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ARITHMETIC FUNCTIONS SATISFYING A
CONGRUENCE PROPERTY

1. JOO (Budapest)

1. An arithmetic function /(n) is multiplicative (resp. additive), if
/(nm) = f(n)f(m) (resp. f{nm) - f(n) + /(m))

for any pair n,m of relatively prime positive integers, and completely mul-
tiplicative (resp. completely additive), if the above equality holds for any
pair n,m.

The problem concerning the characterization of an integer-valued power
function as an integer-valued multiplicative function satisfying a congruence
property was studied by several authors. In 1966, M. V. Subbarao [17]
proved that if an integer-valued multiplicative function f{n) satisfies the
congruence

(1.1 f(n +m) =f(m) (mod n)

for every positive integer n and m, then there is a non-negative integer a
such that

(1.2) f(n) =na (n=1,2,...).

In [3], A. Ivanyi extended this result proving that if an integer-valued
completely multiplicative function /(n) satisfies (1.1) for a fixed positive
integer m and for every positive integer n, then /(n) is also of the same
form (1.2). Furthermore A. lvanyi also showed that the same assertion can
be deduced from the congruence

(1.3) f(n +m) = f(n) +f(m) (mod n)

instead of (1.1) for an integer-valued multiplicative function /(n) and for
every positive integer n,m.

In the space of sequences {xn} we define the operators E,l and [ as
follows:

Ixn.—Xn) Exn.—3™1 and Axn.— xrl.

If P(x) = a0 -f a\X a,kxk is an arbitrary polynomial with integer
coefficients, then we extend the above definition as follows:

E(E*xn .—0UQXn -f-d\xn+\ + ... T 0&fcyn-\-k*
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Let P, N denote the set of all primes resp. positive integers. For any
subsets X,Y of N we shall denote by K(P,X,Y) the set of all integer-
valued multiplicative functions /(n) for which

(1.4) P(E)f(n-\-m) = P(E)f(m) (mod n)
holds for every n 6 X and m £ Y. It is obvious that
(1.5) fa(n):=na (n =1,2,...)

is a solution of (1.4) for every non-negative integer a and for every triplet
(P,X,Y). In this case P(x) = 1for example, from the result of Subbarao,
we have
tf(P,N,N) = {/o0,/i,/2,...},
where fa is defined in (1.5).
Recently, some authors were interested in characterizing all those triplets
(P,X,Y) for which

(1-6) K(P,X,Y) = {/0,/b/2)ees}s
In [11]-f14] B. M. Phong obtained some results concerning this problem. He
proved that (1.6) holds for the following cases:
@) P(x) =1L X =N, Y =P;
@i Px)=(x- Hft, x+N, Y =P;
(i) P(x) =xM-1, X =N, Y =P,
where k,M are fixed positive integers. B. M. Phong and J. Fehér in [16]

improved the results of Subbarao and Ivanyi mentioned above showing that
(1.6) also holds for P(x) =1, X = N, Y = {B} with some positive integer
B.

In [4] we asked for a characterization of those integer-valued multiplica-
tive functions /(n) which satisfy

1.7 /(An + B) = C (mod n) for every n£N,

where A~ 1, b 1land C /O are fixed integers. We considered this
problem with A £ P, proving that there are a non-negative integer a and a
real-valued Dirichlet character \A (mod A) such that /(n) = Xa(n)n® for
all n € N which are prime to A. The general case has been proved by B.
M. Phong [15].

For a fixed integer k » 1we define Nk{n) := m if n = mkh and h is a k-
free power number. In [5] we proved that if an integer-valued multiplicative
function /(n) satisfies the congruence

f(n +B) =f(B) (mod Nk(n))
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ARITHMETIC FUNCTIONS SATISFYING A CONGRUENCE PROPERTY 3

for every ® E N, where k,B are fixed positive integers, then /(te) is of the
same form (1.2). Condition (1.3) was weakened by the author in [5], namely
we relaxed the congruence (1.3) to

f (nk+rnj =f (nig + f(m) (mod Te)

for every n,m E N, where Ais a given positive integer.

The problem concerning characterization of integer-valued additive func-
tions as real-valued additive functions satisfying some congruence properties
(mod 1) have been studied by I. Kéatai [6]-[8], I. Katai and M. van Rossum-
Wijsmuller [9] and Robert Styer [18]. For example, |. Katai [7] proved that
if the real-valued completely additive functions /b/2,/3 and /4 satisfy the
congruence

fi(ln) +f2(n+ 1)+ /3(n+2)+ /4(M®+3)=0 (mod 1)
for every ®E N, then
fi(n) =/r(n) = /3(n) =/4(te) =0 (mod 1)

for every ® E N.

A similar problem concerning characterization of a zero-function as an
integer-valued additive function satisfying a congruence property has been
studied by K. Kovécs [10]. She proved that if an integer-valued completely
additive function /(n) satisfies the congruence

(2.8) f(An+B)=C (mod ©®) (e=1,2,...)
for some integers A ~ 1, B ~ 1, C then
(1.9) f{n) = 0

for all ®E N which are prime to A. P. V. Chung [1] extended this result for
integer-valued additive functions, proving that if an integer-valued additive
function satisfies (1.8), then (1.9) holds.

Our purpose in this paper is to investigate the same problem concern-
ing characterization of a zero-function as a real-valued additive function
satisfying a congruence property. The exact assertion will be formulated in
Sections 2,3,4, and in Section 5 we investigate multiplicative functions.

2. In this part we investigate the following problem: Determine those
functions H : N —aN for which for fixed integers A~ 1, B ~ 1, C and for
real-valued additive function /(te) the congruence

f(An +B) =C (mod A(te)) (e=1,2,...)

Acta Mathematica Hungarica 63, 1994



4 1.J00

implies f(n) — O for all n E N which are prime to A

Presently we are unable to determine all solutions.

For a fixed A E N let 7i = TI(A) denote the set of all functions H : N —»
—»N which satisfy the following conditions:

a) H(m)\H(nm) for every m,n E N;

b) For each positive integer M coprime to A we have

I -
limsup -Sh = 00.

We shall prove the following

Theorem 1. Let A~ 1, B A 1 C be integers and let f(n) be a real-
valued additive function. Assume that for some H E LI(A) the congruence

(2.1) /(jAn + B) = C (mod H(n))
holds for each n £ N. Then
(2.2) [(«) =0

for all n E N which are prime to A.
Proof. We first deduce from (2.1) that

(2.3) f(ab) = /(a) + f(b)
for all a,6 G N which are prime to A, furthermore
(2.4) f(B) = C.

Let a, b E N and (ab,A) — 1 From condition b) of 7i there is a positive
integer s such that

(ab) v(A)s

(2.5) H > If(ab) - f(aB) - f(b) + C\.

Let m := (“(ab)v* s- 1*/A. Since (m,ab) = 1 we can choose positive
integers x,y,u and v such that

(2.6) ax = 1+ Amy, (x,abB) =1
and
(2.7 bu= B + Amy, (u,abx) = 1.

Acta Mathematica Hungarica 63, 1994



ARITHMETIC FUNCTIONS SATISFYING A CONGRUENCE PROPERTY 5
By using (2.1), (2.6), (2.7) and condition a) of 7i we have

f(aB)+ f(x) = f(axB) = f(B + ABmy) =C (mod H(m)),
f(b) +f(u) = f(bu) = f(B + Amv) = C (mod H(m))

and
f(ab) + f(x) + f(u) = f(axbu) - f(B + AmT) = C (mod
where T Amyv + By + v. These imply
f(ab) - f(aB) - f(b)+C =0 (mod A(T)),
which together with (2.5) proves that
(2.8) f(ab) + C = f(aB) + /(6).
Thus we have proved that (2.8) holds if (ab,A) —1.

Applying (2.8) with a=b= 1, we have f(B) = C. So (2.4) is true.
In order to prove (2.3) it is enough to show that

(2.9) f(qk)=kf(q) (k=1,2,..)

holds for each prime g coprime to A. It is obvious that (2.9) holds for k — 1.
Let g be a prime for which (g, A) = 1. Assume that ga\\B for some
integer a ™ 0. Applying (2.8) with a = gand b—1, we get

f(q) +C =f(qa+l)-f(qa)+f(B),
which together with (2.4) shows that

(2.10) f{qa+l) ~f(qa) =1f(q)-

Assume now that (2.9) holds for k. Then we apply (2.8) with a = g and
b = gk to obtain

[ (9»+i) +C =1 (ga+l) —f (ga) + f(B) +/ (V)
This together with (2.4), (2.10) and the induction hypothesis implies that
[(V +1) =1(q) +f(gk) =(* + DH/(?).

Thus, we have proved (2.9), and so (2.3) holds.

Acta Mathematica Hungarica 63, 1994



6 1 JOO

Since /(n) is an additive function and (2.3) holds for all positive integers
a,b which are prime to A, it follows that
(2.11) f(ab) = f(a) +f(b) if (a,b,A) = 1.

Applying (2.1) with n — BT and using the fact (B,Am + 1,A) = 1 for
every m 6 N, we get from (2.1), (2.4) and (2.11) that

(2.12) J(Am+1) = 0 (mod //(m))

for every m G N.
Let n be a positive integer for which (n, A) = 1. From Euler’s theorem

we get = 1 (mod A) for every s G N. Using condition b) of H, there
isan so £ N such that
(2.13) [ I /nAA)'SIf
. BE N A > 1/bl1 m<P{A).
On the other hand, from (2.11) and (2.1.2) we have
V(A)s _ i
sip(A)f(n) = f =0 “modH i

for every s G N. This and (2.13) imply that f(n) = 0. Thus, we have
proved that for each n G N coprime to A (2.2) holds. This completes the
proof of Theorem 1

We shall illustrate Theorem 1 with some corollaries.

Corollary 1. For each n £ N we denote by Ho(n) the product of all
distinct prime divisors of n. Then HO GB{A) for every A GN.

Remark. It is obvious that the results of K. Kovacs [10] and P. V.
Chung [1] mentioned in Section 1 are consequences of Corollary 1.

Corollary 2. Let <p(n) denote the Euler totient function. Then G
GFi(A) for every A GN.

For the proofs of the corollaries we need the following result.

Lemma 1. Let a be afixed positive integer. For each prime p coprime

to a we denote by a(p) the least positive integer x such that ax = 1 (mod p).
Then
1

p -
u(p) =
a(p)
is unbounded on the set P. Here P denotes the set of all primes.

Proof. Let us assume that u(p) is a bounded function on this set P
and so it has only a finite number of distinct values Aq,....fc<. From the
result of K. Zsigmondy [19] there is a prime p such that

a(p) = 6(6ki + 1)... (6kt+ 1)+ 6

Acta Mathematica Hungarica 63, 1994



ARITHMETIC FUNCTIONS SATISFYING A CONGRUENCE PROPERTY 7
and so
(2.14) p = u(p)a(p) + 1= 6u(p)(6fc + 1)... (6kt + 1) + (6u(p) + 1).
Since u(p) = ki for some integer i (1 i " t), and so by (2.14)

p = QkiiBki + 1) eee(6At + 1) + (6fc + 1)

is divisible by 6ki + 1. This is a contradiction since p is a prime, thus the
function u(p) cannot be bounded.

Proof of the Corollaries. It is obvious that the functions HO,
satisfy condition a) of H(A). Let M be a positive integer for which (M, A) =

= 1. Putting a= M " A\ for all primes p > A we have

1 -~ p P-1_
ap) ap o ap P

and
1 (aa -1 )
afp) - P

which, using Lemma 1, imply that Hq, <psatisfy condition b) of LLLA). Thus
we have proved Corollaries 1 and 2.
The following theorem is a consequence of Theorem 1

Theorem 2. Let A~ 1, B~ C be integers and let f(n), g(n) be real-
valued completely additive functions. Assume that for some H £ H(A) the
congruence

(2.15) f(An + B) =g(n)-\-C (mod H(n))

holds for each n £ N. Then g(n) = 0 for every n £ N and f(n) = 0 for all
n £ N which are prime to A.

Proof. We first prove Theorem 2 in the case / = g. Assume that a
real-valued completely additive function g(n) satisfies the congruence

(2.16) g{An + B) = g(n) + C (mod H(n))

for every n £ N. Applying (2.16) with n — BT and using the fact that
H(m)\H(Bm), we have

(2.17) g(Am + 1) =g(m) +C (mod H(m))
for every m £ N.

Acta Mathematica Hungarica 63, 1994
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We shall deduce from (2.17) that
(2.18) g(Am + k) = g(m) + C (mod A(T))

for every k,m £ N. It is obvious from (2.17) that (2.18) holds for k — 1.
Assume that (2.18) is true for k. Then, using the complete additivity of g,
we have

g(Am + D+g(Am+ k) =g[A(Am2+ km + to) + A] =
=g(Am2+ km +m) + C =g(m)+C +g(Am + k+ 1) (mod H(m))
which together with (2.17) and (2.18) implies
g(Am+ K+ 1) =g(m) +C (mod

This shows that (2.18) holds for k + 1, and so (2.18) also holds for every
k, m GN.
Let n A 2 be an integer. We apply (2.18) with k = A(n - 1)m to get

g(Anm) = g(m) + C (mod H(w)),
consequently
(2.19) g(n) = C —g(A) (mod 4A(T1)).
Since the condition b) of H(A)

lim sup A (1) = o0,
m —KX)

from (2.19) it follows that g(n) —C —g(A), and so
(2.20) g(n) = 0 forevery n 6 N.

We now prove Theorem 2. Assume that the real-valued completely
additive functions / and g satisfy (2.15) for some A 6 77(A), i.e.

f(An + B) = g{n) + C (mod A(n))

for every n £ N. Replacing n in this congruence with BT and using the
complete additivity of / and g, we have

(2.21) f(Am +1) =g(m) + C+g(B)-f(B) (mod (1))

for every m £ N. Using the complete additivity of / and g we deduce from
(2.21) that

2/(Am f1) =/ [AAmM2+ 2m) + 1] =
= g{Am + 2) +g(m) + C +g(B) - f(B) (mod A (7)),

Acta Mathematica Hungarica 63, 1994



ARITHMETIC FUNCTIONS SATISFYING A CONGRUENCE PROPERTY 9
which together with (2.21) gives that

(2.22) g(Am +2) = g(m) +C + g(B)- f(B) (mod #(m))

holds for every m £ N. As we have seen above, from (2.22) we get

(2.23) gn) =0

for every n GN. Thus, by (2.15) and (2.23) it follows that

(2.24) f(An + B) =C (mod H(n))

holds for every n £ N. Using Theorem 1, by (2.2.4) we have

(2.25) f(n) =0

for all n G N which are prime to A. By (2.23) and (2.25) the proof of
Theorem 2 is finished.

Remark. It follows from Theorem 2 that if the real-valued completely
additive functions / and g satisfy the congruence

f(An + B) =g(n) + C (mod n)

then g(n) =0 (n = 1,2,...) and /(n) = 0O for all positive integers n which
are prime to A. This result in the case A = 1,/ = gand C —O0 was proved
by K. Kovécs [10, Theorem 4] using the additional assumption that / is
integer-valued.

3. In this part we shall consider the following problem: Determine all
polynomials P(x) with real coefficients such that for any integer-valued
completely additive function f(n) the congruence

P(E)f(m +n) =P(E)f(m) (mod n) (mn=1,2,.)

implies that /(n) = Ofor all n 6 N.
We shall prove the following result.

Theorem 3. Let f(n) be an integer-valued completely additive func-
tion. Let P(x) be a non-zero polynomial with rational coefficients for
which there exist suitable integers Ap ¢ 0, Mp ~ 1such that

(3.1) ApP(E)f(m + n) = ApP(E)f(m) (mod n)
for every integer m ~ Mp and n A~ 1L Then f(n) = Ofor every n 6 N.

In the special case P(x) = (x —l)tfor some integer Kk » 1, Theorem 3
also holds under the assumption that /(n) is a real-valued additive function.

Acta Mathematica Hungarica 63, 1994
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Theorem 4. Let f(n) be an integer-valued additive function and let
K" 0 M ™ 1 beintegers. If
(3.2) Akf(m + n) = Akf{m) (mod n)
holds for every integerm ~ M and n” 1, then f(n) = O for every n £ N.
For the proof of Theorem 4 we shall use the following results.

LEMMA 2. Let f(n) be an integer-valued arithmetic function and let
k,M,Q 6 N. If Akf{n) satisfies

(3.3) Akf(m + Q) = Akf{m) (mod Q)
for all integers m ~ M, then
(3.4)

Ak-°f(m +tQ)-Ak-sf(m)= £ (m ~ M) Ak +j(Q,t) (mod Q)
j=o d J

holds for every s = 1,..., k and for all integers M, t”" 0, where
(3.5) AF(Q,t) := Arf(M +tQ)~ A{f(M) (i=0,1,2,..),

with A°/(te) := /(n).

Remark. This lemma in the case M = 1 was proved by B. M. Phong
[12] (see Lemma 1 of [12]).

Proof. Let t » 0 be a fixed integer. It is obvious that (3.4) holds for
m=M. Let m > M ~ 1. We shall prove (3.4) by induction on s.

Using (3.3), we have

m—1 m—
£ AKf{i + tQ) = £ AKf{i) (mod Q),
i=M i=M

and so
O*-1/(to + tQ) - Ak~If(M +tQ) = Ak~rf{m) - Ak~xf{M) (mod Q)

which proves (3.4) in the case s = 1
Assume that s <k and (3.4) holds for s. By using (3.4), we have

Ak-(s-i) [ W+tQj _ Ak-(s+JIM +tqy
_ak-s+J0T)+ 1 btl)iM) =
-1

=ELpI((+<a)-g 0 = EE (7)Ao 0=

i=M j=0 \© J

Acta Mathematica Hungarxca 63, 1994
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s—1 m— i- M
=£f£ a}-stj(q,<)E — N AYALE —
2 BN Eann
jE:1A7 (mj M) mod
and so

Ak s+D)f(m +tQ) - aM»+DaT) =

=£ (m-M\ M*+i)+;(g>t) (modQ).
j=0' J 7

This shows that (3.4) holds for s + 1, and so we have proved (3.4). This
completes the proof of Lemma 2.

Proof of Theorem 4. Assume that an integer-valued additive func-
tion f(n) satisfies (3.2) for all integers m ~ M and n ~ 1, where k 0 is
an integer. If k = 0, then (3.2) implies that

(3.6) f{m -fn) = f(m) (mod n)

holds for all integers m ~ M and n A 1. Putting m = M in (3.6) we have
/(n +M) = /(M) (mod n) for every n £ N, which, using Theorem 1implies
that f(n) = 0 for every n G N. Thus, Theorem 4 holds for k = 0.

Assume now that k » 1. Let p > fc be a prime. By using Lemma 2 in
case Q = p we get from (3.2) that

(3.7) AtV (m +tp)-A*-7TK>= E 0 $'8+'(P,0 (mod p)
j= 7

o™ J
for s = and for all m ~ M and t G N. Applying (3.7) with m =
—M ip and t —1, where r™ 0is an integer, we have
(3.8 Ak~sf(M + (*+ Dp) - Ak~sf(M + ip) =
s E (T)AY +(®P.1) - A4%-(P.1) (modp)
j=0'J7
since and so ((J) = 0 (mod p) forj = 1,...,s- 1land for

all i GN. From (3.8) we get

(3.9 Ak s(p,t) =tAk s(p, ) (mod p)

Ada Mathematica Hungarica 63, 1994



12 1.JO0O

fors = 1,...,k and for all t E N. Thus (3.9) implies s(p,Ep) s
= 0 (mod p) and so by applying (3.7) with t = Ip we have

Ak~sf{m + ip2)- Ak~sf(m) =0 (mod p)

for all integers m't M and | » 0. In the case K = s the last congruence
gives

(3.10) /(m -fip2)=f(m) (mod p)

for all integers m~ M and £” 0. Since (3.10) holds for each prime p > Kk,
so (3.10) holds for every prime p > k.

We deduce from (3.10) that /(n) is a completely additive function.

Let a,b be positive integers. Let g > max(M,ab) be a fixed prime.
Then for each prime p > ma.x(q,k) there are positive integers x, y such
that

(3.11) ax =g+ pzy and (x,ab)—I.
Using (3.10) and (3.11), we have
I(a) +1(x) = f(ax) =f(q + p2y) =f(q) (modp)
and
f(ab) + f(x) = f(abx) = f(qb + p2by) = f(gb) - f(q) + f(b) (mod p).

These imply f(ab) =f(a) + f(b) (mod p) which shows that f(ab) = f(a) +
+ f(b), since there exist infinitely many primes p > max(q,k). Thus, we
proved that f(n) is a completely additive function.

Finally, let p > max(fc, M ) be an arbitrary prime. Applying (3.10) with
m —p2n(> M) and £ —1, using the complete additivity of /, we get f(n +
+ 1) =/(n) (mod p) for every n 6 N. This shows that f(n) = 0 (mod p)
for every n £ N and for every prime p > max(k, M), consequently f(n) =0
for every n £ N. This completes the proof of Theorem 4.

Proof of Theorem 3. Assume that an integer-valued completely
additive function / satisfies (3.1) for every integer m ~ M and n ~ 1
We shall denote by If the set of all non-zero polynomials P with rational
coefficients for which there are suitable integers Ap ¢ 0 and Mp ~ 1 such
that

ApP(E)f(m + n) = ApP(E)f(m) (mod n)
holds for every integer m~ Mp and n* 1. By the assumption of Theorem
3 it follows that If ¢ 0. It is also obvious that

(i) cP(x) GIf forevery P EIl/ and cGQ,
(i) P(x) + P\x) G// for every P,P1E£ If,
(iii) xP(x) GIf forevery P EIf.

Acta Mathematica Hungarica 63, 1994



ARITHMETIC FUNCTIONS SATISFYING A CONGRUENCE PROPERTY 13
Thus (i)-(iii) show that If is an ideal in Q[4 Here Q denotes the set of
rational numbers.

Let
S(x) = @+ QX+ ... + ckxk (ck =1

be a polynomial of minimum degree in If. If k = 0, then our Theorem 3
follows from Theorem 4. In the following we assume that Kk » 1 Let

S(x) =(x- 01i)...(x- 0.

From the fundamental theorem of symmetric polynomials it follows that for
each integer s  1the polynomial

K

I_lx-Oj

has rational coefficients, consequently

Qs(Xs) :=(xs-Q Q) ...(x°-Q)elf.
Furthermore we have
(3.13) Qs(Es)f(sn) = Q.(1)f(s) + Qs(E)f(n).
Since Qs(xs) GIf, there are integers Ms ~ 1, As ¢ 0 such that
(3.14) AsQs(Es)f(n + m) = AsQs(Es)f(m) (mod n)

forall n GN, m ~ Ms. Applying (3.14) with n, m given by ns and ms
respectively from (3.13) and (3.14) we have

AsQs(Es)f(s(n + m)) = AsQs(Es)f(sm) (mod n)
and so
AsQ(1)f(s) + AsQs(E)f(n +m) = AaQ3(l)f(s) + AsQs(E)f(m) (mod n)
for every n GN, w ~ Ms. The last congruence shows that
AsQs(E)f(n Am) = AsQs(E)f(m) (mod n)
foralln GN, m  Ms, i.e.
(3.15) Qs(x) G If.
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Thus 6(x) (S(x),Qs(x)) G If, and so deg<b(x) = k, S(x) = Qs(x) for
every s GN. This implies that {0i,..., 0*.} = {0J,...,©£} for every s G
G N, whence 0; = Oor 1 for eachi = Then there is an integer

£~ Osuch that S(x) = xe(x —\)k~t and so from the definition of 1j we
have

(3.16) AsAk~ef(n + m) = AsAk~ef(m) (mod n)

for non-zero integer As and for all integers n ~ 1, m  Ms+£. From (3.16),
using Theorem 4, we get that Asf(n) = 0 for all n G N, which together
with As / 0 implies /(n) —O for all n GN. Thus the proof of Theorem 3
is finished.

4. L. Lovész, A. Séarkdzy and M. Simonovits [2] have considered the
class of complex-valued additive functions f(n) for which
(4.2) P(E)f(n) =10 for every n GN,

where P(x) is an arbitrary polynomial with complex coefficients. They
showed that an additive function /(n) satisfies (4.1) if and only if there
exists an integer B such that /(n + B) = f(n) for all n G N. From this
result it follows that a completely additive function f(n) satisfying (4.1) has
to be a zero-function, i.e. f(n) = O0for all n G N. We hope that the same
conclusion holds if we weaken the condition (4.1) to

P(E)f(n) =0 (mod n) (n=12,..)

for some polynomial P with real coefficients.

Here we shall prove this for the special case when P(x) = [x —1)*
where Q is a prime power.

Theorem 5. Let Q —Qa 1is an integer) be a prime power. If a
real-valued completely additive function f(n) satisfies the congruence

4.2) A®f(n) =0 (mod n)
for every n E N, then
(4.3) an) =0

for every n G N.

Proof. We note that from a result of I. Kétai [6, Lemma 2.1] the
congruence (4.2) implies that /(n) is an integer for all n GN. Thus, in the
following we may assume that f(n) is an integer-valued function.

In order to prove (4.3) it is enough to show that for each n GN we have

(4.4) f(n) =0 (mod gk) (k= 0,1,2,...).
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As we noted above, the congruence (4.4) holds for k = 0. Assume that (4.4)
holds for k{*. 0). We shall prove that (4.4) also holds for k + 1 Let

F{n) := (n=12,..).
From (4.2) we have

<?*{/» - + D)+ ..+ [aQ@ "N F{n+ Q- 1)+

+(-)c?F(n + QJ =0 (mod n)
and so, replacing n by ga+km,
(4.5) F(V +am) + {-IfF (gk+am + Q* =0 (mod Q),
since Q = ga and

0 (mod Q).

It is obvious that there is a 8 £ N such that k+ 2a+ 8 = 0 (mod qg) and
so by applying (4.5) with m = g”"N, we have
(4.6) F(N) + (~1)QF (gk+8N + 1) = 0 (mod q)

for every positive integer N.
We can deduce from (4.6), as in the proof of Theorem 2, that

F [gk+*m + 2" = F{m) (mod q)
holds for all m € N, from which it is easy to see that
F(n) = —F (gk+*  (mod q)

for all n G N. This together with n = 2g show that F {gk+I3) = 0 (mod q),
and so F{n) = 0 (mod q) for all n E N. Thus, we have proved that

f{n) = gkF{n) =0 (mod gk+1)

holds for all n G N, i.e. (4.4) holds for k + 1. So, by induction on k, (4.4)
is true for every K GN.
From (4.4) the proof of Theorem 5 follows easily.

5. For a positive integer n we shall denote by n* the product of all
distinct prime divisors of n (In Corollary 1 we denoted n* by Ho(n).)

In this part we consider the problem of determining those integer-valued
multiplicative functions f(n) for which the congruence f{An -f 1) = C
(mod n*) holds for every n EN. Here A~ 1and C ¢ 0 are integers.

We shall prove the following
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THEOREM 6. Let A~ 1 andC ¢ 0 be integers. Assume that an integer-
valued. multiplicative function f(n) satisfies the congruence

(5.1) f(An +1) =C (mod n*)

for every n E N. Then there exist a non-negative integer a and a real-valued
Dirichlet character xa (mod [) such that

I(») = XA(n)na

for all n E N which are prime to A.

Corollary 3. Let A E N. If the integer-valued multiplicative func-
tions f(n) and g(n) satisfy the congruence

(5.2 f(An +m) =g(m) (mod n*)

for every n,m E N, then there are non-negative integer a and a real-valued
Dirichlet character xa (mod A) such that

f(n) - g{n) = xa(n)n®
for all n E N which are prime to A.

We shall use the following results in the proof of Theorem 6.
Lemma 3. Assume that the conditions of Theorem 6 are satisfied. Then

(5.3) cC=1
and
(5.4) f(ab) = f(a)f(b)

for all a, b E N which are prime to A.

Proof. Let a,b E N be such that (ab, A) —1 We choose a prime p
such that

(5.5) p > max(a,6,\C\,\f(a)f(b) - Cf(ab)]).

Since (ab,pA) = 1, hence there are positive integers x,y,u and v such that

(5.6) ax — 1+ Apy, (x,ab) =1
and
(5.7) bu = 1+ Apv, (u,abx) = 1.
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Then we have
(5.8) abxu = 1+ ApT,

where T y -fv + Apyv. Applying (5.1) with n given by py, pv and pT,
respectively, from (5.6), (5.7) and (5.8) we have

[(*)I(*) = f(ax) =11+ APY)=C (mod p),
f(b)f(u) = f(bu) = /(1 + Apv) =C (mod p)

and
f(ab)f(x)f(u) = f(abxu) = /(1 + Apt) = C (mod p),
because p\(pm)* for every m E N. These together with (5.5) imply that
f(x) 0 (modp), f(a) = f(ab)f(u) (mod p)
and so
/(a)/(6) = f(ab)f(b)f(u) = C mf(ab) (mod p).
The last congruence and (5.5) show that

(5.9) C-f(ab) = f(a)f(b).

Thus, we have proved that (5.9) holds for all a, b 6 N which are prime to
A

By applying (5.9) with a- b—1, we get (5.3) and (5.4). The proof of
Lemma 3 is finished.

Lemma 4. Assume that the conditions of Theorem 6 are satisfied. Then

there is a non-negative integer a such that |/(n)| = nafor all n GN which
are prime to A.

Proof. In order to prove Lemma 4 it is enough to show that

(5.10) f(q) = £q“M
and
(5.11) a(p) = a(a)

for all primes p,q which are prime to A, where a(p) ~ 0, a(g) ™ O are
integers.

Let g be a prime for which (g,A) = 1. Assume on the contrary that
there is a prime Q ¢ g such that

(5.12) Q\f(q).
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Since (q,QA) = 1, by using the Euler’s theorem we have
(5.13) g*(AQ) = 1+ AQm

with some m E N, where ip denotes the Euler’s totient function. By using
Lemma 3 and the fact (q,A) = 1, we have

f(Q)V(AQ) = f (<T(K3) = /(1 + AQm).
This together with (5.1) and (5.2) show that

0=f(qf{MQ =/(1 + AQm) =C =1 (mod Q),

which is a contradiction. So, we proved (5.10).

We now prove (5.11). Let p and g be distinct primes with (pg,A) = 1
and let a(p) » «<?)e Then it is well known that there is a positive integer
s such that

(5.14) HeHs) = (P " paap)la@MA)

(see e.g. [20]). Thus, we have (pgs)2v® = 1+ AHK with some K £ N.
Applying (5.1) and using Lemma 3, we get

f(p)MA) f(q)MA)s =/  (Ggs)MA) /(1 + AHK) =C (mod H).
This and (5.10) imply that

1 = p2a(PMA)g2a”®)v(A)s _ p2(ot(p)-a(q))<fi(A) (mQQ JJ~

which together with (5.14) shows that a(p) = a(qg). Thus, we have proved
(5.11). This completes the proof of Lemma 4.

We now prove Theorem 6. Assume that (5.1) holds for every n 6 N,
where A~ 1, C ¢ O are integers and /(n) is an integer-valued multiplicative
function. Then by Lemma 4, there is a non-negative integer a such that

(5.15) [/(«)|] = na

for all n GN which are prime to A.
Now we define the function g(n) as follows:

ff(n) = (n=122.)
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where a * 0 is defined in (5.15). By using Lemma 3, we have

(5.16) g(ab) = g(a)g(b)

for all a, bGN which are prime to A, furthermore g(n) G {—1,1} for every
n G N. Since f(n) =g(n)na, we get from (5.1) that

(5.17) g{An+ 1) = g(An + 1){An + 1)* = f{An + 1) = 1 (mod n¥*)
holds for every n G N. We shall prove that the arithmetical function g(n)
is periodic (mod A).
Let txand 12 be positive integers for which
(tit2,A) —1 and ii = f2 (mod A).
Then there are positive integers so? LL, and n2 satisfying the conditions
soM = 1+ An\ and sqi2= 1+ Auy.

Let B be a positive integer such that 28\ w, and 28\ n2. Then for every
m GN we also have

(5.18) so + 2M°Amj ti = 1+ A + 2Bt\nx$
and
(5.19) Aso + 28AmM)jt2= 1+ A (ri2 + 27210

By using (5.16), (5.17), (5.18) and (5.19), we have
g “so + 28ArrYj g(t\) = 1  ~mod + 28t\m}j ~

and
g (sO+ 2BArnj g(t2) =1 (mod (n2+ 2Bt2m3 ) .

Since 2R \ n\, 28 \ M2 we have
[rii + 2Btim$ >2 (r=1,2),
and so we get from the above congruences that
g (sO+ 2BArn) my(ti) = 1 =g (sO+ 2RArn) my(t2).
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This implies g(t\) —g(t2). It is well-known that if g(n) satisfies (5.16) and
g(ti) =g(t2) for h=t2 (modA), (tit2,A)=I,

then

(5.20) g(n) = xa(t)

holds for all n E N which are prime to A. From this /(n) = Xn(n)n“ holds
for all n 6 N which are prime to A. Theorem 6 is proved.

Proof of the Corollary. Assume that the integer-valued multi-
plicative functions / and g satisfy the congruence (5.2), i.e. f(An + m) =
= fir(m) (mod n*) holds for every n,m E N. Applying the above congruence
with m = 1, by using Theorem 6, we see that there are a non-negative in-
teger a and a real-valued Dirichlet character \A (mod A) such that f(n) =
= XA(n)na for all n GN which are prime to A, Thus, we have

(5.21) <(m) = f(An Fm) —xa(An+ m)(An + m)a -
= Xa(m)m® (mod n*)

for every n,m E N which are prime to A. Since

lim sup n* = oo,

(A=1

it follows from (5.21) that g(m) —XA(m)m" for all m G N which are prime
to A. So, our Corollary is proved.
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FROZEN TIME METHODS FOR
CONDITIONALLY STABLE PROBLEMS IN
SINGULAR PERTURBATION THEORY

R. NAULIN (Cumana)

I. Introduction

Let us consider the singularly perturbed linear system
Q) px' = A(t)x, = A

where p is a small parameter, and A{t) is a matrix function defined on
R. In [1], the uniform stability of the system (1) was considered under the
following conditions: The eigenvalues of A(t) satisfy Re A(f) < —7, A(t)
and A\t) are bounded functions (|d'(t)|] ~ B for any t E [0,00)).

Under these conditions the following is valid:

Lemma 1. If X represents the fundamental matrix of (1) (X(0) = /)
then the following inequality is satisfied:

(2) M (D" _1s)~ exP{"(s)(i - s)/[i}f ™ L(p,a)exp{-a(t - s)/p}

where (s, 0<ft<7,/i G(0,M0], po = a2/RK, a =7 - a, L(p,a) =
= 2pK2B/e2(a2 —pKR), K is constant depending only on 3 and 7.

This approximation (2) is used to estimate an upper bound for the
parameter p in problems of uniform asymptotic stability; see for example
[1] and [2]. In [2], this result is used to obtain conditions of controllability
for singularly perturbed control systems. The central aim of this work is to
generalize Lemma 1 to conditionally stable systems.

Il. Previous results

We will assume that (1) satisfies the following properties:
(CI) The function A(t) is defined on R. A(t) is a function of class C1
and |A(t)| M, |A'(f)] ~ g, for (GR.
(C2) For each t, k eigenvalues of A(t) satisfy ReA(<) * —7, and n —K
eigenvalues satisfy ReA(<) N 7.
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In [3] it is proven that conditions (CI) and (C2) are enough to prove
the following

Lemma 2. Conditions (Cl) and (C2) with k = n implyfor 0 < a <
< min(2M, 7) and £~ 0, that

lexp{A(S)E} " (2M/a)"-Lexp{ (-7 + <ME}.
Lemma 3. Under conditions (Cl) and (C2), there exists a C1lfunction
T(t) such that
(3) D(t) :=T-\t)A(t)T(t) = diag(Ai(t), A2(t))
and the following properties hold:
(P1) The eigenvalues of A\(t) and Ar(<) satisfy ReA(i) ~ —7, and
ReA(f) » 7, resp,;
(P2) For any i e R,
4) \T-\t)r(t)\*a\A(t)WA'(t)\GaBM
where a is a constant depending only on n and 7.

(P3) \T(t)\\T-\t)\ib, forte R, where b is a constant.
If we apply the change of variable x = T(t)z then (1) reduces to the system

() pz' = [D(t)-pT~\)T'(1)]z.

Theorem 4. If conditions (Cl) and (C2) are satisfied then there exist
a fundamental matrix X(t) of (1) and constants H ~ 1, po, such that for
p G(0,po) and t * s one has:
(6) IX(t)PX-45)],IBAaX-UO! ~ Hexp{-(7 - a)(t- s)/p}
where P and Q are the following projections:

h m 0
P = --1-P.

() 0 : 0 Q--1-P

Finally we need a previously proven result [6]:

Theorem 5. If the system (1) has the exponential dichotomy (6), and
B (t) is a bounded continuous matrix, such that

6 =sup |P(i)| » (7 —a)/36KS5,
R

then the system py' = [A(i) + B(t)] y has the exponential dichotomy:
IY APT -1 Y (S)QY _1(i)| ™ 12A3exp{ -(7 - a - 6K3)(t- s)/p}
fort ™ s, and
\X(t)PX~\s)-Y(t)PY-\s)\ I
N (BA'2)85(7 - a)-1exp{-(7 - a)(t- s)/2p},
IX(1)QX-\s)-Y(t)QY~\s)\ S
N (BA'2)8i (7 - a)-1exp{-(7 - a)(i- s)/2p}.
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I1l. The main result

The proof of our main theorem is based upon the theory of exponential
dichotomies as presented in [3].

Let us define O(f,s) := exp(D(s)t/[i), W(i,s) := T(t)O(t,s); we can
now formulate the central result of our investigation.

Theorem 6. If the system (1) satisfies (CI) and (C2) thefort » s we
have

(8) \X(t)PX~\s)-W(t,s)PW{s,s)\ S A(/x,a)exp{-7(i-s)/4ll}
where R("i,a) = alM ("b(y, 7) + (5K/2)8akn2M(7 - a)-1j, and
(8) IX(t)QX~\s) - W(t, s)QW(s, s)| ™ R(y,a)exp{-7(t- *)/4/i}

for s M t.

Note that estimate (8) is a generalization of (2), since if in condition
(C2) k — 0O, then in Theorem 6 we have T(t) =/, P =1, W "s) =
= exp{A(s)f/li}.

IV. Proof of Theorem 6

We first prove a lemma concerning the fundamental solution of the
system

(€)] v' =D(t)v.

This system can be written as two systems of lower dimension:
(20) fx[ =Ai{t)vu

(11) fiv2 =A2(t)v2.

Let W\ and V2represent the fundamental matrices of (10) and (11). Accord-
ing to Lemma 3, for 0 < a < min(2M,7) we have the estimates

(12) IN(F)A_1(5)| = K exp{-(7 —a)(t- s)/ix},  ths
(13) W2()V2\s)\ i K exp{ (7 —a)(t —s)//x},  t2s

for all /i > 0 and K = 2M/a. Clearly V(t) = diag(V\(t),Pr(0) * the
fundamental matrix of (9) and

(14) IV(t)PV~\s) I, IV(s)QV~\t)\ n Kexp{~(7a)(t- s)/p}.
Using Lemma 1in [1] we can immediately prove the following
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Lemma 7.
IV(t)PV~1(s) - 9(t,s)P6~1(s,s)| n T(/x,a)exp{—a(t —s)/fi}

fort A s, and
IV(t)QV~1(s) - 0(i,s)Q0_1(s,s)| ™ L(fi,a)exp{-a(t - s)/fi}

for s A t, L(fi,a) = [iIK2®¥/e2(a2—iiKB) and 0 <a < 7, =7 —a,
L 6 (0,X0], I"'o = a2/RK.

