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UNIQUENESS THEOREMS FOR WALSH SERIES 
UNDER A STRONG CONDITION

K. YONEDA (Osaka)

Let
1. Introduction

OO

p = ^ 2 M k)wk(x)
к =0

be a Walsh series and A  a certain class of Walsh series. When E  is a subset 
of the dyadic group, it is called a set of uniqueness for A, if p € A  and 

2" —1
lim У fi(k)wk(x) = 0 everywhere except on E  

k =0
imply that p(k) = 0 for к = 0 ,1 ,2 ,__ When E  is not a set of uniqueness
for A , it is called a set of multiplicity for A.

It is easy to see that a subset of the dyadic group is a set of uniqueness 
for the class of all Walsh series ft such that

X / IM^OI2 <
k=o

if and only if it is of measure zero. This class of Walsh series coincides with 
L2 -space.

In this paper we shall consider the uniqueness problem for the class of 
all Walsh series p  such that

2n+l—1
K k)wk(x)

k - 2"
2 " |Д т^ (/„ (х )) | = o(l) uniformly in x as n —► oo.

Let В be the class of these Walsh series. It is easy to see that В and L2 are 
not subsets of each other.

We shall prove the following three theorems.
THEOREM 1. Assume that E  is a subset of the dyadic group, and there 

exists a couple of sequences of integers
{iVn}„ = {Nn(x)}n and {kn}n = {fcn(x)}„

for each x 6 E such that 
(i) N n T 00 as n —> oo;
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(ii) lim inf k„ < oo;П—+ОО
(iii) there exists a dyadic interval lNn+kn of rank N n +  kn such that 

lNn+kn Я lNn(x) and lNn+kn П E  = 0 for  n = 1 ,2 ,. . .  .
Then E  is a set of uniqueness for B.

An H ^ -s e t  on the dyadic group satisfies the above condition (see [3]).
THEOREM 2. There exists a set of multiplicity for В which is of measure 

zero.
T heorem 3. A set of positive measure is a set of multiplicity for B. 
Let m ß be the dyadic measure associated with a Walsh series p, that is,

m M )  = hm /  ^ p ( k ) w k(x)dx = — ^  A(*0™fc(|r)
L  k = 0 k =0

where I„ is the set of all 0 — 1 sequences, x = (fi, Í2» • • •) such that
П

E tk_ _  P_ 
2k ~ 2n

for p = 0 ,1 , . . .  ,2" -  1. In is called a dyadic interval of rank n. Through­
out this paper, / ,  denote dyadic intervals, /„(x) denotes the dyadic
interval of rank n which contains x.

OO

We identify z = (<i,Í2, ...) with the niimber $2 if lim tk ^ l  and write
Jt=l

if lim tk = 1. For details of the dyadic group and dyadic measures we refer
/c —► OO

the reader to [2], [4], and [5].

2. Proof o f Theorem  1

If x £ E, then there exists a finite set of dyadic intervals such
that

W * )  2 i 'n„ + 1 2 • • • 2 1Nn+kn =  ^ N Í +кп
for n = 1 ,2 ,___If p  € #  and

2J-1
lim ^  p(k)wk(x) = 0 everywhere on ?+fcn,

J-+00 fc=o
then by Corollary 1 of [6] we have m ^(I)  = 0 for each 7 c  . Since

i4c<a M athematica  Hungarica 61, 1993



UNIQUENESS THEOREMS FOR WALSH SERIES 3

Д m№ )  = m ß(I?+1) - m ß(I «+i ),

™'»(lNn(x)) = m M N n(x ) \lN n+l) + ™l*(INn+l) =

= ±Дт^(/Аг„(ж)) + =  °^2 Nn ) +2m ^ 7^n+i) =

= ° ( ^ n )  +2^ТП̂ + Л 1к+ 2 ) + Ы 1 м п+2)} =

= + 2^ ^ т й(-Гл1„+1) +  2to/í(^Á/„+2)} =

=  ° ( ^ »  )  +  2 ' ° ( ^ - + Г )  +  АТП^ п + 2 )  =  ■•• =

= ° ( Í ' ) +"- + 0( Í ) +2fc’,m'i(/^+fcn) = 0( |^ )  aS П "* °°’
Thus we proved that

2МпгПц(1мп(х)) = o(kn) as n —> 00.
From the assumption we have

we have

lim inf 2n|mu(7„(a;))| = liminf
n —► 0 0  n —►OO

Hence we proved that

2 " - l

^  £(*)«>*(*)
Jk=o

= 0 everywhere on FL

liminfП—+ОО

2n —1
jt(k)wk(z)

k =0
= 0 everywhere.

By Lemma 1 of [6], we have p(k) — 0 for к =  0 ,1 ,__
From Theorem 3, the set introduced in Theorem 1 is of measure zero.

3. P roof of Theorem  2
To prove Theorem 2, we need the following Lemma.
Lemma 4. When N  is a positive integer, there exists a nonnegative 

dyadic measure rn^ which satisfies the following conditions:
(i) т „ ( /° )  =  1;

2n—1
(ii) lim 2пт^(1п(х)) = Um E  £(&)го*(ж) = 0 except some perfect set

of measure zero;

(iii) |Д т /Д/„(ж))| = ±

k =0

2n+1-l
E K k ) w k ( x )

k —2n
= jfa" f ° r X and П-

P roof. Suppose that N  > 2. Put т ^ ( /° )  = 1,

A cta  M aihem atica  H ungarica 61, 1993



4 К. YONEDA

and

1 -L 1
2 ' 4 N
1 1 
2 4 N

for p = 0; 
for p = 1

=  <

l I l I 1
4 "r 177 "T" 87V
1 , 1 _  1
4 +  ll7 Ш  
l  _  l  I 1
4 877 ' Ш
l _  l _  i
4 Ш  Ш

for p = 0; 
for p = 1; 
for p = 2; 
for p = 3.

Continuing in this way, we have

> 0 for 0 < p < 22N -  1 
=  0 for p = 22N — 1.

If I  C X> then Put шм( /)  =  0. It is easy to see that the number of 
dyadic intervals of rank 2N  satisfying

n ) =
2 к

N 22N

If > 0, continue in this way on each I%N. The number of dyadic
intervals of rank (2N  +  2k) satisfying

m,̂ 2N + 2k) ~
2k

N 22N
2k'

k22k
• ( 2 N \ (2 k\
1S \  k )  ' \ k ') -

Continuing in this way, we can construct the dyadic measure m^.
Let S be the sum of dyadic intervals I  such that ти(1) = 0. Thus the 

measure of S is given by the following equation:

i  (2 N \  1 (2 N \  Ä  (2 кЛ  1
'5 | -  an  + 2 ^  U J  4N+fcl + 2 ^ U J z ^ U J  4N+kl+k2 +

fc1=i 4 i /  fcl=i 4 17 fc2=i 4 7
2̂V 21̂  2k г к Л  1

£ i £ r * £ i U y U J ’ 4  *. V + * i+ - + * .
+ . . . + + . . . .

Since
2k,

we have

A cta  M athem atica  H ungarica  61, 1993



UNIQUENESS THEOREMS FOR WALSH SERIES 5

3-1=1 fcj_!=l

2̂ 2 / 2 f c j _ 2 \  1 f /  l \ l 2 l »- s  /  l \ 2 f c a- 2

- K )
and so on. Thus we have

V  /2 iV \ 1 /2&Л 1 ^1^

^ \ k' ' k' b i A k* J ' i k l "  *•
where Ao = 0, A \  = 1 + . . .  , A k + 1 = 1 + 4 ^ ,-----It is obvious that

Ao < A \  < A2 . . . .

Put lim A/с = A. Then A satisfies 1 -f у  = A, from which A = 2 follows
к —>oo

immediately. Hence we have

I f  /  1\ 2ЛГ / A t \ 2N / At_i \  2^1
|5| = £™ 4 * { 1 + ( 1 + 2) _1 + " - + ( 1 + t ) " ( 1 + _T^) } =

= lim - L ( i  +  ^ ) 27V= ( - L ) . 2^  = 1. 
k^oo 4n  V 2 /  4 4 ^ /

The dyadic measure is nonnegative and satisfies

i f / n ( * ) C  5 
otherwise.

The proof is complete.
P roof of T heorem 2. Let {£„}„ be a sequence of positive numbers 

such tha t £„ I 0 as n —» 00. We shall construct a dyadic measure m ^. First 
put т Д /д )  = 1. When N  = 2, by Lemma 4, there exist an integer щ  and a 
set of measure 1, S 2 such that

I U
»2 0 1 ^

and satisfies

( lim 2пт ц(1п(х)) = 0 if x 6 U I „^oo ^  S2D ^

[ |Д т /а(7„(х))| < jTTpr for all 2: and n < n\.

Acta M athem aiica  H ungarica 61, 1993



6 К. YONEDA

P ut
L

У  Ini(x) = ^ 2  Ц* (disjoint sum).
x£Sj fc=l

On each /£*, there exist an open subset S ^  C Ini and an integer П2(> n i) 
such that ш^(7) =  0 if I  C S W  and

s (*)d /S2

By Lemma 4, for a sufficiently large N , we can construct a dyadic measure 
nifi on each such that

|Дтпм(/„(а;))| ^  ̂ for all x and n\ < n < n2.
o • Z,

Continuing in this way, we can construct on the dyadic group. Hence 
there exist an increasing sequence of integers and an open set S  of
measure 1 such that

Í ™ M )  = i;
< |A m /i(7n(aO)| ^  (Х+2]2̂  for a11 x and Пк = n < n*+ii
( m ^ J )  = 0 for all I  C S (k = 1 ,2 , . . . ) .

Therefore S c is a set of measure zero and a set of multiplicity for B.

4. P ro o f of Theorem  3

To prove Theorem 3, we need the following lemma.
Lemma 5. Let E  = /дг (disjoint sum) and s = sN — #A where # A

р€Л
is the number o f all elements o f A. For each positive integer j  such that

0 < s <  2 n + 1 - ] ,

there exists a nonnegative dyadic measure which satisfies the following 
conditions:

(i) т й(/о) = ^  2iV+1-j i v
 ̂ (ii) I < 2КТГ forO ^  n < N  and p = 0 ,1 , . . .  , 2 " -  1;

(iii) т й(7) = 0 if I П E  = 0;
(iv) m „(IpN) < $ ± 1  for p -  0 , 1 , . . .  ,2N -  1.

A cta  M athem atica  Hungarica 61, 1993



UNIQUENESS THEOREMS FOR WALSH SERIES 7

P roof. When a nonnegative dyadic measure m^ satisfies the above con­
ditions for some j ,  N  and s, we call it a dyadic measure of (j, N , s)-type.

We shall prove Lemma 5 by induction. When j  = 1, put rn^{I) = |7nJS|. 
Obviously satisfies the condition (1). Thus is a dyadic measure of 
(1, N, s)-type. Lemma 5 is valid for j  = 1.

When j  = к — 1, N  = 0,1 , . . .  and 0 ^  s < 2N+2~k, assume that there 
exists a nonnegative dyadic measure of (к — 1,N , s)-type for each E. We 
shall prove that there exists a nonnegative dyadic measure of (к , N , s)-type. 

When 0 < N  < k, we have s = 0. Put

(2) rn^IP) = for all p.

It is easy to see that m^ satisfies (1).
When N  = k, two cases arise; s = 0 and s = 1.
When s = 0, define m^ by (2).
When s = 1, we can assume without loss of generality that 

I I 1 П E  = 0 and L f C l \ .

Let m' be a nonnegative dyadic measure of type (к , к, 0) and m" be of type 
(к — 1, к — 1,1). Put

(3) m M )
\ m \ I Pn- 1) if In С ;

X ( l + C i )
Obviously mp satisfies the conditions, (ii) of (1) for 0 < n < к and (iii) and
(iv) of (1). Since

Í тЛ Ф  = W ( $ )  =

j  ”V(AX) = = 5 ( 3 - 5) ’
we have

1 |  + i }  = i .

Hence rrifj satisfies (i) and (ii) of (1) for n = 0. We proved that is a 
dyadic measure of type (к , к , 1).

Assume that Lemma 5 holds for N  = 0,1, . . .  , k , . . .  q\ we shall prove 
it for N  = q + 1. We can take s = 0 ,1, . . .  ,29+2-fc. When s = 2s', put 
s\ = s' — r and s2 = s' + r, and assume that

( / « ,  U . . .  U /,РД )  П £  =  0;

U i i iU . . .u 7 ';* 1) n E  =  0i

( ' S . u - u C . ) c ' f i

A cta  M athem aiica  Hungarica 61, 1993



8 К. YONEDA

When s' < 2q~k , let m! and m" be nonnegative dyadic measures of type 
(k ,q ,S i) and type (k,q ,S 2), respectively. Let be the dyadic measure 
defined by (3). Thus satisfies

s ' +  r ' j  fc + l  s' _ k  + 1 
29+1 -k  J ~  2 2q+1~k ~ 2

s' — г к + 1 
2 9 + 1 -*  "* 2

s
2(9+l) + l-fc

and

s' — r + 1 s' + r ^
29+i-fc 2 29+1_fc J

1 2 r ^  s'  ̂ 2q~k _ 1
2 29+!-fc = 2q+1~k < 29+1-fc — 2’

It is easy to see tha t m^ satisfies (ii) of (1) for 0 < n < q + 1, (iii) of (1) and 
(iv) of (1). Therefore m^ is a dyadic measure of type (k ,q +  l , s) .  When 
2q~k < s' < 2q+1~k, two cases arise: s' + r  < 2q+1~k and 2q+1~k < s' + r < 
2s' = s < 2q+2~k .

In the first case, we define similarly as we did in the preceding case 
and we can easily prove that т ц is a dyadic measure of type (k,q  + 1,5).

We shall consider the second case. Put d = s' + r — 2q+1~k. When d is 
an even number, let m! be a nonnegative dyadic measure of type (к , q,2s' -  
— 2q+1~k — j )  and satisfy

m '( I? )  = = . . .  = = 0.

When d is an odd number, let m* be a nonnegative dyadic measure of 
type (k ,q ,2s' — 2q+1~k -  and satisfy

Moreover let m** be a nonnegative dyadic measure of type (к, q, 2s'—2q+1 k — 

— — and satisfy m**(J) =  0 if m*(I ) =  0. Put

m \I )  = i{m *(7) + for all I.

A cta  M athem atica H ungarica 61, 1993



UNIQUENESS THEOREMS FOR WALSH SERIES 9

Thus m ' satisfies

-  k  +  1 -  1 ( 2 s ' -  2q+1~ k -
-  2  2<i+1~ k \  2 / ’

|Д".К)| = |5 { ^ - 2^ ( 25' - 2,+‘-‘ - ^ ) -

and

™ v pq) = i  {rn -(lpq) + rn” (ir )}<
1 l ( к + l к + 1 \ fc-fil

= 2 ' й 1 ~ + _ Г ' )  = V F T  t0raU ”■

Next, let m" be a nonnegative dyadic measure of type (к — 1, q ,s' +  r) and 
satisfy

m• " ( ^ 1) = " ‘" G + íí s) = - = " >"(5+í’,ii) = o-

Thus m" satisfies {m 'V Z )  =  §  -

rri'i 1%) < for all p.

Let m Ц be the dyadic measure defined by (3). Then we have

т Л 1о) ='S) = -  29+1~k - Í ) + Í -  +  r)}

= 5 { k + \ (2» '-2»+‘- ‘ -  i (a '+ rf+ 2 » + -‘ - , ' ) ) }  =

I f ,  1 1 /  , 2q~ k+ 1 \ )

” 21 + 2 29+1-* ( 2s -  2 ) } “
_ l f  1 2s' l i _  Jfc+1
- 2 l f c + 2 29+1- fc +  2J 2 2 (? + i)+ i- fc !

A cta  M athematxca Hungarxca 61, 1993



10 К . YONEDA

0 S Д щ ,Й )  =  j [ { —1 ~
1

2q+l-t - 2,+1- ‘ - ; ) Ь

- { 5 - ^ ( » ' + ‘i + 2,+1- ‘ - * ') } ]  =

=  \ { \ -2 й е т < 4»' -  2,+2- ‘ -  id  -  2 ,_‘:+1)} =
I f i  s' d 1 ’i 1 r s> I d l

~ 2 l 2 ~~ 2q~k + + 2q+1~k +  2 /  2 l 2 ~~ 2q~k + 29+1-* /  ~~

= \ { i -  + 2"+1- 1 -  r)} < 1 { 2 -  ^ ( У  -  У + г * « -* )}

and

1
2

m axm M(/P+1) = |  m axm '(ij) < ^

It is easy to see that satisfies (1). Thus m^ is a dyadic measure of type 
(k ,q  + l,s ) .

Finally, we shall consider the case s = 2s1 + 1. Without loss of generality 
we can write s\ = s' — r and S2 = s’ + r + 1 and

P J U  и . . .  U / £ , )  П E  = 0; ( / " , U . . .  U / £ , )  C ;

) П £  =  0; ( / £ 1 и . . . и / ; Д ) С .Г 11.

When s' + 1 +  r  < 29+1_*, we can proceed similarly to the case s = 2s' and 
s' + r < 29+1-fc. When 29+1-fc < s' +  1 + r ^  2s' -f- 1, define m! and m" 
similarly to the case 2s' = s and 2q+1~k < s' + r < 2q+2~k. Since

m V S )  = |  + 5^ ( 2,+1-‘ -  у - 1  + 1 + - 1) + d2 ’ 29+1
к

= -  +

29+2-*;

2 2«+2- fc
1 (29+2- fc -  2 / -  1 )+  d29+2-*

and

™ 'U°) = S -
we have

2 2q+2~k ’

|Д">,(^о)| =  5 |”> W ) -  п»"(Й)| =

S +  J í3 T < 2 í+2- ‘ -  2 /29+1-fc 
1

1 л I d A: d
29+2-* — 2 2«+2-*

2 -  5 п г г (2У + 1  -  <0
- f c

< 1 -
2 9+! 

29+ 2-*
1
2

Acia M athematical H ungarica 61, 1993



UNIQUENESS THEOREMS FOR WALSH SERIES 11

and

+ » ' ( « ) )  =

= s { |  + 5^ t (2’+2‘ 1' -  2s' +  Ц +  254=1 +
k +  1 2s' + 1

2q+ 2-k } =

29+ 2-1:1

It is easy to see that satisfies (ii) of (1) for 0 < n < q + 1 and (iii) and 
(iv) of (1).

Hence m^ is a dyadic measure of type (k,q  -f 1,2s' + 1)- The proof is 
complete.

P roof of T heorem 3. Assume that E  is a closed subset of the dyadic 
group and

By the Lebesgue theorem, we have

lim 2n\E П 7„(z)| = 1 a.e. on E.
n —ЮО

Thus by Egoroff theorem, for sufficiently small £\ > 0, there exist a perfect 
set Ei С E  and positive integer N i such that

that is,

Put

1 - 2 Nl| E n / ^ ( x ) |  < £ i  on E i,

\Е П 1п(х)\ > -^ - (1  -  £i) on E i.

(disjoint sum).n = U '*.(*>= E %
x e E l  р€Л(°)

Moreover we can make Ei satisfy

| F i | > | £ 1 | > l - ^ r .

Put a = 2 * -  #A(°) = #A(°)C where A(°)e = (0 ,1 ,2 , . . .  , 2 ^  -  1} \  A(°>. 
Thus we have

I U
P6AC)C

from which s < 2^1+1_fcl.
By Lemma 5 we can find a nonnegative dyadic measure which satisfies 

the following:

ál  2
2 ^  <  2 ^ ’

Acta M aihem aiica  Hungarica 61, 1998



12 К. YONEDA

(i) ra i(/0°) =  ---- ;
(И) |Д т 1(/^ )| ^  ^T r for 0 < n < Ni and 0 < p < 2";

(iii) m x(I) — 0 if I П F\ — 0;
(iv) ^  for 0 ^  p < 2Nl.

When pi € Л<°>, we shall discuss on If} similarly to the preceding case. Let 
к2 be a number such that

1
2Ny E  П If}t < 2n i 2k2'

By the Lebesgue theorem, we have

lim 2Nl+n\E П /дг,+„(х)| = 1 a.e. on E  П If}  .n—+oo 1
By the EgorofF theorem, there exist a set C If} П E  and a positive
integer N2 , which does not depend on p\ € Л^0), such that

1 -  2N M \E П INl+Ni(x)I < s 2 on E (pi\  
where £2 is a sufficiently small positive number. Thus we have

Put
IE  П / jv1+;v2(x)| > ^ + ^ (1 -  £2 ) on E Ífl) .

F í Pl) = U  JWi+JVa( * ) =  Y , TN 1+N 2 (disjoint sum).
x£E[Pl)

We can make E ^ 1̂  satisfy

r-(Pi)

P€Aft

-(Pi)
> £ ( * - £ ) •

Put S2 = 2N> -  #Лр^ = # Л ^ )С where Л^)С = {px2N\ p * 2 + 1 ,... ,( f t  +  
+  1)2ЛГ2 — 1} \  Ag>. Thus we have

u ^ i +N2
Р2€Л( i ) cPi

«2 1 1
2N1+N2 2Nl 2fcl'

By Lemma 5 we can find a nonnegative dyadic measure which satisfies
the following:

(i) 4 Я ,( % )  =  З * г ( ^  -
for 0 £ га < N 2 and lfjl+n CAmSpl)(; xJVi+n = 2̂ 1+ r(ii)

(iii) n4Pl)( / )  =  0 if I П F2(pi) =  0;
(iv) m[Pi\ l pNi+Ni) < -^ +1- for ah p G { ft 2 * . . .  , ( f t +  1)2"’ -  1}.

i c i a  M aihem atica Hungarxca 61, 1993



UNIQUENESS THEOREMS FO R  WALSH SERIES 13

Continuing in this process, we can find three sequences of numbers, a 
sequence of sets of integers and a sequence of dyadic measures such that

(i) Ni < N 2 < . . .  and lim N j = 00;
}-*<*>

(ii) ki < k2 < . . .  , lim kj = 00 and J] < 00;
J^OO j=1 }

(iii) 5i, S2, . . .  such that sj < 2N>+1~ki ; 
fivl A(°) A ^  A ^  A^)
(v) гщ ,m ^ \ m<PllP2), . . . . . . .

where rrSPl'"Pi~ ^  satisfies the following:

( i )  ' m (pi Pj =  2n1+..1+nj _ 1 -  2Jsr,-+Í_fcfc ) ;

(ii) ' AmJPl"'Pj_l)( /^ i+ +^ _ i+n)| < 2N1+...+NJ_1+n+i for 0 < n < N j and
tp r  rPj-i
1N 1+.. .+Nj - 1+n 1Nl +.. .+NJ- l >

(iii)' rrij( p i - P j - i ) / n  _( /)  = 0 if /  n (  и  +...+*,) = 0;
рел'

(iv)' m)( p i - P i - i )

(У)с 
p i - p>
*,+l

Put
U n i+ .-.+ N j) = 2ivl + J..+jvJ+ 1 fo r  i ^ 1+„.+JV> С  7лг1+...+ЛГ,_1 * 

w , >r ч f c + l  5
A (k ,N ,s )  = -  2^+T-*"

We shall construct a dyadic measure m^ as follows. When 0 < n ^  N 1 , put

1
m n ( / P ) = A ( k u n i , s i )

™x ( /p).

When W2, put

m M l+ n ) =  <

A (ku N ltlll) m l ( ^ 1) A (k2,M2,»2) m 2Pl V ^ + n )

if 7Я+п c  ^  where p i  e  л (0 ) ;
0

p6A(°)c Jvr

Continuing in this process, when 0 ^ n < N j, we can define 
m p ( I Nl +...+NJ. 1+ J  a s  f o l l o w s :

TV ^-.+A O -i+n

А^1,Л11,«1)т 1 ( 7Д )  * A (k l,N 2 ,i2 ) m 2P l) ( 7M  +JV2 ) • • •
,(P i)/

7Vi+...+JVj_i+n)

If 7̂ i+...+Aj_1+r»C7Arl +...+jy>_1 f°r P j-l^^P i-P j-2 t 
. 0 otherwise.
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Since for 0 ^ n < N j,

+ • • • +  N j- i  + n)| < A(jfcbjV b5l) mi( i ^ 1) * i l (fcatjVaj5a)

_______1_______ 1 ki + 1 2Nl k2 -f 1
2N i+ ---+ N j-i+ n + l — fci +1 _   ̂ 2 ^ i+ !  ^2+1 _  j  2N *+1

3- 1 12 jv1+...+jv>_i i  'П  + 1 1 1
2^i+...+ iV J_ 1+ n + i -  I I  k  !  • ь . _  !  ■ 2^ 1+ - + ^ -

r=l J
i+n '

we have

j - i
2к,+- +лг<-1+" | ^ ( i J I+_+Ki. 1+»)| s  I I  s p r i =  0( 1)

as j  —► со, from which

2" |ДтпД/п(х))|
2П+1-1

K k )wk(*)
k= 2"

=  0( 1) uniformly as j  —> oo.

Thus /i £ ß. On the other hand, if

Э ^ i+ W 2 Э . . .  Э ~+W* э  . . .  D (x )

and /дг*+ +JVfc П E  ф 0 for all A:, then there exist ц б £ П  /д^+ +Nk for all
к and Xfc —► x as A: —► oo. Since £  is a closed set, we have x e E. Conversely/
if x' £ E  then there exists /дг1+ +JV such that

^Ni+.-.+N,,, Э X' аП(* ^Wi+...+ЛГ*, n  E  =

Hence if x' ^ 22, then 2"mM( /n(x)) = 0 for sufficiently large n, that is 

lim 2nm „(/n(x)) = 0 except on E.
n —► OO

Moreover т Д /д )  = 1. Thus we proved that E  is a set of multiplicity for B.
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UNIFORM CONTINUITY 
IN SEQUENTIALLY UNIFORM SPACES

A. DI CONCILIO* (Salerno) and S. A. NAIMPALLY (Thunder Bay)

Introduction. For a metric space (X,d)  the following three levels of 
uc-ness (continuity of some set of functions is uniform) coincide: (a) any 
real-valued continuous and bounded function is uniformly continuous, i.e. 
C *(X ,R ) = U *(X ,R ); (b) any real-valued continuous function is uniformly 
continuous, i.e. C ( X , R ) = U ( X , R ); (c) any continuous function from X  
to any (metrizable) uniform space is uniformly continuous, i.e. C ( X , Y ) = 
= U ( X , Y ) for any uniform space Y.  The equivalence is due essentially to 
the following sequential characterization of uniform continuity in the metric 
case. A function / : (X , d) —> (F, d') is uniformly continuous iff for each pair 
of sequences (x„), (yn) o fX  iflim d(xn,y n) = 0 then lim d'(f(xn), f ( y n)) = 0. 
The uniform version of the previous sequential characterization of uniform 
continuity has been used to define sequential uniform spaces. The catego­
ry of sequential uniform spaces introduced by Husek [4] is a wide class of 
uniform spaces including metric spaces, closed under sums and quotients. A 
sequentially uniform space is a remarkable example of uniform space in which 
if any real-valued continuous and bounded function is uniformly continuous 
then any continuity is uniform. We will obtain this result proving that a 
sequential uniformity is the largest member of its proximity class. Further, 
after generalizing in a natural way the notion of pseudo-Cauchy sequence, 
we will show that a normal sequential uniformity is fine (any continuity is 
uniform) iff any pseudo-Cauchy sequence with distinct points has a cluster 
point.

1. Sequential uniformities

Let (X ,U ) be a uniform space. Two sequences (x„), (y„) of X  are called 
adjacent iff for any diagonal neighborhood V  £ Ы there exists no £ N  such 
that (xn, yn) £ V  for any n > no, [4].

A uniform space ( X , U)  is called sequentially uniform iff any function 
from X  to any (metrizable) uniform space which preserves adjacent sequences 
is uniformly continuous.

* Research supported by Fondi di Ricerca del Ministern dell’ Universität e della Ricerca 
Scientiflca e Tecnologica (Italia).
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The category of sequentially uniform spaces is a wide class including 
metric spaces closed under sums and quotients.

Any uniformity U  induces a proximity 6 in the following way:

AS В o ( V V  £U=> V[A] П 5 / 0 ) .

Usually the family of all uniformities inducing a fixed proximity has no 
maximum, [5].

P r o p o s i t i o n  1.1. A sequential uniformity U is the largest member of 
its proximity class.

P r o o f . Let V be a uniformity proximally equivalent to U. We have to 
show that the identity / : (X ,U ) —» (X, V) is uniformly continuous. Suppose 
not. Then there would exist a pair of sequences (xn),(yn) adjacent with 
respect to U and a diagonal neighborhood V  £ V such that (xn, y„) f. V  for 
each n £ N.  By Efremovich lemma if W  £ V and W4 С V,  then one can 
find subsequences (хП(!), (уПк) such that (х„к,у П1) ^ W  for each k ,l £ N . So 
A = {x„fc: к £ N }  and В = {уПк : к £ N}  are far in contrast with adjacency.

Let C*(X,  R) (U*(X,  R)) be the set of all real-valued continuous (uni­
formly continuous) and bounded functions on X .

P r o p o s i t i o n  1.2. I f U  is sequential and C*(X,  R) = U*(X,  R), then 
any continuous function from X  to any uniform space Y  is uniformly con­
tinuous.

P r o o f . If continuity of real-valued bounded functions is uniform, then 
U must be finer than the uniformity induced on X  by its Stone-Cech com- 
pactification. Thus U induces the largest compatible proximity Sp, which is 
called the functionally indistinguishable proximity [5] (A ftp В  ■<=}> there exists 
a continuous function / :  X  —► [0,1] such tha t /(A ) = 0 and f ( B ) = 1). 
From Proposition 1.1 it follows that U is the finest compatible uniformi­
ty. It is well-known that the fine uniformity is the only one for which any 
continuity is uniform.

2. Sequential characterization of uc-ness

We can give a characterization of uc-ness in sequentially uniform spaces 
in terms of sequences as in the metric case by generalizing the concept of a 
pseudo-Cauchy sequence in a natural way [2]. In a metric space a sequence 
is pseudo-Cauchy iff the pairs of terms are frequently arbitrarily close.

A sequence ( i„ )  is called pseudo-Cauchy iff for each no & N  there exist 
A , B c N  such that А  П В  = 0, no < A, no < В  and {x„: n £ Ä}S{xn : n £ 
£ 5 ) .  In the metric case the two definitions agree.

Remark that for a normal space the largest compatible proximity is 
Sq ■ ASqB ^  A~ П B~ ф 0.
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P roposition 2.3. Let (X ,U ) be a normal sequentially uniform space. 
The following are equivalent:
(1) Any continuous function from X  to any (metrizable) uniform space is 

uniformly continuous.
(2) Any real-valued bounded continuous function on X  is uniformly contin­

uous.
(3) S = So-
(4) Every pseudo-Cauchy sequence with distinct points has a cluster point.

P roof. It is easy to show that (1) =>• (2) =>• (3) =s (4). (4) =>■ (1). 
Suppose there exist a uniform space Y , a continuous function f : X —* Y  
and two adjacent sequences (x„), (yn) in X  with no adjacent images (/(x„)), 
(/(»„)) in Y.  By their adjacency, by the non-adjacency of their images and 
by continuity of / ,  (xn), (j/„) both do not cluster in X .  Further, working 
with subsequences, we can suppose that (x„), (t/„) have distinct points and 
x„ Ф Ут for each n ф m.  Finally, putting z^h — Vh and Z2h-i  = x/, we obtain 
the sequence (zn) which is pseudo-Cauchy with distinct points but with no 
cluster point.
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HAAR SYSTEMS FOR COMPACT GEOMETRIES
G. E. ALBERT1 and W. R. WADE2 (Knoxville)

§1. Introduction. Haar functions have many applications to information 
theory. Because the diameter of their supports shrink monotonically to zero 
they are especially useful for “problems where a better representation of 
certain sections” of the information is required (Harmuth [4]). Problems of 
this type include pattern recognition and image enhancement.

In the literature, Haar analysis of two dimensional problems has been 
carried out primarily by the Kronecker product system, i.e., the system 
{Xm(x)X„(j/)} where x , y  belong to the unit interval, the Xj ' s  are the clas­
sical Haar functions, and m , n  = 0 ,1 ,2 ,__

This hybrid system has at least two drawbacks. Without drastic rear­
rangement the diameter of its supports do not shrink monotonically to zero, 
e.g., compare spt(X2n • X 2n) = [0,2—”] x [0,2-n ] with spt(X i • X 2n+i) = 
= [0,1] x [0,2 " 1]. And, the union of these supports fills the unit square. 
In particular, when analysis of the unit disc is undertaken there is consider­
able waste storing information from corners which are both unwanted and 
unneeded.

To introduce systems which lack these drawbacks, recall that the classical 
Haar system is defined in dyadic blocks {Xj:  2l ^ j  < 2*+1}. Indeed, 
X q(x) =  1, x  € [0,1), the functions X j  in the i-th  dyadic block, l  > 0, are 
defined as follows. Divide the unit interval l  -f 1 times generating 2*+1 even 
subintervals. Using pairs of these subintervals as supports and sweeping left 
to right, define

. 0 otherwise

where j  =  2* + p and 0 ^  p < 2l . In particular, to define a Haar-like system 
on some region in n-dimensional Euclidean space we need only specify a

1 The first author is presently a consultant at the University of Tennesse Memorial 
Research Center and Hospital.

2 Research of the second author partially supported by the National Science Founda­
tion under Grant INT-8400708.
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method of division and an ordering on the subregions generated, and define 
the functions block by block.

For example, for the unit square set fo(x,y)  =  1. To define f j  for 2( < 
< j  < 2*+1 where ^ > 0 divide the unit square l  + 1 times, alternating 
horizontal cuts with vertical cuts, generating 2t+l even subrectangles. Use 
pairs of these subrectangles as supports, sweeping left to right from the 
bottom  left corner to the top right corner. Thus for £ = 0 define

+ 1 if 0 ^  x < 1, 0 ^  у < ^
-1  i f O < x < l ,

For £ odd, say £ = 2m  + 1 for some m  > 0 and 2l 5= j  < 2*+1, write j  
uniquely as

j  =  22m+1 + q2m + p 
where 0 ^  p < 2m and 0 ^  q < 2m+1. Set

f j ( x , y )
( — l)p2*/2 if = X < 2'm+I ^  У < 2^+r

( — l ) p+12* /2 if ^  x <  ^ r ,  = 2/ <

0 otherwise.

For £ even, say £ = 2m for some m > 1 and 2l < j  < 2t+1 write j  uniquely as

j  = 22m +  q2m + p 

where 0 ^  p < 2m, 0 ^  < 2m. Set

( — l ) q21/2 if 2^ = X < 2™ = У <
f j ( * , y ) =  ( _ i ) ,+ i2/ /2 if ^  < x < £ t i ,

0 otherwise.

Extend each / ,  to the closed unit square [0,1] X [0 ,1] by 

f j ( l , y ) =  lim f j (x ,y) ,  y e  [0,1)
x —► 1 —

and
f j ( x ,  1 )=  lim f j ( x , y ) ,  x € [ 0 , l ] .

y - > l -

Call the collection { /o, / i , - - -}  the square Haar functions. The supports 
of the first five dyadic blocks of square Haar functions are represented in 
Figures 1 through 5. (The black subrectangles represent a region where 
some f j  from that block takes on the value +2*/2, the white subrectangles 
represent the value —2 ^2.) Clearly, the diameter of the support of f j  tends
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y=1/2

(0,0) l = 0

x = 1 / 2 (1,1)

( 0 . 0 )  , =1

x = 1 /2 (1,1)sH
У =1/4

( 0 ,0 )  l =2

x = 1/2 (

Э
Fig. Í Fig. 2 Fig. 3

x = 1 /2
x = 1/A x = 3 /А (1,1)

y = 3/A 

у =1/2 

у = WA

(0,0) 1=3

x=1/2
x = 1/A x = 3/A(1,1)

( 0 ,0 ) I = А

Fig. 4 Fig. 5

monotonically to zero as j  —> oo. We shall see that the square Haar functions 
form a complete orthonormal system with at least as good convergence and 
uniqueness properties as the Kronecker product system.

For the unit disc set до(г,в) =  1. To define gj for 21 ^  j  < 2t+1 where 
l  > 0 divide the unit disc t  +  1 times alternating cuts along diameters with 
cuts along concentric circles centered at the origin, generating 2*+1 even sub- 
regions. Use pairs of these subregions as supports, sweeping counterclockwise 
spiraling outward from the origin to the boundary. Thus for l  = 0 set

if 0 $ < 7Г
if 7Г < в < 1.

For l  odd, say i  — 2m -f 1 for some m ^ 0 and 2l ^ j  < 2/+1 write j  uniquely 
as

■ _  22m+l + p2m+1 + q
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where 0 < p < 2m and 0 < q < 2m+1. Set

(_l)92*/2 if y f f c  й r < \ /p ± i 
2m ’ XL < a < (<?+*)*2m — 17 ^  2m

gj(r,e) = < (_1)<J+12*/2 ПЛ -i Л л/ё±ГY 2m ’
<7* ^ a ^ (?+1)я- 2m = w ^  2m

0 otherwise.

For t  even, say I  = 2m  for some m > 1 and 21 < j  < 2t+1 write j  uniquely
as

j  =  2 2m +  p2m +  9

where 0 < p  < 2m and 0 ^  q < 2m. Set

( - l ) P 2 ' / 2  if ^  < r  < , / e+ IY 2m ’ -Л* < в < (9+&2»n—1 =  v ^  2m_l

9j { r , 6) =  i ( _ 1 ) p + i 2 */2 i f y X < r < J e±1 Y 2m ’
Í £ ± i h  <  5 <  k h l k2»n—1 =  ° ^  2m_1

, 0 otherwise.

Extend each gj to the closed unit disc by radial continuity, i.e., 

0 ; (M )  = rhm_5fj(r,0), в e  [0,2тг).

Call the collection {<7tb 5 i> • • •} the polar Haar functions. The supports of 
the first five dyadic blocks of polar Haar functions are represented in Figures 
6 through 10. Again, a black subregion indicates a value of +2*/2, a white 
subregion a value —I 1!2. Clearly, the diameter of the support of gj tends 
monotonically to zero, and the union of the supports of polar Haar functions 
fill the unit disc (but not the unit square). We shall see that the polar Haar 
functions form a complete orthonormal system with Haar-like convergence 
and uniqueness properties. Hence this system offers an improvement for 
circular geometries over the Kronecker product system.

Fig. 6 Fig. 7 Fig. 8
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Fig. 9 Fig. 10

It is clear that the method above can be applied to any region in the 
plane, indeed to any region in n-dimensional Euclidean space. In order to 
be useful, the systems so generated must have good convergence properties.

Gundy [3] introduced Я -systems which behave wonderfully in this re­
gard. Hence a general construction conforming to the procedure set forth 
above would be easily analyzed ifi t  generated Я -systems.

In §2 we shall give a general procedure for constructing a system 7i  on 
any compact, metrizable measure space (Д ,^ ), hence on any compact region 
of Euclidean space. We will show H  is complete and orthonormal in L£(A) 
and that it includes the square and polar Haar systems generated above, 
after a dyadic block rearrangement.

In §3 we verify that Ti is an Я -system. We show that H  has the desired 
convergence properties. Among them, the Я -Fourier series of a function /  
converges uniformly when /  is continuous on A and converges in L \ norm 
when /  € Х£(Д) for some 1 < p < oo.

In §4 we obtain sufficient conditions for uniqueness to hold for Я -series. 
Our conditions improve earlier work by Movsisjan [5], which applied only to 
the Kronecker product system. In particular, we show that for uniqueness 
not only countable subsets, but any countable union of embedded arcs can 
be disregarded.

§2. The general procedure. An explicit description of the square and 
polar Haar systems appears in §1. This was done to indicate how they might 
be programmed. Fortunately, such explicitness is unnecessary for the general 
case.

Let Д be any compact metric space and /i be a non-negative regular 
Borel measure on Д of total variation 1 (see Rudin [6] for terminology). Let
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{A t-n^: 1 ^ i ^  n}, n =  1 , 2 , . . . ,  be a sequence of partitions of Д such that 
for each integer n > 1,

(1) д  =  д<п)и д < п)и - и д 1 п)

(2) Д,(п) П д;.п) = 0  for i ф j ,

(3) д(") -  д("+1) и Д (п+1)^1 — и ^ n  + 1 >

(4) Д^П) = д £ + 1} for * =  2 ,3 , . . .  , те,

(5) /* (д<,"+1>) = ц  ( д й 11)

and such that 

( 6 ) lim (  max diam(A,-nh') = 0.
n—o o V l ^ n  v * )

Such partitions can be generated recursively by setting Д ^  = Д and succes-
in)sive division using (2) through (6). Notice that the partitions {Д,- 1 ^  i <

5= те} are even only when n = 2l for some £ = 0 ,1 ,___It is these partitions
which correspond to the dyadic blocks illustrated in Figures 1 through 10. 
The partitions corresponding to n for 2l < n < 2*+1 are hybrid ones bridging 
the gap from one dyadic block to another. We have allowed this redundancy 
to  simplify the theory below.

For each integer те 1 let [те] represent the greatest integral power of 2 
in n, i.e., [n] =  2l where £ is the unique integer determined by 2l ^  n < 2t+1. 
Define the system H  =  {ho, h i , , . . }  on Д as follows. Set ho(x) = 1 and

h \{x )

For n > 2 and x € Д set

+1 if x € Д[2) 
—1 if x e Д^2).

[те] 2 if x G Дп"+1^

-[»]* И х б Д Й 1’
0 otherwise.

Notice for a suitable choice of the partitions {Д,-п : 1 ^  i ^  те} in the unit 
square, respectively the unit disc, that the system 7i is equivalent to the 
square Haar system, respectively the polar Haar system. Indeed, the system 
H  so generated is a dyadic block rearrangement of the square Haar system, 
respectively the polar Haar system.
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To see this let Д represent the unit disc and examine the polar Haar 
system {£0, 01, . . . } .  Set

= {(г, в): 0 5; Ö < 7Г, 0 < r < 1},

Д<2) = {(г,в): ж < в < 2тг, О S г ^ 1}.

Clearly до = ho and д\ = hx. Fix I  > 1. We are out to show that the 
partitions {Д,-п): 1 ^  г < n} can be chosen so that

(7) {g j: 21 < j  < 2l+1} = { h j : 21 < j  < 2m }.

Notice that the f-th dyadic block of polar Haar functions is completely de­
termined by wedges of the form

/(г ,# ) :  , / Z  < r  < . / Ш ,  Í L  < ,  <
'  у 2m “  у 2m 2m -  2m /

where  ̂ — 2m or 2m +  1 and 0 p < 2m, 0 £ £ < 2m+1. Moreover, notice 
that the support of any polar Haar function from the f-th dyadic block is 
contained in the closures of a region of constancy of some polar Haar function 
from the l  — 1-st dyadic block. Hence by successive division of the sets 
Д^ , Д 2 ' using properties (2) through (5) it is possible to generate partitions
so that {Д,-2 1 £ г < 2̂ } coincide with these wedges. In particular, (7)
holds. Notice that gj ф hj for many j 's  after l  = 3. Indeed, instead of 
spiraling counterclockwise from the origin to the boundary, condition (4)
forces the wedges Д,- ’ to flipflop from origin toward boundary and back 
again, as i =  1 ,2, . . .  , 2*.

The fact that special cases of V. turn out to be dyadic block rearrange­
ments of the square and polar Haar systems means that any theorem about 
H is at once a theorem about both these systems. For example, if Ti is 
complete and orthonormal, then so are these systems. If Fourier series 
converge, then 2"-th partial sums of series in both these systems converge. 
And, if uniqueness holds for 2"-th partial sums of 7f-series then uniqueness 
holds for square and polar Haar series. Thus we shall analyze Ti in general.

Lemma 1. The systemTi is orthonormal inL^(A)  whether (6) holds or not.

P r o o f . We must show

Í  и и a -  /  1 if m = 71 
J { 0 if m ф n.
A

For simplicity we suppose n > 1.
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If m = n we have by construction that

J  hnhmdfj, — J  |h„| dfi.
д(п)

Since \hn\2 = [n] is constant on and since (5) and (2) imply that

(8) А* ( Л 1П)) =  N -1 ’ n  =
it follows that

J  \hn \2dn =

If m ф n we may assume by symmetry that m  > n. Hence A^ ' inter
sects Aj only when A j" C Aj * .  Hence by construction,

J  h„hmdß — J  hnhmd[i — i [ n ] 2 J  h id f i .

Л д(’>)пд(т)

Since (5) and (8) imply

д<т)

J  hmdfi =
д(т)

we conclude tha t Ti is orthonormal in i ^(A) .  □
In the next section we shall see that property (6) implies H is complete.
§3. Convergence of W-Fourier series. A function /  on A is called an 

^-polynomial of order n if there exist constants such that
П —1

/  =
Jk=0

A function /  on A is called an Tf-step function of order n if there exist 
constants c, such that

/  = Е ч
i—i

where for each measurable E  Q A, i:
(»»)

€ E
e  A - E

represents the indicator function of E.
It is clear tha t every ^-polynomial of order n is an W-step function of 

order n. The converse of this statement also holds:
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Lemma 2. Let i ,n  be integers with 1 ^ i ^ n. There exist constants 
ak(i, n) such that

П — 1

(9) I A(n) = ^ 2 a k(i,n )h k.
' fc=o

P roof. We proceed by induction on n.
For n = 1 we have

V > s  h°
and for n = 2 we have by construction that

,  1 . 1 .  r 1 ,  1 ,
1AW -  2h° +  2hl' Уд<» _  2 ° ~ 2 1'

Suppose the lemma holds for some n > 2 and all 1 < i < n. Observe by (3) 
that

T 1 T * 1 T 1 j  1

д(„п+1) “  27Д(1П) + 2[n]!/2’ Д(„п++11) “  27Д(1П) "  2 [n]1/2 ’
and by (4) that

/д (п +1) — I A [n) 1 i = 2,3,. ,n.

Consequently, it follows from the inductive hypothesis that the lemma holds 
for n + 1 and all 1 < ji 5; n -f 1. □

For /  G Т*(Д) define Fourier coefficients by

f ( n ) = J  f  • hndg,, n = 0 , 1 , . . . .
Д

Define the 7f-Fourier series of /  by
OO

•?/ = £ / (  k)hk
k =0

and the ra-th order partial sums of 5 /  by
r»-l

Snf  =  J 2 f W hk’ n  =  0 , 1 , . . .  .
k=0

The W-Dirichlet kernel is defined by
n—1

Dn(x, t )  = ^ h fc(x)hfc(i)
k =0

for n = 1 ,2 , . . . ,  and x , t  e  A.  Notice by Fubini’s theorem and definition 
that

(10) (Snf)(x) = J  f(t)Dn(x,t)dfi(t)
д

for x 6 Д, /  e Ljj(A),  and n = 1,2,__
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Lemma 3. I f  P is a step function of order n then

(SnP)(x) = P(x)

for every x €  Д .

Proof. By Lemma 2 there exist constants ak such that
П —1

P  =  akhk.
k =0

Therefore by (10) we have
п - l  .

(SnP)(x) = /  hk{t)Dn(x,t)dp{t).
k=о л

Since Lemma 1 implies

f  hk(t )Dn(x,t)dp(t)  = ^ 2 h j ( x )  Í  hk(t)hj(t)dp(t)  =  hk(x), 
J j=o J

we conclude tha t
П —1

( SnP)(x )  =  ^  akhk(x) = P(x).  □
k=o

This result allows us to obtain a closed form for the H-Dirichlet kernel. 
L e m m a  4 .  Let i ,n  be integers with 1 <  i <  n. I f t £  Д - ^  then

[ o  i f x e  Д - д | п).

P roof. Fix x € Д and observe that Dn( x , t ) is a step function in t of 
order n. Thus there exist constants ck(x)  such that

( И ) D n (x , t ) = J 2 ck(x)IA(n)(t). 
к= 1 *

These constants can be exphcitly computed. 
Indeed, use (2) to write

ck(x ) — У _  I ^ n)(t)Dn(x,t),
t= i  1 k k
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for each t € д [п*. Integrate this identity dfi(t) over to obtain

ск(х )ц (А {̂ )  = J  I^„ )(t)D n(x,t)dfi(t) = SnP(x)
v ( n )

where P  = / д(т>). Consequently Lemma 3 implies

м д ! " 1)
Putting these values into (11) we conclude that

In particular, since t 6 A,-"̂  implies I ^ n)(t) ф 0 only when к =  i, it follows 
that

^л(»)(ж)

в " <1, 1) = ^ д р )
as required. □

Since the measure /r is a Borel measure and A is compact, it is clear that 
each continuous function on A is measurable and bounded, hence integrable. 
Therefore, such a function has an Tf-Fourier series and we may ask whether 
this series converges.

T heorem 1. I f  f  is continuous on A then Snf  converges to f ,  as n —* oo, 
uniformly on A.

PROOF. By (10) and Lemma 4,

Snf(x )  = J  f( t )D n(x ,t)dn(t) = J  f( t)D n(x ,t)d n (t) =
«=1

m
= J  m M t ) -

Since this sum has at most one non-zero term for each fixed x, and since

/(* )  = — A n)\  /
**(AJ ’ ) L
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it follows tha t

(12) S „ / ( * ) - / ( * ) = Í X ( . ) ( * ) — Ж  / ( / ( * ) -  /(* ) )« ! )■
•=■ • "<д ; >4»,

Since /  is continuous and Д is a compact metric space, /  is uniformly 
continuous on Д. Thus given e > 0 we can choose by (6) an integer N  so large
that I f{ t)  -  f ( x )I < e for x , t  e A \n), 1 < i < n, and for n = N, N  + 1 ,----
In particular, it follows from (2) and (12) that

ISnf( x )  -  f ( x )  I < e

for n > N . □
For each integer n ^  1 let Bn denote the u-algebra generated by (Д,-"^: 1 5: 

^  i ^ n}. Recall given /  € Ek(A) that the conditional expectation of /  given 
Bn, written g = E ( f  \ B„ ), is the #„-measurable function g (guaranteed to 
exist by the Radon-Nikodym theorem) which satisfies

(13) J  gdg, = J  fdg,
E  E

for all e E Bn-
Lemma 5. I f  f  € Т*(Д) and n 1 then Snf  = E { f  \ Bn).
P r o o f . Clearly, a function is ^„-measurable if and only if it is a step 

function of order n. Hence the function

g = Snf

is H„-measurable and it suffices to verify (13) for E  = д [п  ̂ and 1 < к < n 
fixed.

A trivial integration and Lemma 4 leads to

J  f ( t ) M t )  = ■ -W J  J  f(t)dn(x)dn(t) =
v(n) ^  k д(")д(")

■ U S  f ( t )D n(x ,t)dn(x)dn(t) = I I  f ( t )D n(x,t)dn(x)dn(t).
д(.п> д(") Д д(»)

Consequently it follows from Fubini’s theorem and (10) that

= / Snf(x )d n (x )  =  / gdfi.
j ,  4 - .
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Thus (13) holds for E  = and the proof is complete. □
Thus we see tha t the partial sums of any Tf-Fourier series form a mar­

tingale.
T heorem 2. I f  f  £ Т£(Д), 1 ^  p < oo, then Snf  —* / ,  as n —► oo, a.e. 

on Д and in norm.
P roof. Fix 1 ^  p < oo. Let B ^ denote the smallest cr-algebra con­

taining the ^-algebras B \ , B2, __ A classical martingale convergence theo­
rem of Lévy (see Doob [2]) states that if f  £ X£(Д) is B<x,-measurable and 
f n =  E (f\B n), then f n -* f  a-e- and in Т£(Д) norm. But p is a regular 
Borel measure. Hence, by Lusin’s theorem the space of continuous functions 
С(Д) is dense in Т£(Д). Since by Theorem 1 the collection of B o o - m e a ­

surable functions is dense in С(Д) it follows that each Т£(Д) function is 
Boo-measurable. We conclude from Lemma 5 and Lévy’s theorem that Snf  
converges to /  a.e. and in norm. □

Corollary 1. The system Mi is complete.

P roof. If f  £ L* (Д) and /(те) = 0 for те = 0 ,1 ,. . . ,  then the 7f-Fourier 
series of /  is identically zero. Hence /  = 0 a.e. by Theorem 2. □

We have shown, therefore, that Mi is a complete Я -system. In particular, 
by Gundy [3] we have the following two results.

COROLLARY 2. I f  f  is measurable and a.e. finite then there is an Mi­
series

OO

(14) S = ^ 2  ап К
n=0

which converges a.e. to f .
Corollary 3. An H-series (14) converges a.e. on a set E  Q Д if and 

only if
OO
^  ](flnhn) ^  00
n=0

a.e. on E.

§4. Uniqueness. A set E  Я Д is called distinguished if E  =  Д ^  for 
some integer те and some choice of г = те — 1 or i = n. Notice for each 
integer m > 0 that the collection of distinguished sets of measure 2_m forms 
a partition of Д; indeed,

2m+l

A= U K-’iUAl4).
k=2m+l
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Also notice for each distinguished set E  =  A ^  that hi is constant on E  
for 0 % l  < n. In particular, given any W-series and any distinguished set
E  = the partial sum S„ is constant on E.

In this section we consider the following question. When is an a.e. con­
vergent W-series S  an W-Fourier series? We begin by showing that if S  is 
not an W-Fourier series then some partial sum of S  is as large as we wish.

Lemma 6. Let f  £ Lj,(A), let Eq = A,-"0  ̂ be a distinguished set and 
suppose Sn —* f  as n —► oo, a.e. on Eq. I f  Sno /  Snof  on Eq and M  is any

(m)positive real number then there is a distinguished set A- ' Q Eq such that 
|5m| > M  on

P roof. Suppose to the contrary that |5m| ^  M  on At-m̂ for every dis­
tinguished At-m ̂ contained in Eq. Fix such a A,-m\  let At-,m  ̂be distinguished
and suppose At-,m  ̂ C A,-m̂ and

м ( д Г > )  =  | , ( д . И )

By definition h i(x)  = 0 for x £ A t-m  ̂ and m < t  < m! — 2. Consequently,
S n  =  Sm on A,-m  ̂ for all m ^ TV < m ' . Since the collection of distinguished 
sets forms a partition of Eq, it follows from our assumption that

(15) |5jv| ^  M  on E q

for N  = no, «о +  1 ,__
Let T = S  — S f  and choose by hypothesis a non-zero constant d such 

tha t T„0 = d on E q. Since

= 0
E0

for j  = no, n0 + 1, . . .  it is clear that

lim
N —*oo

E0

=  d • p (Eq) ф 0.

On the other hand, by (15), hypothesis, and the bounded convergence theo­
rem, the series 5  converges to /  in the L ^ E q) norm. Hence it follows from 
Theorem 2 that Tn  —> 0 in L ^ E q) norm. In particular,

lim /  Tjvd/x = 0,
N -*oо J 

E0

a contradiction. □
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T heorem 3. Let f  € L^(Д) and S  be an H-series which converges a.e. 
to f .  I f  for every xo € A

Um sup I limsup |5„(a;)| ) < oo,

then S  is the H-Fourier series of f .

P roof. Suppose S  is not the W-Fourier series of / .  Let a0, a j , . . .  repre­
sent the coefficients of S  and choose щ  ^  1 to be the smallest integer which
satisfies a„0_i ф / ( no — 1)- Then Sno ф Snof  on Eq =  Д ^  and by repeated 
applications of Lemma 6 we can choose distinguished sets such that
д К -i)  D Д К )  and 

lk—1

(16) \Snk \ > к on Д ^ ) ,  к = 1, 2, ----

Since Д is a compact metric space there is an xq which belongs to the 
closures A,-"^ for A; = 0 ,1 ,__ By (16) we have

limsup |5n)[(a:)| к
X —>X o

for к = 1 ,2 ,__ It follows, therefore, that

limsup limsup |5„(ж)| = +oc.
n —►OO x —►Xo

Since this contradicts the hypothesis, we conclude that S is the "H-Fourier 
series of / .  □

Since the one-dimensional Haar system is an W-system, this result con­
tains a new uniqueness theorem in the classical case.

Corollary. I f  f  is integrable on the interval [0,1], if S is a Haar series 
which converges a.e. to f  and if

limsup |5n(x ±  0)| < oo
n —► OO

for all x € [0,1], then S  is the Haar-Fourier series of f .

The hypotheses of Theorem 3 might prove difficult to verify in practice. 
A more easily verifiable hypothesis would be some growth condition on the 
coefficients of S.

Since such a growth condition must be satisfied by all W-Fourier series 
we begin with the following.
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Lemma 7. Let xo e A and ki < ki < . . .  be the collection of integers I 
which satisfy h f(x0) ф 0. I f  f  is integrable on A then

limj —+ OO

/(*,•)
h-kj (*o)

= 0.

P roof.
each h( has 
we have

By definition, hf(xo) ф 0 if and only if xq 6 A ^ .  Moreover, 
constant absolute value on A ^ . Consequently, for each j  > 1

\f(k ,) \  =  I [ f - h t j dp < |Л»Дго)| f  \ ! W

Since the indefinite integral of /  is absolutely continuous with respect to ц 
(к )and /х(Д^ 1 ) —*■ 0 as j  —► oo, it is now clear that

f ( k j ) /h k j(*o) -+ 0

as j  —> oo. □
This growth condition was first identified for the classical Haar system 

by Arutunjan and Talaljan [1]. Accordingly, we say that an W-series
OO

S  = y^afchfc 
k=о

satisfies the А-T  condition at a point xq € A if

lim
j —*00

ak,
hkj (*o)

= 0

where ki < k^ < . . .  are all integers £ which satisfy h{(xо) Ф 0.
By Lemma 7 every Tt-Fourier series satisfies the А-T  condition at every 

point in A. On the other hand, if an ft-series fails to satisfy the A-T 
condition at even one point it may not be an Fourier series.

To construct such an example, let A = A^"1̂  D A,-"2̂  D . . .  be distin­
guished sets such that

for j  = 2 ,3 , . . .  and
OO

{zo} =  П  Л
(">) 
•> ‘

i=1
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Define coefficients am by am =  0 when m ф kj and 

where kj = nj — 1 for j  = 1 ,2 ,__ Consider the 7i-series

s  =
OO OO
'У  ̂ hm = У  ̂ hk, •
m=0 j=i

An easy induction argument verifies

^„(х) =
j  2J_1 if x 6 a J"j)‘j

if x € A ~  a !"j )1 0

for nj < n < nj+i and j  = 1, 2, . . . . Since the a |" ^ ’s shrink to the point
xo, it follows that S  converges to zero everywhere on A ~  {x0}. In view 
of Theorem 2, S  cannot be an Fourier series. On the other hand, since 
akj/hkj = ±1 it is clear that S  fails to satisfy the А-T  condition at Xo. But
given x ф xq and x € A,-m\  a distinguished set, we have that m ф kj for m  
large. Consequently, am = 0 for m  large and S  satisfies the А-T  condition 
at every point in A except xo.

This example used a sequence of distinguished sets with non-empty in­
tersection to force the series S  to have partial sums identically zero on larger 
and larger subsets of A. The following result clarifies the role of the distin­
guished sets by showing such cancellation cannot subsist for 7f-series which 
satisfy the А-T  condition.

Lemma 8. Let E j = д | п̂  be a sequence of distinguished sets which
OO

satisfy Eo D Ei D . . .  and Q Ej ф to. Suppose further for each j  > 1 that
j=o

(17) /*№) = ^

and

(18) Fj = E j . i  \  Ej.

I f  S is an Л -series which satisfies the А - T  condition everywhere on A and

(19) S„0 ф 0 on E0,

then

(20) SUj ф 0 on Fj
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for infinitely many integers j  > 1.
P roof. By iteration it suffices to show (20) holds for at least one integer 

j  > 1. Suppose to the contrary that

(21) Snj = 0  on Fj

for j  = 1 ,2 ,___For each j  > 0 set kj = nj — 1. Since each hm vanishes off
д [ т  ̂ and for each m the sets д | т  ̂ are pairwise disjoint for l  = 1, 2, . . .  , m, 
it is clear by (17) that

(22) Sn} = Snj_t + ßfcj hkj on Ej U F j,

that hk3 and Snj are constant on E j and on Fj, and that hk} changes signs 
from Fj to Ej for each integer j  > 1.

Choose by (19) a non-zero constant d such that Sno = d on E0, and 
suppose for some j  ^ 1 that

(23) = 2JÍ_1d on E j- i .

Since Fj C E j - 1 it is clear by (21), (22), and (23) that

= —23-1 d on Fj.

Since hk3 changes signs from Fj to E j, it follows that

(24) cikjhkj = +2 J,_1d on Ej.

Let
OO

z0 € П  Ej. 
j=о

Notice for each integer t  ^  ко that h f(xо) Ф 0 if and only if l  = kj for some 
integer j  ^  0. Since

| / ^ ( я 0) |2 =  [fcil = 2Jiko]
we conclude by (24) that

hk,(x  o) 2[k0\ ^

for j  = 1 ,2 ,__ Contrary to hypothesis, therefore, 5  cannot satisfy the A-T
condition at xo. □

An 7f-system is called weakly nested if each distinguished set E  contains 
a distinguished set F  whose closure satisfies F Q E . Notice that the square, 
polar and classical Haar systems are all weakly nested. In fact, if Д and 
the distinguished subsets of Д are simply connected it is always possible
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to divide the boundaries of the distinguished sets in such a way that the 
resulting W-system is weakly nested.

A subset in C A is called Tf-negligible if given any distinguished set E  
there is a distinguished set F Q E  such that w П F  = 0. Recall that an 
embedded arc in R2 is a 1 -  1 bicontinuous image of an interval. It is clear 
that embedded arcs are ^-negligible for both the square and polar Haar 
systems.

T heorem 4. Let f  e L*(A), pi < P 2 < • • • be any sequence of posi­
tive integers, H be weakly nested, S be an Ti-series which satisfies the A - T  
condition everywhere on A , and W \ , W 2 , . . .  be a countable collection of H- 
negligible sets. I f

(25) lim SPk = /  a.e. on Ak-+<x>
and

OO

(26) lim sup |5P), (z)| < oo for x ( J  wj
k—*oо • .J=1

then S  is the H-Fourier series of f .
P roof. Assume for simplicity that pk = к for к = 1 ,2 ,__
Suppose the theorem is false, i.e., that S  is not the Tf-Fourier series of 

/ .  Choose an integer no and a distinguished set such that

S„o -  s nj  Ф 0 on AÍono).

Since w\ is ^-negligible there exists a distinguished set Vo 9 such
that líqnVö = 0. Moreover, since 7i is weakly nested there exist distinguished 
sets Vi,V3, . . .  such that

(27) V k C Vfc_i, * =  1 ,2 , . . . .

Set Eq = A,-"0̂ . By successive division choose distinguished sets Ej = 
= a \”j) which satisfy p(E }) =  ip (E j_ i), Ej C E j-1 for j  — 1 ,2 ,. . .  and

(28) Ejk =

for some integers jk , к = 0, 1, __
Set Fj = E j- г \  Ej, j  = 1 ,2 , . . . ,  and T  = S -  S f .  Notice by (27) and

(28) that C\Ej ф 0. Also notice by Lemma 7 and hypothesis that T  satisfies 
the А-T  condition everywhere on A. Thus by Lemma 8 we can choose an 
integer j  so large that E j-1 Q V\

Sn} -  SnJ  ф 0 on Fj.
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Applying Lemma 6 to the distinguished set F j  we can choose a distinguished
set A [ m) Q F j  such that |5m| > 1 on д [ т \

Set mo = no, A) = *o> mi =  m i 1 and notice by construction that

»1 n д (” ‘> =  0, с

and
|5т 1(ж)| > 1 for x G A ^ l).

Continuing this process we generate distinguished sets Д ^"*\ к = 0 ,1 , . . .  
such that

(29)

(30)

and

(31)

wk П Д = 0,
л (mfc) r  A(”>fc_i)

15'т*(а;)| > к for x € Д)к(m*)

Ч  •

lim sup |5m(x0)| = + 00.

By (30) choose xo G f) Д^т * . We have by (31) that
fc=i k

Consequently, it follows from hypothesis that x0 G wj for some j  > 1. 
However, (29) implies xo ^ wk for any k. This contradiction proves that 
Sm = Smf  for all integers m  and thus S  is the Fourier series of / .  □

C o r o l l a r y . Let f  be a finite-valued, integrable function on Д, 7i be 
weakly nested, and S be an 'H-series which satisfies the А -T  condition ev­
erywhere on Д. I f  S converges to f  except perhaps on a countable collection 
of 'H-negligible sets, then S is the H-Fourier series of f .

Movsisjan [5] has shown for the Kronecker product Haar system on the 
d-dimensional unit cube that uniqueness holds for a series satisfying the 
А-T  condition everywhere which converges to a finite-valued integrable /  
off a countable set. Our techniques show that the countable set can he 
replaced by a countable union of 1 -  1 bicontinuous image of compact sets 
of dimension less than d, because such sets are negligible for the collection 
of d-dimensional rectangles which form the partitions {Д": 1 ^  ^  n}. In
particular, in two dimensions any countable union of embedded arcs can be 
discarded and uniqueness will still hold.
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TRANSITION LAYER PHENOMENA 
OF THE SOLUTIONS OF BOUNDARY VALUE 

PROBLEMS FOR DIFFERENTIAL EQUATIONS 
WITH DISCONTINUITY

H. ISHII (Fukushima)

1. Introduction

In this paper we consider the interior transition layer phenomena of so­
lutions for the nonlinear boundary value problems with discontinuity. M. 
Slatkin [4] has considered the following differential equation with disconti­
nuity:

A„ = Í (1 - a 2)/2 i f o £ 4 ,
l  —(1 -  A 2)/2

(£o is a constant). On the other hand P. Fife [2] (p. 68) considered the 
equation with discontinuity:

I  =  _ c(h )  = Í G+(£) if Q> v
2dy2 \  G~(g) if q < и

{v is a constant). In this paper we consider the singular perturbation problem 
for the following differential equation:

( 0 . 1 ) £2u" =  F(u, t ) = (/o(w, t)
h  ( M )

if ((«,*) e ( - 00, 00) x [o,/0]) 
if ((tt,i) € ( - 00, 00) x [to,l]),

(0.2) u (0) = ao, u ( l )  = ai
(e > 0, <0 is given later). This problem is generalized to the following singular 
perturbation problem for a system of differential equations:

fo(u, v) if ((u, v) 6 ( - 00, 00) X [60, z0]) 
f i(u ,v )  if ((u,v) G ( - 00, 00) x [z0, 6i]),

(1.1) e2u" =  F (u ,v ) =  I

(1.2) v" = g(u,v),

( 1 . 3 )  u ( 0 )  =  ao , u ( l )  =  a x, v ( l )  =  b0, n ( l )  =  fq .

In this paper we consider the existence of the solution of (1) when e is small 
enough, as well as the asymptotic behavior of this solution as e —► 0 in 
Theorems 4 and 5. This result is a generalization of Fife [1]. The boundary 
value problem (0) is a special case of (1) and the existence and asymptotic 
behavior of the solution of (0) are given as results of Theorems 4 and 5. We 
illustrate the properties of the solutions on some examples of type (0) or (1).
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2. Prelim inaries
Let fo(u, v ) be sufficiently many times continuöusly differentiable in 

( - 00, 00) X [60, Wo] = ( - 00, 00) X /0 and let fo (u ,v) = 0 have twice con­
tinuously differentiable solutions hoo(v), r(v), hoi(v) in Iq. Let f \ ( u ,v ) 
be sufficiently many times continuously differentiable in ( —00, 00) x [uq, 61] 
(wo > wi) and let there be solutions /&ю(п), r(v), hxi(v) for f \(u ,v )  = 0 in 
Ii. We suppose hio(v) < h00(v) < r(v) < h0i(v) < hu (v ) in the interval 
/  =  I q П  I \ .

We investigate the existence and asymptotic properties of the solutions 
of (1) under some assumptions. We assume that the following conditions 
hold:

■§zfo(h0o(v), v) > 2 ß > 0  ( v e  I0), 
^ f i ( h n ( v ) , v )  > 2 ß > 0  ( v e  Ix),

where ß  is a constant.
' к

J  fo(u,bo) d u > 0  ( k  e [a0,hoo(bo)) or к e (hoo(bo), a0]) ,

(и) '‘" I мк
J  f i(u,bi)du  > 0  ( k  e  [ab /111(6!)) or к e  (/111(61), a i j ) .

Let us introduce the function J(zo) as follows: 
г(г0) r(*o)

J (z0) =  J  fo (u ,zQ) d u -  J  fx (u ,z0)du, where z0 e l .
hoo(zo) /»11 (го)

(III) There is a zero of J(z0) at zq =  Zq and J(z0) changes sign as Zo passes 
through Zq.

(IV)

к
j  fo(u,z£)du > 0 ( k  e  (hoo(z^),r(z^))),

^00(̂ 0)
к
J  f i(u ,zZ )d u > 0  ( k  e  (r(z^),hn (z^))). 

. ЛиЮ
Let us define G(v) by the following equation:

c (  ч Г g(hoo(v),v) if 60 < v < z%
V l  9 (h n (v ),v )  if < v < 61.

(V) There is a solution V  = V (t) (V'(f) /  0) of the following equation: 
V" = G(V), V(0) = b0, V (l) = bx,

and there is a t = Íq (Íq e (0, 1)) such that V(Íq) = Zq.
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Lemma 1. When |u>| is small enough there is a solution Vo = Vo(t) 
Ф 0) of the boundary value problem

К  = g(hoo(V0),Vo), Vo(0) = bo, V0(f0 + S) = V(t*0) + u ,

and there is a solution V\ =  V\(t) (V((t) ф 0) of the boundary value problem

V? = g(hn (Vl), Vi), Vl(t*0 + 6) = V(f0) + u ,  Vi(0) =  6b

where |£| is enough small.
P roof. Lemma 1 follows from condition (V). The details are omitted 

(see Fife [1]). □
We consider the following boundary value problems:

(2.1) £2«o = /o(«o, vo),
(2.2) t>0 = g(u0, v0),
(2.3)

u0(0) = ao, u0(^  +  ̂ ) =  r ( ^ ( io)+w)> vo(0) = bo, v0(to + S) = V(tÓ)+w,

(2.10 £2«" = /i(tti,t>i),
(2.20 v" = 0(ttl,«l),
(2.30

Ui(to+ t) = r (v (to)+u’)> t»i(l) = a1, t^(iS+Ä) = V (i2)+w, t?i(l) =  6i.

Lemma 2. Assume the conditions (I), (II), (IV) and (V). If 
max |<7u(/ioo(v), v)| + max |<7u(/in(u),v)| = 7Гх is small enough, then there 
is a solution (uo(t,6,£,u)),Vo(t,S,E,u))) for the problem (2) and a solution 
(ui(t, S, £,u>),vi(t, 6, £,u>)) for the problem (2') respectively ase is small enough.

P roof. See Fife [1]. □

Lemma 3. The asymptotic properties of these solutions are given by the 
following relations as e —> 0:

lim uo(t, S,u>,e) = hoo(V(t)) uniformly in [A,Íq + 6 -  A] (A > 0),e—>0
lim ui(t, S,u),e) = h n (V (t))  uniformly in [£q +  b + A, 1 -  A], 

lim ||V0(t) -  vo(M ,w,£)||Ci [0>t.+i] = 0, 

lim ||Vi(i) -  Vi(t, 6, u>, £)||ci[t;+i,i] =  0.

P roof. See Fife [1] (p. 504). □

Acta M athematica Hungarica 61, 1993



46 H. ISHII

3. E xistence and asym ptotic behavior of the solutions

In this section we construct the solution of the problem (1) and study 
its asymptotic behavior in Theorems 4 and 5. We, consider the existence and 
asymptotic properties of the solution of (0).

T h e o r e m  4. Assume (I), (II), (III), (IV) and (V). I f  tti is small enough, 
then there is a solution (u ,v)  =  (u (t,£ ),v (t,e )) o f the boundary value problem 
( 1 ).

P r o o f . P u t

Ф(6,ш,е)= (eu'0(to + 6,ш,е))2 -  ( e u ^  + 6 ,w ,£))2 ,
9 (6 ,w,£) = v'Q(t% +  6,u,e) -  t>i(*o + 6,w,e).

By the conditions (III) and (V) there is a solution (6, to) = (6(e),u>(e)) of the 
equation 9 (6 ,u ,e )  = 0, Ф(£,<*;,£) =  0 such tha t |£(г)| + |ш(е)| -» 0 as £ —► 0. 
Thus

(t \ _  /  u0(t,6 (e),u (e),e)  if 0 < t < +  6(e)
4 , £ )  ~ \  Щ (t,6 (£)M e ) ,e )  if tS + 6(£) < t <  1 

is continuously differentiable at t = t£ + b(e). Define
(t \ _  /  if 0 ^ t < t *  + 6(£)

^  ,£ \  v i( t,6 (£),u(£),£) if t£ +  6(£) < t < 1,
then v(t,£) is continuously differentiable at t =  Íq + ^(e).

Due to the structure of (u(t, e), v(t, £)), it is twice continuously differ­
entiable in (0, 1) and satisfies the differential equations (1.1), (1.2) and the 
boundary condition (1.3). This (u ,v) = (u (t,£),v(t,£ )) is the solution which 
we were looking for. □

T h e o r e m  5. The asymptotic properties of this solution are given by 
following:

f hoo(v(t)) uniformly in [A,tJ$ -  A] (A > 0),
' Z \  h u (V (t))  uniformly in [fj + A,1 — A],

Jjm II V(*) -  «(<»«)llo4o,i] = 0.
P r o o f . This is proved in Lemma 3. □
t = <o is the transition point for this problem and zq = V(f2) + w(e). We 

consider the problem (0). P u t t = v, then (0) can be rewritten in the type 
of (1):

(0.1) £2u" = F (u ,v),
(0.2) v" = 0,
(0.3) u(0) = ao, u( 1) — ai, v(0) = 0, u(l) =  1.
We assume that the conditions on /,(u , v) (i = 0,1) and hij(v) (i , j  =  0, 1) 
are satisfied by /,(u ,u ) (г =  0, 1) and hij(v) (the solutions of fi(u ,v ) = 0 

(*,J =  0, 1)). '
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T h e o r e m . Suppose the conditions (I), (II), (III) and (IV), then there is 
a solution и = u(t,e) of the boundary value problem (0) such that it has an 
interior transition point in I  (a sub-interval of (0,1)).

P roof. By Theorems 4 and 5, this theorem is proved. □

4. Examples

In this section we study the properties of the solutions to problems of 
type (0) and (1).

E x a m p l e  1. Consider the following problem:

(3.1) e2u"
(3.2) v" = —au = j
(3.3) u(0) = tt(l) = 2 -  у/г/2,

where
(u -  v) (v < z0)
( u - v )  (v > z0).

We show the existence of the solutions (u(t,e), v(t,e)), with the transition 
points from -1  to 2 or from 2 to —1, of (3). In this problem hoo = —1, 
hoi = 1, hio = —2, h n  = 2 and r =  v. We define J(zo) as follows:

*0 z0
J(zo) =  J(u2 -  4)(u -  z0)du-J (u2 - 4) {u -  z0)du = “ ^ ( го ~  4zo + •

- 1  2

We can find the root Zq = 2 — \/3 /2  of J ( zq). Consider the following problem:

(4) V" = G (V) = I  9{~ h V )  = ° {V = Z'o)
1 '  1 <7(2, V) = —2a (V > z*0),

(5) V(0) = V (l) = z0* = 2 — v/ з Д
Then there is a solution Vi(f) of (4), (5):

- « ( * - ! )  - § ( * - § ) + * 5 .

Vi(t) =
2 б) 6 (* б ) + г0> ^  6 < * = 2

- “ ( * - § )  - | ( < - § ) + * o >  i f |  < f = §

f ( i -  i ) 2-  t ( i -  i) + 5̂, if § < < £  1.
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V i(t) is a periodic function with period 5. Similarly there are solutions Vn(t) 
with period ^  for every integer n > 1. By the use of У„(<) we can construct 
the solution (un(t,e ), v„(t,e)) of (3). Notice that

m a x K (0  =  4 + < * ( j ) 2- Q ) 2”+í ™ l mmV„(() =  i ; - o Q ) 2- Q ) 2”+1.

For all n, —1 < Vn(t) < 1 must be satisfied. Thus a < 36(y/3/2 -  1). By 
the use of this condition 0 < V„(t) < 1 for all n. Thus every transition 
layer phenomena of (u„(t,e),vn(t,e ))  are caused by the discontinuity of the 
differential equation (3.1). There are 2"+1 — 1 transition points for this 
solution. We give the asymptotic properties of (u i( t,e ) ,v i( t,£ ))  as e —► 0:

2 (uniformly in Л ^  t ^  g — Л)
— 1 (uniformly i n i - f A ^ f ^ ^ - A )

lim ui(i ,£)  =  , . ,  - , 4
*-♦0 2 (uniformly i n j  +  A < t < | - A )

— 1 (uniformly in I  +  A ^ t < 1 — A),
lim v \(t,e ) = V\(t) (uniformly in 0 ^  t ^  1).
£—►0

Similarly the asymptotic properties of (un(t, e), vn(t, £)) can be given. In this 
problem zo is determined as a function of £ and it is near Zq.

E x a m p l e  2 . Consider the following boundary value problem:

(6) £2u" = F (u ,t),

(7) u(°) = «(!) =
3
2 ’

where
F (u t ) _ í ( u 2 - l ) ( u - t )  

1 ’ 1 (u2 - 4 ) ( u -< )

О
 

О
 

-к>

VII л

By the theorem there is a solution и — u(t,£ ) with only one transition point 
i j  = 2 — ^ 3 /2 .  The asymptotic properties are given as follows:

( — 1 (uniformly in A < t < <5 ~
\  2 (uniformly in íj  + A ^ < 1 -  A).

In this problem to is determined as a function of £ and it is near <5- 
Example 3. Consider the following boundary value problem:

(8) e2u" = F(u, <),
(9) u (-b )  = у Д / 2 - 2 ,  и(Ъ) = 2 - ^ / Щ  (0 < Ь < 1),

' (и2 — 4)(и — t) (< < í_x)
F (u ,t) = < (и2 — l)(u — t ) (<_i < t < ti)

(u2 - 4  ) ( u - t )  ( h < t ) .
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(a) 2 — -y/3/2 < b < 1. In this case there are three transition points: 
t* j = у^З/2 — 2, =  2 — -^/3/2 and = 0. The first two are caused by
discontinuity of the differential equation. The asymptotic properties are as 
follows.

lim u(t,e)г->0

' —2 uniformly in -  b -f A < f ^  t* x — A 
1 uniformly in f j  + A ^  t ^  ~ ^
— 1 uniformly in Íq + A < t £  tJ — A 

. 2 uniformly in + A ^  t < b — A.

(b) 0 < 6 < 2 -  у/Ъ/2. In this case there is a solution with a transition 
point Íq = 0 which is not caused by discontinuity of the differential equation. 

The asymptotic property is given by the following formula:

lim иe-U>
1

-1

uniformly in — b + A < f ^ —A 
uniformly in A < i ^  6 -  A.

By considering the feature of the solutions of the above three examples we 
see that there are different cases. Under some conditions there are solutions 
for the boundary value problems for systems of differential equations with 
arbitrarily many interior transition points. But for the boundary value prob­
lems for one differential equation with discontinuity we got one and three 
transition points.
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from  Tokyo Metropolitan University

Introduction

Let (X, В , /л) be a probability space and {Tt} a measurable flow of nonsin­
gular automorphisms of ( X, B, p) .  For an /  in L\{p) we define the maximal 
ergodic function f  * by

( i )

- (x)dt

f dp
-(x)d t

In this paper we assume that the flow {Tt} is conservative and ergodic, 
and prove that

( 2) a/i{/*  >
“ > -  / fd p  for all

{/*><*}
This equality implies that a nonnegative /  in L\{p) satisfies /  f lo g f  dpt < oo

{/>1}
if and only if /  f  dp < oo. (For a related topic, see [1], [9], [11] and [14].)

About ten years ago, Marcus and Petersen [8] proved equality (2), under 
the assumption that all the Tt are measure preserving. Thus our result may 
be regarded as a generalization of their theorem to noninvariant measures. 
Further we shall apply the proof of (2) to investigate an integrability problem 
for the maximal function M f defined by

M f ( x )  = m ax{/*(i), (—/)*(*)}•

To do this, we introduce the decreasing function f  on the interval [0,1) 
which is equidistributed with /  € L\(p). Extending /  to the real line by 
~f(t + 1) = }(t), we define

dt.
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Clearly, Я ( / )  =  0 if and only if /  and —/  are equidistributed. Further, it 
will be seen th a t if /  > 0 then H( f )  < oo if and only if /  Mfdg,  < oo. 
However, if the nonnegativity of /  is not assumed, then, as is easily seen by 
a simple example, H( f )  < oo does not necessarily imply /  Mf df i  < oo. (It 
will be proved below that J M  fdg, < oo implies f f ( / )  < oo.) Therefore it 
would be of interest to know what condition on /  is necessary (and sufficient) 
for Я ( / )  < oo. Already, this problem was discussed by the author in [13], 
under the assumption that all the 7) are measure preserving. In this paper 
we shall prove that the results in [13] hold without the assumption.

1. Prelim inaries and the maximal equality

Let {Tt} = {Tt : -  oo < t < oo} be a measurable flow of nonsingular 
automorphisms of (X, I?,/r), where we may and will assume without loss of 
generality th a t the probability space (X, В ,ц)  is nonatomic and complete. 
All sets and functions introduced below are assumed to be measurable; all 
relations are assumed to hold modulo sets of measure zero. Since each Tt is 
nonsingular, the Radon-Nikodym theorem can be applied to define a func­
tion Wt = d/r о Tt/dfi in Li(fi) satisfying

(3) /  wtdn =  n(TtA) for all A G B,
A

and let us put
(4) Utf (x)  = f ( T tx)w t(x) for /  € Li{n).
As is easily seen, {Ut} = {Ut : -  oo < t < oo} becomes a one-parameter 
group of positive linear isometries on L \(n). It follows from Krengel [3] (see 
also Sato [12]) that strong-lirn Ut = 1 ,1  being the identity operator. Thus
we may suppose without loss of generality that the function (i, x) —► wt(z) 
is measurable on (—00, 00) x X . This was used implicitly in the definition 
of /*.

The flow {Tt} is called conservative if each Tt is conservative. Recall that 
a nonsingular automorphism T  is conservative if and only if А С Т А  implies 
A  = ТА. It is known (see e.g. Krengel [6], §3.1) that T  is conservative if and 
only if

E
n = 0

rf/i 0 T n
dfi (x ) = 00 for almost all x € X.

It is easily seen that {Tt} is conservative if and only if

for almost all x € X.

{Tt} is called ergodic if A = TtA  for all real t implies \iA  =  0 or ц ( Х \ А )  = 0.
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T h e o r e m  1 .  Let {Tj}  be an ergodic, conservative, measurable flow of 
nonsingular automorphisms of ( X , B, p )  with p X  = 1. Let f  be a function 
in L \(p ) and a be a constant such that a > J  fdp.  Then

(5) ap{f*  > a
{/*>«}

fdp.

P r o o f . I t  fo l lo w s  t h a t

{/* > a} = < x: sup 
l  i » 0

and hence a continuous time version of Hopf’s maximal inequality yields

(6) ap{f*  > a} S J  fdp.
{/*>«}

Therefore it remains to prove the converse inequality. To do this, we first 
notice that:

I f  T  is a conservative, nonsingular automorphism of (X, B, p), then for 
any f  and g in L \(p ) with g > 0 a.e. on X

(7) J  f d p < a  J  gdp,
(ЛиТ-1Л)п/(ЛЛЛ) ( Л и Т - ^ п Д Л Д Л )

where we set

( 8)

and I ( X  \  A) denotes the smallest T-invariant set containing X  \  A. 
In fact, since T  is conservative, it follows that

and

I ( X \ A ) =  0 r + " ( X U ) ,
n=0

oo n—1

А П I ( X  \  A)  = \J  (Т +П{Х  \  А) П p |  T +,'a )
n=1 i=0

oo

T~nA  П P) T ~ \ X  \  A) = 0 for aU n Z 0.
i=n+l
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Thus we get

/ f dß = E / f dfi =
АпДАДЛ)

T+"(A\A)n f l T+'A
» = 0

°o ,
E / ят"*)
n=l

d f i o T n
d)i (x)dfi(x) =

(X \A )np|r-‘A
1 = 1

= E
n = l /

(* v*)n ( n r . i  T_‘л) nT_n_1 (* v*)

and therefore by (8)

(E f ( T 'x) ■ rf̂(x)

/  № =  /
/ d /г +

(AuT-lA)n7(A\A) АпДЛДА)
/ f dß  =

(A\A)nT-iA
o° ,

= E  _ /
(A\A)n Г P) Т-A j nT-"-i(A\A)

■=i '
oo .

s E  /
n=l ,  J

(A\A)n^P) T-'A^J nX_n_1(X\A)

( Ё  Л ^ ’ж) • <*/х(ж) ^dg, 

d̂ i о T
О (Ё SÍ3”1) • "'~<Р  ''(*) ) =-(*))■

= а / gdfi,
( A u T ~ l A ) n I ( X \ A )

estabhshing inequality (7). (This is an adaptation of Derriennic’s argument 
in [2].)

We now proceed as follows. For an integer n > 1, write

I ■*
/„(x) =  2" J  f (T tx )w t(x)dt
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and

It follows that

Further if we set

gn(x) = 2n J  wt(x)dt.

lim ||/n -  / ||i = 0 = lim ||ff„ — l||i-

fc-i / \
E f n [ T i / 2n X ) Wi / 2n ( x )

/«(*) =  s^p ё т — ---------------------
*** E  5п(г,/2пж) ш,/2п(ж)

i'= 0  4 7

and A„ = {/„ > a}, and if In{X \  A n) denotes the smallest T2-n-invariant 
set containing X  \  A„, then

(9)

and

( 10)

fn(x)  t  f*(x)  a.e. on X

/ f ndg < a J gndg,.

(AnuT~ln A n ) n/„ ( X \ A n ) (A nu T ~ 'nA„ ) n I„ (X \A „ )

Since a > J fd g  implies g.(X  \  {/* > a}) > 0 by (6), the ergodicity of {Tt} 
and (9) yield

In (X  \  {/* > a}) T X.
Since An I {/* > a}, it is then enough to show that 

(11) lim/z ((T~}nA ) \  Á) = 0 for each A  6 B.

For this purpose we use the strong continuity of It follows that

Jim IK -  l||i = Jim ||CT*1 -  l||i = 0t—► 0 t—► 0

and
lim t-> о w t  ' = 0.

Hence given an £ > 0 we can choose a real number to > 0 so that if |i| < t0 
then

g{\w t -  1| > e} < £, /  wtdg, < £
{ \w t - l \> e }
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and

Therefore

CTt~ l A )\A

e.

К Р Г 'А )  \  A) = \  А) П {\wt -  1| > £ » +
+/x((Tt_1A) \  А) П (|t»t -  1| < £ »  <

< £ + ------  /  Wtdfl < £ + ——

(Tt~ l A )\A

for \t\ < to. This establishes (11), and the proof is complete.

2. A pplications

Theorem 1 can be applied to obtain the following

T heorem 2. Let {Tt} be as in Theorem 1. Let f  be a nonnegative 
function in Li(fJ.) and r a nonnegative constant. Then

/ /(log f ) r+1d[i < oo i f  and only if 

{/>1}
I /* (1о§ / * ) Г^  < 00 •

P roof. See the proof of Theorem 2 in Petersen [10].

T heorem 3. Let {Tt} be as in Theorem 1. Then there exists an absolute 
constant c > 0 such that

J  M f d n  > c H ( f ) for all f  e Li(n).

P roof. By a slight modification of the proof of Theorem 1 it follows 
easily that if A  = { M f  > a )  and цА < 1 then

J  fdg, < a^A .
A

Using this, Theorem 3 can be proved as in Theorem 1 of [13]; the details are 
omitted.
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T heorem 4. Let {Tt} be as in Theorem 1. Then there exists an absolute 
constant C > 0 such that to each f  € L \(p) there corresponds an f  € L\(p), 
which is equidistributed with f ,  such that

J  M ( f ) d p Z C [ H ( f )  + J  \f\dp].

P r o o f . By a theorem of Kubo [7] and Krengel [4] (cf. also [5]), {Tt} can 
be represented as a nonsingular flow {5f} under a function. More precisely, 
{5t} has the following structure. Let {Y ,F ,m )  be a complete finite measure 
space, T  a nonsingular automorphism of (У, IF, m), and h a real valued mea­
surable function on Y  with h(y ) > d for all у £ Y , where d > 0 is a constant. 
Put

Y  = {(у , и) : у £ Y, 0 < и < h(y)},
and let m  denote the restriction of the completed product measure of p and 
the Lebesgue measure on_the real line to Y.  T  denotes the а -field of all 
m-measurable subsets of Y.  Lastly, put

p = e(y, u)dm(y, u),

where e{y,u) is a positive measurable function on Y  such that J  edm  = 1. 
Then {5t} is a flow on (Y ,lF ,p ) defined by

(y ,u + t), if 0 ^ и + t < h(y),

( T ”y ,u  + t - nÍ I h ( T y ) )  , if "e  Л(Т'у) <
\  i=0 J 1=0

<u + t< Е М г ‘2/)> n> 1,
St(y,u)  = < «'=0

( т  n y , и  + 1 + E  K T  l y ) ] , -  Ё  K T  l v )  ^
\  «=1 /  i=i

n —1
ü u + t< - E  h{T ly), n > l .  

»=1

Since we may assume that (X , B , p ) = (Y , T , p ) and {Tt} = {5f}, Theorem 4 
can be proved as in Theorem 2 of [13]; the details are omitted.

T heorem 5. Let {Tt} be as in Theorem 1. Suppose f  G L \(p ) sat­
isfies J \ f \ \og\ f \dp  = oo. Then there exists an f i  £ Li(p),  which is

equidistributed with f , such that

J  M{f ' )dp  =  oo.

P roof. See the proof of Theorem 3 in [13].
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ON FISSIBLE MODULES
S. FEIGELSTOCK (Ramat-Gan)

The additive groups of rings have been studied by several authors, [1], [2], 
and have played a role in solving several purely ring theoretical problems. 
In contrast, very little attention has been paid to the additive groups of 
modules. In this note several elementary facts concerning additive groups 
of modules will be obtained. The notion of a fissible module will be defined 
in a manner which parallels the definition of a fissible ring. A complete 
description will be given of rings all of whose modules are fissible.

All rings Ä are assumed to be associative, and with unity. An Ä-module 
is always meant to be a unital left Ä-module.

Notation:
R  a ring, and the left Ä-module r R
1 the unity of Ä
M  an Ä-module
M + the additive group of M
Mi the torsion part of M +
Mp the p-primary component of M +, p a prime
Z (n ) a cyclic group of order n 
u> the first infinite ordinal
hp the p-height function, p a prime.

Lemma 1. I f  R + is a torsion group with |1| = n, then n M  — 0 for every 
R-module M .

P roof. Let M  be an Ä-module, and let m  6 M. Then nm  = ( n l ) m  =
=  Om = 0.

Lemma 2. Let p be a prime. I f  R + is p-divisible then every R-module 
M  satisfies:

1) M + is p-divisible, and
2) Mp = 0.

P roof. 1) Let m € M . There exists a e R such th a t 1 = pa. Hence 
m  = p(am) and so pM  = M .

2) Suppose there exists m € Mp, m ф 0, such that |m | =  pk with к > 0. 
Since 1 = pka for some a € Ä, it follows that m = pkam  = a{pkm) — 0, a 
contradiction.

An immediate consequence of Lemma 2 is:
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Corollary 3. I f  R + is divisible then M + is a divisible torsion free 
group for every R-module M . In particular R + is torsion free.

The following observation is obvious.
Observation 4. The class of additive groups of R-modules is closed 

with respect to direct sums, and direct products.
Theorem 5. Let R be a torsion ring with |1| = n. A group G is the 

additive group o f an R-module if and only i f  nG =  0.
P r o o f . If G  is the additive group of an Д-module, then nG = 0 by 

Lemma 1.
Let n = pkl . .  .p i '* be the prime decomposition of n. To prove the con­

verse it suffices, by Observation 4, to show that Z(pk) is the additive group 
of an Д-module where p = pj  for any 1 < j  ^  t, and к is an arbitrary integer 
satisfying 1 ^  к < kj. Now 1 = aj + . . .  +  at with |a,| =  pkl, 1 < i < t. By

t
[3, Proposition 27.1], Ä+ =  ® (a j )  0  Я .  There exist integers 1 < г < i

i—i
t

such that X) s*Pi' — !• Let Z(pk) = (6). The products a;6 = Sipk,b for
<=i

i = 1, .. .  , t ,  and hb = 0 for all h £ Я ,  induce a unital Д-module structure 
on Z(pk).

