 1t£ VN, t <  x}
will be called the left hand neighbor of x in VN ([4]).

L emma 2.5. I f  {/„}6 Л is interval filling, then

{2.8) card ( UN) <  -j— (W€N)
*■1v

where card (A) denotes the cardinality o f the finite set A.
P roof. If x, yd UN and x<>> then х ^ у —ЛN. Indeed, the left hand neighbor 

o f  у  in Vf, is у —Л N and x€ VN, hence x ^ y —I N. This implies that if we put Ix:= 
:= ]x—Aw, x[ ( x £ U n )  then IxC\Iy=Q for x ,y£U N and x ^ y .  Thus

meas ( (J 7X) =  card ( UN) Лы <  L
UN

whence (2.8) follows. □
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Lemma 2.6. I f  {A„}6 A is interval filling, then

(2.9) card (VN) <  1+L 2  (NSN).i=l Aj
P roof. In view o f

VN =  {0}UC/1U i/2U ...U t/JV
where the right hand side is a disjoint union, Lemma 2.5 implies 

card(KJV) =  l+  j^cardfC/i) <  1+L  2 ~ r -  □
1 = 1 i =  1 *-i

Lemma 2.7. Let {A„}£ Л be an interval filling sequence and LN+1:= 2  Af
i=V + l

(NS N). Then

(2.10) s  card (VN) (NSN).
ĴV + 1

Proof. If  jc€[0, L] then

N

X= 2  Si(x)^i + riN + l(x)
i=l

where

ík +i W  =  .S' e/(*)Aj — Lw+1
i=W+l

and

£*(*):= i=l

Thus U [?, t+ LN+1] z>[0, L], and from this L^card (VN)LN+1 follows, i.e.
(2.10) holds. □

3. Smooth sequences

D efinition  3.1. We call the sequence {A„}£ Л smooth, if there exists K>-0 
such that

(3.1) 2  А,- «= KXn
i=n + 1

for any nSN ([5]).
Lemma 3.1. The sequence {A„}6 Л is smooth i f  and only if  there exists 7TN 

such that

(3.2)
for any nS N.
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Proof, (i) Let {Я„}£Л be a smooth sequence. Then for any n, t£N we have 

+ t —  Я„ +  l _b^'B + 2 _b . . . +  f ,  + t <  * Я „ .

К  1Now there exists such that — hence

i K i 1 3Лп+Г *= rji 'Ы

for any n£N, i.e. (3.2) holds.
(ii) Let (Я„}6 Л satisfy (3.2) for some L^N. Then

-̂л+tr ^  2*
for any k  and n. Hence

K  + 1 +  K  + 2 +  • ■ ■ + K + T  ■*=

^и+Г + 1 + -^ п + Т  +  2 + - ”  +  Я„ + 2Г ^

Ап + 2Г + 1 +  А„ + 2Г+2 +  .". + ^ п  + ЗГ *=

п ?

т_
2 я„,

These inequalities imply

r 2+i*i <  T  ( i + 1 + J L + . . . ) a„ =  2гяи, 

i.e. (3.1) holds for л::=:2Г. □

Lemma 3.2. I f  the sequence {/.„}£ Л fy smooth, then there exist numbers H, 
i€N, such that for any N one can find among the numbers N, N + 1, ..., N+H  
a value n satisfying

(3.3) Яя + х +  Яп + 1 *= K-

Proof. By Lemma 3.1 there exists T^N such that Я^+аг*^-^- AN for any 
N eN. Let H:=2T. Then

1 Я у  +  2Г   Я ^ + 2 г  Я;у +  2 Г - 1  Л у  +  1

4 Ajv kft + 2Г-1 Я^ + 2Т-2 Яу

In the product on the right hand side let a:= ^”+1- (N ^ n ^N + 2 T ~ N + H )  be
Яи
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the smallest factor. Then 

(3.4)

v2T
4 ’ i.e.

=  a

On the other hand, for any /£N we have by (3.2)

K+i+K + IT 1n 5

(ПИТ 1
and this implies the existence of an /0£N suchthat +  -^ -<  1. Hence, putting
s:=l0T  we get from (3.4)

K + l + K + s ^n + l^~ ̂ n +loT

i.e. (3.3) holds for some index n£{N ,N + 1, ...,N+ H }. □
Lemma 3.3. I f  the sequence {/„}£ Л is smooth, then there exists a constant 

o l  such that

(3.5)
c

for any N£ N.
Proof. By Lemma 3.1 there exists T£N, such that

(3.6) K + T < 7  я» (n€N).

If ЫШТ then
1 1 l t 2 T

I7 +i r +- +У — T~  ^  a n

If N > T and N = kT+ r  (0< r s f ) then (3.6) imphes

^N-1 2Ajy
whence by iteration

1 1  1 1 1 ( . 1 1 1 )
T " + T ----- + 7 ------ +  — + T ------ --- T ~ l1+ '2 + 2F + " ' +Л |у - г  л 1У-2T AN - k T  Ali 4 z  A A /

Let us now write this same inequality replacing iV by each of the numbers N — 1, 
N —2,..., N — T  +1 in turn, and let us add the inequalities thus obtained. We obtain

_2_
Л-jv

Z j -
i= l Aj

2 2 
T -+ ■̂W-l■+...+

T + l

IT

i.e. (3.5) holds for c := 2 7 \> l) . □
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Theorem  3.4. I f  {?■„}£ Л is a smooth interval filling sequence, then there exist 
constants 0<C ]:<C 2 such that

(3.7) _ р _ < с а гс1 (Г * )< -^Ajy An
for any N£ N.

P roof. By Lemma 2.7 smoothness implies

card (VN) s  -y~— :

i.e. the left hand side of (3.7) is valid for Cx:= 
together imply

L

Now Lemmas 2.6 and 3.3

card(VN) <  1 + L  1  -1  <  1 + ^ -  <i=l A; Ajy An

where C2> 0  is some upper bound of {IN+ LC} (Nd N). This completes the proof of 
the theorem. □

4. Additive and continuous functions

We have introduced the notion of additive function in [4].

D e f in it io n  4.1. Let { /„ }£  A  be an interval filling sequence. We call the function 
F: [0, L] —R additive (with respect to the sequence {A„}), if for any x£[0, L] the 
equality

(4.1) F(x) = F( 2  е„(х)Я„) =  2  £„MT(Ä„)л=1 n=1

holds, where 2  1̂ (^л)1<0°- 1°  (4-1) sn(x) denotes the digits 0, 1 defined by the
71 =  1

regular algorithm (2.2).

R e m a r k . If {a„} is a real sequence satisfying 2  K H  °°> then putting F(X„) :=
n—1

:—a„ ind N) we get an additive function

F(x):= 2  t j x ) a n (x€[0,L])
П = 1

and conversely, if F: [0, L] — R is additive, then for an := F (ln) (nd N) we have 
2  \anI <  o°. Thus, in case of a fixed interval filling sequence any additive function is
Л = 1

uniquely determined by a real sequence {<an}, such that 2  |Я/,1<0°-
71 =  1
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In the sequel we shall need a condition, necessary and sufficient in order that an. 
additive function F: [0, L]—R be continuous in [0, L] ([4]).

D efin itio n  4.2. Let {A„}£ A be an interval filling sequence. We call the function 
F: [0, L]-<-R quasiadditive (with respect to the sequence {/„}), if for any x£  
€[0, L] the equality

(4.2) F(x) = F ( 2  z*Áx)K) = 2  г*пШ(К)»1 = 1 11 = 1

holds, where 25 |F(A„)|<°°. I*1 (4-2) £*(x) denotes the digits 0, 1 defined by the 
/2 =  1

quasiregular algorithm (2.3).
Our following result will be of fundamental importance ([4]).
T heorem  4.3. Let {A„}£ Л be an interval filling sequence and F: [0, F] — R 

an additive function. Then F is continuous in [0, L] i f  and only i f  it is quasiadditive.

R emark. The statement formulated in Theorem 4.3 is a consequence of the 
following ones ([4]):

(1) If F is additive, then F is continuous at any nonfinite point x.
(2) If F is additive, then F is continuous from the right at any finite point x.
(3) If F is additive and continuous from the left at any finite point x>0, then 

putting an:=F(Xn) (n£N) we have

(4.3) an:= 2  **(K)<*t
i = n + 1

for any «€N, and conversely, if (4.3) is satisfied for any n£N, then F is continuous 
from the left at any finite point x > 0.

(4) If Fis additive, then (4.3) is valid for any n£N if and only if F is quasiadditive.

5. On positive and continuous additive functions

Let {A„}(: Л be an interval filling sequence and F: [0, L]--R an additive and 
continuous function, such that a„:=F(A„)>0 (n€N). Then it is clear that F (x )> 0 
for any x€]0, L\. Let -3s [{A„}] denote the set of all positive and continuous additive 
functions.

T heorem  5.1. I f  F€^[{A„}], then F is strictly monotone increasing in [0, L\. 

P roof. Let 0 ^ a < j8ё Т  be arbitrary and by continuity

min F(x) =  F(£),

where ccs£^ß. If then let

Ő= Íe„*(í)A„.
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Since on the right hand е*(£)=1 for infinitely many values of и, there exists jV0£ N 
such that for

í Wo:= 2  4  (OKn=1

one has Then by Theorem 4.3 and in view of F(A„)>0 one gets

f ( y  =  jk*(£)F(A„) <  2  e*n(Z)F(X„) =  F(0,
B = 1 n = l

a contradiction. Hence a='$, i.e. F(a)^F(/J), so that F is monotone increasing. 
If F(a)=F(ß) were true, then by monotonicity F(x)—F(cc) would hold for any 
x£[a, ß]. Then

ß = 2 4 *  (0 Rл=1
and there exists N0 such that

a <  2  En Ш п  — ßs’0 <  ß-
П=1

From this

F(ßNо) -  24*(/0F(A„) <  Íe*(/J)F(A„) =  F(jß)
/1 =  1  / 1 = 1

and this contradicts the equality F(ßNo)= F(oc)—F(ß). Thus F(a)< F(/i), i.e. Fis 
strictly monotone increasing. □

R em a r k s , (i) If F: [0, L]-* R is an additive and continuous function such that 
F (x )s0  for any x€[0, L\, i.e. a„:=F(A„)^0 (n€N) then considerations similar to 
the proof of Theorem 5.1 show that F  is monotone increasing.

(ii) It is important to know that the monotone increasing property of an additive 
function does not imply continuity. Indeed, if with the notation an := F(l„) (n£N) 
we have a^.— l and ak:= 0 (кш2), then the additive function F determined by the 
sequence {an} is the following:

(0 for 0 s x < l !
F(x) -  IJ for ^  Sjc ш L

Clearly, F  is monotone increasing but fails to be continuous for х= кг.
L em m a  5.2. I f  F€^[{2„}] then the sequence {an := F(A„)}£ Л is interval filling.
P r o o f . By Theorem 5.1 F  is strictly monotone increasing, hence {a„}£ Л. 

On the other hand, by continuity

an — 2  E* (1n)ai — 2  aii=n+1 i=n+l

for any /i€N, i.e. by Theorem 2.2 the sequence {an}£ Л is interval filling. □
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D efinition 5.3. Let {/.„}£ A be interval filling and

^ [R } ]  := {£W  :=  (EiW -e2(x), •••)! Ц).
Clearly, ^[{2„}]c={0, 1}N. If {a„}€ A is interval filling and = then
we say that the two interval filling sequences are isomorphic; in notation {2„}={a„}.

Theorem 5.4. I f  F€^[{A„}] then the interval filling sequences {a„ := F(2„)} and 
{/l„} are isomorphic {/.„}).

P roof, (i) Let e£á2[{A„}]. Then there exists x€[0,L \ such that x= 2  e„Xn
/1 =  1

with £n=en(x) for any n£N. Let
oo oo

y-= 2  en(x)a„£[0, A] with A:=  2  a* <
И=1 n = l

Let us show that if

У = 2 ön(y)an /1 = 1
is a regular expansion (Lemma 5.2) of the number y£[ 0, A] with respect to the inter
val filling sequence {a„}£Л, then Sn(y)—En(x) for any n£N, i.e. e£^[{a„}]. 
Suppose the contrary, i.e. let E(x)^S(y). Then there exists 1V€N, suchthat et(x)=  
=Si(y) for i'= l, 2, ..., N — 1 and EN(x)ASN(y). Then by the greedy property of 
the regular expansion, sN (x)= 0  and (5Лг(у)= 1. Hence

N - l
x = 2  £Xx)k + nN(x),

» = 1
where

ilivW =  2  £i(x)Xi =  2i=N i=N+1
and riN(x)<hN. On the other hand

(5.1) у  äs 2  öi(y)<*i+aN.
i = 1

By the strictly monotone increasing property of F  we have F(t]N(x))<F(XN); more
over, the right hand side of the equality qN(x)= 2  is the regular expan-

i=N+l
sion of í7jv(x), hence by the additivity of F

%
F{tin(x)) = 2  £i(x)ai.i=N+1

Thus

У =  F(x) = 2 £i(x) tti+ 2 ei(x) ai = 2 Si(y)ai + F(tiN(x)) <  2  5,00 a,+ a*
i=l i =N+1 i=I i=l

and this contradicts (5.1). Therefore á?[{A„}]cz^[{a„}].
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(ii) If Ő£3t[{a„y\, then there exists y£[0, A] suchthat у — 2  where
n=i

ö„=ön(y) (n€N). (Here Sn(y) denotes now the digits of the regular expansion of the 
number у  with respect to {a„}.) Since F is strictly monotone increasing, there exists
x£[0, L] suchthat x = F ~ 1{y). Let x =  2  е„(х)Я„. Then by additivity

71 =  1

F(x) = у  =  2  £n(x)a„-П = 1

We now show that sn(x)=őn(y) (n£N). Suppose the contrary, i.e. let e,(x)AS(y). 
Then there exists N£ N such that Ei(x) = Si(y) for i= l, 2, N—l, and гд,(д:)=0, 
^дт(у)=1. Hence

Л1-1
x  = 2  e,(x)f+ riN(x),

i= 1

where rjN(x)<AN. On the other hand

N-l
y =  2  öi(y)ai +  aN.

i = 1

F being strictly increasing we have F(r]N(x))^F(^N); furthermore F(t]N(x))— 

=  2  s i ( x ) a h  hence
i=N

У = F(x) =  2  £iW ai+  2  eiix)ai =  2  öi(y)ai + F(riN(x))< 2  Si(y)ai+aN
i= 1 i = N i = l  i= 1

which is a contradiction. Therefore R [ R } ] c R  [{!„}]• □

C o r o l l a r y . I f  {A,,} =  {a,,}, then let us denote the set o f  numbers having length 
N, and the set o f numbers having length not greater than N  by UNandVN, respectively, 
for the sequence {2„}, and by TJ% and V%, respectively, for the sequence {a„}. Then

card ( UN) — card ( U*N)
and

card (VN) =  card(I^*).

6. The main result

The aim of our investigations so far conducted was to determine the structure of 
a positive, additive and continuous function. In the case of an arbitrary interval 
filling sequence we are not yet able to answer this question. However, for the case 
when the interval filling sequence {/„}€ Л is smooth, a complete solution of the 
problem will be given in what follows.

Our result generalizes the results of [2], and also, in a certain sense, that of [6]. 
The following result will be needed in the sequel:
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Lemma 6.1. Let {/.„}€ Л be a smooth interval filling sequence. I f  [{/.„}] 
then the sequence {an:=F(A.„)}£ A is interval filling and smooth.

P roof. By Lemma 5.2 {a„}£ Л is interval filling, hence it suffices to prove the 
smoothness of {an}. By Lemma 3.2 there exist H, S£ N, such that for any N£ N 
there exists a number {N, N + 1, N+2, ..., N+H} satisfying AB+1+  2n+s<  
Then the regular expansion of the number x :—Ln+1+Xn+s is itself, i.e. by the additi
vity and the strict increasingness (Theorem 5.4) of F we have

2<Tv+h + s =  2F(an + h + s) =  2F(2n+S) 3= T(A„+S) +  T'(2n+1) =

= ■̂7(2-n+s + 'l-n+i) H A„) — F(Xn) — aN,
i.e. putting T:=H + S  we get

1
a N + T ~2 a N

for any N£N. Thus by Lemma 3.1 {<r„}€ A is a smooth sequence. □
We are now able to formulate our main result in the form of the following
T heorem  6.2. I f  {л„}€ A is a smooth interval filling sequence and F: [0, L]->-R 

is an additive and continuous function satisfying F(x)> 0 for x > 0  (i.e. T6^[{A„}]). 
then there exists a constant y>0, suchthat F(x)—yx for any x6[0, L\.

P roof. Let an:=F(Än)>0 (n£N). By Theorem 3.4 there exist constants 
0<  t\<  c2 such that

(6.1) - f -  <  card (VN)) <  (N£ N).
a n  a n

Lemma 6.1 and Theorem 3.4 together imply the existence of constants 0 < с^< с |, 
such that

(6.2) —  <  card (Vf) <  (JV€N)aN a,у

where denotes the set of numbers having length not greater than N  with respect to 
the interval filling sequence {a„}£/l. By Theorem 5.4 {an}^{2„}, hence card (VN)= 
=  card(Ljy) (N£N). The inequalities (6.1) and (6.2) now yield

aN Ajy
c *

i.e. putting Кг:=:——> 0 we get 
C 2

(6.3) Кг <  4^- (MEN).

From the inequality (6.3) and from additivity we infer that

(6.4) 0 (x<E]0,L]).
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F(x)Let y:=inf ——  where Then we have the following two possibihties:*=-o л:
F ix  1(i) There exists x0£]O, L\ such that ----- —= 7;

x0

(ii) > У for any x€]0, £].

ad(i). Then 0 ^ F(x)—yx=:G(x), and G(x0)= 0  (x„>0). Since G: [0, L] — R 
is additive and continuous, G is also monotone increasing. Hence G(x)=0 for 
x£[0, x„]. Now there exists N0, such that G (/„) =  0 for n> N 0. On the other hand, 
the continuity of G implies

G(A„0) =  Í  * ta KJG(Xd = 0,
i=N0+ l

whence it follows G(Aw)= 0  for any N£ N. This imphes G (x)= 0  for any x, i.e. 
F(x)=yx (x€[0, L]).

ad (ii). Then 0<F(x)—yx=:G(x) for any x=-0. Since G is additive and conti
nuous, by (6.4) there exists 0«= Кг, suchthat for any x>0. This yields

„ „  _ . ~ G(x) . F(x)—yx . F(x)
0  <  ÜT, =  i n f ------— =  m f  — — — -—  =  i n f ---------— v  =  0 ,x=-0 X  x>0 X  x=-0 x

and this contradiction shows the impossibility of case (ii). □

7. Additive and continuous functions differentiable on a set of positive measure

The results obtained so far enable us to investigate further classes of continuous 
additive functions. Since in [3] we have shown by an example that there exists a 
continuous and additive function which is nowhere differentiable, it makes sense to 
ask, what can be said in case a continuous and additive function is differentiable on 
some nonvoid set E a[0, L].

Lemma 7.1. Let {An}£ Л be an interval filling sequence. I f  x£[0, L\ is a non- 
finite number, then there exists N0=N0(x), such that AWo< x . For N ^ N 0, let 
k:=k(N, x) be the greatest among the numbers (1,2, ..., N } for which et (x )= l. 
Then for N ^ N 0 there exists ßN(x)£UN, so that

(7.1) 0 <  x - ß N(x) <  (N -k (N ,  x )+ l)LK+1.

Proof. If  N ^ N 0, th en

N k (Y ,x ) - l
S n ( x ) :== 2  £ n ( x )  К  — 2  En (* ) К  +  x )  >

n = l  n = l

Acta Mathematica Hungarica 51, 1988



ON FU N CTIO N S ADDITIVE W ITH  RESPECT TO IN TERV A L FILLIN G  SEQUENCES 197

where k(N, x)£ {1, 2, N}. It is clear that
oo

0 <  x — SN(x) = 2  sn(x)X„ -= Ln+1.
n—N+l

Let us define the number ßN(x)£UN as follows:
1) For k (N ,x )= N  let ßN(x):=SN(x).
2) For 1 ̂ k (N , x)< N  let

k (N ,x ) - l  N
(7.2) Xl'-= 2  8я(*)^и +  0+  2  En Q*k(N,x))?-n-

/1 =  1 n = k(N,x) + l

Then the right hand side of (7.2) is the regular expansion of xl5 and Як+1<Я4 implies 
ek(N,x)+i(^ki.N,x))—1> i.e. in the regular expansion of xx the maximal index lx 
for which £,i(x1)=  1, is necessarily greater than k(N, x). If lx=N, then let ßN(x):= 
:=xx€ UN so that

0 <  SN(X)—Xx — 2  Sn (^k(N,x))Xn -= k N + 1
n=N + 1

holds. If /i<iV, then we continue the procedure in the previous manner. In finitely 
many steps (if r is the number of steps, then r S N —k(N, x)) we reach an xr satis
fying x f U N. As

0 <  xr_i - x r = 2  £n (Я/Г_г)x„ < l n+1
n = N + l

where lr_1< N  denotes the maximal index occurring in the regular expansion of 
x,_! for which eir_1(xr_1)=  1, we obtain

0 <  x xr = x - ß N(x) <  ( j+ \)L s +x ^  (N -k (N ,x )+ l)L N+1 

i.e. (7.1) holds. □
Lemma 7.2. I f  {Á„}6 /1 is an interval filling and smooth sequence, then the se

quence ßN(x)£Un (Ns N0=N0(x)) constructed in Lemma 7.1 satisfies

0 <  x — ßN (x) <  KN1n

where lim N/.n—0, i.e. ßN(x) converges uniformly to x on the set o f nonfinite num-
N-+CO

bers.
P ro o f . Owing to smoothness LN+l^K /.N, whence

2 n x n = l + 2  l n+1^ l +k l < ~
N=1 A=1

i.e. lim NXN=0, therefore the lemma is true. □
N-*- oo

T heorem  7.3. Let {/„}£ A be an interval filling and smooth sequence. I f  
F : [0,L ] - R  is an additive function, differentiable at a nonfinite point x=»0, then
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for N ^ N 0 = N0(x) (see Lemma 7Л) we have

m N)(7.3) s Cl + c2(iV-fc( N,x))

where k{N, x ) w quantity defined in Lemma 7.1, and Cj^-O, e2 >  0 are absolute 
constants depending on x.

P roof. There exists a function Ex : ]0 , L[--R such that limEx(y) = () and

(7.4) F (x )-F (y ) =  F '(x ){x -y )+ E x(y ) (x -y )
for any j£]0, L[. Let ßN(x)£ UN (N ^ N 0—N0(x)) be the sequence constructed in 
Lemma 7.1 and let yN(x):=ßN(x)—XN. Now (7.4) implies

F (x)-F (ß  N(x)) = F '(x ) (x -ß N(x)) + Ex(ßN(x ))(x -ß N(x))
and

F (x)-F (yN(x)) = F '(x )(x -yN(x)) + Ex(yN(x ))(x -y N(x)).
From these equations we get

H ' N) = F(ßN(x ))-F (yN(x)) =

= F'(x)X jv -  Ex (ßN (x)) ( x - ß N (x)) + Ex (yN (*)) (x -  yN (*))

for N ^ N 0= N 0(x). Owing to Lemmas 7.1 and 7.2 0 < x —ßN(x)<KNXN and 
0 < x —yN(x)<KNXN+XN, moreover NXn—0 (N—»), hence by smoothness

^ ■ 1  ^ Щ*)1 + \E*(ßAx))\ (Af- fc(̂ )+1)jL^ i  +XN

+ l^,(y»(*))| [ ( ^  k(N,x)+l)LN+1 + 1 ] g  Ci + Ct(N_k(Nt x))

for N ^ N 0, where c\ > 0 and c2> 0  are constants depending on x. □
T heorem  7 .4 . Let {/„}€ Л be an interval filling and smooth sequence. I f  

F: [0, L] —R is additive (with respect to {/„}) and differentiable on a set o f positive

measure, then IS a bounded sequence.

P roof. Suppose the contrary, i.e. let

F(Xn)lim supn—°°

Then there exists a sequence М1< М 2< М з<  ... of indices, such that

F(XMi)(7.4)
Let

"■Mi
0'6 N).

{x I x€[0, L\, e„(x) =  0 for n — M j- j ,  M} —j + 1,..., Mfi.
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If x£^j-, then

*  =  2  8„(jc)Ab +  2  £n(x)ln,n = 1 n= M j + l

hence by the smoothness of {!„} and by the inequalities (3.7) and (3.2) we get

By the supposition of the theorem there exists a measurable set Fc:[0, L], such that 
meas (E)—S^O  and F is differentiable in the points of E. By (7.5) there exists FgN 
such that

J = t

Hence there exists x fE  with the property that for any yS F  the set
{en(x)|w =  M j - j ,  M j - j + 1...... Mj)

contains the value 1. This means that for j ^ T  we have
M j-k (M j, x) ё ;  + 1.

As F is  differentiable in x, for j ^ T  Theorem 7.3 yields

and this contradicts (7.4). □
T heorem 7.5. Let {Á„}£ Л be a smooth interval filling sequence. I f  the additive 

and continuous function F : [0, F] —R is differentiable on a set o f  positive measure, 
then there exists a€R, such that F(x)=ax for any x£[0,L\.

P roof. By Theorem 7.4 there exists c>0, such that

From this we infer by additivity that F(x)<cx (x£]0, L]). Let G(x):=cx—F(x) 
(> 0  for x£]0, L]). Then G is an additive, continuous and positive function, hence 
by Theorem 6.2 G(x)=yx, with y>0 a constant. From this F(x)=cx—G(x)=  
= {c—y)x follows, i.e. putting a:=c—y we see that the theorem is valid. □

R emark. The question whether the differentiability condition occurring in 
Theorem 7.5 can be weakened to differentiability at a single point remains unans-

This yields

(7.5) 2  meas(#V) <«=.

2  meas <  r5.

wered. E.g. for the smooth interval filling sequence 
been able to give a positive answer ([2]).

Acta M athematica Hungarica 51, 1988



2 0 0 Z . DARÓCZY and  I. КАТАГ: ON FU N C T IO N S ADDITIVE W IT H  RESPEC T...

References

[1] Z. Daróczy, A. Járai, I. Kátai, Intervallfüllende Folgen und volladditive Funktionen. A c ta  Sei.
M a th . (S ze g e d ) ,  50  (1986), 337— 350.

[2] Z. Daróczy, I. Kátai, Continuous additive functions and difference equations of infinite order,
A n alysis M a th ., 12 (1986), 237—249.

[3] Z. Daróczy, I. Kátai, Additive functions, A n a lysis  M ath ., 12 (1986), 85—96.
[4] Z. Daróczy, I. Kátai, Interval filling sequences and additive functions, A c ta  Sei. M ath. ( S zeg e d )

(in print).
[5] Z. Daróczy, I. Kátai, On differentiable additive functions, Ann. M a th . L . Eötvös, S e r . C om p.

(in print).
[6] Gy. Maksa, On completely additive functions, A c ta  M ath . H ung., 48  (1986), 353— 355.

(R ece ived  N ovem ber 20, 1985)

DEPARTMENT OF MATHEMATICS 
L. KOSSUTH UNIVERSITY DEBRECEN 
DEBRECEN 10, HUNGARY

DEPARTMENT OF MATHEMATICS 
L. EÖTVÖS UNIVERSITY BUDAPEST 
BUDAPEST, MÜZEUM KRT. 6—S 
HUNGARY

Acta Mathematica Hungarica 51, 1988



A cta Math. Hung.
51 (1—2) (1988), 201—203.

A REMARK ON THE NORM OF THE BANACH 
SPACE OF UNIFORMLY STRONG CONVERGENT 

TRIGONOMETRIC SERIES

J. DOBI (Szeged)

N. Tanovic-Miller introduced the set S  of functions /  whose Fourier series 
converge strongly uniformly on [0, 2л] and showed that UzdS ^ A ,  where U and A  
denote the classes of functions /  whose Fourier series converge uniformly and abso
lutely on [0, 2л], resp. ([1], Theorem 4.)

It is known that the set C of continuous functions and the set U are Banach 
spaces with the norms

l/llc =  sup 1/ ( 01, 1/11 v =  sup Ш Л \\с0̂ í^ 2tc 74
where SN( f ) denotes the iV-th partial sum of the Fourier series of / .  I. Szalay showed 
that the set S  is a Banach space with the norm

1 M
(1) | / l |s =  sup— - J  2  K Y + lÄ i/I -Y S ^ C n il lc  ( s - a( /)  =  0)

([2], Theorem 1, [3], Theorem 1).
H. G. Feichtinger raised the problem whether S is a Banach space with the 

simpler norm
1 M

(2) Ц/U =  sup fS^Cfllc +  sup— — г У 2  N\SN( ß - S N^ (f) \\\c  =N M тин- i  N=1

= 1/1 v + sup-J^—r M M + l
M

\2
N = 1
2  JVMw(/)l||c-

We answer this question in the following
Theorem. S is Banach space with the norm defined under (2). 

P roof. Considering th a t

1
M + l mjv=o

M 1
2  \(N+l)SN( f ) - N S N„im \ \ c  = , 2  \NAN( n + S N(J)\ c ^ТИ +  1 N=o

1 M  I M

s  U + T  1 1 Д " 1 - 4» С Л 1 | |с + 1 7 т т  I I 2  Ä C U l l l c .
it is obvious that

(3) 1/1 s ^  1/11
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because for any non-negative integer M

<4> ¥ й  I I I 1 w M  i h Ä l s M  * mW  J .  w -  = ' л -
On the other hand it is known ([2], Theorem 1, [3], Theorem 1), that

(5) 1/1* S  ||/ ||s
and we show that

I M
(6) sup — — II 2  N\AN(f)\\\c S  2 ||/ ||s . 

m  М - Ы  " n = i

Considering the estimation
I M  1 M

l+ r  Ы  Щ М П  IIе = м+г11Д' ^ ‘ÄOT-̂ -.OT-Ŝ WIIIc S
I M  I M

and using (1), (4) and (5) we obtain (6). On the basis of (2), (3), (5) and (6)

(7) ll/!ls S  Ц/ll S  3||/l|s .

Using the fact that S is a Banach space with the norm (1), (7) implies that S is a Banach 
space with the norm (2), too.

We observe that for the function

... "  cos nt
л , ) ' Л ^ й п т

we have \\f\\s^\\f\\. Indeed, 

II .ril III cos. nt Ill/li/ =  sup \ \ \ Z- n( n+l ) = ss p I , | ( t - it Ít )I = s»"p

I M

11/11 s = sup-тт—j-|| 2  H S N{ f ) - S N- m + S N(J)\\\c
M  M  - f-  1 j v = 0

=  1,

1 II -у I cos TVi *L cos nt
M M + 1 ||n = o N-+  1 n=i n(n +  1)

1 M = sup TJ-—T 2
с  M  M  +  1  jv = 0 N + 1 +

1 M 1 I ^ , M +1
+ I ' - W + t JI =  s“p M + r l  л  1 = » P - S Í T  = *•

and

11/1 = 1 +  sup 1
M M + \

M cos Nt
У  N ,Л  \N (N + l) = I +SUP . 7~ ' с M  M + I

1
Ji=i N + l = 1+ ' 18 ‘
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This example shows that the norm ||/||s in certain sense is better than the norm 
ll/ll, because assuming f£A  by the estimation

1 M  1 M  1 M
— L -  2  l (A 4 - i) s Jv ( / ) - ; v s Jv - 1( / ) |  s -— T 2  1^СЛ1 + 1 7 X T  2M  +  1 M 1 N = 0 M  1 N = 0

I M  I M  Af
s  ТГГТ 2  (M + \- N ) \A N(f)\+ — — - 2  n \an(J)\ = 2  MnCOI

M + l  JV=0 M +  1 JV=0 N = 0

we have

(8) ll/ll s — 1/IU»
which does not hold for ||/ ||. Finally we mention that (8) is sharper than the inequality
(1.9) in [2].
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ON A PEXIDER-TYPE FUNCTIONAL EQUATION 
FOR QUASIDEVIATION MEANS

ZS. PÁLES (Debrecen—Karlsruhe)

1. Introduction
П

It is well-known that the Shannon entropy S(P)= S(px, ...,p„)= 2 ~ P i  1° Рь
>=i

where P=(px, . . pn) is a finite probability distribution, satisfies the functional 
equation
(1) S(P*Q) = S(P)+S(Q)
for each probability distributions P— (px, . ..,pn) and Q=(qx, ..., qm) with 

P*Q =  (Pl4l, •••,Pn <h, - .P i 4m. - .P n  4m)-
If  we denote

M(P) = exp(—S(Pj) — Ilpp.
i = 1

then (1) turns into
(2) M(P*Q) = M(P)M(Q).
On the other hand, it is easy to check that M (px, ...,pn) is a mean value of the 
variables px, ...,pn. These properties of M  led Rényi [15], [16], Aczél and Daróczy
(3) and Daróczy [7] to investigate (2) in several classes of means. A summary of these 
results can be found in the book of Aczél and Daróczy [5].

In 1980 Daróczy and the author [11] investigated the multiplicativity equation
(3) M (x*y) — M  (x) M(y)

where х= {хг, ..., x„)<=Rn+, У=(ух, х* у= (Х1ух, . . . ,x nyu ... ,x 1y m, ...
...,x„ym)£Rn+, n, mdN, further M  is assumed to be a deviation mean (see [8]). 
(Неге л: and у  are not supposed to be finite probability distributions.) Our result 
reads as follows (see [10, Theorem 9]):

T heorem  1. Let M  be a deviation mean on R + . Then M  is multiplicative on R + 
( i.e. satisfies (3) for all indicated x  andy) i f  and only i f  there exist a multiplicative func
tion m: R+ — R+ (i.e. m(xy) =m(x)m(y) for all x ,y$R +) and a real constant 
c such that M (x)= M Ctm(x) for all x€R+ and n£N where

( 2  ™(Xi)xij 2  ™(Xi))1,c, i f  сИ О ,1=1 1=1
П П

exp ( 2  m (Xi) In X i/Z m  (*,)), i f  c =  0.
MCtmĈ l > •••» Xu)
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In the present note we study the more general Pexider-type functional equation
(4) K(x*y) = M (x) N(y)
where M, N, К  are quasideviation means on the given open intervals I ,J ,H Q R +, 
respectively and where x(Lln, ydJm with x* yd H nm and n,m dN are arbitrary 
values.

If l —J = H — R+ then substituting m —\ , y —\ and n— 1, 1 we obtain
that K = M  and K=N, respectively. Therefore, in this case, (4) is equivalent to (3). 
But the general case is much more complicated. To overcome the difficulties, we shall 
improve the method of [10].

If / /  П / /  =  0 then (4) does not say anything for the means M, N  and K, that is, 
any means M, N  and К satisfy (4). Therefore it is reasonable to assume that IJ П H ̂  0 
throughout this paper.

2. Basic notations and concepts

Let IQ  R  be an interval. The function E : / 2-*-R is called a quasideviation on /  if 
El) sign E(x, y)=sign (л:—у) for all x,ydF,
E2) y^-E(x, y) is a continuous function on /  for each fixed x£l\
E3) y-*E(x, y)/E(x', y) is a strictly decreasing function on ]x, x'[ for each 

fixed x < x ' in I.
If*!, ..., xn are arbitrary values in /  then (as it has been proved in [13, Theorem 

2.1]) the equation
Е(хг, y)+ ... + E(x„, y) = 0

has a unique solution y= y0 in I. This solution y0 is called the E-quasideviation mean 
of xu  ..., x n and is denoted by 9M£(;ci, ..., x„).

The following result summarizes the properties of quasideviation means.

T heo rem  2 . Let IQ  R be an open interval and let M: |J /" -> -R  be an arbit-
/2  =  1

rary function. Then M  is a quasideviation mean ( that is there exists a quasideviation 
E on I  such that M= i f  and only i f  the following properties are satisfied:

(i) M  is reflexive, that is, for xdl, M (x)= x;
(ii) M  is symmetric, that is

M (xx, ..., -O =  M (xpW, ..., xp(B))
for all nd N, х г, ..., xnd f and permutation p o f the set (1, ..., n} ;

(iii) For any in /  there exist natural numbers n, m such that
и <  M  (x, ...,x , y , ... , y ) < v;

n m

(iv) M  is strongly internal in the following sense:
(5) m in(M(xu  . . . ,x n), M(ylt . . . , y j )  <  М(хг, . . . ,x n,y 1, . . . , y j  <

<max (M f a , ..., x„), M (yu  .... y j )
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for all n,m £N, x h y f i l  unless M(x1; x„)=M (y1, ...,ym). In this latter case (5)
holds with equality at both places.

For the proof of this result see [14, Theorem 4] and for the original version o f 
this characterization theorem see [13, Characterization Theorem 2].

R em a rk . The most important examples for quasideviation means are the quasi
arithmetic means [12], the quasiarithmetic means with weight function [6], and the 
deviation means [8]. We mention only this latter concept: E: I 2-*R is called a 
deviation if El) and E2) are satisfied, further,

E3)* y~*E{x, y) is strictly decreasing on I  for each fixed xd l.
It is easy to check that E3)* implies E3) but the converse statement is not true. 

Therefore the class of means generated by quasideviations is wider than the one gene
rated by deviations. The use of quasideviation means is convenient since a charac
terization theorem is known for them, but for deviation means a similar result has not 
been obtained yet.

3. Basic functional equations

Let I, J  and H  be fixed open subintervals of R + . For the sake of convenience, we 
shall use the following notations:

I0 = If)(H /J), Л - / П ( Я / / ) ,  Н0 = Н П Ш )
and

/* = /0/ /0, J* = j j j 0, H* =  h j h 0.

Then it is obvious that /„, H0, I*, J* and H* are open intervals, further
I0QHJJ0, J0Q H JI0, H0Q I0J0 and H*QI*J*.

Theorem 3. Let E, F and G be quasideviations on I, J and H, respectively. Then

(6) m G(x*y) = m E(x ) -w F(y)

is satisfied for all n,m£ N, x£l", y£Jm with x * y £ H nm if  and only i f

(7) Z  Z  ( - l ) i+J'£ ’(x3- i , x0)F(y3- j ,  J’o)G(xiy,-,x0.y0) = 0

holds for x te l0, yjZJo with x ^ y f i l f  (/,_/'= 0, 1, 2).

P roof. First we prove that (7) is. a necessary condition. If  IJC\H=9 then 
Io—Jo=Ho—0 therefore (7) is obvious. If /7 П Я ^ 0  then /„, J0, H 0 are nonempty 
open subintervals of R+.

Let first x l5  x2£I0, y i,y ^ J t)  be fixed values with Xx<x2, x 1y 1>
х2Уг^Н»- We shall prove that then (7) is satisfied for all x1< x 0< x 2, У^Уо^Уг- Put

(8) x  =  f a ,  ■■■, Xi, x2, ... ,x 2), у  =  (j>i,... ,y }, >'2, ■■■,y2)
tij fij m j
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into (6). Then we obtain
(9) ...,ХхУх, х гу 2, ■■;Х1у2, х 2у 1, ...,x2yi), x 2y 2, ... ,x 2y2) = x 0y0,

n1m1 n1m2 «2 Mi
where

(10) x0 = *0(«i, «2) = ®i£( x i , ... ,X i,x2, . . . ,  x 2),

nl m2

( 11) Jo =  Jo("h, ma) = ä l ifO i,..., J i, y2, . . . , y 2).

By the definition of quasideviation means, it follows from (9), (10) and (11) that

(12) 2  2  nimiG(xiy j ,x 0y0) = 0,
i=l j=l

(13) n1E(x1,x 0) + n2E(x2,x 0) — 0 
and
(14) rn1F (j i ,y 0) + m2F(y2,y0) = 0.
Applying (13) and (14), we can see that

ni =  ( -  1)‘£(х3-г, x0)A  (i =  1, 2)
and

mj = ( - i y F ( y 3_ j , y 0)B  0  =  1.2)
with some nonzero values A and В independent of i and j,  respectively. Substituting 
these values into (12) and dividing the resulting equation by AB we obtain that (7) 
is valid for x0= x 0(ni, n2) and Jo=Jo(wi. m2) where n1,n 2,m 1,m 2 are arbitrary 
natural numbers. By property (iii) of quasideviation means in Theorem 2, the values 
*0—*o(wi> ”2). Уо= Уо(т 1> m‘i) form a dense subset of ]x1? x 2[ and ]yx,y 2[, respecti
vely. Now, applying that quasideviations are continuous in the second variable, we 
can see that (7) is valid for all x1< x()< x 2, y i< y0<y2-

To prove (7) on the wider domain described in the Theorem, fix x0€ /0, y0£J0 
with x0j 0€ / /0 and rewrite (7) into the form
(15) A(x 1 , y1) —A(x2, y1) - A ( x 1, yz) + A(x2, y2) =  0,
where A is defined by

A (x, y) = G (xy,x0y0) 
E(x, x 0)F(y, y0)

for x€ l0\ { x 0}, j 6/ 0\{ jo }  with хувН 0.
First let j i < j 0< j 2 be fixed values in J 0 and let xx, x 2£ /0\ { x 0} with Х;уу-6Я0. 

If Xi<x0< x 2 or x2< x 0<Xx then (15) is valid (as we have proved it). If x1; x2< x 0 
then choose x3£/0 so that x0< x 3 and х 2у ^ Н 0. (If x3 is close enough to x0 then 
these conditions are satisfied.) Now, applying (15) for x1< x 0< x3, j i < j e< j 2 
and for x2< x 0< x3, y1̂ y 0~^y2 we obtain

A(xx, Jx) A (x3, Jx) — A (x i, y ^  + A (x3, Ja) — 0
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and
A(x2, y i ) - A ( x 3,y 1) - A ( x 2,y 2)+ A(x3,y 2) =  0.

Subtracting the second equation from the first one we get that (15) is valid for 
xi, x2< x0. If x0< x1,x 2 then choosing x3< x 0 in 70 with x syj£H0, the same 
argument gives (15).

Thus we have seen that (15) is valid if хг, x2€70\{*o} and Ti, j 2̂ o \{ jo }  
with Уг<Уо<у2, Х1У]^Н»- Now fixing x1 and x2, a similar argument shows that the 
restriction У\<Уо^У2 can also be omitted.

Rearranging (15) to its original form and using the continuity of quasideviations 
in the second variable, we get that (7) is satisfied on the domain indicated in the theo
rem. Thus the necessity of (7) is proved.

To see the sufficiency, let x £ l, y f iJ  with х {у ^ Н  ( lS iS n , lS /S m ). Then 
it is obvious that x £ j0, yfiJo, x^ j^H q is also valid. Denote by x0 andy0 the mean 
values ЭйдОс!, ..., xn) and sJRF(y!, ..., y m), respectively. Choose x*£/0\ { x 0), 
,У*€Л\{То} with x*y*£H0 so that x*y} , Х[у*£Ла be satisfied. (If x* and y* are 
close to x 0 and y0, respectively, then these relations hold since x0yj, x ty 0̂ H 0.)

Putting x ±—x, x2—x*, yx—y, y2~y*  into (7) and rearranging the inequality 
we get
(16) G(xy, x0 >’0) = P(y)E(x, x0) + Q(x) F(y, y0) + RE(x, x0) F(y, y0),
where

and
Р(У) =

G(x*y,x0y0) 
E(x*,x0) ’ Q(x) =

G(xy*, x0y0) 
E(y*, y0)

G(x*y*,x0y0) 
E(x*, x0)F(y*, y0) '

Substitute x = x t, y —yj into (16) and add the inequalities obtained. Then
n m m n n m

(17) 2  2  С (х ,^ ,х 0Уо) =  2  P(yj) 2  E (x i,x0)+ 2  Q(Xi) 2  F(yj,y0) +
i= l  j = 1 j = 1 i = 1 i=1 j —1

n m
+ R 2  E (x i ,  X 0)  2  F(yj > Jo)-i=i

By the definition of x0 and y 0 we know that

2  F(xi, x0) =  0 and 2  F(yj,y0) =  0.
i=X J - 1

Therefore it follows from (17) that

i.e.
2  2  G(xiyj ,Xoyo) = 0,i= ij=l

®iG(*i J i, Jm, •••, J i ,  ..., x„ym)
which was to be proved.

*o Jo,
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In the next step we give necessary and sufficient conditions in order that (7) be 
valid.

Theorem 4. Let E, F and G be quasideviations on I, J  and H, respectively. Then 
E, F and G satisfy the functional equation (7) for all x f l 0, yj£J0 with x^yfiFlg 
(i,j=  0, 1, 2) i f  and only i f

(i) for all x f i f i ,  y0f j 0 with х,у0€Я0 ( /= 0, 1, 2),
(18) E(xlt x0)G(x2 y0, x0 y„) = E ( x 2, x 0)G ( x 1 y0, x0 y0);

(ii) for all x0£l0, yjfJn  with х„ у^Н 0 ( j - 0, 1, 2),

(19) F(yi, y0)G(x0 >’2, *0Jo) = Р(Уг, y0)G(x0 ylf x 0y0)\
(iii) for each fixed z0£Et0 there exists a function

such that 

(20)

a: [( /* U /* )n (tf0/z0) ] \ { l } - R

G(stz0, z0) 
G(sz0, z0)G(tz0, Zq) a(s) + a(t)

i f  s€ /* \{ l} . i€^* \{ l} , s, t, steH 0/z0.
Proof. Assume first that (7) is satisfied. Then putting у ^ у д —y2 and x ^  

A x0=x2 into (7), we easily obtain (18) and (19), respectively.
Denoting the value of the right hand side of (18) and (19) by c and d, respectively, 

we have that
E (x 3- i ,  x„) = c/G(Xi y0, x 0 y0)

and
F(y3- j ,  Jo) =  d/G(x0 y j, x0 y0)

for i . j— 1, 2. Applying these equations, (7) turns into the form

(21) 2  Z ( -i=i j=l iy +3. G(Xj ys , x0y„)
G (xt Jo, *o Jo) G (x0 у j , x0Jo)

=  0

where x f i f ,  yfiJg, х{у £ Н 0 ( i , j - 0,1,2), х хА хйА х2, У1А у0Ау2. Now let 
z0£ //0 be fixed and define the function A by

A  (s, t) = G(stz0, z 0) 
G(sz0, z0)G(tz0, Zq)

where s, t, stdH 0/z0.
We are going to show that A satifies the equation

(22) 2  2 ( -  i)i+JA(si, t J) = o
i = l j —1

if J(<i/*\{1}, f/€J*\{l} and sh tj, S itfH Jzg  (i,j=  1, 2). First assume, in addi
tion, that s js 2dl*  and txjt2fJ *  is also satisfied and let л’0=  1 =  /„. Then, by our 
assumptions,

(IolSi)f\(IolSj) -A 0
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and
(ti Z0/J0) C\(tj zJJ0) 0

for 1, 2.
On the other hand, since т,гуГ0̂ Я 0с:/и/ 0, hence

(h)!si) П (tj z0/ / 0) ^  0

for i , j —0, 1, 2. Thus we have proved that the family of intervals 

{f<)5 fo/Sl 5 -fo/S 2j z j  Jq, Z a tJJo , z0 t‘J  Jo}

satisfies the 2-intersection property, that is, each two elements of this family have a 
nonempty intersection. Then, by the well-known Helley’s theorem (see [11]) there 
exists a common element of these intervals. Denote it by x0 and let y0= z0/x0. Then

and
*,:= SiX0dI0, y:= tjy0eJ0

xtyj = SitjXoyo = SitjZ0£H0.

Applying (21) for these values, we obtain (22) in this case.
If s js 2$l* is not satisfied but is, then choose j* £ /* \{ 1} so that

s*, s*tjdH jz0, Sils*£l* (i,j=  1, 2) be satisfied. (If s* is close enough to 1 then this 
is possible.) Now apply (22) for the values .v1; s*, tlf t2 and for s*, ,v2, tlt t2. Then

A(si, ti) A ( s  , 11) A(si, 0)T zi (.s , 12) =  0
and

A (.s , 11) A(s2, tj) A(s , A (s2, t2) — 0.

Adding the first equation to the second, we obtain (22). A similar argument shows that 
the restriction t j t 2£ j*  can also be omitted. Thus we have proved (22) on the domain 
indicated.

Now define the function a. For r6 [(/ * U /  *) П (/ / n/z0) ] \ {1} let

(23) a0‘) =  A(r, r0) -(1/2) A(r0, r„),

where 1 ^  rn£l*!~]J* with rr0, rl£H0/z0.

We have to show that the definition of a  is correct, that is, a ( r ) does not depend 
on the choice of r 0 .

If г £ 1 * Г \ ( Н 0/ г 0)  and r *  satisfies the same conditions as r0, then, applying (23) 
and the symmetry of A ,  we have that

A ( r ,  r 0) — A ( r ,  r * ) - A ( r 0 , r 0) + A ( r 0 ,  r * )  = 0
and

(1/2)A(r*, r*)  — A ( r 0 , r * ) + ( l / 2 ) A ( r 0 , r 0)  =  0.

Adding these equations we obtain

A ( r ,  r 0) — ( 1 / 2 ) A ( r 0 , r 0) — A ( r ,  r * ) + ( l / 2 ) A ( r * ,  r * )  =  0.

If r £ J * n ( H J z 0)  then a similar argument shows that the definition of a  is correct.
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At last we show that
A(s, t) = a(s) + a (/)

if s€ /* \{ l} , s ,t ,s teH 0/z0.
Choosing the same r0 in the definition of a(s) and a(t) and applying (22), we

have
a(s) + a(t) = A(s, r0) + A(r0, t) -A ( r 0, r0) = A(s, t).

Thus the necessity of conditions (i), (ii) and (iii) of the Theorem is proved.
The proof of the sufficiency is far easier. If (20) is satisfied on the indicated 

domain, then
G(xy,x0y0)

G (xy0, x0у о) G (x0 у , x0 y0) = a(x/x0)+ a(y/y0)

if /0\ W ,  j € / 0\{jo}, x0y ,x y 0,xy£ H 0.
Applying this formula, it is easy to check that (21) is valid if x f i f i ,  уу€/0, 

х;у;€Я0 (i,j=  0, 1, 2), хг9^хо^х2, Уг^Уо^Уг- Using equations (18) and (19), it 
follows from (21) that (7) is also satisfied. Thus the proof is complete.

For the sake of brevity introduce the notations

(24) U:= (l* \{ l} )D (H 0/z0), V:= (J* \{l})n(H „ /z0), W =  H0\z0

(24) b(r) -  G(rz0, z0) (rdW ),

(where z0aH0 is fixed). Then it is obvious that U, V, W are open sets, UQW, 
VQ W , WQ UV, further, by property El) of quasideviations,

(25) sign b (r) =  sign (r -1 )
for raw.

Now condition (iii) of Theorem 4 means that there exists a function a: UO V— R 
such that

<26)

i f  sau, tav a n d  staw.
In what follows we derive a functional equation for the unknown function a.
T heorem  5. Let a: C/UF—R, b: IT—R and assume that (25) and (26) is 

satisfied for ra W  and for sa U, ta V  with sta W, respectively. Then there exists a 
constant c€R such that

(i) if sau, tav, staw then
(28) a(st)(a(s) + a(t))-a(s)a(t) = c,
further

(ii)  for r2aunv (r>0),

(29) sign a(r) = sign (r — 1);
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( i i i )

( 3 0 ) a(s)+a(i) =  0
is satisfied for s£U ,t£V  with st£U U V i f  and only i f  st=  1.

Proof. Denote by B(s, t) the left hand side of (28) on the open domain
D =  {(s, 0|s€ U, t<EV, st£ UUV}.

Let (s0, t0)£D be fixed and define DSoilo by

A,0,r„ =  {(s, 0 1 s, t, s t£UnV,  s0te U, s0st, sotot0V }.
We are going to show that
(31) B(s0, t0) =  B(s, t)
for (s, t)eDS0' to.

Consider the identities

n2) b(s0t0t) _ b(s0t0) _  b(s0tt0) b (s0 0
b(s0t0)b(t)  b(s0)b(t0) b(s0t)b(t0) b(s0)b(t)

and
b(s0st) b(s0t) b(s0st) b(st)

( ) b (s„ t)b (s) ' b (s0) b (0 b (s0) b (s0 b (s) b (t) *
If (s, t)£DSoito, then either (.?„, tti, t f D  or (t,s0t0)eD, further (s0, t0), (s0t, t0), 
(s0, t), (s0t, s), (s0, t), (s0, st) and (s, t) are also in D. Therefore, by (26), it follows 
from (32) and (33) that

[a (s0 to) +  a (0] [a (s0) +  a (t0)] =  [a (s0 t)+a (i0)] [a (s0) + a (0]
and

[a (s0 0 -  a (s)] [a (s0) +  a (0] = [a (s0) + a (s/)] [a (s) + a (0], 
respectively, whence

B(s0, t0) =  B(s0, t) =  B(s, t),
i.e. (31) holds.

Now we prove that В is a constant. Let (sl5 ii)£i> be arbitrary. Then it is easy 
to check that there exists (s, t f iD ŝ  (If s and t are close enough to 1 then
this condition is satisfied.) This implies that

В(s0, t0) = B(s, t) =  B(su tj).
Denoting by c the constant value of B(s, t), we get (28).

To prove (ii), substitute s= t= r  into (26) and use (25). Property (iii) of the 
function a is also a simple consequence of (25) and (26).
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4. Solution of the basic functional equations

First we solve equation (28).
Theorem 6. Let cg R he an arbitrary constant. Then the function a : £/UF-<-R 

satisfies properties (i), (ii) and (iii) o f Theorem 5 i f  and only i f  there exists a positive 
constant p such that

f \/c coth {fc In rp), i f  c *  0,
K ’ K) ~  l l / l n  rp i f  c = 0
fo r reUDV.

Proof. F irs t we are going  to  prove th e  existence o f  l < r 0 such th a t if  
r£]l/r0, r0[ \ { l } ,  then  (34) h o ld s w ith  a suitable constant p.

Choose 1 -=r0 so that rf,, I fiffU fW .  If r£]l/r0, r0[\{ l} , then we have that 
(29) is satisfied. Now we distinguish three cases.

Case I: c < 0. Define the function q: ] l , r 0[^ R  by 

q (r) =  arcotg (a (r) /  /  — c ).
Then it is obvious that 0<q(r)<n/2  since 0<a(r). Let s, t, jtg ]l, r0[. Using the 
functional equation (28), we have
(35) cot q(st)(cot q(s) + cot q(j)) = cot q(s) ■ cot q{t) — 1.
On the other hand, since q{s), q(t), ?(i)+?(0€]0, n[, we can apply the well-known 
addition formula of the cotangent function. Thus we get
(36) cot q(s) cot q (t)-  1 =  cot (^(s) + ̂ (?))(cot ^r(s)+cot q(t)).
Since cot f/(.v)< 0, cot q(t)>0, hence it follows from (35) and (36) that
(37) cot q(st) =  cot (#(s) +  q(fj).
However q(st), q(s)+q(t)£]0, n[, therefore (37) implies that

(38) q(st) = q(s) + q(t).
Let A(x)—q(ex) if xg]0, In r0\. By (38)

A {x + y) = A(x) + A(y)

if x, y, x+y£]0, In r0[. Using the well-known extension theorem of Aczél—Erdős
[2] and Daróczy—Losonczi [9], we can state the existence of an additive function 
Ä: R-*R which is the extension of A. If xg]0, In r0[ then A(x) = A(x)=q(ex)>Q, 
therefore there exists a positive constant l o  0 suchthat Ä (x)= kx  for xg R (see 
Aczél [1]). Let p = k j^ —c. Then

q(r) - A(In r) =  A (In r) = к In r =  p У — c In r,

and thus, for r£] 1, r0[,

a(r) =  У — c cot q(r) — У — c cot(p ]/ —c In r) = Ус coth(j/c In rp).
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If r£]l//-„, 1[, then using property (iii) of a, we get

a(r) = — a ( l/r)  =  — ̂ ~c co\h(yc In i/rp) = /с  coth(/c In rp).
Thus we have proved that (34) is valid for r€]l/r0, r0[ \{ l}  in the case c-= 0.

Case II: c=0. Let q(r)= l/a(r) for r€]l, r0[, Then, applying equation (28), 
we can see that (38) is satisfied for all s, t, si€]l, r0[.

Using the same argument as in Case I, we obtain that there exists a positive 
constant p  such that

q(r) = p In r = In rp.
Therefore a ( r )= l /ln rp for r€ ]l,r0[.

If p€]l/r0, r0[, then, by (iii),
a(r) - - a ( l / r )  =  —l/ln (l/rp) =  1/ln rp.

This completes the proof of (34) in this case.
Case III: c>0. First we shall show that

(39) a(r) >  ]/c

if r€]l, ro[-
Put s—t—^r into (28). Then apply the arithmetic-geometric mean inequality 

to obtain

a(r) = c + a2( jr )  _  1 ( c 
2 а(Уг) 2 l a (fr")

If а(г)=Ус then, by the above inequality, a ( /r  ) —Ус is also satisfied. On the 
other hand, by (iii),

a(l/r) =  —a(r) ——Ус.
Thus

(40) a ( l / r )+ a ( / r )  =  — Ус + Ус = 0 .

Using (iii) again, (40) implies that (1/r)]//* =1, which is a contradiction. Therefore 
(39) is valid.

For r€]l, r0[ let
q{r) =  arcoth (a(r)//c~).

(The definition of q is correct since a(r)>]/c.) Then the functional equation (28) 
turns into the form

coth <7(si)(coth <?(s) + coth q(t)) — coth q(s) ■ coth q(t) + 1 =  

=  coth (?(s)+ q(t))(coth g(s) +  coth q(t)).

Since [coth q(s), coth q(t)>~0, hence

coth q(st) — coth (q(s) + q(t))
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and therefore q satisfies (38) if s, t, jf£]l, r0[. Applying the same argument again, 
we obtain that q(r)= k  In r with a suitable positive constant k. Let p = k j\ 'c . Then, 
for ] l ,r0[

a(r) = Yc coth q(r) =  /с  coth (\!c p In r) = Yc coth()/c ln rp).

Using property (iii), we can see that this equation remains valid if r£]l/r0, 1[.
Thus we have proved (34) in all the possible cases provided that r£]l/r0, r0[\{l}. 

To verify (34) in the general case we shall use induction.
Let t/U V  be arbitrary. Then ]/r* £]l/r0, r„[\{l} if n is large enough.

n ___
Let r~ ( / r* y .  Then we know that (34) is satisfied for r=r1. Assume that we have 
proved (34) for r= rt. Then either s= rt£U, t= r fi V or s—r^U , t—r^V , there
fore we can apply equation (28) for these values:

a (n+1) (a (r,) -  а (гг)) -  a (rt) a (rx) =  c,
i.e.

(41) яОг+i)
c + a(rt)a (rt) 
a(r,) + a(ri) *

Using (34) for г= гг and for r= rt, it follows from (41) that (34) is also valid for 
r= ri+1. Thus (34) is proved for all r£UUV. The proof is complete.

T heorem  7. Let b: W-» R and assume that (25) is satisfied for all r f  W. Then 
there exists a : U U F^-R such that (26) is valid for s£ U, t£V and st^W  i f  and 
only i f  there can be found a multiplicative function m: R+ —R+ (i.e. m(xy)= 
— m(x)m(y), x ,y > 0) a real constant к and a positive real constant p such that

(42) b(r) = pm (r)S(ln г, (T)
for r£ W and where S is defined by

f sinh zx/z if z £ C \{ 0}, xER,
s (*-z) =  b  if ,  =  o .x e* .

P roof. If there exists a: U U F — R such that (26) holds, then by Theorems 5 
and 6, we know that a is of the form (34) where c is a real and p is a positive constant.

Assume first that c^O. Then, applying (34) and (26), we have, for s£U, t€V 
with st£ W, that

(43) ~b(s)b(t) = cot*10 C lnsP) + Yc coth(fc In tp) =

_ j/— sinh(/c ln sp+  Yc la tp) _  S(ln (st)p, Yc)
sinh (f~c In sp) sinh ( fc  In tp) S(ln sp, Yc) 5(ln tp, Yc)

It can be seen very easily that this latter formula remains valid also in the case c—0.
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Let
Г5(1пгМ^)/Ь(г) if r€PF\{l},

K) l l  if г = 1.
Then it follows from (43) that m (st)=m (s)m (t) if j£f7U{l}, í€FU{l}, st£W .

Since W a  UV and in is not identically zero, hence in is strictly positive on W. 
Let A(x)=ln in(ex) for *6 ln W. Then A (x+y)=A (x)+ A (y) for all 
£ln(i/U{l}), .yCln (F U {1}) with x+y£ln W. By the extension theorem of 
Daróczy and Losonczi [9], there exists an additive function A : R —R such that A  
is the extension of A. Then

if r£W. 

for r£R

if riW .

Let
m(r) = exp (A (In r)) = exp (A (In r))

m(r) = exp (—Л (In r))
+ . Then clearly m is multiplicative function and 

m(r) — l/ih(r) = b(r)/S (In rp, Ус) 
It follows from this formula that

b(r) = m(r)iS(ln rp, Ус) = pm(r) ,S(ln г, p Ус).
Defining к as cp2 we obtain (42), which proves the necessity of the above represen
tation.

The proof of the sufficiency is far easier. It is easy to see that (26) is satisfied 
with the function b given in (42) if

( \ _  i(Ук1р) coth ( A ln r) (fc ^  °)>
a{r)- \ l l l n r p (k =  0).

In the next theorem we solve the functional equations (18), (19) and (20).
T heorem  8. Let E, F and G be quasideviations on I, J and H respectively. Then 

E, F and G satisfy conditions (i), (ii) and (iii) o f Theorem 4 i f  and only i f  there exist a 
multiplicative function m: R + R +, three positive continuous functions e: R +,
/ :  Л - R+ and g: # 0— R + further a real constant к such that

(i)
(44) E(x, x0) — e(x0)m (x)S (ln (x/x0), Ук) 

i f  x, x0€ /0, x/x0£H*;

(Ü)
(45) F(y, y0) =  f(y u) m (y) S (ln (y/y0), У к) 

i f  У,Уо£А, j/To€#*;
(iii)

(46) G(z, z0) =  g(z0)m(z)5'(ln (z/z0), Ук) 

i f  z, z0€tfu.
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P ro o f . First we prove the necessity of the above representation. If condition
(iii) of Theorem 4 is satisfied then for each fixed z0£ # 0 the function b defined by 
(24) satisfies the condition of Theorem 7. Therefore, for each fixed z0, there exists a 
multiplicative function m =m Zo, a real constant k= kZo and a positive constant 
p=pZa such that (42) is valid. Therefore

(47) G(z, z0) =  pZomZo(z/z0)S(In (z/z0), V k J  =  (pzJmZo(z0))mZo(z)S (In (z/z0), .
Define g: H0-+ R + by

g Oo) =  P jm Z0 (z0), z„€ # „ .
Then (47) can be rewritten as

(48) G(z, z0) =  g(z0)mZo(z)S (In (z/z„), .
We are going to show that mZa and kZo do not depend on the choice of z„.

Let z0€ / /0 be fixed and let z£H0C](z()J*) be arbitrary. Let .уг, -v26/* \{ l}  
with s js2£l*, Siz£H0 (/= 1 ,2) and let for the brevity í 0= 1. Then, by our 
assumptions

(I/s^CXI/Sj) *  0, (z0/ / 0)n (z //0) 7Í 0
and

(/0/Sl.)n (z0//o) *  0, ( /0/5,)П(г/Л) ^  0 
for all /,У=0, 1, 2. Therefore the system of intervals

/о =  Td/ sq, /»/si, 70/ s2, z0/J0, z! J 0

satisfies the 2-intersection property. Thus there exists a common element, say x0. 
Then

x0, Sí Xq, s2x0e /0; Jo =  z0/x0, у = z/x0€ / 0,
further хгу0—■S’iZo andxiy=.siz are in # 0. Now applying (18) for the values x0, Xj =  
= j 1x 0 , x2= s 2x0, y0 and using (48), we obtain

(49) E fax q, x0) _  G(s1z0, z0) _  mzoCsJSQnst, Y k J
E ( s2x 0, xn) G (s2z0, z0) ?nZo(s2)S(lns2,

Applying (18) again for the values x0, Xi=.v1x 0, x2= j 2x0, у  we get

(50) E(sxxo,x0) =  G(siz, z) _  mz(s1)5'(lns1, 
£ ( s2x 0 , x 0)  G ( s2 z , z)  mz(s2) «5(Ins2 ,

It follows from (50) and (49) that

>nZ0(s1)S (ln s1, 1/fc j =  ?nzo(s2)^(lns2, /fe70) 
mz(s1)5'(lns1, V%) mz(s2)5(lns2, V%) 

if ii, ^2̂ (/*\{1})П (Я0/г0)П (Я 0/г), s js2£l*. This equation shows that the function

(51) s Ф )  =  7z„,z(s) =
mzo(s)5(lns, l/fczo) 
mz(s)5(lns,
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is constant on the set (/ * \  {1}) П (Я0/z0) П (HJz) (that is in a neighbourhood of 
5= 1). Denote this constant value by q=qZo,z.

Let s be positive and 52£ ( /* \ {1}) П (ff0/z0) C](H0/z). Then in the case kz?±0?±kZQ 
a simple calculation gives

J_ _  S (In s2, j/fcJ _ £ 2(lns, j Q  _  Уkzo coth (/fezo In s)
4 S 2(lns,fic^) 5 (lns2, ^  ^ c o t h I n s )

If s-+1 then the right hand side of this equation tends to 1 therefore q— 1 and we 
have

(52) У kZ0 coth (YkZox) = f k z coth ( fk zx)
if x£(l/2)ln [(/*\{1})П(Я0/г0)П (Я 0/г)]. Differentiating by л:, (52) turns into

(1IK0) sinh2 ( \% 0x) = (l/kz) sinh2 ( fk zx), 
whence we get (even for x=0)

(УУК0) sinh fk~Zax  = (1 l f k z) sinh }'kzx.
Expanding in Maclaurin series we can easily see that kZo=kz. (In the case kzkza= 0 
the proof is similar.) But then, since <7= 1, it follows from (51) that mZo(s)=mz(s) 
in a neighbourhood of 5= 1. Therefore mZo=mz.

