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FURTHER RESULTS ON RETICULATED RINGS
H. AL-EZEH (Amman)

Throughout this paper all rings are commutative with unity and all lat­
tices are distributive with 0 and 1 unless otherwise stated. For a ring R, the 
reticulation of R  is defined as a distributive lattice generated by the symbols 
D(a), a G R  and satisfying:

£ (1 я) = 1, D(0д) = 0, D{a • b) = D(a) A D(b), D(a  +  b) й D(a) V D(b).

For more details about the reticulation LR  of a ring, see Simmons [9]. For 
any ideal I  of the ring R, let D (I) be the ideal generated by (-D(a): a G 1} 
in LR. For any ideal J  of the lattice LR, let D~1(J) = {a G R: D (a) G J}. 
Trivially, D _1(J) is an ideal of R.

The reticulation of a ring was investigated by Simmons [9] in order to 
show that a lot of ring theoretic properties have analogues in lattice theory 
and vice versa. In this paper we continue this theme and answer a couple of 
questions raised by Simmons [9]. Then we proceed to prove further results in 
that direction. Let Id(Ä) be the lattice of all ideals of the ring R. It should 
be noted that this lattice is not necessarily distributive. Let R ld (R )  be the 
distributive lattice of radical ideals of the ring R. For a lattice L, let Id(L) 
be the lattice of ideals of L. From now on, LR  will denote the reticulation 
of R.

We start by quoting a theorem that was given by Johnstone [7], p. 194.
THEOREM 1. Let R  be a ring. Then D~l : Id(LÄ) —* R ld(R) is a lattice 

isomorphism, moreover for any ideal I  of the ring R, D ~1(D (I)) =  y/1 , the 
radical of I . Also, D~l defines a bijection from the prime ideals of L R  to the 
prime ideals of R. Hence minimal prime ideals of LR correspond to minimal 
prime ideals of R.

Recall that a ring R  is called quasi regular if for every a G R, there 
exists b G R  such that ann(ann(a)) =  ann(b), where for any ideal I  of 
R, ann(/) =  {ж G R: xy  = 0 for all у G /} . A lattice L is called quasi 
complemented if for every a G L, there exists 6 G L such that a** = b*, where 
for any ideal /  of a lattice L, 7* = {x G L: x A у = 0 for all у G /} . The 
first result we want to establish is the following: A semiprime ring (without 
nontrivial nilpotents) is quasi regular if and only if LR  is quasi complemented 
and for every a G LR, there exists r G R  such that a* = D*(r). This result 
will be proved after the following preliminary lemma.
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LEMMA 2. Let R be a semiprime rinq. Then for any ideal I  of R, 
D(a,nn(I)) = D *(I).

P roof. The proof is easy if we keep in mind that every x £ D (I) has
П

the form V £)(a,) for some a i, a2, . . .  ,ап £ I .
«=1

THEOREM 3. Lei R be a semiprime ring. Then R is quasi regular if 
and only if the lattice LR is quasi complemented and for each x £ LR, there 
exists a £ R such that x* = D*(a).

П
P roof. Assume R  is quasi regular. Let x £ LR, then x =  V Z)(a,) for

i—i
some ax, a2, . . .  ,a„ £ R. Hence

x * =  ( \ /  Z>(a,)) =  Д  Z>*(a.) =  Z> ( f )  an n (a ,)).
«'=1 Í=1 1=1

Since R is quasi regular, for any a,b £ R , there exists c £ R such that 
ann(a)flann(ft) =  ann(c), see Henrikson and Jerison [6]. Thus x* = Z)(ann(r)) 
for some r £ R. By the previous lemma, x* =  Z>*(r), r £ R. Now, consider

x** = D**(r) = D*(ann(r)) = D(ann(ann(r))) = Z)(ann(s))

for some s £ R , since R is quasi regular. Consequently, LR  is quasi comple­
mented, see Speed [10].

Conversely, let r £ R. Consider

Z?(ann(ann(r)) = £ )’ (ann(r)) by Lemma 2
=  D**(r) = y* for some у £ LR ,

since LR  is quasi complemented. By assumption, y* =  D*(s) for some 
s £ R. Therefore, ű(ann(ann(r))) = Z)(ann(s)). Since R  is semiprime, 
ann(ann(r)) and ann(s) are radical ideals. Hence applying Theorem 1, 
ann(s) = ann(ann(r)).

T heorem 4. Let R be a quasi regular ring. Then the space of minimal 
prime ideals o f L R  with the hull-kernel topology is compact.

P roof. By the previous theorem LR  is a quasi-complemented lattice. 
Speed [10] proved that a lattice is quasi complemented if and only if the 
space of minimal prime ideals is compact. Thus the space of minimal prime 
ideals of LR  is compact.

For any prime ideal P  of a semiprime ring R, 0 ( P ) = {x £ L: 3y £ 
£ P  Э xy = 0} is an ideal of R  contained in P and is contained in any 
prime ideal contained in P. Also, for any prime ideal P  of a lattice L, 
O (P) = {x £ L: 3y £ P Э x Л у = 0}.

A c ta  M athcm atica H ungarica 60, 1992
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Recall that a ring R  is called a PF-ring if every principal ideal aR  is a 
flat 72-module. An ideal 7 of a ring R  is called pure if for each x £ I ,  there 
exists у £ I  such that xy = x. By now, it is well known that R  is a PP-ring 
if and only if for each a £ R, ann(a) is a pure ideal, see Al-Ezeh [1]. A ring 
R  is called a PP-ring if for each a £ R, aR  is a projective R-module. In fact, 
a ring R  is a PP-ring if and only if for each a £ R, ann(a) is generated by 
an idempotent. In the following theorem we give a different characterization 
of PP-rings.

T heorem 5. A semiprime ring R is a PF-ring if and only if each min­
imal prime ideal is pure.

P roof. Assume R  is a PP-ring. Let P  be a prime ideal, and let x £ 
£ 0 (P ) ,  then there exists у £ P  such that xy  = 0, i.e. x £ ann(t/). Since R 
is a PP-ring, ann(i/) is pure. So there exists a £ ann(y) such that xa =  x. 
Since ay — 0 and у ^ P , a £ 0{P ). Therefore O (P) is pure. For any minimal 
prime ideal of a semiprime ring, P  = O(P), see Henriksen and Jerison [6]. 
Thus each minimal prime ideal is pure.

Conversely, assume that each minimal prime ideal of R  is pure. Let P  
be a prime ideal in R. Then P  contains a minimal prime ideal of 22, say Q. 
Since Q Q P , O(P) Q Q. Now, let x £ O(Q). Since Q = 0 (Q ) is pure, there 
exists у £ 0 (Q ) such that xy — x. Hence x (l — y) = 0 and 1 — у £ P. So 
x £ O(P). Therefore 0 (Q ) Q O(P), and hence O(P) = 0 (Q ) = Q. So each 
prime ideal P  contains a unique minimal prime ideal, namely, O(P). Thus 
R is a PP-ring, see Matlis [8].

Recall that an ideal 7 of a lattice L is called a (т-ideal if for each x £ 7, 
7 V I* =  I .  (For more details about (7-ideals see Cornish [3].) A lattice L 
is called conormal if for any x, у £ L, if x Л у =  0, then there exist a,b £ L 
satisfying x Aa = у Ab = 0 and aV 6 = 1. In fact, Cornish calls these lattices 
normal ones. Cornish [3] proved the following theorem.

THEOREM 6. A lattice L is conormal if and only if each minimal prime 
ideal o f L is a cr-ideal.

Georgescu and Voiculescu [5] showed that for any ring R, D ': ФR —» 
—► ФLR defined by D '(I) = D (y/l) is a lattice isomorphism, where ФД is 
the lattice of all pure ideals of R  and ФLR is the lattice of all сг-ideals of 
LR. If 72 is a semiprime ring, then for each pure ideal of R, I  = \ / l .  Hence 
D: ФR —» ФLR is a lattice isomorphism. So, by Theorems 1, 5, and 6, we 
get the following theorem that answers a question raised by Simmons [9].

THEOREM 7. A semiprime ring R is a PF-ring if and only if LR  is a 
conormal lattice.

As an application of the above results we prove a result that was proved 
by Simmons [9]. Speed [10] proved that a lattice L is quasi complemented if 
and only if the space of minimal prime ideals with the hull-kernel topology 
is compact. Cornish [3] proved that a lattice L is stonian if and only if it is

A cta  M aihem atica H ungarica 60, 1992



4 H. AL-EZEH

conormal and the space of minimal prime ideals with hull-kernel topology is 
compact. Endo [4] proved that a ring R  is a PP-ring if and only if it is a 
quasi regular PP-ring. Consequently, we get the following result which was 
proved by Simmons [9].

T heorem 8. A semiprime ring R  is a PP-ring if  and only if  L R  is a 
stonian lattice.

A ring R  is called an almost PP-ring if for each a £ R, ann(a) is generat­
ed by idempotents. One can easily show that a ring R  is an almost PP-ring 
if and only if for each a £ Ä, and x £ ann(a), there exists an idempotent e 
in ann(o) such that xe = x. Some authors call these rings complementedly 
normal rings. An element a in a lattice L is called complemented if there 
exists i  £ I  such that а Л b — 0 and a V b = 1. The element b is called the 
complement of a and will be denoted by a'. For a lattice L, let BL  be the 
set of all complemented elements of L. In fact, BL  forms a boolean lattice. 
An ideal 7 of a lattice L is called a strongly cr-ideal if for every a € 7, there 
exists b £ 7 П B L  such that a < b. A lattice L is called almost stonian if 
for each a £ L, a* is a strongly a-ideal. Cornish [2] called almost stonian 
lattices complementedly normal lattices.

Finally, an ideal 7 of a ring R  is called a strongly pure ideal if for each 
a £ I , there exists an idempotent e in 7 such that ae = a. Our aim is to 
show that a semiprime ring R  is an almost PP-ring if and only if LR  is an 
almost stonian lattice.

T heorem 9. A semiprime ring R is an almost PP-ring if and only if 
each minimal prime ideal is a strongly pure one.

P roof. Let P  be a minimal prime ideal of R. Then 0 (P ) = P . Let 
x £ O(P), then there exists у £ P  such that xy  =  0. Hence x £ ann(y). 
Because R  is an almost PP-ring, there exists an idempotent e in ann(y) such 
that xe = x. Since у £ P  and P  is prime, e £ P. Therefore, P = O (P) is a 
strongly pure ideal.

Conversely, assume that each minimal prime ideal of R is a strongly pure 
one. Therefore, the minimal prime ideals are pure. By Theorem 5, R is a 
PP-ring. Now, let у £ R, and x £ ann(y). Since R  is a PP-ring, O (P), for 
any prime ideal P  of R, is prime (see Matlis [8]). Thus, for any prime ideal 
P  of R, either x £ O(P) от у £ O(P). So we have the following two cases:

(i) if x £ 0 (P ), then by assumption there exists an idempotent e £ 
£ O(P) Q P  such that xe = x. If /  =  1 — e, then x f  = 0 and /  P;

(ii) if x £ O (P), then у £ O(P). By assumption, there exists an idem- 
potent q £ 0 ( P ) such that yg = y. If h = 1 — g, then yh = 0 and h £ P. So 
for each prime ideal P , either there exists an idempotent /  ^ P  such that 
x f  = 0 or there exists an idempotent h ^ P  such that yh = 0. Let A  be the 
ideal in R  generated by all idempotents /  ^ P  with x f  = 0 if case (i) holds 
and those idempotents h £ P  with yh = 0 otherwise. Clearly A = R  because

A d a  M athcm atica  Hungarica 60, 1992
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for each maximal ideal M  the ideal A  contains an element not in M . Hence

1 = I"l/l "t" • ■ • d" 'I'mfm ~t" d" • • • d- snbn.

Therefore x = x(sih i +  . . .  + snhn) and sih \ -f . . .  d- snhn G ann(y). Con­
sequently, there exists an idempotent h in ann(y) such that xh  = x. Thus 
ann(j/) is a strongly pure ideal. Therefore R  is an almost stonian ring.

Now, we prove an analogous result for lattices.
T heorem 10. A lattice L is almost stonian if and only if each minimal 

prime ideal o f L is a strongly о -ideal.
P roof. Let P  be a minimal prime ideal of L. Then 0 ( P ) = P. Let 

x € O(P), then there exists у ^ P  such that x Л у =  0, i.e. x G y*. Hence
there exists 6 G у* П B L  such that x < b. Since у $ P  and b Л у = 0,
b G O(P). Therefore P  = O(P) is a strongly <7-ideal of L.

Conversely, assume that each minimal prime ideal is a strongly cr-ideal. 
Clearly, every strongly cr-ideal is a cr-ideal. Thus each minimal prime ideal 
is a or-ideal. By Theorem 6, L is conormal. Therefore each O(P) is a prime 
ideal, see Cornish [3]. Now, let a G L and x G a*. Then x A a = 0. So either 
x G O(P) or a G O(P). So for each prime ideal P  of L, we have two cases:

(i) if x G O(P), then there exists bp G 0 (P ) П BL  such that x < bp. 
Therefore x A b'P = 0 and b'P £ P;

(ii) if x ^ O(P), then a G O(P). So, there exists bp G O (P) П BL  such 
that a ^  b. Therefore a /\b'p  = 0 and b'p P.

Let J  be the ideal generated by all those bp's constructed in (i) if it holds 
and by those bp's in (ii) otherwise. Clearly, L — J  because for each maximal 
ideal M  of L, the ideal J  contains an element not in M . Therefore

1 =  *K V *-*v6Kn v - - - v 6q„
with b'p. A x =  0 and 6̂  П a = 0. Thus x = x Л (6^  V . . .  V bgn) i.e. 
x ^  b'q̂  V . . .  V b'qn. Since 6^  V . . .  V b'qn G a*, a* is a strongly cr-ideal. 
Therefore L is an almost stonian lattice.

Now we quote a lemma that was proved by Simmons [9].
Lemma 11. The mapping D : R —> LR restricts to a lattice isomorphism 

from B R  to B L R , where B R  is the boolean lattice of idempotents of R.
THEOREM 12. For a ring R, D takes strongly pure ideals of R to strongly 

er-ideals of LR, and D~l takes strongly о -ideals of LR to strongly pure ideals 
of R.

P roof. Let 7 be a strongly pure ideal of R. Let x G 77(7), then x =
П

= V D(a.i) for some ai, a2, . . .  , an G 7. For each a,-, there exists an idempo-
i—i

П

tent e,- G 7 such that a,e,- = a,. Hence 77(a,) < 77(e,). Thus x £ V 77(e;).
»=i

A cta M athem aiica  Hungarica 60, 1992
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n
Since V D (ei) is a complemented element in D (I), D (I) is a strongly cr-ideal

i'=l
of LR.

Now let J  be a strongly cr-ideal of LR. Let a 6 D ~X(J ), then D(a) £ 
G J ■ Since J  is a strongly cr-ideal of Xi2, there exists b £ J  П B LR  such 
that D(a) £  b. By Lemma 11, there exists an idempotent e in Ä such 
that b =  D(e). Hence D (a) ^  D(e). Therefore D(a) Л D( 1 — e) = 0. 
Consequently, Z)(a(l — e)) =  0. Thus a (l — e) = 0. Moreover e £ D~X{J ) 
since D(e) = b £ J. Therefore D~X(J)  is a strongly pure ideal of R.

Using Theorems 1, 10, and 11, we get the following theorem.
THEOREM 13. A semiprime ring R is an almost PP-ring if and only if 

LR is an almost stonian lattice.
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ON A MESH-INDEPENDENCE PRINCIPLE 
FOR OPERATOR EQUATIONS 
AND THE SECANT METHOD

I. K. ARGYROS (Lawton)

1. Introduction

Consider the nonlinear equation

(1) F (z) = 0

where F  is a nonlinear operator between two Banach spaces E, E. The 
secant iteration

(2) xn+1 = xn -  6F (xn,x n- i ) ~ 1F (xn), n = 0 ,1 ,2 ,. . .

has been used to approximate a solution x* of equation (1), for some x_x, 
xo € E. The linear operator SF(xn, ж„_х) is assumed to be a consistent 
approximation of the first Frechet-derivative F'(xn), [2], [8], [9], [12].

The iterates {xn}, n = 1 ,2 ,. . .  can rarely be executed in infinite dimen­
sional spaces. In practice we replace equation (1) by a family of discretized 
equations

(3) Ph(x) = 0, h > 0

where Р/, is a nonlinear operator between finite dimensional spaces Eh, Eh- 
The discretization on E  is defined by the bounded linear operators Lh : E  —>

Let us define the discretized secant iteration for equation (3) by

(4) Zq = Lh(x o), Z -1 =  Lh(x -i)

and

(5) Zn+l = Zn ~  bPhiz*,Z*_x)‘- XPh{zhn), n = 0 ,1 ,2 ,

We will show that under certain assumptions the sequence {z%} converges 
to a locally unique solution z£ of equation (3) and the following estimates 
are true: 4

4  = Lh(x*) + 0(h?), P >  0, zhn -z*h = Lh(xn -  x*) + 0{hp),
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zhn+1 -  Zhn +  T„(*„+i -  xn) +  0 (h p), Ph{zhn) = Ln(F (xn)) + 0 (h p) 
and for any £ > 0 and sufficiently small h

|min{n > 0 , ||xn -  x*|| < e] -  min{n > 0, \\z* -  zj“|| < e} < 1

if xo belongs to a certain ball centered at x* and of a specific finite radius.
The above results have been proved when Newton’s iteration is used to 

approximate a solution x* of equation (1), [2], [3], [4], [6], [9]. Since the 
iterates for the secant method can be computed easier than the Newton’s 
iterates, both in infinite and finite dimensional spaces, we feel that the results 
obtained here are useful.

The last recorded result above indicates tha t there is at most a difference 
of one between the number of steps required by the iterations (2) and (4) to 
converge to within a given tolerance £ > 0. This aspect together with the 
rest of the above results constitute the mesh-independence principle for the 
secant method.

If we let 6F (x n,x n- i )  = F '(xn), n = 0 ,1 ,2 , . . . ,  our results reduce to 
the  ones in [2], [9]. In this paper we use similar definitions and the proof 
procedure of [2], [9].

II. Main results

The norms in all spaces E , E, Eh and Eh will be denoted by the same 
symbol II II and for any bounded linear operator from E  to E  (or from Eh 
to  Eh), the induced norm will be used.

We will assume familiarity with the definition of a divided difference 
operator SF (v,w ), [10, p. 78].

We can now prove the following theorem (see also [11]).
T heorem 1. Let F be a nonlinear operator defined on an open set D of 

a Banach space E  with values in a Banach space E. Assume:
(a) The equation F(x) =  0 has a solution x* (E D at which the Fréchet- 

derivative F '(x*) exists and is boundedly invertible with

(6) | | n * T 1ll ^ 1 -
(b) The nonlinear operator F has divided differences SF (u ,v ) satisfying 

the following conditions:

(7) ||<5F(v, w) — 6F(u, z)|| < d0(||u -  u|| +  ||гп -  z||) for all u ,v ,w ,z £ D  

and
(c) The open ball U* =  U(x*,r*) = {x G E  \ ||x -  x*|| < R*} C D with

3do<fi

Acta M athcm atica  Hungarica 60, 1992



ON A MESH-INDEPENDENCE PRINCIPLE 9

Then for any x_ i,xo  € U*, the secant iteration (2) remains in U* and 
converges to x* with

It can easily be seen that (7) gives F'(x*) = 6F(x*,x*). By the choice of r*,
(7) and the identity

||jF,,(x*)-1 (Í.F(v,'u;) —ÍF(x*,x*))|| < dido(||t>-xl| +  ||ui —x*||) ^ 2 d o d \r*  < 1.

By the Banach lemma on invertible operators it follows that L  is invert­
ible and

Let us now suppose that x„_ i,xn £ U*. Set Ln =  8F(xn,x n- \ ) .  Then 
Ln is invertible and we can write by (7) and (10)

and lim x n — x*. Therefore, the secant iteration generated by (2) remainsТ1—+00
in U* and converges to the solution x* of equation (1).

That completes the proof of the theorem.
We will now adjust the definition of a Lipschitz uniform discretization 

given in [2] to fit our purposes.
The solution x* as well as the secant iterates generated by (2) may have 

better smoothness properties than the elements of E . That is why we can 
consider a subset W * С E  such that

(9)

ll^n+l — **|| ^

P roof. Let us denote by L the linear operator given by 

L = 8F (v ,w ) for v,w  £ U*.

L = F'(x*)[I +  F '{x* )~ \L  -  Г (х*))]

we obtain

( 10)

ll*»+i -  *11 = \ \~ L - \8F (xn ,x -) -  Ln){xn -  **)|| ^

From (9) and the choice of r* it follows that

(11) ||xn+1 -  x*|| < ||zn -  x*|| <  r*, n -  0 ,1 ,2 , . . .
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10 I. К . ARGYROS

The discretization methods to be considered here are described by the 
family of triplets

(13)

where

{Ph, Lh, Lh}, h >  0

Ph- Dh C Eh —► Eh, h > 0 

are nonlinear operators and

Lh'. E  ^  Eh, Lh' E -* Eh, h >  0,

are bounded linear discretization operators such that

(14) Lh{w* П U*) C Dh, h >  0.

The discretization (13) is called Lipschitz uniform if there exist scalars 
R  > 0, b > 0 such that

(15) 

and

(16)

Ü*(Lh(xm), R) C Dh, h >  0

f IISPh(v, w) -  SPh(u, г)|| < b(\\v -  u|| +  ||iu -  z||), h > 0, 
\  V , ü , w , z e  Ü*(Lh(z*),R).

Furthermore, the discretization family (13) is called bounded if there is a 
constant Co > 0 such that

(17) \\Lh(u)\\ < colMI, u e W * ,  h>  0; 

stable if there is a constant Ci > 0 such that

(18) ||P £ (Ifc(u ))-1|| < сь  и е Г П  U*, h >  0;

and consistent o f order p if there are two constants c2, C3 such that

(19) ||1 a(P ( x) ) - P , ( T a(x))|| < c2h?, x e W r U T ,  h >  0,

and
( 20)

L h {F \u ))v -P 'h(Lh{u))Lh(v) <c3/ip, u e W n l T ,  v <e W ,  h>  0. 

We can now state and prove the main result.
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T heorem 2. Let F  be a nonlinear operator defined on an open set D of 
a Banach space E with values in a Banach space E. Assume:

(a) the hypotheses of Theorem 1 are true and
(b) the Lipschitz uniform discretization (13) is bounded, stable and con­

sistent o f order p.
Then
(i) equation (3) has a locally unique solution

(21) z*h = Lh(x*) + 0 (h p)

for all h > 0 satisfying 

(22) 0 < h < h* = min ( —, Щ- j with C4 = -----
Vc4 c \b ) \  1 -

1
2cic2
cocibr*

(ii) There exist constants h0 £ (0,/i*j, r0 £ (0,r*] such that the iteration 
(4)-(5) converges to z'tJ such that

(23) z* = Lh(xn) + 0 (h p), n = 0,1,2,.

(24) Ph(zhJ  = Lh(F (xn)) + 0 (h p), n = 0 ,1 ,2 , . . . ,

(25) zb -  zl = Ln(xn -  x*) + 0 (h p), n = 0 ,1 ,2 , . . . ,

for all h £ (0, /io] and all starting points xq £ U(x*, t-q).
P roof. Let x^\ £ U*. We can assume without loss of generality that 

coCi&r* < 1. Otherwise choose x_i £ Uf = U f(Lh(x*),rl) with r < r* and 
c0cibrl < 1.

The well established theorem (see, e.g. Theorem 3 in [9]) ensures that 
when
(26)

q(h) = Clb\\Lh(x*-x-i)\\+2 С1б||<5РЛ(Тл(х*),Тл(х_г) Г 1Р/1(Хл(х*))|| ' < 1 ,
1/2

(27) r(M =  1 -  -* -■ )!! -< * <  я  
2c\b

with

(28) d =  [(1 — cib\\Lh(x* -  x_ i)||)2—

-4 с 1Ь рР л(Тл(х*),Тл(х_1) Г 1Рл(1л(х*))||
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12 I. К. ARGYROS

then (3) has a unique root z£ in f7(T/,(x*), r(h)).
By (18), (19), (17) and (22) we obtain successively

(29) q(h) <: coCl6r* + 2[c1bl\0Ph(L h(x*), Хл(х_1) ) - 1(Рл(Хл(х*))-

- P a(F (x*)))||]1/2 ^  codbr* +  2 [c?c26/iP] 1/2 < 1

and

(30) r(h ) < c4hp < R, with c4 = -—— — ,1 -  c0Cior*

which shows tha t (26) and (27) hold for all h satisfying (22).
Thus (21) follows from

(31) Ы  -  L h(x -)II < r(h) < c4hp.

By applying Theorem 1 to (3) we see that the secant sequence (4) con­
verges to Zfr if

(32) ||£ fc (* o )-* h|| < 36||p^(2* ) - i | | ’

(33) Ü(z*h, \\Lh(x0) -  z*h\\) C Ü(Lh(x -),R ).

The estimate (33) holds if

(34) \\z-h - L h(x*)\\ + \\Lh(x0) - z - h\ \< R ,  

and by (17) and (31) we obtain

(35) ||Lfc(x0) - z ; | |  ^  \\Lh(x0) - L h(x*)\\+\\Lh(x*)-z'h\\ < c0||x0- * l + c 4/i*\ 

That is, (34) is satisfied if

(36) c0||x0 -  x*|| +  2c4hp < R.

Using the identity

(37) P U 4 )  = P U W W  -  а д . О г - Г ' М Ы * - ) -
(16), (18) and (31) we get

(38) Ш * н ) - ii ! !* № (* * ) -XI Cl
1 - 6||Р '( 1 л(х*))-1||||Т ,(х * )-х ^ || = 1 -  bcic4hP'

The estimate (32) now certainly holds if

(39) C0||x0 -  x*I) + 2c4hp ^
1 — bc4c4hp 

3c46
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ON A MESH-INDEPENDENCE PRINCIPLE 13

It is simple calculus to verify that (36) and (39) are satisfied for all 
h G (0,h2] and xq G U(x*,r2) with

l R  1 c2 M p
hl -  [m m \2 c 4'U c lC4b' c lb ).

(40) 

and

. ( R 1 \(41) r 1 = mm -----, ------- - .
\ 2 c 0 6c0cibJ

That is, with the above values of h and xq the sequence (4) converges to 
z h-

Let us now consider the real quadratic equation

(42) A s2 + Bs + C = 0

where 

and

We can now choose

(43) 

and

(44) ro = min

A  =  56ci, В  =  8coCi6||a:o -  ж*|| +  c ^ b h ?  -  1, 

C  = Ci(c! -I- c2)hp.

L L -  ( hP (8c0Ci||a:o -  x*\\ + clC4bhp -  l )2 V
-  lmm ('■■’ ----------- 20 + c ) ------------) \

f ri ’ 32c0i  j6 )  ‘

Then for all h G (0, ho] and xq G U(x*,ro), equation (42) has a small positive 
solution so such that

(45) s0 ^  c5hp 

with c$ = AC.
We now prove tha t for h G (0,h i)  and xo € U(x* ,tq) and all n =  0,1,

2 , . . .  the estimate

(46) \\zhn -  La(x„)|| g s0 

holds.
For n = 0, (46) is trivially true. Suppose that (46) holds for n = 0,1,

2,•• • 1 i •
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14 I. К .  ARGYROS

Using (2) and (4) we obtain the identity

(47) z?+1 -  Lh(xi+l) = S P H t f ' z L i V ' W P h t f ' & j t f  -  Lh(xi))~ 
- Ph(zf )  +  Ph(Lh(Xi))] + [ ( S P h i z ^ z l , ) -  

-áP *(I^ (x ,),Ih (x i_ i))L íl(ÍF(a;,-,Xi_i)_1F(a;,))]+ 
+[6Ph(Lh(xi) , Lh(xi-.1))Lh(6F(xi,xi_1) - 1F(xi)) -  Lh(F(xi))]+ 

+ [ l h(F(Xi)) -  Ph(Lh(Xi))]}.

From the identity

(48) M V *?,*?-!) =  6Pk(Lh(zm) ,L H(x m) ) [ I -  S P n i L h ^ L h i x * ) ) - ^
x ( 6Ph(Lh(x*),Lh(x - ) )~  S P h iz ^ z U ) ] ,

(16), (17), and (18) we obtain

(49) II«M *?,*k i) II й ! _  С1СаШ _ 2bc^ SQ +  Со||Жо _  з .ц ) •

Let us note that condition (16) implies the following Lipschitz condition 
for P'h:

(50) | |^ ( t t )  -  Р£(«)|| ^  2b||« -  t>||, «, « <E Ü*(Lh(x*), R ).

Using the integral representation

(51) Ph(u) -  Ph(v) = [ /  P'h{v + t(u  -  ü))dí] (« -  v)

we deduce that

(52) IIPh(u) -  Ph(v) -  Ph(w)(ü -  v)|| < 6(||u -  w|| + ||v -  «’11)11« -  v||

for all u ,v ,w  £ Ü(Lh(x*), R).
From (50), (51) and (52) we obtain the estimate

(53)
||Рл(и) -  Pfc(t>) -  SPh(w, z)(u -  «)|| ^  6(11« -  «’ll + II« -  x|| + ||w -  z ||)||u -  «(I•

Using (47), (11) and (53) the norm of the quantity in the first bracket of 
(47) becomes

(54) ||A(£»(*i)) -  p „ (4 )  -  ep„(4.  *?-,)(*? -  i*(*.-))ll S
< b(||L»(*i) -  z?|| + ||z? -  -  I»(*i)ll S

< bs(3s +  2c0||x0 -  x*II),
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ON A MESH-INDEPENDENCE PRINCIPLE 15

since
г? -  Zi_ 1 =  (z? -  Lh(x i)) +  (Lh(xi) -  L h(xi-i))  + (Lfc(x ,_ i) -  z?_x)

and
ll*n+i - * 1  ^ ll̂ r* — a;*||- 

By (11) and (16) we obtain

(55) ||(tfA (z? ,^_ 1) - i f l k( I fc(*i) ,i* (* i-1) ) ) ^ ( ^ ( * i . * i - 1)"1^(*.-))ll^
< b(||2?-ifc(*i)|| +  lk?L1--i'fc(*.--i)||)co||*i-*i+i|| ^ 4с0Ь«||жо —ж*||. 
Finally, from (19) and (20) we obtain

(56) Уíflk(Lfc(*i)t i fc(*i_i))2;fc(ÍF (* i,* i_1) - 1F(aíi)) -  U ( F (Xi))|| ^  cxhp 
and

(57) ||ifc (n * i))  -  Ph(Lh(xi))И ^  c2hp.
With these majorizations in (47) we obtain that

(58) I|*?+i -  Xa(x,+i )|| <
< Ci[(ci + c2)/ip + 46c0||xq -  x*Il-Sp + bs0(3s0 +  2c0||x0 -  x*||)] _

1 -  cxc4bhP -  26ci(s0 + c0||x0 -  x*||) S°
by (42).

This completes the introduction and hence the proof of (46) for all n = 
=  0 , 1 , 2 , . . . .

The estimate (23) now follows from (45) and (46) since

(59) И** -  XÄ(xn)|| < s0 < c5hp.
By (50) we deduce that there exists ce > 0 such that

(60) P S ( e ) | |^ c e ,  u e U ( L h(x*),R ) 
and therefore by (17) and (19)

(61) IIPh(zhn) -  i fc(F(x„))|| £ ИA(**) -  Ph(L h(xn))||+

+ ||f lk(Z*(.n) ) - l Jk(F (xn) ) | |^ ^ | |* * - I fc(xfl)|| +  e2ÄP < (c6c5 + c2)hp, 
which shows (24).

Finally by (31) and (59) we obtain 62 * * * *

(62) ||(** -  zl) -  Lh(xn -  x*)|| < И** -  I fc(xn)|| +  И*; -  Lh(x*)|| <
< c5hp + c4hp = c7hp, with С7 = cs +  c4

which shows (25) and that completes the proof of the theorem.
We now complete the claims made in the introduction concerning the

mesh-independence principle as follows:
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16 I. К .  ARGYROS

T heorem 3. Let F  be a nonlinear operator defined on an open set D of 
a Banach space E with values in a Banach space E . Assume:

(a) the hypotheses o f Theorem 2 are true, and
(b) there exists 6 > 0 such that

(63) lim inf ||Z/h(u)|| <S||u|| for each и G W *./»>0

Then fo r some r2 G (0 ,ro], and for any fixed e > 0 and x0 G Ü (x*,r2) there 
exists a constant /13 =  Лз(£,хо) G (0 ,/i2] such that

(64) |min{n > 0, ||xn -  x*|| < £> -  min{n > 0, ||z* -  z*h || < £>| < 1 

for all h G (0, /13].
P roof. Let i be the unique integer defined by

(65) ||x,+i -  Ж*|| <  £ < ||х,- -  ж*||.

By (63), there exists h2 > 0 (depending on xo) such that

(66) IILh(xi — x*)|| ^  5||ж,- — x*|| for all 0 < h < h3.

We prove the theorem for

( 6 7 ) r 2 =  m m  r0
( ’ ’ ’ 2c„c,b(l3 + 2 ) ) '

( 6 8 )  ß = m i n  ^ 2 c 0, 6j

a n d

( 6 9 )  Ä3 =  m i n  h2, '  ’ (Ü')  •

B y  ( 6 2 )  a n d  ( 6 9 )  w e  o b ta in

( 68 69 7 0 ) | | 4 + i  -  411 =  \\Lh(xi+i -  z * ) | |  +  c7hp <: c0hp +  < 2 c0e.

U s i n g  (3 5 ) ,  ( 6 7 ) ,  (6 8 )  a n d  ( 6 9 )  w e  g e t

( 7 1 ) I t f + a  -  411 ^

bci\\z0 -  z*h\\
1 -  2bci\\z0 -  z*h II

bci\\zj -  z *h II___________

i»ci(||zl+i -  z*|| +  ||z, -  z‘ 11)1 
b c i ( c 0 r 2 +  C4hp)

I zi

■Ич+ I  -  411  ^ 1 -  6 c i ( c 0r 2 +  Cifip)

+1 - 4 1 1  ^

2 c0£ ^  ßc0£ < £.
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By (62) and (66)

£ s  и*.- -  * 1  s  jii£»(*< -  *')ii s  jd i*?  -  * ;i i+ *r*p)

or

(72) II*? -  <11 S fa -  c7h" ä  fa -  §■ =  у .

Let us now assume that ЦгМ — z^\\ < e, then as in (71) we get

(73) и*? -  *;n <  у  if- ,

contradicting (72). That is, we must have

(74) и*?.. -  *;n г  £.

The result (64) now follows from (65), (71) and (74).
That completes the proof of the theorem.
R e m a r k s . The condition (63) certainly holds if

(75) lim ||Lfc(tt)|| = IMI for each и € W *.
h—►O

For some discretizations we have

(76) lim ||L/j(u)|| = ||u|| uniformly for и G W *.
h—►O

Both conditions (75) and (76) are almost standard in most discretization 
studies [1], [2], [8], [10].

A theorem similar to Theorem 3 can now be stated if (63) is replaced by 
(76) (with h3 depending only on f).

III. Applications

E x a m p l e  1. Theorem 1 can be realized for operators F  which satisfy 
an autonomous differential equation of the form

t
F'(x) = G (F(x)), for some given operator G.

As F'(x*) = Ct(0), the inverse F'(z:*)-1 can be evaluated without knowing 
the solution x*. Consider for example the scalar equation

(77) F(x) = 0
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where F  is given by

F (x) = ex — q, for some given q > 0.

Note that F '(x ) =  F(x) + q. T h a t is F'(x*) = q.
Let us define the divided difference operator 6F (v,w ) by

6F(v,w ) = F(v) — F(w)
v — w w ф v.

The linear operator 6F (v ,w )  is now a function of two variables v and
w. By expanding SF(v, w) about (v,w), restricting the domain of it in some 
ball U* centered at x* = inq  and using Taylor’s theorem in two variables, a 
number 6 ^ 0  satisfying (7) can easily be found.

By Theorem 1 if xo,x_i £ U*, then the iteration (2) can be used to 
approximate the solution x* = Inq of equation (77).

For further examples on autonomous differential equations one can refer 
to [7] and the references there.

A more interesting application is given by the following example.
EXAMPLE 2. In this example we study the case of a natural difference 

approximation for the scalar, second order two point boundary value problem 
studied in [2]. Consider the operator

F: D C C 2[0,1] -> C[0,1] x R2,

F(y)  = {y" -  f (x ,  У, 2/'); 0  ̂x й 1,2/(0) -  2/(1) -  ß},
where D and /  are assumed to be such that equation (1) has a unique 
solution x* £ D and

f £ C \ U { x ' , R )),

U{x*,R) =  { (х ы г .г з )  € R 3;0 < xx < 1, |x2 -  x*(xi)|, |x3 -  x*(xx)| < R}.
To avoid repetitions we consider the discretization (13) considered in [2, 

p. 167] with the finite difference operator 6Ph(v,w) exactly as defined in [10, 
p. 81, Form (10)].

As in [2] it can easily be seen that all the hypotheses of Theorems 2 and 
3 are satisfied and therefore the conclusions apply in this case.

Other examples and applications may be found in the cited articles.
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ON PSEUDO-DIFFERENTIAL OPERATORS 
WITH AMPLITUDE Q(x , y, f)

J. TERVO (Kuopio)

1. Introduction

Consider the linear operators Q defined in the Schwartz class 5  by the 
requirement

(1.1) « ? ) ( * )  := (2ж)-" J( J  Q (x ,y ,(M y )e ii- ^ d y ) d ( ,
Rn Rn

for x G R". Here the amplitude is assumed to be a C^-function
Rn x R" x R" —* C such that

(1.2) sup \(Dax D ^D jQ )(x ,y i0 \  Í  Ca,ß„kNy+sla+ß№  for £ G R",
x,y£R n

with some Caß tl > 0, N .7 G R and 6 < 1. The operator Q maps S  into 5. 
We establish that Q = Qjg for any N  G N, where

(1.3) Qn (x , y,£) := (1 +  |x — 2/|2ЛГ)_1 [ ( l  +  -^f,) )C ?](z,2/,0
i=i

(cf. Theorem 3.1).
For iV > n we define a function L/v(-, •): R" x R" —* C by

(1.4) L n ( x , £ )  := (27г)" J  (J QN(x,y,T])e,(-x~y’T,~c)dy^dri.
R" R"

One obtains tha t Ln (-, •) G C°°(Rn x R"),

(1.5) sup \(D^Dß€LN )(x ,0 \ Í  Ca,ßk„ap(0  for £ € R"
i £ R n 4

with some Ca,ß > 0, [iaß  G R and that

(1.6) (Q<f)(x) = (.LN(x ,D )v )(x ) := (2* )-"  J  LN(x,()(FY >)(fy(*’x)df
R"
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(cf. Lemma 3.4 and Theorem 3.6). We know some special classes of oper­
ators for which the relation (1.6) holds (cf. [3], [4] and [6], for example). 
Remark that in our considerations, the amplitude Q(•, •, •) is not assumed to 
be compactly supported in y.

Let A™'™ be a class of amplitudes so that
(1.7)
\(DaxD^DjQ) ( x , y ,0 \  й Ca,ß .v sup ФМ~W(ui,0<T-|“+/3W 0 ,

(«1 >í).(«2,í)6KI>yXR"

where (Ф,ф) forms a pair of weight functions in the sense of Beals and 
Fefferman [1] and where EXtV is the convex hull of x ,y  6 Rn. Denote by

the Beals and Fefferman class of symbols L(-, •) 6 C°°(Rn x Rn) (cf.
[1], [2]). As an application we establish that

( 1.8)
j- M,m  
1Ф,ф -z

where

{QI Q (; ;•) e a " ;" }  = D) | Ц -, •) e  < - } •

( I (x ,D )v )(x) := (2x ) -” J

(cf. Section 4). Some facts on the decomposition L (x ,D ) =  -f R , where
Q~ is properly supported in an open set G C Rn (for the terminology cf.
[3]), and where R  € П » are a ŝo considered.

Ne N

2. T h e  operator Q w ith am plitude Q(x,y ,£)

2.1. Denote by 5  the Schwartz class of all rapidly decreasing smooth 
functions p: R" —► C. 5  is equipped with the standard locally convex topol­
ogy defined by the seminorms qa,ß(<p) := sup \xa(D xp)(x)\. Let Q(-, •, •) be

a function in C°°(R3") := C°°(R" x R " x  R"). Consider the linear operator 
Q defined for <p € S  by the requirement

(2.1) (Q<p)(x) •■= (2тг)_п J  (J Q(x,y,Z)<p(y)e,(*-y’*)dy)dt.
R n R n

In the case when together with its derivatives (D °D yD jQ )(-,',-)
obeys suitable tempered criteria, the operator Q maps 5  continuously into 
S. Furthermore, under certain conditions, the formal transpose Q ': S —► S  
exists, that is, there exists a continuous linear operator Q ': S  —► S such that

(2.2) (Q v )( i0 =  ¥>(<3V) for all <р,фе S,
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where we denoted

(2.3) ifi(x)tp(x)dx for if, ip € S

(cf. [5]). In the sequel we write ks(£) = (1 + |£|2)*/2. We recall

T heorem 2.1. Suppose that Q (•,•,•) € C°°(R3n) such that with a con­
stant 6 < 1 for all a , /3,7 £ Ng there exist constants Сад 7 > 0 and N-, € R 
such that

(2.4) sup \(Dax D ^ D jQ )(x ,y ,0 \< C a>ßnkNy+sla+ßl( 0  
*,y€H.n

for all £ £ Rn. Then the operator Q defined by (2.1) maps S continuously 
into S and the formal transpose Q' of Q exists. The operator Q' is given by

(2.5) (<?V)(z) = (2тг)_п J  ( J  Q {y,x,-i)xp(y)et(x~y'i)dySjd ^ .
R" R"

For the proof of Theorem 2.1 we refer to [5]. Specifically, in the case 
when Q (x,y,ip) is of the form Q (x,y ,£ ) — L(x,£), where £ C 00(R2")
such that

(2.6) sup \(DZD%L)(x,t)\ й Ca ß kNß+sH ( 0  for all £ £ R", 
xeRn

Theorem 2.1 can be applied and so we obtain: Assume that L(-, •) £ C°°(R2”) 
such that with some 6 < 1, the estimate (2.6) holds. Then the operator 
L{x, D) defined by

(2.7) (L (x ,D )fi)(x) := (2тг)-" J  L ( x ^ ) ( F i f i ) ^ y {xM
R"

maps 5  continuously into S  and the formal transpose L '(x , D ): S  —» S  exists. 
The operator L'{x, D) is given by

(2.8) (L \ x , D)tp)(x) =  (2тг)“" J  ( J  L(y,
Rn R"

(here F: S  —► S  denotes the Fourier transform).
2.2. Suppose that (Ф,<^) forms a pair of weight functions in the sense of 

Beals and Fefferman [1]. Let Ex<y be the convex hull of the elements x and 
у £ R", that is,

EXtV := {u £ R" I и = a ix  -(- a 2j/, where c*i ^  0, = 0 and a x 4- a 2 =  1}.
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We say that the amplitude Q(-,-,-) belongs to A (where M ,m  G R) if 
the estimate

(2.9)
\(Dax D^D2Q )(x ,y ,0 \ ^  Ca,ß„ sup ФМ-М («1, О Г - |а+/3|(«2,( )

(«1 .í).(«2>í)6£i,»xRn

holds for all x, y,£  G Rn. The linear space of operators Q is defined by 

b & w := { Q \Q  is defined by (2.1), where Q (-,v ) G A™’™}.

Furthermore, we define the class of symbols in the following way:
The function !,(•,•) G C°°(R2n) belongs to if the estimate

(2.10) \(DZD<lL)(x,0\ $ Са,0Фм -М (х,О Ф т- Ы(х,О  for x ,£  G R"

holds. The linear space of operators is defined by

:=  № ,  D ) I Д * . D ) is defined ЬУ (2-7) where £(•, •) G 5 ^ m}. 

L e m m a  2.2. Suppose that (?(•,-,•) G A1̂'™. Then the estimate

(2.11) sup \(D°D% DjQ)(x,y,£)\ < <?a^7fc|M47|W i-e)M +(1- e)|a+/3|(0
x,y6 Rn

holds with some 0 < e < 1.
P roof. In virtue of property (i) of weight functions Ф and ф one has 

with с > 0, C > 0 and e > 0:
(2.12) c <  Ф(и, 0  < C (l +  |£|)
and

(2.13) c(l + К 1 Г 1 < ^  C
for all (u ,f)  G EX}у  x R" (cf. [1]) and so we get

Фм -Ы (и ,£) ^  max{C|M- |7ll,c -lM-bH}(l + |^|)IM-HI
and

^m-|a+^|(u , £) < c-|«+^lm ax{C'l'n|)C-|m | ^ 1 + |£|)(1-г)(М +1«+01).

Hence we obtain from (2.9) with some Caß ^  > 0
sup |(0 ? ^ ^ Q ) ( x , J / ,O I ^ C a^ 7(l + |^|)lM-l7IWm|(l- ) (1 +  |(C|)( l - e ) l^ l? 

x,»eR"

which implies (2.11). □
From (2.11) we observe that for any G A$'™ the estimate (2.4)

holds (with 1V7 := |M  -  |7 || + (1 — e)|m| and with 6 := 1 —e < 1). Hence any 
Q G L ^ "  maps S  continuously into S and the formal transpose Q1: S  —> S  
exists.
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3. The identities Q =  Q n  and Q  =  L n (x , D)

5.1. Define QN (- , ; - )  € C°°(R3"), N  € N by (here := - i d / d f r )

(3.1) Q N (x,y,Z ) = (1 +  I* -  i O _1((i + A ? )Q )(x ,y ,£ ),

where Д( := (X) D l)  •
4=1 7

We begin with
T heorem 3.1. Suppose that e C°°(R3n) such that with a con­

stant 6 < 1 the estimate (2.4) holds. Then one has

(3.2) Q = Qn  for any N  € N.

P roof. A. Let 0  be in Cq° such that 0 (x ) = 1 for all |x| 1 and define
0 j(x ) := Q (x /j) for j  € N. Furthermore, define

(3.3) Q ;(* ,y ,0  0 ® i(0 -
Then the Fubini Theorem implies that

(3.4) (Qj<p)(x) =  (2тгГ" J  ( J  Qj{x, y, <p(v)dy.
R" R"

B. We obtain for any a G N[J

(3.5)

('y ~ x ) a ( J  Q j ( x , y , O e i { x - y M )  =  J  Q A x , y , 0 ( - D ( n e i ( x - v 'e ) H  =
R" R"

=  J
R"

and so by induction (with respect to N )

(3.6) \ y - x \ 2 N ( J  Q j { x , y , Z ) e ' ( x  y '( U ^ j  =
R"

=  ”  X l )2)  ( J  Q A x i y i O e '{x~v'0 d z )
R"

R" 1=1
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(note that (у — х)(°’— = (уг — x i)" 1). Thus

(3.7)

Í  < J i(* ,v ,íK (~ * ’t)<ie = (1 +  I* -  Sil2" ) ' 1 / ((1 + Д ? )« № , у , ( У ' - * М
R" R"

and so by the Fubini Theorem

(3.8) (QjV)(x) =

= (27r)-" / ( 1 + I* -  у|2ЛТ Х /((1  + А")Я;)(х,у,{ y (x~vM
R" 4Rn

<f(y)dy =

= (2тг) " J ( J  (1 + \x -  V\2N) Х((1 + A£ ) Qj ) ( x , y , Z ) e ' (x v’̂ <p(y)dyjdi .
R" R n

C. We shall show that

(3.9) (Qjv?)(x) —► (Qy>)(x) for i £ R "  

and

(3.10) (Qj<p)(x) -* (QN<p)(x) for x e R",

which implies the assertion.
Ci. For any a  e Nq one gets

(3.11) Ie(J Q (x ,y ,Z M y )e i{x- v'()dy)
R"

^ " R "

= ^ 7 ^ C’o,a-7,o ||-D 7(/ ’||L l^ o + i | a - 7 | ( 0  =  C <* ,ч>к N0+ 6 \a \(O ,
■уЪсх

and so with some Cv > 0

(3.12) I J  д ( * ,у ,* М » У (*-*«с*у| ^  c „*_(n+1)(0
R"
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Since

Ш  :=  0 , ( 0 ( /  Q ( x ,y , t M y V (x- y’()dy) -  №  :=
R"

:= J  Q (x ,y ,0 (P(y)e,(‘x~v’()dy
R"

and since

i/,(oi i  (sup |0 (odi/(oi  ̂ ii0 iu c^ _(n+1)(o,

the Dominated Convergence Theorem implies that

/  m w  -  [  / ( o ^ e ,
R" Rn

and so (3.9) holds.
Сг- Similarly, as in C\ one gets that

(3.13) J  ( J  (1 +  \x -  y\2N)~1Q j(x ,y ,£ )ei(x~y’®(p(y)dy'jd£ -
R n R"

J  { J  С1 + I1 - y \2N ) ~ 1Q ( x , y , O e , ( x ~ v '()(r l( y ) d y ^ d ^
R" R"

and then to obtain (3.10) we have to prove that

(3.14) J ( j ( l  + \ x -  у Г ) ~ \ А ” С1Л(х,у,0е*{х- у'()< р(у№ у£  ->
R" R n

J  ( J  (1 +  \x - У \ 2N ) ~ 1( A i Q ) ( x ^ У ^ У {x~ y X ) ^ f i { y ) d y ) d ^ ■
'Bir̂  Rn

Define Pjy(D) := A ^ .  Then by the Leibniz formula we get

( P s ( D ) Q j ) ( * , v , 0 =  E  (V<*'-)(PiN )(D)Q)(x,y,Z)(DaQ , ) ( 0  =
\a\<2N

= E  (1/«!)Qi,a(*,í/.e),
|«=»|<2ЛГ
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where
0 ,> ( * ,» ,О := ( P £ \ D ) Q ) ( x ,y ,a D ae i) (О-

Our task reduces to  establish that

(3.15) J (J  (1 +  \X -  y r r ' Q i A w t V ^ M y V y y t  -
R" Rn

/  ( /  (l +  |x - y |2N)_1(P^(D )<2)(2,y,O e,(x~y,iV(3/)<tyW, for a  = 0.
—*■ R" I "  7

0, for a  t̂ O.

Since the amplitude (x ,y ,£ ) —*■ (1 +  \x — у|ш ) 1(PN(D )Q )(x,y,£) satisfies 
the estimate like (2.4) (note tha t

»г |g-f ß\
+ 1* -  j , D ) |  s  c„ ,e (i + |x -  y | T  1 i  c„,„),

one gets as in C\ th a t the convergence (3.15) holds, when a = 0.
Let а ф 0. Define

9 j A O  :=  J  ( И - 11 -  y \ 2 N ) ~ 1 Q j , o , ( x , y i t y ( x ~ y ' * ) < p ( y ) d y .
R"

Then

(3.16)

9i,M ) =  (D“ 0 i)({ )  J(i  +  k -  у Г Г Ч р ' Л т Х ^ у . О ^ - ^ ^ у  =
R"

= ( l / j ^ ) ( D a Q)(<a j ) J ( l  + \ x - y \ 2N) ~ \ P ^ )(D )Q )(x ,y^ x- y ^ lp (y )d y ^ 0
Rn

for any £ € R ". Furthermore,

| ^ ( |  ( l  + l z - y O - ^ ^ i l J j g K x . y . O e ^ - ^ V i y ) ^  ^
R"

< + |x -  у|г̂ 9 № ( ^ ”)(В)0)(*,У,£)]|<<1/ S
Rn

s  £  ( ! ) i p »‘ t[(i  +  i* - ( - ) 0 'V ] |I i .1^ p I(o ; í í " i( í >)o )(x, !, , í )|.
T<ß V '  *’V
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Since P ^ \ d ) is a differential operator of order 2 N  — |a |, we get

sup
*.v

(D lP ^ ( D )Q ) (x ,y ,0  < Ca,rkNa+s,T|( i) ,

where Ca r is a suitable constant and where N a := max Hence
Ы<2ЛГ~Ы

there exists a constant CQ>V, > 0 such that

(3-17) IJ  (1 +  I* -  y\2N)~1(PN(D)Q)(x, y ,O e'^ ~ V’()<P(y)dy
R"

^  Ca|VX;_(n+1)(0  for all f  € R".

This estimate yields from (3.16) that

s  ( i/ j« K ™ p l( i> * e )( i) |)c w * . ,« .„ ({ )  s

and then by (3.16) and by the Dominated Convergence Theorem

/
R"

9j,a,(0dZ 0 for any Q /  0.

This completes the proof of (3.15) and so the proof is ready. □
Corollary 3.2. Suppose that € C°°(R2”) such that the estimate

(2.6) holds with some 6 < 1. Then

(3.18) L (x ,D ) = LN,
where

(3.19) (W ) ( * )  =

= (2* )-"  f  ((1 + A f  ) ! ) ( * ,0  /  (1 + |x -  y\2N) ~ \ ( y ) e ^ - ^ d y d C
R" R"

3.2. For the amplitude Qn (-,-,-) the estimate

(3.20) \(DaxD^DjQN)(x , y ,0 \  ^ Ca,ß,ykN̂ a+ß,(0(1 + \x -  y D ' 1
holds, where Nltw := max {iV’UJ+7}. This follows from the fact th a t 1 -f A ?

w<2N 4

is a differential operator of order 2N  and

(3.21) |D f0 j ( ( l  +  | i  -Jí l " ) “ 1)! Í  C ijrfl +  1 * -  ■/I2" ) " ' .
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For ÍV > n we define a function •): R2n —► C by

(3.22) l w ( * ,0  := (2тг)п J  ( J  QN (x,y,T i)e,<'x~v'r,~ ^ d y Sjdr].
R n  R n

Lemma 3.3. Suppose that Q(-, •, •) £ C°°(R3n) such that with a constant 
6 < 1, the estimate (2.4) holds. Let Qtv(-,-,-) be defined by (3.3), N  > n and 
let Хдr(-, •) be defined by (3.22). Then one has for any R £ N

(3.23) M * . 0  =

=  (2tt )nJ  ( J ( l  + \V- t f R) - \ ( l  + A * )Q N)(x ,y ,r ,)e i(*-™ -Vdy)dr,= :
R "  R "

= - L n ,r ( x , O -

P roof. For any a  £ Ng one has

( v - 0 °  \  Q N ( x , y , V) e ^ - ^ d y =  [ (Day Q N )(x , y , r l) e ^ - y ^ d y ,
R "  R "

and so by induction

I*? -  £12Я J  Q n ( x , у , =
R "

=  f  ( ( j t , Dv})  Q N )(x ,y ,v )e t('x~y',,~i ')dy.
R n  '=1

This completes the proof. □
Define a function Qn ,r (-, •, •, •) by

(3.24) (?jv,R(®,y,fi?) := (1 +  \v ~  ^|2Л)-1 ((1 +  & y)QN)(x,y,ri).

Since the differential operator A R is of order 2R  and since

| D ? f J ( ( l  +  In  -  f  | a V ) l  O O  +  I ,  -  f  I“ ) " 1

one gets the estimate

(3.25) \ ( D ^ D ^ D xQN<R )(x ,y^ ,r j)\ <

й  Ca,/3,7,r( l  +  I7? ~  ^|2Я) J(1 +  \x -  y\2N) 1 7̂yT)JV+i2R+i|a+/3|(^)

(cf. also (3.20)).
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Lemma 3.4. The function  L/y(-,-) defined by (3.22) belongs to C°°(R2n) 
for any ÍV > 7z and

(3.26) suV \(D :D ^L N ) ( x , 0 \ ^ C a,ßK ^ )  fo r all ( G R " ,
X

with some constants Caß  > 0 and \iaß  6 R.
P roof. For any R  (E N

(3.27) L N {x ,0  = (2тг)" J  ( J  Q N A x ,y , t ,T ) V (x- y’r,- ()dy)dr}.
Rn Rn

Let a ,ß  € Ng. Choose Ä € N so large that

(3.28) ^о,лг + ( « - 1 ) 2 Я < - ( п + 1 ) .
Then

19»л(*.к.«.ч)1 S Có,o,o,„(i + lfl!)B(i + 1* -  y|2V * 4 «+i>(’i)
and so the Fubini Theorem implies

M * > 0  =  ( 2 * ) "  J  ( J  Q n ,r ( x , y , £ ,  T))ei (x ~ y 'r' ~ t ) d r ) j  d y .
R n R"

Choose R € N so that

(3.29) max +  (6 -  1)2R + (1 + i) |a | ^  - ( n  +  1).
u<2\ß\

Similarly as above (cf. the proof of Lemma 3.3) we find that for r = \ß\ the 
relation

(3.30) Z*(z, 0  = (2x)nJ ( j Q n ,r A x , У, Í , r j ) e ^ - y ^ d r , )  dy=: LN,R,r(x, f)
Rn R"

holds, where

Qn ,rA x v̂A , v) '•= (i +1* -  y?r) x((i + AI])QN,R)(x ^yA,v)-
By (3 .25)

(3 .31) \ (Dax D l[Q N>Rtr) ( x , y , ^ r , ) e ^ - y ^ } \  <

S £  E  (“) -  9lMl i -  >|IM £
u < av< 0  4 '  4 J

^ е е Ш ^ - ^  I— I * ) - 1 -
u < a v < ß y '  4 7
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• max | ( ^ ^ ( 1  + Дг,)длг,н)(х,у,е,г7)|(1 +  | х - УГ)(1 +  |7?- ^ |2)|а|/2<
w<a—u 
r<í3-v

s< 7 ;j3( i + i , - f i 2R) - 1( i+ i í i2)l" l/2( i + k - » i JA') ‘ 1t „ „ № ^ } „ 2B+(1+í,i<t|(v )S
u< 2r

S C 'U  1 +  |{|2)(2Л+|" |)/г(1 +  |x -  »|w r 1*»-.{j**1.}+(* -1) « t ( i « )w (4) s
t i < 2 r

S C " A  1 +  |{|! )<2Л+|“ |,/2(1 + 1* _  J,| w ) ' 4 . („+1)(4).

Thus by the Dominated Convergence Theorem and by the Mean Value The­
orem the function

(3.32) Tjv(® ,0 = (2тг)” [  Q;v,fí,r(x,y,í,77)e*(x_,/’,J_í)(íí?dj/
R 2n

belongs to C°°(R2") and

(3.33) д а л ! З Д ( * , 0  = (2х)" l D “Dl[QN,R<r{x ,y , t , r l)e*x-V'r'-V}dr1dy.
R 2n

The estimate (3.26) follows immediately from (3.31). This finishes the proof.
□

The proof of Lemma 3.4 shows the following fact.
Corollary 3.5. Let and £лт,д ,г(т ) be defined by (3.22) and

(3.30), resp. Then for any N  > n and r € N there exists a constant R  € N 
so f/iai

L n (x , 0  = Ln ,r , r (x ,0 -
Remark. Since Ln (-,-) obeys the estimate (3.26) we know that the 

operator Ln (x , D) defined by

(LN(x,D)tp)(x) =  (2ТГ)-" J  LN(x ,0 (F4 ,) (0e iU'x)dt;
R"

maps S into C°°(Rn) (cf. [5]).
In fact, we are able to show
T heorem 3.6. Suppose that Q(-,-,-) € C°°(R3n) such that with a con­

stant 6 < 1 the estimate (2.4) holds. Let L n (-,-) be defined by (3.22). Then 
for any N  > n one has

(3.34) Qn  = Ln (x ,D ).
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P roof. In view of (3.20), for iV > n the function

Ы )  -  l<M*> í/, í)(-F’V?)(0 e,(y’í)e,'(x-v’’?) I
is integrable and so by the Fubini Theorem

I  QN(x ,y ,r i ) e * * - ™ \J ( F v № e i(y’()d t)dy  =
R" R n

= / ( /  Я гг(х ,у ,п У 1ж- ул)* ы ) луу г < р ) ( № .
Rn R n

For any a  € Nq by (3.20)

(3.35) ( » 7 - 0 "  J  Q N ( x , V , r , y ( * - ™ - V d y \  <
Rn '

^ /  \(D^QN)( x ,y ,V) \d y ^ C 0}a,0kNo N+slal(V) f  ( l  + lx - t / l 2̂ ) - 1^
Rn Rn

and so with a suitable constant Cm > 0

= Ст^т(0^Л/Ь,лr + (í- l)m (0  

for any m  €  N. Choosing m large enough one finds th a t the function 

(*7> О - 4  (У Qn (x , 11, rj)e'^x~v'v~^dy^  (FV)(£)e'(x,i)
' R"

is integrable. Thus by the Fubini Theorem

(3.36) ( Q n <p ) ( x ) = (2тг)- " J  \ ^ j  Q N (x , y , r ) ) (p (y )e ,(-x ~ v’r,)dy^dri =

J J  QN(x,y,T])e,(‘x~y'r’~i)dy

R n Rn

= S I S  ^ ( ^ ^ ) ( / ( ^ ) ( о в * ^ ^ ф ‘(—
R" Rn Rn

=  / [ / ( /  QM *,y,»7K(l- v’4)+i(tf’i)d 2 / ) ( ^ ) ( 0 ^ ] ^  =
R" R" R"

= / [ / ( /  Q N i x ^ v y ^ - t U y y F v H O e ^ d r ,  dt =
R n Rn Rn

= (2x )-"  J LN (x ,t)(F < p )(ty l* # d t = (LN(x,D)<p)(*),
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as required. □
Corollary 3 .7 . Suppose that Q (v ,-)  G C°°(R3n) such that with a 

constants < 1 the estimate (2.4) holds. Then there exists a symbol L(•,•) G 
G C°°(R2n) such that with constants Caß > 0, p aip G R the estimate

(3.37) s u p \{Dax D l L ) { x ^ ) \ ^ C a^ a ^ )  for all ( G R "
X

holds and

(3.38) Q = L(x, D).

P roof. Choose £(•,•) =  where N  > n. Then obeys
(3.37) (cf. Lemma 3.4) and Qn  — L (x ,D ) (cf. Theorem 3.6). Due to Theo­
rem 3.1 one has Q =  Qn  for any N  G N and so the assertion follows. □

4. T h e iden tity  L ^ m =

4.1. One sees easily that the inclusion

(4.1) "Ф ,ф C LM,m 
Ф ,ф

holds. In the sequel we establish the converse inclusion 

(4.2) T M  ,m r M  ,m

Let Q(-, •, •) be in . Then by Corollary 3.7 we know that

(4.3) Q — Ln (x ,D ) for N  > n,

and so our task is to verify th a t Тдг(-, •) € . Fix N  n  and define

(4.4) bj(x, y, Z, rj) := Qn (x , y, rj)®Ay)Qj(v) 

and

(4.5) L j(x ,£ ):=  J  J  bj (x ,y ,^ ,r i)e^x- y’r,-^dydri.
R n R"

We show that

(4.6) \(D °D ^L j)(x ,0 \ й Ca^ M-W (x,04>m~laK x ,0  
and

(4.7) (D fD ^L j)(x , 0  -  (D “D ^L n )(x , 0 ,  

which implies L jv (v ) G S™'™.
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Lemma 4.1. Suppose € A a n d  L j ( •,•) is defined by (4.5).
Then

(4.6) т О ^ ^ ) ( х , 0 \ ^ С а^Ф м - ^ ( х ,0 Ф т- И ( ^ 0  for * ,£ G R " ,

where Caß does not depend on j .
P roof. A. A direct computations shows that

(4-8) \(D °D ^D ^bj)(x,y,^,p)\ <

^ Ca A l  sup Фм - ^ ( и 1,т))фт- ^ +0\ и 2, г,),
(«1 ,u). (“2, n)£EXl ,xE"

where Сад 7 does not depend on j .  Here one must note that with constants
CT and Cu > 0

(4.9) l(£,T0 j) ( J?)l ^  ( l / i |r|)CT(l + |i7/j |) -W  =
= C r ( j |T| +  |т?|)-|г| < CT( 1 +  |r |) -W  < С г С 1Т1ф~1г 1(и1, 7})

for all (u i, t?) G Ex,у X R" and that

(4.10) |(£>иО,)(г,)| < Cu for all у € Rn.

B. Since bj(x,y ,(,r]) is compactly supported in (у ,р ), the derivative 
(Dx D ^L j)(x ,^)  exists and

(4.11) (D Z D * L j)(x ,t)=  j  J  Dax DP(bJ(x ,y ,t ,r 1)eii*-y"-V)dydr) =
Rn Rn

= E ( “ ) /  l ( 0 ; - 4 , ) ( x , y , ( , v )D‘ D l { e ^ - ^ ) d y d 4 =
“ = “ R" R"

= E ( “) J  J ( D r u bj ) ( x , y , ^ v ) ( - D y n - D tlf ( e ^ - y ^ ) d y d V =
u =a  R n R"

= £ ( “ ) /  J ( D ax - uDZDPbj )(x ,u ,t,r ,)e i(*-y’r>-VdydT].
u=a  R" R n

For any и < a, v ,w  £ N{J we obtain from (4.8)

\{DZ-UD"+VDP+wbj)(x,y,S,rj)\ <
й Ca-u,u+v,ß+W sup фМ-|/3|-Н(и ь 7?)<^т-|а|-М(г12?77)>

(«1,4),(u2,ri)eEx,yXRn
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Using Lemma 2 of [1] we see that

R n R n

'^dydrj

< с аЛиФм -М(х,ОФт- ]аКх,0,
which implies the assertion (4.6). □

Lemma 4.2. Suppose that Q(-,-,-) G A Lj(-,-) is defined by (4.5) 
and //(•,•) := for some N  > n. Then

(4.7) (Г>“ £ > | ^ ) ( х , 0 ^ Р ^ Х ) ( х , 0  for  ( * , 0 € R 2".

P roof. Fix a ,ß  G NJ} and N  > n. Choose R  € N so large that (3.29) 
holds. Then
(4.12)

(DQxD f L ) ( x , 0  = (2*)" f  D^Df[QNfRtm( x , y ^ r , ) e ^ - y ^ ] d y d V
R2n

(cf. (3.33)). Similarly as above (cf. the proof of Theorem 3.1 and Lemma 
3.3) we get

(4.13) L j(x ,()  = (2тг)" f  aj}N<RtW(x ,y ,^ r j)e ,('x- y’,1- c)dydT).
R2n

Here we wrote

a-j,N,R,\ß\(x ,y,Z ,V) ■= (1 +  I* -  У\2Щ) X(1 + ^ )b j,R { x ,y ,Z ,r i) ,

where

bj,R{x ,y,Z,ri) ■■= (1 +  |»7- f O -1(( l + A?)bj)(x,y,(,q).

A direct computation shows that

(4.14) 0 ; ^ [ а м я м ( х ,р ,( ,Ч)е̂-?
J

^ D ° D f[ Q NtRM ( x , y , t ,V)e'l*-™ -ü}. 

Furthermore, one finds by (3.31) that

Io í ^ j jW * .  ». i .  £
< c . A  l + |«|!)<я+И)/2(1 + |x -  »|"rr ‘*.,n+1)(,).
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Here one must note that by (3.31)

W D l[Qw, y, S

S c " „ ( i  + |{|2)<я+ н )/2 (1 + 1* -  » I » ) - 1* . ,

for any и ^ a,  v ^ ß  and that

sup |(D "0 j)(x )| < Ca for any a G N„.

Hence the Dominated Convergence Theorem implies by (4.12)-(4.14) that 
the assertion (4.7) holds. □

T heorem 4 .3 . The identity

(4.15) T  M,m _  / . M . m

is valid.
P roof. Let Q be in L ^ " . Then by (4.3), Q — L n (x , D ) =: L ( x , D ) 

where iV > n. In view of (4.6) and (4.7) one finds that Z(-, •) G Thus
Q = L (x,D )  € Сф ’ф . □

4.2. Let G be an open set in R". Define a class A™'™(G) of amplitudes
Q (v ,- )  € G°°(G x G x Rn) by the requirement: Q(-,-,-) € Aqf'™(G) if 
and only if for all compact sets К , К ' C G and ot,ß, 7 G Nq there exists a 
constant C > 0 such that

(4.16) sup \(Dax D ^D jQ )(x ,y ,0 \ й £Ф М- |7|(* ,0 < Г Ч“+/З|( г ,0
уек>

for all (x ,f) £ К  X R". Then the operator Q defined for <p G Gq°(G) by 

(4.17) = (2ж)~п J  (̂ J Q (x,y,^)if(y)e ,<'x~y^d y ^ d ^ , x G G
R n R"

maps Gq°(G) into G°°(G). Define a class of operators Q by

< f ( G )  := w  I there exists £(•,•, •) G < ; m(G)}.

As well-known, there exists a function h G G°°(G x G ) and an open 
neighbourhood U of the diagonal D := {(x ,y ) G G x G | x = y) such that 

1° h(x,y) = 1 for (x ,y ) G V ,
2° for each compact set К ' C G there exists a compact set К "  C G such 

that
supp h(x, •) С K "  for any x G K '
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and
supp h(-,y ) С K "  for any у £ К '.

Let $(•,•,•) be in Then a routine evaluation shows that the
function Q~(-,-,-) defined by

(4.18) =  h (x ,y )Q (x ,y ,{ )

belongs to as well. Furthermore, the function

h~,(x ,y ) ■= I q 1
(1 -  h (x ,y )) /(x  -  уУ , l i x ^ y

if X = у

belongs to C°°(G x G ) for any 7 £ Nq. Define

R(x,y,£) := (1 -  h(x,y) )Q(x,y , { )

and
Rt(*,V> 0 = h-,(x ,y)(D jQ )(x,y , 0 -

Then
Lemma 4.4. The functions R (•,•,•) and belong to A ^ ’™(G)

and

(4.19) R  = Ay for any 7 £ Nq.

P roof. Since 1 — h and h belong to C°°(G x G), hence R(-,-,-) and 
&y(*, •,•) belong to A^'™(G). Furthermore, the relation (4.19) is shown as 
in the proof of Theorem 3.1. □

T heorem 4.5. Suppose that Q (-,-,-) € A ^ ’™(G). Then there exist
Q~ € L .jß"(G ) and R e  f) Ь ^ 7 ^ ’т (С) such that

N e  N

(4.20) Q = Q~ + R, 

where Q~ is properly supported.
P roof. Choose Q ~ (x ,y ,£ ) := h(x ,y )Q (x ,y ,£ )  and R (x ,y ,£ ) := 

:= (1 — h(x ,y))Q (x ,y ,£ ). Then (4.20) is valid and R = R1 for any 7 £
£ Nq. Since R.y(-,-,-) belongs to A 1 ^̂ N,m(G) when I7 I = IV, one gets the 
assertion. □

R emark 4.6. For example, any symbol £(•,•) £ S ^ ^ n(G) (cf. [2], p. 
176) obeys the estimate (4.16) and so L (x ,D ) can be expressed in the form
L(x, D) = Q~+R  where Q~ is properly supported and R £ f | L^rJ ;V’m(G).

N e  N

A cta  M athem atica  Hungarica 60, 1992



ON PS EU D O -D IFF ER E N T IA L  OPERATORS 39

Let ф G Cq‘(G) be such that 'ф(у) = 1 in some neighbourhood V  of 
supp <p (where <p G Co°(<j) is given). Furthermore, choose 0  from Cq°(G) 
such that 0 (x ) =  1 in some neighbourhood of a given point xq G G. Then

where
№>)(*) = №*,e)(x) for

= Г 0(*)<?~(x,y,£)^(y) for x ,y  G G X G 
\  0 for (x, y) £ G x G.

Since Q ^ e (-, •, •) G A%’™, we know from Section 3 tha t
Q l e  = L l e (x,D ),

where LJ,e (-,.) €
Since L ^ q (x , D)(p = = 0<2~(tM  = ©<2~V> and R ^y&(x ,D )^  =

= 0Äv> for all G Cf f iV)  we get that for any G 'c G  there exist L q,(-, •) G 
€ S ^ ( G )  and R g , G f |  5 ^ ' т (С) so that

= L q , ( x , D)<p + R c ( x , D )9? for all 9? G C^°(G').
Also, for Q~ there exists X~(-, •) G S^'™(G) so tha t 

Q~9?=  L~(x,D)<p for all ^ C 0°°(G)

(one can choose Z~(x,£) := (27г)" /  ^ /  h(x,y)e,(x~y’,1-t)dy'jL(x,ri)dr)'j.
R" G

In Section 4.2 it suffices to assume that (Ф,ф) forms a pair of weight 
functions only locally in G (cf. [2], p. 176).
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PROPERTIES OF HYPERCONNECTED SPACES, 
THEIR MAPPINGS INTO HAUSDORFF SPACES 

AND EMBEDDINGS INTO 
HYPERCONNECTED SPACES

N. AJMAL and J. K. KOHLI (Delhi)

1. In tro d u c tio n

Professor Levine calls a space X  a D-space [5] if every nonempty open 
subset of X  is dense in X ,  or equivalently every pair of nonempty open 
sets in X  intersect. In the literature D-spaces are frequently referred to as 
hyperconnected spaces (see for example [9], [10]). In this paper we extend 
the concept of hyperconnectedness to pointwise hyperconnectedness and use 
it to study the properties of hyperconnected spaces. We shall call a space 
X  pointwise hyperconnected at x in X  if each open set containing x is dense 
in X . It is immediate that a space X  is hyperconnected if and only if it is 
pointwise hyperconnected at each of its points.