Lemma 6. 1) Let M  be an R-module, m  € M , and p a prime. Then 
hp{ 1) < hp(m ).

2) hp(l)  =  0 or oo.

P r o o f . 1) For every positive integer n, if 1 = pna for some a £ Д+, 
then m = p"(am ).

2) Follows immediately from the fact tha t l 2 = 1.
Lemma 7. Let M  be an injective R-module, and let p be a prime. I f  

M p — 0 then M + is p-divisible.
P r o o f . Suppose that M p = 0. Then the map / :  pM  —► M  defined by 

f (pm)  = m  for all m £ M  is well defined. Since M  is injective there is 
an Д-homomorphism g: M  —* M  whose restriction to p M  is / .  Therefore 
m  -- f (pm) = g(pm)  = p ■ g(m)  for all m £ M  and so p M  = M.

A consequence of Lemma 7 is:
Corollary 8. I f  M  is an injective R-module with M + torsion free, 

then M + is divisible.
Lemma 9. A torsion group G is the additive group of a ring with unity 

i f  and only if G is bounded.
P r o o f . Suppose that G  is bounded. Since a finite direct sum of rings 

with unity is a ring with unity, and since G is a finite direct sum of groups
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of the form G (p,n) = 0  Z(pn) with p a prime, and n a positive integer, it
a

suffices to construct a ring with unity Ä such that Ä+ = G (p,n). Such a 
ring R  exists by [4, Lemma 122.3].

The converse is an immediate consequence of Lemma 1.
Recall, [2, p. 9], that a ring R  is fissible if R  is a direct sum R  =  Äf ® 5. 

Similarly, one has the following:
D efinition. An Ä-module M  is fissible if M  is an Ä-module direct sum 

M  = M t ®N.
A simple consequence of Lemma 9 is:
Corollary 10. I f  R is a fissible ring with unity, then R t is bounded.
Lemma 11. Every R-module is fissible if and only if R is a ring direct 

sum R  =  Ät ® S  such that every S-module is fissible.
P roof. Suppose that every Ä-module is fissible. Then R  is an Ä-module 

direct sum Ä = Ä* 0  5. Let 1 =  et +  e, with e* £ Rt and ea € S. It is readily 
seen that et and e, are left unities for Rt and S  respectively, that Ä* Q Rt 
and tha t 5 2 Q S. Let r € Rt- Then r = ret -f re,, and so re, = r — ret . 
Since 5  is a left Ä-module, it follows that re, £ S, while on the other hand 
r — ret € R t. Therefore re, £ R t П 5 = 0. This yields that ret — r and that 
re, =  0, i.e., et is a unity for Rt and Rte, = 0. A similar argument shows 
that e, is a unity for 5, and tha t Set = 0. Hence RtS = R te ,S  =  0, and 
SR t = SetRt = 0. This implies that Ä = R t 0  S  is a ring direct sum. Let 
M  be an 5-module. For r £ R t, s £ 5, and m £ M , define (r +  s)m  = sm  
where the product on the right hand side is determined by the action of 5 
on M . These products induce an Ä-module structure on M . Hence M  is an 
Ä-module direct sum M  = Mt ® N . However this decomposition is also an 
5-module direct sum, and so M  is a fissible 5-module.

Conversely, suppose that Ä is a ring direct sum Ä = Ä* ф 5, and that 
every 5-module is fissible. Let 1 = et + e, with et £ Ä( and e, £ 5. 
Clearly et and e, are unities for R t and 5 respectively. Let M  be an Ä- 
module, Mo = ctM,  and N  = e ,M . Both Mq and N  are Ä-modules, and 
M  = Mo + N . Let m  £ M0 П N . Then there exist m i, m 2 £ M  such 
that m  = etm\ = e,m 2 - However m  = etm \ = e]m\ = ete ,m 2 = 0,
i.e., Mo П N  = 0. Therefore M  = Mo ® N  is an Ä-module direct sum. 
One may view N  as an 5-module. Therefore N  is an 5-module direct sum 
N  = Nt ® K . Since R t annihilates N , this is an Ä-module decomposition. 
Clearly M t = Mo Ф Nt, and M  = Mt ® K , i.e., M  is a fissible Ä-module.

T heorem 12. Every R-module is fissible if and only if R  is a ring direct 
sum R = Äj ® D with D + a torsion-free divisible group.

P roof. By Lemma 11, it may be assumed that R + is torsion-free. If 
R+ is divisible then every Ä-module is trivially fissible by Corollary 3. Con­
versely, suppose that every Ä-module is fissible, but that Ä+ is not divisible.
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Let p be a prime for which pR  ф R. Then M  = Д  R /p nR  is an й -module,
п<ш

but Mt is not a direct summand of M , a contradiction.
A ring R is p-fissible, p a prime, if R is a ring direct sum R  = й р © S, 

[2, p. 28]. The analogous concept for modules is the following:
D efinition. An й -module M  is p-fissible, p a prime, if M  is an R- 

module direct sum M  = Mp ® N .
Arguments similar to those used in proving Lemma 11 and Theorem 12 

yield the following:
Lemma 13. Let p be a prime. Every R-module is p-fissible if  and only 

i f  R  is a ring direct sum R  =  R p © S such that every S-module is p-fissible.
T heorem 14. Let p be a prime. Every R-module is p-fissible if  and only 

i f  R  is a direct sum R — Rp © S  with S + a p-divisible group.
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INTERPOLATION AND SIMULTANEOUS 
MEAN CONVERGENCE OF DERIVATIVES

KATHERINE BALÁZS (Budapest) and T. KILGORE (Auburn)

Introduction
We will discuss simultaneous mean convergence to a function /  G Cr[—1,1] 

and to its derivatives , / ( r) by polynomial interpolation. We will
use an arbitrary array of distinct nodes {Xn} where for each n, X„ = 
= , x n ,n }  Я (—151). We will also use an admissible point system
{Tn} introduced in Balázs and Kilgore [1], defined by

T n  — {f(),n? • • • > fa—l,n> &0 ,П1 • • • 1 &a—l,n} i

where the index a is fixed by the relationship a = . The points in Tn
must satisfy for some С > О, К  > [C], and n =  1 ,2 ,...

(1) - 1  < f 0,n ^ ^ fa-1,n ^ - 1  +

й  «a-l,n  ^
(п + К У
^ 50,r» ^ 1

< 1 - (n +  K )2

On X„ we will define Lnf  for each /  G C r [ - l , l ]  to be the Lagrange 
interpolant to /  among the polynomials of degree n — 1 or less, and we will 
define Pnf  to be the polynomial of degree n — 1 + 2o which interpolates /  
on the set X„ U Tn. For any given n, the operator Pn is ordinary Lagrange 
interpolation if X„ n Tn = 0 and if all of the inequalities in (1) are strict. If 
however for a given n these conditions are not met, then Pnf  will interpolate
/ (0)........ /С*-1) on any point which is listed k times in X n UT„. In such a
case, k < a + 1 follows from the definitions of X n and Tn.

In our previous contribution [1], the error in ||/ ( fc)—-Pii^/lloo, k = 0 , . . .  , r 
was estimated in terms of ||Zn ||oo and ||L£||oo where

П
L nf ( x ) : =  f ( x j , n ) t j , n ( x )

and 3~X

K f ( x) := E /(**-)
1/2

1 — X2. J’n >
(2)
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the polynomials £j,n ( x )  being the fundamental polynomials satisfying 
£j,n(xj ) — bjk (Kronecker delta), for 1 < j ,  fc < n, Here, we will make 
similar estimates in weighted Lp spaces. Among other things, we will give 
simultaneous approximation extensions of the Erdős-Túrán Theorem [5] and 
of the result of Erdös-Feldheim [4] and answer affirmatively a conjecture of 
Szabados and Varma [9].

Notation: For 1 < p < oo, we will say that /  £ Lp if

l
J  \f\pdx < oo
- l

and /  £ (L log+ L)p if /  log+ | / |  £ Lp. When we wish to speak of the 
“weighted norm” with weight w(x), we will assume that w(x) £ L1, w (x) > 0, 
with w (x ) > 0 on a subset of positive measure in [—1, 1] and that

(3) ll/llp,w ■ (p < oo).

However, a weighted norm is sometimes represented as

(4) (p < oo).

We will also agree that | | / u | | o o  is a “weighted norm”, in the sense of ( 4 ) .  We 
have an actual norm only when the weight function is positive a.e. Otherwise, 
we have only defined a seminorm. And we do not have a norm if p < 1. 
Nevertheless, we continue to use the notation || • ||p in these cases. We define

||uX„||p =  sup \\uLnf\\p and ||wX*||p =  sup \\uL*nf\\p.
I l /H oo<l H / l lo o S l

We will say that the weight function v is of Markov-Bernstein class 
for a given p, 0 < p ^ oo, if for any non-negative integer s the weight
u(x) = v(a:)(l — x2)*̂ 2 satisfies for pn any polynomial of degree n or less the 
inequalities

( 5 ) “(*)(1 -  x2)r/2Pn ’(*) < M inr ||u(x)p„(x) I pi

where r is any positive integer, and

( 6 ) H * )P n (* ) ||p  ^ M 2||u(*)p„(*)||p,/n,

A cta  M athem atica  H ungarica 61, 1993



INTERPOLATION AND SIMULTANEOUS MEAN CON VERGENCE 65

in which the norm Ц-Цр./п is taken on [-1 + c /n 2, 1 —c/n2] for some c > 0, and 
M\ and М 2 are constants independent of n and pn. An interesting problem 
would be to characterize this “Markov-Bernstein” class of weight functions 
with non-trivial necessary and sufficient conditions. We do not enter into this 
question here but rather point out two large and slightly different classes of 
weights which share the requisite properties.

The class of generalized Jacobi weights (GJ) is defined for example in 
Nevai [7]. The weight w(x) is GJ if

m

(7) w(x) = ф(х)(1 — x )r° — X|r *(l + г )Гт+1
k=1

for —1 < z < 1, where -1  < tm < tm- i  < . . .  < ti < 1, Г* > — 1 for к =  
= 0 , . . .  , m + l ,  and both ф(х) and (^(x ))_1 are in T °°[-l, 1]. The definition 
may be modified if we want the representation (4). If ф is continuous with 
its modulus of continuity satisfying

[  ^ (tM ) j, _I -----— dt < 0 0 ,
0

then we say that w is generalized smooth Jacobi (GSJ). The weight class GJ 
is contained in the Markov-Bernstein class for 0 < p < 0 0  (Lubinsky and 
Nevai [6]).

The class J*, 1 ^ p ^ 00, of Ditzian and Totik [3, Definition 8.1.1], is 
similar to the GJ class, except tha t ф(х) need not be bounded at ±1 but can 
have, for example, logarithmic growth near these points. The weight class 
J* is contained in the Markov-Bernstein class for 1 ^ p ^  00 (Ditzian and 
Totik [3], (8.1.3) and (8.1.4)).

A Jacobi weight w may be described by

w(x) = (1 — x )" ( l +  x)13, where a , ß > — 1,

and is in both of the classes GSJ and J*.
Finally, we denote by En(g) the error in the best uniform approximation 

to a function g by polynomials of degree n or less, and we denote by Q„(x) 
the monic polynomial of degree 2a which is zero on the points of T„:

(8) Qn(x) — (x — to,n) • • • (® G-l,n)(z -  s0,n) • • • (® 5a — !,»»)•

R esults

Our main result has already been established for the case p = 00 and 
u(x ) = 1 in Balázs and Kilgore [1]:
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T heorem. Let f  € Cr[—1,1] and for n =  1 ,2 , . . .  let X n be a set of 
nodes in (—1,1) and T„ an admissible point system. Let L„ be the Lagrange 
interpolation on X„ and L* the operator defined in (2). Let P„ be the inter­
polation operator defined on X„ UT„. Then for 0 < p < oo, and for a weight 
function и o f Markov-Bernstein class and for к = 0 , . . .  , r

(a) for r even

Iu (/(fc) -  ^ fc)/ ) | |p = 0 ( l ) n fc- r£„_1( / ( r>)||uin||p,

(b) for r odd

u ( /W _  p W /)|| =  0 ( l)n fc- r+1J5n_1(/^r )̂ u \ / \  — x2Ln
p

9

(c) for r odd

|« ( /(*> -  P ^ f )||p = o (i)n ‘-'j5n. 1(/<r>)||tii;nj,.

Remark. The constants denoted by 0(1) may be seen to depend on the 
ratio СI К  in (1), but not per se on the choice of Tn.

Our theorem links the simultaneous approximation properties of Pn to 
the more fundamental approximation properties of Ln. In particular, it 
states that P„*^/ converges to / ( fc) and gives a rate of convergence for each 
к = 0 ,. . .  , r provided only that the norms of Ln or respectively of L*n remain 
uniformly bounded. We make this statement explicit in the following:

Corollary 1. I f  in Theorem 1 we have ||u£n||p ^  M  for all n, then
(a) for r even

|u ( /W _  p W /) ||p = 0 {п к~г)Еп^ и (г)\

(b) for r odd

!„(/(*) _  p W / ) |  = 0 (п*-г+1)£ п_ 1( /И ) .

If on the other hand ||uP£||p ^ M  for all n, then
(c) for r odd

|u(/W  _  p W / ) ^  =  0 (nfc- r )P n_1(/<’->).

The hypotheses of this corollary are, of course, not satisfied if p = oo. 
But for p < oo nodes can exist which do satisfy the hypotheses. Our next 
result also uses Nevai [7, Theorem 1] and provides methods for satisfying 
the hypotheses of Corollary 1. Nevai and Vértesi [8] have recently stated 
a similar result to Corollary 2 for weights и £ GSJ, with more restrictive 
conditions on the added node set Tn.
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C o r o l l a r y  2. Let 0 < p < oo. Let w £ GSJ. Let и be a weight 
function of Markov-Bemstein class such that и £ {L log+ L)p and such
that и /  \Jwy/ 1 — £ Xp. For n = 1 ,2 , . . .  Zei be the zero set of
the n-th degree orthogonal polynomial associated with w, and let Ln be the 
Lagrange interpolation based on X n. Then there exists M  such that for n = 
= 1 ,2 ,. . .  , ||uF„||p ^ M  and ||uF* ||p ^ M . Therefore for any integer r > 0 
and for f  £ CT[— 1,1], and for Tn any admissible point system, the sequence 
of interpolation operators Pn defined on X n U Tn for n = 1 ,2 ,. . .  yields for  
к = 0, . . .  , r the rates of simultaneous convergence given in

!«(/<*> -  4 k)f)\\p = 0 ( l ) n k~rEn- i ( f ^ ) .

R e m a r k s . 1. The hypotheses of Corollary 2 regarding и are met if и £ 
£ GJ for some p, 0 < p < oo (representation 4). They are also met if и £ J* 
for 1 ^  p < oo. Of course, one must provide a suitable weight w £ GSJ. 
This will be done in Corollary 4.

2. The Erdős-Túrán Theorem [5] asserts the following:
For each f  £ C[a,b], let Lnf  interpolate f  on the zeroes o f the n-th degree 

orthogonal polynomial defined for w £ L2. Then M f - L nf)\ \2 -* 0.
3. It is of interest to see when Corollary 2 allows the choice и = w x^p. 

Since wx!p j  \Jw y/\ -H ß  £ Lp we have ^  — \  > — If this inequality
should hold for all p, 0 < p < oo, it necessarily follows that To Si — Similar 
bounds exist for Tm+i. In particular an augmented version of the Erdős- 
Túrán theorem follows with any weight function w(x) in GSJ, with weighted 
mean convergence of the derivatives up to the r-th as well.

More generally, one may state the following:
C o r o l l a r y  3. Let и2 be a weight function of Markov-Bemstein class. 

Let X n, n = 1 ,2 ,. . .  be the set of zeroes o f the n-th degree orthogonal poly­
nomial associated with u2. Let f  £ CT[—1,1], and let a =  Let Tn be
an admissible point system. Then for к = 0 , . . .  ,r, with q =  r if r is even 
and q =  r -  1 if r is odd

|u ( / W _  p W / ) | 2 £ const •

The result of Erdős-Feldheim [3] is tha t for all functions /  £ C[—1,1] 
and for 1 < p < oo, ||гг(/ — Fn/) | |p —► 0, where w is the Chebyshev weight
(1 — t2) , and L„ interpolates on the zero set of the n-th degree Cheby­
shev polynomial. Szabados and Varma [9] have shown that a simultaneous 
interpolation version of this result must hold for p = 2, when the nodes T„ 
are added at the locations ±  cos £я-, к = 0, . . .  , r, leading to their conjecture 
that the same is true for all other values of p < oo. We affirm this conjecture
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here, showing that a weight function и and added nodes T„ can be chosen in 
the general setting. On the other hand, the choice of the Chebyshev nodes 
is nearly unique.

Corollary 4. Let 0 < p <  oo, and let и be a weight of Markov- 
Bernstein class such that и € (L log+ L)p. Let X„ be the set of zeroes o f the 
n-th degree Chebyshev polynomial, and let Ln be the interpolation defined on 
X n for n =  1 ,2 ,---- Then

(a) ||uXn ||p and \\uL„ ||p are uniformly bounded, whence \\u(f -  Lnf)\ \p —► 
- 0, a l l f e C [ - 1, 1].

(b) Let f  £ Cr [—1,1]. I f  T„ is any admissible point system and if  Pn, 
n = 1 ,2 ,...  is the sequence o f interpolation operators based on X„\J T„, then 
for к — 0 , . . .  , r

IU( f (k) -  ^ fc)/ ) | |p = 0 (n fc- r )i?n- i ( / (r)).

(c) More generally, part (a) holds for all p and for all и £ (L log+ L)p, 
with Ln interpolating on nodes generated by w £ GSJ, i f  and only if  Го = 
=  -1 /2 , Гт+1 = -1 /2 , and 0 = ГХ = . . .  =  Гт  (cf. (7)).

In view of Corollary 4, it is interesting to speculate exactly which weights 
и £ (L log+ L )p are of Markov-Bernstein class. However, we do get conver­
gence for all weights и £ Lp+e, for any £ > 0 and near-convergence for all 
weights и £ Lp, with no special assumptions about u.

Corollary 5. Let 0 <  p <  oo; let X n be the set o f zeroes of the n-th 
degree Chebyshev polynomial, and let Ln be defined on X n. Then

a) I f  и £ Lp+e for some £ > 0 we have for f  £ Cr [—1,1], Tn any 
admissible point system, and Pn based on X n U Tn

u i f W - p W f )

b) I f  merely и £ Lp, then

< i {k) -  p ^ ) = 0 (я ‘ - ' ) £ „ . 1( / 1'>).

Existing results

For Theorem 1, there are two basic components for the proof. The first 
component is the “Timan theorem with interpolation” :

T h e o r e m  A (Balázs-Kilgore-Vértesi [2]). Let f  £ C r [—1,1]. L e tT n be 
an admissible point system in [-1,1]. Then there exists a sequence {pn} of
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polynomials of degree m  = n — 1 +  2a or less such that pn interpolates f  on 
Tn and for к = 0 , . . .  , r and for  |x| <! 1

| / (i)(x) -  P?>(*)| =  0 (1 ) • ( Em-r(/(r)>.

Corollary of T heorem A (Balázs-Kilgore [1]). Let Qn be the se­
quence of monic polynomials o f degree 2a such that Qn is zero on Tn . Then 
the following statements hold for x £ [—1, 1] and in particular by continuity 
at the zeroes of Qn:

(a) for r even

(9)
f ( x ) - p n(x)

Qn(x)
= 0 (n a~r)En- i ( f ^ ) ,

(b) for r odd

( 10)

and

f ( x ) - p n(x)
Qn(x)

= 0 (n a~r+1)En( f <r>)

( И )
( f ( x )  -  pn(x ))V  1 -  X2

Qu(x)
= 0 ( n a~r)En( f (r>).

The second component of our proof is an inequality of Dzyadyk type, 
which follows easily from the inequalities (5) and (6):

LEMMA. For a = we have for pn a polynomial of degree n, к =
= 0 , . . .  , r, for w o f Markov-Bernstein class, and for Qn{x) as in (5)

( 12)

and

w(z)[Q„(a;)p„(2;)](fc)
p

0 ( l ) n fc ||и;(а;)рп(а;)||р for r even

(13) tu(x)[Qn(x)p„(x)]^^|| = 0 ( l ) n fc w (x ) \ / l  -  x2p n(x) for r odd.

Corollary 2 is central to the further results stated, and it depends upon 
our theorem and upon Neva! [7, Theorem 1]:

T heorem B. Let w 6 GSJ and 0 < p < oo. Let v be a not neces­
sarily integrable Jacobi weight function and let и be a nonnegative function  
defined in [—1,1] such that и £ Lp, uv £ (L log+ L)p, ■■ , " £ L p and

V  w y /l  — x^

vy/w y/l — x2 £ L 1. Then for every bounded function f
(1 4 ) sup \\Ln(w, vf)u\\ < const

n>l
In formula (14), Ln(w,v f )u  signifies the expression
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u ( x ) ^ 2 v ( x j ) f ( x j ) i j (  x),
3=1

which interpolates v f  on the set X„ consisting of the zeroes of the n-th 
degree orthogonal polynomial associated with the weight w.

Proofs
All of our results may be seen easily to follow from the Theorem, whose 

proof we will defer until the end. Corollary 1 is obvious. We turn to Corol­
laries 2, 3, 4 and 5:

P roof of C orollary 2. Invoking Corollary 1, we use in Theorem В 
v ( x ) = 1 when r is even. When r is odd, we apply Theorem В with
tt(x )\/l -  x2 in place of u(x) and using v(x) =  (1 -  x2) . We then have

u(x)L*nf ( x ) =  u(x)y/ l  -  x 2Ln(vf)(x).
It follows automatically from w  £ L1 that

v \J w y /1 -  x2 £ L 1 for v = 1 or v = (1 — x2) 1̂ 2.

P roof of C orollary 3. From the Erdős-Túrán theorem, ||uT„||2 is 
bounded. The result follows then from Corollary 1.

P roof of C orollary 4. In Corollary 2, we use w(x)  =  ( l - я 2) l/2. Thus

£ Lp if and only if и € Lp,
V w \J  1 — x 2

and for u(x) =  1 (r even) or for v(x) = (1 — x2) (r odd) we also have 

v(x)\Jги (х )\/1 -  x2 =  v(x)  £ L1.

P roof of C orollary 5. Applying Holder’s inequality we see that
H f  -  Pnf)\ \p <\ \ ( f  -  P n D U H p s

where 1/ r  +  1/ n  =  1. If s = 1, we obtain p a rt (h) of the corollary, applying 
the theorem of Balázs and Kilgore [1] (uniform norm version of the Theorem). 
If и £ Lp+C for some e > 0, then  let p < ps < p + e, and r  is finite. Part (a) 
follows from Corollary 4, with p  replaced by pr and и replaced by 1.

Finally, we give the proof of the Theorem. We will henceforth abbreviate 
the cumbersome double subscript representation for the nodes.

P roof of T heorem. We begin by invoking Theorem A to write

(15) ||« (/W  -  p W f )||p < K p ( |u ( / ( fe> -  № ) ||p + ! u P ^ i f  -  p„)|| J  ,

in which {pn} is the sequence of polynomials guaranteed by Theorem A, and
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Kp = 1 if p > 1, Kp =  21/* if 0 < P < 1.
From Theorem A we may obtain the uniform estimate

/ (fc) -  Á k) = 0 ( l ) n k- rEm- r( f V )  (m = n -  1 + 2a)
OO

which, combined with the fact that

|«(/(‘) -  S ll“llp ||/w  -  Pn » L .
establishes that the first term on the right of (15) satisfies the conclusions of 
the Theorem. Therefore, we consider only the second term.

From Theorem A, the polynomials pn precisely interpolate /  on the 
points in Tn for each n (including the interpolation of derivatives on any 
points listed with multiplicity), and thus we have

(16) uP<*)(/ -  p„)

in which ^ Xq т а У be defined as a limit, if needed.
We now proceed in various ways from (16) to prove parts (a), (b), and

(c) of the Theorem:
(a) From (16) we may note using (12) and then (9) that

< M n k max
X j  £ X n

f ( x j ) ~ P n ( xj ) • sup
Q n ( X j )

= 0 ( l)n * -r£ „_1( / ( r> ) |K „ ||p.

и(г ) ai l o(x )
j=1

(b) From (16) we may carry out analogous stepseto those performed in 
part (a), only using (13) in place of (12) to reach

“(* )£  ( /(XQ . £ ) Xi))

Z M nk+1~rEn( / ^ )  a > /l - x 2Ln

(c) We merely note that
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"  l  № j )  -  P n { X j ) ) J l  -  X)

Ф ) Е ' Q Á xi)
Q n ( x )

- l ( f c )

M x )

< M n k

L\A  ̂

V  Q• < * > )  )
using along the way (13). We now may use (11) and an argument similar to 
that in (a) to  reach the conclusion tha t

|» ( / (‘ ) -  =  0 ( l ) n * - '£ n( /M ) ||« £ ; | |p .

This concludes the proof of the Theorem.
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SOME CONDITIONS FOR THE 
COMMUTATIVITY OF RINGS

M. ASHRAF and M. A. QUADRI (Aligarh)

1.

Throughout, R  will represent an associative ring (may be without unity 
1) with Z(R),  N(R)  and C(R)  denoting its centre, the set of nilpotent ele­
ments and the commutator ideal of R  respectively. For any a, b € R as usual 
[a, b] = ab — ba. In his paper [2] Bell proved that a ring R  generated by n th 
power of its elements and satisfying the polynomial identity [xn,y\ =  [x,yn] 
for all x ,y  in R and a fixed positive integer те > 1, is commutative. M oti­
vated by the above observation Harmanci [4] proved that a ring R with unity 
1 satisfying [xfc, у] = [x, yk] (к = те, те + 1), is commutative. Recently, G upta
[3] generalized the above result as follows:

T heorem G. Let R  be a semiprime ring with unity 1 satisfying

(1) [*n,y] -  [*,yn] € Z(R),
(2) [x”+1,y] — [x,yn+1] € Z(R)
for all x ,y  € R and a fixed integer n > 1. Then R is commutative.

Gupta also remarked that in view of an example [9, Example 2], Theorem 
G can not be extended to primary rings. However, the question remains open 
whether the existence of unity 1 in the ring of the above theorem is essential 
and both the identities are necessary for the result. In this direction we 
generalize the mentioned result to a great extent as follows:

T heorem 1. Let R be a semiprime ring. Then the following statements 
are equivalent:

(i) R is commutative.
(ii) There exists a positive integer те > 1 such that [x, [xn, y] — [x, y"]] =  0 

for all x, у in R.
(iii) There exists a positive integer те > 1 such that [у, [xn, у] -  [x, yn]] =  0 

for all x, у in R.
Before beginning the proof, we state the following result due to Bell [2] 

which will be used in the subsequent text of our paper.
Lemma 1. Let R be a ring satisfying an identity q(X)  =  0, where q {X ) 

is a polynomial in a finite number of noncommuting indeterminates, its coef­
ficients being integers with highest common factor 1. I f there exists no prime
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p for which the ring of 2 x 2  matrices over GF(p) satisfies q(X)  = 0, then 
R  has a nil commutator ideal and the nilpotent elements o f R form an ideal.

Lemma 2. Let R be a prime ring satisfying any one of the conditions
(ii) or (iii) o f our theorem, then R has no nonzero nilpotent elements.

Proof. Let a be an element of R  with the property that a2 = 0 ф a.
Assume th a t R satisfies (ii). Replace ax for x and ax a for у and use 

the fact that a2 = 0, to get ax(ax)"axa = 0 i.e. (ax)n+3 = 0 for all x in 
R. Again if R  satisfies (iii), then by putting axa for x and xa for у in the 
identity and using a2 = 0, we get (axa)(xa)n(xa) = 0 i.e. (ax)n+3 = 0 for all 
x  in R. Hence, in both cases (ax )n+3 = 0 for all x in R. If aR ф 0, then the 
above shows th a t aR is a nonzero nil right ideal satisfying zn+3 = 0 for all 
z  in aR. But a well-known result of Levitzki [6, Lemma 1.1] rules this out 
and hence aR  =  0. Thus, the primeness of R  forces a =  0.

Proof of T heorem 1. Since R  is semiprime, it is isomorphic to a 
sub direct sum of prime rings R a , each of which as a homomorphic image of 
R  satisfies the hypothesis placed on R. Hence, we may assume that the ring 
R  is prime satisfying the conditions of the theorem.

Every commutative ring R  satisfies (ii) as well as (iii) and so (i) =>• (ii) 
and (i) =>• (iii).

Next we show that (ii) => (i):
Let R satisfy the condition f (x,  у) = [ж, [ar”, j/] — [ж, 3/”]] = 0 which is 

a polynomial identity with coprime integral coefficients. Consideration of 
x  = Ец  + E \2  and у = ü?2i assures th a t no ring of 2 X 2 matrices over 
GF(p), p a prime, satisfies the identity f ( x ,  y) = 0 and hence by Lemma 1, 
the commutator ideal of R  is nil. But in view of Lemma 2, R has no nonzero 
nilpotent elements and, therefore, R is commutative.

Arguing on the same lines, we can prove that (iii) implies (i).

2. A nother com m utativity condition

Theorem 2. Let R be a ring with unity 1 in which for every x ,y  in R, 
[x, xny -  x y m] =  0, where m  > 1 and n > 1 are fixed positive integers. Then 
R is commutative.

In preparation for the proof of the above theorem we begin with the 
following lemmas, whose proofs can be looked in [5], [8, p. 221] and [10] 
respectively.

LEMMA 3. I f for any x ,y  in R we can find a polynomial px,y( t) with 
integer coefficients which depend on x and у such that x 2pXiV(x)—x commutes 
with y, then R  is commutative.

Lemma 4. I f  [x,[x,y]] = 0, then [xfc,y] = fcxfc-1[x,y] for all positive 
integers k.
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L e m m a  5. Let R be a ring with unity 1 and f : R —> R b e a  function 
such that / ( x ) =  /(x  -f 1) holds for all x in R. I f  for some positive integer 
k, x kf ( x )  = 0 for all x in R, then necessarily /(x ) = 0.

P r o o f  o f  T h e o r e m  2. Our identity of the theorem gives 

(*) xn[x,y] = x[x,ym] for all x ,y  in R.

If n — 1, then we have x[x,y] = x[x,ym]. On replacing x by x +  1 and 
simplifying with the help of x[x,y] = x[x,ym] we get [x,y — ym] = 0 for all 
x in R. Thus R  is commutative by Lemma 3.

Let n > 1. Now we show that C(R)  Q Z(R).  In view of Lemma 1, 
C(R)  Q 1V(Ä), since x = Е ц  + E12 and у = Е ц  fail to satisfy (*). By 
making repeated use of (*), we see that for any positive integer t

xin[x, y] =  x^  1̂ "x[x, ym\ =  xx^ 2>"x m2 t m t=  . . . =  X х ,У

Now if a e N(R) ,  then for sufficiently large t, we get

(1) xin[x,a] = 0 for all x in R.

In view of Lemma 5, this yields [x, a] =  0 for all x in R.  Hence a € Z(R),  
which gives that

(2) C(R) Q Z{R).

Replace x by 2x in (*) to get 2n+1xn[x,y] = 22x[x,ym], Combining 
this with (*), we obtain (2n+1 — 22)x"[x,y] = 0. If q = 2n+1 — 22, then 
gx"[x,j/] = 0. By using Lemma 5 we have g[x,y] = 0. Since commutators 
are central, hence by Lemma 4, [x9,y] = qx4~l [x,y] = 0, i.e.

(3) xq £ Z(R)  for all x in Ä.

Further by replacing у with ym in (*), we get x"[x, ym] = x [x, (з/т )т ]. In 
view of (2) and Lemma 4 this yields x"[x, ym] = mym(m~1)x[x, ym]. Combin­
ing the last identity with (*), we get x"[x,t/m] = mym(m -1)xn[x, у]. Again 
in view of (2) and Lemma 4, this implies that x"[x,ym] = j/(m -1)2[x, j/m]xn,
i.e. (1 — y(m- 1)2)[x ,2/m]xn =  0. With the help of (2) and (*) we have 
(1 — у(т - 1)2)[х, y]x2n_1 =  0 and by Lemma 5, we conclude that
(1 — 2/̂ m -1̂ )[x, y] =  0. But in view of (3), this yields [x,y — t/IJ(m-1)2+1] = 
= (1 — )[x,y] = 0 and, therefore, R  is commutative by Lemma 3.

The following example shows that the existence of unity 1 in the hypoth­
esis of the above result is not superfluous.

E x a m p l e  1. Let Dk  be the ring of к x  к matrices over a division ring 
D  and Ak  — {(a,j) € D k  /  a,j =  0 (i ^ j)} . If к > 2 then A k  is a noncom- 
mutative nilpotent ring of index k. For any positive integer m and n, A3 
satisfies [x,x"y — xym\ = 0.
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However, the above theorem can be extended to a wider class of rings 
called s-unital. A ring R  is called left (resp. right) s-unital if x £ Rx (resp. 
x 6 x R ) for all x in R  and R  is called s-unital if x € RxCixR for each x in R.

Let R  be a left s-unital ring satisfying the identity [x,x"y -  xym] =  0. 
Using the same arguments as used to get (1) in case of Theorem 2, this yields 
that xtn[x,a] = 0 for a € N(R)  and x € R- Since R  is left s-unital, choose 
e € R with ea = a, then by above we can easily see that a—ae = etn[e, a] =  0.

Now let x be an arbitrary element of R  and choose e' 6 R  with e'x =  x, 
then there exists e" G R  such that e"x = x and e"e' = e'. Now (x - x e ")2 =  0
i.e. x — xe" is nilpotent and e'(x — xe") = x — xe". Thus the fact just claimed 
above implies that x — xe" = (x — xe")e' = 0, which shows that xe" =  x. 
Hence, R  is s-unital. Now in view of [7, Proposition 1] we may assume that 
R  has unity 1 and the commutativity of R  follows from Theorem 2, which 
establish the following result:

T heorem 3. Let R  be a left s-unital ring in which for every x ,y  in R, 
[x,xny — x y m] = 0 where m  > 1, n ^  1 are fixed positive integers. Then R  
is commutative.

One might conjecture that the above theorem should hold for a right s- 
unital ring as well. But the following example suggests that a right s-unital 
ring satisfying [x,xny — xym] = 0 need not be commutative.

Example 2. Let S  = {(£ °),(o q) ,( °  ° ) ,( j  *)} which is a right s-unital 
subring of the ring of all 2 x 2 matrices over GF{2). It can be easily seen 
that [x, x 2y -  xy2\ =  0 for all x, у in S. However, S  is not commutative.
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ESTIMATES OF THE SHEPARD 
INTERPOLATORY PROCEDURE

GIULIANA CRISCUOLO (Napoli) and G. MASTROIANNI (Potenza)

1. In tro d u c tio n
In this paper we consider a linear positive operator Vm which generates 

a rational F-stable interpolatory procedure [8, 13]; some properties of Vm 
are shown and a convergence theorem of Korovkin type is given.

An interesting particular case of Vm is the Shepard operator Sm intro­
duced in [14] and studied by numerous authors; we recall for example [3, 4, 
8, 10]. The principal aim of the present paper is to estimate the convergence 
order of the operator Sm with respect to different matrices of knots.

2. T he  o p e ra to r Vm{A\<p)
Let A := {xmi,, i — 1 ,2 , . . .  ,m , m  € W} be an infinite matrix of different 

knots belonging to I  := [—1,1]. We denote by 1т>к the fc-th fundamental 
Lagrange polynomial of degree m -  1 corresponding to  the matrix A  and 
defined by

lm,k(x )
P m( x )

p ' n i X n ' k X x  -  Xmi k y
к  =  1 , 2 , . . .  , m ,

where m
Pm(x) = Д ( х  -  Xm,,).

i=l
Let

$m (x) =
Lfc=l

1ш ,кП  '
-1

where {v>m} is a sequence of functions such that y>m(xTO)j) ф 0, i — 1, 2, . . .  , m. 
Thus, for every function /  defined on I  we introduce the operator Vm by

( 2 . 1) Vm(A; V] / ;  x) = (Fm/)(x )  = Vm{ f ; x) :=

:= Фт ( х ) ^
(P'm{x m ,k)

/ ( х т<к), X €  / .

Obviously, Vm is a linear positive operator corresponding to the matrix A  and 
to the sequence {y?m}; by (2.1) it follows also that if /  =  eo with е*(х) =  x k,
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к e N,  then Vmf  = / .  Further, Vm(f; x ) is a rational function of degree 
(2m -  2, 2m  — 2) and being Фт (а;т ,*) it can be written in the
form

( 2 .2 ) Vr l2m,k(X)— ^m(*) ф I , f(xm,k)- k=l v m{x m,k)

In particular, by (2.2) we have Vm(f;  z TO,,) =  / ( z m)t), i =  1 ,2 , . . .  , m.  More­
over, since

min f ( x )  < Vm{ f \ x )  < т а x f ( x ) ,
x £ I  x £ l

we deduce th a t Vm is an F-stable interpolatory procedure, i.e. stable in the 
Fejér sense (see, for example [12, 13]).

Denoting by Hmf  the Hermite-Fejér polynomial defined by (Ят / ) ( г т ^ ) = 
= f { xm,k), (H mf) ' (xmtk) =  0, we prove the following

Proposition 2.1. For every matrix A  and for every sequence {v>m}, we 
have

(2.3) (Vmf ) \ x mj ) = 0, i =  1 ,2 ,...  , m,
(2.4) Vm( f ; x )  = Hm( f ; x )  + R m(f-,x), x e  I ,

where Hmf  is the Hermite-Fejér polynomial and

n  i t  _ \  1 V '  rn,k( x ) r _  _Rm{f\x) — 9 2_̂  * \(ж xm,k) f(xm,k)xz k=1 v m\xm,k)
1

X J  Ф" (xm,fc +  (* -  xm,k)t)tdt.

P r o o f . S ince

we have

thus,

(2.5)

dx *m(x) = 2 J2lm,k(x)
k=1

_ K M _ ^
Ф т{хт,к̂)

k m
K ( x )

2 У! lm,k(x)
k=1

K M  ,
Фт(^т,и)

Фщ^ш,!)
2 lm,k{xm,k)-
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Differentiating (2.2), in view of (2.5) we deduce (2.3).
On the other hand, relation (2.4) follows by (2.2), (2.5) and recalling 

that

^ т ( г ) — ^ т ( гга,1;)

+
(* -  Хт,кУ

1 , ^m(Xm,k),_ _ \
1 + И П ------“  х™.*)L Фт(Жт,*)

I

J  Ф" (xm)k + (x -  xm<k)t)tdt.

+

□

We remark tha t by Proposition 2.1 it follows that the positive oper­
ator Vm is a rational non-integer extension of the Hermite-Fejér operator 
Hm, which in general is not positive. It follows also that R m(e0; x) = 0,
^ m (/i ^m,t) — 0*

Particularly interesting cases of the operator Vm have been introduced 
and studied separately in previous papers. For instance, if {pm(w)} is a 
sequence of orthonormal polynomials in I  with respect to a weight function 
w and we set

A — {З'ш,« /  Pm(^i 2-m,«) — 0) * — 1? 2 , . . .  , m, m  G N },
rm—1

4>m(x) = А т{ щх )  = 

(m-th Cristoffel function), then since

^ P k i w\x )
-1

fc= 0

л - 1/ X

where Am,k(w) = Am(w ;zm>fc), we obtain the operator

Fn, ( / ;  x) = Ат(щ x) \ ’ /
fc=l Am’kyw)

x e  I,

introduced by Nevai in [11] and studied in [6].
If, for any matrix A  of knots, we set <pm(x) = 1, then we obtain the 

operator

Lm{f ) *) —
£  lm, k(X) f ( X™,k)

k=l ____________________
m 5
E  £ ,*(*)Jfe=l

introduced by Hermann and Vértesi in [9].
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Finally, if for any matrix A  = {хт>,-, i — 1,2, . . .  , m, m  € N } we set

1 m
<Pm(x) = - r j - y  Pm(x) = П ( Х _

P m (  > k=l

then we have the Shepard operator
m
Ё 0  -  Zm,fc)- 2/(Zm,*)

(2.6) Sm(A; / ;  x) =  Sm(f; x ) = k=1 m----------------------- ,
E { x - x m,k)~2
k=l

see [14]. This last operator is important in approximation theory and it is 
used for graphic representation of surfaces; for this reason it has interested 
numerous authors; among all we recall [3, 4, 8, 10].

In the next section we shall give pointwise estimates for the remainder 
term f ( x )  — Sm{f'i x) in the cases of different distributions of the knots. For 
the general operator Vm we state a necessary and sufficient condition for the 
uniform convergence of Vmf  to / .

Leto>(/;<5)= max \ f (x)  — f (y)\  be the ordinary modulus of continuity 
|x-y|<i

of the function / .  Then, the following theorem holds.
T heorem 2.2. Let Tm^{x)  = Vm(hx ; x) with hx(t) = (x — t)2; then Vmf  

converges to f  on I  if and only if

lim supTmi2( i)  = 0. 
m-° °  xei

Moreover, we have

(2.7) I/(* )  -  Vm( / ;  x)\ < 2ш ( / ;  у/тт,2(х ) )  .

Proof. Since Vm(eo-,x )  = 1, the first statement of the theorem is an 
equivalent formulation of the celebrated Korovkin theorem. Inequality (2.7) 
can be obtained by standard computations. □

3. Convergence estim ates for the Shepard operator
In the present section we consider the Shepard operator defined by (2.6) 

corresponding to two different matrices of knots and we give pointwise esti­
mates of the convergence order.
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The case of the equidistant knots.

T h e o r e m  3.1. I f  X  -  { -1  + ^ ,  к = 0 ,1 ,. . .  ,m , m e  N } , then we
have

l
(3.1) | / ( x ) - 5 m( X ; / ; x ) | £ ^  J  ^ ß d t ,  f  e  C°(I),  x 6 I .

m—1

P r o o f . Let xm<i = - l  + f£, г = 0 ,1 ,...  ,m, m e N .  Being 5m(X ;/ ;  xm,,) = 
= / ( x m>,), in the following we assume that x ф Let

1 ^  *̂ m,c ^  X K. #rn,c+l*

and let x myC be the knot closest to x, i.e. x — xmiC < яШ)С+1 — x. Thus, 
x -  xm<c < m -1 and i ffl|C+1 -  x > m -1 . Moreover, if xm^  < x m,c then 
2(c -  A;)m-1 < x -  xm<k < [2(c -  A;) +  l]m -1 and if > жто>с+1 then 
[2(A: — c) — l]m -1 < xmik — x < 2(k — c)m_1. Thus for every x e  I  with 
X ф 2̂ m,C5 we have

(3.2) |/ (x )  -  Sm( X ;/ ;x ) | < £  (* |* _  w |) j
fc=0

S u , ( / , | x - x m,c|) +  ^ - 2T-— — T2- +  ^  ~ a ,  " ^^  m2(z -  Хт'кУ ' tf ^ 1 т 2(ж -  xm>fc)2

<r. t. —1 \ I 1 r " ( / ; m 1[2(c—A:) +  l]) u { f \ 2 { k - c ) m ~ 1) ^
= W U , m  j + 4 ^  Т Г Г М 2  +  Z >  Г 9 Г * - И - 1 1 2  =

fc=c+l 
m

k—O (c — A:)2

= (c -A :)2 + (A: — c)fc=0 v '  fc=c+l v '

f c = c + l  

m
№  -  C) -  1]5

w (/; (A: -  c)m x)

, У ц (/;»т  ). 1 1  . „ _1 4 I V—> I

i T w( f ; m  ‘) + j X ) '  
•=2

c+1
m ,  ,  . _ X4

V2

Now
im *

1 ^ j f  dt
T ^ m J  ^  l ^ 2’

(i—l)m—1

and
w (/; im  *) < 2u>(/; f), (г -  l)m  1 й t < im - l
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Thus

(3.3)
w ( f \ i m  x)

i=2

m tmr
^ 2  /  Ut  =
i= 2 ,,  ,X__,(« — l)m_l

Since
1w ( / ; m - 1 )  <  —  f  w( f ; t ) t~2dt, 

m J
m—1

by (3.2) and (3.3), inequality (3.1) follows. □
By a proof similar to that of Theorem 3.1 (cf. Bojanic [5]), one can prove 

also the following
C o r o l l a r y  3.2. If the knots xmii, i = 1 , 2 ,m , m  e  N  of the matrix 

X  satisfy the condition

c\m  1 < |xm>,+i -  xm,f| < c2m  x, i = 1 ,2 ,... , m -  1, m £ N, 

with constants Ci and c2 independent of i and m, then we have
l

I /(* ) -  Sm( X ; / ;  x)\ < C m ~ l j  dt, f  € C °(J), * € / ,
m_1

where C is a constant depending only on ci and c2.
We remark that in general the Hermite-Fejér interpolation procedure for 

continuous functions and with respect to equidistant knots is not convergent.
Furthermore, in general the estimate (3.1) is more precise than the fol­

lowing

(3.4) | | / - 5 m(X ;/) | |< 8 a » ( / ;m -1logm ), m > 2, /  e  C \ l ) ,

obtained by Newman and Rivlin in [12] (cf. also [1]).
Indeed, if /  € LipMo, 0 < a  < 1 then by (3.1) we deduce

II/ -  5 TO(X ;/) || < const.m ", 

whereas the inequality (3.4) implies

I I / -  STO( X ; / ) | |  ^ c o n s t . .

In the case /  G L ip ^ l, both inequalities (3.1) and (3.5) give

II/ -  5 m(X ;/) || < const.
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Moreover, since for any matrix of knots X  there exists an f  £ LipMl  such 
that

V -  *»№/>11 г з м ^ Г ’
(see [12]), we can deduce that

sup I I / -  5m(X ;/) || > const.
/6LiPMi m

Finally, the error f  — Sm ( X ; / )  does not improve by assuming only higher 
smoothness of the function / .  Indeed, the following theorem holds.

T h e o r e m  3 . 3 .  The asymptotic relation
7TÍ

(3.5) :------ [Sm( X ; / ; x ) - / ( x ) ]  =  o( 1), m -+ o c ,
log m

is not valid for every x £ I  and for every non-constant function f  £ C 1.
l

P r o o f . Let /  £ Cx( /)  with / '(1 ) > 0 and / u( f ' ] t ) t~1dt < oc; it results
о

(3.6) ) -  / (x )  = (xm,t- -  x)f ' (x)  + Gx(xm<i), 

with

(3.7) |С7*(жт ,,)| < |x -  *m,i|w (/'I  I* -  Xm,i|) •

Thus

(3.8) Sm(X ; / ;  x) -  / (x )  = f ( x ) S m(X;gx; x) + Sm( X ; Gx, x),

where gx(t) =  t -  x. In view of (3.7) and proceeding as in the proof of 
Theorem 3.1, we deduce

1

So by the assumption j  u>(f; t)t xdt < oo, we have 
о

lim
m -*oo  log m Sm(X ;G x-,x) = 0,

uniformly on I . Thus by (3.8)
m 772

lim [Sm( X ; / ; x ) -  /(x )] = lim ------ 5т (Х ;5гх; x )/ '(x ) .
m —ю о  log 171 m — o o  log 771
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Finally, let x € ( l  ~ l j  for some fixed p < m; by some calculation

Sm( X ; g x;x) > const.
m

whence we deduce that

lim r - — S m(X]gx; x ) f ,( x ) >  0. □
m - f O O  log 171

As for the saturation of the Shepard operator Sm, it was proved in [7] that

I I / -  S,„(X; / ) | |  = o ( —Л O  /  is a constant.
Vm/

However, the saturation class is an open problem. J. Szabados [15] proved 
that

l
/ ' ( 0) = / ' ( 1) = 0 and J  < oo =* \ \ f - S m(X-J)\ \  = 0 ( £ ) ,

о
and he conjectured that the converse implication is also true. At present, in 
the converse direction only /  G f] Lip a  is known (see [7]).

a<l
The case o f the zeros o f orthogonal polynomials
Let (pm(tn)} be the sequence of the orthonormal polynomials with re­

spect to the weight function w € GSJ defined by
*+i

w(x) = ф(х)  |x -  íjkT*, x e l ,  
k=0

where -1  =  t0 < ti < . . .  < t s < te+1 =  1, 7* > - 1, к = 0, 1, . . .  ,s  +  1
1

and the function ф > 0 is such that f  ш(ф,6)6~1й6 < oo. The zeros of
0

pm(w]x) = a m(w)xm+ lower degree terms, a m(w) > 0, are denoted by 
x m,i = xmti(w)  and they are ordered so tha t хт д < xm>2 < . . .  < xm>rn. 
Set xm<i = cos 6mi for 0 ^  i < m  + 1 where x m<0 = — 1, = 1 and
0 ^  0mii < 7Г. Then1

(3.9) 0m,i -  0ra,i+i ~  m _1>

1 If A  and В  are two expressions depending on some variables then we write 

A  ~  В  iff \A B ~* | <  const, and |Л - 1 5 |  ^  const, 

uniformly for the variables in consideration.
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uniformly for 0 < г < m, m  6 N . (See [11, Theorem 9.22, p. 166].) Now we 
denote by У the matrix having as knots the zeros ofgm(x) = ( l - x 2)pm(to;x) 
and consider the Shepard operator Sm(Y)  corresponding to the m atrix Y.  
Let gx(t) = t -  x; in order to study the convergence of Sm(Y),  the following 
lemma is needed.

L e m m a . Let Y  be the matrix of knots corresponding to a weight w £ 
€ GSJ. Then

л/ i  _  x2
(3.10) |‘S’m(l';ffx;z) ^  const.— ——

holds with a constant independent of x and m. 

P roof. By (2.6) we can write
m+l
É  (* -  ^m, . ) '1

Sm(Y\gx\x)  — —
É  (г -  xm,.)_2
«'=0

9m(a;)g^(a;)
m+l

i= 0

For every x 6 I,  we denote by c the index corresponding to the knot xm<c 
closest to x. Recalling that ím,c(x) ~  1, uniformly for x € / ,  m G N  (see [11, 
p. 171]), we deduce

(3.11) \Sm(Y;gx-,x)\< |gm(a;)gm(ic)| ^  |gm(x)<?m(x)|
Í Í ,c (* ) [ ím (* m ,c ) ]2 ~  [9m (x m ,c)]2 '

Since q'm(x) = (1 — x 2)p'm(w ;x) — 2xpm(w;x)  we obtain

(3.12) к т ( х)9т(г )1 ^ ( 1 - ;с2) [2P m (w ;*)+ (l-*a) | M w;x)||lC (w ;x)|] .

Now, define wm by

wm(x) = (y/l + x + m  x)270+1 flx-ffcl + m 1)7* ( y / l - x + m  i )27j+l+1

it=i

Then

(3.13) |pm(u>;x)| ^  const.[wm(x)]~1/2,

uniformly in x £ /  and m € N  (see [2, Theorem 1.1, p. 226]). Moreover

(3.14) max j|p]„(to; x)|\/u ;m(x) ( \ / l  -  x + m  *) ( \ / l  + x + m  г) } <  

< const, m max 11pm(w, x )|\/Ü’m(x ) |
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(see [11, Theorem 19, p. 164]). Being by (3.12)

km(*)?mO»OI < (1 - x2)w -1(x)^2wm(r)p2m(w;x)+
+  y / \  -  X2 у / w m ( x ) \p m ( w ,  x ) |j  X 

X [ ( V I  -  X +  m _ 1 ) ( V l  +  X +  m - 1 ) у / w m (x ) \p 'm (w ;  x ) | j  j ,  

the inequalities (3.13) and (3.14) give

(3.15) |?m(®)9m(x)| й  Const.( 1  -  X2)lü~X(x) | l  +  ТПу/ l  -  X 2 |  .

On the other hand,

г t /  чI — X <*т —1 (^ )  ч / ч / ч
[ P m \ 'w 'i ^m,«)] — ~~~ / \ ^ т Д ш)Р т-Д ® ;)

where Ami,(tt>), i =  1, 2 . . .  , m  denote the Christoffel constants defined by
r m - l  -1

^ rn,i(w) -  ^m (w;xro,,) with Am(w;x) = pl(w;x)\  (m-th Christoffel
fc=o 1

function). Consequently

Since am- i ( w ) / a m(w) ~  1 and Xm}C{w)p1m_i {w\ xm>c) ~  m -1 (l -  z£ ,c) (see 
[11, Theorem 6.3.28, p. 120 and Theorem 9.31, p. 170]), we deduce

[?m (*m ,c)] 2 ~
m ( l  -  * m , c ) '

Furthermore, by (3.9) XmiC(w)  ~  Xm(w;x) and recalling that Am(w;x) ~  
~  m ~1wm(x), uniformly in x £ / ,  m  € N,  we obtain

(3.16) [imi^m.c)]
- 2 wm(x)

m i V l — x2 +  m -1
2 •

Combining (3.15) and (3.16) with (3.11), inequality (3.10) follows. □ 
Now we are able to prove the following
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T h e o r e m  3.4. L e t Y  be the matrix of knots corresponding to a weight 
w € GSJ. Then we have
(3.17)

l
|/(x )  —5m(y ;/;x ) |< c o n s t.m _1 J w ( f ; t \ / l -  x2) /  <= C°(I),  x e  / ,

m~ I

(3.18)

l/(x ) —Sm(Y; /; x)| < const. — - —  I  |/'(x)| + J Ш ( f ' ; t V  1 -  x2) у  j ,
m~1

f e c \ l ) ,  x e i .

P roof. Assume that x ф xm), and xm)C < x < xm>c+j with xm)C the 
closest knot to x .  Taking (3.9) into account, it is easy to prove that

|x — xm,c|^ const.m_1\ / l - x 2, |x - x TOifc| ^ c o n s t . — c | \ / l  — x2, к ф с, 

and for sake of brevity we omit the computations. Thus,
m / \2

I /(*) -  ; /; *)l  ̂Y  — 7 ^ 2 ^ ;  Iх -  Xm.fcD-. A x  — Хт.к r

Since

we have

ÍT'o (X -  X™,k)

Ц / ; ^ )  .  M f ; h )
<  2 -

Si ’ 

l/(x ) -  Sm( Y ; / ;  x)| <

2̂ = ^1?

< const. < w ( / ;  ^  I + \ / l  — x2 ) 1 <V ___1__  ( t . l J í l

& k - c A f ' *
кф с

:)  + E ^ ( / ^ v 4 ^ ) } s

j w  у  u> ( f ; t \ / l  -  x 2)  t _ 2 d i | ,

< const.< u> ( / ;

< const

____  l ____
and observing that u(f ;  т ~1у/1 — x2) < const, m-1 /  cj( / ;  t \ / l  — x2)t~2dt,

m  1
inequality (3.17) follows.
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In order to prove (3.18) we recall (3.6) whence 

(3.19) Sm(Y; / ;  x) -  f ( x )  = f ' ( x ) S m( Y ; gx; x) +  Sm(Y; Gx; x ),

with gx{t) =  t — x. In view of (3.7) we deduce as above:

|5rn(Y;Gf*;a;)| < c o n s t . ^ = - ^  J  и  ( / ';  t y / l  -  x2) t~l dt.
m- 1

Finally, taking into account (3.19) by the Lemma we deduce also (3.18).
□

A particular case of the last theorem interesting in the applications corre­
sponds to w(x)  = \ / l  — x2, that is to say that z m,t- = cos;̂ +T>
i = 0, 1, . . .  , m  + 1.

We remark that the estimate (3.17) for the presence of the term \ / l  — x2, 
is better than the previous estimate (3.1) near to the end points ±1 corre­
sponding to a thicker mesh in their neighbours. However, we suspect that 
the Shepard procedure corresponding to another distribution of knots can 
have a better behaviour near those points corresponding to a thicker mesh 
and they may not necessarily be the end points of the interval. In particu­
lar, by Theorem 3.3 it follows that in the case of equidistant knots it is not 
possible to establish an inequality of the same kind as (3.18).

An estimate similar to (3.17) is also valid for the operator Lm, whereas 
for the operator Fm both estimates (3.17) and (3.18) are true; see [6] and [4] 
respectively.

Moreover, we recall th a t for the Hermite-Fejér operator corresponding 
to the zeros of the Jacobi polynomials Vértesi [16], generalizing a result 
of Bojanic [3], has proved the estimate

| / ( x ) - t f m( / ;x ) | = 0 ( l ) £
i=l

UJ p - 1, X e l ,

where the О sign depends on a and /3,7 =  max(a,/3, —1/2). This estimate 
is of the same kind as (3.17); however this last one gives a good estimation 
only when a ,ß  й - 1/ 2.

Finally, we remark th a t the problem of saturation for the operator Fm 
has been partially resolved [6]; whereas for the operator Sm(Y ) it is still an 
open problem.
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A DECOMPOSITION OF CONTINUITY 
AND «-CONTINUITY

M. PRZEMSKI (Bialystok)

Let В be a subset of a topological space (X, T). The closure and the 
interior of В  are denoted by Cl(-B) and Int( B), respectively.

A subset В  С X  is said to be semi-open [5] (resp. an a-set [8], pre-open
[6]) if В C C l(Int(#)) (resp. В C Int(Cl(Int(5))), В  C Int(C l(5))). The 
collection of all subsets of a space (X, T) which are semi-open (resp. a-sets, 
pre-open) is denoted by SO(X, T) (resp. T", PO(X, T)). It was observed in 
[8] that T a is a topology on X  and that T  С T a C SO(X, T). Moreover, 
T a = S O ( X , T ) n PO ( X , T )  [11].

The union of all semi-open (resp. pre-open) sets contained in В  is called 
the semi-interior of В  [2] (resp. pre-interior of В  [6]) and is denoted by 
sln t(5) (resp. p ln t(# )). The interior of a subset В  of the space (X , T a) is 
denoted by alnt(-S).

The following result will be useful in the sequel.
LEMMA 1 [1]. I f  В  is a subset o f a space (X ,T), then
(i) sínt(5 )  = В  П Cl(Int(B)),

(ii) pint(5 )  = В  П Int(Cl(f?)),
(iii) a ln t(5 )  = В  П Int(Cl(Int(J9))).
Let X  and У be topological spaces. A map f : X  —> Y  is called:
— semi-continuous if for every open set V  of У, f ~ 1(V)  is semi-open [5];
— pre-continuous if for every open set V  of У, f ~ 1(V)  is pre-open [6];
— а -continuous if for every open set V  of У, f ~ 1(V)  is an a-set [11].
Let A and U be collections of subsets of a topological space. We use the

notion Ä A Ü  = {АП U : A £ Ä , U  € Ü}.
In this paper we introduce the following types of maps:
D e f i n i t i o n  1. Let (X ,T) and ( Y , T ') be topological spaces and let Ä 

be a collection of subsets of X. A map /:  (X, T ) —► (У, T ') is said to be locally 
A-continuous if for every open set V  of (Y ,T '), the set / - 1(У) belongs to 
(ÄAT)UT.

It is evident that every continuous map is locally А-continuous for any 
collection A of subsets of X .

We say that a map / :  (X, T) —> (У, T') is А-continuous if for every open 
set V  of (У ,Т7), the set / - 1(У) belongs to A, where A is a collection of 
subsets of X . Obviously every А-continuous map is locally A-continuous
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since Ä C (Ä  Л Т) U Т.
For a topological space ( Х , Т )  we denote:

D(c,a) = { B  С X :  Int (Я) =  alnt(B)},
D(c,p) = { B  С X :  In t(5 ) =  pht(B )} ,
D(a,p) = { B  С X : Int (В)  =  plnt(5)}.

The most significant result in this note is the following triplet of theorems.
Theorem 1. For a topological space ( X , T )  we have:
(i) A map f : (X , T ) —► (У, T') is continuous if and only if it is both 

а -continuous and D(c,a)-continuous.
(ii) Let A  be a collection o f subsets of X  satisfying the following:

(c,a) A map f :  (X, T) —*■ (У, T ') is continuous if and only if it is both
а -continuous and locally A-continuous.

Then A  C D(c, a).
Theorem 2. For a topological space (X, T) we have:
(i) A map f : (X , T) —*• (У, T') is continuous if and only if it is both 

pre-continuous and D(c,p)-continuous.
(ii) Let A  be a collection o f subsets of X  satisfying the following:

(c,p) A map f :  (X , T)  —► (У, T') is continuous if and only if it is both
pre-continuous and locally A-continuous.

Then A  C D(c,p).
Theorem 3. For a topological space (X , T ) we have:
(i) A map f :  (X ,T ) —► (У, T ') is a-continuous if and only if it is both 

pre-continuous and D ( a ,p)-continuous.
(ii) Let A  be a collection o f subsets of X  satisfying the following:

(a ,p ) A map f :  (X , T ) —*• (У, T') is a-continuous if and only i f i t  is both 
pre-continuous and locally A-continuous.

Then Á  C D{a,p).

Before proving the above results we need the following three lemmas.
Lemma 2. For a topological space ( X , T )  the following hold.
(i) T a П D(c,  a) = T.

(ii) I f  A  is a collection of subsets of X  such that Ta f l ( (ÄAT)uT)  = T, 
then A C D(c,a) .

Proof, (i) The conditions В  € T a and В  € D(c,a) imply В = a ln t(5 ) 
and lnt(B) =  a ln t(5 )  and consequently В  G T.  Conversely, if В  6 T, then 
В  = Int (В)  and В = a ln t(5 )  since T  C T a . Thus В £ T a П D(c,a ) which 
finishes the proof of (i).

(ii) Let A  € A.  According to Lemma 1 (iii) we have alnt(A ) = А П 
П Int(Cl(Int(A))). Clearly, the set alnt(A) belongs to T a. We see also that
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it is of the form А П U, where A  G A  and U G T. From this follows alnt(A ) G 
G T a П ((ÄT) U T ) and consequently alnt(A) G T. Thus aln t(A ) = Int(A), 
which means A  G D(c, a ) and finishes the proof.

L e m m a  3. For a topological space (X . T ) the following hold.
(i) Р О (Х ,Г ) П D(c,p) = T.

(ii) I f  A  is a collection of subsets of X  such that PO ( X ,T )  П ((Ä AT) U 
U T) = T, then Ä C D(c,p).

P roof. Since the proof is analogous to that in Lemma 2, it is omitted.
L e m m a  4. For a topological space (X .T )  the following hold.
( i )  F O ( X ,T ) n D ( a ,p )  = T°.

(ii) I f  A  is a collection of subsets of X  such that PO( X ,T )  П ((Ä A T)  U 
U T) = T a, then Ä C D(a,p).

P r o o f . If В  G PO (X ,T) П D(a,p), then В = plnt(i?) and alnt(i?) = 
= plnt(T) and consequently, В  = alnt(H ), which means В G T a . Conversely 
if В G T“ , then В = a ln t(ß )  and consequently В  = pint(B) since a ln t(5 )  C 
C p ln t(5 ). Thus we have alnt(i?) = p ln t(5 ) = B, so В  G PO (X ,T) П 
C\D(a,p), which finishes the proof of (i).

(ii) If A  G Ä, then А П Int(Cl(A)) = plnt(A) by Lemma 1 (ii). It is 
obvious that p ln t(^ ) G PO(X, Г) П ((Ä Л T) U T). It implies plnt(A) G T a . 
Hence plnt(A) C alnt(A ) and we have shown A  C D(a,p).

P r o o f  o f  T h e o r e m s  1, 2 a n d  3. The proofs are all similar. Statement
(i) of Theorem 1 (resp. Theorem 2, Theorem 3) follows easily from (i) of 
Lemma 2 (resp. Lemma 3, Lemma 4).

Now we will prove (ii) of Theorem 1. Let us assume that A (fD(c, a). Then 
there exists A e A  for which Int (А) ф alnt(A ) holds, which implies alnt(A ) ^ 
^ T. Let Y  — X  and T' — {У, 0,aInt(A)}. The identity map / :  (X ,T )  —> 
—> (Y ,T')  is clearly а -continuous, but not continuous. Since the set alnt(A ) 
is of the form A D U , A  G A, U G T, the map /  is locally Ä-continuous. This 
means that A does not satisfy the condition (c, a ) which finishes the proof.

The proof of (ii) of Theorem 2 (resp. Theorem 3) is analogous to that 
of Theorem 1, it is sufficient to observe that the condition Int(A) ф plnt(A) 
(resp. alnt(A ) ф plnt(A)) is equivalent to the condition plnt(A) ^ T  (resp. 
pint (A) T a).

Let us observe that the condition T“ П A  = T (resp. PO (X ,T ) П Ä = T, 
PO (X ,T) П A = T “ ) implies Ä С T  U {В  С X : В £ Г“ } (resp. I c T U  
U [В  С X :  В i  PO (X ,T)}, Ä C T a U {В  С X :  В $ PO(X,T)>).

The following example shows that D (c ,a ) ф T(J {В С X :  В T a }, 
D(c,p) ф Т и { В  C X :  В £ PO(X ,T)} and D (a ,p ) ф T a U {В  С X : В $ 
£ PO (X ,T)}. At first we observe that D(c,p) = D(c,a) П D(a,p). Thus, 
it is sufficient to prove the existence of a set В  С X  for which В £ D(c, a), 
В i  D (a ,p ) and В i  PO (X ,T) hold.
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E x a m p l e  1. Let B = [ - l ,  1]\ ({£ : n = 2 ,3 ,. . .  }u  {—£: n = 2 ,3 , . . .} )  U 
U ((1,2) \  Q), where Q denotes the set of rational numbers. We consider В 
as a subset of the space of real numbers with the natural topology. Then
we have In t(C l(5)) = ( - 1, 2), In t(5 ) = U { ( - £ , :  n = i , 2 , . . .  } U

U { (^+T> n ) : n = 1 ,2 ,. • • I  and Int(C l(Int(5))) =  ( —1, 1). Hence it follows
В £  In t(C l(5)), In t(5 ) /  В П  Int(C l(Int(5))) and В  П Int(C l(5)) ф В П 
Dlnt(Cl(Int(/?))). This means В £ PO (X ,T ), В D (c ,a ) and В D(a,p).

In [12], Jingchen Tong defined an Л -set in a topological space as a set В 
such that В = U П C, where U is an open set and C  is a regular closed set.

A map / :  (X , T ) —► (Y ,T ') is said to be Л-continuous [12] if, for every 
open set V  of Y ,  f _1(V)  is an Л-set.

It is easy to verify that every Л -set belongs to D(c,p). Thus, the follow­
ing corollaries are immediate consequences of Theorems 1, 2, resp. 3.

C o r o l l a r y  1 [12, Theorem 4.1]. A map f :  (X ,T )  —> (Y ,T ') is contin­
uous if and only if it is both a-continuous and A-continuous.

C o r o l l a r y  2. A map f :  (X , T ) —► (Y ,T ') is continuous if and only if 
it is both pre-continuous and A-continuous.

C o r o l l a r y  3. I f  a map f : (X , T ) —► (Y ,T ') is both pre-continuous and 
A-continuous, then it is a-continuous.

It is clear that Corollary 2 is a generalization of Theorem 4.1 in [12]. 
We see also that Corollary 3 follows trivially from Corollary 2. Moreover, 
we observe that Corollary 3 follows from the fact that A- continuous maps 
are semi-continuous ([12], Theorem 5.1) and, a map is a-continuous if and 
only if it is pre-continuous and semi-continuous (see [9], Theorem 3.2, where 
pre-continuous maps are called almost continuous).

It is known that a-continuous maps into regular spaces are continuous. 
Then from Theorem 3 (i) follows

C o r o l l a r y  4. I f  (Y ,T ') is a regular space, then a map f :  (X , T ) —► 
—► (Y ,T ') is continuous i f  and only if  it is both pre-continuous and D(a,p)-  
continuous.

Let { X ,T )  be a topological space and let I  be an ideal of subsets of X .  
For a subset А  С X ,  D j(A ) = { x £ X : U C \ A £ I  for each neighbourhood U 
of z}. Assume that I  satisfies the following: A £ I  if and only if D j(A)  = 0. 
Then the operation A A \JD j{A) is the closure operation [4]; the topology 
defined by this way is denoted by H {T ,I) .  A subset В  C A  is open in 
(X , H(T, / ) )  if and only if В  is the difference of an open set in (X ,T )  and a 
set belonging to I  (see [4], Theorem 1).

When A  is a family of subsets of X  we use the notation A~ for the 
family {X \  A: A  6 Ä}. It is clear that H (T ,I ) = T  Л I ~ . Then the conti­
nuity of / : (X , H (T , I))  —► (У, T ') is equivalent to the local / “ -continuity of 
/ : (X ,T )  —► (У, T').
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We will need the following lemma.

Lemma 5. For a topological space ( X ,T )  the following hold:
(i) D(c,a) A D(c,a) = D (c,a),

(ii) D(c,p) A D(c,p) = D(c,p),
(iii) D(a,p) A D(a,p) = D (a ,p).
The proof is obvious and thus omitted.
Let / :  X  —► У be a map and I  an ideal with the above property of 

subsets of X .  We consider the following properties for / .
(1) The map / :  (X ,T) —► (Y ,T ') is continuous.
(2) The map / :  (X , H ( T , I )) —>■ (Y ,T ') is continuous and the map 

/ : (X , T) —► (У, T ')  is a-continuous.
(3) The map / :  (X , H ( T , I )) —► (У, T')  is continuous and the map 

f ( X , T ) —► (Y ,T ')  is pre-continuous.
(4) The map / :  (X ,T ) —► (Y , T ') is a-continuous.

THEOREM 4 .  Let (X ,T),  ( Y ,T ')  be topological spaces and I  an ideal of 
subsets of X .  For a map f : X —* Y  we have:

(i) Statements (1) and (2) are equivalent i f  and only if  I~  C D(c,a).
(ii) Statements (1) and (3) are equivalent i f  and only if  I~  C D(c,p).

(iii) Statements (4) and (3) are equivalent i f  and only if  I~  C D(a,p).

P roof, (i) If Statements (1) and (2) are equivalent, then the family I~
satisfies the condition (c, a) of Theorem 1 and consequently I~  C D(c,a). 
Conversely, let I~  C D(c,a). Since H (T ,I ) =  Т л Г  and T  C D(c,a)  we 
obtain H (T ,I ) C D(c,a) A J9(c,a) = D (c,a ) by Lemma 5 (i). Thus from 
Theorem 1 (i) it follows that conditions (1) and (2) are equivalent.

The proof of (ii) (resp. (iii)) is analogous to  that of (i); it follows from 
Theorem 2 (resp. Theorem 3) and from Lemma 5 (ii) (resp. Lemma 5 (iii)).

A subset В С X  is said to be simply-open if В  = U U K ,  where U is an 
open set and К  is nowhere dense [7]. A map / :  (X , T) -* (У, T ')  is said to be 
simply-continuous if for every open set V  of У, / - 1(У) is simply-open [3,7].

We have the following theorem on simply-continuity:

T heorem 5. A  map f :  (X , T ) —» (У,Т') is а -continuous i f  and only if 
it is both simply-continuous and pre-continuous.

P roof. Evidently, by Theorem 3, it is sufficient to prove that every 
simply-open set belongs to D (a,p).  At first we shall show th a t В  6 D(a,p)  
if and only \ f X \ B e  D(a,p):

If В  G D(a,p), then В П In t(C l(5)) = В  П Int(Cl(Int(I?))). Thus we 
obtain Cl(Int(5)) =  Cl(Int(Cl(Int(5)))) = C1(C1(5) П Int(C l(Int(P)))) = 
= C l(5 П Int(C l(Int(5)))) = C l(5  П Int(Cl(S))) =  C1(C1(P) П In t(C l(5)) =  
= Cl(Int(Cl(5))); consequently Int(Cl(fl)) = Int(Cl(Int(Cl(5)))) =Int(Cl(Int(P))). 
Now let us observe that Int(Cl(Int(I?))) = X  \  Cl(Int(Cl(X \  В ))) and 
Int(C l(5)) = X  \  Cl(Int(X \  В ))). This implies Cl(Int(Cl(X \  В ))) =
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= Cl(Int(X \.0)) and consequently Int(Cl(X\J9)) =  Int(Cl(Int(Cl(X\.B)))) = 
= Int(C l(Int(X \R ))). So (Х \Я )П Ы (С 1(Х \Я )) =  (Х\Я)ПЬН(С1(1п1(Х\Я))), 
which means X  \  В  € D(a,p).

Secondly, we observe that every open set belongs to D(a,p) and every 
nowhere dense set belongs to D(a,p). Therefore, by the above fact, every 
closed set belongs to D{a,p)  and every set of the form X  \ K ,  where К  is 
nowhere dense, also belongs to D(a,p). Then every simply-open set U U К  
is of the form X  \  ((X  \  U) П (X  \  К )), where (X  \  U) П (X \  К ) belongs 
to D (a,p ) by Lemma 5 (iii). Thus the set U U К  belongs to D(a,p), which 
finishes the proof of the theorem.

We see by an argument similar to that in Corollary 4, that the above 
result implies:

C o r o l l a r y  5. I f  (Y ,T ')  is a regular space, then a map f :  (X , T) —> 
—>■ (Y, T ') is continuous if and only if it is both simply-continuous and pre- 
continuous.

Since every semi-open set is simply-open, the last corollary implies
C o r o l l a r y  6 [10, Lemma 5]. I f  (Y ,T ')  is a regular space, then a map 

f : (X, T) —* (У, T ') is continuous if and only if it is both semi-continuous 
and pre-continuous.
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ON THE CONTROL OF A NET OF STRINGS
I. JOÓ (Budapest)

In what follows we consider a net of homogeneous strings connected at 
the endpoints. This system can be represented as a graph. It is controlled at 
the vertices. We consider the problem of relaxing the system in a fixed finite 
time from any initial conditions. We shall show th a t this is possible if and 
only if the graph is a  tree. Then we give necessary and sufficient conditions 
for the approximate controllability and also for the case of non-fixed finite 
relaxation time. In this paper we continue the investigations initiated by S. 
Rolewicz [1] and give the correction of a mistake stated there.

1. Consider a connected graph whose edges are strings connected at the 
knots of the graph. The strings and knots are indexed by s = 1, . . .  ,M  and 
p = 1 ,. . .  ,N ,  resp. We apply controls up(t) £ L 2(0,T) at each vertex p. 
Suppose that the s-th  string has endpoints p and p'\ then its movement is 
described by the equation

( 1 )
d2ys( x , t )  

в‘ d t2
d2y»(x,t) 

dx2 ’ 0 < x <  £„ 0 < t  < T

where ga > 0 is the mass density and l ,  is the length of the s-th string. We 
investigate the following boundary and initial conditions:

(2) y>(0,t) = up(t), = up.(t),

(3) У*(я,0) = y°(x), ^2/,(* ,0) =  vi(x)
where

y°s e L2(0,e,), у ] е н - \ o,e.).
Here H ~l is the dual space of Hq with respect to  L2, see [2]. Using the 
Fourier method we ask for y, in the form

(4)

Let
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then we get by Fourier’s method tha t

(5)
n /------  1 s i n  \ f  An »t

cn ) i ( i )  =  сП),  c o s  t + c^g ------ 7 = - +
V A">*

+  \ J j ^  J  W r) -  ( - l)"v (r) ]  sin ^  -  r)dr,
0

An,,:=( ^ r )  ’ n = 1’2’-"-
Indeed, multiply both sides of (1) by z(x,t)  £ C 2([0,f,] x [0,T]) satisfying 

z (x ,T )  = zt(x ,T )  = 0, z(0,f) =  z(£e,t) = 0.
Then integration by parts gives

l ,  T  Í .  t . T

JJQ s{y ,) ttz= J e» [ (v » ) t(x , t ) z (x , t ) -y t (x ,t)zt(x ,t)]l=0dx + J J  Q.y.ztt =
о 0 0

l.
о 0

= J  e»[y°Áx )z t { x , ü ) - y ] { x ) z ( x , ü ) \ d x  +  J j  Q.ygZtt;
0  0  0

T 7

J J(y>)xxz =  У[(у*)*(*»0г(*><)-у*(х»<)л'*(*»0Й,=ол  + J  jy>z*x =  
0 0 0 

T T la
= J [u p(t)zx(0,t) -  up,(t)zx(l„ t)]d t + J  J  y,zxx.

T  l .

о 0

T t,

We can summarize this as

where b £ C2[0,T], b(T) = b'{T) =  0 is arbitrary. Then
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.------n  , . ( * )  =  J y .(x ,t)ge^J -^— s m ^ - x d x

and hence and from (6) we obtain the relation .

T

J [ Cr*At )b' \ t ) +  K,BCn,s(t)b(t)]dt =  
о

/ _  T

= у  J M )  -  (-1  )nupl{t)]b(t)dt -  с ° вЬ'(0) + 4 , 6(0).
о

This holds for all b(t) with the above restrictions, hence
(7)

Сп,з + Лn,*cn,i = J j - y / Xn A uP ~  ( —7)"up']> cr»,*(0) = cn,»> cn,i(0) = 4,«
and

(8) cni,(t)  + iЛ .(0

= e - V C .{ [co. + i < Ü  + jJ l j [„„(r) -  (- l)"v (r)K V v :V r |.
V n’’ * о

D efinition 1. The system of strings is controllable in finite time T  if 
for any initial conditions

(VsiVa) € L \ 0 , l , ) ® H - \ 0 , e e) =: Wt , s = l , . . . , M  

there exists a control

«1

u = J : I € L \ 0 , T ; R ” ) =: H(T)
, UN  j

relaxing the system in time T:

y„(x, T ) = (ji,)t(x, T)  = 0 (s = 1 ,. . .  , M ).

By (4) this is equivalent to

cn A T )  = 4 , . ( П  = o.

Using the well-known properties of the space H ~l we see that the sequences
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{со
г»,* П > 1, s — 1 , . . .  , М)

run over the complex 12 space when the initial conditions run over the sets 
W a. Hence (8) implies

(*) + *
c'n,Át)
V ^ П , Я )e l 2

i.e. in every tim e T  the movement state of ys remains in the function space W, 
of the initial conditions. Let a nt £ be the vector, whose p-th coordinate 
is 1, the p'-th one is ( - l )n+1 and the other coordinates are zero. By (8) the 
system can be controlled in time T  if and only if the sequence

' J*

< J  , u(t)^j dt : n > 1, s = l , . . . , M >
. 0

runs over the complex valued while и runs over H (T ); in other words, if 
the sequences

n > 1, s = 1 , . . .  , M

run over the complex t 2 space when и £ L2(0,T; C^) (we identify here £2 ^ ^  
and I2).

By a fundamental theorem of N. K. Bari [3] this means exactly that the 
system

Ф := ; n > 1, 5 = 1 , . . . ,  Afj

is a Riesz basis in its closed linear hull. We shall say that Ф is an L-basis. 
The above arguments give the following

L e m m a  1 .  The system is controllable in time T  if and only if Ф is an 
L-basis in Z/2(0 ,T ;C ").

We shall show the following
T h e o r e m  1 . The system is controllable if  and only if  its graph is a tree. 

P r o o f . First we recall
rr--------- 717Г

V  * n y8 ~  ~7 ? L/8 l — t By /Q s '
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The quantity La is called the optical length of the s-th  string; for inhomo­
geneous mass distribution ga(x) it is defined by the formula

L, := J  y/el-
о

The system Ф is the union of the following 2M  systems:

{ a M e ± ,(2 "+ 1 )™ / L * } OO_ 0 , { a 2, . e ±i2n,r* / z'* }  ( s  =  l , . . . , M ) .

Each of them is an L-basis in L2(0,T; C ^) for T > L s . Hence we have to 
show that for large T  the 2M  generated subspaces are independent in the 
sense that any of them and the linear hull of the others have a positive angle.

a) Let first M  < N.  In this case M  +  1 = N  and the graph is a  tree. 
A single string (M  = 1) is controllable also with the assumption that in one 
of the endpoints the control is zero. This can be seen e.g. from (8). Now 
we choose in the graph a vertex p of degree 1 and its neighbour vertices 
p'. The strings between p and p'-s can be relaxed by appropriate controls 
up = 0, UpI € L2(0,T1). Then take the neighbours p" of some p'. Now if 
upi(t) = 0 for t > T\ and up/i G L2(T i,T2) are appropriate then the strings 
(p'iP") are also relaxed. Since the graph is connected, the iteration of the 
above processes relaxes all the strings.

b) Let M  = N.  Then the graph is a circle, whose vertices are possibly 
joined by a tree. Since the trees can be controlled by a), we restrict ourselves 
to the case of a single circle. Since in 02,* there is one coordinate +1 and 
-1  hence in this case

N

(9) =  0 .
J=1

On the other hand for every £ > 0 there exist integers п я = 0, к = 0 satisfying

( 10)

or with another notation

2паж
— к < £  ( S  = 1 , . . . , M ) ,

2x < £ ( s =  1, . . . ,M ) ;

(see the Kronecker theorem on simultaneous diophantine approximation [4]). 
Now by (9) and (10) we obtain

N

S a 2-*e‘
i 7 n a i T x  /  L s

a=1
<  C  • £ .

L 2(0 ,T  -,CN )
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Since the Z-2-norm of the above sum is bounded below, hence Ф can not be 
an Z-basis and then the system  is not controllable..

c) Finally let M  > N .  Then (10) can be proved in the  same way as in 
b). Since M  > N ,  the vectors 0 2 ,», s =  1, . . .  ,M  are linearly dependent. 
This can be p u t instead of (9) and the proof can be finished as in b). 

Theorem 1 is proved.
Remark 1. S. Rolewicz [1] investigated the same problem with the dif­

ference that the initial conditions are taken from the spaces

(li) y ° , e L 2( o , e e), y \ e L 2{ ол).
By (8), the controllability in th is case is equivalent to the statement that the 
sequences

run over the space /12 ® ^2 where we use the real valued £2 space and /12 is 
the space of real sequences {cn } satisfying XXncn)2 < 00. In particular, the 
moment space of the sequence {««,* sin y/Xn,at} with respect to the real space 
H ( T ) is the real £2. Consequently the moment operator F : H (T ) —» £2 ,

Fu:=  | ( u , a niisin

is continuous and onto, further it is isomorphic restricted to  the orthocom­
plement of Kér F, which is the  closed linear hull of all a n>i sin y/Xn,gt. In 
case M  > N  this is in contradiction with the estimates of the form

M

E
«=1

c*Q 2,»e« 2  n 3r r x / L a
M

<  с  е ,  ] Г с 2 =  1

H ( T ) t=1

proved in Theorem 1, hence for M  > N  the system is not controllable. If 
M  < N  the controllability can be proved quickly as in Theorem la). Remark 
th a t the movement of the strings does not remain in the class (11). Formula 
(8) shows only that

+ i
л/Xn^s

is in the complex valued £2 space, but if we relax successively the strings, we 
can control also this larger class of movement states.

Corollary 1. The system  (l)-(3) with the modification ( 1 1 ) is control­
lable only in the case of trees.

Remark. Rolewicz allowed in [1] that the relaxation time T < 0 0  may 
depend on the initial conditions. We continue our investigations in this 
direction.
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Introduce some notions connected with the above statements.
D efiniton 2. The system of strings is
a) controllable in (unbounded) finite time, if,for any initial conditions 

(у 'а ’ Уа)  there exists T  <  oo and a control и € H (T )  relaxing the system in 
time T, i.e. y„(T,•) = £t y,(T,-)  for s = 1 ,. . .  ,M ;

b) approximately controllable in time T  if given any initial conditions
M

{y®,yl) from a fixed dense subset of 0  W s we can find и £ H (T) relaxing
Ä=1

the system in time T;
c) approximately controllable in (unbounded) finite time if for any initial

M
conditions (t/°,2/g) from a dense subset of 0  W e we can find T  <  oo and

5=1
и £ H (T ) relaxing the system in time T.

THEOREM 2. 1) I f  the graph is not a tree, then the system of strings is 
never controllable in the sense of  2 a).

2) The approximate controllability property of the system in the sense of 
2 b) and 2 c) are equivalent and it does not hold if and only i f  we can find 
equal values A„)4, for which the corresponding vectors аПу, are dependent.

In the proof we return to the moment space

R(T) :=
oo M

П= 1,5=1
: и e H (T )

From (8) we see that the controllability properties can be described as above:
2a) ^  u R(T) = e2,

T <oo
2b) R (T ) is dense in i 2,
2c) U R(T)  is dense in t 2.

T  <oo
Introduce the notation

T

c(u) := ^I  (а п,5е,л/̂ ь**,и(0)л )

and consider the isomorphism

(c(ui), c(u2)) ->• (c(ui) + ic(u2), с (щ ) -  ic(u2)) 

in the space l 2 ® I 2 which we consider as the space t 2 with twice as many
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complex coordinates. Since we have

T

c(«i) + ic(u2) = ( J  ( а п<ве,уУ ^ \ и 1(г) + ití2(í)^ d t 'j ,
о
T

c(ui) -  ic(u2) =  ( /  ^an,ee_'V ^ * t ,tí1(í) +  i«2( í ) ) <ií)> 
о

hence the properties 2a), 2b), 2c) are equivalent to the statements: 
U R\{T)  = l i i  R \ (T )  is dense in t!2, and (J R\(T)  is dense in i 2, 

T  <oo T<  oo
resp., where

Äi(T) < ^ а п>3е±гу / ^ \ и ( г ) ^  d?j : u e  l \ o, t -c n ) > .

We show that the sets Ri(T)  stop growing in a finite time, i.e. we have 
LEMMA 2. There exists To<oc satisfying R \(T q) = R\{T) for all T > T q. 
P roof. Let

wn,( := + i, a := {u„,e : n = 1, 2, . . .  , s = 1, . . .  , M ).

We shall prove that for large To < oo the operator

PTo : 1 3(0 ,о о ;С * )-* £ 3(0,То;С*) 

restricting the functions to (0,Tq), maps isomorphically the system

V  (0п,.«±Шп,1‘ : «я,* € <т)
(0,oo)

into Т2(0,То;С *); in fact we show th a t for large To it maps isomorphically 
the larger subspace

V (CNe±iWn’,t : tJn,, € a) .
(0,oo)

This last statement can be reformulated as follows. The one-dimensional 
operator

PTo :T 2(0 ,o o )-+ T 2(0,T0) 
maps isomorphically the set

V (e±,U,n,at : ««,. € ír)
(0,oo)
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into X2(0,To). We shall prove the existence of an exponential type entire 
function F(z) whose zeros are the values и П}3 and finitely many further zeros 
H i,. . .  ,HR an<i |-F(a:)lXI, x  € R. As it is well-known from the theory of 
scalar exponential bases [3,6], the operator Pt0 maps isomorphically

V .......... ...
(O.oo)

onto the whole Z2(0,To) where T q < oo is defined as the length of the 
indicator diagram of F  ([5]). Consider the partition

R
{1,2........ A f}= (J S j

i= i

induced by the equivalence relation

Si ~  52 -a L , j L e2 € Q.

Denote further

{0}} , := {<r(s) : 5 e  S j } .

Then we have
R

a = (J a i-j=1
We can easily find an entire function whose zero set is For s  € S j  the 
sets are not disjoint. Let s i,S 2, . . .  ,Sk € S j ,  then сг̂ *1) П . . .П  is 
an arithmetic progression without the number i. Therefore for appropriate 
/z G R the zero set of the function

sin^x(z — г)
z  — г

is cri*1) П . . .  П cr(*fc) without multiple zeros. Let

fk '■= /(«!,— ,»*)
*1 ,— ,‘h *i <•••<»*

then tlie function
F _  / 1/ 3/5 • • • 

j '~  / г Л /б . . .

A cta  M athem atica  Hungarica 61, 1993



108 I .  JOÓ

will be of exponential type with zero set oy and with simple zeros. From the 
estimate

|A (*)|X (l + W r (*>
we obtain by

that

Let f i i , . . .  ,fik € C+\(7 be arbitrary different numbers. Then the exponential 
type entire function

R
F(z)  := J ] ( z  -  A j)F ,M  

1=1

satisfies the above formulated conditions, consequently Py0 maps isomorphi- 
cally V (o,oo) (a n,ie±,u'"’st € a) into L 2(0, T0; CN). This implies

=

-ßi(To) =  Ях(оо) =
oo

( /  (аП}Яе±,Шп-г* ,и^)) dt^j :шП'В <E о, и e L2(0,oo;CN) .

Now take the function

F (z ) := F(z)  sin r (z — г -f 1)

instead of F(z), where /x > 0 is not commensurable with any of the numbers 
Ls and among the zeros of sin /x(z — i +1) the values Ц \ , . ..  , hr do not occur. 
The length of the indicator diagram of F  is To + /x, hence repeating the above 
proof we obtain

(12) Ä j(T) = Äi(oc) for every T  > To,

which completes the proof of Lemma 2.
Returning to the proof of Theorem 2, the controllability in the sense 2a) 

would mean that (J -ffi(T) = £2 i.e. Äi(To) = £2 ', but this is true only for
T <00

systems whose graph is a tree. We see also easily that 2b) and 2c) are equiv­
alent and both mean exactly the density of Ri(oo) in £2 . Clearly, if we have 
linear dependence among some vectors a n „ where the corresponding values 
An>s are identical, then this implies dependence among the corresponding co­
ordinates in Да(оо) and hence Äi(oo) can not be dense. Conversely, suppose 
that we have no such dependence among the vectors a n s . Fix an £ > 0 and
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take disks with center шп<в and radius e. Take the topological connectedness 
components of the union of these disks. The centers of the disks belonging 
to the same components give a partition

a = Uff(fc).

The “theorem of making blocks” [6] states that for sufficiently small e > 0 
the subspaces

tffc := Lin {e’u'n'*t : шПу, G <7(fc)}

form an L-basis in L2(0,oo). Consequently the system {CN Hk : к G Z) is 
L-basis in L2(0, oo; CN ) and then ä fortiori the system

Hk := Lin { ani,e ,u,n'lt : wn>í G <7(fc)}

is also L-basis. Therefore there exists a system {У*} of subspaces biorthog- 
onal to {Я„} in

V  (ön,»«’""'’1 : u n<s G <r) .
(O,oo)

This means that Hkl.Yi (к ф £), dim Yk = dim Hk. Take the elements 
0‘n,se,Un’,t generating Hk. Their orthogonal projection onto Yk give a basis 
in Yk hence there exists a system {yn,»} C Yk biorthogonal to them. We 
unify the systems {yn,a} so constructed for all to see that

T

J  {ап,,е'Шп-‘*, yn’,s'(t)) dt = 8ny  ■ Sty ,
о

hence we gave a system biorthogonal to Ф. But this implies at once the 
density of iZi(oo) in t i  since if u{t) runs over the finite linear combinations 
of the yn,ai the moment sequences run over all finite sequences. Theorem 2 
is proved. Remark, that in this paper we have used the ideas of the works 
[7-11].
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♦-INDEPENDENT SUBSETS IN  
MODULAR LATTICES OF BREADTH TWO
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As a weaker version of weak independence (see G. Czédli, A. P. Huhn 
and E. T. Schmidt [1]) the notion of *-independence was introduced by G. 
Czédli in [2]. Let L be a lattice and let H  be a subset of L. H  is called *- 
independent if whenever h, h i , . . . ,  /i* € H  and hi V . . .  V /i* =  h then h = h, 
for some 1 < i < k. A maximal *-independent subset is called a *-basis of 
L. If L is of finite length then any maximal chain and J(L ) ,  the set of all 
join-irreducible elements are *-bases of L. It was proved in [2] that if L is 
a finite distributive lattice and H is a *-basis of L then H  has at least as 
many elements as any maximal chain, i.e., |Я | > f(L) + 1 where l(L)  is the 
length of L. The authors also asked whether the same was true for modular 
lattices. Here we give a partial answer for modular lattices of breadth two. 
Let us recall that the breadth b(L) of a lattice L is the least natural number 
n with the property that for each X  Q L there is a subset X '  of X  such that 
MX = MX' and |A”'| < n. Thus b(L) < 2 means that any join ai V . . .  V a* 
equals a, V aj for some 1 < i , j  < k.

T h e o r e m . Let L be a modular lattice of finite length and of breadth at 
most two. Then for any *-basis H of L we have \H\ > £(L) 4- 1.

P r o o f . If H  is infinite then we are done. Suppose H  is finite and let 
C  be a maximal chain in L. Since H  U C is finite from C. Herrmann [4] we 
know that L', the sublattice generated by H  U C is finite as well. Clearly, 
H  is a *-basis in L', moreover, £(L') = 1{L) whence it is enough to consider 
finite lattices. We will proceed by induction on \L\.