Proof of Theorem 6. We abbreviate / = |T(<)PI-1(s) -
—VF(i,s)PVF(s,.s)|. Then we have

[ = \T-\)[T(1)X(t)PX-\s)T(s) - e(t,s)Pe-1(s,s))] T(s)I .

We denote by Z(t) the fundamental matrix of the system (4), and we recall
that Z(t) = T(t)X(t). By the property (P2) we obtain

I UaBM\Z(t)PZ~\s) - 0(M)P0-1(s,s)| =aRM(h + /2)(M)
where

h(t,s) := 1Z(t)PZ~\s) - V(t)PV-\s)lI,
12(t,s) := IV(t)PV-\s) - e(t,s)Pe-\s,s)l.

According to Theorem 1, we have
(15) h(t, s) ™ (5A/2)8g/32M (7 - a)-1 exp{ - 7(f —s)/2fi} .
Theorem 3 gives us the estimate

(16) h(t,s) ~ i(/r,7)exp{-(7 - a)(t - s)/2fj,}.

Defining R(fj,,a) = aBM |x(/r, 7)+ (5K/2)8a/3Mp2M (7 —a) 1 we com-
plete the proof of Theorem 6.
Acknowledgement. The author whishes to express his gratitude to

Professor Margaret R. Bledsoe for her revision of the English version of this
article.
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A CHARACTERIZATION OF SOME
ARITHMETICAL MULTIPLICATIVE
FUNCTIONS

B. M. PHONG* (Budapest)

1. Introduction and results

An arithmetical function /(n) ~ 0Ois said to be multiplicative if (m, n) =
= 1implies that
/(mn) =/(m)/(n)

and it is completely multiplicative if the above relation holds for all posi-
tive integers m and n. Let M. and M* denote the set of complex-valued
multiplicative and completely multiplicative functions, respectively.

In 1980, J. L. Mauclaire and Leo Murata [6] showed that if / G M
satisfies the conditions

(1.2) [/(n)1=1 (n —1,2,..)

and

(L2) I/(n+1)" Nnl=®O,
n"x

then / G M*. Trivially, (1.1) and (1.2) hold for functions of the type
f(n) = n,T, where r is a real number. |. Katai [3] conjectured that /(n) =
= nlT are the only multiplicative functions that satisfy (1.1) and (1.2). This
conjecture remains open, a few partial results are known. For such results
we refer the reader to A. Hildebrand [1], [2] and I. Kétai [5].

In [7], improving the above result of Mauclaire and Murata, we proved
that if / GM satisfies (1.1) and the condition

(1.3) £ |[/(Nn+[)-C/(n)]=wo
WX

for some positive integers A, B and a non-zero complex number C, then

f(pk) = f(p)k  (* = 1,2,...)

* Research supported by the Hungarian National Research Foundation No0.907.
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for each prime p coprime to 2AB, furthermore in the case (2, AB) = 1 we
also have

[(2*)= (") ()t (B=1,2,.)

and /(A)2=C2
In this paper we shall consider the problem of characterizing the func-
tions / £ Ad that satisfy the conditions (1.1) and

(14) E I/(A,+J)-C/(n)[=()(logx)

where A, J9 are fixed positive integers and C is a non-zero complex number.
A complete solution of (1.4) is not known, since the condition (1.4) is
stronger than (1.2).

We shall prove the following results.

Theorem 1. Let A, B be positive integers and let C be a non-zero
complex number. Iff £ A4 satisfies (1.1) and (1.4), then there are functions
f\ and F such that

(1.5) f(n) = fi(n)F(n) (n=1,2,.),
(1.6) li GNr, FeM,

(1.7) F(An) = F(A)F(n) (n=1,2,.),
(1.8) F(n+B) =~"F (n) (n=1,2,...),
(1.9 /2(A) = C2

and

(1.10) f(A) =C if 2|AB.

Corottary 1. Iff £ A4 satisfies the conditions (1.1) and (1.3), then
f = f\F, where f, f\, F satisfy the conditions (1.6)—1.10).

Remarks. (I) All solutions of (1.8) for F £ A4 have been determined
in [8]. From our proof it follows that

(1.12) F(p™) = F[(p\B)} (7=0,1,2,..)
for all odd primes p and
(1.12) FR’3) = "F [(2 1,B)\ (/3= 1,2,...).
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(1D It is obvious that f(n) = (—1)" 1is a multiplicative function and
it satisfies (1.1) and (1.4) with A= B = —C = 1 In this case we have
= —1. In other words, from (1.1) and (1.4) it does not always follow
that f(A) = C.
Theorem 2. Let A, B be positive integers and let C be a non-zero
complex number. Assume that f £ M and g £ M* satisfy the conditions

(1.13) Ne )! = i, gme0 (=12

and

(1.14) \s(an *BY- CT(MY _ o(log*f
N<x

Let Al = A/(A,B) and B' = B/(A,B). Then the following assertions hold:
(@) Iff(A"+ 1) = g(A'+ 1), then

(1.15) feM *
and there is a Dirichlet character \A" (mod A') such that
(1.16) g(n) = XA'(n)f(n)

for every positive integer n coprime to A".

(b) IFf(A" + 1) f g(A"+ 1), then 2 {(A' + 1)5" and there are /) £ /14*
and a Dirichlet character A’ (mod2T") such that

(2.17) /(n) = (-1)n-Vi(n) (n=1,2,.)
and
(1.18) g(n) = X2A'(n)f(n)

for every positive integer n coprime to 2A".

Several authors have considered the problem of finding similar conditions
concerning /(n + 1) —f(n) that imply f(n) = nIT for some real number r.
Improving some results of I. Katai [4], E. Wirsing showedl that if / £ J14
satisfies |/(n)| = 1 and

/(n +1)- f{n) -*-0 as n -> o0,

then /(n) = ntT for some real constant r. Applying our theorems and using
this result of E. Wirsing, we get the following

1 Personal communication to I. K&tai on September 3, 1984.
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Theorem 3. Assume that f e M satisfies the conditions
1/0)] =1 (n=12,..)
and
(1.19) f(An +B) —Cf(n)—>00 as n —»ocC

for some positive integers A, B and a non-zero complex number C. Then
there are a real constant T and afunction F £ M such that

(1.20) f(n) = ntTF(n) (n=12,..),

where f, F satisfy the conditions (1.6)—1.10).
Theorem 4. Assume that f GM and g 6 M* satisfy the conditions

(1.21) \f(n)\ = 1, g(n) ® O (n=1,2,...)
and
(1.22) g(An + B) —Cf(n) —0 as n —#oo

/or some positive integers A, B and a non-zero complex number C. Let
A'= A/(A,B), B' = B/(A,B). Then the following assertions hold:

@i If f(A" + 1) = g(A' + 1), then there are a real constant r and a
Dirichlet character xal(mod A') such that

(1.23) f{n) =niT (n=1,2,.)
and
(1.24) g{n) = Xn'(n)nrr

for every positive integer n coprime to A".
(i) 1f f(A" + 1) ™ g(A" + 1), then 2\ {Al+ 1)B' and there are a real
constant T and a Dirichlet character X2A1 (mod2T'") such that

(1.25) f(n) = (-1)n_1niT (n=1,2,...)
and
(1.26) g{n) = X2A’{ri)ntT

for every positive integer n coprime to 2A".

We note that by writing a multiplicative function / of modulus 1 in
the form / = e2nih, where h is a real-valued additive function, one can
reformulate results involving multiplicative functions of modulus 1 in term
of real-valued additive functions reduced modulo 1. For example, one easily
sees in this way that from Theorem 3 we have
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Corollary 2. Let A, B be positive integers and let D be a real con-
stant. If a real-valued completely additive function h satisfies

(1.27) lim \\h(An +B)-h(n)~ D\ =0,

where ||ti|| denotes the distance of n to the nearest integer, then there is a
real constant Tsuch that

(1.28) Yh(n) —rlogn|| =0 (n=1,2,.).

2. Proof of Theorem 1

Assume that / 6 J14 satisfies (1.1) and (1.4), where A, B are positive
integers and C is a non-zero complex number. For an arbitrary positive
integer n, let D(n) = DR(n) denote the product of prime power factors of
B composed from the prime divisors of n, i.e., D{n)\B, (D(n), B/D(n)) =
= 1 and every prime divisor of D(n) is a divisor of n.

For each positive integer Q we define the sequence

R = R(AQ) = {Rk}?=1
by the initial term Ri = 1 and by the formula
(2.1) Rk=1+ AQ + ... + (AQ)k~x
for every integer k 2. Moreover, let

(2.2) Tk = Tk(n,Q) = (AQ)kD(Q)n + BRK(AQ).

Then for every integer k * 1 we have

(2.3) Tk+1(n,Q) = AQTk(n,Q) + B
and
(2.4) (QD(Q),Tk(n,Q)/D(Q)) =1.

Thus, by using (1.4), (2.2), (2.3), (2.4) and the multiplicativity of /, we
have

£ ~|(Ti(n,Q)) - CH{QD(Q)n) I = o(logar)
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and

E 1 f{Tk(n,Q)) - A(Q)f{Tk-i(n,Q)) I= o(log:r)

n"x
for each fixed integer k ~ 2, where

A(Q) := CH(QD(Q))/f(D(Q))-
These imply that

(2.5) E I I(Tk(n,Q)) - C*Q)k~1f(QD{Q)n) | = o(logx)

for each fixed integer k * 1
We first deduce from (2.5) that if the positive integers k, P and Q satisfy
the conditions

(2.6) (P,RK(AQ)) =1

and

(2.7) (PD(Q) + B,Rk(AQ)) =1,

then

(2.8) fF(AKk~IQkPD(Q)) = A(Q)"If(QD(Q)P).
Assume that (2.6) and (2.7) hold. Let Rk = Rk(AQ). Then
(2.9) (Rk,(AQ)kPD(Q) + B) = {Rk,PD(Q) + B) = 1
Considering

n:= PRKM(m) = PRK(APQRkm + 1)

and taking into account (2.5), using (1.1), (1.4), (2.6), (2.7), (2.9) and the
multiplicativity of /, we get

PRt .(APQR>+1) M A P T ))

Ao =Y(<rB<B) 1N Ls
SE PRKM(m) f (A k-xQkPD{Q)M{mj)~
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A(Qk-1{QD(Q)PM(m)) =

SE PRIVCIM(m) | (HAQIKPD(QIM(m) +B)-
Sx

-C f(Ak~1QkPD(Q)M(m)) +

+E pRKC\M(m) | (1AQIKP DQ)M{m)Rk + BRK)

-CA(Q)k-1f(QD(Q)PM(m)RK)\io(log(PRkM(x))) = o(\ogx),
which implies that

f(Ak~1QkPD(Q)) -A(Q)k~1{QD(Q)P) =o(1).

This proves (2.8).

It is easily seen that (2.6) and (2.7) hold for every positive integer « if
P = 1and 2B\Q. Thus, for each prime p coprime to 2AB, by applying (2.8)
with Q —2B and Q = 2pB, we have
(2.10)

k = flA'-'"ppBfDfrB)] A(2pB)\ k~1f{2PB) _ k
1 J  f[Ak~1(2B)kD(2B)] A{2B) )  f(2B) J[P>
for every positive integer k. Thus, by using (2.10) and / 6 M we have
(2.11) f(mn) —f(m)f(n) if (m,n, 2AB) =1

Since [Rk(AQ), A) = 1 for every positive integer k, from (2.11) we can
relax the conditions (2.6) and (2.7) to

(2.12) (P,Rk(AQ),2B) - 1
and
(2.13) {PD(Q) + B,Rk(AQ),2) = 1

In other words, if the positive integers kK, P and Q satisfy conditions (2.12)
and (2.13), then

(2.14) f(AK~1QkPD(Q)) = A(Q)k~If{QD(Q)P).
We now prove that

(2.15) f(AP) = f(A)F(P) (P =1,2,...).
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First consider the case when 2|AB. In this case, by applying (2.14) with
K=2and Q = 1, we have

(2.16) f{AP) —Cf(P) if (P,1+AA)=1
and
(2.17) f(A) =C.

Thus, by using (2.16), (2.17) and the multiplicativity of /, it is obvious that

(2.15) holds.
Suppose now that 2\ AB. In this case (2.12) and (2.13) hold for every

even positive integer Q with (P, Rk(AQ), B) = 1. Thus, by applying (2.14)
with Kk —Q = 2, we have

f(A22P) = C/(2)/(2P) if (P,1+ 2A,B) = 1
This with the multiplicativity of / implies that
f(A22P) =C/(2)/(2P) (P =1,2,.),
consequently f(AP) —f(A)f(P) holds for every odd positive integer P. So,
(2.15) holds for every positive integer P, because in this case 2\ A. Thus,
we have proved (2.15).

On the other hand, it follows from (2.12)-(2.14) that if the positive
integers K, Q satisfy

(2.18) (D(Q)+B,Rk(AQ),2) =1

then

(2.19) f(Ak~10kD(Q)) =cC -1/ {QP(Q))K
f(D(Q))k-I

Thus, if (2.18) holds, then from (2.15) and (2.19) we have

(2.20) Z(((‘W )) = (-p y ) ‘n f{QD(Q))k

It is easily seen that (2.18) holds in the following cases:
() g =1, =3
(i) Q = 1, k= 2 if 2|AB]
(iii) Q = 2 and every positive integer fg
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(iv) Q =2p, (p,2) = 1and every positive integer k.
Thus, from (2.20) we get

(2.21) [(A)2= C2,
(2.22) f(A) =C if 2\AB
(223 F{mv)k
£{D(2))k- 1
and
(2.24) f{pkD(p)) = PPNk 4 oy =1
1(T1 )K"’

Now we write f(n) as
(2.25) f(n) = f-i(n)F(n),

where fi(n) is a completely multiplicative function defined as follows:

if (p,2)= 1

(2.26) flip) = ¢ f2p2)

A /0@) TP=2
From (2.24), (2.25) and (2.26) it is easily seen that

F(paD(p)) =F(D(p)) (@=0,1,2,..)

and so
(2.27) F(p®) = F[(p\B)} (7-0,1,2,..))

for every prime p ¢ 2. Moreover, from (2.23), (2.25) and (2.26), we have
(2.28) F(2R) = B)} R=1,2,.).

By using (2.22), (2.27) and (2.28) one can check that

(2.29) F(n+B) =~AF(n) (n=1,2,.).

Thus, from (2.15), (2.21), (2.22) and (2.29) we get the assertions (1.5)-(1.10)
of Theorem 1. This completes the proof of Theorem 1
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3. Proof of Theorem 2

Assume that / GM and g G M* satisfy conditions (1.13) and (1.14),
that is,

3.1) /)l =1, A(Maoo (n=1.2,..)
and
(3.2) X .,\g(An+B)-Cf(n)1:0(logx)

n<x
for some positive integers A, B and a non-zero complex number C. Let

Al = A/(A,B), B' = B/(A,B) and C = C/g[(A,B)\. Since g GM*, we
have

ff(An +B)~ Cf(n) = g[(A B)]g(A'n + B') - Cf(n)
which with (3.2) implies

X\gAn+B  ~CIQ =t

Thus, it is enough to prove Theorem 2 under the condition (A, B) = 1.
Assume that (3.1), (3.2) hold and (A, B) = 1 For each fixed positive
integer N, we have

(AN + 1)(An + B) = A[(AN + 1)n+ BN] + B,
and so, by using the complete multiplicativity of g, we obtain

f[(AN + I)n + BN] - g(AN + Df(n) =
= £ [A(AA +1)n + BN) +B]~ Cf[(AN + 1)n + BN]} +

+"g(AN + 1){a(An+ B) - Cf(n)},
which with (3.1) and (3.2) implies that

(3.3) X “ If[(AN + 1)n + BN] - g(AN + I)/(n)| = o(logx).
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Applying Theorem 1 when A, B, C are replaced by AN + 1, BN and
g(AN + 1), respectively, we see that there are /i 6 M* and F £ M such
that

(3.4) f(n) =h(n)F(n),

(3.5) F(n+BN)= + 9 f(n) 1,2,..),
(3.6) f\AN +1)=g\AN + 1)

and

(3.7) f(AN + 1) = g{AN + 1) if 2\{AN + 1)BN.

Since (3.5)-(3.7) hold for each positive integer A, it follows that (3.5)-(3.7)
also hold for every positive integer N.

a) We first consider the case when f(A + 1) = g(A + 1). In this case
from (3.5) we have F(n + B) = F(n) (n = 1,2,...) and so

(3.8) F(n+BN) —F(n)  (n=1,2,..).

This with (3.5) shows that

(3.9 f(AN + 1) = g{AN+1) (N=1,2,..)
and
(3.10) F(n) = xB(n)

for all positive integers n which are prime to B. (Here \B denotes the
Dirichlet character mod B.) Let

H(“):=7$ =

Then, by (3.9) we have H(AN + 1) = 1 (N = 1,2,...), which gives H =
= xa (mod A). Thus we have proved that

(3.11) g(n) = XA(n)f(n)

for every positive integer n coprime to A.
We shall prove that in our case

(3.12) 16 A4*.
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Indeed, from (3.4), (3.10), (3.11) and using the fact g E J14*, we have

bin)xs(n) if(n,B) =1
f(n) A" if (n,A) =1,

xn(n)

which implies / E J14*, since (A,5) = 1. Thus we have proved assertion (a)
of Theorem 2.

b) Assume now /(A + 1) ¢ g(A+ 1). Then from (3.6) and (3.7) we have
2\ (A+ 1)5 and

I(A + 1) = -fifA+ 1), F(n+5)=-F(n) (n=12..).

These imply

(3.13) F(n + 57V) = (~<)NF(n)  (n=1,2,...)

and

(3.14) OAA+1) = ((1)%(AA +1) (A=1,2,.).
Thus, from (3.13) we get F{n + 25) = 5(n) (n=1,2,...), and so
(3.15) F(n) = X28{n)

for every positive integer n coprime to 25. We also get from (3.14)

(3.16) g(n) = X2A(n)f(n)

for every positive integer n coprime to 2A. Since (A,5) = land g E N14*,
from (3.4), (3.15) and (3.16) it follows that

g(rc)
>(n) X2A(n)fl(n) X2(m),

which implies
F(nm) = F(n)F(m) if (h,m,2) - 1
In our case we have 2\ 5 and so from (3.13) we get
F(B)F(m + 1) = -F(B)F(m) (m=1,2,...)
since (5,m + 1,2) = 1. This shows that
(3.17) F(n) - (-H""1 (n=1,2,.).

By (3.4), (3.16) and (3.17) the proofofassertion (b) of Theorem 2 is finished.
Theorem 2 is proved.
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4. Proofs of Theorems 3 and 4

Assume that f £ A4 satisfies

(4.1) [/(n)] =1 (n=1,2,..)
and
(4.2) /(An + B) —Cf(n) 0 as n —o00

for some positive integers A, B and a non-zero complex number C. Then
conditions (1.1) and (1.4) of Theorem 1 are satisfied, and so

(4.3) /(n) = fi(n)F(n)

where f\ £ N14*, F £ N4 satisfy (1.6)—1.10). It is obvious that there are
positive constants Mi, M2 such that

(4.4) Mi < |F(n)| = |[P[(n,5)]] < M2
for every n. From (1.6)—1.8) we have
/(An + B) - Cf(n) = /i(An + B)F(An + B) - Cfi{n)F(n) =
= /i(An +B)j*"F(An) - Cfi(n)F(n) =

=~fyy-{l n+8)-Wn)},

which with (4.2) and (4.4) implies

(4.5) li(An + B) —/i(An) —=0 as n —»00.

By replacing n in (4.5) by BT, we get

(4.6) fi(Am + 1) —fi(Am) —»0 as m —00.
We shall prove that for each positive integer K

(4.6) li(Am + K) —/i(Am) —=0 as m -> 00.

It is obvious that (4.7) holds for K = 1. Assume that (4.7) holds for K. We
have

h{Am +K +1)-M Am )= -j» {fi(A2m2+ KAm + Am + K)—

-Ji(A 2m2+ KAm+ am3 +
+{i(Am + 1) - fi(Am)},
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which shows that (4.7) holds for K + 1, because

1 ) 1 _ 1
M2 < [/i(»)] = \F(M\ < M[ (n=1,2,..)).

So we have proved that (4.7) holds for each positive integer K.
Finally, by applying (4.7) with K = A, we get

+ 1) - /i(m)} -»0 as m —»00,
which with the result of E. Wirsing implies that
(4.8) /j(n) =nlT  (n=1,2,..)
holds for some real constant r. By (4.3) and (4.8) the proof of Theorem 3

is finished.
We now prove Theorem 4. Assume that / EM and g E Ji4* satisfy

(4.9) [/(n)] =1, g(n) d0 (a=1,2,.)
and
(4.10) g(An + B) —Cf(n) —v0 as n —00.

Let D = (A,B), A' =A/D,B' =B/D and C" = C/g(D). Sinceg € NT,
from (4.10) we have

(4.12) g(A'n + B') —C'f(n) as n —=*00.
Then the conditions (1.13) and (1.4) of Theorem 2 are satisfied, and so we
can apply Theorem 2.

(i) IFf(A" + 1) = g(A' -f 1), then by Theorem 2 we have / E M* and
g(n) = xa'(n)f{n)- Thus, using (4.11) we get

(4.12) f(A'n + B’) ----)-(—{\ m/(Ta) ->0 as n ->00.

By using / E /14* and Theorem 3 it follows that
(4.13) f{n) —ntT (ma=1,2,...)

for some real number r. Thus, part (i) of Theorem 4 is proved.
(i) IFf(A" + 1) p g{A' + 1), then from Theorem 2 we have

(4.14) f{n) = (-1)"-1/i(rc), g(n) = X2A'(n)f(n),
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where f\ G J14*. It also follows from Theorem 2 that 2\ (A' + 1)B"'. From
(4.11) and (4.14) we have

X2A'(2A'n + B")f(2A'n + B') - C'f(2n) —40 as no o

which implies

(4.15) fi(2A'n + B") - Vv XoA't )) fi(n) ->0 as n -* oo.

Since /j G 4*, we can apply Theorem 3 to (4.15) and get
/i(n) = n’T (n=1,2,.)
for some real constant r. Thus we have proved that

I(n) = (-Dn~VT (n=1.2..)

ff(n) = X2A'(ri)f(n) = X2A'(n)nIT

for every positive integer n coprime to 2A".

Theorem 4 is proved.

Acknowledgement. | am thankful to Professor I. Katai for the indi-
cation of the problem and his help in the preparation of this paper.
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A NOTE ON HERMITE-FEJER
INTERPOLATION ON EQUIDISTANT NODES

T. M. MILLS and S. J. SMITH (Bendigo)

1. Introduction

Let M —{xk;n e k—1,2,...,n; n=1,2,3,...} be a triangular matrix
such that, for each n,

1="n” n"23n" A Xnn = IF

(We will write Xk for x~n when there is no ambiguity.) For / : [-1,1] —»
—» (—00,00) and any n 6 {1,2,3,...} there is a unique polynomial
H2n-i{f,x) such that the degree of Hn-i(f,x) is 2n —1 (or less) and

H2n-\{f,XK) = /(**), H2n-i(f,Xk) =0 (k= 1,2,...,n).

The interpolation polynomial H2n-i(f,x) is known as the Hermite-Fejér
interpolation (or HFI) polynomial of degree 2n —1. L. Fejér [3] showed that
if M is chosen so that {xk,n « k = 1,2,..., n} is the set of zeros of the
Chebyshev polynomial Tn(x) = cos(n arccos x), -1 ~ x ~ 1, then, for all

[ GC([-I, 1]), we have
nl%! Ne ,, I(/)- 1Y =0,

where || « || is the uniform norm on the space C ([-1,l]) . Thus the Weier-
strass approximation theorem can be proved using Hermite-Fejér interpo-
lation polynomials.

In 1958, D. L. Berman [1] studied the HFI polynomials when the nodes
are equidistant: that is

Zfcn = -1 + 2(k - 1)/(n - 1) (k = 1,2,... ,n).

Berman proved that if the nodes are equidistant and g(x) = x (H”*x 1),
then the sequence {H2n-\{g-,x) : n —1,2,3,...} diverges if 0 < |x| < 1
If x| = 1then H2n-i{g,x) = g(x) since x\y1= -1 and x,,n = 1 for all
n. Berman proved also that {Ff2n-i(ff20) : n = 1,2,3,...} converges to
5f(0). Thus the question of convergence of {#2n_i(<7x) : n = 1,2,3,...}
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is resolved for all x £ [,1]. Berman’s result shows that HFI polynomials
based on equidistant nodes provide a very poor approximating method even
for very simple functions such as g(x) = x.

The purpose of this note is to point out that the convergence of
{ifn-i(<7>0) : n = 1,2,3,...} is not an isolated phenomenon. We will
prove the following result.

Theorem. Iff: [—1,1] —(—00,00) is bounded on [—1,1] and contin-
uous at 0, then
ﬂi%o# 2n_i(/,0) = /(0).

We note that some related results were stated (but not proved) by
Runck [4, p.1212]. For example, Runck’s results imply that the sequence
(#2n-i(/)0) : n = 1,2,3,...} of linear functionals is uniformly bounded.
However the theorem above does not appear to be an immediate conse-
guence of Runck’s results.

The argument presented in Section 2 below shows that if / £ C ([—1,1])
has modulus of continuity

u(f;6) =sup {|/(x) - f(Y\ : x,y £[-1,1], X - \ ™ &},
then

.
|tf2n-i(/,0) - /(0)1 = 0(1) ~ t~2u>(f;t/n) = o()w(/;(logn)/n).
t=1

Similar estimates for || # 2n -i(/)-/ | were found by Bojanic [2] and Vértesi
[5] when the nodes of interpolation are zeros of the Chebyshev polynomials.

2. Proofof the theorem

In this section we prove the theorem using a lemma; the proof of the
lemma is rather technical and so is presented in the final section of the paper.
We will also employ the following definition. If / : [—1,1] —(—00,00) is
bounded, and 0 < $i1 1, define

AO(/; S) = sup {J/(t) - /(0)L : |ff N <§}.
Note that / is continuous at O if and only if g@ouo(f;G) =0.

Now, it is well known that

.
#2n-1(/,z) = »2 f(xk)hk(x),

Acta Mathematica Hungarica 63, 1994



HERMITE-FEJER INTERPOLATION 47

where
(2.1) kO = 1LY B 4e2
_ w(x)
(2.2) Ik(x) = (x - xk)w'(xky
(2.3) w(x) = )
1Iji(X x*)
and

(2.4) xk=xkn=-1+2%k- 1y/» -1 =12

Also,

n

(2.5) JZ hk(x) = 1 (2" xar.

We may assume that n = 2m. For if n —2m + 1, then xT+\>A= 0, and
hence = /(0) for all n. If n = 2m, by using (2.5) it is found that

2m
26) A2, 1(,0)-/(0)] 8 EJ/(**)-/(0)] [mo).

Form+ 1/~ k™ 2m, let K = m + t. The lemma of the next section implies
that there is a constant K so that
2.7) \hm+t(O\' S AT 2,

and thus, if 1< mo < m, we have

2m m
A‘Eﬁl L) - o)l Moy s« El (Ra9- [OLr 2=
= " Jn] I/ (im+t) - /(0)] i 2j <
\t=1  i=mo+l /
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-*).

09)
Since t~2 can be made arbitrarily small by choosing mO large enough,
i=mo+l

following which uo (/; ﬁ—m_l_/) can be made arbitrarily small by choosing

m sufficiently large, it follows that

2m

) - 1(°)] IM°)] | = °-
\femrme] *) - 1)1 | )ll

Similarly, . .
™ 1 Aeamd) =

and so the theorem follows from (2.6).

3. An important estimate

This section is devoted to proving the estimate in (2.7).
Lemma. There exists a constant K such that for n —2m,

(3.1) \hm+tO)\ » Kt~2 t=1,2,.... m; m=1,2,3,..)).
Proof. After considerable calculation based on (2.1)-(2.4), we find that
1
(3.2) h"m+t(0) — | +(2t'|) E (W 0))2
*=m—-fl

where

(3.3) Km+t(0)| {(2rn)’)2
(MN2(2t - 1) 24m-1(m +t —1)! (m - )\

Equation (3.3) can be written as
log |/m+i(0)] = 2logr(2m +1)—2logr(m+1)-log I (T-N)—ogl (T—+1) —
—4m - Dlog2 —log(2i - 1).
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On employing the estimate (see Whittaker and Watson [6, pp. 251-253])
1 1 . 1
0<logT(x) - (MWK- -Jlogx- x+ -log2tj < — (x > 0),

for the gamma function, we obtain
log [/m+i(0)| < (4m + 1)log(2m + 1) - (2m + 1)log(m + 1)-
—m + t —1/2) log(m + t) —(m - t+ 1/2) log(m - t + 1)—

-(4m - 1)log2—log(2t —1)+ 1—og 2n + b(2m1+ 1) =

= 2mlogm —(m + t —1/2) log(m + t)—
—m - t+ 1/2)log(m - t+ 1) —logt + 0(1)
as m —o00, where 0(1) is independent of t. Thus, since
T m+t—1/2
i1 log 44 172

i=m—+1

we obtain from (3.2)
log|lhm+t(0)| + 2logt ~ log ~1 + (21- I)log”™ ; +j~ +4dmlogm—

-(2m+2<-Dlog(m+i)-(2m—=2i+1)log(m-<+1)+0(1) = & (1,c)+0(1)

as m — 0o, where ¢ —t - 1/2, and
(3.4) ®(t1,c) =log * + 2clog m+e 2((m + c)log(m + c) —
m —C

—2mlogm + (m - c)log(m —c)).

Since mIim ® (1,c) = O for fixed c, it follows that ® (7,c) is bounded above

—k x>

for c = 1/2,3/2 and m ~ c + 1/2. Hence (3.1) will be established if we
can show that @ (7,c) is bounded above for ¢ = 5/2,7/2,9/2,..., and m *

A ¢+ 1/2. Note that if c+ 1/2 < m < c2, then 2clog —=——> 1, and s0
m —c

m m+c
log 1-f2clog m 1+ log 2clog M —c
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Hence, for c+ 1/2 ~ m ™ ¢2, we can say
Tri 4
(3.5) ®(t,c) M 1+ log2c+ loglog nze. 2((m + c)log(m + c) -

—2m logm + (m —c)log(m —<)) = & (T, C).
We consider three cases.
Case 1: ¢+ 1/2 Um ™~ \/3c. For m ~ c¢+ 1/2, the functions

loglog m : and —2((m + c¢)log(m +c) —2mlogm + (m - c)log(m —<))
are decreasing and increasing, respectively, and so from (3.5) we have

(3.6) ®(t,c) M 1+ log2c + loglog(4c + 1)-
yl3+ 1
Vb -1
Case 2: y/3c ™ m ~ c2. From (3.5) we obtain
Ad m2 2c
dm A"m2—c2 (m2—c2)log ’

which is positive if and only if

c_1(m2- c2)log (1 - c2/m HY1) log ’}iﬁﬁﬂ ’

Now, (m2—c2)/m 3 is a decreasing function of m for m ~ \/3c, and so

c-1(m2—c2)log gl(l —c2/m2) *) log i_gnl.ql.l >

sot(m2 - RO 2N B
m2 m mo C
Thus, if n/3c » m c2,
(3.7) ®(1,c) M P(c2,c) =
c+ 1 c+1
= - 2cl
1+ log2c + IoglogC_1+ 2c2log cogC_1

=0(1), as c—»o0.

Case 3: m > c2. For fixed ¢, =2((m + c)log(m +c¢)- 2mlogm + (m —
—<)log(m —<¢?) is an increasing function for m A ¢+ 1/2 that approaches

0as m —vo0, and so it is always negative. Therefore, if m N ¢2, we have by
(3.4),

(3.8) ®(1,c) <log " + 2clog = 0(1), asc—»o0.

From (3.6)-(3.8) it follows that & (7,c) is bounded above for ¢ =
=5/2,7/2,9/2,... and m ~ ¢+ 1/2, and so (3.1) is established.
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A DINI-DAX THEOREM

J. KINDLER (Darmstadt)

The following theorem is fundamental in analysis:

Dini-T heorem (classical version). LetY bea compact topological space
and fn : Y —R, n £ N a sequence of continuous functions such that
f|(y) = /2(2) » e for all y GY. |If there exists a continuous function

Y ~* R such that I|m fn(y) =f(y) for ally £ Y, then fn is uniformly

convergent tof.

In the literature several generalizations of this theorem can be found.
The version below is taken from [2]:

In the sequel, let I be a nonvoid set, Y a compact topological space,
and / : X x Y -f R a function such that all sets

Ya{x) :={y 6 Y :f(x,y) *a}, ab6R, x£X

are closed (i.e., the function / is lower-semicontinuous in the second vari-
able).

Dini-T heorem (modern version). The ‘Dini-condition”
(Di) V ib"rel 3z0e X VJ/EK: /(i0,SH™ max(/(jl,y),/(i2y))
implies inf sup f(x,y) = sup inf f(x,y).

P JEY xcfx( y) pyey (x,y)

Remark. Set f(n,y) = fn(y) —f(y) to obtain the classical version.

In 1977, when | attended a lecture of Heinz Kbénig on mathematical

economics, | heard about a counterpart of the Dini-Theorem which Kdnig
called

“Dax-T heorem”. The ‘Dax-condition”
(Da) Vj1,32GY 3yo GY \Vxe X : f(x,y0) s min(/(x, yr), (X, y2))
implies inf sup f(x,y) = sup inf f(x,y).
yeY xex xex yeY

The following theorem generalizes the Dini-Dax Theorem (take r =
= + 00). We write med(a,/3,7) for the middle of the three numbers a, /3,

7-
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Theorem. Suppose thatfor some number TGRu{*00} the conditions

(DTHVibi261 3x0GX VyeY: f(x0,y)"med(f(xi,y),f(x2,y),T),
(Dr) 1,22 GY 3y0eY Yxe X :f(x,y0)n med(f(x,yi),f(x,y2),r)

are satisfied. Then inf sup f(x,y) = sup inf f(x,y).
yeY Tex Tex yeY

Proof. Obviously, /* sup inf f(x,y) n f* := inf sup f(x,y).
Xex yev eY Tex
Hence, we may assume /* < oco. Let a G R with a > /*. We show by
induction that the assertions

(n) Ya(A):= P| Ya(x) 0 forall A cl with |/I]=n

hold true for every n GN:

From a > /* we infer (1). Now let (n) be satisfied, and let A C X with
[N = n+ 1 Choose x\,x2 G A with xX\ ® x2and set E —A - {£1,22}.
Then (n) implies Ya(Eun{£}) dp Oforevery x e X. Incaser »  we choose
M fiva(E U{sa,-}), i G{1,2}, and yo GY according to (DT). In case T> /»
we choose £0 according to (DT) and yo G Ya(E U {£o})- In both cases we
have yo G Ya(J1), so (n + 1) is proved.

Now, as the closed sets Ya(x), a > /*, x £ X have the finite intersection
property, there exists a y* £ p{Ya(f) : x G X, a > /»} as Y is compact.
This implies /* ~ sup”x f(x,y*) * /,,.

Example. Let X = ¥ = [0,1] and f (x.y) = 1—3, or £ for X * y. or
x <y, respectively.

Here the conditions (DT) and (Dr) hold for r = 1 with £0 =
= med (£i,£2,]) and yo = med (31,32,5), axl ¥ is compact with respect
to the coarsest topology such that all sets Ya(x) are closed. (Ya(x) ¢ O
implies Ya(x) = [1—a, x] for 1—x ~ a < x and Ya(x) D [|, I] otherwise.)
Hence, our Theorem applies.

Observe that for £1 = 1 and x2 = |, say, there is no £0 GX such that

f(xo,y) = “/(*1,3/)+ for all yeY.

So, despite some similarity with the minimax theorem of Ky Fan
Konig [1], [2], our Theorem is independent of it, and we also see that the
Dini-condition (Di), and similarly (Da), is violated. Finally, Sion’s minimax
theorem [3] does not apply, since not all sets Ya(x) are closed in the euclidean

topology.
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A COUNTEREXAMPLE ON MONOTONE
MUNTZ APPROXIMATION

S. P. ZHOU (Edmonton)

81. Introduction

Let Cgjj be the class of all real continuous functions in [0,1] which have

N continuous derivatives, C[0g] = 1J, Ak be the class of all fcth monotone
functions on [0,1], that is,
K
Ak=\fe C0i]:E (-1)fj(*)f(x +jh) 20, h>0,*€[01- kh]
J=o0

For / e C[OIi], let WA\ = max”jo,!] |/(Xx)].
From Miintz theorem (cf.[2]), it is well-known that the combinations of
{rA}for 0= Ag< Ai< JI2< ..., are dense if and only if

(1) = 00.

On the other hand, monotone approximation has been studied by many
scholars for a long time. Results showed that for any sequence of real
numbers A = {An} with (1) and

(2) 0,1,....+ 1€ A,
(3) An —00, n —»00,

the fcth monotone combinations of {r/in} are dense in C[0g] MAK. Readers
can refer to the references [1], [3H9], [11], [13]H6] for monotone approxi-
mation by ordinary polynomials and related quantitative estimates, and to
[10] for monotone approximation by Mintz polynomials.

Given a sequence of real numbers A = {An}* Osatisfying (1), (2)1, (3),
write

A1) = j-P(x) = + a kx?

a
k=0

1 For convenience, we assume that AA=j for j =0,1,..., K+ 1.
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for / 6 CJo,i],

BA,N)= _in

Perl,f(n) L/-PLU,

for / E Clo,i] MAK,

inf -
Pen,!(n)n,u,* Wi-Pl
in particular for 1= N = {n}*_0,
EnU,N) = En(f), Eik\f,N) = E~(f).

On the comparison between En(f) and E~\f), G. G. Lorentz and K. L.
Zeller [6] showed that for k N 1, there exists a function / E C[0g] MAK such

that
lim sup Eff) = +00.

n—too En

Now we ask if the corresponding result that the monotone Miintz ap-
proximation is worse than the ordinary Mintz approximation in the order
still holds true. The present paper will construct a counterexample to con-
firm this fact.

82. Result and proof

Theorem. Let k A 1, and let A satisfy (1)-(3). Then there exists a
function f G C[0i] MAKk such that

. 0 K(f, A)
u“ s“p ag 4r = +00'

Lemma 1. Let {en} be a sequence of positive numbers tending to zero.
Set

rx rx1 [Xk-2
Pn{x) = / dx1/ dx2-’-/ P*(Xk-\)dxk- 1
Jo Jo 00

lor kA 2 or Pn(x) = P*(a:) /or k = 1, inhere

PAX) = z(x - £,),  P,@®) = (-1)fPn(l - ).
Then there exists a function fn{x) satisfying the following properties:
(4) In(x)ENy.(1)NA4~,

Acta Mathematica Hungarica 63, 1994



A COUNTEREXAMPLE ON MONOTONE MUNTZ APPROXIMATION 59

where N* is a natural number depending on £n,

(5) /il = 0(1),
(6) IAfe)(i) = o,
(7) \W\fn-Pn\\~£K,
where

n=n<*)={3; ill

and by An ~ Bn, we mean that there exists a positive constant M indepen-
dent of n such that M~1 4 An/Bn ~ M.

