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FURTHER RESULTS ON RETICULATED RINGS

H. AL-EZEH (Amman)

Throughout this paper all rings are commutative with unity and all lat-
tices are distributive with 0 and 1 unless otherwise stated. For a ring R, the
reticulation of R is defined as a distributive lattice generated by the symbols
D(a), a GR and satisfying:

£(15) = 1, D(0g) = 0, D{a<b) = D(a) AD(b), D(a + b) i D(a) V D(b).

For more details about the reticulation LR of a ring, see Simmons [9]. For
any ideal | of the ring R, let D (I) be the ideal generated by (-D(a): a G 1}
in LR. For any ideal J of the lattice LR, let D~1(J) = {a GR: D(a) G J}.
Trivially, D _1(J) is an ideal of R.

The reticulation of a ring was investigated by Simmons [9] in order to
show that a lot of ring theoretic properties have analogues in lattice theory
and vice versa. In this paper we continue this theme and answer a couple of
questions raised by Simmons [9]. Then we proceed to prove further results in
that direction. Let 1d(A) be the lattice of all ideals of the ring R. It should
be noted that this lattice is not necessarily distributive. Let RId(R) be the
distributive lattice of radical ideals of the ring R. For a lattice L, let Id(L)
be the lattice of ideals of L. From now on, LR will denote the reticulation
of R.

We start by quoting a theorem that was given by Johnstone [7], p. 194.

THEOREM 1. LetR bearing. Then D~I:1d(LA) —*RId(R) is a lattice
isomorphism, moreover for any ideal | of the ring R, D~1(D(I)) = y/1, the
radical of 1. Also, D~I defines a bijection from the prime ideals of LR to the
prime ideals of R. Hence minimal prime ideals of LR correspond to minimal
prime ideals of R.

Recall that a ring R is called quasi regular if for every a G R, there
exists b G R such that ann(ann(a)) = ann(b), where for any ideal | of
R, ann(/) = Pk GR: xy = O for all y G /}. A lattice L is called quasi
complemented if for every a G L, there exists 6 GL such that a** = b*, where
for any ideal / of a lattice L, 7* = {x GL: x Ay =0 forally G/}. The
first result we want to establish is the following: A semiprime ring (without
nontrivial nilpotents) is quasi regular if and only if LR is quasi complemented
and for every a G LR, there exists r GR such that a* = D*(r). This result
will be proved after the following preliminary lemma.



2 H. AL-EZEH

LEMMA 2. Let R be a semiprime ring. Then for any ideal I of R,
D(a,nn(l)) = D*(I).

P roolf_.I The proof is easy if we keep in mind that every x £ D(I) has
the form éE)(a,) for some ai, a2,... ,an £ 1I.
<

THEOREM 3. Lei R be a semiprime ring. Then R is quasi regular if
and only if the lattice LR is quasi complemented and for each x £ LR, there
exists a £ R such that x* = D*(a).

M
P roof. Assume R is quasi regular. Let x £ LR, then x = V_Z)(a,) for
i—+

some ax, a2, ... ,a,, £ R. Hence

x*= (\/ 2>(@)) = [ 2>*@) = 2>(f) ann(a,)).
<=1 I=1 1=

Since R is quasi regular, for any a,b £ R, there exists ¢ £ R such that
ann(a)flann(ft) = ann(c), see Henrikson and Jerison [6]. Thus x* = Z)(ann(r))
for some r £ R. By the previous lemma, x* = Z>*(r), r £ R. Now, consider

x** = D**(r) = D*(ann(r)) = D(ann(ann(r))) = Z)(ann(s))

for some s £ R, since R is quasi regular. Consequently, LR is quasi comple-
mented, see Speed [10].
Conversely, let r £ R. Consider

Z?(ann(ann(r)) =£)’(ann(r)) by Lemma 2
=D**(r) = y* for some y £ LR,

since LR is quasi complemented. By assumption, y* = D*(s) for some
s £ R. Therefore, G(ann(ann(r))) = Z)(ann(s)). Since R is semiprime,
ann(ann(r)) and ann(s) are radical ideals. Hence applying Theorem 1,
ann(s) = ann(ann(r)).

Theorem 4. LetR be a quasi regular ring. Then the space of minimal
prime ideals of LR with the hull-kernel topology is compact.

Proof. By the previous theorem LR is a quasi-complemented lattice.
Speed [10] proved that a lattice is quasi complemented if and only if the
space of minimal prime ideals is compact. Thus the space of minimal prime
ideals of LR is compact.

For any prime ideal P of a semiprime ring R, O(P) = {x £ L: 3y £
£ P Oxy = 0} is an ideal of R contained in P and is contained in any
prime ideal contained in P. Also, for any prime ideal P of a lattice L,
O(P)={xEL: 3yEPOx N1y =0}.

Acta Mathcmatica Hungarica 60, 1992



FURTHER RESULTS ON RETICULATED RINGS 3

Recall that a ring R is called a PF-ring if every principal ideal aR is a
flat 72-module. An ideal 7 of a ring R is called pure if for each x £ I, there
exists y £ | such that xy = x. By now, it is well known that R is a PP-ring
if and only if for each a £ R, ann(a) is a pure ideal, see Al-Ezeh [1]. A ring
R is called a PP-ring if for each a £ R, aR is a projective R-module. In fact,
aring R is a PP-ring if and only if for each a £ R, ann(a) is generated by
an idempotent. In the following theorem we give a different characterization
of PP-rings.

Theorem 5. A semiprime ring R is a PF-ring if and only if each min-
imal prime ideal is pure.

Proof. Assume R is a PP-ring. Let P be a prime ideal, and let x £
£ 0(P), then there exists y £ P such that xy = 0, i.e. X £ ann(t/). Since R
is a PP-ring, ann(i/) is pure. So there exists a £ ann(y) such that xa = X.
Since ay —0and y ~ P, a £ 0{P). Therefore O(P) is pure. For any minimal
prime ideal of a semiprime ring, P = O(P), see Henriksen and Jerison [6].
Thus each minimal prime ideal is pure.

Conversely, assume that each minimal prime ideal of R is pure. Let P
be a prime ideal in R. Then P contains a minimal prime ideal of 22, say Q.
Since Q Q P, O(P) Q Q. Now, let x £ O(Q). Since Q = 0(Q) is pure, there
exists y £ 0(Q) such that xy —x. Hence x(I —y) = 0and 1—y £ P. So
x £ O(P). Therefore 0(Q) Q O(P), and hence O(P) = 0(Q) = Q. So each
prime ideal P contains a unique minimal prime ideal, namely, O(P). Thus
R is a PP-ring, see Matlis [8].

Recall that an ideal 7 of a lattice L is called a (r~ideal if for each x £ 7,
7VI* = 1. (For more details about (/-ideals see Cornish [3].) A lattice L
is called conormal if for any x,y £ L, if x 1y = 0, then there exist a,b £ L
satisfying x Aa = yAb = 0and aV6 = 1 In fact, Cornish calls these lattices
normal ones. Cornish [3] proved the following theorem.

THEOREM 6. A lattice L is conormal if and only if each minimal prime
ideal of L is a cr-ideal.

Georgescu and Voiculescu [5] showed that for any ring R, D': ®R —»
—»®LR defined by D'(1) = D(y/l) is a lattice isomorphism, where ®/, is
the lattice of all pure ideals of R and ®LR is the lattice of all a-ideals of
LR. If 72is a semiprime ring, then for each pure ideal of R, I = \/I. Hence
D: ®R —» ®LR is a lattice isomorphism. So, by Theorems 1, 5, and 6, we
get the following theorem that answers a question raised by Simmons [9].

THEOREM 7. A semiprime ring R is a PF-ring if and only if LR is a
conormal lattice.

As an application of the above results we prove a result that was proved
by Simmons [9]. Speed [10] proved that a lattice L is quasi complemented if
and only if the space of minimal prime ideals with the hull-kernel topology
is compact. Cornish [3] proved that a lattice L is stonian if and only if it is

Acta Maihematica Hungarica 60, 1992



4 H. AL-EZEH

conormal and the space of minimal prime ideals with hull-kernel topology is
compact. Endo [4] proved that a ring R is a PP-ring if and only if it is a
guasi regular PP-ring. Consequently, we get the following result which was
proved by Simmons [9].

Theorem 8. A semiprime ring R is a PP-ring if and only if LR is a
stonian lattice.

Aring R is called an almost PP-ring if for each a £ R, ann(a) is generat-
ed by idempotents. One can easily show that a ring R is an almost PP-ring
if and only if for each a £ A, and x £ ann(a), there exists an idempotent e
in ann(o) such that xe = x. Some authors call these rings complementedly
normal rings. An element a in a lattice L is called complemented if there
exists i £ 1 such that aJlb —0and aVhb = 1. The element bis called the
complement of a and will be denoted by a'. For a lattice L, let BL be the
set of all complemented elements of L. In fact, BL forms a boolean lattice.
An ideal 7 of a lattice L is called a strongly cr-ideal if for every a € 7, there
exists b £ 7M BL such that a < b. A lattice L is called almost stonian if
for each a £ L, a* is a strongly a-ideal. Cornish [2] called almost stonian
lattices complementedly normal lattices.

Finally, an ideal 7 of a ring R is called a strongly pure ideal if for each
a £ 1, there exists an idempotent e in 7 such that ae = a. Our aim is to
show that a semiprime ring R is an almost PP-ring if and only if LR is an
almost stonian lattice.

Theorem 9. A semiprime ring R is an almost PP-ring if and only if
each minimal prime ideal is a strongly pure one.

Proof. Let P be a minimal prime ideal of R. Then 0(P) = P. Let
x £ O(P), then there exists y £ P such that xy = 0. Hence x £ ann(y).
Because R is an almost PP-ring, there exists an idempotent e in ann(y) such
that xe = x. Sincey £ P and P is prime, e £ P. Therefore, P = O(P) is a
strongly pure ideal.

Conversely, assume that each minimal prime ideal of R is a strongly pure
one. Therefore, the minimal prime ideals are pure. By Theorem 5, R is a
PP-ring. Now, let y £ R, and x £ ann(y). Since R is a PP-ring, O(P), for
any prime ideal P of R, is prime (see Matlis [8]). Thus, for any prime ideal
P of R, either x £ O(P) ory £ O(P). So we have the following two cases:

(i) if x £ 0(P), then by assumption there exists an idempotent e £
£ O(P) QP such that xe =x. If/ = 1—e, then xf = 0and/ P;

(i) if x £ O(P), then y £ O(P). By assumption, there exists an idem-
potent g £ O (P ) such that yg=y. If h = 1—g, then yh =0and h £ P. So
for each prime ideal P, either there exists an idempotent / ~ P such that
xf = 0 or there exists an idempotent h A~ P such that yh = 0. Let A be the
ideal in R generated by all idempotents / ~ P with xf = 0 if case (i) holds
and those idempotents h £ P with yh = 0 otherwise. Clearly A = R because

Ada Mathcmatica Hungarica 60, 1992



FURTHER RESULTS ON RETICULATED RINGS 5

for each maximal ideal M the ideal A contains an element not in M. Hence
1=1"I1/1 't emed" 'I'mfm ' d' eeed- snhn.

Therefore x = x(sihi + ... + snhn) and sih\-f ... d snhnG ann(y). Con-

sequently, there exists an idempotent h in ann(y) such that xh = x. Thus

ann(j/) is a strongly pure ideal. Therefore R is an almost stonian ring.
Now, we prove an analogous result for lattices.

Theorem 10. A lattice L is almost stonian if and only if each minimal
prime ideal of L is a strongly o -ideal.

Proof. Let P be a minimal prime ideal of L. Then O(P) = P. Let
x € O(P), then there exists y ~ P such thatx Jly= 0, i.e. x Gy*. Hence
there exists 6 G y* M BL such that x < b. Since y $ Pand bJly = 0,
b GO(P). Therefore P = O(P) is a strongly <-ideal of L.

Conversely, assume that each minimal prime ideal is a strongly cr-ideal.
Clearly, every strongly cr-ideal is a cr-ideal. Thus each minimal prime ideal
is a or-ideal. By Theorem 6, L is conormal. Therefore each O(P) is a prime
ideal, see Cornish [3]. Now, let a GL and x Ga*. Then x Aa = 0. So either
X GO(P) or a GO(P). So for each prime ideal P of L, we have two cases:

(i) if x G O(P), then there exists bp GO(P) MBL such that x < bp.
Therefore x AP = 0 and BP £ P;

(ii) if x » O(P), then a GO(P). So, there exists bp GO(P) NMBL such
that a » b. Therefore a/\b’p =0and bp P.

Let J be the ideal generated by all those bp's constructed in (i) if it holds
and by those bp's in (ii) otherwise. Clearly, L —J because for each maximal
ideal M of L, the ideal J contains an element not in M. Therefore

1=*K V*-*v6Kn v ---v bq,,

with Bp. Ax = Oand 6 Ma = 0. Thus x = x1(6* V... Vbgn) ie.
X N b V... Vbon. Since 60 V... Vbign G a* a* is a strongly cr-ideal.

Therefore L is an almost stonian lattice.
Now we quote a lemma that was proved by Simmons [9].

Lemma 11. The mapping D : R —LR restricts to a lattice isomorphism
from BR to BLR, where BR is the boolean lattice of idempotents of R.

THEOREM 12. For aring R, D takes strongly pure ideals of R to strongly
er-ideals of LR, and D~I takes strongly o -ideals of LR to strongly pure ideals
of R.

Iﬁ’roof. Let 7 be a strongly pure ideal of R. Let x G 77(7), then x =

= V D(a.i) for some ai, a2,... ,an G7. For each a-, there exists an idempo-
i—

tent - G7 such that ae- = a,. Hence 77(a,) < 77(e,). Thus x £ V 77(e;).

»=l

Acta Mathemaiica Hungarica 60, 1992



6 H. al-ezeh: further results on reticulated rings

n
Since N D (ei) is a complemented element in D (1), D(I) is a strongly cr-ideal

1=
of LR.

Now let J be a strongly cr-ideal of LR. Let a 6 D~XJ), then D(a) £

G Jm Since J is a strongly cr-ideal of Xi2, there exists b £ J MBLR such
that D(a) £ b. By Lemma 11, there exists an idempotent e in A such
that b = D(e). Hence D(a) ~ D(e). Therefore D(a) 1 D(1—e) = 0.
Consequently, Z)(a(l —e)) = 0. Thus a(l —e) = 0. Moreover e £ D~X{J)
since D(e) = b £ J. Therefore D~X(J) is a strongly pure ideal of R.

Using Theorems 1, 10, and 11, we get the following theorem.

THEOREM 13. A semiprime ring R is an almost PP-ring if and only if
LR is an almost stonian lattice.
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ON A MESH-INDEPENDENCE PRINCIPLE
FOR OPERATOR EQUATIONS
AND THE SECANT METHOD

I. K. ARGYROS (Lawton)

1. Introduction

Consider the nonlinear equation
(1) F(z) =0

where F is a nonlinear operator between two Banach spaces E, E. The
secant iteration

2 Xn+l = xn - 6F(xn,xn-i)~1F(xn), n=0,1,2,...

has been used to approximate a solution x* of equation (1), for some x_Xx,
xo € E. The linear operator SF(xn,»,_X) is assumed to be a consistent
approximation of the first Frechet-derivative F'(xn), [2], [8], [9], [12].

The iterates {xn}, n = 1,2,... can rarely be executed in infinite dimen-
sional spaces. In practice we replace equation (1) by a family of discretized
equations

(3) Ph(x) =0, h>0

where P/, is a nonlinear operator between finite dimensional spaces Eh, Eh-
The discretization on E is defined by the bounded linear operators Lh: E —

Let us define the discretized secant iteration for equation (3) by

(4) Zq = Lh(x0), Z-1= Lh(x-i)
and
(5) Zn+l = Zn~ bPhiz*,z*_x)=XPh{zh), n=0,1,2,

We will show that under certain assumptions the sequence {z%} converges
to a locally unique solution z£ of equation (3) and the following estimates
are true:4

4 = Lh(x*) + 0(h?), P> 0, zh-z*h=Lh(xn- x*) + 0{hp),



8 I. K. ARGYROS

zh+l. zh+ T,(*,+i - xn)+ 0(hp), Ph{zh) = Ln(F(xn)) + 0(hp)
and for any £ > 0 and sufficiently small h

[min{n > 0, ||xn- x*|| <e] - min{n > 0,\\z*- zj*| <e} <1

if xo belongs to a certain ball centered at x* and of a specific finite radius.

The above results have been proved when Newton’s iteration is used to
approximate a solution x* of equation (1), [2], [3], [4], [6], [9]. Since the
iterates for the secant method can be computed easier than the Newton’s
iterates, both in infinite and finite dimensional spaces, we feel that the results
obtained here are useful.

The last recorded result above indicates that there is at most a difference
of one between the number of steps required by the iterations (2) and (4) to
converge to within a given tolerance £ > 0. This aspect together with the
rest of the above results constitute the mesh-independence principle for the
secant method.

If we let 6F (xn,xn-i) = F'(xn), n = 0,1,2,..., our results reduce to
the ones in [2], [9]. In this paper we use similar definitions and the proof
procedure of [2], [9].

Il. Main results

The norms in all spaces E, E, Eh and Eh will be denoted by the same
symbol I I and for any bounded linear operator from E to E (or from Eh

to Eh), the induced norm will be used.

We will assume familiarity with the definition of a divided difference
operator SF(v,w), [10, p. 78].

We can now prove the following theorem (see also [11]).

Theorem 1. Let F be a nonlinear operator defined on an open set D of
a Banach space E with values in a Banach space E. Assume:

(@) The equation F(x) = 0 has a solution x* ED at which the Fréchet-
derivative F'(x*) exists and is boundedly invertible with

(6) In*T 1 ~1-

(b) The nonlinear operator F has divided differences SF(u,v) satisfying
the following conditions:

(7) |I<BF(v,w) —6F(u, z)|| < dO(|Jju - u|| + |rm - z||) for all u,v,w,zED

and
(c) The open ball U* = U(x*,r*) = {x GE \|x - x*|| < R*} C D with

3do<fi

Acta Mathcmatica Hungarica 60, 1992



ON A MESH-INDEPENDENCE PRINCIPLE 9

Then for any x_i,xo € U*, the secant iteration (2) remains in U* and
converges to x* with

(9)

AN+ —*|| ~
Proof. Let us denote by L the linear operator given by

L =8F(v,w) forv,w £ U*

It can easily be seen that (7) gives F'(x*) = 6F(x*,x*). By the choice of r*,
(7) and the identity

L=F*[+ F{x*)~\L- I'(x*))]
we obtain
[1FF.(x*)-1 (I.F(v,"«) = F (x* x*))|| < dido(][t>-xI| + |jui—=x*||) ~2dod\r* < 1.

By the Banach lemma on invertible operators it follows that L is invert-
ible and

(10

Let us now suppose that x,,_i,xn £ U* Set Ln = 8F(xn,xn-\). Then
Ln is invertible and we can write by (7) and (10)

F»+i - *11 = \\~L-\8F(xn,x-) - Ln){xn- **)|| ~

From (9) and the choice of r* it follows that
(1) [[Xn+1 - x*|| < ||lzn- x*|| <r*, n- 0,1,2,...

and .di_%)xn —Xx*. Therefore, the secant iteration generated by (2) remains

in U* and converges to the solution x* of equation (1).
That completes the proof of the theorem.

We will now adjust the definition of a Lipschitz uniform discretization
given in [2] to fit our purposes.

The solution x* as well as the secant iterates generated by (2) may have
better smoothness properties than the elements of E. That is why we can
consider a subset W* C E such that

Ada Mathtmatica Hungarica 60, 1992



10 I. K. ARGYROS

The discretization methods to be considered here are described by the
family of triplets

(13) {Ph, Lh, Lh}, h> 0

where
Ph- Dh C Eh —Eh, h >0

are nonlinear operators and

Lh'. E”~ Eh, Lh"E -* Eh, h> 0,
are bounded linear discretization operators such that
(14) Lh{w* MU*) C Dh, h> 0.

The discretization (13) is called Lipschitz uniform if there exist scalars
R > 0, b> 0 such that

(15) U*(Lh(xm), R) CDh, h> 0
and

f ISPh(v, w) - SPh(u, r)|| < b(\Wv - u|| + |liu- z[), h >0,

s V,i,w,ze U*(Lh(z%),R).

Furthermore, the discretization family (13) is called bounded if there is a
constant @ > 0 such that

(17) \Lh(u)\\ < colMI, ueW *, h> 0

stable if there is a constant Ci > 0 such that

(18) [[PE(IT(u))-1l <ce wmel M U* h> 0;

and consistent of order p if there are two constants c2, G such that
(19)  |la(P(x))-P,(Ta(x))|| <ch?, xeW rUT, h> 0,

and
(20)

Lh{F\u))v-P'h(Lh{u))Lh(v) <c3fip, ueW nIT, veW , h> 0.

We can now state and prove the main result.
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ON A MESH-INDEPENDENCE PRINCIPLE 11

Theorem 2. Let F be a nonlinear operator defined on an open set D of
a Banach space E with values in a Banach space E. Assume:

(a) the hypotheses of Theorem 1 are true and

(b) the Lipschitz uniform discretization (13) is bounded, stable and con-
sistent of order p.

Then

(i) equation (3) has a locally unique solution

(21) zh = Lh(x*) + 0(hp)
for all h > 0 satisfying
' 2cic2
. . . cic
22 O<h<h*= min (—, W- with Gl = """
(22) (/04 I(:L\l'bJ\ 1- cocibr*

(i) There exist constants hO £ (0,/i*j, rO £ (0,r*] such that the iteration
(4)-(5) converges to ZtJ such that

(23) z* = Lh(xn)+ 0(hp), n=0,1,2,.
(24) Ph(z8 = Lh(F(xn)) + O(hp), n=0,1,2,...,
(25) zb - zIl =Ln(xn- x*)+0(hp), n=0,1,2,...,

for all h £ (0, /io] and all starting points xq £ U(x*, q).

Proof. Let x*"\ £ U*. We can assume without loss of generality that
coCi&™* < 1. Otherwise choose x_i £ Uf = Uf(Lh(x*),rl) with r < r* and
cOcibrl < 1.

The well established theorem (see, e.g. Theorem 3 in [9]) ensures that
when
(26)

() = CIBVLAGc*-x-D\+2 CIBISPICT A7) Ta(x_n) T 1PAXAGe]| <1,

M= 1- -Fem)ll-<*
@1 " 2c\b mHeTe
with
(28) d= [(1 —cib\Lh(x* - x_i)|)2—

-4c1bpPa(Tn(x*), Ta(x_1)T 1IPa(1n(x*)|

Acta Mathematica Hungarica 60, 1992



12 I. K. ARGYROS

then (3) has a unique root z£ in f7(T/,(x*), r(h)).
By (18), (19), (17) and (22) we obtain successively
(29)  q(h) < coCler* + 2[cIbNOPh(Lh(x*), Xn(x_1))-1(Pn(Xn(x*))-
-P a(F (x*)))||]1/2 ~ codbr* + 2 [c?c26/iP]1/2 < 1

and

(30) r(h) < C4hp < R, with ¢4 = 'mOCIOF,

which shows that (26) and (27) hold for all h satisfying (22).
Thus (21) follows from

(31) bl - Lh(x-)Il < r(h) < cdhp.

By applying Theorem 1 to (3) we see that the secant sequence (4) con-
verges to 4r if

(32) [[Efc(*0)-*h|| < 36[[p™(2*)-i]|”
(33) Uiz*h, \\Lh(x0) - zh\\) C U(Lh(x-),R).
The estimate (33) holds if

(34) \h - L h(x*)\\ + \\Lh(x0)-z-h\\<R,

and by (17) and (31) we obtain
(35) ||ILfa(x0)-z;|| » \Lh(x0)-L h(x*)\+\Lh(x*)-z'h\ < cO||x0-* |+ ¢ 4/i*\
That is, (34) is satisfied if
(36) cO||x0 - x*|| + 2c4hp < R.
Using the identity
(37) PU4)=PUWW -ag.0Or-f'M bl *-)-
(16), (18) and (31) we get

38) L *p) 1% Ne (**)'><I d
(38) H) 1- 6||P ' (Ln(x*))-1[[lIT,(x*)-xA|| = 1- bcicahP"
The estimate (32) now certainly holds if

1 —hcdcahp

_ A\
(39) @||x0 - x*I) + 2c4hp 3046

Acta Maihematica Hungarica 60, 1992



ON A MESH-INDEPENDENCE PRINCIPLE 13

It is simple calculus to verify that (36) and (39) are satisfied for all
h G(0,h2] and xg G U(x*,r2) with

| R 1 c2M p
(40) hl - [mm\2c4'UclICab’ clb).
and
(41) r1=mm CRo_L\

That is, with the above values of h and xq the sequence (4) converges to

zh-
Let us now consider the real quadratic equation
(42) As2+ Bs+C =0
where
A = 56c¢i, B = 8coCi6llao - ¥*| + c*bh? - 1,
and
C = Ci(c! - c2)hp.
We can now choose
(43) L L- (hP (8cOCijla:o - x*\\ + clCdbhp - 1)2V
- Imm (- 20 +C) - )\
and
(44) ro = min

f ri* 32¢0i j6)

Then for all h G (0, ho] and xq G U(x*,ro), equation (42) has a small positive
solution so such that

(45) sO ™ c5hp
with ¢$ = AC.

We now prove that for h G (0,hi) and xo € U(x*,tq) and all n
2,... the estimate

0.1,

(46) \zh - La(x,)|| g sO

holds.
For n = 0, (46) is trivially true. Suppose that (46) holds for n = 0,1,
2’.. ° 1i.
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14 I. K. ARGYROS
Using (2) and (4) we obtain the identity

(47) 22+¢1 - Lh(xi+l) = SPHtf'zLiV'WPhtf'&jtf - Lh(xi))~
- Ph(zf) + Ph(Lh(Xi))] + [(SPhiz"zl,)-
aP* (1M (x,), Ih(xi_i))Lil(IF(a;,-, Xi_i)_1F(a; )]+
+[6Ph(Lh(xi), L h(xi-.1))Lh(6 F (xi,xi_1)- 1F(xi)) - Lh(F(xi))]+
+[IN(F(Xi)) - Ph(Lh(Xi))]}.

From the identity
(48) MV*?*2-1) = 6Pk(Lh(zm),LHxm)[I- SPniLh”ALhix*))-"
X (6Ph(Lh(x*),Lh(x-))~ SPhiz*zU)],
(16), (17), and (18) we obtain

(49)  H«M*?,*ki) 1i ! _ ClCall _ 2bc SQ+ Copto_ 3.4)e

Let us note that condition (16) implies the following Lipschitz condition
for Ph:

(50) I (tt) - PE(QI A 2blj« - ], «, « £U*(Lh(x*), R).

Using the integral representation
(51) Ph(u) - Ph(v) = [/ Ph{v + t(u - 0))di] («- V)

we deduce that
(52) lIPh(u) - Ph(v) - Ph(w)(G - V)|l < 6(JJu - w| + ||V - «1Dll«- V||

for all u,v,w £ U(Lh(x*), R).

From (50), (51) and (52) we obtain the estimate
(53)
[[Pn(n) - Pfet>) - SPh(w, z)(u - «)|| N 6Q«- «’ll+ lle- X|| + |[[w - z|])]Ju - «(l
Using (47), (11) and (53) the norm of the quantity in the first bracket of
(47) becomes

(54) IA(E»(*1)) - p..(4) - ep,, (4. *2-)(*? - I*(*-)II S
< b(||L»(*1) - z?|| + ||2? - - I»(*DII' S
< bs(3s + 2c0||x0 - x*II),
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ON A MESH-INDEPENDENCE PRINCIPLE 15

since
r? - Zi_1= (z? - Lh(xi)) + (Lh(xi) - Lh(xi-i)) + (Lfa(x,_i) - z? X)

and
*n+i -* 1 ~ Iy —a*-
By (11) and (16) we obtain

(55) |(FA(z?,~A_ 1) -iflK IfR(*D),i*(*i-1)))M (M (Fi.*i-D)" 1 (x.-)HHin
< b(||2?-ifc(*i)|| + IkL1--i"fc(*.--i)|[)co||[*i-*i+i|| » 4cOb«|pko—K*]|.
Finally, from (19) and (20) we obtain

(56) MFIk(Lfo(*i)ti fo(*i_i))2;f(1F (*i,*i_1)-1F(aii)) - U (F (Xi)|| » cxhp

and

(57) [lifc(n*i)) - Ph(Lh(xi))L " c2hp.

With these majorizations in (47) we obtain that

(58) 7+ - Xa(x,+i)|| <
< Ci[(ci + c2)/ip + 460||xq - X*II-Sp + bsO(3s0 + 2c0||x0- x*[))] _
1- cxcdbhP - 26¢i(s0+ cO|[x0- x*||) S
by (42).

This completes the introduction and hence the proof of (46) for all n =
=0,1,2,....
The estimate (23) now follows from (45) and (46) since

(59) P - XA(xn)|| < sO < c5hp.

By (50) we deduce that there exists ce > 0 such that

(60) PS(e)||*ce, wueU(Lh(x*),R)

and therefore by (17) and (19)

(61) IIPh(zh) - i ”[F(x,))|| £ VA(**) - Ph(Lh(xn))||+

+||FIKZ*(.n) ) - LF(xn)) |2~ ]]* * - 1 i(xfl)|| + e2AP < (c6c5+c2)hp,
which shows (24).
Finally by (31) and (59) we obtain&

(62) [I(** - zl) - Lh(xn- x*¥)|| < W - 1f(xn)|| + U - Lh(x*)|| <
< ¢5hp + cdhp = c7hp, with &7 = cs + c4

which shows (25) and that completes the proof of the theorem.
We now complete the claims made in the introduction concerning the
mesh-independence principle as follows:
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16 I. K. ARGYROS

Theorem 3. Let F be a nonlinear operator defined on an open set D of

a Banach space E with values in a Banach space E. Assume:
(a) the hypotheses of Theorem 2 are true, and
(b) there exists 6 > 0 such that

(63) liminf 2] <Slul for each u GW*.

Then for some r2 G (0,ro], and for any fixed e > 0 and x0 G U (x*,r2) there
exists a constant /13 = J13(E,x0) G (0,/i2] such that

(64) [min{n > 0, |[xn- x*|| < £>- min{n > 0, ||z* - zh|| < £>5 < 1

for all h G (0, /13.
P roof. Let i be the unique integer defined by

(65) X+ - X < £ < fx-- x|
By (63), there exists h2 > 0 (depending on xo) such that
(66) NLh(xi —x*)|| ™ 5lpk- —x*|| for all 0 < h < h3.

We prove the theorem for

(67) r2=mm (;Q7 26,,b(13 + 2)),

(68) B =min ~2c0, 6

and

(69) A3 = min h2, - g -
By (62) and (69) we obtain

(80) [l4+i - 411 = WLh(Xi+i - z*)|| + c7hp < cOhp + < 2c0e.

Using (35), (67), (68) and (69) we get

bcil\zj -z i
(71) Itf+a - 411 ~ i>>Ci(||Z|+i _ Z*” + ||Z, _ Z‘]J.)].IZI+1 -411 N~
bci\z0 - zh\ bei(cor2 + Ghp)

A - c A RcOE < £.
L. 2bciVz0 -z - 411N 1 scicora + Cifip) T CC
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ON A MESH-INDEPENDENCE PRINCIPLE 17
By (62) and (66)

£s w-- *1 s jiif»(*< - *)ii s jdi*? - *:ii+ *r*p)

or

(72) IF?- <11 S fa - c7h"a fa -&m =y
Let us now assume that LirM —z"\ < g, then as in (71) we get

(73) w?- *n<y i,

contradicting (72). That is, we must have

(74) n*?.- *nr £

The result (64) now follows from (65), (71) and (74).
That completes the proof of the theorem.

Remarks. The condition (63) certainly holds if

. _ *
(75) an||Lﬂtt)|| IMI for each n € W*,

For some discretizations we have
(76) HL“.O”L/KU)” = ||ul]| uniformly for n GW*.
Both conditions (75) and (76) are almost standard in most discretization

studies [1], [2], [8], [10].

A theorem similar to Theorem 3 can now be stated if (63) is replaced by
(76) (with h3 depending only on f).

I11. Applications

Example 1. Theorem 1 can be realized for operators F which satisfy
an autonomous differential equation of the form

t
F'(x) = G(F(x)), for some given operator G.

As F'(x*) = &(0), the inverse F'(z:*)-1 can be evaluated without knowing
the solution x*. Consider for example the scalar equation

(77) F(x) =0
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18 I. K. ARGYROS

where F is given by
F(x) = ex —q, for some given q> 0.

Note that F'(x) = F(x) + g. Thatis F'(x*) = q.
Let us define the divided difference operator 6F (v,w) by

F(v) —F(w)

6F (v,w) = v —w

w V.

The linear operator 6F (v,w) is now a function of two variables v and
w. By expanding SF(v,w) about (v,w), restricting the domain of it in some
ball U* centered at x* = inq and using Taylor’s theorem in two variables, a
number 6 20 satisfying (7) can easily be found.

By Theorem 1 if xo,x_i £ U* then the iteration (2) can be used to
approximate the solution x* = Inq of equation (77).

For further examples on autonomous differential equations one can refer
to [7] and the references there.

A more interesting application is given by the following example.

EXAMPLE 2. In this example we study the case of a natural difference
approximation for the scalar, second order two point boundary value problem
studied in [2]. Consider the operator

F: D C C2[0,1] -> C[0,1] x R2,
F(y) = {y"- f(x, %, 2);0"x it 1,70)-  2(1)- B},

where D and / are assumed to be such that equation (1) has a unique
solution x* £ D and
fEC\U {x',R)),

U{x*,R) = {(xbIr.r3) € R3;0 < xx< 1, |x2- x*(xi)|, [x3- x*(xx)| < R}.

To avoid repetitions we consider the discretization (13) considered in [2,
p. 167] with the finite difference operator 6Ph(v,w) exactly as defined in [10,
p. 81, Form (10)].

As in [2] it can easily be seen that all the hypotheses of Theorems 2 and
3 are satisfied and therefore the conclusions apply in this case.

Other examples and applications may be found in the cited articles.
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ON PSEUDO-DIFFERENTIAL OPERATORS
WITH AMPLITUDE Q(x,y, f)

J. TERVO (Kuopio)

1. Introduction

Consider the linear operators Q defined in the Schwartz class 5 by the
requirement
(1.1) «?)(*) = (2x)-" \](
Rn Rn

for x G R". Here the amplitude is assumed to be a C”-function
Rn x R" x R" —*C such that

(1.2) s%p \(DaD"DjQ)(x,yi0\ I CaR, kNy+sla+BNe for £ GR",
X, YERN

with some Cafitl > 0, N7 GR and 6 < 1. The operator Q maps S into 5.
We establish that Q = Qjg for any N G N, where

(1.3)  Qn(x,y.E) := (L+ [x —22T) 1[(1 + Af) )C?](z,2/,0
i=i

(cf. Theorem 3.1).
For iV > n we define a function L/v(-, *): R" x R" —=*C by

(1.4) Ln (x,£) == (27)" QN(X,y, TDe,x~yT~c)dy~ dri.
R" R"
One obtains that Ln(-,¢) GC°°(Rn x R"),

(1.5) sup \(D"D8LN)(x,0\ i Ca,Rk,ap(0 for £€ R"
iERn 4
with some Ca,8 > 0, [iaR GR and that

(1.6)  (Q<f(X) = (LN(x,D)v)(x) := (2*)-"J LN(x,()(FY >)(fy (*X)df
o
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(cf. Lemma 3.4 and Theorem 3.6). We know some special classes of oper-
ators for which the relation (1.6) holds (cf. [3], [4] and [6], for example).
Remark that in our considerations, the amplitude Q(e, ¢, ¢) is not assumed to
be compactly supported in y.

Let A™T™ he a class of amplitudes so that
1.7)

\(DaD"DjQ)(x,y,0\ i Cal v W(ui,0<T-[*+3WV 0,

S V-
(@5 (S DBKIYXR'
where (®,dp) forms a pair of weight functions in the sense of Beals and
Fefferman [1] and where EXV is the convex hull of x,y 6 Rn. Denote by

the Beals and Fefferman class of symbols L(-,¢) 6 C°°(Rn x Rn) (cf.
[1], [2]). As an application we establish that

(1.8)

-'M, ".n

fog 2 {QI1QG Jea’;"} = D)| U~ *)e<-}e
where

(1(x,D)v)(x) := (2x)-"J
(cf. Section 4). Some facts on the decomposition L(x,D) = -f R, where
Q~ is properly supported in an open set G C Rn (for the terminology cf.
[3]), and where R € T1 »are a'so considered.
NeN
2. The operator Q with amplitude Q(x,y,£)
2.1 Denote by 5 the Schwartz class of all rapidly decreasing smooth

functions p: R" —»C. 5 is equipped with the standard locally convex topol-
ogy defined by the seminorms ga,(<p) := sup xa(Dxp)(x)\. Let Q(-, ¢ ) be

a function in C°°(R3") := C°°(R" xR "x R"). Consider the linear operator
Q defined for p€ S by the requir(ment

ey e Fomnl JQXMD%OQ(*MM

Rn Rn

In the case when together with its derivatives (D°DyDjQ)(-,',-)

obeys suitable tempered criteria, the operator Q maps 5 continuously into
S. Furthermore, under certain conditions, the formal transpose Q': S —»S
exists, that is, there exists a continuous linear operator Q ': S —»S such that

(2.2) (QVv)(i0 = ¥>(<3V) for all <p,ge S,
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ON PSEUDO-DIFFERENTIAL OPERATORS 23

where we denoted

(2.3) ifi(x)tp(x)dx for if, ip€ S

(cf. [5]). In the sequel we write ks(£) = (1 + |£|2)*/2. We recall

T heorem 2.1. Suppose that Q(e,s,¢) € C°°(R3n) such that with a con-
stant 6 < 1for all a,/3,7 £ Ng there exist constants Cag 7> 0 and N-, € R
such that

(2.4) sup \(DaD "D jQ)(x,y,0\< C a>RnkNy+sla+i3I( 0
*y€EH.n

for all £ £ Rn. Then the operator Q defined by (2.1) maps S continuously
into S and the formal transpose Q' of Q exists. The operator Q' is given by

(25)  (<V)(2) = (2m)_nJ (J Q{y.x,-i)xp(y)et(x~yi)dygd”.

R" R"
For the proof of Theorem 2.1 we refer to [5]. Specifically, in the case
when Q(x,y,ip) is of the form Q(x,y,£) —L(x,£), where £ COO(R2")

such that
(2.6) squ \(DZD%L)(x,t)\ 1 CaBRkNR+sH (0 for all ££ R",
xeRn

Theorem 2.1 can be applied and so we obtain: Assume that L(-, *) £ C°°(R2’)
such that with some 6 < 1, the estimate (2.6) holds. Then the operator
L{x, D) defined by

(2.7) (L(x,D)fi)(x) :==(@21r)-"J L(x™)(Fifi)*y{x™m
R"

maps 5 continuously into S and the formal transpose L'(x,D): S —» S exists.
The operator L'{x, D) is given by

(2.8) (L\x,D)tp)(x) = (2m)“"J (J Ly,

Rn R"
(here F: S —»S denotes the Fourier transform).
2.2. Suppose that (®,<*) forms a pair of weight functions in the sense of

Beals and Fefferman [1]. Let Ex<y be the convex hull of the elements x and
y £ R", that is,

EXV:= {u £ R" In=aix {-a2/, where ¢ " 0, = 0and ax4-a2= 1}.
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24 J. TERVO

We say that the amplitude Q(-,-,-) belongs to A (where M,m GR) if
the estimate

(2.9)

\(DaD"D2Q)(x,y,0 \* Cag,, ®M-M («1,0 T -[a+/3(«2,()

~ o, Sup .
(«1.|).(«2>ﬂ%£|,»XRn
holds for all x, y,£ GRn. The linear space of operators Q is defined by

b&w :={Q\Q is defined by (2.1), where Q(-,v ) GA™" ™},

Furthermore, we define the class of symbols in the following way:
The function !,(s,*) G C°°(R2n) belongs to if the estimate

(2.10)  \(DZD<IL)(x,0\ $ Ca0®m -M (x,0® T- bl(x,0 for x,£ GR"
holds. The linear space of operators is defined by
=N , D)14*.D)is defined bY (2-7) where £(¢, ¢) G5~ m}.
Lemma 2.2. Suppose that (?(e,-,») GAY'™. Then the estimate
(2.11) X‘%%n\(Dm%DjQ)(x,y,s)\ < <?a77fc|M47|Wi-e)M +(1- €)[a+/3](0

holds with some 0 < e < 1.

Proof. In virtue of property (i) of weight functions ® and ¢ one has
withc>0,C >0ande > 0:

(2.12) c< dn,0 < C(l + |E])
and
(2.13) c(l+ K1INic< N C

for all (u,f) GEXy x R" (cf. [1]) and so we get
®wm -bl (1,£) » max{C|M- [7ll,c-IM-bH} (I + [*)IM-HI
and
m-la+”|(u,£) < c-[«+MImax{C'I'n[)C-|m|" 1+ |£])(1-r)(M + k+00).
Hence we obtain from (2.9) with some Cal® >0
sup [(0?27A7Q ) (x,J/,01~rCar 7(1+|M)IM-17Mm|(I-) (1 + |Q)(1-e)INT?

X,»eR"
which implies (2.11). O

From (2.11) we observe that for any G A$'™ the estimate (2.4)
holds (with V7 := |[M - |7|| + (1 —e)|m| and with 6 := 1—e < 1). Hence any

Q GL”" maps S continuously into S and the formal transpose Q1: S —S
exists.
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3. The identities Q = Qn and Q = Ln (x,D)
5.1. Define QN (-,;-) € C°°(R3"), N € N by (here ;= -id/dfr)
(3.1) QN(x,y,Z) = 1+ I*- 10 _1((i + A?)Q)(x.y.£),

where A( = (X) D I)
We begin W|th

T heorem 3.1. Suppose that e C°°(R3n) such that with a con-
stant 6 < 1 the estimate (2.4) holds. Then one has

(3.2) Q=0Qn forany N € N.

Proof. A. Let 0 bein Cq such that 0(x) = 1forall [x| 1and define
0j(x) := Q(x/j) forj € N. Furthermore, define

(3.3) Q;(*.y.0 0®i(0-
Then the Fubini Theorem implies that

(3.4) Qi<p)(x) = (2™ J (J Qi{x.y, <p(v)dy.
R" R"
B. We obtain for any a G N[J

(3.5)

Gx)a(d Qj(x,y, Oeifx-yM | - QAx A(-D(neix-veH =

R"

-

R"

and so by induction (with respect to N)

(3.6) ( QI[ L)' (Ut =

= 7 XD2) (J QAxiyiO e'{x~v'0dz)
R

R" 1=1
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(note that (y —x)(°'— = (yr —xi)"1). Thus

(3.7)

[ <Ji(*,v,iK(~*1t)<e =(1+ - SI27)'1 7 ((L+47?)«N
R" R"

and so by the Fubini Theorem

(3.8) (QIV)(x) =

= @)= L1+ -y X1+ A)A) (Y {y (evM o <f(y)dy =
R" Rn

=m "I [] @+ w- VeN) X@ + AE)Q))(x.y.Z)e’ (x vr<p(y)dyjdi.
R"™ Rn

C. We shall show that

(3.9) (Qjv?)(x) —»(Qy>)(x) for i £R"
and
(3.10) (Qi<p)(¥) -* (QN<p)(x) for x e R",

which implies the assertion.
Ci. For any a e Nqg one gets

(3.11) b(-J Q(x,y,ZMy)ei{x-v'()dy)
R"

AR

= N7~ Co,a-7,0]-D7(¢’|IL1M o +ifla-7](0 = C<uwkNO+6\a\(O,
X

and so with some Cv >0
(3.12) 1J o(*,y,*M»Y (*-*«c*y| * ¢, *_(n+1)(0
R
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Since
W :=0,00(/ Q(x,y,tMyV (x-y()dy) - Ne :=
-
=3 Q(x.y,0 P(y)ex~v()dy
.
and since

i/,(oi i (sup|o (odi/(oi ~ibiuc™_(nH)(o,
the Dominated Convergence Theorem implies that

/' m w - [ /(o"e,
R" RN

and so (3.9) holds.
Cr- Similarly, as in C\ one gets that

(3.13) 3 (J (1+ WX - Y\N)~1Qj(x,y,£)eix~y®(p(y)dy'jdE -

J {3 @+ - y\a)~210(x,y,0e(-v'()(rly)dyrd”

and then to obtain (3.10) we have to prove that

(314) J (j(I +\x-yI)~\A7CLAXY,0e*{Xy'()<p(yNey£f ->
R" Rn

D (L WYV TAT0) (XY MY freyX)Mfidy)dy)dta

Bt Rn
Define Pjy(D) := A”. Then by the Leibniz formula we get

(Ps(D)Qj)(*,v,0= E (V<*-)(PN)(D)Q)(x,y,Z)(DaQ,)(0 =

\a\<2N

= |<<:§er(]/« NQi,a(*,il.e),
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where
0,>(*»,0:=(P£\D)Q)(x,y,aD aei)(O-
Our task reduces to establish that

(3.15) \](\](1+\X-yrr‘QiAth"M yVyyt-
R" Rn

(1 (I+|x -y |N)_1(PA(D)<2)(2,y,0e,(x~y,iV(3/)<tyW, for a=0.
—m R" " 7

o

, for a 'O

Since the amplitude (x,y,£) —@(1 + \x —y|w ) L(PN(D)Q)(x,y,E) satisfies
the estimate like (2.4) (note that

. ) » o |g-fR\ )
+ 1*- j,D)| s c,,e(i+|x-y|T 1 i C,m)s

one gets as in C\ that the convergence (3.15) holds, when a = 0.
Let a ¢ 0. Define

S9A0 =0 (M- - ylIN)~LQ) 0, (% y ity (x=y™)<p(y)dy.

R"

Then

(3.16)

9i,M) = (D“0i)({) J+k-yrr4yp' N T Xn"y.0
R™

=(1/j*)(D aQ)(=j)J (I +\x-y\2N)~\P *)}(D)Q)(x,y*  x-y”~b(y)dy"0
Rn
for any £ € R". Furthermore,

[ (| (1 +1z-yO -*"ilJjgK x.y.0Oe”r-~Viy)r 7
R™

< +x- Pt 9 Ne (7 )BIO)YENI<<V S

Rn

sE ()ip»efi +i*-(-)0 "VI[il? pl(o;ii"i(i>)o)(x, i)
TRV */
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Since P ~\d) is a differential operator of order 2N —|a|, we get

sup (DIPA(D)Q)(x,y,0 < CarkNa+sT|(i),
*V

where Car is a suitable constant and where Na :=  max Hence
) bl<2/1M~bl
there exists a constant CQY > 0 such that

(3-17) 13 A+ I*- y\2N)~1(PN(D)Q)(X,y,0 e~ V(<P (y)dy
Rll
N CavX (n+1)(0 forall f €R".