O b s e r v a t io n  1. If for the pairwise distinct 0, 61, 62,63 e  L we have 
a—< 61, 62,63 then the sublattice generated by {61, 62, 63} is isomorphic to 
the five-element non-distributive modular lattice M3 (the notation a —< 6 
means a is covered by 6 i.e. a < 6 and if a ^  c ^  6 then a =  c or 6 = c).

Indeed, the well-known Interval Isomorphism Theorem (see Grätzer [3]) 
implies 6, V 6j> —6, , 6j if i ф j .  If 61 V 62, 61 V 63, 62 V 63 are pairwise 
incomparable then 61 V 62, 61 V 63, 62 V 63 generate an 8-element Boolean 
lattice (cf. Grätzer [3]) which is of breadth 3 whence this case is impossible.

* The author’s work was partially supported by Hungarian National Foundation for 
Scientific Research, Grant No. 1813.
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If e.g. bi V 62 ^ 2̂ V 63 then by the above covering relations we must have 
b\ V 62 =  bi V 63 but then the sublattice generated by {61, 62163} is M 3.

Observation 2. If c € J(L)  and c—< 6 , 6 ' with b ф b' then b £  J(L )  or 
b' £ J(L).

Indeed, if b,b' £ J { L ) then there exist x ,x '  ф c such that x - <  b and 
x '—< b'. The Interval Isomorphism Theorem gives x  Л с—< x, c and x' Л c—< 
x',c. As c £ J (L ) we must have х Л с  =  х 'Л с  = е and e—< x ,x ' ,c  where 
e is the unique lower cover of c. Now by Observation 1 we get 6 = 6', a 
contradiction.

Let us consider
0 =  Cq—< Ci —< . . . —< Cfc,

a chain of join-irreducible elements which is maximal in the sense th a t if 
cjt —< c for some c then c is not join-irreducible. Notice that Ck must be 
meet-irreducible by Observation 2. We distinguish four cases the first three 
of which are the trivial ones.

Case 1: c* = 1, the greatest element of L, i.e. c* has no upper cover at 
all. Now L — {с*} is a sublattice of L and H  — {c*} is a *-basis of L — {c/t}. 
Also, £(L — {с*}) = l (L )  — 1 and |H -  {с*}| = \H\ — 1 (obviously, c* £ H ) 
and the assertion follows by induction.

Case 2: Ck has a unique upper cover and ejt ^ H. Since Ск £ H  and 
Cfc is both join- and meet-irreducible there must be a maximal chain not 
containing с^. This means the length of the sublattice L -  {c*} is l (L )  and 
since H  is a *-basis in L — {cjt} as well the assertion follows by induction.

Case 3: c* has a unique upper cover b and ejt £ H  but b £ H. We have 
two possibilities:

(i) b = hi V /12 f°r some hi, h? € H  -  {c*,} and hi, h3 < b.
(ii) The above hi and h2 do not exist.

In case (i) H -  {c*} is a  *-basis of L — {cjt}. This can be shown easily by 
observing that in any non-trivial join (i.e. when the elements to be joined 
are strictly less than their join) containing c* we can replace c\t by hi V h2.

In case (ii) (Я  — {c*}) U {6} is a *-basis of L — {с^}. Similarly to case 
(i), this can be seen by observing tha t in non-trivial joins cjt and b can be 
replaced by each other.

Since b £ J (L ) some maximal chain of L avoids c* whence i(L  — {cjt}) = 
= l(L). Then the assertion follows by induction as before.

Case 4: Both c* and b belong to H. Let bo ф Ci such that 0—< bo (if 
bo does not exist then 0 £ H is meet-irreducible and we can induct with 
L — { 0} and H — { 0} ) . Further define 6,- = с,- V 6;_i for i = 1 ,. . .  , к. Using 
again the Interval Isomorphism Theorem and join-irreducibility of с,- we get 
the following diagram where, as usual, the line segments denote covering 
relations:
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Suppose now that H' 2 H  — {c*J is a *-basis in L  — {c*} and let h' £ 
£ H '—H. We claim that this can happen in two ways: either h! = 6, for some 
i or c,_i—< h '—< bi for some i. To see this assume hi ф bi (i = 0 , . . .  , k). 
Since Ы £ H  and H was a maximal ^-independent subset there m ust be 
some g £ H  with h! — ejt V g and c*, <7 <  h' or g = с*, V h' and cjt, h' < g. 
Since Cfc is meet-irreducible if we replace c* by bk the equations remain valid. 
Then *-independence of H' gives h' — bk or g and g = bk от h \  respectively. 
Taking into account h' £ H  we are left with the only possibility g =  bk- Let 
i be the minimal index such that hi ^ 6,- and let j  be the maximal index such 
that h! > Cj. We show с,- V hi = b, and с,- Л Ы = cj. T hat с,- ^ с; V hi ^  b, is 
clear and с,- =  с,- V h' would imply h' ^  c, ^  c* however we have 6*. =  Ck V h'. 
Thus the first equation follows from c,-—< 6,.

Any meet involving any of c0, .. .  , c* equals one of c0, . . .  , Ck since these 
elements cover each other and are join-irreducible. Hence, the second equa­
tion is immediate.

The Interval Isomorphism Theorem gives Cj-< h' and Observation 1 says 
{cj,cj+i,h ',b j}  generates М 3 . This means i = j  + 1 and Cj-< h'-<  6J+1.

Notice tha t we also have h' £ J(L). This is trivial if j  = 0. If j  > 0 then 
bj £ J(L) and Cj—< h',bj which give h' £ J (L ) by Observation 2.

On the other hand, if h' — bi for some i then c, £ H . Suppose not. Then 
there must be g,g' £ H such that g' =  с,- V g and c ,, g < g'. Let C  be a 
maximal chain between ct- and g'. Suppose that x is the least element in C 
which is different from all Cj and у is the least element in C with у £ J(L). 
Further, let z £ C with z —< у and let Cj £ C such tha t Cj-< x.

First observe that x — bj cannot occur. If x = bj then c, < h' =  6, < 
bj g' would give 5 V h' =  g' which in turn would give g = g' or h' =  g' 
by ^-independence of H '. However bo th  are impossible since g < g' and 
h' ^ Я. Our Observations also give cJ+1 V x = bj+i and x £ J (L ) .  One 
consequence is z  > x. Since all z' £ C w ith z' < z are join-irreducible we have 
z/\Cj+i = Cj. The Interval Isomorphism Theorem gives now z —< cJ+1 Mz. By 
Observation 2, the only join-reducible cover of г is у whence cJ+i V z  =  y.
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This together with x ^ z  and Cj+\ V x  =  bj+i yield bj+i < y. Then by 
6, < bj+x and у < g' we get 6, < g'. This implies g' = b,\/ g which contradicts 
the ^-independence of H ' .

If IH' — H\ < 1 then the assertion follows by induction. Let us suppose 
now h! ф h" and h',h" G H ' — H . Using the  information derived above we 
distinguish four subcases:

(i) h' = bi, h" = bj and i < j .
Then Cj G H '  and Cj V b, — bj contradicts the ^-independence of H '.

(ii) с,—< h '—< bi+1 and c j—< h"—< with i ^ j .
Then let c0—< . . .  —< cj—< h " —< do—< . . .  —C d„ be a maximal chain of join- 
irreducibles. We may suppose d„ has a unique upper cover e with dn,e  € Я  
otherwise we could induct as in case 1 or 2 or 3. But then a similar argument 
to those above shows bj+i A dn = h" whence V dn = e which gives h' ^  e. 
This and h' ^  yield h' V dn = e, contradicting the ^-independence of Я '.

(iii) h' =  6,-, Cj—< Л.'—< bj+1 with г ^ j .
This case can be handled as (ii).

(iv) h' =  bi, Cj—<. h'—< bj+i with i > j .
This case is essentially the same as (i).

The author wishes to thank the referee for his helpful suggestions which 
improved the proof.
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0 . In tro d u c tio n

The fundamental problem of partition theory of infinite graphs is if for 
every graph У and cardinal // there exists a graph X  such tha t if the vertices 
(or edges) of X  are colored with ц  colors then there is a copy of У with all the 
vertices (edges) getting the same color. This is denoted as X  —> (У)* and 
X  —► (y)£; if these statements fail, then, of course, the arrow is crossed. Let 
К  ( a )  denote the complete graph on a  vertices, and let К  ( a )  ^ X  denote 
that the graph contains К  ( a )  as subgraph. If к  is an infinite cardinal, 
then obviously К ( к +) —> K ( k+)\,  and by the Erdös-Rado theorem [6], 
K((2K)+) —> (K (k+))1, and this result gives the existence of X  for any
v , m-

To make the problem harder, one might require the copy to be induced. 
This relation is denoted as >-+. Though the vertex problem is still fairly easy, 
the edge case even for finite Х , ц  was only solved around 1973 by Deuber, 
Nesetril-Rödl, and Erdős-Hajnal-Pósa [1, 11, 5]. The latter authors even 
showed that for ц  finite, У countable, there is an appropriate X .  Hajnal 
and Komjáth [9] proved that it is consistent that there exists а У of size Ni 
such that no X  (of any size) has X  >-+ (У)^. Shelah [14] proved that it is 
consistent that for any У, ß there is an X  with X  >-> (У)£. Hajnal recently 
proved [8] that if У is finite, ц is infinite, an appropriate X  exists, in ZFC.

Another way of making the problem harder is to pose restrictions on X .  
We may require that if К (a) % У, then К (a) ^  X ,  either. This excludes the 
possibility of getting an easy solution by using the above-mentioned Erdös- 
Rado theorem. For finite X ,  /1, Folkman showed the existence of such an X  
with X  —* (У)* and also, for finite а , ц the existence of a finite X  with 
К (a + 1) ^  X  —>■ (a)*. [7]. Nesetril and Rödl solved the edge case, for 
finite У, Ц [12]. The infinite case for vertices, but if a is finite, was solved 
by Komjáth and Rödl [10]. The case of general a  is given by Hajnal and 
Komjáth [9]. As for the edge coloring, Hajnal and Komjáth proved in [9] that 
it is consistent that there is а У of size Hi, with K(3) ^ У and if X  —> (У )£ 
then K(u>) < X .  It was an old problem of Erdős and Hajnal if a graph У
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with К  {A) ^  Y  —> K (  3)2 exists. S. Shelah in [14] proved that such a У 
may consistently exist. Another old Erdős-Hajnal question was if а У with 
K{u>i)  ^ У —> (A(u>))2 may exist. Here we solve (at least consistently) this 
problem by showing the consistency of the statement that if У is a graph, 
p  a cardinal, then there exists a graph X  with X  >-*■ (У )2 and if K ( a ) ^ У 
then K (a ) ^  X ,  either.

We first show that if 2й =  p +, к > p  is measurable, У is a graph on p, 
then there is a < closed poset of size к, adding a graph X  on к  as above. 
From this, we can get the general result, if we assume that {ка : a  ordinal) 
is a class of measurable cardinals, and take the iteration {Pa , Qa : a  ordinal) 
of posets, where Qa is the poset of Theorem 1 with p = к + ,к  = Ka+i, and 
У is some graph on p. We take inverse limits at singular ordinals, direct 
limits otherwise. This will guarantee enough closure properties for getting a 
model of ZFC, and for that the graphs preserve their partition property at 
later iterations.

1. The consistency proof
T heorem 1. If  2м =  p +, Y  is a graph on p, к > p is a measurable 

cardinal, then there exists a ^  p+ -closed partial order P, |P | =  к, adding a 
graph X  such that X  >-*■ (У )2, and whenever K (a)  ^  X ,  then K ( a ) < У.

P roof. The vertex set of X  will be [к]2. We define a partial ordering < 
on it by putting {/30, a 0) < < {/?i , ö i) < iff ßo < ßi and ao < <*i. A condition 
is of the form p = (s,g,(p) where s C [к]2, |a| < p+1 g Q [s]2. If {{/?o>Q:o}<, 
{A »ai)<} € g, then either ß0 < ß\ < a 0 < c*i or ß\ < ßo < < a 0. <P
is a function with Dom(<£>) =  (A < s: |A| > 2, [A]2 Q 5). For A 6 Dom(^), 
<p(A) ^ p spans a complete graph in У, |y>(A)| =  |A|. We also require that 
if В  properly end-extends A, then <p(B) should properly end-extend <p(A).

Condition p' = (s',g',<p') extends p = (s,g,tp) if s' Э 5, 9 — [5]2 П <7', 
(ff 2 <p, and if A Q s, |A| > 2 spans a complete graph in g, x € s' — s, and 
A  U {a;} is complete in g1, then A < x, i.e. у < x holds for every у € A.

Let P  be the set of conditions defined so far.
Lemma 1. (P, <) is transitive.
P roof. Straightforward.

Lemma 2. If  p =  (s,g,<p) € P, A  Q к, then p \ A  G P. I f  A fl s is an 
initial segment in s, then p < p | A.

P roof. Immediate from the definitions.
Lemma 3. (P, <) is < p + -closed.
P roof. Assume that p( = (s(,g^,<p() is a decreasing, continuous se­

quence of conditions (f < £0 й /i+ )- Take p = (s,g, <p), where s = U{á^: £ < 
< fo)> 9 =  £ < £o)> and whenever A Q s spans a complete subgraph in
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g , IA\ > 2, then <p(A) =  U{<fz(A Л S(): £ < f0, \A П > 2}. For £ < C < £o, 
^ ( i f l  S{) end-extends <p((A П S(), so cp(A) induces a complete subgraph 
in Y, and |у?(А)| = |A |. If В  end-extends A, then select £ < £o with Л 
Л (В -  А) ф 0. By the definition of order on P, A  Q S(, so <p(A) =  <P((A) 
and <p(B) end-extends which in turn end-extends <p(A). To check
p < p( (£ < fr), the only nontrivial thing is the clause on A  U {x}. If A € 
€ Dom(y?£), x 6 s — S(, we can assume that x € s^+x — s^, so A < x, and we 
are done.

LEMMA 4. If p, =  (s,-,gi,<pf) are conditions for i < 2, they agree on 
s0 П sx, then q = (s0 U Si,g0 U <7i,y?o U pi) is a condition. I f  s0 П Sx < 
< (s0 -  Sx) U (sx -  s0), then q ^ p0,Pi-

P roo f . Straightforward.
If G Q P  is a generic subset, we let X  = U{<7: (s,g,ip) € G).
Lemma 5. If  К  (a) < X  for some a, then K ( a ) < Y .
P roof. K(p  + 1) %. X ,  as if A  Q [к]2 spans a complete graph of type 

/1 + 1, pick p = (s,g,<p) € G fixing A. This is possible by Lemma 3. But 
then, <p(A) would give a K (p  + 1) in Y, a contradiction. If К (a) < X ,  a < p, 
argue similarly.

In order to finish the proof of Theorem 1, assume without loss of gener­
ality that 1 II- F: X  —>■ p. By Fact 2.4 in [14] there is a set A  of measure 
one, {Ns : s 6 [A]<w} such that
(1) N. X ( t f (2« ) ;e ,F ,lh ,. . .) ;
(2) [N,y+ C N.;
(3) IJV.I =  2"+;
(4) NS0 П N tl = NSone i;
(5) there is an isomorphism H(NSo, N ei) between N So and N Sl for |so| = |sx|, 

mapping so onto sx;
(6) N. П A = s;
(7) if so is end-extended to sx, then N So is end-extended by N Sl.

Let A' Q A be a set of indiscernibles for {N.: s € [A]<u'}. Enumerate the 
first p2 elements of A' in increasing order as {ß(i) : г < p] U (а(г) : i < p}. 
Put t(i) = {/?(*),<*(*)}, Mi = Nt(i) for i < p.

Definition . For p,q  6 P , p ~  q denotes that p \ Nq, = q | N$.
Lemma 6. If p(i) € M,-, p(j)  G M j ,  p(i) ~  p(j), then p(i), p(j) are 

compatible.
PROOF. By (4), the non-edge amalgamation works.
We next show th a t one-edge amalgamation can also be constructed. 
Definition . If i < j  < p, p(i) = (s(i),flr(*),¥>(*)) e M h PÜ) =  

= (*(j)*9(j),vU)) € Mj,  p(i) ~  p{j), then put p(i) +  p(j) = (s,g,<p) with 
s = s(i) U s(j), g = g(i) U g(j)  U {{t(i), t(j)}}, ip =  <p(i) U <p(j).
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Lemma 7. p(i) + p(j)  15 a condition, extending both p(i) and p(j).
P ro o f . As ß(i) < ß( j )  < a ( i ) < a(j) ,  it is possible to join t(i) and 

t(j). As sup(A0) < ß(i) < ß(j) ,  t(i) and t ( j ) are not joined into so no 
new complete subgraph with more than two elements is formed.

Definition. If i < j  < p, p ( i) € Mi, p( j )  e Mj, £ < p, we call the 
pair (p(i),p(j)) f-good, if p{i) ~  p (j) ,  and for every selection of p'(i) ^ p(i), 
p'(j) ^  p( j )  with p'(i) € M,-, p '( i)  € Mj, p'(i) ~  p '(j), there is a g < 
р'(г) + p '( j)  such that q lb F ({ i( t) ,i( j)} ) = £.

Lemma 8 . I f  i < j  < p, p(i) e  Mi, p(j) e  Mj, p(i) ~  p(j), then there 
exist £ < p, p'(i) ^  p(i), p '(j)  ^  p(j), p'\i) G M,-, p '(j) € My such that 
(p \ i ) ,p 'U )) is 1,-good.

P ro o f . Assume that the statement is false. Put р(г,0) = р(г), p (j ,0) = 
= p (j), and we are going to construct decreasing, continuous sequences р(г, f), 
p ( j ,0  for f  < p. If p (i ,0 ,  p ( j ,0  are defined, let p(i,£ + 1) ~  p(j,£  + 1) 
be such tha t no q < p(i,£  + 1) + p ( j , {  + 1) can force F({t(i), t ( j )})  = £. If 
q = P(hP) +  P(jiP) determines F ({t( i) , t ( j)} ) ,  then we get a contradiction.

By transfinite recursion on a  < p+, we select, for every / :  a  —> 2, а 
condition p(i, f )  € Mi, and an ordinal f ( / )  < p  such that
(8) H( Mi , Mj ) (p( i , f ) )  = p ( j , f )  ( i < j <  p);
(9) ( p ( i , f* 0 ) ,p ( j , f * l ) ) is f(/)-good  (i < j);

(10) p ( i , f )  < p(i, f )  when / '  2 / ;
(11) p(i, f )  ~  p(j,g)  when f , g:  a -> 2, i < j .

For a  limit, we can take unions. Given {p( i , f ) :  / :  a  —► 2, i < p} we 
select р(г, / л0), р(г, / л1) by а transfinite recursion of length |2" | < p+, using 
Lemma 8. To insure (11), we must keep extending p( i , f )  | N$,  this can be 
done by Lemmas 3 and 4.

By the Baire category theorem, there exist £ < p,  and increasing r,- < p + 
f i : a —* 2 (г < p) for some a < p +, such that
( 1 2 )  / , ( r , )  =  0 ,  / y ( r , )  =  1, fi  I tí Q f j  I Tj (i < j);
(13) a f i  I n )  = (.

Put Y  = {{$(*)»«(*)} : i < p}.
We are going to construct q( j , i )  for 7 ^  p, i < p. Put g(0 ,i) = p (i , f i), 

for 7 limit, <7(7 , i) = U{q(j/,i) :  7 ' < 7}. If the construction is given, up to 
the 7th level, let u(7) € Nt(i)ut(j) be such that

u ( l )  ^  g ( 7 , 4 7 ) )  +  9 ( 7 , 4 7 ) )
and u(7 ) lb F({t(6(')')), t (£(j))}) = £. We then take q(7 + 1, i) =  5(7 , / )  U 
U u(7) I M i.

Lemma 9. u(7 ) exists.
P roof. By Lemma 8 and by q(7 , i) ~  q( j , j ) .  This latter property holds 

for 7 limit by continuity, for 7 = 0 by definition and (11), and for 7 -f 1 by 
definition.
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Lemma 10. 9 ( 7  +  1,г) < g(7 ,i).
P r o o f . By Lemma 4.
If u(7 ) = (5(7 ), 5(7 ), 95(7)) for 7 < p,  then put и = (s , g , p ) where s = U 

U{s(7) : 7 < /11}, 5 =  U{<jf(7) : 7 < /t}, and <p is such th a t it extends all <£>(7 ), 
and ¥>({i(i) : i € A}) = A, when |A| > 2, and A spans a complete subgraph 
in Y.

Lemma 11. и e P.
P r o o f . It suffices to show that if В Q s, |B| > 2, spans a complete 

subgraph then it is either in the domain of some <p(7 ) or it is of the  form 
В  = { t( i) : i € A} for some А Я p.

If two Mi-s cover B,  then one of them covers, too, or else {t ( i ) , t ( j )}  С  B, 
but then В  П N$ =  0, so В = {t(i) , t (j )}.  If no two M,-s cover B,  then 
В Я m  : i < ц},  and we are done, again.

Lemma 12. и £ u(7 ).
P r o o f . There is no complete subgraph in и which is extended the  wrong 

way. The only candidate for this is a set of type {t(i) : i £ A} of which only 
two vertices are in u(7 ).

Lemma 13. и 1Ь {t(i): i < ц} span a monocolored copy of Y.
P r o o f . O b v io u s .

Clearly, Lemma 13 concludes the proof of Theorem 1.
T h e o r e m  2. I f  the existence of class many measurable cardinals is con­

sistent, then it is consistent that for every Y, p there exists an X  with X  >-*• 
>-+ (Y) l  such that i f  K ( a ) < X , then K ( a ) ^ У.

P R O O F . By iterating the poset in Theorem 1.
The assumption on the existence of measurables can be eliminated, see

[14] Sections 3, 4.
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ON THE ASYMPTOTIC BEHAVIOUR 
OF THE SOLUTIONS OF A SECOND 

ORDER LINEAR DIFFERENTIAL 
EQUATION WITH SMALL DAMPING

J. KARSAI* (Szeged)

1. Introduction

In this paper we consider the linear differential equation 

(1) x -f a ( t) i +  x = 0,

where the function a(t) is supposed to be nonnegative and piecewise contin­
uous. The classical problem of finding conditions guaranteeing that every 
solution of (1) tends to zero as t —► oo, has been the subject of a great num­
ber of publications [3]—[8] for equation (1) and recently also for more general 
nonlinear equations. There are rather sharp sufficient conditions, but the 
sharpness problem, that is to find necessary and sufficient conditions, has 
not been solved even for the linear equation (1). This problem is the subject 
of our paper.

OO

It is known that if a(t) is too small, i.e. J a < oo, the solutions are 
oscillatory and do not tend to zero as t —► oo [8]. If the condition

( 2)

OO

J a = °°
о

holds, then there exists a solution tending to zero [2], but examples show 
[4, 5] that there may be also solutions not converging to the equilibrium 
position. We note that if a(t) is bounded, this solution is oscillatory, but 
if a(t) is too large, such as £2, it is monotone. To exclude the existence of 
monotone solutions not reaching zero, the condition

OO t tJ j  A(s)dsdt = oo, where A(t) := e x p a ( s ) d s |

* Research supported by Hungarian National Foundation for Scientific Research grant 
no. 6032/6319.
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is necessary and sufficient [3, 6, 7, 8] provided o(i) is bounded below by a 
positive constant. However, this is not the case for the equations with small 
damping, in other words, there is no necessary and sufficient condition to 
exclude the situation in which oscillatory solutions tending and not tending 
to zero exist simultaneously.

In this paper we consider the bounded damping case (a(i) is bounded).
After general statements we give some types of criteria for the case of 

step-function damping and then we extend these results to the case of general 
damping. Finally, we show that condition (2) is “almost sufficient” in the 
following sense. If lim sup a(t) < 2 and (2) holds then every solution of the

t —НЗО

equation
x + ^ (a (i) + a(t -  a))x + x = 0 

tends to zero as t —► oo with every sufficiently small a.

2. General results

Using the polar transformation
x = R  cos f ,  x = —R  sin</? 

we transform equation (1) into the system

(3) ф = 1 — ^a(f)sin2yj, R  = -R a ( t)  sin2 f .

Since x 2(t) + x2{t) =  R 2(t), we may prove R(t)  —► 0 instead of x(t) —*• 0 
(i —> oo). It is easy to see that

t

(4) R(t) = i 2(0) e x p |— J  a(s)sin2y?(s)<foj >
о

Inequality (4) is of extreme importance. From (4) we can derive that the 
solutions can tend to zero not faster than the function 1/A(t). We may ask 
whether the solutions can reach this rate. The following theorem gives the 
answer.

Theorem 1. Equation (1) has a solution not tending to zero (t —*■ oo) 
if and only if  it has a solution for which R(t) = 0(1/A(<)) (t —► oo).

The proof of this result is analogous to that of Atkinson’s theorem [1] 
for the equation x + q(t)x =  0.

This theorem suggests that the case when solutions tending and not 
tending to zero exist together is only a “singular” situation. In the next part 
we try to characterize the nature of this “singularity” investigating the case 
of step-function damping.
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3. T he step -func tion  dam ping

Let the functions an (steps) be defined by

, - n /.4 _  /  an i f f  € [0,in]
(5) nW"  i  0 if Í < 0,

(an, in > 0) for n = 1 ,2 ,__  Let the sequence {sn} be given such that
so ^ 0, sn+i ^ sn + in. Now define

( 6 )

and suppose

°(0  := “  sn)
fl=1

oo

(7) J 2 Qn*n = 00 •
n=l

As in general, further conditions on {a„},{in}, {sn} are needed making 
all solutions tend to zero.

In the following theorem, published earlier, the conditions will be inde­
pendent of the distribution of the steps, i.e. of the sequence {s„}.

Theorem 2 [4]. Suppose that a(t) is bounded, and
OO

(8) £ “ "*» m in(l, = oo
n = 1

holds. Then every solution o /(  1) tends to zero as t —*■ oo.
On the other hand, if

OO

(9)
П=1

then there exists a sequence {sn}, s„+i > s„ + in, s0 > 0, such that (1) has 
at least one solution not tending to zero (t —► oo).

The first part of the theorem is valid for nonlinear equations as well. The 
proof of the second part gives a way to construct counterexamples ([4, 5j) 
and expresses the fact that if (9) holds, it is impossible to give distribution 
independent results. For example, if a„ =  1, s„ = n, in =  1/n, the first part 
of the previous theorem cannot guarantee that the solutions tend to zero as 
t —► oo.

In the following theorems conditions for the distribution of the steps are 
essential. By Theorem 2, if liminf t„ > 0 then (7) suffices the solutions to

n—KX>

tend to zero. First we consider the case, when this condition is not satisfied.
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THEOREM 3. S u p p o se  th a t  th e re  is  an  in c re a s in g  s e q u e n c e  {rij} o f  n a t ­
u ra l n u m b e rs  su c h  th a t lim ( i n + i„.+i) = 0 is  sa tis f ie d . I f  the seq u en ce

j - *  oo 1 3
{max(anj, a nj+i)} is  b o u n d ed  a n d  th e  c o n d it io n s

( 10) lim inf ((sn +i -  s n )m o d 7r) > 0,
j —>oo

(11) lim sup((snj+1 — s„j) mod ж) < тг,
j — Ю О

OO

(12) ^ m i n ( a Il)in),tt„)+ii„J+1) = oo 
j=1

are  sa tis f ie d , th e n  e v e r y  s o lu t io n  o f  (1) te n d s  to  ze ro  as t  —► oo.
Proof. Let us consider system (3). Since R ( t )  is constant on the inter­

vals (s„ +  i „ ,  sn+i), the right-hand side of the first equation is periodic in tp 
and d i p / d t  =  1, we can suppose that sn+i — s n — i n <  тс. Let us consider the 
sequence {n_y}. If к = nj for some j  large enough, we have

6 ^ Sk+l -  Sk -  ik й  <f { sk+i )  -  <p(sk +  i k ) ,

and also
M

^(•Sfc+i +  ífc+ i) -  v i ^ k )  й  S k + 1 - S k  -  ik  +  — ( ik  +  *k+1 ) <  я- -  6,

with some positive 6 where M  is a bound for the sequence {max(anj,anj +i)>. 
So the function sin2 has at most one zero on +  i k + i ]  and there is
a number ß  > 0 for which

m ini min sin2 p { t ) ,  min sin2 <£>(*)) > ß  > 0,
4** >**+*’*] [*fc+l>*Jc+l+*k+l] '

for every large enough к = nj (j  > J), i.e. sin2 <£>(£) is uniformly strictly 
positive at least on one of the associated neighbouring intervals. Now we get 
the following estimate for R ( t ):

* r I j  * Xlj

R (snL+i + *n£+i) ^ Ä(0) e x p | - ^ ^ ^ Q nj J  sin2 ip(u)du+
8n,

•n,-+l+*n,-+l
+ а п>+1 /  sin2 tp[u)du^ I  < К  e x p j - i / ? ] T  m in(anj i,ij, Onj+i^'fij+i) j*

*n>+l j=J
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where the right hand side tends to zero (L —► oo). The theorem is proved.
□

Conditions (10) and (11) say th a t the accumulation points of the se­
quence {snj+i — sH]} cannot be equal to any multiples of ж. In the special 
case when the sequence {(s„+i — sn ) m odi}  is'convergent, we obtain the 
following result.

Corollary 4. Suppose that (7) holds, limsup a„  < oo, lim in — 0. If
n—►oo n-+oo

(13) 0 < lim ((s„+i — 5„)m od7r) < ж
n —►OO

then every solution of equation (1) tends to zero as t —► oo.
Theorems 2 and 3 are independent. For the above mentioned example 

= n, in = 1/n, a n =  1 condition (8) is not satisfied but Theorem 3 is 
applicable. On the other hand, if sn =  П7Г, an = 1, tn =  1 /n1/4, condition 
(8) holds but Corollary 4 is not applicable.

Theorem 3 has the following interesting consequence, which shows that 
a slight modification of the equation kills the solutions which do not tend to 
zero.

Corollary 5. Suppose that a(t ) satisfies the conditions of Corollary 4, 
except (13). Then every solution of the equation

x  +  ^(a(i) +  a(t — <j ) ) x  + x = 0

tends to zero (t —► oo) for every 0 < cr /  jtt (j = 1, 2, . . . ) .
W ithout assuming inj -* 0 (j —► oo) we can state the following
THEOREM 6. Suppose that there is an increasing sequence {nj} o f nat­

ural numbers such that the conditions
(14) lim inf ((s„ +1 -  sn -  in )m od7r) > 0,

j —>oo

(15) limsup((s„j+i -  snj -  г„; ) mod ж) + - ( a n>*'n> +  a„>+i*„i+ i)  < ж
j —►OO ^

and (12) hold. Then every solution of equation (1) tends to zero as t —> oo.

4. General damping

In this section we consider the more general equation
(16) x + h(t,x , x )x  + x = 0, 
h( t , x , y ) is continuous and satisfies
(17) 0 < a(t) ^ h(t, x , y) ^ b(t),
where a(t), 6(f) are piecewise continuous on [0,oo).

Theorem 6 can be easily generalized to (16). The following result holds.
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T h e o r e m  7. Suppose that (17) holds and there exist sequences of in­
tervals ( |s „ ,s n + in]},{tn, t n +  ln]} such that 0 ^ s0, sn < sn + i„ < tn < 

tn ln K. -Sn+1 . If
(18) limsup{6(f) : f € [s„,fn +  /„]}<  2,

n —►OO

(19) lim inf(t„ -  sn -  in) > 0,
n —Ю О

(20) lim sup(t„ + /„ -  sn) < tt/ 2,

П̂“Мя
( 21) £ m i n (  / « , / « )  =

П *n In
00,

then every solution о / (16) tends to zero as t —> oo.
P r o o f . N ow we have the following estimates on the variations of <p(t) 

if n is large enough:
0 < Si < 6(tn -  sn -  in) < y?(t„) -  (p(sn +  t„),

and
+ /„) -  <p(s„) < (2 -  6)(tn + ln -  sn) < тг -  61 

with some 6, S\. From here the proof can be finished similarly to that of 
Theorem 3. □

A straightforward application of the previous theorem gives the following 
generalization of Corollary 5, which especially shows that (2) is an “almost 
sufficient” condition for R(t)  —* 0 (t —► oo) for every solution of equation
(!)•

OO

T h e o r e m  8. Suppose that J a = oo, lim supb(t) < 2 and (17) holds.
t — + OO

Then every solution of the equation

(22) x -f i ( h { t , x ,x ) + h{t -  a , x , x ) ) x  + x = 0

tends to zero as t —► oo for each 0 < о < ж/ 2.
P r o o f . Let 0 < < t < 7 t/ 2  be given. Let N  be a natural number for which 

o / N <k / 2 — a. Let us now define the sets
OO

üCit := [(no + k)(r/N,  (n<7+k + l)(r/N] (к = 0, 1, . . .  , N  -  1).
П=0

N- l
It is obvious that (J К к = [0,oo), and there is a A for which J a = oo.

fc=o K k
Now we can apply Theorem 7 to equation (22) with that Kk  (t„,/„ = a / N , 
sn = (2n N  + k ) a / N , tn = ((2n + 1 )N + k) a / N) .  The theorem is proved. 
□
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ON ADDITIVE FUNCTIONS
M. JOÓ (Auburn)

A classical theorem of P. Erdős [1] states that if a real-valued additive 
function is non-decreasing or f ( n  + 1) — /(n )  —► 0 as n oc, then it must 
have the form clogn for some constant c. Both statements were generalized 
and strengthened by many authors; see e.g. the book [2] of P. D. T. A. Elliott 
and references there.

The aim of the present note is to give an elementary and straightforward 
proof for the following theorem, which is a corollary of the theorems proved 
in the papers [3], [4] and [5].

T h e o r e m . Let f  be an additive real-valued arithmetical function; A, В 
positive integers with (A, В ) = 1. Suppose that f  is non-decreasing on the 
set {An  +  В : n = 0 ,1 ,...} . Then f{n)  = clogn if (n, A) =  1, where c > 0 
is a suitable constant.

P r o o f . Our idea is to prove that /  is completely additive on the set 
{An + В : n = 0 , 1 ,.. .} , from which the statement follows at once.

1. First we show that if h =  1 (mod A) then

(1) f {h)  = a log h.

To this end let us denote c* := f (h ) / \o g h  and d/,(n) := f  {An + B) — Ch logn 
for any fixed h € N, h = 1 (mod A), h ф 1. We shall show that dh{n) is 
bounded, which implies the statement (1) taking into account that

м „ )  -  «W ») =  ( ^  -  i°gn =  0(1 )

(for any pair of h i , /12)-
First we show that dh{n) is bounded above, i.e. if n > щ  = no(c/,,h) 

then there exists m/, < n for which

(2) f ( A n  -f B) -  ch log n < f ( A m h + B) -  ch log m h.

We are looking for an M  such that

(3) h(AM  + B ) >  An + В 
and

(4) A M  +  В = 1 (mod h).
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Let us denote m/, the minimal solution of (4) which satisfies (3). It is easy 
to see that m/, =  ^ +  0(1). /  is non-decreasing on {An  -|- B}  thus we have

(5) f { A n  + B ) <  f ( h ( A m h + В )) =  f ( h ) + f ( A m h + В ), 

hence

(6) /(A n-fI?) —c/jlogn < f ( h ) - c h\og—  + ( f ( A m h + B ) - c hlogmh) =
mu

-  f ( A m h + B)  -  Ch log mh + 0 (£ ) .

By iteration (repeating the above calculation with m/, in place of n) we 
get that dh(n) is bounded above. It can be proved similarly that dh(n) is 
bounded below. Hence (1) is proved.

2. Now let с,- (t = 1 or 2) be a natural number which is coprime to A and 
denote c* > 0 one of the multiplicative inverses of с,- mod A. By Dirichlet’s 
theorem there exists a prime p, such that p, = Ап,- + с,- with suitable n,- and 
(pi, c2) = (P2, ci) =  (piP2, CjC )̂ = 1. Then pic*{ = Ас?щ +  с,-с̂  = A m  +  1, so 
using the result of Part 1 we have

(7) f (p i ) +  / ( c  •) = a log pi + a  log c*{ 

and

(8) f(Pi) + f{Pi)  +  /(cjc^) =  a  log pi + a lo g p 2 +  a lo g c j + alogc^.

From (7) and (8) we obtain that f(ab) =  /(a )  + f(b)  for every pair a,b 
coprime to A. Thus

a  log pv(j4) =  f ( p ^ A)) =  <p(A)/(p) 
for all primes p f A by (1), which yields the theorem.
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INVESTIGATIONS OF CERTAIN 
OPERATORS WITH RESPECT TO 

THE VILENKIN SYSTEM
G. GÁT (Nyíregyháza)

Introduction and results
We introduce some notations and definitions. Let m  = ( m o ,m i , . . .  , 

m /t,...)  be a sequence of natural numbers, each of them not less than 2. 
Denote by Zmk (k G N := { 0 ,1 ,...} )  the m*-th discrete cyclic group, i.e. 
Zmk •— { 0 ,1 ,... , mjt — 1} (k G N). If we define the group Gm as the direct 
product of the groups Zmk, then Gm is a compact Abelian group with Haar 
measure 1. The elements of Gm are of the form x = (x<), X i,. . .  , xjt,. . . )  with 
Xk € Zmk (к G N). The sum of x , y  G Gm, x+y  is obtained by adding the 
n-th coordinates of x and у modulo m„ (n G N). (Let — be the inverse of 
operator +.) The topology of Gm is completely determined by the following 
subgroups of Gm'•

I n{x) := {y G Gm I l/о = x0, . . .  ,yn- i  = £„_!> (x G Gm,n  G N).

For a fixed x G Gm and for n € N let

/ n(x, /;) .— {j/ € Gm I J/o — x0, . •. , Уп—l = xn—\, yn = fc} (к G Zmn )•

It is obvious that 7„(x) = |J  In(x,k)  and this decomposition contains
k£Zmn

disjoint sets, furthermore |/„(x ,/:)| = m“1|/„ (x )| (к € Zm„ and |A| denotes 
the measure of the Haar measurable set A C Gm)•

It is well-known [1] that the characters of Gm form a complete orthonor­
mal system Gm in L l {Gm)- The elements of G can be obtained as follows. De­
fine the sequence (Mjt, к € N) as M q := 1, Мк+i := m^Mjt (к € N), then all

OO

n G N have a unique representation of the form n = ПкМк (n* G Zmk,
k= 0

к G N). If

r„(x) := ехр(2тгtx„/m „)(= : r n(x„))
(» G N , x = (x0, x i , . . . )  G Gm, * = ( - 1)1/2),

л OO

then the elements of Gm are nothing but the functions фп Ц r^k
k= l

(n G N) (cf. [1]). (ф„, n G N) is the so-called Vilenkin system. The Fourier
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coefficients of a function /  £ X1(GrTO) with respect to Gm are denoted by 
f ( k ) (к £ N) and let

n—1 n
Snf : = J 2 h W k  ( n € N ) ,  on = n - 1 Y , S k f  (n € N \  {0}).

k=0 к= 1

n—1
The kernels of Dirichlet type are of the form Dn := ^  фк (n € N). It is 

known that

and also

/  M n

k= 0

if (x e  i n )

X о if (X t i n )  ( n e  N)

OO mfc- l
: ri DMk

lc=0 j= m k- n k

(cf. [1]). We define the maximal Hardy space H(Gm) as follows ([4, 10]). 
Let /  £ L1(Gm) belong to the maximal Hardy space H(Gm) iff the maximal 
function /* := s u p | 5 a í „ / |  is an element of Ll (Gm). | | / | |я  := ||/* ||i-  The

П
concept of the so-called atomic Hardy space H 1(Gm) is as follows.

First we define the set of intervals. If the sequence m is bounded, then 
this set is {/„(х) I x £ Gm, n £ N}, [10]. If m  is an arbitrary sequence, then 
a set /  C Gm is called an interval if for some x £ Gm and n € N, /  is of 
the form /  = |J  I(x,  к), where U is obtained from Zmn by dyadic partition. 

keu
(The sets U\, U2 , . . .  C Zm„ are obtained by means of such a partition if

Ui ={0, . . . ,  [m „/2] -  1}, U2 ={[m „/2] , . . .  , m„ -  1},
U3 = {0,. . . ,  [([m„/2] - 1)/2] -1 } , U4 ={[([m„/2] - 1 )/2],. . .  [ m j 2] - 1 } , . . .

and so on, [ ] denotes the entire part.)
We define the atoms as follows: the function a € L°°{Gm) is called an 

atom if either a = 1 or there exists an interval Ia := I  for which supp a C / ,  
H  = | / |-1 and J a = 0 hold. The space Я 1(Ст ) is the set of all functions 

I
OO

/  = A jo,-, where a, £ A(Gm) are atoms and for the coefficients we have 
;=oOO

|A,| < 00. H 1(Gm) is a Banach space with respect to the norm ||/ | |# i  :—
.'=0 OO
:= inf X) |A,|. (The infimum is taken over all decompositions f  = Yl  ^ifl*-) 

i=0
It is known th a t for bounded m  the spaces Я 1(С т ) and H(Gm) coincide 
and the norms || ■ ||Wi and || • ||я  are equivalent, [2].
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It is known that the Walsh system is not a Schauder basis in Z.1(G m) 
(where each mj  is 2). Moreover there exists a function /  € H (G m) such th a t 
lim sup Il-Sn/Hi = oo. The following theorem for Walsh system was proved 
by P. Simon [8]. The trigonometric analogue was verified by B. Smith [11].

T heorem 1. If  f  6 H l (Gm) (m is arbitrary), then
П

lim log- 17i ^ A r 1||S * / ||i  = H/llbn—►oo *
k= 1

Define the Sunouchi operator T  as follows [9, 12, 13]:

T f - =  ( E ism„ / - < w i 2) 1/!.
n = 0

G. I. Sunouchi proved [12-13] that in the case of Walsh system (mj  =  2, 
M j  = 2J for all j  e N) this operator T  as mapping from LT(Gm) into 
Lr(Gm) is bounded, if 1 < r  < oo. The analogous statement for r = 1 does 
not hold thus it is of interest to study what happens in this case. P. Simon
[9] proved tha t in the case of Walsh system (mj  = 2, j  € N ), T  is bounded 
as mapping from H 1 into L1.

For arbitrary sequence m  there are some different cases. First we prove 
T heorem 3. J/limsup тn* = oo, then there exists a function f £ H ( G m)

к
such that | |T / | |i  = oo.

That is, the theorem of Simon does not hold in the case of H(Gm) and 
lim sup mk = oo. Define the sequence m' in the following way:

k—1

m k •= Mk+i ^  MJ+i loS т з (k = I , 2, . . . ) .  
j=o

If m  is bounded, then so is ra' and H coincides with H 1.
T heorem 4. //lim supm j. < oo, then there exists a constant c > 0 such

that \\Tf\U < c ||/ | |Hi for all f  € H \ G m).
T heorem 5. If  limsupmj[ = oo, then there exists a function f  €

€ H \ G m) such that ЦТ/Hi =  oo.
Thus for bounded m the theorem of Simon and Sunouchi holds, and also 

for unbounded m  this theorem is true if and only if m' is bounded. To prove 
Theorems 3, 4, 5 the following lemma is often used.

Lemma 2 . I f  f  e L l (Gm), n e N, then

A cta  M athcm atica H ungarica 61, 1993



134 G . G Á T

S m J ( x ) -  ctmJ ( x ) =  (M„ -  l) /2  í  f -

l n ( x )

J  f  ( x € G m tek : = ( 0, . . . , 0, 1 , 0, . . . ) ) •
í„(*)+efcy

Lemma 2 can be proved by the method of Pál and Simon [7]. Throughout 
this paper c denotes an absolute constant, which may vary from line to  line.

Proofs
P roof of T heorem 1. We prove that

N

(1) sup sup lo g ^ iv V l I S H I r *-1 < °°-
a£A(Gm) IVgN fc=l

We complete the proof of Theorem 1 by (1) in a similar way as P. Simon 
[8] did in the case of m,- =  2 (i € N). Let a he an atom  for which I a

ß
:= 1J In(y ,k ) .  Since case a = 1 is trivial, we suppose th a t а ф 1.

к—a
(2) If q < Mn , then фд is constant on Ia, thus Sqa = 0. So let

9 > Af„ {q =  q,M, -f . . .  +  qnMn + . . .  +  q0 M0).

(3) If x € I i ( y ) \ I i+i(y), i =  0 ,. . .  ,n  -  1, then

Hi —1 m, — l
" ^ q k M k  + Mi ^ 2  ехр(2тг( -1  )1//2j (x ,-

(/,• = y,). Consequently

|5,a(x)| =  |a($)|
i- l ra ,-l
^ q k M k  + Mi ^ 2  exp (2 x ( - l ) 1/ 2j ( x i - t i ) /m i )

j = m , - q ,

From this it follows that
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m,—1
J  l-VI = Y  J  |5 ,a(x)|dx  <

(») l- ° ’l* yi{ ( V 0 i V i —l )}
mi — 1 mi— 1( m t — i. m t —i  \

1 +  m .r l  2  I S  е х Р ( 2 т г (  — l ) 1 /2 j ( x , — j / i ) / m t ) J =
nr ■ —П 1 — m  ■ — n  ■ 'x,=0, j = m ,  —q, 

m ,  — 1

Hence

(4)

= |á(g)|í i + m,-1 ^  \ sin(n qik /  mi) /  sm(n к / nii)\ j  £ c|a(g)| logg,-. 
4 k= 1 '

J  l^oC®)! ^  c|a(g)|log(m0 . . .m n_i) = c |a(g)|logMn.
Gm\In{y)

ß
(5) x £ l n( y ) \ \ J l n(y,k)=:B.

k=at

(5) gives x - t  € In \ /„ + i .

/ ✓ П —1 ГПп“"1 Л
а(г)фч(х -  + M n Y  ri(.x ~ t ) \ dt =

j  '•fc=0 j = m n - q n  '

=: J  a(t)rpq(x — t)(D  +  E)dt.

It is easy to get

( 6) / | / a(t)rpq( x - t ) D
В  l a

dx < |a(g)|.

Define Ak (k e J  := {a, a  +  1, . . .  , /?}) in the following way:

Ak := ( ß - a )  J  a(z)i>qn+lMn+1+...+qtM.{z)dz (k £ J).
I n ( v , k )

Thus |Afc| ^  1 (к £ J)  and in the case of q < M n+i, Ak = 0 holds.
k e J

Qn(7) J  \ J  Ф )фд(х -  t)E dx = m„ 1 Y  |£«(? - j M n)r4nn j (x„)
Xn£j i= l

= ! / ( ( / ? -  a  +  l)w»n) 5Z | Y  Y  Atr3n(x -

В  l a

x£j j = o  t e J
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From now on we assume th a t q < M„+1, and let
j  (a + ß ) / 2  (a  =  ß  (mod 2))

0 \  (a  +  ß  -  l )/2 (a  ф ß  (mod 2)).
(7) is equivalent to

(8) ((/? -  a  +  l)m „)_1 2 2 \ 2 2 M r4n ( x  “ О “ 1) /  (r n(* - t ) - l ) .
x$j  teJ

We give an upper bound for (8) in a way tha t we also give some upper bounds 
for the following two sums:

(9)

( 10)

(ß -  a  + l)m n

1

2 2 \ 2 2  ^ rnn(* -  o / m * - o - i )  = : 2 2 ’
x$j  teJ

(ß -  a + 1 )m, E l E * l rn(x -  t) -  1 = : E -
x $ j  t e J

First we deal with (10). Let Д J  := J  U {/34-1, /3+2,. . .  , ß+(ß  -  a  + 1)} U 
U {ct-(ß — ot + 1 ) , a - ( ß  -  a ) , ..  .a -1 } . Then

^  -  (ß -  a  +  l)m „

+ (ß -  Ol + 1)тп„ x £ A J  t £ j

x$a j  teJ

E  | Е л < ^ ( т 4 р т 1 =: E + E -

n(* -  0
+

( 11)
2

V  < --------- ----------
у  -  (/? -  a  +  1 )mn

E E  At{cot(7r(x — t ) /m n) -  cot(-K(x-to)/mn)} 
x$a j  teJ

<

■ i r ä i S 1 *'" ■- " ' . S i ^ i b s
Since the discrete Hilbert transformation [15] is of type (2,2) we get the

3
boundedness of 53: 

l

2 2  =  c m ~ \ ß - a  + l )~ 1/2{ 2 2  |^ > l tC o t(7r(x -  t)/m „)| } 7 ^ 
l x e A J / j  t e J

й c(/3 -  a  + l)~ 1/2{ 2  |At |2} 7 < c.
t £ j
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This and (11) give 52 < c. Now we deal with (9) that is construct some

upper bound for 52: 
2

у  < ---------L
V  ~ (0 -  a +

x{cot(7r(x -  t) /m„) -  cot((ir(x -  i0)/m n)}| + |o(gnM„)| У  -— Ц -г.
I f £ \ x -  t0|

|ó(gnMn)| |z -  tol-1 < c|a(gnM„)|iog( _^n+ J .
XÍJ

1
Then in the same way as we get 52 = c we also get that

l

(12) E  = c( l  + lá(gnM „)|log(/j _™n+ J ) .

Let now q > Mn+j. Then

y [ / a W ,( I - 0 ( p + £ ) |^ s i % ) i + « ( (<i_ o ^ 1)ro
S /a j  teJ

+
1 Е|ЕЛ- 1

(/3 -  a + l)m„ “ **■..(* - i ) - l ) =: H?)l + c( E  + E ) ’

+£ = c+ r/i /~v.и 1 е Е ^ н ф - о я ) - и ф -1о)я )

+с|й(д,М, + . . .  + gw+1Afw+ i) |lo g (—~^ ?+ y)  =

^ c (l + \a{qsMs + . . .  + gn+iM n.n ) |lo g ^  _™**+

as it comes from the techniques used in this proof before. We also get that

E s < i + i ° w i i ° g ( (i8.m; + 1 ) )
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Next we define an atom b 6 A (G m). Let y n = 1, and if z I n + i ( y ) ,  then 
b(z) = 0,

b (yo ,  • • • 1 Уп—1 i Уп 1 ^n+li • • • 1 1at • • • ) •
ß

■=(1/ 2) E  a(yOi • • • i Уп-1) ki tn+1) • • • , •. • )•
k=a

Then
|6|< M n+i,  supp 6 =  In+i(y), j  b= J  6 = 0,

Gm /„4.1 (v)L>+l(v)
that is b is an atom. If q > M n+1, then 2|Ьл(д)| =  |a*(qsM,  + . . .  + 
+  gn+iM „+i)|. By the application of a theorem of S. Fridii and P. Simon [4], 
we get

(13) ( l/ lo g jv )  £  l°Â M - + - -  +  ^ M" 4 - ) H ° g g % T s
q - M n+].

 ̂ N < log m n у "
= lntr Л/f , , L—J

\bA(q)\
log M n+1 q

q = M n + 1

<  C .

The upper bound for (6), (4), the application of the Fridli-Simon theorem 
[4] and (13) imply

t u )  ( i / io g jv )  £  ! ! ^ ! i < c .
q=Mn+l q

(14) shows that inequality q < M n+1 can be supposed (forever from now). 
Summarizing our achievements the rest in order to prove (1) is to get
(15)

N

A = :( l/ lo g lV )  Y ,
q=M n

Let L := Nn.

|eA(g)| log(m„/(/3 -  a  +  1)) < c, where N  < M n+\.

|aA(j Afn)| __=: B.(16) A ^ c(l/(log  LMn)) log(mn/(/3 -  a  +  1)) ^ ------ т
J=i 3

By the method of the paper of Fridii and Simon |aA(j'M„)| < . If
L > m n/(ß — a  +  1), then

В  < c 1
log

m„
log 0 -a+i  +  log ß  — a + l

< c.
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If L < m n/(ß  -  a + 1), then

(17) B <Cr, a L i  lQg(m"/(ft -  Q + 1))1 ^  J *  + ^ti -г log L/ m n

Now

m n
ß -  ot + 1 

, log v

1 < 

u'L =

= : v < m n.
L  logt)

(n +  log L)v 
L log и 1 log v

1 < L < v.

v(n  -f log L ) t)(n + log L )2 L v(n + log L )
v logt)

=: u(L,v),

(* “  п + Io s l )  > ° ’

ti(t), v) =
(n + log L) v < 1,

hence C < c. This gives that A < c. Thus (1) is proved.
OO

Let /  6 H 1(Gm). Then /  = X) ^i°i> where $Т|А,-а,-| < oo and a, € 

€ A(Gra) (» 6 N). Now
i= 0

i / ( io g ) t ) 5 3 * - 4 i s * / i i , -
fc=i

ЛГ
+ H / I I .  ( ^ p - 1  - 1 ) |  í  j ^ i v E  * “ 1 1 л / - / 1 1 ,  +  « о )  =  w + « ) .

OO

Let £ > 0 and define q as X) |A,| < £• We have
i=g+l

oo oo 9 7 8
Д/v / ^ ^  |А,|Д/уа,- = ^  |А,|Д^уа,- + |А,|Д^а,- =: У ] +  У  ■

i=0 1=9+1 1=0

7
(1) implies that ^  < се. We prove that for a fixed atom a € A(Gm),

8
Ддга —+ 0 (N —* oo). That is X} < £ if N  is large enough. This would 
complete the proof of Theorem 1. By standard argument (Simon [8, 9]) 
/  |5jta — a| —>• 0 (k —► +oo, and not greater than 2 for all к £ N). Using the
la
notations and results achieved for the atom a in the proof of (1),

J  |5fca| < c |aA(fc)|logM„ =  c|aA(fc)|,
Gm\In{y)
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because a 6 A (G m) is fixed. We proved that for к > Mn+x

J  1-M < c(|aA(̂ )| + |6A(fc)|)log—1n̂ -i>
Ia\In (j/)

where the atom b corresponding to the atom a is also fixed. Since log m n/ ( ß — 
—a + 1) is constant, for N  > Mn+1 by the theorem of Fridii and Simon [4] 
we get

N  - N

log-1 N k~ l f  \Ska\ < c log' 1 N
k=1 G m \ I a

|aA(fc)l + \b\k) \  
к

^ c / lo g N  —► 0.

The proof of Theorem 1 is complete.
P roof of T heorem 3. Denote Д* := [^*-] + 1 if m* > 3, and Ak := 1 

if nik = 2. Let

( Мк+i if x G /*(0, 1), £*+1 Ф 0, 
fk (x )  := < -M k+i  if x € /fc(0, Afc), xjfc+1 ф 0, 

l 0 otherwise.

In a joint paper of S. Fridii and P. Simon [4] it is proved tha t for each 
53 |A,j < oo the function /  := 53 f ik^k  is an element of the maximal Hardy 
space H(Gm). We give the construction of a series А,- (г € N) of the above 
type such that | |T / | |i  = oo. Denote Pk := {x € Gm\xo = . . .  = Xk-\ = 0, 
Xk ф 0}. It is easy to get

( s i )  n r / i i i > f ; / i T / i > f ; i s M. 41/ -< T jf.+1/ | .
k=0pk k=0

Therefore we have to give a lower bound for 

states that

J  \SMk+1 f - 0 Mk+1 f\- Lemma 2
Pk

(32) S M k + J - < r M k + 1 f  =  ( M k + 1 -  l ) / 2  J  f -

!k+i(x)
 ̂ ™n 1 w  M

" E  Ё  1 _  e- 2",y/m„ /  f - . A X- A 2.
„=0 y=l , Л ,J*+l(y)+enV

Since x e Pk, Ik+i(x)  П supp /,• = 0 for у =  0 ,1 , . . .  , к -  1 and h+i(x)  Л
Dsupp f j  = 0 for j  =  k + 1, ----This implies tha t A\ = —-̂ -~1 J  fk^k /2

4+i(*)
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if 2 I Л, and if 2 f k, then A\  = 0. That is we deal only with case 2 | к. Then

J \ A , \ =  I
Pk /*(0,1)

M k+ i -  1 f  f  \
7,-----  /  Jk*k/2

i S )
+

+ J  j(M '+ i-l)/2  j  /]fcAfc/2| < |Afc/2|.
/*(о,д*) /*+1(*)

Now we give a lower bound for J  |A2|. If n  ^  к — 2, then I k+\{x) + e„z П
Pk

П supp f j  = 0 for each j  (E N, z  € Zmn \  {0}. That is

(33)
ra*-i_1 1/  /• "»*-i ,

a  =  Y '  M k ~ l í  f +  Y '  M k  Í  fZ_/ 1 _ е- 21г^/т*_! J  J 1 _  e - 2 x i y / m k J  J '
V=1 г _ У=1 г , л ./ * + l ( * ) + e * - i V / * + l ( x ) + e * t f

П supp / ,  ^  0 may hold only for j  = к — 1, that is if 2 | k, 
then the first term of (33) equals zero. If 2 t  k, then the first term of (33) is
as follows:

(  M k - X M k_________ Mfc- !  M k \  Xk

\ l -  е- 2тг./m*-! M k + i  1 -  e- 2 ,r‘A*-l/m*-l M k + 1 /  V - ’

meanwhile the second term (as it comes from the discussion of Ik+i(x) +  eky 
and the definition of f j  s) equals zero. Thus if 2 t k, then

J  \M  й l^(fc-i)/2lcmjt1  ̂c|A(fc_1)/2|,
Pk

where c is an absolute constant. If 2 | k, then the second term of (33) is as 
follows:

У 1 / * + l ( x )+e*V

If xk+y = 0 , then either Ik+i(x) + eky Dsupp f j  or 7fc+i(a:) +  efcT/nsupp f j  = 0 
for each j  € N, thus /  /  = 0. If xk+y ф 0, then

/*+l(x)+e*y

J  f =  J  h h / 2 -
/*+i(x)+e*y /*+i(x)+e*y
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As a consequence of this in the case of 2 | к  by (34) we get

m*-l

j
Pk 3 1 {x|x0=...=xfc_]Pk

m k “ I
= |Afc/a |/m fc ^2 

j =2

\a2\ -
x|x0=...=xfc_1.=0 ,xk=j}

1 1
J _  e2ir«(j-l)/mfc J _ e2 n i ( j - A k ) / m k +

+ \ h / 2\ / m k 2|s in 7r ( l  -  A k) /m k\ >

1Л , 1 1
= с\хф \—  E  г ----------------------m k *

3=2 Sm m* 
&bk 1

д* 1 
,ТПк v - ' l

ülZzil sin liilA fd

^ c|Afc/2| ^ E 7 = co|Afc/2|b g m fc,

where 0 < Co is a fixed constant. Summarizing our achievements we get
o o  .  o o  oo

\\Tf 111  ̂E  /  P W - ' W I  = C0 Е 1°®7Гг2Я|Ав| - cE lAil-
k=Opk *=0 3=0

If lim supm 2j = oo, then there exists an index series j v /  oo such that 
3

OO _ J

Y  (logm2j„) < oo. In this case let A^ := (logm2jl/) , and the rest of A j
i /= 0
equals zero. Thus YT=o I'M < oo, and | |T / | |i  = +oo. If lim supm 2j < oo,

3
then limsup rrij = oo gives that Urn sup m 2j+1 = +oo. In this case the proof 

3 3
OO

of Theorem 3 is the same, but now instead of /  := Y  Akhk  we define
fc=o

OO

/  := Y  Afc/2jk+i. Repeating the whole procedure of the proof of Theorem 3 
k= 0

we get that the statement holds in this case too. The proof of Theorem 3 is 
complete.

P r o o f  o f  T h e o r e m  4. We prove that for every atom а в A(Gm), 
||Ta||i < c for some absolute constant c. By standard arguments this gives 
the proof of the theorem (see e.g. F. Schipp and P. Simon [5, 6]). Case 
a = 1 is trivial and that is why from now а ф 1 is supposed. Let Ia =

ß
= U h ( y , j ) ,  where { a ,a  +  1, . . .  ,/3} C Zmk, k , y  G Gm fixed. Then

j=a
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H  = Affc+i(/3 -  a +  l ) -1 . First we construct an upper bound for the value 
of the integral f  |Ta|, where j  =  0 ,1 ,. . .  , k  — 1. Then we do the 

b(v)Uj+i(v)
same for /  |Ta| and at last for the value of J  \Ta\. In the first case by

A(v)Va l a
Lemma 2 we have

A .— S  m n cl(x  ̂ (JMNa{x) —MN -  1 I  -
In (.x)

N —l  m „ - 1Ь V " м п f  _
2 —/  2-̂ j J _ g—2ir»'z/m„ J  tt . 1
n_0 г —1 IN (x)+enz

( N  =  0, 1 . . .  and x € I j ( y )  \

If IV < j , then In (x ) D Ia and J;v(x) П Ia = 0 for N  > j ,  hence A\ — 0. If 
N < j ,  then for n = 0 ,1 , . . .  , TV — 1 In (x ) + e„z П Ia = 0 and this implies 
that A2 = 0. If N  -  1 > j , then IN ( x ) = {(y0, • • • , Vj - i ,X j , .. . x N- i , . ..)}  
(Xj Ф yj). In {x) + enz  П Ia ф 0 implies that n = j  and z = yj—Xj. In this 
case we get IN(x) + enz = {(j/o, • .. , yj, x j+1, . . .  , x /v - i , .. .)} . If IV -  1 = j ,  
then /дг(х) +  enz D Ia and this is why A 2 equals zero. That is N  — 1 > j  + 1 
can be supposed. If N  < k ,  then for I  := I n ( x ) + enz  we get either I  D Ia 
or I  П I  a = 0. In both cases A2 = 0. Hence the only case to be dealt with 
is N  > к + 1. Suppose that N  > к + 1. Since I  is a “complete” interval, 
IC \Ia ф 0 implies Xj+1 =  yj+i , . . . x k- i  = Ук- i ,  x k € [a,ß]. Thus in this 
case I  C Ia, hence |/  a| < M k+i/(ß — a  +  1 )M^.  This gives 

I

\A2\ < MjMk+i
I s inn(xj  -  yj) /m j\ (ß  -  a  +  1 )MN '

{ E  ----------
N = k+ 2  ( / ? - a  + 1 ) | shur ( X j - y j ) / m j \ m k+1'

As a consequence of this we get

ß mi~ 1
/  m«i s * ü ,  E  E t s z z

M j

L(v)\h+i(v)

where

xk=a xj=0 W  ~ a  + ! )l sin7r(xi -  Vj)/m j\
x3*vi 
-1< cMk+lM j+i log m,j,

T\a := { ^  \S\fNa -  &MNa\2}
N = 0 

N ^ k + l
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This immediately gives/
G m \ / * ( V )

k-1
|7ia| ^ c M ^ j  Y  MJ+i log m i ~ cm'k < c-

j=о

Case N = к + 1 is discussed la ter in a separate way. Now we give an upper 
bound for the value of /  |T a |. If N  ^ k, then /дг(х) Э Ia and if N  > k,

h ( v ) \ I a
then (since xk £ [ö ,/3]) we get 1м(х)Г\1а = 0. That is in both cases A\ = 0. 
Hence we discuss only Ai- If N  < k, then In (x ) Э Ia-, thus I  := /дг(х)+е„гП 
П Ia = 0, that is Ai — 0. Suppose that N >  к + 2. In a simple way we get 
th a t

\a \=\a 2\s
zeJXk

_______ M kM k+1________
I s \nnz /mk\(ß -  a + l)M/v

( J x k : =  ( a - X f c , . . .  , ß - x k}).

This implies the following inequality

{ £  lAl2} '  = 2Mk S  |sin7r(xfc -  Ук)/тк\ 1( ß - a +  1)
W=fc+2 y*€[a,/3]

Hence

/  |7\a| < 2M fc~+\  |s in 7r(xjk- y fc)/m fc|" 1M fc(/?-a+ l)"1m^ 1

Ik(y)\Ia xki[a,ß]yke [a,/3]

That is we have to give an upper bound for the sum

m *  — 1 ß

:=

a — 1  ß

E E I sin7r(xfc -  yk) / m k\ 4

+ (/3 -  a  +  l ) m kmk+i ~^aY  Y  l sin7r(xjk -  Ук)/тпк\ 1 = А з1 + А з2.

Аз1 < _______________ СГПк_______________

(/3 -  a  +  l ) m kmk+1

ГПк- l  ß

E E
x = ß + l y = a

1

X  -  у
<

m k — 1
< ______ c™±_______ . / X -  Q\ _
= (ß -  a + l ) m km k+1 x ~ ' +1 °g ' z  -  ßJ

_______ сгщ_______ , Í  (rnk -  1 -  a)!
(/3 — a  + 1 )mkm k+i ° g  \(/3 -  a  +  l)!(m fc - 1 - / 3 ) !
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cmk m kclog(mk -  1 -  g)
( / 3 - a  + l )mkm k+i ~ \ \ p - a  + L / / ~  rnkm k+i 

c log mk cMk+i log mk , 
тпк+1 Mit+2 + "

and similarly Л32 ^  c. Thus we proved that f  \Tia\ < c. Since the
h(y)\Ia

operator T  is of type (2,2) (this can be proved in a simple way), we get 
/  \Ta\ ^  c. Hence all we have to prove is

(41)

and

(42)

J  l‘SW K a - i 7M*+1a| < c
Gm\h(y)

J \s Mk^ a - ( j Mk^ a \  < c.
Ik(y)\Ia

First we prove (42). If г € Ik(y) \  then x = (y0, . . .  ,y fc_ 1,* * , . . . ) ,  
where x k £ [a,/?]. Lemma 2 shows that Ik+i(x)  П Ia = 0, hence A\ = 0. 
I  := /fc+i(a;) + e„z П Ia ф 0 is possible only in the case when n = k. Thus

И г| =
у - 1 M k Г
L - i  1 _  e —2irix/mk I
г=1 ,  / ч ,Л+1 (*)+'*•*

Let /B t := (ß -  a +  1) / a

) + Д + 1

ß
where i € Zmfc. |-öt | ^  1 (i € Zmjk), Bt = 0 (t £ [a,/3]) and У  B t = 0 hold.

t = a
We have

M k m k - l  r ,
У '  Dxk+Z M k у *  Bt

ß - a  + 1 / — j  2_g—2 r c i z / m k
Z=1 ß —  a  + 1 e-2iri ( t - X k ) / m k

t = a

(43) \A2\ = 

(43) gives

A(»)V« Xk 
Xkt[<*,ß\
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Then we can use the method of the proof of Theorem 1 to show that (42) 
holds.

Now we prove (41). If x G Gm \  h (y ) ,  then the already known technics 
give that A\ — 0. Thus only Ai  is to be discussed. Let x G Ij(y) \  Ij+i{y) 
(j  G 0 ,1 ,... , k - l ) , x  = (t/0) • • • , y j - i , X j , . . . ) .  Since N  = fc+l, /лг(х)+е„гП 
П I a ф 0 implies n = j ,  z = y j - X j  and also xJ+i = yj+i,. . .  , x k- i  = Ук-i , 
Xk € [a,ß]. Thus

m , - l

/  i ^ i  =  Mfc-+\  j )  E
L(v)\L+i(v) xfce[«,/3] х,_0

Mj
1 _  e - 2iri ( y j - x j ) l m j B x k ( ß  -0+1)-1

М,- ß  mi~ 1

= M fc+1(/?

cM.

ÍL______  у  у '  ________ I______ <
- o  + l) “ n I 81п7г(х_,- -  у,)/то,|xk=a Xj=0

х,фу,

c M j + 1 log m j

i ß

ClVlj 1 CiKIffl 1UK-------- 7——----  > m j  log m j =  ----—7----
-  о + l)M*+i x" | Mfc+i

This immediately gives that the left side of (41) is not greater than

fc-i
cMkl \  E МЯ-! log mj  = cmlt ^ c-

j —0

Thus (41) is verified. Summarizing our results,

II Í v -' j 'i 1/2 j
|H \SMna - a Mna\ j  I < c  and ||5Mfc+1a -  °Mk+1 a|li ^ c.

n=0n/fc+1

By these last inequalities we get that ||Ta||i < c. The proof of Theorem 4 is 
complete.

ß
P r o o f  of T h e o r e m  5. Let a g A(Gm), Ia := (J h ( y , j )  and \a\ :=

j= a
:= n~l (Ia) everywhere, where a , ß  € Zmk, a < ß,  у € Gm and к G N fixed. 
We estimate the value of integral

D := J  |5мк+1а- % + 1 “

Gm\Ik(y)
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with the technics used in the proof of Theorem 4:

Jfc-i
D = 2  /  l5^*+ia “  ° м к+уа I =

к- 1
J-°7j(v)\/,+i(v) /3 m,-l

= E  E  E
i=о xk=a xj=0 

*,ФУ1

Mj
1 -  Tj(x -  у ) Bxk{ß — a  + 1)- l

к-1 ß m j- 1

= M k+i(ß - a + 1)_1 ]C  X )  S i sin*(** ~  ^■)/mi r 1 ^
j = 0  x k = a  X j = 0

X) Í V]
к- l  ß

= Mk+i(ß - Q + 1)_1 X MJ X  c°mJ loS m i  = comltj=0 X k = a

for some fixed absolute positive constant cq. Then define /  := ^ ia • where
the sum of the absolute values of the complex numbers A, is finite and for 
the atoms a, e A(Gm) Ia, := hi{y)  (У € Gm fixed), where the index series 
k„ /* Too is defined later. Let |a,| =  Mkr  Consider the left side of the 
following inequality:

(51)
Gm\IkvM

By the above proved lower bound for the atom а„ we get

J  | ‘̂ Л/*1/+1 av °’M)Cl/+1ai/| = СоТПки(52)
GmVkJy)

Let n > и and denote
Fj  := J  \^M kv+i a u ~ , j  = 0, 1, . . .  , kv — 1.

L(s/)\L+i(v)
If x e Ij(y) \ Ij+i(y), then /*„+i(x) П Ian = 0, hence

Ai = (Mkv+i -  l )/2  J  an = 0.

7*„+t(x)
Now consider A2 corresponding to the atom a„ and Mk„+i.

I  := /*„+i(a;) T e ,z  П / а„ ф 0
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is possible only in the case when s = j  and z  =  V j —Xj.  Let s and z be fixed 
in this way. Hence I  П Ia ф 0 also implies th a t f  D f„„ (1/ +  1 < n) which 
yields A 2 = 0. So we proved th a t Fj  = 0 for each atom an (n > v + 1) and 
j  e  {0, 1, . . .  1}, i.e.

(53) J  \^Mkv+i an — aMkl/+1an\ =  0, n > v  +  1.
Gm \ I k v (y)

Now we consider the left side of (53) for the atoms an (n ^  v -  1). Let 
now n < v — 1. By the technics of the proof of Theorem 4 one can prove 
that \\Тап\\г < c {m'kn + m'fcn+1) for some absolute constant c. Assume that 
a series Л,- G C (i £ N), X)So l-M < °°> I'M > 0 is given and also that 
ko ,k i , . . .  ,к „ - 1 are given. Since limsupm^ =  00, there exists an index ku

к
such that

v - \

co\K\m'kv > 2 V + c Y ,  I At-| {mk. + mk.+1) .
•=o

Define /  := X) ^«ai- Then X) IM < 00, f  € H x(Gm),
«=0 i=0

IÎ YIIl = J \S M kv+J - < T M k„+j \ >  J \S M kv+iav ~  a M kv+la i/\ l-M-
) G r r , \ Ikl/( y)

v-\  .
~  /  1‘̂ лА„-ца» — сгЛ*к„+1°»| I'M ^

• —П J

Gm\hjv)

G m \ I kl/( y )

I/-1
> c0 \ \ v\m'kv -  c ^ |A , |( m ^  +  m'ki+1) > 2 U.

1=0

Since this holds for all natural numbers v, we proved that | |T / | |i  = 00. Thus 
the proof of Theorem 5 is complete.

Acknowledgement. The author would like to thank Professor P. Simon 
for his help and valuable remarks.
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ON PSEUDOMANIFOLDS 
WITH BOUNDARY. II

M. BOGNÁR (Budap est)4

In this paper we shah prove that each orientable (nonclosed) n-dimensional 
pseudomanifold with boundary and without homologically singular interior 
points — i.e., without interior points having noncyclic ra-dimensional local 
Betti group with respect to the coefficient group Z  — is absolutely nonlinked.

We shah use the definitions and notations of [8] without any comment.

1. c-regular dom ains in (n,p)-cells
Let p be a prime number and n a positive integer. Let Zp be the cyclic 

group of integers m odp and H  the Cech homology theory defined on the 
category of compact pairs over the coefficient group Zp. Let (X, A)  be an 
(n,p)-ceh (see [8] 1.2).

1.1. Definition. Let U be a domain i.e., a nonempty connected open 
set in X  \  A. We say that U is a c-regular domain of (X ,  A) if

Я „ ( Х ,Х \Н ) «  Zp.

1.2. Remark. Let U be a c-regular domain of (X, A). Then the 
homomorphism j \ *: Я„(Х , A)|! —► Я „(Х ,Х  \  U) induced by the inclusion 
j\\ (X, A)  C (X ,X  \  U ) is an isomorphism.

Indeed, let U\ he a nonempty open subset in U such that the homomor­
phism j m : Я„(Х, A) —» Я„(Х, X  \  U\) induced by the inclusion j : (X , A) C 
С (X, X  \  U\) is a monomorphism. 1.2(d) of [8] shows the existence of such 
a U\. However j ,  =  where j 2*: Hn( X , X  \  U) —* Я „(Х ,Х  \  U\) is
induced by the inclusion j 2: ( X , X  \  U) C (X ,X  \  Z7i), and thus j i s  a 
monomorphism as well. Taking also Hn( X , A ) sa Hn( X , X \  U) w Zp (cf. [8] 
1.2(b)) into account we obtain tha t jr* is an isomorphism as required.

1.3. Remark. Let U be a domain in X \A . If (X ,X \i7 ) is  an (n,p)-cell 
then Hn( X , X \  U) sa Zp and thus U is a c-regular domain of (X, Л).

Conversely, if U is a c-regular domain of (X , A ) then (X, X  \  U) is an 
(n,p)-cell.

Indeed, since X  \  A  is a nonempty connected locally connected space 
with countable base (see [8] 1.2(a)) so is U = X \  (X  \  U).

Since Hn( X , X \  U) ss Zp (see 1.1) the compact pair (X, X \  U) satisfies 
condition 1.2(b) of [8] as well.
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Let ц:  (X ,0 )C  ( X , X \ U ) , i :  (X ,0)C  (X ,A ) and л :  (X, A ) c ( X ,X \  tf) 
be inclusions. Then by i\* =  л * г , : Я„(Х) —► Я„(Х, X  \  U) and by the 
triviality of the homomorphism г, (see [8] 1.2(c)) we obtain tha t ij. is a 
trivial homomorphism, i\*(Hn( X ) )  = 0.

To see that 1.2(d) of [8] is satisfied, let V\ be a domain in X \( X \f 7 ) = U. 
T hen V\ С X  \  A  and thus by [8] 1.2(d) there is a nonempty open subset 
U\ C Vi such th a t the homomorphism fa* : H„(X ,A)  —*■ Я „(Х ,Х  \  U\) 
induced by the inclusion j j :  ( X ,  A)  C (X , X  \  Ui) is a monomorphism. Let 
j 3«: Я„(Х ,Х  \  U) —► Я„(Х, X  \  U\) be the homomorphism induced by the 
inclusion _7з : (X , X  \  U) C ( X , X  \  U\) and let j\* be the same as above. 
Then л* = and since j\* is an isomorphism (see 1.2) it follows that
Уз* is a monomorphism as required.

1.4. Remark. Let U be a c-regular domain of (X, A). Let U\ be a 
domain in U. Then obviously U\ is a c-regular domain of the (n,p)-cell 
{X , A) if and only if Ui is a c-regular domain of the (n,p)-cell (X ,X  \  U) 
(cf. 1.3).

1.5. Definition. Let q be a  point of X  \  A. q is said to be a c-regular 
point of (X , A) if q has a base of neighbourhoods in X  \  A  consisting of 
c-regular domains of (X, A).

1.6. Definition. We say th a t the (n,p)-cell (X,  A) has no c-singularity 
or it is without c-singularity if each point of X  \  A  is c-regular.

1.7. Remark. The (n,p)-cell (X, A) is obviously without c-singularity 
if and only if there exists a base of X  \  A consisting of c-regular domains of
(X ,A ).

2. (n,p)-cells w ith ou t c-singularity in Än+1
Let p, n, Zp and H be the  same as in Section 1. Let (X , A) be an 

(n,p)-cell in R n+ 1  i.e., X is a subspace of the (n + l)-euclidean space Än+1. 
Suppose that (X , A) has no c-singularity (see 1.6).

2.1. D e f i n i t i o n . A domain G of Än+1 \  A is said to be a c — e-regular 
domain of (X, A) if it is e-regular (see [8] 2.7) and if G П X  is a c-regular 
domain of (X, A).

2.2. R e m a r k . Since each domain of Ä n+1 lying in a  ball disjoint to 
A is e-regular (see [8] 2.7) taking also 1.7 into account we obtain that each 
q 6 X  \  A has a base of neighbourhoods consisting of c — e-regular domains 
of (X , A).

2.3. L e m m a . Let G be a c — e-regular domain o /(X , A). Then G \ X  
has two components and the closure of each component contains G П X .

P r o o f . Let U = G Л X . Since Я„(Х, X  \ U )  & Zp Theorem 2 of [5] 
shows that G \  X  has at most two components. On the other hand by 
Theorem 2.15 of [8] G \ X  has a t least two components. Consequently G \ X  
has exactly two components — say Gi and G2.
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Let q € U. We have to show th a t q is a limit point of both domains G\ 
and G?,, i.e., that for each open ball G' in 72"+1 around q, G' meets both 
components G\ and G2.

Let G' be such a ball and U' a c-regular domain of (X, A) such that 
q € U' C V П G'. By 1.6 such a U' exists. 1.3 shows that (X, X  \  U) is 
an (n,p)-cell and by 1.4, U' is a c-regular domain of (X , X  \  U). Hence the 
homomorphism j m: Hn( X , X \ U )  —► Hn( X , X \  U') induced by the inclusion 
j :  (X , X  \  U) C (X ,X  \  U') is an isomorphism (see 1.2). Moreover by [8] 
2.16, U' — X  \  ( X  \  U') is nowhere dense in 72n+1 and thus according to [5] 
Theorem 3, # „+ i(X ,X  \  U') = 0. Consider the segment

Hn( X , X \ U ' )  Л -  Hn( X , X \ U )  —  Hn( X \ U ’, X \ U )  —  Hn+l( X , X \ U ' )
of the exact homology sequences of the triple ( X , X \ U ' , X \ U ) .  Since j„ is a 
monomorphism and # „ + i(X ,X \ U') = 0 we get 77n( X \  U ' , X \  U) = 0 and 
thus G \  ((X \  U') \  ( X  \  U)) = G \  (X  \  U') is connected (see the consequence 
of Theorem 2 in [5]).

Let Q = G \  (X  \  U'). Q is clearly a connected open subset of R n+1 
and U' = Q П X  is a closed subset of Q. Moreover we clearly have Q \ U '  = 
= Q \ X  = G \ X  and thus G\ and G2 are the components оi Q \ U ' .  However 
the open subset P = G' П Q of Q contains U' and thus P — G' П Q meets 
both G\ and G2 (see [7] 3.2). Consequently G' Г\ G\ /  0  and G' П G 2 ф 0  as 
required.

We now recall some definitions of [7] concerning Ar-manifolds.
Let 72 be a 2VsPace an(i (У, В ) a compact pair in 72.
2.4. Definition. Let У be a domain in 72. We say that У is a regularly 

intersecting domain of (Y, В ) if
(a) У П В = 0.
(b) У П Y  is a domain of Y  \  B.
If У is a regularly intersecting domain of (У, В ) and U = У П Y  we then 

say that У regularly intersects the compact pair (Y , B ) in U.
2.5. DEFINITION. A domain У of R  is said to be к -regular m od(y , В ) 

if the following conditions are fulfilled:
(a) У is a regularly intersecting domain of (Y, В ).
(b) У \  Y  consists of two components.
(c) The closure of each component of У \  Y  contains У П У .
2.6. D e f i n i t i o n . The compact pair (Y , B ) itself is called a k-manifold 

in 72 if it satisfies the following two conditions:
(a) Y  \  В  is a nonempty connected space,
(b) for every q G Y  \  В  the ^-regular domains th a t contain the point q 

form a base for the neighbourhood system of the point q in R.
We now return to the (n,p)-cell (X , A) in 72n+1.
2.7. A domain У of 72n+1 is said to be small if it is contained in an open 

ball disjoint to A. Let E be the set of mod(X, A) fc-regular small domains. 
Each member of E is clearly an e-regular domain of (X , A).
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We show th a t each q € X  \  A  has a base of neighbourhoods in Rn+1 
consisting of members of E.

Indeed, let V  be a neighbourhood of q in R n+1. Let G be an open ball 
around q disjoint to A. Since the c —e-regular domains of ( X , A )  containing 
q form a base of neighbourhoods of q (see 2.2) it follows the existence of 
a c — e-regular domain V of (X , A) such that q € V С V  П G. However 
according to 2.3, V  is a m od(X , A) fc-regular domain (see also 2.5). Thus
V  G E as required.

Now taking also 1.2(a) of [8] and 2.6 into account we can state that 
(X , A) is a fc-manifold in P n+1.

2.8. D e f i n i t i o n s . Let V , V  e E (cf. 2.7). V  and V  are said to be 
compatible if either V  С V  or V  С V.

By a E -chain we mean a sequence a = (V i,. . .  , V*) in E such that for 
i =  1 ,. . .  , к — 1, V{ and Vj+1 are compatible members of E. a  is said to be 
closed if Vi = У*.

Let К : q —*• q' be a continuous path in X  \  A (see [8] 2.4) and let 
К  = K i K 2 . . . K m (cf. [8] 2.4) be a subdivision of К  into factors where 
Ki — K , : qi+i —► <7, for i = 1 , . . .  , m. Then we clearly have q\ = q' and
1lm + 1  =  <?•

Now the E-chain a = (V i , . . .  , Vm+i) is said to be associated to the 
subdivision К  = K \ K 2 . . .  K m of К  if q, € V{ for t = 1 ,. . .  , m  +  1 and K x C 
C Vi U Vi+i i.e., К; C Vi or Ki  C K+i for i =  1 , . . .  ,m  (cf. [8] 2.4). In this 
case we also say that the subdivision К  = K \ K 2 . . .  K m of К  is associated 
to the E-chain a  =  (V i,. . .  , Kn+i).

Let К  be a continuous path  in X  \  A and a  = (Vi, , V"m+i) a E-chain. 
We say that К  and a are associated or К is associated to а от a is associated 
to К  if there exists a subdivision К  — K \ K 2 . . .  K m of К  associated to a.

2.9. Observe that for each continuous path К : q -* q' in X  \  A and for 
each V, V  € E with q € V and q' 6 V  there is a E-chain a  =  (V i,. . .  , Vm+i) 
associated to К  such that Vi =  V  and Vm+i = V  (see [3] 6.8).

Consequently to each closed path К  of X  \  A  there is a closed E-chain 
a = (V j,... , 1̂ + 1) associated to  K.

Observe th a t in this case the closed path К  • К  and the closed E-chain 
ß ~  (V i,. . .  , Fm+1 = Vi, V j,. . .  , Vm+1) are clearly associated to each other.

2.10. Let V  € E. Then by the banks o f V  we mean the components of
V  \ X  and we design them by P l {V) and P 2 (V).  Obviously the numeration 
here is arbitrary.

2.11. Let a  = (V i,... ,Vm) be a E-chain and let P x(Vi) and P 2(Vi) be 
the banks of Vi. Then there exists a numeration P} and P 2 of the banks of 
Vi such that

(a) Pf  = P x(Vi) and P 2 =  P 2(Vi),
(b) P x П P x+1 /  0 and P f  П Pf+1 ф 0 for г = 1 ,. . .  ,m  + 1 and this 

numeration is unique (see [4] 2.10).
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Hence two sequences c*p(l) = (P*, . . .  , РД) and a p (2) =  (P 2, . . .  , РД) 
of the banks belong to the E-chain a . Moreover for j  = 1,2 we have P- C 
C P/+1 in the case Ví C VJ+1 and P/+1 С Р / in the case Vj+i C Vi. The 
sequences a p ( l)  and a p (2) are called the chains'of banks associated to the 
E-chain a.

If a  is closed i.e., if Vm = Vi then two cases are possible:
(i) РД = Pi  and РД = P i

(ii) РД = P 2 and P i  = Pf.
In the first case we say that a preserves its banks and in the second case 

that a  changes its banks.
Observe that for each closed E-chain a = (V f,. . .  , Vm) the closed E-chain 

ß = (V j,. . .  ,Vm = Vi, V i,. . .  ,Vm) clearly preserves its banks.
2.12. THEOREM. Let К  be a continuous closed path in X  \  A and a  a 

closed E-chain associated to К  (see 2.9). Suppose that a preserves its banks. 
Then К  is nonlinked to (X, A) (see [8] 2.6,).

P r o o f . Let a  = (V i,... ,Р т+1 = Vi) and let К  = K\K?.. . .  K m be a 
subdivision of К  into factors associated to a . For i = 1 , . . .  ,m  let X,- = 
= X,-: g,+i —> Then 91 = qm+\• Moreover for t = 1 , . . .  ,m +  1 we have 
<?, € Vi and for г =  1 , . . .  , m K{ C ViUVi+i (see 2.8). Let ( P f , , РД+1) be a 
chain of banks associated to the chain a . Since a  preserves its banks we have 
P l +1 = Pf .  For i = 1 , . . .  ,m  take a point q[ from P} and let q'm+i = q[ € 
€ РД+1 =  P j. For i — 1 , . . .  ,m  let K[: q[ —> q'i+1 be a continuous path in 
the connected and in P n+1 open Pf  U P/+1 which is either P)  or Pf+1 and 
for i =  1 ,. . .  , m  let K " : q\ —+ <7, be a continuous path in the domain Vi. Let 
K'l+l = К".  Now for i = 1 ,. . .  ,m  the closed path К , = (К " )• KiK"+ гК- is 
lying in Vi U Vi+i which is either Vi or Vi+i and since both domains Vi and 
Vi+i are e-regular (see 2.7), it follows that Ki  is nonlinked to (X, A) (see [8]
2.7). On the other hand K' = K'm .. .K'2K'X is a continuous closed path in 
дп+i \  X .  Hence K '  is nonlinked to (X ,A), too (see [8] 2.6). Consequently 
by [8] 2.13, К  is nonlinked to (X, A) as required.

2.13. T h e o r e m . Let К  be a continuous closed path in X  \  A and a a 
closed E-chain associated to К . Suppose that a changes its banks. Then К  
is linked to (X, A).

P r o o f . Let a = (V i,... , Vm+1 = Vi). Vf is an e-regular domain of 
(X, A) that meets X  (see 2.7 and 2.5). According to [8] 2.15, there are 
points q', q" £ Vi \  X  and continuous paths K 4: q" —» q' and X 3 : q' —* q" in 
P n+1 \  A such that

(a) q' and q" are in distinct components of Vi \  X,
(b) k 4 c vx,
(c) k 3 c ä"+1 \  x,
(d) K 3 K 4 is linked to (X, A).
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Let X = K m . . .X 2Xi be a subdivision of X into factors associated to a  
where X, = X ,-: q< —> g,+1 for г =  1 ,. . .  , m  and thus qi =  qm+i- As we have 
seen in 2.8 for i = 1 ,. . .  , m  +  1 one has qi £ Vm+2-i  and for i = 1 , . . .  , m  
Ki  C Vm+2- i  U Vin+i-i.

Let Xm+1: 9i <Zi be a degenerated path. Then X  =  Xm+iX m . . .  K\.  
Since Vi 6 S it follows tha t V\ is a fc-regular domain mod(X, A) (see

2.7). Select the numeration of the banks of Vi so th a t q' £ P X(V1) and 
q" £ P2(V\) (cf. 2.10). Let

aP(l) = ( /? ,..., Р£+1)
be the chain of banks associated to the chain a so tha t P\  = P 1(Vi). Since 
the chain a changes its banks it follows P^,+1 = P 2(Vi) (see 2.11).

For i =  1 , . . .  ,m  + 1 take a point q[ in РД+2_;- Hence q[ £ P 2(Vi). For 
i = 1 ,... , m  let K[\ q'i+i -  q'i be a continuous path in РД+2_ .• и P U l - i  
which is either P^+2-i  or ^m +i-i an(  ̂ f°r * = 1» • • • > wi +  1 let K " : 9, —► <7,- 
be a continuous path in the domain Vm+2_i. Let X '1: q[ —*q" and X '2 : q' —► 

q'm+i be continuous paths in P 2(Vi) =  P^,+1 and Pi(Vi) = P x respec­
tively. Let

K 2 = K n K [K '2 . . .  X ^ X 72: q' — q"
and

K '  = K 2K 4 : q " ^ q " .
We first show that the closed path X 7 is linked to (X , A).
Indeed, let X°: q' —* q' and X2 : q" —* q" be degenerated paths and let 

K 1 = (A 4)’. The closed path  (X 2) X 3 =  ( K 2) K%K3 K$  is lying in X"+1 \ X  
and thus it is nonlinked to  (X, A) (see [8] 2.6). Hence if K'  = X 2X 4 = 
= K 2( K 1)- were nonlinked to (X,  A) then by [8] 2.9, [8] 2.11 and [8] 2.9 
again the closed paths ( K X) K 2 = (X 1) Х£Х2Х?, ( K X) K%K%K3 K*K* = 
=  ( KX) K 3 = X 4X3 and X 3X 4 would be nonlinked to (X,A) as well, con­
tradicting the assumption (d).

Let K 'm + 1  = K l2K 4 K '1 : q[ —► q'm+i ■ Since the closed path

K ' = X 2X 4 = К ЛК [ К '3 . . .  K'mK '2 K 4 

is linked to  (X , A) it follows by [8] 2.9 that the closed path
IS> IS  I i s '  IS  f t  IS  4 IS  f t    i s 1 IS 1 IS 1K 1K 2 . . - K m K  к  к  —л 1. . . л т л то+1

is linked to  (X , A) as well.
Let

Km+i = ( К +1у x;,+1x77xra+1.
K m+i is a closed path in the e-regular domain V\ = Vm+\ of (X, A) and thus 
K m+i is nonhnked to (X ,A ). For i =  1, . . .  ,m  let X; = (X,-7)■ К [ К xX,-.
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Ki is a closed path in Vm+2- \  U Тт +х_,- which is either Ут +2-; or Vm+i 
However each member of E is an e-regular domain of (X, A) and thus Ki is 
a nonlinked closed path of (X , A ). The closed paths K \ , . . .  , K m+i are all 
nonlinked to (X, A) while K [ . . .  K'mK'm+l is a hnked closed path of (X , A). 
Thus by [8] 2.13 К  =  K m+i K m . . .  K i  is a hnked closed path of (X , A) as 
required.

The proof of the theorem is complete.
2.14. T h e o r e m . I f  p ф 2 then (X , A) is a nonlinked (n,p)-cell (cf. [8]

1 . 11) .

P r o o f . Let / :  [a, 6] —► X \  A  be a closed continuous line in X  \  A  (see 
[8] 1.6) and let К  be the equivalence class of / ,  i.e., the closed p a th  with 
the representative /  (see [8] 2.4). According to [8] 2.6, we only need to  show 
that К  is nonlinked to (X, A).

Let a  =  (V i,... ,K „+i) be a closed E-chain associated to К  (see 2.9)
and

ß  = (V x,... ,Vm +1 =  V i.V a,... ,Vm+1).
The closed E-chain ß  is associated to the closed path К  ■ К  (see 2.9) and ß 
preserves its banks (see 2.11). Hence according to 2.12 the closed p a th  К  • К  
is nonlinked to (X, A).

Let ЯЗ =  3Jp,n- i , i  be a nondegenerated theory of linking in Ä"+1 (cf. [8]
1.8). Since К  ■ К  is nonlinked to (X, A)  it follows

(1) *a M ( A . , ( K K ) . )  = 0 

(see [8] 2.6, [8] 1.4 and [8] 2.5). However

(2) = К*) + 0a ,k (A*, К л) = 2 • ®А'к(Ат, К »)

(see [8] 2.10) and since оа ^ (А „ ,К л) € Zp (see [8] 1.8), p ф 2 and the 
relations (1) and (2) imply 0A ^ (A ,, X») = 0. Consequently К  is nonlinked 
to (X, A) as required.

