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UNIQUENESS THEOREMS FOR WALSH SERIES
UNDER A STRONG CONDITION

K. YONEDA (Osaka)

1. Introduction
Let

p="2M k)wk(x)
K=

be a Walsh series and A a certain class of Walsh series. When E is a subset
of the dyadic group, it is called a set of uniqueness for A, ifp € A and

2"

lim ¥ fi(k)wk(x) = 0 everywhere except on E

k=0
imply that p(k) = 0for k= 0,1,2, _ When E is not a set of uniqueness
for A, it is called a set of multiplicity for A.

It is easy to see that a subset of the dyadic group is a set of uniqueness
for the class of all Walsh series ft such that

X1 IMMOI2 <
k=0

if and only if it is of measure zero. This class of Walsh series coincides with
L 2-space.
In this paper we shall consider the uniqueness problem for the class of
all Walsh series p such that
2+l
K k)wk(x) 2"14Tt™(/,,(x))] = o(l) uniformly in x as n —»00.
k-2"
Let B be the class of these Walsh series. It is easy to see that B and L2 are
not subsets of each other.
We shall prove the following three theorems.

THEOREM 1. Assume that E is a subset of the dyadic group, and there
exists a couple of sequences of integers

{ivn},, = {Nn(x)}n and {kn}n = {fon(x)}.,

for each x 6 E such that
(i) Nn TOO as n —00;
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(i) Iw k,, < 00;
(iii) there exists a dyadic interval INn+kn of rank Nn + kn such that
INn+n A INn(x) and INn+knMME =0 for n=1,2,....
Then E is a set of uniqueness for B.
An H”-set on the dyadic group satisfies the above condition (see [3]).

THEOREM 2. There exists a set of multiplicity for B which is of measure
zero.

Theorem 3. A set of positive measure is a set of multiplicity for B.
Let mRB be the dyadic measure associated with a Walsh series p, that is,

mM) = hm /Ap(k)wk(x)dx = — A  A(0™fc(r)
L k=0 k=0

(fi, [2»eee) such that

where 1,, is the set of all 0 —1 sequences, x

.
E tk P
2k ~ 2n
forp=0,1,... ,2" - 1. Inis called a dyadic interval of rank n. Through-
out this paper, /, denote dyadic intervals, /,,(x) denotes the dyadic

interval of rank n which contains x. -
We identify z = (<i,i2, ...) with the niimber $2  if lim tk”~ | and write

if lim tk = 1. For details of the dyadic group and dyadic measures we refer
the reader to [2], [4], and [5].
2. Proof of Theorem 1

If x £ E, then there exists a finite set of dyadic intervals such
that

W *) 2 n,,+1 2 oo 2 INn+kn = ANi+kn
forn=1,2, Ifp €# and
2J-1
JIHBO A p(k)wk(x) =0 everywhere on ? +fen,
T oo

then by Corollary 1 of [6] we have m”~(1) = O for each 7 ¢ . Since

idc<a Mathematica Hungarica 61, 1993



UNIQUENESS THEOREMS FOR WALSH SERIES 3

AmNe ) = mB(I?+1L) - mB(l«H ),
we have

™5INN(X)) = mM N n(x)\IN n+1) + ™I Nn+1) =
= + 1T (AT, (X)) + = °A2NN) +2mA 7An+) =

=°(”Mn) +2"T™M + J1 1k+2)+bl 1mn+2)} =
= + 27N N T RETLAD) + 2wl (A, +2)} =
=°(NM» )+ 2 °(N-+T) +ATIIMN + 2) = mee =

=° (1) +"-+0( 1) +2Bmi(/~+)=0(|") &SM"*°°’
Thus we proved that
2MirMy(Imn(x)) = o(kn) as n —oo.
From the assumption we have
2"-1
liminf 2njmu(7,,(a;))| = liminf A £(*)>*(*) =0 everywhere on FL
n—»0 n —»00 \1@0

Hence we proved that
n—1

Iirl:még jt(k)wk(z) =0 everywhere.
k=0

By Lemma 1 of [6], we have p(k) —O0 for k = 0,1,
From Theorem 3, the set introduced in Theorem 1is of measure zero.

3. Proof of Theorem 2
To prove Theorem 2, we need the following Lemma.

Lemma 4. When N is a positive integer, there exists a nonnegative
dyadic measure rn™ which satisfies the following conditions:

(i) 7 ,.(/°) =1
n—1

(i) lim 2nT”(1n(x)) = Um E0 £(&)ro*(x) = 0 except some perfect set
K=

of measure zero;
2=

(i) |4 T/47,0x)| = k_E2n K Kwk(x) = jfa" for X and -

P roof. Suppose that N > 2. Put T~ (/°) = 1,

Acta Maihematica Hungarica 61, 1993



4 K. YONEDA

4N

1

T+, forp=0;
Y oay forp=1

and
i i rey forp=0
Fotp- b forp= g
§ i Lu_l forp =2
2 _LIJI -y forp=3
Continuing in this way, we have

>0 forO<p<22N- 1

=0 forp=22N—1

If1 C X>then Put wm(/) = 0. It is easy to see that the number of
dyadic intervals of rank 2N satisfying
2K
n) = N22N

If > 0, continue in this way on each 19\. The number of dyadic
intervals of rank (2N + 2k) satisfying

kK 2K
MA2N+2K) ~ N22N k22

(2N (2k\
\ k) kY-
C)ontinu)ing in this way, we can construct the dyadic measure m”.
Let S be the sum of dyadic intervals | such that Tu(l) = 0. Thus the

measure of S is given by the following equation:

1S

i 2N\ 1 (2N\ A (2K 1
B - an + 27 U J 4AN+fd + 2 ~ U Jz A U J_4AN+kI+k2+
=i 4 i/ =i 4 17 2=i 4 7
N » 2k T K N 1
o T

EIi£r*£iU vy U J’4 VAT -+,

Since
2k,

we have

Acta Mathematica Hungarica 61, 1993



UNIQUENESS THEOREMS FOR WALSH SERIES 5

3-1=1 fcj_1=1

2 2/2fcj_2\ 1 f / I\12I»s /  I\2fca2

-K

and so on. Thus we have

VvV [2iv\ 1 2&n 1 MA
ANANNKTKbTAKITKIET *o
where Ao =0, A\ = 1+ cer JAK+1= 1+ 4N e It is obvious that

Ao < A\ < A2....

Put I|m Ak = A. Then A satisfies 1-fy = A, from which A = 2 follows
|mmed|ately Hence we have

| f [ 12T I At\N [/ At_i\2M
5| =£™ 4*{1+(1+2) 1+"-+(1+t ) "(1+_T7™) }=
= lim -L (i+ 27\/-51L)2’\ =1
k™00 4n AN
The dyadic measure IS nonnegative and satisfies
if/n(*)C 5
otherwise.

The proof is complete.

P roof of Theorem 2. Let {£,},, be a sequence of positive numbers
such that £,, 1 0 as n —» 0o. We shall construct a dyadic measure m”. First
put TA4/48) = 1. When N = 2, by Lemma 4, there exist an integer w, and a
set of measure 1, S2 such that

U

»017

and satisfies
‘ ”IArg)wo 2nTn(x)) =0 ifx 6 SZH"

[ 14 T/a7,(x)| < jTTr  for all zand n < n\.

Acta Mathemaiica Hungarica 61, 1993



6 K. YONEDA

Put
L

Y Ini(x) = "2 U* (disjoint sum).
XES] fc=lI

On each /£*, there exist an open subset S* C Ini and an integer e(> ni)
such that w”(7) = 0if 1 C SW and

s(*)d/S2
By Lemma 4, for a sufficiently large N, we can construct a dyadic measure
nifi on each such that

larnm(/,,(a;))] » AZ forall x and n\ <n <n2
0 °

Continuing in this way, we can construct on the dyadic group. Hence
there exist an increasing sequence of integers and an open set S of
measure 1 such that

i ™mM) =i
< JAmM/i(7n(@0)| » (X+q2* for all x and Nk =n < n*+ii
( m~J))=0foralll CS (k=1,2,...).

Therefore Scis a set of measure zero and a set of multiplicity for B.

4. Proof of Theorem 3

To prove Theorem 3, we need the following lemma.

Lemma 5. LetE = Iar (disjoint sum) and s =sN —#A where #A
pENn
is the number of all elements of A. For each positive integerj such that

0<s< 2n+1-1],

there exists a nonnegative dyadic measure which satisfies the following
conditions:
(i) T Wlo)=~n 2\AL-j i %
AN (1) . < KM foroAn<N andp=0,1,... ,2"- 1

@@ TWw@)=0ifl NE =0
(iv) . m,,(Ip) <s+1 forp- 0,1,... 2N- 1

Acta Mathematica Hungarica 61, 1993



UNIQUENESS THEOREMS FOR WALSH SERIES 7

Proof. When a nonnegative dyadic measure m” satisfies the above con-
ditions for some j, N and s, we call it a dyadic measure of (j, N, s)-type.

We shall prove Lemma 5 by induction. When j = 1, put rn*{l) = |7nJS]|.
Obviously satisfies the condition (1). Thus is a dyadic measure of
(1, N, s)-type. Lemma 5 is valid forj = 1.

Whenj = k—1, N =0,1,... and 0~ s < 2N+2~k, assume that there
exists a nonnegative dyadic measure of (k —1,N, s)-type for each E. We
shall prove that there exists a nonnegative dyadic measure of (k,N, s)-type.

When 0 < N <k, we have s = 0. Put

2 rn*"lP) = for all p.

It is easy to see that m” satisfies (1).
When N =k, two cases arise; s = 0and s = 1.
When s = 0, define m” by (2).
When s = 1, we can assume without loss of generality that

IIIME =0 and Lf CI\.

Let m' be a nonnegative dyadic measure of type (k,k, 0) and m" be of type
(k —1,k—1,1). Put

\m\IR- 1) ifInC ;
X (1+Ci)

Obviously mp satisfies the conditions, (ii) of (1) for 0 < n < k and (iii) and
(iv) of (1). Since

@) mM )

i Tno

W ($)

J V(AR =5(3- 5)

we have

1 | +i} = i.

Hence mifj satisfies (i) and (ii) of (1) for n = 0. We proved that IS a
dyadic measure of type (K, K, 1).

Assume that Lemma 5 holds for N = 0,1,... ,k,... g\ we shall prove
it for N = g+ 1. We can take s = 0,1,... ,29+2-fc. When s = 2s', put
s\ =s'—r and s2 =s' +r, and assume that

(/«,U...U/,P,D,)I‘IE:O; ('S.U- UC.)C'fi
Uiiil...u75*)nE = 0i

Acta Mathemaiica Hungarica 61, 1993



8 K. YONEDA

When s' < 2g~k, let m! and m" be nonnegative dyadic measures of type
(k,q,Si) and type (k,q,S2), respectively. Let be the dyadic measure
defined by (3). Thus satisfies

s'—r k+1

29+1-* "% 2
s'+r'j T+ | s _k+1 S
29+1-k J~ 2 20+1~k ~ 2 2(9+) +I-fc

and

S'—r +1 s'+r”
29+i-fc 2 29+1 fcJ
1 2r N ¢ N2k 1
2 29+!-€ = 2g+1~k < 20+1fc —2°

It is easy to see that m” satisfies (ii) of (1) for 0 < n < g+ 1, (iii) of (1) and
(iv) of (1). Therefore m™ is a dyadic measure of type (k,g+ 1,s). When
20~k <s' < 2g+1~k, two cases arise: s' + r < 2g+l~k and 2g+l~k <s' +r <
2s' = s < 2g+2~k.

In the first case, we define similarly as we did in the preceding case
and we can easily prove that Tu is a dyadic measure of type (k,q + 1,5).

We shall consider the second case. Put d =s' +r —2g+1~k. When d is
an even number, let m! be a nonnegative dyadic measure of type (k,q,2s" -

—20g+1~k —j) and satisfy
m'(1?) = = .. = =0

When d is an odd number, let m* be a nonnegative dyadic measure of
type (k,q,2s' —2g+1~k - and satisfy

Moreover let m** be a nonnegative dyadic measure oftype (K, q,2s'—2¢+l k—

—— and satisfy m**(J) = 0 if m*(1) = 0. Put

m\l) = i{m*(7) + for all 1.

Acta Mathematica Hungarica 61, 1993
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Thus m"' satisfies

K31 b (38 aarmk-
AR =ls{ A -2 (B-2w ) -

and

™vp) =i {rn-(Ip) + m” (ir)}<
11 (k+1  k+1\  fefil

2 'l ~+_T") =VFT i

tOrau

Next, let m" be a nonnegative dyadic measure of type (k —1,q,s' + r) and

satisfy
m " m cn 4 n 1 9 37
" (N ]D= G +iis) = - = " 3(5+iii) = o-
Thus m™ satisfies
m'vz) = § -
rri'i 199 < for all p.

e defined by (3). Then we have

Let mLLbe the dyadic mea
TNI16) = - 20+H1~k- 1)+ 1 - +1)}
=5{k+\ (2»'-2»+“- " - i(@+rf+2»+--"))} =
I f, 1 1 / 2g~k+1\)
721 + 2 29+1-* (2s - 2 )}~
_If 1 2s' i Jfc+l
- 21fc+2  29+1-kt+ 2J 2 2(2+i)+i-fe!

Acta Mathematxca Hungarxca 61, 1993



10 K. YONEDA

L 1
0 SAw, 1) =jl{—"~ 2¢q+I-t - 2+1-*- ;) b

{5 -"M(» "+ i+2+1-°-*)}] =

\{\2feT<4» - 242-* - id - 2, “+1)} =

I fi s' d 11 1r s d |
~ 212 ~20k + + 2g+1~k+ 2/ 212 ~2q-k + 29+1-* | ~
=\{i - +2"+1-1- )} <1{2- "™ (Y - Y+r*«-*)} 2
and
maxmM/P+1) = | maxm'(ij) < *

It is easy to see that satisfies (1). Thus m” is a dyadic measure of type

(k,g +1,s).
Finally, we shall consider the case s = 2s1+ 1. Without loss of generality
we can write s\ =s'—r and S2 =s’+ r + 1and

PJU u...U/£,) N E=0, (/",U...U/I£,)C ;
YO£ =0, (/Elm..u/;4)C.TL

When s'+ 1+ r < 29+1 * we can proceed similarly to the case s = 2s' and
s' +r < 29+1-fc. When 2%+1fc < s'+ 1+ r N 2s' £ 1, define m! and m"
similarly to the case 2s' = s and 2g+1~k <s' + r < 2g+2~k. Since

Myvs) =} +50,, ( 241" - y-1 +1+ - 1)+ 2940
K
=5 2«+]2_ i:(29+2-1i:- 2 /- 1)+ 291g2_*
and
TM'UO) = § - 2q+2~k’
we have

[A">,(0)| = 5[">W) - m»"(1)] =

) o ml d A d

S+ 3ilfg 21+2-° - 2/ 2042-% —2  2«#2-*
1 29+ -1 1
2-5nrrY+1 -0 <1- 59,

Acia Mathematical Hungarica 61, 1993



UNIQUENESS THEOREMS FOR WALSH SERIES 11

and
+ » '(« )) =
=s{]|+5 t(2+2°1- 2s'+ L| + 254=1 + 2q+2-k } =
k+ 1 2s'+1
29+2-1:1

It is easy to see that satisfies (ii) of (1) for 0 < n < g+ 1 and (iii) and
(iv) of ().

Hence m” is a dyadic measure of type (k,q -f 1,2s' + 1)- The proof is
complete.

P roof of Theorem 3. Assume that E is a closed subset of the dyadic
group and

By the Lebesgue theorem, we have
lim 2n\E N7,(z)] =1 ae on E.

n —HOO

Thus by Egoroff theorem, for sufficiently small £\ > 0, there exist a perfect
set Ei C E and positive integer Ni such that

1-2 NI[En/~A(x)| <Ei on Ei,

that is,
\EN1n(x)\ > -~-(1 - £i) on Ei.

N=U*(*=E % «isoint sum)

xeEl p€N(°)

Put

Moreover we can make Ei satisfy
[Fi|>|£1] > 1 -~ r.
Put a= 2 * - #A(°) = #A(°)Cwhere A(®)e = (0,1,2,... ,2" - 1} \ A(>>.
Thus we have
I U al 2
2/ <20

P6AC)C

from which s < 2721+1 fcl.
By Lemma 5 we can find a nonnegative dyadic measure which satisfies
the following:

Acta Maihemaiica Hungarica 61, 1998



12 K. YONEDA

(i) rai(/0) = -——;
W |AT1(/™M)| A~ ATrfor0O<n <Niand 0<p<2%
(iii) mx() —0if I R —0;
(iv) A for 0~ p < 2NI.
When pi € Ji°> we shall discuss on If} similarly to the preceding case. Let
K2 be a number such that

1
2 BTN <50 2k
By the Lebesgue theorem, we have

n“—r+n002N|+n\E M/pr,+,(x) =1 ae.on ETM If}l.

By the EgorofF theorem, there exist a set C If} ME and a positive
integer N2, which does not depend on p\ € J1*0), such that

1- 2N M \E MINI+Ni(x)I <s2 on E(pi\
where £2 is a sufficiently small positive number. Thus we have

IE M/jp+2(x)| > A~ + ~ (1- £2) on EIfl).

Put
FH)= U MMWHRMa(*)= v, n1t2  (disjoint sum).
XEE[P) PEAft
We can make E " 1" satisfy
r-(Pi) -(Pi)
>E(*-£)-

Put s2 =2N>- #/1p™ = #N ") where JINC = {p@2N\p*2+ 1,... ,(ft +
+ 1)2/2—1} \ Ag>. Thus we have

u _ «2 1 1
NMitNZ O SN2 2NE 2fcl
P2Ey ¢

By Lemma 5 we can find a nonnegative dyadic measure which satisfies
the following:

M4 9,(%)=3*r(" -
(i) AmMPN(;Ni = ey Or0£ < N2 and Ifjl+n C
(iii) n4PI)(/) = 0if I MFZpi) = O;
(iv) m[Pi\ | Ni+Ni) < -~ #-forahp o {ft2*... ,(ft + 1)2" - 1}

icia Maihematica Hungarxca 61, 1993



UNIQUENESS THEOREMS FOR WALSH SERIES 13

Continuing in this process, we can find three sequences of numbers, a
sequence of sets of integers and a sequence of dyadic measures such that
(i) Ni <N2<... and lim Nj = oo;
P>

(i) ki <k2< ... ,JIAiCr)nO kj = oo and 'ﬂl < 00;
=1}
(iif) 5i, S2,... such that sj < 2N>t1~ki ;
fivl A®) AN AN AN
(V) rg,m "\ m<HEIP),.
where rrSPI"'Pi~" satisfies the following:

(i) "m (pi Pj = 2nl+.Hnj_1 - 2Jsr-H_fek);
(i) " AMJPI"PI_D(/*i+ +7_i+n)| < 2NI+.HNJ_1+nH for 0 < n < Nj and
t . r rPj-i
e +Nj-14n - INIE N1 s
iy mif? Pl = 0if/n ( w FoA%) = 0;
pene

. 5pi-Pi-i) ) ) o x )
(iv)' m Uni+.-.+Nj) = 2ivi+J+vi+1 for i~ 1+,.+> C 7arl+.. +10,_1*
Put

Ci fc+ 1

W, >r 5
Ak,N,;s) = - 2NHT-*"

We shall construct a dyadic measure m” as follows. When 0 <n * N1, put

1
mNOP) = A ey nisiy | <CUP)

When W2, put

AKUNItI) m (A 1)A(KZSM2»2)m PIV A +n)
mM  I+n) = < if 7d+n ¢ ™~ wherepi e n(0);

PBA(°)C Jvr

Continuing in this process, when 0 ~ n < Nj, we can define
mp(INI+...+NJ. 1+ J as follows:

,(Pi;/

AMNLN1L,«)T 1 (74 ) *A(KIN 2i2)m PH(TM +V2) e
) 7Vi+...+JVj_i+n)

TVA-+AO0-i+n

If 78i+...+Aj_1+m»>C7Al+.+y>1f°r Pj-1"Pi-Pj-2t
. 0 otherwise.

Acta Mathematica Hungarica 61, 1993



14 K. YONEDA

Since for 0 n < Nj,

+ eset Nj-i +n)| < A(jfchjVb51) mi(i~1)* il(fcatjVaj5a)

1 1 ki +1 2NI k2-f1
2Ni+---+Nj-i+n+l — fa+1 _ ~ 27i+!  7~2+41 _ j 2N*+1
2jM+. i 'ﬁl +1 1 i
27i+.. +iVI_1+n+i - ||I k ! 'bj_ | w221+ -+~ -j+n’
r=
we have
j-i
K, +-HT< 1" [N () 1+ +Ki 1) s Tl spri = o(1)

as j —»co, from which

2MH1-1

2" |arnA/n(x))| K kK)wk(*) = 0c1) uniformly asj —oo.
k=2"

Thus /i £ 8. On the other hand, if

ANi+W23 ... 9 ~W*< 3 ... D (X)

and /or*+ +Mc ME ¢ O for all A then there exist y 6 £ M /g”+ +Nk for all
K and Xc —»x as A—»00. Sin;e £ is a closed set, we have x e E. Conversely
if X' £ E then there exists /arl+ +V such that

Ni+.-+N,,, 9 X' al* "Wi+.4T*nE =

Hence if x' * 22, then 2"mM/n(x)) = O for sufficiently large n, that is

lim 2nm,,(/n(x)) = 0 excepton E.
Moreover T4 /a) = 1. Thus we proved that E is a set of multiplicity for B.
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UNIFORM CONTINUITY
IN SEQUENTIALLY UNIFORM SPACES

A. DI CONCILIO* (Salerno) and S. A. NAIMPALLY (Thunder Bay)

Introduction. For a metric space (X,d) the following three levels of
uc-ness (continuity of some set of functions is uniform) coincide: (a) any
real-valued continuous and bounded function is uniformly continuous, i.e.
C*(X,R) = U*(X,R); (b) any real-valued continuous function is uniformly
continuous, i.e. C(X,R) = U(X,R); (c) any continuous function from X
to any (metrizable) uniform space is uniformly continuous, i.e. C(X,Y) =
= U(X,Y) for any uniform space Y. The equivalence is due essentially to
the following sequential characterization of uniform continuity in the metric
case. A function / : (X, d) —(F, d') is uniformly continuous iff for each pair
of sequences (X,,), (yn) ofX iflim d(xn,yn) = Othen limd'(f(xn), f(yn)) = 0.
The uniform version of the previous sequential characterization of uniform
continuity has been used to define sequential uniform spaces. The catego-
ry of sequential uniform spaces introduced by Husek [4] is a wide class of
uniform spaces including metric spaces, closed under sums and quotients. A
sequentially uniform space is a remarkable example of uniform space in which
if any real-valued continuous and bounded function is uniformly continuous
then any continuity is uniform. We will obtain this result proving that a
sequential uniformity is the largest member of its proximity class. Further,
after generalizing in a natural way the notion of pseudo-Cauchy sequence,
we will show that a normal sequential uniformity is fine (any continuity is
uniform) iff any pseudo-Cauchy sequence with distinct points has a cluster
point.

1. Sequential uniformities

Let (X,U ) be a uniform space. Two sequences (X,,), (Y,) of X are called
adjacent iff for any diagonal neighborhood V £ bl there exists no £ N such
that (xn,yn) £V for any n > no, [4].

A uniform space (X,U) is called sequentially uniform iff any function
from X to any (metrizable) uniform space which preserves adjacent sequences
is uniformly continuous.

*Research supported by Fondi di Ricerca del Ministern dell’ Universitat e della Ricerca
Scientiflca e Tecnologica (lItalia).
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The category of sequentially uniform spaces is a wide class including
metric spaces closed under sums and quotients.
Any uniformity u induces a proximity 6 in the following way:

ASBo(vv £U=>V[A]ns5/0).

Usually the family of all uniformities inducing a fixed proximity has no
maximum, [5].

Proposition 1.1. A sequential uniformity U is the largest member of
its proximity class.

Proof. Let V be a uniformity proximally equivalent to U. We have to
show that the identity / : (X ,U) — (X, V) is uniformly continuous. Suppose
not. Then there would exist a pair of sequences (xn),(yn) adjacent with
respect to U and a diagonal neighborhood V £ V such that (xn,y,,) f. V for
each n £ N. By Efremovich lemma if W £ V and W4 C V, then one can
find subsequences (xI'(!), (yI'k) such that (x,,k,y) ~ W for each k,I £ N. So
A={x,fckf N} and B = {ylk: kK £ N} are far in contrast with adjacency.

Let C*(X, R) (U*(X, R)) be the set of all real-valued continuous (uni-
formly continuous) and bounded functions on X.

Proposition 1.2. IfU is sequential and C*(X, R) = U*(X, R), then
any continuous function from X to any uniform space Y is uniformly con-
tinuous.

P roof. If continuity of real-valued bounded functions is uniform, then
U must be finer than the uniformity induced on X by its Stone-Cech com-
pactification. Thus U induces the largest compatible proximity Sp, which is
called the functionally indistinguishable proximity [5] (A ftp B m3there exists
a continuous function /: X —»[0,1] such that /(A) = 0 and f(B) = 1).
From Proposition 1.1 it follows that U is the finest compatible uniformi-
ty. It is well-known that the fine uniformity is the only one for which any
continuity is uniform.

2. Sequential characterization of uc-ness

We can give a characterization of uc-ness in sequentially uniform spaces
in terms of sequences as in the metric case by generalizing the concept of a
pseudo-Cauchy sequence in a natural way [2]. In a metric space a sequence
is pseudo-Cauchy iff the pairs of terms are frequently arbitrarily close.

A sequence (i,,) is called pseudo-Cauchy iff for each no &N there exist
A,BcN suchthat AMB =0,n0<A, no<B and {x,,:n £ A}S{xn:n £
£ 5). In the metric case the two definitions agree.

Remark that for a normal space the largest compatible proximity is
SqmASgB ~ A~ MB~ o 0.
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UNIFORM CONTINUITY IN SEQUENTIALLY UNIFORM SPACES 19

P roposition 2.3. Let (X,U) be a normal sequentially uniform space.

The following are equivalent:

(1) Any continuous function from X to any (metrizable) uniform space is
uniformly continuous.

(2) Any real-valued bounded continuous function on X is uniformly contin-
uous.

3) S= S

(4) Every pseudo-Cauchy sequence with distinct points has a cluster point.

Proof. It is easy to show that (1) = (2) => (3) = (4). (4) == (1).
Suppose there exist a uniform space Y, a continuous function f : X —=*Y
and two adjacent sequences (X,,), (yn) in X with no adjacent images (/(x.,,)),
(/(»,)) in Y. By their adjacency, by the non-adjacency of their images and
by continuity of /, (xn), (j/,,) both do not cluster in X. Further, working
with subsequences, we can suppose that (x,,), (t/,,) have distinct points and
X,, ® ¥T1 for each n ¢ m. Finally, putting z*h —Vh and 2h-i = x/, we obtain
the sequence (zn) which is pseudo-Cauchy with distinct points but with no
cluster point.
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HAAR SYSTEMS FOR COMPACT GEOMETRIES

G. E. ALBERT1 and W. R. WADE2 (Knoxville)

81. Introduction. Haar functions have many applications to information
theory. Because the diameter of their supports shrink monotonically to zero
they are especially useful for “problems where a better representation of
certain sections” of the information is required (Harmuth [4]). Problems of
this type include pattern recognition and image enhancement.

In the literature, Haar analysis of two dimensional problems has been
carried out primarily by the Kronecker product system, i.e., the system
{Xm(x)X,,(jH} where x,y belong to the unit interval, the Xj's are the clas-
sical Haar functions, and m,n =0,1,2,

This hybrid system has at least two drawbacks. Without drastic rear-
rangement the diameter of its supports do not shrink monotonically to zero,
e.g., compare spt(X2n ¢ X2n) = [0,2—=] X [0,2-n] with spt(Xi ¢ X2n+i) =
= [0,]] X [0,2 " 1]. And, the union of these supports fills the unit square.
In particular, when analysis of the unit disc is undertaken there is consider-
able waste storing information from corners which are both unwanted and
unneeded.

Tointroduce systems which lack these drawbacks, recall that the classical
Haar system is defined in dyadic blocks {Xj: 2I ~ j < 2*+1}. Indeed,
Xq(x) = 1, x € [0,1), the functions Xj in the i-th dyadic block, I > 0, are
defined as follows. Divide the unit interval | -f 1 times generating 2*+1 even
subintervals. Using pairs of these subintervals as supports and sweeping left
to right, define

.0 otherwise

where j = 2*+pand 0 » p < 2l. In particular, to define a Haar-like system
on some region in n-dimensional Euclidean space we need only specify a

1The first author is presently a consultant at the University of Tennesse Memorial
Research Center and Hospital.

2 Research of the second author partially supported by the National Science Founda-
tion under Grant INT-8400708.



22 G. E. ALBERT and W. R. WADE

method of division and an ordering on the subregions generated, and define
the functions block by block.

For example, for the unit square set fo(x,y) = 1. To define fj for 2( <
< j < 21 where A > 0 divide the unit square | + 1 times, alternating
horizontal cuts with vertical cuts, generating 2t+| even subrectangles. Use

pairs of these subrectangles as supports, sweeping left to right from the
bottom left corner to the top right corner. Thus for £ = 0 define

+1 if0O~rx<l1l O0~ry<?

-1 ifO<x<lI,
For £ odd, say £ = 2m + 1 for some m > 0 and 2l 5 < 2%1, write j

uniquely as
j = 22m+tl + g2m + p

where 0 p<2mand 0" g < 2m+1. Set

(—)p2e2  if =X< IMH A Y < 20+
fi(x,y) (—lyp+12*2 if AX< AT, =<
0 otherwise.

For £ even, say £=2m for some m > 1 and 2l <j <2t+1 write j uniquely as
j =22m+ g2m+p

where 0 p<2m, 0" < 2m. Set

(—)q2v2 if 2 = X< M= Y <
fi(xy)= (_i),+i2//2 if~» <x< £ti,
0 otherwise.

Extend each /, to the closed unit square [0,1] X [0,]] by
fi(ly)= lim fi(xy),  ye [0,)

and
fj(x, 1)= yl_im_ fj(x,y), x€[0,1].

Call the collection {/o0,/i,---} the square Haar functions. The supports
of the first five dyadic blocks of square Haar functions are represented in
Figures 1 through 5. (The black subrectangles represent a region where

some fj from that block takes on the value +2*/2, the white subrectangles
represent the value —272.) Clearly, the diameter of the support of fj tends
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x=1/2 (1,1) x=UM (1,1)
y=1/2
Y=1/4
(0,0) I=0 (0.0) ,=1 0.0y 1=2
Fig. | Fig. 2 Fig. 3
x=1/2 x=1/2
x=1A x=3/A(1,1) x=1JA x=3/A(1,1)
y=3/A
y=1/2
y=WA
(0,0) 1=3 0.0y 1=A
Fig. 4 Fig. 5

monotonically to zero asj — 0o. We shall see that the square Haar functions
form a complete orthonormal system with at least as good convergence and
uniqueness properties as the Kronecker product system.

For the unit disc set go(r,8) = 1. To define gj for 21~ j < 2t+1 where
| > 0 divide the unit disc t + 1 times alternating cuts along diameters with
cuts along concentric circles centered at the origin, generating 2*+1 even sub-
regions. Use pairs of these subregions as supports, sweeping counterclockwise
spiraling outward from the origin to the boundary. Thus for | = 0 set

if0o $<T
ifT<s <1

For | odd, say i —2m -f1forsome m ~ Oand 2l ~ j < 2/+1 write j uniquely

as
B 22m+l + p2m+1+ q

Acta Maihematica Hungarica 61, 1993



24 G. E. ALBERT and W. R. WADE
where 0 <p <2mand 0 < q < 2m+1. Set

(N92%/2  ifyfic i r <\'PEl. ¥h<g< QR

9I(re) = < 4\ qu1pup Erc Qegl, F2al Ol
0 otherwise.
For t even, say | = 2m for some m > 1and 21 <j < 2t+1 write j uniquely

as
j = 22m+ p2m, g

where 0 <p < 2mand 0~ g < 2m. Set

(-1)P2'/2 if A <r< el s =B (5K
9(r.6 =i (_1)p+i2*2 ify X < r< {(e%, 6 < 55 khlk
, 0 otherwise.
Extend each gj to the closed unit disc by radial continuity, i.e.,

0;(M) = rhm_5fj(r,0), B e [0,2T).

Call the collection {<th5i>see} the polar Haar functions. The supports of
the first five dyadic blocks of polar Haar functions are represented in Figures
6 through 10. Again, a black subregion indicates a value of +2*/2, a white
subregion a value — 112. Clearly, the diameter of the support of gj tends
monotonically to zero, and the union of the supports of polar Haar functions
fill the unit disc (but not the unit square). We shall see that the polar Haar
functions form a complete orthonormal system with Haar-like convergence
and uniqueness properties. Hence this system offers an improvement for
circular geometries over the Kronecker product system.

Hg. 6 Fg. 7 Hg 8
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Fig. 9 Fig. 10

It is clear that the method above can be applied to any region in the
plane, indeed to any region in n-dimensional Euclidean space. In order to
be useful, the systems so generated must have good convergence properties.

Gundy [3] introduced A -systems which behave wonderfully in this re-
gard. Hence a general construction conforming to the procedure set forth
above would be easily analyzed ifit generated A -systems.

In 82 we shall give a general procedure for constructing a system 7i on
any compact, metrizable measure space (4 ,”"), hence on any compact region
of Euclidean space. We will show H is complete and orthonormal in LE(A)
and that it includes the square and polar Haar systems generated above,
after a dyadic block rearrangement.

In 83 we verify that Ti is an A -system. We show that H has the desired
convergence properties. Among them, the A-Fourier series of a function /
converges uniformly when / is continuous on A and converges in L \norm
when / € X£E() for some 1< p < oo.

In 84 we obtain sufficient conditions for uniqueness to hold for # -series.
Our conditions improve earlier work by Movsisjan [5], which applied only to
the Kronecker product system. In particular, we show that for uniqueness
not only countable subsets, but any countable union of embedded arcs can
be disregarded.

82. The general procedure. An explicit description of the square and
polar Haar systems appears in 81. This was done to indicate how they might
be programmed. Fortunately, such explicitness is unnecessary for the general
case.

Let [ be any compact metric space and /i be a non-negative regular
Borel measure on [, of total variation 1 (see Rudin [6] for terminology). Let

Ada Mathtmaiica Hungarica 61, 1993



26 G. E. ALBERT and W. R. WADE

{Ath. 1~i "~ n}, n=1,2,..., be a sequence of partitions of [ such that
for each integer n > 1,

1) A = A<m)up<mn -un a1 n)

(2) 4, Ma;.n =0 for idj,

(3) A" —_a("+1) ¢ Ador) >

(4) arn) = pE+ 4 for *=2,3,... ,®
(5) F(p<"+1>) =y (A 1 1)

and such that

(6) nlﬂ]go(vrrﬂ,g)é dlamglA,;nh? = 0.

Such partitions can be generated recursively by setting A, = [ and succes-
sive division using (2) through (6). Notice that the partitions {4 1 i <
5= 16} are even only when n = 2| for some £= 0,1, It is these partitions
which correspond to the dyadic blocks illustrated in Figures 1 through 10.
The partitions corresponding to n for 2l < n < 2*+1 are hybrid ones bridging
the gap from one dyadic block to another. We have allowed this redundancy
to simplify the theory below.

For each integer ©  1let [w] represent the greatest integral power of 2
in n, i.e., [n] = 21 where £is the unique integer determined by 21 » n < 2t+1.
Define the system H = {ho, hi,,..} on [ as follows. Set ho(x) = 1 and

+1 ifx € A2
—1 ifx e AM2).

h\{x)

Forn>2and x € [ set

[z if x GAn"+1

-[»1* Ux6OQWNT
0 otherwise.

Notice for a suitable choice of the partitions {4,-n : 1 ~ i ~ 1} in the unit
square, respectively the unit disc, that the system 7i is equivalent to the
square Haar system, respectively the polar Haar system. Indeed, the system
H so generated is a dyadic block rearrangement of the square Haar system,
respectively the polar Haar system.
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To see this let [ represent the unit disc and examine the polar Haar
system {£o,01,...}. Set

={(r,B):050<T0<r<1}
O<2) = {(r,B): >xk<B<2m, OS T~ 1}

Clearly go = ho and g\ = hx. Fix I > 1. We are out to show that the
partitions {,-n): 1 ~ r < n} can be chosen so that

@) {gj:21<j <21+1} = {hj:21<j <2m }

Notice that the f-th dyadic block of polar Haar functions is completely de-
termined by wedges of the form

/(r,#): AZ <r <./

w <, <
y 2m “ y 2m -

L
m 2m /

N =

where » —2m or 2m+ land 0 p <2m,0 £ £ < 2m+1l. Moreover, notice
that the support of any polar Haar function from the f-th dyadic block is
contained in the closures of a region of constancy of some polar Haar function
from the I —1-st dyadic block. Hence by successive division of the sets

On~ 42" using properties (2) through (5) it is possible to generate partitions
so that {,-2 1£ r < 2} coincide with these wedges. In particular, (7)

holds. Notice that gj ¢ hj for many j's after | = 3. Indeed, instead of
spiraling counterclockwise from the origin to the boundary, condition (4)

forces the wedges - ’ to flipflop from origin toward boundary and back
again, as i = 1,2,... ,2~

The fact that special cases of V. turn out to be dyadic block rearrange-
ments of the square and polar Haar systems means that any theorem about
H is at once a theorem about both these systems. For example, if Ti is
complete and orthonormal, then so are these systems. If  Fourier series
converge, then 2"-th partial sums of series in both these systems converge.
And, if uniqueness holds for 2"-th partial sums of 7f-series then uniqueness
holds for square and polar Haar series. Thus we shall analyze Ti in general.

Lemma 1. The systemTi is orthonormal inL”(A) whether (6) holds or not.

Proof. We must show

For simplicity we suppose n > 1.
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If m = n we have by construction that

J hnhmdfj, — J |h,,| dfi.

A(n)
Since \hn\2 = [n] is constant on and since (5) and (2) imply that
(8) A(NTN)) = N -1° n =
it follows that
J \hn\2dn =

If m b n we may assume by symmetry that m > n. Hence A" ' inter
sects Aj only when Aj" C Aj*. Hence by construction,

J h,,hmdB — ] hnhmd[i —i[n]2 J h idfi.
Nl ACNA(T) A<T)
Since (5) and (8) imply .
J- i =

A(T)
we conclude that Ti is orthonormal in i*(A). O
In the next section we shall see that property (6) implies H is complete.

83. Convergence of W-Fourier series. A function / on A is called an
~-polynomial of order n if there exist constants  such that
n—
/| =
Jk=0
A function / on A is called an Tf-step function of order n if there exist
constants c, such that

/ - E Yy )
1— ]
where for each measurable E Q A, n
€E
g A -E

represents the indicator function of E.
It is clear that every ~-polynomial of order n is an W-step function of
order n. The converse of this statement also holds:
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Lemma 2. Let i,n be integers with 1 ™~ i ™ n. There exist constants
ak(i, n) such that
n—1
€)] IA(n) ="2ak(i,n)hk.
fc=o
Proof. We proceed by induction on n.
For n = 1 we have

V>s h°
and for n = 2 we have by construction that
) 1. 1. r 1, 1,
1AW - 2h° + 2hl' Ya<» 2 °~2 1
Suppose the lemma holds for some n > 2 and all 1 <i < n. Observe by (3)
that
T 1T * 1 T 1]j 1
A(H) “ 270d) + 2[n]t/27  O(Rd1) © 2700) " 2 [n]V2
and by (4) that
Ia(n+1) — IA[n)1 i=23,. ,n
Consequently, it follows from the inductive hypothesis that the lemma holds
forn+ 1and all 1<ji5n-f1 O
For / GT*(A) define  Fourier coefficients by

f(n):J fohndg,, n=20,1,....

il
Define the 7f-Fourier series of / by
2/ = £ [ ( k)hk
k=0
and the ra-th order partial sums of 5/ by
r»-|

Snf = J2fW hk’ n=20,1,....

k=0
The W-Dirichlet kernel is defined by
n—
Dn(x,t) =" h fax)hfc(i)

k=0
forn = 1,2,..., and x,t e A. Notice by Fubini’s theorem and definition
that
(I) (Snf)(x) = J f(t) Dn(x,t)dfi(t)

a
forx 6 4,/ e Ljj(A), and n =1,2,
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30 G. E. ALBERT and W. R. WADE

Lemma 3. If P is a step function of order n then
(SnP)(x) = P(x)
for everyx € 4.

Proof. By Lemma 2 there exist constants ak such that

n—

P = akhk.
k=0

Therefore by (10) we have
n-1 .
(SnP)(x) = I hk{t)Dn(x,t)dp{t).
k=0 n

Since Lemma 1 implies

Ve

f k() Dn(x,Hydp(t) = ~2hj(x) | hkhj(dp(t) = hk(),

J J=0 J
we conclude that
n—i
(SnP)(x) = ~ akhk(x) = P(x). O
k=0

This result allows us to obtain a closed form for the H-Dirichlet kernel.
Lemma 4. Leti,n beintegerswith1 < i< n. IftE€ -~ then

[o ifxe O4-p4|n).

Proof. Fix x € [ and observe that Dn(x,t) is a step function in t of
order n. Thus there exist constants ck(x) such that

(n) Dn(x,t) = J 2 ck(x)IA(n)(t).
k=1 *

These constants can be exphcitly computed.
Indeed, use (2) to write

ck(x) —Y _1AR)(t)DN(x,b),
t=i 1 k k
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for each t € g[n* Integrate this identity dfi(t) over to obtain

k(X)L (A ) = 12,,)()D n(x,0)dfi(t) = SnP(x)

v(n)

where P = /a(™). Consequently Lemma 3 implies

mal"y
Putting these values into (11) we conclude that

In particular, since t 6 A-"* implies I * n)(t) ¢ 0 only when k = i, it follows
that
“n(»)0x)
B"<,)="ap)
as required. O

Since the measure /r is a Borel measure and A is compact, it is clear that
each continuous function on A is measurable and bounded, hence integrable.
Therefore, such a function has an Tf-Fourier series and we may ask whether
this series converges.

T heorem 1. Iff is continuous on A then Snf converges to f, as n —* 0o,
uniformly on A.

PROOF. By (10) and Lemma 4,

snf(x) = J f(1)D n(x,ydn(t) = f(t)D n(x,t)dn(t) =
J J
«=1L

m
= \]th)-

Since this sum has at most one non-zero term for each fixed x, and since

I(*) = —An\ /
R
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it follows that

(12) S I(*)-1(*)=IX ()(*)—XK [(/(*)- [(*))«)m

m "<n ;o >4»,

Since / is continuous and [, is a compact metric space, / is uniformly
continuous on . Thus given e > 0 we can choose by (&) an integer N so large

that If{t) - f(x)l <efor x,t e A\n), 1 <i<n,and forn=N,N+ 1,-—--
In particular, it follows from (2) and (12) that

ISnf(x) - f(x)I<e
for n > N. O

For each integer n ™ 1let Bn denote the u-algebra generated by (4,-":15
N i~ n}. Recall given / € EK(A) that the conditional expectation of / given

Bn, written g = E(f \ B,,), is the #,,-measurable function g (guaranteed to
exist by the Radon-Nikodym theorem) which satisfies

(13) \] gdg, = \] fdg,
E E
for all e E Bn-
Lemma 5. Iff € T*(4) andn 1 then Snf = E {f \Bn).

Proof. Clearly, a function is ”~,-measurable if and only if it is a step
function of order n. Hence the function

g = Snf

is H,,-measurable and it suffices to verify (13) for E = g[m*and 1 <k <n
fixed.
A trivial integration and Lemma 4 leads to

\\]Of (t)Mt) _IYVL%)[H f(tydn()dn(t) =

U S f(t)D n(x,t)dn(x)dn(t) = | f(t)D n(x,tydn(x)dn(t).
Ar>a(”)

Consequently it follows from Fubini’s theorem and (10) that

=/ Snf(x)dn(x) = / gdfi.
i 4-.
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Thus (13) holds for E = and the proof is complete. O

Thus we see that the partial sums of any Tf-Fourier series form a mar-
tingale.

Theorem 2. Iff £ TE(Q), 1~ p < o0, then Snf —=*/, as n —»00, a.e.
on A and in norm.

Proof. Fix 1 » p < 0o. Let B~ denote the smallest cr-algebra con-
taining the ~-algebras B\,B2,___ A classical martingale convergence theo-
rem of Lévy (see Doob [2]) states that if f £ XE() is B<x-measurable and
fn = E(f\Bn), then fn -* f a-e-and in TE(Q) norm. But p is a regular
Borel measure. Hence, by Lusin’s theorem the space of continuous functions
C(A) is dense in TE(Q). Since by Theorem 1 the collection of Boo-mea-
surable functions is dense in C(/4) it follows that each T£(A) function is
Boo-measurable. We conclude from Lemma 5 and Lévy’s theorem that Snf
converges to / a.e. and in norm. O

Corollary 1. The system M is complete.

Proof. Iff £ L*(4) and /(te) = 0 for ®= 0,1,..., then the 7f-Fourier
series of / is identically zero. Hence / = 0 a.e. by Theorem 2. O

We have shown, therefore, that M is a complete A -system. In particular,
by Gundy [3] we have the following two results.
COROLLARY 2. If f is measurable and a.e. finite then there is an M-
series
(14) = A2 anK
n=o

which converges a.e. to f.
Corollary 3. An H-series (14) converges a.e. on aset E Q A if and
only if o

A 1(fnhn) oo
n=0

a.e. on E.

84. Uniqueness. A set E A A is called distinguished if E = O ~ for
some integer ® and some choice of r = ®—1 or i = n. Notice for each
integer m > othat the collection of distinguished sets of measure 2_m forms
a partition of [1; indeed,

A= U K-iL)

k=2m+|
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Also notice for each distinguished set E = A ~ that hi is constant on E
for 0 %1 < n. In particular, given any W-series and any distinguished set

E = the partial sum S,, is constant on E.

In this section we consider the following question. When is an a.e. con-
vergent W-series S an W-Fourier series? We begin by showing that if S is
not an W-Fourier series then some partial sum of S is as large as we wish.

Lemma 6. Let f £ Lj,(A), let Eq= A-"0" be a distinguished set and
suppose Sn —=*f as n —»0o, a.e. on Eq. IfSno/ Snof on Eqand M is any

positive real number then there is a distinguished set Am Q Eqg such that
[5m| > M on

P roof. Suppose to the contrary that [5m| ~ M on Atmfor every dis-

tinguished Atmcontained in Eqg. Fix such a A-m\ let Atm”be distinguished
and suppose Agm~C A-m*and

m@@ar>) =1,(a.n)

By definition hi(x) = 0for x £ Atm"and m <t < m! —2. Consequently,
Sn = Smon A-m™for all m A TV< m*. Since the collection of distinguished
sets forms a partition of Eq, it follows from our assumption that

(15) |5jv| * M on Eq

for N = no,«x0+ 1,
Let T = S —Sf and choose by hypothesis a non-zero constant d such
that T,,o= d on Eq. Since

=0
EO
forj = no,no+ 1,... itis clear that
lim = dep(Eq) ¢ 0.
N —*00
EO

On the other hand, by (15), hypothesis, and the bounded convergence theo-
rem, the series 5 converges to / in the L"E g) norm. Hence it follows from
Theorem 2 that Tn —0in L"E g) norm. In particular,

lim Tjvd/x = o,
N-*oof ]

EO
a contradiction. O
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Theorem 3. Letf € L*(4) and S be an H-series which converges a.e.
to f. Iffor every xo € A

Umsup Ilimsup |5,,(a;)] ) < oo,

then S is the H-Fourier series of f.

Proof. Suppose S is not the W-Fourier series of /. Let a0,aj,... repre-
sent the coefficients of S and choose w, ~ 1to be the smallest integer which
satisfies a,,0_i ¢ /(no—1)- Then Sno ¢ Snof on Eq= 4 ~ and by repeated
applications of Lemma 6 we can choose distinguished sets such that
,qllé_-li) D AK) and

(16) \Snk\>k on AO7"), K=1,2 —

Since [, is a compact metric space there is an xq which belongs to the
closures A,-"" for A= 0,1, By (16) we have
limsup |5n)[(@)

for k = 1,2, It follows, therefore, that

limsup limsup |5,,0x)| = +oc.
n—»® X —»X0

Since this contradicts the hypothesis, we conclude that S is the "H-Fourier
series of /. O

Since the one-dimensional Haar system is an W-system, this result con-
tains a new uniqueness theorem in the classical case.

Corollary. Iff is integrable on the interval [0,1], if S is a Haar series
which converges a.e. to f and if

limsup |5n(x = 0)| < oo

n —»0O0

for all x € [0,1], then S is the Haar-Fourier series of f.

The hypotheses of Theorem 3 might prove difficult to verify in practice.
A more easily verifiable hypothesis would be some growth condition on the
coefficients of S.

Since such a growth condition must be satisfied by all W-Fourier series
we begin with the following.
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Lemma 7. Letxo e A and ki < ki < ... be the collection of integers I
which satisfy hf(x0) ¢ 0. Iff is integrable on A then

Jlim /(") = o
j=o hj (*0)

Proof. By definition, hf(xo) ¢ 0 if and only if xqg 6 A™. Moreover,

each h( has constant absolute value on A”~. Consequently, for eachj > 1
we have

\f(k,)\=‘ [ f-htjdp < [»4ro)| fow

Since the |ndef|n|te integral of / is absolutely continuous with respect to y
and /x(4, K1) —Mo as j —»00, it is now clear that

f(kj)/hkj(*0) -+ o

as j —oo. O
This growth condition was first identified for the classical Haar system
by Arutunjan and Talaljan [1]. Accordingly, we say that an W-series

S = ynafchfc
k=0

satisfies the A-T condition at a point xg € A if
. ak,
dim =
i—=00 hkj (*0)
where ki < k™ < ... are all integers £ which satisfy h{(xo) ® o.
By Lemma 7 every Tt-Fourier series satisfies the A-T condition at every

point in A. On the other hand, if an ft-series fails to satisfy the A-T
condition at even one point it may not be an  Fourier series.

To construct such an example, let A = ANIAD A-"2*D ... be distin-
guished sets such that

forj =2,3,... and
{zo} = N J'I( )
i=1
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Define coefficients am by am = 0 when m ¢ kj and

where kj = nj —1forj = 1,2, Consider the 7i-series

(€))] ()]
s=YN hm=Y”" hke
m=0 j=i

An easy induction argument verifies
j 221 ifxse a‘}"j)

AH(X) - A

fornj < n <nj+ and j = 1,2,.... Since the a|"”’s shrink to the point

xo, it follows that S converges to zero everywhere on A ~ {x0}. In view
of Theorem 2, S cannot be an  Fourier series. On the other hand, since
akj/hkj = £1 it is clear that S fails to satisfy the A-T condition at Xo. But

given X ¢ xg and x € A-m\ a distinguished set, we have that m ¢ kj for m
large. Consequently, am = 0 for m large and S satisfies the A-T condition
at every point in A except xo.

This example used a sequence of distinguished sets with non-empty in-
tersection to force the series S to have partial sums identically zero on larger
and larger subsets of A. The following result clarifies the role of the distin-
guished sets by showing such cancellation cannot subsist for 7f-series which
satisfy the A-T condition.

Lemma 8. Let Ej = p|m be a sequence of distinguished sets which
satisfy Eo DEi D ... and Q Ej o to Suppose further for each j > 1 that
J=o

(17) /*Neo) = A
and

(18) Fj=Ej.i \ Ej.

If S is an J1-series which satisfies the A-T condition everywhere on A and
(19) S .0p0 on EO

then

(20) SYUdpO on Fj
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for infinitely many integers j > 1.

Proof. By iteration it suffices to show (20) holds for at least one integer
j > 1 Suppose to the contrary that

(21) Snj=0 on Fj

forj = 1,2,  Foreachj > 0set kj =nj —1 Since each hm vanishes off
4 [T "and for each m the sets g |1 ~are pairwise disjoint for | = 1,2,... ,m,
it is clear by (17) that

(22) Sn} = Snj_t+ Bghkj on EjUF]j,

that hk3 and Snj are constant on Ej and on Fj, and that hk} changes signs
from Fj to Ej for each integer j > 1

Choose by (19) a non-zero constant d such that Sno = d on EO, and
suppose for some j ~ 1that

(23) =2)i1d on Ej-i.
Since Fj C Ej-ait is clear by (21), (22), and (23) that
= —23-1d on Fj.
Since hk3 changes signs from Fj to Ej, it follows that
(24) cikihkj = +2J,1d on Ej.
Let

zo€ N Ej.
j=o
Notice for each integer t * ko that hf(xo) ® 0 if and only if | = kj for some
integer j 0. Since
|[/N(a0)12= [fal = 2Jiko]
we conclude by (24) that

hk,(x0) 2[kO\A

forj = 1,2,  Contrary to hypothesis, therefore, 5 cannot satisfy the A-T
condition at xo. O

An 7f-system is called weakly nested if each distinguished set E contains
a distinguished set F whose closure satisfies F Q E. Notice that the square,
polar and classical Haar systems are all weakly nested. In fact, if [ and
the distinguished subsets of O are simply connected it is always possible
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to divide the boundaries of the distinguished sets in such a way that the
resulting W-system is weakly nested.

A subset in C A is called Tf-negligible if given any distinguished set E
there is a distinguished set F Q E such that w INMF = 0. Recall that an
embedded arc in R2is a 1- 1 bicontinuous image of an interval. It is clear
that embedded arcs are ~-negligible for both the square and polar Haar
systems.

Theorem 4. Letf e L*(A), pi <p2 < ee* be any sequence of posi-
tive integers, H be weakly nested, S be an Ti-series which satisfies the A-T

condition everywhere on A, and w\,wz2,... be a countable collection of H-
negligible sets. If

(25) lim Sfk=/ ae.on A

and

26 limsup |5P),(z)] < oo for x J wj

(26) k—*mm P, (2)] J(=1 ]

then S is the H-Fourier series of f.

Proof. Assume for simplicity that pk = k fork = 1,2,
Suppose the theorem is false, i.e., that S is not the Tf-Fourier series of

/. Choose an integer no and a distinguished set such that
S,0-snj ®0 on Alao).

Since w\ is *-negligible there exists a distinguished set Vo 9 such

that lignVé = 0. Moreover, since 7i is weakly nested there exist distinguished
sets Vi,V3,... such that

27) Vk C Vfc i, *=1,2,....

Set Eq= A-"0" By successive division choose distinguished sets Ej =
= a \"}) which satisfy p(E}) = ip(Ej_i), Ej C Ej-2 forj —1,2,... and
(28) Ejk =

for some integers jk, Kk = 0,1,

Set Fj = Ej-r\Ej,j =1,2,...,and T =S - Sf. Notice by (27) and
(28) that C\Ej ¢ 0. Also notice by Lemma 7 and hypothesis that T satisfies
the A-T condition everywhere on A. Thus by Lemma 8 we can choose an
integer j so large that Ej-1 Q W\

Sn}- Snd ®o on Fj
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Applying Lemma 6 to the distinguished set Fj we can choose a distinguished

set A[m) Q Fj such that |5m|> 1on g[T\
Set mo = no, A = *>mi = mi 1 and notice by construction that

»1npa(”>=0, c

and
5T 10k) > 1 for Xx GANI).

Continuing this process we generate distinguished sets 4""*\ k = 0,1,...
such that

(29) wk A4 = o,

(30) n(migr A(>fcl)

and

(31) BT*@)| >k for x € AfF)

By (30) choose xo fo)'ml* . We have by (31) that
c=i
lim sup |[5m(x0)| = + oo.

Consequently, it follows from hypothesis that xo G wj for some j > 1
However, (29) implies xo » wk for any k. This contradiction proves that
Sm = Smf for all integers m and thus S is the  Fourier series of /. O

Coroltlary. Let f be a finite-valued, integrable function on A, 7i be
weakly nested, and S be an 'H-series which satisfies the A-T condition ev-
erywhere on [. If S converges to f except perhaps on a countable collection
of 'H-negligible sets, then S is the H-Fourier series of f.

Movsisjan [5] has shown for the Kronecker product Haar system on the
d-dimensional unit cube that uniqueness holds for a series satisfying the
A-T condition everywhere which converges to a finite-valued integrable /
off a countable set. Our techniques show that the countable set can he
replaced by a countable union of 1 - 1 bicontinuous image of compact sets
of dimension less than d, because such sets are negligible for the collection
of d-dimensional rectangles which form the partitions {4": 1~ ~ n}. In
particular, in two dimensions any countable union of embedded arcs can be
discarded and uniqueness will still hold.
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TRANSITION LAYER PHENOMENA
OF THE SOLUTIONS OF BOUNDARY VALUE
PROBLEMS FOR DIFFERENTIAL EQUATIONS
WITH DISCONTINUITY

H. ISHII (Fukushima)

1. Introduction

In this paper we consider the interior transition layer phenomena of so-
lutions for the nonlinear boundary value problems with discontinuity. M.
Slatkin [4] has considered the following differential equation with disconti-
nuity:

A,= 1 @a-a2m i f o £a,

I —1- A2)/2

(Eo is a constant). On the other hand P. Fife [2] (p. e8) considered the
equation with discontinuity:

I = _c(h)=1G+({£) ifQ>v

2dy2 \ G~(g) ifg<wu
{v is a constant). In this paper vy consider the singular perturbation problem
for the following differential egffiation:

lo(w,t) if ((«,*) e (-o00,00) x [0,/0])
(M) if((tt,i) € (-o00,00) x [to,l]),

(0.2) u(o)® ao, u(l) = ai

(e > 0, <ois given later). This problem is generalized to the following singular
perturbation problem for a system of differential equations:

fo(u, v) if ((u,Vv) e (-o00,00) X [&0, z0])
fi(u,v) if ((u,v) G(-o00,00) X [zo,6l]),

(0.1) £2u" = F(u,t) =

(1.1) e2u" = F(u,v) =1

(1.2) V' =g(u,v),

(1.3) u(0) = ao, u(l) = ax, v(l) = bO, n(l) = fq.

In this paper we consider the existence of the solution of (1) when e is small
enough, as well as the asymptotic behavior of this solution as e —»0 in
Theorems 4 and 5. This result is a generalization of Fife [1]. The boundary
value problem (o) is a special case of (1) and the existence and asymptotic
behavior of the solution of (0) are given as results of Theorems 4 and 5. We
illustrate the properties of the solutions on some examples of type (o) or (1).
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2. Preliminaries

Let fo(u,v) be sufficiently many times continudusly differentiable in
(- 0o,00) X [60, W] = (-o00,00) X /0 and let fo(u,v) = 0 have twice con-
tinuously differentiable solutions hoo(v), r(v), hoi(v) in lqg. Let f\(u,v)
be sufficiently many times continuously differentiable in (—e0, 0co) x [uq, 61]
(wo > wi) and let there be solutions /&o(n), r(v), hxi(v) for f\(u,v) = oin
li. We suppose hio(v) < hOo(v) < r(v) < hOi(v) < hu(v) in the interval
/= lIqnl\.

We investigate the existence and asymptotic properties of the solutions
of (1) under some assumptions. We assume that the following conditions
hold:

m8zfo(hOo(v),v) >2R>0 (ve 10),
AMithn(v),v) >2B>0 (ve Ix),

where 8 is a constant.

K

J  fo(u,bo)du=>0 (k e [a0,hoo(bo)) or ke (hoo(bo),ad]),

(n) |'JVI
J fi(u,bi)du >0 (k e [ab /111(e!)) or K e (/111(61), aij).

Let us introduce the function J(zo) as follows:

rjro) rj*o)
J(zo) = fo(u,zQdu- fx(u,z0)du, where z0el.
hoo(zo) 11 (ro)

(I11) There is a zero of J(z0) at zq = Zq and J(z0) changes sign as Zo passes
through Zq.

K

i fo(u,z£)du > 0 (k e (hoo(z"),r(z"))),
oo("0)
JK fi(u,zZ)du>0 (k e (r(z™),hn (zM))).
. JInkO
Let us define G(v) by the following equation:
¢ Y4 Tg(hoo(v),v) ifeo<v <%
\Y I 9(hn(v),v) if <v<en
(V) There is a solution V = V(t) (V'(f) / 0) of the following equation:
V" = G(V), V(0) = hO, V(I) = bx,
and there isat = iq (Ige (o, 1)) such that V(iq) = Zq.

(IV)
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Lemma 1. When |» is small enough there is a solution Vo = Vo(t)
® o) of the boundary value problem

K = g(hoo(V0),Vo), Vo(0) = bo, VO(f0+ S) = V(t*0) +u,
and there is a solution V\ = V\(t) (V((t) d 0) of the boundary value problem
V? = g(hn (V1), Vi), VIEPO+ 6) =V(f0)+u, Vi) = eb

where |£| is enough small.

Proof. Lemma 1 follows from condition (V). The details are omitted
(see Fife [1]). O

We consider the following boundary value problems:

(2.1 £2«<o= /0(«0, W),
(2.2) t=o= g(u0, v0),
(2.3)

uo(0) = ao, uo(™+ ") =r(~(io)+w)> vo(0)=ho, vO(to+S) =V(tO)+w,

(2.10 £2¢* = [i(tti, t>i),
(2.20 V"' = 0(ttl «l),
(2.30

Ui(to+1) =r(v (to)+u)> tri(l) = al, triS+A)=V(i2)+w, t2i(l) = ai.

Lemma 2. Assume the conditions (I), (1), (V) and (V). If
max a(/ioo(v), v)| + max [u(/in(u),v)| = #x is small enough, then there
is a solution (uo(t,6,£,u)),Vo(t,S,E,u))) for the problem (2) and a solution
(ui(t, S, £,u>),vi(t, 6, £u=)) for the problem (2") respectively ase is small enough.

Proof. See Fife [1]. O

Lemma 3. The asymptotic properties of these solutions are given by the
following relations as e —o:

GI)iLnOuo(t, S,u>.e) = hoo(V(t)) uniformly in [Alg+ 6- A (A>0),
limui(t, S,u),e) = hn(V(t)) uniformly in [Eg+ b+ Al- A]
lim ||Vo(t) - vo(M,w,£)||Ci[Ot+i] = o,
lim [|Vi(i) - Vi(t, 6, w £)|[ci[t;+i,i] = o.
Proof. See Fife [1] (p. 504). O
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3. Existence and asymptotic behavior of the solutions

In this section we construct the solution of the problem (1) and study
its asymptotic behavior in Theorems 4 and 5. We, consider the existence and
asymptotic properties of the solution of (o).

Theorem 4. Assume (1), (1), (1), (IV) and (V). If i is small enough,
then there is a solution (u,v) = (u(t,£),v(t,e)) of the boundary value problem
(1).

Proof. Put

®(6,w,e)= (eu'O(to + 6,w,e))2- (eu”™ +6,w,£))2,
9(6,w,£) = VQt%+ 6,u,e) - t>i(*o+ 6,w,e).
By the conditions (111) and (V) there is a solution (6,t0) = (6(e),u>(e)) of the
equation 9(6,u,e) = o, ®(£,<5,£) = osuch that |E(r)| + |w(e)| -» o as £ —»o.
Thus
(t \_ / uO(t,6(e),u(e),e) ifo<t< + 6(e)
4 . £) ~\ U(t,6(E)Me),e) iftS+ 6(f) <t< 1
is continuously differentiable at t = t£ + b(e). Define
t \_/ if o Mt<t* + 6(F)
ANE S\ VI(EL6(E)U(E),E) iftE+ 8(E) <t < 1,
then v(t,£) is continuously differentiable at t = g+ “(e).

Due to the structure of (u(t, e), v(t,£)), it is twice continuously differ-
entiable in (o, 1) and satisfies the differential equations (1.1), (1.2) and the
boundary condition (1.3). This (u,v) = (u(t,£),v(t,£)) is the solution which
we were looking for. O

Theorem 5. The asymptotic properties of this solution are given by
following:

f hoo(v(t)) uniformly in [At)lS- Al (A > 0),
'Z \ hu(V(t)) uniformly in [fj + A1 —A],
Jim IV(*) - «(<»«)llo40,i] = o.
Proof. This is proved in Lemma 3. O

t = <ois the transition point for this problem and zg = V(f2) + w(e). We
consider the problem (0). Put t = v, then (0) can be rewritten in the type
of (2):

(0.2) £2u" = F(u,v),
(0.2) v" = o,
(0.3) u(0) = ao, u(1) —ai, v(0) =0, u(l)=1

We assume that the conditions on /,(u, v) (i = 0,1) and hij(v) (i,j = o, 1)
are satisfied by /,(u,u) (r = o, 1) and hij(v) (the solutions of fi(u,v) = o
(*J=o0,1). "'
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Theorem. Suppose the conditions (1), (I1), (I111) and (I1V), then there is
a solution n = u(t,e) of the boundary value problem (o) such that it has an

interior transition point in I (a sub-interval of (0,1)).
Proof. By Theorems 4 and 5, this theorem is proved. O

4. Examples

In this section we study the properties of the solutions to problems of
type (o) and (2).
Example 1. Consider the following problem:

(3.1) e2u"
(3.2) v' = —au =]
(3.3) u(o) = tt(l) = 2- y/r/2,
where

(u-v) (v<z0)
(u-v) (v=>z0).

We show the existence of the solutions (u(t,e), v(t,e)), with the transition
points from -1 to 2 or from 2 to —1, of (3). In this problem hoo = —3,
hoi = 1, hio = —2, hn = 2 and r = v. We define J(zo0) as follows:

Z
)(z0) :JTUZ- 4 - zO)du-quZ— A{U- 100 =« ~(ro- az0+ -
-1 2
We can find the root Zqg = 2—\/3/2 of J(zqg). Consider the following problem:
@ oM=Lz 3R,

(5) V() =V(l) =z6=2—v/3]
Then there is a solution Vi(f) of (4), (5):
S« (*-1) -8(*-8)+*5.
vi(t) = 6) 6(* 6)+tro> "Ne<*=2
-4(*-8) -l(<-§)+*o0> if| <f=38§
f(i-i)2- t(i- i) +75 if§<<f 1

Acta Mathematica Hungarica 61, 1993



48 H. ISHII

Vi(t) is a periodic function with period 5. Similarly there are solutions Vn(t)
with period ~ for every integer n > 1. By the use of ¥,,(<) we can construct
the solution (un(t,e), v,,(t,e)) of (3). Notice that

maxK@© = 4+<*(j)2Q )2+i ™| mmV,()=i;-0Q )2-Q )2'+1.

For all n, — < Vn(t) < 1 must be satisfied. Thus a < 36(y/3/2 - 1). By
the use of this condition 0 < V,,(t) < 1 for all n. Thus every transition
layer phenomena of (u,,(t,e),vn(t,e)) are caused by the discontinuity of the
differential equation (3.1). There are 2»+1 —1 transition points for this
solution. We give the asymptotic properties of (ui(t,e),vi(t,£)) as e —»0:

2 (uniformly in 1~ t ~ g —J)

— (uniformly ini-fANfAN-A)
: ) - 4

2 (uniformly inj + A<t<|-A)

—1  (uniformly in I + ANt < 1—A),

. _ . A A

lim v\(t,e) = V\(t) (uniformly in 0"~ t " 1).

limui(i,£) =
*-40

Similarly the asymptotic properties of (un(t, e), vn(t, £)) can be given. In this
problem zo is determined as a function of £ and it is near Zq.

Exampte 2. Consider the following boundary value problem:

() £2u" = F(u,t),

3
(7) u(®) = «(1) = 5
where

F(ut)_f(u2-1)(u-t) S 4o
1’ 1 (u2-4)(u-<) = o
By the theorem there is a solution 1 —u(t,£) with only one transition point
ij = 2—"3/2. The asymptotic properties are given as follows:
( —1 (uniformly in A<t < s~
\ 2 (uniformly in ij + A <1- A).
In this problem to is determined as a function of £ and it is near <&
Example 3. Consider the following boundary value problem:

(8) eu" = F(u, <,
9 u(-b) =yars/2-2, um=2-~/ (0<b<l),
" (z2—4)m—t) <<iXx
F(u,t) = < (uz2—h(u —t) (< <t<ti
(u2-4)(u-t) (h<t).
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(a) 2 —-yl3/2 < b < 1. In this case there are three transition points:

t*j = y"3/2 —2, = 2—"3/2 and = 0. The first two are caused by
discontinuity of the differential equation. The asymptotic properties are as
follows.

" —2 uniformly in - b-fA< ™ t*x—A
1 uniformlyinfj + A~ t~  ~A

lim u(t,e . L
o) (te) —1 uniformly in Ig+ A<t £ tJ—A
.2 uniformly in + A"t <b—A
(b) 0 < < 2- y/b/2. In this case there is a solution with a transition

point Iqg = owhich is not caused by discontinuity of the differential equation.
The asymptotic property is given by the following formula:

lim u 1 uniformly in —b+ A<f ™ —A
eElL -1 uniformly in A<i”e- A

By considering the feature of the solutions of the above three examples we
see that there are different cases. Under some conditions there are solutions
for the boundary value problems for systems of differential equations with
arbitrarily many interior transition points. But for the boundary value prob-
lems for one differential equation with discontinuity we got one and three
transition points.
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AN ERGODIC MAXIMAL EQUALITY FOR
NONSINGULAR FLOWS AND APPLICATIONS

R. SATO (Okayama)

Dedicated to Professor Shigeru Tsurumi on his retirement
from Tokyo Metropolitan University

Introduction

Let (X, B,/n) be a probability space and {Tt} a measurable flow of nonsin-
gular automorphisms of (X,B,p). For an/ in L\{p) we define the maximal
ergodic function f * by

-(x)dt
(i)
fogp 008t

In this paper we assume that lhe flow {Tt} is conservative and ergodic,
and prove that

(2) ali{/* > fdp for all
“> -
=<3

This equality implies that a nonnegative / in L\{p) satisfies / flogfdpt<oo
/>1

if and only if / f dp < o0o. (For a related topic, see [1], [9],{[11]}and [14])
About ten years ago, Marcus and Petersen [g] proved equality (2), under

the assumption that all the Tt are measure preserving. Thus our result may

be regarded as a generalization of their theorem to noninvariant measures.

Further we shall apply the proof of (2) to investigate an integrability problem

for the maximal function M f defined by

Mf(x) =max{/*(i), ()*(*)}*

To do this, we introduce the decreasing function f on the interval [0,1)
which is equidistributed with / € L\(p). Extending / to the real line by
~f(t + 1) = }(t), we define

dt.
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Clearly, A (/) = 0if and only if / and — are equidistributed. Further, it
will be seen that if / > o then H(f) < oo if and only if / Mfdg, < oo.
However, if the nonnegativity of / is not assumed, then, as is easily seen by
a simple example, H(f) < oo does not necessarily imply / Mfdfi < oo. (It
will be proved below that J M fdg, < oo implies ff(/) < 00.) Therefore it
would be of interest to know what condition on / is necessary (and sufficient)
for A(/) < oo. Already, this problem was discussed by the author in [13],
under the assumption that all the 7) are measure preserving. In this paper
we shall prove that the results in [13] hold without the assumption.

1. Preliminaries and the maximal equality

Let {Tt} = {Tt: - o0 <t < o0} be a measurable flow of nonsingular
automorphisms of (X, 1?,/r), where we may and will assume without loss of
generality that the probability space (X, B,y) is nonatomic and complete.
All sets and functions introduced below are assumed to be measurable; all
relations are assumed to hold modulo sets of measure zero. Since each Tt is
nonsingular, the Radon-Nikodym theorem can be applied to define a func-
tion Wt = d/r o Tt/dfi in Li(fi) satisfying

3) / wtdn = n(TtA) forall A GB,

A
and let us put

4) Utf(x) = f(Ttx)wt(x) for [/ € Li{n).

As is easily seen, {Ut} = {Ut: - 00 < t < 00} becomes a one-parameter

group of positive linear isometries on L\(n). It follows from Krengel [3] (see
also Sato [12]) that strong-lirn Ut = 1,1 being the identity operator. Thus

we may suppose without loss of generality that the function (i, x) —»wt(z)
is measurable on (—e0,00) x X. This was used implicitly in the definition
of /*.

The flow {Tt} is called conservative if each Tt is conservative. Recall that
a nonsingular automorphism T is conservative if and only if A C TA implies
A =TA. Itis known (see e.g. Krengel [e], 83.1) that T is conservative if and
only if

E rf/'dOﬁT”(X) — oo foralmostall x € X.

n=0
It is easily seen that {Tt} is conservative if and only if

for almost all x € X.

{Tt} is called ergodic if A = TtA for all real t implies \iA = Oor 4(X\A) = 0.
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Theorem 1. Let {Tj} be an ergodic, conservative, measurable flow of
nonsingular automorphisms of (X,B,p) with pX = 1. Letf be a function
in L\(p) and a be a constant such that a > J fdp. Then

(5) ap{f* > a fdp.
{I*>«}
Proof. It follows that

{/* > a} = <x: sup
I i»0

and hence a continuous time version of Hopf’s maximal inequality yields

() ap{f* >a} S J fdp.
{I*>«}

Therefore it remains to prove the converse inequality. To do this, we first
notice that:

If T is a conservative, nonsingular automorphism of (X, B, p), then for
any f and g in L\(p) withg >0 a.e. on X
(7 \] fdp<a \] gdp,

(MuT-11)n/(1NN) (MnT-~ngnan)

where we set
(8)

and I(X \ A) denotes the smallest T-invariant set containing X \ A.
In fact, since T is conservative, it follows that

[(X\A)= Or+" (X U),

n=0
00] n—
ANI(X\VA) = \J (THEX\VA) N p| T+'a)
n=1 i=0

and

00

T~-nA Tl P) T~\X\A)=0 fora nZ0.
iI=n+l
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Thus we get

[ fh=E [  fdi=

ATBARY T+"(A\A)n fl T+A
»=0
o dfioTn .
E [ ar® Ty eodico =
(X\A)fp|r-‘A
1

=E (Ef(T'X)n "y

Fvn(nr.i T_n) nT_n_2(*v*)

and therefore by (8)

, o ;o dirs fdR =
(AUT-IAN7AA)  AnUIA) (AA)NT-IA
0’ ,
- E . (E NAXe & <R 1
(AANTP) T-Aj nT-"-i(A\A)
® ' - tioT
S InE:I {] O(ESiS”l)-"‘~<P ) =

(A\A)NP) T"ANInX_n_1(X\A)

=a gdfi,
(AuT~1A)NnI(X\A)
estabhshing inequality (7). (This is an adaptation of Derriennic’s argument

in [2].)

We now proceed as follows. For an integer n > 1, write

| o
/,,(x) = 2" \] f(Ttx)wt(x)dt
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and

gn(x) = 2n \] wt(x)dt.

It follows that
lim||/n- /i = 0= lim|ff,, ||i-

Further if we set
fc-i |/ \

E fn[Ti/2nx)wi/2n(x)

J«(*) = s"péT— -

% E 5n(r,/204) ui2r(y

and A, = {/,, > a}, and if In{X \ An) denotes the smallest T2-n-invariant
set containing X \ A,,, then

9) fn(x) t f*(x) ae.on X

and

(10 fndg <a J gndg,.
(AnuT~InAn)n/,, (X\An) (AnuT~"nA,, )N, (X\A,,)

Since a > Jfdg implies g.(X \ {/* > a}) > oby (e), the ergodicity of {Tt}
and (9) yield
In(X\ {/* >a}) TX.

Since An | {/* > a}, it is then enough to show that

(11) lim/z ((T~}nA)\ A) = 0 foreach A & B.

For this purpose we use the strong continuity of It follows that

JIK - 1[]i = JgICPa- 1]fi = 0

and

Er>no wt -

Hence given an £ > 0 we can choose a real number to > 0 so that if |i| < t0
then

g{\wt- 1| >¢e} <f£ / wtdg, < £

{\wt-I\>e}
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and
e.
at-1A)\A
Therefore
KPI'A) \A) = VA M{\wt- 1] > £»+
+HX((TL1A) V A) N(jtwt - 1 <£» <
< £+ - [ Wdfl < £+ —
(TEIANA

for \t\ < to. This establishes (11), and the proof is complete.

2. Applications

Theorem 1 can be applied to obtain the following
Theorem 2. Let {Tt} be as in Theorem 1. Let f be a nonnegative
function in Li(f).) and r a nonnegative constant. Then
[ I(log f) r+1d[i < oo if and only if /*(108 /* )™ < 00e
{>1
P roof. See the proof of Theorem 2 in Petersen [10].

Theorem 3. Let {Tt} be as in Theorem 1. Then there exists an absolute
constant ¢ > o such that

\] Mfdn >cH(f) for all f e Li(n).

Proof. By a slight modification of the proof of Theorem 1 it follows
easily that if A = {Mf >a) and yuA < 1lthen

\] fdg, <a”A.
A

Using this, Theorem 3 can be proved as in Theorem 1 of [13]; the details are
omitted.
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Theorem 4. Let {Tt} be as in Theorem 1. Then there exists an absolute
constant C > 0 such that to each f € L\(p) there corresponds anf € L\(p),
which is equidistributed with f, such that

J M(fydpze[H(n +J \apl.

Proof. By atheorem of Kubo [7] and Krengel [4] (cf. also [5]), {Tt} can
be represented as a nonsingular flow {5f} under a function. More precisely,
{5t} has the following structure. Let {Y,F,m) be a complete finite measure
space, T anonsingular automorphism of (¥, IF,m), and h a real valued mea-
surable function on Y with h(y) >dforall y £Y, where d > 0is a constant.

Put
Y ={(y.n):y£Y,o<u<h(y)}

and let m denote the restriction of the completed product measure of p and
the Lebesgue measure on_the real line to Y. T denotes the a-field of all
m-measurable subsets of Y. Lastly, put

p = e(y, uydm(y, u),

where e{y,u) is a positive measurable function on Y such that J edm = 1.
Then {5t} is a flow on (Y ,IF,p) defined by

(y,u+1t), ifo™ un+t <h(y),
QT"y,u +t-dl h(Ty)% . if e N(Ty) <
i=0 1=0

<uU+t< EMT ‘2> n> 1,
St(y.u) = < 3

(\T nym+1+ ExkTo1y)], - E_KT lv)y N
=1 / =i
n—a
du+t< -E h{T ly), n>I.

»=1

Since we may assume that (X,B,p)= (Y, T,p)and {Tt} = {5f}, Theorem 4
can be proved as in Theorem 2 of [13]; the details are omitted.

Theorem 5. Let {Tt} be as in Theorem 1. Suppose f G L\(p) sat-
isfies ' J \f\\og\f\dp = o00. Then there exists an fi £ Li(p), which is

equidistributed with f, such that
\] M{f')dp = oo.
Proof. See the proof of Theorem 3 in [13].
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ON FISSIBLE MODULES

S. FEIGELSTOCK (Ramat-Gan)

The additive groups ofrings have been studied by several authors, [1], [2],
and have played a role in solving several purely ring theoretical problems.
In contrast, very little attention has been paid to the additive groups of
modules. In this note several elementary facts concerning additive groups
of modules will be obtained. The notion of a fissible module will be defined
in a manner which parallels the definition of a fissible ring. A complete
description will be given of rings all of whose modules are fissible.

All rings A are assumed to be associative, and with unity. An A-module
is always meant to be a unital left A-module.

Notation:

R aring, and the left A-module r R

1 the unity of A

M an A-module

M + the additive group of M

Mi the torsion part of M +

Mp the p-primary component of M +, p a prime
Z(n) a cyclic group of order n

> the first infinite ordinal

hp the p-height function, p a prime.

Lemma 1. If R+ is a torsion group with |1| = n, then nM —O0for every
R-module M.

Proof. Let M be an A-module, and let m 6 M. Then nm = (nl)m =
= Om= o.

