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SYNTOPOGENOUS SPACES WITH PREORDER.
V (EXTENSIONS)

K. MATOLCSY (Debrecen)

The present part of the series ([11]—[14]) deals with the extensions of preordered
syntopogenous spaces. Our results give the generalizations of numerous notions
and theorems concerning the classical theory of compactifications of ordered topo-
logical and proximity spaces and the completion of ordered uniform spaces (cf. [4],
[5], [15]—(18]). Since in this paper no convexity or separation condition of the initial
space is assumed, more general connections can be obtained even if only the parti-
cular topological, proximity or uniform case is considered. In the construction of
these extensions the methods developed in [6]—[10] will be used, but the reader
who is not familiar with this theory can find a short introduction to syntopogenous
extension theory in Section 2, too.

In the first version of the manuscript of this article the proof of Theorems (4.3)
and (4.7) was partly incorrect. I am very grateful to Prof. A. Csészér for pointing
out these errors.

0. Introduction

A reflexive and transitive relation = on a set E is called a preorder, and the
pair (E, =) is a preordered space. A preorder = is an order iff x, y€E, x=y and
y=x imply x=y. XCE is said to be increasing (decreasing) iff x€ X, x=y (y=x) imply
yeX. i(X) and d(X) denote the smallest of all increasing and decreasing sets, res-
pectively, containing an arbitrary XcE. The graph of = is defined by G(=)=
={(x,y): x=y}. If =’ is another preorder on E then we say that =’ is finer than
= iff G(=)cG(=). In this case every increasing or decreasing set of (E, =)
is increasing or decreasing in (E, =’). A mapping f of (E, =) into a preordered
space (E’, =’) is preorder preserving (inversing) iff x, y€E, x=y imply f(x)="f(»)
(fO)=7 ).

In respect both of terminology and notations concerning syntopogenous spaces
we follow the monograph [6].

A preordered syntopogenous space is a triplet (E, %, =) consisting of a set E,
a syntopogenous structure & and a preorder = on E (cf. [1]—[3], [11]—[14]). If, for
<€, wedefine G(<)={(x,y)€EXE:x<E—y is false}, then G(¥)=N{G(<):
<€&} is the graph of a preorder on E. (E,#, =) (or shortly &) is increasing
(decreasing) iff G(=)CG(¥) (G(=)"1cG(¥)) (cf. [11], [1]—[3]). In an arbitrary
space (E, ¥, =), " (&") denotes the finest of all increasing (decreasing) syntopo-
genous structures on (E, =) coarser than &, and it is called the upper (lower) syn-
topogenous structure of (E, %, =) (see [2]). If ¢ is an elementary operation ([6],
p. 80) then (E, %, =) is said to be “comex iff & ~(F*V&L)* ([11], cf. [1]—[3]

1.



4 K. MATOLCSY

for =% 7 or P, see also [11], (4.2)). (E, %, =) is called symmetrizable [11] iff
% <F <FP for a symmetrical ‘-convex syntopogenous structure % on (E, =).
In the present paper we shall consider only the special case in which & is perfect.
Then ¥ ~%8. A space (E,¥, =) is continuous [12] iff, for any <&, there
exists <;€% such that 4<B implies i(A4)<;i(B) and d(A)<,d(B). (E,¥, =)
is Ty-preordered iff G(=)=G(¥L*)NG(F") (see [13]).

1. Relatively T~ preordered spaces

A preordered syntopogenous space (E’,&’, =’) will be said to be relatively
T,-preordered with respect to ECE’, if

(1.1) (GEF™NG(F"))—(EXE) c G(=).

It is obvious that a T,-preordered space is also relatively 7,-preordered with respect
to each of its subspaces. A discretely ordered space (E’,%’, =) is relatively 7,-or-
dered with respect to ECE’ iff [E’,&’] is relatively separated with respect to E
(cf. [6], p. 241).

(1.2) LemMA. Let (E, ¥, =) and (E,¥’,=") be preordered syntopogenous
spaces such that ECE’, ¥’ |EKY¥ and G(=)CG(=’). Then

(1.2.1) E<S" and SE<S".

(1.22) If (E',¥’, =) is Ty-preordered and G(=)=G(=")NEXE), then (E,¥, =)
is also T,-preordered.
(12.3) If (E,&, =) is T,-preordered, &|[E~S* and S"|E~F', moreover
(E’,&’, =) is relatively T,-preordered with respect to E, then (E',%’, =") is also
Ty-preordered and G(=)=G(=")N(EXE).

ProoF. (1.2.1): The canonical injection of E into E” is continuous and preorder
preserving, thus &’“|E is increasing, &’!|E is decreasing, and both of them are
coarser than & (see [11], (1.1.4)).

(1.2.2): The canonical injection satisfies the conditions of [13], (1.9).

(1.2.3): It is easy to verify that S’“|[E~%* implies G(¥"*)(EXE)=G(<"),
and S|E~%' implies G(L)N(EXE)=G(¥*). Hence G(¥L)NG(L )N
N(EXE)=G(¥YYNG(¥")=G(=)cG(=). (E,9’,=") satisfies (1.1), therefore
G(#™NG(F*)G(=). Finally G(=)CG(L)NG(&) (cf. [13], (1.0)), thus
G(=)N(EXE)=G(F"NG(L)NEXE)=G(FHNG(¥)=G(=). O

If (E’, =") is a preordered space then, for each 0#ECE’, a preorder = can
be defined on E by

1.3) G(=) = G(=)N(EXE).
Conversely, if E” is a set, ECE’, and = is a preorder on E, then the definition
G(=") = G(=)U{(x, x): x€E’'—E}

Acta Mathematica Hungarica 46, 1985



SYNTOPOGENOUS SPACES WITH PREORDER. V 5

yields a preorder on E” satisfying (1.3). If, in addition, we consider a syntopogenous
structure &’ on E’, = cannot be always extended onto E’ so that the originating
preordered syntopogenous space (E’,&’,=’) be relatively T,-preordered with
respect to E.

(1.4) ExampLE. Let @ be the indiscrete syntopogenous structure of E’ ([6],
p- 95) and E be a preordered subset of E” such that @=#E’'—F, and x=y for at
least one pair (x, y)€ EXE. Then there is no preorder =’ on E’, for which G(=)=
=G(=")N(EXE) and (E’,0,=’) is relatively T,-preordered with respect to E.
In fact, G(O)=E’XE’ would imply (E'XE’)—(EXE)c(G(0“)NG(0*)—
—(EXE)cG(='), thus x=u="y for some u€E’ —E, consequently (x,»)€
€G(=")N(EXE)=G(=), which contradicts the choice of xand y. O

The following theorem shows that a condition weaker than (1.3) can always be
fulfilled by a suitable preorder on [E’, &’]:

(1.5) THEOREM. Let [E’,¥’] be a syntopogenous space, ECE’, and = be a
preorder on E. Then there exists a preorder =" on E’ with the following conditions:

(1.5.1) G(=)cG(=).
(1.5.2) (F,9’, =") is relatively T,-preordered with respect to E.
(1.5.3) =’ is the finest of all preorders on E’ satisfying (1.5.1) and (1.5.2).

Proor. Let the ordering structure @ (¥) consist of all (&, #)-continuous
ordering families ¢ () such that, for any fc¢ (g€y), f|E is preorder preserving
(g|E is preorder inversing). @#0, ¥ =0, because the family of all constant func-
tionsisin ®NY. If x, ycE’, then define x=’y iff there exist points x,, X, ..., X,€
€E’ such that

X =Xy, X;=Y, and forany O0=i<n,
(1.5.4) (Xi> X+ DEEXE = X; = X1, (%, X4 D EXE = f(x) = f (x4, and
g(x;31) = g(x) for each feped and geycV.

It is obvious that =’ is a preorder on E’ such that G(=)cG(=’). Any fepe®
is preorder preserving, and any g€y € ¥ is preorder inversing, thus %, is decreasing
and %, is increasing on (E’, =’) (see [6], (12.13), (12.24); [11], (1.5), (1.1.6)). We
have ¥,<¥’ and % <’ by [6], (12.33), hence ¥, <% and F <¥"™. Sup-
pose (x,y)¢ EXE, x="y. Then either f(y)<f(x) or g(x)<g(y) for some fepc®
or geyeY¥. Then y<, .E'—x or x<, ,E'—y for a suitable &=0, therefore
(%, 1) §G(&") or (x,y)¢G("). From this (G(F*)NG(F")—(EXE)cG(=).

Suppose that =” is a preorder on [E’, ¥’] satisfying (1.5.1)—(1.5.2). We show
G(=)cG(="). In fact, assume x, y€E’, x=’y. There exists Xg, Xy, ...s X,€E"
with (1.5.4). If (x;, x;;,)€EXE then x;="x;,; by G(=)cG(="). If (x;,x:1)¢
¢EXE and x;F"Xx;4q, then x;<y  E'—X;41 OF X;11<,.E —X;, where ¥(9)
is an (&, #)-continuous ordering family on E’ consisting of preorder inversing
(preserving) functions with respect to =", and =0 is a suitable real number (see
(1.5.2); [11], (1.12)). Since G(=)cG(="), the elements of Y|E (¢|E) are preorder
inversing (preserving), hence Y€¥ (p€®). We have g(x)<,R—g(x;11) (or

Acta Mathematica Hungarica 46, 1985



6 K. MATOLCSY

f(x141)<.R—f(xp)) for some gey (or f€¢), consequently g(x)<g(xis1) (or
f(xi41)<f(x;)), which contradicts the choice of x; and x;,,. Thus x;="x;,,,
and from‘here x=X,="x;="...="x,=y,.1.e. x="y. O

(1.6) THEOREM. Under the conditions of (1.5) let us consider the preorder =’
determined by (1.5.1y—(1.5.3), and let f be a continuous mapping of (E',%’, =)
into a preordered syntopogenous space (E”,%”, ="). Suppose either

(1.6.1) (E",&", =") is Ty-preordered, or
(1.6.2) f is an injection and (E",&”, =") is relatively T,-preordered with respect to

In order that f be preorder preserving it is necessary and sufficient that f|E be
also preorder preserving with respect to =.

Proor. The necessity is evident by (1.5.1). For the verification of the sufficiency,
let us define a preorder =, on E’ by the equivalence x=,y<f(x)="f(y). Then
G(=)cG(=,) is obvious. f is preorder preserving with respect to =,, hence
(L") <Y, and f~U(SL")<S,, where & and & denote the upper and the
lower syntopogenous structure of (E’,%’, =), respectively (see [11], (1.1.4)).
Suppose (x, y)E(E'XE")—(EXE) and xz%,y. Then f(x)Zx"f(y), either (1.6.1)
or (1.6.2) is satisfied, thus we have f(x)<{E”"—f(y) or f(y)<iE”—f(x), where
<7€PL"™, <jcS™. ‘There exists <{€% or —<i€% such that f-1(<))C <}
or f~1(<3)C <,, therefore x<{E'—y or y<jE’—x. This shows that (E’, %", =)
is relatively T,-preordered with respect to E, hence G(=")cG(=,) by (1.5). From
here x, yeE’, x="y imply x=,y, i.e. f(x)="f(y), thus fis preorder preserving. [

2. Extension theoretical preliminaries

The syntopogenous space [E’,%’] (or the syntopogenous structure &) is said
to be an extension of the syntopogenous space [E, &] (or shortly &) if E is a dense
subset of [E',¥’], and &’|E~ (see e.g. [8]).

A filter base r is called round in [E, &] iff, for any R€r, there exists R,€r such
that R, <R for some <€% ([6], p. 240).

Suppose that r is an arbitrary filter base in [E, &], and define

@ ={VcE: IR€r, I3<€S R<V}.

The following statements are obvious:

(2.1) &(x) is a round filter in [E, ¥].

(2.2) If s is a round filter in [E, &¥] then & (s)=s.

(2.3) If & is a syntopogenous structure on E such that & <% then % (& (r))=

=A(x).

Introducing the notations &({4})=%(4) and ¥ ({x})=%(x) for ACE and
x€E, #(A) and & (x) are the neighbourhood filters of A and x, respectively.

Acta Mathematica Hungarica 46, 1985



SYNTOPOGENOUS SPACES WITH PREORDER. V 7

If [E’,9”] is an extension of the syntopogenous space [E, ] then the filters
S (xX)(NNE}Y={VNE: Ve’ (x)} (x€E’) are round in [E,¥], and they are called
the trace filters of this extension (see e.g. [8], (1.5)).

One of the most important methods for the construction of an extension of a
syntopogenous space was described in detail in [8], Theorem 3.1. In our further
examinations we need a more general form of this theorem, which can be deduced
immediately from [9], (2.3), (2.2), (1.3) and (2.4).

(2.4) THEOREM. Let [E,¥] be a syntopogenous space and E’ be a set such that
ECE’. Suppose that, for each x€E’, a filter s(x) is given in E with the condition

(24.1) &(s(x)) = L(x) for xEE.

Put, for ACE,

(2.4.2) s(4) = {x€E’": A¢s(x)}.

If <€, the definition

(24.3) A<'B<3A4,,B,C E: Ay < By, A C s(4,), s(By) C B
yields a semi-topogenous order <’ on E’. With the notation

(2.4.49) s(<)=<"

the order family

(2.4.5) $(&) = {s(<): <€&}

Ys a syntopogenous structure, which is an extension of &, and the trace filters are of
the form & (s(x)) (x€E’). O

(2.5) CorOLLARY. Urnder the conditions of (2.4) let & be a syntopogenous
structure on E such that # <. Then ¥(s(x))=(x) for any x€E, and s(%)
is an extension on E’ of ¥, coarser than s(&). O

(2.6) LEMMA. Under the conditions of (2.4) suppose that the filters s(x) (x€E’)
are compressed in [E,&], and let &’ be a syntopogenous structure on E’ such that
&’ Ks(F). Then

(2.6.1) <€¥’, X,YCE', X<Y imply Xcs(YNE) and s(XNE)CY.
(2.62) & ~s(¥'|E).

(2.6.3) If ~FP and s(x) is a Cauchy filter in [E, %] for any xCE’, then s(¥)~
~s(FL)*.

PROOF. (2.6.1): There exists <€% such that <'Cs(<). From this
Xc Usx), Us@)cY, X;<Y,
Jj=1 Jj=1

for some natural number »n and sets X;, ¥; (1=j=n). If x€X then x€s(X;) for an
index j, i.e. X;€s(x). From (24.1) it follows that X;CYNE, thus YNE€s(x)
and x€s(YNE). In fact, y€X; implies Y ;€% (y)=%(s(»))<s(y), thatis y€s(¥;)N
NEcCYNE. Conversely, suppose x€s(XNE). Putting <€, <C <}, one can

Acta Mathematica Hungarica 46, 1985.



8 K. MATOLCSY

choose sets Z; (1=j=n) such that X;<1Z;<,Y;. Similarly to the above reasoning
we get XﬂEC(U s(X))NE= U (s(xpnNE)c U Z; by (24.1), thus U Zes(x).

J
0¢{Z;}(N)s(x) for at least one mdex J» hence m view of the compressedness of
s(x), we have Y;€s(x), i.e. x€s(¥;)CY.

(2.6.2): Suppose <'€¥’', <1€&’, <'C<i>. Then A<'B implies A<{C=<
<iD<iB for some C,DcCE’, therefore CNE(<{|E)DNE and (2.6.1) give
Acs(CNE) and s(DNE)cB, thus As(<j]E)B. From here <’ Cs(<ilE).
Conversely, assume <€$’|E, Ay, BoCE, Ay<B,. If <'¢¥’, <’|E=<, then
A<’B, A cANE, BNECB, for suitable sets A4, BCE’. Suppose <%/,
<'€ <% and put A<]C<{D<{B. Then s(4,)cs(4 ﬂE)CC and Dcs(BNE)C
cs(By), consequently §(A4y)<15(By). Because of (2.4.3)—(2.4.4) we obtain s(<)C
C<1=—.

(2.6.3): Suppose <€%, and choose <;€% such that <€ <%, finally
assume <JC <,6&%. We show s(<)?Cs(<,). If As(<)’B then xs(<)B for
any x€A4, ie. x€s(4,), s(B,)cB, where A,<B.. One can find C,CcE with
A <1C <1B Then Ao— U A x =<2 U C CO It iS Clcal‘ that Ac U S(Ax)c

xX€A xEA
cs(Ay). Atthe same time s(Cy,)C B is also true, namely y€s(C,) 1mplles PﬂC #0
for at least one point x€4, where P is a member of s(y) with the property that

X< Y, PNX#0 imply PcY. Thus PcB, and y€s(B,)CB. O

3. Preorders on [E’, 5(&)]

Throughout this section the following fixed notations will be used:

(E,¥, =) is a given preordered syntopogenous space, ECE’, s(x) is a filter
zn E for any x€E’ such that & (s(x))=%(x), provided x€E. We write &' =s(&¥)

see (2.4)

Let %’ denote the set of all pairs (%, %) consisting of syntopogenous struc-
tures on E, where &, and %, are coarser than &, &, is increasing and &, is decreasing
on (E, =) (or equivalently &, < ¥* and %<%).

If (%, %)EP, we define the preorder =’ corresponding to (%, %) on E’
as follows:

x ="y iff there exists a sequence x,, X, ..., X, of points of E’ such that
B.1) { x=2x0, X,=y and,forany O0=i<n, (XX )EEXE= X;= X;41,
(%i X;4 )§ EXE > gi(s(xi)) Cs(x;+1) and '-%(S(xi+1)) C s(xy).

It is easy to see that =’ is in fact a preorder.

(32) LemMA. If (4, SL)EP, (%, S)EP, 1 <Y, and 9, <Y, then the
preorder corresponding to (%3, %) is finer than the preorder correspording to (¥, Ss).

The next theorem characterizes the preorders of this type in the following way:
(3.3) THEOREM. Suppose that =’ is the preorder corresponding to (%y, %»)€EP,
and put #{=s(%), S =5(%) (cf. (2.5)). Then
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(3.3.1) Both & and ¥, are coarser than &', & is increasing and ¥y is decre-
asing on (E’, =).

332) G(=)cG(=).
(33.3) (G(FA)NG(FL))—(EXE)cCG(=).
(3.3.4) =’ is the finest preorder satisfying (3.3.1)—(3.3.3).

Note. From (3.3.1) and (3.3.3) it follows that (E’, &', =’) is relatively T-pre-
ordered with respect to E.

Proor. (3.3.1): The first statement issues from (2.5). Now we prove that
(3.3.5) x='y implies &,(s(x))Cs(y) and Fo(s(y))Cs(x) for any x,yEE'.

Indeed, assume x, yeE’, x="y, and let x,, X, ..., X,, be a sequence chosen in
accordance with (3.1). If (x;, x;.1)€ EXE then (x;, x;,1)€G(=)CCG(S)). VESL (x)
implies x;<W <V for some <¢€%;, thus x;.,€W, ie. L x)CH1(*xi41)
From here % (s(x;))=%(x)C %1 (xi+1)=S(8(X:+1))C8(x;41), so that F(s(x)))c
s(x;+1) for each 0=i<n. Suppose that ¥ (s(x))Cs(x;) is already shown for some
0=i<n. Thenwe have % (s(x))=%(%4(s(x)))C A (s(x;))Cs(x;11), and continuing
the induction we arrive at % (s(x))<s(x,)=s(p). The other inclusion of (3.3.5) is dual.

If x,y€E’; xs(<)E' —y, where <€%,;, then there exist sets A, BCE such
that x€s(4), s(B)CE'—y, A<B. Then B€¥(s(x)), but B¢s(y), thus xz'y
by (3.3.5). This shows G(=")CG(¥). Analogously G(=")1cG(%).

(3.3.2) is trivial.

(3.3.3): It  (x.»)EEXE " then 'x='y - ithplies ' either =%; (s(x)) d¢s(y) or
Za(s(»)) Es(x). E.g. in the first case there exist A€s(x), <€, A<B such that
B¢s(y). Thus x€s(A), s(B)CE —y, ie. xs(<)E’ —y, which means (x, )¢ G(%).
In the other case (¥, x)¢G (%), thatis (x,y)¢G(%°).

(3.3.4): Suppose that <” is a preorder on E’ with the properties G(=)CG(=")
and (G(HA)NG(H))—(EXE)cG(="), and put x="y. If x4,%5,...,%, is a
sequence determined by (3.1) then (x;, X;.1)EEXE gives x;="x;.,. If (x;, x;11)¢
¢EXE then x;=’x;,, by the definition of =’, thus (x;, X;41)€(G(HA)NG(H))-
—(EXE) issues from (3.3.1), therefore x,="x;,; by hypothesis. Hence x=
=== ="y e x="y. [l

For compressed filters s(x) the converse is also true:

(3.4) THEOREM. Suppose that s(x) is compressed in & for any x€E’. Let
Sy, S5 be syntopogenous structures and =’ be a preorder on E’ satisfying (3.3.1)—
(3.3.4). Then =’ is the preorder corresponding to the pair (¥ |E, %5 |E)EP.

ProoF. The canonical injection of E into E’ is preorder preserving by (3.3.2),
thus from (3.3.1) and [11], (1.1) it follows that (¥ |E, %% |E)€P indeed. Hence the
preorder corresponding to this pair is defined on E’, and because of & ~s(¥|E),
Ly ~5(5|E) (cf. (2.6.2)) it is equal to =’ (see (3.3)). O

It is the most important particular case of Theorems (3.3)—(3.4), in which
S~ and FH~F'.
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(3.5) THEOREM. Let =’ be the preorder corresponding to the pair (&*,5").
Then

(3.5.1) F“E~P" and S |E~F.

(3.5.2) If (E,¥, =) is Ty-preordered then (E’,%’, =’) is also T,-preordered and
G(=)=G(=")N(EXE).

(3.5.3) Ewery bounded preorder preserving (inversing) (&, #)-continuous function has
a bounded preorder preserving (inversing) (&', F)-continuous extension.

PrOOF. (3.5.1): S *~s(FYE<SLMELSF* by (2.5), (3.3.1) and (1.2.1). The
other case is similar.

(3.5.2): The statement issues from (3.5.1), (1.2.3) and the note after Theorem
(3:3):

(3.5.3): Let f be a bounded (¥, #)-continuous function on E, and define a
function f* on E” as follows:

(3.5.4): f*(x)=inf {sup f(A4): 4A€s(x)} (xEE’).

The boundedness of f* is evident. After this we prove f*(x)=f(x) for xcE. In
fact, owing to the (&, 4)-continuity of f, for any &>0, there exists V€& (x) with
sup f(¥V)=f(x)+e¢. From this /*(x)=f(x) by & (x)=%(s(x))Cs(x). But, for each
>0, there is <€% such that f~1(<,;)C <, thusif 4€s(x), supf(4)=f*(x)+
+¢/2, then Acf((—ee,[*(x)+&/2])<f1((— o=, f*(x)+€))=B, therefore Be
€& (s(x)), hence f(x)=supf(B)=f*(x)+e. This shows f(x)=f*(x).

In order to verify that /* is (&’, J)-continuous, put ¢>0, and choose <€%
such that f~1(<,;5) € <. Then f*~1(<,)Cs(<). Indeed, if 4, BCE', Af*~(<,)B
then Acf*~((—e=pl), f*~((—<, p+e))cB. Introducing the notations A=
=f"1((—o, p+¢/3]), By=f"1((—<e,p+2¢/3)), we have A,<B,. x€A implies
S*(x)=p, thus there is X¢s(x) with sup f(X)=p+¢/3. Then X4, i.e. xEs5(4y).
If y€s(B,) then supf(By)=p+2¢/3 implies f*(y)<p+e, that is y€B. Because
of Acs(Ay), s(By)CB we get As(<)B. (Cf.[9], 3.3), (3.4).)

Let f be preorder preserving, and put x, y€E’, x="y. Then &'(s(y))Cs(x)
(see (3.3.5)). For an arbitrary &=0, there exists A4€s(y) such that supf(4)=
=f*(»)+¢/2. It is clear that Acf'((— <o, f*(¥)+¢/2]), thus with the notation
B=f"1((—o, f*(y)+¢)) we have Af1(<,;5)B. Because of f~1(S)<F" (see [11],
(1.4),(1.1.4)), A<B forsome <¢c&'. Therefore BeS'(s(y))Cs(x), hence f*(x)=
=sup f(B)=f*(y)+e&. In view of the arbitrary choice of &, we get f*(x)=f*(»),
consequently /™ is also preorder preserving. The train of thought is similar when
fis preorder inversing. [J

(3.6) THEOREM. Let =’ be the preorder corresponding to the pair (¥*, &Y,
and suppose that the filters s(x) are compressed in & for any x€E’. Then

3.6.1) F"~s5(F" and S ~s5(F).

3.6.2) If (E,¥, =) is symmetrical and T,-preordered then, for any x,y€cE’,
x="y iff L*(s(x))cs().

3.6.3) If (E,%, =) is -convex then (E',%’, =) is also -convex.

(3.6.4) If s(x) is Cauchy in & for any x€E’, and (E,&, =) is P-convex, then
(E', &, =") is also P-convex.
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Proor. (3.6.1) follows from (3.5.1) and (2.6.2). (3.6.2): (3.3.5) shows that
x="y implies .Sf"(s(x))cs(y). In order to see the inverse implication, first of all
we prove :

(3.6.5) Fi(s(x)) cs(y) iff L (s)) csk).

Assume x,y€E’, L*(s(y)cs(p). If £ s(»))dEs(x) then there exist <€,
A€s(y) and BCE such that A<B, but B¢s(x). Suppose —=€%', <C<}
and A<,C<;B. Then 0¢{E—B}N)s(x) implies E—Ce€s(x), thus E—A€
€7 (s(x))=F"*(s(x))=s(»), which contradicts the choice of 4 ((cf. [6], (15.50), [11],
(1.8)). The converse is dual. Now, if (x,y)§ EXE then x="y issues from (3.1),
therefore assume x, y€E. Then F*(x)=F"*(s(x))=FL*(F*((x))CF*“(s()=F"(»)
(cf. (2.5)), and similarly &'(y)c¥'(x). From this one can deduce (x,y)€G(£*)N
NG(ZY), ie. (x,Y)EG(=)CG(="), thus x='y.

(3.6.3): (P"VF Y E=(FUEVV (PNE)~S NS ~F, PUYFP'<LS, thus
we get VS ~s(F)=F" from (2.6.2).

(.64): $~PP, thus P ~F® by (2.63). We have (FUVS)PE=
=((F*VINEP=((LE)V (L E)P~(S*"VL'VP~F, and (F*"VLP <SP~
~&’, thus (£*VSY~F follows from (2.6.2). O

4. Preordered double compactification and completion

In nis paper [17] R. H. Redfield showed that any uniform ordered space has
a uniform ordered completion. The analogous result for proximity ordered spaces
is due to M. K. Singal and Sunder Lal [18] (see also Remark (4.10)): such a space
can be always considered as a dense subspace of a compact proximity ordered space.

In order to the generalization let us recall that a doubly compact (doubly comp-
lete) syntopogenous space [E*,&*] is a double compactification (completion) of
the syntopogenous space [E,¥], if E is a dense subset of [E*, &#*5] ([E*,&*7)),
F*E~F, and F* is relatively separated with respect to E (Csészar [7], p. 5:, [6],
p. 251).

Let (E,¥, =) be a preordered syntopogenous space. By a double compactifi-
cation (completion) of (E,¥, =) we shall mean a preordered syntopogenous space
(E*,&*, =*) such that

[E*,&*] is a double compactification (completion) of [E,%¥] and =* satisfies
the following conditions:

“4.1.1) G(=)cG(=Y,
(4.1.2) (E*,&*, =*) is relatively T,-preordered with respect to E,

and
(4.1.3) =* is the finest of all preorders on E* fulfilling (4.1.1)—(4.1.2).

(4.2) THEOREM. Any preordered syntopogenous space (E,&, =) has double
compactifications and completions. If (E*,&*, =*) and (E*,&**, =**) are two
double compactifications (completions) of (E,%, =) then there exists a unique
isomorphism f of (E*, &%, =*) onto (E**,&**, =**) such that f(x)=x for each
XEE.

Proor. (1.5),[7], Theorem 1, [6], (16.74), and [7], Theorem 2, [6], (16.80), finally
(1.6) of the present paper. [
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(4.3) THEOREM. The preordered syntopogenous space (E*,&* =*) is a double
compactification (completion) of (E,%, =) iff ECE*, and there exists a one-to-one
correspondence between the points x€ E*—E and all non-convergent round compressed
(round Cauchy) filters s(x) in [E,¥°] (in [E,%**]) such that putting s(x)=
={VCE: xcV} for x€E, we have

(4.3.1) F*~s(S)
and
(4.3.2) =* is the preorder corresponding to ($* ).

Proor. The construction of a double compactification of [E,¥] can be found
in [7], Theorem 1 (cf. [7], (10)). The statement concerning a completion of [E,¥]
is analogous ([6], (16.71)). In order to prove (4.3.2) let us denote by =* the preorder
corresponding to (&% &"). Then the upper and the lower syntopogenous structures
of (E*,&*, =*) are s(&* and s(&'), respectively, by (3.6.1). From (3.3) and
(4.1.1)—(4.1.3) it follows that =* is finer than =+. Conversely, denoting by & and
%' the upper and the lower syntopogenous structure of (E*, #*, =*), resp., ', %
and ="= =™ satisfy (3.3.1)—(3.3.4). In fact, (3.3.1) and (3.3.2) are trivial. (3.3.3.)is
also valid, because (E*, &#*, =*) is relatively T\-preordered with respect to E. Sup-
pose that =” is another preorder on E* satisfying (3.3.1)—(3.3.3), and let &” and
%" denote the upper and the lower syntopogenous structures of (E*, &*, =").
(3.3.1)implies &/ <%” and & <, thus (G(F)NG(F9)—(EXE)C(G ()N
NG(¥5)—(EXE)CG(="), ie. (E*,&* =") is relatively T,-preordered with
respect to E. This and (3.3.2) show that (4.1.1)—(4.1.2) are fulfilled by (E*,&*, =),
hence =* is finer than =" (see (4.1.3)), and at the same time (3.3.4) is proved. Now
Theorem (3.4) implies that =’==" is the preorder corresponding to the pair
(#|E, &5 |E). But H|E<L<S", ¥ |E<LS" by (4.1.2) and (1.2), consequently =+
;§ finer than =* (see (3.2)), thatis =*==*. O

(4.4) THEOREM. If the preordered syntopogenous space (E,&,=) is ‘-comex
(*-convex or P-convex) then its double compactification (completion) (E*,&* =*
is also *-convex (- or P-comvex). If, in addition, (E, ¥, =) is T,-[pre] ordered then
the double compactification (completion) is also T,-[prelordered, moreover G(=)=
=G(=")N(EXE), and =* is the finest [ prelorder on E* satisfying these conditions.

ProoOF. The main part of the theorem can be verified on the basis of (4.3)’
(3.6.3), (3.6.4) and (3.5.2). We need to see only that if (E,%, =) is *-convex (*- or
P-convex) and T,-ordered, then the double compactification (completion) is ordered.
In this case [E,¥] is T, thus so is [E*,&*], too (see [13], (1.15) and [6], (16.75)).
From this & (s(x))#=% (s(»)) follows for any x>y in E*. Therefore it will be suffi-
cient to prove that x, y€E*, x=*y and y=*x imply & (s(x))=%(s(y)). First of
all we show &(s(x))="*(s(x))(N)F'(s(x)) for each x€E* If V€S (s(x)) then
there exist Wes(x) and <€% such that W<V. Suppose <= C(<,U<,)%,
where %=! or ?, and <€%" =<,€%'. Choose <j€¥* and <}’ with
G, = C=<s, Hnally assume <€, <iC=" and =<’ IW'(E.%.=)
is --convex (i.e. “="), then

W= @O, V= UGN, W<V W<l (=j=mn.

Jj=1
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We have W,<{U;<i¥; and W/<3Uj<;¥/ (1=j=n). For at least one index j,
we get O¢{W,NW/}(N)s(x), hence Ucs(x), and Ujes(x), because s(x) is
compressed, consequently ¥ OV;NV/eF(s(x))(N)F'(s(x). If (E &, =) is
P.convex (i.e. *=?) and [E*, &*] is the completion of [E,¥] (i.e. s(x) is Cauchy),
then there exists P€ P(<)Ns(x) (see [6], (15.34)). For ye PNW we have y(<;U
U <y)?V, hence yeW,NW;, ViNVCV, where W<V and Wi<,l,. Assu-
ming W<{Uy<iW, Wy<iUy<3Vs, from PNWNW,=0 the inclusions
PcU,, PcU, follow, thus V2OWNKeF(s(x))(N)&F (s(x)). Therefore in
both cases & (s(x))c L*(s(x))(N)F*(s(x)). The converse is clear. Now, if x=*y
and y=*x, then (3.3.5) gives F*(s(x))="(s(»)) and &'(s(x))="(s(»)), con-
sequently & (s(x))=#(s(y)) and x=y. O

REMARK. As the double compactification (completion) of a symmetrical or
topogenous (symmetrical, perfect or biperfect) syntopogenous space can be chosen
also with the same property ([7], Theorem 4 and 5; [6], (16.74)), (4.4) gives a genera-
lization of the results of Redfield [17] and Singal—Sunder Lal [18] (see also (4.10))

(4.5) THEOREM. The double compactification of a continuous symmetrical preor-
dered syntopogenous space is also continuous.

ProoF. Let (E*, &*, =*) be the double compactification of the continuous
and symmetrical space (E,¥, =), and denote, for ACE™,

i*(4) = {y€E*: x="y for some x€A}
and
d*(4) = {y€cE*: y="x for some x€A}.

First of all we show that
4.5.1) <€%, A<B imply s(i(4)) < i*(s(B)).

Assume y€s(i(4)). If y€E then y€i(d), therefore x=y for some x€ACB,
thus x=*y and x€B, which means y€i*(s(B)). Suppose y¢E. Then & (4)(MN)
(N)&Y(s(y))=r is a round filter in [E,¥]. In fact, Ve&'(s(y)), CEF(4) imply
dWw)cV for some Wes(y) (see [11], (1.2)), thus in view of i(A4)es(y) we get
0#i(A)NW, ie. 0£4ANd(W)cCNV. rcan be included in a maximal round filter
zin [E, %], which is compressed ([10], (5.2)). If z—~x€E in¥, then z=%(x)Cs(x)
because & (x) is also maximal round in [E,&]. If z is not convergent in [E, %]
then z=s(x) for some x€E*—E. In both cases we have x€s(B) and x=*y.
Indeed, Bc¥(A)crczcs(x), and on the other hand #'(s(y))crczcs(x). By
(3.6.5) F*(s(x))cs(y) is also true, hence x=*y as we stated (see (3.1)). Thus
YEi*(5(B)).
Now we show
(4.5.2) <€%, A<B imply i*(s(4)) < s(i(B)).

If y€i*(s(4)) then A€s(x) and x=*y for some x€E*. There exists an order
<,€9* such that i(A4)<,i(B), because (E,&, =) is continuous (see [12], (2.4.5)).
From i(A)€s(x) it follows that i(B)eF*(s(x))=s(¥) (see (3.3.5)), i.e. yes(i(B)).

Suppose <€%. Choose <€ such that < C <} and select —<,£%, for

n
which A<;B implies i(4)<,i(B). If 4,BCE*, As(<)B, then AcC Us(4;)),
Jj=1
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ICJIS(BI)CB, where A;<B; for any 1=j=n. Put 4;<,C;<,D;<,B; (1=j=n).

Then i*(4)C Ut (s(4)c U s(i(c;) and U s(i(Dy))c U i*(s(B;))Ci*(B) by

(4.5.1)—(4.5. 2) meg to z(CJ)<21(DJ), we obtam i*(A) s (<2) i*(B).
The verification of the fact that, for <%, there exists <,6% such that
As(<) B implies d*(4) s(=<,) d*(B) is dual. O

REMARK. Observe that the symmetricity of & (as well as the compressedness
of the filters s(x)) was used only for the verification of (4.5.1). I do not know whether
these conditions can be omitted. [

Further on let (E,%, =) be a symmetrizable preordered syntopological space.
Then [E, %] is symmetrizable in the sense of [7] (see [11], ch. 4), thus it has a Cs4szar’s
compactification ([7], Definition 3) (that is a compact symmetrizable syntopological
extension [E’,%’] of [E,%], which is relatively separated with respect to E).

The preordered syntopological space (E’, &', =") will be said to be an ordinary
compactification of (E,&, =), if [E',%’] is a compactification of [E,&] (in the
above sense), moreover the following conditions are satisfied:

46.1) (E,9,=') is symmetrizable.

46.2) G(=)cG(=).

(4.6.3) If x,y€F, (x,y)4EXE and x="y, then there exists a bounded (&', #)-
-continuous preorder preserving function f with f(y)<f(x).

(4.6.4) =’ is the finest of all preorders on E’ fulfilling (4.6.2)—(4.6.3).

Suppose that (E,%’, =) and (E”,%”,=") are two ordinary compactifi-
cations of (E,¥, =). (E”,¥”, =") will be called finer than (E',%’, =’) iff there
is a continuous preorder preserving surjection h of (E”,%”, =”) onto (E’,¥’, =)
such that h(x)=x for each x€E. These two ordinary compactifications are equi-
valent iff h is an isomorphism.

Theorem 14 of [7] can be generalized as follows:

(4.7) THEOREM. Let (E,¥, =) be a symmetrizable preordered syntopological
space. Disregarding equivalences, there exists a one-to-one correspondence between
the ordinary compactifications of this space and those symmetrical *-convex syntopo-
genous structures &, on (E, =), for which $P~%. Among two ordinary compac-
tifications of (E,¥, =), (E",%", =") is finer than (E’,%”’,=') iff for the corres-
ponding structures &y, S, the relation &, <%, holds. Two ordinary compactifica-
tions are equivalent iff each of them is finer than the other.

PrROOF. We show that an ordinary compactification (E’,¥’, =") corresponds
to the symmetrical *-convex structure &; with %P~ iff there exists a symmetrical
‘.convex syntopogenous structure % on (E’ =’) such that %P~ and
(E’, %, =) is a double compactification of (E, %, =).

In fact, let &, be symmetrical, *-convex and suppose P~ <. Then (E, %, =)
has a double compactification (E’, ¥, =’) which is symmetrical and ‘-convex by
(4.4) and [7], Theorem 4. Putting &' =%, [E',¥’] isa compactification of [E, ],
and (E',%’, =) is symmetrizable. The validity of (4.6.2) is obvious. In order to
prove (4.6.3) suppose x, y€E', (x,y)¢ EXE and x=z=’y. Then (x, »)¢EG AN
NG(H')=G(¥") (cf. (4.1.2), [11], (1.8)), thus there exists a preorder preserving
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(&, F)-continuous bounded function f on E’ such that yf~'(<,)E’—x for some

e=0 (see [11], (1.12)). Then f(»)<f(x), and fis also (¥, #°)-, and (&', #)-conti-

nuous by # =52, After this let =" be a preorder on E’ satisfying (4.6.2)—(4.6.3).
Put x="y. Denoting by @ the set of all (¥}, £)-continuous ordering families ¢ on

E’ such that f|E is preorder preserving for any f€ ¢, there exists a sequence Xg, X;, ...
.., X, of points of E” with the following properties for any 0=i<n:

Xis X s )EEXE = X; = X015 (X5, Xiu DS EXE = (x) = f(x;41) for feope®

(see (4.1.1)—(4.1.3), (1.5), (1.5.4)). We show x;="x;,, for any O=i<n. If
(x;, X;41)€EXE then our statement follows from (4.6.2). If (x;,x;.1)¢EXE,
x;="x;,1, then there exists an (&, #)-continuous bounded preorder preserving
function fon (£, =”) such that f(x;,,)<f(x;) by (4.6.3). In view of Theorem 13 of [7],
[is (¥4, #°)-, and a fortiori (¥, #)-continuous, moreover f|E is preorder preserving
with respect to = (see (4.6.2)). It is obvious that f can be included in an ordering
family @€ @ and this contradicts the choice of x; and x;,;. Therefore x=x,="
="x="..="x,=y, thatis x="y, hence G(=)cG(="). Thus (4.6.4) is also
satisfied, and (E’,%”, =’) is in fact an ordinary compactification of (E,<, =).

One can choose any double compactification of (E,%;, =) for this construct-
ion, the originating ordinary compactifications are equivalent by (4.2).

Conversely, let (E’,%’, =’) be an ordinary compactification of (E,%, =).
Disregarding equivalences, there exists a unique symmetrical ‘-convex syntopoge-
nous structure #; on E’ such that %?~%" (see (4.6.1) and [7], Lemma 8). Suppose
F=S|E. Then &, is symmetrical and *convex (see (4.6.2), [11], (2.9)), moreover
[E’, #{] is a double compactification of [E, &;]. We need to show that (£, &7, =)
satisfies (4.1.1)—(4.1.3), and this is very similar to the above train of thought. (4.1.1)
is trivial. If x, y€E’, (x,y)¢ EXE and x="y, then f(y)<f(x) for an (&’, #)-con-
tinuous preorder preserving bounded function f on (£, =’). This is (¥, #°)-, and
(¥, #)-continuous, too, therefore f~1(Sf)<F, which implies (x,y)4¢G(F“),
hence (4.1.2) is also fulfilled. Finally let =” be a preorder on E’ satisfying (4.1.1)—
(4.1.2). It is easy to verify that in this case =” has properties (4.6.2)—(4.6.3) (cf. [11],
(1.12)), thus by (4.6.4) we obtain G(=')cG(="), that is (4.1.3) is also satisfied
by =:

The remaining part of the theorem can be seen on the basis of (1.6), [7], Theo
rems 13 and 14. [0

(4.8) COROLLARY. Among the ordinary compactifications of a symmetrizable
preordered syntopological space there exists a finest one.

Proor. This finest ordinary compactification of (E,%, =) corresponds to the
structure %%, where @ is the ordering structure of all (&, #°)-continuous ordering
families consisting of preorder preserving functions (see [11], (4.8)). O

As the following corollary shows, the notion of an ordinary compactification
is a generalization of the ordered Cech—Stone compactification of a uniformizable
ordered topological space (Nachbin [16], p. 104; McCallion [15]):

(4.9) COorROLLARY. Let (E,%, =) be a symmetrizable ordered syntopological
space such that
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(49.1) if x,y€E, x=%y, then f(y)<f(x) for some (&, )-continuous bounded
order preserving function f on E (cf.[13], (1. 13))

Then there exists an ordinary compactification (E', %', =") of (E,¥, =) with the
following properties:

4.9.2) =’ isanorder and G(=)=G(=")N(EXE).

(4.9.3) If x,y€FE’, x$’y, then f* (y)<f (x) for some (&, 3#)-continuous bounded
order preserving function f’ on

(4.9.4) =’ is the finest of all preorders on E’ satisfying (4.9.2.)—(4.9.3).
In particular, the finest ordinary compactification of (E,&, =) is of this type.

ProoF. Under condition (4.9.1) there exists a symmetrical ‘-convex syntopo-
genous structure & on (E, =) such that (E, %, =) is T,-ordered ([13], (1.13)).
Then the ordinary compactification corresponding to &; has properties (4.9.2)—
(4.9.4) (see (4.4), [13], (1.13)). The ﬁnest symmetrical *-convex structure &, with

FP~SF is also T,-ordered ([13], (1.6)).

(4.10) Remark. In [18] M. K. Singal and Sunder Lal presented a generali-
zation of Smirnov’s compactification theory for completely regular ordered spaces.
I would like to mention that I cannot realize the proof of Theorems 4, 5, 7, 9 and 10
of this paper. The common foundation of these theorems is Lemma 5 of [18], the
proof of which is incorrect. In fact, in this proof the authors state that if 6 is a quasi-
proximity (in the sense of Pervin) on a set X, moreover an order = is defined on X
by letting x=y iff {x}é{y}, finally 6* is the coarsest (symmetrical) proximity finer
than J, then the implication

(%) B is decreasing t(6*)-closed, ANB=0@=adB for any acA

is valid. It is obviously equivalent to (%) that any increasing 7(é*)-open set is open
in the topology 7(9) induced by 6. However, in the preceding part of this series I
gave an example ([14], Section 2), for which the above statement fails to be true.
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THE BILINEAR PRODUCT CATEGORY

M. L. RIDDLE! (Mankato)

0. Introduction

The study of categorical duality theorems looks for inspiration to the simplest
signficant duality theorem, that for finite dimensional vector spaces. In that case,
the duality is intimately related to tensor products. One reasonable generalization
of tensor products is to a bifunctor which is part of the structure of a closed category,
but this approach has some disadvantages; closed categories are not as common
as one could hope, and the two categories whose duals are to be studied must be
subcategories of the same closed category. The bilinear product category is a more
external construction which enables us to define bilinear maps involving objects
from poorly related categories.

The dual of a category T is the category T* obtained by reversing the direction
of each morphism in T. By a duality, we mean a categorical equivalence between
one category A and the dual T* of another. Such a duality is given by a pair of
functors x»: A—T* and A: T*—~A, whose composition in either order is naturally
equivalent to an identify functor.

Examples of duality theorems are given by the Pontrjagin duality theorem,
which states that the category of locally compact Abelian groups is dual to itself,
and has various extensions and refinements given in van Kampen [17], Freyd [3],
Kaplan [8] and Kaplansky [9]. A second example is the Gelfand duality between
the categories of compact Hausdorff spaces and of commutative C*-algebras with
identity. Beyond these there is a duality of Stone between the categories of compact
totally disconnected spaces and of Boolean algebras; a duality between the catego-
ries of compact convex sets and of Archimedian ordered vector spaces (cf. Semadeni
[15]) and the dualities between the categories of real compact spaces and rings of
the form C (X)) for some space X (cf. Gillman and Jerison [4]). With the development
of category theory, a language appeared which clarified the connection between
these theorems, and some unified results on duality have developed, such as those
of Hofmann and Keimel [7]. In addition, the Pontrjagin and Gelfand duality theo-
rems have been investigated categorically by Negrepontis [12] and Roeder [14], [15].

1 The author wishes to thank V. S. Krishnan, M. Grossman, and J. Stasheff for many inte-
resting and useful conversations, and the referee for further helpful suggestions.
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20 M. L. RIDDLE

1. Fibre objects and fibre morphisms

DEFINITION. Let 0: A—~C and 7: T—~C be functors. A fibre object for (o, 7)
is an ordered pair (4, X) such that 4€0b (A), X€Ob(T) and od=1X. If (4, X)
and (4’, X’) are fibre objects for (o,7) we say (m,m’) is a fibre morphism from
(4, X) to (47, X’) and write (m, m’): (4, X)—~(A4’, X’) if m€A(4, 4"), meTX, X’)
and om=1m’. The composition of fibre morphisms (m, m"): (4, X)—~(4’, X’) and
(n,n'): (4", X’)—~(4",X") is given by (n, n’)(m, m")=(nm, n’m").
The fibre objects and fibre morphisms for any (o, 7) form a category which is
the fibre product of the diagram
A
la'

T C

in the quasicategory of all categories.

Bass [2] also defines a more general fibre product category. The category defined
above embeds fully in Bass® fibre product category. In many important cases, this
embedding is an equivalence. In fact, if ¢ and 7 are concrete functors in the following
sense, the canonical embedding of the fibre product category above into Bass’ fibre
product category is an equivalence.

DErFINITION. Functor @: D—G is concrete if  is faithful and satisfies the ICLP
(Isomorphism Codomain Lifting Property): Whenever f: G=0D in G, there is a
D’€0b (D) such that 0D’=G and a g:D’=D in D such that 0g=f.

The fibre objects defined in this section are necessary for the definition of bilinear
product categories in the next section. Note that in some cases they may not exist.

2. The bilinear product category

The category we construct here will clarify the relation between duality and
bilinear maps. It is an extension of a construction used by Grossman [6].

Let C be a category with finite products and an object P which satisfies the
following conditions:

1. Pis a generator of C.

2. There is a natural epimorphism m: 1c—~Lp where Lp is the left multipli-
cation by P (i.e. the functor defined by LpC=PXC and Lpf=IpXf)

There is, of course, also a natural transformation n:I/c—Rp where Rp is
right multiplication by P since Rp=Lp.

Now let A and T be categoriesand 6: A—C and 7: T—C be faithful functors,
and choose a fibre object E=(*E, E*) for (o, 7). ¢*E=1E*cOb (C) is also denoted
by E.

DerINITION. The bilinear product category of A and T with respect to o, 7, and
E is the category Bg(A, T) with objects of the form (4, e, X) where 4€Ob (A),
XeOb (T), aad ecC(cAX1X, E) satisfies the following properties:

1. For every acC(P,cA), thereis a (unique) e,£T(X, E*) such that 7(e,)=
=e(aX1)m: 1 X—E.
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2. For every t€C(P,1X), there is a (unique) e,€A(4, *E) such that a(e)=
=e(1Xt)n: cA—E.

The morphisms in Bg(A, T) are of the form f®g:(4,e, X)—~(4', ¢, X’)
which is taken to mean that f€A(4,4"), g€T(X’,X) and that € (ofX1)=
=e(1 X18): 0AX1X'~E. fQg=h®k if and only if f=h and g=k. The compo-
sition of morphisms in Bg(A, T) is given by (f®g)(h®k)=fh®g.

The uniqueness of e, and e, actually follows from the faithfulness of the func-
tors o and 7. The interchange of the roles of A and T dualizes the bilinear product
category. (i.e. Bg(A, T)=By(T, A)*)) Therefore, every result concerning the
relation between A and Bg(A, T) dualizes to a result concerning the relation between
T and B;(A, T).

Henceforth, A and T are assumed fixed and are deleted from the notation for
our bilinear product categories (b. p. c.’s).

There is an obvious functor oz: B;~AXT* defined by az(4, e, X)=(4, X)
and oz(f®g)=(f, g). In all that follows, let m,: AXT*~A and m,: AXT*->T*
be the canonical projection functors.

ProrosITION 1. If m: E-D is a fibre morphism, m induces a functor pu:Bg—
—~Bp, defined by u(A, e, X)=(4, |mle, X) and p(f®g)=f®g. This functor satisfies
oppu=ag, is faithful, and functorial (i.e. if n:D—G induces v:Bp—>Bg, then
nm: E—~G induces vu:Bg—~Bg and Iy induces Ilg_..) If m is mono then p is an
embedding of categories.

This sets up a functor from the fibre product category to the quasicategory of
all categories over AXT*.

The duality functors in the introduction all resolve through bilinear product
categories. For example, the Pontrjagin duality can be described using the category
of topological spaces as C and the category of locally compact Abelian groups as
both A and T. Letting *E=E*=R/Z, the circle group, and defining f:A—Bg
by BA=(4,eval, ) and Bf=f®f where A is the Pontrjagin character group of
A and f is the map defined by f(g)=gf, B is a left adjoint cross-section for m,cz.
There is similarly a functor y: T*—~B which is a right adjoint cross-section for
mo0g. Notice in addition that w0y and myapf are the character group functors
yielding the duality between the categories. Thus the dual functors resolve through
the b.p.c. As we see in the next section, this is not an exceptional case.

3. Naturally grounded categories

Hofman and Keimel [7] introduced naturally grounded categories. Their work
suggested Theorem 1.

DEFINITIONS. A concrete category consists of a concrete functor 0: D—Ens
where Ens denotes the category of sets. @: D—Ens is a natural grounding if it is
representable. A naturally grounded category is a category D with a natural groun-
ding. :

E.g. If 0:D—Ens has a left adjoint, it is a natural grounding. Other natural
groundings include the standard forgetful functors to Ens from the categories of
finitely generated groups, Noetherian rings, connected spaces, etc.
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THEOREM 1. If o: A—~Ens and ©: T—Ens are concrete natural groundings, and
0: A>T* and ¥:T*~A are functors with O left adjoint to ¥, then there is b.p.c.
Be with functors Pg: A—Bg and vyg: T*—~Bg such that O=mn,0zfr and ¥=
=myagyg. (i.e. every pair of contravariant adjoint functors between concrete naturally
grounded categories resolves through a b.p.c.).

PrROOF 1. Let o=A(Z, —) and 1=T(G, —). Then o¥YG=A(Z, YG)=
=T*(0Z, G)=T(G, 0Z)=10Z. Let *E be chosen with ¢*E=A(Z, YG). [¢*E=c¥G
lifts to *E=¥G.] and E* such that tE*=A(Z, YG). E=(*E,E*) determines
b.p.c. B and functor az—~AXT* To define fz:A—Bg, let BrA=(4,e, 04)
where e:0A4AX10A—~*E 1is given by e(a,t)=¥Yt.u.acA(Z, YG)=c*E, where
ac (A(Z, A)=oA, teT(G,0A4))=210A4, and u,: A~¥0A is the front adjunction for
#— ¥. With this definition, for all such ¢ and ¢, e,=0a and e,=¥t. u, ascan be
seen from the commutative diagrams:

A = A(Z,A) 104 =T(G,04) = A4, ¥G)
az,l lt. u,4.() “‘l 19;1.( ) 1( ).a
o¥G = A(Z, ¥G) 104 = T(G, 0Z) = A(Z, ¥G)

Then for f€EA(4, A’), let Bpf=f®0f which is a morphism in B since

72 A=43 PO4
o e

A=A, o4 2, w6

commutes. Thus mazfr=1, and myazfz=0. Similar definitions give the functor
ye: T*—Bg such that myapyp=17« and magys="Y.

LEMMA 2. Continuing the hypotheses of Theorem 1, myar: Bg(fgA, B)—~
—A (A, myagB) is injective for every AcOb(A) and BcOb(Bp).

ProoOF. Let map(f®g)=mor(h®k) ie. f=h. Then commutativity of

9

X=———=4

k

1 ls (4 = magB.)
A4, *E)-L>- A(4, *E)

guarantees that tg=tk. Thus g=k. (The assumption that P is a generator for
the category C and that the transformations m and »n are epimorphic in the definition
of b.p.c.’s is used here to make the commutativity of the above diagram equivalent
to the fact that f®g¢ and f®k are morphisms in the b.p.c.).

The injectivity proved in Lemma 1 is the first step in relating the b.p.c.’s to
fibred categories introduced by Gray [5]. This relationship is carried further in the
next section.
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4. Adjoints, cross-sections, and duality

In this section £ is fixed, and we will delete it from the notation for our b.p.c.’s
and functors.

When fibred categories are called into play, various lifting properties of morph-
isms can be very useful. In the case of b.p.c.’s, the lifting properties are intricately
related to the existence of adjoint, and therefore dualizing functors. The first of the
lifting properties is:

DeriniTION. Let ¥: C—D be a functor. ¥ has the codomain lifting property
(CLP) if for each CeOb(C) and DcOb (D), whenever geD(D, ¥C) there is
an object C’€0Ob (C) such that YC’=D and a morphism f€C(C’,C) such that
Yi=2g.
E.g. the forgetful functor from the category of topological spaces to the cate-
gory of sets has the CLP. The next proposition shows that b.p.c.’s also have this

property.

ProOPOSITION 2. If fcA(A4,A"), (4’,¢,X)EOb(B), and e=ée’(afX1), then
(4,e, X')€Ob (B) and fR1:(4,e, X')~(4', €, X').

Proor. For a€C(P,0d), define e,=e;;,: X ~E* and for t€C(P,1X"),
define e,=e¢;.f.A—"E.

DerINITION. A full subcategory J of D will be called a lower ideal of D if for all
objects D and D’ of D, whenever D€Ob (J) and D(D’, D) is nonempty, it follows
that D’€Ob(J).

Note that ¥: C—D has the CLP if and only if the image of ¥ is a lower ideal
of D.

PropositioN 3. If ¥:C—D has the CLP and a left adjoint functor 9:D—C,
then ¥ is surjective on objects and morphisms.

Proor. For any object 4€Ob (D), there is a front adjunction map h,: A—~¥0A4
and the image of ¥ is a lower ideal.

Therefore m,0: B—~A will be surjective on objects and morphisms when it has
a left adjoint, but more can be said than this:

ProrosiTiON 4. If ma:B—~A has a left adjoint functor B:A—~B then m o
has a cross-section (i.e. there is a functor A: A—~B such that mod=1, ).

PrOOF. Let A€Ob (A) and fA=(A4AT,e™, A*), and let the front adjunction
be hy: A~AT=mn,af A. By Proposition 2, hlifts to a morphism h,®1: (4, e, A%)—~
—~(A4*,et, A*¥), where e=e*(ohX1). Define A:A—~B by i4=(4,e, A*) and
for k€cA(A’, A), ‘k=k®@k* where Pk=k*®k*. A is the desired cross-section.

THEOREM 2. If myo: B—~A has a left adjoint functor f: A—~B then the cross-
section ).: A—B constructed in Proposition 4 is itself left adjoint to myo. Furthermore,
the front adjunction for A is given by 1:1,—~1,=m,0A.

Proor. Let o4,=h,®1:A4—BA as in Proposition 4. The naturality of p is
simple to check coordinatewise. By the universal property of the front adjunction,
there is a unique map ¢4: fA—~AA such that 1,=m a(g,)hs. The naturality of
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the equivalence B(f—, —)=A(—, mya—) can then be used to show that g, is the
back adjunction for 14 and is therefore natural in 4, and also to show that p4g,=1;,.
Thus p is a retraction, and so is hy=ma(p,). Also 1,4=ma(g,)h,, so that hy
is also a section and thus an isomorphism. Since 4, and 1 are isomorphisms, it is
trivial to check that p,=h,®1 is an isomorphism in B. The last assertion can be
shown from the naturality of the isomorphisms A (A4, 4)=B(BA4, AA)=B(JA4, /.A).

The isomorphism B(fA, B)=A (A4, m;a B) required by adjointness is the map
h<>myo.(h). Thus if f is an arbitrary cross-section to m; e, f is left adjoint to 7, with
front adjunction 1 if and only if 7;0 maps B(fA, B) bijectively to A(A4, n;o B)
for each A4€Ob (A) and each B€Ob (B). This can be phrased in terms of lifting
properties. In the next three definitions, let ¥:D—~C and 0: C—D be functors
satisfying Y0=1c¢.

DerINITIONS. ¥ has the restricted unique lifting property (RULP) with respect
to 0 if for every C€Ob (C) and every DEOb (D), ¥ maps D(@C, D) injectively
to C(C, ¥D). ¥ has the restricted covering property (RCP) with respect to 0 if
for every C€Ob(C) and every D€ Ob(D), ¥ maps D(AC, D) surjectively to C(C, ¥ D).
¥ has the restricted identity covering property (RICP) with respect to § if for every
C€Ob (C) and every D in the fibre of C by Y, there is a morphism fe€D (6C, D) such
that ¥f=1c.

THEOREM 3. Consider the following statements:

(1) myaf=1,4 and B is left adjoint to m o with front adjunction 1.

(2) mya has a cross-section f.

(3) There is a natural transformation r: frnia—1, such that ma(rg)=1,p
for every B€QOD (B).

(4) w0 has the RC P with respect to f.

(5) myo has the RULP with respect to f.

(6) myoe has the RICP with respect to .

Then (1) is equivalent to the conjunction of (2), (4), and (5); which is equivalent
to the conjunction of (2), (3), and (5); and to the conjunction of (2), (5), and (6).

Theorem 2 summarizes the connection between cross-sections and left adjoints
to moa: B—~A. Each left adjoint is essentially a cross section with certain lifting
properties. Of course, m,x: B—~T* has the appropriate dual properties. Henceforth
we will consider only adjoints which are simultancously cross-sections to these
functors having 1 as their front and back adjunctions respectively.

DerFINITION. Let 9: C—D and ¥:D-C be functors. 0 is lacs (left adjoint
cross-section) to ¥ if 0 is left adjoint to ¥, Y0=1¢ and the front adjunction map
lc—~%P0=1¢ is the identity. Racs (right adjoint cross-section) is defined similarly.

The relations between left adjoint cross-sections and dualities is clarified by
a few observations from Krishnan [10].

DEFINITION. A pair (0, ¥) of contravariant functors 0: C—»D and ¥:D-C
is a Galois (resp. dual) correspondence between C and D if there are natural trans-
formations (resp. isomorphisms) u: 1¢—~%0 and »: 15—~0%.

Given any Galois correspondence, there are full subcategories C’ of C and D’
of D such that the restrictions of f and ¥ to these categories is a dual correspondence.
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C’ has as objects those C€Ob (C) for which u. is an isomorphism, vgc is an iso-
morphism and v,c=(0uc)~. D’ has a similar description.

THEOREM 4. If mo has lacs B and w0 has racs y, then (myof, moay) is a
Galois correspondence between A and T, which induces a duality between the full
subcategories of A and T described above.

Proor. We define the transformation wu=max#*f where this notation
means: Let u, be the image by ma of the front adjunction map of the object 4
under the adjointness m,az —y. v has a similar description.

Note that since # and » are images by m;a and 7wy respectively, we could say
that they lift to transformations i#: f—>ym,aff and ¥: frmyaff—7y which are defined
by #i=u®1 and =1Qw.

Thus the existence of the lacs and racs functors sets up a Galois correspondence
which restricts to the given duality theorem. We shall call the image of an object in
A or T by the two functors in the Galois correspondence the Galois correspondent
of that object.

5. Dualities over the category of sets

Many of the dualities mentioned in the introduction arise when we let C=Eps,
the category of sets and o: A—~C and 7: T—C be forgetful functors. In this case,
P must be the singleton set and the transformations m: 1¢=L, and n:1c=R,
are defined in the obvious manner.

Particular examples of categories of interest are given by such classes as (i)
algebraic categories, meaning categories based on an algebraic theory Q in the sense
of Pareigis [13]; (ii) categories with optimal lifts (cf. Arbib and Maines [1]):

DeriNtTION. A functor 7: T—Ens has optimal lifts if whenever S€ODb (Ens)
and {(X;, f;)} is any set (indexed by i€ /) of ordered pairs such that for each X;€ Ob(T)
and each f;: S—1X;, there is a unique X€Ob (T) such that zX=S and there are
unique maps g;¢T(X,X;) such that 7g;=f;, and that furthermore for every
h:tY—S, there is a morphism k€T(Y, X) such that tk=h if and only if there
are morphisms m;€ T(Y, X;) such that =m;=f;h for each i€l

Examples of categories with forgetful functors to Ens which have optimal
lifts are the categories of topological spaces, uniform spaces, and preordered sets.

We complete our list of categories of interest with (iii) categories of Q-algebras
in categories with optimal lifts. If we take two categories of types (i), (ii) or (iii),
or any combination thereof, and choose a fibre object E, it is possible to introduce
“pointwise” structures to define Galois correspondents. Thus m;¢z has a lacs and
myop has a racs, and a duality theorem is assured (through the dual categories may
be empty). These “pointwise” structures also produce a property related to separa-
tion of points:

DEFINITIONS. A€Ob (A) is a separative if for every @ and a’€C(P, 6 4) such
that aa’, there exists an (4, e, X)€Ob (B) such that e,=e,. A4 is extremely
separative if e_: C(P, 7d*)—~A(4, *E) is injective, where 4* is the Galois corres-
pondent of A.
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When the adjoints of Section 5 exist, being separative is equivalent to the requi-
rement that e_: C(P, 04)~T(A4*, E*) be injective. If A4 is extremely separative,
then A4* is separative. For dualizable 4, 4 is extremely separative if and only if 4+
is separative and vice versa. Thus the two conditions are “dual”. With the point-
wise construction mentioned above, all objects in each category are separative and
extremely separative.

THEOREM 5. If C=Ens and the adjoints f and vy exist, and if A€Ob (A)
is extremely separative, then A is dualizable if and only if there is an X€Ob (T)
such that A=X* and u, is epimorphic.

Occasionally, this theorem makes it simpler to determine whether an object is
dualizable by comparison with known results in duality theory.

6. Examples in duality theory

ExampLE 1. Taking A and T to be the category of vector spaces over a field k,
and choosing *E=FE*=k, the full subcategories of dualizable objects are in both
cases the category of finite dimensional vector spaces.

ExampLE II. Taking A to be the category of groups and T to be the category
of topological groups, with *E=E*=R/Z, the circle group, we induce the duality
between the category of Abelian groups and that of compact Abelian Groups.

ExampLE III. Taking both A and T as the category of topological groups with
*E=E*=R/Z, one could hope to obtain the full Pontrjagin duality theorem from
the adjoint functors, but because C=Ens, the adjoint functors constructed in the
““pointwise” manner suggested in the last section will assign to a given topological
group 4, not its Pontrjagin character group 4*, but the group of continuous homo-
morphisms f: A—R/Z with the topology of pointwise convergence, rather than
uniform convergence on compact sets. Theorem 4 still guarantees a duality theorem,
however, and using Theorem 5 and a comparison with the known Pontrjagin theo-
rem, we may deduce a little about its extent:

LemMA 2. If A=X* for some topological group X and is naturally isomorphic
to its second (Pontrjagin) character group A**, then A is dualizable under the
Galois correspondence of Section 4.

In particular, then, every compact Abelian group is dualizable under the Galois
correspondence formed here, since each such is the Galois correspondent of a discr-
ete Abelian group and satisfies the Pontrjagin theorem. Of course, this means that
the Galois correspondent of any compact Abelian group is also dualizable, but with
the new topology, this group is in general not discrete. (R/Z)* is a Hausdorff,
non-discrete topological group with the algebraic structure of the group of integers.
It is totally bounded but not compact, so the theorem extends past the compact
Abelian groups.

PROPOSITION 5. There is a self-dual subcategory of the category of topological
groups which lies between the categories of compact Abelian groups and that of totally
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bounded Abelian groups, and the dual equivalence functors are given by providing
character groups with the topology of pointwise convergence.

The usual Pontrjagin duality theorem can be recaptured by using the category
of topological spaces as C rather than the category of sets, and properly restricting
the categories of topological groups one considers to set up the adjoint functors.

ExampLE IV. Let T be the category of topological spaces and A the category
of complex-algebras with identity and involution satisfying the algebraic laws of a
C*-algebra. A is an algebraic category in the sense of Pareigis, and the category of
C*-algebras embeds fully into it as those algebras which admit a norm of the proper
type. A Galois correspondence can be established as in Section 5 using *E=E*=C,
the complex numbers. The standard Gelfand theorem shows that the duality holds
at least for all compact Hausdorff spaces. In fact, using Theorem 5, and a comparison
with the duality established in Gilmann and Jerison [4] it can be seen that every
realcompact space is dualizable under this Galois correspondence. Thus the Gelfand
theorem extends to a duality between the category of realcompact spaces and some
category of complex-algebras which is a full subcategory of the category described
above, namely those which are C(X) for some topological space X.

Stone duality and the Gilmann—Jerison duality mentioned above can also be
framed in the language of bilinear product categories.

ExampLE V. If a poor choice of categories is made for A and for T, the duality
theorem of Section 4 may be a poor one; for if T is the category of topological spaces
and A is the category of rings (with or without identity) and the Galois correspon-
dence is set up as in Section 4 using *E=E*=R, the real numbers, the resulting
categories of dualizable objects are empty.

Having framed the standard duality theorems in terms of b.p.c.s we now return
to the formal theory.

7. Bilinear situations

The categorical situation of the existence of the proper adjoint functors is now
formalized.

DEFINITION. A bilinear situation for categories A and T consists of a category
B, together with a faithful functor «: B~AXT* and functors B:A—B which is
lacs to mya and y: T—B which is racs to 7w,o.

Bilinear situations recall the definition of the comma category for two functors
(see [11]). Let g, and g, denote the two projections from the comma category.

ProPoOSITION 6. Let (B, o, f,7) be a bilinear situation for categories A and T.
Then there is a faithful functor &: B—(Byy) such that ef is left adjoint to @,, @y is
left adjoint to ey and the diagram

B (-]
tvl > A X T*
(Biy)/ e

commutes.
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ProoF. Define &: B—(B}y) by eB=(m aB, ugvg, m,0B) and ef=(mof, myof),
where up is the front adjunction map for my,o—y and vy is the back adjunction
map for f—ma Clearly (0;X05)e=0. To show ef—o,, for 4cOb(A) and
D=(4, A2~ yX, X)€Ob(B}y), note that efd=(A, fAL4> ynyafA, n,afA). Given
JfEA(4, A)=A(4, 0:D), let f<(f, gec(piy)(efA, D) where g€T(n,0fA4, X) is the
unique morphism such that

pA —4-~ ymyo A
B
\\
BN
N\ ¢
X

va

commutes. Since such g exists uniquely, (Biy)(ef4, D)=A(A, ¢, D). The naturality
is from the commutative diagram

ﬂA” pr "B’Z Br BA—ﬂ—p’ﬂZ

Y ! ¥t

ymgofA” 2=, yraafd s pX—1s pX

Thus all the bilinear situations are ‘“‘represented” in the comma categories of pairs
of functors. This enables us to observe that if A and T are naturally grounded, bili-
near situations give rise to bilinear product categories.

ProrosSITION 7. Let (B, o, f,7) be a bilinear situation for naturally grounded
categories A and T. Let O=mnyaff and ¥ =m oy resolve as in Theorem 1 through
b.p.c. Bz. Then there is a functor n:(Biy)—Bg such that the diagrams

Biy) B
21 Xe; B \ ¥y
" AXT* and A g
L5 5] Be /VE
B B

commute.

ProoF. Define n:(fiy)—=Bg by n(d,m, X)=(4,e, X) where e:0AXtX=
~A(Z, AXT*(X, G)~*E=A(Z, YG) is given by e(a, t)=mo(yt.m.fo) and
n(f,g)=/®g. e is bilinear since e,=n.0a where 7i: 04—X is the unique morph-
ism making

A—2+ P04
T am I \Pﬁi
¥
1 D¢

commute, and e,=Yt.mam. That fQ®g:(4, e, X)—~(4",e¢’, X’) isimmediate from
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the diagram
1 i BT

A

BA’ " yX’ 25 yG

The first triangle in the statement of the proposition commutes trivially; for the
second, BpA=(4,e, A) where e(a,t)=%Ytuya and nefd=(4,é, 04) where
&(a, n=mya(yr.(w)ps. pA). Now wvza=154 and T*(04, 04)=B(BA, y9A)=
=A(4, Y0A4) where 1,4«>uzq<tiy, so that e=&, and Bgf=fX0f=neff. The
proof for the third triangle is similar.

Since the definition of n and the first commutative diagram in Proposition 7
depend only on the adjunction @ +¥ and noton f—ma or myax—y, we can show
the following corollary by the same proof.

COROLLARY 1. If'the conditions of Theorem 1 hold, there is a functor ng:(Bgiye)—~
—~By given by ng(d,m,X)=(4,e,X) with e(a,t)=mn,0g(ygt.m.fra), and
ne(f, 8)=/®g.

8. Adept representors

We now wish to make optimal use of the theory of representable functors in a
way that characterizes b.p.c.s as familiar categories. Let ¢: A—~Ens and 7:T—Ens
be natural groundings. We denote by A% T the fibre product category of Section 1.

DEFINIIION 1. E=(A,y, X;)€Ob(A*T) is an adept representor for A*T if
nyop has lacs Bg, myop has racs y; and these functors satisfy the conditions:
1. 0 gfr=A(—, Ay) by an isomorphism making

cAXtryopfr A ud cA,

+| |=

A(Z, A)XA (A, Ag)) =2, A(Z, Ay)

commuty for all 4€Ob(A).
2. omyopye=T(—, X,) by an isomorphism making

omopye X X1X £ X,

| |

Y
T(X, Xo) XT(G, X)="2~ T (G, Xo)
commute for every X€Ob(T).

LEMMA 3. The fibre object E established in Theorem 1 is an adept representor
for AxT if and only if By is left adjoint to w0 and yg is right adjoint to myo.

PROOF. t02=A(—, *E), c¥=T(—, E*) and B; and y; are defined so that the
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squares
cA X104 2 o¥?G
gl lg
A(Z, A)XA(4, *E)="2. A(Z,*E)
and
oYX XX Lam——L' e
a-l la
T(X, EY)XT(G, X) == T(G, E¥)
commute.

When E is an adept representor; we have an alternate description of the cate-
gory Bg.

PRrOPOSITION 8. If E is an adept representor for AxT, let eg: BE—'(ﬂEWs)
be defined as in Proposition 6, and ng: (Bgye)—~Bg as in Proposition 7, then ex=ng*

PROOF. ngep(4,e, X)=(4,8 X) where é&(a,t)=¥tu,p, for acA(Z, A
and 7€ T*(X, G). Consider the commutative diagram

cAXTX 22, e¥X XX = T*(0Z, X)XT*(X, G)

NA

oG =~  A(Z, ¥G) = T*(0Z, G)

Then e(a, f)=ev(ua, )=¥t.i.a=&(a,t). Since npex(fRL)=fRg, Nrtg=lg,.
Secondly, egng(4, m, X)=u®7v: fA—>yX where m: fA—~yX induces e: o4 X
X1X—+1¥YG by e(a, t)=mn,0g(ygt.m.fga). Let m=m, @m,.

A(Z, AXT*(X, G) = cAXtX —*— c¥G

lqu lz
A(Z, X)XT*(X, G) =~ cPXxXtX A(Z, ¥G)

a =~

T*OZ XTI, G T(0X, G)

commutes, so that Yt.u(a)=¥t,my.a for all acA(Z, A), t¢T*(X,G). Now if
Yt f=¥t.g for all such ¢, then f=g. Thus u(@)=m,.a and dually v(f)=m,.t.
Thus u®v=m and since exne(f, 8)=(f.8)s eeNe=1@zp-

Let Cat/AXT* denote the quasicategory of all categories over AXT* and
Bil(A, T) denote the quasicategory whose objects are bilinear situations (B, a, g, )
for A and T and whose morphisms A4: (B,a, g, y)—~(B, o, f’,y") are functors
A: B—B’ such that the diagram

B—i.p

AXT*
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commutes. Define {: Bil(A, T)—Cat/AXT* by {((B,a,f,7)=(B,a) and {(A)=A.
{ is a full and faithful functor.

Also let ¢: A*T—Cat/AXT* be the functor given in Proposition 1, and let
AdRep denote the full subcategory of A*T whose objects are the adept represen-
tors for A#*T. Let w:AdRep—Ax*T be inclusion and define 6: AdRep—
-Bil(A, T) by 0(E)=(Bg, ag, Bg,yz) and O(m)=p as given in Proposition 1.