2.15. T h e o r e m . I f  p ф 2 and if (X , A) is simultaneously an (n , 2)-cell 
which has no c-singularity then (X, A) is a nonlinked (n,2)-cell.

P r o o f . Let /  be a closed line in X  \  A and let К  be the equivalence 
class of /  i.e., the closed path with the representative / .  We only need to 
show that К  is nonlinked to the (n,2)-ceH (X, A).

Let E be the same as in 2.7. Let a  be a closed E-chain associated to К  
(see 2.9). According to 2.14, К  is nonlinked to the (n,p)-cell (X, A) hence by 
2.13 the chain a  preserves its banks. Consequently by 2.12, К  is nonHnked 
to the (n , 2)-cell (X, A) as required.
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3. Pseudom anifolds with boundary and w ithout 
hom ologically singular interior points

3.1. A partially ordered set (JE7, <) is said to  be directed if for any ei, e<i G 
G E  there is an e G E  with e* ^  e and e  ̂ < e.

In the sequel all groups are abelian. Accordingly the group operation 
will be referred to  as addition.

3.2. A directed system D = (Ge,</>e,e'> (E ,  ^ ) )  of abelian groups consists 
of the following: A directed partially ordered set (E, <); for each e G E  an 
abelian group G e\ for each pair e < e' from E  a  homomorphism <̂e ei : Ge —> 
—> Gei satisfying the following two conditions:

<Pe,e =  idGe for e e  E,

V’ej.e, =  <An,ej f°r e l  й  e2 й  e3-
Let D = (Ge,ipetei,(E, ^ ) )  be a directed system of groups and let D = 

=  U Ge x {e}. For (gi,ei) and (g2,e2) in D  let (</b ei) ~  (g2 ,e2) if there is
e€E

an ез > ei, б2 so that
V W 3(öl) =

~  is clearly an equivalence on D.
Let D/  ~  be the family of equivalence classes of For each (g ,e ) 6 

G Л let (5,e) denote the equivalence class of (g,e). (g,e) is said to be a 
representative o f (g,e).

The addition in D/  ~ is defined as follows: Let (<7i,ei), (52,^2) € D and 
select ез so th a t e\ < ез and e-i < ез. Let

(0 i,e i)  + (02,e 2) = (^ei,e»(Si) +  ^ea>es(52),e3).

This addition is clearly well defined and D /  ~  equipped with this addition 
becomes an abelian group called the lim it group of the directed system of 
groups D. We use lirnD to denote this limit group.

3.3. We should mention th a t if E* is a cofinal subset of E  and for each 
e,e'  € E* with e < e' <pe>e' is an isomorphism then the groups Ge (e € E *) 
are clearly isomorphic to each other and these groups are isomorphic to the 
group fim Lb

3.4. Let No be the set of nonnegative integers, i.e., No = N U {0}. 
For к € N let Zjt be the cyclic group of integers mod A; and let Zo =  Z. 
Moreover for к  G No let H k be the Cech homology theory defined on the 
category of compact pairs w ith the coefficient group Z*.

3.5. Let к G No and n G N. Let (A, A) be a compact pair and q e X \ A .  
Let E  be the  family of all open neighbourhoods of q in X  \  A and for

U,U' G E let U < U' if U' C U. Thus (E , < ) is clearly a directed set.
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For each U € E  let Gv  =  H * (X t X \  U) and for U < U' (U, U' G E) 
let <pUtu >: Gu -> Gv . = iu,uu: H * (X ,X  \  U) -► Я *(Х ,Х  \  U') be the 
homomorphism induced by the inclusion iu,u,: (X , X  \  U) C (X , X  \  U'). 

Thus we obtain a directed system of groups

Dkn{q) = (Gu,<Pu,U'i(E,<)).

The limit group hm D%(q) of this directed system is called the n-dimensional
local Betti group of the compact pair (X , A) at the point q with respect to the 
coefficient group Zk . We use H%(X, A, q) to denote this local Betti group.

3.6. P roposition. Let К  be a triangulation situated in some euclidean 
space R s . Let L be a closed subcomplex of К  (see [1] p. 126). Let Y  and F  
be the body of К  and L respectively (see [1] p. 136), i.e. (Y, F) = (||/i'||, ||T||). 
Let q £ Y \ F .  Let О к($) be the set o f all Simplexes T  € К  with q € T  where 
T is the closure of T . On{q) is an open subcomplex of K . Let r € No and 
n € N. Then

H rn(Y, F, q) »  A?(Ofc(g)) (cf. [2] p. 50).

P r o o f . Consider R s as a hyperplane of the euclidean (s+l)-space R s+1. 
Let c be a point in R s+1 \  R ‘.

Let 0'K(q) be the subcomplex of К  consisting of all simplexes of Ok (q) 
and of all faces of such simplexes. Let 5д-(д) = 0'K{q) \  Ок{ч)- 0'K (q) and 
Bx(q)  are closed subcomplexes of K.

Let M*(q) be the set of all open cones with the vertex c where the base 
of the cones runs over all open simplexes of Bfc(q) (see [1] p. 214). Let

M(q) = BK(q )U M -(q )ö {c } ,

where {c} is the 0-simplex with the vertex c. M(q) and M (q)U 
U0'K(q) =  M(q) U Opc{q) are clearly triangulations in Re+1 and M (q)  П
П 0'K{q) = BK{q).

An easy computation shows that

Д ^ ( 5 ) ) « Д ? ( М ( , ) и О И 5)).

Also, observe that the group

A?(M(q) U 0'K{q)) = A n(M(q) U 0'K{q), Zr) 

is isomorphic to the group

A n(\\M(q)UO'K (q) l Z r )

(see [2] p. 166 and [2] p. 159) and this la tter group is isomorphic to Н*(\\М(g)U 
иОд-(д)Ц) (see [6], 24). However ||M(<7)|| is contractible to a point over itself
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and thus it is homologically trivial. Moreover the compact pair (\\M(q) U 
UO^-(g)||, ||M (g)||) can be triangulated and thus its Cech homology sequence 
is exact (see IX .9.4 of [9] p. 251). Consequently the groups H^(\\M(q) U 
U Ok(g)||) and H rn{\\M(q) U 0'K (q)\\, ||M(g)||) are isomorphic:

Я ;( ||М (д ) U Ofc(g)H) *  к т ы )  U O^ígJII, ||M (g)||)

(see [9] p. 23).
Now let V  = \\M(q)\\ \  ||2?к(д)|| = \№q)  U 0'K(q)\\ \  \\0'K(q)\\- The 

subset V  of ||M (g)|| is open in ||M(q) U 0'K (q) || and we have

IIM{q) U OfK (q)У \  V  = \\0'K(q)\l ||M  (g)|| \  V  = \\BK (q)\\.

Hence the inclusion map

j :  (\\0'K(q)\\, \ \ В к Ш  C (||M (g) U 0'K(q)\\, ll^(«)ll)

induces an isomorphism in each dimension (see [9] X.5.4, pp. 266, 267) and 
thus

tf;( ||M (g ) U 0Jr(9)||, ||M(g)||) «  Я ;( ||0 ^ (д ) ||,  ||Л * (Й)||).

Hence

(3) A?(Ojt(9)) *  Я Д О И 9)1М |Я к(9)||).

We now construct a suitable base of neighbourhoods of the point q in 
Y \ F .

First observe that ||0^ (g)|| is a closed cone over ||H/i(g)|| with vertex q. 
Now for m G N let be the positive dilatation of R ‘ with the invariant 

point q and w ith the ratio of minification T., i.e.

q^mW) = —яя'm

for each q' £ R 8 and let

Um = 4,m(\\0'K(q ) \\ \ \ \B K(q)\\).

Um is clearly an open subset of ||0^(g)|| \  ||.Вк-(д)|| and we have

IIOJc(9)|| \  \\Вк(я)\\ = Щ D U2 D . . .  Э Um D . . .  .

Moreover { Í7 i,. . .  , Um, • . •} is a base of neighbourhoods of q in Y  \  F.
Let

= Фт Ino'K m : (ll05r(9)IMÎ (9)ll) -  Ш1|0И9)11)Ж(№(д)11))
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and let Pm = ||0^ (g )|| \  Um. Thus Pi = ||-S/c(g)||. фт is a homeomorphism 
and thus the induced

К ( \ \ 0 'к Ш 1 \ \ В к т  К № т( \ \ 0 'к Ы Ш М \ \ В к т ) )
is an isomorphism. Let

*т :(||О И ?)||,№ (?)1 1 )С (||О И 9 )1 1 ,Д п )

and
3m - (Фт(\\0'КШ ,  фт(\\ВК Ш )  C (\\0'K(q)\lPm)

be inclusion maps. Then jm^m  is clearly homotopic to im and thus =
= im* where j m* and im,  are the homomorphisms induced by the inclusions 
j m and im respectively. However by

М \ \ 0 ' к Ш  \  Ф т ( \ \В к Ш  = ||О И ?)|| \P m  = Um,

jm is an excision and thus j m* is an isomorphism. Consequently im* is an 
isomorphism as well.

Let hm : (||Од:(<2,)||> Pm) С (У, Y  \  Um) be an inclusion map. By

№ ( ? ) l l \ ^ n  =  r \ ( y \ c r m) = ^ m,

hm is an excision and thus the induced

h m K ( \ \ O M \ \ , P m )  -  K ( Y , Y \ U m )

is an isomorphism, too.
Hence for m  G N

(4) Л гп(\\0'к (д)\\,\\Вк (д)\\) «  я ; ( у , у  \  Um).

For m, m' € N with m  m' let

<Pvm,lJm,■■ K ( y , Y \  v m) -  ,)

be the homomorphism induced by the inclusion ium ,umi: (У> Y  \  Um) -  
—► (У,У \  Um') and for m  6 N consider the commutative diagram

H rn( Y , Y \  Ui)------ — ------->Hrn( Y , Y \  Um)

/»1* Лт*

Я ;( | |0 ^ ( ? ) | | ,А ) ------- — ------>K(\\0'K(q)\\,Pm).

Since гт *, hm• and hi* are isomorphisms it follows that <pui,Um is an isomor­
phism as well. Moreover since for m, m' € N with m < m' one has

tPUm,Uml<fiU1,Um =  P uuum,
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we obtain th a t <pum,u , is an isomorphism, too. Now according to 3.5, 3.3 
and (4) Я£(У, F, q) is isomorphic to H^(\\0'K (q)\\, ЦДк'(д)Ц) and thus by (3)

H rn( Y , F , q ) * A ? ( 0 K(q))

as required.
The proof is complete.
3.7. Rem ark . As we have seen in the proof of 3.6, the assumptions of 3.6 

imply the existence of a countable base of neighbourhoods { Hi , . . .  , Um, • • •} 
of q in Y  \  F  such that for each m € N and г 6 No

H rn( Y , Y \ U m) *  A ? ( 0 K(q)).

3.8. Let К  and L be the same as in 3.6 and suppose that К  is an 
orientable n-dimensional (combinatorial) pseudomanifold with boundary L 
and L ф 0 (see [2] pp. 72, 74). Then according to [8] 3.4 ( ||Я ||, ||L||) =  (Y , F ) 
is an (n,p)-cell for each prime p.

Let q € | | i r | |  \  ||L||. Then Од-(д) can be clearly uniquely represented in 
the form

О к ( д )  =  E l  U  . . .  U  E t (q )

where for j  — 1 , . . .  ,t(q) E j  is a closed subcomplex of Ox(q), it is an ori­
entable n-pseudomanifold and for j  ф j '  ( j ,  j 1 € ( 1 , . . .  ,<(<?)}) the dimension 
of the sub complex Ej П Eji of К  is less than  n — 1.

Let r € No- Then a light computation shows that

A ? ( 0 K(q)) ~ A?(£i) 0 • • • ® Д?(-Е*(,)) » 0 • • • © г , .
Г  t^)

Hence according to 3.6, Я°(У, F, q) is isomorphic to a cyclic group for each 
q £ Y \ F  if and only if i(q) =  l  for each q £ Y \ F  and in this case by 3.7 each 
q £ Y  \  F  has a countable base of neighbourhoods {C7j(q),. . .  , Um(q ) , . . .  } 
in Y \ F  so th a t H„(Y, Y  \  Um(q)) «  Zp for each m  € N and each prime p.

Consequently taking also 1.5 and 1.6 into account we can state the fol­
lowing theorem:

If (У, F) is an orientable n-dimensional (topological) pseudomanifold 
with boundary and without singular interior points i.e., without interior points 
having noncyclic n-dimensional local Betti group with respect to the coeffi­
cient group Z  = Zq then for  each prime p, (Y ,F ) is an (n,p)-cell without 
c-singularity.

3.9. D e f i n i t i o n . The (n,p)-cell (У, В ) is said to be an absolutely non- 
linked cell if for each topological embedding <p: Y  —► Ä"+1 (<p(Y),<p(B)) is a 
nonlinked (n,p)-cell in Än+1.

Now we can state the following theorem.
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3.10. T h e o r e m . Let (Y ,B ) be an orientable n-dimensionalpseudomani­
fold with boundary and without singular interior points i.e., without interior 
points having noncyclic n-dimensional local Betti group with respect to the 
coefficient group Z  then for each prime p, (У, В ) is an absolutely nonlinked 
(n,p)-cell.

P r o o f . Let tp: Y  —*■ Ä"+1 be a topological embedding of У into R n+1. 
Let X  = <p(Y) and A  = <p(B). Then by the theorem of 3.8 for each prime p, 
(X , A) is an (n,p)-cell without с-singularity in Än+1. Consequently according 
to 2.14 and 2.15 for each prime p, (X ,A )  is a nonlinked. (n,p)-cell. Hence 
for each prime p, (У, B) is an absolutely nonlinked (n,p)-cell as required.

Our program is finished.
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MEASURABLE SOLUTIONS OF FUNCTIONAL 
EQUATIONS OF SUM FORM

L. LOSONCZI (Debrecen)*

1. Introduction
Let n > 2 be an integer and denote by Г„ the set of all complete n-ary 

probability distributions, th a t is
Пr„ = (ж = (жь... ,ж„) I X i  > 0, Y ^ xi = l}

•=i
and let Г° be the same set but with positive probabilities:

П
Г° = {ж = (хь . . .  , x n) I X i  > 0, =  l} .

i=i
I  and Д„ will denote either [0,1] and Г„ or ]0,1[ and Г°. Let fij,g is, hjs: I  —> 
—► С (г = 1 , . . .  , fc; j  = 1 , . . .  ,/ , s = 1 , . . .  ,N \  k ,l > 2) be given or unknown 
functions. By a functional equation of sum form we shall mean an equation 
of the form

к l N

(1) [ f i Á x iVj) -  X X * ;)M i/;) ]  = 0 (ж e л*, у  e  A t )
1 = 1 j —1 » = 1

(see [19]). The pair (k,l) will be called the type o /( 1) while we shall refer to 
N  as the index of equation (1).

Functional equations of sum form have important applications in charac­
terization problems of entropies having the sum property (see Aczél-Daróczy
[2] ). During the past thirty years several special cases of (1) have been solved 
by various authors: Chaundy-McLeod [5], Aczél-Daróczy [3], Behara-Nath
[4], Kannappan [10]—[15], Daróczy [6], Losonczi [17]—[21], Losonczi-Maksa 
[22], [23], Maksa [24], [25], Daróczy-Járai [7], Mittal [26], Sahoo [28]. Al­
though nowadays functional equations of sum form cannot give much new in 
entropy characterizations, there are several interesting unsolved equations of 
sum form. General results are known only if k ,l  > 3 [18]. The most difficult 
equations are the equations of type (2,2). In this direction we mention the 
paper of Daróczy and Járai [7] who determined the measurable solutions of

* Research supported by the Hungarian National Foundation Research Grant No. 251 
and partially supported by the National Science and Engineering Research Council of 
Canada.
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2 2

(2) _ - yjf(xi)\ = 0 (x,y € r§).
1 = 1 J=1

The same equation with several unknown functions was solved by Kannappan 
and Ng [16]. The author determined the Сз[0,1] solutions of

2 2

(3) Y  ] Г } [ / ( а д )  -  f (xi)f(yj)] = 0 ( x , y £  Га)•=i j—l
(see [19]). The aim of this paper is to study the measurable solutions of (1) 
if к = I =  2.

If in (1) I  =]0,1[, Д п =  Г° we refer to (1) as equation of sum form on 
the open domain while in case I  = [0,1], Д„ = Г„ we call (1) an equation 
of sum form on the closed domain. It is clear that the first case is the more 
complicated; we shall deal with this case (open domain). Our results support 
the view th a t the true domain of definition for (1) is the open one.

2. The differentiability o f  measurable solutions

If к =  l =  2 it will be more convenient to write (1) in the form

N
f i ( x y ) + M x ( l - y ) ) + f3(( l -x )y ) - \- f4( ( l - x ) ( l - y ) )  - ^ 2  9Á x )h.{y) (x,y  € I).

8= 1

This is obtained from (1) by writing / ь / 2, / 3,/4 for / 11, / 12, / 21, /22 and by 
9,{x) = g u (x )  + £f2»(l -  z ), h,(y) = h i,(y) + /i2, ( l  -  y) (s = 1 ,. . .  ,N ) .

The aim of this section is to prove
T h e o r e m  1. Suppose that the functions fi, gs, he : ]0,1[—>C (i = 1 ,2 ,3 ,4 ; 

s = l , . . . , N )
(i) satisfy the functional equation

(4) f i ( x y )  + f 2(x( 1 -  у)) + / 3((1 -  x)y) + / 4((1 -  x )(l -  y)) =
N

= (ж, 2/ e]°, i[)
8 = 1

(Ü) / ь / 2, / 3,/4 are measurable on ]0,1[,
(iii) the functions g i , . . .  , g N  and h i , . . .  ,hw are linearly independent on

] ( U [ .
Then f i ,g a,h s (i = 1 ,2,3,4; s = 1 , . . .  , N ) are infinitely many times 

differentiable functions on ]0,1[.
P r o o f . W e  n e e d  s o m e  l e m m a s  f o r  t h e  p ro o f .
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L e m m a  1. Suppose that ( i )  and (iii)  hold. I f  a re  measur­
able (continuous or n times differentiable)  then g,,h, (s = 1 ,. . .  , N ) are 
measurable (continuous or n times differentiable) too.

P r o o f  o f  L e m m a  1. By the linear independence of h i , . . .  ,hff there 
exist points 2/1, . . .  ,2IN €]0,1[ such that det(hg(2/fc))^fc=1 ф 0 (see [1]). Sub­
stituting у = 2/Jfc (& = 1> • • • , N )  in (4) and solving the obtained linear system 
for g i , . . .  ,gN we get

N
(5) g,(x) = ] T a st£(x,2/t) =

t= l

where C(x,y) denotes the left hand side of (4) and a,t (s, t =  1 ,. . .  , N )  are 
constants. If / ъ / 2, / 3, /4 are measurable (continuous or n times differen­
tiable) then so are £(x, yt) (t = 1 , . . .  , N ) and by (5) g, (s =  1 , . . .  , N )  too. 
The statement for hs (s = 1 , . . .  , N )  can be proved similarly. □

L e m m a  2. / / ( i), (ii), (iii) hold then f i ,ge,h s (i = 1,2,3,4; s = 1 ,. . .  ,N )  
are continuous functions on ]0,1[.

P r o o f  o f  L e m m a  2. We need the following result of A. Jarai ([9], 
Theorem 2.7.2; we slightly changed the notations).

T h e o r e m  J. Let T  be a locally compact metric space, let Z\ be a metric 
space and let Z{ (i = 2 , . . .  ,n) be separable metric spaces. Suppose that D 
is an open subset o fT  x Rfc and X,- C R* for i =  2 ,. . .  , n. Let F\:T —* Z\, 
F{: Xi  -* Zi, G{'. D —* Xi, H : D x Z^ x ... x Zn —► Z\ be functions. Suppose 
that the following conditions hold:

(I) For every (t , y) 6 D

Fi(t) = H(t,y,F2(G2(t,y)),. . .  ,Fn(Gn(t,y))).
(II) F, are Lebesgue measurable over X,- for i =  2 ,. . .  ,n .

(III) H is continuous on compact sets.
(IV) For i = 2 , . . .  , n Gi is continuous and for every fixed t € T  the map­

pings у —> Gj(t, y) are differentiable with derivative D2Gi(t, y) and with the 
Jacobian J2G{{t,x), moreover the mapping (t , y ) —> D2G i(t,y) is continuous 
on D and for every t € T  there exist a (t , y) G D so that

hGi(t,  у)ф  Q for г =  2 , . . .  , n.
Then F\ is continuous on T. □

First we prove the continuity of f \ .  We transform equation (4) into the 
form given by condition (I) of the above theorem. From (4) with t = xy we 
obtain

(6) /i( f)  = - / 2 Q  -  t Sj - f 3( y - t ) - f 4 ^1 -  -  у + Q )  K{y)
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for 0 < t < у < 1.
Let T  =]0, l[, n = 2TV T 4, Z\ — Z2 = . . .  — Zn =  С, X 2 = . . .  — X n = 

=]0,1[, D =  {(t, у) C R 2 I 0 < t < у < 1}. Define the functions G, on D 
by

G2(t, y) = J -  t, G3(t, y) = y - t , G4(f, í/) =  1 ~ Í - í/ +  í ,
Gs( t , у} = . . . — G 44-j v ( í > у ) =  у  ? Gs+N^t,  2 /)  — . . .  —  G 44-2 t v ( í ? t / )  2/

and let
ЛГ+4

Я (* ,y ,z2l. . .  , z„) = - z 2 -  z3 -  z4 +  Z k Z N + k -

k =5
It follows from (6) that the functions Я, (i = 1 ,. . .  , n) given by

F\ = f i ,  F2 = f 2, F3 = / 3, Я4 = / 4, F4+S=g„ Fí +n +s — h, (s — 1 , . . .  ,7V)

satisfy the equation in (I) for all ( i ,2/) € D. Fi (i = 1 ,...  ,ra) are mea­
surable by (ii) and Lemma 1. Я is clearly continuous and condition (IV) 
of Theorem J holds too since calculating D2Gi one can see that for every 
t € T = ]0 ,1 [

D 2Gi(t, у) ф 0 for i — 2 , . . .  , n if y ^ V i .

Thus by Theorem J, /1 = F\ is continuous on ]0,1[. The continuity of f 2, 
/ 3 and f \  can be proved by making the substitutions x —>1—x; t/ — 1 — у and 
x —► 1 — 2-, 2/ —► 1 — 2/ in (4) respectively and repeating the above argument. 
The continuity of gs, hs (s = 1 ,. . .  , N )  follows from Lemma 1. □

Let C(")]0,1[ be the space of all functions / :  ]0,1[—► C such th a t /(") is 
continuous on ]0,1[. C^°^]0,1[= C]0,1[ is the space of all continuous functions 
on ]0,1[.

Lemma 3. Suppose that (i) and (iii) hold. / / / 1, / 2, / 3,/4 € CM]0,1[ 
then g „ h e e  C("+1)]0,1[ (s =  1 ,. . .  , TV; n = 0 ,1 ,2 , . . . ) .

P r o o f  o f  L e m m a  3 .  By Lemma 1,  / ь / 2 , / 3 , / 4  €  C ( n ) ] 0 , l [  imply 
gs,hs 6 C(n)]0,l[ (s =  1 , . . .  ,7V). We show that together with gs,h s the

X  X

functions x —> /  ge(u)du , x —*■ j  h3(u)du (s = 1 , . . .  ,7V) are also linearly 
1/2 1/2

independent. Namely if

(x €]0,1[)
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holds with some constants ca (s =  1 ,...  , N )  then by differentiation we get
N
X) c«ff4(a:) = 0 (x G]0,1[) thus by (iii) c, = 0 (s =  1 ,. . .  , N ).  Hence we can 

8  =  1

find a system o i , . . .  , €]0,1[ such that

( 8) det ga(u)du)^j ф 0. 
1/2

Integrating (4) with respect to x from 1/2 to a t we obtain, after suitable 
transformations in the integrals that

a t  V ( l - a t ) y  a t l l - V I

-  f  f i ( u ) d u - ~  Í  f 2(u)du + —* [  f 3(u )du-
У J У J  ̂ У J

v/2 y / 2  (1—y ) / 2

(9)
V/2 

( l - a , ) ( l - v )

a t ( l - v )/
( l - v ) / 2

( l - v ) / 2

“ Y“  J  / 4(u)du = J2^J gt (u)du^hB(y)
4=1 1/2

for t = 1 ,. . .  , N .  It is well known (see e.g. [8]) that if / 1, / 2, / 3, /4 € C ^jO ,1[ 
then h(y), the left hand side of (9), is in C(n+1)]0,1[. Solving (9) as a linear 
system for the unknowns ha(y) we get

N

h>(y) =  ^ ß ' M y )  = у G]0,1[)
t = i

with suitable constants ßat. Hence h a €  C'(n + 1 ) ] 0 , 1 [  and by symmetry rea­
sons the same holds for ga (s = 1 , . . .  , N ) too. □

L e m m a  4 .  I f  (i) and  (iii) hold  and  / ъ / 2 , / 3 , / 4  €  C ( n ) ] 0 , 1[, K , , gB e  

€  C ( " + x) ] 0 , 1 [  ( s  =  1 , . . .  , N )  then  / ъ / 2 , / 3 , / 4  €  C<"+1) ] 0 , 1 [  f o r  n  =  0 , 1 , . . . .

P r o o f  o f  L e m m a  4 .  Write ( 4 )  in the form ( 6 ) .  Let 0 < a  < ß <  1 and 
choose the interval [A,/x] such that y/ß < A < ц  < 1 (then [a,/?] x [A,/x] C D 
holds). Integrating (6) with respect to у on [A,/x] we obtain

й p /i

- / 0 / i ( 0 = -  Jf2(l ~ *)dy- J m v - W v -J  / 4(1 -  ^  -  у  +  t j d y t
A A A

N  ^+  £  J 9 . ( - ) h . ( y ) d y .
4=1 A
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We use the substitution Gi(t,y)  = и (i = 2,3,4) in the first three integrals 
where G i are defined by (7). It is easy to check that the equations G,-(t, у) =  и 
(г = 2,3,4) can uniquely be solved for у if t G [a,/3]. In the case of i =  4 this 
uniqueness is ensured by the assumption \ f ß  < A, namely, by this condition, 
the derivative of the function у —► G \(t, y):

DiG^it, y) = -2 — 1
У

is negative on [a,/?] x [Л,/x] hence our function is strictly decreasing. The 
solutions у =  7i(t,u) of Gi{t, у ) = и (г =  2,3,4) are infinitely many times 
differentiable functions of t and u. Performing the substitutions we have for
t e  [<*,/?]

Л (0  =

4 Gi(t,p)
— — Г У] /  f i (u)D2j i ( t ,u)du + 
H -  Á ■ 2 J

1
A — /г

If <7„, he G C("+1)]0,1[ then the second sum is in C(n+1)]0,1[ too. In the 
first sum the functions / 2, / 3, /4 are a t least continuous hence by repeated 
application of the theorem concerning the differentiation of parametric inte­
grals (see e.g. Dieudonné [8]) the first sum is differentiable infinitely many 
times on [a,/3]. Since [a,/3] is an arbitrary subinterval of ]0,1[ we have 
/1 G C(n+1)]0,1[ and similarly / 2, / 3, /4 € C(n+1)]0,1[. □

Now we return to the proof of Theorem 1. Let

T  = { f i , 9 s ,h t I i = 1 ,2 ,3 ,4; s = 1 , . . .  ,N } .

By Lemma 2 T  C C]0,1[. If T  C C(n)]0,1[ then by Lemmas 3 and 4 T  C
OO

c  C("+1)]0,1[ (n = 0 ,1 , . . . )  hence T  C f |  C ^Jo , 1[. □
n = 0

3. Differential equations for /,

A well known method of solving functional equations is their reduction 
to differential equations. From the solutions of the differential equation one 
can select the solutions of the functional equation by substitution or by 
other means (see Aczél [1] pp. 186-201). Usually one can obtain differential 
equations from a given functional equation in many ways. For example 
differentiating (4) (with f \  = /2 = /3  = /4 = / )  with respect to у n times 
and substituting у = 1/2 we obtain

[ i + ( - i ) " ] [ i " / <”, ( | ) + ( i - * r / <" ) ( 11 ^ ) ] = х х * ) ^ п)( 1 ) .
«=1
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For odd n the left hand side is zero hence the right hand side must be 
zero too. Under suitable assumptions on h ^ k+1  ̂ ( |)  this may determine the 
functions ga. For even n we get

(10)* x“ / (“ > ( |)  +  (1 - х ) “ /<2‘ > ( Ц р )  =  £ > .(х )Л < 2Ь|( 1 ) .
3=1

Combining equation (10)*, its first and second derivative: g^(10)fc, др’(Ю)* 
and (10)jt+i by coefficients 2k(2k + 1), 4fc(l -  г), (1 — x )2 and -1 /4  respec­
tively we can get rid of the derivatives /W  We have

( I )  +  2t e “ - ' ( l  -  x)/<“ +4 ( I )  +
N

+24x“ - 2(2x + 2k -  1)/<2‘> (Í )  = £ [ ( 1  -  x ) 2 5 " ( x )  +  4*(1 -  x)9Í(x )+
8 =  1

+24(21:+ 1 Ы х ) ] А ! “ ) ( 1 )  -  i  ][> ,(x )/,< 2‘ +2> ( i ) .
Л=1

This equation is valid for к = 0, l , . . . ;  x €]0, l[ provided that the func­
tions involved are differentiable sufficiently many times. Let к — 0, l , . . .  , 3N  
here. Eliminating (l -  x )2g'J(x), (1 -  x)g's(x), g,{x) (s =  1 , . . .  ,1V) from this 
system, we obtain a linear homogeneous differential equation of degree < 2 • 
•3N+2 = 61V+2 with polynomial coefficients. Unfortunately this differential 
equation cannot help much in solving (4) since the structure of its solutions 
is quite difficult.

Next we shall deduce a differential equation of Euler type for / i ( / 2, / 3, / 4).

T h e o r e m  2 .  Suppose that conditions ( i ) ,  ( i i ) ,  ( i i i )  of Theorem 1 are 
satisfied. Then there exists functions 7Jt, 7Jt: ]0,1[—► C (k  =  3 , . . .  , 151V +  5) 
such that choosing any у €]0, 1[ not all o f the functions 7* and 7* vanish at 
у and /1 , /3  satisfy the Euler differential equation

15N +5
(H ) 2 3  Tk(y)ukf } k)(u) = ° (* =  1,3; 0 < и < у < 1)

k=3

further /2 , /4  satisfy the equation 

15ЛГ+5

(12) 2 3  = 0 (t =  2,4; 0 < и < у < 1).
1=3
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P r o o f . First we define some basic differential operators X,- (г =  1,2 ,3 ,4)
by

д д т Э . „  . d
L ' = x d i ~ y w  Ll = x d i  + ( 1 - y ) d i ’

L ,  =  ( 1 - x ) A  +  !, | . ,  Í 4  =  ( 1 - * ) £ - ( 1 - ü ) £ .

These and all other differential operators to be defined later will be 
applied on the  equation (4) in which by Theorem 1 all functions are differ­
entiable arbitrary many times.

The effect of X, on the left hand side of (4) will be the disappearance of 
fi (i = 1 ,2 ,3 ,4 ). Let 7 be the  identical operator and let

д d
A (n ] = U  + n l = (  1 -  x )—  + У ^  + n l,

A &  =L4 + (n +  1)7 = (1 -  x ) ^  -  (1 -  y ) - ^  +  (n + 1)/,

4 3) -  (n -  2 ) /  =  x £  +  (1 -  У )щ  -  (n -  2)7,

A (n ] =^2 -  (n -  1)7 = x-fe  +  (1 -  y ) ^  -  (n -  1)7,

A n ] = l 2 - n I  = x ~ A { l -  y ) - ^  -  n l ,

^ 6) =7-i -  (n +  1)7 = x - ^  -  y - ^  -  (n + 1)7,

A n ] =Lx -  (n +  2)7 =  x £  -  y ^  -  (n + 2)7,

4 8) = L i - ( n  +  3)7 = x ^ - 2/ ^ - ( n  + 3)7.

Further define B„  ̂ by

B U) = i W d b - 1) . . .  A ^T JJ (j = 1 ,. .  • , 8).

It is easy to  check that A„^ D 2 — D2A^A hence В = D 2A qA Aq ~ ^ .. . Aq1̂  
holds too. It is clear th a t A^3\  a L4\  A ^  and A^6\  An \  A ^  pairwise
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commute. Using the relations

r _ d т т d 
l 2 - l i + y y , L3 -  - L x +  — , , = _ r  a. ± _ J L

4 1 dx dy '

L A r  = _ ±  г —___ — T = A
1clx Bx 1 dx ' 1 dy dy 1 dy

we easily get 

L \L  2 — L2L X d  T  T  T  T 9  d  T  T  T r  9L2L3 - L 3L2 = l xL 3 - L 3Lx = -  —  ,

L2L4 - L 4L2 = - - ^ ,  LxU - U L x = - ^ - y y , L 3L4 - L 4L3 =

By the above relations can be factorized in many ways. For example

i # )  =  A ^ D n2 = D?a P  = Dn2L3, 

ß£2) =  = D Z A ^ A ^  = Z>?(X4 + I)L 3 =  £>£(Z,3 + /)B 4,

etc. Denote by C(x,y) and H (x ,y)  the left and right hand side of (4), resp. 
The factorizations above show that ^C(x, y) does not contain /3 (and its
derivatives), B ^ C ( x ,y )  contains only f i , f 2. B ^ C ( x , y )  contains only f \  
(and its derivatives) and finally B ^ C ( x ,y )  =  0. In addition from j  = 6 on
B {nj)C(x,y)  is a differential operator of Euler type in the variable x (at fixed 
y). Next we give the more detailed form of the equations

(13); В ^ С ( х , у ) = В ^ Щ х , у ) .

For j  > 2 Bn^Tl(x,y) gets quite complicated, we shall leave it as it is.

(13)i пхп~х f[n\ x y )  + xny/{n+1)(xy) +  ( - l ) " n x " _1/ 2(n)(x (l -  j/))+

+ ( - l ) " x " ( l  - y -  x ) /2("+1)(x(l -  y ) ) -

- ( - l ) n( l  -  x)"+1/ i n+1)( ( l  -  x)(l -  j,)) =
N

=  J 2  [i1 “ х Ш х )Ь[пЧ у ) +  9 s ( x ) ( y h i n+1\ y )  + n/i*"^))] ,
8 — 1

(13)2 (27ixn- 1+ n ( n - l ) x n- 2) / 1(")(x2/)+ ((2y -n -l)x"+ 2nyx"-1) /1(n+1)(xy>F 

+ (—Уж"+1 +  2/2xn)/x”+2^(xy) +  (—l)n(2nx"_1 +  n(n — l)x "-2 ) / 2"^(x(l —y))+
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+ (-1 )" ( ( -2 у  -  n +  l ) z "  +  2»(1 -  )/<“+ l|(x ( l -  »))+

+ ( - l ) n( - ( l  -  S / ) * " + 1  +  ( 1  -  !í)2* " ) / lnW)( x ( l '-  У ) )  =

N

= E[(>  -  + (1 -  *)Л*)((2У -  l)ftí”+1>(!/) + 2»Л<”> «)+
*=1

+9 s(x)(-y{  1 -  y)h("+2\ y )  + (n + l)(2y -  l ) h W ( y )  +  n (n  + 1)Мп)(у ))] ,

(13)3 2nxn~1 f[n\ x y )  + (2 yxn + n(n  +  l)x r,-1) /1(n+1)(x2/)+

4{-(n+2)x"+1 +  2(7i + l ) y x n) f[n+2\ x y )  + ( - y x n+2 + y2x(n+1'))f[n+3\xy)±-

+ ( - l ) n2 n * " -1/ i" )(* (l -  »)) + (~ l)n( —2(j/ + n)x")/<"+1)(x(l -  y))+ 

+ ( - l ) n( - 2 ( l  -  y )xn+1) f in+2\ x ( l  -  г/)) = в(?Ы (х ,у ) ,

(13)4 2(n + l ) / 1{n+1)(xj/) +  (2(y — n - 2)xn+1 +  (n + l)(n  +  2)xn) /a(n+2)(xy)+  

+((-22/ -  n -  3)xn+2 + 2(n +  2)yxn+1) /1(n+3)(xj/)+

+ (-J/xn+3 +  уахи+3) /1(п+4)(ху) -  2(—l)" (n  + l ) x " / in+1)(x(l -  y ) ) -  

- 2 ( - l ) " ( l  -  y )x " + 'f ln+2\ x (  1 -  у)) = B ^ 7 l ( x , y ) ,

(13)5 ( —4(n + 3)x"+2 +  (n + 2 )(n +  3)xn+1) /1(n+3)(xj/)+

+ (- (4 y  + n +  4)x"+3 + 2 (n +  3)yxn+2) /1(n+4*(xy)+

+ (-y x n+4 +  y2x"+3) /1(n+5)(xy) = B ^T Z (x ,y ) ,

(13)6 -4 ( n  + 3)xn+2/ 1(n+3)(xy) -  (4j/ +  2n + 8)x"+3/ 1(n+4)(xi/ ) -

-2 y x n+4/ 1(n+5)(xy) =  B ^ 7 l( x ,  y),

(13)7 —2(n + 4)x"+3/<"+4>(xj/) -  2yxn+4 f[n+5\ x y )  =  В ^ Щ х ,  у ),

(13)s 0 = 5 i8^ ( x ,y ) .

We can get differential equation for f i  from (13)5, (13)б or (13)7. Using 
(13)5 the equation obtained will not be of Euler type while in case of (13)7
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we obtain an Euler equation but its order will be too high. Hence we use
(13)e:

(13)e —2yxn+4f[n+s\ x y )  -  (4у + 2n + 8)xn+3f[n+A\ x y ) ~

-4 (n  + 3)xn+2f i n+3)(xy) = в(,6Ы (х ,у ) .

It is essential that B ^ 7 Z (x ,y )  has the following decomposition

(14)
N  r 15

*=1 4 = 1
B ^ n ( x , y ) = J 2  £ GSik(x)H.,k(y ,n )

where

(15)

G.,i(x) = g,(x), Ge>2(x) = g'e(x), Gaß(x) = xg't (x),
G sA x ) = 9 'J ( x ) ,  Gt,s(x) = xg"(x), G , , 6 ( x )  =  x 2p " ( x ) ,

Gtt7(x) = xg's"(x), Gt,8(x) = x2g'"(x), Ge,9(x) = x3g'J'(x),
Gi,io(a;) =  x 2 i?i4)( x ) ,  G 4)n ( x )  =  x 3£fi4 ) ( x ) ,

Ge, 12( 2;) =  х 4^ 4)( х ) ,  С * д 3( х )  =  x 3 ( x  -  1 ) ^ 5)( х ) ,

. G Sii 4 ( x )  =  x 4 ( x - l ) p i 5)( x ) ,  G 4ii 5( x )  =  x 4 ( x - l ) 2£fi6 ) ( x ) .

The functions H„д have the form

(16) Hs<k(y,n)  = £ p , , p(i/,n)hi"+p)(J/)
p = 0

where P*p are suitable polynomials of n and y. For example

H .}15(y ,n )  = hW(y),

H ,M {y,n) = ( - 6 n + 16)Л<п>(у) + (4 -  6y)A<n+1>(y), 

Н»,1з(у ,п) = (4n -  8)h{n\ y )  + (4у -  3) h ^ +1\ y ) ,

H.,12(y , n) = (15n2 -  65n + 72)h{n\ y ) +

+[(302/ -  20)n +  (—50y + 32)]hi"+1)(3/) + (15j/2 -  20y + 6)h[n+2\ y ) ,  

H ,,n (y ,n )  = (—20n2 + 76n -  72)h<?Xy)+

+[(-402/ + 28)n + (56y -  38)]/ii"+1>(2/) + (-20 t/2 + 28у -  9)h[n+2\ y ) ,

Hs,w(y,n) = (6n2 -  18n + I2)h(n\y ) +

+[(12у -  9)n + (—12y + 9)]h("+1)(i,) + (6y2 - 9 y + 3)h[n+2Xy).

A cta  M athem aiica  H ungarica 61, 1993



176 L. LOSONCZI

The remaining functions Ha,k are too complicated to be reproduced here.

R e m a r k . We found В ^ Т 1 ( х , у )  by using personal computer. Due to 
software problems we calculated

A ^ A ^ K . . A ^ \ b y a‘xeb‘v)

and factorized the variables ae,bs, x, y. Replacing akea,x by g[k\ x )  and b[eb‘y
by h s \ y )  we obtain the general term (the bracket) of (14).

Denote by - F n(x, y) the left hand side of (13)б then it can be written as

#  1 5

(17) 1 -xF n{x ,y )+  ^ 2 ' ^ 2 х в а}к(х)Н Я}к(у ,п)  = 0 (x ,y  €]0,1[).
«=1 fc=i

For every fixed у e]0,1[, (17) with n = 0 ,1 , . . .  , 15ÍV is a linear homoge­
neous system of equations for the unknowns 1, x G i^ x ) , . . .  , xG  1,15(2) ) ,  
xGfj' 1б(х). It has nontrivial solutions hence its determinant is zero:

(18)

* F 0 (x ,y )  # i , i ( y . O ) #l,2(y,0) ••• #1,14 (v.O) — 77iV,is(y>0)
# 1 , 2  (y . l )  ••• # i , i s  (y>l) ••• H n , 1 4  (уД)

* F l i N (x ,y )  H i , i ( v , 1 5 J V )  # 1 , 2 (y, 1 5 7 V )  . . .  # 1 ,1 4  ( у Д 5 # )  ... # jv,1 4 ( y , 1 5 # )

This implies (see e.g. [27]) that the rows of the determinant in (18) form 
a linearly dependent vector-system. Writing out the linear dependence for 
the first coordinate we have

(19)
1 5 #

J a i ( y ) x F /( x , t / )  = 0 
1=0

where for any fixed у €]0,1[ not all coefficients a /(y) are zero. Using the 
definition of Fi we can rewrite (19) into the form

15#+5
ßk(y)xkf l k\ x y )  = 0 (x ,y € ]0 ,l[)

k= 3

where not all ßk(y)’s are zero (at any fixed у €]0,1[). Here we needed the 
fact that in Fi(x,y) the coefficients of /^ "^ (x y )  ( j  = 3,4,5) are positive. 

Substituting и = xy, 7k(y) = ßk(y)y~k we have

1 5 # + 5

Y  1 k(y)ukf[ k\ u )  = 0 (0 < u < у < 1)
k= 3
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and again not all the coefficients 7jt(j/) are zero at any fixed у £]0, 1[.
This is exactly the Euler differential equation (11) for f \  we intended to 

derive. If we replace x by 1 — x in (4), f \  goes over into /3 and gs(x ) goes 
over into <7,(1 — x). This transformation leaves He<k(y, n) unchanged while in 
Fn(x,y), f 1 has to be replaced by / 3. Thus repeating the above argument we 
obtain that /3 satisfies the same differential equation (11) as f \ .  By similar 
reasoning we obtain that / 2, /4 satisfy another Euler differential equation

1SN+5

(12) £  7*(y)tt*/jfc)(*0 = 0 (0 <  и < у < 1; j  =  2,4)
k=3

where not all the coefficients 7fc(y) are zero at any fixed у б]0, 1[. □

4. T he structure o f solutions
Our main result is
T h e o r e m  3. Suppose that the functions / ,  , <7, ,h ,:]0, If—>C (t =  l,2 ,3 ,4 ; 

s = 1 ,. . .  , N ) satisfy conditions (i), (ii), (iii) of Theorem 1. Then there exist 
distinct complex numbers Ai =  0, A2 = 1, A3 =  2, A4, ,  Ад/ and natural

M
numbers m \ , . . .  , т м  with ^  mj S 30N  +  7 such that

3 = 1

(20) e  £(АЬ . . .  , А л /;ть . . .  , т м ) (г = 1 ,2 ,3 ,4)
Z (Ax,. . .  , X\f- m i , , т м ) being the vector space of all functions

M  m j - 1

cjfcxA> logfc X , X e ] o ,  1[
1=1 k=0

where cjk are complex constants.
Further g , ,h a (s = 1 , . . .  ,N )  can be written as

(21)

with
g,(x)  = + 7»г(1 -  г), M z )  = x ,,i(z) +  Х»г(1 -  z)

(22) 7«ъ 7»2>Х*ь Х«2 £ £ ( ^ i , . . .  ,\м ',т п!,. . .  ,т м )  ■
Moreover the index set J  =  {(j,k) \ j  = 1, . . .  ,M ;k  = 0 , . . .  ,m j  -  1} 

has three subsets Iq, I \ , I 2 each containing at most 15N  + 5 elements, among 
them the elements (1,0), (2,0), (3,0) such that

(23) /.'(*) = c('lxx>\ogk x
0A)e/i

(24) /.(* ) = £  4 2 x A>bgfcx
U,h)€l2
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and

(25) Y,Mx)= Y  ( Е с$ )хА> logkx
•'=1 (j,k)€lo »=1

hold where cty (j = 1 , . . .  ,M ; к = 0 , . . .  , mj -  1; i = 1,2,3,4) are complex 
constants.

P r o o f . We have seen that Д satisfies the Euler equation

1 5 Л Г + 5

(11) Y  7 k(y)ukf[k\ u )  =  0 (0 < u < у < 1)
fc=3

of order < 151V + 5. For a fixed у = y\ e ]0 ,l[le t p P , . . .  ,pp^ be the distinct 
roots of the characteristic equation of (11) and let т е ^ , . . .  , rip^ be their

multiplicities. Then we have Y, n к = 151V+5 and we may suppose p \  ' =  0,
k=l

/ i ^  = 1, p P  = 2. Since the functions и —» иц> logfcu (j = 1 , . . .  ,P i; 
к = 0 , . . .  , n^p -  1) form a linear independent set of solutions we have

Pl "J "  О)
(26) f 1(u) = Y  Y  ajkU^ \ogk u (0 < и < yi)

j =1 fc=o

where ajk are constants. Fixing another value У2 G]0,1[ we similarly obtain 
that

P2 n^ _ 1  ( 2)
(27) / 1(u) =  2 ^  Y  bjku/*> logk u ( 0 < u < y 2)

3=1 k=о

where p P  = 0, p P  =  1, p P  = 2 , . . .  ,pp^ are distinct complex numbers,
n P , . . .  , are natural numbers and bjk are constants.

Since the functions (26), (27) are identical on the interval ]0,min{2/i, 2/2) [ 
by the linear independence of the functions involved the terms on the right 
hand side of (26), (27) must be the same.

More precisely if a term ußi logfc и of (26) appears in (27) (i.e. p~p — p P
for some l = 1 ,2 ,. . .  ,P 2) and 0 ^  к ^  m in { n ^ ,n ^ }  -  1) then ajk =  bik 

( 1 )  ,

while if vPi log* и does not occur in (27) then ajk =  0 and conversely: terms
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of (27) occurring in (26) have the same coefficient, those terms of (27) which 
are not present in (26) have zero coefficient.

Keeping only the terms with nonzero coefficients and introducing new 
notation for the exponents and multiplicities we have

P  " j - i

(28) / i(u )  =  53  £  cJkU>l3 logfc uj=l fc=o
for all и 6]0,1[ where A = {p,\, . . .  ,pp}  has distinct complex numbers p i =

P
= О, Ц2 = 1, Цз =  2; щ , . . .  , np  are natural numbers with 53 nj ^ 15ÍV +  5

j =1
and Cjk are constants.

Since /3 satisfies the same Euler equation we conclude that

(29)
P  «1 -1

/з(« ) = 5 3  S  dikU>i] logfc u »
j=l fc=0

tt€ ]0 ,l[

where djk are constants.
Similarly, from (12) we deduce that

(30)
Q p j -  1

/з(и) = 5 3  5 3  e3kU>/J logfc u '
j= 1 Jk=0

« e]o,i[,

(31)
Q p>-i

л (« )  = 5 3  5 3  híkuVi ]ogk
j'=l fc=0

tt€ ]0 ,l[

where В —  { iq , . . .  , v q }  has distinct complex numbers, —  0, 1/2 =  1,
Q

v-s = 2; p i , . . .  , pq are natural numbers, 53 Pj й 157V -f 5 and ejfc, hjk are
i= i

constants.
Let A i,. . .  , \ m  he the distinct elements of A U В and define rrij ( j  = 

= ! ,- • •  , M )  by

{max{rafc,pi} if X j  e А  П В  and A j  = p k = W
nk if X j  € A \  В  and A j  = pk

pi if Aj £ В \  A  and X j  = pi.

With this notation (28)-(31) can be written asM  m j - 1

(32) / , ( u) =  5 3  5 3  С$ “ Л> loS* u (u €]0,1[, i = 1 ,2 ,3 ,4)j= i k=0
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where € C are constants. This proves (20). (23), (24) follow from (28)- 
(31).

4

Let f ( u ) = 53 /»(«) then from (4) it easily follows tha t 
i=i

/(*У) +  /(*(1  -  У)) +  / ( ( !  -  Х)У) +  / ( ( !  -  x )(1 -  2/)) =
N

= Х ^ Л * )  +  У.(1 -  * Ш М у) + h,( 1 -  y)].
*=i

Applying e.g. (23) for this equation we obtain that (25) holds.
To complete the proof we show that (21), (22) are valid. In the proof of 

Lemma 1 we have seen that

N

g.{x) = X  Vt) (s =  1 , . . .  , N] X €]0,1[).
t=i

Using (32) let us calculate C(x,yt). We have

M rrij-l
£(x,yt) = E  X  [cifc(ei,t)A>logfcxyt + - ^))Aji°gfcx(i- yt)+

j — 1  k = 0

+ c% \(l -  x)yt)x= logfc(l -  x)y t + cg>((l -  x )(l -  j/t))Aj logfc(l -  x )( l -  yt)

Expanding the logarithmic factors by the binomial theorem, applying 
the identity

Mj — 1  jfc m ,  —  1  n j j  — 1

X  X uw = X  X Uki
k =0 1 = 0  1 = 0  k = l

we obtain

M m j - l

(33) g,(x) = X  X  [A i ‘»xXl W  x +  BM 1 -  x )Xj log '( l -  *)]
, j = 1 /=owhere

mj_1 N /iA
Aii‘ = X  X  ( / )a*f [«SV* к*-'ut+ 4 'Л1 -  yt)X] logfc_/(i - y t) ,

k = i  t =1 4 '

" b -1  N  /JA

t = i '  /
«t +  c ^ ( l - y t)A>log*-,( l - y t)
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(33) justifies the statements (21), (22) concerning the representation of the 
functions gs. A similar calculation shows that the statement is valid for hs 
too. □
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SOME METHODS FOR FINDING ERROR BOUNDS 
FOR NEWTON-LIKE METHODS UNDER MILD 

DIFFERENTIABILITY CONDITIONS
I. K. ARGYROS (Lawton)

I. In tro d u c tio n

Let E  and E be Banach spaces and consider a nonlinear operator F: D Q 
C E —> E  which is Frédiét-differentiable on an open convex set Do C D.

The most popular method for approximating a solution x* 6 D0 of the 
equation
(1) F(x) = 0
are the so-called Newton-like methods of the form
(2) xn+i -  xn -  A (xn)~1F(xn), x0 E D0 prechosen, n = 0 ,1 ,2 , . . . .

The linear operator A(x) is a conscious approximation to the Fréchet- 
derivative F'(x) of F  at x £ Dq. For A(x) = F '(x ) and A(x) = F '(x0) 
one obtains the Newton-Kantorovich and the modified Newton-Kantorovich 
method.

Several authors including Balazs and Goldner [2], [3], Jankó [5], Schmidt 
[13], [14], Rheinboldt [12], Dennis [4], Miel [9], Morét [10], Pótra and Ptak 
[l 1 ] have proved convergence theorems for (2) or special cases of it providing 
several error bounds on the distances ||xn — x*|| and ||xn — xn+i||, n —
= 0 ,1 ,2 ,__  The la tter authors above have improved the results of the
former using Kantorovich type hypotheses.

Recently, Yamamoto in an excellent paper has unified and improved 
these results in [16].

The main hypothesis of all the above authors is tha t the Fréchet-derivative 
F '(x) of F  satisfies a Lipschitz condition. However, there are many interest­
ing differential equations or singular integral equations that can be written 
in the form (1) where F '(x ) is only ( K ,p), 0 ^ p < 1 Holder continuous (to 
be precised later) (see also [1]).

Here we extend the results mentioned above in this new setting. Our 
results reduce to the ones obtained by Yamamoto [16] and the others for
P = fo­

rmally, we provide an example of a two-point boundary value problem 
on which our results apply whereas the results obtained by the above authors 
do not.
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II. Main convergence results

We will need a definition:
D e f i n i t i o n . Let F  be a nonlinear operator and L a boundedly invertible 

operator defined on a convex set Do С E  with values in a Banach space E. 
We say that the Fréchet-derivative F '(x)  of F is (c,p)-Hölder continuous on 
D0 С E  if for some c > 0, p € [0,1]

(3) \\L-1(F ,( x ) - F \ y ) ) \ \ < c \ \ x - y \ \ ^  for all x ,y  e D0.

We then say that F '(-) € #£>0(c,p).
It is well established [5, p. 142] tha t

(4) \ \ L ~ \ F ( x ) - F ( y ) - F ' ( x ) ( x - y ) ) \ \  < y - ^ | |x  -  y ||1+p for all x ,y  € D0.

We can now prove the following convergence theorem for (2).

T heorem 1. Let D Q  E and F : D —> Ё and assume F'(-) € Яд,(Л',р) 
on a convex set Dq Q D. Let A: D 0 —»• L(E,E) and a point xo be such that 
A(a:o)_1 exists and

(5) \ \A (x .o ) - \F '( x ) -F ,( y ) ) \ \< K \ \x - y \ \ ^  x ,y  € D0, К  > 0, p £ (  0,1],

( 6 )
Н А С хоГ Ч Ж *)-^ ( * o ) ) | |^ i | |* - * o | |p + ^  x e D 0, L> 0, l> 0 ,  p € (0 ,l] ,

(7)
||A (z0) 1(F '(x )~  A(x))|| < M\\x — x0||p + m, i £ D 0, M ^0 , m ^ 0 , p € (0 ,l] , 

and

( 8 )  r / >  | | A ( a : o ) _ 1 F ( a : o ) | |  >  0 .

Assume:
(a) The real function g defined by

(9) g(t) -  (Af +  L)tp+1 Lptp +  (m  1 + t  +  )V 1 + p / *+*?(!

has a smallest positive zero r* > rj.
(b) The following inequalities are satisfied:

(10) X(r*)p + i  < 1

and

(11) l - £ - L ( r - ) P [ l + /  + ro +  M( r ) P < 1.
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Then
(i) I f  U(x0,r*) Q D0 then the sequence {xn}, n = 0 ,1 ,2 ,. . .  generated 

by (2) is well defined, remains in U(xo,r*) and converges to a solution x* £ 
€ U(xo,r*) of equation (1).

(ii) Moreover, if

( 12) h* = 1
1 -  I -  L(r-)P

2pA'(r*)p 
1 - I -  p

+ m  + M(r*)p < 1

then Xя is the unique solution of equation (1) in 
(13) U{xu r* - r , ) Q V { x 0,r ') .

(iii) Furthermore, the following estimates are true:
(14) ||Zn-)-l — Xn íj 5; n̂-(-l ^n) » = 0 ,1 ,2 , . . .
and
(15) kn  -  ®*|l ^  t* -  tn, n = 0, 1, 2, . . .
where the real sequence {fn} is nonnegative, increasingly converging to some 
t* > 0 and is given by 
(16)

^n+l In —
1 к

1 - I - L t pn 1 + p
(í„ -ín_ i)1+p-f(m -|-M ^_1)(ín- í n_i) , n —1, 2, . . .

xvith to — 0 and t\ = 77.
P r o o f , ( i )  L e t  x £ U(xo,r*). T h e n  w e  c a n  w r i t e

A{x) = A{xq)(I  + Л(х0)- 1(Л(х) -  Л(х0))).
Using (6) and (10) we get

||Л(х0)- 1(Л(х) -  A(®0))|| ^ Ц\х -  zo||p + i  % L(r*)p + t  < 1

and by the Banach lemma on invertible operators the linear operator Л(х) 
is invertible for all x £ U(x0,r*) and

0 П  ||A(*)-‘A(*o)ll S ■i L j ' n r . y

Therefore T (x) = x — Л- 1(х).Р(х) is defined on U(xo,r*) and if x, T(x) £ 
£ U(x0, r m), using (4), (17) and (7) we obtain

(18) ||T(T(x)) -  T(x)|| = И -  A -1(T(x))F(T(x))|| <

S l - t - в д , ) - « , ^ ^ »  -  -  -  * » +
+ (T (x )  -  -4(x))(T(x) -  х)|Ц <

^ - <-1 ||Г (х )-х 0||р{ т ^ ' Г^ - ^ | Г 1’+ (^ + М ||х -х0|П ||Г (х)-х ||}=

=  Ш т ( х ) -  *ll> ! № )  -  * o | | ,  I k  -  zol l)
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where

(19)
1

q(u ,v ,w ) = ----- -----——i/v ’ ’ ' 1 -  l  -  L V p
K u 1+P + (m + M wp)u

1  +  p

The difference equation given by (16) is such tha t t2 -  ti ^  hor\ and

Í2  ̂ t \ + h 0r] = 77(1 + ho) < -— .
1 — ho

Using (9) and g{r*) = 0 we get 77 = (1 — h0)r*. That is Í2 < r*. We can 
easily show using induction on n that

к̂-\-1 = ho(tfc ffc—l)? and ^ 7* -
It now follows

lim tic = t*,k—> 00
Therefore, we have shown

1 — ho
= r

il^n + l *̂ n|| = fn + l fni ^ — 0 , 1 , 2 , . . . .
That is by a well known lemma on majorizing sequences, there exists an 
element x* E U(xo,r*) such that T(x*) — x*.

We can now get

||F (xfc)|| ^ ||A(a:o)A(a:o)"1(A(xfc)) -  A(x0))(xfc+i -  х*)|| +
+ ||A(x0)(xfc+i -  xfc)|| ^ [L||xfc -  x0||p + i  + l]||A (x0)||||xfc+i -  xfc|| ^

< [L(r*)p + £ + l]||A(xo)||||xfc+1 -  Xfc|| -> 0 as к -> oo.
Hence F(x*) = 0.

(ii) Let us assume that there exists another solution z* E U(xo,r*) of 
equation (1). By (2), (7), (17) and (12) we get

x„+i -  г* =
= A(x„)- 1[(A(xn) -  F \ x n))(xn -  z *) + F '(xn)(xn 
and

- z * ) - ( F ( x n) - F ( z ') ) ]

|xn+i -  z*II <

К

1
1 -  i  -  L(r*)p

Zn-zo|| + ||x0- z '

77l +  M ||xn-X 0||P+

|z„-z* ||5 i
1 +  p

< hi\\xn — z*II < • • • < h"+1||x0 -  z*И —► 0 as n —» 00. 
That is, x* = z*. The rest follows from the observation that
(20) x * 6 if(x1, r * - 7?) c U ( x 0, 7-*),
since ||xo — x iК + r* — 77 < r*.

(iii) The results in this part follow immediately from (i) and (20).
That completes the proof of the theorem.
We now give some sufficient conditions for the existence of a minimum 

solution of the real equation g(t) =  0.
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P r o p o s i t i o n . Assume that the following conditions are satisfied:

(21) В = - ш +  1 - /  +  L r j-  > 0,
1 + p

(22) В 2 > 4i?(l -  £)(M  + i ) ,  

and

(23) 

with

(24)

Then the equation

9(tq) < 0 

В
q ~ 2(M + L )'

(25) g(t) = 0

where g is given by (9) has a smallest positive zero r*.
P r o o f . By (21), (22) it follows that the quadratic equation

(M  + L )t2 + (m  -  1 + l  + -  Lri)t + 77(1 -  l)  = 0
\ 1 + p /

has two positive zeroes and a minimum at tq = 2(m +L)  • can easüy se e
that g(t) is continuous, f̂(O) > 0 and g(t) > 0 for t sufficiently large and 
since g{tq) < 0, by (23) it follows that g{t) has two positive zeroes r* and 
r j  with r* fi r j  of which we can choose the minimum to be r* and rj" to be 
a second minimum zero. That is if rj is a zero also with г* ф rj < r j  then 
r\ — r\.

That completes the proof of the proposition.
T h e o r e m  2. Let F ,D q,Xo be as in the introduction and assume:
(a) the equation (1) has a solution x* 6 Do;
(b) there exist nonnegative numbers a ^ ,a \ ,a 2n such that

(26)

llxn+i-x’ ll < — — a°+ n ||zn —а;*||1+р-|-а^||а;п—ж*||-(-а  ̂ for all n = 0 ,1 ,2 ,. . .  
1 + p

with

(27) a° > 0 and aj, < 1;

(c) the real function

(28) q(t) = Y fT ^ antl+P ~  (1 "  а«)^ + an +  dn, dn = \\xn+1 -  xn\\
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with

(29) a?n > a ° , 1 > aAn > a* and a5n > a 2n , for all n — 0 ,1 ,2 ,...

has two positive zeroes r* and r \ ,  r* ^ r* with r* being the smallest positive 
zero and is such that i f r \  ф r * is a zero also with r j  < r j  then f j  = r j\ 

Then
(i) The real function

(30) ® (0  = 7 ^ « n í 1+P -  (1 -  »«)* + a l + dn 

has two positive zeroes r% and r3 such that

(31) r l  < r* < r\ g r$.

(ii) Moreover, if

(32) ||xn -  X*|| ^  r*

then

(33) l l * n - * l  ^  »2.

P r o o f . The result in (i) follows immediately from the easy observation
that

(34) q(t) ^  qo(t) for all i > 0.

Using (26) we get

(35) ||xn —z*|| —d„ < ||*n+i - a * | |  < Y^T^anlla:n_a:*l|1+P+ anlla:n—x*ll +  an*

By hypothesis we must have gödien — ar*||) > 0 and either 

| | Х П - Х * | | < Г 2  О Г  | | X „  - a ;* || >  Г 3

the latter is excluded, however, and the result in (ii) follows.
R e m a r k s , (a) Note th a t for p =  1, Theorem 2 reduces to Theorem 3.1 

in [16].
(b) The result in (ii) above constitutes an improved error estimate on 

the distances ||x„ — x*||, n  = 0, 1, 2, ----
According to the proposition, the equation

(36) <7i„(*) = 0, n = 0 ,1 ,2 ,...
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where
(37)

9in(t) = T^<rKt1+p + (m + t  -  1 + crKtn)t + (1 -  l  -  L C )(tn+1 -  i„),

' a  = m ax (l, ^  + M )

has a minimal solution s® and a second minimal solution s® with ^ 5® if 
the following set of conditions is satisfied for all n = 0 ,1 ,2 , . . . :

(c)
(38) m  + l  — 1 + crKíp 5Í 0,

(39) (m  + Í -  1 +  a R X ) 2 > ^ ( 1  -  i  -  f i pJ ( i n+i -  i„) 

and

(40) gln(tln) ^  0 

with

(41) _  (m +  t  — 1 + a / f f£ ) ( l  + p )
ln “  2crA'

It can easily be seen th a t the conditions (c) are certainly satisfied if the 
following are true:

( c i )

(42)

(43)

and

(44)

with
(45)

m  +  t  — 1 + 2crA'(r*)p ^ 0,

( m + i _ i ) 2 >  l i ^ [ ^ ( r . ) p + ( m + M ( r T )]r -
1 +  p LI +  p

9 2{tr*) <: 0

К
<72(0 = Y ^ c r A 'í1+P + (m +  ̂ - l  + <7A'(r*)p)í-f j - ^ ( r * ) 1+p(m + M(7-*)p)r-* 

and

(4 6 ) <r* = (m + I -  1 + crK{r*)p){\ + p) 
2(7 К
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Indeed, (38) follows from (42) since tn ^ r*, n — 0 ,1 ,2 ,__  We also
have that for all n = 0 ,1 ,2 , . . .  (39) follows from (43) since

(m +  t  —  1 +  crK t ^ ) 2 j> (m  +  t  — l ) 2 ^
AoK К ■(r*)p -f (m  + M(r*)p) r* >

> 4a К  
1 + p

1 + p 1 + p

(tn -  i„ - i )1+p +  (m  + M ip_r)(<n -  tn -1)
1 + p

>

Z ^ - ( l - £ - L t p )(tn+1- t n).
1 + p

Moreover,
tr* < t ln, gin(t) ^ g2(t), t > 0

and the function <72 is decreasing on [0, r*] by (42).
That is, (40) follows from (44) since for all n = 0 ,1 ,2 ,. . .

9in(hn) й g2(hn) й gn(tr*) ^ 0.

We can now prove the main result.

T heorem 3. Let D с  E and F : D —> Ё and F'(-) € Н ^0(К ,р) on a 
convex set Dq C D. Assume:

(a) the hypotheses o f Theorem 1 are satisfied;
and

(b) the set of conditions (c) or (сг) are satisfied.
Then:
(i) The sequence {xn}, n = 0 ,1 ,2 , . . .  generated by (2) is well defined, 

remains in U(xo,r*) and converges to a unique solution x* of equation (1) 
in U(x\, r* -  7?) C U (x0,r* )^

(ii) Let U0 = U(x0,r*), Un = U(xn , r * - tn), n = 1 ,2 , . . . ,  K0 = L0 = K,

Kn = sup
x,y£t/n

хфу

\ \A { x n ) - \F \x ) - F '( y ) ) \ \
Ik -  y\\p

Ln sup
x,ytUo

хфу

||A(xn) х(Т (г )  -  F (y )) ||
Ik -  y\\p

Then we have

(47) x* e  u n c  c7„_i c  c  F 0,
(48) Ikn -  x*\\ < 4  < s i  ^  ^  s* < t* -  tn for all n = 0 ,1 ,2 ,...  ,
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where and are the least solutions of the equations

Pn(t) = Pn(t) -  t + dn, Vn(t) = vn(t) -  t + dn,
W n(t) = wn{t) - t  + dn, Yn(t) = yn( t) - t  + dn,

with
(t) _  1  K  a + p  , (m  + M\\xn -  x0\\r)t

P n [ ) ~  1 + P n + i - e - L \ \ x n - z o \ r

,, ( f )  _  1 j a + p  , (m  + M\\xn -  x0\\P)t
vn( t ) - 1 + p Lnt +  1  _  i  _  i | | x „  _  Xo| | , '

Г ,’-

w„(i) = (1 -  i  -  L\\xn -  x o llT 1 ■- t1+p + (ra + M \\xn -  x0\\p)t
1 +  p

and
V n ( t )  = (1 -  * -  L tpn )

- l К
1 +P

tl+p + (m + M tp )t

P r o o f . P a r t  (i)  fo l lo w s  i m m e d i a t e l y  f r o m  T h e o r e m  1. I t  is e a s y  t o  see  
t h a t  x* 6  Un C  Un- 1 . L e t  u s  define t h e  r e a l  f u n c t io n s

and

zn(t) = ( l - £ - L t p)

Zn(t) =  zn(t) -  t + dn 

_ !  г a К
■1 +  p

t1+p + ((m  + (o K -L ) tp)t + (tn+1- t n) - d n

for all n — 0 ,1 ,2 ,. . . .
It can easily be seen th a t condition (c) or (ci) imply that the equation 

Zn(t) = 0 has a minimal solution s® and a second minimal solution s® with
s5 < s6n.

We also have that

||xn+i -  x*\\ < p„(||xn -  x*||) ^ v„(||xn -  x*||) < m„(||xn -  x*||) <

^ Уп(||*„ -  z*||) ^ zn(\\xn -  x*||)
for all n = 0 ,1 ,2 ,. . . .

With the above results it can easily be seen that the hypotheses of The­
orem 2 are satisfied. Therefore we can apply (33) to obtain (48) for all 
n — 0 ,1 ,2 ,__

Note that for p — 1 our results can reduce to the ones obtained in [16]. 
We now complete this paper with some applications where our results 

apply but the ones in [2]-[16] do not.
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II I . Applications

Consider the differential equation

(49) y" + yl+p = 0, p € (0,1], 2/(0) = 2/(1) =  0.

We divide the interval [0,1] into n subintervals and we set h = jk Let 
{ufc} be the points of subdivision with

0 ^  v0 < v\ < ■ • • < v„ = 1.

A standard approximation for the second derivative is given by 

n V i—l — 2j/j +  y i + 1
У, = h2

Уг = У(ч), i = 1 ,2 ,. . .  , n -  1.

Take т/o = yn = 0 and define the operator F : Rn 1 —> R" 1 by

^(i/) = H(y) + h2<p(y),

and

Then

(50)

' 2 -1 0 ' Ы » ]

H  =
-1 2

. -1 » ¥>(») =
y]+p

_ 0 -1 2 .Уп-1.

У l
У2

Lf/n-i

F '(2 /)-  Я  +  /12(р + 1 )

L о
2/2

i/n-1

The Newton-Kantorovich hypotheses on which the work in [2]—[16] is based 
for the solution of the equation

(51) F(y) = 0

may not be satisfied.
We may not be able to evaluate the second Fréchet-derivative since it 

would involve the evaluation of quantities y~p and they may not exist.
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Let у € R" 1, M  £ Rn 1 x Rn 1 and define the norms of у and M  by
n—1

IMI =  , д а х  M l, ||M|| =  max ^
l S i S n — 1 1 S j S n —1 *— 'k=1

For all y, z £ R"-1 for which |j/;| > 0, |-гг,| > 0, i = 0 ,1 ,2 ,. . .  , n — 1 we 
obtain for p = say

\\F \y) -  F '(z)II =  ||diag{^/i2(i/j/2 -  z]/2)} = ^ h 2 ^ m ax ^  \y)/2 -  z )/ l \ <

< ^h 2[max \y3 -  Zj|]1/2 = ^ h 2\\y -  z ||1/2.

That is, К  = I h2 and p = i .  Therefore, the results in [2]—[13] cannot be 
applied here. Let us assume that A{x) = F '(xo)“ 1 for all x £ Do.

We can choose n = 10 which gives (9) equations for iteration (2). Since 
a solution would vanish at the end points and be positive in the interior a 
reasonable choice of initial approximation seems to be 130sin7rx. This gives 
us the following vector:

"4.015242? + 01' 
7.63785F + 01
1.05135F + 02 
1.23611F + 02 
1.29999F + 02 
1.23675F + 02 
1.05257Я + 02 
7.65462F + 01 

.4 .03495^+01.

Using the iterative algorithm (2), after seven iterations we get

z7 =

"3.35740F + 01" 
6.52027F + 01 
9.156642? + 01 
1.091682? + 02 
1.153632? + 02 
1.091682? + 02 
9.156642? + 01 
6.520272? + 01 

.3.357402? + 01.

We choose z7 as our xq for our Theorem 1. We get the following results: 

L = C = m = 0, M  = К  -  .383823, т/ = 9.15311 • 10-5 , p = ~ .
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The function g given by (9) becomes
g(t) =  .383823<3/2 -  .99362187* + 9.15311 • Н Г5.

This function has a minimal zero r* = 9.211864469 • 10-5 > ту. The rest of 
the hypotheses of Theorem 1 are satisfied with h* = 7.15706368 • 10~3 < 1 
and r* -  77 = 5.8754469 ■ 10-7. Hence, by Theorem 1, the sequence generated 
by (2) is well defined, remains in U(x0,r*) and converges to a unique solution 
x * of equation (51) in U(xi,r*  — ту).
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EPIS IN CATEGORIES OF CONVERGENCE SPACES
D. DIKRANJAN (Udine) and E. GIULI (L’Aquila)*

1. In what follows X will denote a topological category in the sense of 
Herrlich [10]. All subcategories of X considered in the paper are full and 
isomorphism-closed. We do not distinguish between X and Ob X, a class 
(always non empty) of spaces (X-objects) and the corresponding full and 
isomorphism-closed subcategory, a space (or a subspace =  extremal subob­
ject) and its underlying set (subset), an X-morphism and the corresponding 
set-function.

The categorical terminology is that of [11].
A closure operator C of X is an assignment to each subset M  of (the 

underlying set of) any object X  of a subset c xM  of X  such that:
a) M  Q <wAf;
b) cxN  Q c x M  whenever N  Q M\
c) (continuity condition). For each / :  X  —*■ Y  in X and M  subset of X , 

f{cX M ) Q cY{ fM ).
Furthermore C is called idempotentif c x (cxM ) = c xM .
In case cx0 = 0 is always true, this coincides with the notion of closure 

operator given in [8].
A subset M Q X  is called C-closed (respectively C-dense) in X  if c x M  =  

= M  (respectively cxM  = X ) . A X-morphism f : X  —► Y  is called C-dense if 
f ( X )  is C-dense in Y .

Notice that many classical operators in Top are closure operators in the 
previous sense, e.g., 0-closure, sequential closure, compact closure, г-closure 
(defined as the intersection of all zero-sets containing the given subset). How­
ever the semiregularization operator does not satisfy the continuity condition 
(cf. [3]).

The conglomerate of all closure operators of X is endowed with the ‘point- 
wise’ preorder defined by С й C  iff cxM  Q for each X  в X and
M Q X .

For each ordinal a  we define the a-th iteration of C as the closure oper­
ator Ca given recursively by C 1 =  C, Ca+1 — C C a and Ca = sup{C^: ß < a )  
for limit a  and for a = oo (with ß < oo for all small ß). For each X  G X 
there exists a such that (cx)aM  = (c^-)^Q+1^M for each M Q X ,  so C°° is

* Supported in part by Bulgarian Science Committee Grant No. 44 for the first author 
and by a grant of Italian Ministry of Public Eduction for the second author.
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idempotent and it is the least idempotent closure operator coarser than  С 
(the idempotent hull of C , cf. [6, Section 4]).

For a given closure operator C of X set
Xoc = {X € X: x £ cx ({y})  and у € сх ({г}) => x = у}.
Xiс  = {-X- € X: {x} =  cx({x}), for each x € X}.
Хгс = (X  € X: cXxx (A x ) = Д*}.
Let us note that the first two categories are defined by conditions on the 

points of the space, while the third one is defined by a global property of 
the space. Since in this paper we are going to deal mainly with the first 
two categories, for i = 0,1 we say that two points x and у of a space X  are 
(г, C)-separated\i they satisfy the condition given in the respective definition.

For X =  Top and C  the ordinary closure we obtain the class of Tq- 
spaces, Ti-spaces and Тг-spaces respectively. It is also easy to show that 
X,C) i = 0 ,1 ,2 , are quotient-reflective subcategories of X.

Since С < C 2 , then trivially Xoc 2 X0C2 2 . . . ,  and by definition 
Xoca 2 X1C for each ordinal a  so we obtain a chain

Xoc 2 X0C2 2 . . .  2 XoC« 2 . . . 2  X ic .
Every class of X-objects S defines an idempotent closure operator in the 

following way: F  Q X  is called S-closed in X  iff for each x € (X \  F) there 
exist 5 € S and f ,g :  X  —*• S  such that the restrictions f \F  and g\F  coincide 
and f(x )  ф g(x). A pair ( f , g ) as above is said to be a S-separating pair for 
(x ,F ) in X. The S-closure of M  Я X  is defined as the intersection of all 
S-closed subsets of X containing M  and it is denoted by [M]s-

The closure operator defined above characterizes the epimorphisms of 
the full subcategory S of X as the [ ]s-dense maps (cf. [8, Theorem 2.8]).

For X  € X and M  С X , X И м *  will denote the quotient of the co­
product X  Ц  X  = X x  {0,1} obtained by identifying each (m, 0), m € M , 
with (m, 1). Let q: X  Ц X  —► X X  be the quotient map. The maps

*‘ : * - * 1 1 м * -  X M M X -* x W m X  “ d * X 11M X ~ X
are respectively defined by fc,(z) = q (x ,i) , ő(q(z,0)) =  q (z ,l), s (q (x ,l) )  = 
=  <?(я,0) and p(q(x,i)) = x , for x £ X  and i = 0,1.

Lemma 1.1 ([8, Proposition 2.6]). Let S be a quotient-reflective subcate­
gory o fX  containing a space with at least two points and let X  £ S. A  subset 
M  С X is S-closed iff X  X belongs to S.

Let C be a closure operator of X. For X G X and M  Q X  set

clcM  = {x € X : q(x, 0) € ц ^ х {?(х, 1)}} .

It is easy to show that clc is an extensive, monotone and continuous operator, 
i.e. clc  is a closure operator of X.

Let E q (/, g) denote the equalizer of /  and g and, for each reflective 
subcategory A of X let R: X —> A denote the А-reflection functor and 
r : X —> R X  the А-reflection of X £ X.
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L e m m a  1.2. I f  A is a reflective subcategory o fX  then, fo r each X  G X 
and M  Q X  the following holds

[M] a = Eq(rk0,r k i )

where r: X ] } M X  -* Д (Х Ц М Х ).

P r o o f . Since M  Q Eq(fco,fci) Я Eq(rfco, rfci) and Д (Х Ц М Х ) G A , 
then [M] a Q Eq(rA;0, rk\). On the other hand, if x^[M ] a  and / ,  g: X —> A, 
A  G A is an А-separating pair for (x ,M ), then ( / Ujvf 0)) ф
Ф ( / U Mff)(9(a:, 1)) so, using the universal property of reflections which 
says that ( /Ц д г  <7) admits a factorization (/Цд/<7) = hr, we obtain that 
r(g(x,0)) ф r(g (x ,l)). Since r(q (x ,i)) = (rfc,)(x), i = 0,1, then we deduce 
that x ^ Eq(r&o, r&i).

T h e o r e m  1.3. Let C be a closure operator of X, i = 0,1, X  g X and 
M  Q X . Then

(a) (clc)~M  Q [M]XlC;
(b) (clc)°°M = [M]x,c i f X e X i c .
P r o o f , (a) Since X,c-closure is idempotent it is enough to show that 

clc M  C [M]xlC- If x 6 clc M  then q(x,0) G cx ] J  so> applying
the symmetry s and the property of continuity, also q(x, 1) G cx  j j  x M M ) } -
If / : X  П м  A -  Y  with F  € X iC, * = 0,1, then f(q (x , 0)) € cy(/({g(x , 1)})) 
and f(q (x , 1)) G cy(/({g(x, 0)})) by continuity. Now Y  G X.c gives 
f(q (x , 0)) = f(q (x , 1)). In particular, for the X^-reflection г: 1 Ц М 1  —> 
-*• Ä (X U M X) ,  (rk0)x = r(g(x,0)) = r(g (x ,l))  = (rfci)(x), so x G 
G Eq(r^o, гАгх). Consequently, by Lemma 1.2, x G [Af]x,c-

(b) Since X,c-closure is idempotent, it is enough to show that clc-closed 
sets are X,c-closed in X  G X.c- Let M  Q X , X  G X,c, and assume M  = 
clcM . In virtue of Lemma 1.1, to prove that M = [M]xlC it suffices to 
show that X  I I M *  G X.-C. Let xi = q(x,£), z2 = q{y,j) be two distinct 
points in X IJ M X . If x /  y, then applying the projection p: X  X  —► X 
we get p(zi) ^  р(-гг). Then by X  G X;c it follows that x =  p(^i) and 
У = p(z2) can be (i, C)-separated (l  = 0,1). So, by continuity, zi and zi 
are (z, C)-separated too. If x = y, then i = 0, j  = 1, say, and x £ M. 
By M  — cl cM , x ^ clcM , so z\ = д(х,0) ^ сх Ц  ^{<7(2;, 1)} an<  ̂ 22 =
g (x ,l)  ^ cxTT x{<7(z,0)} (Ly the definition of clcM ). Thus X J J M X G

L I  M
G X .c, i = 0,1.

C o r o l l a r y  1.4. Let C be a closure operator of X. Then for i = 0,1, 
the epimorphisms in the category X ic are the (clc)°°-dense maps.

2. We recall that a filter convergence structure on a set X simply consists 
of a function /х  : X  —♦ VF ( X )  where F( X)  is the family of filters on X. A
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filter Ф f x -  converges to  z G X,  and we write Ф —» z, iff Ф G /л /я ) .  Let us 
consider the following conditions on f x -

a) For each z G X ,  the filter generated by {z} converges to x;
b) if Ф —► x and Ф Q Ф then Ф —*■ z;
cj Ф П Ф —► x whenever Ф —> x and Ф -* z;
d) Ф —*• z iff every ultrafilter containing Ф converges to z;
e) the intersection of all filters converging to z is a filter converging to z 

(called the neighbourhood filter of z).
Fil, Lim, PsT, PrT will denote the category of all filter convergence 

spaces satisfying a) and b), resp. a), b) and c), resp. a), b) and d), resp. a), 
b) and e). The morphisms in Fil are the maps / :  ( X , f x )  -* ( Y , f y )  such 
that Ф —*■ z in X  implies /(Ф) —► /( z )  in Y,  where /(Ф ) is the filter in Y  
generated by the family { /(F ): F  G Ф}. Lim, PsT, PrT are considered as 
full subcategories of Fil.

The following inclusions hold: Fil Э Lim Э PsT 2 PrT 2 Top (=  the 
category of topological spaces), and every category in this chain is bireflective 
in the previous one.

Every f x  defines an operator k(x, fx ) = ^X ■ 'PX  —> V X  in X  by setting, 
for each M  Q X ,

k x M  = {z G X : there is Ф —► z and M  Л F  /  0, for each F  G Ф}.

It is easy to see tha t this is a closure operator of X. It will be denoted by К .
More on filter convergence spaces can be found e.g. in [9], [14] and [1].
Recall that a (Frechet-Kuratowski) sequential structure on a set X  con­

sists, for each z G X , of a family of sequences in X  (called the sequences 
converging to z) such that

a) the constant sequence (z, z , . . . )  converges to z;
b) if a sequence converges to z then every subsequence converges to z;
c) if every subsequence of a given sequence (z„) has a subsequence con­

verging to z, then (zn) converges to z.
FK will denote the category of sequential spaces. The morphisms in FK 

are the maps /  such that if (zn) converges to z in the domain of /  then 
the sequence ( / ( z n)) converges to /(z )  in the codomain of f .  The closure 
operator К  in KF is defined, for each X  G FK and M  Q X ,  by

k xM  = {z € X : there is a sequence in M  converging to z}.

A good reference for these spaces is [4].
P roposition 2.1. Let X be one of the categories Fil, Lim, PsT, PrT, 

FK and let К  be the closure operator of X defined above. Then, for X  G 
G X , A f Q X ,  x  £ X  \  M  and A Q X , the following holds: q(z,0) G 

x ^ A  x Í 1})) $ x e kx ( M Г) A).

P roof. If X =  Fil, Lim, PsT, PrT, then for z G X  \  M  and Ф a 
filter on X  \ \ M X  converging to q(x, 0), one has q(X  x {0}) G Ф. In fact in
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such a case there exists a filter Ф in X ] \ X  converging to (z,0) such that 
q(Ф) С Ф. Since, by definition o f l ] j X ,  X  x {0} £ Ф thus q(X x {0}) € Ф. 
So we can also assume that F  Q q(X X {0}) for each F  £ Ф. By q(x,  0) £ 
€  kx  ту ^  (g(A X {1})) it follows that q(X  X {0}) П q(A X {1}) ф 0 which is
equivalent to МП А ф 0. Since q{x, 0) £ kx  тт ^(д(А х{1})) or equivalently

*  ̂TS/L

q(x, 0) £ kx  тт x ( i ( X x { 0 } ) n 9(A x { l} ) )  =  fcX Tj x (q((M П A) X {0})),
L A f -1—1- M

then x £ kx{M  П A).
For X = FK, if q(x„,in) converges to q(x, 0) then both (x„) converges 

to x and (г„) converges to 0, which shows the “only if” part. The “if” part 
of the Proposition is obvious.

C o r o l l a r y  2.2. For X as above, X  £ X and M  Q X , q(x,  0) £ 
e i f fx  £ M.

C o r o l l a r y  2.3. For X as above, and i — 0,1, the XiK-closure is dis­
crete in X ík -spaces.

C o r o l l a r y  2.4. For X as above the epimorphisms in X í k , г = 0,1, are 
onto. In particular Хок and X iк  are co-wellpowered categories.

Notice that for X = Top Proposition 2.1 is not true. In contrast with 
PrT0 the epimorphisms in Top0 need not be onto (cf. the proof of Corol­
lary 3.3), so the inclusion Top0 » PrTo does not preserve epimorphisms. 
Another notable difference between Top0 and PrTo is that Topo is simply 
cogenerated while PrT0 is not (as conjectured by the authors in 1987 and 
recently shown in [13]).

3. In what follows we will show that, for each ordinal a > 2, PrToA-o- 
epimorphisms need not be onto.

L e m m a  3.1. Let X  be a pretopological space and let M  Q X . Then a 
point x £ X  belongs to cl^ г ( М)  iff x belongs to k x ( M  П kx({x})) .

P r o o f . We may suppose x £ X  \  M.  In x U m X ’ «(гм) € 
€ fcwy x{<7(x ’0}> г = 0,1, iff every neighbourhood of q(y,i) contains
q(x, i ) and this is true iff every neighbourhood of (y , i ) contains (x, i )  in 
X  x {г}. This proves that £x yy a W ^ 1)} = кф кх{х}). Since кфХ)  is a
neighbourhood of q(x, i) for i = 0,1, then clearly q(x, 0) £ k2 TT {«Ax, 1)}

л Им л
iff q(x i 0) € kx  yy x (k0( X ) n k 1(kx {x})) = fc^yy x (k0(M  Г\(кх {х})))  and
this is equivalent to x £ k x ( M  П &a {z}) according to Proposition 2.1.

T h e o r e m  3.2. The inclusion Topo t—* P r Toк а preserves epimorphisms 
for each ordinal a  > 2.

P r o o f . First observe that the Top0-closure (which coincides with b- 
closure (cf. [15], [5]) is precisely the -closure, in virtue of Lemma 3.1.
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So the inclusion Торо t-> РгТ0Л-2 preserves epimorphisms. Consequently, 
for each ordinal a > 2, the inclusion Top0 t—> РгТоа"« preserves epimor­
phisms. In fact, if /  is a Topo-epimorphism, then it is also а РгТ0д-2- 
epimorphism, being at the same time a PrTojya-morphism, thus /  is also 
a P rT 0A:“-epim orphism.

Corollary 3.3. For each ordinal a > 2 there exist РгТол'^-ергтоог- 
phisms which are not onto.

P r o o f . There exist Topo-epimorphisms which are not onto. Take any 
infinite set X  and a point xq of X .  The topology in X  contains as closed 
sets X  and all finite subsets not containing x0. Then X  is a То-space and 
the inclusion map (X \  {xo}) X  is a Top0-epimorphism.

4. Let us denote by 0 : P rT  —> PrT the 0-closure functor (0  is concrete, 
and вхМ  = {x  G X : M  П k x U  ф 0 for each neighbourhood U of x}). It 
is not difficult to see that a pretopological space X belongs to PrTo© iff 
every convergent filter admits a unique limit point, i.e. it is a Hausdorff 
pretopological space. So PrTo© = РгТ2ат.

Lemma 4.1. For each pretopological space X  and M  Q X ,  cl©M =
=  k x M .

P roof. Let x € X \ M .  Notice that q(x,0) € 0х тт ^  f°r
each Wo and W\  neighbourhoods of g(x,0) and <?(x,l) respectively, Wq П 
П W\  ф 0. Since the intersection of two neighbourhoods is again a neigh­
bourhood we can assume without loss of generality that W{ — q(U X {*}), 
where U is a neighbourhood of x in X . Clearly Wo П W\ ф 0 iff U П M  ф§.
This proves tha t q(x, 0) € вх  тт X{g(x,l)} iff x € k x M  (note that this is

I—IJVf
evident for x £ M).

T heorem 4.2. The P rT 2к -epimorphisms are precisely the K°°-dense 
maps.

P r o o f . We have observed that PrT0© =  Р гТ 2а'  so , by Corollary 1.4 
the PrT2A--epimorphisms are the (cl©)°°-dense maps. Now the statement 
follows from Lemma 4.1.

Let us denote by Ury the category of all topological spaces in which 
different points can be separated by disjoint closed neighbourhoods. It is 
well known (cf. [17]) that the epimorphisms in Ury are the 0°°-dense maps. 
Consequently the functor 0  : Ury —► PrT2/<- preserves epimorphisms. On the 
other hand it is shown in [16] th a t the category Ury is not со-well-powered, so 
P rT 2A also is not со-well-powered. The non-co-well-poweredness of P rT 2A" 
was first shown by Kneis [12] who produced an example. The fact that 
the non co-well-poweredness of PrT2A' can be deduced by the non co-well- 
poweredness of the category Ury was observed in [7]. In contrast with the 
previous result the category Top2 of all topological Hausdorff spaces is a 
co-well-powered category.
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A notable difference between topological spaces and pseudotopological 
spaces is that the compact Hausdorff topological spaces form an epireflec- 
tive subcategory of Top2, while the class of all compact pseudotopological 
Hausdorff spaces is not reflective in PsT2A'> as it is shown in [2].

Acknowledgement. We are thankful to the referee for his valuable and 
very helpful remarks.
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SUM FORM EQUATIONS 
OF MULTIPLICATIVE TYPE

PL. KANNAPPAN (Waterloo) and P. K. SAHOO (Louisville)

1. In tro d u c tio n

Let Г° = ( P  = (p i,p 2, . . .  ,Pn)|0 < Pk < 1, E  Pk = l}  be the set of
1 fc=i J

all n-ary complete discrete probability distributions. Let R be the set of 
reals and I0 be the unit open interval ]0,1[. Let D° =  {(x, y)\x, у, x + у £ 
£ I0}- A real valued function A: I0 —*■ R is said to be additive if, and only if, 
A(x + y) =  A(x) + A(y).  An additive map A: I0 —> R has a unique extension 
A:  R —* R. A map L: I0 —> R is called logarithmic provided L ( x y ) = 
= L(x) -f L( y) holds in I0. A function M : I0 —► R is called multiplicative if 
M( x y ) =  M(x)M(y) .  A multiplicative function M : Ia —► R can be uniquely 
extended to M : R+ —* R, where R+ = { i £  R|x > 0}.

In 1948, Shannon [9] introduced the following measure of information
П

Hn(P) = -  J ^ p .  logPi,
t'=i

which is now known as Shannon’s entropy. This has been generalized to 
entropy of type (a,/?) [5]

(1.1) H ^ \ P )  =  (21- “ -  21- 0) - 1 £ ( p ?  -  P?),
• = i

where P £ T° and a ,ß  are real nonzero parameters. While characterizing 
the entropy of type (<*,/?) we come across the following functional equation

5Z  /(««»•) = J 2  /(«») + S  £  Л р .о .
i=i j=i i=i j=1 j=i i=i

where P £ Tj, Q £ Г3, a ,ß  £ R \  {0}. The above functional equation can 
be solved (see [4]) with the aid of the following functional equation:

(1-2) /(pg) +  / ( ( i - p ) g )  =  Д д){М (р)+ М (1-р )}  + М (д ){ /(р )+ /(1-р )} ,
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where p,q £ I 0 and M : IQ —* R  is a multiplicative function.
The objective of this paper is to find all solutions /  of the sum form  

equation of multiplicative type, that is, of the functional equation

(1.3) f(pq) + f ( ( l - p ) q )  = f (q){m(p)  + m ( l - p ) }  + M( q) { f (p)  + f ( l - p ) } ,

where p,q £ I0 and m, M : I 0 —► R are multiplicative functions. Notice 
th a t (1.3) generalizes (1.2). Also, we will see later that if m: I0 —> R is 
additive in addition to being multiplicative, then the sum form equation of 
multiplicative type is connected to the fundamental equation of information. 
An account of the history of results related to the fundamental equation 
together with an extensive list of references, can be found in [8].

2. A uxiliary resu lts

In this section we prepare a series of auxiliary results following methods 
from [6] to prove our main theorem. Let / ,  M  : / „ —*• R satisfy
(2.1a) f(pq) + /((1  -  p)q) = f (q)[M(p)  + M( 1 -  p)\

and
(2.1b) M(pq)  = M(p)M(q) .
Suppose /  and M  are nonconstant solutions of (2.1). We define the set

ÍÍ = (x e / 0 I f ( t x )  -  M ( x ) f ( t ) for all t £ I0}.