Lemma 2. Letp be aprime. If R+ is p-divisible then every R-module
M satisfies:

1) M + is p-divisible, and

2) Mp = o.

Proof. 1) Let m € M. There exists a e R such that 1 = pa. Hence
m =p(am) and so pM = M.

2) Suppose there exists m € Mp, m ¢ 0O, such that |m| = pk with k > 0.
Since 1 = pka for some a € A, it follows that m = pkam = a{pkm) —0, a
contradiction.

An immediate consequence of Lemma 2 is:
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Corollary 3. If R+ is divisible then M+ is a divisible torsion free
group for every R-module M . In particular R+ is torsion free.

The following observation is obvious.

Observation 4. The class of additive groups of R-modules is closed
with respect to direct sums, and direct products.

Theorem 5. Let R be a torsion ring with |1 = n. A group G is the
additive group of an R-module if and only if nG = 0.

Proof. If G is the additive group of an [A-module, then nG = 0 by
Lemma 1

Let n = pkl .. .pi*be the prime decomposition of n. To prove the con-
verse it suffices, by Observation 4, to show that Z(pk) is the additive group
of an A-module where p = pj forany 1<j “ t, and K is an arbitrary integer
satisfying 1 » k < kj. Now 1= aj + ... + at with |a,| = pkl, 1< i <t By

t
[3, Proposition 27.1], A+ = ®(aj) o A. There exist integers 1<r<i
i—+

t

such that X) s*Pi* — I Let Z(pk) = (e). The products a;e = Sipk,b for
<

i=1,...,t,and hb = 0 for all h £ A, induce a unital A-module structure

on Z(pk).

Lemma 6. 1) Let M be an R-module, m € M, and p aprime. Then
hp{1) < hp(m).

2) hp(l) = o or oo.

Proof. 1) For every positive integer n, if 1 = pna for some a £ [+,
then m = p"(am).

2) Follows immediately from the fact that 2= 1.

Lemma 7. Let M be an injective R-module, and let p be a prime. If
Mp —O0 then M + is p-divisible.

Proof. Suppose that Mp = 0. Then the map /: pM —»M defined by
f(pm) = m for all m £ M is well defined. Since M is injective there is
an A-homomorphism g: M —* M whose restriction to pM is /. Therefore
m - f(pm) =g(pm) = pmg(m) forall m £ M and sopM = M.

A consequence of Lemma 7 is:

Corollary 8. If M is an injective R-module with M + torsion free,
then M+ is divisible.

Lemma 9. A torsion group G is the additive group of a ring with unity
if and only if G is bounded.

Proof. Suppose that G is bounded. Since a finite direct sum of rings
with unity is a ring with unity, and since G is a finite direct sum of groups
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of the form G(p,n) = 0 Z(pn) with p a prime, and n a positive integer, it
a

suffices to construct a ring with unity A such that A+ = G(p,n). Such a
ring R exists by [4, Lemma 122.3].
The converse is an immediate consequence of Lemma 1.

Recall, [2, p. 9], that a ring R is fissible if R is a direct sum R = Af®5,
Similarly, one has the following:

Definition. An A-module M is fissible if M is an A-module direct sum
M = Mt ®N.

A simple consequence of Lemma 9 is:
Corollary 10. IfR is afissible ring with unity, then Rt is bounded.

Lemma 11. Every R-module is fissible if and only if R is a ring direct
sum R = At® S such that every S-module is fissible.

P roof. Suppose that every A-module is fissible. Then R is an A-module
direct sum A= A*0 5. Let 1= et+e, withe* £ Rt and ea€ S. It is readily
seen that et and e, are left unities for Rt and S respectively, that A* Q Rt
and that 52QS. Let r € Rt- Then r = ret -fre,, and so re, = r —ret.
Since 5 is a left A-module, it follows that re, £ S, while on the other hand
r —ret € Rt. Therefore re, £ Rt M5 = 0. This yields that ret —r and that
re, = 0, i.e,, et is a unity for Rt and Rte, = 0. A similar argument shows
that e, is a unity for 5, and that Set = 0. Hence RtS = Rte,S = 0, and
SRt = SetRt = 0. This implies that A = Rto S is a ring direct sum. Let
M be an 5-module. Forr £ Rt, s £ 5, and m £ M, define (r + s)m = sm
where the product on the right hand side is determined by the action of 5
on M. These products induce an A-module structure on M. Hence M is an
A-module direct sum M = Mt ® N. However this decomposition is also an
5-module direct sum, and so M is a fissible 5-module.

Conversely, suppose that A is a ring direct sum A = A*¢ 5, and that
every 5-module is fissible. Let 1 = et +e, with et £ A(and e, £ 5.
Clearly et and e, are unities for Rt and 5 respectively. Let M be an A-
module, Mo = ctM, and N = e¢,M. Both Mgand N are A-modules, and
M = Mo+ N. Let m £ Mol N. Then there exist mi,m2 £ M such
that m = etm\ = e,m2- However m = etm\ = e]Jm\ = ete,m2 = 0,
ie, MoMN = 0. Therefore M = Mo ®N is an A-module direct sum.
One may view N as an 5-module. Therefore N is an 5-module direct sum
N = Nt ® K. Since Rt annihilates N, this is an A-module decomposition.
Clearly Mt = Mo ® Nt, and M = Mt ® K, i.e., M is a fissible A-module.

Theorem 12. Every R-module is fissible if and only if R is a ring direct
sum R = Aj ® D with D+ a torsion-free divisible group.

Proof. By Lemma 11, it may be assumed that R+ is torsion-free. If
R+ is divisible then every A-module is trivially fissible by Corollary 3. Con-
versely, suppose that every A-module is fissible, but that A+ is not divisible.
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Let p be a prime for whichpR ¢ R. Then M = A R/pnR is an i1-module,
n<uw
but Mt is not a direct summand of M, a contradiction.

A ring R is p-fissible, p a prime, if R is a ring direct sum R = ip®©$§,
[2, p. 28]. The analogous concept for modules is the following:

Definition. An ii-module M is p-fissible, p a prime, if M is an R-
module direct sum M = Mp® N.

Arguments similar to those used in proving Lemma 11 and Theorem 12
yield the following:

Lemma 13. Letp be a prime. Every R-module is p-fissible if and only
if R is a ring direct sum R = Rp© S such that every S-module is p-fissible.

Theorem 14. Letp beaprime. Every R-module is p-fissible if and only
if R is a direct sum R —Rp© S with S+ a p-divisible group.
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INTERPOLATION AND SIMULTANEOUS
MEAN CONVERGENCE OF DERIVATIVES

KATHERINE BALAZS (Budapest) and T. KILGORE (Auburn)

Introduction

We will discuss simultaneous mean convergence to a function / GCr[—1,1]
and to its derivatives ,/(r) by polynomial interpolation. We will
use an arbitrary array of distinct nodes {Xn} where for each n, X,, =
= .xn,n} A (—1s51). We will also use an admissible point system
{Tn} introduced in Balazs and Kilgore [1], defined by

Tn — {f(),n? e oo Sfa—kn>& M1 +«+ 1&a,N}i

where the index a is fixed by the relationship a = . The points in Tn
must satisfy for some C > O K > [C],and n = 1,2,...

(1) -1 <fon~ AN fa-ln N -1 + (n+KY <1- (n + K)2

i «a-l,n N Nsom N1

On X,, we will define Lnf for each / G Cr[-1,1] to be the Lagrange
interpolant to / among the polynomials of degree n —a or less, and we will
define Pnf to be the polynomial of degree n —1 + 20 which interpolates /
on the set X,, UTn. For any given n, the operator Pn is ordinary Lagrange
interpolation if X,, n Tn = 0 and if all of the inequalities in (1) are strict. If
however for a given n these conditions are not met, then Pnf will interpolate
1 (0)........ /C*-1) on any point which is listed k times in X n UT,,. In such a
case, k <a + 1follows from the definitions of X n and Tn.

In our previous contribution [1], the errorin ||/(9—Pii*lloo, k = 0,... ,r
was estimated in terms of ||Zn|joo and ||L£|joo where

M
Lnf(x) := f(xj,n)tj,n(x)

and 33X

(2) K f(X) =E /(*k-) 1

. _Xg’n >

1/2
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the polynomials £j,n(x) being the fundamental polynomials satisfying
£j,n(xj) —bjk (Kronecker delta), for 1 < j, ft < n, Here, we will make
similar estimates in weighted Lp spaces. Among other things, we will give
simultaneous approximation extensions of the Erdés-Turan Theorem [5] and
of the result of Erdds-Feldheim [4] and answer affirmatively a conjecture of
Szabados and Varma [9].

Notation: For 1< p < oo, we will say that / £ Lp if

I
\] \f\pdx < oo
-1

and / £ (L log+L)pif / log+|/| £ Lp. When we wish to speak of the
“weighted norm” with weight w(x), we will assume that w(x) £ L1, w(x) >0,
with w(x) > o on a subset of positive measure in [—, 1] and that

(3) H/llpw = (p < 00).

However, a weighted norm is sometimes represented as
(4) (p < 00).

We will also agree that [jrujjoo is a “weighted norm”, in the sense of (4). We
have an actual norm only when the weight function is positive a.e. Otherwise,
we have only defined a seminorm. And we do not have a norm if p < 1
Nevertheless, we continue to use the notation | ¢||p in these cases. We define

[luX,llp= sup \uLnfW\p and |wX*||p= sup \WL*nf\\p.

1/Hoo<I H/llooSI

We will say that the weight function v is of Markov-Bernstein class
for a given p, o < p " oo, if for any non-negative integer s the weight

u(x) = v(a:)(I —x=2y*2 satisfies for pn any polynomial of degree n or less the
inequalities

(5) “()(1 - x2)r/2Pn(*) < Minrflu(x)p..(x) p;

where r is any positive integer, and

(6) H=)Pn(*)llp ~ M2|lu(*)p..(*)llp./n,
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in which the norm LkLp/n is taken on [-1 + ¢/n2, 1—/n2] for some ¢ > o, and
M\ and M2 are constants independent of n and pn. An interesting problem
would be to characterize this “Markov-Bernstein” class of weight functions
with non-trivial necessary and sufficient conditions. We do not enter into this
question here but rather point out two large and slightly different classes of
weights which share the requisite properties.

The class of generalized Jacobi weights (GJ) is defined for example in
Nevai [7]. The weight w(x) is GJ if

@) w(x) = p(x)(1 —x)r° —X|r*(l + ryrr+1
k=1

for 4 <z <1 where -1 <tm <tm-i < ... <ti<1l ™ > dfork =
=0,... ,m+1, and both p(x) and (*(x))_1 are in T°°[-I, 1]. The definition
may be modified if we want the representation (4). If ¢ is continuous with
its modulus of continuity satisfying

{ ~(tM) Jit <00,
o]

then we say that w is generalized smooth Jacobi (GSJ). The weight class GJ
is contained in the Markov-Bernstein class for 0 < p < oo (Lubinsky and
Nevai [e]).

The class J*, 1 » p N oo, of Ditzian and Totik [3, Definition 8.1.1], is
similar to the GJ class, except that ¢(x) need not be bounded at +1 but can
have, for example, logarithmic growth near these points. The weight class
J* is contained in the Markov-Bernstein class for 1~ p ~ oo (Ditzian and

Totik [3], (8.1.3) and (8.1.4)).
A Jacobi weight w may be described by

w(x) = @—x)"(I + x)3 where a,RB>—,

and is in both of the classes GSJ and J*.

Finally, we denote by En(g) the error in the best uniform approximation
to a function g by polynomials of degree n or less, and we denote by Q,,(x)
the monic polynomial of degree 2a which is zero on the points of T,,:

(8) Qn(x) —(x —to,n) ee¢(® G-I,n)(z - so,n)ees(® Sa—Lrm)e

Results

Our main result has already been established for the case p = oo and
u(x) = 1in Baldzs and Kilgore [1]:
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Theorem. Letf € Cr[—1,1] and for n = 1,2,... let Xn be a set of
nodes in (—1,1) and T,, an admissible point system. Let L,, be the Lagrange
interpolation on X,, and L* the operator defined in (2). Let P,, be the inter-
polation operator defined on X,, UT,,. Thenfor 0 < p < oo, and for a weight
function n of Markov-Bernstein class and for k = 0,... ,r

(a) for r even

lu(/@ - ~ /) [[p=0()ntre, _1(/(r>)||uin]p,

(b) forr odd

UUW _ pW /|| = 0()nfe r+1Bn0_ 10~ u\/\ —x2Ln g
p

(c) forr odd
|« (/(*>- PAf)Yp=o(i)n*-"j5n 1(/<r>)||tii;n],.

Remark. The constants denoted by 0(1) may be seen to depend on the
ratio CIK in (1), but not per se on the choice of Tn.

Our theorem links the simultaneous approximation properties of Pn to
the more fundamental approximation properties of Ln. In particular, it

states that P,,*"/ converges to /(% and gives a rate of convergence for each
K =0,... ,r provided only that the norms of Ln or respectively of 'n remain
uniformly bounded. We make this statement explicit in the following:

Corollary 1. If in Theorem 1 we have |[uEn|jp* M for all n, then
(a) for r even

[u(/W _ pW )|lp= 0{nk~r)En* n (N\

(b) for r odd
LU _ pW /)| =o(n*-r+t)En_a(/WN).

If on the other hand |[uP£||[p~ M for all n, then
(c) for r odd

U(/W _ pW /)» = o (nfer)Pn_1(/<™).

The hypotheses of this corollary are, of course, not satisfied if p = oo.
But for p < 00 nodes can exist which do satisfy the hypotheses. Our next
result also uses Nevai [7, Theorem 1] and provides methods for satisfying
the hypotheses of Corollary 1. Nevai and Vértesi [8] have recently stated
a similar result to Corollary 2 for weights n £ GSJ, with more restrictive
conditions on the added node set Tn.
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Coroltary 2. Let 0 < p < oo. Letw £ GSJ. Let n be a weight
function of Markov-Bemstein class such that u £ {L log+ L)p and such

that u/ \Jwy/ 1 — £ Xp. Forn = 1,2,... Zi be the zero set of

the n-th degree orthogonal polynomial associated with w, and let Ln be the
Lagrange interpolation based on Xn. Then there exists M such that for n =
=1,2,... JJuF,llp* M and [[uF*|p ™ M. Therefore for any integer r > 0
and for f £ CT[—1,1], and for Tn any admissible point system, the sequence
of interpolation operators Pn defined on Xn UTnfor n = 1,2,... yields for
K =o0,... ,r the rates of simultaneous convergence given in

l(/<*> - 4 K))\\p = 0 (I)nk~rEn-i(f*).

Remarks. 1. The hypotheses of Corollary 2 regarding u are met if u £
£ GJ for some p, 0 < p < 0o (representation 4). They are also met ifu £ J*
for 1 ~ p < oo. Of course, one must provide a suitable weight w £ GSJ.
This will be done in Corollary 4.

2. The Erd6s-Tuaran Theorem [5] asserts the following:

Foreachf £ C[a,b], let Lnf interpolate f on the zeroes of the n-th degree
orthogonal polynomial defined for w £ L2. Then M f- L nf)\\2-* o.

3. It is of interest to see when Corollary 2 allows the choice n = wxp.

Since wxlpj \Jwy/\ -HR £ Lp we have A —\ > — If this inequality

should hold for all p, 0 < p < 00, it necessarily follows that To S — Similar
bounds exist for Tm+i. In particular an augmented version of the Erdds-
Taran theorem follows with any weight function w(x) in GSJ, with weighted
mean convergence of the derivatives up to the r-th as well.

More generally, one may state the following:

Corotllary 3. Letnzbe a weight function of Markov-Bemstein class.
Let Xn, n = 1,2,... bethe set of zeroes of the n-th degree orthogonal poly-
nomial associated with u2. Let f £ CT[—L,1], and let a = Let Tn be
an admissible point system. Then for k = 0,... ,r, with g = r ifr is even
andgq=r- 1ifr is odd

[lu(/W _pW7/)|2£ const »

The result of Erdés-Feldheim [3] is that for all functions / £ C[—L,1]
and for 1< p < oo, |[rr(/ —Fn/)||p —»0, where w is the Chebyshev weight

1—2) , and L,, interpolates on the zero set of the n-th degree Cheby-
shev polynomial. Szabados and Varma [9] have shown that a simultaneous
interpolation version of this result must hold for p = 2, when the nodes T,,
are added at the locations * cos £4-, K = o,... , I, leading to their conjecture
that the same is true for all other values of p < oo. We affirm this conjecture
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here, showing that a weight function n and added nodes T,, can be chosen in
the general setting. On the other hand, the choice of the Chebyshev nodes
is nearly unique.

Corollary 4. Let 0 < p < 00, and let u be a weight of Markov-
Bernstein class such that n € (L log+ L)p. Let X,, be the set of zeroes of the
n-th degree Chebyshev polynomial, and let Ln be the interpolation defined on
Xnforn=1,2,-—-- Then

(@) [JuXn]|p and \\uL,, ||p are uniformly bounded, whence \\u(f - Lnf)\\p —
- o allfeC[-1,1]

(b) Let f £ Cr[—,1]. IfT,, is any admissible point system and if Pn,
n=1,2,... is the sequence of interpolation operators based on X,,\J T,,, then
for k —0,... ,r

IFK - ~ f))||p= o (nfer)izn-i(/(r)).

(c) More generally, part (a) holds for all p and for all n £ (L log+ L)p,
with Ln interpolating on nodes generated by w £ GSJ, if and only if o =
=-1/2, Tv+1 = -1/2, and 0=TX= ... = I'T (cf. (7)).

In view of Corollary 4, it is interesting to speculate exactly which weights
n £ (L log+ L)p are of Markov-Bernstein class. However, we do get conver-
gence for all weights n £ Lp+e, for any £ > 0 and near-convergence for all
weights n £ Lp, with no special assumptions about u.

Corollary 5. Let 0 < p < 00; let Xn be the set of zeroes of the n-th
degree Chebyshev polynomial, and let Ln be defined on X n. Then

a) If u £ Lpte for some £ > 0 we have for f £ Cr[—1,1], Tn any
admissible point system, and Pn based on XnUTn

uifW-pWwf)
b) If merely u £ Lp, then

<i{)-pr) =o(@-)E,. 1(/1>)

Existing results

For Theorem 1, there are two basic components for the proof. The first
component is the “Timan theorem with interpolation”:

Theorem A (Baldzs-Kilgore-Vértesi [2]). Letf £ Cr[—1,1]. LetTn be
an admissible point system in [-1,1]. Then there exists a sequence {pn} of
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polynomials of degree m = n —1+ 2a or less such that pn interpolates f on
Tn and for k = 0,... ,r and for |x| 41

[/()(x) - P?>(*)| = 0(1) « ( Em-r(/(r)>

Corollary of Theorem A (Balazs-Kilgore [1]). Let Qn be the se-
guence of monic polynomials of degree 2a such that Qn is zero on Tn. Then
the following statements hold for x £ [—, 1] and in particular by continuity
at the zeroes of Qn:

(a) for r even

f(x)-pn(x) _ _ .
9) Qn(x) =0(na~r)En-i(f"),
(b) for r odd
(10) f(xc))r-](i)n(X) = 0(na~-r+1)En(f<>)
and

(f(x) - pn(x))V1- x2
) Qu(x)

The second component of our proof is an inequality of Dzyadyk type,
which follows easily from the inequalities (5) and (e):

= 0(na~r)En(f(r>).

LEMMA. For a = we have for pn a polynomial of degree n, Kk =
=0,... ,r, for w of Markov-Bernstein class, and for Qn{x) as in (5)
(12) w(2)[Q,.(a5)p,,(2)]1[) o (I)nk|w;(@;)pn(a;)|lp for r even
p
and

(13)  tu)QN(X)p.,)I™| = 0()ntt w(x)\/l - x2pn(x) for r odd.
Corollary 2 is central to the further results stated, and it depends upon
our theorem and upon Neva! [7, Theorem 1]

Theorem B. Letw 6 GSJ and 0 < p < 0o. Let v be a not neces-
sarily integrable Jacobi weight function and let n be a nonnegative function

defined in [—1,1] such that u £ Lp, uv £ (L log+L)p, m, '/'I £ Lp and
v wy/l—»

vy/wy/l —x2£ L1. Then for every bounded function f
(14) sup|> \\Ln(w, vf)u\\ < const
n>

In formula (14), Ln(w,vf)u signifies the expression
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u(x)*2v(xj)f(xj)ij(x),
3=1
which interpolates vf on the set X,, consisting of the zeroes of the n-th
degree orthogonal polynomial associated with the weight w.
Proofs

All of our results may be seen easily to follow from the Theorem, whose
proof we will defer until the end. Corollary 1 is obvious. We turn to Corol-
laries 2, 3, 4 and 5:

Proof of Corollary 2. Invoking Corollary 1, we use in Theorem B
v(x) = 1 when r is even. When r is odd, we apply Theorem B with

tt(x)\/I - x2in place of u(x) and using v(x) = (1- x2) . We then have
ux)L*nf(x) = u(x)y/l - x2Ln(vf)(x).
It follows automatically from w £ L1 that

viJwy/1l- x2£ L2 for v=1 or v=@—x2) 1"2

P roof of Corollary 3. From the Erd6s-Taran theorem, |uT..j2 is
bounded. The result follows then from Corollary 1

P roof of Corollary 4. In Corollary 2, we use w(x) = (1-a2) 1/2. Thus

£ Lp ifand only if n€ Lp,
Vw\l—x2

and for u(x) = 1 (r even) or for v(x) = @ —X2) (r odd) we also have

veOMrn(x)VV1- x2= v(x) £LL
Proof of Corollary 5. Applying Holder’s inequality we see that
Hf- Pnf)\p<\\(f- PnDUHps
where 2/r + 2/n = 1. If s = 1, we obtain part (h) of the corollary, applying
the theorem of Balazs and Kilgore [1] (uniform norm version of the Theorem).

If u £ LptC for some e > 0, then let p <ps < p +e, and r is finite. Part (a)
follows from Corollary 4, with p replaced by pr and u replaced by 1

Finally, we give the proof of the Theorem. We will henceforth abbreviate
the cumbersome double subscript representation for the nodes.

P roof of Theorem. We begin by invoking Theorem A to write
(15) [l«(/W - pW f)llp < Kp (Ju(/(®>- Ne )|lp+ tuP ™if - p,)J

in which {pn} is the sequence of polynomials guaranteed by Theorem A, and
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Kp=1ifp>1 Kp=2U*ifo<P< 1
From Theorem A we may obtain the uniform estimate
I{@- AK =0(l)nk-rEm-r(fV) (m=n- 1+ 23)

which, combined with the fact that

l«(/() - S IFlip||/w - Pa» L.

establishes that the first term on the right of (15) satisfies the conclusions of
the Theorem. Therefore, we consider only the second term.

From Theorem A, the polynomials pn precisely interpolate / on the
points in Tn for each n (including the interpolation of derivatives on any
points listed with multiplicity), and thus we have

16) uPt)(/ - p")

in which * Xq Ta Y be defined as a limit, if needed.

We now proceed in various ways from (16) to prove parts (a), (b), and
(c) of the Theorem:
(a) From (16) we may note using (12) and then (9) that

<Mk max FOD=PROD) wsup oy girog)

xj £Xn Qn(Xj) j=1
=o()n*-rg,,_1(/(r>)|K,|Ip.
(b) From (16) we may carry out analogous stepseto those performed in

part (a), only using (13) in place of (12) to reach

“(M)E (J(XQ .£) X))

Z Mnk+1~rEn(/™) a>/l -x 2Ln

(c) We merely note that
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INe j) - PR{Xj))dl - X) on(x) e

®)E" Q Axi) L\A/\M X)

R k)

using along the way (13). We now may use (11) and an argument similar to
that in (a) to reach the conclusion that

I»(/() - =o(l)n*-"En(/M)||«£;][|p.
This concludes the proof of the Theorem.
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SOME CONDITIONS FOR THE
COMMUTATIVITY OF RINGS

M. ASHRAF and M. A. QUADRI (Aligarh)

1.

Throughout, R will represent an associative ring (may be without unity
1) with Z(R), N(R) and C(R) denoting its centre, the set of nilpotent ele-
ments and the commutator ideal of R respectively. For any a, b€ R as usual
[a, 0] = ab—ba In his paper [2] Bell proved that a ring R generated by nth
power of its elements and satisfying the polynomial identity [xn,y\ = [x,yn]
for all x,y in R and a fixed positive integer ® > 1, is commutative. Moti-
vated by the above observation Harmanci [4] proved that a ring R with unity
1 satisfying [xfgy] = [X, yk] (k = ™ ®+ 1), is commutative. Recently, Gupta
[3] generalized the above result as follows:

Theorem G. Let R be a semiprime ring with unity 1 satisfying

) [*nyl - [*yn] € Z(R),
(2) [x"+1y] —[x,yn+1] € Z(R)

for all x,y € R and afixed integer n > 1. Then R is commutative.

Gupta also remarked that in view of an example [9, Example 2], Theorem
G can not be extended to primary rings. However, the question remains open
whether the existence of unity 1in the ring of the above theorem is essential
and both the identities are necessary for the result. In this direction we
generalize the mentioned result to a great extent as follows:

Theorem 1. Let R be a semiprime ring. Then the following statements
are equivalent:
(i) R is commutative.
(if) There exists a positive integer ® > 1 such that [x, [xn,y]—x, y"]] = 0
for all x,y in R.
(iii) There exists a positive integer ' > 1 such that [y, [xn,y]- [x,yn]] = 0
for all x,y in R.

Before beginning the proof, we state the following result due to Bell [2]
which will be used in the subsequent text of our paper.

Lemma 1. Let R be a ring satisfying an identity q(X) = 0, where gq{X)
is a polynomial in afinite number of noncommuting indeterminates, its coef-
ficients being integers with highest common factor 1. If there exists no prime
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p for which the ring of 2x2 matrices over GF(p) satisfies q(X) = 0, then
R has a nil commutator ideal and the nilpotent elements of R form an ideal.

Lemma 2. Let R be a prime ring satisfying any one of the conditions
(it) or (iif) of our theorem, then R has no nonzero nilpotent elements.

Proof. Let a be an element of R with the property that az2= 0 ¢ a.

Assume that R satisfies (ii). Replace ax for x and axa for y and use
the fact that a2z = o, to get ax(ax)"axa = oi.e. (ax)n+3 = o for all x in
R. Again if R satisfies (iii), then by putting axa for x and xa for y in the
identity and using a2= o, we get (axa)(xa)n(xa) = oi.e. (ax)n+3 = o for all
x in R. Hence, in both cases (ax)n+3 = 0 for all x in R. If aR ® O, then the
above shows that aR is a nonzero nil right ideal satisfying zn+3 = 0 for all
z in aR. But a well-known result of Levitzki [, Lemma 1.1] rules this out
and hence aR = 0. Thus, the primeness of R forces a = 0.

Proof of Theorem 1. Since R is semiprime, it is isomorphic to a
subdirect sum of prime rings Ra, each of which as a homomorphic image of
R satisfies the hypothesis placed on R. Hence, we may assume that the ring
R is prime satisfying the conditions of the theorem.

Every commutative ring R satisfies (ii) as well as (iii) and so (i) == (ii)
and (i) = (iii).

Next we show that (ii) = (i):

Let R satisfy the condition f(x,y) = Dk [@”,j/] —Dx #°]] = 0 which is
a polynomial identity with coprime integral coefficients. Consideration of
X = Euy + Ev and y = (?2i assures that no ring of 2 X 2 matrices over
GF(p), p a prime, satisfies the identity f(x, y) = 0 and hence by Lemma 1,
the commutator ideal of R is nil. But in view of Lemma 2, R has no nonzero
nilpotent elements and, therefore, R is commutative.

Arguing on the same lines, we can prove that (iii) implies (i).

2. Another commutativity condition

Theorem 2. Let R be a ring with unity 1 in which for every x,y in R,
[X,xny - xym] = 0, where m > 1 and n > 1 are fixed positive integers. Then
R is commutative.

In preparation for the proof of the above theorem we begin with the
following lemmas, whose proofs can be looked in [5], [8, p. 221] and [10]
respectively.

LEMMA 3. Iffor any x,y in R we can find a polynomial px,y(t) with

integer coefficients which depend on x and y such that x2pXiV(x)—x commutes
with y, then R is commutative.

Lemma 4. If [x,[x,y]] = 0, then [xfcy] = fexfe-1[x,y] for all positive
integers K.
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Lemma 5. Let R be a ring with unity 1 and f: R —=Rbea function
such that /(x) = /(x -f 1) holds for all x in R. Iffor some positive integer
k, xkf(x) =0for all x in R, then necessarily /(x) = 0.

Proof of Theorem 2. Our identity of the theorem gives
™) xn[x,y] = x[x,ym] forall x,y in R.

If n —1, then we have x[x,y] = x[x,ym]. On replacing x by x + 1 and
simplifying with the help of x[x,y] = x[x,ym] we get [x,y —ym] = o for all
x in R. Thus R is commutative by Lemma 3.

Let n > 1 Now we show that C(R) Q Z(R). In view of Lemma 1,
C(R) Q 1V(A), since x = Ey + Exzand y = Eu fail to satisfy (*). By
making repeated use of (*), we see that for any positive integer t

Xin[x, y] = x* 2X[x, ym\= xx* 2>"x mZ - =xt oy yMt

Now if a e N(R), then for sufficiently large t, we get
(1) xin[x,a] = 0 for all x in R.

In view of Lemma 5, this yields [x, a] = 0 for all x in R. Hence a € Z(R),
which gives that

) C(R) QZ{R).

Replace x by 2x in (*) to get 2n+ixn[x,y] = 22x[x,ym], Combining
this with (*), we obtain (2n+a —22)x"[x,y] = 0. If ¢ = 2n+1 —22, then
gx"[x,j/] = 0. By using Lemma 5 we have g[x,y] = 0. Since commutators
are central, hence by Lemma 4, [x9,y] = gx4~I[x,y] = 0, i.e.

(3) xqf Z(R) forall x in A.

Further by replacing y with ymin (*), we get X"[x, ym] = x [x, 3/T )T ]. In
view of (2) and Lemma 4 this yields x"[x, ym] = mym(m~1)x[x, ym]. Combin-
ing the last identity with (*), we get x"[x,t/m] = mym(m-1xn[x,y]. Again
in view of (2) and Lemma 4, this implies that x"[x,ym] = j/(m-2)2[x, j/m]xn,
i.e. (1 —y(m-22)[x,2m]xn = 0. With the help of (2) and (*) we have

1 —yT-12)[X,y]x2n1 = 0 and by Lemma 5, we conclude that
a—2m-1")[x,y] = 0. But in view of (3), this yields [x,y —t/lm-1)2+1] =
= (11— )[x,y] = 0 and, therefore, R is commutative by Lemma 3.

The following example shows that the existence of unity 1in the hypoth-
esis of the above result is not superfluous.

Exampie 1. Let Dk be the ring of Kk x kK matrices over a division ring
D and Ak —{(a,J) €pbk/ aj =0 (i~])}. If Kk>2then Ak is a noncom-
mutative nilpotent ring of index k. For any positive integer m and n, A3
satisfies [x,x"y —xym\ = o.
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However, the above theorem can be extended to a wider class of rings
called s-unital. A ring R is called left (resp. right) s-unital if x £ Rx (resp.
x6xR) for all x in R and R is called s-unital if x € RxCixR for eachx in R.

Let R be a left s-unital ring satisfying the identity [x,x"y - xym] = 0.
Using the same arguments as used to get (1) in case of Theorem 2, this yields
that xtn[x,a] = o for a € N(R) and x € R- Since R is left s-unital, choose
e € R with ea = a, then by above we can easily see that a—ae = etn[e,a] = 0.

Now let x be an arbitrary element of R and choose €' 6 R with e'x = X,
then there exists " G R such that e"x = x and e"e' = e'. Now (x-xe™2= 0
i.e. x—xe" is nilpotent and e'(x —xe") = x—xe". Thus the fact just claimed
above implies that x —xe" = (x —xe")e' = o, which shows that xe" = x.
Hence, R is s-unital. Now in view of [7, Proposition 1] we may assume that
R has unity 1 and the commutativity of R follows from Theorem 2, which
establish the following result:

Theorem 3. Let R be a left s-unital ring in which for every x,y in R,
[X,xny —xym] =0 where m > 1, n * 1 are fixed positive integers. Then R
is commutative.

One might conjecture that the above theorem should hold for a right s-
unital ring as well. But the following example suggests that a right s-unital
ring satisfying [x,xny —xym] = o need not be commutative.

Example 2. Let S = {(£ °),(0 9,(° °),(j *)} whichis a right s-unital
subring of the ring of all 2 x 2 matrices over GF{2). It can be easily seen
that [x, x2y - xy2 = 0 for all x,y in S. However, S is not commutative.
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ESTIMATES OF THE SHEPARD
INTERPOLATORY PROCEDURE

GIULIANA CRISCUOLO (Napoli) and G. MASTROIANNI (Potenza)

1. Introduction

In this paper we consider a linear positive operator Vm which generates
a rational F-stable interpolatory procedure [g, 13]; some properties of Vm
are shown and a convergence theorem of Korovkin type is given.

An interesting particular case of Vm is the Shepard operator Sm intro-
duced in [14] and studied by numerous authors; we recall for example [3, 4,
8, 10]. The principal aim of the present paper is to estimate the convergence
order of the operator Sm with respect to different matrices of knots.

2. The operator Vm{A\<p)

Let A := {xmi,, i —1,2,... ,m, m € W} be an infinite matrix of different
knots belonging to | := [—1,1]. We denote by tr> the fc-th fundamental
Lagrange polynomial of degree m - 1 corresponding to the matrix A and
defined by

Im. k Pm(x) K=1,2 m
m.k(x) p'niXn'kXx - Xmiky St
where
m
Pm(x) = 4 (x - Xm,).
i=l
Let i
$m(x) = L KT
where {v>m} is a sequence of functions such that ym(xT) po, i—a,2,... ,m.
Thus, for every function / defined on I we introduce the operator Vm by
(2.1 Vm(A; V]/; x) = (Fm/)(x) = Vm{f;x) :=
= Pr(x)n [ (X TK), X € /.
P'm{xm k)

Obviously, Vmis a linear positive operator corresponding to the matrix A and
to the sequence {y?m}; by (=2.1) it follows also that if / = eo with e*(x) = xk,
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K e N, then Vmf = /. Further, Vm(f; x) is a rational function of degree

(2m - 2,2m —2) and being @1 (a;7 ,*) it can be written in the
form
k(X)
2.2 V —"m(* -
2z ) g 0t

In particular, by (2.2) we have Vim(f; zTQ,) = /(zm)t), i = 1,2,... ,m. More-
over, since

min f(x) <Vm{f\x) <Ttaxf(x),

X£l xEl
we deduce that Vm is an F-stable interpolatory procedure, i.e. stable in the
Fejér sense (see, for example [12, 13]).

Denoting by Hmf the Hermite-Fejér polynomial defined by (AT /)(rt /) =
= f{xm,k), (Hmf)'(xmtk) = o, we prove the following

Proposition 2.1. For every matrix A and for every sequence {\>m}, we
have

(2.3) (Vmf)\xmj) = 0, i=1,2,...,m
(2.4) Vm(f;x) = Hm(f;x) + Rm(f-,x), xel,

where Hmf is the Hermite-Fejér polynomial and

R{fix) —g 24 * OO\ xmk) f(xmK)x

=1 v m\xm,k)

) o (xmf+ (* - xmK)btet.
Proof. Since

dax TM(x) = 2J2 Imk(x)~ CDr{XTK‘)

we have
k m 2VYI '
K ( x) ﬁ/— Imk( )CDT("T n)
thus,
(2.5) oW, 2Imk{xmk)-

Acta Mathemaiica Hungarica 61, 1993



THE SHEPARD INTERPOLATORY PROCEDURE 81

Differentiating (2.2), in view of (2.5) we deduce (2.3).
On the other hand, relation (2.4) follows by (2.2), (2.5) and recalling
that

"T(r)—"T(rraJ,) H(_)S___E()— M%) \ +

+ Wby X

SO X ] o kmik + (- xmtytdt, O

We remark that by Proposition 2.1 it follows that the positive oper-
ator Vm is a rational non-integer extension of the Hermite-Fejér operator
Hm, which in general is not positive. It follows also that Rm(e0;x) = 0
Am (/i "_m,t? —0 . )

articularly interesting cases of the operator Vm have been introduced
and studied separately in previous papers. For instance, if {pm(w)} is a
sequence of orthonormal polynomials in | with respect to a weight function
w and we set

A — {3t / Pm(Ni2mq) —0) *—122,... ,m, m GN},
m—= -1

4>m(x) = Ar{wx) = AP kiw\x)
fco

(m-th Cristoffel function), then since

n-1/ X

where Am,k(w) = Am(w ;zn#c), we obtain the operator

Fn,(/; x) = AT(w ) o Amk/yvv) xel,

introduced by Nevai in [11] and studied in [e].
If, for any matrix A of knots, we set gm(x) = 1, then we obtain the
operator

£ Im,k(X)f(X™K)

Lm{f)*) — 5
E4E5()

introduced by Hermann and Vértesi in [9].
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Finally, if for any matrix A = {xm>- i —1,2,... ,m, m € N } we set

1 m
<Pn(x)=-r{-y Pm(x)=|i'||(x_
Pm( > =

then we have the Shepard operator

E o - Zmfc)- 2/(Zm,*)
(2.6) Sm(A; /; x) = Sm(f; X) = k=l Mpemmmmmmemmm e ,
kE—I{ X - x m,k)~2

see [14]. This last operator is important in approximation theory and it is
used for graphic representation of surfaces; for this reason it has interested
numerous authors; among all we recall [3, 4, 8, 10].

In the next section we shall give pointwise estimates for the remainder
term f(x) —Sm{f'i x) in the cases of different distributions of the knots. For
the general operator Vm we state a necessary and sufficient condition for the
uniform convergence of Vmf to /.

Leto>(/;<5)= |xm3?])éi \f(x) —f(y)\ be the ordinary modulus of continuity

of the function /. Then, the following theorem holds.

Theorem 2.2, Let Tm*{x) = Vm(hx;x) with hx(t) = (x —t)2; then Vmf
converges to f on I if and only if

lim supTmiz(i) = o.
m-°° xel

Moreover, we have
(2.7) V(*) - vm(/; x)\ <2uw (/; yltT2(X)) .

Proof. Since Vm(eo;x) = 1, the first statement of the theorem is an
equivalent formulation of the celebrated Korovkin theorem. Inequality (2.7)
can be obtained by standard computations. O

3. Convergence estimates for the Shepard operator

In the present section we consider the Shepard operator defined by (2.6)
corresponding to two different matrices of knots and we give pointwise esti-
mates of the convergence order.
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The case of the equidistant knots.

Theorem 3.1. IfX - {-1+7, k=0,1,... ,m, me N}, then we
have
I

(3.1)  |[/(x)-5m(X ;/:x)|EN J rgdt, fe ce(l), x 6 1.

m—
Proof.Let xmd=-1+f£ r=0,1,... ,m, meN. Being 5m(X;/; xm,,)=
= /(xn®), in the following we assume that x ¢ Let

1™ *me~r X K #rn,cH*

and let xmC be the knot closest to x, i.e. x —xmC < awycea —x. Thus,
X - Xme < m-1 and ifmca - X > m-1. Moreover, if xm"* < xm,c then
2c- A)ma < x - xmk < [2(c- A)+ Ilm-1 and if > »roec+l then
[2A—cCc) —Ilm-1 < xmik —x < 2(k —c)m_1. Thus for every x e | with
X 2mG we have

(32)  |I(x) - Sm(X;/ix)|<£ (* ow )]
o

A T
ot lar" (1om ae—A)+1) T uff\2f{k-c)m~1) A

WUm rigg WEAR sz WrRguIp -

M w(; (;&- c)ym x)
= fo=0 (lc-A:)z \QA—C)
m ., - X4
i '1I'1W'(f’;m71“)t + jX(VT'L"(/;){g )
=2

* fceM

Now
T"Am J N | N2’
(iHhm—=

and
w(/;im ®<au>(;f), (- hm 1iit<im !

Acta Maihematica Hungarica 61, 1998



84 GIULIANA CRISCUOLO and G. MASTROIANNI

Thus
fAi m tr
(3.3) w(fiim > g ) Ut=
1=2 i=2(«_l_)(m:|
Since

W(/;m 1) < - Jfl w(f;t)t~2dt,

by (3.2) and (3.3), inequality (3.1) follows. O

By a proof similar to that of Theorem 3.1 (cf. Bojanic [5]), one can prove
also the following

Corottary 3.2. Ifthe knotsxmii, i=1 ,2 ,m, m e N of the matrix
X satisfy the condition

c\m 1< |xnp+i- xmfl<c2m x, i=1,2,... , m- 1 m£N,
with constants Ci and c2 independent of i and m, then we have
I
V(*) - Sm(X;/; x\ < Cm~l j dt, f€C°QJ), *€/,
m_1
where C is a constant depending only on ci and c2.

We remark that in general the Hermite-Fejér interpolation procedure for
continuous functions and with respect to equidistant knots is not convergent.

Furthermore, in general the estimate (3.1) is more precise than the fol-
lowing

(3.4) [|/-5 m(X;/)|[<8a»(/;m-1logm), m>2 [/ e C\l),

obtained by Newman and Rivlin in [12] (cf. also [1]).
Indeed, if / € LipMo, 0 < a < 1then by (3.1) we deduce

I/ - 51X;/)|| < constm ",

whereas the inequality (3.4) implies
/- ST@X;NH||*"c onst.
In the case / G Lip”~I, both inequalities (3.1) and (3.5) give
I/ - 5m(X;/)|| < const.
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Moreover, since for any matrix of knots X there exists an f £ LipMI such
that

V- *»No/>11lr3smAl’
(see [12]), we can deduce that

sup I1/- 5m(X;/)|| > const.
/6LiPMi

Finally, the error f —Sm(X;/) does not improve by assuming only higher
smoothness of the function /. Indeed, the following theorem holds.

Theorem 3.3. The asymptotic relation

(3.5) i-o-gp:rﬁ[Sm(X;/;x)-/(x)] = 0(1), m-+oc,

is not valid for every x £ I and for every non-constant function f £ C1.

|
Proof. Let/ £ Cx(/) with /'(1) > Oand / u(f']Jt)t~1dt < oc; it results
0

(3.6) )- [(x) = (xmt- x)f'(x) + Gx(xm<),
with

3.7) IC70kT ,,)| < X - *m,ijw (/' I*- Xmi])
Thus

(3.8) Sm(X; /; x) - [(x) =f(x)Sm(X;gx;x) + Sm(X;Gx, X),

where gx(t) = t - x. In view of (3.7) and proceeding as in the proof of
Theorem 3.1, we deduce

So by the assumption j u>(f; t)t xdt < oo, we have
0
lim Sm(X;Gx-x) =0,
m-*oo log m
uniformly on I. Thus by (3.8)

H m . . - H m . . 1
mI|_rl)10 log [Sm(X ;/;x)- 1(x)] —m|_ll‘l‘!) Idé-;;l-ST (X ax;x)/'(X).
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Finally, let x € (I ~ Ij for some fixed p < m; by some calculation

Sm(X;gx;x) > const.
whence we deduce that

lim [obﬁSm(X]gx;x)f,(x)> 0. O

m-fO O

As for the saturation of the Shepard operator Sm, it was proved in [7] that

/- S,,,0X; N = o(/Tnl} O / is a constant.

However, the saturation class is an open problem. J. Szabados [15] proved
that

|
I'(o)=/"(1) = oand < 00 = \f-Sm(X-J)\\ = o (£),
0

and he conjectured that the converse implication is also true. At present, in
the converse direction only / G f]I Lipa is known (see [7]).
a<

The case of the zeros of orthogonal polynomials

Let (pm(tn)} be the sequence of the orthonormal polynomials with re-
spect to the weight function w € GSJ defined by

*+i
w(x) = d(x) X - [jKT*, xel,
k=0
where -1 = t0 <ti < ... <ts <tet1= 1,7*>-1,K=0,1,... ,S+ 1

1
and the function ¢ > 0 is such that f w(th,6)6~116 < o0o0. The zeros of
0

pm(w]x) = am(w)xm+ lower degree terms, am(w) > o, are denoted by
xm,i = xmti(w) and they are ordered so that xT4 < xm2 < ... < XnPIN.
Set xnd = cosbmi for 0~ i < m + 1 where xnmQ = 4, = 1 and

0" Omii < 4. Thenz1
(3.9 Om,i - Ora,i+i ~ m_1>
1If A and B are two expressions depending on some variables then we write

A ~ B iff \AB~*| < const, and |/1-15] ~ const,

uniformly for the variables in consideration.
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uniformly for0<r<m, m e N. (See [11, Theorem 9.22, p. 166].) Now we
denote by ¥ the matrix having as knots the zeros ofgm(x) = (1-x 2)pm(to;x)
and consider the Shepard operator Sm(Y) corresponding to the matrix Y.
Let gx(t) = t- x; in order to study the convergence of Sm(Y), the following
lemma is needed.

Lemma. LetY be the matrix of knots corresponding to a weight w £
€ GSJ. Then

i _ x2
(3.10) |'Sm(l';ffx;z) " const— ——
holds with a constant independent of x and m.
Proof. By (2.6) we can write

m+
E (*- "m.)1
Sm(Y\gx\x) ——

E (r- xm,..2
<=0

9m(a;)g™(a;)
m+l

For every x 6 |, we denote by c the index corresponding to the knot xm<
closest to x. Recalling that imc(x) ~ 1, uniformly for x € /, m GN (see [11,
p. 171]), we deduce

(3.11) \SM(Y;gx-po\<  19m@)gmac)l - fgmEx)<mix)|

ifc(®)[im(*m,c)]2 ~ [9m(xm,c)]2 '

Since gm(x) = (1 —x2)p'm(w;x) —2xpm(w;X) we obtain
(3.12) kKT(X)9T(r)1~(1-;c2 [2Pm(w;*)+(I-*a)|M w;x)||[IC(w;x)]|] .
Now, define wm by

wm(x) = (y/l +x+m xzmo+ fIx-ffcl+ m 1)7* (y/1-x+m i)27j++1

it=i

Then
(3.13) |[pm(u>;x)| * const.[wm(x)]~1/2,
uniformly in x £ / and m € N (see [2, Theorem 1.1, p. 226]). Moreover

(3.14) maxjd,(ﬂx)l\/u;m(x) (M -x+m * Nl +x+m r)}<

< const, m max 1apm(w, x)|\/U’m(x) |
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(see [11, Theorem 19, p. 164]). Being by (3.12)
KayaXD<(L- x2)w-1(x)™2wm(r)pl(w;x)+
+ Y/ - X2y/wm(x)\pm(w, x)|j X
X [(VI - X+ m_1) (VI + X+ m-1) y/wmx)\p'mw; x)j j,
the inequalities (3.13) and (3.14) give
(3.15) 1?m(®)9m(X)| # Const.1 - X)Ii~XX) |1 + Ty 1 - xz| .

On the other hand,

rt/ yl —X <*T— (M) u / u /
[Pm\'w'i’\m,«)] —_ ; ATﬂ.LIJ)PT-ﬂ@;
where Ami(tt>), i = 1,2... ,m denote the Christoffel constants defined by

rm-1 -1

Arn,i(w) - ~m(w;xro,) with Am(w;x) = fC:Opl(w;x)\l (m-th Christoffel

function). Consequently

Since am-i(w)/am(w) ~ 1and Xmw)pn_i{w\ xnmec) ~ m-1(1 - z£,c) (see
[11, Theorem 6.3.28, p. 120 and Theorem 9.31, p. 170]), we deduce

[?m(*m,c)] 2~
m(l - *m,c)’

Furthermore, by (3.9) XmQw) ~ Xm(w;x) and recalling that Am(w;x) ~
~ m~awm(x), uniformly in x £ /, m € N, we obtain

(3.16) [imi*m.c)] > wm(x) e
mi VI —x2+ m-1

Combining (3.15) and (3.16) with (3.11), inequality (3.10) follows. O
Now we are able to prove the following
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Theorem 3.4. LetY be the matrix of knots corresponding to a weight
w € GSJ. Then we have

(3.17) |
|[/(x) —bm(y;/;x)|<const.m_aJw (f;t\/1- x2) [ <C°(l), x e/,
m~1
(3.18)
1/(x) =Sm(Y;/; x)| <const. — - — | |[I'(x)|+J W(f";tV1- x2) y j,
m-1
fec\l), Xei.

Proof. Assume that x ¢ xm), and xmC < x < xm>cH with xmC the
closest knot to x. Taking (3.9) into account, it is easy to prove that

|x —xm,c|* const.m_1\/1-x 2, |[x-xTald*const.—|\/l X2, Kdpc,

and for sake of brevity we omit the computations. Thus,

m / 2
*) _ <[ x| AN _ 7N N - _
I /(%) 17 %) mﬂx__;w;k; ;K- XmfD
Since
VAN .
L||/! )<5/|f7h) ,\2:/\1’?
Si
we have
1/(x) - Sm(Y;/; x)| <
< const. <w (/; * 1+V 1 i\ —x2) 1<
& k - cA ' 0*
K C
< const.<uv>(/; Y+E AN~ (/Nv4AN)Ys
< const jw y w (f;t\/l - x2) t_2di],

|
and observing that u(f; T~1y/1—x2) < const,m-1 /1cj(/; t\/T—=2)t~2dt,
m
inequality (3.17) follows.
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In order to prove (3.18) we recall (3.6) whence
(3.19) Sm(Y;/; x) - f(x) =1 (x)Sm(Y;gx;x) + Sm(Y;GXx;Xx),

with gx{t) = t —x. In view of (3.7) we deduce as above:

|srn(Y;Gfa;)| < const.A=-A \] n (/'; tyll - x2) t~ldt.
m-1

Finally, taking into account (3.19) by the Lemma we deduce also (3.18).
Il

A particular case of the last theorem interesting in the applications corre-
sponds to w(x) = \/l —x2, that is to say that zmt = cos;+T>
i=o0,1,... ,m+ 1

We remark that the estimate (3.17) for the presence of the term \/1 —x2,
is better than the previous estimate (3.1) near to the end points £1 corre-
sponding to a thicker mesh in their neighbours. However, we suspect that
the Shepard procedure corresponding to another distribution of knots can
have a better behaviour near those points corresponding to a thicker mesh
and they may not necessarily be the end points of the interval. In particu-
lar, by Theorem 3.3 it follows that in the case of equidistant knots it is not
possible to establish an inequality of the same kind as (3.18).

An estimate similar to (3.17) is also valid for the operator Lm, whereas
for the operator Fm both estimates (3.17) and (3.18) are true; see [6] and [4]
respectively.

Moreover, we recall that for the Hermite-Fejér operator corresponding
to the zeros of the Jacobi polynomials Vértesi [16], generalizing a result
of Bojanic [3], has proved the estimate

1/(x)-tfm(/;x)] =0 (1) £ U o -1 Xel,
i=|

where the O sign depends on a and /3,7 = max(a,/3, —1/2). This estimate
is of the same kind as (3.17); however this last one gives a good estimation
only when a,B i - 1/ 2.

Finally, we remark that the problem of saturation for the operator Fm
has been partially resolved [e]; whereas for the operator Sm(Y) it is still an
open problem.
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A DECOMPOSITION OF CONTINUITY
AND «-CONTINUITY

M. PRZEMSKI (Bialystok)

Let B be a subset of a topological space (X, T). The closure and the
interior of B are denoted by CI(-B) and Int(B), respectively.

A subset B C X is said to be semi-open [5] (resp. an a-set [g], pre-open
[6]) if B C CI(Int(#)) (resp. B C Int(Cl(Int(5))), B C Int(CI(5))). The
collection of all subsets of a space (X, T) which are semi-open (resp. a-sets,
pre-open) is denoted by SO(X, T) (resp. T", PO(X, T)). It was observed in
[8] that Ta is a topology on X and that T C Ta C SO(X,T). Moreover,
Ta=SO(X, T)nPO(X,T) [11].

The union of all semi-open (resp. pre-open) sets contained in B is called
the semi-interior of B [2] (resp. pre-interior of B [e]) and is denoted by
sint(5) (resp. pInt(#)). The interior of a subset B of the space (X, Ta) is
denoted by alnt(-S).

The following result will be useful in the sequel.

LEMMA 1 [1]. If B is a subset of a space (X,T), then

(i) sint(5) = B NCI(Int(B)),

(if) pint(5) = B MInt(CI(f?)),

(ii)) alnt(5) = B MNInt(CI(Int(J9))).

Let X and Y be topological spaces. Amap f : X —Y is called:

— semi-continuous if for every open set V of ¥, f~ 1(V) is semi-open [5];

— pre-continuous if for every open set V of ¥, f~1(V) is pre-open [e];

— a-continuous if for every open set V of ¥, f~1(V) is an a-set [11].

Let A and U be collections of subsets of a topological space. We use the
notion A AU = {AMU: A £A,U € U}.

In this paper we introduce the following types of maps:

Definition 1. Let (X,T) and (Y,T") be topological spaces and let A
be a collection of subsets of X. Amap /: (X, T)—%Y, T') is said to be locally
A-continuous if for every open set V of (Y,T'), the set /-1(¥) belongs to
(AAT)UT.

It is evident that every continuous map is locally A-continuous for any
collection A of subsets of X.

We say that amap /: (X, T) = (¥, T') is A-continuous if for every open
set V of (¥Y,T7), the set /-1(¥Y) belongs to A, where A is a collection of
subsets of X. Obviously every A-continuous map is locally A-continuous
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since AC (A NT) UT.
For a topological space (X, T) we denote:

D(c,a) ={B C X: Int(A) = alnt(B)},
D(c,p) ={B C X: Int(5) = pht(B)},
D(a,p) ={B C X :Int(B) = pInt(5)}.

The most significant result in this note is the following triplet of theorems.

Theorem 1. For a topological space (X,T) we have:
(i A map f:(X,T) (¥, T') is continuous if and only if it is both
a-continuous and D(c,a)-continuous.
(if) Let A be a collectionof subsets of X satisfying the following:
(c,a) A map f: (X, T) —m (Y, T') is continuous if and only if it ishoth
a-continuous and locally A-continuous.
Then A C D(c,a).

Theorem 2. For a topological space (X, T) we have:
(i A map f: (X, T) = (Y, T") is continuous if and only if it is both
pre-continuous and D(c,p)-continuous.
(i) Let A be a collectionof subsets of X satisfying the following:
(c,p) A map f: (X, T) = (Y, T') is continuous if and only if it ishoth
pre-continuous and locally A-continuous.
Then A C D(c,p).

Theorem 3. For a topological space (X, T) we have:
(i) A map f: (X, T) —»(¥,T") is a-continuous if and only if it is both
pre-continuous and D(a,p)-continuous.
(if) Let A be a collection of subsets of X satisfying the following:
(a,p) A map f: (X, T)—=(¥Y,T') is a-continuous if and only ifit is both
pre-continuous and locally A-continuous.
Then A C D{a,p).

Before proving the above results we need the following three lemmas.

Lemma 2. For a topological space (X, T) the following hold.

(i) TalD(c,a) =T.

(i) If A is a collection of subsets of X such that TaflI((AAT)uT) =T,
then A C D(c,a).

Proof, (i) The conditions B € Taand B € D(c,a) imply B = alnt(5)
and Int(B) = alnt(5) and consequently B GT. Conversely, if B 6 T, then
B = Int(B) and B = alnt(5) since T CTa. Thus B £ Ta Nl D(c,a) which
finishes the proof of (i).

(i) Let A € A. According to Lemma 1 (iii) we have alnt(A) = ATl
Mint(CI(Int(A))). Clearly, the set alnt(A) belongs to Ta. We see also that
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it is of the form AU, where A GA and U GT. From this follows alnt(A) G
GTaN((AT) UT) and consequently alnt(A) GT. Thus alnt(A) = Int(A),
which means A G D(c, a) and finishes the proof.

Lemma 3. For a topological space (X .T) the following hold.

(i) PO(X,) ND(c,p) =T.

(ii) 1f A is a collection of subsets of X such that PO(X,T) M((A AT) U
UT) = T, then A C D(c,p).

Proof. Since the proofis analogous to that in Lemma 2, it is omitted.

Lemma 4. For a topological space (X.T) the following hold.

(i) FO(X, T)nD(a,p) =T°.

(ii) 1f A is a collection of subsets of X such that PO(X,T) M((A AT) U
UT) = Ta, then A C D(a,p).

Proof. IfB GPO(X,T) ND(a,p), then B = pInt(i?) and alnt(i?) =
=plInt(T) and consequently, B = alnt(H), which means B G Ta. Conversely
if B GT“,then B = alnt(R) and consequently B = pint(B) since alnt(5) C
C plInt(5). Thus we have alnt(i?) = pInt(5) = B, so B G PO(X,T) N
C\D(a,p), which finishes the proof of (i).

(i) If A G A, then A MInt(CI(A)) = pInt(A) by Lemma 1 (ii). It is
obvious that pInt(*) GPO(X, ) A((A NT) UT). It implies pInt(A) GTa.
Hence pInt(A) C alnt(A) and we have shown A C D(a,p).

Proof of Theorems 1, 2and 3. The proofs are all similar. Statement
(i) of Theorem 1 (resp. Theorem 2, Theorem 3) follows easily from (i) of
Lemma 2 (resp. Lemma 3, Lemma 4).

Now we will prove (ii) of Theorem 1. Let us assume that A (fD(c, a). Then
there exists AeA for which Int(A) dalnt(A) holds, which implies alnt(A)
ANT. LetY —X and T' —{¥,0,aInt(A)}. The identity map /: (X, T) —
—>(Y,T") is clearly a-continuous, but not continuous. Since the set alnt(A)
is of the form ADU, A GA, U GT, the map / is locally A-continuous. This
means that A does not satisfy the condition (c,a) which finishes the proof.

The proof of (ii) of Theorem 2 (resp. Theorem 3) is analogous to that
of Theorem 1, it is sufficient to observe that the condition Int(A) ¢ pInt(A)
(resp. alnt(A) ¢ pInt(A)) is equivalent to the condition pInt(A) ~ T (resp.
pint(A) Ta).

Let us observe that the condition T“ MA = T (resp. PO(X,T) MA = T,
PO(X,T)MA = T“) implies ACTU{B C X: B £I“} (resp. lc T U
U[BCX: Bi POX,T)},) ACTaU{B CX: B $PO(X,T)>).

The following example shows that D(c,a) ¢ T(J {B C X: B Ta}l,
D(c,p) pTu{B CX: B £PO(X,T)} and D(a,p)pTaU{B CX: B $
£ PO(X,T)}. At first we observe that D(c,p) = D(c,a) NMD(a,p). Thus,
it is sufficient to prove the existence of a set B C X for which B £ D(c, a),
B i D(a,p)and B i PO(X,T) hold.
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Exampte 1. LetB=[-I, IN({E: n=2,3,... }3u {—£:n=2,3,...}) U
U ((1,2) \ Q), where Q denotes the set of rational numbers. We consider B
as a subset of the space of real numbers with the natural topology. Then

we have Int(CI(5)) = (-1,2), Int(5) = U{( - £ , : n=i,2,..}u

U{("™T>n) :n=1,2,. ¢l and Int(CI(Int(5))) = (—, 1). Hence it follows

B £ Int(CI(5)), Int(5) / BI Int(CI(Int(5))) and B MInt(CI(5)) ¢ B I
Dint(CI(Int(/?))). This means B £ PO(X,T),B D(c,a)and B D(a,p).
In [12], Jingchen Tong defined an J1-set in a topological space as a set B
such that B = U NC, where U is an open set and C is a regular closed set.
Amap /: (X, T) —»(Y,T") is said to be J1-continuous [17] if, for every
open set V of Y, f_1(V) is an J1-set.
It is easy to verify that every J1-set belongs to D(c,p). Thus, the follow-
ing corollaries are immediate consequences of Theorems 1, 2, resp. 3.

Corottary 1[12, Theorem 4.1]. A map f: (X, T) —(Y,T') is contin-
uous if and only if it is both a-continuous and A-continuous.

Corottary 2. A map f: (X,T)—»(Y,T") is continuous if and only if
it is both pre-continuous and A-continuous.

Corottary 3. Ifamap f: (X, T)—»Y,T") is both pre-continuous and
A-continuous, then it is a-continuous.

It is clear that Corollary 2 is a generalization of Theorem 4.1 in [12].
We see also that Corollary 3 follows trivially from Corollary 2. Moreover,
we observe that Corollary 3 follows from the fact that A-continuous maps
are semi-continuous ([12], Theorem 5.1) and, a map is a-continuous if and
only if it is pre-continuous and semi-continuous (see [9], Theorem 3.2, where
pre-continuous maps are called almost continuous).

It is known that a-continuous maps into regular spaces are continuous.
Then from Theorem 3 (i) follows

Corottary 4. If (Y, T') is a regular space, then a map f: (X, T) —»
—»(Y,T") is continuous if and only if it is both pre-continuous and D(a,p)-
continuous.

Let {X,T) be a topological space and let | be an ideal of subsets of X.
For asubset A C X, Dj(A) = {x£X:UC\AE£I for each neighbourhood U
of z}. Assume that | satisfies the following: A £ I if and only if Dj(A) = 0.
Then the operation A A\JDj{A) is the closure operation [4]; the topology
defined by this way is denoted by H{T,lI). A subset B C A is open in
(X ,H(T,/)) if and only if B is the difference of an open set in (X,T) and a
set belonging to | (see [4], Theorem 1).

When A is a family of subsets of X we use the notation A~ for the
family {X \ A: A & A}. It is clear that H(T,1) = T nI~. Then the conti-
nuity of / : (X, H(T, 1)) —(¥, T"') is equivalent to the local / *“-continuity of
(X, T) Y, T).
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We will need the following lemma.

Lemma 5. For a topological space (X,T) the following hold:
(i) D(c,a) AD(c,a) = D(c,a),

(i) D(c,p) AD(c.p) = D(c,p),

(iii) D(a,p) AD(a,p) = D(a,p).

The proof is obvious and thus omitted.

Let /: X —»Y be a map and | an ideal with the above property of
subsets of X. We consider the following properties for /.

(1) The map /: (X,T) —»(Y,T") is continuous.

(2) The map /: (X,H(T,1)) —=(Y,T") is continuous and the map
[ (X,T) Y, T'") is a-continuous.

(3) The map /: (X,H(T,l)) = (¥, T") is continuous and the map
f(X,T)—»Y,T") is pre-continuous.

(4) The map /: (X, T)—»(Y,T") is a-continuous.

THEOREM 4. Let (X,T), (Y,Tr) be topological spaces and | an ideal of
subsets of X. Foramap f: X —=Y we have:
(i) Statements (1) and (2)are equivalent if andonly if I~ CD(c,a).
(i) Statements (1) and (3)are equivalent if andonly if I~ C D(c,p).
(iii) Statements (4) and (3)are equivalent if andonly if I~ CD(a,p).

Proof, (i) If Statements (1) and (2) are equivalent, then the family 1~
satisfies the condition (c,a) of Theorem 1 and consequently I~ C D(c,a).
Conversely, let I~ C D(c,a). Since H(T,I) =Tnrl and T C D(c,a) we
obtain H(T,l) C D(c,a) AJ9(c,a) = D(c,a) by Lemma 5 (i). Thus from
Theorem 1 (i) it follows that conditions (1) and (2) are equivalent.

The proof of (ii) (resp. (iii)) is analogous to that of (i); it follows from
Theorem 2 (resp. Theorem 3) and from Lemma 5 (ii) (resp. Lemma 5 (iii)).

A subset B CX is said to be simply-open if B = U UK, where U is an
open set and K is nowhere dense [7]. Amap /. (X, T)-*(Y,T') is said to be
simply-continuous if for every open set V of ¥, / - a(¥) is simply-open [3,7].

We have the following theorem on simply-continuity:

Theorem 5. A map f: (X, T)—>»(Y,T") is a-continuous if and only if
it is both simply-continuous and pre-continuous.

Proof. Evidently, by Theorem 3, it is sufficient to prove that every
simply-open set belongs to D(a,p). At first we shall show that B 6 D(a,p)
ifand only \f X\ B e D(a,p):

If B G D(a,p), then B Mint(CI(5)) = B MInt(CI(Int(1?))). Thus we
obtain CI(Int(5)) = CI(Int(Cl(Int(5)))) = CL1(C1(5) MNInt(CI(Int(P)))) =
= CI(5 NInt(Cl(Int(5)))) = CI(5 MInt(CI(S))) = CL(CL(P) MInt(CI(5)) =
= CI(Int(CI(5))); consequently Int(CI(fl)) = Int(CI(Int(CI(5)))) =Int(CI(Int(P))).
Now let us observe that Int(CI(Int(1?))) = X \ Cl(Int(CI(X \ B))) and
Int(CI(5)) = X \ Cl(Int(X \ B))). This implies CI(Int(CI(X \ B))) =
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= CIl(Int(X\.0)) and consequently Int(CI(X\J9)) = Int(CI(Int(CI(X\.B)))) =
= Int(CI(Int(X\R))). So (X\A)MbI(C1(X\A)) = (X\A)MNbH(C1(1n1(X\A))),
which means X \ B € D(a,p).

Secondly, we observe that every open set belongs to D(a,p) and every
nowhere dense set belongs to D(a,p). Therefore, by the above fact, every
closed set belongs to D{a,p) and every set of the form X \K, where K is
nowhere dense, also belongs to D(a,p). Then every simply-open set U UK
is of the form X \ ((X \ U) N (X \ K)), where (X \ U) MN(X \ K) belongs
to D(a,p) by Lemma 5 (iii). Thus the set U UK belongs to D(a,p), which
finishes the proof of the theorem.

We see by an argument similar to that in Corollary 4, that the above

result implies:

Corottary 5. If (Y,T") is a regular space, then a map f: (X, T) —
—a(Y, T') is continuous if and only if it is both simply-continuous and pre-
continuous.

Since every semi-open set is simply-open, the last corollary implies

Corottary 6 [10, Lemma 5]. If (Y,T") is a regular space, then a map
f: (X, T) = (¥, T") is continuous if and only if it is both semi-continuous
and pre-continuous.

References

1] D. Andrijevic, Semi-preopen sets, Mat. Vesnik, 38 (1986), 24-32.

2 S. G. Crossley, S. K. Hildebrand, Semi-closure, Texas J. Sei., 22 (1971), 99-112.

3] J. Ewert, On quasi-continuous and cliquish maps with values in uniform spaces, Bull.
Acad. Polen. Sei., 32 (1984), 81-88.

4] H. Hashimoto, On the ‘topology and its application, Fund. Math., XC1 (1976), 5-10.

5] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math.
Monthly, 70 (1963), 36-41.

[6] A. S. Mashhour, M. E. EI-Monsef, S. N. EI-Deep, On precontinuous and weak precon-
tinuous mappings, Proc. Math, and Phys. Soc. Egypt, 51 (1981).

[71 A. Neubrunnova, On transfinite sequences of certain types of functions, Acta Fac. Rer.
Natur. Univ. Comenianae Math., 30 (1975), 121-126.

[8] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961-970.

[9] T. Noiri, On a-continuous functions, Casopis Pést. Mat., 109 (1984), 118-126.

[10] Z. Piotrowski, Some remarks on almost continuous functions, Math. Slovaca, 39 (1989),

75-80.

[11] I. Z. Reilly, M. K. Vamanamurthy, On «-continuity in topological spaces, University
of Auckland Report Series, No. 193 (1982).

[12] J. Tong, A decomposition of continuity, Acta Math. Hungar., 48 (1986), 11-15.

(Received May 2, 1989)

INSTITUTE OF MATHEMATICS

WARSAW UNIVERSITY, BIALYSTOK BRANCH
UL. AKADEMICKA 2

15-267 BIALYSTOK

POLAND

Acta Mathemaiica Hungarica 61, 1993



Acta Math. Hung.
61 (1-2) (1993), 99-110.

ON THE CONTROL OF A NET OF STRINGS

1. JOO (Budapest)

In what follows we consider a net of homogeneous strings connected at
the endpoints. This system can be represented as a graph. It is controlled at
the vertices. We consider the problem of relaxing the system in a fixed finite
time from any initial conditions. We shall show that this is possible if and
only if the graph is a tree. Then we give necessary and sufficient conditions
for the approximate controllability and also for the case of non-fixed finite
relaxation time. In this paper we continue the investigations initiated by S.
Rolewicz [1] and give the correction of a mistake stated there.

1. Consider a connected graph whose edges are strings connected at the
knots of the graph. The strings and knots are indexed by s = 1,... ,M and
p=1,. ,N, resp. We apply controls up(t) £ L2(0,T) at each vertex p.
Suppose that the s-th string has endpoints p and p'\ then its movement is
described by the equation

d2ysOat)  dym ()
(1) B dt2 dx2 ’

where ga > 0 is the mass density and I, is the length of the s-th string. We
investigate the following boundary and initial conditions:

O<x< £, 0<t<T

(2) y>(0,t) = up(t), = up.(1),
3) ¥Y*(s,0) = y°(x), n2/,(*,0) = vi(x)
where

ys e L2(0,e,), yleH-\o,e.).

Here H~I is the dual space of Hg with respect to L2, see [2]. Using the
Fourier method we ask for y, in the form

4)
Let
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then we get by Fourier’s method that

n femmmmr 1 sin \fAn»
(%) cn)i(i) = cM), cos t+CcAg—7 = -+
V A
WM W) - (-D)"v(r)] sin” - r)dr,

(0]

An,:=(~r) ° n=12-"-
Indeed, multiply both sides of (1) by z(x,t) £ C2([0,f,] x [0,T]) satisfying
z(x,T) = zt(x,T) = 0, z(0,f) = z(£e,t) = 0.
Then integration by parts gives
I, T I t.T
JJIQs{y,)ttz=Je»[(v»)t(x,t)z(x,t)-yt(x,t)zt(x,t)]1=0dx + JJ Q.y.ztt =
00 0 0o

}
=J e[y Ax)zt{x, 0)-y][{x)z(x,i)\dx + J | QyzZtt;
) ot o Tt

J JYPIZ= YI#<(>0r (>9-y = (omits(=»0itzan + 1 [y>2X:
0 0 0O 0

(0]
T la

=JHund(02) - w o, et + 30

We can summarize this as

where b £ C2[0,T], b(T) = b'{T) = ois arbitrary. Then
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ﬂ,(*) - Jy.(x,t)ge"JI-"—sm"-xdx

and hence and from (e) we obtain the relation .

.
J[Q*At)b*\t) + K,BCn,s(t)b(t)]dt =
0
/I T
=y JM ) - (-1)nup{t)]b(t)dt - c°Bb'(0) + 4 ,6(0).
0

This holds for all b(t) with the above restrictions, hence

(7)

cns + Jh*eni = Jj-y/xnAupP~ (—)"upP> cm»*0) = cn»> c¢n,i(0) = 4,«
and

(8) cni,(t) + 11 -C©

=e-VC.{[o0.+i <U +jJ || [m(®- (-D)"v (NKVV:Vr|.
vV n” *0

Definition 1. The system of strings is controllable in finite time T if
for any initial conditions

(Vsiva) € L\0,I,)® H-\0,ee) =: Wt, s=1,....,.M
there exists a control
«
u=J : | €L\0,T;R”)=: H(T)
yUN j
relaxing the system in time T:
Vo6 T) = (igt(x, T) =0  (s=1,. ,M).

By (4) this is equivalent to
cnAT) =4,.(N =o.
Using the well-known properties of the space H~I we see that the sequences
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run over the compl space when the initial conditions#Un over the sets
Wa. Hence (8) implies

¢n,At)
*)+* 12

NV rn,a

i.e. in every time T the movement state of ys remains in the function space W,
of the initial conditions. Let ant £ be the vector, whose p-th coordinate
is 1, the p'-th one is (- I)n+1 and the other coordinates are zero. By (8) the
system can be controlled in time T if and only if the sequence

"
<J unjdt: n>a, s=1,....M>
.0

runs over the complex valued  while n runs over H(T); in other words, if
the sequences

run over the complex t2space when n £ L2(o,T; C*) (we identify here £2~

and 12).
By a fundamental theorem of N. K. Bari [3] this means exactly that the

system
[ORES ;o n>1 5=1,..., Afj

is a Riesz basis in its closed linear hull. We shall say that ® is an L-basis.
The above arguments give the following

Lemma 1. The system is controllable in time T if and only if ® is an
L-basis in Z2(0,T;C").

We shall show the following
Theorem 1. The system is controllable if and only if its graph is a tree.

Proof. First we recall

v *nyg ~ ~7 o L/8 I— t By/Qs'
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The quantity Lais called the optical length of the s-th string; for inhomo-
geneous mass distribution ga(x) it is defined by the formula

L, = il

The system @ is the union of the following 2M systems:
{aMezt,(2"+1)™/L*}@ 0, {a2,.eti2n,r*/z'*} (s =1,..., M).

Each of them is an L-basis in L2(0,T; C”) for T > Ls. Hence we have to
show that for large T the 2M generated subspaces are independent in the
sense that any of them and the linear hull of the others have a positive angle.

a) Let first M < N. In this case M + 1 = N and the graph is a tree.
A single string (M = 1) is controllable also with the assumption that in one
of the endpoints the control is zero. This can be seen e.g. from (8). Now
we choose in the graph a vertex p of degree 1 and its neighbour vertices
p'. The strings between p and p'-s can be relaxed by appropriate controls
up = 0, Wl € L2(0,T1). Then take the neighbours p" of some p'. Now if
upi(t) = 0 for t > T\ and upf G L2(Ti,T2) are appropriate then the strings
(p'iP") are also relaxed. Since the graph is connected, the iteration of the
above processes relaxes all the strings.

b) Let M = N. Then the graph is a circle, whose vertices are possibly
joined by a tree. Since the trees can be controlled by a), we restrict ourselves
to the case of a single circle. Since in o2,* there is one coordinate +1 and
-1 hence in this case

N
(9) = 0.
J=
On the other hand for every £ > 0 there exist integers na = 0, k = 0 satisfying
2naxk
(10) n —K <¢£ (s =1,...,M),

or with another notation

ox <Ef (s= 1,....,M);

(see the Kronecker theorem on simultaneous diophantine approximation [4]).
Now by (9) and (10) we obtain

N
i‘7naiTx/LS

S a2z < ek

al L2(0,T-ON)
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Since the Z2-norm of the above sum is bounded below, hence ® can not be
an Z-basis and then the system is not controllable..

C) Finally let M > N. Then (10) can be proved in the same way as in
b). Since M > N, the vectors o2» s = 1,... ,M are linearly dependent.
This can be put instead of (9) and the proof can be finished as in b).

Theorem 1 is proved.

Remark 1. S. Rolewicz [1] investigated the same problem with the dif-
ference that the initial conditions are taken from the spaces

(|i) y°,eL2(o,ee), y\eL2{O]'I).

By (8), the controllability in this case is equivalent to the statement that the
sequences

run over the space n2® ~2 where we use the real valued £2 space and /12 is
the space of real sequences {cn} satisfying XXncn)z< oo. In particular, the
moment space of the sequence {««,* sin y/Xn,at} with respect to the real space
H (T) is the real £2. Consequently the moment operator F: H(T) —» £2,

Fu:= |(u ,a niisin

is continuous and onto, further it is isomorphic restricted to the orthocom-
plement of Kér F, which is the closed linear hull of all an>isiny/Xn,gt. In
case M >N this is in contradiction with the estimates of the form

M

M
EC*QZ))e<<zn3rrx/La < ¢ e, ]rCZ =
«=1 H(T) t=1

proved in Theorem 1, hence for M > N the system is not controllable. If
M < N the controllability can be proved quickly asin Theorem la). Remark
that the movement of the strings does not remain in the class (11). Formula
(8) shows only that

+ i
aXn"s

is in the complex valued £2 space, but if we relax successively the strings, we
can control also this larger class of movement states.

Corollary 1. The system (I)-(3) with the modification (11) is control-
lable only in the case of trees.

Remark. Rolewicz allowed in [1] that the relaxation time T < 00 may
depend on the initial conditions. We continue our investigations in this
direction.
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Introduce some notions connected with the above statements.

Definiton 2. The system of strings is

a) controllable in (unbounded) finite time, if,for any initial conditions
(y'a’ va) there exists T < oo and a control 1 € H(T) relaxing the system in
time T, i.e. y, (T, = £ty,(T,-) fors=1,... ,M;

b) approximately controllable in time T if given any initial conditions

M
{y®,yl) from a fixed dense subset ong Ws we can find n £ H (T) relaxing
1

the system in time T;
c) approximately controllable in (unbounded) finite time if for any initial

M

conditions (t/°,2/g) from a dense subset of 0 We we can find T < oo and
5=1

n £ H(T) relaxing the system in time T.

THEOREM 2. 1) If the graph is not a tree, then the system of strings is
never controllable in the sense of 2a).

2) The approximate controllability property of the system in the sense of
2b) and 2c¢) are equivalent and it does not hold if and only if we can find
equal values A4, for which the corresponding vectors aly, are dependent.

In the proof we return to the moment space

00 M
R(T) := ‘ne H(T)
MN=1,5=1

From (8) we see that the controllability properties can be described as above:
2a) ° R(T) =e2,
T <00
2b)  R(T)is densein i2,
2C) U R(T) is dense in t2.

T <00
Introduce the notation

.
c(u) := Al (ans5e/ b**,n((0)n)

and consider the isomorphism

(c(ui), c(u2)) > (c(ui) + ic(u2), c(w) - ic(u2))
in the space 12 ®12 which we consider as the space t2 with twice as many
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complex coordinates. Since we have

T
c(«i) +ic(u2) = (J (anweyyY "\u 1(r) + itiz(i)™ dt'j,
0
T
c(ui) - ic(u2) = (/ ™anee_'VA*t tia(i) + i«2(i))<i)>
0
hence the properties 2a), 2b), 2c) are equivalent to the statements:
U RY{T) = Ilii R\(T) is dense in t22, and (J R\(T) is dense in i2,
T <00 T<o00
resp., where
Ai(T) < Naregetry /M un ()N d?j ‘ue I\ o,t-cn) >

We show that the sets Ri(T) stop growing in a finite time, i.e. we have
LEMMA 2. There exists To<oc satisfying R\(Tq)=R\{T) for all T>Tq.
Proof. Let

wn,( = + 1, a:={u,e:n=12,..., s=1,... ,M).

We shall prove that for large To < oo the operator

PTo:13(0,00;C*)-*£3(0,T0;C*)
restricting the functions to (o,Tq), maps isomorphically the system
V  (on,.«Hlinl" :«q* € <)
(0,00)

into T2(0,To;C*); in fact we show that for large To it maps isomorphically
the larger subspace

V (CNetiWn’,t :tdn,, € a) .
(0,00)

This last statement can be reformulated as follows. The one-dimensional
operator

PTo :T2(0,00)-+T2(0,TO)
maps isomorphically the set

V (etUnd .« €1

(000)
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ON THE CONTROL OF A NET OF STRINGS 107

into X2(0,To). We shall prove the existence of an exponential type entire
function F(z) whose zeros are the values n'R and finitely many further zeros
Hi,... ,HR ax |-F(a:)IXI, x € R. As it is well-known from the theory of

scalar exponential bases [3,6], the operator Pt0 maps isomorphically

Qo)

onto the whole Z2(0,To) where Tq < 00 is defined as the length of the
indicator diagram of F ([5]). Consider the partition

{1.2...... Af}= OSJ

i=i
induced by the equivalence relation
Si~52-alL,jLE2€ Q.