PROPOSITION 9.
AdRep—2- Bil(A, T)
4 I
A*T -5 Cat/AXT
is a fibre product diagram.

_ Proor. The equivalence between AdRep and the fibre product category is
given by E<«(E, (Bg, a5, fg, yg)) and m<(m, p).

THEOREM 6. (0: AdRep— Cat/AXT* is a full embedding.

Proor. Faithfulness is immediate from the faithfulness of ¢ and 7 and the
adeptness of the representor. Let p:Bz—~B, with apu=ag. Consider the back
adjunction ¥: fpmap—~1. Then tryo,* 0% ufg: tR0pufp—>1mspfp. This induces
a transformation A(—, E;)—~A(—, D;). By the Yoneda lemma, this is m;« for
some m;€A(E;, D;). Similarly one obtains my€ T(E,, Dy).

Let (4, e, X)€Ob(Bg) and pu(4,e, X)=(4, é, X). Computing é by the use of
the adeptness criterion, we find that o(m;).e=é=1(my).e, forall (4, e, X)eOb(Bg).
Thus ¢(m;)=1(my) and m=(m,, my): E~D and m induces yu as in Proposition 1.

This theorem has interesting consequences when applied to standard categories.
Again, let Q be an algebraic theory in the sense of Pareigis, and denote by QC the
category of Q-algebras in the category C.

COROLLARY 1. For any algebraic theories Q and A, (Q2® A) Ens embeds
fully in Cat/Q EnsX A Ens*.

COROLLARY 2. Let Q be an algebraic theory and C a concrete category with
optimal lifts. Then QC embeds fully in Cat/Q EnsX C*.
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ON AN INTERPOLATIONAL PROCESS
R. GUNTTNER (Osnabriick)

1. Let S,[g] denote the trigonometric polynomial of degree at most » inter-
polating the function g€C,, at m=2n+1 equidistant nodes,

M b=t 2l Sl =g(), (=0%1%2,.).

We consider the following expressions

@ Sl = 5 = () Sute1(r+252 ).

which for k=1 and k=2 were first introduced by S. N. Bernstein [1]. If not noted
otherwise we take m=>k such that the arguments of S[g] in (2) ly within a period
of length 27.

In [5] the expressions

) M= sup LelElO—2OL o _ oy 7,0
9€Cyp U3 —co<f-<<oo
g#const. w[g,W

were investigated (w(g, §) denoting the modulus of continuity of g).
It is stated in [5] (Theorem 2) that

THEOREM 1.

=l +L (cosec S 1)
C1n = 2m 2m i

Nevertheless the proof in [5] fails to be true. We hope to give a corrected version
of the proof. Kis and Névai [5] deduced from this result that

(CY) sup ¢;, = llm Cii = 1+—l
n=0

Further they proved

®) cw=a, (n>0).

Let us therefore focuse attention on the case k=2. We show for odd values of k

3
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THEOREM 2.
1 2r+1(2r
Ckn§7+w(r), k = 2r+1.

This expression is strictly increasing as a function of » thus we immediately
get (r=1)

©6) c,‘,,zé, k odd, k=3.
Now let k be even. By a sligthly changed version of the previous proof we get
THEOREM 3.
4 - 2r£1 (2r
Cknzi—l--—zer[r], k=2r.

This yields (r=2)

23
™ Ckn = 16’
REMARKS. The case m=2n investigated in [3], [4] and [2] can be treated in

a similar manner. Define as in [4]

| Sy, [2] (D —g ()] z

k even, k=4.

M, (1) = sup > Cm= sup M,().
g€Cy, s —o<t<oco
g#const. @ [g, ;]

Starting with [3] (7) we get by similar arguments
Crn = %+%;i+]1— (:ir), k=2r+1 or k=2r resp.,

the only modification being that in both cases we have to evaluate Sj,[ fj(%]

The same estimation is valid for the numbers cg, introduced in [5] too.
Stirling’s formulae yields the asymptotic estimation

2r+1 (Zr]wl/z_

22r+1 r T

2. Proof of Theorem 1

We start with [5] (34), n=0, which can be written as
o 7 n 2i—1 ] ( 2i—1 )]
20,(1) = 1+d,,(—m—+t]+i=22' d,,[ = n+t|—d, = n—t|].

By easy calculation we can show that for 0=t=n/m, 2=i=n,

d”(2,—1 7r+t)—d,,(2l_1 n_t] 4
m m

1 mt 2i—1 t 2i—1 t
N A e B s e i o ]
= (-1) sy {cosec( b 2) cosec( = n+ 2]},
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(without loss of generality we can assume 7=0) which yields

(—1)‘[d,,[2l 1n+z]—d,,[2’ ln—t)]é

a(-—l)‘“[d (2""1 +) d, [2':1 1:—1)].

(contrary to [5] (35)) and therefore

® 20,(f) = 1+d,.(%+t]+d,,(%+l)—d,,(%._t) =

i ﬁ{ (i _f] (3_ﬂ__f]_c [3_” _f]}_
= s cos 3 cosec 2m+ 3 + cosec = i 0SEC 2m+ 5)f =

—1+—1——c { +[ ( == t]-— ec n]+
= oG0S —51€0S€C -+ | COSEC | 5+ - | — coseC -

+[cosec (ﬁt———t—)—c sec (_32_4__1)]}
T e

Now (cosec x—1/x), O<x=mn/m, is an increasing function of x, which can be
easily seen by its Taylor-series expansion. Thus evaluating this function at the end-

points of the interval we get %é(cosecx— 1 /x)’é%. Using the mean-value theo-

e

rem we obtain, 0=t=n/m,

(ol 1)
Ccosec m 5 OSCC )

I

[IA

(G- %= (z-4)

=1 5 52 1 aow e it

2m 2 6 272 6

cosec [—+ ] coseci = [_”_.*._t_]—l_(i)_l_l.L =
2 2 2 2 2m B

o ,[[ i +_f]_ﬂ_]“+_’s ,(__"'_2+1)
“2W1\2m " 2)2m 6 e 6)

Substituting this in (8) we have, 0=t=n/m,

e 1 mt { 7 mz} 1 mt
) 20,0 = 1+;—cos—2— cosecm—t 72 f = 1+7cosTcosecm

This makes possible to correct the proof in [5] because using (9) and [5] (37), (38)
we get

n 1 mt 7 t} ~ 1 { 7 }
i:=2—'n lo; ()] = 1+mcos7{cosecm—seci =1+ o cosec-m—l :

which coincides with (40) in [5].
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3. Proof of Theorems 2 and 3

First we prove Theorem 2 for k odd, k=2r—1. It is easy to construct a func-
tion f€C,, satisfying f1 (n/m)=0 and

2i— 2i+1 k+1

J( =1 T T+ =t= S SR L
6=0 being sufficiently small, f(-:-1—+x]=f(_'.;c_—x], o [f; an)zl. Therafone we
get

Sun ()7 ) kg iz

T e s Ll
BT =P B
(11) 2rj§(')1 (Z’J.‘ 1) & ,1’:2;‘(2’],- 1) o oW
and - <
(12) 5 ."g,'o‘(Zr' ]] — @r-1)2 2 (Zr 2] £

-er-o[3(*7%)-(720)] - e-o [2--(727)]

Substituting (12) and (11) in (10) we have Theorem 2 for k=2r—1.
Now in order to prove Theorem 3 let f denote a function satisfying

f@)=i, 1=i=kl2, f((L-)=i, 1=i=k2+1,
k odd, k=2r, r=1. Of course we have for arbitrary ¢=>0 (m and k be given)
1Sl 1) — Sl F1O)] < &,
if =0 is sufficiently small. We choose such 7 and now complete fas follows: f(#)=0,
J€Cqe, @ (f, %]zl. Thus we get
Sl f1()—f (D)

o 3)

28,010 = 3 (5] r(£524) =2 2(¥)(r-s+3)-

j=o\J m j=0

> Sl f10) —e,
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But now

(+2)2 () = (+2) (2 )+ Gl = 2) [+ ()

r r-1 — 2r—1 o
2% 2.’)j=4r = (2’. l) =2r > [Zr. 1)=r2“",
Jj=0 ] Jj=0 J .’

Jj=0

which completes the proof of Theorem 3.
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ON THE BANACH SPACE OF STRONGLY
CONVERGENT TRIGONOMETRIC SERIES

I. SZALAY (Szeged)

Introduction. Denote by C the Banach space of 2n-periodical real or complex
valued continuous functions with the norm

Ifllc = sup [f@DI
0=t=2n

Using the familiar notations Sy(f) means the N-th partial sum of the Fourier
series of feC

(L.1) -@+ S (an(f)cosnt+b,(sinnd) = 3 4,(f, 0.
n=1 n=0

Very recently Tanovic—Miller [2] introduced a new definition of strong conver-

gence, saying that the serics > ¢, is strongly convergent to a limit 7" if

n=0

LP_‘}L M+1 2 ((N+1)(Sy=T)—N(Sy-1=T)|=0

where Sy= Zc,, and S_,=0.
n=0

We shall denote by U, S and A4 the classes of functions f belonging to C whose
Fourier series converge uniformly, strongly uniformly and absolutely on [0, 27],
respectively. Tanovic—Miller showed that the set A is a real subset of S which
itself is a real subset of U ([2], Theorem 4).

By the Fejér theorem we can see that if f€ U then fis the sum of its Fourier series
and in the cases f€S or f€A a similar conclusion is valid. Of course, if fis a sum
of uniformly, strongly uniformly or absolutely convergent trigonometric series then
feU, feS or fcA, respectively.

To show the difference between the uniform and strong uniform convergence
we have the following trivial

LemMA 1. The function feC belongs to the class S, that is

1.2) A}ipwﬁ”é |V +1)(Sy(N)=f)=N(Sy-1(N-f)[lc = 0

if and only if
1.3) Jim [ f=Sy(Nllc =0
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and
; 1 Lt
are fulfilled.
It is known that U is a Banach space with the norm
(1.5) Iflo = sup 1Sy (Nl

and A4 is a Banach space with the norm

(L.6) 171a =Dt 3 0,01+ 0D

(see e.g. [1] p.. 12).
Our aim is to find a suitable norm for S such that S would be a Banach space

with this norm. Considering that |[(N+1)Sy(f)—NSy_1(f)|=N|Ax(f)|+|Sx(f)—
—f1+1f] (N=0,1,...) we have the following inequality for any M=0,1,2,...

M M
375 | 2 I+ DSV D= NSu s Do = 5 || S Mo+

1 M
+ 3771 2 ISv DS+ flle-

By Lemma 1 we can see that for any f€S the norm

1 M

(%)) Iflls = SUP Sl ”Ng(; I(N‘*'I)SN(D_NSN—I(.{)I”C
is finite.

THEOREM 1. The set S is a Banach space with the norm (1.7) and for any f¢S
(1.8) If e = 1f1s-
Moreover for any f€A
(1.9 If1ls = 21f1l4
holds.

Of course we have to show that S is not a Banach space with the norm (1.5)
Turning to this direction we mention that for any non negative integer N=>M the
inequality
(1.10) [Sn(f=Su(N)|c = IS8 —Sllc+I/~Sxu(Dllc
holds.

Using the definition (1.5) the inequality (1.10) yields

LemMA 2. If feU then b],iﬂn If—Su()llu=0.

Let f€UN\S. Lemma 2 shows that the sequence {S(/)}ii=o has the Cauchy-
property in the norm || «||y. As for any M, Sy(f)€S but f¢S we reached our
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aim. Moreover by Theorem 1 we have

Ifls _
d40 v

If f€A then Allim | f—Su(f)ll4=0 is obvious. We can prove a similar result for
the class S.

THEOREM 2. If f€S then 1‘141.[.]10 | f=Su(Nls=0.

Let f€ S\ 4. Theorem 2 shows that the sequence {Su(f)}i=o has the Cauchy
property in the norm | -||s. As for any M, Sy (f)€A4 but f¢A, we obtain that
A is not a Banach space with the norm (1.7) and

.71l 4
1.12 su =
) SRS
Sf#0
Finally we mention that S is not a Banach algebra. To show this we have
THEOREM 3. There exist functions fc€A and gcS such that fgé U.

ProoF oF THEOREM 1. First we prove the inequalities (1.8) and (1.9). By the
M
identity (M+1)Sy(f)= S ((N+1)Sy(f)—NSy-1(f)) we get that
N=0

ISk le = g | 2 V4D SN~ NSua (Dl

and casting a glance at the definitions (1.5) and (1.7) we have (1.8). On the other
hand for any #€[0, 2n] by (1.6) we have that for any N=0,1, ...

I((N+1)Sy(f; )— NSy_1(f; O] = ISy (fs )+ NAx(f; O] = || flla+N(lay (N + by (1))
and so for any M=0,1, ...

T 2 DSV D= NSy 2O 01 = 1Lty 2 N(aw (D] + by ().
As the second term on the right hand side is less than | f|| 4 by the definition (1.7)
we get (1.9).

Let us assume that for any n=1,2, ...; £,€S and the sequence {f,};=, has
the Cauchy-property in the || «|g-norm, that is for any &(=0) there exists v;=v;(g)
such that if »n, m=v; then

2.1 I fo—Fmlls < &
By (2.1) and (1.8) we can see that the sequence {f,};=; has the Cauchy property
in || +||y-norm, too. As U is a Banach space with the | -|y-norm we obtain that

there exists a function feU such that for any &(=0) there exists v,=v,(¢) such
that if n=v, then

22) Ifa=Sflu <e.

Acta Mathematica Hungarica 46, 1985



42 I. SZALAY

Let M be a non-negative integer and o be an arbitrary positive number. Assuming
é ;
that m=v, (M_-i-l) we obtain by (2.2) that
M+1 “ Z [((N+1) Sy (fu—f)— NSy- l(fm—.f)I”C =

S (VA DISeUa=Dle NSy Un=Dlle) =

[IA

gl

IIA

M
M _2 @N+ D fw=Sllv < 0.
: o
Moreover if n=v,(¢) and m=max [vl(s), Vy [M_-I-l)] by (2.1) we get

7 +1 I Z’I(N+1)S~(f,. =)= NSy-1(fai=Nllle =

= 357 | 2 VD Sy o f) — NSy o= o+

P +1 I Z'I(N+1)S~(f,..—f) NSy-1(fu=Nlllc = Ifi—Sulls+6 < e+6.
Hence

@3 Ifa—Slls =

if n=v,(e).
Considering the identity

M M
2NN = > ((N+D)Sy(f—f)— NSy-1(f—£))—

M M
”Ng‘; SN(ﬁ'—f)+N§o NAy(f)

we have the inequality

1 M 1 M 1 M
71,2 Vv Dl = 1~Als+ 3777 S VS lotgrg | 3 Mlan -

Let now ¢ be an arbitrarily small positive number and n=max (v,(¢/2), va(&/2)).
Then by (2.2) and (2.3) we obtain

1 M 1 M
grayy ”Ng(; N|Ay()l||c < st ”N=20 N4, (-
As f,€S by Lemma 1 (see (1.4)) we have that for any positive ¢
M->co

: 1 M
2.4 lim FTIT N ||N§0 N|Ay(Nllc =&
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Since f€U, condition (1.3) is fulfilled and by (2.4) we can see that (1.4) holds,
too. Applying Lemma 1 we obtain that f€.S and our proof is complete.

PRrOOF OF THEOREM 2. Our task is to estimate the difference

1= ls = 50 |7 3 (V4D SW (= (D)~ NS 2 (F=Su )

o

Let M be a fixed non-negative integer. As

3.1 [=Su(N= 2 A
k=M+1
the identity
3.2 Sy(f—Su(f)=0 (N=0,1,2,..., M)
is obvious, so we get
(3.3)

;;j:r | 2 (VD Sy (= Su ()~ NSy (/= Su D =0 w=0,1, ... 2.

Using (3.1) again we can see
SN(f_SMm)=SN(f)_SM(f) (N=M+1, M+2, .--)

0 if N=M+1

SN-1(f—SMm) = {SN_l(f)—SM(f) if N=M42, M+3,....
So we have

G4y W+D)Sy(f—Su ()= NSy-1(f—Su () = NAx(H)+Sx (f)—Su(f)
(N=M+1,M+2,..).
Forany u=M+1, M+2,... by (3.2) and (3.4) we get

and

S+ Sy(f= S ()~ NSy-1(F=Su ()| =

= Z“' I(N+1)Su(f_SM(f))_NSN—l(f-SM(f))I=

N=M+1

= 3 |[Nay(DHSWND =) +(~Su (D))

! N=M+1
So we obtain

G || 2 WD Su U Su )= NSy F-Su ) =

3 NADllet— 3 ISk ~Fle+1f~SuDle

=1
u+1 N p+1 N34
u=M+1,M+2,..).
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As f€S by Lemma 1 we have (1.3) and (1.4), that is for any &(=>0) there exist
v;=v,(¢) and vy,=v,(¢e) such thatif k=v; then

"f_Sk(.f)"C =8
and if pu=v, then

1 u
ey HN% NIAN(f)mc <e.

Choosing M =max (v;(&/3), va(&/3)) by (3.5) we have
(3.6)
;i—l | 2 [+ DSy (= Su )~ NSy-r(f=Su e <& Ge=M+1,2+42,...).

Collecting (3.3) and (3.6) we can see that if M=zmax (v1(e/3), va(e/3)) then
|f—Sx(f)ls=e, so our proof is complete.

Proor OF THEOREM 3. The series

o< sin nt

"=1m (0§ t§27t)

4.1)

converges uniformly in [0, 27] (See e.g. [1] p. 12.) Denoting by g(7) the sum of the
series (4.1) we have Al,im lg—Sx(g)lc=0. On the other hand for any t€[0, 2]

1 M ;

N=1

so by Lemma 1 the function g belongs to the class S. Using the Euler’s formula an
easy computation shows that for any N=1,2, ...

Su(ig(e™) = —— e (t€[0, 21))
N\'8 = 72° & nlogn+l) e
and so we have
2N
iNt s -
4.2) ISx(g®e™)||c = §’—mg oy W=12.)

Let us assume that for any f€A4 we have fg€U. By (1.5) we can write that for any
f€A and N=0,1, ...

4.3 ISy (f@llc = I /8llv-

Now we consider the linear continuous operators Ty from the Banach space A
into the Banach space C:

Tof=Sy(fe) (N=1,2,..).
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By (4.3) we may apply the Banach—Steinhaus theorem and get that there exists
a positive constant K such that

4.4 [Sy(fDlc =K|flla N=1,2,..),
where K does not depend on f. Setting f()=e"™ (|fll,=2) from (4.4) we have
ISx(e@e™)||c =2k N=1,2,..),

and casting a glance at (4.2) we obtain a contradiction.
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ON THE CHARACTERIZATION OF THE
DYADIC DERIVATIVE

W. ENGELS (Aachen)

1. Introduction

Two essential open problems in dyadic analysis, as initiated by J. E. Gibbs
(and his collaborators M. J. Millard and B. Ireland) [9, 10, 11] and further developed
by P. L. Butzer and H. J. Wagner [2, 3, 4, 5], F. Schipp (and his collaborators J. Pal
and P. Simon) [19, 20, 21, 25, 26], N. R. Ladhawala [14], R. Penney [23], C. W.
Onneweer [15, 16, 17], Zheng-Wei-xing and Su-Wei-yi [32], and He Zelin [13] are
the characterization and interpretation of the dyadic derivative. Gibbs and Ireland
[12] gave a first, but rather abstract interpretation in the realm of locally compact
abelian groups. However, just as the classical derivative may be associated with the
slope of a tangent to a curve, or with the speed of an object — thus associated with
basic geometric or physical notions — there is still no intuitive interpretation of the
dyadic derivative (which may lie in the setting of these modern sciences such as
information or signal theory which make use of dyadic Walsh analysis). Neverth-
eless, as a further step in this direction Skvorcov and Wade [28] derived a first
characterization of the class of f€CJ[0, 1); they improved some earlier results due
to Bockarev [1], Butzer and Wagner [5] as well as to Schipp [27].

The aim of this paper is to give a rather complete characterization of the class
of functions that are dyadic differentiable in dependence upon the discontinuities
of the first kind (which means only jumps) of the function in question. The cases
that the function has a finite number of jumps or an infinite number of jumps under
the additional constraint that this set of discontinuities has only a finite number of
cluster points are distinguished. Our main results state roughly that a function of
either case is dyadic differentiable if and only if it is a piecewise constant.

Although this is a rather restrictive condition, the dyadic derivative is especially
adapted to functions that have only a few or small intervals of constancy. It is even
applicable to functions having a denumerable set of discontinuities like the well-
known Dirichlet-function.

This paper will deal with the situation of functions defined on [0, 1). The corres-
ponding material for functions defined on the positive real axis R* will be treated
in a further paper.

The paper is divided into four sections. Section 2 is concerned with a summary
of the fundamental properties of dyadic analysis, including dyadic representation,
dyadic addition, the basic Walsh functions, some elements of Walsh—Fourier
transforms, as well as the dyadic derivative. Section 3 deals with two characteriza-
tion theorems. Finally, Section 4 is devoted to some representative examples which
are worked out in detail.
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2. Preliminaries

2.1. Dyadic addition. In the following, let N:={1,2,3,...}, P:=NU{0} and
Z:={0, £1, £2, ...}. Each k€P has a unique dyadic expansion

2.1) k= jZ k27 (k;€{0, 1}).
=0
I.ikewise each x€[0, 1) has a unique dyadic representation

2.2) x= Fx2" (x;£00,1))

.
M3

if the finite expansion is chosen in case x belongs to the dyadic rationals (=D. R.),
i.e., the set of all numbers of the form x=p2-%]J0, 1), peP, gecN. The dyadic

oo

sumof x= 3 x;277 and y= Zw'yJZ‘f is defined by

j=1 Jj=1
(2.3) x®y = > h;27,
j=1
(2.9 hy:=x;+p;:= (X;4Y)moaz = |X;— ;|-

In view of the uniqueness of the representation, dyadic addition is only defined
for almost all y€[0, 1). For example, one easily sees that

(2.5) x®277 = x—27(x;—(x;+1)),

and, setting

(2.6) Jo = {j€P, Xj+1 = 0}, Ji:= {jeP, Xj+1 = 1},
—-j-1 x+2_j_1’ JeJO

2.7 x®2 {x—2‘f‘1, ied,.

Formulas (2.5)—(2.7) will often be used later on in this paper.

2.2. Walsh functions. The functions which are taken as a basis for dyadic ana-
lysis are the Walsh functions ¥/, (x) [31]. For x€[0, 1) — using Paley’s enumeration
[22] — they are given by

(2.8) () = exp{mi 3 k;xpp0) = (— 1% U keP,
Jj=0

and on R (set of all reals) by periodic extension. The ¥, k€P, form a complete,
orthonormal system, and possess the important property

(2.9) V(@) = Y ()Yi(y) (keP)

for fixed x€[0, 1) and almost all y€[0, 1).
Denote by L?(0,1), 1=p= o, the set of all functions f of period 1 which are
p-th power Lebesgue integrable and endowed with norm

(2.10) 1£1,:={ [ IF Gl ax}e,
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L=(0, 1) that of all essentially bounded functions f of period 1 with norm
(2.11) [.fll:= ess sup |f(x)],
x€[0,1)

and finally C®[0, 1] that of all dyadic continuous functions f of period 1, endowed
with the usual sup norm, thus

Q1) Co, 1= {f; fm Lf(- ©W /(o :=lim sup /(@R ~/()|=0).

In the following X=X (0, 1) always stands for one of the (Banach) spaces L?(0, 1),
1=p<o, L=(0,1), and C®[0, 1], with norm | f]|x.
Denoting the Walsh—Fourier coefficients of f€X(0, 1) by

(2.13) £ = [ f@)du (keP),
the formal series ;
2.14) 2 R IAC)

is called the Walsh—Fourier series of f.

2.3. Dyadic differentiation. Further, the concept of dyadic differentiation, as
defined by Butzer and Wagner [2], [4], is basic.

DEFINITION 3.1. a) Let f€X(0, 1). If there exists g€ X (0, 1) such that

2.15) lim ”;-20 2F()—f(- 27 ] —g(+)|]x =0,
then g is called the first strong dyadic derivative of f, denoted by g=D!f. Deri-
vatives of higher order are defined successively by (Df:= 1)
(2.16) DUf = pt(Dr-1f), reN.
b) Let fbe defined on [0, 1). If

@.17) 32 f()—f(x @27 Y] = ¢ <o
j=0
for x€[0, 1), then c is called the first pointwise dyadic derivative of f at x, denoted
by fM1(x). Setting f11(x)=f(x), derivatives of higher order are given by
(2.18) SUIE) = (M) (rEN).

Some of the most important properties of the dyadic derivative are (for the proofs
see [2, 3, 4]) listed below:

(i) D"1is a closed, linear operator in X (0, 1).
(ii) The Walsh functions ¥, are infinitely differentiable, and

(2.19) DUy = Y1 = kK'Y
(iii) If f, D®f€X(0, 1) for some réN, then
(2.20) [DUf]” (k) = k'f " (k) (k€EP).
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The pointwise counterpart of (2.20) can be found in [5]. Moreover, one can construct
antidifferentiation operators to (2.15) and (2.17), respectively. This leads to the
fundamental theorem of dyadic analysis; it is similar to the fundamental theorem
of classical differential and integral calculus. For the strong version of the dyadic
derivative the fundamental theorem is due to Butzer and Wagner [4], in the more
difficult pointwise sense it is due to Schipp [25], [26]. The dyadic derivative gives
information about the smoothness of a function. It allows one to study the rate of
approximation of dyadic differentiable functions by partial sums of Walsh—Fourier
series, the best degree of approximation in the Walsh setting, partial differential
equations with the derivatives being understood in the dyadic sense, etc. One of the
more important application lies, for instance, in the field of digital signal processing,

cf. [6], [7], [8], [29]-
3. Characterization theorems

Though the dyadic derivative has attained significance in various fields of
dyadic (Walsh)-analysis, an interpretation of it or even a full characterization of the
class of functions which are dyadic differentiable is still lacking. In this respect,
however, a first result, due to Skvorcov and Wade [28], which generalizes an earlier
one by Butzer and Wagner [5], states:

Let f be continuous on [0, 1), and let fI1 exist for all but countably many
points x€(0,1). Then f is constant.

This result tells us that it is not reasonable to begin with functions that are
continuous on the whole interval of definition [0, 1). So we will deal with functions
f that have infinitely many discontinuities. It seems convenient to divide this class
of functions into two parts, namely those functions the set of discontinuity-points
of which possesses either a finite or an inifinite number of cluster-points in [0, 1).
The first group of functions will be treated in our main theorem. For the second
group it is clearly not possible to obtain an equivalent statement between dyadic
differentiability and piecewise constancy, because the members of this class of func-
tions cannot consist totally of piecewise (non-degenerate) constant functions. One
could even say that in this event the intervals of constancy may degenerate to points.
Nevertheless even those functions can be dyadic differentiable. In the next section
we will show that Dirichlet’s function, which is an important member of this ‘exo-
tic’ class, is indeed dyadic differentiable. However, in case of f having a countable
set of discontinuities which have at most a finite number of cluster-points we are
able to prove the following

THEOREM. Let f be defined and bounded on [0, 1), possessing a countable set of
discontinuities x®, k€N, exclusively of first kind, which have at most a finite number
of cluster-points in [0, 1). Then f is pointwise dyadic differentiable except on a coun-
table set in [0, 1) if and only if the function is a piecewise constant on [0, 1).

Proor. In the following it is assumed that the function is righthand continuous
at the points of discontinuity. Although our results are also valid in case of left-
hand continuity, they are slightly more complicated to establish.

At frist we will deal with the case that / has only one discontinuity, namely
xM¢[0, 1). Suppose that f is dyadic differentiable on [0, 1) except on a countable
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set Hc[0, 1). Then the series (2.17) converges for all x€[0, 1)\ H, and therefore
(3.1) lerg 2 f)—f(xp2-7-Y)] =0.

If xM=0, then fis continuous on (0, 1), and with the help of the result of Skvorcov
and Wade [28] cited above, one immediately concludes that f is constant on (0, 1).
Now suppose that x®=0. Then f is continuous on (0, xM) U (x™, 1). If x€(0, x(),
one can choose a sequence of integers (j,)z=1 With j,<j,.1, n€EN, such that x; =0
for all n€N. Noting (2.5) and (3.1), one deduces for all x¢H

i LR G@20) _ L fR)—f 4270 _

n->co D—=dn oo 2=Jn

Likewise, if x¢D.R., then there exists a sequence of integers (j,);z; with j,<
<Ju+1, NEN such that x; =1 for all n€N. So similarly, one concludes for all
x¢HUD.R. ¥

lim f(x)—f(:f@Z‘Jn) = lim f(x)_f("f_z_l") =0.

n—-co 2—_[" n—+co 2—j”

Therefore the upper and lower right Dini derivatives of f exist and are equal for
x¢HUD.R. (cf.[24], pp. 155). Since HUD.R. iscountable, and f is continuous
on [0, x™), it follows as in [28] (using [24]) that f=const. on (0, x™). Analogously
one can verify that f'is also constant on (x®), 1).

Conversely, suppose that fis a piecewise constant function on [0, 1), possessing
a jump at x¢(0, 1). Obviously this function can be expressed as

(1)
62 rey =15 W) W sew)

If A=B, the matter is trivial, because in this event f equals A4Y,, which is clearly
dyadic differentiable. So, let AB; with J,, J; defined as in (2.6) one has by (2.5),
2.7

RS
63 Ll AR )

It can be easily shown that for x€[0,x™) there exist J, _]FEN such that for the
difference f(x)—f(x®2~7/~1) the following three relations are valid:

0, JEL
(3.9 SX)—f(xd2=I-Y) =14—-B, jeJy; j=], x€[0,xV)
09 jGJO; J >.},
W B—A, j&i;
Bk VB T
3.5 S@-1wo2-1 = {0 P
B—A4, jeh, j=<Jj
(3.6) f(x)—f(x6)2—1—1)= 0, jéJl;jgﬁ xe[x(l)’ 1)
0, JEE.
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In view of these, the pointwise dyadic derivative (2.17) clearly exists for all
x€[0, DN\{x®}. If x® is a dyadic rational, f is dyadic differentiable there too.
Hence f'is dyadic differentiable almost everywhere on [0, 1). It is now obvious that
both directions of the proof can easily be extended to the case of a finite number of
discontinuities x®), 1=k=n.

Let us now assume that f possesses infinitely many discontinuities having in
the first instance only one cluster point. Then, clearly, the limit klim x®=x,€[0, 1]

exists. Furthermore, the sequence may without loss of generality be assumed to be
monotone, namely x®=>x*+1_ Now construct a sequence of intervals 7=
=(x*+), x®) with LNI1;=0, ksj, so that the interval [0, 1), apart from the
jumps x®, is representable as a union of pointwise disjoint intervals:

(3.7 [0, x)U U (D, x®)U D, 1) = [0, D\ U {x®).
k=1 k=1

We can proceed as in the case of finitely many discontinuities. Suppose f is point-
wise dyadic differentiable on [0, 1) except on a countable set Hc[0, 1). Then one
has (3.1) again for all x€[0, 1)\ H, where H is again the set of all points for which
the derivative fails to exist. Now apply the above arguments to each of the intervals
of the decomposition (3.7). It turns out that f'is continuous on each of the intervals
[0, xp), (x™M, 1), I, k€N; similarly upper as well as lower right Dini-derivatives
of f exist for x¢ HUD.R., and they are as well equal to one another. So one can
conclude that £'is a constant on [0, x,), (x®), 1) as well as on each [, k€N.
Conversely, f is assumed to be a piecewise constant function possessing the
discontinuities x*), k€N, which are only jumping-points of f. Consequently f is
constant on each of the intervals [0, x,), (x*, 1), and I, k€N, respectively. Now
we are principally in the position to use the methods of the converse direction of the
proof of the corresponding finite case. Suppose for example that x€7;, k€N. Ob-
viously there exists j,6N such that for all j=>j, the dyadic sum x@2~/~1 belongs
to I, 4y or I, respectively. (For k=1 define I:=(x™), 1).) Hence for j=j,
we have the same situation as in the above converse direction. For example, if
x@2-7-1 belongs to I, or I, respectively, one obtains eight relations for the
difference x+2~7-1 quite similar to those in (3.4)—(3.6). Thus the difference
f(x)—f(x®2~7~1) vanishes for some j=j* since f is constant on (0, xy), (x®, 1)
and on I,, k€N. Consequently we have for all x€(0,x,)U®, 1)UL, kKEN

f=2: 2 D) f (e @27 Y] <<

Therefore the dyadic derivative can only fail to exist at the points x,, x®, k€N.
Since (x®);2, is countable, f is dyadic differentiable on [0, 1), except the countable
set.

Let us finally discuss the case that the sequence of discontinuities (x®)gZ,
has a finite number of cluster points in [0, 1], say x;, 1=i=n. Then we can split
up the sequence (x®);z, into the subsequences (x(W);~,, 1=i=n, having the
property that klim x@W=x;, 1=i=n. The proof of the result then follows along

the same lines as the above proof concerning one cluster point.
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For the particular case of a finite number of discontinuities of the function
fit is quite clear that the statement of the Theorem remains valid if the pointwise
derivative is replaced by the strong dyadic derivative. In this regard we have

COROLLARY. Let f be a function on [0, 1) possessing a finite number of discon-
tinuities x®, 1=k=n, in [0, 1) and no points of discontinuity of the second kind
(poles, etc.). Then f is dyadic differentiable on [0, 1) in the strong sense if and only
if f=¢ except on a countable set, ¢ being a piecewise constant function on [0, 1).

4. Examples

In this section we will present some examples which illustrate the applicability
as well as the limits of the dyadic derivative. We begin our considerations with an
example of a function that is piecewise constant and consequently is dyadic differen-
tiable in both senses. Nevertheless this simple example will point out what the deri-
vative actually effects. Note that the general theorems treated do not give any in-
formation about the real nature of the dyadic derivative.

Let g; be defined by

3, x€[0,1/4)
g‘(")‘{-l, x€[1/4, 1).

According to our theorem as well as the corollary, g, is differentiable in the strong
as well as in the pointwise sense and, since the point of discontinuity is a dyadic
rational, g, is dyadic differentiable everywhere on [0, 1). Evaluating the derivative
gives

6, x€[0,1/4)

o< -8 41

0, x€[3/4,1).

This example shows that the derivative of a piecewise constant function can possess
more points of discontinuity than the original function does have; this clearly results
from the global character of the derivative.

Let us now consider a piecewise linear function, for example g,(x)=x, (x).
Clearly the theorem tells us that g, cannot be dyadic differentiable since it is not
piecewise constant. It is even nowhere dyadic differentiable on [0, 1). Indeed, the
terms of the series (2.17) are

: _ 1/2 X [x21/2] +x, j=0
27 xy () = (x @27 (x @277 7Y)] = 1= (1/4)¥1 (%), jeJ, Jj=1
/81 (x), jedy
noting that ,(2=/"H)=—1, j=0, Yy2~I"Y)=1, j=1, as well as formula (2.9).
So the series (2.17) does not converge for any x€[0, 1), since the necessity condition
(3.1) is not satisfied. Thus g, is nowhere dyadic differentiable on [0, 1).
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Let us now present an example of a function the discontinuities of which have
one cluster point in [0, 1), namely

C[1/2n, xel2-"1,2
ga(x)—{o’ .

Since g, is bounded with cluster point x=0, g, is dyadic differentiable on [0, 1)
except on a countable set. Its dyadic derivative at x=1/2, for example, is given by
gi1(1/2)=1/2; at x=0 it does not exist.

One may conjecture that a function which possesses a countable number of
discontinuities, which lie dense in [0, 1], is not dyadic differentiable. On the contrary,
the dyadic derivative is especially suited for such exotic functions, although the
general theorem is not applicable. One such example is Dirichlet’s function

o 0, x€[09 l)ﬂQ
8a(x) = { 1, elsewhere on [0, 1),

where Q denotes the set of all rationals. g, is dyadic differentiable everywhere on
[0,1) with DMg,=gM=0. In fact, if x€[0, 1)\Q, then g,(x®2-")=0 by
@.7). If x€[o, l)ﬂQ then (2.7) and the definition of g, deliver g,(x®2~7/-1)=0.
So g4(x)—gs(x®277~1)=0, for all x€[0,1) and j€P. Hence d™(x)=0, x€[0, 1).

For the strong dyadic derivative (2.15) with respect to the spaces L?(0, 1),
1=p=- one has on account of

) (neNU{0)).

”éa 27 ga(+) =& (- ®27 o =

3 IJZ'o 21, () — g (x @2~ NP dx}?, 1=p<os,
o,n\e /=

ess suplZ 2/ [gy(x)—ga(x @27/ Y], p=co
x€[0,1) Jj=0

and in connection with the preceding remarks that DMg,(x)=0. Note that the
space C?[0, 1] is not permissible here since g,¢C®[0, 1].
A more complicated function dyadic differentiable at every x€[0, 1) is

gx)+1, x€[0,1/2)
& (%) =1 8.(x)+3, x€[1/2,3/4)
ga(x)—1, x€[3/4,1).
Another exotic function is gg(x)=1+ Z' (1/k®Y(x), x€[0, 1). Although it has
discontinuities at each dyadic rational, 1t 1s still dyadic differentiable with g{"(x)=
=DMg(x)= Z(l/k)w,‘(x) (see [6] for exact evaluation, [8] for its graph).
k=1
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INTEGRABILITY OF WALSH SERIES

M. KINUKAWA (Tokyo)

1. We shall use the following notations. Let f be a function integrable on (0, 1)
and periodic with period 1. We denote the dyadic addition by + and the dyadic
difference of a sequence (c,) of real numbers with respect to an integer m by

Am(cn) =Cn m—Cy-

Let us put
Apa(e) = { Z m 4y CIZY,
and
Apalf) = { Z mo T, (mpPr,
where

l4n(clla = {2" |Am(en)|} e,

Yo(m) = fhm—Dlla = [ [ 1/ Wrm(x)— 1] dx]Va
for 0<a<-< and ;
”Am(cn)"w == SEP |Am(cu)ls
Yoo (m) = ||/ (hm= Dl = ess5up | £ () (¥m () —1)]

Here we have denoted the Walsh—Paley system by v,,: m=0,1,2, ....
Let us introduce the Beurling norm (cf. [3]). For the purpose, we set

W={weL'(0,1): w=>0, wi}, and Ifll,,., = [l/w/*""P],.
Then the Beurling norm is defined by
dlfllp = inf TIWIR?= ] f1lp,w)-

A function space ,L, is the class of functions whose Beurling norms are finite.
It is clear that ,L,S L? for 0<p=a and ,L,=L°.

We shall denote by K a positive constant depending at most on p, a and « which
may be different from one occurrence to another.

The main results are as follows.
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THEOREM 1. Suppose that 1<a=2, 1/a+1/ad=1, 1=p=d, and a=1/p—1/a.
For a given sequence (c,), if }Lm ¢,=0 and .4, .(c,)<<=, then there exists a

function f such that
a’"f"p = KaAp.a(cn)

and its Walsh—Fourier expansion is
’ g,; Cu¥n-
The result holds also for the case a=1 and 1=p<e=d’.
THEOREM 2. Suppose that 1=a=2, l/a+1/a’=1, O<p=a and O<ua. If a
function f is integrable on (0,1) and f~ 3 c,Y,, then
n=0

a’Ap,a(cn) = Ka"ft‘!, p,a”p’
where f, ,..(X)=f(x) x*=1r+1le for x€(0,1).

REMARK. (I) Our theorems are the Walsh series analogue of Beurling’s results
in [3]. (IT) The trigonometric series analogue was proved in [4] and the dual results
to the above have been discussed in the previous paper [5]. (III) In the case of tri-
gonometric series, we have used the higher order difference of (c,) in our discussion.
However, in the case of Walsh series, any higher order -difference is essentially the
same as the first one because of the dyadic addition. That is why we shall discuss
only the first order difference.

2. The main part of the paper is to prove the following lemmas.
LeMMA 1. If O<p=a<ec or O<p<co=a, then J|f, ,.,=K.4,.(f)
LeMMA 2. If O<p=a<o and O<a, then A, ,(N)=SK|Lf palp-

ProOF oF LEMMA 1. (Cf. [5].) Let us suppose that ,4,,(f)<eco and discuss
firstly the case O0<p<a<-<. We define a decreasing function w by

ok

w(x) = Im~"¥?(m), for 2% = x < 2-Ft,
1

where Y(m)=Y,(m). Then we have

1 = g=-k+1 ™ ok

[v@dx=3 [ wxdx= 3 >27*m=ry?(m)=

k=19% k=1m=1

c oo 2M-1
=PW+ 3 3 3 ) RrE ) =
m=1lk=mj=1
. ! o om=-1 o A
=P+ S 3 Qr) ) =
m=1 Jj=1

co 2M-1 oo
=VPN)+K 3 5 @1+~ R PR 4j) = K 5 mP1Y?(m),
m=1j=1 m=1
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that is,

(1) "wlll = K[azp.a(f)]ps
and thus wewW.

Let us estimate ,4, ,(f):

@ Lo (NP = 3 m==1¥%(m)Y?=2(m) =

= [ I S mretrr = mln ()~ 11} dx =

7 2-k+1 ok

=2 [ QP Zm 7= (m) n ()~ 117} dx =

-k
_— +1

— k=21' _f |[f()|°M (x) dx, say.

Now we have to evaluate the lower bound of M(x) on (27%2-%+1). For that
purpose, we set P=a/p, and 1/P+1/Q=1. Then, by Holder inequality, we have

[w )2 [M (X)]V? = mé; [m"f“Y ?(m)]/2 [m“’““lY" (M) Y (x)— 1|77 =

9k 2k—1
= Smororey, )-1P =K > mor-

m=1 m=2k-1
since Y, (x)=—1 if 2*'=m<2* and 2-*<x<2-**!, Consequently we have
wOITRIMOHE = K(2F)~re—vistl &= Kxpatplo-1 . for < 2K oo x24T
Therefore we get
M(x) = K[w(x)]~F/2xF(Patp/a—1) = Kxsa+l-a/P[y (x)]t—9/P,
Replacing M (x) in (2) by the above estimation, we have

LAy, (NP = K [ |f(o)lexwe+2=9P[w ()]~ dx = K[|\ f;, p,al 5, ]

Using the above inequality and (1), we have

BWLE =25 ) fo ool w5 KA L ORMR=AR 0 = (),

from which we have the conclusion.
Next we shall discuss the case O<p=a<<. For this case, we need only to
show the following inequality:

1 1

[ 1f@pamdxs Zmort [ 7P W) =117 dx.
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However, the right hand side is greater than

2-k+1
2 f FePL 2 Py, () — 1] dx =
=5 3 T err T mrtac= firopea

which is the required inequality.
Finally, we shall discuss the case 0<p<-o=a. Set

w(x) = f’m“P“Y"(m)

for 2~ ¥=x<2"%*+! where Y(m)=Y.(m). Then, by the same way as used in the
first case, we have

3) Wl = K[A,, . ()P
Now we have to prove that
UWILM2 oll foo, poall oy = Koo, o ().
By (3), we see that the above inequality follows from
wllfe.pellpw = K,

which may be read as | f., ,,.w ™ "?|.=K. Consequently, it is enough to show that
for 2-*=x<2-**1

@l = K{ S mr|£GOUnCo- 1P}
that is,

ok
XU = K{ 3 mP= |y, (x)—1[P}V2.
m=1

However, the sum in the right hand side is greater than

0 s
K 3 mor=KQY-rert = Karod

m=2k-1
for 27%¥=x<2-%*1 which completes the proof.

ProOF OF LEMMA 2. Let us first prove the required inequality for the case
when O<p<a<-<o. Forany wéW and any numbers ¢ and J such that 0<e<1<9,
we may find a function w* which satisfies the following properties (cf. Beurling [2]):

1) w=w*,;
(ii) x®w*(x) is increasing;
(iii) x*w*(x) is decreasing;
1 1

@) [ w*@)dx=K [ w(x)dx.
0 0
Let us put P=afp, 1/P+1/0=1, oy+a,=—pa—1, and o,=—2/Q. Then, by
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Holder inequality, we have
@ LLOP = S m)]omeyw  m)omes) =
= { 3 Y@l (mp-ormresyirl 3w (1mym 2@ =
= Kllw'l3e{ 3 ¥em)lw* (1 m=errmes}ie =

= K[[lw*[l,]Ve{S}'/*, say.

According to the definition of Y (m)=Y,(m), we have

S= [ G Z mP= hin ()= 110" (Afm)] o} dxe =

i kg _‘t[ If(x) la{méz’:llx = m>21;x} 5

The first part of summation in the above will be denoted by J; and the second by J;.
If 27*<x<2"*+1 and m<2*-, then ¥, (x)=1. Therefore we have

h=K 3 mPaw*{l/m)—".

2k-l=m=1/x
By the property (ii), we have, for m=1/x,
Xw*(x) = m~ow*(1/m),
that is,

[w*(1I/m)*~%/? = [m°x°w* (x)]*~9/P.
Consequently we have

Jl = Kx&(l—a/p) [W* (x)]l-—a/p 2’ mPa1+6(1—a/p) - Kx—Pal—l[W* (x)]l—a/p_

2k-1=m=1/x
By property (iii), we have for 1/x<m,
[w* (Um)P=#/2 = [mtxw* ()=,
Hence we have
J2 = sz(l-—n/p)[w* (x)]l—a/p Z’ mPa;-!-e(l—a/p).
1/x<m
Since we may choose & so that Po;+&(1 —a/p)<—1, we have
Sy = Kx a2

Now returning to S, we have

1 s
S=K [If@Ix~ 2w I —*? dx = K [ |£Go)lex=/2+ [ (x)]~/ dx.
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Replace S in (4) by the above estimation, then we have

LAy, (N = KWL /o, p,all . W)

which is the required inequality.
Finally we shall prove Lemma 2 for the case when O<p=a<<. For this case

we need to show that
[ A4, (NP = KIS, ,.l2-

However, the left hand side is

& g-k+1

g”l m=r= [P w1 dx = K 3 f ]f(x)]’{"':g_lm-”—l} dx =

; §
= K [ |f()Pxrdx,
0
which is the required inequality.

3. ProoF oF THEOREM 1. Since ,4, ,(c,) is finite, we have for each m

(3 1An (el e <o

Consequently, there exists a function F,,¢ L%(0,1) whose Walsh—Fourier series is

Farv 3 An(eln.
Write E,={x€(0, 1): ¥,,(x)#1}, and for x€E,

Fm (x) '_—'fm (x) (lpm (X) = 1)'
On the other hand, we have

Fm (‘l’l_ 1) Gt ng Al(Am (cn))‘pn

and
Fm=D~ 3 4}V
Since 4,(4,,(c,))=4,(4:i(c,)), we have, for a.e. x€(0, 1),
Fu) () —1) = Fx)(¥m(x)—1),
S @)W =) (x)—1) = 1) (Y1 () = 1) (Ym(x)—1).

Therefore, we have f,,(x)=f(x) for a.e. x€E,NE,. Now we can define a function
by f(x)=f,(x) for xcE,. Since |JE,=(0,1), fis well defined at almost every

point of (0, 1). It is not hard to see th;t f€L'(0,1). And we have, for each m and n

that is,
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that 4,,(c,.;,)=—4,,(c,). Therefore
F‘m‘llm'V T o ;:)Am(cn)lpn'

Thus F,,(x)=—F,,(x){,.(x) for a.e. x€(0, 1), that is, F,,(x)=0 for a.e. x€(0, 1)\ E,,,
from which we get

fW— ”“5: AV

By the Hausdorff—Young theorem, we have

1/ W=Dl = K( Z |4n(cl) e
and so . A
a'Ap,a(.f) = KaAp,a(cn)'

By the application of Lemma 1, we get

a'“f”p = KaAp.a(cn) =2
Let us denote the Walsh—Fourier coefficients of f by (c}), then

FUn=D~ 3 An(cl)bn.

On the other hand, we have

fWm— 1)~"§ A V-

Therefore we get 4,,(c¥)=4,(c,) for each n, and hence ¢, =c,— c,’f}_,,,— Caym- Let
m— o, then we have c;=c,, which completes the proof.

PROOF OF THEOREM 2. We may suppose that [ f, ,«ll,< . Then, by Lemma
2, we have ,Jp,a( f)<-<. Hence we have, for each m,

Y,(m) = [ f(Ym—Dls < .
By the Hausdorff—Young theorem, we have
[4n(cllar = KX, (m).
Again by Lemma 2, we have finally

a'Ap,a(cn) = Ka‘zp,a(f') = Ka”f;,p,a"p'
4. From Theorems 1 and 2, we have

THEOREM 3. Suppose that 1=p<2 and oa=1/p—1/2. Then (c,) is the sequ-
ence of Walsh—Fourier coefficients of a function f¢,L,, if and only if A, ,(c,)< <.

The following result is a generalization of Y. Okuyama’s theorem in [6].
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THEOREM 4. Suppose that 1=p<2, f€L*(0,1) and

I~ 3 .
For a given sequence (a,), if '}im a,=0 and
&) Z(') |4 (a)l* =K Z(') |4, ()%,
and if
1 1
©6) [z ( [ PO d)" dx <<,
0 x

then there exists a function g€,L, such that g~ S’ a\,.
n=0
ProOF OF THEOREM 4. Let 1=p<2 and a=1/p—1/2. Then, by Lemmas 1, 2,

Theorems 1 and 2, we see that the finiteness of norms | f1l,, 24,,.(c,) and 21,,,,( )
are mutually equivalent. On the other hand, we have

Lo (P = 3 m ([ [/ W=D )™ =

o 2K+1_7 1 .
:kg; =22’k mv/z—z( A L2 (W (X)—1)2 d.x)p/ =

= S p/2—1 : 2 P2 _ 3 —p/2 . p/2
=K 2@y ( [ rEa) =& [ xr(f 2o d)"ax

Now, from (5), we have
2Ap,a(an) = K2Ap,a(cn) = Kz;fp,a(.f) 199

Consequently we have the conclusion from Theorem 3.
The following is a direct conclusion of Theorem 1.

THEOREM 5. Suppose that 1<=a=2, 1/a+1/a’=1, 1=p=a’ and a=1/p—1/a’.
For a given sequence (c,), if '}im c,=0 and

3 An(@lt = OmP),

where f<au, then there exists a function f¢,L, whose Walsh—Fourier coefficients
are c,’s.

The corresponding Fourier series analogue, which is a generalization of the
Boas theorem in [1] (cf. M. Sato [7]), is a corollary of our previous result in [4].
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A CHARACTERIZATION OF SEPARABLE
POLYNOMIALS OVER A RING

G. SZETO! and Y.-F. WONG (Chicago)

1. Introduction. Let R be a ring with 1 (not necessarily commutative) and R[X]
a polynomial ring in the indeterminate X such that rX=Xr for each rin R. A monic
polynomial f(X)=X"+4+a,_; X" '+.. +111X-+-a0 for some mteger n in R[X] is
called a separable polynomial if R[X]/(f(X)) is a separable ring extension over R
with a free basis {1, x, ..., x""'} such that x"=—aq,_;x""'—...—a;x— o, where
(f(X)) is the ideal of R[X ] generated by /(X) and x=X+(f(X )) When R is commu-
tative, a lot of interesting properties of a separable polynomial have been found
([1], [2]). It has been known that f(X) is separable over a commutative ring R if and
only if the determinant det (7°) of T is a unit in R where each entry of T is the trace
t(x'xJ) of x'xJ ([1], Theorem 4.4, p. 111). The purpose of the present paper is to
generalize the above characterization of a separable polynomial over a commutative
ring to a non-commutative ring finitely generated and projective over its center.

2. Basic definitions. Let s be an element in R[x]. Then s=ZX/-}r;x' for some
r; in R. We denote the i*-projection map from s—r; by m;. Then s=2ZX;m;(s)x".
The trace t is defined by t(s)=Z;m;(sx’). It is easy to see that t is an R-homo-
morphism from R[x] to R. Let 4 be a subring with 1 of R. Then R is called a separable
extension over A if there exist elements {a;, b; in R, i=1, ..., k for some integer k}
such that Xa;p;=1 and s(Za,®b)=(Za; ®b ))s for each s in R, where ® is
over A. Suchan X (a;®b;) is called a separable idempotent for R (see [1], [3], [4],
or [5]). Throughout, we assume that R[x] is a ring (_R[X]/( f(X))) where f(X)=
—X +a,_1 X"+ ...+a, X +a, with a free basis {l,x, ..., x"~1} over R, and that

C is the center of R.

3. Separable polynomials. In this section, we shall characterize the separability of
f(X) in terms of the determinant of the matrix 7" of the trace 7 of R[x]. We begin
with some properties of the trace 7.

LemMMA 3.1. Let T be an n by n matrix with the (i+1, j+1)-th entry t(x'x’)
for i,j=0,1,...,n—1. If there exists an n by n matrix P over R such that
PT=1, the identity matrix, then (1) there exist elements {z;/i=0,1,...,n—1} in
R[x] such that t(sz;))=t(z;s)=m;(s) for each s in R[x] where m; is the i-th pro-
Jection of R[x] to R, and (2) t is free over R[x], that is, (ts)(u)=1t(su)=0 for
each u in R[x], then s=0 in R[x].

1 This paper was written during the first author’s sabbatical leave at the University of Chicago,
and he would like to thank Professor I. Herstein for his excellent lectures on Galois theory and
Professor R. Swan on projective modules.
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Proor. (1) Let P=[a;;] for some a;; in R such that PT=1. Then
Zragt(x*x)=8;; (=0 for i=j, and 1 for i=j). Hence #((Z,aux")x’)=6;;. Now,
let z;=ZX,a;x*. We have that #(z;x/)=4,;;. Since x/ is in the center of R[x] for
each j, t(z;x’)=1t(x'z)=6;;=mn;(x’). Hence, for s (=Z;r;x") in R[x],

t(z;5) = 1(z;(Z;x°r)) = Z;(t(zixD)r)) = Zrjt(z;x7) = Zrjt(xiz) = t(Z;r;x/z) = t(s2).
Also, Y
Zrt(zix?) = Z;rym(x)) = 7y (2r;xY) = my(s).

Thus, t(z;5)=1(sz;)=mn;(s) for each s in R[x].

(2) Let ts(u)=t(su)=0 for an s in R[x], and for each # in R[x]. Then ?(sz;)=
=m;(s)=0 for each i=0,...,n—1 by part (1). But then s=X;m;(s)x'=0.

Next we show that PT=/ as given in Lemma 3.1 is sufficient for the separa-
bility of R[x] over R.

THEOREM 3.2. If PT=I as given in Lemma 3.1, then R[x] is a separable exten-
sion over R.

Proor. Let {z;} be given as in Lemma 3.1. Then we claim that X;z;®x' is
a separable idempotent for R[x]. In fact,

t(1-Zizx)u) = t(w)—1(Zz;x'u) = Zim(ux’)—t (Zz;x'u) = 2t (z;ux)—1(Zz;x'u) = 0
for each u in R[x], so Z;z;x'=1 by part (2) of Lemma 3.1.
Moreover, for each # in R[x],
u(Zz;®x) = Zuz;@x' = Zy(Zim (uz) x*) @ x* = Z,(Z, t(zp uz) )@ x' =
= Z(x*® Zit(mruz)) %) = Zy(¥* @ Zit(z; z, w) x') = Z,(x* @ Z;my (z,u) %) =
=2 xQz,u=Cx*Qz)u

(by Lemma 3.1 (1)). Let u=1. We have X;z;®x'=Xx'®z;. Thus u(Z,x'®z)=
=(Z;x'®z;)u for each u in R[x]. Therefore, R[x] is separable over R.
In order to show the converse of Theorem 3.2, we have the following lemma.

LemMmA 3.3. If R[x] is separable over R, then for each s in R[x], m(s)=
=1t(z,5)=1(sz;) for some z, and z; in R[x] for k=0, ...,n—1.

Proor. Let Zx;®y;, i=1,...,k for some integer k be a separable idem-
potent for R[x]. Then z,=2Z;m (x;)y; and z;=2Z;x;m,(y;) are required to satisfy
the equations in the lemma from the proof of Theorem 2.1 in [1], p. 92.

THEOREM 3.4. If R[x] is separable over R, then there exists a matrix P of
order n such that PT=1.

ProoF. Since R[x] is separable over R, there exist elements z; in R[x] such that
ns)=1(z;s) for each s in R[x] by Lemma 3.3. Let z;=Z,a,;x* for some a in
R, i=0, ..., n—1. Then

m(xY) = 6;; = t(z;ix%) = t(Zpaux*x?) = (Zyay) t(x*x’)

which is the (i+ 1, j+ 1)-th entry of the matrix PT where P=[g;;] and T=[t(x'x)].
Thus PT=1.
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We remark that P is not unique in Theorem 3.4 since there exist z; (= Z;x;m(y)))
such that m;(s)=#(sz{) by Lemma 3.3. Hence n;(x/)=1(x’z])=1(z{x)=6,;. Let
zj=2Zdyx* for some dy in R. Then P'T=I where P'=[d;;]. However, for R
finitely generated and projective over its center C, we shall show that P is unique.

THEOREM 3.5. Let R be finitely generated and projective over C. Then R[x]
is separable over R if and only if T is invertible.

PRroOF. Since R[x] is separable over R, there exists a matrix P of order n such
that PT=1I by Theorem 3.5. Since R is finitely generated and projective over C,
so is R[x] over C (for R[x] is free over R). Hence the C-algebra Homg(R[x], R[x])
is also finitely generated and projective over C. Considering P and T as elements in
Homg(R[x], R[x]), we have TP=I from PT=I ([1], Exercise 10, p. 38). Thus T
is invertible. The converse is clear by Theorem 3.2.

Now we generalize the characterization of a separable polynomial f(X') in R[X]
in terms of the determinant of 7 from a commutative ring R to a non-commutative
ring R finitely generated and projective over its center C.

THEOREM 3.6. Let R be a non-commutative ring finitely generated and projective
over its center C. Then, R[x] is separable over R if and only if the determinant of
T is a unit in C. In this case, the entries of P in Theorem 3.5 are in C.

PRrOOF. Since rt(x'x’)=1t(rx'x’)=t(x'x%)r for each r in R, t(x'x’) is in C
for all 7 and j. Now, suppose the determinant of 7, det(7), is a unit (and hence in C).
Then T is invertible. Hence R[x] is separable over R by Theorem 3.5. Conversely,
if R[x] is separable over R, then T is invertible by Theorem 3.5 again (note that
T is over R). Since T is over C, det(T) is defined. Suppose that det(7") is not a
unit in C. There exists a maximal ideal M of C containing det (7). By hypothesis,
R is finitely generated projective and faithful (for 1 is in R) over C, MR+ R. Hence
PT=I in Homg(R[x], R[x]), where C=C/MC and R=R/MR#0. But det(T)=0
in C, so that PT=I is a contradiction. Thus det(7T) is a unit in C. In this case,
PT=1, so

(*) Zka,-kt(.xkxj) = 6,’1', k, l,J = 0, veey n—1.

Since det (7) is a unit in C, the system of equations (%) is solvable for a; in C
by Cramer’s rule. Thus P is over C.

We note that the determinant of a matrix over a non-commutative ring is not
defined, so Theorems 3.4 and 3.6 are not equivalent.

We conclude the paper with two separable polynomials by using Theorem 3.6.

ExampPLE 1. Let f(X)=X"—b for a b in C of R as given in Theorem 3.6. Then
T=[t;;] where t;,=n, t;;=bn for i+j=n+2 and other #;; are 0. Hence det (T)=
=n"b""1. Thus f(X) is separable over R if and only if b and » are units.

EXAMPLE 2. Let f(X)=X"—X—b for a b in C of R as given in Theorem 3.6.
Then T=[t;;] where t,;=n, t;;=n for i+j=n+1, and t;=bn for i+j=n+2,
and others are 0. Hence det(7)=n"(b""+(—1)"*). Thus f(X) is separable if
and only if n and (b"~*+(—1)"*") are units in C.
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NON-FISSILE RINGS WITH MIXED ADDITIVE
GROUP

A. FACCHINI (Udine)

Let R be a ring, R* the additive group of R, R, the torsion subgroup of R*.
If R, is a ring theoretic-direct summand of R, then R is said to be a fissile ring [1].
The following question was posed by S. Feigelstock [2] in a recent paper: Let G
be a mixed group satisfying p(G/G,)#G|G, for every prime p, G, = the torsion
part of G. Must there exist a non-fissile (associative) ring R with Rt*=G? In this
short note we prove that the answer is affirmative. Our result generalizes [1] Theorem
7 and [2] Theorem 1.

PrROPOSITION. Let G be a mixed group, G, its torsion subgroup, p a prime,
G, the p-torsion part of G. Suppose G,#0 and p(G|G,)#G|G,. Then there exists
a non-fissile associative commutative ring R with R*=G.

Proor. Let n,: G—~G/G, and =,: G/G,—~(G/G,)/p(G/G,) be the canonical pro-
jections. Fix a non-zero homomorphism ¢: (G/G,))/p(G/G)—~Z/pZ. Let u:Z/pZ®
®Z[pZ—~Z[pZ be the homomorphism induced by the multiplication in the field
Z/[pZ. Since G,#0, there exists an injective homomorphism 1: Z/pZ—~G. Then
the image of the composed mapping v=1u((¢n,m)®(¢n,7,)): GRG—~G is iso-
morphic to Z/pZ, and therefore v#0 and v(G ® G)CG,. Define a multiplication
on G via v; this multiplication induces a commutative ring structure R on G. Since
R3=0, the ring R is associative. Finally, R is non-fissile, because if R=R,HS is a
ring direct sum, then 0#R*=S2cR, and S*R,#0, a contradiction.
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ALMOST EVERYWHERE CONVERGENCE
OF ORTHOGONAL SERIES

H. KITA (Osaka)

1. Introduction. Yoneda [5] showed that if
(1.1) lim f,(0) ="f(x) a.e. 'on [0, 1],
then there exists a positive function é(x) and, for every &=0, there exists an integer
n(e) such that,
(1.2) |fn(x)—f(x)] < &d(x) everywhere
for n>n(e). This function d(x) is termed a control function of (1.1). Wagner and
Wilczynski [4] showed that (1.2) is equivalent to the well-known Egoroff’s theorem

and Taylor’s theorem. We apply the control function to the a.e. convergence of
orthogonal series.

2. Main theorems. Let {¢,(x)}, be an orthogonal system on [0, 1] and

8

@.n ) Cn P (%)

be an orthogonal series which satisfies 2 ¢2< + . It is well known that series

n=0
(2.1) converges in L%[0, 1] to an L*-integrable function f(x). Let s,(x) and ¢%(x)
be the n-th partial sum and the (c, a)-mean of the series (2.1), respectively. Let {n,},
be an increasing sequence of integers and set

a2({n}, x) = (1/42) 2 A5, (),

where A:=[n-’|1-oc)- Let k=0, y=min (1, k/2). Put
4 ={@ BB =>1—a/k, 0<a=17), 4={@Ply<x<+oo f>1—yk),
A = AIUA?'.

The following are the main theorems.
THEOREM A. Suppose that fc?,< 4o and (x, p)EA. If
n=0

2.2) }1}2 ol (x) = f(x) ae. on [0,1]
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and (2.2) has an LP-integrable control function for some p=0, then
(2.3) 11m (1/4%) Z'A,,_,,Ia" YX)—f()* =0 a.e. on [0,1]

and (2.3) has an L?**-integrable control function, where p*=min (2, p).

THEOREM B. Suppose that fcﬁ {log log (n+3)}*<+< and (o, f)€d4. Then
n=0
(2.9 lim (1/4% Z'A,,_vla” ({n}s x)—fX)fF =0 ae. on [0,1]
for each increasing sequence {n,} of integers. Moreover, (2.4) has an L**-integrable

control function.

3. Lemmas. To prove the main theorems we need the following lemmas. When
]1m n f,(x)=f(x), a majorant function f*(x)= sup | /,(x)| plays an important role

in determining a class of control functions. Yoneda [6] proved the following lemma.

Lemma 1. If (1.1) holds and f*(x) is an LP-integrable function for some positive
p<+-oo, then (1.1) has an LP-integrable control function.

The following lemma is well known. C, C,, C,, ... will denote positive con-
stants not necessarily the same at each occurrence.

LEMMA 2 (Zygmund [7], p. 193). If Zcﬁ{log (n+2))?<+e, then s,(x)

converges a.e. to an L*-integrable function f (x) and

1 oo
f sup ls,(M)]2dx=C 2’ ci{log (n+2)}.
By Lemmas 1 and 2 we have a trivial consequence. If 2’ c2{log (n+2)}*< + oo,

then s,(x) converges a.e. to an L%integrable function and 1ts convergence has an
Lz-integrable control function.

LEMMA 3. If 2 ci<+ o, then
n=0

3.1) fl{ 5' n'llaﬁ‘l(x)—-a:(x)lz}dx =C 2”' 2 (ax=>1/2).
o n=l n=0

ProoF. It is a consequence of the proof of 2.6.2 in Alexits [1].
LemMA 4 (Flett [2], p. 115). Let r=k=>1, a>—1 and f=a+k~*—r~*. Then

(3.2) {Sn et 1) —af I} = Cf > nost (x) — ot (Y.
n=1 n=1
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LEMMA 5. If 3 ci<+ oo, then
n=0

1 oo oo
(3.3) [{Zn Yt @) —ct@Ifrdx=C 3 c
0 n=1 n=0
for each r=2 and B>1—r"1

PROOF. Set e=f—(1—r~1) and a=¢+2~'. Then we have f=a+2"1—r-!
and a>1/2. Apply Lemma 4 by setting k=2 in (3.2). Hence we have

JA gn"‘ldf“(x)—af(x)l'}zf’ dx = C [{ g n~1lo2~1(x)— 0% (x)|2} dx.
From (3.1) we have (3.3).

LEMMA 6. Suppose that Zm c2<+ oo and (o, B)EA. Then
n=0

(3.4) [{swp (1143 3 4511082 -t dx = ¢ S 2.
¢ n=0 v=0 n=0

Proor. Set y=min (1, k/2). Two cases arise; one is («, f)€4,, the other is
(o, p)EA,. If O<a=y, then k(l1—pB)<a=y=1, thus we can take r(=>1) which
satisfies k(1—pf)<I/r<a and set 1/r+1/s=1. Then, by Hélder’s inequality,

(1/4) 3 43231081 (x) -t ()I* =
= (1/49{ 3 v1lod () —o? (x)r"}"’{Z:l VI (4sTiy Y =

v=1

= (CfAD{ 3 v2]o8=1(x) — of (X)PF)Vr {nsfrnte=Ds+1yus —
= (Cun*AD{ 3 v-2lot - (x)— ot (I =
v=1

= Co{ 3 v 1ot () - o P,

Hence it follows that

@3.5) [ {sup (1149 3 A=3108-1(9—od () dx =
9 n=0 v=0

1 oo
= G [{ Zv ol -t It dx.
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Since 1/r<a=y=k/2 and k(1—B)<1/r, we have rk>2 and p>1-—1/rk. Apply
Lemma 5 with a parameter rk instead of r. From (3.5), (3.4) holds.
Next we prove (3.4) for («, f)€4,. Set

o3P () = (/4D 3 A3Hol - ) — ol

By the well-known results of Alexits [1]; p. 69, it follows that

sup 02 #(x) = sup o (x).

n=0 n=0

By the preceding argument, (3.4) is valid for (y, ). Hence we obtain (3.4) with
(o, B)€4,. This completes the proof.

LemMA 7. Suppose that a=0, =0 and k=0; and that
3.6) lim ol (x) = f(x) ae. on [0,1]

where f(x) is an L*-integrable function. If (3.6) has an LP-integrable control function
for some O0<p<+ <=, then

a7 lim (1/42) 3 433008 ()—f W} =0 ae. on [0,1]

and then (3.7) has an L?*/*-integrable control function, where p*=min (2, p).

Proor. Let &(x) be a control function of (3.6). For any &>0 there exists a
positive integer n(¢) such that |o%(x)—f(x)| < &d(x) everywhere for all n>n(e).
When e=1, there exists a positive integer »n; such that |o?(x)—f(x)|<d(x) every-
where for all n>n;. Put ny,=n(e"/*). Without loss of generality we can take n,>n;.
If n>n,, then

(1/43) 2 AL oB () —f (I = (1/42) é’;A::bmaX{laf @@ 0=v=n}+

+(1/4) 3 AP+

v=n+1

Hence, there exists a positive integer m(g) such that

(1/43 _20 ArZY ol (0)—f (R)* < &dy (x)
everywhere, for all n=>m(e), where
6,(x) = max {|o? (xX)—f(X)[*: 0 =v = ny}+2{6(x)} e LP"/.
Therefore 6, (x) is a control function of (3.7). Lemma 7 is proved.
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4. Proof of the main theorems. PROOF OF THEOREM 4. For any ¢>0 there ex-
ists a positive integer N such that

oo
4.1) Dt —"gd
) : n=N+1
We consider two new series:

" ¢, for n=N,
4.2) ,=Z; a,P,(x) where a, = {0 for n= N;
and

s 0 for in= N,
4.3) =20 b,¢,(x) where b, = {c" for n=> N.

Let us denote the partial sum and the (¢, f)-mean of the series (4.2) and (4.3) by
sp(a; x), f(a; x) and s,(b; x), o8 (b; x), respectively. It is clear that

44 of (x) = ol (a; x)+a5(b; x).
Using Lemma 6 with series (4.3) we obtain from (4.1) that

1 5 P POS
[ {sup (1/43) > 43z3168=2(b; )—of(b; X)*P*dx=C by =C 3 c3 < Ce
0 nz=0 v=0 n=0

n>N
Hence
4.5)

meas {x€[0, 1]: fim {(1/43) §, A=1|a8=1(b; X)—af (b; X)[}* > £} = Ce.
On the other hand, if n=>N, then
ohlas ) = (1aD) 3 af=ds,(a: 2) = (1/AD) 3 47463 D=su(}+w ().

Therefore nl_l{g c8(a; x)=sy(x) a.e. on [0, 1] and so, we get
“6)  lim (1/43) ;';A::uae-l(a; x)—oba; k=0 ae. on [0,1].
From (4.4), (4.5) and (4.6), it follows that
@.7) Tim (1/45) 20 A%=1oP-1(x) =P () =0 ae. on [0, 1].
Since ,,th of(x)=f(x) a.e. from the hypothesis, we get (2.3).

At last we shall prove that (2.3) has an L?"/*-integrable control function. By
Lemmas 1 and 6, (4.7) has an L**-integrable control function. From the hypothesis,

68(x) converges to f(x) a.e. on [0, 1] and has an LP-integrable control function, and
so by Lemma 7 it follows that

lim (1/49) 3 43=3of () —f ) = 0
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a.e. on [0,1] and the above convergence has an L?"/*-integrable control function.
Since

(1/42) g Aot () —f () =
= c{(1/42) 2 45731082 () — o (W) +(1/42) 2 A2730? (D)~ ),

we get the required result.

Proor oF THEOREM B. Let {n,}, be any increasing sequence of positive inte-
gers and set

(48) 'I’O(x) o= (1/d0) {CO ‘Po(x) Foeo FCpy Pug (x)}’
where dy=(c§+...+c2)"? and
4.9 ¥y (x) = (1/d ) {cn, 1 +1Pn, 3 +1(X) + ... +¢5, 05, (X)),

where d,=(cj, _,+1+...+ci)? (v=1,2,3,...). We consider the following ortho-
gonal series:

(4.10) Sd,p,(x) where > d? <o
v=0 v=0

Since {n,} is an increasing sequence, we have

5 dy{loglog(v+3)}* = 5’ {cp,_,+1+... +cp Hloglog (v+3))2 =
v=0 v=0

= 3 {ch .nlloglog (1,1 +4)+... +cb, (loglog(n, +3))} =

oo

= 2 cafloglog(n+3)}* <+
0

By Theorem 2.8.1 in [1], the sequence ¢Z(, x) of the (c, f=>0)-mean of the series
(4.10) converges a.e. to an L2-integrable function f(x). Moreover

> Poy oo
S sup ol @, x)|*dx = C 3 d3{loglog(v+3)}* = C 3 ci{loglog (n+3)} < +c=.
o n=0 v=0 n=0

By Lemma 1, the convergence lim ¢f(y, x)=f(x) has an L2-integrable control
function. Hence by Theorem A

@.11) lim (1/49) 3 A2=1|oB-1(), x)—f (D) =0 ae. on [0, 1]
Lt v=0
and (4.11) has an L**-integrable control function. Since

Zanw= Zao
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from (4.8) and (4.9), we get s, (¥, x)=s, (x) and o=y, x)=0f*({n,}, x). Thus
we have proved Theorem B.
Our method is applicable for the following result:

fl{sup (1/4% Zn' A::}.|of"({nv}, x) —f(x)i"}2/" dx=C 5’ c2{loglog (n+3)}
0 n=0 v=0 n=0

for each (o, f)€4 and for each increasing sequence of positive integers {n,}.
The next corollaries follow immediately from Theorem B.

CoroLLARY 1 (Sunouchi [3]). If 3 ci{loglog (n+3))2<+oco, then there
n=0

exists an L*-integrable function f(x) such that

lim (1/43) 3 437315, () —/ =0 ae.on [0,1]

for each a=0, k=0 and for each increasing sequence of positive integers {n,} and
that its convergence has an L**-integrable control function.

COROLLARY 2. If Zw'c?, {loglog (n+3)}>*<+<e, then there exists an L*in-
n=0
tegrable function f(x) such that

lim (1/47) 3 43731020~/ =0 ae. on [0,1]

for each (o, f) which satisfies the condition O<a=2, B>—1/2 or 2<a<+ o,
B> —1/a. Moreover, its comvergence has an L**-integrable control function.