Lemma 1. Suppose M , f :  I0 —» R are solutions of (2 .1); and f  and M  
are not identically constant. Then fl has the following properties:

(a) 1
2 £ n »

(b) if X £ ÍÍ , then 1 -- x £ Í1,
(c) if X £ n n ]o ,i[ , then 2x £ fl,
(d) if X .,y £ П, then ;xy £ П,
(e) if X. ,y £ П and 1 £ I0, then 1 £ fl,
(0 if X. ,y £ fi and у > x, then у -- x £ fl,
(g) if X, ,y £ fl andx +  у £ I0, then x +  у
P r o o f . ^ £ fl follows from (2.1a) with p = Part (b) is an obvious 

consequence of (2.1a). Since |  £ Í2, for x £ Í1 П ]0, 5 [ and t £ I0,

M ( \ ) f ( t :  ' 2ж) = f (tx ) =  f ^ ) M ix ) = f ( t ) M( 2 x  ■ =  f { t ) M ( 2 x ) M ( ^ j .

Hence f ( t  • 2x)  = f { t )M{2x) .  Thus if x € ÍÍ П j 0, |  , then 2x £ Í1. Next we 
prove (d). Let x,y £ ÍÍ. Then

f ( t xy)  -  f ( t x)M(y)  = f ( t ) M{x) M( y)  = f ( t )M(xy) ,  for t £ I0.
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Hence xy  £ ÍÍ. To prove (e), let x , y  £ П and -  £ I0. Consider

Hence

f ( t ) M( x )  = f ( t x )  = = /(*  ^ ) М (У)•

Л‘) Ш = /( « |) .
Thus

a: + 2/ = 2«

M(y)

Hence I  £ Q. Next we prove (f). Since у — x =  г/(1 — f)) if г/ > x, it is easy 
to see that у — x £ Í2 by (b), (e) and (d). Consider x , y  £ ft and ж + г/ £ I0. 
Then

y - \ ( y - x )  if у > x,
x — |(x  — y) if x > y.

Thus x +  у £ ÍÍ. This completes the proof of Lemma 1.
Lemma 2. I f  f  and M  are nonconstant solutions of (2.1) and if there 

exist u, v £ ft, и < v such that ]u,u[c ÍI, then f  is a solution of f(pq) = 
= M(p)f (q),  that is, f (p)  = cM(p),  where c is an arbitrary constant.

P r o o f . Let u ,v  £ Í2 with и < v such that ]it, u[c ÍÍ. It is enough to 
show that ]0,1[C ÍÍ. Since u, v £ Cl, ^ £ ÍÍ by Lemma 1(e). First we show 
that ] jj, 1 [ С ÍÍ. Let x £ ] jj, 1 [. Then < x < 1. Thus и  < xv < v. Since 
]u,u[C ÍÍ, xv £ Í1. We know that г; £ ÍL Hence by Lemma 1, ^  £ ÍI. That 
is x £ ÍÍ. This implies ] ^ , l [  C ÍÍ. Again by Lemma 1(d), it can be shown
by induction that (^ ) fc £ Í1 for all natural numbers k. Hence (^ )fc ,1 C ÍÍ. 
This shows that ]0,1[C ft. This completes the proof.

L em m a  3■ I f  f  and M  are not identically constants and satisfy (2.1a,b) 
and ÍÍ does not contain an interval, then f  is additive and M( x)  = x.

P r o o f . D ef ine  ф: 1% —*• R b y  s e t t i n g

(2.3) ф(1,х):= f ( t x ) ~  M(x) f ( t ) .

Then

(2.4) ф(г,х)-\-ф{1, 1 - x )  = f ( t x )  + f ( t ( l  - x ) ) - f ( t ) [ M ( x )  + M ( l  - x ) ]  = 0 

for all t and x in I0. In particular,

(2.5) d > ( t , i ) = 0
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for all t £ I0. Consider (2.1) and let p = i(x + У) and q = (x+yy  Then (2.1) 
becomes

(2.6) f ( t x)  +  f ( ty)  = f ( t x  +  ty) \m

Now using (2.6) we compute

(2.7) M(x+y)№(t, х)\ф{1, у)] = M(x- \ y)[ f ( t x) -M(x) f ( t }Sf ( ty) -M(y) f ( t ) ]  = 

= M( x  +  y)[f(tx)  + f ( ty)] -  M( x  + y)[M(x)  + M(y) \ f ( t )  =

= M ( x + y ) f ( t x + t y ) \ M ( - ^ — ) + M ( —̂ —) - M ( x  + y)[M(x)+M(y)]f ( t )  =
\ X - \ - V /  \ x 4 - V '  ■

= f ( t x  +  ty)[M(x)  +  M(y) \  -  M( x  + y)[M(x)  + M(y)]f ( t )  =

=  [M(x)  + M(y)][f(tx  + ty) -  M( x  + y)f(t)] = [M(x) +  M(y)\<f>(t,x + y). 
Let t £ I0, (x, y) £ D° and write 1 — x — у instead of у in (2.7). Then

(2.8) М{1-у)[ф(г , х)  + ф ( г , 1 - х - у ) ]  = ф(г , 1- у) [М( х)  + М ( 1 - х - у ) ] .  

Since </>(i, x) = — ф(ф, 1 — x), from (2.8) we get

(2.9) M ( 1 -  y)ty(t ,x) -  ф(г,х + J/)] = -ф(г,у)[М(х)  + M ( I -  x -  y)}. 

We eliminate ф(1,х + у) from (2.9) by (2.7). Then

(2.10) M ( 1 -  y)[M(x  +  у) -  M( x)  -  М(у)\ф(г,х) -

= d>(i, y)[(M(x) + M( 1 -  X -  y))(M(x)  + M(y))  -  M( 1 -  y)M{x + y)] 
holds for all t £ I0 and (x, y) £ D°.

Let у £ SI and x £ I0 \  SI such that (x , y ) £ D°. Then by definition of 
St there exists ta £ I0 such th a t 0(io,x) ф 0 and ф(ф0,у)  = 0. Hence from
(2.10) with t =  t0, we obtain

(2.11) M( 1 -  y)[M{x  + y) -  Af(x) -  M(y)\  = 0.

Since M : I0 —> R is a multiplicative function and not identically constant,
(2.11) reduces to

(2.12) M (x + y) = M( x)  + M(y)

for all x £ I0 \Sl ,  у £ St and (x, y) £ D°.
Let x , y  £ St and x + у £ I0. Then there exists x0 €]0,1 — x — y[ such 

tha t x + x0 £ I0 \  St since in the opposite case St would contain the interval
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[x, 1 -  y\. By Lemma 1(g) we see that x0 E Ia \ Í2 and x + у E ft. Hence 
x + x0 + у € I0 \Cl. Thus by (2.12) we get

M (x  + у) = M (x + у + x0) -  Af(x„) = Af(x) +  Af(y),

for all x ,y  E Í1. We have shown so far that M{x + y) = M(x)  -f M( y )  for 
all (x,y)  E D° and у E Cl. In particular M  (x + | )  =  M( x )  + Af ( | )  holds 
for all x G ] 0 , i  [. Letting у — \  in (2.9) for all x € ]0, \  [, we get

(2.13) <f>(t,x)-<t)(t, ^ + x) — M( x)  +  M  1̂ -  x —

Since ф (t, I) = 0, (2.13) reduces to </>(£, x) = ф (i, |  +  x ) , that is by (2.3), 

(2.14) / ( t x  + I )  =  m ( x + i ) / ( i )  + f ( t x)  -  M( x ) f ( t )

for all t € I0 and x e ] 0 , j ] .  Again, since /  (^) = M  ( | )  / ( f ) ,  (2.14) becomes

(2.15) f ( t x  +  I )  =  f ( t x )  + f ( t )  [m  ( x  + -  M (x)j =

= f ( tx) + M Q)/W = /(**) + /(I) •
Hence we have shown that / (x  + j/) = / (x )  + /(j/) for all x,  у E ]0, | ] . Next 
let (x,?/) E D° then f , |  € ]0 , |]  and

(2.16) M(i)/(x+y)=/(f+ D =/(|)+ /( |)  = m(1)[/(x)+/(,)].
Thus

(2.17) f ( x  + y) = f ( x )  + f (y)  

for all x , y , x  + у E / 0. This in (2.1a) yields

(2.18) M(p)  + M( l  - p )  = 1

for all p E]0,1[. Thus from Rathie and Kannappan [7, p. 157], M  is monotone 
increasing. Then from [1, p. 33, p. 41], we conclude th a t M( x)  = x for all 
x E I0- This completes the proof of the Lemma.

By Lemma 1, 2 and 3, we have the following theorem.
T h e o r e m  4. Let f , M : I0 —> R satisfy (2.1a) and (2.1b). Suppose f  

and M  are not identically constant. Then either f  is additive and M (x) =  x 
(i.e. M  is additive also) or / (x )  = cM(x),  where c is an arbitrary constant.

T h e o r e m  5. Let f , M : I0 —* R satisfy

(2.19a) f (pq) + f ( ( l - p ) q )  = f(q)[M(p) + M( l - p ) ]  + M(q)[f (p)  + f ( l - p ) ]
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and

(2.19b) M(pq)  -  M(p)M(q) .

Suppose f  and M  are not identically constant. Further we suppose that M  
is not additive. Then

(2.20) f ( p)  = M(p)L(p)

where L: I0 —*■ R  is a logarithmic function.
P r o o f . Letting p — q =  n + n  s u c h  that u, v ,u  + v G I0 into (2.19a), 

we get
( 2 .21)

f ( u ) + f ( v ) ~ \ м ( — +M (  —J - )  f { u + v )  = [/ ( - J - W  ( -  j - ) l  M ( u  + v ). L \ u  +  v / +  L \ u + v /  4-u + n/J
For t G / 0, we get from (2.21)

(2.22) / (« ( )  +  / ( . ( ) -  [m ( ^ ) + Jf ( ^ ) ] / ( « t  + rí) =

= K'db)+ '(d h ;)]+ü)M(ít
From (2.21) and (2.22) we get

(2.23) л « ( ) + i ( v i )  -  + « о =

= M (i)(/(«) +  / ( « ) ] -  +  »)«(«)•

We temporarily fix t G 70 and define

(2.24) F(u) := f ( u t )  -  M{t ) f (u)  -  M{u) f ( t ) .

Using (2.24) in (2.23), we obtain

(2.25) F(u) + F( v)  =
M( u ) +  M(v)  

M{u  +  v )
F(u + v).

Suppose F(u)  = constant for all и G I0- Then by (2.24), we have

(2.26) /(u f) =  M( t ) f ( u ) + M{u) f ( t )  + к ,

where к is a constant. Since M  is not identically constant, we get from (2.26) 
a Pexider type functional equation

(2.27) 1 Ы )  -  k = f (u ) , / ( 0
Af(trt) Af(u) M (i)'
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/(x )  = M{x)L{x)  + 2 ЬМ{х) +  к

(2.29) /(x ) = M( x) L( x )  + bM(x),

where b is an arbitrary constant. Hence к = 0 = b and /  has the form as 
asserted in (2.20).

Next suppose tha t F( u ) is not identically constant. The functional equa­
tion (2.25) can be transformed to

(2.30) F(pq) +  F ((l -  p)q) =  F(q)[M(p) + M (  1 -  p)],

with p = and q = u + v. Then from Theorem 4, since M  is not additive,
we have

(2.31) F(p) = cM(p),

where c is an arbitrary real constant. From (2.31) and (2.24), we obtain

(2.32) f (ut )  = M( t ) f ( u ) -  M(u) f ( t )  = c(t )M(u),

where c: I0 —> R is an arbitrary function. Notice tha t the left side of (2.32) 
is symmetric in и and t. Thus by symmetry of the left side of (2.32), we get

c(t )M(u) = c(u)M(t).

Hence c(t) = c0M (i), where c0 is an arbitrary constant. Now (2.32) becomes

(2.33) f {ut )  = M( t ) f (u)  + M( u ) f ( t ) + c0M (u t).

The above equation can be reduced to a Pexider type functional equation as 
above and from that

(2.34) / (x )  = L(x)M(x)  +  c0M(x)  + 26, 

and also

(2.35) f (x)  = L( x) M(x)  + b

for all x 6 I0■ Hence from (2.34) and (2.35) we get c0 =  0 = b. Thus again /  
has the form as claimed in (2.20). This completes the proof of Theorem 5.
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3. Solution o f the sum  form  equation o f m ultiplicative type

Now we proceed to find the gen­
eral solution of the  functional equa­
tion (1.3). Let / :  I0 —> R be a  non­
constant real valued function and 
m,  M : I0 —*■ R be multiplicative func­
tions satisfying the  functional equa­
tion (1.3) for all p , q  E I0. While find­
ing the general solutions of (1.3), we 
consider the following cases as illus­
tra ted  in the tree diagram.

For (x , у) E D°,  let 
x.1) p = -------  and q — x + y.

x +  у

Letting (3.1) into (1.3), we get

a(MU') - "‘0’))

л(р) +

AiOO

'4/0 + ьм(р)

' h ( p )  +  c

(3.2)

л * ) т » ) = / ( ^ Н ^ ) + Ч ^ ) } + м (1+Ф ( ^ М ^ ) } -
Case 1. Suppose m = 0 on I 0. Then (3.2) reduces to

(3.3) f ( x )  +  Ы  = M i x  +  , ) { / ( ^ )  +  f ( ^ n )  }• 

Replacing x by x t  and у by yt,  for t E I0, we get from (3.3)

(3.4) f ( x t )  + f(yt) = M ( t ) M( x  + y ) { f ( ^ - ^ )  + / ( ^ r ^ ) } -  

Hence (3.3) and (3.4) imply

(3.5) f{xt)  -  M ( t ) f ( x )  = ~{ f ( y t )  -  M( t ) f (y)}  

for all (x,y) E D°  and t E I0• Hence

(3.6) K( t )  =  f (xt) -  M( t ) f ( x ) ,
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where К : I0 —*• R. But by (3.5), K( t ) = 0 on I0 and

(3.7) f (xt )  = M( t ) f ( x )

for all x, t € I0- Interchanging x and t in (3.7) and using (3.7), we get

(3.8) f (p) = dM(p),

where d is an arbitrary constant since /  is nonconstant.
Case 2. Suppose m ^ O o n  I0. Now we split this case into two subcases 

based on whether, on I0, m is additive or not.
Subcase 2.1. Suppose m  is not additive on I0. As before, for t 6 I0, we 

replace x by xt and у by yt in (3.2) to obtain

(3.9) f ( xt )  + f (yt )  = f ( x t  + j / í ) | m^— j  |  +

+ M (x +  i | M ( l ) { / ( ^ )  + / ( ^ ) ) .

Then from (3.2) and (3.9), we get

(3.10) / М  +  Л И ) -  + =m[x + у)

= M( t ) f ( x )  +  M(t ) f ( y)  -  m(x) +  m (y) / ( x  +  y)M(t).
m{x  +  у )

For fixed t £ Ia, we define F: I0 —> R by

(3.11) F(x)  := f ( x t ) - M ( t ) f ( x )  — m(x) f ( t ) .

Then from (3.10), using (3.11) we get

(3.12) F(x)  +  F( y) = +
m(x  +  y)

where (x , y ) (E D°.  First we suppose that F  is a constant on say k. Then
(3.11) yields

(3.13) f ( xt )  = M( t ) f ( x )  + m(x) f ( t )  + k
(3.14) also = M(x) f { t )  + m( t ) f (x)  + k.

Hence

(3.15) f ( x ) {M( t )  — m(t)} = f ( t ) {M( x)  -  m(x)}.

Thus if m ф M  on I0, then (3.15) implies

(3.16) f ( p ) = a{M(p) -  m{p)}
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where a is a constant.
If m  = M,  then from (3.13), we get

(3.17) /(x<) = m(t ) f (x)  +  m(x)/(<) + k.

Since m = M  and m ф 0, we get from (3.17)

. ox /(x f) -  к f i x )  f i t )
3̂' 18  ̂ M(xt )  = M (x) + M(t )

for all x , t  G I0■ Equation (3.18) is a Pexider type functional equation and

(3.19) f (p)  = M(p){L(p)  + C l}  = M(p){L(p)  +  2ca} + к ,

where L : I0 —> R is a logarithmic function. Hence к = ci =  0, and we have

(3.20) f (p)  = M(p)L(p).

Suppose F  is not identically constant on I0. Equation (3.12) was treated 
in Theorem 4 and its solution can be obtained from Theorem 4 as

(3.21) F{p) = cm(p)  

where c is a constant. Hence (3.11) and (3.21) yield

(3.22) /(x t)  = M( t ) f ( x )  + m(x) f ( t )  + c(t)m(x),  

where c: I0 —*■ R. Interchanging x with t, we get from (3.22)

M( t ) f ( x )  + m(x) f ( t )  + c(t)m(x)  — M( x) f ( t )  + m( t ) f ( x )  + c(x)m(t),  

which is

(3.23) {M (i) — m(<)}/(x) = {M(x)  — m(x)} f ( t )  + c(x)m(t)  — c(t)m(x).

Now we suppose that m / M o n  I0. Then using (3.22) we compute f ( xtu)  
in two different ways, first as f ( x t  ■ u) and then as f {x  ■ tu) to obtain

(3.24) f ( x t  • u) — M( u) M( t ) f ( x )  + M( u)m(x) f ( t ) +  
-f-M(u)m(x)c(t) + m (x)m (t)/(u ) + c(u)m(x)m(<)

(3.25) f ( x  ■ tu) = M( t ) M( u ) f ( x )  +  m(x)M( u) f ( t ) +  
+m(x)m( t ) f (u)  +  c(u)m(i)m(x) + c(tu)m(x).

From (3.24) and (3.25) we get

(3.26) M(u)c( t )m(x)  = c(tu)m(x).
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As m /  0 on I0, (3.26) yields

(3.27) c(ttt) =  c{t)M(u) 

for all u, t  £ I0. From (3.27), we get

(3.28) c(x) = c0M(x) ,  x e I0,

where c0 is a constant. Letting (3.28) into (3.23) and then fixing t in the 
resulting expression, we get

(3.29) f ( x )  — a0{ M( x ) — m(x)} 4  b1M ( x ) 4- 62171(1)

where a0, 61, 62 are real constants. Putting (3.29) into (1.3), we obtain

(3.30) (61 +  b2){m(p) +  m( 1 -  p)}M(q) = 0.

If M  ф 0, then (3.30) implies that 61 = - b 2 and hence from (3.29) we get

(3.31) f(p)  = a{M(p)  -  m(p)},

where a(= a0 + bi) is an arbitrary constant. If M  = 0 on I0, then (1.3) yields

(3.32) f(pq) 4- /((1  -  p)q) = f(q){m(p) + m(  1 -  p)}.

The functional equation (3.32) was investigated in Theorem 4. Hence from 
Theorem 4, we get the general solution of (3.32) as

(3.33) f(p) = —am(p).

Thus, since M  — 0, the solution /  of (1.3) in this case is again of the form 
of (3.31).

Now we treat the subcase when m  — M  on I0. Then from (3.23), we get

c(x)m(t) = c(t)m(x).

Thus from the above equation we get

(3.34) c(x) = c0m(x),

where c„ is a constant. Letting (3.34) into (3.22), we obtain

(3.35) f (xt )  =  M( t ) f ( x )  + M( x) f ( t )  4  c0M( t )M(x) .  

Rearranging (3.35), we obtain

(3 361 / ( g0  -  CpMjxt) _  f ( x)  f { t )
M(xt )  M(x)  M( t ) '
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The Pexider equation (3.36) yields

(3.37) /(* )  = M ( x ){L(x) + c2} 

and also
f ( x)  =  M( x ) { L ( x )  +  2 c 2 }  +  c0M(x) ,

where L: I0 —► R is a logarithmic function. Thus c2 = — c0. Hence (3.37) 
reduces to

(3.38) f ( x )  = M ( x ) L ( x ) - c 0M(x) .

Letting (3.38) into (1.3), we get c0{m(pq) + m(( 1 — p)q)} = 0. Hence letting 
p =  q —  ̂ in the above equation we get c0 = 0. Thus

(3.39) f (p)  = M(p)L(p) ,  p e  Io

where L: I0 —► R is logarithmic on I0.
Subcase 2.2. Next, we consider the subcase when m  is additive. (Notice 

that m  is not identically 0). Then (1.3) becomes

(3.40) f(pq)  + /((1  -  p)q) -  f ( q ) = M(q){ f (p)  + /(1  -  p)}.

We first define

(3.41) G(x)  := /(x )  +  /(1  -  x),  x e I0 

and for (x , y ) G D°,  we compute using (3.40)

(3.42) c ( . ) t « ( i - . ) e ( i )  =

=  +  / ( 1 -  X )  + M(1 -  * ) { / ( r ^ 7 )  + / ( ‘ i Z ~ y )  } =

= f (x)  + f ( l - x )  + f ( y ) - \ - f ( l - x - y ) - f ( l - x )  = f ( x ) + f ( y ) - f ( l - x - y ) .

On the right side, the expression (3.42) is symmetric in x and y. Thus, we 
have

(3.43) G(x)  + M{  1 -  x)g ( t4 ^ )  = G(y)  +  M( 1 -  i/)G ( r ^ ) ,

for all (x, y) G D°. The functional equation (3.43) is known as the funda­
mental equation of information of multiplicative type. The solutions of (3.43) 
can be obtained from [2] or [3] as:

(A) If M  is additive with M  ^  0 on I0, then

G(x) = M( x)L(x)  -f M(  1 -  x)L( 1 — x) + b\M(x)

where L: I0 —> R is logarithmic and fq is a constant.
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(B) If M  is additive with M  = 0 on I0, then G(x) = 62 where 62 is a 
constant.

(C) If M  is not additive with M  ф 1 on Ia, then G{x ) = b3M(x)+ 
+b4M ( 1 — x) — b4 where 63 and b4 are constants.

(D) If M  is not additive with M  — 1 on I0, then G(x)  =  L(l  — x) + c 
where c is a constant.

Now using definition of G in (3.41) and the form of G in (А), (В), (C) 
and (D), we determine the solution /  of (3.40).

Subcase 2.2.A. Suppose M  is additive with M  ^  0 on Ia. Then from (A) 
and (3.41), we get

(3.44) /(x )  + /(1  -  x) =  xL(x)  -f (1 — x)L( 1 -  x) + b\x.

Interchanging x with 1 — x in (3.44), we obtain b\ — 0. Letting (3.44) into 
(3.40) with bi = 0, we obtain

f{pq) + /((1 - p)q) -  /(9) = q{pL{p) + (1 - p)L(i - p)}.
Defining

(3.45) A{x ) := /(* )  — xL(x)  

for all x G 70, we obtain from the above

(3.46) A{pq) + A ((l - p ) q )  = A(q)

for all p, q G I0■ That is A is an additive function. Thus, by (3.45), we get

(3.47) f (p) = A(p) + pL(p), p G I0-

Now (3.47) is a solution of (3.40) provided A (l) =  0.
Subcase 2.2.B. Suppose M  is additive with M  — 0 on I0. Then (3.40) 

reduces to

(3.48) f(pq) + /((1  -  p)q) = f (q)  

that is /  is additive on I0 and

(3.49) f (p)  = A\{p)

where A \ : R —»• R is an additive function.
Subcase 2.2.C. Suppose M  is not additive with M  ф 1 on I0. Then from 

(C) and (2.40), we get

(3.50)
/ ( * ) + Я у) - 1 ( х + у) = Щ х + у) { ь3м ( ^ - ^  +b4M ( ^ ^ )  - 64} =

= b3M (x ) + b4M( y ) -  b4M( x  +  y).
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Symmetry of the left side of (3.50) implies 63 = 64 = b (say). Hence we get 
Л »  + f ( y)  -  f ( x  + y) = b{M(x)  + M( y)  -  M( x  + у )} 

for all (x, y) € D°. Thus if
(3.51) A(x) := / ( x )  -  bM(x )
then the above functional equation reduces to A(x) +  A(y) = A(x + y). Hence
(3.52) f(p) = A ( p ) ,+ bM(p)
where A  is additive, b is an arbitrary constant and A (l) = —b.

Subcase 2.2.D. Next we consider the subcase when M  is not additive with 
M  = 1 on I0. Then from (3.40) and (D) with (3.1), we get

/(*) + f(y) -  f(x + y) = L( —T—) +c-\x  +  у /
The symmetry of the left side of the above equation implies that
(3.53) L{x) = L{y)
for all (x,y)  € D°. But L: I0 —> R is logarithmic, hence in view of (3.53) L 
must be identically 0. Thus we get / (x )  + f (y)  — / ( x  +  у) = c which in fact 
implies
(3.54) f(p) = A 2(p) + c ,  p e I0
where A2: R —> R is an additive function and d is an arbitrary constant with
•^2(1) +  d — 0.

Thus we have proved the following theorem.
T h e o r e m  6. Let f:I0—>R be a nonconstant function and m, M:70-+R 

be multiplicative functions. If f , m , M  satisfy the functional equation (1.3), 
then the general solution of (1.3) is given by

' a{M(p) — m(p)} if т ф 0, m is not additive and т ф М

f(p)  = <

if тф  0, m  is not additive and m = M  
if тфО,  m  is additive, M  is additive and J l f /0  
if тф  0, m  is additive, M  is additive and M  — 0 
if тф  0, m is additive, M  is not additive 
and M  ф \

if тф  0, m  is additive, M  is not additive 
and M  — 1

_ dM(p) if m = 0
where A, A i, A2: R —► R are additive functions, L: I0 —> R is logarithmic, 
a ,b ,c ,d  are constants with A (l) =  0 and Аг(1) +  c = 0.

M(p)L(p)
A(p)+pL(p)
M p )
A{p) + bM( p ) 

A2(p )+ c
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ON A GENERALIZED EULER SPLINE AND ITS 
APPLICATIONS TO THE STUDY OF CONVERGENCE 
IN CARDINAL INTERPOLATION AND SOLUTIONS 

OF CERTAIN EXTREMAL PROBLEMS*
H. L. CHEN (Beijing) and C. K. CHUI (College Station)

1. Introduction

It is well known that the Euler spline is instrumental to deriving the 
integral representation of the error function in cardinal interpolation of a 
function /  from a spline space S  in terms of £ / ,  where £  is the differential 
operator governing the spline space S.  The classical polynomial spline results 
are well documented in Schoenberg’s CBMS monograph [8] and its follow-up 
paper [1], and some of its analogous results for the more general differential 
operator

П

£ =  П ( я - т A
j = 0

where D denotes the differentiation operator and 7o, • • • ,7« are real numbers, 
were obtained in [2], [3], [4], [7], and [9]. It should be remarked th a t the 
mathematical analysis in the above mentioned literature depends very much 
on the property of translation invariance of the spline space S,  which, in 
turn, requires the linear differential operator £  to have constant coefficients. 
The objective of this paper ,is to initiate a study of this problem where non­
constant coefficients are allowed. In particular, a generalized Euler spline 
will be introduced, its intrinsic properties carefully studied, and from it, the 
kernel function of the integral representation of the error function in cardinal 
interpolation will be constructed, and its sign pattern will be given. The 
importance of this integral representation formula is tha t it provides a very 
important tool for estimating the error of convergence and solving certain 
extremal problems. We will also give an example of such applications.

The operator £ we will study in this paper can be described as follows:

{£ = £ n+i, where
Cj = DjD j- i  . . . D i ,  j  = 1 ,. . .  , n  + 1, and 
(Dj9)(t) = aj_i(f)£4A ,-i(<M 0)>

"Research supported by NSF under Grant No. ШТ-8712424.



220 H. L .  CHEN and  С .  K .  CHUI

with aj  G Cn •'(R 1) and ßj G C n+ 1  •’(R1), &j and ßj are positive functions 
such that

a j (t +  h) = CjOijit)
ß j ( t  + h) = c - lßj(t) ,

for all t G R1 and j  =  0 ,... , n + l .  Here, h > 0 is some fixed constant. Hence, 
from (1.2), we have Cj — ßj(0)/ßj(h).  It is worthwhile to mention that the 
linear differential operators C3 defined above extend those with constant 
coefficients and real roots. Indeed, by setting a ( t ) = e7-»4 and ßk{t) = e-7 4̂, 
7j  real, we have

П

C = Cn+ 1  = -  ъ ) .
j=о

In addition, by setting a*(t) =  1 and ßj /г-periodic functions, we have

(C3g)(t) = D(ßj-i( t)g(t)) .

To simplify our presentation, the additional assumption

(1.3) a - i ( t )  = ßn+i(t) = 1

will be made throughout the paper. Let

for j  — 0 

for j  =  1 ,..
(1.4) Wj(t) =

l
d o ( 0

"i-1 (i)/3>(t) • ,n+ 1,

and consider the functions
(1.5)

Uj(t ) =  <

Wo(t)
1 h

Wo(t) J  mi(ii) /  w2(t2)
о 0

for j  = 0
tj-i
J Wj{tj)dt\ . . .  dtj for j  = 1 , . . .  , n + 1.
о

Then it follows th a t

(1 .5’) 17n+i :=  span{u0, • • • ,wn)

is the null space of the operator C = £ n+i- Now, let Д = {x3: j  G Z} be a 
bi-infinite knot sequence. We will consider the spline space

S  = S{Cn+1; Д ) = { / G Cn_1(R 1) : (£n+a/ ) ( i )  = 0 for all t ф xj, j  G Z}.

Let us introduce the function

/ ч 1cjn(x ,i)  — . . . .
an(®)Pn(f)
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and fix a negative real number Л.
We will show that for any fixed x, the problem

( 1.6)
' 2 / ( 0  \ t= x + h  — 0  —  j y { ^ ) \ t —x-\-Q T  j  —  1 ,  .  .  .  ,  7Z , a n d  у  £  U n  +  1

has a unique solution An(t, x , \ ) ,  which is considered as a function of t in 
the interval (x ,x  + h). Here, 6jn denotes, as usual, the Kronecker delta. We 
will also show that A n(-,x, A) can be extended to all of R1 in an elegant 
manner. Its extension will be called the generalized Euler spline relative to 
the operator C. This topic will be discussed in the next section. A detailed 
study of the intrinsic properties of this function will be given in Section 3.

To discuss the integral representation of the error of approximation by 
cardinal interpolation from S,  we need the following notation. Let a be any 
fixed real number. The interpolation will be taken at the nodes a  +  h i ,  
0 < a < h. Let La € <5 = <S(£; Д) denote the fundamental spline function; 
that is, La satisfies the interpolation condition

La (o  T  j h )  — J £

where Д = {xj: Xj = jh ,  j  6 Z}. Hence, the spline function in S  tha t 
interpolates a sufficiently well-behaved function /  at the nodes a  +  hZ is 
given by

CO

/ ( a  + j h ) L a(- -  jh).
j  — — OO

In Section 4, we will show that the function

H(t,  x , a) x , z ) -  An(f,0,z)
A n( a , x , z ) - 
An(a,  0, z ) .

dz

provides the kernel of the integral representation of the error of interpolation 
from S,  namely:

~  Г
f ( t ) =  Y  + -  J  H ( t , x ,a ) (£ n+lf)(x)dx.

J  —  — OO

As mentioned above, this formula is important not only for estimating the 
error of approximation, but also in providing a useful tool for solving certain 
extremal problems. For this purpose, we need to have some knowledge of 
the sign pattern of the kernel function H(t ,  x,a).  In Section 5, we will give 
an exact formulation of sgn H(t, x, a). Hence, the L1 norm of H ( t , x ,a ) can 
be evaluated, and as an application, it gives rise to the solution of certain 
extremal problems. This application will be given in Section 6.
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222 H. L. CHEN a n d  С .  K . CHUI

2. T he generalized Euler spline

We first introduce the “conjugate” f/*+i =  sp an ju j,. . .  , u* } of the Haar 
space i/„+i defined in (1.5)-(1.5/) by setting

Í шо(*) =  ;д-Ьу for j  = 0
( 2 . 1 )  u * ( x ) = <  x ti t j - 1

I Wq(x) f wi ( t 1)fw%(t2) . . . /  Wj(tj)dtj .. .dt!  f o r l < j ^ n ,  
v 0 0 0

where w* wn+\- j  and /3* a„_y. To complete the definition of full
conjugation, we let ay := ßn- j ,  D*f  := a*_l D(ß*-_l f ) and

( 2 .2) Г  = Гп+и q  = D - . . . D l
It can be shown that both Cj defined in (1.1) and C* in (2.2) satisfy:

[ C j f ( t ) \ t = r+vh -  C j f ( T  + v h )

[ q f ( t ) \ t = r + v h  =  £ j f ( T +  vh ) .

The bridge between the two Haar spaces Un+i and U*+1 is the function
t *n-l

(2.4) un( t ,x )  := wo(t)wn+i(x) J  wx(t i ) . . .  J w ( t n)dtn . . .  dtx\
X  X

namely, the following formulation is obtained.
Lemma  1.

(2.3)

(2.5) rn(i,x )  = ^ ( - l ) n kuk(t)u*n_k(x).
k=0

P roof. For each fixed value of ж, since u„(-,x) is in Un+1 there are 
constants Cj(x), j  = 0 , . . .  , n, such that

П
“ «(•»*) = J 2 CÁ X)UÁ')-

j=о
Now, by applying the operator a j 1Cj on both sides, setting t = 0, and using 
the identity

J  ^n(^n) J  ^ n —1 (^n—1) • • • J '  ^ j- t*i (tj -j-1 )̂dtn . . .  dtj.j_i —
t t t

X  X

S J w j+1(b+t) • • • ditfj,
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we have

tj+i *n-l
j(x) — j  wj+\(tj+l) j  wj+2( t j+2) - - -Jwn(tn)cltn---

X X  X

= ( - 1 Г ^ ; _ , ( х ) .  □

^J+ l —

Next, since the space Un+\ has dimension n +  1, the function 
un(- — (n + 1 )h, x ) is a linear combination of u„(- -  jh ,  x) where j  = 0 , . . .  ,n; 
that is, for any fixed value of x there exist constants 6o,. . .  , 6n+1, with 
6n+i ф 0, sgnb„+j = ( — l ) n+1, such that

n  +  l

(2.6) bjun(t -  j h , x )  = 0
j = o

for all t. Following Schoenberg [9], we define the so-called “5-spline” func­
tion:

n + l

(2.7) Bn{t, x) = у  bjUn (t  -  jh ,x )[ t  -  j h  -  x]°
э=о

which, by the definition of [-]° and (2.6), clearly has support in [x ,x+  
-f(n + 1 )h]. It is also easy to verify that

t

(2.8) CnBn(t ,x )  = ^ 6 Jc"-’( a n(x)/3n(i))_1,
j=o

for t € (x + ih, x +  ih  + h) and l  = 0 ,. . .  , n, so that

(2.9) E W  = 0.
3= 0

The Euler spline corresponding to the differential operators Cj, 
j  — 1,..., n + l ,  can now be defined by

(2.10) Л „(1,* ,Л )=  £ )  Л-+ (-‘ Г + _ ^ > ,
U— — 00 ' '

where

(2.11) Г (Л -1) = ^Ь,-А--»'.
i=o
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The roots of the polynomial T  can be shown to be

( 2 . 12) Xfc := = cfc 1 > fc = 0 ,1 ,. . .  , n.
ßh( 0)

Indeed, from (2.7) and an application of Lemma 1, we have

n + l

Y2  bjuk(t -  jh )  = 0
j=o

for all к =  0 , . . .  , n; so that by applying the operator Ck , it follows that

n+l
b>xl = ° ’

3=0

and hence
П

(2.13) T(A -1) = 6n+1[ ] ( A - 1 - x fc).
к- 0

3. In trin sic  p ro p e rtie s  o f th e  E uler spline

In this section, we will derive some of the important properties of the 
Euler spline An(t,x,  A).

L e m m a  2 .  For any fixed value of x, the function A n(-, x ,  A) satisfies the 
following:

(i) ^4n(‘ + h,x ,X)  — AAn(-, x, A),
(ii) A„(-,x, A) e  S(Cn+1 ,  Дх), where A x -  {x +  vh}„e z , and

(iii) An(-,x, A) is the unique solution of problem (1.6) on (x,x  +  h).
P r o o f . The first two properties of An(f, x,A) are simple consequences 

of the definition of the Euler spline itself and that of the B -spline function 
Bn(t ,x )  in (2.7). To verify (iii), we first note that

CnA n(x + h -  0,x,A) -  A£„A„(x + 0,x , A) =

= Cn An(x + h — 0, x, A) — CnA n(x + h + 0, x, A) =

= (« ,(« ) ( !„ ( .) ) - ' [ £  A - Q T  W + - + 1) -
v —0  j —0

n - 1 / / - f  1

-  E  ‘л * 1* ’
i / = - l  j = о

) ]  /  (—AT(A-1 )) =

A cta  M athem atica  Hungarica 61, 1993



GENERALIZED EULER SPLINES 225

(3.1)

П — 1

= (a„(x)/3n( x ) r 1[-6 n+1A - " - 6 0A - ^ 6 1/+1A-"] /  (-ATXA-1) ) ^
i/= 0

=  ( a „ ( x ) / J n ( a ; ) ) - 1 ; 
and since А„(-,ж,А) is in «S(£n+i, Дх), we have

Ck An(x + h -  0, x, A) -  ACkAn(x + 0, x, A) =
= CkAn(x + h — 0, x, A) — CkAn(x + h — 0, x, A) = 0

for к — 1 ,...  , n — 1. Hence, A(-,x,A) solves (1.6). The uniqueness of this 
solution can be shown by performing the operations £ „ , . . .  , C\ consecutively 
to the difference of two solutions, showing that this difference, written as a 
linear combination of U o ( t ) , . . .  , un(t), must be identically zero. □

Now let us fix t instead. Then as a function of x , A n(t ,x ,  A) also has 
analogous properties as follows.

L e m m a  2'. Let A <  0 and t be fixed. Then An(f, •, A) satisfies the fol­
lowing:

(i) A n(t, • +  h, A) = A 1 A n(t, •, A),
(ii) An(t, •, A) G N(£*+1, A x), where A t =  {t + vh}„e z , and

(iii) A n( t , -,A) is the unique solution of the problem
C*y(x) U=í_/h-o =  A£*i/(x)|x=t_o + (-l)"tD0 (t,i)<5jn 
for j  = 1 ,...  , n and у e U’ +1 

where w0 (x, t) := (a 0(x)/90(i))-1 and У € U*+1.
P r o o f . Again (i) and (ii) follow directly from the definition of A„(f, x, A), 

and the proof of (iii) is similar to that of Lemma 2. □
From its definition (2.7), we have

Bn( t , x ) = b0un(t ,x )  > 0
for t G (x ,x  + h). By using the generalized Budan-Fourier theorem (cf. [2] 
and [7]), we may even conclude that
(3.2) Bn( t , x )>  0, t G (x ,x +  nh + h),
and that for t G (x, x + h), {Bn(t-j- jh ,x)} ,  j  = 0 , . . .  , n, is a Pólya frequency 
sequence [6], and for fixed values of t and x, A{t, x, •) has po zeros A = A f i t ,  x) 
where

i n  if t G (x, x + h)
^ ° \  n — 1 if t = x or t = x + h.

Let us consider the case x = 0. Suppose that f n is a real zero of 
A „(-,0 ,-1 )  and 0 < a < h. Then for t = a  we may label the ze­
ros of A„(q , 0,-) by A j  = A j ( a ,  •) such that
(3.3) Ai < A2 < ... < Am_! < -1  < Am < . . .  < Ай0 <  0.
In what follows, we will assume, without loss of generahty, that a 0, so 
that i  = 0 < l  = a < / i  = i  + li and p0 = n.
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4. T h e  e rro r fo rm ula  for card inal in te rp o la tio n

Consider the knot sequence

Aa :=  { a + j h :  j  £ Z} U {t} 

where 0 < a < h, and let

S ( r n+1, A e ) = { f e  C n-1(R1): (C*n+1f ) (x )  = 0, x i  A a}

be the spline space corresponding to the linear operator £*+1. Then for any 
constant i?o ^ 0, it can be shown that there exists a unique function //((•) in 
<S(£*+i,Aa) th a t satisfies the conditions

{ Ht(uh) = 0, v € Z
C-nHt(t + 0) -  C*Ht(t -  0) = (-l)"« ö (< ,í)

Ht(x) =  0 ( e _r,°lxI) as | i |  —> oo.

Indeed, if у is the difference of two solutions of (A), then it is a null 
spline, with knot sequence {a +  vZ}, having zeros at hZ, so that
(4.1) * . )  = £ В Д - (* > . Sj(') := An( a , - , \ j )

j—1
where A j  = Aj(o, 0); but the asymptotic condition in (A) then forces у  to be 
identically zero.

R e m a r k . The asymptotic condition in (A) can be replaced by 0(|a:|^), 
ß  > 0, since any nontrivial y(x)  in (4.1) must necessarily be of exponential 
growth in |z |, namely:

|5 j(x  + uh) I = \An(a ,x  + v h , \ j ) \  = \ \~ l,hA n( a , x , \ J)\ 

tends to infinity exponentially as v —> +oo for |Aj| < 1 or v —> — oo for
IA,-| > I-

For 770 = 0, the solution у  = Ht (-) has the following expression:

(Bi) y(x ) :=

П
E  k j S j { x )

j —TTl
for x <  a — h

Ё  eJu j ( x )
3 = 0

for a — h <  x ^  t

E  d j u f a )
3 = 0

for t <  x a

m  — 1

E  *i5i(a)
j = i

for X  ^  Q
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and satisfies:

Í У € Cn H ll1)* 3/(0) =  0, and
1 C)y{t +  0) -  C*(t -  0) =  ( ~ l ) nwo(i, t)Sjn, j = l , . . . , n .

Of course, for any fixed t, and a — h < 0 < t < a ,  (B i) and (B2) 
determine у — Ht(-) uniquely. In other words, (B i) and (B2) characterize 
the unique solution of (A) for t?o = 0.

Now, we may give the integral representation of у = Ht(-) as follows:

(4.2) Ht( x ) = ^ - J  An( t ,x , z )  -  A„(f,0,z) A n( a , x , z ) -
A n(a,0,z) . dz,

where Г = {z: \z\ = 1} is the unit circle oriented in the counterclockwise di­
rection. Indeed, it is clear that the integral (4.2) satisfies all three conditions 
in (A) with у0 = 0. Using this formulation, we are now able to determine all 
the coefficients in (B i), as follows:

(i) Let t = r  +  vh  and x = £h + y , 0 < r < y < h .  Then

(4.3) Ht{x)

-  t  АГЧ,(г,0,Ап)^ & £&
k = m  d \ k

V  K ~ ‘M r , {ifc=l ----Щ..

-  t  M r ,  + чk — r

for v — l  > 1 

for V — Í  < 1

for v — l  =  0

where rj is some bounded function of у and r.
(ii) Let t = T + i/h, x — Ih + у and 0 < у < т < h. Then H t{-) has 

the same expression as the first two in (4.3), but the function у in the third 
expression may be a different bounded function of у and r.

For 0 < f  < £0 , fo := minllnlArri-iljlnlAml-1 } as given in (3.3), let 
Ф(£) = { / | / ^  absolutely continuous on any bounded interval, f ( n+1\ x )  = 
0 (e ^ x\), | i |  —> 00}. We will give an integral representation for the functions 
in Ф(£). The representation formula here extends the results in [3].

Let /  £ Ф(£) and N  be a sufficiently large number, such that

(4.4) [at (x)ßt ( x ) ( C : _ M x ) ) C tf(x)}%+a+a =  o(l)

as N  —» 00. It can be shown that for each 1/ £ Z,

(4.5) 6 r nHt(x)\x=a+„h := CnHt(a + vh + 0) -  C'nH t{cx +  vh -  0) =
A„(t — vh — h, 0, z ) 

A „(a ,0 ,z) d z— ( - 1  )n+1uj0{oi,a)La( t - v h ) ,
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and

for - t = a + vh, и G Z
for t = a + gh, g, ф v, g G Z.

Here, Ta(t -  z/h) € <S(£„+i, Д), where Д = { j h } j ez, is so-called the funda­
mental cardinal spline function in «S(£„+i,A).

We also have

(4.6) 6C^Ht(x)\x=t+l/h ( ( - 1  )nw0(M ), ^ = 0
\  0, 1 /jíö , I 'G Z ,

Note that (4.5) and (4.6) follow directly from Lemma 2'(iii). Next, set

at+Nh

In  — J  Ht(x )Cn+if (x)dx ,  f  € Ф(0-
a - N h

Then we have
cx+Nh

IN = o(l) + ( - i y  J  (C*Ht(x))Cn+i-j f(x)dx  =
o t - N h

at+Nh

= o ( l )  + (-1 )"  J  [a0 (x)CmnHt(x )] -^ (ß 0(x)f (x) )dx =
a - N h

N

=  o ( l )  +  ( - 1 ) "  ^  (g(a + v h  -  0 )  -  g(a +  v h  -  h +  0 ) ) +  
i /=l- N

a + N h

+ ( - l ) n(5(i -  0) -  g{t + 0)) + (-1 )"+1 J  f(x)C-n+1 H t(x)dx ,
at—N h

where ^(x) = a 0 (x)ßo(x)f(x)C^Ht(x). Hence, since £*+1fft(x) = 0, we 
have

N
(4.7) 7^ = o(l)+( —l)n+1|  Y 2  [5'(a+Í/i+0)-p(o!+i/i-0)]-(-í/(í+0)-fir(í-0)| =

j = l - N  

N - 1
=  o ( l ) f ( - l ) n | ( - l ) nw o ( Q , a ) ^  a 0{a)ß0(a) f(c tb 'h)Lo,(t-i’h } { { - \ )n+lf ( t ) Y

i / = l - N

and we obtain the following.
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T h e o r e m  1 .  Let a £ [0,/i),  а ф where £n is the root of the equation 
0, — 1) = 0. Then for any f  £ Ф(£),

o° 7

(4.8) m  = E  f{nh  + Oi)La ( t  — nh) — / Ht(x)Cn+lf (x )dx .

5. T h e  sign p a tte r n  o f  th e  kernel function

In the following, we will study the sign pattern of the function Hx{t):= 
:= H(t ,x ,a ) ,  where x is fixed.

Let x = t h  + у where у £ [0, h ), t  £ Z. Then the function Hx{-) is a 
spline function; and in fact, Hx{-) £ S(£ ,  Ai) where Ai = {x} U { v h } ue 

Let t = o h  + г, n £ Z, r  £ [0, h) .  From the residue theorem, we have

(5.1) Hx(t) =
-  £  К~еАп(т,0,Хк)

k=m

A n ( a , y , \ k
9Лп(о,0,А^

ÖAк
к

m-l
E  A£ A„(r,0,Afc)

Jt=l

A n( a , y , \ k
dAn(ot ,0,

в \ к к

V  - i  ^  1 ,

v - l < - 1.

R e m a r k . In this section, we only consider Hx(t) =  H ( t , x , a ), where ж 
is fixed and t is a variable. If t is fixed and x is the variable, then Ht(x):= 
:= H ( t , x , a ) has similar properties.

In the following, we set := An(f, 0,Aj), Aj =  Ay(a). Then we have

Я,(<) =

m — 1
E c,•£,■(*),
J=1

£  cä (o ,

I/ £ i  - 1

n  >  i  +  1

where t = i/h + т, т £ [0, h) for some c \ , . . .  ,cm.
Let /го, Mi be two integers such that /г0 5í i  — 1 and /zj ^ f + 1. Then 

from Gantmacher’s theorem (cf. [5]), we have

(5.2) S +( ( - i y C iH x( ^ h  + 0))S > n -  1 -  S-(CiHx(ti0h + О ))"'1 >
> ti — 1 -  S +(£iHx(fioh + 0 ) ) o —1 ^ тг — 1 — (m — 2)  =  n +  l  — m,

and

(5.3) S+(CiHx( ^ h  -  0))S > S + i C . H ^ r h  -  0 ) ) Г г ^
> S ~ ( C i H x ( ^ i h  -  0))o ^ 7 7 7 -1 ,
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where the notations of S +,S~  may be found in [6]. Since Hx(jh  + a ) = 0, 
j  £ Z, there are +  \ßo\ zeros in the interval I  =  [fioh, h). The number 
of knots in the function Hx(t) on I  is also /ii +  |/г0| (which agrees with the
cardinality of the set N  := { j h } j h ^ +l U {я}). Now, let

(5.4) W(Hx , u )  = S +( - C nHx(u> -  0),Сп- 1Нх(Ш),СпНх(и + 0)).

Then the number of zeros of Hx on (/i0,^ i) is given by

(5.5)
Z ( H x ,(li0h , fi 1h)) = n - S +( ( - i y C , H x(fi0h + 0 ) ) Z - S +(CiHx^ i h - 0 ) ) Z +

+ ^ ( W ( H X ,u)  — 1)) — a non-negative even integer 
ueN

(see [2]). It is easily seen that W ( H x , u ) — 1 5= 1, and thus, from (5.2), (5.3), 
(5.4), we have Z ( H X(^0 , ^ 1)) = А*1 +  |Мо|, so tha t the equalities in (5.2) and 
(5.3) must hold. Therefore S^{C iH x{^oh -f 0))o_1= S - (£ ;# x(/q)h + 0))q-1= 
=  m  — 2, and

(5.6) sgn Hx(ß0h) = ( —l) m_2sgn Cn- i H x(noh).

Again, from (5.2), (5.6), and the fact W ( H x ,n 0h) = 2, we also have

(5.7) sgn Hx(n0 h ) = ( - l ) msg n £ n_ itfx(/i0/i) =  ( - l ) m+1sgn CnHx(^Qh-\-0); 

and from (5.1), we have

(5.8) Cn H x(t)
j —m

m — 1 д !/—t

т̂ ткk=i

>l„(a,y,A,) 

А ,  в л „ ( в . о , л ' )  > 
55“

An(«,y,Afc)
d A n (  a  ,0 ,  A k  )  5 

8 X k

V ~ l >  1

v  - 1 <  - 1

where t £ [vh, vh  + h), x £ [£h,f.h + h). It can be shown as in [3] that

(5.9) sgn ^п(̂ А? Vi ^j)
3 A n(a,  O.Aj)

\  3A_, /

since Ai < A2 < . . .  < Am_ i  < —1 < Am < . 
we have, for sufficiently large \v — l\,

= 1

. < A„ < 0. Then from (5.8),

(5.10) sgnC„Hx(t) = (-1 )"_ /, v - l < - 1.
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However, W (H ,u )  — 2, where и  is any point in Д 1. Hence, considering 
the first formula in (5.8), we conclude that (5.10) holds for any v — l  £ Z. 
Combining this with (5.7), we have

sgnHx(ßoh) = (_ i)m+i+no-<, x e [ th , lh  + h).

From the above discussion we have shown that Hx(-) has only simple zeros 
on R1, which are {uh -f a j^gz- Since poh 6 (poh — h +  a,poh  + a ), it follows 
that

(5.11) sgn tfx(i) = ( - l ) m+,w for x e [lh,£h + h) and t € [i^/i+a, i/h + h + a).

That is, we have proved the following.
T h e o r e m  2 . The sign pattern of the kernel function Hx[t) :=  H ( t , x ,a )  

is given by (5.11).
We shall apply Theorem 2 to solve an extremal problem in the foHowing 

section.

6. A n ex trem al problem

Let Cn+2 =  DCn+i, where £ n+1 is the differential operator defined in
(1.1) . Then analogous to Lemma 2, we establish the following.

L e m m a  3. There exists a function E n+i(t,x) that satisfies the following 
conditions:

(i) Cn+2 (D )En+i(-,z) =  0 on (x + Ch, x + h + th), í  e  Z,
(ii) Cn+i(D)En+i{-,x) =  ( - l ) f on (x +  £h, x + h + íh),  i  € Z,

(iii) £h+ i(i h,x) = —E n+\{t,x) for all t,
(iv) En+i{-,x) e Cn(R1), and
(v) J5n+1(-,x) has exactly one simple zero ££+1(x) in the interval [x + 

+  uh, x + h + vh) for each и € Z.
Next, consider the function class

(6.1) F{ 0  := { / ! / e  Ф(0, f ( v h  + a) = 0, p £Z , \Cn+l( D ) f ( t ) \ < 1, t e  R 1}

where Ф(£) was defined in §4. Set £n(x) — £°(z), and recall that £„(0) 
and £n+i(0) are roots of the equations An(t , 0, — 1) = 0 and -EWi(i,0) -  0, 
respectively. In the following discussion, we will assume that £„(0) /  £„+i(0).

R e m a r k . For the constant coefficient differential operator Cj = 
j —1

= П  (D -  h ) ,  j  = 1 ,... ,n  +  2, it is known that £„(0) ^  £„+i(0) (see
k=0

[3]).
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Set a = £n+1(0). Since En+i(Z n+i(0) + vh, 0) = 0 for all v  € Z, it follows 
from Lemma 3(ii) and (5.11) th a t

OO

(6.2) £ „ + i M ) = -  J  H(t,x ,a)Cn+1 En+i(x , 0 )dx -
— OO

OO

= ( - l ) m+l/+i /  IH(t ,x ,a)\dx ,  t 6  1и,а•
—  OO

The following result extends Theorem 3 in [3].

THEOREM 3. Let £ be a positive number such that 0 < £ < £o Then

(6.3)
OO

sup |/( f ) | = f  \H(t ,x,a)\dx.  
f£Fl() J/€F(Í)

— CXJ

Moreover, if there is a function g in Т(£) and a point t\ € /„,a su°h that

(6.4)
OO

\9 (ti)\ = J  \H(ti ,x,a)\dx,

then

(6.5) g(t) = £En+1(t + a,0)

where a = £n+i(0), and £ — +1 or -1 .

P r o o f . From (4.8), it is clear that

OO

\ m \ <  J  \H{t,x,a)\dx,  f  € F(£).

Hence, since E n+\(t, 0) € -F(£), we have (6.3), and E n+i(t,  0) is an extremal 
function.

To verify the second assertion, let g be a function in F(£) that satisfies 
(6.4). Then

( 6.6)

OO

g(h)  = -  J H(t l , x , a ) C n+ig(x)dx.
— OO
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Suppose that =  +1 or —1 is so chosen that £ig{t\) < 0. Then multiplying 
S \  to both sides of (6.6) and adding to (6.4), we have

OO

(6.7) 0 =  J { \H(ti ,x ,a)\  -  £ iH ( t i ,x ,a )C n+1g(x)}dx
— OO

so tha t, since g 6 F(£), \Cn+\g(x)\ = 1 a.e. From (6.7), we also have 
£i sgn H (t 1, x ,a )  = sgnCn+ig(x). Thus sgn Cn+lg(x) -  £ i ( - l ) m+1/+<’ for 
ti E I u,a and x € [£h,£h+h). Now let £ = £1(-l)m+l/. Then £n+i[f:£'n+i(x ,0 )- 
— <7(x)j = 0 for x G R 1, since the function J(x) — eE„+i(z ,0 ) — g(x)  is in 
F(£). Then from (4.8) we may conclude that J ( x ) = 0 and Theorem 3 
immediately follows.
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ON SOME TOPOLOGICAL VECTOR SPACES 
RELATED TO THE GENERAL OPEN 

MAPPING THEOREM
L. M. SANCHEZ RUIZ (Valencia)

1. In tro d u c tio n

The spaces Vr , Wr, V  and W  were introduced by Valdivia [4], showing 
they were maximal classes of locally convex spaces for the isomorphism and 
homomorphism theorem, respectively, when in the range a class of locally 
convex spaces containing barrelled spaces was desired.

Mas [2] gave new characterizations of these classes of spaces without 
using the dual spaces, showing that a locally convex space E(T )  is a Vr- 
space if, and only if, there is no locally convex and barrelled topology on E,  
strictly coarser than T ; and E ( T )  is a V-space, if, and only if, every separated 
quotient of E(T )  is a Vr-space. This allowed him to find easy proofs of 
Valdivia’s isomorphism and homomorphism theorem and generalizations to 
classes of topological spaces. In this way we shall say that a topological 
vector space E{T)  is an £ — Vr-space if there is no Hausdorff £-barrelled 
linear topology on E,  strictly coarser than 7*. Moreover, a topological vector 
space E(T)  is an £  —V-space if every separated quotient of E ( T ) is an £ —Vr- 
space.

In this paper we introduce the £-strongly almost open mappings and 
characterize £ — Vr- and £ — V-spaces in an analogous way as Valdivia 
[5] characterizes the Vr- and V-spaces by means of the strongly almost open 
mappings. We also obtain some results concerning £- Hr-complete and C -B -  
complete spaces, analogous to those obtained by Valdivia [6] in the locally 
convex case though with different proofs since we are not able to use the 
dual spaces. Besides, we prove that if a topological vector space E  contains 
an £  — Vr-subspace (£ — V-subspace) of finite codimension, then E  is an 
£ — Vr-space (£ — V-space) and obtain two open mapping theorems.

Topological vector space will stand for Hausdorff topological vector space 
and our notation follows [1]. However, let us recall that if U and V are the 
sets of all the neighbourhoods of the origin of the topological vector spaces 
E  and F , respectively, and /  is a linear mapping of E  in F, then /  is called 
weakly singular if N ( f ) = n { / -1 (V): V E V}, where N ( f )  denotes the 
kernel of / .  /  is called almost continuous if for each V 6 V, / _1(V) E 
E U. Being /  onto, /  is called almost open if for each U E U, f (U )  E V. A
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topological vector space F  is called C—B T-complete if each almost continuous 
linear mapping with closed graph of each topological vector space E  in F 
is continuous. A topological vector space E  is called £  — Б -complete if 
each weakly singular almost open linear mapping of E  onto each topological 
vector space F  is open and this holds if, and only if, every separated quotient 
of E  is £ — 2?r -complete. If E(Tq) is a topological vector space and T

—7"
is a further linear topology on E, Tq will denote the linear topology on—7"
E , whose neighbourhoods of the origin are the T-closures, U , of the 70- 
neighbourhoods, U, of the origin.

2. £ -s tro n g ly  a lm ost continuous linear m appings

D e f in it io n  1. Let E  and F  be two topological vector spaces and /  a 
linear mapping of E  in F. We shall say that /  is £-strongly almost open
if for each closed string U = (Un)^_1 in E, f ( U ) ^   ̂ = (f(Un ^)n=1 is a 
topological string in f (E ) .

T h e o r e m  1. A topological vector space E (T )  is an £  — Vr-space if, and 
only if, each continuous one-to-one C-strongly almost open linear mapping 
of E  onto each topological vector space is an isomorphism.

P r o o f . Let /  be a continuous one-to-one £-strongly almost open linear 
mapping of E  onto the topological vector space F  and suppose /  is not 
an isomorphism. Let V = (Pn)^Li be a closed string in F. As / -1 (V) =
— ( / _1(^„))“=1 is a closed string in E , f ( f ~ 1(V))F — V is a topological 
string in F. Hence F  is £-barrelled and E  is not an £  — W-space.

Conversely, if E  is not an £  —Vr-space then there exists a Hausdorff linear 
topology T* on E , strictly coarser than T, such that E{T*) is £-barrelled. 
Now the identity i: E(T)  —> E(T*)  is a bijective continuous linear mapping 
but it is not an isomorphism. However, i is £-strongly almost open since if

-------T* —T*U =  (Í7„)“=1 is a closed string in E ( T ), then i{U) —U is a closed string 
and, consequently, topological in E(T*).  □

T h e o r e m  2 .  A topological vector space E (T )  is an £ — V-space i f  and 
only if, each continuous C-strongly almost open linear mapping of E in each 
topological vector space is a homomorphism.

P r o o f . Let /  be a continuous £-strongly almost open linear mapping 
of E  in the topological vector space F. Without loss of generality we may 
assume f { E ) = F. The linear mapping f  of the quotient space Е / f ~ l{0) 
onto F  defined by passing to the quotient is one-to-one, continuous and £- 
strongly almost open. Hence /  is an isomorphism and /  is a homomorphism.

Conversely, if E  is not an £  — V-space then there exists a Hausdorff 
linear topology T* on Е / F,  strictly coarser than the quotient topology such

A cta  Mathematica Hungarica 61, 1993



TOPO LO GICAL VECTOR SPACES 237

that E/F(T *)  is ^-barrelled. Hence the identity i: E / F  —* E / F { T *) is not 
a homomorphism. However, the linear mapping g =  i о к, where к denotes 
the canonical mapping of E  onto E / F  is continuous and £-strongly almost 
open. So, g is a homomorphism and, consequently, i is a homomorphism, 
too. Contradiction. □

Corollary 1. If  E{T) is an C-barrelled C — Vr-space then E (T)  is 
C — Br-complete.

P roof. Let T * be a Hausdorff linear topology on E  strictly coarser than
T,  such that T T С T*. We just have to show T  — T* [1, S10(3)]. The 
identity i: E (T)  —► E(T*)  fulfils the condition of Theorem 1. So, i is an 
isomorphism and T  = T *. □

Corollary 2. If  E ( T )  is an C-barrelled С — V-space then E ( T )  is 
C — B-complete.

Corollary 3. If  E ( T )  is an C-barrelled topological vector space which 
is not С— Вr -complete, then there exists an C-barrelled space F and a contin­
uous one-to-one linear mapping of E  onto F  which is not an isomorphism.

P roof. By Corollary 1 there is a Hausdorff linear topology T * , on E, 
strictly coarser than T  in such a way that B(T*) is £-barrelled. Now the 
identity i of E ( T ) onto E(T*)  is one-to-one and continuous but it is not an 
isomorphism. □

Corollary 4. If  E{T) is an C-barrelled topological vector space which 
is not C — В -complete, then there exists an C-barrelled space F and a con­
tinuous linear mapping of E  onto F which is not a homomorphism.

P roof. If E  is not £ — В-complete then there is a separated quotient, 
E /G ,  of E  which is not £ — Br-complete. Then, by CoroHary 3, there exists 
an £-barrelled space F and a continuous one-to-one linear mapping v of E / G  
onto F , which is not an isomorphism. Let к be the canonical mapping of E  
onto E/G,  then the linear mapping и = v о к of E onto F  is continuous and 
is not a homomorphism. □

3. Some resu lts  concerning subspaces o f  finite 
codim ension

Valdivia [7] shows that if В is a locally convex space and contains a sub­
space of countable codimension which is a Vj.-space then E  is a Fr-space. We 
shall show this to be true for subspaces of finite codimension in the topolog­
ical vector case, without convexity conditions using the following result (cf.
И ):
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P roposition 1. Let E(T) be a topological vector space and T* a Haus- 
dorff linear topology on E, coarser than T  and F  a subspace of E. I f  the 
respective induced topologies coincide on F, as well as the respective quotient 
topologies on Е / F, then T  and F* coincide on E.

P roposition 2. Let E ( F ) be a topological vector space. I f  F  is a sub­
space of finite codimension, which is an C — Vr -space, then E  is an C — Vr- 
space.

P roof. We shall assume F  is a hyperplane. Two cases are likely to 
happen:

i) F  is closed in E(F).  Then if x £ E \  F,  E(F) = F  ®t [x] and if F* 
is a Hausdorff linear topology on E , strictly coarser than T , F{F*) is not 
^-barrelled since F* С F  but T* ф F . Hence E ( F *) is not ^-barrelled.

ii) F  is dense in E{F). Let T* be a Hausdorff linear topology on E , 
strictly coarser than T . If T* and T  do not coincide on F,  neither F(F*)  
nor E ( F 9) would be ^-barrelled. In the other case, i.e. if F 9 and F  coincide 
on F , by Proposition 1, T* and F  also coincide on E. Contradiction.

Therefore, in any case, there is no Hausdorff linear topology T* on E , 
strictly coarser than T, such that E(T*)  is £-barrelled, and E(F)  is an 
C — Fr-space. □

P roposition 3. Let E(F)  be a topological vector space. I f  F is a sub­
space of finite codimension, which is an С — V-space, then E  is an С — V - 
space.

P roof. Let rj be the linear topology on E  which has as a fundamental 
set of strings to the set of all the strings in E  whose intersection with F  is a 
topological string. Then F  C rj and F  is a closed subspace of E { r ) ) .  Let us 
see now that E ( r / )  is an C — У-space. Let E ( r ] ) / G  be a separated quotient 
of E { r ] ) .  As F / G  f lF  is a separated quotient of the C — Vr-space F  and of 
finite codimension in E / G , E ( r j ) / G  is an C — Fr-space by Proposition 2, so 
E ( r ] )  is an G — F-space. Hence E ( T ) is an C — F-space since T  is coarser 
than r/. □

4. Tw o open m app ing  theo rem s

Valdivia [8] proves that the I?r-complete and Б -complete spaces have 
analogous properties to those shown in Proposition 2 and uses it to obtain 
two open mapping theorems. We do not know whether C — 5 r-complete and 
C — Б -complete spaces share that property. However we have been able to 
obtain the analogous version of Valdivia’s two open mapping theorems in 
the context of topological vector spaces, without convexity conditions.

T h e o r e m  3 . Let E { T ) be a topological vector space, covered by a se­
quence of linear subspaces {En : n £ N}, such that for each n £ N there
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exists a topology Tn on En finer than the induced topology by E, in such a 
way that En(Tn) is an C — V-space. I f  f  is a continuous linear mapping 
of E in the Baire space F, such that F ( E ) is of countable codimension in 
F, then f  is open of E in f ( E )  and f ( E )  is £  -  В -complete and of finite 
codimension in F.

P r o o f . Let {xn : n £ N} be a cobasis of f ( E )  in F  and Fn [f ( E n) U 
U {xi ,X2 , . . .  ,£„}] for each n £ N. As F  — U { F n : n £ N} there exists a 
p £ N such that Fp is of second category in F  and, consequently, £-barrelled. 
f ( E p) is also £-barrelled since it is a subspace of Fp of finite codimension. 
The restriction of /  to Ep, f p, is continuous of Ep(Tp) onto f ( E p) and, 
therefore, open ([2]). Hence Ep{Tp) / f ~ l {f)) is topologically isomorphic to 
f ( E p), which will be £-barrelled and an £  — У-space and, by Corollary 2, 
£  — Б -complete. So f ( E p) is complete and, therefore, closed in F  and, since 
f { E p) is of finite codimension in Fp, Fp is closed in F, which implies th a t 
Fp coincides with F. Now f ( E )  is an £ — У-space since f ( E p) C f (E )  C F  
and f ( E p) is an £  — У-space of finite codimension in f {E) .  Moreover, f ( E )  
is of finite codimension in the Baire space F,  so f ( E ) is £-barrelled and, by 
Corollary 2, f ( E ) is £ — Б -complete.

Finally, if U is a neighbourhood of the origin in E, f { U ) П f ( E p) is a 
neighbourhood of the origin in f ( E p) since f (U )  П f ( E p) D f (U  П Ep) = 
= fp{U П Ep), f p is an open mapping and U D Ep is a neighbourhood of the 
origin in Ep(Tp). □

In the same way, using properties of the £  — yr-spaces instead of the 
£ — У-spaces, we obtain:

T h e o r e m  4 .  Let E{T) be a topological vector space, covered by a se­
quence of linear subspaces {En : n £ N}, such that, for each n £ N, there 
exists a topology Tn on En finer than the induced topology by E, in such a 
way that En{Tn) is an £ — Vr-space. If f  is a continuous one-to-one linear 
mapping of E  in the Baire space F, such that f ( E ) is of countable codimen­
sion in F , then f  is open on E  in f (E )  and f ( E )  is £  — B r-complete and 
of finite codimension in F.
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SOME APPLICATIONS TO ZERO DENSITY 
THEOREMS FOR L-FUNCTIONS

D. WOLKE (Freiburg)

1. In tro d u c tio n

For several problems with primes like Goldbach’s or the twin problem 
one has to study the sum

(1.1) S(x ,a)  — A(n)e(na)
7 1 < X

(x > 2, a  G R, e(/3) = е2ж,Р, A = von-Mangoldt’s function). The asymptotic 
behaviour is well known in the neighbourhood of rational numbers a = a/q 
with ‘small’ denominator q:

(1.2) S  (x,  ^ Y 2  e(nß) + 0(x  exp(—cj(ln x)1/2))
n^x

(q ^ (1пх)л , \ß\ ^ exp(c2(lna:)1/ 2)x _1; cb c2 > 0, sufficiently small. See 
Prachar [9], Ch. 6). For q > (1пх)л one has upper bounds for |5 | by the 
methods of Vinogradov (Prachar [9], Ch. 6), Vaughan (Davenport [3], § 25), 
or Cudakov-Montgomery (Montgomery [7], Ch. 16).

It is the first aim of this paper to prove a mean value result for S ( x , a ) 
similar to the Bombieri-Vinogradov prime number theorem.

T h e o r e m  1. Let x >2, A >0, 1 ^  Q < x l/A, т? =  т т ( ф ~ 4,(1пх)-8 (д+21)). 
Then

E max max max
(a,q)=l y<x |/3|£t9

Á4) J^e(n /3 )
x

(In x)A

R e m a r k s . 1. All constants implied by the symbols 0 (  ) and <C depend 
at most on A and e (which occur later). The constants 03, 04 , . . .  will be 
positive and absolute.

2. For x sufficiently large we have x~ l ^ d < 1.
3. The bound я1/4 for Q can be reduced slightly by more careful calcula­

tions. The Riemann hypothesis on the zeros of the functions L(s, %) gives the 
asymptotic behaviour of S(x ,a /q ) for q — 0(a;1/3(ln x )-4/3-e). The density
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hypothesis, i.e. an upper bound ([ /2Т)2(1-<т)+г in (2.5), leads to Q S x 1̂ 3~e 
in Theorem 1. It seems to be impossible to reach this by means of zero 
density results which are available at present.

Several authors considered the ternary Goldbach problem in a localized 
form (Haselgrove [5], Pan [8], Chen [2]), for example, for N  = 1 (2),

( 1 -3 ) N  =  p i + p 2  +  P 3 , P v =  у  +  0 ( jV 2 /3 + e )

(Chen [2]).
A similar question is, how to find thin subsets P ' of the set P of primes 

such that every n > no, n = 1 (2) can be written as

n  =  p ' i + p ' 2 + P 3  (p'v  e  P')-

(1.3) does not lead to such sets. By probabilistic arguments Wirsing [12] 
proved the existence of a set P ', where

P'(x ) = #{p ' < x,p'  € P'} <  (x ln x )1/3.

Apart from the factor (lnx)1/3 this bound is optimal. It is however a disad­
vantage of the method that it does not show how such sets P ' really look like. 
It is the second aim of the present paper to describe how a set P ' (which will 
of course be much bigger than Wirsing’s) can be constructed explicitly. This 
set will consist of primes in certain residue classes to certain prime moduli. 
It seems to be a very hard problem to describe explicitly sets P ' which are 
nearly as thin as Wirsing’s.

T h e o r e m  2 .  One can construct a subset P ' of the set P of primes such
that

(i) P'{x) =  #{p ' < x,p'  € P ) = 0 (x 15/ 16), and
(ii) every sufficiently large n = 1 (2) can be written as

П =  p'l +  p'2 +  р'з CP j €  P').

It is highly probable that the Pjatecki-Shapiro sets

{!>,!>=[»']) ( « б ( 1 , Щ ) )

(Pjatecki-Shapiro [10], Heath-Brown [6]) can serve as P'-s.*
The author is grateful to Prof. János Pintz for several stimulating dis­

cussions on related topics during his stay at Freiburg in the summer term 
1985.

* Added in p roo f (February 10, 1993). This was recently shown for 1 <  c < by A. 
Balog and J. Friedlander (Pacific J. M ath., 156 (1992), 45-62).

A cta  Mathematica  Hungarica 61, 1993



ZERO D E N S IT Y  THEOREM S FOR L -FUN C TIO NS 243

2. P ro o f o f  Theorem  1

2.1. Let q < Q, (a,q) =  1. For a character xm odq , X*mod<7* (q*/q) 
will denote the primitive character that induces x- The principal character 
Xo mod 1 will be regarded as primitive.

r (*) = ^ * x ( c ) e Q
C— 1 4

is the well known Gaussian sum (£)* means summation over a reduced 
residue system mod q). In particular, r(xom odg) = /r(g). We have the 
inequality r(x )  q*1^2 (Davenport [3], §9). For z > 1, put

Ф (г ,х )  =  Ф(^) =  tHz>Xomod 1) = ^ Л ( п ) .
n < z  n < z

For 1 < z < x one easily sees

( 2 . 1) aN\ _  K g) 
¥>(«)K )  = Ф ( * ) +

+ - 7 - j  x(a)rp(z,x)T(x) + 0(q1/2( l n x ) 2).
■ x^xo(g)

2.2. Some facts about the zeros of L-functions will be used. Let 3 < U < 
^ Q, q ^ U, xm od? , x primitive, C3 > 0 (sufficiently small),

M(U,t )  = max(ln U, (ln(|i| + 3))3/4(lnln(|<| +  3))3/4).

Then L{a + it, x) /  0 for
сз

( 2 .2 ) a  > 1 -
M ( U , t )

with the possible exception of a real, simple zero ßx of L ( s , x  1) with a real, 
primitive character x im odq i. If ßx occurs, then q\ and Xi are uniquely 
determined by U and C3 (Prachar [9], VIII, Satz 6.2; Davenport [3], §1). For 
the exceptional — or Siegel — zero ßx the inequality

(2.3) ß i < l -  c(£)q~c

holds {e > 0, arbitrary. Prachar [9], IV, Satz 8.2).
In particular, (2.2) implies that, except the possible ß\,  L ( s ,x ) (x = 

X* modg, q ^ 2U) has no zero in the set

! s = a +  it, |i| < x ,

a > l - 6  _  { 1 “  с3(1пг)"4/5, if U $ Qi =  exp((lnx)4/ 5)),

1 1 — с з ( 1 п х ) - 1 , if Qx ^ U ^  Q.
Acta M athematica  Hungarica 61, 1993
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As usual, for T > 2, 0 < ct < 1, N(cr,T,x) will denote the number of zeros 
q — £ -f irj (counted with multiplicity) of L(s ,x )  in the rectangle |r/| ^  T,  
a < £ < 1. Then

(2.5) J ^ Y , - N ( a , T , x ) <
q=u х(я)

(U2T ) Â 1 (\n(UT))9, if 1 < cx < 1,

( t /2T)-iV ^(ln(C /T))14, if i  й * й 1

(Montgomery [7], Theorem 12.2).
2.3. We have the well known explicit formula

( 2 .6) 4>{z,x) = E  o (x)z~  Y
£,H<X 

°° ^a  — 2m

-(1  -  n (x ))ln2 -  b(x)+ Y  2m '-~fl +
m=1

where

Eo(x) =
1, if X = Xo mod g,
0 otherwise,

p = £ +  ir) denotes non-trivial zeros of L(s,x)i  a = a(x) £ {0,1),

(2.7) b(x) = ~  Y  g ^ O O n ? )
e,H<i

(Davenport [3], §19).
If x  IS induced by the exceptional character Xi mod q\ (q\ \ q, q\ ^  Q), 

then, because of (2.3), the zero 1 -  ßi gives a contribution yqgj- <Ce q\ in
(2.7) . because of 1 <C In q this, together with (2.4), implies

£,M<i

(2.8) b(x) <  (In x ) 2 +  q\.

In all other cases (2.8) remains valid without the term q\.
Put

E  , , _  í 1, if Xi exists for Q and x* =  Xi,
1 ^ \  0 otherwise.

Then, for z < x, (2.6) and (2.8) (with e — \ )  give

rl>(z, X) = Eq(x )z -  Y  T  +  0  ((ln x)2 +  Е Лх)я\/2) ■
е{х),Ы^х
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(2.1) leads to

a\ n(q) 1

x(<?) C.Mb*x(q)

Partial summation gives, for у £ x,

s { y , -  +  ß )  =  ^ X ‘ ^ -\  q ) v ( q ) ^

У

~ ^ q )  S  r ( * M a ) XJ I  dzz°~le(zß) + О ((1 +  \ß\x)q1/2(ln x ? )  .
e ( x ' )  _
\n\ix

If Д = A(x, Q,fl) denotes the expression to be estimated in Theorem 1, then

A <  q*1^2 У " max max [  dzze 1e(zß) +
kb  *<*> miJ m í . vSi m M

+x$(ln x)4 • Q3t2.

Let Uv = 2U_1, 1 < v  < v0, u0 = . Then the last inequality, together
with the choice of i?, implies

(2.9) A < ( l n x ) 2 £  UZX<2 Y ,
1̂ 1><V0 Uv^q^Uv+1

У
• > > maxmax- /  dzz°~l e(zß)

( л  i  m i <  y = x  x(g) <?u),Mbx
2

+  x(lnx) A.

2.4. For £ = and C  = C'(e) sufficiently large we have

1 - — Г -  ^ 1 - TTTXI77> if 9i  ̂C \ l n  x)Ä.
9i (In x)4/ 5

Exceptional zeros ß\  with ß\ ^ 1 — by therefore only occur in the case 
U > C '(lnx)4(5i) Hence the contribution of these ß\  to (2.9) is

C  ex ( ln ip  =  x(lnx) .

(In general, the constants depending on £ or A cannot be calculated effec­
tively.)
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(2.9) therefore remains true if for all U = Uv the ^-summation is re­
stricted to those q for which

(2.10) H < z ,

This will be indicated by X)'.о
2.5. With Lemma 4.3 and 4.5 of Titchmarsh [11] one gets the following 

inequalities. For 1 ^ M < M'  ^ 2M  we have

M> if h i = 8|/3|Af,

(2.10) J dzze~l e(zß) <  < if h l ^ A ß \M i

L |q|l/4l Ш any CaSG'
Because of £ = Re q > Сз(1пх)-1 (see (2.4)) <C is true f°r

к > 0. Hence, by expanding e(zß),  for 1 < у < x and \ß\ ^ y-1 ,

( 2 . 11)

у
J  dzz°~1e(zß) <

h i + 1’

Let (M^) be a sequence of /io <C In x numbers with

Mi = 1, M„ < M M+1 < 2Мц <: x, > x.

Then (2.9), 2.4, (2.11), and (2.10) give

д < < ь Е ;г +  (1п1)4 £  u " , 2  L  •V ’ 1 <1/<Ц) Uv <q<Uv+ 1

. IT-  V '  Í-ÍL-+ max max Е 'Е 'г П ? Т  + 
l v (  , h  + f  x-><|/з|<^м^ 1/31-1 ^  "  h  + f• xw e(i)

Inig*
хЫ ö(x)>Mg*

Ec(x)
W<*\ß\M„

, м £ _
h i

+

+  max max E *x - i< |/3 |< ^ |/3 |- "хЫ

£ ' h l1/2
+ E ' m * A

\ v \ )c(x) e(x)
7г | / 3 | М ^ < | п | < 8 тг| / 3 | М м 8 7 Г |AÍ^ ^ |tj| S x

5 E  u ^ 1/2 .{ x 1/ 2 £ . E 1
77 4-§VII

VII Q,X e(x)
Í<1/2,0<T7< X

r+
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+ max ß  1 max M u 1̂ 2 У^ У ^ 1 +
ß ~ l  < M „ < i  ц  z - ' l /  t — '~ 9.X

+ max max М } / 2 У^
* - l </3<rf/3-i < M ^ X  M

9.X <?(x)
£ ̂  1 /2,0 ̂  rj < irßMp

E V 1'2 +
<?(x)i < 1 / 2, Я-/ЗЛТ,, S rj < 8ir/3M̂ 

1— Ä„ I

9.X

E
c(x)

í^ l /2 ,8  i r ß M f s ^ r j ^ x

V 1 ] +

+  J  d o ] ' V t i i T
1/2 0 9.X

l-£„ 7Г/3 MM
max ß ~ x • /  d o [  c

- 1  <  M u  <  X J J
1/2 0

M:

1-<5„

<7—1

9.X

+ max max / der-
x - l < ß < ö ß у 

1/2

8jr/3MM

•( /  +
7Г/3 Мц 8irß Mfi

Here ^  „ means ^  X) *, <5„ = ^Uw The contribution of the zeros />
9.X x(q)

with £ <  ̂ is, because of ]T) 1 <  Tln(gT),
<?(х),Ы$Т

<  (Inx)5 U ;x,2 U l { x 4 \ ln z )2+
1 = ̂ = ̂ 0

/3-
+ max /3 1 max M u l^2ßMu In x+

x-i^ß^ti /З-l <=Mu<x й

+ max max M ]>2 U ß M . ) 1' 2 lnx + (ln x )2)}  <
X ~ l < ß < ö ß - ! < M M < X  M V 4 / J

<  (lnz)7f?3/2(x1/2 + i?1/2z) <  - - X , .
(In х)л

Inserting (2.5), one gets

л  c  ( K p + (ln x,2° EV J 1<V<V0
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4 /5  l - 5 „( Г 6(1-<г) /• 2(1-<г)
А / dcrUv2-<т х*+  / - г<т +

1 /2  4 /5

4 /5
, /  /  , Д(1-Ст)

+ max ß 1 max ( / doM* l Uu 2 ° (РМЦ) 2~a +
x - l < / 3 < 5  /3-1  < M ^ < x  *

1/2

l - 5 „

/ 4 ( 1 ~ <r) . . 2 ( 1 - a )  \
doM°. l Uv ” (ßM u) " ) +  max max

^ H /  x - i  <ß<6 0 - '< М ^х
4 /5

4 /5

( /
1 / 2

6 (l-< r)  3(1—<т)
d a M " U ^ ^  {ßM„)^=^- +

i-é„/
4 /5

d o  M "  U и
«(!-*)

' ( W i )
2Ü^1_L

*)}•

The exponent of is > 0 in all integrals, so maxiiig can be taken as 
x.  In the third and fourth integral the exponent of ß is negative. So these 
integrals are of the same order of magnitude as the first and the second. 
In the fifth integral the exponent of ß is positive, in the last it is negative. 
Therefore

( 2 . 12) Д «
X

(In x ) y
+ z(lnx)20 £  U~1/2- 

1 <

1 — <T

4/5
+(хт?Г1/2 J  do ( u ^

1/2

i-s„
+ J  (UAJ ax - l f - ff +

4 / 5

3 1 3
X 2 1?*-»

Because of yz^:(l -  <r) -   ̂ ^  0 for ct G [1/2,4/5] the first integral is of lower 
order than the third. The exponent of Uv is 't 1/6 in the third integral. In 
the second integral the exponent of Uu is

> 0 in [4/5,8/9] and < 0 in [8/9,1 — 6„].

(2.12) and (2.4) therefore give

(2.13) Д <  X A + x(ln x)21-(In Х)л
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4 / 5  8 / 9

• | g - 1/2(xi?)-1/2 J  da ( g ^ ( x i ? ) ^ z - 1) 1_<T + Q- 1/2 J  da(Q4/<Tx ~ 1 )1_<T+
1 / 2  4 / 5

1 — с з ( 1 п х ) - 4 ^ 5 1 — с з ( 1 п х ) - 1

+ J d a x ° -1 + Q - 1' 2 j  da(Q4<r x ~l )1~<r}.
8 / 9  8 / 9

The third integral is

<  2ГСз(1пх)-1/5 <  ( ln x )-21- A.

In the last term in (2.13) the exponent of Q\ is £ 0 in [8/9,9/10], and 
£ —1/18 in [9/10,1 — Сз(1пх)-1]. So this term can be estimated by

9 / 1 0 1 - с з ( 1 п х )  1

Í  dax<T_1 -f- f  daQ^ 1^ 18 <C (In x)~n ~A
8 / 9

J
9 / 1 0

It is therefore sufficient to consider the first integral in (2.13).
2.6 Let Q = x®, 0 ^  a  < 1/4, and, in the first case

(2.14) Q~ 4 ^  (lnx)~8(A+21\  i.e. d = Q~4.

Here we have

(2.15)
4 / 5

Д <C j ---- r-T + x(lnx)21 ■ X 2 °  2 f  d a (x* ~
(1пх)л J \

1/2

The function
г, л 3 1 /3  -  бег \ 

/(CT)= 2a  2 + ( 2 - a  X) (1

is maximal at
сто = <т0(а) =  2 -  (3(1 -  2a))1//2.

For 0 ^ a  ^  1/8 one sees <r0 < 1/2. Because of /(1 /2 )  = - a / 2  in this 
sub-case (2.14) and (2.15) lead to

Д <  x(ln x)~A + x(ln x )21 ■ x_e/2 <C x(ln x)~A.

In the case 1/8 < a < 1/4 we have f ( a )  5í / ( ct0) < —1/16, which also implies 
Д <  x(ln x~A.
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Assume now Q < (In x)2(A+21\  t? = (Inг) 8И+21). Here (2.15) yields

4 / 5

Д <  x(ln x )~ A + x(lnx)21(Qxi?)-1/2 • /  do^Qi-Z 'd^ ^ x 2-* -1^
1 / 2

The exponents of Q, x, and i? are decreasing in 1/2 < a < 4/5. Hence

4 / 5

A <  .. X . / +  x (lnx )21fl3/2T? 2 [  dad 2-«-} <  (1пх)л У
1/2

<  х(1п х )"л +  x(lnx)21Q3/ 2i91/2 <  х(1п х ) -л . 

This completes the proof of Theorem 1.

3. P roof of Theorem  2

3.1. Let

(3.1) M  > M 0 and R -  M 1 /n .

W ith a prime p = рм  G ( R / 2, Ä] (to be chosen later) and numbers

b i , . . .  , bv ( v  <C R ^ 3, 0 < &i < . . .  < b„ <  p )

put
V

P'm = U  {r  prime, r < M ,r  = Ьц(р)}.

At the end it will be shown th a t

N = p ,1 + p ,2 + p '3 ,p'3 e r'M) for M /2 < N  < M, A = 1(2).

3.2. The next lemma is important for the choice of Pm - 

Lemma 1. For p G P, (a, q) — 1, b ф 0(p), put

f(p ,q ,a ,b)

e(q)
ifi(pq) ’ if p t  q

ч>(я) \ Р / ’ if q = P Q u P t9 u  4\4\ = 4 p),

o, if P2 /q -
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Then, for  £ =  255,

У ( У +  у ] max max max
R l i i i R r i » » * -  ,<*+• ( M - I M - 'W S « » - . - '« - .

Pt<? p\q

E  A (n)e { { f - + ß ) n) -  f{P,Q,a,b) ^ 2  e(nß)

n=b(p)
I < M

<  M ( l n  M )  .

P r o o f . 1. P u t ,  fo r  (a, q) — 1 a n d  p \  b,

T = r(p,b, - ,ß)  = Mn)e((-+ ß)n)>
n£M

n=b(p)

M
and, for a character x, U {x,ß) = /  dzze~1e(zß )

е(х)=С+‘п 1 
W < M

2. In the case p \  q one gets

r  =  X M f  ) s ) S £ » w -
c —  1 x(p) x'(q)

• X ] X x ' ( n ) A ( n ) e ( n ß )  + О ((ln M )2) = f(p,q,a,b)  ^  A(n)e(n/?)+
n<Ai niM

+ ° ( z T 7 3  E  lr (x)l| 2  X(n)A(n)e(n/?) 'j + 0 ( p ~ V / 2( b M ) 2)+

+ 0
PvK?) E

x{pq)
x = xi X2»xi (p)iX2 (q)

Xi^Xo

k(x2) l |E  x(n)A{n)e(nß) J +  0 ( ( l n  M )2).
n < M  '

Because of r ( x i ) r ( x 2) = Xi ( ? ) x 2(p M X i X2 ) an d x  = X*(p) one gets | r ( x 2)| = 
= yj_1/,2| r ( x ) |  in the last sum. Treating Yh x(n)Mn)e(nß) in the same

n< M
manner as in Section 2.3, one arrives at

(3.2) T  = f(p ,q ,a ,b ) £  e(n/?) + 0 ( - ^ - ^ | r ( x ) | C / ( x ^ ) ) +
i<M x{q)

+ 0 ( p - 3/2^ y  £  \r(x)\U (x,ß)) + 0 ( q 1' 2M '( l  + \ß\M))
x(pq)
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in the first case.
3. If q = pqi, p t qi, then

г  =  £ • £ > ( - )  Y .  A(n)e(n/J) + 0 ((ln M )2).
c = 1 d=l qi n < M

n=bg1g‘ +cp(g)

Introducing characters, one sees, as in the first case,

(3.3) T  -  f(p ,  <7, a, b) ^ 2  A(n)e(nß)+
n^M

+ 0 ( - 7 - T  E  lr (^)l| E  A(n)x(»)e(»^) ) +
x(gi),x*xo

+ 0 (p “3/2^ )  E  № ) l | E  •••!) + 0 ( ( ln M )2) =

n<M

xOfix/XO n<M

= f(p ,q , a, b) Y 2  e(n0 ) + 0  ( ^ y  E  lr (x )l^(x ,/?)) +
1 <M X(9l)

+°(p~1,1~r, E  Mx)|C(x,/3)) + 0(,42M'(\ + ИМ».
V 'P(?) Ш  ’

4. The last case one has to treat is q — p2q2 , p \  q2 • If 92̂ 2 =  l(p)> 
q2q2 = Цр2), then

Я2 P2 / 2  \ pГ= Е ~ Г е(° СР+№) Е  E  A(n)«(/Í7i)K)((lnM)2) =
c=l  y= l ^  t = l  n < M

n=b+tp(p2) ,V9 2  (p2) ,cp2 ( i 2  )

atq2

C— 1 t - 1

ac\
H— )?2'

У ] A(n)e(/3n) + 0((ln M )2).
n<M

n = b + t p ( p 2 ) ,c p 2 (g2 )

One now introduces characters modp2 and g2- If a character x m odp2 can 
be defined modp, then x(& + tp) = x(^)> an(I the sum over t vanishes. Hence

1 / abh atq2 \
<p(p2M q 2) P2 P '

■ E *x(b + íp) E  Х2(аМХз) E  XX2(n)A(n)e(/3n) + 0 ( ( ln M )2).
x(p2) X2Í92) n < M
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Therefore, in this case,

(3.4) T  <  Y 2  lr (x)lU (x ,ß )  + q1/2M '(  1 +  \ß\M).
хЫ

5. If Д denotes the expression to be estimated in the lemma, then by
(3.2), .. . ,(3 .4 ) ,

Д «  E  s max •
f  <p<R q<R*'3+c l/3l = :W ~  

p\q

• ( ^ )  E lr(*)lU ( X ' b ) + r f / L q ) Y  \ T ( x ) \ U ( x , ß )  +  q - 1 / 2 M ' R 2 + ' y  
к \ ( ч )  и  у ч , х (р я )

+ 52 5 > ® № l/,)+
qi 5:Я1 + С '^1= РЯуМ x(<7l)

P\Q i

+ 3/ 2L  ) ^  |т (^ )|1/(х’/3) +  91~1/2р' 1М£Д2+е)  +
'  x(p9l)

+ J s .  j £ ,  T O I ^ .« + , - ^ « - - * ) } <
P t « 2

X(P2 9 2)

<  ( E  max +Ä 1/2 V  max V
,<№+' Ш - Щ -  q < R Í  + c  ̂ “ ~ я М ~

J - z ^ 2 q * 1/ 2 U (x,ß) + M eR ^ +c <  In M  Е  U J1 /2  Е  E ^ '
х(я) UV<R2+* Uv<q<Uv+i x lo)U„<R2+C Uv <q<Uu+1 x (q)

M

E  max+t|y  (̂г/З) + ln M  ■ R 1/2 £  UV 1/2 E
e(x),l*7|SM^I=TWli Uv$ r Í  + c U„<q<uu+1

M
max• E  E

х Ы  t f ( x ) » h l ^ M  1^1= UUM  j

J d z z e 1e ( z ß ) + M ' R ^ +C

([/„ like in Section 2.3).
It is easy to see that in the last sums Uu+ \ < M 1/4 and

R 2+ c R 3+t

uvm  ’ WJm
< min(C/-4,( ln M )-8(3+21)),
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if £, M ,  and R fulfil (3.1). Hence the last expression is of the type (2.9), and 
can be estimated by <C M (ln M )-3 . This proves Lemma 1.

3.3. By Lemma 1 we know that there exist primes p £ (R /2 ,R ], such

V \  . , 4 M
that

(3.5)
(  £  +

q^R$ + C q
p\q

where

(3.6) A (<?) =

M )2’
p\q

(b,p) = l(e,e) = l 1/3|<^+t

• A(n)e ( ( -  +  ß ) n) -  f ( p , 4 ,a,b) e(nß) .
n < M  9  n < M

r»=b(p)
Such a prime p = рм  will be fixed for the rest of the proof.

3.4. L e m m a  2. There is a set В C No (depending on p — рм) with the 
properties

(i) В Q { 1 ,. . .  ,p -  1), |Д | <  Л1/3, and
(ii) for every a £ (0, . . .  ,p  — 1} the congruence a =  b\ -f &2 + ößmodp is 

solvable in £>i,f>2?&3 € В.
P roof. Following Stöhr and Raikov (see Halberstam-Roth [4], p. 36) 

one can construct a basis of third order B' Q No of No with

B'(x) = # { 6' £ B',b’ < x)  <  x1/3 (x > 1).