Denote further

{0}}, = {<(5) :5e sj}.
Then we have o
a= J%I
We can easily find an entire function whose zero set is For s € sj the
sets are not disjoint. Let si,S2,... ,Sk € sj, then o™1) IM...T is

an arithmetic progression without the number i. Therefore for appropriate
/z GR the zero set of the function

sin™x(z —T)

Z —T

is cri*1) M... Ner(*) without multiple zeros. Let

fk 'm= [(«l,—»%)
*?1<_’ tl
then tlie function
F_ /1/3/5e0
j'~Irnje...
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will be of exponential type with zero set oy and with simple zeros. From the
estimate

[A)X(+ W r(>

we obtain by
that
Let fii,... ,fik € C+\(7 be arbitrary different numbers. Then the exponential
type entire function .
F(z) :=J3](z - A))F.M

1=1
satisfies the above formulated conditions, consequently Pyo maps isomorphi-
cally V (o,00) (an,iet,u™ st € a) into L2(0, TO;CN). This implies

-Ri(To) = Ax(o0) =
09)

= (/ (anexllhr*,u7)) dtyj :whB<€o, ue L2(0,00;CN)

Now take the function
F(z) := F(z) sinr(z —-f 1)

instead of F(z), where /x > 0 is not commensurable with any of the numbers
Ls and among the zeros of sin/x(z—i +1) the values LI \,... ,hr do not occur.
The length of the indicator diagram of F is To+ /x, hence repeating the above
proof we obtain

(12) Aj(T) = Ai(oc) for every T >To,

which completes the proof of Lemma 2.
Returning to the proof of Theorem 2, the controllability in the sense 2a)
would mean that T(<JOO -ffi(T) = £21.e. Ai(To) = £2' but this is true only for

systems whose graph is a tree. We see also easily that 2b) and 2c) are equiv-
alent and both mean exactly the density of Ri(00) in £2. Clearly, if we have
linear dependence among some vectors an,, where the corresponding values
Ares are identical, then this implies dependence among the corresponding co-
ordinates in [a(oo) and hence Ai(oo) can not be dense. Conversely, suppose
that we have no such dependence among the vectors ans. Fix an £ > 0 and
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take disks with center wrs and radius e. Take the topological connectedness
components of the union of these disks. The centers of the disks belonging
to the same components give a partition

a = Uff(fc).

The “theorem of making blocks” [e] states that for sufficiently small e > 0
the subspaces
tffc := Lin {e’un*t : wly, G <Y}

form an L-basis in L2(0,00). Consequently the system {CNHk : k G Z) is
L-basis in L2(0, 0o; CN) and then & fortiori the system

Hk := Lin {ani,eunlt :wi G <0}

is also L-basis. Therefore there exists a system {¥*} of subspaces biorthog-
onal to {4,,} in

V (dn,>x<"""’l: uns G Q') .
(O,00)

This means that HkL.Yi (k ¢ £), dimYk = dim Hk. Take the elements
O'n,se,Un’,t generating Hk. Their orthogonal projection onto Yk give a basis
in Yk hence there exists a system {yn»} C Yk biorthogonal to them. We
unify the systems {yn,a} so constructed for all to see that

T
\] {an,e'Ui* yn’s'(t)) dt = 8ny mSty,
0

hence we gave a system biorthogonal to @®. But this implies at once the
density of iZi(oo) in ti since if u{t) runs over the finite linear combinations
of the yn,ai the moment sequences run over all finite sequences. Theorem 2
is proved. Remark, that in this paper we have used the ideas of the works
[7-11].
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+-INDEPENDENT SUBSETS IN
MODULAR LATTICES OF BREADTH TWO

ZS. LENGVARSZKY* (Pécs)

As a weaker version of weak independence (see G. Czédli, A. P. Huhn
and E. T. Schmidt [1]) the notion of *-independence was introduced by G.
Czédli in [2]. Let L be a lattice and let H be a subset of L. H is called *-
independent if whenever h, hi,..., /i*€ H and hi V... V/i* = h then h = h,
for some 1 <i < k. A maximal *-independent subset is called a *-basis of
L. If L is of finite length then any maximal chain and J(L), the set of all
join-irreducible elements are *-bases of L. It was proved in [2] that if L is
a finite distributive lattice and H is a *-basis of L then H has at least as
many elements as any maximal chain, i.e., |A| > f(L) + 1 where I(L) is the
length of L. The authors also asked whether the same was true for modular
lattices. Here we give a partial answer for modular lattices of breadth two.
Let us recall that the breadth b(L) of a lattice L is the least natural number
n with the property that for each X QL there is a subset X' of X such that
MX = MX'" and |A”| <n. Thus b(L) < 2 means that any join ai V... Va*
equals a, Vaj for some 1< i,j <k

Theorem. Let L be a modular lattice offinite length and of breadth at
most two. Then for any *-basis H of L we have \H\ >£(L) 4- 1.

Proof. If H is infinite then we are done. Suppose H is finite and let
C be a maximal chain in L. Since H UC is finite from C. Herrmann [4] we
know that L', the sublattice generated by H U C is finite as well. Clearly,
H is a *-basis in L', moreover, £(L') = 1{L) whence it is enough to consider
finite lattices. We will proceed by induction on \L\.

Observation 1. If for the pairwise distinct o,61,62,63 e L we have
a—< 61,6263 then the sublattice generated by {61, &2 63} is isomorphic to
the five-element non-distributive modular lattice M3 (the notation a—< 6
means a is covered by e6i.e. a <eandifa”™ c” ethen a= c or e= ¢).

Indeed, the well-known Interval Isomorphism Theorem (see Grétzer [3])
implies 6, Vg>—s6,,§ if i ®©j. If eeVe2 61V 63 eV 63 are pairwise
incomparable then a1V e2, a1V 63, a2V 63 generate an s-element Boolean
lattice (cf. Gratzer [3]) which is of breadth 3 whence this case is impossible.

* The author’s work was partially supported by Hungarian National Foundation for
Scientific Research, Grant No. 1813.



112 ZS. LENGVARSZKY

If e.g. bi Ve ™ 2V e3 then by the above covering relations we must have
b\ Ve2= bi V&3 but then the sublattice generated by {e1, 62163} is M 3.

Observation 2. If ¢ € J(L) and c—<6,6" with b ¢p b' then bz J(L) or
b' £ J(L).

Indeed, if b,b' £ J{L) then there exist x,x"' ¢ ¢ such that x-< b and
X'—< pb'. The Interval Isomorphism Theorem gives x Jlc—< x, cand x' J1c—<
x',c. As c £ J(L) we must have xJ1c = x'J/lc = e and e—< X,x',c where
e is the unique lower cover of c. Now by Observation 1 we get 6 = 6, a
contradiction.

Let us consider

0=Gg—<C—<...< (I

a chain of join-irreducible elements which is maximal in the sense that if
gt— c for some c then c is not join-irreducible. Notice that &k must be
meet-irreducible by Observation 2. We distinguish four cases the first three
of which are the trivial ones.

Case 1. c¢* = 1, the greatest element of L, i.e. ¢* has no upper cover at
all. Now L —{c*} is a sublattice of L and H —{c*} is a *-basis of L —{c/t}.
Also, £(L —{c*}) = I(L) —1 and |H - {c*}| = \H\ —1 (obviously, ¢c* £ H)
and the assertion follows by induction.

Case 2: k has a unique upper cover and et » H. Since & £ H and
G is both join- and meet-irreducible there must be a maximal chain not
containing c®. This means the length of the sublattice L - {c*} is I(L) and
since H is a *-basis in L —{cjt} as well the assertion follows by induction.

Case 3: c¢* has a unique upper cover band ejt £ H but b£ H. We have
two possibilities:

(i) b= hi Vazf°r some hi,h? € H - {c*} and hi, h3< b.

(i) The above hi and h2do not exist.

In case (i) H - {c*} is a *-basis of L —{cjt}. This can be shown easily by
observing that in any non-trivial join (i.e. when the elements to be joined
are strictly less than their join) containing c* we can replace ct by hi vV h2.

In case (ii) (4 —{c*}) U{e} is a *-basis of L —{c"}. Similarly to case
(i), this can be seen by observing that in non-trivial joins ¢t and b can be
replaced by each other.

Since b £ J(L) some maximal chain of L avoids c¢* whence i(L —{cjt}) =
= I(L). Then the assertion follows by induction as before.

Case 4: Both c* and b belong to H. Let bo ¢ Ci such that 0—< bo (if
bo does not exist then 0 £ H is meet-irreducible and we can induct with
L —{0} and H —{0}). Further define 6= ¢-Ve,_i fori=1,... ,kK. Using
again the Interval Isomorphism Theorem and join-irreducibility of ¢- we get
the following diagram where, as usual, the line segments denote covering
relations:
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Suppose now that H' 2 H —{c*J is a *-basis in L —{c*} and let h' £
£ H'—H. We claim that this can happen in two ways: either h! = 6, for some
i or ¢,_i—< h'—< hi for some i. To see this assume hi ¢ bi (i =0,... ,k).
Since bl £ H and H was a maximal “-independent subset there must be
some g £ H with h! —etVvg and c*, < h'org= ¢ Vh and cjt, h' < g.
Since (cis meet-irreducible if we replace c* by bk the equations remain valid.
Then *-independence of H' gives h' —bk or g and g = bk or h\ respectively.
Taking into account h" £ H we are left with the only possibility g = bk- Let
i be the minimal index such that hi  e-and letj be the maximal index such
that h! > Cj. We show ¢c-V hi = b, and ¢- 1bl=¢cj. That ¢-”~ ¢;Vhi ~ b, is
clear and ¢- = ¢-Vh' would imply h* ~ ¢,  ¢* however we have 6= CkV h'.
Thus the first equation follows from ¢—< 6,.

Any meet involving any of c0, ... ,c* equals one of c0, ... ,&since these
elements cover each other and are join-irreducible. Hence, the second equa-
tion is immediate.

The Interval Isomorphism Theorem gives Cj-< h' and Observation 1 says
{cj,cj+i,h',bj} generates Ms. This means i =j + 1 and Cj-< h'-< eJ+1.

Notice that we also have h' £ J(L). This is trivial ifj = 0. Ifj > 0 then
bj £ J(L) and Cj—< h',bj which give h' £ J(L) by Observation 2.

On the other hand, if h* —bi for some i then ¢, £ H . Suppose not. Then
there must be g,g' £ H such that ¢ = ¢-vVgandc, g <g'. Let C be a
maximal chain between ct and ¢'. Suppose that x is the least element in C
which is different from all Cj and y is the least element in C with y £ J(L).
Further, let z £ C with z—< y and let Cj £ C such that Cj-< x.

First observe that x — bj cannot occur. If x = bj then ¢, < h' = 6, <
bj ¢ would give svh' = g' which in turn would give g = g'or h' = ¢
by ~-independence of H'. However both are impossible since g < g' and
h* ~ d. Our Observations also give ci+1 V x = bj+i and x £ J(L). One
consequence is z > x. Since all z' £ C with z' <z are join-irreducible we have
z/\Cj+i = Cj. The Interval Isomorphism Theorem gives now z— c3+1 Mz. By
Observation 2, the only join-reducible cover of r is y whence cJ+i Vz = v.
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This together with x * z and GH V x = bj+i yield bj+i <y. Then by
6, < bj+x and y < g' we get 6, < g'. This implies g' = b,\/ g which contradicts
the ~-independence of H'.

If IH' —H\ < 1then the assertion follows by induction. Let us suppose
now h! @ h" and h',h" G H' —H. Using the information derived above we
distinguish four subcases:

(i) h" = bi, h" = bj and i <j.

Then G GH' and g Vb, —bj contradicts the "-independence of H'.

(i) c,—< h'—<<bi+1and cj—< h"—< with i~ j.

Then let c0—< ... < cj—< h"—<do—< ... —C d,, be a maximal chain ofjoin-
irreducibles. We may suppose d,, has a unique upper cover e with dn,e € 4
otherwise we could induct as in case 1 or 2 or 3. But then a similar argument
to those above shows bj+i Adn = h" whence Vvdn = e which gives h' ~ e.
This and h' » yield h' Vdn = g, contradicting the ~-independence of A"

@iii) h* = 6, Cj—< I'—< bj+1with r~ j.

This case can be handled as (ii).
(iv) h' = bi, Cj—< h'—< bj+i with i > j.
This case is essentially the same as (i).

The author wishes to thank the referee for his helpful suggestions which

improved the proof.
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A CONSISTENT EDGE PARTITION
THEOREM FOR INFINITE GRAPHS

P. KOMJATH (Budapest) and S. SHELAH (Jerusalem)

o. Introduction

The fundamental problem of partition theory of infinite graphs is if for
every graph ¥ and cardinal // there exists a graph X such that if the vertices
(or edges) of X are colored with 1 colors then there is a copy of ¥ with all the
vertices (edges) getting the same color. This is denoted as X —(¥)* and
X —»(y)£; if these statements fail, then, of course, the arrow is crossed. Let
K (a) denote the complete graph on a vertices, and let K(a) ~ X denote
that the graph contains K (a) as subgraph. If « is an infinite cardinal,
then obviously K(k+) — K(k+)\, and by the Erdds-Rado theorem [e],
K((2K+) — (K(k+))1, and this result gives the existence of X for any
v, m-

To make the problem harder, one might require the copy to be induced.
This relation is denoted as >+ Though the vertex problem is still fairly easy,
the edge case even for finite X,u was only solved around 1973 by Deuber,
Nesetril-Rodl, and Erdés-Hajnal-Pdsa [1, 11, 5]. The latter authors even
showed that for y finite, ¥ countable, there is an appropriate X. Hajnal
and Komjath [9] proved that it is consistent that there exists a ¥ of size Ni
such that no X (of any size) has X >+ (¥Y)*. Shelah [14] proved that it is
consistent that for any ¥, R there is an X with X >>(¥Y)£. Hajnal recently
proved [g] that if ¥ is finite, y is infinite, an appropriate X exists, in ZFC.

Another way of making the problem harder is to pose restrictions on X.
We may require that if K(a) %Y, then K(a) » X, either. This excludes the
possibility of getting an easy solution by using the above-mentioned Erdds-
Rado theorem. For finite X, /1, Folkman showed the existence of such an X
with X — (¥)* and also, for finite a, 1 the existence of a finite X with
K(a+ 1) » X —=(a)*. [7]. Nesetril and R&6dl solved the edge case, for
finite ¥, L [12]. The infinite case for vertices, but if a is finite, was solved
by Komjath and R&dl [10]. The case of general a is given by Hajnal and
Komjath [9]. As for the edge coloring, Hajnal and Komjath proved in [9] that
it is consistent that there is a ¥ of size Hi, with K(3) * ¥ and if X —(Y)£
then K(u>) < X. It was an old problem of Erdés and Hajnal if a graph ¥
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with K{A) » Y —K(3)2 exists. S. Shelah in [14] proved that such a ¥
may consistently exist. Another old Erdés-Hajnal question was if a ¥ with
K{u=i) » ¥ — (A(u=)2 may exist. Here we solve (at least consistently) this
problem by showing the consistency of the statement that if ¥ is a graph,
p a cardinal, then there exists a graph X with X >m(¥)2and if K(a) * ¥
then K(a) ™ X, either.

We first show that if 2ii = p+, kK > p is measurable, ¥ is a graph on p,
then there is a < closed poset of size Kk, adding a graph X on k as above.
From this, we can get the general result, if we assume that {ka: a ordinal)
is a class of measurable cardinals, and take the iteration {Pa,Qa: a ordinal)
of posets, where Qa is the poset of Theorem 1 with p = k+,k = Ka+i, and
Y is some graph on p. We take inverse limits at singular ordinals, direct
limits otherwise. This will guarantee enough closure properties for getting a
model of ZFC, and for that the graphs preserve their partition property at
later iterations.

1. The consistency proof

Theorem 1. If2m = p+, Y is a graph on p, K > p is a measurable
cardinal, then there exists a ™ p+-closed partial order P, |P| = k, adding a
graph X such that X >m(Y)2, and whenever K(a) ~ X, then K(a) <.

Proof. The vertex set of X will be [K]2. We define a partial ordering <
on it by putting {/30,a0)< < {/?i,6i) < iff Bo < Ri and ao < <. A condition
is of the form p = (s,g9,(p) where s C [K]2, |a] < p+1g Q [s]2. If {{{?0>Q:0}<,
{Ax»ai)<} € g, then either B0 < R\ < ao< ¢4 or B\ < Ro < < a0 @
is a function with Dom(<€>) = (A <s: |A| > 2,[A12Q 5). For A 6 Dom("),
<p(A) * p spans a complete graph in ¥, [y>(A)| = |A|. We also require that
if B properly end-extends A, then <p(B) should properly end-extend <p(A).

Condition p' = (s',g',<p') extends p = (s,g,tp) if s 35 9 — 512N <,
(ff 2 wand if A Qs, |A| > 2 spans a complete graph in g, x € s' —s, and
A U {&a} is complete in g1, then A <X, i.e. y < x holds for every y € A.

Let P be the set of conditions defined so far.

Lemma 1. (P, <) is transitive.
Proof. Straightforward.

Lemma 2. Ifp = (s,0,<p) € P, A Qk, thenp \A GP. If Afl s is an
initial segment ins, thenp <p | A.

Proof. Immediate from the definitions.
Lemma 3. (P, <) is < p+-closed.

Proof. Assume that p( = (s(,g",<p() is a decreasing, continuous se-
quence of conditions (f < go #i /i+)- Take p = (s,g, <), where s = U{a": £ <
< fo)>9 = £ < £0)> and whenever A Qs spans a complete subgraph in
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g, IA\ > 2, then <p(A) = U{<fz(ANS(): £ < fO,\AN > 2}. For £ < C< £o,
N(ifl S{) end-extends <p((AT1S(), so cp(A) induces a complete subgraph
in Y, and |y?(A)| = |A|]. If B end-extends A, then select £ < £0 with ]
N (B - A) ¢ 0. By the definition of order on P, A Q S(, so <p(A) = <P((A)
and <p(B) end-extends which in turn end-extends <p(A). To check
p <p( (E < fr), the only nontrivial thing is the clause on A U {x}. If A €
€ Dom(y?£), x 6 s —S(, we can assume that x € s"+x —s", s0 A < x, and we
are done.

LEMMA 4. Ifp, = (s,-0i,<pf) are conditions for i < 2, they agree on
sO Msx, then g = (sO U Si,gOU «,y?0 Upi) is a condition. 1f sO N & <
< (so- Sx) U(sx - s0), then g~ po,Pi-

Proof. Straightforward.

If G Q P is a generic subset, we let X = U&=z (s,9,ip) € G).

Lemma 5. If K(a) <X for some a, then K(a) <.

Proof. K(p+ 1) %X, as if A Q [Kl2spans a complete graph of type
n+ 1, pick p = (s,9,<p) € G fixing A. This is possible by Lemma 3. But
then, <p(A) would give a K(p +1) in Y, a contradiction. IfK(a) < X, a <p,
argue similarly.

In order to finish the proof of Theorem 1, assume without loss of gener-
ality that 1 F F: X —mp. By Fact 2.4 in [14] there is a set A of measure
one, {Ns:s 6 [A]J<w} such that
(1) N. X (tf(2«);e,F,lh,...);

(2) [N,y+ CN,;

(3) VI = 2"+,

(4) NOTMNtl = NSmei;

(5) there is an isomorphism H(NSo, Nei) between N S and NS for |so| = |sx|,
mapping so onto sx;

(6) N. MA =5

(7) if so is end-extended to sx, then NS is end-extended by NSI.

Let A' Q A be a set of indiscernibles for {N.: s € [A]<u}. Enumerate the
first p2 elements of A" in increasing order as {B(i) : r < p] U(a(r) :i <p}.
Put t(i) = {/2(*),<*(®)} Mi = Nt() for i <p.

Definition. For p,q 6 P, p ~ q denotes that p \Ng, = q| N$.

Lemma 6. If p(i) € M-, p(j) G mj, p(i) ~ p(j), then p(i), p(j) are
compatible.

PROOF. By (4), the non-edge amalgamation works.

We next show that one-edge amalgamation can also be constructed.

Definition. If i < j < p, p(i) = (s(i),flr(*),¥(*) e Mh PU)_:
= (*(1)*9(j),vU)) € Mj, p(i) ~ p{j), then put p(i) + p(J) = (s,9.<p) with
s =s(i) Us(j), g = g(i) Ug(l) U{{t(i), t(3)}}, ip= <p(i) U<p().
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Lemma 7. p(i) + p(j) 15a condition, extending both p(i) and p(j).

Proof. AsB(i) < B(j) < a(i) < a(j), it is possible to join t(i) and
t(j). As sup(AQ) < B(i) < B(j), t(i) and t(j) are not joined into S0 no
new complete subgraph with more than two elements is formed.

Definition. If i <j < p, p(i) € Mi, p(j) e Mj, £ < p, we call the
pair (p(i),p(j)) f-good, if p{i) ~ p(j), and for every selection of p'(i) * p(i),
p'(d) * p(j) with p'(i) € M-, p'(i) € Mj, p'(i) ~ p'(j), there is a g <
p'(r) + p'(j) such that qlb F({i(t),i(j)}) = £.

Lemma s. Ifi <j <p, p(i) e Mi, p(j) e Mj, p(i) ~ p(j), then there
exist £ < p, p'(i) ~ p(i), p'(G) ™~ p@i), p'\i) G M-, p'(J) € My such that
(p\i),p'U)) is 1,-good.

Proof. Assume that the statement is false. Put p(r,0) =p(r), p(j,0) =
=p(j), and we are going to construct decreasing, continuous sequences p(r, f),
p(j,0 for f < p. Ifp(i,0, p(j,0 are defined, let p(i,£ + 1) ~ p(j,£ + 1)
be such that no q<p(i,£+ 1)+ p(j,{ + 1) can force F({t(i), t(j)}) = £ If
g=P(hP) + P(jiP) determines F({t(i),t(j)}), then we get a contradiction.

By transfinite recursion on a < p+, we select, for every /: a —2, a
condition p(i, f) € Mi, and an ordinal f(/) < p such that

(8) H(Mi,Mj)(p(i.f)) =p(j.f) (i<j< p);
9) (p(i,f%0),p(j.f*1))is f(/)-good (i <j);
(20) p(i,f) <p(i,f) when /" 2 /;

(22) p(i, f) ~ p(j,g) when f,g: a ->2,i <]j.

For a limit, we can take unions. Given {p(i,f): /: a —»2, i < p} we
select p(r, / no), p(r, / n1) by a transfinite recursion of length [2"| < p+, using
Lemma 8. To insure (11), we must keep extending p(i,f) | N$, this can be
done by Lemmas 3 and 4.

By the Baire category theorem, there exist £ < p, and increasing r- < p+
fi:a —*2 (r <p) for some a < p+, such that
(12) /,(r,) = 0, /y(r,) = 1, firw Q fj 1 Tj (i <j);

(13) afi In) =(.

PUt Y = {{8(p«(*)} :i < p}.

We are going to construct q(j,i) for 7~ p, i <p. Put g(0,i) = p(i,fi),
for 7 limit, «(7,i) = U{q(j/,i): 7' < 7}. If the construction is given, up to
the 7th level, let u(7) € Nt(i)ut(j) be such that

u(l) ~ g(7,47)) + 9(7,47))
and u(7) Ib F{t(6(")")), t(£(J))}) = £ We then take q(7 + 1,i) = s(7,/) U
Uu(7) 1 Mi.
Lemma 9. u(7) exists.
Proof. By Lemmasand by q(7,i) ~ q(J,j). This latter property holds

for 7 limit by continuity, for 7 = o by definition and (11), and for 7 -f 1 by
definition.
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Lemma 10. o(7 + 1,r) < g(7 ,i).

Proof. By Lemma 4.

Ifu(z) = (s(7),5(7), H7)) for 7 < p, then put u = (s,g,p) where s = U
U{s(7) : 7 < I}, 5 = U{f(7) : 7 < /t}, and <pis such that it extends all <€X7),
and ¥>({i(i) :i € A}) = A, when |A| > 2, and A spans a complete subgraph
inY.

Lemma 11. ne P.

Proof. It suffices to show that if B Q s, |[B|] > 2, spans a complete
subgraph then it is either in the domain of some <7) or it is of the form
B = {t(i):i € A} for some A A p.

If two Mi-s cover B, then one of them covers, too, or else {t(i),t(j)} ¢ B,
but then B MN$ = 0, so B = {t(i),t(j)}. If no two M,-s cover B, then
BdAm ©i <u}, and we are done, again.

Lemma 12. n £ u(7).

Proof. Thereis no complete subgraph in un which is extended the wrong
way. The only candidate for this is a set of type {t(i) :i £ A} of which only
two vertices are in u(7).

Lemma 13. n b {t(i): i <u} span a monocolored copy ofY.

Proof. Obvious.
Clearly, Lemma 13 concludes the proof of Theorem 1.

Theorem 2. If the existence of class many measurable cardinals is con-
sistent, then it is consistent that for every Y, p there exists an X with X >
>+ (Y)l such that if K(a) < X, then K(a) " V.

PROOF. By iterating the poset in Theorem 1.

The assumption on the existence of measurables can be eliminated, see
[14] Sections 3, 4.
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ON THE ASYMPTOTIC BEHAVIOUR
OF THE SOLUTIONS OF A SECOND
ORDER LINEAR DIFFERENTIAL
EQUATION WITH SMALL DAMPING

J. KARSAI* (Szeged)

1. Introduction

In this paper we consider the linear differential equation
(2) x -fa(t)i + x = o,

where the function a(t) is supposed to be nonnegative and piecewise contin-
uous. The classical problem of finding conditions guaranteeing that every
solution of (1) tends to zero as t —»00, has been the subject of a great num-
ber of publications [3]{8] for equation (1) and recently also for more general
nonlinear equations. There are rather sharp sufficient conditions, but the
sharpness problem, that is to find necessary and sufficient conditions, has
not been solved even for the linear equation (1). This problem is the subject
of our paper.

It is known that if a(t) is too small, i.e. J a < oo, the solutions are
oscillatory and do not tend to zero as t —»00 [g]. If the condition

o0

Ja="

0]

holds, then there exists a solution tending to zero [2], but examples show
[4, 5] that there may be also solutions not converging to the equilibrium
position. We note that if a(t) is bounded, this solution is oscillatory, but
if a(t) is too large, such as £2, it is monotone. To exclude the existence of
monotone solutions not reaching zero, the condition

ot t
JD J A(s)dsdt = oo, where  A(t):=expa(s)ds]

* Research supported by Hungarian National Foundation for Scientific Research grant
no. 6032/6319.
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is necessary and sufficient [3, &, 7, 8] provided o(i) is bounded below by a
positive constant. However, this is not the case for the equations with small
damping, in other words, there is no necessary and sufficient condition to
exclude the situation in which oscillatory solutions tending and not tending
to zero exist simultaneously.

In this paper we consider the bounded damping case (a(i) is bounded).

After general statements we give some types of criteria for the case of
step-function damping and then we extend these results to the case of general
damping. Finally, we show that condition (2) is “almost sufficient” in the
following sense. If limsup a(t) < 2 and (2) holds then every solution of the

t—Hs0

equation
x + ~Ma(i) +alt- a))x+x=0

tends to zero as t —»00 with every sufficiently small a.

2. General results

Using the polar transformation
X = R cosf, X = —R sin</?

we transform equation (1) into the system
3 = 1—"a(f)sin2yj, = -Ra(t) sinzf.

Since x2(t) + x2{t) = R2(t), we may prove R(t) —»0 instead of x(t) —#0
(i —=00). It is easy to see that

t
(@) R(t) = i2(o)exp|—J a(s)sinzy?(s)<foj >
0

Inequality (4) is of extreme importance. From (4) we can derive that the
solutions can tend to zero not faster than the function 1/A(t). We may ask
whether the solutions can reach this rate. The following theorem gives the
answer.

Theorem 1. Equation (1) has a solution not tending to zero (t —mo00)
if and only if it has a solution for which R(t) = 0(1/A(<)) (t —»00).

The proof of this result is analogous to that of Atkinson’s theorem [1]
for the equation x + g(t)x = o.

This theorem suggests that the case when solutions tending and not
tending to zero exist together is only a “singular” situation. In the next part
we try to characterize the nature of this “singularity” investigating the case
of step-function damping.
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3. The step-function damping

Let the functions an (steps) be defined by

,-n 14 _ | an iff € [0,in]
(5) Wi o ifi<o,
(an,in > 0) forn = 1,2, Let the sequence {sn} be given such that

so M 0, sn+i ™ sn+ in. Now define

(6) °(0 := “sn)
fl=1

and suppose

00

@) J 2 Qn*n = ooe
n=I

As in general, further conditions on {a,,},{in}, {sn} are needed making
all solutions tend to zero.

In the following theorem, published earlier, the conditions will be inde-
pendent of the distribution of the steps, i.e. of the sequence {s,,}.

Theorem 2 [4]. Suppose that a(t) is bounded, and
(8) £ “"»min(l, = 00
n=1

holds. Then every solution o/(1) tends to zero as t —#oo.
On the other hand, if

oo

9)

Mn=1
then there exists a sequence {sn}, s,+i > s, +in, sO > o, such that (1) has
at least one solution not tending to zero (t —»00).

The first part of the theorem is valid for nonlinear equations as well. The
proof of the second part gives a way to construct counterexamples ([4, 5j)
and expresses the fact that if (9) holds, it is impossible to give distribution
independent results. For example, ifa,, = 1,s,, = n, in = 1/n, the first part
of the previous theorem cannot guarantee that the solutions tend to zero as
t —»00.

In the following theorems conditions for the distribution of the steps are
essential. By Theorem 2, if I|m|nft,, > 0 then (7) suffices the solutions to

tend to zero. First we con5|der the case, when this condition is not satisfied.
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THEOREM 3. Suppose that there is an increasing sequence {rij} of nat-
ural numbers such that lim (in1+ i,,3+i) = 0 is satisfied. If the sequence

j oo

{max(anj,anj+i)} is bounded and the conditions

(10) liminf((sn +i - sn )mod7) > o,

(12) limsup((snj+1 —S,,j) mod >¥ < T,

(12) Am in (all)in),tt,)+ii,J+1) = 00
=1

are satisfied, then every solution of (1) tends to zero as t —%00.

Proof. Let us consider system (3). Since r(t) is constant on the inter-
vals (s,, + i,,, sn+i), the right-hand side of the first equation is periodic in tp
and dip/dt = 1, we can suppose that sn+i —sn —in < w Let us consider the
sequence {n y}. If Kk = nj for some j large enough, we have

6 /N Sk+l - Sk - ik 1 <f{sk+i) - <p(sk + ik),

and also
M
A(sSfc+i + ffc+i) - virk) # Sk+1-Sk - ik + — (ik + *k+1)< s - 6,

with some positive 6 where M is a bound for the sequence {max(anj,anj+i)>.

So the function sin2 has at most one zero on + ik+i] and there is
a number B > o for which

mini  min _sin2p{t), min sin2 > > o,
o Do SN2 I g 52 ED

for every large enough Kk = nj (j > J), i.e. sin2<€4f) is uniformly strictly
positive at least on one of the associated neighbouring intervals. Now we get
the following estimate for R(t):

R(snL+i + *E+i) » A(o)exp|[-**~Q nj \] sinzip(u)du+
8n,
n-++*n,-H
+tam+ |/ sinztp[u)dur | < K expj-i/?]T min(anji,ij, Onj+i™fij+i) j*
>+ j=J

Acta Mathematica Hungarica 61, 1993



LINEAR DIFFERENTIAL EQUATIONS WITH SMALL DAMPING 125

where the right hand side tends to zero (L —00). The theorem is proved.
O

Conditions (10) and (11) say that the accumulation points of the se-
guence {snj+i —sH]J} cannot be equal to any multiples of >x In the special
case when the sequence {(s,+i —sn)modi} is'convergent, we obtain the
following result.

Corollary 4. Suppose that (7) holds, limsup a,, < oo, lim in —0. If
n—»a® n-+00

(13) 0< Iimoo((s,,+i —s5,,)mod7) < >
then every solution of equation (1) tends to zero as t —»00.

Theorems 2 and 3 are independent. For the above mentioned example
= n, in = 1/n, an = 1 condition (8) is not satisfied but Theorem 3 is

applicable. On the other hand, if sn = ¥, an = 1, tn = 1/n1/4, condition
(8) holds but Corollary 4 is not applicable.

Theorem 3 has the following interesting consequence, which shows that
a slight modification of the equation kills the solutions which do not tend to
zero.

Corollary 5. Suppose that a(ty satisfies the conditions of Corollary 4,
except (13). Then every solution of the equation
X+ Ma(i) +a(t —s))x+x=0
tends to zero (t —»00) for everyo< o/ jtt (j = 1,2,...).
W ithout assuming inj -* 0 (j —»00) we can state the following

THEOREM 6. Suppose that there is an increasing sequence {nj} of nat-
ural numbers such that the conditions

(14) Iljrngorgf((s,, +1- sSn - in)mod7) > 0,

(15)  limsup((s,jti - snj - r,;)mod> + -(an>> + a,,>t*,i+i) < X

j —eD

and (12) hold. Then every solution of equation (1) tends to zero as t —o00.

4. General damping

In this section we consider the more general equation

(16) X + h(t,x, X)x +x = o,
h(t,x,y) is continuous and satisfies
a7 0<a(t) ™ h(t,x,y) * b(t),

where a(t), e(f) are piecewise continuous on [0,00).
Theorem e can be easily generalized to (16). The following result holds.
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Theorem 7. Suppose that (17) holds and there exist sequences of in-
tervals (|s,,,sn + in]},{tn,tn + In]} such that o ® sO, sn < sn +1i,, <tnh <
tn In K -Qua. If

(18) limsup{se(f) : f € [s,,,fn + /,]}< 2,
(19) Iirginf(t,, - sn- in) > o,
(20) lim sup(t, +/, - sn) < uf 2,
VR
(21) Emin( / « ,/ «) =00
Mn n In

then every solution o/(16) tends to zero as t —>00.

Proof. Now We have the following estimates on the variations of <p(t)
if n is large enough:

0 <Si <6(th- sn- in) <y?(t,) - (p(sn+ t,,),
and
+1/,) - <p(s,) < @- 6)(th+1In- sn)<T- 61

with some 6, S\. From here the proof can be finished similarly to that of
Theorem 3. O

A straightforward application of the previous theorem gives the following

generalization of Corollary 5, which especially shows that (2) is an “almost
sufficient” condition for R(t) —* 0 (t —»00) for every solution of equation

(1)

Theorem 8. Suppose that Ja = oo, limsupb(t) < 2 and (17) holds.

t —+00

Then every solution of the equation
(22) x-Fi(h{t,x,x)+ hft- a,x,x))x +x=o0

tends to zero as t —»00 for each o< 0 < %/ 2.

Proof. Let 0<<t<7¢/2 be given. Let N be a natural number for which
0/N<k/2—a. Let us now define the sets

[e]e}

it:=  [(no+k)(r/N, (n<7+k+1)(r/N] (k=o0,1,... ,N - 2).

M=o
N-1
It is obvious that (J KK = [0,00), and there is a A for which J a = oo.
fc=o Kk

Now we can apply Theorem 7 to equation (22) with that Kk (t,./,, = a/N,
sn = (2nN + k)a/N, tn = ((2n + )N + k)a/N). The theorem is proved.
O
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ON ADDITIVE FUNCTIONS

M. JOO (Auburn)

A classical theorem of P. Erd8s [1] states that if a real-valued additive
function is non-decreasing or f(n + 1) —/(n) —»o as n oc, then it must
have the form clogn for some constant c. Both statements were generalized
and strengthened by many authors; see e.g. the book [2] of P. D. T. A. Elliott
and references there.

The aim of the present note is to give an elementary and straightforward
proof for the following theorem, which is a corollary of the theorems proved
in the papers [3], [4] and [5].

Theorem. Letf be an additive real-valued arithmetical function; A, B
positive integers with (A, B) = 1. Suppose that f is non-decreasing on the
set {An+ B :n=20,1,...}. Then f{n) = clogn if(n,A) = 1, where ¢ > 0
is a suitable constant.

Proof. Our idea is to prove that / is completely additive on the set
{An+B :n=0,1,...}, from which the statement follows at once.
1. First we show that if h = 1 (mod A) then

(2) f{h) = alog h.

To this end let us denote c¢* := f(h)/\ogh and d/,(n) := f {An +B) —Chlogn
for any fixed h € N, h = 12 (mod A), h ¢ 1. We shall show that dh{n) is
bounded, which implies the statement (1) taking into account that

ML) - Wr)= (A i°gn = 0(1)

(for any pair of hi,/12-
First we show that dh{n) is bounded above, i.e. if n > w = no(c/,,h)
then there exists m/, < n for which

2 f(An -f B) - chlogn <f(Amh + B) - chlog mh.
We are looking for an M such that

(3) h(AM +B)> An +B

and

(4) AM + B =1 (mod h).
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Let us denote m/, the minimal solution of (4) which satisfies (3). It is easy
to see that m/, = ~ + 0(1). / is non-decreasing on {An - B} thus we have

(5) f{An + B)< f(h(Amh+ B)) = f(h) + f(Amh + B),

hence
(e) /(An-fl?) —c/jlogn < f(h)-ch\ogau +(f(Amh+ B)-chlogmh)=
- f(Amh+ B) - (hlogmh + 0(£).

By iteration (repeating the above calculation with m/, in place of n) we
get that dh(n) is bounded above. It can be proved similarly that dh(n) is
bounded below. Hence (1) is proved.

2. Now let ¢- (t = 1or 2) be a natural number which is coprime to A anc
denote ¢* > 0 one of the multiplicative inverses of G- mod A. By Dirichlet’s
theorem there exists a prime p, such that p, = An,- + ¢- with suitable n- and
(pi, €2) = (P2,ci) = (piP2, CICY = 1. Then pic’{ = Ac?w + ¢c*= Am + 1, so
using the result of Part 1 we have

(7) f(pi)+ /(ce) = alogpi + alog ¢{
and

(8)  f(Pi) + f{Pi) + /(cjc”) = alogpi + alogp=2+ alogcj + alogc”.

From (7) and (8) we obtain that f(ab) = /(a) + f(b) for every pair a,b
coprime to A. Thus

a logpv(4) = f(p"A)) = <p(A)(p)
for all primes p f A by (1), which yields the theorem.
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INVESTIGATIONS OF CERTAIN
OPERATORS WITH RESPECT TO
THE VILENKIN SYSTEM

G. GAT (Nyiregyhaza)

Introduction and results

We introduce some notations and definitions. Let m = (mo,mi,... ,
m/t,...) be a sequence of natural numbers, each of them not less than 2.
Denote by Zmk (k G N := {0,1,...}) the m*-th discrete cyclic group, i.e.
Zmk «—{0,1,... ,mjt —1} (k G N). If we define the group Gm as the direct
product of the groups Zmk, then Gm is a compact Abelian group with Haar
measure 1. The elements of Gm are of the form x = (x9, Xi,... , Xjt,...) with
Xk € Zmk (k G N). The sum of x,y G Gm, x+y is obtained by adding the
n-th coordinates of x and y modulo m,, (n G N). (Let —be the inverse of
operator +.) The topology of Gm is completely determined by the following
subgroups of Gm®

In{x) ;= {y GGm llbo= x0,... ,yn-i = £, 1> (x GGm,n GN).
For a fixed x GGm and for n € N let
In(x, ;) . —{/ € Gm 1Jo—xO0, .. , ¥+ = xn=, yn = fc} (k GZmn)e

It is obvious that 7,(x) = |J In(x,k) and this decomposition contains
kEZmn
disjoint sets, furthermore |/,,(x,/:)| = m“1/,,(x)| (k € Zm,, and |A| denotes
the measure of the Haar measurable set A C Gm)e
It is well-known [1] that the characters of Gm form a complete orthonor-
mal system Gmin L1{Gm)- The elements of G can be obtained as follows. De-
fine the sequence (Mjt, K€ N) as Mq:= 1, Mk+i = m"th (k € N), then all

n GN have a unique representation of the form n = MkMK (n* G Zmk,
k=0
KGN). If

r,(x) :=exp(amtx,,/m,,)(=: rn(x,,))
(»GN, x=(xo,xi,...) GGm, *=(-1)1/2),

[e]e]

then the elements of Gm are nothing but the functions n U rk
k=1

(n GN) (cf. [1]). (th,,, n GN) is the so-called Vilenkin system. The Fourier
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coefficients of a function / £ X1(GfIQ with respect to Gm are denoted by
f(k) (k £ N) and let

n— n
Snf:=J2hWk (n€N), on=n-1Y,Skf (n€N\ {0}).
k=0 K=1
n—
The kernels of Dirichlet type are of the form Dn := I:\ gk (n € N). Itis
=0
known that .
/ Mn if(x e in)
X o if (Xtin) (ne N)
and also o miel
ri DMk
Ic=0j=mk-nk

(cf. [1]). We define the maximal Hardy space H(Gm) as follows ([4, 10]).
Let / £ L1(Gm) belong to the maximal Hardy space H(Gm) iff the maximal
function /* := slu_lp|5ai,,/| is an element of LI(Gm). ||/||a := [||/*|li- The

concept of the so-called atomic Hardy space H1(Gm) is as follows.

First we define the set of intervals. If the sequence m is bounded, then
this set is {/,,(x) Ix £ Gm, n £ N}, [10]. If m is an arbitrary sequence, then
a set / C Gm is called an interval if for some x £ Gm and n € N, / is of

the form / = |J 1(x, k), where U is obtained from Zmn by dyadic partition.
keu
(The sets U\, Uz, ... C Zm,, are obtained by means of such a partition if

Ui ={o,..., [m,/2] - 1}, W ={[m,/2],... ,m,, - 1},
U ={0,..., [([m,/2] - 1)/2]-1}, Us={[([m,/2]- 1)/2],...[mj2]-1},...

and so on, [ ] denotes the entire part.)
We define the atoms as follows: the function a € L°°{Gm) is called an
atom if either a = 1 or there exists an interval la :=1 for which supp a C /,

H = |/1-1 and Ja = ohold. The space A1(CT) is the set of all functions
[
! = Ao, where a, £ A(Gm) are atoms and for the coefficients we have
.
@ )
|A| < oo. H1(Gm) is a Banach space with respect to the norm ||/||#i —
=0

®
= inf X) |A,|. (The infimum is taken over all decompositions f = Y| "iff*)
i=0

It is known that for bounded m the spaces A4 1(Ct ) and H(Gm) coincide
and the norms || m|W and || «||a are equivalent, [2].
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It is known that the Walsh system is not a Schauder basis in Z1(Gm)
(where each mj is 2). Moreover there exists a function / € H(Gm) such that
lim sup 1I-Sn/Hi = oo. The following theorem for Walsh system was proved
by P. Simon [g8]. The trigonometric analogue was verified by B. Smith [11].

Theorem 1. Iff 6 HI(Gm) (m is arbitrary), then

-
lim _log- 172 A ra||S*/|ji = HlIb
n—aD k=1

Define the Sunouchi operator T as follows [9, 12, 13]:

Tf-= (E ism,/-<w i2)1/L
n=0

G. L. Sunouchi proved [12-13] that in the case of Walsh system (mj = 2,
Mj = 2J for all j e N) this operator T as mapping from LT(Gm) into
Lr(Gm) is bounded, if 1 < r < 00. The analogous statement for r = 1 does
not hold thus it is of interest to study what happens in this case. P. Simon
[9] proved that in the case of Walsh system (mj = 2,j € N), T is bounded

as mapping from H1into L1.
For arbitrary sequence m there are some different cases. First we prove

Theorem 3. J/limsup m* = oo, then there exists a function fEH (G m)
K

such that ||T/||i = oo.

That is, the theorem of Simon does not hold in the case of H(Gm) and
lim sup mk = oo. Define the sequence m' in the following way:

k—1
mk = Mk+i &~ MJ+iloST3 k=1,2,...).

J=0
If m is bounded, then sois ra' and H coincides with H 1.

Theorem 4. //limsupmj. < oo, then there exists a constant ¢ > 0 such

that \TA\U < c||/||Hi for all f € H\G m).
Theorem 5. If limsupmj[ = oo, then there exists a function f €
€ H\G m) such that LT/Hi = oo.

Thus for bounded m the theorem of Simon and Sunouchi holds, and also
for unbounded m this theorem is true if and only if m' is bounded. To prove
Theorems 3, 4, 5 the following lemma is often used.

Lemma 2. Iff e LI(Gm), n e N, then
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SmJ (x)- ctmd (x)= (M,, - D/I2 i f-

In(x)

J f (x€Gmtek:=(o0,...,0,1,0,...))°

L.()+efy

Lemma 2 can be proved by the method of Pal and Simon [7]. Throughout
this paper ¢ denotes an absolute constant, which may vary from line to line.

Proofs
Proof of Theorem 1. We prove that

N

sup Iog"ivf\é:IISH Ir=-1< °°-

() a£SA%%m) IVgN

We complete the proof of Theorem 1 by (1) in a similar way as P. Simon
[8] did in the case of m- = 2 (i € N). Let a he an atom for which la
B
= 1 In(y,k). Since case a = 1is trivial, we suppose that a ¢ 1.
K—a
(2) If g < Mn, then dy is constant on la, thus Sga = 0. So let

9 > Af, {q=qg,M, -f... + gqnMn+ ... + qoMOQ).

(3) If x € 1i (y)\li+(y), i = 0,... ,n - 1, then

i m, —
H.(lqu k+Mi ~2 exp(am-1)3(x,-

(/e =y,). Consequently
i-1 ra,-1
5.a(x)] = |a(®)] *gkM k +Mi ~2 exp(ex(-1)1/2j(xi-ti)/mi)
j=m,-q,

From this it follows that
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CERTAIN OPERATORS WITH RESPECT TO THE VILENKIN SYSTEM 135

J AV = nv_l J I5,a(x)|dx <

») o e ryi{(voivi )}
( Mi—i  mi— \
1+ mrl 2 1 S exP(2tr(—I1)1/2j(x,—jli)/mt) J:

XE@'I, jl_—m ,—f,m

m, —1 '
= |&(g)lii + m,-a ™ \sin(nqgik/mi)/ sm(nk/nii)\| £ c|a(g)| logg,-.
Hence 4 k=1 '

4) J "oC®)! ~ cla(g)|log(mo...m n_i) = cla(g)|logMn.
Gm\n{y)
R
(5) xE£In(y)\\JIn(y,k)=:B
k=at

(5) gives x -t € 1In\/,,+i.

-2 mH"1 n
/a(r)dn(x - +Mn Y ri(x~t)\dt =
j ‘ofc=0 j=mn-gn '
=1 J at)rpg(x —t)(D + E)dt.
It is easy to get
(6) /|1 at)rpg(x-t)D dx < |a(g)|.

B la

Define Ak (ke J := {a,a + 1,... ,/?}) in the following way:
Ak = (R-a) J  a@i>gnHM+..+gtM.{z)dz (k £J).

In(v,k)

Thus |Afc] » 1 (k £ J) and in the case of g < Mn+i, Ak = 0 holds.

el

@ J Jd))cm(x E B =m.. Y [E(?- JMn)rmJ(,,)

XnEj i=1

= 1/((/?-a+ Dwen)5Z|Y Y Atrarfx -
XEj j=o tel

Acta Mathematica Hungarica 61, 1993
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From now on we assume that q < M,,+1, and let
j (a+ By (a=R (mod2))
o \(a+RB-1Ily2 (apB (mod-2)).
(7) is equivalent to
(8) (- a+Dm,)y122v22M m(x “O“/ (rn(*-t)-1).
x$j ted

We give an upper bound for (8) in away that we also give some upper bounds
for the following two sums:

9) 3 2222 rm(*- o/m *-0-i) =:22
(8 a+|)mnX$j teJ

1

(10) * -1 - =:E -
(R - a+ 1)m, XE$j|tEN Irn(x - t) - 1

First we deal with (10). Let A4J := J U {/34-1,/3+2,... ,R+(BR - a+ 1)} U
U{ct-(R —ot + 1),a-(B - a),...a-1}. Then

A - (B- a'+ I)mn X$aj teJ n(*' (0]

"®-a+ym, E |[En<A(T4pT1=E+E-

XEAJ tE]j
(1Y
2
Vo <o oo E E At{cot(7r(x—t)/mn)- cot(-K(x-to)/mn)} <
y - -t )mn g ted

miraiS r'e"".SiMibs

Since the discrete Hilbert transformation [15] is of type (2,2) we get the
3

boundedness of 5I3:

22 =cm~\B-a +1)~1/2{ 22 |*>ItCot(7(x - t)/m,)| } 7 ~
| xeAJ/lj tel

ic(3- a+ 1)~12{ 2 |Atj2} 7 <c.
tE]
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This and (11) give 52 < c¢. Now we deal with (9) that is construct some

upper bound for 52:

x{cot(7r(x - t)/m,,) - cot((ir(x - io)/m n)}||+ lo(gnM,,)| ?’£ \_x_-u't_Or|'

|6gnvin)| |z - tol-1 < cla(@nM,,)liog( _"r+J .
XiJ

1
Then in the same way as we get 5|2 = ¢ we also get that

(12) E =c(l +l&a(gnM,)|log(/j _™n+J ).

Let now q > Mn+j. Then

y[/aWw ,(I1-0(p+£)|"si% )i+« ((<i_o” 1)ro _
S /a j ted

- ail)m,, ElE'Ell..(*-li)-l ) =tH?)l+c(E +E )’

£E=c+tri Aml eEAH(p'Oﬂ)'I/I(*)-ldg )+
+c|ii(m,M, + ... + gwHlAfwFi)|log(— "2+ y) =

Ac(l + \afgsMs + ... + gn+iMn.n)|log”" ™+

as it comes from the techniques used in this proof before. We also get that

Es<i+i°wii°g((i8.m +1))

Acta Mathematica Hungarica 61, 1993



138 G. GAT

Next we define an atom b 6 A(Gm). Let yn = 1,and ifz 1n+i(y), then
b(z) = o,

b(yo, see 1 Yn—tiyYni™M+lieee  lat eee) o

R
m=(1/2) E a(yOi eeeiYn-1)kitn+i)eee, 6 o o)
k=a
Then .
lel<M n+i, supp 6= In+i(y), | b= J =0
LI TY)
that is bis an atom. If g > Mn+1, then 2|bn(g) = |a*(gsM, + ... +

+ gn+iM,,+i)|. By the application of a theorem of S. Fridii and P. Simon [4],
we get

(13)  (l/logjv) £ I°PA* M-+ --+7~ M"4-)H°gg% Ts
g-M n+].

< i\ogmn yl\I \bA(Q)\ .

= log Mifn+1 L q

gq=Mn+1

The upper bound for (8), (4), the application of the Fridli-Simon theorem
[4] and (13) imply

tu) (i/iogjv) £ Hinti<ece.
G=Mntl g
(14) shows that inequality g < Mn+1 can be supposed (forever from now).
Summarizing our achievements the rest in order to prove (1) is to get
(15)

leAQ)l log(m,,/(/3 - a + 1))

N
A=:(l/loglV) Y, <<c, where N <Mn+\

g=Mn

Let L := Nn.
aA(j Afn
(16) A~ c(l/(log LMn) log(mn/(3 - a + m)~ AU g
J=i 3

By the method of the paper of Fridii and Simon |aA(j'M,,)| < f
L > mn/(R —a + 1), then

B <c .l log m» <c

log o-a+i + log R —a + |
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IfL <mn/(B - a+ 1), then

(17) B <CrgarliogiLQu(m"/(ft - Q+ 1)1~ Jgrp+ A

Now

mn L logt)
= =:u(L 1<L .
l<r3-o:+1 SV < mn. (n + log L)v u(L,v), <L<v
JL = log v L logn 1 log v
T v(n-flogL) t)(n+logLy2L  v(n+logL)(* “ n+lost) >°’
vy = LW

(n + logL)v =
hence C < c¢. This gives that A <c. Thus (1) is proved.

Let / e Hi(Gm). Then / = _;2) Ai°i> where $T|A-a- < oo and a, €
€ A(Gra) (» 8 N). Now -

i/(i0g)t)53*-4is*/ii,-
fos

T
L e P R LA R TR SR T I R
Let £ > o and defineqas_;g)||A,| < £+ We have
i=g+
00 00 9 7 8
A/V/AA |A1||D|/ya": n |A1||u|/\ya"+ |A!||D|Aa!' = y]+y u
i=0 1=9+1 1=0

7
(1) implies that ~ < ce. We prove that for a fixed atom a € A(Gm),
8

Oora —+ 0 (N —* 00). That is X} < £if N is large enough. This would
complete the proof of Theorem 1. By standard argument (Simon [8, 9])
/ |5jta —a] —»0 (k —»+00, and not greater than 2 for all K £ N). Using the

la
notations and results achieved for the atom a in the proof of (1),

J |5f@| < claA(fc)|logM,, = c|aA(fc)|,
Gm\In{y)
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because a 6 A(Gm) is fixed. We proved that for Kk > Mn+x

] HVKq(aK) HoM g -i >
1a\In (/)

where the atom b corresponding to the atom ais also fixed. Since logmn/(R—
—a + 1) is constant, for N > Mn+a by the theorem of Fridii and Simon [4]

we get

N - N
aA(fc)l + \b\k)\
log-1 N k~1 f \Ska\ <c log 1N laAlfc) K )

k=1 Gm\la

N c/logN —po.

The proof of Theorem 1is complete.

Proof of Theorem 3. Denote A* := [™-] + 1ifm* > 3, and Ak =1
if nik = 2. Let

( MK+i if x G/*(0,1), £+1 ® o,
fk(x) := < -Mk+i if x € /fc(o, Afc), ¥+ ¢ o,
|l o otherwise.

In a joint paper of S. Fridii and P. Simon [4] it is proved that for each
53 |Aj < oo the function / := 53 fik"k is an element of the maximal Hardy
space H(Gm). We give the construction of a series A- (r € N) of the above
type such that ||T/||]i = oo. Denote Pk := {x € Gm\xo = ... = Xk-\ = 0,
Xk ¢ 0}. It is easy to get

(si) nr/iii>f;/iT /i>f;isMAL/-<Tjf.+l|.
k=Ork k=0
Therefore we have to give a lower bound for j \SMk+.f - o Mk+f\- Lemma 2
Pk
states that
(32) SMk+J-<rM k+1f = (Mk+1- l)s2 \] f-
Ik-+H(X)
Ay ow M
"E E 1_e-2ym, / f-.AX-A2
»=0 y=| pH{)renv

Since x e Pk, Ik+i(x) Msupp /» = O0fory = 0,1,... ,K- land h+i(x) N

Dsupp fj = 0forj = k+1,-—-This implies that A\ = —~-—~1 J  fk"kn2
4+i(*)
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if 21/, and if 2 f k, then A\ = 0. That is we deal only with case 2 | k. Then

NAN= 1 Mzl B,
Pk /*(0,2) iS)
+ ) j(M+i-D/2 ) M2 < |AR2.
I*(0,5) *+1(*)

Now we give a lower bound for J |A2. If n » Kk —2, then Ik+\{x) + e,,z I

Pk
Msupp fj = 0 foreachj EN, z € Zmn \ {0}. That is

(33)
ra*-i_1 i/ I "»*-i ,
a = 7] 1 e-NﬂjJ\I/T*_! J = v 1_ e!\/y)((iy/mk J i
VAL /E‘+I(*)+e-*-iv ¥l ,Euex’?:m

Msupp /, » 0 may hold only forj =k —1, that is if 2 | k,
then the first term of (33) equals zero. If 2 t k, then the first term of (33) is
as follows:

( M k- X M k Mfc ! Mk \ Xk
Vi-oe-2T/m*-l Mk+i 1- e-2rFA*-l/n*-l Mmk+1/ V-’

meanwhile the second term (as it comes from the discussion of Ik+i(x) + eky
and the definition of fj s) equals zero. Thus if 2t k, then

JIM I (fc-i)/2lemjt1 Ac|A(fc_1)/2|,

Pk

where c is an absolute constant. If 2 | k, then the second term of (33) is as
follows:

y 1 I*+1(x)+e*V

If xk+y =0, then either Ik+i(x) +eky Dsupp fj or 7fcti(a:) + efcT/nsupp fj = o
for each j € N, thus / [/ = 0. If xk+y ¢ 0, then
*H(x)+e*y

J f= ] hhi2-
[*+i(x)+e*y [*+i(x)+e*y
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142 G. GAT

As a consequence of this in the case of 2 | k by (34) we get

m*-|
L \aA-
PK 3 1 {1x0=...=xIc J1=0,xk=j}
mk“I 1 1
= |Afdal/mt _'\22 J_e2ir«(-imE I _e2ni(j-Ak)/mk T
j=

+\h/2\/mk 2|sin7(l - AK)/mk\ >
n 1 1

S T Y —— 5
0 \mk £ T TS TIATY
&bk 1

%, 1}
~ dp 2 NE T = copfeabgm
where 0 < Qo is a fixed constant. Summarizing our achievements we get

\TFILAE /PW -'W | =QE Fempe- cE IA-

k=0pk

If imsupm2 = oo, then there exists an index series jv / 00 such that

\?O (logmZ,,) < oo. In this case let A" := (Iogm2j|/)J , and the rest of A

il=0

equals zero. Thus YT=o0 I'M < oo, and ||T/||i = +o00. If limsupm2j < oo,
3

then limsup rrij = oo gives that Unsup m2j+1= +00. In this case the proof
3 3
of Theorem 3 is the same, but now instead of / := f2:(:0,6khk we define

[ =Y Afc/zjk+i. Repeating the whole procedure of the proof of Theorem 3
k=0

we get that the statement holds in this case too. The proof of Theorem 3 is

complete.

Proof of Theorem 4. We prove that for every atom a B8 A(Gm),
[|Talli < c for some absolute constant c. By standard arguments this gives
the proof of the theorem (see e.g. F. Schipp and P. Simon [5, 6]). Case

a = 1is trivial and that is why from now a ¢ 1 is supposed. Let la =
R

= U h(y,j), where {a,a + 1,... /3} C Zmk, k,y G Gm fixed. Then
=a
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CERTAIN OPERATORS WITH RESPECT TO THE VILENKIN SYSTEM 143

H = Affc+i(/3 - a + 1)-1. First we construct an upper bound for the value
of the integral f |Tal, where j = 0,1,... .k —1. Then we do the
b(v)Uj+i(v)
same for / |Tal and at last for the value of J \Ta\. In the first case by
A(v)Va la
Lemma 2 we have

A .—Smn d(x" (JI\/Na{x)—MN_ 1 | -
In (x)

N ;1

VA f

2+ 24 \] d‘%ﬂ‘n J t-. 1

no0 r— - IN (x)+enz

(N = 0,2... and X € 1j(y) \

IfIV<j,thenlIn(x) D laand J;v(x) Mla=0for N >j, hence A\ —O0. If
N <j, then forn=0,1,... ,TV—1In(x) + e,z la = 0 and this implies
that A2 = 0. IfN - 1>j, then IN(x) = {(y0,**,Vj-i,Xj,.. .xN-i,...)}
Xj @yj). In{x)+enz Mlad 0implies that n = j and z = yj—Xj. In this
case we get IN(x) + enz = {(j/o,=.. ,yj, xj+1,... . x/v-i,..)}. IfIV- 1=],
then /ar(x) + enz D la and this is why A2 equals zero. ThatisN —1>j +1
can be supposed. If N <k, then for I :=1n (x) + enz we get either I D la
or I Mla= 0. In both cases A2 = 0. Hence the only case to be dealt with
iS N >k + 1 Suppose that N > k + 1. Since | is a “complete” interval,
IC\la ¢ O implies Xj+1 = yjH,...xk-i = ¥i, xk € [a,]. Thus in this
case I C la, hence |/ a]| < Mk+i/(R —a + 1)M*. This gives
|

MjMK+i

VA S Ginn(xj - yi)/mj\(B - a + MN’

{N:Ek+2 “(77-a +1)| shur(Xj-yj)/mj\mk+1'
As a consequence of this we get

B mi~1

[ omds*u, EE gszz, o0
. xk=a xJ=0 ~a+ Dlsin7r(xi - Vj)/mj\
L(v)\h+i(v) AV
< cMk*IMj+i log mj,
where
Ta:= { ~ \S\fNa- &Wa\2}
N=0
N k+1
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This immediately @ives
k-1

[7ia] * cM ~j Y MJ+ilogmi ~ cmk< c-
j=o

G m\/I*(V)

Case N =k + 1 is discussed later in a separate way. Now we give an upper
bound for the value of / |Tal. IfN ~ k, then /ar(x) O laand if N > Kk,

h(v)\la
then (since xk £ [0,/3]) we get 1m(x)["\1la = 0. That isin both cases A\ = 0.
Hence we discuss only Ai- IfN <Kk, then In(x) 3 lasthus | := /ar(x)+e,rrl

Mla= 0, that is Ai —0. Suppose that N> Kk + 2. In a simple way we get
that

MKM k+1
\a\:\aZ\S J k:: a-Xfc,... ,B'Xk .
Jegx 1S\nnz/miA(® - a + M | e )

This implies the following inequality
{ £ IAI2} ' =2Mk S |sin7r(xt- YK)/Tk\ 1(B-a+ 1)
WHfc+2 y*€[a/3]

Hence

[ |7\a] < 2MEA |sinT(xjk-y f©)/m1fd" M fc(/?-a+1)"am~ 1
Ik(y)\la xki[a,R]yke [a/3]

That is we have to give an upper bound for the sum

= m*El E IsinT(xt- yk)/mk\ a4

a —1 R

+(/3_ a + 1)mkmkd Y XAaIsm?r(XJk- Y/k\ 1= As1 +As2.

MMk- 1 B 1
Crik
A31< <
- + R
(B- a + I)mkmk+1 =Baly=a XY
< ™ mk— /X - \
c™ME : Q\ _

= B-a+ I)mkmk+1 x~'+1 °g'z - BJ

cruy o (rnk - 1- a)!
(3 —a + Hmkmk+i g \(/3- a + )I(mE-1-/3)!
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cmk mkclog(mk - 1- g)
(/3-a + I)mkmk+i ~\\p-a +L//~ rnkm k+i
c logmk cMk+ilog mk :
TK+1 Mit+2 + "
and similarly = ~ c. Thus we proved that f \Tia\ < c. Since the
h(y)\la

operator T is of type (2,2) (this can be proved in a simple way), we get
/ \Ta\ ~ c. Hence all we have to prove is

(41) J ISWKa -iaW+a| < c
Gm\h(y)

and

42) J \sMkMa - (j MKMal < c.
Ik(y)\la

First we prove (42). Ifr € 1k(y) \ then x = (y0,... ,yfc 1,** ...)
where xk £ [a,/?]. Lemma 2 shows that Ik+i(x) Mla = O hence A\ = 0.
| ;= [fc+i(a;) + e,,z Mla ¢ 0is possible only in the case when n = k. Thus

_y-1 Mk r
Wrl = 1. 1 e—zirix/mk |
r=1 j-l+ j-lL'*O*
Let
Bt:= (8- a+ 1) a

)+ 4 +1

R

where i € Znfc. |-6t| ~ 1 (i € Zmk), Bt =0 (t £ [a,/3]) and ¥ Bt = 0 hold.
t=

We have :

_ Mk "Y' Dxk#z Mk« Bt
(43) \AZ\_B-a+1 /221 2_0—2cizimxk R_a+1 ){ e-2ir (t-x kyim «
(43) gives
APV« xzf[(d,m
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Then we can use the method of the proof of Theorem 1 to show that (42)
holds.

Now we prove (41). If x GGm\ h(y), then the already known technics
give that A\ — 0. Thus only Ai is to be discussed. Let x Glj(y) \ lj+i{y)
(j GO,1,... ,k-1),x = (Vo)eee,yj-i,Xj,...). Since N = fc+l, /nr(x)+e,rr
Mlad O0implies n =j, z = yj-Xj and also xJ+i = yj+i,... ,Xk-1 = Yk-i,
Xk € [a,R]. Thus

m -1

[ ini= MBA Mo e -0FD)

) E e- Zln -X m
L)\L+(v) xefgg x, 0 - e
R mi~1
ML y oy
Mfc+1(?-0 +1) xk—axj n T8I A(x;- y,)7To|
X,
----- gMJ/'—- mj ilog mj = Mlmmmj
ig - 0+ h)M*+i X' | Mfc+|

This immediately gives that the left side of (41) is not greater than

fc-i

cMkI\ E MA-Tlogmj = cmk ~ c-
j—o

Thus (41) is verified. Summarizing our results,

|| v-' ] 1.1/2]
fH \SMna - a Mnaé j JI <c and |[|5MrcHa- °Mk+1alli N c
nficia

By these last inequalities we get that ||Talli < c. The proof of Theorem 4 is
complete.

B
Proof of Theorem 5. Leta g A(Gm), la = (J h(y,j) and \a :=
J=a

= n~I(la) everywhere, where a,B € Zmk, a <R, y € Gm and Kk G N fixed.
We estimate the value of integral

D= \] |M‘ o
Gm\Ik(y)
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with the technics used in the proof of Theorem 4:
Jc
D - [ ., 57 *+ia ® °MKkHyal =
Y
K- 1 y Mi
-F F E S BXk{R —a + )7
i=o xk=a xjmo 1 X - )
* v
K-1 B mj-1
= Mk+i(B - a+1)1]C X) S isin*(** ~ " m)/mir 1”7
_ ) X)_I'V]
K- R
= Mk+i(R - Q+ 1)_1jx_g\/u X c’mJloSmi = comlt
for some fixed absolute positive constant cg. Then define / :=  “iae where

the sum of the absolute values of the complex numbers A is finite and for
the atoms a, e A(Gm) la, := hi{y) (Y € Gm fixed), where the index series
k,, /* Too is defined later. Let |a,] = Mkr Consider the left side of the

following inequality:

(51)
Gm\lkvM

By the above proved lower bound for the atom a,, we get

(52) J |VV*IHay  °M)AHai] = QT
GmVkJy)
Let ﬂ > |/|

Fj := \] . \"Mkv+iau ~ , j =0,1,... ,kv—1.

tixe 1j(y)\Tj+i(y), te/S 49 M =Olee

A| = (MkV'I'i - bz \] N = o.
7%,41(X) :
Now consider Az corresponding to the atom a,, and Mk,,'H.
| == /*,+i(@) Te,zMN/a, O

JHly
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is possible only in the case when s =j and z = vj—xj. Let s and z be fixed
in this way. Hence | Mla ¢ 0 also implies that f Df,, (4 + 1 < n) which
yields A2 = 0. So we proved that Fj = 0 for each atom an (n > v + 1) and
j e {o,1,... 1}, i.e.

(53) J  \"Mkv#ian —aMK/+1an\ = 0, n>v+ 1.
Gm\lkv(y)
Now we consider the left side of (53) for the atoms an (n ~ v - 1). Let

now n <v —1. By the technics of the proof of Theorem 4 one can prove
that \Tan\sr < ¢ {m'kn + m'fcn+1) for some absolute constant c. Assume that

a series JI- GC (i £ N), X)SoI-M < °°> I'M > 0 is given and also that

ko,ki,... ,K,-1 are given. Since limsupm” = oo, there exists an index ku
K
such that
v-\
co\K\m'kv >2V+ cY, IAH {mk. + mk.+1) .
=0

Define / := X) ~ai- Then X) IM < oo, f € H x(Gm),
«=0 i=0

'Yl = vJ \SMkv+J-<TM k,,+ \ > J \SMkv+iav ~ aMkv+laih I-M-
Gm\hjv) Grr\kl/(y)
v-\ .
T en J/ A, -ua» —alTk, +1%| I'M »
G m\Ikl/(y)
I/-1
> co\\vim'kv - cMA|(m ™ + mki+l) >2U
1=0
Since this holds for all natural numbers v, we proved that ||T/||]i = oo. Thus

the proof of Theorem 5 is complete.

Acknowledgement. The author would like to thank Professor P. Simon
for his help and valuable remarks.
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ON PSEUDOMANIFOLDS
WITH BOUNDARY. Il

M. BOGNAR (Budapest)4

In this paper we shah prove that each orientable (nonclosed) n-dimensional
pseudomanifold with boundary and without homologically singular interior
points — i.e., without interior points having noncyclic ra-dimensional local
Betti group with respect to the coefficient group Z — is absolutely nonlinked.

We shah use the definitions and notations of [g] without any comment.

1. c-regular domains in (n,p)-cells

Let p be a prime number and n a positive integer. Let Zp be the cyclic
group of integers modp and H the Cech homology theory defined on the
category of compact pairs over the coefficient group Zp. Let (X, A) be an
(n,p)-ceh (see [8] 1.2).

1.1. Definition. Let U be a domain i.e., a nonempty connected open
set in X \ A. We say that U is a c-regular domain of (X, A) if

A, (X, X\H)« Zp.

1.2. Remark. Let U be a c-regular domain of (X, A). Then the
homomorphism j\* A,,(X, A)|! —=A,,(X,X \ U) induced by the inclusion
J\W (X, A) C (X, X\ U) is an isomorphism.

Indeed, let U\ he a nonempty open subset in U such that the homomor-
phism jm: 4,,(X, A) = 4,,(X, X \ U\) induced by the inclusion j : (X,A) C
C (X, X\ V) is a monomorphism. 1.2(d) of [g] shows the existence of such
a U\. However j, = where j2*: Hn(X, X \ U) = A, (X, X \ U\) is
induced by the inclusion j2: (X, X \ U) C (X,X \ Z7i), and thus jis a
monomorphism as well. Taking also Hn(X,A)sa Hn(X , X\ U) w Zp (cf. [g]
1.2(b)) into account we obtain that jr* is an isomorphism as required.

1.3. Remark. Let Ube adomainin X\A. If (X,X\i7)is an (n,p)-cell
then Hn(X,X\ U) sa Zp and thus U is a c-regular domain of (X, J1).

Conversely, if U is a c-regular domain of (X,A) then (X, X \ U) is an
(n,p)-cell.

Indeed, since X \ A is a nonempty connected locally connected space
with countable base (see [g] 1.2(a)) sois U = X\ (X \ U).

Since Hn( X, X\ U) ss Zp (see 1.1) the compact pair (X, X \ U) satisfies
condition 1.2(b) of [8] as well.
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Let u: (X,0)C (X, X\U),i: (X,0)C (X,A) and n: (X, A)c(X,X\ tf)
be inclusions. Then by i\* = n*r,: 4,(X) —»4,,(X, X \ U) and by the
triviality of the homomorphism r, (see [g] 1.2(c)) we obtain that ij. is a
trivial homomorphism, i\*(Hn(X)) = 0.

To see that 1.2(d) of [g] is satisfied, let VA be a domain in X \(X\f7) = U.
Then W C X \ A and thus by [8] 1.2(d) there is a nonempty open subset
U\ C Vi such that the homomorphism fa*: H,,(X,A) —ad,,(X,X \ U
induced by the inclusion jj: (X, A) C (X,X \ Ui) is a monomorphism. Let
ja«: A, X\ U) —=»A,,(X, X \ U\) be the homomorphism induced by the
inclusion 3: (X, X \ U) C (X,X \ U\) and let j\* be the same as above.
Then n* = and since j\* is an isomorphism (see 1.2) it follows that
¥3* is a monomorphism as required.

14. Remark. Let U be a c-regular domain of (X, A). Let U\ be a
domain in U. Then obviously U\ is a c-regular domain of the (n,p)-cell
{X,A) if and only if Ui is a c-regular domain of the (n,p)-cell (X,X \ U)
(cf. 1.3).

1.5. Definition. Let q be a point of X \ A. qis said to be a c-regular
point of (X,A) if g has a base of neighbourhoods in X \ A consisting of
c-regular domains of (X, A).

1.6. Definition. We say that the (n,p)-cell (X, A) has no c-singularity
or it is without c-singularity if each point of X \ A is c-regular.

1.7. Remark. The (n,p)-cell (X, A) is obviously without c-singularity
if and only if there exists a base of X \ A consisting of c-regular domains of
(X,A).

2. (n,p)-cells without c-singularity in An+l

Let p, n, Zp and H be the same as in Section 1. Let (X, A) be an
(n,p)-cell in Rn+1 i.e., X is a subspace of the (n + 1)-euclidean space An+1.
Suppose that (X, A) has no c-singularity (see 1.6).

2.1. Definition. Adomain G of An+a \ A is said to be a c —e-regular
domain of (X, A) if it is e-regular (see [8] 2.7) and if G N X is a c-regular
domain of (X, A).

2.2. Remark. Since each domain of An+1 lying in a ball disjoint to
A is e-regular (see [8] 2.7) taking also 1.7 into account we obtain that each
g 6 X \ Ahas a base of neighbourhoods consisting of ¢ —e-regular domains
of (X, A).

23. Lemma. Let G be a ¢ —e-regular domain o/(X, A). Then G \X
has two components and the closure of each component contains G NX.

Proof. Let U = GJIX. Since A, (X, X \U) & Zp Theorem 2 of [5]
shows that G\ X has at most two components. On the other hand by
Theorem 2.15 of [8] G\X has at least two components. Consequently G\ X
has exactly two components — say Gi and Gz2.
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Let g € U. We have to show that qis a limit point of both domains G\
and G?, i.e., that for each open ball G' in 72"+1 around g, G' meets both
components G\ and G2.

Let G' be such a ball and U' a c-regular domain of (X, A) such that
g€ U CVING'. By 16 such a U' exists. 1.3 shows that (X, X \ U) is
an (n,p)-cell and by 1.4, U'is a c-regular domain of (X, X \ U). Hence the
homomorphism jm: Hn(X,X\U) —»Hn(X,X\ U') induced by the inclusion
j: (X, X\ U) C (X,X \ U")is an isomorphism (see 1.2). Moreover by [g]
2.16, U —X \ (X \ U') is nowhere dense in 721+1 and thus according to [9]
Theorem 3, #,,+i(X,X \ U) = 0. Consider the segment

Hn(X,X\U"') 1- Hn(X,X\U) — Hn(X\U’,X\U) — Hn+I(X,X\U")
of the exact homology sequences of the triple (X,X\U"',X\U). Sincej,, is a
monomorphism and #,,+i(X,X\ U') = Oweget 7/n(X\ U', X\ U) =0 and
thus G\ ((X\U)\ (X \ U)) =G\ (X \UY)is connected (see the consequence
of Theorem 2 in [5]).

Let Q = G\ (X \ U). Q is clearly a connected open subset of Rn+1
and U' = QX is a closed subset of Q. Moreover we clearly have Q \U" =
= Q\X = G\X and thus G\ and G2 are the components 0iQ\U'. However
the open subset P = G' M Q of Q contains U' and thus P —G' M Q meets
both G\ and G2 (see [7] 3.2). Consequently G NG\ / o and G'TMG2 (o as
required.

We now recall some definitions of [7] concerning Ar-manifolds.

Let 72be a 2VsPace an(i (¥, B) a compact pair in 72

2.4. Definition. Let ¥ be a domain in 72 We say that ¥ is a regularly
intersecting domain of (Y, B) if

@ ynB =0.

(b) ¥ MY is a domain of Y \ B.

If ¥ is a regularly intersecting domain of (¥,B) and U = Y Y we then
say that Y regularly intersects the compact pair (Y,B) in U.

2.5. DEFINITION. A domain ¥ of R is said to be k-regular mod(y, B)
if the following conditions are fulfilled:

(a) Y is a regularly intersecting domain of (Y, B).

(b) ¥\ Y consists of two components.

(c) The closure of each component of ¥ \' Y contains YMY.

2.6. Definition. The compact pair (v ,B) itself is called a k-manifold
in 72if it satisfies the following two conditions:

() Y \ B is a nonempty connected space,

(b) for every g GY \ B the ~-regular domains that contain the point g
form a base for the neighbourhood system of the point g in R.

We now return to the (n,p)-cell (X, A) in 7n+1.

2.7. A domain ¥ of 72n+1 is said to be small if it is contained in an open
ball disjoint to A. Let E be the set of mod(X, A) fc-regular small domains.
Each member of E is clearly an e-regular domain of (X, A).
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We show that each g € X \ A has a base of neighbourhoods in Rn+1
consisting of members of E.

Indeed, let V be a neighbourhood of gin Rn+l. Let G be an open ball
around g disjoint to A. Since the ¢ —e-regular domains of (X,A) containing
g form a base of neighbourhoods of g (see 2.2) it follows the existence of
a ¢ —e-regular domain V of (X, A) such that g € V C V T G. However
according to 2.3, V is a mod(X, A) fc-regular domain (see also 2.5). Thus
V GE as required.

Now taking also 1.2(a) of [8] and 2.6 into account we can state that
(X, A) is a fc-manifold in Pn+1.

2.8. Definitions. Let V,V e E (cf. 2.7). V and V are said to be
compatible if either V CV orV CV.

By a E-chain we mean a sequence a = (Vi,... ,V*) in E such that for
i=1,..,k—1 VY and Vj+1 are compatible members of E. a is said to be
closed if Vi = ¥*.

Let K:g —% ¢ be a continuous path in X \ A (see [8] 2.4) and let
K = KiKz2...Km (cf. [8] 2.4) be a subdivision of K into factors where
Ki —K,:qi+i < fori = 1,... ,m. Then we clearly have g\ = ¢ and
Im+1 = <»

Now the E-chain a = (Vi,... ,Vn+i) is said to be associated to the
subdivision K = K\K2... Km of K ifg € ffort=1,... ,m + 1and KxC
C ViUVi+i i.e.,, K; CVior Ki C K+i fori=1,... ,m (cf. [8] 2.4). In this
case we also say that the subdivision K = K\K2... Km of K is associated
to the E-chain a = (Vi,... ,Kn+i).

Let K be a continuous path in X\ A and a = (Vi, ,Vm+i) a E-chain.
We say that K and a are associated or K is associated toa ora is associated
to K if there exists a subdivision K —K\Kz2 ... Km of K associated to a.

2.9. Observe that for each continuous path K :q-* ¢ in X \ A and for
each V,V € Ewithq€ Vand q e V thereis a E-chaina = (Vi,... ,Vn+i)
associated to K such that Vi = V and in+i = V (see [3] 6.8).

Consequently to each closed path K of X \ A there is a closed E-chain

a =(Vj,... , ¥+ 1) associated to K.
Observe that in this case the closed path K ¢K and the closed E-chain
R~ (Vi,... ,Fr+1 = Vi, Vj,... ,Vn+l) are clearly associated to each other.

2.10. Let V € E. Then by the banks ofV we mean the components of
V \ X and we design them by PI{V) and P2(V). Obviously the numeration
here is arbitrary.

211. Let a = (Vi,... ,Vm) be a E-chain and let Px(Vi) and P2(Vi) be
the banks of Vi. Then there exists a numeration P} and P2 of the banks of
Vi such that

(@) Pf = Px(Vi) and P2= P 2(Vi),

(b) PxMPx1/ Oand Pf NP+ ¢ O forr=1,... ,m + 1and this
numeration is unique (see [4] 2.10).
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Hence two sequences c*p(l) = (P*,... ,Pd) and ap(2) = (P2,... ,PO)
of the banks belong to the E-chain a. Moreover forj = 1,2 we have P- C

C Ps+1 in the case Vi C V+1 and P/+a C P/ in the case Vj+i C Vi. The
sequences ap(l) and ap(2) are called the chains'of banks associated to the
E-chain a.

If a is closed i.e., if Vm = Vi then two cases are possible:

(i) PO = Pi and PO = Pi

(i) P4 = P2and Pi = Pf.

In the first case we say that a preserves its banks and in the second case
that a changes its banks.

Observe that for each closed E-chain a = (Vf,... ,Vm) the closed E-chain
B =(Vij,... ,Vm = Vi, Vi,... ,Vm) clearly preserves its banks.

2.12. THEOREM. Let K be a continuous closed path in X \ A and a a
closed E-chain associated to K (see 2.9). Suppose that a preserves its banks.
Then K is nonlinked to (X, A) (see [g] 2.6,).