Thus we have proved that if z£H0C)(z0J*) then kz =kz and mz =mz, i.e. 
for each fixed z0£H0 there exists a neighbourhood of z0 (namely Я0 П (z0 J  *)) 
where kz and mz do not depend on z. This proves that kz and mz is independent of z 
on tf0, and consequently, (46) holds.

We shall verify (44) only since the proof of (45) is similar.
If х0, х и х2£10, Xi/xjZH*, then (Н01х0)П(Н01х1)П(Н01х2)Г\70 is not empty. 

This means that there exists an element y0£ /0 so that Х;Уо£Я0 0 = 0 , b 2). There
fore (18) can be applied for these values. Thus we obtain

£ (* i, x 0)______ _ _______ E ( x 2, Xq) ^
mix^S^ln (xj/xo), fk )  m(x2)S(ln (x2/x0), fk )

It follows from this equation that the function

(53) x -  E(x, x„)/(m(x)S(ln (x/x„), Ук))

is a positive constant on the set /0П(х0Я*) for each fixed x0£ /0. Denote this 
constant by e(x0). Thus we have defined the function e: /0—R + and, by this defi
nition, (44) is satisfied.

The continuity of e , f  and g is an easy consequence of property E2) of quasi
deviations.

The proof of the sufficiency is a simple calculation therefore we omit it.
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5. Main results

We begin with the following
L em m a . Let k(L R and let m : R + -<-R + be a multiplicative function. Then the 

function

(54) D(x, y) =  Dkm(x, y) = m (x)S (In (x/y), fk )  
is a quasideviation on the interval ]u, R + i f  and only i f
(55) 0 ^  k+n2/(\n (v/u))2.

P ro o f . If кёО  then (55) does not mean any restriction therefore we have to 
show that D is a quasideviation on R + .

Let k > 0. Then

D(x, у) = т(х)((х/у)Ук-(х /у)-У к)/(2 У к).
It is obviuos from this formula that D has both property E l) and property E2) of 
quasideviations. To check E3), let 0< Then

D(x, у) _  m(x) (х')Ук х2Ук—у 2Ук 
D(x\  j )  _  m(x') x Yil (ху У к _ у 2 Ук ’

whence easily follows that y-*D(x, y)/D(x', y) is strictly decreasing on ]x, x'[. 
In the case k = 0 a similar argument shows that D is a quasideviation on R +. 
If 0 then

D(x, y) =  m(x) sin { f—k In (xjy))j\' —k.
Therefore El) is satisfied if and only if

sign sin У— к t =  sign t

for i£]ln u/v, In v/u[. This means that t У—к must be in the interval ]— jt, n[, whence 
we get In v /u ^n /У—к. Rearranging this inequality, we obtain that (55) is a neces
sary condition and it is also sufficient for El) to hold. Property E2) is trivially satisfied. 
To see E3), let Then

D(x, >Q _  m(x) sin (У • к In (x/y))
D (x\ y) ~  m(x') ‘ Sin (fZJc in (x'/y^ '

Derivating with respect to y, we have

d ( D(x, у) Л m(x) У—к sin (V^-kIn(x/x')) 
dy { D(x', у ) )  ~  m(x') у  ' sin2 (У^к  In (x'/y)) ’

since, by property El),
sign (sin (^— к In x/x')) =  sign (x—x') — — 1.

Thus the lemma is proved.
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Now let *1, ...,x„€R + and assume that

(56) 0 <  k + n2j(\n (xjxj))2

for i , j — 1, . . . , n  with X i ^ X j .  We shall denote the set of all such vectors 
x=  (*i> • • • > x„) by Ak. Then there exist 0 < и < °° such that xt<z]u, v[ and (55) 
is satisfied. By the Lemma we know that D=Dk m is a quasideviation on ]w, r[, 
therefore the equation

(57) Z)(x1,y) + ...+Z>(x„,y) =  0

has a unique solution y= y0 between min (x1; x„) and max (хг, ...,x„). We
shall denote this solution y0 by 9lktm(xlt x„).

If k > 0 then multiplying (57) by y^k we have

m (xj) (x(k- x ^ ky2i'k)+ ... + m (xn) (xjf* - x ~ ^ y 2 ik) = 0,
whence

(58) 9t*,m(;ti, xn) =  Jo =  ( 2  M x t)x ík/  2  т ^ х ^ х ^ у 1̂ ^ .
i—1 i= 1

In the case k = 0 we find that
n  n

(59) 9lo,m (*i. —» xn) =  y0 = exp ( 2  m (*.)ln *,-/ 2  m ( ) ) •
i= l 1=1

If 0 then (57) turns into

(60) m (xx) sin (j/— к ln (xi/y))+ ...  +  m (x„) sin { f—k  ln (xjy)) = 0.

Let w=^uv. Then y'ujv <yjw < Уvju and therefore cos (jf—ic ln (y/w))?± 
t̂ O. Dividing (60) by this term and applying the addition formula for the sine 
function, we obtain

m (xx) sin (ln (xj lw)V~k) + ...+ m  (x„) sin (ln ( x j w / - k) =

= tan (In (ylw)V~k) [m (xj) cos (ln (x jw )-^ )  + ... + m (x„) cos (ln (xn/w)^~*)],

whence

(61) 9 t* ,m (xi»x„) = y0 = w exp arctg
2  m(xi) sin (ln (Xilw)y~k)

1 /Y-k

2  rn (x;) cos (ln (Xi/w)!'-*)
i=i

Of course, we can see from equation (60) that the above value y0 does not depend 
on the choice of и and v.

The most important property of the means introduced in formulas (58), (59) 
and (61) is that they are multiplicative, i.e. if x, y, x* y£ A k then

(62) Mk,m(x*y) = Я , т(х)Пк,т(у).
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The proof of this identity is a simple calculation therefore we omit it. ((62) also 
follows from Theorem 3, since the deviations E — F=G =D =D k<m satisfy the func
tional equation (7).)

We remark that if &S0 then the above class of means is equivalent to the class 
Mc<m introduced in Theorem 1. (Namely, MCtm* = SRk m if \c \= 2fk  and m*(x) ■
. xc,a=m(x).) Thus the “new” multiplicative means obtained in this paper are 

the yikim means for negative k. The multiplicativity property of this class of 
means was first discovered by Aczél—Daróczy [4].

Now we can state our main result.
M ain  T heorem. Let M, N  and К  be quasideviation means on the interval I, J 

and H, respectively. Then
(4) K(x*y) =  M(x)N(y)
is satisfied for all n, md N, xdl", yd J m with x* yd H nm i f  and only i f  there exist a 
real constant к and a multiplicative function m: R+ — R + such that
(63) M (x) = Щ,т(х)
for all х= (х1 г xjd lfi, ndN with Xi/xjdH* ( i , j~  1, ..., и),
(64) N(y) = 9tt,„G0
for all y= {yu  ...,yn)dJo, n£N with yJyjdH* (i,j=  1, .... n),

(65) K(z) =  91». „(z) 
for all z= (zu  ..., zn)dH5, ndN.

P roof. First we prove the necessity. Since M, N  and К are quasideviation 
means, hence there are quasideviations E, F and G such that М ~Ш Е, iV=33i5 
and . Then the assumption implies that (6) holds on the domain given in
Theorem 3. Applying Theorems 3, 4 and 8, we can see that there exist к and m such 
that conditions (i), (ii) and (iii) of Theorem 8 are satisfied.

To prove (63) let x= (x1, x n)dlS with xJxjdH*. If min (хг, ..., x„)< 
<Xo<max(x1; ..., xn) then Xi/x0dH* also holds, therefore, by (i), we have

E(Xi,x o) =  e(x0)Dktm(xi, x 0).

This means that the mean value M (x)= fflE(x) is the solution x0 of the equation

П П
2  E(xh x0) =  e(x0) 2  Dk,m(Xi, x 0) =  0

i= l i=l

i.e., (63) is valid.
Equations (64) and (65) can analogously be proved.
To prove the sufficiency, let xdl", ydJm with x * y d H nm. Then it is obvious that 

xtd h  (since XidH/yjCH/J), yjdJ0 (since yjdH/xiCiH/I) and x^jdH ^  (since 
XiyjdU), further x jx j  =  xiy1/xJy 1 dH0/H0=H* and у ^  = х1уг/х1уу€Я0/Я0= 
— H*. Therefore for these x ,y  and z = x * y  we have (63), (64) and (65). But then, 
by equation (62), we get (4) at once.
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The proof is complete.
The most interesting special case of the Main Theorem is when I= J= H =  

=]u, p[ and K = M = N . In this case we obtain the following
Corollary. Let M  be a quasideviation mean on the interval ]u, t? [c R + (O s 

S  u< v^k °°). Then M  is multiplicative on \u, v[ that is
(3) M{x* у ) =  M (x)M (y)
for all xfi\u,v[n, y£\u, v[m, x* y f\u , v[nm, n, m$N i f  and only i f  there exist k£ R 
and a multiplicative function m: R+-*-R+ such that (63) holds i f
(66) x€]max (и, ujv), min {v, v/u)[", n£N 
and i f
(67) л:€]тах (и, и2), min (v, p2)[", h£N.

P roof. Apply the Main Theorem. Let I—J = H —]u,v[ and M —N=K. Now 
/0 =  Jo =  ]м, v[P\]u/v, v/u[ =  ]max (и, u/v), min (v, v/u)[,

H0 = ]u, п[П]и2, t>2[ = ]max (и, и2), min (v, u2)[,
and further

H* -  H JH 0 = ]max (u/v, u2/v, u/v2), min (v/u, vju1, v2/u)[ = 70/ /0 =  JJJ0.
Therefore the domain of equations (63) and (64) is given by (66) and the domain of 
(65) is (67). This proves the Corollary.

In a certain special case the above Corollary turns into a
Characterization  Theorem. Let 0 and assume that either u ^ l ^ v

or u/v—0. Then the function M: (J ]u, v[n^  R can be represented in the form
n=l

M=9lk,m Wlih a suitable k£ R and a multiplicative function m: R+-*-R+ i f  and 
only i f  it satisfies conditions (i)—(iv) o f Theorem 2 and is multiplicative on ]u, v[.

P roof. If M ='Jlt>m then it is a quasideviation mean, therefore conditions
(i)—-(iv) of Theorem 2 are valid. The multiplicativity of M  is obvious.

If M  fulfils conditions (i)—(iv) then it is a quasideviation mean. On the other 
hand, by the Corollary, the multiplicativity of M  implies the existence of к and m 
so that М=У1к'm on the interval ]max(u, ujv), min (v, v/u)[, which is, by our 
assumption, equal to the interval ]u, t>[.
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ON THE SPECTRAL SINGULARITIES 
OF THE TRUNCATED SHIFT

B. NAGY (Budapest)

1. Introduction

The spectral singularities of certain linear operators were first studied by J. 
Schwartz [17], Naimark [13], Ljance [9], [10], B. Pavlov [15], [16], and also by M. 
Krein and Langer [8]. A general notion of the sets of the spectral singularities of a 
closed linear operator in a Banach space has been given by the author in [12]. Deep 
structure theorems, including generalized spectral decompositions, for the truncated 
shift have been proved by Vasyunin [19] (cf. also [14]).

The purpose of this paper is to study the sets of the spectral singularities of the 
truncated shift operators (hence of contractions of class C00 with one-dimensional 
defect spaces, see [18]). In Theorem 1 we establish the connection between S-spectra- 
lity in the sense of [ 1], [11] and a kind of speciality in the sense of [19] for the trunca
ted shift. This will enable us to apply several results of Vasyunin [19] to our problems: 
these will in general be given as propositions. Theorem 2 will extend a result of Foias
[5] and show that the support of the singular continuous part of the representing 
measure of the characteristic function F is contained in the set S(TF) of the spectral 
singularities of the corresponding truncated shift. Theorems 3 and 4 will show that 
there are truncated shifts with arbitrary closed sets on the unit circle as the sets of 
the spectral singularities and with prescribed types of characteristic functions. This 
contrasts with the fact that these operators are all decomposable in the sense of 
Foias (cf. [4]): thus they have good but not excellent spectral decomposition proper
ties.

The results in the last section deal with the set of the spectral singularities in the 
strict sense, i.e. with the set §(TF). Lemma 2 shows that the support of the represent
ing singular measure (of the singular factor) of the characteristic function F is con
tained in §{TF). Proposition 7 gives necessary and sufficient conditions for an opera
tor TF to be S-scalar. Finally, it is shown that even if F is a Blaschke product, the 
sets S(TF) and S(T F) can be equal to and, in another case, can be very far from each 
other.

Summarizing, the results will show that the uniform spectral behavior of this 
class of operators (decomposability) gives place to a large variety when finer con
cepts of spectral decomposition are considered.

2. Preliminaries and notations

Throughout the paper N  will denote the set of the positive integers, C the com
plex plane, D the open unit disc and C the unit circle. If X  is a Hilbert space and U 
is a bounded linear operator in X  (in notation: U£B(X)), the Hilbert space and
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Banach space adjoints of U will be denoted by U* and U', respectively. So U*= 
= JU 'J~*, where J  denotes the canonical isometry of the Banach space dual X' 
onto X. T  will always denote the shift acting in H 2 of the disc as (Tf)(z)=zf(z) 
(z££>). If F is an inner function (cf. [6]) in H 2 with representing measure mF (see 
[14; p. 44]), we denote by F(e) the inner function represented by mFe: here mF(b)= 
= mF(eПb), e and b are Borel sets in C. F(e;z) \yill denote the value of F(e) at 
z£D, and we define

I K  =  Kf =  H2Q F H \  Tf =  PkT\Kf , T% =  T*\KF, K(e) =  KFM,

where | denotes restriction, and PK the orthogonal projection operator of H 2 onto K. 
MMa will stand for the closed linear span of the subspaces M a, and sometimes m(p) 
will stand for m({p}) if m is a measure and {p} is a singleton. For ecC , e* will 
denote the set of the complex conjugates of the elements o f e.

Let L, M  be closed subspaces of a Hilbert space such that I f iM =  {0}. On the 
linear manifold L+ M  the projection P(L, M ) onto L parallel to M  is then determi
ned. This projection is bounded if and only if the manifold L + M  is closed. The sine 
of the angle between L  and M  is defined as in [14; pp. 253—254] by

sin(L, M ) = i n f l ^ M .  =  IP(L, М )\~г

where PM denotes the orthogonal projection of L+M = L + M  (the closure) onto M. 
Applying the notation of the preceding paragraph, we shall write P(e)— P(K(e), 
K(ec)) for (a fixed inner function F and) a Borel set e if and only if the latter projec
tion is bounded (here and in the following ec means C \e).

We shall need from Nagy [12] the following notations and facts. Let A  be a 
Boolean algebra of certain Borel subsets of C with unit C, and let X  be a complex 
Banach space. A Boolean algebra homomorphism E of A onto a Boolean algebra of 
projections in X  such that E(C )= I (the identity) and E  is countably additive on A 
in the strong operator topology of X  is called an Л-spectral measure. The bounded 
operator U in X  is called Л-spectral if there is an Л-spectral measure E such that (er 
will denote the spectrum)

E(a) U =  UE(a), o(U\E(a)X) с  а (абЛ).
In this case E  is said to be an Л-resolution of the identity for U. Let S=Sc«r(t/), 
and let A be one of the following algebras:

Bs = {b Borel set in C : b з  S  or b (T S — 0},
Л(5) =  {b Borel set in С: й(ЬПо-({7))П5' =  0},

where h denotes the boundary (of a subset of o(U)) in the relative topology of u(U). 
Instead of Bs -spectral and Bs -resolution of the identity, we shall simply say S- 
spectral and S-resolution o f the identity, respectively.

It is proved in [12] that an operator U is Л(5)-8рес1га1 if and only if U is Si- 
spectral for every closed neighborhood Sx (in the relative topology of o(U)) of S. 
Further, for any operator U there is a smallest one, S(U), among the sets S=  
= S co (U )  for which U is Л(5)-8рейга1: by definition, S(U) is called the set o f  the 
spectral singularities of the operator U.
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It is proved in [12] that the 5-resolution or the A (S)-resolution of the identity of 
an operator U, if it exists, is unique in its class. Let E  denote the A (S)-resolution of 
the identity for U, and assume that U\E(b)X is a spectral operator of scalar type in 
the sense of Dunford ([3; XV. 4.1]) for every b£A(S) suchthat БП5=0. In this 
case we say that U is .4 (5 /scalar. By [12; Theorem 6], there is a smallest one, S(U), 
among the sets S —S ckt(U) for which U is ^4(S)-scalar: by definition, S(U) is 
called the set o f the spectral singularities in the strict sense for U. If D denotes the 
5-resolution of the identity for an operator V, and V\D{SC)X  is a spectral operator 
of scalar type, we say that V  is S-scalar.

As a standard reference on the truncated shift we shall use the monograph by 
N. K. Nikolskiy [14].

3. On the set 5 (7 /)

L emma 1. Let F be an inner function, let K=KF= H 2Q FH2, and let A be a 
Boolean algebra o f Bor el sets in C such that e£A implies that P(e) exists. Then P 
is a Boolean algebra homomorphism o f A into a Boolean algebra ofprojections in B{K).

P roof. Let e,f£A . Then K(eC\f)=K(e)r\K(f) (see, e.g., [14, pp. 28, 44, 272]) 
and, similarly, Х(есП /)=Х (ес)ПХ(/). Further, K (f) = K(fC\e)V K(fC\ec). Hence 
for every kf £K (f)  there is a sequence {k}e+ knfec} converging to kf  and such that 
k}efK (fF e), k}ec íK (fF ec). Therefore,

P (e) kf  =  lim k?e€ К (fi)  e), P (ec) kf  = lim knfe^K (fC \ ec),
71 71

thus we obtain that (© will denote topological [not necessarily orthogonal] direct 
sum)

K {f) = K {fC \e)® K (fC \ef =  K (f)C \K {e )fK (f)F K (ec).

Putting/ 0 in place of/, we see (cf. [3; VI. 9. 24]) that P(e) and P (f)  commute, thus 
P(e)P(f) is a projection. Its range is K(e)C\K(f)=K(ef]f), whereas its kernel is 
K{ec)\IK (fc)=K(ec\J fc)=K({er\f)c). Hence P(e)P(f)= P(eC\f).

It is clear from the definition that P(ec)= I— P(e), therefore

P(eU f) = I —P(ecC\fc) = I+ (P (e )~ l)P (D  = P (e)P (fc) + P (f)  =

=  P(e) + P (f)-P (e )P (f) .

Thus P is indeed an algebra homomorphism.

T heorem  1. Let K=Kf= H 2QFH2, Tf=PkT\Kf and let S = S a o (T F). 
The following statements are equivalent:

(i) sup |P(e)|
eiBs

(ii) TF is S*-spectral,
(iii) T'F is S-spectral.
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Further, i f  (i) holds, then the S*-resolution o f the identity R for Tp is given by
(1) R(e) = P(e*) (e€Bst), 
and the S-resolution o f the identity E ' for T'F is defined by

(2) E \e )  = J ~ 1P (e)J (e£Bs).

P r o o f . Since the equivalence of (ii) and (iii) can be proved in a straightforward 
manner, we shall show here that (i) and (ii) are equivalent. Note that Tp=T*\KF.

Assume first that (i) holds. By Lemma 1, P is then a (uniformly bounded) 
Boolean algebra homomorphism of Bs into a Boolean algebra of projections in B{K), 
which obviously satisfies P{C)K—K{C)=K, i.e. P{C)—I. The Boolean algebra of 
projections {P(e): e£Bs} is er-complete in the sense of [3; XVII. 3.1]. In fact, it is 
easily seen that

sup {P(en): n£N } = P (Ue„), inf {P(e„): n£N} = Р(Г\е„),
P (ö e n)K  = K (Ue„) =  V {K(en): n£N}, Р(Пеп)К  = П{Х(е„): ndN}.

By [3; XVIII. 3.4], the Bs -spectral measure P is (strongly) countably additive. For 
any e£Bs we have K= P(e)Kf> P(ec)K, and the operator Tp leaves each subspace 
P{e)K=K{e) invariant. Hence Tp commutes with each P(e). By the Livsic—-Möller 
theorem (cf. [14; p. 81]),

e(Tp\P(e)K) =  o(TF(e)T  = o(F(e))*

thus TF is <S*-spectral with resolution of the identity R defined by R(e*)= P(e) 
{e4B s,).

Conversely, assume that Tp is S*-spectral with a certain resolution of the iden
tity R, and that Q is defined on Bs by Q{e)~R{e*). Let e£Bs , e—e. Then we have

(3) Q(e)K = R(e*)K = {k€K: ^ ( k )  с  e*} Ш Ш

where oT* denotes the local spectrum of the element (cf., e.g., [11]) with respect to the 
operator Tp. This can be proved for the case c d  S as in Nagy [11; Lemma 4]. For 
the case e f lS = 0  we note that Tp is decomposable in the sense of Foias (cf. [14; 
p. 111]), hence has the single-valued extension property (this is also seen from the 
fact that the interior of o(Tp) is void). Thus the proof of [11; Lemma 4] can be easily 
modified to yield (3) in this case.

Since (r(Tp\K(e))cze*, we have P{e)K=K(e)c.Q(e)K, and the last set is, by
(3) and [2; Proposition 1.3.8], a spectral maximal subspace for Tp. By [14; p. Ill], 
we see that

Q(e)K = K(J) where f*  = o(Tp\Q{e)K) c: e*.

Hence F (f)  divides F(e), therefore
(4) Q (e) К -  K(J) = K(J) П K(e) -  Q (е)ХП P(e)K =  P(e)K.

The a-algebra Bs is the u-algebra of all Borel sets in the locally compact metric 
space X  whose points are the points of C \.S  plus the point S  (with the induced
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metric). Since X  is separable, every compact subset of X  is a Gs set. The cr-algebra Bs 
is clearly generated by the class of these compact sets, whose complements are, conse
quently, F„ sets. L et/be  the union of an increasing sequence {e„} of closed sets in Bs . 
Since the Boolean algebra of projections {Q(e)\ e£Bs} is, by [3; XVII. 3.10], 
(7-complete, we have

(5) Q(J)K = V 0 ( 0 *  =  V P{en)K = K( U en) = P(f)K.
n  =  1 n  =  1 /1 =  1

From (4) and (5), for every compact e in Bs we have Q(e)= P(e). For every 
sequence {b„}cBs, the cr-completeness of {Q(e): e f ß s} implies

Q( и  ьп)к = V Q(b„)K, Q( n  bn)K  = n  Q(bn)K.
и = 1  п =  1 л = 1  /1=1

By definition and by [14; p. 28], the same holds if we replace Q everywhere by P. 
If, in addition, Q(b„)—P(b„) for every и, then this implies Q(b)=P(b) for both
b=  U bn and b= П b„. Hence P{e)=Q{e) for every e£Bs . Since a Bs*- 

/1 =  1 /1 =  1
resolution of the identity is uniformly bounded, we obtain (i).

Now (2) follows in this case immediately.
Proposition 1. With the notations o f Theorem 1, the operator TF is S*-spectral 

i f  and only i f  Tp is S-spectral. I f  in this case, R0 denotes the S-resolution o f  the identity 
for TF, then R0(e) = P(e)*; hence R0{e)K—KQK{ec) for every e in Bs .

Proof. Since K = K F is reflexive, [3; XVI. 4.6] yields the statement of the first 
sentence (cf. [3; IV. 10.1]). Assume now that R0 is the S-resolution of the identity for 
TF, and edBs . Then, by the proof of [3; XVI. 4.6] and by Theorem 1, P(e)~ 
= R0(e)*. On the other hand, R0(e)*K= KQ R0(ec)K. Hence Rn(ec)K=KQP(e)K=  
= KQ K(e) for every e in Bs .

P roposition 2. With the notations o f Theorem 1, the following are equivalent:
(i) TF is S*-spectral;

(ii) inf sin (X(e), K(ec)) >  0;

(iü) inf in f(|F (e; z)\ + \F(ec\ z)\) >  0.e65snSc z€ D

P r o o f . By Theorem 1, (i) is equivalent to

sup \P(e)\ <
e£B s O Sc

The rest follows from the definition of the sine and from Vasyunin’s theorem on the 
angles (cf. [14; pp. 274 and 277]).

Proposition 3. With the notations o f Theorem 1, assume that there are single-
tons p icz Sc (/=1,2, ...) such that, setting p0~ S, we have F= ]J  F(pn). Let

/1=0
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fn=F(pn), Fn=F/f„— J ] fk ■ The operator T*F is S*-spectral i f  and only i f
k=0 k^n

(6) inf inf ( |/n(z)|-H.F„(z)i) >  0.71 = 0, 1, ... Ztx7
P roof. By Proposition 2, TF is S'*-spectral if and only if (iii) holds. By the main 

result of Vasyunin [19; p. 21], under our conditions this is equivalent to (6).
R emark. The structure of the spectrum of any truncated shift TF shows that 

the set of the spectral singularities S(T F) is contained in the unit circle C. In the 
following we shall obtain more information about the set S(TF).

Let F be an inner function with canonical factorization F=BZ  where В is a 
Blaschke product and Z  is a singular function. Let mz be the representing singular 
measure (on the unit circle C) of Z  with canonical decomposition mz=m a+m  into 
purely atomic and continuous parts. The following theorem is, in a sense, an exten
sion of a result of Foias [5; p. 1193] (cf. also [19; pp. 45—46]).

T heorem 2. Let F and m be as above, K=Kf= H 2q FH2, Tf — PkT\Kf , let 
M  denote the support o f  m (supp m), and S(TF) the set o f  the spectral singularities o f 
the operator TF. Then

M  d  S(TF) = S(T*)*.
P roof. Assume that M \S ( T F) is nonvoid. Then there is a closed neighborhood 

S  of S(TF) such that TF is S-spectral and M \ S  is nonvoid (cf. Section 2). By Propo
sitions 1 and 2, this implies

inf inf(|.F(e; z)| + |F(ec; z) |) > 0.
e i B s n S c z £ D V 4

Since F=BZaZ c where Z a and Z c are the singular inner functions represented by 
the measures ma and m, respectively, and every inner function is bounded (in modulus) 
in D by 1, we obtain

(7) eeBsV ? (k s ,i^ (|Zc(e; z)l+ |Z c(C V ; z)|) > 0 -
On the other hand, M \ S 0 implies that m (C \S )> 0. Since m is continuous, 

there are pairwise disjoint subintervals dn of C \S ’ with in (t/„) > 0 for every n— 
=  1, 2, .... Since m is singular with respect to the (normalized) Lebesgue measure 
2 on C, there are intervals dnczdn such that m(dn) ^ l ( d n)n. The continuity of m 
implies that each dn can be partitioned into two intervals d\ and dl such that m (df) =
= m(d%) = — m(dn). The arguments and estimations in [19; pp. 45—46] (cf. also
[14; pp. 299—300]) then yield that

inf inf (|ZC№ ; z)\ + |Zc(d;j; z)|) =  0.n z£D
Since the left-hand side of (7) is not greater than

inf inf (|Zc(di; z)\ +\Zc(C \d l;  z) |),
n z£D
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and
|Zc(C \d J ; z)I =  exp j -  /  ^ _ ^ |2 ™(dv)|  ^  |Zc(d®; z)|

c\<
we obtain that the left-hand side of (7) is zero: a contradiction. Thus M czS{TF).

Proposition 4. Let F be a singular inner function with a purely atomic represent
ing measure m, K=KF= 7 /2© FH2, TF— PKT\KF, and let S=  S c a (T F).

(i) I f
sup m(jp)m(r)

К  I ■<
pcs* r€c\{p> IP- n'

then TF is S-spectral.
(ii) I f  TF is S-spectral, then

m(p)m(r)
p £ S c \ Р ~ А г
r C S

m (p)m (r)sup
P . r i S '  \P ~r\p*r

Proof. By Propositions 1 and 3, TF is S-spectral if and only if (6) holds. By the 
theorem on the angles (cf. [14; p. 227]), this is equivalent to

( 8) inf sin(A({p}), A '0 ) c)) >  0; sin (K(S), K (SC)) >  0.p£Sc
By the estimation of the angles (cf. [14; pp. 304—305]), for any Borel set e a S cf]C 
we have
(9) 51 п (В Д .А (^ )В Я р { - 2 / / " У ; У }.

If the condition of (i) holds then, by (9), we obtain (8), so TF is S-spectral. On the 
other hand, if TF is S-spectral then, by Propositions 1 and 3,

0 < pW*i?i>(№}; 2) I + № ) C; z)I) ^  ;aU">*i"£(lF({/7>; 2)1+ И М ; #
By the theorem on the angles, then

0 <  inf inf sin (A({p}), A({r})).pesci-€{p}c V Vl VI I / /

By Yasyunin [19; Lemma 4.6, p. 27], this implies

sup sup
pfES'i-eip}“

m (p) m (r) 
I P ~r?

Hence the assertion of (ii) follows.

CO.

Theorem 3. Let S be any closed subset o f the unit circle C. There is a singular 
inner function F with purely atomic representing measure m such that the set S(TF) 
o f the spectral singularities o f TF is S.

Proof. Let S be void. The example of [14; pp. 320—321] yields a spectral ope
rator TF (even with o(TF)=C). Therefore we shall assume that S^0, and choose
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a countable dense subset S0 of S. The set S„ is the disjoint union of the set I  of all 
isolated and of the set A0 of all nonisolated points of S0. For each sk£ S0 choose a 
sequence {^: n£N} of distinct points of C with the following properties: sk~  
= sk, d(íj, sk)< n~212 (d is the Euclidean distance in C), further

(i) if A0, then for every n£N,
(ii) if sk£l, then d(sk , sk)<-^- d (S \ {sk], sk).
Now define (with the notation m(p) again for /«({/>})) 

m(sk) = (kri)~2, m(sk) — 2  "»(s').
j , r

Then in(sk)^ (kn )~ 2, and m (as defined by these masses at these points) is a purely 
atomic singular finite measure:

2  m (sn) = 2  "Ksr) <  ” •
{<> J>

Let F denote the singular inner function represented by m. Further define the sets 
Sk (k,r£N) by

Sk _  n -  r) if s*€/,
r 10 otherwise.

Then we have (cf. [14; p. 81])

<y(Tf) =  a(F)  — supp m =  A0\J U  5{.
k = 1

Define the sets Z r (r£N) by

z , ^ 0u u s f u n
*=1k*r

They are closed subsets of <r(TF), and a(TF) \ ( Z r[J Sp is a finite set for each pair of 
positive integers q, r. Hence TF is (ZrU Sp-spectral (take the Riesz-projections), and 
we clearly have

П (ZrUS'q) = A0[ J I = S 0 = S.
4 ,r= l

By Nagy [12; Theorem 5] (cf. Section 2), TF is A (S)-spectral.
Assume now that TF is y4(g)-spectral, where Q is a proper closed subset of S. 

For every closed neighborhood Q1 of Q the operator TF is then Qx -spectral (cf. 
Section 2). We choose such a Qx with the additional property that there is an 
skd SI)\ Q 1. By Proposition 4 and by the construction above, there is an n0> 0  
such that

sup
n=-n„

m(sk)m(sk) 
|sfc —s*l2 sup

л>л0 к2 k 2n2

a contradiction. Hence S(TF)—S.

Acta  Mathematica Hungarica 51, 1988



ON THE SPECTRAL SING U LA RITIES O F THE TR U N C A T ED  SHIFT 233

Let к : D — NiJ {0} be a map such that k(t>)(l — |t>|)< Let
»6 D

b0(z) =  z, bv(z) =  (veD\{0}), В =  В (к, •) =  П Ьк™v y i—vz) VÍD

be the corresponding Blaschke product, and let Bv=Bb~kM. The spectrum of TB 
is (cf. [14; p. 81])

a{TB) =  cr(B) =  B-XiO}).

P roposition  5. Let S=Scza(TB). The operator TB is S-spectral i f  and only i f  
there is 0 such that for every zdD

\B(z)\ = p  min {| f f  bv(z)kWI; inf |b„(z)*(“>|}.
ves »€sc

P roof. Proposition 3 and Vasyunin [19; pp. 20—21].
In what follows ks is the product of к  and of the characteristic function of S, 

and B(S; •) is the Blaschke product determined by ks : B (S; •)=B(ks ; •)).

P roposition  6. Let S = S a o (T B).
(i) I f  TB is S-spectral, then

inf \Bv(v)\ >  0,t>€SC
GO If

inf |Ь,(и)|*М‘М >  0, inf (|S(S; z)| +  |2?(Se; z)\) >  0.zt и

inf IB»!*«”) >  0,
v e s c

n  m s ; z ) | ^ (z) >  0,
z€ D

then the operator TB is S-spectral.
Proof, (i) Assume TB is S-spectral. By Proposition 2 and by [14; p. 314], this 

implies
(10) 0 <  mf sin (K({v}\ K({v}c)) = mf |Я,(»)|.

From (10) it follows that

e>ip/sc sin(/:(M), *({«})) > o.
V9̂U

Making use of the fact that the function log2 x  decreases on the interval
(0, 1), Corollary 1 in [14; p. 312] implies that

 ̂inf c\bv(u)\Hv)kiu) >  0.
v?*u

The last assertion is contained in Proposition 2.
(ii) If the conditions hold, then [14; p. 304] shows that

inf sin (K(e), K(ec)) >  0

where e runs over S and any {u}, vd Sc. By the theorem on the angles ([14; p. 277]) 
and by Proposition 3, this implies that TB is S-spectral.
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Theorem 4. Let S —S c C . There is a Blaschke product В such that the set 
S(TB) o f the spectral singularities o f the operator TB is S.

Proof. If  5=0, then В can be e.g. any finite Blaschke product. Now let 5 ^ 0 . 
There is a countable dense subset S0 (with elements sk) of S. Let

Pkn = (kn)~2, vkn = sk( 1 - р кл) (к =  1, 2, n =  2, 3, ...).

Then lim i k„=sk (along the radius), and (1 — |rk„|)=2 Ры< °°- Therefore the
n k,n k,n

Blaschke product B — JJ bVkn converges uniformly on compacts of D. The structure
k,n

of (t(7’b) = ct(B) shows that if  Sk is a closed neighborhood (in C) of S, then TB 
is Si-spectral. By [12; Theorem 5], TB is therefore yl(S (-spectral.

Assume now that TB is A (Q )-spectral where Q is a proper closed subset of S. 
Then there is a closed neighborhood Q1 of Q such that TB is Qk -spectral, and 
sk(zS0\ Q 1 for some kfN . By Proposition 6(i), we have then inf \b,k (vky„+1)\>0n^n0 n
for some n0€ N.

On the other hand, from the definition of the vkn’s we obtain

,, / 4 , \ V h , - V k ,n + i \  \ P k n ~ P k , n + i \____ __ k 2( 2 n + l )
\ \ - v knvk'„ + 1\ |1 - ( 1 - a J ( 1 - a .b+1)| k \ n + \ f  +  k 2 n 2 - \  ’

a contradiction. Therefore S(T’B)=S.

4. On the set S(TF)

Lemma 2. Let F be an inner function with singular factor Z  and with representing 
singular measure m=mz. Assume that S= Scza(TF) and that TF is S-scalar. Then
(11) suppm cS.

Proof. The support of the continuous part of m is contained in S, by Theorem 2. 
Thus we shall prove (11) for the case when m is purely atomic. Assume that, on the 
contrary, there is a z£supp m П 5СПС. Since S c is open, we may and will assume 
that z, in addition, satisfies m({z})>0. This implies that the singular function 
F({z}, •) defined by

F({z), w) = exp m ({z})(

is not identically constant, so F'H2^F({z}c)H 2 (cf. [14; p. 35]).
Let E  denote the 5-resolution of the identity for TF. By assumption, TF\E(SC)KF 

is scalar. Hence (cf. [3; XV. 8. 3]) E{{z})Kf =  (0), for z is not in the point spectrum 
of TF. On the other hand, by Proposition 1, we have (cf. [14; p. 104])

£({z})Xf =  XFe X f ({z}‘) = F({z}c)H 2Q FH2 A  {0},

a contradiction.
Corollary. Let F and m be as above. Then supp m<zS(TF).
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For the following lemma we do not claim novelty: its assertion is usually attri
buted to Kacnelson [7]. However, for lack of an explicit statement and proof, we 
show how it can be proved by using results contained in [14].

Lemma 3 . The operator TF is spectral o f scalar type in the sense o f Dunford (i.e. 
9-scalar) i f  and only i f  the inner function F is a Blaschke product with simple zeros:

(12) F =  B =  f f  bkf v\  k ( v ) ^ l ,
v£D

furthermore Carleson’s following condition holds:

(13) in f{ |R » |:  i>€<t(7»O D }> 0.

P roof. If (12) and (13) hold then, by [14; pp. 173—175], the family Y = {y u: 
v£DC)o(TF)} defined by

yv(z) =  (1 -  - v z ) - 1 (zeD)

is a Riesz basis in the space KB= H 2Q BH 2. By [14; pp. 176—178], TF—TB is 
then similar to a normal operator, hence is scalar as stated.

Conversely, assume that TF is spectral of scalar type. By Lemma 2, F is then a 
Blaschke product B= J] b$v\  Thus [14; p. 106] shows that TF is a complete

V Í D

operator. Since TF=TB is scalar, the kernel of TB- v  is, according to [3; XV. 8.2], 
equal to the kernel of (TB—v)n for every positive integer n. By [14; pp. 104—105], 
i((»)gl for v£D, i.e. (12) holds. Since TB is similar to a normal operator, [14; 
pp. 176—178] yield that the family У is a Riesz basis for the space KB. A theorem of 
Shapiro and Shields (cf. [14; p. 175]) shows that then (13) holds.

P ro po sitio n  7. Let F be an inner function, and let S= Sczo(TF). The operator 
TF is S-scalar i f  and only i f  the inner function F(SC) is a Blaschke product В with sim
ple zeros, Carleson’s condition (13) holds for the operator TB,and the projection P(S) 
(cf. Section 2) exists.

P roof. If TF is S-scalar (hence S-spectral) with S-resolution of the identity E, 
then (cf. Proposition 1 and Theorem 1)

E(e) = P(e)*, E(e)KF =  KFQKF(̂  (е£В5).

By [14; p. 104], we have

E(e)Kp = KFQKF{e ej =  F(ec)H 2Q FH2.

Since F=F(ec)F{e), [14; p. 105] shows that TF\E(e)KF is unitarily equivalent to 
TF(e)= Tp/p^cy Let e= Sc. By assumption, TF\E(SC)KF is spectral of scalar type, 
hence so is Pf(sc) ■ By Lemma 3, the statements about the inner function F(SC) 
are valid. Finally, P(S)~E(S)*  clearly exists.

The assumptions of the converse imply, by Lemma 3, that TF(SC) is spectral of 
scalar type. The projection P(S) commutes with TF (cf. the proof of Theorem 1), 
hence the projection E(S)=  P(S)* commutes with TF. As in the preceding para
graph, we see that TF\E{e)KF is unitarily equivalent to for e= S  or e —Sc

Acta Mathematica Hungarica 51, 1988



236 В. N A G Y

(where E (SC) is defined as I —E(S)). Hence
<t(Tr\E{S)KF) = o(TF(S)) = o(F{S)) c  5

(cf. [14; p. 81]), and the operator TF\E(SC)KF is spectral of scalar type. Since
TF = Tf\E(Sc)Kf®Tf\E(S)Kf ,

the operator TF is S-scalar (cf. [1; p. 377]).
R em a rk . Let F=B ■ Z  be the canonical factorization of F, and let the Blaschke 

product В have only simple zeros. Since Carleson’s condition (13) locally holds for 
TB (in a neighborhood of any z  in (j(TB)C\D), we obtain that the set of the spectral 
singularities in the strict sense is (for any such TF) a subset of C. Further, Theorem 4 
shows that for any S —SczC  there is a Blaschke product В such that S(TB)=  
= S(TB)= S.

Our final result will show that these two sets of the spectral singularities can, 
in general, be very different from each other.

T heorem  5 . Let S= S(zC . There is a Blaschke product В such that S(TB)=Q, 
£(Гв)=(7(Гв), a(TB)f)C =  S.

Proof. Let S0 be a countable dense subset of S. Then S0 contains all the isolated 
points of S, and any s£ S0 is isolated in S„ if and only if in S. Let {i„} be a sequence 
containing each nonisolated point of S0 exactly once and each isolated point of S0 
times as elements. Further let

=  sn( l - 2 “n), B =  ПЬ1„.П = 1

The set V={v„} satisfies the Newman condition (cf. [14; p. 203]):

SUP u € F \ { z } ,  M ^  |z|, z£VI S  2-1 <  1.
Since

|ä„(f)| =  I П  bz(v)2\,
z t V \ { v )

[14; p. 206] shows that Newman’s condition implies Carleson’s:

inf { |Д » |:  v£V} > 0.

Since in the Blaschke product В we have k(vn)—2 for every n, [19; p. 28] shows that 
the family {/sC({f}): v£V} is a Riesz basis for KB. Hence (cf. [19; pp. 20—21]) 
S(TB)=0. Since В has no simple zeros, by Proposition 7 we have S(TB)—a(TB). 
Finally, we have clearly

(т(Тв)Г)С =  FPlC =  S.
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A GRÜNWALD—MARCINKIEWICZ TYPE THEOREM 
FOR LAGRANGE INTERPOLATION BY ENTIRE 

FUNCTIONS OF EXPONENTIAL TYPE

F. PINTÉR and P. VÉRTESI (Budapest)

1. Introduction. Definitions. Preliminary results

1.1. The classical Grünwald—Marcinkiewicz result can be stated as follows. 
T heorem 1.1. There exists a continuous on [—1, 1] funtion f  such that

(1.1) Em ILn(f, T, x)| =  °° for any x € [ - 1, 1].

Here, as usual, 2 k — 1 
2n k =  1, 2, ..., n, ndN,1 is the Chebyshev

matrix, L„ is the Lagrange interpolatory polynomial of degree S n - 1  based on n-th 
row of T. For further (classical and recent) results and references, see Vértesi [1], 
where the corresponding trigonometric and complex cases can be found, too.

1.2. On the other hand, problems of Lagrange interpolation by entire functions 
of exponential type approximating functions /£UCB(R) (see Definition 1.4) have 
received little attention.

Our main goal is here to prove a theorem analogous to Theorem 1.1 using the 
function class B„. For this aim let us consider some definitions (cf. [2], [3] and [4]).

D efinition  1.2. Let If for the entire function g£E

(1.2) |g(z)| =  0 (е<"+«>И), z e e

for any  fixed e > 0  then  g is called an  entire function o f exponential type a.
D efinition  1.3. g£Ba iff g£E„ a n d  g is bounded on the real line.

D efinition  1.4. The function / :  R —R is from the function class UCB(R) 
iff /  is uniformly continuous and bounded.

Г7С 71 ^
—r—, T -

(1.3) Xk a : = c t a + — , fce z ,

then X := {xka}, k£ Z, cr>0, is an equidistant interpolatory matrix (or system of 
nodes) on R. The corresponding fundamental functions o f Lagrange interpolation can

1 N , R, C and Z stand for the set of the natural numbers, real numbers, complex numbers and 
integers, respectively.
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be defined as follows:

(1.4) 8J I , 2):=

sin <7 (z Xk<fi 1
<r(z-xka) 

sin ff(z — oca)

sin<7(z — xka), z€C, if к 0,

ff (z~  a„)

kn

z€C, if к — 0.

One can see that for <т>0, A:,У6 Z, gk„(xJe)=őkJ and gL (O = 0;
moreover they are the only functions in Ea having these properties ([4; 4.3.1 and 
4.3.11]). Further, using a remark of the second author (cf. [3; 2.2] and (3.41)), let

0-5) L e(J,X ,z):=  j?  f(x ka)gka(z), z€C
k= — <*>

whenever /<JUCB(R). It is easy to see that La( f  xka)= f{xka), k£Z  and 
(cf. [4; 4.3.11]). L „ (f X ) is the Lagrange interpolatorу  operator; the expression

(1.6) W ,x ) : =  2  !&.(*, x)|, x €R

is the o-th Lebesgue function.
1.3. In their paper [2], R. Gervais, Q. I. Rahman and G. Schmeisser obtained a 

Faber-type theorem for a process similar to (1.5) with a„=0. Using essentially 
their argument one can prove that for any fixed interval [a, b]z>[—2n, 2л] and equi
distant matrix X, there exists a function /£UCB(R) for which

sup max \La(f, X, x)| =  CO,
<T>0 eS*=S6

On the other hand, if /€UCB(R) then La( f  X, x) uniformly tends to f  on any 
fixed interval [a,b] whenever lim tu^ /, log = 0. Here X  is an equidistant 
matrix;

ío(J ,ő):= max \f(x + t)- f(x ) \
X , X  +  t £  R

M rss
is the usual modulus of continuity of f  (cf. [2; Theorem 1] and [3; Theorem 2.2]).

2. The result

2.1. Let us consider a special equidistant matrix X, namely the one with
71

a.a = —— . Then we get the system of nodes 2(7

(2.1) C:= {cto:= —2Z 1 я, k£Z, a >  o}

(cf. (1.3)), corresponding to T. We prove
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T heorem  2.1. One can find a function / 6UCB(R) such that

(2.2) sup \La(/, C, x)| =
<r>0

for arbitrary x€ R \{ 0}.
On the other hand, for any /€UCB(R)

(2.3) La(f,C ,0 )  - / ( 0 )  when a -
2.2. Using the same argument, the above theorem can be proved for some other 

equidistant matrices X  (cf. 3.7). On the other hand, if X  is an arbitrary equidistant 
matrix, proving the analogous statement is an open question.

3. Proof

3.1. The main ideas are analogous to those used by G. Grünwald and J. Marcin- 
kiewicz in the classical case properly applied to our situation.

First let er> 0 be fixed and

z} , Cff:= k€z}, <r >  0.

Then if N>  0 is a fixed integer, we get that

(3.1) S,UC(TUC2ffU...UC2Wff =

3 .2 . L emma 3.1. For any fixed г, <т>0 and <jo£UCB(R) one can find an entire 
function R o f exponential type such that

(3.2)
and

if  ke Z

(3.3) \R (x)—cp(x)\ S  £, i f  x€R.
P roof. Using the’method of [2; Part 4] it is easy to get that the operator

(3.4) H.(cp,z) =  He(<P,X,zy.= Ík = V <J\Z-Xka) )
z€C, <r > 0 <p£UCB(R),

of Hermite—Fejér type has the following properties:
(i) Ha(cp, z)£B2a,

(ii) Ha((p, xka) = q>(xka) if к6Z,
(in) H^(<p,xka)=0  if k e Z,
(iv) sup \(p(x)-H,((p,x) 1 — 0 as a —► °°.

- o o < x < e o
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Le., with a proper 0

*)-<?(*)! á  у  if *€R.
Now let

(3.5) R (z ):= -H a(Hm'(<p)-<P,z)+Hma(<P,z) if z£C. 
Then, if a„=0 at (3.4),

(3.6) я [ ! ~ )  = - н . [ н тЛч>), ^ )+ я .(«> ,-“г ) + я- .( ‘л T ~ ) =

further one can write
(3.7) |-R(x)-<p(x)l =  \Ha(Hma((p)-<p, x)\ + \Hma(q>, x)-<f>(x)\ S

S  у + y  =  e if x£R,
as it was stated.

3.3. Next we prove our main
Lemma 3 .2 . For an arbitrary integer p=2 one can find a function R o f exponential 

type with
(3.8) |Л(дг)| S  2 when x<ER
further i f  x£ , 7t/?j, /Леи /Tiere ex/síi a z — r(x )^p  for which
(3.9) |Lt(R, C, x)\ >  p.

Proof. Let m:=2p exp (4np3), say, be fixed. Then we define a function <p as
follows. If <T>0, let

(3.10) H t -J := ° for ke z .

Now we define q> on C„, C2a, ..., C2amp+lff i.e. on S221,1 p+ (see
If l = /=mp +  1 and i, k£Z , then

0 if 2fc —1 in

(3.11) { K> ?r 1 n < m
n 2*~'о ПУ if 2fc —1 in( - 1)* n s  — , m

0 if 2/c —1 in

(3.12) ( 2k —\ \ 22ic n <  — , m
n 22io K) ~ if 2fc —1 in( - 1)* 22<u m

Acta Mathematica Hungarica 51,1988



A G R Ü N W A LD —M ARCIN K IEW ICZ TYPE TH EO REM 243

Finally let <p be linear between the neighbouring nodes. Then, obviously 
UCB(R) i.e., by Lemma 3.1, with e— 1 and 22mp+2a (instead of a) we get the 

corresponding function R. Using (3.3), \R{x)\^2 for R.
Let jd  Z be that index for which

(3.13) j  — 1 „ j
---------К  á  X  <  —  n .m m

By jce|—, Jtpj and m>p, l^ jS m p + 1. If we choose the index r such that

^ - 1,2̂ -» о UL
m Cr, 2W - * я >

then by (3.13)

(3.14) /71— ^ C r>2v->„. 
m

nNow let r1(x):=22J~2(T, using (1.4), with a„= — —  and the definition of R,

we get 

(3.15) №*(*» С, x)\ = I J R(ckTl)gk4(C, x)| =

cos(r1x ) ( - l ) k( * + -^ - j
=  | 2 ( - i ) kgfetl(C x )| = Z ( - D ‘ k n (x -c ktl)

| c o s ( t xx ) |  ( x + - ^ - ) 1
fc-r Hckn- x )

To estimate Alt which actually equals 2  lg*t.(C> x)| (compare (1.6)), we
k — r

estimate the sum as follows:

(3.16) 1 2
l

k tг k(ckz, - x )  k

1
- Д ( 2 к - 1  j - 1  1,

iTwТ - Я - - -----7t fcl 2V~l <r m )

jn

— • ^2

Choose <7=p. By cr_1>2w-«ff< —  we get r s
Г 22J~2oj 31»Ь̂+гН' If a:=

1
г2-'-2/»

S r > 0.
and tben let ?^ := -,F log(~“x ~ ) for
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By (3.14) ar+b>0, i.e. this definition has meaning, moreover g'(x)- 
which means that g' is strictly decreasing on [r, °°). So

■̂2 ~  2
1 1 1_______  ^  j_ 7 __ dx

(ak+b)kn ~  n (ak+b)k ~  л m{,, x(ax+ b )

"  T  tel-  =  T F 108 H H  -  108 “

By definition

(3.17) log a =  — log22j’- 2—log/?.

2 2J~2ni 1
Clearly г * ё ------— + —, from wherem 2

(3.18) logr* ё  log22-,_2+log/?+log./—logm.

Further

' 3

which means

(3.19) log(<

Finally we remark that

(3-2°) ~ b = 2 i7% + 3

Now by (3.17)—(3.20) we get

1 1 22J-2 nj
A‘ =  ~Zb(1°8 « + lo g r* - lo 8 (.r>+b)) =  2^ -lo g  2Ü = r ~ ■ 

By from where 2w_if>+m-<2y - ® /(l+-^L_Y

m

1

1 J - l  1
IV - 'p m "" 22̂ -2/7

( 1 , n
122j~2p  1 m J-

-1
---  S  1+/7tl S  2/>.

p m 
i.e. by jp^~m—2p exp (4лр3)

(3.21) ■d-я — —— log 2/?2.271/1

Now using (3.15), (3.16), (3.21) and
too)
(3.22)

x+ 2tj • i = -  we get (using

|£Г1(Л, C, x)| >  2/>|cos Tijcj.
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Similarly, with t2 (Jc)= (jc) we get
(3.23) \LX,(R, C, x)| >  2p |cos тгх\.

Now using the estimation

(3.24) m ax(|cosS |,|cos29 |)& y for any 3£R

|which can be proved as follows: if |c o s $ |S y , we are ready; if it is not the 

case, (3.24) comes from |cos 29| =  |1 — 2 cos2 3| >1 — 2 • we get that 

max (|cos r1jc|, |cos z2x \)^-^-, i.e. by (3.22) and (3.23) we get (3.9).

3.4, Similarly to Lemma 3.2, we can prove
L em m a 3.3. For an arbitrary integer p ^ 2  one can find a function R o f  exponen

tial type with
(3.25) 1Ж*)| ^  2 when *6R;

further, i f  jc£d(p):=J— np, — ~ ] u [ y ,  лр |, then there exists a t  = t(x)= p  for 
which

(3.26) |Lt(R, С, x)\ >  P-
P r o o f . The essential difference is the definition of cp. Instead of (3.10)—(3.12), 

on v let

(3.27)

(3.28)

(3.29)

if

if

if

if

if

fc£Z,

|2fc —1| in
22i~1o n <  m 
\2k—1| in
22,-1<7 П ~  m

|2fc — 11 in
22io n < ~ ^ ' 

\2k—1| in
22,<r 71

We omit the further details.
3.5. By [4; 4.8(5)] we state 
L em m a 3.4. I f  f£ B a (<хё0) then

(3.30) sup |/'(x)| sS a sup |/(x)|.
x£R x€R
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Another inequality estimates the Lebesgue function (see [2; Lemma 5] and [3; 
1.3]).

Lemma 3.5. With a proper constant c0> 0  we have
(3.31) Ki.X,x) =S c0log(((T + 2)([x |+ 2))

for any x£ R and o O .
3.6. Now the construction of F(x) can be as follows. If p ^ 2 , consider the 

exponential function Rp of type t(p) ensured by Lemma 3.3. Then if x£A(p), 
we have

(3.32) \LZ(RP, C, x)| >  p

with a proper т= z(x ,p)Sp , where

(3.33) p s  z(x ,p )  S  22mp+1p N(p).

Let us construct a sequence { ^ Jc N  such that

(3.34) 2 — P\ <  Pi <  Pa ■*= •••>
(3.35) p k + 1  >  max ( t ( P i ) ,  t ( p 2) , ..., t(pk)) for any /c6N,

(3.36) P k+ i^P l 'f  fe€N,

(3.37) Pk+i >  log2 N(pk) if ke  N.
Now let

(3.38) F(x):=  2  Rp; ~  •*=i \p k

By (3.34) and (3.36) F is continuous and bounded on R. To get that F is uni
formly continuous, we use the inequality |F(x)—F(_v)|s|F(x)—F„(x)| + |Fn(x)—

- ^ п(т)1 + 1^л(т)-^Ы 1 and the uniform continuity of Fn(x):= 2  RPk(x)j\'p f
k = 1

(see Lemma 3.4). In this way we get the relation F€UCB(R).
Now let jc€R\{0}. Then, with a proper n£N, xdA(pn). We write

(3.39) F(x) = S fx )  +

where

(3.40)
n~ 1 R (x)

Si(x):= 2  5 ^ - ,  
VPk

RpS x)
YPn

F^O*:), x€R,

S2(x):= 2  *€R.
*—+1 VPk

Here Sx(x) is an entire function of exponential type, its type is ^max (t(p,), 
t(p2), . . . , t(pn- i ) )< p n̂ 'c(x,pn)= :rn, Sx is bounded on R, i.e. S ^ B tn.

Using the representation

(3.41) G(x) = L'(G, X, x) +  - n-g-(f  °  G '( 0  if G€Ba,
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(see [4; 4.3 (13)]), we get

(3.42) L J S i ,  C>*) = s i W — ^  (a + ^ - )  S{ ( ,
n __

from where by Kx:= 2^IVPk  and Lemma 3.4
k = 1

(3.43) ILtn(St , C, x)\ 7£ K1+^r K1xH =  2Kx.
~n

oo
Further, if K2:= 2  -̂/УРк , by Lemma 3.5 and

k= n+ 1

K2^ - = L ^ (  2 + - J L .  + -
Урп+1 I FA+i

(see (3.36)) we obtain
У РпЛ

-+ ...
2 + Кг 
УРп + 1

(3.44) |L J S „  C, JÓI == Я2 Atn(C, x) ^  K2ca log ((т„+2)(|х| +2)) =§

s e 2 + щ
Ур,+1

Here, by (3.33), \x\ránPn, (3.34) and (3.37)

T s s
V Ka +i ÍPn +1 '

where this Я3 does not depend on Jt and n.
To estimate the middle term of (3.39), we use (3.32)

(3.45)
Урп

i.e., by (3.43)—(3.45) we get

(3.46) \LZn( f  C, JOI ^  У К - 2 Кг-К ,

which gives (2.2) when we replace n by n + 1, и+ 2, e.t.c.
To verify (2.3), let /£UCB(R). If a < j > 0, by the properties of

4(7
Ha(f  X, z) (see 3.2) we can write

1/(0)—L2ff(/, C, 0)| ^  |/(0 )- # „ ( / ,  0)| +  \H J f  0)—L2a(f, C, 0)| ^  

^ e + \L 2a(H '(ß ,C ,0 ) -L 2a( f  C,0)| =  e + \L2a(Ha ( / ) - / ,  C,0)| ^  

^  е(1+Я2<г(С, 0)),
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if we apply (3.41) for Ha and the relation f  - ^ - j  =  0. Here 

(3.47) U C ,0 )=  2 lfc(C.g)l =  72|J  n ,
k =  — со Я  fcj«£0 |/C(2/C 1 ) |  Я

whence, being e>0 arbitrarily small, we get the relation (2.3).
3.7. If for an equidistant matrix X  we can prove a relation corresponding to

(3.24), in many cases the previous argument (more exactly a very similar one) can be 
repeated, i.e. Theorem 2.1 holds true for that X, too. Here is a simple example.

An equidistant matrix X  is of Chebyshev type iff for any <r=»0 the nodes {x*„}, 
&€N, and fa j,2aj, j£ N, denoted by о and X, respectively, are situated as follows:
- ° ------X X------о ------- X------------X ------ о -------X --------- X -------о —

U TI TI
4(T 2<r 4<т

ЯHere we obviously have the relation \aa—а2в\=-т—. The corresponding fac-
4(7

tors in gka and gk'2(T are sin (<r(x— aff)—kn)=  ±sin o (x— a„) and sin (2<r(x— 
— а.га) - к п ) — ±sin 2a^x — ±cos 2a{x— <xa), respectively (cf. (1.4), (3.15)

and (3.23)). On the other hand, max (|sin a|, |cos 2 a |)^ - i, by cos 2az— 1 — 2 sin2 a. 
We omit the further details.
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GROUP ALGEBRAS WITH EVERY PROPER 
QUOTIENT FINITE DIMENSIONAL

J. B. SRIVASTAVA and S. K. SHAH (New Delhi)

Throughout the paper K[G] will denote the group algebra of the group G over 
the field K. Our object is to study the following problem.

P roblem. W hat are  all infinite g roups G such th a t K[G]/I is finite dim ensional 
over К  fo r every nonzero  ideal I  o f  K[G]1

A group G will be called a solution to the problem if G is infinite and K[G]/1 
is finite dimensional for every nonzero ideal I of K[G],

The problem in this generality appears to be difficult. However, if the group G 
posseses a nontrivial normal Abelian subgroup or the FC-subgroup A (G) of G is non
trivial, we have obtained a complete solution to the problem. It, then, follows that 
an infinite nilpotent group is a solution to the problem if and only if it is infinite 
cyclic and an infinite solvable non-nilpotent group is a solution to the problem if and 
only if it is infinite dihedral. Further, it has been shown that the families of alge
braically closed groups and of universal groups are solutions to the problem. These 
groups are infinite simple and their FC-subgroup is trivial. Another example of an 
infinite simple group is given which is not a solution to the problem. Some more 
elementary facts are also obtained.

1. Preliminaries. For a subgroup Я  of G, м(Я) will denote the right ideal of the 
group algebra K[G] generated by the subset {l—h\h£H}. If Я  is a normal sub
group of G, then co(H) is a two-sided ideal of K[G] and K[G/H]=K[G]/a>(H). Thus 
K[G]/co(G)^K. For details, see Connell ([2], Proposition 1). We remark that in the 
terminology of [3], co(H)=a>(K[H])K[G] and m(G)=co(Ä'[G]) is the augmentation 
ideal.

For an arbitrary group G, the FC-subgroup A (G) of G consists of all those ele
ments of G which have only a finite number of conjugates in G. Thus A (G)= 
=  {x € G | |G : C g(x)| <°°}; for more details see ([3], Lemma 4.1.6, p. 117). By ([2], 
Theorem 8; or [3], Theorem 4.2.10, p. 129), the group algebra K[G] is prime if and 
only if G has no non-identity finite normal subgroup and this happens if and only if 
A (G) is torsion-free Abelian. Finally, if K[G] is a prime group algebra and Я  is a nor
mal subgroup of finite index in G, then 1Г)К[Н]А0 for every nonzero ideal I  of 
K[G\ This last result is a consequence of a beautiful interesection theorem due to 
Zalesskii (see [3], Corollary 9.1.9, p. 359).

2. The main result. Let Я  be a normal subgroup of G, written as #<iG . An 
ideal L  of K[H] is G-invariant if g~xL g ^ L  for every gdG, in fact g~xLg—L  for 
every g£G. If L is a G-invariant ideal of K[H], then I=LK[G]=K[G]L is an ideal 
of K[G\. We start with a simple lemma.

l*
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L emma 1. Let H<xG with and let L  be a G-invariant ideal o f
K[H] with I—LK[G]. Then K[G]jI is finite dimensional over К i f  and only i f  
K[H]/L is finite dimensional over K.

P roof. Let \G:H\ = n, and let 1, g2, ..., g„} be a transversal o f  H  in G,
then K[G] is a free A[7/]-module having {g i= l,g2, ...,£„} as a free Щ/ZJ-basis. 
We have

K[G\ = K[H]®K[H]g2® ...®K[H]gn 
and

1 = LK[G] = L® Lg2® ...® L gn.
Now it is clear that

K[G]/I -  K[H]/L+K[H]g2/Lg2 + ... +  K[H]g„/Lgn
where the right hand side is an external direct-sum of Я-spaces. Thus K[G]/1 is 
finite dimensional over К if and only if K[H]/L is finite dimensional.

L emma 2. Let K[G] be a prime group ring, and let H^sG with |G : Я |<  со. 
Then K[H] is prime and every nonzero ideal o f K[H\ contains a nonzero G-invariant 
ideal o f K[H].

P roof. It is easy to see that A(H )zA(G ). Now A (G) is torsion-free Abelian 
as K[G] is prime, hence A (H) is torsion-free Abelian and K[H] is prime.

Now let L be a non-zero ideal of K[H], Also let |G: H \= n  and {gi= 1, g2, ..., gnj 
a transversal of Я  in G. Define L0— П g~xLg, then it is easy to see that L0=

gZG
n  П

= n  gT1 A?;- Further since K[H] is prime, the finite product JJ g f xLgt of non-
i = l i=l

zero ideals of K[H] is non-zero and clearly it is contained in L0. Thus L0 is a non
zero G-invariant ideal of K[H] contained in L.

Lemma 3. Let K[G] be a prime group ring, and let Н-^з G with [G: Я |<  °°. I f  
K[H]/L is finite dimensional over К for every nonzero ideal L o f K[H], then K[G]jI 
.s also finite dimensional over К for every nonzero ideal I  o f  K[G}.

P roof. Let /  be any nonzero ideal of K[G], and let L=If]K[H], Since i^[G] 
is prime and H ^ G  with G\H a finite group, so 0 (see [3] , Corollary 9.1.9, 
p. 359). Also L  is G-invariant and it is given that K[H]/L is finite dimensional. By 
Lemma 1, K[G]/J is finite dimensional where J=LK[G] — (IC\K[H])K[G]^I. This 
gives that K[G]/I is finite dimensional, as desired.

Now we proceed towards the proof of our main result of this section. The case 
A (G) ̂  1 is completely settled.

T heorem 4. Let К be a field and let G be an infinite group such that either A (G) ̂  1 
or G possesses a nontrivial normal Abelian subgroup. Then K[G]/I is finite dimensional 
over the field К for every nonzero ideal I  o f K[G] i f  and only i f  either G is infinite cyclic 
or G is infinite dihedral.

P roof. We divide the proof into four steps. First three steps give the proof one 
way and the fourth step gives the proof of the converse.

First suppose that K[G]/I is finite dimensional for every nonzero ideal I  of 
K[G\.
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Step I. If H<iG, HA  1, then \G:H\<°° and Я  is infinite. Thus K[G] is prime, 
and K[H]/L is finite dimensional for every nonzero ideal L of K[H].

Since H<3G, H A  1, so co(H) is a nonzero ideal of K[G] and therefore K[G]I 
co(H) is finite dimensional. But K[G]/co(H)^K[G/H], hence G/H is a finite group 
and |G: Я |< °°. Also G is infinite, so Я  is infinite. Thus G does not contain any 
nontrivial finite normal subgroup. This gives that K[G] is prime and A(G) is tor
sion-free Abelian. To see the last part, let L be a nonzero ideal of K[H]. By Lemma 
2 there exists a nonzero G-invariant ideal L0 of K[H] with L0s  L. By the given hypo
thesis AT[G]// is finite dimensional, where I= L 0K[G], By Lemma 1, K[H]/L0 is 
finite dimensional. But L0^ L ,  so K[H]/L is finite dimensional.