This estimate yields from (3.16) that

s (ilj«K ™ pl(i>*e)(i))ew *.,«...({) s

and then by (3.16) and by the Dominated Convergence Theorem
/9j,a,(0dZ 0 forany Q/ 0.
R

This completes the proof of (3.15) and so the proof is ready. O

Corollary 3.2. Suppose that € C°°(R2’) such that the estimate
(2.6) holds with some 6 < 1. Then

(3.18) L(x,D) = LN,
where

(3.19) W)(*) =
= (2*)-" f(QA+AH)N)*,0/ @A+ |x-y\N)~\(y)er-~dydC
R™ R
3.2. For the amplitude Qn (-,-,-) the estimate
(320) \(DaD~DjQN)(x,y,0\ ~ CaRykN* a+R,(0(1+\«x- yD "1
holds, where Nltw := vﬂ%ﬁvw”}' This follows from the fact that 1-f A:?
is a differential operator of order 2N and

(3.21) IDFOj((I + |i YD T Cijrfl + 1%- w2yt
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For iV > n we define a function *): R2n —C by

(3.22) Iw (*,0 := (2mnJ (J OQN(x,y,Ti)ex~vr~"dyRr].

Rn R n

Lemma 3.3. Suppose that Q(-, ¢, *) £ C°°(R3n) such that with a constant
6 < 1, the estimate (2.4) holds. Let QoA-,-,-) be defined by (3.3), N >n and
let Xar(-, *) be defined by (3.22). Then one has for any R £ N

(3.23) M *.0 =
- (Ztt) (J(1+W- tFRY-\(1 +A%)QN)(X,y,r,)ei(*-™ -Vdy)dr,=:
=Lnr(x o

Proof. For any a £ Ng one has

(v-0° \ QN(x,y,V)er-~dy= [(DaQN)(x,y,r)er-y~rdy,

and so by induction

- £129 ) Qn(x,y, -

R

= f((Jt,DV}) QN)(x,y,v)etx~y",~i)dy.
Rn '=1

This completes the proof. O
Define a function Qn,r(-, ¢ ¢, *) by

(3.24) PV, R®,y,fi?) := (1 + \v~ M2D-1((1 + &y)QN)(X,y,ri).
Since the differential operator AR is of order 2R and since
ID2FJ((1 + In- flav )1 O O + I,- fI* )"1
one gets the estimate
(3.25) \(D "D "D xQNR)(x,yM, rj)\ <

w Ca37,r(l + IP~~N24) J@A + X - y\2N) 1"ATM-i2R+ila+/3|()
(cf. also (3.20)).
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Lemma 3.4. The function L/y(-,-) defined by (3.22) belongs to C°°(R2n)
for any IV > 7z and

(3.26) suV\(D:DALN)(x,0\C aBK ~ ) forall (GR",

with some constants CaR > 0 and \iall 6 R.
Proof. Forany R EN

(3.27) LN{x, 0= (2Tr)"\] \] QNAX,y,t,T)V (x-yT-(dy)dr}.

Rn Rn
Let a,B € Ng. Choose A € N so large that
(3.28) nor + («-1)28<-(n+1).

Then
1%n(*.K.«.u)lLS C00,i + fINB(i + F - Y2V * 4 (i)
and so the Fubini Theorem implies

moeso = o (3 Qnor(x )8, Tele=y'r~t)dr)jay,

Rn R"™
Choose R € N so that

) + - + (1+i N~ + 1).
(3.29) ung%\ (6- 1)2R + (1 + i)|a| (n +1)

Similarly as above (cf. the proof of Lemma 3.3) we find that for r = \R\ the
relation

(3.30) Z*(z,0 = (2x)NI (jQ n,rAx,Y,0i,rj)er-yrdr,) dy=: LNRr(x, f)
Rn R"
holds, where

Qn,rA x VA ,v) "= (I +1* - y2r) X(i + Al)ON,R)(x*yA,v)-
By (3.25)
(3.31) \(DaDI[QN=>Rtr) (x,y, r,)e -y "}\ <

sE£ E (%) - 9IMi- HIME

u<av<0 4 " 4 J

A A - A — |*)_1_

e e
u<av<fy " 4 7
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e max [(M™ (1 +Ananr,H)(Xy,e,r)|(1+[x-Y)(1+ [P-"|2)[al/2<
w<a—
r<i3-v

S<T;j3(i+i,-FIR) - (i+ifi2PV2(i+ k-» i) 1, No A}, 2B+(I+1iq(v)S

<Br T
S C'U 1+ [{|2N+"DIr(1 + |[x - »|lwr 1*t)i)<-2.r{j**1}+(*-1) «t(i«)w(4) s
SC"A L1+ [{H)<H“| 21+ ¥ _ Jlw)'4 .(+D(4).

Thus by the Dominated Convergence Theorem and by the Mean Value The-
orem the function

(3.32) Tiv(®,0 = 2tr)” [ Q;v,fi,r(x,y,i,77)e*(x_/7Jd_i)(ii2dj/
R2n
belongs to C°°(R2") and

(3.33) gan!3/4(*,0=(2x)" ID“DI[QN,RI{X,y,t,rl)e*x-V'r-Vidridy.
R2n

The estimate (3.26) follows immediately from (3.31). This finishes the proof.
O

The proof of Lemma 3.4 shows the following fact.

Corollary 3.5. Let and £nta,r(T ) be defined by (3.22) and

(3.30), resp. Then for any N > n and r € N there exists a constant R € N
so fliai

Ln(x,0 =Ln,rr(x,0-

Remark. Since Ln (-,-) obeys the estimate (3.26) we know that the
operator Ln (x, D) defined by

(LN(x,D)tp)(x) = (2TN)-"V LN(x,0(F4,)(0eiUx)dt;
R"
maps S into C°°(Rn) (cf. [5]).
In fact, we are able to show

Theorem 3.6. Suppose that Q(-,-,-) € C°°(R3n) such that with a con-
stant 6 < 1 the estimate (2.4) holds. Let Ln (-,-) be defined by (3.22). Then
for any N > n one has

(3.34) Qn =Ln(x,D).
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Proof. In view of (3.20), for iV > n the function
bl ) - I<M*>i/,)(-F’V?)0 e,(yT)e,(x-v™)I
is integrable and so by the Fubini Theorem
I QN(x,y,ri)e**-™A\J(FvNe ei(y’)dt)dy =
R" Rn
=/ (/1 Aarr(x,y,nYdkyn)* bl )nyyr<p)(Ne.

Rn Rn
For any a € Nqgby (3.20)

(3.35) oot QNG (MYl <

Rn

A \(DMQN)(x,y,V)\dy~C 0JaOkNoN+slal(V) f (I + Ix-t/122)-1n
Rn Rn
and so with a suitable constant Cm >0

33 ON(xy, TDe(X~yr~i)dy = crar@~nib,nr+(i-1)m (0
for any m € N. Choosing m large enough one finds that the function

¢>0-4 (Y Qn(x, Lrjerx~vv~rdy” (FV)(£)e'(x,)
.
is integrable. Thus by the Fubini Theorem

(3.36) (Qn®)(x) = (2Tr)-""V \*j QN (x,y,1))(p(y)e,(x~v'r)dy dri =
Rn Rn

SIS A (MM)(I(NM)(oB* AN “(—
R™ Rn Rn

[T (1 QM*y»7K(I-VA+(E)d 2 /) (~) (0]~ =
R" R" R"

=/[/(/ QNix*vy*-tUyyFvH O e dr, dt=
Rn Rn Rn

= (2x)-" \] LN(x,t)(F<p)(tyl*#dt = (LN(x,D)<p)(*),
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as required. O

Corollary 3.7. Suppose that Q(v,-) G C°°(R3n) such that with a
constants < 1 the estimate (2.4) holds. Then there exists a symbol L(e,*) G

G C°°(R2n) such that with constants Cal >0, paip GR the estimate

(3.37) sup\{DaD IL){x™")\»Ca* a™) forall (GR"
holds and
(3.38) Q = L(x, D).
P roof. Choose £(e,*) = where N > n. Then obeys

(3.37) (cf. Lemma 3.4) and Qn —L(x,D) (cf. Theorem 3.6). Due to Theo-
rem 3.1 one has Q = Qn for any N GN and so the assertion follows. O

4. The identity L~"m=

4.1. One sees easily that the inclusion

M,m
(4.1) wop C Lq)m

holds. In the sequel we establish the converse inclusion

(4.2) TM,m rM,m

Let Q(-, ¢ ¢) be in . Then by Corollary 3.7 we know that
(4.3) Q—Ln(x,D) for N >n,
and so our task is to verify that Tar(-, *) € . Fix N n and define
(4.4) bj(x,y,Z, 1)) := Qn (x,y, r))®Ay)Qj(v)
and
(4.5) Li(x,£):= J J b(x,y,Nri)erx-yr-"dydri.

RnR"

We show that

(4.6) \(D°D~Lj)(x,0\ # Ca® M-W(x,04>m~laK x,0
and
4.7 (DfDALj)(x,0 - (D*“D”"Ln)(x,0,

which implies Ljv(v) GS™™,
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Lemma 4.1. Suppose € Aand Lijce) is defined by (4.5).
Then

(46) T O AA)(Xx,0\AC a*dmM-"(x,00 T-U( 0 for *EGR",

where Call does not depend on j.
Proof. A. A direct computations shows that

(4-8) \(D°D~AD"bj)(x,y,",p)\ <

N CaAl S om -A 1 A OWM2 1),
(<<1,U)-(“2,rl1j)%Ex,xE" (n1M)pT m2,r)

where Cap 7 does not depend on j. Here one must note that with constants
CTand Cu>0

(4.9) IETOHDNA (Hir)CT( + |i7j])-W =

= Cr(jm+ [T?))-I] < CT(1+ |r])-W < CrCTp~1Tinl, 7
for all (ui,®) GExy X R" and that
(4.10) |(E>n0,)(r,)| < Cu forall y € Rn.

B. Since bj(x,y,(,r]) is compactly supported in (y,p), the derivative
(DxDALj)(x,M) exists and

(411) (DZD*Lj)(x,t)= ] \]DaDP(bJ(x,y,t,r])eii*-y"-V)dydr)=
RnRn

=E () / 1(0;-4,)(x,y,(,v)D‘D I{e~-~)dyd4=
eoe e
=E () J(Dr ubj)(x,y,"v)(-Dyn-D tlf(e-y")dydv=
u=a RnR"
=£ (*)/ J(D a&-uDZDPbj)(x,u,tr,)ei(*-yr>-VdydT].
u=a R"™ Rn

For any n <a, v,w £ N{J we obtain from (4.8)

\{DZ-WD"-ADP+wbj)(x,y,S,rj)\ <

i Ca-u,u+v,R+W sup PM-|/3]-Hm b D)< T-|al-M (r12777) >
(«1,4),(u2r)eExyXRn
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Using Lemma 2 of [1] we see that

‘"dydrj
Rn Rn
< ¢ a/indv -M(x,0PT- JaKx,0,
which implies the assertion (4.6). O
Lemma 4.2. Suppose that Q(-,-,-) G A Lj(-,-) is defined by (4.5)
and //(s,°) = for some N > n. Then

(4.7) (M>“£>[A)(x,0"PAX )(x,0 for (*,0€R?2.

Proof. Fix a,8 GN}and N > n. Choose R € N so large that (3.29)
holds. Then
(4.12)

(DRDFL)(x,0 = (2%)" f DADf[QNfRtm(x,y~r,)e~-y~]dydV
R2n

(cf. (3.33)). Similarly as above (cf. the proof of Theorem 3.1 and Lemma
3.3) we get

(4.13) Lj(x,() = (2m)" f ajN<RW(x,y,"rj)e (x-y>E c)dydT).
R2n
Here we wrote

a,NRR\(X,y,Z,V) m= (1 + I*- YU X1+ A)bj,R{x,y,Z,ri),

where
bj,R{x,y,Z,ri) m=(1 + [»7-fO -1((1 + A?)bj)(X,y,(,q).
A direct computation shows that
(4.14) 0:~[amam (x.p.(, 4
AD°D f[Q NtRM(x,y,t,V)e'l*-™-(}.
Furthermore, one finds by (3.31) that
loi™ jiW * . ».i. £
<c.A |+ |qD<stHARA+ [x- »"m “*. ().
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Here one must note that by (3.31)

W DI[Qw, Y, S
Sc ", (i + {Q<+r)2Q+ - »I»)-1*.,
forany n ~ a, v ~ 8 and that
sup |[(D"0j)(x)| < Ca forany a GN,,.

Hence the Dominated Convergence Theorem implies by (4.12)-(4.14) that
the assertion (4.7) holds. O

T heorem 4.3. The identity

(4.15) Mmoo
is valid.

Proof. Let Q bein L~". Then by (4.3), Q —Ln(x,D) =: L(x,D)
where iV > n. In view of (4.6) and (4.7) one finds that Z(-, ¢) G Thus

Q=L(x,D)€Chtp. O
4.2. Let G be an open set in R". Define a class A™'™(G) of amplitudes
Q(v,-) € G°°(G x G x Rn) by the requirement: Q(-,-,-) € Agf'™(G) if

and only if for all compact sets K, K' C G and ot,3, 7 G Nq there exists a
constant C > 0 such that

(4.16) ySeL'Jg \(DaD"DjQ)(x,y,0\ i £ M- [7|(*,0<TY“+3|(r,0
for all (x,f) £ K X R". Then the operator Q defined for G Gq’(G) by

A
(4.17) = (2K~ \]Q(x,y,")if(y)e,<x~y"dy"d", X GG
Rn R"

maps Gqg°(G) into G°°(G). Define a class of operators Q by
<f(G) :=w Ithere exists £(*,*,*) G< ; m(G)}.

As well-known, there exists a function h G G°°(G x G) and an open
neighbourhood U of the diagonal D := {(x,y) GG x G | x =y) such that
1° h(x,y) = 1for (x,y) GV,
2° for each compact set K' C G there exists a compact set K" C G such
that
supp h(x, s C K" forany x GK'
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and
supp h(-,y) C K" forany y£ K"

Let $(e,,*) be in Then a routine evaluation shows that the
function Q~(-,-,-) defined by

(4.18) = h(x,y)Q(x,y,{)

belongs to as well. Furthermore, the function

I(ll- hOGy)/(x - yY, lix"y

h~(x.,y) == if X=y

belongs to C°°(G x G) for any 7 £ Nqg. Define
R(x,y,£) := (1- h(x,y))Q(x,y.{)

and
Rt(*,V>0 = h-,(x,y)(DjQ)(x.y, 0-
Then
Lemma 4.4. The functions R(e,,) and belong to A »"™(G)
and
(4.19) R = Ay forany 7 £ Na.

Proof. Since 1 —h and h belong to C°°(G x G), hence R(-,-,-) and

&y(*, »,») belong to AM™(G). Furthermore, the relation (4.19) is shown as
in the proof of Theorem 3.1. O

Theorem 4.5. Suppose that Q(-,-,-) € A~"™(G). Then there exist
Q~ €LjR"(G) and Re f) b~777 (C) such that
NeN

(4.20) Q =Q~ +R,
where Q~ is properly supported.
Proof. Choose Q~(x,y,£) := h(x,y)Q(x,y,£) and R(x,y,£) :=

= (1 —h(x,y))Q(x,y,£). Then (4.20) is valid and R = R1 for any 7 £
£ Ng. Since R.y(-,-,-) belongs to A1” Nm(G) when I71 = IV, one gets the
assertion. O
Remark 4.6. For example, any symbol £(e,*) £ S*"*n(G) (cf. [2], p.
176) obeys the estimate (4.16) and so L (x,D) can be expressed in the form
L(x, D) = Q~+R where Q~ is properly supportedand R £ f| L"rJ;Vm(G).
NeN
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Let ¢ G Cqg‘(G) be such that 'd(y) = 1 in some neighbourhood V of
supp <p (where sp G Co°(<j) is given). Furthermore, choose 0 from Cq’(G)
such that 0(x) = 1in some neighbourhood of a given point xq GG. Then

No>)(*) = No*e)(x) for
where
= Fo(™)<?~(x,y,£)*y) forx,y GG XG
\' 0 for (x,y) £G x G.

Since Qe (-, % *) GA%™ we know from Section 3 that
Qle =L Ile(x,D),

where LJ,e(-,.) €

Since L*q(x,D)(p = = 0<2~(tM = ©\> and RMY&(x,D )" =
= OAv> for all G CffiV) we get that for any G 'c G there exist Lq,(-,?) G
€S7(G) and Ry, G f| 5 ~ '"1(C) sothat

= Lq,(x,D<p+ Rc(x,D)® foral 9PGC (G.
Also, for Q~ there exists X~(-, ¢) GSM™(G) so that
Q~%= L~(x,D)<p forall ~ C 0°(G)
(one can choose Z~(x,£) := (27r)"R/" "é h(x,y)e,x~y’xt)dy'jL(x,ri)dr)'j.

In Section 4.2 it suffices to assume that (®,i) forms a pair of weight
functions only locally in G (cf. [2], p. 176).
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PROPERTIES OF HYPERCONNECTED SPACES,
THEIR MAPPINGS INTO HAUSDORFF SPACES
AND EMBEDDINGS INTO
HYPERCONNECTED SPACES

N. AJMAL and J. K. KOHLI (Delhi)

1. Introduction

Professor Levine calls a space X a D-space [5] if every nonempty open
subset of X is dense in X, or equivalently every pair of nonempty open
sets in X intersect. In the literature D-spaces are frequently referred to as
hyperconnected spaces (see for example [9], [10]). In this paper we extend
the concept of hyperconnectedness to pointwise hyperconnectedness and use
it to study the properties of hyperconnected spaces. We shall call a space
X pointwise hyperconnected at x in X if each open set containing x is dense
in X . It is immediate that a space X is hyperconnected if and only if it is
pointwise hyperconnected at each of its points.

It is clear from the definition that the property of being a hyperconnected
space is open hereditary. In fact every subset of a hyperconnected space
having a nonempty interior is hyperconnected in its relative topology. In
particular, every /2-subset [6] of a hyperconnected space is hyperconnected.
However, in the sequel, Example 2.3 shows that hyperconnectedness is not
even closed hereditary. This corrects an error in [5] where it is erroneously
stated that hyperconnectedness is hereditary (see [5, Theorem 2(1)]). More
generally we shall show that every topological space can be realized as a
closed subspace of a hyperconnected space (see Theorem 3.1).

Section 2 is devoted to the properties of (pointwise) hyperconnected
spaces. We show that hyperconnectedness is preserved under feebly con-
tinuous surjections and inversely preserved under feebly open injections while
pointwise hyperconnectedness is invariant under continuous surjections.
Moreover, we prove that (pointwise) hyperconnectedness is productive and
that every subset of a hyperconnected space having a nonempty interior
is hyperconnected. Furthermore, we show that a space is hyperconnect-
ed if and only if every feebly continuous function from it into a Hausdorff
space is constant and that every continuous function from a pointwise hy-
perconnected space into a Hausdorff space is constant. In the process we
improve/generalize certain results of Noiri [7], Pipitone and Russo [8], and
Levine [5].

In Section 3, we show that every topological space can be realized as
a closed subspace of a hyperconnected space called “hyperconnectification”.
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Beside discussing basic properties of hyperconnectifications, we also reflect
upon their functorial nature.

The closure of a subset A of a topological space X will be denoted either
by A or CI*A or Cl A; and the interior of a subset B of X will be denoted
either by B° or intjfi? or int B.

An open set in a space is said to be regular open if it is the interior of
its closure.

2. Properties of (pointwise) hyperconnected spaces,
characterizations and mappings into HausdorfF spaces

First we give some illustrative examples which either reflect upon the
theory or will be referred to in the sequel.

Example 2.1. Let X denote N, the set of natural numbers, endowed
with the topology generated by taking basic neighbourhoods of each n £ N
the set {1,2,... ,n}. The space X is a To second countable, hyperconnected
space.

Example 2.2. Let X = {a,b,c}and | = {{a},{6}.,{a,6},X,0). The
space (X, T) is pointwise hyperconnected at c but neither at a nor at b.

EXAMPLE 2.3. LetY denote the closed unit interval [0,1] equipped with
the usual topology U. Let X =Y U {te}, where w £ Y. A topology on X is
defined by declaring V C X to be open if either V is empty or V = U U{w},
for some U £ U. The space X is a hyperconnected space. The relative

topology of jo,\ which it inherits as a subspace of X coincides with the

Euclidean topology. Thus the closed set 0,| is not hyperconnected in

its relative topology. This example shows that hyperconnectedness is not a
closed hereditary property.

Proposition 2.1. For a topological space X, the set of all points where
X is pointwise hyperconnected is a closed subset of X .

Proof. Let F denote the set of all points where X is pointwise hyper-
connected. To show that F is closed, we shall show that X —F is open. To
this end, let x £ X —F. Then there is an open set U containing x such that
Ud X and so U C X —F. Thus X —F being the union of open sets is
open.

THEOREM 2.2. For a topological space X the following statements are
equivalent:

(1) X is pointwise hyperconnected at x.

(2) Every nonempty open set intersects every open set containing x.

(3) Every open set containing x is connected.

(4) Every closed subset of X not containing x is nowhere dense in X.
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(5) X is the only regular open set containing x.

P roof. The implications (1) =>m(2) and (2) =(3) are easy. To see that
(3) = (4), let F be a nonempty closed set not containing x. Then X —F
is an open set containing x. Now, if F is not nowhere dense, then F° is
nonempty and so F° U(X —F) = U is an open set containing x which is not
connected.

To show that (4) => (1), let U be an open set containing x. Now, if U is
not dense in X, then there exists a nonempty open set V disjoint from U and
so X —V is a nonempty closed set not containing x which fails to be nowhere
dense. Hence U is dense in X and thus X is pointwise hyperconnected at x.

Equivalence of the conditions (1) and (5) is straightforward.

Corollary 2.3. If X is pointwise hyperconnected at x, then X is a
connected space which is locally connected at x.

COROLLARY 2.4 [10]. A hyperconnected space is connected and locally
connected.

Theorem 2.5. Iff\X —*Y is acontinuous surjection and X is point-
wise hyperconnected at X, then Y is pointwise hyperconnected at /(x).

Proof. Let V C Y be any open set containing /(x). Then /-1(Y) is
an open set containing x and so f~1(V) is dense in X. Since continuous
surjections preserve dense sets, V. = f(f~1(V)) is dense in Y and thus Y is
pointwise hyperconnected at /(x).

Definition 2.1 [2]. A function /: X —aY from a topological space X
into a topological space Y is said to be feebly continuous if for every open
set V of ¥, f~x(V) ¢ Oimplies that int f~1(V) ¢ Q.

In the above definition a feebly continuous function is not necessarily
assumed to be surjective as assumed in Frolik’s original definition [2].

Definition 2.2 [4]. A set H in a topological space X is said to be
semi-open if there exists an open set U in X such that U C H C U. A
function f : X —=*Y from a topological space X into a topological space Y is
said to be semi-continuous if the inverse image of every open subset of ¥ is
semi-open.

P roposition 2.6. Every semi-continuous function is feebly continuous.

P roof. Suppose /: X —» Y is semi-continuous and let V be any open
subset of ¥ such that f~1(V) ¢ O. In view of semi-continuity of /, / - 1(Y)
is a nonempty semi-open set in X and hence there exists a nonempty open

set U in X such that UC/-1(¥) C U. Clearly O/ U Cint /-1(¥) and
thus int / _1(¥) ¢ O. So / is feebly continuous.
The following example shows that the converse of Proposition 2.6 is false.
Example 2.4. Let X =Y = {1,2,3,4} and let X be endowed with
the topology I = {O, {3}, {1,4},{1,3,4}, X} and ¥ be endowed with the
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topology V= {0, {1,2,3},Y}. Let/ denote the identity mapping of X onto
Y. Then / is feebly continuous but not semi-continuous.

THEOREM 2.7. Iff: X —*Y s a feebly continuous surjection from a
hyperconnected space X onto Y, then Y is hyperconnected.

Proof. Let U and V be any nonempty open sets in ¥. Since / is a
feebly continuous surjection, int f~x{U) and int / - 1(V) are nonempty open
sets in X. By hyperconnectedness of X , the sets int / - 1(i7) and int / _1(Y)
have a nonempty intersection. Let x £ int f~1(U) flint / -1(¥) Cf~I1{U) N
Mf~\V). Then /(x) GUMV. Thus any pair of nonempty open sets in ¥
have a nonempty intersection and so ¥ is hyperconnected.

Corollary 2.8 (Noiri [7]). If X is hyperconnected andf: X —Y is a
semi-continuous surjection, then Y is hyperconnected.

P roof. It is immediate in view of Theorem 2.7 and Proposition 2.6.

Corollary 2.9 (Levine [5]). A continuous image of a hyperconnected
space is hyperconnected.

Proof. It is immediate from Theorem 2.5 or Theorem 2.7.

Corollary 2.10 (Pipitone and Russo [12]). IfX is hyperconnected and
f : X —Y is a semi-continuous surjection, then Y is connected.

P roof. It is immediate from Corollary 2.8.

Remark 2.1. In view of Theorem 2.7, at a first glance, one might con-
jecture that Theorem 2.5 remains true if the term “continuous function” is
replaced by “feebly continuous function”. However, this conjecture is imme-
diately put to rest by the following example.

Example 2.5. Let X be the space of Example 2.2 and let ¥ be the two
point discrete space {0,1}. Let/: X —*Y be defined by /(a) = /(c) = 0 and
f(b) = 1. Then / is a semi-continuous function and X is pointwise hyper-
connected at ¢ but ¥ is nowhere pointwise hyperconnected. Thus pointwise
hyperconnectedness is not preserved even under semi-continuous surjections.

Definition 2.3 [2]. A function /: X —+Y is said to be feebly open if
for every nonempty open set U in X, there exists a nonempty open set V in
Y such that V C f{U).

Definition 2.4 [1]. A function /: X -> ¥ is said to be semi-open if
f(U ) is semi-open for every open set U in X.

It is easily seen that every semi-open function is feebly open. However,
the converse is not true as is shown by the following example.

Example 2.6. Let X = ¥ = {a, 6,c,d}. Let1l = {0, {a}, {6,c}, {a,6,c},
Y} and let V = {0, {a,c,d},X}. Let X be endowed with the topology V and
Y be equipped with the topology | and let / denote the identity mapping
of X onto ¥. Then / is a feebly open surjection which is not semi-open.
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Theorem 2.11. If Y is hyperconnected and f: X -+Y is afeebly open
injection, then X is hyperconnected.

Proof. Let U and V be any two nonempty open sets in X. Then since
/ is feebly open, int /(i7) ¢ O / int /(¥Y). Since Y is hyperconnected,
int f{U) fiint f{V) ¢ 0 and hence f(U) Mf(V) ¢ 0. Since / is one-one,
f(U) Nf(v) = f(UNV) and so UMV ¢ 0. Thus X is hyperconnected.

Corollary 2.12 (Noiri [7], Theorem 3.3). If Y is hyperconnected and
f : X —Y is a semi-open injection, then X is hyperconnected.

Corollary 2.13 (Levine [5], Theorem 4). If Y is hyperconnected and
f: X —*Y is an open injection, then X is hyperconnected.

Definition 2.5 [6]. Let X be a topological space and let A C X. Then
A is said to be

(a) an a-set if A C int(Cl(int A)),
and

(b) a R-set if A C Cl(int A).

Every open set is an a-set, every a-set is semi-open, every semi-open set
is a B-set and every nonempty -set has a nonempty interior. However, none
of these implications can be reversed (for details see [4], [6]).

Theorem 2.14. Let X be a hyperconnected space and let A C X . If A
has nonempty interior, then A is hyperconnected in its relative topology. In
particular, every B-subset of a hyperconnected space is hyperconnected.

Proof. Let V be any nonempty open set in A. Then V = UTA,
where U is a nonempty open set in X. Since int"A. ¢ 0 and since X is
hyperconnected, U flinty A is a nonempty open set in X and hence it is
dense in X. Therefore,

X = CIX(U NintxA) C CIX (U DA) = X.

Since CIAV = CIx(U MA) MA, it follows that V is dense in A and thus A is
hyperconnected.

Corollary 2.15 (Pipitone and Russo [8, Theorem 6.3]). Every semi-
open subset of a hyperconnected space is hyperconnected.

Mappings into Hausdorff spaces

THEOREM 2.16. For a topological space X the following statements are
equivalent.

(a) X is hyperconnected.

(b) Every feebly continuous function from X into a Hausdorff space is
constant.

(c) Every feebly continuous function from X into the two point discrete
space {0, 1} is constant.
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(d) Every semi-continuous function from X into the two point discrete
space {0, 1} is constant.

(e) Every semi-continuous function from X into a Hausdorjf space is
constant.

P roof, (a) = (b). Let / : X —Y be a feebly continuous function from
X into a Hausdorff space Y. Suppose / is not constant. Then there exist
X,y € X such that f{x) ¢ f(y). By Hausdorfness of ¥, there are disjoint
open sets U and V containing f(x) and f(y), respectively and so f~1(U)
and f~x{V) are nonempty disjoint sets. Since / is feebly continuous, it
follows that int f~x(U) and int f~1(V) are nonempty disjoint open sets
contradicting the fact that X is hyperconnected.

The implication (b) >m(c) is trivial and (c) => (d) is immediate in view
of the fact that every semi-continuous function is feebly continuous.

(d) =>(e). Let g: X —*Y be a semi-continuous function from X into a
Hausdorff space Y. Suppose g is not constant. Then there exist x,y £ X
such that g(x) ® y{y)- In view of Hausdorffness of ¥, there are disjoint
open sets U\ and U2 containing g(x) and g(y), respectively. Since g is semi-
continuous, g~I(U\) and g~x{U2) are nonempty disjoint semi-open sets in X
and so there exist nonempty open sets U and V in X such that

UCg-iUx) CU, V Cg~\U2)CV and UNV =0.
Let f: X —= {0,1} be defined by

Clearly, / is a semi-continuous surjection onto the two point discrete space
{0, 1}.

(e) = (a). Suppose X is not hyperconnected. Then there exists a
nonempty open set U in X such that U ¢ X. Define f : X —»{0,1} by

0, ifx £ U,
1, ifxex -V
Then / is a non-constant semi-continuous function from X onto the Haus-

dorff space {0,1}. This contradiction to (e) completes the proof of the the-
orem.

Remark 2.2. Equivalence of the assertions (a) and (d) in the above
theorem is due to Noiri [7].

A continuous function into a Hausdorff space is completely determined by
its values on a dense set. However, in the case of pointwise hyperconnected
spaces, the following stronger result holds.
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Theorem 2.17. Let X be a pointwise hyperconnected space at a point
x £ X . Then every continuous function from X into a Hausdorff space
is constant. In particular, every continuous real-valued function on X is
constant.

Proof. Let /: X —»Y be a continuous function from X into a Haus-
dorff space Y. Suppose / is not constant. Then there exists p E X such
that f(x) / /(p). Since Y is Hausdorff, there are disjoint open sets U and
V containing f(x) and f(p), respectively. By continuity of /, /- 1([7) and
f~\V ) are nonempty disjoint open sets such that x £ f~1{U). In view of
Theorem 2.2 this contradicts the fact that X is pointwise hyperconnected at
X.

Corollary 2.18. If X is pointwise hyperconnected at a point, then X
is ultra-pseudo-compact.

Remark 2.3. The above corollary improves an observation of [10], p.
30.

Problem 2.1. Give an example of a space which is not pointwise hy-
perconnected at any of its points and such that every continuous function
from X into every Hausdorff space is constant.

We may point out that it was proved in [3] that for every Tj-space Y a
regular Ti-space X exists such that every continuous function from X to Y is
necessarily constant. Thus, if Y = {0,1}, the two point discrete space, there
exists a nondegenerate regular Ti-space X such that every continuous func-
tion from X into Y is constant; clearly, such a space X cannot be pointwise
hyperconnected at any of its points. However, Problem 2.1 remains open.

Products

Theorem 2.19. A product space 7rXa is pointwise hyperconnected at a
pointx —(xa) if and only if eachfactor space X a is pointwise hyperconnected
at x .

PROOF. Since a projection onto a factor space is a continuous surjection,
necessity is immediate in view of Theorem 2.5. To prove sufficiency, let
X = 7TrXa and suppose that each X a is pointwise hyperconnected at xa. It
suffices to show that each basic open set containing x = (xa) is dense in X.
To this end, let U be a basic open set in X containing x. Then U —nUa,
where Ua = X a for all but finitely many_a. Since U = Tl7a and since each
Xa is pointwise hyperconnected at xa, Ua = Xa for all a and so U — X.
Thus X is pointwise hyperconnected at x.

Corollary 2.20 (Levine [5]). A product space is hyperconnected if and
only if each factor space is hyperconnected.
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3. Embeddings into hyperconnected spaces

THEOREM 3.1. Every topological space can be embedded as a nowhere
dense closed subspace into a hyperconnected space.

Proof. Let (X ,I) be a topological space. Let I = LW, {oo}, where
00 £ X and let J* = {i7 U {oo}: U e 1} U {0}. The collection I* is a
topology for X*. Since the closure of every nonempty open set in X* is X *,
the space X *is hyperconnected. Moreover, the inclusion map i: X —»X *
is a closed embedding and hence we may consider X as a closed subspace of
X*. Clearly X is nowhere dense in X*.

The space X* constructed in Theorem 3.1 is called one point hypercon-
nectification of X. In the sequel, the notation X* will always have the same
meaning as in Theorem 3.1.

Corollary 3.2. Every topological space can be embedded as a closed
subspace into a connected and locally connected space.

Proof. It is immediate in view of Theorem 3.1 and Corollary 2.4.

Theorem 3.3. If f : X —»Y is a continuous function from a space X
into a space Y, then there exists a continuous extension f *; X* —#Y * such
that the following diagram commutes:

% y

Moreover, if f has any one of the following properties, so does /*;
(a) open, (b) closed surjection, (c) homeomorphism, (d) quotient.

Proof. Suppose X* = XU{oox) and Y* = ¥Yu{ooy}. Let /*: X* —pYy*
be the function whose restriction to X is / and /*(oox) = ooy. Now, com-
mutativity of the given diagram is obvious. To show that /* is continuous,
let W be an open set in ¥Y*. Then W =V U {ooy}, where V is open in Y.
Thus, f—I (W) = f-\V ) U{oox} and since / is continuous, f~1{V) is open
in X and so f*~1(W) is open in X*. This proves that /* is continuous.

(a) Suppose / is an open function and let W be an open set in X*. Then
W = U U {oox}, where U is open in X, and so f(U) is openin Y. Thus,
r(W) = f(U) U{ooy} is open in ¥*.

(b) Suppose / is a closed surjection and let F be a closed set in X*.
Obviously, /* is a surjection. If F = X*, then f*(F) = ¥Y* which is closed.
Assume F ¢ X*. Then oox » F and F —F M X is closed in X. Since / is
a closed function, f(F) = f*{F) is closed in Y. Now, ooy * /*(P) and so
Y*\f*(F) = (Y\f(F)) U{ooy} is open in ¥*. Hence f n(F) is closed in Y*.
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(c) In case / is a homeomorphism, the result follows as in the case (a)
or (b) together with the fact that /* is a bijection whenever / is.

(d) We omit the easy proof in this case.

Let C denote the category of topological spaces and continuous functions
and let S be its full subcategory consisting of hyperconnected spaces. Define
F: C—S by F(X) = X *for each object X in C and F{f) = /* for each
morphism / in C. We point out that F is a functor and leave the simple
verification to the reader.
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ON THE SIMPLICITY OF SANDWICH NEAR-RINGS

R. D. HOFER (Plattsburgh) and K. D. MAGILL, Jr. (Buffalo)

1. Introduction

It will be assumed throughout this paper that all topological groups are
HausdorfF which means, of course that they are also completely regular. We
will also assume, without further comment, that the groups discussed here
have more than one element. Let X be a topological space, H an additive
topological group and a a continuous function from H into X. Denote by
N(X,H,a) the near-ring of all continuous functions from X into H where
addition of functions is pointwise and the product fg of two functions /, I£
£ N(X,H,a) is defined by fg = f oa og. Denote by No(X, H,a) the
subnear-ring of N(X,H,a) which consists of all those continuous functions
| with the property that /(a(0)) = 0. Then (0), the constant function
which maps all of X into 0 £ H, is the additive identity of N(X,H,a) and
Xo(X, H,a) is the largest subnear-ring of N(X, H,a) for which (0) is a two-
sided multiplicative zero. We refer to a near-ring of the form N(X,H,a) as
a sandwich near-ring and we use the term Z-sandwich near-ring for one of
the form Xo(X, H, a). In this paper, we investigate the simplicity of both
sandwich near-rings and Z-sandwich near-rings.

The first results concerning the simplicity of near-rings of functions were
obtained a long time ago. If X = H and one takes a to be the identity map
then N(X,H,a) is simply N(H), the near-ring of all continuous selfmaps
of the topological group H and Nqg(X, H,a) is just Ng(H) the near-ring
of all continuous selfmaps which fix 0. These early results were obtained by
Berman and Silverman [1] and Nobauer and Philipp [5] and dealt with N{H)
and No(H). Specifically, it was shown that if H is discrete, then No(H) is
simple and so is N(H) except in the one case where H is of order two. The
first author of this paper then showed that within a huge class of topological
groups, the converse holds for Ng(H) [2]. That is, if H is any one of these
groups, then No(H) is simple if and only if H is discrete. He also showed
in [2] that there are many nondiscrete groups H for which N(H) is simple.
The second author of this paper modified some of the techniques used in [2]
and produced in [3] still another class of groups such that N(H) is simple if
H is any one of these groups. In particular, N(Rn) is simple where RN is
the additive topological group of Euclidean X-space.
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The results obtained to date indicate that while it is rare for No(H) to
be simple, it is not so rare for N(H) to be simple. In this paper we look
at particular classes of sandwich near-rings and Z-sandwich near-rings. We
show that such a sandwich near-ring is simple if and only if it is isomorphic
to some N(H) where, of course, H is one of the groups such that N(H) is
simple. Various other equivalent conditions are also given for one of these
sandwich near-rings to be simple. For example, one such condition is that
the near-ring have a multiplicative identity. Analogous results are obtained
for Z-sandwich near-rings.

2. Sandwich near-rings

Throughout the paper the symbol (x) will be used to denote a constant
function which maps everything into the point x. The domain of (x) will
vary but will be evident from context.

Lemma 2.1. LetX bea completely regular Hausdorff space, H a topolog-
ical group and suppose that either H contains an arc or X is 0-dimensional.
Let a be a continuous function from H into X and suppose N(X, H, a) is
simple. Then Ran a (the range of a) is a dense subspace of X.

Proof. Suppose Rana is not dense in X and define a map p from
N(X,H,a) to N(H) by p(f) = f oa. One verifies in a straightforward
manner that p is a homomorphism from N ( X, H, a) into N(H). Moreover, it
is nontrivial since y>[IV(X, H, a)] contains all the constant functions mapping
H into H. Specifically, if y £ H and (y) denotes the constant function
mapping all of X into y, then p({y}) — (y) oa is the constant function
which maps all of H into y. Since Ran a is not dense in X, we can choose
p € X-clRan a. If H contains an arc, then it also contains an arc A with
one endpoint 0 and the other endpoint y ¢ 0. Since X is completely regular
and Hausdorff, there exists a continuous function / from X into H such that
f(x) = 0 for x £ clRan a and f(p) = y. If H does not contain an arc,
then X is O-dimensional and there exists a clopen (simultaneously closed
and open) set V such that p £ V Q clRan a. In this case, choose any y £
£ H,y ¢ 0 and define f(x) =y fory £ V and f(x) = 0forx £ X —V.
In either event we have a function / £ N(X,H,a) such that / ¢ (0) but
<p(f) =/ oa = (0) = R((0)). Thus p[N(X,H,a)] is a proper homomorphic
image of N (X, H, a). This is, of course, a contradiction and we conclude
that Ran a is, indeed, dense in X.

Corollary 2.2. Let G be any abstract group, let H be a proper subgroup
and let N(G,H) denote the near-ring of all functions from G into H under
pointwise addition and composition. Then N(G, H) is not simple.

Proof. Let G and H have the discrete topologies and define a(y) =y
forally £ H. Then N(G,H) is just the sandwich near-ring N(G,H,a) and
since Ran a is not dense in G, the conclusion follows from Lemma 2.1.
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In much of what follows X will also be a topological group and when this
is the case we will emphasize it by replacing X by the symbol G. Neverthe-
less, N(G,H,a) will still be the near-ring of all continuous functions from G
into H with pointwise addition and multiplication defined by fg = f oaog.
When we speak of a homomorphism a from the topological group H into
the topological group G it will be assumed, as is customary, that a is also
continuous and an isomorphism from H into G will be assumed to also be
a homeomorphism into G. When a is not necessarily a homeomorphism we
will refer to it as an algebraic isomorphism. Finally, we will use the symbol
0 to denote the identity of G as well as that of H.

Definition 2.3. Let G and H be topological groups and let a be a
homomorphism from H into G. We will say that the triple (G, H, a) is
compatible if the following two conditions are satisfied.

(2.3.1) Either H contains an arc or G is O-dimensional.

(2.3.2) Either Kera is pathwise connected or G is O-dimensional.

Lemma 2.4. Let (G,H,a) be a compatible triple and suppose N(G, H, a)
issimple. Then a is an algebraic isomorphism from H onto a dense subgroup
of G.

Proof. ot[H] is dense in view of Lemma (2.1). We need only show that
a is injective. Define a map w from N(G,H,a) into N(G) by <p(f) —a o/.
Since a is a group homomorphism, it readily follows that <pis a homomor-
phism from the near-ring N(G,H,a) into the near-ring N(G). Since, by as-
sumption, our groups contain more than one point and since a[H] = Ran a
is dense in G, it follows that Ran a contains more than one point. For each
X G Rana choose y G H such that a(y) = x. Then (y) G N(G,H,a)
and p({y)) = ao(y) = (a(y)) = (X) where the domain of (x) is G. Thus,
tp[N(G, H, a)] contains all (x) such that x € Rana and is therefore a non-
trivial near-ring. Now suppose a is not injective. Then a(y) = 0 for some
y GH, y ¢ 0. Choose two distinct points a, b G G. If Kera is pathwise
connected then there is an arc A Q Kera with endpoints 0 and y respec-
tively. Since G is completely regular and Hausdorff there exists a continuous
function / from G into A such that /(a) = 0 and /(6) = y. If Kera is
not pathwise connected then G is O-dimensional and there exists a clopen
set V containing a but not b. In this case, define /(x) = 0 for x GV and
f(x) =y for x G G—V. In either event / G N(G,H,a), f ® (0) and
Ran/ Q Kera. Thus <p(f) = a o/ = (0). Thatis, p is a proper homomor-
phism from N(G,H,a) onto a nontrivial subnear-ring of N(G). Because of
this contradiction, we conclude that a is injective.

At this point we actually have all the preliminary results we need in
order to get the main result of this section. However, at one point in the
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proof of that result we would, as things now stand, find it necessary to
appeal to Corollary (3.3) of [4], a result about semigroups which applies to
sandwich near-rings. The problem is that it does not apply to Z-sandwich
near-rings and so is of no use to us in Section 3 when we deal with these near-
rings. What we need are generalizations of some results in [4] and it seems
appropriate to get them now as they apply to both sandwich near-rings and
Z-sandwich near-rings.

Let X and ¥ be topological spaces and let a be a continuous function
from Y into X . S(X,Y,a) denotes the semigroup of all continuous functions
from X into Y where the product fg is defined by fg = / oao0g. The
semigroup 5(X, ¥, a) is referred to as a sandwich semigroup.

D efinition 2.5. A subsemigroup T(X,Y,a) of S(X, ¥, a) is said to be

an adequate semigroup if whenever a(y) = x then /(x) = y for some / €
€r(X,Y ,a).

LEMMA 2.6. Let T(X,Y,a) be an adequate semigroup which has a left
identity. Then a maps Y homeomorphically onto a retract of X .

Proof. Let / be aleft identity of T(X, Y, a). Then a o/ is a continuous
selfmap of X and since

(aofNo(ao/)=ao(loaol)=ao(//)=aol

we see that a o/ is an idempotent continuous selfmap of X with respect to
composition. Thus Ran a o/ is a retract of X. Suppose a(y) = x and let /
be any function in T(X,¥,a) such that /(x) = y. We then have

(aoN(x)=aoloa(y) =ao/oao/(x) =
=ao(/)(x) =aol/(x) —a(y) = x.

It follows that Ran a Q Ran a ol and aol is the identity on Ran a. Evidently,
Ran aol Q Ran a so, in fact, we have Rana = Ran ao/and we conclude that
Ran a is a retract of X. Now choose any y 6 Y and let g be any function in
T(X,Y,a) such that g(a(y)) = y and we have

(loa)(y) =loaogo a(y) = (lg)(a(y)) = g(a(y)) =y.

Thus, we have shown that not only is a o/ the identity on Ran a but loa
is the identity on ¥ and it follows that a is a homeomorphism from ¥ onto
the retract Ran a.

We recall that a collection T of functions from X into ¥ is said to
separate points if for distinct points a,b€ X, /(a) ¢ f(b) for some / £ f .
The proof of our next result is identical to the proof of Theorem (3.2) of [4]
but since it is short we include it here for the sake of completeness.
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Lemma 2.7. Let T(X,Y,a) be any (not necessarily adequate) subsemi-
group of S(X,Y, a) which separates points and suppose that T (X,¥ ,a) has
a right identity. Then a maps some retract ofY homeomorphically onto X .

P roof. Let r be arightidentity of T(X,¥,a). Then roa is a continuous
selfmap of Y and we have

(roa)o(roa) = (roaor)oa = (rr)yoa=roa.

Thus roa is an idempotent continuous selfmap of Y and therefore Ran roa
is a retract of Y . Let any y G Ran r be given and choose any x G X such
that r(x) = y. We then have

(roa)(y) = (roaorn)(x) = (rm)(x) =r(x) =y.

Hence, r oa is the identity on Ran r and Ran r Q Ran roa. Since it is
evident that Ran r oa Q Ran r, we actually have Ran r = Ran r oa so that
Ran r is a retract of Y. Next, let / GT(X,Y,a) and note that

[(a or(x))=(/oaor)(x)=(r)(x)=/(x).