Proof. Set

X R Xk 2
gn(x)= [ dxi dx2--- / g*(xk-x)dxk-i
Jo Jo Jo

for kA 2 or gn(x) = ¥*(x) for k = 1, where

- Sen(x) - hn(x), x G[0,2en),
9Nnx) - \ K(x), X e [2£n,l],

en(x) = enxexp " X ,  "n(") = 4~1e~2e~1Ix(x - 2enf.

It is clear that for k = 1, \gn —Pn|| ~ e2. For k * 2, we also can easily
deduce that?2

Ik - Pn\ i Mxel
On the other hand let & = i=12,....k,
fi Sl fen
bn - Pl\~ [/ dxi dx2--- dxk 2/ M2EAdxKk_xe
A ) o/t 0 Jen/2

In fact, we need to show *(x) - P*(x) ~ 0,0 x ~ 2en, whence the desired
inequality above follows. Put 7 = 2¢”~x, then

</n@) - *n(x) = £ng; "e_J - "e-2j2+ y + 1™ = Enxy5(j/).

2 In the whole paper, we denote by Mj(x), j =1,2,..., positive constants depending
only upon x.
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We need to prove that ip(y) ~ 0 for 0 ~ y ~ 2. Since <0 = 0, it suffices
to prove that <p'(y) ~ 0, 0 5iy ~ 2. Now <p"(y) = e~y - "e~2> 0 for 0 °
ANjf~ 2. Therefore <//(?)) is increasing and y>'(0) = 0, thus our proof of the
above inequality is complete. Now we get

(8%) llin - Pn\ ~ £n,
Also

9% 90\ 0) = o,
(10%) glk(x) EAL
and

(11%) an{x) £ C[o,ip

Let gn(x) = ()T —x). Then from (8*)-I

(8) lithh - P\

9) fflfo(l) = o,

(10) ~90\x) £ Al

and

(") 9n{x) £ Cloi].

Since An —» 00, n —»00, and 1/~An = cio, we may choose an N such

that for all n ~ N, Xn > k, and

oo
E - 00

n=N+l
Let A'= {0, An — Because of (10) and (11), applying the result on
monotone approximation from [10], we can find a generalized polynomial
Ni
(12 —q(x) ——a0 — ajX§ ko6 A1
j=N+1
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such that

(13) to*>W - «Mil <

where N* is a natural number depending on en. Write q(x) = q(x) - </(I).
Now (13), (9) together with the fact -q £ 4 1imply

(14) -q(x) £ 411 0NnN-ANTY,
(15) 9(1) = o,
and
(16) 96 \x) - 9(411 < 4-
Let r\—x N r
I»(*) = (-: / dx1 /[ dx2mg

Jo Jo Jo

then

[1/»-S»llEll«-«!.*)I< 4
due to <7*(0) = 0. From (14)—16), we now have (4)-(6). Meanwhile by (8),

W»- Al £/, - «ll +lk,-pn I1E4 +0(4) =0(4),

for sufficiently large n,

Win-P n\\*"M 3sr-e 42 M 4£K,

that is (7). Lemma 1 is proved. O
Lemma 2 (D. J. Newman [12]). Let A be afinite set of positive numbers,

p(t) = a0+ * a A_Ai

Aen
Then
\ YVA<supM N <11V A
SAe; - P WO - Agp
Let

Ph=722 A> Alel’ P" = rax{ph,nk).
3=0

Acta Mathematica Hungarica 63, 1994



62 S. P ZHOU

Lemma 3. Seten = pnln 2. Take {nm} to be a subsequence of natural
numbers satisfying n\ = 1, nm+i > max{nm,N*m}, where N* is the number
appearing in (12). Then for any r(x) £ M, 1 (J1)MAF the following inequality
holds:

U,,.(*) - r(x) " M5K)NMEG

Proof. Write
m—21
«f vn (K), S5T(K) = » j U» m(*) + «,_I Fnm(x),
=1 i=i
then by (6), (7) and the facts 51 () £ MMNT(J1), Pnk\ 1) = Pnk\o) = - £,,
for any r(x) £ M, T (A) NMAK we have
ife-i,*;1s m 7€ ;;n||r,,(x) - 5ra(x)ii s Ic;:'cij| =

=£,,Ne (1)1 SEn, |5W (1)-rl<>()].

Applying Lemma 2, we get

157(1) - rW(l)| ~ Ukpnd\sm- I]| ~ *prm(\sm - F mi+ wFm - rl|),

thus for sufficiently large m,
II-M*) - ®OH £ Ms{k)e\-nxp-1\\Sn - Fm| » M9(k)nm£@m. O
Proof of the Theorem. Set na= 1,

()] nm+l=2[nm+ NHn+ £ m+ 1].

Define

/00 - nmfnm(x).

m —\

Let nm ~ k+ 1 In view of Lemma 1, f(x) £ C[0g] MAKk. From (5), (17) and
Lemma 3,

1 .
42(la) omm E n /«>(*)+3):(]1nj%(x)- ®)

j=m+1

> 1A M
»°e|_|ml'lm\l'l,ﬂ,* O E Mio{kjnv - 0(el

j=m+1
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On the other hand, by (4), (5), (7) and (17),

00 , M= y
EM(/N)AEMnTN)+ Y, »)+Enj E AN
j=m+1 " j=1 '

SH1fnM - Pm(x)l+0(4] +0=0(4)

since
m—

£ I»i(*)en™ (np >»(*) e nnm(A).
J=1
Combining these estimates we get

limsup ©128Un) ¢
ra—o0 NTEMT{/1N)
thus the Theorem is proved. O
Acknowledgment. The author thanks Professor J. Szabados for his
valuable comments toward the final version of this paper.
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CERTAINES METHODES DE SOMMATION
DE SERIES DE FOURIER DONNANT LE
MEILLEUR ORDRE D’APPROXIMATION

R. K. VASSILIEV (Moscou)

0. Introduction

Soit
(0.1) Ln(f;x) =-[ f{t)Un(t- x)dt, feC 2n, ne N,

une suite d’opérateurs de convolution dans I’espace C2iy\ Un(t) est une fonc-
tion continue 27r-périodique et paire ayant un nombre pair de changements
de signe sur l’intervalle ] —, .

Derinitions [1]. On dit que I'opérateur (0.1), ou n est fixé, appartient
ala classe S2n (m G N) si son noyau Un{t) change de signe sur ] —7r,7r[ au
plus 2m fois.

On dit que les opérateurs (0.1) sont polynomiaux si pour tout n les
fonctions Un(t) et Ln{f-,x) sont des polyndmes trigonométriques d’ordre
A n; on suppose aussi que Ln(I\x) = 1, c’est-a-dire,

1 " .
0.2) Un(t) - - + A [, CoSA;IL.
k=1

P. P. Korovkin a montré [2] que I'ordre d’approximation des fonctions
continues 27r-périodiques par une suite d’opérateurs linéaires polynomiaux
de classe S2m ne peut pas étre meilleur que 1/n2m+2 déja sur le systéeme de
fonctions 1,cosx, sinx, ..., cos(m -f I)x,sin(m + )x. 1l est intéressant de
construire une suite d’opérateurs du type indiqué donnant un ordre exact
d’approximation égal a I/n 2m+2 pour toute fonction ayant sa dérivée d’ordre
2m + 2 bornée.

A. |. Kovalenko a montré [3] que les opérateurs (0.1)-(0.2) avec les
noyaux

(0.3) Un+m(t) = Cn+m U(COS* - aBa*n))l,, (i),

5—1
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Ln{t) Cn-\-m — coust,

peuvent donner le meilleur ordre d’approximation pour les fonctions de
classe (7(2m+2) si la fonction ip(t) vérifie les conditions suivantes: a) ip(t) =

= 0pourt GR\]0,1[, b) ) GC] - oo, +oo[, c) ip(2m+2%t) G C]0,1],
d) 1 ANM,k=0,1,, 2m i 2, pour t G]O.1[. Les symboles a "\
s = 1,...,m n G N, sont des nombres réels qui doivent étre trouvés.

En particulier, on peut poser <p(t) = sin2m+17i pour t G [0,1]; le choix
d’une autre fonction satisfaisante a a)-d) aboutit aux difficultés presque
inabordables.

J. Szabados [4] a étendu ces résultats sur une famille d’opérateurs qui
est plus vaste que celle donnée par les conditions a)-d). Formulons ses
assertions dans une forme un peu simplifiée.

Soit {Kn(t)}neN une suite de fonctions continues paires non négatives
et 27r-périodiques pour lesquelles il existe une fonction non négative ipm(x)
définie sur [0, +oo[ telle que:

(0.4) Oé)n(gl)‘(ln'[(l + xdm+2)\Kn(x/n) - <m(x)|]] = o(l/n) (n-> 00)

et

r+oo
(0.5) 0< |/ X4MH2<fm(x) dx < oo.

30

Posons
e+l " . kt

0.6 Hk,n = Jf sin Kn(t)dt K,n E N).
(0.6) . J-psin D Kndt - ( )

On peut montrer que pour n suffisamment grand le systtme d’équations
linéaires

m
(0.7) y N g+2knAA = gjo {j=0,1,-.. ,m)
k=0
(6jo est le symbole de Kronecker) possede une solution unique: {X\"') }E’lzo
pour laquelle IirpooATn’\z \k(k=0,1,..., m). De plus, pour tout n naturel
n —
la fonction

m

(0.8) oT,n(r) - XA n2k+1 sin2fc 2
possede 2m racines simples sur ]—7r, >4 : j = 1,..., m, pour lesquelles
lim ngjin — g ¢ 0.
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THEOREME de saturation (J. Szabados [4]). Des opérateurs linéaires
du type (0.1) et de classe S2n avec les noyaux:

(0.9) un(t) = Kn(t)*mn(t) (ne N)

sont identiques sur |’ensemble des polyndmes trigonométriques dordre ~ m
et vérifient les conditions suivantes:
i) lim n2m+2\\f(x) —Ln(f;x)\\c — O si et seulement si f est un

polynéme trigonométrique d’ordre 1 m;
i) ||/(x) - Ln(f] £)||lca = 0(l/n2m+2) si et seulement si f(2m+l) g

e Lipl.*
De plus,
iii) si /(2m+2)(x) e c 2w, alors
(0.10) lim n2m+2[Ln(f;x) - f(x)} =
22m+| fr71+1
Y ( Prr+2k+2*Kk ) ( ak,mf(2k)(x) ) ,
m+ KK= 0 tk=1
ou

k+m + 1
m= (-1 rfx +m\ Y&

(0.11) ah, o) [\am+ 1] (k=1,....m + 1),
JL=2 F38
(0.12) POk = )/'b X 2k<pm (x)d x (k = 1...., m o+ 1),

et les coefficients A sont la solution du systéeme d %quations linéaires
(0.13) Ay -2j+2kh =ijo 0"=0,1,...,m); Ac= lim An).
k=0

Si les opérateurs considérés sont polynomiaux (voir (0.2)), alors Acn =
= Ln(coskt',0) (k U n), d’ou, d’apreés ii),

(0.14) A, =1 +0(I/n2m+2), n-* 00 (k= 1,2,...).
* Remarquons que /(2m+1) G LipM 10 y(2m+!) est absolument continue et
lI<2m+2)(x)| g M
presque partout ([5], p.155).
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Une construction des opérateurs en question d’apres les formules (0.8)
et (0.9) aboutit a un résultat évalué avec peine, U est plus raisonnable
d’utiliser I’expression (0.3), ou la fonction Ln(t) est connue, et trouver les

valeurs en se basant sur Ié¢galité (0.14). D’ailleurs, ce procédé sera

efficace si ai”*= 7s/n, ou 7S = const. Nous verrons plus tard que ce cas
peut avoir lieu. Le seul exemple concret des opérateurs extrémaux du type
indiqué a été donné dans |’article de P. L. Butzer et E. L. Stark [6], ou on
a considéré les opérateurs (0.3) de classe S2avec la fonction <(i) = sin37i.
Quand-méme, leurs calculs sont longs et complexes.

V. A. Baskakov [7] a proposé de construire les opérateurs de classe 5r1 a
I’aide du théoréme des résidus. Comme généralisation de cette idée, |’auteur
propose dutiliser le principe de la décomposition de la fonction méromorphe
en fractions rationnelles simples ce qui permet d’obtenir asser facilement les
opérateurs en question.

Dans cet article on considére, en particulier, des suites nouvelles
d’opérateurs extrémaux de classe S2 et une suite d’opérateurs extrémaux
de classe S4 du type (0.3) avec la fonction p(t) = sin5nt.

1. Un schéma général de construction d’opérateurs
de classe 5rt donnant le meilleur ordre d’approximation

Pour un calcul efficace des valeurs d’opérateurs polynomiaux du type
(0.1), nous aurons besoin de l’assertion suivante. Elle peut étre con-
sidérée comme un cas particulier du théoreme de G. Mittag-Lefiler sur la
décomposition d’une fonction méromorphe en fractions simples ([8], p.249).

Proposition 1.1. Soit

S
g(z)=f(z)j Jj[(cosz - cost,/’, 2£C, 0"Mt\ <..<tgin *f, /, 6 N,
2.1

ou f(z) est une fonction entiére paire 2m-périodique telle que <(2) = o(l)
quand |Im z\ —00. Posons 1 = (x = £ f,+ Xmw :KE£ Z,i=1,..., 0}
Alors,

(-1yal

(ii)y<m=zE E (2 —t{ —2kT)s © (2 + ti —2&&) '

kez 1=1s=i L

2£C\I,

ou
(12
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CERTAINES METHODES DE SOMMATION DE SERIES DE FOURIER 69

sont les parties singuliéres du développement de g{z) en série de Laurent

respectivement aux voisinages des points +L + 2kn, k GZ, i =1,... ,q.
Démonstration. Pour i fixé posons: 7P* : r = ti + 2kn + pelt, 0
ANtio2mT7pk iz = - Q-+ 2kbp +peld, 0Nt N 2m 7P = 7P)0, 7p = 7po

(p > 0). La fonction /(2) étant paire et périodique, on a:

a7 = (127mr) f (z- fe- 2M)B2  d2=
IYpk

= (U / - 1,)s- d2 =
(1 27”)J~1p(r I,)s-15(z)d2

= (—)®W27m) /(1 + i - 2Kit)s-lg(z) dz.

P>k

Donc, (1.2) sont les parties singuliéres du développement de 5(2) aux voisi-
nages des points + 2Kir.
Il est facile de voir que la série (1.1) converge sur C\ A quelles que soient

les valeurs a"K De plus, pour tout compact K C C il existe un reste de
la série (1.1) qui converge uniformément dans K (puisqu’il existe une série

numérique majorée). Donc, la fonction g(z) = tZ)_ fotii2) + est
kezt=l
méromorphe.
Les fonctions 9(2) et g(z) ayant les mémes singularités, la différence
h(z) = 9A2) —g(z) est une fonction entiére. De plus, pour 0 * Rez < 2n et
s—1,...,liona

(2 —t{ —2km)~3 + (—D®2 + ti —2Kir)~s\ "
kez

ANE +4 E WA- 322 .

k=m+1

Alors, les fonctions <7(2) et g(z) sont périodiques et elles tendent vers zéro
quand 2 —*00 en restant dans la bande 0 i Re 2 < 270 D’apres le théoreme
de Liouville, h(z) = 0. Donc, g(z) = <7/(2). La proposition 1.1 est démontrée.

Remarque. Les coefficients ai'"' peuvent étre trouvés a l’aide de la
formule:

(1.3) 9(z) = pi(z  Psih 2. Y
_ii'+ Q R ut) -i\- 5764() 2) '(-k-<l)4 +oee V*I-

k=0
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Soit

(1.4) cosZ2 — = 4 ") cos unt, I GN,
=0
oud4H=2 2(2d) etci)=2 2+41(,2J,0=1,...,/; donc,
cos fci » cosZ LS Gy)cosAt+ 2 1 c”™ [cos(on —k)t + cos(un + K)t] .
i/=i
Posons

|
(1.5) Fk(z) = creikz + 2-1]T di> (e~ m~Ka + eitm#fe)*)  (kje N).

i=i
Proposition 12 SOIt
y
(1.6) gn(z) = WT(z)j JJ(cos2-cos[(2Ai-1)*/n])" (n,kt, 1t GN\{0}),
t—F

ou VF.(r) esi un polyndme trigonométrique pair d’ordre r a coefficients réels,
r<N+ ...+1g, 1~ k\ <ki < ... <kgfs(n+ I)/2. Posons

r 2 nt
1.7 n(t)dt,
(1.7) Bn ' 5 o 9 (1)
t 1 N
UN(t) = i6 "1cos2 n gn(t) = - + Xk,N cos kt
k=1

(/6 N, 20ii maxle, V= n/+r—(j F ... +/9).

Ensuite, soit

) e u afd (-1T 40
(8 00=E£ \[z- (2f- DFMIAT [r+ (ki - 1)#/n]sJ

ou ai“) sont les coefficients du développement de gn(z) d’aprés la formule
(1.1), et soient Fk(z), k e N, lesfonctions entiéres définies par lesformules
(1.4) et (1.5).

Alors

(1.9 Bn = 2 Res( (2kt —I)#/n; Fqm0)
i—
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CERTAINES METHODES DE SOMMATION DE SERIES DE FOURIER 71
et pour k Un

(1.10)
2

N = Res((2A:i - 1)7r/n; Fk m0) j”\.2 Res( (2ki - 1)TIn\F0 «0),
i=I t=i

ou Res((2Aq —1)7r/n;Fk m0) est le résidu de la fonction Fk m0 au point
(2ki —1)T/n.

Démonstration. Tous les coefficients ai'"* dans I’expression (1.8) sont

réels (voir (1.3)). Ensuite, puisque ReFk \t) = [coskt mcos2l pour
tGR,j GN, alors

ReF~(£(2k; — Drr/n) =0 pour j - o.1.... 21 1~
Donc, tous les coefficients des parties singuliéres des développements des

fonctions Fk(z) m0(z) (k G N) aux voisinages des points +(2k,—I)#/n sont
imaginaires purs. De plus, les fonctions Im.Ffc(<) étant impaires, on aura:

FKi){(2k, - Dx/n) = (-1)I+IFK]{-(2kt - D1r/n)
pourj =0,1,...,21—1 Donc, d’aprés (1.8),

(1.11)
Res((2fc; —I)#/n; Fk m0) = Res(—(2ki —I)x/n; Fk+0) (i=1,...,¢).

Ensuite, considérons un contour C sur le plan C qui est la réunion des
bords des demi-cercles 7r = {z = Relt,0 ~ t ~ %} de rayon suffisamment
grand R > 0et7 = {2= (At- I)#/ra+pe“,0 ~t " ¥}, 7%-= {z =
= —(2ki—1)#/n+perc0~ i ¥ r}r=1,..., g, de rayon suffisamment petit
p > 0 et des segments sur I’axe réel liant les extrémités de ces demi-cercles.
Puisque pour tout naturel Kk > 1

[ {Z~(2ki- 1)7r/n)'fed2 = O1- io(I-Fc)-1[(-Dfe 1- 1 GR,

et pour K = 1 cette intégrale est égale a 7vr, alors, d’aprés (1.11),

limRe L Fk(z)Q(z) dz = Ti Res((2fc, - 1)#/n; Fk -0).

* De plus, FgJ*(x(2fc, —1)t7/n) = 0 pour j = 0,2,4,... ,2i —2.
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D’autre part, puisque Zné%( |0(z)] =0 (A —»+ 00) et pour a> O

I r r/2
[ eiazdz <2R / e-aHsinidt a_1s(1- e“al) < cl4,
VTR dO

on a:

lim / Fk(2)Q(z)dz=0 pour k" n.
J=>+00 gy

Alors, en integrant la fonction Fk <0 le long du contour C et en faisant
tendre p —= + 0 et R — + 00,0n obtient:

fo+00 0
Re / Fk(t)Q(t) dt = 27T Res((2fc* —1)tr/n; At «0)  (kiin).
300 t=1

L’assertion de la proposition 1.2 découle des formules suivantes:

| nf Fao
/ cosZ2 — egn(t)dt = Re / FO(t)Q(t) dt

- n ./ —00

et

*o r+oo
/ cosfct « cos2 — mgn(t)dt = mRe / Fk(t)Q(t)dt.

ar A J—o

Remarque. En remplacant cos2y par sinZy, on peut obtenir une
assertion analogue a la proposition 1.2.

2. Opérateurs de classe s2 de P. L. Butzer et E. L. Stark

Appliquons la construction de A. 1. Kovalenko pour la fonction ¢?(i) =
= Sin377i si t G[0,1].

Lemme 2.1 ([6], p.455). Pour tout naturel n ™ 1 on a:

2
2.1 = sin3— «e'f
(2.0 MO kEO_ N
Ont (cost + 2cos
= sm —e C0S
n 2 (cost—cos )2 (cost —QOByl)2

Remarquons que Ln(t) est un polyndbme trigonométrique d’ordre n —2.
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LemME 2.2. Les fonctions

, Lom\ 1
Kn(t)= (n8sin6-J  Ln(t) et
(2.2
<Pi(x) = 144c0s2 ~j (X2—r2)2(=2 - Y+2)2
vérifient les conditions de J. Szabados (0.4) et (0.5) pour m — 1

Démonstration. Lafonction </>i(X) est continue et bornée sur [0, +oo[;
de plus, = 0(l/ai8) quand x —»+ 00. On en déduit (0.5) (pour m —
= 1). Ensuite, on a uniformément sur [0,474d:

(1 + x6)] Kn(x/n) - <=\ = (1 + x6)ipi(x)o(l/n) = o(l/n) (n -> + 00).
D’autre part, uniformément par rapport a i € [47r,n7],
(1 + x6)\Kn(x/n) - <p\PpO\ = 0 (1) (x2n2)(l + x6)/(k2- n2)2(x2- 9x2)2 =
=0 (l/n2)—o(l/n) (n — -|-00).
Le lemme 2.2 est démontré.
Lemme 2.3. Soit
(2.3)

(cos 2 + 2cos")v (cos 2 — cos a) R
In(z) = , ou 0€R, nGN\ {0}
(cos 2- cos M)2(cos 2- cosN)2

Alors, en posant A,, = {x = £ 2t/nx #/n + 2kn : Kk G Z}, on a pour
n't 4 (voir (1.1)):

. 9 1 va®
@4 <m@ =L E E (21-?)1r + (-1Ya
feez i=i s=i zZ+ - 2T
26 C\ An,

ou

(25) a® = 97cos ——cosay j 16sin6—

/ ill, @ Y Y \
\(/2.63(a a )\ tg6 hcosec - ct% sm—n// vsn cosa/

2.7) = ~cos — —cosa™ j 16sin6—
F o3, .2 37
(28) e = 42 —2tg s —7 2605 —sin -* - otg>-
- 37r / 37r
—sIn — COS------ cosa
n V L:]
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Démonstration. S0it
9n(z)
d’ou

-2 sin 2 2sin 2

A =M * +
n0) =M=) ... +2cos cos T —cos -

¢ - Sin 2
ctg (i 2r?/ COsS 2 - Cosa

Alors, d’apreés la proposition 1.1 et la formule (1.3), aj1*= /r,,(#/n) et ajI*=
= [in(#/n), d’ou il découle (2.5) et (2.6). D’autre part, soit

9n(z) = u*n
Alors, d’aprés (1.3), a2) = /x*(3f/n) et a[2 = y*'(371r/n), d’ou on obtient

(2.7) et (2.8). Le lemme 2.3 est démontré.
Lemme 2.4. SOlt (VOiI‘ (23))

(2.9) f()Un-i{t - x)dt, ¢ Gc2r, x e R (n "~ 4),
ou
. ) nt _ . 1 n1 .
(2.10)  tfn-i(i) = *-En-1 cos2— <fin(i) = - + ~ cos A,
k=
u ni
(2.1 / C0S2 — mgn(t)dt.

Alors (voir (2.5)-(2.8)),

(2.12)

37

Bn-1= nr (02% 4+ = o 9C0S — (COS------10c0s0 /16 sin —
n n ) n
et

(2.13) Afdn ! = (4T+42) 1 (1—A/n) (a|1*cosf<ﬁr-‘--ia€2)-cos
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n J.
mr 371 -1
9cos — h cos-—---- 10cos a
n n
kn ir \ ai ‘At
x <(1 —k/n) 9cos — |cos-----cosa, + c0S \):os cosa +
n n / n n

+n-1 gsinIsin-f--lsingrs'ing’_A_‘zr +
n n n n

(T \ /2 T 217 w\ L KT
+9 ‘cos----- cosa . - tg— cosec--—-- ictg —Isin-—nh
V""'n I 396 n n g
+ cosi-——-cosa ) 2tg — | ctg - (-sin 2= /2 cos —msin’ — sinZ-C ">
n 3\ g n| g n ( ni n nJ n J

Démonstration. POSOI’IS

2 2 ( (d) ©
L. _ 4 V4 ya'
@19 oM =g (2€. MS+ [[+ - )7rin]s |

Ensuite, puisque coskt mcos2” = 2-1{cosfc< + 2_1Jcos(n — +
+ cos(n + A)i]}, alors (voir (1.5)),

(2.15) ag =2-* + (ke N),

d’ou Fk(rmr/n) = ~sin et Fk(mn/n) = —(n —A)cos * £. Donc,

(2.16) Res((2j —1yir/n-,Fk «0i) =
= -12<W(,, - *)ABNe - 1)br + '§«> sin (2] -771)tT, , = 1,2,
en particulier, Res((2j —1)x/n; Eo -0i) = - En tenant compte des

formules (1.9), (1.10) et (2.5)-(2.8), on obtient les égalités (2.12) et (2.13).
Le lemme 2.4 est démontré.

LEMME 2.5.* Pour que dans (2.13) on ait

(2.17) Alcn i = 1+ 0(n~4) (n -> 00),

I+

il faut et il suffit que a = (—7r < @ is 7r).

* Voir [6], lemme 6.
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Démonstration. Posons a - §4. On aura:
1) a@/a(D_ 9-72

D °27°2 _9(1- 72

1472 M
- + ~
-7, 0(n~4)

(2.18) . _?2)
d’ou

(2.19) @lll) _B- 102 912 M2 6 (n~4)

Lt a2 =91 72) 27 1 -72 n2

et
(2.20) 1+9aR)ag)=1+Ya_y- 2 ' 9x—7 5+ °(n 4
sin ", , cost—cos7-"
2) n/ (" n ny)=
. 2 1 ~
n + A _+0(n-<)
T\72—1 6n2
Donc,
‘g — F COSEC-------C tg ------SiN — cosT cos 7 L
all)/a2) 59— *F ; 95 N - N
221 no1t © "0
(€22 . 721 en2 T O
371 371 T n
i CoS cos 7 — +0(n-4
3 —sin n . 72—9 ot O(N-9

D’autre part,

(2.22 —sin —'72' cos —e sin2 =
(2:22) in— /2 n ey

*0-n+o0M = K - +0on > -
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Par conséquent,

(2.23) fan = ~Zg—- fsin — /2 cos —e sin2—= -
Yoo ! ™ vJ
3r .. 3r

. m
—Ctg--——-- sin — COS------ cos 7 —
n n n

f 11 6 ™.
(-T '77~9-247+0(n >m

Ensuite, d’apres (2.13), (2.18), (2.21) et (2.23), on a:

* |l = -4)-
224) Asnl=1 ny a1+ gy (n-4)

1 2 2 -4

fi+aavany-
i D 45 721 en2

2R
X (1 +O(n"4))+

6n2

; 9-72 2 9-72 W

vo(- 72) 27 1 -72 104X
/11 65 X \ /9 x2m 4y
X (-6 - ~ - 28 +0(" ,K 3-2~ +0 (7" ).

En vertu de (2.19) et (2.20), le coefficient devant 1/n2 dans le
développement (2.24) est égal a zéro si et seulement si

lim il + 9aI2VaZ‘) =04=>72=5 7= %\[b.

71—»00 \

(Il est facile de voir que le coefficient devant 1/n est égal & zéro pour tout
7.) Maintenant, soit 72 = 5. Alors,

+0(»-4)),

iS40™)

et

(225)  mwn-1—1 [
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+ ~
12n2 0(n~4)

TR +0(n‘4)\ + /(-1- +-2. o +0(n‘4)Jx

245, 9 & 4y

(_

= i-rto(«—) -] | (1
= 1+ 0(n~4).

Le lemme 2.5 est démontré.

Remarque. ONn a montré dans [6] (lemme 7) que les constantes de

Lebesgue des opérateurs (2.9)-(2.11), ou a = £ \/5%, sont uniformément
bornées.

Theoreme 2.1. Pour les opérateurs (2.9)—+2.11) avec a = + \/5" et

pour toute fonction f(x) G Ci-n telle que f(4x) G CW, |%galité suivante
aura lieu:

(2.26) lim n4 I].n_|(/,X) - ()] = -BTr4f/(ZKX) Tt  aGR.

n—»eo

Démonstration. S0it

CU(O = 72221 + €iz)/22KTrZ2 - wo) 1.2 - B2 1 G C KG N

Alors

. — Q /,\ \ 2 o _ 370 X
Res(xTr;$f) = ("3 » Res3m o) = . -\,

Ensuite, en appliquant le théoréme des résidus pour le méme contour C que
nous avons utilisé dans la proposition 1.2, nous aurons (voir (0.12) et (2.2)):

2l-2c r+00 r+Q
(227) pzx-= - J/ X 2k<pi(x) dx = Rev.p.J/ Pk{x) dx =

0

00

= Re 1Y Res(—37|'+ 2j 7t;q3*) = 16_17r_6(7r/2)2/c[32/c+ 9],
j=o
K=0,1,2,3.

* La formule (2.26) montre que I%galité (80) dans [3] n’est pas correcte.
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Donc, p0 = 5/87r6, /z2 = 9/327T4, p4 _ 45/128712 et /i6 = 369/512. Alors,
d’aprés (0.13) pour m — 1, on obtient Ag= 5272et Aj = - Zrd, d’ou

140+ "6AI = - — mma.
ID

D’autre part (voir (0.11)), aj,i = a2i = 1/6. Alors, I'égalité (2.26) découle
de la formule (0.10). Le théoréme 2.1 est démontré.

Puisque X,,_i(cos kt-, x) —cos kx = (Xk,n-i ~ 1) cos Ae (k S n —1) (voir
(2.10)), nous avons l’assertion suivante:

Corollaire 2.1. Sous les conditions du Théoréme 2.1 on aura:
(2.28) lim n4(1- Atn_i) = ~r4(fcd - k2) (KEN, kSn—1).3
TL—MX) Q
Du théoréme de saturation de J. Szabados nous obtenons encore un

résultat.

Corollaire 2.2. Sous les conditions du Théoréme 2.1 on aura:
1) Um n4||l,,_1(/;x) —F(x)\\Cr — O si et seulement si f(x) est un

71—»00

polyndme trigonométrique d’ordre S 1;
i) ||lLn_i(/;x) - f'x)\Ck = 0(n 4) si et seulement si 6 Lip 1.

3. Deuxiéme exemple d’opérateurs extrémaux de classe 52

Lemme 3.1 ([4], p.190). Les fonctions

T g 4+ NX 4 T\~ 4
h —n" — —C0S — t
1) n(x) —n  cos > (/cosx Cos - /) e
<p\(x) = 16cos4 " *(x2 —>#2) 4 (n £ N\ {0})
vérifient les conditions de J. Szabados (0.4) et (0.5) pour m = 1.
Lemme 3.2. Soit

COS Z —CO0S a
3.2 = = i -
(3.2) gniz) (cos z —cos ~)4 /,,(z)// Zsim % ! énL

Alors, en posant An = {x —2rd = #/n : t £ Z}, on a (voir (1.1)):
(3.3)

*neN\V{0}.

(-1)4 A
on*) =E E N + , zEC\AOn (n ™ 2),
z-"-2br)s z+ £ -2for
Jez54 )s |« )
* Cette formule est énoncée dans [6], p.459, avec une erreur: il faut mettre —k2 au
lieu de +k2.
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ou
(34) a4=An, a3=Bn, a2=(3Cn+ An)/6, a4- (Dn+ Bn)/6,

et

(3.5) An=In(k/n) = ~sin A (cos ~ —cosaj ,

Bn= In(*/n) = A _____TS__i_rl_z _______ 2 Ct K
(3.6) Bn=In(*/n) = An cos —o0sa 97
3 cos

(37) Cn=/"(tr/n) = An -4 + n

sin2 a cos - —Cosa

+ 7sin2r- K Cos -

(3.8) Dn =1"(*/n) = An _9 ---------- — 17 + 8ctg - 15 .

sin py(cosp —cos a) n sin3 -

DEMONSTRATION. D’aprés la proposition 1.1, il suffit de vérifier (3.4).
Mais ces égalités découlent des formules (1.3), (1.2) et du développement

Inz) =An+Bn(z - M -2+ -y (r-"- 2K +

Lemme 3.3. Soif

(3.9) T2n-3(/;a;) = e __rf(t)UZn-3(t x)di, /e Crx, * G R (n 7 2),

ou (voir (3.2))

(3.10) Ihn-z(t) = TMn-3cosdy -fin(<) = » Xk,2n-3 cos kt,

k=1
A "
/ cosdy -gn(t)dt.
Alors, en posant bn = Bn/An, c,, = Cn/An et dn —Dn/An (voir (3.5)-
(3.8)), on a:

1+ 3cn\

*
(3.12) Bon—3 on2 Y
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et
(3.13) nk2n-3 —24[2+ (1 + 3C,)In7 X
(bn + dn)sin oK 3K + 1\ 1+ 3en CoS oK
16n3 n* ~8n 6n2
fl 3 K1 K3) K>K
e b — 4 —6—F+3—" C0S—
n‘(/4’|6I'I) nsan’ﬂ%lV FE n3y n
Démonstration. POSONS
) (-1)4
(3.14) 02(2) = £ + zGe.
s=1 . (*-£)" (*+ £)
Puisque

cos kt e cos4 " AN coskt + - [cos(n —K)i + cos(n + K)t] +
+  [cos(2n —k)t + cos(2n + K)t],
alors (voir (1.5))
- + pei(n-k)t | ef(n+fc)i . 0i(2n-k)t | ei(2n+k)t
(3.15) Fk(t) i L + 16
= Fjt(x/n) + Ffe(x/n)(* - tr/m) + Fk(jr/n)(z - Tr/n)2/2+
+Fk fa/n)(z - >k/n)3/6 + ... ,

ou
) oA Bk - 2mr 0K
Fkip/n) = ~-sin H(*/n) 5 cos —.
o (n K(4n —3mr s ar
2(*/n)= 8
/. —4rc3 - 38 —6nk?2)j
Fﬁ ()K/I'I;<: " ! nk2) Ccos oK
En particulier, Eo(x/n) = Ff(k/n) = 0, F/™K/n) = —in/4, Fq"k/nh) =
= —in3/2. Alors, d’aprés (3.4) et (3.14), on a
Res(#/n; Fk <0 2) = Pk(>k/n)(Bn + D,,)/6 + Fk(n/n)(3Cn + A,)/6+
+FZfr/n)Bn/2 + FK'(tr/n)An/ 6,
d’ou Res(7r/n;Fo «02) = - m* n(l + ya). Maintenant, I’assertion du

lemme 3.3 découle des formules (1.9) et (1.10).
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Lemme 3.4. Pour que dans (3.13) avec (3.5)-(3.8) on ait

M2n-3 = 1+ 0(n~4) (n -> 00),

(3.16)
il faut et il suffit que a = + y/(2K2+ 3)/(27r2- 3) N (-7 <a n).
Démonstration. POSOI’]S&ZYFI On a.
(3.17) bn=Bn/An = N 2ctg ! =
' cos - —C0s 77, 95 7
n 2 f =’ 72+ 172 4
Pl oe o+ +0(n
.
-2 +0(n-4 — A
2001 gt 0(n-4) T375. 2% + 55 €000 3).
(3.18) G - Cn/A-a _—52 —4 __f_cgs_f;_ |
sin - COS4---C0s 7 -
n2 6 “ A
- ~ 1+1!l+£i1.11 +0 (O =
7r272—1y1 2n2+0(rl I12I In2 (o)

A 6
_ n72+1 o
=-r 5+ +

°* 70- 1y e(72- 1700

Ensuite,
(3.19) bn +dn —(Bn +Dn)/An
6 SinJ T oS -
N +6ctg--15-3"--,
COS--COS7- sin3”  sin* (cos”™ -COS7")
n 12 6n T
= +0(n-J)+—- 2- +0(n~3)- 157r+ 0(n"1)+
T 72—1 T n 3 v
mn 18 n
*FBV 72- 1; AXV 2 T2_i) +°(n A
m 18 15+n/ 6+‘+0 1
T 72-1 Tv7a- 1" 83 (n-1).

Donc, d’aprés (3.13),

"k,2n—3 —
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n72+ 1~ 1 ,n( _4

ot + 124 48(72-1)) n2+°(n \
1 + 1 _ 1172+ 1 A1
72- 1 24 48(72- 1)/ n2
K 1 15 3 1 .c 6
n e VB s.- 1+16°“8'20 ISV -1
L 1 . +3/11+ 1 .
n8[ 16 V72—1 2772 1 +
ks 3 1 5\ 3/ 6
+ T 16 72—1 732/ 2V 72-1
8 \/72- 1+1 + 16 +
K2.. 6 1 1 1 1 2t tO(n'4'

— (4 +
4.0 B¢ 0t gt 8 24

Les coefficients devant =, 4y et 4t étant nuis, nous avons:

Afc,2n-3
1- 1 1 1
=1+ 1 1 6 « + + 0(n"
n2 [16 24 ~ 8(72- 1).
Donc,

(3.20) 3-2w2+6/(72-1) = 0 7= +7(2712 +3)/(21r2- 3) « *1,16.

Le lemme 3.4 est démontré.
Maintenant, appliquons le théoréme de saturation de J. Szabados.

THEOREME 3.1. Pour les opérateurs (3.9)-(3.11) avec

a = 7(272% 3)/@m2 - 3) s—
n

et pour toute fonction f(x) G C?* telle que f (4) G Cr*, l%galité suivante

aura lieu:

(3.21)
. 47Mr2 — 9
n|lg]mn4[xzn-3(/;ﬂ)- f(x)] erta s I(H)x/1Q7) * G R.
Démonstration. SOient
d ) = A + \elz+ f = T ir) - T s = ..
Re <p(x) = cos4 —  si T 6 R,
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et
®*(r) = 16z2k<p(z)/22kn(z2 - T2)4, zeC, ke N.

Alors, en posant Vk,+{z) —16z2k/22kTT(r + )4, on obtient:
Res(x#; @) = - N * B (xjy) - ~<£(£Tr) =
= —(1/24)7r_7(12A2 - 30fc + 15+ 2112)(w/2) 2.