Step II. A (G) is infinite cyclic and Cg(A (G))—A (G).
Suppose G possesses a nontrivial normal Abelian subgroup N. By Step I 

|G:iV|<°° and so A sd(G ), since Abelian subgroups of finite index are contained 
in A(G). Thus A(G)A 1. Again by Step I |G :d(G )|<°°, A(G) is torsion-free 
Abelian, and K[A (G)\/L is finite dimensional for every nonzero ideal L of K[A (G)]. 
Now Step I applied to K[A(G)] and the fact that A{G) is nontrivial torsion-free 
Abelian imply that every nontrivial subgroup of A (G) is of finite index. By a result 
due to Fedorov ([4], 15.1.20) d(G) is infinite cyclic. Let T(G)=(x>.

Clearly, d (G )^C G(d(G)), because A (G) is Abelian. On the other hand 
if zdCa(A(G)), then T(G)s Cg(z) and |G : CG(z)| <  Thus z£A(G) and 
CG(d(G))=d(G).

Step III. G={x) is infinite cyclic or G=(x, y \y2= l, y~1xy= x~ 1) is infinite 
dihedral.

If G=A(G), then by Step II G—(x) is infinite cyclic. So assume that G a  
AA(G). We claim that |G:d(G)| =  2. Now A(G)=(x) is infinite cyclic, so it has 
only one nontrivial automorphism sending x to x -1. Thus for any g$Ca(A (G))= 
— A(G), g~1xg= x~1. Obviously then for any pair of elements gx, g2 not in A (G), 
we have g ^ x g ^ x ^ ^ g ^ x g i -  Hence glg f 1eCG(x)=CG(A(G))=A(G) and 
^ (G)gi — Á (G)g2 ■ We get |G:d(G)| =  2. Let y£G  suchthat y ^A  (G)=(x), then 
y~ 1xy= x~ 1, and y 2£Z(G)í)(x)— 1, where Z(G) denotes the centre of G. Thus we 
have G = {x,y\y2= l, y~1xy= x~ 1), as desired.

Step IV. If G is infinite cyclic or infinite dihedral, then K[G]/I is finite dimen' 
sional for every nonzero ideal I  of K[G].

If G is infinite cyclic, then the conclusion is well known as well as easy to prove.
Next let G = (x ,y \y2—l, y~ 1xy= x~ 1) be an infinite dihedral group. Take 

Я = (х), then Я  is infinite cyclic, \G:H\ = 2, and A(G)=H. Thus X[G] is prime. 
Also, from above K[H]/L is finite dimensional for every nonzero ideal L  of K[H], By 
Lemma 3, then, K[G]/I is finite dimensional for every nonzero ideal 7 of K[G],

An immediate consequence of this theorem is the following corollary.
Corollary 5. An infinite nilpotent group is a solution to the problem i f  and only 

i f  it is infinite cyclic. Also an infinite solvable non-nilpotent group is a solution to the 
problem i f  and only i f  it is infinite dihedral.

P roof. It is enough to observe that if G is nilpotent then Z(G)?í 1 and if G is 
solvable then it possesses a nontrivial normal Abelian subgroup. Rest follows from 
the proof of Step III above.
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3. Examples. In what follows, for definitions and other details, we refer to 
([1], [3], Chapt. 9, Section 4). If G is an algebraically closed group or a universal 
group then it has been proved in [1], (also see [3], Corollaries 9.4.6 and 9.4.10), that 
the augmentation ideal co(G)=a>(K[G]) is the unique non-zero proper ideal of 
jST[G]. Also K[G]/a> (G)= K. Therefore the families of algebraically closed groups and 
universal groups are solutions to the problem. If G is an algebraically closed or uni
versal group, then G is infinite simple and A(G)= 1. By a result due to Scott ([3], 
Theorem 9.4.4) every group G can be embedded in an algebraically closed group, and 
further by a similar result due to P. Hall [(3], Theorem 9.4.8) every locally finite 
group G can be embedded in a universal group. All this shows that there is a rich 
supply of infinite simple groups G with A(G)— 1, which are also solutions to the 
problem.

In Theorem 4 we observed that if a group G is a solution to the problem, then 
every nontrivial normal subgroup of G is of finite index in G. The converse of this 
is not true. The following example is really interesting in many ways.

Let X  be an infinite set, and let Sx denote the group of all restricted permutations 
on X  moving only finitely many points of X. Then the alternating subgroup Ax is 
the only nontrivial normal subgroup of Sx and [S*: Ax\ = 2. Also Ax is an infinite 
simple group. We claim that both Sx  and Ax are not solutions to the problem. 
Clearly Ä̂ [SX] is a prime group ring.

Let M ={ 2  ax x\ax£_K, x£X, ax= 0 except for finitely many x) be the per-
mutation module of ATjS1*], where Sx acts on the right by permuting the basis X. 
Let / —AnnK[Sx](M); we claim that У is a nonzero ideal of and K[SX]/J
is not finite dimensional over K.

First observe that if х 1г x2, x3, x4 are four distinct elements of X  and a— 
= (x1, x 2), Q — (x3, x4) are two disjoint transpositions in Sx , then (1 — cr)(l — q )  

is a nonzero element of -K[Sx] and it is easy to verify that x ( l  — er)(l — q)=0  for every 
x£X. This shows that (1 — er)(1 — g) annihilates M, therefore, it belongs to J  and 
J fO , as claimed. Further K[SX]/J is infinite dimensional over K, as the transposi
tions (1, i), i= 2,3, ... are clearly independent m od/. Also by our Lemma 3, 
K[AX]/L cannot be finite dimensional for every nonzero ideal L of K[AX]. Thus Ax 
is infinite simple, but is not a solution to the problem.

I would like to thank the referee for his careful reading of the manuscript, and 
for his helpful comments and suggestions.
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ESTIMATE FOR THE DIFFERENCE OF THE FIRST 
DERIVATIVES OF PARTIAL SUMS ARISING 

BY NON-SELFADJOINT 
STURM—LIOUVILLE OPERATORS

N. H. LOI (Budapest)

In this paper we prove an exact estimate for the difference of the first derivatives 
of the partial sums arising by non-selfadjoint Sturm—Liouville operators. Our 
result extends to that of [3] for the case when the eigenvalues may be arbitrary com
plex numbers. The present proof is based on an efficient method due to V. A. Il’in
[6], [7].

1. Formulation of the main result

Let G=(a, b) be a finite interval on the real line. We consider the non-selfad
joint operators

Lu:= — u"+q(x)u(x), Lu:= -u"+ q(x)u(x),
where

(1) q(x)dLp(G), q(x)eLi>(G); p,ß€( 1, ~).

Denote {uk} and {űk} the complete orthogonal systems from the eigenfunctions 
of the corresponding operators; further let {A*} and {Xk} be the eigenvalues ).k, 
Xk£C.

Let f  (x) be an absolutely continuous function on the closed interval [a, b]; 
further let p be an arbitrary non-negative number. Consider the partial sums

<гД/> * ):=  2  ( f  Щ)ик(х), &„(f, x):= 2  ( f  щ)йк(х).
|RefAk|«=/i íR e / lJ c í t

The aim of this paper is to prove the following result:

Theorem. Suppose К is an arbitrary compact subset o f G, and let the potentials 
q(x), q(x) fulfill the condition (1). For any f£W k (G) the estimates

K ( f ,  x ) - K ( f  x)\ S  C (K ) \f \wl<m

holds uniformly in x on the compact K. The constant С (K) depends only on K.

R emark 1. Our estimate is exact in the order, i.e. we cannot change the constant 
C{K) to o(l).
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2. Preliminary results

In this section we recall some well-known results which are necessary for our 
proof:

(2)

(3 )

(cf. [2]).

(4 )

(5 )

(cf. [1]).
(6) CaИnk| luk) exp {|lm fÄ k\R}\\ + |lm VX|]1/s- 1/41«Jl .(K_r) ^  C4 ||nt ||L,(A:)

where l á ^ S í S “ , K ^rciK c:G and Ä:=dist (K_R, c)A')=-^- mes К. К can 
coincide with G (cf. [4]).

Given any compact interval K:=[c, d]aG , there exists an JR>0 such that 
K r : = [ c - R ,  d+R]czG and

(7) sup 2 _  (K!U“(K«)chIm
/*=-<> U-lRefAk||s i

(cf. [2]).
In what follows we shall need the estimate

(В) I /*  uk(y) dy\ S  C6 (q ixK L ’ iG), p >  1; yt , y^G ).

This follows directly from the definition of the eigenfunctions.
We shall systematically use the following inequalities:

(9) I sin z| S  2\z\ ch Im z, z€ C,
(10) |s in z |s c h lm z  z€ C.

In the above estimates the constants Cx, C2, ..., C5 do not depend on the eigen
value Ak.

3. Estimation of the spectral function

Let К  be an arbitrary compact subset of G and fix a number R0 such that 
-^-dist (K, dG); further suppose R0^  R==2R0. Denote SRo the average 

operator introduced by V. A. Il’in [5]: 2 л
SRo[ f] := 4 -  f ° R R )d R .

Rл0
Acta Mathematica Hungarica 51, 1988

2 ? . chvf-1— / sin pt cos Qt-----------dt
71 *  t

j  sin pt sin A ( t- \x -£ \)  dt
n t A

^  CX(R) 

s  C2(R)

ch vR
2+ |/ i - le l | ’ 

ch Im AR 
U + W)3'4 ’

(R  >  0; p, q, v£R; A£C)

— Q (1 +  |lm iÄk\YlP\uk\ L4G) (1 ^  p 

||w*1l“(G) ^  C2(l +  [l/Afc|)]I Wfc||z.~(G)



NON-SELFADJOINT STU RM —LIOUVILLE OPERATORS 255

Fixing ji>0 and x£K  arbitrarily, let us introduce the function W .C-+R by

l l ü y f c É  if „ - „ a  s,
W ( x ,y ,p ) : = n  y - x

.0 if \y—x |> R .
Denote 0(x, y, p) the spectral function of the operator, i.e.

0(x, y, p) := 2  uk(x)uk(y).
lRefAfc|«:/i

The purpose of this section is to prove the following 
Proposition. Suppose q(x)dLp(G), p>  1. Then the estimate

( 11) /  ~к~ [5д01Т(x, у, p) -  0(x, y, p)\ dy U M(K)

is uniform in x on the compact К and in y l , >’2€[a, b]. The constant M (K) depends 
only on the compact К  and the potential q (x).

For the proof the following lemmas are necessary. For brevity we denote by pk 
an arbitrary square root of Xk and put Qk Re pk, vk := Im pk.

Lemma 1. Given any compact KczG, there exists a constant C3(R0) such that 
for all k£ N, p> 0, and R0̂ R ^ 2 R 0

2 /* . chv*/—1SRo— J sm ptcos Qkt ----- ------ dt
C3(R0)ch 4 k2R0

1 + |/* -Ы |2

Proof. For the sake of simplicity, setting Qk :—q, vk:=v in case p ^Q k, we can
write

„ 2 f  . eh V* í — 1 ,SR — / smptcos Qkt ----- ------ dt =0 TZ J t

г cos (p+ e)t cos(p — Q)t "j ch V / — 1 |R

L Р + в p - e  J t lo
+

+ J_ ? f cos(p+Q)t [ c o sQ -g )r j f chvf-1  V J  
' TZ J  L P + Q p — Q Jv t ) J

rcos(>+e).R  ̂ cos(p-g)R ']1 c h v R -1]L+
l p+Q p -Q  \ R Jr

+S,Ro
П  Г sin (p + e)t , sin (p o)t 1 ( ch vt— 1 V|R 
1 л i (/i+e)2 (p - д )2 J l  t ) lo

1 r \s in (p + Q )t sin0 i - e ) t l  f c h v i- lV ' 1
~nj  r & + i ) “  + Тр-вУ " J l ~  J \ ~ ^ о ( Л ) + ^ 0(Л).
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Неге
S' < 7 v =  S' í __^ cosQj+g)-*? cos(fi— g)iR1 ch vR—l 1
RoK ° ' M  л l fi + Q + n - Q  J R J

1 1rsin(/i + e)i? sin (fl-Q )R l1 ch vR — 11
7LÄo 1L (fi + Qf (p — q)2 J R 1

2R„
+

+ —  n -nRo r{ L

obtain

( 12)

Considering that the function ^

\SRo(Ji)\

sin (ß + g)R sin(ju —g)J?] f'chvJ?—I)"
Gu+e)2 +  (m - q)2

chvR — 1)'

1 ( chvJ?—П JT>J l- - R- - J d K

R ■j does not change sign, hence we

12
nR ^\n-\e\\t

■ (ch v2R0 — 1).

Now we estimate SRo(J2). Considering that the function 
not change sign, too, hence we have

I ch v?— 1 j " does

(13) . . .  2 1 If ch vi—1 V |R| I Í f e h v í - n '  I
ш  "  7 F W I ( — — ) 1 1 + 1 / 1— ;— J d '\ -

c 2(R0)
l

F B f * ' ’“ "
From (13) we have 

(14) |5Ко(Л)1 ch2v2^„.
M e l |2

On the other hand, we have obviously

(15) „ 2 ? ■SR — / sm fit cos Qkt n “
ch vk t — 1 dt

nR0
(ch v2i?0 — 1).

Lemma 1 follows from (12), (14) and (15).
Lemma 2. Given any compact KczG, there exists a constant C4 (Rt)) such that 

for all , p>0, and R0= R ^2 R 0

„ 2i p . . sh v,£ t ,SRo—  J sin fit sin Qkt — -— dt C4(i?0)ch2 vk2R0
i + l ^ - ы !2

P roof. This proof can be made in a completely similar way applied for that of 

Lemma 1, taking into account that the functions [—j —j > ( ~ 7~ )  do not change 
sign with 0.
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Lemma 3. Given any compact KczG, there exists a constant C5(R0) such that for 
all A:€N, p>-0, R0S R ^ 2 R 0

1 r sin pt cos pk( t—r)
- In J

dt ^ . ™ { ^ + T T F ^ r }
(0 <  <5 <  1),

1 ? sin fit cos pk(t — r)
- Jn J

dt _ . Г 1 ch vkR  1
-  5( o)b > - l e kF ^ + 1 + 1м - 1е * Р

( 0 < < 5 <  l , | / í - l e * | | s i ) .  
P ro o f . Consider the integral

1 r sin pt cos pk(t — r)
/ = - /it JГ

1 r sin ptcos q(t—r) 1

dt =

= - fn J t
R

d t-\—  f  sin/hcos a(t— r)it J
ch v(t — r) — 1 d t -

i r . . . . shv(i — r) , ,  _ _-----/ sm p tsm Q(t — r)-------------- ai =  /1+ / 2+ /3.
n J t

The following estimates are true:

(16)

(1 7 )  |A |  =

1Л1 =  -Л
? sin pt cos g(t—r)

J t (0 <  <5 <  1),

? sin pt COS Q(jt — r)
f dt D*

’l^ -le l <5/2 (0<«5< 1, |/ i - |g | |  s i )

(cf. [6]).
Now we estimate the quantities /2 and I3. Considering that

chv(í — r)— 1 shv(i —(t — r) ^ch v(t — r) — 1 у  ^shv(i— r) j"

do not change sign, we obtain easily
1

(18) I ch ?(*-_h i j  =

=  ||[ch v(t -  r) -  l]rR| +  /  t [ ChV<̂  -— -]  di| ^  ^  ch vR,

( 19)

1

I/.I á  -71 

1

? sh v(t — r)
l dt\

S  — sh v (t —r) |f  H—
r ( sh v(f — r)) / I 2 

J 4 -----)— ~) dt\ -  —chv-K-
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In case p ̂  q by the method applied in Lemma 1 we have

(20)

(21)

2 1 , ch vR ,
71 p - leli R 1

R ( 
/ (

ch v(/—r) — 1

R

dt 1 ch vR
л |/í-lel| R

I/si
2 1 [ |sh v(7? —r)| I sh v(i — r) ) j  )
« м а л — r — + I A — 7—

_  4 1 |sh v(R — r)\
л |^— lelj R

Lemma 3 follows from the relations (16)—(21).
L emma 4. Given any compact KczG, there exists a constant C6(K) such that 

for q(x)£D-(G)

\p—\ekW
P roof. Using (5) and (7) we get

2  K l*  ^  C fK )p \  ^ 1 .
- l e J I s i  RJ

\ ß - \ e k \ \ s i
u'Ai ^  c i  2  (1 +  Ы ) 21ЫЦ-(К >

1 я) |n-lekl|si L R>

^  Cp2 2  ( М к “(*я> Ch vkR f  s  CUp* = c 6(K )p\ p m i .
Iw-liklNi

Lemma 5. Given any compact KczG, there exists a constant C7(K) such that 
for 0< Л ё 2Д0; q(x)£Lp(G), p>  1; у 1гу ъе[а, b]

2
U *-le fcl N i

Í2
J uk(y )dychvkR

P

P roof. U sing (6) an d  (8) we have fo r q(x)£Lp(G), p>  1; y i ,y 2€[a, b] 

Ъ
/  uk(y)dychvkR

У1
c ,  ^ : < f  ch vkR ш C,C  ' “‘ ' ‘7 ? ^ ' *  ch

1 + l^tl 1 + \Pk\

Therefore using (7) we get easily

2  I f u k(y)dycbVkR\2 ^  C IC * U ~  = 
1д-1ек1|й1 Vi P P P=  1-

P roof of the P roposition. We determine the Fourier coefficients of the func
tion W (x, y, p) according to the system {и*}:

x+ R

<«*>00 = J  w*O0 -J „ TÍ
1 sin/i(y—x)

y - x d y =  /  -  П-ßt [uk (x+ 1) +  uk (x -t) \d t.J n t
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Applying the Titchmarsch formula [12]: 

uk(x + t) + uk(x~ t)  = 2uk(x)cos nkt+  /  q (0 “k(0 Sm ^  — —  dg
X -, ^

we obtain for the Fourier coefficients of W  the expansions

, . 2 ,• sin u.t cos ni i , , . z  r(22) (uk,JV) = и*(*) — f -------- ------—  dt — uk(x) — I
n  •  t  Л £

2 Г sin cos di +

, . 2 ? . chvfcí— 1 . . . 2i f .  sliver+ «*(*) — / sm nt cos gkt ------------dt — uk(x) —- / sin fit sin -------- cu +
л o'' t ^ 0 f

+ / % « > И.СО f  siD' " sin' ,‘(' - |jt- {|>d(d{.
x - R  |* - « |

Similarly, we introduce the function

co(x:, у, /r) :=

We obtain 

(23)

1 sin juR if |x-
7£ R

.0 if |x

, . , . 2 sin uR sin ukR(uk, со) = uk(x)----------------Í2 — +7Г .R/l*

+
sin jU-R 

i?

x +  R

/  g(0 « t (0  /
r* sin fik(t |x £|)

lx-41 пцк dt d{.

It is well-known (cf. [2]) that 

(24) 

where

2 r sin ut cos nkt , . ,  . . .
-  / ---- — f— — dt = ö(n, fo ),
7Г /  t

<5 Ob l&l) :=

1 if

у  if А» =  Ы ,
o if

Let

(25)
rM c m . 2 Г Sin lit cos f t  t 2 sin /iR sin 10*1 R , A1 vPL /m

--------7--------*  =  - ------- ^ ------ + — W * ) >10*1
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where

: = “ £ ■ /  (^7 ^ )  sin \ek\tdt.
On the other hand we have

(26) 2 sin fiR sin nkR  
n Rnk

2 sin fiR sin 
n R\ek\ +h(R,nk,n),

where

h(R,Hk,n)'-=
sin piR sin QkR (ch vkR — 1) ,
------------- w . ---------------+

+  i
sin nR cos gkR  sh vkR — vk sin piR sin gkR 

Rßk

From (22)—(26) in case |é>*|> 1 we have

(27) (uk, W ) — (uk,co)= uk(x ) ŐQi, Ifo|) — (лг) • (R) +

. . 2  ?  . chvt i - l  , . . 2 i r  ■ ■ m i  vk I ,+ uk(x) — J sm[itcosQkt ----- p------d t - u k(x)—  J sm ^sm  — -— dt +sh vkt

+  I  «({)«,({)
- 1 ,4  ntл

x + R

/
x - R

x + R
smnR y * q(Q Uk(Q  /  sm ^ 0  \x £1) d t  d £ - Uk( x ) h (R, / i ) .

*  , Л  ............. i , 4

Using (2), (3), (7), (9), (10) and the trivial inequalities 

|A^,CR)| S  (Vet, V /4

|sin nR sin gkR (ch vt jR—1)| S  ch vkR,

|sin fiR cos gkR sh vkR\ á  chvt Ä, 

|v* sin sin ^  C3(i?) ch vkR
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one can prove easily that the following series are convergent:

2
led- 1

2k=1

K^ R
. 4 z г . ch vt — 1 ,UÁ X) — / sav [it cos Qkt -----------dt

Л  '  t

2*=1

k=1 
x+ R

Uk(x) —  f  S in  /it S in  Qkt 
Л •

sh vkt dt

i  /
x - R l * - { |

sin [It sin [Xk(t — |x — £]) 
Л1цк d td i

2k=1

x + R

/  | x - g|) «ft#'*
:-R |*-{|

2 ” l«*(*)M^, Л,,и)|2.
leidéi

Multiplying (27) by ык(у), summing up for all N, applying the average opera
tor to both sides (taking into account that any series from the corresponding series 
on the right hand side of (27) still are convergent in the metrics of the space L2(G)) 
and integrating in у  from y x to y 2 (a ^ y 1̂ y 2=b) we have the following relation:

(28) /  [S*0 IF(x, y ,n ) -Q  (x, у, ц)] dy = j  SRo со (x, у, ц) dy +
Ух

+ y  2  /  uk[y)dyuk( x ) - ^  2  J  М у) dyuk(x)SR | Sm^ SmИкR } -
Z ek= ß y\  «oeiík lei,' I R[ik >

-  2  j  uk(j)dyuk(x)SR 7|j I(R) — 2  J  M y)dyu k(x )-2T SRoKrek\(K)~
lefcl - i  £  löki

- j s  J  uk(y)dyuk(x)SRo j - |  f  sin [it cos Qkt c h  Vk-1.- l .

- 2  /  uk(y)dyuk(x)SR 0{-^- f  sin [it sin Qkt ShJ k‘ rf/j+

+ 2  f * M y ) d y S Ro J  d td t .
J x - R  i * - afc = l .

со У* _________ c * . .  #  X +  Ä *

-2 /  uk(y)dySRo — J q(0u k( 0  J 
‘- 1*  R M r l*-«|

s in ^ (M * -£ l )
пИк

dt dl; —

-  2  S  ик(УМу uk(x)SRo{h(R, [ik,(i)}.
led- 1 У1
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Remark 2. In the special case vk=0, i.e. gk=Qk, in (28) the sixth, seventh and 
tenth terms vanish and we have (42) in [3] in case of the eigenvalues being non-nega
tive numbers.

Denote g(x) (h (x)) the left (right) hand side of (28). Our aim is to prove that the 
derivatives g'(x), h'(x) exist and are bounded. With the above notations the following 
relation is true:

(29) g'(x)=  j  -J^-[SRoW (x ,y ,g )-9 (x ,y ,g )]d y .

Denote by ht{x) (i= 1, 2, ..., 10) the /,h member on the right hand side of (28). 
It is easy to see that on the compact К the derivatives h\{x) (/— 1, 2, 4) exist. The 
existence of the derivative h'5(x) can be proved similarly by repeating word for 
word the analogous proof applied in [3] for the proof of (45).

Here we shall prove that the derivatives h[{x) (i—3,6, ..., 10) exist and are 
bounded. One can assume that цШ\.

Consider the function

M : = 2  гn  o s i e j s i  J* l  -K/ífc J

Using Lemmas 4, 5 and (9) we have

(30) =  4  2  1 /  uk(y)dy\ K( * ) l k 0{ }Я osie^isi1,’ 1 I 1 KHk >

2  I /* * ÍÖ Ö d y c h vk2i?0|2}1/2 { 2  W (x )l2}1/2 si C£/2(K)C?2(K)
71 ,ß os|ek|si

Hence the derivative h'3(x) exists and

' sin gR sin gkR \
R^k

2 b ___  f <
(31) h3(x) = — 2  j  «k(y)äyu'k(x)SRa\-

n 0S|ik|S l^  l
The proof of the existence of the derivatives h'6(x) and h'7(x) can be proved simi

larly. Using Lemmas 1, 2 and (5)—(8) we get
с  Уг ______ _ 2  R

(32) K(x) = Д  /  и* O') dyuk(x)SRo— j  sin/г/cos Qkt2 r . ch vkt — 1 ,
--------dt

and
oo Уг___  2 i K

(33) K (x )=  2  f  uk(y) dy u'k(x)SR —  /  sin gt sin Qkt
П  0

sh vkt dt.

Now consider the function
x+R

hg(x) = 2  j  uk(y)dySRo J q(£)uk(£) f
= ! c ■*_» |x-4|

sin gt sin gk(t — |x—£|) 
ntgk dt dt;.
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We show that on the compact К  the following relation is true:

(34)

J  sin fit COS flk(t — JC+O 
- Í

K(x)= 2  j ‘ uk(y)dySRo\ - ±  f q ( O u k(S) I
k = 1 y, 1 П x - R  x - i

dt d£ +

x  + R P sin fit COS flk(t + x — О
+ i f  ? ({)«,({) f

4 - x

where

„ “  P  7-. , „ f 1 /•*,„. г sin /It COS flk(jt — X + Q , . J
Ssl := Д  /  м * 0 ')^5 Яо| - — /  g(5)“*(ö /  ------------- 7-------------

In what follows we shall need the estimate

(35) /  7Г=§* = C(Ro) (q(x)eL"(G), p  >  1)
x —R 'X  ^

(cf. [8]).
Using Lemma 3 and (35) we obtain that

(36) |581| ^ C 5(i?o)C(i?0)f  2  I tM y )d y \ l luk\\L-(.K2R) +

+  2  I /  4 iy )d y \
X c | e fc|Sil/2'y,

| mJ e ” (ü:2r ) . ^  I p  —7—-4 ,1  iMtlk“(AT2R )
I/1 10fcl д/2-=|гк|<м-

+ , . J „ „ I / '  “* «  H  J L  , 1/  1+|p-lekl|sl \Qk\=-R + l y t

_ ~ i ?•—7~. , I l ukh’"(K2R )Chvk2Rn
+ C M Ä { !  “ « ‘H — гt o j t “

1. Using Lemma 5 and (8) we have
(37) 2  ^ C P 2(K )U « ~ .

osiek|si

2. If the relation \fi— |e*||s|e*| is true, too. Then using (4), (6)

and (8) we get 

(38)
1

2  = C C iQ Q ^o) 2  :l + i/2 < 0°-1<|Ск|=>л/2 i=l 1

Here we used that ЦмА.Ц|.2(о)=  1 and 1 +  Kl
exp К |2Д0 ;C6(/?0), Vvk€R.
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3. If -y-c\вк\< ц— 1, the relation |e*|| is also true. Then using also
(4), (6) and (8) we have

w \  I
(39) 2  = C C iQ C * Сад 2  -Щ Т - ,д/2<1ек|~:д-1 1 '

; D( K, 8)
Ы1 iől2( f i - i )

4. Using the Cauchy—Schwarz inequality, Lemma 5 and (7) we obtain
(40) 2  -  C},2(K)U1/2 <oo.

b-lsjclN1
5. Using (4), (6) and (8) we have

(41) 2  3S CQCACRo) 2 - J i T W1вк|=-д+1 i=l I
6. Applying (6)—(8) we get

(42) 2  ^4C C 5U < - .
fc = l

Substituting (37)—(42) into (36) we obtain the estimate for the quantity Sgi ■

ISeil <0°-
We have a similar estimate for $82 > too. Hence the derivative h'a (x) exists and (34) 
follows.

One can prove the existence and the boundedness of the derivatives h'9(x) and 
Ко (x) similarly.

Summarising the above argument we obtain from (26), (31)—(34)

(43) /  -fa [ ^ „ ^ ( ^  У, И)~в(х, У, K)\ dy =
У1

d p  l ?2___
-fa  j  SRou>(x, У, M )dy+Y 2  f  uk(y)dyu'k(x)~

У1 1гк1=д Ух

- 1  z  / ' ^ ) » # ) ^ { 5 М ; 1 |||8 | -71 o<=|ifc| s i j , '  t  Я ц к )

-  2 f  ukGO dy u'k(x) SR 7|gj (R) —
osl^lsi y ,

-  2  f  uk (У) dy u'k (x) ~  SRo K fa (R) -

-  Д  f  uk 0 )  dy u'k (x) SRo { |  /  sin lit cos Qk t Vkj —L d/j 

~ Д  /  ик(У) dyu'k(x )S Ro f  sin fit sin ekt-^ k t-dt} +
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“  Гг ----Г “ч , „  í  1 Г / кч Г s in  [it COS f lk ( t  — x + £ )  . , E ,+ 2  J uÁ y)dySR \ - ~  j  q(0uk(0  f ------------y 1--------- J- td d ^  +
k~ 1 >»! *■ x  — R x  — £

+ - Í  / % « ) „ . « )  / i S O ! £ í2i ü f i ± £ = 0 * í { } -
X £ — X

- i  / í (0«*(0 J  cosnk( t - x + Z )d td l;+
1- 1». 17Г Л i-R i- f

+
1 sin /li? 
n R

x + R  R ^

/  q(ÖUk(ö f  cos [ik( t + x - O d t d n -
X  Z  —  X

Уa
~ 2  f  uk(y)dyu'k(x)SRo {h(R, цк, ц)}.

Iekl=-i

Above we proved that all the series on the right hand side of (43) are convergent 
uniformly in x  on the compact К  and are bounded. Therefore

(44) I /  -^№«.»4*, y> td)-d{x, y, n)]dy\ = M (K).

The proposition is proved.

4. Proof of the theorem

The idea of the proof is the following. Introduce the notation 

(45) S, (/, x) := J  SRoW(y) • f(y) dy.

Using (44), by the method applied in [3] one can prove that
K ( f , x ) - s ß(f, x)\ ^  M ^ K m w W r

An analogous estimate holds also for the quantity -^ -£ Д /, x). Therefore applying 
the triangle inequality we have the desired estimate

W i f  x ) - K ( f x )  =  C(K)\\flw\<cy 
The theorem is proved.

5. Proof of Remark 1

Consider the operators Lu := — u" on the interval (0, n) defined by the boundary 
conditions u(0)—u(n)=0; and Lu\~ — u" on the mentioned interval defined by the 
boundary conditions г/(0)—и'(л)=0.

Choosing f(x )=  1 we get
/ / у ч ^ ч 2 sin ихO in-lif x) = — .

n  sin X
2* Acta Mathematica Hungarica S I .  1988
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71Let KczG be an arbitrary compact which does not contain the point x0= — . 
Then we have for any xdK

Пт [<т2„-i(/, x)-& 2n-i(f, *)] > 0 .П —► oo

The author is indebted to Dr. I. Joó and Dr. V. Komornik for their valuable 
remarks during the preparation of this paper.
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A PROOF OF MIKUSINSKFS THEOREM 
ON BOUNDED MOMENTS WITH 

BERNSTEIN POLYNOMIALS
U. ABEL (Giessen)

T h e  p u r p o s e  o f  t h i s  p a p e r  i s  t o  g i v e  a  n e w  p r o o f  o f  M i k u s i n s k i ’ s  t h e o r e m  o n  
b o u n d e d  m o m e n t s  [ 8 ] ,  w h i c h  m a y  b e  f o r m u l a t e d  i n  t h e  f o l l o w i n g  f o r m :

T h e o r e m  A .  L e t  ( 2 „ ) “ = 1  b e  a  s e q u e n c e  o f  p o s i t i v e  n u m b e r s  s a t i s f y i n g

( 1 )  Z - y ~  =  + ° °  a n d  A n  +  1 - A „  с  >  о  ( « = 1 , 2 , . . . ) ,
n = l л„

a n d  l e t  c t  b e  a  f u n c t i o n  o f  b o u n d e d  v a r i a t i o n  o n  [ 0 ,  ° ° ) ,  c o n t i n u o u s  o n  t h e  l e f t  o n  ( 0 , ° ° )  
s u c h  t h a t

oo

( 2 )  J  e ~ , x " d a ( t )  =  0 ( e ~ qX n )  ( и —  o o ) ,  
о

t h e n  a ( t ) = a ( 0 )  f o r  a l l  ? € [ 0 ,  q ] .

I n t e g r a t i o n  b y  p a r t s  i n  ( 2 )  g i v e s  ( a s s u m i n g  a ( 0 ) = 0 )

j  e ~ , x n d < x ( t )  =  k n  J  e ~ , x n i x ( t ) d t
о о

a n d  T h e o r e m  A  f o l l o w s  f r o m

T h e o r e m  B .  L e t  ( A „ ) “ = 1  b e  a  s e q u e n c e  o f  p o s i t i v e  n u m b e r s  s a t i s f y i n g  ( 1 ) ,  a n d  l e t  
f b e  a  b o u n d e d  m e a s u r a b l e  f u n c t i o n  o n  [ 0 ,  <=°). T h e n

oo

( 3 )  J  e - tX " f ( t ) d t  =  0 ( e - t x n )  ( и —  o ° )
о

i m p l i e s  f ( t ) =  0  a . e .  o n  [ 0 ,  q ] .

M i k u s i n s k i ’ s  p r o o f  [ 8 ]  ( s e e  [ 1 0 ] ,  [ 6 ] ,  [ 7 ]  f o r  e a r l i e r  a t t e m p t s  t o  t h e  m a t t e r )  i s  b a s e d  
o n  a  c e r t a i n  d i s c o n t i n u i t y  f a c t o r ,  t h e  i d e a  o f  w h i c h  g o e s  b a c k  t o  P h r a g m é n .  I n  [ 3 ] ,  
R .  P .  B o a s  J r .  a p p l i e s  d e e p  p r o p e r t i e s  o f  a n a l y t i c  f u n c t i o n s .  T h e  p r o o f  i n  [ 2 ]  u s e s  t h e  
P o i s s o n  i n t e g r a l  a n d  w o r k s  o n l y  i n  t h e  c a s e  Я „ = п  ( « =  1 ,  2 ,  . . . ) .  T h e  p r o o f  p r e s e n t e d
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here is based on the generalized Bernstein polynomials
n

B„(t) = 2 aj e~,Xn>
J = 0

J / ( —log bav) ( —l)a~v kJJ+i
aj  =  Л  (;v.-  1V) ( A j (áj- kj_о { i j - Ij+1)...{Aj- Xn)

П ( ) J
b„v =  я  l - r  (0 S V S / I - 1), bnn =  1,fc=v+iA '

which converge uniformly on [0, °°) to  f  if the sequence 0=Я0<Я1< л 2< ... satis
fies ( l) , / is  continuous on [0, °o) and lim f ( t )  exists (see [5], p. 44—46, and [4]).

The crux in the proof of Theorem В is contained in the following lemma on the 
growth of the coefficients a} (see [1], p. 4f).

L em m a . Suppose / ( 0 = 0  ( iS /0). Then o,=0 i f  —log bnj^ t 0 and

log \a,\ S  log sup |/(OI+^{/,-<5|log<5| + |log ^ l + |log 0 | + |log á|}+ (<5)^0
í§=0

for all <5e(0, 1), ÜT(<5)=max ||log <5|; - i j , i f  — log bnj~= t0.

P roof of T h eorem  B. Let r£(0, q) be a Lebesgue point of /  and let s> 0  be 
given. For every ft> 0 we define the function

cor(t-, h) =
h '1 ( r g ( S  r+h),
linear on [r — ft2, r] and [r + h, r + h + h2], 
0 elsewhere

such that to, is continuous for all real t. Then for sufficiently small h we have 
0< r —ft2< r+ ft + ft2<<7, and thus

oo 1 r-fft г г +  Л +  Л2

f  cor(t; h)f(t)dt = J - f  / ( t)d í+  J  a>r(t;h )f(t)d t+  j  wr(t; h)f(t)dt.
0 r r - h 2 r+h

Since the first integral on the right hand side tends to / (r ) as ft—0+ and each of the 
last two integrals can be estimated by ft|| / I /  we can choose ft„>0 such that

(4) | / ( 0 -  /  C0r(r; ft0) /(0 ^ |  <  E. 
0

Now we approximate cor(/;h0) by a Bernstein polynomial B(t„)= 2
j=о

that
К (г ; йо ) -Д ,(01 <  E (f =  o).

such
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Then (4) yields
CO CO

(5) Im - /  dt\ <  £+ /  \cor(f, h0) - B M \ f ( t ) \  dt ё  a + ell/llx.
о 0

The Lemma gives for the coefficients of Bn aj = 0 (O ^ j^ p — 1) and 
\aj\ ^  ho“1 exp {AT(|log AJ + llog d| + |log Aj|)}x 

X exp {[Kő I log <5| + K(ő) (г + h0 + К)] Xj) ( p ^ j ^  rí) 
where p is the integer with

-lo g  bnp <  r +  ho + hg == -log  h„p_!
and <5£(0, 1).

Without loss of generality we may assume Яуё 1. Furthermore we choose 6 so 
close to 1 that K5\\ogö\-\-K(ö)(r+h0 + h l)^ q —ß<q. Then we get

(6) \aj\ ^  K1/.fe(q~ß)xj ( p S j  S  n).

By (3), XJ+1—Aj-SoO (y'=0, 2, ...) and (6), it follows that, for some constant
+  oo,

I /  Bn(t)f(t) dt\ == i  \aj\ I /  e - 'V (0  S  
0 0

Ä M 2  №j\e~qXJ 2 1 '- je -ßXJ si K2 2  e - ^ )ßXj ш
j = P  J  =  P J =  P

=  K 2 2  e - (1/2,/’c; =  0 ( e ~ (1/2)ßcp) ( p  - = o ) .
j= P

Since 2 1 ^71= + °°> we have as n-*•«>. Thus we can choose n so large that
j =1

I /  0„(0/ ( 0 ^ |  <  £,
0

and, by (5), it holds |/ ( r ) |< 2 e + e ||/ | |1. Hence / ( f )= 0  for every Lebesgue point 
i in (0, </), i.e., /= 0  a.e. in (0, <?).
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BOEHMIANS AND GENERALIZED FUNCTIONS
P. MIKUSINSKI (Santa Barbara)

Introduction. Since S. Sobolev in 1936 [19] and L. Schwartz in 1945 [17] intro
duced the notion of distributions, there arose a number of theories of generalized 
functions; see e.g. [1—3], [5—11], [14], [16], [21]. These theories differ from one an
other by generality, by applications or by language which is used to build them. 
One of the youngest generalizations of functions is Boehmians.

The idea of the construction of Boehmians was initiated by the concept of regu
lar operators introduced by T. K. Boehme in [4]. Regular operators form a subalgebra 
of the field of Mikusinski operators and hence they include only such functions whose 
support is bounded from the left. Attempts were made to generalize the notion of 
regular operators in order to embrace all continuous functions. A general construc
tion of Boehmians presented in [12] suits this aim. In a concrete case the space of 
Boehmians contains all regular operators, all distributions and some objects which 
are not operators nor distributions. An example of such a space is given in [12]. A con
cept of convergence of Boehmians was introduced and discussed in [13]. In the same 
paper the concrete space of Boehmians mentioned above is discussed in more detail. 
The space furnished with the introduced convergence appears to be a complete quasi- 
normed space.

The present note completes the previous notes devoted to Boehmians (i.e. [12] 
and [13]) with some remarks and some new results. In the first section, we recall the 
general definition of Boehmians. Then we describe Boehmians as multipliers on suit
able spaces. The third section is devoted to the convergence of Boehmians. We list 
basic properties of the convergence and prove some new facts. In Section 4, we present 
a few examples of spaces of Boehmians. In the last section, we discuss connections 
between Boehmians and other generalized functions.

1. General construction of Boehmians. For every ring without divisors of zero, 
there exists the corresponding field of quotients. The space C + of all continuous func
tions on the real line R with supports bounded from the left forms a ring without 
divisors of zero with respect to the convolution; (the definition of the convolution 
can be found in Section 2). The field of quotients for this space is known as the field 
of Mikusinski operators (see [11]). When replacing C+ by the space C of all conti
nuous functions, the construction of the field of quotients is impossible because there 
are divisors of zero in C. The construction of Boehmians is similar to the construction 
of the field of quotients and in some cases it gives just the field of quotients (see [12]). 
On the other hand the construction is possible when there are divisors of zero, for 
example in the case of space C (with the operations of pointwise addition and con
volution).
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Let G be a linear space and let S' be a subspace of G. We assume that to each 
pair of elements Д  G and cp£ S  there is assigned the product f*cp so that the fol
lowing conditions are satisfied:
(1) If cp, i^€S, then cp*\l/£S and (р*ф—ф*(р,
(2) if /£G  and (p,\j/dS, then ( f  * cp) * ф = f  * (<p * ф),

(3) if f,g£G , cpdS and then (f+g)*(p= f*(p + g*cp and k(f*q>)=
=Qf)*<p-
Let A be a family of sequences of elements from S such that

(4) iff,g£G , (Sn)£A and f * ö n=g*ö„ for n= 1, 2, then f= g,
(5) if (<?>„), (ф„)£А, then (<рп*ф„)£А.

Elements of A will be called delta sequences.
Let sd(G, A) be the family of all pairs of sequences ( f n)(zGN and ((p„)£A such 

that f *  <Pj=fj* <Pi for all i,j£N . Such a pair will be denoted, for short, by fj(p„. 
It can be easily verified that the relation defined as follows

fJVn ~  gn/Фп if /* Ф ] = gj*<Pi for all i,j£ N

is an equivalence in sd(G, Л). We put 88 (G, A)=sd(G, d ) /~ . Elements of 88 {G, A) 
will be called Boehmians and denoted by small letters like f ,  g, ... or by [ fn/<p„],
[gn/Фп], ••••

The sum of two Boehmians and multiplication by scalar can be defined in a 
natural way:

[fJ(Pn\ + [g„1ФЛ = [(fn *^n + gn* <Pn)/(Pn * Фп\ and 8[fJ<p„\ = WJq>„].

Then 88 (G, A) becomes a linear space and we have

Lemma 1 .1 . Let (<5„)€ A ■ The mapping и given by the formula
(6) u(f)= [f*SJS„]
yields an algebraic isomorphism o f G into á?(G, A). The mapping и does not depend on 
the choice of(8n).

For convenience, G will be considered as a subset of 88 (G, A).
The multiplication defined on G X S  can be extended onto 88(G, A)X(88(S, A), 

where 88(S, A) denotes the set of all elements of 88{G, A) which can be written in the 
form [g jфп] with g„6S for all n = l, 2, ... If f —[fJ(pnK88(G, A) and g=[gn№„K 
£88(S, A) then we put f* g = [ fn*gJcpn*фn].

L emma 1.2. I f  f  g£88(G, A), (c5„)£d and f* S n=g*ő„ for all n£N , then f= g.

Lemma 1.3. I f  [f„/(pn]€88(G, A), then [ fn/(p„]*<Pi=f for each i£N .

L emma 1.4. If, for f£88(G, A), there exists (8n)ZA such that f* S fG  for each 
n€N, then f=[f*ÖJÖ„].
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Proofs of all the above lemmas can be found in [13].

2. Multipliers. As usual by 3>(Rm) we denote the space of all infinitely differen
tiable functions with compact support. For f£ C (R m) (where C(Rm) is the space of 
all continuous functions) and cpd3>(Rm), by f* (p  we mean the convolution o f/an d  
(p, i.e.

( / *  < P )  ( * )  =  /  / О )  4> ( x - y ) d y .
Rm

The space 3>(Rm) with the convolution forms a ring.
R. A. Struble in [20] has proved the following

T heorem  2.1. The space o f all mappings M : 3 (R m)-+C(Rm) satisfying the con
dition

M (<p * t/i) =  M((p) * ф for each (p,\l/£3(Rm)

is isomorphic to the space 3>'(Rm) o f all distributions.

The theorem shows that 3)' can be described by a purely algebraic condition 
concerning the convolution (note that neither continuity nor linearity of M  is as
sumed). A similar description is possible for Boehmians. However, the characterization 
is not so ismple. In this section we present the characterization of Boehmians as mul
tipliers. The results will be used in Section 5.

From (1) and (2) it follows that S  is a multiplicative semigroup. Let Q be a sub
semigroup of S. A mapping M : Q-*G is called a multiplier on Q if

(7) M((p*\f/) = M(cp)*il/ for each (p,^Z.Q.

The family of all multipliers on Q will be denoted by Jf{Q, G). Clearly, Jt{Q ,G ) is 
a linear space. Put @)q(G, А)— {Д  á?(G, A )\f*  cp£G for each <p€ö}- If / € ^ q(G, A), 
then the mapping
(8) Mf ((p)=f*<p

is a multiplier on Q. It is easy to prove that 3SQ{G, A) is isomorphic to a subset of 
J{(Q, G). On the other hand we have the following

T heorem  2.2. I f  А П QN 9^0 (i.e. there is a delta sequence (<5„) in A elements o f 
which are in Q), then for each multiplier M ZJi (Q, G) there is f£.^Q(G, A) such that 
M((p)=f*rp for each (pZQ. Hence Jt(Q ,G ) and tMQ(G, A) are isomorphic.

P ro o f. Let (S„)£ AC\QN and let M  be a multiplier on Q. Consider the Boehmian 
f —[M(Sn)/Sn]; (M(<5„)/<5„ belongs to «s/(G, A) because of (7)). If <p£Q, then 
f*<p=[M(Sn)*<p/őn] = [M(<p)*őn/őn] = M((p)€G. Hence f€& Q(G, A) and M((p)= 
f*<p for all (p€Q.

R em ark . From the above facts it follows that any space of Boehmians can be 
embedded into a suitable multiplier extension o f admissible vector module introduced 
by Á. Száz in [22]. More precisely, 8S(G, A) can be identified with the collection of all 
quotients multipliers from J t(S , G) whose domains contain delta sequences from A.
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3. Convergence of Boehmians. In this section we shall discuss a particular case 
of Boehmians for which G is a quasi-normed space and the family A is defined in 
a special way.

Let G be a linear space and let || . || be a quasi-norm on G (by a quasi-norm we 
mean a real function on G such that 11/11 =  0 implies /= 0 ,  ||/+g|! = | | / | |+  ||g1l, 
11-/11 = 11/11 and lim ||Я„/„-Я/|| = 0 if A„, liml„=A and lim | | / „ - / | |  = 0).
Moreover, we assume that

(9) if ll/J — 0, then II/„*<-/>И — 0 for each cpdS.
Let S0 be a subsemigroup of S (with respect to the product) and let s be a posi

tive functional on S0 satisfying
(10) á  s((p) + s(i/0 for each <p,

(И) if ll/n -/l -  0 and s(<pn) - 0, then \\fn*(pn- f \ \  -  0.
It is easily verified that the family

A =  m t S ? :  s(S„) -  0}

satisfies all the conditions imposed on the family of delta sequences A (see Section 1)' 
We say that a sequence of Boehmians f„£ä8(G, A) is /(-convergent to a Boeh- 

mian f  and we write d-lim /„ = /, if there is (ср„)£А such that (f„—f)* (p n£G for 
all neN and IK /„-/)*< pJ- 0.

Now we list some basic properties of A -convergence. (Proofs of the following 
theorems can be found in [13].)

T heorem  3.1. The mapping и defined by (6) is continuous.

T heorem  3.2. G is dense in &(G, A) (with respect to A -convergence).

T heorem  3.3. Let g=[gJSn]£d#(G, A) and gn€S for each n£N. I f  d-lim f„—f  
then d-limf n*g= f*g .

T heorem  3.4. IfG  is complete and the following conditions are satisfied
(12) i f  cpfiS0, s((pn) ^ c  {for all n£N) and \\<pn-<p\\-*0, then (p£S0 and v(<p)=c;
(13) i f  II /„II —0 and s{(p„)Sc for all n£N, then there exists c / R  suchthat |[ f n(p„\\ = 

SC'II/JI for all n€N,
then the space &{G, A) is a complete quasi-normed space (with respect to A-conver- 
gence).

Let Q, as in Section 2, be a subsemigroup of S. We are going to describe the 
set SlfiG, A) in terms of convergence. Let / „ , / ( t%Q(G, A) (n= 1, 2, ...). We say that 
(fn) is Q-convergent t o / i f  \\(f„— / ) * <p|| — 0 for each <p(íQ. If QND A ^0, then 
(/convergence is a Hausdorff convergence. A sequence (/„) of elements from 
&q(G, A) is called a Q-Cauchy sequence if for each pair of increasing sequences of 
positive integers pn and q„ we have \\(fPn—f qn) * (p\\ -*0 for each <pd O.

Up to the end of this section we assume that G is complete, QNDA?c0 and 
that conditions (12) and (13) are satisfied.

Acta Mathematica Hungarica 51, 1988



BOEHMIANS A N D  GENERALIZED FUNCTIONS 275

L emma 3.5. Let f n£38Q(G, d) for n— 1, 2, .... I f  (/„) is a Q-Cauchy sequence, 
then (/„) is А-convergent (to an element o f &(G, A)).

P roof. It suffices to note that О-convergence implies A-convergence.
T heorem  3.6. &Q(G, A) is Q-complete (i.e. each Q-Cauchy sequence in 88Q(G, A) 

is Q-convergent).
P roof. Let (f n) be a Q-Cauchy sequence (f„£88Q(G, A)). By Lemma 3.5, the 

sequence (f „) is d-convergent to some element ff8S(G, A). We have to show that 
f£88Q(G, A) and that (/„) is Q-convergent to / .  In fact, for each <p£Q, the sequence 

is a Cauchy sequence in G. By the completeness of G, ( fn*<p) is convergent 
to an element f 9€G. Hence, by Theorem 3.1, we have d-lim (/„* <p)—f v ■ On the 
other hand, in view of Theorem 3.3, we have d-lim (/„*(?)= (d-lim/,) =/*(?,
whence f* (p= fvdG and \\{f,—f)*<p\\ -»-0. The proof is complete.

T heorem  3.7. G is dense in 88Q(G, A) (with respect to Q-convergence).
P roof. Let /=[/„/<?>„]€ (G, d) with (<?„)€QNC\A. For each cpZQ we have

IK/»-/)* <Pll =  ll(/* <Pn~f)* <P\\ = IK/* (p)*(Pn~Cf* Ф)II -"0. by Lemma 1.3 and (11). 
Hence (/„) is Q-convergent to /,  which proves the theorem.

C orollary  3 .8 . The space S iff] , d )  is identical with the completion o f G with 
respect to Q-convergence.

4. Examples. We shall use the following notation:
C = the space of all continuous functions on Rm,
Z-i^the space of all integrable functions on Rm,
L5=the space of all functions from L1 with bounded support,
£5? =the space of all infinitely differentiable functions on R"‘ with compact support, 
£^'=the space of all distributions on Rm,

\x\ =  (x f+ ...+ x |,)1/2 for x = (xl5 ..., xm)£Rm,

KE = {xeRm: |x| <  s}.

From now on, by the product on GX S  we mean the convolution

( / *  Ф) (x) =  f  f(y)  (p(x-y) dy.
Rm

dS(C,Af). In this case S consists of all continuous functions with compact 
support. Let d+ be the family of delta sequences defined as in Section 3 with

S0 = {<p£S: cp^O and =  l} and s(cp) = inf {e > 0: supp cp a  KE}.

Let II • II be a quasi-norm on C which generates uniform convergence on compact 
subsets of Rm. It is easily verified that in this case all the conditions (9)—(13) are 
satisfied. Hence the space d$(C, d+) endowed with the d-convergence is a complete 
quasi-normed space.

T heorem  4.1. Let (<5„)£d+ r\S)N. The mapping u: 3>'-*SS{C, d+) definedbythe 
formula u { f ) —[f*öjö^\ is a continuous embedding off/)' into ЩС, d+).
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P r o o f . Clearly, и is an injection of 3 '  into .38 (C, J + ) .  We shall show that it 
is continuous. Let / , - * /  in 3 '  (weakly). Then ||(/„—/)*<p]|-*0 for each <p£3 
(see [18], p. 53). Since (ön)£A+C)3N, ||(/„— /)*<5*|| —0 for each k£N. Applying 
the diagonal method we can find a subsequence ( f Pn) of (/„) suchthat il( fPn f ) *  
*(5J->-0, which means that ( f Pn) is d-convergent to / .  Since /I-convergence is of 
quasi-norm type, the convergence of the sequence (/„) follows.

The mapping и-1 is not continuous. A suitable example is presented in [13]. 
It is easily seen that the mapping и does not depend on the choice of the delta se
quence (<5„).

In view of Theorem 4.1, we may identify each distribution with its respective 
Boehmian. Theorem 2.1 gives us the following simple characterization of elements 
of 38 (C, zl+) (and also 38 {C, Ac); see the next example) which may be identified with 
distributions.

T heorem  4.2. A Boehmian f3/38{C, A+) is an element o f u{3') iff f*(p£C for 
every <p33.

Let us observe that each Boehmian from 38 (C, A+) has all derivatives which are 
again elements of 38 (C, d+). In fact, for each f338(C, A+), there exists a represen
tative /=[/„/<?„] such that all functions/, are infinitely differentiable. Then we can 
adopt the following definition:

Da[ f M  = [ I T fM .

It is easy to check that this definition coincides with the usual definition of derivatives 
w hen/is a differentiable function.

Let (0п)£А+ПЗ  and let <5=[(5„/(5n]. We have the following simple
L emma 4.3. D‘f= f# (D ,S) for every f£38(C,A+).
From the above lemma and Theorem 3.3 we obtain at once
T heorem  4.4. The operation D* is continuous (with respect to A-convergence).
As in the case of derivatives, the notion of support of a function can be extended 

to each Boehmian from 38(C, d+). Let f£38(C, d+) and let Q be an open set in Rm. 
We say that /  is equal to zero on Í2 if for each compact subset К of Q there exists 
(<5„)£d+ such that f * S n3C and /*<5„=0 on К for each n£N. I f / i s  equal to zero 
on Í2V for each v£/, then / i s  equal to zero on [J ü v. Therefore, the support of /

v€Z
can be defined as the complement of the largest open set on which /  is equal to zero. 

38 (C, Ac). In this example we enlarge the family of delta sequences letting

So — {<p€<S: J(p =  l} (S = СП Ю  and s(cp) =  inf {s >  0: supp q> c  Kc}+

+  ln f  \(p\.

Denote the corresponding family of delta sequences by Ac. Since in this case, as in the 
first example, all the conditions (9)—(13) are satisfied, the space 38(C, Ac) endowed 
with the d-convergence is a complete quasi-normed space. Clearly we have A + c A c. 
Thus, we have also 38(C, A+)c38(C, Ac), when [fJ(p„\338(C, A() is identified with
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[fnl<PnK®(C, Ac). Moreover, each d-convergent sequence in 38 (C, d+) is zl-con
vergent in 38 (C, Aj) (to the same limit). We shall prove that 38 (C, d+) is a proper 
subspace of 38 (C, Ac). Since both spaces are complete quasi-normed spaces, it is 
enough to show (by the open mapping theorem) that there is a d-convergent sequence 
in 38 (C, Ac) which does not converge in 38(C, d +). In the following example we put 
C = C (R ) and 2=3>(R).

Let (ф„)еА+П@. Put фn(t)=(Pn(t)-(l/an)q>'n(t), where an=f\cp'n\ (n= 1, 2, ...). 
Since a„5 max <pn, the sequence (a„) is unbounded. It is easy to check that for each 
g£Lx the sequence (ils„*g) converges to g in Lx. Hence for each fixed k£N we have 
J  \Фп*Ч>к\~f  Since J  \cpk\= \, we have J  \фп*срк\->-1 for each k£N
(as n-* «=). Thus we can find an increasing sequence of positive integers /„ such that

Therefore (ipin*(pn)^Ac. Let f n(t) = eâ  for n— 1, 2 ,__ Since, for
each n£N, f„*\]/in=0, we have /„*(</',•„*<?„)=0. Thus, we have proved that the 
sequence of functions /„ is d-convergent to 0 in 38 (C, Ac). On the other hand, for 
any (<5„)£dc+, the sequence (f„*Sn)(t) is unbounded for every 0. Therefore, 
(/„) does not converge in 38(C, dc+).

Note that the definition of derivatives and the definition of the support given 
for 38(C,Af) make sense in ^(C , d c), and Theorem 4.4. remains true.

38 (Lr, dc). In this case we have G = S= LX. The family of delta sequences is 
the same as is the preceding example. Endow Lx with the convergence generated by 
the norm J  | / | .  Then 38(L1, dc) is a complete quasi-normed space (with respect to 
the d-convergence).

T heorem 4.5. Let (őn)3Ac. The mapping u: 38{LX, Ac)->-38(C, Ac) given by the 
formula

u ( [ f j ( p „]) =  [ f n * Ő J c p n * ő n\

is a continuous injection.
P roof. Clearly и is an injection. To prove that it is continuous assume that (f n) 

is a sequence of Boehmians d-convergent to 0 in ät(Ll , d c). This means that there is 
a delta sequence ((p„)£Ac suchthat f n*<pn£L1 (n = l,2 , ...) and f  \f„*<pn\-*0. 
Hence, for a suitable delta sequence (tAn)€dc, gn~f„* <P„* ф„ is a sequence of con
tinuous functions convergent uniformly to 0 and so is the sequence of convolutions 
u(fn)*(<Pn*xl/n)=gn*ön> which completes the proof.

It is easy to see that u~x is not continuous.
Note that the following formula

[fn/<Pn] *  Ы Ф п ]  =  [ fn  *  gn/<Pn *  Ф Л

extends the notion of convolution to all pairs of elements from 38 (Lx, d c). Similarly, 
the integral can be defined for all elements of 38(L1; d c).

T heorem 4.6. The mapping J : 38 (L1, Ac)^-R defined by the formula

f  IfJcPn] = f  A (x) dx
is a continuous linear functional on 38(L1,A C). The testriction o f the functional J  
to Lx gives the integral, i.e. J  f=  J  f ( x )  dx for f€ L x.
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P roof. First, we have to prove that the definition of the functional is correct. 
Let / £ á?(-£a, Ac) and let /=[/„/<?„] =  We have to show that J  f f x )  dx=
—f  Si{x)dx. In fact, we have Since J  ( f *  i/q)(x) d x = J f x(x) dx
and J  (gi*(Pi)(x) dx—J g fx )  dx, the equality follows.

If Д А ,  then f  [f* (p j(p„ ]= f  ( / *  9i)(x) d x = J f  (x) dx.
The linearity of J  is obvious. To prove the continuity assume that (/„) is a se

quence of Boehmians convergent to 0 in Ac). Note that, if f*(p£L 1
(/<;á?(Li, Ac), (p^Lx and J  (p— l), then J  f = J  (f*<p)(x) dx. There is (cpn)£Ac 
suchthat f  ( f n*(pn)(x)dx-<- 0. Thus f  f„—J  (f„* (p„)(x) dx-^ 0, which completes 
the proof.

The Fourier transform can be also easily extended onto the whole space 
И8{ЬУ, Ac), which follows from the following simple .

Lemma 4.7. I f  [ fJ ( p ^ ^ { L 1, Ac), then the sequence /„  converges uniformly on 
compact subsets o f  R" (by f  we denote the Fourier transform o f f ) .

P roof. Let К  be a compact set. Since, for each (Vp„)€dc, the sequence (<pn) 
converges almost uniformly to the constant function 1, there is k£ N such that 
фк> 0  on K. Then we have

f k * ( P n

Фк
— fit-Г* • Фп ■ Фк

f
Thus (/„) converges to —  on K.

Фк
In view of the above lemma, we can define the Fourier transform of [fjcp„] 

as the limit of the sequence (/„). Thus, the Fourier transform of a Boehmian from 
Sd(Lx, Ac) is a continuous function.

The above definition of Fourier transform was given by J. Burzyk (oral commu
nication). Another definition of the Fourier transform was given by D. Nemzer in 
his doctoral thesis:

f  (zlLet f= [ fn/cpn]£d#(L1, Ac). Then for z£C we put /  (z)=-'f° ■, where n0 is the
Фп0\2)

least positive integer such that фПо(£)?±0.
It can be easily proved that the definition is correct and is equivalent to Burzyk’s 

definition.

5. Boehmians and other generalized functions. In Section 4 it was shown that the 
space of distributions can be identified with a subspace of J'(C, d+). In this section 
we are going to discuss connections between Boehmians and other types of general
ized functions. The following theorem gives conditions for a subspace of 3), under 
which its dual can be embedded into 3t(C, A) (where A is any family of delta se
quences).
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T heorem 5.1. Let f ' c ®  be a locally convex space such that

(14) i f  cp, ф(ЦР, then ср*ф£&г and ххср£^ for each x£Rm ((xx <p)(y) = (p(y— x ));
(15) Tq>{x)=xx(p is a continuous mapping from Rm to S' for each cp£tF;
(16) S' is a countable inductive limit o f Fréchet spaces.
I f  S 'N \'\ A S0  for some family o f delta sequences A, then the space S '' o f all continuous 
linear functionals on S' is isomorphic to a sub space ofSS{C, A).

P roof. L e t/b e  a continuous linear functional on S ’. For any by f*(p
we denote the function defined by the equation ( / * <p)(x)—f  (x-xcp). From (15) it 
follows that f*(p  is a continuous function ( /*  <p£C).

Let (0„)^SrN ПА. Then the mapping

(17) K f) = [f*SJS„]
defines an isomorphism of S '’ into S(C, A). To prove that /  is an isomorphism we 
have to show that [ f * ő jő n] represents a Boehmian (for each /£ # ”') and that I 
is linear and injective.

To prove that [f*  ő jö n] represents a Boehmian it is enough to show that
(18) f  * ('p* il/) = ( f  * (p)* ф for each f í S ' '  and each q>, \l/f_S'.
By the equation v{x)=\j/{x)xx(p we define a continuous mapping from Rm to S' 
(continuity of v follows from (15)) which is zero outside a compact subset of Rm 
(because the support of ф is compact). Moreover, the convex hull of v(Rm) has 
compact closure in S ’. Hence, the equality

1<P * Ф) (x) = f  ф (y) (xy cp) (x) dy
may be written as an -valued integral

(р#ф = J  ф(у)(ху (p)dy (where К = supp ф) 
к

and by Theorem 3.27 [15, p. 74] we have

(/*(<? *t/0)(0) =К<Р*Ф) = j  Ф(у)Яху(р) dy =  f  ф {у)и*(р){-у) dy =
К к

= ((/*<?)* «/О (о).
Since {f * <p)(x)—{ f * x_x(p)(0), equality (18) follows.

Linearity of I is obvious. To prove that 1 is injective it suffices to note that 
f*&n=E*bn implies f* ö n*cp—g*ön*(p, and hence ( / * (p){0)—lg*(p)l0) for 
each cp^S'. Therefore f= g , which completes the proof.

R emark. In the above theorem no connection between the topology of S' and 
the topology of Q) is assumed.

In particular, from A heorem 5.1 it follows that every space of Roumieu ultra
distributions (and hence also equivalent ultradisributions like Beurling ultradistri
butions or co-ultradistributions; see [5]) can be embedded into SI(C, d+).
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Theorem 5.1 gives conditions under which functionals defined on a space of 
test-functions can be identified with Boehmians. On the other hand, we can prove 
that each Boehmian from 3${C, Ac) can be obtained as a functional on a suitable 
space of test-functions. Namely, we have the following

Theorem 5.2. For each fd3t{C, Ac) there is a space o f test-functions 3 f  such 
that 3 } is isomorphic to a subspace o f 3(C, Ac) containing f

Proof. Let /€ ^ (C , Ac) and
3>f  =  {cp£3: f*(p£C}.

Clearly 3 f  is a linear space. We define a locally convex topology on 3 S by the family 
of seminorms consisting of all seminorms which define the usual topology of 3  and 
the following sequence of seminorms

ML =  sup {|(/*<p)00|: *€-£„}•
We shall prove that conditions (14)—(16) are satisfied for tF = 3 j. The first 

part of (14) is obvious. The second part follows from the equality f * i x(p=xx{f*(p), 
which holds for each <pf̂ 3f .

To prove (15) assume that x„-+x in Rm. If (p€3f , then the sequence (tXncp) 
converges to тx(p in 3 .  Moreover, f* x Xn(p=xXn( f*  <p)-L+ %X(f* (p )= f*xx(p.

Since 3 f  is a countable strict inductive limit of metric spaces, to prove comple
teness of 3 f  it suffices to show that each Cauchy sequence is convergent. Thus, 
assume that (<p„) is a Cauchy sequence in 3 f . Then, in particular, (<pn) is a Cauchy 
sequence in 3  and hence converges to some (p£3. If  [fjő„] is a representative of f ,  
then

(f*<Pn)**k — fk* <Pn“ *■ fk*<P — (f*<p)*ök, for each lc£N.
Therefore, there is an increasing sequence of indices k„ such that d-lim f*  <pkn— 
=f*q>. On the other hand, the sequence (f* (p„) is a Cauchy sequence in C and 
hence it converges to some g£C. Since the convergence in C is stronger than A- 
convergence, we have also d-lim/ '* (p„=g. Hence f*(p=g£C, which proves (16).

Since 3 f  Г)Аст±0, form Theorem 5.1 it follows that 3}  is isomorphic to a 
subspace of ЩС, Ac). The isomorphism is defined by (17). To complete the proof we 
have to show that /€/(% ')• 1° fact, the mapping f*(<p)=(f * (p)(0) is a continuous 
linear functional on 3 f . Moreover,

( f* * ö n)(x) = / * ( T - :A )  = (/*  T_A)(0) = (f*S„)(x)
and hence

/(/*) =  [ f* * ö jő n] = [f*SJS„] = f
The proof is complete.
Let us recall a known theorem on distributions. We use the notation from 

Section 3.
The space 3 '  is isomorphic to the completion o f  C with respect to 3-convergence.
From Corollary 3.8. we get a general
T heorem 5.3. Let SF be a subalgebra o f the convolution algebra 3 . I f  ■3rNC\ 

(T Ac^ 0  then the completion o f  C with respect to IF-convergence is isomorphic to 
3?(C , Ac).
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Finally, note that the space 3){C, Ac) is isomorphic to a subspace of the space J i  
introduced by Á. Száz in [20]. Roughly speaking Л  consists of all multipliers on 
subspaces Q) which are not divisors of zero in C. Hence all elements of äS(C, Ac) 
as multipliers on subsets of 3/ are included in J i .