Since T(X,Y,a) separates points it follows that a or is the identity map
on X. Because of this and the fact that r oa is the identity on Ran r, we
conclude that a is a homeomorphism from the retract Ranr onto X.

Lemma 2.8. Let T(X,Y,a) be an adequate semigroup which separates
points and has an identity. Then a is a homeomorphism from Y onto X.

P roof. This is an immediate consequence of the previous two lemmas.

Remarks. Let T(X, Y,a) be any adequate semigroup which separates
points. We have just seen that if T(X,¥,a) has an identity then a must
be a homeomorphism from Y onto X. However, the converse does not, in
general, hold. For example, let X =Y = R be the space of real numbers, let
a be the identity map and take T(X, Y, a) to be the collection of all bounded
continuous selfmaps of R. Then T(X,Y,a) is an adequate semigroup which
separates points and a is certainly a homeomorphism from ¥ onto X. Sup-
pose some function / GT(X, Y, a) is an identity. Since the binary operation
here is simple composition, we would have

Ne)> =f° (x) = (*)
for all x GX = R. In other words, / would have to be the identity map.
But T(X,Y,a) contains no functions with unbounded range so we see that

T(X, Y, a) does not have an identity.
We next give a hame to some groups we introduced in [3], p. 41.

Definition 2.9. A topological group is referred to as a TR-group if it
is the additive group of some Hausdorff topological ring T which satisfies the
following conditions:

(2.9.1) T contains a multiplicative identity 1.
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(2.9.2) The element 2= 1+ 1 has a multiplicative inverse.

(2.9.3) Either the elements 1 and 2 are connected by an arc
or T is O-dimensional.

Now we need only put together the results we have obtained here with
some results of previous papers in order to get the main result of this section.

Theorem 2.10. Let (G,H,a) be a compatible triple, let H be a TR-
group and suppose, in addition, that a is topologically a quotient map and
Ran a is a closed subgroup of G. Then the following statements are equiva-
lent:

(2.10.2) N(G,H,a) is simple.

(2.10.2) N(G,H,a) has a multiplicative identity.
(2.10.3) N(G,H,a) is isomorphic to N(G).
(2.10.4) N(G,H,a) is isomorphic to N(H).
(2.10.5) a is an isomorphism from H onto G.

Proof. We first observe that (2.10.1) implies (2.10.5). The mapping a
is an algebraic isomorphism from H onto a dense subgroup of G by Lemma
2.4. Since a is a quotient map and Ran a is closed, it follows that a is
an isomorphism from H onto G. If a is an isomorphism from the group
H onto the group G then one can show that the mapping which sends /
into / oa is an isomorphism from the near-ring N{G,H,a) onto the near-
ring N(H) so that (2.10.5) implies (2.10.2). In view of Theorem (4.3) of
[38], N(H) is simple so that (2.10.4) implies (2.10.1) and we have shown
thus far that (2.10.1), (2.10.4) and (2.10.5) are all equivalent. The mapping
which sends / into a o/ is a near-ring isomorphism from N(G,H,a) onto
N (G) whenever a is an isomorphism from H onto G so that (2.10.5) implies
(2.10.3) . It is immediate that (2.10.3) implies (2.10.2). Suppose (2.10.2)
holds. Now N(G, H, a) separates points and its multiplicative semigroup is
adequate since it contains all constant functions from G into H. Thus, it
follows from Lemma (2.8) that a is a homeomorphism from H onto G since
N(G,H,a) has a multiplicative identity. Since, by assumption a is a group
homomorphism, we conclude that it must be an isomorphism from H onto
G so that (2.10.2) implies (2.10.5) and we have now shown that (2.10.2),
(2.10.3) and (2.10.5) are also equivalent. This completes the proof.

The results of this section indicate that while there are a number of
groups G for which N(G) is simple, a lot of sandwich near-rings are not
simple.
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3. Z-sandwich near-rings

LEMMA 3.1. Let X bea completely regular Hausdorff space, H a topolog-
ical group and suppose that either H contains an arc or X is O-dimensional.
Let a be a nonconstant continuous function from H into X and suppose
Ng(X, H,a) is simple. Then Ran a is a dense subspace of X .

Proof. The proof of this lemma is the same as the proof of Lemma 2.1
with the exception of the portion where we must show that ip[Ng(X, H, a)]
has a nonzero element. In Lemma 2.1 we had all the constant functions
at our disposal but the only constant function in No(X,H,a) is (0). We
remedy the situation in what follows. Since a is nonconstant there exists
a point y € H such that a(y) ¢ a(0). Now we argue as before. Either H
contains an arc, in which case there exists an arc with endpoints 0 and z
or X is O-dimensional. In either event, there exists a continuous function
[/ from X into H such that /(a(0)) = 0 and f(a(y)) = z / 0. Evidently,
/ GNo(X, H,a)and y>(/) =/ oa / (0). This concludes the proof.

Lemma 3.2. Let X be a nondegenerate completely regular first countable
Hausdorff space, let H be a first countable group, let a be a nonconstant
continuous map from H into X and suppose the following two conditions
are satisfied:

(3.2.1) Either H contains an arc or X is 0-dimensional.

(3.2.2) If H is discrete then so is X.
Then if No(X,H, a) is simple, the following two conditions must hold:

(3.2.3) Ran a is dense in X .

(3.2.4) a(0) is an isolated point of X .

Proof. It follows immediately from Lemma 3.1 that (3.2.3) must hold.
We deny (3.2.4) and obtain a contradiction. Let

J = {/ € No{X,H,a): / vanishes in a neighborhood of 0(0)}.

It is immediate that J is a normal subgroup of (No(X, d,a), +). Let51,52 €
€ No(X,H,a) and / € J. Then /(x) = 0 for x 6 V where V is some

neighborhood of a(0). Now (a051)-1[V] is a neighborhood of a(0) on which
/51 vanishes so that fg\ € J. Moreover, for any x £ V,
(Ffi(ff2+ /) - 9igi)(x) = 51 0 ot(g2(x) + f(x)) - 51 0a 0g2(x) =
= ffi ©a(52(*)) - 5i 0a og2(x) = 0.
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That is, 4R+ /) —Gi R vanishes on V and therefore belongs to J. This
establishes the fact that J is an ideal of Ng(X, H,a). We next show that
J ¢ {(0)}. Choose p £ X —(a(0)} and let W be a closed neighborhood of
a(0) not containing the point p. Suppose first that H contains an arc. Then
it must necessarily contain an arc A with endpoints 0 and y and there exists
a continuous function / from X into A such that /(a) = 0 for x £ W and
f(p) —YmOn the other hand, if H contains no arcs then X is O-dimensional
by (3.2.1) and there exists a clopen set V such thatp £V A X —W. In this
case simply choose y ¢ 0 and define /(a) =y for x £ V and /(a) = 0 for
x £ X - V. In either event / vanishes on W so that / £ J and f ¢ (0).

Next, we show that J ¢ No(X,H,a). Again, we first consider the case
where H contains an arc and hence contains an arc with endpoints 0 and
y. Since a(0) is a Gs and X is completely regular and Hausdorff, it is well
known that there exists a continuous function / mapping X into A which
vanishes at a(0) and nowhere else. Evidently, / £ No(X, H,a) —J.

Now consider the case where H contains no arcs. Then X is O-dimension-
al and since X is first countable, there exists a countable collection {¥n} ~ r
of clopen sets such that Vi ¢ X, Vn+i A4 Vn and V,,+\ ¢ Vn for all n and

= {a(0)}- For each Vn, define a continuous function /,, from X
into the closed unit interval / = [0,1] by fn(x) = Ofora 6 V,, and /,,(8) = 1
for a 6 X —Vn and then define
®

I(a) =~(/,(a))/2" foreach x £ X.
n=I
Then / is a continuous function from X into | with the property that
/(a(0)) = 0,/(a) pOfora ¢ a(0) and Ran / = {0} U{1/2"}". Since,
by assumption, a(0) is not isolated, H is not discrete by (3.2.2) and since H
is a group, it follows that O is not isolated. Thus there exists a sequence of
points {j/n}~=i in H distinct from 0 and from each other which converges to
0. Define a map g from Ran / into H by

4(0)=0 and <(1/2") =yn foreach n.

Then gis continuous and it follows that gof is a continuous map from X into
H which vanishes at a(0) and only at a(0). Thus g0/ £ No(X, H,a) —J.
All this contradicts the simplicity of No(X, H,a) and we conclude finally
that a(0) is isolated.

We are now in a position to present an analogue of Theorem 2.10 for
near-rings of the form No(G, H,a).

Theorem 3.4. Let G and H befirst countable topological groups, let a
be a nonzero homomorphism from H into G and suppose the following two
conditions are satisfied:

(3.4.1) Either H contains an arc or G is 0-dimensional.
(3.4.2) If H is discrete then so is G.
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Then the following statements are equivalent:

(3.4.3) Nqg(G, H,a) is simple.

(3.4.4) No(G, H, a) has a multiplicative identity and G is discrete.
(3.4.5) Ng(G, H,a) is isomorphic to No(G) and G is discrete.
(3.4.6) No(G, H,a) is isomorphic to No(H) and H is discrete.
(3.4.7) a is an isomorphism from H onto G and H is discrete.

P roof. We show first that (3.4.3) implies (3.4.7). Lemma 3.2 tells us
that a(0) is isolated and that Ran a is dense in G. It follows immediately
that G is discrete and Rana = G. To complete the verification that (3.4.3)
implies (3.4.7), we need only show that a is injective. To this end, we define
a homomorphism tp from the near-ring NO(G, H, a) into the near-ring NO(G)
by ip(f) = aof. Since a is a group endomorphism, it readily follows that <pis
a near-ring homomorphism. We want to show that p[No(G, H, a)] ® {(0)}.
Choose y € H such that a(y) ¢ O and define f(a(y)) =y and f(x) = 0 for
X ¢ a(y). Then / is continuous since G is discrete and <p(f) = a o // ( 0).

Now suppose a is not injective. Then a(y) = 0 for some y ¢ 0. Choose
a6 G —{0} and define /(a) = y and f{x) = 0 for x ¢ y. Again, / is contin-
uous since G is discrete sothat / £ NG, H, a). Butip(f) —a o/ = (0) and
p is a proper homomorphism from No(G, H,a) onto <"[Ao((7, #, a)] & {(0)}.
This contradicts the simplicity of No(G, H ,a) and we conclude that a is in-
jective. It is now immediate that H is also discrete and we have shown that
(3.4.3) implies (3.4.7). When a is an isomorphism from H onto G, the map
which sends / into / oa is a near-ring isomorphism from No(G, H, a) onto
Nag(H) so that (3.4.7) implies (3.4.6) and it is well known that Ng{H) is
simple whenever H is discrete [1], [5] so that (3.4.6) implies (3.4.3). At this
point, we have shown that (3.4.3), (3.4.6) and (3.4.7) are all equivalent.

If (3.4.7) holds, G is discrete as well as H and since a is a group iso-
morphism from H onto G, the map which sends / onto a o/ is a near-ring
isomorphism from NO(G,H,a) onto NO(G). Thus, (3.4.7) implies (3.4.5)
which immediately implies (3.4.4). If (3.4.4) holds, then the multiplicative
semigroup of No(G, H, a) is adequate and separates points since G is discrete
and it follows from Lemma 2.8 that a is a homeomorphism from H onto G.
Thus H is discrete and a is an isomorphism from H onto G. That is, (3.4.4)
implies (3.4.7). It follows that the statements (3.4.3) to (3.4.7) inclusive are
all equivalent and the proof is complete.
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LOCAL SOLUTION OF A MIXED PROBLEM
FOR A DEGENERATED HYPERBOLIC EQUATION

D. C. PEREIRA (Belém), M. C. DE CAMPOS VIEIRA
and T. N. RABELLO (S&o Jose dos Campos)

1. Introduction

In this paper we study the existence of a local solution for the mixed
problem associated to the equation

™ u'+ (1 + Mo(\AT2u\2))Au + Mi(\AL/2u\2)Au" = 0

where A is a selfadjoint operator defined in a Hilbert space A with norm ||;
Mo, Mi are real functions with Mo(A) > 0 and Mi(A) 0 for A> 0.

When Mo(A) = 0 for A> 0, equation (*) is an abstract model for the
equation of vibrations of thin rods (cf. Love [8]) and it was studied, for
example, by one of the authors in [9], [10] and [11].

When Mi(A) = 0 for A> 0, equation (*) has its motivation in the math-
ematical description of the vibrations of an elastic stretched string and it
was studied by Bernstein [2], Dickey [3], Pohozaev [12], Arosio-Spagnolo [1],
Lions [7], Ebihara-Medeiros-Milla Miranda [5], Yamada [13] among others.

We use the penalty method as in Ebihara [4] combined with Faedo-
Galerkin’s method and compactness arguments (see Lions [6]).

2. Notations, assumptions and main results

Let V, H be two real Hilbert spaces whose scalar product and norm are
((*,*)), IeYand (), I«Irespectively. We suppose that V is continuously
embedded in A and dense. We identify A to its dual so that we have V C
c4acCcv.

Let A be a given operator such that A E £(V,V'), A* = A, (Au,v) =
= ((u,v)) for all u,v E V.

Suppose:
(2.1) Mo E C"O, 00), Mo(A)>0 for A> 0,
(2.2) Mi E Cx[0,00), Mi(A) >0 for AP0 and

IM[(A)A| » CMi(A) for A> 0,
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where C is a positive constant.

(2.3) The injection of V in H is compact.
Then, the spectral resolution of A is given by

(2.4) Aw,, = \vwy, i’l=1,2,...,

where {A,} and {wu} are the eigenvalues and eigenvectors of A, resp. It is

known that 0 < Ai » A2~ ... and A —+00. Therefore the power Ak!2 of
A is well defined for all positive integers k. We denote by Vjt the domain of
Ak/2, that is, Vit = D (AKk/2) equipped with the scalar product and norm

(u,v)k = (Ak/2u, Ak'2v) and |ulf = \Ak"2v\2.
We have V\ —V ,Vq—H and
(2.5) the embedding of Vjt+i in \jt is compact for all k.

Then we have the following result:

Theorem 1. Assume (2.1), (2.2), (2.3), n0,w e Vjt+3 with u0 + 0 and
K > 2. Then there exist a real number Tg > 0 and a vector valued function
n: [0,7b] -* H such that

(2.6) ue L°°(0,To;Vk+3),
2.7) «'€ L°°(0,Toyfct2),
(2-8) u"e L°°(0,To;VK),

and u satisfies

(2.9) "+ (1 + MO(\AZ2u\2))Au + M\(\A}!12u\2)Au",v) = 0,
for all v in L2(0,To), and

(2.10) u(0) = uo, i/ (0) = «1.

3. Proof of the theorem

The proof will follow by using the penalty method as in Ebihara [4]. Let
F : (0,00) —R satisfying the conditions

' FeC\o, 00),
there exist numbers ao > 0, fo > 1, S > 0 such that
(3.1) < ffc for alii €(0,i],

F'(0 <Oforall f>0,
F(O = 1forall £> 1.
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For U\ given in Vjt, let K > 0 be a real number such that
(3.2) M| <K.

The penalized problem associated to (2.4), (2.5) is the following: For
each £ > 0 find ue(t) such that
(3.3) u"{t) + (1 + MOQ\ue(t)\l))Aue(t) + Mi(\ue(t)\)Au"(t)+
+eF(L-m \iy.M=0y

(3.4) ue(0) = u0,  u'(0) = Ui

where K satisfies the condition (3.2).

We shall prove that there exists a solution uc of the above problem which
converges to n when e —»0. Furthermore u is defined on an interval [0,7b]
and it satisfies (2.6)-(2.10).

a) Approximate scheme for the penalized problem. Let us consider the
eigenvectors wu as in (2.4), let [u>i,... ,wm] be the subspace of V, generated
by the first m eigenvectors of Let
m
/\em(/\) A eoe i/\m]
u=l

be defined by

(3.5) (u"m(f),v) + (1 + MO(juem(i)|i))(Auem(i), v)+
+ M1(In«, (i)]i)(~<,(),«)+  (IL1ISsB ffili) (um (1),v) =0
for all v G [till,... ,wm],
(3.6) UAm(0) = uQm -* u0 Strongly in  Mct3,
(3.7) u'm(0) = uim ->ui strongly in  Vk+3-

By (3.2) it follows that there exists a solution uem(t) of the system (3.5)-
(3.7) defined on the interval [0,Tem), and from F 6 C1(0,00) we have ucm €
€ C2[0,Tem).

b) Estimate I. This is given by the following result:
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Lemma. Foralle> 0 and m > mo we have

(3.8) \Km(HO\l < K f°rall 1le [0, 00).

Proof. We fix e > 0 and m > mO such that [0,Tem) is an interval of
the solution and

(3.9) 0<£<1, £d2-a>i.

We note that (3.8) is satisfied for all t G [0,Tem). It is sufficient to show
that

(3.10) % KriOlfc exists and lim \uem(t)\l < K

because then the conclusion of the lemma will follow by Zorn’s lemma.
Lett = 0in (3.5 and v = Ak+1u"m(0). Using (2.1), (3.1), (3.6) and
(3.7) we have

(3.11) Km0)u+l ~ C
where C is a positive constant independent ofe > 0 and m.

Now taking the derivate with respect to t of the approximated equation
(3.5) we obtain:

(3.12) (u?m(t),v) + (1 + MO(juem(i)|?))(A<m(i),v)+
+2MO(\uem(t)\I)(ucm(t), uern(t))\(Auem(t), v)+

+ML(U.m(D)i:) (A« (1),v) + sF ( A «,(,)) )+
+2M [flucm(D)\D (uem(t), < m(i))i(A<m(i), v)-

-2F (A~ If'°()™) = 0.
If we consider v = Aku"m(t) in (3.12) we have from (3.1)
IMNK™M (I + (1 + M, (i«.ra(<)i;)Km(i)ii+.+

+AiL(«tm(i)|?)K m(Olh,] S
£ W (I».m(<)IHI”.m <KMW ITKm (<)IL1+

+2|M (i<, m(D)i;) i R (1) iTK , (1)K ™ (7)1+i-
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But in ,wm] the norms are equivalent, thus from (3.8), (2.1) and
(2.2) we obtain in [0,Tem)

4jIKUOII + (1 + Vo(ltiem(i)ii))K m(()i2+,+
+M L(Ju.m(D)INK ', (D)It+,] S CIKmW [+ + +

Integrating from 0 to t < Tem, using (3.6), (3.7) and (3.11) we have from
Gronwall’s inequality

(3.13) KmWiIfc = C(£,m) forall t£ [0,Tem),

where C(e,m) is a constant depending on e > 0 and m. It follows from
(3.13) that *I;\rpm \uem(t)\l exists.

Let us suppose that

3.14 lim Wem(t)\l = K.
(3.14) im_\em(t)

Let v = Akucm(t) in (3.5). Then we have

VALK M+ (L+ MO(«m ()1i))l«™ (i)ILi+

+Mi(lcradIs)l«™ (HIL.] +  (y ~ " (1) U2 S
i 2|MA(JuEm(i)[?)|luem(i) |1 < m(t) [Luem(i)|*+1+
+2|M i (juem(i)|F)[juem(i)|IK TAN)|IKmW Ifc+1-

Integrating both sides from 0 to t, t < Tem, we obtain from (2.1), (2.2), (3.6)
and (3.7)

(3.15) ér\] F(A~ K-MU) K,(,)|Idsi C(s,m),
0

where C(e,m) is a constant independent of t.

Let E{i) = |uEm(t)Il- We shall prove that under the hypothesis (3.14),
there exists an interval (ro,Tem) such that E\t) > O for all t £ (To,Tem).
In fact, let us suppose the contrary. Then for each interval (Ty,TcT) with
t,, - » Tem, there exist tu £ (1,,,TeT) such that

(3.16) E \ty) = 2(u'm(ty), udn(t,)h = 0.
By the continuity of E (t) and properties of F we have
(3.17) E(tyy =K as v —o00,
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and

(3.18) F A —>00 as Vv —*o00.

Let v = Akuem(t) in (3.5) and observing (3.16) we obtain

(3.19) EA- K- (t->1%) =

= -(1 + Mo(lo,,(i,)if))* ium(i,)if+L -

But by the continuity of Mg and M\ and the estimates for uim, uem and
<m in [0,Tcm) we have that the right hand side of (3.19) is bounded. On
the other hand the left hand side of (3.19) approaches infinity when v —»00.
This is a contradiction which proves our claim.

We have 0 < E'(t) < C(e, m) for all t € (ro,Tem), whence

y K - E(s

is strictly decreasing in (r0,Tem). Let rj be the inverse function of £. By a
change of variable we obtain

f (K-E D ek

re (bl
({to) i(t

"u) “% odm !

. F (0 dt.
m

Let g > 0 be a positive real number such that K —g > 0. Then by (3.14)
there exists > 0 satisfying tqg < Tem —<& and

(3.22) E(t)>K-g forall t€ (Tem- ~,Tem).

By using (3.21) in (3.15), it follows that

C{e,m)>K-g J F(---7 7 )ds.
Tém-Si
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Choosing ro such that f(ro) # 6 (S as in (3.1)) and observing (3.20) we
obtain

i(7em—21)
wk) [/ ty~-ak) [/
No Ne

which is a contradiction, because the first integral is divergent. Therefore
the lemma is proved.
Before obtaining more estimates, let us first prove that |juem(f)|i > O in
a neighborhood of t = 0. In fact, by the lemma we have
[["em(O li-K nU < CkVWt,
or
(3.22) koTlr - CkVKt < |uem(i)|r

Let 62 > 0 be such that 0 < 262 < |uo|r This is possible because uo ¢ O.
Let

rp _ luoli - 262
1 Ck\fK
then we have
(3.23) Ck\IKt + 62 < lItiolr - 62 < luomli for aU t e [0,7i].
From (3.22) and (3.23) it follows that
(3.24) luem(Oli = 62 forall *e[0,Tr]

c) Estimate Il. Let v = Ak+2ucm(t) in (3.5). Using F(£) 0 we have

2 M [1Uem(Olfc+2 + (1 + -"o(J«em (O1l))luem(i)|jfc+3+

+M1(\uem(t)\)\uU t)\I+3\ i
< [M'(juem(/)|?)||uem(i)|1|< m(O |ijluem(i)U+3+
+|Mi(Jwero(t)|?)|luem(t)|iK Tqi)[2+3|uem(t)]i.
From |uem(i)|fc < K, |Ju'm(<)jt ~ K for all t G [0,T] and Vk C Vi with

compact embedding, we obtain by using (2.1), (2.2) and (3.24) in the above
inequality:

A[ISC ()42 + (1 + M, ([«tm(1)[2))]«.m (7)11+3+
+M 1(|«<em(<)IKm(i)ljfc3] A Chuim (t)\R+3+

+ A M 1(jo«m(i)|i)|uu.(O I« + C8.
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Integrating from 0 to t < T\, using (2.5), (3.6), (3.7) and Gronwall’s inequal-
ity we obtain:

Km(OU+2i# ¢ forall 1€ [0>i]
(3.26) < Km(*)U+3 i ¢ for all *€ [0,Ti]
M 1(Jtlem(t)|5)|<m(t)[]2+3 ~ C for all t € [0,Ti]

where C is a positive constant independent of £ > 0 and m.
d) Estimate I11. In (3.12) let v = Aku"m(t), then we obtain

Vi tW U O\ + (2 + MOQum (t)\1))~ K m(t)\I+i+

+Mi(ltiem() I IAK ,, (<) 1i+i+

+2Afo(|luem(i)[j) (uem(i)), uecm(t))i(Auem(t), A tiem(t))+
+2M [ (\uem(t)\l) (uem(t),u'cm(t)) \u"m(t)\I+1+

because of the assumptions on F(£) and F'(£) together with our previous
estimates. Thus we get

ANe™ wi2+(i+M,(Ju., (i)i:))icu.(*)ii+i+
+AMKm (D1i)I<C («)lii+i] S CgK",.(i)+
+ 3 Ti(1» OT(i) 1) K m(@)12+-

Integration from 0 to i < Ti, using the convergence of the initial data, the
continuity of Mo, Mi and the estimates (3.11) it follows from the Gronwall’s
inequality that

r, 97, / Km(t)\k<C forah t GI[0,Ti]
K 1] I Mi(Juero(t)|?)K m(i)|2+i < ¢ forah fe [0,Ti]

where C is a positive constant independent of £> 0 and m.
e) Estimate IV. Our objective now is to prove that

(3.28) eF (K ~ Uc forah t€[0,IT],

where C is a positive constant independent of e > 0 and m, £ being small
enough.
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In fact, if \Wem(t)\I ~ y for some t, then

K-\< TT N K
S - 2e

and for sufficiently small £ > 0, we have
K-K m{t)\Il h

Suppose [u'm(i)|E > y. Let v = Akuem(t) in (3.5). Then we have

#J(+ Vo(je,m(i)12)) k,m (1241 +

+IMi(j«ra(i)]?)|K . (t)|[+1 + eF =0
K rd K- M|
T % S IMem(0 UIttL (0 I*+

+(1 + Mo(juem(i)|2))|uem(i)[fc+1|uem(i)|fc+i +
+ M 1(Juenl(i)]?) K m(i)[*:+2|u"nI(i)[*:.

Estimate (3.28) follows from (3.26) and (3.27).
Because of the estimates (3.26), (3.27) and (3.20), there exist two func-
tions u(t), x{t) and subsequences still represented by (uf£m), extracted from

(u€m), such that

uem —u weak star in  L°°(0, T); Vjt+3)
u'm—pvl  weak star in  X°°(0,T);Vjt+2)
(3.29) { u"'m—u" weak starin b°°(0,T\; Vk)

£F X weak star in  X°°(0,Ti).

Since the embedding of Vjt+i in Mt is compact, it follows from Aubin-Lions’
theorem [6] that

ucm * u strongly in  Z,°°(0, Ti; \fle+2),

and
Uem-~U Strongly in  L°°(0,T1"Wk+1).

Since Mo, Mi £ Cx[0,00), it follows that
MO(\uem\l) -* MO(\u\l) strongly in L2(0,Tx)

Acta Mathematica Hungarica 60, 1992



70 D. C. PEREIRA, M. C. DE CAMPOS VIEIRA and T. N. RABELLO

and
MO(uem\l)Aucm -* MO(\u\)Au  weak in 1 2(0,Ti; VK).

Also, we have
Mi(\uem\DAu"m -+ Mi(\u\l)Au"™ weak in X2(0,Ti; Vk- 2)-

The above convergences permit us to pass to the limit in the approxi-
mated equation (3.5) when e —0 and m —%00. Thus we obtain

(3.30) (u"(),v) + @+ MOQ(u(O\D))(Au(t), v)+
+AFL(Ju (D) (Au" (i), v) -f x(t)(u\t), v) = 0,
for each v £V in T2(0,Ti) and u(0) = uo, u'(0) = .
It is sufficient to show that x = 0 in some interval [0,To]. In fact, from
u' € C°([0,Ti], Vi), u'(0) = «1, |uilE < K, there exists an interval [0,To]

where \u'(t)\l < K for all t e [0,7b]. If B\ = max{|u'(i)|£; 0 £ t < To}, then
Pi = K —B\ > 0 and

(3.31) |«'()|ffc <k -y forall te [0,To].

By (3.27) we have
KmWw “ <m(5)U ~ C\t-s\.

By (3.26) and the compactness of the embedding of 14+i in VX, we can use
Arzela-Ascoli’s theorem to conclude that

<m- v! in C°([0,To], VK).

Then for to given, there exist So and m i, such that

IKm (0 Ifc- 1«'(0 id ~ 0<£ =£ rn>mx

From (3.31) it follows that
K- Wem(t)\l >y forall te [0,To, 0<£S Eo, m> mb
and from the definition of F(£) we find that
eF <e
for small e > 0. Then

eF "K ~ _ »x(f)=0 in T°°(0,To)
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since x(0 = 0 Thus (3.30) implies that v is a solution and Theorem 1 is
proved.

Remark. If we consider the equation
u" + Mi(\AY2u\2)Au + M2(\AT 2u\2)Au" = 0

with Mi(X) > 0, for all 1 0, and |[M/(A)A] < CM,(A), for all A> 0
(i = 1,2), when C is a positive constant, then we obtain a similar result as
in Theorem 1 because the same method applies.
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ON MOMENTS OF THE SUPREMUM OF NORMED
PARTIAL SUMS OF RANDOM VARIABLES
INDEXED BY N*

N. V. GIANG (Hanoi)

1. Introduction and preliminaries

Let Kk 1be an integer and let Nt denote the positive integer k-dimen-
sional lattice points with coordinate-wise partial ordering, <, i.e. for every
m—(m i,,mlc), n=(ni,... ,ra¥) ¢ N* m ~ nifand only if m- < n,,
i—1,2,... k. Further, |n| is used to denote the product IMR2eeensb, and
n —»00 means that |n| — Q0.

Let {X(n),n ¢ Nfy be independent and identically distributed (i.i.d.)
random variables and let 5(n) = X (k) denote their partial sums. Let X

k<n
be a random variable which has the same distribution as Xi and which is
independent of all other random variables.

Let 0 < t\,... ,[/ffc < 2 and b(n) be positive real numbers of the type

(1.1) b(n) =ni...nk.

Denote t = max{i,}.
It is well-known that in some special cases of b(n) the problem of relating
moments of X to moments OfSLIJ_P [s _+(n)X(n)|pand SLHD [b_:(n)5(n)|p,p >t,

has been studied by several authors.

The simplest case k = 1, b(n) = n has been investigated first by Marcin-
kiewicz, Zygmund and Burkholder. Namely, Marcinkiewicz and Zygmund
[10] proved that

(12) E SLIJ_P |5'(n)/njp< 00, p>1

provided
(1.3) J5|X|log+ |X| <00 if p=1 and F|X|P<00 if p>1

Here and in the following log+ x = max{l,log x).
Burkholder [1] proved that (1.2), (1.3) and

(1.4) E sup |X(n)/njp< 00, p>1
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are equivalent. Furthermore, when p = 1, McCabe and Shepp [11], by a
different way, proved the equivalence of (1.2)-(1.4).

For the case kK > 1, b(n) = w, eem™*, p = 1, replacing condition (1.3) by
(1.3%) £m (log+ |X]|)ft< 00,

Gabriel [3] has shown the equivalence of (1.2), (1.3) and (1.4).
Generalizing the last result of Gabriel, Gut [5] has obtained the following
result.

T heorem |.I(Gut [5]). Let {X,X(n),n £ Nfj be i.i.d. random vari-
ables and suppose that EX = 0 whenever it is finite. Let0 < r < 2 and
p A r. The following statements are equivalent:

(1.5) £|X|p(log+ [X|)* < oo if p=r and E\XX\P< 00 if p>r;

(1.6) E SLHJ < 00,

(1-7) E SLIJ_P < o0o0.

In this note we wish to generalize the above result of Gut to the general
case when the normalizing sequence {fc(n),n £ Nfc} is of the type (1.1).

The proof of the main result of this paper will be based on the following
lemmas.

Lemma 1.1. Letoq,... ,a* bereal numbers,a = max{a,, i=1,... ,£};
fi,... tk > 0. Putp = max{a,t,, i =1,... Kk}, gq=card{i:1<r<A
ocfii = p), r = card{t: 1 < r< fc, 0, = 0). For each x > 0, put

[(*)= £
Then we have the following conclusions:
Ifa <0, thenl
(1.8 I(z)X (log+ *)r.
I Here the notation /(z) X g(x) means that there exist constants Ci and Ci such that

for every z greater than some zq

c19(i)  f(x) = c2f(2).
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b) Ifa > 0, then
(1.9 f(x)Xxp(log+ x)e+r_1.

Proof.The proof of this lemma proceeds by induction on the dimen-
sion K.

a) Consider first the case a < 0. In this case r = 0 and it is easy to see
that /(x) < oo for every x, thus the conclusion is evident.

Assume now a = 0. The proof proceeds as follows. For k = 1, (1.8) is
obvious. Now suppose the conclusion holds with fc-1-dimensions. Obviously,

) e L e g2t !

n~-n®x/nn

If ¢5i < 0, then by the induction hypothesis
(.io) A)XE" M1 (le+™r) m

Choosing only one term on the right-hand side of (1.10) corresponding
to ni = 1 we get

f(x)>Ci()og+x)r.
On the other hand, for every n\

« -1 *og+ < < 1"1(log+ X)r,

so we obtain

[(*)<C2log+x)r Y, < 1_1~(log+x)r
m <X

(with ai < 0 the series ]Tn“1 1 converges). If £5 = 0, then (1.10) becomes

/(X)X £ IT*(los+ .
\Y

m<x‘i VvV )

It is easy to verify that

x [ u(log+™ r)r ldu”(los+a;)r-
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This terminates the first step of the proof.

b) As above the conclusion is true when Kk = 1. Suppose that it holds for
K —1. We may assume, without loss of generality, that a, > 0,i=1,... ,q.
Then if a*- = p forall 1~ i S q, it follows from the induction hypotheS|s
that

/ \ 9+r-2
f(x)XxP ~  n~l(log+-"-1 X IP(I°g+ &;)9+r_1.
M1 V « |/
If a,f, = p does not hold for all i = 1,... ,q, then we may assume that

&ih < Pe By induction

Choosing only one term corresponding to u, — 1 on the right-hand side
of the last expression we obtain

f(x)>ClIXp(log+x)"t 1.

On the other hand, the sum

9+r-1
on-l-p/h
E n\

is majorized by

£n71 (p-“Ith/*i(log+2)9+= 1~ CQog+i)9 - 1.
I

The lemma is completely proved.

REMARK. In the case ai > 1,... ,a/t > 1 the lemma has been stated
and proved by Klesov (Lemma 2, [9], p. 923).

The following result is an extension of Lemma 2.2 of [5].

Lemma 1.2. Let E be a Banach space with norm || «|| and let (¥ (n),
n £ N*} be independent E-valued random variables. Further let (a(n),n £

£ Nf¢} be a set of positive real numbers such that a(m) ~ a(n) if m S n.
Set

1/(n) =a_1(n) Y "' ¥(1), V =sup|d7(n)ll, W = suplla-1(n)Y(n)l
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and suppose that V < oo a.s. Then IF < 0o as. and if EWP < oo for some
0 < p <oo, then EVP < o0.

Remark. FOr k = 1, a(n) = 1, this is Theorem 3.1 of [8]; for k = 1
and general nondecreasing sequences (a(n), n = 1,2,3,...} it is Corollary
3.4 of [8]. For the case k > 1 and a(n) there are functions of |n| such that
a(m) < a(n) if [m| A |n|, this lemma is Lemma 2.2 of Gut [5].

Proof. The first statement of the lemma is obvious because of W <
AN 2kV.

For the case a(n) = 1 the lemma has been proved in [5].

For the general case of a(n) we proceed roughly as in [5], p. 208. The
details are omitted.

2. Results

In this section we state and prove the main results of this note.

Theorem 2.1. Let {X,X(n), neN*'} bei.i.d. random variables and sup-
pose that E X =0 whenever it isfinite. Let 0 < Jjt <2, t = max{i,-},
r = card{i: t, = f}. Let b(n) be of the type (1.1) and p > t. The following
statements are equivalent:

(2.1) £|X|p(log+ |X|)r <oo if p=t and E\X\P< 00 if p >1t,

X(n) P
(2.2) E s%p () < 00,
S(n) P
(2.3) E Slfl1p () < 00.

Proor. (2.1) = (2.2). Define
X'(n) = X(M/(X ()] < #m))e  X"(n) = X(n) - X'(n)

Here /{} denotes the indicator function of the set in the braces.
It is evident that

(2.4) E sup [b"1(n)X(ii)|p < E sup [ITAn)X,(n)|p+ E sup |irl(n)X"(n)|p.

Obviously,
E sup |6_1(n)X,(n)|p < 1
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We estimate now the second term on the right-hand side of (2.4). We
have by Lemma 1.1

E sup |[b-1(n)Xwn)|p < 53 b~p(n)E\X"(n)\p =
nEN*

= 53 b-p(n) \]DX4P(|X(n)| < x) = 53 b-P(n) \]Vx»(dP(\X\ <x) =

neN* b(n) neNf b(n)
@ ®
= 53 p-p(n) /xpdP(IX| < x) + 53 b-p(n) [XxpdP(|x|<X) + ...<
0<(>(m" bim) Kb(n)<2 b }
® @ ® ® .
ANEA™Pai | *Pdp(m < *)= EA~Pa;E [/ *Pdp(ix i< *) =
i=i j 3=1 i=3 i

00

=53 / xpdP(|X| < x)53aji P=

wl jii
00
< ¢5 3 ipp (i » X i < * + 1) 53 6_p(n) =
»=1 b(n)<i
00
[-x'1<*+]) ifp>t

1=l
00

c21|§1i p(iog+ W ~ Ne < * +1j) ifp=*

< (CLE\X\P ifp>t,
= | C2P|X |p(0&+|X])-- ifp=t

(where aj = card{n:j < 6(n) £ j + 1}). This terminates the first step of
the proof.
(2.2) =>(2.1). Since

(2.2) sup|X(n)/6(n)|p > |X(1)|

implies that P |X|P < oo and therefore (2.2) is trivially necessary for (2.1)
to hold ifp > t.

Assume now that p —t. When r = 0, proceeding as in the first step of
the proof above we find that the conclusion is true. Suppose now that r > 0.
It is in fact no loss of generality to assume thatti —— = tr=1t = p. In
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this case it is easy to see that

X(n")
2.5 E sup [6 1(n)X(n)|p > E su
(2.5) pI6 1(n)X(n)lp A
= E sup
NnENT
Here n' = (ni,... ,nr,1,... ;1) € Nr X{1} X... X {1} ~ Nr.

According to Theorem 1.1, (2.5) is equivalent to E |X|p(log+ |X|)r < oo.
Thus (2.1) follows.

The proof of (2.2) o (2.3) is an appropriate modification of that given
in [5] for Theorem 3.2.

(2.2) == (2.3). Because of (2.1) the Marcinkiewicz-Zygmund law is true
(see [9], Corollary 1, p. 918). It follows that V = SLIJ_;Ia b_1(n)5(n)| < oo

a.s. Since (2.2) holds, that is EW P < oo, where W = SLIJ_E) [5-1(n)X(n)|, an

application of Lemma 1.2 yields EV P < 00, i.e. (2.3).
(2.3) == (2.2). Immediate, because of W < 2kV. The theorem is com-
pletely proved.

Acknowledgement. The author wishes to thank Prof. Dr. Nguyen Zuy
Tien for a careful reading of the manuscript and for pointing out a flaw, and
Prof. Allan Gut for the references [4]—].
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ON ENUMERATION OF SPANNING SUBGRAPHS
WITH A PREASSIGNED CYCLOMATIC NUMBER
IN A GRAPH

Y. CHOW (Milwaukee)

1. Introduction

For a given connected (labelled) planar graph, the enumeration of its
connected spanning subgraphs containing the same number of “cycles” was
carried out recently [1] by a method using the real vector space of some
formal sums and certain operators defined on the space. By the number of
cycles of a connected graph (or subgraph) G here we mean the cyclomatic
number x(G) defined by

X(G) = HG)| - KG)| + 1

with e and v being the edge set and the vertex set, respectively. |( )| denotes
the cardinal number of a set. The purpose of this article is to treat the case
of a graph whether planar or non-planar.

It is interesting for reasons of exposition to mention the following fact.
Shortly after the completion of the work which appeared in [1], we were led
by the duality concept to a solution of enumeration of spanning (m-tree)
forests for any given (labelled) graph with no planarity restriction by an
approach similar to that of [1] used in dealing with cycles, thus achieved a
generalization of the celebrated Kirchhoff’s matrix-tree theorem to the case
of m-forests, to be referred to hereafter simply as the matrix-forest theorem
(Theorem | of [2]; also [4] in a different form). That the solution of the
“cycle” problem for planar graphs could lead to the solution of the “forest”
problem for any graph (planar or non-planar) is due to the very fortunate and
crucial fact: even though the concept of “duality” is well-defined for planar
graphs only, i.e. a technique used on a graph can sometimes be passed over to
its dual graph under certain correspondence, yet in the particular case of the
matrix-forest theorem one realizes that the proofin fact involves no planarity
arguments. Hence the theorem stands for the general case of any graph.
However, it is not possible to use duality on the result of a matrix-forest
theorem to attack the cycle enumeration problem for non-planar graphs,
as dual graphs are no longer defined for these graphs. Our approach here
is to use some subgraphs (i.e. “deletion”) and also the graphs obtained by
identifying certain vertices (“contractions”) of the given graph, usually in
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several consecutive steps. The procedure allows repeated iterations so the
final computation may involve comparatively simple graphs since the number
of edges and the number of vertices are reduced. In fact, for a non-planar
graph, one may stop this process at the stage when all the relevant graphs
(subgraphs or contracted graphs) involved become planar. Then the operator
method of [1] (cf. also [3] for computational details) can take over. Thanks
are due to Professors C. J. Liu and R. McQuistan for helpful comments.
I would like to especially thank Professor Bennett Chow for his continued
interest and encouragement.

Main results

We first fix some terminologies. By the “contraction” of the edges
(m = multiplicity label for the different edges), joining the pair of vertices

Vi and vj we mean that all edges e\- ' are first deleted, then the two vertices
Vi and Vj are identified. For convenience, we shall label the new vertex n, if
i <j. We shall refer to such an operation as the “contraction” of the edges
e,j. Either a “deletion” or a “contraction”, as just defined, will be called a
“reduction”. We shall use the following notation:

'éij = the contraction of all edges et (regardless of multiplicity
of edges)
éij = the deletion of all edges e,j (regardless of multiplicity
(1) < of edges)
Sa = the set of all edges joining vertices n, and Vj

mij = the multiplicity of ey, i.e. the number of edges
joining directly vertices u- and vj.

The graphs considered here are connected, labelled, undirected and with-
out self-loops. We shall first analyze the enumeration of connected spanning
subgraphs with a fixed cyclomatic number, i.e. all the subgraphs to be enu-
merated have a fixed  Denote by ax(G) the total number of such subgraphs
of a graph G (G can be either planar or non-planar). Consider first 0\{G)
where the given graph G is connected and labelled but is in general a multi-
graph. Then we have the following basic property:

For any pair of vertices i and j,

@) al(G) = ai(éijG) + mijcrl (éijG) + a0(6ijG),

provided that éijG remains connected.

The proof of (2) is straightforward. Let us check the terms on the right-
hand side of (2). The first term is the contribution of those subgraphs (in G)
that contain none of the edges from Sij. The second and third terms count,
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respectively, those subgraphs containing one and two of the edges from 5.y.
One of the important features of expression (2) is its capability for iteration,
i.e. (2) can be repeatedly applied to the reduced graphs which appeared on
its right-hand side. As it stands the double subscripts i,j which appeared
in (2) are too tedious to write after several iterations, therefore we simplify
now the notation by using a single subscript. First we write egr in place
of the rule is that we shall hereafter always label the vertices in G
in the reversed order according to which we proceed to reduce the edges.
So the first pair of vertices to be reduced will be the pair N, N —1 and we
shall label the coalesced vertex N —1 if the reduction is a contraction. We
shah next reduce the pair N —1,N —2 and shall label the coalesced vertex
N —2ifit is a contraction, and so forth. This simplification of notation also
helps us to keep track of the number of iterations involved with ease. It is
also important to realize that in general the operations of “deletion” and
“contraction” do not commute, i.e. for instance

CN-1éN & "N—"N
as depicted in Fig. 1.

Fig. 1. Non-commutativity of ‘deletion” and ‘tontraction”

Following these conventions, (2) can be written into

(3) (Ti(G) = CTiAG) + ~ j ~0i(6/vG)®  ao(*nG)

or simply

® <€i(G) = <Ti(ejvG) + mNoi{eNG) + “mN(mN - 1)a0(eNG).

Before we can carry out the iteration of (3) we must look into the effect
of ejsiG and ejgG on the multiplicities of edges. In other words, what will
be the new multiplicities in eriG and also in e*G; they will be different
from those of G where the symbol mn is used. First, the only change in
e"G, from G, is that the new denoted by rhjv, is simply mjy = 0 (i.e.
there is no edge linking directly ngr and u/v-i as a result of the deletion éar).
Next, the only changes in éj*G, from G, are the absence of the vertex N and
the change of multiplicity from the original to the new multiplicity

given by
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(5) ttin—)Y TN-ifi —mNfi, i—1,2,... ,N 2

where the superscript cin (5) denotes a single “contraction” and where the
subscripts conform to that in (1). Therefore, we have

(6) 0i(éjvG0 =

= @\{en-.\ejsiG) + mw-i<7i(é.N_ié/vGO -f - T H-\(Tnk-1 —1)00(&jv-iéjvG)
and

(7) ' nG) =

= <Ti(é;v-iétfG) + m~_10'i(éjv*-iCivGi) + 2mN-i(mN-i ~ 1) MD(éjv-ié./vG)

where mbl_1 is given by (5). We may now do the first iteration of (3); a
substitution of (6) and (7) into (3) yields

(8) 0i(G) = ai(eN-xeNG) + mAr_icrl(é.N-iejvG) + mjv<ri(e"_iée"G)+
+mwm”_i<7i(é./v_iéjvGY) + 2mN-i(mN-i —I)cao(é7Y-iéivG)+
= "mjvra”™_i(Tn”_i - 1)oo(éjv-iéjvG) + "mN(mN - 1)a0(cNG).

By carrying out the second iteration one finds that all the multiphcity
factors are due to contractions (€); their positions among the reduction oper-
ators decide the coefficients, e.g. if é is in the Tightest position it contributes
a factor mjv for ay and a factor (t2r) for a0 when e is the only operator
acting on G. Some details of the second iteration of (3) are given in the
Appendix.

The general expression of <n is

(9) 4G) = <(«<?) + E (., >i-i(w G)

following a similar proof as that of (3). Iterations can be carried out in the
same way as for O\.

Since, by the algebraic method of [1], we can make direct calculations
once the graphs involved are reduced to planar ones, it is useful to define
the “planarity reduction index” (. We say that £ = k if k is the minimum
number of reductions such that all the graphs resulted from these k con-
secutive reductions (i.e. either “deletion” or “contraction”) are planar and
still connected. Obviously a planar graph has £ = 0 by definition. As an
example, £(G) = 3 if all the following eight graphs are connected and pla-
nar. é6G, éE6G, 686G, 666G, 666G, EEEG, 666G, éééG where é6éG denotes
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AN-2*N-i*n G and so on. Therefore, it is only necessary to go through £
steps of iterations to yield an expression that can be readily computed by
the algebraic method of [1]. It is also clear that there can be different series
of reductions with the same £, in general. It is important to note that since
the purpose of the present method is to treat a non-planar graph, by means
of suitable reductions, in terms of its planar reduced graphs we will always
choose a minimum number of reductions (which defines () to do the job.
Hence the situation of having disconnected reduced graphs will not happen
under this situation. In other words, in the above example of £((?) = 3 the
situation of e.g. eeeG being disconnected will not arise.