En appliquant le théoréme des résidus pour le contour C (voir la proposition
1.2) et en tenant compte de (0.12) et (3.1), nous aurons:

322 y2b= e | xokePi() dx = Revip, | OAX)iiX =
A0 I
= Re[27rtRes(7r )] = (U 12)F_6(12/2- 30it + 15 + 27r2)(Tr/2)2",
it = 0,1,2,3.
Donc, on a:
(3.23)
15 + 22 23 + 212 3+ 2m2 33 + 2112
“ me * M~ 48w~ 192@2°  ~ 768
. 2 1M+ 7
et N - M= -T76878 -

Alors, d’aprés (0.13) pour m= 1, on &

™ 4 —9
(3.24) MIAD + MBAT = (M4 - M2MG)/IT = - — » —

D’autre part, d’aprés (0.11), ai;i = a2i = 1/6. Alors, I%¢galité (3.21)

découle de la formule (0.10) et de (3.24). Le théoréme 3.1 est démontré.
cCorotraire 3.1. Sous les conditions du Théoréme 3.1 on aura:

T4 N2

6 107~

(325) lim n4(l —Af2n_3) = ;(;’)(fo4-f02) (iEN .H 2n-3).

Corottaire 3.2. Sous les conditions du Théoréme 3.1 on aura:
i) lim n4||L2n_3(/;a:) - f(x)\\c¢ = 0 si et seulement si f(x) est un
n —»QO

polyndme trigonométrique d’ordre » 1,
u) HA2n_3(/; x) —f(x)\\car = 0(n~A) si et seulement si /C) ¢ Lipl.
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4. Troisiéme exemple d’opérateurs extrémaux de classe s

Nous allons considérer encore un exemple d’opérateurs extrémaux de
classe S2, ou nous utiliserons directement la méthode de J. Szabados.

Lemme 4.1. Les fonctions
(4.1) Kn{t) = (:032il
et
(4.2) <pl(x) = 16 cos2” /(a2 - TR)2(x2- 9m2)2

vérifient les conditions de J. Szabados (0.4) et (0.5) pour m = 1.
La démonstration de ce lemme est identique a celle du lemme 2.2.
Lemme 4.2. Soit

(4.3)
3ir
9n(z) = 1/ (cos*- cosO ’\COSF'COSn , T€C, me N\ {0}.

Alors, en posant An = {x —2ift+ 2x/n+7/n :tc Z} on aura pour n * 4:

2 2 -
tanygn@ = EEE1L a) . (-Dsai)

KEZ 1—1 s= 1 r- A|Z;|I.LL _2fT 2+ - 2K

ze C\ 1,

ou
(4.5) allr= 1/165in6n—- coszh,

(4.6) 1)  AJ cosec-zl;?---ctg:—

4.7 ag‘ = 1/16sm6n— -cr(])sz\7-(4 cnosz 3 -n
4.8 a@ = 42 T sinl 2 cos Zesin

(4.8) ctg - sin - {2 cos - sin .

démonstration. SOlt

Q) =""Q) 1%in(i - ¢ )f =@ [«m(i-1)] m

Alors, d’aprés (1.3), = pn(n/n), = pnek/n), a2 = in(3r/n),
a[2* = un(3n/n), d’ou on obtient (4.5)-(4.8).
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Lémmeé 4.3. Soit (voir (4.3))

*

(4.9) Un-4(t) = #5 “Ldco.oy mn(t) = - +A « .n-acoskt, n6 N\ {0}

I
ou
(4.10) Bn_4 = Jr cos’ggi *5,,(i) rii.
Alors,
(4.11) e d - i aan s B

= nT'SiA——tSh?XL  16sm —ecos’ —msm .
n n n n n

(4.12) Afin_ 4= (41)+42)"1 (1- */n) (4Tcos~ + 42 c

! {-asl)s'm %—I:- baD s'ms-ifﬁw\ 1

0
o 37T r fcx T 3&7r\
=(sm —- fsm H (1- k'n) 1 SM — - COS—e-- hsm - cos--ﬁ--J
r ki
+n"1 sm 3 cosec----- 1ctg7—\ sm-'—r--b
nJ n

., T . 3r T . ,7nv . 3om
+ sin” — ctg----- 1sm—/2 cos —msin’ —. sm
n\ n n n nJ

La démonstration de ce Iémmé est identique a celle du lémmé 2.4.
D’apres (4.1), (4.3), (4.9) et (4.11),

(4.13) Kn(t) = n-8%- 1j9n_4t/n_4(i) = n~7 + 4 2) U,,-4(t).
Donc, puisque LT
Atn-4 =~ cos kt mUn- 4(t)dt,
* J-K
on obtient (voir (0.6) et (0.7)):
(4.14)

An=n~6(40+42), Mhn=n~4(483+42) 1- Ain_4)/2,
m7r —~ 2(4R+42) (3- 4Ajn_4+ Ain_4V 8,
nen = (4n+ 42y (10- 15810 4+ 6a*,,_a- A3t 432
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et
(4.15) Ay —™4n/(MO,n/MN - T2n)i = —M2n/( MOV —72,n)-
Posons (voir (0.8), (0.9) et (4.1))

(4.16) Un(t) = Kn(t) nAg" + ndA"K(I - cest)/2
= Kn(t) »(1/2)n3(—AjU)[cost - (1 - 29“V 4n/Ai2,n)]
Theoreme 4.1. SoOh

(4.17) f(x + t)Un(t)dt, f 6CW, n€N, n~ 3,

/a suite d’opérateurs de classe S2 avec le noyau (4.16).
Alors, pour toute fonction f(x) £ C2* ieZle que fA40\x) £ C2n |%galité
suivante aura lieu:

(4.18) lim n4[Xn_3(5a;) —F(x)] f{ax) +/@@), iER.

La démonstration est identique a celle du Théoréme 2.1.
Corollaire 4.1. Sous les conditions du Théoreme 4.1 on aura:

(4.19) Jim n4(l - Akn-3) = -Tr4(&4-

ou Xk,n-3 —Ln_3(coskt;0) (k £ N, KS n- 3).

Corollaire 4.2. Sous les conditions du Théoréme 4.1 on aura:
i) 1hn n4||Tn_3(/;x) —f(x)\&r = 0 si et seulement si f(x) est un
n—»s@

polynéme trigonométrique d’ordre 'S 1,
i) ||X,,_3(/;a:) - f(x)||CGr = 0(n~4) si et seulement si f~ £ Lip 1.

Maintenant, trouverons une formule asymptotique approchée pour la
valeur (voir (4.16)):

(4.20) An —1 2M P4,n/AN*

Lemme 4.4. On a (voir (4.12)):

m 24, 168
4.21 — 1. mmnl_ 3 no i )
( ) 4.n-4 ! E.O an 35 -'[?]4 é( 4n4 [ZBe r+
4,470 41 i )
'\' ’ﬁ— - A— + 6 n 6\ n
PR ao0 e 4 ;) \f 00), QS k Un —A
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En particulier,

AO,N—4
A , 9M 17T 129376, |/ 64
(4.22) in—<4  “ 10n2 ~200n4 ~ 2000 n6 +0(N ~
18T 54T 1
| A%, 4 _ 1 8 > + 108 1o + o(n—ej.

Démonstration. ON &

O 1420022 L T T 2w
n Ve VR R VI - L

7,52) /Wg) _ 10 - 412 4714 13676 il

Ly @ J«2” Ty My 15722 . 974 4 22576 + o(n )i

/ @/ @w-1 9/ 4 12 2874 130471 n/ 8.
(i+4'M 7)) =w (°- - 75m4 -3375m6 * >) =

Donc, il est facile de voir que

(4.23) (1+ 4 2/an) T (OO o 3

k2n2 5 T4 41'2d
(i + 42,41y (i + 4241y - Vpo v & m- 3 n4

41 f676 £4m6 20 k2n6 N

. 8
360 nb6 * nu 9 n6 0(n
0 K2M2 24 &4 3k4ird 168 /RT6 4 &6 41 K6TB 8
' T0n? 25 n4 8 n4d 125 5 ne 400 ne T ° ("%

(n —00).

Puisque (0~ ™~ n —4)
(424) Mond= (1+42/4D) 1 cos o f (474%0 cos X"+ Brn
ou

(wLl25) /if,, = (1-fu\']jal] ( (cos ~a,2*<4 1*) cos -

(+/ADE +(EHM) (M) I
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il suffit de montrer, d’aprés (4.23), que Bkn = o(n 6).

On a
2n T
AfaA  ~ocaea . —_= . —_
a’la cosec-y ctg . ctg ;
n/1 2mm 8 m4
+ _~
\2 3n2 45n4 0(n~b)
Sin 37T 3”’ n R mr
42142 = - 9e0s . singa 9 — =5 O n2- "4+ °(16)
n(1 2 3m n /11 2 4
2. + 0(n~b
r 3 n2_"~  +0(rr6) T 5n4 (n~b)
- 424 n 1u 1+ 522 544 4 _6
(ad g1 4 2)) ( ) e 1) = - 54 33n2+ 495 n4+ Ml
Donc,
, 1 K 10 g 72 40 s 2 12
skn = (i + 42141y n “TT“ 27n2~8ln4 + * n2-

4 4 .
-’\Emm + -fc2— + 0 (n"6)+

1l 2m_8m 1282 1 .47 13H
+2—3n2~—45n4" 12 n2" 240 u4
11 26¥2 544m 11 2X2 33 4m 13,214 _6.

+ 18+ 2715+ 80717 ~i**7+ 808 "T+ ¢

= (i+42/41)) °(n_7)=(t+42/41)) °(n_6)=o(n-6).
Le lemme 4.4 est démontré.
P roposition 41. On a (VOiI’ (420))

4.96 2 1 5m T s ) 4 -
( . ) Ne.n/in2n — 212 24 n4 o( ) =
\/5t / 4 m \
CO0S —---- ~—+ On %
i Vit 502 ]

Démonstration. D’aprés (414),

An =1- 2rr-24n/M2,,, = 1- (3- 4Ajn_4+ A™M_4)/2(1 - A™_4) =
9 74 23 2 _ 24 92/ 1372 43114 . _4
4m™ 1+ 30~ +o0o(n } Ton2\ + 2002+ €606n4 +0"M

5m2

=1 on2 T uhat oA
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D’autre part, soit

52 4 _ °
1_2_8_24n4 ovr 7)—cos \/6- 1+ /3"2 + °(n 2)
5ir2 2514

- 1_ 270 V1+2/ +0(n" V + 247 +0(n* }-

5m2 /25 \ 14 _4
=1- 2~ +U -5~ +0(" =
Alors, B —4/15. La proposition 4.1 est démontrée.

Remarque. L’exemple considéré montre que le terme oscillant du
noyau n’est pas toujours présenté sous la forme cost —cos7”, ol 7 =
= const. C’est pourquoi les opérateurs considérés dans les deux paragraphes
précédents présentent un intérét particulier.

5. Opérateurs extrémaux de classe 54

Appliquons la construction de A. I. Kovalenko pour la fonction <p(t) =
= Sin5 7T si t G[0,1].

LemME 5.1. Pour tout naturel n > 1 on a

w
(5.1) Ln(t) = Vsin5— -eikt
to n
.10 T oUt ( my-2/ 3rr\ 57t\
sin®™” —eCc0S —e COSt —COS — coSt —cos — cost - cos — X
n 2\ nl Vv nJ \ n

cos t —cos 7(/16 sinzﬁ--- ]3")/- cost -f 80052—n(%/—35in2—77’\/.

Démonstration. En tenant compte des formules

16sin5X = sin5x —5sin 3g -f 10sin x, cos3x = 4 cos3x - 3coS X,
sin 3x = 3sin x —45sin3X,

on obtient
KT . n—1
Vv 5|n5— seikt = ----- Y (eik*'n-e-W™"),
32’\
k 0
sin 5sin 10sinr
“rd +0 M n

+
cost —cos — cos t —cos — COos t — cos —
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-1 1

. 3x 5x
= —(1 + eint) fcost —cos cost - cos - —
32( ){; j §/ 1 cost - cos - I X
) 2 T .rT
(Ile sin5- mcos2t —2 cos — e cos —ml6sin —+
n n T
. 3X 2x / a1 3x
+5sIin — ¢ Cc0S—, COS—- COS —
n n\ n n
.k x / 2t 4x\ , . SX X 3X
—Usin —cos —, cos — cos— .1 cost + 14§ sin” —e cos —Cc0OS----- h
n n\ n n) n il n

. X 2x . 03X 2X
+20 Sin —esin — esin — c0S —e* COS-——-- cos —
n n n n n n

/o nt , ¢ X
n L n
S2 —(2 - in2 -
+8 00271\(/2 35|n271 )
; 3x\ ox
Xkcost—cos Tl\(/cost —(:os7lJ‘1 cost—cos—_;l(

d’ou il découle (5.1).
Léemmé 5.2. Les fonctions

< Kn(t) —{PlZSinlOﬁ Ln(t) et

P (x) = 57600c0s2 —/ (X2 —x2)2(x2 - 9x2)2(a;2 - 25x2)2

(5.2)

vérifient les conditions de J. Szabados (0.4) et (0.5) pour m = 2.
La démonstration de ce lemme est identique a celle du lemme 2.2.
Lemme 5.3. Soit
(cos X—cos a)(cos r —cos R)
(53) gn(z) = e
cosr —cos 2t) (QBX—cos 5 ) 2 (COS T —COS r?r)
x\i 2
71/

COS I —COS —( 16 sin2 ---- 139 cos X+ 8c0s2 —(% —3sin2
n n / n

oua,BR GR, me N\ {0}.
Alors, en posant An = {t = 2kKk+ (2r- L)x/n; i=1,2,3; K GZ}, on
apour n N 5 (voir (1.1)):

3 2 A
G4y = EEE 1 s + (-1)sas
IcGZ r=1 s=1 L —_ —_ Z/b’ + = 2kn

[ n
rcc\Aan,
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ou

(5.5) 021 = 25 @osn— cosa) (BN ~ COF7) / 64 sinid—
sm

(5.6) au= a2i n ™ 1 1

COSq —COSa C0S; —COSB  Sin-  2C0S 5 * Sin -

T T 15—16sin2
Ctgn ~tgn'5(3—4sin2

3T 3T .
(5.7 a2 = 25 (cos— —cosa ) (cos-ﬁ---- cosf3 1 /256 sm”o:]r

sm " sin 17 4sin2 -
(5.8) au —a2 —_— i F+
COS - —COSa  COS - —COSR  2sin Z,mcos z,
3- 4sin2* 3T T 3 5- 8sin2z

+ - — Ctff — -4 tg — - -
4sin = COS f, * COS 41 n 6n 10 sin2p, —1/2
(5.9) a23 = (cos— —cosaj icos— —cosB \j 256sin?

sm " sin —
COS ———C0Sa  CO0S—- COSf

16 cos421-12 cos" £+ 1 16cos4f - 12cos" £ + 1
2sin 3" cos - sfn%_
ST T 32cos42i-24cos2f + 7

t
n n (2cos2”™ - 1) (4cos2™ —1)

(510) «1l3 = «23

Démonstration. SOIt

. T\ 12
onf{z) = Hn{z  2siK s oy - VN 2sh lrz—ﬁj
TTn{z oo 2 2T &
2  2nJ\

Alors, d’aprés la proposition 1.1 et la formule (1.3), on a:

02 = Vn(n/n), an = An('K/n), a2 = ~,31r/n), al2= ~(371r/n),
B = T(5/n), ai3 = mAGTI/m).

On en déduit les expressions (5.5)-(5.10) en tenant compte des égalités
suivantes:

cos 3x = cos X (I —4 sin2x),
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sin 3x = sin x(3 —4sin2x) = sin x(4 cos2x —1),

cos 5X = 16 cos5x - 20 cos3x + 5¢cosx =
= €0s X(16 cosdx —20 cos2x + 5),

sin 5x = sin x(16 cosdx —12 cos2x + 1),

3 —10sin2x + 8sindx = (4sin2x —3)(2sin2x —1) =
= —sin 3x *cos 2x/ sin X,
128 cos8x - 192 cos6x + 96 cos4 x —18cos2x + 1=
= (2c0s2x —1)(4 cos2x - 1)(16cosdx - 12cos2x + 1) =

= C€0S 2X * sin 3x ¢ sin 5x/ sin2x.

Léemmé 5.4. Soit (voir (5.3))

5.11) Ln(f;x) =- i f(t)Un(t-x)dt, /| EC2r, x £ R (n" 5),
(5.11) (f;x) AJ_I() (t-x) ) ( )
a
(5.12) Un(t) =T coszn—t mn(t) = Dt ]Ef' Aencos kt,

k=1

Ti
cosZyIl «gn(t)dt,
Alors (voir (5.5)-(5.10))

(5.14)B,, = M7r(@1+a22+ 023) = nn 100 ( COS-—cosaj i cos-----CcosR )+

" ?5'( cositi Cos Q \I(COS ——————— cosp )+
\/ . .
+ CO0S--—-- cosa ) \cos ——————— cosp 256 sinio —
et
(515) Afc,n = («21 + a22 + a23) X

. R | R Aur 3A:7r 5A;7t
(1 —k/n) 02 cos--—- 1822 COS------- taxkcos--—---
n ti n

Cio» . &Ir . . 3ATr .. bkir\
—n a\\ sm -—t 6i2 SmM --------- hajs sin
n n
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Démonstration. POSOHS

0 s
(16)  0.(2) o @=DtmlsT [+ Eérl-)i)w/n] }e
et
Fk(z) =21 [eii2+ 2_1 + ¢,(n+%)2)] AGN),
d’ou Fk(mir/n) = ~sin FAmir/n) = —(n - A)cos m L Donc,
Res((2j —I)n/rr,Fk «0*) =
= ~éa2j%n ) cosu--:p----- Iz sin }(—-J--_----)-—n . j=1,2,3.

D’apres les formules (1.9), (1.10) et (5.5)-(5.10), on obtient les égalités
(5.14) et (5.15). Le lemme 5.4 est démontré.

Lemme 5.5. Pour que dans (5.15) on ait
(5.17) \k,n = 1+ 0(n~6) (n- 00),
il faut et il suffit que a = £ yj(35- 8V7) /3™ « =+ 2,16™ et B =

= £/ (35 + 8x/7)/3/« +4,33~ (77 < a, R ™)

Démonstration. POSONs a = 77 et B = <&\ On aura:

cost - COS7n
COS —C0s 7 1

2-9 2 N 74+ 72+ 81 4
- (7249 onp t 3sona T X
72+ 1 m2 374+ 872+ 3 W
+ + -
I+ 720 0 (n-6)
72- 9 o 72 —5
-H 1! - +0(n-6)

72—1 3n2- 30
Donc,

COSs ——CO0S 7 - >008 - —CO0s 6—

1 — 171 7

1 72-9 @-9 , 4XxX 7 72+ 172 o
4'7,-1'&-1 1 32+ 9 30

A +0(n-6)
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D’une maniére analogue on obtient:

1 cos—-cos7- COS—- COS6-
100 cos- - cos7:  coOS: - cosh—

1 72-25 b2- 25 4x2 107
- 9N
CTO 72- 10 62- 1 1 + 15 72i|bI2

(5.19) 023/021 =

n4

Considérons |’expression:

(520) Dkn — [1 + (022/ 021) + (023/ «21)] 1 X

Il est facile de voir que la différence A"n —Dkn est une expression impaire

par rapport a x/n. En posant

1 —9 & y2- 25 Db2- 25
5.21 A= -- et *= 1
(21) 4 :}2- 1 b2- % 100 72- 1 Db2- 1°

nous aurons:

K>  K4n4 _6
(5.22) Dkn — 1. o o+ ZALF - o(n o)
4 X2 72+ b2~ X4
+A|1 37+ U 3 g 0T X

9A2x2  8lfcdx4

1= Gss-* ogpg v 0T

AN 4x2 /107 72+ B\ x4
+aVl_ +VTs i6- J 77 +

0(n~6) X

. 25f2x2  625fcdx4 ou]
T oany Tt oAt 0(n-® /
1 I 72+ 2
/ MAl M‘U 3 qpf to(n-b) +
42 107 72+b2 X )
+B 1 - + +
Bl wr 1 0(n"6)
K2 ofc 25k2
= - I - N - -
[I + (I + A+ B)--1 9 3A 2,%\ AB , B -
K4 7 72+®\ 814 2
+ + A .
24 S-biT + AT +M +
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+ B 15 | OB A Tanital + 0fn
X|1-(1 + A+ 5)'1 --A-48B I+
4 7
+ I+A+B)-1 -A-45) -La 5075+
72+ & T
+- 30 -(A+W) I_|4+0(n 6)

k2 9k2 . 25k2
=1+(1+A+5) (-—---- —A- B r+

+@+AAB)TK (1 2121144 4N

\ 24 \9 ~ 30 24
AB 107 72+ @2 .\ 625fc4 .\ 50A%\
15 10 i ﬂ' T

k2 .
+(1+4 +5)1(y-A - 45) y (1 +9A+255)] y +0(n"6) =
12 2
=1- (1+ — (1 + 9A + N+
1- (1+AABY 15 (I +9A+255)"
A4
+(1 + AABT 1j Z=(1 + 81A + 625B) + 2A2(3A + 2577)+

+(LAAAByY1(-]a-4Bjy(l +9A+255)}y +0(n"6).

Supposons que 1+ A+ 5 ¢ O; alors

(5.23)Dftn = 1+ 0(n~6) <=7 1+ 9A+ 2572 = 0, 1+ 81A + 6255 = 0,
3A+ 255 = 0-t=>A = -1/6, 5=1/50.

D’aprés (5.22), cela est aussi vrai lorsque 1+ A+ 5 = 0. Alors, en vertu de
(5.21), pour ces valeurs des A et 5 on a:

5728 - 29(72+ S2) = -245, 7202+ 23(72+ &) = 623.
Donc,
(5.24)
Bbl = 1+ 0 (n-6)<=*72= (35- 8v/7)/3, 2= (35 + 8v/7)/3 (72< ).
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Maintenant, vérifions que pour les 7 et 6 indiqués on a:
(5.25) \Kin - (1 - k/n)Dkn = k/n + 0(n~6) (n -» 00).
On aura:
1 2w2 -6\
(526) «22/021 B gnz +0 (n
. 1 2 m2 24 m N ™M
«23/021 —50 25n2+ 250n4+ (n A
1+ («22/021) + («23/«21) = | n n n +
r, , . . -1 75 1 1 61 m n'6
[1 + («22/021) + («23/«21)] = (1- 6n2 720n4+ 0 (
De plus,
sin - sm
(5.27) —
cosl - cos7z”™ cos* COS™
. 2\ T /1 72+ 62 +o(n-5
7 213 3n 180+ 120 (n
2n m
3r 3n sn3 OO
sin - sm 3T
cos - —Cos 7~  COS — —C0S S-,
n 6\ T 3mM3 1 72+ &
r 72— 290 n n3 20+ 120 FOUNIE
3n T UM g s
47 n 15n3
sin —, sin —
cos -a® cosn—l- cos
10 10 \ 5T @3/25 72+62
+ +0(n~5) =
72-25 &8—-25) 3n n3\36 " 24
_25n 5T 573 £ 0
21 3n 33t o0
Ensuite,
. sm sin ;- 1 T
(5:28) Ti = 011/021 w= Cos—cos7— cos  cosS © §mar - Cteg+
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T 15 - 16 sin2l

+ - tg -
2cos n-sin—n n 15 - 20 sin21
3
2 n X X Ira m 7 13
g"+0(n Y+--+_+ _+0(n )-
3T 3T
Tl X 1 X 1n 19 73
T A o c AN AN ° ~
X+3n+lJT3+ (n 5)+|%x_+3n+45- + (n 5)'
X 3 M3 22 x5
+0(n-7)=-~ -~ -~5 +0(n-5).
n 5n3 45 nb5
(5.29)
. SmeTir sm 3|7rL 3- 4sin2x
12 —al2l62 = — _ _ +
COS 71-? - COS 71% COS 1 —COSG7n 2 sin 7U.CRS Z-
3- 4sin2py 3T T 3 5 -8 sin2l
+ Ctg — + tg - e 2
4 sin JLmcos T cos 4 n n I sm g_ 1/2
3n X H X3 c. 3n X X3
.+ 0{n 5) H— + 0(n~5)+
4 T n 15 n3 2 X n 5n3
3n X 7 X3 1 n m 3 X3 ._5]1
. H—
4 x nonoof ) 8§ X n oA 503
X 11 x3 1 n X 11 X3 _5\
-3 -
n 5,3 + 0 <- y = - r X n 15 n3
X 32 cosd4 - - 24cos2- + 7
(5.30) tg - .
n (2 cos2 £ - 1) (4cos2 £ - 1)

A|1+§?+ﬁ—?*+o(rf'e SRR rHALILE

X X - 82 x5 7.
.5 - - §5__
n -y~ +0(n >
sin? sk f
(5.31) 13 — iix3/N23 — -
cos — —cos7l? cos [ —cos 65"
16 cos41‘|—12 00321‘+ | 16 cosdz - 12 cos27 + | 5x
tg
2 sin T ot oS f sin n
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T 32cosd- —24cos2- -f7
Ano (2cos2™ —I) (4 cos2™ —I)
25n 57 . 5 n 5X 773 _e.

1 3n 1 +HON 6'x +3n+97 +°(n )_
5N 57n 13ms In 5T 2573 _r.
"yt B3ntyY N3V -T5 ii3n+ 9 rH0(" )

wuen . 1 n 57 .
—n-5§+0(n 5)_ 5 7 3n Em&

D’aprés les formules (5.15), (5.24), (5.26), (5.28), (5.29) et (5.31), on
obtient:

(5.32) \k,n=1——+0(n 6)—n 1[Il + (<22 a2l) + (a23/a2l)] X

. KM, . , &M . . B&MT
il sm -——-- (- (622/ ®21)-T2sin ---=----- b\r23/a21)T3 sm ----—--
T T TI
75 P 61l s
=1---n-1 l-177- + ~
n 64 6n2  720n4 T O(N7D)

172 1 7m4 6 fc27T2 &4 7T4

‘H 1+3~+5ii+0<n > 17 en2 " TBBRA* O R

Y(l-n +°("9)(—]/3)(1+35 +T A1)
3k2n2 27/
a2 * don TOMNO)
1 4x2 24T

+56(1L_A +TT1 +0(n"6)

L IxN 2Bw Bud n. 6

x("I/B)(I +yA2+T A +°(n )
(51 . 22K:M2, %ﬁfgﬁ Q(n~%))} +0(n-6) =
ANk ok 75/ T 6l

n n 64y 612 720n4 t0(N-6)) X

s K2m kdird  tco7ma
2 504 en2 12004t 8okt

X

x3 (1-

*{_ 3n
1/. 572
41(1+3rf- +0{n O
121V + +0(n_" _
2 n2 40 n4
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17 13 x2 101 X4
+0(TT6) X
5 1+T1 7 5 n4

6 n2 24 na +0(n~6) =

K K 75 (. X2 61 x4
= n onoea1 se 720ma OYTOX
r X2 X K21 K4 KoKk 1
X\ A 3n2 Hn4 6n2 1204 + LUr4 + 6+
5 x2 3 xa K2n2 9 «k4n4 5 k2 1
187 ~Tora a2 T8 ™ 12 ™M —sor
13 x2 101 x4 K12 5 fAx4 13k2>K _
150m2t 250nat 122 48 na T3 ™ }+0(”'6)‘

SR L
x(1+é +° +00 ) (9=

=1- -+ - (1+0(n-6)) + 0(n~6) = 1+ 0(n~6).

Le [émmé 5.5 est démontré.

Théoreme 5.1. Pour les opérateurs (5.11)—5.13) avec a =
= +7/(35 - SVI) /3~ et B - + \J(35+ 8n/7) /3" et pour toute fonction
f(x) GC2 telle que f*6\x) G CZT |%égalité suivante aura lieu:

(5.33)

Jim n6[Ln(f:x)~ /(*)] = Ax 6 [/A(x) +5/(4>2) + 4<>a @G R-
Démonstration. Soit

®*(r) = 28800z2* (1 + eiz)/220k{r2 - »)\z 2- 9x2)'(z2- 25x2) ,
z£C, KE£N.

Alors

100 /xizfe 5 2
Res(Tx; ®*) = ~"512"n (2/ ° Res(x3x; dx) = -I-E519vn

75x\ X

1
R*s(x5™»1) =-1gjS Tr(yJ
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Ensuite, en appliquant le théoréme des résidus, comme nous avons fait dans
la démonstration de la proposition 1.2, nous aurons (voir (0.12) et (5.2)):

(5.34) HX—---—--- / x2kip2(x)dx —Rev.p. /  ®k{x)dx =
A~ J0 J-00

5
= Re <~ Res(—5M+ 2 F &*) = 2 87r_lo(7r/2)2(100 + 25 «32c + 52[c),
3=0
A=0,1,2,3,4,5.
Donc, en posant A' = 502-87% 10, on a:
M = 2,52A, wm2= 7TA(T712)2, [i4 = 55K(k/2)4,
Me = 679A(Tr/2)6, ms = 11095R(1r/2)8, M0 = 224839A'(7A72)1°-

Soit (Ao, Ai, Ar) la solution du systéme d équations (0.13) (pour m = 2).
Alors, il est facile de voir que

S —MbAo 'b VAT + MLOA2 % (679A0 + 11095Ai + 224839/12),

ou (Ag,Ai,J12) est la solution du systéme d’équations suivant:
’2,52A0+ T7Aj+  55A2= 1,

(5.35) < T7A0A 55Ai4 679A2= 0,
55Ac+679Ai+ 11095A2= 0.
En éliminant Ao des deux derniéeres équations, nous obtenons: Ai = - ™J12,

d’ou Ao = 239Ai + 5663A2 = ~pA2. Alors, en tenant compte de la premiere
équation, on obtient:

(5.36) A2 = 300/32768 = 352/213, Aj = -7 *53/212,
A0 = 37 ¢752/213.
Ensuite, puisque 679 = 797, 679A0 + 5335Ai + 65863/12 = 0, on a

e . o 225
= — + = — = = m——
(5.37) &l (5760Ai + 158976A2) 61 24576A2 = 3841r6/12 &l 6.

D’autre part, x(x"2) = (x6 —5x4 +4x2)/120, d’ou, d’apres (0.11), ai,2 =
= 1/30, ag2 = 1/24, 032 = 1/120. Donc, en vertu de (0.10) et (5.37), on
obtient I’égalité (5.33). Le théoréme 5.1 est démontré.

Corollaire 5.1. Sous les conditions du Théoréme 5.1 on aura:
(5.38) r]Y'%)nG( I -\kn)= ’i—GTFG(K6-5k4+4k2) (HN,Hn).

Corollaire 5.2. Sous les conditions du Théoréme 5.1 on aura:
i) lim n6\Ln(f;x) —f(x)\\C* = 0 si et seulement si /(x) est un
n —»00

polyndme trigonométrique d’ordre fi 2;
ii) ||[Zn(/;x) —/(a;)|[lc = 0(n-6) si et seulement si GLipl
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A New Mathematical Series

BOLYAI SOCIETY
MATHEMATICAL STUDIES

The Janos Bolyai Mathematical Society has launched a new mathematical
series called "BOLYAI SOCIETY MATHEMATICAL STUDIES” aimed to be
a sort of continuation of the terminating old series “Colloquia M athe-
matica Societatis Janos Bolyai” published jointly with North-Holland.
The scope of the volumes has been widened: they are not restricted any
more only to conference proceedings, rather we aim to publish survey vol-
umes or books; by all means, definitely more up-to-date and higher quality
materials. Keeping this in mind, the first three books of the series are the
following:

Volume |I: Combinatorics, Paul Erdés is Eighty, 1,
published in July 1993
» 26 invited research/survey articles, list of publications of Paul Erdds
(1272 items), 4 tables of photos, 527 pages
Volume 2: Combinatorics, Paul Erdds is Eighty, 2,
to appear in Spring
* invited research/survey articles, biography of Paul Erdos, photos
Volume 3: Extremal Problems for Finite Sets,
to appear in Spring
e 22 invited research/survey articles

A limited time discount is offered for purchase orders received by
March 31, 1994.

Price table (US dollars) Vol 1 Vol 2 Vol 1-fVol 2 Vol 3
(A) List price 100 100 175 100
(C) Limited time discount 5 59 9 59

(purchase order must be
received by March 31, 1994)

For shipping and handling add $5 or $8/copies of book for surface/air mail.

To receive an order form or detailed information please write to:

J. BOLYAlI MATHEMATICAL SOCIETY,
1371 BUDAPEST, PF. 433, HUNGARY, H-1371
E-mail: H3341SZAOHUELLA.BITNET



PRINTED IN HUNGARY
Akadémiai Kiad6 és Nyomda Vallalat, Budapest



Instructions for authors. Manuscripts should be typed on standard size paper
(25 rows; 50 characters in each row). When listing references, please follow the following
pattern:

[1] G. Szeg6, Orthogonal polynomials, AMS Coll. Publ. Vol. XXXIIIl (Providence, 1939).
[2] A. Zygmund, Smooth functions, Duke Math. J., 12 (1945), 47-76.

For abbreviation of names of journals follow the Mathematical Reviews. After the
references give the author’s affiliation.

Authors of accepted manuscripts will be asked to send in their T~X files if available.

Authors will receive only galley-proofs (one copy). Manuscripts will not be sent back
to authors (neither for the purpose of proof-reading nor when rejecting a paper).

Authors obtain 50 reprints free of charge. Additional copies may be ordered from the
publisher.

Manuscripts and editorial correspondence should be addressed to

Acta Mathematica, H-1364 Budapest, P.O.Box 127.

Only original papers will be considered and copyright will be vested in the publisher.
A copy of the Publishing Agreement will be sent to the authors of papers accepted for
publication. Manuscripts will be processed only after receiving the signed copy of the
agreement.



ACTA MATHEMATICA HUNGARICA / VOL. 63 No. 1

CONTENTS

Jod, 1., Arithmetic functions satisfying a congruence property ...............
Naulin, R., Frozen time method for conditionally stable problems in sin-
gular perturbation theory ...
Phong, B. M., A characterization of some arithmetical multiplicative func-
EEONS e bbb bbb e
Mills, T. M. and Smith, S. J., A note on Hermite-Fejér interpolation on
EqUIdIStANt NOUES .....coveviiieiiee e e
Kindler, A Dini-Dax thEOIEM ....c.cooiiiiiciiee e
Zhou, S. P., A counterexample on monotone Mintz approximation.........
Vassiliev, R. K., Certaines méthodes de sommation de séries de Fourier
donnant le meilleur ordre 1’'approximation ............ccccoovenenneeennn.

Index: 26.659

23
29
45
53
57

65



Acta
Mathematica

Hungarica

VOLUME 63, NUMBER 2, 1994

EDITOR-IN-CHIEF
K. TANDORI

DEPUTY EDITOR-IN-CHIEF
J. SZABADOS

EDITORIAL BOARD

L. BABAI, A. CSASZAR l. CSISZAR Z. DAROCZY, J. DEMETROVICS,
P. ERDOS, L. FEJES TOTH E: GECSEG, B. GYIRES, K. GYORY,

A. HAJNAL, G. HALASZ I. KATAI, M, LACZKOVICH, L. LEINDLER,

L. LOVASZ, A. PREKOPA, A. RAPCSAK, P. REVESZ, D. SZASZ,

E. SZEMEREDI, B. SZ.-NAGY, V. TOTIK, VERA T. SOS

ACTA MATH. HU IISN 0236-5294



ACTA MATHEMATICA
HUNGARICA

Distributors:

For Albania, Bulgaria, China, C.I.S., Cuba, Czech Republic, Estonia, Georgia,
Hungary, Korean People’s Republic, Latvia, Lithuania, Mongolia, Poland, Ro-
mania, Slovak Republic, successor states of Yugoslavia, Vietnam

AKADEMIAI KIADO
P.0. Box 254, 1519 Budapest, Hungary

For all other countries

KLUWER ACADEMIC PUBLISHERS
P.0. Box 17, 3300 AA Dordrecht, Holland

Publication programme: 1994: Volumes 63-65 (twelve issues)
Subscription price per volume: Dfl 249,- / US $ 130.00 (inch postage)
Total for 1994: Dfl 747,- / US $ 390.00

Acta Mathematica Hungarica IS abstracted/indexed in Current Contents — Phys-
ical, Chemical and Earth Sciences, Mathematical Reviews, Zentralblatt fir
Mathematik.

Copyright (¢) 1994 by Akadémiai Kiadé, Budapest.

Printed in Hungary



Acta Math. Hungar.
63 (2) (1994), 103-112.

APPROXIMATION OF PERIODIC
CONTINUOUS FUNCTIONS BY
LOGARITHMIC MEANS OF
FOURIER SERIES

XIANLIANG SHI and QI'YYU SUN (Hangzhou)

1. Introduction

Let f(x) be a periodic continuous function with period 24\ Denote by
5fc(x) the Ar-th partial sum of its Fourier series. For any positive integer K
and 0 < r < 1, let

4 ' 71= 0
Define the logarithmic means of order k of f(x) by
/ 1 \-k °0
4*>U»= KT171?) £
n=k
For any modulus of continuity u{t) define
Hu>] = {fe C 2v:u(f,6)iCu>(6)},

where C?>kdenotes the class of periodic continuous functions with period 2x
and u(f,6)=sup \f(x")-f(x)\.
\x'—x\"S
Recently, Mazhar considered the approximation problem by logarithmic
means of order 1 and proved the following (see [1]).

Theorem M. Iff(x) e H[u\, then

4 [(Nx)-/(*) =o ]
Furthermore, there exists a function /o(x) £ H[u] such that
-1 n
lo(0)-i(YH(/o,0)rc(logrr7) J ~f-dt.
1+

In fact we proved this result much earlier. In [2] we obtained the
following
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Theorem Sl. Let f(x) e C-i* and denote x(t) = f(x + t) + f(x -t) -
—2f(x). Then we have

4'4f,*%)-/(*)= \bg j-ni) ) <«
1+

where O is independent of f and r.

In [2], we also discussed the saturation problem. The saturation degree
of the logarithmic means saturation class is

determined by the following two conditions (see [2]):

In this paper we will establish an asymptotic expansion for logarithmic
means and show that condition (i) above can be dropped. Furthermore, we
generalize this result to logarithmic means of order k.

2. Asymptotic expansion
Theorem 1. Forany f(x) G and positive integer k, the asymptotic

expansion

LIKF, x)-f(x) = Af  di+

holds where are some constants and A*}3 =0 @0~ j ™ [f]) e
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Proof. We have

(1) LikK\f,x)-f(x) =

=on/

:O(LL/,l- r)y + O w(/,Tr) Iogl c +

2?rhogT™:) A 2 J=o

where it
. rsin
O = |1- reltl, 0 = arcsin

|1 —relq’
Notice that

02= || —re'd2= (1 —r)2+ 4rsin22 = 4r sin22 \(1 + —N

We get

@  lA=llog (4arfa() +ilog (I +
=iiog(w i«)+o((i)).