The author wishes to express his gratitude to Professor Árpád Száz for his help
ful suggestions.
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INTERPOLATION BY ALMOST QUARTIC SPLINES
ANJULA SAXENA (Lucknow)

In this paper we define a new class of quartic splines of class C2 and solve the 
problem of (0, 2) interpolation by the elements of this class. We also study the pos
sibility of the solution of the problems of (0, 1) and (1, 2) interpolations by the ele
ments of the same class. Error estimates are obtained in each case.

1. Introduction

Let
A: 0 = x0 <  xk xn-i <  xn = 1

be a partition of the interval 1= [0, 1] with xk+1—xk—hk, k = 0 ,..., n— 1. Denote 
by Sj,% the class of quintic splines j (x) satisfying the condition that х(х)£С3(Г) and 
is quintic in each of the sub-intervals of I. It is known from Meir and Sharma [2] 
that if hk=h=l/n, and n is odd, then there exists a unique s(x)£S(3l, which is the 
solution of the (0, 2) interpolation problem:
(1.1) s(xk) = yt , s"(xk) = yk, к — 0, ..., n, s'(x0) = x'0, s'(xn) = y'n;

where y k, yk, k=0, ..., n and y'0, y'„ are given real numbers.
It is also known (Sallam [3]) that for non-uniform partitions of I, this problem 

is uniquely solvable by the elements of Sj,%, provided hk+i>hk.
Our aim here is to seek the solution of the problem (1.1) in some other class of 

spline functions of order less than the previous one and which yields better error 
bounds. With this aim, we define a class of almost quartic splines S(3\* and consider 
the possibility of solving three interpolation problems, namely the (0, 2), (1, 2) and 
(0, 1) interpolation problems by the elements of S£\*.

In Section 2, we define the class S^l* and prove three theorems on the existence 
and uniqueness of the elements of S ff i  which are solutions of these problems. We 
find that they do not require any mesh restrictions. In Section 3, we obtain the error 
bounds in each case when Д С 4(/) and r= 0 ,..., 3. We find that the order of 
approximation is almost the same as obtained by the elements of the class S£\. 
However, the order is better in the end intervals and the constants are small. We 
finish the paper by making concluding remarks in Section 4.
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2. Existence and uniqueness

Definition. S'*4 is the class o f  spline functions s(x) such that

(1) s(x)6C2(/),

(2) л(х) is a quintic in one of the end intervals say in [x0, xx] and is a quartic in each
[**>**+i]> k = l ,  1.

We shall prove the following theorems:

Theorem 1. Given A and the numbers у k, yk, k=0, /?; y'k, k —0,n, there
exists a unique sA (x)€ such that

(2.1) sA(xk) =  y k , sA(xk) =  yk , к =  0 , sA(xk) =  yk, к =  0, n.

Theorem 2. Given A and the numbers y'k, y k, k —0 ,...,n ;  y k, k=0, n, there 
exists a unique sA (x)€ S^\* suchthat

(2.2) s'A(xk) = y'k, Sj(xk) = yk , к = 0 , n, sA(xk) = yk, к = 0, n.

T heorem 3. Given A and the numbers yk, yk, k —0 ,...,n ;  y k, k=0,n, there 
exists a unique sA (x)dS(n2\* suchthat

(2.3) ^(x*) =  yk, s'A(xk) = yk, k = 0 , n ,  sA(xk) = yk , к = 0, n.

To prove these theorems we follow the idea of Győrvári [1].

Proof of Theorem 1. If we set

(2.4) sA (x)
s0(x) when x„ ^  x sS xx
sk(x) when x , S r S  xt+1, к = 1, ..., n —2
s„—i(x) when x„_x s  x ä  x n,

then

s0(*) =  T o+ (*-*o)T o+ - 2 !

(2.5) sk(x) = yk+ ( x - x k)aktl +

. „ , (^ - X ,,)3 , (x -X q)* A x
■To + 3! - а 0, з +  4 , a0, 4 +

( x - X kf ( x - x *)3 _ , ( x - x fc)4
2! ' Ук +■ a k, 3 + 4!

5!

a k, 4!

' a0, 5 5

s„-i(x) = У„-1 +  ( х - х я_1)п„_1,1+ ^  *" г) + — a„_ 1.3 +3!

, (* -* „ - i)4 .‘ «71-1,4 >

where the coefficients are determined by the interpolatory conditions (2.1) and the 
continuity requirement that sA(x)£C2(J). If we apply these conditions, we have the
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following three sets of equations:

(2.6)

, ,  hg „ hi /io hi
Уг — Уо +  коУ о  +  ^ т У о  a o,3 +  - 4 j- a o,4 +  " y ff lo ,

h2 h3
Уг — Уо +^оЯо,з + '2Т‘ ao,4 +  -jj- fl0,5>

h2 hз /ji
fli,i — Уо + КУо +-уу Яо,з +  "2Т аол + ~^г ao,a>

(2.7) 4 Ук +1 Ук "h ̂ кЯк,з~\~ 2 | ^k,4>

hi h3 hl
Ук +1 — Ук +  ̂ как,1 +  ̂ уУк~^~^У ak,3 +  -^Y OkA, 

hi

,  „  h i h 3k
a k + 1,1 ~  а4,1 +  “кЛ +  ~2 \ ° к ’ 3 "3T a k ' 4’

( 2.8)

Уп — Л - 1 + ^ п - 1 Я л - и 1 -----^ Г - У п - l H -----^ р в в - 1 , 8 ' 1 ---- ^ р й я - 1 , 4 .2 !

hl-г
3! 
hl-г

У ’п —  Я л - 1 , 1  +  ̂ и - 1 > ' я - 1 ' 1  a n - l , 3  +  - J f -  а п -

h2-
Уп Уп—1 "f h n -  х u n—1,зН 2 i ^ л —1,4•

Л̂—1,4 9

Solving (2.8) we get

(2.9) a„_ltl = ^ ( у „ - у н- г - ^ у ! - г ) - ( у : - к - г у ! - г )  + ̂ ( у : - у : - г ) ,

( 2. 10)

, = ^ \ у п - У п - г - ^ У п - ]  + ̂ у п- К - г У : - г ) - - ^ Ы - У : - г ) ,

(2. 11)

л̂ —1,4
24 { hj_! „  ̂ 24 , , , „ ч 8 , „

=  -^ 4 -^ [л -3 ’л-1----2“ ^ "-iJ“ T F T (^"_ йл-1 J'b- í) + -p"Y (̂ Л -J 'n - i) .

From (2.7) we have

( 7 - 1 2 )  a k , l  +  a fc + l , l  =  - ^ j - G b  + l -  Л И  ^ " C V k  + l -  У к )г

12 f ÄJ Л  1 , , ,  _ 12
(2 .1 3 )  a k>3 — -^ 3- ^ Л + i - Л  2~ Ук  J  ^ ( У к + г ~  У  к )  — j j í a k,i>

(2.14) afc,4 —
24
h*k ( h2 \  4  24

Fk + l -  Л  2^ 3”к j +  "jjjT (Ук + 1 ~  Ук) +  "pf afc, I
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and from (2.6)

(2.15)

24 60 Г , , h20 A 24 . , . _ 3 . „ _
4 a = — j ^ a 1 , i + - j ^ \ y 1 - y o - h 0 y 0  — j -  y ° J  +  - щ ( y 0  +  К y 0 )  +  ( y l  - y 0 ) ,

(2.16)

°0-4 " ^ w ai‘1~ ^ [ y i ~ y ° ~ h°y i ~ T  yS) ~ ^ w  (y'°+ K y ; )  -  ж (л# -  ̂ )>

(2.17)

ö0,5 — '
360 720 ( , , fcjj ,Л 360 , , , _ 60 . „ _
~ h f а^  + ~Щ~{У^~Уо-КУо — Y  У°I +  “Áj" + коуо) + -щ (у1~УоУ

The coefficient matrix of the system of equations (2.9) and (2.12) in unknowns акл , 
к — 1, ..., n— 1 is a non-singular matrix and hence they are uniquely determined and so 
are, therefore, the coefficients akt3 and akA.

Since altl is already determined, the coefficients a0ik, k — 3, 4, 5 are also un
iquely determined. This completes the proof of Theorem 1.

Proof of T heorem 2. Here again we express s^(x) in the form (2.4) where we
write

s0(x) = y0+ (x -x 0)yó +, , (x-x< y (x-X n f
2 !

У и + ' 3! 0,3^0.3 +

, ( х -л :0)4 u , ( x - x 0)5 u
4-----------71-------- ° 0 , 4 T----------71--------- ° 0 , 5 >4! 5!

3! 4!

S|l-lC*) — bn^ lj0 +  (X — X n - i ) y ' n - 1 +  —----2\ Уп-!^-

, (x -x „ - iy  u , (x -x „_ j)4 u
i ---------- XT-------- ° n - l , 3 ~ l  T j ---------0 л -4 ,4 -3!

If we apply the interpolator conditions (2.2) and the continuity requirement we get 
a system of equations involving the coefficients to be determined. On solving these
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equations we obtain
(2.18)

bn-i.o =  ( у п - К - г У п - . - ^ у Ц - ^ М - У и - К - ^ + Ц ^ М - у ; . ! ) .

(2.19) b„_1>3 =  -FT— ( y h - y n - i - K - i y S - i ) — j ^ — (y? -y? - i)>

(2.20) b„_1>4 =  - (у'п-У п-1- К -1 Уп- i ) + (Уп - Уп-i),

(2.21) bki3 =  -j-% (y'k+i—y'k — hk yk) (Ук+ i - Ук)>

(2.22) Ькл = —-jp(yk+i—y'k — hkyZ')+-j^(yk+i—yk),

(2.23) bk+1'0 — bki0 = hkyk-\— Ук +-^-(у'к+1—Ук — Ькук) —-^(Ук+1—Ук),

(2.24) b0.3 = b1,0- ^ [ y 0 + h0/ 0 + & y ; ) - ^ ( / 1- / 0- h 0yn+ -j}-(y1' - 3 f ) ,

(2.25) bo,4= ^4- l)1.0 + - ^4_ [j;0+ llojÓ + -y->'Ó,] ‘+

+ —̂ 3 ~(y í—yó~b0yó) — -j^'(y1 — З’о)»

(2.26) bo, 5 —
720 , 720 ( , , hi Л

E f ^ + ',* + T Ä J

+ - |r  «  - r í -  Kr! + -jr O'.” -  Л-

+

By the arguments of Theorem 1, we see that these coefficients are uniquely determined. 
So, Theorem 2 is proved.

P roof of T heorem 3. We again express sA (x) in the form (2.4) and write

.  /  % , /  ч ,  , ( x - x 0)2 „  , ( x - x 0)3 „  , ( x -x 0)4 „  , (x-x,,)5 ^
■?o(x) =  Jo +  C*- *о).УоН----- 2\----- У° **------ Ti---- ^ o ,3 4------ J1---- Co.*-*------ 77---- ^o,5>3! 4! 5!

л / \ , /  \  / , ( * - X * ) 2 , (X - X k) 3 „  , ( x - x * ) 4 „sk(x) — У к "Ь (x xx) yk H------ 2j---- Q.ad------ Ti---- C*,3H------ ------ Ckt 4,3! 4!

Sn-i(x) = Уп-1+ (х -х п- 1)у'п- 1+ (̂Х *” 1- C n- 1,8+

, (лг—лг„_х)3 „  , ( х - х „_4)4 „Н-------т;----- o„_1>3i------- --------o„_li4.
3 !
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Similarly to the procedures in Theorems 1 and 2, we obtain:

(2.27)

(2.30)

(2.31)

(2.32)

12 6 
C n - 1 ,2  Уп (Уп Уn 1 h n - х У п —l )  Г (Уп У п - l)s

“ л - 1 “ л -1

(2.28) Сп. 1,3 = - У - у : - 1̂ - ( у п- у п. 1-И п. 1у ' . 1) + ^ - ( у ' п-у 'п_1),
“ л - 1 “ л- 1 “ л - 1

(2.29) Сл_а,4 =  1̂ - у ; '  + - ^ - ( У п - У п - 1 - К - 1у '- 1) - - ^ - { у : - у ' - 1У,
“ л - 1 “ л -1  “ л -1

Ск.З— Y  ^ к1+ ~Ук~^кУк) Y  (Ук + 1 ~  Т*)>

12 72 24
Q ,4 = "^г Q .2—щ(Ук+1~Ук~ккУк)+-^(Ук+1У—Ук)>

12 6
С*+1,2 —с *,2 =  ^ (Т *  + 1 — Ук~ЬкУк)~У'г̂  (Ук + 1~Т*)‘>

(2.33) С0,з -  ^ ( C 1,2- y ; ) + - ^ ( y 1- y 0- ^ - - y - 3 ’ő ) - ^ - ( j í - T Í - / » o j ; ) )

(2.34) С0,4 =  - ^  (Сх,2 -  yő)  -  [у, - у 0 -  h0y'0 - - ^ у 0") +  1щ -(у[-у'0 -  h0y"),

(2.35)
„  _  60 ^  -л , 720 ( , ,  К  Л  360 . , , . _О), 5 — ^з"(^1 .2  Т о) +  |j5 (T i То ^оТо ~2~ У°)  ^4 Ст 1 То ^оТ о) s

from which we see that the coefficients are determined uniquely.

3. Error bounds

In this section we shall obtain error bounds of the spline functions sA(x), sA(x) 
and §л (x) considered in Section 2 when they are interpolant of a certain function 
f ix ) .

We shall first prove

T heorem  4 . Let A be the uniform partition o f I with hk=h= l/n and /£ C 4(7). 
Then for the unique spline sA (x) o f Theorem 1 with yk= f(xk), yk =  f" (x k), k = 0, ..., n; 
y'o=f(xo), y ’n= f'{xn), we have

(3.1) №r)( * ) - / (r4*)l ^  K ^ - 'c o ^ h ) ,  r = 0, ..., 3,
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Ki =

w here
62 when х€[х0, x j  
6 when x6[x*, **+i]
Ih when x € [ x „ - i ,  x j ;

and a>i (h) is the modulus o f continuity o f  / (4). *
For the proof of this theorem, we shall need the following 
L em m a  1. Let /£ C 4(/). Then 

(n - k )
ek, 1 ■h?(X)x(h ), к  =  1, n — 1,

where
(3.2) ekil = akil—yk.

P r o o f . If / 6C4(/), then from (2.12) on using Taylor’s formula, we have

e k . i + e k + i , i  = ( a ^ - y ' J H O k + i . x - y ' k + i ) = ^ [ Г * К $ к ) - 2 р ч Ы + / ™ Ш

Xk 1Jk, Cfc ^k + l> к “  1» •••» ^  2,
and from (2.9) 

(3.3)
h3

ап -1 ,1 —Уп-1 = - f I [ f l4)( ^ - l ) - 2 ß i 4 ' l n - l ) + f (t)( in - l) ] ,

^71-1 £ n - l í  *1п- Is Сл- Х ^ - ^ ц .

We easily see that the system of equations (3.2) and (3.3) in the unknowns ektl, 
к — 1, ..., n— 1 has a unique solution:

where
e k , l  - ■ d k — d k + i + d k + 2  — • • • + (  1)" 1 d „ _ x,

dk =  - ^ [ / (4)( ^ ) - 2/ (4)Ы + / (4)(М].

h3It is clear that dk^ —— (oi {h). Hence, о

gfc.i £  ^ ~ ( j ~ h3c0i(h), k = l , . . . , n - l .

P r o o f  of Theorem  4. Let x£[xk, xfc+1], k = l , ..., n —2. From (2.5) we have

sf(x) = ак,3+(*-х*)а*,4
and

f "  ( * )  =  у Г  +  ( * - * * )  / (4 )  ( a * ) ,  <  <xk  <  x .

* From now on 4  denotes the uniform partition of I  with hk =  h = l/n , and y k = / ( x k), y'k =
=/'(**) etc., k = l , . . . , n .
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Then,
K ' ( x ) - f ' " ( x ) \  á  \ак1а—у ь \ + ( х —x k) \a kA —/ (4)(ak)\. 

From (2.13) and (2.14) by Taylor’s expansion we have

a*,3 -УГ = j [ f (i)( b ) ~ f (i) O —
and

24
^ . 4 - / <4)Ы  =  - p - ^ 1 + [ 2 / (44 4 ) - / (4)(Ct ) - / (4)M

from which owing to Lemma 1, we get

and

Thus

Set

\Ок,л~Ук \ S  у [ 4 ( л - / с ) + 1 ] ю 4(1г) s 2oj4(/j) 

( х - х * Ж 4-/< 4>(а*)| =£ h[4(n — fc) + 2]a>4 (/г) ^  4ю4(й).

кГ(* )-/~ (* )1  s  б© 4( й) .

g(x) := s'i(x)-f"(x).

Then by (2.1), g(xt)=g(xi+1)= 0  and so by Rolle’s theorem, there exists 
ßk (Xk~= ß k^xk+1) such that

g ' ( ß k )  =  s Z ( ß k) - f m { ß k )  =  0,
from which we obtain

\4(x)-f"(x)\ =  \ J  Ш f  K ( t ) - r { i ) \  dtsóhco^h).
ßk ßk

Carrying on similar arguments we easily see that

l4r)( * ) - / (r)MI ^  6й3- гю4(й), r = 0, 3.

For and x„_iSxáx„, we have from (2.5)

\so(x)-f"'(x)\ S . |a0,3 - K I + Ä |a 0,4- / W ( r o ) | + - ^ K 5|,
and

iC i(* )- / '" (* ) i ^  ian- i .3 - j ; i i i+ / i i f l„ - i .4 - / (4)(r„-i)i,
where x„<r0<x, x„_1<r„_1< x r.

From (2.10) and (2.11) we get

K —1,3—jC-il = 2 hcoiih) and k - i , 4- / (4)0,„-i)l = 5co4(h)
so that

I C i « - / '" W I  S  7hoh (h).
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Similarly by (2.15), (2.16), (2.17) and Lemma 1, we have

and

Hence

24К з - K I  = 4Jim4(/!)+— е1Л ^  4co4(/i), 

K 4- / (4)(r<>)l ^  28ca4(h) + — e i, 1 S  28w4(fc)

1̂ 0,5I
60 .... 360 60 ...m4( / i ) + - —  Wi(h).

K (x ) - f" '( x ) \  =i 62co4(h). 

By the method of successive integration we obtain

I4r)( * ) - / (r)(*)l ^  62h3~'co4(h)
and

К гШ - Г 'К х ) \  ^  Ih'-'cotih),
valid for r= 0 , ..., 3.

Theorems 5 and 6 below give the error bounds for the spline functions sA (x) 
and sA (x) of Theorems 2 and 3 respectively. We omit the proofs as the same can be 
carried out on the pattern of Theorem 4.

T heorem 5. Let /gC 4(/) Then for the unique spline s4(x) o f Theorem 2, we have

(3.2) |s T ( * ) - / (r)(*)l ^ K 2h*-rco4(h), r = 0......3,
where

K2=  (( 
HÍ65 when v€[x0, x j  
Ah when л:6[л:к, jc*+i], к =  1, ..., n — 1.

T heorem 6. Let /£C 4(/). Then for the unique spline sA(x) o f Theorem 3, we have

(3.3)
where

l^ r)( * ) - / (r)(*)l S  K3h3~rco4(h), r = 0 , . . . ,  3,

62 when
K3 = - 18 when k =  1, . ., и —2

14fi when хе[хп-г, x„].

4. Conclusion

We find from our study that the spline interpolants sA and sA give the same order 
of approximation to any function Д С 4(7). The order is better in the end interval 
[x„_!, x„]. Even the interpolant sA, where the value of the function is not prescribed 
at the knots, yields the same order of approximation which is better in the whole
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interval /  except in [x0, x j. Thus sA may be preferred to sA and sA in problems where 
the function values are not known.
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FOURIER TRANSFORMATIONS OF FUNCTIONS 
WITH SYMMETRICAL DIFFERENCES

M. S. YOUNIS (Irbid)

I. Introduction

E. C. Titchmarsh [1, Theorem 84, p. 115] proved that if f ( x )  belongs to LP(R) 
such that

\\f{x+ h)-f{x)\p = 0 (h a) as h — 0, 1 <  p ^  2, 0 < o i S l ,
then its Fourier transform /(и) belongs to Lp(R) if

p+ctp- 1 p — 1
The present author see [2] and [3] has extended Ticthmarsh’s theorems to higher 
differences of functions in one and several variables.

In [4], R. G. Mamedov introduces the concept of symmetrical differences defined
as

x, h) = Aßf(x) + A1hf(x )

where Aß1 f  (x) denotes the mib difference of/  (x) with step h with respect to x.
Our aim in this paper is to show that the conclusions of Titchmarsh’s theorems 

are still the same if we employ the difference <pm (f  x, h) instead of A™ f  or A”Lhf.

2 .  Definitions and notations

Here we adhere to the definitions and notations commonly used in the liter 
ature.

The Fourier transform of f  (x)£Lp(R), l ^ p ^ 2  is defined as 

/(«) = -7=  /  e~iuxf(x )  dx (u€R).

The Lipschitz class in LP(R) is the collection of functions/ (x) for which

\\f(x+ h)-f(x)\\p = 0(h*)

0 < a g  1, as h-»Q holds, where || . ||p is the usual L p norm.
The mtb difference of /(x ) with step h is denoted by

w  я х )  = 2  ( -  i)m_1 ( 7  ) / ( * + m ,1=0 '  1 >
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A1hf( x )  with step (—h) is defined similarly. For functions of several variables, we 
write f ( x ) = f  (xj, x2, ..., x„) (x£R")- The Fourier transform /of/is defined as

/(« !, U2, ..., un) =  f  e~i(u-x)f(pc)dx (и =  ( U j , u n)6Rn)

where (u, x)=ulxi+u2x 2+ , ..., +u„x„, R" is the «-dimensional Euclidean space.
The corresponding definitions and notations for Fourier series can be introduced 

in a similar manner.

3. Main results

In [2] we proved the following
T heorem  3 .1 . Lei /(x )€ L p(R), l < p ^ 2 ,  and let

IM/T/OOIIp =  0(h*), 0 < a s l  as h -  0. 
Then f  (u) belongs to L^(R) i f

(2) ß ^ P ’ =p+<xp—\ ~  p — 1
We now generalize Theorem 3.1 as follows.
T heorem  3.2. Lei /(x )€ L p(R), l< p ^ 2  suchthat 

(3) \\<pmf\\p = 0(h*), 0 < a S l ,  «5 h - 0.
J/ien conclusion (2) holds.

P r o o f . Following the notations in Section 2 we see that the Fourier transform 
of A™ f  is equal to (eihu— 1 )ш/(и ) (m€R), and similarly, the Fourier transform of 
A1hf  is equal to (e~ihu— 1 )mf  (u). It is easily seen that

( T
sin -y-J

andthat

(e~ihu -  l)m =  e- ihum/i(-2 i)m sin“ ( - ? - ) )  •
This shows that the Fourier transform cpm f  of <pmf  is equal to

( -2 0 g i f t u m / 2  ^ s j n  J ^ ! _ j  _^e -ihum/2  j s i n  — / ~ ) j  j / ( u )

Applying the Hausdorlf—Young theorem to (3) we obtain

(4) ( - 20" М 2  ^ s i n  + e -ihuml2  J s i n  ( ~ ^ - ) ] m  ] / ( m )

^  M\\cpmf\\p =0(h%
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Since the exponentials are majorized by their modulus which is 1, the left hand
(

uh 
sin ~2~J / ( M)

Thus we can write

This gives

and this gives

l(sin-T-) /(M)

I b f )  /(m)s  M\\cpmf \ p = 0(h%

du = 0(h*py /p = 0(h*p)

21 h
f  |wm/ | p' du = 0 [/i(5I_m)p'].

The rest of the proof follows exactly that of Theorem 84 [[1] p. 115] and (2) 
holds.

R emark 3.3. As we have pointed out in [2] and [3] the validity of (2) does not 
depend on the order m of the difference A™/. This suggests a further generalization 
of Theorem 3.2 where cpmf  is replaced by a combination of differences of orders 
mlt m2, ..., mk respectively. Thus we can take

(5) < Р т х, т г . . . . . . m k ( f >  X ’ h )  =  i . A ± \ ± A ± \  +  ’  • • •>  ± A ! \ ) A X ) .

By taking the Fourier transform of the last quantity and applying the Haus- 
dorff—Young theorem, the left hand side of (5) will be replaced in this case by an 
expression of the form

(5У ||{(si°4 ? -) ’+ ( ™ - т ]  ' + - + ( * т |  * H „ s

S М 1ф.„„ ../1)1, =  O ft-).

Since the orders mlt m2, ..., mk do not affect the course of the argument, the 
hand side of (5)' can be replaced by I

I (sin , =  0 (h%
Thus

2 lh 2/ft

/  \(uh)m' f \ p' du =  0 (h * p'), I  \umj f \ p' du =  0(h<a- m>p'),

and the same conclusion (2) holds.
In the one dimensional case, still a further extension is feasible. The differences 

can be taken with different steps hlt h2, ...,h k. Thus we take

(pmi.m,...mk( f,x , hx, hk) = ...,± A m±\ k]f(x),
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and consequently

lli’mi, ... mkC/> -J l̂) •••> hk)\]p = О (hi1 + h%2 + ,  ...+hlk) 
where 0< a 1; a2, <xkS 1.

Here again we have proved in [2] that the final result does not depend on the 
h’s since they all go to zero, but it certainly depends on the a’s, and in this 
case the modified conclusion (2) states that/belongs to the intersection of the spaces 
L?i where

_ J L _  <  f t s

or in other words, /  belongs to U  for ß = max (ßt , ßk) which means that

for a=m in (a1; a2, ..., <xk).

P
p+ ap - 1 ß ^ p '

4. The special case p= 2  and 0 < a < l

In this section we try to examine the conclusion of Titchmarsh’s Theorem 85 
[[1], p. 117]] which was also generalized to higher differences in the following 
manner.

Theorem 4.1. Let f ( x ) £ L \R). Then the conditions
(6) \\A™f\|2 — 0(hx), 0 <  a <  1 as h -*■ 0,

(7) [ f  + f  \f(u)\2du]=  0 ( X - 2*) as X -oo
oo X

are equivalent.

Here again the order m does not play any crucial role in the proof and in the 
conclusion.

If we replace A™fu\ (6) by the quantities

<Pmf = W + A Z d f ,

Vmumt..... mk( f  X, h) = [Am±\  + А Ц ± .. .± A ^ h]f{x)

or even by the more general condition

(8) 1 [A?hl± A ^ ± . . . ± A m±\ l f l 2 -  0 № + h p  +  . . .+ l# \

then we can arrive at the first part of the result i.e (8) implies (7) or it implies that

U  + f ]  \?\*du =  0[X-*‘]

Acta Mathematica Hungarica 51, 1988



FO U R IER  TRANSFORM S O F FUNCTIONS W ITH  SYM METRICAL D IFFER EN C ES 297

as where a=min (ax, a2, ak). But the last few steps in the proof of the
second part become artificial in the sense that we cannot conclude from the fact

oo

(9) j  I sin uh)mf(u)\ du =  0(h2“)

that a was a minimum of a1( a2, ..., a* or even that (9) leads to
/ ||d j r± d M /p d jc  =  0 ( n

or whether m was an arbitrary choice from among m1, m2, ..., mk and so forth.

5. Functions on other groups

In the first place, the situation of periodic functions on T  leads exactly to the 
same results with the necessary modifications for the Fourier series. The main point 
now is that under conditions similar to those in the previous theorems, the sequence 
of Fourier coefficients /  (и) belongs to the sequence space lß or to the intersection
к

n  Ih where

ß j ^ p 'p + c t j p - 1
as the case might be.

For functions on R and T" we would like to confine ourselves to functions of two 
variables in R2 for the sake of brevity. Along the lines of Theorem 3.2 we state

T heorem  5 .1 . Let f(x ,y )£ L p(R2), l < p s 2 ,  andlet
\ \ ( А 1 \  +  А Г ) ( А " 1 к ± А 1 * ) Д р  =  0 ( h * ' k ° > ) .

Then / (u, v) belongs to Lßl П L ßi where

ßt i = 1, 2.p+<xip - l i 
The proof, as in the previous cases, yields

J  J  |(sin w/i)mi±(sin Mh)ms](sin uk)ni±(sin uk)^]f(u, v)\p' du dv ==
J R!

=  0[h°ip'к*гр'].
For 0< mS  l/h, 1 /к, and working with either mk or m2 for the differences

in x k and with nk or in with respect to у we arrive at the estimates
1lh Ilk
f  f  \(uh)m(vk)nf \ p’dudv = 0(h*ip'k“*p'),

0 0 
1 lh Ilk
f  f  \umvnf \ p'dudv = O lh ^ - ^ " 'k ^ - ^ p'] 
0 0

and the proof gives the desired result.
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R em a r k  5.2. In view of the analysis of 3.3 we can formulate Theorem 5.1 in a 
more general setting by supposing that

| | ( i ^ ) ( i ^ ± 4 )/|li> =  0 C ( i ^ ) ( i fc‘')]. 0 < a ^ l ,  O ^ y .tS l ,
j = 1 i= l  1 1

and the conclusion is that the Fourier transform /  (и, v) belongs to Lß(R2) where
L '= m  ^ ] n [ n  щ .

j  i

R em a r k  5.3. The analysis in Theorems 5.1 and 5.2 shows us what kind of gen
eralizations one would expect along these lines when dealing with functions on R" 
and on T" so there is no need to state the theorems in that direction; it would be 
rather complicated to do so.

In the particular situation when p=  2 and oc1,...,ock are less than 1, we can 
prove the first assertion of the two equivalent conditions for functions in Rn and T" 
by using these generalized forms of differences. As we pointed out earlier, however, 
to prove the converse would be rather artificial. It is worthy of mentioning at this 
point that in the simplest situation of Д  L2(R2) o r/is  in L2(T 2) we do not have two 
conditions only, rather, we have to prove the equivalence of four conditions each 
containing an estimate of the Fourier transform (or the Fourier coefficient in the 
case of T z) with respect to certain weights alon g four different regions of the plane such 
as

f  f  |/(u, v)\2dudv = 0 [ X -2* 'Y -2x*],
X Y

and

X oo

/  /  \u-?(u,v)\2dudv = 0 [X -4 1+̂ Y - 2x*],
0 Y 

Y oo
f  f  \v f(u ,v ) \2dudv = 0 [ X -2* Y -2li+^ ] ,
0 X 

X Y
f  j  \uvf(u,v)\2 = 0 [ X - 2̂ +1̂ Y - 2̂ +1>]
0 0

as А', У— oo with similar estimates for the other parts of the plane.
It is clear that the mere statement of theorems along these lines for functions 

of three or more variables in Rn and T" becomes very exhaustive and complicated, 
but its general flavour is apperent.

R em a rk  5 .4 . In the foregoing analysis we adhered to the important case 0< 
< a ^ l  for the Lipschitz functions. If, however, a> 0  then let 0L~r+a' where 
r is a positive integer and 0 < a '< l .  In this case it is all the same whether we make 
the assumption that |M i/ ||p = 0 [/i“] or ||zfÄ/ (r)||p= 0 [/ia'].

If we employ these stronger conditions in the previous theorems we will arrive 
at conclusions that reflect the entry of the orders of differences and hence the orders of 
the derivatives of / (x) in their influence on the exponent ß of the dual space U  which
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contains the Fourier transform of/. The conclusion reads in this case

P
p-\r(r + <x')p—\ ß ^ P '

R em ark  5.5. In view of Walker [5] and [6] and in view of the work done by 
Younis ([3], chapter3) on extending Titchmarsh’s theorems to compact metric groups 
we can assert that by using the general forms of differences in the spirit of Mamedov 
we are able to extend the previous theorems to Lipschitz functions on compact zero 
dimensional groups. We refer to Walker [5] for definitions and notations, and we 
shall merely state some theorems in this directions. Thus we have

T heorem  5.6. Let G be a compact Abelian metric zero dimensional group with Г 
as its dual group, let

\\<Pmf\\„  = 0 (h '), 0 < a S l ,  h -  0

where (pnf=(AZ + A1h)f(x ).
Then the Fourier transform f  belongs to Lp( f)  for

P
p + a.p — \ ß ^  P'.

The proof is just an adoptation of the corresponding original case, we can even
к

replace cpmf(x ,  h) with the more general form 2  A™1, f
1

We conclude this paper by hinting that the case a<  1 and p —2 can be settled 
in one direction only, and that there is a strong possibility that the same analysis can 
be done for functions defined on compact finite dimensional groups. However this 
shall be dealt with a forthcoming paper.
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THE COMPLETELY PRIME RADICAL 
IN NEAR-RINGS

N. J. GROENEWALD (Port Elizabeth)

§ 1. Introduction

Completely prime ideals have been studied for associative rings by Andrunakie- 
vic and Rjabuhin in [2] and also by McCoy in [5]. The purpose of this note is to extend 
these results to near-rings. We define a completely prime radical and show that it 
coincides with the upper radical determined by the class of all non-zero near-rings 
without divisors of zero. We also give an element wise characterization of this radi
cal.

§ 2. Definitions and preliminary results

Throughout N  stands for a zero-symmetric right near-ring. For terminology and 
notation we shall refer to [6]. The ideal generated by adN, is denoted by (a).

An ideal /  of N  is said to be
(i) Completely prime if a,bdN, abdj implies ad I or bdL
(ii) Completely semiprime if af N,  a2dj, implies ad I. It is easy to show that I 

is completely semiprime if a”dl, n a positive integer, implies ad I-
Another way of stating the above is that IdN  is completely prime if the factor 

near-ring N/I has no nonzero divisors of zero. An ideal I is completely prime if N /I 
has no nonzero nilpotent elements. We call N  a completely prime (completely semi
prime) near-ring if (0) is a completely prime (completely semiprime) ideal.

L emma 2.1 . Let I  be a completely semiprime ideal in the near-ring N and let a, b 
be elements o f N. Then each o f the following is true.

(i) I f  abdl then bad I.
(ii) I f  abd1 and xdN  then axbdl

(iii) I f  anbd I then abdl-

Proof. Similar to that for rings (cf. [6], Lemma 1).

C orollary 2.1 (cf. [7], Proposition 9.37). I fN  is completely prime then ab=0=> 
=>axb=0 for every xdN.

The following lemma is an extension of a result proved by Bell [3] and 
Plasser [8].

L emma 2.2. The following assertions are equivalent for the ideal I  o f N.
(a) I f  a, b, ndN then abdJ^anbdl
(b) For every ndN then (I, n)= {xdN: xn d I}oN .
(c) For every S ^ N  then (/, S)= {xdN \xS^I}< iN .
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Proof. The proof is obvious.
Recall that an ideal I<iN  is prime if for a, b£N (a) (b) Я /  implies a(U or bf_l.
C o r o lla r y  2.2. I f  a prime ideal P is completely semiprime, it is completely prime.
P roof. Let a,b£N  and suppose ab£P. Let a f(a )  and b'£(b) be arbitrary. 

Since P is completely semiprime (P, b) is an ideal and because (а)я(Р, b) it follows 
that a'b£P. But from Lemma 2.l(i) we have b a f P, i.e. bffP, a'). Hence, as 
above, b 'a fP  from which it follows that (a) (b)я  P. Since P is a prime ideal, a£ P 
or b£P. Consequently P is a completely prime ideal.

§ 3. The completely prime radical

A subset M  of A is called an m-system if for all a, b£M  there exist a f{ a )  and 
b f(b )  suchthat a f f M .

Lemma 3 .1 . Let N be a near-ring. I f  M  is an m-system and I  a completely semi
prime ideal such that МГМ—0 then there exists an ideal P which is maximal in the set 
o f completely semiprime ideals which contain I  and do not intersect M. P is completely 
prime.

P roof. The existence of such an ideal P  is an immediate consequence of Zorn’s 
lemma. We proceed to show that P is completely prime. Consider a fN  with a$P. 
(P, a) is completely semiprime: Let tndP, a), n a positive integer, i.e. t"af P. From 
Lemma 2.1 (iii) we have t£ (P, a). We show P= (P,a) for each o f  P.

(i) Let mjP, a£M  and suppose (P, а)ПМт*0 with, say bffP, a)C]M. Since 
ba£ P it follows from Corollary 2.2 that (Ь)(а)яР. Since M  is an w-system (b)(a)C\ 
HA/V0 and consequently PC\M ^0. Contradiction, hence (P,a)C\M=0, and 
by the the fact that P is maximal with this property, we have P =  (P, a).

(ii) Suppose a(fP, a ^M  and (P, a)C\M ^0. If cZ(P, а)Г)М  then ca£P with 
c$P since MC\P=0. From (i) and Lemma 2.1(i) we have a fP , c)= P. This 
contradiction implies (P, a)= P.

Finally, we show that P  is completely prime: Suppose pq£P  with q$P. From 
the above (P,q)= P  and p£(P, q)= P. This completes the proof of the lemma.

D e f in it io n . If А<з N, we define the completely prime radical (A), of A as the 
intersection of all the completely prime ideals in N  containing A.

T heorem  3.1. Let N  be a near-ring and A an ideal o f N. A is completely semi
prime i f  and only i f  A —e6{Ä).

P roof. Clearly, if A — ̂ (A )  then A is completely semiprime since the intersec
tion of any number of completely prime ideals is completely semiprime.

Suppose A is completely semiprime and let SP= {Pa : А я Р а \ Px completely 
prime ideal in A}. .9V 0 since N££P. Clearly А я  ПР7 . Fortheinclusion in the 
other direction, let a$A. Let M —{an: n a positive integer}. Since A is completely 
semiprime, M  is an m-system such that MP\A = 0. From Lemma 3.1 there exists 
a completely prime ideal P which contains A and do not intersect M. Since a$P  
we have ű |  П Р, and therefore ПPx£ P, completing the proof.
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T heorem  3.2 (cf. Pilz [7], Theorem 9.36). A near-ring N without nilpotent ele
ments is isomorphic to a subdirect sum o f near-rings without proper divisors o f zero.

P ro o f. If N  has no nonzero nilpotent elements, then (0) is completely semi
prime. The rest follows from Theorem 3.1.

An ideal P is called a minimal completely prime ideal of I if P is minimal in the 
set of completely prime ideals containing 1. In [9] Van der Walt proved that the prime 
radical of an ideal I  coincides with the intersection of all the minimal prime ideals of 
I. We have the following result for (/).

P roposition  3.3. I f  I  is a completely semi-prime ideal o f N, then I  is the intersec
tion o f all the minimal completely prime ideals of I.

P roof. The proposition will follow from Theorem 3.1 as soon as we have proved 
that any completely prime ideal containing 7 contains a minimal completely prime 
ideal of 7. This follows from Zorn’s lemma applied to {P-=a N \P ^ I  and P completely 
prime, P  } and the fact that the intersection of a linearly ordered set of completely 
prime ideals is completely prime.

From [9] we know that the prime radical 2P (TV) of the near-ring 77 consists of those 
elements nd N  with the property that every m-system which contains n, contains 0 
also. We now give a similar characterization of the completely prime radical (77). 
Obviously, if 7 is an ideal of 77, then 7 is a completely prime ideal if and only if TV— I  
is a multiplicative system, i.e. if a,bdN —I  then abdN—I. The subset {x€TV| 
whenever xdG, G a multiplicative system, then 0dG} is contained in 'W(N). This 
inclusion is, in general, strict, for if 4> (TV) is equal to this set, T? (77) is a nilideal. 
Indeed, if xd^(N ), let G= {x, x 2, x3, x4, ...}. Then G is a multiplicative system. By 
the assumed equality, 0dG follows which implies x is nilpotent. Hence (€(N) is a 
nilideal. However, by [4] we know that, in general, cß (N )7i Ar{N) the nilradical of 
the near-ring TV. Motivated by [10] and [11], we make the following

D efin itio n . An mc-system in 77 is a pair (G, P) where P is an ideal in N  and G 
is a subset of 77 such that G П P contains no nonzero elements of N  and for every 
adG, abdG for all b$P.

Clearly, an ideal 7 of N  is completely prime if and only if (N — 7, 7) is an mc- 
system.

We can now prove
P roposition  3.4. For any near-ring 77, %(N)= {xdN\ whenever xdG, (G, P) 

an mc-system for some ideal P, then 0£G}.
P roof. Let xd ^ (N )  and suppose xdG, where (G, P) is an mc-system. If 

0$G, then GOP—0. By Zorn’s lemma, choose an ideal Q of N  with P z Q  and Q 
maximal with respect to G fl6 = 0 . Then x(IQ. Hence x$P. Q is completely 
prime: Suppose abdQ and adQ. We show bdQ- Suppose bdQ- The maximal 
property of Q implies that Q + (b) contains an element gdG. Since a, bdQ and

<2 , we have a, bd P- From the fact that G is an mc-system it follows that gadG. 
Again, since bdP  and gadG we have gabdG. Hence gabdGPiQ. But this con
tradicts GC\Q=0. Hence bdQ must hold. Thus Q a completely prime ideal fol
lows.

The converse inclusion is obvious.

Acta Mathematica Hungarica 51, 1988



304 N . J. GROENEW ALD

§ 4. The generalized nil radical

For the notations about general radical theory in near-rings we refer to [12]. 
Let Л  be a class of completely prime near-rings. Clearly J t  is hereditary, i.e. if 
A £ J t  and Iо  A then IdJi. Let aUJ4 be the upper radical class determined by Л .
41 J t  =  {A: A has no nonzero homomorphic image in .Ж].

— {A: every nonzero homomorphic image of A has a nonzero divisor of zero}.
As in the case of rings [4] and [2] we call ШЛ the generalized nil radical and denote 
it by JAg.

T heorem 4.1. 'Ш.Ж~  Л ’ — {A: A a near-ring such that A = e£(A)}.
P roof. N£°llJ(=>N has n o  non zero  hom om orphic image in Л  =>N has no 

nonzero  completely prim e ideals =><&(N)=N. H ence Ы ^Л ' from  w hich it follows 
th a t °иЛ<=Л'.

For the inclusion in the other direction, we have И ^ Л ' =>N~r€(N)=>N has no 
nonzero completely prime ideals =>N has no nonzero homomorphic image which is 
completely prime. Hence М^ШЛ and this completes the proof.

Let t3) denote the class of all distributilvey generated near-rings. If Л  is a class 
of prime near-rings, Kuarli [5] defined the calss Л  to be ^-special if Л  П is hered
itary with respect to ideals and if C/-=a S<iNd3> and S|U dЛ  imply U<i N and 
N/(U: Б )£Л , where (U : S)= {ndN: nSzU }. Kaarli proved that if Л  is the class 
of all prime near-rings, then Л  is ^-special with corresponding radical the lower nil 
radical.

In what follows, let Л  be the class of all completely prime nearrings.
L emma 4.2. I f  A^a ■ N and А£.Ж, then NdM , i.e. Л  is essentially closed.
P roof. It is easy to check that l(A)= {ndN: nA= 0} is a two-sided ideal of N. 

But (l(A)(~)A)2z l(A ) ■ A=0. Since l(A)DA<iA and А £Л , we have l(A)C)A= 
=  (0). Since A-a • N, it follows that 1{A)= 0. Let x ,y£ N  such that x,y?±0. 
Since l(A) = ( 0), we can find a,b£A  suchthat xa and ybA  0. Furthermore, we 
have ax A 0 for if  ax=  0, then xaxa—0 and since A 6 Л ,  it follows that xa= 0. 
Now we have ax-ybA  0. Hence xyAO. Thus N dJt.

T heorem 4.3. The class Л  o f all completely prime near-rings is 3>-special.
P roof. ЛГ\3> is clearly heriditary. Furthermore, since the class of all prime 

near-rings is ^-special and since a completely prime near-ring is also a prime near
ring, we have that t/ о  S < jV fS  and S/Ud Л  implies I/«a N. We only have to show 
that (U : S) is a completely prime ideal in A. Let xdN  suchthat x2d(U: S). Suppose 
xd((U: S), i.e. there exists bdS  suchthat xbd.il. We also have bxd U, for if bxd U 
then xbxbdU  and since S/U dЛ , i.e. U completely prime ideal of S, it follows that 
xbdU.

Let adS  be arbitrary. Since x2d(U: S) we have x 2adU. Therefore bx2adU.
From this and the fact that bx^U, we have xadU. Consequently, xS ^U , 

i.e. xd(U: S). Hence (U: S) is a completely semi-prime ideal. But from Kaarli [5]
(U: S ) is a prime ideal and therefore Corollary 2.2 implies (U : S) is a completely 
prime ideal. Hence N/(U: Б ^ Л .
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T heorem  4.4. I f  J i  is the class o f all completely prime near-rings, then for every 
N £9  and I<aN we have ^ g{N )fM = jrg{N) and V(N)=yVg(N).

P r o o f . We show that the conditions of [1], Theorem 1 are satisfied. This follows 
from the fact that J t  is ^-special and Lemma 4.2. From [1], Theorem 1 we have JfQ 
is hereditary and from [1], Proposition 3 we have hereditary. Hence for every
N£3> and every ideal /  of TV we have J/'g(l)= N C\jVg{N). Let N£<2>, we show that 
(# (N )= Jrg(N). Let {Ta} be the set of all ideals T  of N  for which N/TX£J(. Then 
we have Jv'g(N )^B =  П Tx. Let us suppose oVg(N )^B . I n this case we have Jfg (B)~  
= Br\^Vg(N)= J^ (N )^B . Hence there exists an ideal C<sB with 0^В /С £Л . 
From Theorem 4.3 we have N/(C: B )£Jf. Consequently (С:Л)е{7’а). (С:В)П  
CiB—C for if х 6 (С :5 )П Д  then x£B  and x2fC . Now, since B/CfJff, we have 
xdC. Hence (C : B)C)B^C. Inclusion in the other direction is clear. Thus B — 
=  Г\Та=ВГ\(С: B )—C9±B a contradiction. Hence B = Jfg{N)=C{N).
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О СРЕДНИХ ДЛЯ ЦЕНТРИРОВАННЫХ 
СИСТЕМ ФУНКЦИЙ

А. В. БАХШЕЦЯН (Ереван)

1. В работе [1] К. Тандори рассматривал средние для систем стохасти
чески независимых функций. В данной статье переносятся на центрированные 
системы функций результаты, полученные в [1]. Причём метод доказательств 
нами также заимствован из работ [1] и [2].

Напомним, что система на [0,1] интегрируемых по Лебегу функций Ф — 
— {(Рк } (конечная или бесконечная) называется центрированной, если для любого 
л и любого Л £^(Ф ) (^„(Ф) — минимальная ст-алгебра, по которой измеримы 
функции (Pi,(p2, ■ • •, <Р„) имеем1

(1) f ( p n+1(x)dx = 0.
Л

Кроме того, мы будем предпологать, что
1

f  <Pi(x)dx =  0 
о

1
/  cpl(x)dx = 1, л = 1, 2,.. ..  
о

Нетрудно проверить, что при этих условиях система Ф будет ортонор- 
мированной.

Пусть 1ёАГ-=с«>. Через ß  =  ß(°°) обозначим класс всех центрированных 
систем, удовлетворяющих условиям (2) и (3), а через Q(K) — класс центри
рованных систем, которые кроме (2) и (3) удовлетворяют также условию:2

Ы х ) \ * * -К  (*€[0, 1]; л = 1, 2,...).

Очевидно, для любых Кг и К2 (1 < <  /€2 <  °°)

(4) 0(1) с  й(Кг) с  й(К 2) с  Q.

1 Такие системы иначе называются мартингальными разностями, а частные суммы  
рядов по этим системам образуют т.н. мартингальные последовательности.

* Из доказательств утверждений будет видно, что ограничение (2) не является сущест
венным: мы принимаем его для удобства выкладок.

(2)

и

(3)
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Далее, зафиксируем положительную неубывающую последовательность 
!={/„} с lim Я„ =  °°, и для бесконечной системы Ф= {срк}к=1П-*- 00
и числовой последовательности будем рассматривать средние

1 "<тп(х, а, Ф ):=-у- 2  аксрк(х) (п = 1, 2, ...)•
К к = 1

Через М(К) (1ёАГ^°°) обозначим класс всех числовых последователь
ностей а — {ак), для которых
(5) lim оп(х, а, Ф) — 0Л-*- °°

п. в. на [0, 1] для любой бесконечной системы Ф£С2(К). Очевидно, в силу (4), 
имеем при I

М (  1) з  М(Кк) =з М(К2) 13 М О ).
Оказывается (как и в случае ортонормированных систем стохастически 

независимых функций; см. [1]), справедлива следующая
Теорем а 1. Для 1

М(К) = М ( 1).
Замечание 1. Очевидно, что простейшая из центрированных систем 

— система Радемахера r ={/*}“=1 (Vt (x):=sign sin 2knx, k  —1,2,...), которой 
мы часто будем пользоваться, принадлежит ß(l). С другой стороны, не трудно 
убедиться, что система Радемахера по существу (с точнотью до эндоморфизма 
отрезка [0, 1]) единственный представитель (из числа бесконечных систем) 
класса £2(1), в том смысле, что если некоторая Ф =  {(р4}̂ 1 1б£2(1), то сущест
вует сохраняющее меру отображение Т: [0, 1]-*-[0,1] такое, что <pk(x)=rk(Tx) 
для любого к (см. напр. [5]).

Учитывая это замечание и в силу закона нуля и единицы, из теоремы 1 
получаем следующее

Следствие 1. Если для некоторого К<°° и для некоторой системы 
Ф£(2(0 на множестве положительной меры не выполняется (5), то п.в.

1 "lim —  2  akrk(x) ^  0.
К  *=1

Замечание 2. Пусть Q*(K), M*(K)(l s ^ s » )  определяются аналогично 
соответствующим классам £2(Ä), М (К ) с заменой условия центрированности 
на стохастическую независимость системы Ф = {<рк}Г= i , а условия (2) — на

1
(20 f  cpk(x)dx = 0, к =  1, 2,.. . .

О

Очевидно, при наличии (20, имеем: Q*(K)czQ(K) и, следовательно, М *(К)дэ 
дз М(К). Более того, в силу замечания 1, М*(\)—М(1) и, следовательно, 
М*(К)=М(К).
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В работе [1] доказано, что для 1 < К < ° °  М * (К )  =  М*(1)?±М*(°°). Отсюда, 
учитывая замечание 2, получаем.

Следствие 2. Если при некотором 1 для некоторой системы
Ф£й*(К) ап(х, а, на мноясестве положительной меры (и, следовательно,
в силу закона нуля и единицы, и.в.), то для любой системы Ф£ |J  Q(K) п.в.

Х<оо
выполняется (5).

Замечание 3. Из известной теоремы о сходимости мартингалов (см.
[3], стр. 278) и, учитывая замечание 11 работы [1], получаем, что а€М(°°) тогда 
и только тогда, когда

( 6) V а*
Х и  ] 2  
= 1 Á k

или, что то же самое, _М(оо)==м *(°°)-3
Отсюда в частности следует, что М(1) ̂
Для последовательности а={ак}, для любых К  (1 и целых М  и

N  (1 sA f^ V < °° )  определим
1

\\а, К, М, N\\ := sup I f  sup оЦх, а, Ф) dxY12',
®€ß(K) Y  M S t i S N  ’

\\a, K, M\\ := lim ||a, К, M, 2V|| (á<~);
N  -*■ oo

IK 1̂1 := К  К, 1|| ( - i~ ) .
Мы докажем также следующее утверждение (cp. [1]; теоремы IV, V, VI). 
Теорема 2. Следующие три условия эквиваленты:

(I) а € М И ;

(II) 1|а, Ч1<о°;
(III) lim la, о°, N II =  0.iV-*> oo

Замечание 4. Теорема 2 не переносится на случай 1 Точнее, при
1^К<оа  из lim IIa, К, V|| =0 следует, что а£М(К), но из ||а, К\\ не еле-

N-+ оо
дует, что а£М(К). Доказательство то же самое, что и в случае стохастически 
независимых функций (см. [1]; теорема V и замечание III).

Наконец, верна
Теорема 3. Пусть и Jim |[a, К, V|| =q (0-=р<°°). Тогда

а$М(К).
Вопрос о том, верно ли утверждение теоремы 3 при q = °°, как и в случае 

стохастически независимых функций, остается открытым.

3 Итак, мы имеем, что для любого К (1 ̂ As~) М(К)=М*(К), хотя при AVI класс 
Q(K) существенно шире класса Q*(K).

Acta Mathematica Hungarica 51, 1988



310 А. В. БАХШ ЕЦЯН

2. Прежде чем перейти к доказательствам теорем, введём некоторые вспо
могательные обозначения и докажем несколько лемм.

Пусть 1 Через Í2(°°) обозначим множество тех систем из
которые состоят из функций, принимающих не более, чем счётное число зна
чений,4 а через Í2(K) — множество систем из Q{K), состоящих из простых 
функций, т.е. функций, принимающих конечное число значений.

Для системы 'Р={ф„}™=1 и для с > 0  через (к= 1,2,...) обозначим
минимальную с-алгебру, содержашую множества:

i/í“1([me, (m + l)e)), т — 0, ± 1, ± 2, ...; п =  1, 2,.. .,  к.
Далее, пусть /  — интегрируемая на [0,1] функция, &  — некоторая <г-ал- 

гебра подмножеств, измеримых по Лебегу. Через E ( f  |J*), как обычно, обоз- 
начиваем функцию, интегрируемую на [0, 1], измеримую по 2? и такую, что 
для любого Л6.2Е

/  E(f\3?) = f f .  
л л

И наконец, пусть е — измеримое подмножество [0,1], 0 < /< 1 . Через 
е(0 и e(t) обозначим множества:

e(t) := еГ)[0, a); e(f) := еП[а, 1], 
где а такое, что mes е П [0, ос) — t mes е.

Замечание 5. Очевидно, что если W£Q(K) (1ёАГ<°°), то для любого 
в >0 и к  ff-алгебра ЗЕ£('¥) содержит конечное число различных атомов5: ех, ег,.. .,

П
...,с„, причём mes =  1. Если же ß(°°), то число различных атомов 

г=1
может быть и счётным, но опять же 2Ü mes ^ = 1.

Í
Л ем ма 1. Пусть 1 и Чг = {фк}^=1£й(К ). Тогда для любой после

довательности a={ak}k=i и для любых #£(0, 1) и в > 0  существует система 
Ф = {(рк}%11£й(К ) такая, что для любых натуральных чисел L ^ M S N  и для 
любого у

(7) m e s i x :  шах -4-1 У. ak(pk(x)\ >  у} ^
I M ^ n S N  Хп 'k± í  -Д

n m e s i x :  max - r - \  У  акфк(х)\ >  y + e \. v I MansN Xn lk± í  k 1 '  J

Д оказательство  леммы  1. Основная идея доказательства заключается 
в приближении функций системы Т  ступенчатыми функциями.

4 Или эквивалентные таким функциям. (И ниже всюду мы это будем предпологать.)
5 Напомним, что атомом ег-алгебры ЗЕназывается всякий элемент e^SEz mes е >  0 такой, 

что для любого Л^ЗЕ  mes (еС) А) ■ mes ( е л  Л )= 0 . Атомы е и ег считаем различными, если 
mes (еП ед = 0 .
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Предположим сначала, что 1 Выберем öd(0, 1 —q) так, чтобы
выполнялось неравенство

( 8)
i-(i-< 5)(i-< 52)2 ^  к ,

Пусть, далее, целочисленная последовательность {mk}k=1 такая, что

<9 > *> ■=  2 ^ г - т ‘п { г ^ Г ’ 4

Рассмотрим систему простых функций (см. замечание 5)

(10) Ф={<рк :=Е(фк\&1[‘*('П }^1.

Очевидно, в силу определения, система Ф также центрирована и \фк(х ) \^ К  
при х£[0, 1], к=  1, 2, .. . .

Имеем для любого к & 16 7

(11) 1Ы1* — Н к и - Ц ф к - М г  — 1— е к — 1—<52.

Далее, определим систему Ф = {<рк}Г=1 ■

<Рк(х) :=
при Хб[0, 1-(5);

ßkrk [ X ^+<?) ПРИ лг€[1 —5, 1], к =  1,2,...,

где числа ßk определяются из условия: j|cpfe|!2 = 1. Следовательно,

1 =  /  Фк [ - j z r s ) dx+ßks =  ( 1 - á )  /  vl(x)dx + föő.

Отсюда, в силу (11) и (8)

ß i = j  ti - ( I  - - m i n  s  1 (1 у 1 ó̂ ~  ^  * 2.

Получили, что система простых функций Ф равномерно ограничена 
(\срк(х ) \^ К  для любых xf[0, 1] и ^ =  1)- Центрированность системы Ф 
вытекает из центрированности систем Ф и {г*}. Итак, Ф^й(К).

6 В случае ак =  0 вместо (9) потребуем лишь: ekső* .
7 Через И • ||: , как обычно, обозначиваем норму в L3[0, 1].
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Пусть L ^ M ^ N .  Из определения системы Ф получаем

rnesix: шах 4-1 У. аксрк(х)I >  у} ^
I  M ^ n s N  Д„ \k± í  ' I

mes {*: 0 == х  <  1-S ,  j n a x ^ | Д  аксрк(х)\ >  у] =

= (l-<5)mes{x: jnaxN~ \ ^ a k<pk(x)\ > y j .

С другой стороны, в силу (9), для любого п = М, М+1, ..., N

4 -1  2  акФк(х)\- 4 - I Í  акфк(х) I— 2  \ак\\<Рк(х)-'1'к(х)\ =
К  k = L Án k = L К  k = L

^  4 - 1 2  aki/yk(x)|~ 4 -  2  \ak\ek £ - f l Í  а^ к (х ) \-е .
К  k — L  A l fc =  l  К  k= L

Следовательно,

mes{*:

S(l-<5)m es{x: | Д  >  У + е}.

Отсюда, учитывая, что 1 —S>q, получаем (7).
В случае К=  °о доказательство то же самое, даже более упрощается, так 

как не нужно следить за равномерной ограниченностью систем Ф и Ф. Лемма 1 
полностью доказана.

При помощи этой леммы докажем следующее утверждение.
Л емма 2. Пусть и l ^ M < N  <оо. Тогда

1
sup { [ шах а\(х, а, Ф) dxY 12 = ||a, К, М, АП|.

ФЦП(К) V  M S n S N  >

Д оказательство  лем м ы  2. Для К = \ лемма тривиальна, так как 
Í2(1)=Í2(1). Пусть 1 и q — произвольное число, меньше единицы.
По определению \\а, К, М, N\\ найдётся система ЧУй(К) такая, что

1
(12) [ шах о\ (х, а, \[/) dx S  q\\a, К, М, ЛП|2.

J M ^ n ^ N  О

Применив лемму 1 к системе W при

(13) е ^  min ( | / V  * ( /  mS  |(7"(х’ а’ 97)1
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получим систему Ф£й(К) такую, что при любом у
(14) mesbc: max \oJx, а, Ф)| =» у) s  q mes (х: max \о„(х, а, Ф)| >  у+е). х 1 Msnsiv пч '' 1 мелям 71 ’
Левую часть этого неравенства обозначим через F0(y), а правую — qFv (y + е). 
Известно,что

1 оо

/  J " axv а"(х ’ a>$)dx = 2 [ УРФ(У) dy.J M^n^N JО О
Следовательно, в силу (12), (13) и (14)

1 оо

/ maxM^n^N al(x, а, Ф) dx ^  2q I yFv (y+e)dy =

ОО ОО £ оо

=  2q f  ( y—e)F4,(y) dy =  2? f  yFv ( y ) d y - 2 q  f  yFv ( y ) d y -2 q e  f  Fr (y) dy  ё
e 0 0 г

/ g«

max <r*(x, a, V) d x - 2 q - — 2qe f  max \on(x, a, W)\ dx ^

— q2\\a, К, M, iV||2 —(1 —q)q.

Отсюда, в силу произвольности q, получаем утверждение леммы 2. Лемма 2 
доказана.

Лемма 3. Пусть Ф£й(°°). Тогда для любой последовательности {ск}“= г 
и для любого N

/  max ( Д  ск(рк(х))2 dx ^  А Д  с\

где А — абсолютная постоянная.

Доказательство этой леммы мы здесь не приводим, так как оно по существу 
не отличается от доказательства теоремы 1 из работы [4].

Лемма 4. Пусть 1 <АГ<°о и Ф={(рк} ^ 1£й(К). Тогда существует сис
тема {лк(х)}к=м, ортогональная на любом элементе о-алгебры ЗТ(Ф),8 такая, 
что
(15) |л*(д:)| =  2 для любого х€[0, 1] (k =  М, М + 1, N )
и

{ - ^ - + л Д х ) Г  €0(1).
I А  )к  = М

3F(Ф) — минимальная <т-алгебра, по которой измеримы все функции системы Ф.
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Д оказательство  леммы  4. Пусть {<?;}•=1 — множество различных 
атомов <т-алгебры .^(Ф):

П
(16) mes ег >  О ,  i =  l, 2, . . . ,  п ;  2  mes =  1.

i=l

Значение функции (рк на множестве ef обозначим через cokti(k= M ,M +  
К

+ 1 1= 1, 2,.. . ,« ) .  Имеем
(17) ш 1, к = М, М +1, N; 1 = 1 ,2 ,. . . ,« .

Далее, положим Д, , • = ( 1  + д-
Для любого i ( I á i á n )  определим индуктивно множества ЕкЛ (к= 

— М, М +1, ..., N): Еил  — одноэлементное множество {<?,}; для к
Ekli‘=  {^(Д—i,í)j Ei.tk—i,i)* &£.Ек—i#i}.

Очевидно, для любых к и / (М S k ^ N ,  1 S /ён )

(18) U е =
е^Ек,1

Положим для к = М, М + 1 ,..., N

пк(х) := 2  2  [ (1 - °>к, i) 1 (*> е Ок.д) - (1  +  °h. i)X(х, ё (tk<,.))]
i=i e í E k t i

(х(х, Р) — характеристическая функция множества Р).
Из определения пк(х) следует, что в силу (17) имеют место неравенства 

(15). Далее, для любых i n k  (1 =i=n, M ^ k ^ N ) ,  учитывая (18),имеем

/  пк (х) dx = 2  [О - сок,,) mes е (tkt;) -  (1 + сокз,) mes ё(1кз,)] =
е. e£Ek,i

=  2  [(1— г m ese—(1+«*,,) (1—Д>() mese] =  0.

Если же М ^ к < т ^  N, то

/  71к(х)пт(х) dx =  2  Г(1 — cOfc.i) [ л т(х)х(х, e(tkti) )d x -
е, е^Ек., 1 е,

-(1+ Í0 t.i)/  ят (*)х(х, e(ífcji))í?x] .

Но, так как e(tkti)£Ek + lti при e£Ekti, то

/ я т(*)х(*, e(/*.i))ííx =  /  nm(x)dx =  2  e'('m,.)) d x -
e< e(''c',)

- ( 1+iöm.i) /  *(*> [(l - m m,i)Firnes e '~
"('/.<) *'ce(C>

- ( l + « m . i ) ( l - / m , i ) m e s  e'] =  0.
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Аналогично, для любого e£Ekti

/  nm(x)z{x, é(tkii))dx  =  0.
ei

Итак, система {л*(х)} ортогональна на любом (/= 1, 2, ..., и). 
Из определения пк сразу следует, что Y  (рк(х)+пк(х) --1 П.в.

(k—M ,M + l, .. . ,N ) .  Остаётся проверить центрированность системы
í 1 1*l-^  % (*)+%(*) I . Для этого достаточно показать, что для любого т1а  J к=м
(M Sm SiV) и для любой системы знаков ек = ± \  (к=М, М + 1, ..., т )  имеем

(19) mesjx: ■̂ ■срк(х)+пк(х) = ек, к = М, М + 1,..., т |  =  2~ 

Множество в левой части (19) обозначим через Е. Тогда

т+М—1

mes Е -  mes (J (-Е" П е.) = mes (ЕГ)е,).

Но, легко видеть, что для любого i (1 s /ёи)

mes (Е П е;) =  mes е; • 1 +£мюм,г 
2

1 + £M + l ft)M+l,i 
2

И,следовательно,

1+£т tom,i 
2

mes Е = 2 т+м 1 ^  (1+емюм,г)(1+ем+1“ м+1.г) • •••-(l+em^m.Jnies е( =
1 = 1

= 2-т+м-̂  J [l + ̂ c p M(x ))[l + ̂ c p M+1(x )) .. .[ l+ ^ < p m(x ))d X = 2-m+M-\

в силу центрированности системы Ф.
Лемма 4 полностью доказана.
Нам также понадобится следующая лемма, принадлежащая К. Тандори 

(см. [2], лемма 11).

Л ем м а 5. Если для некоторой последовательности а = {ак}

Пт 2  а* >  0.

то п.в. на [0, 1]

Пт - i - |  2  акгк(х)I >  0.
П̂ °°  К  к=1 1
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3. Перейдём к доказательствам теорем.
Д оказательство  теорем ы  1. Очевидно при 1<ЛТ<°о М ( 1 ) э Щ ) .  