Proof. Let a = (Vi,... ,Pr+1 = Vi) and let K K\K?.... Km be a
subdivision of K into factors associated to a. For i 1 ,m let X- =
= X, g, — Then a1 = gm+\e Moreover fort = 1,... ,m + 1 we have
L€Viandforr=1,... ,mK{ C ViUVi+i (see 2.8). Let( P f, ,PA+1) be a
chain of banks associated to the chain a. Since a preserves its banks we have
Pl+1 = Pf. Fori=1,... ,m take a point g from P} and let dgm+i = ¢ €
€ PO+ = Pj. Fori —1,... ,m let K[:q —q+1 be a continuous path in
the connected and in Pn+1 open Pf UP/+1 which is either P) or Pf+1 and
fori=1,... ,mlet K":q\ —< be a continuous path in the domain Vi. Let
K'I+l = K". Now fori = 1,... ,m the closed path K, = (K")KiK"+rK- is
lying in Vi U Vi+i which is either Vi or Vi+i and since both domains Vi and
Vi+i are e-regular (see 2.7), it follows that Ki is nonlinked to (X, A) (see [8]
2.7). On the other hand K' = K'm.. .K'2K'Xis a continuous closed path in
an+i \ X. Hence K' is nonlinked to (X,A), too (see [8] 2.6). Consequently
by [g] 2.13, K is nonlinked to (X, A) as required.

2.13. Theorem. Let K be a continuous closed path in X \ A anda a
closed E-chain associated to K. Suppose that a changes its banks. Then K
is linked to (X, A).

Proof. Let a = (Vi,... ,Vm+1 = Vi). Vf is an e-regular domain of
(X, A) that meets X (see 2.7 and 2.5). According to [g8] 2.15, there are
points ', g" £ Vi\ X and continuous paths K4:q" —»q and X3:q —=q" in
Pr+1 \ A such that

E))T( Z'I\nd g" are in distinct components of Vi \ X,

)k 3C & +1\
(d) K3Ka4is Imked to (X, A).
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Let X = Km...X2Xi be a subdivision of X into factors associated to a
where X, = X - g—g+ forr=1,... ,m and thus gi = gm+i- As we have
seen inz2g fori =1,... ,m+ 1onehas g £ Vm+2-i and fori=1,... ,m
Ki C Vim+2-i U Vin+i-i.

Let Xm+1: of <4 be a degenerated path. Then X = Xm+iXm... K\.

Since Vi e S it follows that W\ is a fc-regular domain mod(X, A) (see
2.7). Select the numeration of the banks of Vi so that g £ PXV1) and
g" £ P2(WV\) (cf. 2.10). Let

aP(l) = (/2,..., PE+)

be the chain of banks associated to the chain a so that P\ = Pa1(Vi). Since
the chain a changes its banks it follows P~+1 = P2(Vi) (see 2.11).

Fori=1,... ,m+ 1take a point q[ in PO+2_;- Hence [ £ P2(Vi). For
i = 1,...,m let K[\ gi+i - di be a continuous path in PO+2 sn PUI-i
which is either PA+2-i or "m+i-i an(® f°r *= Iveeo>wi+ 1llet K": 9, —p
be a continuous path in the domain Vm+2_i. Let X'1: g —*q" and X'2: q' —»

dn+i be continuous paths in P2(Vi) = PA+1 and Pi(Vi) = Px respec-
tively. Let

K2 =KnK[Kz2... X*X72q —q"
and
K'=Kz2K4:q""q".

We first show that the closed path X 7is linked to (X, A).

Indeed, let X°: " —=*q' and X2: g" —* " be degenerated paths and let
K1 =(A4)’. The closed path (X2) X 3= (K2) K%K3KS$ is lying in X +1\X
and thus it is nonlinked to (X, A) (see [8] 2.6). Hence if K' = X2X4 =
= K2(K1)- were nonlinked to (X, A) then by [g] 2.9, [8] 2.11 and [g] 2.9
again the closed paths (KX K2 = (X 1) XEX2X?, (KX KWKWK3K*K* =
= (KX K3 = XaX3and X3Xawould be nonlinked to (X,A) as well, con-
tradicting the assumption (d).

Let Km+1 = KkK4K"1: g —»dm+i mSince the closed path

K'= X2X4=KJK[KS3... KmK'2K 4
is linked to (X, A) it follows by [g] 2.9 that the closed path
BAKSh . -R'mRIE R4 I —al . AT o+
is linked to (X, A) as well.
- Km+i =(K +ly X, X K ratl

Km+i is a closed path in the e-regular domain VA = Vm+\ of (X, A) and thus
Km+i is nonhnked to (X,A). Fori = 1,... ,m let X; = (X-7mK [ K xX-.
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Ki is a closed path in Vm+2-\ UTT +X_,- which is either ¥1+2; or Vm+i
However each member of E is an e-regular domain of (X, A) and thus Ki is
a nonlinked closed path of (X,A). The closed paths K\,... ,Km+i are all
nonlinked to (X, A) while K[... KmK'm+l is a hnked closed path of (X, A).
Thus by [8] 2.13 K = Km+iKm... Ki is a hnked closed path of (X, A) as
required.

The proof of the theorem is complete.

2.14. Theorem. Ifp ® 2 then (X, A) is a nonlinked (n,p)-cell (cf. [§]
1.11).

Proof. Let/: [a,6] X \ A be a closed continuous line in X \ A (see
[B] 1.6) and let K be the equivalence class of /, i.e., the closed path with
the representative / (see [8] 2.4). According to [8] 2.6, we only need to show
that K is nonlinked to (X, A).

Let a = (Vi,... ,K,,+i) be a closed E-chain associated to K (see 2.9)
and

B = (VX,... ,Vm+1 = ViVa,... \Vm+1).

The closed E-chain B is associated to the closed path K mK (see 2.9) and 3
preserves its banks (see 2.11). Hence according to 2.12 the closed path K *K
is nonlinked to (X, A).

Let sB= 3Jpn-i,i be a nondegenerated theory of linking in A"+1 (cf. [g]
1.8). Since K =K is nonlinked to (X, A) it follows

) *aM (A.,(KK).) =0
(see [8] 2.6, [8] 1.4 and [8] 2.5). However
) = K*) + Oak (A*, K1) = 2 +®A'K(AT, K »)

(see [8] 2.10) and since oa "(A,,,Kn) € Zp (see [8] 1.8), p d 2 and the
relations (1) and (2) imply oA~(A,, X») = 0. Consequently K is nonlinked
to (X, A) as required.

2.15. Theorem. Ifp ¢ 2 and if (X, A) is simultaneously an (n, 2)-cell
which has no c-singularity then (X, A) is a nonlinked (n,2)-cell.

Proof. Let/ be a closed line in X \ A and let K be the equivalence
class of / i.e., the closed path with the representative /. We only need to
show that K is nonlinked to the (n,2)-ceH (X, A).

Let E be the same as in 2.7. Let a be a closed E-chain associated to K
(see 2.9). According to 2.14, K is nonlinked to the (n,p)-cell (X, A) hence by
2.13 the chain a preserves its banks. Consequently by 2.12, K is nonHnked
to the (n, 2)-cell (X, A) as required.
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3. Pseudomanifolds with boundary and without
homologically singular interior points

3.1. Apartially ordered set (JE7,<) is said to be directed if for any ei, ed G
G E thereisan e GE with e* » e and e* < e.

In the sequel all groups are abelian. Accordingly the group operation
will be referred to as addition.

3.2. A directed system D = (Ge<seg>(E, )) of abelian groups consists
of the following: A directed partially ordered set (E, <); for each e GE an

abelian group Ge\ for each pair e<e' from E a homomorphism <eei: Ge —
—> Gei satisfying the following two conditions:

e = idG for e e E,

Vej.e, = <Angj f°r el i e2i e3-
Let D = (Ge,ipetd,(E, *)) be a directed system of groups and let D =
= U Gex {e}. For (gi,ei) and (gz2,e2)in D let (<bei) ~ (g2,e2) if there is
e€E

an e3 > ei, 62 so that
VW 3(l) =
~ is clearly an equivalence on D.
Let D/ ~ be the family of equivalence classes of For each (g,e) 6

G N1 let (5,e) denote the equivalence class of (g,e). (g,e) is said to be a

representative of (g,e).

The addition in D/ ~ is defined as follows: Let (<7i,ei), (52,"2) € D and
select e3 so that e\ <e3 and ei < e3. Let

(Oi,ei) + (02,e2) = ("ei,e»(Si) + "eaes(52),e3).

This addition is clearly well defined and D/ ~ equipped with this addition
becomes an abelian group called the limit group of the directed system of
groups D. We use lirnD to denote this limit group.

3.3. We should mention that if E* is a cofinal subset of E and for each
e,e' € E* with e <e' € is an isomorphism then the groups Ge (e € E*)
are clearly isomorphic to each other and these groups are isomorphic to the
group fimLb

34. Let No be the set of nonnegative integers, i.e., No = N U {0}.
For k € N let Zjt be the cyclic group of integers mod A and let Zo = Z.
Moreover for k G No let Hk be the Cech homology theory defined on the
category of compact pairs with the coefficient group Z*.

35. Let Kk GNoand n G N. Let (A, A) be a compact pair and ge X\A.
Let E be the family of all open neighbourhoods of g in X \ A and for
UU GE let U < U ifU C U. Thus (E, <) is clearly a directed set.
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For each U € E let Gv = H*(XtX \ U) and for U < U" (U, U'" GE)
let gUu> Gu -> Gv. = iu,uu: H*(X,X \ U) -» A*(X,X \ U') be the
homomorphism induced by the inclusion iu,u,: (X, X \ U) C (X ,X \ U").

Thus we obtain a directed system of groups

Dk{g) = (Gu,<Pu,U'i(E,<)).

The limit group hm D%(q) of this directed system is called the n-dimensional

local Betti group of the compact pair (X, A) at the point g with respect to the
coefficient group Zk. We use H%(X, A, q) to denote this local Betti group.

3.6. Proposition. Let K be a triangulation situated in some euclidean
space Rs. Let L be a closed subcomplex of K (see [1] p. 126). LetY and F
be the body of k and L respectively (see [1] p. 136), i.e. (Y, F) = (||/i*|], |ITI)-
Letg£ Y\F . Let Ok($) be the set of all Simplexes T € K with q € T where

T is the closure of T. On{q) is an open subcomplex of K. Let r € No and
n € N. Then

Hn(Y, F,q) » A?(0fg))  (cf. [2] p. 50).

Proof. Consider Rsas ahyperplane ofthe euclidean (s+I)-space Rs+1.
Let c be a point in Rs+1\ R*.

Let 0'K(q) be the subcomplex of K consisting of all simplexes of Ok (q)
and of all faces of such simplexes. Let 5a-(g) = 0'K{qg) \ Ok{4)- 0'K(q) and
Bx(q) are closed subcomplexes of K.

Let M*(q) be the set of all open cones with the vertex ¢ where the base
of the cones runs over all open simplexes of Bfc(q) (see [1] p. 214). Let

M(q) = BK(q)UM-(q)6{c},

where {c} is the O0-simplex with the vertex c. M(g) and M(q)U
UO'K(gq) = M(qg) U Opc{qg) are clearly triangulations in Re+l and M(q) I
NoK{g) = BK{g).

An easy computation shows that

A7 (5))«A?(M (,)n0 U5)).
Also, observe that the group
A?(M(q) UO'K{a)) = An(M(q) UO0'K{q), Zr)
is isomorphic to the group
An(\M(q)UO'K(q)IZr)

(see [2] p. 166 and [2] p. 159) and this latter group is isomorphic to H*(\\M(g)U
nog-(p)Ll) (see [6], 24). However ||M(<7)|| is contractible to a point over itself
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and thus it is homologically trivial. Moreover the compact pair (\M(q) U
Uo™-(9)ll, [IM (9)]]) can be triangulated and thus its Cech homology sequence
is exact (see 1X.9.4 of [9) p. 251). Consequently the groups HM(\\M(q) U
U Ok(g)||) and Hn{\\M(q) UO'K (g)\\, |I[M(g)||) are isomorphic:

A;(IIM (p) UOTc(g)H) * k T b ) UONigJIl, [[M(9)I])
(see [9] p. 23).

Now let V. = \WM(g\ \ [|22k(g)|l = \Neq) U O'K(@W\ \ \WO'K(q\- The
subset V of ||[M(g)]| is open in |[M(q) UO'K(q)|| and we have

IM{q) UOK (@Y V = \O'K(g)\l [IM (@)l \ V = \BK(g)\\.
Hence the inclusion map
j: (WO'K@W\, \\B kLW C (JIM(g) UOK(@\, H («)IT)

induces an isomorphism in each dimension (see [9] X.5.4, pp. 266, 267) and

thus .
tf;(IIM (g) UOJIr(9)I[, [IM()II) « As([IO~(a) I, 171> (W)

Hence

3) A?(0jt(9)) * A40MNNIM|AK(9)]]).

We now construct a suitable base of neighbourhoods of the point g in
Y\F.

First observe that [[0”~(g)]| is a closed cone over [|H/i(g)|| with vertex q.

Now for m G N let be the positive dilatation of R* with the invariant
point g and with the ratio of minification T., i.e.

QW) = o
for each g £ R8 and let

Um = 4mO\0'K(q)\\\W\BK(q)\V).
Um is clearly an open subset of ||0”~(g)|| \ ||-Bk-(g)|| and we have

110Jc(9)|| \ \Bk(s)\ =L, DU2D ... 3UmD ... .

Moreover {i7i,... ,Umn, .} is a base of neighbourhoods of qin Y \ F.
Let

Zor Ben - (IGHQIMOI) - LA/BIIHNEIIT)
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and let Pm = |07 (g)|| \ Um. Thus Pi = ||-S/c(g)||. ¢T is a homeomorphism
and thus the induced

K(\WO'klW 1\\BKT KNe T7(\\0'kbl LI M\\BKT))
is an isomorphism. Let
T :([[OU?)][Ne (?)11)C(JlON9)11,An)

and
3m- (dT(\WO'KW |, pT(\BKLLU ) C (WO'K(g)\IPm)

be inclusion maps. Then jm”m is clearly homotopic to im and thus =
= im* where jm* and im, are the homomorphisms induced by the inclusions
jm and im respectively. However by

M WO 'K \ ®T(\BkL = |[ON?)||\Pm = Um,

jm is an excision and thus jm*is an isomorphism. Consequently im* is an
isomorphism as well.
Let hm: (|Og:(<2)|>Pm) C (¥,Y \ Um) be an inclusion map. By

Ne (?)IN\*n =r\(y\crm)="m,
hm is an excision and thus the induced
hmK(MWOMWPmM) - K(Y,Y\Um)

is an isomorphism, too.
Hence form GN

4 N n(\0'k (8)\\\\\Bk (A)\\) « s ;(y,y \ Um).
Form,m"€ Nwithm m' let
<Pm,immK (y,Y\ vm) - )

be the homomorphism induced by the inclusion iumumi: (¥>Y \ Um) -
—»(Y, ¥ \ Un') and for m 6 N consider the commutative diagram

Hn(Y,Y\ Ui)----—- — - >Hn(Y,Y\ Um)
o> Jir*
A0, A ) —mme — - >K(\0'K(q)\\,Pm).

Since rm*, hme and hi* are isomorphisms it follows that <pui,Um is an isomor-
phism as well. Moreover since for m, m' € N with m <m" one has

PUM,UmI<iLLUM = PUUUM,
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we obtain that <umyu , is an isomorphism, too. Now according to 3.5, 3.3
and (4) A£(Y, F, g) is isomorphic to H*(\0'K (q)\\, LLAK'(n)LL) and thus by (3)

Hn(Y,F,q)*A?(0K())

as required.
The proof is complete.

3.7. Remark. As we have seen in the proof of 3.6, the assumptions of 3.6
imply the existence of a countable base of neighbourhoods {Hi,... ,Um, e}
of gin Y \ F such that for each m € N and r 6 No

Hn(Y,Y\Um)* A?(0K(q)).

3.8. Let K and L be the same as in 3.6 and suppose that K is an
orientable n-dimensional (combinatorial) pseudomanifold with boundary L
and L o 0 (see [2] pp. 72, 74). Then according to [8] 3.4 (||A]], ||IL]) = (Y,F)
is an (n,p)-cell for each prime p.

Let g € ||ir|| \ |IL||]. Then Og-(z) can be clearly uniquely represented in
the form

Ok(pa) = EIl U ... UEt(q)

where for j —1,... ,t(q) Ej is a closed subcomplex of Ox(q), it is an ori-
entable n-pseudomanifold and forj o j' (j,j 1€ (1,... ,<(<?)}) the dimension
of the subcomplex Ej MEji of K is less than n —L.

Let r € No- Then a light computation shows that

A2 (0K(Q) ~ A2(ED) O ee®IAEN)) » O oo=Cr,.
r th)

Hence according to 3.6, A°(Y, F, q) is isomorphic to a cyclic group for each
qEY\F if and only ifi(q) = | for each q£Y\F and in this case by 3.7 each
g £ Y\ F has a countable base of neighbourhoods {C7j(q),... ,Um(q),... }
in Y\F so that H,,(Y,Y \ Um(q)) « Zp for each m € N and each prime p.

Consequently taking also 1.5 and 1.6 into account we can state the fol-
lowing theorem:

If (¥, F) is an orientable n-dimensional (topological) pseudomanifold
with boundary and without singular interior pointsi.e., without interior points
having noncyclic n-dimensional local Betti group with respect to the coeffi-
cient group Z = Zqthen for each prime p, (Y,F) is an (n,p)-cell without
c-singularity.

3.9. Definition. The (n,p)-cell (¥, B ) is said to be an absolutely non-
linked cell if for each topological embedding f¢ Y —»A"+1 (<p(Y),<p(B)) is a
nonlinked (n,p)-cell in An+1.

Now we can state the following theorem.
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3.10. Theorem. Let (Y,B) be an orientable n-dimensionalpseudomani-

fold with boundary and without singular interior points i.e., without interior
points having noncyclic n-dimensional local Betti group with respect to the
coefficient group Z then for each prime p, (¥, B) is an absolutely nonlinked
(n,p)-cell.

Proof. Let tp: Y —mA"+1 be a topological embedding of ¥ into Rn+1.
Let X = <p(Y) and A = <p(B). Then by the theorem of 3.8 for each prime p,
(X, A) is an (n,p)-cell without c-singularity in An+1. Consequently according
to 2.14 and 2.15 for each prime p, (X,A) is a nonlinked. (n,p)-cell. Hence
for each prime p, (¥, B) is an absolutely nonlinked (n,p)-cell as required.

Our program is finished.
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MEASURABLE SOLUTIONS OF FUNCTIONAL
EQUATIONS OF SUM FORM

L. LOSONCZI (Debrecen)*

1. Introduction

Let n > 2 be an integer and denote by TI',, the set of all complete n-ary
probability distributions, that is

6, =6r=0%... X9 b >0 hvi =1}

and let ' be the same set but with positive probabilities:

e =9P= (Xb ... ,xn) Ixi >0, = 1}.
i=i

I and A, will denote either [0,1] and I',, or ]O,1[ and I'°. Let fij,gis, hjs:1 —
—» (r=1,... , tj=1,...,/,s=1,... N\ Kk, >2) be given or unknown
functions. By a functional equation of sum form we shall mean an equation
of the form

K | N
Q) [fidxiv)) - XX*;)Mi/;)] =0 (ke n*, ye At)

Flj— »=1
(see [19]). The pair (k,I) will be called the type o/(1) while we shall refer to
N as the index of equation (1).

Functional equations of sum form have important applications in charac-
terization problems of entropies having the sum property (see Aczél-Dardczy
[2] ). During the past thirty years several special cases of (1) have been solved
by various authors: Chaundy-McLeod [5], Aczél-Dar6czy [3], Behara-Nath
[4], Kannappan [10]-15], Dar6czy [6], Losonczi [17]—f21], Losonczi-Maksa
[22], [23], Maksa [24], [25], Dar6czy-Jarai [7], Mittal [26], Sahoo [28]. Al-
though nowadays functional equations of sum form cannot give much new in
entropy characterizations, there are several interesting unsolved equations of
sum form. General results are known only if k,| >3 [18]. The most difficult
equations are the equations of type (2,2). In this direction we mention the
paper of Dardczy and Jarai [7] who determined the measurable solutions of

* Research supported by the Hungarian National Foundation Research Grant No. 251
and partially supported by the National Science and Engineering Research Council of
Canada.
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2 2

() _ -yjfxin=0  (x.y €18

=1J)=1
The same equation with several unknown functions was solved by Kannappan
and Ng [16]. The author determined the C3[0,1] solutions of

2 2

(3) \&]LI}_[/(&A) - f(xf(yp)l =0 (x,y£ Ta)

(see [19]). The aim of this paper is to study the measurable solutions of (1)
ifk=1= 2.

Ifin (1) 1 =]0,1[, An = I'° we refer to (1) as equation of sum form on
the open domain while in case I = [0,1], A4, = I,, we call (1) an equation
of sum form on the closed domain. It is clear that the first case is the more
complicated; we shall deal with this case (open domain). Our results support
the view that the true domain of definition for (1) is the open one.

2. The differentiability of measurable solutions

Ifk = 1 = 2it will be more convenient to write (1) in the form
N
fi(xy)+Mx(l-y))+£3((1-x)y)-\-f4((I-x) (1-y)) -~ 2 9Ax)h.{y) (x,y€1).
8=1

This is obtained from (1) by writing /b / 2,/3,/4 for [ 11,/ 12,/ 21,/22 and by
9.4x) = gu(x) + #>»(l - z), h,(y) = hi,(y) +/i2(l - y) (s=1,... ,N).

The aim of this section is to prove

Theorem 1. Suppose that the functions fi, gs,he:]0,1[—=C (i=1,2,3,4;
s=1,...,N)

(i) satisfy the functional equation

(4) fi(xy) + f2(x(1- y)) + /3((1 - x)y) +74(1 - x)(I - y)) =
N
= Ok 2 e]°, i)
8=1
(U) /b /2,/3,/4 are measurable on ]0,1],
(iii) the functions gi,... ,gN and hi,... ,hw are linearly independent on

I(U L.
Then fi,gahs (i = 1,2,3,4; s = 1,... ,N) are infinitely many times
differentiable functions on ]0,1[.

Proof. We need some lemmas for the proof.
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Lemma 1. Suppose that (i) and (iii) hold. If are measur-
able (continuous or n times differentiable) then g,,h, (s = 1,... ,N) are
measurable (continuous or n times differentiable) too.

Proof of Lemma 1. By the linear independence of hi,... ,hff there
exist points #a,... ,2IN €]0,1[ such that det(hg(2fc))*Mc=L ¢ 0 (see [1]). Sub-
stituting y = 2k (& = 1>+++,N) in (4) and solving the obtained linear system
for gi,... ,gN we get

N
(5) g,(x) = ] T astE(x,2/t) =

t=1
where C(x,y) denotes the left hand side of (4) and a,t (s,t = 1,... ,N) are
constants. If /v /2,/3,74 are measurable (continuous or n times differen-
tiable) then so are £(x,yt) (t=1,... ,N)and by (5) g, (s = 1,... ,N) too.
The statement for hs (s = 1,... ,N) can be proved similarly. O

Lemma 2. //(i), (ii), (iii) hold then fi,ge,hs (i =1234;,s=1,..,N)
are continuous functions on ]0,1J.

Proof of Lemma 2. We need the following result of A. Jarai ([9],
Theorem 2.7.2; we slightly changed the notations).

Theorem J. LetT be a locally compact metric space, let Z\ be a metric
space and let Z{ (i = 2,... ,n) be separable metric spaces. Suppose that D
is an open subset of T X Rtand X- CR*fori = 2,... ,n. Let F\:T —=*2Z\
F{: Xi -* Zi, G{. D =*Xi, H:D XZ"X... XZn —»Z\ befunctions. Suppose
that the following conditions hold:

() For every (t,y) 6 D

Fi(t) = H(t,y,F2G2(t,y)),... ,Fn(Gn(t,y))).

(1) F, are Lebesgue measurable over X-for i = 2,... ,n.
(111) H is continuous on compact sets.
(IV) Fori=2,... ,n Gi is continuous and for every fixedt € T the map-

pings y —Gj(t, y) are differentiable with derivative D2Gi(t, y) and with the
Jacobian J2G{{t,x), moreover the mapping (t,y) —=D2Gi(t,y) is continuous
on D and for every t € T there exist a (t,y) GD so that

hGi(t,y)d Q for r=2,... ,n.
Then F\ is continuous on T. O

First we prove the continuity of f\. We transform equation (4) into the
form given by condition (1) of the above theorem. From (4) with t = xy we
obtain

6) /i(f) =-/2Q - tp-f3(y-t)-f4~1- - y+ Q) K{y)
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forO<t<y<1l
Let T =]0,I[, n=2TVT 4, 2\ —722= ... —Zn=C, X2=... —Xn =
=]0,1[, D = {(t,y) CR2 10 <t <y < 1}. Define the functions G, on D

by

G2(t,y) =J-t G3ty =y-t,G4fiN=1~1T-i+1,
Gs(t,y}=...—G 4jv(i>y)= y? GS+N/t, 2/) — ... — G M2ev(i?t]) 2
and let
JT+4
A(*y,z21... ,z,)=-22- z3- 724+ ZKZN +k-
k=5

It follows from (6) that the functions 4, (i = 1,... ,n) given by
F\=fi, F2=f2, F3=/3, 94=/4, F4+S=g,, Fi+n+s—h, (s—1,... ,7V)

satisfy the equation in (I) for all (i,Z) € D. F (i = 1,... ,ra) are mea-
surable by (ii) and Lemma 1. A is clearly continuous and condition (I1V)
of Theorem J holds too since calculating D2Gi one can see that for every
t€T=]0,1[

D2Gi(t,y) 0 for i—2,...,n if yAVi.

Thus by Theorem J, /2 = F\ is continuous on ]0,1[. The continuity of f2,
/3and f\ can be proved by making the substitutions x —=1—x; / — 1—y and
X —»1—2-, 2 —»1—2in (4) respectively and repeating the above argument.
The continuity ofgs, hs (s = 1,... ,N) follows from Lemma 1. O

Let C(")]0,1[ be the space of all functions /: ]0,1[—»C such that /(") is

continuous on ]0,1[. C"*°7]0,1[= C]0,1] is the space of all continuous functions
on ]0,1].

Lemma 3. Suppose that (i) and (iii) hold. ///1,/2/3,/4 € CM]0,1]
theng,,hee C("+1)]0,1[ (s=1,... , V. n=0,1,2,...).

Proof of Lemma 3. By Lemma 1, /v/2,/3,/4 € c(n)]o,I[ imply
gs,hs 6 C(n)]O,I[ (s = 1,... ,7V). We show that together with gs,hs the

functions x — 7 ge(u)du, x —’ixj h3(u)du (s = 1,... ,7V) are also linearly
12 1/2

independent. Namely if

(x €]0,1])
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holds with some constants ca(s = 1,... ,N) then by differentiation we get
N
X) c«ffd(a) = 0 (x G]O,1[) thus by (iii) c, = 0 (s = 1,... ,N). Hence we can
find a system oi,... ,  €]0,1[ such that
(8) det  ga(u)du)j 0.

1/2

Integrating (4) with respect to x from 1/2 to at we obtain, after suitable
transformations in the integrals that

atVv (I-a’t)y ati(l )
9 - ffi(u)du-~ | f2u)du+ —* f3(u)du-
@ g ffiwdu-g 1ofaudus = (u)
v/2 Wiz (1-w)r2
(1-a,)(1-v) A
Y J /a(u)du = J2 J gt(u)du™hB(y)
(1-v)/2 4=1 1/2

fort=1,... ,N. Itiswell known (see e.g. [8]) thatif/1,/2,/3,74 € C*jO,1[

then h(y), the left hand side of (9), is in C(n+1)]0,1[. Solving (9) as a linear
system for the unknowns ha(y) we get

N
h>(y) = "8'My)

t=i

y GI0,1D)

with suitable constants Rat. Hence ha€ c'(n+1)j0,1[ and by symmetry rea-
sons the same holds forga(s = 1,... ,N)too. O

Lemma 4. If (i) and (iii) hold and /% /2,/3,/4 € c(n)]0,1], K,,gB e
€ C("+x)]0,1[ (s = 1,... ,N) then /v /2,/3,/4 € C<"+1)]0,1[forn=10,1,....
Proof of Lemma 4. Write (4) in the form (6). Leto <a <B < 1land

choose the interval [A/X] such that y/B < A< i < 1 (then [a,/?] X [A/X] C D
holds). Integrating (6) with respect to y on [A/X] we obtain

STRTTRRN 7 (T TS, U

N A
+ £ JQ.(-)h.(y)dy.
4=1 A
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We use the substitution Gi(t,y) = un (i = 2,3,4) in the first three integrals
where Gi are defined by (7). It is easy to check that the equations G,-(t,y) = n
(r = 2,3,4) can uniquely be solved for y if t G[a,/3]. In the case of i = 4 this

uniqueness is ensured by the assumption \fR < A namely, by this condition,
the derivative of the function y —G\(t, y):

DiGAit, y) = -2 —1
y) 7

is negative on [a,/?] x [/1,/] hence our function is strictly decreasing. The
solutions y = 7i(t,u) of Gi{t,y) = u (r = 2,3,4) are infinitely many times
differentiable functions of t and u. Performing the substitutions we have for

te /7

4 Gi(tp)
Fi(u)D2i(t,u)du + .
J'I(O = |*_|i ,&ﬂ ,JI |(U) ] ' A—/r

If %,, he G C("+1)]0,1[ then the second sum is in C(n+1)]0,1[ too. In the
first sum the functions /2,/3,/4 are at least continuous hence by repeated
application of the theorem concerning the differentiation of parametric inte-
grals (see e.g. Dieudonné [8]) the first sum is differentiable infinitely many
times on [a,/3]. Since [a,/3] is an arbitrary subinterval of ]0,1[ we have
/2 GC(n+1)]0,1[ and similarly /2,/3,7/4 € C(n+1)]0,1[. O

Now we return to the proof of Theorem 1. Let

T = {fi,es,ht 1i=1,2,3,4; s=1,... ,N}.

By Lemma 2 T C CJ]0,1[. If T C C(n)]0,1[ then by Lemmas 3 and 4T C
c C("+1)]0,1[ (n=10,1,...) hence T C f| C~Jo, 1. O
0

n=

3. Differential equations for /,

A well known method of solving functional equations is their reduction
to differential equations. From the solutions of the differential equation one
can select the solutions of the functional equation by substitution or by
other means (see Aczél [1] pp. 186-201). Usually one can obtain differential
equations from a given functional equation in many ways. For example
differentiating (4) (with f\ = /2 = /3 = /4 = /) with respect to y n times
and substituting y = 1/2 we obtain

[i+ (-D" 10"/ () + (i-*r/<)(117) ] = X X =) m(l).
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For odd n the left hand side is zero hence the right hand side must be

zero too. Under suitable assumptions on h”*k+1"(]|) this may determine the
functions ga. For even n we get

(10)* x*LE>() + (1-x)" /2> (U p) = £>.(x)N1<2b|(1).
3=1

Combining equation (10)*, its first and second derivative: gN(10)fc, gp’(FO)*
and (10)jt+i by coefficients 2k(2k + 1), 4fc(l - r), (1 —x)2 and -1/4 respec-
tively we can get rid of the derivatives /W We have

(1) +2te” -"(1 - x)/[<“ +4 (1) +

N
+24x% - 22% + 2k - 1)/<2> (1) = £E[(1 - y2s- ) + 4%(L - X)ol (x)+
8=1

+24(21:+ bl x)JAats y(1) = | ][>,(X)/,<2‘+2>(i) .
Nn=1

This equation is valid for k = 0,1,...; x €]0, I[ provided that the func-
tions involved are differentiable sufficiently many times. Let k —O0,1,... ,3N
here. Eliminating (I - x)29'3(x), (1- x)g's(x), g,{x) (s = 1,... ,1V) from this
system, we obtain a linear homogeneous differential equation of degree < 2
*3N+2 = 61V+2 with polynomial coefficients. Unfortunately this differential
equation cannot help much in solving (4) since the structure of its solutions
is quite difficult.

Next we shall deduce a differential equation of Euler type for /i(/2,/3,/ 4).

Theorem 2. Suppose that conditions (i), (ii), (iii) of Theorem 1 are
satisfied. Then there exists functions 7J, 7Jt: ]0,1[—C (k = 3,... , 151V + 5)

such that choosing any y €]o, 1[ not all of the functions 7* and 7* vanish at
y and /1,/3 satisfy the Euler differential equation

158 +5
(H) 23 Tk(y)ukf}k)(u) =° *=13;, 0<u<y<l]
k=3

further /2, /4 satisfy the equation

157145

(12) 23 =0 (t=24;, o<unu<yc<a).
1=3
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Proof. Firstwedefine some basic differential operators X-(r= 1,2,3,4)
by

a 4 T 2 .., . d
L'=xdi~yw LI =xdi +(1- y)di’
L, = (1- x)A + 1| 4= (1-*)£-(1 -u)fE.

These and all other differential operators to be defined later will be
applied on the equation (4) in which by Theorem 1 all functions are differ-
entiable arbitrary many times.

The effect of X on the left hand side of (4) will be the disappearance of
fi (i=1,2,3,4). Let 7 be the identical operator and let

AGT=U +ni=(1- 0B +y® 4w,

A& =L4+(n+ 1)7=(L- x)A - (L-y)-A+ (n+ 1),
43 S (n-2)=xE + (1- Y)u - (n- 27,
AGl=~2 - (- DT=  xfe+(1- y)r - (n-1)7

An]=12-nl =x~A{l-y)-"- nl,

AB) =T-i - (n+ 1)7 X-A -y-A - (n+ 1)7,

An]=Lx - (n+2)7 XE -y~ - (n+2)7,

48 =Li-(n+3)7=x " -4"-(n +3)7.

Further define B,, “by
BU=iWdb-1)... ArTJJ (j=1,.°,8).

It is easy to check that A,,"D2 —D2A"A hence B = D2AQRAAg~".. .Ad"
holds too. It is clear that A3\ aldA A~ and A%\ An\ A" pairwise
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commute. Using the relations

r d T d
- Ti - - _ , = _r ax JL
12 -Ti +vyy, L3 L x+ , 4 1 dy
L Ar =_+ r— —T =A
leix Bx 1 dx' dy dy 1 dy

we easily get
L\L2—L2LX La2r3-L3cz2=° ¢ [xC3-L3x=- =,
L2L4-L 4L2=--~, LxU-ULx=-"-y vy, L3L4-L4L3=

By the above relations can be factorized in many ways. For example

i#) = AAD@=D?aP = DAL3,
RED) = = DZAMAN = Z52(X4+ 1)L3 = £5£(Z3+ /)B4,

etc. Denote by C(x,y) and H(x,y) the left and right hand side of (4), resp.
The factorizations above show that  ~C(X, y) does not contain /3 (and its
derivatives), BAC (x,y) contains only fi,f2. BAC(x,y) contains only f\
(and its derivatives) and finally BAC (x,y) = 0. In addition from j = e on

B§)C(x,y) is a differential operator of Euler type in the variable x (at fixed
y). Next we give the more detailed form of the equations

(13); BAC (x,y)=B" U x,y).
For j > 2 Bn"TI(x,y) gets quite complicated, we shall leave it as it is.
(13)i nxn~xf[n\xy) + xny/{n+1)(xy) + (-1)"nx"_a/ 2n)(x(l - j/))+

+(-D"x"( -y - )+ )(x(1 - y))-

-(-Dn(l - x)"+/in+)((1 - x)(1- j)) =
N
=32 [I1* xwW x)b[nYy) + 9s(x)(yhin+1\y) + n/i*"'N))] ,

(13)2 (27ixn- 1+ n (n-1)xn- 2) /) (x2)+ ((2y-n-1)x"+2nyx"-1)/ {n+1)(xy>F

+ (K +1 + 22xn)/x7+2Mxy) + ()n(2nx"_1+ n(n—)x"-2) /2" x(1—y)) +
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+(-1)"((-2y - n+ I)z" + 2»(1 - W<E+1(X (] - »))+
+(-D)n(-(1 - sprer @ - N2X")INW)(X (I'- v)) =
N
= E_{P - + (1- *)1%)((2Y- Dt +1(1) + 2TK™> «) +

+9s(x)(-y{1- y)h("+2y) + (n + D2y - HhAW (y) + n(n + 1)Mn)(y))],

(13)3 2nxn~1f[n\xy) + (2yxn+n(n + )xr,-1)/In+1)(x )+
4L-(n+2)x"+1+ 2(7i + N)yxn)f[nt2Axy) + (-yx m2+y2x(n+1)) f[ n+3\xy)£-

+ (- n2n* -1it) (3 (1 - »)) + (=Dn(=2(/ + n)x")/<"+1)(x(1 - y))+
+(-n@-2(1 - y)xn+Dfinedx (1 - 1) = B(?bl(x,y),

(13)4 2(n+ 1)/ En+1)(xj/) + (2(y —n - 2)xn+1 + (n+ 1)(n + 2)xn)/gn+2)(xy)+
+((-22/ - n - 3)xn+2 + 2(n + 2)yxn+1)/In+3)(xj/)+
+(-J/xn+3 + yaxu+3)/In+4)(xy) - 2()"(n + Dx"/in+t1)(x(l - y))-
S2(-D" (- y)x"+'fInkAXx (1- y)) = BA7I(X,y),

(13)5 (—4(n + 3)x"+2 + (n + 2)(n + 3)xn+1)/n+3)(xj/)+

+(-(4y + n + 4)x"+H3 + 2(n + 3)yxn+2)/{n+4*(xy)+
+(-yxn+d + y2x"+3)/In+5)(xy) = BATZ(X,y),

(13)6 -4(n + 3)xn+2/ In+3)(xy) - (4j/ + 2n + 8)x"+3/ In+4)(xi/)-
-2y xn+4/ In+5)(xy) = BA7I(X, YY),

(13)7 —2(n + 4)x"+3/<"+4>(xj/) - 2yxnHf[n+B\xy) = BALL x, y),

(13)s 0=5i8(x,y).

We can get differential equation for fi from (13)5, (13)6 or (13)7. Using
(135 the equation obtained will not be of Euler type while in case of (13)7
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we obtain an Euler equation but its order will be too high. Hence we use

(13)e:
(13)e —2yxn+4f[n+s\xy) - (4y + 2n + 8)xn+3f[n+A\xy)~
-4(n + 3)xn+2fin+3)(xy) = B(,6bl (X,y).

It is essential that BA"7Z(x,y) has the following decomposition

N r15
(14) BAn(x,y)=J2 £ GSKk(x)H.k(y,n)
*=1 4=1
where
G.i(x) =g9,(x), Gez(x)=de(x), GaB(x)=xgt(x),
GsA x)=9'J(x), Gt,5(xX)=xg"(x), G,.6(x)=x2p"(x),
(15) Gtt7(x) =xg's'(x), Gt8(x)=x2""(x), GeI(x)=x3g'J'(X),

Gi,io(a;) = x2i?i4)(x), G 4)n (x) = x3£fid)(x),
Ge12(2;) = x4” 4)(x), C*p3(x) = x3(x - 1)75)(x),
. GSii4(x) = x4(x-1)pi5)(x), G4ii5(x) = x4(x-1)2£fi6)(x).

The functions H,n4n have the form

(16) Hsd(y,n) = £ p,, p(i/,;n)hi"+p)(J)
p=0

where P*p are suitable polynomials of n and y. For example
H.JXy,n) = hW(y),
H,M{y,n) = (-6n + 16)/I<n>(y) + (4 - 6y)A<n+1>(y),
H»,13(y,n) = (4n - 8)h{n\y) + (4y - 3)h +1l\y),
H.,122(y,n) = (15n2- 65n + 72)h{n\y)+
+[(302/ - 20)n + (—50y + 32)]hi"+1)(3) + (15j/2- 20y + 6)h[n+2\y),
H,,n(y,n) = (—20n2+ 76n - 72)h<?Xy)+
+[(-402/ + 28)n + (56y - 38)J/ii"+1X2) + (-20t/2+ 28y - 9)h[n+2\y),
Hs,w(y,n) = (6n2- 18n+ 12)h(n\y)+
+[(12y - 9)n + (—2y + 9)]h("+1)(i,) + (6y2- 9 y + 3)h[n+2Xy).
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The remaining functions Hak are too complicated to be reproduced here.

Remark. We found B~T1(x,y) by using personal computer. Due to
software problems we calculated

ANANK .. A MDYy axebv)

and factorized the variables ae,bs, X, y. Replacing akea,x by g[k\x) and b[eb‘y

by hs\y) we obtain the general term (the bracket) of (14).
Denote by -F n(x, y) the left hand side of (13)6 then it can be written as

# 15

a7 1-xFn{x,y)+ "2'"2xBajk(x)HA(y,n) =0 (x,y €]0,1]).
«=1 fc=i

For every fixed y €]0,1[, (17) with n = 0,1,... , 15V is a linear homoge-
neous system of equations for the unknowns 1, xG i*x),... ,xG1152) ) ,
xGfj'16(x). It has nontrivial solutions hence its determinant is zero:

*FO(x,y) #iLi(y.0) #1,2(y0) = #1400 — TAVisy0)
(18) #1,2 (y.1) e #ijis (y>]) e Hn,a(yA)

*FLiN (x,y) Hi,i(v,15JV) # 1,2(Y,157v) ... # 114 (yA54#) .. H#jvla(y,154#)

This implies (see e.g. [27]) that the rows of the determinant in (18) form
a linearly dependent vector-system. Writing out the linear dependence for
the first coordinate we have

(19) Jai(y)xF/(x,t/) =0
1=0

where for any fixed y €]0,1[ not all coefficients a/(y) are zero. Using the
definition of Fi we can rewrite (19) into the form

15#+5

Bk(y)xkflk\xy) =0 (x,y€]10,I)

k=3

where not all Bk(y)’s are zero (at any fixed y €]0,1[). Here we needed the

fact that in Fi(x,y) the coefficients of /2"~ (xy) (j = 3,4,5) are positive.
Substituting n = xy, 7k(y) = Bk(y)y~k we have

Y 1k(y)ukf[k\u) =0 O<u<y<l
k=3

Acta Mathematica Hungarica 61, 1993



FUNCTIONAL EQUATIONS OF SUM FORM 177

and again not all the coefficients 7jt(j/) are zero at any fixed y £]o, 1].

This is exactly the Euler differential equation (11) for f\ we intended to
derive. If we replace x by 1—x in (4), f\ goes over into /3 and gs(x) goes
over into <,(2 —x). This transformation leaves Hek(y, n) unchanged while in
Fn(x,y), f1has to be replaced by /3. Thus repeating the above argument we
obtain that /3 satisfies the same differential equation (11) as f\. By similar
reasoning we obtain that /2, 74 satisfy another Euler differential equation

1SN+5

(12) £ T*(y)t*/jio)(*0 = o o<un<y<aj=24)
k=3

where not all the coefficients 7fc(y) are zero at any fixed y 6]o, 1]. O

4., The structure of solutions

Our main result is

Theorem 3. Suppose that the functions /,, «,h,:]o, If—=C (t=1,2,3,4;
s = 1,... ,N) satisfy conditions (i), (ii), (iii) of Theorem 1. Then there exist
distinct complex numbers Ai = 0, Ao= 1, A3 = 2, A, , Ay and natural

M
numbers m\,... ,Tm with ~ mj S 30N + 7 such that
3=1

(20) e £(Ab... ,An/;Tb ... ,TM) (r=1,2,3,4)
Z(AX,... ,X\f-m i , ,TM) being the vector space of all functions

M mj-1

cjifexAelogtex, X elo, 1
1=1 k=0

where cjk are complex constants.
Further g,,ha(s = 1,... ,N) can be written as

(21) g,(x) = + 7»r(1 - 1), M z) = x,i(z) + X»>r(1 - 2)
with
(22) T<n »2>X* X2 £ £(Ni,. .. ,\M",Tn!,... ,TM) =

Moreover the index set J = {(j,k) \] = 1,... M;k =0,... ,mj - 1}
has three subsets Iq,I\,12 each containing at most 15N + s elements, among
them the elements (1,0), (2,0), (3,0) such that

(23) 1(*) = c(‘Ixx>\ogk x
0A)eli

(24) [.(*y= £  42xAbgfex
U,h)el2
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and

& Y. Mo= Y (E o) #¥logex

(,k)Elo "»=1

hold where cty (j =1,... ,M; k=0,... ,mj- 1, i =1,2,3,4) are complex
constants.

Proof. We have seen that [ satisfies the Euler equation

1517 +5

(11) Y 7k(y)ukf[k\u) = 0 O<u<yc<]
fc=3
oforder < 151V+5. For a fixed y = y\ e]O0,I[let pP,... ,pp” be the distinct
roots of the characteristic equation of (11) and let Te”,... ,rip® be their
multiplicities. Then we have Y, nk = 151V+5 and we may suppose p\ ' = 0,
k=1
/ir = 1, pP = 2. Since the functions n — uu> logfeu (j = 1,... ,Pi;
K=0,... ,n*p - 1) form a linear independent set of solutions we have
w0 _
(26) fi(uy=Y Y akU”™ \ogku (0 <wm<yi)
j=1 fco

where ajk are constants. Fixing another value ¥2 G]0,1[ we similarly obtain
that

P2 n~ _1 2)
@7) J1u) = 27 Y 7 bjkuAS logku  (0<u<y2)
3=1 k=0
where pP = 0,pP = 1, pP = 2,... ,pp" are distinct complex numbers,

nkP,... , are natural numbers and bjk are constants.

Since the functions (26), (27) are identical on the interval 10,min{2/i, 22)
by the linear independence of the functions involved the terms on the right
hand side of (26), (27) must be the same.

More precisely ifa term uli logftu of (26) appears in (27) (i.e. p~p —pP
for some I = 1,2,... ,P2)and 0 Kk » min{n”,n*} - 1) then ajk = bik

while if vPi log* n does not occur in (27) then ajk = 0 and conversely: terms
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of (27) occurring in (26) have the same coefficient, those terms of (27) which
are not present in (26) have zero coefficient.

Keeping only the terms with nonzero coefficients and introducing new
notation for the exponents and multiplicities we have

p

j-i
(28) li(u) = jsflfggchUﬂMogfcu

for all n 6]0,1[ where A = {p,\,... ,pp} has distinct complex numbers pi =

=]
=0OlW=1U=2uw,...,np are natural numbers with 53 nj » 15V + 5
. j=1
and Cjk are constants.
Since /3 satisfies the same Euler equation we conclude that

P «l1-1
(29) /3(«<) = 53 S dikBi]logfcu» €10,
j=1 0

where djk are constants.
Similarly, from (12) we deduce that

Qpi-1 .
(30) /3(|/|) =53 53 eHH] |@Cu « e]0,|[,
j=1 k0
Q p>-i
(31) A(«) =53 53 hikuvi tt€]0, I
(«) = 53 53 hiki Jak
where B — {iq,... ..« has distinct complex numbers, -0, =1,
Q
¥s = 2; pi,... ,pq are natural numbers, 53 Pj i 15/V-f 5 and ejfc, hjk are
i=i
constants.
Let Ai,... ,\'m he the distinct elements of A UB and define rrij (j =
= !,_Qo ’M) by

ax{rafc,pi} ifxje ATB and A=pk =W
{k if x; € A\B and A = pk

pi if A £ B\A and xj = pi.
With this notation, (%«}3)-1(31) can be writtenas

(32) /,(u):JS:E]' E_e,o@ “/blos*u  (u €]0,1[, i=1,2,3,4)
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where € C are constants. This proves (20). (23), (24) follow from (28)-
(31).

4
Let f(u) = 53 /»(«) then from (4) it easily follows that
i=i

I(*Y) + /(,:(1 - ) - X)) (- x)(2- 2) =

= XAN*) + Y(1- *WMy)+ h(1- y).

*:i

Applying e.g. (23) for this equation we obtain that (25) holds.
To complete the proof we show that (21), (22) are valid. In the proof of
Lemma 1 we have seen that
N
g.{x) = X W) (s=1,... ,N] x €]0,1]).
t=i
Using (32) let us calculate C(x,yt). We have

M rru -l

BxW)=E X [ofc@omaostt - ")ARYG- yor

+c%\(1 - x)yt)x=logi(l - x)yt + cg>((l - x)(I - j/)A logi(l - x)(I - yt)

Expanding the logarithmic factors by the binomial theorem, applying
the identity

MJ—I jfc m ,—1njj—1

X X=X X Ui

k=0 1=0 1=0

we obtain

mij-I
(33) g,(x) = X [Ai>xXIW x + BM 1- x)Xlog'(l - *)]
where J=1 f=o

=% X (Datlev icx-ruee M- yoRloei-yy).
h tN:i/lJp; «t+cN(l-yt)Alog*-,(l-yt)
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(33) justifies the statements (21), (22) concerning the representation of the
functions gs. A similar calculation shows that the statement is valid for hs
too. O

Acknowledgement. The author is grateful to Prof. J. Aczél whose assis-
tance made it possible to check some calculations. The formulae (13)6, (13)7,
(13)e and the decomposition (16) were checked by D. Bradley (University of
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SOME METHODS FOR FINDING ERROR BOUNDS
FOR NEWTON-LIKE METHODS UNDER MILD
DIFFERENTIABILITY CONDITIONS

I. K. ARGYROS (Lawton)

I. Introduction

Let E and E be Banach spaces and consider a nonlinear operator F: D Q
C E —E which is Frédiét-differentiable on an open convex set Do C D.

The most popular method for approximating a solution x* 6 DO of the
equation

(1) F(x) =0
are the so-called Newton-like methods of the form
(2) xn+i - xn- A(xn)~1F(xn), x0E DO prechosen, n=10,1,2,....

The linear operator A(x) is a conscious approximation to the Fréchet-
derivative F'(x) of F at x £ Dg. For A(x) = F'(x) and A(x) = F'(x0)
one obtains the Newton-Kantorovich and the modified Newton-Kantorovich
method.

Several authors including Balazs and Goldner [2], [3], Janké [5], Schmidt
[13], [14], Rheinboldt [12], Dennis [4], Miel [9], Morét [10], P6tra and Ptak
[11] have proved convergence theorems for (2) or special cases of it providing
several error bounds on the distances ||xn —x*|| and ||xn —xn+i||, n —
= 0,1,2,__  The latter authors above have improved the results of the
former using Kantorovich type hypotheses.

Recently, Yamamoto in an excellent paper has unified and improved
these results in [16].

The main hypothesis of all the above authors is that the Fréchet-derivative
F'(x) of F satisfies a Lipschitz condition. However, there are many interest-
ing differential equations or singular integral equations that can be written
in the form (1) where F'(x) is only (K,p), 0™ p < 1 Holder continuous (to
be precised later) (see also [1]).

Here we extend the results mentioned above in this new setting. Our
results reduce to the ones obtained by Yamamoto [16] and the others for
P=fo

rmally, we provide an example of a two-point boundary value problem
on which our results apply whereas the results obtained by the above authors
do not.
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Il. Main convergence results

We will need a definition:

Definition. Let F be anonlinear operator and L a boundedly invertible
operator defined on a convex set Do C E with values in a Banach space E.
We say that the Fréchet-derivative F'(x) of F is (c,p)-H6lder continuous on
DO C E if for some c > 0, p € [0,1]

(3) WL-1(F,(x)-F\y )\ < c\\x-y\A  for all  x,y e DO.

We then say that F'(-) € #>0(c,p).
It is well established [5, p. 142] that

(4) \L~\F(x)-F(y)-F'(x)(x-y)\\ <y-~|x - y||1+p for all x,y € DO.

We can now prove the following convergence theorem for (2).

Theorem 1. Let D @ E and F: D —E and assume F'(-) € Aa,(J1',p)
on a convex set DgQ D. Let A: DO —»L(E,E) and a point xo be such that
A(a:0)_1 exists and

(5) WA(x.0)-\F'(x)-F,(y)W\<KWx-y\\* x,y € DO, K >0, p£(0,1],

(6)
HACX0MYX*)-~(*0))||"i||*-*o||p+”~ xeDO, L>0, I>0, p€(0,l],

7
(||/)°\(ZO) 1F'(x)~ AX))|| <M\\x —xO||p+m, i £ED0, M~0, m~0, p€(0,l],

and
(8) r/> ||A(a:0)_1F(a:0)|| > 0.

Assume:
(a) The real function g defined by

(9) g(t) - (Af+ L)tptl Lptp+ (/m 1+t + 1+p)*+*?(!

has a smallest positive zero r* > rj.
(b) The following inequalities are satisfied:

(20) X(r*)p+i<1
and
(11) l-£-L(r-)P[1+/ +ro+M(r)p -7t
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Then

(i) If U(x0,r*) Q DO then the sequence {xn}, n = 0,1,2,... generated
by (2) is well defined, remains in U(xo,r*) and converges to a solution x* £
€ U(xo,r*) of equation (1).

(i) Moreover, if

'k

(12 " |-1L(r-)P pr.(rp)er MR <1
then Xa is the unique solution of equation (1) in
(13) U{xur*-r,)QV{x0,r").

(ili) Furthermore, the following estimates are true:
(14) |Zn)-I —=Xnij 5 (-1  ~) »=0,1,2,...
and
(15) kn- & ~t“-tn, n=o0,1,2,...

where the real sequence {fn} is nonnegative, increasingly converging to some
t* > o and is given by
(16)

M+ o In

1 K
~1-1-Ltp 1+p
xvith to —o and t\ = 7

Proof, (i) Let X £ U(X0,r*). Then we can write
A{x) = A{xq)(l + N1(x0)- 2(J1(x) - N1(x0))).
Using (e) and (10) we get
111(x0)- 1(/1(x) - A@0))| * Li\x - zo|lp+ i %L(r*)p+t < 1

and by the Banach lemma on invertible operators the linear operator J1(x)
is invertible for all x £ U(x0,r*) and

on IAC)-ACON Sar | 0y

Therefore T(x) = x —/J1- 1(x).P(x) is defined on U(xo,r*) and if x, T(x) £
£ U(x0,rm, using (4), (17) and (7) we obtain

(18) ITCT)) - TOOIl = N- A-2(T(x))F(T(X))| <

(i,,-in_i)aHp-f(m-|-M~_2)(in-in_i) , n—a,2,...

Sl-t-B g ,)-« NN >» - - - *yn+
+(T(x) - -4())(T(x) - XL, <
A= <P () -xOp{T AT -~ T B (N + M-I (x)-X][}=
= W 7T(x)- *N>!'Ne ) - *of], Ik - zoll)
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where
1 Kul+
(19) giu,v,w) = TV L., + (m + Mwp)u
The difference equation given by (16) is such that t2- ti ~ hon and
A0 +hoq=77a+h0) < — .
2 Nt 1= 7711 ) T o
Using (9) and g{r*) = 0 we get 7= (1 —ho)r*. That is [2< r*. We can
easily show using induction on n that
N1 = ho(tfc ~ ficH? and N
It now follows
lim tic = t*, =r
k%o 1—ho
Therefore, we have shown
i+l *n| =fn+l  fi ~—0,1,2,....
That is by a well known lemma on majorizing sequences, there exists an
element x* E U(xo,r*) such that T(x*) —x*.
We can now get

IF(x® ~ llA(a:0)A(a:0)"1(A(xT) - A(xo))(xfeH - x*)||+
+lIA(xo)(xfeH - xfgl| ~ [Llixic- xOflp + i + I][|A(x0)lll|lxfcH - xfd| 7
< [L(r*)p + £+ I]||A(X0)||||Xferr - Xid -> 0 as Kk -> oo.
Hence F(x*) = 0.
(ii) Let us assume that there exists another solution z* E U(xo,r*) of
equation (1). By (2), (7), (17) and (12) we get
X, - ™=
= A(X,,)- 1[(A(xn) - F\xn))(xn - z*) + F'(xn)(xn-z*)-(F(xn)-F(z"))]
and

xn+i - z41 < 71+ M ||xn-X O||P+

1
1-i- L(r*)p
Zn-zo|| + ||xo-z' |z,,-z*||5i
1+
< hi\\xn —Zz*Il < eee< h"+1||x0- zZ*N—»0 as n —»oo.

That is, x* = z*. The rest follows from the observation that
(20) x*e if(xy,r* -?cU (xo,7),
since |[xo —X 1K+ r* —z< r*,

(ili) The results in this part follow immediately from (i) and (20).

That completes the proof of the theorem.

We now give some sufficient conditions for the existence of a minimum
solution of the real equation g(t) = o.
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P roposition. Assume that the following conditions are satisfied:

(21) =-w+ 1-/ +Lrj- > 0,
1+p
(22) B2>4i?(1 - £)(M + 1),
and
(23) 9(tq) < O
with
B
24) g~ 2(M + L)

Then the equation
(25) g(t)y =0
where g is given by (9) has a smallest positive zero r*.
Proof. By (21), (22) it follows that the quadratic equation

(M + L)t2+ (m -1+ |+ 1+p_ Lri)t+77(1- )=0

has two positive zeroes and a minimum at tq = 2(m +L) * can easly see

that g(t) is continuous, *(O) > 0 and g(t) > O for t sufficiently large and
since g{tq) <0, by (23) it follows that g{t) has two positive zeroes r* and
rj with r* fi rj of which we can choose the minimum to be r* and 1j" to be
a second minimum zero. That is if rj is a zero also with r* ¢ rj < rj then
r\ —r\.

That completes the proof of the proposition.

Theorem 2. Let F,Dqg,Xo be as in the introduction and assume:
(a) the equation (1) has a solution x* 6 Do;
(b) there exist nonnegative numbers a”,a\,af such that

(26)

lxn+i-x"1I < 1_+_pa°+n||zn—a;*||1+p-|-a’\||a;n—>K*||-(-a’\ foralln=0,1,2,...

with
(27) a® >0 and aj, <1

(c) the real function
(28) q(t) = YfTrantl+P ~ @@ " a«)®+ an + dn, dn = \\xn+l - xn\
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with

(29) dgh>a°, 1>aA>a* and ab>af@l, forall n—0,1,2,...

has two positive zeroes r* and r\, r*” r* with r* being the smallest positive
zero and  is such that ifr\ ¢ r*is azero also with rj < rj then fj = rj\

Then
(i) The real function

(30) ®O =T7"«niHP- 1- »J*+al +dn

has two positive zeroes 1% and r3 such that
(31) rl <r*<r\ grs.

(it) Moreover, if

(32) [Ixn - X4~ re
then
(33) IH*n-*1 ™ »2.

Proof. The result in (i) follows immediately from the easy observation
that

(34) q(t) ~ qo(t) for all i>o.

Using (26) we get
(35) |xn—z*||—d,, < |[*n+i-a*|| < YAT*anllan_a:*l|1+P+ anllan—*ll + an*

By hypothesis we must have godien —ar*||) > 0 and either
Hxn-x*jl<r2 or |x, -&;%||> rs3

the latter is excluded, however, and the result in (ii) follows.

Remarks, (&) Note that forp = 1, Theorem 2 reduces to Theorem 3.1
in [16].

(b) The result in (ii) above constitutes an improved error estimate on
the distances ||x,, —x*||, h = 0,1,2, -

According to the proposition, the equation
(36) 4,*>=0, n=0,1,2,...
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where
@37)
gin(t) = TA<rKtlHp+ (m +t- 1+ crKtn)t+ (1- 1 - LC)(tntl - i,,),

"a=max(l,*+ M)

has a minimal solution s®and a second minimal solution s® with  ~ 5® if
the following set of conditions is satisfied for all n =0,1,2,...:

©

(38) m + | —1+ crKip 50,

(39) (m+1-1+aRX)2>" (1 -i- fip(inti - i,)
and

(40) gin(tin) ~ 0

with

(41) _ (m+t—1+ a/ffE)(l +p)
In 2crA'
It can easily be seen that the conditions (c) are certainly satisfied if the
following are true:
(ci)

(42) m+ t —1+ 2crA'(r*)p ~ 0,

(43) (m+i_02> 1in [ 2 (r)p+(m+M (1))
and

(44) 92{tr*) < 0

with

(45)

<720 = YACrA'IIHP+ (m + 2 -1 + <7TA(™)p)i-f j K (r*) 1+p(m + M(7-*)p)r-*

and

<c=  (m+1- 1+ crK{r*)p){\ + p)
27K

(46)
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Indeed, (38) follows from (42) since tn ~ r*, n —0,1,2,_ We also
have that for all n = 0,1,2,... (39) follows from (43) since

M+t —1+xt™)2p M+ —-1)2"

AoK K _ . .
14 p 1+pl(r)p-f(m+M(r )p) r* >
> 4ak (tn - i,,-i)1+p + (m + Mip_r)(<n - tn-1) =~
z ’i;ﬁol -£ -L tp)(tn+1-tn).
Moreover,

tr* < tin, gin(t) N gz2(t), t>0

and the function <2is decreasing on [0, r*] by (42).
That is, (40) follows from (44) since for alln =0,1,2,...

9in(hn) # gz2(hn) i gn(tr*) ~ 0.
We can now prove the main result.

Theorem 3. Let D ¢ E and F: D —E and F'(-) € H*O(K,p) on a
convex set DqC D. Assume:

(a) the hypotheses of Theorem 1 are satisfied;
and

(b) the set of conditions (c) or (cr) are satisfied.

Then:

(i) The sequence {xn}, n = 0,1,2,... generated by (2) is well defined,
remains in U(xo,r*) and converges to a unique solution x* of equation (1)
in U(x\, r* - # C U(x0,r*)»

(i) Let Uo= U(x0,r*), Un =U(xn,r*-tn),n=1,2,..., KO=L0 = K,

WA {xn)-\F\x)-F"(y))\\

Kn= sup
X,yEtn Ik - y\p
Xchy
L sup IAGM XT(D) - FO)I
x,ytUo Ik - y\p
Xehy
Then we have
(47) X*eunc c7,_icC c FO,

48) 1kn - x\ <4 <si N Ng* <t*- tn forall n=0,1,2,...,
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where and are the least solutions of the equations

Pn(t) =Pn(t) - t+dn, Vn(t) = vn(t) - t+ dn,
Wn(t) = wn{t) -t +dn, Yn(t) =yn(t) -t +dn,

with

M _ 1+ « 2+, (Mm+MWxn- x0W\r)t

Pn[)~ 1+P n + i-e-L\\xn-zo\r

w1 . (m + M\\xn- x0\\P)t

vn(t) 1+ant+ v i 0%, _ Xol],!
wo(i)= (1-i-L\Wn- xollT1 ®  ti+p+ (ra + M\xn- xOWp)t
1+ p

and

-1 K
vnt) = (1 - *- Lt tHp+ (m+ Mtp)t
n(t) = ( M

Proof. Part (i) follows immediately from Theorem 1. It is easy to see
that X* 6 Un Cc Un-1. Let us define the real functions

Zn(t) = zn(t) - t+dn

and

) =(1-£-Ltp) " 2K tiap+((m+ (0K -L)tp)t +(tn+1-tn)-dn
=l + p
foralln—0,1,2,....

It can easily be seen that condition (c) or (ci) imply that the equation
Zn(t) = 0 has a minimal solution s® and a second minimal solution s® with
s5 < sf.

We also have that

lxn+i - N\ < p,,([lxn - X)) A v, ([xn - x{l) < m,(fixn - xxl) <

A yn(lx, - z4) ~ zn(\xn - x*]))

foraln=0,1,2,....

With the above results it can easily be seen that the hypotheses of The-
orem 2 are satisfied. Therefore we can apply (33) to obtain (48) for all
n—0,1,2,

Note that for p — 1 our results can reduce to the ones obtained in [16].

We now complete this paper with some applications where our results
apply but the ones in [2]-[16] do not.
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I11. Applications
Consider the differential equation
(49) y"+yl+p =0, p€(0,1], 2/(0)= 2/(1) = 0.

We divide the interval [0,1] into n subintervals and we set h = jk Let
{ufc} be the points of subdivision with

0N VO<V\ <mee< y, = 1

A standard approximation for the second derivative is given by

gV ALyl vy =12, - L
: h2
Take 70 = yn = 0 and define the operator F: Rn 1—R" 1by
~(if) = H(y) + h2<p(y),
"2 -1 o' bl ))]
-1 2
H = o ¥>(») = yl*p
_0 -1 2 V-1
and
A
Y2
Lf/n-i
Then
. 22
(50) F'(2/)- A4 + 12(p+1)
Lo ii-1

The Newton-Kantorovich hypotheses on which the work in [2]F6] is based
for the solution of the equation

(51) F(y) =0

may not be satisfied.
We may not be able to evaluate the second Fréchet-derivative since it

would involve the evaluation of quantities y~p and they may not exist.
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Lety€ R" 1, M £ Rn 1x Rn land define the norms of y and M by

n—
_ — N
IMI = Ig'iaS?l(fl MI’ ”M” —18{2%)(_1 *Kzl

For all y, z £ R"-1 for which |j/;] > 0, HT| > 0,i=0,1,2,... ,n —1 we
obtain for p =  say

\\F\y) - F'(2)ll = ||diag{"/i2(i/ji2 - z]/2)} = *h2”max” \y)/2 - z)/1\ <
< Ah2[max \y3- Zj[Ji/2 = Ah2\y - z|[1/2.

That is, K = Ih2 and p = i. Therefore, the results in [2]-f3] cannot be
applied here. Let us assume that A{x) = F'(xo0)“1for all x £ Do.

We can choose n = 10 which gives (9) equations for iteration (2). Since
a solution would vanish at the end points and be positive in the interior a
reasonable choice of initial approximation seems to be 130sin7rx. This gives
us the following vector:

"4.0152427 + 01"
7.63785F + 01
1.05135F + 02
1.23611F + 02
1.29999F + 02
1.23675F + 02
1.052574 + 02
7.65462F + 01

.4.034957+01.

Using the iterative algorithm (2), after seven iterations we get

"3.35740F + 01"
6.52027F + 01
9.156642? + 01
1.0916827? + 02

z7= 1.1536327 + 02
1.091682? + 02
9.1566427 + 01
6.5202727 + 01

.3.3574027 + 01.

We choose z7 as our xg for our Theorem 1. We get the following results:
L=C=m=0, M=K- .383823, 7= 9.15311+10-5, p=~.
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The function g given by (9) becomes

g(t) = .383823%/2 - .99362187* + 9.15311 « HT5.

This function has a minimal zero r* = 9.211864469 « 10-5 > 1y. The rest of
the hypotheses of Theorem 1 are satisfied with h* = 7.15706368 « 10~3 < 1
and r* - 7= 5.8754469 ml0-7. Hence, by Theorem 1, the sequence generated
by (2) is well defined, remains in U(x0,r*) and converges to a unique solution
x* of equation (51) in U(xi,r* —y).
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EPIS IN CATEGORIES OF CONVERGENCE SPACES

D. DIKRANJAN (Udine) and E. GIULI (L’Aquila)*

1. In what follows X will denote a topological category in the sense of
Herrlich [10]. All subcategories of X considered in the paper are full and
isomorphism-closed. We do not distinguish between X and Ob X, a class
(always non empty) of spaces (X-objects) and the corresponding full and
isomorphism-closed subcategory, a space (or a subspace = extremal subob-
ject) and its underlying set (subset), an X-morphism and the corresponding
set-function.

The categorical terminology is that of [11].

A closure operator C of X is an assignment to each subset M of (the
underlying set of) any object X of a subset cxM of X such that:

a) M Q <wAf;

b) cxN Q cxM whenever N Q M\

c) (continuity condition). For each /: X —aY in X and M subset of X ,
f{cXM) QcY{fM).

Furthermore C is called idempotentif cx(cxM) =cxM.

In case cx0 = 0 is always true, this coincides with the notion of closure
operator given in [8].

A subset M Q X is called C-closed (respectively C-dense) in X ifcxM =
=M (respectively cxM = X). A X-morphism f : X —»Y is called C-dense if
f(X) is C-dense in Y.

Notice that many classical operators in Top are closure operators in the
previous sense, e.g., 0-closure, sequential closure, compact closure, r-closure
(defined as the intersection of all zero-sets containing the given subset). How-
ever the semiregularization operator does not satisfy the continuity condition

(cf. [3]).

The conglomerate of all closure operators of X is endowed with the ‘point-
wise’ preorder defined by C i C iffcxM Q for each X B X and
MQX.

For each ordinal a we define the a-th iteration of C as the closure oper-
ator Ca given recursively by C1=C, Catl —CCa and Ca=sup{C": R <a)
for limit a and for a = oo (with B < oo for all small B). For each X G X
there exists a such that (cx)aM = (c™)"Q+1*M for each M Q X, so C°° is

*Supported in part by Bulgarian Science Committee Grant No. 44 for the first author
and by a grant of Italian Ministry of Public Eduction for the second author.



196 D. DIKRANJAN and E. GIULI

idempotent and it is the least idempotent closure operator coarser than C
(the idempotent hull of C, cf. [6, Section 4]).

For a given closure operator C of X set

Xoc = {X € X: x£cx ({y}) andy € cx ({r}) =x = y}.

Xic = {X € X: {x} = cx({x}), for each x € X}.

Xrc = (X € X: cXxx(Ax) = O*}.

Let us note that the first two categories are defined by conditions on the
points of the space, while the third one is defined by a global property of
the space. Since in this paper we are going to deal mainly with the first
two categories, for i = 0,1 we say that two points x and y of a space X are
(r, C)-separated\i they satisfy the condition given in the respective definition.

For X = Top and C the ordinary closure we obtain the class of Tq
spaces, Ti-spaces and Tr-spaces respectively. It is also easy to show that
X,C)i=0,1,2, are quotient-reflective subcategories of X.

Since C < C2 , then trivially Xoc 2 Xoc2 2 ..., and by definition
Xoca 2 X1C for each ordinal a so we obtain a chain

Xoc 2 X0C2 2 ... 2 XoC« 2 ...2 Xic.

Every class of X-objects S defines an idempotent closure operator in the
following way: F Q X is called S-closed in X iff for each x € (X \ F) there
exist 5 € Sand f,g: X —S such that the restrictions f\F and g\F coincide
and f(x) d g(x). A pair (f,g) as above is said to be a S-separating pair for
(x,F) in X. The S-closure of M A X is defined as the intersection of all
S-closed subsets of X containing M and it is denoted by [M]s-

The closure operator defined above characterizes the epimorphisms of
the full subcategory S of X as the [ ]s-dense maps (cf. [8, Theorem 2.8]).

For X € X and M C X, X U m* will denote the quotient of the co-
product X LI X = X x {0,1} obtained by identifying each (m,0), m € M,
with (m, 1). Let g: X L X —»X X be the quotient map. The maps

Faxo*Fllwm*- XMMX -*x WmX “d* X1IMX ~ X
are respectively defined by fc,(z) = q(x,i), 6(q(z,0)) = q(z,1), s(q(x,l)) =
= <(,0) and p(q(x,i)) = x, forx £ X and i = 0,1.

Lemma 1.1 ([8, Proposition 2.6]). Let S be a quotient-reflective subcate-

gory ofX containing a space with at least two points and let X £ S. A subset
M C X is S-closed iff X X belongs to S.

Let C be a closure operator of X. For X GX and M QX set
clcM = {x € X: q(x,0) € u”*x{?(x,1)}}.

It is easy to show that clc is an extensive, monotone and continuous operator,
i.e. clc is a closure operator of X.

Let Eq(/, g) denote the equalizer of / and g and, for each reflective
subcategory A of X let R: X — A denote the A-reflection functor and
r: X =R X the A-reflection of X £ X.
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Lemma 1.2. If A is a reflective subcategory ofX then, for each X G X
and M QX the following holds

[M]a = Eq(rkO,rki)
where r: X]}M X -* A (XL MX).

Proof. Since M Q Eq(fco,fci) A Eq(rfco, rfci) and 4 (XLUMX) G A,
then [M]a Q Eq(rA;0,rk\). On the other hand, if x*[M]a and /, g: X —A,
A G A is an A-separating pair for (x,M), then (/Ujvf 0) o
@ (/U Mff)(9(a;, 1)) so, using the universal property of reflections which
says that (/LU ar <) admits a factorization (/LLa/<7) = hr, we obtain that
r(g(x,0)) ¢ r(g(x,l)). Since r(q(x,i)) = (rfc,)(x), i = 0,1, then we deduce
that x * Eq(r&o, r&i).

Theorem 1.3. Let C be a closure operator of X, i = 0,1, X g X and
M QX. Then

(a) (cle)~M Q [MIXIC;

(b) (clc)°°M = [M]x,c ifXeXic.

Proof, (a) Since X,c-closure is idempotent it is enough to show that
clcM C [M]xIC- If x 6 clcM then q(x,0) Gex]J so>applying

the symmetry s and the property of continuity, also q(x, 1) Gex jj xM M )} -

If/ : X MMmA - Y withF € XiC,*= 0,1, then f(q(x, 0)) € cy(/({g(x, 1)}))
and f(q(x,1) G cy(/({9(x,0)})) by continuity. Now Y G X.c gives
f(q(x, 0)) = f(q(x, 1)). In particular, for the X~-reflection r: 1 L4 M1 —
o A(XUMX), (rk0)x = r(g(x,0)) = r(g(x,l)) = (rfci)(x), so x G
G Eq(r™o, rAx). Consequently, by Lemma 1.2, x G [Af]x,c-

(b) Since X,c-closure is idempotent, it is enough to show that clc-closed
sets are X,c-closed in X GX.c- Let M QX , X G X,c, and assume M =
clcM. In virtue of Lemma 1.1, to prove that M = [M]xIC it suffices to
show that X IIM * G X-C. Let xi = q(x,£), z2 = q{y,j) be two distinct
points in X IJMX. If x / y, then applying the projection p: X X X
we get p(zi) A p(-rr). Then by X G X;c it follows that x = p("i) and
Y = p(z2) can be (i, C)-separated (I = 0,1). So, by continuity, zi and zi
are (z,C)-separated too. If x = y, theni =0, = 1 say, and x £ M.
By M —clcM, x ~ clcM, so z\ = a(x,0) » exUd M<qz, 1)} an<t 22 =
g(x,h) ~ cx'l:ll'M x{<7(z,0)} (Ly the definition of clcM). Thus XJIMX G
GX.c, i =0,L

Corottary 1.4. Let C be a closure operator of X. Then for i = 0,1,
the epimorphisms in the category Xic are the (clc)°°-dense maps.

2. We recall that afilter convergence structure on a set X simply consists
of a function /x : X —VF(X) where F(X) is the family of filters on X. A
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filter ® fx-converges to z GX, and we write ® —» z, ifft ®G/n/a). Let us
consider the following conditions on fx-

a) For each z G X, the filter generated by {z} converges to x;

b) if ®—x and ® Q ® then © —iuz;

cj ®Mod —»x whenever ®—x and & -* z;

d) @ —z iff every ultrafilter containing ® converges to z;

e) the intersection of all filters converging to z is a filter converging to z
(called the neighbourhood filter of z).

Fil, Lim, PsT, PrT will denote the category of all filter convergence
spaces satisfying a) and b), resp. a), b) and c), resp. a), b) and d), resp. a),
b) and e). The morphisms in Fil are the maps /: (X,fx) -* (Y,fy) such
that ® —mz in X implies /(®) —»/(z) in Y, where /(®) is the filter in Y
generated by the family {/(F): F G ®}. Lim, PsT, PrT are considered as
full subcategories of Fil.

The following inclusions hold: Fil 3 Lim @ PsT 2 PrT 2 Top (= the
category of topological spaces), and every category in this chain is bireflective
in the previous one.

Every fx defines an operator k(x,fx) = "X ®PX —V X in X by setting,
for each M Q X,

kxM = {z GX : thereis ®—»z and M J1F / 0, for each F G ®}.

It is easy to see that this is a closure operator of X. It will be denoted by K.
More on filter convergence spaces can be found e.g. in [9], [14] and [1].
Recall that a (Frechet-Kuratowski) sequential structure on a set X con-

sists, for each z G X , of a family of sequences in X (called the sequences

converging to z) such that

a) the constant sequence (z, z,...) converges to z;

b) if a sequence converges to z then every subsequence converges to z;

c) if every subsequence of a given sequence (z,,) has a subsequence con-
verging to z, then (zn) converges to z.

FK will denote the category of sequential spaces. The morphisms in FK
are the maps / such that if (zn) converges to z in the domain of / then
the sequence (/(zn)) converges to /(z) in the codomain of f. The closure
operator K in KF is defined, for each X GFK and M QX, by

kxM = {z € X : there is a sequence in M converging to z}.

A good reference for these spaces is [4].

P roposition 2.1. Let X be one of the categories Fil, Lim, PsT, PrT,
FK and let K be the closure operator of X defined above. Then, for X G
GX, AfQX, x £ X\ M and A Q X, the following holds: q(z,0) G

x NAx11}) $ xe kx (MDA).

Proof. If X = Fil, Lim, PsT, PrT, then forz GX \ M and ® a
filter on X \\M X converging to q(x, 0), one has q(X x {0}) G ®. In fact in

Acta Mathematica Hungarica 61, 1993



EPIS IN CATEGORIES OF CONVERGENCE SPACES 199

such a case there exists a filter @ in X J\ X converging to (z,0) such that
g(®) C @. Since, by definition o f1]jX , X x {0} £ ® thus q(X x {0}) € &.
So we can also assume that F Q q(X x {0}) foreach F £ & By q(x,0) £
€ kx Iy~ (g(A x {13})) it follows that q(X x {0}) Nq(A x {1}) ¢ 0 which is

equivalent to MM A ¢ 0. Since q{x,0) £ kx T ANo(Ax{1})) or equivalently
a(x, 0) £ kx T x (i(Xx{0})n9(AX{I})) = &XTj x (a((M MA) x {0}),

then x £ kx{M T1A).

For X = FK, if q(x,,,in) converges to q(x, 0) then both (x,,) converges
to x and (r,) converges to 0, which shows the “only if” part. The “if” part
of the Proposition is obvious.

Corottary 2.2. For X as above, X £ X and M Q X, qg(x,0) £
e iffx £ M.

Corollary 2.3. For X as above, and i —0,1, the XiK-closure is dis-
crete in Xik-spaces.

Corollary 2.4. For X as above the epimorphisms in Xik, r= 0,1, are
onto. In particular Xok and Xik are co-wellpowered categories.

Notice that for X = Top Proposition 2.1 is not true. In contrast with
PrTO the epimorphisms in Top0 need not be onto (cf. the proof of Corol-
lary 3.3), so the inclusion Top0 » PrTo does not preserve epimorphisms.
Another notable difference between Top0 and PrTo is that Topo is simply
cogenerated while PrTO is not (as conjectured by the authors in 1987 and
recently shown in [13]).

3. In what follows we will show that, for each ordinal a > 2, PrToA-o-
epimorphisms need not be onto.

Lemma 3.1. Let X be a pretopological space and let M Q X. Then a
point x £ X belongs to cI*r(M) iff x belongs to kx(M TTkx({x})).

Proof. We may suppose x £ X \ M. In x Um X’ «(rm) £
€ fcwy x{<7(x’0}> r = 0,1, iff every neighbourhood of qg(y,i) contains

g(x,i) and this is true iff every neighbourhood of (y,i) contains (x,i) in
X x {r}. This proves that £xyy aW "~ 1)} = kdpkx{x}). Since kpX) is a

neighbourhood of q(x, i) for i = 0,1, then clearly q(x, 0) £ k2 -II/IT {«Ax, 1)}
nWmn

iff g(xi0) € kx yy x (kO(X)nk1(kx {x})) = fcryy x (kO(M M(kx {x}))) and

this is equivalent to x £ kx(M M&a{z}) according to Proposition 2.1.

Theorem 3.2. The inclusion Topo £ Pr Tok a preserves epimorphisms
for each ordinal a > 2.

Proof. First observe that the TopO-closure (which coincides with b
closure (cf. [15], [5]) is precisely the -closure, in virtue of Lemma 3.1.
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So the inclusion Topo t-> PrTanz preserves epimorphisms. Consequently,
for each ordinal a > 2, the inclusion Top0 t= PrToa« preserves epimor-
phisms. In fact, if / is a Topo-epimorphism, then it is also a PrTOg2
epimorphism, being at the same time a PrTojya-morphism, thus / is also
a PrT OA"-epimorphism.