On the other hand we have

3) 0 = arcsin rsint

2sin* '/ i+ W T

1—r t
t J (1—r)+i2

arcsin (r2cos ]+0O

1—r

= ( \f)+0(i-r) +0 t

Acta Mathematica Hungarica 63, 1994
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Combining the estimates (1), (2) and (3), we get
Lik\f,x)-f(x) =

* (tog izt) I-r 1:9 4 7

+0(w(f, 1-r)) +0 ((,Cg’b) _

Thus the proof of Theorem 1is complete.

k

3. Saturation class
Now we prove the following saturation theorem.
Theorem 2. Let f e c2ir. Then
1) Lik\f,x) - f(x) = o~ (tag TZ7* ~ (r -> 1- 0) uniformly if and

only if f{x) is a trigonometric polynomial of order » k —1.
2) The following two assertions are equivalent:

(i) LIk\f,x) - /(*) = 0 ~(log A (r 2 1- 0) uniformly;

(ii) £I_i‘rgO /™ (10gi)fc_1di < c < +00.

Proof. The proof of 1) is easy, so we omit the details here. Now we
prove 2). By Theorem 1 it is sufficient to show that conditions (i) and (ii)

imply u>(/, 1- r) = O *(log ¥7) ” independently.

Now we prove that condition (ii) implies u>(/, 1- r) = O *"log A

first. Let a®, b be the Fourier coefficients of /. Without loss of generality
we may assume al = b = 0 when 0~ p 1 Kk —1. Therefore for any small
positive h > 0,

(4) Px(2h) = —4 " sin2ph(aBcospx + bBsinpx) =
v=k

sin2ph cos pt

= K 1ogry [/ [n*+0-4*1(/»* +0] E ;*r
A=x+1 £ Lrfo)(l - hY

v-kK

dt.
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We observe from the proof of Theorem 1 that

(5)
" Mo i\ ki
450 *y-1(*)- 71— 1 -i 1 P70 dt <
(IQg Ib ) e(i-r)

Asu(f,l-r) + Ce(\og I ™ j k+Ce(I-r)~kj N (log ™ 'dt

e(X-r)

where e is a given small positive number. Therefore by (5) and condition
(i), (4) reduces to

M ZI)|"\] E :jlhz/x/lazsflt dt x

A=feri E
i/=k

X|2H.I /fC(l@E +c hPU /s Oﬂlog 4)'c‘31d<+

™ .

sin2/j,hcos
(6) ] dt

0 o=+l £ XIfYI - NT)"
i/l=k

We claim that
*c° bl )

Assume for a moment that (6) holds true, then we get

|[<*x(2/i)] » 2COEu(f, h) +c”log O + ch”log » .

TAK ) @) /7 (i) *

Acia Mathematical Hungarian 63, 1994
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and by £= 4" | we get

() wom s ) i) 17 (log) s

+C(i0Qgs) /oA OQos2?) dt

Denote

Im{t) = <X, i) U°g 'I_;) and Mm= Os<ui9\I om(i)

for 0 m N A. Therefore we have that the right side of (7) is

dt-\-

k—3—m +1
H°H) yi™i(icgl) dt <

-fc
+c(log—) Mm-\

and Mm 1 CMm-\ + C for 14 m n K. Hence
u=>V,t)i(C +CMo)(\ogj

holds. Therefore the problem is reduced to prove (6). Before we start
to prove (6), we will use the following estimate about the coefficient of

(logu)x, when LL< i,
vk (log £)\ when b

Lo ~MYfEL
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and
|4 7'i"4 «l S

where A ~ B means C IA ~ B A~ CA for some absolute constant C.
Therefore for —2h < t < 5h we have

cos//t [sin(/r + |)t[ iApjl-hy <
S in - 2 =
BRH £ E(RL_h) el SRL AL G
K
/ \ "
sin(/i+i)t L§X1-h
cc E4E emeind Lfkem oy
V<i %Erf>(1-h)1
/=fc
We see
—_ *
|=cE - (534A+1-*1) S
Sc52(log/.)t-1(log(1)-* + 53 (logf,)*-2(l-i.r(logl") £
-S| I<"<I
Scft-~bgi)
On the other hand, we have
(Iogj.) £
fo1

7(10ET) ] exp(i/lcg(l - h))du £ ch~x

Hence for 0 < t < 3h, we get

(8) E |T et Uch 1
r1
' - hY

—+—1
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Now, let us start to prove (6). By (8) we have for 0 < t < 3h,
ﬁ §h2fih cos nt <
=+ £ WK(@A- hf

cos nt N E tBsn(t + 2h) N cos X< - 2h)

170

<
ngik\l-hy STE 4 Y1- nY
K

Scft-"ogi) ™

For <> 3/i, by using Abel transform we get

SIh2fih cos fit
1
E. 4-J)
'<lm  (E-<i »it' 'eK n -»r sin |

1 /sin(/i+1) (t+2h) sin(y+1) (- 2h)\)
2y sin t+ 2h) sinl(i -2 J1J

=Ej +E3+E3’
where 1(ag) = aB - all+i. We see that

il Ap)yErpn )y 2N 2(ig7) e

M7

| E% =CE Ry 1Y _IM—l"(I—lg@j\/I“
By using Abel transform again to E3> we see that

( \
e = = ' <

tLik(l-hy
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SH2E | *' . «|O-HreEi) 2+
+cl 2 E “’(1 -hT hhgl’\ w y

o N L AN - [irs
vCl 28 4°u - nr (47(i - hy+i +4723i /|r2)<
(log£)3*

-K-1
Sei-2*(tog |)

Therefore for t > 3/i, we have

&ili2 /t/r cos /zi .

(9) Eﬂ_1 s ehr2(log” +eriflogi] X
Y. 4 fo(l - hy
K

-Jfe-1

, +cr 2/.(logi)

Taking (8) and (9) into (6), we get

™ i
sin2fih cos /nt dt A th 17log A i+
AT A 4 f)i-h)~
i/=k
A1 fe-T
+c/(fcr2(logi) +<-|logi dt <c(log-

Hence (6) holds and condition (ii) implies u(f, t) = 0 ((log j-) ~ . Simi-

larly we can prove that condition (i) impliesu(f, t) =0 ((log 1)-%*)- There-
fore the proof of Theorem 2 is completed by the asymptotic expansion of

4y »- ()
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SOME RESULTS ON COMMUTATIVITY AND
ANTI-COMMUTATIVITY IN RINGS

H. E. BELL* (St. Catharines)

Let R denote an arbitrary ring. For each x,y £ R, denote the anti-
commutator xy -f yx by x oy; and define the anti-center Z by

Z ={x£R\xoy =0 forall y€£ R}

Call R anti-commutative if Z = R.

Motivated by recent commutativity and anti-commutativity results for
rings in which anti-commutators satisfy certain power constraints [3,6,8],
we study rings satisfying constraints defined in terms of Z. Our results are
analogues of well-known commutativity theorems.

As usual, we shall denote by [x, y] the commutator xy-yx, and by Z the
center of R. The symbols A, J(R) and C(R) will denote respectively the
set of nilpotent elements, the Jacobson radical and the commutator ideal;
and for S Q R, ~.(5) will denote the two-sided annihilator of S. The ring
of integers will be indicated by Z.

1. An anti-commutativity theorem
Our first result is a direct analogue of a theorem of Putcha, Wilson, and
Yaqub [7].
Theorem 1. Suppose thatfor each x,y £ R, there exists w = w(x,y) £
£ Z such that (x oy)2w —x oy. Then R is anti-commutative.

Proot. Call aring R satisfying our hypotheses a p-ring. Note that, by
a standard argument, idempotents must lie in Z.
We employ the Jacobson structure theory, assuming first that R is a

division ring. Let x,y £ R and choose w £ Z such that
(1) (Xoy)2w = x 0y.

* Supported by the Natural Sciences and Engineering Research Council of Canada,
Grant No. A3961.
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It follows that (Ok oy)w)2 = —(k 0Yy)w, so that —Okoy)w is idempotent
and (koy)w £ Z. Thus for all z £ R, (koy)wz = z(x oy)w, hence wz(x o
oy) = —w(xoy)z. Ifro= 0, then xoy = 0 by (1); otherwise z(xoy) = -(ro
oy)z, in which case xoy £ Z. Thus, xoy £ Z forall xy £ R. Now ifu £ Z,
we get nol= 2u = 0; thus, if char R ¢ 2, Z = {0}, and xxoy —O for all
X,y £ R. On the other hand, if char R =2, x oy —[x,y] and Z —Z\ hence

[x,y] £ Z for all x,y £ R — a condition known to imply commutativity in

division rings. Since commutativity and anti-commutativity are the same

in characteristic 2, p-division rings are always anti-commutative.

The primitive case reduces as usual to studying 2x2 matrices; and since
01 10
00 00

rings are division rings, hence all semi-simple p-rings are anti-commutative.

Now suppose R is a p-ring with J(R) & {0}. Then R/J(R) is anti-

commutative, so for any x,y £ R we have xoy £ J(R). Choosingw £ Z

such that (koy)2w = xoy, we see that —(xoy)w is an idempotent in J(R).

Thus (koy)w = 0and x oy = 0.

X = and y = do not satisfy our hypotheses, all primitive p-

2. An analogue of a theorem of Herstein

A deep theorem of Herstein [4] reads as follows:

THEOREM H. Let R be a ring such that for each x £ R, there exists
p(t) £ Z[t\ for which x —2p(x) £ Z. Then R is commutative.

Our second theorem, which is our main theorem, has a similar hypothesis
involving the anti-center.

Theorem 2. If the ring R has the property that

for each x £ R there exists p{t) £ Z[t]
(® such that x —x2p(x) £ Z,

then R is a subdirect product of commutative and anti-commutative rings.

Proof. Let R be an arbitrary ring satisfying (j). Since Z is an additive
subgroup of R, for each »x £ R we get polynomials q(t) of arbitrarily high

co-degree such that »x—g(x) £ Z\ and it is immediate that N Q Z. It is now
easy to show that N is an ideal; and a standard structure theorem shows
that L is a subdirect product of rings without zero divisors, each satisfying

Assume, then, that R satisfies (f) and has no zero divisors. If Z ¢ {0},
letOpz £ Z and n £ Z. Then zu —uz — —uz, so 2uz —0 = 2u\ hence

Acta Mathematica Hungarica 63, 1994
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Z Q Z and R is commutative by Theorem H. On the other hand, if Z — {0},
noting that u2 G Z for each u G Z shows that for each x GR we have p(t) G
G Z[f] for which (x - x2p(x))2 G Z = {0}; thus x - x2(x) = 0and R is
again commutative by Theorem H.

Returning to the case of arbitrary R with (f), we now have * com-

mutative, so that C(R) Q N C Z. Hence for each x,y G R we have
(xy —yx)x -fx(xy —yx) = 0, so that

(2) x2GZzZ forall x GR
and
(3) xoy Gz foral x,yGR-

Taking p(t) G Z[t] for which x —x2p(x) G Z and using (2), we get xy + yx =
= x2p(X)y + yx2p(x) = x2p(x)y + x2yp(x) for all y GR; and it follows at
once that R is 0-commutative (i.e. xy = 0 implies yx = 0).

We can write R as a subdirect product of subdirectly irreducible rings
with (f); thus, we assume henceforth that R is subdirectly irreducible, and
proceed to show that R is either commutative or anti-commutative. We
make use of the following lemmas.

Lemma 1 [1, Lemma 2]. Let R be a subdirectly irreducible 0-commuta-
tive ring with heart H, and let D be the set of zero divisors of R. Then
D = A(H).

LEMMA 2. Let R bearing satisfying (f) and having at least one element
which is not a zero divisor. Then Z C Z.

Proof. Let 1 G Z, and let x be an element of R which is not a zero

divisor. Then by (2), x2u —ux2 = 0. On the other hand, since n £ Z,
X2u + nx2=20; hence 2x2u=0= 2u, and u G Z.

Lemma 3. Let R be any ring satisfying (]). If x,w GR and x(xw +
|- 1e) =0, then xw + wx = 0.

Proof. Choose p(t) G z[t] for which x —x2p(x) G Z, and write
p(t) = g(t2) + th(t2). Then

(4) xy +yx —x2g(x2)y -fyx2g(x2) wx3h(x2)y + yx3h(x2) for all y GA,
and since x2 G Z, we have

%) Xy +yx = 2x29(x2)y + x2h(x2)(xy + yx) forall y GR-

Since x(xw + wx) —O0, left-multiplying (5) by x and taking y —w gives
(6) 2x3g(x2)w = 0.

Acta Mathematica Hungarica 63, 1994



116 H. E BELL

Taking y

Xxw + wx

x in (5) gives 2a:2 = 2x3g(x2) + 2x4h (x2); thus (5) and (6) yield
2x 2g (x2)w = (2x3gi(a:2) + 2x4h(x2))g(x3)w = 0.

Completion of Proof of Theorem 2. If R has an element which
is not a zero divisor, then Lemma 2 and Theorem H imply that R is
commutative. Thus assume that R = D, in which case R = A(H) by
Lemma 1. Suppose that there exist a,b E R with a06 ¢ 0. Then, by (3)
and Lemma 3, (a o b)R is a nonzero two-sided ideal; hence H Q (a o0 b)R.
Let Ocp h E H, so that h = (a o b)r for some r E R. Since ah = 0, we get
a(a 06)r = 0; and applying Lemma 3 to the ring gives (aob)r = 0 —
a contradiction. Therefore, R is anti-commutative.

3. Two theorems on periodic rings

Our final two theorems deal with periodic rings. The first generalizes
Herstein’s theorem ([5], [2, Theorem 2]) that a periodic ring with N Q Z
must be commutative; the second extends a result of the author [2, Theorem
3l

Theorem 3. If R is a periodic ring with N Q Z\JZ, then R is a
subdirect product of commutative rings and anti-commutative rings. Hence,
x2e Z forall x e R.

Proof. For u,v e N, uv = xte; therefore, N is an additive subgroup
of R. Since N is the union of the subgroups N MZ and N INZ, we see that
N QZ or N Q Z. In the first case R is commutative by Herstein’s result.
In the second, since for each x E R there exists n > 1 for which x —xn E N
[2,(P2)b the conclusion follows by Theorem 2.

Theorem 4. Let R be a periodic ring, and suppose that for each x E
e R and n e N, there either exists n > 1 for which [x,u]n = [z,u] or there
exists m > 1for which (xou)m = x on. Then R is a subdirect product of
commutative rings and anti-commutative rings.

Proof. For each ne N and x e R, ux = 0 if and only if xu —0; and
it follows as in the proof of [2, Theorem 3] that N is an ideal. Thus, for
each m e N and x ER, xou and [x,u] are in N, so that x oun = 0 or
[x,u] = 0. By appealing to the fact that a group cannot be the union of two
proper subgroups, we conclude that N ~ Z U Z\ and the theorem follows
from Theorem 3.

Acknowledgement. | wish to thank Franco Guerriero, who served as
a research assistant on this project.
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A FLEXIBLE MINIMAX THEOREM
S. SIMONS (Santa Barbara)

Dedicated to Professor Heinz Kénig

Introduction

The purpose of this paper is to unify a number of minimax theorems
that use hypotheses that are superficially very different.

The important role of connectedness in minimax theorems was first
noted by Wu [29], followed by Tuy [27,28], who was able to generalize Sion’s
minimax theorem [24]. Based on JoG’s result [8], Staché [25] and Komornik
[16] proved minimax theorems for “interval spaces”. These results were
unified by Kindler-Trost [12].

Minimax conditions that use algebraic conditions were considered by
Fan [1], K&nig [17], Neumann [19], Irle [7], Lin-Quan [18], Kindler [11] and
Simons [20].

Minimax theorems that mix both connectedness and algebraic condi-
tions were considered by Terkelsen [26], Geraghty-Lin [2,4,5], Kindler [11]
and Simons [21].

Kindler [11] was the first to observe that the algebraic conditions force
conditions akin to connectedness.

In this paper, we give results that unify all the ideas mentioned above,
as well as other ideas due to Ha [6] and Simons [22,23].

The basic minimax theorem is Theorem 1 which has a simple proof using
a compactness condition (1.1), a condition on Y, (1.2) and a condition on
X, (1-3).

There are obvious topological situations in which (1.2) holds — see (8.2).
Lemma 2 gives a set-theoretic situation in which (1.2) holds — in Remarks 3,
we show that, to within £ Lemma 2 encompasses all the algebraic situations
mentioned above.

Lemmas 4 and 5 give topological situations (which will require that X
be an interval space) in which (1.3) holds. Lemma 6 gives a set-theoretic
situation in which (1.3) holds — in Remarks 7, we show that, to within z
again, Lemma 6 encompasses all the algebraic situations mentioned above.

The reader will undoubtedly notice the similarity between the hypothe-
ses (2.2) and (6.1). In Remarks 7, we give a common result from which both
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Lemma 2 and Lemma 6 can be derived. (We have not used this in the text
for clarity of exposition.)

Let X and Y be nonempty sets and f : X xY —R. If7 6 R we define
multifunctions from X into 2Y and [7"from Y into 2X by

VzeX, Tlz:={y:yGY, f(x,y) 7}
and
Vjley, \iy = {x:x GX, f{x,y) >7}.

For convenience, we write LE(W,7) for p| tJiu.
wEW
The author would like to thank Professor Jiirgen Kindler for an interest-
ing discussion on minimax theorems and for suggesting that he incorporate
[12] into an earlier version of this work.

The joining of sets and pseudoconnectedness
We say that sets #0 and H1are joined by a set H if
HCHOU#b HMNHgpO0 and AMNA"NO.
We say that a family H of sets is pseudoconnected if,
(0.1) Ho, Hi,H GH and Ho and Hi joined by H == Ho NMHi ¢ 0.

Any family of closed connected subsets of a topological space is pseu-
doconnected. So also is any family of open connected subsets. In Lemma 2
we give a situation related to minimax theorems in which a certain family
of sets is automatically pseudoconnected.

Theorem 1. LetY be a topological space, and B be a nonempty subset
of K such that infB = s;;(p iQf/. Suppose that, V/3 6 B and finite subsets

W of X (with the convention LE(4),R) =),

(1.2) V16L, J3jx isclosed and compact,
(12 {BxnLE(W,B)}x<ix is pseudoconnected
and,

(Vxo, ai £ X, G X such that

(1.3) \ J5jx0and _/jxi are joined by Jirx MLE(W,R).
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A FLEXIBLE MINIMAX THEOREM 121

Then
min sup/ = sup inf/.
Y xp xp Y

Proof. Let 8 £ B. Let ¥ be a nonempty finite subset of X. We
can write V. — {xo,xi} UW. Let a be as in (1.3). It follows that j3jxo N

NnLE(W,R) and _/3)xi M LE(W,R) are joined by *Jx D LE{W,B). From
(1.2) and (0.1), LE(V,R) ¢ 0. The result follows from (1.1) and the finite
intersection property.

Sufficient conditions for (1.2)
In our next result, W does not necessarily have to be finite.

Lemma 2. Let W C X and R £ R. Suppose that,

(2.2) V7 >R and x £ X, jyjx MLE(W,R) is closed and compact,

and, whenever 6 > 7, 3N ~ 1 and 70,+«, IN £ R such that

70=6, IN =7 and,
Vjl0,21 ey, 3yey suchthat, vn£ {1,

(2.2.1) viy ¢ 17n-i YoU [Byi,
(2:2) <« 529 [y ¢ [ByoU |7, i 7i,
(2.2.3) \Jy ¢ [Ryo U[Ryi,
(2.2.4) [by C [Syo U fTili.
Then
2 x MLE(W,R)\ is pseudoconnected.
(1.2) (il (’)>xox' pseu

Proof. Suppose that the result fails. Then 3x0,Xi,x £ X such that,
writing T := J?2Jx MLE(W,R),

(2.3) T C /30 U_/2Jxi,
(2.4) JxonJdx,nT =0,
and, fori = 0, 1,

(2.5) w £ B\Xj NT.
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From (2.1) and (2.4), 37 > B such that
(2.6) tIxo Mjjzi NT = 0.
From (2.5) and (2.6), wo £ _Tpk1- Let 6 := f(xi,up) V/(x0,ui) >7,

Up:=J3p N MT 3up and U\ :=  aol BjxxM\T 3 uw,.
Choose N and 70,...,7n as in (2.2). Then, from (2.6),

w C = jrodxi and WM 7n |xx= WM 7|xr - 0.
Thus, ViG Ugq, 3 !fifot) G {1,... , 1V} such that
(2.7) g0(t) Un s N =>t and n = g0(t) =t GjTn-iji-
Similarly, Vi G t/i, 3 ii(i) G {1,...,1V) such that
ffi(i) " n S V=1 £ J7njx0 and n = fifi(i) ==t G 7n-i|2p.

We fix yi G % to maximize fir,(r/,) and choose y G¥ asin (2.2). From (2.2.3),
y £T. From (2.3), we can suppose without loss of generality that y G RB\xp.

From (2.2.4) since yi G _i>Jxi, y G _5]xx. Thus y G Up. Let n ap(yp).
From (2.7), y0O G _7n-iJ»i. Since ti G U\, t/i G_"xx. From (2.2.1), y G
G 7n|xi. From (2.7), n < go(y). This contradiction of the maximality of
00(20) completes the proof of the Lemma.

Remarks 3. In the context of minimax theorems, various authors have

introduced conditions that imply (2.2).
Inspired by a result of Fan [1], Kénig [17] introduced the condition:

fVil0,2L GY, by GY suchthat,
[iG I~ f(x,y) S [/(2,20)+ /(2,21)]/2.

(3.1) was weakened by Neumann [19], who also showed that it sufficec
that his condition hold “to within e”. (See the discussion on Irle’s theorem
below.)

Neumann’s condition was further weakened by Geraghty-Lin [2,4,5] and
Lin-Quan [18], who introduced the condition:

(3.2
J 35 G(0,1) such that, Vyp, 2L GY, 3y GY such that,

12GX = f(x,y) g (- s)[/(2,0) VI{x,yx\+s[/(2,10) Af(x,y))\.
(To see this take s 1/2).
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A FLEXIBLE MINIMAX THEOREM 123

Simons [20] weakened (3.2) to the “penalty condition”:
(3.3)
'3 anondecreasing function >x: R+ —R+ such that
<A>0=>7*A) >0 and Vyo,yx£Y, 3y £Y such that,
X EX 2f(x,y) M fF(xty0) V/(x,yi) -ir(\Mf(x,y0) - f(x,yx\).

(To see this take &(A) := sX. Much smaller choices of >xare possible, for
instance, Tr(A) := e-1/n2).

Simons [20] weakened (3.3) to the “upward condition”:
3.4
(I\/)c >0, 3€> 0 such that, Vyo,yx£Y, 3y £Y such that,

xe X and \f(x,y0)- f(x,yx\ " e=>f(x,y) <sf{x,y0) Vf{x,yx)- V
and x £ X =f(x,y) fi f(x,yo0) VI{x,yx).

(To see this take 1j:= #(£).)

We now show that if 8 < 7 < 6 then (3.4) implies (2.2): We set
e := 7 —/3, choose 1 as in (3.4) and 70,..., 7n G[7,tfl with 70 = 6, 7# = 7
and, Vn £ {1,...,iV), 7n_i —7n ~ 1. Let yo,yx£ Y and choose y £ Y as
in (3.4). Suppose that f(x,yo) ~ 7,_i and f(x,yx) 5 8. We distinguish
two cases:

Case 1: f{x,y0)~ 7. Then f(x,y) * 7VRB=7"1,,.

Case £; f(x,y0) > 7. Then f(x,y0)- /(a3, 241) £ hence, from (3.4),

ﬂ*,Y)AM-i VR -1=7,_'- T,

Thus f(x,y0) S 7n-i and f(x,yx) » B & /(®,y) N 7,, from which
(2.2.1) follows. We can prove similarly that (2.2.2) holds. Finally, f(-,y) *
N 10,30) V/0,?/i)) gives (2.2.3) and (2.2.4).

Irle [7] introduced the concept of an averaging function  (a suitable real
function defined on a suitable subset of R X R) and considered a condition
of the form:

fVe >0 and 10,2i <Y, 3y £Y such that,
I* e X =>f{x,y) ™ ¥>(/(*,Ito), /(x,Y)) + £.

We see that, in common with the situation already described for Neumann’s
result, it suffices that Irle’s condition hold “to within r”. However, if y3is a
suitable averaging function or, more generally, mean function in the sense
of Kindler [11] then

(VyO,yx£Y, 3y £Y suchthat,
\ * £ X =1f(x,y) * <p(f(x, 20y, f(x, 21))

implies that (2.2) holds if R < 7 < &
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Irle’s minimax theorem was generalized by Simons [22], however it com-
plicates the proof immensely to have to deal with “to within e” conditions.
In this paper, we shall follow the philosophy of Kindler [11] and not con-
sider “to within e” conditions. We hope that this simplification will show
the underlying structures more clearly.

Using the same method of proof as that used in Lemma 2, one can
establish the following more general result:

Lemma 2'. LetT C¥Y and /3,7 £ R with /3”"7- Suppose that, VO > 7,
3N I and 70,...,7n G R such that 70 = 6, 7# = 7 and Vyo,A G T,
3y GT such that, Vn £ {1,(2.2.1), (22.2) and (2.2.4) hold. Let
Xg,x\ £ X and R™Q and J3*x\ bejoined by T. Then

jyjzo Mjyjxi N T /0.

Kindler [11] was the first to observe that there are conditions resem-
bling connectedness that are automatic in certain minimax theorems. He
defines two concepts, <p-connectedness and IM-connectedness and uses < con-
nectedness to establish a general minimax theorem. We will not discuss
«"-connectedness further since it involves a mean function p, and the phi-
losophy of this paper is to work as much as possible with the intrinsic prop-
erties of X, ¥ and / and avoid additional functions. The precise definition
of -connectedness is: if S;l(p i\n(f/ < 3 <7 <00, W is afinite subset of

X, xo,xi E X, and _/3Ja:0 an(l are joined by LE(W,/3), then jyjxo I
Mjddzi N LE(W,7) ¢ 0. Thus Lemma 2' can be used to give a sufficient

condition for -connectedness and, in fact, for a more general concept in
which W is not restricted to be finite.

Sufficient conditions for (1.3)

We suppose throughout this section that Z C Y .

Lemma 4. Let X be a topological space, 3£ R, xq,xi £ X, and C he
a connected subset of X such that

4.2) C 3x0, xi and, Sx EC, R\x C B\xp U B\x\.

Suppose that

4.2) VYyEZ, {x :xEC, f(x,y) </3} isopenin C
and
(4.3) Vx E C, 3y EZ such that f(x,y) <R.
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A FLEXIBLE MINIMAX THEOREM 125

Then 3a; GX such that
(4.4) _RBlxo and _f3Jai arejoined by R\x MZ.

Proof. We can suppose that
(4.5) _RjxOnR]xrm2 =0,
for otherwise (4.4) follows with x := xo. For r= 0,1, let
(4.6) Ci = JX:X GC,J)?xnzcC _BXJ 3 X~
From (4.1) and (4.5),
4.7) Ci={xxGC Minjx!-,nzZ =0}.

From (4.3), (4.5) and (4.6),

(4.8) CoMCi - 0.
We can suppose that

(4.9) Co UCi = C,

for if x GC\ (Co UCi) then (4.4) follows from (4.1) and (4.7). Let x GC.
We now prove that

(4.10) X GCo O 3y G_RJxo Mz such that f(x,y) < RB.

(=>)Ifx GCoand yisasin (43) then y G _/2xIMZ. From (46), y G
G _?a,0MZz, as required. (£ ) Ify is asin the right-hand side of (4.10) then
y G_/3Jxn_/3Jxon.Z. From (4.7), x ™ Ci. From (4.9) x G Co- This completes

the proof of (4.10). From (4.2) and (4.10), Co is open in C. Similarly, Ci
is open in C. Then (4.8) and (4.9) contradict the connectedness of C. This
contradiction completes the proof of the Lemma.

Lemma 5. Let X be a topological space, 8 GR, a;0,Xi GX, and C bhe
a connected subset of X such that

(4.1) C 3xo0, xi and, VxGC, R\x C /?|xpU B\x\.
Let Y be a compact topological space,

(5.1) {(x,y) :x GC, y G2z, f(x,y) n B} beclosed in C xY,
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and

(5.2) Vxe C,J3]xn Z f 0.
Then 9x G X such that
(4.4) _[Ixo and _Rjxi arejoined by R\x IMZ.

Proof. Even though (5.2) is weaker than (4.3), we can proceed as in
the proof of Lemma 4 up to (4.9). Instead of (4.10), we have: Vx GC,

(5.3) XGCo 37G_/M?jxoMNZ suchthat f{x,y) " R.
Let xx be a net of elements of Co,x GC and x\ —x. From (5.3),
32Ae 30N Z suchthat f(x\,y\)"RB.

Since Y is compact, by passing to an appropriate subnet, we can suppose
that 3y G Y such that yx “my. Then (xAj/A -+ (x,y) and (x0,j/A ->

(x0,y). From (5.1), y G Z, f(x,y) » B and f{x0,y) » B. From (5.3),
X G Co- Thus Co is closed in C. Similarly, Ci is closed in C. Then (4.8)
and (4.9) contradict the connectedness of C. This contradiction completes
the proof of the Lemma.

Lemma 6. Leta, 8 ER and a < 3. Suppose that, VE < a, 3iV " 1
and oto,..., an ™~ R such that

a0 - C, agr = a and,
Vto,ti &X, 3x GX such that, Vn G {1,..., N},

(6.1.1) M j%C 6h—1 U
(6.1.2) Onx C B\to u an-ilii,
(6.1.3) Rlx C RJtO6Rjh,
(6.1.4) c]x ¢ _CitOwn _cjh.

Suppose that

(6.2) Vx GX, _ajxn Z /],
Let
(6.3) xq,xi G X, inff(xo0,Z) > —00 and inf/(xi,Z) > —e0.

Then 3x GX such that
(4.4) _Rjxo and _/3|xi are joined by R\x M Z.
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Proof. From (6.3), we can choose £ £ R such that _ClxolMZ = Cjxi I

Mz = 0. From (6.2), ( <a. LetN ~ 1and ao...,apj satisfy (6.1). If
t£ X and jji MZ = 0 then, from (6.2),

QojtnZ=(]tnZ =<%and aN|tMNZ=ajtNZ 0.
Thus 3!1g{t) £ (1,..., N} such that
(6.4) g(t) nn on1rnn2/0 and n —g(t) >mctn_i|tMNZ = 0.

Fori=0,1let [[-:= ji :t£ X, £iNZ —0, j3ji 0Z C _/Ix-j .

We fix ti £ Ui to maximize g{ti) and choose x G X to satisfy (6.1.1)-(6.1.4).
From (6.1.4),

(6.5) _CJxnZ = 0.

From (6.1.3), *xD Z C ( RB\tg Mz'j U ( B\t\ M2y . Since < G Ui,

(6.6) B\x MZ C /3lxp U /3[xi.

We next prove that

(6.7) _dJIxnJdxinZ~0.

If x ~ Qothen, from (6.5), _3jxMNZ (f _"Ixo and (6.7) follows from (6.6). If,

on the other hand, x G I70 we set n := g(to). From the assumed maximality
of fir(io), g{x) * n. From (6.4),

gn|xMz 0 and gn_ijtpMNZ =0

From (6.1.1), On|x flZz /0. (6.7) follows since an » 3 and t\ £ U\.
This completes the proof of (6.7). We can prove similarly that /3|x1 /?|x0TM
MZ ¢ 0. The result follows from (6.6).

Remarks 7. The numbering of the statements in these remarks is
chosen to correspond with the numbering of the statements in Remarks 3.
The credits are identical.

[Vto,t\ £ X, 3x £ X such that,
| YEY =f(x,y) " [f{t0,y) + f{ti,y)]/2

implies
J 3s G(0,1) such that, V<o, h £ X, 3x GX such that,
7 UG hMf(xy) N (- 9)[(t0,y) VE(ti,y)\ +s[f(t0,y) Af(h,y)]
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which implies
3x@ nondecpaasing functionn : R+ %R+ such that
12553,

and Vionri GX, 3x EX  such that,
Yev = f(x,y) ™ f(t0,y) Af(h,y) + j|f(t0,y) - f(ti,y)\)

which implies

“4R.03..0 \, i G
> 7> \Usuch that, Mo, , 3x E X such that,

EY and\f(t0,y) - /(<i,y)| » £=>1f(x,y) ™ f(t0,y)hf(ti,y) + €
nd yEY =f(x,y)" f(t0,y) Af(h,y)

which implies that (6.1) holds if £ < a < . If p is a suitable averaging or
mean function

j Vto,t\ E X, 3x EX such that,
12GY => f{x,y) ™ <p(f(t0,y),f(ti,y))

also implies that (6.1) holds if £ <a <R.

The following more abstract result can be used to prove both Lemma
2 andLemma 6. Let U and V be nonempty sets, B : U —»2V, and Vn E
E (1,..., N}, Dn:U —®V. Let Do —0. Suppose that,

Vto,t\ EU, 3n EU such that, VnE{1,..., N},
Dn-\to =0 and Bu MBt\ =0=Dnu = 0,
Dn-\t\ —0 and BulBto=0=>Dnu =0,
and Bu C -Bio U Bt\.

Suppose also that {Bu}ueU is pseudoconnected and, Vu E U, D*u ¢ 0.
Then Vuo, ui EU, BugnNBuw ~ 0.
We note, finally, that (4.1) automatically holds if, Vy £ Y, f(-,y) Iis
quasiconcave in the sense of interval spaces.
Applications of Theorem 1

For Theorems 8 and 9, we suppose that ¥ is a topological space, B is a
nonempty subset of R, infB =sup inf/ and, VB E B,
X Y

(8.1) Vx E X, J3jx is nonempty, closed and compact,

Ada Mathematica Hungarica 63, 1994



AFLEXIBLE MINIMAX THEOREM 129
and either
(8.2) V' nonempty finite subsets ¥ of X, LE{V,R) is connected
or

>7>R and x £ X, jyjx isclosed and

8.3
83) 3N A1 and 7o,...,7m0 GR such that (2.2) holds.

(The choice can depend on B.) We point out that the “nonempty” as-
sumption in (8.1) automatically holds if either, V& £ B, B > sup inf/ or,
X Y

Vx £ X, minf(x,Y) exists.

Theorem 8. LetY be compact, X be a topological space and, Vi £ B
and xq,x\ £ X, 3 a connected subset C of X such that

(4.1) C 3xo, x\ and, Vx € C, J3jx C_"Ixo U R\x\

and
{(x,y) :x GC, y£Y, /(x,y) i B} is closed inC xY.

Then
min sup / = sup inf/.
Y X X Y

Proof. Let B £ B. By assumption, (1.1) holds and, from Lemma 2 if
necessary, if W is finite then (1.2) holds. From Lemma 5 with Z Y,

if W =0 then (1.3) holds.
Now suppose that n * 1 and
if card W ~ n —1 then (1.3) holds.
From the proof of Theorem 1, if card V ~ n+ 1then LE(V,B) £ 0. Thus
if card W A nand Z = LE{W,R) then (5.2) holds.

From Lemma 5,
if card W ~ n then (1.3) holds.

Thus we have proved by induction that
if W is finite then (1.3) holds.
The result follows from Theorem 1.
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Theorem 9. Suppose that either

"VR GB, B> sup inf/, X is a topological space and,
X Y

A ( Vxo0,xj GX, 3 a connected subset C of X
such that (4.1) holds and
Vy GY, {x :x GC, f(x,y) <B} is open in C.

{BGB, R > sup inf/,
X Y

VE<a<®RB 3IV~ 1landao,..., a;v UR such that (6.1) holds
and'ix G X, inff(x,Y) > —e0.

or,

Then
min sup/ = sup inf/.
Y X X Y

Proof. By assumption, V/3 G B, (1.1) holds and, from Lemma 2 if
necessary, if W is finite then (1.2) holds. From Lemma 4 or Lemma 6 with
Z —y

if 3 GB and W =0 then (1.3) holds.

Now suppose that n ~ 1and
if 3 GB and card W < n —1 then (1.3) holds.

If 3 GB, we choose a GB such that a < . From the proof of Theorem 1
with R replaced by a, if card V U n + 1then LE(V,a) ¢ 0. Thus

if3 GB, card W » nand Z = LE(W,R) then (4.3) and (6.2) hold.
From Lemma 4 or Lemma 6,
if 3 GB and card W ~ n then (1.3) holds.
Thus we have proved by induction that
if 8 £ B and W s finite then (1.3) holds.

The result follows from Theorem 1.

Remarks 10. The minimax theorems referred to in the introduction
that depend only on connectedness follow from either Theorem 8-(8.2) or
Theorem 9-(8.2, 9.1). Those that depend on algebraic conditions, and their
set-theoretic generalizations follow from Theorem 9-(8.3, 9.2). Those that
mix algebraic conditions and connectedness follow from Theorem 9-(8.2,
9.2). Theorem 8-(8.3) and Theorem 9-(8.3, 9.1) give new results. We

é%@%‘éfh!%”ﬁ‘.‘&”Htu%ériic’l Thegrem 8 and Theorem 9+9.1), C can depend on
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ON OPTIMAL AVERAGES
N. K. AGBEKO (Budapest)

0. Introduction

We begin this paper with some notations:
i) The symbol V (resp. J1) stands for the maximum (resp. the mini-
mum).
ii) x(B) will denote the characteristic function of the set B.
iii) R = (-00,00), R+ = [0,00), R = Ru{—o0,00}, R+ = R+ U{oo0}.

Convention: 0«00 = 0.

Let (il,F) be any measurable space, i.e. i) is a nonempty set and T a
(7-algebra of subsets of II.

From now on measurable sets will be called events as in probability
theory. The complement of an event B will be denoted by B".

Definition 0.1. A set function p : T —[0,1] will be called the optimal
measure if it satisfies the following properties:

Pl. p(0) =0and p(fi) = L

P2. p is F-additive, i.e. p(B UE) =p(B) Vp(F) forall B and E ET.

P3. p is continuous from above, i.e. p (nllenJ) = nEr.rgmp(En) whenever
(En) C T is a decreasing sequence.

The triple (ii,F,p) will be referred to as the optimal measure space.
For all events B and c, with B C C, the identity

(0.1) pP(C\ B) =p(C) - p(B) +p(C\ B)n P(B)

holds, and especially

(0.2) p(B') =1- p(B) +p{»)vp(B'), B eT.

In fact it is obvious, via the F-additivity of p, that

p(B) + p(C\ B) =p(B) Vp(C\B)+p(B)Aap(C\B)=
= p(C) + p(B)Ap(C\B).
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LEMMA 0.1. Let (Bn) C T be any sequence tending increasingly to an
event B, and p an optimal measure. Then

P4. p(B) = rEr}rolop(Bn).

Proof. The lemma will be proved if we show that for some no ~ 1,
p(B) = p(Bn) whenever n » no- Assume that for all n ~ 1, p(B) /
@ p(Bn), which is equivalent to p(Bn) < p(B), for all n ~ 1 This inequality
however implies that p(B) = p(B \ Bn) for each n ~ 1. But since (B \ Bn)
tends decreasingly to 0 as n —»00, we must have that p(B) = 0, which is
impossible. This contradiction allows us to conclude on the validity of the
lemma.

It is clear that p is monotonic and crsubadditive. Let us point out that
in fuzzy sets theory, set functions satisfying properties Pl, P2 and P4 are
called possibility measures. (For more about these functions, see [3,5,6].)