The examples of non-planar graphs JTs: and Kb

Consider first the non-planar graph # 33. We have C("3,3) = 1, as it is
easily seen that both eK33 and K33 are planar, in this case for any edge e
(Fig. 5). We shall compute only o\ here since 42, etc. can be computed by
the same method. By (2), we have

(10) 0r(-K3,3) = 0r(86-K3,3) + ~(éB-11'3.3)-

First, we compute <T\{étK33) following the method of [1]. The so-called cy-
cle-adjacency matrix can be written into, according to the cycle assignments
of Fig. 6(a),

(1) b= 4

1bl 6x33

Fig. 5. The graph J1: s and some reduced graphs

The computation can be carried out by the formula (cf. (67) of [3])

(12) AN 33)= X3>tE(*)+ £0detE (t,j).
«=1 I<i<j<3

We find, by (12),

(13) Cri(€6K 33) = 26.
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IQ é6K53 blés - 5

Fig. 6. Cycle labellings of the reduced graphs

To compute F1(&6-1138), we assign cycle labels as shown in Fig. 6(b). The
corresponding cycle-adjacency matrix is

8 -1 0 -1
. -1 3 -1 0
(14) | = o -1 3 1
-1 0 -1 3
The computational formula to be used is
4
(15) qi(é6hrap) = JPdetE(i) + ~ E.ydet E(i, j)
«=1 1<«<j<4
from which we find
(16) AN(NBN33) = 52.
Therefore, by (10),
a7 A(N33) =26+ 52 = 78,

i.e. A3B3has 78 connected spanning subgraphs each of which has exactly one
cycle. This can be easily checked graphically.

Consider next the non-planar graph Kb5. Again, it is easy to see that
NKb) = 1. According to the labellings of Fig. 8(a) we have, for éskK 5, the
cycle-adjacency matrix:

-1 -1 0
'3 3 1 o 9
(18) 1 -1 3 -1 0
0 0o -1 3 -1
vo -1 0o -1 3y
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*5 |b) (aI €5+ 5

Fig. 7. The graph K$ and some reduced graphs

Ia) €s/(s
Fig. 8. Cycle labellings of two reduced graphs of K$

The computational formula will be, similar to (12),
5
(19) (Ti(ebK5) = ~detE (i)-f ~ £,jdet
»=1 1<»<j£5
from which we get
(20) ai(eb5K®b) = (45+55+55+40+40) —21+21+24+21+ 16+ 21) = 111.

Next, we compute in a similar manner. The cycle-adjacency
matrix corresponding to Fig. 8(b) is
2 -1 0 o0 O o'
-1 3-1-10 0
_ 0 -13 0-10
(21 E= 9 -10 2 -"10 "
o 0 -1-13 -1
o 0 o o0 -1 2

The computational formula will be
6

(22) CN(e5M5) = X > 1B A+ £  EijaetE(t,j).
*:1
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We find

(23)
(Ti(é50r5) = (35+ 40+ 30+ 55+ 40 + 35)—20+16 -f26 + 20+16 + 26) = 111.

Combining (20) and (23) according to

(28) &i{Ks) = ar(é5K5) + oi(bsKs),
we get
(29) ai(K5) = 111 + 111 = 222,

i.e. K5has 222 connected spanning subgraphs each of which has exactly one
cycle. This hats been checked graphically. Computations for a2 and so on
are entirely similar and we shall not carry them out here any further.

An important remark is in order: further iterations can be carried out in
general even after the associated reduced graphs become planar as long as
they are still connected graphs. In this way, the computations may sometimes
be reduced to the extremely simple ones. However, one must realize that the
reduction operations are “geometrical” (i.e. “graphical”) procedures. Until
one can formulate edge-deletions as well as contractions in a simple algebraic
fashion, there is often some competition between “algebraic” and “geomet-
ric” procedures in this kind of mixed computations. Their relative rule is,
therefore, decided by the over-all computational efficiency.

Appendix

It is very instructive to carry out the second iteration of (3). We need to
expand all the four o\ terms in (8) since Cm counting trees, can be computed
directly by Kirchhoff’s matrix-tree theorem. First, we have

(A.D) Oi(eN-iéNG) = Oi(eN-2CN-ieNG) + Ta4r_201(E"_ 2" 1e"C)+

+2m~7-2(mJIV-2- l)oo(éjv-2£;v-i£jvG).
Next, in order to expand ("(éjv-ié/vG) by means of (3) we have first to figure
out the numerical factor which appeared before Fi(éjv-2é/v-iéTvGO, i.e. the

multiplicity of edges directly connecting N —2 and N —3 in the reduced
graph Gh-iG G. This is just (see Fig. 2)

(A.2) mar-2 + Ty -1ar-3 = m"_2
where the superscripts cd mean “contraction”-“deletion” in that order.
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€N

eN-1 SNG

Fig. 2. Expression (A.2)

Hence we have, by (3),

(A.3) <71ty 16nr(7) = (j\{eN-22N-\ANG) + mé_~crx(kKN-22N-x"NG)-\-

1)Ob(ejv-2<siv-iejvG)-

Next, we have (see Fig. 3)

(A4) ax{e”xejgG) = ax(eNA*N-x"NG) + rn”_2ax(eN-2*"N-x"NG)+

+"m$_2(m$_2- 1)o-0(é"_28iv-ié7vG)
with

(A.5) mi_2= mN. 2-

Fig. 4- Expression (A.7)
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Then finally (see Fig. 4),

(A.B)  <Ti(6jv_i6"G) = cri(éjV-26;v-ijvG0 + m%_2cr\{eN-2'eN-\"NG)-\-

+Am”_2(m~_2- 1)To(*N-2"n-i"nG)
with
(A.7) mN-2 =mN-2 + mNiN-3+ 17~ _ 15r-3-

Before we put (A.l), (A.3), (A.4), (A.6) into (8) we need to simplify our
notation. We shall write hereafter

(A.8) ékeG"eN-2"N—"NG, éeéG=€]"-2"N-i"NG,
eeéG = €]"2n-i"n G, etc.

i.e. all the subscripts of e will be omitted. Define next the “direct sum” 0.
For any real numbers a, b, ¢, d we have

(A.9) (Tk{(ageé 0 béees 0 céé © d)G} =
— acrfc(éééG) + berfoééééG) + ccrééG) -f dak(G)
and also, for instance,
€(aé 0 béés) = aké 0 beség, etc.
for real numbers a and b. (8) becomes, after the second iteration,
(A.11) o\(G) = CTi{é[éé® mAr_ieé0TOWEEO(TnAr jv-2 + rn/v-i)rnjvéé]Gf}+

+<7i{e[mjv_2ee ® (Tnr-x,~-3 + mN-2)mN-iée © TAr_21"Eé(
®4(mjv,N-3 + mN-i,N-3 + rnN-2)(mN,N-2 + mN-i)m Nbb]G}+
+70-°{é[m”_2(mjv-2 - 1)eé®
d(tnr-1,ar-3+ rnN- 2)(mN-i,N-3 + 2- I)mjv_iée0
OTar_2(tar_2- 1)tnreé ¢ (tnr.ar-3 + tar-1JI-3 + rnN- 2)-
o(MN,N-3 + mN-i,N-3 + mN-2 - ")(inN,N-2 + m”_i)m~"ééo0
Omji-i(mjv-i - 1)& ¢ {rriN,N-2 + ™'N-\)((™N,N-2 + AN -i ~ 1)rn/yécp

OrrLy-(77rar - i)]g },

where m, = m,)f_i as defined before. We emphasize that the “direct sum”
0 used here is a computational device that has no clear graphic meaning.
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QUASIIDEALS IN ALTERNATIVE RINGS:

J. A. LALIENA (Logrono)

1. Introduction

The notion of quasiideal is a generalization of the notion of one-sided
ideal. It was introduced by 0. Steinfeld in 1953 [4] for associative rings and
semigroups. Quasiideals have been the theme of several papers (Clifford [1],
Lajos and Szasz [2], Lhu [3], Weinert [8], etc.) and an interesting monograph,
[7], has been published containing the principal results. Quasiideals are
useful in associative rings, for example, in the characterization of division
rings, in the characterization of von Neumann regular rings and elements,
and also for some decomposition theorems of semiprime rings.

Here we are going to extend the notion of quasiideal to alternative rings
(81). Also we study the minimal quasiideals in general alternative rings
(82) and then in semiprime alternative rings (83). In 84, as in associative
rings, we will give for certain semiprime alternative rings some decomposition
theorems based on quasiideals.

An alternative ring is a ring not necessarily associative such that it satis-
fies the identities x(xy) = x2y and (yx)x = yx2. We denote by A an alterna-
tive ring. If X, Y C A, then XY means the subgroup of (A, +) spanned by
the elements xy with x E X andy EY, and XA& means XA +X. IfZ C A,
we understand by [X,Y, Z\ the abelian subgroup spanned by the associators
[x.j/,z] = (xy)z - x(yz) with xEX ,yEY,zE Z. The least ideal of A
containing the set of all associators of A is [A, A,AJAN = A*[A, A, A]. This
ideal is called the associator ideal and it is denoted by D(A) or D. Also for
an alternative ring the nucleus is defined by N(A) = {x E A|[x,a,6] = 0
Va, b E A}. The biggest ideal of A contained in N(A) is called the maximal
nuclear ideal of A and it is denoted by U(A) or U. Let C, D be subrings of
A, then C 0 D means the direct sum of the subrings C and D.

We recall also that simple nonassociative alternative rings with divisors
of zero have a basis over their center: {x,} U{j/,} with i = 0,1,2,3 such that

X XY0 — xiy xO0xi = Xxu Yxx0 = ¥Yxu Yo¥r = ¥ry XO0X0 = x 04 YoYO = YOu
Yo%X % ~~ ~~Y0u X %Y\ ~ ~~x Ou FERHLX %~ X rX %+l — Yx+2u
—yi+IVi = Vivi+l = Xi+2 with t= 1,2,3

1This paper is apart of the author’s doctoral dissertation directed by Professor Santos
Gonzéalez at University of Zaragoza.
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where the indices are taken modulo 3, and the other products are zero.

81. Definition and first properties

Let A be an alternative ring and Q a subgroup of {A, +), then Q is
quasiideal of A, abbreviated Q qg.i. A, if

(QA + (QA)A + ...) M(AQ + A(AQ) + ...) C Q.

A more useful characterization of this notion is given by the following
result.

Proposition 1.1. Let A be an alternative ring and Q a subgroup of
(A,+). Then Q is quasiideal of A if and only if[A,A,Q] C Q and (AQ +
+ [AA.QDn(QA + [Q,A A])cQ.

Proof. We suppose first Q is a quasiideal of A. Then [A, A, Q] C AQ +
+ A(AQ). From the alternation of the associator [A A,Q] = [Q,AA] C
C QA+ (QA)A. Thus [A/A, Q] C Q and also (AQ + [A,A,Q]) M(QA +
+ [Q,A,A])cQ.

Conversely, let Q be a subgroup of (A, +) such that [A,A, Q] C Q and
(AQ + [A/A, QD) M(QA + [Q,A, A]) CQ. To see that Q is a quasiideal it is
sufficient to prove A(A ... (AQ)) C AQ + [A A, Q] and also ((QA)...A)AC
C QA+[A, A, Q], We only prove the first one, and we do this by induction on
n, the number of factors in A(A ... (AQ)). For n = 1this is clear. For n = 2,
A(AQ) C AQ + [A, AQ]. Suppose it is true for n—I. Then by the induction
hypothesis A(A... (AQ)) C A(AQ + [A/A,Q]) C (AA)Q + [A/A QI+ AQ C
C AQ + [A, A, Q], because [A,A, Q] CQ and case n = 2.

OBSERVATIONS. 1. Another characterization of quasiideals for a sub-
group Q of (A,+) in an alternative ring A is the following: Q is quasiideal
of Aifand only if [A,A,Q) C Q and (AQ + (A(AQ)) M(QA + (QA)A) C Q.

2. Each one-sided ideal of an alternative ring is a quasiideal. However,
not all quasiideals are one-sided ideals. For example: Let A be the subring
of a split Cayley-Dickson algebra over F spanned as F-subspace by the
elements {xcbAba*yo"byY3}- “et ® sPanned over F by {ro, x2, ¥3}-
Then Q is a quasiideal but not a one-sided ideal.

3. Every quasiideal of an alternative ring is a subring, but not every
subring is quasiideal. There are many examples of this.

IfB " A and Q g.i. A, then QB q.i. B.

4. The intersection of every set of quasiideals of A is also a quasiideal.
Thus if X C A, the g.i. of A spanned by X is

n{Q 1Q g.i. Asuch that X C Q}.

5. The sum of quasiideals need not be a quasiideal. An example is given

in [7].
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Properties:

(P.1) Let Q be a g.i. of A. If X is a subring of A such that (AQ +
+ [A A QD M((QA + [Q,A A » X M Q, then X is a g.i. A.

(P.2) i) The intersection of a left and a right ideal is g.i. ii) Every q.i. is
a quadratic ideal (q G Q implies gAq < Q).

(P.3) Let A be an alternative ring and let Q be a g.i. of A such that
Q ~ QAorQ £ AQ. Then Q is the intersection of Q -f AQ and Q -f QA.

(P.4) If A is a unitary ring, every g.i. of A is the intersection of a left
and a right ideal of A.

(P.5) Let Q be qg.i. A such that Q is not one-sided ideal of A. Then
AQ + [A A, Q] is a proper left ideal of A and QA-\-[Q, A, A] is a proper right
ideal of A.

P roposition 1.2. Let A be an alternative ring such that A2 ¢ 0. Then
A is a division associative ring or a Cayley-Dickson algebra over its center
if and only if A does not have proper quasiideals.

PROOF. If A is a division associative ring, it is clear that A does not
have proper quasiideals. If A is a Cayley-Dickson algebra over its center,
A is a unitary ring and from (P.4) every g.i. of A is the intersection of a
left ideal and a right ideal. But from the Corollary to Lemma 10.2 in [9],
a Cayley-Dickson algebra has not got proper one-sided ideals. Therefore A
does not have proper quasiideals.

Conversely, suppose A does not have proper quasiideals. In particular
A does not have one-sided ideals. Thus A is simple, and therefore A will
be a simple associative ring or a Cayley-Dickson algebra. If A is a simple
associative ring without one-sided ideals and A2 ¢ 0 it is known that Ais a
division ring.

82. Minimal quasiideals of alternative rings

Often, if we are going to study some special subset of a ring, it is inter-
esting to know the minimal elements among these subsets.

We will say that 0 ¢ Q g.i. A is a minimal quasiideal (g.i.m.) if Q is
contained properly in no one quasiideal of A.

P roposition 2.1. Let L be a minimal left ideal of A and let R be a
minimal right ideal of A. Then RD L is either 0 or a g.i.m. A.

Proof. We denote Q = R NML. We know Q is g.i. Now we suppose
Q ¢ 0 and we will show Q is minimal. Let 0 p Q' ¢ Q and Q' C Q q.i.
A. Q' is not a one-sided ideal of A, since R and L are minimal. From
(P.5) AQ" + [A A Q1] is a proper left ideal of A and it is contained in L.
From L being minimal, AQ' + [AJ/A,Q] = 0O or AQ"-f[A,A,Q7T = L. If
AQ' -f [A,A,Q'j = 0, then Q' would be a left ideal, but this is not true.
Therefore AQ' + [A,A,Q'\ = L. Similarly Q'A + [A,A#'] = R. Thus

Q'cQ-Lf\R =(AQ"+ [AAQHYN(Q'A+[AAQ}HCQ.
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Therefore Q = Q'. Contradiction.

P roposition 2.2. Let Q be g.i.m. A. Then either 1. Q C 1V(A) and if
Q2® 0, Q is a division associative ring such that Q = eAe with e a nuclear
idempotent of A; or 2. Q C D(A).

Proof. We consider A*[A, A,Q]. This is a left ideal: A(A[A,A,Q]) C
CIAATAA QI (A2[A,AQ]) C[A A Q]+ A2[A/A,Q] C A*[A A,Q}

Similarly [A, A, Q]JA* is aright ideal. Therefore A* [A, A, QIfl[A, A, Q]JA*
is a g.i. contained in Q. From Q minimal either A*A, A, QJfl[A, A, C?]A# = 0
or A*[A, A,Q] M[A A, QJA* = Q. In the first case [A, A,(J] = 0 and thus
Q C 1V(A). If we suppose Q2/ 0, from Theorem 6.5 in [7], Q is a division
ring and Q = eAe, with e a nuclear idempotent of A. In the second case
Q CD(A).

Now from the proof of Proposition 2.2 and the proof of Theorem 7.2 in
[7] we have the following corollary:

Corollary 2.3. Let Q be g.i.m. of A such that Q2 ¢ 0, then Q is the
intersection of a right and a left ideal of A.

There are minimal quasiideals of A contained in -D(A) with square zero.
For example, take the subalgebra of a split Cayley-Dickson algebra with
basis over the center: {xo, xi, x2,yo, y\, j/3} and let Q be spanned over the
center by {x2,23}e

PROPOSITION 2.4. Let Q be g.i. A such that Q is a division subring of
A or Q is a Cayley-Dickson algebra over its center. Then Q is g.i.m. A.

Proof. It follows from Proposition 1.2.

P roposition 2.5. The product RL of a minimal right ideal R of A and
a minimal left ideal L of A is either 0 or a minimal quasiideal of A.

Proof. We will suppose RL ¢ 0. We denote A{RL) + A(A(RL)) + ...
by £EA("(RL) and (RL)A + ((AT)A)A + ... by E{RL)AM. IFEAM(RL) =0
or E(RL)A”n = 0, then E{RL)An M EA™M(RL) = 0 C RL and thus RL
is gi. Since 0 RL CR ML and RTIL is g.i.m., then RL = RIML. If
EA<n(AL) ¢ 0 and E(RL)A”n ¢ 0, from L and R are minimal, we have
EAM(RL) = L and E(RL)A”n = R. Now we are going to show that R2 ¢
¢ 0. We have 0 0 RL = R(EA®n\RL)). Let 0 ¢ x £ A(EA(")(AT)) be
X = r(a,(. ..(ai(r0y0)))) with r,rO€ A, a, € Aforr=1,... ,nand y0 € L.
We proceed by induction on n, and we show that x = r(a,(. ..(ai(ro2/0)))) €
€ ER2Am and y = [r,a,,a,_!(... (a"royo)))] € ER2A"m with m 0.
If x = r(oi(rOyo)) then x = (rai)(rOyo) - [r,ab rOy0] = (rai)(rOy0) +
+ [r»royo>ai] € ER2Am. Suppose x € ER2A"m and y € ER2A™m for
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K » n—1L1 Then for n, from the Zorn-Moufang identities, we have

[r,an,(an_x(... (ai(r0i/0))))] = [r,an,a, _2(... (ai(ro2/0)))]an-i +
+[a,-1i, a,,, (@an_2(... (ai(r02/0)))Ir - [a,,_b a,, r(an_2(... (a*royo)))]
where

[0,, i, a,,an_2(... (ox(rOr/o)))]r= [ron-i,a,, a,,_2(... (ax(rQjto)))]+
+[a,a,-i,ra,_2(... (ai(roy0)))]- [a,-i,r,a,_2(... (a”roifo)))]* € EA2A(m
because ofthe induction hypothesis and the fact that R is a right ideal. Thus

[r.a,,,(on_:(...(a: (rei/0))))] € (EA:A(MA + EA2n K
Therefore

x = (ran)(an_i(...(a1(r0y0))))- [r,a,(an_i(... (ai(r0Jfo))))] € EA2A(T

from the induction hypothesis. Thus R2 ¢ 0, because RL & 0. In the same
way we can prove that L is a minimal left ideal of A such that L2/ 0.

From [5] we have one of the following situations:

(i) RCU,

(ii) R C D, and in this case R is an ideal and a Cayley-Dickson algebra
and A —R 0 A"\
and the same about L. If R and L satisfy (i), from the associative case,
RL = RTIL and thus RL is g.i.m. IfR C Uand L C D, from UD —0,
then we have RL = 0, contradiction. The same if R C D and L C U, from
DU=0. IfRCDandL C D, then R and L are ideals of A and Cayley-
Dickson algebras. Since RL is an ideal, RL C R, L and then RL = R —L.

P roposition 2.6. LetL be a minimal left ideal of A which is not a split
Cayley-Dickson algebra over its center. Let O ¢ e be an idempotent in L,
then eL is g.i.m. of A and a division subring of A.

P roof. From eelL and e2=e, we have L2¢p0. Thus L is a minimal left
ideal of A suchthat L2 ¢ 0, and from [5]LCU or L CD (and then L is a Cay-
ley-Dickson algebra). If Lc U and Ocbeel is an idempotent as in the asso-
ciative case eL is a division subring of A and a g.i. If L CD, from the hypothe-
sis L will be a Cayley-Dickson division algebra. Then e= 11 and thus eL —L.

Note. This result is not true if L is a split Cayley-Dickson algebra.
From the Cayley-Dickson process [7] we can suppose e = xg. But then
xgL has a basis over the center of the Cayley-Dickson algebra, namely
{xo0,£1, x2, x3} that is not a quasiideal.

83. Minimal quasiideals of semiprime alternative rings
We recall a known result.

Lemma 3.1. LetM be an ideal of A. The following conditions are equiv-
alent:
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(i) 1f B is an ideal of A such that B2C M, then B C M.
(ii) IfL is a left ideal of A such that L2C M, then L C M.
(iii) 1f R is a right ideal of A such that R2C M, then R C M.

If M is an ideal of A satisfying (i) or (ii) or (iii), we say M is a semiprime
ideal. If Ois a semiprime ideal of A, then we say A is a semiprime ring. Let
M be an ideal of A, A is M-semiprime if M does not contain one-sided ideals
(or ideals) with product zero.

P roposition 3.2. Let Q be a minimal quasiideal of A such that
[AJA,Q] ® 0. If A is A*[A,A,Q]-semiprime or [A, A, QJA*-semiprime,
then Q is a Cayley-Dickson algebra, Q < D(A) and Q is an ideal of A.

P roof. From Proposition 2.2 and its proof Q = A#[A, A, QI\[Q,A, A]JA*
with A*[A, A, Q] = AQ + [A/A, Q] and [A A, Q]JA* = QA + [A/A,Q]. We
are going to see that A&[A, A,Q] is a minimal left ideal of A. We suppose
L is a left ideal of A such that L C A#[A, A,Q]. We will show L2 = 0.
We consider the g.i. AL NM(QA + [Q, A, A]), contained in (AQ + [A, A, Q]I
MN(QA + [Q,A,A]) C Q. Since Q is g.i.m., AL N (QA + [Q,A/A]) = Oor
AL M (QA+ [Q, A, A]) = Q. In the second case Q C AL C L C A*[A, A Q]
and thus AMA, A, Q] = AQ + [A A, Q] = L, because Q is g.i. and L is a left
ideal. But this is a contradiction. Therefore ALC\(QA+ [Q, A, A]) = 0. Thus
QL C ALNn(QA +[Q,AA]) =0and [Q,A,L\ CALN(QA +[Q,A,A]) =0.
Therefore L2C A*[A,A,Q]. L C (AQ)L +QL C A(QL) +[A,Q,L\+QL C
C [Q,A,L\ = 0. Now from [5] and the fact that A is A*[A, A, Q]-semiprime,
L — 0 and thus A”[A,A,Q] is an ideal and a Cayley-Dickson algebra
over its center. But Q C A#[A,A,Q], thus from Proposition 1.2 we have
Q = A*(A,AQ}.

Similarly if A'is [A, A, Q]JA#-semiprime, we will obtain that [A, A,Q]A#
is a minimal right ideal and then Q is an ideal and also a Cayley-Dickson
algebra.

Corottary 3.3. Let Q be a minimal quasiideal of a semiprime ring A.
Then Q is the intersection of a minimal left ideal and a minimal right ideal.

P roof. It follows from Proposition 2.2, Theorem 7.2 and its proof in
[7] and Proposition 3.2.

THEOREM 3.4. Every minimal quasiideal Q of a semiprime ring A is
such that either

(@) Q C D(A), and then Q is an ideal and a Cayley-Dickson algebra
with A =Q d Al; or

(b) Q C U(A).

Moreover Q = fAe with f and e nuclear idempotents of A.

Proor. IT[Q,AA] ¢ O we know from Proposition 3.2 that Q < D(A),
Q is ideal and Q is a Cayley-Dickson algebra. Therefore Q is a minimal
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ideal and thus, from Theorem D in [5], Q —eAe with e a central idempotent
and A= Qq Al

If [Q, A, A] = 0, then Q » N(A) and from the associative case (see [7])
Q = AQ NMNQA with AQ, QA minimal one-sided ideals. From Theorem C
in [5] we know AQ < U(A) or AQ < D(A), and if AQ ~ D(A) then AQ
is an ideal. Therefore in the last case AQ — QA = Q < U(A) N D{A),
that is, since UD = 0, Q2 = 0 and this contradicts A is semiprime. Hence
AQ ™ U(A) and thus Q £ U(A). Now from [5] AQ = QA and QA = fA
with e and / nuclear idempotents. Therefore Q = fAe.

Observation. If A is semiprime and Q is a non-associative g.i.m. of A,
then Q2 0. This is curious because for associative rings there are semiprime
rings with minimal quasiideals with square zero (in matrix algebras, for
example). Moreover we remark that in the non-associative alternative case
we determine quasiideals better than in the associative case. This happens
also for minimal ideals and minimal one-sided ideals.

PROPOSITION 3.5. Let e be a nonzero idempotent of a semiprime ring
A. The following conditions are equivalent:
() Ae is a minimal left ideal of A,
(ii) eAe is a minimal quasiideal of A,
(iii) eA is a minimal right ideal of A.

Proof, (i) implies (ii). We suppose Ae is a minimal left ideal of A.
From [5] we have Ae C U or Ae C D. If Ae C U, eAe = eA I Ae with eA a
minimal right ideal [7, Proposition 7.4]. Thus eAe is g.i.m. If Ae C D, then
Ae is a Cayley-Dickson algebra and it is clear that e = \ac. Thus eAe = Ae
is g.i.m.

(it) implies (iii). We suppose eAe is g.i.m. of A. From Corollary 3.3
eAe = L MR with L and R minimal one-sided ideals. If R C U, then e 6 U
and thus eA is a right ideal such that 0 ¢ eA C R- From minimality of R,
eA = R. IfR C D we have eAe C D is a Cayley-Dickson algebra and an
ideal. Therefore eAe —eA.

(iii) implies (i). Let eA be a minimal right ideal. If eA C U, then from
Proposition 2.6, eAe is g.i.m. and we can apply “(ii) implies (iii)” to obtain
that Ae is a minimal left ideal. If eA C D then eA is a Cayley-Dickson
algebra and an ideal with e = 1G4 a nuclear idempotent of A. Therefore
Ae —eA.

Corollary 3.6. If A is a semiprime alternative ring, the following
conditions are equivalent:
(i) A has a minimal quasiideal,
(i) A has a minimal left ideal,
(iii)) A has a minimal right ideal.

Theorem 3.7. Let A be a semiprime alternative ring. The product of
two minimal quasiideals of A is 0 or a minimal quasiideal of A.

Proof. Let Q, Q' be g.i.m.
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(M IfQCUand Q' CD, from UD = 0, we get QQ' —0.
(i IfQCD and Q' C U, from DU = 0, we get QQ' = 0.
(iti) If Q C D and Q' C D, then Q and Q' are minimal ideals and since
QQ' is an ideal it follows that QQ'=0o0r QQ'= Q = Q".
(iv) MQ C U and Q' C U, from the associative case, QQ' is g.i.m.

Proposition 3.8. Let R be a minimal right ideal such that R2 ¢ 0.
Then R is a union of minimal quasiideals such that the intersection of each
two different of them is zero.

Proor. From [5]we have R C D and then it is a Cayley-Dickson algebra
and minimal quasiideal, or R C U and then we only need to apply the
associative case (see [7]).

84. Some decomposition theorems for semiprime rings
based on quasiideals

It is known that semiprime rings which are the sums of their minimal left
ideals have a decomposition into direct sums of minimal ideals. In the fol-
lowing we are going to study semiprime rings that are sums of their minimal
quasiideals.

DEFINITION. We say that the quasiideals Qyg (7 6 I, I £ A1) of a ring
A are a complete system, K, if the following three conditions hold:

(1) either Qyg = 0 or Qys is a minimal quasiideal of A,

(2) for every Qyg i O there are nuclear idempotents e7, fs £ A such that
QS = &-f-Afs,

(3) for every finite subset Qn,... ,Qie, Q21,... ,Q 2, *s¢, QKi,-- - ,Qke
of K there are nuclear idempotents 5,, hj with i = 1,... ,r < K and j =
=1,... ,s ™ esuch that

XX,

1=1 y=l i=lj=1
where g;Ahj are 0 or g.i.m. such that giAhj «hjAgi = giAgi.

THEOREM 4.1. For an alternative ring A the following conditions are
equivalent:

(i) A is a semiprime ring and the sum of its minimal left ideals.

(i) A = (®Bi) 0 (04,-) with {Bi}iei simple subrings of A containing
at least one minimal left ideal and with {Aj}j*j Cayley-Dickson algebras.
Moreover 05, = U(A) and ®Aj = D(A).

(iii) A is a sum of quasiideals which are a complete system.

(iv) A is semiprime and the sum of its minimal quasiideals.

Proof. It follows from Proposition 4.15 in [5], the associative case and
Corollary 3.3.
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Definition. The quasiideals Qw,Qu,... ,omm ofaring A are a finite
complete system if there are nuclear idempotents e\,... ,em€ A such that
Qik = 0 or Qik = eiAek (t ® m, Kk < m) is g.i.m. of A with the property that
e,Aek eekAei = e, Aeg,.

Now from the associative case and Theorem 4.1 it follows:

Theorem 4.2. The following conditions on an alternative ring A are
equivalent:

(i) A is a semiprime ring and a sum of afinite number of its minimal
left ideals.

(i) A=A\®...®A,®Bi0 ...®Br such that Ai,... ,A, are Cayley-
Dickson algebras and B \,... , Br are simple associative rings which are sums
of afinite number of their minimal left ideals. Moreover Aj®.. ®A,, = U(A)
and B\ ®... ® Br = D(A).

(iii) A is a sum of quasiideals which are afinite complete system.

(iv) A is semiprime and a sum of a finite number of its minimal quasi-
ideals.
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d-ISOMORPHIC SEMIGROUPS OF CONTINUOUS
FUNCTIONS IN LOCALLY COMPACT SPACES

D. T. THANH (Hanoi)

To Professor A. Csaszar on his 65" birthday

In this paper, we use the following concepts introduced in [1]:

Let S be a semigroup. For/,g €S, f <dg iff there is h £ S such that
9 = hf-

A subset D of S is said to be a d-ideal iff0cp D ¢b S and

1)/ €D, f <dg impliesg e D,

(2) For f,g € D, there exists h € D such that

h<df, h<dg.

D is a maximal d-ideal iff it is a d-ideal and coincides with any d-ideal
in which it is contained.

Let Si, S2 be semigroups. S\, Si are said to be d-isomorphic iff there is
a bijective map (p: S\ — £2 such that / <d g iff <g(f) <d <p(g).

Remark. If Si, S2are (semigroup) isomorphic then they are clearly d-
isomorphic bu the converse is false: e.g. two groups of the same cardinality
are always d-isomorphic.

Let X be a locally compact Hausdorff space. We denote Z (f) = {x €
€ X: f(x) =0}, Zc(f) = {x eX:f(x) 0} for/: X > R; Ce(X) = {/:
/- X —»R is continuous and Zc(f) is compact}.

We know [4] that Cc(X), Cc(Y) are linear lattice isomorphic (so ring
isomorphic) iff X, Y are homeomorphic, provided X, Y are locally compact
Hausdorff spaces.

In [3], it has been shown that two locally compact Hausdorff spaces X, ¥
are homeomorphic iff Cc(X), Cc(Y) are semigroup isomorphic. A general-
ization of this theorem is contained in [2]. Our purpose is to prove another
generalization.

Given a locally compact Hausdorff space X, we consider the semigroup
Cc(X). Then, iff,g£ Cc(X), f <dg, there is h € Cc(X) satisfying g = hf,
consequently Z(f) C Z(g).

Lemma 1. Ever d-ideal D in Cc(X) is fixed (i.e. f) Z(f) ¢ 0}
feD

Proof. There is / e Cc(X) not belonging to D. Suppose g 6 Cc(X)
and Z(g) MZc(f) = 0. Then, by the compactness of Zc¢(f), thereise > 0
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such that I¥1> e on Zc(f). Let

if f 0
h(x) = if f(x) ¢ 0,
if/(*) = 0.
It is easy to prove that h is continuous on X. In fact, h is continuous at

x £ Zc{f)because /, g are continuous and g(x) ¢ 0. If Xq£ Z(f), then there
exists a neighbourhood V of xq such that |/| < eS on V for a given 6 > 0.

For x £V either |h(x)| = <y —&°r h(x) = 0. So h is continuous at

xge z(f).

Zc(h) = Zc{f) implies h £ Cc(X).

Nowg <d f by / = hg. So g £ D would imply / £ D contrary to the
choice of /, hence Z(g) MZc(f) ¢ 0 whenever g £ D.

For g,g' £ D, there is h £ D such that h g, h<dg'. Then Z(h) C
C Z(g) NZ(g'). Thus the collection {Z(g) MZc(f): g £ D} of closed sets in
the compact space Zc(f) has the finite intersection property and therefore a
non-empty intersection. O

Now let x0 e X, DX = {/ £ Cc(X): /(x0) = 0} As X is locally
compact and Hausdorff, @ Z (f) = {xa}.

feD*o
Lemma 2. DX is a maximal d-ideal.

P roof. First of all, we prove DX is a d-ideal. Ifg = hf, f £ DXo, h £
£ Cc(X), then clearly g £ DXo. For /, g £ DXo, define h{x) = y/\f(x)\ + |[fir(x)],

if /(x) O,
0 if/(x)=0.

/* is continuous at x £ Zc(f) because / and h are continuous and h(x) / 0.
If x € Z(f), there is a neighbourhood V of x such that |/| < e2on V. For

y £V either
ron= el

V\f(y)\ + IfIMI
or f*(y) = 0. So /* is continuous and Z(f) = Z(f*) implies f* £ Cc(X).
From f = f*h we obtain h <j f. Similarly h <j g.
A d-ideal containing DXomust be fixed by Lemma 1 at some point xx£ X.
Then DX is fixed at xj, consequently xx = xo, and the d-ideal in question
is contained in DXo. So, the latter is a maximal d-ideal. O

By the above, tp(x) = Dx is a bijection from X onto the set of all maximal
d-ideals in Cc(X). Clearly x £ zZ{f) iff / £ Dx so that ¢ determines the
subsets Z(f) of X which constitute a base for the closed set in the locally
compact Hausdorff space X.

Thus we have proved:

I*(*)
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Theorem. Two locally compact Hausdorff spaces X and Y are homeo-
morphic iff the semigroups Cc(X) and Cc(Y) are d-isomorphic.
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RINGS WITH LEFT SELF DISTRIBUTIVE
MULTIPLICATION

G. F. BIRKENMEIER, H. HEATHERLY (Lafayette) and T. KEPKA (Prague)

Introduction

Throughout this note all rings are associative, but not necessarily com-
mutative or with unity. A ring is left self distributive (an LD-ring) if it
satisfies the identity: xyz = xyxz. Similarly one defines a right self distribu-
tive ring (an RD-ring). Petrich [7] classified all rings which are both LD and
f2D-rings as those rings which are the direct sum of a Boolean ring and a
nilpotent ring of index at most three. As shown by several examples given
herein, this does not hold for all ZD-rings. These examples illustrate how
rich the variety of ZD-rings is.

If R is an ZD-ring and N is the set of nilpotent elements of R, then
N is an ideal, N3 = 0, and R/N is Boolean. If R/N contains unity, then
R = A ®N as a direct sum of left ideals, with A a Boolean ring with unity.
This condition is implied by several others; e.g., R has d.c.c. on ideals or
a.c.c. on ideals. Without any finiteness condition we are still able to find
an ideal B — A-\- N, where A is Boolean and is a left ideal, such that B is
completely semiprime and is left and right essential in R.

Somewhat surprising from the viewpoint of semigroup theory [5] is the
result that every ZD-ring is left permutable (satisfies abc = bac identically).
Other useful identities are developed.

A complete classification of subdirectly irreducible ZD-rings is given.
Such a ring is either nilpotent of index at most three, Z2, or a certain four
element ring.

1. Preliminaries

Let R be a ring and M a non-empty subset of R. Then Id = 1d(72) is
the set of idempotents of R, M) = Pk GR;xM — 0}, r((M) = {x e R;
M i = 0}, and (M) is the ideal of R generated by M. The ideal generated
by [4, ff] = {ab —ba;a, b £ Rj will be denoted (R, R), the commutator ideal
or Lie ideal of R. The set M is said to be reduced if M NN = 0.

An ideal I of R is called right (left) essential if | TTK /0 for each right
(left) ideal of R ; completely semiprime if a& £ | whenever xn 6 | (equivalently
if R/1 is reduced); and completely prime if xy £ 1 implies x £1 ory 6 /.

A ring R is called left (right) permutable if the identity xyz = yxz (re-
spectively xyz —xzy) holds and medial if the identity xyzv = xzyv holds.

Lemma 1.1. Let R be an LD-ring and a,b,c,d € R.
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(i) a3=an £ Id for every ' " 4.
(i) 2abc = 0.
(i) (abc —achc)2 = 0.
(iv) Ifb,c £ I1d and be = 0, i/ien eb= 0.
(v) A(a- a2)R =R(a- a3)R =0.
(vi) (a- a2)3=(a- a3)3= 0.
(vii) abed = —cbad = cbad.
(vai) Ifa£ N, then abc = bac = 0.

Proof. The proofs of (i), ... ,(iv) are straightforward calculations.

(v) b(a—a2)c = bac—ba2c = b{abc)-ba2c = babac-ba2c —ba2c-ba2c —
= 0, so that A(a—a2)A = 0. Similarly, A(a —a3)4 = 0.

(vi) This is an immediate consequence of (v).

(vii) Consider the equality 0 = (a4-c)b(a + ¢)d —a+ c)bd = abed + chad.
By (ii), chad = —cbad.

(viii) We have 0 = aba3c = abc —babe = bac.

Proposition 1.2. Lei R be an LD-ring.
(i) R is left permutable, and hence medial.
(i) Ifx 6 (R2), then x2—x" Gld for every n * 3.

Proof, (i) Using Lemma 1.1 (vii) and left distributivity, abc - bac =
= abac—babe = aba2c—babac = a2bac—ba2c —a2bc—bazc = ba2c—bazc = 0
for all a, b, c G A.

(i) Leti = Sa,b,. Using (i), x2=xEa"b,= xEa,xb, = xEa;a,b,- = x3G Id.

We note that an important question in semigroup theory is to determine
those semigroups which are the multiplicative semigroups of rings [6]. By
Proposition 1.2, a left distributive semigroup that is not left permutable
cannot be the multiplicative semigroup of a ring.

2. Subdirectly irreducible rings

In this section R will be a subdirectly irreducible LD-ring with heart H
(i.e., H is the smallest non-zero ideal of R). It is well known (see e.g. [3],
Lemma 75) that the heart is either square zero or is a simple ring. Thus
either H2= 0 or H is isomorphic to the ring Z2 (integers modulo 2); in the
latter case R = H (if the heart has a unity, the ring is simple).

Lemma 2.1. 1fR3 ¢ 0, then:
(i) r(A)=0,RH =H and Id ®0.
(i) x2€ Id, xy = x2y and 2xy =0 for all x,y £ R.

Proof, (i) We have abc ¢ O for some a,b,c £ R. But abc = ab3c,
which yields a non-zero idempotent e = b3. Then eR is a non-zero ideal
(use Proposition 1.2 (i)), H » eR and 0 ¢p ed £ H for some d £ R. Since
e(ed) = ed, H is not contained in r(A), and therefore r(A) = 0.
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(i) For any x,y,z £ R, we have zxy = zx2y, xy —x2y £ r(i2) = 0 and
Xy = x2y. The rest follows from Lemma 1.1.

Lemma 2.2. IfR3/ 0 and H2 = 0, then:
(i) H g {R,R) andH C 1(A).
(i) H = {0, tn} is a two-element set and xw = w for every x £ R —(f2).

Proof, (i) If R is commutative, then HDid / 0 (see the proof of Lemma
2.1 (i)) and A2/ 0. Hence R is not commutative and H g (R, R). From this,
HR Q(R, R)R =0 (the last equality follows from the left permutability of R).

(ii) Since RH = H, Rw = H for some w £ H. If xw / 0 for an x £ R,
then xR is a non-zero ideal and H g xR. Thus w = xy for some y £ R
and we have xw = x2y —xy = w. Consequently, H — (0, in}. Further, if
xw = 0, then H is not contained in xR, and so xR =0 and x £ 1(72).

Lemma 2.3. Let R3¢0 and H2=0. ThenH = 472) and R= H UlId.

Proof. Let x £ R —1(72)Uld). Theny —x —x2 = x+ X2 is a non-zero
element of 1(72), and so H g Ry, Ry being a non-zero ideal (we have r(72) =
= 0). From this w —zy for suitable z £ R and w = zx + zx2=zX + 222 —
—zXx-f(zx)2. The supposition zx ~ 1([) yields w = zxw = (zx)2+ (zx)3 = 0,
a contradiction. Thus zx £ 1(A), w —zx and 0 = W2 —zxw —zw = W, a
contradiction. We have proved R = 1(4) Uld.

Now, if 0Ocpa £ Id and bE 1(A), then a+b£ 1(i), and so a+b £ 1d. Then
a+6 = (a-f6)2=a-fab, which implies b=ab. If 6/0, we have w = c6 for some
c £ Id, and hence w = ch = 6 (as proved above). Thus H = 1(A).

Lemma 2.4. Let R3/ 0 and H2 —0. Then card(A) = 4.

Proof. Thering R must contain 0, w and a non-zero idempotent e (see
Lemmas 2.1 and 2.2). By Lemma 2.3, e+w £ Id and e-fw is a fourth distinct
element. Now, let x £ R—H, x / e, e+w. Then, by Lemma 2.3, x, e-fx are
non-zero idempotents and w+ xe-l-e = u?-f(x +e)e = (x +e)w + (X + e)e =
=x+e)w+e)=x(w+e)-fe(w+e) —w-A-xe +w+e=xe+ e implies
w = 0, a contradiction.

Example 2.5. There is (up to isomorphism) exactly one non-nilpotent
subdirectly irreducible LD-ring of order 4. This ring can be formed by
taking w and e as the generators for the group C(2) ® C(2) and defining
multiplication via the following table:

0 w e w f-e
0 0 0 0 0
w 0 0 0
e 0 w e w + e
w + e 0 w e w + e

This example and the preceding results give us the main classification
theorem of this section.
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THEOREM 2.6. Every subdirectly irreducible LD-ring is either nilpotent
of index at most three, isomorphic to Z2, or to the four element ring from
Example 2.5.

Remark 2.7. Let I/ 0be a subdirectly irreducible ring with R3 = 0.
Then either )
(i) A2=0and (A, +) isisomorphic to C(pn), p~2 a prime, 1<n <00, or
(i) 0/ M2Q 1(72) Nr(72) = C(pn) and pnR = 0, 1~ n < 00, or
(i) 0p R2Q X72) Mr(72) £ Clp°°).

Proposition 2.8. LetT be an LD-ring.

() IfT issimple, then either T = Z20orT2= 0 and (T, +) is isomorphic
to C(p), p prime.

(it) If1 is a minimal ideal of T, then either 12= 0 or | = Z2.

Proof, () IF T2 0, then N = 0 and T is a simple Boolean ring.
(ii) A minimal ideal in a ring is either square zero or simple [3], p. 135.

3. Direct decompositions of LD-rings

P roposition 3.1. LetR be an LD-ring.

() N is an ideal of R, N3 — 0 and R/N is a Boolean ring. Hence
N = (K), where K = [a- a2;a £ R}.

(i) If R has a right unity element, then R is a Boolean ring with unity.

(iii) 1f 1 is a semiprime ideal of R, then R/l is a Boolean ring. Hence |
is a completely semiprime ideal.

(iv) If I is a prime ideal of R, then | is a completely prime ideal, a
maximal ideal and R /1 is isomorphic to Z2.

Proof, (i) N3 = 0 by Lemma 11 (viii). Hence, if a,b £ N, then
(a-fb)3=0and it is clear that N is an ideal of R. By Lemma 1.1 (vi), R/N
is idempotent, and hence Boolean.

(ii) Let e be a right unity for R. If XxE R, then x =xe =xee = xexe= x2.

(iii) and (iv) These proofs are immediate.

Lemma 3.2. LetR bean LD-ring and C 4 R a maximal set of pairwise
commuting idempotents. Then C is a maximal reduced left ideal.

Proof. Let a,bEC. Then (a+b)2=a+2ab+b=a+b by Lemma 1.1 (ii).
Clearly, a + b commutes with every element of C, and therefore a+b£ C.
Further, let x £ R. Then xa £ Id and again, by left permutability, xa com-
mutes with every element of C. Thus C is a maximal reduced left ideal of R.

Theorem 3.3. LetR bean LD-ring and A a maximal reduced left ideal
of R

.(i) 1(A) = 1(1d) = N and r(Id) Q r(A) QN.
(if) A contains every reduced right ideal of R.
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(L) B—A®N is an ideal of R which is both left and right essential in R.
(iv) B is a completely semiprime ideal.
(v) 7/1d g B, then R = B.

Proof, (i) By Lemma 1.1 (viii), N Q I(Id) and we have I(Id) g 1(A),
since A is Boolean. Now, let x 6 1(A) —N. Theni3=¢e/ 0, e 6 Id and
eA = 0, so that Re MA = 0. By the maximality of A, 0 g y = ze -fa
and y2 = 0 for some z € R and a € A. Thus 0 = y2 = ze + aze + a, SO
aGRelMA =0 Theny GRelN =0, a contradiction. We have proved
that 1(A) = I(1d) = N. Similarly, r(1d) g r(A) g N.

(if) Let O ¢p | be a reduced right ideal of R. Since every element of 7 is
idempotent and R is left permutable, 7 is an ideal. If I %A, then (7+ A) T
r\N ¢ 0. Hence, let 0o x -fa, x E7, a€ A, be such that (x + a)2 = 0. Now
X(x +a) =x+xaf£lIC\N =0,sothat x+a=—xa+atAJlAl =0, a
contradiction.