Corollary 3.3. For each ordinal a > 2 there exist PrTon*-eprroor-
phisms which are not onto.

P roof. There exist Topo-epimorphisms which are not onto. Take any
infinite set X and a point xq of X. The topology in X contains as closed
sets X and all finite subsets not containing x0. Then X is a To-space and
the inclusion map (X \ {xo0}) X is a TopO-epimorphism.

4. Let us denote by 0: PrT —PrT the 0-closure functor (O is concrete,
and BxM = {x GX : M MkxU o 0 for each neighbourhood U of x}). It
is not difficult to see that a pretopological space X belongs to PrTo®© iff
every convergent filter admits a unique limit point, i.e. it is a Hausdorff
pretopological space. So PrTo© = PrT Zar.

Lemma 4.1. For each pretopological space X and M Q X, cloM =
= kxM.

Proof. Let x € X\M . Notice that q(x,0) € Ox T Nofer

each Wo and W\ neighbourhoods of g(x,0) and <?(x,l) respectively, Wq Tl
MW\ ¢ 0. Since the intersection of two neighbourhoods is again a neigh-
bourhood we can assume without loss of generality that W{ —q(U x {*}),
where U is a neighbourhood of x in X. Clearly Wo MW\ ¢ O iff UM 8.
This proves that g(x, 0) € Bx HNX{g(x,I)} iff x € kxM (note that this is

evident for x £ M).

Theorem 4.2. The PrT2k -epimorphisms are precisely the K°°-dense
maps.

Proof. We have observed that PrT0© = PrT2a so, by Corollary 14
the PrT2A--epimorphisms are the (cl©)°°-dense maps. Now the statement
follows from Lemma 4.1.

Let us denote by Ury the category of all topological spaces in which
different points can be separated by disjoint closed neighbourhoods. It is
well known (cf. [17]) that the epimorphisms in Ury are the 0°°-dense maps.
Consequently the functor 0 : Ury —»PrT 2 preserves epimorphisms. On the
other hand it is shown in [16] that the category Ury is not co-well-powered, so
PrT2A also is not co-well-powered. The non-co-well-poweredness of PrT 2A'
was first shown by Kneis [12] who produced an example. The fact that
the non co-well-poweredness of PrT2A can be deduced by the non co-well-
poweredness of the category Ury was observed in [7]. In contrast with the
previous result the category Top2 of all topological Hausdorff spaces is a
co-well-powered category.
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A notable difference between topological spaces and pseudotopological
spaces is that the compact Hausdorff topological spaces form an epireflec-
tive subcategory of Top2, while the class of all compact pseudotopological
Hausdorff spaces is not reflective in PsT2A> as it is shown in [2].

Acknowledgement. We are thankful to the referee for his valuable and
very helpful remarks.
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SUM FORM EQUATIONS
OF MULTIPLICATIVE TYPE

PL. KANNAPPAN (Waterloo) and P. K. SAHOO (Louisville)

1. Introduction

Let '° = (1P = (pi,p2,... ,Pn)|0 < Pk < 1, fE:i Pk = I}J be the set of

all n-ary complete discrete probability distributions. Let R be the set of
reals and 10 be the unit open interval ]0,1[. Let D° = {(X,y)\x,y,x +y £
£ 10}- A real valued function A: 10 —#R is said to be additive if, and only if,
AX+y) = A(X)+A(y). An additive map A: 10 —=R has a unique extension
AR == R. Amap L: 10 =R is called logarithmic provided L(xy) =
= L(x)-f L(y) holds in 10. A function M : 10 —R is called multiplicative if
M(xy) = M(x)M(y). A multiplicative function M : la —»R can be uniquely
extended to M : R+ —*R, where R+ = {if R|x > 0}.
In 1948, Shannon [9] introduced the following measure of information

Hn(P) =- J*p. logPi,
t'=i

which is now known as Shannon’s entropy. This has been generalized to
entropy of type (a,/?) [9]

(1.1) HAMP) = (21-- 21-0)-1£(p? - P?),

where P £ T° and a, are real nonzero parameters. While characterizing
the entropy of type (<*,/?) we come across the following functional equation

5Z . Mewe)y= . . J2/(«»)+S . £ Jlpo.
i=i j=i =i j=1 =1 =i

where P £ Tj, Q £13,a,8 £ R\ {0}. The above functional equation can
be solved (see [4]) with the aid of the following functional equation:

(1-2) /(pg) +/((i-p)g) = Ap{M (p)+M (1-p)} + M (a){/(p)+/(1-p)},
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where p,q £ 10 and M : 1Q— R is a multiplicative function.
The objective of this paper is to find all solutions / of the sum form
equation of multiplicative type, that is, of the functional equation

(1.3) f(pa) +f((1-p)q) = f(a){m(p) +m(I-p)} +M(q){f(p) +f(l-p)},

where p,g £ 10 and m, M : 10 —R are multiplicative functions. Notice
that (1.3) generalizes (1.2). Also, we will see later that if m: 10 =R is
additive in addition to being multiplicative, then the sum form equation of
multiplicative type is connected to the fundamental equation of information.
An account of the history of results related to the fundamental equation
together with an extensive list of references, can be found in [g].

2. Auxiliary results

In this section we prepare a series of auxiliary results following methods
from [e] to prove our main theorem. Let /, M :/,, —%R satisfy

(2.1a) f(pa) +/((1 - p)a) = f(a)[M(p) + M(1- p)\
and
(2.1b) M(pg) = M(p)M(q).

Suppose / and M are nonconstant solutions of (2.1). We define the set
if=(xe/01f(tx) - M(x)f(t) forall t£ I0}.

Lemma 1. Suppose M,f: 10 —»R are solutions of (2.1); and f and M
are not identically constant. Then fl has the following properties:

@ %E n » i

(b) ifx £ 10, then 1-x £ I1,

(c) ifx £n nlo,i[, then 2x £ fl,

(d) ifx.,y £ M, then xy £ M,

(e) ifx.,y £Mand1£ 10, then 1 £ fl,

(0 ifx.y £ fiandy > x, theny - x £ fl,

(@) ifxy £ fl andx + y £ 10, then x +y

Proof. ™ £ fl follows from (2.1a) with p = Part (b) is an obvious
consequence of (2.1a). Since | £ 12 for x £ 11M]0,s[and t £ 10,

M ()F(t: ' 2K) = f(tx) = FA)Mix) = f(1)M(2x m = F{t)M(2x)M("].

Hence f(t +2x) = f{t)M{2x). Thus ifx € [i Mj0,| ,then 2x £ I1 Next we
prove (d). Let x,y £ II. Then

f(txy) - F(EX)M@y) = F(OM{X)IM(y) = f()M(xy), for t£ 10.
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Hence xy £ Ii. To prove (e), let x,y £ Mand - £ 10. Consider

F(M(x) =f(tx) = =/(x )My

Hence

M)Wy =1(<]).

Thus

Hence I £ Q Next we prove (f). Since y —x = /(1 —f)) if / > x, it is easy
to see that y —x £ 2 by (b), (e) and (d). Consider x,y £ ft and x+ 1 £ 10.
Then

y-\(y-x) ify=>x,
a+ 4= X .
X —|(x —y) ifx>y.
Thus x + y £ {l. This completes the proof of Lemma 1.

Lemma 2. If f and M are nonconstant solutions of (2.1) and if there
exist u,v £ ft, v < v such that Ju,u[c II, then f is a solution of f(pq) =
= M(p)f(qg), that is, f(p) = cM(p), where c is an arbitrary constant.

Proof. Let u,v £i2withw <v such that Jit, L{C fi. It is enough to
show that ]0,1[C II. Since u,v £ Cl, » £ Il by Lemma 1(e). First we show

that ]jj, 1[C Il. Let x £ ]jj, 1[ Then < x < 1. Thus u < xv < v. Since
Ju,u[C I, xv £ I1. We know that r; £ IL Hence by Lemma 1, ~ £ il. That
is x £ II. This implies 12,I1[ C Ii. Again by Lemma 1(d), it can be shown
by induction that (~)& £ i1 for all natural numbers k. Hence (*)t,1 CIl.
This shows that ]0,1[C ft. This completes the proof.

Lemma 3mIff and M are not identically constants and satisfy (2.1a,b)
and Il does not contain an interval, then f is additive and M(x) = x.

Proof. Define 0 %—%R by setting
(2.3) B(L,x):= f(tx)~ M(x)f(t).
Then
(2.4) d(rx)-\-0f1, 1-x) = f(tx) +f(t(l -x))-f(t)[M(x) +M(l -x)] = 0
for all t and x in 10. In particular,

(2.5) d>(t,i)=0
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for all t £ 10. Consider (2.1) and let p = i(x + ¥) and g = (x+yy Then (2.1)
becomes

(2.6) f(tx) + f(ty) = f(tx + ty) \m

Now using (2.6) we compute

(2.7)  M(x+y)Ne(t, x)\p{1, y)] = M(x-\y) [f(tx)-M(x)f(t}ST(ty)-M(y)f(t)] =
= M(x + y)[f(tx) + f(ty)] - M(x + y)[M(x) + M(y)\f(t) =

= MO T\ M A=) + M (—2=) =M (x + V) [MO)+M(Y)]F(E) =
= f(tx + ty)[M(x) + M(y)\ - M(x + y)[M(x) + M(y)]f(t) =

= [M(x) + M(W][f(tx + ty) - M(x + y)f(D)] = [M(x) + MY)\<F>(tx + ).

Lett £10, (x,y) £ D° and write 1 —x —y instead of y in (2.7). Then

(2.8) M{1-y)[p(r,x) +d(r,1-x-y)] =d(r,1-y)[M(x) +M(1-x-y)].

Since (i, x) = —g(h 1 —x), from (2.8) we get

(2.9)  M(1- y)ty(t,x) - d(r,x + I = -d(r,y)[M(x) + M(1 - x - y)}.

We eliminate dp(1,x +y) from (2.9) by (2.7). Then

(2.10) M(1- y)[M(x +y) - M(x) - M(Y)\t(r.x) -

= i, y)[(M(x) + M(1- x- y))(M(x) + M(y)) - M(1- y)M{x +y]]

holds for all t £ 10and (x,y) £ D°.

Let y £ Sl and x £ 10\ Sl such that (x,y) £ D°. Then by definition of
St there exists ta £ 10 such that 0(io,x) ¢ 0 and d(d0,y) = 0. Hence from
(2.10) with t = t0, we obtain

(2.11) M(1- y)[M{x + ) - Af(x) - M(y)\ = 0.

Since M : 10 —R is a multiplicative function and not identically constant,
(2.11) reduces to

(2.12) M(x +y) = M(x) + M(y)
for all x £ 10\SI, y £ & and (x,y) £ D°.

Let x,y £ St and x+ y £ 10. Then there exists x0 €]0,1 —x —y[ such
that x+ x0 £ 10\ & since in the opposite case St would contain the interval
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[x, 1- y\. By Lemma 1(g) we see that x0 E la\ 2 and x + y E ft. Hence
X +x0+y € 10\Cl. Thus by (2.12) we get

M(x +y) = M(x +y+x0)- Af(x,) = Af(x) + Af(y),
for all x,y E [1. We have shown so far that M{x + y) = M(x) -f M(y) for
all (x,y) ED° and y E Q. In particular M (x +|) = M(x) + Af (|) holds
for all x G]0,i [ Letting y —\ in (2.9) for all x € ]0, \ [, we get
(2.13) <f>(t,x)-<t)(t, * + x) — M(x) + MM - x—
Since (t, 1) = 0, (2.13) reduces to IEX) = (i, | + x), that is by (2.3),
(2.14) [(tx + 1) = m (x+0)/(i) + f(tx) - M(x)f(t)
forallt € 10and xe]0,j]. Again, since / (*) = M (]) /(f), (2.14) becomes

(2.15) f(tx + 1) = f(tX) +f(O) [m (x+ - M(X)j =

=f(tx) + M QMWW=IHH(T)

Hence we have shown that /(x + j/) = /(x) + /(j/) for all x, y E]O,|]. Next
let (x,?/) E D° then f,| € ]0,|]] and

216 M(D/(x+y)=/(f+ D =/(])+/(]) =m@Q)[/(X+/(,)].

Thus

(2.17) f(x +y) =1f(x) +1f(y)
for all x,y,x +y e /0. This in (2.1a) yields
(2.18) M(p) + M(l -p) =1

for all p E]0,1[. Thus from Rathie and Kannappan [7, p. 157], M is monotone
increasing. Then from [1, p. 33, p. 41], we conclude that M(x) = x for all
X E 10- This completes the proof of the Lemma.

By Lemma 1, 2 and 3, we have the following theorem.

Theorem 4. Let f,M: 10 — R satisfy (2.1a) and (2.1b). Suppose f
and M are not identically constant. Then either f is additive and M (x) = X
(i.e. M is additive also) or /(x) = cM(x), where c is an arbitrary constant.

Theorem 5. Letf, M:I0—=*R Satisfy
(2.19a) f(pa) +f((1-p)q) = f(a)[M(p) + M(I-p)] +M(a)[f(p) +f(1-p)]
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and

(2.19Db) M(pa) - M(p)M(a).

Suppose f and M are not identically constant. Further we suppose that M
is not additive. Then

(2.20) f(p) = M(p)L(p)
where L: 10 —mR is a logarithmic function.
Proof. Lettingp— g = n+n such that u,v,u+v G 10into (2.19a),
we get
(2.21)
et M) o = [(EIEM s +)

For t G/0, we get from (2.21)

(2.22) I« +1(.O)-m (A )+ IF(A)]/(«t +ri) =

=KCdb)+ (d h;)]+0ME

From (2.21) and (2.22) we get
(2.23) n«()+i(vi) - +«0=

= M) (/(«) + 1(«)]- + )« («)e
We temporarily fix t G70 and define
(2.24) F(u) :=f(ut) - M{t)f(u) - M{u)f(t).
Using (2.24) in (2.23), we obtain

M(u) + M(v)

(2.25) F) + FOO) =700 )

F(u + v).

Suppose F(u) = constant for all n G10- Then by (2.24), we have
(2.26) [(uf) = M(t)f(u)+ M{u)f(t) +k,

where K is a constant. Since M is not identically constant, we get from (2.26)
a Pexider type functional equation

1bl) - k= f(u) , /(0
(2.27) Af(try)y  Af(u)  M(i)’
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Thus,

(2.28) 1(x) = M{X)L{x) + 2bM{x) + K
and also

(2.29) /(x) = M(x)L(x) +bM(x),

where b is an arbitrary constant. Hence Kk = 0 = b and / has the form as
asserted in (2.20).

Next suppose that F(u) is not identically constant. The functional equa-
tion (2.25) can be transformed to

(2.30) F(pa) + F((I - p)a) = F(a)[M(p) + M(1- p)],

with p = and g = u+v. Then from Theorem 4, since M is not additive,
we have

(2.31) F(p) = cM(p),

where ¢ is an arbitrary real constant. From (2.31) and (2.24), we obtain
(2.32) f(ut) = M(t)f(u) - M(u)f(t) = c(t)M(u),

where c: 10 —R is an arbitrary function. Notice that the left side of (2.32)
is symmetric in u and t. Thus by symmetry of the left side of (2.32), we get

c(t)M(u) = c(u)M(t).
Hence c(t) = cOM (i), where cOis an arbitrary constant. Now (2.32) becomes
(2.33) f{ut) = M(t)f(u) + M(u)f(t) + cOM (ut).

The above equation can be reduced to a Pexider type functional equation as
above and from that

(2.34) [(x) = L(X)M(x) + cOM(x) + 26,
and also
(2.35) f(x) = L(x)M(x) +b

for all x 6 10mHence from (2.34) and (2.35) we get cO = 0 = b. Thus again /
has the form as claimed in (2.20). This completes the proof of Theorem 5.
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3. Solution of the sum form equation of multiplicative type

Now we proceed to find the gen-

: . aM)- "0)
eral solution of the functional equa-
tion (1.3). Let /: 10 =R be a non-
constant real valued function and
m, M :10—#R be multiplicative func- np+
tions satisfying the functional equa-
tion (1.3) for all p,q E10. While find- ACD

ing the general solutions of (1.3), we
consider the following cases as illus-
trated in the tree diagram. "40+6M(p)

For (x,y) E D°, let

‘h(p) + ¢

X
A S d g—x +y.
) P X1y ana q—x +y

Letting (3.1) into (1.3), we get
(3.2)
)T )= [(MHA) YR (B0 (A M)}
Case 1L Suppose m =0 on 10. Then (3.2) reduces to
(3.3) f(x) +bl =Mix + ,){ /(") +f("n) }
Replacing x by xt and y by yt, for t E 10, we get from (3.3)
(3.4) f(xt) +f(yt) = M(OM(x +y){f("-") +/("r")}-

Hence (3.3) and (3.4) imply

(3.5) f{xt) - M(D)F(x) = ~{f(yt) - M(t)f(y)}
for all (x,y) E D° and t E 10 Hence
(3.6) K(t) = f(xt) - M(t)f(x),
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where K : 10 —=#R. But by (3.5), K(t) = 0 on 10 and

(3.7) f(xt) = M(t)f(x)
for all x, t € 10- Interchanging x and t in (3.7) and using (3.7), we get
(3.8) f(p) = dM(p),

where d is an arbitrary constant since / is nonconstant.

Case 2. Suppose m 20O on 10. Now we split this case into two subcases
based on whether, on 10, m is additive or not.

Subcase 2.1. Suppose m is not additive on 10. As before, for t 6 10, we
replace x by xt and y by yt in (3.2) to obtain

(3.9)  f(xt) + f(yt) = f(xt + /D) |mr— j | +
+tM X+ i [M (D){/(") +/1 (™))

Then from (3.2) and (3.9), we get

(3.10) IM W) + =

= M(t)f(x) + M(t)f(y) - mr(nx{)x++n§/gy)/(x + y)M().
For fixed t £ la, we define F: 10 —=R by
(3.11) F(x) = f(xt)-M(t)f(x) —m(x)f(t).
Then from (3.10), using (3.11) we get
(3.12) mlax)jy) F(y)=

where (x,y) ED°. First we suppose that F is a constant on say k. Then
(3.11) yields

(3.13) f(xt) = M(t)f(x) + m(x)f(t) +k
(3.14) also = M(x)f{t) + m(t)f(x) + k.
Hence

(3.15) FO{M(t) —m(D)} = F(H){M(x) - m(x)}.
Thus if m ¢ M on 10, then (3.15) implies

(3.16) f(p) = a{M(p) - m{p)}
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where a is a constant.
If m = M, then from (3.13), we get

(3.17) I(x<) = m(t)f(x) + m(x)/(<) + k.
Since m = M and m ¢ 0, we get from (3.17)

Y I(xf) - Kk fix)  fit)
318 M(xt) = M(x) + M(t)

for all x,t G 10mEquation (3.18) is a Pexider type functional equation and

(3.19) f(p) = M(p){L(p) + c1x = M(p){L(p) + 2ca} + K,
where L : 10 =R is a logarithmic function. Hence k = ci = 0, and we have
(3.20) f(p) = M(p)L(p).

Suppose F is not identically constant on 10. Equation (3.12) was treated
in Theorem 4 and its solution can be obtained from Theorem 4 as

(3.21) F{p) = cm(p)
where c is a constant. Hence (3.11) and (3.21) yield
(3.22) /(xt) = M(t)f(x) + m(x)f(t) + c(t)m(x),

where c: 10 —#R. Interchanging x with t, we get from (3.22)

M) f(x) + mO)f(t) + c(t)m(x) —Mx)f(t) + m()f(x) + c(x)m(t),
which is
(3.23) {M (i) —m (<)} (X) = {M(x) —m(x)}(t) + c(xX)m(t) —c(t)m(x).

Now we suppose that m /M o n 10. Then using (3.22) we compute f(xtu)
in two different ways, first as f(xt mu) and then as f{x mtu) to obtain

(3.24) f(xt eu) —M(U)M()f(x) + M(u)m(x)f(t)+
-f-M(u)m(x)c(t) + m(x)m(t)/(u) + c(u)m(x)m(<)

(3.25) f(x mu) = M(t)M(u)f(x) + m(x)M(u)f(t)+
+m(x)m(t)f(u) + c(u)ym(i)m(x) + c(tu)m(x).

From (3.24) and (3.25) we get

(3.26) M(u)c(t)m(x) = c(tu)ym(x).
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Asm / 0onl0, (3.26) yields

(3.27) c(ttt) = c{t)M(u)

for all u,t £10. From (3.27), we get

(3.28) c(x) = cOM(x), x e 10,

where c0is a constant. Letting (3.28) into (3.23) and then fixing t in the
resulting expression, we get

(3.29) f(x) —a0{M(x) —m(x)} 4 bIM (x) 4 ex71(1)

where a0, 61, e are real constants. Putting (3.29) into (1.3), we obtain
(3.30) @61+ b2){m(p) + m(1- p)}M(q) = 0.

If M ¢ O, then (3.30) implies that e1 = -b2 and hence from (3.29) we get

(3.31) f(p) = a{M(p) - m(p)},
where a(= a0+ bi) is an arbitrary constant. If M = 0 on 10, then (1.3) yields
(3.32) f(pa) 4 /((1 - p)a) = f(a){m(p) + m(1- p)}.

The functional equation (3.32) was investigated in Theorem 4. Hence from
Theorem 4, we get the general solution of (3.32) as

(3.33) f(p) = —am(p).
Thus, since M —0, the solution / of (1.3) in this case is again of the form
of (3.31).
Now we treat the subcase when m —M on 10. Then from (3.23), we get
c(x)m(t) = c(t)m(x).
Thus from the above equation we get
(3.34) c(x) = cOm(x),
where c,, is a constant. Letting (3.34) into (3.22), we obtain
(3.35) f(xt) = M(t)f(x) + M(x)f(t) 4 cOM(t)M(x).
Rearranging (3.35), we obtain

(3 361 /(g0 - CpMjxt) _ f(x)  f{t)
M(xt) M(x)  M(t)"
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The Pexider equation (3.36) yields
(3.37) 1(*) = M(x){L(x) + c2}

and also
f(x) = M(X){L(x) + 2c2} + cOM(X),

where L: 10 —R is a logarithmic function. Thus ¢2 = —0. Hence (3.37)
reduces to

(3.38) f(x) = M(x)L(x)-cOM(x).

Letting (3.38) into (1.3), we get cO{m(pq) + m((1—p)q)} = 0. Hence letting
p = g—"in the above equation we get cO= 0. Thus

(3.39) f(p) = M(p)L(p), pe lo

where L: 10 —»R is logarithmic on 10.

Subcase 2.2. Next, we consider the subcase when m is additive. (Notice
that m is not identically 0). Then (1.3) becomes

(3.40) f(pa) + /((1 - p)a) - f(a) = M(a){f(p) +/(1 - p)}.
We first define
(3.41) G(x) =/(x)+/(1-x), xel0

and for (x,y) GD°, we compute using (3.40)
(3.42) c(.)t« (i-.)e (i) =

= +/(1- )+ ML - *){/(r A7) +/("iZ~y)}=
=T0) +F(1-x) +1(y)-\-T(1-x-y)-T(1-x) =F(x) +T(y)-F(I-x-y).

On the right side, the expression (3.42) is symmetric in x and y. Thus, we
have

(3.43) G(X) + M{1- x)g (t4 ) = G(y) + M(1- ING(r "),

for all (x,y) G D°. The functional equation (3.43) is known as the funda-
mental equation of information of multiplicative type. The solutions of (3.43)
can be obtained from [2] or [3] as:

(A) If M is additive with M ~ 0 on 10, then

G(x) = M(x)L(x) -fM(1- x)L(1—x) + b\M(x)
where L: 10 —R is logarithmic and fq is a constant.
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(B) If M is additive with M = 0 on 10, then G(x) = &2 where e2is a
constant.

(C) If M is not additive with M d 2 on la, then G{x) = b3M(x)+
+b4M (1 —x) —b4 where e3 and b4 are constants.

(D) If M is not additive with M — 1 on 10, then G(x) = L(Il —x) + ¢
where c is a constant.

Now using definition of G in (3.41) and the form of G in (A), (B), (C)
and (D), we determine the solution / of (3.40).

Subcase 2.2.A. Suppose M is additive with M ~ 0 on la. Then from (A)
and (3.41), we get

(3.44) I(x) + /(1 - x) = xL(x) -f (1 —x)L(1- x)+ b\x.

Interchanging x with 1—x in (3.44), we obtain b\ —O0. Letting (3.44) into
(3.40) with bi = 0, we obtain

f{pa) +/((1- p)a) - /9) =afpLip) + (- p)L(i - P}
Defining
(3.45) A{x) = /(*) —xL(x)
for all x G 70, we obtain from the above
(3.46) A{pa) + A((l -p)a) = A(a)
for all p, g GIOmThat is A is an additive function. Thus, by (3.45), we get
(3.47) f(p) = A(p) + pL(p), p GIO-

Now (3.47) is a solution of (3.40) provided A(l) = 0.

Subcase 2.2.B. Suppose M is additive with M —0 on 10. Then (3.40)
reduces to

(3.48) f(pa) +/((1 - p)a) = f(q)
that is / is additive on 10 and
(3.49) f(p) = A\{p)

where A\: R =R is an additive function.

Subcase 2.2.C. Suppose M is not additive with M ¢ 1 on 10. Then from
(C) and (2.40), we get

(3.50)
[(*)+8Y)-L(x+) SWx+y){edm (A -7 +baM (A1) - 64} =

= M (x) + bAM(y) - bAM (X + V).
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Symmetry of the left side of (3.50) implies 63 = 64 = b (say). Hence we get
N> +1(y) - f(x +y) = b{M(x) + M(y) - M(x +y)}
for all (x,y) € D°. Thus if

(3.51) A(X) ;= /(x) - bM(x)
then the above functional equation reduces to A(x) + A(y) = A(x+Y). Hence
(3.52) f(p) = A(p).+bM(p)

where A is additive, b is an arbitrary constant and A(l) = —b.

Subcase 2.2.D. Next we consider the subcase when M is not additive with
M = 1on 10. Then from (3.40) and (D) with (3.1), we get

I(%) +1(y) - f(x+y) = L(z=Fp) +C

The symmetry of the left side of the above equation implies that

(3.53) L{x) = L{y)
for all (x,y) € D°. But L: 10 —R is logarithmic, hence in view of (3.53) L
must be identically 0. Thus we get /(x) + f(y) —/(x + y) = ¢ which in fact
implies
(3.54) f(p) = A2(p) +.. pel0
where A2: R —R is an additive function and d is an arbitrary constant with
2(1) + d —0.

Thus we have proved the following theorem.

Theorem 6. Let f:10—R be a nonconstant function and m, M:70-+R
be multiplicative functions. If f,m,M satisfy the functional equation (1.3),
then the general solution of (1.3) is given by
"a{M(p) —m(p)} iIf T PO, m is not additive and TpM
M(p)L(p) if T 0, m is not additive and m =M
A(p)+pL(p) if TpO, m is additive, M is additive and JIf/0
m

M p) if T 0, is additive, M is additive and M —0
f(p) = <A{p) + bM(p) iIfTh 0, m is additive, M is not additive
and M )\
A2(p)+ ¢ if Tp 0, m is additive, M is not additive
and M —1
_dM(p) ifm=20

where A, Ai, A2: R —»R are additive functions, L: 10 =R is logarithmic,
a,b,c,d are constants with A(l) = 0 and Ar(1) + c= 0.
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ON A GENERALIZED EULER SPLINE AND ITS

APPLICATIONS TO THE STUDY OF CONVERGENCE

IN CARDINAL INTERPOLATION AND SOLUTIONS
OF CERTAIN EXTREMAL PROBLEMS*

H. L. CHEN (Beijing) and C. K. CHUI (College Station)

1. Introduction

It is well known that the Euler spline is instrumental to deriving the
integral representation of the error function in cardinal interpolation of a
function / from a spline space S in terms of £/, where £ is the differential
operator governing the spline space S. The classical polynomial spline results
are well documented in Schoenberg’s CBMS monograph [8] and its follow-up
paper [1], and some of its analogous results for the more general differential
operator

n

£=1 (a-TA
j=0

where D denotes the differentiation operator and 70, e+ ,7« are real numbers,
were obtained in [2], [3], [4], [7], and [9]. It should be remarked that the
mathematical analysis in the above mentioned literature depends very much
on the property of translation invariance of the spline space S, which, in
turn, requires the linear differential operator £ to have constant coefficients.
The objective of this paper ,is to initiate a study of this problem where non-
constant coefficients are allowed. In particular, a generalized Euler spline
will be introduced, its intrinsic properties carefully studied, and from it, the
kernel function of the integral representation of the error function in cardinal
interpolation will be constructed, and its sign pattern will be given. The
importance of this integral representation formula is that it provides a very
important tool for estimating the error of convergence and solving certain
extremal problems. We will also give an example of such applications.

The operator £ we will study in this paper can be described as follows:

= £n+i, where
Cj = DjDj-i ...Di, j=1,... ,n+1 and
Dj9) (1) = aj_i(F)£4A,-i(<M0)>

"Research supported by NSF under Grant No. LLIT-8712424.



220 H. L. CHEN and C. K. CHUI

with aj GCn «'(R1) and Bj GCn+1 ¢(R1), & and Bj are positive functions
such that

aj(t + h) = CjQijit)

Bj(t + h) =c-IRj(1),

forallt GRlandj = 0,... ,n+1. Here, h > 0is some fixed constant. Hence,
from (1.2), we have G —Rj(0)/Bj(h). It is worthwhile to mention that the
linear differential operators C3 defined above extend those with constant
coefficients and real roots. Indeed, by setting a(t) = e7s4and Rk{t) = e-7"4
7j real, we have

C=Cn+1 = - b).
j=o
In addition, by setting a*(t) = 1 and Rj /r-periodic functions, we have
(Cs0)(1) = D(Rj-i(t)g(t)).
To simplify our presentation, the additional assumption
(1.3) a-i(t) =Rn+i(t) =1
will be made throughout the paper. Let
I

(1.4) wjt) = 2 .
"i-1 ()3 forj =1,..¢n+ 1

forj —0

and consider the functions
(1.5)
Wo(t) forj =0
Uj(t = < 1 h g1 . _
Wo(t) J mi(ii) / w2(t2) JWij{tj)dt\ ... dtj forj=1,... ,n+1
0 o] 0

Then it follows that
(1.5 Ih+i := span{u0, e+ ,wn)

is the null space of the operator C = £n+i- Now, let [, = {x3:j GZ} be a
bi-infinite knot sequence. We will consider the spline space

S =S{Cn+1;4) = {/ GCn_1(RY): (En+a/)(i) = 0forall t ¢ xj, ] GZ}.
Let us introduce the function

1

- - Ll_
cinfx.i) an(®)Pn(f
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and fix a negative real number /1
We will show that for any fixed x, the problem
(1.6)
270 M=x+h—0 —  jy{")\t—x\-Q T J— 1. 7z and y & Uns1

has a unique solution An(t, x,\), which is considered as a function of t in
the interval (x,x + h). Here, sjn denotes, as usual, the Kronecker delta. We
will also show that An(-,x, A) can be extended to all of R1in an elegant
manner. Its extension will be called the generalized Euler spline relative to
the operator C. This topic will be discussed in the next section. A detailed
study of the intrinsic properties of this function will be given in Section 3.

To discuss the integral representation of the error of approximation by
cardinal interpolation from S, we need the following notation. Let a be any
fixed real number. The interpolation will be taken at the nodes a + hi,
O0<a<h LetLa€S= <S( ) denote the fundamental spline function;
that is, La satisfies the interpolation condition

La(o T jh) — JE

where O = {xj: Xj = jh,j 6 Z}. Hence, the spline function in S that
interpolates a sufficiently well-behaved function / at the nodes a + hZ is
given by

/(a +jh)La(-- jh).

j—o0

In Section 4, we will show that the function

An(a,x,z)-

H(t, x,a) X,Z) - An(f,O,z)An(a 0.2). z

provides the kernel of the integral representation of the error of interpolation
from S, namely:

~ r
f(t)y= v + -3 H(t,x,a)(En+If)(x)dx.

J— —00

As mentioned above, this formula is important not only for estimating the
error of approximation, but also in providing a useful tool for solving certain
extremal problems. For this purpose, we need to have some knowledge of
the sign pattern of the kernel function H(t, x,a). In Section 5, we will give
an exact formulation of sgn H(t, x, a). Hence, the L1 norm of H(t,x,a) can
be evaluated, and as an application, it gives rise to the solution of certain
extremal problems. This application will be given in Section 6.

Acta Maihemaiica Hungarica 61, 1993



222 H. L. CHEN and C. K. CHUI

2. The generalized Euler spline

We first introduce the “conjugate” f/*+i = spanjuj,... ,u*} ofthe Haar
space i/,,+i defined in (1.5)-(1.5/) by setting

I wo(*) = :n-by forj=0
(2.1) u*(x)=< X ti tj- 1
| We(x) Fwi (t1)FWO6(t2) ../ Wj(tj)dtj .. .dt! fori<jnn,
\Y 0 0 0

where w*  wn+\-j and /3* a,_Yy. To complete the definition of full
conjugation, we let ay := Bn-j, D*f := a*_I D(R*-_If) and
(2.2) Fr=rntm q =D-...DI

It can be shown that both Cj defined in (1.1) and C* in (2.2) satisfy:
[Cjf(t)\t=r+vh - Cjf(T + vh)

[qf(t)\t=r+vh = £jf(T+ vh).

The bridge between the two Haar spaces Un+i and U=+1 is the function

(2.3)

t *n
(2.4) un(t,x) :=wo(t)wn+i(x) J wx(ti)... Jw(tn)dtn... dtx\

namely, the following formulation is obtained.

Lemma 1.

(2.5) r(i,x) =~ (-1)n kuk@u*n_k(x).
k=0
Proof. For each fixed value of x, since u,,(-,X) is in Un+i there are
constants Cj(x), j = 0,... ,n, such that
r
“o(o»*) = J 2 CA X)UA)-
j=o0

Now, by applying the operator a j 1Cj on both sides, setting t = 0, and using
the identity

J M) J An—1("n—d) ses J' Aj-ti(tjH10dn ... dtj.ji —

t t t
S Jw j+1(b+t) o « o it
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we have

tj+i ]

J(X) _j WJ+\(“+|)J Wj+2(tj+2)---an(tn)dtn---AJ+| _
= (-1 75 (x). O

Next, since the space Un+ has dimension n + 1, the function
un(-—(n+ 1)h, x) is a linear combination of u,,(- - jh, x) wherej =o,... ,n;
that is, for any fixed value of x there exist constants 6o0,... ,6n+1, with
6n+i ¢ 0, sgnb,,+j = (—)n+1, such that

n+ |
(2.6) bjun(t - jh,x) =0

j=o
for all t. Following Schoenberg [9], we define the so-called “5-spline” func-
tion:

n+l
(2.7) Bn{t,x) =y bjun(t- jh,x)[t- jh - Xx]°

9=0
which, by the definition of [-]° and (2.6), clearly has support in [x,x+
-f(n + 1)h]. It is also easy to verify that

(2.8) CnBn(t,x) =" 6 Jc"-’(an(x)/3n(i))_1,
j=0

fort € (x +ih,x+ ih + h) and I = 0,... ,n, so that

(2.9) EW =0

3=0

The Euler spline corresponding to the differential operators Cj,
j —1,...,n+1, can now be defined by

(2.10) n,*M= £) N-+ ¢r+_n>,
|| 1 1
where
(2.11) F(1-1) = *b,-A--»".
i=o
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The roots of the polynomial T can be shown to be

(2.12 =cktl> f£t=0,1,... ,n.

Xc =
Bh(0)
Indeed, from (2.7) and an application of Lemma 1, we have

n+1
Y2 bjuk(t- jh) =0
j=0
for all k = 0,... ,n; so that by applying the operator Ck, it follows that

n+l
b1 = °’
3=0
and hence
(2.13) T(A-1) = 6n+1[](A-1-x fo).

k-0

3. Intrinsic properties of the Euler spline

In this section, we will derive some of the important properties of the
Euler spline An(t,x, A).

Lemma 2. For any fixed value of x, the function An(-, x, A) satisfies the
following:

(i) Mn(*+ h,x,X) —AAn(-, x, A),

(i) A,,(-,x, A e S(Cn+ Ax), where Ax - {x. vh},ez, and

(iii) An(-,x, A) is the unique solution of problem (1.6) on (x,x + h).

Proof. The first two properties of An(f, x,A) are simple consequences
of the definition of the Euler spline itself and that of the B-spline function
Bn(t,x) in (2.7). To verify (iii), we first note that

CnAn(x + h - 0,x,A) - AE,A,(X + 0,x, A) =
= CnAn(x + h —0,x, A —CnAn(x + h+ 0, x, A) =
= (. (C(,()-"[8 A-QT W +-+1) -

v—0 j—o

n-1 1-f1
i = 1 (FATAL) =

i/1=-1 j=o
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= (a,(X)/3n(x)r1[-6n+1A -"-60A -" 6 1+1IA-"] | (-ATXA-1))*
iI=0
= (a.(x)/In(a;))-1;
and since A,,(-)k,A) is in «S(En+i, [1x), we have

CkAn(x + h- 0,x, A- ACKAn(x + 0,x, A) =
= CkAn(x + h —0, x, A —CkAn(x + h—0,x, A) = 0
for k —1,... ,n —1 Hence, A(-,X,A) solves (1.6). The uniqueness of this
solution can be shown by performing the operations £,,,... , C\ consecutively

to the difference of two solutions, showing that this difference, written as a
linear combination of uo(t),... ,un(t), must be identically zero. O

Now let us fix t instead. Then as a function of x,An(t,x, A) also has
analogous properties as follows.

Lemma 2'. Let A< 0 and t befixed. Then An(f, s, A) satisfies the fol-
lowing:

(i) An(t, »+ h, A) = A 1AnN(t, « A),

(i) An(t, o A) GN(E*+1,Ax), where At = {t + vh},,ez, and

(iii) An(t,-,A) is the unique solution of the problem
C*y(x) U=i_/h-o = AE£*i/(x)|x=t_o + (-1)"tDO(t,i)<5jn
forj =1,... ,nandye U+
where wo(x, t) := (a0(x)/90(i))-1 and Y€ U*+1.

P roof. Again (i) and (ii) follow directly from the definition of A,,(f, x, A),
and the proof of (iii) is similar to that of Lemma 2. O

From its definition (2.7), we have

Bn(t,x) = boun(t,x) >0

for t G (x,x + h). By using the generalized Budan-Fourier theorem (cf. [2]
and [7]), we may even conclude that
(3.2) Bn(t,x)> 0, ta (X,x+ nh+ h),

and that for t G (x, x +h), {Bn(t-j-jh,x)}, j = 0,... ,n, is a Polya frequency
sequence [6], and for fixed values of t and x, A{t, X, ¢) has po zeros A= Ait, x)
where

(3.1)

in ift G(x,x + h)
~° \'n—1 ift=xort=x+h
Let us consider the case x = 0. Suppose that fn is a real zero of

A,(-0,-1) and 0 <a < h. Then fort = a we may label the ze-
ros of A,,(q,0,-) by A = A(a, *) such that

(3.3) Al 2< ... <An!< -1 <An<..<AD<O.

In what follows, we will assume, without loss of generahty, that a 0, so
thati = 0<Il =a</i=1i+1liand po=n.
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4. The error formula for cardinal interpolation

Consider the knot sequence
Aa = {a+jh: j £ Z} U{t}
where 0 <a < h, and let
S(rn+l,Ae) = {fe Cn-1(R1): Cn+if)(x) =0, xi Aa}

be the spline space corresponding to the linear operator £*+1. Then for any
copstant o™ 0, it can be shown that there exists a unique function //((*) in
d ,Aa)that satisfies the conditions

{ Ht(uh) =0, v€Z
CnHt(t + 0) - C*Ht(t- 0) = (-I)"«d(<,i)

Ht(x) = 0(e_r°Ixl) as [i| —00.
Indeed, if y is the difference of two solutions of (A), then it is a null
spline, with knot sequence {a + vZ}, having zeros at hZ, so that
(4.1) *)=£BA-(*>. Sj() :=An(a,-,\])
j—
where A = Aj(o, 0); but the asymptotic condition in (A) then forces y to be
identically zero.

Remark. The asymptotic condition in (A) can be replaced by 0(ja:|?),
B > 0, since any nontrivial y(x) in (4.1) must necessarily be of exponential
growth in |z|, namely:

I5j(x + uh) 1= \An(a,x + vh \})\ = \\~L,hAn(a,x,\J)\

tends to infinity exponentially as v — +oo for |Aj| < 1or v — —o0 for
1A > I-
For 7o= 0, the solution y = Ht(-) has the following expression:

I‘I
E «kjsj{x) for x<a—h
j—Tm
E_ eJUj(X) fOf a—h < X A t

(Bi) y(x) =
E djufa) for t<x a
3=0
m —1

E *i5i(a) for x~ o

i=i
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and satisfies:

i YecCn HIY* 3/(0)=0, and
1 C)y{t + 0) - CXt- 0) = (~)nwo(i, )Sjn, j=I,...,n.

Of course, for any fixed t, and a —h < 0o <t<a, (Bi) and (B2
determine y — Ht(-) uniquely. In other words, (Bi) and (B2) characterize
the unique solution of (A) for €= 0.

Now, we may give the integral representation of y = Ht(-) as follows:

An(a,x,z)-dz

(42)  HO) =70 An(txz) - AL(R0.2) 4 ooy d

where I = {z: \2\ = 1} is the unit circle oriented in the counterclockwise di-
rection. Indeed, it is clear that the integral (4.2) satisfies all three conditions
in (A) with yo= 0. Using this formulation, we are now able to determine all
the coefficients in (Bi), as follows:

(i) Lett=r+vhand x =£h+y,0<r<y<h. Then

-t ATY,(r0ANN&E& for v—I >1
k=m d\k
4.3 Ht ~c for V— <1
(4.3) { Y K~*M ST or
-t Mr +y for v—I =0
k—F '

where 1j is some bounded function of y and r.

(i) Let t = T+ i/h, x —lh+yand 0 <y < T < h. Then Ht{) has
the same expression as the first two in (4.3), but the function y in the third
expression may be a different bounded function of y and r.

For 0 < f < £o, fo := minlInlArri-iljiInlAmI-1} as given in (3.3), let
®() = {/|/™ absolutely continuous on any bounded interval, f(n+i1\x) =
0(e”x\), |i| —o00}. We will give an integral representation for the functions
in ®(E). The representation formula here extends the results in [3].

Let / £ ®(£) and N be a sufficiently large number, such that

(4.4) [at(x)Bt(x)(C:_Mx))Ctf(x)}%+&a = o(l)
as N — o0o0. It can be shown that for each 7 £ Z,

(4.5) srnHt(x)\x=a+,h := CnHt(a + vh + 0) - CnHt{x+ vh - 0) =
A, (t—h—h, 0, 2) o
A(a0z) dz—(1)n+upofoiala(t-vh),
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and
for -t=a+vh, nGZz
for t=a+gh, gpv,gGZ

Here, Ta(t - z/h) € <S(£,,+i, 1), where 1 = {jh}jez, is so-called the funda-
mental cardinal spline function in «S(£,,+i,A).
We also have
( (-1)mOo(M), ~=0
\ 0, 1/jio, I'GZ,

Note that (4.5) and (4.6) follow directly from Lemma 2'(iii). Next, set

(4.6) 6CAHL(x)\x=t+H/h

at+Nh
In — J Ht(x)Cn+if(x)dx, f € ®(0-
a-Nh
Then we have
cx+Nh
IN = o(l) +(-iy J (C*Ht(x))Cn+i-jf(x)dx =
ot-Nh
at+Nh
=o(l) + (-1)" J Jao(x)CnHt(x)]-"(Ro(x)f(x))dx =
a-Nh
N
= o(l) + (-1)" A (g(a+vh-0)- g(a+vh- h+o0))+
i/=1-N
a+Nh
+(-Dn((i- 0)- g{t+0)) + (-1)"+L J f(X)C-n+1Ht(x)dx,
at—Nh

where ~(x) = ao(x)RBo(x)f(x)C Ht(x). Hence, since £*+1fft(x) = 0, we
have

N
(4.7) 7r=o()+()n+l| Y2 [5'(a+ifi+0)-p(o!+i/i-0)]-(-i/(i+0)-fir(i-0)| =
j=1-N
N-1
Zo()f(-)n|(-1)nwo(Q,a)nr aof{a)lo(a)f(ctb'h)La(t-i’h}{{-\)n+If(t)Y
i/=1-N

and we obtain the following.

Acta Mathematica Hungarica 61, 1993



GENERALIZED EULER SPLINES 229

Theorem 1. Leta £ [0,/i), a ¢ where £n is the root of the equation
0,—1) = 0. Then for any f £ ®(£),

o° 7
(4.8) m = E f{nh+ oiLa¢t —nh) — / Ht(x)Cn+If(x)dx.

5. The sign pattern of the kernel function

In the following, we will study the sign pattern of the function Hx{t):=
= H(t,x,a), where x is fixed.

Let x = th +y wherey £ [0,h), t £ Z Then the function Hx{-) is a
spline function; and in fact, Hx{-) £ S(£, Ai) where Ai = {x} U {vh}ue

Lett=oh+r1,n £ Zr £[0h). From the residue theorem, we have

k=m

(5.1) HX®) = o

E A AL (rOAfc) digi“x v-1<-1
Jt=I B\K

- £ K~eAn(T,O,XK)6ﬂn(@);5‘AkAK VoA
OAk

Remark. In this section, we only consider Hx(t) = H(t,x,a), where X

is fixed and t is a variable. If t is fixed and x is the variable, then Ht(x):=
= H(t,x,a) has similar properties.
In the following, we set = An(f, 0,Aj), A = Ay(a). Then we have

m_lc,-g(*), VEi-1
A=

£ &a (o, Nn>i+1

where t = i/h+ T, T£ [0, h) for some c\,... ,cm.
Let /ro, M be two integers such that /0 5 i —1and /zj » f + 1. Then
from Gantmacher’s theorem (cf. [5]), we have

(5.2) S+((-iyCiHx("h +0)S >n- 1- S-(CiHx(tioh + 0))"'1>
>4 —1- S+(EiHx(fioh+ 0)) oA T—1—(M —2) = n+ | —m,

and

(5.3) S+(CiHxX("h - 0))S > S+iC.HArh - 0))Ir~
> S~(CiHx(*ih - 0))o A777-1,
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where the notations of S+,S~ may be found in [6]. Since Hx(jh +a) = 0,
j £ Z, there are + \Ro\ zeros in the interval 1 = [fioh, h). The number
of knots in the function Hx(t) on I is also /ii + |/rO| (which agrees with the

cardinality of the set N :={jh}jh~+l U{a}). Now, let
(5.4) W(Hx,u) = SH-CnHx(>- 0),Cn- 1tHx(lJ,CnHx(n + 0)).

Then the number of zeros of Hx on (/i0,*i) is given by

(5.5)
Z(Hx,(lioh,fith)) =n-S +((-iyC,Hx(fioh+0))Z-S+(CiHx ih-0))Z+

+ A (W (H Xu) —1)) — a non-negative even integer
ueN

(see [2]). It is easily seen that W (Hx,u) —1 51, and thus, from (5.2), (5.3),
(5.4), we have Z(HX("0,M1)) = A1+ Mo, so that the equalities in (5.2) and
(5.3) must hold. Therefore S*{CiHx{"oh -f 0))o_1=S- (£;#x(/q)h + 0))g-1=
= m —2, and
(5.6) sgn Hx(Boh) = (—)m_2sgn Cn-iH x(noh).

Again, from (5.2), (5.6), and the fact W(Hx,noh) = 2, we also have
(5.7) sgnHx(noh)=(-1)msgnE£n_itfx(/i0/i) = (- 1) m+lsgn CnHx("h-\-0);

and from (5.1), we have

=L.(a,y.A) V - | > 1

A . ' >
. BN, (B.0.N")

j—m
(5.8) CnHx(t) TR
. TA-I'KdAnf;y,b,Ak)s v-1l< -1
k=i BxK

where t £ [vh, vh + h), x £ [Eh,f.h + h). It can be shown as in [3] that

NI(MA? Vi 1)
3An(a,O.A)
A,/

(5.9) sgn =1

\

since Al < A2< ... < An_i < 4<An< . .< A, <0 Then from (5.8),
we have, for sufficiently large \v —I\,

(5.10) sgnC,,Hx(t) = (-1)" /, v-1< -1
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However, W(H,u) — 2, where n is any point in [J1. Hence, considering
the first formula in (5.8), we conclude that (5.10) holds for any v —I £ Z
Combining this with (5.7), we have

sgnHx(Roh) = (_i)m+i+no-<, x e [th,Ih +h).

From the above discussion we have shown that Hx(-) has only simple zeros
on R1, which are {uh -faj*gz- Since poh 6 (poh —h+ a,poh + a), it follows
that

(5.11) sgntfx(i)=(-1)m+,w for x e [Ih,Eh+h) and t € [i"i+a, i/h+h+a).

That is, we have proved the following.

Theorem 2. The sign pattern of the kernel function Hx[t) := H(t,x,a)
is given by (5.11).

We shall apply Theorem 2 to solve an extremal problem in the foHowing
section.

6. An extremal problem

Let Cn+2 = DCn+i, where £n+l is the differential operator defined in
(1.1) . Then analogous to Lemma 2, we establish the following.

Lemma 3. There exists a function En+i(t,x) that satisfies the following
conditions:

(i) Cn+2(D)En+i(-,z) = 0on (x + Ch,x + h+th), i e Z

(i) Cn+i(D)En+i{-,x) = (-I)fon (x + £h,x+ h +ih), i € Z

(i) £h+i(i  h,x) = —En+\{t,x) for all t,

(iv) En+i{-,x) e Cn(R1), and

(v) Bn+1(-,x) has exactly one simple zero ££+1(x) in the interval [x +
+ uh,x + h+ vh) for eachn € Z

Next, consider the function class
(6.1) F{0 :={/'/e ®&(0,f(vh +a)=0, p£Z, \Cn+I(D)f(t)\< 1, te R1}

where ®(£) was defined in 84. Set £n(x) — £°(z), and recall that £,,(0)

and £n+i(0) are roots of the equations An(t,0, —) = 0 and -EWIi(i,0) - O,

respectively. In the following discussion, we will assume that £,,(0) / £,,+i(0).
Remark. For the constant coefficient differential operator Cj =
j—2

= kI‘I (D-h),j =1,..,n+ 2 itis known that £,0) ~ £,+i(0) (see
=0

[3D.
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Set a = £n+1(0). Since En+i(Zn+i(0) + vh, 0) = Ofor all v € Z, it follows
from Lemma 3(ii) and (5.11) that

(6.2) £,+iM )=- J H(t,x,a)Cn+iEn+i(x,0)dx -

— 00
(e]e)

= (-)m+l/+i [ IH(t,x,a)\dx, te im,ae
The following result extends Theorem 3 in [3].

THEOREM 3. Let £ be a positive number such that 0 < £ < £o Then

(6.3) /é% 1/(f)] = Jf \H(t,x,a)\dx.

Moreover, if there is afunction g in T(£) and a point t\ € /,,,a su°h that

(6.4) o (ti)\ = J \H (ti,x,a)\dx,
then
(6.5) g(t) = £En+1(t + a,0)

where a = £n+i(0), and £ —+1 or -1.
Proof. From (4.8), it is clear that

(e]e)

\m\< J \H{t,x,a)\dx, f € F(£).

Hence, since En+\(t, 0) € -F(£), we have (6.3), and En+i(t, 0) is an extremal
function.

To verify the second assertion, let g be a function in F(£) that satisfies
(6.4). Then

(6.6) g(h) = - J H(tl,x,a)Cn+ig(x)dx.

—00
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Suppose that = +1 or —is so chosen that £ig{t\) < 0. Then multiplying
s\ to both sides of (6.6) and adding to (6.4), we have

[e]e]

(6.7) 0= J {\H(ti,x,a)\ - £iH(ti,x,a)Cn+1g(x)}dx

— 00

so that, since g 6 F(£), \Cn+\g(x)\ = 1 ae. From (6.7), we also have
£isgn H(t1,x,a) = sgnCn+ig(x). Thus sgnCn+lg(x) - £i(-1)mlA< for
ti Eluaand x € [Eh,£h+h). Now let £= £1(-1)m+l/. Then £n+i[f:£'n+i(X,0)-
—<7(x)j = 0 for x G R1, since the function J(x) —eE,,+i(z,0) —g(x) is in
F(E). Then from (4.8) we may conclude that J(x) = 0 and Theorem 3
immediately follows.
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ON SOME TOPOLOGICAL VECTOR SPACES
RELATED TO THE GENERAL OPEN
MAPPING THEOREM

L. M. SANCHEZ RUIZ (Valencia)

1. Introduction

The spaces Vr, Wr, V and W were introduced by Valdivia [4], showing
they were maximal classes of locally convex spaces for the isomorphism and
homomorphism theorem, respectively, when in the range a class of locally
convex spaces containing barrelled spaces was desired.

Mas [2] gave new characterizations of these classes of spaces without
using the dual spaces, showing that a locally convex space E(T) is a W-
space if, and only if, there is no locally convex and barrelled topology on E,
strictly coarserthan T ;and E(T) is a V-space, if, and only if, every separated
guotient of E(T) is a W-space. This allowed him to find easy proofs of
Valdivia’s isomorphism and homomorphism theorem and generalizations to
classes of topological spaces. In this way we shall say that a topological
vector space E{T) is an £ —Wr-space if there is no Hausdorff £-barrelled
linear topology on E, strictly coarser than 7. Moreover, a topological vector
space E(T) is an £ —V-space if every separated quotient of E(T) is an £ —\r-
space.

In this paper we introduce the £-strongly almost open mappings and
characterize £ —Wr- and £ —V-spaces in an analogous way as Valdivia
[5] characterizes the Wr- and V-spaces by means of the strongly almost open
mappings. We also obtain some results concerning £- Hr-complete and C-B-
complete spaces, analogous to those obtained by Valdivia [6] in the locally
convex case though with different proofs since we are not able to use the
dual spaces. Besides, we prove that if a topological vector space E contains
an £ —Wr-subspace (£ —V-subspace) of finite codimension, then E is an
£ —Wr-space (E —V-space) and obtain two open mapping theorems.

Topological vector space will stand for Hausdorff topological vector space
and our notation follows [1]. However, let us recall that if U and V are the
sets of all the neighbourhoods of the origin of the topological vector spaces
E and F, respectively, and / is a linear mapping of E in F, then / is called
weakly singular if N (f) = n{/-1(V): V E V}, where N(f) denotes the
kernel of /. / is called almost continuous if for each V 6 V, /_1(V) E
E U. Being / onto, / is called almost open if for each U EU, f(U) E V. A
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topological vector space F is called C—B T-complete if each almost continuous
linear mapping with closed graph of each topological vector space E in F
is continuous. A topological vector space E is called £ —B-complete if
each weakly singular almost open linear mapping of E onto each topological
vector space F is open and this holds if, and only if, every separated quotient
of E is £ —2x-complete. If E(Tq) Jlg a topological vector space and T

is a further linear topology on E, Tg will denote the Iinez£71.opology on

E, whose neighbourhoods of the origin are the T-closures, U , of the 70-
neighbourhoods, U, of the origin.

2. £-strongly almost continuous linear mappings

Definition 1. Let E and F be two topological vector spaces and / a
linear mapping of E in F. We shall say that / is £-strongly almost open

if for each closed string U = (Un)*_1in E, f(U)» ~= (f(Un Mn=lis a
topological string in f(E).

Theorem 1. A topological vector space E(T) is an £ —Vr-space if, and
only if, each continuous one-to-one C-strongly almost open linear mapping
of E onto each topological vector space is an isomorphism.

Proof. Let/ be acontinuous one-to-one £-strongly almost open linear
mapping of E onto the topological vector space F and suppose / is not
an isomorphism. Let V = (Pn)*Li be a closed string in F. As /-1(V) =

—(/_1(™,)“=1 is a closed string in E, f(f~1(V))F — V is a topological
string in F. Hence F is £-barrelled and E is not an £ —W-space.
Conversely, if E is not an £ —Vr-space then there exists a Hausdorff linear
topology T* on E, strictly coarser than T, such that E{T*) is £-barrelled.
Now the identity i: E(T) —E(T*) is a bijective continuous linear mapping
but it is not an isomorphism. However, i is £-strongly almost open since if

------- T T+ . .
—U is a closed string
and, consequently, topological in E(T*). O

Theorem 2. A topological vector space E(T) is an £ —V-space if and
only if, each continuous C-strongly almost open linear mapping of E in each
topological vector space is a homomorphism.

Proof. Let / be a continuous £-strongly almost open linear mapping
of E in the topological vector space F. Without loss of generality we may
assume f{E) = F. The linear mapping f of the quotient space E/f~1{0)
onto F defined by passing to the quotient is one-to-one, continuous and £-
strongly almost open. Hence / is an isomorphism and / is a homomorphism.

Conversely, if E is not an £ —V-space then there exists a Hausdorff
linear topology T* on E/F, strictly coarser than the quotient topology such
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that E/F(T*) is ~-barrelled. Hence the identity i: E/F —*E/F{T¥) is not
a homomorphism. However, the linear mapping g = i ok, where K denotes
the canonical mapping of E onto E/F is continuous and £-strongly almost
open. So, g is a homomorphism and, consequently, i is a homomorphism,
too. Contradiction. O

Corollary 1 If E{T) is an C-barrelled C — Vr-space then E(T) is
C —Br-complete.

Proof. Let T *be a Hausdorfflinear topology on E strictly coarser than

T, such that TT C T*. We just have to show T — T* [1, S10(3)]. The
identity i: E(T) —»E(T*) fulfils the condition of Theorem 1. So, i is an
isomorphism and T = T *. O

Corollary 2. If E(T) is an C-barrelled C —V-space then E(T) is
C —B-complete.

Corollary 3. IfE(T) is an C-barrelled topological vector space which
is not C—Br-complete, then there exists an C-barrelled space F and a contin-
uous one-to-one linear mapping of E onto F which is not an isomorphism.

P roof. By Corollary 1 there is a Hausdorff linear topology T*, on E,
strictly coarser than T in such a way that B(T*) is £-barrelled. Now the
identity i of E(T) onto E(T*) is one-to-one and continuous but it is not an
isomorphism. O

Corollary 4. If E{T) is an C-barrelled topological vector space which
is not C —B -complete, then there exists an C-barrelled space F and a con-
tinuous linear mapping of E onto F which is not a homomorphism.

Proof. If E is not £ —B-complete then there is a separated quotient,
E/G, of E which is not £ —Br-complete. Then, by CoroHary 3, there exists
an £-barrelled space F and a continuous one-to-one linear mapping v of E/G
onto F, which is not an isomorphism. Let kK be the canonical mapping of E
onto E/G, then the linear mapping n = v ok of E onto F is continuous and
is not a homomorphism. O

3. Some results concerning subspaces of finite
codimension

Valdivia [7] shows that if B is a locally convex space and contains a sub-
space of countable codimension which is a Vj.-space then E is a Fr-space. We
shall show this to be true for subspaces of finite codimension in the topolog-
ical vector case, without convexity conditions using the following result (cf.

ny:

Acta Mathematica Hungarica 61, 1993



238 L. M. SANCHEZ RUIZ

Proposition 1. Let E(T) be a topological vector space and T* a Haus-
dorff linear topology on E, coarser than T and F a subspace of E. If the
respective induced topologies coincide on F, as well as the respective quotient
topologies on E/F, then T and F* coincide on E.

Proposition 2. Let E(F) be a topological vector space. If F is a sub-
space of finite codimension, which is an C —Vr-space, then E is an C —Vr-
space.

Proof. We shall assume F is a hyperplane. Two cases are likely to
happen:

PP i) F is closed in E(F). Thenifx £ E\ F, E(F) = F ®t [x] and if F*
is a Hausdorff linear topology on E, strictly coarser than T, F{F*) is not
~-barrelled since F* C F but T* ¢ F. Hence E(F*) is not ~-barrelled.

ii) F is dense in E{F). Let T* be a Hausdorff linear topology on E,
strictly coarser than T. If T* and T do not coincide on F, neither F(F*)
nor E(F9) would be ~-barrelled. In the other case, i.e. if F9 and F coincide
on F, by Proposition 1, T* and F also coincide on E. Contradiction.

Therefore, in any case, there is no Hausdorff linear topology T* on E,
strictly coarser than T, such that E(T*) is £-barrelled, and E(F) is an
C —Fr-space. O

Proposition 3. Let E(F) be a topological vector space. If F is a sub-
space of finite codimension, which is an C —V-space, then E is an C —V -
space.

Proof. Let rj be the linear topology on e which has as a fundamental
set of strings to the set of all the strings in e whose intersection with F is a
topological string. Then F C r and F is a closed subspace of e{r)). Let us
see now that e(r/) is an C —Y-space. Let e(r])/c be a separated quotient
of e{r1). As F/c fIF is a separated quotient of the C —Wr-space r and of
finite codimension in /G, E(rj)/c is an C —Fr-space by Proposition 2, so
E(r]) is an G —F-space. Hence e (1) is an C —F-space since T is coarser
thanr/. O

4. Two open mapping theorems

Valdivia [8] proves that the I?r-complete and Bb-complete spaces have
analogous properties to those shown in Proposition 2 and uses it to obtain
two open mapping theorems. We do not know whether C —5r-complete and
C —b-complete spaces share that property. However we have been able to
obtain the analogous version of Valdivia’s two open mapping theorems in
the context of topological vector spaces, without convexity conditions.

Theorem 3. Let E{T) be a topological vector space, covered by a se-
quence of linear subspaces {En:n £ N}, such that for each n £ N there
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exists a topology Tn on En finer than the induced topology by E, in such a
way that En(Tn) is an C —V-space. If f is a continuous linear mapping
of E in the Baire space F, such that F(E) is of countable codimension in
F, then f is open of E in f(E) and f(E) is £ - B-complete and of finite
codimension in F.

Proof. Let {xn:n £ N} be a cobasis of f(E) inF and Fn  [f(En) u
u {xi,X2,... ,£,}] foreach n £ N. As F —u{Fn:n £ N} there exists a
p £ N such that Fpis of second category in F and, consequently, £-barrelled.
f(Ep) is also £-barrelled since it is a subspace of Fp of finite codimension.
The restriction of / to Ep, fp, is continuous of Ep(Tp) onto f(Ep) and,
therefore, open ([2]). Hence Ep{Tp)/f~1{f) is topologically isomorphic to
f(Ep), which will be £-barrelled and an £ —Y -space and, by Corollary 2,
£ —b-complete. So f(Ep) is complete and, therefore, closed in F and, since
f{Ep) is of finite codimension in Fp, Fp is closed in F, which implies that
Fp coincides with F. Now f(E) is an £ —Y -space since f(Ep) Cf(E) C F
and f(Ep) is an £ —Y-space of finite codimension in f{E). Moreover, f(E)
is of finite codimension in the Baire space F, so f(E) is £-barrelled and, by
Corollary 2, f(E) is £ —b -complete.

Finally, if U is a neighbourhood of the origin in E, f{U) MNf(Ep) is a
neighbourhood of the origin in f(Ep) since f(U) MNf(Ep) D f(U MEp) =
= fp{U MEp), fp is an open mapping and U D Ep is a neighbourhood of the
origin in Ep(Tp). O

In the same way, using properties of the £ —yr-spaces instead of the
£ —Y-spaces, we obtain:

Theorem 4. Let E{T) be a topological vector space, covered by a se-
guence of linear subspaces {En: n £ N}, such that, for each n £ N, there
exists a topology Tn on En finer than the induced topology by E, in such a
way that En{Tn) is an £ —Vr-space. Iff is a continuous one-to-one linear
mapping of E in the Baire space F, such that f(E) is of countable codimen-
sion in F, then f is open on E in f(E) and f(E) is £ —Br-complete and
of finite codimension in F.
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SOME APPLICATIONS TO ZERO DENSITY
THEOREMS FOR L-FUNCTIONS

D. WOLKE (Freiburg)

1. Introduction

For several problems with primes like Goldbach’s or the twin problem
one has to study the sum

(1.2) S(x,a) —  A(n)e(na)

71<X

(x >2, a GR, e(/3) = e2#P, A = von-Mangoldt’s function). The asymptotic
behaviour is well known in the neighbourhood of rational numbers a = a/q
with ‘small’ denominator ¢

(1.2) S (x, " Y2 e(nB) + 0(x exp(—<j(In x)1/2))
n~x

(@™ (Inx)n, \B\ ~ exp(c2(lna:)l/2)x_1; cb c2 > 0, sufficiently small. See
Prachar [9], Ch. 6). For g > (1nx)n one has upper bounds for |5| by the
methods of Vinogradov (Prachar [9], Ch. 6), Vaughan (Davenport [3], § 25),
or Cudakov-Montgomery (Montgomery [7], Ch. 16).

It is the first aim of this paper to prove a mean value result for S(x,a)
similar to the Bombieri-Vinogradov prime number theorem.

Theorem 1 Letx>2, A>0, 1~ Q<xI/A 7= 1T7(h ~4,(1nx)-8(a+21)).
Then
Ad) 1 X

B @ma VS [k eM3) nxA

Remarks. 1 All constants implied by the symbols 0( ) and <C depend
at most on A and e (which occur later). The constants 03,04,... will be
positive and absolute.

2. For x sufficiently large we have x~I ~ d < 1.

3. The bound al/4 for Q can be reduced slightly by more careful calcula-
tions. The Riemann hypothesis on the zeros of the functions L(s, %) gives the
asymptotic behaviour of S(x,a/q) for g —0(a;/3(In x)-4/3-e). The density
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hypothesis, i.e. an upper bound ([/2T)2(1-<r)+r in (2.5), leads to Q S x1"3~e
in Theorem 1. It seems to be impossible to reach this by means of zero
density results which are available at present.

Several authors considered the ternary Goldbach problem in a localized
form (Haselgrove [5], Pan [8], Chen [2]), for example, for N = 1(2),

(1-3) N =pi+p2+ P3, Pv=1y + 0 (jV2/3+e)

(Chen [2]).
A similar question is, how to find thin subsets P' of the set P of primes
such that every n > no, n = 1(2) can be written as

n=np'i+p'2+P3 (p'v e P')-

(1.3) does not lead to such sets. By probabilistic arguments Wirsing [12]
proved the existence of a set P', where

P'(x) = #{p' < x,p' €P'} < (xInx)V3.

Apart from the factor (Inx)Y/3 this bound is optimal. It is however a disad-
vantage of the method that it does not show how such sets P' really look like.
It is the second aim of the present paper to describe how a set P' (which will
of course be much bigger than Wirsing’s) can be constructed explicitly. This
set will consist of primes in certain residue classes to certain prime moduli.
It seems to be a very hard problem to describe explicitly sets P' which are
nearly as thin as Wirsing’s.

Theorem 2. One can construct a subset P' of the set P of primes such
that

@) P{x) = #{p' < x,p' € P) = 0(x1516), and

(i) every sufficiently large n = 1 (2) can be written as

n=p'l+p2+ps @j € PY).

It is highly probable that the Pjatecki-Shapiro sets

{1>1>=[»]) («6(1, ))

(Pjatecki-Shapiro [10], Heath-Brown [6]) can serve as P'-s.*

The author is grateful to Prof. Janos Pintz for several stimulating dis-
cussions on related topics during his stay at Freiburg in the summer term
1985.

*Added in proof (February 10, 1993). This was recently shown for 1< ¢ < by A.
Balog and J. Friedlander (Pacific J. Math., 156 (1992), 45-62).

Acta Mathematica Hungarica 61, 1993



ZERO DENSITY THEOREMS FOR L-FUNCTIONS 243

2. Proof of Theorem 1

2.1 Let g < Q, (a,q) = 1 For a character xmodgqg, X*mod<? (gq*/q)
will denote the primitive character that induces x- The principal character
Xomod 1 will be regarded as primitive.

r(*)="*x(c)eQ

c—1 4

is the well known Gaussian sum (£)* means summation over a reduced
residue system modg). In particular, r(xomodg) = /r(g). We have the

inequality r(x)  g+1~2 (Davenport [3], 89). For z > 1, put

®(r,x) = ®(") = tHz>Xomod 1) = A1 (n).
n<z n<z
For 1 <z <x one easily sees
(2.1) aN _ Kg)
K ) = ¥>(«)

+-7-] x(@@)rp(z,x)T(x) +0(ql/2(Inx) 2).
X" X0(Q)

@ (*)+

2.2. Some facts about the zeros of L-functions will be used. Let 3 < U <
N Q, g™ U xmod?, x primitive, G > o (sufficiently small),

M(U,t) = max(In U, (In(Ji| + 3))34(InIn(|<| + 3))3/4).
Then L{a +it,x) / 0for
c3
M(U,t)

with the possible exception of a real, simple zero Rx of L(s,x1) with a real,
primitive character ximodqi. If Bx occurs, then g\ and Xi are uniquely
determined by U and G (Prachar [9], VIII, Satz 6.2; Davenport [3], 81). For
the exceptional — or Siegel — zero Rx the inequality

(2.3) Bi< |- c(E)g~c

holds {e > 0, arbitrary. Prachar [9], IV, Satz 8.2).
In particular, (2.2) implies that, except the possible B\, L(s,x) (x =
X*modg, q” 2U) has no zero in the set

(2.2) a>1-

| s=a+ it, i| <x,
a>1l-6 _ {1“c3(lnr)"45 if U$ Qi = exp((Inx)45)),

11—03(1nx)—1, if QXAUAQ.
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Asusual, for T > 2,0< < 1, N(cr,T,x) will denote the number of zeros
q —£ -f irj (counted with multiplicity) of L(s,x) in the rectangle |r/| » T,
a<£< 1 Then

(2.5) JAY ,-N(a,T,x)<
g=u X(5)
(U2T) A 1 (\n(UT))9, ifl<x< 1,
t/2T)-ivA(UIn(CITN, ifin*n1

(Montgomery [7], Theorem 12.2).
2.3. We have the well known explicit formula

(2.6) 4>{z,x) = Eo(x)z~ Y
£ H<X
°°  Na—2m
-(1 - n(x)Inz2- b(x)+ Y 2m'-~fl+
m=1
where
3 1, if X= Xomod g,
Eo(X) = 0 otherwise,

p = £+ ir) denotes non-trivial zeros of L(s,x)i a=a(x) £ {0,1),

2.7 b(xX) =~ Y g ~"0O0n?)
e,H<i
(Davenport [3], 819).
If x ISinduced by the exceptional character Xi mod g\ (q\ \g o\ * Q),
then, because of (2.3), the zero 1- Ri gives a contribution yggj- <Ce q\ in

(2.7) . because of 1 <CIn q this, together with (2.4), implies
£M<i

(2.8) b(x) < (Inx)2 + q\.

In all other cases (2.8) remains valid without the term q\.
Put
E,,_ 11 ifXiexists for Q and x* = Xi,

i~ \ 0 otherwise.
Then, for z < x, (2.6) and (2.8) (with e —\) give

N>z X) = Eqx)z- Y T +0 ((Inx)2+ ENx)a\/2) m
e{x),blx
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(2.1) leads to
a\  n(q) 1
%) C.Mo*

Partial summation gives, for y £ X,

SQy gt B) = dcghr N -
Y
~Ag) S r(*Ma) XJ I dzz°~le(zB) + O ((1 + \R\x)qLU2(Inx?) .

e(x') _
\n\ix

If 4 = A(x, Q,fl) denotes the expression to be estimated in Theorem 1, then

A < gc1*2 YY" maxmax [ dzze 1e(zR) +
kb *<> idmi.\&dmM
+x$(In x)4 +Qat2.
Let Uw=2U1 1<v <v0, u= . Then the last inequality, together
with the choice of i?, implies
(2.9) A<(Inx)2 £ UZx<2 Y,
M>A0 UAghUv+1
Yy
> > maxmax- [/ dzz°~le(zB) + x(Inx) A.

x(@) <?u),MbX -«

24. For£= 2% and C = C'(e) sufficiently large we have

(PN B 1),/ LA

Exceptional zeros B\ with B\ ~ 1 —by therefore only occur in the case
U > C'(Inx)4(5i) Hence the contribution of these R\ to (2.9) is

C ex(Inip = x(Inx)

(In general, the constants depending on £ or A cannot be calculated effec-
tively.)
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(2.9) therefore remains true if for all U = Uv the ~-summation is re-
stricted to those g for which
(2.10) H<z,

This will be indicated by )8

2.5. With Lemma 4.3 and 4.5 of Titchmarsh [11] one gets the following

inequalities. For 1* M <M' * 2M we have
M> if hi = 8|/3|Af,
(210 J dzze-le(zR) < < if hl~ARMi
L [q|l/4l Lany GS3

Because of £ = Req > C3(1nx)-1 (see (2.4)) < is true f°r

K > 0. Hence, by expanding e(zR), for 1<y < x and \R\ * y-1,
y
(2.11) J dzz°~1e(zR) <
hi + 1°

Let (M”) be a sequence of /io <C In x numbers with
Mi =1 M, <Mwm+1 <2My < X, > X.
Then (2.9), 2.4, (2.11), and (2.10) give

o < \</bE,;F + (1|—|1)41<£1/<|_||) u- ’2UV<I(T<UV+1.

Ve

AT- V" OJ-IL-+ E'E'TN2T +
Y ('j(x)>I\/Ig*L +Lf X'>%<AMH%'1AXW Ee(i) h J

Inig*

+

max [ *
"xbl

, M £_ 1 m *A
E& hi E he E W)
C(X e(X
W<+ M” 7r\/3|MA<|n(|<)sTr\/3|MM 87r|Ai§2|tj|Sx

1
5 E u’\1/2'{X1/2£ . E 74 ™t
S S QX

max
x-i<|/3|<7|/3]-

_ X
[<1/2,0<T7<x
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+ max B 1 max _Mu 1"2yf\ yn 1+
) en2 0’\>r?<|rr3|\/p

+ max max My/2Y”
* -] </3<rf/3-i< M~ X M 9x

V 12+ E vV 1]+
c(X
IW I"\|/2,8ir([52/lfs"rj"x

/ dO]'V tiil T
172 0 X

£, T,

max RB~x. , do [ ¢
‘1< M u<X J 6 9X

15,
er< 2 max [ Oer-

< 0 Yy
1/2

8jr/3VMM
o( / +
By gilMi
A X) *, §,= "Uw The contribution of the zeros 5
x(q)

1m
<(X)bIST

Here A ,, means

with £I< ~is, because of 1<TIn(gT),

< (Inx)5 U;x,2U I{x4\Inz)2+
1="=10

A
+ X-W\%ti /3 1/@|%<XMH 1"28MuIn x+

+ max max Mi=2 URM.) 1 2Inx + (Inx)2)} <

X~ <B<6B-!'<M M<X M

2 +i? -
< (Inz)7f23/2(x1/2 + i?1/2z) < (In>>§)’
Inserting (2.5), one gets

nc (/K P +(Inx,2°15<\/0

Acta Mathematica Hungarica 61, 1993



248 D. WOLKE

(‘T 1) 5k A1)
A /[ derUv<rt x*+ |/ -

1/2 4/5

rg+

/5

4
/ 1-
+ max B 1 max (/ doM* 1Uu2 ° (PML) '%(~a®+
x-1</3<5 /3-1 <M "< x *
172

-5,

4(1~<r) . L 2(1-a) \
/doM°. IW >~ (BMu) " )+ max max
A H / x-i <R<B60-'<M”"X
4/5
415 i-4

6(I-<r) 3(1—) «(1-% A
( / daM --UAR{BM”),\—:‘B\_ + doM ™ Un )‘(W i)2U 1L

*
1/2 4/5 )}.

The exponent of is > 0 in all integrals, so maxiiig can be taken as
X. In the third and fourth integral the exponent of 3 is negative. So these
integrals are of the same order of magnitude as the first and the second.
In the fifth integral the exponent of B is positive, in the last it is negative.
Therefore

X
(2.12 « +z(Inx)20 £ uU-~1/2-
A (Inx)y 1<
- |'Sn

+ J (Uhax-If -ff+

4/5

/5
+(XT7r1/2 j dO ( u A X23 ll?*i>

1/2

Because of yz~:(l1 - «@)- A~ 0 for &« G[1/2,4/5] the first integral is of lower

order than the third. The exponent of Uv is 't 1/6 in the third integral. In
the second integral the exponent of Uu is

>0 in [4/5,8/9] and < 0 in [8/9,1 —s,]

(2.12) and (2.4) therefore give
(2.13) 4 < (In))(()ﬁ + x(In x)21-
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e|g-12(xi?)-v2J da (gM(xi?)"z-1)1<+Q-v2] da(Qa/Kk-~1)L<T+
1—c3(1lnx)-475 1—c3(lnx)-1
+ J dax°-1+Q-12 j da(Q4mx ~1)1~<}.

The third integral is
< 2FG(Am)-1/5 < (Inx)-21- A

In the last term in (2.13) the exponent of Q\ is £ 0 in [8/9,9/10], and
£ —1/18 in [9/10,1 —C3(1nx)-1]. So this term can be estimated by

9/10 1-c3(1nx) 1

[ dax<ra1 f f daQ~1r18 < (Inx)~n ~A
J

It is therefore sufficient to consider the first integral in (2.13).
26 Let Q = x® 0" a < 1/4, and, in the first case

(2.14) Q-4 " (Inx)~8(A+21\ ie. d = Q~4.

Here we have
L a .
(2.15) il <CJ(1nx§nT+ x(Inx)21 m » 2Jf da&x
1/2

The function
rr n 3 1 /3 - 6er \

/(CT)=2a 2+ (2-a X @

is maximal at
co= <o(a) = 2- (3(1- 2a))Vr2

For 0 ~ a ™ 1/8 one sees <o < 1/2. Because of /(1/2) = -a/2 in this
sub-case (2.14) and (2.15) lead to

O < x(Inx)~A+ x(In x)21 mx_er2 <C x(In x)~A.

In the case 1/8 < a < 1/4 we have f(a) 5 /(d0) < —1/16, which also implies
O < x(Inx~A.
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Assume now Q < (Inx)2(A+21\ = (Inr) s+21). Here (2.15) yields

O < x(Inx)~A + x(Inx)21(Qxi?)-1/2¢ / do”Qi-Z'd " x 2-*-1~

1/2

The exponents of Q, x, and i? are decreasing in 1/2 < a < 4/5. Hence

415

A < (1n)><()14 + x(Inx)2afla/ 2T 2>[ dad 2«}<

1/2

< x(mx)"n + x(Inx)21Qz/ 21%/2 < x(mx)-n.

This completes the proof of Theorem 1

3. Proof of Theorem 2
3.1 Let
(3.1) M >Mo and R- M1/n.
With a prime p = pm G (R/2, A] (to be chosen later) and numbers
bi,... ,bv (v <CRN"3, 0< & <...<hb,<p)
put v
Pm = U {r prime, r <M,r = bi(p)}.
At the end it will be shown that
N=p1+p2+p3 p'3erM) for M/2 <N <M, A =1(2).
3.2. The next lemma is important for the choice of Pm -
Lemma 1. ForpGP, (a,q) —1 bd 0(p), put

i%%)’ if ptq
f(p.q.a,b) o \ P/ if Q=PQUPtoU A4 = 4p),
0, if P2/q-
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Then, for £ = 255,

Y (Y + y ] max max max
RITIIRri»»*-  <*+te¢ (M -IM-'"W S«»-.-"«-.
Pt<? p\q
E AMme{{f-+R)n) - f{P,Q,a,b) "2 e(nk) < M(InM)
I<M

n=b(p)

Proof. 1. Put, for (8,9) —1and p\ b,

T=r(pb-B) = Mje( (- +B)n>

n
n=b(p)
M
and, for a character x, U{x,R) = | dzze~1e(zR)
e()=C+n 1
W<M

2. In the case p \ g one gets

r:XM[)S)SE»W-
oot x(p) X'(9)

* X] xx'(n)A(n)e(nB) + O((InM)2) = f(p,q,a,b) » A(n)e(n/?)+
n<Ai niM

+°(zT73 E k)l 2 XM)AM)e(n?) j +0(p~V/2bM)2)+

"0 PVK?) X'qu) k(X2)|n<EM x(n)A{n)e(nB) J +0((In M)2).