It is clear from the definition that the property of being a hyperconnected 
space is open hereditary. In fact every subset of a hyperconnected space 
having a nonempty interior is hyperconnected in its relative topology. In 
particular, every /2-subset [6] of a hyperconnected space is hyperconnected. 
However, in the sequel, Example 2.3 shows that hyperconnectedness is not 
even closed hereditary. This corrects an error in [5] where it is erroneously 
stated that hyperconnectedness is hereditary (see [5, Theorem 2(1)]). More 
generally we shall show that every topological space can be realized as a 
closed subspace of a hyperconnected space (see Theorem 3.1).

Section 2 is devoted to the properties of (pointwise) hyperconnected 
spaces. We show that hyperconnectedness is preserved under feebly con­
tinuous surjections and inversely preserved under feebly open injections while 
pointwise hyperconnectedness is invariant under continuous surjections. 
Moreover, we prove that (pointwise) hyperconnectedness is productive and 
that every subset of a hyperconnected space having a nonempty interior 
is hyperconnected. Furthermore, we show that a space is hyperconnect­
ed if and only if every feebly continuous function from it into a Hausdorff 
space is constant and that every continuous function from a pointwise hy­
perconnected space into a Hausdorff space is constant. In the process we 
improve/generalize certain results of Noiri [7], Pipitone and Russo [8], and 
Levine [5].

In Section 3, we show that every topological space can be realized as 
a closed subspace of a hyperconnected space called “hyperconnectification”.
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Beside discussing basic properties of hyperconnectifications, we also reflect 
upon their functorial nature.

The closure of a subset A  of a topological space X  will be denoted either 
by A  or Cl^A or Cl A; and the interior of a subset В of X  will be denoted 
either by B° or intjfi? or int В.

An open set in a space is said to be regular open if it is the interior of 
its closure.

2. P ro p erties  o f  (p o in tw ise) hyperconnected  spaces, 
characterizations and m appings in to  HausdorfF spaces

First we give some illustrative examples which either reflect upon the 
theory or will be referred to in the sequel.

Example 2.1. Let X  denote N, the set of natural numbers, endowed 
with the topology generated by taking basic neighbourhoods of each n £ N 
the set { 1 ,2 ,...  , n}. The space X  is a To second countable, hyperconnected 
space.

Example 2.2. Let X  =  {a,b ,c} and I  =  {{a},{6} ,{a ,6},X , 0). The 
space (X, T) is pointwise hyperconnected at c but neither at a nor at b.

EXAMPLE 2.3. Let Y  denote the closed unit interval [0,1] equipped with 
the usual topology U. Let X  =  Y  U {te}, where w £ Y . A topology on X is 
defined by declaring V  С X  to be open if either V  is empty or V  = U U {w}, 
for some U £ U. The space X  is a hyperconnected space. The relative

which it inherits as a subspace of X  coincides with thetopology of jo, \

Euclidean topology. Thus the closed set 0, |  is not hyperconnected in
its relative topology. This example shows that hyperconnectedness is not a 
closed hereditary property.

P roposition 2.1. For a topological space X , the set of all points where 
X  is pointwise hyperconnected is a closed subset o f X .

P roof. Let F  denote the set of all points where X  is pointwise hyper­
connected. To show that F  is closed, we shall show that X  — F  is open. To 
this end, let x £ X  — F. Then there is an open set U containing x such that 
U ф X  and so U С X  — F. Thus X  — F  being the union of open sets is 
open.

THEOREM 2.2. For a topological space X  the following statements are 
equivalent:

(1) X  is pointwise hyperconnected at x.
(2) Every nonempty open set intersects every open set containing x.
(3) Every open set containing x is connected.
(4) Every closed subset of X  not containing x is nowhere dense in X .
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(5) X  is the only regular open set containing x.
P roof. The implications (1) =>■ (2) and (2) => (3) are easy. To see that 

(3) => (4), let F  be a nonempty closed set not containing x. Then X  — F  
is an open set containing x. Now, if F  is not nowhere dense, then F° is 
nonempty and so F° U (X — F) = U is an open set containing x which is not 
connected.

To show that (4) => (1), let U be an open set containing x. Now, if U is 
not dense in X ,  then there exists a nonempty open set V  disjoint from U and 
so X  — V is a nonempty closed set not containing x which fails to be nowhere 
dense. Hence U is dense in X  and thus X  is pointwise hyperconnected at x.

Equivalence of the conditions (1) and (5) is straightforward.
Corollary 2.3. I f X  is pointwise hyperconnected at x, then X  is a 

connected space which is locally connected at x.
COROLLARY 2.4 [10]. A hyperconnected space is connected and locally 

connected.
T heorem 2.5. I f  f  \ X  —* Y  is a continuous surjection and X  is point- 

wise hyperconnected at x, then Y  is pointwise hyperconnected at /(x ).

P roof. Let V  C Y  be any open set containing /(x ) . Then / - 1(У) is 
an open set containing x and so f ~ l (V) is dense in X .  Since continuous 
surjections preserve dense sets, V  = f ( f ~ 1(V))  is dense in Y  and thus Y  is 
pointwise hyperconnected at /(x ) .

D efinition 2.1 [2]. A function / :  X —>■ У from a topological space X  
into a topological space Y  is said to be feebly continuous if for every open 
set V  of У, f ~ x(V)  ф 0 implies that int f ~ l ( V ) ф 0.

In the above definition a feebly continuous function is not necessarily 
assumed to be surjective as assumed in Frolik’s original definition [2].

D efinition 2.2 [4]. A set H  in a topological space X  is said to be 
semi-open if there exists an open set U in X  such that U С H  C U. A 
function f : X —* Y  from a topological space X  into a topological space У is 
said to  be semi-continuous if the inverse image of every open subset of У is 
semi-open.

P roposition 2.6. Every semi-continuous function is feebly continuous.
P roof. Suppose / :  X  —» У is semi-continuous and let V  be any open 

subset of У such that f ~ l (V) ф 0. In view of semi-continuity of / ,  / - 1(У) 
is a nonempty semi-open set in X  and hence there exists a nonempty open 
set U in X  such that U С / - 1(У) C U. Clearly 0 /  U C int / - 1(У) and 
thus int / _1(У) ф 0. So /  is feebly continuous.

The following example shows that the converse of Proposition 2.6 is false.
E xample 2.4. Let X  = Y  =  {1,2,3,4} and let X be endowed with 

the topology I  = {0, {3}, {1,4}, {1,3,4}, X} and У be endowed with the
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topology V = {0, {1 ,2 ,3},У}. Let /  denote the identity mapping of X  onto 
У. Then /  is feebly continuous but not semi-continuous.

THEOREM 2.7. I f  f :  X  —* Y  is a feebly continuous surjection from a 
hyperconnected space X  onto Y , then Y  is hyperconnected.

P roof. Let U and V  be any nonempty open sets in У. Since /  is a 
feebly continuous surjection, int f ~ x{U) and int / - 1(V) are nonempty open 
sets in X .  By hyperconnectedness of X , the sets int / - 1(Í7) and int / _1(У) 
have a nonempty intersection. Let x £ int f ~ l (U) flin t / - 1(У) C f ~ l {U) П 
П f ~ \ V ) .  Then /(x )  G U П V . Thus any pair of nonempty open sets in У 
have a nonempty intersection and so У is hyperconnected.

Corollary 2.8 (Noiri [7]). I f  X  is hyperconnected and f : X —>Y is a 
semi-continuous surjection, then У is hyperconnected.

P roof. It is immediate in view of Theorem 2.7 and Proposition 2.6.
Corollary 2.9 (Levine [5]). A continuous image of a hyperconnected 

space is hyperconnected.
P roof. It is immediate from Theorem 2.5 or Theorem 2.7.
Corollary 2.10 (Pipitone and Russo [12]). I f  X  is hyperconnected and 

f : X  —> Y  is a semi-continuous surjection, then Y  is connected.

P roof. It is immediate from Corollary 2.8.
R emark 2.1. In view of Theorem 2.7, at a first glance, one might con­

jecture that Theorem 2.5 remains true if the term “continuous function” is 
replaced by “feebly continuous function” . However, this conjecture is imme­
diately put to rest by the following example.

Example 2.5. Let X  be the space of Example 2.2 and let У be the two 
point discrete space {0,1}. Let / :  X  —* Y  be defined by /(a )  = /(c ) = 0 and 
f (b)  = 1. Then /  is a semi-continuous function and X  is pointwise hyper­
connected at c but У is nowhere pointwise hyperconnected. Thus pointwise 
hyperconnectedness is not preserved even under semi-continuous surjections.

D efinition 2.3 [2]. A function / :  X  —+ Y  is said to be feebly open if 
for every nonempty open set U in X ,  there exists a nonempty open set V  in 
У such that V  C f {U).

D efinition 2.4 [1]. A function / :  X  -> У is said to be semi-open if 
f ( U ) is semi-open for every open set U in X .

It is easily seen that every semi-open function is feebly open. However, 
the converse is not true as is shown by the following example.

Example 2.6. Let X  = У = {a, 6,c, d}. Let 1  = {0, {a}, {6, c}, {a,6,c}, 
У} and let V = {0, {a,c, d} , X} .  Let X  be endowed with the topology V and 
У be equipped with the topology I  and let /  denote the identity mapping 
of X  onto У. Then /  is a feebly open surjection which is not semi-open.
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T heorem 2.11. I f  Y  is hyperconnected and f :  X  -+ Y  is a feebly open 
injection, then X  is hyperconnected.

P roof. Let U and V  be any two nonempty open sets in X . Then since 
/  is feebly open, int /(Í7) ф 0 /  int /(У ). Since Y  is hyperconnected, 
int f {U)  fi int f {V)  ф 0 and hence f (U)  П f ( V)  ф 0. Since /  is one-one, 
f ( U)  П f ( V )  =  f ( U  П V)  and so U П V  ф 0. Thus X  is hyperconnected.

Corollary 2.12 (Noiri [7], Theorem 3.3). I f Y  is hyperconnected and 
f : X  —>Y is a semi-open injection, then X  is hyperconnected.

Corollary 2.13 (Levine [5], Theorem 4). I f  Y  is hyperconnected and 
f : X —* Y  is an open injection, then X  is hyperconnected.

D efinition 2.5 [6]. Let X  be a topological space and let А С X .  Then 
A is said to be

(a) an а -set if A  C int(Cl(int A)),
and

(b) a ß-set if A  C Cl(int A).
Every open set is an а -set, every a-set is semi-open, every semi-open set 

is a ß-set and every nonempty ß-set has a nonempty interior. However, none 
of these implications can be reversed (for details see [4], [6]).

T heorem 2.14. Let X  be a hyperconnected space and let А С X . I f  A  
has nonempty interior, then A is hyperconnected in its relative topology. In 
particular, every ß-subset of a hyperconnected space is hyperconnected.

P roof. Let V  be any nonempty open set in A. Then V  = U П A, 
where U is a nonempty open set in X .  Since int^A. ф 0 and since X  is 
hyperconnected, U flin ty  A is a nonempty open set in X  and hence it is 
dense in X .  Therefore,

X  = C1X (U Л intxA ) C C1X (U DA) = X .

Since ClAV  = Clx (U  П А) П A, it follows that V  is dense in A  and thus A  is 
hyperconnected.

Corollary 2.15 (Pipitone and Russo [8, Theorem 6.3]). Every semi­
open subset of a hyperconnected space is hyperconnected.

Mappings into Hausdorff spaces

THEOREM 2.16. For a topological space X  the following statements are 
equivalent.

(a) X  is hyperconnected.
(b) Every feebly continuous function from X  into a Hausdorff space is 

constant.
(c) Every feebly continuous function from X  into the two point discrete 

space {0, 1} is constant.
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(d) Every semi-continuous function from X  into the two point discrete 
space {0, 1} is constant.

(e) Every semi-continuous function from X  into a Hausdorjf space is 
constant.

P roof, (a) => (b). Let / : X  —> Y  be a feebly continuous function from 
X  into a Hausdorff space Y . Suppose /  is not constant. Then there exist 
x ,y  € X  such th a t f {x)  ф f ( y) .  By Hausdorfness of У, there are disjoint 
open sets U and V  containing f ( x )  and f ( y) ,  respectively and so f ~ l (U) 
and f ~ x{V)  are nonempty disjoint sets. Since /  is feebly continuous, it 
follows that int f ~ x(U) and int f ~ 1(V)  are nonempty disjoint open sets 
contradicting the fact that X  is hyp er connected.

The implication (b) =>■ (c) is trivial and (c) => (d) is immediate in view 
of the fact that every semi-continuous function is feebly continuous.

(d) => (e). Let g: X  —* Y  be a semi-continuous function from X  into a 
Hausdorff space Y.  Suppose g is not constant. Then there exist x , y  £ X  
such that g(x) ф у{у)- In view of Hausdorffness of У , there are disjoint 
open sets U\ and U2 containing g(x)  and g(y),  respectively. Since g is semi- 
continuous, g~l (U\) and g~x{U2) are nonempty disjoint semi-open sets in X  
and so there exist nonempty open sets U and V  in X  such that

Clearly, /  is a semi-continuous surjection onto the two point discrete space

(e) => (a). Suppose X  is not hyperconnected. Then there exists a 
nonempty open set U in X  such that U ф X .  Define f : X  —► {0,1} by

Then /  is a non-constant semi-continuous function from X  onto the Haus­
dorff space {0,1}. This contradiction to (e) completes the proof of the the­
orem.

Remark 2.2. Equivalence of the assertions (a) and (d) in the above 
theorem is due to Noiri [7].

A continuous function into a Hausdorff space is completely determined by 
its values on a dense set. However, in the case of pointwise hyperconnected 
spaces, the following stronger result holds.

U C g-'iU x)  C U, V  C g ~ \U 2) C V  and U П V  = 0. 

Let f : X —* {0,1} be defined by

{0, 1}.

0, if x £ U,
1, if x e x  -  V.
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T heorem 2.17. Let X  be a pointwise hyperconnected space at a point 
x £ X . Then every continuous function from X  into a Hausdorff space 
is constant. In particular, every continuous real-valued function on X  is 
constant.

P roof. Let / :  X  —► Y  be a continuous function from X  into a Haus­
dorff space Y . Suppose /  is not constant. Then there exists p (E X  such 
that f ( x ) /  /(p). Since Y  is Hausdorff, there are disjoint open sets U and 
V  containing f ( x)  and f (p) ,  respectively. By continuity of / ,  / - 1([7) and 
f ~ \ V )  are nonempty disjoint open sets such that x £ f ~ l {U). In view of 
Theorem 2.2 this contradicts the fact that X  is pointwise hyperconnected at 
x.

Corollary 2.18. I f  X  is pointwise hyperconnected at a point, then X  
is ultra-pseudo-compact.

Remark 2.3. The above corollary improves an observation of [10], p. 
30.

P roblem 2.1. Give an example of a space which is not pointwise hy­
perconnected at any of its points and such that every continuous function 
from X  into every Hausdorff space is constant.

We may point out that it was proved in [3] that for every Tj-space Y  a 
regular Ti-space X  exists such that every continuous function from X  to Y  is 
necessarily constant. Thus, if У = {0,1}, the two point discrete space, there 
exists a nondegenerate regular Ti-space X  such that every continuous func­
tion from X  into Y  is constant; clearly, such a space X  cannot be pointwise 
hyperconnected at any of its points. However, Problem 2.1 remains open.

Products

T heorem 2.19. A product space 7rXa is pointwise hyperconnected at a 
point x — (xa) if and only if  each factor space X a is pointwise hyperconnected 
at x .

PROOF. Since a projection onto a factor space is a continuous surjection, 
necessity is immediate in view of Theorem 2.5. To prove sufficiency, let 
X  = тгХа and suppose that each X a is pointwise hyperconnected at x a . It 
suffices to show that each basic open set containing x =  (жа ) is dense in X .  
To this end, let U be a basic open set in X  containing x. Then U — nUa, 
where Ua =  X a for all but finitely many_a. Since U = тг17а and since each 
X a is pointwise hyperconnected at xa, Ua = X a for all a  and so U — X .  
Thus X  is pointwise hyperconnected at x.

Corollary 2.20 (Levine [5]). A product space is hyperconnected if  and 
only if each factor space is hyperconnected.
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3. E m beddings in to  hyperconnected  spaces

THEOREM 3.1 . Every topological space can be embedded as a nowhere 
dense closed subspace into a hyperconnected space.

P roof. Let (X , I ) be a topological space. Let Г  =  Щ  {oo}, where 
oo £ X  and let J* = {Í7 U {oo}: U e 1}  U {0}. The collection I*  is a 
topology for X*. Since the closure of every nonempty open set in X* is X *, 
the space X * is hyperconnected. Moreover, the inclusion map i: X  —► X * 
is a closed embedding and hence we may consider X  as a closed subspace of 
X * . Clearly X  is nowhere dense in X*.

The space X* constructed in Theorem 3.1 is called one point hypercon- 
nectification of X . In the sequel, the notation X* will always have the same 
meaning as in Theorem 3.1.

Corollary 3.2. Every topological space can be embedded as a closed 
subspace into a connected and locally connected space.

P roof. It is immediate in view of Theorem 3.1 and Corollary 2.4.
T heorem 3 .3 . If f : X  —► Y  is a continuous function from a space X  

into a space Y , then there exists a continuous extension f  *: X* —*• Y * such 
that the following diagram commutes:

%x *y
/•

X* ----------------* У*

Moreover, i f  f  has any one of the following properties, so does /* ;

(a) open, (b) closed surjection, (c) homeomorphism, (d) quotient.

P roof. Suppose X* =  XU{oox) and Y*  = Уи{ооу}. Let / * : X* —► У* 
be the function whose restriction to X is /  and /* (oox) =  ooy. Now, com­
mutativity of the given diagram is obvious. To show that /*  is continuous, 
let W  be an open set in У*. Then W  = V  U {ooy}, where V  is open in Y . 
Thus, f —l ( W)  = f - \ V )  U {oox} and since /  is continuous, f~ 1{V) is open 
in X and so f* ~ 1(W ) is open in X*. This proves that /*  is continuous.

(a) Suppose /  is an open function and let W  be an open set in X*. Then 
W  = U U {oox}, where U is open in X , and so f (U)  is open in Y.  Thus, 
r(W) = f ( U)  U {ooy} is open in У*.

(b) Suppose /  is a closed surjection and let F  be a closed set in X*. 
Obviously, /*  is a surjection. If F  = X*, then f*(F)  =  У* which is closed. 
Assume F  ф X*. Then oox ^ F  and F — F  П X is closed in X . Since /  is 
a closed function, f ( F)  = f*{F)  is closed in Y . Now, ooy ^ /* (P ) and so 
Y*\ f *(F)  =  (Y \ f ( F )) U {ooy} is open in У*. Hence f m(F)  is closed in Y*.
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(c) In case /  is a homeomorphism, the result follows as in the case (a) 
or (b) together with the fact that /*  is a bijection whenever /  is.

(d) We omit the easy proof in this case.
Let C denote the category of topological spaces and continuous functions 

and let S  be its full sub category consisting of hyperconnected spaces. Define 
F: C —► S  by F( X)  = X * for each object X  in C and F{f )  = /*  for each 
morphism /  in C. We point out that F  is a functor and leave the simple 
verification to the reader.
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ON THE SIMPLICITY OF SANDWICH NEAR-RINGS
R. D. HOFER (Plattsburgh) and K. D. MAGILL, Jr. (Buffalo)

1. Introduction

It will be assumed throughout this paper that all topological groups are 
HausdorfF which means, of course that they are also completely regular. We 
will also assume, without further comment, that the groups discussed here 
have more than one element. Let X  be a topological space, H an additive 
topological group and a a continuous function from H  into X. Denote by 
N ( X , H , a ) the near-ring of all continuous functions from X  into H  where 
addition of functions is pointwise and the product f g  of two functions / ,  <7 £ 
£ N ( X , H , a ) is defined by f g  = f  о a  о g. Denote by No(X, H, a )  the 
subnear-ring of N ( X , H , a )  which consists of all those continuous functions 
/  with the property that / ( a ( 0)) = 0. Then (0), the constant function 
which maps all of X  into 0 £ H,  is the additive identity of N ( X , H , a ) and 
Xo(X, H , a ) is the largest subnear-ring of N( X,  H , a ) for which (0) is a two- 
sided multiplicative zero. We refer to a near-ring of the form N ( X , H , a ) as 
a sandwich near-ring and we use the term Z-sandwich near-ring for one of 
the form Xo(X, H ,  a). In this paper, we investigate the simplicity of both 
sandwich near-rings and Z-sandwich near-rings.

The first results concerning the simplicity of near-rings of functions were 
obtained a long time ago. If X  = H and one takes a to be the identity map 
then N ( X , H , a ) is simply N( H) ,  the near-ring of all continuous selfmaps 
of the topological group H  and N q(X,  H, a)  is just N q(H)  the near-ring 
of all continuous selfmaps which fix 0. These early results were obtained by 
Berman and Silverman [1] and Nobauer and Philipp [5] and dealt with N { H ) 
and No(H).  Specifically, it was shown that if H  is discrete, then No(H)  is 
simple and so is N ( H)  except in the one case where H  is of order two. The 
first author of this paper then showed that within a huge class of topological 
groups, the converse holds for N q(H)  [2]. That is, if H  is any one of these 
groups, then No(H ) is simple if and only if H  is discrete. He also showed 
in [2] that there are many nondiscrete groups H for which N( H)  is simple. 
The second author of this paper modified some of the techniques used in [2] 
and produced in [3] still another class of groups such that N ( H ) is simple if 
H is any one of these groups. In particular, N ( R n ) is simple where R N is 
the additive topological group of Euclidean X-space.
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The results obtained to date indicate that while it is rare for No(H ) to 
be simple, it is not so rare for N ( H )  to be simple. In this paper we look 
a t particular classes of sandwich near-rings and Z-sandwich near-rings. We 
show that such a sandwich near-ring is simple if and only if it is isomorphic 
to  some N( H)  where, of course, H  is one of the groups such that N( H)  is 
simple. Various other equivalent conditions are also given for one of these 
sandwich near-rings to be simple. For example, one such condition is that 
the near-ring have a multiplicative identity. Analogous results are obtained 
for Z-sandwich near-rings.

2. Sandw ich near-rings

Throughout the paper the symbol (x) will be used to denote a constant 
function which maps everything into the point x. The domain of (x ) will 
vary but will be evident from context.

Lemma 2 .1 . Let X  be a completely regular Hausdorff space, H a topolog­
ical group and suppose that either H contains an arc or X  is 0-dimensional. 
Let a be a continuous function from H into X  and suppose N( X,  H,  a ) is 
simple. Then Ran a (the range of a) is a dense subspace of X .

P roof. Suppose Ran a  is not dense in X  and define a map p  from 
N ( X , H , a )  to N( H)  by p ( f )  = f  о a.  One verifies in a straightforward 
manner that p  is a homomorphism from N ( X , H,  a) into N( H) .  Moreover, it 
is nontrivial since y>[lV(X, H,  a)] contains all the constant functions mapping 
H  into H.  Specifically, if у £ H  and (y) denotes the constant function 
mapping all of X  into y, then p({y}) — (у) о a is the constant function 
which maps all of H into y. Since Ran a  is not dense in X ,  we can choose 
p € X-clRan a.  If H  contains an arc, then it also contains an arc A  with 
one endpoint 0 and the other endpoint у ф 0. Since X  is completely regular 
and Hausdorff, there exists a continuous function /  from X  into H  such that 
f ( x )  = 0 for x £ clRan a  and f (p)  = y. If H does not contain an arc, 
then X  is 0-dimensional and there exists a clopen (simultaneously closed 
and open) set V  such that p £ V  Q clRan a.  In this case, choose any у £ 
£ H , у ф 0 and define f ( x )  = у for у £ V  and f ( x )  = 0 for x £ X  — V.  
In either event we have a function /  £ N ( X , H , a )  such that /  ф (0) but 
<p(f) = /  о a  = (0) = 9?((0)). Thus p[N( X, H, a) ]  is a proper homomorphic 
image of N ( X , H, a). This is, of course, a contradiction and we conclude 
that Ran a is, indeed, dense in X .

Corollary 2.2. Let G be any abstract group, let H be a proper subgroup 
and let N ( G , H )  denote the near-ring of all functions from G into H under 
pointwise addition and composition. Then N(G,  H ) is not simple.

P roof. Let G and H  have the discrete topologies and define a(y) = у 
for all у £ H.  Then N ( G , H ) is just the sandwich near-ring N ( G , H , a ) and 
since Ran a  is not dense in G, the conclusion follows from Lemma 2.1.
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In much of what follows X  will also be a topological group and when this 
is the case we will emphasize it by replacing X  by the symbol G. Neverthe­
less, N( G, H, a )  will still be the near-ring of all continuous functions from G 
into H  with pointwise addition and multiplication defined by f g  = f  о aog.  
When we speak of a homomorphism a from the topological group H  into 
the topological group G it will be assumed, as is customary, that a is also 
continuous and an isomorphism from H into G will be assumed to also be 
a homeomorphism into G. When a  is not necessarily a homeomorphism we 
will refer to it as an algebraic isomorphism. Finally, we will use the symbol 
0 to denote the identity of G as well as that of H.

D efinition 2.3. Let G and H  be topological groups and let a  be a 
homomorphism from H  into G. We will say that the triple (G, H,  a ) is 
compatible if the following two conditions are satisfied.

(2.3.1) Either H  contains an arc or G is O-dimensional.

(2.3.2) Either K era is pathwise connected or G is O-dimensional.

Lemma 2.4. Let (G , H, a)  be a compatible triple and suppose N(G,  H,  a) 
is simple. Then a  is an algebraic isomorphism from H onto a dense subgroup 
of G.

P roof. ot[H] is dense in view of Lemma (2.1). We need only show that 
a  is injective. Define а map кр from N ( G , H , a ) into N ( G ) by <p(f) — а  о / .  
Since a  is a group homomorphism, it readily follows that <p is a homomor­
phism from the near-ring N ( G , H , a ) into the near-ring N(G).  Since, by as­
sumption, our groups contain more than one point and since a[H] =  Ran a 
is dense in G, it follows that Ran a  contains more than one point. For each 
x G Ran a  choose у G H  such that a(y ) = x. Then (y) G N ( G , H , a ) 
and <p({y)) = а  о (у) = (a(y)) = (x) where the domain of (x) is G. Thus, 
tp[N(G, H, a)] contains all (x ) such that x € Ran a  and is therefore a non­
trivial near-ring. Now suppose a  is not injective. Then a(y) = 0 for some 
у G H,  у ф 0. Choose two distinct points a, b G G.  If K era is pathwise 
connected then there is an arc A Q K era with endpoints 0 and у respec­
tively. Since G is completely regular and Hausdorff there exists a continuous 
function /  from G into A  such that /(a )  = 0 and / ( 6) = y. If K era  is 
not pathwise connected then G is O-dimensional and there exists a clopen 
set V  containing a but not b. In this case, define /(x )  = 0 for x G V  and 
f ( x )  = у for x G G — V.  In either event /  G N( G, H, a ) ,  f  ф (0) and 
Ran /  Q Ker a . Thus <p(f) = a  о /  = (0). That is, p  is a proper homomor­
phism from N( G, H, a )  onto a nontrivial subnear-ring of N(G).  Because of 
this contradiction, we conclude that a  is injective.

At this point we actually have all the preliminary results we need in 
order to get the main result of this section. However, at one point in the
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proof of that result we would, as things now stand, find it necessary to 
appeal to Corollary (3.3) of [4], a result about semigroups which applies to 
sandwich near-rings. The problem is that it does not apply to Z-sandwich 
near-rings and so is of no use to us in Section 3 when we deal with these near­
rings. What we need are generalizations of some results in [4] and it seems 
appropriate to get them now as they apply to both sandwich near-rings and 
Z-sandwich near-rings.

Let X and У be topological spaces and let a  be a continuous function 
from Y  into X . S ( X , Y , a )  denotes the semigroup of all continuous functions 
from X  into Y  where the product f g  is defined by f g  = /  о a о g. The 
semigroup 5(X , У, a )  is referred to  as a sandwich semigroup.

D efinition 2.5. A subsemigroup Т(Х,У, a ) of S(X,  У, a ) is said to be 
an adequate semigroup if whenever a(y) = x then /(x )  =  у for some /  € 
€ Г (Х ,У ,а ) .

LEMMA 2.6. Let T ( X , Y , a )  be an adequate semigroup which has a left 
identity. Then a maps Y  homeomorphically onto a retract o f X .

P roof. Let / be a left identity of T(X, Y, a). Then a  о / is a continuous 
selfmap of X  and since

(а  о /) о (a  о /) =  а  о (I о a  о l) =  a  о (//) = а о I

we see that a о / is an idempotent continuous selfmap of X  with respect to 
composition. Thus Ran a  о / is a retract of X . Suppose a (y ) =  x and let /  
be any function in Т(Х,У, a ) such that /(x )  =  y. We then have

(а  о /)(х) = а о I о a(y) = а о / о a  о /(x )  =
= a  о (//) (x )  =  a  о /(x )  — a(y)  = x.

It follows that Ran a Q Ran а о l and а оl is the identity on Ran a. Evidently, 
Ran aol  Q Ran a  so, in fact, we have Ran a = Ran ao / and we conclude that 
Ran a  is a retract of X . Now choose any у 6 Y  and let g be any function in 
T (X ,У, a) such tha t g(a(y)) =  у and we have

(l о a)(y)  = l o a o g o  a(y)  = (lg)(a(y)) = g(a(y)) = y.

Thus, we have shown that not only is a  о / the identity on Ran a  but l о a 
is the identity on У and it follows that a  is a homeomorphism from У onto 
the retract Ran a .

We recall tha t a collection T  of functions from X  into У is said to 
separate points if for distinct points a, b € X , / (а )  ф f(b)  for some / £ f .  
The proof of our next result is identical to the proof of Theorem (3.2) of [4] 
but since it is short we include it here for the sake of completeness.
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Lemma 2.7. Let T ( X , Y , a )  be any (not necessarily adequate) subsemi­
group of S( X, Y,  a)  which separates points and suppose that Т (Х ,У ,а ) has 
a right identity. Then a maps some retract o fY  homeomorphically onto X .

P roof. Let r be a right identity of Т(Х,У, a). Then ro a  is a continuous 
selfmap of Y  and we have

(г о а )  о (г о a ) =  ( r o a o r ) o a  =  (rr) о a  =  г о a .

Thus г о a  is an idempotent continuous selfmap of Y  and therefore Ran r o a  
is a retract of Y . Let any у G Ran r be given and choose any x G X  such 
tha t r(x ) = y. We then have

(г о a)(y) = (г о a  о r)(x) = (rr)(x) = r(x) =  y.

Hence, г о a is the identity on Ran r and Ran r Q Ran r o a .  Since it is 
evident that Ran г о a Q Ran r, we actually have Ran r = Ran г о a  so that 
Ran r  is a retract of Y . Next, let /  G T ( X , Y , a ) and note that

/ ( a  о r(x)) =  ( /  о a  о r)(x) = ( /r )(x )  = /(x ) .

Since Т(Х,У, a ) separates points it follows that a  о r is the identity map 
on X .  Because of this and the fact that г о a  is the identity on Ran r, we 
conclude that a  is a homeomorphism from the retract R an r onto X.

Lemma 2.8. Let Т(Х,У, a ) be an adequate semigroup which separates 
points and has an identity. Then a is a homeomorphism from Y  onto X .

P roof. This is an immediate consequence of the previous two lemmas. 
R emarks. Let T(X, У, a )  be any adequate semigroup which separates 

points. We have just seen th a t if Т(Х,У, a ) has an identity then a  must 
be a homeomorphism from Y  onto X. However, the converse does not, in 
general, hold. For example, let X  = Y  = R be the space of real numbers, let 
a  be the identity map and take T(X, Y, a) to be the collection of all bounded 
continuous selfmaps of R. Then Т(Х,У, a ) is an adequate semigroup which 
separates points and a  is certainly a homeomorphism from У onto X . Sup­
pose some function /  G T(X, У, a) is an identity. Since the binary operation 
here is simple composition, we would have

№ )> = f °  (x) = (*)
for all x G X = R. In other words, /  would have to be the identity map. 
But Т (Х ,У ,а) contains no functions with unbounded range so we see that 
T (X , У, a) does not have an identity.

We next give a name to some groups we introduced in [3], p. 41. 
D efinition 2.9. A topological group is referred to as a TR -group if it 

is the additive group of some Hausdorff topological ring T  which satisfies the 
following conditions:

(2.9.1) T  contains a multiplicative identity 1.

A cta  M athem atica  H vngarica 60, 1992



56 R .  D . H O FE R  a n d  К .  D . MAGILL, JR .

(2.9.2) The element 2 = 1 +  1 has a multiplicative inverse.

(2.9.3) Either the elements 1 and 2 are connected by an arc
or T  is O-dimensional.

Now we need only put together the results we have obtained here with 
some results of previous papers in order to get the main result of this section.

T heorem 2.10. Let ( G, H, a)  be a compatible triple, let H be a TR- 
group and suppose, in addition, that a is topologically a quotient map and 
Ran a is a closed subgroup of G. Then the following statements are equiva­
lent:

(2.10.1) N ( G , H , a ) is simple.

(2.10.2) N ( G , H , a ) has a multiplicative identity.

(2.10.3) N ( G , H , a ) is isomorphic to N(G) .

(2.10.4) N ( G , H , a )  is isomorphic to N( H) .

(2.10.5) a  is an isomorphism from H onto G.

P roof. We first observe that (2.10.1) implies (2.10.5). The mapping a 
is an algebraic isomorphism from H  onto a dense subgroup of G by Lemma 
2.4. Since a  is a quotient map and Ran a is closed, it follows that a  is 
an isomorphism from H  onto G. If a  is an isomorphism from the group 
H  onto the group G then one can show that the mapping which sends /  
into /  о a  is an isomorphism from the near-ring N { G, H, a )  onto the near- 
ring N ( H ) so that (2.10.5) implies (2.10.2). In view of Theorem (4.3) of 
[3], N ( H ) is simple so that (2.10.4) implies (2.10.1) and we have shown 
thus far that (2.10.1), (2.10.4) and (2.10.5) are all equivalent. The mapping 
which sends /  into a о /  is a near-ring isomorphism from N ( G , H , a ) onto 
N ( G ) whenever a  is an isomorphism from H  onto G so that (2.10.5) implies
(2.10.3) . It is immediate that (2.10.3) implies (2.10.2). Suppose (2.10.2) 
holds. Now N(G,  H, a ) separates points and its multiplicative semigroup is 
adequate since it contains all constant functions from G into H . Thus, it 
follows from Lemma (2.8) that a  is a homeomorphism from H  onto G since 
N ( G , H , a ) has a multiplicative identity. Since, by assumption a  is a group 
homomorphism, we conclude that it must be an isomorphism from H onto 
G so that (2.10.2) implies (2.10.5) and we have now shown that (2.10.2),
(2.10.3) and (2.10.5) are also equivalent. This completes the proof.

The results of this section indicate that while there are a number of 
groups G for which N( G)  is simple, a lot of sandwich near-rings are not 
simple.
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3. Z-sandw ich near-rings

LEMMA 3.1. Let X  be a completely regular Hausdorff space, H a topolog­
ical group and suppose that either H contains an arc or X  is O-dimensional. 
Let a be a nonconstant continuous function from H into X  and suppose 
N q(X,  H, a)  is simple. Then Ran a is a dense subspace of X .

P roof. The proof of this lemma is the same as the proof of Lemma 2.1 
with the exception of the portion where we must show that ip[Nq(X,  H,  a)] 
has a nonzero element. In Lemma 2.1 we had all the constant functions 
at our disposal but the only constant function in N o ( X , H , a ) is (0). We 
remedy the situation in what follows. Since a  is nonconstant there exists 
a point у € H  such that a(y) ф a(0). Now we argue as before. Either H  
contains an arc, in which case there exists an arc with endpoints 0 and z 
or X  is 0-dimensional. In either event, there exists a continuous function 
/  from X  into H  such that /(a (0 ) )  = 0 and f (a(y) )  = z /  0. Evidently, 
/  G No(X,  H , a ) and y>(/) = /  о a  /  (0). This concludes the proof.

Lemma 3.2. Let X  be a nondegenerate completely regular first countable 
Hausdorff space, let H be a first countable group, let a be a nonconstant 
continuous map from H into X  and suppose the following two conditions 
are satisfied:

(3.2.1) Either H contains an arc or X  is 0-dimensional.

(3.2.2) I f H is discrete then so is X .

Then if No(X, H,  a)  is simple, the following two conditions must hold:

(3.2.3) Ran a  is dense in X .

(3.2.4) a(0) is an isolated point of X .

P roof. It follows immediately from Lemma 3.1 that (3.2.3) must hold. 
We deny (3.2.4) and obtain a contradiction. Let

J  = { /  € Nq{ X , H ,a ): /  vanishes in a neighborhood of o(0)}.

It is immediate that J  is a normal subgroup of (N o(X , Я, a ), +). Let 51,52 € 
€ No(X,  H, a)  and /  € J.  Then /(x )  = 0 for x 6 V  where V  is some 
neighborhood of a(0). Now (a o 51)-1 [V] is a neighborhood of a(0) on which 
/51 vanishes so that f g \  € J.  Moreover, for any x £ V,

(ffi(ff2 + / )  -  9igi)(x)  = 51 0 ot(g2(x) + f ( x )) -  51 о a  о g2(x) =
= ffi ° a(52(*)) -  5i 0 a о g2(x) = 0.
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T hat is, <7i (<72 +  / )  — <7i <72 vanishes on V  and therefore belongs to J. This 
establishes the fact that J  is an ideal of N q(X,  H,a) .  We next show that 
J  ф {(0)}. Choose p £ X  — (a(0 )}  and let W  be a closed neighborhood of 
a(0 ) not containing the point p. Suppose first that H  contains an arc. Then 
it must necessarily contain an arc A  with endpoints 0 and у and there exists 
a continuous function /  from X  into A such that / ( я ) = 0 for x £ W  and 
f ( p)  — У■ On the other hand, if H  contains no arcs then X  is O-dimensional 
by (3.2.1) and there exists a clopen set V  such that p £ V  Я X  — W.  In this 
case simply choose у ф 0 and define /(я )  = у for x £ V  and / ( я )  = 0 for 
x £ X  -  V.  In either event /  vanishes on W  so that /  £ J  and f  ф (0).

Next, we show that J  ф No( X, H, a ) .  Again, we first consider the case 
where H contains an arc and hence contains an arc with endpoints 0 and
y. Since a(0) is a Gs and X  is completely regular and Hausdorff, it is well 
known that there exists a continuous function /  mapping X  into A  which 
vanishes at a (0 ) and nowhere else. Evidently, /  £ No(X,  H , a ) — J.

Now consider the case where H  contains no arcs. Then X  is O-dimension­
al and since X  is first countable, there exists a countable collection {Уп} ^ г 
of clopen sets such that Vi ф X ,  Vn+i Я Vn and V„+\ ф Vn for all n and 

= {a (0)}- For each Vn, define a continuous function /„  from X  
into the closed unit interval /  =  [0,1] by f n(x) = 0 for я 6 V„ and /„(я) = 1 
for я 6 X  — Vn and then define

OO
/(я )  = ^ ( / „ ( я ) ) / 2 "  for each x £ X.

n=l

Then /  is a continuous function from X  into I  with the property that 
/(a (0 )) = 0, / ( я )  ф 0 for я ф a(0) and Ran /  = {0} U { 1 /2 " } ^ .  Since, 
by assumption, a(0) is not isolated, H is not discrete by (3.2.2) and since H 
is a group, it follows that 0 is not isolated. Thus there exists a sequence of 
points {j/n}~=i in H distinct from 0 and from each other which converges to
0. Define a m ap g from Ran /  into H by

<7(0) = 0 and <7(1/ 2") = yn for each n.
Then g is continuous and it follows that go f  is a continuous map from X  into 
H  which vanishes at a(0) and only at a(0). Thus g 0 /  £ No(X,  H, a)  — J. 
All this contradicts the simplicity of No(X,  H, a)  and we conclude finally 
that a (0) is isolated.

We are now in a position to present an analogue of Theorem 2.10 for 
near-rings of the  form No(G , H, a) .

T heorem 3 .4 . Let G and H be first countable topological groups, let a 
be a nonzero homomorphism from H into G and suppose the following two 
conditions are satisfied:

(3.4.1) Either H contains an arc or G is 0-dimensional.
(3.4.2) I f H  is discrete then so is G.
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Then the following statements are equivalent:

(3.4.3) N q(G, H ,a) is simple.
(3.4.4) No(G, H , a) has a multiplicative identity and G is discrete.
(3.4.5) Nq(G, H ,a ) is isomorphic to No(G) and G is discrete.
(3.4.6) No(G, H ,a ) is isomorphic to No(H ) and H is discrete.
(3.4.7) a  is an isomorphism from H onto G and H is discrete.

P r o o f . We show first that (3.4.3) implies (3.4.7). Lemma 3.2 tells us 
that a(0) is isolated and that Ran a  is dense in G. It follows immediately 
that G is discrete and Ran a  = G. To complete the verification that (3.4.3) 
implies (3.4.7), we need only show that a is injective. To this end, we define 
a homomorphism tp from the near-ring N0(G, H, a) into the near-ring N0(G ) 
by ip(f) = a о f .  Since a  is a group endomorphism, it readily follows that <p is 
a near-ring homomorphism. We want to show that p[No(G, H, а)] ф {(0)}. 
Choose у € H  such that a(y) ф 0 and define f(a (y )) = у and f ( x )  = 0 for 
x ф a(y). Then /  is continuous since G is discrete and <p(f) =  a o / / ( 0).

Now suppose a  is not injective. Then a(y) = 0 for some у ф 0. Choose 
a 6 G — {0} and define /(a ) = у and f{x )  =  0 for x ф у. Again, /  is contin­
uous since G is discrete so that /  £ Nq(G, H, a). But ip(f) — a  о /  = (0) and 
p  is a proper homomorphism from No(G, H , a ) onto < [̂Ао((7, # ,  a)] ф {(0)}. 
This contradicts the simplicity of No(G, H ,a ) and we conclude that a  is in­
jective. It is now immediate that H  is also discrete and we have shown that
(3.4.3) implies (3.4.7). When a  is an isomorphism from H  onto G, the map 
which sends /  into /  о a  is a near-ring isomorphism from No(G, H, a) onto 
N q( H )  so that (3.4.7) implies (3.4.6) and it is well known that N q{ H ) is 
simple whenever H  is discrete [1], [5] so that (3.4.6) implies (3.4.3). At this 
point, we have shown that (3.4.3), (3.4.6) and (3.4.7) are all equivalent.

If (3.4.7) holds, G is discrete as well as H  and since a  is a group iso­
morphism from H  onto G , the map which sends /  onto a  о /  is a near-ring 
isomorphism from N 0(G ,H ,a )  onto N0(G). Thus, (3.4.7) implies (3.4.5) 
which immediately implies (3.4.4). If (3.4.4) holds, then the multiplicative 
semigroup of No(G , H, a) is adequate and separates points since G is discrete 
and it follows from Lemma 2.8 that a  is a homeomorphism from H  onto G. 
Thus H  is discrete and a is an isomorphism from H onto G. That is, (3.4.4) 
implies (3.4.7). It follows that the statements (3.4.3) to (3.4.7) inclusive are 
all equivalent and the proof is complete.
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LOCAL SOLUTION OF A MIXED PROBLEM 
FOR A DEGENERATED HYPERBOLIC EQUATION

D. C. PEREIRA (Belém), M. C. DE CAMPOS VIEIRA 
and T. N. RABELLO (Sáo Jose dos Campos)

1. Introduction

In this paper we study the existence of a local solution for the mixed 
problem associated to the equation

(*) u" + (1 +  Mo(\A1̂ 2u\2))Au  + M i ( \ A 1/ 2u \2 ) A u "  = 0

where A  is a selfadjoint operator defined in a Hilbert space Я  with norm | • |; 
Mo, Mi are real functions with Mo(A) > 0 and Mi (A) 0 for A > 0.

When Mo(A) = 0 for A > 0, equation (*) is an abstract model for the 
equation of vibrations of thin rods (cf. Love [8]) and it was studied, for 
example, by one of the authors in [9], [10] and [11].

When Mi (A) =  0 for A > 0, equation (*) has its motivation in the math­
ematical description of the vibrations of an elastic stretched string and it 
was studied by Bernstein [2], Dickey [3], Pohozaev [12], Arosio-Spagnolo [1], 
Lions [7], Ebihara-Medeiros-Milla Miranda [5], Yamada [13] among others.

We use the penalty method as in Ebihara [4] combined with Faedo- 
Galerkin’s method and compactness arguments (see Lions [6]).

2. N ota tion s, assum ptions and m ain results

Let V , H  be two real Hilbert spaces whose scalar product and norm are 
((•,•)), II • У and (•,•), I • I respectively. We suppose that V  is continuously 
embedded in Я  and dense. We identify Я  to its dual so that we have V  C 
С Я  C V'.

Let A be a given operator such that A E £(V, V '), A* = A, (A u ,v ) = 
= ((u, v )) for all u, v E V.

Suppose:

(2.1) Mo E C^O, oo), Mo(A )> 0  for A > 0,

Mi E С х[0, oo), Mi(A) > 0  for A ]> 0 and 
|M[(A)A| ^  CMi(A) for A > 0,

( 2 .2)
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where C is a positive constant.
(2.3) The injection of V  in H  is compact.

Then, the spectral resolution of A is given by

(2.4) Aw„ = \ vwv, i / = l , 2 , . . . ,

where {A„} and {wu} are the eigenvalues and eigenvectors of A, resp. It is 
known that 0 < Ai ^  A2 ^  . . .  and Aj —> + 00. Therefore the power Ak!2 of 
A  is well defined for all positive integers k. We denote by Vjt the domain of 
A k/ 2, that is, Vjt =  D (A k/2) equipped with the scalar product and norm

(u ,v)k  = (Ak/2u, A k!2v) and |u|£ = \Ak^2v\2.
We have V\ — V  ,V q — H and

(2.5) the embedding of Vjt+i in Vjt is compact for all k.
Then we have the following result:

T h e o r e m  1. Assume (2.1), (2.2), (2.3), и0,щ  e  Vjt+3 with u0 ±  0 and 
к > 2. Then there exist a real number Tq > 0 and a vector valued function 
и : [0,7b] -* H such that

(2.6) u e  L°°(0,To;Vk+3),

(2.7) « '€  L°°(0,To;yfc+2),

(2-8) u " e  L°°(0,To;Vk),
and и satisfies

(2.9) (и" + (1 +  M 0(\A1/2u\2))Au  + M \(\A}!2u\2)Au" , v ) =  0, 

fo r all v in L2(0 ,T o), and

(2 .10) u(0) =  u0, i/ ( 0) =  «1.

3. P r o o f  o f the th eorem

The proof will follow by using the penalty method as in Ebihara [4]. Let 
F : (0, 00) —► R satisfying the conditions

(3.1)

' F e C \ o ,  00),
there exist numbers ao > 0, ßo > 1, S > 0 such that 

< ffc  for a l i i  € ( 0,i],
F '( 0  < 0 for all f  > 0,

. F ( 0  =  1 for all £ > 1.
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For U\ given in Vjt, let К  > 0 be a real number such that

(3.2) M I < K.

The penalized problem associated to (2.4), (2.5) is the following: For 
each £ > 0 find ue(t) such that

(3.3) u"{t) + (1 + M 0(\ue(t)\l))Aue(t) + M i(\ue(t)\l)Au"(t)+

+eF( !L- m \ i y . M =0y

(3.4) ue(0) = u0, u'(0 ) = Ui

where К  satisfies the condition (3.2).
We shall prove that there exists a solution uc of the above problem which 

converges to и when e —► 0. Furthermore и is defined on an interval [0,7b] 
and it satisfies (2.6)-(2.10).

a) Approximate scheme for the penalized problem. Let us consider the 
eigenvectors wu as in (2.4), let [u>i,. . .  , wm] be the subspace of V , generated 
by the first m eigenvectors of Let

m

^em(^) = ^  • • • i ^m]
u=l

be defined by

(3.5) (u"m(f), v) + (1 + M0(|uem(í)|í))(A uem(í), v)+

+  M 1( | n « „ ( i ) | i ) ( ^ < „ ( l ) , « ’) +  ( I L l J S s B f f i l i )  (u'm ( l ) , v )  =  0

for all v G [till,... ,w m],

(3.6) U£m(0) = UQm -*• u0 Strongly in Vfc+3,

(3.7) u 'm(0) = U l m  -> U i  strongly in Vk+3-

By (3.2) it follows that there exists a solution uem(t) of the system (3.5)-
(3.7) defined on the interval [0,Tem), and from F  6 C1(0,oo) we have ucrn €
€ C2[0,Tem).

b) Estimate I. This is given by the following result:
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L e m m a . For all e >  0 and m  >  mo we have

(3.8) \Km (t)\l < K  f ° r al1 1 e [0, oo).

P r o o f . We fix e > 0 and m  > m0 such that [0,Tem) is an interval of 
the solution and

(3.9) 0 < £ < 1 , £ d 2 - a > i .

We note th a t (3.8) is satisfied for all t G [0,Tem). It is sufficient to show
that

(3.10) %  KrniOlfc exists and lim \u'em(t)\l < К

because then the conclusion of the lemma will follow by Zorn’s lemma.
Let t =  0 in (3.5) and v =  A k+1u"m(0). Using (2.1), (3.1), (3.6) and

(3.7) we have

(3.11) K m (0)U+l ^  c
where C is a positive constant independent of e > 0 and m.

Now taking the derivate with respect to t of the approximated equation
(3.5) we obtain:

(3.12) (u'?m(t) ,v ) + (1 +  M0(|uem(i)|?))(A <m(i),v )+
+2M0(\uem(t)\l)(ucm(t), u'ern(t))\(A uem(t), v)+

+M1(|U. m(l)i;)(A«”  (l) ,v ) +  sF  ( A « , ( , ) , „ ) +

+2M[{\ucm(t)\l)(ucm(t), < m(i))i(A < m(i), v ) -

- 2 F  ( A' ~ lf ' ° (-t )^- )  = 0.

If we consider v = A ku"m(t) in (3.12) we have from (3.1)

1^[К ™ (<)| l  +  (1 + M „(i«.ra(< ) i ;)K m(i)ii+.+  

+Ai1(|« tm(i) |? )K m(()lh ,]  S 

£ W (l».m (<)lf)ll”.m (<)|lK m W llK m (<)lLl +

+2|M ;(i«,m(í)i;)ii» .ft.( í) iiK „ ( i) iiK ™ (í) lI+i-
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But in ,w m] the norms are equivalent, thus from (3.8), (2.1) and
(2.2) we obtain in [0,Tem)

á jlK U O I l  +  (1 +  Vo(|ti«m( i) i i) )K m(()i2+,+

+ M 1( |u . m ( i ) l l ) K '„ ( i ) l t + , ]  S  C l K m W l l + l  +  +
Integrating from 0 to t < Tem, using (3.6), (3.7) and (3.11) we have from 
Gronwall’s inequality

(3.13) KmWIfc = C (£,m ) for all t £ [0,Tem),

where C(e,m ) is a constant depending on e > 0 and m. It follows from
(3.13) that lim \u'em(t)\l exists.

*—̂tm
Let us suppose that

(3.14) lim \v!em(t)\l = K .
cm

Let v = Aku'cm(t) in (3.5). Then we have

\ ^ [ К М  + (1 +  M0(|«m (t)li))l«™ (i)lL i+  

+M i(|«r a (í)l5)l«™ (í)lL.] +  ( y ~ l“" " (i>1*)  I«U.(*)I2 S

i  2 |M^(|u£m(í)|?)||uem(í) |1|< m(t) |1|uem(í)|^+1 +

+ 2|M Í(|uem(í)|f) ||uem( í) |lK TO(í)|lKmW lfc+1-
Integrating both sides from 0 to t, t < Tem, we obtain from (2.1), (2.2), (3.6) 
and (3.7)

(3.15) ér J  F  ( A' ~  K - M U )  K „ ( , ) |  Ids i  C (s,m ),
0

where C (e,m ) is a constant independent of t.
Let E{i) = |u£m(t)ll- We shall prove that under the hypothesis (3.14), 

there exists an interval (ro,Tem) such that E \ t ) > 0 for all t £ (To,Tem). 
In fact, let us suppose the contrary. Then for each interval (ту,Тст) with 
t„ — ► Tem, there exist tu £ (т„,Те т ) such that

(3.16) E \ t y) = 2(u 'm(ty), u'Jm( t , ) h  = 0.

By the continuity of E (t) and properties of F  we have

(3.17) E (ty) —> К  as v —> oo,
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and

(3.18) F  ^ —> oo as v —* oo.

Let v = A ku'em(t) in (3.5) and observing (3.16) we obtain

(3.19) tF^ - K - (t->l*)  =

=  - ( 1  +  M o(|o ,„(í„)if))“ iu,m(i„ )ií+1 -

But by the continuity of Mq and M \ and the estimates for uim, u'em and 
<m  in [0, Tcm) we have that the right hand side of (3.19) is bounded. On 
the other hand the left hand side of (3.19) approaches infinity when v  —► oo. 
This is a contradiction which proves our claim.

We have 0 < E '( t) < C(e, m ) for all t € (ro,Tem), whence

ч К  -  E(s
a) = — —

is strictly decreasing in (r0,Tem). Let rj be the inverse function of £. By a 
change of variable we obtain

(3.20)
t «(*)
f  ( К - Е Щ  [ -e F (()

r° ( Ы
({to) í(t

m  d (>  C
=  £ /

m
Е ' Ш )  = C(£,m) j  F (0 dt.

№

Let g > 0 be a positive real number such that К  — g > 0. Then by (3.14) 
there exists > 0 satisfying tq < Tem — <5i and

(3.21) E ( t ) > K - g  for all t € (Tem -  ^ ,T em).

By using (3.21) in (3.15), it follows that

C { e , m ) > K - g  J  F ( - - - ^ ^ )ds.
T€rn—Si
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Choosing ro such that f(ro) й 6 (S as in (3.1)) and observing (3.20) we 
obtain

í(7em—̂ l)

w k )  /  tУ ^ - а к )  /
№  №

which is a contradiction, because the first integral is divergent. Therefore 
the lemma is proved.

Before obtaining more estimates, let us first prove that |uem(f)|i > 0 in 
a neighborhood of t = 0. In fact, by the lemma we have

I |^em ( O l i - K n U  < CkVWt, 
or

(3.22) I«отIr -  C kV K t < |uem(i)|r

Let 62 > 0 be such that 0 < 262 < |uo|r  This is possible because uo ф 0. 
Let

rp _  luoli -  262 
1 Ck\fK  ’

then we have

(3.23) Ck\ÍK t + 62 < Itiolr - 62 <: luomli for aU t e  [0,7i].

From (3.22) and (3.23) it follows that

(3.24) luem(0li = 62 for all * е [0 ,Т г].

c) Estimate II. Let v = A k+2u'cm(t) in (3.5). Using F(£) 0 we have

2 ^ [ l Uem(0lfc+2 + (1 + -^o(|«em(0ll))luem(í)|jfc+3 +

+M 1(\uem( t) \ l ) \u U t) \ l+3\ й
< |M '( |uem(/)|?)||uem(í) |1|< m(0 |i|uem(í)U+3+ 
+|M Í(|wero(t)|?)||uem( t ) | iK TO(í)|2+3|u/em(t) |i.

From |uem(í)|fc < К , |u 'm(<)|fc ^  К  for all t G [0,T] and Vk C Vi with 
compact embedding, we obtain by using (2.1), (2.2) and (3.24) in the above 
inequality:

^ [ |< C (< )lI+2 +  (1 +  M„(|«tm(l)|?))|«.m (í)ll+3+

+ M 1(|«em(<)ll)Km(i )ljfc+3] ^  C4\uim(t)\2k+3 +

+ ^ M 1(|o«m(í) |í) |uu .(O IÍ«  +  C6.
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Integrating from 0 to  t < T\ , using (2.5), (3.6), (3.7) and Gronwall’s inequal­
ity  we obtain:

(3.26)
K m (0U +2 й  c  for a11 1 € [0>r i]

< K m (*)U +3 й c  for a-11 * €  [0,Ti]
. M 1(|tlem(t) |5 ) |< m(t)|2+3 ^  C  for all t € [0,Ti]

where C is a positive constant independent of £ > 0 and m.
d) Estimate III. In (3.12) let v = Aku"m(t), then we obtain

\ j t W U t) \ l  + (1 +  M 0(\um ( t ) \ l ) ) ~ K m(t)\l+i+

+M i(|tiem( í ) l í ) l^ K „ ( < ) l í+ i+

+2Afó(|,uem(í)|j)(uem(í)), ucm(t))i(A u em(t), A  tiem(t))+ 
+2M [(\uem(t)\l)(u em(t),u'cm(t))1\u"m(t)\l+1 +

^  — l^emiOljfc4) / // /.\ / y ' \ 2 _n----- --------  I = °- t i f  ( i U ^ m M )  |« ^ ,( t ) |J - 2 F ' ( :

because of the assumptions on F(£) and F'(£) together with our previous 
estimates. Thus we get

^ n « ™ w i2 + ( i+ M „ ( |u .„ ( i) i ;) ) i« u .(* ) ii+i+  

+A M km (i)li)l<C («)lii+ i] S C g K '„(i)ll+  

+ ^ A Íi( l» OT( i) l í ) K m(í)l?+i-Ő2

Integration from 0 to i < T i, using the convergence of the initial data, the 
continuity of Mo, Mi and the estimates (3.11) it follows from the Gronwall’s 
inequality th a t

r„ 97, /  K m (t) \k < C  for ah t G [0,Ti]
K' ] l  M i(|uero( t) |? )K m(i)|2+i < c  for ah f e [0,Ti]

where C is a positive constant independent of £ > 0 and m.
e) Estimate IV. Our objective now is to prove that

(3.28) eF  (^K  ~ Ú C  for ah t € [0,Гг],

where C is a  positive constant independent of e > 0 and m, £ being small 
enough.
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In fact, if \u'em(t)\l ^ y  for some t, then

к - \ < тт  ^  к
s -  2e

and for sufficiently small £ > 0, we have

K - K m{t)\l \ h

Suppose |u 'm(i)|£ > y .  Let v = Aku'em(t) in (3.5). Then we have

+  j ( l  +  V o ( |« , m ( í ) l 2 ) ) ^ k , m ( ( ) l ? + l  +

+ ÍM i( |« ra( í ) |? ) |K „ ( t ) | |+1 +  eF  = 0

К  r J
T * ' (

К  - M l S и= I “'em(0 U lttL (0 l*+

+(1 + Mo(|uem(í) |1))|uem(í)|fc+1|uem(í)|fc+i +
+ M1(|uenl( í) |? )K m(í)|*:+2|u"nl(í)|*:.

Estimate (3.28) follows from (3.26) and (3.27).
Because of the estimates (3.26), (3.27) and (3.20), there exist two func­

tions u(t), x{t) and subsequences still represented by (u£m), extracted from 
(u£m), such that

(3.29)

uem —> u weak star in L°°(0, T); Vjt+3) 
u 'm —► v! weak star in X°°(0,T);Vjt+2)

{ u"m —+u" weak star in Ь°°(0,Т\; Vk)

£F x  weak star in X°°(0,Ti).

Since the embedding of Vjt+i in Vjt is compact, it follows from Aubin-Lions’ 
theorem [6] that

ucm -*• и strongly in Z,°°(0, Ti; Vjfe+2),

and
U'em-^U' Strongly in L°°(0,T1',Vk+1). 

Since Mo, M i £ Cx[0,oo), it follows that

M0(\uem\l) -* M0(\u\l) strongly in L2(0,Tx)
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and
M0(\uem\l)A ucm -* M0(\u\l)Au  weak in I 2(0,Ti; Vk).

Also, we have

M i(\uem\l)Au"m -+ M i(\u\l)A u"  weak in X2(0,Ti; Vk- 2)-

The above convergences permit us to pass to the limit in the approxi­
m ated equation (3.5) when e —> 0 and m —*• oo. Thus we obtain

(3.30) (u"(t), v) + (1 + M 0(\u(t)\l))(Au(t), v)+ 
+Af1(|u(í)|í)(A u"(í), v) -f x ( t) (u \t) , v ) = 0,

for each v £ V  in T2(0,Ti) and u(0) =  uo, u'(0) =  щ .
It is sufficient to show that x  =  0 in some interval [0,To]. In fact, from 

u' € C°([0,Ti], V/t), u '(0) = «1, |ui|£ < K , there exists an interval [0,To] 
where \u'(t)\l < К  for all t e [0,7b]. If ß\ = max{|u'(i)|£; 0 £ t < To}, then 
Pi =  К  — ß\ > 0 and

(3.31) |«'(í)|fc < к  -  у  for all t e [0,To].

By (3.27) we have
K m W  “  < m (5)U ^  C \ t - s \ .

By (3.26) and the compactness of the embedding of I4+i in VJt, we can use 
Arzelá-Ascoli’s theorem to conclude that

< m -  v! in C°([0, To], Vk).

Then for to given, there exist So and m i, such that

lK m (0 lfc- l«'(0 lfcl ^  0 < £  = £°’ r n > m x.

From (3.31) it follows that

К -  \u'cm(t)\l > у  for all t e  [0,To], 0 < £ S Eo, m >  mb

and from the definition of F(£) we find that

eF  < e

for small e > 0. Then

eF  ^ K ~ _ _» x (f) =  о in T°°(0,To)
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since x (0  =  0- Thus (3.30) implies that и is a solution and Theorem 1 is 
proved.

R e m a r k . I f  w e  c o n s i d e r  t h e  e q u a t i o n

u" +  M i (\A1/2u\2)A u + M2(\A1' 2u\2)A u" = 0 
with Mi(X) > 0, for all Л 0, and |M/(A)A| < CM,(A), for all A > 0 
(i =  1,2), when C is a positive constant, then we obtain a similar result as 
in Theorem 1 because the same method applies.
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ON MOMENTS OF THE SUPREMUM OF NORMED 
PARTIAL SUMS OF RANDOM VARIABLES 

INDEXED BY N*
N . V . G IA N G  (H anoi)

1. In troduction  and prelim inaries

Let к ^  1 be an integer and let Nfc denote the positive integer k-dimen­
sional lattice points with coordinate-wise partial ordering, <, i.e. for every 
m — ( m i , , m/c), n = ( n i , . . .  , ra*) G N* m ^ n if and only if m,- < n,-, 
i — 1 ,2 ,. . .  , k. Further, |n| is used to denote the product П1П2 • • • пь, and 
n —► 00 means tha t |n| —+ 00.

Let {X (n ),n  G Nfc) be independent and identically distributed (i.i.d.) 
random variables and let 5(n) = X(k) denote their partial sums. Let X

k < n
be a random variable which has the same distribution as X i  and which is 
independent of all other random variables.

Let 0 < t \ , . . .  ,/fc < 2 and b(n) be positive real numbers of the type

(1.1) b(n) = n i . . . n k .

Denote t = max{i,}.
It is well-known that in some special cases of b(n) the problem of relating 

moments of X  to moments of sup |6 _ 1 (n)X (n)|p and sup |b_ 1 (n)5(n)|p, p > t,
П П

has been studied by several authors.
The simplest case к =  1, b(n) = n has been investigated first by Marcin- 

kiewicz, Zygmund and Burkholder. Namely, Marcinkiewicz and Zygmund
[10] proved that

( 1.2)

provided

(1.3) J5|X|log+ |X | < 00 if p =  1 and F |X |P < 00 if p > 1.

Here and in the following log+ x = max{l,log x).
Burkholder [1] proved that (1.2), (1.3) and

(1.4) E  sup |X (n )/n |p < 00, p > 1

E  sup |5 '(n)/n |p < 00, p > 1
П
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are equivalent. Furthermore, when p = 1, McCabe and Shepp [11], by a 
different way, proved the equivalence of (1.2)-(1.4).

For the case к > 1, b(n) = щ  • • ■ n*, p =  1, replacing condition (1.3) by

(1.3’) £ m ( lo g + |X |)fc < 00,

Gabriel [3] has shown the equivalence of (1.2), (1.3) and (1.4).
Generalizing the last result of Gabriel, Gut [5] has obtained the following 

result.
T h eo r em  l . l(G u t [5]). Let {X ,X (n ),n  £ Nfc) be i.i.d. random vari­

ables and suppose that E X  = 0 whenever it is finite. Let 0 < r < 2 and 
p ^  r. The following statements are equivalent:

(1.5) £ |X |p(log+ |X|)* < oo if p = r and E \X \P < oo if p > r;

( 1.6 ) E  sup
П

<  O O ,

(1.7) E  sup
П

<  O O .

In this note we wish to generalize the above result of Gut to the general 
case when the normalizing sequence {fc(n),n £ Nfc} is of the type (1.1).

The proof of the main result of this paper will be based on the following 
lemmas.

L em m a  1.1. Let o q ,. . .  , a* be real numbers, a = max{a,, i = 1 , . . .  , £}; 
f i , . . .  ,tk > 0. Put p =  m ax{a,t,, i = 1 , . . .  , к}, q =  card{i: 1 < г < A;, 
ocfii = p), r =  card{t: 1 < г < fc, o, = 0). For each x > 0, put

/ ( * ) =  £

Then we have the following conclusions:
If a < 0, then1

( 1 .8 )  / ( z ) X ( l o g + * ) r .

l Here the notation / ( z )  X  g(x) means that there exist constants Ci and C i such that
for every z greater than some zq

C l 9(i) й f (x) =  C 2f f (z ) .
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b) I f  a  > 0, then

(1.9) f ( x ) X x p( log+ x)e+r_1.

P r o o f . T h e  p r o o f  o f  t h i s  l e m m a  p r o c e e d s  b y  i n d u c t i o n  o n  t h e  d i m e n ­

s i o n  k.
a) Consider first the case a < 0. In this case r = 0 and it is easy to see 

that / ( x ) < oo for every x,  thus the conclusion is evident.
Assume now a = 0. The proof proceeds as follows. For к = 1, (1.8) is 

obvious. Now suppose the conclusion holds with fc-l-dimensions. Obviously,

/(* ) E 1 E
n ^ - n ^ x / n ^

Пa2-
2

1 • ПOk­it
1

If c*i < 0, then by the induction hypothesis

(l.io) я « )х Е " Г -1 ( lo8+^ r )  ■

Choosing only one term on the right-hand side of (1.10) corresponding 
to ni = 1 we get

f(x )> C i()o g  + x )r .
On the other hand, for every n\

« Г -1 ^log+ < < 1" 1(log+ x)r,

so we obtain

/ ( * ) < C 2(log+x)r Y ,  < 1_1^ ( l o g  + x )r
r»i <X*1

(with a i  < 0 the series ]Tn“1_1 converges). If £*i = 0, then (1.10) becomes

/(x)X £  ПГ* ( los+ •
m<x‘i V V  )

It is easy to verify that

x  /  u(log+^ r ) r ldu^(los+a;)r-
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This terminates the first step of the proof.
b) As above the conclusion is true when к = 1. Suppose that it holds for 

к — 1. We may assume, without loss of generality, tha t a , > 0, i = 1, . . .  , q. 
Then if a,*,- =  p for all 1 ^  i S q, it follows from the induction hypothesis 
that

/ \ 9+r-2
f ( x ) X x P ^  n ^ 1 (log+ - ^ - J  X lP (l°g+ a;)9+r_1.

П1<х*1 V «1 /
If a,f, = p does not hold for all i = 1 , . . .  , q, then we may assume that 

&ih < P• By induction

Choosing only one term corresponding to щ  — 1 on the right-hand side 
of the last expression we obtain

f ( x ) > C lXp( lo g + x )^ 1- 1.

On the other hand, the sum

E
o n - l - p /h

n \

9+r-l

is majorized by

£ n 7 1- (p- “ltl)/‘1(lo g + z)9+’- 1 ^ C Q og+ i)9̂ - 1.
l

The lemma is completely proved.
REMARK. In the case a i > 1 , . . .  ,a/t > 1 the lemma has been stated 

and proved by Klesov (Lemma 2, [9], p. 923).
The following result is an extension of Lemma 2.2 of [5].
Lemma 1.2. Let E  be a Banach space with norm  || • || and let (У(п), 

n £ N*} be independent E-valued random variables. Further let (a (n ),n  £ 
£ Nfc} be a set of positive real numbers such that a(m) ^ a(n) if  m S n. 
Set

I/(n) = a_1(n) Y '  У (т ) , V  =  sup ||J7(n)||, W  = sup ||a- 1(n)Y(n)||
^  П П
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and suppose that V  < oo a.s. Then IF  < oo a.s. and if EW P < oo for some 
0 < p < oo, then E V P < oo.

R e m a r k . For к =  1, a(n) =  1, this is Theorem 3.1 of [8]; for к =  1 
and general nondecreasing sequences (a(n), n = 1 ,2 ,3 ,...}  it is Corollary 
3.4 of [8]. For the case к > 1 and a(n) there are functions of |n| such that 
a (m) < a(n) if |m| ^ |n|, this lemma is Lemma 2.2 of Gut [5].

P r o o f . The first statement of the lemma is obvious because of W  < 
^  2kV.

For the case a(n) = 1 the lemma has been proved in [5].
For the general case of a(n) we proceed roughly as in [5], p. 208. The 

details are omitted.

2. R esu lts

In this section we state and prove the main results of this note.

T h e o r e m  2.1. Let {X, X(n), neN*'} be i.i.d. random variables and sup­
pose that E X  = 0 whenever it is finite. Let 0 < ,ijt < 2 , t = max{i,-},
r = card{i: t, =  f}. Let b(n) be of the type (1.1) and p > t. The following 
statements are equivalent:

(2.1) £ |X |p(log+ |X |)r <oo if p = t and E \X \P < oo if p > t,

(2.2) E  sup
n

X(n)
b( n)

p
< oo,

(2.3) E  sup
n

S(n)  
b( n)

p
< 00.

P r o o f . (2.1) => (2.2). Define

X '(n) =  X (n )/( |X (n )| < *(»))• X"(n) = X (n) -  X '(n)

Here /{•} denotes the indicator function of the set in the braces. 
It is evident that

(2.4) E  sup |b"1(n)X (ii)|p < E  sup |ÍT1(n)X ,(n)|p + E  sup | i r 1(n)X "(n)|p.
n n n

Obviously,
E  sup |6_1(n)X,(n)|p < 1.
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We estimate now the second term  on the right-hand side of (2.4). We 
have by Lemma 1.1

E  sup |b-1 (n)Xw(n)|p < 5 3  b~p(n)E\X"(n)\p =
n€N *

OO W
= 5 3  b-p(n) J  x 4 P ( |X(n)| < x) = 5 3  b-P(n) J x»(dP(\X\ < x )  =

neN* b(n)
OO

n e N fc b ( n )

OO
=  5 3  b - p ( n) / xpdP(|X | < x) +  5 3  b-p(n) [ x p dP(  | x | < x )  + . . . <

^ Kb(n)<2 b({ }0<(>(n)^l b ( n )

OOOO . OO OO .

^ E ^ '" Pai  /  *Pdp( m  < *) =  E ^ ~ Pa; E  /  *Pdp(ix i < *) =
i = i  j  3=1 i=3 i

oo

= 5 3  /  xpdP (|X | < x) 5 3 aj i _P =
‘■=1 i j i i

oo

<  c 5 3 i p p ( i  ^  | x i  <  * + 1 )  5 3  6 _ p ( n )  =

b(n)<i

<

»=1
oo

l - x ' l < * + i )  i f p > ti=i
oo

c 2 E i p(iog+ W ^ № < *  + i) i f p  =  *.
1=1

< ( C 1 E \ X \ P if p > t ,
= l С2 Р |Х |р(10ё+|Х|)-- if p = t

(where aj =  card{n: j  < 6(n) £  j  + 1}). This terminates the first step of 
the proof.

(2.2) => (2.1). Since

(2.2) su p |X (n )/6(n)|p > |X(1)|

implies that P  |X |P < oo and therefore (2.2) is trivially necessary for (2.1) 
to hold if p > t.

Assume now that p — t. When r = 0, proceeding as in the first step of 
the proof above we find that the conclusion is true. Suppose now that r  > 0. 
It is in fact no loss of generality to assume that ti — —  =  tr = t =  p. In

Acta M athem atica  H ungáriá i 60, 1992



NORMED PARTIAL SUMS OF RANDOM VARIABLES 79

this case it is easy to see that

(2.5) E  sup |6 1(n )X (n )|p > E  sup X (n ')

n1 /p ■Tl,1/p

= E  sup
n £ N r

Here n' = ( n i , . . .  , nr , 1, . . .  , 1) € Nr X {1} X . . .  X {1} ~  Nr .
According to Theorem 1.1, (2.5) is equivalent to E  |X |p(log+ |X |)r < oo. 