COROLLARY 3. If 2°° cp{loglog (n+3)}*<+<, then there exists an L*in-
n=0
tegrable function f(x) such that

lim (14171 3 |of () —f ()] = 0

a.e. on [0,1] for each p=—1/2. Moreover, its convergence has an L*-integrable
control function.
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ANOTHER GENERALIZATION OF A THEOREM
OF A. KERTESZ

A. KAYA (Izmir) and K. KAYA (Sivas)

We say a ring R is left s-unital if and only if x€ Rx for all x€R. It is known
that if F is a finite subset of a left s-unital ring R then there exists an element e in R
such that x=ex for all x€F (see, e.g. [2, Theorem 1]).

In [3], a theorem of Kertész [1] has been generalized as follows: Let A4 be an
ideal of a ring R, and B an additive subgroup of R such that R=4+B. If R/A
is left s-unital and AB=BA=0, then R is the ringtheoretical direct sum of 4 and B

The present objective is to generalize the above result as follows:

THEOREM 1. Let A be an ideal of a ring R, and B an additive subgroup of
R such that R=A+B. If R|A is left s-unital and there exist positive integers k=h
such that B*ACSB*, AB"CB' and B*ANB**'=0=AB"NB"*', then R is the
ringtheoretical direct sum of A and B**1. If, furthermore, R is left s-unital (the
right annihilator of R is 0) then B**'=B"*1,

In preparation for proving our theorem, we state the following

LEMMA 1. Let A be an ideal of a ring R, and B an additive subgroup of R
such that R=A+B.

(1) If R/A is idempotent then R=A+B" for any positive integer n. If, fur-
thermore, AB"=0 for some positive integer h, then B"+!'=RBI*2

(2) If R/A is left s-unital and B*A=0=AB" for some positive integers k=h,
thfn I$=A @ B* (ringtheoretical direct sum). If, furthermore, R is left s-unital then
B*=B",

PRrOOF. (1) The first assertion is almost evident. Since A+B=R=A+B?
AB"=0 gives B'"t1=pBh+2

(2) By (1), R=A+B* and B"*+'=B*=B%*. Now, let a=xy;+...+x,),
(x;, ¥;€B*) be an arbitrary element of AN B*. Then, there exists e€B* such that
x;—ex;€A for all i. Then a=(x;—ex)y+...+(x,—ex,)y,+ea=0. Thus, we
obtain R=A@B* Henceforth, we assume further that R is left s-unital. Again by
(1), A+B*=R=A+B" and then B*SB"+1I, where I=AN(B*+B"). Obviously,
RI=(A+B¥I1=0, and hence I=0. This proves B*CB" and similarly B"C B

We are now ready to complete the proof of our theorem.

PROOF OF THEOREM 1. Obviously, B**'4ACB*4ANB**'=0 and AB"*'=0.
Hence, the assertion is immediate by Lemma 1 (2).

REMARK. Let 4 be an ideal of a ring R, and B an additive subgroup of R such
that R=A+B. If R/A is left s-unital, then the following are equivalent: 1) A=R;
2) B is nil modulo 4; 3) B is nilpotent modulo A4. In fact, 1)=3)=2). We prove that

6
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2) implies 1). Given x€R, we can find e€B such that x—ex€A. Since e"€A for
some positive integer », we see that

x = (x—ex)+e(x—ex)+...+e"(x—ex)+e"xc A,

which proves R=A. Further, we can easily see that the following are equivalent:
1)’ BER=0 for some positive integer k; 2)’ B is nil modulo 4 and B*4=0 for some
positive integer k; 3)” B is nilpotent.
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A NOTE ON MAPPINGS OF EXTREMALLY
DISCONNECTED SPACES

D. S. JANKOVIC (Belgrade)

1. Introduction. In recent years various classes of non-continuous mappings
between topological spaces were introduced by use of the concepts of semi-open
sets, pre-open sets and a-sets in topological spaces. The purpose of this note is to
investigate the interrelations among these classes of mappings and to apply obtained
results in case of mappings of extremally disconnected topological spaces. In Section
2 we establish several relevant basic properties of pre-open sets and a-sets in topo-
logical spaces. In Section 3, pre-continuous and pre-open mappings are further
investigated and their relations with semi-continuous and semi-open mappings are
discussed. In particular, sufficient conditions for continuity and openness of map-
pings of a-topologies are given. Our main results are stated in the final section.
Extremally disconnected topological spaces are characterized as the spaces whose
semi-open sets are pre-open and it is shown that extremally disconnected spaces
are pre-open hereditary and are invariant under semi-continuous pre-open surjec-
tions. We also improve several results due to Noiri [16]. It is proved that a semi-
-continuous function from an S-closed extremally disconnected space into a Hausdorff
space is d-closed.

The topological spaces are not assumed to satisfy any separation axioms except
those explicitly stated.

2. Preliminary definitions and results. Throughout, (X, 7') and (Y, S) will denote
topological spaces (hereafter referred to as “spaces™) and T-cl (A4) (7-int (4)) will
denote the closure (interior) of a subset 4 of a space (X, T), although we may sup-
press the T when there is no possibility of confusion. A subset 4 of a space (X, T)
is said to be regular-closed (regular-open) if A=cl (int (4)) (4=int (cl(4))). The
collection of all regular-closed (regular-open) subsets of (X, T')is denoted by RC (X, T)
(RO (X, T)). The topology T, on X which has as its base RO(X, T) is called the
semiregularization topology of (X, 7). A point x€X is in the O-closure [24] of a
subset A4 of (X, T) (x€T-cly(A)) if cl(U)NA=0 for each open set U containing x.
Clearly T-cl (4) c T';-cl (A)c T-cl,y (A) for each subset 4 of (X, T'). A subset 4 of a
space (X, 7) is said to be semi-open [11] (resp. pre-open [12], a-set [14]) if A
ccl (int (4)) (resp. Acint(cl(A4)), Acint(cl (int (4))). The collection of all sub-
sets of a space (X, T) which are semi-open (resp. pre-open, o-sets) is denoted by
SO (X, T) (resp. PO (X, T), T*). It was observed in [14] that 7% is a topology on X
and that TcT*cSO(X,T). Moreover T*=SO (X, T)NPO(X, T) [19]. Semi-
closed sets and semi-closure are defined in a manner analogous to the corresponding
concepts of closed sets and closure [4]. The collection of all semi-closed subsets of a
space (X, T) is denoted by SC (X, T') and the semi-closure of a subset 4 of (X, T)
is denoted by scl (4). Let 4 and B be nonempty families of subsets of spaces (X, T)
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and (Y, S) respectively and let f: (X, T)—~(Y, S) be a function. We say that f is
AB-continuous (4B-open) if f~1(V)€A(f(U)EB) for each VeEB (UcA). If A=
=SO(X, T) (resp. A=PO(X,T), A=T%) and B=S, then an 4B-continuous func-
tion f is called semi-continuous [11] (resp. pre-continuous [12], a-continuous [13]).
If A=SO(X,T) (resp. A=PO(X,T)) and B=SO(Y,S) (resp. B=PO(Y,S)),
then an AB-continuous function f is called irresolute [5] (resp. pre-irresolute [19]).
If A=T and B=SO(Y, S) (resp. B=PO(Y,S), S%), then an AB-open function
fis called semi-open [1] (resp. pre-open [12]), a-open [13]). If A=SO(X, T) (resp.
A=PO(X,T)) aud B=SO(Y, S) (resp. B=PO(Y, S)), then an 4B-open function f
is called pre-semi-open [5] (resp. p-open). We also need the following definitions. A
function f: (X, T)—~(Y,S) is said to be almost continuous (S and S) [21] (resp.
0-continuous [7], weakly continuous [10]) if for each x€X and for each open set V'
containing f(x) there exists an open set U containing x such that f(U)cint (cl (V))
(resp. f(cl(U))ccl(V), f(U)ccl(V)). Almost continuity (S and ) implies 0-con-
tinuity and 6-continuity implies weak continuity, but the converses are false. Also,
it is known that a-continuity implies @-continuity, but the converse is false. A
function f: (X, T)—~(Y, S) is said to be almost closed [21] if f(U) is closed for each
UeRC(X, T).

PRroOPOSITION 2.1. ([14]) SO(X, T*)=SO X, T') for any space (X, T).
The following proposition will be very useful in the sequel.
ProPOSITION 2.2. If A€SO(X, T), then T*—cl(4A)=T—cl(4)=T,—cl(A).

Proor. We have only to prove that 7T'g—cl(4d)cT*—cl(4) for 4€SOX,T).
Let x¢T*—cl(4). Then there exists a Ue€T* such that xceU and UNA=0.
This implies that T—int(U)NT—int(4)=0 and T—cl(7T—int(U))NT—int(A4)=0.
Consequently, T—int (T—cl(T—int(U)))ﬁT—int(A)=0 and T—int(T—cl(T—-
—int (U)))NT—cl (T—int (4))=0. Since A€SOX,T), AcT—cl(T—int(4)).
So, T—int(T—cl(T—int(U)))NA=0. Since UeT* x€T—int(T—cl(T—int(V))).
Hence x¢ T,—cl(4) and the proof is complete.

COROLLARY 2.3. T \=(T%), for any space (X, T).

ProOF. Since regular-closed sets are precisely semi-open closed sets, it follows
from Propositions 2.1 and 2.2 that RC (X, T)=RC(X, T®). This implies 7T y=(T1");.

COROLLARY 2.4. If A is a subset of a space (X, T), then

(a) T*—int (T*—cl(4))="T—int (T—cl(A)).

(b) T°—cl(T*—int (T*—cl(4)))=T—cl (T—int (T—cl(4))).
(c) [19, Proposition 1] T'—cl (T—int (T—cl (4)))c T*—cl(A).

PRrOOF. (a) Let AcX. From Proposition 2.1 it follows that SC (X, T%)=
=SC(X,T) so that T*—cl(A4)eSC(X, T). By Proposition 2.2, T*—int(F)=
=T—int(F) foreach FESC(X, T) so that T*—int(T*—cl(A))=T—int(T*—cl(4)).
Since T—int(T*—cl(4))=T—int(T—cl(4)) [3, Lemma 1.2], we conclude that
T*—int(T*—cl(4))=T—int(T—cl(4)).

(b) This follows from (a) and Proposition 2.2.

(c) This is an immediate consequence of (b).
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COROLLARY 2.5. Let (X, T) be a space. Then

(a) PO(X, TH=PO(X, T).

(b) [14, Proposition 10] (T*)*=T".

() T*—cl(A)=T—cl(A)=T,—cl(4)=T—cly(A) for each A€PO(X, T).

PrOOF. (a) This follows from Corollary 2.4 (a).

(b) Since T*=SO(X, T)NPO(X,T) [19, Theorem 3], the result follows from
Proposition 2.1 and (a).

(c) Let A€PO(X,T). Then AcT—int(T—cl(4)), and hence T—cly(4)C
< T'—cl(T—int(T—cl(4)))=T—cl(T—int(T—cl(A))) since the closure of an open
set coincides with its closure [24]. By Corollary 2.4 (c) it follows that T—cl,(A4)C
cT*—cl(4). On the other hand, T*—cl(B)cT—cl(B)cT,—cl(B)cT—cly(B)
for each Bc X. Therefore, T*—cl(A)=T—cly(A) and the result follows.

The following lemma is easily established.

LEMMA 2.6. If A is a subset of a space (X, T), then
(a) int(cl(A4))cscl(A).
(b) int(scl(4))=int (c1(A)).

PRrROPOSITION 2.7. Let A be a subset of a space (X, T). Then
(a) A€ PO(X, T) if and only if scl(A)=int (cl(4)).

(b) A€ PO(X, T) if and only if scl(4)€ RO (X, T).

(¢) RO(X, T)=PO(X, T)NSC(X, T).

PrROOF. (a) Let A€PO(X,T). Then scl(4)cscl(int(cl(4))) and since
int (cl(A4))€ SC(X, T), scl(4)cint (cl(4)). By Lemma 2.6 (a) it follows that scl(4)=
=int(cl(4)). The converse is obvious.

(b) Let scl(4)€¢ RO(X, T). Then scl(A)=int (cl (scl (4))), and hence scl(4)c
cint (cl (cl(A4)))=int (cl(4)). By Lemma 2.6 (a) it follows that scl(4)=int (cl(4)).
By (a), A€ PO(X, T). The converse follows from (a).

(c) This follows from (a) and (b).

LemMMA 2.8. If A and B are subsets of a space (X,T), AcBccl(A4), and
BcPO(X,T), then A€PO(X,T).

Proor. Since AcBccl(4), scl(4)cscl(B)ccl(4). Proposition 2.7 (a) implies
that scl(4)cint (cl(B))ccl(4) since BEPO(X, T). Since int (cl(4))=int (cl(B)),
we conclude that A€ PO(X, T).

3. Pre-continuous and pre-open functions. Mashhour et al. [12] observed that
pre-continuity coincides with almost continuiuty in the sense of Husain [9]. Rose [20]
proved that a function f: (X, T)—~(Y, S) is almost continuous in the sense of Husain
if and only if f(cl(U))ccl(f(U)) for each U€T. In the following proposition we
offer some more characterizations of pre-continuous functions. The straightforward
proof is omitted.

PropoSITION 3.1. The following statements are equivalent for a function
[: (X, D~(¥, 5).

() f is pre-continuous.

(b) f(cl (int(4)))=cl (f(A)) for each AcCX.

(c) f(cl(U))cel(f(U)) for each UESO(X, T).
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In [25] Wilansky defined a function f: (X, 7)—(Y,S) to be almost open if
() cel (f1(V)) for each VES. As it was observed in [12] pre-openness
coincides with almost openness in the sense of Wilansky. In the following proposition
we characterize pre-open functions.

ProrosiTioN 3.2.  The following statements are equivalent for a function
S (X, T)~(Y, S).

(a) f is pre-open.

(b) /7 (cl(int(B)))ccl (f~*(B)) for each BCY.

() fF~H (W) cel(f~2(V)) for each VESO(Y, S).

Let f:(Y,T)—~(Y,S) be a function. Then a function f,: (X, T%—~(Y, S)
(resp. f*: (X, T)~(Y, 8%, f.: (X, TH~(Y,S%) associated with f: (X, T)~(Y, S)
is defined as follows: f,(x)=f(x) (resp. f*(x)=f£(x), f,(x)=f(x)) for each x€X.
Our next result immediately follows from Proposition 2.1 and Corollary 2.5 (a).

PROPOSITION 3.3. Let f: (X, T)—~(Y, S) be a function. Then

(@) f is pre-continuous (semi-continuous) if and only if f, is pre-continuous
('semi-continuous).

(b) f is pre-open (semi-open) if and only if f* is pre-open (semi-open).

(¢) f is pre-irresolute (irresolute) if and only if f, is pre-irresolute (irresolute).

(d) f is p-open (pre-semi-open) if and only if f, is p-open (pre-semi-open).

Mashhour et al [13] have shown that every pre-continuous a-open function is
pre-irresolute. The following proposition improves this result.

ProrosiTioN 3.4. If a function f:(X,T)—~(Y,S) is pre-continuous and semi-
open, then f is pre-irresolute.

Proor. Let V€ PO(Y, S). Since fis semi-open, {1 (V) f~(scl(V)) el (f~1(V))
by Theorem 2 of [17]. By Proposition 2.7 (b), scl (V)€ RO(Y, S) so that = (scl(¥))e
€PO(X, T) because fis pre-continuous. Lemma 2.8 implies that f=1(V)€ PO (X, T)
and the result follows.

Since pre-continuous semi-open functions are pre-semi-open [18, Theorem 2.5],
combining this result and Proposition 3.4 we obtain the following corollary.

COROLLARY 3.5. 4 function f:(X,T)—~(Y,S) is pre-irresolute and pre-semi-
open if and only if f is pre-continuous and semi-open.

PROPOSITION 3.6. If a function f:(X,T)—(Y,S) is pre-open and semi-conti-
nuous, then f is p-open.

ProoF. Let U€PO(X,T). Since f is semi-continuous, f(U)cf(scl(U))c
ccl(f(U)) by Theorem 1.6 of [4]. By Proposition 2.7 (b), scl(U)ERO(X, T) so
that f(scl(U))€ PO(Y, S) because f is pre-open. Lemma 2.8 implies that f(U)¢€
€PO(Y,S) and the result follows.

Since pre-open semi-continuous functions are irresolute [15, Theorem 1], com-
bining this result and Proposition 3.6 we obtain the following corollary.

CorOLLARY 3.7. 4 function f:(X,T)—-(Y,S) is irresolute and p-open if and
only if f is semi-continuous and pre-open.
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PropoSITION 3.8. A function f: (X, T)—~(Y, S) is pre-continuous and pre-open
if and only if f, is pre-continuous and pre-open.

ProOF. Suppose that f'is pre-continuous and pre-open and let U€T. By Pro-
position 3.1, f(cl(U))ccl(f(U)). Since f is pre-open, f(U)€PO(Y, S). Therefore
f(cl(U))cS*—cl(f(U)) by Corollary 2.5 (c) hence f* is pre-continuous. Since
(f®.=f,, it follows from Proposition 3.3 (a) that f, is pre-continuous. Now, let
V€S. Since fis pre-open, f~(cl(¥))ccl(f~1(¥)). The pre-continuity of f implies
that f~1(V)€ PO (X, T) so that f~*(cl(V))cT*—cl(f~*(¥)) by Corollary 2.5 (c). The-
refore f, is pre-open. Since (f,)*=f,, it follows from Proposition 3.3 (b) that f, is
pre-open.

Conversely, if f, is pre-continuous and pre-open, then f, and f* are pre-conti-
nuous and pre-open. It follows from Proposition 3.3 (a) and (b) that f is pre-conti-
nuous and pre-open.

PRrROPOSITION 3.9. A function f: (X, T)—~(Y, S) is semi-continuous and semi-open
if and only if f, is semi-continuous and semi-open:

Proor. Let B€S*. From the definition of a-sets it follows that there exists a
veS such that V< Bcint(cl(V)). By Proposition 2.7 (a), ¥cBcscl(V). There-
fore, f1(V)cf~2(B)cf'(scl(¥)) and since f is semi-open, f~1(V)cf~Y(B)C
ccl(f~1(¥)) [17, Theorem 2]. Since f is semi-continuous, f~*(¥)€SO(X,T) so
that f~1(B)eSO(X, T) [11, Theorem 3]. Therefore f* is semi-continuous. Since
(f®.=f.» f. is semi-continuous by Proposition 3.3 (a). Now, let A€T* Then
there exists a U€T such that UcAcscl(U). Therefore f(U)cf(A)f((scl(V))
and since f is semi-continuous f(U)cCf(A)ccl(f(U)) [4, Theorem 1.6]. Since f is
semi-open, f(U)ESO(Y,S) so that f(4)€SO(Y,S) [11, Theorem 3]. Therefore
f, is semi-open. Since (f,)*=f,, it follows from Proposition 3.3 (b) that f, is
semi-open.

Conversely, if £, is semi-continuous and semi-open, then f, and f* are semi-
continuous and semi-open. It follows from Proposition 3.3 (a) and (b) that f is
semi-continuous and semi-open.

As it was observed in [19] a function f: (X, T)—(Y, S) is a-continuous (z-open)
if and only if f£,(f*) is continuous (open). Also, f is a-continuous (x-open) if and
only if fis pre-continuous and semi-continuous (pre-open and semi-open).

Mashhour et al. [13] have given an alternative proof of the first part of the
following proposition.

ProrosiTioN 3.10. Let f: (X, T)—~ (Y, S) be pre-open or semi-open. Then f is
a-continuous if and only if f, is continuous.

Proor. Suppose that f is pre-open and a-continuous. Then f is pre-open, pre-
-continuous and semi-continuous so that by Corollary 3.7, f'is irresolute. It follows
from Proposition 3.3 (c) that f, is irresolute, and hence is semi-continuous. On the
other hand, f, is pre-open and pre-continuous by Proposition 3.8. Since f, is pre-
-continuous and semi-continuous, f, is a-continuous. By Corollary 2.5 (b), £, is
continuous.

Now, suppose that f is semi-open and a-continuous. Then f is semi-open, pre-
-continuous and semi-continuous. By Proposition 3.4 f is pre-irresolute. It follows
from Proposition 3.3 (c) that f, is pre-irresolute, and hence pre-continuous. On the
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other hand, f, is semi-open and semi-continuous by Proposition 3.9. Since f, is
pre-continuous and semi-continuous, f, is a-continuous, and hence is continuous

by Corollary 2.5 (b).
Although the proof of the following proposition is not identical to that of
Proposition 3.10, it is quite similiar, and hence is omitted.

ProrosiTION 3.11. Let f: (X, T)—~(Y, S) be pre-continuous or semi-continuous.
Then f is o-open if and only if f, is open.

COROLLARY 3.12. Let f: (X, T)~(Y, S) be a function. Then the following are
equivalent:

(a) f is a-continuous and o-open.

(b) f is pre-continuous, pre-open, semi-continuous, and semi-open.

(c) f is pre-irresolute, p-open, irresolute, and pre-semi-open.

(d) f, is continuous and open.

4. Mappings of extremally disconnected spaces. Recall that a space (X, 7)) is said
to be extremally disconnected (abbreviated as e.d.) if 4€7 for each A€ RC(X, 7).
The following characterization of e.d. spaces will be very useful in the sequel.

PROPOSITION 4.1. A4 space (X, T) is ed. if and only if SO(X, T)C PO(X, T).

Proor. Let A€SO(X,T). Then there exists a U€T such that Uc Accl(U).
Since (X, T) is e.d., cl(U)eT so that Uc Acint(cl(U)). This shows that A€ T*C
GPO(X, T).

Conversely, let A€ RC(X,T). Then Ae€SO(X;T) and by hypothesis, A€
€PO(X, T). Therefore, Acint(cl(4)) and since A is closed, 4€7. This shows
that (X, T) is e.d.

PROPOSITION 4.2. Extremally disconnectedness is pre-open hereditary.

PrOOF. Let A be a pre-open subset of an e.d. space (X, T'). Then A 4*, where
A*=int (cl(4)). Since extremally disconnectedness is open hereditary, 4* is e.d.
Since clyx(4)=A*Ncl(A4)=A* and extremally disconnectedness is dense hereditary,
A is an e.d. subspace of A4*. Therefore A4 is e.d. in (X, T).

Combining Propositions 4.1 and 4.2 we obtain the following corollary.

COROLLARY 4.3. Extremally disconnectedness is semi-open hereditary.

We now generalize the well known result that extremally disconnectedness is
invariant under continuous open surjections.

ProrosITION 4.4. If (X,T) is an e.d. space and f: (X, T)—~(Y,S) is a semi-
-continuous pre-open surjection, then (Y, S) is e.d.

Proor. Let Ve€SO(Y, S). Since f is semi-continuous and pre-open, f is irre-
solute by Corollary 3.7 so that f~*(V)e€SO(X, T). It follows from Proposition 4.1
that f~*(V)€PO(X, T) because (X, T) is e.d. By Corollary 3.7, f is p-open and
since f is surjective, V€PO(Y;S). Therefore, SO(Y, S)cPO(Y,S) and by Pro-
position 4.1, (¥, S) is e.d.

The following result is also obtained by use of Proposition 4.1.
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COROLLARY 4.5. If a space (X,T) is e.d., then scl(A)=cly(4) for each
AePO(X, T).

Proor. Since (X, T) is e.d., it follows from Proposition 4.1 that SO(X, 7')=T".
Therefore, scl(4)=T*—cl(4) for each AcX. Lemma 2.5 (c) implies that scl(A4)=
=cly(A) for each A€¢POX, T).

Our next result improves Lemma 4.1 of [16].

COROLLARY 4.6. If a space (X,T) is e.d., then scl(A)=cly(A4) for each A€
€ESOX, T).

Noiri established that a semi-continuous function from an e.d. space is weakly
continuous [18, Theorem 3.2]. Since o-continuous functions are 6-continuous, and
hence are weakly continuous, the first part of the following corollary improves
this result.

COROLLARY 4.7. Let a space (X, T)((Y, S)) be e.d. A function f:(X,T)~(Y, S)
is semi-continuous (semi-open) if and only if f is o-continuous (o-open).

ProOF. We have only to prove the necessity. Suppose that f'is semi-continuous
(semi-open). It follows from Proposition 4.1 that f is pre-continuous (pre-open).
Therefore, fis a-continuous (x-open).

Combining Proposition 4.1, Corollary 3.5 (Corollary 3.7) and Proposition 3.10
(Proposition 3.11) we obtain the following improvement of Theorem 2.6 (Theorem
1.14) of [18].

CorOLLARY 4.8. Ifaspace (X, T)((Y,S)) is e.d. and afunction f: (X, T)~(Y, S)
is semi-continuous and semi-open, then

(a) f is pre-irresolute and pre-semi-open (irresolute and p-open).

(b) f,. is continuous (open).

A function f: (X, T)—~(Y,S) is said to be rc-continuous if f~1(V)ERC (X, T)
for each VE€RC(Y,S). Let f:(X,T)—~(Y,S) be a function. Then a function
5 (X, T)~(Y,S;) associated with f is defined as follows: f*(x)=f(x) for each
x€X. In the following proposition we give a sufficient condition for a function
to be rc-continuous.

ProrosiTioN 4.9. If a function f:(X,T)—(Y,S) is irresolute and f* is pre-
-continuous, then [ is rc-continuous.

Proor. Let VERO(Y,S). The pre-continuity of f° implies that f~(V)€
€PO(X,T). Since VeSC(Y,S) and fis irresolute;, f~1(V)eSC (X, T) [5, Theorem
1.4]. Therefore, f~1(V)ePO(X, T)NSC(X,T). By Proposition 2.7 (c), f~1(V)€
€RO(X, T). This shows that f is rc-continuous.

It is known that a function f:(X, T)-(Y, S) is almost continuous (S and S)
if and only if f* is continuous. Therefore the following result is an immediate con-
sequence of Proposition 4.9.

COROLLARY 4.10. If an irresolute function is almost continuous (S and S) or
pre-continuous, then f is rc-continuous.

ProrositioN 4.11. If a space (X, T) is e.d. and a function f:(X,T)~(Y, S)
is irresolute, then f is rc-continuous.
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PRrROOF. Since fis irresolute, f is semi-continuous. It follows from the first part
of Corollary 4.7 that f is pre-continuous. Therefore, by Corollary 4.10, f is rc-con-
tinuous.

The following characterization of S-closed subsets relative to a space (X, 7))
(briefly, S-sets) will be used as primitive [16, Lemma 2.1]. A subset 4 of a space
(X, T) is said to be an S-set if every cover of A4 by regular-closed sets in (X, 7°) has
a finite subcover.

The proof of the following proposition is straightforward and hence is omitted.

PROPOSITION 4.12. rc-continuous functions preserve S-sets.
Combining Propositions 4.11 and 4.12 we obtain Theorem 4.2 of [16].

COROLLARY 4.13. If a space (X,T) is e.d. and a function f:. (X, T)—(Y,S)
is irresolute, then f preserves S-sets.

Combining Corollary 4.10 and Proposition 4.12 we obtain the following impro-
vement of Proposition 3.1 of [6].

COROLLARY 4.14. An irresolute function preserves S-sets if it is almost continuous
(S and S) or pre-continuous.

Thompson [23] introduced the concept of S-closed spaces. We restate his defi-
nition as follows: A space (X, T') is S-closed if (X, T) is an S-set of itself. It is ob-
served in [23] that S-closed Hausdorff spaces are e.d. This result was improved in
[8] where it was proved that S-closed weakly Hausdorff' spaces are e.d. (A space
(X, T) is weakly Hausdorff if (X, T,) is 7;). Cameron [2] introduced the concept of
I-compact spaces and showed that I-compact spaces are precisely S-closed and e.d.
spaces.

Our next result enables us to improve the main result of Noiri [16, Theorem 5.2]
that a semi-continuous function from an S-closed Hausdorff space into a Hausdorff
space is almost closed. A function f: (X, T)—~(Y,S) is said to be J-closed if
f:(X, Ty)—~(Y, S,) is closed. Clearly, d-closed functions are almost closed. We
point out that the converse is false.

ProrposiTiON 4.15. If (X, T) is an I-compact space, (Y,S) is a Hausdorff
space, and f: (X, T)~(Y, S) is a semi-continuous function, then f is é-closed.

PRrOOF. Since (X, T') is e.d. and f'is semi-continuous, fis a-continuous by Corol-
lary 4.7. 1t is known that a space is S-closed (resp. Hausdorff, e.d.) if and only if
its semiregularization is S-closed (resp. Hausdorff, e.d.). Therefore (X, T') is /-com-
pact and (Y, S;) is Hausdorff. Since (X, T';) is e.d., it is easily established that (X, T’,)
is regular. But (X, T',) is S-closed so that (X, T) is compact. Since f'is a-continuous,
f'is O-continuous. It is not difficult to show that this implies that f: (X, T,)—~(Y, S;)
is O-continuous. Since O-continuous functions into Hausdorff' spaces have closed
graphs and functions with closed graphs map compact sets onto closed sets, we
conclude that f: (X, T,)—(Y, S,) is closed. Therefore fis d-closed.

COROLLARY 4.16. If (X, T) is an S-closed weakly Hausdorff space, (Y, S) is
a Hausdorff space, and f: (X, T)—~(Y,S) is a semi-continuous function, then f is
d-closed.
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ProrosimioN 4.17. If (X, T) is an I-compact space, (Y,S) is a Hausdorff
space, and f: (X, T)—~(Y, S) is a semi-continuous bijection, then

(a) f is irresolute.

(b) f: (X, Ty)—~(Y, S,) is a homeomorphism.

(c) (¥, S) is I-compact.

Proor. (a) Since (X, T) is e.d. and f is semi-continuous, f is a-continuous,
and hence is pre-continuous. It follows from Proposition 3.1 that f(cl(U))ccl(f(U))
for each UcSO(X, T). By Proposition 4.15, f is d-closed so that S,—cl(f(4))c
Cf(Ts—cl(4)) for each ACX. Proposition 2.2 implies that S,—cl(f(U))<f(cl(0))
for each U€SO(X, T). Therefore, f(cl(U))ccl(f(U))cS,—cl(f(D))f(cl(V)).
So, f(cl(U))=cl(f(U)) for each UeSO(X,T). Let V€S. Since f is bijective,
c(f7XV)=f"(f(cl(f~*(¥)))). The semi-continuity of f implies that f~(V)€
€SO (X, T) so that cl(f~()=/"f(cl(f*F)) =/ IS/ FN) =/ (cl(V)).
By Proposition 3.2, fis pre-open and hence is irresolute by Corollary 3.7.

(b) By (a), f'is irresolute and since (X, T') is e.d., fis rc-continuous by Proposi-
tion 4.11. This implies that f:(X, T,)—~(Y, S,) is continuous. Since f is é-closed,
(X, T)—~(Y,S,) is a homeomorphism.

(c) This follows from (b).

The following consequence of Proposition 4.17 is an improvement of Corollary
5.5 of [16].

CorOLLARY 4.18. If (X, T) is an S-closed weakly Hausdorff’ space, (Y, S) is
a Hausdorff space, and f: (X, T)—~(Y, S) is a semi-continuous bijection, then

(a) f is irresolute.

b) f: (X, Ty)—~(Y,S,) is a homeomorphism.

() (¥, S) is S-closed.
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A STRONG INVARIANCE PRINCIPLE FOR
REVERSE MARTINGALES

R. M. HUGGINS (Bundoora)

1. Introduction

In a previous work (Scott and Huggins [5]) an embedding of reverse martingales
in Brownian motion was obtained and used to give a law of the iterated logarithm
for reverse martingales using properties of Brownian motion near the origin. This
iterated logarithm law complements the iterated logarithm law for martingales in
the same manner as results concerning the behaviour of Brownian motion as -0
complement those concerning the behaviour of Brownian motion as 7—ee. This
becomes clearer from an examination of the embedding of doubly infinite martin-
gales in Brownian motion given as Theorem 3 of Scott and Huggins [5]. Here we
sharpen the underlying invariance principle of Scott and Huggins [5] and this result
complements the corresponding martingale result of Jain, Jogdeo and Stout [3].
We then give, as an application of this invariance principle, integral tests for upper
and lower functions of reverse martingales which again complement the result of
Jain, Jogdeo and Stout. As we quite often follow the proofs of Jain, Jogdeo and
Stout fairly closely with the appropriate changes necessary for the reverse martin-
gale case in some places only a sketch of the proof is needed.

2. An almost sure invariance principle

We take {S,, Z,; n=1} to be a reversed martingale on a probability space

(Q, #, P). 1t is assumed here that ES}<o. For n=1 let X,=8,—S,11, Vi=
= > E{X}|%,,} and s?=EV?. Note that S, "L=s lim S, always exists, S,—
k=n 2

—S.= 2 X, and s2-0. Thus w.lo.g. we may suppose S.=0. (If not set
k=n
S$,=8,—8..)
THEOREM 2.1. For fixed a=0 let f,(f)=t(logy,t )% e *=1=0. Suppose that

2.2) 2 T}

and for all 6=0,

2.3) lim £,(7D~" 3 E{XRI(X} = f, (D) Fisr) =0 aus.,
o k=n

(2.4) S L0 PE(XI(XE = 0D Fna) <= as.

@.5) S LODEX(XE < SO Frar) <= as.
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Let S be the random function defined on [0, =) by

. = 2 —

Then by extending our probability space if necessary (which we then rename
(R, #, P)) there exists a Brownian motion {B(t), #;*; t=0} such that

2.6) IS(D—B(1)| = o(/*(logs t™)*~97%) a.s. as t—0.
Proor. Fix =0, let f,=f and set

2.7) X, =X, 1(X} < (7))

and

(2.8) Xf = X,—E(X)|#;..).

We now set Sy= 3 X and thus {S;, #,; n=1} is again a square integrable

J=n
reversed martingale which we may embed in a Brownian motion. That is, using
Theorem 2 of Scott and Huggins [5], there exists a Brownian motion {B(?), #*;
t=0} and a decreasing sequence of stopping times {t,; n=1} such that B(z,)=S;
a.s. and there exist o-fields %, such that

E{Tn_Tn+l[gn+l} = E{(S:—S:+l)2|gn+l} = E{(S:—S:+1)2|‘%t+l} a.s.

Furthermore for 1<p<ec- there exists a constant N, depending only on p
such that

E{(ta— 10?2911} = Ny E{IS5 — Si11lP1%, 41} = NLE{|S;— Sp4alP1Fsa}  as.

Letting #,=7,—1,,,; we rewrite these as

2.9) Elt)|9...}= E{X,:*’|@,,+l} = E{X,:”[gfj,ﬂ} a.8.

and

(2.10) E{t2?|G, .1} = N,E{| X, |9, 11} = N, E{|X;|°|#,+.} as.
Now set

 Ziali > E{(X?'|F .1} = 5 E{t;|9;..} as.
j=n i=n

LemMA 2.11. For a fixed a=0 let f=f, be as in the Theorem. If (2.2)—(2.5)
hold then

(2.12) K=V = o(f ) as.

(2.13) f =§ b =2°° X)| = o(f M) as.,
(2.14) f—V2l = o(f ) as.

(2.15) V2=Vl =o(f D) as, VAV 1L
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PrOOF. It is easy to see that
X2~ XP\%5,1}| = 2E{X21(X} = f(])) %541}
and thus (2.3) implies (2.12). To prove (2.13) first note that
| .ZXJ*—'J.Zle = |J,2Xf—j2ffl+|j2ff—j2 Xj|.
j=n =n =n =n =n =n
Now
| Sxi- 38| = SEQXIIX = fOP)F )
J™=5 J=n J=n

and thus by Lemma 1 of Heyde [1] we have from (2.4) that

2.16) | _f Xf— 3%|=o(f D) as.
Also iz .

2.17) ] 3% = > x| = } > X106 = 70D).
Let

Y, = fODTR[XG 10X = f0)— E(GI(0 = fOR)F )

Clearly as V? is #;,, measurable, E{Y;|#;,,}=0 as. and thus {Y;, #;; j=1}
is a reversed martingale difference sequence. Now

ZEY%} = 2,.§lf A PE{XIXG = D) Fsa)

which is a.s. finite by (2.4). Therefore the reversed martingale analogue of Corollary
(2.8.5) of Stout [6] stated as Lemma 2 of Scott and Huggins [5] is applicable with

p=1 and thus 2 Y; converges a.s.
=1
That is

3 0P AKX} = [07)~ BT = fOD)F)]
J=
converges a.s. and again Lemma 1 of Heyde [1] implies
O SIG1(X = f0P) - B 10X} = 0R)1% )] 0.
Now (2.4) implies, via Lemma 1 of Heyde [1],

fED 3 E{X (X} = fP))F )= 0
j=n g
and hence

FOHR 34103 = fOP)-=- 0.
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From (2.17) we conclude that

el | 28— 3x| = o(rayn

and combining (2.16) and (2.18) yields (2.13) as required.
We obtain (2.14) by observing that

E{X*‘l +1} = 16E{X41(X2 = f(V‘I) |9’;+1}
and hence

j_Zl' SR PE{X} | F 1} <eo.
Thus
.ZI'E{X}“I.T_,-“} =98
J=‘.

Also the sequences Zf(V2) Yt;—E{t;|9;+1)] and Z[t —E{t;|%9;+1}] con-

verge a.s. using Lemma 2 of Scott and Huggins [5]. Once agam using Lemma 1 of
Heyde [1] we have

SO S1-El% -2 0.

therefore
S (@=VH) 20

and with (2.12) this yields (2.14).
Now (2.15) follows easily by noting

|Vn2_‘Vn2+1| = E{ani'%x+1} =
= E{XZI(XE = of UD)|Fsa}+ E{XI(XE < f OD)Foir} = o(FOUD)+/ D)

by (2.3). Since ¢ is arbitrary we have the first part of (2.15). The second part of (2.15)
is obtained by noting

WiVt = 1] = [V = VIS EIILf AV

and f(V})/V,2—=2 0. The Lemma is proven.

We now return to the proof of Theorem 1.

Since =0 is fixed throughout we continue to drop the subscripts from f,.
For 0<d<1 define

(2.19) p; = e%i/to ),
and
(2.20) n; =inf{n: V2 = p;}.
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Given ¢>0, for all j sufficiently large (depending on weQ and &), we have

(2.21) sup [S(H—B@)| = sup [SO—-B@®)| =
Py 1=t=p; v:  =t=v?
i+ nj_1
Sup | Z Xi_ X*[+‘RB( LIS § {:f~( nj. 1 n, 1+8.f‘( nj- 1))
Ny =n=n;_, i=n+l i=n+1

where Rj is defined for 0=a<b<-o by Rz(a, b) =  max |B(u)—B(v)|.

The inequality (2.21) follows from (2.14) and the facts that S()=S,;; on
[V, V?) for t=0, and 2’ X*=B(z, ;1)
i=
Using (2.13) it follows that for all j sufficiently large (depending on w)

(2.22)
sup [S()—BO)| = o((f (75 )+ RV, — e/ i), Vi, +ef (3 ))-

Pj41=t=p;

Elementary computatlons usmg the definitions of f, p;,n; and (2.15) show
that the interval involved in Rp in (2.22) is contained in the interval [p;,q,p;-1]-
Thus for all j sufficiently large

(2.23) sup [S(—B®)| = o(f(@))"*)+Rp(Pj+2, Pj-1) 2.

Pj+1=t=p;
From Lemma 2.2 of Jain, Jogdeo and Stout [3] it now follows that for any v=0
P[Ry(pj+32> Pj-1) = "lez(l()gz P_l)(l_a)/a] =

= P[Rp(0,1) > v(pj-1—P;+2)~*p*(log, p; )~

Now for all j sufficiently large and ¢ sufficiently small we have

P (pj-1—Pj+2) = 45(log, py )" '
Hence for such large j and small §
P[Rg(pj+2, Pj-1) = vPy*(logs py ) ~9/%] = P[Rg(0, 1) > v(46)~*3(log, Py =

= 27 (log, p;)~2 exp {—21log, p; 1} = ¢j~2(log j)**

by choosing ¢ so that v?/86=2. Thus for every v=0 ZP[RB(pj+2,pj 1)>
>vp}*(logy p; 1) ~9/*]< <. Therefore by the Borel——Cantelh lemma, almost surely,
(2.24) Rp(Pj+2, Pj-1) = vpy*(log, p; H)*—2/2,

The Theorem now follows from (2 23) and (2.24) as we may choose v as small
as we please. For convenience of use in the sequel we state the following.

THEOREM 2.25. Suppose V,2-==~ 0 and, for fixed a=0,
(2.26)

=)

2 Vi *(logo Vi P EAXRI(XE > V) [log Vi *(logy Vi **CH V] Fy 41} <o aus.
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Let S be the random function defined as [0, =) obtained by setting

I [ Viast<W,
g {Sl, t=¥.

Then the conclusions of Theorem (2.1) hold.
Proor. Firstly note that (2.26) implies

@.27) 2" DI E{XEI(XE > o, (FD)| P} <= ass.

for all 6=0. This implies (2.3) by Lemma 1 of Heyde [1] and (2.4) quite easily.
To obtain (2.5) write g,(V}?) = V2[log ¥~ 2(log, .~ %)***]~1. Then
E{XH(XE = of, (VD) Frsr) =
= E{X(X} = g.(V)|Fesr )+ E{X(8.07) < X2 < S, Fsa} =
= g E{XI(XE = 8. (W) Fsr )+ R0 E{XE > (2.(50))| Fic41}-
Multiplying by £,(¥*)~2 and summing over k we see that (2.5) is dominated by

éi [V =Vl [V * (log Vi~ ®) (log, Vk‘*‘)"’]‘1+5k§1 FOTE{XR(X; > 2,(V))|Fcsa}-

Now
k;; V&=V | Vi 2(log Vi ®) (log. 2?1 =

= é; Wai—V® [Fai(d +o)~ (log (31 /(1 +2))) (loge (V3 1/(1 +e)*] —* =

= dx
S

Thus (2.5) holds.

3. Integral tests for upper functions for reverse martingales

In this section we use our invariance principle to exploit properties of Brownian
motion to obtain results for reverse martingales corresponding to the integral tests
for upper functions of martingales and for lower sums of absolute maxima of mar-
tingales of Jain, Jogdeo and Stout.

THEOREM 3.1. Suppose V,2==> 0, and
(32) SV P(log Vi D E{XRI(XE = V) log W 2(loge Vi )]~ Y Fsa) <= aus.
k<1

Let ¢@=0 be a non decreasing function, ¢(t)—~<> as t—<, then
(3.3 P(IS,| =V,0(V,7®i0)=0 or 1
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according as

(3.9 I(p) = f (Lt(t—)— exp{— ()2} dt <o or =eo.

The proof of this theorem is an obvious adaptation of the proof of the analogous
result of Jain, Jogdeo and Stout using the transformation B(#)—B(t™*) on Kol-
mogorov’s test for Brownian motion, see Ito and McKean [2] p. 163.

Now let @, denote the class of functions ¢ from (0, ¢) to [0, =) such that ¢ (#)1ee
as 740. We may restate Theorem (3.1) in a form corresponding to a proof based
on (3.3) p. 533 of Jain and Taylor [4].

THEOREM (3.5). Suppose V;2-*>~ 0 and (3.2) holds. If @€ ®, then

(3.6) P[IS,| = Vo) i0] =0 or 1
according as
3.7) I'(p) = f(pT(t) exp{—@2(H)/2}dt <= or =oo.

We are now concerned with the behaviour of M,=max [S;|. Instead of the
approach above we use the appropriate results for M(f)= max |B(s)| as ¢—0.
Let &, be as before. ad

THEOREM (3.8). Assume that V,2 2%+ 0, and
(3.9)
SVt log Vi YEQRIE = V) logFi )~ (0@ i) | Fpa} <= as

Then for @€ P,
PIM, <V {o (WD) i0]l=0 or 1
according as

2(¢
(3.10) L(p) = o‘[(PT() exp{—8(p(D)}/n2}dt <o or =-co.

The proof is again comparable to that of the analogous result of Jain, Jogdeo
and Stout using the corresponding theorem for Brownian motion of Jain and Taylor
[4] p. 547.
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REPRESENTATIONS OF INNER PRODUCTS
IN THE SPACE OF POLYNOMIALS

M. A. KOWALSKI (Warsaw)

1. Introduction. This paper is based on [6]. We briefly summarize the main
results of [6].

Suppose that {p;};=, is an orthonormal base in the space of polynomials in
n real variables. Assume that the inner product (.,.) has the following property:

@eepy= Qppi Hi=12 ...
Let 4 be a positive Lebesgue—Stieltjes measure on R” such that f p*du=0 for
R'l

any non-zero polynomial p. We provided a necessary and sufficient condition when
the inner product (., .) can be expressed in the form

P> pp) = szPjQ du
R'I

where g is a square p-integrable function. We also pointed out that this condition
is satisfied if the measure u is of the form

Ap Xy, Xy oes X,) = d¥ (Xy) dY (Xy) ... AP (x,)

where ¥ is some bounded non-decreasing function with infinitely many points
of increase.

The goal of this paper is to study the following problems:

(i) What is a condition on u such that the function ¢ is unique?

(ii) What is a condition on g such that ¢ can be chosen as a non-negative func-
tion?

We pay a special attention to the case du=dy(x;)dy (x,)...dy(x,).

We now summarize the results of this paper. In Section 3 we provide the com-
plete answer to the first question. We partially answer the second question by showing
some sufficient conditions on p for which g is unique and non-negative.

In Section 4 we consider orthogonal polynomials P, with respect to a measure

o and study a relation between the convergence of the series 2( f P, d/.?]2 and
k=1 "gn

continuity points of the measures « and f.
In Section 5 we provide examples of a one dimensional measure p such that

(f,g)= f fgodu is an inner product in the space of polynomials for a unique func-
R

tion ¢ which changes sign. These examples are based on some properties of the
Al-Salam—Carlitz polynomials. Finally, we apply the results from Section 4 to
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specify a class of measures f associated with the Al-Salam—Carlitz polynomials
which define the spaces Ly(R, p) such that

(i) polynomials are dense in Ly(R, f§),

(ii) there exists a non-negative function f from L,(R, f) which is not a limit
of any convergent sequence of non-negative polynomials.

2. Notation. Let %(R") be the o-field of Borel sets in R". Let u: Z(R")—~R
be a non-negative finite measure. We say that x, is a continuity point of p iff p({x,})=
=0. By supp (1) we denote the support of the measure g, i.e., the smallest closed
set A such that u(A4)=u(4NB) for any Borel set B. By L,(R", n) we mean the
linear space of all p-measurable complex functions f which have the finite norm

£y = [1f P ), p=1.

Let II;? be the linear space of all polynomials in » real variables with real coefficients.
If II;cL,(R" p) then by . (n, p, ) we denote the closure (in L,(R" p)) of the
space spanned by all monomials from II;°. We say that a polynomial sequence
{pi}i=1 is p-orthonormal iff

f pip;dp = 9y
R'I

where J;; is the Kronecker delta.

3. Representations of inner products in the space of polynomials.* Let (., .): [T X
X II7—~R be an inner product such that {(p, w)={1, pw) for any p, well;". The
comparison criterion of orthogonality from [6] states a necessary and sufficient
condition for the existence of a function g€ L,(R", u) such that

(@)) {p,w)= fpwg dp for any p, welle.
R'I

We assume throughout the rest of this paper that such a function ¢ exists.
We now answer the first question mentioned in the introduction.

THEOREM 1. The function ¢ from (1) is unique iff M (n,2, p)=Ly(R", p).

PROOF. (=) Assume that #(n,2, p)=L,(R", n), i.e., monomials are linearly
dense in Ly(R", p). Suppose that two functions ¢ and g, from L,(R", u) satisfy (1).
Then

@ [ple—e)du=0 for any pell;.
R™

‘We then conclude that the continuous linear functional f— f f(0—p,)dp vanishes
R'I

on the linearly dense subset of L,(R", ). Thus it must vanish identically on L,(R", u),
i.e., 9=g¢; almost everywhere.

(<) Suppose now that #(n,2, u)#L,(R", ). Hence, there exists a conti-
nuous linear functional F: Ly(R", u)—~C such that F(II;")={0} and F is not

* This section and [6] form a part of the dissertation [8] written under the guidance of
Professor S. Turski.
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identically zero. Thus (p, w)= fpwg du+aF (pw) for any p, w€lly and a€C.
Since the linear functional f— f ;Q" du+aF(f) is continuous on L,(R", p), it can
be represented, due to the Ifinesz theorem, as f fo.du for a unique function g,
_from Ly(R", p). Thus i

3 {p,w)= fpwgadu for any p, w€lly and a€C.

R"

This completes the proof. O
As an immediate consequence of (3) we get the following corollary.

COROLLARY 1. If M (n,2, p)#=Ly(R", n) then (1) holds for infinitely many
functions @ form L,(R", ).

We now turn to the second problem. We first prove a sufficient condition that
o is non-negative.

THEOREM 2. If M (n, 4, u)=Ly(R", ) then a function o€ Ly(R", 1) which satis-
fies (1) is non-negative (almost everywhere).

ProOOF. Let A€#(R") be an arbitrary set and let x4 be its characteristic
function. Consider a sequence of polynomials {w,}z=, convergent to y,in Ls(R", p).
Then

Wi —2alle = IWe—2* + 204 We—xDll2 = [(We—x )2+

+2[wp—24ll2 = llwe—x4lls + 2 (R4 Wi — L all a-
Thus

g RO .
R[m dp = lim R_[WkQ dp = lim (v, W) = 0

which yields that ¢ is non-negative (almost everywhere) as claimed. O

REMARK. The condition #(n, 4, u)=L,(R", p) is stronger than #(n,2, p)=
=L,(R", p), see [3]. It is well-known that if z has a bounded support then polyno-
mials are dense in L,(R", u) for p=>1.

Let y: R~R be a bounded non-decreasing function with infinitely many
points of increase. By ™ we denote the Lebesque—Stieltjes measure corresponding
to the integrator dys(x,)dy(xs,)...dy (x,,).

Due to Theorem 4 from [6], the inner product (.,.) can be represented in
the form

() (p,w) = fpwy ay®™, p, well,
R'I

for some functions Y¥:R—~R and y€L,(R", ™). We now specify Theorems 1
and 2 for u=y™. We begin with the following lemma.

LemvA 1. A (n, p, Y®)=L,(R" Y®) iff M1, p,y D)=L, (R, yD).

PROOF. (=>) Suppose that f€L,(R,y®). Since the function f:f(xi, X, ...
<ees X)) =f(x,) belongs to L,(R", y™) there exists a sequence {w;}z=, of polynomials
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such that f (Wi (%15 o0y X)—f ()P dY™ -0 as k—o. Define now the following
R'l
sequence of polynomials in one variable:

() = WODRIT [ Wty s ) WD, k=12,

Rn-1

Due to Holder inequality we get
[ 10— ()P dy =
R

=W RN [| [0ty eens o) =f ) AP Y (x) =
R

Rn-1

= [ DRI [ W, try ens i) =L DI dY® -0
o

as n-co. This yields that .#(1, p, yD)=L, (R, y D).
(+=) Recall that the set H, of characteristic functions f of the form

(5) f — XAlegx wen AL A;EQ(R),

is linearly dense in L,(R", ™). Therefore it is enough to verify that H,c
cM(n,p, y™). We prove this by induction. The case n=1 is obvious. Thus
assume that H,c.#(n, p, y™) for some n=1, ie., for any function u€H, there
exists a sequence {w}i=1 of polynomials such that |u—w;|, ,—~0 as k-~ where

1711, p=( f ]y]l’dt//(")]llp. Take any f€H,,,. The function f can be represented as
R"
S5 ooy Xy Xpr) = 8(Xy, oo X) B (X 40)

where g€H, and héH,. Let {w}ie., yy=u,(x1,...,%,), and {}iz1, ve=2v,(x),
be sequences of polynomials such that

lg—tlln,p =05 [h—2illy,, =0 (k —>o°).
We get

Il f— wvillnsr,p = 8B —tillnsr, p = (g =) (h—vy) + 1 (h—vy) +
+ou(@—tdln+1,p = 18— ) (R—v)lln 41, p+ltk (B — Il n41, ,+
Hlo(@—udllns1,p = 18— Uelln, pll A —0lls, p + 124l s, p | B—13ll, p+
Hloels, plg=thelln, p =0, k —>eo.

Thus the sequence {u,};~, is convergent to hin L,(R"**, y™+V). This completes
the proof. O

COROLLARY 2. The function vy from (4) is unique iff (1,2, YyD)=L,(R, yD).

CorOLLARY 3. The function y from (4) is unique and non-negative if
-/{(11 43 l//(1))=L4(Rs '10(1))'

We now give another sufficient condition on ¥ such that y is unique and non-
negative.
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THEOREM 3. If for any non-negative function h from Ly(R, ™) there exists
a sequence {v}i=1 of non-negative polynomials which is convergent to h in
Ly(R, YD) then vy is unique and non-negative.

PrOOF. Let A4,, 4,, ...; A, be arbitrary Borel sets in R. The assumption of
Theorem 3 implies that there exist sequences {w{’};=,; of non-negative polyno-
mials which are convergent to the characteristic functions yx,, in Ly(R,yW),
i=1,2,...,n. From the proof of Lemma 1 it follows that the sequence {u}c=,
of polynomials in »n separated variables,

W (s oo 5 X0 = WR06) i W (),
in Ly(R",Yy™). Since the functional
f—~ [frdy®
R"
is continuous on L,(R", y™), we get

Suy @™ ~ [ Xayxtye.xa,y 6™, koo
e R"

is convergent to X4, x ,x...x4

Because wi? is a non-negative polynomial it can be represented in the form
w0 () = [ (P +lgf (o
for some polynomials p{” and ¢{? (i=1,2,...,n; k=1,2,...). Hence
Juwrdh® = [ II ([0l +lgk )y dy®.
R Ry b=

The integral in the right-hand side of this equality can be rewritten as the sum of
positive terms f Py Y™ where p€II. Thus we conclude that
RII

fuk'y dy™ >0 and folezx.__xA”y dy™ = 0.
R™® R™

Since A; are arbitrary Borel sets, the last inequality implies that y is non-negative.
To show that y is unique, note that any f from L,(R, Y V) can be represented as

f= (hl_h2)+i(h3_h4)

where h,, hy, hy, hy are non-negative functions from L,(R, V). Thus the assumption
of Theorem 3 implies that #(1,2, y®)=L,(R, y®). Applying Corollary 2 we
complete the proof. [

REMARKS. (i) Due to the M. Riesz theorem (see [9]), Corollary 2 can be restated
as follows. Consider the Hamburger moment problem

©) w= [HdyE), k=0,1,...
R

The function y is unique if this problem is determined or V is its extremal solution.

Acta Mathematica Hungarica 46, 1985



106 M. A. KOWALSKI

(ii) The assumption of Corollary 3 implies the assumption of Theorem 3.
Indeed, suppose that #(1,4,y®)=L,(R,y™). Take any non-negative function
h from Ly(R, Yy ™). Since VheLy(R, y™®) we conclude that there exists a sequence
{w}iz, of polynomials such that |[/2—w,||;,4—~0 as k—~eco. Then

Ih—willy,e = ”(VE_ Wk)2+2Wk(V-h-— Wk)]ll.2 = ”(ﬁ—wk)z”m'*'

+2”wk(ﬁ_wk)|ll,2 = ”ﬁ_wklﬁ,&'i'z” wk"l,4”ﬁ—wk”l,4 -0, k-—>eco.

Thus the assumption of Theorem 3 holds.

(iii) If supp Y@ is unbounded, we do not know how to verify the assumption
of Corollary 2. Nevertheless we know that the determination of the moment pro-
blem (6) is its necessary condition. Moreover the existence of a positive number o

such that
[eedy ) <o
R

implies that #(1, p, y®)=L,(R, yV) for p=1 (see [3]).

(iv) Due to [2] there exists an inner product (.,.):II;>XII;—~R with the
property {f, g)={(1, fg) for which it is not possible to choose a non-negative measure
7 on #(R") such that (f, g)= f /g dr. In particular it is not always possible to find

R"

a function ¥ such that (4) holds for a non-negative functon y from L,(R", ™).

From [7] we know that the function ¥ in (4) can be chosen in such a way that
Y@ is an indeterminate measure. Moreover, we may require that ( is extremal
and then (4) holds for a unique y from L,(R", ™). From Theorem 3 and Remark
(iv) we now get the following theorem.

THEOREM 4. There exists an extremal measure Yy® such that not every non-
negative function from Ly(R,y™) is the limit of a sequence of non-negative polyno-
mials.

Note that if /@ is indeterminate and non-extremal then (4) holds for infinitely
many functions y. From Remark (iii) we get that #(1,4,y®)=L,(R,y®P) for
any indeterminate measure @),

4. Orthogonal polynomials and continuity points of corresponding measures. Let
{pi}i=1 be an a-orthonormal base of the space II;’. Suppose that .#(n,4,a)=
=L4(R" o). Let {r}i=, be a p-orthonormal base of IT;°. Assume that the measure
B is determinate.

THEOREM 5. If supp p\supp a#0 or there exists a continuity point of o which
is not continuity point of f then

>( [ pcdp) ==
k=1 "gn
ProOF. Assume without loss of generality that degr,=0. The coefficient ¢,
in the series p,= > ¢;;r; is equal to
i=1

e = B(RH™12 kadﬂ-
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Suppose by contradiction that the series > c¢f, is convergent. Then, by the com-
k=1
parison criterion of orthogonality, there exists a function ¢ from L,(R", ) such

that fwgdoz= fwdﬂ for any well;”.
R'l RII

From Theorem 2 it follows that the function g is non-negative. Since the measure
B is determinate, we get o du=dp. Thus we conclude that supp fcsupp « and
all continuity points of o are continuity points of . This contradiction completes
the proof. [0

For a given S€Z%(R") we define the measure ag by dog=ysde. Suppose now
that for some bounded Borel set B there exists an ag-orthonormal base of II7.

COROLLARY 4. If x, is a continuity point of o then Z’ Dr(Xg)?= oo,

PROOF. Let o be a measure whose support consists of only one point x,. Define
the measure f by df=dag+do. From the comparison criterion of orthogonahty it

follows that 2’( f P deoc)2<oo Assume by contradiction that 2’ DPr(X0)%< oo

k=1 "gn
Hence

S'( kadﬂ)z - kS'( kaXBd“)2+2 200’ Pi(xo) kaXB dx+ S’Pk(xo)2 =
=1'gn K=1 o k=1

k=1 "gn

= 3([nn da)*+2]/§pk(xo)2 S ([ rndaf+ 3 potox? < o=
=1'gn k=1 k=1 'gn =1

Due to Corollary 1.1 from [9] the measure S is determinate. Since x, is not a con-
tinuity point of #, Theorem 5 yields

Sy -

This contradiction completes the proof. [

The author is inclined to believe that Theorem 5 can be proved without th
assumption that #(n, 4, o)=L,(R", 2).

5. Negative approximation properties of the Al-Salam—Carlitz polynomials. Let
ac(0, =) and ¢g€(0,1). Al-Salam and Carlitz introduced in [1] polynomials V,
(n=0, 1, ...) which satisfy the recursion formula

l'/n-{-l(x) = (x_(1+a) q_")V;l(x)_aql_zn(l—q")Vn—l(x)’ n= 01 19
(Vi) =0, K%)=1)

Due to Favard’s theorem [35] there exists a non-decreasing bounded function ¥ =y, ,
such that

[Vix)V;x) dy (x) = a’q=[q)d;
R
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where [blo=1, [bli=[bli-1 (1—bg*~"); bER, k=1,2,.... From [1] we know that
[Vix)V;(x) dp(x) = Ka'q—"[g):5;
R

where f=p, , is a step function defined by
dﬂ(q') == aiqiz/([q]i[aq]i) i= 09 15 .

and K=K, ;= 2 a'q”[((qlilaql), aq'#1.

It is easﬂy seen that f is a non-decreasing function iff ag<1. The Hamburger
moment problem corresponding to the polynomials V; is determined iff a=g or
g~ '=a (see [4]). In particular if a=gq then the functlon ¥ is unique (up to an
arbitrary constant) and Y (x)=K~'f(x). Furthermore, #(1,2, yD)=Ly(R, yD).
Note that for every positive numbers a and a, such that (l—aq')(l —ayq")#0,

1=1,2, ..., we have
APy, (X) = 1(x) dBa 4 (x)

where (g *)=aklaqli/(@*[avqly), k=0.1,.... Thus 1€L,(R, [3(1) If a,>1/q
and a=q then the function t changes 51gn although MH(1,2, B)=Ly(R, BEY.
By the contraposition of Theorem 3 we get

THEOREM 6. If aq<1 then there exists a non-negative function h from
L, (R, By which is not a limit of any convergent sequence of non-negative polynomials.

In particular a=gq implies that .#(1,p, )= L,(R, B!} for p=4, although
M, p, BD=L,(R, B for 1=p=2. It would be mteresting to know if
A (1, p, B.Sf?,) By »(R, B3y for pe(2,1).

As a final word observe that the contraposition of Theorem 3 yields two suffi-
cient conditions for the existence of a non-negative function 2 from L,(R, y™®)
which is not a limit of any convergent sequence of non-negative polynomials. These

two conditions are:

1° There exists a function 7€ L,(R, V) which changes sign such that (f, g)=
= ffgr dy is an inner product in II7.
R

2° There exists a determinate measure ¢* such that

(i) @® is singular with respect to y®,

(ii) the series 2( f Dr d|/x]2 is convergent where {p;}iz; is @W-orthonormal
k=1"R

base of II7°.
The condition 1° is obvious. Thus we prove the sufficiency of the condition 2°.
Due to the comparison criterion of orthogonality, (ii) implies that there exists a

function ¢ from Ly(R,¥™) such that fpd(p= fpgdlﬁ for any pelIly.
R R

Suppose by contradiction that the assumption of Theorem 3 holds for . This implies
that ¢ is non-negative. Since the measure ¢ is determinate we get dop=g9 dy/
which contradicts (i).
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STRUCTURAL THEOREMS FOR MULTIPLICATIVE
SYSTEMS OF FUNCTIONS

J. JAKUBOWSKI (Warsaw)

§ 1. Introduction. The purpose of this paper is to prove some structural theorems
for multiplicative systems and then a generalization of some basic theorems for
independent random variables on uniformly bounded multiplicative systems. Such
generalizations were obtained by many authors, but the method of this paper is
simpler and gives, in general, stronger results. §2 contains the definitions
of multiplicative systems of different types. At the beginning of §3 we prove
a theorem, which shows that every multiplicative system, which satisfies some natural
conditions can be represented as a conditional expectation of a strongly multipli-
cative system with respect to some o-algebra. This explains why multiplicative
systems have the structure similar to the structure of the Rademacher system, in
particular it explains similar properties of lacunary trygonometric systems and the
Rademacher system. At the end of that section there is a theorem which compares
a uniformly bounded weakly multiplicative system with the Rademacher system.
In § 4 various applications of the results from § 3 are considered. Convergence almost
surely, moment inequalities, strong laws of large numbers and laws of the iterated
logarithm are investigated.

§ 2. Definitions. DEFINITION 1. A sequence (X;) of random variables is called
a multiplicative system (MS system), if EX; X;,...X; =0 for every sequence of
different indices. If moreover EXZ X ... X; =0 for every sequence of different indices,
(X;) is called a strongly multiplicative system (SMS system). If EX; X, ...X; =0
for every m=k and every sequence of indices i;<...<i, then the sequence (X;) is
called an MS system of order k.

The definition of an MS system was introduced by Alexits [1] (MS system of
order k by Serfling [22]). The definition of an SMS system [12] is more general than
usual, for instance in [1]. The MS and SMS systems were studied by Alexits [1, 2],
Alexits and Sharma [5], Moricz [15], Révész [19, 20], Takahashi [25], Jakubowski
and Kwapien [12].

ExampLE 1. A sequence of bounded martingale differences is an MS system.

ExampLE 2. A sequence (X;) of independent random variables in L?> with
expected value equal to zero is an SMS system.

ExAMPLE 3 [26]. A sequence of functions X, (f)=sin2nmt (resp. Y, ()=

=cos 2nnt) for t€[0,1] and k=1,2,... is an MS system for every sequence
(n) of positive integers such that %;2, moreover it is an SMS system provided
k

P14
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112 J. JAKUBOWSKI

DEerINITION 2. A sequence (X;) of random variables is called a p-weakly
multiplicative system (p—WMS system) for p€[1,2], if 2 |[EX, X,,...X; |[P<ee,
where the sum is taken over all combinations of indices.

Alexits, who introduced the notion of a WMS system [3] which coincides with
our 1—WMS system, noticed [4] that every infinite sequence of orthonormal func-
tions contains an infinite subsequence, which is a 1—WMS system (for an MS sys-
tem this is not true [7, 8]).

The following idea is of great importance in this paper.

DEerINITION 3. Let X and Y be random variables with values in a Banach space
F. We say that X is strongly dominated by Y if Ef(X)=Ef(Y) for every continuous,
convex and nonnegative function f: F—~R™, provided both integrals exist.

The idea of this domination is connected with a conditional expectation with
respect to some o-algebra in the following way:

THEOREM A (Hoffmann—1Jergensen [11]). Let X,Y be Banach space valued
random wvariables with finite first moments. Then X is strongly dominated by Y iff
there exist random variables X’ and Y’ with distributions like X and Y respectively
and a g-algebra N such that X' =E(Y’|A").

We introduce also the definition of p-domination.

DEFINITION 4. Let X, Y be random variables with values in R*. Then X is
p-dominated, p=1, by Y iff there exist constants K and C, such that for every
continuous, convex, non-negative function f: R*—R™, which depends only on a
finite number of coordinates,

Ef(X)=C,Ef*(KY))"?
holds.

It is important for the applications that, if X is dominated by Y in the sense of
Definition 3 or 4, then many properties which are true for ¥ are also true for X.
This fact will be applied in § 4.

In this paper (r,) will denote the Rademacher system on the interval [0, 1].

§ 3. Structural theorems. Let us start from a generalization of the theor m
from [12].

THEOREM 1. Let Xi, ..., X, be an MS system of order k=n and Y,,...,7Y,
be an SMS system. If 0<D?Y;<co and sup ]X,-Yilé—i-DzYi otk d=152; it
then (Xi, ..., X,) is strongly dominated by (Y, ..., Y,).

PRrOOF. Let Q be a distribution of (Y3, ...,Y,) and P be a distribution of
(X1, ..., X,). Define a probability measure P as a distribution of vector (% X

R %X,,] . Let (2, #, M) be a measure space, where Q=R"XR", M=% (R"XR")

is a g-algebra of Borel sets and the measure M is defined by M (dx, dy)=f(x,y) X
X P(dx) Q(dy) where
1 1

f(x, .V) = m[; <Z’ . ];1(1 +b,-mx,my,-m)], bi = _D—ZY.
4 <<l M= i
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M is a positive measure, since the support of the measure P(dx)Q(dy) is contained
in the set {(x, »): |x:pi bé%, T= 125 uds n} so the support of the measure

P(dx)Q(dy) is contained in the set {(x,y): |x;yi|b;=1, i=1,2,...,n}. The con-
dition that Xj, ..., X,, is an MS system of order k implies that

1) VyeR", [ £(x, y)P(dx)=1.
R"®

This follows from

[ [Z] [ 2 ITA+b,x,5,)]P@x)=

R h<..<im=

n)—1 k
— (k] 5 ‘2 s ./‘[1+12 - 2 k b‘.lxilyh S b‘lxilyil] P(dx) —
iy <..<ig Rgn = 1 <. <ip

1
T{ A A TR BT

oL e ( "] o
=() )=+
Hence M is a probability measure.

Since Y;, ..., Y, is an SMS system, we also have

@ vxeRr", [ f(x,»)Q(dy) = 1.
&~

Let us define the random vectors X and Y on the probability space (2, #, P) as
X(x,y)=x, Y(x,y)=y. Let A be an arbitrary Borel subset of R", then by (1), (2),
we obtain

M(Xcd) = M(AXR) = [ [ f(x, »)Qdy)P(dx) = [1P(dx) = P(A).

A R™*
Analogously M(Y€A)=Q(A). This means that the distribution of the random

vector X (resp. Y) is equal to P (resp. Q). Every point x=(xy, ..., x,)€ R" satisfies
the relations

k
©) S99y = Tx.
This is a consequence of the relations (for i,=1,2, ..., n)

[rofenean= [() T 3 T0+b,x0)006@0+
R® R? iy m=1

<...<i
L€l ntn)

k

+Rnf (Z]_l[ 2 Yo A+ %, 5,)]00@) =

h<..<i) m=1
B @iy .enrip)

-1
= (k) f[ 2 (.Vf.,+yi.,‘§! b; x; i, +bi,x, Vi +
m 0

R™ ih<..<ip

b€ (ks ...ris}
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114 J. JAKUBOWSKI

k
+yio Z 2 X bjxxhyh bitxjxyfl)]Q(dy) =

= jx_<--~<_Jl X
e oord 3 {5 <oonip

= (Z]—I[Z: i) b, i, R[ »20(dy) = —x;

Let A be a g-algebra generated by the random vector X. Every set from A" has a
form AXR", where AcZA(R"). By (1), (3) we get

[ Yam= [ yM(dx,dy)= [ [3/(x, »)Q(dy)P(dx) =
A R™

AXR" AXR"

= f %xf’ (dx) = f ( f FGx, y)Q(dy)) xP(dx) =

= f%xM(dx,dy)= f—f—XdM,

AXR™ AXR"

ie. EQXYNV )———%X. This ends the proof, because %X has the distribution P.

For k=n we obtain the basic corollary.

CoRrOLLARY 1 [12]. Let X;, ..., X, be an MS system and Y,,...,Y, be an
SMS system. If, for every i, 0<D>Y;<< and sup [Klé—s-é)pz_lj;lﬂ’ then (X, ..., X,)
is strongly dominated by (Y4, ..., Y}).

For k=1 we get

COROLLARY 2. Let Xi,..., X, be random wvariables such that EX;=0 and
sup |Xi]§% for every i=1,2,...,n. Then (Xi....,X,) is strongly dominated by
(i =5l)):

The assumptions of Corollary 2 can be weakened if n=8.

THEOREM 2. Let X=(Xi, ..., X,) be a random vector with the expected value
equal to zero, such that Zn'X Bt

st @ B
dominated by (ry, ...,r1,).

almost surely. Then (Xi, ..., X,) is strongly

ProOF. At the beginning let us assume that X has the two-point distribution
P(X=a)=P(X= —a):—%—, where a=(ay, ..., a,) and _Z’a, _;_ Let f: R*+R*
be a convex, nonnegative function and define g(x)=—2—[ f(x)+f(—x)]. Then g is a

convex, nonnegative and symmetric function:; moreover Ef(X )=%[ f@+f(—a)]=
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MULTIPLICATIVE SYSTEMS OF FUNCTIONS 115

=FEg(X) and Ef(ry, ...,1,)=Eg(ry, ..., r,). Soitis enough to prove that
) BEg(Xyn ooy X)) = E2(1s oy

for a convex, symmetric, nonnegative function g. For such a g there exists a support-
ing functional at the point q, i.e. there exist real numbers by, b,, ..., b,, ¢ such

that g(a):an,-a,-—}-c and g(x)zzn' b;x;+c. So it is enough to show (4) for a

function A of the form h(x)=g(x)—c. Then h(x)=
Eh(X)=h(a). Using the Khintchine inequality with the best constant [23] we obtain

ER(X) = h(a)= > bya, = (3 a?)*( 3 b} =
i=1 =1 =1

=

1; L. <
i b? 1/2 =F bi i = Fh DREEEER S 3
V2 () e :

Now we prove the theorem for an arbitrary symmetric random vector such that

Z'Xizé—;- almost surely. Let 4 denote a set of symmetric, probability measures

r 1
with support contained in the ball {x: Z’x?éi}. A is a convex, closed subset
i=1

of the set of all probability measures on the cube [—1, 1]". Extreme points of the
set A are symmetric probability measures concentrated in two points, By the Choquet
theorem [14] the set 4 has the Choquet property, i.e. for every measure p, which
belongs to A, there exists a probability measure P concentrated on extreme points of

A such that u= f mP(dm). This ends the first part of the proof because it implies
ExA
that for a nonnegative, convex function f: R"—R*,

f F ) u(dx) = f fG) [ mdx)P(dm) =

Ex4

= [([/@m@x)Pdm)= [( [fx)Q@dx)Pdm)= [f(x)Q(dx)
Ex4 R" RA

EXA R"

holds; where Q denotes a distribution of (ry, ..., r,). The distribution of the sym-
metric random vector X belongs to 4, so X is strongly dominated by (rq, ..., 7,).

Now we consider the case of an arbitrary random vector, which fulfils the
assumptions of the theorem. For a convex, nonnegative function f: R"—RT,

there exist real numbers by, ..., b, such that f(x)= Z’ b;x;+c where c¢c=f(0)=0.
Hence Ef(X)=c¢ and Ef(—X)=c, because the expected value of X is equal to
zero. The convexity of fimplies f (x)E% [/(2x)+f(0)] and therefore

E[f(X)—c] = max (E[f(X)—c], E[f(—X)—c]) =
= 3 E[fQX)4f(-2X)]—¢ S B (ris .., T —¢
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n 1
if > (2X;)*=—= almost surely. The last inequality is true, because the random
i=1
vector (2r X;, ..., 27, X,), where (#,...,7,) is equidistributed with (7, ...,7,)
and independent of X, is symmetric, so

%E[f(zX) +f(=2X)] = Ef QF1 Xu, .., 2F, X,) = Ef(ry, ..s 1)

if Z(2fiX,)2§%. This gives the desired result: Ef(Xi, ..., X,))=Ef(ry, ..., ")
i=1
ExampLE 4. For the symmetric case, the constant obtained in the proof of
Theorem 2 is the best (for all 7).
Let X be a random vector with distribution P(X= (a, a))=P(X=(—a, —a))=—;- :
acR, and let g: R®—~R* be a function defined by g(x,,x,)=max (x;+x,,0).

Then Eg(ry, r2)=% and Eg(X;, X;)=|a| which implies for a=—;-: Eg(ry,ry)=

=FEg(X;,X,) and X12+X§=% almost surely.