X=xi X2 (p)iX2(Q)
XirXo
Because of r(xi)r(x2) = Xi(?)x2(pM XiX2) andx = X*(p) one gets |r(x2)| =
=yj_1/,2r(x)| in the last sum. Treating Yh X(n)Mn)e(nR) in the same
n<M

manner as in Section 2.3, one arrives at

(3.2) T =f(p,q.a,b) £ e(/?) +0(-~-~|r(x)|C/(x"))+
<M X

+0(p-3/20y £ \r(x)\U(x,B)) +0(qz2M'(l + \R\M))
X(pq)
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in the first case.
3. If g=pqi, pt qi, then

> (-) Y. A(n)e(n/J) + 0((INM)2).
I i n<M
! n=bg1g° +cp(g)

Introducing characters, one sees, as in the first case,
(3.3) T- f(p,%ab) 2 A(n)e(nB)+
n“M

+0(-7-T E KM E AMX(»e(») )+
X(gi),x*x0 n<M

+0(p“3/28 ) E  Ne )I[E eesl) + 0((INM)2) =
XOfix/XO n<M

= f(p,g,a,b) Y2 e(no)+o0 (*y E Ir(x)I"(x,/?))+
<M

X))
+(p~13E MX)|C(x/3)) +0(,4avt(\ + UM,
\ 'P(?) W ’
4. The last case one has to treat is q —p2qz, p\ g If 22 = I(p)>

g2 = Lp2), then

r=E-Te("CP+No)E E AnITK(InM2)=

c=l y=I t=1 n<M
n=b+tp(p2),\2 (p2),cp2(i2)

atgz | ac\ Y1 A(e@3n) + 0((In M)2).
c—1 t-1 72 n<m
n=b+1tp(p2),cp2(g2)
One now introduces characters modp2 and g2- If a character x modp2 can
be defined modp, then x(&+ tp) = x(*)> an(l the sum over t vanishes. Hence

1 [abh atge\
<P(eM q2) P2 P
mE *x(b+ip) E X2(aMX3) E XX2(n)A(n)e(/3n) +0((InM)2).
X(p2 Xi0) n<Mm
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Therefore, in this case,

(3.4) T < Y2 Ir(x)IU(x,R) + gi/a2M'( 1+ \RB\M).
Xbl

5. If 4 denotes the expression to be estimated in the lemma, then by
(3.2), ...,(3.4),

J« E s max e
f <p<R g<R*'3+clBl=W ~
p\g

.(A) E Ir(*)IU(X'b)+ rf/Lq) Y \T(x)\U(x,B) + gq-1/2M 'R 2+' y
K \(u4) " y u, x(psa)

525> ® Nel/)+

+
gi 5:A1+C= Paym
P\Qi

N N ’ (
+ 3oL )x(p9l) IT(M)[1/(x*13) + oxl/2p' IME[2+e) +

P N A %
+Js. JX(%zg’Z)T OIN . «+, « )} <

Pt«2

< (E max +A 12 V max V

N &

<No+' w -y - q<Ri+c N ~am-

J-z"2q*1/2U(x,R) +MeR*+ < InM E UJiz E EN

X(51) Ws<RZHC Wi<gprdhiHir 1 a)
M
E matly N3 +hmer 1z ¢ wwe E
e(x),*7ISMAI=TWI] Werl+e  U<qeusl
M

OE E ”HX Jdzze le(zB) +M 'RM4C

x bl tf(x)»hIAM 171= UUM j
([/., like in Section 2.3).
It is easy to see that in the last sums Uu+\ < M 14 and
R 2+c R3+t
< min(C/-4,(In M )-8(3+21)),

uvm “WIm

Acta Mathematica Hungarica 61, 1993



254 D. WOLKE

if £, M, and R fulfil (3.1). Hence the last expression is of the type (2.9), and
can be estimated by <CM (InM)-3. This proves Lemma 1.

3.3. By Lemma 1 we know that there exist primes p £ (R/2,R], such

that
35) V\ ., 4 M
| Cqrsac’ e
a p\q 9 pg
where
(36 A= ppsiee=t 1<r+t
. A(n)e((- + B)n) - f(p,4,a,b) e(nB) .
n<M 9 n<M
s (V)
Such a prime p = pm will be fixed for the rest of the proof.
3.4. Lemma 2. There is a set B C No (depending on p —pm) with the
properties
(i)BQ{1,... ,p- 1), |4] < NY¥3, and
(ii) for every a £ (o,... ,p —1} the congruence a= b\ -f &+ 6modp is

solvable in &3 € B.

Proof. Following Stoéhr and Raikov (see Halberstam-Roth [4], p. 36)
one can construct a basis of third order B' Q No of No with

B'(x) =#{6 £ B',b’<x) < xw3 (x > 1.

Put Bp= {b' £ B',b” < p}. Hence, for 0 » a <p, there are bi,bk,b3s £ Bp
with
3.7 a— -f&T M
Change Bp into B as follows.

a) Omit 5= 0 from Bp.

b) Add (if necessary) to Bp the numbers 1,2,p—,p —2,b—1, b—2 (for
b £ Bp, b > 4).

Then B obviously fulfils (i). Going through all cases in which Bu = 0

occurs in (3.7), one sees that each a£ (3,... ,p- 13 U{ppl,p -f2} can be
represented as a —hi + 2+ &3 (b,, £ B). This proves Lemma 2.

By means of Lemma 2 the set PM can now be defined as

(3.8) PM = \J{re?,r =b(p),riM}.
bEB
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The Brun-Titchmarsh Theorem or even a trivial bound, and (3.1) imply
(3.9) \PM\« M1516.

3.5. The next lemma gives a bound for exponential sums on “minor
3]
arcs

Lemma 3. For e = 1/200, (b,p) = 1 (p —pm™m), (a,8) — L B\ <
N R2+eg~1M _1, and

a) R*+e < Qs ifp\q

b) R2+ <q< MR-2-', ifp \q

we have Y Ll UHJ)H)( R(Irll\/lM)Z'

n<M
n=b(p)
P roof. According to Balog and Perelli [1] one has, for M’ M and
h —(p, g), the inequality

hM 9¥2M Y2 M 4/5\

Y e(4«(InM )3(_ ., + _

o . pq 1i.1/2 + p2/5 J-
r=M'r prnne

r=6(1)

Distinguishing the cases a) and b), and using partial summation, one easily
gets the statement above. This lemma is the reason for introducing the factor
R'. One could have used (InM)c instead.

3.6. Forp —pm, b6 B put S(b,a) = s A(n)c(na), further, with
n$M

n=b(p)
£ = 1/200,
Q= Ql = B4/3+E, Q2 = R2+,
and for M/2 <N <M, N = 1(2),
S3(w) = Y, 1 (>0), and H3(N) = Y 1>
bi 28613 oy 102,00
bl Ti*2 +£>3 [+72+"3="V
For
a) q<Qi, Ptgq,or
b) 9~ Q2,P19
and (a,q) = 1llet/,/, = f- N Then the intervals la/q are

pairwise disjoint, and, because of Lemma 3, for all b G B we have

(3.10)  S(b,a) < p(1* )2, if aem=[Q.1,1- Q-1]\ U/a(>.
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Then

(3.11) D(N) = Inrilnr2inrs =
fi,ri,r3ePM

ri+r3+r3=N
1-Q-1
| daf[S(b,,a)e(-Na) +o0 (" -B 3(N)).
_|.

bib2,bzEB n
b\ +£52+ b3 = AT(p)

The last error is <CB3(N) R* M. Because of (3.10) the contribution of the
minor arcs to (3.11) is

< E I—I B3(N)M 2

bi-+H s =N(p) v—1 .

hence

(3.12) w= E (E +E>

bi,b3,b3eB g=Q1 q=Q
f>i+b. +e3=iV(p) Pt9 p\q

a=l 4 1 /=l 4

For g <Q2,p2\g, /1 5 ~ (3.6) gives s(bu,| + /3)| ™ &{q). Therefore the
contribution of these g to (3.12) is, by (3.5),

2/ r \ 1/2 a2
< E E OAM -l MS(K,c)n <B3(+0LLIFn]M)2.
bl+be+b3’\N(p)qa?rz p=l Vo 7 A

Consider next q < Qi, p f g Here we have

~ nt I=—/\NI ' AN
4 Y'=ENMNE W > +0M » -

Hence the contribution of these q to (3.12) is

b|+|>2?§tocv E E ( 4 HE(('I(( +

|fl|<<op,), n=M
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+A(?)» I HE W« ¥
1/2
+m T){ I (T ISt )l *
im(QQ)-1 “€/olg
172
+A(ON( | da|S(6,.a)5

V-1 a€l/«|.

Again, with (3.5), this turns out to be <B*(N)pp”~M)2e
In the same manner one sees that for q < Q2, 4 = p<fi, p\ g\, the sum

S(b,,,a) can be replaced by
(3.13)

~ N -
(~p") !<Me(n8) Therefore

*w= E E E *«(-2)5T1"0 + b +b)).
bi,i2MeB  q=pg"Qza=\ 4 W VML A
bi +b2+b3=N(p)  pttr
33
! Mn<M
aQ
(aQ)-1 12
Changing f into J one gets an error
-fa«)"1 -1/2
. 0) Bs(N)M2
<jwo> E B, o <
J (=i | B A2in M
This, with (3.13), implies
H3(N
(A0 = 3(N) J(o1)
" brMB3EB qy<@lp” ~
bi+b2+b3=N(p) p\qi
/A" M 2
E X>(<* "M -y)

d=1/=1
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B3(N)H3(N) v rtgi)cqi(-N) M2 \
+ 0 M
(Pr1)2 Bisvam F3bl Azin M/
Ptil
_B3(N)H3(N) u / cr(-N) M2 \
R? rTeoﬁ)V (\r/—l)39+0(83(|0,£l,2InM/’
The last product is 1, consequently
(3.14) 0(WNV) = #{pi,p2P3 € Pm,Pi+P2+pP3=N}>1
for - <N~ M, iV = 1(2). If one puts - 2" and
P' =
vivo

then (3.9) and (3.14) imply the statement of Theorem 2.
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ORDER OF STRONG UNIQUENESS
IN BEST LagAPPROXIMATION
BY SPLINE SPACES

M. SOMMER (Eichstatt) and H. STRAUSS (Erlangen)

I. Introduction

Let X be a normed linear space and let Un denote an n-dimensional
subspace of X. A function uo G Un is called a best approximation of a
function / € X from Un if ||/ —r/O] W I/ ~ ull f°r each u £ UnmIf / has
a unique best approximation u{f) from Un, then one is interested in the
behavior of n —u(f) for every function n ¢ Un satisfying

() -l E I -l +*

as 6 —»0. This is the so-called strong uniqueness problem. If for a function
/ GX and any un G Un satisfying (1.1) with some 0 <6 ” 1, the relation

\W-u (F)\WAK (f)6n

holds where 0 < 7 ~ 1 and K(f) > 0 is independent of u and s, then 7
is called the order of strong uniqueness at f with respect to U,,. Moreover,
u(/) is called the strongly unique best approximation of f from Un of order
7. In the literature the following equivalent statement of the above property
is often used: For any u G Un such that W/ —u|| < W —u(/)|| + 1,

(1.2) N/ - «l > 11/ - «(/)| + STNIRE

(The reason why we consider only such functions u£U n satisfying ||/-u|| *
= I/ —pn(/)|| + 2 consists in the fact that (1.2) does not hold if 7 < 1 and
WM\ -» 00))

Kro6 [1] studied the problem in the case when X = Cr[a,b] endowed
with the supremum norm, and Un denotes an n-dimensional Haar subspace
of X.

In this paper we consider the case when X = C[a,b], the space of all
real-valued continuous functions on the compact interval [a, ] endowed with
the supremum norm ||/|| = max{|/(x)|: x G [a, e]} (/ GC[a,b]), and Un =
= 5m(A), the subspace of spline functions of degree m with k fixed knots
at . Nuarnberger [2] gave a characterization of those functions in CJa, ]
at which the order 7 of strong uniqueness with respect to 51 (4) is equal
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to one. We are now interested in those functions / G C[a,b\ which have
a unique best approximation u(f) from Sm(A) but u(f) is not strongly
unique of order one. Using a characterization of unique best approximations
from Sm(A) given by Nurnberger and Singer [3] we are able to determine
the order of strong uniqueness at / for all / in a wide subclass of C[a, b]
(Theorem 3.3). Moreover, we show that the order given in Theorem 3.3 is
sharp (Proposition 3.5).

Il. Characterization of uniqueness and strong uniqueness
of order one

Let A = (Xi,... . )X} with a=x0 < x\ <... <x™i = bbe a partition
of [a, 6]. Then the space of polynomial spline functions of degree m (m > 1)
with K fixed simple knots at A is defined by

51 (4) = {s: s is (m —I)-times continuously differentiable and
si[ii,ii+l] is a polynomial of degree at most m, 0 < r~ k}.

In order to define the 5-spline basis of 51 ([) we introduce additional
knots

X_m< X_m-i < ...< X_i < a, b< X2 eee < Am+fe+l™

It is wellknown (see e.g. Schumaker [4]) that dim5m(A) = m -fk+ 1
and there exists a basis {50,... ,Bm+kj of Sm(A) consisting of the so-called
5-splines which satisfy the following properties:

5/(x) >0 for every x G (x/_m,xi+i),
5/(x) =0 for every x $ (x/_m,x/+1), 0 <|<m + k.
Moreover, it is wellknown that there exist functions in C[a,b\ which have
at least two best spline approximations.
We call the points a * t\ <...< tr <b alternating extreme points of a

function / G [a,6] if eo()If(ti) = ||/|], 2<I<r, a G{-1,1}. We count
the number of alternating extreme points of / in a subinterval | of [a, [ by

Aj(f) = max{r: there exist r alternating extreme points of / in I}.

The following characterization of strongly unique best spline approxima-
tions of order one was given in [2].

Theorem 2.1. Forf G C[a,6] and so ¢ 51 () the following conditions
(2.1) and (2.2) are equivalent:

(2.1) so is the strongly unique best approximation of f
from Sm(A) of order one.
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(2.2) ARDb](f- s0)~Z m + Kk +2 and A[aX)(f - sO) > | + 1,

AQkH-,b(f- 50) >/+ 1, 1<I<k, and 14 *T+T1+|)(/ - 50) > M- 1,
if (xr,xr+l+m) C [a, 6], i > 1.

The alternation properties in statement (2.2) were firstly introduced in
[6] ensuring uniqueness of best spline approximations. In that paper it turned
out that alternation properties do not suffice to characterize uniqueness. One
has also to consider the behavior of the error function in a neighborhood of
certain knots.

For this reason the following notation was introduced in [3].

D efinition 2.2. A function / GC[a,6] is called flat of order m from
the right (resp. from the left) at to G(a, 6) if there exists a sequence (A/) C
C (0, b—t0) (resp. (A) C (o-io, Q)) converging to zero such that lim(|/(to+A/)—

(

_I(*0)|/|Ai|m) = o. B

Using this definition the following characterization of uniqueness of best
spline approximations was obtained in [3].

Theorem 2.3. Forf £ C[a,b] andso £ Sm(A) the following conditions
(2.3) and (2.4) are equivalent:

(2.3) so is the unique best approximation of f from Sm(A).
(2.4) (a) AIOH(/ - sO)>m + k+ 2 and AfaiX](/ - s0) > I + 1,
4r*+_,b](/~So)>/+ 1, and APAXr+HnH](f-s0)>1 + 1,
[@»*r+m+1] C [a, &, / N 1.
(b) If Af[atXl)(f - So) = | resp. ADXIXr+HmH)(/ - sO) = 1 (resp.

A (Xk+-,,b](f- so) = 1 resPmA(xrxr+mH](f- So) = 1), then f - So
is flat of order m from the left at xi resp. xr+71+/ (resp. flat of
order m from the right at resp. xr).

I1l. Main results

At first we extend the property of flatness of order m to order m + a
where a > 0.

Definition 3.1. A function / G C[a, 6] is called flat of order at least
m + a from the right (resp. from the left) at to G (o, b) where a > 0 if
there exist a positive constant M and a sequence (A/) C (0,6 —to) (resp.
(Ail) C (a —t0>0)) converging to zero such that

/(to + AV) - /(t0)] » M\X,[+a for all / GN.,

Using this property we will now determine the order of strong uniqueness
at / for certain functions / G C[a,6]. To do this assume that / G C[a,6]
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has a unique best spline approximation s(f) which is not strongly unique
of order one. Then by Theorems 2.1 and 2.3, / —s(f) is flat of order m at
certain knots. Let
Zi(f) = {x- £ A:/ —s(f) is flat of order m from the left at x- and
AlaXi)(f - *(/)) = i or ADd_m_rtXi)(f - s(f)) =,
if [x,_m_r,x,) C [ab] (r > 1)}

and

Z2(1) —{x, £ A: | —s(f) is flat of order m from the right at x- and
A(x.bl(f - S(/)) = k+i- ior AGC)lj+tm+](/ - s(/)) =,
if (xi,x,+m+r]C [a,b] (r > 1)}.
We will show in Lemma 4.1 that there exist closed knot subintervals
I[ = [xi(,X2f], L / = riof [°jb] such that

li<...</r,ie ifxe li, yeli+i, then x<y, I<l<r - I,
s(f)\il is the strongly unique best approximation of f\jt

A from 5m(A)lj, of order one,
v 7/is maximal, i.e. if [xu,x,,]n//"0 and [xu,x,]n([a,6]V/i)"O0,
then ~(/)|[Xui,,] is n°t strongly unique or order one, 1</"r,
there do not exist r+ | intervals with the above properties.

Now let
( J = Xoixi)iti], N I<r- 1,
Jo = [a,xhi], if xi,i > a,
Jr — or N .

Without loss of generality we may assume that x*i > a and x2r < b
We now introduce a subclass K of C[a,b] and determine the order of
strong uniqueness at / for every / £ K. Define

K = {/ £ C[a,b\:  has a unique best approximation s(f) from 5m(A) and
for every x 6 Z\(f) U Z-z(f) there exists a strictly monotone sequence
(AY) as in Definition 2.2 resp. in Definition 3.1 and a positive constant
Nl such that |Af/A/+i| ~ N1 for each / G N}.

Remark 3.2. The class Kk contains at least all such functions which
have a “good behavior” near the points x £ Z\(f) U Zi(f): Let / £ C[a, h|
have a unique best spline approximation s(/) and assume that for each x £
£ Z\(f) U Z2(/) there exist real positive numbers M, £ and a such that

I(/(x + aA) - e(/)(x + a\)) - (/(x) - s(/)(x))| < MXm+a
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for all TG (0,e]where a = 1,if x GZ2(/), and a = —4, if x GZ\{f). Then
| € K.

More generally, if / G Lip(m §-a) in a right-hand neighborhood of x, if
x GZ2(/), and/ GLip(m-fa) in aleft-hand neighborhood of x, if x G Zi(/),
then also / GA.

Now let intervals Jo, ee+,Jr be given asin (3.2). Ifforsomei G {0,... ,r},
- Zi(/)| = //,, the number of elements of J, M Zflf), then there exist
knots {2,7,... ,2"} = O MJ-NZ\(f) such that / —s{f) is flat from the
left at 27 of order at least m + ay for some ay t/> 0, 1~ [ ~ . Set

rlo 7/ (in + a,;). Analogously define Q, JJ Wu/(T + au) where
i=
A I'IJ{ r\Zz(f) —{21,... ,27,} and f —s(f) is flat from the right at 27 of

order at least m + Oﬂfor some ay ~0,1$/~ i/~ If forsomei G (0,... ,r)
fii = 0 (resp. vi = 0), we set pi = 1 (resp. Qi —1). Then we define
(3.3) 7 =min{P,, Qi\0"i~"r).

We are now in the position to state the main result of this paper.
Theorem 3.3. Letf GK. Then for every s G5m(A) such that

(3.4) " ~5n= 0/ —s(f\W\+~7
where o0 < 6 < 1, we have
(3.5) lke- *(N)|| < K{f)P

where 7 is the integer from (3.3) and the constant K(f) > 0 is independent
of s and 6.

(Hence the order of strong uniqueness at / with respect to 5,n(4) de-
pends on the order of flatness and the number of flatness points.)

Remark 3.4. At the end of this section we will present a function / G
G C[a, ¢ such that / —s (/) is flat of order m at a certain knot x G and it
is not flat of order m+aatx forany a > 0. Hence by (3.3) 7 = 0 and then
by Theorem 3.3, zero is the order of strong uniqueness at / with respect to
Sm(A).

Moreover, every / which has a unique best approximation from 571 (4)
but it is not contained in K has at least order 7 = o, because it follows
from ¥/ —s|| w I/ - s(/)|| + S where s G57(4) and 0 < §< 1 that
\Ws-s(f)yHm-s(f)\\+i = K(f).

The following proposition will show that the order of strong uniqueness
given in Theorem 3.3 is sharp.

Proposition 3.5. For every set of positive real numbers o7,... ,ap and
every 1 < P ™ K there exists afunction f G K and P knots {xfl,... ,x,p}
such that f isflat from the right of order m +aj atx,”, 11 j = P- Moreover,
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there exists 0 < 8 < 1 such that for every 0 < 8 < 6 there is a function sg E
E 57 (4) such that ||.s(/) —5i|| Mc57p and

(3.6) Wf-ssUVF-s(f)\\ +6 (0 <6 <s)

P
where %p = M ay/(m + aj) and M is independent of f and S.
i=1
We now present a function which is flat of order m at a knot and not
flat of order m + a at this knot for any a > 0.
Example 3.6. Leta—x0= —1,xj =0,b=a2= landlet/ e C[—L1,1]
be defined by

', ifx=—4
-1, if x E {-1/2,1}
1(*) \ _am+linx|-1/2 jfo A x A 1/2
linear, elsewhere.

Then an easy calculation shows that /(0) = 1 and / is flat of order m at
x\. Moreover, it follows that / E K, ||/|| = 1 and s(f) = 0, the unique best
approximation of / from Sm(/4,) where A = {0}. Now we show that / is not
flat of order m + e for any a > 0. Ifa > 0, then xm+llngl 12 / xm+" =
_ x-a+linx wz_Since lInx|-1/2 —0as x \ 0, there exists an e E (0,1) such

that 0 < |Inx|-1/2< a/2 for every x E (0,e]. Then xlInxl 12 > x*/2 for ev-

ery XxE(0,e]. Hence x~“+lInxl 12> x_Q/2 and therefore, x_a+lInxl 42 —oo0,
if x\ 0.

IV. Proof of the main results

In this section we prove the statements given in Section Ill. Throughout
this section let / E CJa, 6] and assume that / has the unique best approxi-
mation s(f) from 51 (4) which is not strongly unique of order one. Without
loss of generality we may assume that s(f) = 0.

Lemma 4.1. The conditions (3.1) are satisfied.

Proof. It follows from Theorem 2.3 that A"a*(f) > m + k+ 2. Then
by a simple combinatorial argument there exists a subinterval [x- x.+j] of
[a, B such that Api=dH](f) > m +j + 1and ADEXadtgl(f) S m + gin every
proper subinterval [xp,xp+g] of [x;,xf+J].

We will show that | = [xj,x,+]] satisfies (2.2). Let T = (to,-- - fim+j}

where x- < to < ... < tm+j 1 Xi+j are alternating extreme points of /.
Then by the choice of T, [x-t+/, x,+J] contains at most m + j —1 points of T,
1~ /% j —1 Hence, ti < Xi+/, 1</~ j —1. Analogously, > x1+) /,
I</gj-1.
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Now assume that for some | > i and r > 1, (x/, x/+m+r) C [X,-X,-+].

Since [x,-x/] contains at most m + | —i points of T and [X_|m{r, x,+y] at
most i + ] —I —r points of T, the interval (x/, x/+m+r) contains at least
m jA+1—m+I1—i)—(+j—I—r) —r-flpoints of T. Thus, we have

shown that / satisfies (2.2) on I. Then by Theorem 2.1, 0 is the strongly
unique best approximation of / from 5t () of order one on I. We may
assume that I is maximal, i.e. if [xu,x,,] ¢ I, then 0 is not strongly unique
of order one on [xu,x,], i.e. (2.2) is not satisfied on [xu,x,,].

Now suppose that / = [xp, xp+g] is also such a maximal strong uniqueness
subinterval of [a, b] and assume that | ¢ | and I /11 ¢ 0. Without loss of
generality we may assume that xp < x,. Then xp+tg £ [x;Xx,-+J). We show
that / satisfies (2.2) even on [xp, X,+J] which yields a contradiction to the
maximality of I and I. Let T = {io>... ,tm+g} where xp<to<m..<im+qi
~ xpt+g are alternating extreme points of /. Since / satisfies (2.2) on I, [xp,X,)
contains at least i—p + 1 points of T. Then ADGX .J(/) >m+i+j —p+ 1
Moreover, since ADXPHET) > 1+ 1, 1 <1 <i- p, and Ap<XH)(f) >1 + 1,
113, it follows that MDOXpH)(/) ~ 1+ 1,1~ ~r+j-p. Analogously,
A< M 1(H)>N-1,1</<r1 +;-p.

Now let (xr,x™t~) A [xp,xqjf] (/~ 1, r™M1). If xr A x, or XtAT A/ A
i xp+q, then by the properties of | and /, AQMGX )(/) >1+ 1. Hence
assume that xr < x- and xr+rn+/ > xp+g. If xrm+u = x, for some un €
G{1,...,/- 1), then AriXr+mtu)(/) >u + 1 Then, since A[xiiXr+m+)(/) >

r+m+/-i+1, it follows that AQE Xr+mH) (/) >u+r+m+f—i+1 = /+ 1 If
xr+m+l > X- then AXgXr+m+()(/) > ADXXrHmH)(/) > r+m+/-i+1 > [+ 1
Thus, we have shown that / satisfies (2.2) on [xp, x,+y], a contradiction.
Hence for every two maximal strong uniqueness intervals 4, /2 with /2 *
® /2 we have /2 < 72 or /2 < [/j. Now considering the intervals [x0,x,]
and [x,+j, Xcti] we can conclude as above and find all other maximal knot
intervals on which 0 is the strongly unique best approximation of order one.
a

In the following statement we study the relationship between strong
uniqueness intervals as in (3.1) and the points of flatness of /.

Lemma 4.2. Let xp £ Z\(/) (resp. xp £ Z2(f))- Then the following
conditions hold:

(4.1) There exists a subinterval | = [x,-,x,4j] of [xpXfcti] (resp. of
[xo,xp]" such that f satisfies (2.2) on I.

(4.2) If x, is minimal under condition (4.1) (resp. Xx,+J- maximal under

conditions (4.1)", i.e. there does not exist any other interval | = [xp, x"+j,]
satisfying (4.1) such that xp < xp < X, (resp. X1+ < xpt+l/ < xp), then
x\ 1 Z2(f), p<1 i- 1 (resp. xi €Zfif), i+j+1</<p).

PROOF. We only treat the case when xp £ Z\(f). (The other case will
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follow analogously.) By definition of Z\(f) we distinguish two cases:

(i) Let AlaiXp){f) = p. Since by Theorem 2.3, A[la*(f) >m +k + 2
and Afaip](/) = p + 1, it follows that ADXpb](/) » m + K —p + 2. Then
using the arguments in the proof of Lemma 4.1 we can find a subinterval
I = [xi,X{H] C [zp,6] such that / satisfies (2.2) on | and X, is minimal
under (4.1).

(i) Let App_m_riXp)(/) = r where [zp_m_r,zp) C [a, xp) (r > 1). Since
by Theorem 2.3, Appm R f) > k-p+m +r+2and Allp_m riXg(/) = r+1,
it follows that A[XpH(f) » Kk —p + m + 2. Now arguing as in (i) we find a
subinterval | = [x,;,x,~+]] with the desired properties. This proves statement
4.1).

( )To prove (4.2) assume that xi £ Z2(f) for some | £ {p,... ,i—1). We
distinguish once more.

(a) Let di(Xbb](/) = k + 1 —I. We have shown in (i) and (ii) that
AD@B](f) » m + k - p+ 2. This implies that ADQX|(/) > m +1- p+ 1
Then arguing as in the proof of Lemma 4.1 we find a knot subinterval | of
[xp, xi] such that / satisfies (2.2) on |. This contradicts the minimality of z-
in [xp,b\.

[(?3) Let ACX@X+mH](/) = r where (xj,z/+m+r] C (z,,6] (r > 1). It follows
from (2.4) that AlaX+tmH](/) >1+m +r + 1. Now we use again the fact
that xp £ ZfIf). If A[(XP)(/) = p, then ApQIX+mp)(/) >/ + m+r- p+ |
and therefore, ADPX](/) |1+ m—p+1 Asin (i) we get a contradiction to
the minimality of z,.

Finally assume that ADXp_m pX) (/) = g where [xp_m_c,zp) C [a,xp)
(Q” e Then, since by (2.4), Allp_m fiX[+m+r](/) lg-p +1+m+r+ 1 it
follows that ADEN|(/) >g —p +1+m+r + 1 —g—r=1+m- p+l. As
above this yields a contradiction. O

In the following three lemmas we consider certain subspaces of 51 ()
and determine the order of strong uniqueness with respect to these subspaces.

Lemma 4.3. Letf £ K and assume that there exists a knot subinterval
[Xp, xp+m+r] of [zi,.Zfc] (r > 1) such that f has alternating extreme points
Xp~to t\< .. 'Cir zplim]r (resp. Xp to t\ ... tr —zp{m"r)
satisfying
(4.3)

ti £ (xpa/, zp(Kra), 1~ 1~ T (resp. t[ £ OP™i,XpNi+m), O 1~ 1 1)

Moreover, assume thatxp £ Z2(f) (resp. zp+TO# £ Z\(f)) andf isflat of or-
der at least m +a (a ™ 0) at xp (resp. at xp+Tn+r). Let S —span{2?m+p, ... ,

Bmp+r-1) and 0< 6 < 1. Ifs £ S satisfies \f - s|| ™ ||/|| + K\e™ where
K1 >0 is independent of f and 6, and 8 > 0O, then

Is]| < K2baR,(m+a)
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where K2 > 0 is independent of s and 6.

Proof. Recall that s (f) = 0. We will only treat the case when to = xp

and xp G and o > 0. (The other cases will follow analogously.)
m+p-fr—
Let 0 < $” land s — ai™i such that W/ —sj|| < ||/|| +
I=m+p

Without loss of generality we may assume that f(xp) = ||/||. It first follows
that HI < 2]|/|| + A'i™ < 2W 1+ N1 Ifx G [zp,zpti], then by the properties
of the 5-splines s(x) = am+pc(x —xp)m where ¢ > 0 is independent of /, s
and 6. Hence

*m+p| < (2L/11 + Ki)/(c(xp+1 - XPD = C,

i.e. amHp is bounded. We distinguish two cases.

(i) Let am+p > 0. Then there exists an e G (0, ap+i —xp) such that
f(x) = 2/3]||/|| and 0 < s(x) < 1/3L/LL for every x G [xp,xp + €}. Define
| GCJa,b] by

) if X €[xp,xp+ £],
f\\, if x G[xp,xp+ e/2],
W+ (2/£)(a;- ap-£/2)(/(a:p+1)-||/|]), if * G(xp+e/2, xp+e).

Then Ul = KII, f(x) > 2/3L/L, for every x G [xp,xp+ €] and / has alter-
nating extreme points xp < to < ... < tr < xp+m+r where to —to + f/2,
ti = if, 1< 1 <r. Hence if G (xp+i,xpti+m), 0 </ £ r. Moreover, it follows
that ||7 —s|| < II/ll + KiSt. Let q G{0,... ,r} be arbitrary and set if = if,
0<l<aq,ti- tt+l, g<l <r - 1 Then i; G(zp+/,xpt/[+m+i), 0 <l <r- 1
From this and Nirnberger [2, Corollary 1.6] it follows that 0 is the strongly
unique best approximation of f from S of order one. Therefore ||s|| * Ke”

where K > 0 is independent of s and s.

(if) Let am+p < 0. Since / GK and xp G *2(/)> there exists a strictly
decreasing sequence (A/) converging to zero such that f(xp)—f(xp + A~
< MA]"+* and Af/A/+1 < A for each | GN. Waithout loss of generality we
may assume that xp+ < xpJ\ and f(xp+ Af) > L/LI/2 for each | GN. Let
AG (Af). Then

(/(zp+A)-s(xp+ A)2= (f(xp+ X))2- 2f(xp+ X

S 1IH/-»12S (17 + i W2+ ci«

where Q > 0 is independent of s and 6. Since xp - A< xp+i, it follows that
s(xp+ A) = am+pcAm. Then it follows from the above inequality that

am+Pe\m > -(11/112- (f(xp+ A)2+ CIM)/(2f(xp + A)) >
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N-((UH - I(p + AN+ F(xp+ A) + C) ] >
A —2|/IMAm+a + CI)/[]/]] > -(c2Am+a + dO/11/L,

This implies |am+p| < c3Aa + cad:A rn for each AG (A/) where c3and ca4 are
positive real numbers independent of s and 6.
We distinguish two cases. If 63/(m+a) > Ai, then setting A = A] we

obtain
lam+p| < ¢3*/(m +a) + CAG3A-m < ~gaRfim+c)

where G5 > o is independent of s and & If Al+i < €/(m+a) < A for some
I GN, then setting A= As+1 we obtain

l«m+p| < CBA*+1 + cY \-™ A ¢c3N [(-+ ")+ ¢c Y \; TAT <

< ¢ B<*R/(™M+°) | cdi/3_mArAm+°)IT < c5@®/3* m+an
where G5 > o is independent of s and 6.

Now we have to estimate the coefficients am+p+i, ... ,amap+r_i ofs. Let
m-f-p-f-r—1

S = aiBie Then 11/ - 510 - lHam+p#m+pll < 11/ - s|| < W\ + 1i\S0
I=m+p+1

which implies that ||/ —S|| < ||/|| + KSaP/(m+a) where K > 0is independent
of s and 6. Then, since (4.3) is satisfied, applying the arguments in case (i)

to the space span{.oTOtp+,... ,Hm+p+r_i} we get that ||s|| 5 Kea0/(T+a)
and

HI A 15| + |at+p|||BT+p|| < K6a0Bm+a)

where K > 0 is independent of s and <& O
The following statement can be proved analogously as Lemma 4.3.

Lemma 4.4. Letf GK and assume that there exists a knot subinterval
[xp, xg] of[xi,b] (resp. of[a,Xk]) such that f has alternating extreme points

Xp — to ~ il A~ L. tq—p Xq (reSp. xp < to ~ t\ tg—p —
—xu) satisfying ti G (xp+/, xpH+m), —p —  Moreover, assume
that xp G Z2(/) (resp. xq G and f is flat of order at least m + a

(a >0) at Xp (resp. at xq). Let S —span{f?m+p,... ,BmHg- 1} (resp. S =
- span{5p,... ,Bg-i}) and 0< ©< 1. Ifs GS satisfies ||/-s|| < WA\ + K\s0
where K\ > 0 is independent of s and & and /3> 0, then

HI ™ ii2sa0/(m+a)
where K2 > o is independent of s and 6.

Lemma 4.5. Let f GK and assume that there exists a knot subinterval
[xp, xp+m+r] of[xi,Xk] (r > 1) such that f has alternating extreme points
xp =to <ti <... <tr= xptm+r satisfying

(4.4) ti £ (xpH,xpH+m), I<I”r-1.
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Moreover, assume that xp £ ~ (/) and xp+m+ e Z\(/) and / isflat of order
at least m + a (a >0) at xp and of order at least m+ & (& > 0) at xp+m-+r.
Tefa <a and S = span{f?m+p,... ,R m+p+r_x} and 0 <8 <1 Ifs £ S
satisfies Y/ —s|| ™ ||/]| + K\s™ where K\ > 0 is independent of s and & and
B >0, then

Is|| < tf2ie0/("*+*)

where K2 > 0 is independent of s and 6.

Proof. Let 0 < 6 < land s — X) aiBi such that ||/ —s|]| <
I=m+p

<1/, + 1i\80. Then s(x) = aratpc(X - xp)m, if X £ [xp,xp+l], and s(x) =

— ®m+p+r-ir("m+p+r , ifx £ [xm{pp i,3-T+p+rj where ¢ > 0 and

c > 0 are independent of s and 6. As in the proof of Lemma 4.3 we show
that

I“m-+p| - ¢, I"M-F-p-pT"—218: C
for some C > 0. Without loss of generality we may assume that /(xp) = ||/||.
We now distinguish three cases.

(i) Let am+p > 0. Then analogously as in the proof of Lemma 4.3 we
define a function / £ C[a, ft]. Then ||/|| = ||/||, W - s|| ™ |[/|| + K\s™ and f
has alternating extreme points to = xp + J1< ti < ... < tr = xp+m+r such
that ti £ (xp+/, xp+(+m), O fi I ~ r —1. Then by Lemma 4.3 it follows that
INI = A<a”/(m+a) where K > 0is independent of s and s.

(ii) Let am+p+r_x/(xp+m+r) ~ 0. As in case (i) we show that ||s|| *
<KgaJ(r+ah

(iii) Let am+p < 0 and am+p+r_i/(xptm+r) < 0. Assume that r — 1.
Then /(xp+TO+) = —MIl and arat+p+r_x = am#p < 0. This implies
am+p+r_x/(xp+m+r) > 0, a contradiction. Hence r > 2. As in the proof
of Lemma 4.3, case (ii) we show that

|am+P| < K sa0/(m+a\ lam+p+r_x| < K6&/3'(m+a\

m+p+i—2
To estimate the coefficients am+p+x,... ,am+p+r 2weset s — X) alB{
i=m+p+l
Then
11/ — 5| - Jlam+p-Sm+p]||] - |Jlam+p+r-IBm+p+r-I|]|] ~ L/ — =@ /I + & 1 »

which implies that L/—5|| < ||/|| + A'*°~/(m+a) where K > 0 is independent
of s and 8. Then, since (4.4) is satisfied, we conclude analogously as in
Lemma 4.3, case (ii) (with-respect to span{Rnrp+x,... ,B m+p+r_2}) and
obtain ||s|| < KsaPfim+a\ Then it follows that ||s|| * ||5]| -f |am+p|||8 m+p]|| +

+ |am+p+r-iHI-Sm+p+r—ll 1 KgaPKm+al where K > 0 is independent of s
and s. O
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Now we are able to prove the main result.
Proof of Theorem 3.3. Let/ E K and assume that s(f) = 0. More-

over,let 0 < &~ 1and s — | ai™i such that u/—sj| < ||/|| + € Assume
=)
that are subintervals of [a, 6] such that the conditions (3.1) are sat-

isfied. In particular, it follows that I\ < ... < Ir. Set I\ = [x,-x,+j]. Since
0 is the strongly unique best approximation of /|g from 571 (4)|/1 of order
one, it follows that

m+i+j- 1
I=i
where K\(f) is independent of s and 6.

Now we want to estimate s on [a, x]. If » = a, then we are finished.
Hence assume that % > a. Then we show that

(4.6) o .k} N z2(/) =0.
Assume to the contrary that xp E ~r(/) for somep E {1,... ,i - 1). Then
by Lemma 4.2 there exists a subinterval 1 = Dxu+,] of [a,xp] such that /

satisfies (2.2) on /. Then by (2.1) Ois the strongly unique best approximation
of /|/ grom 51 (A)|/ of order one. This is a contradiction to the assumption
that L is maximal and also the number I of the intervals ,Al'm This
proves (4.6).

Now we show that

(4.7) x, e Zi(f).

Assume that (4.7) does not hold. Then we have to consider the following
two cases: There exists some p e {1,... ,r—1} such that xp e Z\(/) and
xIT Z\(f), p+ 1</<i,or {rb ... ,}MZ\(f) - 0. We will only treat the
first case. (The other case will follow similarly.) By Theorem 2.3 we have to
distinguish:

(4.7.1) We first assume that Alax )(/) = p. Since x§ ~ Zi(/), pt1 2 I <
A, it follows from (4.6) and Theorem 2.3 that AlgX) >/ + 1,p+1</<r,
and AXxiiXi+m+) (/) =9+ 1 where («/, }+m+q) C Dip, k] (g > 1). This implies
that AD@X)(/) >/+ 1—p, p+ 17~/ <r1. We show that condition (2.2)
is satisfied after replacing [a, 6] by the interval Dip,x,-+y]. Since by (3.1), 0
is the strongly unique best approximation of /|g from 571 (4)|/1 of order
one, it follows from Theorem 2.1 that Am+j+ 1 A O )() >
:1+!, A (X, +3-,,*,+,1(/) /\I +l 15 n 3, a-dA (x,,x,+m+q)(f) ~ Q + l

(g>1) where/\(»(/,»(/ T+40) C 1\. Combining the abgvg statements we obtain
ALxpxi+i](F) - m j = T1and Appxp/) T+, 1<<itj- o
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Now we show that >14 1, 1£1£i+j—p. Thisis true
by the above statements, if 1 < | £ j. Moreover, \ij <1 <m j then
*+>]() A AxixiH](f) = m+j +1>/+ 1 Hencelet m+j <I<

<i j—p. Theni+j—/<i—m. Since x\ £ Z\(/), p+ 1<1£ i, and
X~ Zi(f), 1< 1 <i—1, it follows from Theorem 2.3 that AC§H._JX) (/) >
>1-j-m+1 ifm+j <lI<i+j - p. This implies that A(X+y_liX+](/) >
>1-j-m +m+j +1=1+1. Now we show that (X, xjHm?) (/) » 9+ 1>
if (x/,x/+m+g) C [xp,X,+y] (@ > 1). By the above arguments it suffices to
consider the case when xp < X < X < x/+m+g £ xi+j- As above it follows
that A[liXI+m+i)(/) >1 +m +q-i+ 1 Then AX+Hm)(f) >q+ 1, if
/> i—m. Butifl <i—m, then AGLX)(/) > i —I —m + 1 and therefore
A{xhxl+rn+q){f) ~ i-1-m +1+m+q- i+ =9+ 1 Thus, we have
shown that [xp, x1+]] satisfies (2.2) and therefore, o is the strongly unique
best approximation of / \pxi+J] from 5m(A)|[XpjXt+] of order one. This is a
contradiction to the maximality of I\ and proves (4.7.1).

(4.7.2) We now assume that V4> m ,,%,)(/) = q where [xp_m_,,xp) C
C [a,xp] (g > 1). Asin (4.7.1) it follows that AfaXi)(/) >/+ 1,p+1</<*
and AKX+ (/) >9 + 1 where (x;,x;+m+(,) C [xp,x,] (g > 1). Moreover,
since x, M Zi(/), p+ 1< 1<, it follows that ADo m IX()(/) >/+q- p+ 1L
Hence it follows that A[x N1+ 1—PiP+ 11~ 0. Thus, we have the
same hypotheses as in (4.7.1). Then concluding as in that case we obtain a
contradiction. This proves (4.7).

Now assume that for some q € (1,... ,i—1), xq £ Z\(f) and X * Z\{f),
g+ 1 £/ <i. (If no such integer q exists, set xq = a.) We show that

(4-8) aKidX(/)>:-9 +i.

Since by (2.4) A[@X](/) > i+ 1, (4.8) follows, if xq—a. If not, then xq €
£ Zi(f). Then using similar arguments as in the proof of (4.7) statement
(4.8) easily follows. Now we show that

ere exists an xp £ [x,j,xt_X] such that / has alternating
extreme points xp £ to <emm<ti-n i xi and ti G (xp+/_T1 ,xp+/),

1</< r-/r-1.

By (4.8) there exist alternating extreme points xg<to < ... <t{-q £ x, of
/. Then (4.9) is trivially satisfied, if g = r—1. Hence let g < r—L. Since x, £
€ Z\(f), it follows that x; is an extreme point of /. Then without loss of gen-
erality we may assume that =X, and to, ..., are maximal, i.e. if xq<
sto < ..q‘ti-.q —X{ are alternating extreme points of /, then \ £ i/, 0£/£
<i —q
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Now we show that for some /i 6 {q,... ,i —1} the set U
satisfies (4.9). We distinguish two cases:

(49.1) Let i—q ~ m + 1. Then for all 4y E {q,... ,i —1} and all
1</<r —r—Ilwe have

fli—g+l = N fli—g = fo = wg N — —me

Hence it follows that tli_gH > x"+;, 7,1 " /<r——I, qu d<i—L1

Now assume that there exists no x» e {x9+i,..., X,_i} such that <
< XM, LM/<1 —p —1, and iMg * xM Hence < X, i, if/lr=1i—1,
ti-g-2 <x,_ 2, if X=t—2,... ,ii < xg+i, if /r= g+ 1 But this implies that
ti <xgH, | <l <i- g—1, and therefore (4.9) is satisfied, if X= q.

(4.9.2) Leti—q> Tm+l. If ~x,_rforsomel E {1,... ,m+1}, then
applying case (4.9.1) to the interval [x*_/,x,] we can verify the existence of
an E [x-_f, x,_i] such that (4.9) holds. Hence assume that < X;_],
ifl =f=m+1- Letre {m+ 2,... ,r—q} be the maximal integer such that
ti-g-r ™ x;_r. Then it follows that > X, m_;, ifr—m </ < r—L Since
by (4.6) x, mi ™ Z2(/), 1</ <r—m —,it follows from Theorem 2.3 that

*1(/) ~ 1+1,12 It r-m-1. Then by the choice of

> X, mi, I </<r —m —1 Summarizing we have f, g_; > x,_m_f,
1</ <r—1 Moreover by the choice of r we have+,_¢g_/ < X, /, 1</ <r—L
Then setting 4 —i—r and i/ = U_g_r+j, 0 </ < r—x, we can conclude from

the above inequalities that t\ & (x*+/_m,x"+j), 1 </ < r —1. This proves
(4'9?\'Iow we are able to estimate s on [x",x,] where xu is chosen as in (4.9).
To do this let S = span-fHA,... | Recall that s = m-_\_k al™l such that
[1/ - 50 = 1/1l + 6. Then for x E [x"x.+]], =0

m+t+j-1
s(x) =S(x)+ aiBi(x)
I=i

-1
where s = ~ aiBi E S. Hence it follows that
i=n

IKL - s)|[[Wj+i]|| - [|(5- S)IPMBH] <1V - 4 <qva1 + =

Using this inequality together with (4.5) we obtain

(4.10) H(/-5)|[W ITH 11 (/-5)|[wi+]]
- . mEitl
Aii+AHI(S-S) IWIHH ] < LA aiB< A /|| + @+ AM/N)*,
i—
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Since Xi € Zi(f) and Zi(f)C\ [ax-] = {zoi,..., it follows that z0/i0 =
= X,. Moreover, recall that / is flat at zg of order at least m-f ¢ for some
oo/ M 0, 1</ </ro- Then by Lemma 4.4,

(4.11) IE UBI < k 2(1)6a0»0/(T +*°10)

where Ki(f) isindependent of s and S. Thus, we have estimated the function
50n PKVDK+)).

Now we want to estimate s on [xa,x"]. Since xq = a or xq£ Z\(f) and
xI £ Z\(f), q-f1~ | < /i, we can conclude as in the proof of (4.7) and verify
that Alx * )(/) » Ir ~ Q+ 1- Then arguing similarly as in the proof of (4.9)
we can show that

ere exists an xv 6 [xg,x"-i] such that / has alternating
extreme points x,, <ig< ... <

dtie (x,+H-mx,+), 1i It h—v-

Now using (4.10) and (4.11) we get that

n-i
4-13y 1. 1 ( 7 < W\ + S+ Kz(f)sao™ » m+ato) <
IR 1= ©\XY@4

AL + 113(/)<Bao™ /(T +“7o)

where K3(/) is independent ofaand  Since by (4.12) and [2, Corollary 1.6],
0 is the strongly unique best approximation of / from spanjfi®,... ,B*_\)
of order one on [x,,,x"], it follows from (4.13) that

n-i
(4.14) aiBi " Ka(f)0aot°Bm+aono)
I=i/
where JT4(/) is independent of s and 6. By a repeated application of the

above statements we can estimate s on [xg,xv] and combining this together
with (4.11) and (4.14) we obtain that

m+i+j-1
(4.15) E  atBl < /U5()<5a0*/(1+“0")

I=q

where K5(/) is independent of s and 6. If xq= a, then we are finished in
the interval [a, x,®/ Hence assume that xq = zo/jO- i« Then replacing the
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interval [xg,xi\ in (4.9) by the intervals [zo,i-i>1= "= o - I>where
zoo = a, and arguing as in (4.9)-(4.15) we get the estimate

m+i+j—1
aiB, I £ K&f)ep°®

ro
where asin (3.3) pq = M aol/(m + aoi) and keif) independent ofs and
1=1
6. Thus, we have obtained an estimate of s on the interval [a, x1+J]. Now we
proceed by estimating s on [rc.+y,b]. Let 12 = [xp.xp+q] such that /2 > h
and the conditions (3.1) are satisfied. Then as in (4.5) we obtain

™ +p +<?-i

(4.16) aiBi 1 K7(f)S
I=p
where K7(f) is independent of s and s.
Now we want to estimate s on xp\. If p—i—j = m —g for some
g > 0, then the estimate of s on [i,+], xp] has already been given by (4.5)
and (4.16). Hence assume that p —i —’*m + 1. We first show that
(4.17) {*,+;, eeexp} N (Z1(f) U Z22(/)) P O.

Assume that (4.17) does not hold. Since by (2.4) AXH>P](/) " P- i— —

—m + 1 and by the choice of I\ and /2 Aiy(/) >m +j + 1 and A/2(/) >
>m +q+ 1, it follows that

Axxpr](/) Am +j+p-i-j-m +m+grl=m+egoiel

Moreover, it follows from Theorem 2.1 that AXiIX )(/) >1 1,1 <l <j.
Since Ail(f)'tm+j +1, we obtain ADOX+))(/) >m+j+ 1>1+1j+ 1"
<l <j + m. Thus, we have shown that Alxi>x. )(/) >Z 1, 1<I”j +m.
Since (4.17) is not true,it follows from (2.2) that AQGHX++m+)(/) >1 + 1,
1<l<p+q-i-j-m, and Ah (/) >m+j+1. This implies that ADGOd+>HaH) (/) >
>m +j+/+ |, 1/ <p+qg—i—j —m. Analogously we show that
Alxpt_Ibpt,](/) = 1) 1~ Z< p-\-g-i. Moreover, it follows from (2.2) that
A(xuxutmt) (/) A 1+ >if (xu,xu+mH) ¢ [xi,xp+q (/ > 1). Then Theorem
2.1 implies that 0 is the strongly unique best approximation of /|[XijXpt?]
from 51 (4)[[x. X7 of order one, a contradiction to the maximality of I\

and /2. This proves (4.17).
Now we show that

(4.18) Xi+j e Z2(f) or xpe
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Assume that x,+j G Z2(f). Then by (4.17) there exists an xp G Z\(f) U
UZ2(f) where Xi+j <xp %xpand xi i Zi(/)UzZ2(/),ifi+j+1 </Ep-1.
If xp G Z2(/), then arguing as in the proof of (4.7) we show that [x-, xp]
satisfies (2.2), a contradiction to the maximality of I\. Hence xp G Z\(f).
Then, since |2 satisfies the conditions (3.1), it follows from Lemma 4.2 that
xi  Z2(f), §, < <p —1. Now assume that xp * Z\(f). Let xp S xu < xp
such that x,, G Z\(f)UZ2(f) and X ~ ZL(/)UZ2(/), ifr'+1 </ " p—L. Then
it follows from the above argument that xv G Z\(f). Now using again the
proof of (4.7) we can conclude that [x"Xp+J satisfies (2.2), a contradiction
to the maximality of 12. This proves (4.18).
Without loss of generality we may assume that

(4.19) Xi+j € z 2(f).

Recall that zZ2(f) M [x;+y,xp] = {5u,... ,zi*} and / is flat of order at
least 4u at zu, \ %1 < v\. Then z\\ — x,+j. Using the maximality of
I2 and Lemma 4.2 we can conclude as in the proof of (4.18) in order to
show that [x_| j, zit/l] M zZ\(f) = 0. Set xu = Z\W. Since for x G [X,+], Xp],

p-1+-m

s(x) = IS_ ~alBi{x) and therefore the estimate of s on [x_|.j, xp] depends
:|+J

only on the given estimates (4.5) on L resp. (4.16) on 12, we can argue as in

(4.8)-(4.15) and obtain

(4 ) U—y“m ais |

I=m+i+j

*1-1
where Q\ — MM Giu/(m + 6i/) and Ks(f) is independent of s and S.
i=i

Now we want to estimate s on [xu,xp]. We distinguish two cases: We
first assume that

(4.21) (xu,xp] MZj(/) & O.

Then by the notation in (3.3), (xu,xp]MZ\(f) = {zn,... ,ziPI} and / is flat
of order at least ay at zu, 1~ ~ /Zi. We set x,, = z\\. Now arguing as in
(4.7)-(4.16) we obtain that ZiPl = xp and

(4.22) o

I=v

Pl

where P\ = T au/{m + c*i/) and A'g(/) is independent of s and 6. Hence
1=2

we have still to estimate s on [x,,,X,]. Recall that xu = 2\U < z\\ —xv.
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If v—u < m, then the estimate of s on [i,, ij has already been given by
(4.20) and (4.22). Hence assume that

(4.23) V—N —m+ g

for some g > 1 Then it follows from (2.4) that -ADux,,](/) = Q+ 1- Now we
distinguish the cases (4.24) and (4.28):

There does not exist any XME [xu+i,x,,_i]

(4.24) such that ADUXi](f) > y-un + 1.

Then we show that

has alternating extreme points xu —to < ... <tQ” xv

(4.25) uch that ti £ (xu+i,x,,+/+m), 1<l<g- L

Since by hypothesis MPux,](/) » g+ 1and xu £ ~(/), without loss of
generality we may assume that to = xu. Moreover, letto <t\ < ... <te” xv
be alternating extreme points of / that are minimal, i.e. if xu =to < ... <
< to < x,, are also alternating extreme points of /, then ti <t[, | <I " g.
We show that {tO, e te} satisfies (4.25). It first follows from (4.24) that
U > xu+i, 174 | = Q—!'s Moreover, it is obvious that t\ < xu+/+m, if
Xu+l+m ~ x,, for some | £ {1,...,#—1). Hence assume that xu+/+m < xv.
Then it follows from (2.4) and the fact that XX » Z\(/), n+ 1<l <v —1
that -ADuXut+m) (/) = f+ 1- Then the minimality of {to, e+ ,te} implies that
ti < xu+/+m, 1 </ < g—1 This proves (4.25). If tQ< xv, then by Lemma
4.3, (4.15) and (4.20) we obtain the estimate

V—1

(4.26) Y a'B‘ ZRio(f)sQ
I=u+m

where Qi is defined as in (3.3) and Kio(f) is independent of s and 8. If
te = Xx,,, then by Lemma 4.5, (4.15), (4.16), (4.20) and (4.22) we obtain the
estimate

v-I

(4.27) 'Y aB‘ inKn(f)SRI
I=u+m

where R\ = min{Pi,Qi} and Pi is defined as in (3.3). Moreover, Ku (/) is
independent of s and & By (4.15), (4.16), (4.20), (4.22), (4.26) and (4.27)
we are finished in [x,+J,xp].

Now we assume that (4.24) does not hold. Hence

(4.28) there exists an xp £ [xu+1,x,,_i] such that *1() >y - n+ L
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Let xu <to < ... < fp_u < xp be alternating extreme points of /. Since
xu S Z2{f), without loss of generality we may assume that to = xu. More-
over, assume that xp is minimal with respect to (4.28) and to,... ,fp_u are
minimal, i.e. if xu = to < ... < ip_,, ™ xp are alternating extreme points
of /, then ti <ti, 1 < I <fi—u. Then as in (4.25) we show that ti £
£ (xut/, xu+/+m), \ s | <R —u—1L Now using Lemma 4.4, (4.15) and (4.20)
we obtain

/j-1-+-m

(4.29) Y ciBi i Ku(f)sQ
I=u+m
where is independent of s and 6. If v—R < m, then by (4.15),

(4.16), (4.20), (4.22) and (4.29) we get an estimate of s on [xu,xv] and we
are finished in [x,+j, xp\. If v—8 = m + a for some < > 1, then from (2.4)
and the fact that xp @€ Z~f) it follows that A(x X](f) > <-f 1. Then the
following cases can occur:

f There does not exist any xv £ [xp+\, xv_i]

| such that Apii4)(f) >v-i/+1.
Then similarly as in (4.25) we show that / has alternating extreme points
Xp <to <. m<t, —xvsuch that f/ £ (xp+i, xp+/+m), 1 < | <a —1. Hence
by Lemma 4.3, (4.16) and (4.22) we obtain

u-1
(4.31) Y &lBl i1 /43(/)<5Pl
[="+m

where Km (/) is independent of s and S and we are finished in [x,+J,%p].
If (4.30) does not hold, then

(4.32) there exists an xu £ [rp+1,X,,_i] such that ADd/ Xv](f) >v —v + 1

Then arguing as in (4.28) and using Lemma 4.4 we obtain

AV
(4.33) Ku(feH

I-v
where Kbl (/) is independent of s and 6. If v—R <m, then by (4.15), (4.16),
(4.20), (4.22), (4.29) and (4.33) we get an estimate of s on [xu,xv\ and we
are finished in [x,+} xp]. If v — —m + Tfor some r > 1, then from (2.4)
it follows that -Ax *,,)(/) > r + 1. By a repeated application of the above
arguments and [2, Corollary 1.6] we obtain

u-1
(4.34) Y aBl i Kib(f)bR'

I=H +m
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where Ri = min{Pi,Qi}, K\b{f) is independent of s and &, and we are
finished in [x,+J-,xp]. This completes the case when (4.21) holds.
Now assume the converse of (4.21), i.e.

(4.35) (xu,xp]fl Zt(f) = 0.

As in (4.23) we may assume that p- u — m + %for some x = 1« Then
from (2.4) and (4.35) it follows that AXuXp)(f) > x + 1. Arguing as in
(4.24)-(4.34) we obtain

p-i
(4.36) a,Bt i Kie(f)sd
I=u+m

where K\e(f) is independent of s and S.
Summarizing all the above estimates of s and using the hypothesis that

m+k

s = aiBi we obtain for every x £ [a,xp+9],
1=0

(4.37) K*) "ku)F

where 7 = min{Po, P\, (%1} and K(f) isindependent ofs and 6. Now arguing
in JI,... ,Jdr-1 as in J\ (for the notations see (3.2)) and in Jr as in Jq
we finally obtain the desired statement (3.4). This completes the proof of
Theorem 3.3. O

Proof of Proposition 3.5. Without loss of generality assume that
P —k and let some positive real numbers o7z,... ,a* be given. Set x- = i,

O<i<k+ 1,and [ = {x.jjLj. Let / £ C[Q,k + 1] be defined by

‘() +m(2(m+1)x —1+2r)), if x € [r/(nr+ 1),(r + 1)/(m+ 1)],
/(*) =< o<i<m
(-0 i+ -2(x - O0m+Q)5  ifx GM*+ 1], 1<r<Kk

Set =a,/(rre+a,) and 7-= I_IBji N an(” define sg 6 57 (4) by
j=1
K

1=

for some 0 < 6 < 1. It is easily verified that O is a best approximation of /
from 51 (4) and / is flat of order m + a, from the right at each x,, 1 <i <k.
Hence it follows from Theorem 2.3 that O is the unique best approximation
of / from 57 (4). Since o< 7, < 1, 1<r<fgand 7-> 7j, ifi <j, and
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0 < 6 < 1, there exist a positive constant M independent of 6 and a constant
o< <&”" 1such that

1bll > Melk and llsill < 1

for all 0 < 6 < & Furthermore, there exists a constant 0 < € < S such
that sgnsi(i) = (-1)'+1,2"i<k+ 1,forall 0< S < Si.

Now we show that there exists a constant 0 < 6 " <§ such that
1/(x) —s$(x)| < /Il = 2forall x £ [2fc + 1] and all 0 < 6 <62. Without
loss of generality assume that i is odd. (The case when i is even follows
analogously.) Let x £ [i,i + 1]. Then

*
/(X) - ss(x) = 2- 2(x- i)ym+ai + £ (-1)* +2™(* -j)m.
=1

This implies that

. [1# -
fx) - 4(x) =-2(m+«)(*- mt 1+ - j)md
j=1
forall I € [i,i+ 1].

Let us first assume that f - has no zero on (i, i+ 1). Then / —sg
can have an extremal value only in *or i + 1 It follows from LksLl " 1,
sgnsi(j) = (—),+1 and the definition of / that |/(Xx) —s,j(X)| < 1, if A =i
or X = i+ 1. Therefore we assume that there is an x £ (i,i+ 1) such that
f'(x) —s™(x) = 0. Hence

2(m + a,)(x - i)mtai-1 = T2 (-1Y+6b(X - j)m- 1
i=i
For some 0 < ss <s. the inequality
»
Amra)X- g 1<thb(x - [f*1
is valid for all 0 <s < £3, since 7, > 7j forallj = 1,... ,*—1. Hence
(X —n)*“’ < (m/(2(m + )57

for 0< s <ss. It follows from x > i and the last inequality that

1
I(x) - 86(X) < 1+ £ (-1 ) +1r(* - j)ym <
j=1
»-1
<L+ A (1)1 (X -j)ym+ (W(2(m +0,)))m/aig- 1.
j=1
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Therefore,
i-2

f(x}-ss(x)< 1+X)(Hi+li7i(M )m— ((x-r+ D1 -(t/(2(T +a0)l/o>) .
3=1

Since x —i+ 1> 1and m/(2(m + a,)) < 1/2, it follows that

xX-i+1)m- (m/(2(m+ a,-)))me< > o.
Hence for some 0 < e4 < & we have

o< f(x) —s6(x) <1 forall o< &<
f —sg can have at most m zeros on [r,r+ 1]. This follows from Rolle’s
theorem and the fact that (/(m) —sg) |[il+1]= a,(x - N“' + 6, a;,6, € R,
has at most one zero. Therefore, f —ss has only a finite number of'zeros on
[2, k + 1]. Now it follows from the above results that for some 0 < Is”" £

\f{x)-se(x)\<I, x €[2 k + 1],
for all 0 < S~ S5.
Finally we consider / —sg on [1,2]. Since f - ss has the zero

x=1+((m/2(m+al)))")11
on [1,2], and

[(x) - s6(x) = 1+ 7i(m/(2(m + c*i)))m/aid< ||/|| + §
it follows that |/(x) - s*(X)] < ||/|| Ofor all x € [1,2]. Summarizing the
above results we obtain that

I/ - Sill ~ 1/l + e forall 0<e6<6=65.
This completes the proof of Proposition 3.5. O
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ON APPROXIMATION OF UNBOUNDED
FUNCTIONS BY LINEAR COMBINATIONS
OF MODIFIED SZASZ-MIRAKIAN OPERATORS

H. S. KASANA (Uppsala)

1. S. M. Mazhar and V. Totik [e] have proposed the integral modification
of Sz&sz-Mirakian operators to approximate Lebesgue integrable functions
defined on [0,00) as

(1.1) Ln(f,x) n PnA*)fit)dt,

where
N\

. (m :
Pni/(x) = e~nx— —, / GE£i[0,00).

The operator (1.1) was studied for simultaneous approximation by Singh [g]
and moreover, similar results have been derived by Sahai and Prasad [7] for
modified Lupas operators.

However, we consider the class P of all measurable functions defined on
[0, 00) such that

Plo,o0)=j/: J e~ntf(t)dt < oo, n > no(/)]|.
0

Obviously, f/j[0, o0) Q P[0,00) and hence Ln may be utilised for studying a
larger class of functions. For m £ Ne (set of nonnegative integers), the mth
order moment of Ln is defined as

(1.2) TnQz)

Further, we define
Pa[0,00) = {/ e P[0,00): f(t) = O(eat), t —»00, a > 0}.
In the sequel we assume 0 <a<ai<&i<6<o0c and | ¢[[aw means

the sup norm on the space C[a,b]. Moreover, || ¢|la denotes a norm on the
space Cal0, oo) = C[0, oo) M Pa|o0, 00) such that for / G CQI0, 00),

WM« = sup |/(f)|e~ot.

0<i<oo
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Let do, di,... ,dk be arbitrary but fixed distinct positive integers. Then,
following Kasana and Agrawal [4], the linear combinations Ln{f,k,x) of
Ldjn(f, x),j = o, 1,... ,K are introduced as

Fdonif, x) doi d-2 ... gk
., . 1 Ldin(f,x) dr1 d-2 .. dfk
(1.3) Lnite’ ——

Ldkn(f,X) | 1 d'kz e dkk

where [ is the Vandermonde determinant obtained by replacing the operator
column ofthe determinant by the entries 1. On simplification (1.3) is reduced
to

K
(1-4) L,.(f, k, x) =Y ~cU,k)Ldjn(f,x),
j=o
where
. k d
(1.5) c(j,k) =N , MO and ¢(0,0)=I,

o= 0 1
‘/J

and (1.4) is the form of linear combinations considered by May [5].
For /€ Cal0, oo), 6 >0 and m € N, the Steklov mean /2ms is defined by

(19 .
n-*m=pdp”™(/) (Q >>+<-ir-*ivw)
where

h=7221ti and A2™f(x) =" (- 1)‘( /(x + (10 - i)h).
»=i i=o0 or!
This paper contains Woronowskaja type asymptotic formula and an er-

ror estimate in terms of higher order modulus of continuity for unbounded
functions on the semi-real axis.

2. In this section we introduce certain auxiliary results which will be
utilised in Section 3.

Lemma 1 [8]. ForTnim(x) there holds the recurrence relation:
(2.1) 4T,,m+i(x) = xT'nm(x) + (m+ DTnm(x) + 2mxr,,>m i(x), m > 1
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By direct computation from (1.2), we have Trro(cr) = 1 and TUi(x) = L
and further, using the recurrence relation (2.1) it can be verified that
(i) Tn<t(x) is apolynomial in x of degree [m/2] and in n~x of degree m.
(ii) For every x € [0,00), Tn'm{x) = 0(n- ~"m+1"2i).
(ili) The coefficients of n~(k+U in T,Act2(x) and Tnpek+i(x) are
(2K + 2)\xk+1/(k + 2)! and (2K + 2)\xk/2k\, respectively.

Lemma 2. Ifc(j,k), j = 0,1,... ,k are defined as in (1.5), then

1 if m —o,

2.2 '
(2.2) E d'amr o if m=12,.. ,k

j=0
Proof. If the operator column of the determinant in (1.3) is replaced
by the entries dQmdfm,... ,df™ and then observing the determinant con-

secutively, for m = 0,1,... ,k this lemma follows. However, May [5] has
given a different proof by using Lagrange polynomials.

Lemma 3 [3]. Let 6 be a positive number. Then, for every m € N and
x € Jo,00) there exists a positive constant Kmx such that

(2.3) j W(n,x,t)eatd t* K nmn-m,
\t-x\>6

where KT=x is a positive constant depending on m and x and

w (n,x,t) = n ™ p nyU{x)pn,u{t).
u—a

Lemma 4. The function fam,s defined in (1.6) has the properties:
(@) ||/2mA- fWIdM i Alioc>am(/;<5,a,6);
(b) HATAA,*] » M2jy/|Ifea < M'II/IU;
(c) WirslIM I 1 M3S-AU2m(fi6,a,b),
where M2 = M2eab, Mi 5 are positive constants depending on m only and
ojam(f] b, a,b) is the modulus of continuity of order 2m corresponding to f:
w2m(/; 6, a, b) = sup{|A 2mf(x)\-, |/i]| <6, x + 2mh 6 [a, b]}

such that
il o (27) K*+<)e
The properties (a) to (c) are extensions of the calculations found in a

paper by Freud and Popov [1]. However, for conciseness the proof is given
as follows:
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Proof. From the definition of /2m,6, we have

\hmAX) - f(x)\ i <

<Muzam(f;sm,a,b) < Mmu>2m(f;e,a,b) <Miuam(f;e,a,b), x €[«i,i»i]-

Hence (a) is obtained. The proof of (b) is trivial and to prove (c) we observe
that

24 YA (f(x+vir 4 f(x - yAtj)Mdtdt .. diom =

dx2m . 1=0 1=0

= (Aim+ AM)f(x),
and

(25)  u=m(/; Im - \S,a,b) <\m - i\wa2m(f; 6,a,b) = KiU2m(f\ 6,a,b).
Using (2.4), (2.5) and (1.6) we have

ii/S it

D = T ) (ME-0«tRIM09) /(%) piygy

and thus (c) is immediate.
3. Here we prove our main results.

Theorem 1. Letf B P<¥0, 00) and let f(2k+2) exist at apoint x & [0, 00).
Then

2fc+2

(3.1) i fer L U1, (1, k,x) - /(*)] = - /(rrnn)l(x) Q(m,k, x)
m=Kk-\-1 ’

and

(3.2) lim nk+1[Ln(f,k+ I,z) —/(x)] = 0,

where Q(m, k,x) are polynomials in x of degree at most [m/2] such that
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Q(2k + Lk, x)=( Dfg2fc+ 2)lafc g @Gfc+2i x)+ ( 1)k(2k + 2)'.xk+1'
2k\ U dj (k+ 2)!' M dj
J=o j=o0
Moreover, if y(Zc+2) exists and is continuous on then (3.1) and
(3.2) hold uniformly on [ctx, b9-
Proof. Since y(Zct+2) exists at x € [0,00), it follows that
2=+2 f(m)(x)
m = nI;:O (i mxX)M+£E£(1) X)(i - x)Ac2
where e(t, x) —*0as t —g and is contained in PaJ0, 00). Writing

-2k+2
L, (/K x) - ()] = e LE)B%,,(@ - *)ra,*, X)+

kml

k 1
+ {}(2)CIJ’k')LdA£(t’X)(t - X)K+2X)\ =h+12
J:

(say). Hence

deto k
h =nk+l E n
m=l M j=o0
Using Lemma 1, we have
Td,,,,m(x)= + + TDi2](»)
(dyn)fn2 | (dj-n)[ 2 1+1 (djn)m
for certain polynomials P,, r=0,1,... ,[m/2]in x of degree at most [m/2].
Clearly,
(3:3) A Ag(j> kATd,n,m (3) —
i=o
+ _ EM_+ + pWIAK w-i w2 dofc
(rfon ) Ne (ao n)' AR ° °
- P°(4, + UE)_ + PI™2(*)j-1j-2 j-fc
iw ¥ +M "M (d|n)m 1 1

Pod)., + __p (™). + +™mR2lx -1 d-2
=n k+rM{Q(mkx) + o()}, M=K+ 1K+ 2,... 2k+2
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So I\ is determined by

Az f(M)(3

Y. ek X) + o),

m=k+1

The expression for Q(2k 1,k,x) and Q{2k + 2,k,x) can be obtained by
application of Lemma 1in (3.3).

Now it suffices to show that /2 —0 as n —» oo. For a given £ > 0, there
exists a 6 = 6(e,x) > o such that [f:(f,x)] < e, o < t—x\ 5 S, and for
\t —x\ > 6, we notice that e(t,x) = O(eat). Treat I2 as

2 =nk+1Y  cUik)( J + J ~ W(djTi,x, t)e(t,x)(t - x)k+2dt=13+ /4.
[t—x|<i |[t—\>6
Again using Lemma 1 we get

K

[/3| h £nk+1 Y 1cC?”*A max Ldjn((t - x)2k+2,x) < Ke.
3=0 °=J=f

Similarly (in view of (2.3)),

\h\<nkh Y \(Uk)\ J W(djn.x.t) (t-x) sk+2eatdt<

0 \t-x\>6
K
jDW(djn, X, 1) (t—x) 4(k+1"dt J W (djn,x,t)ezatdtd/2
3~0 0 |[t—x|>A
m+2(*+1) m
<Rmxn 2 =o(l), — >k+ 1.

Since £ > 0 is arbitrary, combining /3 and /4 we conclude /2 —»0.
The assertion (3.2) can be proved along similar lines by noting the fact:

Ln((t-x)m,k+1,x) = 0{n-(k+V).

The limits in (3.1) and (3.2) hold uniformly due to the uniform continuity
of y(2*+2) on [a, b] and uniformness of the term o(l) occurring in the estimates
of I\. This completes the proof.

Theorem 2. Let f G Ca[0,00). Then, for all n sufficiently large,
(3.4) VE,(/,k,®- f\\[aiM g Mkb {u2k+2(/; n-12,a, b) + n~(k+1)||/||e } ,
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where MK,b is a positive constant dependent on k and b but independent of f
and n.

Proof. Let fXk+2s be the Steklov mean of (2fc+ 2)-th order correspond-
ing to /. In view of linearity of Ln(-, k, X) we write

Ln(f, k, x) - f(x) = Ln(f - f2k+2,5,k, x) + (Iok+2,5(x) - /(*))+
A\-Ln(fX+26,k,x) - f2k+2,5(x) = J\(x) + J2(x) + J3(X).
The estimate of s\ (x) follows from Lemma 3; indeed, we have

W (djn,x, )\ F&+2s{t) - f{t)\dt

and

J W (djn, X, t)\fk+2,5(t) - f()\dt =
0

= J + J A \hk+2,s - f\\[al-S,b1+5] + Kmn~m\\f\\a,
li—ai<d  |[<=<£

where S < min{ai —a,b —6r}. Hence, using Lemma 4(a)

u~snraibn ~ MiuX+2(f;6,a,b) + Kmn mjl/IU-
In a similar manner,
Mlax ] MU=k+2(f',S,a,b).
It remains to estimate J3(x). Expanding f 2k+2,s by Taylor’s formula,
2fc+l A') (\

(3.5) /IW O =E - x) + h(ZI\*/IJraZ)

) (t-X) 2k+2
1=0 :

where £ lies between t and x. Operating Ln(-,k,x) on (3.5) and separating
the integral into two parts as in the estimation of J\(x), we obtain (in view
of Lemma 1 and (2.2))

\\Ln(fok+z2 6 ,k, o) - f2X+2,s\\[alhl] =
k42

SM»-(*«) E ”/S‘H/\U(A] + «M.M-» Wmtm U

i=fc+1

Using the interpolation property

1M« M[«MS IVll/urIfaivWv +

due to Goldberg and Meir [2] in the above inequality, we further have, for
m >K+ 1,
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(3.6)
\\Ln(f2k+2,Sk, *) - /2k+2,6\\[a1,bl] = M kN~x+~  (Il/ifc+tji ll[ai,bi] + [ 2A+24

dr) «
Consequently, «3 is estimated by application of inequalities (b) and (c) of
Lemma 4 in (3.6) as

Ww\fay ™ Mkn (M3i-(2fct2NV +2(/;i,a,ft) + M'2\\f\\a)

Choosing $= n-1/2 and combining the estimates of Ji(x), «2(2) and J3(x),
the required result follows.

Remarks, (i) The concept of linear combination was developed to in-
crease the order of approximation of functions with higher smoothness. We
preferred form (1.3) to (1.4), since it is not possible to calculate Q(2k-\-\,k, x)
and Q(2k + 2, k, x) by using the form (1.4) due to May [5].

(i) An analogous result to (3.4) was recently obtained by Wood [9] for
Bernstein polynomials using the technique of Peetre’s A'-functionals.

Acknowledgement. The author is thankful to the referee for making
substantial improvements in the paper.
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EXPANSIONS IN LEGENDRE POLYNOMIALS
AND LAGRANGE INTERPOLATION

L. COLZANI (Cosenza)

This paper is divided into four sections.

In the first section we consider the problem of the convergence and diver-
gence of Fourier series with respect to Legendre polynomials of functions in
Lorentz spaces. The critical index for the convergence of Legendre-Fourier
series of functions in Lp spaces isp = 4/3. We prove that the Legendre-Fouri-
er series of functions in the Lorentz space L4/31 converge almost everywhere
and in the norm of X4/300, while there exist functions in L4V r > 1, with
Legendre-Fourier series diverging in measure and pointwise everywhere. We
also give precise estimates for the norms of the partial sum operators.

In the second section we consider the problem of the convergence in
Lorentz spaces of the Lagrange interpolation taken at the zeros of Legendre
polynomials. Here the critical index is p = 4. We prove that the Lagrange
polynomials which interpolate a continuous function at the zeros of Legendre
polynomials converge in the norm of L4100 and may diverge in the norm of
L4sif s < Too. Again we give precise estimates for the rate of divergence.

The third section contains the proof of the theorems.

The fourth section is devoted to some concluding remarks. In particular
we briefly consider the problem of the convergence of Legendre-Fourier series
with an arbitrary reordering or grouping of the terms, and the problem of
the convergence of Lagrange interpolation polynomials of functions in some
Lipschitz classes.

1. Fourier series with respect to Legendre polynomials

Let {PnIn*O be the orthonormal system of Legendre polynomials,

\A+ \ dn
2nn\  dxn

The n-th partial sums of the Fourier-Legendre expansion of a function
/ integrable on [—1,1] are defined by

Pn(x) =

Snf(x) = ~ 2 H k)Pk(x),
k-0
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1
where f(k) = fI f(y)pk(y)dy.

H. Pollard has shown that if / isin Lp[—L1,1], 4/3 < p < 4, then {Snf }
converges to / in the Lp-norm. Also, if p > 4/3, {Snf(x)} converges for
almost every x in [1,1]. These results are essentially the best possible for
L p-spaces, because J. Newman, W. Rudin, and C. Meaney, have constructed
functions in Z4/3[—1,1] with Legendre expansions diverging both in norm
and almost everywhere.

At the critical indexes p — 4/3 and p = 4 one can obtain positive con-
vergence results only for functions in suitable subspaces of Lp[1,1]. In
particular S. Chanillo has shown that the operators {9n} are not uniformly
of weak type (4,4), but they are of restricted weak type (4,4), i.e. for the
characteristic functions of measurable sets E,

Hx € [-1,1]: [S.,Xs(@0| > *H ~ ct~4\E\.

Chanillo’s result has a natural interpretation in terms of Lorentz spaces.
The Lorentz space Lp,r[—1,1], 1< p < -foo and 1 ~ r ™ +o00, is the
Banach space of functions / integrable on [—1,1], with

s < Too,

where /* is the decreasing rearrangement of |/|.

In particular Tpp[-1,1] = Lp[-I,I], Lp*°[-1,1]] = Weak-Lp[-1,1], and
Lpr[—2,1] C Lp,s[-1,1] if r < s. The operators of weak and restricted weak
type (p,p) are precisely those bounded from Lp,p[—1,1] into Lp,00[—L,1], and
from Lp1[—L1,1] into Lp*°[—1,1] respectively.

As a general reference on Lorentz spaces see Hunt [10]. For the norm
convergence of Legendre expansions see PoHard [15, 16, 17], Newman-Rudin
[14], Dreseler-Soardi [6], and Cartwright [4]. For the pointwise convergence
see Pollard [18] and Meaney [12]. For the weak behaviour of these expan-
sions see Chanillo [5] and Guadalupe-Pérez-Varona [91. See also the survey
Badkov [3].

Our aim is to provide a fairly simple approach to the problem of conver-
gence and divergence of Fourier-Legendre expansions for functions in these
Lorentz spaces. In particular we shall prove the following results.

Theorem |. Let f be a function integrable on [—1,1]. Then if

(1 - x2)~1Mf(x) is also integrable, the partial sums {Snf} of the Fourier-
Legendre series of f converge to f in measure, while if the Fourier-Legendre

transform {f(n)} of f is an unbounded sequence, the partial sums {Snf}
diverge in measure and pointwise almost everywhere.
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THEOREM II. The partial sums {Snf(x)} of the Fourier-Legendre series

of a function f in T4/3,1[—,1] converge pointwise to f(x) for almost every
x in [,1].