Put B'p = {b' £ B',b’ < p}. Hence, for 0 ^  a < p, there are b'1,bl2,b '3 £ B'p 
with

(3.7) a — -f &2 T ^з-

Change B'p into В  as follows.
a) Omit 5 = 0 from B'p.
b) Add (if necessary) to B'p the numbers 1, 2 ,p — l ,p  — 2, b — 1, b — 2 (for 

b £ Bp, b > 4).
Then В obviously fulfils (i). Going through all cases in which b'u =  0 

occurs in (3.7), one sees th a t each a £ ( 3 , . . .  ,p -  1} U {p -p l,p  -f 2} can be 
represented as a — bi + 62 +  63 (b„ £ В ). This proves Lemma 2.

By means of Lemma 2 the set P'M can now be defined as

(3.8) P'M = \ J { r e ? , r  = b ( p ) , r i M } .
ьев
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The Brun-Titchmarsh Theorem or even a trivial bound, and (3.1) imply

(3.9) \P'M \ «  M 15/ 16.

3.5.
arcs 55

The next lemma gives a bound for exponential sums on “minor

L emma 3. For e = 1/200, (b,p) = 1 (p — рм), (а,я) — L \ß\ 
^ R 2+eq~ 1 M _1, and

a) R*+e < q <; if p \  q,
b) R 2+' < q<  M R - 2- ' ,  i fp  \ q 

we have

Y  A < n K ( f +  / J ) n )  <
n < M  4

M
R (ln M )2'

n=b(p)

<

P roof. According to Balog and Perelli [1] one has, for M ' M  and 
h — (p , q), the inequality

Y  e ( 4 « ( l n M ) 3(
hM

r = M ',r  prime 
r=6(p)

pq1/2 +
91/ 2M 1/2 M 4/ 5\

/i.1 /2  +  p 2 / 5  J -

Distinguishing the cases a) and b), and using partial summation, one easily 
gets the statement above. This lemma is the reason for introducing the factor 
R'. One could have used (lnM )c  instead.

3.6. For p — рм , b 6 В put S (b ,a ) = A(n)c(na), further, with
n$M

n=b(p)
£ =  1/ 200 ,

Q = Ql = ß 4/3+£, Q2 = R 2+c,

and for M /2  < N  < M , N  = 1(2),

S3(w ) = y ,  1 (> 0), and H3(N) = Y  1 >
bi,Ь2,Ьз 6 J3

bl Ti*2 +f>3

П 1 , П 2 ,П з
”l+"2+"3=^V

For

Then the intervals Ia/q are

a) q < Qi, P t q, or
b) 9 ^  Q2 , P I 9

and (a,q) = 1 let /„ /, =  f -  ^
pairwise disjoint, and, because of Lemma 3, for all b G В we have

(3.10) S(b, a) <  д(1^ )2, if a e m = [Q_1, 1 -  Q-1] \  U/a/(?.

i4cta M alhematica  Hungarica 61, 1993



256 D . WOLKE

Then

(3.11) D (N ) = In ri In r 2 In Г3 =
fi ,ri,r3eP'M 
ri+ r3+r3= N

1-Q-1
Í  d a f [ S ( b „ ,a ) e ( - N a )  + o ( ^ - B 3 (N ) ) .

bi,b2 ,bz£B n —i
b\ +£>2 +  Ьз =  AT (p)

The last error is <C B3 (N )  R^ M . Because of (3.10) the contribution of the 
minor arcs to (3.11) is

B3 ( N ) M 2< E П
bi+b^+b3=N(p) v— 1 q

hence

(3.12) w>= E (E + E>
bi,b3 ,b3 e B  q = Q  1 q = Q i

f>i+b2 +e3=iV(p) Pt9 p\q

Я 3 л

a=l 4 1 t/=l 4

For q < Q2, p2 \q, |/?| 5j ^  (3.6) gives s ( b u, |  +  /з) | ^ &{q). Therefore the 
contribution of these q to (3.12) is, by (3.5),

2 /  r \  ! /2 ДГ2
<  E  E  Д М - Щ  M S ( K , c ) n  < В з ( ю Ш Г ]

bl+b3+b3^N(p)q^Q2 p=l Vo 7 ^
р|<г

n M )2'

Consider next q < Qi, p f q. Here we have

M
q  t  p  I =4 ~ ^ )  = ^ E ' W >  + 0 ^ » -

Hence the contribution of these q to (3.12) is
q

<
bl+i>2+63 =

E E E ‘( ; 4  /  HE«"«
fbjEEOCV) ^ « ! ^ 1 | f l |< ( o O ) - l  n = MP tg i  V*-*/

+
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+A(?)»  I  H E « - «
" = M

+

+m T){ I  ' (  /  *>|S(t-.«)I
i m ( Q Q ) - 1 -  “ €/o|g

1 / 2

+

+ А ( « ) П (  /  da |S (6„,a)|5
1/=1 a€/«|.

1/2

Again, with (3.5), this turns out to be <C B^(N)р р ^ м )2 •
In the same manner one sees th a t for q < Q2, </ =  p</i, p \  q\, the sum 

S(b„,a) can be replaced by ( ~ p̂ )  ^  e ( n ß ) -  Therefore
!<M

(3.13)

* w =  E  E  Ё * « ( - ^ ) 5 г ^ О + ь +ь)).
bi,b2MeB q=pq^Q2 a=\ 4 VF ’ V V41'  ^

bi +b2+b3=N(p) p t t f l

9<3

! П<М
q Q

(qQ)-1 1/2
Changing f  into J  one gets an error

-fa«)"1 -1/2

< j w*> E  Лз^з(,
q=PqiiQ2 ^  УЧ 

P +91

¥>(?) , m2 _  B s(N )M 2-XqQ) < Д2 ln M

This, with (3.13), implies

T>(A0 =
H3(N) E  E /1(91)

^  ЬгМ.ЬзЕВ qy<Q2l p ^  ^  
b i + b 2 + b 3 = N ( p )  p \ q i

■ E  X>(;<*. + ^ ) M - v )
d =  1 / = 1

/А '
9i

M 2
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B3( N) H3 ( N)  v  r t g i)cqi( - N )
( P " 1)2 o . <Р3Ы9 1 S V 2 /P

P t i l

+ o
M 2 \

Ä2 ln M  /

The last

_ B3 ( N ) H 3 (N)  u  /  cr( - N )
p 2 V ( r  — l ) 3^ reP v '

тфр
product is 1, consequently

■) + о ( в 3(Ю
M 2 \

Д 2 ln  M  /  ’

(3.14) 0 (7V) =  # { p i,p 2,P3 € Pm , Pi +  P2 +  Рз  = N} > 1

for Ц- < N  ^ M , iV =  1(2). If one puts -- 2^ and

P' =
vivo

then (3.9) and (3.14) imply the statement of Theorem 2.

R eferences

[1] A. Balog and A. Perelli, Exponential sums over primes in an arithmetic progression,
Proc. A m er . Math. Soc., 93 (1985), 578-582.

[2] Chen Jing-Run, On large odd numbers as sum of three almost equal primes, Sei.
Sinica, 14  (1965), 1113-1117.

[3] H. Davenport, M ultiplicative N um ber Theory, Springer (New York-Heidelberg-Berlin,
1980).

[4] H. Halberstam and K. F. Roth, Sequences, Clarendon (Oxford, 1966).
[5] С. B. Haselgrove, Some theorems in the analytic theory of numbers, J. London Math.

Soc., 26 (1951), 273-277.
[6] D. R. Heath-Brown, The Pjatecki-Shapiro prime number theorem, J. Number Theory,

16 (1983), 242-266.
[7] H. L. Montgomery, Topics in M ultiplicative Number Theory, Lecture Notes in Mathe­

matics 227, Springer (Berlin-Heidelberg-New York, 1971).
[8] Pan Cheng-Dong, Some new results in the additive theory of prime numbers, Acta

Math. S in ica , 9 (1959), 315-329.
[9] I. I. Pjatecki-Shapiro, On the distribution of prime numbers in sequences of the form

[/(n)], M at. Sb., N. S., 33 (1953), 559-566.
[10] K. Prachar, Primzahlverteilung, Springer (Berlin-Göttingen-Heidelberg, 1957).
[11] E. C. Titchmarsh, The Theory o f the Riemann Zeta-Function, Clarendon (Oxford,

1951).
[12] E. Wirsing, Thin subbases, Analysis, 6 (1986), 285-308.

(Received June 15, 1989)

MATHEMATISCHES INSTITUT 
ALBERTSTRASSE 23 В 
D -7 8 0 0  FREIBURG 
DEUTSCHLAND

A cta  Mathemaiica H ungar ica  61, 1993



A cta  Math. Hung. 
61 ( 3 -4 )  (1993), 259-280.

ORDER OF STRONG UNIQUENESS 
IN BEST Loq-APPROXIMATION 

BY SPLINE SPACES
M. SOMMER (Eichstätt) and H. STRAUSS (Erlangen)

I. In tro d u c tio n

Let X be a normed linear space and let Un denote an n-dimensional 
subspace of X . A function uo G Un is called a best approximation of a 
function /  € X  from Un if | | /  — г/0|| й II/ ~ u ll f°r each u £ Un■ If /  has 
a unique best approximation u { f ) from Un, then one is interested in the 
behavior of и — u( f )  for every function и G Un satisfying

(1.1) ll/-« ll£ ll/-«(/)ll + *
as 6 —► 0. This is the so-called strong uniqueness problem. If for a function 
/  G X  and any и G Un satisfying (1.1) with some 0 < 6 ^ 1, the relation

\ W - u ( f ) \ \ ^ K ( f ) 6 ^

holds where 0 < 7 ^  1 and K ( f ) > 0 is independent of и and 6 , then 7 
is called the order of strong uniqueness at f  with respect to U„. Moreover, 
u ( /)  is called the strongly unique best approximation of f  from Un of order
7 . In the literature the following equivalent statem ent of the above property 
is often used: For any и G Un such that Ц/ — u|| < Ц/ — u (/) || +  1,

(1.2) II/ -  «II > II/ -  « ( /) || +  -  ц / ) | | ‘/ г

(The reason why we consider only such functions u £ U n satisfying | | / - u | |  ^ 
= II/ — ,m( /) || + 1 consists in the fact that (1.2) does not hold if 7 < 1 and 
\\u\\ -» 0 0 .)

Kroó [1] studied the problem in the case when X = C r[a,b] endowed 
with the supremum norm, and Un denotes an n-dimensional Haar subspace 
of X .

In this paper we consider the case when X  =  C[a,b], the space of all 
real-valued continuous functions on the compact interval [a, 6] endowed with 
the supremum norm ||/ | | = m ax{ |/(x )|: x G [a, 6]} ( /  G C[a,b]), and Un = 
= 5m(A), the subspace of spline functions of degree m with к fixed knots 
at Д. Nürnberger [2] gave a characterization of those functions in C[a,6] 
at which the order 7 of strong uniqueness with respect to 5т (Д) is equal
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to one. We are now interested in those functions /  G C[a,b\ which have 
a unique best approximation u ( f ) from Sm(A) but u(f )  is not strongly 
unique of order one. Using a characterization of unique best approximations 
from Sm(A)  given by Nürnberger and Singer [3] we are able to determine 
the order of strong uniqueness at /  for all /  in a wide subclass of C[a, b] 
(Theorem 3.3). Moreover, we show that the order given in Theorem 3.3 is 
sharp (Proposition 3.5).

II. Characterization of uniqueness and strong uniqueness
of order one

Let Д =  ( x i , . . .  , ж*,} with a = x 0 < x \ < . . .  < x^+i = b be a partition 
of [a, 6]. Then the space of polynomial spline functions of degree m  (m > 1) 
with к fixed simple knots at A  is defined by

5т (Д) = {s: s is (m — l)-times continuously differentiable and
sl[ii,ii+l] is a polynomial of degree at most m, 0 < г ^ k}.

In order to define the 5-spline basis of 5т (Д) we introduce additional 
knots

X _ m <  X _ m _|-i <  . . . <  X _ i  <  а ,  Ь <  Xjt4-2  • • • <  ^m +fc+l"

It is wellknown (see e.g. Schumaker [4]) that d im 5m(A) =  m  -f к + 1 
and there exists a basis {50, . . .  , B m+kj  of Sm(A) consisting of the so-called 
5-splines which satisfy the following properties:

5/(x) >0 for every x G (x/_m,xi+i),
5/(x) =0 for every x $ (x/_m,x/+1), 0 < l < m + k.

Moreover, it is wellknown that there exist functions in C[a,b\ which have 
at least two best spline approximations.

We call the points a ^  t\ < . . . <  tr < b alternating extreme points of a 
function /  G [a,6] if cr( — l) lf(ti)  = | | / | | ,  2 < l < r , a G {-1 ,1}. We count 
the number of alternating extreme points of /  in a subinterval I  of [a, b] by

A j ( f )  = max{r: there exist r alternating extreme points of /  in I}.

The following characterization of strongly unique best spline approxima­
tions of order one was given in [2].

T h e o r e m  2.1. For f  G C[a, 6] and so G 5т (Д ) the following conditions
(2.1) and (2.2) are equivalent:

(2.1) so is the strongly unique best approximation of f  
from Sm( A ) of order one.
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(2.2) A [a,b](f -  so)~Z m + к + 2 and A[a>Xl)( f  -  s0) > l + 1, 

A (Xk+1-,,b) ( f  -  50) > / + 1, 1 < l < k ,  and Л(Хг,*г+т+|) ( /  -  50) > M- 1,
i f  (xr, x r+l+m) C [a, 6], i > 1.

The alternation properties in statement (2.2) were firstly introduced in
[5] ensuring uniqueness of best spline approximations. In that paper it turned 
out that alternation properties do not suffice to characterize uniqueness. One 
has also to consider the behavior of the error function in a neighborhood of 
certain knots.

For this reason the following notation was introduced in [3].
D e f in it io n  2.2. A function /  G C[a,6] is called flat of order m from 

the right (resp. from the left) at t0 G (a, 6) if there exists a sequence (А/) C 
C (0, b — t0) (resp. (A/) C (o-io, 0)) converging to zero such that lim(|/(to+A/) —

( —t o o

-/(*o)|/|A i|m) =  o.
Using this definition the following characterization of uniqueness of best 

spline approximations was obtained in [3].
T h e o r e m  2.3. For f  £ C[a,b] and s0 £ Sm(A) the following conditions

(2.3) and (2.4) are equivalent:

(2.3) so is the unique best approximation of f  from Sm(A).

(2.4) (а) А[0)Ь]( / -  s0) > m + к + 2 and A[aiX|] ( /  -  s0) > l + 1,
4 r* +i_„b](/~S o)> /+  1, and A [x̂ Xr+tn+l]( f - s 0)> l + 1,

[®r» *r+m+l] C [a, i>], / ^  1.
(b) If A[atXl)( f  -  So) = l resp. A[xriXr+m+l)( /  -  s0) = 1 (resp. 

A (xk+1-,,b](f -  so) = 1 resP■ A(xr,xr+m+l](f -  So) = l), then f  -  So 
is flat of order m from the left at xi resp. хг+т+/ (resp. flat of 
order m from the right at resp. x r).

III. M ain resu lts
At first we extend the property of flatness of order m to order m + a  

where a > 0.
D e f i n i t io n  3.1. A function /  G C[a, 6] is called flat of order at least 

m + a from the right (resp. from the left) at t0 G (o, b) where a > 0 if 
there exist a positive constant M  and a sequence (A/) C (0,6 — to) (resp. 
(Ai) C (a — to>0)) converging to zero such that

|/(to  + A/) -  / ( t0)| ^  М \Х ,Г+а for all / G N.

Using this property we will now determine the order of strong uniqueness 
at /  for certain functions /  G C[a,6]. To do this assume that /  G C[a,6]
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has a unique best spline approximation s( f  ) which is not strongly unique 
of order one. Then by Theorems 2.1 and 2.3, /  — s ( f ) is flat of order m at 
certain knots. Let

Zi ( f )  = {x,- £ A : /  — s( f )  is flat of order m  from the left at x,- and 
A[a,Xi) ( f  -  * (/)) = i or A [xi_m_rtXi)( f  -  s ( f )) = r, 
if [x,_m_r ,x,) C [a,b] (r > 1)}

and

Z2( /)  — {x, £ A: /  — s( f )  is flat of order m  from the right at x,- and 
A ( x „ b ] ( f  -  s( /) )  = к + i -  i or A(;Ci)Ij+m+r]( /  -  s ( /) )  = r, 
if (x i,x ,+m+r] C [a,b] (r > 1)}.

We will show in Lemma 4.1 that there exist closed knot subintervals 
I[ = [xi(/,X2,f], 1 й  / = r i of [°j b] such that

' Ii < . .  . < / r , i.e. if x e Ii, ye l i+ i,  then x <y ,  l< l< r  -  l ,  
s ( f  )\il is the strongly unique best approximation of f \ j t 

 ̂ from 5m(A)|j, of order one,
v ' 7 /is maximal, i.e. if [xu,x „ ]n //^ 0  and [xu,x „ ]n ([a ,6 ]\/i)^0 ,

then ^ (/)|[Xu,i„] is n° t strongly unique or order one, 1 < / ^  r, 
there do not exist г +  l  intervals with the above properties.

Now let

( Jl = [X2,i,x i)i+i], И  I < r  -  1,
Jo = [a,xh i], if xi,i > a,

Jr — *̂2,r  ̂ b.

Without loss of generality we may assume that x^i > a and х2,г < b.
We now introduce a subclass К  of C[a,b] and determine the order of 

strong uniqueness at /  for every /  £ K.  Define

К  = { / £ C[a,b\: f  has a unique best approximation s( f )  from 5m(A) and 
for every x 6 Z \ ( f ) U Z-z(f) there exists a strictly monotone sequence 
(A/) as in Definition 2.2 resp. in Definition 3.1 and a positive constant 
Л such that |Af/A/+i| ^  Л for each / G N}.

R e m a r k  3.2. The class К  contains at least all such functions which 
have a “good behavior” near the points x £ Z\ ( f )  U Zi( f ):  Let /  £ C[a, b] 
have a unique best spline approximation s ( /)  and assume that for each x £ 
£ Z\ ( f )  U Z2( / )  there exist real positive numbers M,  £ and a such that

|( /(x  + crA) -  e (/)(x  + a \ ) )  -  ( /(x )  -  s (/)(x )) | < MXm+a
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for all Л G (0, e] where a = 1, if x G Z2( /) ,  and a =  —1, if x G Z \{ f ) .  Then
/  € K .

More generally, if /  G Lip(m -j- a) in a right-hand neighborhood of x, if 
x G Z2( /) ,  and /  G Lip(m-f a) in a left-hand neighborhood of x, if x G Z i(/) , 
then also /  G A.

Now let intervals Jo, • • • , J r be given as in (3.2). If for some i G { 0 ,...  , r}, 
|J,- П Z i( /) | = //,, the number of elements of J, П Z f l f ) ,  then there exist 
knots {2 ,7 ,... , 2,^} = Д П J,- П Z \ ( f )  such that /  — s { f ) is flat from the 
left at 2,7 of order at least m + ац for some ац > 0, 1 ^  / ^  //,. Set

й. t/,
P i  — П 0 ,7/ (in + a,;). Analogously define Q, = JJ й ц / ( т  + ац)  where

/=i í=i
А П J{ Г\ Z 2( f )  — {2,1, . . .  , 2,7,,} and f  — s( f )  is flat from the right at 2,7 of 
order at least m  + Ő77 for some ац ^ 0 , 1 $ / ^  i/,-. If for some i G ( 0 , . . .  , r)  
f i i  = 0 (resp. Vi = 0), we set P i  = 1 (resp. Qi — 1). Then we define

(3.3) 7 = min{P,, Qi \ 0 ^ i ^ r) .

We are now in the position to state the main result of this paper. 
T heorem 3.3. Let f  G K.  Then for every s G 5m(A) such that

(3.4) II/ ~  5II = II/ — s(f)\\ + ^

where 0 < 6 < 1, we have

(3.5) II« -  *(/)|| < K { f ) P

where 7 is the integer from (3.3) and the constant K ( f )  > 0 is independent 
of s and 6 .

(Hence the order of strong uniqueness at /  with respect to 5,п(Д) de­
pends on the order of flatness and the number of flatness points.)

R e m a r k  3.4. At the end of this section we will present a function /  G 
G C[a, 6] such that /  — s ( / )  is flat of order m  at a certain knot x G Д and it 
is not flat of order m + a a t x  for any a > 0. Hence by (3.3) 7 = 0 and then 
by Theorem 3.3, zero is the order of strong uniqueness at /  with respect to 
S m ( A ) .

Moreover, every /  which has a unique best approximation from 5т (Д) 
but it is not contained in К  has at least order 7 = 0, because it follows 
from У/ — s|| й II/ -  s ( /) || + S where s G 5т (Д) and 0 < <5 < 1 that 
\ \ s - s ( f ) H m - s ( f ) \ \ + i  = K( f ) .

The following proposition will show that the order of strong uniqueness 
given in Theorem 3.3 is sharp.

P r o p o s i t i o n  3.5. For every set of positive real numbers 07, . . .  ,a p  and 
every 1 < P  ^  к there exists a function f  G К  and P knots {xfl, . . .  ,x ,p } 
such that f  is flat from the right of order m  + aj at x,^, 1 й j  = P- Moreover,
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there exists 0 < 8 < 1 such that for every 0 < 8 <í 6 there is a function sg E 
E 5т (Д) such that ||.s(/) — 5í || Mc57p and

(3.6) \ \ f - s s U \ \ f - s ( f ) \ \  + 6 (0 < 6 < 6 )

P
where *yp = П  ay/(m  + aj) and M  is independent of f  and S. 

i =1
We now present a function which is flat of order m a t  a knot and not 

flat of order m +  a  at this knot for any a > 0.
Example 3.6. Let a — x0 = — 1, xj = 0, b = a,-2 = 1 and let /  e C[— 1,1] 

be defined by

/(* )

' 1, if x = — 1
-1 , if x E {-1 /2 ,1}
\ _  a;m + l lnx|-1/2 if 0 ^ x ^ 1/2
linear, elsewhere.

Then an easy calculation shows that /(0 ) =  1 and /  is flat of order m  at 
x\.  Moreover, it follows that /  E K,  | |/ | | =  1 and s( f )  = 0, the unique best 
approximation of /  from Sm( Д) where Д =  {0}. Now we show that /  is not 
flat of order m + e  for any a > 0. If a > 0, then xm+llna;l 1/2 /  xm+" = 
_  x -a+|inx| 1/2 _ Since I ln x |-1 /2 —> 0 as x \  0, there exists an e E (0,1) such 
that 0 < |ln x |-1/ 2 < a /2  for every x E (0,e]. Then xllnxl 1/2 > x“/2 for ev­
ery xE(0,e]. Hence x~“+llnxl 1/2 > x_Q/ 2 and therefore, x_a+llnxl 1/2 —> oo, 
if x \  0.

IV . P ro o f  of the  m ain  results
In this section we prove the statements given in Section III. Throughout 

this section let /  E C[a, 6] and assume that /  has the unique best approxi­
mation s ( f )  from 5т (Д) which is not strongly unique of order one. W ithout 
loss of generality we may assume that s ( f )  = 0.

L e m m a  4.1. The conditions (3.1) are satisfied.
P r o o f . It follows from Theorem 2.3 that A^a^ ( f )  > m  +  к +  2. Then 

by a simple combinatorial argument there exists a subinterval [x,-, x .+j] of 
[a, b] such that A [xi<Xi+j](f) > m  + j  + 1 and A [xp̂XpJtq]( f )  S m  + q in every 
proper subinterval [xp,x p+g] of [x ;,x f+J].

We will show that I  = [xj,x,+j] satisfies (2.2). Let T  = (to,-- - fim+j} 
where x,- < to < . . .  < tm+j й xi+j are alternating extreme points of / .  
Then by the choice of T, [x,-+/, x,+J] contains at most m  +  j  — 1 points of T, 
1 ^ / $ j  — 1. Hence, ti < Xi+/, 1 < / ^  j  — 1. Analogously, > x1+J_/,
l < / g j - l .
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Now assume that for some l > i and r > 1, (x/, x/+m+r) C [x,-,x,-+j]. 
Since [x,-,x/] contains at most m + l — i points of T  and [x/_|.m-j_r , x,+y] at 
most i + j  — l — r points of T, the interval (x/, x/+m+r) contains at least 
m j  -\- 1 — (rn + l — i) — (i + j — I — r) — r -f 1 points of T. Thus, we have 
shown that /  satisfies (2.2) on I. Then by Theorem 2.1, 0 is the strongly 
unique best approximation of /  from 5т (Д) of order one on I.  We may 
assume that I  is maximal, i.e. if [xu,x„] ф I, then 0 is not strongly unique 
of order one on [xu,x„], i.e. (2.2) is not satisfied on [xu,x„].

Now suppose that /  = [xp, xp+g] is also such a maximal strong uniqueness 
subinterval of [a, b] and assume that I  ф I  and I  Л I  ф 0. Without loss of 
generality we may assume that xp < x,. Then xp+g £ [x;,x,-+J). We show 
that /  satisfies (2.2) even on [xp, x,+J] which yields a contradiction to the 
maximality of I  and I. Let T  = {io>. . .  , tm+g} where xp < to < ■.. < i m+q й 
^ xp+g are alternating extreme points of / .  Since /  satisfies (2.2) on I ,  [xp, x,) 
contains at least i — p +  1 points of T. Then A[XpiXt. .](/) > m + i + j  — p + 1. 
Moreover, since A[Xp<Xp+l){f )  > l + 1, 1 < l < i -  p, and A [xi<Xi+l)( f )  >1 + 1, 
1 й 1 й 3, it follows that M[Xp Xp+l)( / )  ^  l + 1, 1 ^ ^ г +  j - p .  Analogously,
А(,<+>_ , ^ , . ] ( / ) > Л - 1 , 1 < / < г  + ; - р .

Now let (xr , хГ̂_т _̂/) Cl [xp, x,q.jf] (/ ^  1, r ^ 1). If xr ^ x, or хг _̂т _̂/ ^ 
й xp+q, then by the properties of I  and / ,  A(XriX )( /)  > l + 1. Hence 
assume that xr < x,- and xr+rn+/ > xp+g. If xr_|_m+u =  x, for some и € 
G {1,. . . , / -  1), then A(xriXr+m+u)( /)  > u  + 1. Then, since A[xiiXr+m+|)( / )  > 

r + m + / - i  + l, it follows that A(Xr Xr+m+|)( /)  > u + r +  m + f —i+1 =  / +  1. If 
xr+m+1 > X,-, then A(xrjXr+m+()( /)  > A[X|jXr+m+|)( /)  > r  +  m + / - i + l  > / + 1. 
Thus, we have shown that /  satisfies (2.2) on [xp, х,+у], a contradiction. 
Hence for every two maximal strong uniqueness intervals Д , /2 with /1 ^  
ф / 2 we have /1 < /2 or /2 < /j. Now considering the intervals [x0,x,] 
and [x,+j, Xfc+i] we can conclude as above and find all other maximal knot 
intervals on which 0 is the strongly unique best approximation of order one. 
□

In the following statement we study the relationship between strong 
uniqueness intervals as in (3.1) and the points of flatness of / .

L e m m a  4.2. Let xp £ Z \ ( / )  (resp. xp £ Z2(f))- Then the following 
conditions hold:

(4.1) There exists a subinterval I  =  [x,-,x,+j] of [xp,Xfc+i] (resp. of 
[xo,xp]̂  such that f  satisfies (2.2) on I.

(4.2) I f  x, is minimal under condition (4.1) (resp. x ,+J- maximal under 
conditions (4.1)^, i.e. there does not exist any other interval I  = [xp, x^+j,] 
satisfying (4.1) such that xp < xp < x, (resp. x1+J- < xp+I/ < xp), then 
x\ Í  Z2( f ) ,  p < I i -  1 (resp. xi <£ Z f i f ) ,  i +  j  + 1 < / < p).

P R O O F . W e  o n ly  t r e a t  t h e  ca se  w h e n  x p £ Z\( f ) .  ( T h e  o th e r  c a s e  w il l
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follow analogously.) By definition of Z\( f )  we distinguish two cases:
(i) Let A[aiXp){f) = p. Since by Theorem 2.3, A[a^ ( f )  > m + k + 2 

and A[aip](/) =  p  + 1, it follows that А[ХрЬ]( /)  ^ m + к — p + 2. Then 
using the arguments in the proof of Lemma 4.1 we can find a subinterval 
I  = [xi,X{+j] С [zp,6] such th a t /  satisfies (2.2) on I  and x, is minimal 
under (4.1).

(ii) Let A[xp_m_riXp)( /)  =  r where [zp_m_r , zp) C [a, xp) (r > 1). Since 
by Theorem 2.3, A [xp_m_T<b]( f ) > k - p + m  + r + 2 and A[Ip_m_riXpj(/)  = r + 1, 
it follows that A[Xp b](f) ^ к — p + m + 2. Now arguing as in (i) we find a 
subinterval I  = [x,;,x,-+j] with the desired properties. This proves statement
(4.1).

To prove (4.2) assume th a t xi £ Z2( f )  for some l £ {p , . . .  , i — 1). We 
distinguish once more.

(a) Let di(Xbb](/) = к +  1 — l. We have shown in (i) and (ii) that 
A[Xp}b](f) ^ m  + k -  p + 2. This implies th a t A[XpiX|]( / )  > m + l -  p + 1. 
Then arguing as in the proof of Lemma 4.1 we find a knot subinterval I  of 
[xp, xi] such th a t /  satisfies (2.2) on I. This contradicts the minimality of z,- 
in [xp,b\.

(ß) Let A(X(iX|+m+r](/) =  r where (x j,z/+m+r] C (z,,6] (r  > 1). It follows 
from (2.4) th a t A[a X|+m+r] ( /)  > l + m + r + 1. Now we use again the fact 
th a t xp £ Z f l f ) .  If A[(liXp)( / )  =  p, then A[xpiX|+m+p]( /)  > /  + m + r -  p +  l 
and therefore, A[Xp Xj](/) l + m — p + 1. As in (i) we get a contradiction to 
the minimality of z,.

Finally assume that A[Xp_m_p)Xp)(/) =  g where [xp_m_c,z p) C [a,xp) 
(Q ^ !)• Then, since by (2.4), A[lp_m_fiX|+m+r]( / )  l g - p  + l + m + r +  1, it 
follows that A[Xp>X|](/) >g  — p + l + m + r  + l — g — r = l + m -  p + l .  As 
above this yields a contradiction. □

In the following three lemmas we consider certain subspaces of 5т (Д) 
and determine the order of strong uniqueness with respect to these subspaces.

Lemma 4 .3 . Let f  £ К  and assume that there exists a knot subinterval 
[xp, xp+m+r] o f  [zi,Zfc] (r > 1) such that f  has alternating extreme points 
Xp ~ to t\ <  . . .  "C ir zp_fl_m_|_r (resp. Xp to t\ <C . . .  «C tr — zp-j_m _̂r) 
satisfying
(4.3)

ti £ (xpq/, z p_(_j-(_ra), 1 ^ I ^  T (resp. t[ £ (Xp^-i,Xp^-i+m), 0 ^ l ^ r 1)•

Moreover, assume thatxp £ Z 2( f )  (resp. zp+TO+r £ Z \ ( f ) )  and f  is flat of or­
der at least m  + a (a ^ 0) at x p (resp. at xp+Tn+r). Let S  — span{2?m+p, . . .  , 
B m+p+r- 1) and 0 < 6 < 1. I f  s £ S satisfies \\f -  s|| ^  ||/ | | + K \ 6^ where 
К I > 0 is independent of f  and 6 , and ß > 0, then

| |s | | < K2baß,(m+a)
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w h e r e  K 2 > 0 i s  i n d e p e n d e n t  o f  s  a n d  6 .

P roof. Recall that s ( f ) =  0. We will only treat the case when t o =  x p  
and x p G and о > 0. (The other cases will follow analogously.)

m+p-fr — 1
Let 0 < <5 ^ 1 and s  — ai^i  such that Ц/ — s|| < ||/ | | + .

l = m + p
Without loss of generality we may assume that f ( x p) = ||/ ||.  It first follows 
that H I < 2 ||/ || + A 'i^  < 211 / 11 -f- 7v' 1. If x  G [zp, zp+i], then by the properties 
of the 5-splines s ( x )  = am+pc(x  — x p ) m  where c  > 0 is independent of / ,  s  
and 6 . Hence

l*m+p| < (2Ц/11 + Ki)/ (c(xp+1 -  xPD  = C,

i.e. am+p is bounded. We distinguish two cases.
(i) Let am+p > 0. Then there exists an e G (0, a;p+i — xp) such that 

f ( x )  = 2 /3 ||/ || and 0 < s (x ) < 1/ЗЦ/Ц for every x G [xp, x p + e}. Define 
/  G C[a,b] by

{/(* ) , if x <£ [xp, x p + £],
\\f\\, if x G [xp,x p + e/2],

ll/ll + (2/ £)(a;- a;p -£ /2 ) ( /(a :p + f ) - ||/ | |) ,  if * G (xp + e/2, xp + e).

Then Ц/ll = К/ll, f ( x)  > 2/ЗЦ/Ц for every x G [xp, xp + e] and /  has alter­
nating extreme points xp < t0 < . . .  < tr < xp+m+r where to — to + f /2 , 
ti =  if, 1 < l < r. Hence if G (xp+i,xp+i+m), 0 < / £ r. Moreover, it follows 
that ||7 — s|| < ll/ll + K iSt.  Let q G {0 ,... , r} be arbitrary and set if = if, 
0 < I < q,ti -  tt+1, q < l < r  -  1. Then í; G (zp+/,xp+/+m+i), 0 < l < r -  1. 
From this and Nürnberger [2, Corollary 1.6] it follows that 0 is the strongly 
unique best approximation of f  from S of order one. Therefore ||s|| ^ K 6^ 
where К  > 0 is independent of s and 6 .

(ii) Let am+p < 0. Since /  G К  and xp G ^ 2(/)> there exists a strictly 
decreasing sequence (A/) converging to zero such that f ( x p) — f ( x p -f- Af) ^ 
< МА]"+“ and Af/A/+1 < A for each l G N. Without loss of generality we 
may assume that xp + < xpJr\ and f ( xp + Af) > Ц/Ц/2 for each l G N. Let
A G (Af). Then

( /( z p + A ) -s (x p + A))2 = ( f ( xp + X) ) 2 - 2 f ( x p + X Í

S I I / -  »II2 S (ll/ll + i  ll/ll2 + c i«
where C\ > 0 is independent of s and 6. Since xp -f- A < xp+i, it follows that 
s(xp +  A) = am+pcAm. Then it follows from the above inequality that

am+Pc \ m > - ( l l / l l2 -  ( f ( x p + A))2 + Cl^ ) / ( 2 f ( x p + A)) >
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^ -((U/H -  /(*p  + A))(||/|| +  f ( x p + A)) + Cl^ ) / | | / | |  >
^ —(2||/||M A m+a + Cl^ ) / | | / | |  > - ( c 2Am+a +  d O /1 1 /Ц.

This implies |am+p| < c3Aa + c4<5'3A_rn for each A G (A/) where c3 and c4 are 
positive real numbers independent of s and 6 .

We distinguish two cases. If 6ß/(m+a) > Ai, then setting A = A] we 
obtain

|am+p| < c3^ / ( m + a )  +  C4(5/3A-m < ^ g a ß f i m + c )

where C5 > 0 is independent of s and <5. If A/+i < <5̂ /(m+a) < А/ for some 
l G N, then setting A =  A/+1 we obtain

l « m + p |  <  C3 A“+1  +  с У \ - ™  ^  c 3 ^ / ( - + “ ) +  с У \ ; т А т  <

<  c ß<*ß/(™+°)  _j_ c4i /3_m^ ^ m + ° ) Л т  <  c 5(5a/3^ m + a ^

where C5 > 0 is independent of s and 6 .
Now we have to estimate the coefficients am+p+i , . . .  , am4.p+r_i of s. Let
m-f-p-f-r — 1

S  =  a i B i • T h e n  I I /  -  5 II -  lla m + p # m + p l l  <  I I /  -  s | |  <  \ \ f \ \  +  I i \ S 0
l = m + p + 1

which implies that ||/  — S|| < ||/ || + KSaP/(m+a) where К  > 0 is independent 
of s and 6 . Then, since (4.3) is satisfied, applying the arguments in case (i)
to the space span{.0TO+p+i , . . .  ,H m+p+r_i} we get that ||s|| 5i К 6а0/(т+а) 
and

HI ^ I|5|| + |ат+р|||Бт+р|| < K 6 a 0 B m + a )

where К  > 0 is independent of s and <5. □
The following statement can be proved analogously as Lemma 4.3.
L e m m a  4.4. Let f  G К  and assume that there exists a knot subinterval 

[xp, xq] of[xi ,b] (resp. of[a,Xk]) such that f  has alternating extreme points
Xp — to ^  i l  ^  . . .  t q —p Xq (reSp. Xp <C to  ^  t \  t q —p —
— хч) satisfying ti G (xp+/, xp+i+rn), — p — Moreover, assume
that xp G Z2( /)  (resp. xq G and f  is flat of order at least m  + a
(a i> 0) at Xp (resp. at xq). Let S  — span{f?m+p, . . .  ,B m+q- 1} (resp. S =
-  span{5p, . . .  , B q-i})  and 0< (S < 1. If  s G S satisfies | | / - s | |  < \\f\\ + K \ 60 
where K \  > 0 is independent of s and 6 and /3 > 0, then

HI ^ i i 2s a 0 / (m + a )

where K 2 > 0 is independent of s and 6 .
L e m m a  4.5. Let f  G К  and assume that there exists a knot subinterval 

[xp, xp+m+r] of[xi ,Xk]  (r > 1) such that f  has alternating extreme points 
X p  = to < ti < . . .  < tr = xp+m+r satisfying

(4.4) ti £ (xp+i ,x p+l+m), l < l ^ r - l .
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Moreover, assume that x p  £ ^ ( / )  and x p + m  +r e Z\ ( / )  and /  is flat of order 
at least m  + a  (a  > 0) at xp and of order at least m +  ä  (ä  > 0) at xp+m+r. 
Tef a  < a  and S  = span{f?m+p, . . .  , ß m + p + r _x} and 0 < 8 < 1. I f  s £ S 
satisfies У/ — s|| ^ ||/ || +  K \ 8^ where K \  > 0 is independent of s and 6 and 
ß > 0, then

||s|| < tf2i e0/("*+“)
where K 2 > 0 is independent of s and 6 .

m+p+r —1

P roof. Let 0 < 6 < 1 and s — X) aiBi such that | | /  — s|| <
l = m + p

< Il/Ц + I i \ 80. Then s(x)  = ara+pc(x -  x p ) m , if x £ [xp,x p+1], and s(x) =
— ®m+p+r-i^(^m+p+r , if x £ [xm-|_p_pr_ i, з-т+р+гj where c > 0 and
c > 0 are independent of s and 6 . As in the proof of Lemma 4.3 we show 
that

|^m+p| ~  C ,  l̂ m-f-p-pT' — 11 ß :  C

for some C > 0. Without loss of generality we may assume that /(x p) =  ||/ | |.  
We now distinguish three cases.
(i) Let am+p > 0. Then analogously as in the proof of Lemma 4.3 we 

define a function /  £ C[a, ft]. Then ||/ | | =  ||/ | |,  Ц/ -  s|| ^  | |/ | |  + K \8 ^ and f  
has alternating extreme points to = x p  +  Л < ti < . . .  < tr = xp+m+r such 
that ti £ (xp+/, xp+(+m), 0 fí l ^ r — 1. Then by Lemma 4.3 it follows that 
INI = A'<5a^/(m+a) where К  > 0 is independent of s and 8 .

(ii) Let am+p+r_x/(xp+m+r) ^ 0. As in case (i) we show that ||s|| ^
< K 8 a)3/(rn+ah

(iii) Let am+p < 0 and am+p+r_ i / ( x p+m+r) < 0. Assume that r — 1. 
Then /(x p+TO+r) =  —У/ll and ara+p+r_x = am+p < 0. This implies 
am+p+r_x/(xp+m+r) > 0, a contradiction. Hence r > 2. As in the proof 
of Lemma 4.3, case (ii) we show that

|am+P| < K 6 a0/(m+a\  |am+p+r_x| < K 6 á/3'(m+a\

To estimate the coefficients am+p+x,. . .  , am+p+r_2 we set 

Then

s —
m+p+i—2

X) a I B{.
i=m+p+l

II/ ~  5|| -  ||am+p-Sm+p|| -  ||am +p+ r-lßm +p+ r-l | |  ^ Ц/ ~  -S11 й  ll/ll +  &  1 ^

which implies that Ц/ — 5|| < ||/ || + A'^°^/(m+a) where К  > 0 is independent 
of s and 8 . Then, since (4.4) is satisfied, we conclude analogously as in 
Lemma 4.3, case (ii) (with-respect to span{ßm+p+x, . . .  , ß m+p+r_2}) and 
obtain ||s|| < K 8aPfim+a\  Then it follows that ||s|| ^ ||5|| -f |am+p|| |ß m+p|| +

+  |am+p+r-iHl-Sm+p+r—1II й K 8aPKm+al where К > 0 is independent of s 
and 8 . □
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Now we are able to prove the main result.
P r o o f  o f  T h e o r e m  3.3. Let /  E К  and assume th a t s(f )  =  0. More-

rn+fc
over, let 0 <  <5 ^  1 and s — ai^i  such that Ц/ — s|| <  | |/ | | +  <5. Assume

l=o
that are subintervals of [a, 6] such that the conditions (3.1) are sa t­
isfied. In particular, it follows that I\ < . . .  < Ir. Set I\  =  [x,-,x,+j]. Since 
0 is the strongly unique best approximation of / |д  from 5т (Д)|/1 of order 
one, it follows that

(4.5) IM* II
m+i+j- 1

E
i=i

ai Bi Í  Ki ( f )S

where K\ ( f )  is independent of s and 6 .
Now we want to estimate s on [а, ж,]. If ж,- = a, then we are finished. 

Hence assume that ж,- > a. Then we show that

(4.6) {жь . . . ,ж  i_i} П Z2( / )  = 0.

Assume to the contrary tha t xp E ^ г ( /)  for some p E { 1 , . . .  ,i -  1). Then 
by Lemma 4.2 there exists a subinterval I  = [жи,жи+„] of [а,жр] such tha t /  
satisfies (2.2) on / .  Then by (2.1) 0 is the strongly unique best approximation 
of / | /  from 5т (Д )|/ of order one. This is a contradiction to the assumption 
that Д is maximal and also the number r of the intervals ,Ir■ This
proves (4.6).

Now we show that

(4.7) x, e Zi ( f ) .

Assume that (4.7) does not hold. Then we have to consider the following 
two cases: There exists some p E  { 1 ,... , г — 1} such th a t xp E Z\  ( / )  and 
xl Í  Z\ ( f ) ,  p +  1 < / < i, or {жь  . . .  , ж,} П Z \ ( f )  -  0. We will only treat the 
first case. (The other case will follow similarly.) By Theorem 2.3 we have to 
distinguish:

(4.7.1) We first assume that А[а>х )( /)  =  p. Since жj ^ Z i(/) , p+1 ^ l < 
^ i, it follows from (4.6) and Theorem 2.3 that A[ajX() > /  +  1 , р + 1 < / < г ,  
and A(xiiXi+m+i)(/) >9  + 1 where (ж/, жi+m+q) С [жр, ж,] (q > 1). This implies 
that A[XpiX() ( /)  > / + 1 — p, p +  1 ^ / < г. We show th a t condition (2.2) 
is satisfied after replacing [a, 6] by the interval [жр,х,-+у]. Since by (3.1), 0 
is the strongly unique best approximation of / |д  from 5 т (Д)|/1 of order 
one, it follows from Theorem 2.1 that ^ m +  j  +  1, A[Xj|Xj ) ( /)  >
= 1 + !, A (x,+J- , , * , + , ] ( / )  ̂ I + 1, 1 5= I й  3 , and A (x, , x,+m+q) ( f )  ^  Q +  1 
(q > 1) where (ж/,ж/+т+д) C I\.  Combining the above statements we obtain 
A[ x p,xi+j ] ( f )  ̂  m  + * + j  - p  + 1 and A[xp>Xp+l)( /)  > / + 1, 1 < l <  i + j  -  p .
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Now we show that > l 4- 1, 1 £ I £ i + j  — p. This is true
by the above statements, if 1 < l £ j .  Moreover, \i j  < l < m j  then 

**+>](/) ^  A [xi,xi+i](f)  = m  + j  + 1 > / + 1. Hence let m + j  < l < 
< i j  — p. Then i + j  — / < i — m. Since x\ £ Z\ ( /) ,  p +  1 < l £ i, and 
X[ ^ Zi ( f ) ,  1 < l < i — 1, it follows from Theorem 2.3 that A(Xj+j._JjXj) ( / )  > 
> l - j - m  + 1, if m + j  < l < i + j  -  p. This implies that A(x.+y_IiXj+>]( /)  > 
> l - j - m  + m  + j  + l =  l + l .  Now we show that ^(x,,xj+m+?)( /)  ^  9 +  1> 
if (x /,x/+m+g) C [xp, x,+y] (q > 1). By the above arguments it suffices to 
consider the case when хр < X/ < X{ < x/+m+g £ xi+j- As above it follows 
that A[li|Xl+m+i)( / )  > l  + m  + q - i +  1. Then A(xi<Xl+m+q)( f )  > q +  1, if 
/ > i — m. But if l < i — m, then A(XbXi)( /)  > i — l — m  + 1 and therefore 
A {xhx l+rn+q) { f )  ^ i - l - m  + l + m + q -  i + l  = 9 + 1. Thus, we have 
shown that [xp, x1+J] satisfies (2.2) and therefore, 0 is the strongly unique 
best approximation of / \[Xp,xi+J] from 5m(A)|[XpjXt+j] of order one. This is a 
contradiction to the maximality of I\ and proves (4.7.1).

(4.7.2) We now assume that v4[Xp_m_„Xj,)(/) = q where [xp_m_ ,,x p) C 
C [a,xp] (q > 1). As in (4.7.1) it follows that A[aXi)(/) > / +  1, p + 1 < / < *, 
and A(x(iX(+m+4)( /)  > 9  + 1 where (x;,x ;+m+(,) C [xp,x,] (q > 1). Moreover, 
since x, ^ Z i(/) , p + 1 < l < i, it follows that A[Xp_m_9!X()( / )  > / + q -  p + 1. 
Hence it follows that A[x ^ 1+ 1 — Pi P+ I й I ^  i. Thus, we have the
same hypotheses as in (4.7.1). Then concluding as in that case we obtain a 
contradiction. This proves (4.7).

Now assume that for some q € (1 , . . .  , i — 1), xq £ Z\ ( f )  and X/ ^ Z\{ f ) ,  
g +  1 £ / < i. (If no such integer q exists, set xq = a.) We show that

(4-8) a K iXi]( / ) > ; - 9  +  i .

Since by (2.4) A[a)Xi](/) > i +  1, (4.8) follows, if xq — a. If not, then x q € 
£ Zi ( f ) .  Then using similar arguments as in the proof of (4.7) statement
(4.8) easily follows. Now we show that

{there exists an xp £ [x,j,xt_x] such that /  has alternating 
extreme points хр £ to < • ■ ■<ti-n й x i and ti G (хр+/_т , xp+/),

1 < / <  г - / г - 1 .

By (4.8) there exist alternating extreme points xq < to < . . .  < t{-q £ x, of 
/ .  Then (4.9) is trivially satisfied, if q = г — 1. Hence let q < г — 1. Since x, £ 
€ Z\ ( f ) ,  it follows that x; is an extreme point of / .  Then without loss of gen­
erality we may assume that =  x, and to, ..., are maximal, i.e. if xq <
< to < . . .  < ti-.q — X{ are alternating extreme points of / ,  then t\ £ i/, 0 £ / £ < i  — q — 1.
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Now we show that for some /i 6 {q, . . .  , i — 1} the set . . .  , t,- ,}
satisfies (4.9). We distinguish two cases:

(4.9.1) Let i — q ^ m +  1. Then for all ц  E {q , . . .  , i  — 1} and all 
1 < / < г  — /r — l we  have

f/i — q+l = ^  f/i — q = fo = %q ^ — l  —m •

Hence it follows that tli_g+i > х^+;_т , 1 ^  / < г — ц — l, q й (J. < i — 1.
Now assume that there exists no x^ E {x9+i , ... ,  x,_i} such that <

< x^+j, 1 ^ / < г  — p —1, and iM_g ^ xM. Hence < x,_i, if /r =  i — 1,
ti-g - 2  < x,_2, if /X = t — 2 , . . .  , ii < xg+i, if /г = q + 1. But this implies that 
ti < xq+i, l  < l < i -  q — 1, and therefore (4.9) is satisfied, if /x = q.

(4.9.2) Let i — q >  ттг+ l .  If ^ х,_г for some l E {1,. . .  , m +1}, then
applying case (4.9.1) to the interval [х^_/,х,] we can verify the existence of 
an E [x,-_f, x,_i] such that (4.9) holds. Hence assume that < x;_j,
i f l  = f = m +  l- Let r E {m  +  2 , . . .  , г — q} be the maximal integer such that 
ti-q-r  ^ x;_r . Then it follows that > x,_m_;, if r —m < / < r — 1. Since
by (4.6) x,_m_i ^ Z2( /) ,  1 < / < r —m —l , i t  follows from Theorem 2.3 that

*,](/) ^  Í + 1, 1 ^ I й r - m - l .  Then by the choice of
> x,_m_i, l < / < r  — m —1. Summarizing we have f,_g_; > x,_m_f, 

1 < / < r — 1. Moreover by the choice of r we have f , _ g _ /  < х,_/, 1 < / < r —1. 
Then setting ц — i — r and i/ =  U_g_r+j, 0 < / < г — /х, we can conclude from 
the above inequalities that t\ E  (x^+/_m, x^+j), 1 < / < r  — 1. This proves
(4 .9 ).

Now we are able to estimate s on [x^,x,] where хц is chosen as in (4.9).
m-\-k

To do this let S  = span-fH^,. . .  , Recall that s = al^l  such that
/=0

II/ -  5II = ll/ll +  6 . Then for x E [x^x.+ j],
m+t+j-1

s(x)  = S(x) + ^  aiBi(x)
l=i

.-1
where s = ^  aiBi E S. Hence it follows that 

i=n

IK/ -  s)|[Wj+i]|| -  ||(5 -  5)|[XM>Xi+i]|| < II/ -  
Using this inequality together with (4.5) we obtain 

(4.10) l l ( / - 5 ) |[ W l ] H I I ( / - 5 ) | [w i+j]

m+i+j-l
 ̂ ii/ii+Ä+ii(5-s)i[Wi+j]ii < 11/11+Ä+II aiB<

i—t

4  <11/11 + *-

^  ||/ | | + (1 + AM/))*.
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Since Xi € Zi ( f )  and Zi(f)C\  [а,ж,-] =  {zoi,... , it follows th a t z0/i0 = 
= x ,. Moreover, recall that /  is flat at zqi of order a t least m-f с*о/ for some 
00/ ^ 0, 1 < / < /го- Then by Lemma 4.4,

(4.11)
i- l

IE Щ ВI <  K 2( f ) ö a o »о/(т +“°ио)

where Ki ( f )  is independent of s and S. Thus, we have estimated the function 
5 on [ж̂ ,ж,-+j ) .

Now we want to estimate s on [хд,х^].  Since xq =  a or xq £ Z \ ( f )  and 
xI £ Z\ ( f ) ,  q -f 1 ^ l < /i, we can conclude as in the proof of (4.7) and verify 
that A[x ,* )( /)  ^ /г ~ Q +  1- Then arguing similarly as in the proof of (4.9) 
we can show that

{there exists an xv 6 [xq, x^- i ]  such tha t /  has alternating 
extreme points x„ < íq < . . .  < 
and ti e (x„+l- m,x„+i), 1 й I й h — v-

Now using (4.10) and (4.11) we get that

л- i
(4-13) 1 1 ( 7 <  \\f\\ +  S + K 2( f ) 6 ao^ ^ m+a^o) <

' I ' ' \X 1/ «31 <i1=1/
^  ll/ll + Л'з(/)<5ао^ / ( т +“^о)

where К з ( /)  is independent of á and Since by (4.12) and [2, Corollary 1.6],
0 is the strongly unique best approximation of /  from spanjfi^,. . .  , B^_\)  
of order one on [х„,х^], it follows from (4.13) that

(4.14)
n -i

aiBi
I=i/

^ K 4( f )ö ao,t°Bm+aono)

where Л'4( /)  is independent of s and 6 . By a repeated application of the 
above statements we can estimate s on [хд,х и] and combining this together 
with (4.11) and (4.14) we obtain that

(4.15)
m + i + j - 1

E
l = q

at ВI < Л'5(/)<5ао'‘°/(т+“0̂ о)

where K 5( / )  is independent of s and 6 . If xq = a, then we are finished in 
the interval [a, x,■+_/]. Hence assume th a t xq = zo,/j0- i • Then replacing the
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interval [xq,xi\ in (4.9) by the intervals [ z o , i - i > 1 =  ̂ = Яо -  1> where 
z00 = a, and arguing as in (4.9)-(4.15) we get the estimate

m+i+j— 1
aiB, II £ K &( f ) 6p°

1=0

По
where as in (3.3) P q = П a ol / ( m  + aoi) and K e i f )  independent of s  and

1=1
6 . Thus, we have obtained an estimate of s on the interval [a, x1+J]. Now we 
proceed by estimating s on [rc.+y,b]. Let I2 =  [x p , x p + q ] such that /2 > h  
and the conditions (3.1) are satisfied. Then as in (4.5) we obtain

(4.16)
™ + p + < ? - i

aiBi
l=p

Í  K 7 (f )S

where K 7( f )  is independent of s and 6 .
Now we want to estimate s on xp\. If p — i — j  =  m  — g for some 

q > 0, then the estimate of s on [i,+j, xp] has already been given by (4.5) 
and (4.16). Hence assume th a t p — i — j’ ^ m  +  1. We first show that

(4.17) {*,+;, • • • xp} П (Z1( f )  U Z2(/) )  ф 0.

Assume that (4.17) does not hold. Since by (2.4) A[Xi+jiXp] ( /)  ^ P -  i — j  — 
— m  + 1 and by the choice of I \  and /2 A iy ( / )  > m + j  +  1 and A/2( / )  > 
> m  + q + 1, it follows that

-4[x,,xp+,]( /)  ^ m  + j  + p - i - j - m  + m  + q + l = m  + p + q - i + l .

Moreover, it follows from Theorem 2.1 that A[XjiX )(/) > l 1, l < l < j . 
Since Ail ( f ) ' t m + j  + 1, we obtain A[Xi)X.+|) ( / )  > m + j  +  1 > l + 1, j  +  1 ^ 
< l < j  + m. Thus, we have shown that A[xi>x. )(/) > Z 1, 1 < l ^  j  + m. 
Since (4.17) is not true,it follows from (2.2) tha t A(Xi+jjX.+j+m+|)(/) > l +  1, 
1 < l < p + q -i- j-m ,  and Ah ( / )  > m+j+1. This implies that A[XjtXi+>+ra+l) ( /)  > 
> m  + j  + / +  l ,  1 f? / < p + q — i — j  — m .  Analogously we show th a t 
A(xp+,_llxp+,] ( /)  = Z + l) 1 ^  Z < p-\-q-i. Moreover, it follows from (2.2) tha t 
A(xu,xu+m+i) ( / )  ^  1 + 1> if ( x u ,x u+m+l) C  [x i,xp+q] (/ > 1). Then Theorem 
2.1 implies th a t 0 is the strongly unique best approximation of /|[XijXp+?] 
from 5т (Д)|[х . Хр+1?] of order one, a contradiction to the maximality of I\ 
and / 2. This proves (4.17).

Now we show that

(4.18) xi+j e Z 2 ( f)  or xp e
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Assume that x,+j G Z2(f ) .  Then by (4.17) there exists an xp G Z\ ( f )  U 
U Z2( f )  where Xi+j < x p %x p and xi i  Z i( /)U Z 2( / ) , i f  i + j  + l < / £ p - l .  
If xp G Z2( /) , then arguing as in the proof of (4.7) we show that [x,-, xp] 
satisfies (2.2), a contradiction to the maximality of I\ .  Hence xp G Z\ ( f ) .  
Then, since I2 satisfies the conditions (3.1), it follows from Lemma 4.2 that 
xi Z2(f ) ,  fj, < l < p — 1. Now assume that xp ^ Z\ ( f ) .  Let xp S xu < xp 
such that x„ G Z\ ( f ) UZ 2( f )  and X/ ^ Z1(/)U Z 2( /) , if r '+ l  < / ^  p — 1. Then 
it follows from the above argument that xv G Z\ ( f ) .  Now using again the 
proof of (4.7) we can conclude that [x^Xp+J satisfies (2.2), a contradiction 
to the maximality of I2. This proves (4.18).

Without loss of generality we may assume that

(4.19) x i+j € z 2(f ) .

Recall that Z2( f )  П [x;+y,xp] = { 5 ц ,... , z i^}  and /  is flat of order at 
least áu  at zu, \ % l < v\. Then z\\ — x,+j. Using the maximality of 
I 2 and Lemma 4.2 we can conclude as in the proof of (4.18) in order to 
show that [x,_|_j, zit/l] П Z\ ( f )  = 0. Set xu = Z\Vx. Since for x G [x,+j, xp],

p-l+m

s(x) = S  a l B i { x )  and therefore the estimate of s  on [x,_|.j, xp] depends 
l=i+j

only on the given estimates (4.5) on L  resp. (4.16) on I2, we can argue as in
(4.8)-(4.15) and obtain

(4.20) u—l + m

У  ai в  I
l = m + i + j

*'1-1
where Q\ — П őiu/(m + ői/) and Ks( f )  is independent of s and S. 

i=i
Now we want to estimate s on [xu,x p]. We distinguish two cases: We 

first assume that

(4.21) (xu,xp] П Z j(/)  ф 0.

Then by the notation in (3.3), (xu, xp] П Z\ ( f )  = { z n ,. . .  , ziPl} and /  is flat 
of order at least ац  at zu,  1 ^ ^ /Zi. We set x„ = z\\. Now arguing as in
(4.7)-(4.16) we obtain that ZiPl =  x p and

p - i

(4.22)
l=v

Pl
where P\ = П a u/ {m  + c*i/) and A'g(/) is independent of s and 6 . Hence 

1=2
we have still to estimate s on [x„,x„]. Recall that xu =  Z\Ul < z \\  — xv.
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If v — u < m, then the estimate of s on [i„, i j  has already been given by 
(4.20) and (4.22). Hence assume that

(4.23) v — и — m  + g

for some g > 1. Then it follows from (2.4) that -А[Хи,х„](/) = Q + 1- Now we 
distinguish the cases (4.24) and (4.28):

(4.24)
There does not exist any xM £ [xu+i,x„_i] 
such that A[XU'Xii](f) > ц - и  + 1 .

Then we show that

(4.25) {/  has alternating extreme points xu — t0 < . . .  < tQ ^  xv 
such that ti £ (xu+í,x „+/+m), 1 < l < g -  l.

Since by hypothesis 4̂[Хи,х„](/) ^  g + 1 and xu £ ^ ( / ) ,  without loss of 
generality we may assume that to = x u. Moreover, let to < t\ < . . .  < te ^  x v 
be alternating extreme points of /  that are minimal, i.e. if xu = to < . . .  < 
< t0 < x„ are also alternating extreme points of / ,  then ti < t[, l < l ^  g. 
We show that {t0, • • • , t e} satisfies (4.25). It first follows from (4.24) that 
U > x u+i , 1 й I = Q — !• Moreover, it is obvious that t\ < xu+/+m, if 
Xu+l+m ^ x„ for some l £ {1, . . . , # — 1). Hence assume that xu+/+m < xv. 
Then it follows from (2.4) and the fact that X/ ^ Z \ ( / ) ,  и + 1 < l < v — 1, 
that -A[Xu,Xu+l+m)( /)  = f +  1- Then the minimality of {to, • • • , t e} implies that 
ti < xu+/+m, 1 < / < g — 1. This proves (4.25). If tQ < xv, then by Lemma 
4.3, (4.15) and (4.20) we obtain the estimate

V — 1

(4.26) Y  a' B‘ Z R io(f )6 Ql
l=u+m

where Q i is defined as in (3.3) and Kio( f )  is independent of s and 8 . If 
te = x„, then by Lemma 4.5, (4.15), (4.16), (4.20) and (4.22) we obtain the 
estimate

v-l
(4.27) I Y  a‘B‘

l=u+m
й K n ( f )SRl

where R\  = m in{Pi,Q i} and Pi is defined as in (3.3). Moreover, K u ( / )  is 
independent of s and <5: By (4.15), (4.16), (4.20), (4.22), (4.26) and (4.27) 
we are finished in [x,+J,xp].

Now we assume that (4.24) does not hold. Hence

(4.28) there exists an xp £ [xu+1,x„_i] such that *„](/) > ц -  и + 1.
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Let xu < t0 < . . .  < fp_u < xp be alternating extreme points of / .  Since 
xu S Z2 {f),  without loss of generality we may assume that to = xu. More­
over, assume that xp is minimal with respect to (4.28) and to ,. . .  , fp_u are 
minimal, i.e. if xu = to < . . .  < ip_„ ^  xp are alternating extreme points 
of / ,  then ti < ti, 1 < l < fi — u. Then as in (4.25) we show that ti £ 
£ (xu+/, xu+/+m), \ <; l < ß  — u — 1. Now using Lemma 4.4, (4.15) and (4.20) 
we obtain

(4.29)
/j-l+m

У  °iBi
l = u + m

й K u ( f ) 6 Ql

where is independent of s and 6 . If v — ß  < m,  then by (4.15),
(4.16), (4.20), (4.22) and (4.29) we get an estimate of s on [xu, x v] and we 
are finished in [x,+j, xp\. If v — ß = m  + a for some <7 > 1, then from (2.4) 
and the fact that xp (fc Z ^ f )  it follows that A(x Xv](f)  > <r -f 1. Then the 
following cases can occur:

f There does not exist any xv £ [хр+\, xv_i]
I such that A [xi/tXv]( f )  > v - i / + l .

Then similarly as in (4.25) we show that /  has alternating extreme points 
xp < to < .. ■ < t„ — x v such that f/ £ (xp+i, xp+/+m), 1 < l < a — 1. Hence 
by Lemma 4.3, (4.16) and (4.22) we obtain

(4.31)
u-l
У  a-lBl

l=^+m
й /43(/)<5Pl

where К m (/) is independent of s and S and we are finished in [x,+J, жр]. 
If (4.30) does not hold, then

(4.32) there exists an xu £ [гр+1, x„_i] such that A[Xi/ Xv](f) > v — v +  1. 

Then arguing as in (4.28) and using Lemma 4.4 we obtain

(4.33)
V— 1

l - v

K u ( f )6 Pi

where К ы ( / ) is independent of s and 6 . If v — ß < m, then by (4.15), (4.16), 
(4.20), (4.22), (4.29) and (4.33) we get an estimate of s on [xu,x v\ and we 
are finished in [x,+J-, xp]. If v — ß — m  +  т for some r  > 1, then from (2.4) 
it follows that -A(x *„)(/) > r  + 1. By a repeated application of the above 
arguments and [2, Corollary 1.6] we obtain

(4.34)
u-l
У  at в I

l = H + m

й K lb(f)bR'
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where Ri = m in{Pi,Q i}, K\b{f )  is independent of s and 6 , and we are 
finished in [x,+J-,xp]. This completes the case when (4.21) holds.

Now assume the converse of (4.21), i.e.

(4.35) (xu,x p]fl Zt ( f )  = 0.

As in (4.23) we may assume that p -  и — m  + % for some x  = 1« Then 
from (2.4) and (4.35) it follows that A[Xu Xp)(f)  > x  + 1. Arguing as in
(4.24)-(4.34) we obtain

(4.36)
p - i

a,Bt
l=u+m

й Ki e ( f ) 6 Ql

where K\ e( f )  is independent of s and S.
Summarizing all the above estimates of s and using the hypothesis that
m+k

s = aiBi we obtain for every x £ [a,xp+9],
1=0

(4.37) K*)| ^ k u ) F

where 7 = min{Po, P\, Q1} and K ( f )  is independent of s and 6 . Now arguing 
in Ji,... , Jr-i as in J\ (for the notations see (3.2)) and in Jr as in Jq 
we finally obtain the desired statement (3.4). This completes the proof of 
Theorem 3.3. □

P r o o f  o f  P r o p o s i t i o n  3.5. W ithout loss of generality assume that 
P — к and let some positive real numbers 07, . . .  , a*, be given. Set x,- =  i, 
0 < i < к +  1, and Д =  {x.jjL j. Let /  £ C[Q,k + 1] be defined by

/(* ) =
'(  — l ) ‘+m(2(m + l)x  — (1 + 2г)), if x € [г/(пг+ 1),(г +  l) / (m +  1)], 

< 0 < i < m
. ( - l ) i+1(l - 2 ( x  -  0 m+Q,)5 if x G [*,* + 1], 1 < г < к.

Set = a,/(rre + a,) and 7,- = П ßji  ̂ an(  ̂ define sg 6 5т (Д) by
j = 1

к

1=1

for some 0 < 6 < 1. It is easily verified that 0 is a best approximation of /  
from 5т (Д ) and /  is flat of order m + a, from the right at each x,, 1 < i < k. 
Hence it follows from Theorem 2.3 that 0 is the unique best approximation 
of /  from 5 т (Д). Since 0 < 7, < 1, 1 < г < fc, and 7,- > 7j, if i < j ,  and
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0 < 6 < 1, there exist a positive constant M  independent of 6 and a constant 
0 < <5o ^ 1 such that

1Ы1 > M 6 lk and llsill < 1

for all 0 < 6 < <5o- Furthermore, there exists a constant 0 < <$i < So such 
that sgnsi(i) = ( - 1 ) '+1, 2 ^  i < к +  1, for all 0 < S < Si.

Now we show that there exists a constant 0 < 62 ^ <5j such that 
I/(x) — s$(x)| < ll/ll = 1 for all x £ [2,fc + 1] and all 0 < 6 < 62. Without 
loss of generality assume that i is odd. (The case when i is even follows 
analogously.) Let x £ [i,i + 1]. Then

*
/(x )  -  ss(x) = 1 -  2(x -  i)m+ai + £ ( - l ) * +1i^ ( *  - j ) m.

i= 1

This implies that
*

f\x) -  4(x) = -2(m + «,•)(* -  i)m+“i_1 + -  j)m~l
j= 1

for all I  € [i, i + 1].
Let us first assume that f  -  has no zero on (i, i +  1). Then /  — sg 

can have an extremal value only in * or i + 1. It follows from Ц55Ц ^ 1, 
sgnsi(j) =  ( —1),+1 and the definition of /  that |/(x )  — s,j(x)| < 1, if x = i 
or x = i + 1. Therefore we assume that there is an x £ ( i , i+ 1) such that 
f ' (x)  — s^(x) = 0. Hence

*
2(m + a,)(x -  i)m+ai-1 = т ^ 2 ( - 1 У+16Ъ ( х  -  j ) m- 1.

i= i
For some 0 < 6 3  < 6 2  the inequality

2(m + a,)(x - i)m+a,_1 < т6ъ (х - г)”*"1 
is valid for all 0 < 6  < £3, since 7, > 7j  for all j  = 1 , . . .  , * — 1. Hence

(x — г)“’ < (m /(2(m  + а<)))<57'

for 0 < 6  < 6 3 . It follows from x > i  and the last inequality that

1
/ ( X )  -  8 6 ( X )  <  1  +  £ ( - 1 ) ' + 1 Г ' ( *  -  j ) m  <

j= 1
»-1

< 1 + ^ ( - l ) J+1^ ( x - j ) m + (W (2(m  + o ,)) )m/ai<57- 1.
j = 1

ORDER OF STRONG UNIQUENESS IN BEST L ^ -A P P R O X IM A T IO N  279
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Therefore,
i - 2

f(x}-ss(x)<  1+X)(—l) i+ li7 i( M ) m— ((х -г  +  1)т - ( т / ( 2 ( т  + аО)Г/о>)  .
з = 1

Since x — i + 1 > 1 and m /(2(m  +  a,)) < 1/2, it follows that 
(x -  i + l )m -  (m /(2(m + a,-)))m/e< > 0.

Hence for some 0 < 64 < Ó3 we have
0 < f (x)  — 5б(х) <1  for all 0 < <5 < Ó4. 

f  — s'g can have at most m zeros on [г, г +  1]. This follows from Rolle’s 
theorem and the fact that ( / (m) — sgm )̂ |[,iI+1] =  a,(x -  г)“ ' +  6,, a;, 6, € R, 
has at most one zero. Therefore, f  — s's has only a finite number of zeros on 
[2, к + 1]. Now it follows from the above results that for some 0 < Í5 ^ £4 

\ f { x ) - s 6 ( x ) \ < l ,  x <E [2, k + 1],
for all 0 < S ^  S5.

Finally we consider /  — sg on [1,2]. Since f  -  s's has the zero 
x = l + ((m /(2(m  + a 1) ) ) ^ ) 1/“1

on [1,2], and
/(x ) -  s6(x) = 1 + 7i(m /(2(m  + c*i)))m/ai<5 < | | / | |  + S, 

it follows that |/ (x )  -  s^(x)| < ||/ | |  Ó for all x € [1,2]. Summarizing the 
above results we obtain that

II/ -  Sill ^ ll/ll +  6 for all 0 < 6 < 6 = 6 5.
This completes the proof of Proposition 3.5. □
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ON APPROXIMATION OF UNBOUNDED 
FUNCTIONS BY LINEAR COMBINATIONS 

OF MODIFIED SZÁSZ-MIRAKIAN OPERATORS
H. S. KASANA (Uppsala)

1. S. M. Mazhar and V. Totik [6] have proposed the integral modification 
of Szász-Mirakian operators to approximate Lebesgue integrable functions 
defined on [0,oo) as

( 1. 1)

where

L n ( f ,x ) n PnA*)fi t)dt,

( TlX̂
Pn,i/(x ) = e~nx— — , /  G £i[0,oo).

The operator (1.1) was studied for simultaneous approximation by Singh [8] 
and moreover, similar results have been derived by Sahai and Prasad [7] for 
modified Lupas operators.

However, we consider the class P  of all measurable functions defined on 
[0, oo) such that

P[0, o o ) = j / :  J  e~nt f(t)dt < oo, n > n0( / ) | .  
о

Obviously, f/j[0, oo) Q P[0,oo) and hence Ln may be utilised for studying a 
larger class of functions. For m £ №  (set of nonnegative integers), the  mth 
order moment of Ln is defined as

(1.2) Tn,TO(z)

Further, we define
Pa [0, oo) = { /  e  P[0,oo): f(t) =  0(eat), t —► oo, a > 0}.

In the sequel we assume 0 < a < a i < & i < 6 < o c  and || • ||[a щ means 
the sup norm on the space C[a,b]. Moreover, || • ||a denotes a norm on the 
space Ca [0, oo) = C[0, oo) П Pa [0, oo) such that for /  G CQ[0, oo),

11/11« = sup | / ( f ) |e~ ot.
0 < i < o o
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Let do, d i , . . .  ,dk  be arbitrary but fixed distinct positive integers. Then, 
following Kasana and Agrawal [4], the linear combinations Ln{ f , k , x ) of 
Ldjn(f,  x), j  = 0, 1, . . .  , к are introduced as

Fdonif, x ) do1 d - 2 . . . dök

(1.3)
. ,  , . 1 L d in ( f , x) d r1 d - 2 . . . d f k

L n \ f  9 — —

Ldkn ( f , x) Í 1 d'k2 ••• d'kk

where Д is the Vandermonde determinant obtained by replacing the operator 
column of the determinant by the  entries 1. On simplification (1.3) is reduced 
to

к
(1-4) L„(f, k, x )  = Y ^ cU ,k )Ldjn(f,x),

j=о
where

k d
(1.5) c ( j ,k )  = П  , M O  and c (0 ,0 )= l;

. = 0 1
'/ j

and (1.4) is the form of linear combinations considered by May [5].
For / €  Ca [0, oo), 6 > 0 and m  € N, the Steklov mean / 2m s is defined by

( 1 .6)
s 2m

л - * м = р ф ^ ( / )  ( Q > > +< - ir - * iV w )

where

2 m 2m ч

h = ^ 2 ti and A 2™ f(x) = ^ ( - 1)‘ ( /(x  +  (то -  i)h).
» = i i=o '  г '

This paper contains Woronowskaja type asymptotic formula and an er­
ror estimate in  terms of higher order modulus of continuity for unbounded 
functions on the  semi-real axis.

2. In th is section we introduce certain auxiliary results which will be 
utilised in Section 3.

L e m m a  1 [8]. ForTnim(x) there holds the recurrence relation:

(2.1) 7iT„,m+i(x) = xT'n m(x)  + (rn + l)T n,m(x) + 2m xr„>m_i(x), m > 1.
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By direct computation from (1.2), we have Tn>0(:r) = 1 and TUti(x) = L 
and further, using the recurrence relation (2.1) it can be verified that

(i) Тп<т(х) is a polynomial in x of degree [m/2] and in n~x of degree m.
(ii) For every x € [0,oo), Tn m̂{x) = 0 ( n - ^m+1^ 2i).

(iii) The coefficients of n~(k+1l in T„,2fc+2(x) and Tny2k+i(x) are 
(2к +  2)\xk+1/ (k  + 1)! and (2к + 2 )\xk/ 2 k\, respectively.

Lemma 2. I f  c(j,k), j  =  0 ,1 ,. . .  ,k  are defined as in (1.5), then

( 2 .2 ) Е ф 'д м г
j=0

1 if  m  — 0,
0 if  m  = 1, 2, . . .  , k.

P r o o f . If the operator column of the determinant in (1.3) is replaced 
by the entries dQmd f m, . . .  , df™ and then observing the determinant con­
secutively, for m  = 0 ,1 ,. . .  , к this lemma follows. However, May [5] has 
given a different proof by using Lagrange polynomials.

Lemma 3 [3]. Let 6 be a positive number. Then, for every m  € N and 
x € [0, oo) there exists a positive constant K m,x such that

(2.3) j  W (n ,x , t )e atd t ^ K m>xn - m,
\t-x \>6

where К т<х is a positive constant depending on m and x and

W ( n , x , t ) = n ^ p nyU{ x ) p n ,u { t ) .
u=a

Lemma 4. The function f 2m,s defined in (1.6) has the properties:
(a) | | /2m,Ä -  fWldM й A/io>2m(/;<5,a,6);
(b) Н Л т Д а ,* ] ^ M2||/ ||[e,4 < M 'll/IU ;
(c) W f ^ s l l M l  Í  M3S -^ U 2 m(fi6,a,b),

where M '2 = M2eab, Mi ’s are positive constants depending on m  only and 
oj2m(f] b, a,b) is the modulus of continuity of order 2 m corresponding to f :

w2m(/;  6 , a, b) = sup{| A 2hmf(x)\-, |/i| < 6 , x + 2mh  6 [a, b]}

such that

д (2Г) к *+<*)•j—0 ' '
The properties (a) to (c) are extensions of the calculations found in a 

paper by Freud and Popov [1]. However, for conciseness the proof is given 
as follows:
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P r o o f . F ro m  t h e  d e f in i t io n  o f  / 2m,6, w e h a v e

\ h m A x ) -  f ( x )\ й <

< M u 2m( f ; 6m ,a ,b ) < Mmu>2m( f ; 6 ,a,b) < M iu 2m( f ; 6 ,a,b), x <E [«i,i»i]-
Hence (a) is obtained. The proof of (b) is trivial and to prove (c) we observe 
that

(2.4)

and

d2m
dx2m

A  ( f ( x  + ' j r  + f ( x  -  y ^ t j ) ^ \ d t 1dt2 . . .  dt2m =
Q '  '  1=0 1=0 '

= (A im + A ̂ ) f ( x ) ,

(2.5) u>2m(/; Im  -  i\S,a,b) < \m -  i\w2m(f; 6 ,a ,b ) = KiU2m(f\ 6,a,b).

Using (2.4), (2.5) and (1.6) we have

<

i i / S i t

D - n — f f )  (‘
i= 0

• 1 1
( E ( T ) <
4 i= 0  4 ': ( 2D * 2m

л £ - о « + д2-?™-о<) /(* ) [ai )&i]

and thus (c) is immediate.
3. Here we prove our main results.
T heorem 1. Let f  в P<*[0, oo) and let f ( 2k+2) exist at a point x 6 [0, oo). 

Then

(3.1)

and

(3.2)

2fc+ 2

l i m  n fc+1 [ / / „ ( / ,  k, x) -  /(*)] =
1—ЮС z--*

m=k-\-l

/ ( m)(x)
m !

Q(m,k, x)

lim nk+1 [Ln( f , k +  l , z )  — /(ж)] = 0,

where Q(m, k ,x )  are polynomials in x of degree at most [m/2] such that
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Q(2k + 1, k, x ) = ( l ) fe(2fc + 2)!a.fc. g (2jfc + 2i x) +  ( 1 )k(2k + 2)'.xk+1'

2 k\ U dj 
J=o

(к + 1)! П  dj 
j=о

Moreover, if y(2fc+2) exists and is continuous on then (3.1) and
(3.2) hold uniformly on [ctx, i»x] -

P roof . Since y(2fc+2) exists at x € [0,oo), it follows that

2*+2 f(m)(x)
m  = E  (i ■ x)m+£(i) x)(i -  x)2fc+2’

m = 0

where e(t, x) —* 0 as t —> a; and is contained in Pa [0, oo). Writing
-2k+2 /<ra)(x)

nfc+1 [ !„ ( / , k, x) -  /(x)] = nfc+* V  ----- P Z „ ( (<  -  *)ra, *, x)+I m\
k m=l

k 1
+ '} 2 CÜ’k ')Ld A £(t’X)(t -  X)2k+2’X) \  = h + 1 2

j=0 '
(say). Hence

2fc~t'2 k
h  = nk+l E  И

Using Lemma 1, we have
m:m = l j=0

Td,„,m(x) = +
(dyn)fm2 I (dj-n)[ 2 1+1

+ . . . + *[ж/2](») 
(djn)m

for certain polynomials P,, г = 0, 1, . . .  , [m /2] in x of degree at most [m /2]. 
Clearly,

(3.3) ^   ̂c(j> k^Td,n,m (з>) —
i= o

Д

+ ____£lM _+ + pW 2l(x) w-i w-2
(rf0n ) №  ( á o n ) '^ ^  ° °
... P° (4 , +  ÜÍE)____  + + Р1™/2)(*) j-1  j-2
i w ¥ i  + M ' ^ 1+1 (din)m 1 1

Po(J). , + __ p  (*).__  + +  ^m/2](x) .-1 d-2

d_fc u о
j-fc

= n (k+1^{Q (m ,k,x)  + o(l)}, m  = к + 1, к +  2, . . .  ,2k + 2.
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So I\  is determined by

2A±.2 f(m)('3;i
Y  ------к, X) + o(l).L ' m l

m = k + 1

The expression for Q(2k l , k , x )  and Q{2k +  2,k ,x )  can be obtained by 
application of Lemma 1 in (3.3).

Now it suffices to show that /2 —> 0 as n —» 00. For a given £ > 0, there 
exists a 6 = 6 (e,x)  > 0 such that |f:(f, x)| < e, 0 < \t — x\ 5í S, and for 
\t — x\ > 6 , we notice that e(t ,x )  = 0(eat). Treat I2 as

/ 2  = nk+1Y cÜi k ) (  j  + J  ^  W(djTi,x, t)e(t,x)(t  -  x )2k+2dt = I3 +  / 4.
| t—x |< i  | t—x\>6

Again using Lemma 1 we get

к
| / 3| й £nk+1 Y  lcC?’*OI max Ldjn((t -  x)2k+2, x ) < Ke.

3 = 0  ° = J=fe

Similarly (in view of (2.3)),

\h\<nk+1Y \cU’k)\ J W (dj n , x , t ) ( t - x ) 2k+2eatdt<
0 \t-x\>6

к 00

3 ~ 0  о | t—x|>Ä

m + 2 ( *  + l )  m
< R m,xn 2 = o ( l) ,  — > k +  1.

Since £ > 0 is arbitrary, combining /3 and /4 we conclude /2 —► 0.
The assertion (3.2) can be proved along similar lines by noting the fact:

Ln( ( t - x ) m, k + l , x )  = 0 {n -(k+V).

The limits in (3.1) and (3.2) hold uniformly due to the uniform continuity 
of y(2̂ +2) on [a, b] and uniformness of the term o(l) occurring in the estimates 
of I\. This completes the proof.

T heorem 2. Let f  G Ca[0,oo). Then, for all n sufficiently large,

(3.4) И£ „ ( / ,  k, ■) -  f \ \[aiM g Мк,ь { u 2k+2( / ;  n - 1/2, a, b) + n~(k+1) | | / | |e } ,

J W (djn, x, t)( t—x)4(k+1^dt J W (d jn ,x , t )e 2atd tJ /2^
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where Мк,ь is a positive constant dependent on к and b but independent of f  
and n.

P roof. Let f 2k+2,s be the Steklov mean of (2fc + 2)-th order correspond­
ing to / .  In view of linearity of Ln(-, k, x)  we write

Ln( f ,  k, x ) -  f (x )  =  Ln( f  -  f 2k+2 ,s, k, x) + (Í 2 k+2 ,s(x ) -  /(* ) )+  
-\-Ln( f 2k+2,6 , k ,x )  -  f 2k+2,s(x) =  J\(x) + J2(x)  + J3(x).

The estimate of J \ ( x )  follows from Lemma 3; indeed, we have

and

W (d jn ,x , t ) \ f2k+2ts{t) -  f{t)\dt

J W (djn ,X ,t) \ f2k+2 ,s(t) -  f(t)\dt =
0

=  J  +  J ^  \\hk+2,s -  f\\[a1-S,b1+S] + K m n~m\\f\\a,
|i—ar|<<5 |<—x|><£

where S < min{ai — a,b — 6г}•. Hence, using Lemma 4(a)

ll*/i||[a i,b1] ^  M iu 2k+2(f;6 ,a ,b ) + Kmn m|l/IU- 
In a similar manner,

11 *̂211 [a 1 ] й MiU>2k+2 (f',S,a,b).
It remains to estimate J3(x). Expanding f 2k+2,s by Taylor’s formula,

2 f c + l  A ' )  (  \

(3.5) / W O  = E  -  X ) '  + h M ->( i )

1=0 ( 2* +  2 ) !
( t - x ) 2k+2

where £ lies between t and x. Operating L n(-,k,x)  on (3.5) and separating 
the integral into two parts as in the estimation of J\(x), we obtain (in view 
of Lemma 1 and (2.2))

\\Ln(f2 k+2 ,6 ,k ,  • ) -  f 2k+2,s\\[a1,b1] =
2k+2

S M » -(*« ) E  II/S+WÜKA] + «П.П-»II/m+mIU.
i = f c + l

Using the interpolation property

11/11«,SII[«.M S JV'fll/u+wll[aiW +
due to Goldberg and Meir [2] in the above inequality, we further have, for 
m > к + 1,
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(3.6)
\ \L n (f2k+ 2 ,S ,k ,  • ) - /2к+2,б\\[а1,Ь1] = М кП~<'к+^  (ll/ifc+tjí ll[ai,bi] +  l|/2A:+2,«||űr) •

Consequently, «/3 is estimated by application of inequalities (b) and (c) of 
Lemma 4 in (3.6) as

Ш \ [ а,Ь] ^ M k n (M 3í - ( 2fc+2W + 2 (/; í ,a ,f t )  +  M'2\ \ f \ \a )  •

Choosing <5 =  n -1/ 2 and combining the estimates of J i(x ), «/2(2) and J 3(x), 
the required result follows.

R e m a r k s , (i) The concept of linear combination was developed to in­
crease the order of approximation of functions with higher smoothness. We 
preferred form (1.3) to (1.4), since it is not possible to calculate Q(2k-\-\,k, x) 
and Q(2k +  2, k, x ) by using the form (1.4) due to May [5].

(ii) An analogous result to  (3.4) was recently obtained by Wood [9] for 
Bernstein polynomials using the technique of Peetre’s A'-functionals.

Acknowledgement. The author is thankful to the referee for making 
substantial improvements in the paper.
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EXPANSIONS IN LEGENDRE POLYNOMIALS 
AND LAGRANGE INTERPOLATION

L. COLZANI (Cosenza)

This paper is divided into four sections.
In the first section we consider the problem of the convergence and diver­

gence of Fourier series with respect to Legendre polynomials of functions in 
Lorentz spaces. The critical index for the convergence of Legendre-Fourier 
series of functions in Lp spaces is p = 4/3. We prove that the Legendre-Fouri­
er series of functions in the Lorentz space L4/3,1 converge almost everywhere 
and in the norm of X4/3’00, while there exist functions in L4/V r > 1, with
Legendre-Fourier series diverging in measure and pointwise everywhere. We 
also give precise estimates for the norms of the partial sum operators.

In the second section we consider the problem of the convergence in 
Lorentz spaces of the Lagrange interpolation taken at the zeros of Legendre 
polynomials. Here the critical index is p = 4. We prove that the Lagrange 
polynomials which interpolate a continuous function at the zeros of Legendre 
polynomials converge in the norm of L4’00 and may diverge in the norm of 
L4,s if s < Too. Again we give precise estimates for the rate of divergence.

The third section contains the proof of the theorems.
The fourth section is devoted to some concluding remarks. In particular 

we briefly consider the problem of the convergence of Legendre-Fourier series 
with an arbitrary reordering or grouping of the terms, and the problem of 
the convergence of Lagrange interpolation polynomials of functions in some 
Lipschitz classes.

1. Fourier series with respect to Legendre polynom ials

Let {Pnln^Ő be the orthonormal system of Legendre polynomials,

\ A +  \  dn
Pn(x) =

2nn\ dxn
The n-th partial sums of the Fourier-Legendre expansion of a function 

/  integrable on [—1,1] are defined by

Sn f ( x ) = ^ 2 H k )Pk(x ),
k -0
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where f(k) = f  f(y)pk(y)dy.
- l

H. Pollard has shown that if /  is in Lp[—1,1], 4/3 < p < 4, then {Snf } 
converges to /  in the Lp-norm. Also, if p > 4/3, {Snf ( x ) }  converges for 
almost every x in [—1,1]. These results are essentially the best possible for 
Lp-spaces, because J. Newman, W. Rudin, and C. Meaney, have constructed 
functions in Z,4/3[—1,1] with Legendre expansions diverging both in norm 
and almost everywhere.

At the critical indexes p — 4/3 and p = 4 one can obtain positive con­
vergence results only for functions in suitable subspaces of Lp[—1,1]. In 
particular S. Chanillo has shown that the operators {.9n} are not uniformly 
of weak type (4 ,4 ), but they are of restricted weak type (4,4), i.e. for the 
characteristic functions of measurable sets E ,

|{x € [-1 ,1 ]: |S„Xs(aO| > *}l ^ ct~4\E\.

Chanillo’s result has a natural interpretation in terms of Lorentz spaces.
The Lorentz space Lp,r[—1,1], 1 < p < -foo and 1 ^  r ^ +oo, is the 

Banach space of functions /  integrable on [—1,1], with

1

IIP,г < Too,

where /* is the  decreasing rearrangement of | / | .
In particular Tp,p[ - l , l ]  =  Lp[ - l , l ] ,  Lp’°° [-1 ,1] = Weak-Lp[ - 1 ,1], and 

Lp’r[—1,1] C L p,s[ - 1,1] if r  <  s. The operators of weak and restricted weak 
type (p,p) are precisely those bounded from Lp,p[— 1,1] into Lp,00[— 1,1], and 
from Lp,1[— 1,1] into Lp’°°[— 1,1] respectively.

As a general reference on Lorentz spaces see Hunt [10]. For the norm 
convergence of Legendre expansions see PoHard [15, 16, 17], Newman-Rudin
[14], Dreseler-Soardi [6], and Cartwright [4]. For the point wise convergence 
see Pollard [18] and Meaney [12]. For the weak behaviour of these expan­
sions see Chanillo [5] and Guadalupe-Pérez-Varona [91. See also the survey 
Badkov [3].

Our aim is to provide a fairly simple approach to the problem of conver­
gence and divergence of Fourier-Legendre expansions for functions in these 
Lorentz spaces. In particular we shall prove the following results.

T h e o r e m  I. Let f  be a function integrable on [—1 ,1 ]. Then if
(1 -  x2)~1̂ 4f ( x )  is also integrable, the partial sums {S nf }  of the Fourier- 
Legendre series of f  converge to f  in measure, while if  the Fourier-Legendre 
transform {f ( n )} of f  is an unbounded sequence, the partial sums {Snf }  
diverge in measure and pointwise almost everywhere.
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THEOREM II. The partial sums {Snf(x )}  of the Fourier-Legendre series 
of a function f  in T4/3,1[—1,1] converge pointwise to f ( x )  for almost every 
x in [—1,1].

T heorem III. There exist functions f  in L4/3,r[—1,1], 1 < r ^  +oo, 
with {Snf ( x )} unbounded for every x in [—1,1].

T heorem IV. Let p — 4/3 or p = 4, and let 1 ^  r, s < +oo. Then

sup{ m f } " c[log(2+’‘)1,' ' +‘-
In particular, if 1 < r ^ -foo there exist functions f  in Lp,r[— 1,1] with 

{ l l ^ n / H p  oo I unbounded, while for every function f  in i p ,1 [ — 1 , 1 ] ,  { 5 „ / }  

converges to f  in the norm of Lp'°°[— 1,1].
Theorem I is a simple corollary of the Haar-Szegö equiconvergence the­

orem between Legendre and cosine expansions, and perhaps it is already 
known. Anyhow, in our view this result explains why Theorems II, III, and 
IV, are natural. Indeed, Theorem I naturally leads to consider functions /
which are integrable against (1 -  x2) ^ 4. Since this function is the typical 
representative of L4'°°[—1,1] and this space is the dual of Z/4/3,1[—1,1], the 
connection between Legendre expansions and the Lorentz space L4/3,1[—1,1] 
is clear.

Theorem II extends Pollard’s result on the almost everywhere conver­
gence of Legendre series, while Theorem III is the analogue for Legendre 
series of Kolmogorov’s construction of an everywhere divergent trigonomet­
ric Fourier series. Theorem IV is related to the work of D. I. Cartwright on 
the Lebesgue constants associated to Jacobi series. This last theorem also 
gives a different and, we believe, very simple proof of Chanillo’s result on 
the restricted weak behaviour of Legendre expansions at the critical indexes.

We remark that since the Lorentz spaces are interpolation spaces between 
Lp-spaces, and vice versa, Theorems I, II, III, IV, imply some of the main 
results on the convergence and divergence of Legendre expansions on Lp- 
spaces. Also, it is easy to extend these theorems to more general expansions 
in Jacobi polynomials.

2 . Lagrange in te rp o la tio n  at th e  zeros of L egendre  polynom ials

Let {xfcjn} be the zeros of pn(x) ordered by 1 > x \ <n > x2,„ > . . .  > 
> xn,n > — 1, and let {4,n} be the fundamental polynomials of the Lagrange 
interpolation at the points {xfc „},

4 ,n (z) P n { x )

P n ( x k , n ) ( x  ~  x k , n )
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The n-th Lagrange polynomial which interpolates a function /  on [—1,1] 
a t the points {xfc.n} is defined by

П

L„ f(x) = lk,n(x).
k = \

We note th a t a natural domain for the definition of the operators {Ln} 
is the space C [—1,1] of continuous functions on [—1,1] with the norm || • ||oo.

S. Bernstein, G. Grünwald and J. Marcinkiewicz have constructed con­
tinuous functions /  on [—1,1] with sequences of interpolating polynomials 
diverging everywhere. However R. Askey, extending previous results of P. 
Erdos and P. Túrán, has shown that if /  is continuous on [—1,1] and p < 4, 
then l

lim [  \Lnf(x )  — f ( x ) \pdx — 0.
*»-» + °o J

-1
P. Nevai has shown that this fails if p =  4. See Askey [1], Nevai [13], 

Erdős-Vértesi [7], and also Szegő [19] and Zygmund [23] for general refer­
ences.

Our contribution is a proof of the fact that at the critical index p = 4 
the operators {L„} map C[—1,1] into LA'°°[— 1,1] uniformly. More precisely 
we have the following result.