Нам остаётся доказать, что если а$М (К), то а$М( 1).
] л

Пусть а$М(К). Если fim -пг 2  я|=~0, то на основании леммы 5
К  *=i

lim а„(х, а ,г) ^  О
П -*-оо

п.в. на [0, 1] и, следовательно, а$М ( 1).
Рассмотрим случай, когда

(20) lim - 2  2  а\ =  0.
п~~ Л. Л=1

В силу определения М(К), существует система Р = {фк}Г=1̂  &(Ю и множество Р 
положительной меры (mes 0) такие, что
(21) lim sup \(тп(х, а, *Р)| ё  q >  0 при х£Р.

w-  ~  n s N

Не трудно убедиться, что, в силу (20) и (21), для о><е можно индуктивно 
построить целочисленные последовательности (Nm}“=1 и {Мш}“=1 
(Nm<M m< N m+1,tn = l , 2 ,N ] _ = 0 )  такие, что для т = 1 ,  2,...

(22)
1 Nm со

max —  2  №к\ ^  Y F ’ Мт^п fc = l (SA

(23)

(24)

1 г ^  (О
х\ Ж ° к = 128 Я2’

м„ max ~Г  I 2  акФк(х)\ >  £» при х£Рт
n S N m + 1 'i=JV m +  l  '

где Pmc P  и mes Рт ё у  ( т = 1, 2, ...).

Применяя лемму 1 к системе Р ^при g = y , e = y j , получим систему 
простых функций Ф =  {^}“=1€П(АГ) такую, что для любого ш = 1, 2, ...

1 I " _ , .1 со ~
„ max -у- 2  °к<Рк(х) п р и  х€Рт ,Mmsnawm+i /„ 't=]vm+i ^

где, в силу (24), mes Рт ё у  mes Рт S y  ( т  = 1, 2,...).

Применим лемму 4 к системам {<р*(д:)}*глр +i (m =  1,2, ...). Получим сис-

{ 1 _ m
Фк(х) :=~рФк(х) + пк(х)\ €Í2(1) (m =l, 2, ...). Пусть для m s l  {e” }/=i

A Jfc=jvm+i
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пт
— различные атомы д-алгебры ^ т+1(Ф) ( 2  mes ef = 1) и пусть Zm — мно-

i=i
жество тех индексов г, для которых ef П Рт Z  0. Очевидно,
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2  mes ef s  —. 
í€ Z m 4

Пусть, далее, n (i,m )(^M m) такое, что

max -j- l  2  <>к<Рк(х)\ =
и —”  m + 1 л л k = N m + 1 Лпаn ( i ,m ) k  =  N m +1

л(»\ m) _
2 1 a*<p*(x)|

при x£ef, i'€Zm.
Для i<íZm, используя неравенство Чебышева и учитывая (23), имеем

mes { 1 И щ  1

» Ä . , i r L V A W l

lesjx ítf1: — !̂— I V «fc<5k0c)| >  -|C-} ё
 ̂ Á n (i ,m )  k = N m + l  J

} -mes
n(i,m) 1
Z  ак- —  фк(х)\ 

* = N„+1 Л-
CO

2К; } x € e f :
l Ai(i, m)

{ 1 I I Cü 1
x € e f :  ---------  2  aknk(x)\ s  — [ S

Xnii.m) fc=Nm+l J

г mes ef — 1

s  mes e" 

Отсюда получаем, что

16K2
0)2 Â(i.m) (i=iv^+l

64Я

n(i,m)

2  al i  nt(x) dx

m(. 64K2 1 - Д 1
4 1 “ — В Д 1 Г  Д fl*J = 2 mes

mes 1
{x: „  max ~ г 1  2  акфк(х)\

S  ^  mes 
'€ z„

M m - n - N m *  1 2.„ !fc = /Vm + l 

1

CO

|x € e f : max
MmSns5Nm + l Я„ ^ = N„ + 1

1 „  яä y  2  mes ej" ё  -г. 
1 íezm 8

2 1 afc%(x)|
СО

~4К

Теперь уже легко видеть, что при помощи систем {<рДх)}22^ + 1. »*=1,2,... 
можно индуктивно построить систему Ф = {ср,i}r=i€ 0(1) такую, что для любо
го m s  1

mes •\х: max -^-1 2  >  -гтг} & 4-.
[ Mms „ s i v m+l Яя ,* = jv̂ +1 4АГJ 8
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Для этого нужно положить <рк = фк при и если срк, к s N m уже пос-
троенны, то в качестве <рк, Nm< k ^ N mJrl взять функции системы {фк}кШЦ+1, 
«сжатые» на каждый из атомов с-алгебры #^т (Ф).

Если обозначить Нт:=\х: шах -^-1 У. ак(рк(х)\ > -777-}, то из
I  M m S n S N m + 1 An fc =  iVm +  l  4 Ä  )

(25) имеем, что
mes Шп Нт >0.

т — оо

Отсюда, учитывая, что, в силу (25) и (22)

1
М,

™ х ~ г \  2  аксрк(х)\ ё  шах —  | 2  ак П ( х ) \ -
— n — Nm + 1 'T i Л =  1 Л ^ т - П- ^ т  + 1 fe =  Nm+ l

1
- у -  2  МЛц ft=l

со СО _ со
4К ~ И К  ~  W

при х£Н т, получаем, что

Пт —  I 2  akq>k(x)I >  0
п~°° 'п * = 1

на множестве положительной меры, а в силу замечания 1, и п.в. 
Итак, ö(£M(1). Теорема 1 полностью доказана.
Д оказательство  теоремы  2. В силу замечания 3, импликация (П)=>(1) 

следует из соответствующей теоремы для стохастически независимых функций 
(см. [1]: теорема IV). Импликация (Ш)=>(И) очевидна. Остаётся доказать, что из 
(I) следует (III).

Пусть а£М(°о). Тогда, в силу замечания 3
оо п2
SP а к2 - г <0°-

к=  1 Ák

Возьмём произвольное е > 0  и пусть N0 такое, что

k= N 0 Ак

Для любого <& = {(pk}F=i£C2(<x>) имеем при N ^ N 0

(26) /  sup а*(х, а, Ф) dx =  - í  J  ( 2  1«л1 \<Рк(х)\)г dx+
0 n S N  Á N о к=1

г1 (  I п f
+ 2 /  sup -г- 2  ак<Рк(х)\ dx

Q n*=N V Án k = Nt ' An к=1

/• Г 1 " 'i2+ 2 / sup -г- 2  a* <?*(*)
0 /I^N  V / л k=N0 '
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Применив преобразование Абеля, получим

у -  2 ак<Рк(х) = -j- 2  Хк-т-<Рк(х) =
л п k = N0 А„ k=N0 Ак

= -f- Z ( 4 - 4 +i) 1  т -*,(*)+ Í  у - <*>,(*).
A„ к— Nq i=N0 i=JV„ Л(

Следовательно,

П П ű,
sup -г— I 2 1 afc%(x)| S  2 sup I 2  у-<р*(х)|.
nSiV A , ' k — N a ------  ' •’=  iV „

Отсюда и из (26), применяя лемму 3, получаем

}  KN^—U No+i } ( п a, 'l2
(27) /  sup а2п(х, а, Ф) dx ^ -----р----- 2  ^  + 8 Г sup 2  у-ф*(*)1 dx =

s  n S N  An  к — N о n s N 0 \ k  = N0 Ak )

=  2(Nr l) " z 'a t  + ZA 2  2(у Г 1) + (У = У „ ,У „+ 1 ,...) .

Но с другой стороны, для достаточно больших N( >  Aj) первое слагаемое 
правой части (27) будет меньше е. Итак, при N>~Nk для любого Ф£П(°°) име
ем

1
[  sup (jjj(x, а, Ф) dx = (8Т-Ь 1)с.

n^N

Учитывая лемму 2, получим, что при N > N X
1

||а, TV 1 =  lim Ца, оо, N, М\\ =  lim sup { f  max аЦх, а, Ф) dxY/2
ф£й(оо) Y  N S n S M  >

1
~  sup { f  sup а2п(х, а, Ф) dxY12 s  /(8Л +  l)e ,

Ф€й(оо) Y  naiv J

T. e. й т  ||a, N\\ =  0.

Теорема 2 полностью доказана.
Д оказательство  теоремы  3. Пусть 1 ^А 'с°° и последовательность 

a такая, что ||а, К, УЩе (д >0) при А— Тогда, очевидно

(28) Ца, АТ 1 <
Учитывая, что для любого М

1 а, К, М, N\\ -+ Iа, К, М|| (><?) при N
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можно найти целочисленные последовательности {Лги}“ =1 (Nx= 0) и {Мт }“ =1 
такие, чтобы имели место:

1) Nm^ M m^ N m+1 (т = 1 ,2,...);

1 О
2) —  2  |я*1 ПРИ И = м т , Мт +1, ... ( т  =  2 ,3 ,...);fc=i оА

3) | | а , М т , ЛГт+1|| > | -  ( т  = 1, 2, ...)•

В силу 3) и леммы 2, существует система Ф(1) = такая, что

{ /  а’ф(1)) с/4 1/2>1-О i— — 2 ^

Далее, в силу той же леммы, можно построить систему Ф(2) = {Ф̂2)}бй(АГ) 
такую, что

{ /  м ^ \ СТ"(х’ й’ Ф(2))М 12О 2 3
е_ 
2 ’

причём будем считать, что система {ср^, <р^\ <р$, (р{2), (р!2\  ...} образует
центрированную систему. (В противном случае можно систему Ф(2) «сжать» 
на каждый атом сг-алгебры 2(Ф(1))). Продолжая таким образом, мы получим 
последовательность систем { Ф(т)} такую, что для любого m s l

{ /  MmS m+1 ф(т)) ^ } ' /2
J?
2 ’

причем система Ф = {<рк}Г= i , определённая следующим образом:

Ф*(*) =  Фкт)(*), к = N„+1, N„+2, .... iVm+1; /и =  1,2,...

принадлежит Q(K).
Для системы Ф имеем

1 1
{ /  sup а\(х, а, Ф )dx\1|i ^  { /  sup o2Jx , а, Ф) dx}1'2 g 
О AímSB V + 1 '

{ /  sup (у - 2" акФк(.х)\ dx] - I f  sup Ц - 2  akcpk(x)) c/xl
V  Mm*nSiV m  + 1 k Á „  k = N m + l  > > V  Мл * » и „ ы  )  J

f  1 (  1 " \ 2 l 1/2 f 1 (  I JVm \2 P

1 /  sup \ T  2 a M m)(x)\ dx\ - \ f  sup —  2  a M m)(x)
l 0 MmSBSJVm + 1 k = l  )  > V  M „ S » 4 * = 1  )  >

2 -41/2

К N™
2 \ a k\k = 1

e__Q__Q_ 
2 8 8
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Пусть FN(x)=supol(x,a, Ф). Так как, для любого N FN(x )^ F N+1(x) и,
» S N1

в силу (28) J  F1(x)dxS\\a, К\\2< °о9 то на основании леммы Фату, имеем
о

1 1 1 2
[ Пт о2п(х, я, Ф)<1х = [ lim FN(x)dx ^  lim f  FN(x) dx ^

J n-+oo j  N-*-oo N-»oo J l o
0  0 0

Отсюда получаем, что lim a\(x, а, Ф) > 0 на множестве положительной меры,
т. е. М(К).

Теорема 3 доказана.
В заключение автор благодарит профессора К. Тандори за постановку 

задач.
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ON EMPTY TRIANGLES DETERMINED BY POINTS
IN THE PLANE

M. KATCHALSKI and A. MEIR (Edmonton)

1. In 1980, modifying an early problem of E. Klein [1], P. Erdős [2] asked the 
following question: For 3 find the smallest integer g(n) such that from any set 
S of g(n) points in the plane, no three collinear, one can choose a convex subset of n 
points whose interior contains no point of S. The value of g(4) was found by E. Klein 
and g(5) was determined in [3]. Horton [4] showed that g(7) does not exist. We con
sider here two related problems. We call a set S of n (n=3) points in the plane line- 
free if S  contains no three collinear points. We call a triangle determined by three 
dilferent points of S empty if the triangle contains no point of S  in its interior and 
denote the number of empty triangles in S  by A (S). We say that a set T  destroys 
a family F of triangles if every triangle in F contains a point of T  in its interior.

Our first problem is to determine for пШ3 the smallest integer k(n) such that 
for every line-free set S  of n points in the plane there exists a set T  of k(n) points which 
destroys all empty triangles in S. We show that k(n)—2n— 5 for n=s3. Our second 
problem is as follows. Given a line-free set 5 of и points in the plane, what can one 
say about the values of A (S)? If S consists of the vertices of a convex n-gon, then
clearly J ( S ) = ^ j ;  so the interesting question is to find a lower bound for A (S). 
As the main result of this paper we show that for

d(n) =  inf (4(5): |Sj =  n, S line-free},
the following inequality holds: There exists a constant 0 such that for all пшЪ,

(n — 1)(и —2)/2 ^  d(n) S  Kn2.
These problems, of course, can be generalized, in an obvious way, to higher dimen
sions. For R3 we have the following partial results. Let S  be any plane-free set (i.e. 
no four points on a plane) of n points in R3 .Then

(a) the number of empty simplexes in S  is at least (и — l)(n— 2)(n— 3)/6.
(b) There exists a set T  with \T\ = (n— 3)2, which destroys all simplexes in S.

These partial results can be extended to Rk with /c>3. We conjecture that for any 
set S of n points in general position in R \ k :=3, there exists a destroying set with 
ckn points, where ck depends only on k.

2. Theorem 1. Let S be a line-free set o f n (n£ 3) points in the plane whose 
convex hull is an m-gon. Then

(a) There exists a set Twith \T\ = 2n—m —2 which destroys all triangles in S;
(b) I f  a set R destroys all empty triangles in S, then \R \^2n—m—2.
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Theorem 2. (a) I f  S is any line-free set o f  n points in the plane, then A ( S ) =  
Ш(п— l)(n—2)/2.

(b) There exists an absolute constant К with the following property: For every 
h=  3 there exists a line-free set S=S(ri) o f n points in the plane so that A (S)SK n2.

Corollary. For и ё 3, (n— Y)(n—2)j2^d(n)^K n2, where К is independent
ofn.

3. Proof of  T heorem 1. (a) Let S={px,p 2, . . . ,p n}, where рх={хь yt) for
1 =  Ш n. We may assume that no two xt are equal (otherwise we rotate the x, у  
axes slightly), and also that ...<x„. Since S  is line-free, the distance from
any point pi to any segment [pj, pk] is positive. Let 2e be the minimum of all such 
distances. For l ^ i ^ n  we let

71

Pi =  (Xi, yi+£), РГ =(Xi,yi-B) and Tx = U { p t ,p r } .
i=l

The set T  required by (a) is defined as those points of Tx which also belong to the 
convex hull of S. Now, the convex hull of S has m vertices including px and p„. If 
Pj is a vertex of the convex hull and 1 </'< n, then exactly one of p f  or p j  is exterior 
to the convex hull and the points p f ,  p f, p f ,  p~ are all exterior. FTence |T| = 2 n— 
— m — 2. We still have to show that T  destroys all triangles in S. Let PiPjPk be any 
triangle in S. We may assume that xt^Xj<-xk. Then 1< /<и and it is easy to 
see that either p f  or p j  belongs to the interior of the triangle. The same point then, 
a fortiori, belongs to the convex hull of S and so it is also in T. This proves that T  
destroys every triangle.

In order to  prove (b), we recall that there exists a triangulation of the convex 
hull of S, whose vertices are the points in S, consisting of 2n—m —2 triangles. 
There are therefore, 2n—m—2 empty triangles in S  with pairwise disjoint interior. 
This implies (b).

The Corollary of Theorem 1 is an immediate consequence of (a) and (b) since 
always Ш&3, but m= 3 is possible.

4. Proof of T heorem 2. (a) Let pn be a vertex of the convex hull of S. It is easy 
to see that we may label the remaining points of S  so that the angles <PiP„Pi in
crease counterclockwise with i for 2Sz'Sn—1 and that px may be chosen so that all 
angles < PiP„Pi +1 are less than n. The triangles PiPnpi+i are then empty in S for 
l S / S n - 2 ,  hence we have at least n—2 empty triangles in S  with vertexpn. We 
remove now pn from 5; we do not create any new empty triangles thereby, since pn 
could not be an interior point in any triangle of S. Hence A ( S ) ^ n — 2+ A (S— {/'„})- 
By induction if follows that A (S )S (n — l)(n— 2)/2, as required.

In order to prove (b) we shall need several lemmas.
Lemma 1. Let A={ax, ..., am} be a set o f m points equidistributed on a circle 

with radius q. Let q be a point outside ré such that dist (q, c£')>2q andp be in or on (€. 
Suppose that the set Ax=A{J{p, q} is line-free. Then the number o f empty triangles 
o f  the form qpa; is at most 6.

Proof. We shall say that a point a on the circle faces q if the segment [a, q] 
does not contain an interior point of T>. Now denote the points of intersection of the
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line / passing through q and p with the circle ^  by b and d (see Fig 1). We shall show 
that there exist at most two at facing q and at most four at not facing q so that the 
triangle qpat is empty in Ax. Suppose there are three at facing q with this property. 
Then two of these, say a, and a., are on the same side of the line I as in Fig. 1. But then, 
clearly, the triangle qpa2 is not empty, since ax belongs to its interior.

Fig. 1

Now, suppose that there are five a( not facing q so that the triangles qpat are 
empty in Ax. Then three au say ax, a2, a3 are on the same side of /as in Fig. 2. Let the 
intersection point of [a3, q] with 'é be denoted by e and set <  edp—a, <1 a3ed=ß, 
<  eqp=y. Then ß—a+y and ySa since dist (e, </)s20i=dist (e, d). Hence 
ß^2a. Since the at are equidistributed on св ,  ß > 2 (iz/ri) and so а>я/и. But then 
the arc eb contains a point at in its interior, so the triangle qpas is not empty. This 
contradiction proves the lemma.

Fig. 2

L emma 2 . Let A ~{ax, ..., am} be equidistributed on a circle with radius q. 
Let q be outside (€ such that dist (q, (6)>2o. Suppose Ax=AVJ{q) is line-free. Then 
there exists r0>- 0 so that the following holds: I f  dist (a'x, й;)< г0 for l^Si^m , and 
dist (q',q)<r0, then the set A[= {a[, ..., am, q') is line-free and the number o f  
empty triangles o f the form q'a] a- is at most 3m.

Proof. Let h0 be the minimum of all heights of all triangles in Ax. Since A x is 
line-free, h0>-0. We choose r0=hJ4. It is easy to show that if the triangle qajUi 
is non-empty in Ax, then q'a'j а\ is non-empty in A[. Now, from Lemma 1 with p — 
= a j,j  fixed, the number of empty triangles of the form qajüi is at most 6, so the total 
number of empty triangles qajOi in Ax is at most 3m. Therefore the number of empty 
triangles q'a'j a- in A'x is at most 3m as well.

L emma 3 . Let ÍA and (A* be concentric closed disks with center c and radii q and 
q*{q*~2q) respectively. Let bx, b2, .., bik be 4k equidistributed points on 4>*=dAd*. 
Suppose a segment [px, p2] is exterior to :W*, q a point in 3) and <  pxqp2̂ n lk .  
Then the triangle px qp2 contains a point bt in its interior.
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P roof. Let e1 and e2 be the intersection points of [px, q] and [p2, q] with c6*, 
respectively (see Fig. 3). Denote the intersection point of the bisector of <  e1ce2 
with <ß=d&  by d. Then <  <?jc/<?2= <  exqe2=n/k. It is easy to show that <  ex ce2>

el de.2, because of the assumption concerning the radii. It follows therefore 

that < exce2>nj2k and thus the arc ê eiL of must contain a point bt in its interior.

By a modification of the preceding argument in Lemma 3, we obtain the state
ment of Lemma 4.

L emma 4 . Let 3SX, äS2 and be closed disjoint disks with centers yx,y 2, y3 
respectively, each with radius 3. Let £ffl3 be concentric with SH3 having radius q, 3/2. 
Suppose the points bx, b2, bSm are equidistributed on = d-Щ, <  УгУзУъ—л/т 
and dist (ylt y3)^9m, dist (y2, y3)^9m. Then every triangle pxp2p3 with рх£^>  
p2£äS2 and p3£ŐS3 contains a point bi in its interior.

Now we are ready to prove Theorem 2 (b) constructing a set S= S(n) as required. 
In fact we shall construct S(n) only for values of n when n= m 3+ 18m2 (mS4); it is 
easy to see that this is no restriction of the generality. Let m be any fixed integer and 
r any positive number. We shall call a set consisting of m (“black”) points equidistri
buted on a circle (with center c) and radius r and of 12 (“red”) points equidistributed 
on a concentric circle with radius 2r, an r-group (see Fig. 4).

We shall call a set Г' consisting of m (“white”) points cx, ...,cm equidistributed 
on a unit circle (with center y) and of 6m (“green”) points equidistributed on a con
centric cirlce of radius 3, a pre-cluster.

When the white points cx, c2, ..., cm in a pre-cluster Г' are replaced by m r-groups 
centered at cx, c2, ..., cm we call the resulting set Г a cluster. We position now m 
pre-clusters so that their centers yx,y 2, ..., ym are equidistributed on a circle of radius 
R=3m2. We rotate, if necessary, any of the sets of white and green points that lie 
on circles so that the set Sx so obtained is line-free. Let h be the minimum of all
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heights of all triangles in We choose r, 0<r<h/8 and replace every white point 
in Si by an /--group. By rotating, if necessary, any of the sets of black and red points 
that lie on circles, we can achieve that the new set S is line-free. Ihis set S  consists of 
m clusters and contains a total of m3 black, 12m2 red and 6m2 green points.

We wish to show that d (S )= 0(m 6). The vertices of any triangle in S  may 
belong to one, two or three clusters; one, two or three groups and can be of different 
colors (B = black, R =  red, G = green), so we shall have to distinguish among several 
cases.

(i) Vertices in 3 clusters. Using Lemma 4, we can easily see that all empty tri
angles must be of the colors GGG. 1 he total number of such triangles is О (me).

(ii) Vertices in 2 clusters Г t, Г; , i Vj. The total number of triangles with only 
one black vertex is 0(m 6). The remaining cases follow.

BBB in two groups: G(m6), using Lemma 1.
BBB in three groups: None, each such triangle contains a red point due to Lemma 

3, with k=  3.
ВВ£Г,-, RdTj: 0(m 6), using Lemma 2.
ВВ£Г;, G ^Tj : 0(m 6), using Lemma 2.
B^T), BGG-Tj.: 0(m 6), using Lemma 1.
В£Г,-, BR£í j  (BR in two groups): 0(m e), using Lemma 2.
В £Г;, BRgTj (BR in one group): О (me)=total number of such triangles.

(iii) Vertices in 1 cluster. With the exception of the case BBB in three groups, the 
total number of all other triangles is 0(m6) .

BBB in three groups: None, each such triangle contains a red point, due to 
Lemma 3 with к=Ъ.

In conclusion, A (S )~ 0 (m 6)= 0(n2'), since n~m3. This completes the proof 
of Theorem 2.

Addendum (October 10, 1985). Since the submission of this paper for publica
tion, the following information and further results came to our attention.

1) G. B. Purdy has informed us that he had announced the result of our Theo
rem 2(b) in AM S Abstracts, 3 (1982), 318, but he has published no proofs as yet.

2) It was pointed out by B. Grünbaum and J. Zaks that our conjecture, preced
ing Theorem 1, is false. Utilizing Schlegel diagrams of neighbourly polytopes in 4 
dimensions, they show that there exists o O  such that for every n there exists in R3 
a set of cn2 (c>0) simplexes with pairwise disjoint interiors, whose vertex set has 
cardinality ^  n.

3) In connection with 2) the following problem may be raised. If A is a set of 
points in general position in R1', let s—s(A) denote the largest integer so that there 
exists j  non-degenerate simplexes with pairwise disjoint interiors, whose vertices are 
in A. Let t= t(A ) be the smallest integer such that there exists a set of points with 
cardinality t, which destroys all simplexes in A. Clearly we must have s(A)S  t(A). In 
R2, it follows from our result, that a(A)= t(A). Does equality hold in higher dimen
sions?

4) We were able to extend our earlier results as follows. If A denotes a set of 
points in general position in R2, let Q(A) denote the number of empty quadrilaterals
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in A and, as before, A (A) the number of empty triangles in A. We have proved that 
for every A, Q (A )^ ( \ß )A (A). We also proved that there exists о 0 such that 
for every и there exists APR2 with \A\~n  suchthat Q(A)<cn2. Does there exist 
for every и a set A  in R2 such that \A\=n, A(A)—0 (n 2) but Q(A)>n2+e, e>0?
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O N  A  P R O B L E M  O F  E R D Ő S ,  H E R Z O G  

A N D  P I R A N I A N

G. WAGNER (Stuttgart)

1. Preliminaries. We consider polynomials f(z )=  J j (z—zf) of the complex
/i=i

variable z with all (not necessarily distinct) zeros zß on the unit circle C— (|z| =  1}. 
Denote by S  ( / )  the set of points z where the inequality |/ ( z ) |S  1 is satisfied. The 
authors in [1] show that the linear Lebesgue measure of the set S  ( / )  DC (denoted by 
m (S( f)C \C )) can be made arbitrarily small by suitable choice of the polynomial 
/(z ). Moreover, they conjecture that т (5 ( /)П С )> п ~ с (n=degree of the polyno
mial /(z)) holds with some positive constant о 0 ([1], pp. 132 and 134). We shall 
prove this conjecture.

П
Theorem 1. For each polynomial f(z)=  f ]  (z—zlt), |z,| =  l, we have 

_  /1 = 1

ПС)=-1/4 j/n. On the other hand, for each nS 2  there exists a polynomial f { z ) — 
= 2  (z ~z„), |z„| =  l such that m (S (/)D C )<  16 (log п/и)1/3 holds.

/i=i
Similar results can be obtained if we replace the unit circle C by some analytic 

curve of logarithmic capacity 1. For example, in the case of the real interval 7= 
=  [—2, 2] we get (with unspecified constants, using the Vinogradov notation).

П
Theorem T. For each polynomial / (x )=  J f  (x—xf), - 2 S r J1s 2 ,  we have

/4 = 1
m (S  (/)П 7)»1 /и . On the other hand, for each n S 2 there exists a polynomial
f(x )=  П  (x—xf) with nj(S(/)n/)<sdog1/3 n/n213.

/1=1
In the case of the interval I  it seems more natural to ask for the measure 

у (S(/ )  П 7), where у is the equilibrium distribution of 7 with respect to the logarithmic 
potential. The corresponding results are y(S(f)C\I)^>n~1F and y(S(/)D7)<sc 
« lo g 1/2 3 n/n1/3.

2. An energy inequality. Let zl5 z2, ...,z , be pairwise different points on the 
unit circle. Furthermore, let oq, a2, ..., аг be arbitrary natural numbers S i  (“multi
plicities”). Put а !+ а2+ ... + a,=n. The number E — 2! a^av log 1^—zv| meas-

1 =§//,VSf

ures the total (logarithmic) energy of a discrete charge distribution with charges 
аß placed at the points z„. In the case when all the otf s are equal to 1 (l— n) it is 
known that E  satisfies the relation Es.n • log n. Equality holds if and only if the

6*
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points zlt z2, z„ are the vertices of a regular и-gon (cf. [2], [3]). The following 
generalization seems to be of independent interest.

Theorem 2. Let zl5 z2, z, be pairwise different points on C with multiplicities 
cq, a2, ..., a;; «! + ot2+ ••• + «( =  «• Then /he following inequality holds:

E =  2 a„avlogl z r z.l -  2 a;l°g
i = l

/72*

P roof. The product f j  |zM—z v|^ av is equal to the absolute value of a
l^/KV ĵ l

Vandermonde-type determinant d of the following form (we use the abbreviation 
!r!=0! • 1! • ... • r!, r^O ):

(1) d =
m=i

1 zi Z1 ••

- f xdz1
d

dzx zi _^_z2 .i/zj 1
d

dzj

d*'-1 da i - 1 d*'-1
dzJ i-1 1 d z? -1 ~1 dz?~]

1 Z2 zi ..

d^i-1 d'x-1 ■ Zf d'x-1
dzf dzf'

7n-i Z1

-n-iZ2

d£t

Although formula (1) should certainly be known, we could not find it in the literature. 
The proof, however, is elementary and we omit it. The Hadamard inequality says that 
the absolute value of a determinant is not greater than the product of the Euclidean 
lengths if the row vectors. So we have

|d |2 S  /7 !(ад —I)!“2 П  V ( 0 2s+ l 2s+ - + ( « —l)2s) (0° = 1).
n = l  v = l s = 0

The inequality

02s+ l 2s+ . . .+ ( n - l ) 2s^  f  x 2sdx = - ---- - S  nJ 2s +1
2 s + l

holds, hence

Taking logarithms we get

|d |2 ^  Я !(а д- 1 ) ! - 2 f i n * .
/1 =  1 V =  1

E =  log |d |2 ^  У a) log и - 2 2  log! (o^ -l)!. 
j = 1 j = i
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By induction we can prove that

log! (r — 1)! ^ i - r2i0g 2_ (r =  1,2,...)

holds. We obtain

E ^  2  <*J log n -  2  «J log =  Д  a? log .

This proves the assertion.

R em ark . With some more effort we can prove a similar result for the interval 
/= [ —2,2]: Let x lt x 2, ..., xt be pairwise distinct points on I  with multiplicities

I
alt a2, ...» a jS l; 2  aß—n. Then the following inequality holds: 

p=i

I ПрЬ
E =  2  a/iav log K -* v l ^ 2  2  a?l°g-----•PFiV J = 1 Xj

We do not make use of this result and shall not prove it here.

3. Proof of the lower estimates. We begin with a reduction of the problem. Let
П

f(z )=  П  (z—z j ,  the zeros z ^ C  being not necessarily distinct. The set S(f)(~)C
ii=i

consists of a finite number of pairwise disjoint closed arcs A lt A2, Al (1 s lS n ) ,  
called “components" of S ( f) .  Each component contains at least one zero z„. Let 
zl5 z2, ..., zXi be the zeros in Аг. Choose a branch of arg z which is continuous on Ax. 
Replace the zeros zlt ...,z ai by a single zero zf€C with multiplicity a, and arg z í=

1 “»= —  2  arg zß • Doc to the convexity of the function log |z— zß| we have
ai m=i

2  log |z -z„ | S  ax log |z - z i |  
m= i

for all z£C outside the smallest arc containing zl5 z2, ...,zai. Hence the poly-
П

nomial /* (z)= (z—zj)*1 2  (z ~ zn) has components A*, A%, A£ such that
/4 = «! + !

AiU  ...UA^cAj^U ...UAi holds. So, in order to prove the lower estimate for 
m (S (f)d C ),  we may assume that S ( f )  has / components A1} A 2, ...,A , with
exactly one zero z„ (with multiplicity aM, 2  = n) io each Ац- Denote by z{, z'{ the

ß=i
boundary points of the component Аг. Let A[ , A ’{ be the arcs connecting zx with 
z[, z'{, respectively. We have

0 =  log/(z[) =  2  aß l°g \zi ~ zß\ and 0 =  log/(zD  = 2  aß l°g V i -z „ |.
p=i m=i

Matheniatica Hungarica 51, 1988
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Noting that log \z[—zt | =  log 2 sin and log [z?—Zx^log 2 sin ,n^ 1  ̂ г and

using convexity of the function Z  ад log |z—ẑ l on iij, we get:
4 = 2

(2) ai Z  ж/1 l°g b i - z „ | a  (m (^ i)/m (^ i))- ai ^  ад 1о8 |z i-z„ | +
/1=2 /1=2

+ {m(A'1)/m(A1j) • oq 2" ад log Izi'-z^l =  ~<xt((m(A'{)/m ОТ)) log Iz i-z fiT  
/1 =  2

1+  (/n(^0M (^i)) lo g k i-Z il)  S -^ -a ^ lo g lz i-Z i l  +  loglzi-Zil) =

=  - y a |lo g 4 s in  2■ M  -  " И й  S -  > „= log 4 sin- -Ziidil■ sin

=  af log 2sin(m(/41)/4) a? log m U i) ‘

Repeating the argument for the components A2, A3, ..., At and adding the inequal
ities which correspond to (2) we obtain

' 2
Z  a^avlog|z„ —zv|§= Z  gj lQg -(A v

/ i* x  j = 1 m \ A j )

Comparing with Theorem 2 we get the final inequality

2
(3) Z  a; log

ne“
i=i m(Ty) 2  a?i°g —i=i

We will show that the basic inequality (3) has implications for the sum Z  m {Aj) = 
— m (S (f)r \C ). Using again convexity of the log function, we have

tie
I 2 / 1 4  Z  а 1  m  ( A j )n ' , ,  ne2m(A.) . 2 J 1

0 ^  Z  a?log--- 20Г^~" -  log“i=i z « j
hence

2 <*jm(Aj) £ Д f Z  «у >i Z  a? •4n -f
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Furthermore,

2  m (A j)
j'= 1

1 z « ;
An max ay An ^max ay + n—max ay 1 

max tXj )

This proves the lower estimate for the unit circle.
We shall prove the lower estimate for the interval I  =[—2,2]. Let f(x )=
П

= / /  (x—xß), xß£l, be a polynomial of degree n. Each x,x„(Ll can be uniquely
/* = !

represented in the form x=2coscp, xß = 2 cos <p„ (Os<p, Put z=ei,p,
zlt= eii’». Then

1/0)1 =  /7  I2 cos — 2 cos = /7 |z - z J |z - z „ |  = |g(z)|
Д=1 Д=1

n
holds with g(z)= [J (z— z^Cz— zp). Since the zeros of g(z) lie symmetric with re-

Д =  1
spect to the real axis, the set S(g)flC also has this property. The complex function 
г (z )= z+ z_1 maps the upper half C + of the unit circle onto the interval I, the set 
S (g )n C + onto 5 ( / )П / ,  and a Boréi set B(TC+ onto a set r(B)with y(x(B))=
= — m(B), т(т(В)У»{т(В))2. Here у denotes the equilibrium distribution of the
interval I. Applying Theorem 1 to the polynomial g(z) we obtain the lower estimates 
y (S (f)C \I)» n ~ 1,!t and m (S (/) lT /)» n -1.

R em a rk . More generally one could ask for the distribution of the values of 
|/(z ) |. For example, if we define the set 5Я(/)П С =  {z€C||/(z)|sA} for each 
A£(0, 1], and if we denote by Aj the components of 5;_(/)ПС, we get the corre
sponding inequality

(4) 2  *j log A+2  a? log S  2  «у log ~  -

Since A s l, we have log A s0, hence (4) implies

^  a J log A + 2  a? log S 2  «5 log •

AThe same reasoning as in the proof before now yields m(S,A( /) (T C )s ---- — .
A^n

4. Proof of the upper estimates. The following example is taken from [1], p. 134. 
Let f( z )= z n— 1. For a given number h£N (2/i+lSn) take away the zeros e2nik,n 
for —h s k = h  and replace them by a single (2h+ l)-fold zero at the point 1. For 
this polynomial

f* (z) = ( z -  1)2Л+1 " [J 1 (z—e2nlk/n)
k = h +1
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we shall estimate the measure m (S(/*)flC ). For £= е2п>а1п, у ё | а |>A, we have

log I/* (01- lo g  1/(01 =

= 2 log 

+ 2 log

dx2

+ 2 log

convexit 
log \2 sin nxI

2 sin 

2 sin ■

2 sin

TUX

n

TUX

n

TUX

log 

-log

-log

. 7г(а  — 1)2 sin----------

. 7Г (x 2)2 sin —--------n

+  ...+

. n (x-h )  2 sin—-------

- lo g

-lo g

-lo g

. я(а+1) 2 sin—--------

2 SinA i ± 2 .

+

+

. n(x + h) 2 sin—--------

We use convexity of the function log |2 sin rocl (0< x<  1) and the relation
d2 ’ ' ' ё я 2. For q£{1,2, ...,h}  we get

(5) 2 log
hence

2 sin TUX -log . я (х -р )  2 sin—-------- -log . n ( x  +  Q)2 sin—i------- is 7t

log I/*(01 “ log 1/(01 s  tz2^  >

Inequality (5) already shows that all the components of /*(z) that belong to unit 
roots e2nik/" S |& |> /ij have smaller lengths than the corresponding components

of / (z). In order to get a quantitative result note that (for 0 ^  we have

hence by (5):

log | / ( e±*+»«*/*)| =  log 2̂ s i n S  log ~~~~ > 

log |/*(е±г‘+2я«/»)| s  log e3i.3/„2j _

For e~3h3,nZ we have |/* ( e ±tt+2”,k/")|S l. Thus the length of each compo

nent of /*(z) belonging to e2nik/" ( / к  |fc |S y j is not greater than 2 • e_8i,a/n\
2/zThe length of the component belonging to the zero 1 does not exceed 2n- —  = 

4tt/z= ----- . Adding these estimates we get the following inequality for m(S(f*)C\C):

m(S(f*) n C ) s ^  +  / i ~  e - Sh>'n'.
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Choosing

h = [n2/3 log1/3 n\ ( y  n2,s log1/3 n ^  h S  П 2 for n ё  32̂
we get

(6) » (* n n c )
For 2 ^ и < 32 the right hand side of (6) is greater than 2n and the inequality holds 
trivially. This proves the upper bound in Theorem 1. If we project the zeros of /* (z) 
onto the interval I  via the mapping т(z)=z + z~1, we obtain a polynomial g*(x) 
for which we can prove the inequalities

m(s (g * )n /)«  and H 5 ( g * ) n / ) « ^

in a similar way. This completes the proof of Theorem 1 and Theorem 1'.
5. Conclusion. As a natural counterpart to Theorem 1 one would expect that the 

inequality 2n—m (S(f)D C)^>n~c holds for some positive constant c>0. How
ever, we have not been able to prove this result.

The following generalization of the problem considered seems to be interesting.
Let u(x) be an integrable real function on the unit interval [0, 1), periodically con-

1
tinued over the real axis, satisfying j  u(x)dx= 0. For an n-tuple of points а1г a2, ...,

0 П
...,a n in [0, 1) consider the set S'„(m)={xC[0, 1)| u(x—a^)^0}. Does there

ii=i
exist a universal exponent c > 0 suchthat

(7) т ( З Д ) ё В Д - и - е
holds for every such function u, each n-tuple alt a2, ..., an and some constant К 
depending on u? We proved (7) for u(x)— log |2 sin nx\ with c = y  (Theorem 1),

and the same result is true for the function u(x)= x—~ . A general answer to this 
problem seems to be difficult.
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0. Let X  be a topological space, С (X) the set of all continuous real-valued func
tions on X, equipped with the semigroup operation of pointwise multiplication, 
C*(X), (X), and Cc(X) the subsemigroups of С (X) composed of bounded func
tions, of functions vanishing at infinity in the case of a locally compact X, and of 
functions with compact support, respectively. A classical theorem [4] states that, if 
Xx and X2 are compact Hausdorff spaces, and C{Xx) and C(X2) are isomorphic, then 
Xx and X2 are homeomorphic. It is easy to deduce from this theorem that, if Xx and 
X2 are Tikhonov spaces, and C*(Xx) and C*(X2) are isomorphic, then the Cech— 
Stone compactifications ßXx and ßX2 are homeomorphic.

In a recent paper [2], the author has proved a generalization in two directions of 
this statement. Firstly, the role of C*(Xt) is given to semigroups composed of conti
nuous functions of Xt into suitable topological semigroups, on the other hand, 
semigroup isomorphy is replaced by a weaker condition, i.e. и-isomorphy.

The purpose of the present paper is to establish a similar generalization of the 
following statements of [5]: if Xx and X2 are locally compact Hausdorff spaces, and 
Cc(Xx) and Cc(X2) (or (Xx) and Cm (X2)) are isomorphic, then Xx and X2 are 
homeomorphic.

1. Let us recall some definitions from [2]. A topological semigroup S is said to 
be segment-like iff

(a) it contains [0, 1] as a topological subsemigroup ([0, 1] is always equipped 
with the multiplication of real numbers and with the topology inherited from the 
Euclidean topology of R),

(b) 0 is a zero element and 1 is a unity element in S,
(c) there is a continuous homomorphism x — |x| from S into R (equipped with 

the multiplication of real numbers and Euclidean topology),
(d) \x \~ x  for x£[0, 1],
(e) |x| = 0, x£S implies x=0,
(f) a,b£S, ab=a implies either a= 0 or b= l.
In [2], a series of examples of segment-like semigroups is given.
If S  is a semigroup, /,  g í S, let us write / >„ g iff fg — f. A bijection <p from 

a semigroup Sx onto a semigroup S2 is said to be a и-isomorphism iff

/ > » g ^  <p(f) >u<p(g)-

A semigroup isomorphism is, of course, a «-isomorphism but the converse is false 
(in a group, />„ g iff g is the unity element).
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If Z  is a topological space and S is a segment-like semigroup, let us denote by 
S(X) the set of all continuous functions from X  into S, equipped with pointwise 
multiplication, by S0(X), S„(X), and SC(X) the subsemigroups of S(X)  composed 
of functions with range contained in [0, 1], of those vanishing at infinity in the case if 
X  is locally compact (i.e. having an extension /*  to the one-point compactification 
ZU {°°} of X  such that /*(«>)=0), and of those with compact support, respectively, 
where the support of /6  S(X)  is the closure in X  of the set Z c(f) ,  and

Z c( / )  =  X - Z ( f ) ,  Z ( f ) -  {xdX: f{x)  = 0},
E{f) = {xdX: fix )  =  1}.

2. The proof in [2] was based on the concept of м-ideals. Now we shall use a dual 
concept: in a semigroup S, Ud S is said to be a u'-ideal iff

(a) 0 ^ U ^ S ,
(b) /€  U, gd S, /> „  g implies gd U,
(c) f  gdU  implies the existence of hdLU suchthat

h >uf  h >u g-
3. In the following, we assume that X  is a locally compact Hausdorff space, S 

is a segment-like semigroup, and S is a subsemigroup of S(Z) satisfying
5,0(Z)ri5 'c(Z) d  S d  5„(Z ).

Observe that, for f g d S ,  by Section 1, (f), / >„ g iff Z ( f  )\JE(g)=X. Also, if 
fd  S, then the closure E( f )  is compact.

Lemma 1. I f  K d X  is compact, F c Z  is closed, KC\F=0, then thpre is an 
hdS0iX )n S c(X) suchthat K áint E(h), FczZ(h).

Proof. By the local compactness of X, there is, for xdK, a compact neigh
bourhood Vx of x  such that VxC\F=0. There are х г, . . . ,x ndK satisfying Kcz
a  |J  int VXl. Then K '— \J VXi is compact and K d in tK ', K'C\F=0. By [1],

l l
5.3.g.9, there exists a kd S0(X) such that KdE(k) ,  X — int K'(zZ(k). Then h= 
= min ilk , 1) satisfies hd S0(T), F e in t  E(h), Fc.z(h), Z cih)dK', hence hdSJX).

□
Lemma 2. For a compact set 0^K czX ,

(2.1) UK = {fdS: К  d i n t  Ei f ) }

is a и -ideal in S.
P roof. Uk ^ S  because the co n stan t 0 belongs to  S but not to  UK. UK^ 0  

because, by Lem m a 1 (applied for F=0), there exists an  hd Sa(X)f} Sc( X) d  S such 
tha t K dintE ih). If f d U K, gdS, f  g, then Z( f )[JE(g)=X,  hence

К d  int E i f )  d  Z ci f )  d  Eig),

and gdUK. If / ,  gd UK and, according to Lemma 1, lid S0(X)C\Sc (x )  satisfies 
F e in t E(Ji),

Z —(int Ei f )  П int Eig)) d  ZQi),
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then we have h£S,  Ä'cint E(h), hence h£UK, and Z(h)[JE(f )  = Z(h)[JE(g)—X, 
so that h>„ f  h>ug. □

Lemma 3. I f  0zKx<zX, 0 X K 2czX are compact sets, КгX K 2, then UKiX U K2.

Proof. Assume, say, x£K 2—Kx. Then, by Lemma 1, there is an hZS0(X) П 
n S c( I ) c S  such that A^czint E(h), xdZ(h). Clearly h£UKl, h$ UK,. □

Lemma 4■ I f  U is a u'-ideal in S, then U=UK for the compact set 

(4.1) к = п Ж П * Р -
fiU

Proof. E ( f ) is compact for f t  S, and it is non-empty for f t  U; in fact, by 
Section 2, (c), there is an h tS  suchthat й > и/,  Z(l i )UE(f )—X, and E ( f ) = 0  
would imply Z(h)—X, Z(h)UE(g)=X  for every gtS,  whence h>ug, g tU  for 
g t S  by Section 2, (b), U—S, in contradiction with Section 2, (a).

Now, f g , h t U ,  h >u f  h>ug imply

Z(h)UE(f)  = Z{h)UE(g) = X, E(h) c  Z c(h) c  E( f )  П E(g).

Therefore {E( f ) :  f t U}  is a filter base composed of compact sets and it has a non
empty compact intersection K.

For f t  U, there is by Section 2, (c) an h f  U such that h >u f  so that 

К c  10(h) c= {xtX: \h(x)\ = 1} c  Z c(/i) cz £ ( / ) ,

hence TCz int E( f  ) (Z c(h) is open by Section 1, (c), (d), (e)), finally f t  UK.
On the other hand, f f U K impies Äxzint E( f  ) so that there is gt  U satisfying 

£ '(^ )c in ti? ( /)  (otherwise the compact sets E{g)—miE{f ) ,  g t U  would constitute 
a filter base whose elements would contain a point not belonging to K). Choose 
htU , h>ug; then

Z(h)UE(g) = Z(h)DE(f )  = X, 

h >u f  and f t  U by Section 2, (b). □
Corollary 5. The mapping K>-*- UK establishes a bijection from the set o f all 

compact, non-empty subsets o f  X  onto the set o f  all u'-ideals in S. □
Lemma 6. For compact, non-empty subsets K±, K2czX, we have 

Kx c  K2 iff UKl z> UKt.
Proof. (2.1) and (4.1). □
Lemma 7. The mapping (p(x)= U{x) is a bijection from X  onto the set M  o f all 

maximal u'-ideals in S, and the image of a compact 0 ^ K c X  is composed o f all maxi
mal u'-ideals that contain UK. □

Corollary 8. The mapping <p defined in Lemma 7 is a homeomorphism from X  
onto M  provided a subset F is defined to be closed in Mi f f  FC\(p(K)=(p{K') for some 
compact K 'czX  whenever KczX is compact, KZ0.
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Proof. A subset of X  is closed iff it intersects every compact, non-empty subset 
in a compact set. □

Theorem 9. Let Хг and X 2 be locally compact Hausdorff spaces, St and S2 seg
ment-like semigroups, S t(Xi) the semigroup o f all continuous mappings from Xt into 
Sf (equipped with pointwise multiplication), Si0(X,), Sic(X,), Sia,(Xi) the subsemi
groups composed of mappings with range in [0, 1], with compact support, and vanishing 
at infinity, respectively, finally a subsemigroup o f S^X,) satisfying

Sio(Xi)C\Sic(Xi) c S . c  S M .

I f  Si and S2 are u-isomorphic, then Xt and X2 are homeomorphic. □
A similar theorem can be found in [3].
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ON THE NUMBER OF POLYNOMIALS 
AND INTEGRAL ELEMENTS OF GIVEN 

DISCRIMINANT
J. H. EVERTSE* (Amsterdam) and K. GYŐRY* (Debrecen)

§ 1. Introduction

Let К  be a field of characteristic 0, let R be a subring of К  which has К as its 
quotient field, let G be a finite, normal extension of К  and let R' be an integral exten
sion ring of R in G. We shall suppose that either R is finitely generated over Z (we 
shall refer to this as the absolute case) or R is finitely generated over a field к of 
characteristic 0 which is algebraically closed in К  (this will be called the relative 
case). Let n S 2 be an integer. By Ф(п, R, R') we shall denote the set of all polyno
mials f  (X)dR[X] of degree n which are monic and all of whose zeros are simple
and belong to R'. By Ф(/?, R') we denote the set |J  Ф(п, R, R'). Let ß be a fixed,

2
non-zero element of R. We shall study the sets of polynomials / (X )f <b(R, R') 
satisfying

(1) D {f) = ß 
or more generally

(2) D(f)ZßR*.*

Here D (f)  denotes the discriminant of f  i.e. if f(X )= (X —a1)...(X— a„), then

D (f)  =  П  (« i-« ,)2.j^n
We call two polynomials f(X ),g{X)dR[X] R-equivalent if g (X )= f (X+ a) for 

some adR and weakly R-equivalent if g(X)=udegf f(X/u+a) for some udR* and 
ad R. The corresponding equivalence classes will be called jR-equivalence classes and 
weak ^-equivalence classes, respectively. If two polynomials f  g are ^-equivalent then 
D( f)= D (g) whereas \ i f  g are weakly /(-equivalent then D (f)= eD (g) with some 
edR*.

In the absolute case Győry [6], [7] proved that if R is integrally closed in К  then 
the polynomials f(X)d^>(R, R') which satisfy (1) belong to at most finitely many 
/^-equivalence classes and the polynomials f(X )d  <P(R, R') satisfying (2) belong to at 
most finitely many weak Я-equivalence classes. Further, in [8] he showed that these 
equivalence classes can be determined effectively provided that R, K, G, R' and ß 
are given explicitly in a certain well-defined sense (cf. [8], § 2.1). As consequences, in
[8] (cf. also [9]) he obtained effective finiteness theorems for integral elements with

* The research was done at the University of Leiden in the academic year 1983/1984. 
*’2 If R is a ring, then R* denotes its group of units and R + its additive group.



342 J. К . EVERTSE A N D  К . GYÖRY

given discriminant (or which is the same, for irreducible polynomials with given 
discriminant) and for power bases over R. In [8], he also established effective results 
in the relative case by giving an effective bound for the Degree (cf. [8], § 2.1) of an 
appropriate representative of an arbitrary equivalence class. However, these asser
tions do not lead to finiteness results. For other historical remarks on (1), (2) and for 
further references, we refer to [4] and [9].

If R is integrally closed in К then R'C\K=R. In the present paper our results 
will be established in the more general case when R + 2 is a subgroup of finite index 
in (R'C\K)+. We shall derive both in the absolute and in the relative case explicit 
upper bounds for the number of ^-equivalence classes of polynomials /€  <P(R, R') 
satisfying (1) and for the number of weak ^-equivalence classes of polynomials 
f£<P(R, R') satisfying (2). However, in the relative case we have to restrict ourselves 
to non-special polynomials (cf. §§ 3, 5). In both cases, we have attempted to give 
bounds which depend minimally on K, R, G, R' and ß. For example, if in particular 
К  is an algebraic number field with degree d and R is its ring of integers then our 
bounds depend only on d, [G: K] and the number of distinct prime ideal divisors 
of ß.

Our results concerning polynomials will be formulated in § 3. In § 4 we shall 
deduce similar quantitative finiteness results on integral elements over R with given 
discriminant and shall point out that our finiteness assertions do not remain valid 
if the factor group (R'C\K)+/R + is infinite. As a consequence, we shall give there 
among other things a generalisation of a result obtained on power bases in [3], which 
states that for every algebraic number field К of degree d the maximal number of 
pairwise weakly Z-inequivalent algebraic integers a£K  for which {1, a, ..., a“1-1} 
is an integral basis of К  is bounded above by a constant depending on d only. Here 
a, ß£K  are called weakly Z-equivalent if ß=  ± a  + a with some afZ.

Our theorems will be proved in §§ 5 to 9. The proofs are based on some recent 
quantitative finiteness results on unit equations, due to Evertse [2] and Evertse and 
Győry [3].

§ 2. Preliminaries and notations

Let R0 be either Z (the absolute case) or a field к of characteristic 0 (the relative 
case) and let K0 denote the quotient field of R0. (Thus K()—Q if R0= Z and 7$f0=k 
if 7?0=k). Let К be a finitely generated extension field of K0. In case 7i0=k we sup
pose that к is algebraically closed in K. The field К has a finite transcendence basis 
over K0, {zlt ..., z j say, where q^O. Put Кх = К0(гu  ..., zq) and Ä1=Ä0[z1, ..., zj. 
Then К is a finite extension of Kx. Put d—[K\ K \̂. We have the following diagram:

Кu
Rx = R0[zx, ..., zq\ c  Kx — K0(zx, ..., zq)

u u
Ro a *0

We note that Rx is a unique factorisation domain with unit group R^— {1, — 1} 
if jR0= Z  and 7?o=k* if /?0=k. Let I denote a maximal set of pairwise non-asso-
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dated irredudble elements of Rx. To every n£l there corresponds a valuation3 vn 
o n w h i c h  is defined by v„(n)=l and v„(a/b)= 0 for any a,b^R t not divisible 
by 7i. Note that for every there are at most finitely many ndl with v„(o()^0.
Every valuation vn with n £ l can be extended in at most d pairwise inequivalent ways 
to K. By replacing these extensions by equivalent valuations if necessary we obtain 
a set of valuations mK on К  with the following properties:
(3) every F £ mK has value group Z ;
(4) if a £K* then F (a)=0 for all but finitely many V£mK;
(5) if R1 then F(a)sO  for all F £mK ;
(6) if a£R% then F(a) = 0 for all V£mK.
In the sequel we shall use the following notations. If Г is a subset of mK, then we 
denote by 0T the ring {x£K: V(rJ) = 0 for all V£mK\ T } .  Note that 0% = 
= {a£K: F(a)=0 for all V^.m^\T}.

If LI К  is a finite extension, of degree p say, then one can construct in a similar 
way as above a set of valuations mL on L with value group Z. If we choose the same 
transcendence basis {z1; ..., zq} for L, these valuations are, up to equivalence, just 
the extensions of the valuations in mK to L. If V6mK, W£mL and if IF is equivalent 
to an extension of F to L  then we say that W  lies above F. For every F € mK there are 
at most p valuations IF € tnL lying above F.

1 he elements of the abelian group generated by mK will be called divisors. Thus 
every divisor I) can be expressed as

Ь -  2  V ( W
V € mK

where the F(I)) are integers of which at most finitely many are non-zero. If a£K* 
then the divisor (a) is defined by (a)= F(a)F. If К is an algebraic number field

V i m K
then there exists an isomorphism (fK of the additive group of divisors of К  onto the 
multiplicative group of fractional ideals in К which is defined by (£K(I))= {a^X: 
F(a)sF(I)) for all V im K}. (£K maps mK onto the set of prime ideals in K.

Let L/К be a finite extension of degree p in a fixed, finite, normal extension G 
of K. Let Oi, ..., <7p denote the distinct /^-isomorphisms of L  in G and if a£L  put 
t7,(a)=a(i). If x=(x1; ..., xp)<zLp then

D(x) =  [det(xf )i=i P]2

denotes the discriminant of x with respect to L//T. It is known that D ( x ) ^  0 if and 
only if X i , . . . , x p are linearly independent over K. If x = (l, a, ..., ap_1) for some 
adL then we put DLIK(x)= D ( x ) .  Then we have

(7) Dl, M =  П  (a(i)—а(Л)2.1 ̂  Í < j^P

3 By a valuation we shall always mean an additive, non-trivial, discrete valuation. By an ab
solute value we shall mean a non-trivial multiplicative valuation.
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Finally, if x = (x 1; xp), у= (уг, . .. ,y p)£Lp are vectors such that yt= 2  ZijXjj= 1
for certain ZtjZK, then

(8) ß(y) = [det«ü)i-i,...p]2̂ (x).j=i....p
Let R' be a subring of L having L as its quotient field. We define the discriminant 

divisor DK(R') of R' over К by
V(TiK(R'j) = max {0, min F(Z>(x))} for all V£mK.

By (4) this is indeed a divisor. If К  is an algebraic number field and if R' is the ring 
of integers of L  then the ideal i£K(T>K(R'j) is just the discriminant of L  over K.

Let I? be a subring of К and suppose that R' is an integral extension ring of R in L 
and that R' is a free ^-module with basis v/=(co1, ..., cop) say. Let Г be a subset of 
mK such that Rc^(9T. If w' is an arbitrary vector in R 'p then, by (8),

(9) D(y/')£D(y/)R.
Hence
(10) V(T>K(R')) = F(Z)(w)) for all V€mK\ T .

§ 3. On polynomials with given discriminant

Let K, R0, K0, {zx...... zq}, Rt , Ku d, mK have the same meaning as in §2.
Thus R0 is either Z (the absolute case) or a field к of characteristic 0 which is alge
braically closed in К  (the relative case). Let G/К  be a finite, normal extension of degree 
g. Let ^ 0=Ai0(= Q ) if R0= Z  and let K0 be the algebraic closure of Ai0(=k) in G 
in the relative case. Let К be a subring of К which is finitely generated over R0 and 
which has К as its quotient field. Further, let R' be an integral extension ring of R in 
G such that
(11) S :=  (R 'D K +):R+] <  •».

We note that if R is integrally closed in К then J =  1. Further, in the relative case,
(11) implies that J = \ ,  i.e. R'C\K=R. Indeed, if (in the relative case) R 'H K ^R  
and af(R 'C )K )\R  then the elements in uk are contained in distinct cosets of 
(R 'n K )+/R+. Hence / = » .

Let ß be a fixed, non-zero element of R and let T, T' be the smallest subsets of 
mK such that Äc®T, R[ß~1]<^ßT.. Then, by (4), T, T ' have finite cardinalities, t, t' 
respectively, say.

Before stating our results we have to introduce the notion of special polynomials. 
In the absolute case, every polynomial f(X )£R [X ]  is called non-special. In the rela
tive case, a polynomial / {X) is called special in if / (X)(_R[X] and if

(12) f ( X ) =  pr h {(X+ а)”°/р) (X+ a)6,

where r, n0, ö are integers with r^-0, n0̂ 0 , öd {(), 1}, rn0 + ö^ 3 and ő = 0 if n„= 1, 
where af R, where gtK *  is integral over R and where /?(X)£k[Z] is a monic poly
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nomial of degree r with non-zero discriminant4 which has its zeros in K0 and /i(0)^0 
if я0>1. The polynomial f^R[X] is called non-special if it is not of the type (12). 
We notice that all polynomials which are weakly ^-equivalent to a special polyno
mial in /?[T] must be special in /?[T] themselves.

As in § 1, Ф(п, R, /?')(” = 2) denotes the set of all monic polynomials of degree 
n with coefficients in R and with only simple zeros belonging to R'. Further, we put
Ф(Я, R')= U Ф(и, R, R')- By N,(R, R', ß), N^n, R, R ',ß )  we shall denote the

2
number of ^-equivalence classes of non-special polynomials fd<P(R, R') and 
/€  Ф(п, R, R') respectively, which satisfy

(0  D (f) = ß,
whereas by N2(R, R', ß), N2(n, R, R', ß) we shall denote the number of weak 
^-equivalence classes of non-special polynomials Д Ф (R, R') and ДФ (и, R, R') 
respectively, which satisfy
(2) D (fKßR*.

T heorem  1. Let n be an integer with n=^2. Both in the absolute and in the rela
tive case we have

( A  . 70(3d+2t')yi-2
N M  R, R',ß) =§ n(n 1) - ■ ---- J ,

N2(n, R, R', ß) ^  {n(n- !)}!*.= ;---- J .

Let "IV[ be the set of special polynomials in Ф(п, R, R') satisfying (1) and let 
"#2 be the set of special polynomials in Ф(п, R, R') satisfying (2) (л ё 3). We shall 
prove in § 5 that in the relative case contains infinitely many weak ^-equivalence 
classes, provided that R' Z)K0 and that contains a special polynomial with с ё 2. 
We shall also show that contains infinitely many ^-equivalence classes in case к 
is algebraically closed and iVx contains a special polynomial with гШ2.

We shall now present some consequences of Theorem 1.
C o ro lla ry  1. Both in the absolute and in the relative case we have

Ni(R, R \ ß ) s S  exp {8 • 7^ + 2n}t
Nt(R, R', ß ) S S  exp {8[X0: K0](d + t) ■ 79<M+2t'>}.

P roof. For A =4 • 79(3d+2,') and for p£ Z, p S  1, we have, since 
{(k+2)(k+l)}p^ 2 (p + \)2p+k~2 for k*0 ,

2 {(к+2)(к+1)у4г-/ ̂ 2(p + V2p~2s 2 {{p+̂ A)k =fc=o к! k=0 K!
=  2(p+\)2p~2J e pA = J e 2pA.

Hence our assertion follows from Theorem 1.

4 For a linear polynomial h{X), we put D(A) =  1.
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Corollary 2. Let ydR. Then both in the absolute and in the relative case
(i) for every и=2 the number o f non-special polynomials fd  Ф(п, R, R') which 

satisfy (1) and / ( 0)=y is at most

n2(n — 1)
(4 . yg (3d +  2 t ’) y - Z

(й—2)!
(ii) the number o f non-special polynomials fd  <P(R, R') which satisfy (1) and 

f(0 )= y  is at most
exp {8 • 7«(3<,+2f')}.

Proof. The ring R—R'D K  is finitely generated over R0 (cf. [11], [12]). In the 
relative case (11) implies R= R. Further, both in the absolute and the relative case 
i? c 0 r , Riß-^czO j.. Since Ф(п, R, К)аФ (п, R, K ) and Ф(Л, й ')сФ (й , Ä')> 
it suffices to prove our assertion with R instead of R. The first part of Corollary 2 
follows now immediately from Theorem 1, on noting that all polynomials in a fixed 
^-equivalence class are of the type f { X )—f 0{X+a), where adR  and / 0 is a fixed 
representative of this class, and that there are at most n values of a for which f Q(a)=y. 
The second part of Corollary 2 follows at once from the first part, on noting that 
for A = 4-l°(3d+2t'\

oo j k
2  (k+2)2(k + l)— - = (A3+8A2+ U A  + 4)eÄ e2A. 

о k\
Corollary 1 already shows that a polynomial fdФ {R,R') which is non-spe

cial and which satisfies (2) must have bounded degree. More explicitly we have
Theorem 2. Both in the absolute and the relative case, every non-special polyno

mial fd  Ф(Л, R') which satisfies (2) has degree at most
2 + 4 . 7  e(M+2«')_

In the absolute case, the finiteness assertions of Theorems 1, 2 and their corolla
ries above were earlier proved by Győry [6] (cf. also Győry [7]) under the restriction 
that R is integrally closed in K. Effective versions of these results were later obtained 
by Győry [8]. Further, he established in [8] certain effective analogues also in the rela
tive case.

We shall now specialise our results above to the case of algebraic number fields. 
Let К be an algebraic number field of degree d with ring of integers 0K and let G/K 
be a normal extension of degree g. Let (SG be the ring of integers of G. Let ßd&K\{ 0 }  
and let 5=  {px, ..., p,} be a (possibly empty) set of prime ideals in K. Let t' denote 
the number of prime ideals which belong to S or divide (ß).5 We call two polynomials 
f (X ) ,  g(X)d<9K[X] weakly S-equivalent if there are a, b, cd(SK such that (b), (c) are 
solely composed of prime ideals from S(b, c are units if t= 0) and such that

6 (a) denotes the ideal in 0K generated by a.
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C orollary 3. Let n be an integer with nS 2. Then the polynomials f{X )d  
d Ф(п, 0K, 0G) with the property

(13) =
for certain rational integers klt k t belong to at most

{n(n-!)}'+*
( 4 . ’] g ( 3 d + 2 f ) y - 2  

(«-2)!
weak S-equivalence classes.

For an effective finiteness result concerning the polynomials fd  Ф(п, <9K> 0a) 
which satisfy (13), see Gyó'ry [5].

P ro o f  of C o ro lla ry  3. Let (£K be the isomorphism of the group of divisors of 
К  onto the group of fractional ideals in К  (cf. § 2) and let T=(il:1(S). Now Corol
lary 3 follows at once from Theorem 1 on noting that every polynomial f(X )d  
£<P(n, <SK, 0G) which satisfies (13) also satisfies D(f)dßO*r and that two polynomials 

f(X ) , g(X)d<P(n, 0K, <PG) are weakly ^-equivalent if and only if they are weakly 
0r -equivalent.

§ 4. On integral elements with given discriminant

Let K, R0, K0, {zx, ..., zq}, I f ,  Kx, d, mK have the same meaning as in §2. 
Let LI К  be a finite extension of degree m ^2  and let G denote the normal closure 
of L  over K. Put [G: K]—g. In the relative case (when Я0=к) we assume something 
stronger than in § 2, namely that к is algebraically closed in G. Let o1, om denote 
the distinct Я-isomorphisms of L in G. If adL then we put a(i)—<тг(а), i— 1, m. 
Let R be a subring of К  which is finitely generated over R0 and let R'czL  be an inte
gral extension ring of R with quotient field L such that

(11) >  = [(Ä 'nX )+:Ä+]-=oo.

If ad R', then by (7) the discriminant 0 L/K(a) of a is equal to f ]  (a(i)- a W))2.
1 Si~=JrSd

Hence if L=K(oi) then DL/K(a) is equal to the discriminant of the minimal polyno
mial of a over K. For that reason we call two elements oq, c/.f R' R-equivalent if 
a2==ai + ű f°r some adR  and weakly R-equivalent if а2= ю 1+й for some adR, 
udR*. As usual, the corresponding equivalence classes will be called /^-equivalence 
classes and weak Я-equivalence classes, respectively. If <x1, a.2dR' are Я-equivalent 
then L>x./K(a1)=D L/K(a2) while if a1; a2d R' are weakly Я-equivalent then Di/K(a1)= 
= eDl/k((x2) with some sdR*.

Let T  be the smallest subset of mK such that Ra(9T. Let X>K(R') be the discrim
inant divisor of R' over К and let ß be a fixed element of K*. Let T"  be the smallest 
subset of mK such that RczQT„ and V(ß)—V(t>K(R')) for all VdmK\ T " .  The sets 
T, T"  have finite cardinalities t, t" respectively, say. Let MX{R, R', ß) denote the 
number of Я-equivalence classes of adR' satisfying
(14) DL/K(a) = ß
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and let M fR , R', ß) denote the number of weak ^-equivalence classes of а£Л' 
satisfying
(15) DL/K(oi)ißR*.