Thus (2.1) follows.
The proof of (2.2) о  (2.3) is an appropriate modification of that given 

in [5] for Theorem 3.2.
(2.2) => (2.3). Because of (2.1) the Marcinkiewicz-Zygmund law is true 

(see [9], Corollary 1, p. 918). It follows that V  =  sup |b_1(n)5(n)| < oo
П

a.s. Since (2.2) holds, that is E W P < oo, where W  = sup |5-1 (n)X (n)|, an
П

application of Lemma 1.2 yields E V P < oo, i.e. (2.3).
(2.3) =>■ (2.2). Immediate, because of W  < 2kV. The theorem is com­

pletely proved.
Acknowledgement. The author wishes to thank Prof. Dr. Nguyen Zuy 

Tien for a careful reading of the manuscript and for pointing out a flaw, and 
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ON ENUMERATION OF SPANNING SUBGRAPHS 
WITH A PREASSIGNED CYCLOMATIC NUMBER

IN A GRAPH
Y . C H O W  (M ilw aukee)

1. In tro d u c tio n

For a given connected (labelled) planar graph, the enumeration of its 
connected spanning subgraphs containing the same number of “cycles” was 
carried out recently [1] by a method using the real vector space of some 
formal sums and certain operators defined on the space. By the number of 
cycles of a connected graph (or subgraph) G here we mean the cyclomatic 
number x(G ) defined by

X(G) = H G )| -  K G )| + 1
with e and v being the edge set and the vertex set, respectively. |( )| denotes 
the cardinal number of a set. The purpose of this article is to treat the case 
of a graph whether planar or non-planar.

It is interesting for reasons of exposition to mention the following fact. 
Shortly after the completion of the work which appeared in [1], we were led 
by the duality concept to a solution of enumeration of spanning (m-tree) 
forests for any given (labelled) graph with no planarity restriction by an 
approach similar to that of [1] used in dealing with cycles, thus achieved a 
generalization of the celebrated Kirchhoff’s matrix-tree theorem to the case 
of m-forests, to be referred to hereafter simply as the matrix-forest theorem 
(Theorem I of [2]; also [4] in a different form). That the solution of the 
“cycle” problem for planar graphs could lead to the solution of the “forest” 
problem for any graph (planar or non-planar) is due to the very fortunate and 
crucial fact: even though the concept of “duality” is well-defined for planar 
graphs only, i.e. a technique used on a graph can sometimes be passed over to 
its dual graph under certain correspondence, yet in the particular case of the 
matrix-forest theorem one realizes that the proof in fact involves no planarity 
arguments. Hence the theorem stands for the general case of any graph. 
However, it is not possible to use duality on the result of a matrix-forest 
theorem to attack the cycle enumeration problem for non-planar graphs, 
as dual graphs are no longer defined for these graphs. Our approach here 
is to use some subgraphs (i.e. “deletion”) and also the graphs obtained by 
identifying certain vertices (“contractions”) of the given graph, usually in
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several consecutive steps. The procedure allows repeated iterations so the 
final computation may involve comparatively simple graphs since the number 
of edges and the number of vertices are reduced. In fact, for a non-planar 
graph, one may stop this process at the stage when all the relevant graphs 
(subgraphs or contracted graphs) involved become planar. Then the operator 
method of [1] (cf. also [3] for computational details) can take over. Thanks 
are due to Professors C. J. Liu and R. McQuistan for helpful comments. 
I would like to especially thank Professor Bennett Chow for his continued 
interest and encouragement.

M ain resu lts

We first fix some terminologies. By the “contraction” of the edges 
(m = multiplicity label for the different edges), joining the pair of vertices 
Vi and vj we mean that all edges e\- ' are first deleted, then the two vertices 
Vi and Vj are identified. For convenience, we shall label the new vertex n, if 
i < j .  We shall refer to such an operation as the “contraction” of the edges 
e,j. Either a “deletion” or a “contraction” , as just defined, will be called a 
“reduction” . We shall use the following notation:

( 1 )

' éij = the contraction of all edges etJ (regardless of multiplicity 
of edges)

éij =  the deletion of all edges e,j (regardless of multiplicity 
< of edges)

Sa  = the set of all edges joining vertices n, and Vj 
m ij = the multiplicity of e,y, i.e. the number of edges 

. joining directly vertices и,- and V j .

The graphs considered here are connected, labelled, undirected and with­
out self-loops. We shall first analyze the enumeration of connected spanning 
subgraphs with a fixed cyclomatic number, i.e. all the subgraphs to be enu­
merated have a fixed Denote by crx (G ) the total number of such subgraphs 
of a graph G (G can be either planar or non-planar). Consider first o\{G ) 
where the given graph G is connected and labelled but is in general a multi­
graph. Then we have the following basic property:

For any pair of vertices i and j ,

(2) a!(G) = ai(éijG) + mijcrl (éijG) + ao(éijG),

provided tha t éijG remains connected.
The proof of (2) is straightforward. Let us check the terms on the right- 

hand side of (2). The first term is the contribution of those subgraphs (in G) 
that contain none of the edges from Sij. The second and third terms count,

Acta M a th em a iica  H ungarica 60, 1992



ON ENUMERATION OF SPANNING SUBGRAPHS 83

respectively, those subgraphs containing one and two of the edges from 5,y. 
One of the important features of expression (2) is its capability for iteration, 
i.e. (2) can be repeatedly applied to the reduced graphs which appeared on 
its right-hand side. As it stands the double subscripts i , j  which appeared 
in (2) are too tedious to write after several iterations, therefore we simplify 
now the notation by using a single subscript. First we write едг in place 
of the rule is that we shall hereafter always label the vertices in G
in the reversed order according to which we proceed to reduce the edges. 
So the first pair of vertices to be reduced will be the pair N, N  — 1 and we 
shall label the coalesced vertex N  — 1 if the reduction is a contraction. We 
shah next reduce the pair N  — 1, N  — 2 and shall label the coalesced vertex 
N  — 2 if it is a contraction, and so forth. This simplification of notation also 
helps us to keep track of the number of iterations involved with ease. It is 
also important to realize that in general the operations of “deletion” and 
“contraction” do not commute, i.e. for instance

CN-léN Ф ^N—l^N
as depicted in Fig. 1.

Fig. 1. Non-commutativity of “deletion” and “contraction”

Following these conventions, (2) can be written into

(3) (Ti(G) = CTi(eArG) + ^ j  ^ 0i ( é / v G ) ^ oto(^n G) 

or simply

(4) <ti(G) = <Ti(ejvG) + mNoi{eNG) + ^mN(mN -  1 )a0(eNG).

Before we can carry out the iteration of (3) we must look into the effect 
of ejsiG and ejqG on the multiplicities of edges. In other words, what will 
be the new multiplicities in eriG and also in e^G; they will be different 
from those of G where the symbol mn  is used. First, the only change in 
e^G , from G, is that the new denoted by rhjv, is simply mjy = 0 (i.e. 
there is no edge linking directly пдг and u/v-i as a result of the deletion ёдг). 
Next, the only changes in éj^G, from G, are the absence of the vertex N  and 
the change of multiplicity from the original to the new multiplicity

given by
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(5) ttin—i )t' TnN- i ti — m Nfi, i — 1,2, . . .  , N  2

where the superscript c in (5) denotes a single “contraction” and where the 
subscripts conform to that in (1). Therefore, we have

(6) oi(éjvG0 =

=  (7\{en-.\ejsiG) +  mw-i<7i(é.N_ié/vG0 -f -т н -\(т п к-1  — l)0o(éjv-iéjvG ) 

and
(7) (Jx^ n G) =

=  <Ti(é;v-iétfG)  + m ^_1o'i(éjv'-iCivGí) +  2 m N -i(mN -i ~  l ) CTo(éjv-ié./vG)

where mcN_1 is given by (5). We may now do the first iteration of (3); a 
substitution of (6) and (7) into (3) yields

(8) 0i(G) = ai(eN-xeNG) +  mAr_icr1(é.N-iéjvG) + mjv<ri(é^_ié^G)+

+mwm^_i<7i(é./v_iéjvG!) + 2m N- i ( m N -i  — l ) cro(é7Y-iéivG)+

= ^mjvra^_i(Tn^_i -  l)oo(éjv-iéjvG) + ^m N ( m N  -  l ) a 0 ( c N G ) .

By carrying out the second iteration one finds tha t all the multiphcity 
factors are due to contractions (é); their positions among the reduction oper­
ators decide the coefficients, e.g. if é is in the Tightest position it contributes 
a factor mjv for cry and a factor (т2лг) for cr0 when e is the only operator 
acting on G. Some details of the second iteration of (3) are given in the 
Appendix.

The general expression of <rn is

(9) c„(G) = <,„(«<?) + E  ( „ , > i - i ( w G )

following a similar proof as that of (3). Iterations can be carried out in the 
same way as for 0\.

Since, by the algebraic method of [1], we can make direct calculations 
once the graphs involved are reduced to planar ones, it is useful to define 
the “planarity reduction index” (. We say that £ =  к  if к is the minimum 
number of reductions such that all the graphs resulted from these к  con­
secutive reductions (i.e. either “deletion” or “contraction”) are planar and 
still connected. Obviously a planar graph has £ =  0 by definition. As an 
example, £(G) = 3 if all the following eight graphs are connected and pla­
nar. éééG, éééG, éééG, éééG, éééG, éééG, éééG, éééG where éééG denotes
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^N -2^N - i ^n G and so on. Therefore, it is only necessary to go through £ 
steps of iterations to yield an expression that can be readily computed by 
the algebraic method of [1]. It is also clear that there can be different series 
of reductions with the same £, in general. It is important to note tha t since 
the purpose of the present method is to treat a non-planar graph, by means 
of suitable reductions, in terms of its planar reduced graphs we will always 
choose a minimum number of reductions (which defines ()  to do the job. 
Hence the situation of having disconnected reduced graphs will not happen 
under this situation. In other words, in the above example of £((?) = 3 the 
situation of e.g. eeeG being disconnected will not arise.

The exam p les o f  non-planar graphs ЛГ3 3  and К ъ

Consider first the non-planar graph # 3,3. We have С(^з,з) = 1, as it is 
easily seen that both eK 3,3 and ёК33 are planar, in this case for any edge e 
(Fig. 5). We shall compute only o\ here since <72, etc. can be computed by 
the same method. By (2), we have

(10) 0г(-Кз, з) =  0г(ёб-Кз,з) + ^(ёв-Й'з.з)-
First, we compute <т\{ёъК33) following the method of [1]. The so-called cy­
cle-adjacency matrix can be written into, according to the cycle assignments 
of Fig. 6(a),

( И ) Б =
-1
4

- 2

1Ы ё6хэ э

Fig. 5. The graph Л 3  3  and some reduced graphs

The computation can be carried out by the formula (cf. (67) of [3])

3
(12) ^ ( ^ 3,3) =  X > t E ( * ) +  £ 0 d e tE (t,j) .

«=1 l < i < j < 3

We find, by (12),
(13) cri(€6K3t 3) = 26.
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lQ) é6 Кэ 3 1Ы é6 * 3 3

Fig. 6. Cycle labellings of the reduced graphs

To compute <71(ёб-Й'з)з), we assign cycle labels as shown in Fig. 6(b). The 
corresponding cycle-adjacency matrix is

(14)

CO - 1 0 - 1 '
II

•w - 1 3 - 1 0

0 - 1 3 - 1

- 1 0 - 1 3

The computational formula to be used is

4
(15) <7i(é6hr3)3) = ]P d e tÉ ( i)  +  ^  É.ydet É(i, j )

«=1 1< «<j<4

from which we find

(16) ^ ( ^ 6^ 3,3) =  52. 

Therefore, by (10),

(17) ^ ( ^ 3,3) = 2 6 +  52 = 78,

i.e. Ä3t3 has 78 connected spanning subgraphs each of which has exactly one 
cycle. This can be easily checked graphically.

Consider next the non-planar graph К 5. Again, it is easy to see that 
^(Кь) = 1. According to the labellings of Fig. 8(a) we have, for ésK 5, the 
cycle-adjacency matrix:

(18)
( 3 -1 - 1 0 0 \-1 3 - 1 0 -1

-1 -1 3 -1 0
0 0 - 1 3 -1

V 0 -1 0 -1  3 у
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*5

1 2

lb) (a I e5 * 5

Fig. 7. The graph K$ and some reduced graphs

la) e5 / ( 5

Fig. 8. Cycle labellings of two reduced graphs of K$

The computational formula will be, similar to (12),
5

(19) (Ti(e5K 5) = ^ d e t E ( i ) - f  ^  £,jdet
»'=1 1<»<j £5

from which we get
(20) a i(e5К ъ) = (45 +  55 + 55 + 40+40) — (21 + 21 + 24 + 21 +  16 +  21) = 111.

Next, we compute in a similar manner. The cycle-adjacency
matrix corresponding to Fig. 8(b) is

-1 0 0 0 O '
3 - 1 - 1 0  0
- 1 3  0 - 1 0
- 1 0  2 - 1 0 ’
0 - 1 - 1 3  -1
0 0 0 - 1  2 _

The computational formula will be
6

(22) СТ1(е5^5) = Х > 1В Д + £  Éijáet É(t, j) .
*=1

( 21) E =

2
-1
0
0
0
0
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We find

(23)
(Ti (é5ür5) =  (35 +  40 + 30 +  55 +  40 + 35) — (20 +16 -f 26 +  20 +16 + 26) = 111. 

Combining (20) and (23) according to

(28) &i{Ks) =  аг(ё5К 5) + oi(bsKs), 

we get

(29) a i(K 5) =  111 +  111 = 222,

i.e. K 5 has 222 connected spanning subgraphs each of which has exactly one 
cycle. This hats been checked graphically. Computations for cr2 and so on 
are entirely similar and we shall not carry them out here any further.

An important remark is in order: further iterations can be carried out in 
general even after the associated reduced graphs become planar as long as 
they are still connected graphs. In this way, the computations may sometimes 
be reduced to the extremely simple ones. However, one must realize that the 
reduction operations are “geometrical” (i.e. “graphical”) procedures. Until 
one can formulate edge-deletions as well as contractions in a simple algebraic 
fashion, there is often some competition between “algebraic” and “geomet­
ric” procedures in this kind of mixed computations. Their relative rule is, 
therefore, decided by the over-all computational efficiency.

A pp en d ix

It is very instructive to carry out the second iteration of (3). We need to 
expand all the four o\ terms in (8) since Сто, counting trees, can be computed 
directly by Kirchhoff’s matrix-tree theorem. First, we have

(A.l) Oi(eN-iéNG) = Oi(eN-2CN-ieNG)  + тдг_2о-1(ё^_2е ^ _ 1е^С )+

+ 2 m^ -2 (mJV-2 -  l)oo(éjv-2£;v-i£jvG).

Next, in order to expand (^(éjv-ié/vG) by means of (3) we have first to figure 
out the numerical factor which appeared before <7i(éjv-2é/v-iéTvG0 , i.e. the 
multiplicity of edges directly connecting N  — 2 and N  — 3 in the reduced 
graph Őn - i Cn G. This is just (see Fig. 2)

(A.2) тпдг-2 + т у - 1,лг-з = m^ _ 2

where the superscripts cd mean “contraction”-“deletion” in that order.
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eN- 1

Fig. 2. Expression (A.2)

eN -1  SNG

Hence we have, by (3),

(A.3) <71(ёту_1ёлг(7) = (j\{eN-2̂ N -\^N G ) + mĉ_^crx(kN-2^N-x^NG)-\-

Next, we have (see Fig. 3)

l)0b(ejv-2<siv-iejvG)-

(A.4) crx{e^^xejgG) = ax( e N ^ N - x ^ N G )  + rn^_2crx(eN-2̂ N-x^NG)+  

+  ̂ m $ _ 2(m $_2 -  l)o-0(é^_2éiv-ié7vG)

with

(A.5) mdH_ 2 =  m N.  2-

Fig. 4- Expression (A.7)
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Then finally (see Fig. 4),

(A .6) <Ti(éjv_ié^G) = cri(éjV-2é;v-iéjvG0 +  m%_2cr\{eN-2'eN-\^NG)-\-

+  ̂ m ^ _ 2( m ^ _ 2 -  1)(To(^N -2^n - i ^n G)

with

(A .7) m N-2 = m N -2  +  rnNiN- 3 + т ^ _ 1,лг-з-

Before we put (A .l), (A.3), (A .4), (A.6) into (8) we need to simplify our 
notation. We shall write hereafter

(A .8) ékéG ^éN -2^N—i^NG,  éeéG = €]^-2^N -i^N G ,
eeéG = €]^^2̂ n - i ^n G, etc.

i.e. all the subscripts of e will be omitted. Define next the “direct sum” 0 . 
For any real numbers a, b, c, d we have

(A .9) (Тк{(аёёё 0  Ьёёёё 0  сёё © d)G} =
— acrfc(éééG) + 6crfc(ééééG) + ccr^ééG) -f dak(G)

and also, for instance,

ё(аё 0  Ьёёё) = аёё 0  Ьёёёё, etc.

for real numbers a and b. (8) becomes, after the second iteration,

(A .11) o \(G) =  CTi{é[éé® mAr_iéé0TOwéé©(Tn/\r,jv-2 +  rn/v-i)rnjvéé]Gf}+

+<7i{e[mjv_2ee ® (тл г-х ,^ -з  + mN-2)mN-iée  © тлг_2т ^ ёёф  
®4(mjv,N-3 + mN-i,N - з +  rnN- 2)(m N,N-2 + mN- i ) m Nbb]G}+

+ ̂ o-°{é[m^_2(mjv-2 -  l)eé®

ф (тлг-1,лг-з + rnN - 2)(mN-i,N-3  +  2 -  l)m jv_iée0
0тдг_2(тдг_2 -  1)тлгеё ф (тлг.лг-з + тлг-1,ЛТ-з +  rnN- 2)- 

•(mN,N- з +  m N-i,N-3  +  rn.N-2 -  ^)(i,nN,N-2 + m ^_ i)m ^éé0  
0 m jí- i(m jv -i -  1)ё ф {rriN,N-2 + ™'N-\)(.™N,N-2 +  ^ N - i  ~  1 )гп/уёф

07П;у-(77гдг -  i )]g },

where m, = m ,)f_i as defined before. We emphasize th a t the “direct sum” 
0  used here is a computational device that has no clear graphic meaning.
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QUASIIDEALS IN ALTERNATIVE RINGS1

J. A . L A L IE N A  (L ogrono)

1. Introduction
The notion of quasiideal is a generalization of the notion of one-sided 

ideal. It was introduced by 0 . Steinfeld in 1953 [4] for associative rings and 
semigroups. Quasiideals have been the theme of several papers (Clifford [1], 
Lajos and Szász [2], Lhu [3], Weinert [8], etc.) and an interesting monograph, 
[7], has been published containing the principal results. Quasiideals are 
useful in associative rings, for example, in the characterization of division 
rings, in the characterization of von Neumann regular rings and elements, 
and also for some decomposition theorems of semiprime rings.

Here we are going to extend the notion of quasiideal to alternative rings 
(§1). Also we study the minimal quasiideals in general alternative rings 
(§2) and then in semiprime alternative rings (§3). In §4, as in associative 
rings, we will give for certain semiprime alternative rings some decomposition 
theorems based on quasiideals.

An alternative ring is a ring not necessarily associative such that it satis­
fies the identities x (x y ) =  x 2y and (yx)x = yx2. We denote by A  an alterna­
tive ring. If X , Y  C A, then X Y  means the subgroup of (A, +) spanned by 
the elements xy  with x E X  and у E Y , and XA&  means X A  + X .  If Z  C A, 
we understand by [X, Y, Z\ the abelian subgroup spanned by the associators 
[x,j/,z] = (xy)z -  x (y z ) with x E X , y E Y , z E Z .  The least ideal of A 
containing the set of all associators of A is [A, A,A]A^ = A*[A, А, А]. This 
ideal is called the associator ideal and it is denoted by D(A) or D. Also for 
an alternative ring the nucleus is defined by N (A ) = {x E A|[x,a,6] = 0 
Va, b E A}. The biggest ideal of A contained in N (A ) is called the maximal 
nuclear ideal of A and it is denoted by U(A) or U. Let C, D be subrings of 
A, then C 0  D means the direct sum of the subrings C and D.

We recall also that simple nonassociative alternative rings with divisors 
of zero have a basis over their center: {x,} U {j/,} with i = 0,1 ,2 ,3  such that

х хУ 0 —  x i y  x 0 x i  =  Х хч У хх 0  =  Ухч У о У г  =  Уг ч Х 0 Х 0  =  х 0ч УоУО =  УОч 

У%х % ~~ ~~У0ч Х %У\ ~  ~~х 0ч *£*+1 х % ~  х г х %+1 —  У х+ 2 ч

—  y i + l V i  =  V i V i + 1 =  X i + 2 with t =  1,2,3

1 T h is  paper is  a part o f  th e  a u th o r’s doctora l d issertation  d irected  by P rofessor S a n to s
G on zá lez  at U n iversity  o f  Z aragoza.
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where the indices are taken modulo 3, and the other products are zero.

§1. D efin ition  and first properties

Let A be an alternative ring and Q a subgroup of {A, + ), then Q is 
quasiideal of A, abbreviated Q q.i. A, if

(QA +  (QA)A + . . . )  П (AQ + A(AQ ) + . . . )  C Q.

A more useful characterization of this notion is given by the following 
result.

P roposition 1.1. Let A  be an alternative ring and Q a subgroup of 
(A ,+ ). Then Q is quasiideal o f A if and only if[A ,A ,Q ]  C Q and (AQ + 
+  [A ,A ,Q ])n(Q A  + [Q ,A ,A ])c Q .

P roof. We suppose first Q is a quasiideal of A. Then [A, A, Q] C AQ + 
+  A(AQ). From the alternation of the associator [A, A,Q] = [Q,A,A] C 
C QA + (Q A )A . Thus [A, A, Q] C Q and also (AQ + [A, A, Q]) П (QA + 
+  [Q ,A ,A ])cQ .

Conversely, let Q be a subgroup of (A, + ) such that [A, A, Q] C Q and 
(AQ  + [A, A, Q]) П (QA +  [Q, A, A]) C Q. To see that Q is a quasiideal it is 
sufficient to prove A(A . . .  (AQ )) C AQ + [A, A, Q] and also ((Q A ). . .  A)A  C 
C QA+[A, A, Q], We only prove the first one, and we do this by induction on 
n, the number of factors in A(A . . .  (AQ)). For n = 1 this is clear. For n = 2, 
A(AQ) C AQ  +  [A, A,Q]. Suppose it is true for n —l. Then by the induction 
hypothesis A (A . . .  (AQ)) C A(AQ + [A, A, Q]) C (AA)Q + [A, A, Q] + AQ C 
C AQ + [A, A, Q], because [A, A, Q] C Q and case n = 2.

OBSERVATIONS. 1. Another characterization of quasiideals for a sub­
group Q of (A ,+ ) in an alternative ring A is the following: Q is quasiideal 
of A if and only if [A, A,Q) C Q and (AQ +  (A(AQ)) П (QA +  (QA)A) C Q.

2. Each one-sided ideal of an alternative ring is a quasiideal. However, 
not all quasiideals are one-sided ideals. For example: Let A be the subring 
of a split Cayley-Dickson algebra over F  spanned as F-subspace by the 
elements {хсьЯ ьа^уо^ъУ з}- ^et Ф sPanned over F  by {го, x2, Уз}- 
Then Q is a  quasiideal but not a one-sided ideal.

3. Every quasiideal of an alternative ring is a subring, but not every 
subring is quasiideal. There are many examples of this.

If В  ^  A and Q q.i. A, then Q П В  q.i. B.
4. The intersection of every set of quasiideals of A is also a quasiideal. 

Thus if X  C A, the q.i. of A spanned by X  is

n{Q I Q q.i. A such that X  C Q}.

5. The sum of quasiideals need not be a quasiideal. An example is given 
in [7].
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Properties:
(P.l) Let Q be a q.i. of A. If X  is a subring of A  such that (AQ  + 

+ [A, A, Q]) П ((QA  +  [Q, A, A]) ^  X  ^  Q, then X  is a q.i. A.
(P.2) i) The intersection of a left and a right ideal is q.i. ii) Every q.i. is 

a quadratic ideal (q G Q implies qAq < Q).
(P.3) Let A  be an alternative ring and let Q be a q.i. of A  such that 

Q ^  QA or Q £ AQ. Then Q is the intersection of Q -f AQ and Q -f QA.
(P.4) If A  is a unitary ring, every q.i. of A  is the intersection of a left 

and a right ideal of A.
(P.5) Let Q be q.i. A  such that Q is not one-sided ideal of A. Then 

AQ +  [A, A, Q] is a proper left ideal of A  and QA-\- [Q, A, A] is a proper right 
ideal of A.

P roposition 1.2. Let A be an alternative ring such that А2 ф 0. Then 
A is a division associative ring or a Cayley-Dickson algebra over its center 
if and only if A does not have proper quasiideals.

PROOF. If A  is a division associative ring, it is clear that A  does not 
have proper quasiideals. If A is a Cayley-Dickson algebra over its center, 
A is a unitary ring and from (P.4) every q.i. of A is the intersection of a 
left ideal and a right ideal. But from the Corollary to Lemma 10.2 in [9], 
a Cayley-Dickson algebra has not got proper one-sided ideals. Therefore A 
does not have proper quasiideals.

Conversely, suppose A  does not have proper quasiideals. In particular 
A does not have one-sided ideals. Thus A  is simple, and therefore A will 
be a simple associative ring or a Cayley-Dickson algebra. If A is a simple 
associative ring without one-sided ideals and А2 ф 0 it is known that A is a 
division ring.

§2. M inim al quasiideals o f  a lternative rings
Often, if we are going to study some special subset of a ring, it is inter­

esting to know the minimal elements among these subsets.
We will say that 0 ф Q q.i. A is a minimal quasiideal (q.i.m.) if Q is 

contained properly in no one quasiideal of A.
P roposition 2.1. Let L be a minimal left ideal of A and let R be a 

minimal right ideal of A. Then RD L is either 0 or a q.i.m. A.
P roof. We denote Q = R П L. We know Q is q.i. Now we suppose 

Q ф 0 and we will show Q is minimal. Let 0 ф Q' ф Q and Q' C Q q.i. 
A. Q' is not a one-sided ideal of A, since R and L are minimal. From 
(P.5) AQ' + [A, A, Q'] is a proper left ideal of A and it is contained in L. 
From L being minimal, AQ' + [A,A,Q'] = 0 or AQ' -f [A ,A ,Q '] = L. If 
AQ' -f [A,A,Q'j = 0, then Q' would be a left ideal, but this is not true. 
Therefore AQ' + [A, A,Q '\ = L. Similarly Q'A  + [A,A,#'] = R. Thus

Q ' c Q - L f \ R  = (AQ' + [A, A, Q'}) П (Q'A + [A, A, Q'}) C Q'.
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Therefore Q =  Q'. Contradiction.

P roposition 2.2. Let Q be q.i.m. A. Then either 1. Q C 1V(A) and if  
Q2 Ф 0, Q is a division associative ring such that Q = eAe with e a nuclear 
idempotent o f A; or 2. Q C D(A).

P roof. We consider A*[A, A,Q]. This is a left ideal: A(A[A,A,Q]) C 
C [A, A, [A, A, Q)} +  (A2[A, A,Q]) C [A, A, Q] + A2[A, A ,Q] C A * [A, A ,Q}.

Similarly [A, A, Q]A* is a right ideal. Therefore A*  [A, A, Q]fl[A, A, Q]A* 
is a q.i. contained in Q. From Q minimal either A^[A, A, Q]fl[A, A, C?]A# = 0 
or A*[A, A,Q] П [A, A, Q]A* = Q. In the first case [A, A,(J] = 0 and thus 
Q C 1V(A). If we suppose Q2 /  0, from Theorem 6.5 in [7], Q is a division 
ring and Q = eAe, with e a nuclear idempotent of A. In the second case 
Q C D(A).

Now from the proof of Proposition 2.2 and the proof of Theorem 7.2 in 
[7] we have the following corollary:

Corollary 2.3. Let Q be q.i.m. of A such that Q2 ф 0, then Q is the 
intersection of a right and a left ideal o f A.

There are minimal quasiideals of A contained in -D(A) with square zero. 
For example, take the subalgebra of a split Cayley-Dickson algebra with 
basis over the center: {xo, x i, x2, yo, y\, j/з} and let Q be spanned over the 
center by {x2, 2/3}•

PROPOSITION 2.4. Let Q be q.i. A such that Q is a division subring of 
A or Q is a Cayley-Dickson algebra over its center. Then Q is q.i.m. A.

P roof. It follows from Proposition 1.2.

P roposition 2.5. The product RL of a minimal right ideal R of A and 
a minimal left ideal L of A is either 0 or a minimal quasiideal of A.

P roof. We will suppose RL ф 0. We denote A{RL) +  A(A(RL)) +  . . .  
by £A ("(RL) and (R L)A  + ((ÄT)A)A + . . .  by E{RL)A^n. If EA^n(RL) = 0 
or E(RL)A^n = 0, then E {RL)A^n П EA^n(RL) = 0 C RL  and thus RL  
is q.i. Since 0 ф RL  C R  П L and R  П L is q.i.m., then RL  = R  П L. If 
EA<n(ÄL) ф 0 and E (RL)A^n ф 0, from L and R are minimal, we have 
EA^n(R L )  = L and E (RL)A^n = R. Now we are going to show that R 2 ф 
ф 0. We have 0 ф RL = R(EA^n\R L ) ) .  Let 0 ф x £ Я(ЕА(")(ДТ)) be 
x = r(a„(. . . ( a i ( r0y0)))) with r , r 0 € Ä, a, € A for г = 1 , . . .  , n and y0 € L. 
We proceed by induction on n, and we show that x = r(a„(. ..(ai(ro2/o)))) € 
€ E R 2A^m and у = [r, a„, a „_ !( ... (а^гоуо)))] € E R 2A^m with m  0. 
If x =  r(o i(r0yo)) then x = (ra i) (r0yo) -  [r,ab  r0y0] = (rai)(r0y0) + 
+ [r »royo>ai] € E R 2A^m. Suppose x € E R2A^m and у € ER 2A^m for
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к ^  n — 1. Then for n, from the Zorn-Moufang identities, we have

[r, an, ( a n _ x( . . .  ( a i ( r 0i /o ) ) ) ) ]  =  [r, a n , a „ _ 2( . . .  ( a i ( r o 2 /o ) ) ) ] a n - i  +

+[a„-i, a„, (an_2( . .. (a i(r02/o))))]r -  [a„_b  a„, r(an_2( . .. (а^гоуо)))] 
where

[o„_i, a„, an_2( . .. (ох(г0г/о)))]г =  [ron-i, a„, a„_2( . .. (ax(r0jto)))]+ 
+[a„a„-i, r, a„_2( . .. (a i(r0y0)))]-  [a„-i, r, a„_2( . .. (a^ro ifo)))]^  € £Ä 2A(m 
because of the induction hypothesis and the fact that R  is a right ideal. Thus

[r,a„,(on_ 1 ( . . . ( a 1 (r0 i/o))))] € (£ Ä 2 A(m)A + ЕД2л К
Therefore

x = (ran)(an_ i ( . . . ( a 1(r0y0) ) ) ) -  [r, a„(an_ i ( . .. (a i(r0Jfo))))] € ЕД2А(т
from the induction hypothesis. Thus R2 ф 0, because RL ф 0. In the same 
way we can prove that L is a minimal left ideal of A  such that L2 /  0.

From [5] we have one of the following situations:
(i) R C U,

(ii) R  C D, and in this case R  is an ideal and a Cayley-Dickson algebra 
and A  — R 0  A'\
and the same about L. If R  and L satisfy (i), from the associative case, 
R L  =  R  П L and thus RL  is q.i.m. If R C U and L C D, from UD — 0, 
then we have RL = 0, contradiction. The same if R C D and L C U, from 
DU  =  0. If R C D and L C D, then R and L are ideals of A  and Cayley- 
Dickson algebras. Since RL is an ideal, RL  C R, L and then R L = R — L.

P roposition 2.6. Let L be a minimal left ideal of A which is not a split 
Cayley-Dickson algebra over its center. Let 0 ф e be an idempotent in L, 
then eL is q.i.m. o f A  and a division subring of A.

P roof. From e e L  and e2 =  e, we have L2 ф 0. Thus L is a minimal left 
ideal of A  such that L2 ф 0, and from [5] L C U or L C D (and then L is a Cay­
ley-Dickson algebra). If L c  U and 0 ф e eL  is an idempotent as in the asso­
ciative case eL is a division subring of A  and a q.i. If L C D, from the hypothe­
sis L will be a Cayley-Dickson division algebra. Then e = 1 l and thus eL — L.

N o te . This result is not true if L is a split Cayley-Dickson algebra. 
From the Cayley-Dickson process [7] we can suppose e =  xq. But then 
xqL  has a basis over the center of the Cayley-Dickson algebra, namely 
{хо,£ 1, х2, хз} that is not a quasiideal.

§3. M inim al quasiideals o f  sem iprim e a lternative rings
We recall a known result.
Lemma 3.1. Let M  be an ideal o f A. The following conditions are equiv­

alent:
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(i) I f  В is an ideal of A such that В 2 С M , then В  С M .
(ii) I f  L is a left ideal of A  such that L2 С M , then L С M .

(iii) I f  R is a right ideal of A such that R 2 С M , then R  С M .
If M  is an ideal of A  satisfying (i) or (ii) or (iii), we say M  is a semiprime 

ideal. If 0 is a semiprime ideal of A, then we say A is a semiprime ring. Let 
M  be an ideal of A, A is M-semiprime if M  does not contain one-sided ideals 
(or ideals) with product zero.

P roposition 3.2. Let Q be a minimal quasiideal of A such that 
[A,A,Q ] ф 0. I f  A  is A*[A,A,Q]-semiprime or [A, A, Q]A*-semiprime, 
then Q is a Cayley-Dickson algebra, Q < D(A) and Q is an ideal of A.

P roof. From Proposition 2.2 and its proof Q = A#[A, A, Q]r\[Q,A, A]A* 
with A*[A, A, Q] =  AQ  + [A, A, Q] and [A, A, Q]A* = Q A + [A, A, Q]. We 
are going to see tha t A&[A, A,Q] is a minimal left ideal of A. We suppose 
L is a left ideal of A such that L C A#[A, A,Q]. We will show L2 = 0. 
We consider the q.i. AL  П (Q A  +  [Q, A, A]), contained in (AQ + [A, A, Q]) П 
П (Q A  + [Q ,A ,A ]) C Q. Since Q is q.i.m., AL  П (QA  +  [Q, A, A]) = 0 or 
A L  П (QA+ [Q, A, A]) = Q. In the second case Q C A L  C L C A*[A, A,Q] 
and thus A^[A, A, Q] = AQ +  [A, A, Q] = L, because Q is q.i. and L is a left 
ideal. But this is a contradiction. Therefore ALC\(QA+ [Q, A, A]) = 0. Thus 
QL  C A L n (Q A  + [Q,A,A]) = 0 and [Q ,A ,L\ C AL Г) (QA + [Q, A, A]) = 0. 
Therefore L2 C A*[A ,A ,Q ]. L C (AQ)L + QL C A(Q L) + [A, Q, L\ + QL C 
C [Q, A ,L \ = 0. Now from [5] and the fact that A is A*[A, A, Q]-semiprime, 
L — 0 and thus A^[A,A,Q] is an ideal and a Cayley-Dickson algebra 
over its center. But Q C A#[A,A,Q], thus from Proposition 1.2 we have 
Q = A*(A ,A ,Q }.

Similarly if A is [A, A, Q]A#-semiprime, we will obtain that [A, A,Q]A# 
is a minimal right ideal and then Q is an ideal and also a Cayley-Dickson 
algebra.

C o r o l l a r y  3.3. Let Q be a minimal quasiideal o f a semiprime ring A. 
Then Q is the intersection of a minimal left ideal and a minimal right ideal.

P roof. It follows from Proposition 2.2, Theorem 7.2 and its proof in 
[7] and Proposition 3.2.

THEOREM 3.4. Every minimal quasiideal Q of a semiprime ring A is 
such that either

(a) Q C D (A), and then Q is an ideal and a Cayley-Dickson algebra 
with A = Q ф A!; or

(b) Q C U(A).
Moreover Q = fA e  with f  and e nuclear idempotents of A.
P r o o f . If [Q,A,A] ф 0 we know from Proposition 3.2 that Q < D(A), 

Q is ideal and Q is a Cayley-Dickson algebra. Therefore Q is a minimal
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ideal and thus, from Theorem D in [5], Q — eAe with e a central idempotent 
and A  = Q ф A!.

If [Q, A, A] = 0, then Q ^  N (A )  and from the associative case (see [7]) 
Q =  AQ П QA  with AQ, QA minimal one-sided ideals. From Theorem C 
in [5] we know AQ < U(A) or AQ < D(A), and if AQ ^  D(A) then AQ 
is an ideal. Therefore in the last case AQ — QA = Q < U(A) П D{A), 
that is, since UD = 0, Q2 = 0 and this contradicts A is semiprime. Hence 
AQ ^  U(A) and thus Q £ U(A). Now from [5] AQ = QA  and QA = f  A  
with e and /  nuclear idempotents. Therefore Q = fA e.

Observation. If A is semiprime and Q is a non-associative q.i.m. of A, 
then Q2 ф 0. This is curious because for associative rings there are semiprime 
rings with minimal quasiideals with square zero (in m atrix algebras, for 
example). Moreover we remark that in the non-associative alternative case 
we determine quasiideals better than in the associative case. This happens 
also for minimal ideals and minimal one-sided ideals.

PROPOSITION 3.5. Let e be a nonzero idempotent of a semiprime ring 
A. The following conditions are equivalent:

(i) Ae is a minimal left ideal of A,
(ii) eAe is a minimal quasiideal of A,

(iii) eA is a minimal right ideal of A.
P roof, (i) implies (ii). We suppose Ae is a minimal left ideal of A. 

From [5] we have Ae C U or Ae C D. If Ae C U, eAe = eA  П Ae with eA a 
minimal right ideal [7, Proposition 7.4]. Thus eAe is q.i.m. If Ae C D, then 
Ae is a Cayley-Dickson algebra and it is clear that e = \ ac. Thus eAe = Ae 
is q.i.m.

(ii) implies (iii). We suppose eAe is q.i.m. of A. From Corollary 3.3 
eAe = L П R with L and R  minimal one-sided ideals. If R C U, then e 6 U 
and thus eA is a right ideal such that 0 ф eA C R- From minimality of R , 
eA = R. If R C D we have eAe C D is a Cayley-Dickson algebra and an 
ideal. Therefore eAe — eA.

(iii) implies (i). Let eA be a minimal right ideal. If eA C U, then from 
Proposition 2.6, eAe is q.i.m. and we can apply “(ii) implies (iii)” to obtain 
that Ae is a minimal left ideal. If eA C D then eA is a Cayley-Dickson 
algebra and an ideal with e = 1Cj4 a nuclear idempotent of A. Therefore 
Ae — eA.

Corollary 3.6. I f  A is a semiprime alternative ring, the following 
conditions are equivalent:

(i) A has a minimal quasiideal,
(ii) A  has a minimal left ideal,

(iii) A has a minimal right ideal.
T heorem 3.7. Let A be a semiprime alternative ring. The product of 

two minimal quasiideals of A is 0 or a minimal quasiideal of A.
P roof. Let Q, Q' be q.i.m.
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(i) If Q C U and Q' C D, from UD =  0, we get QQ' — 0.
(ii) If Q C D and Q' C U, from DU = 0, we get QQ' =  0.

(iii) If Q C D and Q' C D, then Q and Q' are minimal ideals and since 
QQ' is an ideal it follows tha t QQ' = 0 or QQ' = Q = Q'.

(iv) И Q C U and Q' C U, from the associative case, QQ' is q.i.m.
P r o p o s i t i o n  3.8. Let R be a minimal right ideal such that R 2 ф 0. 

Then R is a union of minimal quasiideals such that the intersection of each 
two different o f them is zero.

P r o o f . From [5] we have R C D and then it is a Cayley-Dickson algebra 
and minimal quasiideal, or R  C U and then we only need to apply the 
associative case (see [7]).

§4. S o m e  d e c o m p o s itio n  th e o re m s  fo r se m ip rim e  rings 
b a se d  on  q u asiid ea ls

It is known that semiprime rings which are the sums of their minimal left 
ideals have a decomposition into direct sums of minimal ideals. In the fol­
lowing we are going to study semiprime rings that are sums of their minimal 
quasiideals.

DEFINITION. We say that the quasiideals Qyg (7 6 Г, Í £ Д ) of a ring 
A  are a complete system, К , if the following three conditions hold:

(1) either Qyg = 0 or Qys is a minimal quasiideal of A,
(2) for every Qyg ф 0 there are nuclear idempotents e7, fs £ A  such that 

Q-tS = ё-f-Afs,
(3) for every finite subset Qn , . . .  ,Q ie, Q 21, . . .  ,Q  2e, •••, Q ki,-- - ,Qke 

of К  there are nuclear idempotents 5,, hj with i = 1, . . .  , r  < к and j  = 
= 1, . . .  , s ^  e such that

Х;Х>ЛЛ;
1=1 y=l i=l j=1

where g;Ahj are 0 or q.i.m. such that giAhj • hjAgi =  giAgi.
THEOREM 4.1. For an alternative ring A the following conditions are 

equivalent:
(i) A  is a semiprime ring and the sum of its minimal left ideals.

(ii) A  = (®Bi) 0  (0Д,-) with {B i}iei simple subrings of A containing 
at least one minimal left ideal and with {A j} j^ j Cayley-Dickson algebras. 
Moreover 0 5 ,  = U(A) and ®Aj  = D(A).

(iii) A  is a sum o f quasiideals which are a complete system.
(iv) A is semiprime and the sum of its minimal quasiideals.

P roof. It follows from Proposition 4.15 in [5], the associative case and 
Corollary 3.3.
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D e f i n i t i o n . The quasiideals Qw, Q u , .. .  , Q m m  of a ring A  are a finite 
complete system if there are nuclear idempotents e \ , . . .  , em € A  such that 
Qik = 0 or Qik = eiAek (t ^  m, к < m) is q.i.m. of A  with the property that 
e,Aek • ekAei = e, Ae, .

Now from the associative case and Theorem 4.1 it follows:
T h e o r e m  4.2. The following conditions on an alternative ring A are 

equivalent:
(i) A is a semiprime ring and a sum of a finite number of its minimal 

left ideals.
(ii) A = A \ ® . . . ® A , ® Bi 0  . . . ® B r such that A i , . . .  , A, are Cayley-  

Dickson algebras and B \ , . . .  , Br are simple associative rings which are sums 
of a finite number of their minimal left ideals. Moreover A j® .. ,® A„ =  U(A) 
and B\ ® . . .  ® Br = D(A).

(iii) A is a sum of quasiideals which are a finite complete system.
(iv) A is semiprime and a sum of a finite number of its minimal quasi­

ideals.
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d-ISOMORPHIC SEMIGROUPS OF CONTINUOUS 
FUNCTIONS IN LOCALLY COMPACT SPACES

D. T. THÄNH (Hanoi)

To Professor Á. Császár on his 65^  birthday

In this paper, we use the following concepts introduced in [1]:
Let S  be a semigroup. For / ,  g (£ S , f  <d g iff there is h £ S  such that 

9 = hf-
A subset D of S  is said to be a d-ideal iff 0 ф D ф S  and
(1) /  € D, f  <d g implies g e D,
(2) For f ,g  € D , there exists h € D such that

h <d f ,  h <d g.

D is a maximal d-ideal iff it is a d-ideal and coincides with any d-ideal 
in which it is contained.

Let S i, S2 be semigroups. S \, Si are said to be d-isomorphic iff there is 
a bijective map (p: S \ —» £2 such that /  <d g iff <p(f) <d <p(g).

Remark. If S i, S 2 are (semigroup) isomorphic then they are clearly d- 
isomorphic bu the converse is false: e.g. two groups of the same cardinality 
are always d-isomorphic.

Let X  be a locally compact Hausdorff space. We denote Z ( f ) =  {x € 
€ X : f ( x )  = 0}, Z c( f )  = {x e X : f ( x )  ф 0} for / :  X  -> R; Ce(X ) = { / :  
/ :  X  —► R is continuous and Zc( f )  is compact}.

We know [4] that Cc(X ), Cc(Y ) are linear lattice isomorphic (so ring 
isomorphic) iff X , Y  are homeomorphic, provided X, Y  are locally compact 
Hausdorff spaces.

In [3], it has been shown that two locally compact Hausdorff spaces X, У 
are homeomorphic iff Cc(X ), Cc(Y ) are semigroup isomorphic. A general­
ization of this theorem is contained in [2]. Our purpose is to prove another 
generalization.

Given a locally compact Hausdorff space X , we consider the semigroup 
Cc(X ). Then, if f , g £  Cc(X ), f  <d g, there is h € Cc(X ) satisfying g =  h f,  
consequently Z( f )  C Z(g).

Lemma 1. Ever d-ideal D in Cc( X ) is fixed (i.e. f) Z( f )  ф 0}.
feD

P roof. There is /  e Cc(X) not belonging to D.  Suppose g 6 Cc(X) 
and Z(g)  П Zc( f ) = 0. Then, by the compactness of Zc(f ) ,  there is e > 0
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such that I<71 > e on Z c(f) .  Let

h(x) =
if f ( x )  ф 0, 
if / (* )  =  0.

It is easy to prove that h is continuous on X .  In fact, h is continuous at 
x £ Z c{ f ) because / ,  g are continuous and g(x) ф 0. If Xq £ Z( f ) ,  then there 
exists a neighbourhood V  of xq such that | / |  < eS on V  for a given 6 > 0.
For x £ V  either |h(x)| = < y  — & °r h(x)  = 0. So h is continuous at
xq e z(f) .  ___

Z c(h) = Z c{ f )  implies h £ Cc(X ).
Now g <d f  by /  = hg. So g £ D would imply /  £ D contrary to the 

choice of / ,  hence Z(g)  П Zc( f ) ф 0 whenever g £ D.
For g,g' £ D , there is h £ D such that h g, h <d g'. Then Z (h ) C 

C Z(g)  П Z(g'). Thus the collection {Z(g) П Z c( f ): g £ D}  of closed sets in 
the compact space Z c(f )  has the finite intersection property and therefore a 
non-empty intersection. □

Now let x0 e X ,  DX0 =  { /  £ Cc( X ): / ( x 0) = 0}. As X  is locally 
compact and Hausdorff, Q  Z ( f ) =  { xq} .

feD*o
Lemma 2. D Xo is a maximal d-ideal.
P roof. First of all, we prove DXo is a d-ideal. If g = h f,  f  £ DXo, h £ 

£ Cc(X) ,  then clearly g £ DXo. For / ,  g £ DXo, define h{x) = y/ \ f (x)\  + |fir(x)|,

/*(*)
if / (x )  ф 0, 

0 if / (x )  =  0.
/*  is continuous at x £ Zc( f ) because /  and h are continuous and h(x)  /  0. 
If x € Z(f ) ,  there is a neighbourhood V  of x such that | / |  < e2 on V.  For 
у £ V  either

\Г(у)\ =

or f*(y) = 0. So /*  is continuous and Z ( f )  = Z( f*)  implies f* £ Cc(X).  
From f  = f*h  we obtain h <j  f .  Similarly h <j  g.

A d-ideal containing DXo must be fixed by Lemma 1 at some point x x £ X .  
Then DXo is fixed at xj, consequently xx =  xo, and the d-ideal in question 
is contained in D Xo. So, the la tte r is a maximal d-ideal. □

By the above, tp(x) = Dx is a bijection from X  onto the set of all maximal 
d-ideals in Cc( X) .  Clearly x £ Z{ f )  iff /  £ Dx so that ф determines the 
subsets Z( f )  of X  which constitute a base for the closed set in the locally 
compact Hausdorff space X .

Thus we have proved:

1/Ы1
V\ f ( y ) \  + IflMI

A c ta  M atkem atica  H ungarica 60, 1992



d-ISOM ORPHIC SEMIGROUPS OF CONTINUOUS FU NCTIONS 105

T h e o r e m . Two locally compact Hausdorff spaces X  and Y  are homeo- 
morphic iff the semigroups Cc( X ) and Cc(Y ) are d-isomorphic.
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RINGS WITH LEFT SELF DISTRIBUTIVE 
MULTIPLICATION

G. F. BIRKENMEIER, H. HEATHERLY (Lafayette) and T. КЕРКА (Prague)

Introduction
Throughout this note all rings are associative, but not necessarily com­

mutative or with unity. A ring is left self distributive (an LD-ring) if it 
satisfies the identity: x yz  = xyxz.  Similarly one defines a right self distribu­
tive ring (an RD-ring). Petrich [7] classified all rings which are both LD  and 
f2D-rings as those rings which are the direct sum of a Boolean ring and a 
nilpotent ring of index at most three. As shown by several examples given 
herein, this does not hold for all ZD-rings. These examples illustrate how 
rich the variety of ZD-rings is.

If R  is an ZD-ring and N  is the set of nilpotent elements of R, then 
N  is an ideal, N 3 = 0, and R /N  is Boolean. If R /N  contains unity, then 
R  = A  ® N  as a direct sum of left ideals, with A a Boolean ring with unity. 
This condition is implied by several others; e.g., R  has d.c.c. on ideals or 
a.c.c. on ideals. Without any finiteness condition we are still able to find 
an ideal В — A-\- N , where A  is Boolean and is a left ideal, such tha t В is 
completely semiprime and is left and right essential in R.

Somewhat surprising from the viewpoint of semigroup theory [5] is the 
result that every ZD-ring is left permutable (satisfies abc = bac identically). 
Other useful identities are developed.

A complete classification of subdirectly irreducible ZD-rings is given. 
Such a ring is either nilpotent of index at most three, Z2, or a certain four 
element ring.

1 . Prelim inaries
Let R be a ring and M  a non-empty subset of R. Then Id =  Id(72) is 

the set of idempotents of R, 1 (M) = {ж G R; x M — 0}, r(M) = {x e R; 
M i =  0}, and (M)  is the ideal of R generated by M.  The ideal generated 
by [Д, f£] = {ab — ba; a, b £ Rj  will be denoted (R, R ), the commutator ideal 
or Lie ideal of R. The set M  is said to be reduced if M  П N  = 0.

An ideal I  of R is called right (left) essential if I П К  / 0  for each right 
(left) ideal of R ; completely semiprime if a: £ I  whenever x n 6 I  (equivalently 
if R / I  is reduced); and completely prime if xy £ I  implies x £ I  or у 6 / .

A ring R  is called left (right) permutable if the identity xyz = yxz  (re­
spectively xyz  — xzy ) holds and medial if the identity xyzv  = xzyv  holds.

Lemma 1.1. Let R be an LD-ring and a,b,c,d  € R.
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(i) a3 = an £ Id for every те ^  4.
(ii) 2abc =  0.

(üi) (abc — acbc)2 = 0.
(iv) I fb, c  £ Id and be = 0, í/ien eb = 0.
(v) Ä(a -  a2)R  = R(a -  a3)R  = 0.

(vi) (a -  a2)3 =  (a -  a3)3 =  0.
(vii) abed = —cbad = cbad.

(vüi) I f  a £ N , then abc =  bac = 0.
P r o o f . T h e  p ro o fs  o f  ( i ) ,  . . .  , ( iv )  are s tra ig h t fo r w a r d  ca lcu la t io n s .
(v) Ь(а — а2)с =  bac — ba2c =  b{abc)-ba2c =  babac-ba2c — ba2c -b a 2c — 

=  0, so that Ä(a — a2)Ä = 0. Similarly, Д(а — а3)Д = 0.
(vi) This is an immediate consequence of (v).
(vii) Consider the equality 0 =  (a4-c)b(a +  c)d — (a + c)bd = abed + cbad. 

By (ii), cbad = —cbad.
(viii) We have 0 = aba3c = abc — babe = bac.

P r o p o s i t i o n  1.2. L ei R be an LD-ring.
(i) R is left permutable, and hence medial.

(ii) I f x 6 (R 2), then x 2 — x" G Id for every n ^  3.
P r o o f , (i) Using Lemma 1 .1  (v ii)  and left distributivity, abc -  bac =  

=  abac —babe =  aba2c — babac =  a2bac — ba2c — a2bc — ba2c = ba2c — ba2c = 0 
for all a, b, c G Ä.

(ii) Let i  =  Sa,b,. Using (i), х2 = хЕа^Ь,= хЕа,хЬ, = хЕа;а,Ь,- = x3G Id.
We note that an important question in semigroup theory is to determine 

those semigroups which are the multiplicative semigroups of rings [6]. By 
Proposition 1.2, a left distributive semigroup that is not left permutable 
cannot be the multiplicative semigroup of a ring.

2. S u b d irec tly  irreducib le  rings

In this section R  will be a subdirectly irreducible LD-ring with heart H  
(i.e., H  is the smallest non-zero ideal of R). It is well known (see e.g. [3], 
Lemma 75) that the heart is either square zero or is a simple ring. Thus 
either H 2 = 0 or H  is isomorphic to the ring Z2 (integers modulo 2); in the 
latter case R  =  H  (if the heart has a unity, the ring is simple).

Lemma 2.1. I f  R3 ф 0, then:
(i) r (Ä) = 0, RH  = H and Id ф 0.

(ii) x2 € Id, xy  = x2y and 2xy = 0 for all x ,y  £ R.

P r o o f , (i) We have abc ф 0 for some a, b,c £ R. But abc = ab3c, 
which yields a non-zero idempotent e = b3. Then eR is a non-zero ideal 
(use Proposition 1.2 (i)), H  ^  eR  and 0 ф ed £ H for some d £ R. Since 
e(ed) = ed, H  is not contained in r(Ä), and therefore r(Ä) =  0.
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(ii) For any x , y , z  £ R, we have zxy  = zx2y, xy — x2y £ r(i2) = 0 and 
xy = x 2y. The rest follows from Lemma 1.1.

Lemma 2.2. I f  R 3 /  0 and H 2 = 0, then:
(i) H  g  {R,R)  a n d H  С 1 (Д).

(ii) H  = {0, tn} is a two-element set and xw = w for every x £ R  — I(f2).
P r o o f , (i) If R  is commutative, then H Did /  0 (see the proof of Lemma 

2.1 (i)) and Я 2/  0. Hence R  is not commutative and H  g (R, R). From this, 
H R  Q (R, R)R  = 0 (the last equality follows from the left permutability of R).

(ii) Since RH  =  H , Rw = H  for some w £ H. If xw  /  0 for an x £ R, 
then xR  is a non-zero ideal and H  g  xR. Thus w = xy for some у £ R 
and we have xw = x 2y — xy  = w. Consequently, H — (0, in}. Further, if 
xw  = 0, then H  is not contained in xR , and so xR  = 0 and x £ 1(72).

Lemma 2.3. Let R3 ф 0 and H 2 = 0. Then H = 1 (72) and R = H U Id.
P r o o f . Let x £ R  — (1(72) U Id). Then у — x — x2 = x + x 2 is a non-zero

element of 1(72), and so H  g Ry, Ry  being a non-zero ideal (we have г(72) = 
= 0). From this w — zy  for suitable z £ R and w = zx  + zx2 = zx  + z2x2 — 
— zx-f (zx)2. The supposition zx ^ 1(Д) yields w = zxw  = (zx)2 +  (zx)3 = 0, 
a contradiction. Thus zx £ 1(Ä), w — zx  and 0 = w2 — zxw — zw  = w, a 
contradiction. We have proved R = 1(Д) U Id.

Now, if 0 ф a £ Id and b £ 1(Ä), then a + b £ 1(й), and so a+b £ Id. Then 
a+6 = (a-f6)2 = a -fab, which implies b = ab. If 6 /0 ,  we have w =  c6 for some 
c £ Id, and hence w = cb = 6 (as proved above). Thus H = 1(Ä).

Lemma 2.4. Let R3 /  0 and H 2 — 0. Then card(Ä) = 4.
P r o o f . The ring R  must contain 0, w and a non-zero idempotent e (see 

Lemmas 2.1 and 2.2). By Lemma 2.3, e + w £ Id and e-f w is a fourth distinct 
element. Now, let x £ R — H, x /  e, e + w. Then, by Lemma 2.3, x, e-fx  are 
non-zero idempotents and w + xe-l-e = u?-f(x + e)e = (x + e)w +  (x + e)e = 
= (x + e)(w + e) = x(w + e) -f e(w + e) — w -\-xe + w + e = xe + e implies 
w = 0, a contradiction.

Example 2.5. There is (up to isomorphism) exactly one non-nilpotent 
subdirectly irreducible LD-ring of order 4. This ring can be formed by 
taking w and e as the generators for the group C(2) ® C(2) and defining 
multiplication via the following table:

0 w e w  -f- e
0 0 0 0 0
w 0 0 0 0
e 0 w e w  +  e

w  +  e 0 w e w  +  e

T h is  e x a m p le  a n d  t h e  p rec ed in g  resu lts  g iv e  u s  t h e  m a in  c la ss if ic a t io n  
th e o r e m  o f  th is  s e c t io n .
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THEOREM 2.6. Every subdirectly irreducible LD-ring is either nilpotent 
of index at most three, isomorphic to Z2, or to the four element ring from 
Example 2.5.

R e m a r k  2.7. Let Й /  0 be a subdirectly irreducible ring with R3 = 0. 
Then either

(i) Д2 = 0 and (Ä, + ) is isomorphic to C(pn), p ^ 2  a prime, 1 < n < 00, or
(ii) 0 /  Й2 Q 1(72) П r(72) = C(pn) and pnR = 0, 1 ^  n < 00, or

(iii) 0 ф R 2 Q 1 (72) П г(72) £  Clp°°).

P r o p o s i t i o n  2.8. Let T  be an LD-ring.
(i) I fT  is simple, then either T  = Z2 or T 2 =  0 and (T, +) is isomorphic 

to C(p),  p prime.
(ii) I f  I  is a minimal ideal o f T , then either I 2 = 0 or I  = Z2.

P r o o f , (i) If T 2 ф 0, then N  =  0 and T  is a simple Boolean ring.
(ii) A minimal ideal in a ring is either square zero or simple [3], p. 135.

3. D irec t decom positions o f  L D -rings

P r o p o s i t i o n  3.1. Let R be an LD-ring.
(i) N  is an ideal of R, N 3 — 0 and R /N  is a Boolean ring. Hence 

N  = (К ), where К  = [a -  a2; a £ R}.
(ii) I f  R has a right unity element, then R is a Boolean ring with unity.

(iii) I f  I  is a semiprime ideal o f R, then R / I  is a Boolean ring. Hence I  
is a completely semiprime ideal.

(iv) I f I  is a prime ideal o f R , then I  is a completely prime ideal, a 
maximal ideal and R / I  is isomorphic to Z2.

P r o o f , (i) N 3 = 0 by Lemma 1.1 (viii). Hence, if a,b £ N , then 
(a -f b)3 = 0 and it is clear that N  is an ideal of R. By Lemma 1.1 (vi), R /N  
is idempotent, and hence Boolean.

(ii) Let e be a right unity for R. If x£  R, then x = xe = xee = xexe= x2.
(iii) and (iv) These proofs are immediate.

L e m m a  3.2. Let R  be an LD-ring and С Я R  a maximal set of pairwise 
commuting idempotents. Then C is a maximal reduced left ideal.

P r o o f . Let a , b £ C.  Then (a+b)2 = a+2ab+b = a+b by Lemma 1.1 (ii). 
Clearly, a + b commutes with every element of C, and therefore a + b £ C. 
Further, let x £ R. Then xa £ Id and again, by left permutability, xa com­
mutes with every element of C. Thus C is a maximal reduced left ideal of R.

T h e o r e m  3.3. Let R be an LD-ring and A a maximal reduced left ideal 
of R.

(i) 1(A) = 1(Id) =  N  and r(Id) Q r(A) Q N .
(ii) A contains every reduced right ideal of R.
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(Ш) B — A®N is an ideal of R which is both left and right essential in R.
(iv) В is a completely semiprime ideal.
(v) 7 /Id g  B, then R = B.
P roof, (i) By Lemma 1.1 (viii), N  Q l(Id) and we have l(Id) g  1(A), 

since A  is Boolean. Now, let x 6 1(A) — N . Then i 3 = e /  0, e 6 Id and 
eA = 0, so that Re П A = 0. By the maximality of A, 0 ф у = ze -f a 
and y2 = 0 for some z € R  and a € A. Thus 0 = y2 = ze +  aze + a, so 
a G Re П A = 0. Then у G Re П N  = 0, a contradiction. We have proved 
that 1(A) = l(Id) = N . Similarly, r(Id) g r(A) g  N .

(ii) Let 0 ф I  be a reduced right ideal of R. Since every element of 7 is 
idempotent and R  is left permutable, 7 is an ideal. If I  %_ A, then (7 + А) П 
r\N  ф 0. Hence, let 0 ф x -f a, x E 7, a € A, be such that (x +  a)2 = 0. Now 
x(x + a) = x + x a £ l C \ N  = 0, so that x + a = —xa + а £ А Л А Г  = 0, a 
contradiction.

(iii) Let b £ В  and x € R. Since R  is left permutable, bx — xb £ N.  From 
this conclude that В  is an ideal. Further, let 0 ф у £ R  be such that у В. 
By (i), у В ф 0. Hence В  is right essential in R  and similarly we can show 
that В  is left essential.

(iv) By Proposition 3.1, R / B  is Boolean, and hence reduced. Thus В is 
completely semiprime.

(v) This is an easy consequence of (iv).
As a corollary of the preceding theorem, we have the following result of

M. Petrich [7], Theorem 2.
COROLLARY 3.4. A ring R is both left and right self distributive if and 

only if R  = A ® N  (ring direct sum) where A is a Boolean ring and N 3 = 0.
P roof. Let R  be both left and right self distributive. We can assume 

that R ф N . Then there exists x £ R  — N , so Rx3 is a non-zero reduced 
left ideal of R. By Zorn’s Lemma there exists a non-zero left ideal A which 
is maximal among reduced left ideals of R. Let e £ Id. Since R  is right self 
distributive, eR  П N  = 0. By Theorem 3.3, eR Q A and R — A  ® N . Since 
R  is right permutable, A is an ideal. The converse is obvious.

P roposition 3.5. Let R be an LD-ring. Then R is an RD-ring if and 
only if  x 2y = xy2 for all x ,y  € R.

P roof. Let R  be an 7i77-ring. By Corollary 3.4, x2y = xy2 for all 
x ,y  £ R. Conversely, assume x 2y = xy2 for all x ,y  G R. Then the ring of 
Example 2.5 cannot be a homomorphic image of R. By Theorem 2.6, R is 
an RD-ring.

Lemma 3.6. Let R be an LD-ring, x € R and e = x3.
(i) Rx  = Re ф R(x  4- e) (left ideal decomposition), Re is a Boolean ring 

with unity and R (x + e) = l(R) П Rx (hence R(x + e) is an ideal).
(ii) xR  = e72®(x+e)7i (ideal decomposition) andxR  = R e® Y ®(х+е)Д 

(left ideal decomposition) where Y  = 1(й)ПеД and Y ф(х + е)72 =  1 (Д)ПхД.
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P roof, (i) Let у £ R. Then yx = ye + y(x + e) and R(x + e) Q l(R)(~\Rx 
by Lemma 1.1 (v). The inclusion 1(Ä) П Rx Q R (x  +  e) is easily seen.

(ii) Since R is left permutable, x R  is an ideal, Re Q eR and (x + e)R Q 
Q 1(й) П r(Ä). Now let у £ R . Then ey = ye + ey + ye, ey + ye £ 1(Д) П eR. 
Hence eR = Re ® Y , Y  = 1 (R) П eR, and xR  = Re ® F  ® (x + e)R.

THEOREM 3.7. Let R  be an LD-ring such that the ring R /N  is finitely 
generated as an ideal. Then R = A  ® N , where A  is a left ideal of R which 
is a Boolean ring with unity. If, in addition, R  =  R x i + • ■ • +  йх„ or 
R = x \R  + . . .  + xnR for some 1 ^  n and x i , . . .  , x n £ R, then N  = 1 (R).

P roof. Since R / N  is Boolean and idempotents lift modulo N,  we have 
R = Re 1 +  . . .  + Rem +  N  for some 1 ^  m and e\ , . . .  , em £ Id(iZ). Now 
assume m  = 2. Note th a t 62 = ß2ei + a, a = e2 +  ^ e i ,  R = Re 1 +  Ra + N.  
By Lemma 3.6 (i), Ra = Re® R(a +  e), e -  a3. Now, 0 = aei = ee\ — e\e. 
Let b = e\ +  ег, so tha t b — b2. Then we have R = Rb ® N  and Rb is 
a Boolean ring with unity. The general result follows by induction. The 
equality N  = 1(Д) may be proved similarly.

Note: If R  is a Boolean ring then R  is finitely generated as an ideal if 
and only if R  has a unity.

Corollary 3.8. Let R be an LD-ring. I f  R  satisfies any of the follow­
ing conditions, then R  =  A® N , where A is a left ideal of R which is a finite 
Boolean ring.

(i) R /N  is finite.
(ii) R has no infinite set of orthogonal idempotents.

(iii) R has a.c.c. or d.c.c. on ideals.
P roof. In all cases R /N  is finite and the result follows from Theo­

rem 3.7.
REMARK 3.9. Example 2.5 shows that the direct decomposition R = 

= A ®  N  cannot be improved to a direct sum of ideals.
Every left permutable ring (and hence every LD-ring) is medial. Me­

dial rings are investigated in [2]. The next result is a partial converse to 
Theorem 3.7.

T heorem 3.10. Let R be a medial ring.
(i) N  is an ideal.

(ii) I f  R = A ®  N  where A is a left ideal o f R  which is a Boolean ring 
and N 3 = 0, then R is an LD-ring.

P roof, (i) For all x ,y  £ R, (xy  — yx)3 = 0. Now, N  is an ideal by [3], 
Theorem 54.

(ii) First, notice tha t N  A = 0. Let a i , <12 > °з £ -A and x \ , X2, x ^ £ N . Then

(ai +  xx)(a2 + x2)(«i + z i)(a3 +  x3) -  (a 1 + x i)(a 2 + x2)(a3 + x3) =
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— aiű2«3 4" 4  010201X3 — 010203 — 0102X3 — 01X2X3 =
=  0 3 0 2 X 3 X 3  — 0 1 X 2 X 3  — 0 1 X 3 0 2 X 3  — 0 3 X 2 0 3 X 3  =  0 .

L e m m a  3.11. Let R be an LD-ring, A a maximal reduced left ideal and 
В  =  А  ф N . Let e € Id be such that e £ В . Then there exists b £ R — В
and 0 ф a £ A  such that ea = a, 0 ф ae £ B, e = b 4  ae, and b and ae are
non-zero orthogonal idempotents.

P r o o f . By Theorem 3.3 (i), ea = а ф 0 for some a £ A. We have 
О ф ae £ В by Theorem 3.3 (iii). Put b = e -f ae. Since e ^ B, also b £ B.
But R  is left permutable and b2 = e + eae =  e +  ae = b. Also aeb = 0 =  bae.

P r o p o s i t i o n  3.12. Let R be an LD-ring, A a maximal reduced left ideal 
and В  = А ф N . I f  В ф R, then there are infinite sets {b0, £>1, 62> • • • } and 
{oi, 02, 03, . . .}  of non-zero idempotents such that:

(i) b; € R  — В  for every г =  0 ,1 ,2 ,__
(ii) {03, 02, 03, . . . }  Q A is a set of orthogonal idempotents.

(iii) bjOj+i = a,+i and a,+i 6,- £ В for every i = 0 ,1 ,2 ,___
(iv) 6,- = £>,+i -f a,-+ib,- and 6,+i,a;+ib, are non-zero orthogonal idempo­

tents for every i =  0, 1, 2, __
(v) Rb0 Э Rbi Э Rb2 D . . . .

(vi) r(b0) C r(&i) C r(b2) C . . . .
P r o o f . Let x G R he such that x ^ B. Put e = x3. Since R / B  is 

a Boolean ring, e ^ B. Now, the existence of the sets of idempotents as 
well as the assertions (i), . . . ,  (iv) follow from Lemma 3.11 by induction. 
Moreover, (v) is clear, since 6, ^ Rbi+\. For (vi), r (6.) Q r(b,-+i). However, 
o,+i 6,- e  r(bj+i) and at+i 6, ^ r(6,).

4. Exam ples
In this section, three construction schemes are given for building LD- 

rings. Here examples show that the variety of L Л -rings contains much more 
than just direct sums or products of Boolean rings and nilpotent class three 
rings. We close the section with an open problem.

E x a m p l e  4.1. Let T  be a ring, M  a left T-module and f : M  —> T, 
h: M  —* M  be T-homomorphisms satisfying f h  = f  and h2 = h. Define 
x * у = f{x)h{y)  for each x, у € M.  Then (M, 4 , *) is a ring. If f ( x ) f ( y )  = 
= f ( x ) f ( y ) f ( x )  for each x , y  £ N,  then (M, + ,*) is an LD-ring.

One concrete realization of this is given by taking M  to be the full 
set of n by n matrices, n > 1, over a Boolean ring T  and use /  = trace, 
h = 1д/. The ring so formed will always contain nonzero nilpotents and 
idempotents. Another realization arises by using the same M,  T,  f  but 
taking h(aij) = (a1- )  where a', = a„ and a'- = 0 for i ф j .

Other similar constructions come readily to mind.
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Example 4.2. Let 5 be a ring and f , h  endomorphisms of the additive 
group (S, +) such that:

(i) for each у  G /(S ) , x G h(S),  f ( y x ) = yf (x)  and h(yx) = yh(x);
(ii) h2 = h , f 2 = f  and fh  = f .

Define a *b = f{a)h(b ) for each a,b G S. Then (5 ,+ ,* )  is a ring. If 
/(a )/(ft)/(a )/i(c ) =  f (a) f (b)h(c) for all a, b,c G S  and if / (5 )  is a subsemi­
group of the multiplicative semigroup of S,  then (5 ,+ ,* )  is an LD-ring.

As a particular example of this take R to be an LD-ring, S  the full ring 
of n  by n matrices over R, n > 1, and define /  and h via /(a,-, ) =  ( M . 
where ft,-,- = 0 for i Ф j  and ft,-,- =  a„, h(atJ) = (ctJ), where ctJ = 0 for i > j  
and Cij = aij otherwise. Then (5, + ,* ) is an LD-ring which is not right 
permutable.

E xample 4.3. Let F  be a free ring and let I  be the ideal of F  generated 
by the set {abac — abc; a, b, c G F}. Then F /I  is an LD-ring which is neither 
Boolean nor nilpotent.

The construction schemes given in Examples 4.1 and 4.2 are special cases 
of a  general algebraic construction developed in [1].

The results of Section 3 indicate that for a large class of LD-rings, the 
decomposition R  = A  ® N , where A is a left ideal and a Boolean ring, is 
valid. So far we have been unable to prove or disprove this for the whole 
class of LD-rings and we leave it as an open problem.
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QUASI-P RADICALS OF ASSOCIATIVE RINGS

XI OUGEN (Ningbo)

§1. Q uasi-P rings and quasi-P radicals

In order to study the radicals of associative rings in a unified way, we 
introduce the notions of quasi-P rings and quasi-P ideals where P  means an 
arbitrary property of rings.

D e f in it io n  1.1. Let R be an associative ring, R° an extensive ring of
R, and R° an aribtrary homomorphic image of R °: R° ~  R°. If the images 
R = f ( R)  of subrings R  of R° under the arbitrary homomorphism /  are all 
{0}, or, if some f {R)  — R ф {0}, then, it must contain a non-zero P  ideal 
of R°. We call R  a quasi-P subring of R°, or briefly, a quasi-P-ring, where 
P  is an arbitrary property of rings.

D e f in it io n  1.2. Let /  be an ideal of an associative ring R  (one-sided 
or two-sided). When I  is regarded as a ring, which is a quasi-P subring of 
R, we call I  a quasi-P ideal of R.

Lemma 1.1. An arbitrary quasi-P one-sided ideal of an associative ring 
R is contained in a quasi-P two-sided ideal of R.

Lemma 1.2. The sum I  of all quasi-P two-sided ideals of an associative 
ring R is also a quasi-P two-sided ideal of R. Therefore, it is a unique 
maximal quasi-P ideal of R.

P r o o f . Suppose that I  is not a quasi-P ideal of R, then R  has at least 
a homomorphic image R (R  ~  R = R/ N) ,  g(I) = /  = ( /  + N ) / N  in R  does 
not contain non-zero P  ideals of R. Thus, we have a quasi-P ideal Ia % N  
in I  at least. (Otherwise, the sum I  of all Ia must be I  C JV, í.e. I  = {0}, 
whence I  would be quasi-P ideal.) Since Ia are quasi-P ideals, I a must 
contain a non-zero P  ideal of R, but it is also a non-zero P  ideal of R  in I,  
a contradiction. □

Lemma 1.3. Let I  be a quasi-P two-sided ideal of R, H  a non-zero 
quasi-P ideal of R /1 . Thus the inverse image H of H under the natural 
homomorphism g {R ~  R / I ) is also a non-zero quasi-P ideal of R.