ReMARK 1. Let X be a symmetric random vector with the distribution concentr-

n
ated in two points a=(ay, ds, ..., a,) and —a. The relation > a?=1 is a neces-
i=1
sary condition for the strong domination X by (ry, ...; r,)-

Proor. If C= > aj>1, then for a convex function f: R"—~R™* defined by
i=1

f()=C1| 3 a;x;| we obtain Ef(Xy, ..., X,)=1 and
i=1
Ef (s ceny )= C‘1E| = air,-| =G [E(Z"'a,r,-)z:jll2 =C 2 <.
i=1 i=1
This means that X can not be strongly dominated by (ry, ..., r,)-

Even a small perturbation of an MS system can induce such a change of struc-
ture, that this system is not strongly dominated by (ry, ..., 7,).

ExampLE 5. Let X=(X;, ..., X,) be a random vector with distribution

Pers s e) = 27" [1+a(I] )]

where ¢,=+1, i=1,2,...,n and O<a<]1. Let us take an arbitrary nonnegative,
measurable function f: R"—~R*. Then

B Xy on XY= 3 f(rs oy €2~ [Ha(ﬁ1 e)] =

(egs.cse,

= E{f(rss .o m) [1+a(.-£2 r)]} =Ef @15 -es ¥ FAE[f(r15 -oes 1) é ri-
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This implies that (X;) is an MS system of order n—1 but since EX;...X,=a it
is not an MS system. For the convex, nonnegative function f: R"—R* defined by

S (1, oo0 s x,) = max (0, Z"'x,—n+1/2)
i=1
we get

E[f(rl, ST ﬁ "i] = )—(n+1)
i=1

SO Ef (X35 2o0i X)) B (F1s sais )
This means that X can not be strongly dominated by (ry, ..., r,). It is possible,
however, to obtain weaker forms of domination for p-WMS systems.

THEOREM 3. Let (X;) be a uniformly bounded p-WMS system, 1=p=2. Then
(X;) is p-dominated by the Rademacher system.

Theorem 3 is an immediate consequence of the definition of a p-WMS system
and the following lemma.

LEMMA 1. Let f:R"—~R™* be a nonnegative convex function and X, ..., X,
be arbitrary random variables uniformly bounded by one. Then

Ef(XI, "'9Xn) = Cp[Efp(rl’ seey r")]llp

where
C,=[1+ Z 2> |Ex,X,.. X, P]"?, 1=p=2.
k=1i<...<iy
ProoFf. Every point x=(xy, ..., X,), |x;/=1 of the n-dimensional cube may
be written as the convex combination

(5) TSR 2 L N

(e,, e,) i=1
=%1

(1+” ](el,...,e,,)

of vertices (ey, ...;e,). Since E[ J] (14+x;r;)]=1 the sum of coefficients of this
i=1

combination is equal to 1. For every i, i=1,2,...,n we have

E[r; [ A+x;r)] = Elri(L+x1)] [T EQ+x;1)) = x;.
j=1 j=1
J#i
So (5) is true.
Let P be a distribution of (Xi, ..., X,). Since f is nonnegative and convex,
using (5), we obtain for p=1.
1+x;e;
[fG, s x)PER) = 3 f(el, - ]7( ]P(dx) =
Rn

(eqs .. ,e R i=1
L L

= 2 Sl ez A _2.<Z<. (ge,,)E( oo )] =

= CLEf(ry =5 1)
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Now we consider the case p>1. Let Wi,.. ,k(t) ry(0)...r,(t) be the Walsh sys-
tem on [0, 1]. Using a part of the above estimations and Holder inequality we have:

Ef(Xy, ..., X,) = E{f(ry, ..., r) [1+ 2 > EX,...X)wy ]} =

k=1lij<...<ip

= [Eff(rss s r)]l/p{E[1+2 Z  EX,..X)w, ]9

k=1li,<...<i,

For p=2 we calculate the second component of the product and obtain that it is
equal to C,. For 1=p<2 we use the Riesz—Thorin 1nterpolat10n theorem [26].
Since, for Walsh function w,, E[a,+ Z’ a,w,|*=ag+ Z’ a® and sup lao+

+ > aw,(O|=laol+ 3 |a.l, then [E(1+ 3 agw,) ]"*=(1+ 3 |a,/P)"/», where %+
a€cl acl a€cl a€l

+%+ =1. This finishes the proof of Lemma 1.

It is possible to obtain an analogous theorem for weakly multiplicative systems
defined by Révész [21].

THEOREM 4. Let (X;) be a uniformly bounded sequence of random variables
Jor which there exists a constant L such that

Eilrax) =L =13
i=1

where (a;) is an arbitrary sequence of real numbers such that |a;|=1. Then (X;)
is 1-dominated by (r;).

PrOOF. An estimation like in Lemma 1 for p=1 is valid for such a system
with the constant L instead of C,, independent of n. (We make an evident change

in the proof.)
This theorem shows that the same results which are obtained in § 4 for a 1-WMS

system can be proved for a weakly multiplicative system defined by Révész.

§ 4. Properties of p-WMS systems (1=p=2). In this part we use a notation
= 2 a; Xy, A,= (2 |ai|2)1/2
i=1 i=1

for a sequence (a;) of real or complex numbers and (X,) a p-WMS system, 1=p=2.
The constants C,=(1+2 |EX; X;,...X; |P)'/?, where the sum is taken over all
combinations of indices, are always constants for p-WMS systems connected

with p-domination.
At first we consider the convergence problem and inequalities for moments.

THEOREM 5. Let (u,), n=1,2, ..., be a sequence of vectors in a Banach space

and let (X,) be a uniformly bounded 2-WMS system. If the series Zo'ou,,r,, is con-
n=1
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vergent almost surely, then the series 2 u,X, is comergent almost surely and
n=1

Eexp (e|| Zw’u,,X,,“2)<oo for every e=0.
n=1

Proor. The method of proof is the same as in [12]. Without loss of generality
we may assume that (X,) is uniformly bounded by one. It is enough to show that

0,

n=k=m Rypeeos

k

P(max || > wx]| = 9)

for every 0=0. Let us apply Theorem 3. If we take the convex function
f: R">R* defined by ;

Filxe )= Thax H=Z’;' U"xi”

1=k=n

with properly chosen n and vectors vy, ..., », we obtain

E( max “Zk,' uiX,-[I) = C,(E max ||Zk’ u,-ri||2)1/2

n=k=m n=k=m

for every m=n. If the series 2 u,r, is convergent almost surely, then it is con-
n=1

vergent in L2 and [10],
k
E( max | 3 ur

n=k=m

2)-—, o,
n,m--co

Hence

n=k=m

E(max || 3 u X)) e 0

which implies the desired result. Analogously, applying Theorem 3 to the convex

function f(xy, ..., x,)=exp (e” Z"' uix,-l %), we have
=1

Eexp (e ||l§1’ u,X||®) = C,[Eexp (2¢ Hél' w;r | [*)] 4.

Now the statement of Theorem 5 is a consequence of a result of Kwapien [13]: if

co

> u,r, is convergent almost surely, then Eexp (g|| 3 u,r,
n=1 =Y

This theorem generalizes a result on the convergence of 1-WMS systems and
real numbers proved by Alexits [4] and for 2-WMS systems by Moricz [16].

THEOREM 6. Let (X,) be a p-WMS system uniformly bounded by K=1 and
(a,) be a sequence of complex numbers. Then, for every q€[l, =), there exists a con-
stant B, depending only on C,, K, q such that for all n, E max |Sk|?= B, A1.

’)<oo for every &=0.
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Proor. It is known [10] that for every g€[1, <),

k
E max |1=21 aﬂ‘i|" =2E liél’ ai"il"-

k=n

Hence by Theorem 3 and the Khnitchine inequality
k
Emax |S,J* = C,K'[E (max| > ar[F)]? = C, KDALY = B, 4}

where D is the constant from the Khintchine inequality.
REMARK 2. Under the above assumptions, obviously E|S,|?=B, 4}.

THEOREM 7. Let (X,) be a p-WMS system uniformly bounded by K=1 and
let (a,) be a sequence of real or complex numbers. Then, for every A>0, the esti-
mations

@) Eexp (A]S,]) = 2C exp( pWKzAz]
and
(ii) Eexp (A max |Si]) = 4YPC, exp [—;— plA2K zAﬁ]

hold, where =1 or 2 for real or complex numbers (a,), respectively.

Proor. Let (X,) be a p-WMS system and ag,€R. Then using Theorem 3 we
obtain, for A€R

[Eexp (ASp))? = CPEexp (pAK Zn’ arn) =
k=1
=C} II Eexp (pAKa,r) = CB 2,. ]] [exp (ApKay) +

+exp (—ApKa)] = C? J] exp % p*A2K 2ak] Crexp [ . P*A*K2*A )
k=1

For obtaining the estimate with absolute value, we apply the inequality
Eexp (1|S,]) = Eexp (4S,) +Eexp (—AS,).

Now let us take the complex case. Using the inequality

(6) exp (|b+ic|) = —;— [exp(ﬁ |b])+exp (}/5 le])], b, c€R

and representing a, as a real combination a,=b,+ic,,b,, c,€R, from the proof
for the real case, we get the desired result.
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For the Rademacher system we have

k oo m k
Eexp (l max | 2 a,.r,.|) = 2-11—'E(max| S ai":l"') =
k=n ;753 m=0 M! Frec]

k=n

22 2 —v E(| 3 a;irj™) = 2E(exp (A | 2 airi)).
m=0 . i=1 i=1

If (a,) is a sequence of real numbers, then by the above, Theorem 3 and inequality
(i) for the Rademacher system, for a p-WMS system we get

k
Eexp (Amax|S,) = C, [Eexp(piK max ls‘Z‘i' a;r)]r=

= C,[2E exp(piK | Z"' a;r|)]"/? = 4/°C, exp (% pAZKzA,z,] A
i=1

The complex case is obtained by (6), like in (i). The proof is complete.

Part (i) of Theorem 7 was proved for MS systems by Azuma [6] and for 1-WMS
systems Révész [21] adopted the proof of Azuma. Theorem 7 allows to find esti-
mations, useful for the applications, for probabilities of type P(|S,|=y) and
P(max |Sy|>y).

COROLLARY 4. If (X,) is a p-WMS system uniformly bounded by K=1 and
(a,) is a sequence of real or complex numbers, then for every y=0,

2
PS> ) = 2C,exp( %),
n

and

yz
P (max Syl > y) = 41/°C, exp [_—2le2A?.]’

where I1=1 or 2 for real or complex numbers (a,), respectively.

PrOOF. By Theorem 7 we have

Eexp (41S4])

=2C,exp (7’12' plAszA?,—}.y]

for arbitrary 1>0. The right side has a minimum at the point A= , equal

yB
pIK2 A2
Yy 5 W
to 2C, exp ( IR Aﬁ) . The proof of the second inequality is analogous.
For 1-WMS systems we have the following generalization of a result of Zygmund
[26] obtained for the Rademacher system:

THEOREM 8. Let (X,) be a 1-WMS system uniformly bounded by K=1 and
(a,) be a sequence of complex numbers such that A= lim A,<e<. Then there exist

n—seco

2
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constants B, B’ depending only on C, and K such that
E(| 3 a,X%|In*| 3 a,X,) = BAIn* A+B.
n=1 n=1

ProOF. Our assertion follows from Theorem 3 applied to the convex function
f(x)=|x| In*|x| and the result of Zygmund [26, XV. 5. 14]. If (a,) are real numbers
then

E(‘ ;wl'a,,X,,| Int | =Z’.Za,,X,,D = CGE(K é a,,r,,l ln"‘lK gwl'a,,r,,]) =

= C,(DKAIn* (KA)+D’) = 2C,DKA In* A+ C,D’ + C,DK*In* K = BAIn* A+B’

where D, D’ are constants from the theorem for the Rademacher system [26]. The
complex case follows from the real case and from the inequalities

™ G2+ yD2 I (24 yHY2 = 3[V2 x| In+ (V2 |x) +

+V21ylin* (V21y1)] = 6(x+y) 2 In* (x4 yH2.

For a uniformly bounded SMS system the result of Zygmund was generalized
by Moéricz [15]. For an SMS system we can obtain the converse inequality.

REMARK 6. Let (Y,,) be an SMS system uniformly bounded by K such that
1nf D2Y,=L>0. If (a,) is a sequence of complex numbers such that llmA =A<

then there exist constants B, B’ depending only on K and L such that
BAln*A-B = E(| 3 a,Y,|In*| 3 a,Y,)).
n=1 n=1"'
DY, L

WY,
Since (Y,) is an SMS system by Corollary 1 we get

Proor. By assumption for n=1,2, .

E( S’ 4,7, n¥ S’a,,Y,,l) = E(KL S’ a,r,|In* |K1 5’ a,r,|)-
n=1 n=1 n=1 n=1

Now by the mentioned result of Zygmund and the inequality In*(ax)=
=aglnt x—aln % for 0<a<1 we get the desired result for the real case. The

complex case is obtained by using inequalities (7).

Such a generalization in a weaker form was proved by Méricz [15]. Now we
consider the strong laws of large numbers. Theorem 5 allows us to generalize the
result of Alexits and Sharma [5] for 1-WMS systems (with the same proof).

THEOREM 9. Let (X,) be a 2-WMS system such that |X,|=M, where M,
is not decreasing. Choosing two sequences of real numbers (a,) and (q,) satisfying
© 42

. a
the conditions q,=>0, q,<(q,;1—~° and 2 —5<e we have =——— 0 almost
n=1qn ann

surely.
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It is possible to prove more.

THEOREM 10. Let (X,) be a uniformly bounded 2-W M S system and let (a,) be
a sequence of complex numbers such that A, > oo, Then, for every q=0,

n-—-co

el
A (n At »o=
holds almost surely.

Proor. We put A4,=0. Since the 4, increase to infinity, we can find, for every
m=>1, a sequence of indices (n,) tending to infinity and such that 42 _,=m*<A42
(m=1+max {I: A2=m*}). Fix arbitrary >0 and denote by K a uniform bound
for (X,). We take K=1. By Corollary 4

2 29
| > &d, (In 4,)7) = 2C,exp ( 8 L“A"L) .

9 = P(|S, 8K?2

Tk

On account of exp[—(In x)**|=[exp (—In x)]**=x"%¢ where qé%, x=e; -for

0<q<% and arbitrary b =0, there exists a B such that exp[—b(Inx)*]=B(Inx)~1~%
o2

1 W k 1 1 1+2q
whenever x=e, we have ¢, = B, [(;] ] for g=- and qk§B2[ k1n m)

for 0< q<%. So i gx< <= and according to the Borel—Cantelli lemma
K

=1
S,

3

4,0 4,)7 =

almost surely.
If we take an arbitrary » different from the elements of the sequence (#,), then

there exists k such that, m<n<m,., and
Sn e, Snk Tn
.

i Sa=5

i /A0

(3

where 7,,=A,(In 4,)?. Put
T = (In 4,)* (45, ,,-1— Az )"

Then
ISnI — ISnkl |S1_Snk! Ti
7;: . 7111;‘ * "kgllgz’{k +1 TI: Tn )

Applying again Corollary 4 we obtain

29
pe=P(, max I5,—8,] = T3) = 4Cexp | -2
"k<'<"k+1 K 8K2

oo

Using the same argument as before, we have > p,<<o, so from the Borel—Cantelli
k=1

lemma the relation

. S;—8,
lim sup( max —'-—’—,-ﬂ =1
koo™ \me<l<myg ., iy

Acta Mathematica Hungarica 46, 1985



124 J. JAKUBOWSKI

holds almost surely. If n;,.,>n,, then

(B = (B < At o
Tn SN A,z,k K m"

My

=m-—1.

m is an arbitrary number greater than one, so taking m—1 we obtain the desired
result.

Under the assumption of Theorem 10, —y—0 holds almost surely. We can

s Az
ask about convergence behaviour. Modifying the method of [18, 23], we obtain

THEOREM 11. Let (X,) be a p-WMS system uniformly bounded by K=1 and

let (a,) be a sequence of real or complex numbers such that the series Zq”'g- is
n=1

2
convergent for every q€(0,1). Then, for every ¢>0 and every 0=g<exp (_2131(“2) ,
we have

Zq "P[sup! zl = s] <o,

k=n k

where I=1 or 2 for the real or complex case, resp.

2 2
Proor. If g<exp (ﬁ) then there exists m > 1 such that g<exp [m—i] ;

Let (m) be a sequence of indices satisfying Aj, _;=m*<4% . Then we have

k
A:k > m® . mk—l‘
A"’”l 1 e mk+1
For every fixed n€N there exists k, such that n, =n<mn ;. This gives, by Corol-

lary 4

Isi - 154 3 &4y,
Psup7ze = 2P| max —p=s)=4C, 2 exp|~ppmn—| =

I=n m=l<me gy k=ky Tt

S o B ko—ll Rk e ( & ko—l]
= 4C, k=2k,° exp( 3pIKE m m = 4C,exp T m -

o &2 B L G
+4C, 2 exp(—- Ik m°')

k=ky+1

exp (e ™)
= 4C, P = 4C,D, exp ( —

2

azm"o”l)
€
1 —exp (_W mko—l(m_ 1))

2plK? )’

Acta Mathematica Hungarica 46, 1985



MULTIPLICATIVE SYSTEMS OF FUNCTIONS 125

where D, tends monotonically to one. It follows from A=A =mko+1  that

My +1—1=

e242 ) ( g2mko—1
o [‘ pikem?) = P\ T 20k ]
This, on account of the assumption of the theorem, implies our assertion

Z’q P(supl'| ]S4CD Zq exp( i}
n=ny 1=n Ai n=n, 2le2m2

Another estimation for the rate of convergence can be obtained by Theorem 7
from the results of Méricz [18].

COROLLARY 5. Let (X,) be a uniformly bounded p-WMS system and (a,)
be a sequence of real or complex numbers such that A,—<, |a,|=0(A4,). Then we
have

la,f* (In 4,)" (ln A) [ " ]
s =1]l<o
Z; ven A0 A

for each choice of =0 and B=>0.

Now we consider the law of the iterated logarithm. It was investigated by
Gaposkin [9], Takahaski [25], Révész [19, 20, 21], Mdricz [17]. The result of Révész
[21] can be generalized.

THEOREM 12. Let (X,) be a uniformly bounded 2-WMS system and let (a,)

be a sequence of real numbers for which A,—~+ - and a,=o (—-———(ln In A )7 hold.
2
Suppose that, for every m=1, liminf TA(iw") >0 almost surely, where T*(n)=
M
= D atX?, My=M,;(m) is such that Ay, _,<m*=A3;, . Then
K=1

S,
li =
EP T )y =1
almost surely.

The proof is the same as in [21]. We use Theorem 2 from [20] and Corollary 4.
Another generalization of the law of the iterated logarithm is

THEOREM 13. Let (X,) be a p-WMS system uniformly bounded by K=1. I
(a,) is a sequence of real or complex numbers such that A,— e, then (X,) satisfief

. ISy
lim sup > n v = VPIK

almost surely, where =1 or 2 in the real or complex case, resp.
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In fact, this is Theorem 3 of [18]. (By Theorem 7 we have needed estimations.)

Estimations obtained by Theorem 13 and Méricz’ result [17] are incomparable.
More precisely, there exist p-WMS systems for which a better estimate is given by
Theorem 13 and there exist such ones for which a better estimate is given by Méricz’
result. An estimation for the rate of convergence in the law of the iterated logarithm
can be got by Theorem 7 from the result of Méricz [18].

COROLLARY 6. Under the condition of Corollary 5, for every 0=2K?pl, we have

2'” " P(sup S 1) < oo,
A2Ind, ~ 4=, (042Inln 42 —

where |=1 or 2 in the real or complex case, resp.
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CHARACTERIZATIONS OF THE BROWN—McCOY
RADICAL

B. DE LA ROSA (Bloemfontein) and R. WIEGANDT (Budapest)

We characterize the Brown—McCoy radical in an arbitrary universal class of
not necessarily associative rings or near-rings, as a lower radical. We also establish
the corresponding upper radical representation with respect to an arbitrary universal
class of alternative rings or near-rings, as well as the intersection property with
respect to the upper class of this representation. Finally we exhibit a natural module
counterpart for this ring radical.

1. Three more characterizations of the Brown—McCoy radical

A class & of not necessarily associative rings, or near-rings, is called a universal
class if o/ is hereditary and homomorphically closed, that is, if

IAcod = I€o/ and A[I€A.
In this section we shall work in a universal class & of rings, or near-rings. We state
for emphasis the following two well known characterizations of the Brown—McCoy

radical class ¢ in o/ : % is the upper radical class of the class S(1) of simple rings,
or near-rings, with unity (in which we include 0):

G=US(1) = {AcH| Al #0=>A]/I¢S(1)};
and, for any ring (or near-ring) 4 in 7,
%(4) = N{M=<Ad| A/MES(1)}.
The following characterization sharpens the statement of Theorem 1 in [5].

THEOREM 1. Let o/ be a universal class of not necessarily associative rings
(or near-rings). The Brown—McCoy radical class 4 in s is the lower radical deter-
mined by (it does in fact coincide with) the uniquely determined largest homomorphi-
cally closed class of rings (near-rings) in &/ without unity.

ProOOF. We prove the theorem for rings; the proof carries over mutatis mu-
tandis for near-rings. Denote by E the class of all rings of &/ with unity and set

H = {dc| A[1 # 0= A[I¢E}.

Clearly H is a class of rings without (non-trivial) unity and H is homomorphically
closed. Moreover, if Q is any homomorphically closed subclass of & consisting
of rings without unity, then for any 4€Q, A/[#0=>A4/I1cQ=A/I¢ E=AcH. Hence

9
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H is the uniquely determined largest homomorphically closed class of rings in &/
without unity. By definition of H, a ring 4 in H cannot have an ideal M such that
0£A4/MeS(1). Hence HS 9.

Conversely, let A€%. Suppose that A4 has a homomorphic image A/I#0
in E. By Zorn’s Lemma A/I, having a unity, must have a maximal ideal K/I. But
then we would have

0 # (4/DI(K/NeFNS(1) = {0}!

Hence AcH, and consequently ¥ SH holds. [
After the lower radical characterization we characterize ¢ as an upper radical.

THEOREM 2. Let o/ be a universal class of alternative rings (or near-rings).
The Brown—McCoy radical 4 in < is the upper radical determined by the uniquely
determined largest hereditary class of rings (near-rings) in sZ with unity.

ProOF. Again, denote by E the class of all rings (near-rings) of &/ with unity,
and set
P={dcsl| 0 # I<A4 = ICE}.

We first show that P is hereditary, and for this purpose we distinguish between the
two possible types of contents of 7.

Case 1: alternative rings. Let A€P and 0#=J<a/<1i4. Denote by J* the
ideal generated by J in 4. We shall show that J=J*. Suppose then that J=J*.
Then J* has a unity, as A€P, and therefore J*/J has a unity. By Zorn’s Lemma
the ring J*/J (with unity) has a maximal ideal L/J. By Andrunakievich’s Lemma for
alternative rings (see [3]) the ring J*/J is a Baer radical ring, that is J*/J€ . But then

J*IL = (J*[DILINESMN B = {0},

contradicting the fact that L is a proper ideal of J*. Thus we have that J=J*¢CE;
and we have shown that P is hereditary in this case.

Case 2: near-rings. Once again, let A€P and 0=J</<14. Since I€EEC.«/
and &/ is universal we have that 7/J€E. Hence, applying proposition 5 of [1], we
obtain that J<1A4 and therefore JEE. This shows that P is hereditary in this case.

It easily follows that P is the uniquely determined largest hereditary class of
rings (near-rings) in & with unity.

We now consider the upper radical

UP = {Act| A|I = 0= A/I¢P}.

For any A€P, %(A)=0; for otherwise 4(A4) would have a (non-trivial) unity.
Therefore P is contained in the semisimple class

FY = {Acd| 9(4) = 0}.
Obviously also S(1)&P, and hence we have S(1)SP< %, which implies that
G=USG<UP S US(1) = 9.
Thus we have that =%P. O
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COROLLARY. Let o/ be a universal class of alternative rings, or near-rings.
For any A€sf,
G(A) =N{I<A| A/ I€P}.

Proor. The inclusions S(1)SP S ¥% justify the inclusions in

%(4) = N{K<A| A/Ke PG} S N{L<A| AILEP} S N{M<A| AIMeS(1)} = 9(A).
o

2. A natural module counterpart for the Brown—McCoy ring radical

We consider an arbitrary associative ring 4 and the category A4-mod of left
A-modules. We include as objects of 4-mod all left 4-module structures — even
when A has a unity, the non-unital modules are included. In this general setting
the first author has in [2] introduced the radical r3: 4-mod—A-mod defined by
the assignment

M —1t3(M) =N{S < M| Sc4(M)}

where 4 (M) consists of all maximal submodules S of M such that there is an a=
=a(S)€A with the property that ax—x€S for all x€é M. The radical r; derives
its importance from the fact that an A-module M is rg-semisimple if and only if
M is isomorphic to a subdirect product of irreducible 4-modules M, each having
an a,£A which acts as a unital operator on M,. In our final theorem we establish
a relationship between the ring radical ¢ and the module radical r; according to
the same norm as that used by Szdsz [6] with respect to the Jacobson ring radical
# and the Kertész module radical, r, in [2]. The additive group of the ring 4 may
of course assume more than one left 4-module structure. However, when referring
to the radicals r,(4) and r5(A4) of 4, we shall have in mind the canonical 4-module
structure of A provided by the ring multiplication AXA*—~A*, (a, x)—ax in A.

THEOREM 3. Let A be an associative ring. Then t3(A)=A in A-mod if and
only if 4(A)=A in the category of associative rings.

PROOF. Let 4 be an arbitrary associative ring. Since clearly
{M<4|A/MeS(1)} S 4(A),

we have that r3(4)S%(A4). Hence ry(4)=A implies that 4 (4)=4. Conversely,
suppose that %(A4)=A. Assume that t3(4)#A4. Then 4(A4) is nonempty. Let
LEA(A). Then L is a maximal left ideal of 4 and there is an a€A such that
ax—x€L for all x€A. Since ¥(4)=A, we have the well known relation

a€G(a) = {ax—x+Zx;(ay;—y)| x, x;, y;€A}.

The fact that %(a) is a twosided ideal of 4 implies that ax€%(a) for all x€A.
Since ¥(a)SL in view of ax—x€L for all x€A4, we have that axeL for all
x€A. But then x€L for all x€A, so that L=A. This contradiction shows that
(d)=A4. O

We are now also in a position to reaffirm the separation r,<r; established
in [4]. This inequality follows from our Theorem 3, the corresponding result for
¥; and # in [6] and the fact that J #%.
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ACUMIITOTUYECKUN AHAJIN3 PACIIPEJEJIEHUSA
CTATUCTUKU TUKCOHA

II. A. UICMATYJUIAEB u U. V10 (Byxanemr)

ITpogpeccopy K. Tandopu x 60-1emuio co Ons poxcoenus

1. Ilyery Xi,..., X,, ® Yq,..., Y, — IBE HE3aBHUCHMEIC BHIOOPDKHA H3 COBO-
KYIOHOCTEM C OJHON M TOM XXe HENpepPHIBHOM (QYHKIWEH pacmpeneieHust T.e. Clyyaii-
HBle BeJW4ywHB! X, ..., X,,, Y|, ..., ¥, HE3aBHCHMbIE B COBOKymHOCTH. O6pa3yeM

BapUATIMOHHELT psit U3 X-0B: X(j)<X(5)<...<X,, nobo3HaunM vepe3 S Kojmuec-
CTB Y-OB M3 BTOPO# BBIOOPKH, NONABILMX B NOJYHHTEPBAI [X -1y, X)) (K=1, ...
..., m+1), roe monoxeHo Xgy=—o0, X(41)=+-co.
OO6pa3yeM CTaTHCTHKY
m+1

(1) Tm,n = 2 a(k’ Sk)

k=1

rae a(i, j) — HekoTopas Ueno3HayHast QyHKIu.

JIJ1st TIOJIyYeHHs. PYTOTo MPENCTaBIICHUS CTATHCTHKA 771, n PACCMOTPHM BapH-
ANMOHHBIN PSII:
(2) Z(l) = Z(z) < e < Z(m+n)

obsenuEénHON BRIGOPKH (X%, ..., X, Y1, ..., Y,). OO6o3HaumMm uepe3 R, paHr
BEJIMYUHBL X4y B paay (2), 1. e. R, Takoi HOMep, 9T0 Z g, )= X)-

OueBnpgHo, 9T0 1=R;<Ry<...<R,=m+n u S;=R.—R,_,—1 (k=1, ...
...,m+1), roe mia enunoobpasus 3ammcu noidoxeHo Ry=0, R,.;=n+m+1.
IMoxacraBisisi 3TO BbIpaxenuwe S; B paBeHCTBO (1), mosyyaeM npencTaBiIcHHE
CTaTUCTHKH Im, n yepe3 paHTu:

m+1

(10) Tm,n i 2 a(k, Rk'—Rk—l_])-

OueBuiHO (IO KJIACCHYECKOMY OIPEACIICHAIO BEPOSTHOCTH):
Fnldl)
m+n) ’
n
rae r,,,(N) — "ucio pemenuii 1uopanTOBa ypaBHEHUS (paayu yaobcTBa moJiaraeM
0g=0, Otpsi=n+m+1):

2°) P(T,,,= N) =

m+1
3 2 alk,y—a_1—1)=N

k=1

B IENBIX 0, ..., 0, YIOBJIETBOPSIOIINX YCIOBHIO: l=0;<0p<...<d,=m+n.
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B ypasuennn (3) mpon3BeéM 3aMeHy epeMEHHBIX 10 (opMyIaM
) Xi=y—-1, X=q—0q4_1—1 k=2,..,m), X,,,=n+m—a,.
Torna ypasuenue (3) mpuMeT BHAI:
m+1
(39 kg; a(k, X,) = N,
C YCIIOBHEM HA TIepeMeHHBle X, ..., X401 =X =n): X;+...+X,,,,=n. JIpyrumu

CIOBaMH, Iy, ,(N) — 9ucio pemeHuii ypaBaeHus (3) — paBHO KOJIMYECTBY PEIICHUI
B 0=X,<...<X,,+,=n cienyromei CUCTeMbI TMO(AHTOBLIX YPABHEHHN !

m+1 m+1
®) kz; a(k, Xp) = N, kzl Xy = n.

PaccMmoTtpun yacTHBIA ciydait a(k, X;)=X;7, KOTOPBLA COOTBETCTBYET CTATHCTHKE
Hukcona [1, 2, 3]. B aToMm cityyae cucreMa (5) npeBpaInaeTcs B W3BECTHYIO CHCTEMY
auoGhaHTOBEIX ypaBHeHH ['mib0epTa—Bapunra:

5 {X1+...+X,,,+1=n
©) X+..+X2,,=N.
B pannmeitmeM 7, ,(N) o6o3Ha9aeT 4HuCIO pelIeHUM cucTeMsl (6) B 0=X; =n.
Hac 6yznet maTEpEcoBaTh MoBeAeHUE BeposTHOCTH P(7), ,=N) B 3aBUCHMOCTH
oT BesuunH m,n u N. D710, B cHiLy paBeHcTBa (2°), CBOANTCS K H3YYEHUIO BEJIHIAHBI
(V).

Tax xax npu X; =0 mMeeM HepaBeHCTBA

Xt +X2n S Kt + X = M+ DX+ +X240),

TO 7 (N)=0 st n*<N u n*>(m+1)N. Takum o6pa3oM HOCTATOYHO pacc-
MaTpuBaTh m, n U N yIOBIETBOPSIOIINE HEPABEHCTBAM

@) N=n*=(m+1)N.

Janee, xak BHAHO W3 BTOPOro ypaBHeHHsA cucTeMbl (6): 0=X?=N; T.e. 4ucio
pewenwuii r,, ,(N) cucremsl (6) B 0=X;=n coBmamaeT ¢ YHCIOM €€ DEIleHUN B
0=X,=[N"3.

MB&I BiepeIb CUMTAEM BBINOJIHEHHBIM COOTHOIIEHUE (7).

Ecmn m dukxcuposannoe (=8), a N-—co, TO I BEIHYUHEL 7, ,(N) mMeeT
MecTo acuMmnrToTrmyeckas (opmyna, ycranopienHast K. K. Mapmxasumsuin [4].

3meck MccielyeM acHMNTOTHYECKOoe NoBeaeHwe 7, ,(N) B ciydae, korza
m—co BMecTe ¢ N (Torma, xak cienyet u3 (7), n Takke CTpeMUTCS K o). I[Tpu aToM
MbI OyzneM ciemoBaTh NyTH, npemiioxennoMmy I. A. ®peiimanom [5] (4 Bocxons-
meMy k A. 5. XwunuwHy [6]) mpH WMCClIeNOBAHMM ACHMITOTHKM YHCIA PEILCHWMIA
YpaBHEHHUS

®) Xi+..+X;, =N,
Korga mu N—oco.
IIpuBenéMm 3neck TeopeMy I'. A. @peiimana [5].
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Teopema. [ua uucaa I, y pewenuti ypasuenua (8) npu m-—co, m<yN (20e
0<y<1 a N — yesoe noaoscumenvioe uucio) umeem mMecmo cae0yowas acumnmo-
muueckasn goamyra

© -

20e ¢ onepedeasemca COOMHOULCHUEM

N S’ xS =
) —m i =ML 0=
—aXxS x=1

a & — cayuaiinas eeauuuna, npunumarowas 3nauenua X° (X=1,2,...) ¢ sepoam-
nocmamu py=e~"%[®(0)]~ . B (9) seauuuna e-ckoav y200HO Maaas NoAOHCUMElb
HaA NOCMOSHHAA.

B nmanbHeieM, myTéM HEKOTOPOrO BHIOM3MCHEHHS METOAA JOKa3aTeJIbCTBA
(a MMEHHO, TIOJIYYHMB OLEHKH BCTPEYAIOLINXCSI TPUTOHOMETPUYECKUX CyMM B Ooiiee
IIAPOKO 30HE H3MCHCHHS apryMeHTa M KOHKPETH3HpYsS IPHMCHEHHE ammapaTa
JIOKAJIbHBIX TIPEIENIbHBIX TEOPeM 1€0pHU BEPOSATHOCTEH, COCTOsSIIee B TOM, 4YTO
OBLIH HCIIOJIH30BAHBI ACAMITOTHYECKHE Pa3JIoKeHus), B paboTe [7] 65u10 mMOTyYeHO
yrounenne TeopeMsl A. I'. ®@peiiMana; a UMEHHO A0Ka3aHO YTO B COOTHOLICHUH

2 1 .
(9) ocraTouHBI WieH uMeeT mopsaok O [7,1— ; IPHYEM ITOT Pe3yJIbTaT HE MOXET
OBITH yJIy4YIlICH.

2. BepuéMcs K Halleil OCHOBHO¥ 3ajade 00 acMMOTOTUKE Iy, ,(N). BBeméMm
0003HAYCHHUS:

Bo)= 3 e, p.=e[D(o)] (x=0,1,..),

(10) mr
av=_5_(o-_).x§(')xe_ =M§, (v=1,2,3,4).

3nech ¢ — mapamMeTp, BBIOOP KOTOpoto OyAeT caesiaH HAXe.
Vicxonsi 3 M3BECTHOTO COOTHOIICHUS

: 1, k=0
2mika =5 >
of i {0, k # 0 muenoe,

JIETKO 1IOKa3aTh, YTO

eIt
(11) rm,n(N) o e”NlP"'(O') f f( Z pxezm'(alx+azxz))m+le—2ni(¢1n+¢gN) do, d%_
oRoR AR

AcumrnToTHKA T ,(N) OynmeT mosydeHa MyTEM aHAJIHM3a 3TOTO HHTEIPajbHOTO
TpeICTaBIICHHSL.
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Hetpynso BuzeTs (10 ompeeeHuio p, B (10)), uro GyHkmus

(12) Q) = fQCnoy, 2may) = > p,eiaz+ad)
x=0

y9acTByIOLIasi IIOM 3HaKoM HHTerpaia B (11), sBIIsieTcst XapaKTepHACTHIECKOH (PyHK-
nuei ciaydaitHoro Bekropa £=(#y, #,) C pacupelesieHneM BepOSTHOCTEH

13 Pt = (D)= ps (x=0,1...)

OvueBuHO, MATPULEH MAKCAMAJIBHOTO Iara (Oompezesenne 3TOTO IOHSTHS CM. Ha-
opuMep B [8]) aroro ciaydaitnoro Bekropa 6yner

1 -1
m=(; 7).
[ |
ITycts &, ..., 11 — HE3aBHCHMBIE CIy4aifHBIE BEKTOPBI C TEM 3Ke pacrpejelie-

HHEM BEpPOATHOCTEH, yro u y &; obosmayas wepes P,(n, N)=P{{+..+&u1=
=(n, N)}, mo dbopmye obpamenus [8, 9] momydmm:

= Pa(n, N) = < [ 7 @e=ie d
I

rne N=(n, N), I={(t,, t)H': —n=t,=n; v=1,2)}, |H| neTepMUHAHT MaTpPAL®I
H (oH paBeH 2). 3aMeTHM, YTO B HAIIEM ClIyvae B KadecTBe 00J1acTh I MOXHO B35Th
MHOKECTBO

= s T
{a: - =0y =7, —7§d2§—2-}.

ITockonbKy, TAKKE HMeEM

et IHl m+1 —i(a,N)
(15) Rpl) s LI @e g,
TO, conocTasiisis pasenctsa (11), (14) u (15), monyqyaem

rm.n(N) e, o 1 m+1 —i(a, N)

(16) ) = Pl M) = o5 [ (@e oD da.

ByneM ananmsmpoBaTh BesmuuHy P, (n, N), mcxons u3 pasencrBa (16) mo cxeme
JIOKAJbHOM MPEICIIHOR TeOPEMBI I CYMMBL &y + ...+ &, =S,,.

BeenéM OOGO3HAUYCHWA MJIsI YHCIOBBIX XapaKTEPHCTHK CIIy9allHOTO BEKTOpa
E=(ny, 5); HETPYAHO YOEOUTHCS, YTO HMEIOT MECTO CIIEAYIOIIHE COOTHOIICHMS:

Mn, = a;, Mny,= ay, Dn,=a,—ai=>bi, Dny= a,—aj;=Dbj,

M{[(n,— Mn,) (n.— Mn3)] = az—a,a; = by,,
an Vs

A 7
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Emé npuMeM 0603HAYCHAS

B = Mn—Mn[¥, Bra = Mna— Mnyl",
_ n—(m+1)a, 30 N—(m+1)a,

1 = s - ’

b,Yym+1 b, Ym+1
{Q(ulau2)=

u=(uy, uy)
g(@) = g(oy, xp) = of +200, 4+ 03,
=3 248y Z2Ga
” % O a3 k&
fm(a) f s e
b,Vm+1 bYm+1

(Ui —20uyup +u3),

(18) 1=0

B unTerpane u3 papeHcTsa (16) mpousBenéM 3aMeHy mepeMeHHBIX o, =1,/b, Ym+1
(v=1, 2), nonxyunm:

(49) 20%byby(m+ 1) B, (n, N) = [ fu(De'®" d,
1
rae

I, = {t: |t = nb Ym+1, |ts é-gbzl/m-}—l}.

Hanee, ucnonb3ys (19) ¥ M3BECTHOE PABEHCTBO

i 1 2 Oy, 1 — i, ) —— a(6)
19° TN PPN~ a0 s TR Y | - 27 dt,
(19°) o( ) o }/1—92 (2n)? R.[

COCTaBAM Pa3HOCTh. (Ha'mﬂas{ C 3TOro MOMEHTA, CUHTACM IapaMeTp ¢ U3 COOTHO™
menwit (10) TakuM, 4TO

S’ x2e—ax2
x=0 b o

torga u, u3 (18) Gymer pasen 0. B TOM, YTO ¢ MOXHO BHIOPATb TAKHM, HETPY/IHO
ybenutbes (cM. manpumep [5]).:

1
(200) 4= 4,(n, N) = 2n? [bl b2(m+ I)Pm(ns N)—; e_—?Q(uPO)] '
) 1—o*

IIpencraBum A,, B BUe CYMMBI TPEX UHTETPAJIOB
4n=L+1L+1;,
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rae
e R
|32,
9=z b e ym+1 c—a =(’h—al '12"“2]
L T e i W
1
l] =0 fe—iulrl[fm(t)_e—?q(t)] dt,
@D
1
(21) L=— f e M0 gy
RN\ 2
L= [ eunf (9dr.
I\ 2

IIpexzae 4eM NPUCTYNUTHh K OLEHUBAHUIO MHTEIPaioB [,, NOJy4YdM HEOOXOIUMBIE
ONEHKH JJIS BeJIMYUH a,, b,, 9, Pi, (v=1, 2), xoTopsie 65U BBemensl B (17) u (18).
JJis aToro HaM HyXHa ciieayromas reopeMa CoHHHA.

Jlemma 1 (Conun, M. [11]). Ecau ¢pynxyusa f(x) umeem nenpepvighyto emopyro
npousgoonyio é unmepeate (Q, R], mo

R
S f®= [ f@dx+e®f(R)—e(Q)f(@)—
R o

Q<x=

R
—e(R)f' (R +0Qf @+ [ o)/ (x)dx,
Q

20e

o(x) = -;——{x}, o(x) = f 0(2)dz.

0

Hazee, ecau f | f”(x)| dx <o, mo npu R Goavuux umeem:
0

R o
S f@=C+ [ f®dx+o®fR)—cRf (R — [ o(x)f"(x)dx,
Q R

Q<x=R

20e geauvuna C He 3asucum om R.

Bcrony B panpHeiimiemM C, o3Ha4yaeT [OCTATOYHO MAJIyIO NOCTOAHHYIXO, Cj
JI0CTaTOYHO GoJbmIyIo, a C — HEKOTOPYIO HOCTOSIHHYIO (€CJIM He OTOBOPeHO 0c060).
Onupasicb Ha 3Ty JIEMMY, IOCJ€ JJUHHBIX, HO HECJIOKHBIX BBIYHACICHHNA IOJIY-
ypM (mpuuéM, Kak OymeT BHIHO U3 CIIEIyIOIIEro, Mbl MOXeM cuuTaTh o— +0):
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= [1+0(/7)]
f_ —[14+0(/9)}, a = = [1+0(/a)],

as l/— S [1 +0(}/a)]

a, = 42[1+0(V")] ICr +1)2 [1+0[ﬁ]]’

3= 50-;27 [1 +0(V;)],

(22)

1 L
Qi ﬁ[l'{‘O(VO’)]

W3 HaliieHHOTO BBIPAXKEHHS sl ds M BBIOOpa o, TakuMm 4yro N/m+1=a, B Hact~
HOCTH, CJIeyeT YTO

23) e ’"“ [1+0[ﬁ)].

IToxacTaBnsis 3T0 3Ha4YeHKE ¢ B (22), HAXOAUM:

| = R (T
@) {0 =22 m+1[1+o(ﬁ]], b = —(m[uo[ﬁ]],
[t F) 00 =1 s ol 7]

OueHuM Teneps Py ¥ Pgn. Pu=a,—4a,a;+6a%a,—3at. Ucnonszys (22) nonyunm:

Q=

e 6
R ﬁ63,2+ma 2 ) n+o(/e)) =
3n2—4n—12 1 n?—4n—12  N? m
G~ e [”0(‘/")]“ - (m+ 1) [”O(VFJ]
TaKxXe
(25)

Ba> = as—4asas+6aza,—3a; = ;_%—[1-&-0([/;)] -(—+—1)4[ +o(ﬁ]],

U3 (24) u (25) 10 HEPaBEHCTBY MEXIAY MOMEHTaMH, T.e. Pi¥=pls (s=k) nonyunum:

(26) o = 1 (_g-)a/z, Bos = €1 [ﬂ]s.

m
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O1crona m u3 (23°), MO HEPABEHCTBY MOMEHTOB CJIEIYET, 9TO 3TH OLEHKHA TOYHBIE
B CMBICIIE opsaka mo N/m.
—a
[ - 5 ’)

Temnep oneHAM
ITo mepasenctBaM [(x, y)|=|x|-|y|, (a®+b%*=2(a*+b*) u HepaBeHCTBY Mexay
MOMEHTaMH, NOJIYYUM: ’
3 — a |8\8/4
= W[M] b ] .

@ fa) = b [£22 :
RN

Eon '11—“1)4 ['72—“2]4]}3’4= ” s{_l?4_1 ﬂe_z_}s"’
ity {M[( A e i il v . i o i

3

ﬂa O=M

Otcrona, ucnonb3yst oneHky (23°), (24) u (25), noxyyum:
(28) Bs (D) = cytf’.
OuenuM ¢(7); B CHJly OUEHKH [UIsl @ |3 (23°) uMeeM:
(29) q()=1f+2ett+8=(1-(F+B)+e(t+1)} =(1—-0(HE+H) = ¢ (F+5).

Teneps MBL B COCTOSIHMM OLeHNTH nHTerpan /; u3 (21). Cornacao TeopemMe A.
Buxsumuca [10], st €9 (CM. (21)) AMEET MECTO HEPaBEHCTBO:

¢ Bs(0)
Vm +1

—wat)
e i

29) ful—e T =

Orcrona, mpuMeHss: oneHkH (28) u (29), HaxonuM:

C 3, .9 Cc C
30) |L|=—2 |ttt gt = : |t[3e—clt® dt = L.
p }/m"‘IQJ. l/m+1 R[ Vm+1

Hanee, 3amedast (1o (28) u (29)), uto

. cilf? = m+1}_ . - e —
3D 2> {t. CF=" 8 ={t: ltl=cVm+1}=9,,
oueHuM /,:

= ¢
32 |Iy] = e 2 Odt = e~coltPqr = L .
¢2) R,\[@ m\fgl Vm+1

IMepexomnM K OIEHUBAHHIO OCHOBHOro mHTerpana I;. B cumy (31) mmeem:
D> D, 0 Dh={t: |t = cVm+1, |t = Vm+1},
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O3TOMY
hl= [ fu®ldi= [ |fa@ldt=
I X9 1, \2,

m+1

dt, dty;

f[ L 2 ]
]m\g2 b1 Vm + 1 b2 Vm + 1

IPOM3Bes 3aMeHY TepeMeHHBIX f,=a,b,Ym+1 (v=1,2) m oGosmauus By=
=00 Iavlé%; V=1, 2}, TOJIYYHM :

33) L] = byby(m+1) [ |f(@™+ dx

IN\B,

(onpenenenye 1 cM. nepexn dopMmytoi (15)).
O6pawasich k onenkaM (23°) s by u by, BUIUM, YTO

v/2
34) BIDB={OC: Iav|§co(m;,-l) }

JlokakeM cJieIyIOLIyIO JIEMMY.

JIemMa 2. ITpu a€I\B umeem mecmo Hepa6eHCmME0

(35) lf @) =2

20e y<1 — abcoaromnas nocmosaHHAA.

N 1/2
m—+1] , Toe ¢; Takoe, 4T0 Q —

uenoe, u=2. Torma, B cuny onpexneiiehns (34) obyactm B, IpH HEKOTOPOM Cq
uMeeM

(36) BoR={u: |a,)| =c,@""; v=1,2}

HokazatenscTBo. O6o3maunM Q= [c1

Onesky (35) MBI BbIBeIEM H3 CJIEAYIOINEr0 HEPaBEHCTBA, A0Ka3aHHOTO B padore
[12]: mpu a€l\Z# wMeeT MeCTO HEPABEHCTBO

(37) 1 ZQ'ealx+agx= -
Q+1 |x=0 ' e xl:

rae x; <1 mocrostHHAS (T.e. HE 3aBHCUT OT Q).
BcomuuMm onpesienenue (12) xapakrepucruueckoit ¢ymkmmm f(a), u npous-
BeIEM IIOCJIC/IyIOLIUE OYEeBUIHbIE IIPE0OPA30BAHM:

J@ = 3 Peossast = 3 (B, Belowston 4
x=0

x=0

+PQ vaei(alx+agx2)+ S‘ Pxei(z;x+agx5).
x=0 x=Q+1
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Orcrona, npurrMas BoO BHUMaHue: Pp =P, npu x=Q NOJIyIuM

) g
(38) If(a)l = Z |PX—PQ| +PQ l Zz)et(alx+u,xa)| +

x=0

= Q
i 2 Rx = 1"(Q+1)PQ+PQ l 2 ei(:ux+aza:2)|.
x=0+1 x=0

THoncrasnss ounenky (37) B HepaBencTso (38), HaiineM:

(39) f@=1-Q+DF(1—1) @EIN\R).

U3 (39) 6yner cinenoBath (35), T.e. yTBepaKaeHHe JIEeMMEBI 2, €CJIH MBI IIOKAXKEM, YTO
F(Q+1)+0, mpu Q-oo. [na sToro sammmeM sBHBIA B Py u3 (10), m
BOCIIOJIB3yeMCsl oueHkou (22) mist @ (o), BbipaxkenueM mis Q=[cN/m-+11% u
dopmyoit (23) st o; B pe3ysbTaTe MOJIYYUM:

(o) [
e Qg% Vo
%% =3

: = C[1+0(Yo)].
7;—[1 +0(/o)]

Jlemma 2 goxasana.
3aBepimM onenuBanue I;. OOpamrasice k cootHomeHusM (34) u (36), u mocie
noacTapisisi ouneHky (35) B mepasencTtBo (33), HaxomuM (YYHMTEHIBas, TAKXKE, OLEHKH
(23°) ns b, 1 by):
3

(40 L) =bby(m+ D)+l = L Nagmi1 oGO

mpu m+1=¢, In N (c1=3/21n—)1?).
3. CoGupas ouenku (30), (32), (40) m Bciommuas cooTtromenue (20°) momy-
9aeM TeopeMy:

TeopeMa 1. Ilycmb m—~, n u N yooesemsopsaiom ycaosuio n*/m—+1=N=n
Cywecmsyrom nocmoannsvie >0 u c=c(B) maxue, umo npu ym=N=ef™ (y=>1
— NpoU3B0IbHAA NOCMOAHHAA) UMEeT MeCHO HePaBeHCMBO:
ui

4

1 1

—_———p 210" "
zV1—¢® Vm

Teneps BepHEMCS K HCXOAHOM (OPMYJIMPOBKE PACCMATPUBAEMON 3a/1a4H, T.€.
K Bompocy 06 acumnToTHke pacnpenenerus P(T, ,=N) — cratucTHKH [{WcKoHA
T, n- O6pamasce x paBencTsaM (2°) u (16) Haxomum:

e’No™ (o)
(")

YTO, B COOTHOLIEHUH C (41), 1aéT cleyrolee yTBEPXKACHHE

(41) byby(m+1)F,(n, N)—

(42) P(Tm,n =N)= Pm,n(N)5
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Teopema 2. [Tycme N,n u m HamypaivHvle Yucia, y0081emeopAlouue ycio-
euam Teopemwl 1. Toz20a cywyecmsyrom nocmosnneie B=>0 u c=c(B) maxue, umo
npu ym=N=ef™ umeem mecmo coommowenue
e’Npm (O’)

= =
bb2(m+1)(m+nJ nY1—¢ Vml

JIJIst TIOJTHOTHL 3aIIHIIeM 3TH YTBEPKICHHS H KaK aCHMITOTHYECKOE BBIPAXCHHE
BeJIMYMHBL I, ,(N) — 4uHcna pemeHuii cucteMsl (6).

@43) P(T,,,=N)= e - 1+ 0] =ec.

Teopema 3. IIyems N=n*=(m+1)N u 012 docmamouno 604611020 nocmosn-
nozo w:wln N=m=yN (y<1 — npoussoavnas nocmosunnas). Tozoa cywecmeyem
c=c(w) maras, umo

2

"N (o) 1 . 1 ]

e - O ——|;, |O=c.
m+Db,b; L yi=g 7

Teneps, HakiagpBass Gojiee XKECTKHE YCIOBUsL HA BEJIHYMHBL #, m u# N, BHI-
BesleM Gosiee 0603pUMBbIe aCHMITOTHYECKHAE HOPMYJIIBI ISl pACCMATPHBAEMBIX BEJIH-
YUH.

Tak, HampuMep, eciau KpoMe yciioBui TeopeMsbl 3, BBINOJIHSAETCS €IIE YCIOBHE

(44) rm,n(N) =

m3/ 2
N2

TO BOCIOJIB30BaBLINCH COOTHOIIEeHUSMHE (23) u (23°), OyneM uMeTh (TIOCIE HECIIOX-
HBIX BBIYMCJICHHHM):

@ =)+ [+l

m+1 3/2
= ol

(45) -0, mpr m — eo;

N2
AR SR ]m_+1 [ma'z)]
(46) eNopm+1i(g) (_—.Z(m D) 1+0 N

beaT=¢ = 22 (L J" [+ (/2]

Y1—0® = m[uo f]

U3 (44) u (46) nerko moJiiyyaeM Cleayrolee YTBePKIeHHE

Teopema 4. ITycmo m-—-<=, @vinoanenvr yciosus Teopemvr 3 u m*=o(N);
mozoa

47N

mn(N) [2(m+1)]m+1 }/;/7’"(}—1-—1?) NMT_z[e 2(1—9*) +0[V— '}73—/2]]
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3amevanne. OUeBHOHO, UTO B MPHUBENEHHBIX TeOpeMax, Kak OOBIYHO ObIBaeT
B JIOKQJIBHBIX IpEACIbHBIX TeOpeMax, IJIABHBIE WICHBI ACAMIOTOTHYECKHX (GopMys

IO TIOPSAKY HE MeEHbBIIE OCTATOYHEIX, €CIH |u] / VY1—0®=V(1—¢)lnm, T.e. ecnu
n—(m+1)a, el {0V VR
=J(1—¢)lnm;
M=o yme| =/ -omm
(¢ >0 mpousBosbHOE, GHEKCHPOBAHHOE).
Eciii OrpaHMYHATHECS PACCMOTPEHUEM TaKHX 3HAYEHHH 7, YTO

(48) [n—(m+1)a,| = clnl:N , (a >0 — mobas mocTosiHHAS)

T.€., KaK Clie/lyeT U3 OleHKH b, v p o (23°), 3HaveHusMu u,: |uy| =c¢,/m? (¢, — mobast
MOCTOSIHHASL), TO CIIPaBEJIMBa, KaK JIETKO yOEOHUThHCs, MOACTaBisie B (47) BennuuHY

2
L
e WD = 14+0(u) =1+0 (%)
cieayroom@as TecopeMa:

Teopema 5. Ecau 6 ycaosuax Teopemvr 4 n makoe, 4mo 6bINOAHACMCA
Hepagercmso (48); mo

(49)

ruan ) = [ |5 L W (140 (3 —+ 37|

3ameuanue. B Teopeme 5, koTopasi BeIBeieHA HAMH U3 TeopeM 3 u 4, ycioBue
winN=m (cM. TeopeMy 3) MoXeT OBITH ONYIICHO. DTO OKa3bIBACTCA, CICAYs
pab6orte [4] (HyXHO OLUEHUTH MOCTOSTHHBIE — JOCTATOYHO Jla)ke IPyOBIX OLEHOK — B
ACHMITOTHYECKUX (OPMyJIax NPHUBCAEHHBIX TaM), B KOTOPOH HAXOOHWTCS ACHMII-
TOTHKA IS Iy, ,(N) TIpU HEPACTYILUX M.

Iocne caenanHoro 3amevanusi, U3 TeopeM 2 M 5 cieayeT clieqyromas TeopeMa,
Jaromas yaob6Hyl acuMnToTHYecKyro dopmyny mis BepostHocteit P(T,, ,=N)
craTHCTHKA JlHKCOHA.

01 ]/_

Teopema 6. ITyemb m—oo, m=0(N'®) u |[n—(m+1)a,|= , (€1, a=0

— npouseoabHvle PuKcuposanivie), moaoa
(50) P(Tm,n o N) =

__ml!n! [ ]MHV m+1 "‘T‘2{ ( EEEE m3/2]}
= meni LEm1D) st b e e
3amevanue. I[Ipumenss ¢opmyny Crupamara, coortHomenue (50) MOXHO

nepenucath B Bue (YYMTHIBAS IPH 3TOM, 4TO NpH ycioBuh (48), 1 /n=o(1/VN)):

(51)

1
m+
m

e R L T E e

(m+n
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4. B 3axirodeHue creilaeM HECKOJBKO 3aMeEYaHWii O pe3yJsbTaTax pabor [3]
u [13].

B pa6ote [3] B Bune Teopemsl 8 npuseneHo (6e3 M0Ka3aTeNILCTBA) CAEAYIOLIEE
yTBepXaeHue o cratuctuke Jukcona Ty, .

Teopema. Ecau n*lm+1=k=n? mo cywecmeyem abcosomnas nocmosauHas
c¢>0 makas, umo

c
4 = —,
(52) sup | T
20e
s (m+1)o,0, (m,-:_n) P . 1 ——;—Q(yl,y')
m,n(K) = (n+1)™+1 To,n = )—n_l/—l;:—?;e s

1
Oy, y2) = =g 01—2e51y: 4+,

(53)
n—(m+1 k—(m+1
1=_(__M, Y T2 PP G
o Ym+1 oy Ym+1 n+1 =0
Hs — 11 Ug

3 — ] | — =
av u2v l“v (V 1; 29 3s 4)9 Q 0_1 0,2

IToxaxeM, 9TO 3Ta TeopeMa HEBEPHA; a KMEHHO, MOKaXeM YTO TJIABHBIM 4WIEH
ACUMNTOTHYECKOM (TIpH 7, m—co) (opMyIsl (52) MeHbIIEe OCTATOYHOTO.
HelcTBATENBHO, KaK JIeTKo moka3ath (cM. [12] (JIemma 1.))

n® [1+0(%]], av=c(v)n"[1+0 (%]], 3V— =0 5

rac ¢(v) — MOCTOSTHHBIE 3aBACSIIHE OT V, X MOXHO JIETKO BEIYHCIIHTE.
IMoacraBuM HalineHHbIe BBIPa>XeHHS IS y; M 0, B paBeHcTBO (53) must y;:

o n—m+1)+n[1+0(1)] X ~n(m—g)[1+0(5]] = <t Yl
T

#V= v+1

(54

Hanee, yduTbIBast OLEHKY AJIS Q, TOJIYIHM:

(55) 00, y) = (1+$]_1 01+
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U3 onenoxk (54) u (55) cnenyer:

e—%w”y’) = ¢ 90D _ p—comg—or} < gcam — (L__)
Vm

Takum o6pa3oM, To, 9TO cooTHoLIenue (52) He comepKaTeIbHO, JOKA3aHO.

3aMevaHue K pe3yjibTaTtaM paboTsl [13] COCTOUT B ClleIyIOIIEM.

B 70 paboTe [uIst 9uCaa peIeH i 7y, ,(N) cucTeMBI IHO(AHTOBBIX YpaBHEHUH
(6) mpuBeeHHI (B BUIOE OBYX TeopeM; 0e3 HOKa3aTeabCTBA) ABE aCHMITO1HMYECKHE
dopmysbr. Y3 BBenEHHBIX TaM 0003HAYCHHM BHIHO, YTO aBTOPLI IPH YCTAHOBJICHUH
3TUX POPMYJI HCIOJIBL30BAIH METO LI GJIM3KHEe KMeToauKe mosrydenus TeopeM 3 u 4
Hameil pa6oTel. OfHAKO 3JIEMEHTAPHBIE BEIYHCIICHHS IOKA3BIBAIOT (Haxie eclu He
CpaBHUBATH C HAIIMMH TeopemMaMu 3 U 4), YTO IJIABHbIC YJICHBI ACUMITOTHYECKUX
dbopMy B 06enx TeopeMax HEBEepPHBI.

Ecisu B (1), (4) u (5) nosnarats a(k, x,)=X; roe s=2 ¢uxcupoBaHHOE LIEJIOE,
TO MOJIyYMM HEKOTOPYIO CTATHCTHKY TS, KOTOpasi NP 3HAYEHHH S=2 TIePeXOmuT
B craTHCTMKy JlukcoHa; moatoMy 7 ecTecTBeHHO Ha3BaThb 060OmIEHHOHM cTa-
THcTHKOM JlukcoHa. B 3TOM ciiydae BMECTO CHCTEMBI ypaBHEHWH (6) IOJILy4HTCS
clelyromas cucreMa:

(56)

x1+...+xm+1 =n,
x{+...+x5,.,=N.

Coobpaxenusi, aHAJOTHYHBIC IPOBEICHHBIM B Cllydae §=2, HO3BOJIAIOT IIOJy-
YUTh TEOPEMBI, IONOOHBIE JOKA3aHHBIM H B 3TOM Ciydae (MCHOJIb3Ys TaKXKe HIEH
pabor [5]).

5. 3ameuanne 0 TOYHOCTH OmeHOK. To uTO BemumHa 1 / ]/r_n_ B OCTATOYHOM YJIEHE
HalaeHHBIX (opmya (41), (43), (44), (47) He MOXeT OBITH 3aMEHEHA HA BEJIMYUHY
6oJiee GBICTPOrO MOPSIIKA CIEIyeT M3 TOTO, YTO NPH MOJIyYEHHH IJIABHOIO YjieHa
(omeHka wHTerpana I;) MBI HCHOJb30Badum TeopeMy A. Buksiinca (HepaBEeHCTBO
(29°)), xoTOpas IMeeT yTOYHEHHS THTIA ACHMITOTHYECKHX PA3JIOKEHHH 1O CTETEHIM
1/Vm.

Teneps mamuM yrounenue Teopem 5 u 6. U3 onpenenennst pyukuuii P, (w) u
P,(—¢(x), (cm. [8—10]), Haiiném sBHOE BEIpaXenne it Py (—o(x)).

a\'

Hyc’rb fly :L

55 HCHOMB3ys (18) u (19°) umeem

= 3
6P (w) = M( ¢ b - s w) = M (i, 0, +jpwp)* =

o =3 8, 7-3 9= = 52 2 ) =8 3\ __
= M (3} + 373 037y 0, + 37, 0, 13 05 +303) =
- 3 2 2 3
= 0307 4305, 51 W7D + 30141, 22 01 W5+ 0p3 03,

3 Po

ox3 "’

P Pp @
P(-o (x)) = o3 F + 3tt9,91 N + 30011, 90 0%, 0% + Olog

1!
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Tenepsb xoTiM GoBHCIHTD Py(— ¢ (X)) IO WieHaM.

0p 1. 90Y%- 1 i
¢ il e v o —(P[————l_eg (%1 sz)],

w-el-z5d) +ol-250)=
= o g et~ ),
7 gg]{} <"['(1—_W("1'9"2)] g

3
= ‘P{—ng—'z);(xl—exz)s'i'w(x:— sz)},

e = o (- 1a) Jrolaat-omen)] -

3x§ ox 2

= go[-l——— Q-’ﬁ)]{ 0%)2 (e — e~ 12 }+

Lol

-2
+ o [T’_‘_—QQ? (x2— Qxl)] =

_ | Ca—exs)(xa—exy) | (xa—ox)(1—20)
‘¢{ a—o (-0 }’

s = ? -z 5) [~ e +ol ) -

= qo[—l%ez(xz—exl)][——f_l—ez—(xl—exz)]+<p[ 1—992} =

(2 — 0x1) (x; — 0X3) 0
[ ]

(=g 1-¢2)’
1t (X2 — 0%1) (X; — 0X2) 0
% 7 ¢[——1_ 5 (xz—exa][ -7 + 1_Qg]+

(X1 —ox)—o(xa—ox) ] _
+¢[ 1 (21_92)22 1 ]_

& { _ (e—ox)?(xi—ox)) 20 (xp—0x)—(x1—0Xs) }
" (I—o»’ (o :
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WmenHO

?(x) {_ o 1 0% X1— 0%,
13

REPGls -y T a-ert

(1—20)(x,—0x)) (o — 0x3)” (X2 — 0x1) e

s 3“12, 21 (1 e 92)2 & | 3a12,21 (1 o 92)3
3y Gemex) (aexy) 5 20(n—ox)—(n—oX)
11,22 (1 £y 92)3 11, 22 (1 i EG 92)2
(x— 0x,)® Xp— 0X
~ta gy + 3w g

Orcroma mnst Py(—¢(x;, 0)) momyunm
B(—0(n,0) = - 2800 r1a ) By,

rae

1
4= - _(I_T)a (—oq3+ 30412, 210— 303, 220% 4+ 0tp5 2,

1
B = —'(1_—22)2 [3“13—3“12, a(l— 0)2_3“11,22 (202 +1)—3ay0].

"3 (23°), (24)—(26) monyunM |a.,.|=c, T.e. |A|,|B|=C. Taxum o6pazoM, eciu
OPUMEHNATD JJISL BBICJICHUS IJIABHOTO WICHA aCHMITOTHYECKOM dopmyist (41) pas-
JIOXKEHHE XapakTepucThyeckoil ¢yHkmun ¢ nByms wieHamu [10], To, aHamoruvHo
Teopeme 1, moyunm

(%) biba(m+ DB, (n, )=, 0) [ 1 ’é‘]‘,r:f‘;] o[ I

ITpamensas ouenky niuia A U B, u cunrast |uy| =C m™° oTcroma MOJIyYAM

il
A,,,(n, N) =0 (W).
Taxum o6paszoM B Teopemax 5 u 6, u B popmyiie (51) ocTaTOUHBI WieH MOXHO

3aMEHHUTDb Ha
1 1 m®/?
0(m2q+ m1/2+n + VW]'

IIpuyeM, KaK BUAHO u3 (* ), ciaraeMost 1/m*/*+4 He MoXeT GBITb 3aMEHEHO HA MEHb-
1ee.
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ACCUMULATION THEOREMS FOR PRIMES
IN ARITHMETIC PROGRESSIONS

J. PINTZ (Budapest) and S. SALERNO (Salerno)

1. Knapowski and Turdn devoted two long series of papers [3, 4] to “‘com-
parative prime number theory”, i.e. to problems connected with comparison of the
number of primes in two residue classes /; and /; (mod g), where (as in the following
always)

(1.1 (h, =, 9)=1, hLZI, (mod g).

Let us introduce the notations
1 if n=15L(g)
(1.2) e(n)=¢em,q, L, L) =1—-1 if n=1I(q)
0 otherwise,

_ [t if n=prime _{logn if n=p
(1.3) ay(n) = {0 otherwise, %fn) = 0 otherwise
3 Sy {l/m if, .n=p gl
@n) = logn ~ |0 otherwise, as(®) = A@m).

In the first series [3], Knapowski and Turdn investigated the sign changes of the
functions 4;(x)=4;(x, q, I, l;) where ' :

A, En(x, g, )—7n(x, ¢, )= 3 emay(n),

A,(X) L1 (x, ¢, 1) (x, g, 1) = 3 e(n)as(n),

n=x

(1.4) 2
() =0(x, 9, )=0(x ¢, 1) = e(n)as(n),

ALY (x, g, )Y (x, g, 1) = 3 e(may(n).

The second series [4] was devoted to ‘“‘Chebyshev type problems” and ‘‘accu-
pwlation theorems”. By ‘‘Chebyshev-type problems™ they meant investigation of
the asymptotic behaviour of weighted sums of all primes or prime-powers, i.e.
asymptotic behaviour of expressions of the form

oo

(1.5) Gi(x)= Zema(mWe(n), x e

n=1
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with some weight functions W.(n) depending on a parameter x (or in same cases
on two parameters).
The famous assertion of Chebyshev [1] from the year 1853 was

(1.6) lim Z (—1)®P=D2e=PI* = _ oo,

X—+oco p>2

but he never published a proof for this. As it was shown by Hardy—Littlewood [2]
and Landau [5], (1.6) is equivalent to the Riemann—Piltz conjecture

1.7 L(s,x) #0, s=o0+it, c=>1/2

for the (unique) non-principal character y; mod 4. They remarked that the same
holds if (—1)?—V/2=¢(p, 4,1, 3) is replaced by

(1.8) (—=1)@=Y2log p = &(p, 4, 1, 3) log p.

Knapowski and Turdn investigated the above type problems with the weight
functions

—logn)?
19 W) =exp( L8V f<y oo

and succeeded in this case in extending the results of Hardy—Littlewood and Landau
for general moduli ¢, under some conditions (both for the parameters and for L-
functions mod ¢). The advantage of the weight-function in (1.9) was that the know-
ledge of the behaviour of

— 2
(1.10) Gi(k, p) = 2 e(n)a;(n) exp(—i-‘l‘—c;c&J
made possible to get information about sums of type
(1.11) > e(n)a;(n)
U<n=V
with some
(1.12) [U, V]c[el‘-ﬂlu_’t7 eu+3yﬁ],

since the weight-function (1.9) gives completely negligible weights outside the men-
tioned interval. (For the precise connections between (1.10) and (1.11) see Lemmas
7 and 8 in the Appendix of the present paper.)

In all of their results for general moduli, Knapowski and Turan had to assume
the so-called ““Haselgrove-condition™, i.e. that the L-functions mod ¢ have no posi-
tive real zeros. They formulated this in the quantitative form (where we shall assume
always 0<4(g)=1)

(1.13) LG, 10,9 #0 for 0<o<1, |[t|]<A(g).

(This condition was verified with explicit 4(q) by Haselgrove for all ¢=10, and by
Spira for all g=24). Without an assumption of this type one cannot exclude e.g.
the existence of a real zero f, (of a real L-function y,) for which all other zeros
are in the halfplane o<pf,—e¢. In this case one has

(1.14) 4(x, ¢, 1, 1) = (1 (lz)—xl(lx))%:i+ O (xP~%)
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thus 4,(x,q, 1, L) is of constant sign if x(/)#x:(l;), x>x,. Knapowski and
Turén could show infinitely many sign changes for 4,(x, ¢, /;, ;) under this condi-
tion, but in all other investigations for general /,/,,q they had to assume besides
(1.13) a kind of ‘‘finite Riemann—Piltz conjecture” i.c.

(1.15) L(s, x,9) %20 for o=1/2, |t| =D,

with some D=cq', e.g. Under this additional assumption they succeeded in proving
that 4,(x) changes sign infinitely often for all /;, /, with (1.1), and that 4,(x) and
A3(x) change sign infinitely often if /; and /, are both quadratic non-residues or both
quadr)atic residues mod g. (The latter condition, as well as (1.15) can be deleted if
L=1.

Although the above mentioned results (with the exception of that concerning
the case /;=1) follow very easily from a general theorem of Landau [6, § 197]
(even without making use of (1.15)), the high importance of the results of Knapowski
and Turan was that they could explicitly “‘localise” sign changes of 4;(x), extimate
the number of sign changes from below and give upper estimates for the first sign
change in explicit dependence on ¢ and A4(g), whereas Landau’s theorem is comple-
tely ineffective.

Now we shall formulate those theorems of Knapowski and Turdn from the
second series (also some of them implicitly contained in their works) which are in
connection with the results of the present paper. In all of the following theorems
the truth of the Haselgrove condition (1.13) is assumed, further in Theorems I, II,
III and IV the finite Riemann—Piltz conjecture is needed with a value D satisfying

(1.16) D = cq*®
and
12n
111 = 2
Gl 1)

(The somwhat unnatural assumption (1.17) was needed for some technical purpo-
ses.) In (1.16) and in the following ¢ will always denote some explicitly calculable
positive absolute constant, which may have different values at various appearances.

THEOREM 1. For every q, 1,1, with (1.1), g=c and

(1.18) Y = exp (D% exp (¢V9))

there exist x and k with

(1.19) x€ [Yl_%, Y]

(1.20) Ke 21;5}’, 211‘)’;%}’+V@]

such that

1.21) > e(n, g, 1y, Iy) A(n) exp [—lﬂg%(k"/—x)] > Y_;"%.
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If we additionally assume that I, and I, are both quadratic non-residues then also

2 s
1.22) b tz)logpexp[—%] ~Y?1 D,
THEOREM II. If g>c, I, #1,(q) are both quadratic residues, then for
(1.23) Y = exp (exp (D)

we have x and k with (1.19), (1.20), (1.22).

These theorems (Theorems I and II are contained in parts IV and VI, resp.,
of the second series [4]) implied (cf. Lemma 7)

THEOREM 111. Under the conditions of Theorem I there exist

8 8
(1.24) U, Ve[Y P,y D]
such that for i=2,4
11
(1'25) 2 8(71, q, ll’ lﬁ)ai(") o0 Aol
U;<n=V;

Further, if 1,, 1, are quadratic non-residues, we have also for i=1, 3

(1.26) > e ¢ h,la(p) =Y P,

U;<p=V,;

THEOREM 1V. Under conditions of Theorem 11 we have U,,V,;,U;, Vs with
(1.24) and (1.26).

We may remark that in case of the infinite Riemann—Piltz conjecture we can
choose in Theorems I, IIT and 11, IV, resp.

o log**yY . 1/
(1.27) D= T and D = (loglog Y)Y,

and this furnishes localisations of type [Y exp (—g(¥)). Y] and lower estimations

of type V¥ exp (—g(¥)) with
(1.28) g(Y) = c exp (qlo) log7/8 Y and g(Y) = c log Vi

(loglog Y)V®

resp., which improve the results compared with the assumption of the finite Rie-
mann—Piltz conjecture (which corresponds to g(¥)=cD 1log Y).

In the present work we shall show (cf. Theorems 1—3) that in Theorems I—IV
it is possible

a) to drop the condition (1.17) (and to weaken (1.16) to D =c,q*log® g),

b) to admit smaller values of Y in dependence on ¢, D and A(g),

¢) to improve localisation and lower estimation, roughly speaking one can
take g(¥)=~c(q)log”Y supposing only the finite Riemann—Piltz conjecture (cf.
(1.28) which is valid on the infinite Riemann—Piltz conjecture),
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d) to assure that U;, V; would be really short intervals, i.e. V;—U;=0(U)).

We remark also that the role of /; and /, being symmetrical in all Theorems

I—IV, we can trivially state the same inequalities as (1.21)—(1.22), (1.25)—(1.26)
G c

with =—Y" D instead of =Y . Further on we remark that (1.22) and (1.26)
trivially follow from (1.21) and (1.25), resp., if /; is a quadratic non-residue and /,
a residue (but this harms the symmetrical role already, naturally).