(iii) Let b£ B and x € R. Since R is left permutable, bx —b £ N. From
this conclude that B is an ideal. Further, let 0y £ R be such thaty B.
By (i), yB & 0. Hence B is right essential in R and similarly we can show
that B is left essential.

(iv) By Proposition 3.1, R/B is Boolean, and hence reduced. Thus B is
completely semiprime.

(v) This is an easy consequence of (iv).

As a corollary of the preceding theorem, we have the following result of
M. Petrich [7], Theorem 2.

COROLLARY 3.4. A ring R is both left and right self distributive if and
only ifR = A®N (ring direct sum) where A is a Boolean ring and N 3= 0.

Proof. Let R be both left and right self distributive. We can assume
that R ¢ N. Then there exists x £ R —N, so Rx3is a non-zero reduced
left ideal of R. By Zorn’s Lemma there exists a non-zero left ideal A which
is maximal among reduced left ideals of R. Let e £ Id. Since R is right self
distributive, eR MN = 0. By Theorem 3.3, eR Q A and R —A ® N. Since
R is right permutable, A is an ideal. The converse is obvious.

P roposition 3.5. Let R be an LD-ring. Then R is an RD-ring if and
only if x2y = xy2for all x,y € R.

Proof. Let R be an 7i77-ring. By Corollary 3.4, x2y = xy2 for all
X,y £ R. Conversely, assume x2y = xy2 for all x,y GR. Then the ring of
Example 2.5 cannot be a homomorphic image of R. By Theorem 2.6, R is
an RD-ring.

Lemma 3.6. Let R be an LD-ring, x € R and e = x3.

(i) Rx = Re ¢ R(x 4-e) (left ideal decomposition), Re is a Boolean ring
with unity and R(x +e) = I(R) NMRx (hence R(x + ) is an ideal).

(i) xR = e72®(x+e)7i (ideal decomposition) andxR = Re® Y®(x+e)/[,
(left ideal decomposition) where Y = 1(iA)Mef and Y b(x +€)72 = A(4)MxA.
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Proof, (i)Lety £ R. Thenyx = ye+y(x+e) and R(x +e) Q I(R)(~\Rx
by Lemma 1.1 (v). The inclusion 1(A) MRx Q R(x + e) is easily seen.

(i) Since R is left permutable, xR is an ideal, Re QeR and (x + )R Q
Q 1(#) Mr(A). Now let yER. Then ey =ye+ey+ye, ey + ye £ 1([) MeR.
Hence eR = Re®Y, Y = 1R) MeR, and xR = Re ®F ® (x + e)R.

THEOREM 3.7. Let R be an LD-ring such that the ring R/N is finitely
generated as an ideal. Then R = A ® N, where A is a left ideal of R which
is a Boolean ring with unity. If, in addition, R = RXi + em + Iix,, or

R =x\R + ... +xnR for some 1" n and xi,... ,xn £ R, then N = IR).
Proof. Since R/N is Boolean and idempotents lift modulo N, we have
R =Rel+ ...+ Rem+ N for some 1 m and e\,... ,em £ 1d(iZ). Now

assume m = 2. Note that 62 = R2ei + a,a=e2+ “ei, R =Rel+ Ra+ N.
By Lemma 3.6 (i), Ra = Re® R(a + e), e - a3. Now, 0 = aei = ee\ —ele.
Let b = e\ + er, so that b —b2. Then we have R = Rb® N and Rb is
a Boolean ring with unity. The general result follows by induction. The
equality N = 1(4) may be proved similarly.

Note: If R is a Boolean ring then R is finitely generated as an ideal if
and only if R has a unity.

Corollary 3.8. LetR bean LD-ring. IfR satisfies any of the follow-
ing conditions, then R = A® N, where A is a left ideal of R which is afinite
Boolean ring.

(i) R/N isfinite.

(i) R has no infinite set of orthogonal idempotents.

(iii) R has a.c.c. or d.c.c. on ideals.

Proof. In all cases R/N is finite and the result follows from Theo-
rem 3.7.

REMARK 3.9. Example 2.5 shows that the direct decomposition R =
= A® N cannot be improved to a direct sum of ideals.

Every left permutable ring (and hence every LD-ring) is medial. Me-
dial rings are investigated in [2]. The next result is a partial converse to
Theorem 3.7.

T heorem 3.10. Let R be a medial ring.

(i) N is an ideal.

(i) IfR = A® N where A is a left ideal of R which is a Boolean ring
and N3 =0, then R is an LD-ring.

Proof, (i) For all x,y £ R, (xy —yx)3=0. Now, N is an ideal by [3],
Theorem 54.
(if) First,notice that NA=0. Let ai,<>>°3£-Aand x\,X2,x*"£N. Then

(ai + xx)(a2+ x2)(«i + zi)(a3+ x3)- (al+ xi)(a2+ x2)(a3+ x3) =
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—ail2«3 4" 4 010201X3 —010203 —0102X3 —01X2X3 =
= 0302X3X3 — 01X2X3 — 01X302X3 — 03X203X3 = 0.

Lemma 3.11. LetR be an LD-ring, A a maximal reduced left ideal and
B=A®N. Lete €1d besuchthat e £ B. Then there exists b£ER —B
and O a £ A such that ea = a,0 ae £ B, e = b4 ae, and b and ae are
non-zero orthogonal idempotents.

Proof. By Theorem 3.3 (i), ea = a ¢ O for some a £ A. We have
Od ae £ B by Theorem 3.3 (iii).Put b= e -fae. Since e ® B, alsob £ B.
But R is left permutableand b2 = e+ eae = e+ ae = h. Also aeb = 0= bae.

Proposition 3.12. LetR bean LD-ring, A a maximal reduced left ideal
and B =AdN. IfB ¢ R, then there are infinite sets {b0, £4, 62>} and
{oi, 02,03,...} of non-zero idempotents such that:

(i) € R —B for everyr=20,1,2,

(ii) {03,02,03,...} QA is a set of orthogonal idempotents.

(iii) bjOj+i = a,+i and a,+i6-£ B for every i = 0,1,2,

(iv) 6 = £+i -f a-tib- and 6,+i,a;+ib, are non-zero orthogonal idempo-
tents for every i = 0,1,2,

(v) Rb0 2 Rbi 3 Rb2D ....

(vi) r(b0) C r(&i) Cr(b2) C ....

Proof. Let x G R he such that x ~ B. Put e = x3. Since R/B is
a Boolean ring, e ~ B. Now, the existence of the sets of idempotents as
well as the assertions (i), ..., (iv) follow from Lemma 3.11 by induction.
Moreover, (v) is clear, since 6,  Rbi+\. For (vi), r(6.) Q r(b,-+i). However,
0,+i6-e r(bj+i) and at+i6,  r(6,).

4. Examples

In this section, three construction schemes are given for building LD-
rings. Here examples show that the variety of LJ/1-rings contains much more
than just direct sums or products of Boolean rings and nilpotent class three
rings. We close the section with an open problem.

Exampte 4.1. Let T be aring, M a left T-module and f:M —T,
h: M —= M Dbe T-homomorphisms satisfying fh = f and h2 = h. Define
x *y = f{x)h{y) for each x,y € M. Then (M, 4, *) is aring. If f(x)f(y) =
= f(x)f(y)f(x) for each x,y £ N, then (M, +,*) is an LD-ring.

One concrete realization of this is given by taking M to be the full
set of n by n matrices, n > 1, over a Boolean ring T and use / = trace,
h = 1pa/. The ring so formed will always contain nonzero nilpotents and
idempotents. Another realization arises by using the same M, T, f but
taking h(aij) = (a1) where a', = a,, and a- =0fori ¢ j.

Other similar constructions come readily to mind.
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Example 4.2. Let 5 be aring and f,h endomorphisms of the additive
group (S, +) such that:

(i) foreachy G/(S), x Gh(S), f(yx) = yf(x) and h(yx) = yh(x);

(i) h2=h ,f2=1 and fh =f.
Define a *b = f{a)h(b) for each a,o G S. Then (5,+,*) is a ring. |If
[(a)/(ft)/(a)/i(c) = f(a)f(b)h(c) for all a, b,c GS and if /(5) is a subsemi-
group of the multiplicative semigroup of S, then (5,+,*) is an LD-ring.

As a particular example of this take R to be an LD-ring, S the full ring
of n by n matrices over R, n > 1, and define / and h via /(a,-,) = (M.
where ft-- = 0 for i ®j and t- = a,,, h(atd) = (ctJ), where ctJ =0 fori > j
and Cij = aij otherwise. Then (5, +,*) is an LD-ring which is not right
permutable.

Example 4.3. Let F be a free ring and let | be the ideal of F generated
by the set {abac —abc; a, b,c GF}. Then F/I is an LD-ring which is neither
Boolean nor nilpotent.

The construction schemes given in Examples 4.1 and 4.2 are special cases
of a general algebraic construction developed in [1].

The results of Section 3 indicate that for a large class of LD-rings, the
decomposition R = A ® N, where A is a left ideal and a Boolean ring, is
valid. So far we have been unable to prove or disprove this for the whole
class of LD-rings and we leave it as an open problem.
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QUASI-P RADICALS OF ASSOCIATIVE RINGS

X1 OUGEN (Ningbo)

81. Quasi-P rings and quasi-P radicals

In order to study the radicals of associative rings in a unified way, we
introduce the notions of quasi-P rings and quasi-P ideals where P means an
arbitrary property of rings.

Definition 1.1. Let R be an associative ring, R° an extensive ring of

R, and R° an aribtrary homomorphic image of R°: R° ~ R°. If the images
R = f(R) of subrings R of R° under the arbitrary homomorphism / are all
{0}, or, if some f{R) —R o {0}, then, it must contain a non-zero P ideal
of R°. We call R a quasi-P subring of R°, or briefly, a quasi-P-ring, where
P is an arbitrary property of rings.

Definition 1.2. Let / be an ideal of an associative ring R (one-sided
or two-sided). When 1 is regarded as a ring, which is a quasi-P subring of
R, we call I a quasi-P ideal of R.

Lemma 1.1. An arbitrary quasi-P one-sided ideal of an associative ring
R is contained in a quasi-P two-sided ideal of R.

Lemma 1.2. The sum | of all quasi-P two-sided ideals of an associative
ring R is also a quasi-P two-sided ideal of R. Therefore, it is a unique
maximal quasi-P ideal of R.

Proof. Suppose that I is not a quasi-P ideal of R, then R has at least
a homomorphic image R (R ~ R =R/N), g(lI) =/ = (/+ N)/N in R does
not contain non-zero P ideals of R. Thus, we have a quasi-P ideal la % N
in | at least. (Otherwise, the sum | of all la must be I C JV, i.e. | = {0},
whence | would be quasi-P ideal.) Since la are quasi-P ideals, la must

contain a non-zero P ideal of R, but it is also a non-zero P ideal of R in I,
a contradiction. O

Lemma 1.3. Let | be a quasi-P two-sided ideal of R, H a non-zero
qguasi-P ideal of R/1. Thus the inverse image H of H under the natural
homomorphism g {R ~ R/I) is also a non-zero quasi-P ideal of R.

Lemma 1.4. Let I be a uniqgue maximal quasi-P ideal, then R/l does
not contain any non-zero quasi-P ideals.
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Proof. If R/l has a quasi-P ideal H o {0} then, by Lemma 1.3, the
complete inverse image H of H under the homomorphism / (R ~ R/l)is a
non-zero quasi-P ideal of R. Furthermore, as Ijs a maximal quasi-P ideal,
so H QI. Hence H = {0}, a contradiction to H ¢ {0}. O

DEFINITION 1.3. The unique maximal quasi-P ideal of an associative
ring R is called quasi-P radical of R, and an associative ring having no
non-zero quasi-P ideals is called quasi-P semi-simple ring.

According to the above lemmas and Definition 1.3, we have
THEOREM 1.1. In an arbitrary associative ring there must exist a quasi-

P radical I, which is the sum of all quasi-P two-sided ideals, and R/l is
quasi-P semi-simple.

Therefore, if P is a concrete property of rings, for instance, nilpotent
property, local nilpotent property, nil property, b-property, left quasi-regu-
lar property, and ~-regular property, we obtain the quasi-nilpotent radical,
quasi-local nilpotent radical, quasi-nil radical, quasi-6-radical, quasi-Jacob-
son radical, and quasi-Brown-McCoy radical etc. respectively. Moreover, for
an arbitrary ring R, it need not have a P-radical, but it must have a quasi-P
radical.

82. A quasi-P radical is an Amitsur-Kurosh radical

Lemma 2.1. Let | be the subring of an associative ring R, and let I be
the homomorphic image of I: I ~ 1. Then, we have a ring R such that:

()R R, (2) I is asubring of R, (3) the homomorphism f restricted to |
equals 9 namely f| = <p
Proof. Let R =1 UR/I, and consider the mapping

/1 P -> N,
a 4a=a (whenatf£R/l),
at»& = <p@ (whenactl).

Obviously, / is a surjection. We define an addition in R: let 4,b £ R, and
a, b be inverse images of a, b, respectively, in R. Ifa-fb= cin R, and

c £ c, then we define 4 ® 6 = ¢c. We can similarly define multiplication ©.

Obviously, R ~ R, thus (A, ©,©) is an associative ring. From the definition
of /, it follows / |/= g and by | ~ I, we know / is a subring of R. O

Theorem 2.1. A homomorphic image of a quasi-P ring is also a quasi-
P ring.

Proof. Let R be a quasi-P ring,' then it is the quasi-P subring of a
certain extensive ring R°. Let R be a homomorphic image of R: R ~ R.
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By Lemma 2.1, there is an extensive ring R° of R such that R° ~ R° and
/ \r= <R We can show that R is a quasi-P subring of R°.

Let R° be an arbitrary homomorphic image of A°: A0 ~ R° and let R
be the image of R under /. Thus R = {0} or R ¢ {0} alternatively. If

R @ {0}, there is a non-zero P ideal of R® in R. In fact, since R° R° and
R is the image of R under f'f, as R is the quasi-P subring of R°, therefore,
there is a non-zero P ideal of R° in R. Hence R is the quasi-P subring of
R°, namely R is a quasi-P ring. O
By Theorems 2.1 and 1.1, we have the following result immediately:
Theorem 2.2. Quasi-P radicals are Amitsur-Kurosh radicals. O

According to Theorem 2.2, as soon as we give an arbitrary property P
of rings we get an Amitsur-Kurosh radical — quasi-P radical. For instance,
a ring (or an ideal) is called an idempotent element ring (or an iderl) if
its every element is an idempotent element. Obviously, the idempotent el-
ement property is not a radical property. However, by Theorems 1.1 and
2.2, because every ring R has a quasi-idempotent element radical, and a
quasi-idempotent element radical is an Amitsur-Kurosh radical, therefore,
the quasi-idempotent element property is a radical property. So, if we give
an arbitrary property of rings, we do get a radical property.

83. Quasi-P radical and P radical

Lemma 3.1. If P is a property of rings, then a P semi-simple ring must
be a quasi-P semi-simple ring.

Proof. Let R be P semi-simple, i.e. let R have no non-zero P ideal. If R
contains a non-zero quasi-P ideal I, by definition of quasi-P ideals, the image

I (=/(/) = 1) of I under the homomorphism / (R ~ R = R/{0} —R) has
a non-zero P ideal S of R, i.e. R contains a non-zero P ideal S. This is a
contradiction. Therefore R is quasi-P semi-simple. O

LEMMA 3.2. Let P be a radical property, then a quasi-P semi-simple
ring R must be a P semi-simple ring.

Proof. If the quasi-P semi-simple ring R is not P semi-simple, i.e., R
has a non-zero P ideal I, then it can be shown that | is also a quasi-P ideal.
In fact, since P is of radical property, the homomorphic images of P rings
are still P rings. This means that property P is homomorphically closed.
Hence, when /(/) =1 ¢ {0}, under any arbitrary natural homomorphism /

(A ~ R/H), it is also an ideal having property P, namely, | contains a non-
zero P ideal / of R (= R/H). Thus I is a quasi-P ideal. This contradicts
the quasi-P semi-simple property of R. O
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Theorem 3.1. Let P be a radical property. Then an arbitrary associa-
tive ring R:
Quasi-P radical = P radical.

Proof. Let I, 14 be expressed r radical and quasi-P radical of r,
respectively. Since r /1 is P semi-simple, by Lemma 3.1, it is also quasi-P
semi-simple, thus 14 A 1, and by Lemma 3.2, the quasi-P semi-simple ring
R/1q IS also P semi-simple, whence | A 14, ie. | =14 O

Since local nilpotent property, nil property, 6-property, left quasi-regular
property, ~-regular property and so on, in the associative rings are of radical
property, we obtain, by Theorem 3.1, the following results in an associative
ring R: quasi-/-radical = /-radical, quasi-hf-radical = /"-radical, quasi-6-
radical= 6-radical = Baer radical, quasi-/-radical = /-radical, quasi-PM-
radical = PM-radical, etc.

Therefore, a lot of concrete Amitsur-Kurosh radicals can be unified into
a quasi-P-radical. So, while studying the problems of concrete Amitsur-
Kurosh radicals and semi-simple property etc., we may study, in a unified
way, the quasi-P radical and quasi-P semi-simple rings.

Moreover, the nilpotent property is not a radical property. However, if
R has a nilpotent radical, the quasi-nilpotent radical of R equals nilpotent
radical, too. Since,

Corollary 3.1. If P is aproperty of rings other than radical property,
and property P is homomorphically closed, with an arbitrary associative ring
R having P-radical I (I is a maximal P ideal of R, and R/l is P semi-
simple), we have:

Quasi-P radical of R —P radical of R.

Since the nilpotent property is homomorphically closed, so, by Corollary
3.1, if R has a nilpotent radical, we have:

Quasi-nilpotent radical = nilpotent radical.
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SOME REMARKS ON GENERAL RADICAL THEORY
AND DISTRIBUTIVE NEAR-RINGS

S. VELDSMAN (Port Elizabeth)

81. Introduction

The Kurosh-Amitsur radical theory of associative rings is a well devel-
oped theory; largely due to the well known ADS-theorem which is a useful
substitute for the non-transitivity of the relation of being an ideal. To prove
this theorem one uses, in concerto, the commutativity of the underlying
group, the associativity of the multiplication and the (right and left) dis-
tributivity of the multiplication over the addition. It is already known that
the last two axioms (or at least suitable substitutes) are necessary for the
ADS-theorem to hold. In this note we collect together these results and in-
vestigate the influence of the commutativity of the underlying group on the
validity of the ADS-theorem. In fact, we show that in the variety of distribu-
tive near-rings (or equivalently, associative rings with not necessarily abelian
addition), the ADS-theorem is no longer valid. Contrary to the varieties of
all near-rings or all Gsymmetric near-rings, this variety is an Andrunakievic
variety — hence all hypersolvable radicals have the ADS-property.

82. Background

Let W be a universal class of fl-groups (i.e. W is homomaorphically closed
and hereditary on ideals). A (Kurosh-Amitsurj radical class R in W is a
subclass R of W which is homomorphically closed, closed under extensions
(ie. if I <A € W and both | and A/l are in R, then A GR) and for all
A€W,R(A) = "2(1<A\l £€R) €R. With R we associate its semisimple
class (SR which is defined by

SR := {A £W IR(A) = 0).

R has the ADS-property if R(/) <A holds for all | <A € W. Radicals with
this property always have a hereditary semisimple class (i.e. | <A G (SR
implies / € (SR; or equivalently R(/) ~ R(A) for all | <A € W). For the
basics on the general radical theory of associative rings, Wiegandt [15] can
be consulted.
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An fi-group A is a zero Ct-group if fiA = 0 (i.e. ai(i2... anw = 0 for all
a- £ A, w£E fi). A radical class R is hypersolvable if R contains all zero fi-
groups in W. For A £ W, A+ denotes the underlying group and AOQ denotes
the zero fi-group built on A+.

For the purpose of comparison, we recall some known results:

2.1. Theorem (Anderson, Divinsky and Sulinski [1]). Let W be the
variety of all associative rings. Then every radical class in W has the ADS-
property and (consequently) all semisimple classes are hereditary.

Remark that this result remains true if the associativity is replaced by
weaker conditions, e.g. the universal class of alternative rings (Anderson,
Divinsky and Sulinski [1]), the universal class of Jordan /2-algebras, R as-
sociative and commutative with » £ R, the universal class of (7,<5)-algebras

with I £ R and the Andrunakievic s-varieties (cf. Beidar [2]). However,
with no assumption on the associativity, we have the degenerate results of
Gardner:

2.2. Theorem (Gardner [6] and [7]). Let W be the variety of all rings
and let RC >V be a radical class. Then the following are equivalent:

(1) R has the ADS-property.

(2) <SR is hereditary.

(3) R is an A-radical (these are radical classes R for which A £ R and
B € W with A+ = B+ implies B £ RJ.

The above equivalences are well-known, except maybe (3) = (1): Let R
be an A-radical. From Gardner [5] we know that Rg := {A+ | A £ R) is
a radical class in the variety of all abelian groups and r g (A+) = (R(A))+
for all A EW. Consider R(7) <I <A £ W and let a £ A. Since (al)+is a
subgroup of 7+ and a acts homomorphically on 7+, we get

aR(7) = aRG(7+) Q RG(al+) g RG(7+) = R(7).

Likewise, R(7)a g R(7) and R(7) <A follows.

Concerning the influence of the distributivity, firstly recall that a near-
ring is an associative ring for which the underlying group is not necessarily
abelian and only one distributive law is required (in our case, we assume the
right distributive law holds). The folklore of near-ring theory can be found
in Pilz [10]. If A is a near-ring, then Oz = 0 for all x £ N, but xO need not
be 0. Near-rings N for which xO = 0 for all x £ N are called 0-symmetric.
A constant near-ring N is one for which xO = x for all x £ N.

We will also need

2.3. Proposition (Mlitz and Oswald [9]). Let W be a universal class
of near-rings. If R Q W is a hypersolvable radical class, then R contains
all nilpotent near-rings in W. The hypersolvable radicals R in W can be
characterized as all those radical classes R for which

R(N) = {x € N IxN g R(A)>
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holds for all N EW.

The presence of only one distributive law also causes a degeneracy —
however, in this case it is good.

2.4. Theorem (Betsch and Kaarli [3], Veldsman [14]). Let W be the
variety of all near-rings or all abelian near-rings (or only the O-symmetric
ones in each case). LetR Q W be a radical class with a hereditary semisimple
class. Then R contains all the nilpotent near-rings and all the constant near-
rings.

2.5. Corollary. 7/VV is as in Theorem 2.4, then a semisimple class
SR is hereditary if and only if K is hypersolvable and R(/)A Q R(A) for all
I<Ae W.

The proof follows readily from Proposition 2.3 and Theorem 2.4.

83. Distributive near-rings

A distributive near-ring is an associative ring with not necessarily abelian
addition. If N is such a near-ring, then ab + cd = cd + ab for all a,b,c,d E
E N and if N' is the commutator subgroup of N +, then N' is an ideal of
N and NN1= 0= N'N (cf. [4], [10] and [11]). In particular, (A')2 = 0.
Remark that here, as is customary in near-ring theory, for subsets X, Y g N,
XY = {xy IxEX,yeY}.

3.1. P roposition. The variety W of all distributive near-rings is an
Andrunakievic variety (i.e. if J <l @N E >V, then J3 Q J where J is the
ideal in N generated by J).

Proof. Let X =J +NJ+ JN + NJN. Then

X3Cix1=1(J+NJ+IN+NIN)IC
Q131+ (IN)JI + 1J(NI) + (IN)J(NI) QJ

since J <I <N. Let (X) be the normal subgroup in N generated by X, i.e.

prite

o@-+xi-a)lg==+1, a €N, x-GX

Then J Q (X ) and (X) is in fact an ideal in N (using the fact that N 2 is
abelian). Hence J = (X). Using X 3 Q J and once again the fact that N 2is
abelian, it follows that J3 g J.
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3.2. THEOREM. Let R be a hypersolvable radical class in the variety
W of all distributive near-rings. Then R has the ADS-property and every
near-ring in SR is in fact a ring.

P roof. Consider R(7) <l <N £ W. Then
R(7)/R(7) <7/R(7) £ SR

and R(7)/R(7) is nilpotent by Proposition 3.1. Since R is hypersolvable,

R(7) = R(7) holds, i.e. R(7) <N. Lastly, if A € <SR then the commutator
Al of A+ is a nilpotent ideal of A. Since R is hypersolvable, A" = 0; hence
A+ is abelian which means that A is a ring.

Next we give a characterization ofthe radicals with hereditary semisimple
classes (compare this with Corollary 2.5):

3.3. THEOREM. Let R be a radical class in the variety of all distributive
near-rings. Then <SR is hereditary if and only if

R(7)A + AR(7) g R(A) for all I <A £ W.

Proof. If «SR is hereditary, then R(7) Q R(A) for all I <A £ W and
the result follows since R(A) <A. Conversely, let | <A £ <SR We show
I £ <SR i.e. R(7) = 0. This follows if we can prove that R(7) <A. Since
aR(7) -fR(7)a Q R(A) = 0 for all a £ A, R(7) is both left and right invari-
ant in A. Thus it is sufficient to show that R(7) is a normal subgroup of A.
Suppose this is not the case. Then there is an ao £ A such that ao+ R(7)-
—a0 %R(7). Let J := a0+ R(7) —ao + R(7). Then straightforward calcula-
tions show that J/R(7)<7/R(7) and 7/R(7) is a homomorphic image of R(7)
by x —a0+ x —a0+ R(7). Since R is homomorphically closed, J/R(7) £ R.
But 7/R(7) £ »SR; hence J/R(7) = 0which contradicts a0+ R(7)—a0 R(7)
and proves the theorem.

A radical class R is an invariantly strong radical if S is an invariant
subgroup of A and S £ R, then 5 g R(A).

34. Theorem. Let R be an invariantly strong radical class in the va-
riety of distributive near-rings. Then R has the ADS-property.

Proof. Let | <A. As in the proof of Theorem 3.3 it can be shown that
R(7) is a normal subgroup of A. Let a£ A and let J = aR(7)+ R(7). Then
J/IR(7) is a homomorphic image of R(7) and it is an invariant subgroup of
7/R(7) £ <SR. By the assumption on R, we get 7/R(7) = 0, i.e. aR(7) g
g R(7). A symmetrical argument yields R(7)a g R(7) for all a £ A and
hence R(7) <A.

Invariantly strong radicals are plentiful in view of Theorem 3.2 and the
next result:

Ada Mathematica Hungarica 60, 1992



ON GENERAL RADICAL THEORY AND DISTRIBUTIVE NEAR-RINGS 123

3.5. THEOREM. Let K be a radical class for which SR consists of rings.
Then R is invariantly strong.

Proof. Let S be an invariant subgroup of A with S GR. Then
S/S MR(A) “ 5 + R(A)/R(A)

and the latter is an invariant subgroup of the ring A/R(A); hence an ideal.
Since <SRconsists ofrings, it is hereditary and consequently S+R(A)/R(A) =
= 0. Whence S %R(A).

Standard radical theoretic arguments will show that if R is a radical class
in the variety of distributive near-rings, then R is invariantly strong if and
only if SR is hereditary on invariant subgroups.

We now give an example which shows that not all the semisimple classes
in the variety of distributive near-rings are hereditary; hence not all radical
classes have the ADS-property.

3.6. EXAMPLE. Let D$ be the dihedral group with s elements generated
by a and b subject to 4a = 0= 26 and ia+ b=Db+ (4 —i)a fori = 1,2,3.
Since U := {0, a, 2a, 3a} is a normal subgroup of Ds for which D$/U is a
finite cyclic group, we can use Theorem 2.1 in Heatherly [8] to obtain a
distributive near-ring M on Ds for which the multiplication is given by

. 0 a 2a 3a 6 a+6 2a b 3a+6
0 0 0 0 0 0 0 0 0
a 0 0 0 0 0 0 0 0
2a 0 0 0 0 0 0 0 0
3a 0 0 0 0 0 0 0 0
6 0 0 0 0 6 6 6 6
a+6 0 0 0 0 6 6 6 6
2a+ b 0 0 0 0 6 6 6 6
3a+6 0 0 0 0 6 6 6 6

The only ideals of M are {0}, M, T := {0,2a}, U = {0,a,2a,3a} and
V = {0,2a,6,2a + b}. Apart from the trivial ideals, V has ideals T and
Y := {0,6}. Note that Y is not an ideal of M since it is not a normal
subgroup.

Let R := {N GW | N2 = N} where N2is the ideal in N generated
by N2. As is well-known, R is a radical class in W, in fact the upper
radical class determined by the class of all distributive near-rings with zero
multiplication. M has no non-zero ideals which are in R; hence M G <SR
However, R(V) =Y ¢ 0, i.e. V £ SR.

Finally, remark that if we have a suitable substitute for the lack of com-
mutativity of the underlying group, then some of the results of the associative
ring case can be recovered, cf. [13], Section 5.6.
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Specifically, if V is a universal class of distributive near-rings for which
al is a normal subgroup of A for all /4 £ V, a € A, then every radical
class in V has the ADS-property.

In the present paper we only considered the omission of one of the ring
axioms mentioned in the introduction. Of course, omitting two or more may
yield further degeneracy, see for example [12].

Thanks are due to the referee for drawing the author’s attention to the
invariantly strong radicals which resulted in Theorems 3.4 and 3.5.
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ON THE CONVERGENCE OF
EIGENFUNCTION EXPANSIONS

1. JOO (Budapest)

Let SICR” (N ~ 1) be any bounded domain. A function 0 /u £ C2(SI)
is said to be an eigenfunction of the Laplace operator with (complex) eigen-
value J1, if -Au = Xu in SI. Consider any complete orthonormal system
(n,-) C L2(SI) of eigenfunctions of the Laplace operator with arbitrary (com-
plex) eigenvalues (A,) C C, i.e.

(1) —AU=A

Denote /- the square root of A’ with Re /q > 0; further use the notations
Qi = Re/X >0, Vi =Im/N. Introduce the Bessel-MacDonald function [1]

2(2—3)/2 K(N-a)L(r)

2 van= = ooty e - 220

(K,, denotes the ix-th MacDonald function). The function space //"(R")

consists of the complex-valued functions on Rv representable in the form
I(*) = KIN va(la; —y\)h(y)dy with some h G LP(RN) and the norm of / is
defined by ||/||1** = ||/i||zp- The function space L"(R”) is a Banach space
with this norm and is called Liouville space. It is a natural and simple
generalization of the Soboleff spaces W*° for nonintegral a. We shall prove
in this paper the following three theorems.

T heorem 1 (uniform convergence). Letf e L"(R3), a > 1, ap > 3,
p = 1. Suppose f has compact support supp / in SI. Then the partial sums

3) S»{f,x) == $>*(*), p>0
e.<u

of the expansion of f with respect to the eigenfunctions (rx) converge to f
uniformly on every compact subset of Sl as /x —»00.

T heorem 2 (localization principle). Let f e a = 1- Suppose
f = 0 on some domain ilo C SI. Then S~f, x) —»f(x) = 0 uniformly on
every compact subset of ilo as X—»00.

T heorem 3 (absolute convergence). Letf E L“(R3), a > 3/2, ap > 3,
p > 1. Suppose f has compact support in SI. Then the Fourier series of f
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with respect to the system (it-) converges absolutely and uniformly on every
compact subset of ft.

The case N ~ 1, A > 0 was proved by Titchmarsh and V. A. II’in, and
these results are classical (see e.g. in [1]). The case N = 1 was proved for
arbitrary complex eigenvalues in [3] for the Schrodinger operator and the
case N = 3 was first investigated in [4], [5] for any A € C.

For the proof we need a series oflemmas. We give these in the subsequent
sections.

& . Upper and lower estimate for the square sums
of eigenfunctions

In this section fl C R3is an arbitrary (not necessarily bounded) domain.
Suppose (it-) C L2(fl) is an arbitrary system of eigenfunctions: -4u,- = Xu,
(A- € C). The system (u,) is said to be a Bessel system if

[e]e]

(4) £l</,«;>12£C|[/||EX,), /E i'(1])
1=1

holds with a constant C independent of /. (it,) is called a Hilbert system if

0o

(5) El</.«i>131C||/||b(B,,

=1
for some constant C > 0. In (4) and (5) (/, w) := Jftfi. Finally (it-) is
n

called a Riesz system ifit is a Bessel and a Hilbert system and in this case
we have

[o]e]

cill/llbm
=1
For this case we shall use the shorter notation

(8) EK.1"'>1r-Ne (n)-
i=i
First we prove
Lemma 1. Let (it) C L2(fl) be any Bessel system of eigenfunctions
of the Laplace operator, let K C ft be any fixed compact set; further let

0 < R <min(7r/4,0.5 dist(Hf, Oil)) be an arbitrary fixed number. Then there
exists a constant ¢ = ¢(K, R) independent of x and p such that

(7) A2 (k(Dle2IMR) A om2  (x £ K, 1).
et 1
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PROOF. This is proved in [5]. For the sake of completeness we give a
short proof here. According to the well-known mean-value formula we have

/ , sinrn, , 4
(8) uAx + r0)d6 = 4n------—--- uAx) ifHi AQ,
i
B
(8) | w(x + r6)do = Airui(x) ifm —o.

For any 0 < R < 0.5 dist(hf, dQ) define

d(rfi)f-)'/' ------- - ifR<r<2],
0 otherwise.

According to (8), for any fixed x £ K the Fourier coefficients of d(\x —y|,/i)
are

R
9 di :\] d(\x - y\,/j,)ui(y)dy = J d(r,n)\] w(x + re)dor2dr =

R
2R

= 4>W|.(I)« R/ §'n M sin ryLidr.

Our aim is to get (7) from the Bessel inequality  [d,[2~ c|[d(|x-]/[,/x)|[*2M"

Hence we have to give a lower estimate for

\Tsin r/i sinryadr —* j[cos r(y —Hi) - cosr(H + /x)] =

R R
sinr(h —Mi)  sinr(n + H) =
o 2(m MY 2(li+ M) .r

We give the lower estimate for four cases separately:
Case 1. p, > B\i/i\ > B2, where B > 1. In this case we have

sinr(n —M) o ff_'\/: g SINT(M+ M)
M- M kl M+ M riftl

with absolute constants. Hence
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i 1
Vsin r/z sinr/z,dr > c-
bl

and we get
-451bl ©
(10) £ m *>i2W s ‘£ ki2s
le 11 =
e”B\u,\>B2
29 2
< cflrf(x - 2/|/2)|1E2(n) = ¢ A clz2.
R

Case 2: 2> KO, WA "™ 5, and /to > 0. Taking into account the identity
sinr/x- = sinrRichrvi + r cosrp,sh rvi we have

[sinr(/x —/X) 27 o sin2A(/z—p,)ch 2Al/- - sin A(/z —p,)ch Ri\

M- /b a L - fli
Is*h A 1-—Jiili . |2 cos 72(’z—p,)ch 2Rvi —ch An,|.
M- ftl
Hence for R < it/4 we get Si”/rJ(_/Zi;_A') > C(R) > 0. On the other hand
[sin r(x + m)* 27 =>28bu| p2fili/,|
L m+m . i + 12| 2z—1"

i.e. if /xo is large enough, then the term containing /z —I/x- is dominant, and
we have

(1) k(x)l2= cv2 (U~ ~o).
Case 3. p, » 5Ji/,|, x> fto, 5 » In this case the magnitude of the
terms considered may be equal, hence expand now the function
ifR<r<2R
otherwise.

Obviously

117> - y|>/0l1£a(ii) C\] r2rdr < cox,
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24

dj = cui(x)— / sinriiidr = cui(x)__COSRm —Co0s 2if/z,

Hi
e28

hence |<fl| > c|u,(x)|:—v\j—, consequently

i

pAR\U,\ °e
(is) £, 128 ar (H”" Ho)-
It.-uisi 11 -1
B<bl
Case 4 n = Ho- Now expand the function
/r if <r<2R
d2 = ’

(H) = J 0 otherwise.

Obviously,
2ﬂ s
& = cu_L(x) ) /r- sinr//,ar = cu (X)}_:pgsZ_Z_,_A_\gL.
Hi
a) If 2Rw{\ > 2 then
/‘]t Sin r/z d ))Zﬂbl
oo 2
0

hence

e4fili/ |
(13)

£ .Ml bl*
29|1/,]>2

b) If 2R\vi\ < 2 then denote T := {p, » MO-HL, Wi\ < 1/4}. Pick R' <R
such that /:7r/f1 ¢ in/ A', then

. (11 —cos2Rz _1- cos2R'z ]
min max 2 >0
*6T " *9 z2 J

i.e. we can divide the set {/2 :Hi € T) into two parts, so that for one we can
use R for the other R' and we get

(14) 5Z MX)=c-
e Nio+Hi
2R\ui\<2

From (10), (11), (12), (13), (14) the desired (7) follows. O
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Lemma 2. Let (W) Cc L2(ii) be any Riesz system of eigenfunctions of
the Laplace operator. Then for any compact set K ¢ i1 and R > o there
exists M > 0 and ¢ > 0 such that

(15) Y K(x)|24A4™1> cp2 (x e K, p> 1).

Proof. Obviously we can suppose that R < min(7r/4, 0.5 dist(i!f, dG))
and in this case we can apply (7), i.e. for any 6 > 0 we have

K (X )| 2e4HI .
12 uTgys = <o (xe Ky

According to (9) we have

tie)

cp2 < Wd(\x - y\,p)WQ <C *|d,|2<
1=1
2

R
n
cY-V— jsinr sin rpidr *
Ly § S smier k(IS

I A

further
[ + Pi) 2 p2«Kil
\Tsin rp sinrpidr sinr(p __P') sinr(p ) )
R . 2{p-pi) 2(p+Pi) . R = 1+Im-~1"
hence
00 9 481X/,

(17) E

[u,(X)|2> criz (x GA).
= kiz21+ \p - frn

We will choose M > 0 later, now suppose only that p > 2M, then it follows
from (17)

18 Yo m(a)2edstei > cp2 T P PRI *
(18 c > cp2- 1T P T k()2

We have to estimate the sum on the right hand side of (18). For this use
the partition

y o= E + E + E + E =
IP—ei\>M ed=§
= 5i + S2+ S3+ 54,

iw» § =
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If R < min(7r/4, dist(uf, dQ,)) then (7) holds and hence

<-
) «l
consequently
04Hi/,|
(21) 52" cpgs N Em *)12=C372

" f*<« e.

4Hlil,|
(22) E 4 ifw*)b* 32
i~ top,
It follows from (7) that
2 caAK,
@ E ot fi“‘[x)i:CEn Dbty ot
=1 i<l

1411

If |/i,] » 1, then we have to estimate as follows:

T 29 24
. . cosr/i_ . .
sinr/i sinr/Adr = - Sinrj + — [/ cosr/i cosr/x,dr,
q q Ad

hence

241

y sinr/2 sin Tflidr < c.

.12 R

So we get a more exact estimate than that of (17), namely

4 «— n2 P ,
.5, w*1 rfk(*)|2+,m§ "“ (i)|]2=c"2

hence
(15°)

E KWIVADehc E JRTO~~pMIl:  F%()
\p-K\<M \A-QI\>M 17w + M WY

Iwlii
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Obviously
(24) 5< < E*e
We have to estimate only S\ in (19). For this look for M in the form M —2m

and let p be a natural number such that 2P 1 < p/2 ™ 2P. Then form+ 1<
< fc < p we have

A pad|1/)|
* N
E bl 21+ m- eg2 (12
<c 2- kedRM Ui (x)\2 <
2kt 1<|Ai-0,|<2*
<c2~% Y X] \wy(x)\2edHY A c2~2% Y aw = c2~%p2,
j=2k~1+1 i=2*-1 +1
i.e.
A paHK |
(25) s.S E k(*)ls

E
fe=m+l 2'c Mk A<e* k21 +

It is clear from (21), (22), (24), (25) and (18') (because the constants in these
estimates do not depend onM), that (15) is fulfilled for sufficiently large M
if/i > 2M. Choose 2M instead of M then we get (15) for every p 1, but
the constant ¢ depends on p.

82. Estimates for the spectral function

Let fi C R3 be any not necessarily bounded domain and (u,-)* C L2(0)
any complete orthonormal system of eigenfunctions of the Laplace operator
with arbitrary complex eigenvalues (A-) C C. The spectral function of the
system (u,-,A,) is defined as

B(X,y,p) := Y Ui(x)ui{y).
e.<e
This may be a sum with infinitely many terms, but according to Lemma 1
this sum converges absolutely for every x,y € fl, p > 0.
Define the function Vn(r,p) as follows:
1 p ( sin rp -

Vi(r.p) " J ifo<rss,

0 otherwise.
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Lemma 3. For any complete orthonormal system of eigenfunctions of
the Laplace operator with any complex eigenvalues we have

(26) B(x,y,p) = Vr{x - y\,p) +9(x.y,p)
{xeK, y6ft, p~1l 0<R <min(dist(/i',

where x e K, K is any fixed compact subset of£l,p>. 1 andfor the function
9 we have the estimate

(27) fe-./OMnj ~» C(R,K)p (xek, p> 1)

P roof. Calculate the Fourier coefficients of the function vr at arbitrar-
ily fixed x e K with respect to the system (it,). Taking into account (8) we
obtain

q
Vi=] veox - y\p)ui(y)dy = r2vR(r,p) ] w(x + r9)dodr -
(6] (6] B
R 1 I’ .,\ - -
/ro—-z-li - cosrp + 5 nr||_47|_, SInIrLlqu)d’r =
rl\ rp / rpi
0 p p
2 R - \ - -
= P [ (- cosrp + §_Ip__rEJ §_|[1_Frmdr .u,('x)';
rp

TpiJ \

further, according to orthogonality and completeness of (ut) we get

(29) J2M<y) = E = VR(X-y,p) = Vr.
i= 171

Define the function S(p,Qi) as follows:

't Qi <P
S(p,6i) < 1/2, qi=p
. 0, Qi >p.

It is easy to check (see [7]) that

3
2 p J sinrp\'smrpi . p2 \T . .
S X cosrp + J T dr = I\/%/Z Js(rp)Jdi(rpi)dr.
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First of all we shall prove the following estimate:

a 4
(30) “172 ] Ji(rn)JL(rm)dr - Q) mtjj-
[d
psbl

According to the identity
sinru, = sintgi + sin rp;(ch ri/t —1) + i cos rpjsh rvi

we have
(31)
¢ in rix\sin rix 2 i I sin r/x\ sin rix
i
Lf”/f<-cosr/x + §1[1__r_x) ----- —dr = --- [ -coSr/x + - - - —dr—
Tfiij r TIX,Y V X 1 r
0 0
smr/i'i smrpj
dr-f
X3 aBIIX+ i r
4
. asmxs ™) gqm S Ly
>m J o\ r/
A
sin r/x sh rix,
* cos rix + cosrp,-——'dr =
FAKY 4 )
=0+ /2+is+ A-
Integrating by parts we get
. cos rp,
X, =" ji.e [ smr/x-—--=-: :
T Xy sm r/x dr
further, taking into account the well-known identities
(o]0} o0
/ sint T Ysinai , . .
— dt=2=J — J¢ (“ >0)"
we have
@ €00,
(32) *P>6i) = ~ J SM r/X------ 9dt‘.
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Consequently

—2 P
(33) = " J/ J|2(rf|)J|2(rg|)dr = 6(nQ|)M.

Estimate the two parts of /2 separately. One of them is

; cosr/xilp--r-[-s-'dr _ f sinr(Bi - m) + sinr(Bi + n) dr.
2r
R R
On the other hand we have, for any a > 0,
O 0O 0O ) N @
/ sinra , [sint , r cosii°®® [ CI:Stdt
r J t | t laR J
aR aR
i.e.
sinra P <
]ﬁ - 1+4aR
Hence in our case we have
.sinr
7D cos r[|--|----[§-d
r 1+ Im- ftl’
R
For the other term of f2 we obtain obviously
o a ) .
sinr/i sinrQi dr asr(m —RBi) - GBr(/i + £,)OIr _
rfj. - I 2r2/x B
R R

Ksinr(/z -g,)_sinr/x+g,)\ 1 @

M- ft M+ ft I 2r2/z) n

+ [J_ (sinr(M- ft) _ sinr(M + g,)N~*

J ran\ Ll- Bi M+ ft
hence
SinlY, Sin rRi
7 r -
Y rfl r H 1+ Ji- ftl’
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and the desired estimate follows for the case |[x{ > 1. But in the case of

I/x,| = 1the estimate (30) is obvious, namely in this case, taking into account
a

cosrk- = 1+ 0(|r/x,|2), sinrk- = rw + 0(|r/x,-|3) and J sI"rRdr = 0(1) we
0

obtain from the identities

A

o ns
sm
cos r/x§Jp--U-_-|'dr = smruy- i
I rvi Jo
R R
MHi j
sm /xS dr 4 Jsm nl0IH g
| si r
R R
/ sinrx_sinru, o fmsinru . ;smr Singerc) - e
™ r Jr J reH

0
the estimate

I/(_ cosrlx + °M r/x) sin r/x,dr <
r/x r

and (30) follows in the case |/x,| < 1. Hence from now on we may suppose
that x4 > 1.
For the main term of /3 we have obviously

2|
/ Cosr/xsinrp,g_h_[‘y_l__t_l'd'r \(___99_8 I'(,p _/X) ___(E(_)_Sf(p +/X)\)Cih_[|_/1'______] 4
r L 2pi-ix) 2+ 1 30
A
i coa r{fi - m) , cosr(gt+ H)
Z(Qi- H) 2(p,- + H)
hence

hrvi—1
icos r/x sm rp,P---.rY.' ...... dr < __£ eabl_
W - 01

Further, as easy to see, we can estimate this integral by ceRI"|, i.e.