Lemma 1.4. Let I  be a unique maximal quasi-P ideal, then R / I  does 
not contain any non-zero quasi-P ideals.
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P roof. If R / I  has a quasi-P ideal H  ф {0} then, by Lemma 1.3, the
complete inverse image H  of H  under the homomorphism /  (R  ~  R / I ) is a 
non-zero quasi-P ideal of R. Furthermore, as I j s  a maximal quasi-P ideal, 
so H  Q I. Hence H = {0}, a contradiction to H ф {0}. □

DEFINITION 1.3. The unique maximal quasi-P ideal of an associative 
ring R is called quasi-P radical of R , and an associative ring having no 
non-zero quasi-P ideals is called quasi-P semi-simple ring.

According to the above lemmas and Definition 1.3, we have
THEOREM 1.1. In an arbitrary associative ring there must exist a quasi- 

P  radical I , which is the sum of all quasi-P two-sided ideals, and R / I  is 
quasi-P semi-simple.

Therefore, if P  is a concrete property of rings, for instance, nilpotent 
property, local nilpotent property, nil property, Ь-property, left quasi-regu­
lar property, and ^-regular property, we obtain the quasi-nilpotent radical, 
quasi-local nilpotent radical, quasi-nil radical, quasi-6-radical, quasi-Jacob­
son radical, and quasi-Brown-McCoy radical etc. respectively. Moreover, for 
an arbitrary ring R, it need not have a P-radical, but it must have a quasi-P 
radical.

§2. A  quasi-P  radical is an A m itsu r-K u rosh  radical
Lemma 2 .1 . Let I  be the subring of an associative ring R, and let I  be 

the homomorphic image of I: I  ~  I . Then, we have a ring R such that:
(1 ) R  R, (2) I  is a subring of R, (3) the homomorphism f  restricted to I  
equals <p, namely f  | = <p.

P roof. Let R = I U R / I ,  and consider the mapping

/ :  P  -> Й,
a ä = a (when a £ R/ I ) ,  
a t-»- ä  = <p(a) (when a £ I).

Obviously, /  is a surjection. We define an addition in R: let ä,b £ R, and 
a, b be inverse images of a, b, respectively, in R. If a -f b = c in R, and
c £  c, then we define ä  ® 6 = c. We can similarly define multiplication ©. 
Obviously, R  ~  R, thus (Ä, ©,©) is an associative ring. From the definition 
of / ,  it follows /  |/=  <p, and by I  ~  I , we know /  is a subring of R. □

T heorem 2.1. A homomorphic image of a quasi-P ring is also a quasi- 
P ring.

P roof . Let R  be a quasi-P ring,' then it is the quasi-P subring of a 
certain extensive ring R°. Let R be a homomorphic image of R: R  ~  R.
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By Lemma 2.1, there is an extensive ring R° of R such that R° ~  R° and 
/  \r = <P- We can show th a t R  is a quasi-P subring of R°.

Let R° be an arbitrary homomorphic image of Ä °: Ä0 ~  R° and let R  
be the image of R under / ' .  Thus R = {0} or R ф {0} alternatively. If 
R Ф {0}, there is a non-zero P ideal of R° in R. In fact, since R° R° and 
R  is the image of R under f ' f ,  as R is the quasi-P subring of R°, therefore, 
there is a non-zero P  ideal of R° in R. Hence R is the quasi-P subring of 
R°, namely R  is a quasi-P ring. □

By Theorems 2.1 and 1.1, we have the following result immediately:
T heorem 2.2. Quasi-P radicals are Amitsur-Kurosh radicals. □
According to Theorem 2.2, as soon as we give an arbitrary property P  

of rings we get an Amitsur-Kurosh radical — quasi-P radical. For instance, 
a ring (or an ideal) is called an idempotent element ring (or an iderl) if 
its every element is an idempotent element. Obviously, the idempotent el­
ement property is not a radical property. However, by Theorems 1.1 and
2.2, because every ring R  has a quasi-idempotent element radical, and a 
quasi-idempotent element radical is an Amitsur-Kurosh radical, therefore, 
the quasi-idempotent element property is a radical property. So, if we give 
an arbitrary property of rings, we do get a radical property.

§3. Q uasi-P  radical and P radical

Lemma 3.1. I f  P is a property of rings, then a P semi-simple ring must 
be a quasi-P semi-simple ring.

P roof. Let R  be P  semi-simple, i.e. let R have no non-zero P  ideal. If R  
contains a non-zero quasi-P ideal I, by definition of quasi-P ideals, the image
I  (=  / ( / )  =  I )  of I  under the homomorphism /  (R  ~ R = R /{ 0} — R) has 
a non-zero P  ideal S of R, i.e. R contains a non-zero P  ideal S. This is a 
contradiction. Therefore R  is quasi-P semi-simple. □

LEMMA 3.2. Let P be a radical property, then a quasi-P semi-simple 
ring R must be a P semi-simple ring.

P roof. If the quasi-P semi-simple ring R  is not P  semi-simple, i.e., R  
has a non-zero P  ideal I , then it can be shown that I  is also a quasi-P ideal. 
In fact, since P  is of radical property, the homomorphic images of P  rings 
are still P  rings. This means that property P  is homomorphically closed. 
Hence, when / ( / )  = I  ф {0}, under any arbitrary natural homomorphism /
(Ä ~  R/ H) ,  it is also an ideal having property P, namely, I  contains a non­
zero P  ideal /  of R  (= R/ H) .  Thus I  is a quasi-P ideal. This contradicts 
the quasi-P semi-simple property of R. □
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T heorem 3.1. Let P  be a radical property. Then an arbitrary associa­
tive ring R:

Quasi-P radical = P radical.
P roof. Let I , I q  be expressed P  radical and quasi-P radical of R ,  

respectively. Since R / I  is P  semi-simple, by Lemma 3.1, it is also quasi-P 
semi-simple, thus I q  Я I ,  and by Lemma 3.2, the quasi-P semi-simple ring 
R / I q  is also P  semi-simple, whence I  Я I q , i.e. I  = I q . □

Since local nilpotent property, nil property, 6-property, left quasi-regular 
property, ^-regular property and so on, in the associative rings are of radical 
property, we obtain, by Theorem 3.1, the following results in an associative 
ring R: quasi-/-radical =  /-radical, quasi-hf-radical =  /"-radical, quasi-6- 
radical= 6-radical = Baer radical, quasi-/-radical = /-radical, quasi-PM- 
radical = PM-radical, etc.

Therefore, a lot of concrete Amitsur-Kurosh radicals can be unified into 
a quasi-P-radical. So, while studying the problems of concrete Amitsur- 
Kurosh radicals and semi-simple property etc., we may study, in a unified 
way, the quasi-P radical and quasi-P semi-simple rings.

Moreover, the nilpotent property is not a radical property. However, if 
R  has a nilpotent radical, the quasi-nilpotent radical of R  equals nilpotent 
radical, too. Since,

Corollary 3.1. I f  P  is a property of rings other than radical property, 
and property P is homomorphically closed, with an arbitrary associative ring 
R having P-radical I  (I is a maximal P ideal of R, and R / I  is P semi­
simple), we have:

Quasi-P radical of R  — P radical of R.

Since the nilpotent property is homomorphically closed, so, by Corollary
3.1, if R  has a nilpotent radical, we have:

Quasi-nilpotent radical = nilpotent radical.
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SOME REMARKS ON GENERAL RADICAL THEORY 
AND DISTRIBUTIVE NEAR-RINGS

S. VELDSMAN (Port Elizabeth)

§1. Introduction

The Kurosh-Amitsur radical theory of associative rings is a well devel­
oped theory; largely due to the well known ADS-theorem which is a useful 
substitute for the non-transitivity of the relation of being an ideal. To prove 
this theorem one uses, in concerto, the commutativity of the underlying 
group, the associativity of the multiplication and the (right and left) dis- 
tributivity of the multiplication over the addition. It is already known that 
the last two axioms (or at least suitable substitutes) are necessary for the 
ADS-theorem to hold. In this note we collect together these results and in­
vestigate the influence of the commutativity of the underlying group on the 
validity of the ADS-theorem. In fact, we show that in the variety of distribu­
tive near-rings (or equivalently, associative rings with not necessarily abelian 
addition), the ADS-theorem is no longer valid. Contrary to the varieties of 
all near-rings or all О-symmetric near-rings, this variety is an Andrunakievic 
variety — hence all hypersolvable radicals have the ADS-property.

§2. B ackground

Let W  be a universal class of fl-groups (i.e. W is homomorphically closed 
and hereditary on ideals). A (Kurosh-Amitsurj radical class R in W is a 
subclass R of W which is homomorphically closed, closed under extensions 
(i.e. if I  < A  € W and both I  and A /I  are in R, then A  G R) and for all 
A  € W, R(A) := ^2(1 < A  \ I  € R) € R. W ith R we associate its semisimple 
class (SR which is defined by

.SR := {A £ W I R (A) = 0).

R has the ADS-property if R (/) < A holds for all I  < A  € W. Radicals with 
this property always have a hereditary semisimple class (i.e. I  < A G (SR 
implies /  € (SR; or equivalently R(/) ^  R(A) for all I  < A  € W). For the 
basics on the general radical theory of associative rings, Wiegandt [15] can 
be consulted.
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An fi-group A is a zero Ct-group if fiA =  0 (i.e. aiű2 . . .  anw = 0 for all 
а,- £ А, из £ fi). A radical class R  is hypersolvable if R contains all zero fi- 
groups in W. For A £ W, A+ denotes the underlying group and A0 denotes 
the zero fi-group built on A+ .

For the purpose of comparison, we recall some known results:
2.1. T heorem (Anderson, Divinsky and Sulinski [1]). Let W be the 

variety of all associative rings. Then every radical class in W  has the AD S- 
property and (consequently) all semisimple classes are hereditary.

Remark th a t this result remains true if the associativity is replaced by 
weaker conditions, e.g. the universal class of alternative rings (Anderson, 
Divinsky and Sulinski [1]), the universal class of Jordan /2-algebras, R as­
sociative and commutative with ^ £ R, the universal class of (7 , <5)-algebras 
with I £ R and the Andrunakievic s-varieties (cf. Beidar [2]). However, 
with no assumption on the associativity, we have the degenerate results of 
Gardner:

2.2. T heorem (Gardner [6] and [7]). Let W be the variety of all rings 
and let R C  >V be a radical class. Then the following are equivalent:

(1) R has the ADS-property.
(2) <SR is hereditary.
(3) R is an А -radical (these are radical classes R for which A £ R and 

В  € W with A+ = B + implies В £ RJ.
The above equivalences are well-known, except maybe (3) => (1): Let R 

be an А-radical. From Gardner [5] we know that Rg := {A+ | A £ R ) is 
a radical class in the variety of all abelian groups and R g ( A + ) = (R(A))+ 
for all A (E W. Consider R (7) < I  < A £ W  and let a £ A. Since (a l)+ is a 
subgroup of 7+ and a acts homomorphically on 7+, we get

aR(7) = aRG(7+ ) Q RG(aI+) g  RG(7+) =  R(7).
Likewise, R (7)a g  R(7) and R(7) <1A follows.

Concerning the influence of the distributivity, firstly recall that a near­
ring is an associative ring for which the underlying group is not necessarily 
abelian and only one distributive law is required (in our case, we assume the 
right distributive law holds). The folklore of near-ring theory can be found 
in Pilz [10]. If A  is a near-ring, then Óz =  0 for all x £ N ,  but xO need not 
be 0. Near-rings N  for which xO = 0 for all x £ N  are called 0-symmetric. 
A constant near-ring N  is one for which xO =  x for all x £ N .

We will also need
2.3. P r o p o s it io n  (Mlitz and Oswald [9]). Let W be a universal class 

of near-rings. I f  R Q W is a hypersolvable radical class, then R contains 
all nilpotent near-rings in W . The hypersolvable radicals R in W can be 
characterized as all those radical classes R  for which

R(N ) = {x € N  I x N  g R(A)>
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holds for all N  E W .

The presence of only one distributive law also causes a degeneracy — 
however, in this case it is good.

2.4. T heorem (Betsch and Kaarli [3], Veldsman [14]). Let W be the 
variety of all near-rings or all abelian near-rings (or only the O-symmetric 
ones in each case). Let R Q W  be a radical class with a hereditary semisimple 
class. Then R contains all the nilpotent near-rings and all the constant near­
rings.

2.5. Corollary. 7/VV is as in Theorem 2.4, then a semisimple class 
SR  is hereditary if and only if К is hypersolvable and R (/)A  Q R(A) for all
I < A e  W.

The proof follows readily from Proposition 2.3 and Theorem 2.4.

§3. D is trib u tiv e  near-rings

A distributive near-ring is an associative ring with not necessarily abelian 
addition. If N  is such a near-ring, then ab + cd = cd + ab for all a, b ,c,d  E 
E N  and if N ' is the commutator subgroup of N +, then N ' is an ideal of 
N  and N N 1 = 0 = N 'N  (cf. [4], [10] and [11]). In particular, (A ')2 =  0. 
Remark that here, as is customary in near-ring theory, for subsets X , Y  g  N , 
X Y  =  {xy  I x E X , y e Y } .

3.1. P roposition. The variety W of all distributive near-rings is an 
Andrunakievic variety (i.e. if J  < I  <a N  E >V, then J 3 Q J  where J  is the 
ideal in N  generated by J).

P roof. Let X  =  J  + N J  + J N  + N J N .  Then

X 3 C i x  I  = I ( J  + N J  + J N  + N J N ) I  C 
Q I J I  + ( I N ) J I  + I J ( N I )  + ( I N) J ( NI )  Q J

since J  < I  < N.  Let (X)  be the normal subgroup in N  generated by X ,  i.e.

{finite
сг,(а,- + Xi  -  a,) I <7, =  ±1, a,- € N,  x,- G X

Then J  Q (X ) and (X)  is in fact an ideal in N  (using the fact that N 2 is 
abelian). Hence J  = (X).  Using X 3 Q J  and once again the fact that N 2 is 
abelian, it follows that J 3 g J.
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3.2. THEOREM. Let R be a hypersolvable radical class in the variety 
W o f all distributive near-rings. Then R has the ADS-property and every 
near-ring in S R  is in fact a ring.

P roof. Consider R (7) < I  < N  £ W. Then

R(7)/R (7) < 7/R(7) £ S R

and R(7)/R(7) is nilpotent by Proposition 3.1. Since R is hypersolvable, 
R (7) = R(7) holds, i.e. R(7) < N .  Lastly, if A € <SR, then the commutator 
A! of A+ is a nilpotent ideal of A. Since R is hypersolvable, A' = 0; hence 
A + is abelian which means th a t A is a ring.

Next we give a characterization of the radicals with hereditary semisimple 
classes (compare this with Corollary 2.5):

3.3. THEOREM. Let R be a radical class in the variety of all distributive 
near-rings. Then <SR is hereditary if and only if

R(7)A + AR(7) g  R(A) for all I  < A £ W .

P r o o f . If «SR is hereditary, then R(7) Q R(A) for all I  < A £ W and 
the result follows since R(A) < A. Conversely, let I  < A £ <SR. We show 
I  £ <SR, i.e. R(7) = 0. This follows if we can prove that R(7) < A. Since 
aR(7) -f R(7)a Q R(A) = 0 for all a £ A, R(7) is both left and right invari­
ant in A. Thus it is sufficient to show that R(7) is a normal subgroup of A. 
Suppose this is not the case. Then there is an ao £ A such that ao + R (7 )- 
—a0 %. R(7). Let J  := ao + R(7) — ao + R(7). Then straightforward calcula­
tions show th a t J/R (7)< 7/R (7) and 7/R (7) is a homomorphic image of R(7) 
by x —> a0 + x — a0 + R(7). Since R is homomorphically closed, J /R (7 ) £ R. 
But 7/R(7) £ »SR; hence J /R (7 ) = 0 which contradicts a0 + R(7) —a0 R(7) 
and proves the theorem.

A radical class R is an invariantly strong radical if S  is an invariant 
subgroup of A  and S £ R, then 5 g R(A).

3.4. T h e o r e m . Let R be an invariantly strong radical class in the va­
riety of distributive near-rings. Then R has the ADS-property.

P r o o f . Let I  <A. As in the proof of Theorem 3.3 it can be shown that 
R(7) is a normal subgroup of A. Let a £ A  and let J  =  aR (7)+  R(7). Then 
J/R (7) is a homomorphic image of R(7) and it is an invariant subgroup of 
7/R(7) £ <SR. By the assumption on R, we get 7/R (7) = 0, i.e. aR(7) g 
g  R(7). A symmetrical argument yields R(7)a g R(7) for all a £ A  and 
hence R(7) < A.

Invariantly strong radicals are plentiful in view of Theorem 3.2 and the 
next result:
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3.5. THEOREM. Let К be a radical class for which SR  consists of rings. 
Then R is invariantly strong.

P r o o f . Let S  be an invariant subgroup of A with S  G R. Then 

S / S  П R(A) “  5  +  R(A)/R(A)

and the latter is an invariant subgroup of the ring A /R(A); hence an ideal. 
Since <SR consists of rings, it is hereditary and consequently S+R(A )/R(A ) = 
= 0. Whence S % R(A).

Standard radical theoretic arguments will show that if R is a radical class 
in the variety of distributive near-rings, then R is invariantly strong if and 
only if SR  is hereditary on invariant subgroups.

We now give an example which shows that not all the semisimple classes 
in the variety of distributive near-rings are hereditary; hence not all radical 
classes have the ADS-property.

3.6. EXAMPLE. Let D$ be the dihedral group with 8  elements generated 
by a and b subject to 4a = 0 = 26 and ia + b = b + (4 — i)a for i =  1,2,3. 
Since U := {0, a, 2a, 3a} is a normal subgroup of Ds for which D$/U  is a 
finite cyclic group, we can use Theorem 2.1 in Heatherly [8] to obtain a 
distributive near-ring M  on Ds for which the multiplication is given by

• 0 a 2 a 3a 6 a + 6 2a b 3a +  6
0 0 0 0 0 0 0 0 0
a 0 0 0 0 0 0 0 0
2 a 0 0 0 0 0 0 0 0
3a 0 0 0 0 0 0 0 0
6 0 0 0 0 6 6 6 6

a + 6 0 0 0 0 6 6 6 6
2a + b 0 0 0 0 6 6 6 6
3a + 6 0 0 0 0 6 6 6 6

The only ideals of M  are {0}, M, T  := {0,2a}, U = {0, a,2a,3a} and
V  := {0,2a,6,2a + b}. Apart from the trivial ideals, V  has ideals T  and
Y  := {0,6}. Note that Y  is not an ideal of M  since it is not a normal 
subgroup.

Let R := {N  G W | N 2 = N } where N 2 is the ideal in N  generated 
by N 2. As is well-known, R is a radical class in W, in fact the upper 
radical class determined by the class of all distributive near-rings with zero 
multiplication. M  has no non-zero ideals which are in R; hence M  G <SR. 
However, R(V) =  Y  ф 0, i.e. V  £ SR.

Finally, remark that if we have a suitable substitute for the lack of com­
mutativity of the underlying group, then some of the results of the associative 
ring case can be recovered, cf. [13], Section 5.6.
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Specifically, if V is a universal class of distributive near-rings for which 
a l  is a normal subgroup of A  for all / ^ 4  £ V, a € A, then every radical 
class in V has the ADS-property.

In the present paper we only considered the omission of one of the ring 
axioms mentioned in the introduction. Of course, omitting two or more may 
yield further degeneracy, see for example [12].

Thanks are due to the referee for drawing the author’s attention to the 
invariantly strong radicals which resulted in Theorems 3.4 and 3.5.
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U N IV E R SIT Y  O F  P O R T  EL IZA B ETH  
P .O .B O X  1 6 0 0  
6 0 0 0  P O R T  E L IZA B ETH  
SOU TH  A FR IC A
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ON THE CONVERGENCE OF 
EIGENFUNCTION EXPANSIONS

I. JOÓ (Budapest)

Let SI C R ^  (N  ^  1) be any bounded domain. A function 0 / u £  C2(Sl) 
is said to be an eigenfunction of the Laplace operator with (complex) eigen­
value Л, if - A u  = Xu in SI. Consider any complete orthonormal system 
(и,-) C L2(Sl) of eigenfunctions of the Laplace operator with arbitrary (com­
plex) eigenvalues (A ,) С C, i.e.

(1) —Д Ui = A

Denote /х,- the square root of A, with Re /q > 0; further use the notations 
Qi = Re /X, > 0, Vi = Im /Xj. Introduce the Bessel-MacDonald function [1]

( 2 ) va(r ) =  (r) =
2 (2- a ) /2

{2r ) N/2T ( f )
K(N-a)l  г ( г )  

r (N—a)/2 ’
a  > 0

(K„ denotes the ix-th MacDonald function). The function space //"(R ^) 
consists of the complex-valued functions on R v representable in the form 
/(* )  = I  ua (|a; — y\)h(y)dy with some h G LP(R N) and the norm of /  is 

KN
defined by | | / | |l“ =  ||/i ||z,p. The function space L"(R ^) is a Banach space 
with this norm and is called Liouville space. It is a natural and simple 
generalization of the Soboleff spaces W °  for nonintegral a. We shall prove 
in this paper the following three theorems.

P = 

(3)

T heorem 1 (uniform convergence). Let f  e L "(R 3), a > 1, ap > 3, 
1. Suppose f  has compact support supp /  in SI. Then the partial sums

S»{f,x) := $ > * (* ) ,
e.<u

p > 0

of the expansion of f  with respect to the eigenfunctions (гх,) converge to f  
uniformly on every compact subset of SI as /x —► oo.

T heorem 2 (localization principle). Let f  e a = 1- Suppose
f  =  0 on some domain ilo C SI. Then S ^ f ,  x) —► f ( x )  = 0 uniformly on 
every compact subset o f  ilo as /x —► oo.

T heorem 3 (absolute convergence). Let f  E L“ (R3), a > 3/2 , ap > 3, 
p > 1. Suppose f  has compact support in SI. Then the Fourier series of f
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with respect to the system (it,-) converges absolutely and uniformly on every 
compact subset of ft.

The case N  ^  1, Aj > 0 was proved by Titchmarsh and V. A. Il’in, and 
these results are classical (see e.g. in [1]). The case N  = 1 was proved for 
arbitrary complex eigenvalues in [3] for the Schrödinger operator and the 
case N  = 3 was first investigated in [4], [5] for any А, € C.

For the proof we need a series of lemmas. We give these in the subsequent 
sections.

§1 . U p p er  and low er estim a te  for th e  square sum s  
o f eigen functions

In this section fl C R3 is an arbitrary (not necessarily bounded) domain. 
Suppose (it,-) C L2(fl) is an arbitrary system of eigenfunctions: -Ди,- = X,u, 
(А,- € C). The system (u,) is said to be a Bessel system if

OO

(4) £ |< / , « ; > I 2 £ C ’||/ ||£J(„), / E i ! (!1)
1=1

holds with a constant C independent of / .  (it,) is called a Hilbert system if
OO

(5) £ l< / .« i> lJ Í C ||/ | |b (B ,,
1 =  1

for some constant C  > 0. In (4) and (5) ( /, щ) := J ftfi. Finally (it,-) is
n

called a Riesz system if it is a Bessel and a Hilbert system and in this case 
we have

OO

c ill/ l lb m
I=1

For this case we shall use the shorter notation
OO

(в) £ к .Л " '> 1 г - № ( п ) -
i=i

First we prove
Lemma 1. Let (it,) C L2(fl) be any Bessel system of eigenfunctions 

of the Laplace operator, let К  C ft be any fixed compact set; further let 
0 < R < min(7r/4,0.5 dist(Hf, Oil)) be an arbitrary fixed number. Then there 
exists a constant c = c(K, R ) independent of x and p such that

(7) ^ 2  ( k ( a0le2|l'*|R)  ^  см2 (x £ K, 1).
Ia*—et I ̂ 1
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PROOF. This is proved in [5]. For the sake of completeness we give a 
short proof here. According to the well-known mean-value formula we have

( 8)

(8’)

/ , sinrn, , 4
uAx + r0)d,6 = 4л---------uAx) if Hi A 0,

T[li
в

j  щ(х  +  r6)d0 =  Airui(x) if m  — 0.

For any 0 < R  < 0.5 dist(hf, dQ) define

sin гц
d(r,fi) :=_) и -------- if R < r < 2Д,

0 otherwise.

According to (8), for any fixed x £ К  the Fourier coefficients of d(\x — у |,/i) 
are

2 R

(9) di = J  d(\x -  y\,/j,)ui(y)dy =  J  d(r,n) J щ(х +  r6)dör2dr =
R  

2 R

= 4 жи•(l)« / si
R

sin ГН sin ryLidr.

Our aim is to get (7) from the Bessel inequality |d,|2 ^  c ||d(|x-j/|,/x)||^ 2̂ n .̂

Hence we have to give a lower estimate for 

2 я  2 R

i=i

J  sin r/i sin ryadr — ^ J  [cos r(y  — Hi) -  cos г(н  +  /х,')] =
R  R

sin г(н — Mi) sin r(n + Hi) 2 R

. 2(m M«) 2(/i +  Mi) . r

We give the lower estimate for four cases separately:
Case 1: p, > B\i/i\ > B2, where В >  1. In this case we have

sin r(n — Mi) erM
X i —r  and sin г(м + Mi)

M -  Mi k l M + Mi rlftl
with absolute constants. Hence
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and we get

( 10)

2 ЯI/"sin r/z sin r/z,dr > c-
Ы

-4ЯЫ 00
£  m *>i2W s ‘ £ k i 2 s  

1,1 .=■le.
e^B\u,\>B2

2Я ■ 2

< c||rf(|x -  2/|,/z)||£2(n) = C j  ^  c/z2.
R

Case 2: /2 > /x0, \v%\ ^  5 ,  and /to >  0 . Taking into account the identity 
sin r /х,- = sin rßi ch rvi + г cos rp,sh rvi we have

[sinr(/x — /X,) 2Я
> sin 2 Ä(/z — p,)ch 2ÄI/,- -  sin Ä(/z — p,)ch Ri\

M -  /b я Ц -  fli

I s*n ^ 1-—Jiili . |2 cos 7?.(/z — p,)ch 2Rvi — ch Än,|. 
IM -  ft I

Hence for R < it/4  we get sin r(/i-^,) 
/J-z*. > C (R) > 0. On the other hand

[ s i n  r ( / x  +  m)' 2Я

L M +  /Л я

=>2Я|ьч| p2fí|i/,|

||í +  /2,| 2/z — 1 ’

i.e. if /xo is large enough, then the term containing /z — /х,- is dominant, and 
we have

(и) k ( x ) l2 =  cv 2 (и ^  ^ o ) .

Case 3: p, ^ 5 |i/,|, /х > /to, 5  ^  In this case the magnitude of the 
terms considered may be equal, hence expand now the function

Obviously

if R < r < 2R 
otherwise.

11^(1* -  y|>/0ll£a(ii) c J  r2^ d r  < с/х2,
R
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2 Я

dj = cui(x)—  /  sin riiidr = cui(x) — 
Hi J Hi

R  
Я ||/

Vi\

R
е2ЯИ

hence |<fl| > c |u ,(x )|—:—j—, consequently

cos Rm — cos 2 i£/z, 
Hi

pAR\u,\ °°
( is )  •£, s

lt.-uisi 1,1 .= 1

в<Ы

Case 4 и = Ho- Now expand the function

1,2 ^  СИ2 (Н ^  Ho)-

d2(r ,H) := j
1 /r if < r < 2R, 
0 otherwise.

Obviously,
2 я

j 2  , \ í  -1 • , ,  V 1 — cos 2 ÄU,а,- =  сщ(х) / /г,- sin r//,a r =  cu,(x)--------2-------•
J Hi

a) If 2R\v{\ > 2 then
Jt
/ sin Г/2, 

Hi
dr

»2ЯЫ
c- /12

0
hence

e4fí|i/,|
(13)

£ . M l ) l  Ы *
2Я|1/,|>2

b) If 2R\ví\ < 2 then denote T  := {p, ^  /х0-H1, \vi\ < 1 /Д}. Pick R' < R 
such that /:7г/Д ф i n / Ä', then

min max 
*6 T

(11 — cos 2 Rz 1 -  cos 2 R'z 1
ll *2

? z2 J > 0

i.e. we can divide the set {/2, : Hi € T ) into two parts, so that for one we can 
use R  for the other R' and we get

(14) 5 Z M x)l2 = c-
е.^йо+i
2R\ui\<2

From (10), (11), (12), (13), (14) the desired (7) follows. □
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L e m m a  2 . Let (щ) C L 2( í i )  be any Riesz system of eigenfunctions of 
the Laplace operator. Then for any compact set К  C Í1 and R  > 0 there 
exists M  > 0 and c > 0 such that

(15) Y  к ( х ) |2е4Я'"-1 > cp2 (x e K , p >  1).

P r o o f . O b v io u s ly  w e ca n  s u p p o s e  th a t  R  < m in (7 r /4 , 0 .5  d is t( i! f , dG)) 
a n d  in  th is  ca se  w e  c a n  a p p ly  (7), i .e .  for an y  6 >  0 w e h a v e

t ie )
t t  ( i  + « ) 3+i

According to (9) we have

k ( x ) |2e4HlI/,l . .
z 2  n  T  „ Л З + 6  =  < 0 0  (x e  K )-

cp2 < \\d(\x -  y \,p )\\l2{Q) < C ^ |d , | 2 <;

n
< c Y - V —  
= É í k l 2

2 RJ  sin rp  sin rpidr  
R

1=1

2

k(*)l5

further 
I 2 R\J sin rp sin rpidr
'R

hence 

(17)

sin r (p  — P i )  sin r(p  +  Pi)
. 2 { p - p i )  2 (p +  Pi)  .

2 R

R

p2«ki|

= 1 + Im - ^ I ’

OO 9 eE
»=1

.4Я |х /,|

k i 2 1 +  \p  -  f t  12
|u,(x)|2 >  С/ i 2 (x G A).

We will choose M  > 0 later, now suppose only that p > 2M , then it follows 
from (17)

P p*R Ы
\pi\2 1 +  \p -  Qi.12 k(*)l2-(18) c Y  |'м,(а;)|2е4Я|ь/*1 > cp2 -  ] T

We have to estimate the sum on the right hand side of (18). For this use 
the partition

i w»  s =  y ,  =  E  + E + E + E  =
I/*—ei\>M ed=§

= 5 i +  S2 + S3 +  54.
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If R < min(7r/4, dist(üf, dQ,)) then (7) holds and hence

<-)
consequently

«=1

04H|i/,|
(21) 52 ^  c - ^  ^ л - м * ) ! 2 = Ĉ 3/2’ПЧ*  3 + |

и f*<« e.

( 22)
4H|i/,|

E  4 í f w * ) I2 * ^ 3/2-
i ^ t  p,

It follows from (7) that

,2 с4Я|к,
(23) E  i ^ t t i ^ f i “ ' ( x ) | 2  =c E m * ) I > « 4 4 * ' 1 s  < * J -

=1 íí < l
1/4.1 ̂  1

If |/i,| ^  1, then we have to estimate as follows:

2 Я 2ЯJ  sin r/i sinr/^dr = 
я

hence

l/^.l2

COS r / i  . 
-----------Sin Г Д

2Я

2Я

Я
+ — /  cos r/i cos r/x,dr, 

A4 d я

< c.у  sin r /2 sin Tflidr 
R

So we get a more exact estimate than that of (17), namely

«—. n2
(177)

, 5 ,  w * 1+V -  r f k ( *) |2 + , ■ §, '“, ( i ) |2 = c" 2’

hence

(IS')

E kWlV^-bc^-c E jf]2 т+0~~рM*)l: I“•(.)!
\p-K\<M \lA-Qi\>M l / M  + | M  |W |< 1

Iwlii
Iwl^l
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Obviously

(24) 5< < J2= *•

We have to estimate only S\ in (19). For this look for M  in the form M  — 2m 
and let p  be a natural number such that 2P_1 < p /2  ^ 2P. Then for m  + 1 < 
< fc < p we have

E
A* р4Я|1/,|

Ы 2 1 + Im -  e.l2 K (* ) |2 ^

< c 2- 2ke4R^ \ u i ( x )\2 <
2fc- 1<|Ai-0,|<2*

< c2~2k Y  X ] \щ(х)\2е4Н̂  ^  c2~2k Y  CM2 = c2~2kp2,
j= 2k~ l +1 i=2*-! +1

i.e.

(25) s .  S  E  E
A1 p4Hk.|

^ i r . , 1 « .  I« ' 2 1 +
k(*)ls

fc=m+l 2 'с- 1<|/2-^1|<2*

It is clear from (21), (22), (24), (25) and (18') (because the constants in these 
estimates do not depend o n M ), that (15) is fulfilled for sufficiently large M  
if / i  > 2M . Choose 2M  instead of M  then we get (15) for every p 1, but 
the constant c depends on p.

§2. E s tim a te s  for th e  s p e c tra l  fu n c tio n

Let fi C R 3 be any not necessarily bounded domain and (и,-)“  C L2(0) 
any complete orthonormal system of eigenfunctions of the Laplace operator 
with arbitrary complex eigenvalues (A,-) С C. The spectral function of the 
system (u,-,A,) is defined as

в (х ,у ,р )  := Y  Ui(x)ui{y). 
e.<e

This may be a sum with infinitely many terms, but according to Lemma 1 
this sum converges absolutely for every x, у € fl, p > 0.

Define the function Vn(r,p)  as follows:

Vü(r,p)
1 p  (

0

sin rp 
rp

j if о < r <; я,
otherwise.
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Lemma 3. For any complete orthonormal system of eigenfunctions of 
the Laplace operator with any complex eigenvalues we have

(26) в (х ,у ,р )  = Vr {\x -  y\,p) + 9 (x ,y ,p )

{x e  К, у 6 ft, p ^  1, 0 < R < min(dist(/í',

where x e К , К  is any fixed compact subset of£l,p>. 1 and for the function 
9 we have the estimate

(27) f e - . / O M n j  ^  C (R ,K )p  ( х е к ,  p >  1).

P roof. Calculate the Fourier coefficients of the function V r  at arbitrar­
ily fixed x e К  with respect to the system (it,). Taking into account (8) we 
obtain

Я

Vi = J  V r ( \ x  -  y\,p)ui(y)dy = J  r2VR(r,p) J  щ(х  +  r9)d9dr -
О О в

R

/ о 1 U (  SÍnrií\ , Sin rUi ,
r — -z-x[ -  cos rp -I--------- -47Г-------- — uAx)dr  =

r l \  rp  /  rpi
0

R
2 p f  ( sin r p \  sin rpi , . .

= / -  cos rp + ----- - ----- —dr • u,(x);
7Г p i  J  \  r p  J Г

further, according to orthogonality and completeness of (ut) we get
oo oo

(29) J 2  Vi<y) =  E  = VR( x - y , p )  =  Vr .
i=l 1=1

Define the function S(p,Qi) as follows:

S ( p , 6 i )
' 1 , Qi < P

< 1/2, Qi = p
. 0, Qi >  p .

It is easy to check (see [7]) that

2  p

ж pi

RJ  cos rp + 
0

sin rp \ sm rpi 
rp J r

dr =
3

P2
М,-

1/2

ЯJ Js(rp)Ji(rpi)dr.
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First of all we shall prove the following estimate: 

а Я
(30) “172 j  Ji(rn)JL(rm)dr -  Qi) ■ tjj-

r>
рЯЫ

b c-
l  +  | / Z - i » , |  1  +  l / i . i '

According to the identity
sin гщ  = sin tqí + sin rp;(ch ri/t — 1) + i cos rpjsh rvi

we have 
(31)

R oo
2 u f /  sin r/x \s in  r/x, , 2 /x f  /  sin r/x \ sin r/x,

/( - c o s r /x  + ----- - ) ----- —dr = - - -  / -cosr/x  + ----- - ----- —
ТГ f i i j  \  ГЦ /  Г 7Г /X, У V r/x /  r

о 0

7Г /X, J '
COS Г/Х +

s m r / i ' i  sm  r p j  

r/x
dr-f

Я
+ ж m  J \

COS Г/Х +

я
+*

я- А4« У 4
c o s  r/x  +

sm r/x 
r/x

sin r/x

) - s i

)

eh rí/,- — 1sm гр,--------------dr+

sh rix,
cosrp, -—— dr =

= Д + /2 + is +  A-
Integrating by parts we get

x, =  ^ i . e  /
7Г /X, /X У

cos rp,
sm r/x-------- dr;

further, taking into account the well-known identities
OO OO

/ sin t , 7Г У s in a i , . .
— d t = 2 = J — J‘ (“ > 0 ) '

we have 

(32)
OO

*(/*> 6i) = ~ J
COS TQi

sm r/x-------- dr.
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Consequently
1 OO

(33)
— 2 P

=  ^ /  Ji(rf i )Ji (rgi )dr = 6(nQi)— .
Hi J 2 2 Mi

Estimate the two parts of /2 separately. One of them is
r« o  OO

sin rßi f  sin r(ßi -  м) + sin r(ßi +  n)f  sin rßi f  
/ cosr/x--------dr =

R  R
2 r

dr.

On the other hand we have, for any a > 0,
O O O O  OO
/ sin га , Г sint , г cosii°° [

Г J t l t laR J
COS t

dt
aR aR

i.e.

/ -  1R

sin ra
dr <

1 -f- aR

Hence in our case we have
OO/

R

sin rßi
cos r[i--------dr

r 1 +  Im -  ft I ’

For the other term of f2 we obtain obviously

)
COS г(м — ßi) -  COS r(/i +  £,)

OO OO
sin r/i sin rQi

R
rfj. -dr -I

R
2 r 2/x dr =

Ksinr(/z - g,) _  sin r(/x + g ,)\  1 00
M -  f t  M +  f t  /  2 r 2 /z J  л

OO

+  Í  J _  ( sin r (M -  ft) _  sinr(M + g,)N ^
J  r3n \  Ц -  ßi M +  f t  /

hence

/ ”'л

Sin ГЦ Sin rßi 
rfl r dr

H 1 +  |/i -  ft I ’
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and the desired estimate follows for the case |/x,-| > 1. But in the case of 
|/x,| = 1 the estimate (30) is obvious, namely in this case, taking into account

я
cosr /х,- = 1 +  0(|r/x ,|2), sin r /х,- = гщ  + 0(|r/x,-|3) and J  sl" rRdr = 0(1) we

о
obtain from the identities

я

Vi J
sin Г Hicos r/x-------- dr = sm гц-

sm Г Щл я

rVi Jo
R

I si

R
C O S  Г Hi J  f  . О Ш  I p ,sm r/x-------- dr 4- / sm r/x-------- dr,sin r Hi 

r

R  R  R

/ sin Г/Х  sinru , , /■ sin ru  , f
----- --------- — dr = / ----- - d r  4- / sm ru

TH r J r  J
о

sin ( г / Х . )  -  Г/Х,-

r2Hi

the estimate

I i/(- cos r/x + sm r/x 
r/x

) sin r/x, 
r dr < c

and (30) follows in the case |/x,| < 1. Hence from now on we may suppose 
that |/x,-| > 1.

For the main term of /3 we have obviously 

Я
/ ch rvi — 1 , \ (  cos r(p; —/x) cos r(p ,+ /x )\ ch ri/,- — 1]cosr/xsinrp,-------------dr — ------—^ ^ ------ —^  — ) ------ '-----  4

r L\ 2(p ; - /x )  2(p, +  /x) J  r J0

+
я

Л соэ r{ßi
2 (Q i-

-  м) , cosr(gt- + н) 
Н)  2 (р ,- +  н)

hence
я/ ch rvi — 1 

cos r/x sm rp ,-------------dr < __ £__ еяы _
\v -  0.1

Further, as easy to see, we can estimate this integral by ceRl",l, i.e.

ch ri/i — 1
Я

/«
cos r/x sm rp,- -dr

1 + IM -  0>l
рЯк.|
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For the smaller term in I3 we can write

R

I sin r/x . ch rv{ -  1
r/x

sin rg dr =

R

=  J  ^(cos r(/x -  Qi) -  cos r(/x + £>,))
ch rvi — 1 

r 2/x
dr =

R

r /s in r( /X - Qi) sin r(/X +  Q i ) \ ch r v i  — 1 R

[ \  2( p - Q i ) 2 (n +  0 i )  J r  j 0

(  sin r(/X -  Qi) sinr(jx +  Q i ) \ ( ch r v i  — ]
V 2(/X — Qi) 2(m + Qi) J V 2 r 2/x )

hence

R

I -
sm rn . ch rvi — 1 ,-----sin tqí------------- drr/x r

< c eяк. I
/X 1 +  l/x  -  Qi\

i.e. we have proved the estimate

N  < c-
oRM к

1 + l/x-ftl 1 + Ы ’
^We used the interesting fact that ^ch ГД'~1  ̂ > 0, r > 0.^ 

For the main term of /4 we have obviously

R

/ Sh rVi , Г /  Sin r(u — Qicos r/x cos rp ,------- dr = --------------
r LV t*-Qi

-  Qi) sin r(/x + Qi)\  sh TVi
M + Qi 2 r

R ,

Я  sin r(/x -  Qi) _  sin r(/x + Í  sh ruj \  ^
Ц -  Qi Ц +  Qi J  V 2r J Г'

hence
R/ sh rviCOS Г/Х COS rQi------- dr < ------- eRW

1 +  \ц -  P,|
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Write the remainder part of /4 in the form

я  R
sin ru sh rvi — ri/,- [ sm r/i

cos rQi---------------dr +/ sin r/
гц J- Г Vi

COS rQi—-dr  =  / 4  +  / 4  ,

rfl r
0 0 

and estimate these terms separately. Obviously, we can write

r, [ ( COS r{n -  Qi) , cos r(n +  Qi)\ ( sh rv>i - r v i \  ,
4_r v  М-Л M + ft A  2r A

Д

Я cos r(/x -  £,) cos r(/x +  p.) \  /sh  rvi - r u i \
» . - «  +  ■ M+«■■■>) l - w - J  * •

+

hence

I Я

/ -
sm ru  sh rí/, — ri/, ,

----- cos rg ,----------------arr/i r
< c -Як I . I

1 + W -  6i\

^because we can estimate by < ceR^ f i  1 according to the obvious estimate

R

I sh rvi — rvi dr
R

= í f M Ü d r ,
2k)\r2

n Ac—1

-  f  < с у Щ»Л) П»  =  c sh jj, . < „ВЫ
j“  (1 +  2г)! 2 к  = b  (2fc + 1 ) !  1 •' =

On the other hand,

я  я
„ Vi f  sin T\l C O S  TQi Vi f  sin r ( / i  -  Qi) -f S m  r ( u  + Qi)I _  I  - d r  —  I

M У = - /2/1 7
dr.

0 0 

If /i — Pi and /i + 0«' are positive, say £>, < /х — 1, then the trivial estimate

Я
t / ,  / ■  S i n  r ( / i  -  Qi )  +  S i n  r ( / i  +  Qi )

2/i / dr
Vi eRM

S c— S c-
>  -  1 + |/i -  £i|
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is satisfactory. If /г — 1 ^  p, ^  /x + 1, then the same estimate works. If 
Qi ^ /x +  1, i.e. /X -  Qi is negative and /x + p, is positive, then using

we obtain

R  oc
J  sinr(/X -  Qi) dr _  7Г _  j  sin r(/X -  £,) dr,

R
R
oo/ sin r(/X + g|-)^ _  7Г f  sin r(/X  +  £>,)

= 1 - /
R

-dr,

R
Vi f  sin r(/X  -  Qi)  + sin r(/X + Qi)
-  /  2/1 у

dr
ух 1 +  l/X -  Qi\

i.e. we have proved

^  = Cl + \H -Q i\ 1 +  1/Х.Г

The case /х, =  0 is obvious, and summarizing our estimates (30) follows. 
Now we return to the proof of Lemma 3.

According to (28) and (30) we have for R < min(7r/4, dist(A^, d£l))

(34) ||Vr( |x -  y\,fi) -  6(х ,у ,ц )  -  0.5 Y  Ui(x)ui(y)
e>=v Ll( o)

<

= J 2 \y i -  к?*  ft)«.(*)i2 ^  c y  j
OO о

M р2Я||//|

1 — 1 1 + l/x.i2 (1 + l/x -  Q i \ y
\U..(*)l2 ^

s«Ê ( l  + к )2 (1 +  |/x — fc|)2 S  е2Я||/,||гх>(а;)|2 ^
=o v  ̂ u k<e,<k+1

ir0 (l + l ^ - * l ) 2
^  С/х2,

further

E u , ( x )  • U i ( y )
2

b2v(il) 5 ^  iu*(x)i2 = cm2-

Hence (26) and (27) follow. □
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In the proof we have used the fact that (30) is equivalent to

(30') 5Í c
еДЫ

1 + \fi -  ßi\
M

1 + Im«

because it is easy to see that

'i(/*.ii)(1 -  ^:)| s <5(м>е.)—M«
S  c

eR\"i\

1 + Im -  &I
M

1 + I Mil

§3. E stim ates o f  th e  kernel o f  fractional order

Let ÍI C R 3 be any domain, (u,) any complete in L2(Í1) orthonormal 
system of eigenfunctions of the Laplace operator with arbitrary (complex) 
eigenvalues (Aj) С C, i.e. —Ait,- = A,u, in ÍI, further y/Xi =: Mi = Qi +
qí г о .

For any 0 < a  < 6 introduce the kernel Ta(x ,y ) of order a as follows: 
this is a function defined for x ,y  6 ÍI whose coefficients for all fixed x 6 fl 
are

(35) J  Ta(x,y)ui(y)dy = (* =  1 ,2 , . . . ) .
n '

It is convenient to use the form

T  (x у) ~  V  ц,(г)ц,(у)
o( ,2/) £ i ( i  +  a a /2 ’

if it exists. For the investigation of this question introduce the polynomial

w, '( r ) = 5Z a fcr 2k

k=0

by
(36) na (Ä) =  ma(Ä), t£(Ä ) = < ( Ä ) , . . .  , v j? \R )  = w£ \ R )  

Obviously, (36) determine uniquely the polynomial wa.

(n > 0).

R ( \  Г » « ( г ) ,
»„(r)  : = ( 0>

r ^ R
r > R ' wa(r)

Í гса (г),
l o,

r ^  R  
r > R.
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Calculate the t'-th Fourier coefficient of the function v^(\x — y\) — w ^(\x  — r/|) 
with respect to the system (u,). Taking into account (8) we get for any 
0 < R < d ist(x ,ő ,fi):

V?,(x) : =  ( u i , v £  -  w * )  =  J  u ,-(2/ ) [ u£ ( | x  -  y |)  -  w * ( \ x  -  y \ ) \ d y  =

я я
= J r 2 [ v a ( r ) —w a ( r ) \  J U i ( x  +  r 0 ) d 9 d r =  J r 2 [v a ( r ) - w a ( r ) ] - 4л~ S*n  d r - U i ( x )  =

oo oo

= ---Ui(x) /  rva(r) sm rQjdr-------Ui(x) /  rva(r) sin rQidr +
Qi J 6i J

о  Я
я

x , ( x )  J  r v a ( r )+47TU,-
sm r/x, sin rQi

я
47Г f

------- U j ( x )  /  rwa(r) s in  r^idr  = :  h  +  h  +  h  +  h-
l^i J

We know that

I 2 j r

М Г ) 1' = 7 Щ * ) 7 }  =
0

2(2-“)/2 /pT  7 / 0  1

-  T f f l f  / " '* < - > / • « * /* > * -  ■■(!)
on the other hand,

/ 2 =  -
(2tt)3/2

— Ui(x) /  f 3 / Va(r ) j1/2(r)dr, 
Я

/з  =  (2 .)3' 2 • o,(x) /  r3/% „(r )

/ 4  =
Я

i 2l L ..- Ui(x) J  r 3 / 2 u ;a ( r ) / 1 /2 ( r ) d r .
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W e know that

/  r*'+1 J„(rn)dr =  - r ‘/+1JJ/+i(r ) .  
у M

D enote D f(r)  :=  r - 1/ '(r ) . Integrating by parts we obtain

/ 2 =  - ( 2тг)3/ 2и ,(х )
3 /2 Гг/ з / 2(^,)

r ^ ( r ) g3/2 - +
г=Я

+ ( 2тг)3/ 2и ,(х ) J  Dva(r)r5/2
R

Js/lirQi)
3/2

f t
dr,

/3  = (27г)3/2п,(х) ^ 3 /2  (^Mi)

Mi
3 /2

</3/2 ( r f t ) \

AT J

1 я

- r=0

Я

-(27t)3/2u,(x) J  Dva (r)rs/2 
0

•*3/2 (^Mi) J3/2(rßi)\

- ^ ~ Г

Because \Kv(x)\ < cx_ l*/l ( |x | <  1), hence va(r) ^ cr- l3-Ql ^ cr- 3 , conse­
quently the integrated part o f /3 vanishes at r =  0. Because va(r) decreases 
exponentially, hence the integrated part of /2 vanishes at r = 0 0 . Finally,

/4  =  -(2  7r)3/ 2u,-(x)
-1 я

3/2
Mi' J r=0

+

Я

+(2тг)3/ 2и ,(х ) У  Dwa(r )r5/2 7з/ 23У ~ dr, 
n Mi

where the integrated part vanishes at r =  0. I.e. the sum of integrated parts 
o f  /2» / 3  and /4 is:

+

( 2 x ) 3 /2 u , ( x ) Ä 3 /2 j u a ( Ä )

/  ^3/2(Ä/ii) ^3/2(Äp,)
\ З7гч /V

• 3̂/2 (Ä ft)
3/2

f t
+

3/2
f t ):-  wa(R) ^3/2 ̂ Mi

3 /2
Mi' }■
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because va(R ) =  wa(R), consequently

{ OO

-  J  D v a ( r ) r 5' 2 J3/2(3 J2g , ) d r +
R

R

dr > =+ J  D v ° ( r )* I 3/2
о L

{ OO

-  J  t f a+L=a(r) • ra/2 • J 3% 6t ) d r +
R Qi

According to \Ku{r)\ ^ c(v)e~T/ y/r and |/^ (r ) | ^ c(v)/y/r, we have the 
estimate

(37)
R

.a/2J3/2Írei)

6i
3/2 dr ^ c/e,2.

We shall prove
Lemma 4. We have the following estimate for the Fourier coefficients 

of u„(|x — t/|) — wa {\x -  j/Q with respect to the system («,•);

(38) <Pi(x) -  U i ( x ) -
1

(1 + в2)* '2

P roof. If p , 1, then

S

K (z)|efíl"-I ^
CR ~  ;— ~ z  л  1 0 <  a  <  1,

sin rpi
rpi

(1 + p,2)«/2
Ui(x)|efíl*/*l

1 + Q]

< ceR\vi\  ̂ hence

cr , 1 5Í a .

V i { x ) \ 
щ (х)  I

-  Kla(r)] • 47Г
sinr/i,- 
---------drrpi

<

<  c e R \v '\ J  r2 • ra 3dr < ceRl",l if a < 3, 
о

R

3,
0

5; c e R ^ ‘ \ J  r2 In rdr ^ ceR^‘l if a
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i.e. from now on we may suppose that p,- ^  1. 
Taking into account (37) and

I n\ j  J i f s ^ W r » /2 ^3/a(^«) h / d r e i )

L М,-
3 /2

M,
3/2 dr

< c [  r* 2a ln r r " /2— .d r  < c/pf (a  > 5),
-  у r l /2ei

о

we may suppose a < 5. Consider the following partition:

(39)

— COS TQi  +
S in  TQi

s in  Г/Ti

/ = > •^3/2(r Mi)
— cos г/i,- H---------

ГЩ
/  2 3/2

L Mi'
3/2

Mi' J M,2

Mi
TQi — C O S  rp,(ch rVi — 1) ^  Í sin rp,sh TVi

МГ Mf

sin rp,(ch rv{ — 1) i cos rp, (sh rv, — rvi)
I 3 I"r t f

sm TQi
— cos rßi -\-----------— cos r p i  ( sm rßi t n>i cos r p ,  rp ;

M,? r/if /if pf

— cosrp,(ch rv{ — 1) .sin rp,sh rv,• sin rpi(ch rr-, -  1)

Mi
+  *-

Mi
+ r/xf +

+г
.cos rp,(sh rii,- — rvi) , gi(gf -  Mf)

r /x f
+

M?M?
— cos r p ,+

sin rp ,\  
rp, У ’

and estimate term by term. We saw before Lemma 4 that 

(40)
v* -г m r ' -

R
• Í3 /2 (rM i)  J 3 / i ( r Q i )

{ oo

-  У  # ( 5 - a ) / 2 ( r ) r “ / 2 - 

Я

Mi
+  j  K ( s - „ ) / 2( r ) r “ /2 3 /2

Mi
3/2

Mi'
dr

}■
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According to (39) and (40) it is enough to apply the estimate 

R

i „  , 4 «=1 cos rp,(ch TVi  -  1 )  JK(S-a)/2{r)r 2 ---------- —---------- dr
ri

1
R
f

\ v t f
J  Л (5_а)/2
0

1 ch Rv{ — 1
Ы 2 R 2

t

ch ri>i — 1dr

R

J  #(5-a)/2(r )r("+3)/2 COS rQidr

<

+

+Ш* J S % - . ) л ( г )г,”+3)/2“ в ^ . *  ( chtl)  *)  dti cj ^ ,
о о

because

I t
\ J  K(S-a)/2(r)r(a+3^ 2 COS TQidr < c j r  2 г 'г -  dr = c J  ra ldr ^

if t < R.
I я  

/ ■
^ ( 5-а )/г (г)г(а 1)/2 sinrg, CÍI dr

Vi

< 1 sh i2î ,
Ы 2 R

R

J  A"(5_a )/2( r ) r (“+1)/2sinr£,-ifr +

Л t '

+Rp /  /  % -“)/2(г)г(а+1)/251пг̂ г (^ т ^ )  di =
о 0

I C|2eH '̂  ̂ ^  a  ^ 1,
< Ы

r̂+1
ея \^\ if a < 1,
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because

l/Ci
/  К -  a ) / 2 ( r ) r â + 1 ^ 2 S1D. T Q i^ d T  <  C J  Г«" > V V ° + W r e i d r  =

0
V i.

= cß, У  r a~1dr < c/f>“ -1

and for Ä > f >  1 /ß ,

t t ,

j  K(5-a )/2(r)r(°+1'>'2 sin rf>, dr < c /  r* 2dr ^ < 
1 1 '

0,ib r  if a < 1

if a > 1

Further in the case a  =  1 we have

/  Ki(r)r  sin rßidr

V «

_ 3 а д . sin rQidr

1/i.

< Ггз А"2( г ) со5 г ^ Л (
+ /  3r M r) c ° s r Q

L r Qi J _L
e.

J r Qi
i /t .

+

We have also

l/i.

Л

/  - ^ d r <
J ' Qi 

V i.

J  К(Ь-а)/г{г )r ^ s l n r g , ^  r- \  ~ dr  
r/if

1 1 eh R ví — 1
Ы 3 R 2

Л

J  K(5- a )/2(r )r (a+1)/2 sin rQidr +

Л, t

+
Ы .1 3 •Й'(5-ог)/2(^)г("+1)/2 Sín

0 '0
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c e I

Ы 3 f?“- 1
if a < 1,

Ы

r f>R I I'll
_ e Äk l ^  c— — if a ^  1,

e!
further

I 1X

J T S  /  л (a—l)/2 s h  rui -  TVi jK(5-a) / 2 "  COS Г 0 , ------------- 5---------d rГ/if

1 sh Äi/i — R uí

Ы 3 R

Я
J  К ( 5 _ a ) l 2( r ) A a + 3 ') / 2  COSTQidr +

Я, t

+  j~ j3 / I / K (5-c.)/2(r ) r {a+3)/2 cos TQidr 
0 0̂ 

and finally

9-i j j T L • ^  /  tf(5-a)/2(r)r(°~1)/2 (-COST,,- +

sh ü/, -  tvi V  e ^ ' l
l — i3— J Ä  s  c w

Sin TQi
TQi

dr

= c i  Í  K {b-a) l M ^ 2]3n (rei) i ,
У« H'i J

R

3 3/2
^ ( l  + Ы )3 g?

0. M 3

We know (see [7] p. 410) tha t

Я

J  K( 5 - a)/ 2 (r)ra/2J3/2(rQi)dr

OO

J  K(5-a)l2(r)ra/2J3,2(rßi)dr  =  C Si
3/2

(1 + Ql)a' 2

and taking into account also (37) we obtain 

R

dr
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S ^ i + M ^ í h + ^ s

( H > , | ) 3 eR M  -r S nc----- gr^—  *? r  I f a ^ 2 ,
Р,- 0.

едЫ
c — 3 ~

ßi
if a > 2.

Summarizing our estimates, (38) follows. □ 
Define the partial sums of Ta as follows:

jr T  in- ,Л — V ' Ц«(ХК (У )а д ( * , у ) . - х : (1 +  а в / а .
0 , < U

Lemma 5. Let Í2 C R3 be any bounded domain and К  C Í1 any compact 
subset, then there exists c = c(K ,q ,Q )  > 0 such that

(41) IIВ Д ( х ,  OllLfiO) ^  c; A4 = 1 < q < 3/2, x £ К

further

(42) | |а д ( * , - ) М п \ П 1) ^ с ;  p > 1, x £ K ,  

if  К  C Di C Cl is another domain.

P roof. By integration by parts

и
EßTx{x, y) = J  T ^ \ i y , 2d A x ,  y, t ) = 0( z ,y ,p )

(1 + /X2)1/ 2+

+

Further, obviously,

A*
i J  6 ( x ,y , t )

21
(1 + t2)3/ 2

я

dt — I\ 12.

Я \  q

u i V M x  -  »l,*o||M(n) = J <

R

= C- ^ [ l r^ d r ) ^

and hence
ll^iIIlJ(íi) = ci x £ К,  1 < q < 3/2.
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It is enough to consider the integral J  in / 2.
1

According to the partition (26) first consider the main part. Using the 
notation r =  I a :  — j / |  we obtain for r ^  1 / /x

v v 3

/ Ув<г',)(ГT flW dt = c / ( ; ) ’ Ĵ (rt)(TT?ji75‘ii

( r í ) !
t

-dt
= с/

and

(1 +  t2)3/2
1

/

||м2|кч(|1-у |< 1/ й) ^ с/х2<?_3 % с. 
In the case г > 1 //х we have obviously

l / r  1/

t2dt < c/a2

j v̂ - ^ W itic!
further, taking into account the asymptotical expansion

cos (r í +  7 )
^ ( н )  = с М 2  + 0 ( , г , ) - ^ )

we obtain for the remainder term 
й

/ ( Í B
l / r

Í
í)3/2 (1 + *2)3/2

dt
-  r3 J

l/r
(1 +  *2)3/2

dt < c / r 2

and for the main term

/Ш
l / r

2 cos(r* +  7 ) *

(r i) l/2 (1 + <2)3/2
dt\ 1 7 cos (r í +  7 ) *3

4 /
l / r

t (1 +  Í2)3/ 2
dt

COS (rt +  7 )

+

dí +

з I
du > < c /r 2,
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because ) '> 0 , J  co< rl ^ d t
l / r

5: c; consequently

R
< c í  r2 2qdr < с.

L4(\x-y\<\/ ц)

Now estimate the remainder term in I?, i.e. the term  containing в (we use 
the partition (26)). Let 0 < R < m in(dist(üf,díí), apply (30') and

0(x,y,/r) = ^ ( u , ( x )  -  Vi)ui(y) -  ^ 2  VM V )
Oi<4 е,йи

to get

e (x ,y , t )=  ^ 2  щ(х)щ(у)+
0,=t

eRW.\ i
+  | > ( x K ( i , ) - 1 + | í _ g i |- —  - f t ,  № |S c

where c does not depend on x ,y , t  and г; hence

where

/ t ____
g(a ,y , t ) (i + t"a")37»dt = < x )u^ y ) Y T 7 i R i I '

1 ’

[  * i „  f  1 t s
~ J  I + \t -  Qi\ ' (1 + * ) * / > ' " У  l +  | i - p , | l  +  i2 =

1 l
< cM l ± i i ) < c / ( 1  +  e ,f / 3,

1 +  Qi
i.e.

(1 +  i2)3/2
dt |u,(x)u,(y)|

eRWi\

(1 + e,)4/3

2

L2yW
у '  |цДх)|2е2Я1̂ 1

S í  (1 + ^ ) 4/3
с
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so we have proved (41). To prove (42) choose R  such that 0 < R  < 
< m m (dist(íf,íí), 7t/ 4); then the main term in the partition (26) vanishes: 
Vrt = 0 since r > R,  so 9(x,y ,t) = 6(x ,y , t ), consequently

=  c / i  2

11̂1 Пх,2(П\П!) = cli '>А£)11ь2(П) -

( V  I / \|2 , у *  к (* )1 2ез я ы  /  И \ Л  /  .V2'
I 5 k w i + ^ т т е т ( т т 7 -) J s ‘ E t+ \ P -  W

Ь c

ll^llbínxno = c + c

 ̂C + CE
и,(аг)|2е2Л1*‘

L4 0)

á í  ( i +  ft)4' 3
^ c >

and Lemma 5 is proved. □

LEMMA 6. The expansion of any f  £ Cq°(ÍI) with respect to the system  
(u,-) converges absolutely and locally uniformly in fl (i.e. uniformly on every 
compact subset of Í2).

P roof. For the case p, ^ 1 calculate the coefficients /, of /  by repeated 
application of Green’s formula:

/ .  =  J  f{x)ui(x)dx = j  f(x )A ui(x )dx  = 
о ' n

= ~ J  j A f { x ) Ui(x)dx = l j  j A f - A u ,  = =j- j A 2f - Ui = . . .=  = ^ j A nfui,
О * О » О * Г»

consequently
П 

fc+m
E 'л • - mi s«/  ia”/(,)i E s
,=Jfc ^ i=k +

< C f  |Д"/(У)| ( E
n '  *=fc

( » fc+m
/  E

____ r «=fc

2 /  V2* M l/ ) |2 \ 2
V & (1+ *)2v

dy <

K(?/)l2
(1 +  Qi)2n

dy]  if n >  1. □
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§4. P r o o f  o f  T heorem  1
In our case a  > 1, ap > 3, p  > 1. According to a known embedding 

theorem (see [2], p. 315) for such a  and p

(43) Lp C Zy = Wp, with some p' > 3.

Indeed, according to  the mentioned theorem of [2], ^ " (R ^) C Lq(RN) if ß — 
= a  — N (p — = 0 and 1 < p < q < oo. (43) is obvious if о =  1; for a > 1

we can determine p' from a  — 1 =  3 ^  ^ : p7 =  p ~ = 3~3p+^ < 1/3,
i.e. we may suppose that /  € W* (R3) for some p > 3. We know further ([2], 
p. 288-289) th a t

Wpx =  [Г :  F(x ) = J  щ (|х  -  y\)f(y)dy: f  e ZP(R3)}
R3

further
II^IIw^(r 3)^ II/IIlp(r 3)-

Define Фх(х,у) by

T i(x ,y )  = u f( |x  -  y|) -  w f(|x  -  г/l) + Ф1(х,г/), 

then by Lemma 4 we have

УЛх ,у )  =  ]>^7.u.(zK (2/),
i=i

where |7,| ^  сед ^ ’1/(1 + Q i)2 . Let 0 < R < min(dist(A', őfl), 7t / 4 ) ,  then (7) 
holds, hence

|«,-(х)|2е2Л1*'
S  (1 + ^,)3/2+e

< oo

and so

~ lu ixll2 • e 2R\u,\

1* . ( ^ 01Ь(П)£ с Е  (/+<»?)» = c <I£A')-
It is known (see [2]) that if /  € Wp (R3), p > 3, and /  has compact support 
in Í1, then there exists h € LP(R 3) with compact support in ÍÍ such that

/ ( * ) =  J ( vi -  w?)(\x -  y\)h(y)dy,
n
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further H/llvpi X ||h ||i,p  (here p  > 3). It is easy to prove that similar state­
ments hold for the transformation J  T\(x, y ) h ( y ) d y .

n
Now let <7(2 ) := J  4 > i ( x , y )  • h ( y ) d y .  Because p  > 3 hence p  > 2 and h 

n
has compact support, consequently h  G L 2(Sl) ,

OO

iM wfn) =  E  w 1
1=1

where hi denotes the г-th Fourier coefficient of h with respect to the system  
(«,-), further g ( x ) =  u i { x ) l i K  is the Fourier series of g.  Indeed,

Obviously,

J  g(x )u i (x )dx  = J  h{y) J  Фх(х, у) ■ Ui(x)dxdy  = 
n n n

=  J  h ( y ) u i ( y ) j , d y  =  7 Л -

П

Е к ( * Ь Л |  ^  ( S W i h i l 2) 1 ( S l ^ ' l 2) 2 = 

= c||h||L2(n) ^  l.uAzJ . .^ y 2 \  < c llfcb jo ),

i.e. the Fourier series of g converges absolutely and locally uniformly in SI. 
It is enough to show that for any h G I/P(R 3) (p > 3) w ith compact support 
in SI the Fourier series of the function F(x)  := JT \(x ,y )h (y)dy  converges

n
locally uniformly in SI. If F, denotes the г-th Fourier coefficient of F, then 
according to (41) we have

E  F i U i ( x )  =  E  u i ( x ) J  u*'(x) J  T i { x , y ) h ( y ) d y  =
6i< n  о  о

= E  ui ( x ) /  h( y ) U  Tx(x ,2/)u,(x)<fx)dy =
e.<n I Í

= E  (*) /  К у) < у) (л , L / ^ У =
*<** n v

I  77— l~ T ^ dy -  I h(y)EIIT1(x,y)dy,
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I й  \\EnTi(x ,y)\\Lq(n) • |WIlp(11) й  с11л1кр(П)-
íi<M

w l
Let (Fn) C Cq°(CI) such that Fn S  F. Fn G W l  and supp Fn is compactn->oo ^
in Í2, hence according to the statement above, there exists hn 6 Lp with 
compact support in ÍÍ such that

Fn(x) = J  Ti(x ,y )hn(y)dy  and \\hn -  h ||Lp -*■ 0 as n -+ oo.
П

We know from Lemma 6 that Y! (Fn)i ' ui(x ) tends to Fn(x ) locally uni-
с . < n

formly in Í2 as /i —> oo, further

+\F(x) -  У  F«u*(x)| -  F"(x) -  У  (F").u«(x)

+ № )  -  Я .(*)| + I E  №  -  (^-).-K (*)| ^  c ||F  -  F „ ||wi < £,
0.<M

Oi<H

< c||h -  /i„||Lp(n) <  £

if n is large enough, and hence Theorem 1 follows. □

§5. P ro o f o f T heorem  2
Obviously Ь ^ С Ь \  = W ^ R 3). Suppose /  satisfies the conditions of 

Theorem 2, then there exists h £ L2(R3) with compact support in 0  such 
that

/ ( * )  =  J ( v ?  -  tu f)( |x  -  y\)h{y)dy
n

and h = 0 on (По)_я := {z  € ÍÍ: dist(x, dil) R}. Let g(x)  := / ^ i (x ,  y) •
n

• h(y)dy; then as we have seen in Section 4, the Fourier series of g converges 
to g locally uniformly in ÍÍ. Let F  =  f  + 9 = / 7 i (x ,  y)h(y)dy. It is enough

n
to show that the Fourier series of F  converges locally uniformly in ÍÍ. We 
know that

1 У  F iu»(x) =  f  h(y)E^T\(x, y)dy
Oi<H \J

'n
<  | | ^ / x 2 " i ( x ,  у ) | | ь 2 ( П \ ( П 0 ) _ я )  •  I N I l s ( B » )  =  c\\h \\L*-
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Hence we can finish the proof of the local uniform convergence as in the proof 
of Theorem 1. Because the Fourier series of /  tends to /  locally uniformly 
in Í2, hence it tends to 0 locally uniformly in ÍÍq-

§6. P ro o f  o f  T h eo re m  3
If /  satisfies the conditions of Theorem 3, then there exists ß > 3/2 such 

tha t /  € T2 (®-3)- Namely, if p > 2, then because supp /  is compact in fl, 
we have f  £ L“- If p < 2, then applying the embedding theorem given in 
the proof of Theorem 1, we obtain

/3 = a - 3 a p  — 3 3 ,
~~ t" n > 3/2- 

P 2

Consequently we may suppose /  € LJÍR-3), supp /  is compact in ÍI and 
a > 3/2. Choose an h € X2(R 3) with compact support in ÍI and such that

/ 0 )  = J [ v * (I* -  2/|) -  w*(\x -  y\)]h(y)dy

g(x) :=  J  Va(x ,y ) ■ h(y)dy. 
n

We have seen th a t the Fourier series of g converges absolutely and locally 
uniformly in ÍI, hence it is enough to show that the Fourier series of

F(x) := f ( x )  + g(x) = J  Ta{x,y)h(y)dy
ci

converges absolutely (the local uniform convergence is proved in Theorem 1). 
Obviously,

Fi = J  F(x)ui(x)dx  = J  h(y) J  Ta(x,y)ui{x)dxdy  = 
п ci ci

=  / % ) * ( » ) ( TT71
hi

?)“/2 (1 + P?)“/ 2’

hence

E  s
i=i

£ | Д 1 а(1 +  в?)в E ( i + e?)e j
^  c\\h \\v ,
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because a > 3/2, i.e. the Fourier series of /  is absolutely convergent. Theo­
rem 3 is proved.

R e m a r k s . 1. The following is true for N  =  3,5,7 and probably it holds 
for every natural number IV > 1:

C o n j e c t u r e  
r

rT К (N-a

I n

I ) M r )

JN/2(rfi i )  JN/2(rQi)
N/2

М,- 9,
N/2 dr

<
N- 1

»ДМ
(1 +  Qi) 2 +a if a £ 1,

I ----------- vZT"efí^  if a  > 1 .
1 ( 1  +  Qi) 2

In the proofs of the theorems we have used only the estimate | . . .  | <
<  -------——eR^'\ because we used the case a — and for this case
"  (1 + f?,)1+“ 2
these estimates coincide. The conjectured estimate is stronger than that of
the proved, if a  is small.

2. In this paper we had to develop some ideas of the papers [8], [9] of V. 
Komornik, too.
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INVERSE AND SYMMETRIC RELATORS
Á . SZ Á Z  (D ebrecen)

Introduction

Relators are simply nonvoid collections of reflexive relations on sets. 
They are straightforward generalizations of the various uniformities [24], and 
are essentially identical to the generalized uniformities of Konishi [12] and 
Krishnan [13] and to the connector systems of Nakano-Nakano [23].

Relator spaces were proposed in our former paper [28] as the most suit­
able basic terms which topology and analysis should be based on. In [28], 
we introduced and studied the most important basic tools in relator spaces 
and mild continuities of relations from one relator space into another.

In a subsequent paper [29], to provide a primary classification for rela­
tor spaces, which is necessary to formulate and prove generalized forms of 
many of the important theorems of topology and analysis, we introduced and 
studied various directedness, topologicalness and transitiveness properties of 
relators.

In the present paper, to start a similar investigation in connection with 
symmetries, we establish the most important basic properties of inverse re­
lators, and introduce and study six fundamental and two supplementary 
symmetry properties of relators. The results obtained are mainly illustrated 
with the help of some particular Davis-Pervin relators [29, p. 195].

0 . N otation s and term inology

A nonvoid family 11 of reflexive relations on a set X  is called a relator 
on X , and the ordered pair X{TZ) = (X,TZ) is called a relator space.

If (xa) and (ya) are nets, A and В  are sets, and x and у are points in 
X ( l t ) ,  then we write

(1) (Ус) € Lim ^(xa ) ((yQ) £ Adh7z(xa )) if ((ya,x a )) is eventually (fre­
quently) in each R e 11;

(ii) x e lim^(a:a) (x 6 adhyz(xa )) if (x) e Lim^(xa ) ((x) 6 A d h ^ a ^ )) ;
(iii) В e С 1к(А) (B  6 Intft(A)) if R(B) ( 1 4 ^ 0  (R (B) C  A) for all 

(some) R e l l ;
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(ív) X  G c1k (A) ( x  €  intTj(A)) if {x} G С1я(А) ({x} G IntTj(A));
(v) A G ^  (A G Tv) if d * (  A) =  A  (int*(A) =  A);

(vi) и G en{x) if У e cbz({x}).
If TZ is a relator on X ,  then the relators

TV = {S  С X  x X  : ЗД G TZ : Я C 5},

Я # = {5 С X  x X  : VA С X  : ЗЯ G TZ : R(A) C 5(A)}
and

TZ* = (5  С X  x X  : Vx G X  : 3R G TZ : Я(х) C S(x)} 
are called the uniform, proximal and topological refinements of TZ, respec­
tively.

Namely, TZ*, TZ* and TZ* are the largest relators on X  such that Lim7j* = 
=  Lim?* (Adhft* = Adh^), С1те# =  CIk (IntTC# =  Int^) and limRA = lim^ 
(adh^A = adh?j) and cItja = cl^ (int^A = in t^ ), respectively.

Two relators TZ and S  on the same set are called uniformly, proximally 
and topologically (weakly topologically) equivalent if TZ* =  S*, TZ& — S& 
and TZ* = S * (ßn = ßs), respectively.