Now in the remaining case of /; being a residue, /, a non-residue, (1.22) does not
remain true if one assumes the (infinite) Riemann—Piltz conjecture, as shown by
Theorem V. Supposing the Haselgrove condition (1.13) and the (infinite) Riemann—
Piltz conjecture one has for any k, x=e#>cq® with

(1.29) s Sksp
the inequality
—— 2
(1.30) Se(p, g, Il,lz)logpexp(—-glr)k—gp)] P
p

if /; is a quadratic residue, /, a non-residue mod gq.

For the proof see Theorem VI of part II of the second series [4]. On the other
hand if the infinite Riemann—Piltz conjecture is false then at least in the case =1
or ly,=1 they could prove an explicit theorem which we formulate now roughly as
(for the precise formulation see Theorem IV of part 1I in [4])

THeOREM VI. If there is a @y=Py+iy, zero of an L(s, %, q) with By>1/2,
x(1)#=1, then for Y >c(g,, q, A(q)) one has (with explicitly localised values x and k)

. 2
3 Sebpql, 1)10gpexp{-—'(”—%%gp—)]=Qi(x‘“eXp(—logw’x))- '
p

We shall show (cf. Theorem 4) that in Theorem V it is enough to assume the
finite Riemann—Piltz conjecture, if we restrict k£ more strongly than in (1.29), further
it is possible to calculate an asymptotic value for the left hand side of (1.30) (in
dependence of k, u and ¢q). Concerning the problem dealt with in Theorem VI for
general pairs /; and /, we are able to prove a similar theorem (cf. Theorem 5), but
this holds only for ¥ =Y,, an ineffective constant (although we can give good
lower estimation and good localisation for the corresponding values x).

2. In Theorems 1—3 we shall assume always the truth of the Haselgrove con-
dition (1.13) and the finite Riemann—Piltz conjecture (1.15) until a level D with

(2.1) D = Do — COq2 10g6 q
where ¢, is a sufficiently large absolute constant. First we shall formulate Theorems 1

and 2 which improve the results of Theorems I and II of Knapowski and Tufan.
In these theorems we shall have a parameter A for which we suppose

2.2) A = 20D,.
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We shall always assume the trivial condition (1.1) without mentioning it. We shall
use the notation

2.3) A

if /; and I, are both quadratic non-residues or if they are both quadratic residues
mod ¢q. In the sequel ¢ will denote a generic (explicitly calculable positive absolute)
constant which might have other values at different appearences.

THEOREM 1. Let us suppose for q the truth of the Haselgrove condition (1.13),
the finite Riemann—Piltz conjecture (1.15)—(2.1), further (2.2). Then for every T=>c
with

2

2.4) L= logT>max( A":’q) Alog* L, cAZ]
there exist x=e*, k with
2.5 xE[Texp(—milog"A) T]
2.6) ke[%— & T#“"“]’
2.7

2
3 o g b A exp (~ L0z exp (L2 10gr ) 0

It is nearly trivial to show (cf. Lemma 6) that (essentially) the same estimate is
valid if we replace A(n) by logp and assume that /; is a quadratic non-residue.
Beyond this we shall settle also the case of /; and /, being both quadratic residues.

THEOREM 2. Assuming the conditions of Theorem 1 and I,~I, (cf. (2.3)), we
have for every T=c with (2.4) an x and k satisfying (2.5)—(2.6) such that

(2.8)

log"‘(p/x)] - [ LD? . )
?e(p, q, ll,lz)logpcxp(—-—T > Vx exp e A( ) s Alog® L] = 2>

The application of Lemma 6 of the Appendix makes possible to obtain accu-
mulation theorems for pime powers and in case of /;~/,, also for primes.

Now we shall choose 1 in such a way as to optimize the lower estimation as
well as the localisation of the short intervals furnished by Lemma 7.

For this purpose we choose for ¥ =ek1

AV (g Li”
g log*2L,’

7

2.9 A= 57

logT=L= Ll[l—

Then an easy calculation shows that for
Dj log? 1
A() A(9)

(2.10) Li>
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we have (2.2), further

Lo L 7 1.05L,
B B L i) e

So we obtain from Theorems 1 and 2 with the aid of Lemma 7 of the Appendix
the following

(2.11) ,uog8L<<ﬁ, Vik =

THEOREM 3. Let us suppose for q the Haselgrove condition (1.13) and the finite
Riemann—Piltz conjecture (1.15)—(2.1) and let Y >c satisfy

(2.12) Y>exp[ D log® - ]
g A(g) Al )

Further let us use the notation

2.13) f(Y) = exp(—cqA~%(g) log"* Y (log log Y)**).

Then in case of I,~I,, there exist

(214) Ul’ Vl’ US’ Vae U(Y)Y’ Y]

such that U;<V,=U;+U,exp (—log’? U;) and

(2.15) S e(p g h,l) > f(NVT,
U,<p=V,

(2.16) Y B 4 e(p, ¢, Iy, I log p > fF(Y) VY.

s<p=V;

Further we have for all pairs 1, I, with (1.1)
(2.17) Ux, Vi, Uy, Vi€ f (Y)Y, Y]
such that U;=V,=U;+U,exp (—log'? U;) and

2.18) 3 oM a b o= fDVT,
U,<p™=V,
(2.19) 3 g b AWM = [DVT.

We remark that it would be possible to deduce (2.15)—(2.16) from (2.18)—(2.19)
using the prime number theorem for arithmetic progression with best known error
terms. However, we preferred to prove Theorem 2 (from which (2.15)—(2.16) is an
easy consequence by making use of Lemma 7) in order to avoid these deep theorems.
Beside this, Theorem 2 cannot be deduced from Theorem 1 using even the best
known error terms.

Let us consider now the case, when /; is a quadratic residue and /, a non-residue.
Our following theorem shows that even weaker conditions than the finite Riemann—
Piltz conjecture can assure theorems similar to Theorem V, if we assume that k, p—e<o
and 4=u/k=c(q).
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THEOREM 4. Suppose the truth of the Haselgrove condition (1.13) for q, and let
k, A,  satisfy A=2, w—>c and

(2.20) k= Slggto

A*(q)

Let us suppose that the zeros 0=1/2+06+iy of all L(s, y,q) functions with y(I,)#
#x(l) and |y|=A satisfy
2.21) y% = (24%2+43)0;

where [, is a quadratic residue, 1, a non-residue mod q. Then with u=ki* we have

Jor w— oo
1 (u—logp)2] N@ ++5
22— 3o(p, 0 b, log pesp - O
( ) ZVTC_IE;E(IJ g, l, Iy) log p exp 4k 20(q)

(uniformly in the variables k, ) and q) where N(q) denotes the number of solutions
of x*=1 (mod q).

COROLLARY 1. If the Haselgrove condition and the finite Riemann—Piliz con-
Jecture are true until the level A for all L(s, x,q) functions with x(L)#=x(ls), and k
satisfies (2.20) then (2.22) is true, if I, is quadratic residue, I, a non-residue.

Corollary 1 shows that if we assume the Haselgrove condition and the finite
Riemann—Piltz conjecture up to a level D with
(2.23) D = 20D, = ¢, ¢%log® g,

then the assertion of Theorem 2, (2.8), definitely does not hold in full generality if
I, is a residue, /, a non-residue. We have namely the opposite inequality for all k, p
with

i A 3logg+ec,
(2.24) or = k= T, k%———————Az(q)
i.e. if A is chosen as
(2.25) 20D, = 4 = D.

COROLLARY 2. If the Haselgrove condition and the infinite Riemann—Piltz con-
Jecture are true for all L-functions mod q with y(l;)#y(l,), where I, is a quadratic
residue, 1, a non-residue mod q, further p and k satisfy

Slogg+w

X = 4k
A2  H

(2.26) k=
then (2.22) is true for - co.

We remark that if the infinite Riemann—Piltz conjecture is not true, then (2.21)
implies p/k=c(q), thus Theorem 4 is not applicable if u/k=>c(g). This is due to
the fact (mentioned in the preceding section) that in this case there is really no con-
stant preponderance of primes =/, over those =/, in the above sense. It is relatively
easy to show the following ineffective
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THEOREM 5. Suppose the truth of the Haselgrove condition (1.13), the existence
of a zero 0y=Po+179, Bo—(1/2)=0y=0 of an L-function mod q with y(ly)#x(l),
where I, and I, are arbitrary with (1.1). Let us suppose we have any n=0 and a
(fixed) A=0 with

2
(2.27) 2= ;_:_(1+50) o 98 < (A241+45,)5,.

Then for every Y=Y,(q,n,A) (where Y, is an ineffective constant) we have an
x=e" and k with

(2.28) x = erc[Ye~ ™A@ Y], —;—:—E [42, 2249
such that

1 (u—Ilog p)* kB2
—— Ye(p, q, 1y, L) logpexp| ———=22 | = (2—n)|a ekBa+ubo
(2.29) 2Vnk§ (P, ¢, I, 1) log p p[ % ] (2—n)la,|
if

(2.30) af——f—g;—(l‘;- > (72— 7()me(ee) # 0,
Liggs0)=0

where m,(0,) denotes the multiplicity of the zero g,.
If we replace e(p)logp by e(n) A(n), then (2.29) holds for an arbitrary zero
0o with By=1/2, without condition (2.27).

3. The main tool in proving Theorem 1 is a one-sided power-sum theorem of
Knapowski and Turédn (cf. Theorem 4.1 in part III of [3]) which we state now in a
slightly improved form as follows. (For the modifications needed in the proof see
the Appendix.)

LEMMA 1. Let b;, z; be complex numbers (j=1,2, ...,n) with
3.1 O<x=largz;l=n (j=12,...,n),

3.2) 1z ="1..= |z,

Then for any h with 1=h=n and for any m=0, there exists an integer

(3.3) vE [m, m+n [3-{-—3—]]
such that
n T 2n
(3.9 Re > b;z% > s |z,,|"[ |z,,|),,(5+;) .
j=1 Stk || 2Ae [m +n (5 +1)]
®
where
]

3.5) E=min [Re 3 bj.

I=h Jj=1
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Further we shall use the integral-formula (k=0 real, 4 arbitrary complex)

1 ks2+ A 1 ( A2)
— [t ds = ———exp| ———|.
(3.6) 2ni (2[ 2k P\ 3k
Introducing the notations
1
(3.7 F(s) = — (X(lz) x(ll)) (s, 2, u=logx,
?(9) xm
we obtain by (3.6) (denoting the zeros of L-functions in ¢=0 by o=p+1iy)
(3-8)
.  (u—lognpy _ 1 EMAM) Lt g _
I= 2V%%’a(n)A(n)exp[ % ]_ 3] (2_[;’ - e tetdy—

- 77?1_(2_)/.F(S)ekss+us ds = (q) Z(X(lz) 7(1)) eﬂ% eket+ue 4 R

where (using L’(s)/L(s)<log (¢(|t| +2)) for o=—1/2)

3.9 B % f F(s)e¥*+#s ds = O(1).
(—1/2)

Although the main part of 7 is an infinite exponential sum, we can estimate easily
the contribution of zeros with |y|=24, since we have for any y mod ¢

(3.10) > || > a-m+rog (gn) = O(1)
A s

owing to (2.6) and the well-known relation

(3.11) > l<log(g(n+2)).

n=|y|=n+1

The main difficulty in applying Lemma 1 for the remaining finite exponential
sum is that perhaps E=0 (this occurs probably relatively often in reality). This
difficulty may be overcome by the following

LEMMA 2. There exists a prime P=I,(q),

(.12) % < PlogiP =D,

such that

A
(3.13) Re 5 (7(I)—7% (1)) > ePoeP pess Plog® P
x e=e(x)

=0

1
dC))
where the constant implied by the << sign is independent from c, appearing in (2.1).
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This is a slightly modified form of Lemma VI of Knapowski and Turén [4,
part IV]. (To obtain the modification, we have only to note that the finite Riemann—
Piltz conjecture (1.15)—(2.1) and the shortened explicit prime number formula
(cf. Prachar [7]) imply for x=¢q

X
(3.14) "g; A(n) = m

n=I(q)

+0(Vxlog2D)+0 (% log? x)

and this assures the existence of primes with (3.12).)

Actually (3.13) is true for every prime =/(q) with (3.12) but we do not need
this fact.

In connection with Lemma 2 we have to note that in (3.13) the contribution
of zeros with [y|>D, is negligible, since in view of (3.11) we have for any y mod ¢

02 w2 1—n2

(3.15) B |e Pilog*P P‘?]<< v e Pt BPlos(ig)-=1

e=0(x) n=[Plog? P]

[7]>D,
where the constants implied by the < sign are independent from ¢, appearing in
(2.1). This means that the estimation (3.13) is valid for any set of zeros which contains
all zeros with |y|=D,.

The next problem arises if we want to asure the argument condition (3.1) (possibly

with a not too small value of x). For this purpose the following general lemma is
useful.

M:

LemMA 3. Let a;#0 be real numbers, j=1, ...,n, % ——=n. Then for

1
1 |aj|

J
every H there exists an y, with

(3.16) Yo€[H, H+n]

such that for any integer k and all j=1,...,n

1
(3.17) |yoa;—2kn] = .

This implies (with the aim of further applications in Theorem 4)

5 l n l
> — f— —_—.
LemMA 4. Let ¢; be complex numbers, j=1, ...,n, Re ¢;=0, = jg; i g,] =1

Then for arbitrary w=0 and H there exists a B with

(3.18) Be[H, H+%n]

such that for all ¢=0; (j=1,....n)

(3.19) 7 = |arg e®Be*+Be| = %,

(20) T = |arg e®B@/2)*+Be/2| = ?1_
n
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LEMMA 5. For M=q we have with
(3.21) NOH= 3 31
x(mod g) e=e(x)
[y[=M
the inequality
L)
(3.22) - 1 AT @+logM

N,,(IW) x(n%:lq) f%{{)m M
7=

Lemmas 3 and 4 are improved versions of the lemmas of Appendix VIII in
Turéan’s book [8].

We shall prove them in our Appendix. To prove Lemma 5 we use (3.11) and
the well known relation

(3.23) N,(M)>o(q)Mlog M.

From (3.11) we obtain

(3.24) 5 > teo@bpM
x(mod g) 1e§=ye§(ﬁ)4 Iy

and the Haselgrove condition with (3.11) trivially implies

1
(3.25 2 2 —T<¢(@logg-A7(g).
x(mod q) Ty=|a§({) Iyl

The required result follows from (3.23)—(3.25). O

Lemmas 4 and 5 show that in our case we can choose

cA™1(g) log A
o e

In view of (3.8)—(3.10), our task is to assure a good positive lower bound for
(the real part of)

(3.27) F=— = SEW-IW) 3 et
o) 5 e=e(x
B=0,|y|=22
& can be written in the form (by appropriate choice of k£ and u)
(3.28) F=F©WV)= 2 b,z
Ivlgzi-

where ¢ runs over zeros of all L-functions mod g,

1

3.29 b, = —— 7 (1) — 7 (1)) ekoe® + noe
(3.29) =% < @-i)
L(e,x)=0
with
1
(3-30) ko = W’ Ho = log P,

Acta Mathematica Hungarica 46, 1985



PRIMES IN ARITHMETIC PROGRESSIONS 163

further
(3.31) 7, = @M+ BY

with the value of B furnished by Lemmas 4 and 5 (with the choice of H and n given
by (3.26)). The variables k and u will depend on v in the following way

By

(3.32) k= k°+1_2’ U= po+By
and v will be chosen appropriately with
(3.33) vé[%—cq%ﬂogz i x ‘Bj"°].

First we note that the number 7 of terms in (3.28) satisfies
(3.34) n < cqilog A
(this follows from (3.11)). In view of Lemma 4 we can set
(3.35) "= —1—

8n

After numbering the z,’s according to (3.2), we choose 4 as the largest index (i.e.
Zp=2,, as the smallest term) corresponding to a zero with

(3.36) [yl = D,.

Taking into account the remark following (3.15), this choice assures
1
(3.37) Re > b;>1 (I=h,h+1,...,n).
i=1

Owing to (2.1) g, lies on the critical line and so

B i B
(3.38) |z,| = exp [—2— —-A—ZD(%)
and (owing to A=20D,)
(3.39) % = exp {g——g—Dﬁ—B——;-]> CRA = i

Now applying Lemma 1 for Z(v) in (3.28) we obtain the existence of an v
with (3.33) such that, owing to (3.28)—(3.33),

2
(3.40) Re #(v) > exp [uo+—1;—v—(2n+1)210gL— B/‘{fo "
— LD2 cq?
&, 2 _LDy g ;108 ]
3H30n } < Vx exp[ yE 1@ Alog®L). O
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4. If /; and I, are both quadratic non-residues then the corresponding assertion
of Theorem 2 immediately follows from Theorem 1, taking into account the following.

LEmMMA 6. If I<k< l X nd g(n) is a function with

0
4.1 G(r)= 2> g(n)~Cr*
where 1/10=a=1, then 2
log? i
Ll A ka2, o
4.2) 5 l/— ———2g(n)exp N Cue *x

for x—-oo (uniformly in k).

The proof follows easily by partial summation (see formulae (53.3.7.)—(53.3.10)
of [8]). O

The case of /; and /, being quadratic residues is much more complicated. First
we note that the number of solutions of the congruences

4.3) x* = li(modgq), x*= ly(modq)
is equal. Let us denote the solutions by (N =N(g))
4.4 O s rimns Oy + A0A 007 5 wess 00

resp. Let us introduce the notations (p=log x)

(4.5) re . {%’s(n)/i(n)exp(—w)—

2Vnk 4k
- S et Amenp (- L

(4.6)
P = {2 (20— Z() -5 0+ 2” PAGCHESCH) £ 5,0}

Since the expressxon on the left hand side of (2.8) differs from 2 Vak1* only in
respect of some prime powers of the form p’, j=3, applying Lemma 6 for

Gn= 2 dAdm+ 2> A@)
n=pl=rj>2 n=pl=r, j>1

we have C=1, a=1/3 and so Theorem 2 will follow if we can assure the estimate
(3.40) for I*. Analogously to (3.8) we obtain

1
4.7) TF et 7(1.)—7(1 ket +ue 4
( PYC) {;(X( D— XA 1))a=e(xz),vﬂ§0
|7|=22
N
+l2 SE@)—x@) 3 eerremyio) EFr10(1)
e e
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since similarly to (3.10) we have again

o L) B
(4.8) > e tue) o« ¥ ek(4 )+ 2 log (gqn) = O(1).
e=e(x) n=[2]
[v|=22
Now using the notations (3.28)—(3.33) we can write the exponential sum & * as
4.9) Fra@iyy= 3 bal+ 3 LY
Ivl;M [7];21
where
(4.10) b* = 1 > i’v (T(@)) — X (@))eko@*+ uote/),
. 2(0 (q) X i=1 y
L(e.x)=0
(4.11) z} = X "Bl +Bais),

Let us observe that the finite Riemann—Piltz conjecture (1.15)—(2.1) implies that
the contribution of all z; terms with [y|=D, is

k(_l-_"_ﬁ)_,‘.ﬁ _k_+i . -

(4.12) <N 3 e\ 1) 4 10g(q(n+2))< Nlogge® * < x.
n=D,

Thus the remaining power-sum to be estimated is

(4.13) Fr=grm)="2 bagt - 2. &),

e Q
|7|=24 Dy<|y|=24

where (3.34)—(3.35) are also valid. Further we have analogously to (3.15)

. 1—n2/4

(4.19) > il T eTREE Plog(gn) =01,

Dy<|y|=24 n=[Plog?P]

After denumerating the numbers z, and z; in & **(v), and according to this b,
and b}, let us choose z,=z,, in exactly the same way as in Section 3 (i.e. z, should
belong to the first sum in & **(v)). Now using Lemma 2 (4.14) assures again for
any v=h (Where {b1}= {be}ménu {b:}Dn< h.lég;t)

(4.15) Re Zh=Re b~ T b~ X [65=1
Jj=1 ]

D=1yl Dy<lyl=24
similarly to (3.15) and (3.37). Since we have trivially in this case also
(4.16) |z;] = max (|z,], |z7]) = e*"*B+5,

(3.39) is valid without any change and so the final estimate in (3.40) is also true for
F **(v), which proves Theorem 2 taking into account the remark following (4.6). O

What concerns the proof of Theorem 3, all the formulas (2.13)—(2.19) follow
very easily from Lemma 7, except the condition

4.17) U<V =U+U exp (—log'?U).
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But we have only to observe that we can subdivide the original interval [U, V] fur-
nished by Lemma 7 into at most

(4.18) logYexp (log’2U) = K

subintervals which already satisfy (4.17), and at least one of them, say [U), V)],
satisfies already trivially

@.19) 3 emam = 3 sman).

vDN<p=v(D U<n=V

The loss of the factor K can be taken in consideration in the constant ¢ appearing
in f(¥)in (2.13). O

5. To prove Theorem 4 we first note that similarly to (3.8)—(3.10) we have here

1 » -
(5.1) I=——=23FU—-7(W) 23 eo+m10(klog(ql))
() % e=f x
B=0,|y|=2

Now for every ¢=1/2+36+iy, |p|=1 we have by (2.200—(2.21)

1 2 u ki vl {[3 ] } ot Ky
i o A el Sl s w Y 2 2 o B Bl G
(5.2) k[2+5] Ky+2+,u6§4+2+k ) 2+,1 YI=Eg+3 5

Thus we have for any y with x(/;)##x(l;) by (3.11) and (2.20)
(5.3) Tt s F 4 F o«

e=e(x) I7F[=1  1<[y][=4
B=0,|yl=42
<&/t {log ge~ @y 3 e~iMlog(q(n+2))} <

1=n=

< ek/4+u/2 log qe—kA’(q)/ﬂ:<< q—le—wlzek/4+u/2
and so by (5.1) and (2.20)
k/4+y/2

(5.4 T« ———— o + éku.

Now using Lemma 6 we obtain for the contribution of prime powers p’/ with
Jj=3to I the upper estimate

log ")2] ekI9+u/3,

(5.5) 21/ T Za(n)A(n)exp( (ﬂT <

153

On the other hand since /; is a quadratic residue and /, a non-residue, we obtain
again by Lemma 6

(5.6) ZV T Z’ s(n)A(n)exp[——(f—l—_‘l;l)ci)z] =
- (u— logn)2 N@) xjasup
v 3, A 6 T

n= lx(q)
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since (using the notation in (4.3)—(4.4)) the prime number theorem for arithmetic
progressions implies

(5.7 > A= 2 2 log p~ V
n=pi=x i=1 p<yx
n=1(q) pp a‘(q)

Theorem 4 would follow now by easy calculation from formulas (5.1), (5.4),
(5.5) and (5.6), but only for p=/kA?>q, which is required for (5.7). But it is possible
to assure (5.6) without this condition, only by (2.20); even (2.21) is superfluous for
this purpose (further we do not need the prime number theorem for arithmetic
progressions). We have namely similarly to (3.8)—(3.9) by Lemma 6

1 (u—log p?)?
5.8 > logpexp[_i_g_p_] =4
B8 2Ynk p=aja) 4k

1 (u—logn®)? k
= 3 A erp( LB | oeneensy -
2m,.512;@ (n) exp ik ( )

ek/4+u/2
2¢(q)
and similarly to (5.3) we have here by (2.20) (without using (2.21))

(5.9 > M) « (log g)e®/P A= A2 @) +1/2  g—5/4g—wek/t+ul2
e=e(x)

o SEE) 3 eemenam 40 (onsuy
X

e=e(x)

To prove Theorem 5 we can write again similarly to (3.8)—(3.10), using Lemma 6

(5. 10)
e —log p)*
1= Ze(p, q, 15, 1) lo ex( UL_—-]:
2Vnk (P, g, I, ) log pexp Ik

2 agetettrey (et
lvl;l

Now let us choose a number 1¢[4, l/,12+110] such that the for @;#¢;, [y, [y;/=
the equality

(5.11) Bi—yi+ 728 = Bi—y3+ 1B,

should hold only for conjugate zeros, i.e. for f;=p;, y;=—7;
possible even for all zeros). Thus if

(5.13) B2—y*+12 = S;(0) = S(o)

assumes its maximum S’ for ¢’ and @’, then with some positive d=d(q, 4, A, 0,)
we have by (5.10) and (2.27) for p= kIz

(this is clearly

(5.19) I = 2Re {a, @)’ +ne’} 4 O (k*-7*+ 12 ~)
since by (2.27) we have

1 1, 2
(5.15) §=|5+b —y0+1 +50 b
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Now (5.14) assures (2.28)—(2.29) since

v ™ ; 2 Pas?
(5.16) arg{a, @1} = arga, +p (? +_§_2v ]
and by (5.13) for u=>y,
(5.17) |a, ek@?+ue| = [aqoek‘?g'““?ol. O
Appendix

What concerns the proof of Lemma 1 we have to notice that the following
result is implicitly contained in Knapowski—Turan’s work (cf. Theorem 4.1 in
part I1I of [3]).

If b;, z; are complex numbers with
¢)) % = larg z;] = =,

2 1=|z|=...=|z,]
then for any 6=0 and h€[l, ..., n] with
3 |z4| =0

and for any m=0 there exists an integer

) V€ [m, m+n (3+%]]
such that
z 5 E |z,,|—5]2" m+n(3+§)
where
6) E=min[Re 3 bj.
v=h j=1
Now setting
2n
@ 5= |zl [1- -
m+n [5 +7]

unlike Turdn’s choice d=|z,|—2n/(m+n(3+n/x)), we obtain the maximal value
of the right hand side. Thus using the inequality

x—1
®) [1—%] >e~! for x=>2
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T
m+n(5+—]
with e e s W obtain
E m+a 5+ (xo—1)2n
©) ke 2 b > ET 12 (48x ] ( ) 5
E m+n(5+§) ( ]2"
= Snr1 2 48exy)
If we do not assume the normalisation (2) then we have the general form
b33 e e (e (226 ) -
(10) Rej;; b;z} > |z| i\ dBeny) ol =

(el ( 1 ]2n| lv(|2h|)m+n(5+-§)—v
= Z2n+1 (d8exy) ' ]

which proves Lemma 1. [

To prove Lemma 3 we first note that if for a fixed j=j, the inequality (3.17)
is false then k has to belong to an interval of length

1
(11) B (nla;,|+1/2n)
and so k can assume at most
tloyd +1720] nlagl | 3
(12) [ TR ke S
integer values. For any fixed k the inequality
1

can hold only for y values in an interval of length

B
2n|a

jol

Thus the total Lebesgue measure of y values for which (13) holds with any value of
k is by (12)

1 (nlaiol 3]__ TR L |
(e gl 2 T2 H A

Therefore the total Lebesgue measure of y values for which (3.17) can be false is

(14)

n n
(16) < 2 + Ty Z
which proves Lemma 3. [
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Lemma 4 is a special case of Lemma 3 since for z=u+iv, u=0, ®=>0

1
= ©wBz2+ Bz L B
17) 7 = |arge | = o
is equivalent to
1
and in this case we have for ¢;=p;+iy; (8;=0)
I [ 1 1 | LSl | 2 3
—= o — —t——l=—. .0
)& | I+ T Il B Y|t~ 2n ;=21[Ivjl |y,-|] 3"

The following lemma gives the possibility of deducing Theorem 3 from Theorems
1 and 2.

Lemma 7. If 1=k=p/16, u=c, then for arbitrary l,,1,, q there exist
(20) [Uy, Uy < [en-3Vik, en+aVa]
such that for v=0or 1, i=3 or 4, e(n)=¢(q, Iy, l5, n),

z(n) ! (p—log n)?
(21) %’ 8(") (log n)v = (ﬂ‘*‘ 1)v {; 8(")(1‘-(7‘[) exp ( = T) e 10}

where as(n), ay(n) and e(n) are definedin § 1.

Although the proof of the above lemma is contained in Turan’s book [8, Lemma
54.2] we prefer to prove here the following more general

LeMMA 8. Let a(n) be a series of real numbers with
22) A@IE| 3 am)|=cx
1=n=x

and f(x)€C[1, + =) a non-negative function with

(23) }im xf(x) =0

{f’(x) =0 for 1l=x-=M,

ff(x)<0 for x> M.

Then for any My=M=M, there exist

(25) U, VE[M,, M)

such that

26) s 3 am= 3 am)fm)-C2M f(M)+2M: f(M)+ [ ).
<n= n= M,

If we have additionaly

@1 [ r@ax= My ray
M,

(24)
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then (26) simplifies to
@) SO0 3 a)= 3 a(if(0)-C2My [(M)+3M, f ().

Proor. Summation by parts and (1.3)—(1.4) give

o oo M, M, o
(29) Samfm = [(—A@Q)fO)dr= [+ [+ [
n=1 1 1 M, M,
By (22)—(24) we have
M, M,
(30) |[|= e, [ F@ydr = CM, (),
31) |f|§c f—rf’(r)dr=CM2f(Mz)+C ff(r)dr,
M, M, M,
M, M M,
(32 f = — min A(r) iy f/()dr+ max A(r) [ (r@)r=
M, S M, g M

= FO0{, mas, 40—, min AOHR
where P4t 95
(33) R=f(My) min A()—f(M) max A(r) = CM,f(M)+CM,f(My). O

To prove Lemma 7 we consider the functions (k, u=0)

(34) £ = £ = exp - L8 10prx v =0, 1)
(35) a(ny=A() or a(p)=logp (a(n)=0 otherwise).

Then (22) is satisfied with C=2, e.g., further it is easy to check (23) and (24) with

2k

(36) MO = et et <MW < ew,

Further we shall show that (27) is satisfied too, if
37 M = oF ¥ = i,

Observing 1s —1 for y=m, we obtain namely (v=0, 1)

ak =2k

(log x— u)) P 7 5 ( »?
e dx—mf (u+y) exp(u+y—5-)dy =

(38) ?/‘log xexp[
= f (u+4k)”[ I]CXP[u+y—4—k dy =

\4 m2 +m v ( 2]
= (u+4k)’exp [u+m——4—k—] = e*+*™(u+m)’exp ik
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Finally for O<k=pu/16, u=4 we have 4k=Vpk=p/4 and so

it MPOfMP) =1, MPFMP) =1

if we choose

(40) M{') = e“-sﬁ", Mé") ot ell+3}lp—l;. 0O
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UBER REELL-UNITARE
FINSLER—OTSUKISCHE RAUME

A. MOOR (Sopron)

§ 1. Einleitung

Die Ubertragungstheorie der Finsler—Otsukischen F—O,-Riume haben wir
in unserem Aufsatz [2] begriindet. Nach dieser Theorie ist ein F—O0,-Raum eine
Mannigfaltigkeit der Linienelemente (x!, x’) (i=1,2,...,n) in der die Parallel-
iibertragung der Tensoren durch ein invariantes Differential von der Form:

(1.1) DT¢:= PiPiDT!, P?:= Pi(x, %),
(1.1a) DT}:= dT}H(CAT]~ C /AT di* + (TN T —T 2. T dot

angegeben ist (wir haben das invariante Differential fiir einen gemischten Tensor
zweiter Stufe angegeben; die Verallgemeinerung auf beliebige Tensoren ist analog
zum Fall der Punktriume; vgl. [4], (2.14) und (2.15)). Von den in %' von nullter
Dimension homogenen Grundgréssen I'j'(x, X) und fjik(x, %) bzw. " PE(xIX)
mit Det (P{)#0, nehmen wir an, daB} sie den Relationen

0

(1.2) 3kP§-—P§~”s’rask—’FjskP§+”rsikP; = 0, ”S :: F-a_i;’

(l.za) ,rjsk = Fjsk_st,rpthp, (I.Zb) ”Fjsk = Fjsk_strrp'kxp

geniigen; dabei sind die 'I"J, und "T'J; offenbar mit I', und Ty, dquivalente Uber-
tragungsparameter; F(x, X) ist die metrische Grundfunktion des Raumes, und der
Index ,,0” bedeutet — wie gewShnlich — die Kontraktion mit dem Einheitsvektor
I":=% (fiir die vollstandige Theorie vgl. [2], (2.1)—(2.10), insbesondere die Formeln
(2.8) a)—d)). Alle diese GroBen sind von den Linienelementen (x', ') abhingig,
F(x, %) ist in den X' homogen von erster bzw. in C;%(x, X) homogen von (—1)-ter
Dimension.

In den F—O0,-Riaumen ist der metrische Grundtensor g;;(x, X) von der Grund-
funktion F(x, x) durch die Formeln -

9

X

bestimmt (vgl. z. B. [5], Kap. 1. § 3) und aus g;; und Pj konnen dann die Ubertra-
gungsparameter ‘I’ und "I, aus der Forderung, da8 die Ubertragung metrisch
sein soll, so bestimmt werden, wie das in [2] durchgefiihrt wurde. ]
Fir Pij:=g, P} soll die Symmetrie in (i, j) gelten, hingegen soll Pi=[' in
dieser Arbeit — abgesehen von gewissen Spezialfdllen — nicht vorausgesetzt sein.

§ 1 ¥ oy,
gij(x, X):= Eafa}P(x, X), 0;:=
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Der Grundtensor Pi(x, x) soll aber in den F—O,-Rdumen und auch in den Ot-
sukischen Punktraumcn immer einen eindeutig bestlmmten inversen Tensor Q(x, %)
(vgl. [2], S. 122 und [4], S. 109) haben.

Im folgenden wollen wir solche F—0,-Raume untersuchen, in denen P}=Q;
besteht. Wir geben die folgende

DeriNiTION. Ein Finsler—Otsukischer Raum, in dem der Grundtensor Pi(x, X)
involutorisch ist, d. h.
(1.3) PIF! = 8}

besteht, wird reell-unitirer Raum genannt. Den Raum selbst werden wir mit F— O~
Raum bezeichnen.

In dem vorliegenden Artikel wollen wir die F—O}-Riume eingehender unter-
suchen und einige charakteristische Eigenschaften von F—O;-Raumen bestimmen.
Dementsprechend geben wir im néchsten Paragraphen einige Grundrelationen der
F—0,-Riaume an, die sich in den F—O0;}-Rdaumen etwas vereinfachen, bzw. die die
F—O0;-Riaume charakterisieren werden. Im Paragraphen 3 werden wir dann weitere
verschiedene charakteristische Eigenschaften der F—O0;-Rdume zusammenstellen.

Im Paragraphen 4 wollen wir die hoheren Differentiale der Eigenvektoren des
Raumes untersuchen. Ein Eigenvektor des Raumes lings einer Folge (x'(s), X'(s))
der Linienelemente ist der Vektor Vi=Vi(s), falls die Gleichung

(1.49) Bi(x(s), %(s))V*(s) = t(s)VP(s), V= O
besteht, wo 7(s) einen Skalar, niamlich die Eigenfunktion von V (vgl. [4], (5.2))

bedeutet. Aus (1.4) und (1.3) folgt leicht der schon in [3] angegebene, aber in den
F—0;-Raumen fundamentale

Sa1z 1. Die Eigenfunktion t(s) kann in einem F—O}-Raum nur t(s)=1, oder
t(s)=—1 sein.

Bewess. Eine Kontraktion von (1.4) mit P} gibt nach (1.3) im Hinblick auf
(1.4) selbst: Vi=12V', woraus die Behauptung des Satzes unmittelbar folgt.

In den F—Oj}-Riumen sind also die Eigenvektoren immer durch eine Relation
von der Form
(1.5 Pi(x(s), x())V(s) =+Vi(s), V=0

gekennzeichnet. Es ist auch moéglich, daBl (1.5) nicht nur lings einer Folge der Lini-
enelemente, sondern sogar fiir Vektor- und Tensorfelder besteht, d. h. es gilt statt
(1.5)

(1.6) Pix, )W (%, %) = V(% B, V=0,

Im Paragraphen 5 wollen wir die durch (1.6) charakterisierten 2-dimensionalen
F—0;-Riume bestimmen. Es wird sich zeigen, daB, wenn P;;=P;; besteht, in
diesen Raumen der Tensor P} von einem Parameter abhingig ist (vgl unseren Satz 6).
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§ 2. Grundrelationen iiber die kovarianten
Ableitungen in den F— O,-Réumen

Das invariante Differential (1.1a) 148t sich mit Hilfe der kovarianten Ableit-
ungen in der Form:

2.1) DT} = V,Ti@*(d) +V,T!dx*, @"(d):= DI
* . . . . s .

(2.2) Vk T; = T;”k +Aslk T;—AjskTsl, Aslk = ch‘ks

(2.3) VT i= 0, T} — Ty T+ TH T —"T 5T}

bestimmen (vgl. [2], Formeln (2.8) a)—d)): A4/, ist dabei im wesentlichen der Car-
tansche Torsionstensor des Raumes und "I'% ist der in (j, k) symmetrische (vel.
[2], (2.15)) Ubertragungsparameter des F—0,-Raumes.

Die kovariante Ableitung (2.2) ist mit jener der Cartanschen Theorie identisch
(vgl. [5], Kap IV. (1.20)), hingegen ist die kovariante Ableitung (2.3) — abgesehen
von einigen Spezialfillen (vgl. unseren Satz 7.) — fiir die F—0O,-Raume kennzeich-
nend. In dieser kovarianten Ableitung benutzt man bei den kontravarianten Indizes
die ‘I'J, bzw. bei den kovarianten Indizes die “I'/,. Nur im zweiten Glied, bei

T}s, wird immer I’ o verwendet. Die Formel (1.2) bedeutet also im allgemeinen
nicht, daB V,Pi=0, wenn aber P}Qj =0, kovariant abgeleitet wird, so bekommt

man leicht:
(2.4) (Vi P} + T B) @, + Pi(Vi. 0% — T QL) = Vi 0k,

wo selbstverstindlich V, 8, =T, —"T,}. Wenn wir jetzt von der kovarianten
Ableitung V. Pi die GroBe: 0,Pi—Pj, T, mittels (1.2) eliminieren, so erhalten
wir

(2.5 ‘Zﬂi = Psiek(sj_}_})jsekéi’ 6kag = Tf~"Tfs.

Aus den Relationen (2.4) und (2.5) folgt dann wegen Der (P})=0 die wichtige
Gleichung:

(2.6) Vi 0i, =0,
die auf Grund von (2.4) mit (1.2) dquivalent ist, wie das nach einer Kontraktion

von (2.4) mit Pj* im Hinblick auf (2.5) unmittelbar folgt. Es gilt also in den allge-
meinen F—0,-Riaumen das

FUNDAMENTALLEMMA. In den allgemeinen F— O,-Rdumen bestehen immer die
Relationen (2.5) und (2.6).

§ 3. Einige Relationen in den F— O;-Riumen

In diesem Paragraphen wollen wir in den ¥ —O;;-Raumen, in denen also P}=Q}

ist, einige mit VZPJ"- im Zusammenhang stehende Formeln ableiten. Wegen (2.6)
haben wir in den F—Oj}-Rédumen statt (2.5) nach unserem Hauptlemma den fol-
genden Satz:
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SATZ 2. Inden F—O}-Réiumen gilt immer
3.1) PV, 35+ PV, 8, = 0.

Da in den F—Oj-Riumen P=Q% ist, kann (3.1) in den F—O}-Riumen
offenbar auch in der dquivalenten Form
(3.1a) V, 8L, = — Pt PiV, 5

angegeben werden, was aus (3.1) nach Uberschiebung mit PJ, entsteht. Die Umkeh-
rung von Satz 2 ist im allgemeinen nicht giiltig, da aus (3.1) und (2.5) im Hinblick
auf (2.6) nur der folgende Satz abgeleitet werden kann:

SATZ 3. Besteht (3.1), so unterscheiden sich P% und Q% hichstens um einen
Tensor mit verschwindender kovarianter Ableitung.

Bewers. Nach (3.1) folgt aus (2.5), daB V,Pi=0, was nach (2.6) tatsichlich

Vil(Pj—0Y) +0%] = V,(Pi—0}) = 0,

also die Behauptung des Satzes nach sich zieht.
Nehmen wir jetzt an, dall in einem F—O,-Raum die Relation (3.1a) besteht,
ferner

(3.2) AX(V SYM! = 8 D (x, %), D(x,%) =0

beziiglich M} eine eindeutige Losung hat, wenn @(x, X) einen Skalar bedeutet. Es
gilt der folgende

SATZ 4. Bestehen in einem F—O0,-Raum (3.1a), (3.2) und V,Pi=0, so ist
dieser F—O,-Raum ein F—O;-Raum, d. h. Pi=Q}.

BEWEIS. Aus (3.1a) folgt nach ciner Uberschicbung mit Q, nach einer Ver-
tauschung des Summationsindexes »1:

iV, 35 = — 03V bk
Substituiert man das in (2.5), so wird im Hinblick auf die Bedingungen des Satzes:
Vi (PF—03) = 0.

Nach einer Uberschiebung dieser Gleichung mit 4*M} bekommt man nach (3.2)
unmittelbar Pi=Q%, w. z. b. w.

§ 4. Hohere Differentiale der Eigenvektoren

Es sei Vi(x, x) ein Eigenvektorfeld in einem F—O0,-Raum. Das bedeutet das
Bestehen von (1.6) lings jeder Folge (x'(s), x'(s)) der Linienelemente. Offenbar
kann in den F—O;-Ridumen angenommen werden, daB der Parameter ,,s* die
Bogenlinge bedeutet. Wir wollen nun in diesem Paragraphen das Analogon der
Untersuchungen von T. Otsuki beziiglich der hoheren Differentiale der Eigen-
vektorfelder durchfiihren (vgl. [4], Theorem 5.7).
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Nehmen wir also an, daB (1.6) bzw. (1.5) besteht. Bilden wir das invariante
Differential D beider Seiten von (1.5), so wird nach (1.2a):

4.1) VidP}+PldVi+(Aiy@*(d) + T dx*) PfV? = £+ DV',
wo wir (1.1a) beniitzt haben, und statt dx* die Formel
4.2) dx* = F(@*(d)—'T % dx*—x*dF), 'I'} =Tr}\

und C{;%*=0 verwendet wurde (vgl. die Formeln (2.6)—(2.8) d) in [2]). Aus (4.1)
eliminieren wir dP} und dV”’. Nach (1.2) hat man wegen der Homogenitit nullter
Dimension in den x von Pi:

4.3) dP} = 0, Pdx* 40, Pjdx* = 9, Pidx*+Piy (@*(d)—'T %, dx*) =
P @ (d)+(T#Pi— ”Fsikpjs) dx*
und nach der Formel (2.7) von [2] wird
4.4) avi = DVi—(AJ, @ (d)+'T S, dx*)V>.
Substituieren wir (4.3) und (4.4) in (4.1), so wird:
DV’ + {V, Pi* (d) + P (V,,8}) dx*} Vi = + DV,

Eine Kontraktion mit P! gibt nach einer gewissen Umformung der Indizes und im
Hinblick auf (1.1), (2.1)—(2.3):

4.5) PDV* = £ DV +yiVi,
(4.6) Vi= P (Ve B)@*(d)— D8,
wo wir auch die aus (1.3) folgende Relation

@) PIV,B =—PVP}

beachtet haben. (Fiir die Operation %,c gilt die Leibnizsche Regel).
Beziiglich der hoheren invarianten Differentiale beweisen wir den folgenden

SATZ 5. Besteht (1.5) lings einer Folge Cy: (x'(s), X'(s)) der Linienelemente,
so ist langs Cyp:

m—1
(4.8) BD"V' =+D"Vit 3 YimDeVi, (m=1,2,..)
=0
wo die ') durch die folgenden rekursiven Formeln bestimmt sind.
(4.9) YR = vk, (vel (4.6)),
(4.92) Y =0, wenn ¢=o, Y2, =0,

(4.95)  YintY = op v+ P DY + (D) PR+ BPYGLy, (@=0,1,...,m).

Die Groflen Yi{» sind in (4.8)—(4.9b) Tensoren vom Typ: (1,1), (m, @ bezeichnen
keine tensorielle Indizes).
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BEWEIS. Vor allem bemerken wir, daB dieser Satz aus dem Satz I von [3]
abgeleitet werden konnte. Vollstadndigkeitshalber geben wir hier einen kurzen Beweis
dieses Satzes, der auch dadurch bewiesen werden konnte, daB in [3]: Pi=0Q}
gesetzt wiirde. Offenbar entstehen dadurch gewisse Vereinfachungen. Wir wollen
nun den Satz durch vollstindige Induktion beweisen. Fiir m=1 stimmt (4.8) mit
(4.5) iiberein, was eben aus (1.5) abgeleitet wurde. Der Satz 5 ist also fiir m=1
richtig. Angenommen, der Satz 5 gilt fiir irgendein m=1, so erhilt man nach
einer invarianten Ableitung D von beiden Seiten von (4.8)

(dP))D"VI+P}dD™V? +(A40" () +'T ' dx*) PED"VF =
= +DD"V? + 2 Dy DOV +yim DDVY),

wo ’D das allein mit ‘I" gebildete invariante Differential bezeichnet.! Jetzt beachten
wir auf der linken Seite (4.3) und (4.4), auf der rechten Seite die Formeln

DY = Dy — (Do), D35 = V.85 dx*;

Ho) = s(e)>

somit wird nach der Indexverinderung i—¢:

(4.10) Dm+1Vf+(6kBitak(d) +R]’56;)D'"VJ ey iEDmV'-]-
m=1_. i - o .
+ 3 (DU — DYDYV +y 3 DV},

Wir iiberschieben jetzt diese Gleichung mit P; und wir wollen das invariante Diffe-
rential D durch das invariante Differential D ausdriicken. Wir beachten auf der
linken Seite die Relationen (4.6), (4.7) und die mit

(4.11) D6} = D6’

dquivalente und in den F—Oj-Riumen giiltige Identitit (3.1a); auf der rechten
Seite beachten wir wieder (4.11) und die wegen Pi=Q} bestehende Identitit:

FIDYSR = P DYLE),
wodurch im Hinblick auf (4.9b) die Formel
m
RiDm+1Vt = +pmHiyiy 2 IH-(('L'))D"VI
=0

entsteht, die nach (4.9)—(4.9b) die Giiltigkeit von (4.8) fiir (m+1) statt m zeigt.
Damit ist der Beweis von Satz 5 beendet.?

* Es ist selbstverstdndlich fiir die rein kontravarianten Tensoren D=’'D. w!{% bedeutet
einen (1, 1)-Tensor, da m und ¢ keine tensoriellen Indizes sind.

2 Fiir eine etwas allgemeinere Form dieses Satzes vgl. die Arbeit [3]. Die Relation (1.3) ergibt
mehrere Vereinfachungen fiir den Beweis. Vgl. [3], Satz I.
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BEMERKUNG. Aus den Formeln (4.9)—(4.9b) bekommt man z. B. fir m=1
und ¢=0,1

(4.12) VB = BDYI-+(DIRNS, VIR = Vi+BIPA,

was aus (4.5) auch direkt — mit der angegebenen Methode — berechnet werden
konnte.
Aus diesem Satz kann das folgende Korollar leicht bewiesen werden.

~KoroLLAR 1. Ist lings einer Folge Cy der Linienelemente @*(d)=0 wund
Do'=0, so vereinfacht sich (4.8) fiir die Eigenvektoren auf

PID"V' =+D"Vi, (m=0,1,...; D'Vii=Vi).

Bewess. Es ist nach (4.9) und (4.6) in diesem Fall ¥%% =0 und nach (4.12)
wird auch i) =0 (¢=0,1). Angenommen, daB y™ =0 fiir ein m=2, so
folgt aus (4.9)—(4.9b), daB auch Yi{m*Y=0 ist, was nach (4.8) die Behauptung
des Korollars beweist.

§ 5. Der zweidimensionale F— O3-Raum

L. Berwald hat in seinem Aufsatz [2] in den Finslerrdumen ein natiirliches d. h.
von (x',x) abhingiges orthonormiertes Zweibein (I, k) konstruiert und damit
die zweidimensionalen Finslerrdume untersucht. Da dieses Zweibein allein von der
Grundfunktion F(x, x) des Finslerraumes ausgehend konstruiert wurde, kann auch
in den F—O0j3-Raumen benutzt werden (vgl. [1] §4, oder [5], Kapitel VI. §6).2

Wir bestimmen in diesem Paragraphen zunichst die moglichen Typen der
F—03%-Riaume. Es besteht der

SATZ 6. In den F—QOj-Rdumen mit symmetrischem P;;-Tensor hat P die
Form:

(5.1) P = a(ll,—hh)+VT= 2 (lh; + k1), |o| =1,
wo o einen frei wihlbaren konstanten Parameter bedeutet, oder es ist Pi= —&%.

Vor dem Beweis des Satzes verweisen wir auf Satz VI. unserer Arbeit [3], wo
statt (5.1) nur der Fall a=1 als charakteristische Form fiir P} bezeichnet ist. In
[3] haben wir aber durchweg Pi=1I'" vorausgesetzt, und diese Bedingung ist auf
Grund von (5.1) tatsdchlich mit «=1 dquivalent.

BEWEIS VOM SATZ 6. Vor allem verweisen wir auf die Tatsache, daB von der
Form (5.1) folgt, daB Pi der Relation (1.3) wirklich geniigt, da bekanntlich (vgl.

(1], (4.1) (b))):
(5.2) Il +hh, = 5.

besteht. Wir haben also nur noch zu beweisen, daf3 (5.1) die allgemeinste Form fiir
Pi ist, falls P;; in (7, ) symmetrisch ist und (1.3) besteht.

3 Tn [5] ist % mit 77 bezeichnet.
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Die allgemeinste Form fiir P, falls nur die Symmetrie von P} vorausgesetzt
wird, ist im F—Q0,-Raum:

(5.3) P} = all;+fhh;+y(Ih;+ ),

wo I und h die Vektoren des Berwaldschen orthonormierten Zweibeins, «, f8, y aber
Parameter bedeuten. Substituiert man (5.3) in (1.3), so wird

@+ P+ (B +y*) hhy+ (e +B)y (Wl + I'hy) = 6.

Vergleichen wir diese Gleichung mit (5.2), so folgt unmittelbar, dal entweder
1) a=—f und «®+y2=p%*+7y2=1 besteht, oder 2) y=0, a==+1, f=F1 giiltig
ist. In beiden Fillen kann y=+}1—0o* mit |x|=1 genommen werden, da die
Annahme iiber o auch den Typ 2), d. h. y=0 umfalt, falls dann a=—pf=1, oder
a=—f=—1 gesetzt wird. Der Typ 1), d. h. y=+}1—a? ergibt schon nach (5.3)
den Typ (5.1), wenn noch a= —f beachtet wird. Die Formel (5.1) enthilt aber
auch den Typ 2), d. h. y=0, a==+1, f=F1, ferner y=0, a=f=1, was wir
aber ausschlieBen konnen, da dann nach (5.3) Pi=¢; wire. Der F—O3-Raum
ware also ein gewdhnlicher Finslerraum mit Cartanscher Ubertragung, wie das
aus (1.2) und (2.1)—(2.3) unmittelbar folgen wiirde. Der Typ 2) enthilt noch =0,
a=p=—1, d. h. nach (5.3) und (5.2) Pi=—¢%, womit der Satz 6. vollstiindig
bewiesen ist.

Wir beweisen noch den folgenden merkwiirdigen

Satz 7. Indem F—QO%-Raum mit
(54 P} = &,—2h'h;

definiert die Ubertragung D eine gewdhnliche Cartansche Ubertragung (vgl. [5],
Kapitel ITI. §§ 1—2).

BeweErs. Der Typ (5.4) entsteht aus (5.1), wenn in (5.1) «=1 genommen wird,
wie man aus (5.1) und (5.2) unmittelbar ersieht. Aus der Formel (2.22) unserer
Arbeit [2], d. h. aus

(5.5) T ="TH+0l"V P

folgt im Hinblick auf (5.4), daB 'T'j,="T /% ist, weil "V, wegen Pi=[' die Car-
tansche kovariante Ableitung bedeutet (vgl. [2] Satz 1 auf S. 124). Da die Cartansche
kovariante Ableitung von h' verschwindet, (vgl. [1], (4.5) oder [5], Kapitel VI. §6),
folgt aus (5.4) und (5.5), daB 'I';j,="T';}, besteht, woraus nach (2.1)—(2.3) die
Behauptung von Satz 7. folgt.

BEMERKUNG. Die durch (1.1) festgelegte Ubertragung D ist selbstverstindlich
von der Cartanschen Ubertragung doch verschieden, da in (1.1) der durch (5.4)
angegebene Pi-Tensor vorkommt, der in der gewdhnlichen Cartanschen Uber-
tragung nicht vorhanden ist.

In unserem Aufsatz [3] haben wir die Eigenvektoren der F—OQ0,-bzw. F—O%-
Ridume bestimmt. Wir wollen jetzt die Form der Eigenvektoren beziiglich des durch
(5.1) gekennzeichneten Pi-Tensors bestimmen. In [3] ist nur der durch «=l1,
& b, =l gekennzelchnete Fall erledigt. Wir beweisen nun beziiglich des Typus
(5.1) den
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SAtZ 8. Hat in einem F—O}-Raum der Pj-Tensor die Form (5.1), so sind
die Eigenvektoren beziiglich des Zweibeins (7, h) von der Form:

(5.6a) Vi=+yYl+all+yl—ahl, t=+1, |a|=+1,
(5.6b) Vi=gxyl—al+Vitah), 1=—1, |¢|=+1,

wo 1 die Eigenfunktion bedeutet.

Bewgrs. Nehmen wir an, daB der Eigenvektor ¥ die Beindarstellung
(5.7) Vi= oli+oh’

hat, wo ¢,c Skalare bedeuten. Schreibt man PiV'=V' auf, substituiert man
dann (5.1) und (5.7) in diese Relation, so wird nach gewissen Umformungen :

[e@—D e VI—a®]l'+[c(—a—1)toV1—a?]h' = 0.

Die Koeffizienten von 7/ und h' gleich Null gesetzt, bekommt man ein homogen-
lineares Gleichungssystem fiir ¢, 6. Die Losung ist

0:0=1)1+a: Y1—a

woraus nach (5.7) fiir ¥/ die Formel (5.6a) folgt. |
Ist die Eigenfunktion: 7= —1, und substituiert man (5.1) und (5.7) in PiV'=
=—V', so bekommt man nach einigen Umformungen:

[e(l4+0) Lo VI—a?] I+ [o(1—0)+oV1—0?]hi = 0.

Wie im vorigen Fall, geben die Koeffizienten von F und A’ gleich Null gesetzt ein
homogen lineares Gleichungssystem fiir ¢, o. Die Losung wird jetzt

0: 6 =FVY1—a: V1+a,
woraus nach (5.7) die Relation (5.6b) folgt.
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ON THE CURVATURE AND INTEGRABILITY
OF HORIZONTAL MAPS

J. SZILASI (Debrecen)

1. Introduction. In the recent progress of connection theory (especially in Finsler
geometry, see [9]) and its applications the vector bundle viewpoint plays a central
role. Purely geometrically, from this point of view the notion of a (general) connec-
tion ([11], Definition 3) is based upon a Whitney decomposition of the tangent
bundle of the total space of the considered vector bundle into the vertical subbundle
and a horizontal one. Each of the horizontal subbundles can be obtained with the
help of a (right, smooth) splitting of the canonical short exact sequence ([4], Vol.
II, p. 335) constructed from the given vector bundle. These splittings are called
horizontal maps. Hence the theory of connections may be developed starting from
a horizontal map; a sketch of such an approach can be found in the author’s paper
[11], cf. also [2], [12]. In this note we are going to investigate mainly the integrability
of a horizontal map. Here, integrability means that the image bundle of the hori-
zontal map under discussion is an involutive distribution in the usual sense ([4],
Vol. I, p. 134). Our main result gives a number of necessary and sufficient conditions
for a horizontal map to be integrable. These criteria will be formulated in terms of
horizontal projection, vertical projection, almost product structure and curvature tensor
Jield induced by the horizontal map # in question. We shall also discuss some in-
teresting relations between the Dombrowski map K belonging to s# and the curvature
tensor field, furthermore — in the linear case — between K and the usual curvature
form induced by . These relations generalize some results of Dombrowski’s im-
portant paper [1].

Grifone’s and Vilms® works [5], [12] were very stimulating for the present in-
vestigations. A discussion of similar questions also occurs in Duc’s excellent survey [2].

Notations, terminology and basic conventions are as in the monograph [4]
and in the paper [11].

2. Preliminaries. For the convenience of the reader, we begin with some defini-
tions and technical remarks needed in the subsequent considerations.

Let M be a manifold. ZP(M), AP(M,ty), Endty and End Z(M) denote
the C=(M)-module of (p, ¢) tensor fields on M, ty-valued p-forms on M, Tp—7
(linear) bundle maps, and Z(M)—>%Z (M) C=(M)-linear maps, respectively. It is
known (e.g. from [7], Proposition 3.1) that the module of g-linear maps Z'(M)X ...
o XZ(M)—~% (M) is isomorphic to the module Zj(M); in particular 27 (M)==
=~End Z(M). Now suppose that f€End ty. Then VpeM:f|T,M=f,cEnd T, M,
so the map f: p¢ M—~f(p):=f, is an element of A'(M, 1) and the correspondence
f—F defines a (natural) isomorphism End 7y 2. A4(M, 15). Because of End 7T, M=
~(T,M)*®@T,M one can also write feSec (T3 ®Ty)=%7(M). Summarizing, we
obtain the following.
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LEMMA. 21 (M)=~End & (M)==End 7,2 A1 (M, 7).
We shall identify these isomorphic modules, without further reference.

DerFiNiTION 1. (See [3] or [7], Proposition 3.12). Let f, g€Endty. Their
Nijenhuis-torsion is the (1,2) tensor field [f, gl: Z(M)XZ(M)—~%(M) given by

[f elX, Y) = [fX, gY]+[eX,fY]—glfX, Y]—flgX, Y]—
—glX,. fY]1—fIX, g¥Y]+gof[X, Y]+foglX, Y]

([fX, gY] etc. are the usual Lie products of vector fields).
The introduction of the following useful concept was inspired by Haantjes’s the-
orem ([3], Theorem III).

DErFINITION 2. Let f€End 7). Suppose that VpeM: f,=:f|T,M has con-
stant eigenvalues A, ..., 4, with constant geometric multiplicity (1 =k=n). Let
us denote by S'(4;) those subbundles of ), whose fibers at a point p€M are the
invariant subspaces belonging to A;. f is called integrable if the subbundles S'(4;)
and the Whitney sums S(4,)®...®S(4;) (j=2, ..., k) are involutive distributions.

In the sequel ¢=(E, n, B, F) will always denote a fixed vector bundle over the

n-dimensional base manifold B. The sequence of vector bundles 0 —»Vé—i> Tg —

<=, n*(1p)—~0 (where ¥; denotes the vertical subbundle of the tangent bundle tz)
is a short exact sequence, which is also called the canonical exact sequence starting
from ¢. So a horizontal map is a bundle map o : n*(t5)—>7g, while the horizontal
projection, vertical projection and almost product structure mentioned above are

h:= #odn, vi=1—h, P:=2h—1

respectively. If o: V;—~¢ is the canonical bundle map described e.g.in[4], Vol. I
p- 291, then K:=oaoV is the Dombrowski-map induced by . (For details, see
[11].) The endomorphisms h, », P€End 1y — according to the lemma — will also
be mterpreted as (1 1) tensor fields. In this case — for better clarity — we shall
sometimes write %, 7, P instead of h, » and P. Observe (cf. [11], Section 5) that these
endomorphisms satlsfy the condltlons of Definition 2, hence we can speak about
their integrability.

3. Curvature of horizontal maps. Following Grifone’s idea, which in turn was
inspired by [3], we define the curvature tensor field of a horizontal map # as the
Nijenhuis-torsion R:=—1/2 [h, h]. The geometric meaning of this construction will
be clarified by the next results. There are, of course, other possibilities to define
curvature for a horizontal map; see e.g. [8], [12] and — in the linear case — [10].

PRrOPOSITION 1. Let UCB be a trivializing neighbourhood for ¢ and (X', y%)
the local coordinate system over n—*(U) described in [11], Section 5. If the functions
Ir's: =3 (U)—R are the connection parameters of # with respect to (x',y*) and

Z= Z'aa,+Z 3aa’ V=vi aa,+V“ 3 — are wvector fields over n~(U), then
R(Z, V)= Z‘VJRUaBa, where

b orj - oIy or; ore

e = b
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COROLLARY. YZ,VEX(E): R(Z, V)EZv(E):=Sec V.
The proof is a standard, but lengthy calculation, so we omit it.

In view of hX"=X" hY"=Y" (where X" and Y" are the horizontal lifts of
X and Y with respect to #, see [11], Definition 2) we immediately obtain from the
definition of R and of the Nijenhuis torsion

ProposITION 2 (cf. [13] and [2]). VX, YEZ(B): R(X", Y"=h[X", Y"|—[X" Y"].

Using this proposition and the obvious relation Koh=o0 we have the following
generalization of formula (23) of [1]:

ProOPOSITION 3. If K is the Dombrowski map belonging to # then
vX, YEZ(B): coR(X", Y*) = — Ko[X", Y,

that is the diagram
h_ yh
F RO o

[x», Y"]j la
y i (W RS

commutes.
ProoF. On the one hand
KoR(X™ Y* = Ko(hiX* TH-[X" YY) =—-Ko[X*, ¥4,
on the other hand

KoR(XN, Y¥) = aiovo R(X*, Y*) = co R(X*, ¥,

because of R(X", YNeZy(E). O

Now we suppose that # satisfies the so-called homogeneity condition ([11],
Definition 2). In this case # induces a V: Sec &£~ AY(B, &) linear connection. It is
well-known that the curvature form of V is the mapping

R: Z(B)X%(B) —~ End Sec¢,
X, Y)— R(X, Y) := VyoVy — VyoVy—Vix 115
where End Sec ¢ is the module of the C=(B)-linear maps Sec &—~Sec ¢ (see [4],

Vol. II). What is the relation between the curvature tensor field R and the curvature
form R? The answer to this very natural question is given in the

THEOREM 1. VX, YEZ (B), 0€Sec &: aoR(X", Y"oo=R(X, Y)(0), so we have
the following commutative diagram:

B-% E
]
R(X, Y)(a)j R(XP, Y?)

E <VE
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ProOF. Choosing a trivializing neighbourhood Uc B, we again work in the
coordinate system (x, y*). It induces a framing e,: U—~E (see [11], Section 5),
so each section ¢:B—E can be written locally in the form o%e,. A straightforward
(lengthy) calculation shows that over U

(VxoVy—VyoVx—Vix, y)o = X' Y/ Ry 0P e,,

where
0 0 . ors, org % "
X=X’5;‘T-’ Y = YJW’ o =a_ulf.._al-l-j"-+rwr;’.ﬂ—l‘,‘,r;’ﬁ,

3

and in the last expression the functions I'{; are defined by I'f :=g—§} (see [11],
Th. 1). On the other hand,

R(Xh,Yh)= (Xiyjon)yﬂ[ar;ﬂ 8F?ﬂ

out oul

on+(Ion)(Mgom) —

0
_(Fj!‘,on)(l’?ﬁon)] ek
The value of this vector field at the point o (x)en=*(U) is

RO, V) o ()] = X0 DRy (0) (5], €T E:

consequently
" A 9
tao [RCEA, YD) = X'V ()R @) [ ()| =

= X'YIR%;5 (x) 0P (x)e,(x).
This is exactly a coordinate statement of the conclusion of the Theorem. [

COROLLARY. In the linear case Y X,YEZ(B), o€Secé: Ko[X", Y"oo=
=—[R(X, V)] (o).

This last relation is the immediate generalization of the above mentioned for-
mula of Dombrowski’s paper.

4. Integrability of horizontal maps. Now we turn to the study of the integ-
rability of a horizontal map #. The next result summarizes the situation.

THEOREM 2. For a horizontal map #: n*(tg)—~tp the following are equivalent:
(1) 2 is integrable.
(2) The curvature tensor field of # wvanishes, thatis YZ,VEZ(E): R(Z, V)=0.
(3) The component functions R§; of R wvanish.
(4) The horizontal projection h is integrable.

(5) Bo[h, h)=0.
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(6) The vertical projection v is integrable.
(7) [9, 9]=0.
(8) o[d, 8]=0.
) [P, P]=0.
(10) The almost product structure P is integrable.
Proor. (a) We begin with the following technical remarks:
[h, il =[3,5), Imh= Kerd = Sec Im .

Indeed, [, 8]=[1—h, 1—Al=[1, 1]—[h, 1]—[1, A1+[h, h]. Here [1,1]=0, as it
immediately follows from the definition of the operation [ , ], while YZ,, Z,€ Z (E):
(8, 1(Z,, Zo) = [hZ,, Z)+(Zy, hZo)—[hZy, Z)|— h(Zy, Z,)—(Z,, hZ,)—
—h[Z,, Z)+h[Z,, Z)+h[Z,, Z) = 0=>[h, 1] = 0.

Similarly [1,4]=0, thus [, 5]=[A, A]. The second assertion is clear.
(b) We show: (2)e(1)e(5)«<(8). Let Z,, Z,€Z(E). From the definition of
the curvature we have:
[hZ,, hZs) = — R(Zy, Zo)—h(Zy, Z)+h1hZ,, Z;)+h(Z,, hZ,).

On the right hand side —R(Z,, Z,)€Zy(E), while the other terms belong to
Zy(E):=Sec Im # because of (a). It implies that [AZ,, hZ,)€ Xy (E)e R(Z,, Z3)=0
proving the equivalence (2)«>(1). From this the implication (1)=(5) also follows.
If — conversely — o[k, A]=0, then (applying (a) again) Im [k, AjlcKer =
=Im h=%y,(E) hence

—;-[};, h(Z,, Zy) = [hZ,, hZ) +h[Z,, Zs)—h[hZ,, Z,)—h[Z,, hZ;)cSec Im H# =

= [hZ,, hZ,)€Sec Im H#,

that is (1) holds. The equivalence (5)<>(8) is obvious from [A&, A]=[D, ].

(c) We verify that the assertions (3), (4), (6), (7), (9) and (10) are equivalent
to (2). Let us first observe that in case of the endomorphisms h, v, PEEnd 7z the
subbundles S(/;) mentioned in Definition 2 are the following:

h: SQ)=Imh=Ims#, S0O)=Imv=7V,;
v: S(HD=V,, SO)=Ims#; P:S1)=ImH#H, S(—1)=V,.

Here, of course, the subbundle V; is an involutive distribution, so we easily get the
equivalences (2)«<(4), (2)<(6), (2)«<(10). The equivalence (2)<(3) is evident,
(2)<(7) follows from (a). Finally — applying also (a) —

[P, P] = [2h—1, 2h—1] = 4[h, h]—2[1, K] —2[h, 1]+[1, 1] = —8R,
this establishes the equivalence of (2) and (9).

REMARK. From the proof we find that R=—1/8[P, P]. In a more special
situation this was proved also by Stere Ianus [6].
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LOWER ESTIMATES FOR THE EIGENFUNCTIONS
OF A LINEAR DIFFERENTIAL OPERATOR

V. KOMORNIK (Budapest)

Let GCR be a bounded open interval, n€N, ¢y, ..., q,€L*(G) arbitrary
complex functions, and consider the formal differential operator

Lu= u™ +qu® V4. +quu.

Let us recall the definition of the eigenfunctions of higher order:

Given a complex number A, the function u:G—C, u#0 is called an eigen-
function of order —1 of the operator L with the eigenvalue 4. A function u:G—C,
u#0 is called an eigenfunction of order m (m=0,1, ...) of the operator L with
the eigenvalue 4 if the following two conditions are satisfied:

— wu and its first n—1 derivatives are absolute continuous on every compact
subinterval of G;

— there exists an eigenfunction »* of order m—1 of the operator L with the
eigenvalue A such that for almost all x€G

(1) (Lu) (x) = Au(x)+u*(x).
Let us denote by uy, ..., u, the n-th roots of A such that

Reyu, =... =Rey,
and put for brevity

; n+1
—[ 3 ] K=ty @=Rep,.
Obviously, ;
le| = min {[Re p,|:p=1, ..., n}.

It is known (see [3], [5], [7], [8]) that for any eigenfunction u of order m of the opera-
tor L with some eigenvalue 4,

"u“L“’(G) =Cn(1+|Re ﬂll)llp"u"L"(G) (p€[l, =));

the same estimate holds for u® (i=1,...,n—1) instead of u if |A| is sufficiently
large. Conversely, the estimates

4@ =) = Cn(1 +[Re p )7 4P| 1py  (PEIL, =]

are proved in the following two cases:

— n=2, m arbitrary (see [4], [8]),

— n arbitrary, m=0, ¢;=...=¢q,=0 (see [6]).

In the present paper we shall extend this last result to the general case ¢, ...
..oy §,€L}(G). The case m=1 remains open; however, a weaker form of it will
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be proved which is sometimes sufficient for the applications. We shall prove the
following results:

THEOREM 1. There exist positive constants o, E such that for any eigenfunction
u of order 0 of the operator L with some eigenvalue 1.,

@ 4 ) exp (¢[Re piy| dist (x, 9G)) =6y = ENuPl=@) (=0, ..., n—1).

THEOREM 2. There exists a positive constant B such that for any eigenfunction
u of order O of the operator L with some eigenvalue A,

(€) 14Pll=y = B(L +[Re pu)'* [Pl Loy (=0, ...,n—1, pE[l, <))

THEOREM 3. Suppose q,=0. Then to any me{0,1, ...} and to any compact
subinterval K of G there exist positive constants C,,, R,, such that for any eigen-
function u=u,, of order m of the operator L with some eigenvalue A,

(4) I u(i)”L“(K) = CpeReud IR 4D oy (=0, ..., n—1).

If »=w, is an eigenfunction of order =m then we put for brevity »;=v},,
if j€{0, ...,m—1} and »;=0 if je{—1, —2,...}. Furthermore we set N=n(m+1)
and N’=n"(m+1). We recall that, by Proposition 2 in [9], there exist continuous
functions f;, F, such that for any eigenfunction v,, of order =m of the operator L
with some eigenvalue A,

N’ » x+N't »
6 3 AwnRa+k)= 3 [ DiEGtx—0) 3 q@u8=@de
k=N'—N r=0 x+(N'—N)t s=1
G=0,...2=1)

whenever x+(N'—N)t€G and x+N’t€G. (D, denotes differentiation with respect
to the 3™ variable.) Furthermore, introducing the notation

(6) Q(u, 1) = exp ((m +1) (uy+ oo + Bm1)2) 1),
there exists a constant C such that in the above formula for =0
@) lfo(u, D—Q(u, D] = C|Q (1, Dle~, |fi(u, )| = ClQ(, t)|e~*,

DS F, (1, 2, x—7)| = Clu[+¢+C="|0 (u, f)|e~el>—].
(We have taken into account that G is bounded.)

ProoF oF THEOREM 1. We consider only the case ¢=0. The case ¢<0 is
similar but one can also trace it back to the case ¢=0, applying the transformation
described in the introduction of [9]. In the sequel C will denote diverse constants
independent of the choice of the eigenfunction u, the points x, y€G and the number
R (see below).

Fixing y€G and O0<R=(n")"!'dist (y, 0G) arbitrarily, let us set

® G* =Gy r:=(y—R,y+R)
and
(9) Q = Qy,R ‘= max {”qs"L‘(y—n'R,y+n’R): 8= 13 isas n}-
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Applying (5), (6), (7) for any x€G* with t=dist (x, dG*), we obtain for any i€
€{0,...,n—1
|u® (x) eedist = 96| = C| 4| L= +

n
+CoQ 2; a2 w9 (1)ee = 1D gy = CllUP| Loy +
S=
+CoQ g; [+ u"=9|| Lg\n +

n
+ COQ Z' Iuli+1—n " u(n—s) (T)epdist(,' 35*)” L=(G*) -
s=1

For |u|=1 hence we obtain
114 (et 536 e g1y

n n
=10 2' "#—n+su(n-s)" L”(G)'*'CoQ 2’ "#—n+su(n—8)(r)eodist(n aG‘)"L"(G')
s=1 s=1
and

n—1 n—1
(1-nCoQ) 12:) Il D (x)e@ it 9| oy = C,Z:) = 4D =,
- i=

Let us now fix R=R, such that

10) { R, is maximal with respect to the properties

0<R=)1dist(y,dG) and 1—nC,Q = 1/2.

Then, if we take also into account that

5 I ulm ) = Cluli=
¢see [7]), we obtain for any i€ {0, ...;n—1}
(11) 14 (x) eedist & 06| w50y = C|pf' ||l L=(G)-
Let us now fix two points a+ Ry, b—R€(a, b):=G such that a+ R,=b—R, and
2nCoymax {||gslizr@,at2ry: s =1, ..., n} =1,
2nCymax {||gsllL1p—2r,,55: s = 1, ...,n} = 1.

Then in the case when y€(a, a+ R,)U(b—R,, b), dist (y,0G*) = (n’)~* dist (y, 0G)
by (8), (9), (10) and then (11) implies

(12) 4D () eI e dist 02 36N G a4 Ry, b—R) = Cll |4l L (6)-
On the other hand, the compact set [a+R,, b— R,] can be covered by finitely many
intervals [y,—% Ry, . y,+% R») « I %€ [y,—-% Ry y,+-;— Ry,) for some r then
1 R R
3 * Z_ y' 1 3 = 7 y’
dist (x, 0G*)= 3 R, = e dist (x, dG), whence, putting o, min { e },
(13) [l 4 (x) e%0@ist 5, 99) | o, o gy = Clul' 1]l L=G) -
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Setting a=min {(n")%, &}, (12) and (13) imply
(14 | (x) exedist & 30)|| Ly = Cluff | ]| =gy -

Obviously, it suffices to prove the estimate (2) for |u| sufficiently large. But then (2)
follows from (14) beacuse by Theorem 3 of paper [7]

. lul lulz=@) = CluPllL=c)-
The theorem is proved.

Proor oF THroreM 2. It follows from the preceding theorem that

(15) [l Lr) = E| u(i)"L“(G) || e=eleldint(s 9GN], 5.
Furthermore, by easy computation
(16) "e-a] | dist (=, aG)”LP(G) = (2/0()1/’ |Q|—1/p i

(15) and (16) imply (3) if |e¢|=1. (3) being obvious for |g|<1, the theorem is
proved.

OPEN PROBLEM. It would be interesting to extend Theorems 1 and 2 for the
case m=1.