The following examples of optimal measure have been provided by Prof.
M. Laczkovich to whom I would like to express my gratitude for his advices
and helpful assistance.

Example 0.1. i) Let fl be a nonempty set, (xn) C ii be afixed sequence,
T ae-algebra of ii and (an) C [0,1], an i 0, a given sequence. The function
p:T —*[0,1], defined by p(B) = max{a,, : xn GB} is an optimal measure.

i) We remark that if Q = [0,1] and T is a cr-algebra of [0,1] containing
the Borel sets, then every optimal measure defined on T can be obtained
as in i). In fact we first prove that if B €T and p(B) —c > 0, then there
isan x GB, p({a:}) = c¢. Let us show that there exists a nested sequence of
intervals

/o2h 3h D ... suchthat |/n|]=2“"

and p(B n/,,) = c, forevery n = 0,1,2,... . Let 10=[0,1]. If/,, has been
defined then let = E UH where E and H are non-overlapping intervals
with \E\ = \H\ —2- ("+1). Obviously, we may choose In+i —E or H. By

the continuity from above we have p * M/ny™» = ¢ > 0. In particular,

BN (M In] 0. This implies that BN ( M /,,) = {r} and p({z}) = c.

Fix ¢ > 0. Then the set {x :p({x}) * c} is finite. Assume that there is
an infinite sequence (k*) C [0,1] such that p({x*.}) ~ c. Thus denoting

Bk = {xfc,xq)1,...}, it is clear that I:II Bk = 0; but this contradicts the

fact that p(Bk) ~ c. Consequently the set En = {x :p({x}) » js finite
for ah n ~ 1. Hence there is a sequence (x,) C [0,1] such that p({x,}) J O
and every point »x with p({x}) > 0 is contained in (x,). Therefore for all
B¢ T,p(B) = tax{p({>xn}) : xn EB) which is just the above optimal
measure.

EXAMPLE 0.2. Let (fl,E) be a measurable space. Clearly if po : E —»
—{0,1} is a cr-additive measure, then po(BliC) = po(B)+po(C) = po(B)V
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VPo(C) for all B and C E T. Hence po is an optimal measure. One can
easily show that po is the only set function which is at the same time a
(T-additive and optimal measure.

Remark 0.1. The collection M = {B ET :p(B) <p(il)} is a g-ideal,
whenever p is an optimal measure.

In comparison with the mathematical expectation, we shall define a
non-linear functional which may provide us with many well-known results
in probability theory. Their proofs are carried out the same way as in
probability theory.

1. Optimal average of nonnegative measurable
simple functions

Let s = 72 bix(Bi) be an arbitrary nonnegative measurable simple
i=i
function, where (f?i)"=1 C T is a partition of il. Denote by 1=

Definition 1.1. The quantity I(s) = 1\/1 6,p(5,) will be referred to as
the “optimal average” of s, and for B ET ]

IB(s) := 1(sX(B)) =V biP(BtTIB)

as the optimal average of i on 5.

It is well-known that in general a measurable simple function has many
decompositions. The question thus arises whether or not the optimal av-
erage depends on the decomposition of the simple function. The following
result gives a satisfactory answer.

m

n
Theorem 1.0. Let *bix(Bi)and - Ckx{CKk) be two decompositions

1= =
of a measurable simple function s * 0, where (5i)”_1and (CY™1 C T are
partitions of 1. Then

I LT )
t¥I b,p(Bi) = k=V1 Chp(Cic).

Proof. Since 5, = fchi (B{C\CK) and Ck —iEJI(B{C\Ck), the F-additivity
of p implies that

p(Bi) = &I p{Bi MCk) and p(Ck) :tn:Y p{Bi M CKk).
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Thus
m m n
Vv ckp(Ck) = v Vv {ckp(BtnCk)},
k=1 A=l r=1

and
t¥| bip(Bi) = t¥| k\_/l{BIP(JQ,nC*)}.

Clearly, if Bi M Ck ®o0 then 6, = ¢ If /?, M Ck = o then p(-8; MNCt) = 0.
Thus by the associativity and commutativity, we have that

till bip(Bi) =:(v;1 Ckp(Ck).

This completes the proof.

Proposition 1.1. Let s and s be two nonnegative measurable simple
functions, b GR+ and B &IF be arbitmry. Then we have:

/(61) = &.

I(x(-S)) —P(B).

I(bs) = bl(s).

/b(s) = 0 ifp{B) = 0.

/(s) = Is(s) ifp(B') = 0.

I(s) ™ /(s) ifs™ s on Si.

J(s +s) MI(s) +/(s).

IB(s) = rIIirpm/Bn(s), where (Bn) C Zz tends monotonically to B as

PNk

n —0cC.
9. (s Vi) = /(s) VI(s).

Proof. Parts 1-5 and s are obvious.

6. By Theorem 1.0 we may assume that s = tE_er(ﬂ,) and s =
=i

M
= E Cix(Bi), where s = s. Then

=

I(s) = V,67(5.) » V, Cip(BX) = /(s).

n
7. By Theorem 1.0 we may assume that s = IElbix{Bt) and s =

n
= E_ctX(5,)- Hence

«=

I(s+1) = >\:/i(6’ +c,)p(bt)  /(s) + /(s).
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9. By Theorem 1.0 we may assume that s = AiX(Bi) and 5

2=1

= E ciX(Bi). Hence
=1

I(s Vs)= Y ( VCp(Bi) = V bip(Bi) V v Cip(Bi) =/(*)VI(5).

This ends the proof.

2. The optimal average of nonnegative measurable
functions

Proposition 2.0. Let f ~ 0 be any bounded measurable function.
Then sup/(s) = inf/(s), (where s and s denote nonnegative measurable
simple functions).

Proof. Let / be a measurable function such that 0 ~ / 5 b where
b E R+ is some constant. Let Ek = i f < ,k =0,1,2,...,n.

Clearly (Ekfl-Q C T is a partition of 0. Define the following measurable
simple functions:

b
w1 - , ~A (k + 1) x (EK),
n nk=0

Obviously sn in f i sn. Then we can easily observe that
sup L(s) ® I(sn) = - V kp(Ek
up L(9) " 1(sm) = -V kp(EK)

and
Ln>1; I{s) ~ I(sn) = o k\:/O(K + Dp(EK) ~ I(sn) + .

Hence

0 ¥ _infI(s) - sup/(s) ~ I(sn)- I(sn) ™ -.
LF1(S) - gup/(s) ~ 1(sn) - 1(sm) ~
Letting n —moo, the result follows.

From now on measurable functions will be referred to as random vari-

ables (abbreviated “r.v.’s”), just as in probability theory.
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Definition 2.1. Let / ”~ 0 be any r.v. The quantity Af = supI(s)

will be called the “optimal average” of / (with s denoting nonnegative
measurable simple functions). We shall say that / has finite optimal average
if Af < oo.

For B £ T, the optimal average of / on B will be defined as Abf :=
= A(fx(B)) — sup Ib(s). (The notation “A” stands for optimal average

in comparison with “E” standing for the mathematical expectation).

Proposition 2.1. Letf ~ 0 and gn o0 berv.s, bER+and B £T
be arbitrary. Then

A(bl) = 6.
A(X(B)) = p(B).
A(bf) = bAF.

Aef = 0ifp(B) =0.
Af in Ag iff ~ g.
A(f+g) M Af + Ag.
ABf=Afifp(B') =0.
A(fVg) = AfVAg.

(The proof is immediate from Proposition 1.1 via Definition 2.1.)

Proposition 2.2 (optimal Markov inequality). Let cf ~ 0 be a r.v.
such that Af < oo. Then for every real number x >0, we have

xp(f ~ x) U Af.
Proof. By Proposition 2.1/5, 3 and 2 it follows that
Af N A(TxX(F N 2)) N xp(f >2).

ONOU A WN P

Definition 2.2. A property is said to hold “almost surely” (abbre-
viated a.s.) if the set of points where it fails to hold is a set of optimal
measure zero.

Proposition 2.3. Let f ~ 0 be a r.v. with finite optimal average.
Then f < 00 a.s.

Proof. Let E = (/ = 00). It is easily seen that EK —(/ » k), k * 1,
is a decreasing sequence of events and E = kI;IlEk- Then for each k d 1,
the optimal Markov inequality yields p(E) p(Eb) » £Af implying that
p(E) = 0 as Kk —mo0.

Proposition 2.4. Letf ~ 0 be arv. Then Af = 0 if and only if
f =0 as.

PROOF. Assume that Af — 0. Denote En= (/ ~ *), n 1 Then
the optimal Markov inequality yields *p(En) 1 0, n ~ 1. Thus p(En) = 0
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for all n ~ 1. Consequently, p(f > 0) = p* = 0, since En tends

increasingly to (/ > 0). This means that / = 0 as.

Conversely, assume that / = 0 as. Then all measurable simple func-
tions s, satisfying 0 ~ s A /, are equal to zero. Thus Definition 2.1 via
Proposition 1.1/1 implies that Af —0, ending the proof.

Proposition 2.5. Letf ~ 0 be ar.v. with finite optimal average.

i) If *wAe/ ~ cforall E ET, p(E) > 0, where c E R+ is a given
constant, then f 't.c as.

ii) If » wAef ~ dfor allE ET, p(E) >0, where d E R+ is a given
constant, then f ~ d a.s.

PROOF, i) Let b~ 0 be an arbitrary constant with b < ¢ and denote

B = (/ < b). If the inequality p(B) > 0 were to hold, then we would have
had, by assumption via Proposition 2.1, that

cs W )Ab! - W As{bl) =b<c

which is impossible. Thus p(B) = 0. Since (/ < c- 1) tends increasingly
to (/ <c)as n —voo, it follows that p(f < c) = 0,ie. / ~ c a.s.
ii) This part can be similarly proved.

Corollary 2.6. Let f ~ 0 be ar.v. with finite optimal average. If
c Ael ~ dforallE ET, p(E) > 0, where c and d E R+ are two

given constants, thenc” " d as.

3. Some convergence theorems

Let (SI,E,p) be an optimal measure space.

Theorem 3.1 (optimal monotone convergence), i) Let (/,,) be an in-
creasing sequence of nonnegative r.v.s and lim /, = /. Then Af =

lim Afn. “_'OO
ii) Let (gn) be a decreasing sequence of r.v.%s and 7£i_ggogn = g, such that
4 ~ bfor some b ER+. Then Ag =71Ian1 Agn.

Proof, i) By the monotonicity of the optimal average it is clear that
lim Afn~ Af. So we just need to show that

71—»00

(3.1) Af " lim Afn.
T—
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If lim Afn —oo then (3.1) holds. We may thus assume that lim Afn < oo.

TL—+00 71—»00
Inequality (3.1) will be proved if we show that for each measurable simple
function s such that 0 5 s ~ /, the inequality

3.1y I{s) s nIi_m Afn

holds. In fact let ¢ 6 [0,1) be an arbitrary but fixed constant. Denote by
En= (/nt cs),n” 1, where 0Us " f. Obviously (En) is an increasing
sequence of events and Il = firLloEn. Let t(E) = le(c,s), E GT. Again

by the monotonicity of the opﬁmal average, we have that
Afn ™ A(fnX(En)) t r(En).
Consequently, from Proposition 1.1/8 and 3 it follows that
nlirgo Afnt r(fl) = cl(s)

which leads to (3.1)".
i) Let e > 0 be an arbitrary fixed real number. Denote Bn = (gn <
<g+el), n't 1. Obviously

BiCB2C ..., o= UBn T Bn=0
and lim p(f?") = 0.

71—%00

It is clear that for all nt 1,

9nin (9 + el) V(bx(HO)>
and hence Agn " [A<?+ el)] V[6”~(5")], nt I. But since p(B'n) =0 as
n —»0o, it follows that lim A<, N e + A#. Thusnlim Agn ™ Ag. But as

71— »00

on the other hand A# lim Agn, the result of part ii) follows.

n —»00
This completes the proof.
We shall here below give an example showing the reason why the optimal
monotone convergence theorem fails to hold for all decreasing sequences of
r.v.’s.

Example 3.1. Let [l = N and T be the a-algebra of all subsets of N.
Define the set function p : T —»[0,1] by p(B) = m~0O. It is not difficult to
see that p is an optimal measure. Now define the following r.v.’s:

n<n
ntn
Obviously (gn) tends decreasingly to zero as n — 0o0. Let us show that
Agn = 1 for all n t 1. Obviously, Agn t np({n}) — 1 On the other
m

hand, let 0 ~ s 5 gn where s = bix(Bt). For i = I,...,m, denote
2=1

= min Bi. Then p{B{) = A and bi ~ forall i = I,...,m. Hence for

every i — 1,...,m the inequality bip(BX) < 1holds. Consequently I(s) < 1,
0N s<gn. Thus Agnin 1foralln” 1
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Lemma 3.2 (optimal Fatou). i) Letfn”~ 0(n~ 1) ber.v.5. Then

AfI|m|nf/n4" liminf/l/n.

n —»00 n —»CO

ii) Lei (#,), n ~ 1, ie a uniformly bounded sequence of nonnegative
r.v.s. Then

limsup Agnii A | limsupgn

n —»CO \ n —»CO

Proof, i) By definition, liminf/n = vV 7 0. Let f* = J'I h, /! =

n-»00 n=1 fc=n

= liminffn. Clearly (/*) is an increasing sequence. The optlmal monotone

n —»CO

convergence theorem implies that

A (I|m|nf/n) = liminfnAa.

71—»CO n —»CO

ii) By definition, limsupon = J1 V gk. Letg* = V gk. Clearly (#*),
k—n

n —»co n=1«=1

n N 1is a decreasing sequence such that gi # b for some b 6 R+. Then
the optimal monotone convergence theorem yields the result to be proved.
This completes the proof.

Theorem 3.3 (optimal dominated convergence). Let fn ™ 0 (n N 1)
be a uniformly bounded sequence of r.v.5. Then Af = Ilim Afn, where

n—»co

I|m fn—f a.s.

n —»C

Proof. The optimal Fatou lemma via the assumption implies that

By assumption / = limsup/,, = I|m|nf,£lI a.s. Consequently,

n—»o

N/ £ liminfAfn” limsup Afn ™ N/

n —»QO 71—»0

meaning that J1/ = lim AfnmThis ends the proof.

Proposition 3.4. Lei/ ~ 0 be a bounded r.v. Then for any positive
real number e, there exists a number 6 > 0 such that whenever p(E) < 6,
E GT, the inequality AEf < £ holds.

Proof. By assumption 0 / % b as. for some b > 0. Then by
Proposition 2.1 we have for 6 < | that

AEf i bp(E) <b6<E.
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In the following example we shall show that Proposition 3.4 does not
hold for unbounded random variables.

Example 3.2. Let (N,~",p) be the optimal measure space defined in
Example 3.1. Define the r.v. f(u) = n, n GN. Clearly, Af ~ 1 Let
s = biX(-Bi), Q=s = f- Denote w, = min f?t. Then p(Br) = —and br i

i=i
A @ni n). Thus I(s) » 1land hence Af ~ 1 Consequently Af — 1.
On the other hand, there is no 6 > 0 such that p{E) < 6 implies Agf < 1
Indeed Aryf = 1forevery us and p({u>}) 0asw-» oo.

Definition 3.1. We say that a sequence of r.v.’s (/n), n ~ 1, converges
in optimal measure to a r.v. /, if for any constant e > 0, lim p(\f —fn\ ~

A g) = 0 (abbreviated fn — > /). B
p

THEOREM 3.5 (optimal Riesz). Let (fn), n I, be a sequence of
r.v.s which converges in optimal measure to a r.v. f. Then there exists
a subsequence (fnk), k ~ 1, which converges to f a.s.

(The proof is the same as that of the original Riesz theorem.)

4. ,4"-spaces, 1™ a ™ o0
Let (il,~7,p) be an optimal measure space.

Definition 4.1. Let / : il —»R be any r.v. We say that:
i)/ 6 A°° ifp(]/| » b) = 1for some b GR+.
i)/ GA1lif Al/| < oo.
iii) For a G (l,00),/ GAaif|/l]a GAL
Define the following quantities:
i) H/lLte. = {A(\f\a)}1/a where / GAa, 1™ a < oo0.
U) /IUoo = inf(6> 0 : p(\M\ [ b) = 1), / GA°°.
It is not difficult t for a G[l,00] that
iy [H/IL" =0 MWa* = 0ifand only if/ = 0 a.s.
ii) ik/TU* = Iclml/IUa, for all c GR.

Lemma 4.1. i) A\fg\ ~ ||/||_4i ¢|lsr|[*0o0 whenever f GA1l, g GA°°.
ii) Let a and B G(l,00) such that » + jj = 1 Then A\fg\ ~ ||/]|"a *
o LiiLj3 (called the optimal Holder inequality), whenever f GAa and g G

GAR.
i) W+ g\U« = II/IIMt™ + 1IflU* (ca”ed the optimal Minkowski inequal-
ity) whenever f and g GA a, with a G [l,00].

(Again the proofis as in the classical case.)
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We have thus shown that ||/||*Q (1 4 a ™ 00) is a norm. It is easily
checked that Aa is a vector space, 1~ a ™ oo.

Definition 4.2. Let (/m) CAa, 11 a ” oo, be a sequence of r.v.’s.

i) We say that (/m) is a Cauchy sequence in Aa if for every £ > 0 there
exists an no = no(e) such that for all m and n ” no, ||[fm —/n|.ga < £

i) We say that (/m) convergesto ar.v. / in M*-norm if ||/m—/||*0 —»0
as m —>00.

Remark 4.1. If (/TQ converges to / in Jla-nort, 1 » a ™ oo, it is
not difficult to see, via the optimal Minkowski inequality, that / £ Aa and

HIIL- = 1I/1U-
Remark 4.2. For any a £ (l,00), we have A°* C Aa C ML

Theorem 4.2. For each a £ [l,00], Aa is a Banach space (i.e. any
Cauchy sequence in Aa converges to a r.v. in Aa-norm).

P roof. A°° being trivially a Banach space, we shall prove the theorem
for a £ [l,00). Let (/,,) be a Cauchy sequence in Aa. Then we can choose
a subsequence n\ <ni < ... < nt < ... such that for all n * n*,

(4.1) [TA -/, ,IU <4-*,
Then it is clear, by the optimal Markov inequality, that

(4-2) p(\fn-fnk\>2-k)2-ka"2~k,

for all n » Tk- Denote

9 —lIhil+ \frikHi  Inkl: Sm —Ihil+ \fnk+i  fnk1l m= 1
k=l k=1

Then by means of the optimal Minkowski inequality, one can observe that

ISrili« = WnilU*+ 3=:c<°, m=L

Since Sm tends increasingly to g, the optimal monotone convergence theo-
rem yields
lim 15“ = Aga.

Thus Aga i ca < oo, i.e. g £ Aaand hence 0" g<oo0as. LetE = (g <
(0 0]
< 00). Then for alln £ E, /ni(w) + y 1{fnk+i(u)~ In*M) is finite.
Denote )
00
{ni + 73 (lndcH ~ /'*) Q1E

0 on
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and m

sm—fn\ + Y ' (fnkH - fnk) - fomi v = I

Thus mIirI[}0 sm=f as. and | { Aa. Let us show that

4.3) P(AL- /1 >2-A

Indeed, p (|fnk - fn \>2~k) <2~kforallj >k (cf. 4.2)) and fY -+ / a.s.,
when j —»00. Let us fix Kk and denote Bj — (|fHk—fH\ > 2~k). Clearly
p{Bj) < 2~k for all j ~ Kk, and then inequality (4.3) follows from

(\fnk- 11 >2-K) C o Bj

wm \
m ni, O -1.
=lj=1 /

The theorem will be proved if we show that frk —f —0 in A”-norm as
K —»00. (For, an integer iM0 = IVO(£) can be found such that whenever
nic* A0 and n  No,

I = I ffne = 100 ot flpe 4 \\fnk Milga < £

and

where e > 0 is an arbitrary real number.) Assume that there exists a
positive number e such that for infinitely many k, A(|/ric- /|a) > £ Let

Ko be an integer satisfying both (4.3) and £ > 2~f. Then there exists g
measurable simple function s with the properties that 0 ~ s » frk —f

and As > £ Hence a constant b £ R+ and an event B caanJe found,
with bx{B) ” s, such that bp(B) > s and bx(B) n frQ- f . Clearly

BC( /o [/l Th) and thus

(4.4) p(fnk0O~f 7 b) ~ p(B).

For all k * ko with blla > 2 k, one can easily check that
( r s fnlo fnk £ bl'a- 2~k U ([, &- /] £ 2-®)
yielding
o

p(fnlo f > B fnkQ e " 6I/- _2-0 -hp (I/,€- /1~ 2-T)
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Consequently by (4.4) and (4.3) we have that

(4.5) p(B) <p(|/,lo - f\" B E2-“+p (/. -A,| a
By the optimal Markov inequality, via (4.5) and (4.1), it follows that

(4.6) 2~k Z A (|/THo- /B) £ (b - 2~kY (p(B)- 2~k)

for all k * ko with 61/" >2 k. Now letting k —»00 in (4.6), it ensures
that 2~k®> ~ bp(B) > £ which contradicts the choice of ko- This allows us to
conclude on the validity of the theorem.

5. The optimal Fubini theorem

Let (ii,-, Ti, pi), i = 1,2, be two optimal measure spaces and let us denote
the smallest cr-algebra containing E\ x E2 by S = u(E\ x E2). For each
wi G fii (resp. U2 G 112) we define u\ (resp. w2 G [12) cross-section by
EW = {u2G02: ("15°2) GE} (resp. EuR = {uq Gill : (tv1,"2) G =?)),
where E ES.

D efinition 5.1. Let / be any r.v. defined on (ill x fl2,e>). For each
U\ G Oi and w2 G ii 2?the functions
i) /wi :fb -mR defined by fwi(u2) = /(wi,w2) and

i) till —»R defined by /*(uq) = /4 ,w 2)
will be called ug-section and ~-section of /, respectively. Notice that for
any optimal measure space (fl,jT,p), we shall adopt the symbol (in

comparison with the symbol “J” of the Lebesgue integral) to designate the
optimal average, i.e.

Ap = 1lgdp, Asg = lgdp
Q B
whenever g Oisar.v. and B GE.
Theorem 5.1. For every E GS, define the functions
rri :ifi =R+ by mE(jl) = p2{EL)

and )
mE :112—=R+ by mME(O2) = Pi(E*>).

Then
i) rne is Ei-measurable.
ii) mE is F2-measurable.
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LLI) ihTEdpi = IJ;ImEde-
Furthermore, define the function p\ x P2 :S —={0,1] by

(Pi XP2){E) = ih mE dpi = ﬁsz dp2.

Then pi Xp2 is an optimal measure such that
(Pi XP2)(B x D) = pi(B)-p2(D),
for allB ETi and D ET2.

Proof. Let S denote the collection of all E E S for which properties
i)-iii) of the theorem hold. It is enough to prove that S is a ¥-algebra
containing S. The proof is as in the classical case (cf. [4]) except the
following claim:

For all Ei and E2 GS, E = Ei UE2 G & By definition and property
P2 we observe that

mE{ui) = mEI{ui) VmEfiui)
and
mE(u2) = mEI(uj2) VmE2(u2).
Thus,
J mEdpi = ,L mEjdpi V L mg2dpi =
Iﬁ P IIJ| 1P Iﬁ 9°cp

= mEl dp2V ./ mE2dp2 =.\ rnE dp2.
i 9PZV jfpm E2dp2 =y mE dp

Hence E E S, since obviously mE (resp. mE) is T\- (resp. T2-) measurable.

Theorem 5.2 (optimal Fubini). Let (ilb-~bPi) and (il2,F2,p2) ke
two optimal measure spaces and let f E ~ 1(Oi X fl2, S,pi X p2) be any
r.v. Then,

1. The ui-section \fUI\ : [i2 —mR+ belongs to A x{£12,E2,p2) almost
surely on iii. The function €?: Oi —» R+, defined by <p(w) = _|/2|/LL1] dp2,

|

belongs to AMAi(iii,Fi,Pi)-
2. The u2-section \*2\ : iii — R+ belongs to A I{Sli,!F\,pi) almost
surely on ii2. The function ip(SI2) —»R +, defined by tp(w2) —_I\I |/\\ dpi,
I
belongs to A 1{Q2,T2,p2).
3. Furthermore,

"Z%iz I/1 d(pi po)ZI,I,II \ﬁzl |/|dp;) dp:“'2 \f{ﬁ I/1 dpi \/ dp2.

(The proof follows from Theorem 5.1, using the same techniques as in
the proof of the original Fubini theorem; cf. [4].)
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6. Illustrations

i) Let 0l be the information set of creativity of Esther, T a tr-algebra
of subsets of Il. Let B\ be the information set of her ability in mathematics
with & some corresponding evaluation, B2 the information set of her ability
in physics with b2 some corresponding evaluation, etc. Let {5t}=1 C T be

such that 2 = U B{. Then 05:8 _tAI btx (Bt) may be viewed as her

creativity functlon To see in which subject she will be more creative, we
may proceed as follows: We define (more precisely, we seek) an optimal
measure and then take the optimal average of s accordingly. If the optimal
average equals the infinity we may say that we cannot decide. If however
the optimal average is finite then there must exist an i0, 1 * rfo” n, such
that As = biOp(B{) and thus say that Esther will be more creative in the
subject corresponding to B{0.

i) The occurrence of an event of informations stored in a given gene
may be predicted the same way as above.

iii) Assume that given an input data we have got different outputs by
using different statistical means. We thus have to decide which output does
fit the input data. We may randomize these outputs and then proceed as
above.
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ON NUMBERS WITH A LARGE PRIME
POWER FACTOR

J. W. SANDER (Hannover)

1. Introduction. The problem of estimating the largest prime factor
P(u, k) dividing one of the numbers n,u + 1,... |it+ k, where n and Kk are
positive integers, has a long history (see for instance [5], pp. 134-135). In
1974, Jutila [1] proved that for

n) k3/2 < wn < fec6(logfc)l/2/k>glog/?
we have
(2) P(u,k)> k1+CsA u\

where &, agq are positive constants and A(z,x) = (logz/log x)2. Jutila
obtains this result by giving an upper bound for the exponential sum

where e(x) = exp(27rrx) for real x, and p runs over the primes (as always
in the sequel). By application of the theory of linear forms in logarithms,
Tijdeman [6] and Shorey [4] were able to prove that for

(4) U > £06(bg*01/2/log logl
we have

log log K
(5) P(u, K)  Klog Klog log log k

Our main result allows an improvement of that situation.

In this paper we will be concerned with large prime power factors of
numbers in short intervals. For this reason let Pj(u,k) be the largest prime
p such that p> divides one of the numbers n, n+ 1,..., u+ k. We agree that
all constants c, occurring in the sequel are positive.
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Theorem 1. Letj be a positive integer, and J1 > 0. Then for some
positive constants S > 0 and ko, both depending only on j and X and all

K > ko satisfying KI*A™ n " £<5(logfc/loglogfc) 1, we have

Pj(u,k)> kI+C™ kU

where ¢ and the constant implied by >> only depend on j and X

Remark. Notice that the case j = 1in Theorem 1 improves Jutila’s
result with respect to the upper end of the permissible range of nin (1). In
fact, for

u _ face(logk ft2/ loglog

i.e. where the ranges in (1) and (4) meet, (2) is better than (5). By our
theorem, (2) also holds for

£C6(logic)1/2/loglogt < u < A"5(logi/loglogA:)1r2

thus improving on (5) in this range. Incidentally, for

U = A~ (bgfc/loglog*:)"2

(2) and (5) roughly match (neglecting the constant 6).

Our main tool will be the following exponential sum estimate, which
generalizes the one for (3).

%)

Theorem 2. Letj ~ 1, N 1 x1* . Then there is a positive constant eg
satisfying

(—j < (iVICeA(V:D + jv¥z-i)(logz)3.

The proof of Theorem 2 uses the methods of Vinogradov and van der
Corput. Jutila’s application of Vinogradov’s complicated combinatorial
argument, however, will be replaced by Vaughan’s identity.

In order to show Theorem 1, we need a result on

Dj(o) =cardjp <P :0" | 4] <°

where o < 0 N 1, and {z} denotes the fractional part of the real number r.
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Theorem 3. Letj ™ 1, P ~ x1* . Then there is a positive constant ®
such that

Dj{(j) = ax(P) + O ((P 1- CAPx) + P~x-")(loga:)4).
This follows from Theorem 2 by Vinogradov’s Fourier series method.

Theorem 3 may be used to deal with a problem of Erd6s concerning
prime divisors of binomial coefficients. This is done in [3].

2. The exponential sum: Jutila’s method. In this and the following
section, all explicit and implicit constants may only depend on j.

Lemma 1. Letj ~ 1, P and P' be integers satisfying o a P' < P <
< yj+r+ioojs . Then

Proof. Clearly we may assume
(6) P> (2])100[)
We want to apply Theorem 1of [2] by setting

1

1 1
2593 201348 - 60y 22
{sj:1™rjnr

By the condition of the lemma, we have
This implies
hence {4j} ¢ 0. Moreover, (7) yields
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Clearly, 2 ~ S} ™ n. It remains to check conditions a) and b) of Theorem 1
in [2]. Obviously,

Ti(J + +m- 1)

q-> ()

thus

(8) QKS AlI(TM < pme—

'k ||];]+m ’

Therefore, we have for P = N " x*N + P =2P

(n+ D1 f(n+\x) i Iy 40 —p(n+Drffp+iffT_0+n+l) —p - cHn+1)

with

log logr

C;:1+n+1 logP  (n+ I)logP

> ClI

by (6) and the definition of n and ci. This proves a).
Similarly, for P ~ x 1 2P and s E {sj}

\]T/<”>(*) A p Si/\p +iffr'l-'+ I) = P ~c3S?

where
/1,3 log3 logT . ,

3 s logP slogP 3"
This yields the upper bound in b). By (8), we have for P ~ x ~ 2P and

s £ {"j}
> (23),J+s = P~@’
where by (6), (7) and the initial definitions
4 =d + Q/h \ilé\glb + 'j SIPO%TP S @-

This proves the lower bound of b). Now Theorem 1 of [2] implies our lemma.
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Lemma 2. Letj't. 1, P and P’ be integers satisfying 0 » P1l< P,
p >pJ+T+Ir?" > 0. Then

P+P'

£ .© < pi+'T-1
Proof. Without loss of generality, let
9 P~ (2i)100.
For f(x) =Jyand P ~ x ~ P + P, f(x) is obviously monotonic,

(7)) = (2py+1> QA [/1(X)] 4 IpITT < A

by (9) and the condition of the lemma. Thus by Lemma 4.8 and Lemma
4.2 of [7]

PP p+p' T\ PJ+1

xLLl L e _u +0(l)<t
Lemmas 1 and 2 imply

LEMMA 3. Letj ~ 1, P and P' be integers satisfying 0 U P' < P.
Then, for T >0,

" e < pi-cioAfP.T) + pi+ip-i
r=p V2" /
Lemma 4. Leij ~ 1, 1~ M " xV2. Iren
S 6(n) C A~ 1CAAAMX) + M2+1x_1.
m*M
Proof. Let 0 < « < 1. Then

E 8m < E, «w

m<M
* N
+ E E eymy SM* N B,
"0 M K2t Am<min(MK2t'+1,M)
nik2<n/

say. By Lemma 3
Rv< (Mk27)1LClo/UVK27'LY) + (M Ay '+ V 1<
< 2vm k~Qokgji(m,x* + 212+1"M 12+1"x _1.
Since 0N p A -Ir[AyKIV in A ily, we have » 2" ~ 2M1-*and ~ 2(2+1)" ~
A 22+IM (2+1)(1-K). By choosing k close to 1, this gives the lemma.
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Lemma 5. Let2~ M ~ M' U min(2M,N) ~ x, B~ 0. Then

=E E A'(W)

< (nr2M - l-cioJI(Mx) + iVI+2(Ma;) 1 + iV)(logiV)3,
where A(n) denotes von Mangoldt’s function.
Proof. We have

T= Y Yy Yy A(ni)A(nZ)e [X (— —F—m—
M<Y M'Bsb + B < (-2)1)
=E E /W) E e
B<m\" B-...=(f M<TEM
" T
with xx Thus
=x{u~u)’

T« (logiv)2 e e *(S)

M<TMM
MM

= (i 2IEE lee I+ EE 1 e i) =(bgiv)2(r1+ T2),
(097\0\EleE EE )(guv)(r+)
<M'

say. Set A = jj;then

n<«E E 1<\ EE2 o

MANTAA )

n
Xll<M' 0<rngn2"A
O<xi <M
We have
EE >-F E 1<
n2QA | .
O<n|"n2"A 2\VI+— =ni=

0<xi <M’
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E [g_ o +1U
n*aV V (1+* A Uj,

11 _ + A<
EE ('m 1—&3

Xj

s E(»5+,f) +/~ < N 2/
This implies

Im 'Inry 42 W < N+_2+

(10) Ti< M \M J v

It remains to consider X2. By Lemma 3, we have for |xi| » Af

E e¥m)/ \V; ef\hmljl <
rEMZEp
< i i- GoAMxi]) + Af+1arl]-i < M1 CLaMX) + MJ+1x!][ -t

Hence
r2< X/ X (al 1Cl<amr) + m THIK]-1) <

as M)
Ixj [TM *
< TV2M _1“CloA(mx) + MJ+L 5~  J] -|3|1_|L :

For arbitrary A" 1,

*-EJBlér-* EE « E EE .

1 0<fh<A nj. n2
i (AW 0<ni<n2 O<ni <n2*A
Xi>M' n2—Mi=/4,X1>M"

Obviously, for 0 < ni < R

C_ o m-ni_ A(n2l1+ ng-2ni 4, n2ij-2 + nj-1)  XAj
Xi = X —p==mmmemm - x - P,
(mrzy (n[:ly I+
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E i E »«“«iogA

X 0<O<A ™ 2iin2iA

Thus

Since A = we get
T2<Cn 1m -1 -cwa(M.x) + JVJ+2|OgJ\r(M®)'1

Together with (10), this proves the lemma.

3. The exponential sum: Vaughan’s method. Proof of Theo-
rem 2. As a corollary to Vaughan’s well-known identity (see [8], [9], [10]),
we have

Lemma 6. Let U™ 2, V ~ 2, UV 5% N, and f(x) a complex-valued
function with |/(x)| —1for real x. Then

£ n(«Ne) <v + (logA)L+ |,
n<N
where A(n) denotes von Mangoldt’s function, and

s E«l E /-0 = E E Eomamimy).

t%UV U<m<€/v<n§m&ﬁ¥]
Lemma 7. Leij ~ 1, 2~ A 5 x1-7. Then

Ira(n)e(zn) < (vinn,*) + A ~x-2)(logA)2logx)2

n<N

Proof. We apply Lemma 6 with /(n) = e (~-). First we consider S2.

By splitting up into intervals M fL m < 2M, we get
£2< (logA) max 53],
where
)} = S A()/(mn)

By Cauchy’s inequality
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2\ 1/2 1/2
M* E E Mo E En
V<n<i diu
d\m
T 2T 12
—11 32 >

say. For N * x, Lemma 5 implies
7i < (/V2M -i-c10AMX) + nj+"Mx)-1+ N)(logN)3.
Moreover,
]) E IS
\d’\ d|%Ud2’\U M<,m<M’
m=0Omoddi ,m=0modd2

VE ENSZ2MS5> £ £

dirud2ru b%oU d~uU d2Zu 1z
dlI=0mod6 ”~2=0mod6

Together we get
11 S2<(log/V) max {T,T2)VU2<
(11) (log/Vv)  max {T.T2)
< (log/M4 max (/VM c\KMx)+ N *x 2+ (JVM)j) <
U<MU%

< (IogATAijVCI-A0AMN*) + JVAaT* + W 5).

It remains to estimate 5i. For 1E in ~ y, we have by Lemma 4

E « < <

<,dL

< (1) £ o)

157
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The function g(y) = y1 c,0°gy)2 is increasing for 1~ ¥< exp ((3c) "2).
W ithout loss of generality, we may assume that cy * Then we have for
N " x1/j

3cu -2
,(bg 0
Therefore,

Ny-c, Alfi |
max - + Nj+1(xt)”
max E (Tty (r)) j+1(xt)

Thus, for UV < N,
N\ 1—-eul(y
5i < t + N/Mixt)-1 <

t<uUV \

AL enI(x) A AE Lel( X)L yyiHA 1A A
t<uVv t<uvVv

< (ily)CHA(W 'x)+ IV-+1x -1logi/ll.

Combining this with (11), Lemma 6 finally yields for U —V = N¥3, N *
AN x 17, and sufficiently small c’s

ne ) < N +(0gV) (V-CORAMANK. . + VXD +

+(logn )\n 1~0*a(n'x) + N Ax-'i + iV5/6) <

n<

< (Jjyi-ewAW*) + JV~Ax"*) (log TV)2(log x)2.

Proof of T heorem 2. By ChebySheV’S theorem

n(nell =E§>gpe§(Aj)] =

r%/d\l p
PN
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Define
h(N) = (art-cl.2n(nr*) + jv ~ x-~logA ~logz)2.

By partial summation and Lemma 7, this yields

S 2 loEPe

"fgM ?))

h(AQ fN h(Q VN _
logN + J2 t{\ogt)2 i+ logN

< + (logx? j " t~c2HtX)dt + (logx)X~A2j " B'2dt <
< "Qgjl + i_CIRA¢tx)din + xMlogx)2<

<A77 +0°g*)V* +N-i«’»* N )« N 1,
with a new constant eg > 0 in the exponent. This proves Theorem 2.

4. Vinogradov’s Fourier series method. Proof of Theorem 3.
The following method may be found in [11], p. 32

Let0< [ < AandB suchthat 0~ f2—4 21 —2. Then there is
a function ¢(r) with period 1,

(1 fora<s2” B,
\0 fore+a4"z™1+N1- 14,

and 0~ &(r) 1 otherwise, satisfying

(ee]

®(r) =B - A+ A+ J2 (amcos2'Kmz + bmsin 2nmz),
m=1

where

N—, |6m[ N — , |[am[ ® |6m[ ~
nT Tm

miA mupn
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Let
T(A,B) =card \piaP:AR

Then we have

(12) T(A,B)Z J > (j) WMA-A,B +A).
pinP

By construction of &,

where

Theorem 2 implies for P # x1* and i = 1,2

< (P &BAPxXm>+ Pir(xm)_2)(log(a:m))3.

Therefore,
R:= +bhmS ") < E + E c
m=1 T2 m> /-2
< +

pP~a; 2 ~ (m 32(logxm)3) +
A2

(log xm)3 (logxm)3

+PJ42a:-1A-1 £ 5/

gz ra>[]~2
=5i+P N x-252+ ~"53+ P"™a;-2 1-154

with the obvious definition of the 5-. Now set 4 = p-n(Px). Then for
751

7N(P,®) » N(P,A1"2).
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Thus

J<P-GAPXapA.. V - <P nogx)4

ra</1~2
Clearly,
S2<(loga;A 23 E m 3R2<C(logx)3.
m<A-~2
Moreover,
(logxm)3 N (logzm)3
* « £ m* <
A 2<m<x anA»(Z
E E (log m)-
<(logx)3 = mL <
r>n-2 m>A-2

< (logz)3A2+ (log A 2)3A2< (logx)3A2.
Since S4 <C S3, we get

R< (P 1CI4PX + (logx)4.