Moreover, a relator TZ is called uniformly, proximally and topologically 
fine if TZ* = TZ, TZ* = TZ and TZ* =  TZ, respectively.

A relator TZ on X  is called
(i) weakly transitive if C\TZ is transitive;

(ii) weakly topological if Qu(x)  G T v  for all x G A;
(iii) topological if с1тг(А) G Tv. for all А С X .
Moreover, a relator TZ is called inversely topological (bitopological) if 

TZ~X is topological (both TZ and TZ~X are topological).
Finally, we remark that if A  is a nonvoid family of subsets of X  and

Ra  =  A X  A U (X  \  A) x X
for all A G A , then the relator

TZa  — {Ra : A G A }
is called the Davis-Pervin relator on X  generated by A.

Note that to be more precise the ground set X  should also be indicated 
in the above notations.

1. Inverse relators

D e f in it io n  1.1. If TZ is a relator, then the relator

V. - 1 = {R- 1 : R  G TZ}
is called the inverse of TZ.

The most important basic properties of the inverse relators are contained 
in the next obvious
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T h eo r em  1.2. I f  f t  is a relator on X , then
(i) LiniK-i =  (Limrc)-1 ; (H) A dh^-i = (A dh^)-1;
(iii) ClÄ-i = (С1тг)-1 ; (iv) In t^ -i -  С о (Ш л )-1 °C,

where C means the complementation operator with respect to X .

As an easy consequence of this theorem, we can at once state 

C o r o l l a r y  1.3. IflZ  is a relator, then

( f t" 1) -  = ( f t - ) " 1.

PROOF. By [28 , D efin itio n  4 .7] an d  T h e o r e m  1 .2 , it  is c lea r  th a t

( f t -1) -  = (С1{л—1})—1 = С1{л} = ( f t - ) - 1

for all ft € f t, which is apparently a little more than stated.
However, at present, it is more important to point out that Theorem 1.2 

can also be used to prove easily

T h eo r em  1.4. I f i t  is a relator, then
О) г е - ‘Г =  r e - ) - ‘ ;
( u  ) ( я - 1 ) #  =  ( я * г 1 -
P r o o f . By Theorem 1.2 and [28, Corollary 5.5], it is clear that 

L im ^ .j- i = (LimTj. )_1 = (Lim-^)-1 =  Lim^-i 

and hence (ft*)-1 C ( f t -1 )*.
Moreover, a quite similar application of Theorem 1.2 and [28, Corollary 

5.9] shows that ( f t# ) -1 C ( f t-1)^.
Thus, since the reverse inclusions are immediate consequences of the 

former ones, the proof is complete.
As a useful consequence of this theorem, we can at once state

C o r o l l a r y  1.5. A relator f t  is uniformly (proximally) fine i f  and only 
if its inverse f t -1 is uniformly (proximally) fine.

Unfortunately, the corresponding assertions do not hold for the topolog­
ical refinements. Namely, for instance, we have

E x a m p l e  1.6. If X  is the set of all real numbers and A  is the family 
of all half-open intervals [a, b[ in X  with -o c  < a < b < +oo, then the 
Davis-Pervin relator f t  = f t  л has the following properties:

(i) f t " 1 C ft*; (ii) f t  П (ft~1)A = 0;
(üi) (f t* )"1 £  ( f t - 1)74; (iv) ( f t - ! )A £  (f t* )"1.
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Namely, if A G Л, then we clearly have Ä ^ x )  =  A ' \ A i f x G . X ’\ A  and 
R ^ ( x )  = X  if x € A. Hence, since Дд(х) = A if x G A  and Дд(х) = X  if 
x G X  \  A, it is clear that

RÄ1 € K A, but R a i

Therefore, the properties (i)-(iii) are now quite obvious.
On the other hand, if 5  С X  x X  such that

S(x) = X \ [ x -  l,x [

for all ж G X , then it is clear that S  € (7£-1 )Л. Moreover, since 

S ~ \y )  = {x € X  : у G S(x)} = X \] y ,y +  1]

for all у G X ,  it is also clear that 5 -1 $ 1ZA, i.e., S £ (7£л)-1 . Therefore, 
now property (iv) is also quite obvious.

R e m a r k  1.7. Note that, because of the properties (iv) and 7Z C TZA, 
the inverse of the topologically fine relator R  cannot be topologically fine. 

In addition to Theorems 1.2 and 1.4, we can also state 
T h e o r e m  1.8. IfTZ is a relator, then 
(i) = Qi1;(ii) ( R -* ) '=  (R ') -1.
PROOF. To check this, note tha t by [28, Theorem 2.22], we have qk =

= rrfc-1 = ( n f t ) - 1.
Moreover, recall that R! is the family of all finite intersections of members 

of И  [29, p. 181].

2. Sym m etries o f  relators

D e f in it io n  2.1. A relator 7Z on X ,  or a relator space X (R ) ,  will be 
called

(i) strongly symmetric if each R G 71 is symmetric;
(ii) properly symmetric if 7£-1 C 'll;

(iii) uniformly symmetric if TZ~X C R-*\
(iv) proximally symmetric if TZ~l C
(v) topologically symmetric if 7£-1 C TZA;

(vi) weakly symmetric if П7£ is symmetric.
R e m a r k  2.2. Clearly, each of the properties (i) through (iv) implies its 

successor.
Moreover, if (v) holds, then it is clear that

П  В Д c  П  я _ 1 (*)
Reit яе n
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for all x € X . Therefore, we also have C\1Z С (П7£) 1, and hence (vi).
The fact that the converse implications are not, in general, true is ap­

parent from the subsequent examples.
Example 2.3. If R  is a reflexive relation on X  such that R is not sym­

metric, then 1Z = {Ä, Ä-1 } is a properly symmetric relator on X  such that 
TZ is not strongly symmetric.

Example 2.4. If R  is as in Example 2.3 and A x  is the identity relation 
on X ,  then TZ = { Д х ,й }  is a uniformly symmetric relator on X  such that 
TZ is not properly symmetric.

To check the uniform symmetry of TZ, note that now 7Z* — {Дх}* is the 
largest relator on X .

Example 2.5. If card(X) > 3 and Rx — A x  U {x} x X  for all x € X , 
then 1Z =  {-Rajxex is a proximally symmetric relator on X  such tha t 1Z is 
not uniformly symmetric.

To check this, note that

R x(z ) = X if z — x and Rx(z ) = {z} if z € X  \  {a;}

and

R~1(z) =  {x} if z — x and R~1(z) = {x,z} if z 6 X  \  {x}. 

Therefore, we have

R X(A) = Д х(А ) for all A c  X  and x <E X  \  A

and
R z(z) qL R~l (z) for all x ,z  £ X .

Whence, it is clear that

7Z* = {A x}* , but 7г~1 П7Г = 0.

Example 2.6. If card(X) ^ 3 and A  =  {{z}}xex> then the Davis- 
Pervin relator 1Z = TZa  is a topologically symmetric relator on X  such that 
1Z is not proximally symmetric.

To check this, note that if now

Rx = R{x) = {*} X {x} и (X \  {x}) X  X,

then

Rx(z) = {x} if z = x and Rx(z) = X  if z С X  \  {x}

and

I2x 1(z) =  X  if z = x and Rx 1(z) = X \  {x} if z G X \ { x } .
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Therefore, we have

Rx(x) =  Д х(х) for all x € X

and

R y({z , tu}) £  Д ~г({г, w}) for all x, у G X  and z ,w  £ X  \  {x} with z ф w.

Whence, it is clear that

iz s = {Ax}*, but П ~л П V *  =  0.

EXAMPLE 2.7. If X  and TZ are as in Example 2.6, then 1Z~X is a weakly 
symmetric Davis-Pervin relator on X  such that 1Z~1 is not topologically 
symmetric.

To check this, note that under the notations of Example 2.6, we have

P | R~x(z ) — Д л(г) for all z € X  
xex

and
R y 1(x) (£ R x(x) for all x ,y  £ X .

Whence, it is clear that

п7г_1 = Д л , but 7 гп (7 г_1)л = 0.

R em a r k  2.8. Note th a t the relator TZ considered in Example 1.6 is 
also a topologically symmetric relator such that 1Z-1 is not topologically 
symmetric.

Thus, Examples 2.6 and 2.7 are somewhat superfluous. They have only 
been stated here because of their close analogy with Example 2.5.

3. P rox im ally  sym m etric  relators

Because of the corresponding definitions and Corollary 1.3, we obviously 
have

THEOREM 3.1. I f 11 is a relator, then the following assertions are equiv­
alent:

(i) 1Z is strongly symmetric;
(ii) TZ~X is strongly symmetric;

(iii) TZ' is strongly symmetric;
(iv) 1Z~ is strongly symmetric.
T heorem 3.2. I f l Z i s a  relator, then the following assertions are equiv­

alent:
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(i) TZ is properly symmetric;
(ii) TZ~X is properly symmetric;

(iii) TZ-1 is equal to TZ;
(iv) 1Z~ is properly symmetric.
To prove the implication (iv) => (i), note that ~R~ = «S~ also implies

7l  = S.
Now as an immediate consequence of Theorems 3.2 and 1.8, we can also 

state
COROLLARY 3.3. I f  TZ is a properly symmetric relator, then the relator 

TV is also properly symmetric.
The fact that the converse statement need not be true is apparent from 

the next
E x a m p l e  3.4. If X  is the set of all real numbers and Ä, С X  x X  for 

i = 1,2 such that
Ri(x) = [x — i, Too[

for all x £ X , then

TZ — {Äi, Ä2, Äj *, Ä2 \  R\ * П Ä2}
is a relator on X  such that TV is properly symmetric, but 7Z is not even 
topologically symmetric.

To check this, note that

iz' = 7ги {Ä! П R l l ,R 2 П R2\ R i  П Ä j1}’
and moreover

Ä(0) <t_ (Ä "1 П Ä2)-1(0) = [-1 ,2]
for аД R  6 IZ.

R e m a r k  3.5. As an immediate consequence of Theorems 3.2, 1.4 and
1.2, we can also state:

If TZ is a properly symmetric relator, then the relators IZ* and V ß  are 
properly symmetric and the relations Lim^ and Clц  are symmetric.

However, this fact is of no importance for us since by using Theorems 1.4 
and 1.2, we can prove much more.

T h e o r e m  3.6. IfTZ is a relator, then the following assertions are equiv­
alent:

(i) TZ is uniformly symmetric;
(ii) TZ~l is uniformly symmetric;

(iii) TZ~X is uniformly equivalent to TZ;
(iv) TZ* is properly symmetric.
P r o o f . If (i) holds, then by Theorem 1.4, it is clear that (7£-1 )-1 C 

C (7£*)-1 = (TZ~1)*, and thus (ii) also holds. Hence, since TZ — (7£-1 )-1 , it 
is clear that (ii) also implies (i).
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Therefore, if (ii) holds, then we have not only TZ C ( f t-1 )*, but also 
TZ~~X C 7£*. Hence, it follows tha t TZ* С (TZ-1)* and (7£-1)* C TZ*. Conse­
quently, we have (7£-1 )* = TZ*, and thus (iii) also holds.

Finally, to complete the proof, note that if (iii) holds, then again by 
Theorem 1.4, (TZ*)-1 = (TZ-1)* = TZ*. Moreover, if (iv) holds, then because 
of TZ C TZ*, we also have TZ-1 C TZ*.

Because of this theorem, we obviously have

C o r o l l a r y  3.7. IfTZ and S  are uniformly equivalent relators, then TZ 
is uniformly symmetric i f  and only i f  S  is uniformly symmetric.

COROLLARY 3.8. A relator TZ is uniformly symmetric if and only if TZ 
is uniformly equivalent to a properly symmetric relator S.

Moreover, from Theorem 3.6, by [28, Corollary 5.5] and Theorem 1.2, it 
is clear that we also have

THEOREM 3.9. IfTZ is a relator, then the following assertions are equiv­
alent:

(i) TZ is uniformly symmetric;
(ii) Lim ^-i = Lim# (A dh^-i =  Adh^)/

(iii) LimTj (Adhft) is symmetric.

On the other hand, by using a quite similar argument as in the proof of 
Theorem 3.6, we can also easily prove

THEOREM 3.10. IfTZ is a relator, then the following assertions are equiv­
alent:

(i) TZ is proximally symmetric;
(ii) TZ-1 is proximally symmetric;

(iii) TZ-1 is proximally equivalent to TZ;
(iv) TZ* is properly symmetric.

Because of this theorem, we obviously have

COROLLARY 3.11. IfTZ and <S are proximally equivalent relators, then 
TZ is proximally symmetric if  and only if S  is proximally symmetric.

COROLLARY 3.12. A relator TZ is proximally symmetric if and only if 
TZ is proximally equivalent to a properly symmetric relator S .

Moreover, from Theorem 3.10, by [28, Corollary 5.9] and Theorem 1.2, 
it is clear that we also have

T h e o r e m  3.13. IfTZ is a relator, then the following assertions are equiv­
alent:

(i) TZ is proximally symmetric;
(ii) C l^-i = С\ц (In t^ -i = Int??);
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(iii) O tj is symmetric ((Int7j)  1 = С о Int я. о C).
R e m a r k  3.14. This latter theorem, together with [28, Theorem 6.7], 

will allow us to easily prove that 7ZA is properly symmetric if and only if 
В П с1тг(А) ф 0 implies А П clv (B )  ф 0.

4. T opologically  sym m etric relators

From Examples 2.6 and 2.7, it is clear that an analogue of Theorems 3.6 
and 3.10 cannot be true for topological symmetry.

However, as some immediate consequences of [28, Corollaries 5.13, 5.16 
and 5.19], we still have the next two theorems.

T h e o r e m  4.1. IflZ  is a relator, then the following assertions are equiv­
alent:

(i) 7Z is topologically symmetric;
(ii) limn  C lim ^-i (adhft C adh^-i);

(iii) cl к  C cl^-i (intft-i C intft).
THEOREM 4.2. IflZ  is an inversely topological relator, then the following 

assertions are equivalent:
(i) 7Z is topologically symmetric;

(ii) T K-i c  T v  (T v-г C Tv).
REMARK 4.3. By Theorem 4.1, it is clear that the implication (i) => (ii) 

is always true.
On the other hand the next simple example shows that the converse 

implication is not, in general, true.
E x a m p l e  4.4. If X  = (1,2,3,4} and R С X  x X  such that 

Д(1) = Я(3) = Х and R(2)=  Ä(4) = X \ { 1 ) ,  

then TZ = {Й} is a relator on X  such that

T v-i — Tv =  {0,-X-} ,

but 7Z is still not even weakly symmetric.
Because of the definition of R, it is clear that Tv = (0 ,X ). Moreover, 

it is also clear that

Д -1(1) =  {1,2) and Д-1 (г) = X  if i e l \ { l } .

Thus, we also have T v -i  = {0,X}. Moreover, since Д(1) <f_ R  г(1), it is 
clear that 1Z is not weakly symmetric.

REMARK 4.5. Note that for a singleton relator 1Z = {Д} all the possible 
symmetry properties coincide.
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Since the inverse of a topologically symmetric relator need not be topo­
logically symmetric, we must also have

D e f in it io n  4.6. A relator TZ on X ,  or a relator space X(7Z), is called
(i) inversely topologically symmetric if 1Z~X is topologically symmetric;

(ii) topologically bisymmetric if 7Z is both topologically symmetric and 
inversely topologically symmetric.

R em a r k  4.7. By Theorem 3.10 and Remark 2.2, it is clear tha t a prox- 
imally symmetric relator is also topologically bisymmetric.

On the other hand, the following example shows that the converse state­
ment is not, in general, true.

E x a m p l e  4.8. If X  and A  are as in Example 1.6, and В = A  \  {/}, 
where /  = [0,1[, then

1Z -  1ZA U Щ 1

is a topologically bisymmetric Davis-Pervin relator on X  such that 1Z is not 
proximally symmetric.

The topological bisymmetry of 1Z is immediate from the facts that

7г -1 =  TZ~2 UTZB

and
1Z~2 C 1Z\ and C TZв .

Note that the first inclusion has been established in Example 1.6, while 
the second inclusion is apparent from the facts tha t В — A  \  {/} and

c  R d x )

for all x e I,  and R i(x ) = X  for all x 6 X  \  I.
To check tha t 1Z is not proximally symmetric, note that

R J 1 € TẐa , but R J1 £ 1Z

since

Ra {X  \  I )  R J \ X  \  I)  and R~B\ X \ I ) < t  R j \ X \ I )

for all A  € A  and В £ В.
Namely, if A  € A,  then we obviously have

Ra ( X \ I )  = X  and R J 1( X \ I )  = R x \ j ( X  \  I) = X \ I .

Moreover, if В  € В such that

R x \ b (X  \  I ) =  R l \ X \ I ) C R J 1( X \ I )  = X \  I,
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then since

Rx \ b ( X \ I )  = X i f  X \ I  <£ X \ B  and RX\B( X \ I ) = X \ B  if X \ I  C X \ B ,  

we also have
X \ I  C X \ B  C X \ I ,

i.e., В  = / ,  which is a contradiction.
R e m a r k  4.9. Note that under the above notations, we actually have

П ~х С П'Х and П  C TV f U 1Zß,

which is a little more than the topological bisymmetry of 7Z.
Now, as some immediate consequences of Theorems 4.1 and 4.2 and 

Definition 4.6, we can also state the next useful theorems.

T h e o r e m  4.10. IflZ  is a relator, then the following assertions are equiv­
alent:

(i) TZ is topologically bisymmetric;
(ii) lim ^-t = Иная (adh^-i = adh^);

(iii) clft-i = cln  (in t^-i = intтг).

T h e o r e m  4.11. IfT t is a bitopological relator, then the following asser­
tions are equivalent:

(i) 1Z is topoloqically bisymmetric:
(ii) = T n  = Tn ).

R e m a r k  4.12. By Theorem 4.10, it is clear that the implication (i) => 
(ii) is always true.

On the other hand, Example 4.4 shows also that the converse implication 
is not, in general, true.

5. W eakly sym m etric relators

As an immediate consequence of [28, Theorem 2.22] and Theorem 1.8, 
we can at once state

THEOREM 5.1. IflZ  is a relator, then the following assertions are equiv­
alent:

(i) 7Z is weakly symmetric;
(ii) Qu = Г\К;

(iii) Qn- 1 = Qn;
(iv) qti is symmetric.

Hence
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COROLLARY 5.2. IfTZ and <S are weakly topologically equivalent relators, 
then TZ is weakly symmetric if and only if S  is weakly symmetric.

Moreover, from Theorems 5.1 and 3.6, it is clear that now we also have

THEOREM 5.3. I fTZisa relator, then the following assertions are equiv­
alent:

(i) TZ is weakly symmetric;
(ii) TZ~l is weakly symmetric;

(iii) TZ~l is weakly topologically equivalent to TZ;
(iv) {П72.}* is properly symmetric.

However, at present, it is more important to point out that by using 
Theorem 5.1, now we can also easily prove

THEOREM 5.4. I fTZi sa  relator on X , then the following assertions are 
equivalent:

(i) TZ is weakly symmetric;
(ii) x G intft(A) implies q k ( x )  C A for all А  С X ;

(iii) А П Qn(x) ф 0 implies x  G cln{A) for all x G X  and А  С X .

P r o o f . If x G int7j(A), then there exists an R  G TZ such that R(x)  C A. 
Therefore, if (i) holds, then by Theorem 5.1, we also have Qn(x) =  (П71)(ж) C 
C R(x)  C A. Consequently, (ii) also holds.

On the other hand, if x ^ cl^(A), then by [28, Theorem 2.13], x G 
G in tti(X \  A). Therefore, if (ii) holds, then we also have Qn{%) С X  \  A, 
i.e., А П Qn(x) =  0. Consequently, (iii) also holds.

Finally, to complete the proof, note that if (iii) holds, then у G £>7z(z), 
i.e., {у} П Qn(x) ф 0 implies x  G c1tz({í/}) =  ßn{y) for all i , j G X .  And 
thus, again by Theorem 5.1, (i) also holds.

R em ark  5.5. In the light of the above theorem and Remark 3.14, it is 
clear that the weak symmetry of TZ is a natural localization of the proper 
symmetry of TZA.

Despite this, it is still ra ther surprising that Theorem 5.4 allows us to 
prove easily

T h eo rem  5.6. IfTZ is a relator on X , then the following assertions are 
equivalent:

(i) TZ is weakly symmetric;
(ii) TZA is inversely topologically symmetric.

P r o o f . If x  G X  and А  С X ,  then by [28, Theorem 6.7] and Theorem
1.2, it is clear tha t

А П qti(x ) ф 0 •ФФ’ A  G С1^л({г}) 0  {ж} G C1(tja)- i (A) &
Ü I G  cIjtjaj- í ÍA).
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On the other hand, from [28, Corollary 5.7], we know that x G с1тг(А) if 
and only if x G c1?ja(A).

Therefore, by Theorem 5.4, the assertion (i) is equivalent to the inclusion

Cl(7JA)-l C clftA,

which is, by Theorem 4.1, equivalent to the assertion (ii).
R e m a r k  5.7. Note that the implication (ii) => (i) is already an imme­

diate consequence of Remark 2.2, Theorem 5.3 and Corollary 5.2.
Moreover, note also that the topological symmetry of 7lA is nothing else 

but the proper symmetry of TZA which is a rather restrictive property.

6. W eakly sym m etric  weakly tran sitive  relators

As an immediate consequence of Theorem 5.1, [29, Theorem 3.21] and 
[30, Corollary 4.13] we can also state

T heorem 6.1. I f  TZ is a weakly transitive relator on X , then the follow­
ing assertions are equivalent:

(i) TZ is weakly symmetric;
(ii) Qn is an equivalence;

(iii) qti is nonmingled-valued.
R emark 6.2. Note that the implications (i) <= (ii) o- (iii) are always 

true.
Moreover, note that if (ii) or (iii) holds, then 7Z is necessarily weakly 

transitive.
Now, by considering the Davis-Pervin relator Tlxy ^ ,  we can also easily 

prove
THEOREM 6.3. I f 'l l  is a weakly transitive relator on X , then the follow­

ing assertions are equivalent:
(i) Tl is weakly symmetric;

(ii) Tlx/ qti *s topologically symmetric.
P roof. If (i) holds, then by Theorem 6.1, we have

^en(y)(y) = вк(у)  C (TZx \ qti(x)) (у) — {Rqk(x)) (у)

for all x, у G X ,  which is apparently a little more than (ii).
Conversely, if (ii) holds and G I  such that у £ Qn(x ), then there 

exists a z G X  such that

К Ы * ) ( У )  c  ( Ä e* (*))  1 ( У) =  {R X \ qk{x )) (У)  =  Х \  Q n ( x )- 

Hence, it follows that
У €  Q n { z )  С X  \  ß - n ( x ) .
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Because of [29, Theorem 3.21], this implies now that

Qn{y) C X \ Q r{x).

Therefore, we also have x £ вк.(у). Consequently, qr is symmetric and thus 
by Theorem 5.1, (i) also holds.

R emark 6.4. Note that this theorem extends the first assertion of Ex­
ample 2.6, and is very similar to Theorem 5.6.

B ut, in contrast to  Theorem 5.6, neither of the implications (i) => (ii) 
and (ii) => (i) in Theorem 6.3 is true without supposing the weak transitivity 
of П .

E x a m p l e  6.5. If X  = {1,2,3} and R с  X  x X  such that

Ä(1) =  {1,2), R(2) = X, R( 3) = {2,3},

then TZ = {Д} is a strongly symmetric relator on X  such that Т̂ х/е-к is not 
even weakly symmetric.

To check this note that qr = R ~ x = R, but

n ^ * /ff* =  A * U { (l,2 ),(3 ,2 )}

is not symmetric.
E x a m p l e  6.6. If X  =  {1,2,3} and R С X  x X  such that

Д(1) = {1,2} and Д(2) = Ä(3) = {2,3},

then TZ = {R}  is a relator on X  such that 7Zx/0n properly symmetric 
despite that 71 is not weakly symmetric.

To check this, note that q r  = R~x and

Ä - X(1) = {1}, R ~ \2 )  = X , R ~ \ 3) = {2 ,3}.

Therefore

(Reii(i)) = = R en(3) and (Лря (2)) = -^ся (2)-

Analogously to Theorem 6.3, we can also easily prove
THEOREM 6.7. IfTZ is a weakly transitive relator on X , then the follow­

ing assertions are equivalent:
(i) 71 is weakly symmetric;

(ii) TZx/еъ ,s topologically finer than TZ.

P roof. If (i) holds, then by Theorem 5.1, we have

-  (п П )(х ) c  R (x )
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for all x £ X ,  which is apparently a little more than (ii).
Conversely, if (ii) holds, then for any x £ X  and R  £ 71 there exists a 

у £ X  such that
*•- 7 t ( x ) .

Hence, if R(x) ф X ,  it follows that
x £ вк(у)  C R(x).

Because of [29, Theorem 3.21], this implies now that

Qlг(х) C R(x).
Consequently, by [28, Theorem 2.22], we have

(п7г)_1(х) = gu(x) с  (n7г)(х)
for any x £ X ,  whence (i) is immediate.

R e m a r k  6.8. From the first part of this proof, it is clear that the im­
plication (i) =>■ (ii) is always true.

On the other hand, Example 6.6 shows also that the converse implication 
is not, in general, true.

Namely, if 71 is as in Example 6.6, then we have

^enUlC1) c  Ä(!) and Ä<?*(3)(0 = В Д  if * =  2,3.
Consequently, TZ-x/en topologically finer than 71 despite that 71 is not 
weakly symmetric.

7. W eakly sym m etric w eakly topologica l relators

From Theorem 5.4, by [28, Theorem 2.20] and Theorem 5.1, it is clear 
that we also have

THEOREM 7.1. I f  71 is a weakly topological relator on X ,  then the fol­
lowing assertions are equivalent:

(i) 7Z is weakly symmetric;
(ii) x £ G implies дк{х)  C G for all G £ Tti;

(iii) F  П Qn(x) ф 0 implies x £ F  for all x £ X  and F £ Tn-
To check the implication (iii) => (i), note that if (iii) holds, then because 

of у € Qn{y) € Tv., the condition у £ дтг(х) implies x £ дц(у)-  And thus 
by Theorem 5.1, (i) also holds.

R e m a r k  7.2. By Theorem 5.4 and [28, Theorem 2.20], it is clear tha t 
the implications (i) =>• (ii) о  (iii) are always true.

On the other hand, our former Example 4.4 shows also th a t the impli­
cation (ii) => (i) is not, in general, true.

Now, as an immediate consequence of Theorem 7.1 and [28, Theorem 
2.20], we can also state
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T heorem 7.3. I f  TZ is a weakly topological relator on X , then the fol­
lowing assertions are equivalent:

(i) 7Z is weakly symmetric;
(ii) for each F  £ F r  and x £ X  \  F  there exists a G £ 7% such that 

F  C G, but x £ G;
(iii) each member of F r  ( T r ) is the intersection (union) of certain mem­

bers of T r  ( F r ) .

To check the implication (i) =$> (ii), note that if F £ F n ,  then X \ F  £ Tr . 
Therefore, if x £ X  \  F  and (i) holds, then by Theorem 7.1, Qr (x ) С X  \  F. 
Hence, since x £ Qr (x ) £ F r , it is clear th a t G = X  \  Qr ( x ) £ Tr  such that 
F  C G, but x £ G.

REMARK 7.4. It is clear that the equivalence of (ii) and (iii) is always 
true.

On the other hand, again Example 4.4 shows that the implication (ii) =>■
(i) is not, in general, true.

Thus, for the sake of completeness, we need only show that the implica­
tion (i) => (ii) is not also true in general.

Example 7.5. If X  =  {0 ,1 ,2} and Д, С X  x X  for i = 1,2 such that
R i(0) =  {0 ,i}  and Ri(k) = {1,2} if к £ {1,2},

then TZ = {Ä i, Ä2 } is a weakly symmetric and weakly transitive relator on 
X  such that the assertion (ii) of Theorem 7.3 does not hold.

To check this latter statement, note that
T* = {0 ,{ 1 ,2 } ,X }  and JF* = {0 ,{O },X }

and thus the assertion (iii) of Theorem 7.3 cannot hold.
Remark 7.6. The above relations Äi and R 2  have also been used in 

our former papers ([28, Example 5.23] and [29, Example 2.9]).
From Theorems 7.1 and 5.1, it is clear that we also have
T heorem 7.7. I f  TZ is a topological relator on X , then the following 

assertions are equivalent:
(i) TZ is weakly symmetric;

(ii) рте(х) =  П intr (R(x )) for all x £ X ;
Ren

(iii) f |{ ^ :  x £ F £ F r )  = f|{G : x £ G £ T r )  fo r all x £ X .
To check the implication (i) (ii), note that if x £ X  and R £ IZ, then

because of the topologicalness of 7£, we have int7j(Ä(a:)) £ T r . Therefore, 
if (i) holds, then by Theorem 7.1, Qr ( x )  C intTj(R(x)) also holds. Thus, we 
have Qr ( x )  C f] intr ( R ( x ) ) .

Ren
Moreover, if (i) holds, then by Theorem 5.1, it is clear that we also have

P ) intr (R{x )) C P i R(x) =  gn (x),
Ren Ren
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even if 7Z is not supposed to be topological. Consequently, if (i) holds, then 
(ii) also holds.

R e m a r k  7.8. By [28, Theorem 2.22], it is clear that the implication
(ii) => (i) is always true.

On the other hand, Examples 4.4 and 7.5 show that the implications
(iii) => (i) and (ii) => (iii) are not, in general, true.

Thus, for the sake of completeness, we need only show that the implica­
tion (i) =>• (ii) is also not true in general.

E x a m p l e  7.9. If R  is a reflexive and symmetric relation on X  such that 
R is not transitive, then TZ = {Ä} is a strongly symmetric relator on X  such 
that the assertion (ii) of Theorem 7.7 does not hold.

To check this latter statement, note that for a singleton relator 7Z = {R}, 
the assertion (ii) of Theorem 7.7 means only that й о й -1 c  R, i.e., Ä-1 C R 
and R о R  c  R.

R e m a r k  7.10. By using some convenient definitions the assertions (ii) 
and (iii) of Theorems 7.3 and 7.7 can be stated in more suggestive forms.

For instance, under the notations of [29, Theorem 2.10], the assertion 
(ii) of Theorem 7.7 means only that the relators 1Z and (7£0)-1 are weakly 
topologically equivalent.

N otes and com m ents

The inverse U~l of a quasi-uniformity U was called the dual and the 
conjugate of U by Nachbin [21, p. 57] and Murdeshwar-Naimpally [20, p. 
16], respectively. The assertion (ii) of Theorem 1.4 is essentially a particular 
case of Theorem 2 of Kenyon [11].

The useful example 1.6 has mainly been suggested by the half-open inter­
val space of Kelley [10, p. 59] and the generalized uniformization techniques 
of Davis [6] and Pervin [25]. Another important relator constructed from 
half-open intervals was utilized in [27].

A strongly symmetric (uniformly symmetric) generalized uniformity was 
called symmetric (feeble symmetric) by Krisnán [13], while an inversely topo­
logically symmetric quasi-uniformity was called point-symmetric by Fletch- 
er-Lindgren [8, p. 36]. The local symmetry of [8] is an important hybrid 
property.

Most of the results of Examples 1.6, 2.6, 2.7 and 4.8 can be easily ex­
tended to more general Davis-Pervin relators. Moreover, there is a natural 
generalization of the Davis-Pervin relators whose symmetry properties can 
also be nicely described [31].

The definitions of uniform and proximal symmetries are completely jus­
tified by Theorems 3.6 and 3.10 and their consequences. However, in the 
fight of Theorems 4.1 and 4.2 and Examples 2.6 and 2.7, the topological 
symmetry should be rather called a topological semisymmetry.
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In [18], a relator 7Z will be called properly topologically symmetric if 
its topological refinement 7lA is properly symmetric, and it is shown that a 
relator 1Z is properly topologically symmetric if and only if 1Z is topologically 
equivalent to a symmetric singleton relator S  =  {5}.

Thus, a properly topologically symmetric relator is always topologically 
symmetric, but not necessarily topologically bisymmetric. Moreover, even 
a strongly symmetric relator need not be properly topologically symmet­
ric. Thus, neither the topological bisymmetry nor the proper topological 
symmetry can be naturally called the topological symmetry.

Our weak symmetry corresponds to the famous regularity axiom До- 
This axiom was first introduced by Shanin [26], and later rediscovered by 
Davis [6]. Since then a lot of work has been done on the Äo-axiom. See, for 
instance, [17], [1, p. 402], [20, p. 37], [22], [5], [9], [16], [7], [2, p. 93], [14], [4], 
[33] and [3].

In particular, the equivalence of the assertions (iii) of Theorem 6.1 and 
(ii) of Theorems 7.1 and 7.3 in topological spaces, and the equivalence of 
the assertions (i) and (ii) of Theorem 5.1 in quasi-uniform spaces have also 
been observed by Davis [6, Theorem 2] and Murdeshwar-Naimpally [20, 
Theorems 3.8 and 3.10], respectively.

These latter two authors, in their paper [20, Theorem 3.6], have also 
proved a close analogue of Theorem 5.6 which shows that a topological relator 
is weakly symmetric if and only if it is topologically equivalent to an inversely 
topologically symmetric quasi-uniformity. A few theorems of this kind will 
also be proved in [19] and [32].

Added in proof (April 11, 1991). The author is deeply indebted to Jenő 
Deák who has pointed out several small errors in the text and suggested the 
following more valuable examples in place of Examples 2.5, 4.8 and 7.9.

E x a m p l e  1. If X  is an infinite set, £ is the family of all equivalences on 
X  having only finitely many equivalence classes, and L is a linear ordering 
on X ,  then the family

TZ =  { E n L :  E  e  £}
is a base for a non-symmetric transitive quasi-uniformity U on X  which 
induces the discrete proximity on X .

The curious fact that a non-symmetric quasi-uniformity may induce a 
proximity is certainly well-known, but we could not find it in the existing 
literature.

EXAMPLE 2. If X  is an uncountable set, then the family TZ of all relations 

R(a ,B) =  A  x  В U (X  \  A) x X ,

where А С В  С X  such that A  is finite or X  \  В  is countable, is a subbase for 
a topologically bisymmetric totally bounded quasi-uniformity U on X  which 
induces a non-symmetric quasi-proximity on X .

For the necessary prerequisites on quasi-uniformities and quasi-proximi­
ties the reader is referred to Chapter 1 of Fletcher-Lindgren [8].
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Example 3. If X  is the set of all positive integers and for each n £ X ,  
we set R n С X  x X  such that

Ä„(1) = {1,2}, Я„(2)= {1,2} U {*}£=„

and
R n(k) — {k} for A: =  3 , 4 . . . ,

then the family 7Z =  {Än}^Lj is a weakly topological and weakly symmetric 
relator on X  such that the assertion (ii) of Theorem 7.7 does not hold.

Moreover, Jenő Deák has also observed that the assertions (i) and (iii) 
still remain equivalent under the weaker assumption that 1Z is only weakly 
topological.

In this respect it is also worth mentioning that most of the results of 
our present and former papers remain true if arbitrary relation systems are 
called relators.

Added in proof (April 16, 1992). Meantime, we learned that various sym­
metry properties of quasi-uniformities have also been studied by P. Fletcher 
and W. Hunsaker [Symmetry conditions in terms of open sets, to appear in 
Top. and its Appi] and J. Deák [A note on weak symmetry properties of 
quasi-uniformities, to appear in Studia Sei. Math. Hungar.].

For some closely related results, see also H. P. A. Künzi, M. Mrsevic, 
I. L. Reilly and M. K. Vamanamurthy [Convergence, precompactness and 
symmetry in quasi-uniform spaces, to appear].
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EXACT NORM ESTIMATES FOR THE SINGULAR 
SCHRÖDINGER OPERATOR

M. HORVÁTH (Budapest)

In this paper we consider the manifolds Sk C R ^ , к = 1 , . . .  К  defined 
by the rules

Sk := {(£,*?): f G Rm*, r) e RN~mk, £ = <pk(v)}
where the partial derivatives of the functions <pk : RN~mk —» Rm* are uni­
formly bounded:

lv^(7?)|^c, v e R N~mk, к = 1,. . .  ,K.
We define

К
S  := U  Sk.

k=l
Let further 0 £ r  < 2, m  := minm* and let

к
(i) q € C°°(Rn  \  S) be a real valued function satisfying

(ii) |D°g(a:)| 5Í co[dist(i, 5)]~Г_Н , x € R7̂ , 0 ^  |a | < m  +  2 — r. 
Introduce the Schrödinger operator

I'm/  := - Д /  +  <lf + Hf-
Recall the definition of the Liouville classes L‘ (R N), 1 £ p ^  oo, t > 0. Vp 
is the space of all functions

F ~ \ ( i  + N 2) - * f / ) ,  /  e l p(r n )
where F  is the Fourier transform defined on the Schwartz distributions. The 
corresponding norm is defined by

|f - « 1 +  l*l, ) - * i ,/ ) | | 4 (R „) :=

We shall prove that in case 1 < p < ^ ,  makes an isomorphism 
between Lp and Lp. Let Iq be the integer defined by

m m
T +  2£o ~ T + 2{£q — 1)

Then we have the following:
T heorem, a) Let 1 < p < 0 < s < 2£0, s < j  + 2 -  r. Then
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К р ^  "р
is an isomorphism of Lp onto Lp.

b) Suppose that the conclusion of a.) holds and consider the bounded linear 
operators

jin • Ln  ̂ Lr T3 LP Ч-Jp — -  ^pi
Suppose further that A n is changeable with Lp and

A nf - ^ f ,  7 1 - 0 0 ,  f e L p .

Then we have
A nf  / ,  ti — oo, /  € L’p.

c) Let 1 < p < 5 = ^  +  2 — г. There exist a potential q satisfying
conditions (i), (ii) and a function

f  e C%°(RN ), f $ D ( L l ) .

Remark, a) and b) generalize some results of Nikolskii, Lions, Lisorkin
[8] and Joó [6] and Joó [7]. c) shows that the condition s < ^  + 2 — r can
not be improved in a); this answers a problem raised in Joó [7].

We recall the following result of Marcinkiewicz:
T heorem A [3]. Suppose that the function

A: R n  — R

satisfies the following property: if

1 < h  < k2 < . . .  < kT < N , r < N  

is an arbitrary index sequence, then the derivative

D A := DXki . . . D XkrA(x)

exists and is continuous at the points x £ , x ^  ф 0 , . . .  , х^г ф 0; further

|xkL>kA| =  Ix k l . . . x krDXki . . . D XkrA(x)| < M, x £  R N.

In this case for any 1 < p < oo there exists a constant cp, independent 
of f  and M  such that

( l)  \ \F - ' ( \F f ) \ \L,  S срЛП/l l j , ,  /  € lp(r n ).

Such a function A(x) is called multiplicator.
Our first statement is analogous to Lemma 1 of Joó [6].
Lemma 1 (Joó [7]). Let m  2, a ^ 0, 1 < p < tjf. Then
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WeifWb, й c\\f\\L?, f e L ° ( R N), ß k ( x ) : = \ i - M v ) \ ~ \  x = (t,Tl)

where c — c ( a , m , N , p ) is independent of f .
Remark that in [7] a slightly different notation is used, namely

Sk{(t ,  Tj) e  Rm* X R N~m* : r, =  ^ ( 0 ) ,  dim 5fc =  mfc, 
m = m\n(N  -  mjt), gk(x) = \r) -

Taking these modifications into account, Lemma 1 is transformed into Lem­
ma 1 of [7].

Introduce the notation

(2) a( f )  *  ft(/), /  € T\

this means that there exist constants 0 < ci < c2 < oo, independent of /  
such that

(3) cia( f )  < b ( f ) ^  c2a ( /) , f Z T .

Lemma 2. Let 1 < p < oo, p > 0 and i  e  N = { 1 ,2 , . . .} .  Then

(4) Wf hy  + и \ \ / \ \ x  11(м + 1  -  A)f\ \L2t-2, f  e l 2p ,

(5)
| |( « + l - A ) '/ | | t ,  s  |1Л1Ч .+ (* ||/||1 ? - = + ^ | | / | |ь Г . + . . . + / | | / | | 1 „  / 6 ?

where the implicit constants do not depend on f  and p.
P r o o f . First verify (4). The estimate

IK/* -b 1 -  Д )/11ь“ - 2 = c(|I/IIl| < +  p\\f\\L2pe-2)

being trivial, it remains to show the converse. The estimate

1М1 + 1 1*Ш « + *11 +  Н«-ь| |
is true in any normed space, hence
(6)
ll/lllJ '+ ^ ll/llj,« -! =  H i" 1« !  +  | i | ! ) ' i ’/ ) | |b|,+ | |F - I ((l + M 2) ' - V / ) I I l,  s

£ ||F->((1 + Ix p i'-'O + M V J F O II^ + IIF -1« !  + |x|2)'_1( l+ |x |2-M )F/)ll 
Consider the function

Л(х) 1 + И * -  * = 1 _ 2u____ -____ .
l + |z |2 +  / i  ^ l  + \x\2 + p
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It is easy to see that |A(x)| ^  3, A is a irmltiplicator and

lx*'i • • • x i k Dx%i ...Z>XlfcA| ^  + ^)fc+1 = c(^)-

Hence Theorem A implies that

||F -1((l + W1)'‘ I( l + |x |2 - /x )F /) ||ii ,<

£ cO.JVJIIf-'Kl + |x|2 + />)(1 + |z |2) '- V / ) | |JV /  6

Now we can continue the estimate (6):

U/H vg  + / > 1 1 / 1 1 £  C||F->((1 +  |x p ) '- '( l  +  |x |2 +  g ) Ff ) Hi, =

= c ||F - l (( l +  |x |2) ' - 1f ( ( f>+ 1 -  Д )/) ) ||,., =  c||(/>+ 1 -  A)/IIlj(- i

which proves (4). The estimate (5) is proved in (4) for t  = 1 and for larger 
l  we use a simple induction: if (5) holds for i, then

||(м +  1 -  A)*+1/ | | lp x  \\(p + 1 -  Д ) / | |ц 1 +  HIO* +  1 “  ^)/11ь^-2 + • ■ •

• • • + /110* + 1  -  A ) / | |lp -  | | / | |L2/+2 + mII/IIl^  +  ^W/Wli1- 7 +  • • •

• ■ • + / n / i i 4 +/>'+1i i / i i v

Lemma 2 is proved.
Lemma 3. Let m > 2, 0 < г < 2, f  e N ,  1 < p < 2f < -̂ +  2 -  r 

and let Ho(N,p,T) be large enough. Then

(7)

( 8) 

(9)

Ь c

M l « -  "  I I / I I l | <  +  > > I I / I I l j < - > .
L i/lli, *  ||/|1ц< + />11/11**- + ■ ■ • + А П К ,

\ K f  -  О* -  A)'/IU„ s

11/11*;««-» + />11/11*;««-» + • • • + / ' 2|l/ll*;« + />( 'll/11/д

hold for f  € Lp̂ , // ^ Po> with constants independent of p. 
P roof. We know that

( 10) ll« /ll* * - £ с E  l l ß 'V  ■D'Vlk, £
O£|0i1+I0j I£»-2

< c E l P A / l l t .-Hftl £  cII/IIlt+2<- 2
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(we have used that A(x) =
(i+W2)W

is a multiplicator, see [3], 1.5.5).

Consequently

IIWIIl^ - 2 = HO* -  д )/11ь2<- 2 +  Ik/lli,2*-2 = c(II/IIl^ +  м11/11ь2/- 2)-

Conversely, we have for ^  ^  1

£  110* -  A ) /l l i><-■ -  lle/lltj'-»  ä
=  c i ( I I / I I m < +  m I I / I I l « - * )  -  c 2 l l / | | r  .

Consider the function

A(x) := 0  +  M ¥
£(1 + |x|2) +  c(£)

where £ > 0 is arbitrary and c(e) > 0 is a constant to be specified later. We 
shall show that A is a multiplicator; we have to prove the estimates

|xí! . . . x ikDXii . . . D IikXI ^  M, x e R N.

Up to permutations of indices, xtl . . .  x;kDXii . . .  DXik A is the sum of expres­
sions of type

xh . . . x ikDXii . . . D Xir( 1 +  \x\2) ь \ +1 . . . D Xik[e{ 1 + |x |2) + c(e)]"1.

Expanding the derivatives we get

| 2 \ i  П r> r„ /i  I I_12 \ I „ /-„M -lX«1 . • .Xifc^x^ . • • Дг;г(1 +  |x| ) 2 • Дг,г+1 . . +  |x| ) +  c(e)]

2 l_. ~ |2 , .-1245
= С F.'r+l •••34 l (1 + \X\ P

( l + | x | 2)r [c(l + |x |2) + c(£)]fc- r e(l + |x |2) +  c(e) -  

j  C- 1 -£T~k -£_1(1 + |x |2) i -1

S l —
Now if (1 + |x |2)? -1 < £fc+1~r i.e. 1 + Ix12 > ( i )  1+" i  , then er~k- 

•£-1 (l +  |x |2)ä - 1 < 1. If 1 -|- |x |2 < ( i)  1+-i  , then

r - t i + J i E  < j _ . < j
c(e) = e(e)

if we suppose that
_ L k+1—r

c(e) > £ '~í
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for all 0 < г ^  к ^  N  i.e. if

c(e )  t  £
-N

Therefore we have proved by Theorem A the following statement:
Let 0 ^ т < 2, l < p < o o  and e >  0. Then there exists c(e) = 

=  c(e,T,N)  >  0 such that for any l  > 1

(11) | |/ |l i ; « . - I S £ |l/l l4 < + c (£ ) ||/ ||1» - I, / € i " ( R ").

Consequently

IIl/í/IIl^ - 2 = ci (|I/IIl“  +  HI/IIl2'-2)  -  c2(^II/IIl«  +  c(£)II/IIl2/- 2)  =
=  (Cl -  c2£)\\f\\L2 t +  (ci/x -  c2c(£ ) ) ||/ | |L2<- 2.

Let £ > 0 be chosen so small that c\ — c2£ t  and then for fixed £ let p be 
large enough to ensure C\p — c2c{£) t  ^ p .  Then

M i » - » г  | ( i i / i i 4 < +  m I I / i i  ! » - » ) •
Hence (7) is proved. Statem ent (8) follows from (7) by induction on t  as in 
Lemma 2. Now we show (9). Expanding the brackets in ((p -  Д ) +  q)1 f  we 
get that (p — s + q)*/ — (p — Д )* /  is the sum of expressions of the form

cpa Dßlq- . . . •  Dßrq- Dßf

where
2a +  2r -f \ßi\ +  . . .  +  \ßT\ +  \ß\ =  2£, г t  1.

By Lemma 1 we obtain

В « ',  • 2^ /llb ,, S см“ £||«>!?1|+- +|Л|+” 0 '5Л11,  £
к

= Ĉ a \\Dß fWL\ßx\ .̂ .. + |y3r|+rr =  С/г"||1>/3/||^2г-|)3|-2а+г(г-2) 5Í

= С/Га | | / | |  2<-2а + г(г-2) ^ СМа ||/ | |  ,г+2((-1-а).Ьр Ljp

Lemma 3 is proved.
Lemma 4 [8]. Let l  6 N. Then for any n't. I
a) ( —Д  +  p)< : L f  -  Xp is an (onto) isomorphism.
b) -  Д  +  p : L f  -  L^ - 2 is an (onto) isomorphism.
Lemma 5. Lei m > 2, 0 < r < 2, 1 < p < 21 < j  + 2 -  t , p > p0.

Then
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a) L ' : L *  -  LP is an (onto) isomorphism, and
b) l „  : i "  L « - ! is an (onto) isomorphism.

P r o o f . Since b) follows from a) by induction on £, we show only a). 
That L* is an isomorphic embedding has been proved in Lemma 3. Suppose 
indirectly that there exists

О Ф 9 £ Lp•, -  + — = 1
p  p

satisfying

(12) /  g lU  =  0, /  € L f .
TtN

There exists h € Lp such that

II ÎIlp = 1, f  9h = IlflHv-

By Lemma 4 there exists /  such that

/  € L,« (p -  A Y f  = h.

Consequently, using also (9), we obtain

llöllv = I J  gh\ = \ J  (̂m-  a/ / |  = IJ  g[(v -  A)' -  l']/| <
R v R N

й\\д \\ьрЖ ^ - ^ ) е- К и и Р^ о \\д \\ьр. [11/11^*1-0 +  . . . V " 1II/IIl; ' .

By (11) we get

(13) < £

+ c ( £ )  11/ 11ь |г-2 +  +  ■ • •  +  / ^ _ 1l | / I U p ]  =
< 2£ l l / lb*  +  • • • +  A \ f h f

if

(14) с(г) ^  ep.

On the other hand (8) implies that

(15) 1 = ||fc||i„ > c, [ ||/ | |4 , + . . .  + / и л и , ]
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Now if 0 < £ < ^  and for fixed £, ц  is chosen satisfying (14), the relations
(13) and (15) stand in contradiction. This proves Lemma 5.

R e m a r k . Using (4), resp. (7) and Lemmas 4, 5 we see th a t

1 : Lp —>• Lp, (ц + 1 -  A )-1 : Lp -* Lp

are continuous and

О б) l l ( ^ i - A ) - 1I I S r ^ -

Consequently the operators LßQ, 1 — Д with domains

D(lp0) = D ( l - A )  = L l ( RN)

are positive operators in the Banach space ^ ( R ^ )  in the sense of Triebel 
[1, 1.14.1]. We can define the (nonintegral) power Ла of a positive operator 
Л: A(—> A  in the Banach space A  as follows. Let a £ C, n, m i £ Z, <7 £ R 
be arbitrary satisfying

(17) n  > 0, 0 < a < m i, — n < Re a £ a — n.

Then for any
mj ’

the integral
OO

(18) Л > : =  -------- г  f  ta+n~l \ mi~n(A  + t)~m adtГ(а T n)T(m i — n — a) J
о

converges in the norm of A  and does not depend on n, m i. Also, the closure 
of Л“ does not depend on cr. This closure will be defined as Л", the a-th  
power of Л. If a  is entire, a: £ Z, then A" is the usual а -th  iteration of A 
(for a 0) or the inverse of the usual meaning of Л-а  (for а  < 0).

Further we know that if A is a Hilbert space and A is a strongly positive 
selfadjoint operator of A, then

A" = J  Xad E \

where dE \ is the spectral measure associated with A. We shall use
T h e o r e m  В (Triebel [1], 1.15.2). a) Let m i be large enough, Rea,Re/3 < 

< mi, then
AaAßa = Aa+ßa, a £ D{Л2"*1). 

b) I f  Re a < 0 then A“ is continuous and A~aAa — 1.
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c) I f  Re a  • Re ß  > 0, then АаА& = Л°+^.
d) I f  Re a  > 0 and \i > 0 then Aa maps isomorphically D(A“) on­

to А, И(Л°+Й) onto D(A^) ( the space D(Aa) is endowed with the norm 
1МЬ(Л«) := ||Л“а|Ц ).

The explicit description of D(Aa ) for nonintegral a  was studied by many 
authors. J.-L. Lions [4], [5], [8] discovered the nice complex interpolation 
property (20) (below) between the domains D{Aa) for a large class of oper­
ators. We shall apply a variant further developed by Triebel:

T h e o r e m  C (Triebel [1], 1.15.3). Let A be a positive operator. Suppose 
that there exists £ > 0 such that for —£ ^  t < e the operator Au is continuous 
and

(19) ||A*fII < C , \t\ <: £.

Then for any complex numbers a, ß  with 0 £ Re a  < Re ß < oo we have

(20) (D(AQ), JJ(A*))[0] = Т)(Л(г- 0)“+0/3), 0 < в < 1

with equivalent norms.

The following three lemmas are devoted to the verification of (19) for 
our operators 1 — Д and LM. In (17) we can define

(21) a — it, n = l =  o < 2 = m i.

Lemma 6. Consider A = 1 — Д and let 1 < p < oo, 0 < T  < oo. Then 
we have

(22) ||(1 -  A f f  \\Lp < c(p, N,T)\ \ f \ \Lp, f  € Lp(RN), \t\ < T

and (1 — A ) ltf  can be realized by the corresponding integral (18) with (21). 

P r o o f . By the substitution r = (1 + |x|2)u we get

OO

I rit 1 +  M 2 
(1 + |x |2 + r) d r  =  (1  +  N 2 ) “  J  ( ^ ^ 2 d u  =  с ( * ) ( !  +  N 2 ) ’*

where

lc(*)l = J 0 - +  u) 2du < oo.

The function (1 -f |ar|2)** is a multiplicator, since

К ,XikDXi . . . D xijk( l  +  N 2)“ | = c\Xi ■ xik\2( l  + \x\2f ~ k < c ( N , T ) .
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It follows from Theorem A that

l + |x '2
. ' Г О 0

(23) I2 +  r)2

We shall show that for any fixed ш < oo

U)
(24) J  гй (1 -  Д )(1  + r -  A )~2f d r  = F - 1

ü c \ \ f h P, f  e Lp.

ÚJ

C l r "
i + M 2

(l + |x |2 + r ) 2
d r ) F f

holds for /  € Lp. Take any sequence of partitions <pn = (r/t), rk = rk,n of 
the segment [0,w] with

sup(rfc+i >n -  rk,n) -»• 0, n -*• oo.
к

We shah see that the functions

Л„(х) := /*•**(! + |X|1 j  rfc)2Ar * +
о

are multiplicators and

(25) Ix.q . . . x iaDXii . . . D Xia\ n(x)\ < M„ -»• 0, n -> oo
i.e.

.  . . X . .

J r"
Dx . . . D Xi 1 + . ^ 2 --„d r -lp * l j

■* 1 T Ixl2
-  E  Г*= • • • D*i. {l + \x \2 + rk)2A r^

(1 -f |x |2 + r)2

< Mn -> 0.

Let 0 < £ < 1 be fixed. Using the simple estimate

1 + |x|2 ^  c(N)
. Xi .  Dx -■ • • • Dx: (1 +  |x |2 + r )2 ~ 1 + |x|2 + r

< c(N)

we see that
€

■ X i ,  J  г*‘Т)2 Dx 1 +  \x\2 
(1 + |x |2 +  r )2

dr < S- c( N) ,
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Xjj . . . Xft

Suppose that

£  rt‘D“ ‘ ' '  ■ D‘ -  (1 +1|lP  +  Tky Arkrk<e
< £ • c(N).

sup Ark < E2 . 
к

There exist intermediate points г*д £ [г£,г&+1] such that

1 + W2\^J rxt
D*i l ' " Dxi‘ ( l  + \x \2 + r )2

dr-

rk>e

Finally we have

^  c(N )e2

rk D* n - ‘ -D* u ( 1 + \x \2 + rk)2

1 +  И 2

x h  ■ ■ ■ x i .  E
rk>e L

~ rk ,l^xn • ■ ■ Dx,

1 + |x|

^  k ,i . . .X iJ  V ( A r fc)2 max ̂ *-e[rfc,rfc+1]

^  l*n E ( ^ ) f  r m ax ,
> r k  [r*,r*+irk>c

+ 2 \xn I У ' ( А г ь ) 2 m ax
~>c [r*'r*+l]

(1 + |x |2 +  rk<1)2 

d

A rk

l  +  |x|

^ c (N ) (2  +  j )  E  (Лг*)2 = T )£ E  Ark = C(N >T ) • <*> • e.

dr Xl1 (1 +  |x |2 + r)2

l +  |x |2

<

DXii . . .D Xit^  + |ж|2 +  r )2

D л  _ l ± . J . *.l2
x<1” ’ X,' ( l  + |x|2 +  r)3

+

<

rfc=e

The above estimates show that (25) holds indeed. By Theorem A this implies
that
(26)

1 + |x|
(1 +  |x |2 + rky

A r ^ F f  ^ F - 1 ( J * 1 +  1*1
(1 + |x |2 +  r ) 2

d r \F f
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n —> oo. Using the identity

! n L i J £ L _ F / = f [ ( 1 _ A )(1 +  r t _ A )- 2/]

we see tha t the left hand side of (26) is an approximating sum of the integral
U>J  r “ (l -  A )(l +  r — A)_2/d r

о

and this proves (24). Consider now the Lp —> Lp operators

and

Auf  := F ~ l 

Aoof :=  F - 1

i + N 2
(1 +  |x |2 + r )2

1 +  |г 1 2
(1 +  |x |2 + r )2

dr'j F f  

d r^ jF f .

Since the functions UJ

J
, 1 +  N 2
(1 +  |x |2 + r)

: dr

are multiplicators with estimating constants independent of u>, there exists 
c > 0 satisfying

(27) ||A */||l„, \\AooÍ\\lp ± c\\f\\Lp, f  e Lp, и  < oo.

On the other hand the functions

are multiplicators and

OO

J  r ,f( l +  |x |2 +  r) 2dr

OO

ctl . . . x isDXii . . .D Xls J  r ,f(l + |x |2 +  r)
Uf

OO

< c(N ) J (  1 + r f d r  =: Мш -> 0,

dr <

L) —► 00.
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Consequently for /  € ip  we have

W A u f - A o o f U ^

OO

Tltdr

OO

К/ r ltdr
(1 +  |x |2 + r)2, 1(1+  M 2)F f

i J (1 + M 2 + r )2
F ((l -  Д ) /) ^c(p )M w| | ( l - A ) / | |Li>.

This means that if /  is taken from a dense subset Lp of Lp, then Awf  converge 
in Lp to A x ,/ .  Taking into account the uniform boundedness (27) this means

that A wf  Aoof for all /  6 Lp. But then the integral
OO

J
г'*(1 — Д)(1 + г — Д) 2fd r  

converges in Lp for any /  € Lp and equals
OO

U - d
+ N 2
x |2 +  r )2

d r ) F f

Now (23) implies (22), hence Lemma 6 is proved.
R emark. From the identities

Г(г)Г(1 -  z) = ~ A ~ ,  T(z + l) = zT(z) 
sin?rz

we can express the coefficient of the integral (18):
1 _  sh nt

Г(1 +  tf ) r ( l  — it) nt
Lemma 7. Let m ~ t2 , 0 ^  r  < 2, 1 < p < ™. Then for large po

\\K Z + rf\\L -i {1 + Cr)1- i \ \ f h P f  e Lp, 0 < s < 2 .

P roof. The case s = 0 is contained in (16). For /  G Lp there exists 
f \  e i 2 with Lp0+r/ i  = /  and by (7) we get

11/llL, =  H W r/illE p  ^  сн л ц ^

which is the case s = 2. Hence the operator L“0x+ r: Lp —> Lp, Lp —> Lp
is continuous with norms ^  and ^  c respectively. Since the complex 
interpolation is exact, we get that L“^ , . : Lp —► Lp is also continuous with 
norm < ---- —T as we asserted.-  (l+r)1-*
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L e m m a  8 . Let m > 2 ,  0 < r < 2 ,  l < p < ™  and 0 < T < oo. Then for 
p ^  po we have

l|b?/IU, S c(P,N,T,T)\\f\\Lp, f  e Lp, \ t \ < T

and L jj/ can be expressed by the corresponding integral for all f  G Lp.

P r o o f . In the integral defining (p — A ),tf  we shall change the operators 
/i — Д by step by step. First let

h  ■= J  r ' \ p  -  A )(p  + r  -  A) 1[L#J| r -  (p + r -  A) l ]fdr =
0

oo oo

= y r,í[L^ + r - ( ^ + r - A ) _ 1]/d r-y 'r ’í+1( ^ + r ' - A ) _1[L“j r - ( / i  +  r - A ) - 1]/dr.  
о 0

Since

hence
OO OO

IJ  Л к 1 г  - ( n  +  r -  A T x ] f d T  <  J IK/x +  r  -  A ) - 1 g L ; | r / | | L p d r  <

therefore

OO OO

= c /  s  c /  I T  <
о 0

oo

=  C J (  1 +  r ) * ~ * d r  ■ U \ \ l p  =  c| | / | | l p,
0

oo

I /  rit+\ p  +  Г -  A )-1 [L“| r -  (p + r -  A ) -1] /d r ||Lp ^ 
0

oo

= C /  Т ^ т К + г  “  (^ +  Г -  A )-1]/llLpdr ^
0

\ \h \ \L p Í  C \ \ f \ \ r .
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Let now
oo

h  : =  J  r u ( n  -  Д)[(/х + Г -  Д )-1 -  L;jr]L“j r/dr =  

0
oo

= J  **'*(/* -  Д)(/х + r -  / \ ) - l q\j~lrfd r  =
0

oo oo

=  J  r'lq l~ lrfd r  + J  rit+1(fi + r -  A ) - 1 q l~ l rf  dr.
о  0

Then we have
OO OO

OO OO

s « /  = c  J  ( 1 + r ) f - ‘ i i i s , / n  L i r  s

0 0 
oo

= CJ (  1 + r )*~2dr • II/IIlp = c ||/||Lp
о

and similarly

i.e.

J  r ' t + \ n  +  r -  A y ' q l - l J d r  < ^ c  J  Y ^ \ \ q l ~ l r f \ \ L p d r ^ c \ \ f \ \ Lp  
0 p 0

\ \ h \ \ b p ±  c \ \ f \ \ L p .
Finally let

then

OO OO

h  : =  J  r i l [ L -  (/x -  A ) ] L ^ r / d r  =  j  S q l ^ f d r ,
о 0

IN k, < У llílS r/llí,*  S cll/lli,.
0
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Our estimations show that
OO

] но. -  Д)0< + r -  a )- 2/  -  s  сЦ/ l i v
0

This imphes tha t the integral

J  r ^ l ^ u l r f d r
о

converges in Lp-norm and

A ) - 2fd r  -  J  r % L ~lrfd r  
о

^ c\\f\\Lp.
L p

Since we can prove Lemma 6 for [l — Д instead of 1 — Д, Lemma 8 follows 
from Lemma 6.

P ro o f  o f  t h e  T h e o r e m , a) Let 1 < p <  ^  1 <
0 < s < 2lo, s < j*- + 2 — r .  Suppose first tha t there exists t  S. Íq with

m
s <21 < — + 2 - T .

P

By Lemma 5 we have D(L^) = L2t, hence

i> (i;) =  ( i p,D(b'„))[ei =  i j ,  e  =  i .

If there is no integer t  with s ^ 2 £ < !j  ̂ +  2 — t , then take 1 ^  i  ^  I q —  1 
satisfying 21 < s < 21 + 2. Let further

1 <  Po <
m

T  + 2 ( 1 - 1 ) ' 1 <  Pi <
m

T  + 2 V

then
r 21
JPo

are (onto) isomorphisms. Now take 0  := Applying the complex inter­
polation for LM and L“1 we get that

1 - 0  0
---------1-----

Po Pi
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is isomorphism. For fixed 0 ,

j  >  1  >  ( 1  -  0 ) ( r  +  2 ( l -  1 ) )  +  Q(r + 2l) = s + r - 2  ̂
p* m  m m

hence for appropriate p0 and pi we get p* = p. Now s < y  + 2 — т implies

s —2 < 2 l <  J-+2—T therefore La~2 = D (l| _1). Since 1Ц: D{b |)  -> D (l | _1)

is isomorphism, it follows that in general D(Lp) = Lp which proves part a), 
b) This is an easy consequence of a). Indeed, let /  G Lp, then

ih„ / - / iil* < c\\4{Anf  -  m Lp A n( b l / ) - L | / 0

since Lp /  G Lp.
c) Let s = y  + 2 — r ,  1 < p < ™ and suppose indirectly that Cq° C

C D(Lp). Since Lpi D(L^) —+ D(Lp *) is isomorphism and D(L£ *) = L®-2 
by a), we get Lp(C£°) C L’~2. Obviously ( - Д  + p)(C£°) С C£° C L*-2 , 
hence q<p G L ® - 2  i f  <p G C q ° .  N o w  suppose that the singularity surface is a 
hyperplane as follows:

S = { t , v ) : t  = 0}
and suppose that

?(*) = «( О. * = (f,»7)-
Then we have dist (z, S ) = |£|; hence the condition on the singularity of q is

(28) |L>“g(OI ^ c \ t r ~ I“', 0 ^ |a| < 2f0 -  2.

Consider the function

<p(x) =  e C ? (R m), <P2 € с 0° ° ( ^ - т ).

The condition q<p G L*-2 can be rewritten as

F - X(( l  + |x |y - ' F i q v w j )  e Lp(Rn ).

It is easy to check that

is a multipllcator, consequently

+  К1а)*_1П т ? 2 ) )  e l >(r n ).
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Denote Fm the Fourier transform on Rm. Then

F ( q ^ 2)(x) = (2tt) -T  Í  =
tln

=  ( 2 тг)~т J  e - * l u ' ) q ( t ' ) < p i ( O d f ' ' ( 27Г) ^  J  € ~ ,('r,’r,''>ip2 ( v ' ) d v '  =
Rm RN-m

= Fm(q<pl)(0 ■ FN- m(<p2)(t?),

consequently

^ ■ 1( ( i ^ l 2) ^ 1F (m v .2) ) = ^ 1((i-H^I2) " - 1F r n ( m ) ) ( 0 - ^ ) e M R ;v)

and then

l . e .

^ • ( ( 1  +  |£12) ' - ‘Гт (5У1)) 6 I , ( R " )

m e i ; - ! ( n  for й е С ( И ” ).

We use the following embedding theorem of Triebel [1]:

N  N
L i  C L*. if 1 < p < p* < oo, s ------> t -------у и p p

In particular this gives

La~2(Rm) C T - (R m)

and then
q<pi € L*r(Rm).

If if I = 1 in a sufficiently large ball with centre at the origin, we get 

(29) q € XmC(Rm).

But we can define q(£) := |f |~ r ; this satisfies (28) but (29) does not hold, 
since

R R

J  k ( O I ^ d£ — J  crm~1(r~T)~dr = c J  -d r  = oo.

S(0,R)

The contradiction proves c).
The proof of the Theorem is complete.
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ALMOST SURE CONVERGENCE OF SET-VALUED 
MARTINGALES AND SUBMARTINGALES

В. K. DAM (Budapest)

1. Introduction. The almost sure convergence of a class of set-valued 
martingales in the Hausdorff metric has been discussed by F. Hiai and H. 
Umegaki [4], [5]. Later on, the authors of [1] have treated the almost sure 
convergence of a larger class than that of set-valued martingales, the so called 
set-valued amarts. In this paper we present the Mosco-type convergence (see 
[7], [6]) for martingales and submartingales taking values in VC(X ), where 
X  is a reflexive separable Banach space and VC(X) is the class of all convex, 
closed, bounded and non-empty subsets of X . N. Papageorgiou [8] has given 
some sufficient conditions for convergence of set-valued martingales and sub- 
martingales in Mosco sense. However, his conditions are rather strong. We 
shall show here that every set-valued martingale (or submartingale), which 
is “L1-bounded” , converges almost surely in Mosco sense. This result is a 
generalization of Doob’s convergence theorem (for real-valued martingales) 
and of that of Chatterji (for vector-valued martingales).

2. Preliminaries. Throughout this paper, let (Ü ,A ,P )  be a probability 
space and X  a real separable Banach space with the dual space X*. For each 
X  С X , cl X , cö X  will denote the norm-closure and the closed, convex hull 
of X ,  respectively. Let V (X )  (resp. VC(X ))  denote the family of all nonempty, 
closed, bounded (resp. non-empty, closed, convex, bounded) subsets of X .

The convergence in the Mosco sense is the following (see [7]). Let 
{Xn}n>i be a sequence in VC(X ). Denote

.s-lim inf X n = {x G X  : 3x„ G X„, lim ||x„ — ar|| = 0 >,
l  n —»OO )

w- lim sup X n — { x e X  : 3xfc , Xfc x (converges weakly) j .

We say that X n converges to X  in the Mosco sense and write X n —► X  if
s- lim inf X n = w- lim sup X„ = X.

For every X  С  X , denote <ry(i*) = sup (x,x*), ||X || =  sup ||x||.
x*gA xex

The set-valued function F: fi —» V (X )  is called to be ^.-measurable if 
for every open subset 0 of X  we have

F ~ \ 0) = {u  G ÍÍ: F(u) П 0 ф 0} G A
(see [2]).



198 В. К .  DAM

We denote by M [fl,A , P; X] = M[Q\X]  the family of all measurable 
set-valued functions F:  fl —> V ( X )  and we set

C^ ü- X]  = {F  e M [il;X \: J  \\F(cj)\\dP < +oo},
n

Cl[Sl;X] ={F £ Сг[й-,Х\: F(u) £ VC{X)  a.s.}.

We denote by F 1(íí, S , P; X)  =  X)  the Banach space of all measurable
functions f : i l —>X such that the norm

U/H. =  /  ll/M II
n

is finite.
For F £ A4[fl; X], let

Sp = { f  £ L \n - ,X ) :  f ( u )  £ F (u) a.s.}.

Let В be a sub-cr-field of A and besides 5^ defined on (íí, A, P ), we take on 
(Q,B,P)  the family

SU B ) = { /  e  L \n ,B ,P ; X ) :  f ( u )  £ F{u) a.s.}.

Recall that for /  £ Тг(П; X )  the conditional expectation of /  relative to 
В is given as a function E { f  \ В ) £ Ll (Q,B, P; X )  such that

J  E U  I B)dP  =  J  fd P
в в

for all В £ В. If F £ M[£l\ X] with Sp ^  0, then by virtue of [4, Theorem 
5-1] there exists a unique (in the a.s. sense) В-measurable function E[F  | B] 
satisfying

S 1E[ m (B) = d { E ( f \ B ) : f e S 1p} ,

where on the right hand side we have taken the closure in the norm topology 
of L \S l \X ) .

We call E[F \ В] the (set-valued) conditional expectation of F  relative 
to B.

Let Ai C A i  C . . .  be an increasing sequence of sub-cr-fields of A  and 
let Fb F2, . . .  be a sequence of set-valued functions in Cl [Sl\X]. We say 
that (Fn,A n)n>1 is a martingale (submartingale) if Fn = E[Fn+1 | An] a.s. 
(Fn C E[Fn+i\An) a.s.) for all n ^  1.

A d a  M athem aiica  H ungarica 60, 1992
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3. Results. We show here that every submartingale (Fn, A n )n>\ belong­
ing to where A* is a separable and reflexive Banach space and

sup [  \\Fn(u)\\dP < + oo 
n > l  J -  n

is satisfied, converges almost surely to some set-valued function belonging to 
X]. We begin with the case of regular martingales.

T heorem 3.1. Let X  be a reflexive and separable Banach space and let 
F be an element of C).[Q, A , P; X]. Let (Дп)„>х be a sequence o f sub-cr-fields

OO

of A  such that A  = cr( \J An) and A i  C A? C . . . .  Then the martingale
n=l

Fn = E[F  I An] converges a.s. to F  in the Mosco sense.
P roof. Since A' is a Banach space and F  is bounded and integrable, 

we can use the following representation of F due to Castaing (see [2]):

F{u) = cl { Л И } , 6 Í2, > 1

where
J  Wfk(.v)\\dP < +oo.
n

By virtue of Theorem 5.1 of [4] for every к > 1 and те > 1 we have E[fk\An] € 
E Fn a.s. Fix к > 1. Then {E( fk  | Лп)}„>1 is a vector-valued regular 
martingale. Consequently (see [3, Theorem 2])

lim ||/jt(w) -  E ( fk\An)\\ = 0 a.s.
n — ►OO

This means th a t Д(о;) E  s-liminf Fn(v)  a.s. for every к > 1. Therefore, 
F(u>) C s-liminf F„(w) a.s.

Now let (x j ) j >1 he a dense sequence in A'*, ||x^|| < 1 (A” is separable
since X  is reflexive and separable.) Then on the basis of the paper by Valadier
[9] we have for every j  > 1

E (°F(x*j) I An) = <tE[f \Л„](*;) = ^Fn(a;>) a.s.

Thus {crjrn(x p , A>}n>1 is a rea l regular martingale. Hence

lim <TFn(u)(xj) = ffF(u)(xj)  a.s.
71—^OO

This implies that there exists a set N  E A  with P( N)  = 0 such that for 
arbitrary и  E ( l \ N  and for every j  > 1 we have

Шп <тРпЧ (х*) = aF(w)(*5).

A cta M aihem atica  Hungarxca 60, 1992
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Let us suppose that x £ w-Umsup Fn(w) for ш ^  N .  Then there exists a 
sequence Xk € F„k(u>) such that Xk ——► x as к —>• oo. Therefore we have
(3.1) (x,x*j) =  lim {xk,x*j) й  Hm oF (x*) =

A:—►oo fc—►oo *v 1

Note that F(u>) is weakly compact since X  is reflexive and F (u )  is closed 
and bounded. By the properties of the support function, for each j  > 1 there 
exists an Xj £ F(w) such that

(xj ,Xj )  = <TF(w)(x*j) (=  sup (x,x*)j
4 xeF(w) '

holds. So we can write (3.1) in the form
(3.2) (*,*$) й (xj,Xj).