ProoF oF THEOREM 3. As before, it suffices to consider the case ¢=0. Obvi-
ously it suffices to prove the estimate (4) for || sufficiently large.

Let us fix a compact subinterval K; of G such that Kcint K;. In the sequel
C will denote diverse constants independent of the choice of the eigenfunction u,
and the points x,y€G (see below). Set R=(N")"'dist (K, dK;). Fixing yeK
arbitrarily, put K,=[y—R, y+R]. For any x€K,, applying (5), (6) and (7) with
Vp=Up_; (JE{O,...,m}) and t=dist (x, 9K,),

‘u,(,?_j (x) eedist(x, 0Ky)| = C” ur(r:.)—j"L”(Kl) +

m—j n .
(&5 Z(') 22 [+ E+DA=M | =9 (1) geist(x, K= |x=tD] iy ) =
r= §=
i med &t eena-
= Cllu",lln~<x,>+0_2 AT e e N PP AR

+C Z' Z' [pfHesnt=gBof)  (eee W e Ay e
For |u|=1 hence we obtain

m n
[ @=m=¥4Q) ;(x)eedistCx: I g y = 2 Z; =M=ty ey +

seut = Z' [ R e e iy

r=0s=2
and

m n—1 S .
a-Clul™ ,Z; p pa=m=iy® ;(x)eedist( K| ooy =

n—-1

m . : -
=C .2(; 2; ”#J(I”")_'ug)—j||v°(xl)-
J=0i=
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Applying now Theorem 1 from [9] (this in the only point where the condition g;=0
is essential) and Theorem 2 from [7],

m n—1
jg; 1A=~ L=k = Clluml=);
therefore if || is sufficiently large then

Il (x) e ist & O] w5 = C |l |ty L=

for all i€{0,...,n—1}. Putting x=y we obtain |ul| =) e®®=C|u|'||thll L=c)-
If |u| is sufficiently large then |u|'|u,]=@c)=C|u{?| =Gy by Theorem 3 from [7];
hence

i=0

@] 2=y = ClluQll =)
i.e. (4) is shown (for |u| sufficiently large). The theorem is proved.

OPEN PROBLEM. It would be useful to show that Theorem 3 remains valid
under the condition ¢,€L*(G) instead of ¢,=0.
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APPROXIMATION BY BERNSTEIN TYPE
RATIONAL FUNCTIONS ON THE REAL AXIS

KATHERINE BALAZS (Budapest)

The aim of this paper is to present a Bernstein type operator which generates
a convergent approximation process on the whole real axis.
Such an extension of the Szdsz—Mirakyan operator

s 9= 358 =0 =0

is known already. This extension generating convergent approximation process on
the real axis is due to J. Groéf [4] and it is the following:

(nx)*

(9 = gomes 21 (&) + 0y (C5)]| B o <xmn>o0

n

assuming that this series is convergent.
To have a Bernstein type discrete linear operator we start from the so-called
Bernstein type rational functions

R D = ey 37 (1) () @ = 27 (5] ruw
Beel, n=dit)

defined for functions f given on the positive half-axis, where a,, b, are positive num-
bers, satisfying the conditions b,—<, a,=b,/n—0, if n—eco.
If we choose b,=nf, 0<B<1 (consequently a,=n’"'), then we may write

R % B = ey 20 () () o e=0m=12.,

The positive linear operator R, was introduced and investigated first by the
author [1], [2] and later by Catherine Baldzs and J. Szabados [3], V. Totik [5].

Let now f be a real function defined in (— <=, ==). For this /" we construct the
n-th Bernstein type rational function as

0 B¢ 9= gregrar sl (5) 07 ()] (1) @ -

= 3(E)rerr )l cosx<

13*
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where n>0 is even, the positive numbers a,, b, satisfy the relations b,—> <>, a,=
=b,/n—>0, if n—eo.

Clearly we have
(1+a,x)"
* 2 n
@ () = T a9+ A—ay"
This latter identity will be useful in our proofs.

Similarly, for R,(f;x) we can choose b,=nf, 0<B<1 (then a,=nf~1) and
use the notation

3 O . 1 S &
3) R;(f; x; B) = A+nf1x)+ (1 —nP1x) kg:) f(ﬁ)_*-

Fen ()R =120 5 ).

+(— 1)"]'(_%)] [Z) " 'x)* (—eo<x<ow, n=>0 Iiseven).

R} is a discrete linear operator. The following relations are true: R¥(c; x)=c,
if ¢ is a constant function, R;(f;0)=0 and

R 2= Jim R0 =5 [r(m) s (-5)] @=0is evem

for any function f defined in (— o, ).
Now we show that the sequence R;(f) defines indeed a convergent approxi-
mation process to f. First of all we state a theorem on the pointwise convergence.

THEOREM 1. Let f be continuous in x and —x, furthermore f(t)=O (")
(—oo<t<woo) for some a=0. Then

@ lim RY(f; x) = f(x) (n is even).
The assumption of continuity at —x cannot be generally omitted as our coun-
terexample will show. This phenomenon is known for H,(f; x), too (cf. Grof [4]).

For continuous functions the convergence is uniform in finite intervals and its
speed can be estimated.

THEOREM 2. Let f be continuous in (— o, ) and f(x)=0("*") for some
a=0. Then for arbitrary fixed 4=0, ¢=0

©) /) =Ry (fs %)| = 10— 4—e, a+a(f; max{a,, by %))
(—A=x=A4, n >0 is even)

- p—¢, a+e1(f3 ) denotes the modulus of continuity of f in [—A—e, A+e€], ;=
=c;(a; A; €)=0 is a number independent of n.

For the class of continuous functions the choice b,=n2/3 (a,=n~1/3 in this
case) seems to be optimal and then

2
(©) {f(x)—R,’!‘ [f; X ?)l = Oy ON—si—s, 45407 BTV
(—A=x=A4, n >0 is even).
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Next, a weighted estimation will be given on the real axis. Here the uniform
continuity of f will be supposed. Then },irr‘} o(f;6)=0 holds for the modulus of

continuity in (— ee, ).

THEOREM 3. Let f be uniformly continuous in (— <o, <) and b,=nf, 0<f=
=2/3. Then

@ If)—R:(f; x; B = 6(1+x]2*"” ) o(f; |x[V2n—*/%)
(—o° < x < o; n>0 is even).

(7) is not valid if 2/3<f<1, but probably an adequate inequality exists for
this case, too.

Let C[— =, =] denote the class of such continuous functions which have a
finite limit I,}lim f(x)=f(°) at infinity. If fEC[— oo, =] then f is uniformly con-
tinuous. A necessary and sufficient condition of the uniform convergence of Ry (f)
to f is fEC[— ==, ==]. Namely we prove

THEOREM 4. Suppose that b,=nf, 0<f=2/3. We have
® lim sup |[f(x)—R;(f; x; B)l =0 (n=>0 is even)

N+ — O <x<0O

if and only if fEC[— oo, oo].

We assume 0<f=2/3 only because the proof of the sufficiency part of Theo-
rem 4 is based on Theorem 3.

To give an estimation for the rate of convergence in the uniform case in (— o, =)
we use the so-called ‘“modulus at infinity”

©) of; HE  sup VGGl (4> 0).

x;|=[x,|=

Obviously lllim f(x)<-ee exists if and only if Jim Q(f; A)=0.
THEOREM 5. Let feC[— oo, =] and b,=nP, 0<p=2/3. Then

1
10)  sup |[fG)-Ri(f: x3 B = e jnf {QUf5 A)+ATT o(f; Ant)

— o< )x=<co
where ¢y is a number independent of n.

We can obtain explicit estimates for the rate of convergence from (10). For
example, considering the classes of functions for which

o(fi =k O=a<1), Qf;id)=4" (a=>0)
sup  [f)-RI(Sf: x; Bl =

—o0 =< X =<0

we have

lc3n_ 2(Yatatl+1)® if O<a+a= 3’ ﬂ = _‘{a_-i;“__*-L_
= Va+a+1+1
lc4n_ 8(ata+s) if ata=3, B=2/3
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198 KATHERINE BALAZS

The latter estimate tends to O(n~%®) as a—<. The above-mentioned orders of
magnitude are the same we have got in [3] in approximating functions by R,(f; x; f)
in [0, ).

CouNTEREXAMPLE. A function f will be constructed which is continuous for all
x>0, but fis not continuous at —x. It will be shown that R;(f;x) does not con-
verge to f(x), if n—>co.

Let H be the set of such negative numbers which can be written in the form
t=—p/22™ where p>0 is odd, m=1, 2, .... Define f by

if t€H
elsewhere.

5
We consider that subsequence of {R;(f; x)}i=; where n=2%". We choose bysm=

=2°" (consequently a,sm=2""). If x>0, then f(x)=0 and f is continuous at x.
Still we have by Lemma 2

E L x) = (132" x)23"'—1|—(1 VT - ZZM [f (z_f"")J’

ez (3 e -

1 zam_l( 23m ) (2_m )k 1
B TR (B ] AN
kodd

if m—oo. Now we turn to our lemmas and proofs.
LemMmA 1 (Baldzs [1], Lemma 2.1). If x=0, then the following identities hold:

(11) Sra@=1 (1=12..),
k=0
x —a,b,x
(12) kg; (k'—bnx)rkn(x) = 1+a"x s
5 § _ aibix'+b,x
(13) kg; (k—b,x)*rin(x) = TG

where a,=b,/n, b,—0.
LEMMA 2. Let x>0 be fixed, b,—~ -, a,=b,/n—>0, if n— . Then

=1 (niseven)

(1+a,x)"
(14) o e e
where
(15) S (4 a,x)

Grar+d—apy ~
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Furthermore
: 1— i y
(16) lim (+a (x)" -‘:'g)—a ik 0 (niseven)
n n
where
17) 0 (1 —a,x) = Z"' D) = e,

55 (A+a,x)"+(1—a,x)" <o

ProoOF. Since (l+a,,x)”=(l + b,,nx) , therefore (1+a,x)"<eP*, if a,<1/x

and 0<(1—a,x)"<e~%* (n is even, a,<1/x). Hence by lim b,=< the lemma

follows.

LemMA 3 (Balazs [1], Lemma 2.2). If a,=b,/n—>0, by~ (n—), 0=x=A4,
A,y,8>0 are arbitrary fixed constants, then there exists a number cz=c5(A4, 7y, )
independent of n such that the inequality

k
(18) S € Par,(x) = c5aixt+x/b,)
k
|k/b,—x|=d

holds.
LemmA 4. Let [ be a continuous function in [0, ) and f(x)=0(e*) (x=0)
for some a=>0, and let ¢=0 be fixed. Then in any interval 0=x=A the inequality

(19) If(x)_Rn(f, X)' = CBwIO,A'i-e](f; max {an, bn_llz}) (n o 1’ 2’ )

is valid, where oy, 44.1(f;.) denotes the modulus of continuity of f on [0, A+¢],
ce=cg(A; &; &) is a constant independent of n. Choosing b,=n*?*® (then a,=n"3)
especially we have

2

@ |r@-&(f: % 2] 5 cornaras ) ©=xs4).

PRrOOF. (20) is identical with Theorem 1 in [1]. (19) is contained in the proof of
(20) based on (18).

LemMMA 5 (Baldzs—Szabados [3], Theorem 1). If f is uniformly continuous in
[0, ), and b,=nf, 0<B=2/3, then

3

QD) fE)=R(f; x; Bl =2(1+x20-P)ot(f; Yxn=F) (0 =x< )

where w*(f;.) denotes the modulus of continuity of f on [0, ).

LemMMA 6 (Baldzs—Szabados [3], Theorem 2). If f is continuous in [0, <)

and has a finite limit at infinity, then
1

22) sup |f()—R,(f: x: B)| = ¢; jnf {Q*(f; A)+AF ¥ (f; An=I2)}
0=x=oo =
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provided b,=n?,0<B=2/3, and QF(f; A= sup |f(x))—f(x;)| is the modulus

§x =X,

at positive infinity. Evidently hm f(x) exists and is finite if and only if
}im Q+(f; A)=0.

LemmA 7 (Baldzs—Szabados [3], Theorem 4). Suppose that b,=nf, 0<p=2/3.
Then

(23) lim sup [f(x)—R,(f; x; p)|=0

n—+co I=x<co
holds if and only if f is continuous in [0, =) and lim f(x) exists and is finite.

In our proofs we shall use the notation

(24) F~®= f(—x.
Trivially
(25) Ri(f~; —x) = R(f; %)

Proor oF THEOREM 1. If x=0, then R;(f;0)=f(0). Suppose now x=0.
By the continuity of fand f~ at x and —x we have

R 0= 2 [7(5)+e v (-5 e =
= 3w+ 3 (g mew+ 3 - oe v

+kZ ﬂ[ ] (=i (x) = S1+82+S3+ S,

=0

where 122 f—f(x) and uf—if -f~—f~(x), and for arbitrary ¢=>0 there exists 6=0(¢)
such that |t—x|<J implies

(26) ()] <e and |u(@)| <e.

Applying (2), (11) and Lemma 2 we get the following relations:

(1+4+a,x)" -
= (1+a,x)"+(1—a,x)" J&)
e g

(1 +anx)”+(1 _anx)"
if n—e and
(1 _anx)"

= 2 /DW= gl /9 =0
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if n—o., Using (2) and Lemma 2 again one can estimate S, in the following

manner:

ISi] = (14a,x)" g’:') A(bi) T (%) = I ? Zl ' (k]
» R <d

(3

(I+a,x)"+(1—a,x)"
holds by (26) and (11). On the other hand Lemma 3 can be used:

z [z

if n—co. The proof of lim S4=0 can be done in a completely analogous way. So

n--co

we have proved R} (f; x)= ZS —f(x) if n—> (n is even, x>0). If x<0, then

—x=>0. Since f~ satisfies the COI]dlthl’lS of Theorem 1, we can apply the above
proved case of our Theorem, that is lim R} (f; —x)-f (—x) (x<0, niseven).

By (24) and (25) this relation can be written in the equivalent form
lim R} (f; x) = f(x) (x <0, n is even).

Tin (x) 25 2

xl=6

On the one hand

T (%) = €

P

k
——x|<6
b'l

k
Tm@® = 3 €Pnry,(x) = c5(a2x*+x/b,) -0,

—-—x =5
n

Proor oF THEOREM 2. First consider the case 0=x=4. Since
Sl @+ ] =1
and f(x)=f~(x)+f(x)—f(—x), we have
re-rs 91 = S lre-r(g) e+ 2 [reo -] e vraw| =
b el Bl K=0 b et i

n

=2

Tien (X) +

1@=1(g)| o+ 2 [r-@-r-(F)] cormmeo)+

= S1+S2+S3.

+ 'kg LA —~f (=001 (= i ()

We estimate S; and S, with the aid of (2) and Lemma 2 using the way of proving
Lemma 4:

(1+a,x)"
(A+a,x)"+(1—a,x)" S 2 S f( )

= o, 4+1(f; max{a,, b, ")) = cy0(— 4—,, 4+a(f; max {a,, b;*})

S = rkn(x) =

and
Sy = a0, 4+0(f7; max {a,, by P =

= CW[-4—e, 4+ (f; max{a,, b;?)) (n =0 is even, 0 = x = 4).
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From (17) and the property o (f; 20)=(1+1) o(f;d) (4, 6=0) of the modulus of
continuity
S = e 0 g0, ar+a(f; 2X) =

—b x 2x 4 - -
=.e% (W+l) Op - 4-¢, 4+a(fs max{a,, b7} =

= CoW- 4-¢, 4+a(f; max{a,, b;/%}),

where cg=cy(4; &; 2)=>0 is a number idependent of n.
As regards the case x<0, f~ satisfies the conditions of Theorem 2 and
—x=0, so as we have proved above

FQ—R:(f: D] = |fD—RI: —x)| =
S 100 s, a+a(f 5 MAX{Gy, b)) = oo u-s, avar(fi max{a,, b))

Proor orF THEOREM 3. The proof runs similarly as in Theorem 2. The diffe-
rence is in estimating S; and S,; here we refer to Lemma 5 instead of Lemma 4.
The estimation of S3 happens as follows: if x<n'~%, then by w(f;0)=(A+1)-
co(f;0) (4,0=>0)

S; = e o (f; 2x) = e~ xR+ Do (f; xM2n~I).

Since the function ¢(x)=e=2*2x2nP/? attains its maximum at x,=1/2rn* and this
maximum is less than 1, therefore S;=2w(f; x¥2n=F/?), if x<nl"f. If x=n'"*,

then we obtain by 0= > ri(x)=1
k=0

n _—1
Ss = o (f; 2x) J rin(x) = 2(1+x20-D)w (f; xV2n~FP),
k=0

PROOF OF THEOREM 5. The convergence of the right hand side to zero and the
inequality (10) in the cases |x|=4% and x=4% may be proved by the same way
as in Lemma 6, if we take into consideration (2) and (15). Let now x= — A42. Then
we get (10) similarly as in the case x=A42 by the facts —xzA42% f~€C[— o, ],
f7()=f(=), Q(f~;A)=(f; 4) and R;(f~; —X)=R:(f; x).

PrOOF OF THEOREM 4. fEC[— o, =] implies (8) as we have established in Theo-
rem 5. Suppose now that (8) holds. Then f'is continuous at every point x€(— oo, )
being the uniform limit of continuous functions in a compact neighborhood of x.
[ is also bounded in (— e, =), otherwise we could choose a sequence {x,,}m-1
such that "l'irralo |X,,] = and

@) lim |fGep)] = =

Let ¢=>0 be fixed and n, be such that for n=n, (nis even)

(28) sup  |f(x)—R;(f; %) <e.

—o<Xx<<oo

Acta Mathematica Hung ric 46, 1985



BERNSTEIN TYPE RATIONAL FUNCTIONS 203

On the one hand from (28) follows the inequality

(29) "l'l_E}o;'If(xm)_R:g (f; xm)l = &
On the other hand
; 1
i & 9 =7 [r ()47 (-5)]
that is % "

lim Ryy(fs %) = 5 L/~ /(i)

thus from (27) the relation lim |f(x,,)— Ry (f; x,)|= < follows which contradicts

(29).
The existence of the finite limit }im f(x)=d can be shown by the way described

in the proof of Lemma 7. We have to prove that lim f(x)=d. Let 6>0 be an
arbitrary, fixed number. There exists a D=D(d) such that

(30) |f(x)—d| <o, if x=D.
It is obvious from (8) that there exists », such that
(31) [f)—Ri(f; x)| <o, if n=n, (nis even).
Since
lim R(f: 0= lim_RL(f: 9= lim R} (/2 =) = = [/~ +/(-ni)
therefore one can find an E=D such that
(32) IRy, (f; x)—Ra (f; —x)| <9, if x=E.
Collecting (30), (31) and (32) we get
Ifx)—d| = |f(=0)—R3(f; —0)|+|R,(f; —0)—Ra, (f; )|+
+IR (fs X)—fG)|+1f(x)—d| =46 (x = E),
hence lim f(x)=d.

X—+—oc
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ON THE DENSITY OF FINITE PACKINGS

J. M. WILLS (Siegen)

Introduction and results. Let % denote the set of compact convex sets in the
euclidean d-space EY, and for a Ke%? let V(K) denote its volume. In particular
V(BY)=w, for the unit ball Bi= {xEE"“x[él}. Further let % denote the set of
Ke%?, which contains k translates BY, ..., Bf of B? with int (B{(\BY)=0 for i=/.

k
[So U B;’CK.) For each Ke%{ let 3(K)= If(wlg) We also put
i=1

P ko
od = O(K) = m: d
b S i

(the maximum exists by Blaschke’s selection theorem). Clearly 6¢=1 and df<1
for k=1. In the following we always assume k=1. J{ can be interpreted as the
maximal packing density of k unit balls. If the centres of B4, ..., B lie on a line-
segment S, of length 2(k—1) then S,+B? forms a “sausage” with V(S,+B%)=
=2(k—Dw;_;+w;. So

__7?_ —1/2 = ke, = o4
Vz(d—l—l) < 0(S,+BY) = g P = §Si==1] |

From this and the known upper bounds for the packing density 64 of £¢ by unit
balls it follows that §¢<d¢ for d=5.

This led L. Fejes To6th to the “sausage-conjecture” [3]:
(S +B%) =4 for d=5.

For partial results see [1, 2, 6]. For d=2 4} is attained for certain hexagonal arrange-
ments of the densest circle packing [4].

For d=3 and 4 no general result can be expected and L. Fejes Téth con-
sidered the problem hopeless [3]. Nevertheless some information is possible as
explained in [7]. To elaborate let C, be the convex hull of the centres of BY, ..., B

in the best (resp. a best) arrangement, i.e. when &¢ is attained. Then, for d=3,
there exist integers k,=k,, such that

dimC,=1 for k<k, and dimC, >1,

dimC,_;=1 and dimC,>1 for k=k

MAGYAR ENIA
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206 J. M. WILLS

or, in other words, and only for d=3,
0 = 0(S,+B% for k<ky and 6(S,,+B% <&,
0f-1=0(S;,—1+B%) and 0(S,+B%) <of for k=k,.

In particular this means that for k—<k, the “sausage” yields maximal density,
but not for k=k, (“sausage-catastrophe”). The exact determination of k, resp.
k, seems to be hard, but it is relatively easy to give good upper bounds.

In the following theorem we show that k,=56. The small differences in the
densities suggest that either k,=56 or at least k, is not much smaller than 56.

THEOREM. There are P, Q€%® with P+ B* %2, Q+ B, %2, and

0(P+B?% = 0,6699 < 0,6707 = 0(S;;+ B®) = 6%,
0(S;6+B3) = 0,6707 < 0,6710 = 5(Q +B3) = 383;.

REMARKS. 1) The appropriate C, are truncated tetrahedra, such that the balls
in the facets form Groemer-packings. The whole packing can be considered as an
analogue to a Groemer-packing [4] in the plane.

2) We checked several other truncated tetrahedra. E.g. for k=59 and 60
we have found “better” truncated tetrahedra than the corresponding sausages.

3) Truncated tetrahedra can also be used to find an upper bound for k; and
good lower bounds for J.

4) Obviously (S;s+B*)<0(S5;+B?).

Proof of the theorem. For a Kc%? Steiner’s formula for the parallel body
K+ B? yields (see e.g. [5], p- 31)

V(K+B% = V(K)+F(K)+M(K)+4Tn,

where F denotes the surface area and M the integral of the mean curvature. In
particular V(Sk+B“):27t(k—1)+4Tn and

V(S;;+B%) = 108n -ki:,’7£ = 343,48, V(S;;+B° = 1101r+43—n = 349,76.
From Lemmas 3 and 4 we know that there are P, Q€¢%® with k(P)=55 and
k(Q)=56, which means that Pc%32;, Qc%s;. Further

V(P+B%) = 2801/2+92;/‘+4839+43’I 34391,

V(Q+B%) = 292 —Y2+92)3+48, 39+— = 349,58,

Since 55@w;=230,38 and 56w;=234,57 we obtain

230,38 230,38

3 — = 3
5(P+B)_ Sa30T = 06699 < 0,6707 = e = 6(S5s +BY)
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ON THE DENSITY OF FINITE PACKINGS 207

and
234,57
349,76

= 0,6707 < 0,6710 = o237 _ 5.0+ B

8(Sss+ B%) = e

So the theorem is proved if we prove Lemmas 3 and 4. For these we need Lemmas 1
and 2:

LeMMA 1. For the regular tetrahedron T of edge-length 2 we have:
V(T) = %Vﬁ =0,942809, F(T) = 4})3 = 6,928203,

M(T) = 6 arccos (— %) = 11,463796.

Proor. The results can be found in Hadwiger [5] p. 37, if one observes that the
3

circumradius R(7T)= 3

Clearly one obtains these results for ¥ and F directly if one notes that one
facet of T has area J/3 and that the distance of a vertex of T to the opposite facet
is Y2.

One obtains M (T)=12«"=6a, where a denotes the exterior angle at an edge
of T (such that the full angle is 27) and o’ such that the full angle is #. Easy calcula-

: gt L HE 1
tion shows that cos %=3"/2, sin 7:(?] » COSO=——=. To calculate the num-

ber of centers of unit balls in nT, n=0, 1, 2, 3, ... we consider the densest packing
of unit balls generated by the 4 vertices of 7;=conv{(0, 0, 0), (y2, ¥2,0),(y2, 0,

¥2),(0, V2, Y2)}. Clearly T; is regular and has edge length 2, as required in Lemma
1. For this special T, we calculate the number k of centers in nT; =T,,. For simplicity
and to emphasize that k is a function on %* we write for an integer k=c, k(T,)=c¢
instead of T,€%%, as mentioned before.

Lemma 2. k(T,,):[n_;3) T, 0k L M Pl
Proor. The lemma holds for n=0, 1. We assume that it holds for v=0, 1, ...

..., n—1. Easy considerations show that k(T,)—k(T,-,)= [n-;Z). So (n——;+3]+

1
+(nzz}:%(nu)(wr1),,+3(n+2)(n+1):[,,43_3

Q as follows:

]. We now construct P and

P: Take T, as basic tetrahedron. From one of its vertices cut off T; anu rom
the remaining three vertices cut off three translates 73, T3, T5 of T}. If we compactify
this halfopen set, we obtain the truncated tetrahedron (resp. the irregular octa-
hedron) shown in Fig. 1. We remark that T;NTi=Tj, i=1,2,3 are translates
of T, whereas TiNTi=0 i=j.
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208 J. M. WILLS

Fig. 2

O: Take T as basic tetrahedron. From two of its vertices cut off translates
T;, TS of T, and from the two remaining vertices of T cut off translates 7., Ty of
T,. If we compactify this halfopen set we obtain the truncated tetrahedron (resp.
the irregular octahedron) shown in Fig. 2.
{4 In Fig. 1 and 2 the heavy lines show the visible edges, the dotted lines the
other edges. '

LeEmMMA 3. We have
K@ =56, Y@ =223, FQ@ =923 M@ -=483...
Proor. For k, V, F, M we write ¢ and have by the additivity ¢(Q)=¢(7;)—
—=2¢(T3)—20(Ty)+20(QNT)+20(QNTY).
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ON THE DENSITY OF FINITE PACKINGS 209

S
3 k(P) = k(Ty)—2k(Ty)—2k(Ty) +2k(QNTy) +2k(QNTy) =

- (5)-20)-26)+26) 23) -

V(Q) = V(Tg) —2V (Ty) =2V (Ty) = V(T)(6°—2 -3 —2-23%) = 146V (T) =
F(Q) = F(T) —2F(T5) —2F(T)+2F(QNTy)+2F(QNT,) =
= F(T)(6®—2-32—2-2243242%) = 23F(T) = 923,
M(Q) = M(Tg)—2M (Ty) —2M (T +2M (QNT3) +2M(QNT,) =
= M(T)(6—2-3—-2-2)+18n+12n = 30n —4M(T) =

292 2

= 30 —24 arccos [—%) —14830 .
LEMMA 4. We have

k(P) =55, V(P)= & V2, F(P)= F(Q)=92YV3, M(P)= M(Q)=4839....

Proor. The calculation of k, V, F, M can be done as in Lemma 3. But for P
it is easier to use direct arguments, except for ¥ which is simply additive.

V(P) =V (T)—V(T5) =3V (T3)+3V (T =V(T)(1*—5*—3-3°+3) = -2—29— V2.

To calculate k(P) we remark that the lattice points in P lie in three parallel planes
(see Fig. 1), those in the exterior planes are arranged in irregular hexagons each with
18 points, those in the interior plane being arranged in a regular hexagon with 19
points, so k(P)=18+19+18=55.

The calculation of F(P) is easy, if one realizes that bd P consists of 92 regular
triangles of edge-length 2 (see Fig. 1), so F(P)=92)3=F(0Q).

For M we need the exterior angles at the edges of P. If again « denotes the
exterior angle at an edge of T, it is obvious that the only exterior angles at the edges
of Pare « and B=mn—oa. o occurs at edges incident to two facets of the basic T
and at edges where T and the T3, i=1, 2,3 intersect. f occurs at all other edges.
It is easy to see (Fig. 1) that the total edge-length of Q is 72, 12 corresponding to «

and 60 to . So M(P)=—12-(12a+60(1r——oc)):30n—24oz=301r—4M(T)=M(Q).
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A PATHOLOGICAL APPROXIMATELY
SMOOTH FUNCTION

M. J. EVANS (Raleigh) and P. D. HUMKE (Northfield)

A real valued function f defined on the real line is said to be smooth at the point
bue Ret

) lim (f (x+h)+f (x—h)—2f (x))/h = 0.

We call f smooth if it is smooth at each x€R. The continuity properties of meas-
urable smooth functions have been studied in detail. Neugebauer [3 and 4] showed
that such a function f belongs to Baire class one and that RNC( f) is a nowhere
dense countable set, where C( f) denotes the set of points at which f is continuous.
Evans and Larson [1] have recently shown that R\C(f) can be characterized as
a clairseme (scattered) set.

If we replace the limit in (1) by an approximate limit, we arrive at the notion of
approximate smoothness [4). (To be precise, we will say that fis approximately smooth
at the point x¢ R if for each ¢=0 the set {h: | f(x+h)+f(x—h)—2f(x)|=¢|h|} has
0 as a point of dispersion.) Larson [2] has recently shown that measurable approxi-
mately smooth functions are in Baire class one. However, RN\C(f) need not be
countable. Indeed, it may have large measure [4]. A natural question arises as to
whether or not the first category, measure zero set R\ AC(f) must be countable
for a measurable approximately smooth function, where AC( /) denotes the set of
points at which f is approximately continuous. The purpose of the present paper
is to show that R\ AC( f) need not be countable.

THEOREM. There is a measurable approximately smooth function which is approxi-
mately discontinuous at uncountably many points.

ProoF. For each natural number n, let &,=8 (n+1)~% and let C denote
the symmetric Cantor set determined by the sequence {&,} in [0, 1]. Then

cx {mz: k(m)L(m): k(m) =0 or N(m)—1},

where L(m)=8 "(m+1)!"% and N(m)=8(m+1)% This set C can also be defined
geometrically as the intersection of a nested sequence of compact sets, /,, where
each 7, is the union of 2* closed subintervals of Z,_,, each subinterval is of length
L(n), and each has exactly one endpoint in common with one of the intervals com-
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prising /, ;: more specifically,

I ={ 2 k(m)L(m): k(m)=0 or N(m)—1 for 1=m=n,
m=1
and 0=k(m)<N(m) for m > n}.

For any specific natural number n, R\J, consists of 2"+1 open intervals
whose union we denote by CI,,. We will define the function f in an inductive manner
using the sets C1,; the function f restricted to C will be identically zero. However,
at the n'™ stage of the construction, f will not be defined on all of C/, but only on
a certain relatively large (and increasingly larger with ») open subset of CI,. This
subset, denoted by J,, is defined as follows.

Let 7 be the union of a finite collection of disjoint open intervals, say
I=J (ay, by), where P is a finite set of natural numbers. If O<r<(b,—a;)/2 for

kEP

all k€ P, then we set
I" = | (ag+r, by—r).
kcP
Using this notation, we define
y— (CI")(n+1)L(n)_

We are now in a position to define the function f and we begin by defining f

on G JL=TRNE

n=0

Stage 0. The set J, consists of the two intervals (—<=, —1) and (2, +<=). We
define f/to be —1 on the former and 1 on the latter.

Stage 1. Partition R\J, into three subintervals, each of length L(0)=1.
Code the center open interval with the value 1 and the two outside open intervals
with —1. Let /' be defined on J;\J, by giving f(x) the value 1 or —1 according
to the code assigned to the interval of the partition that contains x. Note that f
has not been defined at —1 or 2 under this scheme. We define f(—1)=—1 and
f(2)=0. Now, the function f has been defined on all of J,=(—<, —1/16)U
U(3/32, 39/32)U(17/16, + o).

Stage n. We now describe the inductive step, which is patterned after Stage 1.
Suppose that / has been defined on J,. Now, R\J, consists of 2" intervals, each
centered on an interval of 7,, and each of length (2n+3)L(n). Denote one such
interval by / and partition 7 into 2n+3 intervals of equal length. Code the middle
open interval with the number 1 and then code each of the remaining 2n+2 open
intervals determined by this partition each witha —1 or a 1 so that the signs alter-
nate. For x€J,,..\J,, let f(x) be the value of the code assigned to the interval to
which x belongs. Again, there are finitely many points x in J,,,\J, at which
this procedure fails to assign a value to f(x). At each such point, define f(x) in
such a way to make f continuous at x, if that is possible, and define f(x)=0
otherwise.

In this manner f is defined at every point of [J J,=R\C, and we complete
5 n=0
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the definition by defining f to be 0 on C. We now verify that f has the desired prop-
erties.

For each x, let S(x)={h: f(x+h)+f(x—h)=0}, and let

0. () = m(S(x)N[0, 1])/t.
We will establish

CrLAM A. For each natural number n and each x€l,
0.(1) > nf/(n+2)
for every te[L(n—1), L(n—2)].

The approximate smoothness of f at each point of C will follow easily from
this claim.

Case n—1: Let x€l,. By the symmetry of the construction we may assume
that x€[0, 1/32]. Note that [L(0), L(—1)]=[1, 8] and set

Vv, =1[4L(1), L(0)—3L(1)] = [4/32,29/32]
and
¥ = [2L(0), ) = [2, ).

Let T,=V,—x and =% —x. Clearly, if h€Z, then f(x+h)=1 and f(x—h)=
= —1, implying that h€S(x). Furthermore, if heT;, then f(x+h)=1, f(x—h)=
=—1. and again h€S(x). Consequently, for =1 we have

0. (H) = m(Ty) = 25/64 = 1/3,

and, in particular, this holds for ¢€[1, 8].
(At this point the reader may wish to skip to the general case, but we include
the cases for n=2 and 3 for motivational purposes.)

Case n=2: Let x€I,. We shall assume that x€[0, L(2)]=[0, 1/2304], but
again the symmetry of the construction will allow our argument to be easily adapted to
hold for x in any of the four component intervals forming 7,. Note that [L(1), L(0)]=
=[1/32, 1] and set

v, = [SL(2), L(1)—4L(2)] = [5/2304, 68/2304],
V, = [L(1)+3L(2), 2L(1)] = [75/2304, 2/32],
¥ = [3L(1), L(0)—3L(1)] = [3/32, 29/32],

andlet T;=V;—x, i=1,2, and J=¥—x. For h€T; we have f(x+h)=—1 and
f(x—h)=1: for heT, we have f(x+h)=1 and f(x—h)=—1; and for heT
we have f(x+h)=1 and f(x—h)=—1. Hence, TUT,UJCS(x). If we set

v() =

m((T,UT,U9)N[0, 1])
: ,

then for ¢€[L(1), L(0)] we clearly have ¢.(#)=v.(f). However, an examination of
v, on [L(1), L(0)] shows that it attains its absolute minimum at ¢=3L(1)—x.
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In fact, for z€[J.(1), L(0)], we have

i _ m((UTYN0,3L(1)—x]) _ m(T)+m(Ty)
e =n0)= 3L —x = L3TE)

Case n=3: Let x€l;. We shall write our proof for x€[0, L(3)]=[0, 1/294, 912].
Note that [L(2), L(1)]=[1/2304, 1/32] and set

V, = [6L(3), L(2)—5L(3)] = [6/294, 912, 123/294,912],
V, = [L(2)+4L(3), 2L(2)] = [132/294, 912, 2/2304],
Vs = [2L(2)+2L(3), 3L(2)] = [258/294, 912, 3/2304],
¥ = [4L(2), L(1)—4L(2)] = [4/2304, 68/2304]

and let T,=V;—x, i=1,2,3, and IJ=%—x. For heT;, i=1,2,3, we have
Sf(x+h)=(—1)"! and f(x—h)=(—1); for h€J we have f(x+h)=1 and

3
Jf(x—h)=—1. Consequently, (|J T;)UZSS(x), and if we set
i=1

= 11/18 = 1)2.

m((( CJ T)H)U7)N[o, 1)

h(0) = , ,

then for 7€[L(2), L(1)] we have 0,.(1)=v.(¢). An examination of v, on [L(2), L(1)]
shows that it attains its absolute minimum at /=4L(2)—x. Hence for t€[L(2), L(1)]
we have

0 () = v, (1) = v,(4L(2)—x) = (_23 m(T})/4L(2) = 367/512 =3/5.

Case n=3: Let x¢cl, and again for specificity assume x€[0, L(n)]. Set
Vi=I[(n+3)L(n), L(n—1)—(n+2)L(n)],

Vo, =[L(n—1)+(n+1)L(n), 2L(n—1)],
and
. Vi =[(k—1)L(n—1)+2L(n), kL(n—1)]

for 3=k=n. Then set
¥V'=[n+1)L(n—1), L(n—2)—(n+1)L(n—1)]
and let T;=V;—x,i=1,2,...,n, and J=%—x. For heT;, i=1,2,...,n, we have
f(x+h)=(=1)""* and f(x—h)=(—1)" and hence h€ S(x). If h€¢ 7, then f(x+h)=1,
f(x—h)=—1 and again h€S(x). Consequently, if we set
m((( _L_Jl THUT)NIO, 1])

/4

vx (t) == 2

then for 1€[L(n—1), L(n—2)] we have p,(t)=v.(t). The function v, on
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[L(n—1), L(n—2)] attains its absolute minimum at ¢/=(n+1)L(n—1)—x and so
for t€[L(n—1), L(n—2)] we have

ox(N=v,()=v ((n+DL(n—1)—x) =
= (j m(T))[(n+1)L(n—1) =1—-@8n*+21n+10)/8(n+1)* = n/(n+2).

Claim A is, therefore, verified.

From Claim A it immediately follows that for each x,€C, S(x,) has density 1
at 0. Consequently, f is approximately smooth at x,. Furthermore, f is clearly
smooth at each point x,€ R\C. Hence f is approximately smooth.

Finally, / is not approximately continuous at any x,cC because f(xy)=0
and m({x: | f(x)|#1})=0, and the theorem is established.
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BALANCED PROJECTIVE AND COBALANCED
INJECTIVE TORSION FREE GROUPS OF FINITE RANK

C. VINSONHALER and W. WICKLESS (Storrs)

0. Introduction

Let TF be the category of torsion free abelian groups of finite rank and homo-
morphisms. The objects in 7F will be called simply ‘“‘groups”. An epimorphism
H—G of groups is balanced if, for every type t, H(t)—~G(¢) is an epimorphism,
where A(t)={a€A: type a=t} for any group 4. An exact sequence (E): 0—K—
—~H—~G—0 in TF is balanced if H—G 1is a balanced epimorphism. A group A4
is called balanced projective if A is projective with respect to all balanced exact
sequences (E). Balanced projectives in the category of all abelian groups were char-
acterized in 1976 by Hunter and Warfield in [5] and [§].

It has long been known (and is easy to show) that in the category of all torsion
free abelian groups, the balanced projectives are exactly the completely decomposable
groups ([4]). The same result holds in the category of Butler groups, the pure sub-
groups of finite rank completely decomposable groups ([3] or [1]). In Section 2
(Theorem A) we show that in TF, the balanced projectives are precisely the com-
pletely decomposable groups.

An exact sequence (E) in TF is balanced if and only if every rank-1 group
is projective with respect to (E) ([4]). It follows from Theorem A that the projective
class in TF generated by the class of all rank-1 groups is the class of completely
decomposable groups.

The dual notions of cobalanced and cobalanced injective were first defined
in [2].

A monomorphism 0—-G-—H is called cobalanced if, for every type f.
0—-G/G[t]—-H/H[t] is pure exact, where

A[t] = N {Kerf: feHom (4, X) for X a rank-1 group of type 7}.

An exact sequence 0—~G—~H—~K—0 is cobalanced if 0—~G—H is cobalanced.
A group A is cobalanced injective if A is injective with respect to all cobalanced exact
sequences.

It is casy to characterize the cobalanced injectives in TF, the category of all
torsion free abelian groups. If A€TF is algebraically compact then A is clearly
cobalanced injective, since A is injective with respect to all exact sequences in TF.
If BETF is a direct product of rank one groups, it follows from Lemma 3.2 that
B is also cobalanced injective. Thus, direct summands of groups of the form A$B
will be cobalanced injective. Conversely, for any X€TF the sequence 0—X—
—~A®B—~A®B/X—0 is cobalanced exact in TF where A is the pure injective hull

of X and B= [T f(X). (Here the embedding of X is the direct sum of
f€Hom(X,Q)
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the natural embeddings.) Thus, cobalanced injectives in TF are direct summands
of groups of the form A& B.

As an easy consequence of Lemma 3.2, the class 4 of exact sequences in TF
for which the completely decomposable groups are injective contains the class %
of cobalanced exact sequences. Example 3.3 shows that this containment is proper.
Nonetheless, Theorem B implies that the injective class in TF generated by the
rank-1 groups is precisely the class of completely decomposable groups.

Similar results on the projective and injective classes in 7'/ generated by finite
sets of rank one groups were obtained by the authors in [7], using different tech-
niques.

Our notation generally follows [1]. Specifically ~ and = denote quasi-isomor-
phism and quasi-equality. For groups G, H welet QG=Q0®G and Q Hom (G, H)=
=0®Hom (G, H). The localization of a group at a prime p is written G,, and
Z,, 0, are the rings of p-adic integers and numbers. For notational convenience

we write type(Z)=0 and Z_, for the subring of Q generated by Z and ;}

1. Tensor products and homomorphisms

In this section we obtain several results on tensor products and homomor-
phisms to be used in Sections 2 and 3. The first proposition is of independent interest.

Trrorem 1.1. Let G, H,, H,, ... be a countable collection of groups with Z*®
®GEH; S0*®G, and H;/(Z*®RG) infinite for each i. Then there exists a rank-2
group A (regarding Z*SASQ?) such that (H;+(A®G))/(AQG) is infinite for
each i. Moreover, A can be chosen so that Q is a homomorphic image of A.

Proor. Denote H;=H,/(Z>®G), and fix the index i. If H] is not reduced,
choose a prime p for which Z(p=)E H|. Then there is a sequence x;=x;(i, p)=
=(1,0)®g;+(0, 1)®h; with g;, h; in G, satisfying the following properties:

l-a  p-height(x;) =0 in Z*®G.
I-b p-height(x;) =j in H,.
l-c x;—x;_; is an element of pi~1(Z*®G).

In this case we will say H; belongs to Case 1(p).
If H{ is reduced, then since H; is infinite, there is a sequence v;=y;;=(1,0)®
®g;;+(0, 1)®h;; with g;;, h;; in G, satisfying,

2-a  p;-height(y;) =0 in Z®*®G (p; is the j-th prime).
2-b p;-height(y;) =1 in H, for infinitely many j.

In this case we will say H; belongs to Case 2.
We can now construct the rank-2 group A4 by specifying (see [4], Chapter 93)

*) Z,04=0,(1,0)®Z,0,1) S Z,X0?

where a is a non-zero p-adic integer which will be constructed as the limit of a
sequence of integers s,=s,(p), k=0, 1, ..., with s,(p) congruent to s,_,(p) modulo
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p¥. The values of sy(p) (1=so(p)<p) are determined by considering those H;
which belong to Case 2. By relabeling, call this set of groups Hy, H,, ..., with
associated sequences (¥y;), (¥s;), ... satisfying 2-a and 2-b. Let N be the number
of groups H;. Then for j=1,2 and for j=N if N is finite, set so(p;)=1. For
3=j=N, choose s5,(p;) so that p;-height (h,-j—so(p-)g,-j):o in G for 1=i=j. To see
that this is possible, note first that by 2-a, min (p;-height (g;;), p;-height (h;;))=0
for each j. Also note that if h;;—bg;; and h;;—cg;; are both divisible by p; for
distinct integers 0=b, c<p;, then (b—c)g;; and therefore g;; is divisible by p;.
Since p; divides h;;—bg;;, it follows that p; divides h;;, a contradiction. Thus
there is at most one integer b between 0 and p;—1 such that p; divides h;;—bg;;.
Since p;=j+2 for j=3, there exists 1=s,(p;)=p;—1 such that p; does not
divide h;;—sy(p;)g;; for 1=i=j.

For each prime p, the sequence s;(p), s5(p), ... is constructed by considering
the groups in Case 1(p). For ease of notation, assume that these groups have been
relabelled H,(p), Hy(p), ..., where we employ the convention, H;(p)=0 for j
greater than M =the number of groups in Case 1(p). We will assume p is fixed
and delete it from the symbols where convenient. The integer s;(p), /=1, is chosen
so that p-height (h;—s;(p)g;)=/—1 if H;(p) is not zero. This is possible by an
argument similar to that in the preceding paragraph. If H;(p)=0, s;(p) need
only satisfy the requirement that p/~* divides s;(p)—s;_.(p).

The rank-2 group A is constructed according to (*). It remains to show that
H{=(H;+ A®G)/A®G is infinite for each i. First assume that H;=H;(p) belongs
to Case 1(p), and that H; is finite. Then p*H,€(A®G), for some k=0. Again
deleting reference to the prime p and the index 7 in the sequence x;=x;(i, p), we have

@) p' divides x;. = (1,0)®g;,++(0, D)Rh;,, in ARG
(i) p' divides (1, s;(p))®gi+x in A®G, hence
(iii) p’ divides (0, )®(h;;—s;(p)gi+i) In A®G.
By the definition of A, this implies that
(iv) p* divides h;,,—s;(p)girx in G.
However, by property 1-c, p' divides h;,,—h; and g, ,—g;. It follows that
(v) p' divides h;—s;(p)g; in G, contradicting the choice of s;(p).

Finally, assume H; belongs to Case 2 and that H/=(H;+A®G)/A®G is
finite. Then for all but a finite number of primes p, (H;),S(4A®G),. In particular,
p; divides x;; in A®G for infinitely many j. However, for each j, p; divides
(1, 56(p;))®g;;- This implies that for infinitely many j, (0, )®(h;;—s0(p;)gi;) is
divisible by p; in A®G. As above, it follows that p; divides h;;—s,(p;)g;; In G
for infinitely many j. This contradicts the choice of so(p;). For the last statement of
the proposition, note that 4/B==Q, where B is the subgroup generated by (0, 1).

COROLLARY 1.2. Given groups G, H, there is a rank-2 group A with Q a homo-
morphic image of A such that Q Hom (H, Z*®G)=0Q Hom (H, A®G).

This corollary is obtained by taking H,, H,,... in the theorem to be the
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countable number of homomorphic images of H in Q*®G which are not quasi-
equal to Z2®G.

Our final two results are probably well-known, but are included for the sake
of convenience.

LemMmA 1.3. Let H be a strongly indecomposable rank-2 p-local group. Then
any p-local subgroup of H is either quasi-equal to H or is a free Z,-module.

ProoF. Since such an H must have p-rank 1 there is a free rank-2 Z,-sub-
module FEH with H/F=Z(p~). Let K be a p-local subgroup of H. If (K+ F)/F
is finite then K is a free Z,-module. Otherwise, (K+F)/F=Z(p~) and K=H.

LemMa 1.4. If' A is a p-local group with no free Z,-summand then there exists
a strongly indecomposable rank-2 p-local group H with Hom (A4, H)=0.

Proor. There are uncountably many quasi-isomorphism classes of strongly
indecomposable rank-2 p-local groups H. Therefore, we may choose an H which
does not belong to any of the countably many quasi-isomorphism classes of the
rank-2 factors of 4. By Lemma 1.3, Hom (4, H)=0 for this H.

2. Balanced projectives

We begin by stating for reference the previously mentioned result of Butler.
LeEmMMA 2.1. A balanced projective Butler group is completely decomposable.

Let G be balanced projective and G~ @& {G;: 1=i=n} be a quasi-decomposi-
tion of G into strongly indecomposable components. Then each G; is almost balanced
projective in the sense that for any balanced epimorphism B—~C -0 the sequence
Q Hom (G;, B)—~0Q Hom (G;, C)—0 is exact. We show any strongly indecomposable
almost balanced projective group must be rank-1. This result implies that the bal-
anced projective group G is a Butler group, hence, by Lemma 2.1 is completely
decomposable.

We first examine the local case.

LeEMMA 2.2. If G is (almost) balanced projective then G, is (almost) balanced
projective in the category of p-local torsion free groups of finite rank.

PrOOF. Assume G is balanced projective and B—~C—0 is a balanced epi-
morphism of p-local groups. Then Hom (G, B)—~Hom (G, C)—~0 is exact. There
are natural isomorphisms Hom (G, B)=Hom (G,, B), Hom (G, C)=Hom (G,, C).
Therefore, Hom (G,, B)~Hom (G,.C)—0 is exact. The proof for G almost bal-
anced projective 1s similar.

LEMMA 2.3. Let G be (almost) balanced projective. Then G is locally completely
decomposable.

PRrOOF. Suppose G is balanced projective and G, is not completely decompos-
able for some prime p. Then G,=F@®D®A where F is a free Z, module, D is
divisible and 470 is a reduced Z, module with no free summand. It follows that
all rank-1 factors of A4 are isomorphic to Q.
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By Lemma 1.4 there exists a strongly indecomposable rank-2 p-local group H
with Hom (4, H)=0. Pick two epimorphisms f: 4—~Q and g: H—~Q and con-
struct the pullback B={(a, h): f(a)=g(h)}.

Projection of B onto the first component induces a balanced epimorphism
B—~A—0 of p-local groups. This must split by Lemma 2.2, since 4 is summand of
the p-local balanced projective group G,.

Let e: A—~B be a splitting map. By a rank argument, ¢ followed by projec-
tion onto the second component of B is non-zero. This contradicts Hom (4, H)=0.
Thus, for each prime p, G, must be completely decomposable. Again, the argument
for almost balanced projective is similar.

LEMMA 2.4. Let G be a group which is strongly indecomposable, homogeneous of
type t, and almost balanced projective. Then rank G=1.

PrROOF. Suppose rank G=n>1. Let X=X,®...®X, be a full completely
decomposable subgroup of G, homogeneous of type 7. Since G is locally completely
decomposable (Lemma 2.3) and homogeneous then G/X is reduced. Indeed, either
G, is reduced or G contains a p divisible element. In the latter case X is p divisible
and (G/X),=G,/X,=0.

Since G is not quasi-equal to X, G/X is an infinite torsion group. Since G/X
1s reduced, we can write G/X=T,®T,, where T, and T, are infinite.

Let G;=e '(T)), i=1,2, where e: G—~G/X is the natural map. In view of
the fact that XS G;SG each G; is of rank-n and is homogeneous of type 7. It fol-
lows that G,®G,—~G,+G,=G—0 is balanced exact, and, therefore, quasi-splits.
Since G is strongly indecomposable we must have G~G, or G~G,. Neither
of these possibilities can occur because each G/G; is infinite. Thus rank G=n=>1
is impossible.

PROPOSITION 2.5. Let G be a strongly indecomposable group which is almost bal-
anced projective. Then rank G=1.

PRrROOF. Suppose rank G>1. Let t=inner type G and let h be a height vector
in t. By Lemma 2.4 G is not homogeneous so we can choose G,SG maximal
with respect to the property that G, is a pure subgroup of G with inner type greater
than t. Let t,=inner type G,.

The maximality of G, implies that inf {type x, to}=t for all x¢G,. Choose
a height vector h, in 7, such that hy(p)=h(p) for all primes p. Next choose a full
free subgroup F of G and write G/F=@®T, where T, is a torsion p-group for each
prime p. Define T= 3 {h(p)-socle T,: p is a pnme for which hy(p)=h(p)}®
® > {T,: hy(p)=h(p)}. The h(p)- -socle of T,is {x€T,: p"Px=o0}.

Now let H be the inverse image of 7 in G (under the map G—~G/F). The con-
struction of H guarantees that if x€ H\G,, then typey x=types x. Indeed, since
inf {typeg x, t,}=1, the height vector for x in G agrees with A at all primes p such
that hy(p)=h(p), at least up to type equivalence.

Further note, that since h<h,, outer type Hzt,. (Apply Theorem 1.10 of
[1] to H/F.) In particular, there is no 0#x€H with type x=f,.

By Corollary 1.2 there is a rank-2 group A4 with ¢g: A-~Q~0 such
that Q Hom (G,, AQ H)=0 Hom (G,, H@®H). Thus, since inner type G,={,,
Hom (Gy, H®H)=0=Hom (G,, AQH).
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Let e: A H—~QG be the map induced by a®x—¢(a)x and let i: G,—~0G
be inclusion. Consider f=i@e: G,®(A®H)—~0G. It is not hard to check that
G Simage f.

Thus, there is an epimorphism (which we will still call f) f: f~Y(G)—~G 0.
This epimorphism is balanced since, if x€G,, then f(x, 0)=x and, if x€G\G,),
then x=gy for some g€Q and y€H. In this case g=¢(a) for some a€A and
f(0, a®y)=x. In either case, x is the image of an element of the same type.

Since G is almost balanced projective there exists f': G—~f~4G), a quasi-
splitting map for /. Because /7 is monic and Hom (G,, A® H)=0, we must have
/(Gy) quasi-equal to G,. But then G~G,®f"(G)N(ARH) by the modular law.
This is impossible for G is strongly indecomposable and rank Gy<rank G.

Lemma 2.1 and Proposition 2.5 together imply:

THEOREM A. Let G be a balanced projective group in TF. Then G is completely
decomposable.

3. Cobalanced injectives

We begin by stating the previously mentioned result of Arnold and Vinson-
haler [2].

LemMmA 3.1. A cobalanced injective Butler group is completely decomposable.

Our plan in this section is the same as that of Section 2. A group G is called
almost cobalanced injective if for any pure cobalanced embedding, 0—-B—~C, the
induced sequence Q Hom (C, G)—~Q Hom (B, G)—~0 1is exact. If G is cobalanced
injective and G~ @ {G;: 1=i=n} is a quasi-decomposition of G into strongly
indecomposable summands, then each G; is almost cobalanced injective. We show
each G; must be rank-1 (Proposition 3.5). Hence G is Butler and, by Lemma 3.1,
is therefore completely decomposable. Our arguments in this section are somewhat
more cumbersome than those of Section 2, in keeping with the tradition of injec-
tives. Things would be considerably simplified by a short proof that cobalanced
injectives in TF are locally completely decomposable.

The next lemma follows directly from Corollary 1.9 of [7].

LEMMA 3.2. Let (E) be a cobalanced exact sequence in TF and X be a rank-1
group. Then X is injective with respect to (E).

The following is an example of a non-cobalanced exact sequence (£) such
that every rank one group is injective with respect to (£). A group G is called coho-
mogeneous of cotype t if cotypeset G = {t}. That is, the type of every rank one factor
of G i1s t.

ExampLE 3.3. Let p>q be primes and ¢ be the type of Z__,. Let G be a rank
two group, homogeneous of type 0, cohomogeneous of type ¢ (such groups are
easy to construct). Choose a, b€G such that Za, Zb are disjoint pure cyclic subgroups
of G. Regard GSEQa®0bSQadOb®Qc and let H=(GHBZ_,c, (b+c)/p).

Consider the pure exact sequence (E): 0—~G—~H—H/G—~0. The sequence (£)
is not cobalanced since G[t]=0, H[t{]=Z_,c and, thus, 0—~G/G[t]~H/H][t] is
not a pure embedding. However, since every rank-1 image of G is isomorphic to
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Z_,, it follows immediately that, for every rank-1 group X, Hom (H, X)—~
—Hom (G, X) is epic.
We next prove the analogue to Lemma 2.4.

LemMA 3.4. Let G be a strongly indecomposable cobalanced injective group which
is cohomogeneous of cotype t. Then rank G=1.

ProOF. Let rank G=r. Since G is cohomogeneous of cotype 7 there is an
embedding e: G—~X, where X=&{X;: 1=i=r, rank X;=1, type X;=t}. We
will show X/G is finite, so that r=1 since G is strongly indecomposable.

Suppose that the torsion group X/G can be written X/G=T, T, with T,
T, infinite and coprime (ged {order x;, order x,}=1 for all 0=x,€ T}, 0= x,€ Ty).
Let f;: X—T; be the composition X—~X/G—~T; and let H,=f"YT), i=1,2.
Then GZSH;SX, so each H; is cohomogeneous of cotype t. Put H=H,$H,
and form the diagonal embedding d: G—~H, d(g)=(g,g)¢H,®H,. Since T, and
T, are coprime, d is a pure embedding. Moreover, because G and / are cohomoge-
neous of cotype t, d is cobalanced. But d cannot quasi-split. This follows since G
is strongly indecomposable, rank G=rank H,=rank H, and G is quasi-equal to
neither H, nor H,. Thus, X/G cannot equal 7,® 7, where T; and T, are infinite
and coprime.

To show X/G is finite it therefore suffices to eliminate the possibility that
X/G is a divisible p-group. In this case pX=X and pG#G. Let 4 be a rank-2
group, homogeneous of type 0, cohomogeneous of cotype=type Z_,. Choose a
pure embedding Z—~A4 and an embedding Z-~G/D,, where D, is the maximal
p-divisible subgroup of G. Construct the pushout (K, 7,/):

Z— G/D,
| |j
Y . Y
Ay g

and set H=K®X.

Consider the embedding (jn®e): G—-H, where n: G~G/D, is the nat-
ural map.

First, jn@e is a pure embedding. This follows because g¢-heighty (e(g))=
= g-height; (g) for all primes ¢#p ((X/G),=0) and, if g¢ D,, p-heighty (/jn(g))=
=p-heightg (g).

Next, jm@e iscobalanced. Indeed G[s]=G unless s=t in which case G[s]=0.
If s=t then s is infinite at p and K[s]=H[s]=0. It follows that, for any type s,
0—G/G[s]—-H/H][s] is pure exact.

Finally, jm@®e cannot quasi-split. Note that G(z)=0 since G is strongly
indecomposable of rank greater than one and cohomogeneous of cotype 7. Hence,
Hom (X, G)=0. Assume jn@®e quasi-splits. It follows that G is quasi-equal to
Jjn(G), a quasi-summand of K. Thus jz is monic and D,=0. Identify G and 4
with j(G) and i(A4) inside K. Write K=G @ U, where U is a rank one subgroup
of K, and let f€End (K) be a quasi-projection of K onto G. Then there exists a
non-zero integer m such that f(g)=mg for all geG. It follows that ( f/—m) induces
a map from A4/GNA into G. But A4/G(V\A=Z_, and D,=0. Consequently,
f(A)=mA and A is quasi-contained in G, a contradiction, since K is a pushout.
This completes the proof.
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PROPOSITION 3.5. Let G be a strongly indecomposable almost cobalanced injec-
tive group. Then rank G=1.

Proor. Suppose rank G=1. By Lemma 3.4 we may assume that G is not
cohomogeneous. Let G, be a pure subgroup of G minimal with respect to the prop-
erty that s,=outer type G/G,<s=outer type G. Such a G, exists because G is not
cohomogeneous.

Choose height vectors hy€s,, h€s such that hy(p)=h(p) for all primes p.
Define a height vector h, by h,(p)=0 if hy(p)= I1(p), hi(p)=h(p) if hy(p)<h(p).
Let 5, be the type of h,. Note that 5,=0 and if X is a pure rank-1 subgroup of G
with XN G,=0, then type X=s,.

Let 4 be a rank-2 group, homogeneous of type 0, cohomogeneous of type s,,
and pick x€G\G,. There is an induced embedding Z—~Zx<G. Choose a pure
embedding 0—~Z—~A and let (K,1,/) be the pushout

Z— G
| |
v =

A—K

Define H=K ¢ (G/G,) and form the embedding e: G —~H where e(x)=( j(x), x+G,).
Since Z—~ A is a pure embedding, so is j and therefore e.

To show e is cobalanced, first let 7 be a type with 725,. Suppose G,%EG[/].
Then there is an embedding G/(G,NG[t])~G/G,®G/G[t]. This implies outer
type G/(G,G[t])=sup {outer type G/G,, outer type G/G[t]}=sup {sy, }. But by
the construction of s,, if 725, then sup {s,, t} Z5s. Thus outer type G/(G,G[t])<s,
contradicting the choice of G,. Therefore G,SG[t] and G/G[t]1=(G/G)/(G|G,)[t].
It follows that 0—~G/G[t]—H/H[(] is a pure embedding, since G/G, is a summand
of H.

Next let 7 be a type with 7=s,. In this case we show 0—G/G[t]—-K/K[t] is
a pure embedding by showing K[t]=G[t]. Note that K/G=A4/Z is a rank-1 group
of type s;. This implies K[t]SG, so that G[{]SK[r]G=K[r]. To show the
reverse inclusion, observe that K/G[f] is a homomorphic image of A®G/G[t],
a group of outer type =¢. Thus outer type K/G[t]=t and K[t]SG[(].

To complete the proof we will show that e: G—~H cannot quasi-split. Write
e=e, e, where e;=j: G-K and e,: G—-G/G, is the factor map. Suppose
[1Bfs: K®G/Gy—G is a quasi-splitting of e. Then (f, ®f;)(e, De,)=fre,+f,e.=m
for some non-zero integer m. Moreover, f,e,€End (G) is not monic, hence is nil-
potent since G is strongly indecomposable ([6]). Therefore f; ¢, must be monic since
the nilpotent elements of End (G) form an ideal ([6] again). Thus fie, is a quasi-
isomorphism and ey =ji\G=K quasi-splits. Identify G with jG in K and write
K=G®U where U is a rank-1 subgroup of K. Let g: K—G be a quasi-projection.
Note that x€gA\G,, where x€G\ G, is the element chosen above to obtain the
embedding Z—~G in the pushout diagram. Hence (gd+G,)/G, is a non-zero
subgroup of G/G,. Since A is cohomogeneous of cotype s,, this implies s,=
=outer type G/G,=s,, a contradiction. Therefore, e: G—~H does not quasi-split,
contradicting G almost cobalanced injective. We may conclude rank G=1.
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Proposition 3.5 and Lemma 3.1 together imply:

THEOREM B. Let G be a cobalanced injective group in TF. Then G is completely
decomposable.
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EQUINORMALITY CHARACTERIZES
THE COMPACTNESS

K. MATOLCSY (Debrecen)

1. A proximity space (X, d) is called equinormal if its disjoint closed sets are
far, i.e. A(VB=0 implies A6B ([11]). As S. G. Mréwka showed, a metrizable space
X 1s compact iff any compatible metric proximity is equinormal on X ([9]). Recently
the author introduced the notion of the proximity hyperspaces and proved that
a separated proximity space (X, d) is compact iff its hyperspace (E(X), E(d)) is
equinormal.

In this paper we will study certain products of syntopogenous spaces in which
the ““SP-normality”” implies the compactness. Applying these results for proximity
spaces, we will get that the following conditions are equivalent for any separated
proximity space (X, 0):

(A) (X, 0) is compact.
(B) The product of (X, d) and its Smirnov compactification (X*, 0") is equinormal.
(B") The product (XXY,dXd") is equinormal for any compact separated proximity

space (Y, d).

(C) The power (X™, o™) is equinormal, where m is the proximity weight of (X, d).
(D) The topology of (X™, ™) is normal for any cardinal number .

REMARKS. 1. The equivalence of (A) and (D) follows from a stronger result
of N. Noble [10]: a T;-space X is compact iff the power X™ is normal for any car-
dinal number m. However, in contrast to (C), in this case the cardinal numbers
m=w(X) are in fact necessary (e.g. consider a second countable non-compact
totally bounded metric space X).

2. In (B) the normality of the topology 7(dxd*) is not sufficient (as it is well-
known, this weaker condition characterizes the paracompactness of 7(d) (see [13])).

3. Statement (B) implies that 6Xd* is the finest proximity compatible with
the topology 7(4X %), but this latter condition is satisfied whenever 7(d) is pseudo-
compact and 6 is the finest proximity compatible with it (see [4]), so that the weakening
of condition (B) is not possible in this direction either.

2. We will define only those notions and notations concerning syntopogenous
spaces which cannot be found in the monograph of A. Cséaszar [1].

The syntopogenous space (X, &) will be called SP-normal if
ANB=0 implies A<=C <‘X—B for some <=€%

(see [12]). (Let us remark that SP-normality is not the unique generalization of
topological normality for syntopogenous spaces (see [4], [7]), and that it is equiv-
alent to strong normality defined in [4].)
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Observe that the SP-normality of & implies the normality of .%*” in the usual
sense.

LemmaA 1. Let (X,, &) be a syntopogenous space for any ac A. If (X X,, X %)
ac A ac A
is SP-normal then the spaces (X,,%,) are SP-normal, too.

The statement can be shown by using Lemma 6.1 of [3].
LEMMA 2. A compact T, syntopogenous space is always SP-normal.

Proor. If (X, %) is a compact T,-space then so are (X,.") and (X, ),
too. Therefore (X, #'?) is normal (in the usual sense), thus AN B=0 implies the
existence of an (S'%, #*")-continuous real function f such that f(X)c[0, 1], f(A4)=
={0} and f(B)={l1}. By Theorem 13 of [3] [ is (&', #')-, and a fortiori
(&, A )-continuous, consequently (X, &’), and at the same time (X,.%) is SP-
normal (see [12], Theorems 2 and 3).

Now (14.22) and (15.82) of [1] and Lemma 2 yield

LemMA 3. The product of an arbitrary family of compact T, syntopogenous
spaces is S P-normal.

Further on we need the notion of the simple compactification (X*, ¥*) of
a syntopogenous space (X, .%) ([7]). This is a syntopogenous space determined
uniquely (up to equivalences) by the following properties:

(a) X is a dense subset of (X*, ¥*%);

(D)X

(c) (X*,.7?") is eompact;

(d) {x}is closed in (X*, ¥*) for any xeX*—X.

In the construction of (X*, ") the round filters play an important role. A filter
fin X is called F-round ([2], p. 240) if, for any F€f, there exist <€ and Fi€f
such that F,<F. For any filter base r, the filter

S (x)={V c X: R<V forsome Rér, =€¥}

is S-round. If x€X, we will write simply & (x) instead of Z({{x}}).

Now let f(x)=%°(x) for x€ X and make a one-to-one correspondence x<-f(x)
between the points x€X*—X and all compressed & “-round filters f(x) without
cluster points in (X, #). Put s(x)=%(f(x)) for every x€X* and consider the
sets s(P)={x€X™*: Pes(x)} for PcX. If <€, we have a topogenous order
s(=) on X* defined by Es(<)F (E, FCX") if and only if there exist a natural

number m and sets P;, Q,C X such that P,<Q, (1 =i=m), moreover EC| ] s(P,)
m i=1

and (J s(Q;)cF. Then we have S*~{s(<): <€Z}.
i=1

In [7] we pointed out that this construction is a generalization of the Wall-
man-type compactification method. A further similarity is shown by

Lemma 4. If (X, &%) is an SP-normal Ty-space then (X*, ") is a T,-space.

ProOOF. For any point x€X, the set {x} is closed in (X, %). Every filter f(x),
where x€X*—X, has a filter base consisting of closed sets in (X, %) because
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itis <“-round, moreover it has no cluster points in (X, &). Finally if x, ye X" —X,
x#y then f(x)#f(y) implies 0€f(x)(M)f(y) because f(x) and f(y) are maximal
F<round (see [7], (5.2.1)). Since & is SP-normal, we have disjoint sets V€s(x)
and Wes(y) for any x, yeX*, x=#y, hence s(V) and s(W) are disjoint ¥ *-neigh-
bourhoods of x and y respectively.

One of our main results is the following

LemMma 5. If (X, &) is a non-compact Ty-space, then the product (XX X", X S*)
is not SP-normal.

PROOF. Suppose ¥ X" is SP-normal but % is not compact. Then there
exists a point pcX*—X (see Lemma (5.3) of [7]). Let us consider the sets
D={(x,x): xeX} and V=) {s(X—F): Fef(p)}cX*. Since SXF* is a T,-
structure (see Lemmas 1, 4 and [1], (14.22)), the set D is closed and the set XXV
is open with respect to & X.%*. As {(p) has no cluster point, we have DC XX V.
The SP-normality of ¥ X¥* implies D<XXV for some <€¥X%*. Then
there are orders <;, <,¢% and a finite number of sets P;, Q;CcX, P, QfcX*

such that Dc | (P, X P}), U (Q;X0OH)c XXV, where P;<,Q; and Pfs(<,)0f
i=1 —

(I1=i=m) (see [1], (11.10)). There exist natural numbers »n; (1=i=m) and sets

R;;, S;;€X (1=j=n;) for which P,?‘Cjszls(R,-j), jgls(S,-j)CQ,’-* and R;; <,S;

(1=i=m, 1=j=n,). Finally suppose <;€%, <,C<; and put R;;<;T;;<,S;; for

=30 j
m ”I'

I1=i=m, 1=j=n;. It is easy to see that X=[J [J R;;, consequently there are
i=1j=1
indices 7, j such that 0¢{(p)(N){R;;}. Since {(p) is compressed, this gives T;;€i(p)
and S;;€s(p), i.e. p€s(S;;). Therefore pcV, ie. pcs(X—F) for some Fef(p),
which is an obvious contradiction.
Let us agree that if m is a cardinal number, then by (X™, ™) we shall mean
the product (X X,, X &), where A=m and X,=X, %= for each a€A.

R acA ,acA
| 1" will denote the "-weight of the syntopogenous space (X, ¥).

LEMMA 6. Let (X, %) be a T, syntopogenous space. If (X™, ™) is SP-normal
for any cardinal number m=|%'', then (X, %) is compact.

PrROOF. Assume that (X™, &™) is SP-normal for any m=|%'|" but (X, &)
is not compact. Then there exists an ““-round compressed filter | without cluster
points in (X, %) (see Lemma (5.3) of [7]). Put ¥'={<,} and choose an ‘sep-

arator € for =, and . with @=|.%|". It is easy to see that we can select a filter base

rc{X—S: SE€G} for {, and then we have r=|%'|. Put r={R,: ac4), A=m.
In the product space (X™, &™) let us consider the diagonal D and the set Z= X R,.

acA
Then D and Z are closed sets with respect to .% (see Lemmas 1, 4 and [1] (14.22)),
besides D(1Z=0 because | (and at the same time r) has no cluster point. Owing
to the SP-normality of &™, we get D<"X™—Z for some <'€%™. Then

k k
Dc U (X Pu), U (X Qp)cXm—Z, there exist a finite subset A4,CA4 and
h=1 acA h=1 acA
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orders <,6% (a€Ad,) such 'that P,,<=,0;, for a€Ad, and P,,=0;,,=X for
acA—A, 1=h=k). Now let = be an element of & with U =<, C=. Then,

acA,

with the notations P,= () Py, and () Q,,=Q,, we have P,,<0,, for 1=h=k.
acA acA

Observe that the sets p, (olélz:—ik) cover X, therefore 0¢f(N){P,} for at least

one index h. This implies Q,€{ by the compressedness of {. Suppose y€Q, (| R,.

D(A

Define a point x€X™ by letting x=(x,),c4, Where ‘caER for any a€ A, in par-
ticular x,=y for acA,. Then x€(X Q,,)\Z and this is impossible.
acA

COROLLARY. Let (X, %) be a T, syntopogenous space and wm=|%'|'". If
(Xm™, ™) is SP-normal, then (X, ) is compact.

Proor. Use Lemma 1, [1], (11.15) and Lemma 6.
Now we can prove our

THEOREM. The following statements are equivalent for any T, syntopogenous space
(2%

(1) (X, &) is a compact T,-space.

@ XX s 3S Priormals :

3) (X™, &™) is SP-normal, where m=|%"|".

(4) The topology of the space (X™, ™) is normal for any cardinal number m.

Proor. (1)=(2): In this case we have X=X* and ¥~%* by Lemma 4
and property (a), thus Lemma 3 can be applied. (2)=(1): Use Lemmas 1, 4 and 5.
(1)=(3) by Lemma 3, and conversely, (3)=(1) issues from Lemmas 1, 4 and the
Corollary of Lemma 6. (1)<(4): Applying the equality (X Y)“’—(X AL

acA
([1], (11.23)), we can state the following equivalences: (X, %) is a compact T,-space
< (X, &'7) is a compact T,-space < (&™) is normal for any cardinal number
m (see [10], Corollary 2.2, cf. [1, pp. 134—133]).

3. In order to verify the equivalence of the statements (A)—(D) in Section 1, it
is sufficient to observe that they correspond to conditions (1)—(4) in the particular
case when &={<} is the topogenous structure associated with the proximity &
on X. In fact, (1)«>(A) and (4)«(D) are quite clear. A proximity is equinormal
iff the corresponding symmetrical topogeneous structure is SP-normal. Properties
(a)—(d) of (X, ¥*) show that it agrees with the double compactification of (X, &)
whenever % is symmetrical (see [3]). Since now & is topogenous, too, (X, %)
is associated with the Smirnov compactification of (X, d), thus (2)«(B). The
equivalence of (A), (B) and (B’) is obvious. Finally the correspondence (3)«~(C)
can be seen on the basis of [1, pp. 136—137 and 297].
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A NOTE ON THE NILRADICAL N OF A RING R
AND A SUBDIRECT SUM REPRESENTATION
OF THE RING R/N

V. PERIC (Sarajevo)

Throughout this note R will be an associative nonzero ring which need not
be unitary, and N will denote the set of all nilpotent elements of R. We say that R
1s locally unitary if for any element x in R there is an idempotent e, in R with e x=
=xe,=x. If we say that two positive integers m, n are relatively prime, then we
mean also that they can not be both equal to 1.

Our aim is to prove the following

THEOREM. Let R be an associative nonzero ring satisfying conditions
(1) x+y)" = x"+y"
(m being a given positive integer ) and
2) xr=x"

(n = n(x) being a positive integer relatively prime to m). Then N is an ideal of R,
and N=0 if and only if R is locally unitary. Moreover, if N#R then R|N is a
subdirect sum of fields and satisfies the condition

3) (x+ Ny =x+N (x€R),

where r=r(X) is a positive integer given by

@) r(x)=nx)—m+1 if n(x)>m, and r(x)=m—n(x)+1 otherwise.
For m=1 the conditions (1) and (2) reduce to a single condition

(5) =X (n=n(x)=1)

implying according to Jacobson’s theorem, the commutativity of R ([1], Theorem
3.1.2). We note that in any case the two conditions (1) and (2) can be replaced by
a single condition

(©) (x+p)" = x"+y"

(m being a given, and n=n(y) a positive integer relatively prime to m). In 1961
Herstein [2] proved that for an associative ring R satisfying condition (1) for a
given integer m=1, N is an ideal of R, and R/N is commutative. But we will
not use this fact, and we shall prove in a very elementary manner, that N is an ideal
of R if R is an associative ring satisfying (1) for an integer m=>1. (See Lemma 1.)