T heorem Ill. There exist functions f in L4/3;r—1,1], 1< r N +o00,
with {Snf(x)} unbounded for every x in [—,1].

Theorem IV. Letp—4/3 orp=4, andlet1” r, s <+00. Then

sup{ m f} " c[log(2+™)1," " +*-
In particular, if 1 < r N -foo there exist functions f in Lp,r[—1,1] with
{1~n/mp 0l unbounded, while for every function f in i pa1—1.11, {5./}
converges to f in the norm of Lp"°[—1,1].

Theorem | is a simple corollary of the Haar-Szeg0 equiconvergence the-
orem between Legendre and cosine expansions, and perhaps it is already
known. Anyhow, in our view this result explains why Theorems I, I, and
IV, are natural. Indeed, Theorem | naturally leads to consider functions /

which are integrable against (1 - x2) ”~ 4. Since this function is the typical
representative of L4°°[—1,1] and this space is the dual of Z4/31—1,1], the
connection between Legendre expansions and the Lorentz space L4/3,1[—1,1]
is clear.

Theorem |l extends Pollard’s result on the almost everywhere conver-
gence of Legendre series, while Theorem Il is the analogue for Legendre
series of Kolmogorov’s construction of an everywhere divergent trigonomet-
ric Fourier series. Theorem IV is related to the work of D. I. Cartwright on
the Lebesgue constants associated to Jacobi series. This last theorem also
gives a different and, we believe, very simple proof of Chanillo’s result on
the restricted weak behaviour of Legendre expansions at the critical indexes.

We remark that since the Lorentz spaces are interpolation spaces between
Lp-spaces, and vice versa, Theorems I, II, I, IV, imply some of the main
results on the convergence and divergence of Legendre expansions on Lp-
spaces. Also, it is easy to extend these theorems to more general expansions
in Jacobi polynomials.

2. Lagrange interpolation at the zeros of Legendre polynomials

Let {xfcjn} be the zeros of pn(x) ordered by 1 > x\<n > x2,, > ... >
> xnn > —1, and let {4,n} be the fundamental polynomials of the Lagrange
interpolation at the points {xfc,,},

Pn{x)

4,n(z)

Pn(xk,n)(x ~ xk,n)
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The n-th Lagrange polynomial which interpolates a function / on [,1]
at the points {xfc.n} is defined by

L,.f(x) = Ik,n(x).

k=\

We note that a natural domain for the definition of the operators {Ln}
is the space C[—L,1] of continuous functions on [—1,1] with the norm | ¢|oo.

S. Bernstein, G. Grinwald and J. Marcinkiewicz have constructed
tinuous functions / on [—1,1] with sequences of interpolating polynomials
diverging everywhere. However R. Askey, extending previous results of P.
Erdos and P. Taran, has shown that if / is continuous on [—1,1] and p < 4,
then

|

Jim, [ \Lnf(x) —F(x)\pdx —0.

P. Nevai has shown that this fails if p = 4. See Askey [1], Nevai [13],
Erd6s-Vértesi [7], and also Szeg6 [19] and Zygmund [23] for general refer-
ences.

Our contribution is a proof of the fact that at the critical index p = 4
the operators {L,,} map C[—1,1] into LA°°[—1,1] uniformly. More precisely
we have the following result.

Theorem V. Let1< s < +00. Then
N}Y.cPog(2+,)].

In particular, for every function f continuous on [—1,1], {Lnf } con-
verges to f in the norm of Lp™°[—l,1], while if 1 < s < +00 there exist

functions f continuous on [—L,1] with |||T n/||4s| unbounded.

Again, it is possible to prove a similar theorem for Lagrange interpolation
at the zeros of Jacobi polynomials. In this paper we choose to consider only
the case of Legendre polynomials in order to simplify some of the formulas
and make the reading easier.3

3. Proof of the theorems

By the inequalities 7.21.1 and 7.3.8 of Szeg6 [19], if —1 < x <1,
\In +1i,
(1) IPn(z)| * <
SITT& (i -
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and also, by the asymptotic formula 8.21.18 of Szegd [19],

(2) pn(cost?) cos™n + + 0(n 11sinr?| 3/2).

This asymptotic formula has, as a consequence, the following equiconver-
gence theorem between Legendre and cosine expansions (Szeg6 [19], Theorem
9.1.12):

Let the function (1 - cos2i9)V/4/(cos d) be integrable on [0,7r], and de-
note by sn/(cos 1?) the n-th partial sum of its Fourier cosine expansion. Then,
for 1< x <1,

limLsnf(x) - (L- x2) U4snf(x)) = 0,

and, if 0 < £ < 1, the convergence is uniform in every interval e—1" x i1
<1l-f£.

Proof of Theorem |. Since

J 1 —x2IM\f(x)\dx = J |1 —cos2i?|U/4/(cos d)\dd,
-1 0

the convergence in measure of {Snf} is an easy consequence of the Haar-
Szeg6 equiconvergence theorem and Kolmogorov result on the weak be-
haviour of cosine expansions.

If the sequence {/(n)} is unbounded, the divergence in measure of {Snf}
follows easily from the asymptotic formula (2) for Legendre polynomials,
and the almost everywhere divergence follows from the asymptotic formula
for Legendre polynomials and the Cantor-Lebesgue theorem. See 9.1.2 of
Zygmund [23], andMeaney [12]. O

To apply the Haar-Szegé equiconvergence theorem to the problem of con-
vergence of Legendre expansions of functions in Lorentz spaces we need the
following lemma which is an immediate consequence of the duality between
the spaces L4/3,1]—1,1] and LA°°[—1,1].

Lemma 1. Let f be a function in L4/31[—1,1]. Then the function
|1 —cos2i?|Y4(cos i9) is in T1[0,7r], and, If0 < £< 1,
Xe—=z1-e](cos™)|l ~ CS212/U/4(cOS D) iSin T43[0, 7r].

Proof of Theorem |l. By the Haar-Szeg6 equiconvergence theorem
(5,/(x)} converges provided the n-th partial sums of the cosine Fourier se-
ries of Isin i?|Y/2/(cos i?) converge in cosd = x. By the Riemann localization
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principle, if lIcost?] < 1 —e the cosine Fourier series of |sini?x'2/(cos i?) is
equiconvergent with the cosine Fourier series of

Xe—2,1—€](cos i?)| sin rL/2 «/(cos d).

But by the previous lemma this function is in L4"3[0,7r] if / is in
X4/34[—1,1], and by the Carleson-Hunt theorem its cosine Fourier series
converges almost everywhere. O

The following lemmas are easy consequences of the asymptotic formulas
for Legendre polynomials, and of the duality between the Lorentz spaces
Lp,r[—1,1] and Lga[-1,1] if 1/p + I/q = 1/r + I/s = 1.

Lemma 2. [|pn||4,, * c[log(2 + n)]V/*.
Lemma 3. |/(n)| < c[log(2 -Fz2)]1—2||¥\4/3I- In particular, the Fourier-

Legendre transform {/(n)} of a function f in X4/31—,1] converges to 0,
while, ifr > 1 there exist functions f in L4/3,r[—,1] with {/(«)} unbounded.

Let {pH™ } be the system of Jacobi polynomials orthonormal on [—1,1]

with respect to the measure (1 —x2)dx. For this system we have estimates
analogous to (1) and (2). In particular, if — < x < 1, then
0(n3/2),
3 nO) =
®) ) A, (z)(I - z2)-3/4,

with An bounded and oscillating. See 7.32.5 and 8.21.18 of Szeg6 [19].
Define gn(x) = (1 —x2)pn’0\x). Then, by formula 4.5.5 of Szegd [19],

(n41)(n + 2 (n+ I)(n+ 2

CIn(X) = (2n + |)(2n + 3)Pn X (2n 4"3)(2” ‘f‘ 5)

Pn+i(x).

Lemma 4. |/(n +2) - /(n)] ~ c||/||4/3(.

Proof. It is enough to observe that

(n4ND(n+ 2 (n+ND(n+2) -
l anadx = o 4 y2n + 3f(M (2na-3)@na-syn +

and that the functions {<,,} are uniformly bounded. O

Lemma 5. Let0 < e < #4. Thenfor every n and every d withe <d <
< f —£ one has

|p,,(cosi?)| 4 |p,,+2(cost?)] > ¢ > 0.
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Proof of Theorem IV. We shall prove the theorem for functions /
in L4T[—1,1] and the proof for functions in the dual space will follow. By
Pollard’s formula,

Snf(x) f(y)dy+

+anf (i- XZ)U4P”+i(*X)(_i 'yY) 1 a{y)f(y)

-QnJ 4 P4 A A - dyP Bnd pn+l(x)pn+i(y)f(y)dy =
= OnKnf(x) + a,,(I - x2V4pn+1(x)H[(I - y2)~14gnf]{x)-
- otngn(X)H[pn+if](x) + Bnf(n + l)pn+1(a:),
where H denotes the Hilbert transform and Knis the operator with kernel

1/4

- ypn+i(x)(l 2) 4qn(y)

A + y)pn+i(Xx -y qn(y

Kn(x,y) =pn+ian(y) /% Cu2 )
|-*V 1-x2

l-y2 [e=F \ + 1)

To obtain this expression for Kn multiply a®™d divide by (x + y) and factor
(1 —y2) from the denominator.
By Lemma 2,

l7(n + Dp.,+i|[4s ~ c[log(2 + n)]1/s||/]|4ir,

and since by (1) and (3) the functions (1 —x2)1pn+i(x) and (1—y2) 1*4n{y)
are bounded, by the boundedness of the Hilbert transform on L4,s[—1,1] we
have
L- x2)U4Pn+H[( - v Ronf]  <c s
4}s

Lemma 6. The operator f(x) — (I - x2MHI[(l - y2) Y, 4](x) is
bounded on every Lp,s[—1,1], 4/3 <p < +00, 1< s < +00.

Proof. The result for the spaces Lp[-1,1] is an extension of the M.
Riesz theorem due to G. H. Hardy and J. E. Littlewood, but it also follows
from the fact that for p/4 <p- 1 the weight (1 —x2)P/4 is in the Muck-
enhoupt class Ap (see Torchinsky [20], 9.4.4). The result for Lorentz spaces
follows by interpolation. O

Acta Mathematica Hungarica 61, 1993



EXPANSIONS IN LEGENDRE POLYNOMIALS AND LAGRANGE INTERPOLATION

The constant ¢ depends on e but not on n and fl.

Proof. Denote by the fcth zero of pn(cost?), and assume tl
e/2 < flkn < w/2 —e/2 and e < d < 71r/2 —e. From the asymptotic form
forp,,(cosi?) it follows that i =N N F+0(n~2). Also, for some consta

and b, |p,,(cosi?)| > ae if \g — > pe/n for every k. (See also Trice

[21].) To prove the lemma it is thus enough to check that every Din i
interval [e, /2 —e\ is at a distance at least ce/n from the set {r?*>n} or fr

the set {ifcn+2} O

Proof of Theorem Ill. Let ®© = 22*, By Lemmas 3 and 4, ifr :
there exist functions gk with |<7||4/3r £ ¢ and with gk(nk) > (logn*)1-
and gk(nk + 2) > (logii*)1-1/r. By cutting the Fourier-Legendre transfc
of gk with suitable smooth multipliers we may also assume that gk(j) —1
0Nj <2-1w*orj >2re*

Define f(x) = kY k~2gk(x)- This function is in L4 3,r[—1,1] and fr
=i

sequences {/(te*;)} and {/(Te*; + 2)} diverge to + oo. Using Lemma 5it is {]
easy to see that for every x with 0 < x < 1 the sequence {|/(te*)pl] (2)
+ |/(te* + 2)pIk+2{x)\) is unbounded. Since the polynomials pl'k and pn
are even, the same is true for every x with —1 < x < 0. Since p,,fdT
= p,t(-1) = (re*+ 1/2)¥2 and pnc(0) = (2/1r)V/2, the above sequena
unbounded even for x = —,0,1.

We have thus proved that for every x in [—1,1] the sequence {/(n)p.,,(

+00 ,,
is unbounded, so that the series Y f(n)Pn(x) cannot converge. O
n—0

The point of departure for the proof of Theorem IV is the follow
rearrangement of the Christoffel-Darboux formula, which is due to H. Poll
(89 of Pollard [15] or 82 of Pollard [16]):

I
ne o1 Pn+I(x)pn(y) - Pn(x)Pn+I(y)

SO = iTi £ \yjzn 5 3 X- y fy)dy =
-1

= a,P,+t1(x) Pn
J X-Y J X

+ M m dy+
-y

+RnPn+I(x) J Pn+i(y)f(y)dy,

-1
with {a,} —>I]2 {Rkn} —»42 and as before gn(X) = (1—X2)p”|].\X).
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From (1), (3), and this lemma, we immediately obtain

vonsifpn+1/] k. A cll/Ik.-

Finally, by the duality between L4/3fF1] and L4r[-12] if I/f+1/r = 1,
and since |Kn{x,y)\ < 2|pn+1(x)||(I - y2)~1gn(y)\,
1
|‘ Kn(x.y)i(y)dy <clpn+i(z)] (1-y2) Ign 4

/3,t

Then, by Lemma 2 and the analogous statement for the system 1,

¥Sc|p,+itU,.I'(i - y!'r 12-114/3,11/1k, S
<cflog2 + n)]L-r+j|/]|4r.

Ifr <s, then H/Ik* ~ c||/||4); so that collecting all these estimates we obtain
the desired upper bound for the norm of Sn as operator from L4,r[—1,1] into
L4,t[—1,1] in the case 1< r < s < +00.

In the case 1<s < r < +00 we argue as follows. A moment’s reflection
shows that it is enough to prove the inequality

152n||4,, » cll°g(2 + n)]1 \g2n 4,

for every polynomial g2n of degree 2n. Indeed, using a variant of the delayed
means of de la Vallée-Poussin, for every function / in L4,r[-1,1]it is possible

to construct polynomials g2n of degree at most 2n with f(k) = g2n(k) if
O™ k <n, and |szn]l4r ™ c]||/||4r. (See e.g. Zygmund [22] or Askey [2].)

Lemma 7. Let1<s < r < +00. Then for every polynomial gn of degree
n we have

1bl|4,, ~ c[log(2 + n)]7-7||Pn|4r.

Proof. [T () ~» E \<nk)\Jk +\ A~ {E I</n(*02} = Hence

AU = {)/[< V(]}V, Sc{(l+»r ; 4*}1/|[J L+

4/ v, A

(1+n)-4
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< c[log(2 +n)]i  *|sf.|4tr. O

We have already proved that the norm of Sn on i 4,s[—,1] is at most
clog(2 + n), so that if s < r using the above lemma we obtain

[|[S»<72n|j4li ~ clog(2 + n)||52n||4)i < c[log(2 + n)]L-r +7||"2n||4r.

To obtain a lower bound for the norm of Sn as operator from L4,r[—1,1]
into LAa]—1,1] we use as a test function

4y_ i 9n(y)(1- V~1/2 if0<y<]
JKV) \ 0 if - 1<y<O.
It is easy to see that ||/||4s —c[log(2 + n)]l/s, and

[I/(n + D)pn+il|4,. + \gnH[pn+1f]\\4s+
+ (- z2)V4pn+2tf[(I - y2) I/Agnf]  <c[log(2 + n)]ls
438
Also, if 1/2 < x < 1,

\Knf(x\V " clpn+1(x)| I (1 - y)~xdy > clog(l - x)~x|p,,+i(a;)],
0
so that ||/t,,/||4S ™ c[log(2 + n)]1+1/*.
Since ||/]|ar  c[log(2 + n)]1/r, these estimates imply that

H /W, > cflog(2 + n)]x "+< 4 .. ]

Let {Afcin} be the Christoffel numbers of the Gauss quadrature at the
points {it,«}. These are positive numbers defined by

/ 92n-1(x)dx = y~]g2n-I(~fc,n)Afc,n

-1

for every polynomial gin-i of degree at most 2n —L1.

Using the positivity of the Cesaro means of order two and a variant of
the delayed means of de la Vallée-Poussin, A. Zygmund has shown that if
f=P=+°° and if 9n is a polynomial of degree n, then

[E I6n"fc.n) A AGA\] b

fc=1
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where c is an absolute constant. See Zygmund [22] and Askey [1,2].
Theorem V is an easy consequence of this result and Theorem 1V.

Proof of Theorem V. Let/ bein C[-1,1] and g be in L4/3>1[-1,1].
Then, | |

[1 Lnf(x)g(x)dx = J Lnf(x)Sn-ig(x)dx =

1 -1
n n
= \52f(*k,n)Sn-ig(Xk,n)bk,n i II/IUE
*r=| K- 1
1
N cUfWo0j \sn- 19 (y)\dy < c\\fU\NSNnAg\\4/3i00 i cll/ITUHMNU/34.
-1

We have thus proved that jj_n/ 11400 ~ cLvuoo. Since Lnf is a polynomial
of degree at most n —1, by Lemma 7 we also have

Wnfh,. i c[log(2 + n)]V/*||Ln/||4i00 < c[log(2 + n)]V/*||/|U.

To estimate the norm of Ln from below we need a continuous function
/ with norm one, and such that

f(XKn)n iAfell _|fIS*S[»/2],
0 if [n/2] <k <n.
Then, if -1 <x < -1/2,
h/2] V2]
, Pn(x
\LnfOO\ = "y — ) A Apn(x)i Y bn(*fc,n)ix
bn/r.nXX* - *fcn) k=1

But, by Szeg6 [19] 8.9.2, |pO(x*n)1-1 —ck3d/2n~52, so that, if 1< x <
<—1/2, then \Lnf(x)\>c\pn(x)\. This estimate and the asymptotic formula
for Legendre polynomials imply that

HAn/||4~c[log(2 + n)]V*[|/]j00. O

4. Concluding remarks

The first observation is that if a function / in Xp[—1,1], p > 1, is sup-
ported away from the points +1 and —i, then its Legendre-Fourier series
converges almost everywhere. However it is possible to construct functions
[ in T4/3,r[—1,1], r > 1, which are supported in an interval [1 —e, 1] with
£ arbitrarily small, but with Legendre-Fourier series diverging everywhere.
Therefore for the operators {5n} there is no localization. For the operators
{Ln} a sort of localization holds only away from the points +1 and —.

The second observation is that using the family {gn} as test functions it is
possible to prove a stronger version of the divergence results in Theorem IV.
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Theorem VI. Let EOC Ei C E?... be an increasing sequence of sub-
sets of the integers, and define

SEnf(x) = H k)Pk(x)-
kEEN

Then there exist functions f in X4/3r[—,1], 1 < r ~ -foo, with
I 1I"En/IU/a 00} unbounded. Similarly, if 1 <s < -foo then there exist func-

tions f in L4,1[-1,1] with I|5j5n/||4s| unbounded.

Proof. IfK £ Enbut k+ 2" En, then

(fc+ 1)(&+ 2) .
HAnbl . 2K + )(2fc + 3) Pk > c[log(2 + fc)]1/s|kfc||dir. O
4

The above theorem is essentially contained in Giulini-Soardi-Travaglini
[8] or Dreseler-Soardi [6]. Note that we make no assumptions on the or-
dering and the cardinality of the sets {£n}- Since the system of Legendre
polynomials is an unconditional basis only for the space L2[—1,1], it is clear
that without extra assumptions on these sets we cannot expect the operators
{S#,,} to be of restricted weak type.

The last observation is that for functions with some smoothness we can
improve the convergence result in Theorem V.

Let Ca[—1,1], 0 < g < 1, be the subspace of C[—1,1] defined by the
norm

ime = +sp 1) yfl.(.y)l —1<X y<1

and let Cq[—4,1] be the closure in C*[—1,1] of the set of polynomials.

The following theorem holds.

Theorem VII. For every function f in the Lipschitz space C6[—,1],
O0< a”™ 1/4, we have

lim M.nf - /Ual-2) = 0-

IfO< a <1/4 andp > 4/(1 - 2a) then there exist functions f in Cq[—1,1]
with {||Ln/||p} unbounded.

P roof. By Jackson’s theorem if / isin Cq[—1,1] then there exist poly-
nomials gn of degree at most n such that

lim n"||/-f, |00 = 0.
N—too
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(See e.g. Lorentz [11].) On the other hand, by computations similar to
those in the proof of Theorems IV and V, if / is a bounded function and
4 < p < +o00, then

e i ™/2-21/1U

Hence
rilimoo||lLn/ - / ||4(i_2a)<

= " 5n-1]]|14/(1-2a) + Nen-l - [IU/(1-2«)) ~
< clinm supn"ll/ - Sn-illoc = o.

Test functions similar to those used in the proof of Theorem V show that the
norms of the operators {Ln} from Cq[—1,1] into Lp[—L,1] are not uniformly
bounded ifp > 4/(1 —2a). O

The case a = 1/2 and p — +o00 of the above theorem is contained in

Theorem 14.4 of Szeg6 [19].
Finally, 1 wish to thank Giancarlo Travaglini for several discussions on

the subject of this paper.
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ON THE CONTROL OF A CIRCULAR MEMBRANE. |

1. JOO (Budapest)

Let A = {(x,y) : x2+y2 < 1} C R2 be the unit circle, and take
some (different) points Pi,... ,Pn € d, Sn+i,---Sm G g4d. Consider the
following system for n = u{t,x,y):

N
(1) UH=[Au+ g6 ((x,y)~ Pjvj,
i=l
) du M
(2) = A EYNYT
dr anx(0.1) j=N2+lS(S s s Goii>
(3) «(0,.,.) = WF(0,.,.) = O

with controls Vj(t) € L2(0,T).

We shall investigate the approximative controllability of the system (1)-
(3) describing the control of the circular membrane in the points rj (j =
=1,...,N),sji(J=N+1,. ,M). First we give an outline of the related
results (known for us). The analogous control problem when a rectangular
membrane is controlled in one side of the rectangle, is investigated in [4].
The independence of the movement of a membrane in finitely many different
points is proved for the rectangular membrane in [5] and [6]. In [6] the author
of the present paper used Lemma 7 below which was unnecessarily strong
because we need for that problem only the completeness of the exponentials.
The “real” application of Lemma 7 would be a control problem; this moti-
vated the author in finding the problem of the present note. For the circular
membrane the problem is solved partly in [7], the complete solution is given
in [8]. We shall use some ideas of [4] and [8] here.

Introduce the eigenfunctions

4) —A<p =\ 2ip, dr —0 on d4d

corresponding to (I1)-(3). For fixed m=1,2,... denote 0< < ...
the zeros of Jm, where Jm is the Bessel function of order m. It is known [1]
that if we take polar coordinates x = r costp, y = r sintp, then [4] has the
solutions
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4om, (2>y) «=Jm (Alra)r) cosrrup,  <prn(x, y):=Jm (Alm)r) sin rrup,

(m—0,1,...; n=1,2,.)
and At,, := Aim).
It is known [1] that the eigenfunctions 1,y?on, giye a complete
orthogonal system in the weighted space £;?((0,1) X (0,27t)) and
1 T (\(m\ / o \
4y J|l<d2=*||Im(AM)r)|2rr — T 1- ()2
1

Ajn = 2TJ Jo(A~r) rdr —T JO(A7r)

this follows from [10] 7.14.1 (10) and 7.2.8 (56)-(57). Next we refine the
meaning of (1)-(3). Consider a function z(t,x,y) with the properties

z(T,;-)=Z(T,;-) =0, A = 0.
anx(o,T)
T
Taking a formal twofold integration by parts in f f uztt and a formal appli-
on
cation of Green’s formula in J f uAz we get
on
T T T M
(5) JJu@tt-Az)=J J z(utt- Au)+J Z(-'Sj)V3:
0n 0n
r/ N M \
=/ w2zt'pj)vi+ Y1 *(-nmbl -
a -4 P J=N+1 ( A

We ask for the solution u in the form

li(f, X, y) = Q@(i) + c0,n(0?0,,,(*> ¥) +J 2 an,r>(i )Vem,n(a:>/);
n=I

then we have

Co(0 = ;ﬂ/ W CAn(i) = ?Fﬁ:ﬁé 7m,n = llvm.nll2 -

Apply (5) to the function

j4cia Mathematica Hungarica 61, 1993



ON THE CONTROL OF A CIRCULAR MEMBRANE. | 305

z(t,X,y) = <?*,.(*, 1PKO
where be C2[0,T], 6(T) = b'(I') = 0. We get

T T
mnd (V+ (A(™))26) G, - J bht,n,
0 0
N M
'm='52<P™APj)VAt)+ X) “~m,n(Sj>,(0
i=1 i=AT+I
ie.
th /# L /sinAm)(t-T )L
(6) - i(l() )IIZIxAT) dT
and analogously cO(i) = \ J(t - r) VJ{r)dT. Introduce the notation
( <PmnPl) \
bl *)
mn < Vm.niUV+I) v(0 =
\4 )
Then hm,n = (usem,n)- Define the spaces
Wr:=\f =c0+ co,nor, + 2 : r=
k| n=1
mn =+ Lo
- leg m£>.0 Am Uim < oo
n>1

and let 7ir := Wr+1 ®Wr. Here ~2* is the sum over all indices m, n satisfying
|em,n| ® 0 Denote further

£,.(«):=at“>cE (1) +<n(i), N .-(*):=-«I,<n()+<.(0.
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306 1. JOO

then

t

t
n,-,,(0 = r/rﬁné «'v-"('-rfM O ,<,,>

If we introduce the notations

K:=2\{o}, =A8NA (MEN AEK,
we can give a unified form
(7) Fit*« = A7m,n / >\(» M |Ter%)nl11) *

(m GN, €GK, n = [fq]).

We need the following simple

Lemma 1. Let

f = Go + 4n~"0,n + S am,n¥>m,n>
n=1

9 = be + 5360,n’\o,n+ 53
n=I

Am,fc := « ‘>m,fcOm,n + bm  n, 71 = 1*1-

TTien the mapping

{l,«}-{oo.boJ~riottr™ INrfEtrPI™eN .fceK, \ef 7m0
leo Nl mnl

establishes an isomorphism between Hr and I1?.

Now we can prove
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Theorem 1. For r < —1/2 and for any control v G L2(0,T; CN) we
have

{u,ut} € C([0,r],Wr).
P roof. The statement {u,ut} GWr means by (7) and Lemma 1 that

But we know ([1]) that the distance between the consecutive zeros of Jm
tends to T decreasingly and that the zeros of Jm and Jm are interlacing. So
the zeros of Jm can be divided into two separate sequences, i.e. for which
rin+1 — o » 7. Therefore the Bessel inequality holds for them (see in [11]),
and then

where ¢ < Mis independent of m. From the estimate |qmﬁr/\(m 'fl)r we
obtain (8). The continuity of {u(t, ¢ ¢), ut(t, », 9} G Tir in t G [0,T] can be
proved similarly as in [14]. O

Remark. Analogous investigations concerning vibrating strings are giv-
en in [14].

Definition. The system (1)-(3) is approximately controllable in a finite
time 7 if the set of all reachable movement states

R(T) = {{«(I, - ), ut(T,, 9} v GL2(0,T : CN)}

is dense in 7ir. We shall prove

T heorem 2. The system (I)-(3) is not approximately controllable, i.e.
R(T) is not dense in 7ir,for any T > 0 and r < —1/2.

P roof. Suppose that pj » O for all j. Then for any T > 0 the system

e(A):= i MTY""**" :m GN, KGK, n = |*|, |et,,| b0

contains a Riesz basis in L2(0,T; CN).

A similar statement was proved in [8]. We shall transform some ideas
applied there to our case.
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. Ty : . :
Lemma 2. If we arrange the positive zeros A, ' of Jm increasingly into
a sequence 0 < p\ < P2 < .mmthen
Hn+ - A» -» 0 (n -> 00).

P roof. We start with the asymptotical formula [1]

arctan w
Im(x) = A 1 [N/3(*) + J-U3(*)] + 0(m 4/3),

x* .
X>m, WwW::= \/F_Z —1, z:= mlw —arctan in),

where the O-term is uniform in x. Since

we also need the notations

wi:= 1, 2 = (m —I)(tui —arctanw\),

(m —2"~

W2 = (m + I)2_1’ 22 = (m + 1)(u;z—arctan W2).
We shall consider for fixed ¢ > 1 the values
X =m\/c2+ 1+t t=0{m}!z)

with large m. In this case

(m —Du;x —mw = y/x2—(m —I1)2 —y/x2—m2=

=y/S- m2 +0(»->)) =" =+ 0 Q
hence m
m{w\ —te) = -f +0(i).
{w\ —te) iz —m< * 0 (1)
Now

yhxe—0= 2+ 2imVc2'+ 1+R2=m™M+— Z—+0(m ¥
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hence

= =A +0(-L) =J- +0(m-53).
y/Xx®m—m2 me Wim20" e

Further we have

W = F-_i\A 2- m2+2m- 1= H-_I_C\W\ | + O(m=/ c+ 0(m 2/3)
and then
-t)=c+ - +0(m-2/3).
Now we can calculate
A —7 — m . 4 arctan wi 4- m(arctanu) —arctan Wi) + o Q/—".
y/x2—mi m J

Since

arctan w\ = arctanc+0(m 2/3),

arctan in —arctanai = l‘i/:;,\Cf +0(Qw —u>>’<19'),

hence
2\ - = E:_f arctanc———i—i—vg"{ +0im 2/3)- é+arctanc— IJ—:CCZ+O(m 2"3)
i.e.
(10) Z\ —z = arctanc+ 0 (m 23).
Analogously

mw —(m 4-Du;2= \Jx2—m2- \Jx2—(m + |)2= —+ Of_) =

m

y/Xx2—m2 v/
= Z:+ 0(m-2/3),

w2 = c+ 0(771-2/3),

mu; - u2=re2+ =W +O;\—) =c+ - + 0(m_2/3),
Vi2- m2 77y c

and then
(100 z —2x = arctanc4-0 (m 23).
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Using asymptotical formulae ([1]) for /+1/3, we obtain for x = Ty/c2+ 1+ 1

(H)
1 arctanw 1 x <1 , 1\\ , Tr 1, 1\\
IMCO =N v w yR G:ﬁz_z "3 + 2) +COSEF_F3+2/)
4G(1)]+0(m-/")= [cos(z-i)+0 (m -5/
hence
2.C(x)=A .-, (x)-A .+.(*) = [cos(z,-j) +0(m -s"e)
] : /\ 1] —
VYR TpH [cos(22" ) +0(m"56] =
=0(m"3/2)+ s S(ZI~D ~cos(z2-j)+0(m ~5/6)
1 . . *1+ 22 n\ . zi - 22
Ty/mw -Zsm[— -jjsm——"+0(m-s/e)
Applying (10) and (10") we obtain
2, 0(m™2/3), a-722_ arctanc+ 0(m 2/3).

If we denote y := sin arctané, then 0 < arctané < | implies that c =

i.e. sin(arctanc) = y/c2+i « Consequently

(i2) ANMx)=-vfvrfnv ~H 2 i)+0(m"2/3)I-
Since z is a monotone increasing function of x, we see from (12) that Jm(x)

must have a zero x = ""if z = j + kit and if the value x corresponding to
z has the form

z=Tylc2-f1+1t, t—0(m 143).
Denote
4"~ - Tylcl+ 1+ 4m);
then

w = - 1= +2vATTmd4m + =

=c(1+A 5 ir +0(m-v3;
m
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and

1
arctan w - arctan ¢ H-—- ... —----b0(m~43).
cy/"TI m T vy

Consequently

z = m(w —arctan w) = m(c —arctan ¢) 4— ----—--- + 0(m~13),
VC2

+1
hence
m(c —arctanc) H— C +0(m-1/3) = —+ &fT.
vIicATT 4
From here
(13) ) _ ez 1w it —m(c —arctanc) + 0(m x'3)
i.e.
arctan c
(14) /4> —m\/c2+1+ Ij(r@ = |’r\/C2Jr 1 rfc--- \-m +0(m-1/3).

Now we can easily prove Lemma 2. Leti > 0be a large number. Choose m0
with x = mO\/c2+ 1+ 0(1) and kO with 4™ = Q(1). Then if we choose any
k =ko+ 0(mY3), m —mo + 0(m x3), we have t* = 0(mx3). Suppose
that arc’anc is irrational. Then the mod 1 distribution of its multiples is
uniform and hence we can choose m = mo + 0(m x/3) such that

XC 1 arctanc

15 m = om(|I m -» 00).
(15) mky/c2-f1 4 T ) (m - 00)

where ||t/|| denotes the distance of y from the set Z of integers. (15) means
that for some k € Z

Ve2 + 1 arctan cl
x =T k+ 4+ m + () —fIM)k + o(1).
From x — + 0(1) we obtain that k = foo+ 0(m 7/3). Lemma 2 is proved.
Next we need
Lemma 3 [g]. 1fo M VA < ... < <pm < 2n, then the vectors
Sm m<p1 cos m<pi

SinrTpMm, ,COS MNPM |
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span the space CM.

Consider the points pj — (rj, <j), sj = given by its polar coordi-
nates. Arrange the indices such that r\,I"2,... ,r/v0O, r/vO+i are all different,
r"\Vo+i = 1 and the other ry do not give new values. Introduce further the
setsaj = {£: rj =77} forj =1,... ,M+ 1;and the notation

dj := yjrrc2+ 1) - 1

Suppose that pj is not the origin for all j and r2(c2+ 1) - 1> 0. We shall
use the following fact.

Lemma 4 [8]. There exists a residual set D C [1,00) such that for ¢ E D
any equation of the form

NO M
0 = mr - 7ioarctan ¢ + nj arctan dj 4-E n'jTj
ji=1 j=1

with entire coefficients n,nj, N' implies
no—-n\ = ... = nM0- 0.

Next we define a basis e\,... ,em of RM as follows. For fixed j the
values (pt, £ E ay must be different, so by Lemma 3 we get a basis in the
coordinates £e oj. We define the other coordinates to be zeros and consider
these vectors together for 1<j ~ No +1. Then multiply the j-th coordinate
by —4= for 1 ~ j < M. The resulting set of vectors will be denoted by

V dj
ei,... ,ewm;they form obviously a basis in RM.

Lemma 5. suppose that Pj is not the origin for anyj. Lete, T > 0 be
arbitrary. The set €(A) contains a subsystem

® p= {4 pE I\t iz 1,--.MVon= 1,2} U{ene*RA o)
such that
@) v o g <& i=lee M om—01.,

(b) Anj~2% < £, i — 1, M\ n > tiq

for some large noO.

Proof. The construction ofea and Anj will be given only forj = 1; for
other j it goes in a similar manner.
Choose ¢ E D (see Lemma 4) satisfying

3 >minrjyjcl+ 1> 2,
3
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Let first n be large and approximate x = 2n” by the jj, a s in Lemma 2.
We can choose c¢ such that the further condition

n c 1
16 <f'
(16) T\Vc2+1 8
holds; if the construction goes with j € cr.n/o+v (16) must be substituted by
n c 1 < £
(16<) Ts/JTi %8 '
Take mo with 2ir® = mO\/c2+ 1+ 0(1) and ko with = 0(1); then
2n™ = + 0(1). The estimate
Vc2+ 1 1 arctanc

£> 0 n (m) -

—-—m
TylZz TT 4 "
can be ensured if we require

arctanc
m_

(17) <£2.
Indeed, if we take m — twg + 0(1) satisfying (17) then we get Kk £ Z such
that < 2s2 and then k = &+ 0(1) follows for small £. Define
the vectors

A cosmiyjlI m(A[m)r 1) sinmy?lI m(A[m)yry) ~
(E)TTIfOO — "mfcO

Vecos mAMIm (A[m)rM), ,Sin M "M "m(A[mVM) /
By (11)

=vf H r>- 1)+ °(™5le) =

=Vin [ @Hv- 1) +0(>56);

where we used that

millj = \/ 7j[Mim)]2- "2=\/m 2(r|(c2+ 1)-1) + rA2\/c2+ Im 4m) + [4"7f =

Cmdj g 1e VEEITY g =
3 m

Ao
) md-jE1+ r2V.T|t|m)

d)__-----Fn_ +0(m _2;3)\ :
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Further we have by (13)

) ) _ o orlyic2 -1 1\ /m\
= m(u;j —arctan Wj)= m(dj —arctan dj) ---------—-—-- M- -— tK ;+
+0(m a/3)= m(dj —arctan dj) + 21 —1 +0(m Vp) =
= -1~ +knj+ arctané —arctandj'j + O(m 1/3).

If we have an m = mO0+ 0(1) satisfying (17), for the corresponding K we
obtain

arctan c, g
A= —m —f)— == — +2 H<1.
c2+ 1 4 PE:
Consequently for large m
Tb cl
m arctan dj + 8pif2, i| <1,

=22T AT T . P i
hence
(18) = .[cos(m arctan dj —7y) + 8p2£2p

myfmdj

with some |2 < 1- Here 7y := 2ir™_>-"j 4.  Define the vectors

cos my?! cos(m arctan di —7x) \

. 5
=== cos TepM cos(m arctan djvf - 7m)/
sin my?i cos(m arctan cfi —71) 'S

A== sin nupbl cos(m arctan dj* - 7n/)/

The estimate (18) implies

(19) lenfed * emfcll A \ [ ~ 8mQ3£2° bl < L

Take the number 0 < m' < |&i| —1 such that the Oth coordinates of e\ are
/=cos m'ipi “or sin m'yp”j . Consider for m = mo + 0(1) the following
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problem of simultaneous diophantine approximation:
marcEn.c|| < £2
2n

m arctan d _ N <N

2n 2n
(20) arctand 7,+8
T, hae < E2, 2<; <\
£1 - m'El |
This system implies
m_a_r_(_:fja;[]_fj)\ 6 :I: < 20j
2T 2r 4

also for j —No + 1, since in this case

n T
dNno+1 - ¢, No+ 1= 2n i
o Tvez+ 17 4

and
TNO+1- f n c 1

2 Tylcc+1 8

The system (20) has a solution m — mo +0(1) if and only if for any integers
j,nj for which

<f£2.

arctanc \— arctandi \— | §j

27F
3=1 <e*1l
is entire, the expression
No
7i b - N
; : —+ n~m/
niz2m+ E ni
= 2r s 21

is also entire ([9]). This property holds by Lemma 4, hence (20) has a
solution. For this solution we get

rmn

emkl - el = 0 (£2)-

Taking into account (19) this means that

'mkO _ _fi_ - 0(62) < £
ol leil

Acta Mathematica Hungarica 61, 1993



316 I. JOO

emkO 0 (E2)<£ if £> 0is small enough. Now we define
lenfod
e’]’. = CemkO Vl:: ngn
o) |

then (a) and (b) hold for large n, say, for n > n0. For j E cajvOti the
construction is similar, only (16) is substituted by (16" and (20) by

m 2m
(207 m=5r 2 _ThE g2 = 1- LM,
\mH bl < &, | E<ro+l
Then
marctan d"NO+i 7O+ m arctanc n c i < 262

s ar ar TYPTT + 87

and the above arguments apply. In case 0 < n < no we repeat the above
process with

X _(2n0 + 7T X = (2n0+ (4n0- 1T
instead of x — If we choose £ < the values /4"~ will be different
from the values constructed in the earlier steps. Lemma 5 is proved.

Lemma 6 [5 6]. Suppose that the system enelXnt :n E Z is a Riesz basis
in L2 (0, T;CM). Then there exists an £ > 0 such that

€C, A —AQJ<E

implies that {erneJ1"*} is also a Riesz basis in L2(0,T; CM). The constant £
depends only on T and0<c U C < oo, where

E IE»-enei\m scE O

namely e*c—1 < y/c/C is sufficient.

LEMMA 7. Let eneXnt :n E Z be a Riesz basis in L2(0,T;CM) and let
AgE C, Agh An, n E Z Then the new system

eoe,xo\  e,.eiXnt (n E Z\ {0})
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forms also a Riesz basis in T2(0,T; CM).

The proof requires some notions and theorems of the theory of vector
exponentials. The matrix valued function

F: C+ CMxM

is called strong //*-function ([3]) if £ A2(CM) for every e £ CM, N£
£ C+; here A2 is the ordinary Hardy space on the upper half plane. The
strong A 2-function F is called strong outer A2-function if we have also

2_4\nF(Z)e 166 CM, n £ Nf= HL M,

z+ ) z-fr

where \J denotes the closed linear hull in A42(C”). The strong (outer) AE£-
functions are defined similarly, only A2 is replaced by A2, C+ by C_ and
i by i. If {e,e,Ani :n £ Z) is a Riesz basis in L2(0,T; CM) then there
exists an entire function F: C —4»CMxM (the so-called generating function)
having the factorizations

(2n g F(z) = H(z)-F+(z) (z€C+),
| F(2) = eiTzF~(2) (z£C),

where jp* are strong outer A”-functions and I(r) is the Blaschke-Potapov
product corresponding to

(22) Ker M*(AMN = \/cM{ek;Xk = An} = En.

Now consider a system {ene'Ani : n £ Z}, where |e,,| Xx 1and 0 < 6 <
[ImMAn| < A < oo, n £ Z. Suppose that there exists a generating function
F(z) satisfying (21), where M is defined by (22). Then

Theorem A [3]. The following statements are equivalent:

1) {e,e‘Ani :n £ Z} is a Riesz basis in L2(0,T; CM),

2) The same system is a Riesz basis in its closed linear hull in L2{0, oo; CM)
and

(23) [[i7(a:)/Ztz(a:)|[b2(R)c ™) ~ cl1AM a0 IbiR .c?)

holds for all functions n with F(x)u(x) £ L2(R, C”), where H denotes the
Hilbert transform
H — p.V. U dt.
00 g e g
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Now we are able to prove Lemma 7. Since {e,e’At :n G Z} is a Riesz
basis, there exists a generating function F(z). We can assume that the
Blaschke-Potapov product I1(z) has the form

n(z) = bo(2)bl(z)b-i{z)b2{z)b.2{z)...
where
bo(z) = C/'1( ° )y U
V o Im-r)

with some unitary matrix U transforming E qonto the subset of CM consist-
ing of the vectors vanishing in the last M —r coordinates, r = dim Eq and
Iris the r x r identity matrix. We can also suppose that

[N
0

vo/

Now define

Fo(z) = U-1
Im -1
and let
Fi(z) := Fo(z)F(2).
Then Fi(z) is entire and it is a strong iif-function. Consequently ([2])
there exists a factorization F\ —QOFeH5 where 0 is an operator valued inner

function and F~xis a strong outer A”-function. Potapov proved in [12] that
0 can be further factorized in the form 0 = I1iS, where IMxis the Blaschke-
Potapov product and S is a singular inner function, i.e. det5(z) ¢ O for
z e C+. By the Helson-Lowdenslager theorem ([2]) in the factorization

det Fi = det LL| det S det F

det ., is outer, detM1is a Blaschke product and det S is a singular inner
function. On the other hand by F\ = FgF we obtain

Jr
det A\ - 7-—- rdet F =

1- 1 I 1-y
1- —"r-det r TTdetF+
% A

Acta Mathemaiica Hungarica 61, 1993



ON THE CONTROL OF A CIRCULAR MEMBRANE. | 319

In the first brackets stands a Blaschke product and since

x 1 (z 6 C+),

hence in the second brackets we have an outer function. Since the factoriza-
tion of scalar functions is unique up to a multiplicative constant, we must
have

detS(z) =c, |c=1 (z£EC+).

Since S(z) is contractive, we have | —S*(z)S(z) * 0 hence the eigenvalues of
S*(z)S(z) are between 0 and 1 and their product equals detS*(z)5(z) = 1.
Consequently 1 = 5*(z)S'(z), i.e. S(z) is unitary on C+. But then 5(z)
and 5*(z) = S'_1(z) are both analytic in C+ and this means that S(z) is a
constant unitary matrix. It can be put into the outer factor, so we obtained
the factorization

Fi(z) = Ul(z)Fetl(2), z€C +.
In the lower halfplane we have
Fi(z) = eiTxF~1(z), Fe,1(Z) := Fo(z)Fe {2).
Since
(zee.),

hence |.Fo(z)||  c, ||PCH(2)11 = c>so Fo gives an isomorphism of # i ( CM)
onto itself and then maps complete sets onto complete sets. In particular we

get that-F~xis a strong outer LT2-function. Thus we showed that jF\(z) is a
generating function of the new system eoef0‘, ene'A"*, n 6 Z\ {0}. We have
to verify (23) with F\ instead of F. But ||Fo(a;)]|, |*o~1(x)|| = c implies that

[-fo(™N)/(NM)HX.2x H/JIArem)  (/ € L\R,CM)),

and since (23) holds with F it holds also with F\. Lemma 7 is proved.

Proof of Theorem 3. We shall show that the system o ¢ e(J1) con-
structed in Lemma 5 is in fact a Riesz basis in L2(0,T; CM). Let

M
/IGL20,T;CM), m =Y ,fnei*it, [/, = X)anj-en(
nez j=l
If £ > 0 is small enough then
M
IWHZOTG) XE un x E E
ntEZ nEz j=1
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which proves that the system
0 := {efnex2T*:n GZ, j =

is a Riesz basis in L2(0, T; CM). By Lemma 5 (b) and Lemma 6 we obtain
that for large no the system

@0 := {e|nle®2r?* :n| A n0; j = 1,... ,m }u
u{eHe'SgnAdr< : I«U «0+ 1, j =1,... ,m}

is a Riesz basis in L2(0,T;CM). The last step is to apply Lemma 7. It
may happen that for some n < uqg : Xnj —27™ (here k < no if no is large

enough). Therefore define new exponents Anj, 0~ n” no, 1 j <M which
are different and do not contain elements from the set

[tAnj :nGN,j=1,... m| U|2a* :n Gz|.
By Lemma 7 we get that
{efex,*-t:n”* n0,j =1,... ,M} U{etextAnjt :n>n0+ 1,j =1,... ,M}

is a Riesz basis; then again by Lemma 7, ®is a Riesz basis in T2(0,T; CM).
Theorem 3 is proved.

For the proof of Theorem 2 we recall first the following result of D. L.
Russell.

P roposition 1 [3]. Let {e,Ant :n GZ} be a Riesz basis in L2(0,T) and
let fj,i,... ,u3 be different (complex) values different also from the numbers
An. Then the system {ell>*}i<j<eu {e'Ani}nez forms a Riesz basis in the
Hilbert space Hs(0,T).

We generalize this to the case of vector exponentials as follows.

P roposition 2. Let on ¢ C befinite sets and

H,, {le\e,Xt tAG am, nGZ

Xip0.T:.cM)

with some e\ G . Suppose that Hnn G Z is a Riesz basis in L2(0,T;CM)
(see this notion in [2]). Let s > 1 be entire and

t = (X
Hioy 1=V Lo 1:0m (&) J=1,-e ALS}

where
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a) the system is linearly independent,
b) A0 MHn= {0}, n ¢ Z
C) /fram i/ie vectors ej we can form s bases in CM, e.g. let {e\,... ,e,u,/},

{em*+b ®®® e ], mmm, {e(s-i)M +i> ®*®® ecaM) be all bases in CM. Then #(,,),
Hn (n GZ) forms a Riesz basis in LZ(O,T;CW).

We shall prove the following statement which implies trivially Proposi-
tion 2.

Proposition 2'. Let s > 1 be entire and Hn := \J{e\e Xt :J'IGcr,,} 6€ a
Aiesz basis in //5-1(0, T ;CM). Let further the sets an be finite and define

H(o) := V )= Reee) W}
where
a) H = {0} for all n,
b) ei,... ,em is a basis in CM.

Then H(0), Hn (n 6 Z) is a Riesz basis in Hs(fi,T\CM).

Remark. The case N = 1 of Proposition 2 is asserted in [4] without
proof.

For the proof of Proposition 2’ we introduce first the closed subspace
oHs := {/ GHs(0,T;CM) :/(0) = 0}.
Let further T : CM —»CM be the hnear mapping defined by
10\

0
Tej:= 1
0

\o)

(the j-th coordinate is 1), i.e. T maps the basis ej to the standard orthonor-
mal basis. Finally define

z -rp\ 0
A(z):=T"! T=z1+C
2 —IIXT,

and the operator A (~) by
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Lemma 8.1) A: H3—»H3 1 is continuous and its kernel is Ker A =H(Oy

2) The mapping f t->/(0) establishes an isomorphism between H(o) and
CM.

3) A: oH* —*H3~1 is an (onto) isomorphism.

Proof. Statement 2) is trivial. To prove 1) expand any function / £ H"

in the form
N

f~ g
31

where fj(t) £ J13(0,T) are scalar-valued functions. Then we have

(24) Af = e3(jt- *Mi)j(o-

From this we see at once that Af = 0 if and only if fj = otje'A for all j, so
Ker A = H(0). On the other hand A is continuous since

M
mw g UNHs» X 110>
=1

so 1) is proved. To show 3), we prove that A maps gH 3 onto Hs 1. By (24)
it means that for arbitrary p £ C

{[jt ~ fe =a"(0,T)
i.e. for any g £ # s 1 we have to find y £ H 3 satisfying
Y- Uy= 9

Introduce the function Y (i) by

no «j* =y(0-

Then we have
y' - ipy = Ye* =5 je. Y- J g(t)e- itadt.

This is a correct solution since 5 £ li3~1 implies ge~,t¢ £ Hs~x hence Y £
£ 11s and soy £ Ils. Hence the mapping A: 0/13 — Hs~| is onto indeed
and then by 1) it is & one-to-one continuous linear mapping between Banach
spaces, hence is isomorphic. Lemma 8 is proved.
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Proof of Proposition 2. Consider a finite sumY /,, where /,, £ Hn.
n

Since £ Hn and Hn is a Riesz basis in /T*-1, we have

E-Ua- ~ +|E4L,

* E (nann—2+ii/liiif-1) - E n/"HSF

therefore Hn (ta £ Z) forms an X-basis in A® (i.e. a Riesz basis in its closed
linear hull). On the other hand we have

(25) H{ N\/{4, maf zZ} = {0}
H>

To prove this, consider the projection P: H* —* gH 3 of H3 onto OH 3 parallel
to A(0). By Lemma 8, 1) and 2), we have 0oA*MA(0) = {0}, 0A®+A(0) = H 3,
hence P is uniquely defined. Since A(0) is finite dimensional and gH3 is
closed, the angle of these subspaces must be positive, thus P is continuous
(in H3). We know that AHn = Hn because AHn C 4,, is obvious and Hn
nKer A = {0} implies the equality of the dimensions. Define H* := PHn.
Since P changes only the component lying in Ker A, we have AH* = Hn.
By Lemma 8, 3), this means that the system {Hn :m£ Z) is a Riesz basis in
oH 3 and then A(0), H* :n £ Zis a Riesz basis in H3. To prove (25) suppose
that

NO) = X] fn!

the sum being convergent in 11s. Applying P we get 0 = Yh Pfn and then
the L-basis property of Hn implies 0 = Pfn for all 2 But 0 = Pfn implies
0 — fn, otherwise Hn M A0) » {0} would follow. This implies /(0) = O,
so (25) is proved. This yields that A(0),Al @ £ Z form an X-basis in A®.
The completeness of this system follows from the completeness of A(0), A*,
£ Z. Proposition 2' and thus Proposition 2 are proved.

Proof of Theorem 2. Suppose first that the origin does not occur
among the points rpj. By Theorem 3 the system ¢ C e(A) constructed in
Lemma 5 is a Riesz basis in X2(0,T;CAi). Taking any values x = (21T
with large 13 the method of construction of Lemma 5 give us some exponen-
tials exetXxP £ e(A) with

Qu+ LT
T

Now by Proposition 2 we see that for a given s * 1 there exists a new system
® C ® C e(A) which is a Riesz basis in A4*(0,T; C»). Of course, e(JT)\ ®
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contains infinitely many exponentials. Expand one of them in Hs:

M,
eleiXot = *rerepr + A
r=1 n~L

if we say that sgnO = 1. This sum can he differentiated s times; the resulting
series will converge in L2 and

1BV ) <(m

Consequently among the coordinates of the moment sequence

-2 /rr\ 7m0, | | eium,k(t-T)
yfd ) |/\+ ‘_ dt,
m.n

there exists a linear connection with some coefficient sequence from I2if s is
large enough. Indeed, if we have

26 " r,KéLAm.kt msn 0,
(29) E ‘et |

the sum being convergent in £2, then

o = E 1 dt
andhere Giz ifs is large enough. This completes the proof for the
case when P3 0. If the origin occurs, for example P\ = 0, then for m > 0
the first coordinates of are zeros. In this case we consider only the last

M —1 coordinates of the vectors; in these coordinates we get a Riesz basis
in 7/s(0,T; CM_1) by the above argument if the point Pi is supposed to be
omitted. By the above way we get in these coordinates a relation of type
(26) which leads to the noncompleteness of the moment sequence as above.
Theorem 2 is completely proved.

Remark. The method given in [6] shows that R(T) does not give up
growing for large T, contrary to the one-dimensional case of vibrating strings
(see e.g. [14]). We investigate the space 7ir and give controllability results
in a forthcoming paper.
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UNIFORM ESTIMATIONS OF THE
GREEN FUNCTION FOR THE SINGULAR
SCHRODINGER OPERATOR

M. HORVATH (Budapest)

Consider the manifolds Si,... ,S©0 C KN, dim5t = N —mk defined by
the rules
sk={x=({, ™ERnkx RN~mk :Mv) =f}
where the partial derivatives of order 1 of the functions gk : —Rm*
are uniformly bounded:
[V "~ (®)|<C, M£ RN~mk, k=1,...,£0.

to

Define further S := (J Sk and choose arbitrarily 0~ r < 2. Take a function
k=1

g£ C°°(Rn \ S) satisfying

[?(x)I = co[dist (x, 5)] T.
Fix a number 0 < £g < it and define the sector
Zo={z £ C:eo £argz <n- £0}

We consider the Green function of the operator —] + g—//2, /t £ Z0. We
shall prove the same uniform estimate for the Green function which is known
in case q = 0 (for the Laplace operator); see Theorem 1 below. Analogous
results were obtained in Jo6 [6] for the case of a bounded domain Il and
spherically symmetrical potential q(x). In [4] Jod investigated potentials
where the spherical symmetry of the main term of qis perturbed, where the
perturbation diminishes quickly if we approximate the origin of symmetry.
The second main result of the present paper is stated in Theorem 2 below.
It is an analogue of the square sum estimate for a complete system of eigen-
functions (if the spectrum is discrete); see e.g. [7]. In our case with domain
fi = R” the spectrum is continuous, hence we have a square integral esti-
mate of a complete system of generalized eigenfunctions with respect to an
appropriate measure. This is based on the Neumann spectral theorem and
on some ideas of Maurin [9].

We shall prove the estimate of the Green function. In case q = 0 the
Green function is explicitly given in Titchmarsh [1], 13.7.2:

' —1

" <Eo(x,y,u,) CN( r) 2 y-1 (p2r), r =\x-y\, x,y £Rn,

v, TV, i —
cv=1i2"2 T = y/lu* - pi, Im/r2> 0.
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Lemma 1. There exists a > 0 such that
(2) \Eo(x,y,u)\ <cr2~Ne~2aMr, x,yGR”, p GZ0, pi >0

and the estimate is uniform in x,y,u,u\.

Proof. Using the asymptotical formula [2], 7.13.1 we get that

SIm e o) > 1
2 1 2T

From pi > 0 and p G Zo it follows that p2 G Z0, consequently -Im p2r »
—€(E0)|p2r| < -c(e0) < 0, hence

e-Imfir N e-c(royblr < c(|/i2|7)i T5e* ii2ll|ii|r
which proves (2) for the case |p2|r > 1. From the estimate

[A<L)(r)| < cv\z\~v, \z\<I, wv>0

we get easily (2) in case |p2|r = 1- Lemma 1is proved.

Lemma 2. Leta > o, Il,s > 0, i +s < N —r. Then there exists
c=c(a,E, N,s,t) <00 such that

fe- “1U1H|Ir _ oul-t\y _ ul~s\g{u)\du < c\ii\sH+T~N
R~
uniformly in x,y € R®, p 6 Zq.
Proof. Use the decomposition
| = / + / =:1+/2
KN |x=d|<|u-y|  [x—H|>|u-t/|

Clearly we have

e-ax~u\M\x - ul-'-"Iqiu~du,

< e—alu—y|H |u _ y\-I-s\g(u)\du.
RII

Acta Malhematica Hungarica 61, 1993



THE SINGULAR SCHRODINGER OPERATOR 329

By symmetry it is enough to estimate I\. It is known [4] that dist(u, Sk) *
Clf ~ Vici?)!- Consequently

In(u)] i cloist(u, 5)<T< c?t(:;i[dist(«,S*)]- A

to
< - MVk)\~T, u:(&(ydétRn’FX
=
To simplify the notations, we shall omit the indices in and We have
h Je-alx-ulMi*-ul-t-“\t-M ri)rrdtdr,=
k Rn
= CJ2 | e-akr-@w)7)lx —(Z + ipk(v)iv)\~e~e\X\~Tdzdr].

k RN
We know that

I*- (Z+Mv),v)\ A {{ fl*" (2 + y>f(/:(iJ/'$)[' X = (x°,x1).
Using the known identity
@
JerF -1t =T(7)/T\ >0, 7>0
0

we obtain for any 0 $ p* < £+ s that

h<c) | f (e-21*1"TURL- 7/T *+PK) o
k RN
.ie-"Mx°-z-VK*M \x° -z - M v)\-pk\z\~T) drjdz =
= f e-AI*LylUpKL A |-« —+p*.
£ RN- mk
Y JoeW-r-* Kk MWO0- 2 - vk(r])\-pk\z\-Tdz"dr].
R

We estimate first the inner integral:
J e-Ax-2- VKN MGz pk(v)\~ptiz\~Tdz= 1 J
R M iIxe-*-WK(*j)l I IALI0—x—vicir?)!
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< J e-*M \z\-pk-rdz+ J e-"x°-r- ~ bl\x°- z-if>k{r,)\-*-Tdz =
RmE R
X

=2J e-fINN\2\-pk~Tdz = ¢J rm*-i-P*-Te-il"lrdr = cH*™ ™™~
Rmt

provided mfc > pk + r. Then we have

h<cJ2 \p\Pkt~mk / e"fxI-rll/i|x1- 7r <'s+p*d7?<
I-

n

(0]

NN [Pt mic f rN~mk~1e ~ MM rr~t~a+Pkdr <

*

0]

< cM|Ix Ptk |[IT ' 1+/+4"Pk_a = c\p\I+a+T~N
K

provided N + pk —mk —i —s > 0. All the above conditions assumed for the
numbers pk are

0 < pk <@+s, mk+1+s- N <pk<mk- r.

These can be simultaneously satisfied, hence the proof is complete.
Define the functions Fn(x,y,p) by

FO(x,y.p) = EO(x.y.p),
3 Fn(x,y,p) := - J EO(x,u,p)Fn-i(u,y,p.)g(u)du.
R/\
Lemma 3. Letn=0,1,... ,\"zp and 0 < $< 2—T be arbitrary. Then
(@) \Fn(x,y,p)\ < c\x - y » Hbe-a\X-MU bl -T12-6-r)

holds uniformly inx,y GR”", p € Zqg, pi > 0.

Proof. In case n = 0, (2) is even stronger than (4). For larger values
of n we use induction:

\Fn(y o\ < | Io(* « A%)IAn-a(e,» /%) A () U
R/\
<dMRj(1+) (2€AJ e- 21l - ullM|-«|tf-“||P2l|a. _ u|2-W]y_u [22W»>Dji|g,(u)|*u
N
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Using Ir —u\ + \u- Y\ > \x —y\ we get by Lemma 2 that
\F(x,y,ri\ |
' e-alx-un|bl |x _ ul2-3V]y _ tlj2-I\r+(n-D)tfli (u)|d]i =
RN
cm2|(~m)(@2. 5 Te_ax_Yblr )+ ) A<
< c|/i2|](1-n)(2“5_T)e_a[;rY|Li2llx - y\2~N+nS.
B e-cr-airzllg _ UV VY u\-s\q(u)\du+
RN
hJ e-Ax=uM\x - ul~nSly - u\2- N+~ -Ashg(u)\dun A
RN
< c/x2|(Ln)2 5_r)e_a|l-Y|l/i2l|x - /|2 IV+n5/iza+r_2 =
= c\x - y*-N+nSe-a\x-y\\"\*-n(2-r-S)
as we asserted.
LEMMA 4. There exist constants eo,Ci > 0 such that forn > N—2 4+

%) \Fn(x,y,ri\ <cle-a%-¥Y *\cobl )M 2~n(2- 7
uniformly in x,y £ R*, y, £ Zg, y\ 0.

Proof. Consider first m= %2 + 1and apply the previous Lemma:

VEn(x,y f2\ < CH (1-")(2-i-T) [ e- 2«l*-«llw]-«|ly—Ill«]||a _ tt|2-AT.
RN

m\u-y\2- N* n-*s\g(u)\du < c\*\(1- n)(2- 6- Te-a'x~M

m[ e-"x~u"\x - u\2-N\u-y\2-N” n-"8\g{u)\du.
RN

We know that

N —

(ma- 1)(2—r) =(2- t) 2_T2 >N —2—2—t)=N —4+r
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hence there exists 6, Nn*<T < 6 <2 - Tand then Lemma 2 applies:

\Fn(x,y, i)\ T c2)2)(L- n)(@2- i - r)e-“1"-«H«l/X2W - 4-(,,-i)i+F- V=
= c2lir2]- [ ] (2- 1)+N- 4+Te-“ - yil«l.

For larger values of n we use induction. Denote C3 and c4 the constants in
Lemmas 1 and 2, resp. and define

, 4-J_ [~T1(2-r)-Nr+4-r
Co := (C3C4)T-2, Cl := C2ch

Then (5) holds for n = =2 -f 1and for larger n we have

\Fn(x,y, fl)\ < Cl(c0¥21 2 (n D@2 r)-
ec3 / e-a°r|*-u|li4|-e|lw-«‘|[n2[|d -u \2~N\q(u)\du<
RN
I ciC3(c0|/X2])iV"™ 2" (n- 1)(2_T)e - o|x- vll/i2IC4|/x2r - 2 =
= Ci(cO[*2[)N~2"n(2_T)e-o|l- YILL
which proves Lemma 4.

In what follows we choose /ii > 0 large enough to satisfy co|/i2| * 2.
Consider the function

(6) E,,(xly):=""2Fn(x,y,n);

n=0

the series is uniformly convergent in x,y 6 R” if 2 G Zq is fixed. Further
we have

Theorem 1. We have
@) \E~Xx,y)\<c\x-y\2-me-b*-Y LU
uniformly in x,y £ R”, 26 Zo; moreover
(8) E~(y.x) = EM(xy).
Proof. By Lemma 3

«=?]

clx —y\2 Ne “h if x —\ "2
N\ N\
s 7[Rl ce-a|*-y|bl if [x —2| > 1.
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From the estimate

g-y I*-y||P2| < ¢c|x _ y\2~N2? X _ y\ > 1

we obtain

[«=*]

X 5@ - j/l2Ve_2xs112, r,y€ RN uB Z0.

n=0
On the other hand (5) implies that

(06}
"= [N+

which proves (7). To see (8) consider the statements

(A,) Fn(x,y,fi) = [/ Fi(x,u,ii)Fn-i-i(u,y,n)gq(u)du, O0"i<n-|I
(Rn) Fn(y,x,fi) = Fn(x,y,fi).
Now (BO), (Ax) are trivial and (A,,), (Bn_i) imply (B,,) since

Fn(x,y,fi) = - [ Fn-i(x,u,fj,)EO(u,y,fj,)g(u)du =
RN
=- EO(y,u,fj.)Fn-1(u,x,n)q(u)du = Fn(y,x,/i).

333

On the other hand (Bo),... ,(B,,_i) imply (A,). Indeed, (A,,) holds for r = 0,

and if it holds for some 0 < r< n —2 then it also holds for i + 1, since

K(x,y,fi)= J F{(x, ufi)g(u)~J EO(u,v,fi)Fn* 2(v,y,n)q(v)dvpdu

R N RN

Eo(v,u,n)Fi(u,x,fJ.)g(u)dupdv —
RAT RN
= - | En™i-1(v,y,f],)q(v)Fi+i(v,x,n)dv =
RN

=- J Fi+l(x,u,p)Fn-i-.2(u,y,n)g{u)du.

RN

Consequently (A,,) and (Bn) hold for all n and then (8) follows. Theorem 1

is proved.
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Lemma 5. a) E”(x,y) is an (exponentially decreasing) solution of the
integral equation

(9) E..(X,y) = Eo(x,Y, EO(x, u, h)E,,(u,y)q(u)du.

b) E" is the Green function of -A + q—p? + pi i.e.
(10) ((-A +qg- PR+ ni)<p) =< tpEC™(RN)
where E* denotes the transformation with kernel E*:
EM(x) := f Efl(x,y)f(y)dy.
RV

P roof. Applying Lemmas 1, 2, 4 we see that

Y1 / \EO(x,u,p)Fn(u,y,p)g(u)\du <
u=N"n
r [ele]
=c | e~alk~u*2lx — (cOx2YT~2~m2~r"1a(u)j™y g
BA n=Ni

g N2AEH) | gajiyely _ u\2-N\g(u)\du < oo.
=N, BA

n

Consequently

Eu(x,y) =~ F n(x,y,n) =

=0
o . "
= Eo(x,y,p) - *2 [/ EO(x,u,/j,)Fn(u,y,p)q(u)du =
"="HA
= EOQO(x,y,u) - [/ EO(x,u,n)Eti(u,y)g(u)du
BA

follows from Lebesgue’s dominated convergence theorem. Thus (9) is proved.
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The statement (10) is known in case q = 0. If the potential exists, we have

EB((-A +q-y,2+m)(p)(x) = I q(y)ip(y)Efi(x,y)dy+

RN
+ /[ (-4Ay-/“2+ MiM») mEli(x,y)dy= [ q(y)p(y)Eti(x,y)dy+
RN RN
+J (~&y - V2+HiMv) mEo(x,y,y)dy - | (-Ay- 42+ A)A(y)-
RN RN

(I EO(x,u,n)Eti(u,y)g(u)du’jdy =: Ix+h + h-
RN

First we observe that /2 = g>(X). (8) implies that in 73
[/ EO(x,u,")EIXu,y)gq(u)du = / EO(y,u, n)E*(u,x)q(u)du.
Rv RN

Now we shall show that for fixed x,

(11)  (Ay+p2- MiMi/) ®EO(y,u,n)E,,(u,x)q(u) € Xi(R* x RZ).

Indeed,
J \EQy,u,fM)\\Efi(u,x)g(u)\du<
RN
< f ce-2ay-ur\- A x-ur\\y - UNN\X - u\2~N\q(u)\du <
RN
< J + ] <e\x-y\2-NJ e-2ah-uM\y-u\2-N\g(u)\du+
X-ul>1£zli |y_u|>I1£zjd RN

+clx —22 N f e 2k ulr2lx —u\2 N\g(u)\du< c\x - }2-N
RN

and for fixed x
R
J W —y\2 Ndy £ cJ rN xr2 < 00

supp V2
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which proves (11). Consequently the Fubini theorem can be applied in /3

I3 —- J Eu(x,m)a(n)(*1 EO(u,y , Ay- fij2+fil)(p(y)dypdu =

rn R N

=-J Erx, u)g{u)ff{u)du = —a
RN
which implies (10).
Introduce the functions

G ™M\x,y) = Ep(x,y),

GN(x,y):= 1 Ep(x,u)G”™ INu,y)du, i/ = 2,3,....
RN

Lemmas. Let 1Ny < Y be an integer, then
(12) lc{\x, y) I < c\x - y\2v-Ne~~x~yn
uniformly in x,y €RA,p€ Z0.

Proof. The case v = 1is proved. We apply induction on u:

\Gy\x,y)\ <c fe-fl— - ul2-"[u - y\2v- 2-Ndu <

R N

Cee~nx~yn J e~"~x~ur\x - u\2~N\u-y’\\2u_2_N

RN
Here we set
/! / + / + /
[x-u|< ly rU\|S|iZJd r |*_U|>
I Y=
Now
J AX-YUIN J WX wena-=
\x—u|< h 2yl [X_u|<jEzJd
\x;y\
e\x - y\2i/-2-N J rN-1r2 - N _ c|x_ yl2U/N
0
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fohe -YWN ) \u-y\2Y P Ndu=
|v_ul<ifrjd
1

= o —y\2~N J  rN~1r2/~2-Ndr = c\x —y2-N

J <c J e *Ix - U\ 2Ndu =

¢ Ix-ul=- =Ix<-u]

| Iu—.l/I:'m

¢ 3 rA~N~le~"ArAMdr <

by

i’ uu
cJ rZ'-N-1dr+cJr2/-N-'le-Tr\M\dr<c\x-y\2'-N if |®-y|£2,
L-al
< 2

Clz 22/ ArJ e~"r"22dr <c\x —y\&'~N if \x—\ >2.

The above estimates imply Lemma 6.

Remark. IfN is even and U = Lk, the above calculation shows that

cIn [7-4f 3& “Ix yimal if[x-j/]i2,

13 cjr>(*,»)|<
(13) |cjr>(*,»)] ce~f I*-viim | if \x-y\> 2.

Now introduce the notation ug := [*], and take any value a, » < a < v0+ 1.
Consider the function

0o

e e

Lemma 7. IfN ¢ A (and N ;>3) then

(14) IGW (z, 2)| » c\x - y\*"-Ne-f\x-y\V~A.
In case N = 4 we have

( c\x —y\&~Ne~rIx_ylV*n if \X—wW > 2,
m o i<ro,»)is{cl,A .|x_ ~ e_fk_v* A
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Proof. In case N » 4 we have n0-f 1< y, hence by Lemma 6

\Ga(x,y)\ <cd r |G A+1)(x,i/)|dr <
0

<cj rio-"\x- y\2*+2~N dr <
0

oo

<d¢ _ yl2uo+2-Ne-% \x-y\* J r*><e- f *-vIVAdr.

oo \x—yl 2 oo
Use the decomposition J = f + f Then
(o] (o] I<x-y|-2
Ix-y|—=2 Ix-yI|-2

J < ) rr-vdr =ox- i2(<-Mo D),

and substituting 8 |x —y\n/r = un we get

00 00
J A \x -

J
|z-y|~2 o k'y|'2

= c\x - y\2r-1) je~u-l5’\-y’{§|u =c\x - Y\2G-*-i)

Nr =

which implies (14). In case N = 4 and \x —\ > 2 the estimate (13) for

g|T+]) = is identical with (12) hence the same proof works. If \x-y\ <
2, then
Gw(XI)| <crrevln, 2 | <
Yy F -y
geln, 2 | .g-flx-yl*m J rhe-TA-yAdr <
—YI
<cln--------- e« y\Vfirvx —y\2G A
%oV y y

Lemma 7 is proved.
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Lemma 8. Let v+ < | incasem =3 and r< 2incasem > 4. Then

a) G"N]— (4 +g—m2+ /n)":~M(R*) *L2(RN), 1<v <wvg+ 1
M=it, t > 0,

b) G>= (-4 + g+ MI)"™ : L2(RN) - L2(R¥*)
are continuous mappings.

P roof. The above conditions imply that
-0 +g- M+ MEL2Rn) - A(R™)

is an isomorphism onto T2 (see [4], [7]), consequently (— + g —m2+ Mi)"1
is a bounded operator of T2(R™N). From (12) and (13) we see that

IG M\ x, Y\ <K(x -y), 1<v<i0+1

where K(x) £ Li(Rn). Consequently G ” is a bounded operator of TAR").
Ifip£ Cq°, then

J Gn(x,y)("J GA\y,2)ip(z)dzpdy =

RAT Rv
= J V(M) 6. (x,y)Gr(y,z)dy\dz= J GA+1)(x,2)<p(z)dz
RN Rv R14
i.e. Gfj(G"ip) = GM+1f. Since the operators are bounded, it follows

that G ~ is the iMh iteration of the operator GMThe set C£° is dense in
L2(RN), hence (— + q- m2+ Mi)(Co°) densein L2(RjV). By(10)the
continuous mappings (—4 + g—m2+Mi)_1 and G” are identical on this dense
set, hence (- [+ g—p2+ Mi)_1 —GR and then (—[+ g~ m2+ Mi)_V = GjI'K
This proves a). To see b), argue as follows. The operator —f + g+ mi is
positive for sufficiently large mi > 0 (see [7]). In Triebel [5], 1.15.1 a formula
is given for the fractional powers of positive operators. In our case this means
the following statement: There exists a dense linear subset D ¢ T2(R”) such
that

. r("o + 1)
CA+aeM)afl o1 oy

«/T"OA(-J +q+mi+r1) ™ 1dr, fE£D
0
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the integral being convergent in Consequently

(-4 +g+Hi) af —
G DM (Ly)dy dr=
nN

=/ /bl rT(uOr-plP-*c%F(CT)_\i r~-(Ggy Il)%"&dr‘] d¥’=

= J G™Mx,y)f(y)dy, feD.
nN

Llyd + @ f w—o
Mo + 1- (M) %

The application of the Fubini theorem was correct, since

G ™ N x,y)f(y) dydr
0 R«

<cJ W—W20r2-N 4y
RN I*- VY

' rrore- G\ x-ywAdr . e-%\x-y\ViX\f(y)\dy <

scd Ix-sil2-" fi + In e-™X-yMf(y)\dy <
liw -l
A c\f\\b2 1 Ix- y[ -2K 1+ In oy ) TV
STITRIL 7 S e = c¢||/]]i2 < oo.
X-YI

The continuous mappings G”) and (—f + g -f Hi) a are identical on the
dense set D, hence they are equal on L2. Lemma 8 is proved.

Before stating Theorem 2 we need the Neumann spectral theorem in the
following form:

Theorem A (Maurin [9], 1X.84). Let A be a selfadjoint operator in a
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separable Hilbert space H. Then there exists a unitary isomorphism

(15) U-.H-+ j ®Hxdp{\)
n
where H\ are complex I*-spaces of sequences with n(A) < oo coordinates,

N ¢ R is the spectrum of A, p is a nonnegative Borel measure on A and the
direct integral space on the right of (15) is the space of all vectors h(A) =

= (Mc(A))EIA for which
n(A)
(16) =/ E IMA)|4XA) < @

A *=1

Finally, if v2(A) is an ae. finite Borel measurable function, then for the
domain p((p(A)) of the operator ¢ (A)

(17) u((m(va)) =lh -.JY. IMA)]2MA)|2.« 4 < 00 |
A fc=l
and
(18) up{A)u-~x:h{\) m»y?(A)i(A) for h € u(<p(Ar)).
As we have seen, the kernel function of the operator L~f satisfies

for < o0 < ug+ 1the estimate

(19) sup T 16 \x,y)\2dy < oo.
reRAKkI
On the other hand : L\ — L? is an isomorphism (see [7]) and Z)(LPI) =

= L\ is dense in Li- This implies that L#l is selfadjoint, and then Theorem A
applies. Define the functions

(20) u(x, A= M x, A))” := (A+ pi)aU (G \x, -)A).

Since U is norm preserving, we have
T heorem 2. The following square sum estimate holds:

Jn(\)
SP / VKKA)2A+M)-22(A)<o00.
*eitw Tr'i
no
The functions u(-,A) are generalized eigenfunctions of with eigen-

value A for their properties see [9], XVII.
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ON THE DISTRIBUTION OF TRANSLATES
OF ADDITIVE FUNCTIONS

K.-H. INDLEKOFER (Paderborn) and I. KATA1 (Budapest)

0. Introduction

Our main purpose is to give necessary and sufficient conditions for the
existence of the limit distribution of P(E)f(n)-a(x), where / is an additive
function and P(E)f(n) —aOf(n)+ ax/(n + 1)+ ... + at/(n + K).

A sharp theorem can be derived from a recent result due to A. Hildebrand
[B], if P(z) = YhaizJ) satisfies the condition P(l) ¢ 0 or P'(l) @ 0. We
consider the case (z —I1)2 | P(z) (see Theorem 1). In Section 2 we shall
investigate conditions under which

<}>(P(B)f(n) - a(2)) < x

n<x

holds true.

In Section 3 we give a necessary and sufficient condition for the existence
of the limit distributions of g(n + 1) —/(n), where / and g are additive
functions.

Theorem 2 is a special case of a theorem due to P. D. T. A. Elliott [g]
(see 1.13). We derive this theorem from Hildebrand’s result (see 1.13) very
simply.

1.1. An infinite sequence {u,,}nEN of real (or complex) numbers is called
a tight sequence if for every 6 > 0 there exists a number ¢ < 0o, such that

1.1 sup a-1#{n <x I|-u,| >c} < S
(1.1) up { l-u,,| > c}

Let T be the set of tight sequences.
12. Let T' denote the set of those sequences {un}neN f°r which the
relation

(1.2) supi_1#{ra n x I |u,, —a(x)| >c} < 6

X> 1

holds for every §> 0 with a suitable constant ¢ = ¢(£) and with a suitable
function a(x).
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1.8. Let E denote the shifting operator, Eun = u,+i. Let lun = un,
A = E —I, and for an arbitrary polynomial P(z) GCl[z], P(z) = a0+ aiz -f
+ eee+ akzk let P(E)un := alun + aiu,,+i + ... + akun+k.

It is clear that {«,} GT' implies that {P(E)un} GT', {an,} GT, and
that {P(E)un} GT ifP(1) = 0.

14. Let 1 be the class of real valued additive functions. Let V — {p}
denote the set of all prime numbers, and let V* be the set of all prime powers.

15. We say that a sequence {u,}neN of real numbers has a limit distri-
bution if there exists a distribution function F such that

(1.3) lim x 1#{n <xlun <y} = F(y)
holds for all continuity points y of F.

Let V denote the set of the sequences having a limit distribution.

1.6. We say that the sequence {un}neN °f rea™ numbers has a limit
distribution with the centering function a(x) if there exists a distribution
G(x) such that

(1.4) limx-1#{tr < x lun- a(x) <y} =G(y)

holds for all continuity points of G.

Let Va denote the set of those sequences which have limit distributions
with the centering function a(x).

One can easily see that {un} GVai NMVa2 if and only if {un} GVai und
Qi(x) - a2(x) —»c where c is an arbitrary (finite) number.

1.7. For an arbitrary f : V —*R let (Ef), (Ep, (Bf) denote the condi-
tions:

(Ef): S is convergent,
/(p)ISi p

(Ep: Z p is convergent,
1/(p)I>i

(Bf): - is bounded in x.
\f(p)\"P

1.8. 11 classical theorem due to P. Erd6s and A. Wintner [1] asserts that
/ GANV if and only if (Ef), (Ep), (Ef) hold true.

A function / GA belongs to Va with a suitable centering function a(x)
if and only if / can be written as f(n) = J1logn + h(n) with some AG R,
where h satisfies the conditions (E/*), (E£). Furthermore, if / G Ta, then
a(x) = Alog x -f A(h, x) + 0(1), where

(15) A(h: X) Hp)
fip)si p

Acta Mathematica Ifungarica 61, 1993



TRANSLATES OF ADDITIVE FUNCTIONS 345

(cf. Theorem 7.1 in [2]).

1.9. We say after P. Erd6s that / £ A is finitely distributed if there exists
a sequence ®i < xr < eee of real numbers, xu —00, some positive numbers
S and c, and for every v at least K > 6xv integers a\ < ai < ... < < XV
such that |/(a,) —f(aj)\ <cforeveryi ¢j.

Erdos proved [1] that / is finitely distributed if and only if/ = /1 log +h,
with some A£ R and with some h for which (Ehi), (E£) hold true.

Let Afi denote the class of finitely distributed (additive) functions.

It is easy to characterize all those g £ Afi for which P(E)g :=
= {P(E)g(n)}nes £ VaorV.

Let g = Alog +h, such that (£/,2), (E£) hold. Then P(E)g £ Va and
P(E)g £V if P(l) = 0. If P(1) ® 0 then P(E)g £ V if and only if A—O0
and (Ef) holds.