T heorem 3. Both in the absolute and the relative case we have 
M fR , R', ß) s  m(m  —1)(4 • 7‘'<3d+*nj—*. J ,

M 2(R, JR', ß) rá {m (m (-l)}d+t(4-7<«3‘,+2‘"T ~ 2-S-
We note that g ^ m \ .  Notice that we have also a finiteness result (without exclu

sion of “special” integral elements) in the relative case. It is not clear whether such 
a finiteness result holds if к is not algebraically closed in G. Finally, we remark that 
if J —oo and if there is an a(jR' satisfying (14) (resp. (15)) then M1(R, R', ß) 
(resp. M2(R, R', ß)) is infinite. Indeed, in this case the (weak) (Ä'flL)-equivalence 
class of a in question splits into infinitely many (weak) ^-equivalence classes.

Let Nl/k denote the norm with respect to L/К. Then every (R'DK  )-equivalence 
class of elements of R' contains at most m elements a for which NL/K(a) assumes some 
fixed value. Thus, applying Theorem 3 to M fR 'O K , R', ß) we have

C orollary 4. Lei ydK. Then the number o f  a £R' with DL/K(a)—ß and 
NL/K(oi)=y is at most

m2(m — 1)(4 • 79(3<i+2t"))m—2_

The above argument shows that Corollary 4 is true without assuming J<.
Let a£R'. We call {1, a, ..., am_1) a power basis if {1, a, ..., am_1} is a basis 

of R' as a free Л-module. If this is the case and if oi'dR' is weakly L-equivalent to a 
then {1, a', ..., a"”-1} is also an Л-basis of R'. From Theorem 3 it follows

Corollary 5. Those R' for which {1, a, ..., am_1} is an R-basis o f R' 
belong to at most

{m(m -  l)}‘,+<(4 • ’lM.M+u\yn-2 . j  

weak R-equivalence classes.
In [3] (cf. Theorem 11) we derived the bound (4. увШ+юу«-* jn case R0=Z 

and R is integrally closed in K. If K0= k  and R is integrally closed in К then it is also 
possible to get rid of the factor {m(m— l)}d+t but we shall not work this out here.

In the absolute case, Győry [6] (cf. also Győry [7]) proved earlier the finiteness 
assertions of Theorem 3 and its corollaries above under the assumption that R is 
integrally closed in K. Later he obtained [8], [9] effective versions of these results. 
In [8], certain effective analogues have been established also in the relative case.

Proof of Corollary 5. Suppose that R' has an Л-basis of the form 
(1, a„, ..., a™-1}. This is clearly no restriction. In view of (9), {1, a, ..., am_1} is 
an Л-basis of Л' only if

( 16)

By (10), V(T>K(R'))=V(D L/K(a0)) for all V€mK\ T .  Now Corollary 5 follows im
mediately from (16) and Theorem 3 with ß —DL/K(a0).
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Let K, L be algebraic number fields with rings of integers 0K, <SL respectively, 
where K a L , [K: Q]=r/ and [L: K] = m. Let G denote the normal closure of L  over 
К  and put g—[G: K]. Let ®L/K denote the discriminant of L over K. For every 
<xdGL with Dl/k(ix) ^ 0  the ideal (^ь/к(°0)®Г/к is the square of an integral ideal, 
3(a) say, which is called the index of a with respect to ЦК. Let a be a fixed ideal in 
GK and let 5={p1; ..., p,} be a finite (possibly empty) set of prime ideals in GK. We 
shall now deal with the set of a£i?L satisfying

(17) 3(a) =  ap^L.-p?' for certain k1, . . . , k tdZ.

We call oq, ct2dßL weakly 5-equivalent if there are a, b, cd&K with (b), (c) solely 
composed of prime ideals from 5, such that

btx1 + a

If a satisfies (17) then all elements of &L which are 5-equivalent to a also satisfy (17). 
Let t " denote the number of prime ideals which divide a or belong to S. Then we have

Corollary 6. The numbers a£GL which satisfy (17) belong to at most 

{m (m -  l)}d+,(4 • 7®(M+2,"))m- 2

weak S-equivalence classes.

An effective finiteness result concerning the elements <x£GL satisfying (17) can be 
found in Győry [5].

Proof of Corollary 6. Let Г=С ^1(5) (cf. §2 and the proof of Corollary 3 
in § 3). Suppose that (17) is solvable. Let a0 be a solution of (17) and put DL/K(<x„)=ß. 
Then every solution a£QL of (17) satisfies DL/K(a)£/?(P£ and two elements oq, oc2£&L 
are 5-equivalent if and only if they are 0T-equivalent. Now Corollary 6 follows easily 
from Theorem 3.

§ 5. On special polynomials

Let к be a field of characteristic 0, let К  be a field which is finitely generated over к 
and let G/К  be a finite, normal extension. As in § 2, we suppose that к is algebraically 
closed in K. The algebraic closure of к in G is denoted by K0. Let R be a subring of К 
which has К as its quotient field (and which is now not necessarily finitely generated 
over k). We extend the concept of special polynomials defined in § 3 by calling 
a polynomial f(X )  special in Л[А] if f(X )£  JR[A] and if

(12) f(X )  -  p.rh((X+ay°/p)(X+ay,

where r, n0, ő are integers with r>0, и()>0, Sd (0, 1}, rn0+ S ^ 3 and <5 = 0 if и„=1, 
where ad R, where pdK* is integral over R and where h(X) is a monic polynomial
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of degree r with coefficients in к and zeros in K0 such that D (h)^0  and /i(0)^0 if 
1. If/ satisfies (12) then deg /= rn0+ 5 ^ 3  and

(18) D ( f ) =  ( -  1)™о(»о-1)/2/,5«. (̂™0-1+М)й(0)»0-1+мХ)(й)»о jzí о

(with the convention that Л(0)"0_1+2г=  1 if n0=  1 and h(0)~0).
Lemma 1 .L e t n ^ 3  be an integer and let /(2T)€i?[Z] be a polynomial o f degree 

n with zeros al5 , a„£G. 77zen i/ie following statements are equivalent:
(i) f i s  special in Я[Я];

(ii) there are a£R, XÍG* and clt ...,cn£K0 such that aг= сД —a (/=1, ...,n);
(iii) there are integers_i,j£ {1, ..., n} with i ^ j  such that for all k£ {1, ..., n} 

we have (af—а*)/(а{—<Xj)£K0.
P roof. (i)=>(ii). Suppose that/satisfies (12). Let 0 ls ..., 0 , be the zeros of h(X) 

in K0 and suppose that 0 ^ 0 .  Then/ can be written as

/ ( * ) =  /7{(2Г+а)"«-0(л}(ЛГ+а)4.
i=l

Choose A£G* suchthat Хвв= в 1р. Thenthereare cb  ..., c„£.K0 suchthat

/ ( * )  =  Я ( ^ + в - М ) .
i = l

This clearly proves (ii).
(ii) =>(iii). If tx— CiX—a for /=1, ...,n , where a£R, A£G* and ck, ...,c„£K0, 

then we have for all triples (г,у, /с) with l = i,j, k ^ n  and zVy that

ai ~ ak ci~ ck ri7— СЛ0.CCi — OLj Ci — Cj

(iii) =>(ii). Put Л =  а(—ay. Then we have for k, l£{l, n}

cck- x ,  a ,- a ,  u.i- a k r -
-----------  --  t  Л-Q ,a(—ay a;—a; а{—ay

hence
(19) ak-cc, = cklX

for some cw£JC0. Put a=  — (at +  ... +  a„)/n and cfc=(cH + ... + ckn)/n. Then ck£K0 
and a£R, in view of the facts that f(X )£R[X]  and zz_16kc.R. Therefore, by (19), 
on taking the sum over all /, we have

ak = ckA — a for к =  1, ..., и.
This proves (ii).

(ii)=>(i). Let g (X )= f{X —a )= [ J (X —ciX). 1 hen g{X)^R[X]. Let A be the set
(=i _

of rational integers m such that Am=c£ for some c£K0 and C£K. It is easy to show 
that A is an ideal in Z. Since at least one coefficient of g is non-zero, A contains non
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zero integers. Let n0 be a positive integer which generates A. Let r, <5 be integers with 
n=rn0+S and OS<5<n0. Then g(X) can be written as
(20) g(/f) =  X n+d1X n- n'‘X,<‘+ ...+ drX s):n°,
where dx, ..., dr£K0. Note that D(g)=D(f)?±0, whence d£ {0, 1}. Choose c£K0 
suchthat Xn°=cp where p£K. Then p is integral over R. Put hi=dici (i= 1, , r),
h(X)= Xr+hxX r~1 + ... + hr. Since dikin°=hipi for /=1, . . . , r  and g(A')6^[Ar] 
we have h(X)£к[ЛГ]. By (20) we obtain
(21) g(X) = prh(Xn°/p)Xs (r >  0, «о >  0, <5€ {0, 1}, rn0+ő = n).

The zeros of h obviously belong to K0. It is also clear, by our choice of r, 5, that 5 = 0  
if и0— 1 and h (0)X 0 if n0>  1. Now (i) follows immediately from (21) and / (X)=  
=g(X+a).

Let R be a finitely generated subring of К  over к which has К  as its quotient field, 
and let R' be an integral extension ring of R in G such that R'D K=R. In the lemma 
below we shall state some results about the sets of polynomials

i rx = {/(Х)£Ф(п, R, /?'): f  is special in R[X] with r £ 2  and D (f) =  /?},
= {/(Х)£Ф(п, R, R'): f  is special in /?[X] with r ^  2 and D (f)ißR*},

where yS is an element of /? \{0) and 3 is an integer.

L emma 2 . (i) Suppose that K0czR'. If"fl is non-empty then it contains infinitely 
many weak R-equivalence classes o f polynomials.

(ii) Suppose that к is algebraically closed. I f  "K is non-empty then it contains infi
nitely many R-equivalence classes o f polynomials.

Proof. If K0c R '  (which is also the case if к is algebraically closed) then for 
every polynomial f(X )iФ (n ,R ,R ')  satisfying (12) we have p i  R. Indeed, there 
exists a c íK q such that cp is the product of certain zeros of / .  Therefore cp i R' 
and hence piR'(~]K= R. Let n0, r, ö be integers with n = rn0+S, r > 0, и0=-0, 
«56 {0, 1}, <5=0 if n0= 1. Let p iR \{0}. Put hm{X )= {X -  l)(Z -2 )(Z -6m )X  
X ( X - 8m)...(X-2rm ) if r ^ 3  and hm(X )= (X - \){X-m ) if r = 2 (m =l, 2, ...). 
Let

У = У (п 0, r, Ő, p) = {p'hm(X n°/p)Xs: m = 1, 2, ...}.

We shall show that the polynomials in i f  are pairwise Л-in equivalent. Let f p(X) — 
= prhp(Xn,,/p)Xs, f q(X) = prhq(X"°/p)Xs be polynomials in i f  which are weakly 
/^-equivalent. Then there are a iR  and u£R* suchthat

(22) p'hq(X"°lp)X> =  prunhp ( (£ ± 1 )" ° /^  =

= ^ п° г к { ^ Г ) ^ + аУ-

First suppose that n0> l .  Then the left-hand side of (22) can be written as X n+ 
-\-y1X n~"°+..., whereas the right-hand side of (22) can be written in the form
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(X+á)n+ Q1(X+a)n~n’>+ ... = X n + naX"~1 + ... with some ylt ö^K . Hence a= 0. 
Therefore, by (22) we have

prhq(X n»/p)Xs = (pun°yhp(X"«/pun°)Xs

which implies that hq(X)=u"°rhp(X/un°). Thus the zeros of hq(X) are just equal to 
the zeros of hp{X) multiplied by и"0. But then un° = 1, p=q. Hence f p(X)—f q(X). 

Now suppose that n0= 1. Then (3=0 and г = я ё  3. Hence, by (22),

Hnhq(X/n) = (pu)nhp .

This in turn implies that

(23) K m  = M r( ± + J L ) .

Let oq, ..., ar be the zeros of hp(X). By (23) there is an tx^K such that иа, +  а 
(z= 1, . . . ,r )  are just the zeros of hq(X). Butsince r^3 , it follows that u= \, a=0. 
Hence p=q.

Suppose that is non-empty and let f (X )= p rh((X+a)n°/p)Xő (rn0+S=n and 
p, a, h are as in (12)) be an element of Note that /i£R\{0}. By (18), ^r(™0-i+ 2i)^ 
£ßR*. By (18) we have also £f’= 9 ’(nü, r, Ö, p)Q i^2. But ^contains infinitely many 
polynomials which are pairwise weakly R-inequi valent. This proves (i).

Suppose that is non-empty and let f  (X) = prh((X+ a)n°/p) Х 3̂ 2 (r, n0, <5, p, h 
have the same meaning as in the proof of (i)). Then (18) implies that

c ^ rn°-1+2<5)(_ i)'-»„(«„-i)/2„rno =  ß' where c = h(0)no-1+2dD(h)no *  0. 

Put

=  a(H ) = [
■.l/(r(rn0+ 2 á - l ) )

H( 0)Hq — 1 +  2<5D (H f H*(X) =  otr H(X/a)

for every monic polynomial H (X )£k[X] of degree r with D (//)^ 0  and H (0)^0. 
Since к is algebraically closed, H*(X) is also a monic polynomial of degree r with 
coefficients in k. Further, H*(0)n°~1+2SD(H*)n° = c. Hence the set

^ *  =  {p'h*m(X"°/p)X3: m = 1,2,...}

is contained in "Vx. But it is easy to check that all these polynomials are pairwise 
jR-inequivalent. This proves (ii).

R em ark . The question whether the set "fy contains infinitely many R-equivalence 
classes of polynomials in case к is not algebraically closed seems to be far more diffi
cult to answer. Moreover, if (1) (resp. (2)) can only be satisfied by special polynomials 
with r= 1 then it is possible that there are only finitely many (weak) R-equivalence 
classes of special polynomials satisfying (1) (resp. (2)).
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§ 6. On units and unit equations

Let K, R„, K0, {zj, zq}, Rx, Ku d, mK have the same meaning as in § 2. 
Let Г be a finite subset of mK of cardinality iSO. In this section we shall state some 
properties of the group =  {<x£K: V(a)—0 for all V£mK\ T } .

L emma 3 . (i) I f  R0= Z then where W is the finite group o f roots
o f unity in К and O á p á í/+ t— 1.

(ii) I f  Rn = k and к is algebraically closed in К then (Pf/k*=iZp where Oá 
á p á t f + í -  1.

P roof. First of all we shall prove (ii). There exists a set of pairwise inequivalent 
absolute values (| . |„}„емК on К  with the following properties (cf. [2], § 3.):

(24) If a£K* then \a\v= 1 for all but finitely many e£Ma- and [J |a |„= l.
v £MK

(25) MK = I KUPK, where IKDPK = 0,

where the valuations in the set {—log | . |„: v£PK} are, up to equivalence, equal to 
the valuations in mK and where the valuations in the set {—log [ . |„: v£lK} are, up to 
equivalence, equal to the extensions of the valuation L  on K1 = k(z1, ..., zq). Here 
V„ is defined by V„(F/G)=b—a for all polynomials F, G £R f\{0}  of total degrees 
a, b respectively.
(26) {<x(LK: |ot|. =  1 for all v$.MK) = k*.

Let S a M K be the set containing the v£lK and the v£PK for which —log | . |„ 
is equivalent to a valuation in T. Let S=  {»!, v2, ..., t>s}. Since IK has cardinality áű?, 
we have s^d+ 1. Let I) be the homomorphism from (9j to Rs defined by

l)(a) =  (log |a|0l, ..., log |a|Pj).

The elements a of 6% satisfy |a|„= 1 for v£MK\ S  and log |a|„. = 0 (cf. (24)).
1 = 1

Hence ker f)=k* and the image of I) is a discrete group of rank á j —1. Thus 
$ í/k*áZ p for some integerp with 0 ^p S d + 1 — 1.

We now prove (i). Let k0 denote the algebraic closure of Q in K. Put dY = 
[k0: Q], d2=[K:li0(z1, ..., zq)]. Then d1d2=d. Let m{?) be the set of valuations in 
mK whose restriction to k0 is non-trivial and let т [2) =  шк\ т ^ .  Let 7)= TCim(fi  
(i= 1, 2) and let tt denote the cardinality of Tt (i= 1, 2). There exists a one-to-one 
correspondence between the valuations in and the prime ideals in k0 (cf. § 2). 
Let Pi, ..., p(l be the prime ideals corresponding to the valuations in 7\. Then
ß>yflkj= {a^kj: (а) = р^1...р^'1 for certain klt . . . ,k ,fZ } .  ByLang[10], Ch. 5, OjC\ 
nkJáIF><Zr+'1, where W is the group of roots of unity in k0 and r is the rank of 
the group of units in the ring of integers of k0 . The valuations in шА} lie above the 
valuations on k^Zj, ..., zq) which correspond to irreducible polynomials of degree 
^ 1  in k0[z!, ..., zq]. Hence there exists a set of absolute values {| . |„}„емк satis
fying the properties (24) to (26) with k0, mA * instead of k, mK, respectively. Hence by
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(ii), <Dx/C>t f)kJsíZ P2 where p2 is an integer with 0 ^ p 2S d 2+ t2— 1. This is true since 
Gj-jGj П kJ ez G>tJ K  ■ But this shows that

Oí W XZr+,'+r* = W xZ"

say, where 0^ p S d ^ t i — X + d^+t^— X ^d+ t— 1.

Let A,pdK*. We shall now deal with the equation

(27) Ax + py — 1 in x, y€ .

L emma 4. (i) In the absolute case (27) has at most 4 • 73d+2t solutions.
(ii) In the relative case (27) has at most 2 • 72d+2t solutions with Ax$ к, py$ к.

P ro o f, (i) is exactly Theorem 1 of [3]. In the proof of (ii) we shall use the set of 
absolute values {| . with properties (24) to (26). Let S a M K be the set of
v(LMK for which either v£lK or v£PK an d —log] . |„ is equivalent to a valuation in 
T. Let s- denote the cardinality of S. Note that |a |„= l for all and v£MK\ S .
By Theorem 2 of [2], (27) has at most 2 • 72s solutions with Ax/py^k. Since s ^ d + t,  
this proves (ii).

§ 7. Preliminaries to the proofs of Theorem 1, 2, 3

Let K, R0, K0, {z1; ..., zqj, d, mK have_the same meaning as in § 2. Let G/K 
be a finite, normal extension of degree g. Let K0=K0=Q if R0= Z and let K0 be the 
algebraic closure of K0 in G if R0= k. Let В be a subring of К  which has К as its quo
tient field and which is finitely generated over R0. Let Ru ..., Rn (и ё 2) be integral 
extensions of jR in G and let R = Rl PiR2r\...C\ RnПK. In this section we shall deal 
with the set *5? of tuples a=  (oq, ..., a„) with the following properties:

агСЛ; for i = 1, ..., n; / ( a ;  X )  := JJ (Х—а{)£К[Х]-, otj for 1 s  i < j  s  л.
(=i

We shall call the tuples a'=(oii, ..., «'), a"=(a'i, ..., a")Z%> R-equivalent if a"= 
=  ai + a for some R (/=1, ..., n) and weakly R-equivalent if a"=m'i + a for 
some a f R, u£R*. The corresponding equivalente classes will be called .^-equiva
lence classes and weak /^-equivalence classes, respectively. In the absolute case, every 
af/é  will be called non-special. In the relative case, will be called special if
f{a .\X )  is special in K[X] (in the general sense defined in § 5) and non-special 
otherwise. If in the relative case a = (сс1г ..., <xn) is non-special with « ё  3, then by 
Lemma 1 we may suppose that

(28) ——— $K 0 for some i£{3, ...,«}.& 1 0̂2

Lemmas 5 and 6 below will be used in the proofs of Theorems 1 and 3.
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L emma 5. L e i  1 and let ий 2  be an integer. Let be a set o f non-spe
cial tuples a = (aL, ..., a„) such that for all triples o f integers (/, j, k) with 1S  /, j, k S n ,  
i ^ k ,  the set

——— : i f  R0 = к then
<Xi-CCk

has cardinality at most U. Then the set o f tuples

l '  ®1— * 2 ' 1 S i . j S n  J

has cardinality at most Un~2 i f  R(l= Z and at most max (1, 2"~2—1 )U"~2 i f  L0=k.

Proof. Lemma 5 is obvious if n = 2, so we shall assume that n s3 . We notice 
that ai—aj = (a1—<Xj)—(oc1—(xi), whence the tuple [(xi—'y.J)/(a1 — a2)]ImLJp;„ is 
completely determined by the numbers (otj— — a2) (k = 3 , . . . , n ). This proves 
Lemma 5 in the case R0=Z.

Now suppose that L0=k. Let ^  be a non-empty subset of {3,...,«} and let / 
denote the smallest element of Let TfiP) denote the set of tuples (als 
such that («j — а;)/(а<1—a2H L0 if and only if z£.Ŝ . By (28), ^  is the union of all 
sets (5^), with 5^ being a non-empty subset_of {3,...,«}. For all a= (a1; a„K 
6^(5^) we thus have that (с^—oí; ) / ^ —a2)$.K0 for id IT and (о^—a ;) /^ — a,)^K0 
for i€{3, n } \^ .  Since (a1- a i)/(a1- a 2)= [(a1- a i)/(a1- a i)][(a1-or/)/(a1- a 2)],
each tuple ((аг—а^Ца.х—K2))1Si,jg« is completely determined by the numbers 
(oti—а.ОДа!—a2) (idS?), (ах— «,■)/(<*!— a,) (/6{3, ..., и}\У). This shows that the 
set of tuples

has cardinality at most E/"~2. But since {3, , n} has only 2"~2—1 non-empty
subsets, this proves Lemma 5 also in the relative case.

and

Let ß£K* and let y;j (1 be elements of G. We shall consider the sets

=  {« =  (an  •••» ап)€#: ~ —— =  Vij for 1 Я  (а>— aj)2 =  ß \  >
I  а Т ~  a 2 i s g l< j3 S n  J

= |a  = (al5 ..., ——  =  ytJ for l S i < j S n ,  [JL ai 0C2 1 ̂ icj^n *
Let T  be the smallest subset of mK such that RaG T, and let t denote the cardinality 
of T.

L emma 6. I f  J:= [R+\ Я +] <  00 then both in the absolute and the relative case 
(i) ^ 2 is contained in at most n(n— 1)S R-equivalence classes and (ii) C<SZ is contained 
in at most {п(п—1)Ук°:К№+,)-<? weak R-equivalence classes.
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P r o o f . We shall call two tuples <x'=(a'l t  ..., or'), a * = ( o t i ,  ..., a * )€ ^  Ä-equiv- 
alent if a"=a'i + a for some a£R (i— 1, ri) and weakly (R, /^-equivalent if 
a i —ua'i+a for some u£R* and af^R (/=  1, n). The corresponding equivalence
classes will becalled /^-equivalence classes and weak ( R ,  ^-equivalence classes, 
respectively. It is easy to check that every ^-equivalence class is contained in at most 
J  /^-equivalence classes, and every weak (T, ^-equivalence class is contained in at 
mostJ weak /^-equivalence classes. Therefore it suffices to show the following:
(29) is contained in at most n(n— 1) /{-equivalence classes,
(30) 'й’з is contained in at most (и(и—l)}tKo-KoK‘,+|) weak ( R ,  ^-equivalence classes.

For every a= (a1; ..., a„)€#3, put ф(а)=а1—оса, S(a)=(a1+ ...+oc„)/n. Then 
ils(a)£G*, S(a)eK. Further, put ß0:=ß/( [] yfj). Let a '=(ai, ..., oc'„)^3,
a"=(<x'i, ..., a")€^3- Then

(31)
Hence

(32)

By (32), a- — {ф(а')/(ф(a")}a" does not depend on i. Since Л=/?1П...П/?„ПАГ=)/?, 
we infer that ф(а.')/ф(а")^* if and only if a', a" are weakly (R, /^-equivalent and 
a" = ua'i +  a for some u£R*, a£R with и=ф(а')/ф(а."). Thus we have the following 
equivalences
(33) and a" are ^-equivalent;
(34) \l/(a')/ip(a.")£R*oa.' and a" are weakly (R, /^-equivalent.

(29) is an immediate consequence of (33), on noting that for every we
have t/f(a)',(',~1)=/?0, whence ф(я) can assume at most и (и— 1) values.

In the proofjtf (30) we shall need some further notations. In the absolute^ase 
we put K = K , Kl=K1,_R = R. In_ the relative case, choose £§G suchthat K 0= 
=  tf0(q = k (i)a n d p u t K=K(Q, K ^ K ^ O ,  R=R[t]. Then ROK=R. Let d?= 
=  {1} if R0 = Z  and d0=/i*  if Л0=к^ Both in the absolute and in the relative 
case, let Г — {u£G*: ип(п~г>а R*} and let T  be the set of valuations in mK lying above 
the valuations in T. JThen Я *сГс(Рг= {G£K: F(0)=O for all К € тк \Т } . Put 
p~[K a: K0], Then [K: K]=p. Hence T  has cardinality at most pt. Together with 
[K: and Lemma 3, this shows that Г/А(1 is the direct product of at most d+pt
multiplicative cyclic groups, at most one of which is finite. Using also that d0c  
с Я * с Г  and ( r /d o ^ -^ c ^ /d o C T /d o ,  we obtain

(35) [Г: R*] = [Г/А0: R*/A0] ^  [F/d0: (T/d0) " S  {n{n~ 1)}“+".

We notice that K/K is a normal extension of degree p. Let au  ..., ap denote the 
distinct ^-automorphisms of K, where is the identity. For every 0£G, T r(0 )=  
= T rgik\ T ( 0 )  denotes the trace_of 0  over К  and for every 0£G*, 0  denotes the 
coset of 0  in the factor group G*/R*.

<K«") a?-a?
for 1 S: i ■ j  =  n.

•И О  a! — S (a')
Ф ( ° 0  < ~ S ( a")

for i = 1,
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We define the mapping I): (&3—G*IR*X {1, n}p by

f)(«) = (<A(a), h , ■■■, ip),
where a=(alt ..., а„)€^з and where ij is the smallest integer k jf  {1, suchthat
<TJ(Tr(a1)) =  Tr(afcj) for j=  1, (It is easily seen that such integers k} exist). If 
тб^з then Il/(xy(n- 1)=ß0. Further, the number of cosets q£G*/R* with e"<-n~1) = ß0 
is at most [Г: R*]. Together with (35) and the fact that ix= 1 for every x ^ 3, this 
shows that the range of I) has cardinality at most

(36) np~l {n(n -  \)}i+vt z Z { n (n - l)}pW+,).

We shall now show that for a', a " ^ 3 with = we have \ j / {a')/
t/t(a")€#*- Together with (34) and (36) this proves (30). Let a ' = ( c q a ' ) ,  a ,,=: 
= (tx", ..., a")€#3 with f)(a') =  l)(a"). Put M=i^(a,)/i/'(a")- Then u£R*. Moreover, 
by (32)

(37) TrfrO-gSfr')//»
T r ( a ; ) - g 5 ( a " ) /p

for к = 1, ..., и.

Let ff6 {a,, ..., ffp} and let к denote the smallest integer in (1, ..., n) such that 
a(Tr (ai))=Tr(a(), er(Tr(a.i)) = Tr(a* ). Then (37) implies that a(u)=u. From this 
it follows that R* П K= R*.

§ 8. Proofs of Theorems 1 and 2

Let K, R0, K0, {zl5 ..., zq}, d, mK be the same as in § 2. Let G/К  be a normal 
extension of finite degree g. Let R be a subring of К which is finitely generated over 
R0 and which has К as its quotient field and let R' be an integral extension ring of 
R in G such that ^  =  [(7?'(TX)+: 7?+]< ®, Let ß £ R \{ 0} and let T, T' be the smal
lest subsets of mK suchthat Rcz@T, R[(k l]c:GT, , respectively. Let t, t' denote the 
cardinalities of T, T', respectively. Let T' be the set Devaluations in mG lying above 
the valuations in T'. Let K0=K0= Q if Ra= Z and let K0 denote the algebraic closure 
of к in G if R0=k. We shall use frequently th a t6
(38) [G: K0(Zl, ..., z,)] S  gd, # (T ') gt.
We shall now apply the results of § 7 with Rx= ... — R„=R', where пШ 2. Define the 
sets

^4 — {« =  («о an)€^: /(« ; Х)£Ф(п, R, R'), / ( a ;  X ) is non-special in K[X],
D (f(a; X)) = ß),

= {a =  (al5 ..., ajG'g’: / ( a ;  Х)£Ф(п, R, R'),f(a.-, X) is non-special in K[X],
D ( m  X))£ßR*},

6 For any finite set H, #  (H ) will denote the number of elements of H.
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where has the same meaning as in § 7, but with Rx— ...=  Rn=R'. We note that if 
a ' ,  a "  are (weakly) /^-equivalent tuples in <€ b then / ( a ' ;  X), / ( a " ;  X ) are (weakly) 
/^-equivalent polynomials in Ф (n, R, R'). Let Nx denote the number of /^-equivalence 
classes of tuples in while N 2 denotes the number of weak /^-equivalence classes of 
tuples in (6b. Let Nx(n, R, R', ß), N2(n, R, R', ß) be the same as in Theorem 1. Then

(39) N x(n, R ,  R', ß) , N2(n, R ,  R', ß) =S ■

For n= 2 this is obvious. If пшЪ, then (39) follows immediately from the fact that 
for every polynomial f (X )£  Ф(п, R, R') there are at least (n—2)! pairwise weakly 
/Tinequalent a . ^  with / (X )= f(a \ X). Indeed, let cq, ..., oc„ be the zeros o f/in  R'. 
Let а, г be two distinct permutations of (3, ri) and let a'=(oq, x2, aff(3), a„(n)),
«" = (oq, a2, at(3), at(n)). Then the tuples ( (a i-a ff(i))/(oq-a2))i=3.....
((cq— a 2))>=3, ...,n are distinct which easily implies that a', a" are not 
weakly /^-equivalent.

In view of (39), Theorem 1 is an immediate consequence of the following propo
sition.

P r o po sit io n  1. We have
N ^ n i n -  1 ) ( 4  • je(3d+ 2t’) y - 2  . J  m d  N 2 s ( „ ( „ _  l ) ) W .:4 W + 0 (4  • 7 » (3 i+ 2 0 )n -2  . J

Pro o f. Since R '  is an integral extension of R ,  all tuples o t= (cq , . . . ,  a „ )€ ^ 5 have 
the property that а;— {a£G: K(a) =  0 for all V£mG\ T ' }  for all i, /€
£ {1, ..., n} with / и /  Together with (38), Lemma 4 and the relations 1

1 =  j

“»-«t
this shows that for each triple (/, /  k) with 1 = i,j, k S n  and iX k, the set

a; — aj 
Щ-Хк ■ (“i. if

has cardinality most A if R0 =  Z and at most A/2 if /?0=k, where /1 = 4 • j<i(3d+2,'\ 
But this in turn implies, together with Lemma 5, that both in the absolute and the 
relative case the set

has cardinality at most An~2. Now Proposition 1 follows immediately from Lemma 6.

Proof o f  T heorem  2 . Let / ( Х ) £ Ф ( / ? ,  R') be a non-special polynomial in  R[X] 
which satisfies (2). Suppose th a t/h a s  degree пшЪ and zeros oq, ..., znfR '  . We 
shall use that

(40) a;—ajd& r for n) with i ^ j .
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First of all suppose that /?„=Z. Note that

■gl—a--+ a‘ a2- = l  for
a j - a 2 <Xi —a2 i = 3, n,

and that the numbers (oq — a;)/(ai— <x2) (/= 3, n) are pairwise distinct. Hence by 
Lemma 4, (38) and (40) we have

n —2 ^ 4 . 79(3.1+21'),

Now suppose that R0=k. Further, we assume that (oq — a3)/(a! —ct2)$K n 
(where K0 is the algebraic closure of к in G), which is by Lemma 1 no restriction. Let 
SP be the subset of {3, ..., n] consisting of those i for which (oq— cq)/(oq — a2) $ K0. 
By (38), (40), (41) and Lemma 4 we have

#  ( S f )  S  2 -  7 i ( 3 d + 2 i , ) .

If /€{3, ..., n}\£f, then (cq— a.Moq— сс3)$К 0. Hence by (40), the identities
-ai +  a; = 1 (i€{3, ...,« } \^ ),

«1-«з a i - a 3
(38) and Lemma 4, we have also

#({3, ..., üJV O  == 2 • 7»(3d + 2i') 

Together with (42) this shows that also in the relative case
n —2 = 4• 7«<3ii+2i'),

§ 9. Proof of of Theorem 3

Suppose that K, R0, K0, {zl , ..., z j ,  Rx, Kl , d, mK have the same meaning as 
in § 2. Let L  be a finite extension of К of degree т ё 2  and let G denote the normal 
closure of L  over K. Put g=[G: К]. In the relative case we assume that к is alge
braically closed in G. Let R be a subring of К  which is finitely generated over R0 and 
which has К  as its quotient field. Let R'czL be an integral extension of R having L 
as its quotient field and suppose that J= [(R ' C\K)+: 7?+]<°°. Let a1, crm be 
the ^-isomorphisms of L in G. For adL, put а(0 = (Т;(а) (i— 1, ...,/n). Let X>K(R') 
be the discriminant divisor of R' over K. Let T  be the smallest subset of mK such that 
R<z@T and let t denote the cardinality of T. Let ßdK* and let T" be the smallest 
subset of such that TczT" and_V(ß)=V(T>K(R')) for all VdmK\ T " .  L e tt "be 
the cardinality of T". Further, let T" be the set of valuations in mG lying above the 
valuations in T". We shall use frequently that
(43) [G -.K J^gd , # ( T " ) S gr .
If a£L, a will denote the tuple (a(1), ..., a(n)). We shall use the same notations as in 
§ 7, however with n—m, Ri—cr^R') for j= l ,  ... ,m  and R— R'C\K. We shall deal 
with the sets of tuples

=  {a: a . d R \  D L /K (cc) =  ß } ,  =  {a: ad R ' ,  D L/K( o t ) d ß R * } .
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We assert that if is non-empty then V (ß)^V(X>K(R')) for every V d m f\T .  
Indeed, let a £ R '  suchthat a .d cß -,. Since D L /K (oi) is integral over R ,  hence V ( ß ) =  
=  ̂ (^цк(а))= 0  for all VdmK\T .  Together with (7) and the definition of ЪК{Я’) 
this proves our assertion.

Lemma 7. Let oq, c/.2dR' such ihat ос,, Then for ij^ j with \ = i, j S m

of4 — a(Л
u) <U9t„ = {oc£G*: F(a) -  0 for all Vem G\T "}.

P roof. Let V be a fixed valuation in mG\ T "  and let oq, a2f  R' such that 
oq, a2d%- Then DL/K(ccг)^ 0 ,  hence {1, a, a"1-1} is a X-basis of L. We infer

m
that there are <fq, ...,£ таК  suchthat а2=  2  í -1* F°r /6 {1, m} , let y ~

J=1= (1, oq, ai-1, a2, ai+1, a?1-1). Then we have by (8) that

(44) D(y.) =  det2

1 0

í i  ^

0 1

Dlik(<*i) =  ^ D l/k Í*i) fo r i — 1> •••> m.

But by the definition of T "  we have W(DL/K(a:1))=W (ß)=W(1>K(R')) for all 
W6mK\ T " and by the definition of DK(R') we have W(D(yi))^W(T>K(R')) for 
all WdmK\ T " .  Together with (44) this shows that F(£,)^0 for /= 1, , in. But
then we have, since V (a P )^0  for i— 1, ..., m,

\ / 'k= 2
(qjb)*-1—(a^))fc- 

a f  — a{j)
1 \ / m fc —2 \
-  = H 2 2  4 (q i0)*-2- '(q F )'/ 4=2 1 = 0 >

0.

We can show in a similar way, by interchanging oq, a2, that V ((a}0 — y.{J))j{ail> — y f f )  a  
&0. Hence V((<xP— <xF)/(aF  — â J)))=0. This proves Lemma 7.

We shall now prove Theorem 3. We remark that two numbers oq, a2€ R' are 
(weakly) Я-equivalent if and only if the tuples a,, a2 are (weakly) Я-equivalent. Hence 
in view of Lemma 6 it suffices to prove the following proposition:

[( —qG) \ 1
Proposition 2. The set o f  tuples У  = 1 1 ——----- -—-I : ad&7f has cardinal-

Ivoo ’ — as v i s i j / s n  J
ity at most

( 4 .73(3d+2i")yn-2_

Proof. For convenience we put B=4 ■ 7g<-3d+2, '\ Let a 0 be a fixed element of 
(i 7. We put )4j— y.f — a jf  for l s i , j ^ m  with iF /. Further, for every ad R' we 
put Xtj (a) =  (y.(i) — a(jy)/lij for 1 ̂ i , j S m  with i Fj. Then for every we
have by Lemma 7 that Xu ( a ) d  Gj-. By Lemma 4, (43) and the relations

Aij ^ o ( q )  . hjk xjk (q ) _  j
fk  X;k(x) ?.ik X[k(a) (i,J, fc€{L ..., m}, i ^  fc),
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we have that for each triple (/,/, k) with 1 ^=/, j, k ^m , i f k ,  the set

a'
la<‘>—a1

(j )

w :
a(0—a°>

7’ a(i)—a(k) (£k if R,o =  k}

has cardinality at most В if R0—Z  and at most у  В if R0= k. In the absolute case,
Proposition 2 is an immediate consequence of Lemma 5. In the relative case we infer 
that У  contains at most max (1, 2m~2— l)(ß/2)m~2 tuples for which a is non-special 
(i.e. / ( or, X) is non-special in K[X\). We shall now estimate the number of tuples 
in У  for which a is special.

Let at£% such that a is special or, which is the same, the minimal polynomial 
f ( X )  of a is special in K[X]. Then mS3. Further, there are integers r, n0, 6 with 
/•>0, и0>0, <5£{0, 1}, rn0+ S—m and <5=0 if n0= l, and there are a£K, g£K* 
and a monic polynomial h(X)^V.[X] of degree r with D (h)^0  suchthat

f (X )  = /.ir h((X + a)n°/ /.i)(X + a)0.
But since/is irreducible we have that 0= 0  and h is irreducible. Furthermore, h has 
its zeros in G and к is algebraically closed in G. Hence r= 1. Therefore there exists 
a fi'£K* suchthat

/ ( * )  =  ( x + d r - i t .
Let q be a fixed, primitive m-th root of unity and let 0  be a fixed m-th root of fi'. 
Then 0L(l)=QkiQ—a for i— 1, ..., w, where {klt ..., km) is a permutation of 
(1, ..., m). Hence the tuple

belongs to a set of cardinality at most ml. But this shows that the number of tuples in 
У  for which a is special is, in view of m ^g , at most

ml S 2-73m(m- 2) B/2)m~2.

Therefore, the total number of tuples in У  is also in the relative case at most Bm~2.
R emark. We notice that a weaker version of Theorem 3 can be deduced also 

from Theorem 1.

References

[1] J. H. Evertse, On equations in 5-units and the Thue-Mahler equation, Invent. Math., 75 (1984),
561— 584.

[2] J. H. Evertse, On equations in two 5-units over function fields o f characteristic zero, Acta
Arith., 47 (1986), 233—253.

[3] J. H. Evertse and K. Gyory, On unit equations and decomposable form equations, J. Reine
angew. Math.. 358 (1985), 6—19.

[4] K. Győry, Resultats effectifs sur la représentation des entires par des formes décomposables,
Queen’ s Papers in Pure and Applied Mathematics 56 (Kingston, Canada, 1980).

8* Acta Mathematica Hungarica 51,1988



362 J. H . EVERTSE AND К . GYŐRY: ON TH E N U M B ER  OF POLYNOM IALS

[5] K. Győry, On discriminants and indices of integers of an algebraic number field, J. Reine angew.
Math., 324 (1981), 114— 126.

[6] K. Győry, On certain graphs associated with an integral domain and their applications to dio-
phantine problems,, Publ. Math. Debrecen, 29 (1982), 79—94.

[7] K. Győry, Polynomials of given discriminant and integral elements o f  given discriminant over
integral domains, C. R. Math. Rep. Acad. Sei. Canada, 4 (1982), 75— 80.

[8] K. Győry, Effective finiteness theorems for polynomials with given discriminant and integral
elements with given discriminant over finitely generated domains, J. Reine angew. 
Math., 346 (1984), 54— 100.

[9] K. Győry, Sur les générateurs des ordres monogénes des corps de nombres algébriques, Séminaire
de Theorie des Nombres, 1983— 1984, Univ. Bordeaux, No. 32, pp. 12 (1984).

[10] S. Lang, Algebraic Number Theory (Addison-Wesley, 1970).
[11] S. Lang, Diophantine Geometry, Interscience Publ. (New York—London, 1962).
[12] O. Zariski and P. Samuel, Commutative Algebra, Vol. I, van Nostrand (1958).

( Received December 28, 1985)

CENTRE FOR MATHEMATICS AND COMPUTER SCIENCE
KRUISLAAN 413
P. O. BOX 4079
1009 AB AMSTERDAM
THE NETHERLANDS

MATHEMATICAL INSTITUTE 
KOSSUTH LAJOS UNIVERSITY 
4010 DEBRECEN 
HUNGARY

Acta  Mathematica Hungarica 51, 1988



Acta M ath . Hung.
51 (3—4) (1988), 363—364.

ON TOTALLY SEPARABLE PACKINGS OF EQUAL
BALLS

G. KERTÉSZ (Budapest)

In the «-dimensional Euclidean space a set of bodies {h,} is said to be totally sepa
rable if to any pair of bodies bt and bj there is an (n— l)-dimensional plane p such 
that bt and bj lie on opposite sides of p, and for each index к, рПЬк=0. It is known
[4] that for n—2 the density of a densest totally separable packing of congruent 
copies of a centro-symmetric convex disc is equal to the area of the disc divided by 
the area of the smallest parallelogram containing the disc. Further results about 
totally separable circles are contained in [2] and [3].

In the present paper we shall show that in 3-space the density of a densest totally 
separable packing of equal (open) balls is л/6. This constant equals the volume of 
a ball divided by the volume of the circumscribed cube. We shall prove the following 
sharper

T h eorem . I f  a cube o f volume V contains a totally separable set o f N balls o f  radius 
rthen F s 8 Nr3.

P roof. We consider a plane separating any two of the balls without intersecting 
the others. This plane divides the cube q into two pieces. If any of these contains two 
balls we divide it similarly as we did with q. Continuing this process we finally obtain 
a decomposition of q into convex polyhedra each containing exactly one sphere. Let 
s be the surface area, and V the volume of one of these polyhedra. Again let / be the 
length of an edge of this polyhedron, and a the angle between the outer normals of 
the faces meeting at this edge. Then, by a well known inequality of Minkowski 
(see e.g. [5] p. 287),

s2 s  3 v ll • tan y

where the sum extends over all edges of the polyhedron. Since v^(r/3)s, we have 

(* ) r s j r T i '  cot-y

where ß—n—ot is the dihedral angle at the respective edge. Let к be the number of 
polyhedra meeting along a common segment e of an edge. Let ßk, ..., ßk be the 
respective dihedral angles. According as e lies

(i) on an edge of q,
(ii) in the interior of a face either of q or of another polyhedron,

(iii) in the interior of q but not in the interior of a face of another polyhedron,
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we have
(i) k= 1, & + ...+ßk=it/2,

(ii) k^2 , ßx + ...+ßk=n,
(iii) ksn4, ßt + ...+ßk=2n.

Since for 0 < х ё я /2 , cot x  is a convex, decreasing function, we have in each case

cot A + .„ + A S fc.

Therefore, denoting the total edge-length of the polyhedra by L, and summing up the 
inequalities ( * ) for all N  polyhedra, we have

But a theorem of Besicovith and Eggleston [1] claims that the total edge-length of a 
convex polyhedron containing a sphere attains its minimum for the circumscribed 
cube. Therefore L s2 4 r  and conseqently K s8 N r3 as claimed.
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Introduction

It is well known that the trigonometric conjugate functions play an important 
role in harmonic analysis and in approximation theory. There are many results in 
the formulation of which the conjugate function appears. A classical result of this 
type was obtained by G. Alexits [1, 2, 3];

T heorem  A. For the Fejér sums on( f )  o f the trigonometric Fourier series o f the 
2n-periodic function f  the estimate ||cr,>( / ’)—/||p=o|^j-j holds i f  and only i f  the con
jugate function f  o f f  belongs to the class Lip (1, p) ( l^p ^ i °°).

For the proof G. Alexits proved

L em m a B. Let (a„) be any sequence in a Banach space B. Consider the Fejér- 
sums o\ and o\ o f the series Lan and Ina„ respectively. Then ||cr̂ j|fi = 0 (l) i f  and only
i f  there exists o£B such that || <rj— <т|| в= О I — .

Lemma В was used by many authors for solving problems in approximation 
theory and harmonic analysis (see e.g. [5, 7, 11]). In [5] D. Králik generalized (among 
others) Lemma В proving

L em m a C. Let (an) be any sequence in a Banach space B. Consider the Fejér- 
sums a\ and c\ o f the series Lan and Inza„ respectively, where 0< a< 1. I f  ||<rjj||B= 
=  0(1) then there exists o£B suchthat

1ки-<*11в = ° { ~ f \  (« = !)•

Lemma C was applied in [11] for the investigation of the derivative of fractional 
order.

1. The aim of the present note is to give another application of Lemma C con
cerning the Hermite—Fourier and Laguerre—Fourier expansions. We need some 
notations and definitions.

Denote LPU (a, b) the Banach space of functions defined on (a, b) with norm

ll/IU := (/1 /lH 1/p-
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For и=1 we write simply L p(a,b). In what follows we suppose l<p<°=. Let 
/ 6 Z/_*ü(— °°, oo), g£L%*e-x(0, °°). Denote/ and g the Hermite-conjugate of / and 
the Laguerre-conjugate of g respectively. This notion was introduced by B. Mucken- 
houpt [8, 9], further he proved that fdL*-xt(— oo), g£Lx«e-*(0, oo) for l<p<oo. 
Now we give a simpler and more general definition for Hermite and Laguerre conju
gate functions. For l<p<oo and oo, oo), gdLx*e-*(0, oo) our definition
coincides with that of B. Muckenhoupt (this follows from [8, 9]), but we shall not 
use this fact.

Denote H = {hn}, L*={1%}, рх={р£(и| ,  x)} the normed Hermite, Laguerre 
polynomials further the system o f orthonormal polynomials on (— oo, oo) with resp
ect to the weight function u \ ( x ) —  \ х \ к е ~ * г  (AsO), resp.

For any orthonormal system <p (with respect to some weight) denote ^(q>) the 
set of all functions /  which have Fourier series (i.e. coefficients) with respect to the 
system cp.

D efinition . Let f d ^ { H ) ,  g d ^ ( L * ) ,  a >  — 1,

(1) f ~  2  a k ( f ) h k ,  g~  2  Ък Ш 1 •
k — 0 k = 0

If  there exists f d t F { H )  and y ~ 1 / 2  g ( y ) d t F ( L a + 1 )  suchthat

(2) 2  akhk- i ,
k = l

0

(3) y - 1/2g (y )~  2 - k - 1/2bkl*kt\(y),
k= 1

then /  is called to be the Hermite-conjugate function of/  and g  the Laguerre-conju
gate of g .

For f d ! F ( H )  denote a„ ( / )  the и-th Fejér mean of the Hermite—Fourier 
series (1) of / . I f  g (z^(L x) («=—  1), denote h ( x ) : = g ( x 2 ) ,  k ( x ) : = g ( x 2)  ( g  denotes 
the Laguerre-conjugate of g  if it exists). We prove two theorems.

T heorem I. L e t  1  < p < ° ° ,  S u p p o s e  f  e x i s t s ,  i s  a b s o l u t e l y  c o n t i n u o u s
o n  e v e r y  f i n i t e  i n t e r v a l  a n d  e ~ x * l 2 f ' ( x ) ,  ( e - * 2/ ( x ) ) ' e * * / 2 € L p ( —  ° ° ) .  T h e n  e ~ x */ 2  f  ( x ) d
d L p ( —  ° ° ,  ° ° )  a n d

(4) IIе-*'П еп(Г * )-/(*)]«!.*<-,-) =  О ( - L )  (и §= 1).

T heorem II. L e t  l<p<oo, a s  - 1/2, g d t F ( L x ) .  S u p p o s e  t h e r e  e x i s t s  g  f u r t h e r  
k ( x )  i s  a b s o l u t e l y  c o n t i n u o u s  o n  e v e r y  i n t e r v a l  o f  t h e  f o r m  ( e ,  5 ) ,  0 < s < < 5 < ° °  a n d  
( u 2 + 1 / 2 ( x ) A ( x ) ) ' m “ +1 1 / 2 ( x X L p ( —  oo, oo) .  T h e n  u x + 1 / 2 ( x ) k ( x ) d L p ( —  ° ° ,  ° ° )  a n d

(5) ||иа+1/2(х)[<т„(к, x)-fc(x)]|!iJ.{_ „ ,„ ) =  О (и Sf 1),
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where c„{k, x) denotes the n-th Fejér mean of the Fourier series o fh  with respect to 
the system p7+1/2.

2. For the proof of the theorems we need some lemmas.
Lemma 1. We have for n— 1, 2, ...

(6) h'n{x) =  ][2n h„_1(x),

(7) (pLY(x) = YnpL-i(x)  (A 3=0).
Proof. See [10] and [6] respectively. □
Lemma 2. I f  ex2l\e ~ x* f(x j\fL  (— °°), l< p < °° , then for every algebraic

polynomial p{x)
(8) lim e -x,p(x)j(x) = 0.

1*1-°°
P roof. We can suppose / (0)=0. In this case the Hölder inequality implies

\e-x*p(x)J(x)\ =  Iе~хгр(х) J J'(t)dt\ = \e X‘,2p(x)\ \e x,ß j  J(t)dt\ =
0 0

S \e - Xi'* p (x )\\f e~“F\f'(t)\dt\ =s 
0

^  \e-*l*p(x)\ - X V « .  W e - ^ n m ^ . ^  -* 0 (|x|
Lemma 3. Let Ia khk be any formal Hermite-series, denote <r„ its n-th Fejér-mean. 

Suppose ||с-х2/2сг„(л;)||р=0(1), пШ 1, l< p< °°. Then there exists fd L p(— °°, °°) 
such that Zakhk is the Hermite—Fourier series o f f.

P r o o f . Define q by —  + — =  1 and consider the functionals 
P Я

T n : R,

Tnh:= J on(x)h(x)e~xll2dx (h£Lq( - », »)).
— oo

By Hölder inequality we get
\Tnh\ ^  \\Gn(x)e~x2l2̂ Lp(-.'X,,eo)-\\h(x)\\Ln - „ ia,) 'S C\[h\\q.

On the other hand, for any function of the form e~x*/2hm(x)
oo

(9) Tn[e-x2Fhm(x)] = J on(x)hm(x)e-xldx =
— oo

=  /  "z ak[ l - ^ - ) h k(x)hm(x)e-x,d x=  ( l —^ ) a m- a m О -*<*>).
fc=o \ n 1 \ n )
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Hence, the sequence {T„} converges for every function of the form e~x2/2p(x), where 
p(x) is an arbitrary algebraic polynomial. These functions form a dense set in 
£9(— oo, °°), so taking into account the Banach—Steinhaus theorem and also the 
Riesz representation theorem we obtain: there exists a function f ( x ) on (—°°, °°) 
such that f(x )e~ xt/i£Lp(—°°,oc) and for every h^L9(— Tnh —

— J  f(x)h(x)e~x2dx (и — °°) holds. Hence, by (9), am=  j  f(x)hm(x)e~x*dx. □
— oo — oo

3. P roof of T heorem  I. Let
(10) f ~ Z a khk,

(И )  ?~ 1аккк- 1г
then, according to the assumption (p(x):=[e~x2f(x)]'e~x2/2£Lp(— °=, °°) we have 
(?€#■(#). Denote

<P(x)~ Z  bkhk(x)e~x1'2.
k = 0

Integrating by parts and using (6), (8) we have
oo oo

bk =  f  (p(x)hk(x)e~x*/2 dx = J  [e~x,f(x)]'hk(x)dx =
— oo — oo

oo oo

= f  e~x7f(x )h k(x)dx — i l k  f  f(x )h k- 1(x)e~x2dx =

= Y2kak- 1( f)  = Í2kak(f), b0 = 0,
i.e.

(12) <K *)~ 2  Y2kakhk(x)e-Xi/2.
k = 1

We assumed cp(x)£Lp(— °°), hence G. Freud’s result [4] gives

(13) К(<Р)1г,»(— .=») =  ö (l)  (и S i )
and hence by Lemma В we get: there exists adLp(— oo} oo ) suchthat

\\e~xV2[crn(f, x)-< 7 (x)]||lj4 -~ ,~ )  = ° \ ^ = )  -  !)>

consequently

( 1 4 )  \ \e -xi,2crn( f ,  x ) | l p ( _ „ jTC) =  0 ( 1 ) ,

and using Lemma 3 we obtain: e~x2,2f(x)£Lp(— °°, oo). Applying G. Freud’s 
result [4] again, it follows

\ \ е ~ хг/2[ап( /  * ) - / ( * ) ] ! -*■ 0 ( n  -  oo),
i.e. f (x )—u(x) and (4) is fulfilled. □
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4. P roof of T heorem  II. We only sketch the proof, because it is similar to 
that of Theorem I. Let

g(*)~ 2  a„ln(x),
и =  0

then by definition

x -1/2|( x ) ~  2 ~ n~lr~anln-i4x)-
n  =  1

Applying the following formula of N. X. Ky ([6] formula (3))

P2n(W$, x) = p„(up-i/2 , x2), Pb,+i(W}, x )  =  xpn(uß+1/2, x 2)

(ß = 0, uß(x) = xße~x, Wß(x) =  \x\ße~xi‘2)
we get

H X ) ~  2  a„P2n(WZ+1/2, X),
n = 0

4 x ) ~  2  ~ n~1/2anP»n-i (W2+V2, x).
n = l

Now let ^(х):=[м*+1/2(х)Л(;с)]'иа+1/я(х). Apply (7) and use the method of proof 
of Theorem I. It follows

Ф(х)~ 2  - V t i a np n(IV2+ l l i ,  x) ■ ux+1/2(x).
/1 =  1

Because \l/tL"(— °°), Lemma 2.3 of [6] gives

hence, a similar argument as in Section 3 yields

Ik+i/aOOkiOh x)-h (x )] ||LP(_„,») =  О (и a  1). □
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O N  E M B E D D I N G  O F  L O C A L L Y  C O M P A C T  

A B E L I A N  T O P O L O G I C A L  G R O U P S  I N  E U C L I D E A N

S P A C E S .  I

M. BOGNÁR (Budapest)*

All the groups considered in this paper are locally compact abelian T0 -topolo
gical groups with countable bases. They are referred to as LCA-groups. For each 
positive integer m, Rm denotes the m-dimensional euclidean space.

Introduction

The main target of this paper is to prove the following theorem stated in [2].
T heorem  A. The space o f an n-dimensional connected LCA-group can be embedded 

in Rn+1 only i f  it is the direct sum o f k-dimensional toroidal and an (n — k)-dimensional 
vector group (O^k^ri).

This theorem is a generalization of a theorem of K. Kodaira and M. Abe [9] 
which says:

An n-dimensional compact connected LCA-group can be embedded in Rn+1 only 
i f  it is a toroidal group.

Also, we shall prove some further embedding theorems about LCA-groups. 
Namely, the following ones.

T heorem  B. Each n-dimensional LCA-group with locally connected components 
can be embedded in Rn+1.

T heorem  C. An n-dimensional (n > 0) LCA-group can be embedded in R" i f  and 
only i f  it is locally connected and its components are non-compact sets.

It is important that in [3] we have proved the following theorem (cf. also [4]).

T heorem  D. Each n-dimensional LCA-group can be embedded in Rn+2.

Hence if we consider the integers m for which a given LCA-group G can be 
embedded in Rm then taking into account also the coincidence of the dimension of G 
and of the dimension of the components of G, Theorems A, B, C, D determine the 
minimum of these integers m.

* Research supported by Hungarian National Foundation for Scientific Research Grant No. 
27-3-232.
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It is to be noted that there are some misprints in [4]. We shall correct them at the 
end of Section 1.

The paper is divided into two parts. Each of them is equipped with a separate 
list of references.

Now we are going to prove Theorems В and C.

1. Proof of Theorems В and C

1.1. L em m a . Let Г be an n-dimensional ( 0 ^ n < ° ° )  LCA-group. Then Г has a 
subspace homeomorphic to Rn.

Proof. Let Tx be the component of the zero element of Г. Let T2 be a subgroup 
of Г containing T1 such that Г/Г2 is discrete and Г2/Г1 is compact (see [10] p. 161). 
Since Г has a countable base and Г/Г2 is discrete, it follows that Г is a countable 
union of closed subspaces each being homeomorphic to T2. Thus Г2 is of dimension 
n, since otherwise by the sum theorem for dimension (see [8] p. 30) Г would have the 
dimension ^ n — 1.

Since Г2/Гх is compact, it follows that T2 decomposes into the direct sum of a 
compact subgroup Г3 and a vector subgroup V of T2 (see [10] p. 160). Let к  be the 
dimension of Г3. Then кШп and by the product theorem for dimension (see [8] p. 33), 
V is of dimension S n —k. Thus V admits a subspace homeomorphic to R"~k. On the 
other hand, Г3 has a subspace homomorphic to Rk (see [10] p. 213). Consequently, T2 
and so also Г has a subspace homeomorphic to RkX R"~k, i.e. homeomorphic to R" 
as required. □

1.2. C o r o lla r y . I f  I \  and T2 are LCA-groups o f finite dimensions then the di
mension o f their direct sum is the sum o f the dimensions o fT x and Г2.

1.3. C o r o lla r y . Let Г be an n-dimensional (0 S n - = ° ° )  LCA-group. Then each 
subgroup o f Г containing the component o f  the zero element o f Г is o f dimension n.

1.4. R em a r k . Let Tx be a subgroup of the LCA-group Г such that Г/Гх is dis
crete. Then if Tx can be embedded in an Rm (m> 0) then Г can be embedded in the 
same Rm, too.

In fact, since Г has a countable base, it follows that Г/Гx is countable and this 
proves the statement.

1.5. R em a r k . The topological product of the unit interval I of the space of the 
reals and an и-dimensional toroidal group (0Sn<°°) can clearly be embedded in 
Rn+1.

1.6. C o r o l l a r y . The direct sum o f an n-dimensional toroidal group and o f a 0 -di
mensional LCA-group can be embedded in Rn+1.

1.7. C o r o lla r y . The direct sum o f an n-dimensional toroidal group and a 1- 
dimensional vector group can be embedded in Rn+1.

1.8. N o tatio n s . We denote by S  the factor group of the additive group of the 
real numbers by the subgroup of integers. E is clearly a compact LCA-group. If x
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is a real number then the coset of the group 3  which contains x will be denoted by 
x. Moreover, if r is a positive integer then Ur denotes the set

{Ui, ..., Ur, ...} is clearly a base about the point Ö in 3.

1.9. D efinition. Let G be an LCA-group. Any homomorphism у of the topo
logical group G into the topological group 3 is called a character of the topological 
group G. We define on the set Г of characters a topological group in the following 
manner: The sum of two characters у and y1 is that character у Ту1 for which

y + f C g )  =  y(g)+y1(g)
holds for each gd G.

Neighbourhoods V of the zero element of Г are defined in terms of the neigh
bourhoods U of zero in 3  and compact subsets Ф of the space G by putting 
у<=У[Ф, U] if у (Ф )сU.

In such a way we obtain an LCA-group Г (see [10] p. 128). This is the character 
group o f G.

1.10. D efinition. Let Г be the character group of the LCA-group G. Let Gx be 
a (closed) subgroup of G. Let us denote by (Г, Gx) the set of all elements yd Г for 
which у (g)=0 for every gdG,. The set (Г, Gx) is called the annihilator o f the 
group Gx in the group Г and it is a (closed) subgroup of Г.

Let be a (closed) subgroup of the group Г and denote by (G, Tx) the set of all 
elements gdG for which y(g)=0 for every y£/V  The set (G, Гх) is called the 
annihilator of the group Гг in the group G and is a (closed) subgroup of the group G.

1.11. Lemma. Let Г be an n-dimensional ( 0 ^ n <  » )  compact LCA-group with 
locally connected components. Then Г is the direct sum o f an n-dimensional toroidal 
and 0-dimensional compact subgroup.

P roof. Let G be the character group of Г. G is a  discrete LCA-group (cf. [10] 
p. 133).

Let T(G) be the character group of G. Since the topological group Г (G) is iso
morphic to Г (see [10] p. 146), it follows that G is of rank n (see [10]) p. 148). Let T1 
be the component of the zero element of Г and let Gx be the annihilator of the topo
logical group Г, in the group G. G, is conposed of all the elements of G having a finite 
order (see [10] p. 149) and thus G/Gx has no element of finite order and its rank is 
n, too.

Since the topological group Tx is isomorphic to the character group of G/Gx 
(see [10] p. 136) and since Tx is locally connected, by hypothesis it follows that G/Gx 
has a finite system of linearly independent generators (see [10] p. 168). Consequently, 
G/G1 is a free abelian group and thus G is the direct sum of Gx and of a subgroup G2 
isomorphic to G/Gx. The character group of the free abelian group G2 with rank n is 
an и-dimensional toroidal group (see [10] p. 142 and p. 148), while the character 
group of Gx is a compact 0-dimensional group (see [10] p. 133 and p. 148). Conse
quently, the character group T(G) of G and thus Г itself is isomorphic to the direct
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sum of the character groups of Gy and G, (see [10] p. 141) and thus it is the direct sum 
of an л-dimensional toroidal subgroup and of a 0-dimensional compact subgroup 
indeed. □

1.12. R emark. Let Г be a locally connected LCA-group and let Гу be the compo
nent of the zero element of Г. Then Гу is open in Г. Consequently Г1 is locally con
nected as well and Г/Гу is a discrete LCA-group.

1.13. P roof of T heorem B. Let Г be an «-dimensional (n s 0) LCA-group with 
locally connected components. Let Гу be the component of the zero element of Г. 
Let Г a be a subgroup of Г containing Гу such that Г/Г,, is discrete and Г2/Г1 is 
compact (see [10] p. 161).

Г2 is an «-dimensional LCA-group (see 1.3) with locally connected components. 
Since Г2/Г1 is compact, it follows that Г2 decomposes into the direct sum of a k-di
mensional compact subgroup f 3(0^A:Sn) and an («— &)-dimensional vector sub
group V (see [10] p. 160 and 1.2).

Г3 has clearly locally connected components, too. Hence by 1.11, Г3 is the direct 
sum of a A>dimensional toroidal and a 0-dimensional compact subgroup. Thus by
1.6, Г3 can be embedded in Rk+1. V can be clearly embedded in R"~k. Hence the direct 
sum Г2 of Г3 and V can be embedded in Rk+1 X R"~k and thus in Rn+1 as well. Since 
Г/Г2 is discrete, it follows by 1.4 that Г  can be embedded in Rn+1 as required.

The proof of Theorem В is complete. □

1.14. P roof of T heorem C. Let Г be an «-dimensional locally connected LCA- 
group with non-compact components. Let Гу be the component of the zero element 
of Г. Then according to 1.3 and 1.12, Гу is an «-dimensional locally connected open 
subgroup of Г, while Г/Г1 is a disrete group.

Since r r is a connected locally connected «-dimensional LCA-group, it follows 
that Гу decomposes into the direct sum of a ^-dimensional 0 toroidal sub
group Г2 and an («—A:)-dimensional vector subgroup V (see 1.2 and [10] p. 170). 
Since Гу is non compact, it follows n—k ^ l  and thus V  decomposes into the direct 
sum of a 1-dimensional Vy and an (n—k — l)-dimensional V2 vector subgroup.

According to 1.7, the sum Г2+ Vy of the groups Г2 and Vy can be embedded in 
Rk+1. On the other hand, V2 can be embedded into Rn~k~1. However, since Гу is the 
direct sum of r 2+Vy and V2, it follows that the space of Гу can be embedded in 
Rk+1XR"~k~1 and thus in Rn as well. Finally, since Г/Гу is discrete, it follows by 
1.4 that the space of Г  can be embedded in R".

Now suppose that the «-dimensional (0<«< °°) LCA-group Г can be embedded 
in Rn. Let cp: Г -* R" be such an embedding, i.e. (p is a. topological map of Г onto the 
subspace ср(Г) of Rn.

Since the space of Г is homogeneous, it follows by 1.1 that to each у£Г we 
can find a subspace Rn(y) of Г homomorphic to R" and containing y. However, by 
the theorem of invariance of domain (Gebietsinvarianz), (p(R"(y)) is open in R" and 
thus (р(Г)— (J (p(R"(y)) is an open subset of R" as well. Consequently, <р(Г) is

yir
locally connected and the components of (р(Г) are open subsets of ср(Г). Hence the 
components of ср(Г) are non-compact sets. These statements imply that the space of Г 
is locally connected and the components of Г are non-compact sets.

The proof of Theorem C is complete. □
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We now turn to the correction of the misprints in [4].

p. 345 row 10:
p. 347 row 8:
p. 347 row 17:
p. 348 row 6 from below:
p. 348 last row:

M isprin t 

n — 2
*«i, S,)
Va factor- 
therefore can

C o rrec t

n -\~ 2 

Igl
a vector- 
therefore Fean

Now we give a preliminary sketch of the proof of our main theorem A.