* This research was supported by SIZ nauke SR BiW.
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E. Psomopoulos considered recently [4] an associative unitary ring R satisfying
condition (6) for a fixed positive integer n relatively prime to m. He has shown
that such a ring R is a subdirect sum of fields. Our Theorem improves this result
of Psomopoulos.

In the preparation of the proof of our Theorem, we prove two lemmas.

LemMA 1. Let R be an associative nonzero ring satisfying condition (1). If m=1,
then N is an ideal of R.

PRrROOF. As we have noted, this lemma is contained in a well known result due to
Herstein ([2], Theorem 2). But we can give a very elementary direct proof. Let a,
beN. Since m=1, there is a positive integer k such that a™=p"=0, and in view
of (1)

a,be N= (a—b)y™ = a"™ + b™" = 0= a—bEN.

Let now x€R and a€N. Then obviously axé N<xa€N, and we will prove that
ax€N. We can assume that a=0. There exists an integer />1 such that
7 g —0a =t ()
Therefore, according to (1)
(ax+at—1)m e (ax)m+(ar—l)m’
1.e. in view of (7),
(axYa'-1=0 (j=m—1).
Similarly,
ai el el — 0 (ie=tm 1)

Moreover, in view of (7) we also have
e (o) i— ()l atms =10 (J="1):

Hence there is a minimal nonnegative integer k=k, satisfying for some positive
integer j, at least one of following four equations

(8) (axya* =0, a*(axy) =0, (xa)a*=0, da*(xa)=0.

If k,=0 we understand the corresponding equation in (8) as (ax)’=0 or (xa)’=0,
hence in this case ax€ N. We prove that in fact k, must be equal to 0.
The value k,>1 can be taken neither in the first nor in the last equation in

(8), since otherwise we would have either

(xa)*1g*—1 = x(ax)’a* = 0,
or

ak(ax)y ! = a*o(xa))x = 0.
But this value can be taken also neither in the second nor in the third equation in
(8). Assume it can be taken in the second. Then surely

(axYak#= 0, (j=1),

and for the minimal value k;, of & in the first equation in (8) we have k;=>k,. Accord-
ing to the second equation in (8), from

(a*+(ax))™ = (a*o)" +(ax)™
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it follows
9) (ax)la™=V¥o 4 4 (ax)m—dJg*o(ax)(m—Digke = (.

After multiplication on the left by (ax)’s, where (ax)’’a**=0, we multiply (9) on
the right by a*1—%—1 to get
(ax)j1+(’"‘l)jak1‘1 =0,

hence a contradiction to the assumption on k; to be minimal. In a similar way it
can be shown that k,>1 can not be taken in the third equation in (8).

LeEMMA 2. Let R be an associative nonzero ring. If R satisfies

(2) x™ = x" (n = n(x) being a positive integer different from m)

and if N=0, then R is locally unitary and satisfies condition

(3) o A e RS

where r’=r’(x) is given by

@) r(x) =m(n(x)—m) if n(x)>m, and ' (x) = n(x)(m—n(x)) otherwise.
If R is locally unitary and has properties (1) and (2), then N=0.

ProoOF. 1) Let R have property (2°) and let N=0. For any element x in
R we set e, =x", where r’=r’(x) is given by (4). In view of (2’) it is easy to see
that e, is an idempotent. Namely, for n=n(x)>m,

ei — xm(n—m)xm(n—m) — xm(n—m)+(n—m)x(m—-1)(n—m) 3

= xm(n—m)x(m—l)(n—m) = .= xm(n—m)xn—m ) .x)n(n—m) 1 ex'

For n=n(x)<m we conclude similarly that e?=e,. It is clear that e Xx=xel=
=e.xe,. Thereby,
O2e,— X% =X (xe.~x) =e e e X)X, —X) " =0,
and hence
xie . —x2= 0.
But then from
(xe,—x)? = x>*—x%e, = 0
follows
Cot— xe. — ot
hence R is locally unitary.
Since e,=x", where r’=r’(x) is given by (4), we have also (3’).
2) Let now R be an associative nonzero locally unitary ring satisfying (1) and
(2), and let a be any element of N, i.e. a"=ag"@ =0, Repeating in fact the reasoning
of ([3], Claim 2), we will prove that a=0. Assume a>0. Then there is an integer
t=1 such that (7) is valid. Moreover, there is an idempotent e, in R with era—=
=ae,=a. Thereby, in view of (1)

(ea+at—x)m — e:|+(a¢—-1)m, ie. e¢+mat—-l =i
hence
(10) ma'=' = 0.
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But according to (2),
(ea+at~1)" = (ea+a'—1)m = eﬂ’ ’1 = n(ea+a’_1)’

hence because of (7)
(11) nales— 0.

Since m and n are relatively prime, from (10) and (11) follows «'~'=0, in con-
trary. to (7).yHence g =0 1/e; N =1

Now we get to the proof of the theorem. If an associative ring R satisfies (1)
and (2), then for m=1, N=0, and for m=1, N is an ideal of R according to
Lemma 1. If N#R, the ring R/N is also an associative nonzero ring satisfying
(1) and (2) (with x+N and y+N instead of x and y, where x, y€R). Moreover,
R/N has no nonzero nilpotent elements, and thus in view of Lemma 2, R/N is
also locally unitary. It is well known that R/N can be represented as a subdirect
sum of subdirectly irreducible rings R; (i€/) ([1], Lemma 2.2.3). By definition of
the subdirect sum, for any i€/ there is an epimorphism f;: R—~R;. Consequently,
any R; satisfies (1) and (2) (with fi(x+N), f;,(y+N) instead of x, y, where x, ycR)
and is also locally unitary. Therefore, none of R;’s has nonzero nilpotent elements,
and hence none of R;’s has proper zero divisors ([3], Lemma 3). But then each R;

satisfies the condition
(ix+N) =fix+N) (x€R),

where r=r(x) is given by (4). Each R; is hence a division ring, and thus a field,
according to the “division ring case” of Jacobson’s commutativity theorem ([1],
Lemma 3.1.3). Consequently, R/N is a subdirect sum of fields and R/N satisfies
(3), where r=r(x) is given by (4). Especially, R/N is a commutative ring, a fact
following from (1) if m=1 ([2], Theorem 2). Finally, aecording to Lemma 2, N=0
if and only if R is locally unitary.

From the Theorem follows immediately

COROLLARY 1. Any locally unitary associative nonzero ring R satisfying (1) and
(2) can be represented as a subdirect sum of fields. Moreover, for any element x in
such a ring R we have x"=x, where r=r(x) is given by (4).

As a special case of this corollary we have the main result of [4]:

COROLLARY 2. Any unitary associative ring R satisfying (6) is a subdirect sum
of fields.

REMARK 1. The fields R; in the subdirect sum representation of R/N in the
theorem and of R in the corollaries are of very special kind. Because of (3) in the
case of the theorem and because of x"=x in case of the corollaries, the fields R; are
algebraic over corresponding prime fields P; of characteristic p;0. Moreover,
if m=1, then by (1) p; divides 2™—2 and thus the set {p;: i€/} is finite. If m
is not a power of p;, then for any x;in R;from (x;+e;)"=Xx["4+¢; we have an algebraic
equation of degree =m—1 over P;, hence R; is a finite field of at most p7*—* ele-
ments. But the fields R; with m=p} can be infinite if the set {n(x): x€ R} of integers
n(x) in (2) is not bounded. '
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REMARK 2. For an associative nonzero ring R with the property (6) we can
have N=R even in the case when 7 is a fixed integer. For instance, let F be any
field and let R be the ring of all upper triangular matrices of order m-+1 over
F having zeros on the main diagonal, where m=1 is a given integer. Then N=R
and R is an associative nonzero ring having property (6) for any given integer
n>m relatively prime to m. Moreover, this ring R is not commutative.

REMARK 3. Let R, be the ring from Remark 2, and let R, be a subdirect sum
of fields satisfying (6) for some integer n=m relatively prime to m. Then the direct
sum R=R,®R, of R, and R, satisfies the same condition and has the nilradical
N=N,, hence different from 0 and from R. Moreover, the ring R is not commu-
tative.

References

[1] 1. N. Herstein, Noncommutative rings, The Carus Math. Monogr., 15 1968.

[2] 1. N. Herstein, Power maps in rings, Michigan Math. J., 8 (1961), 29—32.

[3] V. Peri¢, On rings with polynomial identity x”—x=0, Publ. Inst. Math. (Beograd) (N. S.),
35 (49) (1984), 165—167.

[4] E. Psomopoulos, A note on the commutativity of rings, Akad. Nauka i Umjetn. BIH, Radovi,
LXXVIII, Odj. prir. matem. nauka, 24 (1985), 41—A43.

(Received July 13, 1983)

ODSJEK ZA MATEMATIKU
PRIRODNO-MATEMATICKI FAKULTET
YU 71000 SARAJEVO

3% Acta Mathematica Hungarica 46, 1985



_ . Uig
viE nm.mu“ﬁpm.

ey e trmuwm)u stk dyiwe % 80T ordgnon svitkivners o 1071 T anaad
e sd L sl soaakal 107 vagsind Degit o K qotee 5o oy mi as A=V ooed
e T bk mwvmluvwﬂ woaqu HRdor griv iy wd R 1ol bae bisi
A adT enaton oovig 6 Ak e avadw ARiBReth e ol qo oy goivad
My TR Wil ot (d) ‘l_h"!‘{t_)'tq anivad galy owosmon sviteizomes ow o 9 bn

Aeitedummos 100 A R geeiRs atvostol an o smivg leziialen

1t fusvilsdus & od At bog S dwsoasl ‘xrn‘l el Wik o A il E anaa d
ricith S Y AT G af m‘ﬁnf Ly UM‘H R TS adid UV (D) gniviaiike 2B T
IiDoRA Sdf b WoinBaod Bk odt 2o A bas A o A@ A=K mu
~trrevs Prog m v R qnn sdy en uM W D@ el e D ~dhal U Y
Y W, 4 i e . SNTe)

B f 1 _ r v
% Foiy . il | Yy

washiswalas o N ! P —

UARREL AT gkl At e ) AT o kv flsees | cbaibees SO0 g
OF —NE LW ¥ i AU wiedf bl b e et 008 Dbl i, 4 B

At ) ST S - ol W RN citnabil lastisneiog . diow KL ,Jl}r\ ('LQ]
g s ' ‘ ST —Epl HpEvL) (W) 38
. 2"} A
PR IR A L it | B IR LAY Y i S e B A aolte AmsH i 'U
3 ! R B S b D e TN ¢
UR TR A LT I e
4 o

-snu-unw A5 ARISOO

given by 4 h B, = e B et AR AT mm(
y . 4'",(1-’;)(
§ AR AT 33 % 1| s e L
- L ofsegirently, - RN ; i by m o Twalds agd K/N MU,.,.,;.
W N ) given | : peciagly, § , itive ring, & fact
Gilowine oan 4100 e ] (1324 heorem B Flagk e e Lo S Nel

< -

d cnly o A i localiy asitaesy

From the | beotem r', Hows i ,.,cmu*"

'4""“ LARY 1. A hdf \ oMY GRuullcee Nontere vy R lhﬂ’f)”' (‘)W
41w Y reprasenied @b o rmlrb'rv ¥ v 4."," Arlcs. Moewrny  for a%y clenient x in
sk 4 pirgt- R we hive X, vhere r-wnvu;fm by (%) ‘

A & ‘speci! e Gf this cwouurm bave (e muio recokt of () ;

Cosotaany 2, Anv mﬁvy MMR uliqu T # w—
ur,wldx '

r&w .G—-W-u i ™oty --n-'. o
) -V Reraps g o243 sintrr
-
Mg




Acta Math. Hung.
46 (3—4) (1985), 239—242.

ON COUNTABLE CODIMENSIONAL SUBSPACES
IN ULTRA-(DF) SPACES

J. KAKOL (Poznan)

As it is known [3, p. 35] a linear subspace of finite codimension in an Ultra-(DF)
space is again an Ultra-(DF) space. In this paper it is proved that an infinite count-
able codimensional subspace G of an Ultra-(DF) space E is an Ultra-(DF) space,
pr0v1ded G has the property (b), i.e. for every bounded subset B of E the codimension
of G in the linear span of GUB is finite. It is shown also that the property of
Ultra-(DF’) spaces 1s maintained in subspaces of infinite countable codimension,
when the initial Ultra-(DF) space is sequentially complete and boundedly summing
(in the sense of [1]), or an ultrabarrelled space. In particular the Valdivia’s result of
[9] is obtained.

Introduction

In [5] Grothendieck introduced the class of (D) spaces using for their defini-
tion properties of the strong dual of a Fréchet space. A locally convex space E
is said to be a (DF) space if it has a fundamental sequence of bounded sets and
every strongly bounded subset M of E” which is the union of countably many equi-
continuous sets is also equicontinuous. It is well-known that this definition can be
replaced by the following one: E is a (DF) space if it is an {,-quasibarrelled space
and has a fundamental sequence of bounded sets. As observed in [7, p. 401] a sub-
space of a (DF) space need not be a (DF) space. In [9] Valdivia proved that the
(DF) property is hereditary to a subspace of finite codimension. The property is
also maintained in subspaces of infinite countable codimension, when the initial
(DF) space is sequentially complete, or a barrelled space. In [4] Ernst extended
the notion of (DF) spaces to the class of all topological vector spaces (tvs) in the
following way: A tvs E is an Ultra-(DF) spaceif itisan §,-quasiultrabarrelled space
and has a fundamental sequence of bounded balanced sets.

Following [1] a sequence (U;) of balanced absorbent subsets of a linear space
E is called a string if U;,,+ UJ+1CU for all jEN. A string (U;)in a tvs £ is
closed, if every U; is closed in E; bornivorous, if every U; absorbs all bounded sets
of E; topological, if every U; is a neighbourhood of zero in E.

We recall [1] that a tvs E is ultrabarrelled (quasiultrabarrelled) if every closed
(and bornivorous) string in E is topological; E is 8,-quasiultrabarrelled if every
bornivorous string, which is the intersection of 8, closed topological strings, is
topological in E. In [1] the authors studied these spaces under the names quasi-
barrelled, barrelled. A fundamental sequence (B,) of bounded closed and balanced
sets we shall call an f-sequence. Without loss of generality we may assume that
B,+B,cB,,, for all neN.
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Throughout, we consider only Hausdorff tvs over the field K of the real or
complex scalars. A tvs £ with the topology 7 is denoted by (E, t) or simply by E.
By (G, 7|G) we shall denote a subspace of £ endowed with the induced topology.
For a subset 4 of (E, 1) by A we shall denote the closure of the set 4 with respect
to the topology .

Results
We shall need the following

ProrosITION 1 (see [6, Lemma 2.6]). Let E be a tvs and G its subspace of finite
codimension with a co-base (x,, X, ...,x,). If (B,) is an f-sequence in E, then

e P
(B,NG+2"{ X a;x;: |a|=1}) is also an f-sequence in E.
o

The locally convex space case was obtained also by Ruess [8], Theorem 2.5.

COROLLARY 1. Let E be a tvs and G its subspace of infinite countable codimension
in E with a co-base (x,). If G has the property (b), then (m +2° { 5’ a;x;: |a;|= l})
is an f-sequence in E, provided (B,) is such a sequence in ¥ i1

Recall that according to [1], p. 74, a tvs E is boundedly summing if for every
bounded subset B of E there exists a sequence of scalars (a,), a,7#0, such that

oo n

U 2 aB is bounded. Every metrizable tvs is boundedly summing. Almost con-
n=1k=1

vex, locally convex, locally pseudoconvex spaces are boundedly summing.

PROPOSITION 2. A tvs (E, 1) is boundedly summing if and only if for every bounded
and balanced subset B of E there exists a metrizable tvs Y and a one-to-one con-
tinuous linear map T of Y into E such that T ~(B) is bounded and Bc T(Y).

ProoOF. Suppose E is boundedly summing and let B be a bounded and balanced
subset of E. There exists a sequence («,) of K with a,+0, a,.,=a,. and such that

U Z a,B is bounded. Let £y be a linear span of B. Putting V,:= G 2 4, B

i
n=1k=1 n=1k=1

i€N, we obtain a metrizable linear topology 7y generated by the string (¥;). Clearly
t|Ep=1p and B is 1p-bounded. Since every metrizable tvs is boundedly summing,
the proof of the second part of our Proposition 2 is obvious.

COROLLARY 2. Let E be a sequentially complete tvs and let (A,) be a sequence
of closed and balanced subsets of E whose union is E. Let B be a bounded balanced
subset of E. If E is boundedly summing, or B is absolutely convex, then there exist
acK and meN such that Bca(A,,+ A,,)-

Proor. The case when B is absolutely convex is well-known, for instance see
[8, Lemma 1.1]. We prove the boundedly summing space case. There exists a metriz-
able tvs Y and a one-to-one continuous linear map 7 of Y into £ such that 77(B)
is bounded and BCT(Y). By T we denote the extension map of 7 from the comple-
tion ¥ of Y into E. To conclude the proof it is enough to apply the fact that ¥ is a

~

Baire space and 7-(4,) covers Y.
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We shall need the following fact (cf. also [1, (8), (9), p. 267—268]).

PROPOSITION 3. Let (E, 1) be an ultrabarrelled tvs and let (B,) be a sequence
of closed bounded and balanced subsets of E whose union is E and such that B,+B,C
CB,., for all neN. Then (B,) is an f-sequence in E.

PrOOF. Suppose that there exists a t-bounded set B which is contained in no
B,. For every néN there exists x,6n~'B, x,4 B, such that x,—0. There exists a
sequence (U?) of t-topological strings in E such that x,{B,+U;. Putting
V= ﬁ (B,-j+1+U}y1) weobtain a t-topological string, but x, ¢V, for all neN,

n=j
a contradiction.

ProOPOSITION 4. Let (E,t) be an R,-quasiultrabarrelled tvs with an f-sequence
(B,) and let G be its dense subspace of infinite countable codimension. If G has
property (b), or if E is a sequentially complete boundedly summing space, or if E is

ultrabarrelled, then (B,NG) is an f-sequence in E.
ProoF. Our proof uses an idea from [8], Proposition 3.5. Let I':= [ J B,NG
n=1

and let y be the finest linear topology on E agreeing with 7 on the sets B,NG. Observe
that y|F is the finest linear topology on F agreeing with z|F on the sets B,(G.
Indeed, let H be an algebraic complement of F in £ and let 3 be an arbitrary linear
topology on H. If ¢ denotes the finest linear topology on F such that ¢|B,NG=
=1|B,NG, nEN, then the product topology a:=90X 9 satisfies «|F=¢. Hence
we obtain ¢=y|F. Now we prove that 7=y. Let (x,) be a co-base of G in E. In
view of Corollary 1, Corollary 2 and Proposition 3 the sequence of the sets

,,'—B,,ﬂG-LZ"{Z'a |a\"1} composes an f-sequence in E. Moreover, by

Lemma 2.6 of [8] we have 7|K,=7|K, for all n€N. Since E is an ¥,-quasiultra-
barrelled space, in view of [1, (7), p. 87], we have t=y. Applying [1, (11), p. 89]

we obtain E=F= ) B,(\G. We complete the proof using again Corollary 2 for

n=1
n
the compact absolutely convex sets 2" {‘gl a;x;: laj|=1}.

THEOREM 1. Let E be an Ultra-(DF) space and G its subspace of infinite countable
codimension. If G has property (b), or if E is a sequentially complete boundedly
summing space, or if E is ultrabarrelled, then G is an Ultra-(DF) space.

PrROOF. Suppose G is closed in E. Let (x,) be a co-base of G in E. For every
neEN let G,:=G+lin {x,, x,, ..., x,}. By Corollary 1 and Proposition 2 every
bounded subset of E is contained in some G,. Hence on account of [1, (7), p. 87]
E is the strict inductive limit space of the sequence (G,). This implies that G has a
topological complement in E, and G is isomorphic to a quotient space of E by a
closed subspace of countable dimension. Hence G is an Ultra-(DF) space. Let G be
dense in E and let (U}) be a sequence of topological closed strings in G such that

= () U} is bornivorous in E. Since ﬁ Uro ﬁ U;=U; for all jeN, then

n=1 n—1 n=1
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(ﬂ U7) is bornivorous in E. Hence (ﬂ Ur) is a topological string in E, and

so (Uj) is topological in G. If G is ncnher closed nor dense in E, the proof of this
case is an easy consequence of the above cases.

Since every locally convex tvs is a (DF) space if and only if it is an Ultra-(DI)
space, [2, (5), p. 260], we obtain the following Valdivia’s result of [9].

COROLLARY 3. Let E be a sequentially complete locally convex (DF) space and
let G be its subspace of countable codimension. Then G is a (DF) space.
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PUNKTWEISE ABSCHATZUNGEN ZUR APPROXIMATION
DURCH ALGEBRAISCHE POLYNOME

H. GONSKA (Philadelphia/Duisburg) und E. HINNEMANN (Wesel)

1. Einleitung

Im Jahre 1951 verfeinerte A. F. Timan [11] den wohlbekannten Satz von Jackson
in der Weise, daB3 er zu jedem fcC"[—1, 1], r=0, eine Folge von Polynomen vom
Grad =n angab, die fiir alle |x|=1 den Ungleichungen

(L.1) f () =pa ()| = cd,(x) o (f©, 4,(x))

T
V l” g +%_,, und o,( 1", ) bezeichnet den ersten
Stetigkeitsmodul der r-ten Ableitung von f. In der Folgezeit ist diese Aussage in
einer Reihe von Arbeiten verbessert worden. Die Untersuchungen gingen dabei im
wesentlichen in drei Richtungen:

A. Konstruktion von Polynomen, die f simultan approximieren. Ein typisches
Resultat in dieser Richtung ist dabei (vgl. R. M. Trigub [12]) die Ungleichung

(1.2) SR PP = edy Y oy (£0, 4,(), 0=k=r.

=g

geniigen. Hierbel ist 4, (x):=

B. Ersatz von A,(x) durch TI,(x):= Hier wurde die Ungleichung

(13) if(x)fpn(x” = Crn (x)rwl(f(r)’ Fn()‘))

zuerst von S. A. Telyakovskii [10] und I. E. Gopengauz [5] angegeben.

C. Ersatz von ,(f®, -) durch einen Stetigkeitsmodul héherer Ordnung
w(f, -), s=2. Ein allgemeines Resultat in dieser Richtung stammt von
Ju. A. Brudnyi[1]; die Ungleichung lautet

(1.4) 1) =P ()] = 4, (x) @,(f©, 4,(x)).

Im Jahre 1967 bewies I. E. Gopengauz [5, 6] Kombinationen von (1.2) und
(1.3), sowie von (1.2) und (1.4). Er zeigte Ungleichungen vom Typ

(1.5) |f R~ G| = e 0 ol D Ta()) 0 sk =,
und
(1.6) If P ) —pP )| = cd,(x) o, (fV, 4,(x)), O0=k=r.

Hieraus ergab sich die Frage nach weiteren Verallgemeinerungen und Kom-
binationsmaglichkeiten der oben skizzierten Aussagen. Beitrige in dieser Richtung
stammen von R. A. DeVore [2, 3] und den Autoren [8], die in Verallgemeinerung
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von (1.3) Abschidtzungen des Typs

(1.3) ) —pu(¥)| = eI, () 0o(f, T,(x)), r=0,
bewiesen.

In der vorliegenden Arbeit soll zum einen gezeigt werden, daBl eine Verall-
gemeinerung von (1.3) in Richtung auf (1.4) moglich ist, namlich

(17) |f(x)_pn(x)| = Crn(x)rws(f(ns F"(X)) for r=s—2

erreicht werden kann. Zum anderen werden wir fiir r=s=1 eine Kombination
von (1.2), (1.3) und (1.4) beweisen und so zu einer Aussage vom Typ

(1.8) If®x)—pP )| = el (x) *w,(fO, (%)), 0=k=r—s,

gelangen. Die zugrundeliegenden Approximationsprozesse Q, sind dabei simtlich
linear und nach einem einheitlichen Aufbauprinzip konstruiert.

In der gesamten Arbeit ist | fl|=sup {| f(x)|: [x|=1}. Alle Konstanten hin-
gen nur von den angegebenen Indizes, nicht aber von f, x oder n ab.

2. Glittung von Funktionen

Ein wichtiges Hilfsmittel bei den Beweisen unserer Sitze wird das Prinzip der
Glattung differenzierbarer Funktionen durch solche mit hoherer Differenzierbarkeit
sein. Das folgende Resultat geht auf M. W. Miiller [9] zuriick.

Satz 2.1. Fir feC'[—1,1], reN,, beliebiges hc(0, 2] und jede natiirliche Zahl
r+s=>r existiert eine Funktion F,=F, . cC**[—1,1] mit den Eigenschaften:
@ [P =l = B, O =i,
und
(i) [ = e e O ).
Hierbei hiingt die Konstante ¢ nur von r+s ab.

Fiir unsere weiteren Untersuchungen bendétigen wir folgendes Korollar aus
Satz 2.1, welches sich aus elementaren Eigenschaften hoherer Glattheitsmoduln
ergibt. In seiner Formulierung benutzen wir die zusitzliche Konvention w,( f, -)=

=11

KOROLLAR 2.2. Fiir natiirliche Zahlen r,s=0, feEC'[—1,1] und beliebiges
he(0, 2] existiert eine Funktion F,=F, .. C**[—1,1], so daf gilt:

(i) IfO—FO| = ¢, ,F0,(fO, h) fir 0=i=r,
(ii) B |2 = e, s0,(f, b).
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3. Folgerungen aus der Ungleichung von Dzjadyk

Wir werden unten verschiedentlich von folgender Ungleichung Gebrauch
machen.

Sa1z 3.1 (V. K. Dzjadyk [4, Theorem 7.1.3]). Wenn fiir eine reelle Zahl p das
algebraische Polynom p, vom Grad n fiir alle Punkte x€[—1,1] der Abschdtzung

’pn(x)l = MAn(x)p, M = const.,

geniigt, so erfiillt fiir eine beliebige natiirliche Zahl k seine k-te Ableitung die Unglei-
chung

PV (x)| = 4, M4, (x)*75,
wobei A, eine Konstante ist, die nur von p und k abhdingt.

Sa1z 3.2. Sei r=0. Ist feC'[—1,1] und p, ein Polynom vom Grad n=r, so
dap fiir alle |x|=1 gilt:

/() =P (X)) = ¢, 4, [/,

dann ist firr O=k=r
IfPG) =P (%) = M, 4,y ~* .

Bewers. Lemma 1 in R. M. Trigubs Arbeit [12] zeigt, daB fiir n=r, r=0 und
fECT[—1, 1] stets ein Polynom ¢,€1IT existiert, so daB fir 0O=k=r und [x|=1 die
Ungleichungen

1 A
[P =ai ()] = 5 4,4, 0, (f7, 4,(x)) = A, 4,(x) [/
gelten. Nun ist p,—¢,€n, und
e () — g, (X)| = (¢, +4) 4, 1S
Satz 3.1 impliziert fiir 0=k=r die Abschitzungen

[p$7Ge) = a0 =B, 4, (x| /1.
Also ergibt sich

O @) —pP (x)] = [fP(x)—qg® (x)|+]gP (x)—pP (x)| =
=(4,+B)4,xy 7 /. O

SA1Z 3.3. Sei r=0 eine natiirliche Zahl und P,: C[—1,1]1-1II,, n=r, eine
Folge linearer Operatoren, so daf gilt:

) 1Pufll = co|l 1l fiir alle fEC[-1,1],

und
1) |f)—P,f(x)| = 14, | fO fiir alle |x| =1 und alle feCT[—1,1].
Dann gilt fiirr O=k=r und alle feC"[—1, 1]
(2. PN = el F].

Wenn ¢, und ¢, nicht von n oder f abhingen, so auch c, nicht.
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Bewers. Fiir r=0 ist die Aussage offensichtlich richtig; sei also r=1. Sei k
festin {1,....r}, xfestin [—1, 1] gewihlt und h€(0,2] vorgegeben. Sei r.:=k
und s;:=r—k. Aufgrund von (ii) gilt fiir alle f€C"[—1, 1]=C"*%[—1, 1]:

fx) =P, f(X)| = c14,(x) | fCxt52).

Wir benutzen Korollar 2.2 mit r=r, und s=s,. Also existiert eine Funktion
F,=F, ,€C"x"[—1,1], so daB gilt:

Q) |fD—FP| = ¢, o i, (f%,h) fir 0=j=r,
und

(i1) hx H\ F’:rk+sk):: = (G008 (f(’k), h).
Damit ist

lf ()= P, f(x)]

1A

|f () — Fy ()| + | F (%) — P, Fy (%) | + | P, (F, =) (%)] =
1= Rl + e 4, Y | EP| + e | F—f1l =
= (1 +cy)e,,, Mo, (f7, ) +c;4,(x) ¢, h ko, (€, h).
Wihlen wir nun h=4,(x), so ist also
[FO)—Pof @) = (L ¥ete)e, ., 460 @, (fY, 4,(x) =
= 2'c, 4,(x)* | f®I.

1A

Satz 3.2 impliziert nun
FPE) (P, D) = €4, |f 9] fir 0=j=k
Die spezielle Wahl j=k liefert also
O ~RNP@) = 1Y,
(2P = A+ | P = es] fP

impliziert. Da diese Uberlegung fiir k=1, ..., r durchgefiihrt werden kann, ergibt
sich die Behauptung. [

was wiederum

4. Ein Satz vom Brudny i—Teljakovskii-Typ

In diesem Abschnitt beweisen wir die Giiltigkeit einer Kombination von (1.3)
und (1.4). Wesentliches Hilfsmittel ist dabei Satz 4.2, dessen Beweis auch die Kon-
struktion der Operatoren Q, enthilt, fiir die wir dann im Satz 4.3 die gewiinschte
Ungleichung beweisen.

Zentral fiir die Konstruktion der Q, wiederum ist das folgende Lemma, welches
in ganz dhnlicher Form bei R. M. Trigub [12] zu finden ist.

LeMMA 4.1. Seien n*, m, pEN, mit n*, m=1. Dann existiert ein Polynom Ty
vom Grad N=(2(m—1)+p)(n*—1)/2, so dap fir alle |x|=1 die Ungleichung

D) Cp,m
pe? 07+ 20 T () =

erfiillt ist.
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Satz 4.2. Sei r=0,s=1, n=max (4(r+1), r+s). Dann gibt es lineare Opera-
toren Q,=Q"9: C"'[—1,1]-1,, so dap gilt:

Q) @, NP =f® 1) fiir alle feC'[-1,1] und 0=k =,
(11) }f(")(_x)_(Q"f)(k)(x)| = Ar,sAn(x)r+s_k'1f(r+S)il‘
fiir alle feC™*°[—1,1], |x|=1 und O0=k=r+s.

BewEs. 1. Schritt: Konstruktion der Operatoren Q,.
a) Sei L,: C[—1, 1111, der lineare Operator von DeVore (oder ein anderer
Operator), der fiir n=p—1 der Ungleichung

[f(x)_[‘nf(x)l = prp(f; A"(X)), fec[— 15 l]v IX| = l*

geniigt. Setze p=r+s.
b) Sei R,: C'[—1, 1]-1II,,,, der Hermite-Interpolations-Operator, so daB fiir

O=k=r gilt:
R NHPED =B (D).
Dann hat R, f die Darstellung (vgl. [10]):

R f(x) = éﬂ(l = {fOM) 4:(x) +O (= 1) B,(x)},

wobei A;, B;€Ily,_;+1 und |4 =a,, |B]=b, fir 0=i=r.
c) Sei R, ,: C'[—1,1]—+1II, gegeben durch

Ron(fo %) = ; (1 =Xy H1+H-TRIT, (1 —x2) (7D (1) 4,(x) +7 D (— 1) B, (x)}

mit 4; und B; aus b) und den Trigub-Polynomen Ty aus Lemma 4.1, die zu den
- n 53 a2, o & LI
Wahlen n _[4—(r+l)]’ m=r-+1 [2] und p=i gehdren. Man verifiziert, dal3

R, , wegen n=4(r+1) tatsichlich in 17, abbildet und daB ferner die Gleichungen
(R, /)W (£1)=0, O0=k=r, erfiillt sind.

d) Wir definieren den linearen Operator R,: C'[ -1, 1]—II, durch R,:=R,—
—R,, und die Boolesche Summe Q, von R, und L, durch Q,:=R,®L,:=R,+
+L,—R,oL, (vgl. z.B. W. Gordon [7]). Dann gilt fiir jedes f¢C’[—1,1] und
O=k=r:

@.NPED = R NVED+ELHPE ) —(RU(L, )P (1) =

=fPED+ENPED~ECNYED = D).

Also erfiillen die Operatoren Q, die Eigenschaft (i).
2. Schritt: Abschiitzung von | f®(x)—(Q, f)®(x)|. Wir haben fir 0=k=r+s

die Differenz
R, NPE)| =
= |/ ®) = (L, NP )| +|(Ryo(d = L)) D) = My () + Ty, (%)

zu betrachten.
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Nach obiger Wahl von L, (fiir p=r+ys) ergibt sich, daB fiir r=0 und n=p—1=
=r+s—1 die Ungleichung

IfO)=Lof )| = €450, +5(f; 4, (%)) = €5 A (x) 5] £+
fur feC"*[—1, 1] gilt. Satz 3.2 impliziert nun fiir n=r+s
Hl,k(x) i~ |f(k)(x)*(znf)(k)(x)| = Mr+sAn(x)r+s_k::.f(’-r“;!

fir O0=k=r+s.
Unter Benutzung von Lemma 4.1 ergibt sich ferner fiir den zweiten Sum-
manden

My (%) = \g’o VT=) [(/T—2D — (YT =220+ (1 x3)].

LM A+ LN D B()] =
= 3 (YT [T — (YT= D+~ (1 _ye).
i=0 !

1 VS ;
Moolz) 1l by =

n*

L AL X l i| + )|
= 3 0, M, (@A B) T o A, HH |49 = d, 4,179,

Satz 3.1 liefert dann
I, (%) = 4, A, )74 €9 fiir O0=k=r+s. O
Wir kommen nun zum Hauptergebnis dieses Abschnitts.

SATZ 4.3. Es sei s=1, r=s—2 und n=4(r+1). Dann geniigen die linearen
1—x?

Operatoren aus Satz 4.2 mit I',(x)= der Ungleichung

lf ) =0nf ()] = d,, T, (x) 0,(f, T,(x))
fiir alle feC'[—1,1] und alle |x|=1.

Bewers. Sei x festin (—1,1) und h€(0, 2] vorgegeben. Wir benutzen Korol-
lar 2.2. Danach existiert eine Funktion F,eC"*[—1, 1] mit

0) If©—FP| = ¢, o (fO, ) fir 0=k=r,
sowie
(i) we WIRETIhL= 60 db).

Unter Benutzung von F), zerlegen wir | f(x)—Q, f(x)| in
|f () = Fy ()| +1Fy (%) = @ Fy (%) | +10, Fy (%) = 0, f (x)| =
= ¢, W o, (f©, h)+|F,(x) =0, F,(0)| 410, F,(x) - 0, f (%)|.
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Zur Abschitzung von |F,(x)— 0, F,(x)| betrachten wir zunéchst ein beliebiges
gcC ™ [—1, 1]. Satz 4.2 (dort n=max {4(r+1), r+s}) liefert

18D (0, V()| = 4,4, *|g*I] fiir 0= k= rs.

Fiir Y1—x*/n=1/n* ergibt sich hieraus unmittelbar

3. oo \+S
Vl_le !]g(r+s)ll
n | I

lg(x)_Qng(x)[ = 2r+sAr.s [

Fiir Y1—x*/n<1/n* und x=0 erhilt man

g -0, =| [ f f (Qug—8) "V (U4 2) dity ...ty =

ff fI(Q,, — ) (U, )| Ay yq-.. duy =

x u

ff fA,sA,,(u,H)‘ YgCt+9 dy ., ... du,.

X

Wegen A,(u,.,)=4,(x)= 2/n- ergibt sich weiter

8 ~Qu 8@ = 4,2~ yo"“wff fldu,ﬂ duy =

Xy

1 1 ‘ N2 2
= A Ng—L, o '!g(r+s)jl (1 __x)r+l = Ar‘xzc—l = ‘1g(r+s):‘ (l 1 —,\’2)— R

T p2G—1 | 2(s—1)

_ a2 r+s VP B /l____z r-'LSl ‘
:A’,sz [_LX_J l' (r+S)H(nV1—x2)r+-—s;_:_Ar.szx—l ['/—x] !Ig(r-&s)‘:.

n n

Es ist festzustellen, dafl wir soeben die einzige Stelle unseres Beweises passiert haben,
an der von der Bedingung r=s—2 Gebrauch gemacht wird.

Fiir J1—x*/n<1/n* und x<0 gilt die gleiche Abschitzung. Damit ist also
fur alle geC"*[—1, 1] die Ungleichung

|g(x)—0,8(x)| = 2"**4, ,T,,(x)y**| g9

bewiesen. Wahlen wir nun fiir g die Funktion F), vom Beginn dieses Beweises, so
ergibt sich fiir O<h=2

|Fy(¥)—Qu Fy(x)| = 27474, T, () ** | Ef +9) = 27424, T\ (x) 2 ¢, sh 0, (f©, h).
Die verbleibende Groe |Q,Fy(x)—Q,f(x)| ist gleich
L, (Fy—f; ¥)+ Ryo(ld — L,) (F,—f, X)|.
Zunichst ist wegen [|L,||=c fiir alle néN und alle h€(0, 2]
\Lo(Fy—f, ¥)| = |Ll | Fa=f1 = cc, sh 0, (f©, ).
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Der verbleibende Ausdruck |R,o(Id—L,)(F,—f, x)| kann dhnlich wie oben abge-
schitzt werden (vgl. den letzten Teil des Beweises von Satz 4.2). Man erhilt

(R4 =L) (Fy~f, 0] = 3 (T=x) (146 [(Fy—/)] (@ +b)

mit der Konstanten ¢; aus Satz 3.3.

Unter Benutzung der Abschitzungen fiir [|(F,—f)®| fiir 0=i=r ergibt sich,
daB} die zuletzt betrachtete Summe kleiner als oder gleich

2 ¢ (1+e5)c, (@, +b) T (x) B o, (O, h) = e, 3 T,(x) " o,(f©, k)
i=0 i=0
ist; hierbei ist e, ; eine nur von r und s abhéngige Konstante.

Zusammenfassend gilt also fiir x€(—1, 1) und jedes h€(0, 2] die Abschitzung
|f() 0. G'= €, B e (fD, W)+ 2 AN oo b0, (f 9, B) +

tee e o (fO, h)+e,, 3 TV~ o,(fO, ).
i=0

Wihlt man nun h=T,(x)>0, so ergibt sich zunichst fiir x¢(—1, 1) die Ungleichung
|f(X)—Q,,f(X)| E= dr,srn(x)rws(f(r)’ rn(x))

Wegen der Interpolationseigenschaft von Q, an den Réndern des Intervalls gilt die
behauptete Aussage auch fir x=+1. [

S. Simultanapproximation durch die Operatoren Q,

Dieser Abschnitt enthélt im Satz 5.4 eine quantitative Aussage zur Simultan-
approximation durch die oben konstruierten Operatoren Q,. In Satz 5.5 wird
schlieBlich die oben angekiindigte Kombination der Aussagen (1.2), (1.3) und (1.4)
bewiesen.

Um nachzuweisen, daB fiir alle f€C'[—1,1] und O=k=r die Ableitungen
/% durch (Q, f)® approximiert werden und dies iiber punktweise Abschitzungen
einzusehen, verwenden wir die folgende erweiterte Version der Ungleichung von
Dzjadyk.

SAtz 5.1 (V.K.Dzjadyk [4, Theorem 7.1.3"]). Wenn fiir festes p >0 und eine natiir-
liche Zahl s=1 das Polynom p, vom Grad n fiir alle x€[—1,1] der Ungleichung

[pn(x)l = MAn(x)pws(f; An(x)), fEC[— 1’ 1]7
geniigt (M =const.), so gilt fur jede natiirliche Zahl k, dap p{® die Ungleichung
PP ()| = AMA, (x)"*o(f, 4,(x))

erfiillt; hierbei ist A=A, ;. eine Konstante, die nicht von x€[—1,1] und n=1, 2, ...
abhdngt.
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Dieser Satz ermoglicht zunachst die folgende Erweiterung von Satz 3.2.

SATZ 5.2. Es seien r=0, s=1. Ist feC'[—1, 1] und p, ein Polynom vom Grad
n=r+s, so dap fir alle xc[—1,1] gilt:

‘f(x)—pn(x)l = C,‘,A"(X)’ws(f('), A"(X)),
so gilt fur O=k=r:
‘f(k)(x)'—pr(lk)(x)l = Mr.sAn(x)"kws(f(')’ An(x))

Bewers. Fiir r=0 ist offenbar nichts zu zeigen. Sei also r=1. Nach Sitzen
von R. M. Trigub [12, Lemma 1 und Bemerkung 1] (fiir den Fall s=1, 2) bzw. I. E.
Gopengauz [6, S. 205] (fiir s=>2) existieren zu r,s=0, n=r+s und fEC"[—1,1]
Polynome ¢,€11, mit

@) —g®P )| = A4, 4, o,(f©, 4.(x)

fir 0=k=r und |x|=1.
Nun ist p,—¢g,€m,, und es gilt:

1Pa(X) = g ()| = (¢, s+ 4., 4, () @, (f©, 4,(%)).
Satz 5.1 zeigt nun, daB fir 0=k=r und [x|=1 gilt:
1P (x) — g (x)| = By, 4, (x) " 0,(f©, 4,(x)).
SO -pO@| = f O P @ +aP D -pP )] =
= (4,48, ) 4,(x) *o,(f©, 4,(x),
und dies entspricht gerade obiger Behauptung. O

Also ist

BEMERKUNG 5.3. Fiir r=s—2 laft sich unter Benutzung der Sitze 4.3 und
5.2 nun unmittelbar auf

fOD @V @ = My a3 0 (f, 4,(x), 0=k =1,

schlieBen. Der Beweis des folgenden Satzes zeigt jedoch, daBl die Argumentation
mit Satz 4.3 ungiinstig ist, da die Voraussetzung r=s—2 sich im Falle der Simultan-
approximation (mit KontrollgréBe 4,(x)) als iiberfliissig erweist.

Ein Hauptergebnis dieses Abschnitts ist

SATZ 5.4. Es sei r=0, s=1. Fiir die Operatoren Q, aus Satz 4.2 bzw. 4.3 gilt
fir alle feC'[—1,1], alle |x|=1 und alle n=max(4(r+1),r+s):

P — (@ NP = M, 4, o,(f©, 4,(x)), 0=k=r.
BEwEIs. Bis zur Abschatzung
lf(x)_Enf(x)[ = cr+swr+:(./; A,,(X))
verlauft der Beweis exakt wie der von Satz 4.2. Hieraus folgt

If(X)—‘E.f(X)‘ = C,..,._,A,'(X)'ws(f('), An(x))
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Satz 5.2 impliziert fir 0=k=r und n=r+s
Hl,k(x) = |f(k)(x)_(inf)(k)(x)i = Mr,sAn(x)r_kws(f(r)’ An (x))

Zur Abschitzung von II, ,(x) geht man dhnlich wie in Satz 4.2 vor. Zunichst ist
wieder

Mo = 3 VT=2) [(T=2 — (T2, (1 s2)

% (ar+br)(|(f_inf)(')(l)]+ ](f_Enf)“)('— l)l)

Hierbei sind @, und b, die Konstanten aus dem Beweis von Satz 4.2. Lemma 4.1

Liefert fir 0=i=r mit m;=r+1— [%]

(T=3 — (YT=®)* O+, (1—x3)| = ¢, 0, ni
aus der Abschitzung fiir die GroBen IT, ;(x) ergibt sich
=Lpoeni =M, (5) oo ) i o=i=r
Wir erhalten also
A | I
H2,0(x) = Z (Vl _x2) Ci,m,-?(ar—,'br) Mr.s (;E] ws[f(’)a '—'2)
i=0

| V\

n

S Coom (@, +b) M, A, () A, (Y~ a0, (f, 4,()) = &, A0 (6 0, (F©, 4, ().

i=0

[IA

Fir r=0 ist nichts mehr zu zeigen; fiir r=1 schlieen wir aus
My 4(x) = [(R,o(d—L)(/))X)| = &, 4,(x) ,(f©, 4,(x))
mit Satz 5.1 auf
Hz,u(x) b I(.R"O(Id‘[,,)(f))“)(X)i = Ar,s,k(?r,sAn (x)r—kws(f(r)’ An(x))

Hieraus ergibt sich dann
R —(@2, /)P )| =

= ‘wr,sAn (x)'—kws(f(’)’ An(x))+Ar,s,k€r,sAn (x)r—kws(f(r)~ A,,(X)),
was die in Satz 5.4 behaupteten Ungleichungen impliziert. []

Der zuletzt bewiesene Satz ist das zentrale Hilfsmittel, um auch unter Benutzung

der GroBe I',(x)=V1 —xz/n zu einer Aussage iiber Simultanapproximation zu
gelangen. Dies ist das zweite Hauptergebnis dieses Abschnitts.

SATZ 5.5. Es sei r=s=1 und n=4(r+1). Dann gilt firr die Operatoren Q,
aus Satz 4.2 bzw. 4.3 die Ungleichung

fPE =@ )P = ¢, L) 0, (f©, T,(x))
fur alle feC'[—1,1], alle x€[—1,1] und 0=k=r—s.
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Bewmss. Sei r=s=1 und n=4(r+1)=r+s. Fur die Operatoren Q, gilt nach
Satz 5.4 fiir 0=k=r und |x|=1

| P ) —(@u )P )| = €14, () (1, 4,(x)).
Fiir Y1—x%/n=1/n* folgt hieraus unmittelbar
SO0, )P ()| = 27T, (x) ~* 0, (f©, T (x)).
Sei also wieder Y1—x%[n<1/n* und O<x<I. Fiir beliebiges x=u=1 folgt wegen

4,(0)=4,(x)<2/n* fir die Differenz zwischen den r-ten Ableitungen

r r — OS r i
SOOI = Zeo (1. 7).

Fir O=k=r—1 ergibt sich aus den Interpolationseigenschaften von Q, an den
Réandern die Ungleichungskette

UP@-@NP@ =|f [ [ (-0 -)dt,...du| =

*i Ny Uy —p-1

? S 1 ] ]
= f f f 25C1(DS (f(r)’ _) dur—k oduy = 2°¢,(1 _x),_kws [f."), _]

[IA

n* n?

* Uy g —

e (f"’, lz) (7

n

s

x2)21—2k = 2scl ((I‘IV 1 _xg)_l -+ ])‘.(Ds(‘f‘r), rn (X)) »

TGy n (Y T—x " = 45,7, ) ~*0,(f®, [,(0)) (nf1T—x3) " =
= &6, T, (Y o, (f*), T, (x)).

Die letzte Ungleichung erhidlt man dabei aus der Bedingung O=k=r—s. Aus der
Interpolationseigenschaft ergibt sich weiter, daB3 die bewiesene Ungleichung auch
fur x=1 richtig ist. Im Fall —1=x<0 schliefit man analog. [
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WEAK CLOSURE OF THE UNITARY ORBIT
OF CONTRACTIONS

M. KUTKUT (Irbid)

Introduction. We consider an infinite dimensional complex separable Hilbert
space H. A shift S on H is an operator defined by

Se; = €41,

for some orthonormal basis (e¢;) in H. If i belongs to the set of all integers, S is
said to be a bilateral shift. If i belongs to the set of all positive integers, then S is
said to be a unilateral shift.

Because any two shifts (of the same type) on H are unitarily equivalent, the set
of all shifts on H can be generated by one given shift, namely, it is the unitary orbit
of that given shift. Recall that if U is the group of unitary operators on H, then the
unitary orbit of S, denoted by U(S)), is given by U(S)={u*Su: uc U}. Halmos [3],
1973 studied the closure of U(S) in different topologies, and he proved the fol-
lowing result.

HALMOs THEOREM. The weak closure of the unitary orbit U(S) of the (unilateral
or bilateral ) shift S is equal to the set of all contractions on H; in symbols, WCU(S)
=(HB),, where WC=weak closure, (HB),=unit ball of H=set of all contrac-
tions on H.

Halmos [3] asked, what can be said about U(T,), where T, is a weighted shift
defined by
: P Tuei:aiei+li

for some orthonormal basis (e;) in H and o=(¢;) is a bounded sequence of com-
plex numbers called weight sequence. More generally, one may ask, what about
U(T), where T is an arbitrary contraction on H? The answer to this question is
the destination of this work and is presented in Section 1. In Section 2 we answer
the Halmos question as a special case. In Section 3 we prove some results about

arbitrary weighted shifts, and Section 4 is devoted to an application to the disc
algebra.

1. Weak closure of the unitary orbit of a contraction

In this section we give some conditions which are mutually equivalent and
each is necessary and sufficient for the weak closure of the unitary orbit of a con-
traction to be equal to the set of all contractions on H.

Recall that the spectrum o(T) of an operator T is defined to be the set

{A€C: T —1 is not invertible},
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where C is the complex plane. The spectral radius |o(7)| of 7, is defined by the
equality |o(T)|=sup {|2|: 2€a(T)}.

It is known that if 7' is a contraction, i.e. [|[T| =1, then ¢(7T) is included in
the closed unit disc D (see [1]). If K is the ideal of all compact operators on H and
if L.(H) denotes the algebra of all bounded linear operators on H, then L(H)/K
is called the Calkin aigebra. Let m be the canonical map L(H)—L(H)/K. Then
the essential spectrum o,(T) is defined to be ¢ (T)=0(n(T)).

The numerical range W (T') of T'isdefined tobe W (T)={.=(Te,e):ecH, || =1}.
It is known that ¥/ (T) is a convex subset of C and o(T)c W (T), (see [1]). Clearly,
if T is a contraction, then W (T)c D. The numerical radius [W (T)| of T is defined
by |[W(T)|=sup {|2|: 2eW (T)}.

Now, we present the main result of this section.

THEOREM 1.1. For any contraction T in L(H), the following statements are
equivalent.

(@) WCU(T)=(HB),;

(b) W(T)=D;

(¢) 6(T)> 9D, where dD=boundary of D;

(d) 6,(T)>0D.

We split the proof into lemmas, propositions and theorems.

LEMMA 1.2. If T is a contraction such that |1—(Te,f)|<e, with some unit
vectors e, f and positive number ¢, then |Te—f|<e+Y2e.

Proor. Let f=(Te,f) and A=|B|. Since Ai=1, we have 1—e<|(Te,f)|=
=|p|=4=1, and [A—B|<|1—B|=|1—(Te, f)|<e. By the definition of B, Te=pf—k,
where (k,f)=0. Thus |B[*+[k]*=|Te|*=1,i.e. [k|*=1—[B|=1-2=(1 -+ )=
=2¢. Therefore, |Te—f||=|(B—1)f] +k|<e+V2e.

Lemma 1.3. If T is a contraction and 7.€C with |i|=1 is such that for any
=0, we have [(Te,,e,)—7|<e with some unit vector e, H, then |Te,—le,|—0
as ¢—0, i.e., . is an approximate eigenvalue of T.

Proor. Since |(7e,,e,)—Ail<e, we have |(Te,,e,)—1|=<e, and by Lemma 1.2
|AiTe,—e,| -0 as -0, which is equivalent to the assertion.

LemMmA 1.4, If vy, 7, ..., 7, are distinct approximate eigenvalues of a contrac-
tion T such that |y =1, i=1,2, ..., n, then for any ¢=0 there is an orthonormal
system (e;(¢)), i=1,2,...,n, such that ||Te,e)—vy;e:(e)ll<e, for every i=1, ..., n.

PrOOF. We have three cases to consider: the case when y;, i=n, are eigen-
values, the case when y;, i=n, are approximate eigenvalues but not eigenvalues,
and the case when some y; are eigenvalues and the other are approximate eigen-
values but not cigenvalues.

For the first case, it is known (sce [1]) that the cigenspace M, of an eigen-
value y; with |y;/=1 of a contraction T reduces 7,i.e. T(M,)cM, and T(M;)C
cMj, so thatif i#j and e;€M,, e, M, where e;, e; are unit vectors then e,
e; are orthonormal.
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In the second case we claim that there is an infinite-dimensional subspace
M (e) of vectors f for which |[(T—y,)fll<ell fl[ if /0. Indeed, let T—y,=V;P;
be the polar decomposition of 7—y;. Since 7; is not an elgenvalue but approximate
eigenvalue, we have ker (T—7y;)={0} and thus ker P;={0}. The spectral represen-
|21
tation of P, is given by the equality P,= f tdE;(4) where E(A)H=E,((0,¢))H,

0
¢=0 is an infinite dimensional subspace of H. Since for every f€E,;((0,c)) H.

f#0, we have
IT—v)fl = Wik f| = |P.f] < el f1,

we can take M;(e)=E;((0, &)) H.

Now, it is sufficient to construct by induction, an orthonormal system (e;(¢))_,
such that e;(e)eM;(e), I=

For the third case assume that y,,...,7, are eigenvalues, while 7,.,, ..., 7,
are approximate eigenvalues but not eigenvalues of 7. Set H'=(M, & ... M, )* and
=T et M (e = = [l(T’——y)fl]<sl|f]|}U{O} k<i=n. Since y; 1S an
approximate eigenvalue of 77 in H’ (i=k), dim M{(g)=<= (i=k). Building the
required orthonormal systems for i=k and i=k as above, their union will suit
our purposes.

THEOREM 1.5. For a contraction TEL(H), WCU(T)=(HB), if and only if
W(T)=D

ProOF. Since T is a contraction, we have W (T)c D. For the other inclusion,
let €D so that 2/€(HB),. By the assumption there are unitaries «, so that u;T u,
converges weakly to A/, i.e., (u;Tu,f,g)—~(Af,g), for any j gcH. In partlcular
(uyTu,e, e)—~(2e, e), for any unit vector e in H. Thus /EW(T), ree DCW(T)

Conversely, we assume that W (T)=D, and we want to show that WCU(T)=
=(HB),. Since T'is a contraction, u* Tu is a contraction for every uc U, thus U(T)C
c(HB),, and since (HB), is weakly closed, we have WCU(T)c(HB),.

For the other inclusion, it is known that the unitary operators are weakly dense
in (HB), and so the diagonal unitary operators are weakly dense in (HB), (see [3]).
Thus it is enough to approximate weakly uw=> J;,(.,e;)e; with |i]=1. Fix
i=1,...,n, given ¢>0, by Lemma 1.4 there exist orthonormal vectors f, ..., f,
so that

() | Thi—1ufil < —

Let V be unitary and Vf,=e,, ..., Vf,=e,. Then, by (1), ¥TV* is in the weak
neighborhood of u determined by e;, i=1,2,...,n and & This implies that any
contraction A€(HB), can be approximated weakly by VTV* for some V in U,
i.e. (HB),C WCU(T). The theorem is proved.

PROPOSITION 1.6. For any contraction T in L(H), W(T)=D if and only if
a(T)>aD.
PRrOOF. Since T is a contraction, W(T)c D. If ¢(T)>0D, then dDCW (T),

and since W (T) is convex, it contains the interior of D so that DcW(T), i.e.
W(T)=D.
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Conversely, if W (T)=D, then by Lemma 1.3, every point of @D is an approxi-
mate eigenvalue of 7, and therefore dDca(T).

PROPOSITION 1.7. For any contraction T in L(H), o(T)>0D if and only if
. (T)>aD.

PRrROOF. One direction is clear, since ¢.(7)co(T) for any T in L(H). For
the other direction, let A€0DcCa(T). Then T—/ is not invertible. If we assume
that 2 is not in ¢,(7) then n(7)—A is * invertible in the Calkin algebra, i.e., T—2
is Fredholm. Since 7—/ is not invertible, dim ker (7—4) is not locally constant
on a punctured disc of center A and radius ¢&. But by applying Gohberg theo-
rem ([1] page 146) on the Fredholm operator 7—Z, one concludes that Je>
>0: dim ker (T—(4+7y)) is constant for y: O<|y|<e. This contradiction ends the
proof of the proposition.

PRrOOF OF THEOREM 1.1. Theorem 1.5, Propositions 1.6 and 1.7 prove the
theorem.

2. Weak closure of the unitary orbit of a contractive weighted shift

We consider a contractive unilateral weighted shift 7,, o=(e;). Since T, is
a contraction we have sup |o;/=1. It is known that two unilateral weighted shifts
i

T,, T, are unitarily equivalent if and only if |a;|=|g;|, for every positive integer i
(see [4] problem 75, page 46). So it means no loss of generality to consider sequences
of positive numbers for sequences of weights. For U(7T,) we prove the following
theorem.

THEOREM 2.1. For any contractive weighted shift T, with positive weights (x;)
on H we have WCU(T,)=(HB), if and only if YneN, ¢=0; INEN such that
oy i=>1—¢, i=1, 2, ...,n, where N=set of all positive integers.

We divide the proof into several lemmas and propositions. The next proposi-
tion proves the sufficiency of the condition.

PROPOSITION 2.2. [f the sequence of weights (;), i€N of the contractive weighted
shift T, is such that ¥YnéN, ¢=0; 3INEN: oy, ;>1—e¢, i=n, then WCU(T,)=
=(HB),.

Proofr. The spectrum of a weighted shift is circular, i.e. if 2€6(T,), the circle
of radius |1| is also in o (7). On the other hand, the hypothesis implies (see [4] problem
77 page 48) that the spectral radius |6(7,)| of T, is 1. Thus dDCa(T,). By Theo-
rem 1.1, WCU(T,)=(HB),.

THEOREM 2.3. If S is a shift and T is any contraction such that |(S—T)e;, e;,,)|<e
for i<M, where (e;) is the orthonormal basis shifted by S, then for every ncN
we have

(5" —T"e;, e;..0)| < n(e+y2e), i+n—1-<M.

PRrOOF. From the assumption one concludes

2 & > |(Se;, €;41)—(Te;, €;41)| = |1 —(Te;, €;,,)|.
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Applying Lemma 1.2 to (2) one obtains
1Te;—e; 41| < e+V2, i<M.
Consequently,
(T~ SMel = T e—esall = 1T, —T" 43| +|T" €11 —T" €144 + ...
et | Te 1 —€ia] < n(e+V28),  itn=1<M.
Hence the assertion follows.

THEOREM 2.4. If S is a shift with respect to the orthonormal basis ( f;) and T,
is a contractive weighted shift with respect to the orthonormal basis (e;) and having
the positive weight sequence («;), iI€N such that

|((S_T¢).fis.fi+l)! =gy =M,
then there are chains of weights of length n<=M, each weight of which is =1—
—n(e+V2e).

PROOF. Set n<M, f;= fakek. _ﬁ,“:fdke,‘. By Theorem 2.3,
0 0
1—n (8+V/EZB = 1(T"f1-ﬁ.+1)| = K% ayT"e, %1 dkek)l =

o oo =
= l(; O g1 +e Opsn—1 Ak €k 4ps g‘ikek)! = ; O Opyy - O O] - || =

co

= (g lak|2)1/2 (02' ldk+ulz)l/zsup A Olg 4y oee Ogpp—1 = SUP A Og g v Xp -7+

Thus there is a positive integer N such that acN+,aN+2...aN+,,>1—n(s+l/§).
and consequently oy, ;=1—n(e+ ﬁe), L=l e
PROPOSITION 2.5. If T, is a contractive weighted shift whose sequence of weights
is (o;), iEN such that WCU(T,)=(HB),, then Ye¢=0, ncN, INeN such that
ays;>1—n(e+V2e), i=n.

ProoOF. Let S be a shift with respect to the orthonormal basis (f;). Since
S€(HB),, there is a sequence (u,,) of unitaries such that, for every &, M there is a
number KN such that for m=K, we have

(S—unT,un fis fisr)| <& i<M.

But u,,T,u,, is also a weighted shift (having the same sequence of weights and
different orthonormal basis). Applying Theorem 2.4 we obtain, Ye=0, n€N;
3INEN such that

ays; > 1—n(e+y2e), i=n.

Proor oF THEOREM 2.1. Proposition 2.2 proves sufficiency and Proposition 2.5
proves necessity.
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REMARK 2.6. Theorem 2.1 holds for contractive bilateral weighted shifts as well.

COROLLARY 2.7. If T, is a contractive weighted shift with positive weights such that
WCU(T,)=(HB), and if T is another weighted shift with positive weights such that
|\ T,+ T\ =1, then WCU(T,+T)=(HB),.

COROLLARY 2.8. The set of all weighted shifts on H is weakly dense in the algebra
of all bounded operators L.(H) on H.

3. Arbitrary weighted shifts

In this section we consider two arbitrary weighted shifts 7,, 7, having the
bounded positive sequences («;), (f;) for weights. We tried to generalize results of
Section 2 in the following direction. What are the conditions on («;), (f;) in order
that WCU(T,)=WCU(T,)? This problem is still open, but we prove the following
results.

PROPOSITION 3.1. Let T,, T, be weighted shifts with bounded positive weight
sequences (o), (B;) respectively. If Ye=0, N, K; 3IM such that |o,. ;—Bry.:l<e,
0=i<N, and if Ye=0, N, M; 3K such that |By.;—oxii|l<e, 0=i<N, then
SCU(T,)=SCU(Tp) and in particular, WCU(T,)=WCU(T,). where SC denotes

strong closure.

PrOOF. Itis enough to show that the first condition implies SCU(T,)C SCU(T,)
and (WCU(T,) cWCU(Ty)), since the other condition implies the opposite inclusion
in a similar manner.

By the first condition, given ¢=0, N and K=1 there is M such that

oy +s—Prm+il <& 0=i=<AN.

Let Uy be a unitary operator on H which takes e, ..., ey Int0 fyr. ..., farsn—1
respectively, where (¢;) and ( f;) are the orthonormal bases with T,e,=o.e,., and
Ty fi="Pi fis1- Then UgT,Uye, . ;=Pr. €24, and thus

[(UNTy Uy—T)e1sil = |Bu+i—0a+il <& for 0 <i<N-—I.

If we let c=%, then we obtain
UyTyUye, ~T,e;, j=1,2,..., as N — oo,
Thus T,=s—li15n UyTyUy, which implies that SCU(T,)>SCU(T,) and in par-

ticular WCU(T,)DWCU(T,).
The following proposition gives necessary conditions for the equality SCU(T,)=
=SCU(Tp).

ProposiTiON 3.2. If T,, T, are weighted shifts having bounded positive weight
sequences (a;), (B;) respectively and SCU(T,)=SCU(Ty), then Ye=0, N, M; 3K
N-1 N—1

such that [ ap..;> [ By.i—¢, and Ye=0, N, K; 3M such that
i=0 i=0

N-1 N—1
11 ﬁM+i>.H Og+i—é-
i=0 i=0
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PROOF. It is enough to show that if (U,) is a sequence of unitary operators
such that U;,‘T U, converges strongly to T, then ve=0, N, M; 3K such that

N—-1

1] oxii= ]] Brsi—e, since if V;T,V, converges strongly to 7, then the other
i=0 i=0

condition follows in a similar manner.

Let (f;) and (e;) be the orthonormal bases shifted by Ty and T,, respectively,
and let &, M, N be given. We may assume that &< ]] Parsi- Further we write
Ut — za"’ek where Zia‘"”:l

k=1

Smce the product is sequentially continuous in the strong operator topology,
U,;TYU, converges strongly to 7j. Consequently 3L such that

T fu—USTNU,fyl <e¢ for n=L.
This implies that &=|ByBarr1---Bran-1/men—UaTNU, full, and all the more,
N-—-1
£> [ Bu+i—IUSTU, full for n>L. Hence
i=0

oo

N—1
TN A || N |
2 Bu+i—e = |TY U, ful = 552 a1} ek|| = i|20£ Yoy Oty gy - 'ak+l\’—lek+N‘

i=0 k=1 k+1

s (kzl lag™[?)" T (O O 41 -o- O y—1) = P (O Q41 -+ Ty —1)-

This implies that there is a positive integer K such that
N-1 N-—1
]] Bu+i—€ <UgOgxyy...O0kin—1 = [] AR +i

i=0 i=0

REMARK 3.3. We cannot replace strong closure by weak closure in Proposi-
tion 3.2. simply because the product is not sequentially continuous in the weak
operator topology.

4. Application to the disc algebra

In this section we present some corollaries of Theorem 1.1 and an application
to the disc algebra.

COROLLARY 4.1. If T is a contraction such that WCU(T)=(HB), and if K
is a compact operator with |T+K|| =1, then WCU(T+K)=(HB),.

COROLLARY 4.2. If T is a contraction, S is a shift, then WCU(T® S)=(HB),.
PrOOF. T@® S is a contraction, so that ¢(T®S)>a(S)>aD.

CoROLLARY 4.3. If WCU(T)=(HB),, for some contraction T, and if Q=T
®TD..., then WCU(Q)=(HB),.

ProoF. O is a contraction and ¢(Q)>a(T)>aD.
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Recall that the disc algebra A is the norm closure of the set of all polynomials
defined on the boundary @D of the unit disc D. For a given contraction 7 in L(H)
define the map ¥: A—~L(H) by the equality Y (f)=f(T) for every f€A4. von
Neumann [5] proved that ¥ is a contractive homomorphism. Now we prove the
following result.

THEOREM 4.4. For any contraction T in L(H), WCU(T)=(HB), if and only if
Y is an isometry.

ProoF. By the von Neumann theorem our condition reduces to
IFM)] = | fle= pup PG

for any fin A. Let f€A; since fis a norm limit of polynomials and using a resuit
of Foias, and Mlak [2], o(f(T))=f(a(T)). By Theorem 1.1, ¢(T)>dD. Thus
a(f(T))>f(0D), which implies that

IF @] = |o(f(D)| = sup {|If (2)|: 260D} = | f] .

Conversely, if ¥ is an isometry then for any f€A4, | fll.=| f(T)|. Let |i|=1
and let f,(z)=(z—A(1+¢))"% Then f,€A, and | f,|. converges to . Therefore,

/(D) = [[(T—A(1+#))7Y|| converges to o,
so that A€o(T), i.e. dDco(T) and by Theorem 1.1, WCU(T)=(HB),.
We conclude by the following.

PROPOSITION 4.5. If T, A are as above, and if |W(f(T))|=|fl=. for every
f€A, then WCU(T)=(HB),.

Proor. Let 2€0D, 24a(T). There is no loss of generality if we take /=1.

Let f€A be defined by j'(z)=l2(2+]). Then f(1)=1and f(D) is the disc of center
% and radius l2 Since o( f(T))=f(o(T))f(D), where as 1=f(1) is not in
a(f(T)). it follows that |a(f(T)) < 1. Since |f|. =1,

&) e(f(D)| < IS

Now since
lo(f ()| = W (@) = 1ADI = |fl-s

by a theorem of Williams [6] (part of Theorem 3) the following are equivalent:
(1) |o(T—2)|=|T—2|, YAEC, (2) [W(T—2)|=|T— 2|, YA€C). One concludes

4) lo(AD))] = £l

Since (4) contradicts (3), A€6(T), or dDca(T) and by Theorem 1.1, WCU(T)=
=(HB),.

Acknowledgment. I would like to thank the referee for his useful suggestions.
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GENERALIZATION OF EISENSTEIN’'S CONGRUENCE

P. JOTHILINGAM (Shillong)

We shall use the letter p to denote an odd prime number. Fermat’s little theo-
rem asserts that the residue of 27~! modulo p is 1. Regarding the residue of 27!
modulo p? Eisenstein [1], proved the following.

THEOREM A. For any integer s, 1=s=p—1, let § represent the inverse class
of s mod p. Then

2-1=14p(14+3+...4p—2) (mod p?).

In this note, Eisenstein’s congruence is extended to include residue of 2°-!
modulo p3. We state

ikl 38 el w | {
THEOREM B. Let p=3 and define /.:pT . For any integer s, 1=s=p—1;

let § be a representative of the inverse class of s mod p*. Then

o L +p’-:f2)—p'2 2{05-{-(%) (),-_As+,}2“1 (mod p?)
s=1

2 3
where [F stands for the Legendre’s symbol and 0,,0,, ..., 0, are the quadratic
residues mod p in a certain order.

REMARK. Since p§=ps (mod p?), it is clear that Theorem A follows from
Theorem B.

PrOOF OF THEOREM B. We start from the identity

B ) R T
M T TSl S iy L

This identity is easily established through induction. Take n=p in this identity
and use the fact that (p)zﬂ (p { 1);we get
s s \s—1

T g Pigdy o B2 s_l(p—l] 25— ]
(2) 1 2+ 3 —ﬁ—‘T_ps ] (—]) g 52 ™
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Since [[s’:ll)—:—(—l)“‘ (mod p), the identity (2) implies that the numerator of

the fraction (in reduced form)

3) l-—4+—..—————p > —

1s divisible by p* Multiplying the fraction (3) by [(p—1)!]> we find that p? divides
the integer

e —— . JP ) p—1
4 1—2+3—...—p—l——p——p2 2°—1)s
s=1
where § denotes inverse of s mod p.
But it is well known that [1]
13+ 5200570 =9+ 55 05T  (aiod pY)

and that
12422 4...4p—12=0 (mod p).

Using these informations in (4) we find that the integer

~ = —~—~ 2"—2 Pl
2(1 +3+... +p~2)‘T~2p 2 =152
s=1

is divisible by p*. Cancelling the factor 2 and multiplying by p we find that

~ o~ ~ p=2
3) 20 =14p(1 +3+...+p—=2)—p* 3 227's* (mod p?).

s=1

By Euler’s criterion, 2“"1’/25(1,2] (mod p) i.e. 2*5[[%) (mod p). Hence 2**+'=
2 2 2 3 2

=2 (—] DAt —pe (—) ey 207 S=0NR= /A (——) mod p). This implies
4 4 p ( i i

p—1 sk i R i “ —
IR FPUHL SSIG e s S 1g L S 23~1(%) (Ots) =
s=1 s=1 = 1 1

i

12" {52 5 [%] (;.Ts)z} >i= 3 {52+ [-i—] (m)z} 21 (modyp)

Ii

since A+s=—(A—s+1) (modp). Let 6,,0,,...,0, be the residues of 1% 22, ...
..., 22 mod p, in this order. It is clear then that 0,,0,, ...,0, are the quadratic
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residues modulo p. Moreover, from what precedes,

p—1 2 $r 2 :
21 g 2{0s+(‘p—) Oz—sﬂ}z“_l (mod p).

s=1

Using this in (5) we get Theorem B.
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ON THE EMBEDDING OF FINITE RINGS INTO MATRICES

A. SYCHOWICZ (Olsztyn)

In [1] Amitsur showed that every semiprime PI-ring is a subring of a matrix
ring over a commutative ring. Cohn [7], Amitsur [2], Small [10] constructed examples
of algebras over infinite fields satisfying polynomial identities and stronger and
stronger finiteness conditions of different kind which could not be embedded into
matrices with commutative entries. Other authors tried to characterize rings embedd-
able into matrices satisfying certain identities, e.g. [3], [8].

The Wedderburn—Artin theorems result that every finite ring satisfies a non-
trivial polynomial identity and that every semiprime finite ring is a direct sum of
finitely many matrix rings over fields and so it is embeddable into a matrix ring with
commutative entries.

Examples of Cohn, Amitsur and Small mentioned above cannot be adopted
to finite rings. Bergman [4] was the first who presented an example of a finite ring
(having p® elements, p any prime) which could not be embedded into matrices over
any commutative ring.

In this note we show that every ring which has p2 p® or p* elements, is embedd-
able into a matrix ring with commutative entries.

Throughout this note R will be an associative finite ring with unity, R* its addi-
tive group, homomorphisms will be unitary. For convenience, rings embeddable
into matrices over a commutative ring will be called embeddable rings.

At first we observe:

PROPOSITION 1. Finite embeddable rings can be embedded into matrices over a
finite commutative ring.

Proor. Let R={r,,...,r,} and let / be an embedding of R into matrices
M,(C) over a commutative ring C. Let f(r,)=c%), where a=1, ...,k and i, j=
=1,...,n and let C’ be a subring in C generated by c§’s. Then f(R)CM,(C’)
so we can assume C is finitely generated by ¢;'s. By Theorem 1 [9] for every 05+ cf;€C
there _exists an ideal /7 in C such that ¢f;¢/; and C/Ij is finite. Considering the
mapping

R~ M,(C) ~ M,(& C/I5)

),

we see that this is a nontrivial embedding of R into matrices over a finite
commutative ring @ C/Ij.
ihj,a
Since R* is a finite group it is a direct sum of finitely many p-groups which
are ideals in R.

5*
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PROPOSITION 2. Let R=R, ®...® R, be a decomposition of R into a direct
sum of prime components, where p; are distinct primes. Then R is embeddable if and
only if every R, is embeddable.

Proor. If f; isa monomorphism of R, into a ring M; of matrices of rank s; and

k
Si= ]]s. then there exists a natural embedding of M, into M;-matrix ring of rank s
i=1

with the same entries as M;. Then f; can be regarded as an embedding of R, into
M;. Since all M; have the same rank s, the family of f; gives the embeddmg of R
into matrices of rank s over a commutative ring.

Now if R is embeddable, say into M, (C), by Proposition 1 we can assume C
is finite and use a decomposition of C into prime components C= €BC Then
it is easy to see that every R, occurs in EBM -

Thus we may confine our attention to p-rings. So let p be a fixed prime. Then
R* is a finite p-group. We will use the following:

THeOREM | (Fuchs [6], Theorem 120.1). A multiplication p on a p-group A is
completely determined by the values u(a;, a;) with a;, a; running over a p-basis of A.
Moreover, any choice of p(a;, a;)€ A with a;, a; from a p-basis of A — subject to
the sole condition that o(u(a,, a;))=min (o(a; ), o(a;)) — extends to a multiplica-
tion on A. Further p is associative (commutative) zf it is associative (commutative)
on a p-basis of A.