These assertions have been known for a long time.

It seems probable that if / £ A and P £ A[r], P is not identically zero,
then P{E)f £ Va only if / £ Afi. This assertion was proved for P — [
only recently by A. Hildebrand [5]. Hildebrand proved somewhat more in his
paper [5], namely that / £ A, A/ £ T imply that / is finitely distributed
(see [5], proof of Theorem 1; necessity).

It is quite natural to formulate the following

Conjecture. Let/ £ A and P £ C[z], P not identically zero. Assume
that P(E)f £ T'. Then / £ Afi.

1.10. Lemma A. Letf £ A, |/(pa)| ™ 1 ifpa € P*. Assume that (£/2)
holds. Then for every 7 > 0,

(1.6) inn - < X,
n<x

where

(L.7) A% = E f(g’)

and the constant implied by <C may depend on f and 7.

(1.6) is a special case of Elliott’s moment inequality [7].

1.11. The following assertion is an immediate consequence of Hilde-
brand’s theorem and of Erdos’ theorem on finitely distributed functions.

Let db: R —R>0 be an arbitrary function such that p(x)—oc as pk —»00.
Let / £ A and assume that

X 1™ d(P(n) —o(x)) = 0(1) as X —>00

n<ar
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x~1~ (Af(n)) = 0(1) as x —>00

holds. Then / G N/i, I = Alog+/i, (Ehi), (E£) are satisfied, a(x) =
= Alog x + A(h] x) + 0(1).

2. On the distribution of P(E)f(n)

2.1. Let b(H) be a monotonically increasing function defined on [l,00)
such that () = 1, b(H) —o00 as A —»00. Let % denote the set of those
sequences u := {u,,},.eN of complex numbers for which

(2.1) supx_1#{n ™ x l|u,| > H) < -rrjpr,
X>i b\J1)
where Q is a suitable constant that may depend on u.
In what follows we shall assume that b(H) is slowly growing, namely that

(2.2) b(112) » c2b(H)

holds with some suitable constant c2.

2.2. Let us fix a sequence u, and denote by /(u, b) the set of those
polynomials P G CJ[z] for which P(E)u := {P(E)un}neN G %. One can see
easily that I(u,b) is an ideal.

2.3. Statement. Letf G A, P G CJ[z] be a non-zero polynomial for
which P(E)f G 71- Then the generating polynomial Q(z) of I(f,b) has the
form (z —I)ft where k > 0.

Proof. The assertion can be proved by a method which was worked
out by Elliott and Katai, independently.
K

Let deg P = M, deg Q = k, Q(z) = I (z —sj). The assertion is clear if

K=0orifM = 0. Assume that Kk > 1.
K
Letm GN, Qm(z) = I'1(z ~ Q™- Since Q(z) divides Qm(zm), therefore
j=1

Qm(Em)f G I(f,b). LetQm(z) =Ro+Riz+.. \-Rkzk,BK = 1. Itis clear that
Ro (0. Let un := Qm(Em)f(mn), i.e. unis the value of Qm(Em)f at place
mn. Let vn := Qm(E)f(n), A(m,n):= un —v,,. Then u GTb, consequently
Q(E)u G Ym Furthermore Q(E)\ = Q(E)Qm(E)f = Qm(E)Q(E)i G %,
and so Q(E)A(m,n) G%m It has the form

(2.3) Q(E)A(m,n) =~ ajA(m,n +j) A 7h{f(m(n + h) - f(n + h)).

j=0 h=0
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Here 70" 0, 72*= 1 Let m = p GV.
Thus we have

@4 (vp) =L IQRAPPM >5j
Observe that Q(E)A(p,pav) = 7o(/(pa+1) —f(pa)) T 0(1) as d =00,

uniformly for (v,p) = 1. Consequently, for large F we have

0o

a
V(pa+IW (PQ|E2tF

Let gp G J1 be so defined that

f(pa) if g = pa for some a

(2.6) o
0 otherwise, if qu GV*.

From (2.2) and (2.5) we get readily that gp G %m To provide this, it is enough

to show that
C4

wawn® - B(HY

(2.2) imphes that e(F) = 0((logF)c) with some positive constant c. Let
H > 20, and let 7 be the smallest integer for which |/(p7)] » F. We may

assume that 7 s’hce *h the °PPoYte case
G

. < 1 < <
E s I;:o i7#1 - p4 = F 6(//)

clearly holds. Let 1R = (z- B+ 2) 2. Since F < |/(p7)| £ X) /(p3_
31

-/(P~_2)l> ¥ b = a»therefore 1/IP?) - /(p~_1)] » /IF holds for at least one
B < 7, which by (2.5) implies that

Since IR "2y > un’ hand side of the inequality is less than
< b(H)- Thus gp e TR. Consequently

K

a(p,n) = 5"sjif(p(n +J1) - t(n +/1)
1=0
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belongs to % as well. Thus v = Qp(E)f G Th, QP{z) € /(/, b). Hence we have

that Qp{z) = Q(2), ,0E} = ,BK} for evey p eV. This can
occur only if Oi = ... = Oc = 1, which completes the proof of our assertion.

Remark. We proved that gp G %. Hence it follows immediately that
I(f, b) = 7(/p,b), where fp=1- gP.

2.4, Let bk(H) = (logeR)fc-1[log(eloge//)]1+A, where 6 > 0 is a con-
stant.

Lemma 1. Iff e A and Akf G%Kkfor some K > 2, then Ak~1f Gw k_1,
andso A7 GTH QT .

P roof. By the Remark in 2.3 we may assume that /(2a) —a/(2) holds
for a G N.

Let A2 =E2- I. Then A*1= (E + )*-1A*"1= £ (k~D)Ak-1E"
3=0
whence

AAV(2n) = (AT 1) Ak=1f(2n +i).
i=0 ' J

Furthermore, A2_1/(2n) = Ak~1f(n). Let j/,, := Afc 1 (n),

(27) d-2n+1 Yn - 2fc X2/2n+/ (/ = 0,1)

By the above relations we get

K
0~ d2nH %c”™ |A [@(2n + h)|
h=0
and so {d,},,6N G Thk.

For an arbitrary M GNlet Mi = [4p],M = 2Mi+eo,e0 G {0,1}, and in
general Ma+1 = [~ ], Ms =2Ms+1 + e, (5=0,1,2,...). If2(" Ms < 2t+2,
then 2t+1 < M5 1 < 2i+2,... ,2<#s < M < 2i+A+1. Furthermore, for every
n GN there exist exactly 2s of M for which Ms = n.

Let M G[2", 2t+1), 0 := 2"(fc 1). From (2.7) we get

(2.8) /M| A OMO + <9mi02+ s+ <m107+1

Let Hi = 0-O+N)a/(/ + I)(loge(/ + 1))1+i,0 </ < i/. The number of distinct
integers Mi for which d\tl > Hi is less than

cT~l _ cxev~I
(2'9) bk(Ht) < (/ + 1+log H)k~"log elog(Z+ | + H)]"5'

Acta Mathematica Hungarxca 61, 1993



TRANSLATES OF ADDITIVE FUNCTIONS 349

Let Tu be the number of integers M £ [2",2"+1] for which Mi > Hi
occurs for some I.
From (2.9) we have

(2.10) T, ~ @2 £(/ + logtf)-(fo 1)(log(/ + logtf))-1-i ~ ¢22//bk. 1(H).
/=0

On the other hand, if dj\ < Hi holds for every / (< v), then
WM AH A (7 + D) 1floge(/ + D] 1 s <c4H.
-0

Hence our assertion, namely that {y,.} £ %k-1, readily follows.

25 Let / £ A and P £ C[z] be a non-zero polynomial for which
P(E)f £ T. Let 1f be the set of those polynomials Q £ C[z] for which
Q(E)f £ T. Repeating the argument used in Sections 2.1-2.4 one can see
that 1f is an ideal the generating polynomial of which has the form (z —1)*
where k > 0. Since (z —I)fdP(z), we have that P(z) has a root at z —1
with multiplicity at least k. If /"'(I) ¢ O, then k <1, and so 4/ £ T, if
P()/ O, then k=0andso/ £T.

26. Theorem 1. Letf £ J1, P £ R[] be a non-zero polynomial.

(1) Assume that P(l) ¢ O.

(@) Then P(E)f £V ifand only if(Ef), {Ep), (Ej) hold.

(b) P(E)f £ Vaifand only iff £ Af{. Iff £ Afi, and AE R, h£ A be
so defined that (Eh2), (E£) hold, then a(x) = (Alogi-(-A(/r,r))/X1)-|-0(1).

(2) Assume that P(1) = 0 and P'{1) ¢p 0. Then P(E) £ V if and only if
Al £V, ie iff £ Afi.

(3) Assume that P(z) = (z-1)kT(z), T(1) O, kZ 2. IfP(E)f £ Thk,
then 4/ £ 7bt Q T, consequently f £ Ef,, P(E)f £ V.

P roof. The sufficiency of the conditions is known.

Necessity, (la) If P(E)f £V, then P(E)f £ T, and so by 2.5 we have
/ £ T C Afi. Hence one gets easily that (Ep), (Ef), (Bf) hold. These
conditions imply that P(E)f £ Va with a(x) = P(\)A(f,x). Hence we
obtain that lim A(f,x) exists, (see [2]) i.e. (Ef) holds.

(Ib) If P(E)f £ Va then P(E)Af £ T, consequently by 2.5, A/ £ T,
and so by Hildebrand’s theorem, / £ Afi.

(2) IfP(E)f £V, then P(E)f £T and by 2.5 A/ £ T, consequently
by Hildebrand’s theorem / £ Afi.

(3) This follows immediately from Lemma 1 and from Hildebrand’s the-
orem.
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3. On the distribution of g(n+ 1) —f(n)

Let f,g e A, H(n) :=g(n)- /(n), g(n) :=g(n+ 1) - f{n).

Lemma 2. Assume that g := {f?(re)}neN £ T. Then H £ T, Ag £ T,
A/ € T. Consequently g £ Aji, g = Alog+i, (Eti), (E¥» (Ea3), (BH),
(A1) hold true.

Proof. The density of n £ N for which 2 | n(n + 1) is I/2a~i for
a>1 Let A, :=9g(2n+ 2) - f(2n). Observe that

An - g(n) = (g(2n +2) - g(n + 1)) - (f{zn) - /(n)).

Since {/(2nd —Fén) { (2n+2) (n+|)} £ 1. therefore {all- g( )}

whence by get {An} £ T Sin
A,=g(en+ 1) - H(2n+ 1)+ i»(2n),

we get immediately that {H(2n + 1)} £ T. Let Ho £ A be defined by
HO0(2a) = H(2a), Ho(2n+ 1) = 0 (n = 0,1,2,...). Since {Hon)j £ T
therefore {H (n)jnex £ T. NOW Ag(n) = g(n) - H(n), g, H £ T, therefore
Ag £ T. Similarly we have that A/ £ T.

The further assertions are immediate consequences of the results stated
in Section 1.

Theorem 2. In order that g(n) possess a limiting distribution, it is both
necessary and sufficient that the conditions (EH), (Eu), (Eh*), g G Aji
would hold.

Proof. Sufficiency. It can be proved in a routine way.

Necessity. Taking into consideration Lemma 1, we have to prove only
that (En) holds. Let F(x) be the limit law of the sequence g(n) = Ag(n) +
+ H(n). Let A£ R and t £ A be so defined that g = Alog+i, where
(E[2), (Ef) hold. The fulfilment of these conditions and that of (Eh?), (E*h)
follow from Lemma 2. One can prove easily that under these conditions the
frequencies

Jim N 1#{n A N 1Ag(n) + H(n) - A(H,N) <y}

converge to a proper distribution function G(y). By 1.6 we obtain that
limA(H, N) exists, i.e. (Eh) holds true.

4, We say that a function ¢(x) defined for x > 0 is subadditive if it is
monotonically increasing, 0 * d(0), d(x) —> 00, and p(x\ + x2) »
+"N(22)) f°r xi,x2 » 1. We extend the domain of ¢ to the whole complex
plane so that d(r) = <*(|7).
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For some f £ /1 let V*(f) Q V* denote the set of those pm for which
/(pm) ¢ 0. Let furthermore

»(l):= E Vv
pmev-(f)

In this section we assume that ¢ is a subadditive function, / 6 /1, P € C[Z]
is @ nonzero polynomial.

Lemma 3. Assume that m(/) < oo. If

(4.1) x~1'£p(P(E)/(n)) =0(1),
then
(4.2) *1£>(/(»)) =0(1)-

n<x

Proof. Let P(z) = a0+ a\z + ... + akZk. We may assume that ao ® 0.
Let 7P be the least exponent for which p7p > k+ 1. Let | be the set of those
integers d all prime factors of which are greater than d and which can be
written as products of mutually coprime factors from V*(f).

For some d 6 2'let Aid be the set of those integers n which can be
written as

n = dv p7p,
p<k+l
and for which an = v(n + 1)... (n + k) satisfies the conditions:
(a) if p>«+ 1, then p2\ a,,
(b) ifp>«+ land p € then p \ an.
It is clear that, with some constant c\ > 0,

z-1#{n < x In GAid} > d]

uniformly for 1 < d ” logo:, say. This can be proved by the Eratosthenian
sieve.

Observe that P(E)f(n) = f(d) + 0(1), if n € Aide This, by (4.1) implies
that

(4.3) E <
dEl

Let / = /i +/2,/1,/2 G A such that /i(p”) = f(jB) ifp < ft+ 1and = 0if
p >« + 1. From (4.3) we get

E"A M IiISEwoo0ilR] <1
n<x deT
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whence D(P(E)/1(m)) = O(x), and so
n<X
" (P{E)k(n)) = 0(x).
The last expression implies readily that

E

p<fc+l /3=1 F

Hence

537(n(»0)c

n< x

consequently

Y2<Kf(n) < IT ®(Mn)) +  A(/2(n)) < *

This completes the proof of our lemma.

Lemma 4. Assume that (E p), (E*j) hold, and that

UP,}) : UP, f,x) =~ dp(P(E)I(n)) < X

is valid. Then

(4.4) N2 P a<tX{f(pa)) < oo.
g

If P(I) / 0, then (Bf) holds as well.
If(Ep), (Ej), (4.4) and in addition in the case P(l) ® 0 the condition

(Bf) hold, then U(P,f) is satisfied.
Proof. Let f =Ffi +/2,/:1,2 £ A, where

0 ifa >2orif |[/(p) >1

fl(Po) = f(p) ifa = 1 and |/(p)| < 1.

Let 5* denote the set of those integers d for which p | dimplies that p2 | d
or [/(p)| ~ 1.
Assume that (Ep), (Ef) and U(P, f)hold. The fulfilment of (E*]) implies
that
d~l < oo.
d£5*
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Observing that 4>{z) <C zc, and that fxis bounded on V*, by Lemma A
we get that

U(P,fi - A(fx,x),x)< 0(1,72 - A(fi, x),x) < x.

Since Ir2 —A 1" I/l + /i —A\, assuming the validity of U(P,f), we obtain
that

(4.5) < X’ ¢, = P(E)f2(n) + P(1)A(fi,x).

n<x

Hence
x> Y 0@4c,) =Y d(P(E)&Mn)),
n<x n<x
and so by Lemma 3 the inequality (4.4) is true. Assume now that P (I) ® 0.
From Lemma 3 and (4.4) we have that £ 4X{fr(m)) X, from which by

n<x

(4.5) we derive that

Y <f>(P(AGIxX) « Y <kc)+ Y ~(a(n)) « *
n<x
i.e. A(fi,x) = 0(1) follows.
It is enough to prove the second assertion for P = 1, since U(P, /, x) <C
< 0(1,/, 2x). This would follow from

(4.6) A q < 00.
dese
The subadditivity of ¢ implies that p{xi + X2) » Ci[<">(Xi) + p{x2) + cr]
holds with some constants cx c2 > 0, for all complex numbers xx, X2. By
iterating this inequality, we can derive that

BOX+ ...+ %) Y i Xc2+ DIXY).

By using this and (4.4) we get that

M d) M d)
e "o E <K\H)),
de 5* Pa\\d

and the right hand side is finite.
Let (V(P,f)), (M (f)) denote the conditions:
(V(P.1)) £ @ (P(E)/(n)<x,

n<x

{MU)) 1 <oo.

£
i/(pa)ini
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Theorem 3. Let G GC[z], P(z) =(z - 1)kG(z), G(1) ¢ 0.
(1) Case £ = 0. The relation (V(P,f)) holds if and only if(Bf), (Ep),
(Ej) and (M(f)) are satisfied.

(2) Case k = 1. The relation V(P,f) holds if and only if / G -4/,
/= Alog+/i, with some suitable AGR and h GA such that (£72), (E£),
(M (/1)) are satisfied.

(3) Case k ™ 2. Assume that dp(H) > bk(H). Then the relation (V(P, /))
holds if and only if / = Alog +h with some A£ R and h GA such that (£72),
(EE), (M(h)) are satisfied.

Proof. (1) Case k > 1. Necessity. We have from V(P, f ) that P(E)f G
GT, and in the case £/ 2that P(E)f G7bfc Then, by Theorem 1we conclude
that / = Alog-ffi. It is clear that the conditions (V (P,f)) and (V(P,h))
are equivalent. Then, by Lemma 3, (£7,2), (E£), (Af(fi)) are satisfied.

Sufficiency. By Lemma 3 we have([/(P, £)) under the conditions (T(P,£)),
(B4, (E£), which by P(£)/ = 0(1) + P(E)h implies (V(P, /)).

2 Case £ = 0. The sufficiency is clear. To prove the necessity, we observe
that (V(P,f)) implies the fulfilment of (V(PA,f)). Thus we can apply the
already proved part of the theorem, P(z)(z —1) leads to the case £ = 1,
whence we have that / = Alog-ffi, (E72), (E£) are satisfied. Furthermore we
have

N2 <t>(P(E)h(n) + AP(l)logn) < x.

n<x

We shall prove that A= 0. This is clear, since P(£)/x(1€) is bounded on a
set K of integers n having a positive density, A(h, x) = O(log logx),

4.7 o(P (EN i(N)- -A(M))) < Y2 \hi(n)* A(hX)\C< xi
n<x n<2x

and so
Y2 O(AP()logn + P(I)A(h,x)) < Y2 ®(P(E)bln))+
n<x n<:v

nEN nEK
+ XU p(p (e )(w/IN) - A(hix))) < xm

n<x

Assuming that Ad 0, the left hand side is larger than

This is a contradiction to ¢(y) —»oo for |y| —* oco. From Lemma 4 we obtain
that (Bf) holds.
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5. Let f,g € A, H(n) := g(n) - /(ta), B(n) := p(ta+ 1) - /(Ta)
= Ag(n) + A(ta), ¢ be a subadditive function.
Let (C(a,H)), (A(p)), X>(A) denote the conditions

(C(p.A)) 53 <EL<I(@) + A(n)) < I,
n<x

(a(e) £ <k&am) < T,
(P(R) £ OS(Ta) < T,

Theorem 4. (C(g, H)) holds if and only if (A(g)) and (T>(H)) are valid.

Proof. It is clear that (A4(<?) and (V(H)) imply the fulfilment of
(C(g,H)). To prove the necessity of these conditions, we observe that
(C(g,H)) implies g € T, and so by Lemma 2 we have that g — Alog-I,
(EN (£NH> (d9), (Eu*), {Efj) hold. Lett = t\ + t2, 4 = H\ + 4r,
bAr-,H\, dr € A

0 if |i(p“) <1 0 if |9(p*) <1
e = O Hi (Pa) PR ()
<(P*) ifI<(P) ™ 1, -{ H{pa) if|A(p*) > 1
It is clear that n(ti) < oo, M(H\) < 0o. Let K\ be the set of those integers
d which can be written as products of mutually coprime prime powers be-
longing to V*(t\) and let K2 be the set composed similarly from V* (H\)
instead of t\. We have

a£ < 00.
eK,
By Lemma A and from the fulfilment of (Ep), (BH), (Eijji) We ob-

tain (4(<r)) and V(H2), consequently that C(t\,H2) hold. Since Ag(n) =
= At(n) + 0(1), and

d(AaL(n) + H\(n)) < 1+ d(Aa(n) + A(Ta)) + d(As2(n) + A2(n)),
therefore
(5.1) Nf>(O<I(ta) + Ar(ta)) < X,
i.e. C(ti,H2) holds as well.

Let d < log x, d € K\. The number of integers m” x for which m+ 1 =

= 2dv, (v,V*(t\)) = 1and (ta, V*(h) UV (H\j) = 1is greater than C\x/d.
For such an 1awe have A~(ta) + H\(n) = t\(2d), and so from (5.1) we get

(5.2) £ Nt(d)) .
dEK\
d2)=1
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Let us now choose d to run over the set 2" (a = 1,2,...). Just as above we
get

(5.3) HHia))

n (X).
2

a=0

This, by Lemma 4 implies T>(H\), consequently from (5.1) we get A(ti). The
fulfilment of V(H2) and A(<r) was proved earlier. Thus A(f) as well as A(Q)
and V(H) readily follow.
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ON THE ORDER OF MAGNITUDE

OF FUNDAMENTAL POLYNOMIALS
OF HERMITE INTERPOLATION

J. SZABADOS* (Budapest)

Let
(1) (-1 w)yxin < Zn-l,n < eee< £in(S 1)

be an arbitrary system of nodes of interpolation, and let m > 1 be an ar-
bitrary integer. (We shall often abbreviate xkn as »x*.) For an arbitrary
m —1 times differentiable function /(x) in the interval [—1,1], consider the
Hermite interpolation polynomial

n m3a
(2) Hnn(f,* ):= £ £ fU)(*k)Ajk(x)
k=1j=0

where the polynomials Ajk(x) (more precisely, Ajkmn(x)) °f degree at most
mn —1 satisfy the conditions

) Aji' (xq) = SjpSkq (jiP —0,..., m—1, k,q=1,...,n)

(6 is the Kronecker delta). Thus the operator (2) has the interpolatory
properties
H&IifiXqg) = f (p\x g) (p=0,...m-13 qg=1,...,n).

In this paper we determine the exact lower bounds for the quantities

4) Jimn gcgl U= 1)

where || ¢|| means supremum norm of the corresponding function over the
interval [—1,1]. The motivation for investigating these quantities is obvious:
Z-om is the so-called Lebesgue constant of the Hermite-Fejér operator

n

%) ZW [ )x):=£/(x*M o0*(*),
k=1

Research supported by Hungarian National Science Foundation Grant No. 1801.



358 J. SZABADOS

and the other quantities Ljmn (j = 1,..., m—1) play also an important role
in investigating the convergence behavior of (5). Namely, when estimating
the error of approximation by (5), one usually needs an estimate for this
error when the operator is applied to the best approximating polynomial
p(x) of f(x) of degree at most mn —1, i.e.

n m-4

p(x) - Hmn(p, x) = P M\ xk)Ajk{x).

k=1j=1

In case we know structural properties of /(z), we also have some information

on p(i\xk), and this leads to the quantities Ljmn.
Our main result is the following:*

THEOREM 1. For an arbitrary system of nodes (1) we have

if m — is odd,

o i = 1).
Fimn & if m —j iseven ( )

This is a very general result whose particular cases had been known. (Of
course, if m is even then Xomn ~ c2is obvious.) For Lagrange interpolation
(m - 1) we get

£oin” logn
(this is G. Faber’s classical result [3]); for Hermite-Fejér interpolation (m = 2)

log n
£12n ~ Ci d

was proved by P. Erdos and P. Tdran [2]; finally

(6) £o3n=cllogn

has been shown recently by J. Szabados and A. K. Varma [5]. (Actually, P.
Vértesi [7] proved more than (6) by showing that the corresponding Lebesgue
function is > clogn on a large set in [-1,1].)

The most interesting special case of Theorem 1is

Aomn = Glogn (m odd)

which was conjectured in [5].
Since the proof of Theorem 1is long, we break it into a series of lemmas.
In what follows, let

Un(x
An(X) —|(3: 2> o) —Ifen(®) (9 (*=1,ems ,n)
k=| wn(Xk) (x - X k)
*In what follows ci, C2,... will denote positive constants depending only on j and m.
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FUNDAMENTAL POLYNOMIALS OF HERMITE INTERPOLATION 359

Lemma 1. We have
* m _H'
(V M Ty 1[Wx)'|£L,(Z_ X*) "+
. &0 r
o= L=
Proof. Since the degree of (7)is at most mn- 1, we only have to prove
(3). The polynomial (7) contains the factor (z —z,)m (r ® k), whence

A%\xi) =0 (Pp=0,..., m- 1 rd k).
Also, if 0~ p <], then it contains a factor (z —zjt)p+1, i.e.

=0 (p=0,...,j-1).

Finally, ifj <p <m —1 then applying the Newton-Leibniz rule twice we
obtain

n* bl =y;E 1(x)7 I'”>(i+j) (i+N1[«*T & ;n =

=()E 7" 0 = bl
P=1J,j 1). O
Now we introduce the notations
" 1 ;
8 fidt.—Oikme— ~"T &=1,..,7MW1=1,2,..)
=1 AXIE ~ xK)
and
(9) b,k := bikmn := M )A.lp*-)(> A=1,..,n; r=0,1,.).

Lemma 2. We have

I »
(10) = —N' (k—1,...,7hr=1,2,...).
Cil=i
Proof. Since by (8)

m 1 w((z) (D

- O [z- 28 tn(). . Ge—Le.diT—=1l20),

aK =
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360 J. SZABADOS
we obtain by (9) and the Newton-Leibniz formula again

Lo 1 1 Ao(@@) (1) [F*(*)-rafe 2
} >, KTk 2 i gy [x- xk U>,, ()31 =

" i/=l
om-!
m I <l Ifc(z)' - LUl mik{x)~ He=
il LVX*“ w..(i) oo VK ) xexe
=N (*T 1]<* = 6ifc (fc= 1........... *=1,2,...)- U
Now let
(n) .
m-j—I
Bjk(x') »—Bjkmn (x)s—" "Npikrx  xky (j —0....,7i 1« 1,..e,u).
i=0
Lemma 3. we have
(12) Bjk{x) > CBR%:‘_ %)f(cﬂ?]m ’

(—00 < x<00, m—jodd,0<j <m—1 1 <K<n)

with one of the signs in xk+i m

Proof. For j =m —1 we have Bm-\yk(x) = b0k — 1 (see (9) and (11)
whence we may assume that j <m —3 (i.e. m > 3) (the casej = m —
does not arise, since by assumption m —j is odd.) By (9) and (11), Bjk(x)
is nothing else but an even order partial sum of the Taylor expansion of the
rational function Ik(x)~m about x = xkm Since Ik(x)~m is the reciprocal of
a polynomial having only real zeros and taking the value 1 at x = xk, by a
theorem of Laguerre (see G. Pdlya and G. Szeg6 [4], Problem 50 on p. 43)

(23) Bjk(x) > 0 (—60 < X < 00).

Hence 6m_ j _ >0. First we prove that deg Bjk=m— —I, i.e. >0.
Namely, if 6m_j_x»ft = 0then by (13) bm_j_2ft=0,and deg B]Jk < m -j - 3,
deg AM+1MX) £ m n-j—A Hence we will deduce a contradiction by counting

the number of roots of A*+17(x). The x/s are all roots of multiplicity at

least m —j —1(r — 1,__,n). Applying Rolle’s theorem to the intervals
(x,+i,x,) (r = I,...,n —1) and then successively to subintervals we get j

roots for 4~ (x) in each of the intervals (x,+1,x,)(r = I,...,n—1), and

then for 4 o +1\x) we get j + 1roots in each (x,+i,x,) (r=1,... ,k —1,k+
+ 1,... ,n—1), while in (xfc+i,Xfc) and (xk,xk-i) we get only j roots (since
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FUNDAMENTAL POLYNOMIALS OF HERMITE INTERPOLATION 361

Ak (x) = 1). Altogether we obtain
n(m—j - 1)-fe—3)(j+1)+2 =mn— —3

roots for AN+17(x), i.e. A " I\x) = 0, a contradiction, since A™k (x) is not

a constant by (3).
Thus if we let

(14) gk —sup{c IBjk(x) N c(x —Xfcm-J_ 1 (—e0 < x < 00)}.

then cjk > 0, and evidently

(15) Cjk(x) := Bjk(x) —Cjk(x - xk)m~j~1" 0 (-00 < x < 00).
Being bm_j_itk > 0 the leading coefficient of Bjk(x), (15) implies that Gk <

< bm-j-itk. Using Taylor expansion about x = xk, we obtain by (15), (11),
(7) and (3)

CIK(x) 1k (xT {x ] = Ajk(x) - I.Jl.l,-lk(x)m(x - XKIM-1=
] -

= S—X————S I'2-|(f(—:2 —————— %l;llsrf(x - X)) 4 E)‘( - ‘)(K\)m rbj k/(’>l<1)

where Djk(x) is a polynomial. Hence
(16) Ejk(x) := Cjk(x)Ik(x)m = 1-cjk (x-x k)m=J~1+ j\(x-xk)m~j Djk(x).

We now distinguish two cases.

Case 1: Cjk = bm-j-ijfc. Then cjk(x) is of degree at most m —j —3
(since cjk(x) must be of even degree), and Ejk(x) is of degree at most
m— —3+ m{n —1) = mn —j - 3. We determine the roots of Ejk(x).
The x,-’s (r ¢ k) are roots of multiplicity at least m —1, while xjt is a root
of multiplicity m —j —2 > 1. Further n —3 roots are obtained by Rolle’s
theorem applied to the n —3 intervals determined by the roots xj,..., Xk-i
and xee+ i ..., x, OF Ejk(x). This is altogether

(m—Dm -+ (mM—g —2)+ (N —3) = mn 5 —4,

which is the degree of * » ( * ) ; there are no other roots.
Case 22 Gk <o m-j-i.-;. Then there exists an ajk ® Xk such that

(17) Cjk(ajk) —Cjk(ajk) —O.

Namely, if we had Cjk(x) > 0(—e0 < x < 00) then this would contradict the
definition of cjk in (14). Again, we determine the roots of E'jk{x). Besides
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the roots listed above, ajk is an additional root, and since it is a root of
Ejk(x) as well, either the application of Rolle’s theorem yields yet another
root, or, if ajk = Xi (r ¢ k), say, then this is a root of multiplicity 2 higher
than in Case 1. So the total number of real roots of E'jk{x) is now mn — —2,
which is the degree of E'-k{x).

Thus we have a complete description of the roots of Ejk{x), and in both
cases we can write by (16)

E'jk(*) = (* - X
where
(18) Fjk(x) = -(nn-j - Dejk+ (X - XK)J\[(m —j)Djk(x) + (x - xk)D'jk{x)}.

Without loss of generality we may assume that in Case 2 Xk < ajk- (The
case Xk > ajk leads to entirely analogous, symmetric considerations.) Again,
we distinguish two cases.

Case 1: 2 < k <n. With the notation

0 ] Xk—1 If Gk = bm—j—4k

jk \ min(aldfcx*_1) if Gk < bm-j-i,k
we may say that the polynomial Fjk(x) has no roots in the interval (xfc+i, 3jk)-
(If Kk —n then this interval is (—00,/3jn).) Since E'-k{x), and hence Fjk(x),
has only real roots, it follows that Fjk(x) is monotone in at least one of the
intervals (Xk+i,Xk) and (Xk,Rjk)e (If kK = n then this interval is (—o00,8jn) D
D (xn,Bjn).) Again, without loss of generality we may assume the first
possibility, i.e. by (18)

(19) 0> Fjk(x) > Fjk(xk) = -(m - j - 1c* (xk+i < x < xk).

By (16), Ejk(xk+i) = 0, Ejk(xk) = 1, and thus by (19)

(20) 1= | Ejceodx= f (x- Xkm I 2Fjk{x) dx <

*xk+1 "xk+1
N-{xk - Xk+HIY jo2 [ FA¥*) dx g (xk- *fcH)m 3 1(m- j - 1)cjk.
Ixk+1
Hence and from (14) we obtain (12). (If the monotonicity interval is (Xk,Bjk)
then, instead of Xk —Xk+i in (20), we end up with Bjk - Xk i# Xk-\ —Xk-)
Case 2: k = 1. This case requires a slightly different argument only if

i < 6m——+i; namely, otherwise FA*) will be monotone in the interval

(x-i, Zi). Now according to the previous argument, Fj\(x) ¢ 0in the interval
(x2,0ji). If Fji(x) is monotone in (22,21), then the same argument works
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FUNDAMENTAL POLYNOMIALS OF HERMITE INTERPOLATION 363

as before. It remains to settle the case when Fj\(x) attains its minimum in
(x2,0tji) aty 6 (x2,xi). Again, we distinguish two cases.

Case 2.1: Fji(y) < 2Fj\(x\). Then it follows from the convexity from
below of Fji(x) in (y, 00) that

0 < aji —X\ < X\ —y < X\ —x2-
Thus as before
faii fadi . -
1 — - F'jrx) dx — — (x - Xi)m 3 2Fji(x)dx S
Jx1 Jx1

£ -(qgj! - ®i)m-J-1iji(*1) ™ (Xxi - x2)ym~3~1(m - j - l)cjb
which is (20) with « = 1.
Case U.2: Fj\(y) >2Fji(x\). Then
1= J/X2 -Ejitl) dx %-(*i - x2)m 3 1Fji(y) *
W -2(zi - x2)m~3~1Fjl(x1) = 2(xi - x2)m~3~1(m - j - Dcib

which is again (20) apart from a factor 2. O
Lemmas 1 and 3 imply

Corollary. We have

WML EE o)
At uxg - Xade
(—00 < x <00, M- j odd, 0 <j <m —1;k =1,...,N)

with one of the signs in Xkzi m

Lemma 4 (see Erd6s-Tar&n [2]). with the notations

1 1 _log2n\ 1 / _log2n\ 1
In logn’logn @ £ = o/n / logn’\ A/ logn
Mn = max|u>,(z)[, Mn =max|can(z)|
we have

* 1 (*
xmd?nl«l’( I < oan (/IogJ]r’\n Moy

with an absolute constant c4 > 0.

Proof of Theorem 1. Case 1: m - j is odd.*

*We note that this part of the proof in the particular case m = 3, j = 0 has been
done in [5].
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Case 1.1: there isa 1< ko < n such that [ijtO(j/)| = |[fid0(a:)|| > n2. Then
by Markov’s inequality

IM*)I £\ n* d*“ yl=2n*" M =1)’
Hence there exists z E [1,1] such that

[ *-yl=2»? =12~ X°I’
whence by the Corollary

\mma»A;“é N A c$n

which is more than we stated.

Case 1.2: W*(x)| = 0(n2) (k =1,...,n). Then, according to a re-
sult of P. Erdds [1], the system of nodes (1) is asymptotically uniformly
distributed, in the sense that with Xk = cos9k (k = 1,..., n) we have

E.1- — M <i°g2n  (/ef[o,Tr])
Bk€1

where |/| denotes the length of the interval I. Hence

V 1~ A-n if | C[411], W\ 4~ and n > n0.
. 15 n

xkei

Using the harmonic-geometric-arithmetic means inequalities we get forp > 1

21 T s sxkei 1
I" (n)«ei\Xk—xkil
g JF e

(EI1£ ,h-~+ . 1)P=(2[11+8 5!

if |/| >4I0® n; n >n0, no matter which sign is taken in Xk=i-
Case 1.2.1: Mn<i*® lnmThen by Lemma 4

2caMnn

maxK (x)| <
()] log2n
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and hence with \un(y)\ = Mn we get by the Corollary and by (21) with
p=m-j-land1=1"

Limn ~ A ) ! : >
Xkeln \y - ajﬁ d (Xk - *fCtI)m'\]l'l
log2n' ™ 1 log2m- 1n
n E T oon3

which is more than stated in the theorem.
Case 1.2.2: Mn<Mnlog2Te Then by Lemma 4

max|u/(z)| ~ 2c4teM,,
xei'n

and hence with |can(z)] = Mn, — < 2~0 (say) and

= z+(2A+I)!’\,z+(2A+3)!V2p C/l
n

l,a:=
(A=0,1,...," "% _g
v Jdog3 Te.
we get
o Lin(2)
£»r E Miauil f E ] _ o
xkeih g UNOK) e gt (k- ety T30 1

G 1

j\(2¢c5n)m E:lx*%lln,q\z - xk\ m(xk - Xfcii)"?'- 1
G

-1/2log n aE:iI\ZAvaxkE/r:\ (*fc - Xeri)m-i- 1

nm-I/CZQJOQ n 109 P_T_;JGM: 09|_0r?319
Case 22 m —j is even. Then by (4),
IJA*(*)|| = Ljmn (k —1,...,n),
whence by Bernstein’s inequality and by (3)

g (mn  DJJAjfc]| _ g f n*Ljmn A~

1= ay>( <" - Rz
ft=2,...n-1 j=o, ).
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Thus

@)  me AclOTT (k=2,.n- L) = 1),
Now if

(23) sup min |xfc,| < 1

n  1SfcSn

then the statement of Theorem 1 follows from (22).
Finally, assume that (23) does not hold, i.e. there exists an infinite
sequence of indices W, < n? < ... such that

lim min |xk,.| = I.
*—*00 |I<fc<nj

Then let ks, 0~ 1 ,” n, be a sequence such that (with the notation
*En3+Il,n, — —1» 3'0.Ma = 1)

(24) lim xkea = 1, lim xfg+i,nj = -1.

8 —»00 3—*00

Assume that ns/2 < ka< ns (the case 0 < ka< n,/2 is even simpler). Then
by (8) and (10) (since boi = 1)

(25) (-1)4! >0, (-1)4! >0 (i=1,2,...).
On the other hand, by (24)

for sufficiently large s. Thus (7), (9) and (25) yield
L) >» ~ - (-x!™ >c,  (i=0,...,m-2),

which is more than we had to prove. O
Now we prove that the lower estimates given in Theorem 1 are sharp. In
fact, we prove slightly more:

Theorem 2. For the Chebyshev nodes

k—1
(26) xkn = cosz—-lh---T (k=1,...n:n=1.2.)
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we have

. if m—j is odd,
Fmn £Bjmn=

if m—j is even
(=20 D).

Proof. For the Chebyshev nodes we have

if i is even
bik =
if i is odd,
where Ok = (k — (see P. Vértesi [6], Lemma 3.11). Also, if

for a fixed x € [1,1],

\X —xs| = 1mm X —

then

o= () f
0(1) if k=s.

Thus, if m —j is odd we obtain from (7)

m —j —I

sinmx
_*(x)\| = _ ’
@ In=xer=o tEA Mgppe X XK
0
= n1Bin"»« ek /sin>0*\ "V m n‘ _
A E - XKm-j~i Vm 3 gg sinra-J-’
sin-79k
S),
ndls —fd (K ¢ s)
and
28) A, =0 (iff* (A ) “Ix-x.l- =0

(of course, this holds for m —j even, too), whence

™ 1Aa () _ , logn4

jmn (m —j odd).
: £i (1- *hjr 7
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368 J. szabados. fundamental polynomials ...

Ifm— >2iseven, thenin (27), fori = m -; -1 we use the second relation
to get
sinm 9k
\AjK(x)\ = 0
Jk() nm\X — xk\
+-sin]71‘70<\x - Xk\
:Osin-79kmy2 * +o( , ~ N =
n" i—0 Sin"—-1 9 \71-742|x — Xk\)
_ sm-J 9k N - sin-79k - -\ .S|n-79k (K ®s)
My742 sin2 B r+2sin A sin / ni(s —k)2
whence and from (28)
-~ |Ajfe(x '
Timn = A ()_| =0 | (m-j even).
a - *Di/2
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APPROXIMATE HIGH ORDER SMOOTHNESS1

Z. BUCZOLICH2 (Budapest), M. J. EVANS (Raleigh) and P. D. HUMKE (Northfield)

A substantial amount is known concerning the properties of smooth func-
tions. (For example, see [15], [8], and [9].) Recently, Dutta [4] introduced
the notion of high order smoothness and established a number of interesting
results analogous to those for smooth functions. (See also [5] and [6].) Also,
the notion of approximate smoothness generalizes that of smoothness and
has been found to have a number of similarities. (For example, see [16] and
[13].) Here we combine these latter two concepts in the obvious manner to
arrive at the notion of approximate high order smoothness, and the purpose
of this paper is to show that results analogous to those of Dutta carry over
to this setting.

We begin with some definitions and notation. All functions considered
here are assumed to be real-valued, Lebesgue measurable functions defined
at least on an open interval of the real line. First, such a function /, defined
on an open interval I, is said to have an approximate fcth Peano derivative
at zo £ | if there is a polynomial QXo,k(h) of degree at most k such that

Qxo,k(°) = f(xo0) and
f(xo + h) - Qxok(h) = oap(/ik) (h-* 0),

where the oap(/ifc) notation is used to indicate that the left hand side, divided
by hk, tends to zero as h tends to zero through a set having density one
at zero. The value of the /cth approximate Peano derivative of / at xq is
denoted f(k){x0), where f(k)(x0)/k\ is the coefficient of hk in QXok(")- ("sis

customary, we use f(k\ x 0) to denote the value of the ordinary fcth derivative
of / at xo, if it exists.) The basic properties of approximate Peano derivatives
are described in [2].

More generally, if there is a polynomial PX3k[h) of degree at most k for
which

1Some of the results contained in this paper were presented at the MiniConference on
Real Analysis at Auburn University, April 1989, and at the Fourteenth Summer Symposium
on Real Analysis at California State University, San Bernardino, June 1990.

2 During the writing of this work, the first listed author was a visiting member of the
Department of Mathematics, University of California at Davis.
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f(xo+ h) + (~Df(xo - n)

2 Px0,k(h) Oap(hk) (h 0),

then / is said to have a Ath approximate symmetric derivative at xo and the
value of this derivative at xq is denoted by D kpf(xo), where Dkof(xo)/k\

is the coefficient of hk in PXQk(h). If K is even, we further require that
PXQA0) = /(x0). It is well known that if k is even, then Pxo,jt(/i) has only
even powers of h, and if k is odd, only odd powers. Clearly, if / has a Ath
approximate Peano derivative at xo, then it has a Athapproximate symmetric
derivative at x0 and the values of the two derivatives are equal.

If we suppress the word “approximate” everywhere in the previous para-
graph, we have the concept of a Ath symmetric derivative at xo, which we
shall denote by DKkf{xo).

Next, suppose that m is a natural number greater than or equal to 2 and
that / has an m —2 approximate symmetric derivative at xo- If, further, it
happens that

Ax0+ h) + ( 1)mA x0 - h)-PxO,m—Z(h) =0apthm~1) (h —»0),

then / is said to he approximately m-smooth at Xo- If / is approximately
m-smooth at each point of an interval, we shall say that / is approximately
m-smooth on the interval, and if we simply say that / is approximately
m-smooth, we mean that it is approximately m-smooth on (—eo,00). Thus,
approximate 2-smoothness is the notion of approximate smoothness explored
in [16], [13], and [12]. If the word “approximate” is suppressed from the
above definitions and discussion, then we arrive at Dutta’s [4] concept of m-
smoothness, again with 2-smoothness being what is more commonly called
smoothness.

Throughout we shall use A(5) to denote the Lebesgue measure of a mea-
surable set 5. We shall also use what is becoming standard notation by
saying that a function / is a Baire* 1function if every non-empty perfect set
contains a portion such that the restriction of / to that portion is continuous.

We are now ready to begin our investigation into the continuity and
differentiability of approximately msmooth functions.

Theorem 1. If f is approximately continuous and approximately m-
smooth, then D~ -~ 2f is a Baire* 1function.

Proof. We shall deal with odd and even m’s separately, providing an
inductive proof in each instance.

Dealing with the odd numbers first, consider 7z= 3, i.e., suppose that
/ is approximately continuous and approximately 3-smooth. For the sake
of reaching a contradiction, assume that D\pf is not Baire* 1. Then there
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exists a non-empty perfect set Q such that on any portion of Q the restriction
of D\pf is not continuous.

By the approximate 3-smoothness of / we can choose for each number
x a set Hx{f) C [-1,1] symmetric about 0 such that O is a density point of
Hx(f), and if h e Hx(f) then

\f(x +h)~ f(x -h)- D\vf(x) ®h\ < h2.
For each natural number g, put
Ag= {x : if 0<t<2/q then \{HXM[—, <) > 0.9 «21}.

By the Baire Category Theorem there is a natural number g and a portion Q'
of Q such that Aq is dense in Q'. By our assumption D\ f is not continuous
on Q' and hence, using the density of Aqin Q', it is a straightforward matter
to show that there is a point y E Q\ an £ > 0, and a sequence of points
Pk € Q' MAq, such that pk -> y, and \D\pf(y) - DIpf(pk)\ > £ for each
natural number k.

Let g be the function defined by g(x) = f(x) —D\pf(y) m(x —y). Then

D\pg(y) = 0 and for each Kk we have |-DYp(7(pfc) > fm Also note that for each
x we have Hx{f) —Hx(g). For the sake of brevity we shall denote the sets

HPk{g) and Hy(g) by Hk and H, respectively.
W ithout loss of generality we shall assume that the pk s decrease mono-

tonically to y.

Choose ho > 0 such that ho < min-fT/g, £/21} and such that for all
0 <t <howehave A(A NM[~M]) > 0.9 «21. Next, choose K so large that
for all k > K, pk —y < OCQIfio- For k > K let Tk denote the set of all t in
(0.1/ich hO0) such that y —t £ (y + H) M (pk + Hk). Then for t £ Tk we have

gy + - gly - D <tz
and
\O(Pk+(Pk-(y-t)))-g{pk-(pk-(y-t)))-DIpg(pk)2(pk-(y-t))\<(pk-(y-t))2
and hence, by adding the previous two inequalities we obtain
In(Y + t)~g(y + t + 2(pk-y)) + Dlpg(pk)2(pk-y + t)\<tz + (pk-y+1t)2<
< hl+ 1.012ig < 2.1fig < 2Vr0M- = QIEfo-
Therefore

\Wy{y +1t) - g{y +t+2{px- y))I> Ib\pg(pk) R{px - y+1)| - 0Aeho>
>£m(pk- v+ t)- 0.s/lg > £21- O.I£/i0 > 0.2£/1Q - O.1£/1o = O.I£hO0.
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Next, we claim that A(Tfc) > 0.6/io- To see this, first note that by the
choice of hO and the symmetry of H we have A([r/ —ho, 2/]\(y + H)) < O.lho.
Next, since Pk —¥ < 0.01ho < O.lho and Hk is symmetric about 0, we have
that A(p* —I.lho, PKk]J\(Pk + Hk)) < 0.1 <l.lho, and hence by using that
Pk-I-lho <y-hQ< 'y < pk, we obtain that A([y-h0,y]\(pk+Hk)) < 0.11ho.
Therefore \([y - hO,y] M(y + H) M(pk + Hk)) > (1 - 0.21)ho and so A(Tfc) =
= X(y-Tk) =\([y-ho,y -o0.1tho]Jr\(y+H)n(pk +H)) > (1-0.31 )ho > 0.6h0.

Next, put Ck =y + Tk- Then Ck C [y + 0.1ho, ¥+ hQ], A(Cfg > 0.6h0,
and if ) £ Ck then

IfirX) - g{x + 2(pk - Y))\ > O.Isho.

Put nk = 0.9ho/[0.9ho/(pfc —V)], where PH{ denotes the integer part of x.
Since pk —y < 0.0lho we clearly have 2(pk —y) > hk > Pk —Ym Denote by
@ the set of integers | for which

A(ly + O.lho + (-—1)hfc, y + O.lho + 1hk] M Ck) > O.Ih",

Set
Dk = N \y + O.lho + (?—1)hk, y + O.lho + ihk\-
(e
Thus,

ACK M ([y + O.lho, y + ho]\Dfc)) < 0.1A([y + O.lho, y + ho]) < 0.09ho.

If A(Dk) < 0.5h0then A(CK) < X(Dk)+ A(CTM([y + 0.1ho,y + h0]\Dk) <
< 0.59h0, contrary to A(Ck) > 0.6ho. Consequently, we have A(Dk) ~ 0.5ho
for every k > K. It follows that there is a set U of measure at least 0.5ho
such that if x 6 U then x belongs to infinitely many Dk. Choose an x € U
and denote the set of corresponding indices Kk by ®.

If K € ®then x £ Dk and hence there exists an £ € @ such that xE[y-\-
+ 0.lho+(*)hk, y+0.1lho+fhfc] and A([t/+0.1ho + (E)h”, y+ 0.1ho + fh”]n
MCk) > 0.1hk- Put Wk —[y + O.lho + (f —I)hfc, y + O.lho 4 fh*] M Ckm If
w £ Wk then

\g(w) - g(w + 2(pk - Y)\ > 0.1eno.

Since Pk - ¥ < hk < 2(pk- y), we have Wk U{Wk + 2(pk - y)) C [x- 4(pk-
- y), x + 4(pk —y)] mSince g is approximately continuous at x, there is a set
E and a 6 > O such that if |[i| < 6 then A([x- t,x + flME) > 2+0.99t, and for
w £ Ppk—6, x-\-8]C\E we have \g(w) —g{x)\ < 0.05eho. Choose Kk £ ® such that
4(pk —y) < S, this is possible since pk —y and ® s infinite. Ifw £ Wk then
\g(w) —g(w -f 2(pfc —?/))| > 0.1£ho and hence either w orw + 2(pk —y) must
fail to belong to px—S, x + M E. Since A(IPjt) > O.lhfc > 0.1(pfc —y), this
would imply that \([x - A(pk- y),x +A(pk- y)JN\NE) < 8(pk-y)-0A(pk-y),
contrary to A(PK —A(pk - y), x + A(pk —y)\ ME) > 2 «0.99 «A(pk —Yy). This
contradiction completes the proof for the case m = 3.
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Now, suppose the theorem is true for m = 3,5,... ,n—2, and suppose
that / is an approximately continuous, approximately n-smooth function.
Assume that D"~2/ is not Baire* 1. Then there is a non-empty perfect set Q
such that for each portion of Q, the restriction of D I~ 2f to that portion fails
to be continuous. By the inductive hypothesis, there is a nonempty set Q'
of the form [c, d] n Q on which each of the functions D\pf, DIpf, ... , T>E~4/
is continuous.

By the approximate n-smoothness of / we can choose for each number
x a set Hx(f) C [4,1] symmetric about 0 such that 0 is a density point of
Hx(/), and if h € Hx(/) then

/0 +h) - f(x - h) - 2Px,, 4(h) - 20y 3 hn=2\< hn-K

For each natural number g, put

Agq= 0 : if 0<t<2/q then A(HxTI[—,i]) > 0.9 «2i}.
By the Baire Category Theorem there is a natural number g and a portion
Q" of Q' such that Agis dense in Q™. Since D1~2/ is not continuous on Q",
there exists ay £ Q", and s > 0, and a sequence of points pk £ Q" LA q such
that \D2p 2f{y) - D”p2f(pk)\ > —2)! for each natural number k.

Let g be the function given by g(x) = f(x) —Pyn-r(k—Y)» Then
Dlpa(y) = Dlpo(y) = mm = Dip 2g(y) = 0 and for each k, \DIp2g(Pk)\ >
> s{n —2)!. Also, note that for each x, Hx(f) = Hx(g). For the sake of
brevity we shall denote the sets HPk{g) and Hy(g) by Hk and H, respectively.

Without loss of generality we assume that the pk s decrease monotoni-
cally to vy.

Choose ho > 0 such that ho < min{l/g, e/(20.1)n_1} and such that for
all 0 <t ii howe have A(H n [,t]) > 0.9 <21 Next, choose K so large that
for all k > K and all 0 < h < I.Ih0, we have |PR,_4(b)| < |(0.1ho)n-2,
and pk —y < 0.01ho. Now let k > K and let 1/ denote the set of all t in
(O.lho, ho) such that y —t E (y + H) M (pk + Hk). Then for i £ Tk we have

\a(y + 1) - y(y - o\ <tn~\
and
lai'Pk + O /- (y - 0)) - y(pk - (pk -{y-1))) - 2pPkin-4(pk - y + t)-
- 2DIp2g(pk){n - 2)!(pk- y + t)n~2AA<(pk- yP t)n~I,
and, consequently,

(1)
i Dn. 2a(vic)
\y(y+t)-g(2pk-y+t) +2PPkin (pk-y +t)+2-pz? 2 {pk -y +t)n~2\<
n !

<i"-1+ (pfc- y +t)n~\
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Hence,
\gly +1t) - g(epk-y +t)l>
N
nD( 29(22:0(My co"7 o tn - (Pk-y+t)n - \2PPKin- a(pk-y+t)\ >
» - H

>2e(Pic-y +tn~2- t"-1-bl -Y¥Y +i)n_1l- |(0.1/10)n-2 >
> 2£i"-2- feg"l- (1.Ol/io)"-1- |(0.1/i0)"-2 >
> 28tn~2 - (2.01/i0)n 1 - |(0.1/io)n' 2=
= 2£(0.1/i0)n_2 - (2.01/i0)(2.01/i0)"~2 - |(0.1/iQ"-2 >
>2e(0.1Mn~2- (201 ¢ (a0o”™n-iX2-01")"-* - |(0-1/10)n-2 =

= 2e(0.1thoyn~2 - ~(0.1/io)n-2- |(0.1/ig)"-2 >

> 2£(0.1/io)n_2 - £(0.1/iOn_2 = E{0.lho)n~2.
In summary, for ¢ (zTk we have

gy +t)-g(y + t+ 2(pk- y)I > £(0.1ho)n_2.

Next we claim that A(Tfc) > 0.6h0. Indeed, this is established in exactly
the same manner as in the m = 3 case and the rest of the proof is completed
in precisely the same manner as before with the sole exception being that the
positive number 6 is chosen so small this time that for »? € [x—s, X+ we
have [fif(it)) —<7(x)| < £(0.1ho)"-2/2. This again will produce a contradiction
and complete the proof for the odd numbers m.

We now turn our attention to the even numbers m. The case m —2 was
proved by Larson [17]; i.e., he showed that if an approximately continuous
function / is approximately 2-smooth, then / is a Baire* 1 function.

Proceeding to the inductive step, assume that the theorem holds for
the even integers m = 2,4,... ,n —2, and suppose that the approximately
continuous function / is approximately Tesmooth. Assume that 2/ is
not Baire* 1. Then there is a non-empty perfect set Q such that for each
portion of Q, the restriction of f to that portion fails to be continuous.
By the inductive hypothesis, there is a nonempty set Q' of the form [c, d\ MQ
on which each of the functions, /, i 2/, D*pf,... ,D™-A is continuous.

By the approximate Tesmoothness of / we can choose for each number
x aset Hx(f) C [-1,1] symmetric about O, such that 0 is a density point of
Ax(/), and if h GHx(f) then

lf(x + h) +f(x - h) - 2Px,,,-4(h) - 2 (nf_azlg’!*) Ln—2) ¢ hney
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For each natural number g, put
Agq—{x\ if 0<t<2/q then \{HXM[—, f]) > 0.9 «2t}.

By the Baire Category Theorem there is a natural number g and a portion
Q" of Q' such that Aqis dense in Q". Since D2p 2f is not continuous on Q",
there exists ay £ Q", an e > 0, and a sequence of points pk £ Q" N Ag such
that \Dzp 2f(y) - D”p2f(pk)l > e(n - 2)! for each natural number k.

Let g be the function given by g(x) = /(X) —Py,n-2(x ~ ¥)» Then
9(y) = DlIpg(y) = D2pg(y) = - D2~2g9(y) = 0 and for each kK we have
\D2p2g(pk)\ > e(n ~ 2)!. Also, note that for each x, Hx[f) = Hx(g). For
the sake of brevity we shall denote the sets HPk(g) and Hy(g) by Hk and H,
respectively.

Without loss of generality we assume that the pit’s decrease monotoni-
cally to .

Choose ho > 0 such that ho < min{l/g,£/(20.1)"-1} and such that for
all 0 <t < ho we have \(H M[-f, t]) > 0.9 ®1. Next, choose K so large that
forall Kk > K and all 0 < h ~ 1.1h0, we have |PPfcin_4(h)| < |(0.1ho)n_2,
and Pk —¥ < O.0lho. Now let k > K and let T* denote the set of all t in
(O.lho, h0) such that y —t £ (y + H) D (pk + Hk). Whereas in the odd case
we had for t £ Tk, \g(y + t) —g(y —i)| < in_1, here for t £Tk we have

\gly +1) +g(y - H\ <in_1,
and
bPk + (Pk ~ (y~ 1)) + g{pk - (Pk - (»- 0))-
-2PPKI 4 (pk-y+t)-2D2p2g{pk)(n-2)\(pk-y+t)n-2\<(pk-y+t)n-\

and, consequently,
(2) lg(y +t)~ g(2pk - y + t) + 2PRII4(pKk-y + t)+

+ 2 /AN - (p k-y+tr-2\<tn-1+(Pk-y+t)n- 1

This inequahty (2) is analogous to inequality (1) in the proof for the odd
integers m, and the proof from here on is identical to that one. Thus our
theorem is proved.

Two observations on this result may be appropriate here. First, we do not
know if the assumption of approximate continuity is necessary. Furthermore,
notice that in the even cases, the original function / turns out to be a Baire* 1
function. In the odd cases this need not be true as the following example
shows.
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Exampte 1. There is an approximately continuous function / whicli is
approximately m-smooth for every odd natural number m > 3, but / is not
a Baire' 1function.

PROOF. We begin by defining several sequences in [-1,1]. For n £ N,
the set of natural numbers, we define oo = 1 and then for N, K G N we let

— ™Mk 1 bn,k -1 2une.

The ‘n’should be thought of as fixed and the a’s and b's defining a sequence

of intervals {(an,fc, 6nfc)} converging to 0. We also need central sequences of
intervals [cnifc dn}k] which are defined by

+ NN lcH , , T 2)(Zn’k
cnk —ank + 2"+2 Mk~ 2n+2

We extend to the left half of [,1] by defining ank = —ank, and so
on; anowill be used to designate either +1 or —1 as the situation dictates.
Now, fix n and kK and define f Uk as follows:

for X£ (anifc,6n,fo);

1n for x € [c,,,jt,<W-];

a C°° spline on each of [arPA-™] and [dntk,bn<k].
It is easy to see that f,,tk is C°°. For fixed n we define:

fn(x) = z . /M/k@) + >

kez
where Z denotes the set of integers. This function is continuous except at

0 and is actually C°° at points of |J (amx bn<k). It is also clear that
k=0

EOh —{h «/n(h) = /,,(—)} has full density at O, and consequently, /,, is
2m - 1 approximately smooth at O for every m. The functions /, serve as
building blocks, and to take full advantage of their properties, it is necessary
to define them on arbitrary compact intervals. If I is such an interval, /,, /
denotes the composition of /,, with the affine map from / to [—1,1]; points of
I corresponding to the an=K's will be denoted by anik(l). Other corresponding
points are similarly denoted.
Easy computations show that:

bn./tu) - ank(l) = ~1 - 2~*) ankiy

<*(1)-<:,,* (1) > (I - 2~fc) y
Bn,/c— (™) An,/c(-0 -

cn,k-x(1) - dnk(l) = + 1) an*|J|.
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First define gi(x) = f\{x). Then the complement of the support of gi
consists of countably many compact intervals, the two extreme of which are
set aside. The function /2 is then inserted into each of the remaining intervals
and the process repeated. More specifically, set T\ —{[—1,6it i], [bi,i, 1]},
and define

92(x) = Y ~h A x)

where the sum is taken over all compact components of the complement of
the support of g\ which are not in T\. Suppose gn has been defined and a
set, T,,, has been designated. Then,

On+i(x) =

where the sum is taken over all compact components of the complement of the

support off 9k which are not in T,. The set Tn+i consists of Tn together
(=]

with all intervals of the form [a,,+i,0(/), &+i,-i(-0] and [bn+i,i(7), a,,+i,0(7)]

where 1 is as in the last sentence. Finally, let

Gn(x) = YA9k(x), and G(x) =" gk(x)e
k=1 k=l

Let . — GL 1(0). Then M = c.\(P)\P (cl = closure) is a countable set
corresponding to midpoints of contiguous intervals. Several properties of G
are easily deduced.

1 The set 5 = (—4, 1)\ cL/*) is an open subset of (-1,1), and G is C°°
on that set.

2. G is continuous at each point of P.

3. c(M)\M CP,yet MNP =0.

4. cl(M) is perfect.

It follows from the third and fourth remarks that G is not Baire*l. What
remains is to show that G is approximately 2m —1 smooth at each point of
cl(M). This is obvious at points of M because the intervals [crefc, <nifd : k =
= 0,x1,... have full density at 0. The remainder of this section is devoted
to verifying that if x € cl(M)\M, then Ex = {h : G(x —h) ¢ G(x + h)} has
density 0 at 0. If T € cl(Af)\M, then

(e]e]

*

3

n=0

where 70 = [—1,1] and /n(x) is the unique interval contiguous with the sup-
port of Gn which contains x. There is a corresponding sequence of integers,
kn, such that

7n — [n,fc,,|-1 (7n—1)> un,):,, (7n__ 1)], n —1,2,... .
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Note that |/n| = 2arsfn+x|/n_i|, where |7| denotes the length of the interval
I. We show that if

I . |

2 :an,fcn+itp'n-illsz h SS'a'n-i,fcn_i+i||—|Tn-2||: 2 »
then A(EXh) <  where

Exh= {iC (0,h) :G(x +t) & G(x - i)} and A(Ex<) = \(E Xih)/h.

IfS C R and 1 is an interval we let A(S, 1) = . The computations
used below make use of the following remark.

Remark. If 5 is a measurable set and both A(SG[x,x + h]) < £ and
A(SG[x —h,x]) < £ then (T, [0,/r]) < 2e where T = {t :either x —t £ S
orx+t£ 5}

The proof that A(EXh) < 1/n for h £ [|/n|/2, |/n_i|/2] is carried out in
three parts. The first part verifies the result for h £ [|/,,|/2,x —lL_*n(/n_x)].
This is accomplished by considering five critical h values in this interval and
applying Remark 1.

For notational convenience, we suppose fm+i > 0 so that x lies in the
right half of In which we suppose to be centered at O.

Part 1

Define Hg — |/,,|/2, hi — Cnkn{Mn}) T 2on”-xgl/n| X, h2 —x

Mfn+i(*n—)i ~3 = x Oh—kn—=(fn—)) ~4 —® dn—4G x(Fn_j) and
hs = x —cr>fon(/n_x). Other than ho and h\ these critical values deter-
mine symmetric intervals centered at x which are determined by a point
labelled on Diagram 1. The value of hi is chosen to insure that both
xFh\ £ (cn)im(/,,—x), dnfen(7n_x)) and x—hi £ (cngnax(-"n—)p> 1)’
Roughly speaking, hi is the smallest convenient value we can safely say has
these two properties. The entirety of Diagram 1 is contained in In-i and
each of the displayed points has been labeled without the suffix (7,,_x), i.e.,
(hfon denotes cnj/Gi(/n_x).

Diagram 1
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a. Suppose h £ [/io/ii] and let S = G x(" y). Then
1(Ai)» Cn+i,—H7n)) CSM[x h, X]
so that
A(Sc,[x-/*,*])< h H <

hy ~ (cn+1l,-1 {in—1) ~ ~n+1,-1 ("n-1)) __
ho n

_ eenfen(in-1) T 2a,+iii|/n] &) (enti,—Htn—H)  An+i —H{In))

\Lrn
cnk, {In=4) ~ (cn+l|-K"*n)  "n+l,—H7n) H2an+1x|/n|)
IT..1/2

_ (cenfon(*n-1) ~ an,k,,(In-1)) + (an+1,0(/T>) ~ *n+l1(-"n))
Ne.1/2
(A>n+1,1(/n) - ~An+1,1(~n)) d~ (Cn+1,1(~n) Qn-|-1,1(~n)) ~b 3an-(-Itl/n]|
Ne.1/2
A (enfen(™n-l) ~ ank,{In-1)) + an+1g|r| + an+1a|/1»|
n.1/2
an+i,2|-~n| + 3an+lil|7n]|
+ Uvt2 “
{cn,k,,{In-1) ~ ankn{In-1)) + 2*» an+l,INen|
Ne-1/2 +
2am3 2'+3 an+l,1 IMTnl -f 4anglal/,,|
+ 1.1/2 <
(cnfen(~An-i) ~ finitn(ln-i)) + 5an-|-iii|/n]| _
Ne-1/2
2'+2 anfon+i I-*n-il + 5an™.]al/n] _ n 2 (knkn 5
|/, |12 - 2n+l12 N+ N2

(see Diagram 2), which is o(l/n). Also, (cn+1g(/,,), dn+i,i(/n)) C 5n[z, z+h]
and a similar computation shows that A(SGr, x +/r])is also o(I/n). Hence,
for sufficiently large n, A{Exh) < I/n for each h € [h0, hj], uniformly in h.

b. At this point two remarks are relevant. First, note that the in-
terval (cntkn(In-i), dnkn(In-i)) is extraordinarily long compared to the in-
terval (cnjin+1(/n-i),dn,fcn+l(F,,_i)) and second, on each of these intervals
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In

Diagram 2

G is identically The choice of h\ then entails that for h £ [hi, 2],
G(x + h) = G{x - h) = £ and hence, A(EXh) £ A(EXhI)- By observ-
ing that A (EXth2) < A(EXhl) and using the fact, proved in Section a, that
A(EXhI) = o(l/n), it follows that A(EXh2) = o(l/n).

C. The ratio ni~22 Is also 0O(V n) and as a consequence for h £ [h2,/i3],
we have A (-Ex,n) = °(1/n) (see Diagram 3).

. \__Hl_ inl vf if - \LL LU ¥ AK T
) CnAn-t c">n*1 X
Dia.gra.rn 3
d. If h £ [*39"4P then x hE£ (*n,—kn—i(In—2)?  kn—i(At—2))? £

£ (cn,in(/n-i), Jdn(*n-i)), and each of these intervals is contained in G- a(i).
Hence, for such n, A (E x<h) < A(Exth3)- In particular, if h = nh4a we have
A (EXthi) = o(\/n).

e. The ratio is also o(l/n) and hence for h £ [h4,/29, A(EXh) =
= o(l/n). This completes the first part of the argument.

Part 2

In this part we show that ift£ [x —cn, jfon(/,,_i), X—cni_i(/n_i)] then
A(EXt) < ~ for all sufficently large n and uniformly in t. The technique
of proof is similar to that of Part 1 except that the critical values are more
regular. Suppose m - O,1,..., kn - 2, let Om = x - ¢, _fo+m(/,_i), and
n.t = ~n,kn—m(in—1) x. Ifre then*

* € (¢n—fc,+m(In—4), On—,|-m(--h)

Ada Mathemaiica Hungarica 61, 1993



APPROXIMATE HIGH ORDER SMOOTHNESS 381

and
X t E @for—m("n—2))>dnjim_m(/n_i))

and each of these intervals is contained in Hence, for such t, we
have A(Ex<t) < A(EXfto ). See Diagram 4. Note that to,0 = hs, and therefore
A(EXitoo) —o(I/n). Using the above it now follows that A (Exjl10) = o(l/n).
Let t2m = tom+i = x —cnj_fon+m+i (In_i). Then it is easy to see that
the ratio tlhis o(l/n). Hence it follows that if t G [ti,o,i2,0]5 then
A(EXt). = o(l/n). As t20 = io,i, we can continue this process to con-
clude that A(EXt) < ~ for sufficiently large n and uniformly for all i G

G [x —cr> Mn(/n_i), x —cr>_i(/n_x)]. This completes the second part of the
argument.

%
d*‘ nem C'-!<J_'1m gv'—k‘ n0m>>l

Diagram 4

Part 3
In this part we complete the proof that there is an N sufficiently large
that if n > N, A(EXh) < £ forall h G M D11yt is sufficient to

show that A(Ex@ = o(l/n) uniformly for 5 G [x - cni_i(/nrl), |/2].
Letso=x-c> a n d Si= - x. For s G (40,5i), x - s G
€ (dn,—H/n—H),c,, _i(/n_i)) and x+s G (cn,i(/n_i), both of which

intervals are contained in S. Consequently, A(EXB * A(EXSo) which we
saw in Part 2 is o(l/n). Further, a proof entirely analogous to the first
portion of Part 2 shows that A(EXiSI) = o(l/n). To complete the proof we

show that if s2=| x|/2 then the ratio is also o(l/n).

*2 -0 = A - o(dnI(/,-1) - X) ¢c - fln, 1 (/n-1)) A
51 AnLI(A»-1) — X An,I(-An—l) — cn,I(-~"n—I)
(4an,o(-*n—) An,I(Fn—1)) 4~ (*n,I(In—1) Qn,I(-*n)) +
~n,l("*n-1) —cn,I("n—)
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Aong itln—11"" 20 2®n,l IA»—11"1" fIn,11ln —11

This then completes the proof of Part 3.

If n€ % "], then A{EXh) is bounded by the maximum of the
densities A (E Xit) where t is one of the critical values from Part 1, 2 or 3, i.e.,

te A1»~2)b,3, /14, 05, t\,t2, si,s2}.

Hence, there is an N such that for n > N, A(exh) < ” uniformly for all
h € [|/,1/2, |/n_i|/2]. That is, for every x € cI(M)\M, Ex = {h :G(x+h) ¢
® G(x —h)} has density 0 at x. This then completes the proof that G has
all the desired attributes.

However, even though an approximately continuous, approximately m-
smooth function (m odd) can fail to be a BaireT function, it will have to
be continuous on a dense open set. This is our next Theorem 2. First we
need the following lemma, which is based on a recent result of Freiling and
Rinne [10].

Lemma 1. Letf be an approximately continuous function which is ap-
proximately symmetrically differentiable on an interval I.

a) If D\pf is bounded either above or below on I, then f is continuous
and symmetrically differentiable on I.

b) If D\pf is continuous at xo € I, then f is differentiable at xo.

Proof (of a)). Assume that D\pf is bounded below by M on I. Then
the function g, given by s5(1) = /(x) — MXx, is approximately continu-
ous and approximately symmetrically differentiable on I with Dlpg(x) =
= Mapf(x) —M > 0 for all x € / Hence, according to [10], g is nondecreas-
ing on I. As noted in [7], it is easy to see that if a monotone function is
approximately symmetrically differentiable, then it must be symmetrically
differentiable. Thus, g is symmetrically differentiable on I. Since a symmet-
rically differentiable function cannot have a jump discontinuity, g must be
continuous on I. Clearly, then, / is also both continuous and symmetrically
differentiable on 1. The analogous proof holds if D\pf is assumed to be
bounded above.
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P roof (0fb)). Since D bpf is continuous at xo, it is bounded on a neigh-
borhood J of xg and hence equals D 1f on J by part a) of this lemma. Apply-
ing the quasi-mean-value theorem of [1], we conclude that / is differentiable
H X

Neither a) nor b) remains true if the assumption of approximate continu-
ity in the previous lemma is weakened to Baire one, Darboux. For example,
Croft [3] has constructed a Baire class one, Darboux function which is almost
everywhere zero, but nonzero on a dense set.

Theorem 2. If f is approximately continuous and approximately m-
smooth, then f is continuous on a dense open set.

PROOF. If m is even then Theorem 1 guarantees that / is a Baire’l
function and is hence continuous on a dense open set. Suppose that m is odd.
Then / is approximately 3-smooth. Let | be any open interval. According
to [11], D\pf is a function of Baire class one and is, therefore, bounded on
some subinterval J of I. Consequently, from part a) of Lemma 2, it follows
that / is continuous on J.

We now turn to differentiability properties of approximately m-smooth
functions. The following lemma is useful.

Lemma 2. Letf be approximately continuous on an open interval I.
a) If DIp~1f, k=1,2,... ,m, exist and are continuous on I, then the

ordinary derivative /(2m_1) exists and is continuous on I .
b) If f, k=1,2,... ,m, exist and are continuous on I, then the

ordinary derivative /(2m) exists and is continuous on I .

Proof (ofa)). Ifm = 1, the result is immediate from Lemma 1, part b).

Suppose that the result holds for m = n and let us show that it must also

hold for m = n + 1 The proof we shall give for this inductive step is

virtually identical to that given by Dutta in [4] for his Lemma 2 and we

include it here solely for the sake of completeness. We are assuming that
kl1,2,... ,n + 1, exist and are continuous on /, and that, via

the inductive hypothesis, /12"-1) exists and is continuous on I. Let [a, 6] be
contained in I. Foreach i £ 1 and each h such that x + h 6 /, there is, by
the mean value theorem, a B, 0 < B < 1, such that

ene)l (X +A-f(x-A)2-£ ~A _ [(»-i)(1) | k¥»i =

A2(/<i- 1>;x,0/»)
(9hy
where is the usual second symmetric difference for a function :

A2Ex, 1) = d(x + 1) + d(x - 1) - 2(x).
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< D A +1f(x) < 2)2 (2n_1)(x)

for all x G /. Now, since D~p+1f s continuous on [a, & and satisfies the

above inequality, Lemma (3.13) on p. 327 of [17, Vol. 1] indicates that the
function

is linear in [a,b\ and, hence, /(2n+l) = D\p+If on (a, 6). Since [a, 6] is
arbitrary in /, we conclude that /(2m+l)(x) = D*p+if(x) for all x G /,
completing the proof of a).

Proof (of b)). First consider the case m — 1. Here we are assuming
that / is approximately continuous on | and that D& is continuous on I,
and wish to conclude that /" = DIpf onl. Let [a, b C/. From Theorem 3
in [13] we may first conclude that / is actually continuous on [a 6]. Next,
since / and D 2f are both continuous on [a, b] and

D2f{x) %DIpf(x) < D2f{x)

for all x G [z 6] we conclude, again via Lemma (3.13) on p. 327 [17, Vol. 1]
that the function

is linear in [a, b] and, hence, f* = D\pf on (a, 6). Since [a, € is arbitrary in
I, we conclude that f" —DIpf on /, completing the proof for m = 1. The
inductive step may now be justified in a manner entirely analogous to that
utilized in the odd case above.

From Theorem 1 and Lemma 2, we immediately obtain the following:

Theorem 3. If f is approximately continuous and approximately m-
smooth, then /(m~2) exists and is continuous on an open dense set.

Here again, the example in [3] shows that the assumption of approximate
continuity in Theorem 1 cannot be replaced by Baire one, Darboux.

Lemma 3. Let f be approximately m-smooth and suppose that /(TO 2)
exists on an open interval I. If f(m-2) attains a local maximum or minimum
at xo in I, then f(m-i){xo0) exists and equals O.

Proof. Note that the m = 2 case reduces to the assumption that / is
approximately smooth and approximately continuous. That the approximate
derivative or exists at a point where a local extremum is attained
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was proved in [16]. Consequently, we need only consider the situation where
m > 2.

Suppose that /(m_2) has alocal minimum at xo- Since / is approximately
m-smooth at xq, there is a set EXo of density one at zero such that for h £
€ EXg, we have

@ [/(*o + h) + (-1)m/(io - h)]/2 - Pxam-*{h) = oik™- 1).
Since /(10 2) has a local minimum at xo, it is bounded below on a neighbor-

hood J of xo and, hence, from [2] we conclude that exists on J. Thus
\(émay rewrite the left-hand side of (1) as

m—2 ,f. ( 1)r m —2
f(xo+ h) E +\7 x0 - ft) - U A J(k>(x
E /(xo- 1) - E I{k>(x0)
Next, we shall show that for h > 0 and sufficiently small, both of the
m -2 m—2 , Lk
expressions/(x0+ h) - £ A /’\"xo) and/(x0- h) - X] / (fc)(xo) are

nonnegative. Once this |s establlshed it will follow from (3) and (4) that for
sufficiently small h 6

m-2

/(x0+ JT) - ) 77/ (f)(x°) = °(T ),
=0

implying that /(*._!) (xo) exists and equals O.

To verify the claim mentioned above, let /z> 0 be small enough so that
both xo —h and xo+ h are in J. From Taylor’s Theorem we know that there
isal0<e6\<land aO0< 62 < 1such that

1K iiTi—2
5) /I(*,+f)- E TT/W(*0) = + ilft) - / (m"2,(xo)l
-0 «-

and

(XO- - E 4T /OC)=Y 5 [/M (--W -/("(0)
| ]

We may rewrite the latter equality as

(6) (-Dr
k=0

-.m—2

m - 2)! [/(m_2)(x0- Szh) - /(m2)(xQq)].
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Since has a local minimum at xo we know that for h > 0 and suf-
ficiently small, the right hand sides of both (5) and (6) are nonnegative,
completing the proof for the case when / has a local minimum at xo.

The remaining case may be disposed of by considering —.

Theorem 4. Let f be approximately continuous and approximately m-
smooth. Then ) exists and is finite at each point of a set having the
power of the continuum in every interval.

P roof. From Theorem 3 we know that /(m-2) exists and is continuous
on a dense open set. Let | be an interval on which /(m~2) is continuous.
We may now proceed exactly as in the proof of Theorem 2 in [4] to show
that /(m_i)(a;) will exist for all points »xin a set having the power of the
continuum in I. The only modification to be made in that proofis to use
Lemma 3 of this paper in place of Lemma 4 in [4].

Theorem 5. Let t+ be an approximately m-smooth function for which

f(m—2) exists on an open interval I. Then has the Darboux property
on E ={x£1 :/(m_i)(x) exists}.
P roof. First note that for the m = 2 case the assumption that 2)

exist on I merely means that / is approximately continuous on I. With this
observation we see that the conclusion follows from Theorem 2 in [13]. Thus
we need only consider rm > 2.

For m > 2 the assumption that f(m-2) exists on / guarantees that / is
approximately continuous on I. Hence, Theorem 4 asserts that E is of the
power of the continuum in I. Let a and b be two points in E where a < b
and /(m_i)(a) ¢ / (m-i){b). For each c between and /(m_ij(fc) we
must produce an xq € EC\(a,b) such that f(m-i)(xo) = c. Clearly, it suffices
to verify this for the situation where ¢ = 0 and /(m-i)(a) < 0 < /(m_i)(&).

Being an approximate Peano derivative, /(TO 2) has the Darboux prop-
erty on | [2]. Hence, it is a Baire*l, Darboux function on I. According
to Theorem 1in [14], f(m- 2) is either monotone (and hence continuous) on
[a,b], or there is a subinterval [a,/3] of (a, b) on which /(m_2) is continuous
but not monotone. If the latter situation holds, then /(m_2) must obviously
have a local extremum at some point xo € (a,/?), and Lemma 3 guarantees
that x0 € E and f(m-i){xo0) = 0, exactly the situation we are seeking. We
shall complete the proof by showing that it is impossible for /(m_2) to be
monotone on all of [a,/2].

So suppose that }(m-2) is nondecreasing on [a,R\. Then f(m-2) = fAm~2"
on [a,8] [2]. Consequently, if a + h 6 (a,/l), then Taylor’s Theorem assures
us ofa 0 < 6 < 1 such that

m-2 t,k im-2 _
(7) I(t. +h) - Y, = 7— —[/1"™-2Q+1A)- h”-2(a)] 4 0.
k-0 K A 'm
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Also, we know that there is a set H having density one at 0 such that for
h £ H we have

N2l -1

(8) t(a+h )-Y Tr/W()- 7— iy/(~1)(«) =» (A -1)
fc=0 ' ' 'm

From (7), (8), and the fact that /(m_i)(o) < 0, we conclude that for positive
h'siin H we have

m-2 ««
f(a+th)-"£-fW (a) = o(hm-1),

A=0

which is a contradiction because /(m_i)(o) * O.

Similarly, a,contradiction is obtained if /(m_2) is assumed to be nonin-
creasing on (T,/ﬁ)completing the proof.

Utilizing a very similar line of proof we also obtain the following mono-
tonicity result.

Theorem 6. Let f be an approximately m-smooth function for which
/(m-2) exists on an open interval I. If f(m-i)(x) >0forallx € E = {i G
€1 :f(m-i)(x) exists), then /(m_2) is nondecreasing on I.
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