Again, we deduce the existence of a z £ F(u>) such tha t Xji — » z as 
i —► oo, since xj £ F(ui) for aU j  > 1 and F(u>) is weakly compact. Without 
loss of generality we can suppose that for x* £ X*, ||x*|| < 1 we have

Hm у*; -  ж*|| = 0
j-*  oo

because in general we can pick out a subsequence of (xj) which converges 
to  x*. Thus inequahty (3.2) impHes that

(*,**) ^ (*,**) ^  suP {У,**) =  °F(u,)(X*)yeF(w)
since

l im ( i , i* )  = (x,x*)  and Urn (xJi5z*.) = (x , x *).

Finally, note th a t F(u) is convex, closed and bounded, so by the separation 
theorem (see [10]) we deduce x £ F(u). Consequently, ге-Hm sup Fn(cj) C 
C F(w) a.s. This completes the proof.

Now we present a general convergence theorem for ii-bounded set-valued 
submartingales.

T h e o r e m  3.2. Let X  be a reflexive, separable Banach space and let 
(Fn, A i)„>i be a multivalued submartingale in X] such that

sup /  ||Fn(w)||dP < +00
n > l  J-  n

holds. Then there exists a random element F  £ C\[Fl,A, P',X] such that

F„ —► F  a.s. where A  = a (  (J д Л .
4i=i '

For the proof of this theorem we establish the following
L e m m a  3.3. Let X  be a Banach space whose dual X* is separable. Let 

В be a sub-c-field of A . Suppose that

Acta M ath cm a tica  Hungarica 60, 1992
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S 1F = { f e  L \ n ,  А , P; X ) : f {u)  £ F(u) a.s.}, F  £ £*[П, A , P; X]

is a weakly compact subset in L i(Q ,A ,P ;X ), i.e. SF is compact with respect 
to the topology o(Li (X) ,  L ^ X * ) ) .  Then the set

G = { E ( f \ B ) : f £ S 1F}

is a closed subset o f L \( i l ,B ,P ;X )  with respect to the norm-topology in 
L i(S l,B ,P ;X ).

P roof. Let gn £ G, n ^  1 and suppose that

lim /  ||ff(w) -  gn(w)\\dP = 0.
n —>oo J

П

Since gn £ G we have gn = E{ f n \ B) for some /„ £ SF. But 5^ is compact 
with respect to the topology o(Li (X) ,  L00(A'*)). Therefore, there exists an 
f  £ SF and a subsequence (/„*) of (/„) such that for every A £ В and 
x* £ X * we have

( f n „ ( w ) , X A ( u ) x * ) d P  = J  (f{u ),X A (u)x*)dP

if и  £ A  
if w £ fl \  A.

where

Ыа , ) = { о ; !
This means that

(3.3) Km Q  f nk( u ) d P , x = ( j  f(u)dP , x*

holds. However,

and

J  f n Á “ ) d P  =  f  9 n k ( “ ) d P

lim [  gnk( u ) d P -  [  g(uj)dP 
fc-K»||y J = 0.

Consequently, we have

(3.4) lim ( /  =  ( /  g(u)dp ,x-

A cta  M athcm atica  Hungarica 60, 1992
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Combining (3.3) and (3.4) we deduce

(3.5) ( J  f{u )d P ,x^  = Q  g(u)dP,x*^j
'а л

for every x* € X я and A £ B. This means that

g(u) = E ( f  I B)(u) a.s.

and so g G G. The proof is thus complete.
P r o o f  o f  T h e o r e m  3.2. Since ( F „ , A „ ) n> 1 is a submartingale, for 

every n > 1 we have

- ^ „ ( A . )  C  5 F [ F n + 1 |.4 n ] ( A ) .

By Theorem 5.1 of [4] for arbitrary n > 1 we get

(3-6) S W ia jM .)  =  cl { £ ( /  I A n ) : /  € S>„+, }■

Note that X  is reflexive. Thus by Theorem 3.7 (iii) of [4], 5^  is weakly 
compact for every n > 1 and, consequently, by Lemma 3.3 {E( f  \ A n) : /  € 
S Sp  } is closed. On the basis of this, (3.6) can be written in the form

(3.7) ^ W i l A j M " )  =  { E ( f  I Л .)  : /  € S'Fn+1}

for every n ^  1.
First assume tha t sup ||Fn(w)|| 6 L \(R ). Let

n>l

F(oj) — w- lim sup F„(ui), G(ui) =  s- lim inf Fn(u).

By Theorem 2.2 of [6], F(u>) and G(u) are measurable (we show below that 
G (u) ф 0 a.s.). Using the Castaing representation of Fn (see [2]) we have 
for arbitrary n > 1

(3.8) F „ M  = d{^"> (w ): i =  1 ,2 ,. . .  ; 6

Let n ,i  > 1 be fixed. By (3.7) there exists a sequence 6 7 = 1

such that { / ^ , An+j} >o is a vector-valued martingale. But

A d a  M athem atica  H ungarica 60, 1992
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and X  is a reflexive Banach space (so X  has the Radon-Nikodym property). 
Therefore, there exists gjn  ̂ £ L \( íl, A , P; X )  such that

(3.9) / g ’H  = E(g ,!”> I A ,+ ;)M  a.s.

holds. By the convergence theorem for regular martingales (see [3, Theorem 
1]) we have

lim H/JjJ.H  -  ${n)(w)ll =  0 a.s.

At the same time
/$)](") ^ F"+Au ) a -s-

Therefore
g{n\u>) £ G(u) =  s-lim inf Fn(u>) a.s.

This means that G(u>) /  0 a.s. Moreover, g-n  ̂ £ Sq since

J  H í / í " V ) i H - p  <  + ° ° -

n

Now suppose that
x £ F(u) = w- lim supFn(w).

Then by (3.8), there exists a sequence such that -— >■ X .

But (3.9) implies that f \ " k) = E{g\”k) \ A , J  for gj"k) £ 5^. So, f j ”k) £ 
£ E[G I A„k]. This means that

x £ w- lim sup E[G I A .J -

But (E[G I Anfc])fc>;1 is a regular martingale, whence by Theorem 3.1 we get 

w- lim sup E[G I An] = G =  s- lim inf E[G \ An] a.s.

Therefore,
x £ G(u) = s- lim inf Fn(u).

In other words,

w- lim sup F„(u>) C s- lim inf Fn(oj) a.s.

In the general case, when sup ||F„(u;)|| ^ Li(R) by using the maximal
n=i

lemma (see [1, Lemma 2.2]) we can reduce the problem to the above one as 
follows.

Acta M athem atica  Hungarica 60, 1992
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Fix a positive constant a > 0 and define a stopping time a in the following 
way:

, v _ Г o°, if sup  Н ^ И Н  ^ a
°  Ш \  inf(n: ||F„(u>)|| > a), otherwise.

Consider the sequence Hn(u) =  FnA<T(w)(a>). It is easy to see that 
(Hn,AnAit)„>i is also a submartingale. Let

H(u)  =  sup ||Я„(ш)||.
П> 1

We note that if we put

F<r
if a = +oo 
if a < +oo

then ||tfn(w)|| ^  ||F 0.(o))||, {a = +oo} and ||Я„(и>)|| |  ||F <r(w)|| on the set 
{a < +oo}. Using Fatou’s lemma we see that

J\\H{u)\\dP= J \\H(u)\\dP+ j  \\H(u)\\dP ^
Ъ {<r=+oo} {<x<-f-oo}

< a +  /  \\H(w)\\dP < a+lim  inf f  \\FnA(r\\dP <a+suv [  \\Fn\\dP <+oo.
J J n > l J

{<т<+оо} {<r<+oo} П

By the maximal lemma we have (see [1])

P(sup ||F„(w)|| > a) < - s u p  Í  \\fn{u)\\dP.
a n > l  J-  u

This means that (FnA<r) coincides with F„ except on a set of measure arbi­
trary small if a is large enough. Therefore, we can assume without loss of 
generality that (Fn) itself has the property that

sup ||F„(u>)|| € L i(R ).
П= 1

This completes the proof.
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CARTESIAN PRODUCTS OF FRÉCHET 
TOPOLOGICAL GROUPS 
AND FUNCTION SPACES

V. I. MALYHIN and D. B. SHAKHMATOV (Moscow)

1. In tro d u c tio n

It is well-known that there exists a Tychonoff Fréchet space X  whose 
square X  X X  is not Fréchet and has even uncountable tightness ([2], [3, 
Proposition 3.14]; see also Example 1 in [9]). At the same time there is 
a lot of examples serving to show that in topological groups many conver­
gence properties tend to improvements. For example, any Fréchet topological 
group is strongly Fréchet [23, Theorem 4] whereas there are Fréchet spaces 
which are not strongly Fréchet [3], [21]. A bisequential topological group 
is metrizable [1] while there are even non-first-countable bisequential topo­
logical spaces ([21, Example 10.4], [13, Theorem 5]). A topological group 
satisfying the weak first axiom of countability [30] is metrizable ([22], [23, 
Theorem 3]) but for general topological spaces this does not hold [3], [30]. 
So one may hope that some convergence properties which are not multiplica­
tive in the class of all topological spaces, would become multiplicative in the 
class of topological groups. However, it is clear now that this is not the case. 
Indeed, V. I. Malyhin constructed under CH a hereditarily separable (count­
ably compact, hereditarily normal) topological group G such tha t G X G 
has uncountable tightness (and is neither countably compact nor normal)
[15]. He also constructed via forcing a countable Fréchet group the square 
of which is not Fréchet [18].

It is worth calling the reader’s attention to the difference between cases 
of distinct groups G\ and G2 and of a single group G. For general topolog­
ical spaces this difference does not matter. Indeed, having a pair ( X \ , X 2) 
of topological spaces with any of the considered convergence properties and 
forming their topological sum X  = X\  © X 2, one obtains the pair ( X , X )  
with the same properties. Further, if X\  x X 2 does not have some conver­
gence property, the same remains valid for X  x X . For topological groups 
there is no analogue of topological sum, and here is the main difficulty in 
constructing pairs of the form (G , G ). Moreover, the following problem of 
A. V. Arhangel’skii is still open. Let G1 and G2 be Fréchet (sequential, 
of countable tightness) topological groups. Is there a Fréchet (sequential, 
with countable tightness) topological group G which contains G\  and G2 as 
(closed, normal) subgroups or even as subspaces?
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Now let us turn to  function spaces. We denote by CP( X ) the space of all 
real-valued continuous functions defined on a Tychonoff space X  equipped 
with the topology of pointwise convergence. Spaces X  and Y  such that both 
CP( X )  and CP( Y ) have countable tightness but CP( X ) x CP(Y )  has not, 
had been constructed under ZFC by joint efforts of A. V. Arhangel’skii, E. 
G. Pytkeev and T. Przymusinski. Lately, under Jensen’s 0, S. Todorcevic, 
F. Galvin and A. Miller constructed spaces X  and Y  for which CP( X)  and 
CP( Y ) are Fréchet while CP( X)  X CP(Y ) is not Fréchet but nevertheless 
has countable tightness.1 2 In both cases the spaces X  and Y  are different 
from each other. This is not by accident. Unlike topological groups, to 
demonstrate that convergence properties are not multiplicative for function 
spaces, one has to consider CP( X ) and CP(Y ) with different X  and Y . Of 
course, if CP( X ) has countable tightness, then so does the space СР( Х) Ш. 
This immediately follows from Fact 3 below, as soon as one observes that 
СР( Х ) Ш is homeomorphic to CP( X  x D), where D is a countable discrete 
space. If Cp(X) is Fréchet, then so is СР( Х) Ш [31]. Recall also that CP(X)  
is sequential iff it is Fréchet [25], [8].

The aim of this paper is to strengthen all the above results by showing via 
forcing that there exist: a) a Hausdorff hereditarily separable Fréchet topo­
logical group G whose square G X G has uncountable tightness (Corollary 
1); b) Tychonoff spaces X  and Y  such that СР( Х ) Ш and CP(Y )U are heredi­
tarily separable and Fréchet but CP( X ) x CP{Y)  has uncountable tightness 
(Corollary 2). Incidentally, we expand the general technique for constructing 
Fréchet spaces in Cohen generic extensions (see Clue Lemma).3 The results 
of this paper were announced in [20], [14], [16].

2. N ota tion s and term inology
Our topological notations and terminology follow [6]. All spaces are as­

sumed to be Tychonoff. X  ® Y  denotes the topological sum of spaces X

1Here is the history of this example. E. K. van Douwen observed in a letter to A. 
V. Arhangel’skii that T. Przymusinski’s technique [24] allows to construct spaces X  and 
Y  with the following properties: (i) all finite powers X n and Y" are Lindelöf, and (ii) 
X  x Y  is not Lindelöf. In fact, if in the definition of the space X  from Remark 4.7 of 
[24] one sets к =  u> and m = 1, then the spaces X  and Y =  Dw + 1  will be as required. 
Here the set Dw+ 1  C R  is equipped with the subspace topology. The same arguments as 
in Theorem 1.5 of [24] show that X  x Y  contains a closed copy of the non-normal space 
(Dw+i, T). If we observe that CP(X )  x CP(Y) is homeomorphic to Cp(X  ® Y), then from
(ii) and Fact 4 below it follows that CP(X )  x CP(Y)  has uncountable tightness, whereas 
(i) and Fact 4 imply countable tightness of both Cp ( X ) and CP(Y).

2To construct the spaces X  and Y, one needs to combine Theorem 5 of [7] with 
Theorem 2 of [1 0 ]. Both spaces X  and Y are subspaces of the real line R and thus X  © Y 
has a countable base. It follows from Fact 4 that CP( X)  x Cp(Y) has countable tightness.

3Using this technique the first author succeeded in constructing a Hausdorff Fréchet 
compact space without points of countable character [17].
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and Y  [6, 2.2], и  denotes the first infinite ordinal. We use |X |, t(X ) and 
l ( X )  for denoting cardinality, tightness and Lindelöf number of a space X ,
respectively (see [6, pp. 87, 248]). If У С X, then Y X and Y  denote the 
closure of Y  in X . We fix the symbol CP( X)  for the space of all real-valued 
continuous functions defined on a space X  equipped with the topology of 
pointwise convergence [4], [10]. CH, MA, MA (c-centered) and P(c) stand 
for Continuum Hypothesis, Martin’s Axiom, Martin’s Axiom restricted to 
cr-centered posets and combinatorial principle equivalent to Booth’s Lemma 
respectively (see [33] for details). A space X  is Fréchet (has countable tight­
ness) iff x £ X , Y  С X  and x £ Y  imply that there is a sequence of points 
of Y  converging to x (there is a countable set Z C Y  with x £ Z  respec­
tively). The reader interested in convergence properties is referred to [21],
[3], [9]. A space X is a strong L-space (strong S-space) iff Х ш is hereditarily 
Lindelöf (hereditarily separable) but X  is not hereditarily separable (is not 
hereditarily Lindelöf) [11], [27]. For basic forcing facts we refer the reader to
[12], [29]. Our set-theoretic notations are standard and follow [12]. As usual, 
an ordinal is identified with the set of all its predecessors. For a function / ,  
dom /  and rng /  denote its domain and range, respectively. H{A)  is the set 
of all functions from A to 2 having finite domains. If r  is a cardinal and A  
is a set, then [A]T = {В C A: |H| = r}, [A]<T = {В C A: \B\ < r}.

3. A  Fréchet hereditarily  separable topological group G  
w hose square has uncountable tigh tn ess

T h e o r e m  1 . Suppose M  is a model o f ZFC and M ' is a model obtained 
from M  via adding a single Cohen real. Then, in M ', the group 2"1 contains 
a hereditarily separable subgroup G the square G xG  of which has uncountable 
tightness.

PROOF. Consider the poset V  consisting of all functions p from ш X 2 
to 2 such that dom p = e X 2, e £ [w]<<*', and for every j  £ e, we have 
either p(j, 0) =  1 or p(j, 1) = 1. The partial ordering ^ of V  is the reverse 
inclusion: p < q iff p D q. Let H  be a generic subset of V  over M  and M [H ] 
be a generic extension of M . According to [29, Chapter I, Theorem 5.6] the 
forcing notion V  is equivalent to the forcing notion Fn(u>, 2) which adds a 
single Cohen real, hence without loss of generality we will identify M[H]  
with M ' . In M' ,  set r = (JH. Then r is a function from ш X 2 to 2 with the 
following property:

(*) for all к £ u,  either r(k,  0) = 1 or r(fc, 1) = 1.
In M,  for every a £ w i \ w f i x a n  injection ва : a —> и  such that the family 
{rng 0a : a £ u>\ \  u>} is almost disjoint. In M ', for any ß £ u>x\u> and i £ 2 
we define a function ypt{ £ 2"1 by letting
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/ ч_ /  0 if 7 ^  ß,
2//3,.(7) - | r ( W )? .) i f 7 > / ? _

For the sake of simplicity we will denote the set (u>i \  u>) X 2 by ÍÍ.
Now, set Y  — {yß)t-: (ß, i )  G П) С 2“'1 and let G be the subgroup of 

2"1 generated by Y.  For every a G [fl]<w set ga = : (/?,*) G a} € G.
If h G G, then we define Ord (h) to be any element of the set [fl]<u’ with 
h — gord (h) • For I c G w e  set O rd(X ) = (Ord(:r): x G X} С [П]<и>.

Claim 1. G X G has uncountable tightness.
P roof. Let 0 G 2“1 be the function with 0(a) = 0 for all a G For

a G oji + 1 let Za =  {(yß,o, Vß,i) ■ ß  € a \  и}  C G X G.  To prove that
_____Cx x  GG X G has uncountable tightness, it suffices to show that (0,0) G ZWl__ QX Q

but ( 0 , 0) ^ Za whenever a G w i .  The first inclusion follows from the 
definition of Y.  Let us establish the second one. From the definition of 
yßfl, 2/0,i ’s and (*) it follows that ß G a  \  u> implies either Yßß(a) = 1 or 
j/(31(a) =  1. Thus, letting U = {g G G: g(a) — 0}, we would have the open

____CxX Gset U X U disjoint from Za , and (0,0) G 17 X U. Therefore, (0,0) i Z a 

Claim 2. G is hereditarily separable.

P roof. Recall that a set S  C 2Wl is called to be finally dense in 2" 1 if 
there is an 05 G uji such that for any £ G H (u\ \  a s)  one can find an s G S 
with s Э e. A set X  C 2Wl is said to be weakly HFD-set if for every Z  G 
G [X]"1 there is an S  G [Z]w which is finally dense in 2"1 [11, Definition 1.9]. 
If X  С 2“1 is a weakly HFD-set, then the space X  is hereditarily separable 
[11, Theorem 1.10]. So to verify Claim 2 it suffices to prove the following

Lemma 1. G is a weakly HFD-set.

P roof. Fix an X  G [G]"1. Then Ord(X) G [[ii]<"]1*’1. Now we need the 
following

Fact 1 [26]. Suppose that a model M ' is obtained by adding a single 
Cohen real to a model M . Let 7 be an ordinal. I f  in M ', E' С [[t ]'^“ ]^1, 
then there is a set E  G [Е ']ш1 with E  G M .

Identifying ÍI with the ordinal (u>i — ш) -f (07 — u>) and applying Fact 1 to 
the family Ord(X) G [[П]<"]и'1, we obtain a set A! G [Ord(X)]"1 with A! G 
G M . Choose an A  G [А']ш with A  G M . From our constructions it follows 
that for A* = {ga : a G A} we have A * G [X]w. We will show that A* is final­
ly dense in 2"1. To do this let us define 6 G by <5 = sup{a G : (a , i) G a 
for some a G A  and i G 2} and show that for every £ G H(u\ \  6), there 
is an a G A  with ga D e. Assume that £ = {(ao,to), (<*1, t‘i ) , . . .  , ( a „ , in)} 
where n G uj, ao, a i , . . . , a „  G « i \ i  and г'о, * i,. . .  , г„ G 2. Fix a p  G V.
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Everything will be done if we find a q G V  and an a G A such that q < p 
and q II- ga D e.

Since {mg ffa : a G W\ \  is an almost disjoint family, and dom p is 
a finite set, there is a ft G [u>]<"  such that dom p C b x 2, and rng ва; П 
D rng 0Qj C b provided that i , j  G n + 1 and i ф j .  Choose a condition 
p' < p  for which b x 2 C dom p' = e' X 2, and let c = U{0“i1(e ') : i G n + 1). 
Obviously c G [wi]<ai. Hence one can find an a G A such th a t a1 \  c 7̂  0 
where о' =  { а С ц :  (a ,i) € a for some i G 2}. Choose an a  G a' \  c. The 
definition of 6 implies that a  G a; for every i G n -J- 1. Let rij = 0Oj(a), 
dom t j  = dom p' U (ej X 2) where ej = { ^ ( 7 ): 7 G a1}. Choose a condition 
Sj < p' with dom sj — dom tj \  {(«_,, 0), (nj, 1)}. If aa = a \  {(q , 0), (а, 1)}, 
then sj  lh ga<x(ä j) = kj for some kj G 2. Now we have to consider three 
cases.

Case 1: (а, 0 ),(а , 1) G a. We set

£ _  Г sj U 0), 1), ((nj, 1), 1)} if kj — i j ,
l  sj О {{(71 jr, 0), 1), ((nj, 1), 0)} if kj ф ij.

Case 2: (a, 0) G a, (a, 1) ^ a. We set

Í «iU {((•,, 0), 0), ((ni? 1), 1)} if kj = ij, 
3 X «yU {{(n j,0 ),l),((n j,l),0 )}  l i k ^ i j .

Case 3: (a ,0) ^ a, ( a , l )  G a. We set

t _  ( «j U {((nj, 0), 1), ((rij, 1), 0)} if к, = ij,
3 X Sj u {((n,-,0),0), ((raj, ! ) ,! ) }  if kj ф ij.

One can easily verify that in all cases, tj ^ Sj ^  p' and

tj It" 9a(cij) = ij-

Repeat the above construction consecutively to obtain to ,ti , . . .  , t n, and 
note tha t, since dom f* D dom ti = dom p' provided that k , t  G n -f 1 and 
к ф l ,  and tk ^ p' whenever к G ra +  1, it follows that q = to U t\ U . . .  U tn is 
a condition, i.e. q G V . Finally, q S p  and q II- ga Э £, so q does the job.

Fact 2 [19]. Assume P(c). Then a space of countable tightness and of 
character < c is Fréchet.

Fact 3 (J. Roitman, M. Bell). Adding a single Cohen real does not 
destroy P(c).

In fact, J. Roitman [26] proved tha t adding a single Cohen real does not 
destroy MA (а-centered), and M. Bell [5] showed that MA (а-centered) and 
P( t )  are equivalent.

Facts 2 and 3 yield
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C lue  L e m m a . Add a single Cohen real r to a model M  of MA + -> C # . 
Then, in the generic extension M[r], spaces of countable tightness and of 
character < are Fréchet.

P r o o f . Adding a single Cohen real does not change the power function, 
hence in M[r], < e. Since P(c) follows from M A  + ->CH, Fact 3 implies
th a t P(e) holds in M[r].  The conclusion of Clue Lemma follows from Fact 2.

Clue Lemma immediately yields the first main result of this paper.
C o r o l l a r y  1. Add a single Cohen real to a model M  of M A  +  -iCH. 

Then, in the generic extension M ', the group G constructed in Theorem 1 
is Fréchet. Therefore, in M ', there exists a hereditarily separable Fréchet 
topological group G the square G X  G of which has uncountable tightness.

4. C artesian  prod u cts o f strong S- and I-sp aces  
in C ohen generic ex ten sion s

T h e o r e m  2. Suppose that M ' is a generic extension of a model M  by 
adding a single Cohen real. Then, in M ', there exist the following spaces:

(i) strong L-spaces Lq,L i C 2Wl (of cardinality u \)  the Cartesian prod­
uct Lq x  L\ o f which is not Lindelöf;

(ii) strong S-spaces Sq, S\ С 2“1 (of cardinality the Cartesian product 
So X 5i of which has uncountable tightness.

P r o o f . In M , for every a  £ u i  \  w fix an injection 6a : a  —► u> such 
that the family {mg 0a : a £ u i \  is almost disjoint. Let г: и  —* 2 he 
a Cohen real. In M ' = M[r\, for every a  G cu* \  w, define = {ß £ 
€ а: r(ea(ß)) = 0), A \  = \ ß  G a :  r(0a(ß)) = 1}, and let l°a € 2Wl and 

6 2“1 be the characteristic functions of the sets A°a C and A \  C 
respectively. For a  G u , let =  l \  — 0. Let Lq =  : q £ u i}  С 2"1 and
L! = {ela : a e  wi> C 2“L

Claim 3. The space Lq x L\ is not Lindelöf.

P r o o f . Let Va =  {x € 2Wl : x (a ) = 0). It is an easy exercise on Cohen 
forcing to show, applying the almost disjointness of {rng ö „ : o £  u>i\a>}, that 
the family <r =  {Va х 1 а : а £ ц }  constitutes an open covering of Lo X L\. 
If o' € [о]ш, then o' C (?ß — {Va X Va : a € ß}  for some ß £ u \.  Further, 

since a £ ß  implies that either f^(a) = 1 or f i( a )  = 1. 
Therefore, no countable o' C cr covers Lo X L \.

Claim 4. Both Lq and L\ are strong L-spaces.
P r o o f . By symmetry of the definitions of Lßs, it suffices to prove that 

Lo is a strong T-space. But this is just what J. Roitman has shown in [26] 
(her space Xyr r is exactly our space Lq).
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If L = {£a : a  € wi} C 2Wl is a strong Z-rpace, then the space 5  = 
= ß G wi} С 2"1, where Sß G 2"1 is defined by ^ ( a )  =  l a{ß) for 
every a  G uq, is a strong 5-space [26], [27], [28]. Apply this construction 
to Li = a  G ц ]  to obtain S- = {sjg: ß G ц ]  and let 5,- = 5,- U {0} 
(г = 0,1). Then both So and 5i are strong 5-spaces.

Claim 5. The space So x S i has uncountable tightness.

P roof. Obviously, (0,0) G {(-s°,.s*): a  G Wl}s°xSl, but (0,0)
Í  { ( ía isi ) : a  £ ß ^s°xSl whenever ß G Wi.

5. P roducts o f  convergence properties in function  spaces

Fact 4 (A. V. Arhangel’skii, E. G. Pytkeev, cited in [4, Theorem 4.1.2]). 
For every space X ,  t(Cp(X))  — sup{f(Xn): n G w}.

Fact 5 [34], [32]. For every space X  the following conditions are equiv­
alent:

(i) Х ш is hereditarily Lindelöf,
(И) Ср(Х)ш is hereditarily separable.
Now we are ready to prove the second main result of our paper.
Corollary 2. Add a single Cohen real to a model of M A  + ->CH. In 

the generic extension, let Lq and Li be the spaces constructed in item (i) of 
Theorem 2. Then:

(i) Cp(Lo)M and CP{ L \Y  are hereditarily separable and Fréchet, while
(ii) Cp(Lo) X Cp(Li) has uncountable tightness.
P roof. The first part of (i) follows from Fact 5. To obtain the second, 

observe that, since CP(Z,)W is dense in Ri<Xw, the character of Cp(Z,)w 
is equal to w\, and then apply Clue Lemma. To show (ii), remark that 
CP(L0) x CP{L\) is homeomorphic to CP(L0 ® Zi), the space (Z0 © Z i)2 is 
not Lindelöf, and then apply Fact 4.

Remark. Theorem 1 and Corollary 1 were obtained at about the same 
time by both authors independently from each other. Theorem 2 and Corol­
lary 2 are due to V. I. Malyhin.

R eferences

[1] A. V. Arhangel’skii, On biradial topological spaces and groups, Topol. Appl., 36 (1990),
173-180. .

[2] A. V. Arhangel’skii, The spectrum of frequences of topological spaces and their clas­
sification, Doki. Akad. Nauk SSSR, 206 (1972), 265-268 (in Russian).

[3] A. V. Arhangel’skii, The spectrum of frequences of a topological space and the product
operation, Trudy Moskov. Mat. Obsc., 40 (1979), 171-206 (in Russian).

[4] A. V. Arhangel’skii, The structure and classification of topological spaces and cardinal
invariants, Uspekhi Mat. Nauk, 33:6 (1978), 29-84 (in Russian).

Acta  M athem atica H ungarica 60, 1992



2 1 4 V. I .  MALYHIN a n d  D .  B. SHAKHMATOV

[5] M. G. Bell, On the combinatorial principle P (c), Fund. Math., 114 (1981), 149-157.
[6 ] R. Engelking, General Topology, PWN (Warszawa, 1977).
[7] F. Galvin and A. Miller, 7 -sets and other singular sets of real numbers, Topol. Appl.,

17 (1984), 145-155.
[8 ] J. Gerlits, Some properties of C(X) ,  II, Topol. Appl., 15 (1983), 255-262.
[9] J. Gerlits and Zs. Nagy, Products of convergence properties, Comment. Math. Univ.

Carolinae, 23 (1982), 747-766.
[10] J. Gerlits and Zs. Nagy, Some properties of C(X) ,  I, Topol. Appl., 14 (1982), 151-161.
[11] I. Juhász, A survey of 5  and L spaces, Colloq. Math. Soc. János Bolyai, 23, Topology

(Budapest, 1978), 675-688.
[12] K. Kunén, Set Theory. An Introduction to Independence Proofs, North-Holland (Am­

sterdam, 1980).
[13] V. I. Malyhin, Countable spaces having no bicompactifications of countable tightness,

Doki. Akad. Nauk SSSR, 206 (1972), 1293-1296 (in Russian).
[14] V. I. Malyhin, Destroying properties of topological groups by passing from groups to

their Cartesian squares, Siberian Mat. 2., 28:4 (1987), 154-161 (in Russian).
[15] V. I. Malyhin, An example of a topological group, Topological Spaces and Their Map­

pings (E. L. Engel’son, editor), Latv. Gos. Univ. (Riga, 1981), 120-123 (in 
Russian, English summary, see also Math. Reviews, 83i: 2 2 0 0 2 ).

[16] V. I. Malyhin, The existence of topological objects under arbitrary cardinal arithmetic,
Doki. Akad. Nauk SSSR, 286 (1986), 542-546 (in Russian).

[17] V. I. Malyhin, A Fréchet-Urysohn bicompactum without points of countable character,
Mat. Zametki, 41 (1987), 365-376 (in Russian).

[18] V. I. Malyhin, Some results on consistency in general topology, Trudy Moskov. Mat.
Obsc., 49 (1986), 141-166 (in Russian).

[19] V. I. Malyhin and В. E. Sapirovskii, Martin’s axiom and properties of topological
spaces, Doki. Akad. Nauk SSSR, 213 (1973), 532-535 (in Russian).

[20] V. I. Malyhin and D. B. Shakhmatov, Fréchet-Urysohn groups and products, in: Re­
search seminar on general topology (sessions of spring term of 1984/85 aca­
demic year), Vestnik Moskov. Univ. Ser. I  Mat. Mekh., no. 5 (1985), 88-90 
(in Russian).

[21] E. Michael, A quintuple quotient quest, Gen. Topol. Appl., 2 (1972), 91-138.
[2 2 ] S. Nedev and M. M. Coban, On metrizability of topological groups, Vestnik Moskov.

Univ. Ser. I  Mat. Mekh., no. 6  (1968), 18-20 (in Russian).
[23] P. J. Nyikos, Metrizability and the Fréchet-Urysohn property in topological groups,

Proc. Amer. Math. Soc., 83 (1981), 793-801.
[24] T. Przymusinski, Normality and paracompactness in finite and countable Cartesian

products, Fund. Math., 105 (1980), 87-104.
[25] E. G. Pytkeev, Sequentiality of spaces of continuous functions, Uspekhi Mat. Nauk, 37

(1982), 197-198 (in Russian).
[26] J. Roitman, Adding a random or a Cohen real: topological consequences and the effect

on Martin’s axiom, Fund. Math., 103 (1979), 47-60.
[27] J. Roitman, Basic S and L, Handbook of Set-Theoretic Topology (K. Kunén and J.

Vaughan, editors), North-Holland (Amsterdam, 1984), 295-326.
[28 J. Roitman, Easy S and L groups, Proc. Amer. Math. Soc., 78 (1980), 424-428.
[29] S. Shelah, Proper Forcing, Lecture Notes in Math., 940, Springer-Verlag (Berlin and

New York, 1982).
[30] F. Siwiec, Generalizations of the first axiom of countability, Rocky Mountain J. Math.,

5 (1975), 1-60.

A d a  M athem atica  H ungarica 60, 199Z



F R É C H E T  TOPO LO GICAL GROUPS 215

[31] V. V. Tkacuk, On multiplicativity of some properties of mapping spaces equipped
with the topology of pointwise convergence, Vestnik Moskov. Univ. Ser. I 
Mat. Mekh., в (1984), 36-39 (in Russian).

[32] N. V. Velicko, Continuous Mappings and Spaces of Continuous Mappings, Doctoral
Thesis (Tjumen and Moscow, 1981) (in Russian).

[33] W. Weiss, Versions of Martin’s axiom, Handbook of Set-Theoretic Topology (K. Kunén
and J. Vaughan, editors), North-Holland (Amsterdam, 1984), 827-886.

[34] Ph. Zenor, Hereditary m-separability and the hereditary m-Lindelöf properties in prod­
uct spaces and function spaces, Fund. Math., 106 (1980), 175-180.

(Received January 23, 1989)

CHAIR OP APPLIED MATHEMATICS
DEPARTMENT OF ECONOMICS AND COMPUTER SCIENCES 
MOSCOW INSTITUTE OP CONTROL AND MANAGEMENT 
RJAZANSKH PROSPEKT 9 9 ,  1 0 9 5 4 2  MOSCOW 
RUSSIA

C H A IR  OP G EN ER A L TO P O L O G Y  AND G EO M E TR Y  
D EPA R T M E N T O F M E C H A N IC S AND M ATHEM A TICS 
M O SCO W  STATE U N IV E R S IT Y  
1 1 9 8 9 9  MOSCOW 
RU SSIA

A cta  M athcm aiica  H ungarica  60, 1992





Acta Math. Hung. 
60 (3 -4 ) (1992), 217-224.

CONTINUOUS FUNCTIONS WHOSE LEVEL SETS 
ARE ORTHOGONAL TO ALL POLYNOMIALS 

OF A GIVEN DEGREE
H. DEHLING (Groningen) and M. S. TAQQU* (Boston)

1. Introduction

Let w(t) be a continuous, non-negative weight function on R with 
/  w{t)dt = 1 and with finite absolute moment of order к , i.e., /  \t\kw(t)dt < 
R  R
< oo. Denote by Vk the subspace of L2(R, B, w(t)dt) spanned by the poly­
nomials p(t) of degree less than or equal to k. (The degree of a polynomial 
p(t) = a0 + a it + . . .  +  ajfcf* is deg(P(f)) =  max{j : a,- ^  0}.) Let Wo =  1, 
W i(i),. . .  , Wk(t) be an orthogonal basis for Vk-

In this paper we investigate the class of functions G (t) satisfying

(1.1) /  Wj(t)w{t)dt = 0 for j  = l , . . . , k  and for all s € R.
(G()<3)

A condition equivalent to (1.1) is that l{f : G(t) 5Í s} — /  l{G (i) ^  s}w(t)dt
R

lies in the orthogonal complement of Vk- Alternatively,

p(t)w(t)dt J w{t)dt
{G(.)<,} R  {<?{•}<»}

for all polynomials p(t) in Vk-
The existence of a non-trivial function G satisfying (1.1) can be obtained 

as a corollary to Liapunov’s theorem (see [3], Th. 5.5) on the convexity of 
the range of a vector measure. Namely, let щ  be the signed measure given
by ^  = Wj(t)w{t) and let p  = ( p i , . . .  ,pk)T be the corresponding vector 
measure. (T  denotes transpose.) We have /x(R) = 0 since Wj AWq for j  > 
> 1. We want to show first the existence of a non-trivial set A  C R, i.e., 
A(A) > 0 and A(R \  A) > 0, with p{A) = 0. (Here A is the Lebesgue

* Research supported by the National Science Foundation grant DMS-88-05627 and 
the AFOSR grant 89-0115 at Boston University.
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measure.) If/i(R + ) =  0, simply take A = R+. Otherwise, apply Liapunov’s 
theorem to p, restricted to R+ and R_ respectively, to get sets A+ and 
A_ with ц(А+) =  R+) and /i(A_) = |/x(R _). Then take A — A + U
U A _. Obviously p(A)  = 0. Moreover, this set A is non-trivial. Indeed, 
A(A+) > 0, because p(A+) ф 0 and p <  A. Also A(R+ \  A+) > 0 so that 
finally A(A) > A(A+) > 0 as well as A(R\ A) > A(R+ \  Á+) > 0. This set 
A  yields a non-trivial function G{t) = l^ (i) whose level sets l{ t : G(t) < 
^  s}, —oo < s < oo, are 0, A and R. Therefore G(t) = l^ (f)  satisfies (1.1). 
Although Liapunov’s theorem establishes the existence of such a function G , 
it does not offer a way of constructing it.

Our goal is two-fold. We want first to give an explicit construction of a 
family of sets A s, — e < s < e, satisfying

(1.2) /  Wj(t)w(t)dt = 0 for j  = 1 , . . .  , к and for all s.
A s

We will find th a t A 3 can be taken to be a union of к +  1 intervals, whose 
endpoints depend differentiably on s. With the help of this explicit construc­
tion we will be able to achieve our second goal, namely the construction of 
a continuous function G(t) satisfying (1.1).

T h e o r e m . Let w(t) be a continuous, non-negative weight function on 
R  with J w(t)dt =  1 and J  \t\kw(t)dt < oo for some integer k. Let Wo =  1, 

R R
W i(t),. . .  , Wfc(t) be orthogonal polynomials o f degree less than or equal to k. 
Then:

(a) There exist an e > 0 and distinct points t \ , . . .  , Lt+i and к functions 

f j :  [ - £ ,£ ] ->R, j  =

with the properties:
(i) f j  are strictly increasing, differentiable and f j ( 0) =  0,

к
(ii) A ,  =  (J [tj + f j ( - s ) , t j  +  fj(s)] U [ffc+1 -  s , tk+1 + s] satisfies (1.2),

j=1
Vs e [0,e\.

(b) There exists a continuous function G(t) satisfying (1.1).

In the light of recent results of the authors, this theorem has remark­
able consequences for the large sample behavior of the empirical process of 
long-range dependent observations. To be more specific, choose as weight 
functions w(t)  the N (0,1) density <t>(t) = (2тг)-1/2е- *2/ 2. The corresponding
orthogonal polynomials are the Hermite polynomials Hq{t), q = 0 ,1 ,___Let
№ ) ~ i  be a mean-zero unit variance stationary Gaussian sequence with co- 
variance r(k)  = k~DL(k)  where 0 < D < 1 and L slowly varying at infinity.
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Let G: R —* R be any measurable function and let Yj = G(Xj). The empiri-
N

cal distribution function of Yj is given by Fyv(x) = 1 {Yj 5Í x). Clearly
i=i

Fn (x ) —> F(x) = P(Y\ £ x) uniformly in x almost surely. In Dehling and 
Taqqu [1] we proved that (Fjv — F) can be normalized in such a way tha t a 
non-degenerate limit is obtained. It turns out that the normalizing constants 
as well as the type of process that arises in the limit depend heavily on the 
Hermite rank of the family of functions Дх(£) = 1 {G(t) < x} — F(x), namely, 
on m  = inf{g : 3x with /  A x{t)Hq{t)<f>(t)dt ^  0}. The higher the Hermite

R
rank, the more complex- the behavior. The theorem obtained in this paper 
shows that there are processes of the type Yj = G(Xj) with G continuous, 
for which Д х(<) has an arbitrarily high Hermite rank.

2. A n  ex am p le

To illustrate the main ideas of the proof, we consider the special case 
of Hermite polynomials and к = 2. We have H0(t) =  1, Hi(t) = t and 
# 2(t) = t2 — 1. We want to find a set A — A{2) which is a union of N

N
disjoint intervals, i.e., A = [j [<»•, t,- + a,] with a, > 0. In order to satisfy

1 = 1
(1.2), we must have

(2.1) J  Hj(t)<f>(t)dt = 0, J = 1,2,
,=1[«<A+a.]

or, since the a, are non-negative,

(2.2) ^  Í  Hj{t)<t>{t)dt = 0, j  = 1,2.
Í

We wiew (2.2) as a system of non-linear equations in the o,’s, i = 1 , . . .  , N.  
When N  = 2, the trivial solution — a? = 0 may be the only one. Hence we 
take N  = 3, so that (2.2) becomes a system of 2 equations with 3 unknowns. 
It still admits the trivial solution = a2 = аз =  0. The implicit function 
theorem however, yields the existence of a continuous family of solutions 
a\ = ах(аз),а2 = а2(аз ) ,аз> for аз in a small neighborhood of zero, if the 
Jacobian

Я ^ Ж * ! )  Яа(*2Ж * 2) 
н 2(ь)Ф(н) H 2(t2)<t>(t2) Ф °>

or equivalently, if the determinant

A d a  M athem atica H ungarica 60, 199Z



22 0 H. DEHLING a n d  M . S. TAQQU

(2.3) # i(< i)
H2(h) H2(t2) / 0 .

The derivatives and ^  may be obtained by implicit differentiation in
(2.2); they satisfy

fetfift)#*!) + $£H i(t2)<t>(t2) + Я^зЖ^з) = 0 
ЙЯз^Ж«!) + % Н 2(Ь)ф(Ь) + Я2(*3Ж*з) = 0.

Since űi =  a2 = аз = 0 is a solution of (2.2), we can get a continuum of 
solutions with a, > 0, i = 1,2,3 by requiring that and ^  be positive 
around zero. Hence, we have to find points t i , t 2, f3 such that (2.3) holds and
(2.4) has a positive solution. This is equivalent geometrically to requiring 
that the origin 0 = (0,0)7 be in the interior of the convex hull of the three 
points H2(ti))T, г = 1,2,3. It is easy to find such points f, by
drawing the graph of the curve ( t , t2 — 1).

3. T he  basic  p roposition

When к > 2, graphical inspection is no longer available. In this section, 
we prove the following proposition:

P r o p o s i t i o n  3 . 1 .  Let w(t) be as in the theorem and let p \{ t) , . . .  ,pk(t) 
be polynomials satisfying deg(pj) = j  and

(3 .1 )  J  pj(t)w(t)dt = 0 ,  j  = l , . . . , k .
R

Then we can find points i i , . . .  ,tk+1 € S  = {t : w(t) > 0} such that 

(3 .2 )

/Pi(tk)\

\Pk(h)J \Pk(tk)J
are linearly independent vectors in R fc, and such that the system of equations

(3 .3 )
fc+i
^2P j( ti)a i  = °, j  =  1 , . . .  , fc,
t—i

has a solution ( a i , . . .  , afc+i) with all a,- > 0.
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For abbreviation, we let

p 0) = (p i (*)»••• ,Pk{t))T

denote the vector of polynomials. The convex hull of the set H  will be 
denoted by conv(H) and the interior of conv(H) by conv°(//). Let 0 denote 
the zero vector in Rfc.

Lemma 3.1. 0 £ conv°({P(i) : t £ 5}) ф 0.
P roof. If conv°({P(f) : t £ S'}) =  0 then (P (i) : t £ S} is contained in

a hyperplane {x : cTx = a} where e = (c i , . . .  , Ck)T is a non-zero vector and
к

a £ R. Therefore 22 Cjp,(t) = a for every t £ S. Since S is open and non-
i=i

к
empty, this implies tha t the polynomial q = 22 c,p, is constant. However,

1=1
this contradicts с ф 0 and deg(pt) =  г, г = 1 ,... , к.

Thus conv°({P(t) : t £ S'}) ф 0 and hence (P (t) : t £ S} is contained in 
the closure of conv°({P(f) : t £ 5}).

Now, suppose, ad absurdum, tha t 0 ^ conv°{P(t) : t £ 5}. Then, 
by the separating hyperplane theorem, there exists a non-zero vector a  = 
=  ( a j , . . .  ,otk)T such th a t aTx > 0 for all x £ conv°{P(i) : t £ S} .  Hence,

к
by continuity, a TP(i) ^  0, i.e., a qpq{t) ^ 0 for all t £ S. By (3.1), we

ч=1
к к

have f  £  OLqpq(t)w(t)dt =  0 and thus 22 aqPq = 0 on S'. Since S  is an open 
R  9 = 1  9 = 1

к
set, this implies 22 a qPq =  0. The linear independence of the polynomials 

9 = 1
Pi»-- - iPk implies а* = . . .  = a* = 0, contradicting our assumption on a.
□

Lemma 3.2. Let N  = 2k(k + 1), and let

A = { ( t i , . . .  , t N): t{ £ S (i =  1 ,.. .  ,N )  and 0 £ с о п у ° ( { Р ( П ) ,  . . .  , Р ( * д г ) } ) } .

Then A is a non-empty open subset of R ^.
P roof. By Lemma 3.1 we can find e > 0 such that the ball of radius 

£ centered a t the origin is contained in conv{P(f) : t £ S). In particular, 
the 2k vectors x^ = (<7x£,... ,<г*£)т , a  = (crj, . . .  ,crjt) € ( + l , - l } fc are in 
conv{P(i): t £ 5}. By Caratheodory’s theorem ([2], Th. 17.1), each vector 
Xa is in the convex hull of к + 1 points of {P(t): t £ 5}. Hence there are 
numbers ti £ S (i = 1 , . . .  ,2k(k +  1)) such that the convex hull of the 
corresponding P(L) contains all 2fc vectors x* and thus has 0 in its interior. 
Therefore, А  ф 0.
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Next we show that A is open, or equivalently that its complement is 
closed. Let t„ =  (i" , . . .  , tjv) be a sequence in R ^  \  A converging to some 
point t = ( t i , . . .  tjv). Then

0 ^ conv°({P(t"),. . .  , P(<Jv)}) =  T„

and hence there are unit vectors e „  such that the hyperplane { x :  e^x = 0} 
does not meet the set Tn. By selecting a subsequence we may assume that 
the vectors e n converge to a unit vector e . It follows from the continuity 
of the map P th a t the hyperplane {x: eTx =  0} does not meet the set 
conv°{P(fi),. . .  , P(t/v)}, and hence t ^ A. □

Lemma 3 .3 . There are N  = 2k(k -f 1) distinct points t \ , . . .  , tjy € S  
such that

(i) 0 e conv°({P(t!),. . .  , P (ÍAf)}) and
(ii) the vectors P(f,-l ) , . .  . P (flfc) are linearly independent fo r  every k-sub-

set { tq , . . .  o f  , . . .  , tjvj-
P r o o f . Let A  be as in Lemma 3.2 and let В  denote the set of those 

points t = ( t i , . . .  , tjv) for which Condition (ii) of Lemma 3.3 does not hold. 
Since every element of A \  В satisfies the requirements of Lemma 3.3, it is 
sufficient to prove that A \  В ф 0.

Observe first that В is a nowhere dense set of R ^. Indeed, if the vectors 
P ( t,l ) , . . .  ,P(f,-fc) are linearly dependent, then the determinant

d(t) = det(pj ( t in): j ,  n  = 1 , . . .  , k)

is zero. Now d( t)  is a non-vanishing polynomial in the variables f ] , . . .  ,ijv 
(whose functional form depends on the subset {iu , . . .  ,L fc}), and hence the 
set (t € R ^ : d(t )  — 0} is nowhere dense. Since В is the union of finitely 
many sets of this form, В is nowhere dense.

By Lemma 3.2, the set A  is non-empty and open. Hence A \ В ф 0.
□

P roof  o f  P r o p o s i t i o n  3.1. Let {fb . . .  ,/дг} be the set obtained in 
Lemma 3.3. By Caratheodory’s theorem ([2], Th. 17.1) there exists a subset 
i t l , . . .  , tik+l such that

0 G conv{P(itl) , . . .P ( t , fc+1)}.

Thus (3.3) has a solution with all a, > 0. If one of the a ,’s were equal 
to  zero, a fc-subset of Pfc(it l ) , . . .  , Pfc(i*fc+1) would be linearly dependent, 
contradicting Lemma 3.3. Thus (3.3) is satisfied, and also (3.2). □

4. P r o o f  o f th e  T heorem

To establish the first part, we apply Proposition 3.1 to obtain points 
t i , . . .  ,tfc+i € S  satisfying (3.2) and (3.3) (with p,- replaced by Wf). Consider
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the following system of к non-linear equations in к +1 variables a j , . . .  , ak+i:

fc+i *•+“•
^ 2  I  Wi(t)w(t)dt = 0, j  = 1, . . .  ,k.
*=1 t.

(4.1)

ti+ai
(Here we follow the usual convention for definite integrals, defining /  =

t,
í.

= — /  when a, < 0.)
ti+ai
This system has a trivial solution ai = 02 = . . .  =  ßfc+i = 0. The matrix 

of partial derivatives is
W i(tiM < i) . . .  W i(tk)w{tk) W i(tk+1)w(tk+l)

Wk(ti)w(ti) . . .  Wk(tk)w(tk) Wk(tk+1)w(tk+1)
Since the к x к sub-matrix consisting of the first к columns is non-singular, 
we may apply the implicit function theorem. There exists then an e' > 0 
and differentiable functions / 1, . . .  ,/* :  [—e',e'\ —*■ R  such that a\ = /i(a ), 
«2 =  / 2(0) ) . . .  , ak =  f k(a), ak+i = a, solves (4.1). Moreover, using the chain 
rule we have the following system of linear equations for /,-(0) = ^j-(O):

f i W W f a M h )  + Л(0)Иrj ( t2)w(t2) + ... + /fc(0)W,-(ifc)ti7(ifc)+ 
+W j( tk+1)w(tk+i) = 0.

By the choice of the i ,’s this system has a unique solution //(0) > 0, г = 
=  1 ,. . .  ,k .  Thus all fi are strictly increasing in some neighborhood [—£,£] 
of 0 with e < e'. Hence (4.1) holds with a, = i =  1 , . . .  , к, ak+1 = s for 
any 0 < s < e. It also holds with a,- = / , ( —s) < 0, i =  1 , . . .  ,k , ak+1 =  — s. 
Therefore

k ti+fi(e) ÍJC+1+»

^ 2  J  Wj(t)w(t)dt +  J Wj{i)w(t)dt = 0

for j  = 1 , . . .  , к  and for all 0 ^  s ^  e.
We now turn to the proof of the second part of the theorem. Assume 

w.l.o.g. (by suitably decreasing e) that the intervals [tj -f / , ( —£), t} +  fj(e)\, 
1 = j  = к and [tfc+i — £ ,tk+1 + e] are disjoint. For 0 ^ s ^  e define 

к
A ,  = (J [tj -  f j (~ s ) , t j  + fj{s)] U [tk+1 -  s,/fc+i + 5]. Now let G: R -> R be 

i=1 
given by

G(x ) = { £ {o ix ( t A '
for x £ d A a, i.e., for x = tj + fj(±s) , l < j  < k  a,nd x = tk+i± s .
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Locally, in [tj, tj +  fj(e)\, G is the inverse function of tj + f j ( s ); in [tj + 
+  it is the inverse function of tj + Thus G is continuous,
actually even differentiable except for finitely many points. □

Acknowledgements. The authors would like to  thank M. Keane and R. 
Vitale for making them aware of Liapunov’s theorem, and the referee for 
simplifying the proof of Proposition 3.1.

R eferences

[1] H . D e h lin g  a n d  M . S . T a q q u ,  T h e  e m p i r ic a l  p r o c e s s  o f  so m e  l o n g - r a n g e  d e p e n d e n t
s e q u e n c e s  w i th  a n  a p p l i c a t i o n  t o  [ / - s t a t i s t i c s ,  A n n . S ta tis t.,  1 7  (1 9 8 9 ) , 1 7 6 7 -  
1 7 8 3 .

[2] R .  T .  R o c k a fe l la r ,  C onvex A n a ly s is ,  P r i n c e t o n  U n iv . P r e s s  ( P r i n c e t o n ,  1 9 7 0 ) .
[3] W . R u d in ,  F u nctiona l A n a lysis ,  M c G ra w -H i l l  (N e w  Y o rk ,  1 9 7 3 ).

(Received F ebruary  9, 1989; revised J u n e  23, 1989)

RUKSUNIVERSITEIT GRONINGEN
WISKUNDE
POSTBUS 8 0 0
9 7 0 0  AV G RO N IN G EN
THE NETHERLANDS

D E P A R T M E N T  O P M ATHEM A TICS 
B O ST O N  U N IV ER SITY  
1 1 1  CU M M IN G TO N  S T .
BOSTON, MA 0 2 2 1 5  
U.S.A.

A cta  M athcm atica  H ungarica 60, 1992



Acta Math. Hung. 
60 (3 -4 )  (1992), 225-240.

HERMITE INTERPOLATION AT THE 
ZEROS OF CERTAIN FREUD-TYPE 

ORTHOGONAL POLYNOMIALS
H. N. MHASKAR* (Los Angeles) and Y. XU (Austin)

1. Introduction. Let

(1.1) A • = {xkm  & = 1, . . . , 71, 71= 1,2 .. .},
(1.2) В :={ykn, k = n =  1 ,2 . . .}

be triangular schemes of real numbers and / : R —► R. The Hermite inter­
polation polynomial ) := Hn(A, B, f , x )  is the unique polynomial of
degree at most 2n — 1 which satisfies

(1.3) Hn(f ,  £fcn) = f(%kn)i f̂cn) — Укп1 k = 1, . . . ,71, 71 =  1 ,2 . . .  .

In 1930, L. Fejér proved the following

T heorem 1.1 [24]. Let f  be continuous on [—1,1], xkn = cos (^jp7r), 
к =  1 , . . .  , тг, тг =  1 ,2 ,. . .  and

Ä ,  ,? £ „  { !v V 1 ~ 4 »te»l} = o.

Then the sequence {Hn(A, B, /)}  converges to f  uniformly on [—1,1] as 
n —► oo.

There is a great deal of hterature concerning the behavior of {HrfA,B,f)} 
for various choices of A, В  and the function classes to which /  belongs. 
In particular, it is known (cf. [30]) that when {zfcn} are the zeros of the 
Jacobi polynomials and the ykn' s are uniformly bounded, then, for every 
/ :  [-1 ,1] -7 R, continuous on [-1,1], the sequence {Hn(A, В , /)}  converges 
to /  uniformly on compact subintervals of (—1,1) as n —> oo. The inter­
polation polynomials {Hn(A, B, f ) }  are analyzed in an even greater detail 
when all ykn's are equal to zero, in which case, Hn( A , B , f ) is called the 
Hermite-Fejér interpolation polynomial. In many cases of interest, such as 
when the nodes xkn are as in Theorem 1.1, Hn is a positive operator. We do 
not intend to give a complete survey here, but quote the following theorem, 
which is relevant to the present work.

* Part of this author’s work was done during his visit to the Center for Approximation 
Theory, Texas А к. M University, College Station, Texas, during the Fall of 1988.
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T heorem 1.2 [3]. Let f :  [—1,1] —> R be continuous on [—1,1] and for 
S > 0, we put

(1.4) u ( f , 6) := m ax{|/(x) — / ( i ) | ,  \x -  t\ < 6, ®,í G [-1,1]}.

Let be as in Theorem 1.1 and ykn’s be all equal to zero. Then for

(1.5) |ffn( / , * ) - / ( * ) I S  " =  1 . 2 , . . .
where c is an absolute constant.

In the case when {х*„} are the zeros of orthogonal polynomials with 
respect to weight functions whose support is the whole real line, relatively less 
is known about the polynomials Hn(A, В , / ) .  There is an extensive literature 
when the nodes are the zeros of either Laguerre or Hermite polynomials. We 
will not venture to give a complete list, but quote ([1], [11], [26], [28], [29], 
[31]) as examples. When the weight function is a general one, we are aware 
of only [12], where processes closely related to Hermite-Fejér interpolation 
are studied. The results in [12] are stated, however, only when /  satisfies 
certain restrictive growth conditions.

W ith the aid of the recent research in the theory of orthogonal polyno­
mials, it has now become possible for us to obtain the analogues of The­
orems 1.1 and 1.2 in the case when the s are the zeros of polynomials 
orthogonal on the whole real line with respect to a weight function of the form 
Wq (x ) := exp(—2Q(x)) which satisfies various technical conditions. Thus, 
in this paper, we assume only th a t w ^f в Co(R) for some p, 0 < p < 2 and 
show that under certain conditions on В, {Hn(A, B, /)}  converges uniformly 
on compact subsets of R when xjtn’s are as described. Moreover, we use a 
modulus of continuity which is “natural” for weighted polynomial approxi­
mation, to give an estimate analogous to (1.5) for the rate of convergence. 
We observe tha t, unlike the “classical” case, the Hermite-Fejér interpolation 
operator in our case is not a positive operator. Thus, just as in the case 
of the general Jacobi nodes, we do not expect uniform convergence on the 
whole real line, even after multiplication by w q . The novelty of our paper 
lies in the fact th a t we assume very little of the function being approximated, 
and in our use of the modified modulus of continuity. The proofs use the 
ideas in [21] and [13] as well as many recent estimates on the orthogonal 
polynomials, including a differential equation which they satisfy.

In Section 2, we discuss our main results. In Section 3, we discuss certain 
preliminary facts concerning the interpolation process and the modulus of 
continuity, as well as review the known estimates on quantities related to 
orthogonal polynomials which will be needed. The proofs are completed in 
Section 4 except for a technical estimate which is proved in an Appendix.

The authors would like to thank Professor J. Szabados for his keen in­
terest and suggestions for improvement in the presentation of this work.
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2. Main results. Throughout this paper, we shall adopt the following 
convention concerning constants. The lower case letters c, Ci, C2, . . .  etc. will 
denote constants depending only upon the weight function in question, unless 
otherwise indicated. Their value may be different at different occurrences, 
even within a single formula. The constants denoted by capital letters will 
retain their values.

We consider weight functions of the form w q ( x )  := exp(—(?(x)) where 
Q satisfies each of the following properties.
(W l) Q is an even, convex function in C 2(0,oo) and Q” is nondecreasing 
on (0, oo).
(W2) There exist constants ci,C2 > 0 such that

(2.2) l < o < ^ < c 2 <oo ,  i e R .
Q \x )

(W3) Let, for x  € R, 8 > 0,

(2.2) osc(Q", x, 6) := max \Q"(t) -  Q"(x)\

and denote qn the least positive solution of the equation
(2.3) qn Q'(qn) = n, n -  1 ,2 ,----
Then, for any c > 0

l
. 4  /  osc(Q", x . t )  , . n , . .(2.4) /  ’ U t < Cl- ,  \x\ < cqn.

J t qn
о

The prototypical weights which satisfy all of these conditions are 
exp( —|x |a ), a  > 2.

If n > 0 is an integer, let П„ denote the class of all polynomials of degree 
at most n. We denote by {pn}^L0 the system of polynomials orthonormal 
on R with respect to Wq , i.e.

(2.5) J p n{t)pm{i)wQ(t)dt = 6mn, pn e Пп 

and introduce the notation
П

(2.6a) pn(x) =: 7n П ( ж “  Xkn)
Jt=i

where

(2.6b) 7n ^  Oj ~ X n := x nn < i n_ iin < . . .  < X \ n  = X n.

Let В  := {yfcn} be a triangular scheme of real numbers, which will be fixed 
throughout this paper. We let
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(2.7) Y„ := max |ш<э(э;ы)у*:п|.

If / : R —► R, we shall denote for the sake of brevity, the Hermite interpola­
tion polynomial H„(A, B , f , x )  by Я п(/,х ) , where A = {xfcn}, В = {Укп}- 

In order to state  our results concerning the convergence properties of 
Я п( / ,  x), we need to introduce a modified modulus of continuity (equation 
(2.12)) introduced in [9], [10] and found useful in the study of weighted 
polynomial approximation (cf. [18], [19]). If g € Co(R), we set
(2.8) 1Ы1 := m ax|ff(x)|xER
and define the difference operator by
(2.9) A tg(x) := g(x + t) -  g(x), x , t  e R. 
Let wq  f  €  Co(R) and 6 > 0. We set
(2.10) Q(Q, / ,  6) := sup \\At(wQf)\\ + 6\\Q'swQf\\

where
l*|S*

(2.11) Qs(x) := min{<$ \  [1 +  Q^(x)]172}.
The modified modulus of continuity is then defined by the formula
(2.12) W ( Q , f , 6):=  inf S l ( Q J - a , 6).

a£ R
We wish to point out that there is a different, equivalent expression for 

the modulus of continuity which is even more useful in certain applications 
([5]). For our purposes, however, it is more convenient to use the expression
(2.12) .

Our main result can now be formulated as follows.
T h e o r e m  2.1. Let w q  satisfy the conditions (W l), (W2), (W3) and qn 

be as defined in (2.3). We assume further that
(2.13) |m o(í)pn(í)| < cq~1/2, |f| < A*qn, n = 1 ,2 ,-----
Let p € (0,2), W q f  6 Co(R) and n "t 1 be an integer. Then there exist 
positive constants D and c depending only on Q such that for every real x 
with |x| ^  Dqn,

(2.14) ^ n( / ,x ) - / ( x ) |< c ( ^ - l o g n ) y n + c(l +  |x |) ( l+ p |g ,(x)|)u;Q2 p(x)x

{ n - ( p Q J , qi ) +
qnp2n(x)w2Q(x)

n к- 1  J
We note th a t an argument similar to the one in [21] shows that the 

second term on the right hand side of (2.14) tends to 0 as n —► oo. Hence, 
in particular, the Hermite-Fejér process converges uniformly on compact 
subsets of the real line. We also note the following corollary concerning the 
convergence of the Hermite process.

A cta  M athem atica  H ungarica 60, 1992



H E R M IT E  INTERPOLATION 229

C o r o l l a r y  2.2. Let the conditions of Theorem 2.1 be satisfied and in 
addition, we assume that f  is continuously differentiable and that Wqf' 6
€ Co(R). For к =  1 , . . .  , n ,  let j/jtn = f ' ( x *„). Then, for any compact 
interval I  C R and x  € / ,

(2.15) \H „(f,x)  — f(x ) \  < c ( ^- log n ) £„(pQ, ,

where c is a positive constant depending only on Q, p, and I  and

(2.16) £ . М , Л  := mm ||« £ ( / ' -  P )||.

(2.13) seems to be an important condition, occurring as a hypothesis in 
many theorems (cf. [12], [13], [14], [21]). It is now known to be true for 
a fairly general class of weight functions including exp(—|ж|а ) when a > 3 
([16]). It is announced in [15], without proof, tha t it is satisfied for the 
weight functions e x p (- |x |° )  when a  > 0 as conjectured in [25]. When the 
results in [15] are proved, our theorem will be valid for the weight functions 
exp(—|a?|“ ) when a  2. Currently, it is valid for these weights when a  = 2 
and when a  > 3.

3. Preliminaries. In this section, we review certain known facts about 
orthogonal polynomials, the Hermite interpolation polynomials and the mod­
ulus of continuity (2.12). We adopt the following notation. A ~  В  will mean 
that ci A  < В  < ciA.

We begin with certain facts concerning orthogonal polynomials. 
P r o p o s it io n  3.1 ([6], [13]). (a) (Recurrence relation.)

(3.1) xpn_i(x) = gnpn(x )+ ß npn- i ( x )  + ßn-iPn-2(x), x e R ,  n = 2 ,3 , . . . ,  
where

(3.2a) вп := 7n-i/7n,

(3.2b) ßn := J  tp2n_x{t)w2Q(t)dt.

When Q is even, then ß„ =  0.
(b) (Christoffel-Darboux formula.)

(3.3) Д -,(М ) := I > ( » ) » ( 0  =
f — "  X — tk=0

(c) I f  Ф is a linear functional on Пп_1; then we define the Ф-Christoff el 
function by the formula

(3.4)
Then

(*) ■■= p g in  ,(Ф (Р ))-! |  lP (t)lV g(t)d t.
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M * )  =  { E W m ) ) 2} - '-(3.5)
fc= 0

In particular, when ФX(P) P(x )> then

(3.6) An(x) := ЛП(ФХ) = (Kn( x , x ) ) ~ \

(3.7) К г(х) =  en[p'n(x)Pn-i(x) -  Pn(x)p'„-i(x)J-
(d) (Quadrature formula.) For every P € Щ п -ъ

П
(3.8) ^2*knP (xkn )  =

k=l
J  P(t)wq(t)dt

where xkn are as in (2.6b) and
(3.9) Afcn := Xn(xkn).

Next, we develop a differential equation satisfied by pn.
P roposition 3.2 ([4], [2], [20]). Let Q be twice continuously differen­

tiable. Then, for n = 1 , 2 , . . .  and x € R,
(3.10) p'n(x) = A n(x)pn-x(x) -  Bn(x)pn(x) 
where, with

(3.11) 
we have,

Q(x , t )
Q>(t) -  Q'(x)

, 9

(3.12a) A n(x) := 2gn j  p2n(i)wQ(i)Q(x,t)dt,

(3.12b) Bn(x) := 2gn J  pn(t)pn-i(t)wQ(t)Q(x,t)dt.

Moreover, for n = 2 ,3 , . . .  and x  € R,
(3.13) p'n(x) + M n(x)p'n(x) + Nn(x)pn(x) = 0
where,

(3.14) M n(x) := -2Q '(x)  -  A'n(x ) /A n(x)
and

(3 15) N  (x) •= An(x )A n - \ (x )Qn _  A n - i(x )B n(x)(x ßn) I
Q n — i  Q n— l

+ B „ (l)S „ -!(x )  +  B’„(x) -  Х 77т5п (*).
An(x)

Next, we state a representation for Hn(f ,  x) in terms of the fundamental 
polynomials.

P r o p o s it io n  3.3 ([30]). We have, for n  =  1 ,2 , . . . ,
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(3.16)

where
(3.17)

hn(x)

and

П П
*«(/. X) = S  /(**•»>*»(*)&(*) + Укп(х -  Xkn)lln(x)

k=l jk=l

Pn(x)
J > { . ( Z f c n ) ( z  -  X k n )

(?n^knPn—l(x kn)
P n ( x )  

X -  X kn
Afcn X n(x, Xfcn);

(3.18) r*:„(x) =  1 -  2/fcn(xfcn)(x -  z*n) =  1 -  ^ - -Ц (х -  xkn) =
P n\Xkn)

=  1 +  A f c n ( A n ( * i f c n ) ) ( *  -  X fcn ) .

In view of (3.13) and (3.14), we obtain an alternative expression for vkn 
when Q is twice continuously differentiable. We observe that in this case,

(3.19) vkn(x) = 1 - 2Q'(xk„) +
A'n(xkn)
An(xkn) (x xkn).

This observation plays a crucial role in our proof of Theorem 2.1.
Next, we state certain estimates concerning the various quantities related 

to the system {pn}. However, we note that some of the statements in the 
next proposition are valid under conditions weaker than those stated below.

P r o p o s i t i o n  3.4. Let w q  satisfy the conditions (W l), (W2), (W3) 
stated near the beginning of Section 2. Then, there exist positive constants 
c, Ci, C2, . . .  and D u D2 . . .  such that each of the following statements hold.

(a) ([7])
(3.20) cqn < X n < Diqn, Q ~  qn, qn ~  q2n.

(b) ([7], [8]) For x e  R,

(3.21) Y pk(x ) = c(n /4n)wQ2(x),
k = 0

(3.22) Y p'k(x ) = c(n / ^ ) 3wQ2(x )-
k = 0

(c) ([7]) For max{|x|, |xjk„|> |*fc+i,n|} ^  D2qn,

(3.23) An(x) ^  c(qn/n)wQ(x),

(3.24) 0 3 -  ^  xkn -  xk+l,n < 0 4- .
71 71

(d)
(3.25) w q ( x )  ~  wQ(y) if  \x -  y\ < c(qn/n).
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[(20)] For every c > 0 and |x| < cq„,

A„(x) ~  n /q n .
([13]) Let  0 < p < 2. Then for integer к, 1 < к ^  n, we have,

A fcn^Q P ( x fcn) й  J  W Q ~p ( t ) d t
X* + l.n

(3.28) ®п+1,г» *= oo? 2;o,n -= — oo.
We observe that (3.26) is stated in [20] under more restrictive conditions 

on the weight function, but the proof reveals that the conditions (W l), (W2), 
(W3) are enough. Also, (3.27) is not stated explicitly in [13]. However, it is 
an easy consequence of Lemma 3.2 in [13] if we observe that there exists an 
even entire function G with positive Taylor coefficients such that

(3.29) G(x) ~  W q P( x ) ,  x  e  R

(cf. [14]). In fact, Lemma 3.2 of [13] is used in [13] in this way.
Finally, we state a known result about the modulus of continuity 

Cl*(Q,f,6) defined in (2.12), which is true for a far more general class of 
weight functions. Let w q f  € Co(R), 6 > 0. We define a А -functional by the 
formula
(3.30) K(Q ,  / ,  6) = inf[||w0 ( /  -  5 )|| + ilium 'll]
where the inf is taken over all continuously differentiable functions g such 
that WQg' € Co(R).

P r o p o s it io n  3.5 ([9], [10]). Let Q satisfy the conditions (W l), (W2), 
(W3). Then for w q f  € ^ ( R )  and 0 < S ^  1,
(3.31) i l* (Q , f ,6 )  ~  K ( Q , f , 6 ) .

4. Proofs. In order to prove Theorem 2.1, we observe that
П

(4.1) ^ 2  vkn(x)lln{x) =  1 for every x e R.
Jt=i

Hence, for x € R,
(4.2)

П П
Hn( f , x )  -  / (x )  = J ^ ( / ( x fcn) -  f ( x ) ) v kn(x)l ln(x)  + ]Гу*„(х -  x*n)/jfc„(x).

k=1 Jt=l
We start by replacing the differences f ( x kn) — /(ж) in the above sum by 
ÍI*(p(J,/, |x — xjfcn|), where we recall that 0 < p < 2, and WqPf  € Co(R). In 
the sequel, we shall write wkn instead of wq(xkn), vu instead of wq.

(e)
(3.26) 

(e)

(3.27) 

where
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Lemma 4.1. We have,

(4.3) If { x kn) -  f ( x ) I ^  c(l +  p\Q \x)\)w -p(x )w ^ il* (p Q ,f ,  \x -  xfcn|).

P roof. W ithout loss of generality, we may assume that Q is nonnega­
tive on R and take p = 1. Let h := x — Xkn• Then,

(4.4) |/ (x fcn) - / ( x ) |  g u;-1(x)|A fc(u;/)(xjtn)|-|-|u;fcn/( x fcn)||u;^n1- u ; " 1(x)|.

Now, since Q'w~l is an increasing function on [0, oo), the mean value theorem 
yields

(4.6) -  ™_1(x)| = |in_1(|xfc„|) -  w_1(|x|)| £
< max{|Q '(xfcn)|u;^n1, | g /(x)|u;-1(x)}||x| -  |xfcn|| ^
< [1 +  |Q'(z)|]w_1(x)tt’fc„1[1 + |Q/(xfc„)|]|x -  xfcn| ^

< \/2[l +  IQ,(x)|]to~1(x)xy^[l + Q'2(xjt„)]1/2|x -  Xfc„|.
Also,

(4.6) -  тп-1 (х)| % + tn_1(x) ^  2u;-1 (x)wJn1.

W ith the notation of (2.11), the estimates (4.5), (4.6) yield

(4-7) К  -  w-1 (*)l S Ф  +  1<3'(а;)|]^_1(а;)<5|/,|(^п)|х -  xkn\w 

Substituting from (4.7) into (4.4), we get

(4.8) If ( x kn) -  f ( x )I < c[l + |Q,(x)|]u;-1(x)u;^1{|Ah(w /)(xJfc„)| + 
+1л 1<3|Л|(а:*п)^п|/(х1Ьп)|} ^  c[ 1 + \Q \x)\]w-x( x ) w ^ ü ( Q , f ,  |h|).

The estimate (4.3) follows from (4.8). □
Using the estimates (4.3) and (2.7) in (4.2), we arrive at

(4-9) \Hn( f ,  x) — /(x ) | <
П

< c[l + p\Q\x)\]w-p( x ) l ^ 2 w~^il*(pQ, f , \ x  - x j tn |)|nfc„(x)|^„(x)}  +
k = 1

+ У „  ^ 2  W kn  I х  -  x k n \ l l n ( x ) .
k = 1

Thus, in order to prove Theorem 2.1, we need to estimate the two sums 
on the right hand side of (4.9). The details of this estimation are organized 
in Lemmas 4.2, 4.3 and 4.4.
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We assume that

(4.10) |*| ^  Dq„, D :=

where D \,D 2 are defined in Proposition 3.4 and A * is the constant appearing 
in (2.13). With Z?4 as in (3.24), we define three sets of indices

(4.11a) N  := {к: к integer, l  < к ^  n, |x — х*п| ^ 2D4<?n/n},

(4.11b)
M  := {к: к integer, 1 < к ^  n, \x -  x*n| > 2D4qn/n,  |х*„| < 2Dqn],

(4.11c) F := {к: к integer, 1 < fc ^  n, |x*n | > 2Dqn}.

We note that the set N  can contain at most AD4 /D 3  members, where 
D3 is defined in (3.24).