By (13), we have

EN(S) =(5-atamp)+p.
P<p

With (12), this implies

(14) T(A,B)N(B - A+ A)x(P)+\R\
and
(15) TA- AB+A™P-A+AXP)- |P]

Choosing A A, A respectively B,B + A instead of A, B in (14), we get
T(A —A,A) ih 2AjP) + |a'l,

respectively
T(B,B +A)~20T1r(P) + |P",
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where R' and R"™ are defined in the obvious way, and both have the upper
bounds given above for R. Applying (15) yields

T(AB) =T(A- A, B+A)-T(A- [I,A) - T(B,B + ) "
(B - A)Tr(P) - 34Tr(P) - [P - [A]- A" A
A (B - A(P) + O A(pLrn(P.x) + pAx-k) (logx)d) .

Setting A —0 and B = a, this and (14) prove Theorem 3.
5. Proof of Theorem 1. For given n and Kk, let

(16) K< (2P)j * u.

Moreover, let
G=(pL<nPw)+p~rl ") (logu)d.

If we define D = c\*"GP~xlogP with a suitable constant CI5, then, by

Theorem 3, there is a prime p, P it p* 2P such that

(7) 1- fIs{?2}<1

Let
U- npj + Uj-ip3 1+ ... + u0

with n ENo and 0™ U <pfor0O”i<j. Then

since

Hence

By (17), this implies
(1 —D)p7"™ n —rip* < pi,

thus
m<(n+ NpM~u+ Dpi » u+ D(2P)3.
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This proves Theorem 1, if (16) and D(2P)J * k are satisfied. Let

P jI+CieAAL)

where
cl6=minj"~ , "Al - A + A21

(and we assume A< 1 without loss of generality). Clearly, the lower bound
in (16) holds for sufficiently large k. By the condition of the theorem,

(2py " 2™ 1+CieA(ftu) < 23u— A

for sufficiently large k, since

1+cl6N(M) ~ 1+ + 2T
1+ A = 1+A <

In the remainder of the proof we will show
(18) D(2P)J < k.
By definition of D and P, we have
D(2Py =clbVGPJ-\ogP A
< Ci527 'fe}(I+ciBA (fo,ix))(i-COA(fed (L+ cIBA('EU)),U)) +

+ fo(I+ci6A(fce))u- 1 A logtt)s

For sufficiently large k (only depending on j), we have 2-cis ~ Alogu.
Hence in order to prove (18) it suffices that

(19) jfla(i+c1a)(j-c9 - 2(n-c1a)2yMogu”6 g k
and
(20) Ol (1+ckdb)u -~ 5Jog u)b ™ «

with L := A(k,u). We will prove Theorem 1 for
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By the condition of the theorem, we thus have

18j3loglogk _ loglogA< </ 1 \2

(21 c9log K 62logk ~ =\ 1+ A/
and
(22) loglogn ~ - loglog A

for sufficiently large k.
First we show that (19) is satisfied. By taking logarithms, it suffices to
have
6 loglogmu ™ (c9j-3 - c\e)L log A,

which by (21), (22) and cie ™ ¢9/2j 3 obviously holds.
Similarly, (20) can be dealt with. Again taking logarithms, it is sufficient
by (22) that
(i +3clei) !~ + 1*1 <,
log n log n
For large k (depending only on A), the second summand on the left is smaller
than A/2. Now

cie”™ (I-A) (I + A2
and (21) imply

(I + 3c16£ )IJgAM "1,

which proves (20) and thus Theorem 1
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WEIGHTED (0,2) INTERPOLATION ON THE
EXTENDED TCHEBYCHEFF NODES
OF SECOND KIND

P. BAJPAI (Lucknow)

1. Introduction

In 1955 P. Tdrén initiated the study of what he called (0,2) interpolation.
By (0,2) interpolation we mean an interpolation process where function
values and second derivatives are prescribed at a given set of points. In
a series of papers [2, 3, 7] P. Taran and his associates studied the (0,2)
process on the zeros xk of (1 —x2)P*_1(x), where Pn{x) is the nth Legendre
polynomial. Subsequently J. Balazs [1] considered the problem of weighted
(0,2) interpolation, which required of finding the polynomial p(x) when the
values of p(x) and [(p(x)p(i)]" axe prescribed at given abscissas, p(x) being

the given weight function. The problem of Balazs was modified by A. K.
Varma and S. K. Gupta [6].

THEOREM 1.1 (Varma and Gupta). If n is even, then to prescribed
values yko, ¥i2 (k — 1,2,..., n) there is a uniquely determined polynomial
Rn(x) of degree » 2n —1, such that

(l].) n(xx) = Yo, [(| = x2)aRn(X))" =Xk = yi:

fork=1,2,...,» anda 3/4, a 9 9/4, a > 0.

If n is odd there is in general no unique polynomial Rn(x) of degree
W 2n —1, which satisfies (1.1). For a = 9/4 or a = 3/4, the interpolatory
polynomial Rn(x) does not exist uniquely either for n even or n is odd.

As regards the convergence we have the following. Let f(x) be a contin-
uous function in the closed interval [1,+1] and let it satisfy the Zygmund
condition

\f(x +h)-2f(x) +f(x-h) =o(h) in (-1,+1).

For a = 7/4 the sequence of polynomials {Rn(x,f)} with yko = f(%k)
converges uniformly to f(x) in every closed interval —1+e " x " | —£ £
being fixed (0 < e < 1), provided

M2l = "Q) K=12,...,n.
(>-u;)3/14
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Our aim in this paper is to modify the above problem. On including
the case a = 3/4 our study revealed that for n even the interpolator
polynomials exist uniquely and if f(x) belongs to the Zygmund class, the
sequence of polynomials converges uniformly to f(x) in every closed interval
-1+ £~ xM1- e (0<£< 1), £ being fixed.

A similar problem on the zeros of Tn(x) [Tchebycheff polynomial of first
kind] has been studied by Endeuanya [4] where he proved the existence and
gave the explicit forms only.

2. Preliminaries

Let
ki .
(2.2) Xk = COS----I-r-K =12,...,n, x0=+1 and xn+i = -1
n+1
be the zeros of (1 —x2)Un(x),
sin(n+ 1)0
2.2 UJX) = —-———=--, = cos0
(2.4) X) 5|rn 0 X

being the Tchebycheff polynomial of second kind. Un(x) satisfies the differ-
ential equation

(2.3) 1 - x2)[/"(x) - 3xUn(x) + n(n + 2)Un(x) = 0.
It is easy to verify that

(2.4) RN

For meven, we have

2.5) (L- xI)UA(XK) = n + L
Let
(2.6) i) —  Un) K- 1.0, ..n

(x - Xk)K(xk)’
be the fundamental polynomials of Lagrange interpolation which satisfy the
conditions

N _ 0, Kkdj
(2.7) Ik{xj) = 1 K=j
We can further verify that
3xk .
(2-8) I'kixk) = , K =],
2(1-4)
K(x]j)

(2.9) Ikixj) =

Xi  XKyu'n(xk)
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3. Existence problem

We shall prove the following theorem.

Theorem 3.1. Ifn is even and xk are given by (2.1) then to prescribed
numbers fk (k —0,1,..., n+ 1) and fj[ (k —1,2,..., n) there is a uniquely
determined polynomial Qn(x) of degree ~ 2n -f 1 such that

oNwk) —fk> « —o0,1,...,Tt4" 1

(31) 1 - x2)3,4Qn(z)]'x'_Xk = /£, k=12,.. N

If n is odd there is in general no unique polynomial satisfying the above
conditions.

The polynomial Qn(x) of degree  2n + 1 must have the form

71+ 1

(3.2) Qn(x) = ~ fkrk(x) +
k=0 fcd

where rk(x) (k = 0,1,..., n+ 1) and sk(x) (k = 1,2,...,n) are the funda-

mental polynomials each of degree ~ 2n + 1 of our weighted (0,2) interpo-
lation satisfying the following conditions:

rk(xj):<|,0" KOpJ (fq O,l,,n+|)

(3.3)
(I - x2)3/4rk(x) 0,k=0,1,... ,n+1,j =1,2,... ,n,
$k(.Xj) —0, «k—1,2,...,71, j —0,1,...,7Z 44,

3.4 0, Kij

(34) (I - x2)3/4sk(x) L ow O_pj &, j=12 ., it).

In the sequel we shall need the following lemmas which can be easily
proved.

Lemma 3.1. We havefork = 1,2,...,7
0y [(I-*23V n@)T x1) 34K (xk),
00 [(1- x23/4uUn{x) ~ =0.
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Lemma 3.2.

JUn(x) dx =0 or

-i
according as n is odd or even.

Lemma 3.3.

[ 2(1 -x))Vi4d (x,)

12(1 - x1)3/4 [I'k(k) + F2(x*¥)] -

Xk - 1axict - XY IR~

(i - 4) Uh+ - 4)~54> =|-

Proof of Theorem 3.1. For the proof of the Theorem 3.1 it is
sufficient to show that if

fk=0 (*=0,1,....n+1) and /E'=0 (*=12,...»)

then the only polynomial Q n(x) of degree ~ 2n + 1 satisfying the conditions
(3.1) is identically zero. We write

(3.5) Qn(x) = Un(x)gn+\(x)

where gn+i(x) is a polynomial of degree » n + 1. The condition
[(L-x9FAQI" =0, *=12,..»
requires that
[(1 - x2)3/4il,,(x)9n+i(x) e T 0 for k=1,2,...,n,

which on using Lemma 3.1 implies dn+i(xk) = 0, k = 1,2,... ,n. From this
we have

qn+1(® =ciUn(x) O 9n+1(x) —Q \] Unify dt T C,
-1
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where ci and @ are arbitrary constants. Now gn+i(—1) = 0 gives @ = 0
and 9n+i(l) = 0 requires

ci J Un(t)dt = 0.
-1
We first consider n to be even, then owing to Lemma 3.2, we get Q@ — 0
and as ci is already zero we get <h+i(x) = 0. Therefore from (3.5), Qn(x)
is identically zero.
But if n is odd then
X
Qn(x) = Clun(x) I Un{t)dt
-1
and therefore for n odd the problem has no unique solution.
From now onwards we shall take n to be even.

4. Explicit representation of the fundamental
polynomials
For the explicit forms of the fundamental polynomials we have

Theorem 4.1. For n even the fundamental polynomials rb(x) (k =
= 0,1,..., n+ 1) satisfying the conditions (3.3) are given by

(4.1) r0(z) =~ J Un{t)dt,
(4.2) mti(x) - ™) \]1 Unit) dt
and for k = 1,2,..., n we have
(4.3) ) = A 'Xf}(ZZQ‘) +
*a -xllJ)Tj)'?]ixk) B X T ar
y e 1 J Ikit)dt + c3\] Unit)dt

8(1-*fc)_| 0
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where c¢3 is a constant given by

n+1 21 (*b) WL - Ne )
(4.4) - i dt

13xI + 14

sa ™M T /W)™

THEOREM 4.2. For n euen the fundamental polynomials ~(x) (k =
=1,2,..., n) satisfying the condition (3.4) are given by

Un(x) J Ik{t)dt + c4J Un{t) dt
2(1 - X0 I4F ' (xf)

(4.5) sjt(x) =
-1
where c4 is a constant given by
1
nT1f ..
(4.6) cd= ——— | hit)dt.
-1

The conditions (3.3) and (3.4) can be easily verified on using (2.8), (2.9),
Lemma 3.1, Lemma 3.2 and Lemma 3.3.

5. Convergence

Before we begin estimating the fundamental polynomials, we will sim-
plify the integral occurring in r*.(x).

Lemma 5.1. We have

fkjxk)hit) - Ikjt) dt _ (1 - x2)I'kix)
J = t —xk 2

(x + xf)(l - x2)Unjx)
2(n+ 1)

xkjl - x2)hix)
2 k-1 -1

X
nn+2) . . ;
2n + 1) Jllt + xk)Unit) dt _n+rlj1 Unit)dt.
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Proof. On using (2.8) we get

3tlk(t)~ 2(1- t 2)IK(t)

(5.1) Ik(xk)Ik(t) - Ik(t) =
2(1" *2)
(t - xK)[3Ik(t) + 2(t + xk)Ik(t)]
2(1-4)
But from (2.3) and (2.6) we have
(5.2) 3tlk(t) - 2(1 - t2)lk(t) =

= (t"“ *)L - 120 - 3uiiyy + n(n+ 2101,

On applying (5.2) in (5.1), we get

(5.3) Ik(xK)IK(t)-1"k(t) =
~ (1 xlg " IO - 3K + n(n + 2)Ik(D)
2 (1-%%)
(i - xK) [3Ik() + 2(t + xK)(D)]
2(1- 4)

Thus on using (5.3) we easily get the required form.
Coroltlary 5.1. We have

[ (1= t-xk 1-4

LN2) \] Ik(t)dt - : \](t Fxloun@de K

(n+ir

AMT-T ,_ 1+2X21~5Ik(t)dt+

Let f(x) belong to C[—1,+1] and fk = f(xk). Then the sequence of
polynomials Qn(f,x) has the following representation:

n+1 n
(5.4) Qn(f,x) =Y I f(xkrk(x) +  fkSk(x),
k=0 k=1
where fk are arbitrary real numbers and rk(x), sk(x) are the fundamental
polynomials of our weighted (0,2) interpolation each of degree ~ 2n + 1.
Now we state the following convergence theorem.
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Theorem 5.1. Let f(x) satisfy the Zygmund condition
(5.5) \f(x + h)-2f(x) +f(x - h)\ =o(h)
in (—, +1). Then the sequence of polynomials Qn(f,x) converges uniformly

to f(x) in every closed interval \-\-e”*x"\-£ £ beingfixed (0 < £ < 1),
provided

(5.6) |ffc|] = 7: ~LOsla’ k=
_ xk)
For the proof of this theorem the estimates of the fundamental polyno-
mials are obtained In Sections 8 and 9 and we complete the proof of the
theorem in Section 10.

6. Preliminaries for the estimation of the
fundamental polynomials

First we shall mention some known results concerning the Tchebycheff
polynomial of second kind Un(x) (proofs can be obtained from Varma and
Gupta [6]) which will be needed for estimating the fundamental polynomials.

LEMMA 6.1. For all x in —~ x ~ 1 we have

(i) \Mk(\ S 4,
(i) (1 - x2V2k(x) <Un,
iy M.unmd < 24
1
(iv)  Jtun@)i < 2(n - 2)’
1
24 (1-if) 12

(v) WV Ik@)dt < . K=12,...7,

-1

(Vi) Vh(t)d ~4@Q-x\). k=12, s

n+1

and
(vii)  \Un{x)\ ~ n+ 1

Acta Mathematica Hungarica 63, 1994



WEIGHTED (0,2) INTERPOLATION 175

Lemma 6.2. We have

1- MK\
0) 1-4 ...
" (- x2\ g0
() T

For the estimation of the fundamental polynomial rk(x), it is necessary
to express it in a more convenient form. So we give the following alternative
representation.

7. Alternative representation of rk(x)

Lemma 7.1. We have

(- x2)1(x) lh(x) f
(7.1) rAx)= —i-—-22 +1*+ [Ty gakx)~

(n+ !)9(1)\](Un(t)dt", K=12,...n
N

where
(7.2)

t(x) = Unix) (! - x20kk(x)  Ok+ xk)(I - x2Un{x)  xk(l - x2)Ik(x)

7741 277 + 1) 2(1~xl

_3@2-x\) J 777+ 2)
(7.3) a{x) = 8(1-*3) 3 'KNdt+ v2 '] IKt) &
1 -1
7777 + 2)| ] KYUn(t) d JU d
207 + 1) (t + xk)Un(t) dt - n(tydt.
o1 -1

Using (2.5) and the expression for rk(x) as given in (4.3), we have the
desired form on putting the value of integral from Lemma 5.1 and Corollary
5.1.
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8. Estimation of r*.(K

Lemma 8.1. For all x such that —4f £ ~ x ~ 1—e, we have
following estimation:

M \KOOVER, k=12

. . 65n
(i) MOI 1 -372, k=1,2,...,a
=1

Proof. From (7.1), we get

Un
10019 @ x> + [ +2 o) )

We first evaluate t(x). From (7.2), we get

(1 - x2)Un{x)I'k{x) 4 un(x)(x + xk)(1 - x2)Un{x)
1001 * 2(n + 1) 2(n + 1)2

Unix)x/-(1  x )Ikix)
2(n+ 1) (1- x\)

Now using Lemma 6.1 (ii) and (vii), Lemma 6.2 (i) and the fact that
(1- x2)¥2un{x) ~ 1, |(1- x2Un(x)\ %n,

we have |i(z)| 6. Further from (7.3), we have

Un(x)q(x) « 3(2-x\) Un{x) J

n+ 1 an + 1) (I - tk(tydt +
n(n+ 2)V,.(0§ W)dt |
(«+ 1) -l
njn +2)Unjx) J(t £xkun{dt + A
(»+1)2 (n+1r -1

—N+ J2+ B3+ J
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On using (v), (vi) and (vii) of Lemma 6.1, we have

) 3 (2- x\) Un{x)
=y - xy "6

n(n + 2)Un(x) 3 h{t)dt <

n+1 £3/2

Similarly on using (iii), (iv) and (vii) of Lemma 6.1, we have

L U0 g < PO DU ] wnwar +
0%+ 1) B (»+1) B

X
n(n + 2)kan(x)j Url(t)dt A2 + 2= 4,

(n+2 )
X
ja= PRUNCO 5 Gnnyar <1
(n+1)2

Hence

Un(x)q(x)
(n+ 1) <6+ g 4+1<£3/2

Thus on using Lemma 6.2 (ii) we get

M*)17r24 +6 +

and

Lemma 8.2. We have

o M),

i) |rn+i(a) ~ L
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9. Estimation of Sk(x)
Lemma 9.1. We have for 4+ £ £ /M |-£

-A Ask()\ 24 i n
/\(1 - X Rf /4 £3/2(/\+|), 2, ..., N,

Proof. Using the expression (4.5) and (iii), (v) of Lemma 6.1, we have

(! - x1)/4Un(x)
M *)| A 2n + 1) \]JL” dt +
1 *1)* Un(x) J j U odt o
-1
< (V- xmgraunix) f g < 240 - xi)3<
— yuw £3/2(n + 1)2"

Hence,

y- lofel < 24
(L- x\f/A = £32(n + 1)’

10. Lemmas on approximating polynomials

Lemma 10.1 (Freud). Letf(x) be a continuous function in the inter-
val [, + 1] satisfying the Zygmund condition (5.4) in (—, +1). Then there
exists a sequence of polynomials pn(x) satisfying the following conditions:

(10.1) V(r) - <Pn(OV = 0 o o -xV An
(10.2) K (*)[ = o(logn),
(10.3) wWn{x)\ = °{n) min [(! - x2)~12,n

which holds uniformly in [,+ 1].
We shall prove
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Lemma 10.2. If the sequence of polynomials gn(x) is defined as in
Lemma 10.1, then the following hold true:

1 %) ' <xk)Sk() i £ O
k=1
/«(**)**(*) _ ooEgm
G e32(n + 1)’

_ &Ha{Xk)sk(x) ~ c8logn
&1 q--ift =AY

The above results can be easily verified.

Proof of Theorem 5.1. Let qn(x) be a sequence of polynomials of
degree at most n satisfying the condition (10.1)-(10.3). Then in view of
uniqueness theorem we have the identity

n+l
(10.4) m(x) = *29?2n{xkK)rk{x) + ~ (I - x2)3/4q(x) _ sk(x).
k:0 k=| L X— Xfe
We have
(10.5) IQn(f,x) - /(ar)| » \Qn(f,x) - M)l + vn(*) - /(*)|
Now
n+l
IQn{fix) ¥+(£)! E No *)
k=0
++ {I "-\{1- x" Mx)] sk(x) #
tit L Dk

n+l

A KICMA) —\V((c>t)rfda:)| H

+E 1A OFE I ® =Fj+EXE3

le=1

We estimate the sums and JT)3 as follows:
On using (10.1), Lemma 8.1 and Lemma 8.2 we get

n+l

E x= :(\ bl x)un(xxk)- M*k))\ s
=0
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A~ M ox)LI/(*0) - Vnixo)] + M *) I\f(xk) - ¥>(**)!+
k-1

+ on+l(*)] [/(*n+1) - <f(xn+1)| =

1-X)r2+ |-I \rk (X))
=0 - +o - (1- X212+ i k£|M*)1:
65 —
=° L +0(») [(I Xz ! qA)-i-q:D_QD'

For X)2 we apply (5.6) and Lemma 9.1 and get

£ ZZf_, NAW SE  °™.. koo = o,

k=1 (1 - *1)
Lastly on using (i), (ii) and (iii) of Lemma 10.2 we get

=it, [0 i2)348 (x) = *x() <
S0 XD 34X xR+

k=1
[

=]

+ I3**11- xD~V4Pn(xk)sk(x) +
k=1

+HE 4ix1 - 2)¥on@)(1 - XDir 51 sk{)
fca

c9logn N Gologn
£3/2n2  £3/2(n -f 1)  £3/2(n + 1) 0(1).
Hence
lQn(f,x) - <pn)l = o(l).
Thus from (10.5), on using (10.1), we have

1QN(f,x)- I(*)] = ofl).
This completes the proof of the theorem.
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QUANTUM CENTRAL LIMIT THEOREMS
FOR WEAKLY DEPENDENT MAPS |

L. ACCARDI and Y.G. LU* (Roma)

80. Introduction

Recall [3] that a stochastic process over a *-algebra B, indexed by a set
T, is a triple

0.1) {A y>(,)teT}

where A is a *-algebra (unless otherwise specified, all algebras in the present
paper are complex, associative, with identity); ipa state on A; and jt : B —
—»A a ~-homomorphism. Every classical stochastic process (Xt) (t G T),
from a probability space (Q,iF,P) to a state space (S,0) (a measurable
space) naturally defines a structure as described above by choosing

A = L°°(il,P,P) ; B = L°°(S,B),
jf- f £L°°(S,B) - jtU) :=f oXte T,P)

and <pto be the integral with respect to the P-measure. Conversely, every
triple of the form (0.1) with A and B abelian, determines a (unique up to
isomorphism) classical stochastic process.

Now let I" be a subset of the natural integers. The classical law of large
numbers (resp. central limit theorem) studies the asymptotic behaviour (for
N —00) of the normalized sums

N / N
*£ /N > resp. E[/Ne ) - /Ne )]

3= \ N

where / GL°°(S,0) and

7 = f{x3)dp.
Ju

* On leave of absence from Beijing Normitl University.
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In the present algebraic context the analogue of these sums are

1 N ( 1 N

(resp- - vUh(b))]
h=l \ fi=l

where b GB and the study of the asymptotics of these sums, for N —* 00, is
the object of the algebraic (or quantum) laws of large numbers (resp. central
limit theorem).

In the paper by Giri and von Waldenfels [9] the first quantum central
limit theorems for independent random variables was proved under the
assumption that, for h ¢ k the algebras jh(B) and jk{B) commute. Previous
results, by [11], [12] even if phrased in a quantum mechanical language
are essentially classic in nature. In von Waldenfels [17] this result was
extended to the case in which B is a Z2-graded algebra, the jk are graded
homomorphisms, and for h ¢ k the odd elements of jh{B) and jk(B)
anticommute.

In these papers it was shown that, like in the classical quantum central
limit theorem the limit distributions are Gaussian measures, in the quantum
case the limit states are the gquantum analogues of the Gaussian measures,
i.e. the quasi-free states arising naturally in quantum field theory (cf.
[13]). It was also shown that the usual Heisenberg commutation relation
in unbounded form (or anticommutation, in the Fermi case) arise naturally
from the quantum central limit theorems (cf. [18] for a simple proof). A
proof of the Giri-von Waldenfels result, using cumulants techniques and an
elegant noncommutative calculus of formal power series is due to Hegerfeldt
[29].

Fannes and Quaegebeur [8] and, in a different context, Accardi and Bach
[1] extended the central limit theorem to maps. If one starts from product
maps on the CCR or the CAR algebra, the limit maps are the quasi-free
maps introduced by Demoen, Vanheuverzwijn, Verbeure [20] and Evans,
Lewis [5,6].

Motivated by the goal of extending the central limit theorem to quantum
Markov chains, Accardi and Bach [1] extended the central limit theorem to
non-independent random variables (i.e. to states tp which do not factorize
on products of the form ak, mif2eseee  with K\ < kb < m.. < kn and G
G jkm{B)) (f°r more details on this, cf. the remarks preceding Definition
(1.2) below, where the basic strategy of [1] is outlined). In the present paper
we take up the method of [1] and extend it to include the case in which the
algebras jk(B) are not assumed to simply commute or anticommute, but to
satisfy a more general commutation relation of the form

(0.2) jh(b)jk(b') = <Thk(b, b)jk(b')jh(b) + £Rit(6, ") ;  h > k.
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The first deduction of the CCR in bounded form from a quantum central
limit theorem was given in [2], where the quantum harmonic oscillator was
shown to be central limit of quantum Bernoulli processes.

In a series of papers starting from 1988, Goderis, Verbeure and Vets have
deduced the CCR in bounded form from quantum central limit theorems
in much more general conditions and with a new technique which allows
only Xl-decay of correlations in the dependent case. Moreover in their
techniques, the order structure of the index set is not relevant, hence their
results include the case of a multidimensional index set (e.g. Zd). On the
other hand, for these techniques, the commutativity of random variables
localized on different sites of the lattice seems to be essential, while the
consideration of the very general commutation relation (0.2) is a main gool
of the present paper. Under such general commutation relation our results
are new even in the product (i.e. totally independent) case.

In order to appreciate the generality of the commutation relations (0.2),
let us examine some particular cases.

Example 1. Ehhk = 0 and Ohk = + 1for all h,k E N. This is the
commuting case considered by Giri and von Waldenfels [9], and also in the
papers by Goderis, Verbeure, Vets [10].

Example 2. B is Z2-graded, Eh,k = 0 and Ohk = - 1on odd elements.
This is the anticommuting case of von Waldenfels [17].

Example 3. Let H be a pre-Hilbert space with scalar product
< o o > A = W(H) is the Weyl C*-algebra of the canonical commu-
tation relations over H with symplectic form Im(/,/") (/,/' EH). Itis
then given a family of pre-Hilbert subspaces Hk A4 H (not necessarily mu-
tually orthogonal) such that each Hk is isomorphic to a single pre-Hilbert
space Hg. Fix such an isomorphism Jk mHo —»Hk and let B = W(Hq) be
the Weyl C*-algebra over Ho; for each kK E N define

jk(W(f0)) = W(Jkf0) ; foe HO .
Then (0.2) holds with Ehk =0, B = (W (/o) : /o E Ho}, and
°h,k(W(f0), MU<b)) = exp 2i Im(IJhf0, Jkgo) *

Example 4. Let H,(Hk), Ho, W(Ho),W(H) be as in Example 3 above.
Suppose that both W(H) and W (Hq) act on Hilbert spaces 7i,7io respec-
tively so that the field operators exist and admit a common invariant dense
domain V (resp. T>0). Let A (resp. B) denote the *-algebra of the poly-
nomials in the fields, defined on the invariant domain V (resp. Vo). Then
if A(f), A+(g) (resp. AO0O(fo), A+(g0) (f,g E H, f0,g0 E HO0)) denote the
annihilation and creation operators in A (resp. B), then the maps

jk(Ao(fo)) m= Ao(Jkfo)', jk(Aoifo))  A+(Jkfo)
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define embeddings jk : B —»J1. If
B = {A0(/0)), Aj(50) : /o,50 é #0}

then (0.2) holds with (Thk = 1 and

£/i,Jt(Ao(/0), Aj(fifo)) = (Jhfo,Jk90),

£hfoA(ffo), AX(/0)) = ~(3k90,3hfo),

£fc,fo(A0(/0), Ao(fifo) = £hk(Ao(fo), A+($H)) = O.

Example 5. Example 4 can be modified in a obvious way to obtain the
Fermion case.

Example 6. Let 4, (#*,), (Jjt),#0 be as in Example 4 above and T(Fo)
be the full Fock space (i.e. the tensor algebra) over #(#0) and let, for f,g
€ H 1(g), /*(/) denote the free annihilation and creation operators (defined
as in [16], cf. also [15] or [7]). Similarly one defines lo(fo)J*(90) (fo,90 6
€ Ho). Let 1 ~ B(T) (B Q B (*0)) denote the algebra generated by the
family

{1*(£),1(9) :h9 € H)
(resp. {IO(fo)Jo(go) *fo,90 G #0})- Then for each k € N, the maps
jk(lo(fo)) = KJkfo) ; jk(lo(90)) = I*(Jk90)
define embeddings jk :B  JI. If
B = {lo(fo),1*(90) : fo-,90 6 Ho}
then (0.2) holds with Chk = 0 and
£h,k(lo(fo),10(90) : (Jhfo,Jk90) m

The above examples show that the variety of situations that can be covered
by our results is very wide.

Remark. The paper has been split into two parts: in Part | all the
preliminary estimates are established; in Part Il these estimates are put
together to obtain the main results, i.e. the three theorems stated at the
end of Section §1.
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81. Notations, definitions and statement of the
main results

Let A, B, C be associative algebras, assume that A and C have an identity
denoted, when no confusion can arise, by the same symbol 1. Let B be a
subset of B, usually it will be a subset of generators of the algebra. Let for
each t G R+ be given a homorphism jt : B —A, such that for each t,s G
GR+, t ¢ sand b,b’ GB, there exist two scalars <r(t,s, b, b") and e(t, s, 6, b")
satisfying

(1-1) jt{b)js(b’) - a(t,s,b,b")js(b")jt(b) -\-e(t,s,b,b").
Notice that if A, B are ~-algebras and E is a state on A, then the triple

{A,(jt),E} is a stochastic process over B in the sense of [3].
Following the notations of [1], we denote Sp the family of all p-permu-

tations and VK,P the family of all ordered partitions (Si,... ,SP) of the set
{1,...,&} into exactly p non-empty subsets (k G N and p K). The
partition (Si,..., Sp) is ordered with order “<” in the following sense:

Si < §jifand only if min{r : r GS,} <min{r : r G S*} and each set
Sj has the natural order. If some Sh has only one elements, we shall call it
a singleton.

For each (5i,..., Sp) GVk,Pand T GR+ , denote [Si,..., SHT the set
of all fc-tuples (ti,...,tk) G [0, T)k such that

(i) for each j = 1,2,... ,p and i,i' GSj, we have f, = t»;

(ii) for each j,j' = 1,2,...,p, j @ j', i G§j and il G Sji, we have
UdU.

The elements of [Si,... ,Sp]y can be identified to the functions t from
{1,...A} to [0,T) which are constant on the elements of the partition
(Si,..., Sp) and which take exactly p different values.

Similarly for each IV G N, we denote by [Si,..., SPN the set of all maps
a:{1,...,k} —»{1,..., N} such that

(i) foreach j = 1,... ,p and i,i1GSj, we have a(i) = a(i');

(ii) for each j,f = 1,2,...,p, j ®j', 1 GSj and i" G Sj, we have
a(i) g a().

Throughout the paper, we shall denote by o either the Lebesgue measure
on R or the counting measure on Z, both characterized by translation
invariance and

K[0,T)) = T; TGR or N.

We shall use the notations

(1.2) ST(b)= \] js(b)o(ds) ; T GR+
[0,T)
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so that, if u is the counting measure

(1.23) SN(b) = ~jk(b) : NE£N
k=1

for each » £ B. Moreover, we assume that
(i) on C, there is a semi-norm || and it is given a map E :A —C with
property

(1.3a) E(D =1

(if) for each k £ N, bi,...,bk E B := {6 : E(jt(b)) = 0 for each t £
€ R+}, there exists a positive constant C(b\,... ,bk) £ R+, such that, for
eachp ™ k,(Si,...,Sp) G7\p, (sb ..., sp) £ R+
(1.3b) VE (jSI(bsl)...jSp(bsp))\~AC (b1, ..., b k)
where and in the following, for Sj = {r'r,..., m}, we use the notations

(1.4) bS] = bn seeblr

Definition 1.1. We call E : A — C an FP-mixing map (FP meaning
“faster than polynomial™”) if there exist two functions d,6 : R+ —»R+,
(resp. d, 6 : N —»N) satisfying

(i) for each q>0

(1.5a) dx —* 00, — —40, as T —»00

i.e. dj tends to infinity more slowly than any power of T;
(ii) for each g >0,

(1.5b) St aTg—»0 as T -too

i.e. Sj tends to zero more rapidly than any polynomial fuction.
(iii) for each Kk £ N, x £ R (resp. x £ N), bi,...,bk £ B, one has

(1.6) \E(MxNx+dT) - E(Ms)E(Nx+dT)\ ii C(bu ...,bk)ST

where the constants C (bi,... ,bk) can be taken equal to those in (1.3b) and
1-7) Mx := jSI(bS|) mmmjsq(bsq),

(1-8) N x+dr ("S,4i) e*ejsp{bsp)
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with g~ p = I,...,k, (5i,...,.Sp) £ Tkv and (si,...,sp) £ R+ (resp.
(ki,..kp) £ Np), such that si < ... < sp (resp. k\ < ... <kp) and

(1.9) sjux, j =

(1-10) Sjr>x +dT, j=q+l,....p,

i.e. the correlations between observables which are localized in intervals
I,J C R+ whose distance is greater than dj decay at a rate which is faster
than St.

In the following, E will always denote an FP-mixing map satisfying
(1.3a) and (1.3b). Since any state with exponential decay of the correlations
is FP-mixing and since it is known that ergodic quantum Markov chains are
exponentially mixing (cf. [2]), a Corollary of our results is that the central
limit theorem holds for ergodic quantum Markov chains on countable tensor
products of matrix algebras.

The basic idea of the proofs is the same as in [1], i.e. a quantum general-
ization of Bernstein’s method to prove the central limit theorem for weakly
dependent random variables. The idea is that, if the correlations decay
sufficiently fast (conditions (1.6) and (1.5b)), then the blocks of random
variables which are separated by a gap of length d? become asymptotically
independent. Moreover condition (1.5a) implies that, neglecting blocks of
length dr, we make an error which becomes negligible in the limit.

The present paper extends the results of [1] and corrects two errors in
that paper: one, noted by von Waldenfels, is that in the formula (1.3) of [1]
a combinatorial factor (1/p!) was omitted. The other, noted by Verbeure,
is that in the expression of the correlation function in Theorem (1.1) of [1],
the term arising from the fact that the correlations at different times do not
vanish (the term F of formula (1.16) of the present paper), was omitted due
to an error in the proof of Lemma (2.2) of [1].

We are grateful to the above mentioned authors for pointing out these
errors. The results of the present paper show however that the technique
of the proof, developed in [1], was correct and applicable to a much more
general situation, like the present one.

In the proofs we have tried to understand the analogies between the
techniques used in the present paper and those developed by the authors to
deal with the weak coupling and low density problems (cf. [3], [4] and the
Remark (6.6a) in the following).

Since the proofs are long and technical, we formulate here the main
results. In order to do that we need the following:

Definition 1.2, We say that / : R+ -+ C iSs - \jx(c,dv) if it is
bounded and for each s £ R+, f(-,s) £ X1([4 00),du, C), the functions

(1.11a) s = f(t,s) vidt) , t —e [ f(t,s) v(ds)
[s,00) [0,i)
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are bounded; the limit

(1.11b) lim £ /(i,s) u(dt)
[°n

is uniform in s.

Moreover if the first integral of (1.11a) is not only bounded but also
independent of s, we say that /(e,*) is S —L 1(C,di").

In particular, if n is the counting (or the Lebesgue) measure, we denote
s —LI(C, du) by s—LI(C,dn) (5—LI(C, dt)) and the same for S —L1(C,du).

Remark. If there exists an {f(k)}*=1 ¢ R+ satisfying
(i) \e(h, r)| ™ f(h - r) for eachr < h ~ N-,
(ii) the series /(&) converges;

then, £is S — L x(C,dn).

The meaning of this assumption is best understood by looking at (1.1)
in the particular case in which cr(t,s,b,b") = 1 In this case we immediately
recognize that the condition e £ LI{C,dn) is a condition of asymptotic
abelianness, i.e. if s and t are very far apart, then jt(b) and js(b) almost
commute.

Theorem 1.3. Let E be an FP-mixing map and let B C B be a set
of elements satisfying the commutation relation (1.1) and the mean zero
condition

E(jt(b)) = 0, viter, bes.

If for each b,b' £ B, e(-,-,6,b) iss —by(C”u) and o(-,-,b,b") is bounded
then, for each b\,...,bk € B anda> " or a= " and K odd,

(][D /([Qr))i / Eijh(~)--Jtk@k) Mdti)...v(dtk) = 0.

[0, T)k
rRemarw. If e is a stationary state, i.e. e(jt(p)) = Eo(p) ON 8,
independent of t, for some state Eq and a — 1, (1.12) is simply the law
of large numbers. Ifa= | and kisodd, (1.12) is the first half of the central

limit theorem, i.e. the vanishing of odd moments for mean zero Gaussian
state.

Moreover

rueoren 1.4, In the assumptions of Theorem 1.3, suppose that T C
C N and that for each b, b' £ B,

(i) cr(-, = b, b)) —o(b, b') (i.e. o(h,k,b,b") does not depent on h,k).
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(i) b, b'), are in S —LI{C,dn) in the sense of Defini-
tion 1.1.
(iii) The limit
(1.13) liml f1 E~ Dbeb)) =: C(66)
= =l
exists.

Then for each n 6 N and b\,..., b"n G B, the central limit

(1-14) Un -i-£(5N(b1)...5 N(62,))

exists and if we denote

00

(1.15) /(6,68) := 5] e(kh,b,b,
k(;)h + 1

(1-16) F(b,b'):= £ E{jh(b)jk(b")),

(1.17) CO(b, b) := C(bb") + _F(+b, b) + F(b', b) + f(b, b),

then the limit (1.14) is equal to

M9 =EE (bi,..ifre7yX

x ™ (bir(i)’ bjjr(1)) mmCo(bi”n),bj"n))

where, as usual Yhpp means the sum over all ordered pairs partition of

{1,...,2n}, i.e. all pairs {ii,ji,... ,in,jn} such that

(1.19) {A)jireeer@iin) —{1,...,2n},
(1.19b) ih<jh, foranyh=1,...,n,

(119C) Ji < J*2 < eese < jn

and the <r(ii,ji,...,in,jn",bi,...,b2n) 2 product of o-factors.

In the continuous analogue of Theorem 1.4 a qualitatively new phe-
nomenon arises.

THEOREM 1.5. In the continuous case, with the assumptions of Theo-
rem 1.3, assume that for each b,b' £ B,
(i) a(-,-,b,b") =o(b,V),
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(i) E(-,-,b,b"), e(-,-,b,b") are in S —Lx(C,dt) in the sense of Defini-

tion 1.1.
Then for eachn GN and b\,...,b2n GB, the central limit

(1-20) jim J E(jtl(b1)...jtn(b2n))dtl...dtn
[o,T)2n

exists. Moreover if we denote

(121) f(b,b"):= \] dse(s,h,b,b"),
[h,00)

(1.22) F(b,b'):= j dsE(Jh(b)js(b"))
[h,00)

and

(1.23) CO(b, b') := F(b, b) + F{b\ b) + f(b, &)

then the limit (1.20) is equal to
(1.24)
N\ AL divese> in, L b20) x Co(dlird), ) weeCo(ififn), )

p.p.