T h e o r e m  V. Let 1 <  s <  + o o .  Then

^ } . c P o g ( 2 + „ )] '/ '.

In particular, for every function f  continuous on [—1,1], {Lnf } con­
verges to f  in the norm of Lp'°°[— 1,1], while if 1 < s < +oo there exist
functions f  continuous on [—1,1] with | | |T n/ | | 4 s |  unbounded.

Again, it is possible to prove a similar theorem for Lagrange interpolation 
at the zeros of Jacobi polynomials. In this paper we choose to consider only 
the case of Legendre polynomials in order to simplify some of the formulas 
and make the reading easier. 3

3. Proof of th e  theorems

By the inequalities 7.21.1 and 7.3.8 of Szegő [19], if —1 < x < 1,

( 1 ) |Pn(z)| ^  <
\ /n  + i ,

s / T T & ( i  -
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and also, by the asymptotic formula 8.21.18 of Szegő [19],

(2) p n ( cost?) c o s^ n  + + 0 (n  11 sinr?| 3/2).

This asymptotic formula has, as a consequence, the following equiconver- 
gence theorem between Legendre and cosine expansions (Szegő [19], Theorem 
9.1.12):

Let the function (1 -  cos2 i9)1/,4/(cos d) be integrable on [0,7r], and de­
note by sn/(cos I?) the n-th partial sum of its Fourier cosine expansion. Then, 
for — 1 < x < 1,

lim l s nf ( x )  -  (1 -  x2) 1/4snf ( x ) \  = 0,
n—►Too ! J

and, if 0 < £ < 1, the convergence is uniform in every interval e — 1 ^ x й 
< 1 - £ .

P r o o f  o f  T h e o r e m  I. Since
1 7Г

J  (1 — x 2) l^4\f(x)\dx  = J  |1 — cos2 i?|1//4|/(cos d)\dd,
- l  о

the convergence in measure of {Snf }  is an easy consequence of the H aar- 
Szegő equiconvergence theorem and Kolmogorov result on the weak be­
haviour of cosine expansions.

If the sequence {/(n)} is unbounded, the divergence in measure of {Snf }  
follows easily from the asymptotic formula (2) for Legendre polynomials, 
and the almost everywhere divergence follows from the asymptotic formula 
for Legendre polynomials and the Cantor-Lebesgue theorem. See 9.1.2 of 
Zygmund [23], and Meaney [12]. □

To apply the Haar-Szegő equiconvergence theorem to the problem of con­
vergence of Legendre expansions of functions in Lorentz spaces we need the 
following lemma which is an immediate consequence of the duality between 
the spaces L4/3,1[—1,1] and LA'°°[— 1,1].

Lemma 1. Let f  be a function in L4/3,1[—1,1]. Then the function 
|1 — cos2 i?|1/,4/(cos i9) is in Т1[0,7г], and, if 0 < £ < 1,

X[e—1,1 —e](cos^ ) |l ~ C°S2 I?|1//4/(cOS D) ÍS in Т4 3̂[0, 7г].

P r o o f  o f  T h e o r e m  II. By the Haar-Szegő equiconvergence theorem 
(5 „ /(x )}  converges provided the n-th partial sums of the cosine Fourier se­
ries of I sin i?|1/2/(cos i?) converge in cos d = x. By the Riemann localization
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principle, if I cost?] < 1 — e the cosine Fourier series of | sin i?|x/2/(cos i?) is 
equiconvergent with the cosine Fourier series of

X[e—1,1—e](cos i?)| sin г?|1/2 • /(cos d).

But by the previous lemma this function is in L4^3[0,7r] if /  is in 
X4/3>1[—1,1], and by the Carleson-Hunt theorem its cosine Fourier series 
converges almost everywhere. □

The following lemmas are easy consequences of the asymptotic formulas 
for Legendre polynomials, and of the duality between the Lorentz spaces 
Lp,r[—1,1] and Lq'a[ - 1,1] if 1 /p  + l /q  = 1 /r + l / s  =  1.

Lemma 2. ||pn||4,, ^  c[log(2 +  n)]1/*.

Lemma 3. |/(n ) | < c[log(2 -F zz)]1—̂ ||У̂ ||4/3,Г- In particular, the Fourier- 
Legendre transform { /(n)} of a function f  in X4//3,1[—1,1] converges to 0, 
while, if r > 1 there exist functions f  in L4/3,r[—1,1] with {/(«)} unbounded.

Let {pH’* } be the system of Jacobi polynomials orthonormal on [—1,1] 
with respect to the measure (1 — x 2)dx. For this system we have estimates 
analogous to (1) and (2). In particular, if — 1 < x < 1, then

(3) ’̂ O )  =
0 (n 3/2),

A„(z)(l -  z2)-3/4,

with A n bounded and oscillating. See 7.32.5 and 8.21.18 of Szegő [19]. 
Define qn(x) = (1 — x2)pn’1\ x ) .  Then, by formula 4.5.5 of Szegő [19],

qn(x) =
(n 4- l)(n  + 2) 

(2n + l)(2n + 3)
P n ( x )  -

(n +  l)(n  +  2)
(2n 4~ 3)(2n -f- 5) P n + i ( x ) .

L e m m a  4. |/(n  + 2) -  /(n )| ^ с ||/||4/3(Г. 
P roof. It is enough to observe that

I-1 f(x)qn(x)dx -
(n 4- l)(n  + 2) 

(2n 4- l)(2n + 3) f ( n )
(n + l)(n  + 2) - 

(2п4-3)(2п4-5)Л  +

and that the functions {<7„} are uniformly bounded. □
Lemma 5. Let 0 < e < 7t/4 . Then for every n and every d with e < d < 

< f  — £ one has

|p„(cosi?)| 4- |p„+2(cost?)| > c > 0.
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P roof of T heorem IV. We shall prove the theorem for functions /  
in L4,T[— 1,1] and the proof for functions in the dual space will follow. By 
Pollard’s formula,

Snf(x) f(y)dy+

( i -  x 2)1/4pn+i(*)(i -  у ) 1 qn{y)f (y)+ a n / -----------------------------------------------------
J x -  y

-Qn J  4n^ P̂ +̂ ^ ^ - dy P  ß n J  pn+l(x)pn+1(y)f(y)dy  =
- l  - X

=  OnKnf(x )  +  a „ ( l  -  x2)1/4pn+1(x)H[(l -  y2)~ll4qnf] { x ) -  

- otnqn(x)H[pn+if](x) +  ßnf ( n  + l)pn+1(a:), 
where H  denotes the Hilbert transform and K n is the operator with kernel

Kn(x , y) = pn+i(x)qn(y)
1 - 1—X2

. H / 2 .

1/4
( x  +  y ) p n + i ( x ) ( l  -  y 2 ) 4 q n ( y )

x - y ([ l - * V
l - y 2

l - x 2 '
[t = f \

1 / 2  \  

+  1 )

To obtain this expression for Kn multiply and divide by (x + y) and factor 
(1 — y2) from the denominator.

By Lemma 2,

||/ (n  +  l)p„+i||4,s ^ c[log(2 + n)]1/s| | / | |4ir,

and since by (1) and (3) the functions (1 — x2)1̂ 4pn+i(x) and (1 — у2) l ^4qn{y) 
are bounded, by the boundedness of the Hilbert transform on L4,s[— 1,1] we 
have

(1 -  x2)1/4Pn+1H[(\ -  y2) i n qnf]2\-!/4 < C
4  }s

4,S’

Lemma 6. The operator f (x)  —> (l -  x2)1̂ 4H[(l -  y2) 1/,4/ ] (x )  is 
bounded on every Lp,s[— 1,1], 4/3 < p < +oo, 1 < s < +oo.

P r o o f . The result for the spaces Lp[ - 1,1] is an extension of the M. 
Riesz theorem due to G. H. Hardy and J. E. Littlewood, but it also follows
from the fact that for p/4 < p -  1 the weight (1 — x2)P|/4 is in the Muck- 
enhoupt class Ap (see Torchinsky [20], 9.4.4). The result for Lorentz spaces 
follows by interpolation. □
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The constant c depends on e but not on n and fl.
P r o o f . Denote by the fc-th zero of pn(cost?), and assume tl 

e/2 < flk,n < tt/2  — e/ 2 and e < d < тг/2 — e. From the asymptotic form 
forp„(cosi?) it follows that i = ^ ^ 7r +  0 (n ~ 2). Also, for some consta a and b, |p„(cosi?)| > ae if \д — > be/n  for every k. (See also Trice
[21].) To prove the lemma it is thus enough to check tha t every D in i 
interval [e , ж / 2  — e \ is at a distance at least ce/n  from the set {г?*>п} or fr 
the set {i?fc,n +2}- □

P r o o f  o f  T h e o r e m  III. Let те* = 22*. By Lemmas 3 and 4, if r  : 
there exist functions gk with ||<7*||4/3г £ c and with gk(nk) > (logn*)1-
and gk(nk +  2) > (logii*)1-1/ r . By cutting the Fourier-Legendre transfc 
of gk with suitable smooth multipliers we may also assume that gk(j) — 1 
0 ^ j  < 2-1 те* or j  > 2те*.

+oo

Define f ( x )  = Y  k~2gk(x)- This function is in L4' 3,r[—1,1] and fr 
k=i

sequences {/(те*;)} and {/(те*; +  2)} diverge to + 00. Using Lemma 5 it is t] 
easy to see th a t for every x with 0 < x < 1 the sequence {|/(те*)рП|, (z) 
+  |/(те* + 2)рПк+2{х )\) is unbounded. Since the polynomials рПк and pn 
are even, the same is true for every x with — 1 < x < 0. Since p„fc(T 
= p„t ( - l )  =  (те* + 1/2)1/ 2 and pnjc(0) = (2/тг)1/2, the above sequena 
unbounded even for x = —1,0,1.

We have thus proved that for every x in [—1,1] the sequence {/(n)p„(
+00 „

is unbounded, so that the series Y  f ( n )Pn(x ) cannot converge. □
п —0

The point of departure for the proof of Theorem IV is the follow 
rearrangement of the Christoffel-Darboux formula, which is due to H. Poll 
(§9 of Pollard [15] or §2 of Pollard [16]):

Snf ( x ) =
71 +  1

yJ^Ti -{- \yj2n -j- 3

I

/
-1

Pn+l(x)pn(y ) -  Pn(x )Pn+l(y)
X -  у f(y)dy =

= a „ P„+1(x) P n ± M m dy+
J  x -  У J  x -  у

- l  - l

l
+ßnPn+l(x) J  Pn+i(y)f (y)dy,

-1

w ith  { a „ }  —»■ 1/2, {ßn} —■► —1/2, a n d  as b e f o r e  qn(x) =  (1 — x2)p„'1\x ) .
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From (1), (3), and this lemma, we immediately obtain

И?пЯ[рп+1/ ] |к .  ^ cll/lk .-

Finally, by the duality between L4/3,f[—1,1] and L4’r [-1,1] if l / f  + l / r  = 1, 
and since |K n{x,y)\ <i 2|pn+1(x)||(l -  y2)~1qn(y)\,

1

I /- l
K n(x ,y)f(y)dy < c|pn+i(z )| (1 -  y2) 1qn

4 /3 ,  t
4 ,r -

Then, by Lemma 2 and the analogous statement for the system ’1 ,

\\K»f\U.. S c||P„+itU,.l!(i -  y! r 1?-ll4/3,1ll / lk , S
< c[log(2 + n)]1-r+j||/||4r.

If г < s, then H/lk* ^ с ||/ | |4)Г, so that collecting all these estimates we obtain 
the desired upper bound for the norm of Sn as operator from L4,r[—1,1] into 
L4,t[— 1,1] in the case 1 < r < s < +oo.

In the case 1 < s < r < +oo we argue as follows. A moment’s reflection 
shows that it is enough to prove the inequality

11̂ п52п||4,, ^ c[l°g(2 + n)]1 \\g2n I4 ,r

for every polynomial g2n of degree 2n. Indeed, using a variant of the delayed 
means of de la Vallée-Poussin, for every function /  in L4,r[ - 1 ,1] it is possible 
to construct polynomials g2n of degree at most 2n with f (k)  = g2n(k) if 
О ^ к < n, and | |5 2 n | |4,r ^ c ||/ ||4,r . (See e.g. Zygmund [22] or Askey [2].)

Lemma 7. Let 1 < s <  r <  +oo. Then for every polynomial gn of degree 
n we have

1Ы |4,, ^ c[log(2 +  n)]7-7 ||Pn||4 r .

P roof. |í7r*(̂ )| ^ E  \<ln(k )\\Jk + \  ^ ^ { E  l<7n(*0|2} '  ■ Hence

~!U.. = { | / [ < 1/4s;(‘) ] ' j } V,Sc{(l + »r j  i*/4* } 1/'||J„|L,,r+Ik

4 / T гч I ^
(1+n)-4
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< c[log(2 + n )]Í  ‘ ||sf„||4tr. □

We have already proved that the norm of Sn on i 4,s[—1,1] is at most 
clog(2 + n), so tha t if s < r using the above lemma we obtain

l|S»<72n||4li ^  clog(2 + n)||52n||4)i < c[log(2 +  n)]1- r  + 7||^2n||4 r .

To obtain a lower bound for the norm of Sn as operator from L4,r[—1,1] 
into LA'a[— 1,1] we use as a test function

ч _  í  9n(y)( 1 -  У)~1/2 if 0 < у < 1,
JKV) \  0 if -  1 < у < 0.

It is easy to see that | | / | |4,s — c[log(2 + n)]1/,s, and

||/(n  + l)pn+ i||4,. + \\qnH[pn+1f]\\4s+

+ (1 -  z 2)1/4pn+1tf[ ( l  -  y2) l/Aqnf ] < c[log(2 + n)]1/s
4  }8

Also, if 1/2 < x < 1,
X

\K n f ( x )\ ^  c|pn+1(x)| J  ( l  -  y)~xdy > clog(l -  x)~x |p„+i(a;)|,
о

so that | | / t „ / | |4iS ^  c[log(2 + n)]1+1/*.
Since | | / | |4,r c[log(2 + n)]1/,r, these estimates imply that

Н^п/Щ > c[log(2 + n)]x '  + < 4 , r - □
Let {Afcin} be the Christoffel numbers of the Gauss quadrature at the 

points {it,«}. These are positive numbers defined by

Í  "
/  9 2 n - l ( x ) d x  =  y ~ ] g 2 n - l ( ^ f c , n ) A f c , n  

-1

for every polynomial gin-i of degree at most 2n — 1.
Using the positivity of the Cesaro means of order two and a variant of 

the delayed means of de la Vallée-Poussin, A. Zygmund has shown that if 
f = P = + °° and if 9n is a polynomial of degree n, then

{ £  lön^fc.n)  ̂ ^  C\̂ J ^  ’
f c = l - 1
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where c is an absolute constant. See Zygmund [22] and Askey [1,2]. 
Theorem V is an easy consequence of this result and Theorem IV.
P r o o f  o f  T h e o r e m  V .  Let /  be in C [ - 1 ,1 ] and g be in L4/3>1[ - 1 ,1]. 

Then,
l l

[ I  Lnf(x)g(x)dx = J  Lnf ( x ) S n-ig(x)dx =
- 1  - 1  

П П

= \52f(*k,n)Sn-ig(Xk,n)bk,n й l l / I U E
*r=l к- 1

1
^ cUfWooj  \ s n- l 9 ( y ) \ d y  < c \ \ f U \ S n^ g \ \ 4/3i00 Í  cll/IUH^IU/зд.

-1
We have thus proved that ||L n/ | | 4,oo ^  сЦ/Цоо. Since Lnf  is a polynomial 

of degree at most n — 1, by Lemma 7 we also have
W n f h , .  й c[log(2 + n)]1/*||Ln/ | | 4i00 < c[log(2 + n)]1/* ||/ |U .

To estimate the norm of Ln from below we need a continuous function 
/  with norm one, and such that

Л  i Ä f e l l  i f l S * S [ » / 2 ],
0 if [n/2] < к < n.

f ( Xk, n)

Then, if -1  < x < -1 /2 , 
h / 2 ]

\Lnf(x)\  = ' Pn(x)
Y  —

Ь п ^ .п Ж *  -  *fc,n)

[n/2]
^ ^bn(x)i Y  bn(*fc,n)ix-

k=  1

But, by Szegő [19] 8.9.2, |р0(ж*,п)1-1 — ck3/ 2n ~5/2, so that, if — 1 < x < 
< —1/2, then \Lnf(x)\>c\pn(x)\. This estimate and the asymptotic formula 
for Legendre polynomials imply that

ll^n/||4,^ c[lo g (2  + n)]1/* ||/||00. □

4. C oncluding rem ark s
The first observation is that if a function /  in Xp[—1,1], p  > 1, is sup­

ported away from the points +1 and —1, then its Legendre-Fourier series 
converges almost everywhere. However it is possible to construct functions 
/  in T4/3,r[—1,1], r > 1, which are supported in an interval [1 — e, 1] with 
£ arbitrarily small, but with Legendre-Fourier series diverging everywhere. 
Therefore for the operators {5n} there is no localization. For the operators 
{Ln} a sort of localization holds only away from the points +1 and —1.

The second observation is that using the family {qn} as test functions it is 
possible to prove a stronger version of the divergence results in Theorem IV.
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T heorem VI. Let E 0 C Ei C E? . . .  be an increasing sequence of sub­
sets of the integers, and define

SEnf (x)  = H k)Pk(x )-
k£En

Then there exist functions f  in X4/3,r[—1,1], 1 < r ^ -foo, with
I II^En/IU/a oo} unbounded. Similarly, if  1 < s < -foo then there exist func­

tions f  in L4,1[ - 1,1] with I ||5'j5n/ | | 4 s |  unbounded.

Proof. If к £ E n but к + 2 ^ E n , then

Н ^п Ы 4 , s

(fc +  1)(& + 2)
(2 к + l)(2fc + 3) Pk > c[log(2 +  fc)]1/s|kfc||4ir. □

4 , i

The above theorem is essentially contained in Giulini-Soardi-Travaglini 
[8] or Dreseler-Soardi [6]. Note that we make no assumptions on the or­
dering and the cardinality of the sets {£n}- Since the system of Legendre 
polynomials is an unconditional basis only for the space L2[—1,1], it is clear 
that without extra assumptions on these sets we cannot expect the operators 
{•S’#,,} to be of restricted weak type.

The last observation is that for functions with some smoothness we can 
improve the convergence result in Theorem V.

Let C a[—1,1], 0 < q < 1, be the subspace of C[—1,1] defined by the 
norm

ll / l lc  = + sup 1 /(») -  f(y)I
\x -  у I“ — 1 < X, у < 1

and let Cq [—1,1] be the closure in C “ [—1,1] of the set of polynomials.
The following theorem holds.

T heorem VII. For every function f  in the Lipschitz space Cő[—1,1], 
0 < a ^  1/4, we have

lim УLnf  -  /Ц4/Г1- 2«) = 0-

If 0 < a  < 1/4 and p  > 4/(1 -  2a) then there exist functions f  in Cq [—1,1] 
with { ||Ln/ | |p} unbounded.

P ro o f . By Jackson’s theorem if /  is in C q [—1,1] then there exist poly­
nomials gn of degree at most n such that

lim n " | | / - f f „ | |0o = 0.n—> + 0 0
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(See e.g. Lorentz [11].) On the other hand, by computations similar to 
those in the proof of Theorems IV and V, if /  is a bounded function and 
4 < p < + 00, then

IIL./II, í  ™1/2-2/l / I U
Hence

rilimoo||Ln/ - / ||4/(i_2 a )<

=  "  5 n - l ] | |4/ ( l - 2 a )  +  № n - l  -  / I U /( 1- 2 « ) )  ^

< clim sup и"II/ -  Sn-illoc =  o.
n—>+oo

Test functions similar to those used in the proof of Theorem V show that the 
norms of the operators {Ln} from Cq [—1,1] into Lp[—1,1] are not uniformly 
bounded if p > 4/(1 — 2a). □

The case a = 1/2 and p — +oo of the above theorem is contained in 
Theorem 14.4 of Szegő [19].

Finally, I wish to thank Giancarlo Travaglini for several discussions on 
the subject of this paper.
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ON THE CONTROL OF A CIRCULAR MEMBRANE. I
I. JOÓ (Budap est)

Let Я := {(x , y ) : x2 + y2 < 1} C R2 be the unit circle, and take 
some (different) points P i , . . .  , Pn  € Я, Sn +i , - - -Sm  G дЯ.  Consider the 
following system for и = u{t,x,y):

( 1 )

( 2)

(3 )

du
dr

N

uH = Д и +  £ ó ( ( x , y ) ~  Pj)vj, 
i=l 

M

= ^ 2  S(s ~ s ^ vi '  s G ö íí>апх(о ,г) j = N+1
«(О,.,.) = Wf(0,.,.) = О

with controls Vj(t) € L2(0,T).
We shall investigate the approximative controllability of the system (1)-

(3) describing the control of the circular membrane in the points P j  ( j  = 
= 1 ,. . .  , N) ,  S j  (j = N  + 1 , . . .  , M).  First we give an outline of the related 
results (known for us). The analogous control problem when a rectangular 
membrane is controlled in one side of the rectangle, is investigated in [4]. 
The independence of the movement of a membrane in finitely many different 
points is proved for the rectangular membrane in [5] and [6]. In [6] the author 
of the present paper used Lemma 7 below which was unnecessarily strong 
because we need for that problem only the completeness of the exponentials. 
The “real” application of Lemma 7 would be a control problem; this m oti­
vated the author in finding the problem of the present note. For the circular 
membrane the problem is solved partly in [7], the complete solution is given 
in [8]. We shall use some ideas of [4] and [8] here.

Introduce the eigenfunctions

(4) — A<p = \ 2ip, — 0 on dЯ
dr

corresponding to (l)-(3). For fixed m=  1 ,2 ,. . .  denote 0 < < . . .
the zeros of J'm, where J m is the Bessel function of order m. It is known [1] 
that if we take polar coordinates x = r cos tp, у = r sin tp, then [4] has the 
solutions
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4>m,,„(*> у)  •= Jm (AÍ,ra)r )  cos rrup, <рт п (х, y):=Jm ( Alm)r)  sin rrup,

(m — 0 ,1 ,. . .  ; n = 1 ,2 ,. . .)

and A±,„ := AÍm).
It is known [1] that the eigenfunctions 1,у?оп, giye a complete

orthogonal system in the weighted space £;?((0,1) X (0,27t)) and

1 T ( \ (m)\ / - \
(4') | | < J 2 =  * | | / m ( A ^ ) r ) |2 -r  d r  — 7Г 1 - m

x (m)2

<^Ín

1
= 27Г J  Jo(A ^r) r dr — 7Г J0(A ^ r)

this follows from [10] 7.14.1 (10) and 7.2.8 (56)-(57). Next we refine the 
meaning of (l)-(3 ). Consider a function z (t,x ,y ) with the properties

z ( T , ; - ) = Z t(T ,;- )  = 0, ^ = 0.
anx(o,T)
T

Taking a formal twofold integration by parts in f  f  uztt and a formal appli-
o n

cation of Green’s formula in J  f  uAz  we get
о n

T T T M

(5) J  J  u(ztt - A z ) =  J  J  z(utt -  A u ) + J  z (-’ Sj )v3 =
0 n 0 n

Г /  N  M  \

= /  w 2 z t ' pj)vi + Y 1  * ( - л ы -
n 1 ] = N +1 Aö ' J - 3  j = N + l

We ask for the solution и in the form

lí(f, X, y )  =  C0(í) +  сО,п(0?О,„(*> y)+J2  Cm,r>(i )V?m,n(a:> J/);
n=l

then we have

Co(0 =  ~  /  W, C^ n(i) = -----  /  7m,n =  llv’m.nll2 -
** J 7m,n У

íí Í7
Apply (5) to  the function
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z(t ,X,y)  = <?*,„(*, г/ЖО 

where b e C2[0,T], 6(T) = Ь'(Г) = 0. We get

T T

~ /m ,n  J  (V +  (А("‘))2б) C± „ =  J  b h t ,n,
0 0 

N  M

'■= '52<P™APj)vÁ t )+  X ) ^m ,n(S j> ,(0
i = l  i = A T + l

i.e.

( 6)
dh /#ч _ L  /  sin Alm)( t - T ) Lj:

i ( m ) K x A T) dT

and analogously c0(i) = \  J(t  -  r )  Vj{r)dT.  Introduce the notation

"m,n •“

(  <Pm,n(Pl) \  

V’m.níÜV+l) v(0  : =
Ы *)

V )

T h e n  h m , n  =  ( u > e m , n ) -  Define the spaces

Г
Wr := \ f  = c0 +  co,n^o,r, + 2  :

*■ n  =  l

2 _
W r —

-  lco| + £ ■
m >  0  
n> 1

7m,n ±
^m.n

Uimi
2 r

< 00}
and let 7ir := Wr+1 ® Wr. Here ^2* is the sum over all indices m , n satisfying 
|em,n| Ф 0- Denote further

£,.(«):=at“>c£,(t)+<n(i), Й .- ( ‘):=-«!Г,< п (‘)+ < .(0 .
j4cia M athematica  Hungarica 61, 1993
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then

t

«S,„(0 =  Г1 -  /  eÍA," ’(,- r)/ m,n */
0

t

Й ,-„ (0  = r -  /  «-'v -",(' - r | M O ,< „ >/ m,n J  
0

If we introduce the notations

K:=Z\{0}, := Aj£|Sgn A; (m € N, A; € K),
we can give a unified form

(7) f i t * «  := ^  > ( » М . т Ф ч )  *7m,n ./ \  |em,n I j

( m  G N, fc G K, n = |fc|). 

We need the following simple

Lemma 1. L e t

f  = G o  +  4 n ^ 0 , n  +  S  a m , n ¥ > m , n >

n = l

9  =  b °  +  53 60 ,n^0 ,n +  53
n  =  l

^ m , f c  : =  « ‘ > m , f c 0 m , n  +  b m , n ,  71 : =  1 * 1 -

TTien th e  m a p p i n g

{ / ,« } - {o o .b o J ^ r ío ttr ^ .l^ r íí.tr F l^ e N .fc e K , \ e f
le0 ,nl

r±  7m,n _ 

I €m,n I

e s t a b l i s h e s  a n  i s o m o r p h i s m  b e t w e e n  H r  a n d  l ? .  

Now we can prove

,nl 7^0
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T heorem 1. For r < — 1/2 and for any control v G L2 (0,T; CN) we 
have

{ u , u t }  € C([0,r],Wr).

P roof. The statement {u ,u t} G Wr means by (7) and Lemma 1 that

But we know ([1]) that the distance between the consecutive zeros of Jm 
tends to 7Г decreasingly and that the zeros of Jm and J'm are interlacing. So 
the zeros of J'm can be divided into two separate sequences, i.e. for which 
/ i n + 1  —  / х п  >  7 Г .  Therefore the Bessel inequality holds for them (see in [11]), 
and then

where c < oo is independent of m. From the estimate |cjmifc|r  ̂ (m -f l ) r we 
obtain (8). The continuity of {u(t, •, •), ut(t, •, •)} G Tir in t G [0,T] can be 
proved similarly as in [14]. □

R emark. Analogous investigations concerning vibrating strings are giv­
en in [14].

D efinition. The system (l)-(3 ) is approximately controllable in a finite 
time T  if the set of all reachable movement states

R(T)  := {{«(Г , -, •), ut(T , ., •)}; v G L 2( 0 ,T  : C N )}

is dense in 7ir. We shall prove

T heorem 2. The system (l)-(3 ) is not approximately controllable, i.e. 
R( T)  is not dense in 7ir, for any T  > 0 and r < —1/2.

P roof. Suppose that P j  ^  0 for all j .  Then for any T  > 0 the system

e(A) := i П Т У ""* '*" : m  G N, к G К, n = |*|, |e±,„| ф 0

contains a Riesz basis in L2(0,T; CN).
A similar statement was proved in [8]. We shall transform some ideas 

applied there to our case.
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/т ч
Lemma 2. I f  we arrange the positive zeros A„ ' of J'm increasingly into 

a sequence 0 < p\ < P2 < • ■ ■ then

Hn+i -  A*» -»• о (n -> oo).

P roof. We start with the asymptotical formula [1]

Jm(x) = —7=\ 1 -
arctan w

[Л/з(*) + J - 1/3(*)] + 0 (m  4/3), 

Гх*:= \ —-  — 1, z := m lw — arctan in),
V m 2

VS

x > m, w : 

where the О-term is uniform in x. Since

we also need the notations

w 1 := (m — l)2
— 1 ,  Z\ := (m — l)(tui — arctanw\),

w2 := — 1, Z2 := (m  + l)(u ;2 — arctan W2).
(m  + l)2

We shall consider for fixed c > 1 the values

x = m \/  c2 +  1 + t, t = 0{m }!z) 

with large m. In this case

(m — l)u;x — mw = у /  x 2 — (m — l ) 2 — у /  x2 — m2 =

= y / S -  m 2 +  0 (» - > ) )  = ^ = + 0 Q .

hence

Now

m{w\ — te) =  -f
m

%/a;2 —m ‘
+ o ( i ) .

у/x2 — m2 = c2t2 + 2ím\/c2"+ 1 + f2 = cm 1̂ + — 2~*~— + 0(m */3)̂
i d c  M aihtm atica  Hungarica. 61, 1993
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hence
=  =  A  + 0 ( - L )  = J -  +  0 ( m - 5/3).
■ — m.2 me \ m o  mey/x2 — m 2 me \ m 2 ' me

Further we have

= — — - \ A 2 -  m 2 +  2m -  1 =  — — -cm\ l + О ( =  c +  0 (m  2/3) 
m -  1 m -  I V  \m /

-  tn) = c +  -  + 0 (m -2/3).

Wl

and then

Now we can calculate 

m
Z\ — z —

y/x2 — m i
4- arctan wi 4- m(arctanu) — arctan  Wi) + o (  — ̂  .

V m J

Since

hence

z\

arctan w\ = arctan  c + 0 ( m  2/ 3),
1v — Wi ,9.

arctan in — a rc ta n a i =  -------- j  + 0(]w  — u>x| ),
1 + wf

-  z =  - - f  a rc tan c ------í - ^  + Oím 2/3) -  -  + a r c ta n c -  ° + c. + 0 ( m  2̂ 3)
c l + W{ с 1 + c2

i.e.

( 10)

Analogously

z\ — z = arctan c +  0 (m 2/3).

mw — (m 4- l)u ;2 =  \ J x 2 — m 2 -  \ J x 2 — (m + l )2 =  m — +  О f ) =
y/x2 — m 2 V 7тг/

= -  + 0 ( m - 2/3),c
W 2 =  C +  0(771-2/3),

mu; -  u;2 = ге2 +  W +  О (  —) = c +  -  +  0 (m _2/3),
V i 2 -  7712 ^771/ c

and then

(100 z — 2x = arctan c 4- 0 (m 2/3).
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Using asymptotical formulae ([1]) for /±1/3, we obtain for x =  т у/c2 + 1 + 1

( H )

J m ( x ) =  \
1 arctan w 1 ( x <1 , 1\ \ , (  7Гr 1 , 1\ \

V 1 - w yfz COS(z _ 2 ^3 + 2) + cos ( г  — —Гз + 2 / )

4 ű ( l ) ] + 0 (m -/’ ) = [cos (z - i )+ 0 (m -5/li)

hence

2 . C ( x )  =  A . - , ( x ) - A . + . ( * )  =  [ c o s ( z , - j )  + 0 ( m - s ' e )

" V iv F T T H [ cos(22^ )  + 0(m"5,6,] =
S( Zl~ D  ~ cos( z2 - j ) + 0 ( m ~ 5/6)= 0 (m " 3/2) +vyy/mw

1
7Г y/mw

Applying ( 10) and (10') we obtain

„ . , *1  +  z 2 n \  . z i  -  z2 - 2 s m [ — - j j s m — — + 0 ( m - s/e)

1̂ + -̂ 2 = z + 0 (m " 2/3), Zi -  z2 = arctan c + 0 (m  2/3).

If we denote у := sin arctané, then 0 < arctané < |  implies that c = 

i.e. sin(arctanc) = y/c2+i • Consequently

(i2 ) ^ ( x )  =  - v f  v r f n  v ^ H 2 _  i ) + 0 ( m " 2/3)l-
Since z is a monotone increasing function of x, we see from (12) that J'm(x)

( m )must have a zero x = ' i f  z =  j  + kit and if the value x corresponding to
z has the form 

Denote 

then

w =

z = т у /  c2 -f 1 + t, t — 0 (m 1/i3). 

/4"^ -  т у/с1 +  1 +  4 m);

-  1 = + 2 v ^ T T m 4 m| +  =

= c ( 1 + A 5 i r +0(m-v3;
m
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and
1

arctan w -- arctan с H---- .... —-----Ь 0(m ~ 4' 3).
c y / ^ T l  m  T y ’

Consequently

z = m(w — arctan w) = m(c — arctan c) 4—  ------- + 0 (m ~ 1̂ 3),
VC2 + 1

hence
m(c — arctan с) H—  C + 0 (m -1/3) = — + &7Г.

v/c^TT 4
From here

(13) ( ш )  _  Ус2 + 1 7Г
— + kit — m(c — arctan c) + 0 (m  x̂ 3)

i.e.

(14) /4’^  — m  \ / c 2 + 1  + í j."v = ír(m) \/c2 + 1 Г
c

fc-f---- \-m4 arctan c
+  0 (m -1/3).

Now we can easily prove Lemma 2. Let i  > 0 be a large number. Choose m 0 
with x = m0\/c2 + 1 + 0(1) and k0 with 4™°̂  =  0(1). Then if we choose any
k = k0 + 0 (m 1/3), m — mo + 0 (m x/3), we have t ^  = 0 (m x/3). Suppose 
that arc ânc is irrational. Then the mod 1 distribution of its multiples is 
uniform and hence we can choose m = mo + 0 (m x/3) such that

(15)
xc

■Ky/c2 -f 1 4
1 arctan c 

------- m -----------
7Г

= om(l)  (m -» oo).

where ||t/|| denotes the distance of у from the set Z of integers. (15) means 
that for some k € Z

x = 7Г-
V c 2 + 1 1 arctan cl

k +  -  +  m4 7Г
+ Ox(l)  — f l ^ ) k  + Ox(l) .

From x — + 0(1 ) we obtain that k =  fco + 0 (m 1/3). Lemma 2 is proved.
Next we need

Lemma 3 [8 ]. I f  0  ^ v?i < . . .  < <рм  <  2 n ,  t h e n  t h e  v e c t o r s

cos m<pism m<p 1 

, sin гтрм,
m  =  0 ,1 ,. . .  , M  — 1

„ COS пирм ,
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s p a n  th e  s p a c e  C M .

Consider the points P j  — (rj, <pj), S j  = given by its polar coordi­
nates. A rrange the indices such th a t г \ ,Г 2 , . . .  , r/v0, r/v0+i are all different, 
r/Vo+i =  1 and the o ther ry do not give new values. Introduce further the 
sets aj =  {£: rj = 77} for j  = 1, . . .  , JV0 +  1; and the notation

d j  : =  y j r ^ c 2 +  1) -  1.

Suppose th a t P j  is not the origin for all j  and r 2(c2 +  1) -  1 > 0. We shall 
use the following fact.

Lemma 4 [8 ]. T h e r e  e x i s t s  a r e s i d u a l  s e t  D  C [1, oo) s u c h  t h a t  f o r  c E D  
a n y  e q u a t i o n  o f  th e  f o r m

N 0 M
0 = птт -f- 7io arctan c +  nj arctan dj 4- E  n'jTj

j = 1 j = l

w i th  e n t i r e  c o e f f i c i e n t s  n , n j ,  n' i m p l i e s

n 0 -- n \  =  . . .  = n/v0 -  0.

Next we define a basis e \ , . . .  , е м  of RM as follows. For fixed j  the 
values (pt, £ E cry m ust be different, so by Lemma 3 we get a basis in the 
coordinates £ E  о  j .  We define the other coordinates to be zeros and consider 
these vectors together for 1 < j  ^  No + 1 . Then multiply the j - th  coordinate 
by —4= for 1 ^ j  < M . The resulting set of vectors will be denoted by

V d j

e i , . . .  , е м ; they form obviously a basis in RM.

Lemma 5. S u p p o s e  th a t  P j  i s  n o t  th e  o r i g i n  f o r  a n y  j . L e t  e ,  T  > 0 be 
a r b i t r a r y .  T h e  s e t  e(A) c o n t a i n s  a  s u b s y s t e m

Ф p= {<0J p ± i \ n, j t  
n c j  =  1 ,- .. , M \  n  = 1, 2 , . . . }  U {e^e*A°.A ■ , m )

s u c h  t h a t

(a) e" ~ Ä < £ , ; = ! , ••• , M, 71 — 0 , 1 , . . .  ,

(b) A n , j  ~  2 ?r < £, j  — 1 , • .. , M \  n  >  tiq

f o r  s o m e  l a r g e  n 0 .

P roof. The construction of e Jn  and Anj will be given only for j  = 1; for 
other j  it goes in a similar manner.

Choose с  E D (see Lemma 4) satisfying

3 > min r jy jc1 + 1 > 2.
3
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Let first n be large and approximate x = 2п^  by the jj, a s  in Lemma 2. 
We can choose c such that the further condition

(16)
n c 1
T  \/c2 + 1 8 < £'

holds; if the construction goes with j  € сг.л/о+ъ (16) must be substituted by
n c 1

+ < £2.(16<) T s / J T i  • 8

Take m 0 with 2 ir^ = m0\/c 2 + 1 + 0 (1) and k0 with = 0(1); then
2 n^  = + 0 (1 ). The estimate

Vc 2 + 1£ > 0  И  ( m )
=  7Г -

T y / Z T T  4
1 arctan c — - — m ------------- к

7Г

can be ensured if we require 

(17) arctan c
m- < £ 2.

Indeed, if we take m  — tuq + 0(1) satisfying (17) then we get к £ Z such 
< 2s2 and then к = &o +  0(1) follows for small £. Definethat 

the vectors

p+
cmfcO —

By (11)

 ̂ cosmiyj1J m(A[m)r 1)

V cos m ^ M Jm (A[m)rM) ,
"mfcO

sinmy?1J m(A[m)r 1)  ̂

, sin m^M^m(A[mVM) /

= v f  Н г> -  ! ) + °("*_5/e) =

= V í ^ [ CO5(v - í ) + 0 (">'5/6)];
where we used that

üi = \ / 7'j[MÍm)]2- ”22 = \ /m 2(r |(c 2 + l ) - l )  +  r^2\/c2 + lm 4 m) + [4"^f =mil).

- mdj Í
2r2V cr + i t (lT )

1 + 7,--------+  0 ( m - 4/3) =
3 m

(  r2V ^ T i t i m) _4/,  \
-  md-j [ 1 + ■ --------— + 0 (m  4/3) .

d) m
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Further we have by (13)

r ] у / c2 -(- 1 /  1 \ /m\
Zj =  m(u;j — arctan Wj) =  m (d j — arctan dj)  ------ - ------- (̂ 1 -  -— tKk ;+

3  4 ” J

+0 ( m  a/3)=  m(dj  — arctan dj) +  —= j =  +  0 ( m  1/,э) =
v c 2 + 1

= - Í  ^  + kn'j +  arctané — arc tandj'j +  О (m  1/3).

If we have an m = m0 +  0 (1 )  satisfying (17), for the corresponding к we 
obtain

arctan  с n с 1 „ 9 . ,' + 2 ——p = = =  — -  + 2p£:2, H < 1 .A: = —m-
7Г T y/c2 +  1 4

Consequently for large m

ТЬ CL 1

= 2?rT ^ T T

hence

(18) =
■yfmdj

m  arctan dj  +  8pi£2, |pi| < 1,

[cos(m arctan dj — 7y) +  8p2£2]>

with some |^ 2| < 1- Here 7y := 27r ^ _ > -^ j 4. Define the vectors

cos my?! cos(m arctan di — 7x) \

• 5
^=== cos терм cos(m arctan djvf -  7m ) /  

sin my?i cos(m arctan  cfi — 71) 'S

^== sin пиры  cos(m arctan dj^ -  7л/) /

The estim ate (18) implies

(19) Iemfe0 *  emfcll ^ \ [ ~ 8mQ3£2' Ы  < L

Take the number 0 < m '  < |<t i | — 1 such that the O th  coordinates of e\ are 
-̂ == cos m'ipi ^or sin m'yp^j . Consider for m  = mo + 0(1) the following
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problem of simultaneous diophantine approximation:

( 20)

|m arc£n.c|| < £2

m
2л

arctan di _ У\_
2л 2л < Л

т arctan d, 7; + § 
2л 2я~

£1 -  m '£l  I

< £2, 2 < ;  < TVo,

This system implies

arctan di 7,- 1m ---------- ^ -
2тг 2тг 4 < 2 ei

also for j  — No + 1, since in this case

dNo+1 -  c, N 0 + 1 = 2л- n 7Г 

+ TiT \/c2 + 1 4

and
7N0 + 1 -  f n c 1

27Г T  y/c2 + 1 8 < £ 2.

The system (20) has a solution m  — m o  + 0(1) if and only if for any integers 
7i j , n'j for which

n 0
arctan c \ —> arctan di \ —> ,

3 = 1  <е*1

f i
2 7Г

is entire, the expression

7i
No

ni 2тг + E  ni 
i=i

ъ  -
27Г — + n^m/

ê<ri 2tt

is also entire ([9]). This property holds by Lemma 4, hence (20) has a 
solution. For this solution we get

7 Г 7 П

епгк1 -  el = 0 (£2)-

Taking into account (19) this means that

'rnkO _  _£i_ 

'inL-O I le i l
= 0 (e 2) < £
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e m k O

lemfcol
0 (£2) < £ if £ > 0 is small enough. Now we define

1 __ CmkOe„ :=
o+(1T)l~mkO I

V 1 (n
:= Rk

then (a) and (b) hold for large n, say, for n > n0. For j  E crjv0+i the 
construction is similar, only (16) is substituted by (16') and (20) by

( 20')

Then

m

m-
2 7Г 

arctan d

2тг 2 _ 7 l± í

\m !£i2tt to'£ i | 2тг I

2n
<  £ ‘

< £ 2, j  =  l,-
, l  E <7̂ 0+1.

..,JVo,

arctan d^0+i 7jv0+i
m -----------------------  —

27Г 27Г
rn arctan c 

27Г

n c 1^
т у Р т Т + 8^

< 2e2

and the above arguments apply. In case 0 < n < n0 we repeat the above 
process with

x —
(2 n 0 +  1)7T x = (2n0 + 3)tt (4n0 -  1)7Г

instead of x — If we choose £ < the values /4,"^ will be different
from the values constructed in the earlier steps. Lemma 5 is proved.

L emma  6 [5, 6]. Suppose that the system enelXnt : n E Z is a Riesz basis 
in L2 (0,T ;C M). Then there exists an £ > 0 such that

€ C, |A„ — A(J < £

implies that {епе,Л”*} is also a Riesz basis in L2(0,T; CM). The constant £ 
depends only on T  and 0 < c ú C < oo, where

E IE » - enei \ n t

s c E Otr

namely e^c — 1 < y/c/C is sufficient.

LEMMA 7. Let ene,Xnt : n E Z be a Riesz basis in L2( 0 , T ; C M) and let 
Aq E C, Aq ф An , n E Z. Then the new system

е0е,хо \  e„eiXnt (n E Z \  {0})
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forms also a Riesz basis in T2(0,T; CM).

The proof requires some notions and theorems of the theory of vector 
exponentials. The matrix valued function

F:  C+ CMxM

is called strong //^-function ([3]) if £ Я 2(CM) for every e £ CM, Л £ 
£ C+; here Я 2 is the ordinary Hardy space on the upper half plane. The 
strong Я 2-function F  is called strong outer Я 2-function if we have also

z — i \ n F(z)e4) : e 6 CM, n £ N f = Н Ц CM),z + г/ z -f г
чМ\

where \J denotes the closed linear hull in Я 2 (C ^). The strong (outer) Я£- 
functions are defined similarly, only Я 2 is replaced by Я 2, C+ by C_ and 
±i  by i. If {e„e,Aní : n £ Z) is a Riesz basis in L2(0,T; CM) then there 
exists an entire function F: C —► CMxM (the so-called generating function) 
having the factorizations

(2 n  ( F(z) = H(z)-F+(z ) (z €C + ),
Í F(z) = eiTzF~(z) (z £ C_),

where jp* are strong outer Я ^-functions and П(г) is the Blaschke-Potapov 
product corresponding to

(22) Ker П*(АП) = \ / cM{ek ;Xk = An} = En.

Now consider a system {ene 'Aní : n £ Z}, where |e„| x  1 and 0 < 6 < 
|ImAn| < Я  < oo, n £ Z. Suppose that there exists a generating function 
F(z) satisfying (21), where П is defined by (22). Then

T h e o r e m  A [3]. The following statements are equivalent:
1) {e„e‘Aní : n £ Z} is a Riesz basis in L2(0,T; CM),
2) The same system is a Riesz basis in its closed linear hull in L2{0, oo; CM)

and

(23) ||i^(a:)/Ztz(a:)||b2(R)c ^ )  ^ c l l^ M a O lb iR .c ^ )

holds for all functions и with F(x)u(x) £ L2(R, C ^), where H denotes the 
Hilbert transform

Hu(x)  —  p.v. f  Û  dt.
2n J x — t

R
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Now we are able to prove Lemma 7. Since {e„e’Ant : n G Z} is a Riesz 
basis, there exists a generating function F(z).  We can assume that the 
Blaschke-Potapov product II(z) has the form

n(z) = bo(z)bl (z)b-i{z)b2{z)b.2{ z ) . . .

where

bo(z) = С /'1 (  ° )  U
V о Im- г )

with some unitary matrix U transforming E q onto the subset of CM consist­
ing of the vectors vanishing in the last M  — r coordinates, r = dim Eq and 
Ir is the r  x r  identity matrix. We can also suppose that

U : e0

[ Л
о

v o /

Now define

and let

F0 (z) = U- 1
0

Im - l
U

Fi(z) := F0 (z)F(z).

Then Fi(z ) is entire and it is a strong ii£-function. Consequently ([2]) 
there exists a factorization F\ — 0 F e+l5 where 0  is an operator valued inner 
function and F^x is a strong outer Я ^ -function. Potapov proved in [12] that 
0  can be further factorized in the form 0  = IIiS, where П1 is the Blaschke- 
Potapov product and S  is a singular inner function, i.e. det5(z) ф 0 for 
z e C+. By the Helson-Lowdenslager theorem ([2]) in the factorization

det Fi = det Щ det S  det F ^

det is outer, det П1 is a Blaschke product and det S  is a singular innere,±
function. On the other hand by F\ = FqF  we obtain

det F\ -
1 -  Jr
7-----r d e t  F =
1 Ao

1 -

1 -  4
1 _ f̂r- det П

УA0

1 -  y
r _T T detF .+

Ao
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In the first brackets stands a Blaschke product and since

x  1 (z 6 C+),

hence in the second brackets we have an outer function. Since the factoriza­
tion of scalar functions is unique up to a multiplicative constant, we must 
have

det S(z) = c, |c| = 1 ( z £ C + ).
Since S(z) is contractive, we have I  — S*(z)S(z ) ^ 0 hence the eigenvalues of 
S*(z)S(z) are between 0 and 1 and their product equals detS*(z)5(z) = 1. 
Consequently I  =  5*(z)S'(z), i.e. S(z) is unitary on C+. But then 5(z) 
and 5*(z) = S'_1(z) are both analytic in C+ and this means that S(z)  is a 
constant unitary matrix. It can be put into the outer factor, so we obtained 
the factorization

F1(z) = Ul (z)Fe+tl(z), z € C + .

In the lower halfplane we have

Fi(z) = eiTxF~1 (z), Fe,l(Z) := F 0 (z )Fe {z).
Since

( z e e . ) ,

hence ||.Fo(z)|| ^ c, ||Р0"~1(2:)11 = c> so Fo gives an isomorphism of # i ( CM) 
onto itself and then maps complete sets onto complete sets. In particular we 
get tha t -F~x is a strong outer LT2-function. Thus we showed that jF\(z) is a 
generating function of the new system еое,Ао‘, ene'A"‘, n 6 Z \  {0}. We have 
to verify (23) with F\ instead of F. But ||Fo(a;)||, ||^o~1(x )|| = c implies that

II-fo(^)/(^)Hx.2x II/(x)IIl2(r,cm) (/ € L \ R , C M) ) ,
and since (23) holds with F  it holds also with F\. Lemma 7 is proved.

P r o o f  o f  T h e o r e m  3 .  We shall show that the system Ф с  е(Л) con­
structed in Lemma 5 is in fact a Riesz basis in L2(0,T; CM). Let

M
/ G L 2(0 ,T ;C M), m = Y , f nei2* i t , /„  = X ) a nj-efn(.

nez j=l

If £ > 0 is small enough then
M

II/Hl2(0,T;Cm) X E  и л  x  E  E
n£Z n £ Z  j = l
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which proves that the system

Ф0 := {efn(e<2,rT* : n G Z, j  =

is a Riesz basis in L2(0, T; CM). By Lemma 5 (b) and Lemma 6 we obtain 
th a t for large no the system

Ф0 := {е|п|е*'2,г? ‘ : |n| ^ n0; j  = 1 , . . .  , m }u

u {eH e' Sgnn An'r< : l« U  «0 + 1, j  =  1 , . . .  , m }

is a Riesz basis in L2 (0,T;CM ). The last step is to apply Lemma 7. It 
may happen that for some n < uq : Xnj  — 2 тг  ̂ (here к < no if no is large
enough). Therefore define new exponents Anj ,  0 ^  n ^  no, 1 й j  < M  which 
are different and do not contain elements from the set

|± A nj  : n G N, j  = 1 , . . .  , m |  U |2 tt̂  : n G z | .

By Lemma 7 we get that

{e£e±,*"'-’t : n ^  n0, j  = 1 ,. . .  , M }  U {e^e±,An’jt : n > n0 +  1, j  = 1 , . . .  ,M }

is a Riesz basis; then again by Lemma 7, Ф is a Riesz basis in T2(0,T; CM). 
Theorem 3 is proved.

For the proof of Theorem 2 we recall first the following result of D. L. 
Russell.

P roposition 1 [3]. Let {e,Ant : n G Z} be a Riesz basis in L2 (0,T) and 
let fj,i , . . .  , ц 3 be different (complex) values different also from the numbers 
An. Then the system {el/J>*}i <j <e u {e'Ani}nez f orms a Riesz basis in the 
Hilbert space H s(0,T).

We generalize this to the case of vector exponentials as follows. 
P roposition 2. Let on с  C be finite sets and

H„ V  {e\e,Xt : A G an}, n G ZVp(0,T;CM) 1 nJ’

with some e\  G . Suppose that Hn n G Z is a Riesz basis in L2(0 ,T ;CM) 
(see this notion in [2]). Let s > 1 be entire and

H ,( o ) := V L2(0,T ;CM) {eJ t J = !,-••  ,ALS},

where
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a) t h e  s y s t e m  i s  l i n e a r l y  i n d e p e n d e n t ,

b) Я (0) П Hn = {0}, n  £  Z,
c) /ram i/ie v e c t o r s  e j  w e  c a n  f o r m  s  b a s e s  i n  C M , e . g .  l e t  { e \ , . . .  ,ед/}, 

{ е м +ь • • • , е ш ] ,  ■ ■ ■ , { e ( s - i ) M + i >  • • • , е а М )  be a l l  b a s e s  i n  C M . T h e n  #(„), 
Hn ( n  G Z) f o r m s  a  R i e s z  b a s i s  i n  L2 (0 ,T ; Cw ).

We shall prove the following statement which implies trivially Proposi­
tion 2 .

Proposition 2'. L e t  s  >  1 be e n t i r e  a n d  Hn := \ J { e \ e ' Xt : Л G cr„} 6e a 
Äiesz basis i n  / / s-1(0, T ; CM). L e t  f u r t h e r  t h e  s e t s  a n b e  f i n i t e  a n d  d e f i n e

H(о) := V : J = !? • • • ) -W}

where
a) H = {0} for all n,
b) e i , . . .  , ем is a basis in CM.

Then H(o), Hn (n 6 Z) is a Riesz basis in H s(fi,T\CM).

Remark. The case N  = 1 of Proposition 2 is asserted in [4] without 
proof.

For the proof of Proposition 2’ we introduce first the closed subspace 

оH s := { /  G H s(0 ,T ; CM) : /(0) = 0}.

Let further T : CM —► CM be the hnear mapping defined by

/ 0 \

T ej :=
0 
1 
0

Vo)
(the j-th coordinate is 1), i.e. T  maps the basis e j  to the standard orthonor­
mal basis. Finally define

z - гр\
A ( z ) : = T -l

0

2 — г/Хдг ,
T = z I  + C

and the operator A ( ^ )  by
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L e m m a  8 . 1) A: H 3 —» H 3 1 is continuous and its kernel is Ker A = H(0y
2) The mapping f  t-> /(0 )  establishes an isomorphism between H(o) and 

CM.
3) А: оH* —* H 3~ 1 is an (onto) isomorphism.

P r o o f . 
in the form

Statement 2) is trivial. To prove 1) expand any function /  £ H"

N

f  ~ ej f j
3=1

where f j( t)  £ Л 3(0 ,Т ) are scalar-valued functions. Then we have

(24) A f  = ез ( j t -  *Mi)/j(0-

From this we see at once that A f  = 0 if and only if f j  =  otje'^A for all j ,  so 
Ker A = H(o). On the other hand A  is continuous since

m w 2
h >-

M

E
j= 1

ИЛНя» x  11/11я»>

so 1) is proved. To show 3), we prove that A  maps qH 3 onto H s 1. By (24) 
it means tha t for arbitrary p £ C

{ [jt ~ : f  e = я ^ ( о , т )

i.e. for any g £ # s_1 we have to find у £ H 3 satisfying

У -  Ч1У =  9-

Introduce the function Y (i) by

n o  • j *  = y(0-

Then we have

y' -  ipy  =  У'е** = 5 i.e. У -  J  g(t)e- itadt.

This is a correct solution since 5 £ I i 3~ 1 implies ge~,txt £ H s~x hence У £ 
£  I I s and so у £ I I s. Hence the mapping A: 0 Л 3 —> H s~l is onto indeed 
and then by 1) it is ä one-to-one continuous linear mapping between Banach 
spaces, hence is isomorphic. Lemma 8 is proved.
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P r o o f  o f  P r o p o s i t i o n  2. Consider a finite sum Y  /„  where /„ £ Hn.
n

Since £ Hn and Hn is a Riesz basis in /Г*-1 , we have

Е-Чя- ~ + ||Е/ч1„._,
* E  (пани—* + ii/liiif-i) -  E  n/"HSf*.

therefore Hn (та £ Z) forms an X-basis in Я® (i.e. a Riesz basis in its closed 
linear hull). On the other hand we have

(25) H{0) П \/{ Я „  :та £ Z} = {0}.
H>

To prove this, consider the projection P: H ‘ —* qH 3 of H 3 onto 0H 3 parallel 
to Я(о). By Lemma 8, 1) and 2), we have оЯ*ПЯ(0) = {0}, оЯ®+Я(0) = H 3, 
hence Р  is uniquely defined. Since Я(0) is finite dimensional and qH 3 is 
closed, the angle of these subspaces must be positive, thus P  is continuous 
(in H 3). We know that AHn =  Hn because A H n C Я„ is obvious and Hn П 
П Ker A = {0} implies the equality of the dimensions. Define H* := P H n. 
Since P  changes only the component lying in Ker A, we have AH* = Hn. 
By Lemma 8, 3.), this means that the system {Hn : та £ Z) is a Riesz basis in 
оH 3 and then Я(0), H* : n £ Z is a Riesz basis in H 3. To prove (25) suppose 
that

(̂0) = X ] f n'
the sum being convergent in I I s. Applying P  we get 0 = Yh Pfn  and then 
the L-basis property of Hn implies 0 = P f n for all та. But 0 = P f n implies 
0 — fn,  otherwise Hn П Я(0) ^  {0} would follow. This implies /(0) = 0, 
so (25) is proved. This yields that Я(0),Я П, та £ Z form an X-basis in Я®. 
The completeness of this system follows from the completeness of Я(0), Я*, 
та £ Z. Proposition 2' and thus Proposition 2 are proved.

P r o o f  o f  T h e o r e m  2 . Suppose first that the origin does not occur 
among the points P j .  By Theorem 3 the system ф С e(A) constructed in
Lemma 5 is a Riesz basis in X2(0 ,T ;C Ai). Taking any values x = (2n+1)’r 
with large та, the method of construction of Lemma 5 give us some exponen­
tials e3xetXxP £ e(A) with

(2 та + 1 )7T 
T < £, j  = 1 , . . .  ,M .

Now by Proposition 2 we see that for a given s ^  1 there exists a new system 
Ф С Ф С e(A) which is a Riesz basis in Я*(0,Т; C ^). Of course, е(Л) \  Ф
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contains infinitely many exponentials. Expand one of them in H s:

M,
e 0 e iXot =  * г е г е 1̂  +  ^  

r = l  n ^ L

if we say that sgnO = 1. This sum can he differentiated s times; the resulting 
series will converge in L2 and

IA»|2(M + !)' < 00■
n £ Z

Consequently among the coordinates of the moment sequence

1Г ,-± /гг,\ 7 m , П I I
,fcl ) I + i —l^m.n I

e iu m , k ( t - T ) dt,

there exists a linear connection with some coefficient sequence from Í2 if s is 
large enough. Indeed, if we have

(26) E " г ,к&l^m .k t m>n
\e± II cm,n I

= 0,

the sum being convergent in £2 , then

° = E ' dt

andhere G Í2  if s is large enough. This completes the proof for the
case when P3 0. If the origin occurs, for example P\ = 0, then for m > 0 
the first coordinates of are zeros. In this case we consider only the last 
M  — 1 coordinates of the vectors; in these coordinates we get a Riesz basis 
in 7/s(0,T ; CM_1) by the above argument if the point Pi is supposed to be 
omitted. By the above way we get in these coordinates a relation of type 
(26) which leads to the noncompleteness of the moment sequence as above. 
Theorem 2 is completely proved.

R e m a r k . The method given in [6] shows that R(T)  does not give up 
growing for large T, contrary to the one-dimensional case of vibrating strings 
(see e.g. [14]). We investigate the space 7ir and give controllability results 
in a forthcoming paper.
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UNIFORM ESTIMATIONS OF THE 
GREEN FUNCTION FOR THE SINGULAR 

SCHRÖDINGER OPERATOR
M. HORVÁTH (B udapest)

Consider the manifolds S i , . . .  ,S (0 C KN , dim 5 t = N  — m k defined by 
the rules

s k = {x = ({, Tf) £ R nik x R N~mk : M v )  = f  }
where the partial derivatives of order 1 of the functions <pk : —> R m*
are uniformly bounded:

|V ^ ( t? ) |< C , T] £ RN~mk, k = 1 , . . . , £ 0.
to

Define further S := (J Sk and choose arbitrarily 0 ^ г < 2. Take a function 
k =1

q £ C°°(Rn  \  S)  satisfying

l?(x )l = co[dist (x, 5)] T. 
Fix a number 0 < £q < it and define the sector

Z0 = {z £ C : e0 £ argz < n -  £0}-
We consider the Green function of the operator — Д + g — //2, /t £ Z0. We 
shall prove the same uniform estimate for the Green function which is known 
in case q = 0 (for the Laplace operator); see Theorem 1 below. Analogous 
results were obtained in Joó [6] for the case of a bounded domain ÍÍ and 
spherically symmetrical potential q(x). In [4] Joó investigated potentials 
where the spherical symmetry of the main term of q is perturbed, where the 
perturbation diminishes quickly if we approximate the origin of symmetry. 
The second main result of the present paper is stated in Theorem 2 below. 
It is an analogue of the square sum estimate for a complete system of eigen­
functions (if the spectrum is discrete); see e.g. [7]. In our case with domain 
fi = R ^  the spectrum is continuous, hence we have a square integral esti­
mate of a complete system of generalized eigenfunctions with respect to an 
appropriate measure. This is based on the Neumann spectral theorem and 
on some ideas of Maurin [9].

We shall prove the estimate of the Green function. In case q = 0 the 
Green function is explicitly given in Titchmarsh [1], 13.7.2:

(1 )

' —-1
Ео(х,у,ц) = cN ( — ) 2 (p2r), r = \ x -  y\, x , y  £ Rn ,< \  r / у -1

_ 7 V ,  _TV , ,  1-—---------
c/v = i2 2 7Г 2 = у/ц* -  pi,  Im /r2 > 0.
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L e m m a  1. There exists a  > 0 such that 

(2) \Е0 (х ,у ,ц)\  < cr2~Ne~2aMr, x, у G R ^, p G Z0, pi > 0

and the estimate is uniform in х , у ,ц ,ц \ .

Proof. Using the asymptotical formula [2], 7.13.1 we get that

2 1

,-Im П2Г
2 Г

|/i2r | > 1.

From pi > 0 and p G Z0 it follows th a t p 2 G Z0, consequently - I m  p 2r ^ 
—c(£0)|p2r | < -c (e0) < 0, hence

e-lmfi2r  ̂ е -с(г0)Ы г < c( |/Í2|7-)ÍT5íe “ íí2ll|'ií|r

which proves (2) for the case |p2|r > 1. From the estimate 

|Я<1)(г)| < cv\z\~v, \ z \< l ,  ív > 0

we get easily (2) in case |p2|r  = 1- Lemma 1 is proved.

Lemma 2. Let a  > 0 , l, s >  0, i  + s < N  — r .  Then there exists 
c = c(a,£, N , s , t ) < oo such that

f  е- “1*-“1Н|г  _  u\-t\y _  u\~s\q{u)\du < c\ii\s+l+T~N 
R~

uniformly in x ,y  € R ^ , p  6 Zq.

P r o o f . Use the decomposition

/ =  /  +  /  = : Л + / 2.
KN |x—u|<|u-y| |x — u|>|u-t/|

Clearly we have

h  = I e - a\x~u\M \x -  u l - ' - ' l q iu ^ d u ,

VII
•-Ч e—a|u—y |H |u _ y\- l - s \q(u)\du.

R"
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By symmetry it is enough to estimate I\.  It is known [4] that dist(u, Sk) ^ 
c|£ ~ V’fci7?)!- Consequently

|д(и)| й c[dist(u, 5,)]~T < cX;[dist(«,5*)]- ^
Jt=i

to
< -  M V k ) \ ~ T , U = (&,%) € Rm* x

fc=i
To simplify the notations, we shall omit the indices in and We have

h  J  e - alx- u]M\ * - u \ - t - ‘ \ t - M r i ) r r d t d r , =
k Rn

=  CJ 2  I  e-a l:r-(2+v*̂ ,7)’’,)|lA,||x — ( z  +  ipk(v)iv)\~e~e\X\~Tdzdrj.
k RN

We know that

I* -  (Z + M v ) , v ) \  ^  { !*„ / u , .  x = (x° ,x1).{ |i°  -  (z + y>fc(i7))|
Using the known identity

OO

J  e ^ F - 1 dt = Г(7) / Г \  ß > 0, 7 > О
о

we obtain for any 0 $ p* < £ + s that

h < c j _ I  f  (e-?!*1- ”11̂11®1 -  7/Г^*+Рк) •
k RN

. i e - ^ x ° - z - V k ^ M \ x °  - z -  M v ) \ - p k \ z \ ~ T)  d r j d z  =

= f  е-^1*1-ч1И|ж1 _ ^ |- « —+p*.

fc RN- mk

Y J  е -> \х° - г - * к^ М \х0 -  z  -  v k(r])\-pk\ z \ - Tdz^dr].
Rm*

We estimate first the inner integral:

J  e - ^ x° - 2- Vk^ M \x0- z ^ p k(v ) \~p,t\z\~Td z =  J  +  J
Rm* M ilx°-*-Wk(*j)l 1-г1^1;г0—x—v’icír?)!
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< J  e -*M \z \ -pk- rdz+ J  е - ^ х°-г- ^ Ы \х° -  z-if>k{r , ) \ -^ -Tdz =
Rmfc Rm*

CX)

= 2 J  e - f l ^ l \z\-pk~Tdz =  c J  rm‘-i-P ‘ - Te -il" lr<ír =  cH*|pfc+r-m*

R mfc

provided mfc > pk +  r. Then we have

h < c J 2  \p\Pk+r~mk /  e "f |xl- r,ll/i||x1 -  7?r <" s+p*d7? <
I- ^

OO

^ c ^  |/x|Pfc+T_mfc f  rN~mk~1e ~ ^ ^ rr~t~a+Pkdr <
* о

< с ^ | / х |р*+г“ т к |//Г '!+/+4" Рк_я = c\p\l+a+T~N
к

provided N  +  p k  — m k  — i  — s  >  0. All the above conditions assumed for the 
numbers pk are

0 < pk < (■ + s, m k + I + s -  N  < pk < m k -  r.

These can be simultaneously satisfied, hence the proof is complete.
Define the functions Fn(x ,y ,p )  by

F0(x ,y ,p )  := E 0(x ,y ,p),

Fn(x,y,p)  := -  J  E0(x ,u ,p )F n-i(u,y,p.)q(u)du.(3)
R^

Lemma 3. Let n = 0 ,1 , . . .  , \^zp and 0 < <5 < 2 — T be arbitrary. Then

(4) \Fn(x,y,p)\ <  c\x -  у ^ +П6 е-а\Х- УШ Ы - П(2- 6-г)

holds uniformly in x,y  G R ^ , p € Zq, pi  > 0.
P r o o f . In case n =  0, (2) is even stronger than (4). For larger values 

of n we use induction:

\Fn(x,y,p)\ < Í  |£о(*,«,А*)||^п-1(«,»,/*)||д(«)И «^
R^

< c|/X2 j(1—ri) (2—<S—r) J  e- 2“ lI - ullM|-« |tf-“||P2l|a. _ u|2-W|y_u |2-W{»>-1)i|q,(u )|^u

R"
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Using Iг — u\ + \u -  y\ > \x — y\ we get by Lemma 2 that

\Fn(x,y,ri\ Í
J  е - а |х - и | Ы | ж _  u |2 -JV |y  _  t l |2 - l \ r+ (n - l) t f |i ( u ) | d |i  =

R N

с|м2|(1~п)(2_5_т)е_а|х_!/|Ы ^ J  + J  ^ <

< c|/i2|(1-n)(2“5_T)e_a|;r"!/|l,i2l|x -  y \ 2~ N + n S .

■ J  e-«l^-«ll^2l|a; _ u \*-” \y _ u\-s \q(u)\du+

R N

+h J  e - ^ x~u^ \ x  -  u\~nS\y -  u\2- N+^ - ^ s \q(u)\du^ ^
R N

< c|/x2|(1_n)(2' 5_r)e_a|l-!/|l/i2l|x -  í/|2_JV+n5|/í2|á+r_2 =
= c\x -  y^-N+nSe- a\x -y \ \ ^ \ ^ -n (2 - r -S )

as we asserted.

LEMMA 4. There exist constants eo,Ci > 0 such that for n >

(5) \Fn(x ,y ,ri \  < с1е -а\х- У ^ \ с о Ы ) М- 2~п(2- т)

uniformly in x , y  £ R^, y, £ Zq, y\  0.

N —2
2 - T + 1

P roof. Consider first та = N - 2
2-т + 1 and apply the previous Lemma:

\ F n ( x , y , f 2 ) \ < c H (1-")(2-i- T) [  e- 2«l*-«llw|-«|y—ll« ||a. _ tt|2-AT.

R N

■ \ u - y \ 2- N^ n- ^ s \q(u)\du < с \ ^ \ (1- п)(2- 6- т)е - а 'х~М -

■ [  e - ^ x~u^ \ x  -  u\2- N \ u - y \ 2- N^ n- ^ 8\q{u)\du.
R N

We know that

(та -  1)(2 — r )  = ( 2 -  t ) N  — 2
2 - т > N  — 2 — (2 — t ) = N  — 4 + r
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hence there exists 6, Nn *~fT < 6 < 2 -  т and then Lemma 2 applies:

\Fn(x,y, f i) \  Í  c2|/x2|(1- n)(2- i - r )e-“ l"-«H«l|/x2|w - 4-(„ - i) i+ r- iV =

= c2|/r2| - [ ^ ] ( 2- r)+N- 4+Te -“ la:- yll«l.

For larger values of n we use induction. Denote C3 and c4 the constants in 
Lemmas 1 and 2, resp. and define

, 4-J_ [ ^ ] ( 2-г)-ЛГ+4-г
Co : =  (C3 C 4 ) T- 2 , C l : =  C2 c ^

Then (5) holds for n = N  — 2
2—r -f 1 and for larger n we have

\Fn( x , y ,  f l ) \  <  Cl(c01/̂ 21 2 (n 1)(2 r)-

•c3 /  e - a ° r |* - u | | i 4 | - e |w - « ‘| |n 2 | |sl. - u \ 2~N \ q ( u ) \ d u <

RN
Í  c iC 3(c 0 |/X2|)iV" 2" (n- 1)(2_T)e - o |x - vll/i2lC4|/x2 r - 2 =

= Ci(c0|^ 2|)N~2" n(2_T)e -o |l- !/|l'J21

which proves Lemma 4.
In what follows we choose /ii > 0 large enough to satisfy co|/i2| ^  2. 

Consider the function
OO

(6) E„(x1y ) : = ' ^ 2 F n(x,y,n);
n=0

the series is uniformly convergent in x , y  6 R ^ if /2 G Zq is fixed. Further 
we have

T h e o r e m  1. We have

(7) \ Е ^ х , у ) \ < с \ х - у \ 2- ме -Ь * -У Ш  

uniformly in x ,y  £ R ^ , /2 6 Zo; moreover

(8) E^(y,x) = E^(x,y).

P r o o f . B y  L e m m a  3

[«=?]
5  ̂ |F„(x,?/,m)I ^ c|x — y\2 Ne “I1 if |x — y\ ^ 1

се-а |* -у |Ы  if |x — 2/| > 1.
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From the estimate
g - y  l * - y | | P 2 | <  c | x  _  y \ 2 ~ N  ? \X  _  y \  >  1

we obtain

[«=*]
X  5 Ф  -  j/|2_7Ve_ 2|x-s'11'121, г , y € R ^, ц в  Z0.
n=0

On the other hand (5) implies that
OO

" = [ ^ ] + i
which proves (7). To see (8) consider the statements

(A„) Fn(x, y,fi) = / Fi(x,u,i i)Fn-i - i(u ,y ,n)q(u)du,  0 ^ i < n - l
R N

(ß n) Fn(y,x,fi) = Fn(x,y,fi).
Now (B0), (Ax) are trivial and (A„), (Bn_i) imply (B„) since

Fn(x,y,fi) = -  / Fn-i(x,u,f j , )E0(u,y,fj,)q(u)du =
RN

= -  J  E0(y,u,fj.)Fn- l (u,x,n)q(u)du  =  Fn(y,x,/i).
R N

On the other hand (Bo),. . .  ,(B„_i) imply (A„). Indeed, (A„) holds for г =  0, 
and if it holds for some 0 < г < n — 2 then it also holds for i + 1, since

K ( x , y , f i ) =  J  F{(x, u,fi)q(u) ^ J  E0(u,v, fi)Fn^ 2(v,y ,n)q(v)dvSj d u  =
R N  R N

Eo(v,u,n)Fi(u,x,fJ.)q(u)duSj d v  —
RAT R N

= -  /  Fn^ i - 1(v,y,fj,)q(v)Fi+i(v ,x ,n )dv  =
R N

= -  J  Fi+1(x ,u,p)Fn-i-.2(u,y,n)q{u)du.
R N

Consequently (A„) and (Bn) hold for all n and then (8) follows. Theorem 1 
is proved.
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Lemma 5. а) Е^(х,у) is an (exponentially decreasing) solution of the 
integral equation

( 9 ) E„(x,y)  = Eo (х,У, E0(x, u , h)E„(u, y)q(u)du.

b) E^ is the Green function of  -A  + q — p? + pi i.e.

(10) ( ( -A  + q -  /X2 +  ni)<p) = <p, tp£C™(RN )

where E^ denotes the transformation with kernel E^:

EMf ( x )  :=  f  Efl(x,y)f(y)dy.
RjV

P roof. Applying Lemmas 1, 2, 4 we see that

Y l  /  \E0(x ,u ,p )Fn(u,y,p)q(u)\du <
u=N^n

r °°
= c I  e~a lx~u^ 2l|x — (с0|/х21)ЛГ~2~п*2~г^1д(ц)|^ц g

n=Ni

g—a|i—u||#J211 д. _  u\2~N\q(u)\du < 00.

BA

Ё  2N-2—n(2—t)
n= N , I

BA

Consequently

Еи( х , у )  = ^ F n(x ,y ,n )  =
n=0

oo .
=  Eo(x,y,p) -  ^ 2  /  E0(x,u,/j,)Fn(u,y,p)q(u)du =

"=°HA

= Е0(х ,у ,ц )  -  / E0( x ,u ,n ) E ti(u,y)q(u)du 
BA

follows from Lebesgue’s dominated convergence theorem. Thus (9) is proved.
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The statement (10) is known in case q = 0. If the potential exists, we have 

Eß( ( - A  + q - y , 2 + m)(p)(x) = I q(y)ip(y)Efi(x,y)dy+
RN

+  /  ( - Д у - / “2 + M iM») ■ E li(x ,y)dy=  /  q(y)‘p(y)Eti(x ,y)dy+
R N RN

+ J  (~&y -  V2 + H iM v )  ■ Eo(x,y,y)dy -  j  ( - A y -  ц2 + ^ ) ^ ( y ) -
RN RN

• ( I  E0(x ,u ,n)Eti(u,y)q(u)du'jdy =: I x + h  + h -
RN

First we observe that / 2 = q>(x). (8) implies that in 73

/ E0(x ,u , ^ ) E IJ(u,y)q(u)du = / E0(y,u, n)E^(u,x)q(u)du.
R v  RN

Now we shall show that for fixed x ,

(11) ( A y + p 2 -  MiMi/) ■ E0(y,u,n)E„(u,x)q(u) € X i(R^ x R 74"). 

Indeed,

J \EQ(y,u,fM)\\Efi(u,x)q(u)\du<
RN

< f  ce-2a\y- u^ \ - ^ x- u^ \ \ y  -  u\2~N\x -  u\2~N\q(u)\du <
RN

< J  +  J  < c \ x - y \ 2- N  J  e - 2ah - u^ \ y - u \ 2- N \q(u)\du+
|x - u|> l£ z li  |y_ u|> l£zjd  RN

+c|x — ?/|2 N f  e 2 Iх ul^2l|x — u\2 N\q(u)\du< c\x -  y\
RN

2 - N

and for fixed x
R

J  \x — y\2 Ndy £ c J  rN xr 2 < 00
supp v?
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which proves (11). Consequently the Fubini theorem can be applied in /3

I 3  — -  J  Е ц (х ,и )д (и ) ( ^ 1  E 0(u, у , A y -  fj,2 + fi1)(p(y)dySj du =
r n  R N

= -  J  E^(x ,  u)q{u)ff{u)du =  — /1
R N

which implies ( 10).
Introduce the functions

G ^ \ x , y )  := Ер(х,у),

G ^ ( x , y ) : =  I  E p ( x , u ) G ^  l \ u , y ) d u ,  i/ = 2 , 3 , . . . .
RN

Lemma 6 . L e t  1  ̂ 1/  <  у  b e  a n  i n t e g e r ,  t h e n

I G {; \ x ,  у )  I < c \ x  -  y \ 2v - N e ~ ^ x ~ y ^

u n i f o r m l y  i n  x , y  € R^, p € Z0.
P roof. The case 1/  =  1 is proved. We apply induction on u:

( 12 )

\G(y \ x , y ) \  <: C f  e- f l — -  u |2- " |u  -  y\2v- 2- Ndu <:
R N

< с е ~ ^ х ~ у ^  J  e ~ ^ x ~ u ^ \ x  -  u \ 2 ~ N \ u - y \̂ 2 u -2 -N

R N

Here we set

/ '  /  +  /  +  /
u|<l±zJd Г |*_u|>

l  lu—!/|=
|x -u |<  | y - U | <

Now

J йс\х - У\2и 2  N J \x u\2 N du =

\x—u |<  h 2yl |x_u|<j£zJd

c \ x  -  y\

\x-y\
2

2i/-2- N  J  r N - l r 2 - N _  c|x _ y| 

0

21/-N
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f  й Ф  -  У\2 N )  \ u - y \ 2 U - 2 - N du =
|v_u|<i£rjd

1*-У1
2

= c\x — y\2~N J  rN~1r2l/~2~N dr = c\x — y\|2i, - N

J  <c J  e *lx -  u\2v 2Ndu =

(  |x-u|>-

l  lu—!/l='
|x-u|> <|х-ц|

l*-y|
2

OO

c J  r 2l/~N~1e ~ ^ r^ ^ d r  <
lj-yl

2

<

jL uu

c J r2l' - N- 1dr + cJr2i/- N-'l e -T r\M\dr<c\x-y\2,' - N if |® -y |£ 2 ,
L-al

2

c|z — 2/|2t/_Ar J e~^r^ 2̂ d r  < c\x — у \2t'~N if \x — y\ >2.

T h e  a b o v e  e s t i m a t e s  i m p l y  L e m m a  6.

R e m a r k . If N  is  e v e n  a n d  и =  Ц-, t h e  a b o v e  c a lc u la t io n  s h o w s  t h a t

(13) |c jr> (* ,» )|<
c ln [7-ul ' f- “ |x у||ма| i f | x - j / | i 2 ,

if \x - y \ >  2.
-wl ’ 

ce~ f  I*-vIIm I

Now introduce the notation uq := [ ^ ] , and take any value a, ^  < a < v0 +  l .  
Consider the function

OO

G^U x v) • -  ----- ___________ _ Í  r ~<T+l̂ G ^ +1Ux v)drU [Х' У )-  Т(щ + l -  a)T(a) J  Г ^ y>ar'

Lemma 7. If  N  ф A (and N  ;> 3) then 

(14) |GW (z, 2/)| ^ c\x -  y\*"-Ne- f \ x-y\V^.

In case N =  4 we have
( c\x — y\2<r~Ne~r lx_yl\/*n if \x — y\ > 2,

m o  i < r o , » ) i s { c l„ A . | x _ ^ e_ f k _vl^  ^
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P r o o f . In case N  ^  4 we have n0 -f 1 <  y ,  hence by Lemma 6
OO

\Ga(x,y)\ < c J  r |G ^ +1)(x ,i/) |d r  <
0

oo

< c j  г1'0- " \x -  y \2̂ +2~N dr <
0

oo

< ф  _ y ]2uo+2-N e - % \ x - y \ ^  J  r ‘*>-<re - f  ̂ - v lV ^ d r .

o o  \ x — y| 2 oo

Use the decomposition J  = f  + f  Then
0 0 |x-y|-2

|x-y|~2 |x-y |-2

J  <: J  r ^ - ' d r  = c\x -  i/|2(<r-M0_1),

and substituting § |x — у\л/г = и we get
OO OO

J  ^ \x -  J  ^ d r  =
|z-y|~2 k-y|-2

OO

= c\x -  y\2^ - ^ )  f  e~u-— ^ - ^ d u  = c\x -  y\2G -* - i )
J F -  y\z
a
8

which implies (14). In case N  = 4 and \x — y\ > 2 the estimate (13) for
g |T°+1) = is identical with (12) hence the same proof works. If \ x - y \  < 
2, then

OO

|Gw(x,i/)| < c [  r1-" In, 2 , <
У F  -  y|

— УI
g c l n , 2 | .g-flx-yl^m J  r ^ e - T ^ - y ^ d r  <

< c ln - ------- - ■ e « I1 y\'fi^\x — y\2G 2\
\x -  у I

Lemma 7 is proved.
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Lemma 8. Let т < |  in case m  = 3 and т <  2 in case m  >  4. Then
a) G ^ ] — ( —Д + g — м2 +  / л ) ' " : ^ ( R * )  -*• L2(RN ), 1 < v < vq + 1, 

M = it, t > 0,
b) G <"> = ( - Д  + g + Ml)"" : L 2(R N ) -  L2(R *) 

are continuous mappings.

P roof. The above conditions imply tha t

- Д  +  g  -  M2 +  Ml: L 22( R n )  -  ^ ( R * )

is an isomorphism onto T2 (see [4], [7]), consequently (—Д +  q — m2 +  Mi) " 1 
is a bounded operator of T2(R 7V). From (12) and (13) we see tha t

IG ^ \ x ,  y)\ < K (x  -  у ), 1 < v < i/0 +  1

where K(x)  £ L i (R n ). Consequently G ^  is a bounded operator of T ^ R ^ ) . 
If ip £ Cq°, then

J  G n(x ,y ) (^J  G ^ \y , z ) ip ( z )d zSj d y  =
RAT R v

= J  V(Z) ( ^ J  G „ ( x , y ) G ^ ( y , z ) d y \d z =  J  G ^ +1)(x , z)<p(z)dz
RN R v R14

i.e. Gfj(G^ip) = G ^ +1 (̂f. Since the operators are bounded, it follows 
that G ^  is the iMh iteration of the operator GM. The set C£° is dense in
L22(RN), hence (—Д +  q -  m2 + Mi)(Co°) dense in L2(R jV). By (10) the
continuous mappings ( —Д + д —m2+Mi )_1 and G^ are identical on this dense
set, hence ( - Д +  q — p2 +  Mi)_1 — Gß and then ( — Д +  g ~ m2 +  Mi)_1/ =  Gjl'K 
This proves a). To see b), argue as follows. The operator —Д +  g +  mi is 
positive for sufficiently large mi > 0 (see [7]). In Triebel [5], 1.15.1 a formula 
is given for the fractional powers of positive operators. In our case this means 
the following statement: There exists a dense linear subset D C  T2(R ^ ) such 
that

( Д + я + Mi) a f
r(^o +  1) 

r(i/0 +  1 -  о-)Г(ст)

• / г " 0 ^ ( - Д  + q + mi + r) "° 1 fdr ,  f £ D  
о
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the integral being convergent in Consequently

( - Д  + q + Hi) af  —

____Цуо  + x)
Г(^о +

*  + l)  f
1 -  (т)Г(о-) J  

0

= / / ы г r ( l '0 + 1)

VQ —or
J  G i X 1 ) ( x M ( . y ) d y dr =

n N
OO

. - + - f  r ^ - (,G(y ' 1)(x ,y)dr dy =
T(u0 + 1 -  ст)Г(ст) J K ’ У> J У

о

= J G ^ \ x , y ) f ( y ) d y ,  f e D .
n N

The application of the Fubini theorem was correct, since

0 R«

< C J  \x — y\

G ^ 1\ x ,y ) f(y )  dydr <

2u0 + 2 -N 1 + In )I* -  УIRN
OO

. J  r"o-<re- ű \ x-yw^dr . e-%\x-y\ViX\f(y)\dy <

s  c J  Ix-sil2' - "  f i  + 

(У  |х - уГ - 2К
KN

OO(/
In

Ii.w

^  c\\f\\b2

I® -  »I

1 + In

e-™\X- y ^ \ f ( y ) \ d y  <:

)  e - f l — V l v ^ r d y y  =

x - y \

=  4 f \ \ L 2 [ /  r
,4< r — JV  — 1

Х - У I
e = c | | / | | i2 < oo.

The continuous mappings G^)  and (—Д + q -f Hi) a are identical on the 
dense set D,  hence they are equal on L 2 . Lemma 8 is proved.

Before stating Theorem 2 we need the Neumann spectral theorem in the 
following form:

T heorem A (Maurin [9], IX.§4). Let A be a selfadjoint operator in a
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separable Hilbert space H . Then there exists a unitary isomorphism

(15) U-.H-+ j  ®Hxdp{\)
л

where H\ are complex l^-spaces of sequences with n(A) < oo coordinates, 
Л c  R is the spectrum of A, p, is a nonnegative Borel measure on A and the 
direct integral space on the right of (15) is the space of all vectors h(A) =
= (^fc(A))£ÍAi for which

(16)
n(A)

:= /  E  IMA)|4x(A)
A  *=1

< OO.

Finally, if v?(A) is an a.e. finite Borel measurable function, then for the 
domain D ( ( p ( A ) )  of the operator ф ( А )

(17) U ( D ( V ( A ) ) )  = l h  - . J Y .  IM A)|2M A )|2. « 4  < oo I
A fc=1

and

(18) U p { A ) U ~ x : h{\)  ►-» y?(A)/i(A) for h € U ( D ( < p ( A ) ) ) .

As we have seen, the kernel function of the operator L~f  satisfies
for < о < uq + 1 the estimate

(19) sup f  |G'( \ x , y ) \ 2dy
reRA JKN

< oo.

On the other hand : L\  —» L? is an isomorphism (see [7]) and Z)(LPl) = 
= L\  is dense in Li- This implies that L#il is selfadjoint, and then Theorem A 
applies. Define the functions

(20) u(x, A) =  M x ,  A ) ) ^  := (A + pi)aU ( G ^ \ x ,  -))(A).

Since U is norm preserving, we have
T heorem 2. The following square sum estimate holds:

Jn(\)
SUP /  V K K A ) | 2(A + Ml) - 2̂ ( A ) < o o .

*eitW  Trino 1
The functions u(-,A) are generalized eigenfunctions of with eigen­

value A; for their properties see [9], XVII.
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ON THE DISTRIBUTION OF TRANSLATES 
OF ADDITIVE FUNCTIONS

K.-H. INDLEKOFER (Paderborn) and I. KÁTA1 (Budapest)

0. In tro d u c tio n

Our main purpose is to give necessary and sufficient conditions for the 
existence of the limit distribution of P ( E ) f ( n ) - a ( x ) ,  where /  is an additive 
function and P(E)f (n) — a0f ( n ) + ax/ ( n  + 1) + . . .  +  a t / (n  + к).

A sharp theorem can be derived from a recent result due to A. Hildebrand
[5], if P (z ) = Yhai zJ satisfies the condition P (l)  ф 0 or P '( l)  Ф 0. We 
consider the case (z — l ) 2 | P(z) (see Theorem 1). In Section 2 we shall 
investigate conditions under which

<}>(P(E)f(n) -  a(z)) <  x
n < x

holds true.
In Section 3 we give a necessary and sufficient condition for the existence 

of the limit distributions of g(n + 1) — /(n ) , where /  and g are additive 
functions.

Theorem 2 is a special case of a theorem due to P. D. T. A. Elliott [6] 
(see 1.13). We derive this theorem from Hildebrand’s result (see 1.13) very 
simply.

1.1. An infinite sequence {u„}n£N of real (or complex) numbers is called 
a tight sequence if for every 6 > 0 there exists a number c < oo, such tha t

(1.1) sup я -1 #{п < x I |-u„| > c} < S.
П> 1

Let T  be the set of tight sequences.
1.2. Let T'  denote the set of those sequences {un}neN f°r which the 

relation

(1.2) s u p i_1#{ra й x I |u„ — a(x)| > c} < 6
X >  1

holds for every <5 > 0 with a suitable constant c = c(£) and with a suitable 
function a(x).
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1.8. Let E  denote the shifting operator, E u n = u„+i. Let Iu n = un, 
A  = E —I, and for an arbitrary polynomial P(z)  G C[z], P ( z ) = a0 + aiz -f 
+  • • • + akzk let P(E)un := a0un + aiu„+i +  . . .  + akun+k.

It is clear th a t {«„} G T ' implies that { P ( E )u n} G T ' , {Ди„} G T, and 
th a t {P (£)un} G T  if P( 1) =  0.

1.4. Let Л  be the class of real valued additive functions. Let V — {p} 
denote the set of all prime numbers, and let V* be the set of all prime powers.

1.5. We say that a sequence {u„}neN of real numbers has a limit distri­
bution if there exists a distribution function F  such that

(1.3) lim x 1# { n  < x I un < y} = F(y)
x — * o o

holds for all continuity points у of F.
Let V denote the set of the sequences having a limit distribution.
1.6. We say that the sequence {un}neN °f rea  ̂ numbers has a limit 

distribution with the centering function a (x ) if there exists a distribution 
G(x) such tha t

(1.4) limx-1 #{тг < x I un -  a (x ) < y} = G(y)

holds for all continuity points of G.
Let V a denote the set of those sequences which have limit distributions 

with the centering function a(x).
One can easily see that {un} G V ai П V a2 if and only if {un} G V ai und 

Qi(x) -  a 2(x) —► c where c is an arbitrary (finite) number.
1.7. For an arbitrary f : V  —* R let (E f ), (E p , (B f ) denote the condi­

tions:
(Ef): S  is convergent,

l/(p)ISi p
(Ep: Z  p is convergent,

I/(p)I>i
(Bf): - is bounded in x.

\ f (p) \^P

1.8. Л classical theorem due to P. Erdős and A. Wintner [1] asserts th a t 
/  G А П V  if and only if (E f ), (Ep) ,  (Ef )  hold true.

A function /  G A  belongs to V a with a suitable centering function a (x ) 
if and only if /  can be written as f ( n ) = Л logn + h(n) with some A G R, 
where h satisfies the conditions (E/^), (E £). Furthermore, if /  G T>a , then 
a(x) = A log x -f A(h, x) +  0(1), where

(1.5) A(h; x) H p )

|ft(p)ISi p
p < x
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(cf. Theorem 7.1 in [2]).
1.9. We say after P. Erdős that /  £ A  is finitely distributed if there exists

a sequence ®i < жг < • • • of real numbers, xu —> oo, some positive numbers 
S and c, and for every v at least к > 6 x v integers a\ < a-i < . . .  < < xv
such that |/(a ,)  — f(aj)\ < c for every i ф j .

Erdos proved [1] that /  is finitely distributed if and only if /  = Л log +h, 
with some A £ R and with some h for which (Ehi ), (££) hold true.

Let Afi  denote the class of finitely distributed (additive) functions.
It is easy to characterize all those g £ Afi  for which P(E)g  := 

:= {P(E)g(n)}nes  £ V a or V.
Let g = A log +h, such that (£/,2), (££) hold. Then P(E)g £ V a and 

P(E)g  £ V  if P ( l)  = 0. If Р(1) Ф 0 then P(E)g  £ V  if and only if A — 0 
and (E f ) holds.

These assertions have been known for a long time.
It seems probable that if /  £ A  and P  £ Я[г], P  is not identically zero, 

then P { E ) f  £ V a only if /  £ Afi.  This assertion was proved for P  — Д 
only recently by A. Hildebrand [5]. Hildebrand proved somewhat more in his 
paper [5], namely that /  £ А,  Д /  £ T  imply that /  is finitely distributed 
(see [5], proof of Theorem 1; necessity).

It is quite natural to formulate the following
Conjecture. Let /  £ A  and P £ C[z], P  not identically zero. Assume 

that P ( E ) f  £ T ' . Then /  £ Afi.

1.10. Lemma A. Let f  £ A,  |/(p a )| ^ 1 if pa € P*. Assume that ( £ / 2) 
holds. Then for every 7 > 0,

( 1.6) 1ЛП) -  <  x,
n < x

where

(1.7) A* = E
f(p)

р Ъ Х
p

and the constant implied by <C may depend on f  and 7 .

(1.6) is a special case of Elliott’s moment inequality [7].
1.11. The following assertion is an immediate consequence of Hilde­

brand’s theorem and of Erdos’ theorem on finitely distributed functions.
Let ф: R —>R>o be an arbitrary function such that ф(х)—юс  as |ж| —»oo. 

Let /  £ A  and assume that

x 1 ^  Ф(Ф(п) — o(x)) = 0 (1 ) as x —> 00
n < a r
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ОГ
x~ l ^  ф(А f ( n ) )  = 0(1) as x  —> oo

n < x

holds. Then /  G Л /i, /  = A log+/i, (Ehi),  (££) are satisfied, a (x ) = 
= A log x + A(h] x) + 0(1).

2. On th e  distribution o f P ( E ) f ( n )

2.1. Let b(H)  be a monotonically increasing function defined on [l,oo) 
such that f»(l) =  1, b(H) —> oo as Я  —► oo. Let % denote the set of those 
sequences и := {u„}„eN of complex numbers for which

(2.1) supx_1# { n  ^ x I |u„| > H )  < -rrjpr,
x>i b\ J I )

where C\ is a suitable constant that may depend on u.
In what follows we shall assume that b(H)  is slowly growing, namely that

(2.2) b(II2) ^ c2b(H)

holds with some suitable constant c2.
2.2. Let us fix a sequence u, and denote by / ( u, b) the set of those 

polynomials P  G C[z] for which P (E )u := {P(E)un}neN G %. One can see 
easily that I(u ,b)  is an ideal.