Lemma 4.2. Let ф be a nondecreasing, nonnegative function on [0,oc) 
such that ф(2и) ~  ф(и) for и € [0, 00). Then,

(4.12)

(4.13)

(4.14)

5 3  ХкпФ(\Х -  x kn\)ll„{x ) ^
keN 4n

С2Яп
53  Л* М *  -  Xkn\)lln(x) <: CqnP2n(x) J Щ$-du,
fceM ciqn/n

53 AfcnV(k -  SfcnlVfcni*) ^ СРп(*Ж?п)-
keF

P r o o f . In view of (3.17) and the Schwarz inequality,

(4.15) lL (x )  = X2knK 2(x ,x kn) Z AknK n(x,x).

The estimate (4.12) now follows from (3.21), the conditions on ф and the 
fact that N  contains at most AD4/D 3 members. Next, using (3.17), (3.20),
(2.13), (3.23) and (3.24), we see that

(4.16) lkn(x) = ß2nX2knp2n_1(xkn) рШ
^ c4 ^ l„ q n lwkn(* -  xkny

p i n

<: cqnp2n(x )Afcn9n
n (x -  XJtn)2

й c q n p l n x kn

(x -  x kn)2 
xkn -  *fc+l,n
(* -  *jtn)2

Now, using (3.24) and the definition of M  (equation (4.11b)), it is easy to 
verify that

(4.17) |x -  f| ~  |x -  xjfcnl, t € [*fc+i,n, **„], k e M .
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So using (4.16) and the properties of ф we get

(4.18) Y  Xk M X -  Xkn\)lln(x) <:
кем

c 2 Qn

S  2 ( \  X"'' ^ ( |*  — I ) \ s -  2 1 \ Í  Ф(.^) j  S cqnpn(x) 2_s -JZ--- r ^ r ( Xkn ~ Xfc+i,n) = c9"Pn(x) /  —2-du .
кем (X Xkn) J , Uciqn/n

The estimate (4.13) is thus proved.
When к £ F, we have |x -  х*„| ~  qn. So, using (3.17), (3.20), the 

properties of ф and the quadrature formula (3.8) with P = p ^ - i  € Пгп-г, 
we get

(4.19)
Y  Xk M X -  x k n \)l2kn(x ) ^ сФ(<1п) Y  QnPn(x ) Xk n P n -l(x kn)(.X -  Хкп)~2 й 
k e F  k e F

^ ^ ( 4 n ) p l ( x ) Y  Хк п Р п -Л х кп) й  сФ(Яп)р2п(х ) .  
keF

This proves (4.14). □

Le m m a  4.3. We have

(4.20) A ^ 4 > fcn(x)| ^  с— (1 +  1*1), к e N  U M,Tt
(4.21) Хкпщ £\укп(х)\ ^  C  exp(—cjn), k e F .

Proof. If к e N  U M, then |х*п| < (A*/2)qn. Consequently, in view of 
Proposition A .l in the Appendix, there exists c > 0 such that

(4.22) An(Xfcn) ^   ̂
A„(xfcn) =

Hence, (3.19) yields 
(4.23)
K„(*)l ^ c[l+(2|Q'(xJkn)|+l)(|x| + |xfcn|)] < c(l+ |x|)(l+ |xfcn|)(l+|Q,(xfcn)|).

Since the function w2 p(y)( 1 + |j/|)(l +  |g '(j/)|) is bounded from above on R, 
(4.23) gives

wknP\vkn(x)\ ^ c( 1 + |x|).

The estimate (4.20) now follows from (3.23).
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To prove (4.21), we first obtain a general estimate. Let у € R. Using 
Schwarz inequality and (3.22), we get

(4.24) 1 Ш 1 « £ ( £ А . ) )  | = 2 ( £ ^ Ы )  |5^Pfc(y)Pfc(y)| ^

й  2ЛЛ/а(у )(5 ^ Р к (у ))  7 = c ( ^ )  tü_1(í')An/2(í')-

In particular,

(
\  3/2

Thus, in view of (3.18), (3.20) and (3.21),

( \  3 /2  /  \  3/2

®talAÄ  = C ™*nAin2?n-

Now, let к £ F. Since |( p +  1) < 2, it is easy to see using Proposition 3.4(f) 
tha t

X k — Y , n  OO

(4.27) AfcnWfcn*(P+1) < j  [ti>(í)]2_*(p+1)«fc £  J[w (t)]2~i(p+1Ut <
*k+l,n cQn

oo
< c— /  Q'(í)[u;(í)]2-3̂ p+1' ííí < с—ги(с<7п)2~з(р+1).

n J n
cqn

In view of (4.26) and (4.27), if к G F, then
(4.28)

Afc„wJtPK r,(z ) | й c(n/q„)3/ 2qnwkZ гА^2 < cqnw(cqn)2 p < c exp(-Cin). 

This proves (4.21). □
L e m m a  4.4. We have

(4.29) Xknw ^  < cqn/n , к e N  \J M

(4.30) = c exp(-C in), к e F.

P r o o f . The estimate (4.29) follows from (3.23) since w2~p is bounded 
from above. The estimate (4.30) follows from Proposition 3.4 exactly as in 
(4.27). □

C o m p l e t io n  o f  t h e  p r o o f  o f  T h e o r e m  2.1. We shall denote 
£l*(pQ,f,6) by il*(£). Then ÍI* is a nondecreasing, nonnegative function 
on [0,oo), and satisfies the condition il*(26) ~  il*(£), <5 > 0. Hence, (4.20),
(4.12) imply tha t
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(4.31) 5 3  w*n П*(1Х -  * ь » |)К п(* )Ю * )  ^
keN

^  c(l + |x|) — 5 3  A ^íT flx  -  xkn\)lln(x ) ^  c(l + |x|)w  2(x)íí*(g„/n). 
71 keN

Next, (4.20) and (4.13) imply that

(4.32) 5 3  » i^n * (l*  -  xkn\)vkn(x)\lln(x) ^
кем

cl9n

й c(! + 1*1)̂ - 53 АыП*(к -  **»!)&.(*) S c(l + 1*1 )ЯпР1(х№ í  ^ f i du й 
к*м  c i /n

c2n „
< c(l + |x|)g„p2 (x ) -  fn * (q n/v)dv ^  c( 1 + \x\)qnp2n( x ) -  J 3  П*Ып/к).

n J n rzí
C l

Next, (4.21) and (4.14) imply that

(4.33) 2  »Г„РП-(|* -  * ь . |)К .(* ) |4 ,(х )  S
keF

< c exp(—Cj7i) 5 3  Ajtn^*(l* — *fcnl) f̂cn(x) ^  cp2(x )ex p (-c in )ir(g „ ). 
keF

We get from (4.31), (4.32), (4.33) that

(4.34) S Wfcnfi*(lX -  *fcn|)b*„(x)|/jtn(*) ^
k=l

< c(l +  |*|){ti» 2(x)fi*(g„/n) +  g„p2( x ) i ] 5 3 i r ( g n/fc)}.
k= l

Next, we let ф(и) = и. Then (4.29) and (4.12) give

(4.35) 53 w ^ \ x  -  xfc„|/L(*) = c“  S  AJtnl* -  *fcnKL(*) ^ cnT2(x)^-
keN keN

Next, (4.29), (4.13) and (2.13) give

(4.36) 5 3  w~Z\x -  xfen|/ | п(х) < c^-  5 ^  A-nx|x -  xkn\l2kn(x) £
jteM fceM

C29n
г' 2 / \ 9n /  d,U .  - 2 / \ 9 n .b  cg„p*(x)— / — S cm z(x) — log

n J и n
c29n/n

Next, (4.30), (4.14) and (2.13) give

n.
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(4-37) Y ,  wkn\x  -  xkn\lL(x) ^  c e x p (-Cln) Y  Xkn\X -  x kuVln{x ) ^  
k€F k€F

£  c exp (-c in )p 2(x)gn < c exp(—c1re)u)_2(x).
In view of (4.35), (4.36), (4.37), we have proved

(4.38) “  x kn\ll„(x) ^  c ~  log nw \ x ) .
fc=i

Theorem 2.1 now follows from (4.9), (4.34) and (4.38). □

A pp en d ix
We wish to  show the following.
P r o p o s it io n  A.l. Let w q  be a weight function which satisfies condi­

tions (W l), (W 2), (W3) and let (2.13) hold. Then, there exists a constant 
c > 0 such that

K ( x ) /A n(x)| ^  c, |x| ^  l-A*qn(A .l)

where A„ is defined in (3.12a).
P roof. Using an argument based on the infinite-finite range inequalities 

of [22], [23], [17], we obtain, exactly as in [20] that

T z Q{X'*)
dt < c exp(—c\n),(A.2) 2 gn J  p2n( t)w l( t )

for a suitable constant A\  > A* +  1. Next, we observe tha t
_  !£'(<) -  Q \ x ) -  Q"(x )(t -  x)| < osc(Q",x,[x -  t\) 

( t - x )2 -  |x — <|
Hence, using (2.13), we see th a t when |x| < (1 /2 )A*qn,

l

(A.3)

(A.4) 2 Qn J  p l ( t ) w l ( t )

| t —x | < l

Further,
(A.5)

2Qn J  p2n(t)w2Q(t)

3_
dx Q(x ,t) dt osc(Q", x ,u) , . n

------ —du < c— .< c [ °*<Q"
~  J  » Qn

| t - x | > l

dt
= c J

| t - x | > l

osc(Q", x, |x -  t\)
I* -  A

dt <

^ cqnQ"{c1qn) < cQ \qn ) < cn/qn.
If |<| ^  A*qn then necessarily |x -  f| > (l/2)A*g„ > 1. We then have
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/ О

P Í(0 wg (0  dt =

A'qn<\t\<Alqn

й J  p2n{t)w2Q{t)osc(Q" ,x,cqn)dt < cn/ql.
A*qn<\t\ÜAlq„

The estimate (A .l) follows from (A.2), (A.4), (A.6) and (3.26). □
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ERGODIC PROPERTIES OF SOME INVERSE 
POLYNOMIAL SERIES EXPANSIONS 

OF LAURENT SERIES
J. KNOPFMACHER (Johannesburg)

1. In tro d u c tio n

Recently A. Knopfmacher and the present author [8] introduced and 
studied some properties of various unique expansions of formal Laurent series 
over a field F, as the sums of reciprocals of polynomials, involving “digits” 
oi, ß2, . . .  lying in a polynomial ring F[X] over F. In particular, one of these 
expansions (described below) turned out to be analogous to the so-called 
Liiroth expansion of a real number, discussed in Perron [13] Chapter 4.

In a partly parallel way, Artin [1] and Magnus [9, 10] had earlier studied 
a Laurent series analogue of simple continued fractions of real numbers, 
involving “digits” Xi,X2, . . .  in a polynomial ring as above. In addition to 
sketching elementary properties of an те-dimensional “Jacobi-Perron” variant 
of this, Paysant-Leroux and Dubois [11, 12] also briefly outlined certain 
“metric” theorems analogous to some of Khintchine [7] for real continued 
fractions, in the case when F  is a finite field. The main aim of this paper is 
to derive some similar metric or ergodic results for the Laurent series Liiroth- 
type expansion referred to above. (For analogous results concerning Liiroth 
expansions of real numbers, see Jager and de Vroedt [5] and Salát [14], and 
also [16, 17, 18].)

In order to explain the conclusions, we first fix some notation and de­
scribe the inverse-polynomial Liiroth-type representation to be considered:

OO

Let C — F ((z)) denote the field of all formal Laurent series A = ^  cnzn
n=v

in an indeterminate z, with coefficients c„ all lying in a given field F. Al­
though the main case of importance usually occurs when F  is the field C of 
complex numbers, certain interest also attaches to other ground fields F  and 
most of the results of [8] hold for arbitrary F. It will be convenient to  write 
X  — z~x and also consider the ring F[X] of polynomials in X ,  and the field 
F( X)  of rational functions in X ,  with coefficients in F.

If c„ ф 0, we call v = v(A)  the order of A above, and define the norm 
(or valuation) of A to be ||A|| = q~v(A\  where initially q > 1 may be an 
arbitrary constant, but later will be chosen as q = card(F), if F  is finite. 
Letting u(0) =  +oc, ||0|| = 0, one then has (cf. Jones and Thron [6] Chap­
ter 5):
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{ p | |  > 0 with ||A|| =  0 iff A = О,
I\AB\\ = P H  • \\B\\, and

\\aA + ßB\\ < m a x (P ||,  ||5 ||)  for non-zero a ,ß  e  F, 
with equality when p | |  ф ||J?||.

By (1.1), the norm |j || is non-Archimedean, and it is well known that £ forms 
a complete metric space relative to  the metric g such that g(A, В ) = ||A—2?||.

In terms of the notation X  =  z~l above, we shall make frequent use of 
the polynomial [A] =  cnX ~ n G F[X], and refer to [A] as the integral

v=n=o
part of A £ C. Then v = v(A) is the degree deg[A] of [A] relative to X ,  
and the same function [ ] was used by Artin [1] and Magnus [9, 10] for their 
continued fractions. (For a recent application of Artin’s algorithm, F finite, 
see Hayes [4].)

Given A G C, now note th a t [A] = flo G iff v(Ai) > 1 where
Ai = A -  a0. As in [8], if A„ ф 0 (n > 0) is already defined, we then let
an = l

x : and put An+1 = (an — l)(a„A„ -  1). If some Am = 0 or a„ = 0,
this recursive process stops. It was shown in [5] that this algorithm leads to 
a finite or convergent (relative to  g) Lüroth-type series expansion

( 1.2) A =  a0 H------ h 'У '"  ai(ai -  l ) . . . a r_ !(a r_i -  l)a r ’

where ar G F [X \ , ao = [A], and deg(ar) > 1 for r > 1. Furthermore this 
expansion is unique for A subject to the preceding conditions on the “digits” 
CLr  •

If I  denotes the ideal in the power series ring .F[[z]], consisting of all power 
series x such th a t a:(0) = 0, then another way of looking at this expansion 
algorithm is in terms of operators a: I  -  {0} —*• F[X], T : I  —* I  such that 
a(x) = [j ] , T(0) =  0 and otherwise T (x ) = (a(x) — 1 )(xa(x) — 1). Then, for 
x  =  A\  G I, ai = ai(a;) = а(ж), and more generally an = a„(x) = a\(Tn~l x) 
if 0 ф Tn-1x G I .  It will be shown below that x  G /  => T(x)  G I.

From now on, unless otherwise stated, it will be assumed that F  = Fq 
is a finite field with exactly q elements. Then it will be shown below that 
T : I  —► I  is ergodic relative to the Haar measure p on I  such that p(I) = 1. 
This fact will then be used to deduce in particular:

THEOREM 1. (i) For any given polynomial к G FJX ], deg(A:) > 1, and 
all x G I  outside a set of Haar measure 0, the digit value к has asymptotic 
frequency

lim i # { r  < n : ar(x) = к} = 1ШГ2 = g- 2de«(fc).
n—► oo n

(ii) For all x  G I  outside a set of Haar measure 0 there exists a single 
asymptotic mean-value
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r=l
(iii) For all x £ I  outside a set of Haar measure 0,

| |z - u ; n|| =  q ( ~ ^ +o{1))n as n —► oo,

where

Ar-wn = wn(z) = V  A0 = 1, Ar =
r=l °r a i(a i — 1). .  .a r (or — 1)'

Before turning to proofs, it is interesting to note that the limit in (ii) 
above coincides with an analogous one quoted by Paysant-Leroux and Dubois 
[12] for their very different Jacobi-Perron expansion. Regarding (iii) above, 
it may also be noted that it was shown in [8] that

||z — a>„|| < q-2"-1 for all x , 

a similar but weaker algebraic result.

2. E rgodic properties o f  th e  basic op erator

In order to show that x G I  => T(x) € / ,  first note that 0 ф x 6 I  => 
=> v (A) < -1  =>• a(x) = [А] ф 0 and v(a(x) -  1) = v(a(x)) = v (A) ^ -1 . 
Further

0 / i 6 / ^ -  = a(x) +  ^ 2  c'r *r •> say => 1 =  xa(x) +  x ^  c'Tzr =>
X r>l r>l

=> v(xa(x) — 1) = v^x  ^ 2  K 2' )  =>• v(xa(x) — 1) > v(x) +  1.
r>l

Thus (even if F  were an infinite field)

0 ^ x £ l= >  v(T(x))  = v(a(x)—l)+ v (x a (x )- l)  > -v(x)+(t>(x)+l) = >  T(x) e I.

Lemma 1. The operator T :  I  —► I  is ergodic relative to the Haar mea­
sure p on I  with p(I )  = 1.

P roof. A convenient description of the Haar measure p on the ideal I  
of power series x in F,[[z]] with x(0) = 0 is given in Sprindzuk [15], pages 
67-70. In particular p(C) = q~r for any circle (“disc”, “ball”)

C =  C{x,q - r~ l) := {у € C : ||z -  y|| ^  q— 1}

of radius 5-r_1 . So p(I)  = 1, since I  = C(0,q_1).
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Now note that every “digit” a(x) lies in T\  := {k  € F9[X] : deg (A:) > 1}. 
For any given digits A i,. . .  , kn € !F\, let

In — In( k i , . . .  , fcn) := {x € L !Oi(x) = f c i , . . . ,  an{x) = kn}
and call I n a basic (Lüroth) cylinder of rank n. Also let Iq = I.

The Lüroth-type expansion (1.2) of any x £ I„ then has the form

x = u„ +
r>n an+l(an+l 1) . . . ßr—l(flr — 1 l)ar

X r .where A0 =  1, Ar =  for 1 < г < n, and u;n =  ...

Thus x = un + AnT n(x) = \J}„(Tn(x)), if = Tjj„(ku ...  ,k„) : I  -*• /„ is 
defined by t/:n(y) = u>„ + А „у (у € I) .  The “linear-type” map ip„ is then 1-1 
onto, with inverse map T n : /„  —*■ I .  In particular /„ =  Im(V’n) = wn + А„I. 
Since I  =  C(0,g_1), it then follows tha t /„ = C(u>„, qr—11|A„||) and has Haar 
measure /i( /n) = q~v(Xn  ̂ = ||A„||. Hence

(2.1) /.(/„) =  1 1
11̂ 1̂ 2 • M 2’— 1) • • • kn(kn — 1)||

since deg(Ar) = deg(A: — 1) for deg(fc) > 1.
Using (2.1), we readily deduce th a t the digit functions ar : I  — {0} —*• T\  

are identically distributed independent random variables relative to p. In a 
standard way, quite similar to that followed by Jager and de Vroedt [5] for 
real series, one may then conclude th a t the operator T  is measure-preserving 
and ergodic.

Knowing Lemma 1 and the fact that the ar are identically-distributed 
random variables, various deductions may now be made with the aid of 
standard results like the Ergodic Theorem or the laws of large numbers. 
However, here we shall merely sketch a few arguments which include ones 
leading to Theorem 1 above:

By special choices of /  in the ergodic formula 1

1 f
lim — / ( T r_1x) = / fd p  a.e.,

r=1 I

we obtain:
(i) If /  is the characteristic function of a basic cylinder I\(k), we get

lim - # { r  <; n : ar(x) = kj  = p( h( k) )  -  ||A:||n-*oo П
- 2 a.e.

(ii) If instead /(x )  = deg(ai(x)), then for almost all x ( ŝince I -  {0} =

= U h ( k j )
k&7i J
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= /  / dA*= 5 3  /  de8(°l(*))<fy* =
r=1 /-{0} k^ lh(k)

= 5 3  K h ( k ) )  deg (*) = Ё  r9~2r ’ (<7 “  1)?r = “ T-
Jfcê  r=i 9

(iii) It follows from (ii) that there exists a Khintchine-type constant 

lim ||a i(x )a2(a;) . . .  «„(a:)!!1/" = ^ /(g -1) a .e.
n —►OO

(iv) If f ( x ) = ||oi(x)||, then J  /<fyi = -foo but a well-known truncation
I

argument shows that, in contrast with the finite asymptotic geometric-mean,
П

we have lim A 11аг(ж)|| =  +oo a.e.
"—>°° r=l

(v) By choosing /  to be the characteristic function of any given circle 
C Q / ,  it may be deduced that the values x, Tx,T2x , . . .  are uniformly 
distributed in I ,  for almost all x.

(vi) Every non-rational i £  /  can be written as x = lim uin in C, where

r=l
u n = w„(x) =  5 3  A0 =  1,

(Lr
Xr =

1
Oi(ax -  l ) . . . a r (ar -  1)'

So x e  In = / „ ( a i , . . .  , an) =  C (un,q 1||An||), and x = u n + AnT n(x). Thus

II* -  wn|| £ 9_1||A„|| = g"V (/n),
and

x = w„+i +  An+1T"+1(x) = u>„ + An+i(an+i -  1 + T n+1(x)).

Since ||an+i|| =  ||an+i — 1II = 9 > ||Tn+1(x)||, it follows also tha t

I I *  - « » I I  =  l l - W i l l  • l l ( * » + i  - 1 )  +  r n + 1 ( * ) | |  =  | | л „ + , | | - | к + 1 | |  > ,Min+,).
Thus 5 | | l - u , , | |  < q - ' t i { ln), giving

n+1 n
i - É h g . W I 2 ^ io g J |x -w n|| s  -1  -  5 3 log J k l l 2-

r = l Г —1
Choosing /  as in (ii) above, these inequalities then imply that

lim - lo g  11 x -  u>n|| = ----a.e.,n->oo n 4 q — 1
which yields part (iii) of Theorem 1.
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(vii) W ith reference to  Billingsley [2] Section 13, say, the preceding argu­
ment also now shows th a t the basic operator T  above has entropy

h ( T ) =  -  lim - lo g e p(In) =П—► OO 71
2 g b g e g

q -  1
Various other and stronger results may be derived in the present context, 

from the laws of large numbers (and iterated logarithms), but details are 
omitted here.

Acknowledgement. The author thanks the referee for constructive com­
ments.
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A CLASS OF OPERATORS ASSOCIATED WITH L \

N. S. FAOUR (Kuwait)

1. In troduction

The space L \  is the space of all harmonic functions /  defined on the 
open unit disk D such that they are square integrable with respect to the 
area measure dA  = -dydx. Following similar arguments to that used by 
Conway [2, p. 175] it can be shown that is a closed subspace of L2 with
orthonormal basis . . .  , \/З г2, y/2z, 1, y/2z, \/3 z2, __ The Bergman space A 2
is the space of all analytic functions /  defined on D and square integrable 
with respect to the area measure. It is known that A2 is a closed subspace of 
L2 with orthonormal basis {\/n  + l-zn}n>0. The space L \ = A 2 ® A%, where
Aq is the space of all complex conjugates of functions in A 2 which vanish at 
the origin.

Let ip € L°°(D ) and Q be the orthogonal projection of L2 onto L \. 
Define the operator Cv on L \  by Cv( f )  — Q(<p • /) .  The Toeplitz operator 
Tv is defined on A 2 by Tv { f)  = P (if-/ ) ,  where P  is the orthogonal projection 
of L2 onto A 2. Let Bv = PCV. Note that B v restricted to A 2 is Tv . It can 
be easily established that

Caij>i+ßtp? = осСфу T ßCfoi Ф11Ф2 ^ L (D), oi,ß € C,
Сф = Сф where Сф is the adjoint of Сф, and ф e L°°(D). Similar results 
are true for Toeplitz operators defined on A 2.

In this paper it is shown that if ip € L°°(D), ф € C(D), then С^ф — С^Сф 
and Сц,Сф — СфСф are compact. Also a result related to Toeplitz operators 
defined on the Bergman space A 2 is proved. Finally, the spectrum of Cv is 
studied.

2 . R esu lts

T h e o r e m  1. Let ip e L°°(D), ф e C(D). Then С^ф -  С^Сф and 
С^Сф — СфСу are compact operators on L \.

To prove Theorem 1, a definition and two lemmas are needed.
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D efinition 1. For /  € L°°(D), define the operator H f. L \~*  (L by 
H fg = (I - Q ) f g  and the operator S f .  (L2h)L -* (L\ )Х by Sjg  = (I - Q ) f g .

Lemma 1. (i) The adjoint operator H*f \ (Z^)1 -*  L2h is given by H*f g =
= Qtjg).

(ii) Cfg -  C fC g = H±Hg, f ,g  e L ~(D ).
(Üi) Hfg =  SfHg  +  HfCg.
Lemma 1 is easily established by straightforward computation.
To state and prove Lemma 2, we use the fact that L2 = Lj- © (L£)‘L. 

Thus using this decomposition of L2, one can easily see that for n > 1

(1) = ^ ( Ю - 1 e  ((z)"-4z|2 -  ^ p r 1).
and if г, m  are non-negative integers, then

(2) z*'2|2m =  t +  1 z* © (z*'|z|2m
m  +  г +  1 V

From (1) and (2) it follows that

i + 1
m  +  г +  1

C jC  Zz = and C \*?z  =

Lemma 2. (i) The self-commutator o f Cz, CzCz — CzC j is of trace class. 
(ii) Cup -  Cz Cz and C|2p — CjCz are of trace class.

P roof. By using (1) and (2), it is easily verified that for n > 0,

(3) C jC .z"  =
n +  2

Note that for n = 0, C jC zl  = CZCZ1 =  1. Moreover, for n "t 1,

(4) CzCzzn = 71 -n
n +  1 ’

(5) CfCzz” = П ,»
n +  1 ’

and

(6) CzCzzn = n +  l_n------•n +  2

For simplicity of notation, let en = y/n  +  lz n, en = \Jn  +  lz". Then
OO OO OO -
£ ( (C jC ,-C ,C r)en, e.) = -£< (C iC ,-.C ,C T)e„,e„> = ^ — — —  <
« —1 n —1 «=1 ' ' \ '
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This proves (i) due to the fact that a compact self-adjoint operator is of trace 
class if the sum of the absolute values of its eigenvalues is finite. A similar 
calculation yields (ii).

P r o o f  o f  T h e o r e m  1. Let A  = { / g C (D ) : Я / is compact}. Note 
that H\ =  0, thus 1 € A. It is easily established that A is a closed subspace 
of C(D). In addition, by Lemma 1, A is an algebra. Further Czz — С^СХ = 
= H*HZ, and Czz — CZCZ = H±Hj; thus according to Lemma 2, H*HZ1 and 
Hj Hj  are compact operators on L \. Consequently, Hz and Hz are compact, 
and therefore z^z  are elements in A. The Stone-Weierstrass Theorem implies 
that A =  C(D), and thus Пф is compact. It follows that the operator 
С<рф -  С^Сф = ЩНф  is compact. Since СфС^ -  С^Сф = (СфСv -  Сфv ) + 
+ (CW ~ Сч>Сф) and (СфСу -  Сф^У =  C^C-^— C ^ ,  then the property just 
established implies tha t СфСv -  С^Сф is compact. The proof of the theorem 
is complete.

R e m a r k  1. The technique used in the proof of Theorem 1 is similar to 
that used in [1, Proposition 8].

T h e o r e m  2. Let Tp = ip\ + <p2, ip = Vh + ^2 be elements in L ff(D )  c
C L \ = A2 ® Aq, and. let Т^Тф = Т^ф. I f C o r  Сф2 has dense range in L \ 
then ip G H°° о г р £  H°° respectively.

P r o o f . For all non-negative integers n and m we have

(ТуТф2п, 2т) = < T ^z",zro>.
Thus,

(Тфгп,Тргт) = (ipzn,lpzm).
Therefore,

{ipzn -Т ф г п,<ргт) = 0,
and hence,

(7) (xpzn -  Тфгп,<ргт -  T^zm) = 0.

For n = 0, m  =  0, it follows from (7) that (ip2, 4>2) = 0. Moreover, if n = 0,
m = 1, we get (ip2, 4>2Z — P(p>2-г)) = 0. Using the fact that Ф2 € Aq, it 
follows that {ip2,<fi2z ) =  0. Continuing this process for n = 0, m  ^  0, we get
(8) (ip2,<P2Zm) = 0.

By the same techniques it is easily established that for n > 0,

(9) = 0.
If CV2 has dense range, (8) and (9) will imply that ip2 = 0, and hence ip G 
G H°°. By similar argument, it can be concluded that if Сф2 has dense 
range, then <p2 =  0, and hence Tp G #°°.

From Theorem 2, the following corollary is easily established.
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C o r o l l a r y  1 .  L e t  p  =  p \  +  p i ,  Ф =  Ф\ +  V>2 be e le m e n ts  in  L f f ( D ) ,  

V>2 o r  p i  e  L ° ° ( D ) .  I fT vT+ =  Tvip, th e n  f o p i  €  (Ljf)1 .
It is well-known that the spectrum of the Toeplitz operator T2, <j (Tz) 

is D .  Moreover, it is easily established that the operator Cz is a bilateral 
weighted shift, c (C z) is dD, and the closed convex hull of the essential range 
of z, cö(Ä(z)) is D .  Consequently, cr{Cz) is different from cö(Ä(z)). However, 
we have the following:

P r o p o s i t i o n  1 .  I f  p  is  a f u n c t i o n  in  L ° ° ( D ) ,  th e n

ст(С^) С с5(Д(у>)).

P r o o f . Suppose that Л € С, Л ^ со(Д(</>)). Since R ( p )  is a compact 
subset of the complex plane, there is a disk D  with center Zo containing R ( p ) 
but not the point A. Thus

|A -  zo| > ess sup Ip(z)  -  z0| = \\p -  zoll«, > ||CV_,0| | .

From this it follows that A — z0 ^ o{Cv- Z0) and hence A ^ and hence
A £ сг(С^), completing the proof.

R em a r k  2. The Toeplitz operator Tz is hyponormal. However, the 
operator Cz is not hyponormal; this is due to the fact that every hyponormal 
operator whose spectrum has zero area is normal.

Acknowledgement. The author would like to thank the referee for his 
constructive criticism which simplified and corrected an earlier version of the 
paper.
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CONGRUENCE LATTICES OF PLANAR LATTICES
G. GRÄTZER and H. LAKSER (Winnipeg)*

1. Introduction. Let L be a lattice. It was proved in N. Funayama and 
T. Nakayama [5] that the congruence lattice of L is distributive. For a finite 
lattice L, the converse of this result was proved by R. P. Dilworth: Every 
finite distributive lattice D can be represented as the lattice of congruence 
relations of a suitable finite lattice L. The first published proof of this result 
is in G. Grätzer and E. T. Schmidt [15]. For another proof of this result by 
the present authors, see [6, pp. 81-84]. See also [1], [2], [9], [10], [18], [21].

In all these proofs, we construct a lattice L starting from a finite dis­
tributive lattice D with n nonzero join-irreducible elements. This lattice L 
turns out to be rather large: it has 0(4") (or more) elements; it is also rather 
complex: it is of order-dimension O(n) (or higher).

There are results in the literature providing stronger forms of Dilworth’s 
result by constructing finite lattices L representing D as the congruence 
lattice and having additional properties:

(i) L is sectionally complemented and the length of L is 2n — 1. See G. 
Grätzer and E. T. Schmidt [15].

(ii) The length of L is 5m, where m is the number of dual atoms of D. 
See S.-K. Teo [20]; for m  = 1 and for the conjecture solved by Teo, see E. T. 
Schmidt [17].

We add to this list with the following result:
T h e o r e m . Let D be a finite distributive lattice with more than one el­

ement. Then there exists a finite planar lattice L with no proper automor­
phism such that the congruence lattice of L is isomorphic to D . The lattice L 
can be chosen to have 0 ( |J (D ) |3) elements, where J(D ) is the set of nonzero 
join-irreducible elements in D.

There are many other related results relaxing the condition that D or L 
be finite. These go beyond the scope of this paper. For a brief review, see 
G. Grätzer [9].

Now consider the automorphism group of L. Obviously, it is a group. 
The characterization theorem of the automorphism group of a finite lattice 
is due to R. Frucht [4]: Every finite group G can be represented as the auto­
morphism group of a suitable finite lattice L. In fact, Frucht’s construction 
yields a simple lattice of length three.

* This research was supported by the NSERC of Canada.
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As an application of the Theorem, we prove a result of V. A. Baranskii 
and A. Urquhart (see [1], [2], [21]) that the congruence lattice and the auto­
morphism group of a finite lattice are independent:

Corollary 1. Let D be a finite distributive lattice with more than one 
element, and let G be a finite group. Then there exists a finite lattice L such 
that the congruence lattice o f L is isomorphic to D, and the automorphism 
group of L is isomorphic to G.

Again, the lattice L we construct is much smaller than the lattices in [2],
[21].

Combining Frucht’s result with the result of G. Sabidussi [16], the au­
tomorphism group of a lattice is characterized as an arbitrary group. As 
another application of the Theorem, we prove a result of V. A. Baranskii [1] 
and [2]:

Corollary 2. Let D be a finite distributive lattice with more than one 
element, and let G be an arbitrary group. Then there exists a lattice L such 
that the congruence lattice of L is isomorphic to D, and the automorphism 
group of L is isomorphic to G.

The Theorem of this paper is closely connected to several other results 
in the literature: the independence of the congruence lattice, the automor­
phism group, and the subalgebra lattice of a (universal) algebra, finitary 
or infinitary (G. Grätzer and W. A. Lampe, see Appendix 7 of G. Grätzer 
[7] for a complete discussion); the independence of the complete congruence 
lattice and the automorphism group of a complete lattice (G. Grätzer [8], G. 
Grätzer and H. Lakser [11], and G. Grätzer and H. Lakser [12]).

The basic notation is explained in §2. In §3, we introduce the coloring of 
a chain, which originated in S.-K. Teo [19], and investigate the congruences 
of the associated extension. We discuss in §4 a generalization of this con­
struction introduced in G. Grätzer and H. Lakser [13]. This is then applied 
in §5 to construct the finite lattice L representing D. In §6, we show how to 
modify the construction to make L planar, proving the Theorem. Finally, 
in §7, we augment L to additionally represent G as an automorphism group, 
proving the corollaries. Some concluding comments are collected in §8.

2. Notation. D is the finite distributive lattice we want to represent in 
the Theorem. J(D ) is the partially ordered set of (nonzero) join-irreducible 
elements of D. 9Лз denotes the five-element modular nondistributive lattice.

For a lattice A, let Ip A  denote the set of prime intervals in A, i.e., the 
set of all intervals p =  [u, v], where и v (u is covered by v) in A. If p =  [u, t>] 
is an interval of A, then for any lattice В and b € B, we use the notation 
p x {6} for the interval [(u, b), (v , b)] of A x  B. Note that if p is prime, then 
p x {6} G Ip(A x В ).

Let po =  [xo, t/o] be a (prime) interval of Ao, and let pi = [21, 2/1] be a 
(prime) interval of A \. It will be convenient to refer to the elements of the
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sublattice of A X  В  generated by p0 X (x i)  and {x0} X pi as follows (see Fig.
1):

0(po,pi) =  <*0,*1>, a(po,Pi) = <X0 , 2/l),
Ь(р0, Pi) = <2/0, Xi), *(po, Pi) =  <2/0, l/i)*

po X pi shall refer to the interval [o(po, pi),i(po,Pi)]*
For an interval p =  [u, v] in the lattice A, we shall denote by 0д(р) 

or Q a ( u , v )  the congruence relation generated by the interval p. If A  is 
understood, we use the notation 0(p) or 0(u, v). Note that и =  v (0 ) is 
equivalent to 0(p) £ 0 .

We refer the reader to G. Grätzer [6] for the standard notation in lattice 
theory.

3. Coloring. A coloring of a chain C is a surjective (onto) map

¥>: Ip C -► J(D).

If p G Ip C and pip =  a, one should think of 0 # (p )  as the congruence 
representing a € J(D ) in some extension К  of C.

Following S.-K. Teo [19], for the chains Co and Ci and colorings <po and 
<pi, respectively, we define the lattice К  = Co C j, as follows: the lattice 
A  is Со x Ci augmented with the elements m(po, pi) whenever po G Ip Co, 
pi G Ip C i, and po<fo = pi¥>i; we require that the elements

(3.1) o(p0,p i), a(p0,pi), b(p0,p i), *(po,Pi), n»(p0,pi)

form a sublattice of К  isomorphic to 9Яз, as illustrated by Fig. 1.

In Teo’s paper, Co = Ci and <fio = <fii, but the idea is the same.
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As an illustration, let D be the  distributive lattice of Fig. 2; the join- 
irreducible elements are marked with •. Then J(D ) has four elements, as 
illustrated. Let Co and Ci be the  chains of Fig. 3; the color of a prime 
interval appears to  the right of the edge. Fig. 4 illustrates К  =  Co x 9 C\.

The congruences of Со X C \ are of the form ©о X © i, where ©o is a 
congruence of Co and ©i is a congruence of C \. Now take only ©o and ©i 
with the following property:

Fig. 3
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(3.2) If p0 € Ip Co, pi G Ip Ci, and p0y>o = p i^ i, then 

0 (p o )^ 0 o  ИГ 0 ( P i ) < 0 i .

Now, we extend the congruence 0o X  0 i  on Со X C\ to a congruence 0o X v  0 i 
on К  as follows:

Let po G Ip Co and pi G Ip C\. If po<̂ o = pi<y?i, then let the elements in
(3.1) be in one congruence class modulo 0o Xy 0 i .

It is easy to compute (see also §4) that the congruences of К  are exactly 
these 0o X^ 0 i.

As an example, take the congruence 0o of the chain Co and the congru­
ence 0 i  of the chain Ci of Fig. 5. Then 0o x v 0 i  is the congruence of К  as 
illustrated by Fig. 6.

Thus the congruences of Co x ^ C i are in one-to-one correspondence with 
subsets of J (D ); hence the congruence lattice of Co X^ Ci is a finite Boolean 
lattice.

4. Generalized coloring. In [13], we generalized the construction CoX^Ci 
of §3 as follows.

Let L  be a lattice and let Л be a set of proper intervals in L, i.e., intervals 
with more than one element. We define a lattice L[Л] by adjoining the family 
of new pairwise distinct elements {тп/ | I  G Л} to L, and requiring that 
и -< m j -< v for each I  =  [u, u] G Л.
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Fig. 6

We associate with x € £[Л] the elements x and x of L: for x G L, set
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x = x — x; for /  =  [u, r] € A, set То/ = и and то/ = v. We then, more 
formally, define the relation < on the set L[A] as follows:

where ^  /, denotes the partial ordering in L.
Then (2/[A],^) is a lattice extending L. If X  is a subset of L[A], then 

V X  exists in L[A] if and only if either there is an i  € X  such th a t, for all 
у G X ,  we have x > y, in which case \J X  = x; от there is no such x  and 
\ / L(x I x  G X )  exists, in which case

where \JL is the complete join in L; and dually for Д.
Let Co and C\ be finite chains with colorings щ  and ipi, respectively, as 

in §3. Let A  =  Со x C\. Observe that Co C\ can be obtained as A[A] in 
the obvious way with

Л =  {po X pi I po G Ip Co, pi G Ip Ci, poфо = Pi¥>i}-

The following result describes which congruences extend from L to X[A]:
One P oint Extension T heorem [13]. Let К be a set of nontrivial, 

nonprime intervals in the lattice L, and let 0  be a congruence relation on L. 
Then 0  has an extension 0[A] to L[A] if  and only ifQ  satisfies the following 
conditions and their duals (see Fig. 7):

x = У if and only if x = у or x ^  ьу,

\ J x  = \ / ( x  \ x e x ) ,
L

w

Condition (4.1) Condition (4.2)
Fig. 7

(01) For [u, t)]eA , i , y £ l  with у < v and и < x,

у = v (0 )  implies that x = v V x (0 ) .
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(02) For [и, u], [и,to] Е Л, with v ф w and у £ L with у < v,

у =  v (0 ) implies that и =  v Л и  (0 ).

The extension 0[Л] of 0  to X[A] is unique. It can be described as follows: 
For all a £ X[A], set a = а (0[Л]). For all a,b £ X[A], with а ф b, set

a = b (0[Л])

if  and only if the following three conditions hold:
(03) a A b =  flV b (0 ).
(04) a Ab £ L or a Ab £ L and there is an хаАь £ L with

a Ab < Xn ли and a A b =  х„ль (0 ).

(05) a V b E L or a V b ^ L and there is a yavb £ X with

УаУЬ < a V b and yaVb =  a V b (0 ).

An interesting special case can be developed by generalizing the concept 
of coloring from §3. Let P be a set of nontrivial intervals in A. A (generalized) 
coloring ip o f a lattice A by a set X  is a surjective map <p: P  —► X .

For each i = 0,1, let A, be a lattice with a coloring <£>,•: P, —> X .  We 
consider the set A of all intervals in Ao X  A \ defined b y  setting

Л =  { /о  x  I\ I /о  £  Po, I\ £  Pit an(i -foPo =
Let us denote the lattice (A0 X  Ai)[A] by A0 X v  A\, and the element т / оХд 
by 7n(/0,Xi).

The next result is an application of the One Point Extension Theorem 
to determine the congruence relations on Ao x Ai that extend to A0 x 9 A \. 
Recall that any congruence relation 0  on the lattice A =  Ao X  A\ is of the 
form 0o X  0 i ,  where, for i =  0,1, 0 , is a congruence relation on A,-.

Colored P roduct Extension T heorem [13]. The congruence rela­
tion 0  = 0 O x  0 i  on Ao X Ai extends to Ao x v Ai if and only if the following 
two conditions and the dual o f the second condition hold:

(C l) For IQ E Po, I\ £ P i, if  IoTo = h V i ,  then

0 (JO) ^ 0o is equivalent to 0 ( / i )  S 0 i .

(C2) For i =  0,1, if I  — [и , v ] E Pi and there is a у < v with у = v (0 , ), 
then 0 ( / )  =  0,-

In that event, the extension is unique.
The reader should find it evident that the last statement of §3 follows 

from the Colored Product Extension Theorem.
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5. Constructing L for D. Now let D be given. In order to  construct a 
lattice with no nontrivial automorphisms in an efficient manner, we restrict 
the construction outlined in §3 to those D where each join-irreducible element 
is comparable to some other join-irreducible element.

Specifically, we can set
D = D' x B,

where В  is Boolean and each element of J(D ') is comparable to  some other 
element of J(D ') — see Fig. 8 for the D' associated with D of Fig. 2. We 
note that В  can be represented as the congruence lattice of a chain.

We now construct a lattice V  whose congruence lattice is isomorphic to
D '.

For every a, b € J (D ') with a -< b (note: a ~< b in J(D '), not in D'), 
we construct a four-element chain C(a, b), see Fig. 9, with elements o(a,b), 
m(a,b), n(a,b), i(a,b), satisfying the relations:

o(a, b) -< m(a, 6) -< n(a, 6) -< t(a, b).

На. ы о
ь

n(a, b) О
a

m(a, b) О
ь C ( a ,  b )

o(a. b) О

F ig. 9

We define a map ipaij, of Ip C(a,b) into J(D ') by

[o(a,b),m(a,b)\ipatb =6, 
[т(а,Ь),п(а,Ь)]<ра>ь =a, 

[n(a,6),i(a,6)]v?a,b =6.
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We list all covering pairs in J(D '):

do -< bo, a\ -< b i , . . .  ,an_i -< 6n_i*

We construct two chains:

Co". Co ■< c\ -< . . .  -< Сзп- i ,  and C\ : do ■*? d\ -< . . .  -< dj, 

where j  =  |J'(Z?,)|. Observe that n =  0 ( j 2), and so |Co| = 0 ( j 2).

*(an-l- bn-,) c c3n О

i(a,. b , ) = o(a2. b2) = c6  

cs

c«

i(a0. b0) = o(aj . bj ) = c 3

ci

o(a0. bo) = c 0

Ha, . b , )

I(a0 . b0)

Fig. 10

C0

We regard Co, see Fig. 10, as the ordinal sum of

C ( o 0,60),  C ( а г , 6X) , . . .  , C ( a n _ i , b n —i ) ,

with i(a0,b0) identified with o (a i ,6i), i(a i,b i)  identified with 0(02, 62)? and 
so on.

In Co, let / ( 0 , 6) denote the interval [o(a, 6) ,i(a ,6)] for a, 6 6 J(D ' ) with 
a -< 6.

We define a coloring <po of Co. First of all, we define the set of intervals

Po = Ip Co U {I(a , b) I o,6 G J(D '),a  < 6}.

Now if p G Ip Co with p G /( a ,  6), we define p<̂ o = p<ра,ъ- For all a, 6 G J{D ) 
with a •< 6, we set /(a , b)<po = b.

Set Pi =  Ip Ci, and choose <p\ as an arbitrary surjective map. Note 
that cp\ is a bijection, and so in C\, for every a G J(D '), there is a unique 
Pa € Ip Cl with pay>i = a. Set pa = [(a)0, (a )x].
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We define V  by setting

L' = Cq x v C\.
The lattice L' for the lattice D' of Fig. 8 can be obtained by omitting the 
unit element of the lattice depicted in Fig. 11. Note that \L'\ = 0 ( j 3) where 
3 = \J(D')\.

Fig. 11

Now we prove that the congruence lattice of V  is isomorphic to D '. W ith 
every hereditary subset П  of J(D '), we associate a congruence relation QH 
as follows: for i =  0 ,1 , we define on the chain C{ the relation 0 ^  ( x , y  6 C;, 
x < у ):

x = y (0 ,^) iff p(fi € H  for any p € Ip[*,»].
Let us verify tha t Conditions (C l), (C2), and the dual of (C2) hold for 

Qq and 0 ^ .  Indeed, (C l) holds by definition if Jo is prime. Let Jo = J(a, ft) 
for some a, ft G J(D ')  with a -< ft. Then

0(Jo) = 0 (  J(a , ft)) = 0(o(a, ft), m(a, ft)) V 0(m (a, ft), n(a, ft)) =
=  0(o(a, ft),m(a,ft)),

since 0(m (o, 6), n(a,ft)) < 0(o(a, ft),m(a,ft)) by virtue of a •< ft. Now this 
case is reduced to the case of the prime interval [o(a,ft), m(a, ft)], already 
considered.
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To verify (C2), observe tha t it obviously holds for prime intervals in 
chains. Hence we are left with the case i = 0 and Iq = /(a , 6) for some a, b € 
€ J (D ') with a -< b. Since у < i(a ,b ) implies that у < n(a,b), it is obvious 
(again utilizing that a ■< b) that any congruence collapsing у and i(a, b) also 
collapses all of I(a ,b), concluding (C2). The dual of (C2) follows similarly. 
By the Colored Product Product Extension Theorem, 0 я  and 0 я  uniquely 
determine a congruence 0  я  of V .

Conversely, let 0  be a congruence of V . By the Colored Product Ex­
tension Theorem, 0  is uniquely determined by its restrictions 0o and ©x to 
Co and C\ respectively, which satisfy Conditions (C l), (C2), and the dual of 
Condition (C2). For г = 0,1, define

Hi = {P<Pi I P € Ip Ci, 0(p) ^  0 ,} .
Then Condition (C l) yields th a t Ho = Hi; set H = H0 =  H\. Obviously, 
H  is a subset of J(D '). It is hereditary. Indeed, if a -< b in J(D '), b € 
£ H , then [n(a, 6),t(a, 6)] is collapsed by 0o since it has color b. Applying 
Condition (C2) with г =  О, I  =  /(a , 6), and у = n(a, 6), we obtain that 
I(a ,b ) is collapsed by ©o- Thus [m(a, 6), n(a, 6)] is also collapsed by ©o- 
Since [m(a,b),n(a,b)]ifo =  a, we conclude that a € H  by the definition of 
Ho = H . Thus H  is a hereditary subset of J(D ').

It is now straightforward tha t H  0 я  is an isomorphism between the 
lattice of hereditary subsets of J (D ' ) and the congruence lattice of L', and 
so the congruence lattice of V  is isomorphic to D'.

Finally, if the Boolean lattice В  has t atoms, let C be a chain of length 
t. Then the congruence lattice of C is isomorphic to B. Let the lattice L be 
the ordinal sum of V  and C  with the unit element of L' identified with the 
zero element of C — see Fig. 11 for the lattice L constructed for the lattice 
D of Fig. 2. Then

- Con L = Con L' x Con C = D' x  В  = D, 
where Con A  denotes the congruence lattice of the lattice A.

6. Planar lattices. The lattice L constructed in §5 is close to being 
planar; it is in fact of order-dimension 3. It is not planar because of the 
elements of the form т(1(а,Ь ),рь) where a -< b in J(D ')  (recall that /(a , b) 
is the interval of Co defined in §5, and рь is the unique prime interval of C\ 
of color b). There are two such elements in Fig. 11; they are black-filled.

To transform L into a planar lattice without changing its congruence 
lattice requires a few steps.

For the first step, let
e0, e j , . . .  , ejt—г

list all the nonminimal elements of J(D '); these are the elements that occur 
as the element b in a pair a, b € J(D ') with a -< b. We rearrange the list of 
all covering pairs in J(D '):

do -< bo, ai ~< b i , , an_x -< 6n_x

A d a  M athem aiica  Hungarica 60, 1992



CON GRUENCE LATTICES OF PL A N A R  LATTICES 2 6 3

so that we start with all the pairs of the form x, eo followed by all the pairs 
of the form x ,e i, and so on.

In the second step, we redefine <pi so that the bottom prime interval of 
Ci is colored by eo, the next with e\, and so on. Past e^-i we do not care 
how the coloring is done except that <pi be onto.

As the third step, we define a subset L'x of V . Let (x,do) belong to L[ 
iff x € /(a , eo) for some a £ J(D '); let (x ,d j) belong to L'x iff x £ 7(a,eo) 
or x € 7 (a ,e i) for some a £ J(D ')\ in general, let (x,e4) belong to Lx iff 
x £ 7(a,e,) for some a £ J(D ') and s ^ i. All (x ,d t) are in L\ for к < t < j .  
We retain all the elements of V  of the form of m(7, J).

Observe that we only threw away elements that play no role in deter­
mining the congruence structure of 7/, so that the congruence lattice of L\ 
is still isomorphic to D '. To be more precise, any prime interval of V  is 
projective to a prime interval of L\, and any two prime intervals of L[ that 
are projective in V  are already projective in L[.

L\ is still not planar; however, all the elements that cause problems 
(that is, the elements of the form т(1(а,Ь),рь) where a X b in J(D ')) are in 
intervals 7(o,6) X рь where the “left-side” of the direct product is also the 
“left-side” of the lattice L[.

As the fourth, and final, step, observe that, by the One Point Extension 
Theorem, the role of the element m(7(a, b), рь) can be taken over by the 
element

т(7(а,Ь),[(Ь)о,(Ь)!]), where рь = [(ft)o,(b)i].
After these replacements, the resulting lattice T/2 is planar. Let T/2 be the 
ordinal sum of L2 with the chain C, with the unit element of L'2 and the zero 
element of C  identified; the lattice L2 we obtain for the lattice D of Fig. 2 
is shown in Fig. 12. Although the lattice 72 is smaller than L, we have not 
improved the order of |L2|; we still have |7 2| = 0 ( |J (7 )) |3).

To conclude the proof of the Theorem, we need only prove that 72 has 
no proper automorphisms. Clearly, we need only show that L2 has no proper 
automorphisms. If D' is trivial, then so is L2, and we are done. Otherwise, 
let a  be an automorphism of V2. If j  = 1, then D' would be Boolean; hence 
j  > 1, and so [dj-i,dj] ф [do,di]- Since <p\ is bijective, this implies that

[dj-i,dj]<pi ф [d0,di]<pi = [co,ci]y>o.
It follows that (со, dj) is the only doubly-irreducible element of L2 that 

lies in an interval that is a four-element Boolean lattice. Thus (c0,dj)a  = 
=  (со, dj), and consequently a is the identity mapping on the chain {со} XC \. 
Since those elements of L2 that are not doubly-irreducible are precisely the 
remaining elements of Cq X C\ in L2, it follows tha t a  is the identity mapping 
on (Со x Ci) П L2. It is then immediate that a  is the identity mapping, 
concluding the proof of the Theorem.

7. Automorphism groups. R. Frucht [3] proved that we can represent 
the group G as the automorphism group of a connected undirected graph
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0  =  (V , E) with more than one edge and without loops, where V  is the set 
of vertices and E  is the set of edges.

Next, we represent G by a bounded lattice and lattice automorphisms. 
As in R. Frucht [4], from 0 ,  we form the lattice:

where, for all v € V  and e € E, the relations 0 < v < 1 and 0 < e < 1 hold; 
let v < e in H  iff v € e. Note that H  is of length three.

The graphs constructed in R. Frucht [3] and G. Sabidussi [16] have the 
following property:

(7.1) For v € V , there are eo,ei € E  with v £ во, c\ and во П e\ =  0.

It is easy to prove tha t if the graph 0  has Property (7.1), then the 
associated lattice is simple. Hence, H  is a simple lattice.

Let L be the lattice we obtained at the end of §6 (see Fig. 12) with о 
and i as the zero element and unit element of L, respectively.

If L is a chain, let the lattice К  be defined by replacing the bottom  prime 
interval of L  by П — see Fig. 13. Then, since H  is simple, the congruence 
lattice of К  is isomorphic to D. Clearly, the automorphism group of К  is 
isomorphic to G.

Attach H  to L by identifying 1 with o. Set v =  (ci,d i), in the notation 
of §5. We add a relative complement q of о in [0, i>], and obtain the lattice 
К  — see Fig. 14.

It is easy to see tha t any automorphism of К  keeps о fixed. Therefore, 
any automorphism takes L into L and H  into H . Since, by the Theorem, L 
has no proper automorphism, any automorphism of К  is an automorphism 
of H trivially extended to K . It follows that the automorphism group of К  
is isomorphic to G.

A congruence 0  of К  — {9} is formed from a congruence of П  and a 
congruence of L. Since H  is simple, we only have the two trivial choices on
H. That the congruence lattice of К  is isomorphic to that of L follows from 
the following lemma, concluding the proofs of Corollaries 1 and 2.

Lemma . A congruence 0  on К  — {9} extends to К  if and only if either

H  = VÜ.EÚ{0,1},

( 1 ) © я = <+>h and о já v ( 0 l )

or

( 2) © я = lh and о = v (©l )-
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Q

Fig. 12 Fig. 13

Proof. The One Point Extension Theorem applies to extending 0  to 
K . Since Л =  {[0, u]} is a singleton, Condition (02) holds vacuously.

Assume first that 0  extends to K . Then Condition (01) and its dual 
hold. We show that either Condition (1) or Condition (2) of the Lemma 
holds.

Let 0 я  =  <*;#• If о = v (O i), then, in Condition (01), set у — о and let 
x € H  with 0 < x < 1. Then у = v (0 ) and so x = v (0 ), that is, x  =  1 
(©#)> contradicting 0 я  = и>н- Thus, if 0 я  =  ^я» then о ф v ( 0 l )-

On the other hand, if 0  ф и н , then 0 я  = lh- But then set у = о and 
let x be any lower cover of v in L. Applying the dual of Condition (01), we 
conclude that x  =  0 (0 ), and so that о = v ( 0 l ).

Thus, if 0  extends to K , then either Condition (1) or Condition (2) 
holds.
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К
Fig. 14

Now let one of Condition (1) and Condition (2) hold. We show that 0  
extends to К  by establishing Condition (01) and its dual.

We establish Condition (01). Let у < v and let у = v (0). Then о = v 
(0 l ). Thus Condition (2) holds, and so 0 #  =  t# , that is, 0 =  о (0 ). 
Consequently 0 = v (0 ) , and Condition (01) follows immediately.

Next, we establish the dual of Condition (01). Let у > 0 with 0 = у 
(0). Then 0 я  = ^H) and so Condition (2) holds, tha t is, о = v (©£,)• Thus, 
0 = v (0 ) , whereby the dual of Condition (01) fohows immediately.

8. Concluding comments. We can make the lattice L of the Theorem 
smaller by making the intervals 7(a,, 6,) and /(a ,+ i, 6,+i) overlap in Co by two 
elements provided that 6; =  Note that the Colored Product Extension 
Theorem permits the intervals to overlap. While this can reduce the size of 
L by up to a third, it does not affect 0 (|L |).

In [10], we prove a generalization of the theorem of Dilworth: Given two 
finite distributive lattices D0 and D i, and a {0, l}-homomorphism <y? of D0 
into D i, we show that there exist a finite lattice L and an ideal I  of L such 
that the congruence lattice of L is isomorphic to Dq, the congruence lattice 
of T is isomorphic to D i, and the restriction of a congruence from L to I
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induces the homomorphism tp. See also E. T. Schmidt [18] for a different 
proof.

Using the construction developed in this paper, we can improve on this 
result by requiring either that L be planar, or alternatively, that L and /  
have given finite automorphism groups. The details will appear in [14].

The main problem, originally raised in [6], see Problem 11.18, remains 
unresolved: Is the congruence lattice of a lattice always independent of the 
automorphism group?
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BERICHTIGUNG ZU MEINER ARBEIT: 
KONSTRUKTION DES REGULÄREN SIEBZEHNECKS 

MIT LINEAL UND STRECKENÜBERTRAGER1
J. STROMMER (Budapest)

Acta Math. Hung.
60 (3-4) (1992), 269- 270.

In die Arbeit ist ein Fehler unterlaufen. Um dies zu verbessern, sind 
folgende Veränderungen vorzunehmen:

1) Auf S. 222 ist der vorletzte Absatz durch das folgende zu ersetzen: 
Da ferner

(x2 + x6)(x8 -- X 7 )  =: -1
ist, so sind die -Größen

( 9 ) Z i  =x2 + x6 (> 0),
(10) Z2 — X7 (< 0)

Wurzeln der quadratischen Gleichung:

x2 — (ui + tq)x — 1 = 0;

also ist

= \ ( u i + vi) + \ V ( u i +  t>i)2 + 4,

*2 = \ i u t + vl) -  ^ \ / ( “ l +  ul )2 + 4.

Die Größen w \, u>2, u\, и2, v\, V2, z\, z2 können wir als Strecken mit un­
seren beschränkten Hilfsmitteln leicht konstruieren, und so auf der Zahlenge­
raden OA, deren Anfangs- und Einheitspunkt O, bzw. A ist, auch die Punkte 
von der Abszisse Wi, w2, « i, U2, Vi, V2, Z\, Z2 bestimmen.

2) Auf S. 223 ist statt der beiden Absätze nach der Formel (8) folgendes 
zu setzen:

Aus den Gleichungen (6), (9) und (2) folgt, daß

2 u2 + z\
Xl 2 + v2

ist. Mittels dieser Formel kann man die Größe x\ mit Hilfe der vorgelegten 
beschränkten Hilfsmittel leicht konstruieren und dann aus den Gleichungen

1 In diesem Acta, 59 (1992), S. 217-226.
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(2), (5), (7), (1), (3), (8) und (4) der Reihe nach auch die Größen X4, xe, x 2, 
X7, X5 und Х3 als Strecken geometrisch bestimmen.

(Eingegangen am Ц . Jun i 1992.)

T E C H N IS C H E  U N IV E R S IT Ä T  
LE H R STU H L F Ü R  G E O M E T R IE  
H - l l l l  B U D A P E S T  
STO CZEK  U TC A  2 - 4
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ON A PROBLEM OF P. ERDŐS
G. N. SÁRKÖZY (Budapest)

1. Throughout the paper the following notations will be used: ||a:|| de­
notes the distance of x from the nearest integer. We write e2ir,x =  e(x). 
The cardinality of the finite set X  is denoted by |X |, Л(те) is the Mangold t 
function and 7r(a:) is the number of prime numbers not exceeding x.

2. Divisibility properties of sums of integers have been studied by many 
authors (see, e.g., [1], [2], [3] and [10]). P. Erdos asked the following related 
question: If А, В C { 1 ,... , N } , M. C ( 1 , . . .  , [\/Х]}, |Л41 = k, the elements 
of M. are pairwise coprime and m  f a+b for every a £ A , b £ B ,m  £ M., then 
how large can |A||Z?| be? In this paper we will study this problem. We will 
give the nearly best possible bound for max |M||Z?| under these assumptions. 
One may ask the question why the condition that the elements of M  should 
be less than or equal to y/N  is needed. We will return to this question.

In Section 3 we will give the upper bound |M||2?| ^  for |A ||# | and the 
proof will use the large sieve. An application of this result will be shown. It 
is easy to see that this upper bound is the best possible apart from constants
and a factor (logfc)2. To see this let us take A  — B = ^ n \ l ^ n <  n

integer j  and M  =  jp  | < p ^  \/Ä , p prime j , then m  f a + b for every

m £ ЛЛ, a £ Л, b £ В and |A ||# | ^  СЩТ^Т) Section 5 we will show 
that the upper bound is best possible not only for this special, large к but 
for all к-s. Finally in Section 6 we will estimate |A ||ß | for fixed \M\ and we 
will derive a corollary in the case of prime powers.

3. In this section we will give an upper bound for |A ||ß | if m  f a +  b for 
every a £ Л, b £ B, m  £ M .

T h e o r e m  1.  Let N  be a positive integer, assume that А , В C { 1 ,... , N } ,  

M  C { 1 ,...  , [\/Х]}, the elements of M  are pairwise coprime and m  f a + b 
for every a £ A, b £ B, m £ A4. Then

\A\\B\ ^ 4 N 2
I t 2“ '

For the proof we need the following lemma:
Lemma  1. Assume that Л4 C { 1 , . . .  ,N }  and the elements of A4 are 

pairwise coprime. For each m  £ M  remove f ( m)  different residue classes
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mod m . Then the number of positive integers n ^  N  which remain is at 
most

N  + Q2

■If m- f (m )  
m\q 

m£M
where the dash indicates that q is the product o f distinct elements of M .

P r o o f . Gallagher writes in [5] on page 492, that this can be shown in 
a similar way as Montgomery proves it in [8] for primes instead of M .  For 
the sake of completeness we give here the sketch of a proof.

Let us define (а,Ь)м  in this way: it is a divisor of both a and b and 
a product of elements of Л4, and this is the largest number with these two 
properties. Write

£

Рм (п)

' 1  if n =  1
(—l) r if n = m 1m2 . . . mr where m i ,m2, . .  .m r 

are distinct elements of M  
. 0 otherwise.

We prove the lemma in the following form:
Let an (M  -f 1 ^  n < M +  N ) be arbitrary real or complex numbers. For 

each m G M  let /(m ) be the number of residue classes h mod m for which 
on = 0 whenever n = h (mod m). Then for any Q > 1

< N  + Q2

= p  A M  П é r i k
q<Q m\q

m£ M

£ Ы 2-

Our lemma follows from this, if the a„ ’s assume only the values 0 and 1. 
Let us write S (x ) = ^ a ne (m ). First we prove:

П

( 1 ) a" П
m|g

f ( m )
m — f(m )

<
E
a=l

(a,q)M=l

If q is not the product of distinct elements of M ,  (1) is trivial. Thus we may 
say that q is the product of distinct elements of M . Let R(q) consist of those 
numbers r, 1 < r < q, for which (n — г, д)м  — 1 whenever an ф 0. From 
the definition of /(m ) and the Chinese remainder theorem we see that R{q) 
contains precisely JJ /(m ) numbers. We replace the Jensen-Ramanujan

m\q r
m£A1
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identity

м?)= e ( ~ )  ’ (/i>«) = 1
(a ,q )= l

by the following generalization of it:

Им{ч) = ^ 2  e ( “ )  where (М )л<  =  1.

(о,<?)л<=1
To see this we have to generalize the Moebius inversion for M -divisibility, 
but this can be done in the same way.

Hence for every r G R(q) we have
ч{ \ v "1 ( (n - r ) a \

апЦм{Я) =  2 s  a"e l ----------- ) •
a=l \  9  /

(a,q)x=l
We sum this over n and all r G R(q) to obtain

9

(E-)*«<«) П /м= E ( E 4 t))( E =
n m|, a=l 4 N 4 7 VeH(9)  ̂ 7

(о,9)л<=1

a=l 
(a,i)x=l

By Cauchy’s inequality we see that
( 2)

2 / 9

■ E *(:) £
r € R ( q )

E “»|^wn/w2s( E К;)Г)( E I E •(т)П
n m|9 4 a=l * 7 4 o=l ref í (q)  4 7»19 

m€.M (о ,9)ач=1 (о,9)а4=1

Now a little consideration shows that the second factor is multiplicative. 
Hence it is

= П (El E П ( E E ЕЧ“ )>
m|9  a=l г£Я(т) m|q ri £Д(т) гг £Я(т) a=l '

m £ M  m £ M

The value of the innermost sum is m -  1 or — 1 according as m \ — ri or
not, so the above is

=  П  ((m -  !) /(m ) - /(m )(/(m ) -  !)) =  J ]  /(m )(m  -  f(m )).
m|9

т£Л 1

m|9
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This together with (2) proves (1).
Now we use the analytical form of the large sieve:
Lemma 2. Let a„ (M  -f 1 ^ n ^ M  +  N ) be arbitrary real or complex 

numbers and put
S(x) =  ^ ] a n e(ni).

П
Let X  be a set o f real numbers for which ||x — x7|| > 6 > 0 whenever x 

and x' are distinct members o f X . Then

£ № > |2£ (г' 1+ лг) Е ы 2-
Х в х  n

The proof is in [9].
We now derive Lemma 1 from this lemma. We choose X  as the set of the 

fractions q < Q, where q is the product of elements of M. and (a,q)ju = 1. 
It is easy to see that in this case 6 > Q~2, thus we have

£ '  £  K ; ) | 2S(Jv+e2) E i “-i2
a<Q  a = l  4 n
= M m =1

and this with (1) proves our lemma.
Proof of Theorem 1. Let us assume that for m € M. there are /(m ) 

residue classes mod m which contain no element of A  and there are g(m) 
residue classes which contain no element of B. If m  f a +  b, then it is clear 
that <7(771) m  — f(m ) ,  i.e., g(m) + f(m )  > m. Using the previous Lemma 1
with Q = y/N  we get

(3)

\ B \ <

\A\<:
N  + Qi 2 N

N  + Q2

/("») =
1

N  + Q2

Е й ( < )  П ^  = E
q ^ Q  m\q т £Л4

т£АЛ
2N

-/(m )
E  х Ш  П ^  = E  A M  П r 1 = S?<Q m|<j V ’ q^Q  m\q V V '

m£M
By Cauchy’s inequality we see that

\A\\B\<
(2 TV)2 4iV2

= ( E  № ) * № ) * ) ’
4iV2

( E ‘) :Чт£Л< 7

ем
AN2
~№~'
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4. Step (3) plays an important role in the proof. In certain cases, when 
many products of the m ’s are less than y/N , then it gives a very “rough” 
estimate and it can be improved by the missing factor (logfc)2. But if no 
product of the m ’s is less than v/JV, (3) is an equality and we cannot save in 
this way. An example for this case is

C o r o l l a r y  1. Let £ and N  > N q(£) be positive integers, A , B c  {1 , 
I f

(4) \A\\B\ >
f 2( l - 2 - ? ) 2

A 2-*(logA 02,

then there exists a prime p such that < pl < y/N  and pl \ a + b fo r some 
a e A , b e B .

P r o o f . W e  u s e  T h e o r e m  1 c h o o s i n g

V n
M — {p* I P prime, ——  = P* = V n }.

If N  is large enough in terms of £, then by the prime number theorem we 
have

N h (  1 —2-» ) =  ^ ( 1 - 2 - 7 )
"  2 log N  77 l°g A

For this sufficiently large N  by (4) we have
- 2

4iV2
к2 =

< 4A 2
/ £N&( 1 -  2~7)' 
\  l o g  A

= 4 Г 2(1 -  2~7) 2A 2-7(logN )2 < \A\\B\.

Hence by Theorem 1 there exist a prime p and integers a, b such that < 
S pl < y/N , a e  A , b G В and pl \ a + b and this completes the proof of 
Corollary 1.

If we drop the condition pi > then many products of the m ’s are 
less than V~N, and using this fact we get similarly

C o r o l l a r y  2 . Let £ and N  > No(£) be positive integers, А , В  C 
C {1 , I f

\A\\B\ > c(£)N*~li ,
then there eixsts a prime p such that pl ^  \ /N  and pl \ a + b for some a € A ,
b e B .

We remark th a t in the special case £ = 2 this corollary improves a result 
of [4] by N e.

5. In this section we give a lower bound. First we give a proof of existence 
for all к and then for “small” k's we construct M  and A,  B.
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T h eo r em  2 .  I f  N  >  jV0, then there exists a constant c\ >  0 such that 
fo r every positive integer к with к < ж(у/ N )  — 7Г( ' ^ )  there exist M , Л and 
В such that А , В  C { 1 ,... , N } ,  M  C { 1 ,... , [v^V]}, \M\  =  k, the elements 
of M  are pairwise coprime,

(5) \A\\B\ >  ci
N 2

A;2 (log A;)2
and m  t  a +  b fo r every m f M ,  a £ Л, b £ B.

P r o o f . First we are going to show th a t there exist constants 02,03 >  0 
such that for all 1 ^  к 5Í C2(tt( \ /N )  — ж(^- ) )  there exist к pairwise coprime 
numbers belonging to a subinterval of length at most csklogk  < of the 
interval >/N].

If C2(n(y/N)  — ж(3̂ ) )  < к < ж(у/ N )  — т г ( ^ )  then let M. be the set of 
any к primes from the interval and let A  — В =  | n  I 1 < n <

< n integer j .  It is easy to see that (5) holds with a constant c[ for all 
such fc’s.

L em m a  3 . I f  N  > N\ and z ^  then there exists a constant c4 > 0 
such that

{ n  I < n < \TlV, p I n => p > z \ I > c4l—— . V. I 2 J log z
V n

log.

P r o o f . There exists a number 6 > 0 such that for z < the
assertion follows from Brun’s sieve ([6], page 82, Theorem 2.5), while for
greater z’s it suffices to take the primes between and y/N  to see the 
inequality to be proved.

It is clear by this lemma that there is a constant C5 > 0 such that for all 
z ^  there exists an interval of length at most z in the interval [ ^ ,  y/N], 
which contains at least numbers whose prime factors are greater than
z. But then these numbers are pairwise coprime. So we have found C2, C3 > 0 
such that for all natural numbers 1 < A: < C2(k( VN)  — 7г(-^)) there exist 
к pairwise coprime numbers belonging to  a subinterval of length at most 
C3A:logA; < of the interval [ ^ , > / ^ ]  and this was to  be proved. Let M  
consist of these numbers and let us denote the right end of this interval by L. 
Then M  C [L — 03k log k, L ] and here L > Let us multiply the elements 
of M  by i. These products belong to the interval [iL — ic3k\ogk, iL]  and 
therefore the intervals (i L , i L  + j )  do not contain multiples of elements of

•M ttoS iS äB&ii f - i .
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Then the construction is the following:

А  — В =  j n  I iL < n < i L+—, n integerj  where 0 й i ^ 4(c3k log к)
1
2'

This set is not empty because c3k \ogk  ^  For these A, B,  for every
a G A,  b G В we have a + b 6 (гХ, гХ -f f )  for some 0 £ г < 2(c3<:4ógfc)' — 1 
thus m  f a + £> for every m 6 M , a € Д, b £ B. Furthermore, if iV > XV2, 
then

И  = 1*1 £
X

4(c3fclog к)
X X N

5(c3fclogк) 5 > 100c3Xlogк

Hence
N 2•4. r" 1

1 fc2(log к)2

so that choosing c\ = min(c,1,c"), (5) holds for all к.
We remark that this construction cannot he improved apart from a con­

stant factor. Namely, it is easy to see that an interval of length H  can 
contain only at most C\~fj pairwise coprime numbers. In fact the number
of primes not exceeding у/Н  is at most ci and each of them may have 
one multiple among our numbers, and the number of those integers, all of 
whose prime factors are greater than or equal to у/Н, is less than or equal 
to c2lô H by Brun’s sieve ([6], p. 72, Corollary 2.3.1).

Now I would like to return to the question, why we need the assumption 
that the elements of M. be less than or equal to y/N .  If the m ’s may exceed 
y/W, then the same construction can be given with X > y/Nk\og к and then 
A, В  may contain the positive percentage of the integers up to N , so that 
m  I a -f- b never holds since 2(ск\о%к)Ь > c>N . Thus for “small” к going a
little over y/N , there are M , A , B  such that A, В are dense and m \  a +  b.

At the end of this section we give a constructive proof of the lower bound 
for “small” k's:

T h e o r e m  3 . Let N  > N q be a positive integer. For every positive in­
teger ко й к < we can construc  ̂ M , A , B  such that \M \ — к,
М. С { 1 ,... , [\/ÍV]}, the elements of A4 are pairwise coprime, А , В  C 
C {1, •. - , N },

N 2
> 32400fc2(log к)2

and m  f a +  b for every m £ A t, a £ A, b £ B.
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P r o o f . Let us fix a number к о  <  к <  bg>7p • Let us define the 
number x by the inequality

(6) a:([2A;log A;]!) 5- V~N < (x + l)([2A;logfc]!).
Let L  = z([2A:log A;]!) and let us denote the i-th  prime number by p,-. Then 
by the prime number theorem, for A; > k\ we have pk < 2A:logA:. Define A4 
in the following way:

M  = {L  - p i  I i = 1 , . . .  ,A;}.
We are going to  show that A4 satisfies our conditions. Clearly \M\ = к 

and by (6) every element of A4 is less than \ f N . The elements of A4 must 
be pairwise coprime. Let us assume indirectly that there are two elements 
of A4 having a common prime factor. In fact, let p \ L — pi and p | L — pj  
where г < j  < A;. Then p | pj — p,-, consequently, p ^ Pj < 2k\ogk  but then 
p I L  thus p I pi and p | pj, i.e., p = Pj = Pi which is a contradiction. So we
have A4 C [L — 2A:logA:, L] where L > and from here the proof is the 
same as in the previous theorem.