Remark. Notice that in the continuous case there is no analogue of
condition (iii) in Theorem 1.4. This is because this condition is on products
of pairs and we shall show that in the continuous case, only the partitions
made up entirely of singletons survive in the limit.

82. Some technical lemmata

In this section we introduce some notations and prove some lemmata
needed in the following sections.

Lemma 2.1. Let E be as specified in Section 1 and leta”® p kG
GN, b\,..., kGB, (S1,... ,SP) G Vk,p- Assume that either of the following
conditions is satisfied:

(i) ak > p;

(it) (Sti,..., Sp) contains exactly q singletons withg 1, a>|ora - |
and K odd.
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Then
(2.1

~o u([g / \EUsi(bs1)---jSp(bsp))\-i'(ds1)...v(dsp) = 0.

Proor, (i) If ak > p, then by (1.6),

(2.2) ilml[)?“ J {isx@®SI) ... j Sp{bSp))\(dsx) .. .u{dsp) ii

0<si<..<sp<T

< C(6b ..., 6M0i/([0,T))P-> 0
Klo, ¢ )™ ( i/([0,T))P ->

(i) Assuming that (S\,... ,SP) contains exactly g singletons which cor-
respond to the indices ji < e*m< jq, we define the set

(23) A(T,dT,p,{jn}da=i) m,={(si,...,5p) 6 [0,T)P:sj < ... <sp
and for each r = 1,... ,q, either Sjr —Sjr_i ~ dp or SjrA\ —Sjr ~ dp f

denoting vp the product measure (®r/)p, then, for each {jn}A= the quantity
vp{A(T,dp,p,{jn}d=i)) can be written as

e d
(2.4) Ju(dSI) v(ds2) ... . v(dsn)x”_ASn_x+dT)(sh) x

xM13),5.+<iT)(5h + 1) x
X'e o XX Ej'-iij'-i+dr)(siJ XXX ,+*T1)"'«+1)
where e E (0, | }9 is determined uniquely by the rule

(2.53) e(2r- ={1" H §JF Sir a3
(2.5hb) e(2r) = {?; :g

and where, by definition, for any set /, x°i = 1; x) = XI- From the definition
of A(T, dp,p, {jh}h=i)i if follows that e(2n - 1) + £(2n) N 1 for each n =
=1,..., 0 Notice that for each n = 1,... ,q, the product

(2 6 »e(2n—1) / \''w e(2n)

XEn— )M X[N,ign+dT) (Bin+l)
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surely depends on sjn but not necessarily on ,§n+i or So if we denote

(2.7)

F(su-..,sp; On}Lie) := 1N (@n)
n=1

then F depends on sj1,... ,sjq, but not necessarily on the other variables,
i.e. F is a function which depends on at least the q variables sj1,..., Sjq.
In the multiple integral (2.4), if the variable Sj does not appear in any
characteristic function, then we majorize the corresponding integral with
i"([0,T)). If it appears we would like to majorize the correspoding integral
with the factor i/ ([OHowever in doing so we should keep in mind that
some of the characteristic functions can coincide. This can happen only if,
for somer =1,...,q,

(2.8) jr-i =jr - 1-

In this case we have the factor

(2.9)
X1 AT, <T(T-1)EQR(™ 1b1) VI
ALSir_LXr_I+dT](SIr) A ' Abr.Sjr+AT](6> +1)£(20)-
So if
(2.10) e(2r) = e(2(r- 1)- 1)=0

then the product (2.9) becomes

X[*)r-1 sJr-1 +4T](5jr-1+1) "~ *>r- +Ar](50T)

and in the view of (2.5a) and (2.5b), this is equal to Xfsj*j SIr_j+<ir](s.;r)-
Thus, if both conditions (2.8) and (2.10) are satisfied, then from two single-
tons we get only one characteristic function.

Since there are q singletons, the worst case is when we get only f2*-]
characteristic functions. This is clear if g is even and, if g —2m + 1is odd,
then after having formed m pairs, the remaining term will surely produce a
characteristic function, because if condition (2.8) is satisfied by three indices,
sayjr- 2ijr-\ijri then condition (2.10) cannot be simultaneously verified for
the two pairs (jr-2,i--1), ¢ir-i.iry- In conclusion, if q is odd we have at
least m + 1= different characteristic functions.

As a consequence of this we obtain the estimate

(2.11) VP(A(T,dT,p, {jh}=D) | *([0, T YT ~ «KMT))P .
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Therefore if we denote

(2.12) A
A(t,dT.p,q) «— A (T,dT,p.{jh}=i)
INjl <:.<jq'€p; {Syh}’ _ are singletons
then

(2.12a) S(A(t,dT,p,q))u (£) v([0,T))p~ *~ w=([0,dT)) "\
Moreover by (2.12a) we obtain

(2.13) K Ml ak J \E(js! (bSI) mejsp(bSp))\i*{dsi) ... u(dsp) ¢,

A(T,dr,p,q)
S r([0.r)r ~([0’r)I "a|1" ", /(1M t>) Ne m.....»%)e (J).
But if (51,... ,SP) contains exactly g singletons, then there are p —q non-

sigletons, therefore

(219 k = = 4+ 2(p-q) =2p-q
3=1
and this implies that
(2-14a) p i'-(k+ q)i k+ [izxl

Therefore, ifa>  we have

(2.15) i/([0,r))*t/(0'T ) T ""d0’*r»" 'S

Cy— i—A([(M ) 1- 0
KM) (Y

as T —00. Moreover, p, K € N implies that in (2.14a) it is possible to have
equality only if K is even, therefore if a = | and Kk is odd, then

K 9+ 1 + K
r< 2+ me. ?_[rq_ < -
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Thus
(2.16)
1 fre KM O ]
Klo,r)p-f~ v([0,dT =
Ko 1))k 0P WA= o b (-2 3

as T —»00. Define now the set
Ap = {(si,...,sp) ER+ :si <... <sv UTHA(T,dT,p)

by (2.3) and (2.12). One knows that for each (si,... ,sp) E Av there exists
aqUp, 1Uji <...<jgUp such that

(2.17a) \sjr - sjr_11> dT and \sjr+l - sjr\>dT, Vr=1,...,0.

Therefore the mean zero condition (E B, j = 1,...,k) and (1.6) imply
that

(2-17) LL/[B,r)) AJ]; \E (jsi(bs1)---jsP(bsP))W{ds1)...v{dsp)~

- Mo n))*EM[Qr))P° (St) 'c(bu em’6fc) —>°> as T M°°-
Putting together ((2.16) and (2.17) we obtain that (2.1) is equal to
1

v(\0,T))* /
S4P A(T,dT,p,q)

(2.18)  lim

ev(dsi)... v(dsp) = 0.

Corollary 2.2. Let E be as specified in Section 1 and leta >\, pda
UkE N, bi,...,.bkEB, (Si,..., Sp) E Vk,P- Then

(2.19) \] \B(jsI(bSI)...]Sp(bsp))\

0"si<...<«p™X
my(ds\)... o(dsp) = 0.

MOOH[O,T)V

Proof. We distinguish two cases:

i) if p 0 k/2 then ak > p;

i) if p > k/2 then there exist singletons among S\,...,SP.
The proof follows that of Lemma 2.1.
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83. Normal order in abstract algebras

In this section we generalize some techniques widely used in quantum
field theory and known under the name of normal order or Wick order.
In an abstract setting, the problem giving rise to these techniques can be
formulated as follows: one starts from elements ax (& E N) of an algebra
Q, satisfying some commutation relations of the form (3.3); one considers
products of the ax, of the form (3.1) and, by repeated application of the
commutation relations (3.3), one wants to write the product (3.1) in such a
way that the indices x\,...,xnappear in a preassigned order. In the present
paper, the preassigned order will be the increasing one (3.2). The normal
order, usually considered by the physicists is different: the indices Xj take
only the values 0 (corresponding to creation operators) and 1 (corresponding
to annihilation operators), and one wants to write the product (3.1) as a
sum of products in which all the zeros are to the left of all the ones and
the original order among the zeros and among the ones is preserved. In
that case the factor £ corresponds to a scalar product and the factor a
corresponds to 1 (Boson case) or —1 (Fermi case). The situation considered
by us corresponds to a time ordering. The basic techniques are the same in
both cases. The techniques developed below are a natural generalization of
those, introduced by the authors, to deal with the weak coupling and the
low density problem (cf. [3], [4]).

Definition 3.1. For any algebra Q, n,N E N, Co, 1S
N Xi,..., xn”™ N, we say that the product

(3.1) axl cemXn
is ordered if the indices {a:/i}"=1 are ordered, i.e.

(3.2) Xi N x2S mmm= xn
In the following we shall investigate the ordered form of products of the
form (3.1), where the aj satisfy the commutation relations

(3.3) ax my = a(x,y) may max + e(x,y), Vi,jfN, %p Yy
with o,£ in the center of Q.
For each n,N E N, n~ N and 1~ x\,...,xn 0 N, there exists a

unique_n-permutation >E Sn (the permutation group on {I,...,n}) such
that Tis a composition of k consecutive exchanges

(3-4) H(D) = XK = oo = xn(n)

and for any other n-permutation #, if > is a composition of k' consecutive
exchanges with k' < K, then > does not satisfy (3.4). An exchange is called
consecutive if it exchanges two consecutive indices and leaves the remaining

ones fixed.
In the following for any given x = {zi,..., xn}, we shall denote this
permutation
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Lemma 3.2. In the notations (1.2a),

(3.5) ST(bi) *«mST(bn) =

= |t, "2 J jti(bl)---jtAbn)v(tl)-"V(tn).
p=1 (Si,...,sp)e'Pnp ... sp|T

Proof. (3.5) is an immediate consequence of
(3.6) [0, TT = U U W -
P=1(5i np ., Spli-

Lemma 3.3. Foreachn,N GN,n” N and 1~ x\,...,xn " N, the
ordered form of the product (3.1) is equal to

(3.7)

X X X1 .ﬂ)ﬂTXZthL.. " 2N 2)

m=0 I"pi <,.<pmin (?1,-,9m) =1

where and in the following

i) for each fixed m and 1" p\ < ... <pm” n, means the
sum over all 1 q\,. w = @ satisfying
(3.82) card”™/J”) = |{9fc}y’=1 = m,
(3.8b) Wwu=1 C{l,...,n}\ {Ph)h=\,
(3.8¢c) Ph<agh, Vh=1..,m
and
(3.8d) Xph A ¥2h' Vi —1,..., m,

U) for each fixed m and {ph

(3.9a) W »*-2m >n} \ {Pfc>ofcie=i.  ri < xn—2m
and Xn*m) = eee — X]])an_zm)>
i) <r(xi,...,2n) is a product factor of the form cr{xi

Proof. From the commutation relation (3.3) we know that in the
ordered form of the product (3.1), some elements of {axh}£=i will be used
to produce an e-factor and in order to get an e-factor we use two elements of
{arh}£ i, therefore the number m ofe-factors can be equal to 0,1,..., [n/2].

Acta Mathematica Hungarica 63, 1994



QUANTUM CENTRAL LIMIT THEOREMS 199

For each fixed m, let {ph}™=\ denote indices {xh}*" such that aPh is used
to produce an e-factor with some element ach with gh > ph. By relabeling
the order, one may suppose that pi < P2 < we< Pm If Pi <P2 < mm< Pm
and <A, <5 ,m C {1,..., n} are chosen as above then obviously:

— gh cannot be in for any h = 1 ie. {gh}h=i C
c {1 \ {pn)r=1

— gh cannot be equal to another <jv, i.e. KR{AF™I = m.

— 4h > Ph foreach h = 1,.

— iffor some i <j, X{ < Xj then we do not exchange the order of the
two elements aX and aX], so there is no factor e(xi,Xj), i.e. xVh > xoh for
eachh=1,... m

For each fixed m and {ph,Qh}h=i, denoting {rhjhzi™ {1, oo «} \
\ {Phi4h]'h=\i fhe {arh}*=i2m are not used to produce "-factors, therefore in
order to bring their product to the ordered form one can apply the restriction
of the permutation Xx to the set Thus one obtains the product
olii(r jee-"aXaX(r y where, by the definition of Xx (cf. (3.4)),

Xnx(rl) < ... < Xnx(rn-2m)-
Since each exchange gives rise to one cr-factor, eventually we obtain a factor
a(xi,...,xn) which is a product of some factors a(xi,xj).
As a special case of Lemma 3.3, foreach T >0,ne N ,{ULIC[0,T]
and b\,..., bn, we can obtain the ordered form of the product
(3.9) 3h{bi)---jtn(bn)-

Corollary 3.4. In the notations of Lemma 3.3, for each T > 0, n G
N, t:= 1 ¢ [0, T] and bi,...,bn, the ordered form of the product
(3.9) is equal to

[n/2] * m

(3.10) ~A A~ > 33 £¢eh=9mbPh,bgh)

MmO IMpl<...<pm™ es,...,.9M) JEL
<r(ii,. ..,tn,bl,...,bn) "jtrt(ri)(b®(n)) *m3nidn 21) (b7 (M- 2M)).

Moreover we have the following

Corollary 3.5. In the notations of Lemma 3.3, for each T >0, n G
G N, and bi,..., bn, the product

(3.11a) ST(bi) — ST(bn)
is equal to

(B E E / E E
P—1 (Si,...,Sp)e7>2n,p ig[Sj ,....SpP]T m=° I"PI<-..<Pm”n (9i,...,.9m)
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11 £-(tph5h>tPh1°0h) (AL eee)int bl , e« 1bn) -jtv(ri)ibr(ri))
h=1

cem M (rn_2m) (A~ ,M m )M « 1) "'’K<n).
Proof. Corollary 3.5 follows immediately from Lemma 3.1 and Corol-
lary 3.4.

Remark. Notice that since (Si,..., Sp) is an ordered partition, one has
that inside each S/,, h = 1,... ,p, >X& will keep the order, i.e. if lh <kh 6 S/j,
h G{l,...,p} and lh < fc~then m\Ih) < >Xkh) and tvt(lh) = t(fch). In
other terms, @™ acts on the blocks Sj, keeping the order inside each block.

Now let us consider Corollary 3.5 from another point of view: for each

p=1,...,n and any n-permutation , let [Si,..., Sp]* be the subset of
t G[Si,...,5p]r such that 71 = T with >4 defined by (3.4), ie. A
Ao N tK(n)e Clearly we have
(3N12)

Sr{b\) m.. Sxjbn) = y : X1 Jti(bi) ...jtn(bn).

P=1(Sif ,Sp)EVn,p 7r€«"n i€[Si ,...,.SP]J

For each t G [Sb ..., SP]J, the product jttipi)...jtn{bn) is not ordered
(unless 7 is the identity) and the permutation which makes the product
jti(b\) eeejtn(bn) ordered is . Therefore we can write the product as

(3-13) K - Hi)(b") “"jtn- Hri)(bn)
with t Gt (S\, ... ,SP).
In the following for each fixed partition (Si,..., Sp) G VniP, we shall use
the notation
(3.14) = (rG :[Si,...,Sp]j non-empty}.

That is, S fp) consists of all permutations on {1,...,»} which permute

among themselves the blocks Sj, considered as individual objects. Thus
is isomorphic to Sp.

Applying Corollary 3.4 to the product (3.13) we find the following result.

Lemma 3.6. In the notations of Lemma 3.3, for each T > 0, n GN
and &i,..., bn, the product (3.11a) is equal to

n r In/2] *
WEE E [EE E .
p—1 (Sl,..., Sp)EVn,p ig/T(S1,...,Sp) m-°I*"P I< —<Pm"n(gi,...,9m)

m

£{"v-1(ph)"TT-I (ch)"bph,bgh)
h=1

<r(tl, ..., tn,bl, ...,5n) ¢ jtTW"\7r(ri)) o “Jirn_2n("7r(m_2m))i/(") *' ' V{fn)’
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Remark. Notice that (3.11b) and (3.15) are two different ways to write
the product (3.11a).

Proof. From the definition of [Si,..., Sp]”* and the identity

(3.16) \] jtl(bi) mm tn(bn)v(ti) mm(tn) =
ie[Si,...,SpIE

teir(sl...Sp)

immediately follows.
For each fixed partition (Si,..., Sp) G VnP, the sum qn) is the
same as in Lemma (3.2), the only difference being that (3.8d) is replaced by

(3.17) > tT-i@gh), h 1,....m.

It will be useful, in the following, to perform the summation first in the
m,ph,qh indices and then in the n,t indices. This goal is achieved in the
following lemma

Lemma 3.7. ForeachT > 0, n £ N and b\,... ,bn, the product (3.11a)
is equal to

(3.18)

n [n/2] /

EE E E E E

p=l m=0i*pl1<...<pm*n(9L,...,gm)(Si,...,Sp)eP,,.p,res(BP te/T(Si,...,Sp,{ph,3nf ™1 )
m

E(MTFp)”  (3n)’bph,bgh) mer(ti, ... ,tn,b\, ... ,bn)
h=l
hr, (bHri)) eeejtrn_2m(b<rn_2m)M ti) mev(tn)

where and in the following, S (9 3m) means summation over all 1 *

N ogi,...,gm ™ n satisfying the conditions (3.8a), (3.8b) and (3.8c) (but
without the condition (3.8d)j, and

(3.19) IT(Si,...,Sp,{ph,gh.}™=i,n) :=
= {tGle(Si,...,Sp): tv-iP)>t ~ h —1,..., m}.

Proof. The Lemma is proved with the following procedure: First we
choose m and {pH,AH}™=\ as in Lemma (3.6) but without the condition
(3.17). Second, for each fixed m and {pH,AH}™=\ an<*x € $nSP we define
It (Si,. .-iSp, {ph, 9n)a=1, Jr) as (3.19).
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84. The negligible terms

In analogy with weak coupling and low density limit, the following
lemma corresponds to proving that, in these limits, the so called “type
Il terms” tend to zero. Recall that, in this analogy, the index k (resp. t)
is interpreted as time, the e-factor as scalar product, and the type Il terms
are those products of e-factors which contain at least one factor of the form
e(h,k) with k —h " 2.

Lemma 4.2. Suppose that £1,62 : N2 —»C are in s —LI(C,dn), then

(4.13) 2 ki(*4i*a)| 'bl *3A)| =0
IMei <k2<k3<k,"N

and

(4.1b) lim "2 V |E1(*4,*1)e2(A:3,%2)1 = 0.

tv—=00 IV *

\-Mxde<kZ< kN

Proof. Since |+|is a semi-norm on C, we may suppose that the £j(h, k)
are positive numbers. Thus fmare s —/*(R-f, dn), r = 1,2 and, because of
(1.11a), there exists a finite constant M,- such that

(4.2) max Y £>(M ), hGN >UM <+00.
%=h-\-1 k=0

Then, because of (4.2), for each 7> 0, there exists a K E N such that for
any /»1,/i2 € N

(4.3) Y Y AMT) <\
k=K +hi k-K+h2

We rewrite 1
m £i(k4,k2)£2(k3,ki)

Ifei <k2<kz<kiUN

(4.
VY'Y (Y V)V amoms

Ai=1 A2=7i-F1 k3=k2+1 «k3=k\+K+1 7Tk+=k3+1
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Then the first term of (4.4) becomes

N -2 kX+K

> bl E E m™)E

&i=l k2—k|+| &'3:"2‘M k*=k3+|
TV-8

% E E E m**) E
fcl=1 ~2=721+1 ~3=72+]I A=M2+ 1

7Vv-3  Nr-2 fci+K

Et(k3,ki)-Mi.

C N2 =i A

Notice that on the right hand side of (4.4a), k\ < k3 5 k\ + K, hence
one has k4 < k2 < k\ + K . This implies that the right hand side of (4.4a)
is less than or equal to

A TVE8 KV+A 0 K\-\-K

(4.4b) J p E E E

K\ =1 k2=k\+\ Az J12-f-1

o £ E" MM=TRY KM

fei= 1 k?—ki +1

and this tends to zero as TV —=00. By (4.3), the second term of (4.4) is
majorized by

. (N - 3)!
4.4 .
(4.4c) geMi o,
therefore
(4.5) | T?** E £i(k4,k2)E2(k3,ki) » €mMx
' I<fci <k2<k3<kt<N

and since rj > 0 is arbitrary, this proves (4.1a).
In order to prove (4.1b) we rewrite

1
N2 £i(k4,ki)E2(k3,k2)
I<ki<k2<k3<kt<N
as
N-3 N-2 N-1 , h+K N y
(4.6) £i (&4, ki)£2(k3,k2).

k\=1 A2=Kki-f-1 As=/2-bl «kn.=k3-\-1 KN = Kn-\-K4-1
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By the same arguments as above, (4.6) is dominated by

(4.6a) geM2+ MxmM2™ | {N - 3).

Hence,

4.7 limsup-"2 X Ei(k4,ki)E2(k3, k2 "T]-M 2
N —o00

I<ki <k2<k3<k,<N

and this implies (4.2a) by the arbitrariness of r)> 0.
Lemma 4.3. Suppose that £i,£2wN 2 —+C are in s —LI{C,dn), then

Qs) X agakeh2y =0

Remark. The condition {hj,kj}j=1 < 4 means that in the sum
Si<hi<k3 h2<k2<N some °f the indices hj,kj are equal.
Proof. Let us denote

E E bFfeMMSM

g>=if<4

and discuss separately all the possibilities according to which indices are
equal.
i) If h\ = h2then

49> E =v iE E bl *b M E
2 hi=1k\—h\+1 fc2=fi1£1
Since £i ,£2 are in s —L x(C,dn) one has, in the notation (4.3b),

(4.10) YR w2 w X % MM2 xe
2

i) If hi = k2 then

em s =gz x bl *M EBI*M-

h\=4 liz= 1
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Changing the order of summation on the right hand side of (4.11), we find
that

412 E =~iE E E
2

R=1h\=/i2+1 k\=h\+1

1 N N
=Mi"N2”2 X 1£2(hi,h2) S MXM2m— ->0.
The cases k\ = h2and = 2 follow from the same arguments.

Now we prove the generalization of Lemma 4.2 to the case of a product
of n e-factors. These products are analogues of the type Il terms of [3].

Lemma 4.3. Foreach£\,£2,...,£,, : N2 —C which are ins—LI(C, dn),
we have

4B nlal X) MNen-)1 ==
I~ h,,<k,"N j—i
\{hj jl<n
Remark. The condition [Ajfcij).! < 2n means that in the sum
Ei<A 1<fcl,.. ll,<fc,<N sorne °f the indices hj,kj are equal.
Proo+. Let us first consider the case in which hi,k\ are free indices,
i.e.

(4.14) {70, &} nihj, i} 2= o

Then, since £i(k\,hi) isin s —LI(C,dn), it follows that

(4.15) E :-jvn X nﬂ(/ij,fQ)l B

Ig/li<fel,..., /In<fen™JV j=1

ji: XA 5 OMA*

Hy.*}"=2i<2n 2

sNh -NE [TMba,).
igh2<*2,...h,,<k, giv j =2
libu'gy"=2lon. 2
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Thus if (4.14) is true then (4.15) and the induction gives our proof. There-
fore we may assume that (4.14) is not true, i.e. that there exists a j —
= 2,..., n such that

(4.16) {h\,ki} M {hj, kj} o 0.

In any case, because of (4.1),

(4.17) — A \sm{km, hm)| fi Mm

therefore

(4.18) E Mh.MlejtAi.M |
n lihi<kuhj<kjiN

HN1.46 ,hj,kjip\<4

for some constant C\ and the statement follows from Lemma 4.2.

85. The non-negligible terms

Lemma 5.1. Suppose that £\,£2, mm£fn : N2—=C are S- LI(C,dn) and
that Fi,..., Fm: N — C are such that the limits

1 N
(5.1) dim, 7F 5. =F * 7=1,2..m,

exist. Then, for each {*i,... ,tm} C N, we have

(5.2)

) 1
Bm & E I I
1571 <K[ <...<kn <k'H<n <fc,1+i <k[1+1<...< *=1 J=
<k,2<k[2<r2<...<rm<...<kn<k'nN

1 771 n

\Y e =

where
(5.3) fi ;= 2 *= [»2,...,n.
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Proof. For n + m = 1, (5.2) is clearly true. Suppose that (5.2) is true
form +nii g We have, form fn=q+ 1

(5.4)
1 -
NO+1 E IP’
INfei<fej<...<fcil<k[ <rl<...<rm<--<kn<k'n'UN i=1 i=1
! N Kn- 1
= §i dm+-m yj X v

kn=2n+m kn=2n+m—I

E n") =
IMAT </ d < <Al </ <74 <. < =] j=1

—H ke MK

= E E  swnknyn- 1) +

[N = 2114771 fen=2n+ 71—

E b [IAY) =

Infcl< fc ;< .<k'n <n<..< 1=1 j=1

71+772—1
(An - 1)
<rm<~<k, -1<k'n_1"kn—1

B (B WE agao- hre

Kn=2n-\-m kn=2n+m— kn=K-\-2~"
| 7n—1

s E NEsCo-MPA

(fe,, - 1) liki<k'l<...<kil<Kii <u<..< t=I i=l
1n4
For each 7 > 0, we take K such that
1 71—1
(5.5) o E [ sk, @) - TTFj(r)
i“A:1<fc;<...<fc,,_1<fc; I A'"*=i j=1
N m n—1
“(/n'f'l.U‘ 1)IJ|_|:I/\A£|:I* N\
and
(5.5a) E fikh s n

k=K+h+1
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First of all let us see the absolute value of the first term on the right hand
side of (5.4), i.e.

N (K+D)n(k'n-1)

(5-6) £ £ o, k) (F-n” - 1
fcj,=2n+m kn=2n+m—lI
n-1
*(* * N\
(kn- 1) £ N I_I )11 ")
INk!1< k[ <...<ktl <k'ti<n<..< i=1 J=1

<Tm<---<kn-i <k'n_1"k,, -1

By the assumption of the induction, (5.6) is dominated by, with a constant
M,

1 (K+1)n(k'n- 1)
(5.7) Mmrr-1— Yy Y] £n{kn,Kn )

kn=2n+m Kn—2n+T —\
I A4-2 N (ANt
£ + £ v En{kn.kn)
=A

Akp=2n-\-m N +27 kn=2n+m —1

The first term on the right hand side of (5.7) is equal to

(5.8) O(/l)—N —»0, as IV—voo.

The second term on the right hand side of (5.7) is equal to

N (A41)
(5.9) M”« -1-1 £ Y'  En(kn,kn) <
k'=K+2 kn=2n+T1—4
1 (A+1) N
v, £ MV,,i)l =
kn—2n+m- 1 Kn=K+2

=O£l)—lv7——>0, as Iv—00.

Let us now consider the second term of (5.4) and rewrite it as

(510) it E E EQ>%n- iy

N2NATIL [=A+2
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I'If| ri:lI/+
(n+m- 1) izi

7=1

N k-1
= jyn+m )(/ )(/ £n{kn,kn)(kn ])H-m_}

kn=2n+m kn—K +2

n—i

(n + 70 —1)! JI-P [

R 7=1 =1

n—
. . mT0—1 E [l £‘(**i) ‘n
(*» - 1) lgfci<*:;<..<*:il<fci<ri<..< i=| =1

A Tt wekn—22kh A Akn—1

By (5.4) one knows that the absolute value of the second term of (5.10) is
less than or equal to

1 N kh-1
(G11) 4'jj~ £ £ K K ,4 (t-ir-"=2-0().

Ich=2n+m kn=K+2

Moreover, since n,m,K are fixed so that the limit, as N —»00, of the first
term of (5.10) is equal to the limit of the following quantity:
(5.12)

1 m n—i . N k'n—1
(n+m_ pd I_I"'n ft - arn+m x ] X EA M (A on - 1) o+
=1 i=| kh=2 kn=1

Exchanging the order of summations in (5.12), it becomes
(5.12a)

1 m n—1 ™AL v
N\
(n+m p)7 I_IFi . I_IT*-AAn+m X En(kn,kn).
J=1 t=1 fon=1 Kn=kn-f1

Letting N tend to infinity, we obtain the limit of (5.12a):

1 . w
(613) (n + m)! IP LU

and this ends the proof.

More generally we have the following
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Lemma 5.2. With the same notations and assumptions as in Lemma
5.1,

(5.14) T iy v

Er(k'M- M~ (r.)
lijfci <K[ <..<fc\F<*'i <r, <fc,1+i <fdfi +1<...< i=1
<ki2 <ki2<T2<...<r,n<...<kTl<knf£N
Kh MkH +dN, -, kjp”kjP+dN

1 m n
m+my 17 T

where d* —»00 and N —d”* —* 00 as N -” oo.

Proof. Notice that the only difference is that on the left hand side of
(5.14), Kjh - kdh ~ d™ for each h = 1,...,p but on the left hand side of

(5.2), kjh —kjh can be greater than dpj (# N —I)for some h E {1,... ,p}.

Since the series e(h, fc) converges and d® —* 0o, we know that
N-1 dN
(5.15) Nlmo .{‘ﬁ“e(h,k): Nl_l*rg0 I:\k(:_j!;e(h,k).

This ends the proof.

In the continuous case, the analogue of Lemmata 5.1 and 5.2 are the
following

Lemma 5.3. Let £i,£?,...,En : N2 —C be in S —LI[C,dt) and

Fi,..., Fm: R+ — C such that the limits
(5.16) i 1J/F'tdt—F' J=1,2 m
' %—1801 Jdt="F -, oo
0
exist, then for each {ii,...,tm} C N we have
55'17)' Il—mo Tn+m f
ogii <i,j <i'i<sl<im+i<i'i+]<...<
t,2<t'12<S2<...<Sm<-<tn<t'nUT
n m
Je« (<, <i) »JJ Fj(sj)dt\.. .dtn dt\ .. .dt'n dsi...dsp-
i=i j=1
1 m n
(n+m)!°|-|’\'-|_|f|
j=1 1=1
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where

(5.18) fi :\] gi(t,s)v(dt), i=1,...,n.

[s,00)

Lemma 5.4. Let £i,£2,....,En : N2 —C be in S —LI(C,dt) and let

F i, ,Fm: R_—»C be such that the limits

(5.19) TIl_ng0 ¥\] Fih)dt=F , j=12,...,m

exist. Then for each {i\,... ,im) CN and {:,...,ipy C {0,1,...,n}, we
have

620 g

oNii <ii<-..<<il<i'x<si <ill+1<i'i+1<.<
ti2<t[2<S2<.:<Sm<..<tn<t'n"T
tjhitIh-+dT" o=

n Fj(sj)dt\... dtn dt\... dth ds\...dsp
1=1 J:]_

e T - n ~ - n /

\% ! 7=1 t=1

where dj -* oo, and T —dr —»00 as T —poo.

The proofs of these two lemmata are the same as those of Lemmata 5.1
and 5.2.
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BIFURCATIONS IN A PREDATOR-PREY
MODEL WITH MEMORY AND
DIFFUSION. I: ANDRONOV-HOPF
BIFURCATION

M. CAVANI (Cumand) and M. FARKAS* (Budapest)

1. Introduction

We start off with the model

TV=eN(1- TVTV) - BNP/(R + TV),
P =-P(7+6P)/(1+P)+BNP/(R + TV

where dot means differentiation with respect to time t; N(t) and P(t)
are the quantities of prey and predator, respectively; & > 0 is the specific
growth rate of prey in the absence of predation and without environmental
limitation; in the absence of predators the prey population grows logistically
to carrying capacity K > 0; the functional response of the predator is of
Holling’s type (see [11, 12]) with satiation coefficient or conversion rate
s > 0; the specific mortality of predators in absence of prey

(1.2) E(P) = (1 + SP)/{1 + P)

depends on the quantity of predators, 7 > 0 is the mortality at low density
and 6 > 0 is the limiting, maximal mortality (the natural assumption is
7 < £)

T?]is system seems to us a fairly realistic one if neither hereditary effects
nor spatial distribution are taken into account. The Holling type functional
response is widely used and has a vast literature, and if 7 = 6 then the
mortality of predator reduces to a constant (see e.g. [9]). The advantage
of the present model over the more often used models is that here the
predator mortality is neither a constant nor an unbounded function, still, it
is increasing with quantity.

First we study the stability of equilibria of this system and possible
bifurcations.

* Research partially supported by the Hungarian Foundation for Scientific Research,
grant no. 1186, 1994.



214 M CAVANI and M FARKAS

It is reasonable to assume that the present level of predator quantity
effects instantaneously the growth of prey, on the other hand, the growth of
predator is influenced by past values of prey quantity. Therefore, secondly,
we replace N in the second equation of (1.1) by its time average over the
past. We shall be concerned, primarily, in the destabilising effect of the
influence of the past and in the character of the possible bifurcations.

Finally, we shall assume that predator and prey undergo Fickian diffu-
sion in space.

Accordingly, in Section 2 conditions for stable equilibria of system (1.1)
will be established. In Section 3 an Andronov-Hopf bifurcation will be
calculated at a special constellation of the parameters. In Section 4 the
delay will be introduced, and conditions for stability will be established. In
Section 5 the Andronov-Hopf bifurcation will be calculated when the delay
is increased. The study of the reaction-diffusion equation built upon (1.1)
will be accomplished in a subsequent paper.

2. Stability of equilibrium points

Clearly, the positive quadrant of the N, P plane is invariant for system
(1.1) , and one may prove, similarly as it was done in [9], that all solutions
with non-negative initial conditions stay bounded in t £ [0,00).

On the boundary of the positive quadrant the system has two equilib-
rium points: (0,0) and (K, 0). A simple linear stability analysis shows that
(0,0) is always unstable, and that (K, 0) is asymptotically stable if

(2.1) 7> BK/(R + K),
and unstable if
(2.2) 7 < BK/(R + K).

Note that (2.2) is equivalent to 0 < /37/(/3 —7) < K and implies 7 < B and
7 < K.

However, for reasonable parameter configurations we may establish the
global stability of (lv, 0).

T heorem 2.1. If
(2.3) 1= and &=1R

then (1i,0) is globally asymptotically stable with respect to the positive quad-
rant of the N, P plane.
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P roof. Decreasing the first term on the right hand side of the second
equation of (1.1) by writing B for 7 and $we get that

PR -BP{l- N/{R+ TV) < -cP

for some ¢ > 0, since N(t) is bounded in i 6 [0,00). As a consequence,
any solution P(t) corresponding to non-negative initial conditions tends to
zero as t tends to infinity. Thus, the omega limit set D of every solution
with positive initial conditions is contained in {(7V,0) : N ~ 0}. But for
N > K we have N < 0, so, if C {(A,0) :0~ ~ K}. Taking into account
that (0,0) ~ 0 and that D is a nonempty, closed, invariant set we get that
2={K, 0} O

Note that since the right hand side of (2.1) is less than R, the first
inequality of (2.3) implies (2.1), i.e. it implies the asymptotic stability of
(K, 0). The intuitive meaning of 7 ~ [ is clear: the minimal mortality
of the predator is high compared to the conversion rate; this leads to the
extinction of the predator. If we assume that the mortality of the predator
grows with its quantity, i.e. f) > 7 then the first inequality of (2.3) implies
the second.

Theorem 2.2. If

(2.4) 7<B"™6
and
(2.5) K ~RBjI{B - 7)

then (K, 0) is globally asymptotically stable with respect to the positive quad-
rant of the N, P plane.

Note that if B > 7 then (2.5) with a strict inequality is equivalent to
(2.1), so if (2.5) is strict we know that the equilibrium is locally asymptoti-
cally stable.

P roof. First, consider the case when (2.5) is strict, i.e. (2.1) holds.
This implies that an 1j > 0 exists such that 7 > B(li + r])/(BR + K -f 7), and
so if N(t) ~ K + 1j then applying (2.4)

( w  +ay\

P(t) < - ]
) R+ N(t)J M y R+ K+ T

P(t).

=«

But the set {(IV,P) :0< N ~ K + 1j, P > 0} is positively invariant since

V< 0if N —K + 1, P ~ 0. So if the initial values satisfy N(0) ~ K + 1),

P(0) > 0 then P(t) —0 exponentially as t —»00. If 1V(0) > K + 1 then
N(t) < —sr]N(t) while N(t) > K + 1.

Acta Matkematica Hungarica 63, 1994
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So N will be equal to K + 1wyin finite time, and then P{t) -> 0 as before.
From here on one may repeat the proof of the previous theorem to complete
the proof for this case.

Secondly, assume that (2.5) is an equality, i.e. 7 = BK/(R + K). We
substitute this value into system (1.1) and move the origin into (K, 0) by
the coordinate transformation n = N —K, p = P. We get the system in
the form

regr "= ~E(n+ K)n/K - B(n+ K)P/(P+ K + 1)
\p —-p(BK/(B + K) +6p)/(1+ p) +B{n+ K)p/(B + K + n).

Now, we use the positive definite Liapunov function
V(n,p) = B/K)n2+ (B + K)p2

If we denote the derivative of V with respect to the system (2.6) by V we
have

-(2/2)V(n,p)(R+ K+ n)(1+p) =n2(n+ K)(BR+ K + n)(p+ I)Be/K2+
+np(n + K)(p+ LDR2/K + p2(6(R + K)p + BRI()(R + K + n)-
-B(B + K)p2(n + K)(p+ 1),

and applying (2.4) a simple calculation shows that V(n,p) < 0 for n ~ 0,
p > 0. This means that all solutions with positive initial conditions either
tend (in principle) to (n,p) = (0,0) or leave the n ~ 0, p > 0 quadrant
through the line n —0 in finite time. Now, the strip {(n,p) : K <
< n <0, p> 0} is positively invariant and if —K < n(t) < 0 then applying
(2.4)

P(t) 1 - p(t)(BK/ (B + K) + Bp(t))/(1+ p(t))+
+R(n(t) + K)p(t)/(8 + K *+n(t)) =

m ( RK _ R{K + n(t)) R 2p(t) \

H }I\B +K B +K+n() + @+p)B+K)j

Thus, once, in the strip, p(t) is monotone decreasing and p(t) —»a " 0,
t —»00. If a > 0 were the case then

P{t) < -Pit) ab2 t>to
(1 + p(t0)) (B + R)

would hold for some <0 > 0, and this would imply that p tends to zero
exponentially contradicting the assumption a > 0. So p(t) tends to zero,
and the proof of the previous theorem can be repeated again. O
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Note that, as a corollary, conditions (2.4), (2.5) imply that system (1.1)
has no equilibrium point in the positive quadrant N > 0, P > 0.

We now turn to the case when an equilibrium point exists with positive
coordinates. Making the right hand sides of system (1.1) equal to zero we
get that the prey null-cline is the parabola

P =Hi(N) :=(K-N)(B +N)ef(BK)

and the predator null-cline is the hyperbola

_ — (B- 7))~ - Rl
P =H2N) = ((S-B))N +RS'

To have a reasonable concave down predator curve we have to assume S *
~ B, so since the case when also 7”/3 has been treated in Theorem 2.1 we
shall assume in the sequel that (2.4) holds. In the special case when 6 = 3
the predator curve is the straight line

P =H3(N):=®- 7)N/B2- 7//.

Since Hi(N) > Oifand only if -B <N < K