2. Sketch of the proof of the main theorem

2.1. Definition. Let X  be a topological space and g:X -»X  an autohomeo-
morphism of X. A finite sequence Z = (L 1; ..., Lm) of nonempty pairwise disjoint 
closed subsets of X  is said to be an (X, g)-cycle o f order m if Z  is a covering of X  and 
g(Li)=Li+1 whenever /=  1, 1 and g (L J = L 1.

The sets L; are called the members of the (X , g)-cycle Z.
The autohomeomorphism g: X —X  is said to be an absolutely cyclic map if for 

each open covering Q of X  there is an (X, g)-cycle Z  which is a refinement of Q.
2.2. D efinition. Let D be a space homeomorphic to the Cantor discontinuum 

and let the autohomeomorphism g: D-+D be an absolutely cyclic map. For each 
q£D let us identify the point (1, q) of I XD  with (0, g{q))flXD  where I = [0, 1] is 
the same topological space as in 1.5. The quotient space of IX D thus obtained is 
called a solenoid.

2.3. R emark. Since each connected and locally connected и-dimensional LCA- 
group decomposes into the direct sum of a /с-dimensional (0^/c^n) toroidal group 
and an («— k)-dimensional vector group (see 1.2 and [10] p. 170), to prove Theorem A 
we need only to show that the space o f a connected but non-locally connected n-dimen- 
sional LCA-group cannot be embedded in R"+1.

2.4. We can show that the space of each «-dimensional connected but non-locally 
connected LCA-group has a subspace homeomorphic to the topological product of 
a solenoid and an («— l)-dimensional cube.

Thus we need only to show that the topological product SXC"-1 of a solenoid 
S and an (и—l)-dimensional cube C”-1 (if «=1 then C°=C1_1 is a singleton) 
cannot be embedded in R"+1.

2.5. Let D be a space homeomorphic to the Cantor discontinuum and g: D-»D 
an absolutely cyclic map of D. Let S be the solenoid obtained from this map. Let 
ty .lX D -*S  be the natural map of IX-D to the quotient space S, i.e. rj(t, q) = 
= r]{t',q') iff (t, q)—(t', q') or t— 0, t'=  1 and q=g(q') or t— 1, t '—0 and q'= 
—g{q). Let n ^ l  and let C"“1 be an (и—l)-cube. Consider the subspaces
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and

r  =  , ( ( [ ° , I ] u [ A , , ] M x c " -
of SXC"-1. Each of these two subspaces is a system of и-bricks. In particular, for 
qdD let

*• = ’ ( [ j -  4 ] x  w ) x c “ ‘
and

К  = ч (([° .у ]х ^>)и ( [1 ’
Observe that for qdD the brick Bq of the first system meets two bricks of the 

second system, namely the bricks B'q and B 'g(q).
Suppose now that S X C "~1 can be embedded in Rn+1 and let li: SX C n~1 — Rn+1 

be an injective continuous map. h is a topological map of SXC"-1 onto the subspace 
A (SXC"-1) of Rn+1.

The bricks h(Bq) of the set h(Y) determine in a certain sense a local ordering of D 
(see also [5]). By joining the bricks Bq and B’q. described above we can prove that g 
preserves this local ordering. On the other hand, we can show that each absolutely 
cyclic map of the Cantor discontinuum D disturbs every local ordering on D. Thus 
we come to a contradiction and this proves the nonexistence of h, i.e. SX C n_1 can
not be embedded in R"+1.

Now we are going to prepare the proof of Theorem A in details.

3. Absolutely cyclic maps

Let Abe a Tj-space and g: X-+X an autohomeomorphism of X. We keep them 
fixed in this section.

The section deals with the fundamental properties of (X , g)-cycles and of abso
lutely cyclic maps.

Also we shall prove a theorem stated in [5], namely that the only infinite 7j- 
space which possesses an absolutely cyclic map is the Cantor discontinuum.

3.1. First we introduce a useful notation. Let m be a positive integer and let 
i,y'€{l, 2, ..., m}. Let

if i+ j = m 
if m <  i+ j,

if 0 <  i —j  
if i - j £ 0 .

Using these notations we can simplify the definition 2.1 as follows.
A finite sequence Z = (L 1; ..., Lm) of nonempty pairwise disjoint closed sub

sets of X  is said to be an (X, g)-cycle o f order m if Z is a covering of X  and g(Lt)= 
= Li+ml for

. . i l + J

,+ " J - 1  i+ j~

I !  ]

m

+ m
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3.2. D efinition. Let Z=(L1, Lm) be an (X, g)-cycle and let kd  { 1 ,..., m}.
For let L'i = Li+mk. Then Z '—{L\, ..., L'm) is clearly an (X, g)-cycle
of order m as well. It is called the image o fZ  by rotation and we write Z r~ Z . is 
obviously a relation of equivalence on the set of (X, g)-cycles.

3.3. R emark. Let Z  and Z ' be (X, g)-cycles. Then for the (X, g)-cycles Z and 
Z ', Z '  is clearly the image of Z by rotation iff Z  and Z '  have at least one common 
member.

3.4. D efin itio n . The {X, g)-cycle Z=(X ) of order 1 is called the trivial (X, g)- 
cycle. If X is connected then there is no other (X, g)-cycle than Z=(X).

3.5. Remark. Let Z —(LX, Lm) be an (X, g)-cycle. Let /€{1, ...,m )  
and qd L(. Then for any positive integer к the point gk(q) belongs to L, iff m is a divi-

1 к
sor of A:, i.e. m\k. gk= g...g : X-*-X is clearly an autohomeomorphism of X, too.

3.6. Remark. Let the (X, g)-cycle Z '—(L[, ..., L's) be a refinement of the (X, g-)
cycle Z = (L 1( ..., Lm). Then m =:5 and for each /€{1, 5} there exists a unique
i ( j )€ {1, m} such that L'-cLi(J).

The function i ( j  ) obviously satisfies the relation

(1) 10  +s 1) — 10) +m 1
and thus

(2) i (j  +s m) = i 0 ) +mm = i 0).
Now let j , j 'd  {1, ..., .s’}. Then (1) and (2) imply

(3) i(j)=iU ')<*™ \j'-j-
On the other hand 3.5 shows that m is a divisor of s : m\ s.

Finally (3) implies that Z"=(L'm, L'2m, L's) is an (Li(m),gm|L;(m)) cycle of 
order s/m and thus

LKm) = L'm U LLU ...U LÍ.
3.7. Remark. Let Z —^ , L m) and Z '—{L'k, L'm) be (X, g)-cycles of

the same order m. Suppose that there exists an (X, g)-cycle Z"—(L'[, L”) such
that Z" is a refinement of both (X, g)-cycles Z  and Z '. Then Z ' is the image of Z  by 
rotation.

In fact, 3.6 shows that
Ьцт) = L" U L'ím U ... U Z/j =  L[. (m )

where L i(m) and are determined by the relations
L"ma L i(m), L ’m e  Ц, (m) •

Consequently, by 3.3 we have Z '~ Z  indeed.
3.8. Lemma. Suppose that g is an absolutely cyclic map o f X  (see 2.1). Let Z — 

= {Lk, ..., Lm) be an (X, g)-cycle. Then gm|Ll: L1-»L1 is an absolutely cyclic map of 
the subspace Lx o f X.
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Proof. First observe that by 3.5, gm{Li)a L i holds for i= 1, ..., m. However, 
gm is an autohomeomorphism of X  and the members of Z  are pairwise disjoint sets. 
Consequently for i= l ,  ...,m  we have gm{L)= L i. Hence gm|Ll is an autohomeo
morphism of the subspace Lx of X.

Let Q' be an open covering of Lk and let
Q = Q 'U{L2, . . . ,L m}.

£2 is an open covering of the space X  and g is an absolutely cyclic map of X. Conse
quently, there exists an (X,g)-cycle Z '= (L [, ..., L's) which is a refinement of Q. 
However, Q is a refinement of Z by construction and thus Z ' is a refinement of Z. 
This implies and that m is a divisor of s (see 3.6). Without loss of generality
we can suppose that L'mczLx, since otherwise we can replace Z ' by an appropriate 
image of it by rotation. Hence taking also 3.6 into account, Z"=(L'm, L'2m, ..., /-') 
is an {Lk, gmlz.1)-cycle and since Z ' is a refinement of Q, it clearly follows that Z" is 
a refinement of Q'. gm\Ll is an absolutely ciclic map of Ьл indeed. □

3.9. Lemma. Let к be a positive integer and suppose that the cardinality o f X is 
higher than k. Suppose that g : X^-X  is an absolutely cyclic map. Then there exists an 
{X, g)-cycle o f order S /c + l and thus fo r qf_X the points q, g{q), ..., gk(q) are pair
wise distinct (cf. 3.5).

Proof. Let pu  pk+1 be pairwise distinct points of X. Let N —{pk, ..., pk+1} 
and for i= 1, ..., k+  1 let {7г= (Х \Л Г )и {p,}. Let Q= {Ux, ■■■, Uk^x}- ß  isclearly 
an open covering of X. Let Z — (Lt , ..., Lm) be an (X, g)-cycle which is a refinement 
of Í2. Since g: X-*X  is an absolutely cyclic map, it follows the existence of such a 
cycle Z.

Now for r= l , ...,fc+ l, let U  be the member of Z  which contains the point 
Pi-Since for j ^ i  we have Pi$Uj, it follows

(4) Ü ctU j ( j* i )  
and thus
(5) V c zU ,  (i =  l , .... k + l ) .

(4) and (5) imply that L1, L2, ..., Lk+1 are pairwise distinct members of Z. Con
sequently, the order m of Z is at least k + l  as required. □

3.10. Corollary. Suppose that X  is an infinite space and that the autohomeo
morphism g: X-+X is absolutely cyclic. Then for every q£X the points q, g(q). ..., 
..., g"(q), ... are pairwise distinct.

3.11. Lemma. Suppose that g : X —X  is an absolutely cyclic map and let q£X. 
Then the set N= {q, g(q), ..., gk(q), ...} is dense in X.

Proof. Let p £ X  and let U be a neighbourhood of p. Let Q={U, JL\{p}|. Let 
Z=(Lx, ..., Lm) bean (X, g)-cvcle which is a refinement of the open covering Q of X. 
We may suppose qZLx, since otherwise we can replace Z  by an appropriate image 
by its rotation. Let Lk be the member of Z containing p. Then Lk<t{X\{p}) and 
thus LkczU. However, gk+m~1(q)£Lk and thus UDN+0. N is everywhere dense 
in X  indeed. □
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Now we turn to the theorem stated at the very beginning of this section.

3.12. Theorem. The only infinite Tx -space which possesses an absolutely cyclic 
map is the Cantor discontinuum.

P roof. Let X  be an infinite T1 -space and g: X —X  an absolutely cyclic map.
We first show that X  is a Hausdorff space and the components of X  are single- 

tons.
In fact, let pi and p2 be distinct points of X  and let

a  = {*\{/>i}, * \ w } .

Let Z= {Li, ..., Lm) be an {X, g)-cycle which is a refinement of Ü. Let Lt. 
We then have obviously LjCtz^Xlpi}) and thus -L;c(T\{/?,}); consequently L t 
and X \ L t are disjoint open neighbourhoods of pi and p2. X  is a Hausdorff space 
indeed.

On the other hand, {L;, T \L ,}  is a decomposition of X  into disjoint open sets 
and thus for the component К of the point px in X  we have K cL i and thus p2$K. 
Since p2 may be considered as an arbitrary point of A'Xlpj} we get K c  {px} and 
this implies K= {/>,} as required.

Next we show that X  is a compact space.
In fact, let ß  be an open covering of X  and let Z=(L X, ..., Lm) be an {X, g)- 

cycle which is a refinement of ß. Select for each L; a member Gt of ß  containing Lt . 
Then ß '=  {Glt ..., Gm} is a finite subsystem of ß  such that UQ'=X. X  is compact 
indeed.

X  is a compact Hausdorff space and thus it is a jT4 -space.
Consider now the system Z consisting of every member of all (X, g)-cycles. Z is 

a system of open subsets of X. We show that Z is a base of X.
In fact, let G be an open subset of X and qdG. Consider the open covering ß — 

= {G, Z\{<7}} of X and let Z= (L l , ..., Lm) be an (X, gj-cycle which is a refinement 
of ß. Let q£Lt. Then Li<tX\{q} and thus LjCiG. Hence for L fiZ  we have 
q^LiCiG. ß  is a base of X indeed.

This base Z is countable. First observe that since X  is an infinite T2-space, Z 
cannot be finite. To prove that Z is countable we only need to show that for any two 
(X, gj-cycles Z  and Z ' of the same order we have Z ~ Z ',  i.e. Z ' is the image of Z  
by rotation.

Now let Z = (L i, Lm) and Z '= (L j, ..., L'm) be (X, g)-cycles of the same 
order m. Let

ß  =  {fiOLj-, i = 1, ..., m, j  = 1, ..., m}

and let Z"  be an (X, g)-cycle which is a refinement of ß. Then Z"  is an (X, g)-cycle 
which is a refinement of both cycles Z  and Z '  and thus our statement follows 
from 3.7.

We have seen that X  is a T4-space with a countable base, consequently X  is 
metrizable. Thus X  is a metrizable compact space that fails to contain any proper 
continuum. Hence X  is a discontinuum.

We finally show that Zis a perfect space, i.e. each q£X  is a limit point of X.
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In fact, k t q£X  and N= {g(q), g2(q), ...}. Then by 3.10 we have q fN . On the 
other hand, 3.11 shows that q belongs to the closure of N. Hence q is a limit point of N 
and thus it is a limit point of X indeed.

We have proved that X  is a perfect discontinuum. Consequently, it is homeo- 
morphic to the standard Cantor discontinuum (see [1] p. 121).

This completes the proof of the theorem. □

4. On the structure of non-locally connected topological groups

This section is devoted to the proof of a theorem stated in 2.4 which is as fol
lows.

4.1. T heo rem . The space o f each n-dimensional connected but non-locally connec
ted LCA-group has a subspace homeomorphic to the topological product o f a solenoid 
and an (n— \)-dimensional cube.

The proof of this theorem proceeds in several steps.
4.2. D efin itio n . Let f :  X-+Y and g: X —-Z be surjective maps where X, Y 

and Z  are arbitrary sets. Then g is said to be compatible with f  if f{x)=  f  (xr) implies 
g(x)=g(x').

f  and g are said to be mutually compatible maps if f  is compatible with g and 
and g is compatible with/ .

4.3. N o ta t io n . Suppose that the surjective map g: X-*Z  is compatible with the 
surjective map f:X-+ Y. We then write g f~ x for the map g / -1: Y-+Z defined by 
the relation

{g/^OO} =  g /^ H M ) (t£T).
Since g f~ \{y})  is a singleton, it follows that the map g /_1: Y-+Z is well defined.

Notice that for any subset Y 'czY  we have obviously (gf~1)(Y ')= g ( f~ 1(Y')) 
and for Z 'c Z  we clearly have

(g/-i)-4z0 = /(g-4z')).
I f /  and g are mutually compatible maps then the map g/ _1: У—Z is bijective 

and one has ( g /_1)_1= /g _1.
4.4. R em a r k . Let X, Y, Z  be compact T2 -spaces and suppose that the surjective 

continuous map g:X-<-Z is compatible with the surjective continuous map / :  X-*Y. 
Then the map g f _1:Y -*Z  is clearly continuous.

On the other hand iff  and g are mutually compatible surjective continuous maps 
then g f~ x:Y -*Z  is a homeomorphism.

4.5. R em a r k . Let X  be a compact T2-space and P an equivalence relation on X. 
Let rj: X-+X/P be the natural mapping of X  onto the quotient space XjP  and sup
pose that q is a closed map. Then Z/P is a compact T2 -space as well (see [6] p. 122 
and [6] p. 57).

In particular, let Fx and F2 be homeomorphic disjoint closed subsets of X  and 
let g: Pi —P2 be a topological map. For q, q f X  let (q,q')£P  if q—q' or q£Fx

Acta Mathematica Hungarica 51, 1988



ON  EM BED D IN G  O F LOCALLY CO M PA C T ABELIAN TOPOLOGICAL GROUPS. I 381

and q '—g(q) or q'£ F1 and q=g(q'). The relation P on X  is then an equivalences. 
Considering the natural mapping ц : X-*X/P  for any closed subset ¥  of I  we have

r x(ijW ) -  M U gC M flF^U g-^M n^

and thus (AT)) is a closed subset of X. Consequently, tj(M) is closed in the 
space XIP. Hence >7: X-^XjP  is a closed map and thus XjP is a compact T2- 
space.

Now it will be convenient to generalize the concept of the solenoid.

4.6. D efinition. Let D be a space homeomorphic to the Cantor discontinuum 
and let T k (k£  1) be the brick

T k = jo i ,  .... xk)eRk\ O S í j S l ,  O áX jS  J  for i =  2, ..., fcj
of Rk. Let

To*-1 = j(*i, xk)£Rk] xk = 0, O ^ x ^ Y  for i = 2, ..., k j,

2? -1 = |(x 1? ..., xk)£Rk\ xk = 1, 0 á  X; s  j  for i = 2, fcj.

T^~xX D  and Tk~xX D  are disjoint closed subspaces of the compact T2-space 
TkXD.

Let g:D-*D  bean absolutely cyclic map (see 2.1). Let the map

g: T}~xXD  -  T0k~l XD
be defined by

g ((1, x t , ..., xk), q) =  ((0, x2, ..., xk), g(q)).

g: Тк~гХ D-*Tq~xX D  is clearly a homeomorphism.
Now for y, y 'd T kX D  let (y,y ')£P  if y= y' or y ^ T ^ X D  and y'= g(y) 

or y 'e T f - 'x D  and y=g(y')- The relation P on TkXD  is then an equivalence 
and (T kXD)/P  is a compact T2-space (cf. 4.5). This space is called a k-dimensional 
solenoid and we denote it by Sk. Sk is clearly determined by the map g. In this context 
the solenoid defined in 2.2 is the 1-dimensional solenoid.

The concept of the solenoid was introduced by Vietoris [11]. The terminology 
“solenoid” comes from van Dantzig [7].

4.7. R emark . Observe that the topological product of a k-dimensional solenoid 
and an m-dimensional cube is homeomorphic to a (kH-m)-dimensional solenoid.

In fact, the assertion is obviously true in the case m = 0.
Now suppose that 1. Let D, Tk, g and Sk be the same as in 4.6. Let

Cm - |( z l5 ..., zm)£Rm-, 0 zt S  у  for i=  1, ..., mj.

Cm is an m-cube in Rm.
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Let Sk+m be the (k + m)-dimensional soleonid determined by the same mapg: 
D —D as Sk.

Let r\\TkXD-+ Sk and t]': T k+mXD-»Sk+m be the natural mapping of the 
space TkXD  and T k+mXD  onto the quotient space Sk and Sk+m, respectively. 

Now for

let

and

у  = (((*!,..., xk), q), (zx, ..., zJ)<i(JkXD )XCm

/ 0 0  =  (n((xi, x*), q), (zx...... zm))£SkXC m

f ' ( y ) = '/'(Oi» •••, xk, zx, z j ,  q)€Sk+m.

f:  (Tkx D ) x C m-»Skx C m and f ' : ( T kX D )X C m^~Sk+m are continuous sur
jective mappings where the spaces (T kXD )XCm, SkXC m and Sk+m are compact 
T2-spaces. On the other hand, the mappings /  and f  are clearly mutually com
patible. Consequently, 4.4 shows that

f ' f - 1: SkX C m — Sk+m

is a homeomorphism. SkXCm and Sk+m are homeomorphic spaces indeed.
And now we go back to Theorem 4.1.
4.8. First observe that to prove 4.1 taking also 4.7 into account, clearly we need 

only to verify the following theorem.
4.9. Theorem. The space o f each n-dimensional connected but non-locally connec

ted LCA-group has a subspace homeomorphic to an n-dimensional solenoid.
4.10. It is sufficient to prove this latter Theorem 4.9 only for compact groups.
In fact, let Г  be an n-dimensional connected but non-locally connected LCA- 

group. Then Г is the direct sum of a k-dimensional (0^/c=n) compact subgroup 
T l and an (n—k)-dimensional vector subgroup V (see [10] p. 160 and 1.2).

Since Г is connected, so is Гх and since Г is non-locally connected and V is a lo
cally connected group, it follows that Гх is connected and non-locally connected as 
well. Consequently, к ё  1 and assuming that our theorem is true for compact groups, 
it follows that r x has a subspace homeomorphic to a k-dimensional solenoid Sk. V 
has obviously a subspace homeomorphic to an (n—k)-cube Cn~k and thus Г has a 
subspace homeomorphic to SkX C n~k. Consequently, by 4.7 Г has a subspace ho
meomorphic to an и-dimensional solenoid as required.

It is sufficient to prove Theorem 4.9 for the character groups of torsion free non- 
finitely generated abelian groups of finite rank.

In fact, let Гг be a compact connected but non-locally connected k-dimensional 
LCA-group. Let G be the character group of Гх. Then the topological group Г1 is 
isomorphic to the character group of G (see [10] p. 134). G is a discrete (see [10] p. 133) 
torsion free group of rank к (see [10] p. 148) and it has no finite system of linearly 
independent generators (see [10] p. 168). Hence if the space of the character group 
of each torsion free discrete non-finitely generated abelian group of rank к has a sub
space homeomorphic to a /с-dimensional solenoid Sk, then we may conclude the same 
statement for Гk.

Thus to prove 4.9 we need to verify only the following assertion.
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4.11. The space o f the character group o f any torsion free discrete non-finitely 
generated abelian group o f finite rank к ( \ t ik )  has a subspace homeomorphic to a 
k-dimensional solenoid.

The remainder of this section deals with the proof of this latter assertion 4.11.
4.12. Lemma. Let Г be a compact LCA-topological group and let Q be an open 

covering o f Г. Then there is a neighbourhood V o f the zero element o f Г such that the 
covering

Ф = {q + V\ qZT}
o f Г is a refinement o f Q.

P roof. Select a finite subcovering

= Uk)

of Í2. The space of Г is T0 and regular, hence it is T2 and by the compactness of Г it 
is Ti . Thus the space of Г is normal. Consequently, there is a closed covering '¥= 
— {F1, . . . ,F k} of Г suchthat Ft-.аЦ holds for i= l , . . . ,k .  Since for i—\ , . . . , k ,  
Ft is compact it follows the existence of a neighbourhood Vt of the zero element of Г 
such that for each qcFt Let У—У1Г\...Г\Ук. Then

<P = {q+V; q tr )
is clearly a refinement of Q. □

4.13. N otation. Let G be a torsion free abelian group and let S be a subset of G. 
We then denote by (S )* the subgroup of G generated by S  and by (S)p the pure sub
group of G generated by S. (S)* is the minimal subgroup of G and <S)p is the minimal 
pure subgroup of G containing S.

4.14. Lemma. Let G be a torsion free non-finitely generated (discrete) abelian 
group o f finite rank к (7cSr 1). Then G admits a (pure) subgroup G0 such that G/G0 is a 
torsion free non finitely generated group o f rank 1.

P roof. We proceed by induction with respect to the rank k.
If k=  1 then the assertion is obviously true.
Suppose now that k>-\ and that the statement is true if one replaces к by к — 1. 

Let gx, g2, ..., gk be linearly independent elements of G and let

G' = ({g2, •••» g*}>P-

Then G' is a torsion free group of rank (к— 1) and GjG' is a torsion free group of rank 
1. Both of the groups G' and G/G' cannot be finitely generated since otherwise G itself 
would be finitely generated. If G/G' is not finitely generated then we may select 
G0=G'. Conversely, if G/G' is finitely generated then G' is not finitely generated 
and thus by the induction hypothesis there is a subgroup G'0 of G' for which G'/G'0 
is a torsion free non-finitely generated group of rank 1. On the other hand, since 
G/G' is a torsion free finitely generated group of rank 1, it follows that G/G' is an 
infinite cyclic group and thus G is the direct sum of G' and a subgroup G1 isomorphic
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to GIG'. Let G0=G'0+Gl . Then G/G0 is clearly isomorphic to G'IG'0 and thus it 
is of the required type indeed. □

4.15. Let G be a torsion free non-finitely generated (discrete) abelian group of 
finite rank к (k ^ l) .  G is clearly an LCA-group. Let G0 be a pure subgroup of G of 
rank к — 1 such that G/G0 is a torsion free non finitely generated abelian group (of 
rank 1) (see 4.14). Let gi£G \G 0 and in the case k ^ 2  let g2, . .. ,g k be linearly 
independent elements of G0.

In the remainder of this section we keep fixed the groups G and G0 and the 
elements gu  ..., gk. gu ...,gk are clearly linearly independent elements of G.

Now we are going to construction the k-dimensional solenoid contained in the 
space of the character group of G.

4.16. Let g<z G. Then there are rational integers m ,m 1, mk such that m^O and
mg =  m1g1+ ...+ m kgk

and the rationals mjm , m jm  are uniquely determined by g. We denote them by 
q i ( g \ - , q k(,g) and write

g =  qi(g)gi+-+qk(.g)gk-
We have

f 1 if
«0 ® W  =  { 0 if

Moreover, for g, g'dG we have

(7) 4i(g+g') = qt (g) + qi (g')
Finally g€G0 implies

(8) 9 i(g ) =  0.

4.17. Let G[ — <{gi}>* and G, = (G0UG[)+ (see 4.13). We then have

(9) G1 =  <G0U{g1}>*.

G/Gx is clearly a non finite torsion group.
4.18. Let Г  be the character group of G (see 1.9) and consider the annihilators 

Г0=(Г, G0) and Г1=(Г, GJ (see 1.10). 7 \ is isomorphic to the character group of 
G/Gj (see [10] p. 136). Since G/Gi is discrete, it follows that / \  is a compact LCA-group 
(see [10] p. 133). On the other hand, since G/Gx is non-compact and it is iso
morphic to the character group of Гк (see [10] p. 134), it follows that the 70-group 
Г] fails to be discrete. Consequently, Гк is an infinite compact LCA-group.

4.19. For every i£R where R is the set of real numbers let / :  G-+3 (see 1.8) 
be the mapping defined by the relation y'(g)= tq^g) (see 4.16 and 1.8 ). /  is a char
acter of G.

We have y° =  0. Moreover, for t, (k R  one has

(10) / + ' '  -  y ' + f .

i = j
Í 7±j.

( i  =  1, ..., k ) .
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Notice also that for g£G0 we have #i(g)=0(see 4.16 (8)). Consequently

(И) /€ Г 0
holds for every tf_C. On the other hand, let i be a rational integer (/€Z). Then taking 
also 4.16 (6) into account, we get

?'(gi) =  Щ i(gi) =  1 = 0  
and thus by (11) and 4.17 we have
(12) 7'€Гх (i€Z).

4.20. L emma. Lei g1, ...,g s be elements o f G and let

G' =  <C7iU{g\ ..., gs}>*.
Then there is a g'dG suchthat qx (g')—l/m where m is a positive integer and

G' =  <G«U{g'}>*.
Moreover, for the annihilator Г'=(Г, G') o f G' in Г, Г' is an open subgroup o f Гг, 
T j r '  consists o f m elements and each o f these cosets is o f the form Г'+у‘ where 
1=/Sm . Finally we also have ут£Г'.

P roof. First observe that by 4.17 (9) we have

(13) G'=(G0\J{g1,g \  . .. .g 5»*.
Now let r]0:G-+G/G0 be the natural mapping of G onto G/G0. Since gi€G \G 0, it 
follows

(14) i/o(gi) 5* 0.
Hence t]0(G') is a nonzero finitely generated subgroup of the torsion free group G/G0 
of rank 1. Consequently ri0(G') is a cyclic group. Select g'£G' such that G'/G0 is 
generated by f]0(g')- Then
(15) rjo(gi) =  mtjo(g’)
where m is a nonzero integer. We may suppose that ш>0, since otherwise g' can be 
replaced by — g'. Moreover, we clearly have

(16) G' =  <G0U{g'}>*.
Now by (15) one has

(17) gi =  mg' + go
where g0€G0. Consequently, taking also 4.16 (6), 4.16 (7) and 4.16 (8) into account,
we get

1 =  91Ы  =  ™ ? i ( g ' ) + ? i ( g o )  =  m Á g ’)
and thus
(18) и/—s 

v bo|H
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Now consider a coset of Г1 modulo Г'. We show that this coset is of the form 
Г'+ у1 where /£{1,

In fact, let у be an arbitrary element of this coset. Then by (17) one has

y ( g r )  =  m y ( g ' )  +  y(go)

and since g x£ G x, g '£ G ' ,  g a£ G 0( z G l and уеА =(Г , Gx), it follows Ö=my(g')+Ö. 
Consequently

(19) y(g') =  i/m

where the integer i can be selected such that However, (18) shows that
y ‘( g ' ) = i / m  (see also 4.19) and thus (y  — y ' X g ' ) — 0- Since у, у{̂ Г 1а Г 0= ( Г ,  G0) 
(see also 4.19 (12)), taking also (16) into account, we get

у - /€ (Г ,  GO -  Г

and thus у£Г'+у‘. The coset in question is of the form Г '+ у 1’ indeed.
However, for 1 and for arbitrary у'у"£Г' we have (y'+y'XgO—

= y'(g') = i/m+j/m=(y" + yJ)(g') and thus Г' + у'+ Г '-\- yJ. Consequently, TJT' 
has exactly m members and since Г Х/Г' is finite and each member of it is closed in 
Ги  it follows that each member of TJT', and thus Г' itself, is open in Гх.

Finally, by (18) we have

ym(g') = m • 1/m = T = Ö

and since ут£Г0=(Г, G0) (see 4.19 (11)) it follows by (16) that ym(G')=0 and thus 
ут6(Г, G ')= r' as required.

The proof of the Lemma is complete. □

4.21. L em m a . For у£Гх let i/'(y)=y+y1€T1 (cf. also 4.19(12)). Then the 
autohomeomorphism i//: Гх 1\ o f Г x is an absolutely cyclic map.

P ro o f . Let Q  be an open covering of Г, and let Vx be a neighbourhood of the 
zero element of Гх suchthat {у + Vx; у£Гх} is a refinement of Q. By 4.12, such a Vx 
exists. Let Ф be a compact subset of G and U a neighbourhood of zero in S  such that

(К[Ф, (see 1.9),

i.e. y'€Ti and у '(Ф )с(/ implies y'EVi-
G is a discrete group and thus Ф is a finite subset of G, Ф = ^ ,  ..., gs}. Let 

G' =  (GjUfg1, ..., gs})* and let Г'=(Г, G'). Then for each у+Г ' we have 
у'бГ1=(Г, Gx) and у'(Ф)=0£С/. Thus у'£У[Ф, ЩГ\Г1 and this yields

(20) Г 'с : Vx.

By 4.20, Г JT ' is a finite group and if its order is m then each member of the group 
is of the form Г '+ у 1 where lS iS m .

Now for j=  1, ..., m let Ь ~ Г ' + у‘.
We first show that Z = (L 1, ..., Lm) is а (Tlt ф)-сус\с.
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In fact, by 4.20 Lx, ..., Lm are pairwise disjoint closed subsets of Г1 and Z  is 
a covering of Гх. Moreover, taking also 4.19 (10) into account, for i= 1, ..., m— 1 
we have

•KA) = Г '+ у +y1 = Г + У +1 =  Li+1 
and since ут£Г' (see 4.20) we also have

<KAn) -  Г + Г + У 1 = Г + у 1 =  Lx.
Z  is a (7\, i//)-cycle indeed.

Next, we show that the covering Z  is a refinement of Q.
In fact, let i£{l, and let y'y"£Ц = Г '+ у‘. Then у" — у'£Г' and thus

y ^ y '+ r .  Consequently by (20) we have LiCiy' + VX. However, {y + Vi\ y€A} 
is a refinement of Q and thus there is a member W of Q such that

Ц  c  y' + Ij c  W.
Z  is a refinement of Q indeed and thus ф is an absolutely cyclic map of Г, as 
required. □

Observe that since is an infinite LCA-group (see 4.18), it follows by 3.12 that 
the space o f Гх is homeomorphic to the Cantor discontinuum.

4.22. We now define the characters of the form y'i....of the group G where
h, . . . ,  tk are arbitrary reals.

In fact, for g£.G let ________

У'1....,fc(g) =  2  {i<li(g)i= 1
(see 4.16 and 1.8). •••»**: G—S  is obviously a character of G and we clearly have
yilt — y*!’ =

( 2 1 )  y*i»°...... 0 =  y h .

4.23. Now let T k be the same as in 4.6 and consider the space Т кХ Г 1. Let for
((h, - , t k),y)ег‘х г г

f( (h , tk),y) = y + y^ ’к£Г.
First we show that the mapping / :  ТкХ Гх >̂-Г is continuous.
In fact, let y= ((ti, ..., tk), у)аТкХ Г 1 and let IF be a neighbourhood of f ( y )  

in Г. Since Г is the character group of G, it follows that there exists a compact subset 
Ф of G and a positive integer r such that

f{ y )  + V ^ ,U r] a W

(cf. 1.9 and 1.8). Since Ф is compact and G is discrete, it follows that Ф is a finite sub
set of G, Ф= {g1, Let С/= (0 1иФ>+ (cf. 4.13) and Г '= (Г , G') (cf. 1.10).
According to 4.20, Г' is an open subgroup of Гх. Now let

M — \ + 2  2  \4i(sJ)\ ( c f .  4 .1 6 )i=lj=l
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and consider the neighbourhood

V=  { /  =  ( 0 Í , O , / ) ;  y ' - y e r  and \ a - t ,I <

of у in Т кХ Г 1. We then have

ЯЮ  С /0 0  + ПФ, t/r] с  ж

which proves the continuity of the mapping / :  ТкХ Г к-*Г.
Next let be the ^-dimensional solenoid determined by the map iр :Г 1-*Г1 

and let : Tkx r 1->-Sk be the natural mapping of Т кХ Г к onto the quotient 
space Sk.

We now show that / : ТкХ Г1-+/(ТкХ Г 1) с Г  and r\: TkX T1-^Sk are mutually 
compatible maps (cf. 4.2) where / ( Т кХГ-,) is considered as a subspace of Г.

and suppose that t[, y X y ' and ri(y)=t](y'). Then t~ t[  for i—2, .... k. 
Moreover tk—0, t[= \ and у=ф(у')=у' + У1 (see 4.6) and thus

On the other hand suppose that yXy' and f(y )= f(y ') .  That means

In fact, let

у  =  ( ( f l f  ..., tk), у) € r ‘ x r l t  y '  =  ( f t ,  . . . ,  y O e ^ X A

У(у) =  y +  y0,,s- —>*k —  y, +  y1 +  y0, к

=  у'-(-у1»0.....0 +  y0.t...... . =  y'-f-yl.ij* = У ( у /).

у+У*1’ ",,к =  yr +  у'1.... ,fc
and thus

(22) y'> .....=  у —у'£Г1.

Consequently taking also 4.22 and 4.16 (6) into account we get

However g i , . . . ,g k£Gk and у, у '€А = (Г , Gx) and these yields

(23) h '-h  =  (у - у')Ш  = ö.

2
For /= 2 , ...,kw ehave O sq , and thus by (23) one has

(24)
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Moreover we have t i ^ t i  since otherwise (24) and (22) would imply y = y '  and thus 
y = y '  contradicting the assumption y ^ y ' .  Hence tx< tk and since 0 ^ ? !< ^ = 1 ,
(23) implies tk=0 and =  1. Thus taking also (22) and 4.22(21) into account we
get

у - у '  = у \ У = y'+y1 =  <K/)-
That is to say

у = ((0, t2, ..., tk), ф(у')) and y' = ((1, ta, ..., tk), y’)

and this implies rj(y)=ri(y').
The surjective maps

rj: ТкХ Г 1 -  Sk and / :  Т кХГк -  f ( T kx r k,) с  Г

of the compact space Т кХ Г к onto the -spaces Sk and f ( T kx r x) (cf. also 4.6) 
are mutually compatible indeed.

Now according to 4.4

ft]-1: Sk -*-f(Tkx r 1) с  Г

is a homeomorphism. The space of Г has a subspace namely f ( T kX T J  homeo- 
morphic to a k-dimensional solenoid indeed.

The proof of 4.11 is complete and so the proof of Theorems 4.9 and 4.1 is com
plete as well.

5. The structure of Sn

This section deals with systems of и-bricks. We also introduce the notion of 
joined systems of n-bricks with respect to a joining function. Finally, we show that the 
«-dimensional solenoid can be considered as the union of two joined systems of n- 
bricks with respect to two joining functions. One of them is the identical map of the 
Cantor discontinuum and the second is an absolutely cyclic map of the same discon- 
tinuum.

5.1. D efinition. A triple (F, D ,f)  is called a system o f n-bricks if
(a) Y  and D are topological spaces and / :  Y-+D is a surjective continuous 

mapping,
(b) there exists an и-brick Bn in Rn and a homeomorphism cp: BnX D ^-Y  such 

that for each (x, q)£BnX D  we have

(25) q)) = q 

and thus for each q^D one has

(26) / “HM ) =  <p{B”X{q)).
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F  is said to be the body and D  the base of the system. /  is called the projection of
(7 , A / ) -

Observe that / is clearly an open map.

For any pair (Bn, cp) satisfaying (25), Bn is said to be the fibre and cp the coordi
nate function of (Bn, cp). 1 he pair (Bn, cp) itself is said to be a coordinate pair of the 
given system.

5.2. D efinition . The n-bricks Bn and B'" lying in R" are said to be properly 
joined if they have a common interior point, i.e. if int Bn (Tint B'n И0.

5.3. D efinition . Let (F, D ,f )  and (F', D ', f ')  be systems of n-bricks where Y 
and Y' are subspaces of the same topological space and the bases D and D' are ho- 
meomorphic. Let ijr.D-*D' be a homeomorphism. We say that (Y, D ,f  ) is joined 
to (F', D ',f')  with respect to the joining function ф if there are properly joined n-bricks 
Bn and B'" in Rn and for each q£D  there is an open neighbourhood Vq of q in D and 
a homeomorphism

(pq: ((Bn[JB'n)XVq) -  ( f~ \V q)U f'-W (V q)j) 

such that for each q'€Vq

(27) <pq{B’'X { q '} ) = r l {{q')) 
and

(28) <Рч(В '"х {д '} )= Г ~ '({Ф Ш ).

5.4. R emark . Let the triple ( Y , D ,f)  be a system of n-bricks and let h: Y —Y1 
be a topological mapping. Let

Á  = fh~ 1: Yx -  D.

Then (Yu D ,ff)  is clearly a system of n-bricks as well.

5.5. R emark . Let the system of n-bricks (Y, D, / )  be joined to that of (Y \
with respect to a joining function iJ/: D-~D'. (It is clearly supposed that Y and Y ' 
are subspaces of the same topological space and D and D' are homeomorphic.) 
Let h: Y\JY '-+ Z  be a topological mapping. Let T'1=/i(F), Y[ = h(Y j, hx= 
=h\y: Y - Y 1, h{=h\r : Y '— Y{, f x= fK x: YX-*D and f [ = f ’h'x~x\ Y[-*D\ Then 
the system of n-bricks {Yu D, f f )  is clearly joined to (Fj, D', f { ) with respect to the 
same joining function ф.

5.6. Theorem . Let D be a space homeomorphic to the Cantor discontinuum. Let 
ф: D-»D be an absolutely cyclic map and let S„ be the n-dimensional solenoid deter
mined by the map ф (cf. 4.6). Then there exist systems o f n-bricks (F, D ,f) and 
(F ', D ,f j  such that Y and Y ' are subspaces o f Sn and (F, D ,f)  is joined to (F', D ,f )  
with respect to two distinct joining functions. The first o f them is the identical map o f D 
and the second is ф.
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P r o o f . Consider first the following bricks in R":

T n = jO i, ..., x„); O S X i^ l ,  0 S j C j s | f o r i = 2, и},

To”- 1 = {x = (*!, ..., x„); хетп and xx = 0},

T" -1 _ {x = (*i, •••» x„); x£T n and x x --1},

(29) B" =
b = (Xl, •••> x„), xd T n and 4- ^  x x 6 - ! } •

(30) B”o = {*■= (*1. •••I x^), x€ T n and O S r j

(31) Bl = {x -= (*1. •••» x^),
2

x£ T n and - j  — xi - } ■

(32) S'" =  { (* ,..., x„);
2-- =s
3 ~~

4
X l~ J and 0 S  X; ^  у  for i = 2, ..., n | ,

(33) B"n =  {(xl f .... x„);
1

~ У
1 2 j  and 0 S  Xi ^  — for j =  2, ..., nj

Observe that Bn and B'n are properly joined n-bricks in Rn. Likewise B" and B"n are 
properly joined n-bricks in Rn.

Recall from 4.6 that S„ is defined as follows. For ((1, x 2, xn), q)£T?-1XD  
let \ji({\,x2, . .. ,x n), q)={(0, x2, ...,x„), x l / iq ^ T ^ X D  and for z ,z '£ T nXD  let 
(z, z')£P  if z= z' or z k T ”~xXD  and z '=^(z) or z'67'j,_1XD and z=ij/(z'). 
Now S„ is the quotient space (TnXD)/P. It is a compact Г2-space.

Let q : T"XD-*Sn be the natural mapping.
Now let Y=q(BnXD) (see(29)). q\B„xD: BnXD->-Y is clearly a homeomor- 

phism.
Next for q'£D and y£q(BnX { ? '} )c f let f(y)= q '. / :  Y-+D is clearly a sur

jective continuous map and (7, D ,f)  is obviously a system of n-bricks where Y is a 
subspace of Sn. Moreover for q'£D we clearly have

(34) r \ W ) )  = 4{Bnx  {?'}).
Now let

Y' = q((B5UB?)XD) (see (30) and (31))
and

4 — ißV^B\)XD  -*■ Y .

Moreover for z^(B^{JB^)XD let

( 3 5 )
? Í9' if z£B"0 x { q ' }

J  { Z )  ~  W ( < 7 ' )  i f  z d B l X { q ' } .
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(B^ÖBDxD-*D  is clearly a continuous surjective map and it is compatible with 
the map r\'\ (B%UB1)XD-*Y'c:Sn. Hence according to 4.4
(36) / '  Y ' -* D
is a continuous surjective map, and for q’cD we clearly have

(37) f '- K W ) )  = rf'~4W}) = n ((Bo x  {q'i) и  (bi x  {Ф -1 (?')})),

(38) Г - Я Ш ) } )  =  ri{{BnoXbKq')})U(Blx{q'})).

(Y D , f ') is a system of и-bricks as well.
In fact, for ((*!, ..., xn), q')^(Bf,UB'l)XD let

(39) C((w ,..., *„), q') =
((*1, ..., x„), q’)

((x x -h x a , ...,x„), IKq'))

if

if * * f .

£: (B"[JB^)XD->-B"nX D (cf. (33)) is a continuous surjective map and the maps £ 
and tj' are clearly mutually compatible. Hence

(40) (p = i/'C-1: B"nXD -* Y' 

is a homeomorphism and for q'£D  we clearly have

(41) f ' - ' W )  = п({вгх{ч’Ш в г х { ф - ч т )  =
= t]' (В"п X {q'}) = <p{B"nX{q'))

(see (37) and (39)). (Y \  is a system of и-bricks indeed.
Now let ф0 be the identical map of D. We now show that (Г, D ,f )  is joined to 

(Y ' , D ,f')  with respect to the joining functions ф0 and ф.
In fact, let Z = (L 1, ..., Lm) be a (D, ф)-cycle where m S2. Since ф is an abso

lutely cyclic map of the infinite 7 \ -space /), such a cycle Z  obviously exists.
Let qdD and select Lf£Z  such that q£Lt. L t is an open neighbourhood of q 

in D. Moreover, L t and Ь1- т1=ф~1(Ь1) (cf. 3.1) are disjoint subsets of D. Likewise 
L t and L i+ml=\J/(Lt) are disjoint as well. Also, by (34), (37) and (38) we clearly have

(42) f~ H L d  = 4(BnXLi),

(43) Г-КФоШ)) = f ' - 1(.Li) = q ((B’i X Li) U (Bl X L; _ml)),

(44) f '^ b K L d )  = f '~ 1(Lt+J )  = г,((В”0Х Ц +т1)0(В1ХЦ)).
Now let
(45) С{ = ((В"0В'1)ХЦ)0(В"их Ц +т1) 
and
(46) c; = (св - и BS)х ц ) 0 (В1 х ц _ j .
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By (42), (43) and (44) we then have
(47) vied  = f - \ L d W '~ 1('KLd),
(48)
Next, let

n(C() = f - ' ( L d W '- 1(M L l)).

(49) Щ =  t,\c,: Ci - / - Ч А ) U /'-H ^ (i.))
and
(50) V'i = П\с<: C't -  / - » ( Ц и Г Н Ш ) .
On the other hand, for ((хц ..., x„), q')£Ct (see (45)) let

(51) C,((*„ ■
,ч Г((*1.^2,-,*■), 9') if 

*n)’ q > -  l ((Xi+1, *„ ..., xn), if
and for ((xt, ..., xn), q')dCl (see (46)) let

(52) С,{{Хг,
f((*i , x 2, . . . , xn),q')  if 

■~,xn, q )  -  \ ( ( Xi_ 1Xij . . . ,xn),\p(q'j) if

Hence

(53) C,: Cl ^ ( B nUB'n) x L i
and
(54) CÍ: Cl -  (Вп0В"п)ХЦ

q'€Lt
q'£Li+mi

Я '€Ц -т1-

(see also (29), (32) and (33)) are surjective continuous maps and for q'£Lt we have

(55) i f 1 (Я" X {<?'}) = Я"Х {<?'},
(56) Cf1 {В'" X {?'}) =  (Я? X {?'}) U (BS X {Ф (*')}),
(57) C r 1(BnX{q'})=B*X{q'},

(58) СГ1 {В"- X  {q}) =  (BS X  {<?'}) U ( B " X  ty - \q ) } )
(see also (45), (46), (51) and (52)). Moreover, C; and are mutually compatible maps 
(see (45), (49), (51) and (53)) and thus

cp9 = U r 1: (B -U B ^X l, - / “»(A)U//- 1(^№>)
is a homeomorphism (see 4.4). Further for taking also (55), (34), (56) and (38) 
into account we get

<pq{BnX { q ' } ) = U r 1{B’'X{q’}) =  Ч(В-Х{«'}) = / - 1({?')) 

<pq(B'"X.{q'}) =  U r 1(B'nX{q'}) =

=  »í((5lX{í'})U(BSX{^(íO}) = Г~1({ФШ)-
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Hence (F, D ,f )  is joined to (Y', D ,f ')  with respect to the joining function \J/ (see 
also 5.3 (27) and (28)).

On the other hand, by (46), (50), (52) and (54), f ■ and щ are mutually compatible 
maps as well and thus

cp'q =  r i t ' r 1 : ( B n U B " n) x L i = / “1(A)ЦГ'-ЧА)
is a homeomorphism. Further by (57), (34), (58) and (37) we have for a'£L; 

c p ' ( B ” X { q ' } )  =  г , Х \ - \ В » Х { я ' } )  =  n { B " X { q ' } )
and

К (В "ПХ{Ч'}) = n'i'Cr\B"nX{q’}) =
=  ri(B"0 X { q ' } ) U ( B 1 X { ^ - \ q ' ) } )  = f - % q ' } )

(F, D ,f)  is joined to (F', D ,f ')  with respect to the joining function \p(l=idD indeed. 
The proof of the theorem is complete. □

6, Local ordering

This section discusses some fundamental properties of ordered sets. Also we 
recall the notion of local ordering introduced in [5] and we prove a theorem stated in
[5], namely that each absolutely cyclic map of the Cantor discontinuum D disturbs 
each local ordering on D.

6.1. D efin itio n . Let M  be a set and R a triadic relation on M. The pair (M, R) 
is called an ordered set if

(i) {a, b, c)dR implies that a, b ,  c are distinct elements of M,
(ii) (a, b, c)£ R implies (c, b, a)dR,

(iii) for any three distinct elements a, b, c of M  from the relations (a, b, c)£R, 
(b, c, a)£R, (c, a, b)ZR one and only one holds,

(iv) for any four distinct elements a, b, c, d of M (a, b, c)£R and (a, b, d)$ R 
imply (c, b, d)£R.

6.2. R em a r k . Let (M , R) be an ordered set and let a, b, c, d be distinct elements 
of M. Then (a, b,c)£R and (a, b, d)£R imply (c, b, d)$ R.

In fact, suppose that (a, b, c)£R, (a, b, d)£R  and (c, b, d)£R. Then by 6.1 (iii) 
we have (b, c, a)(f R, (c, a, b)$ R, (b , d, a)(E R, (d, a, b ) $  R, (b, d, c)(f R and (d, c, b)$ 
$7? and thus by 6.1 (ii) and 6.1 (iv) we get (a, c, d)$R, (d, a, c)4 R and (c, d, d)$R 
but this is impossible by 6.1 (iii).

6.3. N o tatio n s . Let (M, R) be an ordered set and M 'czM . Then the restriction
is denoted by R\M- and instead of (M', R|M-) we also write (M, R)|M'.

Notice that if M "czM 'c:M  then we have obviously CR|m')Im"= jRIm"-

6.4. D efin itio n . Let (M , R) be an ordered set and q£M. Then taking also 6.2 
into account, M \{i/} decomposes uniquely in two disjoint sets Мл and M 2 such 
that for any b, c£M \{q}, b and c are contained in different M{-s iff (b, q, c)£R. 
We say that M y and M2 are the sides o f q in (M , R).

If q 'fM t then instead of M t we also write SRiq(q').
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It may happen that one of the sides is the empty set or even more that both sides 
are empty.

6.5. R emark . Let (M , R) be an ordered set and let M 'czM . Let q£M '. Let 
M l and M 2 be the sides of q in (M, R). Then the sides of q in (M, R)|M. are clearly 
MxOM' and M 2OM'.

6.6. R emark . Let g: M —A  be a bijective m ap o f the set M  onto the set N  and 
let M'czM. Let (M', R) be an ordered set. Denote then by g(R) the relation

S(R) =  {(gO), g(b), g(c)); (a, b, c)£R}.
(g(M '), g(R)) is then clearly an ordered set.

Observe that g~1(g(R))=R. Moreover if M"czM' then we have

Finally, if in addition h:N -*P  is a bijective map then one has (hg){R) = h(g(Rj).
Observe that if N = M  then instead of gg we also write g2 and instead of g2g 

we write g3 etc.
6.7. Lemma. Let (M, R) be an ordered set and let g: M->-M be a bijective map for 

which g(R)=R. Let cdM  and suppose that c, g(c) and g \c ) are pairwise distinct. 
Then for k=  1, 2, ... we have

gk(c) i  SRtä(c)(c) Hi SRf!/2(c)(c) (cf. 6.4).
P roof. The assertion is obviously true fo r  к — 1 and k=  2.
According to 6.1 (iii), we have to consider three cases. In all of these cases we 

proceed by induction.
(a) (g(c), c,g2(cj)£R. We then have (g2(c), g(c), g3(c))6R and by 6.1 (iii) 

(c, g(c), g2(c))rt R. Thus by 6.1 (iv) we get

(59) (c, g(c), g3(c))£R.
For proving the assertion in this case we need only to show that for each even 

к where k ^ 4 we have

(c, g2(c), g(c))eR
and for each odd k ' where k '^ 3  one has

0c,g(c),gk’(cj)eR.

(59) shows that this latter relation is true for k'=3. Suppose that for any odd 
k '(k '^  3) we have (c, g(c), gk' (cj f R .  We then have (g(cj, g2(c), gk'+1(cj)f R and 
by the assumption (a) and 6.1 (iii) we get (c, g2(c), g(c))$R. Thus 6.1 (iv) implies

(c, g2(c), g44-1^))^^.

Hence the statement is true for the even number k '+ 1.
On the other hand, suppose that for any even к (k ^  4) we have (c, g2(c), gk(c))£ R. 

Then one has (g(c), g3^), gk+1(c))£R and thus (g3(c), g(c), g,1+1(c))^R. Taking also 
(59) into account we get the required relation (c, g(c), gk+1(cj)£R.
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(b) Suppose now

(60) (g2(c), g(c), c)€ii.
For proving the assertion in this second case we only need to show that for k=  

=  2 ,3 ,... we have (c, g(c), gk(c))£R.
(60) and 6.1 (ii) show that this relation is true for k —2. Suppose that for any 

к  (Аё2) we have (c, g(c), gk(c))£R. Then (g(c), g2(c), gk+1(c))d R and thus 
(g2(c), g(c)> gk+1(c))í R- Taking also (60) into account by 6.1 (iv) we get the required 
relation (c, g(c), gk+1(c))e.R.

(c) Suppose finally that

(61) (c, g2(c), g(c))i/?.
This implies (g(c), g^c), g2(c))£.R and (g2(c), g4(c). g3(c))^ ̂  and thus
(62) (g (c), g2 (c), g3 (c)) $ R 
and (g3(c), g2(c), g4(c))$.R.

Hence we also have
(63) (g(c), g2(c), g4(c))^J?.

Taking also (61) into account (62) and (63) imply
(64) (c, g2(c), g3(c))€i? 
and
(65) (c, g2(c), g4(c))€i?.

To prove the assertion in this third case we only need to show that

(c, g2(c), gk(c))eR
holds for k — 3, 4.......

In fact, by (64) and (65) this relation is true for k = 3 and k — 4. Suppose now 
that k ^ 3 and that (c, g2(c), gk(c))^R. We then have (g2(c), g*(c), gk+i(c))£R and 
thus (g4(c),g2(c), gk+2(c))|i?. Hence taking also (65) into account we get the re
quired relation

(c, g2(c), gk+2(c))eR.

The proof of the Lemma is complete. □
6.8. D e f in it io n . Let A" be a topological space. The family & = { ( M X, R J ;  a £ A }  

of ordered sets is said to be a local ordering o f  X  if it satisfies the following condi
tions :

(i) The system {Mx; a ZA} is an open base for X.
(ii) For any q£X and (Ma,, Rx), ( ¥ , . ,  Rx„)£& with q£M x.C\Mx.. there is 

an (Mx, Rx) in 0  such that q€M xа {Ma, ПM a.,) and

Дг'1 M. — R-Am.  =
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(iii) For any (Mx, Rx)£ 0  and the sides of q in (Mx, Rx) (cf. 6.4) are
open sets in X.

6.9. D ef in it io n . Two local orderings © and ©' of the space X  are said to be
equivalent — and we write — if 0 U 0 ' is also a local ordering of X.

~  is clearly a reflexive and symmetric relation on the set of local orderings of X.

6.10. R e m a r k . Let 0  and ©’ be equivalent local orderings of the space X  and 
let q£X. Select (Ma, Rx)£ 0  and (M'., R'x)£ 0 '  such that q£MxC\M'x.. Then 
there exists an (Mß, Rß)£0  suchthat q£ M ßc.(M xC\M'a)  and

Rß = R.\Mß = K U f -
In fact, since © U  0 ' is a local ordering of X, there exists either an (Mß, Rp)£ 0  

of the required type or an (Mj,,, R'ß.)£0' such that

9€ М ;.с (М аПЛ/;) and R'ß, = Ra\M' = R ' a . \ M ,ß  .

We have to consider only the second case. However, by 6.8 (i) there is an (My, Ry)£ 0  
suchthat q^MyCzM'p, and by 6.8 (ii) there is an (Mß, Rß)£0  suchthat

q£Xfp с  (МуГ)Мх) = My and Rp = Ry\Mß= R JMß.

Hence q£MpC(MxC\M'x.) and

Rß — R*\m„ — =  R'AMß
as required.

6.11. R e m a r k . The relation ~  is an equivalence on the set of local orderings of 
the space X.

In fact, we have to show only the transitivity of ~ .
To this end consider local orderings 0 , 0 '  and 0"  of X  such that 0 ~ 0 '  and 

0 '~ 0 " .  Let qdX. Select (M „ Rx)£0  and (M",, R",)£0" such that ЧеМхГМ",. 
In order to prove 0 ~ 0 "  we clearly have to show the existence of an (Mß, Rß)(z 0  
suchthat q£MpC(Mx(~)M".,) and

Rß — Rx"\mp-

Now by 6.8. (i) there is an (M'-, R ')£ 0 ' suchthat q£Mx. and thus by 0 '~  0 "  
and 6.10 there is a member (Mß., Rß.) of 0 '  such that

9ш ; . с ( м ; г ш ; . )  and R'ß. = K,.\My

On the other hand, since 0 ~  0 '  it follows by 6.10 the existence of an (Mß, Rß)£ 0  
suchthat q£MpC(Mxf]Mp,) and Rß=Ra\Mß=R'ß'\u0- 

Thus we clearly have q£ Mß с  (Mx П M"„) and

Щ = R,\Mß = R^  к  =  ( K - U 'M  = K U ß
as required.
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6.12. N otation . Let g: X-*X  be an autohomeomorphism of the topological 
space X  and let 0  be a local ordering of X. Let

g(0) =  {(g(MJ, g(lÜ ); (M„, Äa)€0}.
g(0) is clearly a local ordering of X  as well.

6.13. D efinition . Let g: X — X  be an autohomeomorphism of the topological 
space X and let 0  be a local ordering of X. We say that g disturbs 0  ifg(0) 1- 0 .

And now we have the following theorem.
6.14. T heorem. Each absolutely cyclic map o f a space D homeomorphic to the

Cantor discontinuum disturbs every local ordering o f D (cf. 2.1). ^
Proof. Let g:D-*D  be an absolutely cyclic map of D and let 0 — {{Ma, Ra); 

oc£A} be a local ordering of D. We have to show only that g (0 ) ■*- 0 .
We argue by contradiction by supposing g (0 )~  0. Let Q= {My, a£A}. Q is an 

open covering of D, consequently there is a (D ,g)-cycle Z = (L l5 ..., Lm) which is 
a refinement of Í2. Select for each id {1, ..., m) an a[i]£A such that Ь ^ М л п .

Let q£D. Then there is a unique i(q)£ {1, ..., m] such that q(iLi{q). Now 
select a{q)£A suchthat
(66) C

(62) R<*(q) M,(,j
and
(68) g  (Л,(Ч)) — 2?a[,(9) + mi]|a(Ma(5l) •

(see also 6.6 and 3.1). By g ( 0 ) ~ 0  taking also 6.10 into account, there exists such 
an a(q).

Let Q '={M x(q)-,q£D} and let the (D, g)-cycle Z ’={L{, ..., L'm.) be a refine
ment of Q'. Z '  is clearly a refinement of Z. Now for j — 1, ..., m let

(69) R j = Ravm^L'j ■

Recall that i ( j ) is defined by the relation L]c Li(1) (cf. 3.6).
We now show that for we have

(70) g (R'j) = R'j+m,1.
In fact, select q£D suchthat Then (66) shows that i{j)=i{q) and

thus by (67) we have

Rj — R*UU)]\lj — ■R«[>(4)]IlJ ~  — R*m \l'j-
Consequently, by (68) and 3.6. (1) we clearly obtain

8 (.Rj) 8 (7 (̂z(4)Il) )  s (-^ a (4 ))ltj+ ;1 (T^a[i<4) + т 1]1а(М» (,)))! ^

=  R*vu)+yyt\Lj+m.1 = ^ [ ( a + m'i)] |t )+m,i =  Rj+mi

as required.
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However, (70) implies that gm'(R'1)—R'1 and thus 

(71) g ^L ’S K )  = K -

Let h=gm’\L>‘. L[-+L[. By 3.8 h: L[ — L\ is an absolutely cyclic map of the 
infinite subspace L[ of D.

Let q'€L[. Then 3.10 shows that с/, h(q') and h2(q') arc pairwise distinct. Thus 
by and q’i S ^ ^ i q )  (cf. 6.4)

^  = Sr\, h(f) (я ) ̂  ^R[, Ifi(q’) (ч )

is a nonempty subset of L [ . However, by 6.5 and (69)

S r ’v K & W )  = S r . hu)].»(«') (íOHí/í
and

S R'l ,h 4 q ')(Cl ' )  =

and thus taking also 6.8 (iii) into account, V is an open nonempty subset of I f .
Consider now the subset N={h(q'), hz(q')=h(h(q')), ..., hk{q)’=hk~'i(h{q')), ...} 

of L[. By (71) and 6.7 we have V(~)N=0. On the other hand, by 3.11, TV is a dense 
subset of L[ and thus LflTV^O in contradiction with the preceding statement.

The assumption g ( 0 ) ~ 0  was false and thus g(&)-y~ 0  indeed.
The proof of the theorem is complete. □
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C O N N E C T E D  W I T H  A R I T M E T I C A L  F U N C T I O N S

I. KÁTAI (Budapest), member of the Academy

1. Notations and definitions. C, R, Q, Z, N, N0 denote the set of complex, real, 
rational numbers, integers, positive integers, nonnegative integers, respectively. 
e(x) stands for the abbreaviation of e2nix. s i  denotes the class of the real valued addi
tive functions, J l  denotes the class of the complex valued multiplicative functions. 
For an integer 2 let siq be the set of real-valued q additive, and Jt4 be the set of 
complex-valued ^-multiplicative functions. Let Eq= {0 ,1, ..., q— 1}. Every n€N0 
can be written uniquely in the form

2  aj(n)qJ’ aj(n)£Eq-
1 = 0

A function / i s  called ^-additive if

/(« )  =  2  /(0) = 0 
1=0

and g is called ^-multiplicative if

g(n) = П g{aj(n)qJ), g(0) = 1.
l=o

For x€R let ||x|| denote the distance of x to the nearest integer. 
a\b denotes that a divides b.
U denotes the set o f  sequences uniformly distributed mod 1 (U.D. mod 1). 

For the definition of well-distributed sequences mod 1 and for some wellknown results 
in the theory of U.D. mod 1 sequences see the excellent book of L. Kuipers and H. Nie
derreiter [7].

2. H. Daboussi [1] proved that

(2.1) 2  f(n)e(nu) -  0
n̂ kx

if a£R\Q and of modulus ^  1. (2.1) was proved by H. Delange [2] under the
condition

2  l / ( « ) l2 =  0 ( x ) ,(2.2)
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and for the much wider class of uniformly summable multiplicative functions by
K.-H. Indlekofer [3]. The speed of the convergence is treated by H. L. Montgomery 
and R. C. Vaughan in [4].

In [5] we considered the sum

(2.3) M (f, t ,x )=  2  / (« )e{t(ri))
n^x

with a general t:N-*-R. The main result is cited now as
Lemma 1. Assume that for every K> 0 there exists a sequence o f mutually coprime 

integers nj ( j=  1, ...,s) such that

(2.4) (К < ) nx <  л2 < .. .<  ns; 2  пТг >  К,
j = 1

and

-7 2  e{t(nam )-t(n vm ))^QX тШх
i f  u ^v . Then

(2.5) M ff, t\ x) — o{x) as x  °°
or every f £ J i  o f  modulus s  1, uniformly in f

It is known that the conditions are satisfied if t is a polynomial such that at least 
one coefficient of t{x)— /(0) is irrational.

Let ^d en o te  the set of those functions / : N — R for which the sequence
qn:= F(n)+t(n)

belongs to U for each Fisrf.
By using the Weyl-criterion Daboussi’s theorem implies that t(n)=an belongs 

to ST if a£ R \Q , while Lemma 1 can be formulated in the following way.
Lemma 2. i f  for every К there exists a sequence nj (j=  1.......i )  o f mutually co

prime integers satisfying (2.4), and the sequence

Zm •= t(num )- t(n vm)
belongs to Ufor every u ^ v , then ST.

Since the zero function € sd, therefore U. We are unable to give a complete 
characterization of FT. It is obvious that 2FC\sd—0, since if t^sd, then F= — t£.sd 
and F(n)+t(n)=0 (fin), so F+t$U .

Let now t be a constant multiple of a g ^ J l, and let t(n)—ag(n). If g(n)=nk, 
k£N, then t^ST for every a g R \Q . We shall prove in Theorem 2 that it is not 
typical in the class of multiplicative functions taking on integer values.

Theorem 1. Let g be any integer-valued arithmetical function. Assume that there 
exists a positive constant e, an infinite sequence o f positive integers <  t/2 < ... ,  so
that dn\dn+1 (n= 1, 2,...), and a sequence Xi-=:x2< ... o f positive reals tending to 
infinity such that

(2.6) #  {n ^  xv|g(«) = 0 (mod dv)} ё  exv.
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Then there exists an irrational a for which ||ag(n)|| ->-0 on a set o f  integers having 
positive upper density, consequently ag(n) is not UD mod 1.

P roof. Let be a sequence of positive real numbers tending to zero monotoni- 
cally.

Let the sequence ег , е 2, ... be a subsequence of dx, d2, ... defined as follows.
Let :=dlf i,

maxnSl", 
*ll s(")

g i n )
5 a 1 minnsrt

g(n)
<?1

Let e.2 be the smallest member of the sequence dv (v=l, 2, ...) for which the 
inequality

2
e2 ei max (lej, \At\, 1)

holds. Assume that e2~ d v. Then Y2:=xv.
Assume that ex, e2, e„, Y±, Y2, ..., Y„ are defined,

(2.7) max”31,
g ( m )

? an min* i i ,  
e j  e(m)

g W

Then cn+1 is the smallest member of the sequence d v (v= 1, 2,...) for which
2

(2.8) e„+1 >  -y- e„ max (|я„|, M„|, 1)An
holds. If e„+1 = dfi, then Т„+1:=л:д.

Let now

(2.9)
*1 e2

By the notation q1=e1, qK=eJen_1 we can write a in the form

ос--------1---------1------------Ь....
Ч\ Ч\Чг Ч1Ч2 Ч2

From (2.8) we get that qn-+°°. But such type of expansions represent irrational num
bers. For the proof see the book Galambos [6], Chapter II, Corollary 2.6.