A

CoS /X smrp,- chrfi =1, PAK |

[« 1+ M- O
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For the smaller term in 13 we can write

R .
sin r/x sin rg ch rvf - 1dr _
r/x

R
=) ACcosr(ix - Qi)- cosr(/x + £)) h rrvzllx_ldr =

risinr(/X- qiy sinr(X+ Qi) chrvi —1 R

[\ 2(p-Qi) 2(n + 0i) 3 r lo
R
(sinr(X- Qi) sinr(jx + Qi)\ (chrvi —]
V 2/X—qi) 2(m+ i) JV 2r2x )
hence
R
smm.chi—1, _c ekl
| - 1ix ' r X1+ ux - Q\

i.e. we have proved the estimate
ORM
< c- K .
1+ 1/x-ftl 1+bl

"We used the interesting fact that ~chig'~1* >0, r > 0"
For the main term of /4 we have obviously

N

R
| costix cosrp, Mgy = T/ SNKU Q) sinr(x+ Qi)\ sh TV
, i 2r
: LV t*-Qi M+ Q
R e 1
q sinr(/x - Q) _ sinr(/x + Ishru\ »
L - Qi u+oQ JV2rJ I
hence
7 wsxasrQin- e < R
1+ \L|| - P!l
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Write the remainder part of /4 in the form

a . R )
/ sinru sh rvi —ri/ - Hsm r/i
co

S rQi dr + CIBrQimdr =
ru Qi-----—-mm - k =l . S

0

and estimate these terms separately. Obviously, we can write

r, [ (Q>Br{n- Q) , cosr(n+ Q\ (shnm-rvi\ ,

4 rv MJI Mft A 2 A
+_ﬂ'ﬂcos r(’x- £) cosr(/x+ p.)\ /sh rvi-rui\

» .-« + ® M+«mmm>) | - w - J *o

hence

4 . .
Sr[‘__r_lﬂ r ,_gfl__l:l_/_’______r_l_/l a'r < C ) 'HK I . I
[ -t r 1+ W- 6i\

~because we can estimate by < ceR"fi 1 according to the obvious estimate

R ) ) R
shrw—rwdr: i fM U dr,
! 2k)\r2
- f <cy UW»mMf» =cshjj, .<,Bbl
i@+ 2n 2 K= b (2fc +1)!
On the other hand,
A s
I Wi Ifsin'l\lcosTQidri Vi Ifsin.(,‘-Qi)-f”.(u+Q')dr

My 2y

If /i —Pi and /i + O«are positive, say £5 < /x—1, then the trivial estimate

t/ Sin r (/i - i + Sin r (/i + i \A eRM
7 o QI)dr Sc—S ¢ . .
2[i > - 1+ |- £

Acta Mathematica Hungarica 60, 1992



ON THE CONVERGENCE OF EIGENFUNCTION EXPANSIONS

is satisfactory. If r—1 ~ p, » K+ 1, then the same estimate works.

Qi M I+ 1,i.e. /X- @ is negative and X+ p, is positive, then using

R oc
J sinr(/X - qQipdr _ T _j sinr(/X- £,)dr

R
00
7sin rX+ gl-)» _ m™  fsinrux + £)
-dr,
=1-/
R
we obtain
R - -
vi f sinrgx - Qi) + sinryx + Qi)
dr
2/1y/ w1+ IX- Qi

i.e. we have proved

AN =Cl +\H-Qi\ 1+ UXI

139

The case /x, = 0 is obvious, and summarizing our estimates (30) follows.

Now we return to the proof of Lemma 3.
According to (28) and (30) we have for R < min(7r/4, dist(A", d£l))

(34) IVr(x - y\fi) - 6(x,y,u) - 0.5Y Ui(x)ui(y) <
ey L1(0)
| I .
=32 Vi KTICIZN ey by ki@ + k- gy ()27

« — N2 A
S =EO (1 +02 @+ x—feh2, S e2Alllpe(a)2

N

ir0 (I + 12-%1)2

further
2

E u,(x) «Ui(y) ba(il) 5/ iu*(x)i2 = cm2-

Hence (26) and (27) follow. O
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In the proof we have used the fact that (30) is equivalent to

e bl M

30
(307 FCIivfi- @y 1+ b

because it is easy to see that

o eRV"i\ y
(- M) s SRR s e L e 1

83. Estimates of the kernel of fractional order

Let i1 C R3 be any domain, (u,) any complete in L2(i1) orthonormal
system of eigenfunctions of the Laplace operator with arbitrary (complex)
eigenvalues (Aj) C C, i.e. —Ait- = Au, in I, further y/Xi == M = Q +

1T o
9 For any 0 < a < 6 introduce the kernel Ta(x,y) of order a as follows:
this is a function defined for x,y 6 Il whose coefficients for all fixed x 6 fl
are

(35) \] Ta(x,y)ui(y)dy = *=1,2,..).
N .

It is convenient to use the form

if it exists. For the investigation of this question introduce the polynomial
2k
W, — a fer
'(r) = 5Z
(r) 22

by
(36) na(A) = ma(A), tE(A) = <(A),... ,vj?\R) = wE\R) (n >0).
Obviously, (36) determine uniquely the polynomial wa.

R( \ I »«(r), r*R i rca(r), r*~R
() 1= (& Jh wa(n) Lo Ce R
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Calculate the t'-th Fourier coefficient of the function v*(\x —y\) —w"(\x —/|)
with respect to the system (u,). Taking into account (8) we get for any
0 < R < dist(x,6,fi):

V2,(X) := (ui,vE - w*) = ] u(@)[E (Ix - y|) - W*(\X - y\)\dy =

A

2[va( J=na(r\JUI(x +r0)addr=dr2va(r)-wa(r)]-amss  dr-Ui(x) =

00 00

= -(-jUi(x) rva(r) smrQjdr------- U|(x) rva(r) sin rQidr+

°o G~
N~

A

U004 113 ()

smr/x, sinrQi

a
ar f
------- -Uj(x) / rwa(r) sin r*idr =: h + h + h + h-

We know that
I 2 jr
MF)l‘z?LLL*)?% =

22-*“)2 /pT 770 1

- T (f_)flf [T RS> e * [R>S * [ |

on the other hand,

12 = - (ZwSLZUi(x) 1 f3/Va(r)jy2(r)dr,

/3 = (2.)32%0,(x) | r3%,,(r)

A

ja = 1AL ~U(X)J r3/2ua(ry/i/2(r)dr.
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We know that
[ r*1J,,(rn)dr = I\/T J+13JH+i(r).

Denote Df(r) := r- 1/'(r). Integrating by parts we obtain

3/2 Ir/3/72(™,)

2= -(2mA2M.() A (r) g3l *
r=4
Js/irQi
+(2m3um,(x) ) Dva(ryrs2” I3r/§|)0"“
. ft

14
312 (M) BR2(rft)\
3/2

M AT J-r=0

3 = (27r)3/2n,(x)

ﬂ -
'(27t)3/2u,(x)\] Dva(r)rs/2 *32("Mi)  J3/2(rRi)\
0 - N~ r

Because \Kv(x)\ < cx_MI (Jx|] < 1), hence va(r) ~ cr- B-QI ~ cr-3, conse-
quently the integrated part of /3 vanishes at r = 0. Because va(r) decreases
exponentially, hence the integrated part of /2 vanishes at r = oo . Finally,

da
14 = -(2 )3 2u,-(x) 32 +
Mi* Jr=0
q
+(211)321,(x) Y Dwa(r)r527s/2¥ ~ dr,
n M

where the integrated part vanishes at r = 0. l.e. the sum of integrated parts
of 72»13 and /4 is:

o 3R(Af)
(2x)3/2u,(x)A 3/2jua(A) 3/2 +
ft
A312(AliT) - N312(A A32"Mi
+< ! \(§7F/“) ¥ é/Zp’) - wa(R) 3/3/2 |
4 t M
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because va(R) = wa(R), consequently

) Dvalr)r5 20800, )dr+

R
R

+ DV 1 e dr > =
0 L

J tfatL=a(r) era2 «J 3 @)dr+
R Q

According to \Ku{r)\ ~ c(v)e~T/y/r and |/~ (r)] ~ c(v)/y/r, we have the
estimate

.al2J32irei
(37) 3/2 I)dr " cle,2.
R 6i
We shall prove

Lemma 4. We have the following estimate for the Fourier coefficients
of u,,(Ix —t/|) —wa{\x - j/Q with respect to the system («,);

K (z)lefil' n
1 CR’(*l +,—p’§)%(/él 0< a <1,
(38) <Pi(x) - Ui(x)- S _
1+ 8B2)*'2 Ui(x)|efib .
cr , 15 a
1+Q
Proof. Ifp , 1, then Sir; Fipl < ceRwi\* hence
Vi{x)\ sinrfi,-

o - Ka(r)] -47r---r-b-i---dr <

< CeRWN) r2era 3dr < ceRII if a <3,

0
R

5;CeRA‘\\] r2inrdr ~ ceRMl if a 3
0
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i.e. from now on we may suppose that p- * L
Taking into account (37) and

n N :
- 3/a(*«) hidrei)
\] JifsAW r»/2 s oY dr
M M

<c[r*2alnrr"/2— .dr < c/pf (a > 5),
- ri/2ei

we may suppose a < 5. Consider the following partition:

—cos rfi- -0
[= > 3/2(r M) SRR T
@) /5 32 3/2
L Mi M \
~Sin TQi
—OSTA T g —cos rp,(ch rvi —1) A 1 sinrp,sh Tvi
M M M
sinrp,(ch r{ —1) i cosrp,(sh rv, —rvi)
| rt [
. . . —cos rBi -\--ET-IC-J-
—cosrpi ( smrBi t nSicosrp, rp;
M r/if [if pf

—cosrp,(ch rv{ —1) sinrp,sh rve sinrpi(ch rr-, - 1)
+ *

M M r/xf
+r.cos rp,(sh rii,- —rvi) 2 gi(gf - M) —cosrp ,+ sinrp,\ ,
rixf NPV p, Y

and estimate term by term. We saw before Lemma 4 that

00

(40) Y #(5-a)/2(r)r"/2-
ve-rmr'-

R

A

* JoK(s-n)l2(r)r*/2 W132OMD - JSArQT) g

y W e
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According to (39) and (40) it is enough to apply the estimate

R
i K(S-a)/Z{rﬁlr«il cos rp,(ch- TVi - ”dr
ri
f h risi —1
ch nx —
J N1 (5_a)2 dr <
\vtf 0

R
1 chRv{—1
chRvi =1 #(5-2)/2(r)r("+3)/2 QB rQidr +

bl 2 R2
H1FJ S g "
% -.)n(r)r,”+3)/2“ BN .* (chtl) *) q ,
00
because
It

\\] K(S-a)/2(r)r(@+3*2CBTQidr < cjr 2 r'r-dr = c¢) ra ldr ~

ift <R.

I a

A(5-a)/r(r)r(a 1)2sinrg, d{/i dr

/m

R
1 shi2n ]
bl 2 R

< A'G a)/2(r)r(“+1)/2sinrE,-ifr +

nt
+Rp/ {) % -“Ye(Dr@t)/Bm™ r (A1) d=
0

LIQZeH""\ Nan]

ed\™ if a <],

N+1
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because

I/Ci
;K- a)2(r) PN 2SI TQIMT < I e SV W reidr =
0
Vi.
=cl, ¥ ra~1ldr < c/f>*“-1

and for A > f > 1/B,

t t

) ibr ifa<1
i K(5-a)/2(r)r(°+1=2sin rf>,dr <c/ r* 2dr ~ < 0,
Further in the case a = 1 we have
I Ki(r)r sin rRidr <% sinrQidr

V « 1/i.

Mra A2 5/ o
r3 A2(r) cob r™M 1 ( . 3r M r)_c srQ,

L r Q JL J r Q
& it
/ TAQd r<
I/i. Vi.
We have also
N
- N A e\ ~d
) K(b-ayirgryr*sinrg E L ~dr
n
1 ZhRvi —1 N
Ll 3 R? J K(5-a)/2(r)r(a+l)/2 sin rQidr +
n, t
MEREE o1'(5-0r)/2(")r(* +1)/2 Sin

0'0
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c e |

ifa < 1,
bl 3f*-1
ro. =211/ -
_e Al M c—— ifa ™ 1,
bl el
further
1X
K(5-a) '/’ éa—l-)‘/Z COSF0,§-[]---[H—I-=_—--MJr
I7it
h Ai/i L
Lo shAR =R G40 4)121)A a+3)12 cosaiar +
bl 3 R -
q, t
o ) sh i/, - tviVv e/l
+ j~j31 1 [ K(5-c.)/2(r)r{a+3)/2 cos TQidr I i3~ J Ascw
00
and finally
Sin TQ
94jTL o~ [ tf(5-a)/2(r)r(°~1)2 (-COST,,- + Qi dr
R
=c i 1 K{b-a)IM ~2]3n (reii,
Y« Hi J {b-a) 130 ( )
27
r(eend o J K(:-a)l: (r)ra/233/2(rQi)dr
0. M 3
We know (see [7] p. 410) that
\]OO 83/2
K(5-a)12(r)ra/2J33,2(rRi)dr = ¢ I
(5-a)l2(r) (rBi) 1+ Qa2
and taking into account also (37) we obtain
R
dr
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c-(-lj-ﬁr"ug*? RM Trard,

SNMi+ M ~ih+ ~s en:’l' 0
C_ 3- ifa>2
1]
Summarizing our estimates, (38) follows. O

Define the partial sums of Ta as follows:
gl Py N KT Y

Lemma 5. Let 2 C R3 be any bounded domain and K C i1 any compact
subset, then there exists ¢ = ¢(K,q,Q) > 0 such that

(41) IB 4 (x, OlILfio) ~ ¢; A= 1<qg<3/2, x£K
further
(42) [lag(*,-)M n\lI Y~c; p>1 x£K,

if K C Di Cd is another domain.
Proof. By integration by parts

ERTX{x,y) = \T T™M\iy,2dAx,y,t) = (f(f’/zé$1)/2+

+|\]a(6(xyt) —\ 12

2)3/2

Further, obviously,

uivMx - »l,*o||[Mn) =J <
R

=C-~[Ilrr dr) ~

and hence
M) =ci x £ K, 1<qg<3/2.
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It is enough to consider the integral J in /2.

1
According to the partition (26) first consider the main part. Using the
notation r - ... —;;, we obtain for r » 1 KX
Vv v 3

[ Ye YTTHIW dt =c/ ()3 (rt)(TT?jirsdi

(riyt 1+ E2)3/2-dt B d t2dt < cfa2
T

/
and

[[M2|ku(|1-y|< U iA) N cix2<23 %c.
In the case r > 1//x we have obviously

I/r 1/
JVW-"W tic!
further, taking into account the asymptotical expansion
Any = MR w0 (ry-ny
we obtain for the remainder term

"
- T
/ ( | Bozz @+ *232%- 33 @+ 228 < ¢/r2
I/r r

and for the main term

/I I Icos(r* +7) * i 1 /cos(ri +7) *3 dt
(ri)l/2 1+<32 4 t (1+12)3/2

I/r I/r

axB(rt + 7)d|' N

31
+ du > < c/r2,
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because )'>0, J co<d”~ dt 5 c; consequently
I/r

R
<c |lr2 2qdr < c.
L4(\x-y\<\/L)

Now estimate the remainder term in 1?, i.e. the term containing B (we use
the partition (26)). Let 0 < R < min(dist(uf,dif), apply (30") and

0(x,y,/r) = M(u,(x) - Viui(y) - "2 VM V)

o4 e,in
to get
e(x,y,t)= A2 w(x)w(y)+
0,=t
eRW\ i
+]> (xK (i,)-1+]i_gi]-— -ft, Ne |Sc

where ¢ does not depend on x,y,t and r; hence

/ t
L 9@y D (i + t37>dt = < x)uty) YT 7RIl

where
[ * i . f 1 t S
~\]1 M- QU+ 5)* />y isp |l +i2 =
<cM I+ii)<c/(1l+ef/3,
1+ Q
i.e.
dt weoum) N 2
. u,(X)u,ly
1+1i2)32 1+ e,)4/3 LW

y ' udx)[2e2910
ST (1L+7)43

c
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so we have proved (41). To prove (42) choose R such that 0 < R <
< mm(dist(if,ii), @ 4); then the main term in the partition (26) vanishes:

Vrt = 0 since r > R, so 9(x,y,t) = 6(x,y,t), consequently

KM = cli SAOL1E2(T) -

\2 , y* k(*)12%3ab0 / W \N_ [ V2

|/ ,
kwi +* TT1TeT(TT7-)Js‘E ty\p.w b e

lHMIbinxno = c+ ¢
L40)

n,(ar)|2e21z
NCH
C CaEl’ (i + ft)4'3
and Lemma 5 is proved. O

LEMMA 6. The expansion of any f £ Cq(il) with respect to the system
(u-) converges absolutely and locally uniformly in fl (i.e. uniformly on every
compact subset of 12).

Proof. Forthe case p, ~ 1 calculate the coefficients /, of / by repeated
application of Green’s formula:

/. = \] f{x)ui(x)dx = J f(x)Aui(x)dx

0 n
=~J jAf{x)UX)dx=1j jAf-Au, ==-jA 2f-U =...= =" A nfui,
@] *0 » A *

consequently
. _ L _fc+m
E 'nemis« ial(,)iE S
= n i=k +
n Ve (1+7)
( » fom K (D12
/ (‘ )_ dy] if n> 1 O
1+ Q)2n
r «
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84, Proof of Theorem 1

In our case a > 1, ap > 3, p > 1 According to a known embedding
theorem (see [2], p. 315) for such a and p

(43) Lp C Zy = Wp, with some p'> 3.

Indeed, according to the mentioned theorem of [2], *"(R”") C Lq(RN) ifR —
=a—N((p— =0and1l<p<g<oo (43)isobviousifo =1, fora > 1
we can determine p' froma—1=3" ~ : p7=p~ = 3~3Pp+" < 1/3,

i.e. we may suppose that / € W* (R3) for some p > 3. We know further ([2],
p. 288-289) that

W= [I: F(x) = \] w(x - y\Of(y)dy: f e ZP(R3)}
R3
further
HAWA (e )M T Ep(r 3)-

Define ®x(x,y) by

Ti(x,y) = uf(|x - y]) - wf(jx - #l) + ®L(x,r/),

then by Lemma 4 we have

YNx,y) = ]>"7.u.(zK(2/),
i=i

where |7,| » ceg™’U(L + Qi)2. Let 0 < R < min(dist(A", 6fl), #/4), then (7)
holds, hence

|«,-(x)[2e2/1F
S (1+n)32+e
and so
~ |uixll2ec2rwu,)
*. (Moaab(IMECE  (+<»?)» =c <IEA")-

It is known (see [2]) that if / € Wp(R3), p > 3, and / has compact support
in 11, then there exists h € LP(R3) with compact support in i such that

[(*)= 3 (vi - w?)(\x - y\Hh(y)dy,
n
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further HIIVpI X|[h|li,p (here p > 3). It is easy to prove that similar state-

ments hold for the transformation J T\(X, y)h(y)dy.
n
Now let 9(2) := J 4>i(x,y) *h(y)dy. Because p > 3 hence p > 2 and h
n
has compact support, consequently h GL2(SI),

0o

iMwfn) = g W 1

where hi denotes the r-th Fourier coefficient of h with respect to the system
(«,-), further g(x) = ui{x)liK is the Fourier series of g. Indeed,

J goouieodx = hiy) ) ox(x, y) mUi)dxdy
ERINTTRERZE

. M
Obviously,

EX(*bN |~ (SW ihil21(SI2'12) 2
= clhlll2) A WAZ..Ay2 \ <cllfcbjo),

i.e. the Fourier series of g converges absolutely and locally uniformly in Sl

It is enough to show that for any h G I/P(R3) (p > 3) with compact support

in Sl the Fourier series of the function F(x) := JT\(x,y)h(y)dy converges
n

locally uniformly in SI. If F, denotes the r-th Fourier coefficient of F, then
according to (41) we have

E FiVi(x) = E ui{x)J w*)J Ti{x,y)h(y)dy =

6i<n

= E wui(x)/ h(y)U Tx(x,2)u,(x)<fx)dy =
e<n |

= E ™/ Ky)<y)(n,L /nY=
*rx n \Y

I 7—+TA2rdy - | h(y)ENT1(x,y)dy,
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| il WENTi(x,y)\Lq(n) «[Wip@) il ¢2n k(-
ii<M

I
Let (Fn) C Cq’(Cl) such that Fn n\-éioo F. Fn GW] and supp Fn is compact

in 12, hence according to the statement above, there exists hn 6 Lp with
compact support in Ii such that

Fn(x) =4 Ti(x,y)hn(y)dy and \hn - hilLp “m0 as n -+ oo.
M

We know from Lemma 6 that Y! (Fn)i "ui(x) tends to Fn(x) locally uni-
c.<n
formly in 12 as /i — o0, further

\FX) - Y RX)| - F'X)- Y (F").udqx) +

+Ne ) - A.(%) + IOE MNQ - (M)-K(™)| M cl|F - Fullwi < £,
<

< c|lh - /i,,|lLp(n) < £
Oi<H
if nis large enough, and hence Theorem 1 follows. O

85. Proof of Theorem 2

Obviously bAC b\ = W~R3). Suppose / satisfies the conditions of
Theorem 2, then there exists h £ L2(R3) with compact support in 0 such
that

I(*) = J(v? - tuf)(x - y)h{y)dy
n
and h =0 on (|_|O)_FI = {z € ll: dist(x, dil) R}. Let g(x) :=/~i(x,y)
n
*h(y)dy; then as we have seen in Section 4, the Fourier series of g converges
to g locally uniformly in . Let F = f +9 = /7 i(x, y)h(y)dy. It is enough
n

to show that the Fourier series of F converges locally uniformly in 1. We
know that

1Y Fius(x) =  f h(Y)ET\(X, y)dy
Oi<H )‘%

PP PO e T s [Be) s e\ WLk
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Hence we can finish the proof of the local uniform convergence as in the proof
of Theorem 1. Because the Fourier series of / tends to / locally uniformly
in 12, hence it tends to 0 locally uniformly in llg-

86. Proof of Theorem 3

If / satisfies the conditions of Theorem 3, then there exists B > 3/2 such

that / € T2(®3)- Namely, if p > 2, then because supp / is compact in fl,
we have f £ L*“- If p < 2, then applying the embedding theorem given in
the proof of Theorem 1, we obtain

ap —3 3 ,
B=a-3 EE t'y > 3f2-

Consequently we may suppose / € LIJIR-3), supp / is compact in Il and
a > 3/2. Choose an h € X2(R3) with compact support in il and such that

10) = J[v*(I* - 2) - w*(\x - yY)]h(y)dy

g(x) := J Va(x,y) s(y)dy.
n

We have seen that the Fourier series of g converges absolutely and locally
uniformly in 11, hence it is enough to show that the Fourier series of

F(x) = f(x) +g(x) =J Ta{x,y)h(y)dy
d

converges absolutely (the local uniform convergence is proved in Theorem 1).
Obviously,

Fi=J Fui(x)dx = J h(y)J Ta(x,y)ui{x)dxdy =

hi
= 1% )*O)(TTThye (14 poy</2

hence

N
S E£|401al + B?)B E (i +e2ej c\\h\\v,
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because a > 3/2, i.e. the Fourier series of / is absolutely convergent. Theo-
rem 3 is proved.

Remarks. 1. The following is true for N = 3,5,7 and probably it holds
for every natural number IV > 1

Conjecture

I A
JIN/2(rfiiy  IN/2(r Qi)
rTK(N-ayu r) N2 N2 dr
IV ,
N. 1. >AM i a £ 1,
< @+Qj)2
I VZT efin ifa >..
1(1 + Qi) 2
In the proofs of the theorems we have used only the estimate |... | <
< - ——eR"'\ because we used the case a — ) and for this case

Co(L+ )1 . : :
these estimates coincide. The conjectured estimate is stronger than that of
the proved, if a is small.
2. In this paper we had to develop some ideas of the papers [8], [9] of V.

Komornik, too.
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INVERSE AND SYMMETRIC RELATORS

A. SZAZ (Debrecen)

Introduction

Relators are simply nonvoid collections of reflexive relations on sets.
They are straightforward generalizations of the various uniformities [24], and
are essentially identical to the generalized uniformities of Konishi [12] and
Krishnan [13] and to the connector systems of Nakano-Nakano [23].

Relator spaces were proposed in our former paper [28] as the most suit-
able basic terms which topology and analysis should be based on. In [28],
we introduced and studied the most important basic tools in relator spaces
and mild continuities of relations from one relator space into another.

In a subsequent paper [29], to provide a primary classification for rela-
tor spaces, which is necessary to formulate and prove generalized forms of
many of the important theorems of topology and analysis, we introduced and
studied various directedness, topologicalness and transitiveness properties of
relators.

In the present paper, to start a similar investigation in connection with
symmetries, we establish the most important basic properties of inverse re-
lators, and introduce and study six fundamental and two supplementary
symmetry properties of relators. The results obtained are mainly illustrated
with the help of some particular Davis-Pervin relators [29, p. 195].

o . Notations and terminology

A nonvoid family 11 of reflexive relations on a set X is called a relator
on X , and the ordered pair X{TZ) = (X,TZ) is called a relator space.

If (xa) and (ya) are nets, A and B are sets, and x and y are points in
X (It), then we write

(@ (¥Yc) € Lim~(xa) ((yQ £ AdhZ(xa)) if ((ya,xa)) is eventually (fre-
quently) in each R e 11,

(if) x e lim~(a:a) (x 6 adhyz(xa)) if (x) e Lim”(xa) ((x) 6 Adh”a?));

(iii) B e C1k(A) (B 6 Intft(A)) if R(B) (1470 (R(B) c A) for all
(some) R ell;
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(iv) x Gk (A) (x ¢ intTj(A)) if {x} GCla(A) ({x} GIntTj(A));
(v) AGA (AGTv)ifd*(A) = A (int*(A) = A);

(vi) n Gen{x) if Ye cbz({x}).

If TZis a relator on X, then the relators

TV ={SCX x X :30GTZ: 4 C 5},

A# = {5 CX xX :VACX :39d GTZ:R(A) C5(A)}
and

TZ= (5 CX xX :WXGX :3RGTZ:4(x) CS(x)}
are called the uniform, proximal and topological refinements of TZ respec-
tively.

Namely, TZ*, TZ* and TZ* are the largest relators on X such that Lim{* =
= Lim?* (Adhft* = Adh”), Clre# = Clk (IntTG# = Int*) and limRA = lim”
(adh™A = adh?j) and dtja = clI™ (int*A = int"), respectively.

Two relators TZand S on the same set are called uniformly, proximally
and topologically (weakly topologically) equivalent if T2 = S*, TZ& —S&
and TZ* = S* (Bn = Rs), respectively.

Moreover, a relator TZis called uniformly, proximally and topologically
fine if TZx= Tz TZ* = TZand TZ* = TZ respectively.

A relator TZon X is called

(i) weakly transitive if QTZ is transitive;

(ii) weakly topological if Qu(x) GTv for all x GA;

(iii) topological if c1tr(A) G Tv. forall A C X.

Moreover, a relator TZ is called inversely topological (bitopological) if
TZ~Xis topological (both TZand TZ~Xare topological).

Finally, we remark that if A is a nonvoid family of subsets of X and

Ra= AxAUX\A) xX
for all A GA, then the relator
TZa —{Ra : A GA}

is called the Davis-Pervin relator on X generated by A.
Note that to be more precise the ground set X should also be indicated
in the above notations.

1. Inverse relators

Definition 1.1. If TZis a relator, then the relator
V.-1={R-1:R GTZ

is called the inverse of TZ

The most important basic properties of the inverse relators are contained
in the next obvious
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Theorem 1.2. Ifft is a relator on X, then

(i) LiniK-i = (Limrc)-1; (H) Adh”-i = (Adh?)-1;

(iii) CIA-i = (C1ltr)-1; (iv) Int?-i - Co (W n)-1 °C,
where C means the complementation operator with respect to X.

As an easy consequence of this theorem, we can at once state

Coroltary 1.3. IflZ is a relator, then
(ft"1)- = (ft-)"1.
PROOF. By [28, Definition 4.7] and Theorem 1.2, it is clear that
(ft-1)- = (C1{n—4)—21 = Cl{n} = (ft-)-1

for all ft € ft, which is apparently a little more than stated.

However, at present, it is more important to point out that Theorem 1.2
can also be used to prove easily

Theorem 1.4. Ifit is a relator, then

O)re-‘r =re-)-%

(u)(a-1)# = (a*r1l-

Proof. By Theorem 1.2 and [28, Corollary 5.5], it is clear that

LimA.j-i = (LimTj.)_1 = (Lim-")-1 = Lim/-i

and hence (ft*)-1 C (ft-1)*
Moreover, a quite similar application of Theorem 1.2 and [28, Corollary

5.9] shows that (ft#)-1 C (ft-1)".
Thus, since the reverse inclusions are immediate consequences of the

former ones, the proofis complete.
As a useful consequence of this theorem, we can at once state

Corottary 1.5. A relator ft is uniformly (proximally) fine if and only
if its inverse ft-1 is uniformly (proximally) fine.

Unfortunately, the corresponding assertions do not hold for the topolog-
ical refinements. Namely, for instance, we have

Example 1.6. If X is the set of all real numbers and A is the family
of all half-open intervals [a, b[ in X with -oc < a < b < +o00, then the
Davis-Pervin relator ft = ftn has the following properties:

(i) ft"1C ft*; (i) ft N(ft~1)A= 0;

(i) (Fft*)"1£ (ft-1)7% (iv) (ft-1AE (ft*)"1.
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Namely, if A G /1, then we clearly have A ~x) = A'"\AifxG.X’\A and
RA(x) =X if x € A. Hence, since Aa(x) = Aifx GA and Aa(x) = X if
X GX \ A, itis clear that

RA1€ KA but Rai

Therefore, the properties (i)-(iii) are now quite obvious.
On the other hand, if 5 C X x X such that

S(x) =X \[x- IL,x[
for all xx G X , then it is clear that S € (7£-1)J1. Moreover, since
S~\y) = {x€X :y GSX)} = X\]y,y+ ]
for all y G X, it is also clear that 5-1 $ 17A, i.e., S £ (7€n)-1. Therefore,
now property (iv) is also quite obvious.
Remark 1.7. Note that, because of the properties (iv) and 7Z C TZA,

the inverse of the topologically fine relator R cannot be topologically fine.
In addition to Theorems 1.2 and 1.4, we can also state

Theorem 1.8. IfTZ is a relator, then

(i) = QiL{) (R-*)'= (R")-1L.

PROOF. To check this, note that by [28, Theorem 2.22], we have gk =
= rrfc-1= (nft)-1.

Moreover, recall that R! is the family of all finite intersections of members
of N [29, p. 181].

2. Symmetries of relators

Definition 2.1. A relator 7Z on X, or a relator space X(R), will be
called

(i) strongly symmetric if each R G71 is symmetric;

(ii) properly symmetric if 7£-1 C'lI;

(iii) uniformly symmetric if TZ~XC R-*

(iv) proximally symmetric if TZ~l C

(v) topologically symmetric if 7£-1 C TZA,;

(vi) weakly symmetric if M7£ is symmetric.

Remark 2.2. Clearly, each of the properties (i) through (iv) implies its
successor.

Moreover, if (v) holds, then it is clear that

M B O4c M a_1(%
Reit daen
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for all x € X. Therefore, we also have GQ1Z C (M7£) 1, and hence (vi).

The fact that the converse implications are not, in general, true is ap-
parent from the subsequent examples.

Example 2.3. If R is a reflexive relation on X such that R is not sym-
metric, then 1Z = {A, A-1} is a properly symmetric relator on X such that
TZis not strongly symmetric.

Example 2.4. IfR is as in Example 2.3 and Ax is the identity relation
on X, then 2= {Ax,in} is a uniformly symmetric relator on X such that
TZis not properly symmetric.

To check the uniform symmetry of TZ note that now 72 —{x}* is the
largest relator on X.

Example 2.5. If card(X) > 3 and Rx —Ax U{x} x X for all x € X,
then 1Z = {-Rajxex is a proximally symmetric relator on X such that 1Zis
not uniformly symmetric.

To check this, note that

Rx(z) =X if z—x and Rx(z)={z} if z€ X\ {a}
and
R~1(z) = {x} if z—x and R~1z) = {x,z} if z6 X\ {x}.
Therefore, we have
RX(A) = Ox(A) forall Ac X and x <€EX\A

and
Rz(z) R~I(z) forall x,z £ X.

Whence, it is clear that
72* = {Ax}*, but 7r~1007I = 0.

Example 2.6. If card(X) ™ 3 and A = {{z}}xex> then the Davis-
Pervin relator 1Z = TZa is a topologically symmetric relator on X such that
17 is not proximally symmetric.

To check this, note that if now

Rx = R{x) = {*} x {x} n (X \ {x}) x X,
then
Rx(z) ={x} if z=x and Rx(z)=X if zCX \ {x}
and

I2x1(z) = X if z=x and Rx1(z) = X\ {x} if zGX\{x}.
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Therefore, we have
Rx(x) = OAx(x) forall x €X
and
Ry({z,tu}) £ A~r({r,w}) for all x,y GX and z,w £ X \ {x} with z ¢p w.

Whence, it is clear that
izs = {Ax}*, but M~nNV* =0.

EXAMPLE 2.7. If X and TZ are as in Example 2.6, then 1Z~Xis a weakly
symmetric Davis-Pervin relator on X such that 1Z~1 is not topologically
symmetric.

To check this, note that under the notations of Example 2.6, we have

P| R~x(z) —An(r) forall z€X
Xex

and
Ry1(x) (E Rx(x) forall x,y £ X.

Whence, it is clear that
n7r1=0n, but 7rn(7r_1)n=0.

Remark 2.8. Note that the relator TZ considered in Example 1.6 is
also a topologically symmetric relator such that 1Z-1 is not topologically
symmetric.

Thus, Examples 2.6 and 2.7 are somewhat superfluous. They have only
been stated here because of their close analogy with Example 2.5.

3. Proximally symmetric relators

Because of the corresponding definitions and Corollary 1.3, we obviously
have

THEOREM 3.1. If 11 is a relator, then the following assertions are equiv-
alent:
(i) 1Z is strongly symmetric;
(if) TZ~X is strongly symmetric;
(iii) TZ is strongly symmetric;
(iv) 1Z~ is strongly symmetric.

Theorem 3.2. IflZisa relator, then the following assertions are equiv-
alent:

Acta Maihematica Hungarica 60, 1992



INVERSE AND SYMMETRIC RELATORS 163

(i) TZ is properly symmetric;

(i) TZ~Xis properly symmetric;

(iif) TZ-1 is equal to TZ

(iv) 1Z~ is properly symmetric.

To prove the implication (iv) => (i), note that ~R~ = «S~ also implies
71 =8S.

Now as an immediate consequence of Theorems 3.2 and 1.8, we can also
state

COROLLARY 3.3. IfTZ is a properly symmetric relator, then the relator
TV is also properly symmetric.

The fact that the converse statement need not be true is apparent from
the next

Example 3.4. If X is the set of all real numbers and A, C X x X for
i = 1,2 such that

Ri(x) = [x —i, Too[
for all x £ X, then
Z—{Ai, A2, Aj *, A2\ R\ *MA2}

is a relator on X such that TV is properly symmetric, but 7Z is not even

topologically symmetric.
To check this, note that

iz’ =7ru {AIMRII,R2MNR2\R i MAj1}’

and moreover
A(0) € (A"1MA2)-1(0) = [-1,2]

for all R 6 IZ.

Remark 3.5. As an immediate consequence of Theorems 3.2, 1.4 and
1.2, we can also state:

If TZis a properly symmetric relator, then the relators 1Z* and VR are
properly symmetric and the relations Lim” and Cly are symmetric.

However, this fact is of no importance for us since by using Theorems 1.4
and 1.2, we can prove much more.

Theorem 3.6. IfTZ is a relator, then the following assertions are equiv-
alent:
(i) TZ is uniformly symmetric;
(if) TZ~l is uniformly symmetric;
(iii) TZ~X'is uniformly equivalent to TZ
(iv) TZ* is properly symmetric.

Prootf. If (i) holds, then by Theorem 1.4, it is clear that (7£-1)-1 C
C (7£%)-1 = (TZ~1)*, and thus (ii) also holds. Hence, since TZ—(7£-1)-1, it
is clear that (ii) also implies (i).
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Therefore, if (ii) holds, then we have not only TZ C (ft-1)* but also
TZ~X C 7£*. Hence, it follows that Tz C (TZ-1)* and (7£-1)* C TZ* Conse-
quently, we have (7£-1)* = TZ* and thus (iii) also holds.

Finally, to complete the proof, note that if (iii) holds, then again by
Theorem 1.4, (TZ*)-1 = (TZ-1)* = TZ*. Moreover, if (iv) holds, then because
of TZ C TZ*, we also have TZ-1 C TZ*

Because of this theorem, we obviously have

Corollary 3.7. IfTZ and S are uniformly equivalent relators, then T2
is uniformly symmetric if and only if S is uniformly symmetric.

COROLLARY 3.8. A relator TZ is uniformly symmetric if and only if TZ
is uniformly equivalent to a properly symmetric relator S.

Moreover, from Theorem 3.6, by [28, Corollary 5.5] and Theorem 1.2, it
is clear that we also have

THEOREM 3.9. IfTZ is a relator, then the following assertions are equiv-
alent:
(i) TZ is uniformly symmetric;
(i) Lim~-i = Lim# (Adh~-i = Adh?)/
(iii) LimTj (Adhft) is symmetric.

On the other hand, by using a quite similar argument as in the proof of
Theorem 3.6, we can also easily prove

THEOREM 3.10. IfTZ is a relator, then the following assertions are equiv-
alent:

(i) TZ is proximally symmetric;

(if) TZ-1 is proximally symmetric;
(iif) TZ-1 is proximally equivalent to TZ
(iv) TZ* is properly symmetric.

Because of this theorem, we obviously have

COROLLARY 3.11. IfTZ and <S are proximally equivalent relators, then
TZ is proximally symmetric if and only if S is proximally symmetric.

COROLLARY 3.12. A relator TZ is proximally symmetric if and only if
TZ is proximally equivalent to a properly symmetric relator S.

Moreover, from Theorem 3.10, by [28, Corollary 5.9] and Theorem 1.2,
it is clear that we also have

Theorem 3.13. IfTZ is a relator, then the following assertions are equiv-
alent:

(i) TZ is proximally symmetric;

(i) CI*-i = C\y (Int™-i = Int??);
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(ifi) O+t is symmetric ((Intj) 1= Colnta. oC).
Remark 3.14. This latter theorem, together with [28, Theorem 6.7],

will allow us to easily prove that 7ZAis properly symmetric if and only if
B Mclrmr(A) ¢ 0 implies A Tclv(B) o 0.

4. Topologically symmetric relators

From Examples 2.6 and 2.7, it is clear that an analogue of Theorems 3.6
and 3.10 cannot be true for topological symmetry.

However, as some immediate consequences of [28, Corollaries 5.13, 5.16
and 5.19], we still have the next two theorems.

Theorem 4.1. IflZ is a relator, then the following assertions are equiv-
alent:
(i) 7Z is topologically symmetric;
(if) limn Clim”-i (adhft C adh”-i);
(iif) clk Ccl™-i (intft-i C intft).
THEOREM 4.2. IflZ is an inversely topological relator, then the following
assertions are equivalent:
(i) 7Z is topologically symmetric;
(i) TK-i ¢ Tv (Tv-r CTv).
REMARK 4.3. By Theorem 4.1, it is clear that the implication (i) = (ii)
is always true.

On the other hand the next simple example shows that the converse
implication is not, in general, true.

Example 4.4. If X = (1,2,3,4} and R C X x X such that
A1) = A(3) =X and R(2)= A(4) = X\{1),
then TZ= {A} is a relator on X such that
Tv-i —Tv = {0,-X3},

but 7Z is still not even weakly symmetric.
Because of the definition of R, it is clear that Tv = (0,X). Moreover,
it is also clear that

0-11) = {1,2) and A-1()=X if iel\{I}.

Thus, we also have Tv-i = {0,X}. Moreover, since A(1) € R r(1), it is
clear that 1Z is not weakly symmetric.

REMARK 4.5. Note that for a singleton relator 17 = {1} all the possible
symmetry properties coincide.
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Since the inverse of a topologically symmetric relator need not be topo-
logically symmetric, we must also have

Definition 4.6. A relator TZon X, or a relator space X(7Z), is called

(i) inversely topologically symmetric if 1Z~Xis topologically symmetric;

(ii) topologically bisymmetric if 7Z is both topologically symmetric and
inversely topologically symmetric.

Remark 4.7. By Theorem 3.10 and Remark 2.2, it is clear that a prox-
imally symmetric relator is also topologically bisymmetric.

On the other hand, the following example shows that the converse state-
ment is not, in general, true.

Example 4.8. If X and A are as in Example 1.6, and B = A\ {/},
where / = [0,1], then

17- 1ZA UL 1

is a topologically bisymmetric Davis-Pervin relator on X such that 17 is not
proximally symmetric.

The topological bisymmetry of 1Z is immediate from the facts that
-1 = T2~2 UTZB

and
17~2 C 1Z\ and C Tzs.

Note that the first inclusion has been established in Example 1.6, while
the second inclusion is apparent from the facts that B —A \ {/} and

¢ Rdx)

for all x e I, and Ri(x) = X forall x 6 X \ I.
To check that 1Zis not proximally symmetric, note that

RJ1€ TZa , but RJ1f 17
since
Ra{X\1) RJ\X \I) and RB\X\lI)<t Rj\X\I)

for all A€ A and B £ B.
Namely, if A € A, then we obviously have

Ra(X\I) =X and RJ1(X\I) = Rx\J(X \ 1) =X\I.
Moreover, if B € B such that
Rx\b(X \1)=RINX\I)CRJLX\I) =X\1,
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then since

Rx\b(X\1) =X if X \I <£X\B and RX\B(X\1) = X\B if X\1 C X\B,

we also have
X\l CX\B CX\I,

i.e., B =/, which is a contradiction.
Remark 4.9. Note that under the above notations, we actually have

M~xCIMX and M CTVf UI1ZR,

which is a little more than the topological bisymmetry of 72

Now, as some immediate consequences of Theorems 4.1 and 4.2 and
Definition 4.6, we can also state the next useful theorems.

T heorem 4.10. IflZ is a relator, then the following assertions are equiv-
alent:

(i) TZ is topologically bisymmetric;
(if) lim~-t = WNHas (adh”-i = adh”);
(iii) clft-i = cIn (int™-i = intTr).

Theorem 4.11. IfTt is a bitopological relator, then the following asser-
tions are equivalent:

(i) 1z is topologically bisymmetric:

(i) =Tn = Tn).

Remark 4.12. By Theorem 4.10, it is clear that the implication (i) =
(ii) is always true.

On the other hand, Example 4.4 shows also that the converse implication
is not, in general, true.

5. Weakly symmetric relators

As an immediate consequence of [28, Theorem 2.22] and Theorem 1.8,
we can at once state

THEOREM 5.1. IflZ is a relator, then the following assertions are equiv-
alent:

(i) 7Z is weakly symmetric;

(i) Qu = NK;
iii) Qn-1= Qn;
iv) gti is symmetric.

Hence
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COROLLARY 5.2. IfTZ and <S are weakly topologically equivalent relators,
then TZ is weakly symmetric if and only if S is weakly symmetric.

Moreover, from Theorems 5.1 and 3.6, it is clear that now we also have

THEOREM 5.3. IfTZisa relator, then the following assertions are equiv-
alent:
(i) TZ is weakly symmetric;
(i) TZA is weakly symmetric;
(iii) TZ~l is weakly topologically equivalent to TZ;
(iv) {TT72¥* is properly symmetric.

However, at present, it is more important to point out that by using
Theorem 5.1, now we can also easily prove

THEOREM 5.4. [fTZisa relator on X, then the following assertions are
equivalent:
(i) TZ is weakly symmetric;
(ii) x Gintft(A) implies gk (x) C A for all A C X;
(iii)) ATQN(x) ¢ 0 implies x GcIn{A) for all x GX and A C X.

Proof. Ifx Gintj(A), then there exists an R GTZsuch that R(x) C A.
Therefore, if (i) holds, then by Theorem 5.1, we also have Qn(x) = (M71)(x) C
C R(x) C A. Consequently, (ii) also holds.

On the other hand, if x ~ clI*(A), then by [28, Theorem 2.13], x G
G intti(X \ A). Therefore, if (ii) holds, then we also have Qn{%) C X \ A,
i.e., ANQn(x) = 0. Consequently, (iii) also holds.

Finally, to complete the proof, note that if (iii) holds, then y G £%(z),
i.e.,, {y} NQn(x) d 0 implies x G cleA{i’}) = Bn{y) for all i,j GX. And
thus, again by Theorem 5.1, (i) also holds.

Remark 5.5. In the light of the above theorem and Remark 3.14, it is
clear that the weak symmetry of TZis a natural localization of the proper
symmetry of TZA.

Despite this, it is still rather surprising that Theorem 5.4 allows us to
prove easily

Theorem 5.6. IfTZ is a relator on X , then the following assertions are
equivalent:

(i) T2 is weakly symmetric;

(if) TZA is inversely topologically symmetric.

Proof. If x GX and A C X, then by [28, Theorem 6.7] and Theorem
1.2, itis clear that

A Mgqti(x) 0 GPA G C1({r}) 0 DK} G Cltia)-i (A) &
U IG djtjaj-ilA).
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On the other hand, from [28, Corollary 5.7], we know that x G cltr(A) if
and only if x G clja(A).
Therefore, by Theorem 5.4, the assertion (i) is equivalent to the inclusion

CI(7IAA C clftA,

which is, by Theorem 4.1, equivalent to the assertion (ii).
Remark 5.7. Note that the implication (ii) = (i) is already an imme-
diate consequence of Remark 2.2, Theorem 5.3 and Corollary 5.2.
Moreover, note also that the topological symmetry of 71Ais nothing else
but the proper symmetry of TZA which is a rather restrictive property.

6. Weakly symmetric weakly transitive relators

As an immediate consequence of Theorem 5.1, [29, Theorem 3.21] and
[30, Corollary 4.13] we can also state

Theorem 6.1. IfTZis a weakly transitive relator on X , then the follow-
ing assertions are equivalent:

(i) TZ is weakly symmetric;

(if) Qn is an equivalence;

(iii) gti is nonmingled-valued.

Remark 6.2. Note that the implications (i) <= (ii) o- (iii) are always
true.

Moreover, note that if (ii) or (iii) holds, then 7Z is necessarily weakly
transitive.

Now, by considering the Davis-Pervin relator TIxy ~, we can also easily
prove

THEOREM 6.3. If'll is a weakly transitive relator on X, then the follow-
ing assertions are equivalent:

(i) TI is weakly symmetric;

(ii) TIx/coti * topologically symmetric.

Proof. If (i) holds, then by Theorem 6.1, we have

nen(y)(y) = Bk(y) C (Tx\ati(x)) (v) —{Rak(x)) (y)
for all x, y GX, which is apparently a little more than (ii).
Conversely, if (ii) holds and G| such that y £ Qn(x), then there
exists a z G X such that
Kbl*)(¥) ¢ (Ae*(*)) 1(¥) = {RX\ak{x)) (¥Y) = X \ Qn(x)-
Hence, it follows that
Y € Qn{z) C X \ B-n(x).
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Because of [29, Theorem 3.21], this implies now that

Qnfy) CX\Q r{x).