It is known that a finite p-group is a direct sum of cyclic groups and that an
element of maximal order generates a direct summand. Since 1 of R has maximal
order we will assume 1 generates one of the maximal order summands.

Now we recall the example of a not embeddable finite ring.

ExaMPLE (Bergman). Let p be any prime. Let R be a ring with basis {1, a, b, ¢},
where the order of 1 is p?, the orders of a, b, ¢ are p and the nonzero basis products
are aa=a, ab=>b, ca=c, cb=b’1. Then R is not embeddable.

A simple modification of this Example gives:

PROPOSITION 3. For every prime p and every integer n=5 there exists a not
embeddable ring with p" elements.

PrROOF. Let § be a ring such that S *=~(1)X(a)X(b)X(c)X(5)X ... X(Su—3),
where o(1)=p* and the orders of other generators are p. The elements a, b, ¢ are multi-
plied as in the above Example and other products on generators are zero. Then
S has p" elements and contains, as a subring, the ring from the Example and so it
is not embeddable.

Now let us examine embeddings of small rings. The following lemma will be
useful in our investigations.

Lemma 1 (Eldridge [5]). Let R be a ring with p" elements, n any integer. If the
decomposition of R* into a direct sum of cyclic groups has at most two direct sum-
mands, then R is commutative and so it is embeddable into matrices of order one
over itself.

COROLLARY 1. A ring with p or p? elements is embeddable.
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Concerning a ring Rt with p® elements, by Lemma 1 we have to consider
only the case when R is a direct sum of three cyclic groups of order p. The following
is known:

PROPOSITION 4. A free module of rank n over a subring generated by its unity
can be embedded into matrices of order n over this ring.

It follows that R can be embedded into matrices of order three over Z,. Eldridge
showed even more:

TueoreM 2 (Eldridge). If R is a noncommutative ring of order p* then R is iso-
morphic to the ring of 2X 2 upper triangular matrices over Z,.

Using Theorem 1 we can have an elementary proof of this fact.

COROLLARY 2. A ring of order p® is embeddable into matrices of order at most two.

Now let R be a ring with p* elements. By Lemma 1 and Proposition 4 we have
immediately:

PROPOSITION 5. If the decomposition of a ring R with p* elements into a direct
sum of cyclic groups has one, two or four direct summands then R is embeddable.

All we have to do is to consider the case when R* is a direct sum of a cyclic
group of order p* and two cyclic groups of order p.

For our convenience, the symbol (..., ..., ..., ...) will denote values of products
aa, ab, ba, bb in R, respectively.

LEMMA 2. Let R be a noncommutative ring with p* elements such that R* is a
direct sum of a cyclic group of order p* and two cyclic groups of order p. Then R* =~
~(1)X(a)X(b), o(1)=p?, o(a)=o0(b)=p. Moreover, multiplication on R is deter-
mined by one of the following possibilities:

(*) <O9 05 a, b)s
(*,) <O, a, 0’ b))
(**) {(pmy-1, pmy-1, pmg-1, pm,- Ly m;€Z,, my = ms.

Proor. The first part is trivial. Hence every element of R can be uniquely
written as ka+Ilb+m-1 for some k,[/€Z, and m€Z,. To determine multi-
plication in R it sufficies to determine it on generators @ and b and by Theorem 1
we can write aa=k,a+Lb+pm; -1, ab=k,a+1l,b+pm, -1, ba=kza+I3b+pmy -1,
bb=k,a+I1,b+pm, -1 for some k;, I;, m; from Z,. Then a(aa)=(aa)a if and only
if I,-ab=1I,-ba and by the noncommutativity of R, /;=0. Similarly b(bb)=
=(bb)b gives k,=0. By a(ab)=(aa)b we have k,l,-a=0 so k,=0 or [,=0
and by b(ba)=(bb)a we get k;=0 or I,=0. Thus we have the following pos-
sibilities:

4)) (kya+pmy-1, kya+pm,-1, ksa+pmy-1,1,b+pmy- 1),
2 (kya+pmy -1, ksa+pms- 15 lsb+pmy-1,1,b+pm,- 1),
3) (kya+pmy -1, lyb+pmy-1, kaa+pmsy-1,1;b+pmy- 1),
4 (kya+pmy-1, Lb+pm,-1} I;b+pm,-1,1,b+pm,-1)

for some k;, I;, m; from Z,,.
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Case 1. By associativity of multiplication we have: k,m,=k,m,, ky=k, or
aa=0, ky=I; or ab=0, kymg=kym,, ksmy=kym,, l;=k,; or ba=0. Suppose
ko#1l,. Then ab=0. Since ba=0 we get () by a—a—pmylk, -1, b—ksb—
—pmylks -1, so we can assume /,=k,.

If ky#k, then k,#0 and a—a—pmylk, -1, b—~kyb—pm,jk, -1 gives us (x”).

If ky=k; and k,7#0 then ab=ba, a contradiction. So k,=0 and consequently
k1 =0 which gives (* *).

Case 2. From associativity of multiplication: [,=k,, li=k,, kime=kym,,
kymy=kymy. It is easy to check that for k,=0 we obtain (* %) (for k,=0) or
(*”) (for k,#0). If ky,#0 we have (%) (for k;,=0) and (%) for k,#0 by
a—k,a+k,b—pmy[k, -1 and b—k,b—pmylk, -1.

Case 3. This ring is anti-isomorphic to the ring of Case 2, so we get (%) or
(* %) again.

Case 4 is Case 1 with a and b instead of b and a, respectively.

In the proof of Theorem 3 we show that the rings (%) and («”) of Lemma 2 are
embeddable into matrices of order two. Concerning the ring (% *) we have:

LemMMA 3. Let R be the ring (* %) of Lemma 2. If R is embeddable into M,(C),
C being commutative, then p|n.

PRrOOF. We treat the generators a and b as matrices in M,(C). Let (x);; be the
(i, /)-th element of a matrix x. Of course (ba);;—(ab);=p(my—m,) -1 for i=1, ..., n.
Adding these n equations we obtain p(mz—mni,)n -1=0 in C. Hence p|n.

COROLLARY 3. The ring (* *) of Lemma 2 for p=2 cannot be embedded into
matrices of order two over any commutative ring.

Finally we show:
THEOREM 3. Every ring p* elements is embeddable.

Proor. Let R be a ring with p* elements. By Proposition 5 it suffices to con-
sider the case when R* is a direct sum of a cyclic group of order p? and two cyclic
groups of order p. By Lemma 2 R*~(1)X(a)X(b), where o(l1)=p? o(a)=0(b)=p
and we have three cases.

Case ( x). We show that the ring () is embeddable into matrices of order two
e ofe ’ :
over some commutative ring C. Let the matrix (u i] be the image of @ and the matrix

[:f i]] the image of b in M,(C). Putting these matrices to the equations describing

the products of @ and b we get 16 equations, where — for simplification — we set
u=t and ¢=d=v=x=y=z=0. The coefficient + we treat as a generator of
order p of C* and the resulting equations as relations describing multiplication in
C. Thus we get an embedding of R into M,(C) via

00 b 00
A WA [T (9]
where C* =~ (1)X(1), o(1)=p% o(t)=p and tt=t.
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Similarly we treat Case (*”).

Case (¥ x). We embed R into matrices of order p over some commutative
ring C. Using the same method as above we see that the mapping

Ay Ay ... dyp by, 0
A 0 by by
ar—» .. . b = : 0 ..
0 é : -
pp by b

pr

where a;;, by, are generators of order p of C* with nonzero basis products a;a;;=
=pm, «1, b;b;=pmy -1 for i=1,....p and ay by, =byay,=pm;- 1, a;b;=ba;=
=pmy -1 for i=2,..,p and a,;b,;=b; a;;=p(my—my) -1 for j=2,...,p gives

an embedding of R into M,(C). By Lemma 3 this embedding is minimal with respect
to the order of matrices.

COROLLARY 4. The smallest not embeddable ring has order 32.
ProOF. Let R be a ring of order m. If m=pf...pj{ is the prime decomposi-
k

tion of mthen R~ @ R;, where R; has order p! and our thesis results from Prop-
i=1

osition 2, Theorem 3 and Example with p=2.
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ESTIMATION OF THE GREEN FUNCTION
OF THE SINGULAR SCHRODINGER OPERATOR

1. JOO (Budapest)

Dedicated to Professor L. Leindler on the occasion of his 50-th birthday

Let Q be an arbitrary bounded domain in R¥ (N=3) having C=-smooth
boundary, and ¢ an arbitrary non negative function from the class L,(£2). Consider
the Schrodinger operator

L=L(x,D)=—44q(x).

Denote L an arbitrary positive selfadjoint extension of the operator L from the
domain Cg(Q) with discrete spectrum. According to a well known theorem of
K. O. Friedrichs there exists such an extension [3]. Denote 0<A4,=4,=... the
sequence of eigenvalues and {u,};° the complete orthonormal system of eigenfunc-
tions of the operator L in L,(R). For any s=0 and f€L,(2) consider the s-th
Riesz means of the spectral expansion of f:

EN@D S 3, (1-2) ¢ w)

'I/A

The convergence properties of E3f were investigated® in [5] for spherically sym-
metrical potential ¢ in the case of functions from Liouville classes further in [9] for
potential g of the form

q(x) A a([x*xol)

Fs e () (=g )+ 0 (%) (%EQ),

where 0=a€C=(0, =) such that
tlal@=cir S =00k =12 e N):

a@EC"@, lne] = ekl (1=,
In the investigation of the convergence properties of Ef f an important role is played
by the estimation of the Green function G=G(x, y, ) of the operator L,% 7 — 2/
(i.e. the kernel function of the operator (L— pry )
The aim of the present paper is to give estimation for the Green function G
for more general potential than above, namely, we assume only that there exists
a function 0=w(¢) such that

(1) w(?) increases,

* The Riesz summability of general orthogonal series was investigated by L. Leindler (e.g. [2]).



276 1. JOO

(2) o(r)/t decreases,
® Of “’T(’) dt <o

o (|x —x,|)
| —xo[*

This result is of some interest, because it seems to be not refinable from point of
view of the order of singularity of ¢ (cf. [13]). Define

dcf {ZEC

@ lg(x)| = (x€Q).

def

arg7__| = ——s e=>0 ﬁxed} B = {xe€R": [x—x,| < R},

B, d_"f{xER": [x—xo| < %R}, By f{xERN: [x—xo| < -;—R}

where 0<R<dist (x, 02)%LR*, and R will be chosen below to be small enough.
We shall prove

THEOREM. If (1)—(4) are fulfilled, then we have for N=3

1
(5 G(x, y, p)| = clme-cziul ==yl (ueZ; x, yEBy),

where the positive constants ¢, and ¢, do not depend on x, y and .

Proor. For the proof we need some lemmas. Assume in this work that x,=0
and use the notations

e w('“‘) ef 1 1 w(lul)
(R)drf du, 1LJ|x du

|l —u"E = P

e éflx—_%lmwl%'lﬂ)du. r=|x—y|.
LEMMA |. For any x,y€B and 0<R<R"
6) 11| = e;a(R)/r" 3,
@) |[7*| = cya(R).
The constants ¢y and ¢, do not depend on x, y and R.

Proor. First we prove (7). Define
E X BN {ueB: [x—u| = |y—ul},
E X BN {ucB: |x—ul=|y—ul}, IF= [.. (=12

E;

It is enough to estimate /7', because estimation of 15" is analogous. Consider
E{ & {ueEy: |u) = |x—ul}, Ef £ {ueE;: |u] = [x—ul).
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If ucE], then w(|u|)=w(lx—u|) and using the Holder inequality at p=N/(N—2),
q=NJ/2, we obtain

s def
e f...
E{

@(lu) w(l-\‘—ui)

Ju| |x —u|

[IA

f ‘1/p(|x ul) @"(|ul) du = [a(R)]"*[a(2R)]"'".

|N2 Ii?

If ucEy, then
q=N:

and the Holder inequality give at p=N/(N—1),

[IA

e o=k “’Il/p(|x"‘|) QD 4, < (@R a (R
El

El” x__u|N-l 1u|l

Now we prove (4). If u€E,, then r=|x—y|=|x—u|+|u—y|=2|u—y|, hence
ly—ul=r/2. We get:

) =

Lemma 1 is proved.

Now we construct and estimate a special fundamental solution E(x, y, u) of
the operator L, and then we shall estimate the difference between E and the Green
function G of the operator L Hence we obtain the desired estimate (5) for G.

Using the method of E. E Levi [11] first we construct a fundamental solution
E(x, y, n) of the operator L—py?l, i.e. a function for which

(—44+9(x):- —p*DE(x, y, p) = 06(x—y) (x,y€B).

In the case ¢=0, the fundamental solution E,(x, y, u) which decreases exponentially
for Im p=0 is ([11], 13.7.2)

Eoy(x, v, ) = en(u/r)"*1HS) 1 (rp).

Here H{"(z) denotes the v-th Hankel function of first order. Obviously, the expo-
nentially decreasing fundamental solution £ is the solution of the integral equation

®) E(x, y, 1) = Eo(x, y, ) — [ Eo(x, u, ) E(u, y, ) (w) du.
B

Indeed, it is well known that LyE,(x, y, u)=0(x—y) for the operator Lof’—fﬁ —4—
—p*l. Now we show that L, E(x,y, p)=6é(x—y) for Lud=°fL0+ql. Let
1, @€CF(B) be arbitrary, then**
Ef, Loy = [ [E(x v, m0f(y)dy—
B B

— [ ([ EaCx, u, 1) ECu, v, 1) q() du) /() dy] L, 0 (x) dx =
B B
= ff(y)dy on(x, s WL, ¢ (x)dx —
B B

— [fdy [E@, y, @) du [ Ey(x, u, )L, (x)dx.
B B B

** The operation " is defined by (¢f)(x)= f ex, »f(y)dy.
2
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According to our assumption

JEx. v, DL, 0(x)dx = [Eqy(x, y. )(Lo+q-) o(x) dx =
B B
= [Ex y, WLo@(x) dx+ [ Eo(x. ¥, 1) 9(x) 0 (x) dx =
B B

= oM+ [Eo(x. y, 0) g(x) 9(x) dx.
B
Consequently

(Ef,L,¢) = j fM e+ f Ey(x, y, ))q(x) ¢ (x) dx] dy —
= f ) ;f E(u, y, ) q(w) du[o(u)+ f Eg(x, u, 1) q(x) ¢ (x) dx] dy =
= (L o)+ f Sy | f Ey(x, y, 1)q(x) ¢ (x) dx —
- f E(u, y, 1)q () p (u) du— f E(u, y, 1) q(u)du f Eq(x, u, 1)q(x) ¢ (x) dx] =
=, ¢)+Bff(y) d}"!q(x)¢(X)dx[Eo(x, » 1) —E@x, y, 1) -

— [ Eo(x, u, W E(u, y, W) q(u) du] = (f, 9),
B

ie. (Ef, L,o)=(f, 9) (9€C:(B)), hence L,Ef=f for every feCg(B).
Now define

Ek(xa Y, Il) g_;f-f Eo(x, Y, ”)—' on(x7 u, ”)Ek—l(u’ Y, #)q(u)du9
B

Fo(x, Y, #)d;[ Eo(x’ ¥, #)7 Fk(x, s ﬂ) g Ek(xv Vs ﬂ)—Ek—l('x, Vs “)
Obviously

© E(x, y, p) = é"’ F(x,y, w),
if the series is uniformly convergent. Furthermore

(10) Fo(x, 1) = — [ Eo(x, u, ) Feoy (1, p, 0)q(u) du.
B

Our first aim is to prove that the series (9) has good convergence properties.
To this end we have to estimate the functions F,. Define]the functions f, by the
equation
Gy = B\l .
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Obviously, we have

(ll) Ifl‘((xs y’ #)l § C5 f—|x___——|f;£ 1(" y? ”)l |u|) r
B

because

(12) \Eo(x, 7, 0| = csw_iy!me-“m“' k=2 (x, yeB; peC)

({61, 7.2.1(2), (5); 7.3.1(1)). First we prove the following estimate (by induction
on k):

(13) £ Ce, v, ] = [coa (R |x—p[*~Y (x, y€B; ucC),

WhHeEre ¢y —=C5Cy-

For k=0 (13) follows from (12), according to the definition of F, and that
of f,. Suppose (13) is fulfilled for k—1 and prove it for k. Using (11) and the induc-
tion hypothesis, we obtain

flx, v, W =5 fl——lT—lfk 1 (4, y, I |(||"D u=

y

1 o)

du
x=auis “lef

= Cj [‘o“(R)]k lf lu— }’IN_

hence the desired estimate (13) follows using (6).
From (9) and (13) we obtain

LemMmA 2. For any x,y€B and pcC
(14) |ECx, y, p)| = eglx—y[p-Ne-Itmrllx=sl

holds, if R=0 is such that c,a(R)=0,5¢, does not depend on R.

Next we estimate the gradient of E, namely we prove
LEMMA 3. If R=|x l——R [yl ‘—R and ucC, then

(]5) |VXE(X9 ya #)! = CS(R)~
The constant cg(R) depends on R (it may increase as R— +0).
ProOF. From (8)

[Imp| [x—y| E s w8
e IV E(x, y, w)| = PR

1 1 o(lu)) c
+1}[ P du

9
i BN - 2 +
== i e—y"*

S f+ f A5 f —I—x_le.—l—-l-Z’l-

lu|=R/2 R/2=|u|=(/8)R (5/8)R=|u|=R
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Using (7) we obtain
1 o(u)) _
=y T

I, = const
lu|=R/2

because in this case also |x —u|= const - R;

o (R) du

12 = COnStT 2 = C(R),

N—

R/2=|u|=(5/8)R |ue—y|
because in this case also |x—u|=const-R; and at last
du y
I; = ¢(R) f Te—u T = ¢(R),

(5/8)R =|u| =R x—u

because in this case |y—u|=const-R. Summarising our estimates that of (15)
follows. Lemma 3 is proved.
We have proved after (8) that for the fundamental solution E(x, y, u) we have

(16) (L(x, D)—p21) [ECx, », wf(»)dy =f(x), x€B

for any feCg(Q), supp fCB.
Now define E*(x, y, ;t)gi_fE(y, x, p) “‘the formal adjoint of E”’. Then we have
for any f€Cg (Q), supp fC B, the equation

a7 JE*(x, y, WIL(y, D)= 21 f(y) dy = f(x), xEB.
o

Indeed, for any ¢cCy(Q)
Jodx [E*(x.y. WL, f(0)dy= [L,f(»)dy [E*(x, . me(x)dx =
Q o 2] o

= f L, f(x)dx f E(x,y, po(y)dy =
0 Q

= [fO (L, [E@x. y. wo()dy)dx = [fx)e(x)dx = (f. o),
2 ] 0

and hence (17) follows.
Now let n€Cy(Q) be such that n(x)=1 for x€B,, and define

Hx, p, 1) &L () E(x, y, 1), H*(x, p, 0) EL p0) E(, x, 1) = n(») E*(x, ». ),
K(x, 3, W) 2L 2(Von (X)) Ve E(x, p, ) +(4.1(x) Ex, . p).

K*(x, y, 1) 2L 2(V,n (D)) V, E* (x, y, W) +(4,n(») E* (x, ¥, ).
Obviously

[L(x, D)—p*I11H(x, y, p) = n(x)[L(x,D)—p*I1E(x, y, o) — K(x, y, p),
[L(y, D)—p*11H*(x, y, p) = n(p)[L(y, D)—p* 1) E*(x, y, p) — K*(x, y, 10),
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hence, for any f€Cg () we get
[H*x, y, WIL(y, D=1 f(0)dy = [FWIL(y, D)—p*1 H* (x, y, ) dy =
B B
= [FO) ML, D)1 E* (x, y, wdy— [K*(x, y, f(y)dy =
B B
: = () n(x)—K*f(x),
1.€.
(13) A (L—p*Df (x) = f() =K f(x) (JEC(Q), xEBy).
On the other hand, for any f€Cg(B) we have
ILGx, D)—p] [H(x, y, ) f (y)dy =
B
= nILx, D) —21] [ E(x, v, mf() dy— [Kx, y, ) f () dy =
B B

= 1/ (X)—Kf (),

e

(19) [L— @21 Hf(x) = f(x)—Kf (x) (f€C5™(B), XEBy).
Hence we have for any f€Cg(B) and ¢cCg(B)

(20) (Af, L,(x, D)) = (f—Kf, @)

Let f€L,(B) be arbitrary and {f,}CC¢(B) be such that f, L:,f. Then (20) fol-

lows for every f€L,(B). Because C§ (B)CC0 (Q)cD(L,), so we have (Af. L, p)=
=(f—Kf, ¢) hence AfcD(L}) and L} Hf=f—Kf for every xcQ. Thus

(21 (L; A (x) = (f—Kf) (x)
for every f€L,(B) and x€Q.
LEMMA 4. Suppose N=3 and f€L,(Q2). Then

(22) laf e, = ol fle, (P =2N/(N+4)).
The constant ¢, does not depend on f.

Proor. Using the generalized Holder inequality we get
lafle, = 19le, 1fle,, (P*+ar =P

On the other hand €Ly, (2) because

flq(x)l"“ dx = fM = const. f"" 3 w(r) dr = f o dr <o
2 2

N
X =X +0 +0

Choose p;=N/2, then ¢il=p'—p;y'=2"142N1-2N'=1/2, ie. ¢,=2
Lemma 4 is proved.
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LEMMA 5. Let feW ,(Q), p=2N[(N+4). Then
(23) iafle, = culflw-

ProOF. Using the imbedding W ;—~L,((N/p)—2=N/2), the estimate (23) fol-
lows from (22).

LEMMA 6. Suppose {f,}CW 2(Q), fEW3i(Q) and ﬂ,ﬂ»f(n——oo). Then
(24) ILf,—Lf |, =0 (n— o, p=2N/(N+4)).
PRrOOF. (24) follows from the following inequalities:
\Lfa—Lf ||, = [A(fa=Pe, +la(h=Ple, = c”fn_fhwiJrcu Uﬁ.*f”u/;-
Lemma 6 is proved.
LEMMA 7. For any fEW?2'°°(Q) we have

- L o~
25 A*(L—2) f==f—R*f (p=2N/(N+4)).
PROOF. Let fEW%°¢(Q) be arbitrary and {f,}CCg(Q) be a sequence, for
which || £, —fllw?&)—~0 (n—~<). Using Lemma 6 we obtain
g, S (L—p2D) f =2 (L= f &L g (n —~ o),

ie. |g,—gl. >0 (n—><), hence ]]H*g LT gle —»0 (n—~<=). Using (18), (25)
follows. Lemma 7 is proved.

LemMA 8. Suppose u, fc L,(Q) and L,(x, D)u=f in the distribution sense (i.e.
in D'(Q)). Then ucW2%'(Q) if p=2N/(N+4).

Proor. Obviously,
L,(x, D)u(x) = —Au(x)+q(x) u(x)—p*u(x) = fi1x),

hence by Lemma 5 we get —Adu(x)=f(x)+p*u(x)—g(x)u(x)€L,, and taking into
account Triebel [12], 6.4.1 and 2.3.4 we obtain ucW3'°°(Q). Lemma 8§ is proved.
Denote by a(L) the spectrum of L.

LEMMA 9. Suppose fcLy(Q) and AcCN\o(L). Then (L—2iI)~'feW%'(Q).
PRrOOF. Let g2L(L—iI)~'f. Then for every @cCg(RQ) we have
(s @) =((L-iDg, ¢) = (g (L—il)o).

Since @cCg(Q)cD(L), we have (L ll)(p L(x,D)p—J¢p hence (f,¢p)=

=(g, (L(x.D)—2A) o) ie. [L(x,D)—il]g =f Taking into account the assumption
J€Ly(R), Lemma 8 gives geW»'*°(Q). Lemma 9 is proved.

LemMMA 10. For any f€L,(Q) and x€B,
(26) GA,',f x)—HA*(x) = K*G, f(x), (n€C\o(L)).
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PrOOF. Let fECF(Q), then by Lemma 8 we get G, fcW2'(Q). According
to Lemma 7

A (L—p2DG, f=Z G, f~R* G, f
ie. M*f=G,/—K*G,f. If feLy(Q) then pick a sequence {f,}CC(L2) such that
fu 22~ f. Lemma 10 follows.
Lemma 11. For any f€L,(B) and x€Q
(27) G.f(x)—HAf (x) = G, Kf (x), (*eC\a(D)).

ProOF. From (21) it follows for any f€L,(B) G,(L—pl)Hf=G,f—G,Kf.
Lemma 11 is proved.

LemMmA 12. For any f€L,(B) and x€B,
(28) G, f(x)—H*f(x) = K*Af(x)+ K" G, Rf (x).

ProoF. This equality follows immediately from (26) and (27). Lemma 12 is
proved.

LEMMA 13. For every f€L,(B) and x€B,

emenlmsl |l my,

(29) |G‘uf(x)‘ﬁ*f(x)1 =2
where d(p) 2 dist (u, a(L)).
Proor. We know that

|1€*flf(x)| = Ce_t”“'""lﬁ Hf[’Ll = CC“"“"“‘I Hful"'

1
d(p)

and

e tad |
IR*G, Rf (x)| = ce=<us!™nl |G, Rf |, = ¢

c a0 e—Cusllmul I‘anl-:

hence

IR* G, Rf(x) = e~ ul'=alfrf, .

1
Cig T/.l)
Summarising our estimates we get (29). Lemma 13 is proved.

COROLLARY 1. For any x€B,, yéB and pcZ
(30) IG(x, y, W—H(x, y, p)| = eygecrelrl,

COROLLARY 2. For any x€B,, y€B,, UcZ

166z, y, B = el =yt We=Tinl o=,

and this is the statement of the Theorem.

The Theorem is proved.
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GENERAL LINEAR SUMMATION
OF THE VILENKIN—FOURIER SERIES

HE ZELIN (Nanjing)

Some special summation of Vilenkin—Fourier series [7] of functions in LP(0, 1)
(1=p=) were investigated by S. Yano, A. Efimov, I. Yastrebova, S. Blumin,
Su Weiyi and the author etc. (see [1]1—[5]). In [1] Blumin also discussed the general
summation. This paper is devoted to extending some results in [5] for the case | =p =
and some specific discussions for the case 1=p—<e-.

The notions and the symbols in this paper are basically the same as in [5], but
some of them have been revised.

§ 1. Notions and symbols

1. Let N:={1,2,...},P:={0, 1,2, ...}, {m;};cp be a sequence of integers each
greater than 1, supm;<ee. Z;:={0,1,...,m;—1}, My:=1, M; ,:=m;M; (jEP).

J
2. If x,p€[0,1) and their expansions respectively are x= > x M},
« Ji0

J

o

M4 (xj, 3,€Z)), then let xOy:= 3 (x;—y;) (mod m;) M};.

0 #

Jj=0
2mi s =
3. Let (Pu(x)=cxp7k'xk, Yi(x):= ]]0 (@;(x)fs, where x= %ijj'+11 (X,€Z),
j= J=

M3

y:

I

J

k= 2 k;M;eP (k;€Z,). {{,}xcp is called the Vilenkin function system.
i=0

4. D)= 3 ;0. Fu(®)=— 3 D,(x) (neN).

=0 n Jj=1

5. Let f,g€L?[0,1) (1=p==), £ (k)= [ fOTp(@)dt (KEN), (f*g)(x):=

= [ f(xeng(@)dt, S,(f):=f*D, (neN).

: 6. o(f.8):=w(L[0, 1), 1, 8):= S IfC- e —f()l, (fEL?[0,1), 1=p=-,
5>0). e

s EiT Let G and H be functions or functionals defined on a set U. If there exist posi-
tive numbers o, and a, such that for all x€U, o, G(x)=H(x)=a,G(x), we will
denote it by G~H.

M, -1
8. Let feL2[0,1) (1=p==), T®()= 5 k%, (t) (x is real, 0°:= 1 if 2—<0).
k=0

6*



286 HE ZELIN

If there exists g€ L”[0, 1) such that lim |7 *f—gl|,=0, then if a=>0, g is called

the (strong) derivative of order a of fin LP[0, 1); if <0, g is called the (strong)
integral of order (—a) of fin LP[0, 1). In both cases g will be denoted by 7 f.

§ 2. The case 1=p=

Blumin [1] gave the following result:

n—1
If fELP[0,1) (1=p=-<=), K,=1+ > ¢, (n€N), then
k=1

ri Mygq=1
2.1 i!f—f*K.,i!,,EC{(Hﬂ AV E(N+ 2 I 2 (l—ck)x//k!'l,EM,(f)}_

where M,=n<M, ,, E,(f):=inf{|| f—gl,: g"(k)=0 (N3k=n)} and C>0 is an
absolute constant.
We wiil give another estimate by a simpler method. First we show

Lemma 1. If fELP[0,1) (1 = p = o), g€L0,1), g° (k) =0 (k=0,1,2, ..
..., M,—1, r€éN), then
@) g =olfig]) el
PrOOEF. Since for any k€P,
ST g™ (k) = (f" (k) —(Sa, (S )" (k) g" (K),

by the uniqueness theorem of Fourier transform, we get f*g=( /=Sy, (f)) *g.
Hence by [8]

el = 1/=Su Dk = o[£ 5] tel.

THEOREM 1. If fELP[0, 1) (1 =p= =), K, L0, 1) (¢ belongs to a set ofmdues)
K (0)=1, K, (k):=C(0):=C, (kEN), thenfor any positive integer r

N 1 r=1 1+11
@.3) llf—f*Keréw[f’ﬁ]+,§,f|k§, “—Ck)*”*“*“’(f’M_l.)“L

+ 31,5, o (55g).

Proor. Since the sequence of the A,-th partial sums of a Vilenkin—Fouriec

series of an integrable function is convergent in L'[0, 1) (see e.g. [7]), i.e. K,=1+
P Ml+|_]

+ 2> 2 <y, we have for all s=r (séN)

=0 k=M,

] -1 M-
|1f f* exp— [if SM,(f)” +Hf* o o (l_ck)'l,k“ +

=M,

Ml#l

Hre 275 atlerlre, 275 anll
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By the above Lemma we have

@4 /I f*KHp—w(f )+2 (55 )HZ (el +

iy Zw f ]” 2 Ck'/’k'|1+w(f ] 5 3 CU/’AHl

=s+1 k
Moreover, by [8]
o M;,,—1 i - y l
“ 2 Z Ck ‘/’k”l = ?]Kg‘SMS(Ke)';h E w(Ll [0, 1), K,, "M‘)
I=5+1 k=M, 3
In (2.4) letting s—co, we get (2.3).
n—1
COROLLARY 1.1. If fELP[0,1) (1=p=-<e), K,=1+ > ¢, (n€EN), then
| k=1
(2.5)

Usekiy = Zo(fgr) 13 a-awliro (fgg) (141, 3 ).

where reP is defined by M, =n<M, .
Note. In some cases the estimation (2.5) is more accurate than (2.1). For

example, let f€LP[0, 1) (lép‘éoo) with w(]; A_/][—]:']% and the kernel K,=
J

~l+(1 + ]l//1+ 2 ¥; (M,=n<M,,,), then by (2.1)

1 Inlnn
lf—f*K 1||p_c{2 I+1 M'(f)} {2 I-H} mn  Inn’
and by (2.5)
G i AT o R
[|j—f*K,,‘\,,=w[f’Mo) Innl, Inn’

If T@feLr[0,1) (x=0), then using the inequality (see [5])

w(f, IML,] = M,‘“w(T@f, Mi‘) (I€P)

we may give the following
COROLLARY 1.2. If fEL"[O 1) (l*pfoo) and T fc L?[0, 1) (2=0), then for
all reN
’H

(26) I/=f* Kol = 2 .2

k

“.?,ck).!hl|1Mr‘w(T<a> P EJJF

+M, w(T<">f )+Z“ Z Ck'rkaIM’ w(T”f,——)
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resp. for all nEN

1. My =1

en ekl 3 3 a—anl i o(ros g+

n—1 |
| —a ™ £ 4L
+(l+||k=zn'1, Ck'/’k“l) M, w(T va')
where réP and M, =n<M, ,

In [5] we discussed the typical means of Vilenkin—Fourier series and gave the
following result:

If T®feLr[0,1), K,= 2 (l—[ ])t,bk (x=0, A=0, n€N, p=1), then

2.8) Lf~f Kl = O(1) 377 ZM‘ «w[T@/;MLl),

where réP and M,=n<M, .

Now we use (2.6) to deal with the Abel—Cartwright mean. We first give a
lemma.

LEMMA 2. We have
AR . M, ,—3
szzn;, ¥l = 0(1) [k=21v;, k IAZ"k|+M1Ml§'2%”f“_2 | A +M,§kn§1§’,(,,—1 lel].

where A?ci=c,—2¢; 1+ Chys, ACx=Cr—Ciyq (K, IEP).

Proor. Applying Abel’s transform twice, we get

My, -1 M, ,—3
szzb;, ckwk“l = H ’:%l Ae(k+1) Fypy—Acy, M Fy, +
-

Taking into account [[Dy |, and [|Fll;=0(1) (/, kEP, see e.g. [8]), we get Lemma 2.

THEOREM 2. If fELP[0,1) (1=p=o) and TWfcL?[0, 1) (2=0) and

+ ey, —2(Myo1—1) Fyy, -1 —Cp, Dy, +Cmy -1 Dy

= S G=0)
k=0

then
C9 UKl =005z 3 Mio(T9s 1) @~ 1-0,

1
= = AT TR
M‘ =M

It is interesting to see the similarity between (2.8) and (2.9).

wi
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PrOOF. By (2.6) (with ¢;:=¢*" (kEN))

] : r—1 M;,,—1 o 1 e : |
| f—f*K,l, = EOHEZM (1= ¥l [1 M, “w(T(“)f, E)+Mr w(T"’f, M, -

o M, -1 l
+Z1,5, avlhmiolres ).

By Lemma 2,
M -1 M, -3
| =3 2 ; ,
]‘ k=2h'{l Ck¢kl|1 = 0(1)(,‘:2,;‘ k|42 ci| + M, M,gkrgff),‘ﬂ-z [Ae| +M,§kn'2?l,,‘ﬂ—l [eel),
Mysi~ M, -3
I 2 Kt —edll =0M( > kldal+
+ M, 2 |AckI+M‘§kr2g')'(ﬂ_l {—el)
Furthermore,
max It’kl = max Q“ = QMIJ'
M;=k=M, ,—1 M =k=M, ,—1

regarding k as a continuous variable and using the mean value theorem we have

X ; k2 (k+ DA — K STy
M,;krggf),(“—2 e = M,ékrglef),(“—zm ¢ = M,ékrggf),(ﬂ—l @™ In gdk™™
2 M}
= 0() M (1 - Mt = 0(1) ™ ,;,1 ;
max [4%¢| =2 max (|¢*In?@A%k*~*+[0* In @A(A—1)k*~2|) =
M =k=M,,—2 M =k=M,,—1
g B
_O(I)QM A‘lgl »
L — — o) = ka ) JoA—1 =
Mlégg,fﬂ_lll Cil i R [(1—e )—%gwéagmle In@2k* "M, ,,| =
M“ o
Thus we have
r-1 M;,,—1 1
(2.10) 282 (l—ckm!l,Mr*w[TW,ﬁ] =)
=0 "' k=M, !

—-0(1)2’w(T<°‘>j ——)M" M‘[M i gm B

ot oo,
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b 1 1 M1 o6l
and |taking account that ]| ————<p=1——— and |l — —— as r—co

Mr; 3 Mr’ e
KT )* = b ¥ oy
2.11) 2 I 2 cklpk]i]M,—aw(T«y, 7‘7) =
i=r'" k=M, 1
i * 160 7 M}. M 2%
= 1 T@® f J e M { ——'——] =
O( )w([ 1 7 M, é’rg i 1+M’+M,2’1

MZ(MPIMZ) M}
—owelzes gt 2 (-5 G

Substituting (2.10) and (2.11) into (2.6) we get (2.9).
The following corollaries are immediate consequences of Theorem 2 (cf. [5]).

CoroLLARY 2.1. If f¢X[0, 1) (X[0, 1):=L?[0, 1) (1=p <<=) or WC0, 1),
WCI0, 1) := {feL=[0,1): sup |f(x®h)—f(x)| -0 as h -~ 0})
0=x<1

) = 0(1)M,‘“w(T<">f; 1\:{)

then || f—f*K,llx—~0 (¢e~1-0).
COROLLARY 2.1. If T feLip f (i.e. (T f, 6)=0(5*) as f—0)(x=0, f=0) then
0((1_9)(1+ﬂ)/)~) ,-f a+p <A
\ 3 1 ; X
e kdy =00 -omL) i wrp=i
O(1—o) if a+p=4A

§ 3. The case 1 <p—<oo

In this case using the Littlewood—Paley theorem and the strong multiplier
theorem (see [2], Theorem 1), we may obtain further results. Blumin [2] gave the
following result:

Let f€LP[0,.1) (1 =p<<) and {c;} be a sequence such that

M,—2

3.1) lex| = B, Z I r=tihf=B (kEP, IEN).
o o

0 —

Then chf (k)= g€ LP|0, ]) and |g|,=A4,|f|,, where 4, is a constant
dependmg only on p.
Lemma 3. If f,€L7[0,1) (l§p< o, k=0,1, ..., n, n€P), then

(3.2) (ZMMWﬁ@mW°

where s,=min (2, p), s,=max (2, p).

= { 2’ 1Az,
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PRroOOF. Suppose 1=p=2. Since (Zlakl] = > |a|* as a=1, we have

G (AR = (f (S AR = (f 3 IAk)" = (2 1A
On the other hand, since || /i +/fall .= Al £ll, as g=1,
L= (:é; filpr)ePar = (éo(f I

L (2 LAl

G4 (3 AP

z(p/z))‘l/P)I/Z =1

Similarly we may prove that if 2=p< e, then

(3.5) (; I fallz) = H(é{, |ful?) |, = (z AR

LEMMA 4. Let fELP[0,1) (1<p=<-<), co=cg, (k—C,—O (M,_,=k<M,, IEN),
{cI} a bounded nondecreasing sequence. Then g= 2( (k)Y eLP[0, 1) and

SR {1 R e

whereay=cg, a,= l/c —c%, (IEN), s;=min (2, p), s,=max (2, p) and A,, /Tp>0 are
constants depending on p.
M,—1

PROOF. Let 44=1"(0), 4,= 2 f (k)Y (I=1). By the generalized Little-
k=M, _,
wood—Paley theorem (see [6] p. 58—359)

IS @y ~ (2 i1, = 1 Z e (S 1P~ 3 148, =
- H(éoci‘2 ,ij |4;*— éﬂ 672]_=’21 4,177, =
= [ Z ei* Z 14, s L Z 14, =
& H(‘:Z‘l(c ) 2 4,12+ ey 2 i 2 14,1, =

= H(Z’ aj Z l4l*—c *2j§1|4,-|2)"2||,,,

Acta Mathematica Hungarica 46, 1985



292

HE ZELIN
thus

I1Sm, (@, = B, || (,é') a? g 14,12,
and J

1Su, @l = B, |[( 3 af 3 14,0, B, (e 3 14,0,
=0 g=—1 Jj=s+1

(B,, B,>0 are constants depending on p.)
By Lemma 3,

5

(2 a

1.2 aF 2 145l =
=0 NN=}

l2)1/2} Isl l/sl

Using Littlewood—Paley theorem again and by [8]

p o o . s 1 sy )\ 1/s¢
186, (@), = A"(Eo apt Hk zlef B o) = 4, [go [a.w(ﬂ Fi,)] ] :
Similarly we get

1Sam. @), = ,[é{; [a,w[f’ Hl’_)]s,]llsz_

3 l
Biciolr ﬁ) ’
where B,>0 is a constant depending on p

Letting s—c, we get (by 1Sm, (D, -'IIgII (s—=<0), seee.g.[7])

el s

-

iz [2 “’“’( ‘M, ]S‘]ml

THEOREM 3. Let fELP[0, 1) (1<p<-<=), K,€L'[0, 1), K, (k)=1 (0=k<M,,, [,cP)
(1) If there exists a nonincreasing sequence {c{}, co=cg, cx=cf<1(m_,=k<M,,
IEN) such that {l e )

== }I¢=M,o satisfies (3.1), then
3.7

, & — l s, \1/3,
~reiidy = 4, Saolr g )] |
(2) If K, (/)#1 (jEN, j=M,) and there exists a nonincreasing sequence {ci},

co=cg, =cf<1 (M,_;=k<M,, IEN) such that {ﬁ‘—}‘k—)}k:m satisfies
(3.1) then 2 ;
(3.8) |

o oo 1 Sz l-lsz
seridy= A, 2 lao(n g )]

In (1) and (2), 4, and /T, are positive constants depending on p,
a=VA-cH)—A—c)* (>1) a, =1—cp,,

—cf = min (2, p)
Acta Mathematica Hungarica 46, 1985
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PROOF OF (1). Since

K (k)

)

If-fekely = 5 (l—K (k) f (kmu,—” 2

(—c) £ O

we have by Lemmas 3 and 4

”f—f*KaHp = Bka:Z: (l —‘Ck)f‘(k)lﬁk“‘, = AP[,§[alw(ﬁ ML’) 51]1/.1..

Using the equality

1,2, a-er wwl. =], 3 TR K E

we may prove (2) in the same way.

THEOREM 4. Let [€LP[0,1) (I<g=-<), K,L'[0, 1), {K, (k)} a nonincreasing
sequence and K, (k)=1 (k<M,), K; (j)<1 (JEN, j=M,,, [LEP). Then

(39) 4 [l > a,w(f M+1 r]”“ I f—f*K,ll, = p[’_Z:I a,w(f, M—l:]]ﬁ]ll“

where A, and A4 » are positive constants depending on p, s;=min (2, p), s; =max (2, p),

a, =1-K; (M), a=V(1-K,(M)*—(1—-K, (M,_,))* (> 1)

PrOOF. Applying Theorem 3, we take {c¢/}={K,(M)} (I=l,), then

{Lg(k)}w satisfies (3.1). In fact
1—¢, Ji=m,,
1-K, (k) ) s gk
{ = ‘ 'l-K gy (e b W= k=M =),
Moz 1K (k) 1=K (k+1) | _s
k=i, | 11— i 1 —cpeq T 11—k, (M) k_Z (K, () —K; (k+1) =

l ) -~
i TW(KQ M_)—K;, M—1D))=1 (I=1).
oo s\ 1/8,
Thus by Theorem 3 | f—f*K,|,=4, (Izzl",[a,w[f, ﬁ,]] ] , where a,=1—

(TCT?):]"K;(MIO)’ a=VA=cP—-(—c 2=V (1-K; M) —(1—K; (M,_,))?
>=1y).

ke ~ 1 Y m
On the other hand we take ¢;=K,(M,-;) (I=l,), then {_l—‘——l?;—.(k—iCT}k=Mlo
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satisfies (3.1). In fact

1K, (M,-,)

—K. (0 sd' (Myii=ki= M, 1'=T),

I

1=K, (M) 1—K; (M) d
1 _KEA(MI—])

1—K, (k) 1—K, (k+1)

I ]:l_ ]_K;(Ml—x) =4
1-K, (M;—1) 1-K, (M,—1)

== (] _KL: (Ml—l))(

=2

(I =1y).

Applying Theorem 3, we may get

|/~ Ky =4 [5 EREY ML)]]/ i [5[“’(1’ #)T]/

This completes the proof.
The following Theorems 5 and 6 are direct applications of Theorem 4.

n—1

2
THEOREM 5. If fELP[0,1) (1<p<-<), K,= 2 ( [ﬁ] ]l//k (=0, neN), then

| TR P e

where réP, M,_,=n<M, and A, A=0 are constants depending on p, A

THEOREM 6. If fELP[0, 1) (1<p<<e), K,= 2’ oY (A=0,0<g9=<1), then

bt o a ) = s, = o Sl )

1
where reP, —;;l—o< T and A A=0 are constants depending on p, 7, o.
M/ M

Here we only give the proof of Theorem 6. Apply Theorem 4. Since

MG 0). 2 M2 1\ MIA M7
By = NESPS = A Teg = ragys s il Y (1= ™y — (1 — M2y A—i] e’ (eN)

3G eolig) = ol ,“],,H(M') lsis o it

I=r+1
~oltgr—) = ety

substituting these into (3.9), we obtain the desired result.
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CONVEX CURVES IN GEAR

T. ZAMFIRESCU (Dortmund)

Introduction

When looking at two wheels in gear we notice the essential property that no
rotation of one of them can be performed without rotating the other. But it is
equally obvious that they are not too convex. Can we construct convex wheels
that are in gear? This paper answers (locally) this question, but has no ambition
to have any technical relevance!

Let us consider two Jordan (closed) curves C,, C, in the half-plane RXR_,
both containing the origin O=(0, 0). (R, =[0, =), R_=(—<, 0].) Suppose C,— {0}
lies in the bounded domain with frontier C,. Such ordered pairs of curves (C,, C,)
will shortly be called supporting curves (C, supports C;). According to intuitive
evidence we say that (locally at O) C; can rotate around (0,a) if there is a
neighbourhood of O in R_XR, or in R, XR_ within which C; meets the circle
with centre (0, a) and radius a only in O ({i,/}={1,2}). (In fact the intuition
would impose here a stronger condition, which however turns out to be superfluous
for all later purposes.) Consequently, we say that C, and C, are in gear with respect
to (0,a,) and (0, a,) (ay=a,) if C; cannot rotate around (0, a;) (i€ {i, 2}) and
that C, and C, are in perfect gear if they are in gear with respect to any pair of (cor-
rectly ordered) points on the positive y-axis.

If the curvatures of C, and C, at O exist and are different, then C, and C, are
not in gear with respect to any pair of points. If it happens that C, and C, have a
common centre ¢ of curvature at O, then they possibly are in gear with respect to
¢ and ¢ only.

~ Our main result is that, in a certain sense, in general two supporting convex
curves are in perfect gear.

Circles tangent to convex curves

In a Baire space, ‘“‘most” means ‘‘all, except those in a set of first category”,
1.e. “those in a residual set”.

Let 4 be the space of all (closed) convex curves in R? and ¢ the subspace of
all those lying in RXR, and containing O. It is easily seen that both of them,
endowed with Hausdorff’s metric, are Baire spaces. It is not difficult to modify the
proof of Klee’s result [3] (see also Gruber [2]), which says that most curves in %~
are differentiable and strictly convex, to demonstrate that most curves in % have
the same properties.

We shall consider the lower and upper radii of curvature ¢ (p) and ¢ (p) at
an arbitrary point p on C, in both directions (for a definition see [1], p. 14). If all
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four of them are equal we write o(p) for the common value. About # we know
the following: On one hand [5]

for most curves in K, o(p) = < a.e.
On the other hand [6]
Sfor most curves in X, or(p) =0 and oF(p) = == at most points p.

How behaves C at O for most curves C€%? From a probabilistic point of
view it can be expected that the bahaviour at O is of the first kind, while from a
topological point of view the second seems more plausible.

THEOREM 1. For most curves in €, 0X(0)=0 and 0F(0)=-o-.

PRrROOF. Let
oA = {Ce%: oif (0) = ¢i (0) =0}.

Denote by ¢* the set of all curves in % supporting some convex curve I' composed
of a semicircle and a segment of the y-axis. Let %, be the subset of all curves in %
for which I' has diameter 2n~1.

It is rather obvious that ¢ is the complement of o/ and that ¢"=[)%,.

We show that %, is nowhere dense in %, for every n. Since %, is easily seen to be
closed, it suffices to find in its complement a set dense in %. This is provided by the
family of all convex polygons in RXR, which have O as a vertex and have no
edge on the x-axis. Thus, ./ is residual.

In an analogous manner one shows that the set
# = {CE%: 07 (0) = 07 (0) =}

1s residual, the set of convex curves dense in % being this time the family of all con-
vex polygons in RXR_, having O as interior point of an edge.

Hence /(% is residual, which proves the theorem.

As a consequence we get the following result from [7]. Denote by %° the sub-
space of % all the elements of which are circles. ¥X%° is then obviously a
Baire space.

COROLLARY. Most pairs of curves in €X%° intersect each other in every neigh-
bourhood of O at some point different from O.

Proor. Consider two topological spaces 4 and %, where % has a countable
basis, and two sets ACZ, BC%. We use the following known result ([4], Theo-
rem 15.3):

AXB is of first category in X'X% if and only if A or B is of first category.

In our case, we know by Theorem 1 that most curves in % intersect every circle
from %° in a point different from O and as close to O as we want. Then, the prece-
ding result (with B=%=%") yields the Corollary.
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Convex curves in perfect gear

We easily see that the set 2 c%* of all pairs of supporting convex curves is a
Baire space. Let (C,, C,)€Z.

Let now 0#(C,) and ¢#(C,) denote ¢97(0) and ¢F(O) calculated for the
curve C,. We observe the following: If

07 (C) < ay, 0f (Cy) < ay
and
07 (C) > as, o} (C) > a,,
then C, and C, are in gear with respect to (0, @,) and (0, a,).
Thus, if
0#(C) =0 and ¢#(C)=-,
then C, and C, are in perfect gear. We also remark that the converse holds too.
THEOREM 2. Most pairs of supporting convex curves are in perfect gear.
Proor. We prove that for most pairs of curves (C,, C,)€2,
0#(C) =0 and #(Cy) =o.
The argument parallels that of Theorem 1:
[ict
oA = {(C1~ C)ED: of (C‘a) =07 (Cy) = 0}-
Let Z* be the set of all pairs (C,, C,)€2, such that C, supports some convex curve
I' composed by a semicircle and a segment of the y-axis. Let 2, be the subset of all

pairs in 2* for which I' has diameter 2n~'. 2, is obviously closed. The family of all

pairs of supporting convex polygons, both admitting O as a vertex and having no
edge on the x-axis, is dense in . Hence

A=9-) 9,
n=1
is residual. Analogously,
B = {(C1, C)ED: o5 (C) = o5 (C) ==}
is residual and most pairs of 2 belong to /(4.

Theorems 1 and 2 extend in an obvious way to higher dimensions and the
proofs present no difficulty. Also, one can consider pairs of supporting convex sur-
faces of different dimensions; it is still true that most such pairs of surfaces are in
perfect gear.
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ON THE CONTROL OF INSTABLE SYSTEMS

V. KOMORNIK (Budapest)

Dedicated to Professor Laszlo Leindler on his 50 birthday

1. In the last years the control theory of singular systems has been developed
intensively (see [3]). Recently A. Bensoussan showed that the optimal cost and the
optimal control of a singular system may happen stable with respect to a singular
perturbation ([4]). Further results on this field were obtained by A. Haraux, F. Murat
and the author in [5]—[8].

Developing the method of Bensoussan we shall prove some general results
concerning the system eAz+ |z|"=», n=1 real. Surprisingly, this system behaves
better than the system for which the method was originally created.

The author 1s deeply indebted to Professor J.-L. Lions for useful consultations
and advices and also grateful to Professor F. Murat for fruitful discussions.

2. Throughout this paper we shall use the following notations and conditions:
Q denotes an arbitrary measure space and | ||, the usual norm of the real Banach
space LP=LP(Q) (1=p=<). For some 1=r<e, 1=n<-c fixed, 4 denotes an
arbitrary linear operator A: L™—~L", D(A) dense in L™. For some 0=N<co,
26 L™, U g L fixed we put

J: L'XL™ - R, J(v, 2) = |z—z,|+ N},
J, = inf {J (v, z)[vE”?l,,d, z€D(A), v = eAz+|z|"} (¢€R, ¢ # 0)
and for each ¢#0 we fix u,, y, such that
(§))] U U pg> V.ED(A), u, = €Ay, +|y,|" and J(u,,y,) = J,+[e|.

The present paper is devoted to the study of the behavior of the sequences J,, u,, y,
when ¢ tends to 0.

REMARK. The system eAz+|z|" is instable in general; this can be shown
by the method presented in [3]. Some deeper results of this type are proved in [2].
Put

Jo = inf {J(v; z)‘vEL’, zeL™, v = |z|");

one can easily see that

@ {for YoEL™ and  uy= |yl" J(ug, yo) = Jo iff

|yo— 2zl sgn (¥o—2a) + N |yol"'sgn(ye) =0 a.e.

Hence u, and y, are determined uniquely if rn>1 or if N=#1. If rn=N=1 then
there are several solutions. :

7*
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In what follows we shall assume that
3) upEint % 4

(in case rn=N=1 at least for one u,). We note that (3) and the density of D(A4)
imply
Jo = inf {J (v, z)\vE U ai> 2€D(A), v = |2|"}.

3. In this section we prove the following result:
THEOREM 1. Assume y,€ D(A) and uy=*€ D(A*). Then

Jg = JO +0(8).
Furthermore
l¥e=yolin=0() if rn=2

l,— ot =O0() if r=2 and N =0.

and

We remark that the adjoint of A4 is defined uniquely as an operator

1
. yr/(r—1) rn/(rn—1) e e
A*: L - L (_l—l $ )

We need three lemmas for the proof of this theorem.

LEmMMA 1. For any 1=p<eoo there exists a constant C,=0 such that

la+bl?—|alP—plalP~*(sgna) b= C,|b|? (vYa, bER).

Moreover, C,>0 if p=2.

ProOF. Dividing by [b|? and putting

C, = inf {[1+x/7—|x/P—p x>~ sgn x},

it suffices to show that C,=0 if p=1 and C,=0 if p=2. The case p=1 is
obvious. If p>1, then the function f(x)=|x|? is convex and f'(x)=p|x|°~'sgn x.
Therefore C,=0.

Consider now the case p=2, then f”(x)=p(p—1)[x|?~2. Applying the Taylor
formula,

i g
1 4x]P— x| — p [ x>~ sgn x = .P(Pzi) e
for some x<=<¢<=x+1. Hence
1
dnf, (|14}~ |xlP— plxlP~* sgnx} = ﬂ(”z—’ = 1.

On the other hand, the function |x|” is strictly convex whence the continuous func-
tion |1+4x|?—|x|?—p|x|P~sgn x is strictly positive. Therefore

inf, {|1+x]7—|x}" ~p x/*~"sgn x} > 0

and the lemma is proved. []
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Lemma 2. J,=J,+0(¢).

Proor. Using the conditions wuy€int %,,, yocD(A) we have for [¢| suffi-
ciently small’

J. = J(eAYe+ |yl yo) = !)j(|y0+z,|'"+1v |ty +EAY,|") dx =
= (o, yo) +N Qj (|t +eAyel —ug") dx =
= Jy+rN f|u0+98Ayol’“1 ledyo|dx =
(1]
= Jo+erN [ (ug+]Apol) ' |A¥o| dx = Jo+0(e).
Q
We have applied the triangle inequality for r=1 and the Lagrange inequality for

r=1 (hence. ]0]_%1).-

LEMMA 3. ‘
'Iz = ‘,0+Crn \!yc'—yod::'f' NCI Ug— “o“:_o(s)-

Proor. Using (1), (2) and applying Lemma 1 three times,

e THet =T, 3) = [ 10— 2+ =3I dx+ N [ lug+(u,— up)l" dx =
Q Q2

i = f(ly‘,—zdf’"+rn [¥o—za|™ " sgn (Yo — 22) (V. — Vo) + Crul Ve — Yol ™) dx +
n

+N f(u5+ru3"(u¢—uo)+C,]us—uol’)dx =
0

= J(uos }’o) + Crn nye—J'oH::: Wi NCr H U,— “oii: +
+rN [ (™ (u,— 1g) — 1 |y " sgn (30) (3. — yo)) dx =
Q

= I, Y0+ Cou v = Yol + NC, |u,— ol +erN [ u=* Ay, dx+
Q2
+rN f ol =" {1yel" = yal" =1 [yal"~" sgn (o) (. — yo)} dx =
= J (o Y0+ Cou |¥s— ol + NC, |, — ol +erN [t ayedx =
= Jo+Cou|y.— yollsa+ NC, [u,— ol +2rN - [ yA* (1™ dx =
Q

= J0+ Cm u)’c —)’on:: il NCr H U, — “on: L lsl rN l]yc”m HA*(u(’)_l)!Im/(m—l)
and the lemma follows because by Lemma 2

“y:_zd"::: = "(“c,yc) = Jz+lcl = J0+0(s)
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whence
Vel = O(D).
Finally, Theorem 1 is an immediate consequence of Lemmas 1—3.
REMARK. One can easily see that the above proof equally works if we replace
the condition (3) by the weaker one
(€)) uy+eAy, €%, for |¢| sufficiently small.

4. In this section we turn to the more general case when y, ¢ D(A) or u§y~'¢ D(4*).
The following result will be proved:

Furthermore
Hyz_.vol{m -0 ‘.f rn =2
and
la,—uyl, =0 if r=2 and N =0.

REMARK. We note that the condition u§~'€D(A*) is obviously satisfied if A4
is a closed (or closable) operator because then D(A4*) is dense in L/¢—Y, O

We need two new lemmas.
LemMmaA 4. Tim J,=J,.

Proor. Fix a sequence (z,)cD(A) such that [z, —yll,.,—~0. We can assume
that |z, |"€int %,, for all m because for any f, g€ L™

Sllrr=iglfrdx = [lnlf+0@—Nr1f—glf dx = o (1f leat+lglha)™ | f~glta

Q (9}

by the Lagrange or the triangle inequality (0<60=1). Then
Iim J, = inflim J(¢4z,,+ |z,|", zw) = inf J(|Z|", o) =
= nmﬁ',(‘zm{”a Zm) = J(u(h y()) a1 JO'

We applied twice the inequality obtained from the above one for fand g replacing
n, r by rn, 1. The lemma is proved. [

LemmMa 5.
Je = Jo+Crn ”ys_y()”;:'f'Ncr “uz_uoli:—o(l)'

PrOOF. Repeating the first part of the proof of Lemma 3 we obtain
Jolel = o+ Con vyl + NC, Ju,— ol +erN [ (Ay) i dx.
To finish the proof we show that %
(5) eN j(Ay,)u:,-ldx = o(l).
o

Fix for each &0 a function z, such that

ZEED(A*), “VE] A*zc“m/(m—l) == 1
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and
{1%—1_ a[ir/(r—-l) = |6|+inf{Hulr)—l_ ZIJ'/(,_I)IZED(A*),

Vm A*zllrn/(m 1) = l}
It follows from this construction and from the condition u5~'€D(A4*) that
(6) lisA*zcﬁrn/(rn—l) -0 and 1!”5~1 _Zznr/(r—l) - 0.

Furthermore the quaantities
Q) [yelrn and [eNAy.,

are bounded because, by Lemma 4,
I‘ys'ﬁzd”::'i'N |l8Ay+|)'£In1‘; 75 "(uv yz) = "s+!6| = J0+o(l)
Now (5) follows from (6) and (7) because

eN [(Ay)uy dx = oN [(Ay)z,dx+eN [(Ay) (@' —z)dx =
Q Q2 N

=N [y,(eA*z)dx+ [(eNAy) (s —z)dx =
(0] Q

== vl | | I y |t =L
= —N ilys:lrn ‘.EA*chirn/(rn—l) HSNA)JU Huf) zz“r/(r-l)

and the lemma is proved.
Finally, Theorem 2 follows from Lemmas 1, 4 and 5.

5. We formulate some open problems connected with the results of this paper:

The functions y, and u, are determined uniquely if r=1 but the convergences
y,~y, and u,—~u, were proved only if r=2. It would be interesting to study the
case 1<r<2.

The condition u,€int %,, played important role in the proofs. What can be
said in general, for example if w,€ext %,;?

It would be useful to find an asymptotic development for J,, y, and u, (cf. [1]).
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(L', H)-TYPE ESTIMATIONS FOR SOME OPERATORS
WITH RESPECT TO THE WALSH—PALEY SYSTEM

P. SIMON (Budapest)

1. Introduction. Let (w,, n€N:={0, 1, ...}) be the Walsh—Paley system and
let ry, ry, ... represent the Rademacher functions. (For more details see e.g. {3].)
If /is a Lebesgue integrable function defined on [0, 1], then denote by S, f and
a, f the n-th (n€N) partial sum resp. (C,1) mean of the Walsh—Fourier series

of f. Furthermore, let D,:= 2 we (k=1, 2, ...) be the n-th Dirichlet kernel. The

k=0
Fejér kernels are denoted by K,,'—— ZDA (n=1,2, ..-):

The so-called dyadic Hardy spdce H is defined as follows [2]. A function
ac L=[0, 1] is called an atom, if either a=1 or a has the following properties:

1
(1) i) suppac I,, ii) |a]e=|L]"2, ii) fa:(),
0

where 7,c[0, 1] is a dyadic interval and |/,| denotes its length. We say that the

function f belongs to H, if f can be represented as f= > 4,a;, where a;’s are atoms
i=0

and for the coefficients 4; (i€N) > |4;/<<o is true. It is well-known that H is a
i=0

Banach space with respect to the norm
1A 1l := inf 3 |4,
i=0
where the infimum is taken over all decompositions f= 3 1.a,cH.

- - . =o .
I'hroughout this work, C=0 will denote an absolute constant which will not
necessarily be the same at different occurrences.

2. In this note we shall examine the following operators introduced earlier by
G. 1. Sunouchi [5], [6]:

co s, P 1/p
J U,fi= (SELI)” =1, oo, ),
3 Tfi= (3 ISef—ow ) (L1,

He has proved that these operators (U, for all p=2) as mappings from L0, 1]
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into L"[0, 1] are bounded, if | <r<e. The analogous statements for r=1 are
not true and thus it is of interest to study what happens in this case. First we prove

THEOREM 1. The operator T: H—1'[0, 1] is bounded.

The secondary part of above mentioned Sunouchi’s result is that ||7f], and
1
U fIl, (fFL’[O 1], l<r<oo, ff:O) are equivalent to | f|,. The following

question remains open: is || f| equwalent to || 7fll, (f€H)? For U, we shall prove
a statement of negative character, i.e.

THEOREM 2. The operator U, (p=1) as mapping from H into L0, 1] is not
bounded.

We remark that W. R. Wade [7] obtained certain bounds for the L' norm of
Tf and U, f, if f belongs to L"[0, 1] for some r=1.

3. Let ¢=(g,, n€N) be an arbitrary sequence of +1 and define the operator
T, as follows:

T.f:= 2 quta(Senf—0xf) (SEL'O, ).
n=0
By Khinchin’s inequality we have
1
ITfl~ [ T fladt
0

(~ stands for the equivalence and r(¢):=(r,(t), ncN) (¢€[0, 1])), therefore to show
Theorem 1 it is enough to prove that
(2) ITofla = ClfI (fEH).

PRrOOF OF (2). Since || T,fll.=ITfll. (f€L*[0,1]), so by Sunouchi’s result
T,: L*0, 1]—-L2[0, 1] is (in ¢ uniformly) bounded. From this it follows by standard
argument (more precisely see e.g. [4]) that we need only to prove the following
estimation :

(3) sup [ |T,a| <o,
[0,11\1,

where the supremum is taken over all atoms acH.
To this end let acH be an atom and |/,/]=2"" for some NEN, i.e. by (1)
1
we have suppacl,, |la|.=2" and fa=0. If n¢N is an arbitrary but fixed

0
natural number, then it is well-known [1] that

lD:,n(x) 2 DAy, (X2~ =T)

2"+1

Dyn(x) — Kn(x) =

(x€[0, 1], + denotes the dyadic addition in [0, 1]). On the other hand [3]
{2" (0= x <27
DZ"(-x) 11 O (2—n =x < l),
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from which we get for x€[0, 1]\/, that
o SEEH. ! nl
W—fa(t)Dgn(x-{—t)dt—- b L
Y k=0

0 (ifn=Norn>=N and x+27%"1¢ 1,
' k=0, ..., n—1))

Sona(x)—osma(x) =

1
R _J 1
-(;[a(t)Dg"(X‘f-z linde= =241 [ a () Don(x+ 27414 ) dt
0
(if n > N and x42-*"'¢I, for some
k=108, N—1).

Therefore for x€l,4+27%'(k=0, ..., N—1) it can be stated that

o 1
Ta@== 3 an@2"" [a@Dun@+274"F0dr,
n=N+

0
1.€.

— < N—n—-1 - —k—1 dt = —n—-2 __ o)
ma[_":% 2 fla(t)[(sz (x+27* '+ dx)dr = 22 =1/2.

10,11\J,
This completes the proof of Theorem 1.

Proor oF THEOREM 2. Let us denote by df the dyadic derivative of a Walsh
polynomial £, which is defined by dw,=kw, [1]. If G, (n€EN) stands for Dyu:1— Dy,
then |G,|=1 and for all N=2M,2M+1, ...,2"*1—] (M, NéN) we have

N-14G, (M > n)
SNGn—GNGn: 0 (M< ”)

Nfld(DN—Dgﬂ) (M = II).
From this it follows that

= |d(Dzn+k—Dzn)|” a1
g (k:ﬂ 2"+ kyp+? +M=n+l K=o (2M+k)p+1) o
EC(Z_(”l)nznz_'lld(Dz"u—Dz")|p+ldGn|p 2 SREE
2

= C(Z (p+1)n Z’ [d(D2n+k—D2n)]")”’ = g~ —(p+1)n Z‘ I jW,I’)l/’ =
o

= C(z—(p+1)n k;; |j§) @ +j)wjlp)l/p o C(z—nk;; [ g‘; (1 +j2-7) Wj\p)]'/’ =

28 o
=C27" ZDA+27"dD| = €27 3 |D 427"k (D~ K| =
k=1 k=

=C2“"é (1 +k2-" D, —k2-"K,| = C(2*"2’|D,‘1—2- 2k2 "IK).
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Now we can estimate |[U,G,|, from below as follows:

2" 2" 2"
1U,Gulx = C(Z_"kzl HDki}x—Z‘*"kgk 1Kil1) = C(2_"k21 1Dy —2),
»

since lll.(,‘ll.1§2(k= I, 2, ...) [3]. If we take into consideration that [3] 27" > {D,|, =
k=1
=Cn (n€N), the statement of Theorem 2 follows.
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ANY FOUR INDEPENDENT EDGES
OF A 4-CONNECTED GRAPH ARE CONTAINED
IN A CIRCUIT

PETER L. ERDOS and E. GYORI (Budapest)

L. Lovasz [2] raised the following problem.

Conjecture. Suppose G is a k-connected graph (k=2), e,, e, ..., e,€E(G) are
independent edges, and if k is odd then G—{e,, e, ..., ¢} is connected. Then G
contains a circuit using all the edges ey, e,, ..., €.

This conjecture is proved for k=3 by Lovasz [3; 6. § 67]. In general, R. Higg-
kvist and C. Thomassen [1] proved a slightly weaker statement that the same con-
clusion follows if G is (k+ 1)-connected.

Now we prove that the conjecture of Lovasz holds for k=4.

THEOREM. In a 4-connected graph, any four independent edges are contained in a
circuit.

This result effects on a conjecture of Erdés and Gallai. Using this theorem,
L. Pyber [4] proved that every graph of n vertices can be covered by 1,51 circuits
or edges. (Without this result, a greater constant could be proved by the method of
Pyber.)

PROOF OF THE THEOREM. Let us fix the 4-connected graph G and the independent
edges x,)1, XyVa, X3V3, X4 V1€ E(G). By 4-connectivity (using Menger’s theorem),
there exist four vertex-disjoint paths from the vertices x;, y;, x5, y3 to the vertices
Nas Vi Xgstye HEse paths P, P,, P, P, with the edges x;¥,, XyVa, X33, X4 ¥4 CON-
stitute one or two circuits. In the first case it is a desired circuit, so without loss of
generality, we may suppose that the paths P,, P,, P, and P, lead from x;, y;, X3
and y; to x,, ¥, X, and y,, respectively; P,, P, and the edges x,, y;, x5, ¥; con-
stitute the circuit C,, P;, P, and the edges x;y;, x,, constitute the circuit C,.

Now again by 4-connectivity and Menger’s theorem, there exist four vertex-
disjoint paths Qy, Q,, O3, Q4 from C, to C,. The circuits C,, C, and the paths O,
0., OQ;, O, constitute a subgraph H. In what follows, we deal with this subgraph H.

We introduce some notation. The paths are denoted by the sequence of labelled
vertices in them. For a path P from x to y, [xy], [xp), (x)], (xy) denote the vertex-
sets V(P), V(P)—{y}, V(P)—{x}, V(P)—{x, y}, respectively. The subpaths of
P,, P,, P, and P, are called arcs.

First make a very simple observation which however is used several times.

Fact 1. If two vertex-disjoint paths Q; connect the same pair of paths P; then
deleting the inner points and the edges of the arcs between the endpoints of these
paths we get a desired circuit.
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So we may suppose that the paths Q,, Q,, O3, Q, lead from the arcs P, P,.
P,, P, to the arcs Py, P;, P3, P,, respectively. Let w;, wy, z;, Z,€V(C,)),
z4, W3, Wy, 236 V(C;) be the endpoints of the paths Q,, Q,, O;, Q,, respectively.
If the vertices wy and z, do not separate the vertices w, and z; in C, then the dis-
joint subpaths wyz, and wyz; of C, with Oy, Q,, O, and Q, constitute two paths
such that both paths can replace one arc of C, and this new circuit is a desired one.

So we may suppose that the vertices w, and z, separate the vertices w, and z,
in C,. Now without loss of generality, we may suppose that we have the subgraph
H in Figure 1. (We drew the subgraph H so that the figure should show the large
symmetry of the situation.) Of course, it may occur that w;=x;, wy=2x,, wy=2x,.
Wy=Xy, Zy=)1, Za=DYa, Zo=Y3 OI Z4=)y.

w. X
3 3
Q2 Q2
P, =4
w % ¢ w, X2 2 P
x> A /
] Q3 (R Q,
It
o g7 % il X %y.,
/
5§ v
Q / Q 2/
yl. yz /( (
le e‘ y3 % yl. \'\P‘MZ
Q, Q,
23 Y3
Fig. 1 Fig. 2

Suppose that H is a subgraph as in Figure 1 such that the sum of the lengths
of the arcs wyx;, WaXa, WaXa, WyXy, Z3V1, Za)2, Z3)3s Za¥s 1S Minimum. Suppose
that e.g. w,;#x;. Then the path wyx;y,z, contains inner vertices and there is
a path in G—{wy, z;} from (w;x;;z,) to the remaining part of H—{w,, z;} by
4-connectivity. By symmetry, we may assume that this path leads from a vertex
u€(wyx,]. If this path leads to a vertex v€[w;wy]U[w,;z,] then adding this path
to H and deleting the inner vertices and the edges of the arc »w; we obtain a sub-
graph like in Figure 1 such that the path ux, is shorter than w;x;, a contradiction.
If this path leads to a vertex in (wWyXs), (Wawy] or [wyXy] ([Vaza), (zazs] Or [¥32s),
resp.) then this path and Q, (0, resp.) are two vertex-disjoint paths from the arc Py
to the arc P, (P, resp.) and we are done by Fact 1. If this path leads to a vertex »
in (wyzy) ((232,), resp.) then the path www, (uvzs, resp.) and Q, (Q,, resp.) are two
vertex-disjoint paths from P, to Py (P4, resp.) and we are ready by Fact 1 again.
The other possibilities can be settled by the axial symmetry of Figure 1 with the
axis wyX;y12;-

So we may assume that x;=wy, Xo=Wy, Xg=Wa,/ Xs=W Y =21, Va=2p, Vs=123}
Ya=2z;, like in Figure 2.
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Now by 4-connectivity, there is a path P in G—{x,, v, s} from (x;x;),)
to the remaining part of H—{x,, y;, ys}. By symmetry, we may assume that P
leads from [x;y,). We distinguish two cases.

Case 1. P starts at x;.

If P leads to a vertex v€(x3x,]U(x4»;) then P or P together with the path
vx, and Q, are two vertex-disjoint paths from P; to P; and we are done by Fact 1.
If Pleads to (¥,7.]U(».y,) then we are done by axial symmetry. So in this case
P leads to a neighbouring subpath of the circuit x;X;X3Xyy; VoVaVaXy, 1.€. t0o (X,X]
Or (V4]

Case 2. P leads from a vertex u€(x;y,)-

If P leads to a vertex v in (xyy) ([X4X3), resp.) the paths x,u, Pyvx, (x,u, P,
resp.) constitute a further path from P, to P; and we are done by Fact 1. If P leads
to a vertex v€(x,x,;] then the paths and edges P, vxz, X3¥s, VsVa, VaXa, XoX1, X1 V15
Y1Xa, X4Va» Vot constitute a desired circuit. If P leads to [y,y,) or [y.v;) then we are
done by symmetry.

So in both cases, we obtained

Fact 2. Only neighbouring segments of the circuit x; X, X3X,; ) Vs V34X, are con-
necied by any path openly disjoint to H.

Without loss of generality, we may assume that there is such a path P from
[X174) to (¥ays). Let u€[x,y,) and v€(y,ys] be the points nearest to x, and y; in
the path x,y, and y,»,. respectively, which occur as the endpoint of such a path.
(It may happen that « and » belong to different paths.) Choose H (with the con-
straints x,=wy, ..., ¥4,=2,) So that the sum of the lengths of paths wux, and vy,
should be the minimum.

By 4-connectivity, there is a path Rin G—{u, v, x,} from (uy,) to the remain-
ing part of H. R does not lead from (y,v) to [x,u) by the definition of u. If R leads
from x€(uy,] to y€[x,u) then replacing the path xy of H by R we obtain a sub-
graph H, such that there is a path from y to (y4ys] (via ), a contradiction to
the choice of H. Similarly, R does not lead from (uy,?) to (vy;]. But according to
Fact 2, only neighbouring segments can be connected by R. Without loss of gen-
erality, we may assume that R leads from x€(uy,] to y€(x;x,]. Now let R, be a
path from (y,ys] to u. (There exists such an R; by the definition of «.) If R and R,
are vertex-disjoint then y,x with R and R, with ux, are vertex-disjoint paths from
P, to P, and we are finished by Fact 1. And if R and R, have a vertex in common
then R,UR, contains a path from (x;x,] to (y,ys], a contradiction to Fact 2.
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