Let us consider those integers m S f ,  for which g(m) = 0(mod e>„). From (2.6) 
we get that the cardinality of this set is at least sY„. Let g(m)=enu, m s  Yn. By the 
notation (2.7) we have а„Ши^Ап. Then

ag(m) =  | y - +  ... + ~ ~ |  enM +  ( " ~ ---- b ••■)enw.
v e l  e n '  v e n + l  >

The first summand on the right hand side is an integer, the absolute value of the sec
ond one is less than

en\u\ < 2„.
e n + l
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Consequently
#  {m ä  Y„\ ||ag(m)|| < !„} >  eY„, 

and this completes the proof.
C orollary 1. Let g be an integer valued multiplicative function, and for each 

prime q let

a(q) ■■= 2  — >
«Ií (p) P

wherep runs over the set indicated. Assume that a(q)— °° for at least one q. Then there 
exists at least one irrational a for which <xg(ri) is not UD mod 1.

P roof. Let q be a fixed prime such that a(q)= =*> and SP the set of the primes p 
satisfying g(p)=0(mod q).

Let Sds4 be defined on the set of prime powers p* by the relation
r 1 if a = 1 and p£.£P 

S(P  ) ~ { Q otherwise.

Then, from the Túrán—Kubilius inequality,

whence

2  (S(ri)—Ax)2 <sc xAx, Ax= 2  P \PÍ&
p s x

л;“ 1# !«  > y 4 j - *  1 (л ;-« ,).

Since S (n )> y  implies that qß*\g(n), ßx— , the conditions of Theorem 1 
hold with x„ = n, d„ = qß- . □

T heorem 2. Let К  be a polynomial with integer coefficients, g an integer valued 
multiplicative function such that g{p)~ K(p) for each prime p. Then g^ST i f  and only 
i f  K (x )= ± x k (A:SO).

P roof. If K (x)~ axk, a AO, +1 , then our theorem follows from Corollary 1. 
Assume that K(x)a axk. Let К(x)= K 1(x)...Kr(x) where Ki(x)dZ[x] are irre
ducible over Q. We may assume that ^ (0 )^ 0 .  Then there exists a prime q and 
an /€ Z, (/, q) — 1 suchthat K ^ ^ O lm o d  Ч)- Furthermore, q\Kx(p), Kfp)\K(p)  
if p =  / (mod q). Since the sum of l/p for p = /(mod q) is divergent, the conditions 
of Corollary 1 hold; consequently 3T.

Let now K(x)—exk, e—1 or —1. Every n£N can be written as n=Lm, where 
L  is the square-full part and m is the squarefree part of n, (L, m)— 1. We have

g(n) = g(L)d°(m) mk.

Let a£ R \Q , F^stf, l£Z, l AO. We shall prove that 

(2.10) x - 1 2  e(od(F(n)+g(n)) 0.
n^x
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Let eL(m)=l if (m, L)— 1 and = 0  if (m, L)>0. Then eL̂ Jt. Observe that

(2.11) e {{ -\y W ß m k) = j ( l + ( - l ) aW)e(ßmk) + j ( l - ( - l ) “,W )e (-ß m k). 
Let

(2.12) s(ß, m) =  e(ß-eaWmk).
Let now L run over the squarefull numbers. The left hand side of (2.10) can be 

written as
X-1 %  e{lF(L))-lh,

L
where

(2.13) I L = 2  \g(m)\eL(m)e(lF(m))s(lccg(L),m).
m^x/L

Let L be fixed. If e= 1, then we may use Lemma 1 with t{m)=hg  (L)mk, and 
get
(2.14) I L =  o(x/L) ( x - - ) .

If e= — 1, then by using (2.11), we can write (2.14) as the sum of four sums of 
type (1.4) with t(m)= ±hg(L)mk, and deduce (2.14). Furthermore, it is obvious that

\Zl\ S x/L, 2  ! / £ < “ •
L

Consequently (2.10), and so the theorem is true. □
3. Now we consider functions in sdq, J(q. Let

Then

1 JV -l 1 N - l

— 2  2  Дv: = — 2
q  j= 0  a i E .  q  j=  0

2“iEq

(3.1) 2 1 { f ( n ) - A Nf ^ q N.BN,

that follows immediately from the elements of probability theory.
Let g£Jtq with modulus S 1, t be a function, /: N0—R, s(n):=e(t(n)),

(3.2) A ( x , y ) =  2  g(n)s(n).

We shall give upper estimates for (3.2) under some conditions stated for s(ri). 
Let I— {/x-= /2<  ...< /r}, iv€N0, A be the whole set d€N0 for which

d -  2  öjq‘j, őj€Eq 0  =  0...... г)
j =о

holds. Let Л be the set of those m£N0 for which cij (m)= 0  Then each n€N„
can be written uniquely as n=d+m, d£A, m£A, furthermore g(n)=g(d)g(m).
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Let now f£.rfq be defined by
f 1 if a = 1 and j£ l, 

f ( acl )  — I q otherwise,
and consider the sum

(3.3) E ( y ) : =  2  ( m - A f ,  A  = 2 .
x^n<x+y 4

Assume that y > T = q ir + 1 , since therefore

e (j ) ^  T£
1 = 0 \  1 J 1 1 = 0

and by (3.1) we get
(3.4) E ( y 2Ay.

Let
(3.5) B(x, y )=  2  g(d)s(n)f(n).

x ^ n - < x -  by

From (3.4), by using Cauchy’s inequality we get

(3.6) \B(x, y )—AA(x, у) 1 Ä У2Ay, A =

To estimate (3.5) we put n=d-\-m, d£A, mdA, and we have 

B(x, y) =  2  g(m) 2  g(d)s(d + m).
m(E Л d £ A

Here m£[x— T, x+ y]  and in the inner sum d£[x— m, x + y —m). From the Cauchy’s 
inequality we get
(3.7) \B(x, y)|2 S  Lx 2  g(.di)g(.d2)f(d1) f(d 2)-S(d1,d 2),

d v d , £ A
where
(3.8) 5(d1; d2) = Zs(d1 + m)s(d2 + m),

and the summation is extended over those п+Ä for which dl -Vm, d2+m£[x, x+y], 
furthermore Li is the number of m in the interval [л:— T, x+y]. Consequently

(3.9) « j r .
Similarly,

S ( d , d ) ^ I 1 « 2 r .

Let ?
(3.10) H  :=  max \S(d1, d2)\.

d „ d . i A
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From (3.7) we get

1Ж *,з01* « Ш г Z fK d ) + - ~ H  2  /№ )/№ )•
)  d £ A  q  d t , d  t € Ad^d,

The number of solutions of the equation f{ d )—k, d£A is (q— l)r~k, there
fore

2  P ( d) =  2  (^ — l)r_fc^2 <  r2qr
d £ A  k — 0 V /

and similarly,

d v d , Í A  d í Ad,*d,
So we have

\ B ( x , y ) \ z
qr

+  y H r 2 q r ,

where the constant implied by <k  may depend only on q. Taking into consideration
(3.6) we get

(3.11) \A(x, у)I2 <sc A(x, y ) - — B(x,y) +  - 7 Г IB(x, y)\2 <^^v2 +  ̂ r + y H q rA2
Hence we get immediately the following theorems.

T heorem 3. Let t be such a function for which
t](n; u, v, M):= t(u+qM n)— t(v+qM n) (n = 0, 1, 2, ...)

is UD mod 1 for every M 5 l,  and every Let F£sdq. Then the
sequence F(n)+t(n) (n= 0 ,1 ,2 ,...) is UD mod 1.

P ro o f . Let l£Z, l?±0, f(n)=e(/F(n)), and put lt(n) instead of t(n). Take 
/ =  {1, 2, ... r}, x=  1, and consider S(dlt d2) as the sum of some finite subsums of 
type

2,e2!ti[<(« + er + l„)_,(r + i--+ !„)]_

From the Weyl criterion we know that each of them is o(y) as y-*e°. From 
(3.11) we get

lim sup A(\, y )
У

with a suitable constant c>0. Since r is arbitrary, therefore A (l,y )  = o(y)
O'—00)- □

T heorem 4. I f  t] (n; u, v, M) are welldistributed m o d  1 in Theorem 3, then so is 
F(n)+t(n).
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Proof. The proof is almost the same as that of Theorem 3. We have to use the 
fact that H= о (7) uniformly in 1^дг<°°, and use (3.11).

Croollary 2. Let P(x)=tx.rj f  +  ... +  агх + а 0 be a polynomial such that at least 
one o f  a2, ..., ar is an irrational number. Then for each I f  sdt the sequence F(n) + 
+ P(n) is well distributed mod 1.

For the proof see [7].
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GENERALIZED NUMBER SYSTEMS IN THE 
COMPLEX PLANE
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and I. K Á T A I (Budapest), m em ber o f the A cadem y

1. Introduction

Let Л:={Ях>Я2>...} be an infinite sequence of positive numbers such that 
L:=ZX„< Let Н(Л) denote the set of those x which can be written in the form

X =  £„€{0,1}.
П = 1

It is obvious that H(A)Q[0, L], In our paper [1] written jointly with A. Járai we 
called A to be interval filling if Н(Л)=[0, L\. Furthermore we observed that A is 
interval filling if and only if the relation

(LI) ĴV — ^N + i +  ̂ JV + 2 + -"

holds for every N ^ l .  Consequently, if (1.1) holds for every large N, i.e. for each 
N ^ N 0 then H(A) contains an interval of positive length.

We were unable to give necessary and sufficient conditions for # (  Л) to be totally 
disconnected.

Let now Л={ЯП}~1 be a sequence of complex numbers such that 
and let H(A) be the set of those complex numbers z which can be written in the form

z = j ? eA > £„€{0, 1}.П= 1

The problem of determining those sequences Л for which 0 is in the interior of 
Я(Л), seems to be quite hopeless in this general formulation.

Let now Л be the quite regular sequence Я„=0И, where OdC, |0|<1. We shall
use the notation \q\ = l/d, q—Q, argq=—i]/, i.e. q—Q e ~ i't', 0=-^г-е‘ф.

Let

Hk = {z\z = 2  ej eJ> £j€{0, 1}} 
j ^

E =  0  Hk.
— oo

for k = 0, ± 1, ± 2,.. .  and



It is obvious that E is the set of those complex numbers z which can be written 
in the form

z  =  SMqM + ... +(5o+£i0 + fi202+  • • • , £j-j {0, 1}.
We are interested in determining those numbers 0 for which E=Eg contains 

all complex numbers.
If 0 is a real number then E  is a subset of the real numbers.
The following assertion is almost trivial.

Theorem 1. I f  Ee=C, then |0 |^ l/|/2 .

Proof. First we observe that
(1.2) Hk = Hk+1U{9k+Hk+1}, Hk = вкН0.

Furthermore, H0 and so H k is a closed set. Let g„£#0 (n= 1, 2,...), g„-*g, 
g e e .  Let

gn =  2  №  om■
m=k

Let the sequence dm, Sme {0, 1} be chosen as follows. Let S1 = 0 if e{n) = 0 for an 
infinite sequence of integers n, and let <?!= 1 otherwise. Let ^ '1={n/e{")=51}. As
sume that дк, ...,<5r , J tRQ J tR-xQ  are fixed, J iR contains the infinite
set of the integers n for which

ei"> =  i 1 , . . . , e i - >  =  <5Я .

Then let if £^1  =  0 holds for infinitely many n£.J/R, and <5R+1=1
otherwise. Let J tR+x={n\neJtR, £r+i =<5k+i}.

Let hR = 0ke+  ...+ ör9r . Since for ndJIR

Ig „-M  =5 |0|R+1 +  |0|R+2 + ... S  g„ -  g,

therefore \ g - h R\-+0 as Consequently g — 2 ^ v 0 v> and so g£#„.
V =  1

Let p denote the Lebesgue measure. Since Hk is closed, therefore it is measurable. 
From (1.2) we get

ß(Hk) 2ц(Н к+д, p(Hk+1) =  \0\2g(Hk),

and so
цШк) ^  2\е\2и(н к).

Then 2|0|2< 1  implies p(H k)= 0, and so p(E )= 0. □
2. Let F denote the set of those 0 for which E0 = C.
Theorem 2. Let ф ̂  0, л (mod 27i). Then there exists a positive constant е=г(ф)

such that all в with 1+  e(t/0, arg в = ф belongs to F.
|0|
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max min \co} —e'9| <  0.1.
<P€[0,2n] j=l,...,K

P roof. Let со=е‘ф.

(1) Assume that -$—= irrational. Then the sequence со, со2, ... is everywhere
Z7Í

dense in the unit circle, consequently there is a suitable К such that
( 2. 1)

Let e—s (iJ/) be chosen so that
( 2 . 2 )  0 . 9  > ( 1 + e ) k  — 1.

Let 1<<2<е. We shall prove that each z in the closed unit disc belongs to Hx. 
Let |z |S l. Then with a nonnegative integer a, we can write

z = eaW, - i - =§ |1P| 1.

Let W = reiip, Let j£ [ \,K \ be chosen so that \coJ—ei4,\~^0A. Let

Since

\w-eJ\ =

W= 9>+(z-0J) = 6>+в>И{, Wx = qJW— 1.

■>—L_юз\ - - [r ——I-)- * ]е*«>_ю;I  ̂r—L+ ол — r —2̂ .
0 J I -  I Qj ) + Qj l  1 QJ + QJ r QJ ’QJ) QJ

therefore, by (2.2)
\Wi\ = QJr - 0.9 <  r = \W\,

so we have proved that each z in \z\ = 1 can be written in the form
z = 0s» + 0s»zl5

where ^=-0 is a suitable integer, \гх\Ш 1. Continuing this procedure,
Z] -  0*y+i + 05;+iz ,+1, \zj+1\ á  1,

we get that
z  — 0si +  0si+si + ...  +  0si + - + sn + . . .

which is a desired representation of z.
From (1.2) it is obvious that E — C.

2nA(2) Letnow ip = —- —, and let A, В be coprime integers, B?± 1,2. Then coB— 1, В
1

-~q b - Let e be so small that

(2.3) 1 1
(l+e)B 2 ’

and let 1 <  1 + s. Then the sequence 2„—0Bn is interval filling, consequently

Acta Mathematlca Hungarica 51, 1988
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all nonnegative numbers in the interval [0, S], S — у_дв can be represented in the 
form

Z W B\  á„€{o, l}.
п = 1

Let now В  be an integer. Then all the numbers in the segment with endpoints
0. 0' , * can be written in the form 1- 0B

2  s„e,+Bn.
n=0

Let now

, ,  г , 0 x202 xBeB n
M  y Z  I 2  ~  x l  j _____q b  "h Q  —  X j  —  l j  •

Then M Q H ^. Since 2, therefore the angles between the consecutive coJ
(y'= 1, B) are smaller than n. Consequently 0 is in the interior of M. Hence it 
follows that Ee—C. □

3. Let now j/= { a 0=0, al5 aK_1} be an arbitrary finite set of complex num
bers. Let Sm be the set of those complex numbers z which can be written as

(3.1) z — 2  bvev, (v =  m, m + l , ...).
v —m

Let

(3.2) (Fe = ) F =  U  SM.
m  =  — oo

Since

s m+1 =  e sm, sm =  *u K-0m+ 5m+1},
j=  о

therefore
K S m+ú =  v ( s „) =  Kn(Sm+1),

and so Fg— C implies that |0|2Á ^  1.
Theorem 3. Let s^—{a0—0, alf ..., аК- г}, 0 = - i - e ‘*. Let us assume that ,

and that
(3.3) min max cos (arg a .- — arg z) s

i*l-i
I f

1 < e 2< d + y + / d ( i + d ) ,(3.4)

then Ee= C.
Remark. The condition (3.3) does not depend on arg 0.
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P roof. It is enough to prove that Sx contains an open disc around the zero. 
Furthermore, if Eg — C with the coefficients s i  =  {ao=0, als ..., then the
same is true with Ls/={0, tax, ?%-i} whenever We may assume
that if iVy, and that |a ; |£ l  (i= 1, ..., К — 1).

Let B\=^{W\\W\<.Q}. Assume that (3.3), (3.4) hold. We shall prove that В я  
я  Sx. For this we need to prove only the following assertion:

If w£B, then there exists an a £ si suchthat
(3.5) W = a d  + eWu WX£B.
Iterating (3.5) we shall get the desired expansion of W .

If |1F|<1 then wemaytake a= 0. Then \Wx\ — \qW\<.Q, so WXC.B.
Let now \W\ = r ^ l .  Let a, (/£{1, ..., K— 1}) be so chosen that cos (arg aj— 

— arg W e -'^ ^d .  Let a=aj. Then Wx—q(W— ав), \WX\2— Q2|1F— a0\2, further
more \W -ad\2= \W \2 + \e\2-aOW— Ö9W=r2+ ~ -  2 -^ \a\ cos (arg (ав) -  arg W) s

and s0
\WX\2 == Q2r2+ \-2rQ d.

The maximum of the right hand side in г£[1, Q] is at r=Q. By solving a second 
order inequality we get that

max (Q2r2+ l-2rQ d) Q2
1 t l r s Q

if (3.4) holds. So WXCB. We proved that В я Н х, which gives the theorem imme
diately. □

R emark. This argumentation does not work if d—1/2, and so in the case
s i  = {0, Q, Q2, q3= 1}, Q=e2m/3.

T heorem 4. Let s i ={(), q , q2, q3=  1}. Then there exists a positive constant c,
such that Fe = C for every 9 satisfying -̂---= |0| <  1.

1-f- c
P roof. First we observe that Fe= C implies that Fbp—Fepi — C. So we may

TCassume that |a rg 0 |^ y .  Observing that the set of the complex conjugates of s i  is s i,
_ ft

wegetthat WdF0 implies W£FS. So we may assume that O=arg0-= —.
Let now B — {1F||(F|<Q}, W =rea . Let К  be a positive integer and try to 

write W as
(3.6) iV= ав+вттЩ, a£j*, WX£B, m<L[\,K].

If r<  1 then we may take 0= 0, m= 1. Let r S  1. An elementary discussion 
of the cosine function leads to the following lemma, that we state without proof.

Lemma. Let 0<e<0.1. Let T£ be the set o f those t]£[0,2n] for which

(3.7) max cos(c=0,l,2
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Then TE is covered by the union o f the intervals |?/—i|< ce , where n> - y |
(=: U), c is an absolute positive constant.

Assuming a=e2*ik/s, from (3.6) we get

\Щ\2 = \q»4V- a\2 =  Q2mr2+1 —2Re(qm)Wä =  Q2mr2 + 1 — 2ßmrcos .

Let s be a small positive number. For a fixed m€[l, K] consider those W£B' 
\W \^ l  which satisfy the inequality

(3.8)
Let

( 2л к ) 1max co s \A—mw---- -— s —+e.*=0,1.2 ( Y 3 ) 2

f m (r) := Qim Г2 +1 — 2Qm г ( I  + e) -  Q \

T h en /m( l ) - ö 2m+ l - ( l  +  2e)Öm- e 2- Let ßo= ßo(«)^ l be such th a t/m(l)<0 
whenever l =  ß < ß 0 for every m£[\, К]. Since f m(r) is continuous therefore
there exists a Qm (e) >  1 such that

max f m(r) <  0

whenever 1<  Q< Qm(e).
Let now Q = min {Q0, Qt , QK) >  1, l-=Q <ß. Then W  can be written in the 

form (3.6) if the inequality (3.8) is satisfied for a suitable 1, К].
Let now assume that X, ф are such that (3.8) does not hold. Then, by using our 

Lemma with г]=Х—тф, we get t]<zTE. So we have
(3.9) X = s m + imj/ + i m (mod 2n) ( m = l , . . . ,K )
where

l£»l -= ce, sm£U.

By taking m=  1 and 2, we have ф—Sĵ —j 2+ Í i ~ ^ 2-
71 71Since therefore ф=х+С, where |f |< 2 ce, x= 0  or y .L e tu sco n -

sider the case x —n Then (3.9) with m —6 gives that l = j 6+ 6C + i e, whence

\X—j6|<13ce. Then, from (3.9) with m — 1, we get that A=Ji + y+C  + <̂ i, whence

Ji+  -z— se :16ce. But this cannot occur if 16ce<—. Let us assume now that
n n

£<  3- 16c ’ X~ j '
Let K=6. Then there exists at least one representation (3.6) for all W£B.
It has remained to consider the case x — 0, i.e. if 0S\J/<2ce. From (3.9) with 

m — 1 we get
(3.10) |A—Si| <  3ce, Sj£t/.
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Now we shall prove that for these values A,
(3.11) W =  ав+ ЬвЧ 02Щ
with suitable chosen a,

Let us consider the case sy—n. Then we take a—g, b=g, д=е2л,,3——— + 

lf%
+ i—2—. From (3.11) we get W1—q2W — gq— g. Since \W—re'n\^3cs, therefore, 
estimating roughly, we get

\Wy\ S  3csQ2+\q2rein — gq — g\ S:3czQ2+\q2r —\\ + \q—\\ + \el,t — g — g\.

We have ein— g—g — 0,
\q - l \  = \Q e^-l\ ^  Q - 1 +ф, \q2r - l \  ^  ß 2r- l+ 2 i/o

Consequently, by 0^^< 2cs,
\Щ == 3ceß2 + ß 3- l + ( ß - l ) + 6c£(= : g(ß)).

Let us assume that 9ce< 1. Then there exists a constant ß * > l ,  such that 
g(Q*)^ 1> and so from the monotonicity of g(Q) in [1, ß*] we have g (ß )<  1, i.e.

71 5 ttThe cases sy =  — , - j -  can be reduced to the earlier case by representing first
gW or gW instead of W  in the form (3.11) and multiplying the equation by g or g, 
respectively.

So we have proved that Bcz Sy if l< ß < m in  (Q, Q*), and this completes the 
proof of the theorem.

4. T heorem  5. Let us assume that в is not a real number, O<|0|< 1. Then there 
exists a kdN such that Fe—C i f  s i =(0,1, ..., k).

P roof. If the assertion is true for 0h where A£N, then it is true for в as well.
Let us consider the case when there exists an h £ N such that у  <  arg б*1 < тг. Let

h be so chosen and let us write 0 instead of 6*. Then the angles determined by the vec- 
torials (0, в2), (в2, О3), (в3, б) are less than п. Consequently every complex number W 
can be written uniquely as
(4.1) W — аб + /?02 + уб3, a ,ß ,y ^ 0 ,  aßy =  0.

Let S denote the disc S={IV\\W \^Q 2+Q}, and let i> 0 be such a number 
that every W £S  can be written in the form (4.1) with a, ß, у £ [0, ?]. The existence 
of such а / is obvious.

Let now k —[t]+ 1. Let W£S,
W — a0 + j302 + y03 = [a] в + [ß] в2 +  [у] 03+63Ц[.

Then
б3 Щ =  {а} 0 + {ß} в2 + {у} б3, Щ = {а} q2 + {ß}q + {у}, aßy =  0.
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Since at least one of <x,ß,y is zero, therefore \W1\S Q 2 + Q, W ^ S .  Henc we get 
that F„=C.

It has remained to see the case when there is no h£ N suchthat y < a r g 0'’< 7t.

This means that rcj (mod 2n) (h— 1,2,...). So x = ̂  is a rational num-
A hA ( 1 1 'I

her, t= — , (A ,B )= \, and y j  (m odi) (й= 1, 2, ...), and so F=
= 1, 2, 3, 4. The cases B=  1,2 lead to real 0.

If B = 4, then 0=±z-^-. But this is a simple case, since the real and the imagi
nary part can be separated easily, assuming that the coefficient set is real. To prove 
the theorem it is enough to see that each real number a: can be written in the form

(4.2) x =  2  ( - l ) va,vß - 2v, e ,€ j/= { 0 , 1,
v— —h

This is true if k~[Q 2]. Let us consider the set

4 1 6  Z. D A RÓ C ZY  A N D  I. K Á TA I: G EN E RA L IZE D  NUM BER SYSTEM S IN  THE CO M PLEX  PLANE

S  = {x \x =  i ( - l ) vbvß - 2v, bxZs/}.
V =  1

ro2l Г OfO2= r\, the minimal is £ =  — — —. It is enoughThe maximal element of S'is  ̂ __ ........___ _ ъ ^
to prove that S'=[^, i/]. Let x£[£, »?]• We define x4 by the relation

x  = —bQ 2+ (—l)ß  2Xi, b£s/.
Then x ^ —b—xQ2. We have

m e 2
Q4- 1

m o n
ß 4 - 1 J '

Observing that tj — £>1 we can choose an integer b such that —b—xQs£S. 
But then this belongs to the set si. Since the transformation x-*-X! maps [£, rj] into 
[{, tj], therefore [£, r/]= S. Since 0€(£,?/), each real number x can be written in the 
form (4.2). □
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ON THE REPRESENTATION OF THE DUAL 
OF A REAL C*-ALGEBRA

Z. MAGYAR (Budapest)

Let F denote either the real field R or the complex field C. A is called a C*-algebra 
over F, if it is isometrically *-isomorphic to a norm-closed *-subalgebra of the algebra 
В{.Ж) of all bounded linear operators on some Hilbert space Ж over F. If A is a C*- 
algebra, we use the notations Ак={а£А; a=a*j, A + = {a*a\a£Aj, A'h = {f£A'-, 
/= /* }  (where A' is the Banach space of boundedF-linear functionals on A, and/*(a): 
:= fW )), A'j={f£A ' ; / = - / * } ,  A'+ = { f£ A i',f(a )* 0 V a Z A +} and S = { f£ A ’+i 
11/11 =  1}-

In case F=C  it is known that the direct sum n of the so called GNS-represen- 
tations of A with respect to the elements of S gives us each gdA' in the form

n
g ( . )=  2! ■ )*t> Уд- The aim of this paper is to prove the corresponding state-

i=1
ment in case F = R ; more precisely, we will prove the following theorem.

T heorem  1. Suppose that п: A -- В(.Ж) is a *-homomorphism (where Ж is a 
Hilbert space over F) satisfying the following condition: for all f£  S there is an х£Ж  
suchthat f(a*a)^\\n(a)x\\‘l \/a£A. Then for any ĝ _A'h\JA'j we find х ,у£ Ж  such 
that g(a)=(n(a) x, y) \/a£A.

First we list some well-known results we need as lemma (with a sketch of their 
proofs).

L em m a  1 (Jordan decomposition). Let A be a C*-algebra over F and f£A'h. 
Then there are f , f i f i A \  satisfying f = f  —/ 2 and | | / | |  =  |l/ill +  ll/2lU and this decom
position is unique.

P r o o f . Observe that the mapping g-*g\Ah is norm-preserving on A’h (if at A 
is such that ||a ||á l and |g(a)| is near ||g||, then g(b) is near ||g|| if b—Xa with 
suitable A6F, |A|=1; hence g((b + b*)/2) is near ||g|| for g^A ’f). It is known that 
for any g£Ah there is a g£S  such that \g(h)\ = \\h\\ (this can be proved by using 
the Hahn—Banach theorem and the facts that A + isacone, A + — {a^Ah; Sp (a) c R t } 
and the norm equals the spectral radius on Ah). In other words, ||A|| =  max {g(h); 
g€SU — S} for all h£Ah.

Therefore if (p(h)>max {g(h); SU — 5} for an h£Ah then ||(o||>l. Let 
L —{sg-, j €[0, 1], g£S}={(p£A'+ ; ||<p||^ 1} and let K —co (L lJ— L). Then L is 
compact in the weak*-topology of the dual space X  of the real Banach space Ah, and 
L is convex. Hence К  is a compact convex set, and therefore cp$K implies the 
existence of an h£Ah suchthat <p(fi)>sup {g(h);g£K}. Thus ||<p|| >  1, that is К
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is the unit ball of X. Since K = {g1—g2\g1,g 2̂ A'+, ||gi|| +  ||g2||^  1} and by the iso
metry of X  and A'h we get the existence part of the lemma.

Now we prove the unicity. Let e>0 and a£A„ be such that ||a|| =  l and 
/ (я)=*- II /II —e. Let p and n be the positive and negative parts of a (by the commuta
tive Gelfand—Naimark theorem) and let f —f i —f i  be a decomposition satisfying 
f i . f c A '+, Ш  +  П /.1Н /Ц . Then

I I / i l l - e  +  I I / a l l  =  I I / I I  ®  < f i ( p - n ) - f 2 ( p - n ) = f 1(j>)+f2(n) - ( f1(n)+f2(p)) = =

-  {lfrj-/2(Ä+ II/all, fl(P) -  11M’ f i {П) ~ 11M’
Hence /i(p )> ||/i || —£, / 2(p)<e. Let q=}fp . We assert that

(1) \М с ) - П д с ) \ ^ У 7 . \ \ с \ \У 2 Ш  Vc€T.
This follows from the Schwarz inequality \g(b*c)\2Sg(b*b) ■ g(c*c) Mb, c£A for posi
tive g, and the fact that (l — q)2S l  — q ^ l —p because

IA(c)~f(qc)\ ^  |/i((l — q)c)\ + \f2{qc)\ S / X̂ ( ( l -q )2) f l ' \c *  c) +

+ fil2(q2) f i /2(c*o ^ л 1/2(1 - p ) \ m i,2\\4 +л 12(р)\ш \1/2\\с\\ s

s  l | c | | { ( | | / i l  —fi(p))112 II fl  I I 1 / 2 + £ 1 / 2 1  / a l l 1 / 2 }  ^

S  е1/2||с||(||Л111/2+  ll/all1/2) S  e1/2lk|| 2 ( Ш + И/,Д

(we can extend/i to the unitization of A, in case 1 $A, by setting/1(1 )= ||/1||, and/x 
remains positive). Since (1) holds for any decomposition satisfying ||/i|| + ||/2|| =  
=  | | / | |  and for any s, we get the unicity: assuming / = / / —/ 2' and ||/ / 1| + 1|/>'|| = 
=  | | / | |  we arrive at 0 ) for f j  too so that I/ / ) - / /  (c ) \^ \ f1{c)-f(qc)\ + \f1' (c)- 
~ f(qc)  1 = 2 /e  ||c|| /2  •/ 11/11 and thus / 1= / ' ,  / 2= /2'.

D efinition 1. Let A be a C*-algebra over F and let f£A'+. We call a *-homo- 
morphism p: A>-+B(H) /-representation (of A over H) if there is an x£H  satis
fying:
(rl) f(d)= (p{a)x, x) Ma£A,
(r2) [p(a)x\ a£Aj is dense in H.

We shall say that p is an /-representation with x, if x  satisfies (rl) and (r2).

L emma 2. Let p be an/-representation with x  o f the C*-algebra A over the Hilbert 
space H. Writing p(A)c:={L£B(H): Lp(a)=p(a)L Mat A) we define a function 
T-+gT from p(A)c+ into A+ by setting gT( . )=  ( p ( . ) x , 7x). Then this mapping is an 
additive, positive homogeneous bijection from p(A)c+ onto {g€A'+ ; 3 c ^ 0 :g ^ c /} .

P roof. If g£A'+ and g S .c - f  with c£R+, then g(a*a)^c-f(a*a)—c • ||p (a)x ||2 
for all a£A, and therefore we can define a bounded sesquilinear and positive form
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on H  by setting (p(a)x, p(b)x) :=g(b*a). Hence there is a unique T£B(H )+ 
satisfying

(Tp(a)x, p(b)x> =  g(b*a) for all a, b,cA.
Then

(Tp(c)p(a)x, p(b)x) = g(b*ca) = (Tp(a)x, p(c* b)x) =
= (p(c)Tp(a)x, p(b)x) for all a,b,c£A.

Hence we get Tdp(A)c. Thus we have g(b*a)—{p{b*a)x, Tx), and since Ah is in 
the linear hull of elements of the form a* a in the C*-algebra A, thus g ( . ) =  
=  ( p ( . )x, Tx), for both sides are from A'h.

Since for any T£p(A)% clearly gT£A '+ , gT(a*a)= \\}'T p(a)x\\2^\\T\\ ■ f(a*a) 
and gT(b*a)=(p(b*a)x, Tx)=(Tp(a)x,p(b)x), thus the proof is complete.

N otations. If A is a C*-algebra over R, then we denote by Ac the complexi- 
fication of A (see e.g. [2], §13) which is known to be a C*-algebra over C (consider the 
complexification of the corresponding Hilbert space). We identify A with its canonical 
range in Ac . We denote the conjugation of Ac by c-*c (c—a—ib if c=a+ib, a, b£A). 
We write J(c):—f(c )  for f£ A c , and f c (a+ ib) := f (a )+ i-f (b) for f t  A'. Of course,
{/с ;Д Л '} = { д Л с ;/= Л -

L emma 3. Let A be a C*-algebra over R, <p€A'+ and letpbe a cp-representation o f 
A over H with suitable x£H. Let q be the corresponding representation o f Ac over IIc , 
where Hc is the complexification o f H. Denote by J  the conjugation o f Hc and let 
f=(Pc ■ Thenq is an f-representation o f Ac over Hc with x, and gJTj = gr for all 
Tfq( Ac)c+ (we used the notation o f Lemma 2).

P roof. Straightforward.
P roof of T heorem  1. First we show that our condition implies that for any 

f£A '+ we can find an so that a^n{a)\H is an/-representation with x, where H
is the closure of л(А)х. We write / ~ x  in this situation. Consider first the case 
/ ( . ) = (л ( . )y, y)  for some у£Ж . Let P be the orthogonal projection of Ж onto 
the closure H of n(A)y. Then H  is an invariant subspace for n(A) and so is H L, for 
n(A) is a *-algebra. Thus P^n(A)c, and а—л(а)\н is an /-representation with 
x=Py.

Now let f£A '+ be arbitrary, and let besuchthat f(a*a)^\\n(a)z\\2 \ja4A.
Then let у  be such that (ж(. )z, z )~ y , and let T  be the corresponding operator on 
n(A)y satisfying f ( . ) = ( n ( . ) y ,T y )  by Lemma 2. Then f ^ x —^ T y  (x£n(A)x  
follows from y£n(A)y).

If f£A'h then let / i , / 2 be its Jordan decomposition and let / i + / 2~x. We see 
from Lemma 2 that there are operators 7j, T2 on H=n(A)x satisfying f j ( . ) — 
= (tc( . )x, Tjx) ( j=  1, 2); hence / (  . )=(тг(. )x, {Тг- Т 2)х).

If f£A'j and F = C  then i- f£A'h and hence / ( . ) = / ( .  )x, y) with suitable 
x, у£Ж.

If cpdA'j and F= R  then let f=i-(pc- It is easy to see that f£A'Ch, and 
clearly J = —f  Let / = / —f  be the Jordan decomposition o f/ .  Then j \  —/2 =f — 
= - / = / 2- / 1» and II/II + 1|/ 2|| = H/ill +  IIZH = | | / | |  (for the _  is norm-preserving) and
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hence f 2 ~J1 by the unicity of the Jordan decomposition (we have used that the ~ 
preserves positivity). Thus f\+ fz= hc for some h(LA'+. Let h ~ x , p ( . )  = n ( .  
and let q be the corresponding f i+ f2 representation by Lemma 3. Also let Tj be the 
operator to f } ( j=  1, 2) by Lemma 2. Now we see from Lemmas 2 and 3 that Тг — 
=JT1J  (for / 2=/i). Thus T2x= JT1J x —JT 1x, and therefore y:=i(T1x —T2x)€3V. 
Then we have for all ad A (n(a)x, y)= —i((q(a)x, T1x )—{q(a)x, T2x))— — i • f(a )  — 
= (p {a). Thus our theorem is proved.

R e m a r k . The above proof with small supplements allows us to state that the 
conclusion of Theorem 1 is valid for any g€A'.

420  Z. M A G Y A R: ON T H E  REPRESENTATION O F  T H E  DUAL O F A  REA L C*-ALGEBRA
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MARKOV TYPE ESTIMATES FOR DERIVATIVES 
OF POLYNOMIALS OF SPECIAL TYPE

T. ERDÉLYI (Budapest)

In this paper cls c2, ... and <42), ... will always denote absolute positive 
constants and positive constants depending only on m, respectively. Let if:=R  
(mod 2л) and denote by T„ the set of all real trigonometric polynomials of order at 
most n, by Tk(co) (0^/csS 2/?, 0<со^я) the set of those trigonometric polynomials 
from T„ which have all but at most к roots in K \ ( —co,co), by Sk(co, s) 
(0 ^ k ^ 2 n ,  0<coS7t, 0< £ ^  1) the set of those trigonometric polynomials from
T„ which have all but at most к roots outside the ellipse |г:=л:+гу€С|х2 +  Лг<а)2| .
In the definition of Tk(co) and Sk(co, e) the remaining (at most k) roots can be arbi
trary complex numbers. Obviously T„k(co)c: Sk(co, e).

Bernstein’s inequality asserts that

KIIk s  и I<||к
for any 16 T„, where and in what follows || • |L denotes the supremum norm in A. 
V. S. Videnskil [1] proved the following Markov type estimate on an interval 
shorter than the period:

(L 1К 11[-Ш,о] ^  2/Z2 COt- -̂ ||í||[—a,, <o]

if t<zT„, 0<со<л: and и ё -^-l/ 3 tan2-^- +  1. The trigonometric polynomial

cos 2n arc cos

. x
sm 2
. CO

sinT
shows that this inequality is sharp.

For trigonometric polynomials from T„°(co) J. Szabados [2] gave a better Markov 
type estimate than (1), namely he proved

(2)

7Cif t£T°(co). When 0<соШс%— with c2<  1, the trigonometric polynomial 

sin2" *  ̂  0) shows that up to the constant cx this inequality cannot be improved.
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Our main purpose is to give a common generalization of Videnskil’s and Szaba
dos’ result for trigonometric polynomials from S*(co, e). (Of course k =  2n means 
there is no restriction for the roots.) A very essential tool to prove Markov type esti
mates for derivatives of trigonometric polynomials from Sk„(co, e) is the idea of the 
so-called trigonometric Lorentz polynomials which was introduced and examined 
thoroughly in [3], and which can be defined as follows. Denote by the set of
trigonometric polynomials of the form

t(x) — 2  dt sin* W X sin2"- '
i=l 4

лт+со
2

with all di^O or all d ^O  (/= 0, 1, . . . ,2 n). Now we shall prove the main result of 
this paper from which Markov type inequality for derivatives of polynomials from 
Sk (со, e) will be straightforward by using a theorem from [3].

T heorem  1. Let 0<coSn, t„£^,(co), qk£Tk, r= tnqk, n S 0, fc sO , т ё  1.
Then

1к (т)1[-ю, ! c (1)to] —
( (n + k)(k+ 1)

Г г.-
СО

[ — CO, co]'

For the proof we need some lemmas.

L emma 1. L e t 0< cp ^^—, q ^ T t, p(x)=ún2n q i{x ), « S O , /S O . Then 16 z

\p'(<p)\ = c2
(u + o a + i)

(p Mr-«,,«.]-

P roof of L em m a  1. It may be supposed that n, l? s  1, otherwise by (1 ) the state
ment is trivial. Denote by R‘„ (cp) the set of all p defined in Lemma 1 when n, l and cp 
are fixed. It is obvious that there exists a p* £ Rln (cp) for which

\pVW)\  =  sup \p '(sp)\
1 P n  II [ — </>] p £ R ln (<p) i L i  [ — <?■ <?]

First we shall verify that there exist 21 points — q x a 1< a 2< . . . < a 2i < ( p  
for which

(3) I r f M l  = I l £ l i - * r t  ( i=  1 ,2 ,..., 21).

Suppose indirectly that there are only at most 2/—1 points — <?><)>,•<<? 
( i = l , 2, ...,/i=s2/ - l )  for which

lrf(?i)l =  II Tn ![-«,,,>]•
Then there exists a v£T„+i for which v(y,)=sgn р*(уд (*= 1, 2, ..., h), v(cp)= 
= sgnp*((p), v'Op) = 0 and v has 2n repeated roots at — cp. But then for a sufficiently 
small £>0 p* — Ev£Rln((p) contradicts the maximality of p\. So there exist 
— q x a ^ a ^  . . .< a 2i<<?> for which (3) holds, indeed.

Now we distinguish two cases.
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Case I: p * \t)^ 0  for t£K \[-cp , q>]. Then ||pí||[-v>v]=||píll*» so according 
to Bernstein’s inequality

\P*n'(<P) I 1Л ^ | P Íh  = п\\Р«к-ч>.^
(И + 1)1

<p I !  Pn I I  [ — <p. q>1>

therefore recalling the maximality of p* we get the statement of Lemma 1 in this case.
The other case is much more difficult.

Case I I : there exists a <5g A \ [ — <p, (p\ for which p*'(ö)—0. It may be supposed 
that q x ö < 2 n —(p. As p*’£T„+l, p*' has exactly 2n— 1 repeated roots at — <p, and 
simple root at each at (i= 1, 2, ..., 21) and <5. From this it is clear that there exists no 
— qxx< (p  differringfrom each at (/= 1, 2, ..., 21) for which \p*(х)| =  ||рЦ'||[-«>,ч>]- 
Furthermore from Rolle’s Theorem we can deduce that

Р*п(сц)=-р*п(а1+1) (1 s í  £ 2 1 -1 ).

It may be supposed that p* (a2i)< 0. We distinguish two cases.

Case II/1 : there exists no a £ K \(— <p, q>) for which p* (u)=|l/>n • Then
11̂ 11[-«>,«>] =  llRnllx and we get the desired result similarly to Case I.

Case II/2 : there exists a smallest a such that

(4) pt(a) = II/>*![_„,„], <ptSa^2n-<p.

(There exist at most two values of a for which (4) holds true.) Now p* has 2n repeated 
roots at — (p and by using the notation a2l+1 :—a, p* has a root on each of the inter
vals (ait ai+1) (i= l, 2, 21). Let Ь(£(а,-, al+1) (/= 1, 2, 21) be that point for
which p*(bi)=0. So we have found each of the 2(n + l) zeros of p*. Now we dis
tinguish two cases again.

Case II/2a: a>2cp. Observe that p$£Tn+l has all but at most one root in 
K\((p, 2(p). We need the following

Lemma 1.1. Let p£TN+1\ T N ( A s  1) be such thatp has all but at most one root in 
K\((p,2cp), < рёу . Then

\r t< p ) \* - ^ - \p k , .» v

P roof. From the conditions prescribed for p we can deduce (see [3]) that p is of 
the form

where each A ^ O  or each AtS 0 (/=0, 1, ..., 2n) and 1(х)^Тг. It may be sup-
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posed that each A ^ O  (/=0, 1, 2N). Then

£5) \P'(<P)\ S Aq sin2̂  t'(q>) + NA0 sin2̂ -1 -j-cos-y- t((p) +

+  y ^ iS in 12N_1 t(<p)

Let 7:=[Jl +  -^-j<p, ( 1 + ‘2]y) ^] • Choose a £€I  for which |i(«f)| = ||/||/. Then 
by a simple calculation we have

(6)
and

£7) |i ( 9 ) |S c , |/ ( 0 |.
Further fiom ££7 it follows that

(8)

From (6) nd (8) we get

(9) A0sin*N-%-t'(cp)

sin2iV- | - g  c s in 1*-^ - " '

. W i n TVф I i« ) l^ c ec4 — 1/»(0 |.

From (7) and (8) it is clear that
( 10)

TVT0 siw^-1 — cos-^- t(cp)2 2

Finally by (7), (8) and £€7 we have

NAo-^-sm ™  2<P *nce
<P

N
CB|í(£ ) l  S 7 tC e CB—  \p(£)\. 

Z (p

(H ) -^■Ax sin2'"-1 /(<p)

1
KOI

sin

-  - T - f  -  2с^с«п ~̂ г M VZ Z IJ — (p (p

Now by (5), (9), (10) and (11) we get the desired result. By this the proof of Lemma 1.1 
is complete.
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Using the just proved Lemma 1.1 we can easily finish the proof of Lemma 1 in 
Case II/2a. Indeed, let N := n+l— 1, then Lemma 1.1 can be applied to p*, so using 
the fact that a>2<p implies Wpthv.i^WptWi-v.vP weget

IrfW I s
II _*|| C3(n + l)l M_+n С3(и +  0  ̂ íj *|i
1 Pn  II[«>,2«.] =  ------—-------ll/'n llĉ , 24>] ^  -------—------- ll/̂ n Hr—9>. *(P <P

By this, because of the maximality of p*, the proof of Lemma 1 is complete in Case 
II/2a.

Case II/2b: (p=a=2cp. Observe that

( 12) 0 = P ? { S )
p m

=  и cot S + cp 
2

1 21
+  T  .2  cot

S-b,
2 ‘

7C 71Using this, we shall verify that <S=»y • Suppose indirectly that < 5 ^ As — <p< 

^ b i^ a 2i+1 = a = 2 (p^~  for each i=  1, 2, . . . ,  2/, further cp<d<2n—q> and <5s
О

imply that 0< ^ and this contradicts (12). Thus
z  z  z  z  z

< 2 n—(p, indeed. As

Pn'(x) =  Csin2"-1
x+(p

2
21

Я  sin
1=1

X—ŰI
2 sin x — 5 

2

7twhere C is independent of x, and — <(5<2л—q>, a simple calculation shows that

p*' is monotonically increasing on the interval |a 2i, - >[<?>’ Since

а2|<<рёа^2<р==|-<-^-, this means \pt\(p)\= pt\<p)^pt\a)= \pt\d)\. Therefore 
it is sufficient to prove that

/i**\ C 2 ( w  +  /)Z I, f __ и 1
( 1 3 )  Pn \ a ) — ф l l j P n  ll [ — (p, а ]  у ^  \\Pn l l [ — <p,(p]J •

In order to prove (13) we need the following lemma.

71Lemma 1.2. Let 0 < a S -rr  and t0£K be fixed. Suppose that p*£T„+l has lo
exactly 2n repeated roots at f0—a, simple roots at (t0—a<)ft1< b 2<  ...< h2i(< io + a)> 
p* achieves (with alternating signs) the values ±||/)*!|[(о_3,(о+а] on each o f the 
intervals (i0- a ,  Ь ^ф и  h), ..., (b2l- i ,  Ы> Ф21, t0 + cc)and p*(t0 +  a)=  ||pí||[fo- a,,„+«]• 
Then

\P*n'(t0 +  «)\ (n+l)l
P*n\ [ f o “ <Mo +  a ]  ’
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. .  а +  (р (  З к  tz\  , а —ю , . . . ....If а = —-—  ̂ < —I and t0= —-—- this lemma gives (13).

P roof o f  L emma 1.2. Because of the periodicity it may be supposed that (0=0.
Then 

(14)

Let ß:=-

Irt'W I
llPnllc-«,«] Pn (<*) 2 Ä

5 n
5 n + l a. An easy calculation shows that the function

sin“
x  + a.

f i x )  =
sin x —ß (n, l ^  1)

is monotonically decreasing in (ß, a]. Now let y:=

s2i(x) :=  cos
sin

ß + OL 
2

x - y

and

41 arc cos . a - ß  sm — ——-

It is easy to see that s2l is a trigonometric polynomial of order exactly 21 which equios- 
cillates 41+ 1 times in [ß, a] and has 21 simple roots in (/?, y) and 21 simple roots in 
(y, a). Let v1> v2> ...> v 2/ and f/i<i/2<  ...*=i/2i be the roots of s2l lying in (ß, у)

2Í — м .

and (у, a), respectively. Consider the trigonometric polynomial r,(x):= J]  sin —
then

i=l

X - ß

r,(x) sin2i —~r—- =  Cs2l(x) IJ« sm ^
i=i . X-Vism — l

where C is independent of x. As 0< a^-r— and 0 < /1 < V;
16

the function

sin x  — ß 
2
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is monotonically decreasing in [y, a] for each z = l ,2, . . . , 2/, so their product is 
monotonically decreasing in [y, a], too. But then so is the function

sin" x + a x - ß
2« sin 2

П

Now let

. 2i x ~ ß  i=i • ^ ~ Vi 
S i n 21 — Si n  — z — L 2 2

g(x):= rt(x) sin2" = s2l(x)
s i n "

X + OL x — ß
* Sin 2

П. 21 X~ ß  i=l • X ~ Vi sin21 —■—  sin —-

Then g£T„+, and using the notations t]u:= — a, t]2l+1 :=x, from the equioscilla- 
tion of s2l we can easily deduce that

II i>ll h i  .női] — lsll[di.d«+il (* =  l> •••> 2/) .

From this property, using the notations of Lemma 1.2 by the method of P. Borwein
[4], who examined the algebraic case, we get
(15) bt = tk (i = 1, 2......2/).

From (14), (15), 0 < a ^ —  and n, / £ l ,  by a simple calculation we have 
16

l ^ - —  =  « co ta  + 4 - J c o t ^ i - S  n c o ta + 4 - J c o t - a-??iJ Pit ll[—a,a] 2 , = 1 2 2 jt i 2

Ш ncota +  y  ^cot -a 2 ”‘ + cot g 2 Vi) =  Hcota + y ^ -  =

=  ncota+2-(2/)2c o t - ^ ^ s  -Í. + 8Z2- ^ - s  - + 3 2 P Í Í Í Ü S  c7- ^ Í Í I L  
4 a a - ß a la 7 a

which gives the statement of Lemma 1.2.
As it was already mentioned, Lemma 1.2 implies (13), therefore

\ p v m  ^  \рПа)\ ^  ip* it_9frt.

By this, because of the maximality of p*, the proof of Lemma 1 is complete.

Lemma 2. Let 0 , in€ ^ (< p ), qk£Tk, r= tnqk, nsO, 0, m g  1.
Then

|r (m>(<p)l ^  4 2> [
((n  + fe)(fc+ 1)

' j  I M I t —<p,<pV
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P roof. First we show that if p is a polynomial defined in Lemma 1, then

(16) Ip ' 601 ^  c8 (n + ^ f+1) flp||[_„.„i (|y| s  Ф).

If y€[0, <p] then from Lemma 1 we can deduce

I 4I __ (« + 0 0 + 1) it и (и+  0 (1+ 1) и _цIp 6 )1  — C2 ,„\/0  IIp II[-?>,3>] — ^C2 —  IIp II [—ч», 4»](y+<p)l 2
which gives (16). Now suppose that p£ [—<p, 0)- By a simple result from [3] we 
the following representation:

p(x) = q,(x) sin2 n x+cp . i (p—x  . , x  — y
~ =  qi(x) 2  Ki sin‘ — — sin
£  i =  0 *

with all Ki^O, so by Lemma 1 it is easy to see that
2 n

l p ' 6 ) | s  2
i =  2 n - l

(tf; Sin' —— X ■ sin2n —i x - y
iiW ) (>’)|

( « + / + 1)0 +  2) _  (и + 0 0 + l)— ĉ2 (m—y)/2 — c9 ^ II •/%-«>, 4>]>
thus (16) is proved. From (16) by induction on m we get

(17) IpWfoOl ^  Ip ^ H i- ,., ,  -  с »  ( i l + M ± i I )mip |t_y.yl.

Now let
/ 4 S r  • Í <?-* • 2„ i * + <P

<»6 ) = 2  L i sm —T— sin —л—
i = 0  ^

where 0 (i=0, 1, ...,2ti). Using (17), we have

|r<m>(<p)| s  Í  Ц I  sin* (f> 2 X sin2" -1' <?к(х)| (<p)| =

^ ( ^ ^ q k(x ) f\< p )\ +
“ “( Н г Н

= 2  U j sin2" - 2̂

+ 2
j = 0

-*2] +1 sin2„-2,-2 2 ± ^ . ( sin £ ± £ « n W + lsm —y -  sin ■ >)P9*6) Op)

^ ( т + 1)с<,3>(
(n+(m +  k))(m + fc + 1) 

<P

\(m )J IMI[—<p,<p]

а с у ( < " ± ^ ± 1 > Г |г|[- у.у]. Q.E.D.
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Now we need a definition. In case of denote by STn{(px, <p2)
the set of trigonometric polynomials of the form

t(x) = di sin1• Ü ! Z £ Sill* - « £ z 2 L
2 2

where each dtS 0 or each di~0 (i=0, 1, 2n). Because of the periodicity the
result of Lemma 2 can be written as follows.

C o ro lla ry  1. Lei <рг- ( р ^ —, <p2), Як£Тк, r=t„qk, nSO,
m^O. Then

, тЧс), ^ сш ( ( п + к х к + т т 
r 4<p2)i =  ^  { ф2_ ф1 j

7ГThe proof of Theorem 1 is now straightforward. Let j>£[— (p, <p], coS— . With
out loss of generality we may suppose that y£[—со, 0]. Observe that tn̂ ^~n(a>)= 
=2Гп(—со, со) implies that tn^,Tn{y, со). (This simple observation can be found in
[3]). Now applying the result of Corollary 1 to the interval [у, со] and the trigonome
tric polynomial r= tnqk, we have

\ r (mH

hence

601 s  c“> ( (n+^ ky+ l ) f  Hb.o i  ^  2-c«f» (1 " + ^ + 1))" И с- , | , 1,

^  2 » C «  ( (И  +  ^ (/С +  1 ) ) т ||г|1[ - <в, CO]

TC 71if co = -r-r. Finally, if co>— then the interval [—со, со] can be divided into sub- 
16 16

intervals of length not greater than and repeated application of the just proved
О

part of the theorem gives the desired result. By this the proof of Theorem 1 is com
plete. □

According to Theorem 2 of [3], t„£S°(co,s) ^coS-^-, 0 < £ á l j  implies that 

tn€^I(—со, со) if /^ c 10-^-. From this and Theorem 1 we get

C orollary 2. Let 0 < с о ё я ,  0 < e^ 1 ,  О^кшп and S ^ co , e). Then

в>ш] S  c<?> \ j ^ ± + k ) ( k +  l))m И с_ш>ю] ^  Cff) ( ü í i + i l )II [ — (О, П г .[ —со, со] •

71 71First we get this when co=—. In case of — <со^л the interval [—со, со] can
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be divided into subintervals of length not greater than — and repeated application of
'l lthe result for со^  — gives the desired result.

Now we examine how sharp the estimates of Theorem 1 and Corollary 2 are.
71Theorem 2. Let O ^ k ^ n ,  0 < w < cn y , cn < l  and lá m . Then

s u p i ^ i ^ S c f i ^ M ) "  Oi s c W).
r£  T ‘k F l i t  — o), <o] \  tO )

Proof. We distinguish two cases.

Case 1: k>-2n(m+ 1). Let

1 *A W = ^ r r cos (fc arc cos x)=  JJ (x— vt) ( - l < Vl<v2<  ...<  1)
■4 i = l

and

We have
p O) =  (* + -  2 2̂/c-j A  ( 4

I A W  I — lA ll[-i,i] — 2*-1 “  1 — x =  y j ,

further obviously

IA (41 = I П (^-v,)| á  ( l - 4 *  (X < - 1).

Observe that |(x + ~ 2/T"") (x— l)lj vanishes only at x = y  in ( ~yrr—•’ *) ’
. . 2k—n 1 ,hence for ——— S x S y  we have

iiW I ■ 2 | ( * + - ^ )  ( * -  0 * ' 2 ( y )

and for y < x á  1 it is apparent that

thus we get 
(18)

*2 tó-ГШ
H P \  I 2k—n ^  =  / > ( ! ) •
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^ _j
Now let f7( = cos——  n(i=0, 1, ...,k). As c o s x S l - x 2/2 and к > 2 я (т + 1 ) , we

/С
have 

(19) fh = 1 —
Л  8)■'m
к2

7 2k—nJ  T /T ~ ( k - m - 1 S I =  fc)

with ĉ ,8)= y  (m + 1)2л2. From (19) and (18) we get

( 20) Ip O/;)I =  |(^ +  П2k ~) -

{ n c<?>|r ‘ 1 - I(ж)Г 1 Iii 2c- ’ ll 2k k2 J1 2*1-1 ~  1 1 2t_1 1l1 nk )

=  />( l ) ^ l ---- j — Cm9) H/>ll|2fc-n t j ( )£ -m -l s i s l i ) .

It is obvious that
(21) sgnp(^) =-sgn^(>?i+1) ( f c - m - l ^ i s f c - l ) .  

Now let
. . ( n sinv 4k —и)

( 2 2 )  r ( y )  =  p  \ — — T------- -H ------ j : —v v4k sin со 4 к )

and define fjt€[—со, ю] by

(23) n sin fj, 4k — n" H----—— = r]i (k — m — l S i S  ft).4fc sin со 4k 

From (20), (21), (22) and (23) we can easily see that

(24) г€Гп2Ч ш),

(25) 1М1[-ш,ш] = 1 И р —

(26) \r(fji)\ (k — m — l == i S  k),

(27) sgn r(»jf) =  -sgn  r(fji+1) ( f c - m - l S i S l c - 1), 

further from (23) and (19)

(« — i/i) cos ш ^  sin a> -  sin t]i = —  sin cu (1 -I/,) ё  со —--- = CO

(It —m —l S i S l )

Mathematica Hungarica 51, 1988



4 3 2 T. ERD ÉLY I

andby this, using the condition 0 cu < l ,  we have

(28) ( c(10) t ̂1--- J  со = fji = со (fc—m—1 = i ~  k).

Now let Q(x)= [J (x —fjj). By a wellkn own theorem for the mth order divided
i —k —m—1

differences there exists a z^[fjk^ m̂ 1,fjk_1]cz[—(o, w] for which 

(29) rW (z) = m\r(fjk- 1,fjk- 2,.. .,fjk- m- 1) :=m\ 2
j = k —m —l  U  V \ j )

As

Q'ifjj) = П (x-fji) (k m — 1 s j  = к 1)
i= k  — m — 1

i - j

and sgn S2'(fjj)= —sgn ) (k—m—l S j S k —2), from (26), (27), (28) and (29)

|r<m>(z)| ё  m \(m + l)c<®> llrllc^.^ ( - £ 0̂  ) =  cmU) (-^ -)  Ikllc-o, 

which gives the desired result in Case 1.

Case 2: 0 ^ k ^ 2 n (m + l)  and пёс^7). Now consider the trigonometric poly
nomial

r„(xX sin2" T"(co) c  T%k(co).

A  simple calculation shows that

s  (n -  c£})

and by this the proof of Theorem 2 is complete. □
According to Theorem 2, up to the constant c^1 Theorem 1 is sharp when 0<

71<cuScUy , cu <  1. But Theorem 1 does not give a sharp result for arbitrary 0 < со^  
= л. For example it can be proved that

lk'lt-о.ш] =  Ci2 }/п |к||[_ш,ш] [í€^ (cu ),y  ^(OTSnj

and this result cannot be improved. (See [8], Theorem 1.)
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From Theorem 1 we can get Markov type estimates for algebraic polynomials 
of special type. First we need some definitions. Denote by Пп the set of all real alge
braic polynomials of degree at most n, by Pk (0S iS n )  the set of those polynomials 
from Пп which have all but at most к roots in R \ ( — 1, 1), by Sk(e) (0= k^n , 0< 

1) the set of those polynomials from П„ which have all but at most к roots out
side the ellipse

|z  :=  x + i>€C[a:2+ -^ -<  lj .

Obviously Pkc  Sk(e). Further let (a, b) (a<b£R) the set of polynomials of the 
form

p(x) =  j?  ^( .Ь-хУ (х-а)п~1
i = 0

with all i/j =  0 or all d^O . By a simple observation of G. G. Lorentz S"(l)c: 
a3Pn(— 1, 1). Finally denote by H k+k the set of polynomials of the form r—t„qk 
where tn£&>n( l -  1, 1) and qk£IJk. From S °(l)cz^„(-1 , 1) it is easy to see that
(30) Pnk c  SU 1) c  H kn.
It was proved in [4] that

(31) S ° ( e ) c ^ ( - 1,1) (/ ^  4 ^ ) ’ 

and from this it is obvious that

(32) Sk(e) c  Hf+k ( l S .3(” ~ fc)).

In [5] P. Borwein proved that

(33) 1И[—i,i] = Ci3«(fc+i)lkllt-i,i]
if p€P£. In [6] (33) was extended to the class S*(l). Now we prove (33) for poly
nomials from Hk(z) Sj(l)). This can be obtained from Theorem 1 as a simple con
sequence, which demonstrates the power of Theorem 1.

T heorem 3. I f  r£Hk ( O s k s r i ) ,  then (33) holds true.
Proof. As r£Hk, we have r=t„_kqk, where t„_k€0'n_k(—1, 1) and qk£IIk.

7T* я S1H ЭС ILet со—— and consider the trigonometric polynomial r(x):=r ^  j . Then we

have r(x)=In- k(x)qk(x) where In_k{x):=tn_k ( - ^ ^ - )  and qk{x)\=qk
A routine calculation shows that tn_k£3P„(— 1,1) and qk£ llk imply f„_t€^(cu) 
and qk£Tk, therefore we can apply Theorem 1 to r (in case of m= 1) and we get

F l![ —со, со] —
Ci4 n ( f c +  1)

CO
I Г II [ —  0 ) ,  C O ]
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and from this, recalling that w = —, we deduce

( sin X ' cosx
V sin CD > sin CO [  —  C D , f t ) ]

=  Cu  — n ( k + l ) \ \ r ю] =  C i5 n ( f c + l ) | | / i | [ _ l i l ]

which gives the desired result. □
The properties possessed by polynomials from Hk are, in general, not inherited 

by the derivatives of these polynomials. Therefore to prove a result for higher deriv
atives of polynomials from Hk needs new ideas.

T heorem  4. I f  r4Hk„ (Ő skori) then

l k ( m ) l l [ - i , i ]  ^  c(í4)(/í(fe+i))m||r||[_lil].
P r o o f . Observe that /€ i?  implies f'£P„k- i  (let Pf.= n„ if /ёи ), Using 

this observation, from Theorem 3 by induction on m we get

(34) ll/(m)l|[-i,i] S  c£8>(n(fc+l))'"||/||[_1>1] (f£P k).
Now let /•£#*, so r= tn_kqk, where qk£ n k and

tn_k(x )=  2  ^ i(l —хУ(х+1)"-fc—1i = 0
saywithall d^O . Let s:=m m (n—k, m). Applying(34)to (1—л:)г(-* +  l)"_t_ix  
X qk(x)£Pk (i=0, 1.......s), we obtain

(35) k(m)(l)l =  I 2  <*;{0 -*)'(•*+ l)"_’‘- i?*(x)}£=)i| Si = 0

=S с<,15)(и(/с+1))т 2  di | |( l - j i ) i(^+ l)'’- 'I_'i? tW |[-i>i] s  
i= 0

= c!nu)(m+l')(n(k+l))mltn_k(x)qk(x)l[^1A] = d 16)(«(fc+l))m||r||[_1>1].
Now let 1, 1]. It may be supposed that y€[0, 1], the case of y€[—1,0] is
similar. It is easy to verify that t„_k€&„_k( —1, 1) implies t„_k€&,„(— 1, y)- To see 
this it is sufficient to note that

where 4 —— and — 
1 + У  1+ y

transformation we deduce

1- *  = T T 7 (*+1)+7 T 7 ° '“ *)

are non-negative. Therefore from (35) by a simple linear

,.(m) 601 t f e) ( - f ^ y ) m (« (fc +  l))m IMI [-i.,] ^  c^4) (n(fc-L 1))т |И|с_1р1]. □
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From Theorem 4 and (32) we obtain 

C orollary 3. We have

(36) ^  d i7) ( ( т Ч < (fc+l) M|[-l,l] S

(r€S ‘ (e)).

In [6], Corollary 3 was proved for m=e=  1. There we used the result of Borwein 
for I*  (see [5]) and the relation

(37) SUp \ P ' W
,3 *  M t-i.il

s„n
p£S%( 1) ll/'llt—1,13 ( \У I -= !)•

But we do not know the answer to the following 

P roblem 1. Is it true that

lp (m)0 ) l(38)
p(m)(y)

sup -jj-ji--------=  sup
pep£ M t-i.U  ptshl) llPll[-i,i] (\У \ <  1)

for all m = 1, 2,. . .?
The estimate of Theorem 4 was proved by P. Borwein for polynomials from P*. 

By induction on m it was a straightforward consequence of (33). As induction on m 
does not work even in case of S*(l), for a long time I tried to extend Borwein’s result 
for S*(l) by proving (38). Meanwhile I managed to prove Theorem 4, but Prob
lem 1 is still open for m s 2.

Up to the constant depending only on m, Theorem 4 cannot be improved. Ac
cording to Theorem 4 of [7], if l ^ m = n ,  then there exist polynomials r„,*€-f?(c://jjj) 
and a constant c*,18)> 0  for which

IkiSHt-i-u ^

Inequality (1) does not contain the classical Bernstein’s inequality. Our purpose 
is to give an estimate of type (1) from which the Bernstein’s inequality follows.

T heorem  5. Let t£T„, n s  1 and 0<coSjr. Then

M] ^  (« +  CX7 Л2) II/||[-в>m] •

P roof. A ccording to  ( l ) , in  case o f  n s - j j / з  ta n 2 -^-+  1

(39) II [ — со, со] S  2n2cot- -̂1 S n-71—CO
(0 II [ — C O , C O ]  *
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This gives the desired result if n— namel y then tan -^-<4n, so

CO2 у 3 tan2 — + 1 <4и, therefore the constant c17 =  \6n is suitable. Now let n—cô

— Bernstein’s inequality asserts that

(40) (i€r„).
Using the Mean Value Theorem, from (40) we get

Me—*,*] = 1*|[-о>,«>] + (л —
t — a t, <a] — (l C l ( u  Cü)) II tj[ [ — n , n ]  •

SO

Therefore using n - c o ^ - ^ ,  we have

l̂lt-co.co] — — n[-я, л] 11[-я,я] =

1 — n(iz — új) lit —со, to] - ( ч т З р З г )
( л +  2(7г- со) и2) | |/ | |[_ ю>и]. □
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