Therefore, we also have x £ Bk.(y). Consequently, gr is symmetric and thus
by Theorem 5.1, (i) also holds.

Remark 6.4. Note that this theorem extends the first assertion of Ex-
ample 2.6, and is very similar to Theorem 5.6.

But, in contrast to Theorem 5.6, neither of the implications (i) = (ii)
and (i) => (i) in Theorem 6.3 is true without supposing the weak transitivity
of .

Example 6.5. If X = {1,2,3} and R ¢ X x X such that
Al = {1,2), R(2) =X, R(3)= {23},

then TZ= {f} is a strongly symmetric relator on X such that T"X/e-K is not
even weakly symmetric.
To check this note that gr = R~x = R, but

nA* e = A*U{(1,2),(3,2)}

is not symmetric.
Example 6.6. IfX = {1,2,3} and R C X x X such that

A1) ={12} and [A(2) = A@) = {23},

then T2 = {R} is a relator on X such that 7Zx/On  properly symmetric
despite that 71 is not weakly symmetric.

To check this, note that qr = R~x and
A-X1)= {1}, R~\2) =X, R~\3)= {23}

Therefore

(Reii(i)) = = Ren(3) and (JIpa(?2) = -"ca(2-
Analogously to Theorem 6.3, we can also easily prove

THEOREM 6.7. IfTZ is a weakly transitive relator on X, then the follow-
ing assertions are equivalent:

(i) 71 is weakly symmetric;

(if) TZx/ev ,s topologically finer than TZ

Proof. If (i) holds, then by Theorem 5.1, we have

- (nM)(x) ¢ R(x)
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for all x £ X, which is apparently a little more than (ii).
Conversely, if (ii) holds, then for any x £ X and R £ 71 there exists a
y £ X such that
® 7t(x).

Hence, if R(x) ¢ X, it follows that
X £ BK(Yy) C R(x).
Because of [29, Theorem 3.21], this implies now that

Qr(x) C R(x).
Consequently, by [28, Theorem 2.22], we have

(n7r)_1(x) = gu(x) ¢ (n7r)(x)
for any x £ X, whence (i) is immediate.
Remark 6.8. From the first part of this proof, it is clear that the im-
plication (i) =m(ii) is always true.
On the other hand, Example 6.6 shows also that the converse implication
is not, in general, true.
Namely, if 71 is as in Example 6.6, then we have

nenUICL) ¢ A(Y) and A<*@)0= BL if *= 2,3.

Consequently, TZ-x/en  topologically finer than 71 despite that 71 is not
weakly symmetric.

7. Weakly symmetric weakly topological relators

From Theorem 5.4, by [28, Theorem 2.20] and Theorem 5.1, it is clear
that we also have

THEOREM 7.1. If 71 is a weakly topological relator on X, then the fol-
lowing assertions are equivalent:

(i) 72 is weakly symmetric;

(it) x £ G implies gk{x) C G for all G £ Tti;

(iii)) FNQn(x) ¢ 0 impliesx £ F forallx £ X and F £ Tn-

To check the implication (iii) = (i), note that if (iii) holds, then because
of y € Qn{y) € Tv., the condition y £ arr(x) implies x £ au(y)- And thus
by Theorem 5.1, (i) also holds.

Remark 7.2. By Theorem 5.4 and [28, Theorem 2.20], it is clear that
the implications (i) =» (ii) o (iii) are always true.

On the other hand, our former Example 4.4 shows also that the impli-
cation (ii) => (i) is not, in general, true.

Now, as an immediate consequence of Theorem 7.1 and [28, Theorem
2.20], we can also state
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Theorem 7.3. IfTZ is a weakly topological relator on X, then the fol-

lowing assertions are equivalent:
(i) 7Z is weakly symmetric;

(ii) for each F £ F+r and x £ X \ F there exists a G £ 7% such that
F CG, butx £ G;

(iii) each member of F r (Tr ) is the intersection (union) of certain mem-
bers of Tr (Fr).

To check the implication (i) =$>(ii), note thatif F £ Fn, then X\F £ Tr.
Therefore, if x £ X \ F and (i) holds, then by Theorem 7.1, Qr(x) C X \ F.
Hence, since x £ Qr (x) £ Fr, it is clear that G = X \ Qr (x) £ Tr such that
F CG, butx £G.

REMARK 7.4. It is clear that the equivalence of (ii) and (iii) is always
true.

On the other hand, again Example 4.4 shows that the implication (ii) ==
(i) is not, in general, true.

Thus, for the sake of completeness, we need only show that the implica-
tion (i) = (ii) is not also true in general.

Example 7.5. IfX = {0,1,2} and A, C X x X for i = 1,2 such that

Ri(0) = {0,i} and Ri(k) = {1,2} if k£ {1,2},

then 7Z= {Ai, A.} is a weakly symmetric and weakly transitive relator on
X such that the assertion (ii) of Theorem 7.3 does not hold.
To check this latter statement, note that

*={0,{1,2},X} and JF = {0,{O} X}
and thus the assertion (iii) of Theorem 7.3 cannot hold.

Remark 7.6. The above relations Ai and R: have also been used in
our former papers ([28, Example 5.23] and [29, Example 2.9]).

From Theorems 7.1 and 5.1, it is clear that we also have

Theorem 7.7. If TZ is a topological relator on X , then the following
assertions are equivalent:

(i) TZ is weakly symmetric;

(ii) pre(x) = RI‘I intr (R(x)) for all x £ X;

en

(i) fl{~: XEF £Fr) =f{G: X £ G £7r) for all x £ X.

To check the implication (i)  (ii), note that if x £ X and R £ IZ, then
because of the topologicalness of 7£, we have int7j(A(a:)) £ 1+ . Therefore,
if (i) holds, then by Theorem 7.1, or (x) C intTj(R(x)) also holds. Thus, we
have qr (x) C Rf] intr (R (x)).

en

Moreover, if (i) holds, then by Theorem 5.1, it is clear that we also have

P) intr (R{x)) C Pi R(x)= gn(x),
Ren Ren
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even if 7Zis not supposed to be topological. Consequently, if (i) holds, then
(i) also holds.

Remark 7.8. By [28, Theorem 2.22], it is clear that the implication
(if) => (i) is always true.

On the other hand, Examples 4.4 and 7.5 show that the implications
(iii) = (i) and (ii) => (iii) are not, in general, true.

Thus, for the sake of completeness, we need only show that the implica-
tion (i) == (ii) is also not true in general.

Example 7.9. IfR is areflexive and symmetric relation on X such that
R is not transitive, then TZ= {A} is a strongly symmetric relator on X such
that the assertion (ii) of Theorem 7.7 does not hold.

To check this latter statement, note that for a singleton relator 72 = {R},
the assertion (ii) of Theorem 7.7 means only that iioii-1 ¢ R, i.e., A-1 CR
and RoR ¢ R.

Remark 7.10. By using some convenient definitions the assertions (ii)
and (iii) of Theorems 7.3 and 7.7 can be stated in more suggestive forms.

For instance, under the notations of [29, Theorem 2.10], the assertion
(if) of Theorem 7.7 means only that the relators 1Z and (7£0)-1 are weakly
topologically equivalent.

Notes and comments

The inverse U~I of a quasi-uniformity U was called the dual and the
conjugate of U by Nachbin [21, p. 57] and Murdeshwar-Naimpally [20, p.
16], respectively. The assertion (ii) of Theorem 1.4 is essentially a particular
case of Theorem 2 of Kenyon [11].

The useful example 1.6 has mainly been suggested by the half-open inter-
val space of Kelley [10, p. 59] and the generalized uniformization techniques
of Davis [6] and Pervin [25]. Another important relator constructed from
half-open intervals was utilized in [27].

A strongly symmetric (uniformly symmetric) generalized uniformity was
called symmetric (feeble symmetric) by Krisnan [13], while an inversely topo-
logically symmetric quasi-uniformity was called point-symmetric by Fletch-
er-Lindgren [8, p. 36]. The local symmetry of [8] is an important hybrid
property.

Most of the results of Examples 1.6, 2.6, 2.7 and 4.8 can be easily ex-
tended to more general Davis-Pervin relators. Moreover, there is a natural
generalization of the Davis-Pervin relators whose symmetry properties can
also be nicely described [31].

The definitions of uniform and proximal symmetries are completely jus-
tified by Theorems 3.6 and 3.10 and their consequences. However, in the
fight of Theorems 4.1 and 4.2 and Examples 2.6 and 2.7, the topological
symmetry should be rather called a topological semisymmetry.
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In [18], a relator 7Z will be called properly topologically symmetric if
its topological refinement 7IAis properly symmetric, and it is shown that a
relator 1Zis properly topologically symmetric if and only if 1Zis topologically
equivalent to a symmetric singleton relator S = {5}.

Thus, a properly topologically symmetric relator is always topologically
symmetric, but not necessarily topologically bisymmetric. Moreover, even
a strongly symmetric relator need not be properly topologically symmet-
ric. Thus, neither the topological bisymmetry nor the proper topological
symmetry can be naturally called the topological symmetry.

Our weak symmetry corresponds to the famous regularity axiom [o-
This axiom was first introduced by Shanin [26], and later rediscovered by
Davis [6]. Since then a lot of work has been done on the Ao-axiom. See, for
instance, [17], [1, p. 402], [20, p. 37], [22], [5], [9], [16], [7], [2, p- 93], [14], [4],
[33] and [3].

In particular, the equivalence of the assertions (iii) of Theorem 6.1 and
(i) of Theorems 7.1 and 7.3 in topological spaces, and the equivalence of
the assertions (i) and (ii) of Theorem 5.1 in quasi-uniform spaces have also
been observed by Davis [6, Theorem 2] and Murdeshwar-Naimpally [20,
Theorems 3.8 and 3.10], respectively.

These latter two authors, in their paper [20, Theorem 3.6], have also
proved a close analogue of Theorem 5.6 which shows that a topological relator
is weakly symmetric if and only if it is topologically equivalent to an inversely
topologically symmetric quasi-uniformity. A few theorems of this kind will
also be proved in [19] and [32].

Added in proof (April 11, 1991). The author is deeply indebted to Jené
Dedk who has pointed out several small errors in the text and suggested the
following more valuable examples in place of Examples 2.5, 4.8 and 7.9.

Exampte 1. If X isan infinite set, £ is the family of all equivalences on
X having only finitely many equivalence classes, and L is a linear ordering
on X, then the family

TZ= {EnL: E e £}

is a base for a non-symmetric transitive quasi-uniformity U on X which
induces the discrete proximity on X .

The curious fact that a non-symmetric quasi-uniformity may induce a
proximity is certainly well-known, but we could not find it in the existing
literature.

EXAMPLE 2. If X isan uncountable set, then the family TZof all relations
R@@B) = AxBuX\ A)xX,

where A C B C X such that A is finite or X \ B is countable, is a subbase for
a topologically bisymmetric totally bounded quasi-uniformity U on X which
induces a non-symmetric quasi-proximity on X.

For the necessary prerequisites on quasi-uniformities and quasi-proximi-
ties the reader is referred to Chapter 1 of Fletcher-Lindgren [8].
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Example 3. If X is the set of all positive integers and for each n £ X,
we set Rn C X x X such that

A1) ={12}, £.(2)= {12} U{*}£=,

and
Rn(k) —{k} for A= 3,4...,

then the family 7Z = {An}~Lj is a weakly topological and weakly symmetric
relator on X such that the assertion (ii) of Theorem 7.7 does not hold.

Moreover, Jend Dedk has also observed that the assertions (i) and (iii)
still remain equivalent under the weaker assumption that 1z is only weakly
topological.

In this respect it is also worth mentioning that most of the results of
our present and former papers remain true if arbitrary relation systems are
called relators.

Added in proof (April 16, 1992). Meantime, we learned that various sym-
metry properties of quasi-uniformities have also been studied by P. Fletcher
and W. Hunsaker [Symmetry conditions in terms of open sets, to appear in
Top. and its Appi] and J. Deék [A note on weak symmetry properties of
quasi-uniformities, to appear in Studia Sei. Math. Hungar.].

For some closely related results, see also H. P. A. Kiinzi, M. Mrsevic,
I. L. Reilly and M. K. Vamanamurthy [Convergence, precompactness and
symmetry in quasi-uniform spaces, to appear].
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EXACT NORM ESTIMATES FOR THE SINGULAR
SCHRODINGER OPERATOR

M. HORVATH (Budapest)

In this paper we consider the manifolds Sk C R*, k = 1,... K defined
by the rules

sk = {E*?): f GRm*, 1) e RN~mk, £= qk(v)}
where the partial derivatives of the functions sk: RN~nk — Rm* are uni-
formly bounded:
IvVA(7?)|"c, veRN~mk, k=1,... K

We define
K

S:= U Sk
k=1

Let further O £r <2, m := mKinm* and let

(i) g€ C°°(Rn \' S) be a real valued function satisfying

(i) |D°g(a:)| o co[dist(i,5)]~F_H, X€R7?, 0~ |aj<m+ 2—.
Introduce the Schroédinger operator

I'm = - 4/ + f + Hif-
Recall the definition of the Liouville classes L*(RN), 1 £ p~ oo, t > 0. Vp
is the space of all functions
F~\(i+ N2-*f/), / e 1p(rn)

where F is the Fourier transform defined on the Schwartz distributions. The
corresponding norm is defined by

-« 1+ I*1)-*i/)[|4(R,,) :=

We shall prove that in case 1 < p < *, makes an isomorphism
between Lp and Lp. Let Iqgbe the integer defined by
m m
T+ 2f0 ~ T+ A{£qg—1)

Then we have the following:
Theorem, a) Let1<p< 0<s<20,s<j +2-r. Then
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Ko pr"p
is an isomorphism of Lp onto Lp.
b) Suppose that the conclusion ofa) holds and consider the bounded linear

operators
jin-lp "bsi B 4.
Suppose further that An is changeable with Lp and

Anf -~ f, 71-00, felop.
Then we have
Anf /, ti—o00, [/ €Lp.
c) Letl<p< 5= " + 2 —r. There exist a potential g satisfying
conditions (i), (ii) and afunction
f e C%°(RN), fSD(LI).

Remark, a) and b) generalize some results of Nikolskii, Lions, Lisorkin
[8] and Jod [6] and Jo6 [7]. c) shows that the condition s < » + 2 —r can

not be improved in a); this answers a problem raised in Jod [7].
We recall the following result of Marcinkiewicz:

Theorem A [3]. Suppose that the function
A:Rn —R
satisfies the following property: if
1<h <k2<...<kT<N, r<nN

is an arbitrary index sequence, then the derivative

D A:= DXk ...DXkrA(x)
exists and is continuous at the points x £ , XN O,... ,xr ¢ O; further

[XKLKA = Ixkl...xkrDXd ...DXkrA(x)] < M, X£ RN.

In this case for any 1 < p < oo there exists a constant cp, independent
of f and M such that

) WF-"(\Ff)\\L, S cp1nl/Mlj,, [/ € 1p(rn).

Such a function A(x) is called multiplicator.
Our first statement is analogous to Lemma 1 of Joo [6].

Lemma 1 (J0O [7]). Letm 2, a”~0, 1< p <tjf. Then
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WeifWb, i c\W\A\L?, feL°(RN), Bk(x):=\i-Mv)\~\ x=(t,TI)
where ¢ —c(a,m,N,p) is independent of f.
Remark that in [7] a slightly different notation is used, namely

Sk{(t, ) e Rm* XRN~m*:r,= "~ (0), dim5ft= mf
m = m\n(N - mjt), gk(x) = \n)-

Taking these modifications into account, Lemma 1is transformed into Lem-
ma 1 of [7].
Introduce the notation

2) a(f) * fi(/), 1 €T\

this means that there exist constants 0 < ci < ¢2 < 00, independent of /
such that

3) cia(f) <b(f) » c2a(/), fZT.
Lemma 2. Letl<p<oo, p>0andieN={1,2,...}. Then
(4) Wthy + n\ \ / \ \ x UMm+1 - A)F\\L2t-2, felp,

(5)
<+ T-AYY|It, s [UNY +(*|[/|I12-=+A||/||o T+ .+ /||/]|1, /6 2

where the implicit constants do not depend on f and p.
Proof. First verify (4). The estimate

IK*-b1- 0)11b“-2 = c(|I/I11]<+ p\\\\LE-2)
being trivial, it remains to show the converse. The estimate

ML+ 11*W « + *1+ H«-bl|
is true in any normed space, hence

(6)
H/ANI+ATI, <=0 = Hi"2c! + [i[1) VDbl +]IF-1((01 + M2)'-V /)11, s

£ ||IF->((1 + Ixpi'-"O+MVIFO LN +11F-1«! + |x]2)"_1(1+|x|2-M)F/NI
Consider the function
1+ N*- *=1 2u - .
N FiEpsn = - AreweEp
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It is easy to see that |A(x)| N 3, Ais a irmltiplicator and

IX*i « « o x ik DX ...Z>XifcA A + Nfc+l = ¢(Y)-
Hence Theorem A implies that
[|[F-2((1 + WL)"“ I1(1+|x|2-Ix)F])|]ii,<
£ cOJIVINF-'KI + |x]2+ X)L + |2|2)'-V ) ||IV / 6

Now we can continue the estimate (6):

UHvg +/>11/11£ C||F->((1 + |xp)'-'(I + |x|2+ g)Ff)Hi, =
= c||F-1(( + |x]|2)"-1f((f>+ 1- A)DI|,., = c||(/>+ 1- A)/11j(-i
which proves (4). The estimate (5) is proved in (4) fort = 1 and for larger
I we use a simple induction: if (5) holds for i, then
[((M+ 1- A*+1/||1px \p+ 1- 4)/]|ly 1+ HIO* + 1“ ~)/11pN-2+ om
eeet [110* +1 - A)/|[1p- ||/]|L2H2 + mlI/IIIN + "W/WIEiLT + eeo
eme+/n/iid +/>'+liiliiv
Lemma 2 is proved.

Lemma 3. Letm >2, 0<r <2 feN, 1<p< 2f< M+ 2- 1
and let Ho(N,p,T) be large enough. Then

(7) L e N ST NS
(8) Li/lli, * |/Jlu< + />1011%*- + me+ AT K,
9) \K f - O*- A)/IU,, s

b ¢ 11/11%;««-» + [>11/11%««-» + eee+ [ " 2|I/11*;« + X 'll/11/p

hold for f € Lp® // ~ Po> with constants independent of p.
Proof. We know that

(10) H«/Il**- £ ¢ E [IR'V mD'VIK, £
OFJ0i 1H0j I£»-2

< cE IP A/llt.-Hftl £ cll/ll1t+2<-2
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(we have used that A(x) = is a multiplicator, see [3], 1.5.5).

(i+w2)W

Consequently
HWIIIN-2 = HOF- )11 2+ 1k/I1i,25-2 = c(I/1I™ + MLY/1162/- 2)-
Conversely, we have for » ~ 1

£ 105~ A)/llis<m- lle/lltj-» &

= oi (1 <t on e o2

Consider the function

i 0O+ M ¥
AR = s 12 + o)

where £> 0 is arbitrary and c(e) > 0is a constant to be specified later. We
shall show that Ais a multiplicator; we have to prove the estimates

|xi! ... xikDXi ...DHkXI* M, x e RN.

Up to permutations of indices, xtl ... x;kDXi ... DXkAis the sum of expres-
sions of type

xh ...xikDXi ...DXir(1+ \x\2) b \ +1...DXk[e{1+ |x|2) + c(e)]"1L
Expanding the derivatives we get
Xa .o Xiferxn oo+ x[22 e Armt .. T L KPY L el
_c N ik (1 + 0P
(I+[x[2r  [e(l + |x]2) + c(E)fer e(l + [x[2) + c(e) -
j GLl-£T~k-£_1(1 + |x]|2)i-1
S —
Now if (1 + |x|2)?-1 < £fetl~r ie. 1+ IX12 > (i) ¥i , then er~k-
£-1(1 + |x|2&-1< L If 14 |x|2< (i) I+ ,then
r-ti+JieE <j _ . <j
ce) = e(e)

if we suppose that
if we supp L k+1,+

cle) > £ ~i
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forallo<r ™ k"™ N ie. if

-N
cley t £

Therefore we have proved by Theorem A the following statement:
Let 0 " T < 2, I<p<oo and e > 0. Then there exists c(e) =
= c(e,T,N) > 0 such that for any | > 1

(11) [|[/]li;«.-1 SE|I/II4 <+c(£)]|/]|1» -1, I€i" (R ").

Consequently

MANIA-2 = i (VI + HU2-2) - 2« + c(E)I/12-2) =
= (Cl - c2E)W\Laot + (cilx - c2(£))|]/]|L2< 2.

Let £ > 0 be chosen so small that ¢\ —c2£ t and then for fixed £ let p be
large enough to ensure C\p —c2c{f) t "p. Then

W Tosemr [ dilid <t ol ]y

Hence (7) is proved. Statement (8) follows from (7) by induction on t as in
Lemma 2. Now we show (9). Expanding the brackets in ((p - 4) + g)If we
get that (p —s + q)*/ —(p —A4,)*/ is the sum of expressions of the form

cpaDRIg- ...« DRrg- DRf
where

2a + 2r -f \Ri\ + ...+ \BT\+ \R\ = 2, rt 1.
By Lemma 1 we obtain

B«', «27/1lb,, S cM* £]|«>121|+- +[1]+” 0'5M11, £
K

= C a\\DRFfWL\XW\...+|y3r+T = C/r"||1>/3||~2r-|)3|-2a+r(r-2) S
= OFa||/||ba<-2a+r(r-2) ~ Qvall/l LJ'p+2((-1-a).

Lemma 3 is proved.

Lemma 4 [8]. Let] 6 N. Then for any n't. |

a) (4 + p)<:Lf - Xpisan (onto) isomorphism.

b) -4 +p:Lf- L™-2is an (onto) isomorphism.

Lemma 5. Leim >2,0<r<2 1<p< 21<j +2- t,p >p0.
Then
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a) L' :L* - LPis an (onto) isomorphism, and
b) I, :i" L «-! is an (onto) isomorphism.

Proof. Since b) follows from a) by induction on £, we show only a).
That L* is an isomorphic embedding has been proved in Lemma 3. Suppose

indirectly that there exists

OPI9 £ Lpe, -p+p—:1
satisfying
(12) / glu =0, /| €LT.
TN
There exists h € Lp such that
Mp = 1, f 9h = lIfIHv-

By Lemma 4 there exists / such that
! € L« (p- AYf=h.

Consequently, using also (9), we obtain

iy = 0 Q=N A arrp =1 Q- Ay - 11 <

ANI\ePXK ~ -~ )e-K n n Pro\\g\\bp. [11/117™*1-0 + ...V " 111/, .

By (11) we get

(13) <f
fuff) LE|r2 N CR U (T
< 2£ ||/Ib* + ese+ A\Fh
if
(14) c(r) ~ ep.

On the other hand (8) implies that

(15) 1= |lfclli, > c, [|/]|14, +... +/nnu,]
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Now if0< £ < and for fixed £, u is chosen satisfying (14), the relations
(13) and (15) stand in contradiction. This proves Lemma 5.

Remark. Using (4), resp. (7) and Lemmas 4, 5 we see that
1:Lp—Lp, (W+1- A)-1:Lp-*Lp

are continuous and

06) [H(~i-A)-UI1Sr” -

Consequently the operators LRQ, 1 —/[ with domains
D(lp0) = D(I-A) = LI(RN)

are positive operators in the Banach space (R ”) in the sense of Triebel
[1, 1.14.1]. We can define the (nonintegral) power Jla of a positive operator
N: A—>A in the Banach space A as follows. Leta £ C,n,mi £ Z £ R
be arbitrary satisfying

a7 n>0 0O<a<mi, —khw<Reaéfa—n.
Then for any

mj’
the integral

0o

(18) n>:.= _  _ === ta+n~I\ mi~n(A + t)~m adt

converges in the norm of A and does not depend on n, mi. Also, the closure
of /1“ does not depend on cr. This closure will be defined as /1", the a-th
power of /1. If a is entire, a £ Z, then A" is the usual a-th iteration of A
(fora  0) or the inverse of the usual meaning of /1-a (for a < 0).

Further we know that if A is a Hilbert space and A is a strongly positive
selfadjoint operator of A, then

A" =] XadE\

where dE\ is the spectral measure associated with A. We shall use

Theorem B (Triebel [1], 1.15.2). a) Let mi be large enough, Rea,Re/3 <
< mi, then

AaARa = Aa+ia, a £ D{J1Z2*1).
b) If Re a < 0 then A* is continuous and A~aAa — 1.
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c) IfRea *Re R > 0, then AaA& = JI°+~
d) If Rea > 0 and \i > 0 then Aa maps isomorphically D(A*) on-
to A, N(N1°+N) onto D(A") (the space D(Aa) is endowed with the norm

IMb(/1«) := [|N“a|L).

The explicit description of D(Aa) for nonintegral a was studied by many
authors. J.-L. Lions [4], [5], [8] discovered the nice complex interpolation
property (20) (below) between the domains D{Aa) for a large class of oper-
ators. We shall apply a variant further developed by Triebel:

Theorem C (Triebel [1], 1.15.3). Let A be a positive operator. Suppose
that there exists £> 0 such that for —£" t<e the operator Au is continuous
and

(19) Al <. W<E

Then for any complex numbers a, B with 0 £ Re a < Re [ < oo we have
(20) (D(AQ), JI(A*)[0] = T)(J1(r- 0)“+0/3), 0<sB<1

with equivalent norms.

The following three lemmas are devoted to the verification of (19) for
our operators 1 —/ and LM. In (17) we can define

(21) a —it, n=1= 0<2=mi.

Lemma 6. Consider A=1—/1 andlet1<p < 00, 0<T < oo. Then
we have

(22) (X - A ff\p <cp, N,T)\\f\\Lp, f € Lp(RN), W<T
and (1 —A)Itf can be realized by the corresponding integral (18) with (21).
Proof. By the substitution r = (1 + |x|2)u we get

rit 1+ M2 d
L+ [x]2+7T)

@+ N 2)“J (~ A 2 = C(*)(1 + N 2)*
where

lc(*)l =J 0-+ u) 2du < 00.
The function (1 -f Jar|2y* is a multiplicator, since

K .XikDX ...Dxik(l + N2)“| = c\Xi  mik(l + \\2f~ k <c(N,T).
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It follows from Theorem A that

I+ [x'2

(23) 'Ol r o 2+ r)2

dc\\fhP, f e Lp.

We shall show that for any fixed w < oo

v o

o _ i+ M2
(24) 1 a1 - o) +r- A)~2fdr = F-1 C ope (L + X2+ r)zdr)Ff

holds for / € Lp. Take any sequence of partitions s = (r/t), rk = rkn of
the segment [0,w] with

sup(rfcH>n- rk,n) -»» 0, n -* 00.
K

We shah see that the functions

N (X) = [*e**(1+ [X1] rfc)2Ar* +
0

are multiplicators and

(25) Ixg...xiaDXi ...DXiaA n(x)\ < M,, -» 0, n -> 00
i.e.

X . Dx, ...DX + N2--.dr-
' 3o P A 1 -}IX[ZH)?

¥ 1T IxI2 < Mn >0
-E e eeeDFi {I + W24 rk)2ATA n->0

Let 0 < £ < 1be fixed. Using the simple estimate

1+ X2~ c(N)

i X . <
Xi. Dxa Dx: (L+ X2+ 1)2 ~ 14 [x[2+ 1 c(N)
we see that
€ 1+ \x\2
' ‘ D dr <S-c(N),
1, ;o ~T)2 X L+ [x|2+ 12 (N)

Acta Mathematica Hungarica 60, 1992



EXACT NORM ESTIMATES FOR THE SINGULAR SCHRODINGER OPERATOR 187

jj ... XAt < £+c(N).
& fiooTtD“* " WD - (1 +1IP + Tky Ark o)

Suppose that
sup Ark < e2.
K

There exist intermediate points r*g £ [r£,r&+1] such that

Wirk_ o1+ w2
D*il"" Dxi* (I + X\2+r)2

N c(N)e2
rk>e
Finally we have
1+ x|
xh mamxi. E rkD*n-*-D*u(1+WX\2+rk)2
rk>e L
1+ N2
~rk,I"xn «mDX, (1 + |x|2+ rk)2 Ark
A K X0D V(A ri92, max G I+ X <
C N *efﬂcrzfcﬂ] dr M L+ |[x[2+ )2
. Ly Exj_z
A I*n E_(" ) [M} DXii ...D Xit + K2+ r)2 +
rk3c e
+2\Xn IY'(Arb)2 max , ] I+.J. %12 <
~>C [r*'r*+|] <1 X' (l + |X|2+ r)3
~Ne(N)(@2+j) E (Ir*)2= TYEE Ark = QN >T) e,
rfc=e

The above estimates show that (25) holds indeed. By Theorem A this implies
that

(26)
1+ ||

A A _ * 1+ 11
L+ sy ATOFTNF 1(J dr\Ff

1+ |x]2+ )2
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n —o00. Using the identity

InLiJEL _F/=f[(1_A)Ll+rt_A)-2]

we see that the left hand side of (26) is an approximating sum of the integral

\]?r“(l - AY(I + r—A) 2/dr

(0]

and this proves (24). Consider now the Lp —Lp operators

Auf := F~I P+ N2 gpips
u @+ x2+ n2""
and
1+ rl12 .
= F- drrjFf .
Aoof ;= F-1 (1+ [x[2+ 1)2 J
Since the functions U
, 1+ N2 -dr

3 @+ x[2+n)”

are multiplicators with estimating constants independent of u», there exists
¢ > 0 satisfying

7) IA*/|[1,,, WAcol\\Ip £ c\\Lp,  f e Lp, u < oo.

On the other hand the functions

0o

J rf(+ [x[2+ 1) 2dr

are multiplicators and

o ...xisDXi ...DXs] rf(l+ [x[2+ 1) dr <
u

(e]e]

<c(N)J(1+rfdr = Mw->0, L) —»00.
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Consequently for / € ip we have

o]

ritdr
WAuf-Aoofu” (1+|x|2+r)2,1(1+ M2)F f

[e]e]

Titdr

g @ M2+ 2t (AN oM (T-A )L

This means that if/ is taken from a dense subset Lpof Lp, then Awf converge
in Lpto Ax,/. Taking into account the uniform boundedness (27) this means

that Awf Aoof for all / 6 Lp. But then the integral

[e]e)

=B+ T —p) 2dr

converges in Lp for any / € Lp and equals

(e]0)

+ N 2
r)Ff
o - a x2+n2®"

Now (23) implies (22), hence Lemma 6 is proved.
Remark. From the identities

- = ~ ~ + =
ror( - z) Sithr T(z+1) =12T(2)
we can express the coefficient of the integral (18):
1 _shnt

rL+ tf)r(l —it) nt
Lemma 7. Letm~t2, 0" r <2, 1< p< ™ Thenfor large po

WKZ+rf\L-i {1+ €)% i\\fhP felp O0<s<2.

Proof. The case s = 0 is contained in (16). For / G Lp there exists
f\ e i 2with LpO+r/i =/ and by (7) we get

1UIL, = HWr/illEp ~ cHAu”?

which is the case s = 2. Hence the operator L“Gr: Lp —Lp, Lp —Lp

is continuous with norms * and ™ c respectively. Since the complex

interpolation is exact, we get that L“*,.: Lp —»Lp is also continuous with
P

norm < (|+r)1'_r*as we asserted.
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Lemma :. Letm>2, 0<r<2, I<p<™ and0< T < oo. Then for
p N po we have

I[b?/1U, S ¢(P,N, T,T)\\f\\Lp, f e Lp, \t\<T

and Ljj/ can be expressed by the corresponding integral for all f GLp.

Proof. In the integral defining (p —A),tf we shall change the operators
i —0 by  step by step. First let

h .:J r'\p- A)(p+r-A) 1[FGr- (p+r- A) I]fdr =
0

00 00
=YL (M- A)_Id ey LA A) AL r-(/i+ r-A) - 1)/dr

0 0

Since

hence

0o

D Nklr '(ﬂ N X]de < J KX+ 1 - AY-1gL :|r/]Lpdr <

[e]e] [e]e]

00

= CJ(1+ r)y*~*dr mU\\1p = cl||/]|1p,
0
00
I/ rit¥\p +r- A)-1[LYr- (p+r- A)-1/dr||Lp "
0

00

=C/ TATK+r “ (*+T- A)-1]/liLpdr *
0

therefore
WhWLp T CWH\\r.
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Let now

00

b= ru(n - mrex+ M- m)-1- Lijr]l r/dr -

0
00
=) wepe myix + 1 - \)-lq\j~Irfdr =
0
00 00
- ) rigl~irfdr + ] rite1(fi +r- A)-1g1~Irfdr.
¢} 0
Then we have
s «f :C\](1+r)f-‘iiis,/n|.irs
0 0
00
= CI( 1+ r)*~2dr « 1/llp = c||/||Lp
0

and similarly

Jottn tr- Aytgl-lidr <o YAl IrfLpd rA el

0 p 0

Wibp ¢ cVflLy
Finally let
b T e pemerar = ] SOINEAT,
0 0
then

INK, <Y HilSr/Ii,* Sclili,
0
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Our estimations show that

(e]e]

] HO.- 0)0<+r- a)-2 - s clyliv
0

This imphes that the integral

JorM My lrfdr

(0]

converges in Lp-norm and

A)-2fdr - ) ro% L~Irfdr A c\flLp.
Lp
0

Since we can prove Lemma 6 for I —/[, instead of 1 —/,, Lemma 8 follows
from Lemma 6.

Proof of the Theorem, a) Let1<p< N 1<
0<s<2los<j<+2—r. Suppose first that there exists t S Iqwith

m
§s <2l <—+2-T.
P

By Lemma 5 we have D(L") = L2t, hence

i>(i;) = (ipD(b",)ei = ij, e =i.

If there is no integer t with s*"2 £ < j*+ 2 —«, then take 1. i -~ 14 1
satisfying 21 <s < 21+ 2. Let further
m _ m
LePos<tyo@-1y PP <14y
then
r2
JPo
are (onto) isomorphisms. Now take 0 := Applying the complex inter-
polation for LMand L“1 we get that
1-0 0
_________ 3
Po Pi
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is isomorphism. For fixed O,

io> 1 > (1 - 0 ) (r + 2 (1 - 1)) + Q(I’+2|):S+I’-2A
p* m m m

hence for appropriate p0 and pi we get p* =p. Now s <y +2—t1 implies
s—2<2l< J-+2—T therefore La~2=D (1| _1). Since 1L: D{b]) -> D(I | _1)

is isomorphism, it follows that in general D(Lp) = Lp which proves part a),
b) This is an easy consequence of a). Indeed, let / G Lp, then

ih,, /-/iF<c\4{Anf - mLlp  An(bI/)-L]|/ 0
since Lp/ GLp.

c) Lets=y +2—r, 1 <p < ™and suppose indirectly that Cq® C

C D(Lp). Since Lpi D(L") —+D(Lp *)isisomorphism and D(LE *) = L®2
by a), we get Lp(C£°) C L’~2. Obviously (-4 + p)(C£°) C CE® C L*-2,
hence gp Gio.» i+ PGc .- v .. Suppose that the singularity surface is a
hyperplane as follows:

S={t,v):t =0}
and suppose that
2*) = (0. *= (f7)
Then we have dist (z, S) = |£|; hence the condition on the singularity of q is

(28) [L>“g(Ol ~ c\tr~ F/, 0~ |a| <2f0- 2.
Consider the function
<p(x) = e C?(Rm), R€cO°("-T1).
The condition g G L*-2 can be rewritten as
F-X((I +|xly-"Figvwj) e Lp(Rn).

It is easy to check that

is a multipllcator, consequently

+ Kla)*_ 1M 1?2)) e 1>(rn).
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Denote Fm the Fourier transform on Rm. Then

F(q"2)(x) = @w-T | -

tin

- em-rd 8-Fl |)q(t')<pi(o gty &~ €~,('r,’r,">ip2(v')dv' :

RM RN-m
= Fm(g<pl)(0 mFN- m(<R) (€),

consequently

AmL((ir12) A IF(M v .2)) = A 1((I-HM2)"-1F rn(m ))(0-~)eM R ;v)

and then
Ne((1 + |E12)'-TT (B5Y1)) 6 1,(R™)

m ei;-I(n for me C(WN 7).
We use the following embedding theorem of Triebel [1]:

L)i/CLTZ' if 1<p<p*<oo, S----NF-)->t _______

In particular this gives
La~2(Rm) C T-(Rm)
and then
g € L*r(Rm).

If ifl = 1in a sufficiently large ball with centre at the origin, we get
(29) q € XmQRm).

But we can define q(£) := |f|~r; this satisfies (28) but (29) does not hold,

since
R R

J k(O |Ad£—J crm~1(r~T)~dr = CJ -dr = oo.
S(0,R)
The contradiction proves c).
The proof of the Theorem is complete.
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ALMOST SURE CONVERGENCE OF SET-VALUED
MARTINGALES AND SUBMARTINGALES

B. K. DAM (Budapest)

1. Introduction. The almost sure convergence of a class of set-valued
martingales in the Hausdorff metric has been discussed by F. Hiai and H.
Umegaki [4], [5]. Later on, the authors of [1] have treated the almost sure
convergence of a larger class than that of set-valued martingales, the so called
set-valued amarts. In this paper we present the Mosco-type convergence (see
[7], [6]) for martingales and submartingales taking values in VQX), where
X is a reflexive separable Banach space and VdX) is the class of all convex,
closed, bounded and non-empty subsets of X. N. Papageorgiou [8] has given
some sufficient conditions for convergence of set-valued martingales and sub-
martingales in Mosco sense. However, his conditions are rather strong. We
shall show here that every set-valued martingale (or submartingale), which
is “L1-bounded”, converges almost surely in Mosco sense. This result is a
generalization of Doob’s convergence theorem (for real-valued martingales)
and of that of Chatterji (for vector-valued martingales).

2. Preliminaries. Throughout this paper, let (U,A,P) be a probability
space and X a real separable Banach space with the dual space X*. For each
X CX, cl X, c6X will denote the norm-closure and the closed, convex hull
of X, respectively. Let V(X) (resp. VQ@X)) denote the family of all nonempty,
closed, bounded (resp. non-empty, closed, convex, bounded) subsets of X.

The convergence in the Mosco sense is the following (see [7]). Let
{Xn}n>i be a sequence in VQX). Denote

S-liminfXn = {x GX :3x, GX,,,nI_i»r(r:10 |[x,, —ar|| = %>’

w-limsup Xn —{xeX :3xfc , A X (converges weakly)j.

We say that X n converges to X in the Mosco sense and write X n —»X if
s-liminf X n = w-limsup X,, = X.
For every X c X, denote <ry(i*) = sup (X,x*), [|X]| = sup ||X]|.
x*gA Xex

The set-valued function F: fi — V(X) is called to be ~.-measurable if

for every open subset 0 of X we have
F~\0)={u GIil: F(u) M0 ¢ 0} GA

(see [2]).
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We denote by M [fl,A, P; X] = M[Q\X] the family of all measurable
set-valued functions F: fl =V (X) and we set

Cru-X] ={F e M[il;X\: J WF(cj)\dP < +00},
n
CI[SI:X] ={F £ Cr[ii-X\: F(u) £ VdX) as.}.

We denote by F1(ii,S,P; X) = X) the Banach space of all measurable
functions f : i | =X such that the norm

UH. =/ II/IMII
n
is finite.
For F £ A4[fl; X], let

Sp ={f £ L\n-,X): f(u) £ F(u) as.}.

Let B be a sub-cr-field of A and besides 5” defined on (ii, A, P), we take on
(Q,B,P) the family

SUB) ={/e L\n,B,P;X): f(u) £ F{u) as.}.

Recall that for / £ Tr(M; X) the conditional expectation of/ relative to
B is given as a function E{f \B) £ LI(Q,B, P; X) such that

] EU IB)dP =] fdP
B B

forall B £ B. If F £ M[EIN X] with Sp * 0, then by virtue of [4, Theorem
5-1] there exists a unique (in the a.s. sense) B-measurable function E[F | B]
satisfying

S1IHm (B) =d{E(f\B):feS1p,

where on the right hand side we have taken the closure in the norm topology
of L\SI\X).

We call E[F \ B] the (set-valued) conditional expectation of F relative
to B.

Let Ai C Ai C ... be an increasing sequence of sub-cr-fields of A and
let Fb F2,... be a sequence of set-valued functions in CI[SI\X]. We say
that (Fn,An)n>1is a martingale (submartingale) if Fn = E[Fn+1 | An] a.s.
(Fn C E[Fn+i\An) a.s.) foralln ~ 1.
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3. Results. We show here that every submartingale (Fn, An)n>\ belong-
ing to where A is a separable and reflexive Banach space and

n> 1

sup} \WFn(W\W\AP < +00
n

is satisfied, converges almost surely to some set-valued function belonging to
X]. We begin with the case of regular martingales.

Theorem 3.1. Let X be a reflexive and separable Banach space and let
F bean element of C).[Q,A, P; X]. Let (4n),,.>x be a sequence of sub-cr-fields

of A such that A = cr(\J An) and Ai C A? C .... Then the martingale
n=1
Fn = E[F I An] converges a.s. to F in the Mosco sense.

Proof. Since A' is a Banach space and F is bounded and integrable,
we can use the following representation of F due to Castaing (see [2]):

F{u) =c{Nn}, 612 >1

where
I Wik(.v)\\P < +o0.
n

By virtue of Theorem 5.1 of [4] for every kK > 1and T > 1we have E[fk\An] €
E Fn as. Fix k > 1. Then {E(fk | 1n)},,>1is a vector-valued regular

martingale. Consequently (see [3, Theorem 2])
IimOO [[/jt(w) - E (fk\An)\\ = 0 a.s.
This means that A(o;) e s-liminf Fn(v) a.s. for every k > 1. Therefore,

F(uy C s-liminf F,,(w) a.s.
Now let (xj)j=>1 he a dense sequence in A*, ||x"| < 1 (A” is separable

since X is reflexive and separable.) Then on the basis of the paper by Valadier
[9]1 we have for everyj > 1

E (°F(x*j) 1An) = <E[fV1,,](*;) = “Fn(a;>) a.s.
Thus {cjm(xp, A>}n>1 is areal regular martingale. Hence
Aim) <TAU)Kj) = fiF(U)(xj)  ass.

This implies that there exists a set N e A with P(N) = 0 such that for
arbitrary n e (1\N and for every j > 1 we have

Wn <PnY(x*) = aF(W)(*5).
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Let us suppose that x £ w-Umsup Fn(w) for w » N. Then there exists a
sequence Xk € F, k() such that Xk —»x as k —»00. Therefore we have

(3.1) (x,x*j) = lim {xkx*j) n fcirg oF*V ) (x*) =

Note that Fu>) is weakly compact since X is reflexive and F(u) is closed
and bounded. By the properties of the support function, for each j > 1there
exists an Xj £ F(w) such that

(x5, X}) = FW)(x*j) (4= XSE&V)(X,X*H

holds. So we can write (3.1) in the form
(3.2) (**$) i (x],X]).

Again, we deduce the existence of a z £ Fu>) such that Xji —» z as
i —»00, since xj £ F(ui) foraUj > 1 and F(u>) is weakly compact. Without
loss of generality we can suppose that for x* £ X*, ||x*|| < 1 we have
Hm y*; - x| =10
j-*00
because in general we can pick out a subsequence of (xj) which converges
to x*. Thus inequahty (3.2) impHes that

(%) 2 () A P V) = F()00)
since
lim(i,i*) = (x,x*) and Urmn (xJi5z*.) = (x,x*).

Finally, note that F(u) is convex, closed and bounded, so by the separation
theorem (see [10]) we deduce x £ F(u). Consequently, re-Hmsup Fn(cj) C
C F(w) a.s. This completes the proof.

Now we present a general convergence theorem for ii-bounded set-valued
submartingales.

Theorem 3.2. Let X be a reflexive, separable Banach space and let
(Fn,Ai),,>i be a multivalued submartingale in X] such that

sup | [IFn(w)[ldP < +00

n>1

holds. Then there exists a random element F £ C\[FI,A, P',X] such that
F,, —»F a.s. where A = ag_(J_ ,q}'! .
i=i

For the proof of this theorem we establish the following

Lemma 3.3. Let X be a Banach space whose dual X* is separable. Let
B be a sub-c-field of A. Suppose that
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SE={fe L\n,A,P;X):f{u) £ F(u) as.}, F £ £*[M,A,P;X]

is a weakly compact subset in Li(Q,A,P;X), i.e. SF is compact with respect
to the topology o(Li(X), LAX*)). Then the set

G ={E(f\B):f£SE}

is a closed subset of L\(il,B,P;X) with respect to the norm-topology in
Li(SI,B,P;X).

Proof. Letgn £ G, n * 1and suppose that

lim { |Iff(w) - gn(w)\dP = 0.
M

Since gn £ G we have gn = E{fn \B) for some /,, £ SF. But 5" is compact
with respect to the topology o(Li(X), LOO(A'*)). Therefore, there exists an
f £ SF and a subsequence (/,,*) of (/,,) such that for every A £ B and
x* £ X *we have

(fn,(w),XA(u)x*)dP = J (F{u),XA(u)x*)dP

where
ifn £A

bla,)={o0;lfw£fl\A
This means that

(3.3) kmQ  fok(u)d P x= (] f(u)dp,x

holds. However,

] AP = £ dnk(* )P

and
f!:@(»”;l gnk(u)dP - J[ g(up)dP =o.

Consequently, we have

(3.4) lim (/ = (/ g(u)dp,x-
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Combining (3.3) and (3.4) we deduce

(3.5) (J f{u)dP x™ = Q g(u)dP x*"]

a n

for every x* € Xqand A £ B. This means that
g(u) = E(f IB)(u) a.s.

and so g GG. The proof is thus complete.

Proof of Theorem 3.2. Since (F,,A,)n>1is a submartingale, for
every n > 1 we have

-AL(A .) C 5F[Fn+1l.4n] (A ).
By Theorem 5.1 of [4] for arbitrary n > 1 we get
(3-6) S W iajM.) =cl{£(/1An):/ €S>+

Note that X is reflexive. Thus by Theorem 3.7 (iii) of [4], 5 is weakly

compact for every n > 1 and, consequently, by Lemma 3.3 {E(f \An) :/ €
S Sp }is closed. On the basis of this, (3.6) can be written in the form

(3.7) AW PTA M ") = {E(f IN.) :/ € SF+1}

for every n ~ 1.
First assume that supl) [|[Fn(w)|| 6 L\(R). Let
n>

F(aj)) —w-limsup F,,(ui), G(ui) = s-liminf Fn(u).
By Theorem 2.2 of [6], F(u>) and G(u) are measurable (we show below that

G(u) d 0 as.). Using the Castaing representation of Fn (see [2]) we have
for arbitrary n > 1

(3.8) F,oM = d{r">(w):i=1,2,...: 6

Let n,i > 1 be fixed. By (3.7) there exists a sequence 6 7=1

such that { /”~ ,An+j} >0 is a vector-valued martingale. But
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and X is a reflexive Banach space (so X has the Radon-Nikodym property).
Therefore, there exists gjn*£ L\(il, A, P; X) such that

(3.9) lg’H = E>1A +)M

holds. By the convergence theorem for regular martingales (see [3, Theorem
1]) we have

lim HAJjJJ.H - ${n)(w)ll = 0 as.
At the same time
1$)](") ~ F"+Au) a-=-

Therefore
g{n\u>) £ G(u) = s-liminf Fn(>) a.s.