2.3. Statement. Let f  G A, P G C[z] be a non-zero polynomial for 
which P ( E ) f  G 71- Then the generating polynomial Q(z) of I ( f ,b) has the 
form (z  — l) fc where к > 0.

P r o o f . The assertion can be proved by a method which was worked 
out by Elliott and Kátai, independently.

к
Let deg P  =  M,  deg Q =  k, Q(z) = П  (z — 6j). The assertion is clear if

j=1
к = 0 or if M  =  0. Assume th a t к > 1.

к
Let m G N, Qm(z) = П (z ~ Q™)- Since Q(z) divides Qm(zm), therefore 

j =1
Qm(Em) f  G I( f ,b).  Let Qm( z ) = ß o + ß i z + . . \ -ßkZk , ßк =  1. It is clear that 
ß o  ф 0. Let un := Qm(Em) f (m n) ,  i.e. un is the value of Qm(Em) f  at place 
mn.  Let vn := Qm(E)f (n) ,  A ( m , n ) := un — v„. Then u G Ть, consequently 
Q (E )u G %■ Furthermore Q (E)\  = Q (E)Q m(E )f = Qm(E)Q(E) i  G %, 
and so Q (E )A(m ,n )  G %■ It has the form

к  2  к

(2.3) Q (E )A(m ,n )  = ^  a j A ( m , n  + j )  = ^  7h{f(m(n  + h) -  f ( n  +  h)).
j= 0  h=0
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Here 7o ^  0, 72*: = 1. Let m = p G V. 
Thus we have

(2.4) (v,p) = l,IQ(e)A(p,ptV)| > Я j c 2
W

Observe that Q(E)A(p,pav ) = 7o(/(pa+1) — f (p a)) + 0(1) as a —► oo, 
uniformly for (v,p) = 1. Consequently, for large F  we have

(2.5)
OO

E  p -
|/(pa+1W (PQ)|£2tf

< C3
ь(ну

Let gp G Л  be so defined that

( 2 .6)
f ( p a) if q^ = pa for some a  
0 otherwise, if q13 G V*.

From (2.2) and (2.5) we get readily that gp G %■ To provide this, it is enough 
to show that

E  p"“ <
\1 (раШн

C 4

Ь(ну
(2.2) imphes that 6(F )  = 0 (( lo g F )c) with some positive constant c. Let 
H > 20, and let 7 be the smallest integer for which |/(p7)| ^  F .  We may 
assume that 7 ^ s n̂ce *n the °PP0Site case

E s E i7+1 -< 1 <
/=0 p4 = F < C4

6(//)

clearly holds. Let Iß = (7 -  /3 + 2) 2. Since F  < |/(p7)| £ X) l/(p/3)_
/3=1

- /(P^_1)I> У2 Ь  = 1» therefore l/ÍP^) -  /(p^_1)| ^  //3F  holds for at least one 
ß < 7 , which by (2.5) implies that

Since Iß ^+2)* > и ’ hand side of the inequality is less than
<  b ( H ) -  Thus gp 6 Tß. Consequently

к
а (р, n) = 5^ ß j i f ( p ( n  + Л) -  f ( n  + Л)

i=o
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belongs to % as well. Thus v = Qp( E ) f  G Tb, QP{z) € / ( / ,  b). Hence we have 
that Qp{z) = Q(z), , 0£} = ,вк} for evey p e V .  This can
occur only if 0i = . . .  = 0fc = 1, which completes the proof of our assertion.

R e m a r k . We proved that gp G %.  Hence it fo l lo w s  immediately that 
I ( f ,  b) = 7 (/p, b), where f p = f -  gP.

2.4. Let bk(H) = (logeR )fc-1[log(eloge//)]1+Ä, where 6 > 0 is a con­
stant.

L e m m a  1. If f  e  A  and A kf  G % k f o r  s o m e  к >  2, then A k~1 f  G % k_ l , 

and s o  A /  G Tbl Q T .

P roof . By the Remark in 2.3 we may assume th a t / ( 2a ) — a / ( 2 )  holds 
for a  G N.

Let A 2 = E 2 -  I. Then A*“ 1 =  (E  + I ) * - 1 A *"1 = £  (k~1) A k ~ 1 E^,
3 = 0

whence

A ^ V (2 n )  = f  ( ^ T 1)  A k~l f ( 2 n  + i). 
i=o '  J '

Furthermore, A2_1/(2 n )  = Ak~1f ( n ) .  Let j/„ := A fc_1/(n),

(2.7) d - 2 n + l Уп -  2 fc X2 / 2 n + / (/ =  0,1).

By the above relations we get

к
0 ^ d2n+l % c ^ | A fc/(2n  +  h)| 

h=0

and so {d„}„6N G Tbk.
For an arbitrary M  G N let Mi = [4p], M = 2Mi + eo, eo G {0,1}, and in 

general M a+1 = [ ^ ] , Ms = 2MS+1 +  e, (s = 0 ,1 ,2 , . . . ) .  If 2( ^ M s < 2t+2, 
then 2t+1 < M5_ 1 < 2i+2, . . .  ,2 <+s < M  < 2i+Ä+1. Furthermore, for every 
n G N there exist exactly 2s of M  for which M s =  n.

Let M G [2", 2t'+1), 0 := 2"(fc- 1). From (2.7) we get

(2.8) |г/м| ^ 0M0 +  </m i02 + • • • +  </m1/0*/+1

Let Hi = 0- О +!)я/(/ + l)(loge(/ +  l ) ) 1+i, 0 < / < i/. The number of distinct 
integers Mi for which d\tl > Hi is less than

cT ~ l _ cx2 v~l
(2'9) bk(Ht) < (/ + 1 + log  H )k~'[log elog(Z+ l + H ) ] ^ 5'
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Let Tu be the number of integers M  £ [2", 2"+1] for which Mi > Hi 
occurs for some l.

From (2.9) we have

(2.10) T„ ^ C22 ' ' £ ( /  +  lo g t f ) - ( fc- 1)(log(/ +  lo g t f ) ) -1- i  ^ c22,' /bk. 1(H).  
/=о

On the other hand, if djV[l < Hi holds for every / (< v), then

\ум\ ^ H ^ ( /  + 1) 1[loge(/ +  l)] 1 s < c 4H. 
I- о

Hence our assertion, namely that {y„} £ %к-1, readily follows.
2.5. Let /  £ A  and P  £ C[z] be a non-zero polynomial for which 

P ( E ) f  £ T.  Let I f  be the set of those polynomials Q £ C[z] for which 
Q (E ) f  £ T.  Repeating the argument used in Sections 2.1-2.4 one can see 
that I f  is an ideal the generating polynomial of which has the form (z — 1)* 
where к > 0. Since (z — l ) fc|P(z), we have that P(z) has a root at z — 1 
with multiplicity at least k. If / ''( I)  ф 0, then к < 1, and so Д /  £ T ,  if 
.P(l) /  0, then к = 0 and so /  £ T.

2.6. T h e o r e m  1. Let f  £ Л, P £ R[^] be a non-zero polynomial.
(1) Assume that P(l)  ф 0.
(a) Then P ( E ) f  £ V if and only i f ( E f ) ,  {Ep),  (E j ) hold.
(b) P ( E ) f  £ V a if and only if f  £ Af{. I f  f  £ Afi, and A £ R, h £ A  be 

so defined that (Eh2), (££) hold, then a(x) = (Alogi-(-А (/г ,г))/>(1)-|-0(1).
(2) Assume that P( 1) =  0 and P'{ 1) ф 0. Then P(E)  £ V  if and only if 

A /  £ V, i.e. if  f  £ Afi.
(3) Assume that P(z) = ( z - l ) kT(z), T(  1) ф 0, к Z 2. I f  P ( E ) f  £ Tbk, 

then Д /  £ 7bt Q T, consequently f  £ Ef,, P ( E ) f  £ V.

P r o o f . The sufficiency of the conditions is known.
Necessity, (la ) If P ( E ) f  £ V,  then P ( E ) f  £ T, and so by 2.5 we have 

/  £ T  C Afi .  Hence one gets easily that (E p ) ,  (E f ), ( B f ) hold. These 
conditions imply that P ( E ) f  £ V a with a(x) = P ( \ )A ( f , x ) .  Hence we 
obtain that lim A ( f , x )  exists, (see [2]) i.e. (E f )  holds.

(lb ) If P ( E ) f  £ V a then P ( E ) A f  £ T ,  consequently by 2.5, Д /  £ T,  
and so by Hildebrand’s theorem, /  £ Afi.

(2) If P ( E ) f  £ V,  then P ( E ) f  £ T  and by 2.5 Д /  £ T,  consequently 
by Hildebrand’s theorem /  £ A f i .

(3) This follows immediately from Lemma 1 and from Hildebrand’s the­
orem.
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3. On th e  d is tr ib u tio n  of g(n + 1) — f(n)

Let f , g  e  A, H(n) := g (n ) -  /(n ) , g(n) := g(n + 1) -  f{n).

Lemma  2. Assume that g := {f?(re)}neN £ T.  Then H £ T,  Ag £ T ,  
A /  € T. Consequently g £ Aj i ,  g = Alog+í, (Eti ), (E1*)» (Ея з), (E*H), 
(Д я) hold true.

P roof. The density of n £ N for which 2“ | n(n + 1) is l / 2 a~i for 
a  > 1. Let A„ := g(2n + 2) -  f(2n).  Observe that

An -  g(n) = (g(2 n + 2 ) -  g(n  +  1)) -  (f { 2 n ) -  /(n )).

Since { /(2n) — f(n)},{g(2n + 2 ) ~ g ( n + l ) }  £ T,  therefore {An-g(n)}  £ T,  
whence by g £ T  we get {An} £ T . Since

A„ = g(2 n + 1) -  H (2n + 1) + i»(2n),

we get immediately that { H ( 2 n  +  1)} £  T.  Let H o  £  A  be defined by 
H 0( 2 a ) = H ( 2 a ),  H 0 ( 2 n +  1) = 0 (n = 0 ,1 ,2 ,. . .) .  Since {H 0 ( n ) j  £ T  
therefore { H ( n ) j n e x  £ T . Now A g ( n )  = g ( n )  -  H ( n ), g ,  H  £ T, therefore 
Ag £ T.  Similarly we have that А /  £ T .

The further assertions are immediate consequences of the results stated 
in Section 1.

T h e o r e m  2. In order that g(n) possess a limiting distribution, it is both 
necessary and sufficient that the conditions (Ен), (Ец ), (Eh *), g G Aji  
would hold.

P roof . Sufficiency. It can be proved in a routine way.
Necessity. Taking into consideration Lemma 1, we have to prove only 

that (Eh ) holds. Let F(x)  be the limit law of the sequence g(n) = Ag(n)  + 
+ H(n).  Let A £ R and t £ A  be so defined that g = Alog+i, where 
(E[2), ( Ef )  hold. The fulfilment of these conditions and that of (Eh ?), (E*h ) 
follow from Lemma 2. One can prove easily that under these conditions the 
frequencies

lim N  1# { n  ^ N  I Ag(n)  + H(n) -  A ( H ,N )  < y}
N —*oo

converge to a proper distribution function G(y). By 1.6 we obtain that 
lim A(H, N )  exists, i.e. (Eh ) holds true.

4. We say that a function ф(х) defined for x > 0 is subadditive if it is 
monotonically increasing, 0 ^ ф(0), ф(х) —> oo, and ф(х\ + x2) ^
+^(2:2)) f°r x i , x 2 ^  1. We extend the domain of ф to the whole complex 
plane so that ф(г) = <̂ >(|z|).
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For some f  £ Л  let V*(f) Q V * denote the set of those pm for which 
/(p m) ф 0. Let furthermore

» ( / ) :=  E  V f ”
pme v - ( f )

In this section we assume that ф is a subadditive function, /  6 Л, P  € C[z] 
is a nonzero polynomial.

Lemma 3. Assume that тг( / )  < oo. If

(4.1) х~1 ' £ ф ( Р ( Е ) / ( п ) )  = 0 (  1),
n < x

then

(4.2) *_1 £ > ( / ( » ) )  = 0(1)-
n < x

P roof. Let P (z ) = ao + a\z  +  . . .  + akZk. We may assume that a0 Ф 0. 
Let 7P be the least exponent for which p7p > к +  1. Let I  be the set of those 
integers d all prime factors of which are greater than d and which can be 
written as products of mutually coprime factors from V*(f).

For some d 6 2" let Aid be the set of those integers n which can be 
written as

n = dv p7p,
p<k+l

and for which an = v(n  + 1 ) ... (n +  k) satisfies the conditions:
(a) if p > к  + 1, then p2 \ a„,
(b) if p > к  + 1 and p € then p \  an.

It is clear that, with some constant c\ > 0,

z -1 # { n  < x I n G Aid} > - j
d

uniformly for 1 < d ^  logo:, say. This can be proved by the Eratosthenian 
sieve.

Observe that P ( E ) f ( n )  = f(d)  + 0(1), if n € A id • This, by (4.1) implies
that

(4.3) E  < “ •
d£l

Let /  = / i  + /2, /1, /2 G A  such tha t /i(p^ ) = f ( jß)  if p < fc + 1 and =  0 if 
p > к  + 1. From (4.3) we get

E ^ A M i s E w o o i ß ]  <  I
n<x d£T
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w h e n c e  ф(Р(Е) / 1(п)) =  O(x),  a n d  so
n<x

^ Ф ( Р { Е ) к ( п ) )  = 0 (х ) .

T h e  l a s t  e x p r e s s i o n  im p l ie s  r e a d i l y  t h a t

H e n c e

c o n s e q u e n t l y

E
p < f c + l  / 3 = 1  F

5 3 ^ ( л ( » 0 ) c
n <  X

Y2<Kf(n)) <  ] Г  Ф(Мп))  +  ^(/2(n)) <  *•

T h i s  c o m p le t e s  t h e  p r o o f  o f  o u r  l e m m a .

L e m m a  4 .  Assume that (E p ), (E*j) hold, and that

U(P,}) : U(P, f ,  x) := ^  ф(Р(Е)1(п)) <  x

is valid. Then

( 4 . 4 ) ^ 2  P a<t>(f(pa )) < oo.
I/(pq)I^iPae v

I f  P (l) /  0, then (B f ) holds as well.
I f ( E p ) ,  (E j) ,  (4.4) and in addition in the case P ( l)  Ф 0 the condition 

( B f ) hold, then U(P,f)  is satisfied.
P r o o f . L e t  f  = f i  + / 2 , / 1 , / 2  £  A,  w h e r e

0 if  a  >  2 o r  i f  | / ( p ) |  > 1

f ( p ) if  a  =  1 a n d  | / ( p ) |  <  1.fi(P°) =

L e t  5* d e n o t e  t h e  se t  o f  t h o s e  in t e g e r s  d f o r  w h ic h  p | d i m p l i e s  t h a t  p2 | d 
o r  | / ( p ) |  ^  1.

A s s u m e  t h a t  (Ep) ,  (E f)  a n d  U(P, f ) h o l d .  T h e  f u l f i lm e n t  o f  (E*j) im p l ie s  
t h a t

d~l <  0 0 .
d£5*
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Observing that 4>{z) <C zc, and tha t f x is bounded on V*, by Lemma A 
we get that

U(P,fi  -  A ( f x, x ) , x ) <  0 (1 , /1 -  A ( f i ,  x ),x ) <  x.
Since I/2 — A I ^ l/l + l/i — A\, assuming the validity of U (P , f ), we obtain 
that

(4.5) <  x ’ c„ =  P ( E ) f 2(n) + P ( l )A ( f i , x ) .
n < x

Hence
x >  Y  0(Дс„) =  Y  ф(Р(Е)&Мп)) ,

n < x  n < x

and so by Lemma 3 the inequality (4.4) is true. Assume now that P ( l )  Ф 0. 
From Lemma 3 and (4.4) we have tha t £  4>{fг(те)) x, from which by

n < x

(4.5) we derive that

Y  <f>(P(l)A(fi,x)) «  Y  <КС") + Y  ̂ ( /a (n ))  «  *
n < x

i.e. A ( f i , x )  = 0(1) follows.
It is enough to prove the second assertion for P = 1, since U(P, / ,  x) <C 

<  0 (1 ,/ ,  2x). This would follow from

(4.6)
^  ddes•

<  0 0 .

The subadditivity of ф implies that ф{хi + X2) ^  Ci[<̂ >(xi) + ф{х2) +  сг] 
holds with some constants cx c2 > 0, for all complex numbers x x, X2. By 
iterating this inequality, we can derive that

ф(хх + . . .  + x„) ^  Y  ci X(c2 + Ф{Х{)). 
1=1

By using this and (4.4) we get that

E
de 5*

Ф о л т M d) M d)
E  < K \ H f ) \ ) ,
Pa\\d

and the right hand side is finite.
Let (V (P , f ) ) ,  (M ( f )) denote the conditions: 
(V (P , f ) )  £  ф ( Р ( Е ) / ( п ) ) < х ,

n < x

{MU))  £  p p 1  < 0 0 .
i/(pa)i^i
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T heorem 3. Let G G C[z], P ( z ) = (z -  1 )kG(z), G( 1) ф 0.
(1) Case £ =  0. The relation (V ( P , f )) holds if and only i f (B f ) ,  (E p ), 

(E j )  and ( M ( f ) )  are satisfied.

(2) Case к =  1. The relation V ( P , f ) holds if and only if /  G -4./,', 
/  =  Alog+/i, with some suitable A G R and h G A  such th a t (£7,2), (E£), 
(M (/i)) are satisfied.

(3) Case к ^  2. Assume th a t ф(Н) >  bk(H).  Then the relation (V(P, / ) )  
holds if and only if /  = A log +h  with some A £ R  and h G A  such that (£7,2), 
(££), (M(h )) are satisfied.

P roof. (1) Case к > 1. Necessity. We have from V(P, f ) that P ( E ) f  G 
G T, and in the case £ ^ 2 that P ( E ) f  G 7bfc. Then, by Theorem 1 we conclude 
tha t /  = Alog-ffi. It is clear tha t the conditions (V ( P , f )) and (V(P,h))  
are equivalent. Then, by Lemma 3, (£7,2), (£ £ ), (Af(fi)) are satisfied.

Sufficiency. By Lemma 3 we have([/(P, £.)) under the conditions (T(P,£)), 
( В Д , (££), which by P ( £ ) /  =  0(1) + P (E )h  implies (V(P,  /)) .

(2) Case £ = 0. The sufficiency is clear. To prove the necessity, we observe 
tha t (V ( P , f )) implies the fulfilment of ( V ( P A , f ) ) .  Thus we can apply the 
already proved part of the theorem, P(z)(z  — 1) leads to the case £ =  1, 
whence we have that /  = A log-ffi, (£7,2), (E £) are satisfied. Furthermore we 
have

^ 2  <t>(P(E)h(n) + A P(l)logn) <  x.
n < x

We shall prove that A = 0. This is clear, since Р (£ )/1г(те) is bounded on a 
set К  of integers n having a positive density, A(h, x) = О (log log ж),

(4.7) Ф ( Р ( Е № i (n) -  -A(M))) <  Y 2  \h l ( n ) *  A ( h ->X ) \C <  x i
n < x  n < 2 x

and so

Y 2  0(A P(l)logn +  P(l)A(h,x) )  <  Y2 Ф(Р(Е)Ып))+
n < x  n<:V
n£/\ n£K

+ X ! ф(р ( е )(нЛп) -  A (h i x ))) < x ■
n < x

Assuming tha t А ф 0, the left hand side is larger than

This is a contradiction to ф(у) —► oo for |y| —* 00. From Lemma 4 we obtain 
that (B f ) holds.
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5. Let f , g  € A, H(n) := g(n) -  /(та), ß(n) := р(та + 1) -  /(та) = 
= Ад(п) + Я(та), ф be a subadditive function.

Let (С (д ,Н )), (Д(р)), Х>(Я) denote the conditions
(С (р,Я )) 53 <£(Д<7(та) + Я (п)) <  I ,

п<х
(a (ö)) £  <К&д(п)) <  г,

п < х

(Р (Я )) £  0(Я(та)) <  г.

T h e o r e m  4 . (С(д, Н)) holds if and only if (А(д)) and (Т>(Н)) are valid.
P r o o f . It is clear that (Д(<7)) and (V ( H )) imply the fulfilment of 

(C(g ,H )). To prove the necessity of these conditions, we observe that 
(C(g ,H )) implies g € T, and so by Lemma 2 we have tha t g — Alog-И, 
( Е Л  (•£/)> (Я я), (Ец*), {Efj) hold. Let t =  t\ + t2, Я  =  H\ + Яг, 
ЬАг-,Н\, Яг € .A,

* х (Л  =
0 if |i(p“ )| < 1
<(P“ ) if I<(P")I ^ 1,

Hi (Pa) - {
0 if |Я (р “ )| < 1
H{pa) if |Я (р“ )| > 1.

It is clear that n(ti)  < oo, 7Г(H\) < oo. Let K \  be the set of those integers 
d which can be written as products of mutually coprime prime powers be­
longing to V*(t\)  and let K 2 be the set composed similarly from V* (H\)  
instead of t\. We have

£ ; < oo.
deK,

By Lemma A and from the fulfilment of ( Е р ) ,  ( В н ) ,  ( E j j i ) we ob­
tain (Д(<г)) and V(H2), consequently that C ( t \ ,H 2) hold. Since Ag(n ) = 
=  At(n)  + 0(1), and

ф(Ад1(п) +  H\(n))  <  1 +  ф(Ад(п) + Я(та)) + ф(Ад2(п) +  Я 2(п)), 

therefore

(5.1) ^</>(Д<!(та) + Яг(та)) <  х,

i.e. C ( t i , H 2) holds as well.
Let d < log x, d € K\.  The number of integers та ^ x for which та + 1 = 

= 2dv, (v,V*(t\))  = 1 and (та, V*(h)  U V ( H \ j )  = 1 is greater than C\x/d. 
For such an та we have Д^(та) +  H\(n) = t\(2d), and so from (5.1) we get

(5.2) £
d£K\

(d,2)=l

Ф( t(d)) < OO.
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Let us now choose d to run over the set 2" (a  = 1 ,2 , . . .  ). Just as above we 
get

(5.3) <f>(ti(2 a))
2"

a = 0

<  (X).

This, by Lemma 4 implies Т>(Н\), consequently from (5.1) we get A (ti). The 
fulfilment of V (H 2) and А(<г) was proved earlier. Thus A(f) as well as A(g) 
and V(H)  readily follow.
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ON THE ORDER OF MAGNITUDE 
OF FUNDAMENTAL POLYNOMIALS 

OF HERMITE INTERPOLATION
J. SZABADOS* (Budapest)

Let

(1) ( - 1  й ) х тi n  < Zn-l,n < • • • < £in(S 1)

be an arbitrary system of nodes of interpolation, and let m > 1 be an ar­
bitrary integer. (We shall often abbreviate x kn as ж*.) For an arbitrary 
m  — 1 times differentiable function /(x )  in the interval [—1,1], consider the 
Hermite interpolation polynomial

n m —1
(2) Hnn(f ,  * ) : = £ £  f U)(*k)Ajk(x)

k= 1 j= 0

where the polynomials A j k ( x )  (more precisely, Ajkmn(x )) °f degree at most 
m n  — 1 satisfy the conditions

(3) Aji' (xq) = SjpSkq (jiP — 0 , . . . ,  m — 1; k, q =  1 , . . . ,  n)

( 6  is the Kronecker delta). Thus the operator (2) has the interpolatory 
properties

H&lifiXq)  = f (p\ x g) (p= 0 , . . . , m -  1; q =  l , . . . , n ) .

In this paper we determine the exact lower bounds for the quantities

(4) Jjm n J2
fc=i

U  = 1)

where || • || means supremum norm of the corresponding function over the 
interval [—1,1]. The motivation for investigating these quantities is obvious: 
Z-omn is the so-called Lebesgue constant of the Hermite-Fejér operator

П
(5) Z W / , x ) : = £ / ( x * M  o*(*),

k=1

Research supported by Hungarian National Science Foundation Grant No. 1801.



358 J .  SZABADOS

and the other quantities L j mn (j  = 1 , . . . ,  m — 1) play also an important role 
in investigating the convergence behavior of (5). Namely, when estimating 
the error of approximation by (5), one usually needs an estimate for this 
error when the operator is applied to the best approximating polynomial 
p(x)  of f ( x )  of degree at most m n  — 1, i.e.

n m—1
p(x) -  H mn(p, x)  = P ^ \ xk)Ajk{x).

k = 1 j =  1

In case we know structural properties of / (z ) , we also have some information 
on p ( i \ x k), and this leads to the quantities L j m n .

Our main result is the following:*
THEOREM 1. For an arbitrary system of nodes (1) we have

F j m n  ^ £2.nl

if m  — j  is odd, 
if m  — j  is even

(j = 1).

This is a very general result whose particular cases had been known. (Of 
course, if m is even then Xomn ^ c2 is obvious.) For Lagrange interpolation 
(m - 1) we get

£ 0,1,n ^ log n
(this is G. Faber’s classical result [3]); for Hermite-Fejér interpolation (m =  2)

£ 1,2,n ^ Ci
log n 

n
was proved by P. Erdos and P. Túrán [2]; finally

(6) £ 0,3,n = cl log n
has been shown recently by J. Szabados and A. K. Varma [5]. (Actually, P. 
Vértesi [7] proved more than (6) by showing that the corresponding Lebesgue 
function is > clogn on a large set in [-1,1].)

The most interesting special case of Theorem 1 is

Ao,m,n = Ci log n (m odd)

which was conjectured in [5].
Since the proof of Theorem 1 is long, we break it into a series of lemmas. 

In what follows, let

^n(x) •— | | ( з :  2-fc)> f̂c(-c) •— lfcn(®)
k= l

Un(x)
W n (  X k ) ( x - X k )

(* = ! ,•■ •  , n )-

* In what follows c i, C2, . . .  will denote positive constants depending only on j  and m.
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L e m m a  1 .  We have

(V м * г  mv '" 1 [W x )-”i£ L ,
^  E

' «'=0
(z -  x*)’+iг!

O' = 1; к  =
P r o o f . Since the degree of (7) is at most m n -  1, we only have to prove 

(3). The polynomial (7) contains the factor (z — z,)m (г ф к), whence

A% \ xi) = 0 (p = 0 , . . . ,  m  -  1, г ф к).

Also, if 0 ^ p < j ,  then it contains a factor (z — zjt)p+1, i.e.

= 0 (p =  0 , . . . , j - l ) .

Finally, if j  < p < m — 1 then applying the Newton-Leibniz rule twice we 
obtain

л * ы  =  у; E  1' t ( x ) 7 l' ” > ( i  +  j )  ( i + Л ! [ « * Г & ; л  =

= (j)  E  7 " 0 = Ы
(P = J , j  1). □

Now we introduce the notations 

" 1
(8) fl,Jt .— O'ikmn •— ^  " T (& = 1 ,. . . ,  71J Í = 1 ,2 ,...)

„=1 \ Xi' ~ xk)

and

(9) b,k := bikmn := М хА .р * -х> (A: =  l , . . . , n ;  г =  0 ,1 ,. . .) .
г!

L e m m a  2 .  We have 
! »

(10) =  — N ' (к — 1 , . . . ,  7ij г = 1 ,2 , . . . ) .г i/=i
P r o o f . Since by (8)

а,к =
m  1 w(,(z)’

(г -  1)! [z -  z fc tjn(z).
( i - i )

X = X k

(fc — 1, •. ., 71 j i — 1,2, . . .  ),
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360 J .  SZABADOS

we obtain by (9) and the Newton-Leibniz formula again

1 ^ó(a:) l (,/_1) [f*(*)-raf e 21 m  1
-  > a^kbi-^ k -  — > 7-----j. i ' I i/ —i/=l

m

^  (i/ -  1)! [x -  xk u>„(x)JI= *k

_J____ <^п(д)
i! LVX “  w„(i) /fc(z)'

(—l)

X = x k
l\

Ш
. lk(x)

1 (•■-!)
m l k { x ) ~

= ^ ( * Г т ]<*Ц = 6ifc (fc= 1........ ... *= 1 ,2 , . . . ) -

J  X = X fc

□

Now let
( И )

m - j —l

B j k ( x ' )  • — В  j k m n  ( x ) • — ^   ̂ b i k ^ X  Х к У  (j  — 0. . . . , Til 1, к  1, . . • , u ).
i=0

Lemma 3. W e  h a v e

(12) Bjk{x) > C3 ( *_ Xfc ) m ’
\ %k %к±1  J

( — oo < x < oo, m  — j  odd, 0 < j  < m — 1, 1 < к < n) 

with one of the signs in xk±i ■
P r o o f . F o r  j  = m — 1 we have Bm- \ yk(x) = b0k — 1 (see (9) and (11)), 

whence we may assume th a t j  < m — 3 (i.e. m > 3) (the case j  = m  — 2 
does not arise, since by assumption m — j  is odd.) By (9) and (11), B jk(x) 
is nothing else but an even order partial sum of the Taylor expansion of the 
rational function lk(x)~m about x = xk■ Since lk(x)~m is the reciprocal of 
a polynomial having only real zeros and taking the value 1 at x = x k , by a 
theorem of Laguerre (see G. Pólya and G. Szegő [4], Problem 50 on p. 43)

(13) Bjk(x)  > 0 ( —oo < x < oo).

Hence 6m_ j _ >0. First we prove that deg Bjk = m —j  — l ,  i.e. >0.
Namely, if 6m_ j_x>fc = 0 then by (13) bm_ j_ 2,fc = 0, and deg B]k < m - j -  3,
deg A^.+1^(x) £ m n - j —A. Hence we will deduce a contradiction by counting
the number of roots of A^.+1^(x). The x /s  are all roots of multiplicity at
least m  — j  — 1 (г — 1 ,__, n). Applying Rolle’s theorem to the intervals
(x,+i,x ,) (г = l , . . . , n  — 1) and then successively to subintervals we get j
roots for 4 ^  (x) in each of the intervals (х,+1,х ,)(г =  l , . . . , n — 1), and
then for 4 д +1\х )  we get j  +  1 roots in each (x,+i, x,) (г = 1 ,... , к — 1, к + 
+ 1 ,...  , n — 1), while in (xfc+i,Xfc) and (x k , xk- i)  we get only j  roots (since
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FUNDAMENTAL POLYNOMIALS OF H E R M IT E  INTERPOLATION 361

A^k (x)  = 1). Altogether we obtain

n(m — j  -  1) -f (те — 3)(j + 1) + 2j  = mn — j  — 3

roots for A^+1^(x), i.e. A ^ l \ x )  =  0, a contradiction, since A^k (x) is not 
a constant by (3).

Thus if we let

(14) Cjk — sup{c I Bjk(x) ^ c(x — Xfc)m-J_1 ( —oo < x < oo)}. 

then cjk > 0, and evidently

(15) C j k ( x )  := B j k ( x )  — Cj k( x  -  x k )m ~j ~ 1 ^ 0 (-oo  < x  < oo).

Being bm_j_itk > 0 the leading coefficient of Bjk(x),  (15) implies that Cjk < 
< bm- j - i tk . Using Taylor expansion about x = x k , we obtain by (15), (11), 
(7) and (3)

С]к(х )1к (хГ {х =  Ajk(x) -  Щ-lk(x)m(x -  Х к Г - 1 =
J■ J-

( x  Xfc) Cjk f 1  , f _  _ \m  n  / „ л= ------ П----------- тг(х -  Хк) +  (x -  Хк) Dj k( x)
3- J-

where D j k ( x )  is a polynomial. Hence

(16) Ejk(x) := Cjk(x)lk(x)m = 1 - C j k ( x - x k)m~J~ 1 + j \ ( x - x k)m~j Djk(x). 

We now distinguish two cases.
C a s e  1: Cjk = bm-j-ijfc. Then C j k ( x )  is of degree at most m  — j  — 3 

(since C j k ( x )  must be of even degree), and E j k ( x )  is of degree at most 
m  — j  — 3 + m{n — 1) = mn — j  -  3. We determine the roots of E'j k ( x ) .  
The x,-’s (г ф к) are roots of multiplicity at least m — 1, while xjt is a root 
of multiplicity m  — j  — 2 > 1. Further n — 3 roots are obtained by Rolle’s 
theorem applied to the n — 3 intervals determined by the roots x j , . . . ,  Xk-i 
and X f c + i , . . . , x „  of E j k ( x ) .  This is altogether

(m — l)(n  — 1) + (m — j  — 2) + (n — 3) = mn  — j  — 4,

which is the degree of * » ( * ) ; there are no other roots.
Case 2: Cjk < b m - j - i , * ; .  Then there exists an ajk Ф Xk such that

(17) Cjk(ajk) — Cjk(ajk) — 0.

Namely, if we had Cjk(x) > 0 (—oo < x < oo) then this would contradict the 
definition of Cjk in (14). Again, we determine the roots of E'jk { x ) .  Besides
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the roots listed above, ajk is an additional root, and since it is a root of 
Ejk(x)  as well, either the application of Rolle’s theorem yields yet another 
root, or, if ajk = Xi (г ф k), say, then this is a root of multiplicity 2 higher 
than in Case 1. So the total number of real roots of E'jk{x) is now m n — j  — 2, 
which is the degree of E'-k{x).

Thus we have a complete description of the roots of E'jk{x), and in both 
cases we can write by (16)

E' j k( *)  = (* -  X

where

(18) F j k ( x )  =  - ( n n - j  -  1 ) c j k + (x -  X k ) j \ [ ( m  — j ) D j k ( x )  + ( x  -  x k ) D ' j k { x ) } .

W ithout loss of generality we may assume that in Case 2 Xk < ajk- (The 
case Xk > ajk leads to entirely analogous, symmetric considerations.) Again, 
we distinguish two cases.

Case 1: 2 < к < n. With the notation

0  j  Xk—1 If Cjk = bm—j —l,k
jk \  min(aJfc,x*:_1) if Cjk < bm-j- i ,k

we may say that the polynomial Fjk(x)  has no roots in the interval (xfc+i, ßjk)- 
(If к — n then this interval is ( —oo,/3jn).) Since E'-k{x), and hence Fjk(x), 
has only real roots, it follows that Fjk(x) is monotone in at least one of the 
intervals (Xk+i,Xk) and (Xk,ßjk)• (If к = n then this interval is ( —oo,ß jn) D 
D (x n,ß jn).) Again, without loss of generality we may assume the first 
possibility, i.e. by (18)

(19) 0 > F j k ( x )  >  F j k ( x k )  =  - ( m  -  j  -  1)с_,* (xk+i < x <  xk).

By (16), Ejk(xk+i) = 0, Ejk(xk) =  1, and thus by (19)

( 20) 1 = Í  E j k ( x )  dx =  f  ( x -  Xk)m J 2 Fjk{x) dx <
*xk +1 ''xk +1

^ - { x k  -  Xk+lY j - 2 Г  F A * )
Jxk+1

dx g (xk -  *fc+i)m 3 1( m -  j  -  1 )cjk.

Hence and from (14) we obtain (12). (If the monotonicity interval is (Xk,ßjk) 
then, instead of Xk — Xk+i in (20), we end up with ßjk -  Xk й Xk-\ — Xk-) 

Case 2: к = 1. This case requires a slightly different argument only if 
Cji < 6m—j —l.i; namely, otherwise F A * )  will be monotone in the interval 
(x-i, Zi). Now according to the previous argument, F j \ ( x )  ф 0 in the interval 
(x2,ö j i) .  If F j i ( x )  is monotone in (22, 2:1), then the same argument works
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as before. It remains to settle the case when F j \ ( x ) attains its minimum in 
( x 2, o t j i )  at у  6 ( x 2 , x i ) .  Again, we distinguish two cases.

C a s e  2 .1 : F j i ( y ) < 2 F j \ ( x \ ) .  Then it follows from the convexity from 
below of F j i ( x )  in (y, oo) that

0  <  a j i  — X \  <  Х \  — у  <  X \  — x 2 -

Thus as before
f a i  1 f a J 1 . „

1 — -  I  F ' j ^ x )  d x  — — (x -  Xi)m 3 2 F j i ( x ) d x  S 
Jx1 Jx 1

£ - ( qj! -  ®i)m-J-1 i ;ji(*1) ^ (xi -  x 2 ) m ~ 3~ 1 ( m  -  j  -  l)cjb
which is (20) with к  =  1 .

Case Ü.2: F j \ ( y )  > 2 F j i ( x \ ) .  Then

1 = /  -Éjit1) dx % - ( * i  -  x2)m 3 1 Fji(y) ^
J X2

й -2 (z i  -  x 2 )m~3~1Fj l (x1) = 2 (xi -  x2)m~3~1(m -  j  -  l)c ib

which is again (20) apart from a factor 2. □
Lemmas 1 and 3 imply
C o r o l l a r y . W e  h a v e

И*М1 ä cf
^n(^)

U'u(Xk) \X -  Xfci •
(—oo < x  < oo, m -  j  o d d , 0  < j  <  m  — 1 ; к  =  1 , . . . ,  n) 

w i t h  o n e  o f  t h e  s i g n s  i n  X k ± i  ■

Lemma 4 (see Erdős-Túrán [2]). W i t h  t h e  n o t a t i o n s

In =
1 1

log n  ’ log n , £  =
_  log2n \  1 /  _ log2 n \  1

•/n /  lo g n ’ \  -̂ /n /  logn
Mn =  max|u>„(z)|, M n = max|can(z)|

lari <  1  * e / „

w e  h a v e

ma*|«i,(*)| < c 4 n  ( +  M n ) 
xdl'n Vlog^n J

w i t h  a n  a b s o l u t e  c o n s t a n t  c 4 >  0 .
P r o o f  o f  T h e o r e m  1. C a s e  1:  m  -  j  is odd.*

* We note that this part of the proof in the particular case m  =  3, j  =  0 has been 
done in [5].
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Case 1.1: there is a 1 < k0 < n such that |ijt0(j/)| = ||/fc0(a:)|| > n2. Then 
by Markov’s inequality

IM *)I £ \ п * d * “ yl = 2n*’ 1*1 = 1)’
Hence there exists z E [—1,1] such that

l * - y l = 2»? = lZ ~  Xfc°l’
whence by the Corollary

\Ajko(Z)\ ^ s í i é
j! 2 m —j —l ^ c$n

which is more than  we stated.
Case 1.2: 11/*,(ж)|| = 0 ( n 2) (к = l , . . . , n ) .  Then, according to a re­

sult of P. Erdős [1], the system of nodes (1) is asymptotically uniformly 
distributed, in the sense that with Xk = cos 9k (к = 1 , . . . ,  n) we have

E 1 -  —' 7Г
вк€1

П < i°g  2п ( /е[о,тг])

where |/ | denotes the length of the interval I .  Hence

V  1 ^  —̂ n if I  C [—1,1], \I\ 4 ^  and n > n0.
15 nxkei

Using the harmonic-geometric-arithmetic means inequalities we get for p > 1

( 21) T ' ____ 1—  > —
I" ( n

sxkei 1

Xke i  \ x k  -  x k ± l

H H P + ‘  .  O H P+1
\ I \ n P+1

( E I1£ , h - ^ ± . l ) P = ( 2 | l l + 8 !5i r !)
P = ^3p-f2

if |/ | > 4lô  n ; n > n0, no m atter which sign is taken in Xk±i- 
Case 1.2.1: M n < î Ln ■ Then by Lemma 4

m a x K (x ) | <
2 c4 M nn 
log2 n
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and hence with \un(y)\ = M n we get by the Corollary and by (21) with 
p = m  -  j  -  1 and 1  = 1 '

Ljmn ^ ^
xkeln

^n(y) 1

C6
log2 n2 \  m

n E
1

\y -  ar/fel • (Xk -  *fc±i)m-J'-1

log2m- 1 n

>

C7-

which is more than stated in the theorem.
Case 1.2.2: M n < M n log2 те. Then by Lemma 4

m ax |u /(z )| ^ 2с4теМ„, 
xei'n

and hence with |can(z)| = M n, — < 2 ^ 0  (say) and

n3

/„,a := z + (2A + l ) ! ^ , z + (2A + 3 ) ! 2 p
V n

:= 9

C / l

( A =  0 , 1 , . . .  , Г y ß .

V . l o g 3 те.

we get

£*»» г E  M iaui i f  E
xkeih *k£i'n

Ljn(z)
u'n(xk)

Сз
E  E

l-г -  zjtl • ( x k -  х к ± 1 ) т ~ 3- 1 

1
j \ ( 2 c5n)m 4 /  \z -  x k\ ■ (xk -  Xfcii)"1̂ ' - 1А=1х*еГпд

Cs
E ^ i V ä E-1/2 log n 2A + 3 4-^ (*fc -  Xfc±i )m- i - 1 
a= i  xke i n,\

c 9 , nm 3 log те log те log те  ------ -j==— = c9- °
n3nm-l/2J0g n ŷ re

Case 2: m — j  is even. Then by (4),

l|A*(*)|| = Ljmn (k — 1 , . . . , n ) ,  

whence by Bernstein’s inequality and by (3)

— <r (mn  l ) J||Ajfc|| _  q  f  n^Ljmn ^1 = лу>(хк) <
(1 -  x|R/2

(ft =  2 , . . . , n -  1; j  = 0 , 1).
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Thus

fl — x? ^(22) L jm n  ^ c10------------  (k = 2 , . . . ,n -  1; j = 1).

Now if

(23) sup min |xfc„| < 1
n  1 SfcSn

then the statement of Theorem 1 follows from (22).
Finally, assume that (23) does not hold, i.e. there exists an infinite 

sequence of indices щ  < n? < . . .  such that

lim min |xjk„,| =  l.
*—*00 l <f c <n j

Then let ks, 0 ^ 1 , ^  n , be a sequence such that (with the notation
•En3 +  l , n ,  — — 1» З'О.Па =  1 )

(24) lim xka<na = 1, lim xfcj+i,nj = -1 .
8 —►OO 3 —* 0 0

Assume that ns/2  < ka < ns (the case 0 < ka < n ,/2  is even simpler). Then 
by (8) and (10) (since boi = 1)

(25) ( - 1 ) 4 !  > 0 ,  ( - 1 ) 4 !  > 0  (i = 1 ,2 , . . . ) .

On the other hand, by (24)

for sufficiently large s. Thus (7), (9) and (25) yield

|Л;1(0 )| > » ^ - ( - x ! ^  > c„ (j  = 0,...,m-2),

which is more than we had to prove. □
Now we prove that the lower estimates given in Theorem 1 are sharp. In 

fact, we prove slightly more:
T h e o r e m  2 . For the Chebyshev nodes

2 k — 1
(26) x kn = cos —- ----7Г (k =  l , . . . , n ;  n =  1,2 , . . . )

In
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we have

T <7*. —"jmn = bjm n--

(j = Ü, 1).

P r o o f . F o r  t h e  C h e b y s h e v  n o d e s  w e  h av e

if m — j  is odd, 

if m — j  is even

bik =
if i is even 

if i is odd,

where 0k = (к — (see P. Vértesi [6], Lemma 3.11). Also, if
for a fixed x € [—1,1],

\x — xs| =  mm |x — 1

then

|/fc(x)| = " ( й )  if
0(1 ) if к = s.

Thus, if m — j  is odd we obtain from (7)

(27) |Л,-*(*)| = О
sinm Ok

n m \ x  -  x k \m

m —j —l  ,

E  M ̂ V <?1Л It—0

= n1' Bin"»-« ek /sin>0*\ "V ^  ■ n‘ _
^  I* -  Xk\m - j ~ i V n m  J  X^Q sinra- J - ’

sin 9k
m —j  — <

x -  xk\t+’ =

= о
sin-7 9k 

nJ |s — fc|

«=0

(к ф s),

a n d

(28) |А ,,(*)| =  0 ( i f f *  ( ^ ) ‘ lx - x . l -  =  О

( o f  c o u r s e ,  t h i s  h o ld s  f o r  m  — j  e v e n ,  t o o ) ,  w h en c e

” log n 4T * —
j m n

1Aa (x)I 
£ í  (1 -  * l )j / 2

= о
n-7

( m  — j  o d d ) .
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If m  — j  > 2 is even, then in (27), for i = m - ; - l  we use the second relation 
to get

\Ajk(x)\ = 0
sinm 9k 

nm\x — X k\

■ь+-
nm — j  —  2

\ x -  Xk\

=  о sin-7 9k
n"

sin171“ 7 Ok

my 2 _____ * _____+ о (  , ^ . Л  =
m —7-1 \7l-7+ 2 |x  — X k \ )

= О
sinJ 9k

+

i=0 Sin- 2

sin-7 9k
n̂-7+2 sin2 в raJ+2 sin ^ sin /

whence and from (28)

i )

= 0
sin-7 9k 

ni(s — к )2
(к Ф s)

Tj m n
y-~ |Ajfc(x)|

a  -  *D i/2
= о (m -  j  even).

Acknowledgments. The author is grateful to G. Halász for communicat­
ing the proof of Lemma 3 in case j  = 0. Special thanks are due to A. Kroó 
and P. Vértesi who discovered defects in the earlier version of the paper. The 
author is also indebted to the referee for various comments.

R eferences
[1] P. Erdős, On the uniform distribution of the roots of certain polynomials, A nn. o f

M ath., 43 (1942), 59-64.
[2] P. Erdős and P. Túrán, An extrem al problem in the theory of interpolation, Acta M ath.

Acad. Sei. Hungar., 12  (1961), 221-233.
[3] G. Faber, Uber die interpolatorische Darstellung stetiger Funktionen, Jahresber. der

Deutschen Math. Ver., 23  (1914), 190-210.
[4] G. Pólya and G. Szegő, Problems and Theorems in Analysis, Vol. II, Springer (Berlin-

Heidelberg-New York, 1976).
[5] J. Szabados and A. K. Varma, On (0,1,2) interpolation in uniform metric, Proc. A m er.

M ath. Soc., 109 (1990), 975-979.
[6] P. Vértesi, Hermite-Fejér interpolations of higher order. I, A cta  M ath. Hungar., 54

(1989), 135-152.
[7] P. Vértesi, On the Lebesgue function of (0,1,2) interpolation, Studia  Sei. Math. H un­

gar.

(Received January  7, 1991; revised April 15, 1991)

MATHEMATICAL INSTITUTE OF THE 
HUNGARIAN ACADEMY OF SCIENCES 
H—1364 BUDAPEST, Р.О.В. 127 
HUNGARY

Acta  M athematica  Hungarica 61, 1993



Acta M a th . Hung. 
61 (3 -4 )  (1993), 369-388.

APPROXIMATE HIGH ORDER SMOOTHNESS1
Z. BUCZOLICH2 (Budapest), M. J. EVANS (Raleigh) and P. D. HUMKE (Northfield)

A substantial amount is known concerning the properties of smooth func­
tions. (For example, see [15], [8], and [9].) Recently, D utta [4] introduced 
the notion of high order smoothness and established a number of interesting 
results analogous to those for smooth functions. (See also [5] and [6].) Also, 
the notion of approximate smoothness generalizes tha t of smoothness and 
has been found to have a number of similarities. (For example, see [16] and 
[13].) Here we combine these latter two concepts in the obvious m anner to 
arrive at the notion of approximate high order smoothness, and the purpose 
of this paper is to show that results analogous to those of Dutta carry over 
to this setting.

We begin with some definitions and notation. All functions considered 
here are assumed to be real-valued, Lebesgue measurable functions defined 
at least on an open interval of the real line. First, such a function / ,  defined 
on an open interval I,  is said to have an approximate fcth Peano derivative 
at zo £ I  if there is a polynomial QXo,k(h) of degree at most к such that 
Qx0,k(°) = f ( xo) and

f ( x 0 + h) -  Qx0lk(h) = оар(/ik) (h -* 0),

where the oap(/ifc) notation is used to indicate that the left hand side, divided 
by hk, tends to zero as h tends to zero through a set having density one 
at zero. The value of the /cth approximate Peano derivative of /  at xq is 
denoted f(k){xo), where f(k)(xo)/k\ is the coefficient of hk in QXo,k(^)- ( ^ s is
customary, we use f ( k\ x o) to denote the value of the ordinary fcth derivative 
of /  at xo, if it exists.) The basic properties of approximate Peano derivatives 
are described in [2].

More generally, if there is a polynomial PXOtk[h) of degree at most к for 
which

1 Some of the results contained in this paper were presented at the MiniConference on 
Real Analysis at Auburn University, April 1989, and at the Fourteenth Summer Symposium  
on Real Analysis at California State University, San Bernardino, June 1990.

2 During the writing of this work, the first listed author was a visiting member o f  the 
Department of Mathematics, University of California at Davis.
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f ( x 0 +  h )  +  (~ l ) fc/ ( x 0 -  h )  

2 Px0 , k ( h ) 0ap ( h k ) ( h 0),

then /  is said to  have a A:th approximate symmetric derivative at xo and the 
value of this derivative at xq is denoted by D kpf(xo), where Dkpf(xo) /k \  
is the coefficient of hk in PXQtk(h). If к is even, we further require th a t 
PXQ,A:(0) = /(x o ). It is well known that if к is even, then Pxo,jt(/i) has only 
even powers of h, and if к is odd, only odd powers. Clearly, if /  has a Ath 
approximate Peano derivative a t xo, then it has a Ath approximate symmetric 
derivative at x0 and the values of the two derivatives are equal.

If we suppress the word “approximate” everywhere in the previous para­
graph, we have the concept of a Ath symmetric derivative at xo, which we 
shall denote by D kf {xo).

Next, suppose that m is a natural number greater than or equal to 2 and 
tha t /  has an m  — 2 approximate symmetric derivative at xo- If, further, it 
happens that

Д х 0 +  h) +  ( l ) m Д x 0 -  h )
- P x 0, m - 2 ( h )  = O ap ( h m ~ l ) ( h  —» 0 ),

then /  is said to  he approximately m-smooth at Xo- If /  is approximately 
m-smooth at each point of an interval, we shall say that /  is approximately 
m-smooth on the interval, and if we simply say that /  is approximately 
m-smooth, we mean that it is approximately m-smooth on ( — 00, 00). Thus, 
approximate 2-smoothness is the notion of approximate smoothness explored 
in [16], [13], and [12]. If the word “approximate” is suppressed from the 
above definitions and discussion, then we arrive at D utta’s [4] concept of m- 
smoothness, again with 2-smoothness being what is more commonly called 
smoothness.

Throughout we shall use A(5) to denote the Lebesgue measure of a mea­
surable set 5 . We shall also use what is becoming standard notation by 
saying that a function /  is a Baire* 1 function if every non-empty perfect set 
contains a portion such tha t the restriction of /  to that portion is continuous.

We are now ready to begin our investigation into the continuity and 
differentiability of approximately тп-smooth functions.

T h e o r e m  1. If f  is approximately continuous and approximately m-  
smooth, then D ^ ~ 2 f  is a Baire* 1 function.

Proof. We shall deal with odd and even m’s separately, providing an 
inductive proof in each instance.

Dealing with the odd numbers first, consider 777 =  3, i.e., suppose that 
/  is approximately continuous and approximately 3-smooth. For the sake 
of reaching a  contradiction, assume that D \ pf  is not Baire* 1. Then there
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exists a non-empty perfect set Q such that on any portion of Q the restriction 
of D\pf  is not continuous.

By the approximate 3-smoothness of /  we can choose for each number 
x a set Hx{ f ) C [-1,1] symmetric about 0 such that 0 is a density point of 
Hx(f ) ,  and if h e Hx( f )  then

\ f (x + h ) ~  f ( x  - h ) -  D\vf ( x )  ■ 2h\ < h2.

For each natural number q, put

Aq = {x : if 0 < t < 2/q then \ { H X П [—i, <]) > 0.9 • 21}.

By the Baire Category Theorem there is a natural number q and a portion Q' 
of Q such that Aq is dense in Q'. By our assumption D\ f  is not continuous 
on Q' and hence, using the density of Aq in Q ', it is a straightforward matter 
to show that there is a point у (E Q \  an £ > 0, and a sequence of points 
Pk € Q' П Aq, such that pk -> y, and \D\pf(y) -  Dlpf (p k)\ > £ for each 
natural number k.

Let g be the function defined by g(x) = f ( x )  — D\pf(y )  ■ (x — y). Then 
D\pg(y) = 0 and for each к we have |-D̂ p(7(pfc)| > £■ Also note that for each 
x we have Hx{f )  — Hx(g). For the sake of brevity we shall denote the sets 
HPk{g) and Hy(g) by Hk and H,  respectively.

Without loss of generality we shall assume that the pk s decrease mono- 
tonically to y.

Choose ho > 0 such that ho < min-fT/g, £/21} and such that for all 
0 < t < h0 we have А(Я П [~M ]) > 0.9 • 21. Next, choose К  so large that 
for all к > К , pk — у < O.Olfio- For к > К  let Tk denote the set of all t in 
(0.1/ich h0) such that у — t £ (y + H)  П (pk + Hk). Then for t £ Tk we have

\g(y + 1) -  g(y - 1)\ < t2,

and

\ 9 ( P k + ( P k - ( y - t ) ) ) - g { p k - ( p k - ( y - t ) ) ) - D l p g ( p k ) 2 ( p k - ( y - t ) ) \ < ( p k - ( y - t ) ) 2, 

and hence, by adding the previous two inequalities we obtain

Iд(У + t )~g(y + t + 2(pk - y )) + Dlpg(pk)2(pk - y  + t ) \< t2 + ( p k - y + t ) 2 <

< h l +  1.012/iq < 2.1 fig < 2Л/г0^- = O.l£fi0-

Therefore

\y{y + t )  -  g { y  + t + 2 { р к -  у ))I > ID \ p g ( p k ) ■ 2 { р к -  у + t ) | -  0Aeho >
> £ ■ 2(pk -  У +  t) -  0 .ls/lg  > £21 -  O.l£/i0 >  0.2£/lQ -  O.l£/lo =  O.l£h0.
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Next, we claim that A(Tfc) > 0.6/io- To see this, first note that by the 
choice of h0 and the symmetry of H  we have А([г/ — ho, 2/]\(y + H)) < O.lho. 
Next, since Pk — У < 0.01 h0 < O.lho and Hk is symmetric about 0, we have 
that A([p*; — l.lho, Pk]\(Pk + Hk)) < 0.1 • l.lho, and hence by using that 
Pk-l - lho < y - h Q < у < pk, we obtain that A ([y-h0, y]\(pk+Hk)) < 0.11ho. 
Therefore \([y -  h0, у] П (у +  H)  П (pk + Hk))  > (1 -  0.21)ho and so A(Tfc) = 
= X(y-Tk) = \ ( [ y - h o, y - 0 .1 ho]r\(y + H)n(pk + H)) > (1-0.31 )h0 > 0.6h0.

Next, put Ck = у +  Tk- Then Ck С [у + 0.1ho, У + h0], A(Cfc) > 0.6h0, 
and if ж £ Ck then

Ifir(x) -  g { x  + 2( p k  -  y))\ >  O . l s h o .

Put h k  =  0.9ho/[0.9ho/(pfc — y)], where [ж] denotes the integer part of x .  
Since pk — у < O.Olho we clearly have 2(pk — y) > hk > Pk — У■ Denote by 
Ф̂ . the set of integers l  for which

A([y + O.lho +  (f- — l)hfc, у +  O.lho +  Ihk] П Ck) > O.lh^.

Set
Dk = |^J \y + O.lho +  (t? — 1 )hk, у +  O.lho + ihk\- 

(e<Pk
Thus,

A (Ck П ([y + O.lho, у +  ho]\Dfc)) < 0.1A([y +  O.lho, у +  ho]) < 0.09ho.

If A ( D k) < 0.5 h0 then A (Ck) < X(Dk) +  А(СТ П ([y + 0.1ho, у + h0]\Dk) < 
< 0.59 h0, contrary to A (Ck) > 0.6ho. Consequently, we have A (Dk)  ^  0.5ho 
for every к > К.  It follows tha t there is a set U of measure at least 0.5ho 
such th a t if x  6 U then x  belongs to  infinitely many Dk.  Choose an x  € U 
and denote the set of corresponding indices к by Ф.

If к € Ф then x £ Dk and hence there exists an £ € Ф*, such th a t x£[y- \ -  
+ 0.1ho+(^—\ )hk,  y+0.1ho+fhfc] and A([t/+0.1ho +  (£— l)h^ , y + 0.1ho +  fh^]n 
П Ck) > 0.1 hk- Put Wk — [y + O.lho + (f — l)hfc, у + O.lho 4- fh^] П Ck■ If 
w £ Wk  then

\ g ( w )  -  g ( w  +  2 ( p k  -  y))\ >  0.1 e h 0 .

Since Pk -  У < hk < 2(pk -  y), we have W k U {Wk +  2(pk -  у)) C [x -  4(pk -  
-  y), x + 4(pk — y)] ■ Since g is approximately continuous at x, there is a set 
E and a 6 > 0 such th a t if |i| < 6 then A([x -  t, x + f] П E) > 2 • 0.99t, and for 
w £ [ж — 6, x-\-8]C\E we have \g(w) — g{x)\ < 0.05eho. Choose к £ Ф such that 
4(pk — y) < S', this is possible since pk —> у and Ф is infinite. If w £ Wk then 
\g(w) — g(w -f 2(pfc — ?/))| > 0.l£ho and hence either w от w + 2(pk — y) must 
fail to belong to [ж — S, x + <5] П E.  Since A(l/Pjt) > O.lhfc > 0.1(pfc — y), this 
would imply tha t \ ( [x  -  A(pk -  у ) , x + A(pk -  у)]Г\ E)  < 8 ( p k - y ) - 0 A ( p k - y ) ,  
contrary to А([ж — A(pk -  у), x +  A(pk — y)\ П E)  > 2  • 0.99 • A(pk — y). This 
contradiction completes the proof for the case m  =  3.
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Now, suppose the theorem is true for m  = 3, 5 , . . .  , n — 2, and suppose 
that /  is an approximately continuous, approximately n-smooth function. 
Assume that D"~2/  is not Baire* 1. Then there is a non-empty perfect set Q 
such th a t for each portion of Q, the restriction of D l ~ 2 f  to that portion fails 
to be continuous. By the inductive hypothesis, there is a nonempty set Q' 
of the form [c, d] П Q on which each of the functions D\pf,  Dlpf , . . .  , Т>£~4/  
is continuous.

By the approximate n-smoothness of /  we can choose for each number 
x a set Hx( f ) C [—1,1] symmetric about 0 such tha t 0 is a density point of 
Hx( / ) ,  and if h € Hx( / )  then

I /O  + h) -  f ( x  -  h) -  2Px,„_4(h) -  2 Dy f^ hn~2\ < hn~K
0 - 2)!

For each natural number q, put
A q = О  : if 0 < t < 2/q then A(Hx П [—t, i]) > 0.9 • 2i}.

By the Baire Category Theorem there is a natural number q and a portion 
Q" of Q' such that Aq is dense in Q". Since D l~2/  is not continuous on Q", 
there exists a у £ Q", and s > 0, and a sequence of points pk £ Q" Г1 A q such 
that \D2p 2 f{y)  -  D^p2 f(pk)\ > — 2)! for each natural number k.

Let g be the function given by g(x) = f ( x)  — Py,n- г(ж — У)• Then 
Dlp9 (y) =  Dlp9 (y) = ■■■ = Dip 2g(y) = 0 and for each k, \Dlp2g(Pk)\ > 
> s{n — 2)!. Also, note that for each x, Hx( f ) =  Hx(g). For the sake of 
brevity we shall denote the sets HPk{g) and Hy(g) by Hk and H, respectively.

W ithout loss of generality we assume that the pk s decrease monotoni- 
cally to y.

Choose ho > 0 such that h0 < m in{l/g, e/(20.1)n_1} and such th a t for 
all 0 < t íí ho we have A(H П [—t,t]) > 0.9 • 21. Next, choose К  so large that 
for all к > К  and all 0 < h < l . lh 0, we have |РРк1„_4(Ь)| < |(0 .1ho)n-2, 
and pk — у < 0.01ho. Now let к > К  and let 1 / denote the set of all t in 
(O.lho, ho) such that у — t E (у + H ) П (pk + Hk). Then for i £ Tk we have

\a(y + 1) -  y(y  - 1)\ < t n~ \
and

lai'Pk +  О /t -  (y -  0 ) )  -  y(pk -  (pk - { y - 1 ) ) )  -  2p Pktn- 4(pk -  y +  t ) -  
- 2 D lp 2g(pk){n -  2)!(pk -  у + t)n~2\ < ( p k -  y P  t)n~l , 

and, consequently,

( 1 )
Dn 2 a(vic)

\y (y+t) -g (2pk-y+t)  + 2PPkin̂ ( p k - y  + t )  + 2-p? {pk - y  + t)n~2\<
{ n -  2)!

< i " - 1 + (pfc-  y + t)n~ \
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Hence,

n D ^ 2g(pk)
( » -  2)!

\g(y + t )  -  g(2pk - y  + t )  I >

( P k - y  +  t )
n - 2 tn -  (Pk-y+ t )n -  \2PPktn- 4 (pk-y+t)\ >

> 2e(Pic - y  + t ) n~ 2 -  t" - 1 - Ы - У  + í )n_1 -  |(0.1Ло)п- 2 > 

> 2£í" - 2 -  fcg"1 -  (l.Ol/io)"-1 -  |(0 .1 /i0)" -2 >

> 2 stn~ 2 -  (2.01/i0)n_1 -  |(0 .1 /io)n' 2 =

= 2£(0.1/i0)n_2 -  (2.01/io)(2.01/io)"~2 -  |(0.1/iO)"-2 >

> 2 е (0 .1 М п~2 -  (2.01 • ( a o ^ n - i X2-01^ ) " - *  -  |(0-1Ло)п- 2 =

=  2 e(0 .1h0) n ~ 2 -  ^(0 .1 /io)n- 2 -  |(0 .1 /io)" -2 >

> 2£(0.1/io)n_2 -  £(0.1/iO)n_2 =  E{0.lho)n~2. 
In summary, for t  (zTk we have

Ig(y + t ) - g ( y  +  t  +  2 (pk -  у ) I > £(0.1ho)n_2.
Next we claim that A(Tfc) > 0.6h0. Indeed, this is established in exactly 

the same m anner as in the m  =  3 case and the rest of the proof is completed 
in precisely the same manner as before with the sole exception being that the 
positive number 6 is chosen so small this time tha t for u? € [x — 6 , ж + we 
have |fif(it?) — <7(x)| < £(0.1ho)"-2 /2. This again will produce a contradiction 
and complete the proof for the odd numbers m.

We now turn  our attention to the even numbers m. The case m — 2 was 
proved by Larson [12]; i.e., he showed th a t if an approximately continuous 
function /  is approximately 2-smooth, then /  is a Baire* 1 function.

Proceeding to the inductive step, assume that the theorem holds for 
the even integers m = 2 , 4 , . . .  , n — 2, and suppose that the approximately 
continuous function /  is approximately те-smooth. Assume that 2/  is 
not Baire* 1. Then there is a non-empty perfect set Q such that for each 
portion of Q , the restriction of f  to th a t portion fails to be continuous. 
By the inductive hypothesis, there is a nonempty set Q' of the form [c, d\ П Q 
on which each of the functions, / ,  ü 2p/ ,  D^pf , . . .  , D™~A f  is continuous.

By the approximate те-smoothness of /  we can choose for each number 
x a set Hx( f ) C [-1,1] symmetric about 0, such that 0 is a density point of 
Ях(/), and if h G Hx( f ) then

I f ( x  + h) + f (x -  h)  -  2Px,„-4(h) -  2 ra/(* ) Ln—2 
( n - 2 ) ! I < hn~ \
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For each natural number q, put

A q — { x \  if 0 < t < 2/q then \ {HX П [—t, f]) > 0.9 • 2t}.

By the Baire Category Theorem there is a natural number q and a portion 
Q" of Q' such that A q is dense in Q". Since D2P 2 f  is not continuous on Q", 
there exists a у £ Q", an e > 0, and a sequence of points pk £ Q"  П Aq such 
that \D2p 2 f (y)  -  D^p2 f(pk)I > e(n  -  2)! for each natural number k.

Let g be the function given by g(x) = /(x )  — Py,n- 2(x ~  У)• Then 
9(y) = Dlpg(y) = D2pg(y) = -  D2~2g(y) = 0 and for each к we have
\D2p2g(pk)\ > e(n ~ 2)!. Also, note that for each x, Hx[f) = Hx(g). For 
the sake of brevity we shall denote the sets HPk(g) and Hy(g) by Hk and H , 
respectively.

W ithout loss of generality we assume that the pit’s decrease monotoni- 
cally to y.

Choose ho > 0 such that h0 < m in{l/g,£/(20.1)"-1} and such that for 
all 0 < t < ho we have \ ( H  П [-f, t]) > 0.9 ■ 21. Next, choose К  so large that 
for all к > К  and all 0 < h ^ l . l h 0, we have |PPfcin_4(h)| < |(0 .1 h o)n_2, 
and Pk — У < O.Olho. Now let к > К  and let T* denote the set of all t in 
(O.lho, h0) such that у — t £ (у + H ) D (pk + Hk). Whereas in the odd case 
we had for t £ Tk, \g(y + t) — g(y — i)| < in_1, here for t £Tk  we have

\g(y + t) + g(y -  t)\ < in_1,

and

19 ( P k  + ( P k  ~ ( y ~  t ))) +  g { p k  -  (Pk  -  (» -  0 ) ) -
-2PPk}n- 4 ( p k - y + t ) - 2 D 2 p 2g{pk)(n-2) \(pk-y+t)n- 2 \ < ( p k - y + t ) n- \

and, consequently,

(2) Ig(y + t )~ g(2pk -  y + t) + 2РРк}П- 4(рк - y  + t)+

+ 2 ^ ^ - ( p k - y + t r - 2\ <tn- 1+ ( P k -y + t )n- 1.

This inequahty (2) is analogous to inequality (1) in the proof for the odd 
integers m, and the proof from here on is identical to that one. Thus our 
theorem is proved.

Two observations on this result may be appropriate here. First, we do not 
know if the assumption of approximate continuity is necessary. Furthermore, 
notice that in the even cases, the original function /  turns out to be a Baire* 1 
function. In the odd cases this need not be true as the following example 
shows.
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E x a m p l e  1. There is an approximately continuous function /  whicli is 
approximately m-smooth for every odd natural number m > 3, but /  is not 
a Baire' 1 function.

PROOF. W e  b e g i n  b y  d e f in i n g  s e v e ra l  s e q u e n c e s  in [ - 1 , 1 ] .  F o r  n £ N, 
the s e t  o f  n a t u r a l  n u m b e r s ,  w e  d e f in e  o n>o = 1 a n d  t h e n  for  n, к G N we le t

— ^n+k 1 bn,k — 1 2 и П(̂ .

The ‘n’ should be thought of as fixed and the a ’s and b's defining a sequence 
of intervals {(an,fc, 6n,fc)} converging to 0. We also need central sequences of 
intervals [cnifc, dn}k] which are defined by

+ )̂ -̂n,lc+i , , T 2)(Zn k̂
cn,k — an,k +  2 " + 2  ’ ^n-k ~  2n +2 ‘

We extend to the left half of [—1,1] by defining an<̂ k = —an k , and so 
on; an o will be used to designate either +1 or —1 as the situation dictates. 
Now, fix n and к and define f Uik as follows:

{0 for x £ (anifc,6n,fc);
1 /n  for x € [c„,jt,<W-];

a  C°° s p l i n e  o n  ea ch  o f  [an>A.-,cn .̂] a n d  [dntk,bn<k].
It is easy to see that f„tk is C°°. For fixed n we define:

fn(x)  =  >  /n ,/k (z)  +  ------------ >*—' nke z
where Z denotes the set of integers. This function is continuous except at

00

0 and is actually C°° at points of |J  (ап>к, bn<k). It is also clear that
k=—oo

E0,h — {h • /n (h ) = /„ (—/r)} has full density at 0, and consequently, /„ is 
2m  -  1 approximately smooth at 0 for every m.  The functions /„ serve as 
building blocks, and to take full advantage of their properties, it is necessary 
to define them on arbitrary compact intervals. If I  is such an interval, /„  / 
denotes the composition of /„  with the affine map from /  to [—1,1]; points of 
I  corresponding to the an>k's will be denoted by anik(I). Other corresponding 
points are similarly denoted.

Easy computations show that:

bn ./ tU )  -  an,k(I)  =  ^ 1  -  2 ^ * )  an,k-1  y ,

< * ( / ) - < : „ , * ( / )  >  ( l  -  2 ^ f c )  у ,

ßn,/c— l ( ^ )  ^n,/c(-0 --

cn,k-x(I) -  dn,k(I) = + l )  an,*|J|.
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First define g i(x) = f\{x). Then the complement of the support of g i 
consists of countably many compact intervals, the two extreme of which are 
set aside. The function /2 is then inserted into each of the remaining intervals 
and the process repeated. More specifically, set T\ — {[—1 ,6i t_ i ], [bi,i, 1]}, 
and define

92(x ) = Y ^ h A x )

where the sum is taken over all compact components of the complement of 
the support of g\ which are not in T\. Suppose gn has been defined and a 
set, T„, has been designated. Then,

On+i(x ) =

where the sum is taken over all compact components of the complement of the
П

support of 9 k which are not in T„. The set Tn+i consists of Tn together 
fc=i

with all intervals of the form [a„+i,o(/), &n+i,-i(-0] and [bn+i,i(7), a„+i,o(7)] 
where 1 is as in the last sentence. Finally, let

П  OO

Gn(x) = Y ^9 k (x ), and G(x) = ^ 9 k(x)•
k=  1 k=l

Let 11 — G1_ 1(0). Then M  = c.\(P)\P (cl =  closure) is a countable set 
corresponding to midpoints of contiguous intervals. Several properties of G 
are easily deduced.

1. The set 5 = ( — 1, 1)\ сЦ/*) is an open subset of (-1 ,1 ), and G is C°° 
on that set.

2. G is continuous at each point of P.
3. cl( M ) \M  С P, yet M  П P = 0.
4. cl(M )  is perfect.
It follows from the third and fourth remarks that G is not Baire*l. What 

remains is to show that G is approximately 2m — 1 smooth at each point of 
cl(M). This is obvious at points of M  because the intervals [cn>fc, <fnifc] : к = 
= 0, ± 1 ,. . .  have full density at 0. The remainder of this section is devoted 
to verifying that if x € cl( M ) \M , then Ex = {h : G(x — h) ф G(x + h)} has 
density 0 at 0. If т € cl(Af)\M, then

OO

* = П
n = 0

where 70 = [—1,1] and / n(x) is the unique interval contiguous with the sup­
port of Gn which contains x. There is a corresponding sequence of integers, 
kn, such that

7n — [^n,fc„-|-l (7n — 1 )> Un,):,, (7n_ 1)], n — 1 , 2 , . . .  .
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Note that | / n| =  2an>fcn+x |/n_ i|, where |7| denotes the length of the interval 
I.  We show that if

I j __  i t - I s  L  s ' T, I T  I __  I
2  — a n , f c n + i p n - i I  =  h  S  a n - i , f c n _ i + i H n - 2 |  — 2  »

then A (E Xth) < where

Ex,h = {iC  (0, h) : G(x + t) ф G(x -  i)} and A (E x<h) = \ ( E Xih)/h.

If S  C R and I  is an interval we let A(S, I)  = . The computations
used below make use of the following remark.

R e m a r k . If 5  is a measurable set and both A ( S C, [x,x + h]) < £ and 
A ( S C, [x — h ,x ]) < £ then Д ( Т ,  [0, /г]) < 2e where T  = {t : either x — t £ S 
or x + t £ 5}.

The proof that A (E Xth) < 1/n  for h £ [|/n |/2 , | / n_i|/2] is carried out in 
three parts. The first part verifies the result for h £ [ |/„ |/2 ,x  —сП1_*п(/п_х)]. 
This is accomplished by considering five critical h values in this interval and 
applying Remark 1.

For notational convenience, we suppose fcn+i > 0 so that x lies in the 
right half of In which we suppose to be centered at 0.

Part 1

Define Hq — |/„ |/2 , hi — Cn,kn{̂ In—\)  T 2оп^-хд|/п| x, h2 — x 
n̂,fcn+i(^n—1 )i ^3 = x Cn,—kn—1 (fn—1)) ^4 — ® dn —iCn_x(Fn_ j) and

hs = x — cn>_fcn( /n_x). Other than ho and h\ these critical values deter­
mine symmetric intervals centered at x which are determined by a point 
labelled on Diagram 1. The value of hi is chosen to insure that both 
x -f- h\ £ (cn)fcn(/„—x), dn,fcn(7n_x)) and x —hi £ (спдпдх(-^п—1)> l))'
Roughly speaking, hi is the smallest convenient value we can safely say has 
these two properties. The entirety of Diagram 1 is contained in In- i  and 
each of the displayed points has been labeled without the suffix (7„_x), i.e., 
Cn,fcn denotes cnj/Cri( /n_x).

— « - Н — b H — - - - - - - - - L- 4 - {
c n,-k Cn.kn n n

Diagram 1
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a. Suppose h £ [/io,/ii] and let S = G x( ^ y). Then

1 (Ai)» Cn+i,—i(7n)) C S  П [x h, x]

so that

A ( S c, [ x - / * , * ] ) <  h <
h

h \  ~  ( c n + l , - l  { I n — 1 )  ~  ^ n + 1 , - 1  ( ^ n - 1 ) )  _

ho "
_ (*-n,fcn ( l n - 1) T 2a„+i ii | / n| a;) (cn+i,—i(^n—l ) ^п+i,—l {In—l ))

\ЦП
cn,k„{In — l) ~ (cn+l| — l(^n) ^n + l, —l(7n) ~H 2ап+1,х | / n |)  

|T„ |/2

_ (cn,fcn(^n-l) ~ an,k„(In-1)) + (ап+1,о(Л>) ~ ^n+l,l(-^n))
№.1/2

( ^ > n + l , l ( / n )  -  ^ n + l , l ( ^ n ) )  d~ ( Cn +  l , l ( ^ n )  Qn - | - l , l ( ^ n ) )  ~b 3 a n -(-ltl | / n |

№.1/2

^ (cn,fcn(^n-l) ~ an,k„{In- l ) )  + ап+1д|Лг| + ап+1д|Л»|
1Л.1/2

a n + i , 2 | - ^ n |  +  3 a n + l i l | 7 n |

+ 1ЛЛТ2 “

{cn,k„{In-l) ~ an,kn{In-1)) + 2̂ -» an+l,l№n|
№-1/2 +

2п+з 2"+з an+l,l ITn I -f 4апд1д |/„|
+ 1Л.1/2 <

( c n,fcn ( ^ n - i )  ~  f l n , t n ( l n - i ) )  +  5 a n - | - i ii | / n | _

№- 1/2
2"+2 an,fcn+i l-^n-il + 5ап^.]д |/п| _  n 2 (kn,kn 5 

|/„ |/2  -  2n+1 2 ^  +  ^ + 2
(see Diagram 2), which is o (l/n ). Also, (сп+1д(/„), dn+i,i(/n)) C 5n[z, z+h] 
and a similar computation shows that A ( S C, [г, x + /г]) is also o ( l/n ) . Hence, 
for sufficiently large n, A{Ex<h) < l / n  for each h € [h0, hj], uniformly in h.

b. At this point two remarks are relevant. First, note that the in­
terval (cntkn(In-i) ,  dn,kn(In- i ) )  is extraordinarily long compared to the in­
terval (cn,jtn+1( /n-i),dn,fcn+l(F„_i)) and second, on each of these intervals
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In

Diagram 2

G is identically The choice of h\ then entails th a t for h £ [hi, ^ 2],
G(x + h) = G{x -  h) =  £ and hence, A (E Xih) £ A ( E Xthl )- By observ­
ing that A ( E Xth2) < A (E Xthl ) and using the fact, proved in Section a, that 
A (E X}hl ) = o (l/n ), it follows that A (E Xth2) = o (l/n ).

c. The ratio hi^ 2 2 ls also 0(V n ) and as a consequence for h £ [h2,/i3], 
we have A (-Ex,л) = ° ( l / n ) (see Diagram 3).

\ 1 1 iл 1 vf if'
" 2

----------- \Ш Ш ¥ /Ж г— ) — — H —
Cn,-kn-t c">n* 1 x

Dia.gra.rn 3

d. If h £ [^39̂ 4]? then x h £ (^n,—kn—i(In—1)? kn—i(At—1))? £
£ (cn,in(/n -i), n̂,Jtn(^n-i)), and each of these intervals is contained in G- 1( i ) .  
Hence, for such h , A ( E x<h )  < A ( E Xth3 )- In particular, if h  = h 4 we have 
A ( E Xth i )  =  o ( \ / n ) .

e. The ratio is also o (l/n ) and hence for h £ [h.4,/15], A (EXih) =
= o(l/n ). This completes the first part of the argument.

P a r t  2

In this part we show that if t £ [x — cn,_jfcn(/„_ i) , x — cni_ i( /n_i)] then 
A(EX't) < ~ for all sufficently large n and uniformly in t. The technique 
of proof is similar to th a t of Part 1 except that the critical values are more 
regular. Suppose m  -  0, l , . . . , k n -  2, let <0,m = x  -  c„ _fcn+m(/„_ i), and 
П , т  =  ^ n , k n —m ( I n — 1 )  X .  If f  £  then *

* f € (с?п,—fc„+m(In—l), Cn,—fc„-|-m(-fn—l))
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and
X t E. (Cn,fcn—m(^n—1 ))> dnjfcn_m(/n_i )) 

and each of these intervals is contained in Hence, for such t, we
have A (E x<t) < A(EXfto ). See Diagram 4. Note that to,о =  hs, and therefore 
A (EXitoo) — o(l/n ). Using the above it now follows that A (Exj l0) = o (l/n ) . 
Let t2)m = to,m+i = x — cnj_fcn+m+i (In_i). Then it is easy to see tha t 
the ratio tl,Tn is o (l/n ) . Hence it follows that if t G [ti,o,Í2,o]5 then 
A (EXtt). =  o(l/n ). As t2,о = io,i, we can continue this process to con­
clude that A (EXyt) < ^ for sufficiently large n and uniformly for all í G 
G [x — cn>_^n( /n_i), x — cn>_ i( /n_x)]. This completes the second part of the 
argument.

(

l,m...........—
0̂,m.........

\ / \ , /  \V \ /  \
T

d . '* c

'! (  ’

d .

\  > V >X

«m -!<_♦ m 4 v -k  ♦m »l* n ' Л ' n

Diagram 4

Part 3
In this part we complete the proof tha t there is an N  sufficiently large

M  lb-11 
2 ’  2 . It is sufficient tothat if n > N, A (EXih) < £ for all h G

show that A (Ex<a) = o (l/n )  uniformly for 5 G [x -  cni_ i ( /n r l ), |/2]. 
Let s0 = x -  cn>_ a n d  Si = -  x. For s G (á0,5i), x -  s G
€ (dn,—i(/n —i),c„  _ i( /n_i)) and x+s G (cn,i( /n_i), both of which
intervals are contained in S. Consequently, A (EX<B) ^ A (E XiSo) which we 
saw in Part 2 is o(l/n). Further, a proof entirely analogous to the first 
portion of Part 2 shows that A (EXiSl) = o (l/n ). To complete the proof we 
show that if s2 = | x|/ 2 then the ratio is also o(l/n).

* 2  -  Л  =  ^  -  ( d n , l ( / „ - l )  -  X )  c  -  f l n , l ( / n - l ) )  ^

5 1 ^ n , l ( A » - l )  —  x  ^ n , l ( - ^ n —l )  — c n , l ( - ^ n —l )

( Дп ,о( -^п—l )  ^ n , l ( F n —1 ) )  4~ ( ^ n , l ( I n —1)  Qn , l ( -^ n —l ) )

^n,l(^n-1) — cn,l(^n—l)
+
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^  0 П Д  I I n —1 1 "I" 2 Л 2 ® n , l  I A » — 1 I "I" f l n ,  1 I I n  — 1 1

This then completes the proof of Part 3.

If Л € % ^ ] ,  then A {EXth) is bounded by the maximum of the
densities A (E Xit) where t is one of the critical values from Part 1, 2 or 3, i.e.,

Hence, there is an N  such that for n > N ,  A ( E Xih) < ^ uniformly for all 
h € [|/„ |/2 , | / n_i|/2]. That is, for every x  € cl(M )\M , Ex =  {h : G(x + h ) ф 
ф G(x — h )} has density 0 at x. This then completes the proof that G has 
all the desired attributes.

However, even though an approximately continuous, approximately m- 
smooth function (m odd) can fail to be a BaireT function, it will have to 
be continuous on a dense open set. This is our next Theorem 2. First we 
need the following lemma, which is based on a recent result of Freiling and 
Rinne [10].

L e m m a  1 . Let f  be an approximately continuous function which is ap­
proximately symmetrically differentiable on an interval I .

a) I f  D \pf  is bounded either above or below on I, then f  is continuous 
a n d  symmetrically differentiable on I .

b) I f  D \pf  is continuous at xo € I ,  then f  is differentiable at xo.

P roof (of a)). Assume that D\pf  is bounded below by M  on I.  Then 
the function g, given by 5 ( 1 ) =  / ( x )  — M x,  is approximately continu­
ous and approximately symmetrically differentiable on I  with Dlpg(x)  = 
= -^apf ( x ) — M  > 0 for all x € /• Hence, according to [10], g is nondecreas­
ing on I .  As noted in [7], it is easy to see that if a monotone function is 
approximately symmetrically differentiable, then it must be symmetrically 
differentiable. Thus, g is symmetrically differentiable on I. Since a symmet­
rically differentiable function cannot have a jump discontinuity, g must be 
continuous on I. Clearly, then, /  is also both continuous and symmetrically 
differentiable on I. The analogous proof holds if D\pf  is assumed to be 
bounded above.

t  €  ^ 1 » ^ 2 ) Ь,з, / 1 4 ,  Л . 5 ,  t \ , t 2 ,  s i , s 2 } .
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P roof (of b)). Since D lapf  is continuous at xo, it is bounded on a neigh­
borhood J  of xq and hence equals D 1 f  on J  by part a) of this lemma. Apply­
ing the quasi-mean-value theorem of [1], we conclude that /  is differentiable
3<t X Q •

Neither a) nor b) remains true if the assumption of approximate continu­
ity in the previous lemma is weakened to Baire one, Darboux. For example, 
Croft [3] has constructed a Baire class one, Darboux function which is almost 
everywhere zero, but nonzero on a dense set.

T heorem 2. If  f  is approximately continuous and approximately m- 
smooth, then f  is continuous on a dense open set.

PROOF. If m is even then Theorem 1 guarantees that /  is a Baire’ l 
function and is hence continuous on a dense open set. Suppose that m  is odd. 
Then /  is approximately 3-smooth. Let I  be any open interval. According 
to [11], D\pf  is a function of Baire class one and is, therefore, bounded on 
some subinterval J of I.  Consequently, from part a) of Lemma 2, it follows 
that /  is continuous on J .

We now turn to differentiability properties of approximately m-smooth 
functions. The following lemma is useful.

Lemma 2. Let f  be approximately continuous on an open interval I .
a) I f  D lp~1f ,  к = 1 ,2 ,. . .  , m, exist and are continuous on I, then the 

ordinary derivative / ( 2m_1) exists and is continuous on I .
b) I f  f ,  к = 1 ,2 , . . .  ,m , exist and are continuous on I, then the 

ordinary derivative / ( 2m) exists and is continuous on I .
P roof (of a)). If m = 1, the result is immediate from Lemma 1, part b). 

Suppose that the result holds for m =  n and let us show that it must also 
hold for m  = n + 1. The proof we shall give for this inductive step is 
virtually identical to that given by D utta  in [4] for his Lemma 2 and we 
include it here solely for the sake of completeness. We are assuming that 

k 1 ,2 ,...  ,n  +  1, exist and are continuous on / ,  and tha t, via
the inductive hypothesis, / I 2"-1) exists and is continuous on I. Let [a, 6] be 
contained in I.  For each i  £ I  and each h such that x ±  h 6 / ,  there is, by 
the mean value theorem, а в, 0 < в < 1, such that

(2n -t- 1)! ( /(x  + A) -  f ( x  -  A))/2 -  £  ^ A _ / ( » - i ) ( l ) j  k* » i  =

A2(/<i- 1>;x,0/»)
(9hy

where is the usual second symmetric difference for a function ф:

Д 2(<£; x, t ) =  ф(х + t) + ф(х -  t) -  2ф(х).
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< D ^ +1f ( x )  < Z)2/ (2n_1)(x)

for all x G / .  Now, since D ^p +1 f  *s continuous on [a, í>] and satisfies the 
above inequality, Lemma (3.13) on p. 327 of [17, Vol. I] indicates that the 
function

is linear in [a,b\ and, hence, / ( 2n+1) = D \p+l f  on (a, 6). Since [a, 6] is 
arbitrary in / ,  we conclude that / ( 2п+1)(х) =  D^p+1f ( x )  for all x G / ,  
completing the proof of a).

P roof  (of b)). First consider the case m  — 1. Here we are assuming 
that /  is approximately continuous on I  and that D2&pf  is continuous on I ,  
and wish to conclude that / "  =  Dlpf  on I.  Let [a, b] С / .  From Theorem 3 
in [13] we may first conclude that /  is actually continuous on [a, 6]. Next, 
since /  and D 2pf  are both continuous on [a, b] and

for all x G [<z, 6] we conclude, again via Lemma (3.13) on p. 327 [17, Vol. I] 
that the function

is linear in [a, b] and, hence, f "  = D\pf  on (a, 6). Since [a, 6] is arbitrary in 
I, we conclude that f "  — D lpf  on / ,  completing the proof for m = 1. The 
inductive step may now be justified in a manner entirely analogous to tha t 
utilized in the odd case above.

From Theorem 1 and Lemma 2, we immediately obtain the following:
T h eor em  3. If f  is approximately continuous and approximately m- 

smooth, then / ( m~2) exists and is continuous on an open dense set.
Here again, the example in [3] shows tha t the assumption of approximate 

continuity in Theorem 1 cannot be replaced by Baire one, Darboux.
Lem ma  3. Let f  be approximately m-smooth and suppose that / (TO_2) 

exists on an open interval I .  I f  f(m- 2) attains a local maximum or minimum  
at xo in I ,  then f(m-i){xo) exists and equals 0.

P r o o f . Note that the m = 2 case reduces to the assumption that /  is 
approximately smooth and approximately continuous. That the approximate 
derivative or exists at a point where a local extremum is attained

D2 f { x )  % Dlpf ( x ) < D 2f{x)
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was proved in [16]. Consequently, we need only consider the situation where 
m  > 2.

Suppose that /(m_2) has a local minimum at xo- Since /  is approximately 
m-smooth at xq, there is a set EXo of density one at zero such th a t for h £ 
€ EXq, we have

(3) [/(*o + h) + ( - l ) m/( io  -  h)]/2 -  Pxa,m-*{h ) = oik” - 1).
Since /(TO_2) has a local minimum at xo, it is bounded below on a neighbor­
hood J  of xo and, hence, from [2] we conclude that exists on J . Thus
we may rewrite the left-hand side of (1) as(4)

f ( x  о + h)
m — 2 , f .

E
k= 0

+ ( - 1 ) Г
m  — 2

/(xo -  ft) -  E  Ч ^ /(к>(хо)
k=0

Next, we shall show that for h > 0 and sufficiently small, both of the
m - 2  I m  — 2  , L\k

expressions/(x0 + h) -  £  ^ - /^ ^ x o )  a n d /(x 0 -  h) -  X] / (fc)(xo) are
fc=o ‘ fc=o

nonnegative. Once this is established, it will follow from (3) and (4) tha t for 
sufficiently small h 6

m - 2

/ ( x 0 +  Л) -  7 7 / (fc)(x°) = °(Л
m  — 1

k=0
),

implying that /(*._!) (xo) exists and equals 0.
To verify the claim mentioned above, let /z > 0 be small enough so that 

both xo — h and xo + h are in J. From Taylor’s Theorem we know tha t there 
is a 0 < 6 \ < 1 and a 0 < 62 < 1 such tha t

J-fк j jTj — 2

(5) /(* „  +  ft) -  E  T T /W (*o) = +  ilft) -  / (m" 2,(xo)l
fc= 0  K '  ^

and

/(XO -  ft) -  E  4 r - / (t)(*») = У 5 [ / М ( -  -  W  -  / (” " 2)(xo)].
Jt=0 ■ '

We may rewrite the latter equality as

(6 ) ( - l ) r
k=0

- . m  — 2

(m -  2)! [ / (m_2)(x0 -  S2h) -  / (m- 2)(xq)].
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Since has a local minimum at x0 we know that for h > 0 and suf­
ficiently small, the right hand sides of both (5) and (6) are nonnegative, 
completing the proof for the case when /  has a  local minimum at xo.

The remaining case may be disposed of by considering —/ .
T heorem 4. Let f  be approximately continuous and approximately m- 

smooth. Then ) exists and is finite at each point of a set having the
power of the continuum in every interval.

P roof. From Theorem 3 we know that / ( m-2) exists and is continuous 
on a dense open set. Let I  be an interval on which / ( m~2) is continuous. 
We may now proceed exactly as in the proof of Theorem 2 in [4] to show 
that /(m_i)(a;) will exist for all points ж in a set having the power of the 
continuum in I. The only modification to be made in tha t proof is to use 
Lemma 3 of this paper in place of Lemma 4 in [4].

T heorem 5. Let f  be an approximately m-smooth function for which 
f ( m —2) exists on an open interval I . Then has the Darboux property
on E = {x £ I  : / (m_i)(x) exists}.

P roof. First note that for the m = 2 case the assumption that 2) 
exist on I  merely means that /  is approximately continuous on I. With this 
observation we see that the conclusion follows from Theorem 2 in [13]. Thus 
we need only consider rn > 2.

For m > 2 the assumption tha t f(m- 2) exists on /  guarantees that /  is 
approximately continuous on I .  Hence, Theorem 4 asserts that E is of the 
power of the continuum in I .  Let a and b be two points in E  where a < b 
and /(m_i)(a) ф / (m- i){b). For each c between and / (m_ij(fc) we
must produce an xq € EC\(a,b) such that f(m-i)(xo) = c. Clearly, it suffices 
to verify this for the situation where c = 0 and /(m-i) (a ) < 0 < /(m_i)(&).

Being an approximate Peano derivative, /(TO_2) has the Darboux prop­
erty on I  [2]. Hence, it is a Baire‘ 1, Darboux function on I. According 
to Theorem 1 in [14], f(m- 2) is either monotone (and hence continuous) on 
[a,b], or there is a subinterval [a,/3] of (a, b) on which / (m_2) is continuous 
but not monotone. If the la tte r situation holds, then /(m_ 2) must obviously 
have a local extremum at some point xo € (a,/?), and Lemma 3 guarantees 
that x0 € E  and f(m-i){xo) = 0, exactly the situation we are seeking. We 
shall complete the proof by showing that it is impossible for /(m_2) to be 
monotone on all of [a ,/2].

So suppose that }(m- 2) is nondecreasing on [a,ß\. Then f(m- 2) = f^m~2  ̂
on [a,ß] [2]. Consequently, if a  +  h 6 (а, /I), then Taylor’s Theorem assures 
us of a 0 < 6 < 1 such that

m-2 t,k i,m- 2
(7) /( t .  + h) -  Y ,  = 7— — [ / 1"*-2>(Q + ÍA) -  h ” - 2)(a)] ä  0.

к-о K' ^Ш '■
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Also, we know tha t there is a set H  having density one at 0 such that for 
h £ H we have

^ ” 2 I I y y \  —  1

(8) t ( a  + h ) - Y ТГ/ W (“ ) -  7— i y / ( ~ l ) ( « )  =  » ( A - 1)-
fc=0 ' '  '■

From (7), (8), and the fact that /(m_i)(o) < 0, we conclude tha t for positive 
h's in H  we have

m - 2  k k

f ( a  + h ) - ' £ - f W ( a )  =  o(hm- 1),
A:=0

which is a contradiction because /(m_i)(o) ^  0.
Similarly, a contradiction is obtained if /(m_2) is assumed to be nonin­

creasing on [or, /3J, completing the proof.
Utilizing a very similar line of proof we also obtain the following mono­

tonicity result.
T h e o r e m  6 . Let f  be an approximately m-smooth function for which 

/(m -2) exists on an open interval I .  I f  f(m- i ) ( x ) > 0 for all x € E  = { i G 
€ I  : f(m-i)(x) exists), then /(m_2) is nondecreasing on I .
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