6. In this section we will study that for fixed A4 how large |X ||# | can 
be under the condition that m  | a + b never holds. First we will discuss 
the case when A4 consists of “small” numbers where we drop the conditions 
th a t the elements of A4 must be less than y/~N and pairwise coprime and an 
application will be shown.

T heorem  4 .  Let N  > N q be a positive integer. Assume that A4 = 
=  { m i,... ,m fc} C (2 ,. . .  ,iV) where т г < m 2 < . . .  < m k. Let r ^  k, 
P  := m i . ..rnr and assume that P  < j.- Let

(7)

am

( 8)

E

к

E
i=r+l mi

where assume that <5e27 < | .  Then there exist А ,В  C { 1 ,.. .  ,1V} such that 
m j ; a  + b if m £  A4, a 6 A,  b £ В and

\Л\\В\ >
N

8e27
min ^ r l Vi 1

14PJ m e 2i \ ) where -  — oo.
0

P r o o f . Let us take all the positive integers n such that n ^  0 (mod m,) 
for 1 < г < r . Then by a well-known lemma of Behrend ([7], Lemma 5, p. 
263) these numbers form at least

(9) ( l f m ,  -  1) =  /> П ( 1  -  L )  =  Pex p ( | > g ( l  -  T ) )
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residue classes mod P. Let us use the trivial inequality log(l — x) > — 2x if 
0 < x  = I* Неге 1 £ M  implies \  ^  > 0. Therefore by (7) and (9) we
get

^J(m, -  1) > P  exp 
«'=1

>
P_

e2̂

Thus those integers not exceeding N, which are not divisible by any of 
m i,  m 2, . . .  , m r, form at least arithmetic progressions of difference P.

Now let us give an upper estimate for the number of those “bad” integers 
not exceeding N ,  which are divisible by at least one of m r+i, mr+2, . . .  ,
By (8)

—  < NS.

Hence the arithmetic progressions above contain at most NSß 2'1 “bad” num­
bers on the average, thus at least arithmetic progressions contain at
most “bad” numbers. Let us denote the set of these arithmetic pro­
gressions by V ,then

( 10)
P

2e2i ’

Let us consider an arithmetic progression V =  {h, h + P , . . .  , h + K P }  £ V, 
where 0 < h %  P, h + К P <: N  < h + (K  + 1 )P. Then К  = [ ^ ]  whence 
jr — 2 < К  ^ p-. Let the “bad” elements of this arithmetic progression be 
h -f k \P , h + k2P , . . .  , h + ктР where by the discussion above T  < 2Np 2’1. 
Let кт+1 = К  + 1 and Z  m in ([^ ], [8̂ ь ])- Bet us define the subset Z?(V) 
of V in the following way: for 0 < j  < К  let h + j P  € N(V) if and only if for 
every 1 < t ^  Z we have h + j P + i P £ { h - f- kiP, h + k2P , . . .  h +  кт+iP}.

Now we will give a lower estimate for |#(V)|. Obviously, for one of the 
к j's, satisfying the condition 0 < j  < k, h + j P  e B(V) does not hold 
if and only if for some 1 ^  i < Z  and for some l ^ f ^ T  + lw e  have 
h -f- j P  4- iP  = h + k/P, i.e., j  =  ki — i. Неге l  and i can be chosen in 
T  -1-1 and Z  many ways, respectively, thus h + j P  £ B(V) holds for at most 
(T + 1 )Z  j 's .  Therefore (by P < j )  we have

( H )

|H|(V)| ^  к -  (T  +  1)Z > J  — 2 -  +  i )  min (

_  N_ _ N_ _  jV 
4P ~  4P ~ 4P ~  4P'

N 1

N
> P

4P ' 86e2̂ ) >
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Now the construction is the following:

B =  U B(V), A  = {P ,2P , . . .  , ZP}.
V €V

It follows from the construction that m \  a + b for m e M., a G A, b € В , 
and by (10) and (11) we have

N ( N 1
l UPl 4 L8^e2̂ J )

\A\\B\> Z \ V \ m m \ B ( V ) \ >

This completes the proof of the theorem.
Corollary 3. Let t  and N  be positive integers, l  ^ 2, N  > N q(T). 

Then there exist sequences А , В C {1 , . . .  , N } such that pl t a + b for every 
prime p, a £ A, b G B, and

\A\\B\ >
(£ — l)iV(loglV)/-1

65e4(3 e y - 1

P r o o f . We apply the previous theorem with 

M  =  {pl I p prime, pl < 2 N }  and p[p2 .. .plT_ г < V~N < p[p2 . . . p lr := P. 

Then 7 can be chosen in the following way:
r T o° o° 1 oo 1 2

E^<E^<E^áEÍ = «2)=̂ <2:=r.
, = 1 Pi , = 1 Pi n=l

Furthermore
к

П=1 П*

V - 1 V - 1 f  1 [ 1 J  1
2^  pi <  2^  pi <  Z ,  „ / < J  x t dx -  ( l _  л  /-!••=r+l »=r+l n = P r + i  Pr 1 )Prr + 1  r ' « = г + 1  * » n = P r + l

By the prime number theorem

l o g p ^ E  log Р,- ~  i  M n ) ~  tvr, 

i.e., pr ~  Thus
1 =  1 

t l P

ПЪРг

< \S n z p ,(log p y  pf

whence log P  log N (so that P  < у  holds for N  > Ni). Hence

log N  log N
Pr 21 U for N  > N 2{£)

and
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A  1 (3 <)'-■
A f ,  PÍ (< -l)(logJV )'->  ■ ■

Then for N  > N3(1), 6е2~* < |  holds trivially. Applying Theorem 4 there 
exist sequences «4, В C { 1 ,... , N } such that pl f a +  b and

•( l - lX logA Q*-1 
(3 i y ~ '8e*

(£- l ) ( l o g N Y - '  
65(3 l y - 'e *

Namely we have to take the second term of the minimum in Theorem 4, 
since the orders of magnitude [^>] and [5̂ 77] are y/N  and a power of log N ,  
respectively.

P. Erdos and A. Sárközy remark that in the special case t  — 2 there exist 
sequences A ,B  C {1 ,•.. , N }  such that —► oo and p2 4 a + b.

In Theorem 4 At is chosen in a special way. One may ask what can be 
said for an arbitrary set Л4 (e.g., if Л4 is the set of primes not exceeding 
V N ) .  Then the following lemma can be used:

Lemma 3. There is an effectively computable constant ci such that if 
N  > ci is a positive integer and t < log N , then there exist sequences А, В C 
C { 1 , . . .  , N } such that \B\ =  t,

^  > <(2 log A)«’

and A  + В consists of primes between ^  and N.

P r o o f . This can be found in [10].
This implies that for N  > cj and for an arbitrary set M. there exist 

sequences А , В C {1 ,... , N }  such that \B\ = t < log N ,

\A\\B\ >
N

(2 log N Y

and m t  a +  b for every m £ M , a £  A, b £ B .
Finally I would like to thank Professor Erdos for his valuable remarks.
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NEW UNIFIED RADON INVERSION FORMULAS
Á . K U R T JS A  (S z e g e d )

1. In tro d u c tio n

Let /  be a real function on R" and assume that it is integrable on each 
hyperplane. Let P" denote the space of all hyperplanes in R". The Radon 
transform R f  of /  is defined by

R f ( 0  = [  f(x)dx ,
Í

where dx is the natural measure on the hyperplane £. Each hyperplane <f £ 
£ Pn can be written as £ = {x  £ Rn : (x ,u )  = p}, where и  £ Sn~1 is a unit 
vector and is the usual inner product on Rn. In what follows we identify 
the continuous functions ф on P n with continuous functions ф on 5 n_1 X  R 
satisfying ф(и,р) =  ф (-и , -р ) .

We introduce also the dual transform R t which maps a continuous func­
tion ф G C°(P") to the function R tф £ C°(Rn) defined by

Rtф{x) = / ф(ш, (u>,x))du}.
S n ~ 1

First Radon [10] and John [8] proved that any C°° function /  of compact 
support can be reconstructed from R f .  More precisely, if L denotes the 
Laplacian on R" and du is the area element on Sn_1 then

f ( x )  = 2(2тг)1- п(-Т )(" -1>/2 /  R f(u ,(u ,x ) )d u  if n is odd,
5n_1

oo

—(2tt)_n(—L)(n_2)/2 í  Í  R f(u ,p ) - -----f ---- du  if n is even.
J J  (u , x ) - p

Sn ~ 1 — oo

In formula (2), the Cauchy principal value is taken. Later these formulas were 
proved under many different assumptions [4, 6, 7, 9, 11]. These proofs are

( 1 )

( 2)

f (x )  =
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based on advanced potential analysis and the inversion formulas are different 
in the odd and even dimensional cases. Deans [3] gave a unified inversion 
formula which covered both cases but his formula was not so explicit as (1) 
and (2).

In this paper we prove two explicit unified inversion formulas, given in 
the next theorem, using elementary geometry and analysis rather than the 
potential theory employed by previous authors. In the following theorem, 
5 (R n) denotes the Schwartz-space of smooth rapidly decreasing functions on 
Rn .

T h e o r e m . I f  f  e  S(Rn), 2 <  n e N and
( 1.1)

00
hA(u,p) = C b m J ( r 2- l ) !̂ r  Rf ( u ^P+re)+ {^) R f (u ,p - r e ) jd r ,

1

(1.2) hB(u ,p )  = C Inn J  r "~2( ^ : )  ( R f ( u ,P - r ) ) d r ,
H>e

where С = ( - 1 ) п- 1Г(п/2)тг1/ 2/Г ((п  -  1)/2)(2тг)п, then f  = R thA = RthB .
It is well known that the dual transform R t has non-trivial kernel. So, 

for any function / ,  the above functions hA and hB are in the preimage of 
/  at Rt, i.e. hA ,h B £ R f 1/ -  For a clearer formulation, we introduce the 
operators □ and 5! by

OO

a f(u ,p )  = C lim  f ( u , p + r e ) - f ( u , p - r e ) j d r ,
l

=.f(u,p) = C lim J  r " _ 2 ( ^ : )  U ( u , P ~  r))dr.

H>e
Then our inversion formulas appear in the form /  = R ta R f  and /  = R fE R f.  
These formulas are very similar to the Radon formulas /  = cRtAn~1R f ,  
where Л is the Calderon-Zygmund operator in one dimension [12]. Straight­
forward but lengthy calculations on the Taylor expansion of (r2 — 1)("-3)/2 
show that □ =  Л"-1 . Also H =  A"“1 can be proved by integration by parts 
(see (12) on p. 11 of [5]). We do not go into details in this paper.

The dual transform notion Rt appears in the previously mentioned form 
in the literature [6]. Now we slightly modify this notion because this (equiv­
alent!) version is more treatable in our considerations. To avoid misunder­
standing, this version is said to be boomerang transform and it is denoted
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by В [13]. The function space C°I?(R"\0) consists of such continuous re­
al functions on Rn\0  which can be extended into continuous functions also 
at the origin 0 along any line lying on 0. The boomerang transform В : 
C °5(R n\0 ) -> C°(R") is defined by

B f ( x ) = \  j  f{u (u ,x ))du .
Sn -l

The simple connection between R t and В can be described as follows. For a 
real function /  on R" let P f  be the function on P" defined by P f{  £) =  f(x^), 
where is the orthogonal projection of the origin 0 on the hyperplane £. 
Then B f  = RtP f .

Also a useful geometric interpretation of the boomerang transform can 
be given as follows [13]. Let /„(<) be a continuous function defined on the 
line 1Ш — {tu  : t G R ). Then the function G C°(R"), defined by 

(x ) := f u ((x,u)),  is a so called ‘plane wave’ with the axis u. The function 
is constant along the hyperplanes which intersect the line 1Ш orthogonally. 

Now take a function /  G C °5(R "\0) and for any и  G 5 n_1 consider the 
function f u (t) := f { t u ) on 1Ш. Then the map и  —► is a function-valued
(plane wave-valued) function defined on 5n_1. The integral of this function 
is just B f  i.e.

B [  = \  I  f f d * .
Sn-l

Finally we sketch the main ideas of the paper. We start by the investi­
gation of the radial function; this is the main point of our approach. First 
we show that the transform В is one to one on the space Gq of smooth radial 
functions and prove three inversion formulas on this space Go. (It is worth 
to note here that a different consideration of the boomerang transform on 
this space Go can be found also in [13].) In the next step, we prove inver­
sion formulas for the radial functions which are defined around an arbitrary 
point P  € R". Using Dirac sequences and convolution, we prove our general 
inversion formulas from these special ones.

2. Inversion form ulas on radial functions

A function f ( x ) € C°(Rn) is said to be radial at P  G R", if there exists 
a function / :  R+ —* R such that f ( x ) = / ( \x — P |). If /  is radial at 0 then

x/2

(2.1) B f(x )  = |5 " -2 | J  cosn-2(a )/( |x | sin a)da.
о

Lemma 2.1. I f h  is a continuous radial function then
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(2.2) Bh{x) =  |S " -2| J  h(p\x\)(l - p 2)("~3)/2dp
0

and so if  /,(х ) = |x |‘ (i € N) then 

(2.3)

The proof is a simple calculation which is left to the reader.
Corollary 2.2. I f  f  is a continuous radial function, then
(i) f n- i B ( f n^ B f )  = д " - 1(/)(2тг)"-1,

(ii) f n- 2B ( h B f ) = I " - \ f ) ( 2 i r r - \
(iii) f n- i B f  = Q(n x̂ 2(/)(27r)(" x)/2 if n is odd, where

Q f(x )  = |x| /  f ( t )d t  and I / (x )  =  J  f(t)dt. 
о о

P roof. If /  = /,• then the formulas follow directly from Lemma 2.1. 
Since B, Q and I  are linear operators, the formulas are valid for polynomi­
als as well. As these integral operators are continuous with respect to the 
uniform convergence, the proof can be finished by the Weierstrass theorem.

Let Gp denote the space of C°° radial functions at the point P € Rn. 
The following theorem gives our inversion formulas for the radial functions 
/  € Go-

T heorem 2.3. The boomerang transform is an injection on Go onto Gq. 
I f  f  € Go then

(i) B ~ ' f  = = (2*

(ü) B -v  =  h2 =  (г*)1- ^  )""‘(A -2 S ( /1/) ) ,

(iii) S -1 /  = h3 = (2»)<1-">/2( 3i ; ) ( if  n is odd, where £
is the radial differentiation.

P roof. Suppose that h is a continuous radial function and Bh = 0. 
Then by Corollary 2.2 we get I n~l (h) — 0. Using differentiation (n — 1)- 
times, we have h — 0, i.e. the boomerang transform В  is one-to-one.

Since the three cases are very similar we deal only with the second one. 
h2 € Go follows immediately from

(2 .4 )  |I |" - 2B ( / 1/ ) ( I )  =  | S " - 2 | / ( p ) p ( | x |2

о
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To see /  = B h 2, integrate (ii) (n — l)-times. Since h2 is zero in order n — 1 
at the origin, we get

f n - i B ( f i f )  =  I n - \ h 2 ) ( 2 n ) n - \

This implies /  =  B h2 by (ii) of Corollary 2.2.
The following statement easily follows from h^f (x + y) =  hu((x,u>) +  

-f- (y ,u))  and from

(2.5) Bh = \  J  h^ d u -
5 " - 1

Lemma 2.4. I f  f  =  Bh, then

(2.6) / „ = в ( а (х + х| ^ ) ) ,

where f y(x) =  f { x  + у ).
Notice that by this lemma and by Theorem 2.3, inversion formulas can 

be introduced for the radial functions at an arbitrary point P. Using radial 
Dirac-sequences and convolution, the procedure leads to the general inversion 
formulas. We follow this way in our proof. A sequence of functions {и*;} is 
called delta-convergent if it tends to the Dirac distribution in the dual space 
of continuous bounded functions.

P roposition 2.5. Let f  € 5'(Rn) and let {и*} C Go be delta-conver­
gent. I f  the sequence

(2.7) hk(x) = j  R f(ex, \ x \ - r ) B ~ l vk{\r\)dr, i £ R " \ 0
R

where ex = x/\x \,  has limit function h, then f  = Bh.
P roof. By the substitution r  = |x| — s and by the Fubini theorem we 

get

(2.8) hk(x) = J R f ( e x,s )B ~ 1vk(x—sex)ds = j  f (y )B ~ 1vk (̂ x—x ^ - ^ j d y .
R  R "

From Lemma 2.4 we obtain

(2.9) B h k(x) = J  f (y )v k(x -  y)dy, x € R",
R"

which proves the proposition completely.
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3. P ro o f o f  th e  main th eorem

We need two technical lemmas. The first statement immediately follows 
by integrating in polar coordinates.

L e m m a  3 . 1 .  If  {vk}  C Go is  a delta-convergent sequence, then

(3.1) wk : R - > R  ( r ^  | r |n- 1t;fc( |r |) |5 n- 1|/2 )

is also delta-convergent.

L e m m a  3 . 2 .  I f  у € C°°(R) and / ( r )  = 7 (r) — 7 (—r), then £ ( ^ ) fc /  € 
G C°° and

! т ,Н ^ У /(г)=  /(M |(l))p T l) i!-
P r o o f . By in d u c t io n  w e get  

(3-2) ( ^ )  / ( r )  =  7fc(r) -  7fc(-r),

where у к € C00 and 7jt(0) = 0. This proves the first statement. The second 
assertion follows immediately using the Taylor expansion of 7 .

Now we prove our main theorem. The function R f(e x, | a r |  — r) is denoted 
by <p(r). When the г -dependence is important, we denote it by <£x(r).

P r o o f  o f  (1.1). By (ii) of Theorem 2.3 and by Proposition 2.5, we
have

OO

(3.3) hk{x) = (2тг)1~п J(q>(r) +  < p ( - r ) ) ^ ^ j  (/„—2#(/iüfc))|re dr.
0

By Theorem 2.3 there exists a function Uk £ Go such that Vk — BUk and so

(3.4) n U k  =  (27r)1- " ( ^ - ) n“1_ra( /n_25 ( / 1ufc)).

Therefore by integration by parts in (3.3) we get
OO

(3.5) hk(x) =  (-2ТГ)1-" J  (v?(r) + f ( —f) )rn~2B(fiVk)(rex)dr,
0

where the remainders vanish at 0 by (3.4) and at 00 by R f  €  5 (5 " -1 X R)
[7]. Use (2.4) and Lemma 3.1 furthermore reverse the order of integrations 
to see

OO OO „ v ,
o lC n -2 1  r r (  2 _  | 2 \ ( n - 3 ) / 2

(3.6) hk(x) = (-2ТГ)1-"  - ф - Л  J Wk(t) J  g(r)------------------- drdt,
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where g(r ) =  (gj:)" 1<p(r) -f (-37)" r) and wk comes from Lemma 3.1. 
Making use of the substitution r — st  in the inner integral results in

OO

(3.7) h(x) = Шп hk(x) = (~2тг)1~п |^п_1| lim J  g(st)(s2 -  l ) (n~ ^ l2ds,
t

which completes the proof.
P roof of (1.2). By (i) of Theorem 2.3 and by Proposition 2.5 we have

(3.8) hk(x) = (2л-)1 n J ( f ( r )  + (P(~r ) ) { ^ )  ( f n - iB ( fn- i v k ))
0

rex
dr.

As in the previous proof, use integrations by parts to get

(3.9) hk(x) — (—2т)1 " J  ( ^ )  + tp(-r))rn 1B ( fn- 1vk)(rex)dr.
0

The function g(r) = ( ^ ) n ^ ^ ( r )  +  <p{—r))rn 1 is of class C°° by Lemma
3.2. Therefore use Lemma 3.1, Lemma 2.1 and the Fubini theorem to get

OO OO
(3.10) ht (x)  = (-2Ж)1- | ^  J  вд(х) J  ^ ( 1  -  s2/ r 2)<"-3)/ V r * ,

0 *
where wk comes from Lemma 3.1. Thus we have
(3.11)

OO
K x ) = Km hk(x) =  Ihn j  ^ ( 1  -  52/ r 2)(n_3)/2dr.

8

To obtain the theorem, we have to prove that

(3.12)
OO

0 =  lim /  ^ ( 1  -  (1 -  s2/T-2)(n_3)/2)dr. *-+o J r
8

For this purpose break up the integral into two parts as [s,2s] and (2,s, 00) 
and transform the first part into an integral on [1, 2] to see that it tends to 
zero. The other integral on (2s, 00) converges to zero simply by the Lebesgue 
dominated convergence theorem. This completes the proof.

It should be mentioned that the odd dimensional inversion formula (1) 
can be proved easily using (iii) of Theorem 2.3, Proposition 2.5 and Lem­
ma 3.1.

The author would like to thank Z. I. Szabó for proposing the problem 
and making valuable remarks on the form and contents of this article.
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RELATORS GENERATING THE SAME 
GENERALIZED TOPOLOGY

J. MALA (Nyíregyháza)

Introduction

A nonvoid family 1Z of reflexive relations on a set X  is called a relator 
on X  [8]. If А  С X ,  then the set

int7j(A) =  {x e X  : 3R € TZ : R(x) C A }

is called the ^-interior of A. The members of the family

Tn  = {V  С X  : V  C m tn(V)}

are called the 7^-open sets.
If TZ is a relator on X , then the relator

K A =  { 5 C l x I : V i e I : i e  in t*(S(*))}

is called the topological refinement of 7Z. Namely, if 1Z and S  are relators on 
X ,  then by [8, Corollary 5.16], we have ints C int^ if and only if S  C TZA or 
equivalently S A C TZA. Hence it is clear that 1ZA is the largest relator on X  
such that intftA C int^. Moreover, int^A = int^.

Since the ^-interiors of subsets of X  need not be 7^-open, the correspond­
ing assertions do not, in general, hold for Т-л instead of in t^ . Therefore, it is 
of some interest to point out that by introducing the transitive modification

OO

K~ =  { (J  Я" : R 6 ft}
n= 1

of a relator 7Z, we can still prove some similar equivalents of the inclusion
Ts C Tn-

For this, it is convenient to consider first a singleton relator {72} which
can often be identified with the relation R without any danger of confusion.*

The author is indebted to Árpád Száz who suggested many improvements 
in the notation and the formulation as well as the proofs of theorems.
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1. T opologies generated  by singleton  relators

Because of the definition of open sets, we clearly have
T h e o r e m  1.1. I f  R  is a reflexive relation on X  and V  С X ,  then the 

followinq assertions are equivalent:
(i) V  e TR;

(ii) R(V)  С V ;
(iii) R(V) = V.
Using this obvious theorem, we can easily prove
THEOREM 1.2. I f  R  is a reflexive relation on X , then T r  is closed under 

arbitrary unions and intersections.
P r o o f . If (K ),e/  is a family in T r , then by Theorem 1.1, we evidently 

have
« ( и 1'0 = и л« ) = и ^

iei iei iei
and

Ч г Н  с П я№ ) = п к"
iei iei iei

and hence

u  v; e Tr  and n  Vi- e TR.
iei iei

Moreover, simple applications of the definitions of T r  and IZA give 
T h e o r e m  1.3. IfTZ is a relator on X ,  then

T n  =  [ J  T R '
Ren л

P r o o f . If V  £ T r , then for each x £ V, there exists an Rx £ 71 such 
that Rx(x ) С V. Thus, by defining R  С X  x X  such that R(x) = Rx(x ) if 
x £ V  and R(x)  =  X  if x £ X  \  V, we can at once state that R £ IZA such 
that R(V)  С V,  i.e., V  £ TR.

Conversely, if V  £ T r  for some R £ TZA, then R(x)  С V for all x £ V. 
Hence, since x £ in t^(Ä (x)) for all г € X , it is clear that x £ in t^ (y )  for 
all x £ V. That is, V  C in t7j(U ), and thus V  £ T r .

2. S in g leton  relators gen erated  by topologies
Now, as a certain converse to Theorem 1.2, we can also prove 
T h e o r e m  2.1. I f  A  is a family of subsets of X  and R С X  x X  such

that
R(x) = P){-4 £ A :  x £ A)

for all x £ X , then
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(i) R is the largest reflexive relation on X  such that А  C T r ;
and

(ii) T r  = A  if and only if A  is closed under arbitrary unions and inter­
sections.

P r o o f . If A  G A  and x £ A, then b y  the definition of R it is clear that 
-R(x) C A. Therefore, A £ T r . On the other hand, if 5  is a reflexive relation 
on X  such tha t A c T s  and x £ X ,  then x £ A £ A  implies that S (x )  C A. 
Therefore, S(x )  C R(x).

From Theorem 1.2 we know that if A  = T r , then A  is closed under 
arbitrary unions and intersections. On the other hand, if V  £ T r , then by 
Theorem 1.1 and the definition of R, it is clear that

v =  u  f ) { A G A  : x e АУ
xev

Therefore, if A  is closed under arbitrary unions and intersections, then V  £ 
G A  also holds.

R e m a r k  2.2. The relation R defined in Theorem 2.1 is always transi­
tive. Namely, if у G R(x) then x G A G A  implies у £ A. Therefore, we also 
have R(y) C R(x).

A simple application of Theorem 2.1 and Remark 2.2 gives 
T h e o r e m  2.3. If  R is a reflexive relation o n X ,  then

OO

R -  = у  R n
П=1

is the largest reflexive relation on X  such that T r  C T r -  . Moreover, T r  =
=  T r - -

P r o o f . Because of Theorems 2.1 and 1.2, we need only show th a t if 
S  С X  x X  such that

S(x) = f ] { V  G T r  : x G V},

for all x G X ,  then S  = R ~ . From Theorem 2.1 and Remark 2.2 we know 
that R  C S  and S 2 C S. Hence by the definition of R~  it is clear that 
R~ c  S. Moreover, if x G X ,  then also by the definition of R~ it is clear 
that

OO

R{R~{x)) =  U  R n+1(x) c  R~{x).
fl=1

Thus, we have not only x G R~(x), but also R~(x) G T r . Whence, by the 
definition of S , it is evident that 5(x) C R~(x)  also holds.

R e m a r k  2 .4 .  Note that R~ is the smallest transitive relation such that 
R  C R~.
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3. R ela tors gen era tin g  the sam e generalized  topology

Now, combining Theorems 1.3 and 2.3 and using the obvious notation

TZ =  {Ä : R  £ R'} 1
we can easily establish the following improvement of [8, Corollary 5.19].

T h eo rem  3.1 . I f  TZ and S  are relators on X ,  then the following asser­
tions are equivalent:

(i) Ts C Tu;
(ii) 5 Л-  с  tza;

(Ш) 5 Л' Л С TZA;
(iv) s A~ с  tza~.
P r o o f . If (ii) holds, then by Theorems 1.3 and 2.3 it is clear that

Ts  =  (J  Ts  =  (J  Ts -  =  (J  г тС [ j  TR =  Tr . 
s e s л s e s л те£л_ яе?гл

That is, (i) also holds.
On the other hand, if T  £ S A~, then there exists an S  E S A such tha t 

T  =  S~. Hence, by Remark 2.4 and Theorems 1.1, 2.3 and 1.3, it is clear 
that

T (x) £ Tj  = Ts C Ts
for all x £ X .  Therefore, if (i) holds then we also have T(x) £ TR for all 
x £ X ,  which implies T  £ 7ZA. Consequently, if (i) holds then (ii) also holds.

Finally, the equivalence of (iii) and (iv) to (ii) is an immediate conse­
quence of the fact that the mappings

TZ —► 7ZA and TZ —► 7Z~
are increasing idempotent operations on relators such tha t TZ C TZA and 
TZ~ C 1ZA.

Now, as an immediate consequence of Theorem 3.1, we can also state
C o r o l l a r y  3.2. I f  TZ and S  are relators on X  then T-r = Ts if  and 

only iflZA~ =  S A~.
Hence by noticing that

? X x X  =  { 0 , * }  and TAX =  V( X) ,
we can also easily get

T h e o r e m  3.3. I f T Z i s a  relator on X ,  then
(i) Tr  = {0,X} if and only ifTZA~ =  { X  x X};

(ii) T r  = V ( X )  if and only ifTZA~ = {Д ^}л~.
Remark 3.4. The first statement of this latter theorem is identical to 

[4, Theorem 3.5].
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4. A new  characterization  o f topologica l relators

To show that [8, Corollary 5.19] can also be derived from Theorem 3.1, 
we have only to prove the next striking analogue of [9, Theorems 2.10 and 
3.4].

T h e o r e m  4.1. I f lZ  is a relator on X  then the following assertions are 
equivalent:

(i) 1Z is topological;
(ii) TZA~ is topologically equivalent to 7Z.

P r o o f . By Remark 2.4 and [9, Theorem 3.3], it is clear that 1ZA~ is a 
topological relator on X .  Therefore the implication (ii) =>■ (i) is an immediate 
consequence of [9, Corollary 2.4].

On the other hand, by Theorem 3.1, it is clear that 1ZA~A C IZA is always 
true. Therefore, to prove the converse implication (i) =$• (ii), we need only 
show that if (i) is true then TZA C 1ZA~A, i.e., TZ C 1ZA~A is also true.

For this, note that if (i) holds, and R € TZ and x  € X ,  then by [9, 
Theorem 2.3] and Theorem 3.1 we necessarily have

int7j(Ä(x)) £ 'Tv. С Тцл-.

Therefore we also have

x e  int^A-(int7j(Ä (z))) C intt ia - ( R ( x ) ) ,  

which shows that R  £ TZA" A.
Now, as an immediate consequence of Theorems 3.1 and 4.1 we can also 

state

T h e o r e m  4.2. IflZ  and S  are relators on X  such that S  is topological, 
then the following assertions are equivalent:

0) 7s c  Tn;
(ii) S A c  TZA;

(iii) S  c  1ZA.

Hence, by Theorems 1.3 and 4.1, it is clear that we also have

Corollary 4.3. I f  1Z is a topological relator on X , then 7ZA is the 
largest topological relator on X  such that C Tp_. Moreover Т-цл = Tp..

Combining Theorems 3.3 and 4.1, now we can also state

T h e o r e m  4.4. I f l Z i s a  topological relator on X ,  then
(i) 7я = { 0 ,^ }  if and only i f I Z= { X  x X} ;

(ii) Гп = V{ X )  if and only ifIZA = {Дд-}л.
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5 . A  f e w  u s e f u l  c o u n t e r e x a m p l e s

The fact tha t the conditions of topologicalness cannot be omitted from 
the above assertions can also be at once seen from the next simple 

Example 5.1. If X  = {1,2,3} and R с  X  x X  such that 
Я(1) = {1,2}, -R(2) = {?, 3}, Д(3) = {1,3},

then V, = {Ä} is a relator on X  such that
T* = {0,X } and Tn -i  =  {0,X}

but 71л and (7£-1 ) are still incomparable.
Remark 5.2. Since

R ~ \  1) =  {1,3}; Ä-1 (2) = {1,2}; R - \ S )  =  {2,3}
now we also have

7гл П(7г-1)Л = {ХхХ}.
Moreover, in addition to the above example, now we can also easily prove 
Example 5.3. If X  is a set with card(X) > 3, then there is no largest 

relator 71 on X  such that Tn  =  {0,X}.
Proof. If В  С X , then for each proper subset A of В  

RA = A x  B U { X \ A )  x  X
is a reflexive relation on X  such that T r a  =  {0,X}. Therefore, if 7Z is 
the largest relator on X such that Tn = {0,X }, then we necessarily have 
R a € 71 for all proper subset A  of B. Hence, it is clear that В € Tn if 
card(R) > 2, which is a contradiction if В ф X .  Consequently, the assertion 
of the example is true.

Remark 5.4. Clearly if card(X) ^  2 then 71 = {X x X} is the only 
relator on X  such that Tn = {0,X}.

The above proof also yields a remarkable example to Theorem 1.3 and 
[4, Theorems 3.1 and 3.5].

Example 5.5. If X  is a set with card(X ) 3, then the family 71 of all 
relations

R(a ,b ) = A x B \ J ( X \  A) x X
with А с В с Х , А ф В  and card(5) > 2 is a relator on X  such that 
TR = {0,X} for all R e 71, but Tn  = {V  С X  : card(F) ф 1}.

Remark 5.6. Note th a t in contrast to the transitivity of the Davis- 
Pervin relations

R a = R(a ,a ) = A x А  и (X  \  A) x  X, 
where А С X , now we have

(■R(a ,b ) T  = (R(a ,b )?  = X  x  X, 
whenever А  С В  С X  such tha t А ф В.
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ON A MULTIPLICATIVE PROPERTY 
OF SEQUENCES OF INTEGERS1

I. Z. RÚZSA and A. SÁRKÖZY (Budapest)

1. Throughout this paper, we use the following notations: Л, A\, B, A4,... 
denote (finite or infinite) sequences of positive integers. Ci,C2, . . .  denote 
positive constants. We write log log x = /2(2;), log log log x = I3(x). The 
least common multiple of the integers a, b is denoted by [a, 6]. p, denotes 
the i th prime number (so that pi = 2, pi — 3 ,p3 = 5 , . . . ) .  u(n)  denotes 
the number of distinct prime factors of n: u>(n) = X) 1 while ft(n) denotes

p|n
the number of prime factors of n counted with multiplicity: il(n) = X] a,

p a \\n

and we write V ( x , u ) = {n : n < x, Q(n) !> u}. p(n) denotes the Möbius 
function.

2. Erdos and Graham [1, p. 88] raised the following question: “Is it true 
that if ai < 02 < . . .  is a sequence of integers satisfying

(By (ai,aj) =  ], (2) says that (а,-,а7) — *■ + 0 0  holds “on average”.) This
paper is devoted to the study of this problem. However, it will be shown 
that to ensure (2), X] ^  must grow much faster: one must have

O i < X  *

^ 2  7  > exp ( / ( x)(/2 (x))1 / 2 /3 (x))
a , < x  '

where f ( x )  —> +00 and this is the best possible.
It is well-known that there is a constant Ci such that

1 Research supported by Hungarian National Foundation, Scientific Research Grant 
No. 1811.
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( 3 ) £  ^ < h( x )  4- ci for x > 3 .
рЪх

T heorem 1. For all e > 0, there are constants C2, c3, C4, xo, ^ (all de­
pending one) such that if x > xo, А  C { 1 ,2 ,. . . ,  [x]} and ^  4 > c^, then,

aeA
defining the unique integer к by

( 4 )
(h j x )  + ci)k 1 1 <  (h(x)  +  C i) fc+1

= R 2- j  n
aeA(к — 1)! ~ 8 a k\

(where ci is defined by (3)^, we have

( 5 )

where

a,a'eA 1 ’  1 \aeA  /

/ b r t s d - w * )
1 (logx)log4-1-e for к > (1 -  6) l i (x ) .

An easy computation shows that

los E  Í )  ( h W f ,2h( x ) ) " 1 -  + ~
j  eA

implies k( l i ( x ))~ 5 —► +oo, whence L ( x ,k ) —► -foo, and for all e > 0 there
is an ту(> 0) such that сзЬ(х,к ) > (logx)log4_1_e for x > x0(e), ^  4 >

aeA
> (logx)1-’7. Thus we obtain

Corollary 1. For every L > 0 there are numbers K ,x о such that x >
> xo and

£  ^  > exp ( K  (h ( x ))lf2 l3(x))
aeA

imply

j í A  > (S °)
Corollary 2. For every e > 0 there are numbers xo,q(> 0) such that 

x > xq and

A cta  M aihem atica  H ungarica 60, 1992



ON A MULTIPLICATIVE P R O P E R T Y  OF SEQUENCES OF IN T E G ER S 301

~  > ^ g * ) 1 77
aeA

imply

i . a ' e A  1 ’ J \ a € A  /

As the following theorem shows, Corollary 1 is the best possible.
T heorem 2. For every К  > 0 there are numbers Зо, H and an-infinite 

set A  of integers such that for x > xq we have

£  \  > е х р (* (Ы х )) ‘ /2 /з(<г))

and

( 6)

a£A,a^ к

У  — < H ( £  i ) 2-а€А, а£х

3. То prove Theorem 1, we need three lemmas.
Lemma 1. I f  x > 3 and t is a positive integer with t < /^(x), then

I  < 4 (^(*) +  С1)*
^  n

P roof. If n < x and il(n) ^ t, then, writing n in the form n =  u2u 
where |/x(v)| =  1, we have v < n < x  and w(u) =  ÍI(t?) < il(n) < t. Thus by
(3) we have

+oo t

E ;SEE E
u=l «=0 ti<x,|̂ (v)|=l 

fl(u)=i
U2V E é) (É E ;)V«=X /  \.=0 »<*,|/i<«)|=l 7

0(»)=«

<

< 2 £  Í M í l + í i í  < 2(i + i)ÍM íi+ £ l) l < 
«=0

< . № ! + £ ! ) !
= ( í - l ) !  ■

Lemma 2. There is ‘a constant Сб(> 0) such that i f  e > 0 and x > xo(f), 
then for every integer и with h(x)  -f се < и < (2 — £ ^2(x) we have
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\V(x,u)\ < C7:
X (l2(x))u—1

logx (те—1)! и — h(x)  
where c7 = c7(e) depends on e (but it is independent of x and u).

P r o o f . This is a slightly modified form of the first half of Corollary 1 
in [4] and, in fact, it follows from this corollary and a result of Sathe [5] and 
Selb erg [6].

L e m m a  3.  For x > xq we have

|£>(z, 1 +  [l2(x)))\ = |{n : n <; x, il(n) > /2(х)}| > ^ x  .

P r o o f . This follows from a theorem of Erdos and Kac [2], [3].
4 .  C o m p l e t i o n  o f  t h e  p r o o f  of  T h e o r e m  1. Let A \ denote the 

set of integers a with a G A, il(a) > k. Then by (4) and Lemma 1 we have

(9)

> E i  . a a£A

E ;  =  E ;  -  E
o GA i  a g A  a £ A ,f ! ( a ) ^ f c

л (h(x)  +  ci)k > ^  1 _  1 y ^  I
= Z ^ a 2 2- j  a ~  2 a '(к -  1)! a6A aeA aeA

For n — 1 ,2 , . . . ,  let g(n) denote the number of pairs a, m  with a G A i, 
fl(m) > |72(x)] and am = те, and write M.  =  {те : те ^  x2, g{n) > 0}. If 
те G Л4, then we have

П(те) = íí(am ) =  íí(a) + í)(m) > к -f [í2(x)] 

so that, by Lemma 2,

( 10)

< c7

< c8

\M \< :\V (x 2,k  + [l2(X)] + l ) \ <

X 2  (f2(z2))fc+M*)l k + [l2(x)} + 1 
logx2 (k -f [/2(x)])! к + [/2(x)j + 1 -  f2(x2)

X 2  ( / 2 ( x )  +  c9)k+M*V l2(x)

<

logx {k + [h(x)])\ for к < (1 — 6)l2(x)

and

( И ) \M\ < \ V ( x \ k  + [l2(x)] + l)\ < |D (x2, [ ( 2 - i ) / 2(x)])| < 

x2 (l2(z2))«2-*)M*)M í(2 _
< Cj logx2 ([(2 -  6)l2(x)\ -  1)! [(2 -  í ) /2(z)] -  /2(x2)
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< Z2(logx)1 1o84+ '/2 for к > (1 — 6)l2(x)
if S is small enough in terms of e.

By the definition of the function g(n), clearly we have

( 12) $ > 2(n) ^ E  E  ч  =
n=l \aG-4,a|nn=l

-E  E E 1 =EE E i =
n—1 \а£.А,а|п a'£.A,a'\n j  a£A a'£A n<x 2  ,[а,а']|п

= E E
a£A a'eA

_2 1

[а, a']
<- 2 S x E E r~n-

абЛа-бА  1 ’ J

On the other hand, by Cauchy’s inequality and Lemma 3, and in view 
of (9), we have

(13)

Ь !( ^ н (е »(»))’=й (е  e
n — 1  \n £  Л4 /  yaG-Ai m<x2 /a,fi(m

2

1 1 >
» > [/2(x)]

i]h\ E E ч >

> tS *«)= ts •)> fe»)'
(5) follows from (10), (11), (12) and (13), and this completes the proof of 

Theorem 1.
5. For a finite set В of integers we introduce the notations

/  1 x i/2

'e | = § 1/6 ” d m < L r n )  ■ь,ь'ев

We establish some properties of these “norms” that will be used to prove 
Theorem 2.

Lemma 4. I f  Л п  В = 0 ,then

(14) \ A u B \  = \A\ + \B\
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and

( 1 5 ) 1 И и В || < \\A\\ + \\B\\.

P r o o f . ( 1 4 )  i s  o b v i o u s .  T o  p r o v e  ( 1 5 ) ,  l e t  D b e  t h e  l e a s t  c o m m o n  

m u l t i p l e  o f  a l l  e l e m e n t s  o f  A  U  B. F o r  a n y  s e t  M  o f  d i v i s o r s  o f  D a n d  
1 <  г ^  P  l e t

=  y , L
deM,d\i

This defines a vector (x,) = x j^ .  We easily find (now |x| denotes the usual 
Euclidean norm) tha t

i* a<i =  X > * =  E  E  1 =  E  \T ¥ ]  =  d
«' d,d'eM  i%D,d,d'\i d,d'£M  1 ’ J

Hence (15) follows from the triangle inequality.
We define the product of two sets by

( 1 6 )  AB =  { a b : a e A , b e B } .

We call the sets A  and В coprime, if (o, b) =  1 for all a G A , b £ B.
L E M M A  5 . I f  A  and В are coprime sets, then we have

( 1 7 ) \AB\ = \A\\B\,

( 1 8 ) \\AB\\ = \\A\\\\B\\

P r o o f . T o  s h o w  ( 1 7 ) ,  i t  i s  e n o u g h  t o  o b s e r v e  t h a t  i f  t h e s e  s e t s  a r e  

c o p r i m e ,  t h e n  t h e  p r o d u c t s  ab, a €  A, b £ В a r e  a l l  d i s t i n c t .  T o  p r o v e  ( 1 8 )  

w e  a d d  t h a t  [ab,a'b'] =  [ a , a ' ] [ 6 ,  b1] i f  ( a ,  6 )  =  ( a,b') — ( a',b )  =  ( a',b') =  1 .

6 .  P r o o f  o f  T h e o r e m  2 .  Select а c  >  0  (we shall specify it in terms 
of K ,  and it will determine H ).  We define a sequence (xo i^ i,--) of integers 
by recursion. If x*_i is given, let xjt be the smallest integer such that

C

( 1 9 )  a k = E  1/p  > ck.
X k - i < p < X k

These numbers x k are obviously primes and by the minimality we have

(20) ck < ak ^ ck +  l / x k.
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(19) implies that 

( 21)

and that

_  (expcfc)+o(l) *k -  Zfc_i

5 3  ! /P  =  “ l + — +  <*fc = ck(k + l) /2  +  0(1),
pb**

X k  -  e«xp(cfc(fc+l)/2+0(l))_
hence

( 22)

From (21) we also infer that

(23) XiX2...Xk-l < Xk

for к  >  ко.
Let Vk he the set of primes in (xfc_x,Xfc] and put

Лк = Vk'Pk+i—'Pu,

(product in the sense of (16)),

>1= U A.
.'=1

This will be the set A  of the theorem.
Take an integer x  and put В  = Л  П [1,®]. Our aim is to estimate \B\ 

from below and ||#||/|Z?| from above.
The maximal element of A j  is

Uj = x j X j + l — X2j.

Now define к by У к-\ ^ x  <  yk . This means that A \ ,  ..., A k - i  are completely 
contained in В , A k  may be partially contained or disjoint. Since the minimal 
element of A k + i  is larger than

*Jfc+i-l-»*2fc+2«'-b

the sets A k + i ,  ... are all disjoint to B . Write
к- 1

B =  U A U C ,
i=X

where C = A k ^  [1,®].
First we estimate \B \. Since

X <  у к =  Хк . . .Х2к <  X2Jfc+X,
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by (22) we infer
/2(x) < ck2/ 2 + 0 (k),

th a t is,
к > (2Z2(x)/c)1/2 -  0(1).

Consequently we have

|B| ^ \ A k- i \  =  a fc_ x . . . a 2fc_ 2 > (* -  l)...(2fc -  2) > 
> (к — l ) fc ;»  exp ( tf ( /2(x))1/2/3(x))

as wanted, if с < 1/ K.
Now we begin to estimate ||Z?||/|Z?|.
If V  is any set of primes with

pev

then we have

II r \\2 = E
1

I?.?]
£ a 2 +  a ,

thus
m <

и  =
Consequently by Lemma 5 we have

(24) <

with H'  — exp 1/c.
If C = 0, then by (24) Lemma 4 imphes

\\B\\ <  \ \A i \ \ + ... 4- ЦЛк-ill й  H ' ( \ A i \  + ... + \ A k - il) = H'\B\,

thus the conclusion of the theorem holds with H  = H '. If С ф 0, we need 
estimate also ||C||.

Put
U  =  Vk...V2k-x.
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The elements of C are of the form up, и G U, p 6 P ^  x/u .  Write

^ 2  i / p = J 2  l / p -
P^'P ik ,PÜx / u  X 2 k - l< P < m in ( x 2k , x / u )

Let 7 = m in7„, Г = т а х 7„. With this notation we have u£U u£U

(25)

We have also

\c \ = ^ l u / u  ^  j\U\. 
u£U

HC|I2 =  E  E  p ~ ij(T u 7 u ' +  7u)>
up.u'p'ec 1 F ' y  J u,u'€U 1 ’ J

where the first summand corresponds to the terms with р ф p1 and the 
second to those with p = p'. Consequently we have

(26) ||С||2 < (Г 2 +  Г ) И 2.

To make use of these estimates we need to show that Г is not much larger 
than 7 .

Let и and u denote the minimal and maximal elements of U. We have

и  =  £jfe...£2* - l  <  1 » “  >  x k - l —x 2 k - 2 ,

hence
u / u <  X u - i / x k - l  < x 2k -1-

If x > Hx2k-i ,  then we have x/Tl ^  x2fc-i > й /u ,  hence x /u  =  (х /й)(й /и)  ^  
^  (x/ й) 2, thus

Г — 7 = 1/ P < 1 -
x/t£<p<x/u

If x < ux2k - 1, then x / u <  X2k-i(u /u )  < x2fc_1? hence

r  = l !p <  £  i /p  < 1 < 7 + 1
x2k-l<P^x/u  X 2 * _ 1 < p < X * fc_ 1

again.
By view of Г < 7 +  1, we have Г2 + Г < (7 + 2)2 and thus (26) yields 

(27) n i < ( 7  + 2)||W||.

We have \U\ = ak...a2k - i , hence

Щ /\А к-\\  = oi2k-i/o tk-i  ~  (2к -  1 ) / (k -  1) -»• 2,
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thus \U\ <  3|v4fc_i I for large k . Moreover, similarly to (24) we can deduce

IIWIWI < H'.

Substituting these estimates into (27), by (25) we obtain

П 1 ^  (7 + 2)||W|| < H \ 7 + 2)\U\ ^  H'\C\ + 6 Я '|A - i | .

By Lemma 4 this implies

11*11 ^ Ш \  + -  + НЛь-ill + IICII < Н'\Аг\ + ... + H ' \ A k- i \ +

+H'\C\ + bH'\Ak-x\ <, 7 Я , (|«41| +  ... +  |>U_i| +  |С|) = 7Н'\В\,

thus the theorem is proved with H = 7H'.
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EIGENVALUES AND EIGENVECTORS OF SOME 
TRIDIAGONAL MATRICES

L. LOSONCZI (Debrecen)1

1. In troduction

Let n, к be fixed natural numbers, 1 ^  к < n, and denote by M n<k 
= M„}k(v ,a ,b ,s ,t)  the (n + 1) X (n + 1) matrix

/

( 1 )

a +  v

a + v

\

V
v + Ъ

V + b J

where v, a, b ,s ,t  € C. The entries mjt (j, l  = 0 , . . . ,  n) of M„tk are

(n + 1 — 2k 0),m ii  =
a +  v if j  =  0 , . . . ,  к — 1
v if j  =  k , . . . ,  n — к

, b + v if j  = n — к + 1 , . . . ,  n

m ii =

and

a +  v if j  = 0, •. •, n — к
a + b + v if j  — n —k + l , . . . , k  — 1 (n +  1 — 2Ä; < 0)

. b + v if j  =  k , . . . , n

s if j  = t  +  k, t  =  0 , . . . ,n  — к 
rrijt = { 0 if 0 < \j -  l\ Ф к

t if £ = j  + k, j  = 0 , . . .  ,n  — k.

In [7] we factorized det M„tk if s = t = 1 and used this result to find
the best constants in some quadratic inequalities. Here we apply another

1 Research supported by the Hungarian National Foundation for Scientific Research 
(OTKA), Grant No. 251.



3 1 0 L. LOSONCZI

method to determine the eigenvalues of M n^ .  This method enables us to 
find the eigenvectors of M„tk too. In possession of the eigenvectors we can 
complement Theorem 4 of [6] by giving the cases of equality. Moreover, we 
can find some new discrete quadratic inequalities of Wirtinger type.

We remark that multidiagonal matrices (i.e. matrices which have the 
same entries in the diagonals — except possibly the main diagonal) appear 
in different areas of mathematics [2], [3], [4], [9]. Thus the investigation of 
M n<k is of interest in itself too. Throughout the paper C, R, Z denote the 
set of complex, real, and integer numbers respectively.

2. E v a lu a tio n  o f det t

Denote by D„tk = D„tk(v, a ,b ,s ,t)  the determinant of M n>k(v,a,b ,s,t) ,  
and let Doti(v ,  a,b,s,t) = a b + v.

T h e o r e m  1. Let n +  1 =  kq + r (0 < r < k). Then we have

(2) Dntk(v ,a ,b ,s ,t)  = Dgti(v, a, ft, s, t)r Dq- \ t\(v, a, 6, s, t)k~r.

P r o o f . Let us rearrange both the rows and columns of Mn<k in the 
order of indices

(3) 0 , к , . . . , q k ; l , k  +  1 , .  . . , q k  +  1 ; . .  . ; r  -  l , k +  r -  l , . . . , q k  +  r  -  1;

(4) г, к  +  r , . . . ,  ( q  -  1)/; +  r; r  +  1, к  +  r +  1 , . . . ,  ( q  — l ) k  +  r  +  1 ; . . .

. . . ; к  — 1,2Ä — 1 , . . . ,  (q — l)fc +  к  — 1.

We remark that throughout the paper { 0 ,1 ,... ,  n} is used as the index set of 
rows and columns of M n>k- This index set is more convenient for our purpose 
than the usual set { 1 ,2 , . . . ,  n + 1}.

(3) contains r groups of q + 1 indices while (4) has к -  r groups of q 
indices. If r  = 0, (3) is empty and all indices are contained in (4) .

The rearranged m atrix has r blocks of i(v, a, 6, s, t)  and к — r blocks 
of Mq- i ti (v ,a ,b ,s , t ) in the “diagonal” . Hence (2) follows. □

A similar rearrangement has been applied by Egerváry and Szász [2] to 
find МП)*;(—Л, 0,0,1,1). Next we find Dq>i(v ,a ,b ,s ,t) .  We may suppose that 
st ф 0 since if s = 0 or t = 0 then Dqд is a triangular determinant whose 
value is the product of its diagonal elements.
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T heorem 2. Let q =  0,1 , . . . ; v ,a ,b ,s , t  £ C, st ^  0, cr =  у/s i .  I f  
v ф ± 2cr then

(5) Dq>i(v ,a ,b ,s ,t)  = t4+1 . / „ a + b . , . „ ab .sin(q + 2)d H-------- sm(g + l)i? -1— -  sin qfla a 1sin 1?

where t ?  € C is such that v =  2<rcos d (sin d ф 0). I f  v — ±2a then
( 6)

Dq,i(v ,a ,b ,s ,t) =  &-  „ 9 + 1 (±1 )q+\ q  + 2 ) + —  (±l)*+1(g + 1) + ^ ( ± l ) qq

i.e. in this case D4t\ can be obtained as the limit o f the right hand side of 
(5) as d —► mir where v = (—l) m2<7, m £ Z.

Dq>i can also be expressed by help of the Chebychev polynomials U j  of 
the second kind as

(7) Dq,i(v ,a ,b ,s ,t) =  cr-  „9+1 , r /  v \  a + b rT /  v \  ab „ /  v \
u-»  Ы + — u* и + ^  и

where U j  is defined as the extension of the polynomial

( 8) t# =  - L M . . . ) .

Proof. Expanding Dqtx(v ,a ,b ,s ,t)  by the zeroth row and also expand­
ing the cofactor of t by the zeroth column we get

(9) Dq<i(v ,a ,b ,s ,t)  = ( a +  v)Dq_1A(v ,0 ,b ,s ,t)  -  tsD q-.2tl(v ,0 ,b ,s ,t)  

\ { q > 2 .  (9) shows that

(10) dq := DqA(v, 0,6,s, t) 

satisfies the linear homogeneous difference equation

(11) dt+2 -  vdt+1 + tsdt = 0 (£ =  0 ,1 , . . . )

with the initial conditions

(12) d0 = b ± v ,  d\ = (6 + v)v — ts.

Since <r ф 0 we can always find d £ C such that v = 2a cos d (i? is unique 
if we require that —ír ^  Rei? < ír, Imi? > 0 or — ж ^  Ret? й 0, Imi? = 0 
hold).

Then the roots of the characteristic equation 

A2 — (2<7 cos d)X 4- a2 = 0
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of (11) are Лх(2 = rje±v9. Ai ф A2 if and only if d ф mir, m € Z. Hence

_  f crl (cieM  + c2e ,t0) if 19 ф mir (Ai ф A2)
1 1 ^ ( c i e '^  + cite '1'3) if d = mir (Ai = A2)

for l  — 0 ,1 ,. . .  where c\, c2 are constants to be determined from (12). 
Calculating c\, c2 we obtain that

(13) d( = < —— -  [a sin(£ -f 2)d +  b sin(£ + 1)$] 
sin V
a1 [<r(l +  2 )(-l)m</+2> + b(i + l ) ( - l ) m(*+1)]

if 1) ф mir 

if d = mir.

From (9), (10), (13) by applying the formula 2 sin a  cos ß — sin(a -f ß) + 
-f sin(a — ß) several times we get exactly (5) and (6). (7) follows from (5) 
and (8) taking into consideration th a t Dqд is a polynomial of its variables. 
□

R emarks. In (5)-(13) any fixed value of the square root y/st =  rr can 
be used.

Dqy\{v,a, b, 1,1) has been evaluated by Rutherford [10].

3. E igenvalues and eigenvectors o f  Afiti

Let A be an eigenvalue of M qti(v ,a ,b ,s ,t) and consider the system of 
equations

(14) Mq,i(v -  X ,a ,b ,s ,t)y  = 0

where у = (yo,. . . ,  yq)T and T  denotes transposition. (14) can be written as

(15)

(a + v -  A)y0 + tyi = 0 
syo + (v -  A)yi + ty2 = 0

< ;
syq-2 +  ( v -  A)y,_i + tyq = 0 

, syq- 1 + (6 +  V -  A)yq = 0.

Let a = у/ s i  ф 0 and assuming v — А ф ± 2a substitute v — X = 2t7cosi?, 
i) £ C. From the first equation of (15)

1. л .. a sin 2d + a sin d
Vi = - т ( а +  2ст cos i?)y0 = ---------——-------- y0.

t  t  S 1 H .  л7
We easily obtain by induction that

(16) yt =  ( -1 )
t a1 sin(£ +  l)i? -f aol 1 sin id  

tl sin d Уо ( £ = 1 ,2 , . . . , ? ) .
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Substituting yq and yq~\ into the last equation of (15) we get after some 
calculations that

(-1)9
——  Dq,i(v -  A, a, b, s, t)y0 = 0 .

Since Dq<i(v  — A, a, b, s, t ) = 0 ,  yo is arbitrary and y\ , . . . ,  yq are given by
(16). If v — A = 2(—l) m<7, m g  Z, then in (16) the limit of the right hand 
side has to be taken as i? —► тж.

It can be seen that the dimension of the subspace spanned by the eigen­
vectors corresponding to the eigenvalue A (i.e. the geometric multiplicity of 
A, see [ 5 ] ,  § 5 0 )  is one. □

Hence we have proved

T h e o r e m  3 .  Let X be an eigenvalue of M4ii(v ,a ,b ,s ,t)  (s t  ф 0 ,  

v , a, b, s, t € C). Then the eigenvectors у = (y0, уг, . . . ,  yq)T corresponding to 
A are given by

( 1 7 )  yt =  ( - y )  [sin(^+ l)i? -f ^sin£i? C (£ =  0 , 1 , . . . , ? )

if v — A =  2<r cos 1? (i? ^  тж, m  G Z) a = y/st and by
(18)

( " т ) г [(i + ^  -  ^ ( - i ) m(/_1)] Cyt (* = 0 ,1 , . . . , ? )

if v — A =  2crcosm^, m € Z where С ф 0 is an arbitrary constant. Each 
eigenvalue is of geometric multiplicity 1.

If f , £ G {0 ,1 ,—1} then the eigenvalues of Mq<i can be explicitly given.

T h e o r e m  4 .  The following identities hold:

(19) A j,i(v -  A, 0,0, s, t) = (u  -  A -  2o cos

( 20)

Dq,i(v —A, 0, a , s, t) = Dq<1( v - A, a ,0 ,s , t ) =  Д  (u  -  A -  2<r cos ~

( 2 1 ) Mj,i(t> -  A, 0, - a ,  s, t ) = Д ,д  (u -  A, -a ,  0, s , i) =

-  A - 2acos (2j + 1 M
2q + 3 )
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( 2 2 ) D q, i ( v  -  А, сг,сг,5,;

( 2 3 ) Dgt 1.(t> -  A , 7 , - '

4 /= П (v
j = 0 '

( 2 2 ) D q , i ( v  -  A, - a , - a

2 (7  COS
Ü + ! )*■

? + r ) -

2a cos (2 j +  1)
2g +  2' ) •

-  Л, -a ,  - a ,  s, t) = ( v -  A -  2a cos ~ ^~ r  j  ,
j=o '  9+  /

where a  =  y/st.
P r o o f . The proof is analogous to tha t of [7] hence it is omitted (we 

remark that in [7] from (26) a factor —1 and from (28) a factor sini? is 
missing). □

From the above formulae one can see that the eigenvalues of e.g. 
M q<1(v, a, a , s, t ) are Xj = v -  2a cos (j  =  0 , . . . ,  q).

4. E ig en v a lu es  and  e ig en v ec to rs  o f  Af„jt

By Theorem 1 the eigenvalues of Mn)jt(u, a,b ,s ,t)  are the zeros Л of the 
polynomials D q<i(v  —A, a, b,s, t) and Dq- i,i(t> —A, a, b, s ,t) . First we consider 
the possibility of these polynomials to have common zeros.

T h e o r e m  5. The polynomials Dq<i(v — A,a ,b ,s , t) and Dq- i ti(v  — X ,a,b , 
s, t ) with st ф 0 have a common zero A if  and only if

(25) ab = st

holds. In this case the common zero is A =  v +  а Т b.
In particular (25) holds if

a b a b
a a  a  a

where a = y/si.
P r o o f . By Theorem 2 ,  Dqyi( v -X ,a ,b ,s , t )  = Dq- i ti(v  — \ ,a ,b ,s , t )  =  0  

holds if and only if either sin ф 0 and v — A = 2a cos d satisfies the equations

(27) sin(g + 2)d +  a ^  ^ sin(q +  l)d  + ^  sin qti — 0,
a a 1
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( 2 8 )
. /  a-\- b . . ab . .

sm(q + l)i? 4-------- sin qtf 4— » sm(g — l)t? =  0,a a 1

or if sin I? =  0, I? = ГП7Г, m  6 Z, v -  A = 2(—l) m<r and the derivatives of the 
left hand sides of (27), (28) vanish at i? =  тж.

In the first case by the addition theorem of the sine function and by (28) 
we can rewrite (27) as

(29)
, . „ a 4- b „ ab

cos(q 4- l)i? 4-------- cos qi? 4-----ж cos(g — l)i? =  0.<7 <7̂
Multiplying (28) by i and adding it to (29) we get

(30) e*'(e—1)*J (gi* + I ' j  ^  -  о

thus

(31)

If e.g. j  = — e"3 then

“ ilj U— = — e or — = — e a a
id

/+ 1
[ 0 ' - 0 l (£ = 1 ,2 , . . . ) .

Substituting this into (28) we obtain after some calculations that (28) holds 
if and only if

(a 2 — a2)(t72 — ab) = 0
i.e. if

(32) or ab =  a 2.

a2 = a 2 implies e2v3 = 1, sintf = 0 which was excluded. Thus ab = er2 =  st 
is necessary for Dqд and Dq-i,i  to have common zero. It is sufficient too 
since (25) ensures that (28) holds while by (31) the equation (29) and hence 
(27), too, hold.

2 V J Ver a ) a
thus Л =  v — 2<r cos d = v + a + b is the common zero.

Starting with the root £ = — e"9 of (31) we obtain the same result.
In the second case 1? = тж, m  € Z and the derivatives of (27), (28) give

(33) (q 4- 2)(—l) m(9+2) 4- — (? + l ) ( - l ) m(«+1) + ^ q ( - l ) mq = 0,
a o £
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(34) (g + l ) ( - l ) m(«+1* + — q(~ l )m* + ^ ( q  -  l K - l ) ”* ^ 1) = 0.
<7 <7

I f  m  is even then the subtraction of (34) from (33) leads to

M K ) = °

hence j  = — 1 or £ = —1. If ^  =  —1 then from (33) we get £ = —1 and 
conversely £ =  — 1 and (33) imply ^ = — 1. Thus

(35) — =  — = — 1, \  = v — 2(7 cos d = v — 2cr = v + a + b.
G G

I f m is odd then the difference of (33) and (34) can be written as

t - 1̂  (' -  ?) 0  - 1 ) = °-

Thus j  =  1 or j  =  1. If e.g. ^ = 1 then from (33) we get £ =  1 and 
conversely. Hence

(36) — =  — = 1, A =  v — 2cr cos d =  v + 2a = v +  a + b.
«7 (7

Since (35), (36) are particular cases of (25) we proved that (25) is a 
necessary condition. It is sufficient too since with d = тж and with (35) or 
(36) both (27), (28) and (33), (34) are satisfied. □

Theorem 6. The eigenvectors x = (xo, xi , . . . ,  x„)T of Mn^{v ,a ,b ,s ,t)  
corresponding to the eigenvalue X = v — 2a cos d are given by

(37) Хи+hk = ( -  y )  [sin(h +  l)i? + ^  sin Cu

if d ф тж, m  € Z, and by

. \
(38) > .«  = (-7 ) [(A + l)(-l)m'‘ + ÍAÍ-l)”“ -1»!c.
if d = тж, m  € Z. In (37), (38) и =  0 ,1 ,. . .  , r  — 1; h = 0 ,1 , . . . ,  q and 
и = r , r  +  l ,  — 1; h = 0 , 1 , . . . , g — 1. Co, C\ , . . . ,  С*_1 € C are constants 
such that

(i) Co, C i , .. .Cr_i are arbitrary constants not all zero, Cr = Cr+1 = . . .  
••• = C*_i =  0 if Dq< i(u -  A ,a ,b ,s ,t)  = 0 ф Dq- i,i (v  -  X ,a ,b ,s,t),

(ii) Co =  Ci = • • • =  Cr_i = 0 and Cr ,C r+ i , . . . ,  Cjt—1 are arbitrary 
constants not all zero if D q<i(u — A, a, 6, s, t ) ф 0 = Dq_1д(г> — A, a, b, s, t),

A d a  M alh em a tica  Hungarica 60, 1992



EIGENVALUES AND EIGENVECTORS OF SOME TRIDIAGONAL M A TR IC E S 317

(iii) Co, C i , . . . ,  Ck- 1 are arbitrary constants not all zero if Dq д (и —A, a, b, 
s ,t)  = 0 =  Dq- i 'i (v  — A,a ,b ,s ,t)  (by Theorem 5 this case occurs i f  and only 
if ab = st).

The geometric multiplicity of the eigenvalue A in the cases (i), (ii), (iii) 
is г, к — г, к respectively.

P r o o f . W e h a v e  to  so lv e  th e  sy s te m  o f  e q u a tio n s

(39) M n<k{v -  A, a, b, s, i)x  = 0.

Rearranging the equations of (39) according to (3), (4) one can recognize 
that (39) decomposes to the following systems:

(40) Mqii(v  -  X ,a ,b ,s ,t)zu = 0 

where zu — (xu, Xu+fc’ • • • > ^u+qk) 1 a — 0 ,1 , . . . ,  г 1 and

(41) M q-iti(v  — A, a, b, s, t)wu = 0

where wu = (xu> • • •, %u+(q—i)k) ? a — r ,r  -1- 1, . .  •, к 1.
In the case (i) Theorem 3 gives the solution (40) for each и = 0 ,1 , . . . ,  

r — 1. This justifies (37) and (38) for и = 0 ,1 ,. . .  ,r  — 1; h = 0 ,1 , . . . ,  q. (41) 
has trivial solution only for each и = r, r + 1, . . .  ,k  — 1 since the determinant 
of the system A j-i,i(v  — A,a ,b ,s ,t)  is not zero. These trivial solutions are 
included in (37) and (38) by requiring Cr = Cr+\ =  • • • = Ck-1 =  0.

In the case (ii) (40) has trivial solutions only (therefore Cq — C\ = • • • = 
= Cr_i = 0) and the solutions of (41) are (by Theorem 3) given by (37), 
(38) for и =  r, r  + 1 , . . . ,  к — 1; h =  0 ,1 , . . . ,  q — 1.

In the case (iii) both systems (40), (41) have nontrivial solutions which 
are given by (37), (38).

The statement concerning the geometric multiplicity of the eigenvalues 
is obvious. □

5 . A p p l i c a t i o n s

Here we apply our results to study some discrete quadratic inequalities of 
Wirtinger type. Let A  be an Hermitian matrix of order те-f 1 with eigenvalues 
Ao = Ai ^  ^  A„ and let . . .  , x ^  be the corresponding linearly
independent eigenvectors. Then

(4 2 ) \ n ( x , x )  ^  ( A x , x )  ^  X0( x , x )

holds for every vector x  € Cn+1 where (•,•) is the usual inner product
П

c*> y) = Yl х>у*
j=0
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for x = (x0, . . . ,X n ) T , у = (уо,. . . ,  уп)т ■ The equality А„(ж,ж) = (А х ,х ) 
holds if and only if x = 0 or x  is an eigenvector corresponding to A„ (if 
A„ < A„_i, then ж is a scalar multiple of x^1)). Similarly (A x,x ) = Xo(x,x) 
holds if and only if x — 0 or x is an eigenvector corresponding to A, (see e.g. 
[1]).

Let now v, a, b € R, a, ß  € C \  {0}, t =  aß, s = t =  aß, then 
M n<k(v ,a ,b ,aß , a ß )  is an Hermitian matrix and

(43) (M„tk(v ,a ,b ,ä ß ,a ß )x ,x )  =

= $3 [\axi+k + Vхл2 -  (“ + M2)lW -
3=0

- ( b  + |/?|2) |х , |2] +  (v + a + b) k i l2-
i=o

We are going to  formulate inequalities of the form (42) in the cases when 
the best constants (the least and greatest eigenvalues) can explicitly be given.

We have seen that this is the case if ^ =  e, £ = p, E,p = 0, ±1. The 
possible values of e, p are listed in the next table.

Table 1

t Pi
1 0 0
2 0 1
3 0 -1
4 1 - 1
5 1 1
6 -1 - 1
7 1 0
8 -1 0
9 -1 1

W ith a = Eier =  £t\aß\, b = pier = pt\aß\, v = —a -  b = — \aß\(Et + pi) in
(43) we have

n—k
(44) (A % x , x) = [|ax i+fc +  ß Xj\2 -  (et \aß\ + |a |2)|xi+fc|2-

з=о

- { Pl\aß\ + \ß\2)\X j\2]
where

(45) = Mntk(-\a ß \(E t + pt ),£ t\a ß \,p i\a ß \,ä ß ,a ß )
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for £ =
The eigenvalues of A „ \ are of the form

(46) Л =  v — 2a cos T? = — \aß\(et + pt + 2 cos fl).

Based on Theorem 4 it is easy to find the eigenvalues of A ^ k. By (46)
Table 2 gives the values of corresponding to the eigenvalues Л of A ^ \  and 
also gives m(A), the algebraic multiplicity of A (which is now equal to the 
geometric multiplicity).

Table 2

l t? (m(A) = r) 1? (m(A) = к — r) i?
(m(A) =  к )

1 0  +  1)jt 
q +  2

II p

0  + 1)» 
9 + 1

( j  = o ,. . . , 9 - 1 ) -

2 2 0  +  1)jt 
q +  3

(j =  0, . . . ,  9) 2(j + 1)я- 
2g + 1 0  =  0,. . . , 9 - 1 ) -

3 (2 j  +  1)tt 
2g +  3 0  =  0, •. •, 9)

(2 j  +  1)7T 
2q + 1 0  = 0,. . . , 9 - 1 ) -

4 (2 j  +  l)ir
2g +  2

ОII (2 j  + 1)tt 
2 9

оII . . , 9  -  1) —

5 0  +  1)» 
9 + 1

0  = 0, . . . , q -  1) 0  + 1)» 
9

0  = 0,. . . , 9 - 2 ) 7Г

6
jic

9 + 1
0  = l , . . . , q )

q 0  = !>• . . , 9 - 1 ) 0

7 same as 1 = 2
8 same as £ = 3
9 same as 1 = 4

In Table 3 we collected i?^ax such that for each l  = 1 , . . . ,  6, (46) gives 
the minimal and maximal eigenvalue of a [*\ if i? = and d =°  n,K min max
respectively. Here we used the relation

rn i _  f g if T >  0
LfcJ \  q  — 1 i f  r  =  0

where [x] denotes the greatest integer not exceeding x. We omitted l  = 
= 7,8,9 since by Table 2 =  Ä , *££?> -  far /  =  2 ,3 ,4  .
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Table 3

l m in m ax

1
7Г

f f l + 2
7Г — m m

2
27Г

2 Щ + 3
7Г — l  m in

3
7Г

2  t i l  + 3
7Г -  2 i? J2 n

4
7Г

2 Щ + 2
7Г -  1 ? ^  m m

5
7Г

[ f l + 2
7Г

6 0
7Г

[ f l + 1

Finally we formulate the main result of this section.
T h e o r e m  7 .  L e tn ,k  be fixed natural numbers, 1 ^  к ^  n, ra + 1 = kq-\-r 

(0 < r < k). For every x — (xq, . . . ,  xn)T £ Cn+1 and l  = the
inequality

( 4 7 )  - \ a ß \  (et + pt  +  2cosi?i2n)  ( * > * >  =  (А^кх ’х ) =

^  ~ \aß\ (ee + Pt +  S c o s t f J ^ )  ( * , « )

holds where
n—k

(An!kx ' x ) = 53 [\ax i + * + ß xi\2 -  + 1«12)1зд12-
3=0

- 0 >i\*ß\ + |/?|2) | z / ]  ,

a ,ß £  C \{0} and Et, pt ; ^ }ax are given by Tables 1 and 3 respectively.
Equality on the left hand side of (47) occurs for l  = 1,2,3,4, 5 if and 

only if

(48) xu+hk = [sin(/i +  l ) ^ n + £/ s i n W W '
min cu
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holds for 

(49) и =  0 ,1 , . . . ,  r — 1; h - 0, l , . . . , q  and

и =  r , r +  — 1; h = 0 , 1 , . . . , g -  1
while for t  =  6 if  and only if

(50) ,  f  м V  „
*“+“  -  { - - t f )  DXu+hk =

holds for the subscripts (49).
Equality on the right hand side o f (47) is valid for l  = 1,2,3,4,6 if and 

only if

is fulfilled for the subscripts (49).
Here Co, . . . ,  Сг_/ are arbitrary constants, CT =  Cr+1 = • • • =  Ck- i = 

= 0 (if r — 0 then all Cu ’s are arbitrary) and D o ,. . . , -Djt-i are arbitrary 
constants.

P roof. The statement of Theorem 7 follows from the general result 
(42) taking into consideration Theorem 6 and the calculations of Section 5
concerning A „ \  and its “parameters” . □

The cases t  — 7 ,8 ,9  can be obtained from l  = 2,3,4 by exchanging et, a 
to pi, ß respectively.

Several special cases of (47) are known. If к = 1, a = ß = 1, (47) has 
been proved by Fan, Taussky and Todd [3]. Their inequalities are discrete 
analogues of Wirtinger’s inequality; see e.g. Hardy, Littlewood and Pólya
[6], p. 184. For ß = 1, q =  ±1, Í = 1 ,3 ,6 , Theorem 7 (without the equality 
clause) has been proved by the author [7] (the cases (i), (ii), (iii), (iv) of [7] 
can easily be rewritten to the cases l  = 6,3,3,1 respectively). Concerning 
inequalities related to (47) we refer to [2], [8].

holds for the indices (49) while for t  — 5 if and only if

(52)
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