This means that G(u>) / 0 a.s. Moreover, g-n*"£ Sq since

\] Hi/i"V)iH-p < +°°-
n

Now suppose that
x £ F(u) = w- lim supFn(w).

Then by (3.8), there exists a sequence such that —mX.

But (3.9) implies that f\"k) = E{g\”’k) \A ,J for gj"k £ 5*. So, fj”K) £
£ E[G I A,,k]. This means that

X £ w-limsup E[G 1A .J-

But (E[G IAnfd)fc>1 is a regular martingale, whence by Theorem 3.1 we get
w- limsup E[G IAn] = G = s-liminf E[G \An] as.

Therefore,
X £ G(u) = s-liminf Fn(u).

In other words,
w- lim sup F,,(u>) C s- liminf Fn(oj) a.s.
In the general case, when sup ||F,,(u;)|]|  Li(R) by using the maximal
=i

lemma (see [1, Lemma 2.2]) we can reduce the problem to the above one as
follows.
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Fix a positive constant a > 0 and define a stopping time a in the following
way:

, v_ To°, if sup H*MH " a
° W\ inf(n: ||F,(u>)|| > a), otherwise.

Consider the sequence Hn(u) = FrATwW(@>). It is easy to see that
(Hn,AnAit),,>i is also a submartingale. Let

H(u) = IS_LIJ>P1IIFL,(LU)II-

We note that if we put

ifa =+o00

F<r .
ifa < +00

then [|tfn(w)|| ~ ||FQ(0))|, {a = +o0} and ||A,,(n>)|| | ||[F<(w)|| on the set
{a < +00}. Using Fatou’s lemma we see that

JHGP= 3 THONP* | IHOP"

{<r=too} {=<x<f-00}

<a+ [/ WHW)\W\AP <a+liminf f \WFnA(N\dP <a+squ[ \\Fn\\dP <+o0o0.
n>1
M

{<T<+00} {<r<+oo0}

By the maximal lemma we have (see [1])

P(sup |IF,,(w)|| > &) < -sup Ji \fn{u)\dP.

n>1

This means that (FnA<) coincides with F,, except on a set of measure arbi-
trary small if a is large enough. Therefore, we can assume without loss of
generality that (Fn) itself has the property that

sup [|F.,(u>)|| € Li(R).
M1

This completes the proof.
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CARTESIAN PRODUCTS OF FRECHET
TOPOLOGICAL GROUPS
AND FUNCTION SPACES

V. I. MALYHIN and D. B. SHAKHMATOV (Moscow)

1. Introduction

It is well-known that there exists a Tychonoff Fréchet space X whose
square X x X is not Fréchet and has even uncountable tightness ([2], [3,
Proposition 3.14]; see also Example 1in [9]). At the same time there is
a lot of examples serving to show that in topological groups many conver-
gence properties tend to improvements. For example, any Fréchet topological
group is strongly Fréchet [23, Theorem 4] whereas there are Fréchet spaces
which are not strongly Fréchet [3], [21]. A bisequential topological group
is metrizable [1] while there are even non-first-countable bisequential topo-
logical spaces ([21, Example 10.4], [13, Theorem 5]). A topological group
satisfying the weak first axiom of countability [30] is metrizable ([22], [23,
Theorem 3]) but for general topological spaces this does not hold [3], [30].
So one may hope that some convergence properties which are not multiplica-
tive in the class of all topological spaces, would become multiplicative in the
class of topological groups. However, it is clear now that this is not the case.
Indeed, V. I. Malyhin constructed under CH a hereditarily separable (count-
ably compact, hereditarily normal) topological group G such that G x G
has uncountable tightness (and is neither countably compact nor normal)
[15]. He also constructed via forcing a countable Fréchet group the square
of which is not Fréchet [18].

It is worth calling the reader’s attention to the difference between cases
of distinct groups G\ and G2 and of a single group G. For general topolog-
ical spaces this difference does not matter. Indeed, having a pair (X\,X2)
of topological spaces with any of the considered convergence properties and
forming their topological sum X = X\ © X2, one obtains the pair (X,X)
with the same properties. Further, if X\ x X 2 does not have some conver-
gence property, the same remains valid for X x X . For topological groups
there is no analogue of topological sum, and here is the main difficulty in
constructing pairs of the form (G,G). Moreover, the following problem of
A. V. Arhangel’skii is still open. Let G1 and G2 be Fréchet (sequential,
of countable tightness) topological groups. Is there a Fréchet (sequential,
with countable tightness) topological group G which contains G\ and G2 as
(closed, normal) subgroups or even as subspaces?
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Now let us turn to function spaces. We denote by CP(X) the space of all
real-valued continuous functions defined on a Tychonoff space X equipped
with the topology of pointwise convergence. Spaces X and Y such that both
CP(X) and CP(Y) have countable tightness but CP(X) x CP(Y) has not,
had been constructed under ZFC by joint efforts of A. V. Arhangel’skii, E.
G. Pytkeev and T. Przymusinski. Lately, under Jensen’s 0, S. Todorcevic,
F. Galvin and A. Miller constructed spaces X and Y for which CP(X) and
CP(Y) are Fréchet while CP(X) X CP(Y) is not Fréchet but nevertheless
has countable tightness.2 In both cases the spaces X and Y are different
from each other. This is not by accident. Unlike topological groups, to
demonstrate that convergence properties are not multiplicative for function
spaces, one has to consider CP(X ) and CP(Y) with different X and Y . Of
course, if CP(X) has countable tightness, then so does the space CP(X)Ll
This immediately follows from Fact 3 below, as soon as one observes that
CP(X) LLis homeomorphic to CP(X x D), where D is a countable discrete
space. If Cp(X) is Fréchet, then so is CP(X)LU[31]. Recall also that CP(X)
is sequential iff it is Fréchet [25], [8].

The aim of this paper is to strengthen all the above results by showing via
forcing that there exist: a) a Hausdorff hereditarily separable Fréchet topo-
logical group G whose square G X G has uncountable tightness (Corollary
1); b) Tychonoff spaces X and Y such that CP(X) Lland CP(Y)U are heredi-
tarily separable and Fréchet but CP(X) x CP{Y) has uncountable tightness
(Corollary 2). Incidentally, we expand the general technique for constructing
Fréchet spaces in Cohen generic extensions (see Clue Lemma).3 The results
of this paper were announced in [20], [14], [16].

2. Notations and terminology

Our topological notations and terminology follow [6]. All spaces are as-
sumed to be Tychonoff. X ®Y denotes the topological sum of spaces X

1Here is the history of this example. E. K. van Douwen observed in a letter to A.
V. Arhangel’skii that T. Przymusinski’s technique [24] allows to construct spaces X and
Y with the following properties: (i) all finite powers X n and Y" are Lindel6f, and (ii)
X x Y is not Lindel6f. In fact, if in the definition of the space X from Remark 4.7 of
[24] one sets kK = v and m = 1, then the spaces X and Y = Dw-.1 will be as required.
Here the set Dw+: C R is equipped with the subspace topology. The same arguments as
in Theorem 1.5 of [24] show that X x Y contains a closed copy of the non-normal space
(Dw+i, T). If we observe that CP(X) x CP(Y) is homeomorphic to Cp(X ®Y), then from
(i) and Fact 4 below it follows that CP(X) x CP(Y) has uncountable tightness, whereas
(i) and Fact 4 imply countable tightness of both Cp(X) and CP(Y).

2To construct the spaces X and Y, one needs to combine Theorem 5 of [7] with
Theorem 2 of [10]. Both spaces X and Y are subspaces of the real line R and thus X ©Y
has a countable base. It follows from Fact 4 that CP(X) x Cp(Y) has countable tightness.

3Using this technique the first author succeeded in constructing a Hausdorff Fréchet
compact space without points of countable character [17].
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and Y [6, 2.2], u denotes the first infinite ordinal. We use |X|, t(X) and
I(X) for denoting cardinality, tightness and Lindel6f number of a space X,

respectively (see [6, pp. 87, 248]). If Y c X, then Y X and Y denote the
closure of Y in X . We fix the symbol CP(X) for the space of all real-valued
continuous functions defined on a space X equipped with the topology of
pointwise convergence [4], [10]. CH, MA, MA (c-centered) and P(c) stand
for Continuum Hypothesis, Martin’s Axiom, Martin’s Axiom restricted to
cr-centered posets and combinatorial principle equivalent to Booth’s Lemma
respectively (see [33] for details). A space X is Fréchet (has countable tight-
ness) iff x £ X ,Y CX and x £Y imply that there is a sequence of points
of Y converging to x (there is a countable set Z C Y with x £ Z respec-
tively). The reader interested in convergence properties is referred to [21],
[3], [9]: A space X is a strong L-space (strong S-space) iff X wis hereditarily
Lindelof (hereditarily separable) but X is not hereditarily separable (is not
hereditarily Lindelof) [11], [27]. For basic forcing facts we refer the reader to
[12], [29]. Our set-theoretic notations are standard and follow [12]. As usual,
an ordinal is identified with the set of all its predecessors. For a function /,
dom / and rng / denote its domain and range, respectively. H{A) is the set
of all functions from A to 2 having finite domains. If r is a cardinal and A
is a set, then [A]T={B C A: |H| =r}, [A]<T= {B C A: \B\ < r}.

3. A Fréchet hereditarily separable topological group G
whose square has uncountable tightness

T heorem 1. Suppose M is a model of ZFC and M* is a model obtained
from M via adding asingle Cohen real. Then, in M', the group 2"1 contains
a hereditarily separable subgroup G the square GxG of which has uncountable
tightness.

PROOF. Consider the poset v consisting of all functions p from w X 2
to 2 such that dom p = e X 2, e £ [w]x*, and for every j £ e, we have
either p(j, 0) = 1orp(j,1) = 1. The partial ordering » of V is the reverse
inclusion: p < qiffp Dg. Let H be a generic subset of V over M and M[H]
be a generic extension of M. According to [29, Chapter I, Theorem 5.6] the
forcing notion V is equivalent to the forcing notion Fn(u>, 2) which adds a
single Cohen real, hence without loss of generality we will identify M[H]
with M'. In M", set r = (JH. Then r is a function from w X 2 to 2 with the
following property:

(*) for all k £ u, either r(k, 0) = Llorr(fc,1) = 1

In M, for every afwi\wfixan injection Ba:a —u such that the family
{rng Oa :a £ A\ v} is almost disjoint. In M ', for any B £ u>x\u>and i £ 2
we define a function yp{ £ 2"1 by letting
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'@ = Qow 2y LS

For the sake of simplicity we will denote the set (i \ u) X 2 by Il.

Now, set Y — {yRX: (B,i) G ) C 2*1 and let G be the subgroup of
2"1generated by Y. For every a G [fl]<w set ga = C(?*) Ga} € G.
If h GG, then we define Ord (h) to be any element of the set [fl]<u’ with
h —gord(h)e For 1 ¢ G w e set Ord(X) = (Ord(:r): x GX} C [Mm

Claim 1. G X G has uncountable tightness.

Proof. Let 0 G 2“1 be the function with 0(a) = 0 for alla G  For
a Goji + 1let Za = {(yR,0,W,i)m3 € a\un} C G XG. To prove that
G X G has unc%%able tightness, it suffices to show that (0,0) GZWO(XG
but (0,0) N Za whenever aGwi. The first inclusion follows from the
definition of Y. Let us establish the second one. From the definition of
yRfl, 20,i’s and (*) it follows that B G a \ uv=implies either YRBR(a) = 1 or
J(381(a) = 1. Thus, letting U = {g GG: g(a) —0}, we would have the open

set U X U disjoint from Za, and (0,0) G 17 X U. Therefore, (0,0) i 7a7%¢

Craim 2. G is hereditarily separable.

Proof. Recall that a set S C 2W is called to be finally dense in 2"1 if
there is an 05 Guji such that for any £ GH (u\ \ as) one can find an s GS
with s 3 e. A set X C 2W is said to be weakly HFD-set if for every Z G
G[X]"1thereis an S G [Z]w which is finally dense in 21 [11, Definition 1.9].
If X C 2“1lis a weakly HFD-set, then the space X is hereditarily separable
[11, Theorem 1.10]. So to verify Claim 2 it suffices to prove the following

Lemma 1. G is a weakly HFD-set.

Proof. Fix an X G[G]"1. Then Ord(X) G [[ii]<"]¥1. Now we need the
following

Fact 1 [26]. Suppose that a model M' is obtained by adding a single
Cohen real to a model M. Let 7 be an ordinal. If in M*, E' C [[£]™]",
then there is a set E G [E'Jul with E GM .

Identifying I with the ordinal (Ui —wu) -f (07 —) and applying Fact 1to
the family Ord(X) G [[[M]<"]11, we obtain a set Al G [Ord(X)]"1with Al G
G M. Choose an A G [ATwwith A GM. From our constructions it follows
that for A* = {ga: a G A} we have A* G [X]w. We will show that A* is final-
ly dense in 2"1. To do this let us define 6 G by $=sup{a G :(a,i) Ga
for some a G A and i G 2} and show that for every £ G H(u\ \ 6), there
is an a G A with ga D e. Assume that £ = {(ao,to), (<1,ti),... ,(a,,,in)}
where n G uj, ao,ai,...,a, G«ili and ro*i,... ,r, G2 Fixap GV.
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Everything will be done if we find a q GV and an a G A such that g <p
and gll-gaDe.

Since {mg fla:a GW\ is an almost disjoint family, and dom p is
a finite set, there is a ft G [W<" such that dom p C bx 2, and rng Ba; I
Drng 0Q C b provided that i,j Gn+ land i ¢ j. Choose a condition
p' < p for which bx 2 C domp' =e' X2, and let ¢ = U{0“il(e"): i Gn + 1).
Obviously ¢ G [wi]<ai. Hence one can find an a G A such that al\c ™0
where o' = {aCu: (a,i) € a for some i G2}. Choose an a Ga'\ c. The
definition of 6 implies that a G a; for every i G n -} 1 Let rij = 00j(a),

dom tj = domp' U(ej X2) where ej = {~(7): 7 GaZ. Choose a condition
Sj <p' with dom sj —dom tj \ {(«_,0),(nj, 1)}. If aa = a\ {(q,0), (a, 1)},
then sj Ih gas(&j) = kj for some kj G 2. Now we have to consider three
cases.

Case 1. (a, 0),(a, 1) Ga. We set
£ _ T sju0), 1), ((nj, 1), 1} if kj —ij,
I'sji O {{(%r,0), 1), ((nj, 1),0)} if kj o ij.
Case 2: (a,0) Ga, (a, 1) ™ a. We set
I «iU {((=,, 0),0), ((ni?1), 1} ifkj =ij,
3 X«yU{{(nj,0),D,((nj,),0)} Tlik"ij.
Case 3: (a,0) © a, (a,l) Ga. We set
t _ «U{((nj, 0), 1),((rij, 1),0)}  ifk,=ij,
One can easily verify that in all cases, tj ~ §j ~ p' and
tj I* 9a(cij) = ij-
Repeat the above construction consecutively to obtain to,ti,... ,tn, and
note that, since dom f* Ddom ti = dom p' provided that k,t Gn -f 1 and

K I, and tk » p' whenever Kk Gra+ 1, it follows that g=toUt\ U... Utnis
a condition, i.e. GV . Finally, g S p and qll-ga 3 £, so q does the job.

Fact 2 [19]. Assume P(c). Then a space of countable tightness and of
character < c is Fréchet.

Fact 3 (J. Roitman, M. Bell). Adding a single Cohen real does not
destroy P(c).

In fact, J. Roitman [26] proved that adding a single Cohen real does not
destroy MA (a-centered), and M. Bell [5] showed that MA (a-centered) and
P(t) are equivalent.

Facts 2 and 3 yield
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Cilue Lemma. Add a single Cohen real r to a model M of MA +->C#.
Then, in the generic extension M[r], spaces of countable tightness and of
character < are Fréchet.

P roof. Adding a single Cohen real does not change the power function,
hence in M[r], < e. Since P(c) follows from M A + ->CH, Fact 3 implies
that P(e) holds in M[r]. The conclusion of Clue Lemma follows from Fact 2.

Clue Lemma immediately yields the first main result of this paper.

Coroltlary 1. Add asingle Cohen real to a model M of MA + -iCH.
Then, in the generic extension M ', the group G constructed in Theorem 1
is Fréchet. Therefore, in M, there exists a hereditarily separable Fréchet
topological group G the square G x G of which has uncountable tightness.

4. Cartesian products of strong S- and I-spaces
in Cohen generic extensions

Theorem 2. Suppose that M' is a generic extension of a model M by
adding a single Cohen real. Then, in M", there exist the following spaces:

(i) strong L-spaces Lqg,Li C 2W (of cardinality u\) the Cartesian prod-
uct Lgx L\ of which is not Lindelof;

(ii) strong S-spaces Sq, S\ C 2“1 (of cardinality  the Cartesian product
So X 5i of which has uncountable tightness.

Proof. In M, for every a £ ui \ w fix an injection 6a:a —»U>such
that the family {mg Oa:a £ ui \ is almost disjoint. Let r: u —*2 he
a Cohen real. In M' = M[r\, for every a G o\ w, define = {R £
€ a: r(ea(R)) = 0), A\ = \B G a: r(0a(B)) = 1}, and let I'a € 2W and

6 2“1 be the characteristic functions of the sets Aa C and A\ C
respectively. For a Gu, let =1\ —0. Let Lg= :q£ui} C2"1and
LI ={eh:ae wi> C 2“L

Claim 3. The space Lgx L\ is not Lindeldf.

Proof. Let Va = {x € 2W: x(a) = 0). It is an easy exercise on Cohen
forcing to show, applying the almost disjointness of {rng 6 ,,: 0 £ u>i\a>}, that
the family <= {Vaxla:a£ u} constitutes an open covering of Lo X L\.
If o' € [oJw, then o' C (B — {Va XVa:a € R} for some B £ u\. Further,

since a £ R implies that either f*(a) = 1 or fi(a) = 1
Therefore, no countable o' C a covers Lo X L\.

Claim 4. Both Lgand L\ are strong L-spaces.

Proof. By symmetry of the definitions of LRBs, it suffices to prove that
Lo is a strong T-space. But this is just what J. Roitman has shown in [26]
(her space Xyr r is exactly our space Lg).
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If L = {fa:a € wi} C 2W is a strong Z-rpace, then the space 5 =
= R Gwi} C 2"1, where SB G 2"1 is defined by ~(a) = la{R) for
every a Gugq, is a strong 5-space [26], [27], [28]. Apply this construction
to Li = a Gu ] to obtain S- = {sjg: B Gu ] and let 5- = 5- U {0}
(r = 0,1). Then both So and 5i are strong 5-spaces.

C1raim 5. The space So x Si has uncountable tightness.

Proof. Obviously, (0,0) G {(-s°.s*): a GWI}s°xSl, but (0,0)
I {(iaisi):a £ B"s°xSI whenever B GW.

5. Products of convergence properties in function spaces

Fact 4 (A. V. Arhangel’skii, E. G. Pytkeev, cited in [4, Theorem 4.1.2]).
For every space X, t(Cp(X)) —sup{f(Xn): n Gw}.

Fact 5 [34], [32]. For every space X the following conditions are equiv-
alent:

(i) X w is hereditarily Lindelof,

(W) Cp(X)w is hereditarily separable.

Now we are ready to prove the second main result of our paper.

Corollary 2. Add a single Cohen real to a model of MA + ->CH. In
the generic extension, let Lg and Li be the spaces constructed in item (i) of
Theorem 2. Then:

(i) Cp(Lo)Mand CP{L\Y are hereditarily separable and Fréchet, while

(i) Cp(Lo) X Cp(Li) has uncountable tightness.

Proof. The first part of (i) follows from Fact 5. To obtain the second,
observe that, since CP(Z,)Wis dense in Ri<Xw, the character of Cp(Z,)w
is equal to w\, and then apply Clue Lemma. To show (ii), remark that
CP(L0) x CP{L\) is homeomorphic to CP(LO® Zi), the space (Z0© Zi)2 is
not Lindel6f, and then apply Fact 4.

Remark. Theorem 1and Corollary 1 were obtained at about the same
time by both authors independently from each other. Theorem 2 and Corol-
lary 2 are due to V. I. Malyhin.
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CONTINUOUS FUNCTIONS WHOSE LEVEL SETS
ARE ORTHOGONAL TO ALL POLYNOMIALS
OF A GIVEN DEGREE

H. DEHLING (Groningen) and M. S. TAQQU* (Boston)

1. Introduction

Let w(t) be a continuous, non-negative weight function on R with
/ w{t)dt = 1and with finite absolute moment of order K, i.e., / \t\kw(t)dt <
R R
< o0o0. Denote by Vk the subspace of L2(R, B, w(t)dt) spanned by the poly-
nomials p(t) of degree less than or equal to k. (The degree of a polynomial
p(t) = a0+ ait + ... + gfcP* is deg(P(f)) = max{j : a- » 0}.) Let Wo = 1,
Wii(i),... ,Wk(t) be an orthogonal basis for Vk-

In this paper we investigate the class of functions G (t) satisfying

(1.1) / Wj(t)w{t)dt =0 for j =1,...,k and forall s € R.
(GO<3)
A condition equivalent to (1.1) is that I1{f : G(t) 5 s} —/ I1{G(i) * s}w(t)dt
R

lies in the orthogonal complement of Vk- Alternatively,

p(t)w(t)dt \] w{t)dt
{G()<} R {<{ 3}
for all polynomials p(t) in Vk-
The existence of a non-trivial function G satisfying (1.1) can be obtained

as a corollary to Liapunov’s theorem (see [3], Th. 5.5) on the convexity of
the range of a vector measure. Namely, let w be the signed measure given

by ~ = Wj(t)w{t) and let p = (pi,... ,pk)T be the corresponding vector
measure. (T denotes transpose.) We have /x(R) = 0 since Wj AWqfor j >
> 1. We want to show first the existence of a non-trivial set A C R, i.e.,
A(A) > 0 and AR\ A) > 0, with p{A) = 0. (Here Ais the Lebesgue

*Research supported by the National Science Foundation grant DMS-88-05627 and
the AFOSR grant 89-0115 at Boston University.



218 H. DEHLING and M. S. TAQQU

measure.) If/i(R+) = 0, simply take A = R+. Otherwise, apply Liapunov’s
theorem to p, restricted to R+ and R_ respectively, to get sets A+ and
A_ with u(A+) = R+) and /i(A_) = |/x(R_). Then take A —A+ U
UA_. Obviously p(A) = 0. Moreover, this set A is non-trivial. Indeed,
A(A+) > 0, because p(A+) ¢ 0 and p < A Also A(R+\ A+) > 0 so that
finally A(A) > A(A+) > 0 as well as A(R\A) > AR+ \ A+) > 0. This set
A vyields a non-trivial function G{t) = I*(i) whose level sets I{t : G(t) <
N s}, —e0 < s < 00, are 0, A and R. Therefore G(t) = I"(f) satisfies (1.1).
Although Liapunov’s theorem establishes the existence of such a function G,
it does not offer a way of constructing it.

Our goal is two-fold. We want first to give an explicit construction of a
family of sets As, —e < s < e, satisfying

(1.2) [ Wj(t)w(t)dt=0 for j=1,... ,k andforall s

As
We will find that A3 can be taken to be a union of K + 1 intervals, whose
endpoints depend differentiably on s. With the help of this explicit construc-

tion we will be able to achieve our second goal, namely the construction of
a continuous function G(t) satisfying (1.1).

Theorem. Let w(t) be a continuous, non-negative weight function on
R with J w(t)dt = 1 and J \t\kw(t)dt < oo for some integer k. Let Wo = 1,
R

R
Wi(t),... ,Wifc(t) be orthogonal polynomials of degree less than or equal to k.
Then:

(a) There exist ane > 0 and distinct points t\,... ,Lt+i and K functions
fi: [-£,£]->R, j =

with the properties:
(i) fj are strictly increasing, differentiable and fj(0) = O,

i) A, = (316 FHj(-5),tj + fi(s)] U [fford - s,tk+1 T ] satisfies (1.2),

Vs e [0,e\
(b) There exists a continuous function G (t) satisfying (1.1).

In the light of recent results of the authors, this theorem has remark-
able consequences for the large sample behavior of the empirical process of
long-range dependent observations. To be more specific, choose as weight

functions w(t) the N(0,1) density =) = (21r)-1/2e- *2/2. The corresponding
orthogonal polynomials are the Hermite polynomials Hg{t), g=0,1, Let
Ne )~ i be a mean-zero unit variance stationary Gaussian sequence with co-

variance r(k) = k~DL(k) where 0< D < 1 and L slowly varying at infinity.
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Let G: R—=Rbe any measurable function and let Yj = G(Xj). The empiri-
N

cal distribution function of Yj is given by Fyv(x) = 1{Yj 9 x). Clearly
i=i
Fn (x) =F(x) = P(Y\ £ x) uniformly in x almost surely. In Dehling and
Taqqu [1] we proved that (Fjv —F) can be normalized in such a way that a
non-degenerate limit is obtained. It turns out that the normalizing constants
as well as the type of process that arises in the limit depend heavily on the
Hermite rank of the family of functions AX(£) = 1{G(t) < x} —F(x), namely,
on m = inf{g : 3x with / Ax{t)Ho{t)<t>(t)dt ~ 0}. The higher the Hermite

R
rank, the more complex- the behavior. The theorem obtained in this paper
shows that there are processes of the type Yj = G(Xj) with G continuous,
for which Ax(<) has an arbitrarily high Hermite rank.

2. An example

To illustrate the main ideas of the proof, we consider the special case
of Hermite polynomials and k = 2. We have HO(t) = 1, Hi(t) = t and
#2(t) = t2—1. We want toNfind a set A — A{2) which is a union of N

disjoint intervals, i.e., A = 1[j1[<»,t-+ a,] with a, > 0. In order to satisfy

(1.2), we must have

(2.1) I Hj<>@mdt=0,  J= 12,
=1[«<Ata]

or, since the a, are non-negative,

(2.2) AT Hift)<t>{t)dt = 0, j =12

|
We wiew (2.2) as a system of non-linear equations in the o0,’s, i = 1,... ,N.
When N = 2, the trivial solution = —a? = 0 may be the only one. Hence we
take N = 3, so that (2.2) becomes a system of 2 equations with 3 unknowns.
It still admits the trivial solution = a2 = a3 = 0. The implicit function
theorem however, yields the existence of a continuous family of solutions
a\ = ax(a3),a2 = a2(a3),a3> for a3 in a small neighborhood of zero, if the
Jacobian

ANXK > Aa(*2K*2

H 2(b)q>(H$ H2((t2)<t>(t23 P >
or equivalently, if the determinant

Ada Mathematica Hungarica 60, 199Z



220 H. DEHLING and M. S. TAQQU

#i(<i

(2.3) Hz(hg Hoet2) 10

The derivatives and » may be obtained by implicit differentiation in
(2.2); they satisfy

fetfift)#*!) + $EHi(12(R) + AM3K3) =0
NA3NK«!) + % H 2(b)d(b) + A*DK*3) =0

Since Gi = a2 = a3 = 0 is a solution of (2.2), we can get a continuum of
solutions with a, > 0, i = 1,2,3 by requiring that and ~ be positive
around zero. Hence, we have to find points ti,t2,f3 such that (2.3) holds and
(2.4) has a positive solution. This is equivalent geometrically to requiring
that the origin 0 = (0,0)7 be in the interior of the convex hull of the three
points H2(ti))T, r = 1,2,3. It is easy to find such points f, by
drawing the graph of the curve (t,t2—1).

3. The basic proposition

When k > 2, graphical inspection is no longer available. In this section,
we prove the following proposition:

Proposition 3.1. Let w(t) be as in the theorem and let p\{t),... ,pk(t)
be polynomials satisfying deg(pj) =j and

(3.1) Jopiow(®dt=0,  j=1,....k.
R
Then we can find points ii,... ,tk+1 € S = {t :w(t) > 0} such that
IPi(tk)\
(3.2)

\Pk(h)J \PK(tk)J

are linearly independent vectors in Rfg, and such that the system of equations

fcH

(3.3) A2Pj(thai = °, j=1,. ,ft
t—

has a solution (ai,... ,afc+i) with all a- > 0.
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For abbreviation, we let

p0) = (pi(*)»eee ,PK{1))T

denote the vector of polynomials. The convex hull of the set H will be
denoted by conv(H) and the interior of conv(H) by conv®(//). Let 0 denote
the zero vector in Rfc

Lemma 3.1. O£ conv°({P(i) :t £ 5}) ¢ 0.
Proof. If conv®({P(f) :t £ S'}) = Othen (P(i) :t £ S} is contained in

a hyperplane {x :cTx = a} where e = (ci,... ,CK)T is a non-zero vector and
K
a £ R. Therefore 22 Cjp,(t) = a for every t £ S. Since S is open and non-
i=i
K
empty, this implies that the polynomial g = 22 c,p, is constant. However,
1=1

this contradicts cp 0 and deg(pt) = r, r=1,... ,K.

Thus conv°({P(t) :t £ S}) ¢ 0 and hence (P(t) :t £ S} is contained in
the closure of conv°({P(f) : t £ 5}).

Now, suppose, ad absurdum, that 0 ~ conv°{P(t) : t £ 5}. Then,
by the separating hyperplane theorem, there exists a non-zero vector a =
= (aj,... ,0tk)T such that aTx > 0 for all x £ conv°{P(i) :t £ S}. Hence,

K
by continuity, aTP(i) ~ O, i.e., agpaft) ~ O for all t £ S. By (3.1), we
y=1
K K
have f £ Qgpq(t)w(t)dt = 0and thus 22 aghg= 0 on S. Since S is an open
R 9=1 9=1

K
set, this implies 22 aqpq = 0. The linear independence of the polynomials

9=1
Pi»-- - iPk implies a* = ... = a* = 0, contradicting our assumption on a.
]

Lemma 3.2. Let N = 2k(k + 1), and let
A={(ti,... ,tN): {£S (i=1,... ,N) andoEcony°({P(M), ... .P(*ar)})}.

Then A is a non-empty open subset of R*.

Proof. By Lemma 3.1 we can find e > 0 such that the ball of radius
£ centered at the origin is contained in conv{P(f) :t £ S). In particular,
the 2k vectors x* = (<7xE,... <r*E)r, a = (crj,... ,«crjt) € (+1,-1}ftare in
conv{P(i): t £ 5}. By Caratheodory’s theorem ([2], Th. 17.1), each vector
Xa is in the convex hull of Kk + 1 points of {P(t): t £ 5}. Hence there are
numbers ti £ S (i = 1,... ,2k(k + 1)) such that the convex hull of the
corresponding P(L) contains all 2t vectors x* and thus has 0 in its interior.
Therefore, A ¢ 0.
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Next we show that A is open, or equivalently that its complement is
closed. Lett, = (i",... ,tjv) be a sequence in R™ \ A converging to some
point t = (ti,... tjv). Then

0~ conve({P(t"),... ,P(<IV)}) =T,

and hence there are unit vectors e, such that the hyperplane {x: e"x = 0}
does not meet the set Tn. By selecting a subsequence we may assume that
the vectors en converge to a unit vector e. It follows from the continuity
of the map P that the hyperplane {x: eTx = 0} does not meet the set
conv°{P(fi),... ,P(t/v)}, and hence t * A. O

Lemma 3.3. There are N = 2k(k -f 1) distinct points t\,... ,tjy € S
such that

(i) 0e conve({P(t!),... ,P(IAD}) and

(ii) the vectors P(f-l),.. .P(flfc) are linearly independentfor every k-sub-
set {tq,... of ...  tjvj-

Proof. Let A be as in Lemma 3.2 and let B denote the set of those
points t = (ti,... ,tjv) for which Condition (ii) of Lemma 3.3 does not hold.
Since every element of A\ B satisfies the requirements of Lemma 3.3, it is
sufficient to prove that A\ B ¢ 0.

Observe first that B is a nowhere dense set of R”. Indeed, if the vectors
P(tI1),... ,P(f,-I) are linearly dependent, then the determinant

d(t) = det(pj(tin): j,n=1,... ,k

is zero. Now d(t) is a non-vanishing polynomial in the variables f],... ,ijv
(whose functional form depends on the subset {iu,... ,Lf¢}), and hence the
set (t € R”: d(t) —O0} is nowhere dense. Since B is the union of finitely
many sets of this form, B is nowhere dense.

By Lemma 3.2, the set A is non-empty and open. Hence A\ B ¢ O.
L]

Proof of P roposition 3.1. Let {fb ,/,u,r} be the set obtained in
Lemma 3.3. By Caratheodory’s theorem ([2], Th. 17.1) there exists a subset
itl,... ,tikH such that

0 Geonv{P(itl),...P (t,fc:)}.

Thus (3.3) has a solution with all a, > 0. If one of the a,’s were equal
to zero, a fc-subset of Pfc(itl),... ,Pfc(i*fctl) would be linearly dependent,
contradicting Lemma 3.3. Thus (3.3) is satisfied, and also (3.2). O

4., Proof of the Theorem

To establish the first part, we apply Proposition 3.1 to obtain points
ti,... (tfc+i € S satisfying (3.2) and (3.3) (with p- replaced by Wf). Consider
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the following system of Kk non-linear equations in k +1 variables aj, ... , ak+i:
feH *e+e
(4.1) A2 1 Wi(t)w(t)dt =0, j=1,... k
=1 t.
ti-+ai

(Here we follow the usual convention for definite integrals, defining / =

f.
= —/ whena, <0)

ti+ai
This system has a trivial solution ai = 02 = ... = Rfcti = 0. The matrix
of partial derivatives is
Wi(tiM<i) ... Wi(tk)w{tk) Wi(tk+L)w(tk+I)
Wk(ti)w(ti) ... WKk(tk)w(tk) Wk(tk+1)w/(tk+1)

Since the k x Kk sub-matrix consisting of the first k columns is non-singular,
we may apply the implicit function theorem. There exists then an e' > 0
and differentiable functions /1,... ,/*: [—e',e’\ —&R such that a\ = /i(a),
« =12(0))... ,ak= fk(a), ak+i = a, solves (4.1). Moreover, using the chain
rule we have the following system of linear equations for /,-(0) = 7j-(O):

fiwwfaMh) + JI0)WN(t2)w(t2) + ... + fc(O)W,-(ifc)ti7(ifc +
+Wij(tk+1)w(tk+i) = 0.
By the choice of the i,’s this system has a unique solution //(0) > 0, r =

= 1,... ,k. Thus all fi are strictly increasing in some neighborhood [—£,£]
of 0 with e < e'. Hence (4.1) holds with a, = i=1,..., K ak+1l = s for
any 0 < s < e. It also holds with a-=/,(—s)<0,i=1,... |k, ak+1 = —s.
Therefore

k t|‘J|(e) [JCY1+»

N2 Wjt)w(t)dt + Wij{hw(t)dt = 0
forj =1,... ,xkandforall 0~ s " e

We now turn to the proof of the second part of the theorem. Assume
w.l.0.g. (by suitably decreasing e) that the intervals [tj -f /,(—£), t} + fj(e)\,
1 =j = Kk and [ticti —£,tk+1 + e] are disjoint. For 0 ~ s ~ e define

K

A, = (QIt- fj(~s),tj +fj{s)] U[tk+1- s/fc+i + 5]. Now let G: R -> R be
i=1
given by

G(x)={£ #oix t A" o ) .
or xEdAa, i.e., for x =tj +fj(xs), I<j <k and x =tk+its.
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Locally, in [tj,tj + fj(e)\, G is the inverse function of tj + fj(s); in [tj +
+ it is the inverse function of tj + Thus G is continuous,
actually even differentiable except for finitely many points. a
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HERMITE INTERPOLATION AT THE
ZEROS OF CERTAIN FREUD-TYPE
ORTHOGONAL POLYNOMIALS

H. N. MHASKAR* (Los Angeles) and Y. XU (Austin)

1. Introduction. Let

(1.1) A e={xkm &=1,...,7 71=1,2.. .},
(1.2) B :={ykn, k = n=1.2.}

be triangular schemes of real numbers and / : R —»R. The Hermite inter-
polation polynomial ) := Hn(A, B, f,x) is the unique polynomial of
degree at most 2n —1 which satisfies

(1.3)  Hn(f, £fen) = f(%kn)i Men)—Yknl k=1,...,7, 71=1,2... .
In 1930, L. Fejér proved the following

Theorem 1.1 [24]. Let f be continuous on [—1,1], xkn = cos (*jp7r),
k=1,...,m,T=1,2,... and

A, ?2£,{WvV 1~4x»te»l} =o.

Then the sequence {Hn(A, B, /)} converges to f uniformly on [—1,1] as
n —»00.

There is a great deal of hterature concerning the behavior of {HrfA,B,f)}
for various choices of A, B and the function classes to which / belongs.
In particular, it is known (cf. [30]) that when {zfcn} are the zeros of the
Jacobi polynomials and the ykn's are uniformly bounded, then, for every
/: [-1,1] -7 R, continuous on [-1,1], the sequence {Hn(A, B,/)} converges
to / uniformly on compact subintervals of (—,1) as n —o00. The inter-
polation polynomials {Hn(A, B, f)} are analyzed in an even greater detail
when all ykn's are equal to zero, in which case, Hn(A ,B ,f) is called the
Hermite-Fejér interpolation polynomial. In many cases of interest, such as
when the nodes xkn are as in Theorem 1.1, Hn is a positive operator. We do
not intend to give a complete survey here, but quote the following theorem,
which is relevant to the present work.

* Part of this author’s work was done during his visit to the Center for Approximation
Theory, Texas A K. M University, College Station, Texas, during the Fall of 1988.
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T heorem 1.2 [3]. Letf: [1,1] =R be continuous on [—1,1] and for
S >0, we put

(1.4) u(f,6) := max{|/(x) —/(i)], %-t\<6, ®,iG[-1,1]}.
Let be as in Theorem 1.1 and ykn’s be all equal to zero. Then for

(1.5) [ffn(/,*)-1(*)1S "=1.2,...
where ¢ is an absolute constant.

In the case when {x*,} are the zeros of orthogonal polynomials with
respect to weight functions whose support is the whole real line, relatively less
is known about the polynomials Hn(A, B,/). There is an extensive literature
when the nodes are the zeros of either Laguerre or Hermite polynomials. We
will not venture to give a complete list, but quote ([1], [11], [26], [28], [29],
[31]) as examples. When the weight function is a general one, we are aware
of only [12], where processes closely related to Hermite-Fejér interpolation
are studied. The results in [12] are stated, however, only when / satisfies
certain restrictive growth conditions.

With the aid of the recent research in the theory of orthogonal polyno-
mials, it has now become possible for us to obtain the analogues of The-
orems 1.1 and 1.2 in the case when the s are the zeros of polynomials
orthogonal on the whole real line with respect to a weight function of the form
Waq (x) = exp(—2Q(x)) which satisfies various technical conditions. Thus,

in this paper, we assume only that w”f B Co(R) for some p, 0 < p < 2 and

show that under certain conditions on B, {Hn(A, B, /)} converges uniformly
on compact subsets of R when xjtn’s are as described. Moreover, we use a
modulus of continuity which is “natural” for weighted polynomial approxi-
mation, to give an estimate analogous to (1.5) for the rate of convergence.
We observe that, unlike the “classical” case, the Hermite-Fejér interpolation
operator in our case is not a positive operator. Thus, just as in the case
of the general Jacobi nodes, we do not expect uniform convergence on the
whole real line, even after multiplication by wq. The novelty of our paper
lies in the fact that we assume very little of the function being approximated,
and in our use of the modified modulus of continuity. The proofs use the
ideas in [21] and [13] as well as many recent estimates on the orthogonal
polynomials, including a differential equation which they satisfy.

In Section 2, we discuss our main results. In Section 3, we discuss certain
preliminary facts concerning the interpolation process and the modulus of
continuity, as well as review the known estimates on quantities related to
orthogonal polynomials which will be needed. The proofs are completed in
Section 4 except for a technical estimate which is proved in an Appendix.

The authors would like to thank Professor J. Szabados for his keen in-
terest and suggestions for improvement in the presentation of this work.
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2. Main results. Throughout this paper, we shall adopt the following
convention concerning constants. The lower case letters c, Ci, @, ... etc. will
denote constants depending only upon the weight function in question, unless
otherwise indicated. Their value may be different at different occurrences,
even within a single formula. The constants denoted by capital letters will
retain their values.

We consider weight functions of the form wq (x) = exp(—?(x)) where
Q satisfies each of the following properties.

(W1) Q is an even, convex function in C2(0,00) and Q” is nondecreasing
on (0, oo0).
(W2) There exist constants ci,C2 > 0 such that
(2.2) |l < 0 < N < ¢ 2<o0, ieR.
Q\x)
(W3) Let, for x € R, 8> 0,

(2.2) osc(Q", x, 6) := max \Q"(t) - Q"(x)\

and denote gn the least positive solution of the equation
(23) an.(qn) = n! n- 1121__--
Then, for anyc >0

I
(2.4) “/( 0sc(Q t’ XUy < CI%n, W\ < con.
0

The prototypical weights which satisfy all of these conditions are
exp(—ixla), a > 2.

If n > Ois an integer, let I,, denote the class of all polynomials of degree
at most n. We denote by {pn}*LO the system of polynomials orthonormal
on R with respect to Wq, i.e.

(2.5) J p n{t)pm{i)wQ(t)dt = 6mn, pne In
and introduce the notation
M
(2.6a) pn(x) =: 7n M (>k* Xkn)
Jt=i
where
(2.6b) mn Qg ~Xn:=xnm<in_iin< ... <xwn = Xn.

Let B := {yfcn} be a triangular scheme of real numbers, which will be fixed
throughout this paper. We let
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(2.7) Y,, := max [w<3(3;bl)y*:n.

If / : R —»R, we shall denote for the sake of brevity, the Hermite interpola-
tion polynomial H,,(A, B,f,x) by An(/,x), where A = {xfn}, B = {¥kn}-

In order to state our results concerning the convergence properties of
An(/, x), we need to introduce a modified modulus of continuity (equation
(2.12)) introduced in [9], [10] and found useful in the study of weighted
polynomial approximation (cf. [18], [19]). If g € Co(R), we set

(2.8) bl ;= g(E’Fi(lﬁ(X)l
and define the difference operator by
(2.9) Atg(x) :=g(x +1) - g(x), x,teR.
Let wgf ¢ Co(R) and 6 > 0. We set
(2.10) Q(Q,/, 6) := sup \At(wQf)\\ + 6\QswQf\
I*S*
where
(2.11) Qs(x) :=min{<$ \ [1+ Q" (x)]172}.
The modified modulus of continuity is then defined by the formula
(2.12) W (Q,f,6):= ;EESI(QJ-a,G).

We wish to point out that there is a different, equivalent expression for
the modulus of continuity which is even more useful in certain applications
([5D)- For our purposes, however, it is more convenient to use the expression
(2.12)

Our main result can now be formulated as follows.

Theorem 2.1. Letwq satisfy the conditions (W1), (W2), (W3) and gn
be as defined in (2.3). We assume further that

(2.13) Imo(i)pn(i)| < cq~1/2, [f| < A*gn, n=12,---

Letp € (0,2), wqgf 6 Co(R) and n "t 1 be an integer. Then there exist

positive constants D and ¢ depending only on Q such that for every real x
with |x| »~ Dgn,

(2.14) "~ n(/,x)-I(x)|<c(*-logn)yn+c(l+ [x[)(I+plg,(x))u;Q2 p(x)x

L gp26q)w2Qx)
{n-(pQJ.,g) * n . ;

We note that an argument similar to the one in [21] shows that the
second term on the right hand side of (2.14) tends to 0 as n —»00. Hence,
in particular, the Hermite-Fejér process converges uniformly on compact
subsets of the real line. We also note the following corollary concerning the
convergence of the Hermite process.
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Corollary 2.2. Let the conditions of Theorem 2.1 be satisfied and in
addition, we assume that f is continuously differentiable and that Wqf' 6
€ Co(R). Fork = 1,... ,n, letjfin = f'(x*,). Then, for any compact
interval | CR and x €/,

(2.15) \H,,(f,x) —f(x)\ < c(”-logn)£,(pQ, ,

where ¢ is a positive constant depending only on Q, p, and I and

(2.16) £.M 1 = mm |[«E(/" - P)|].

(2.13) seems to be an important condition, occurring as a hypothesis in

many theorems (cf. [12], [13], [14], [21]). It is now known to be true for
a fairly general class of weight functions including exp(—pkla) when a > 3
([16]). It is announced in [15], without proof, that it is satisfied for the
weight functions exp(-|x|°) when a > 0 as conjectured in [25]. When the
results in [15] are proved, our theorem will be valid for the weight functions
exp(—a?“) when a 2. Currently, it is valid for these weights when a = 2
and when a > 3.

3. Preliminaries. In this section, we review certain known facts about
orthogonal polynomials, the Hermite interpolation polynomials and the mod-
ulus of continuity (2.12). We adopt the following notation. A ~ B will mean
that ciA < B < CiA.

We begin with certain facts concerning orthogonal polynomials.

P roposition 3.1 ([6], [13]). (a) (Recurrence relation.)

(3.1) xpn_i(x) =gnpn(x)+RBnpn-i(x) +Bn-iPn-2(x), xeR, n=2,3,...,
where

(3.2a) BN := 7n-i/7n,
(3.2b) Bn := \] tp2nx{t)w2Qt)dt.

When Q is even, then ,, = 0.
(b) (Christoffel-Darboux formula.)

(3.3) O-,(M) = |_>“ (»)» (0 =
k=0

X —t
(c) If @ is a linear functional on MNMn_1; then we define the ®-Christoffel
function by the formula
(3.4) (*) m=pgin ,(®(P))-!| IP(t)IVg(t)dt.

Then
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(3:5) M %) = {EW m))2}--

In particular, when ®X(P) P(x)> then

(3.6) A (x) ;= N(PX) = (Kn(x,x))~\
(3.7) K r(x) = en[p'n(x)Pn-i(x) - Pn(x)p",,-i(x)F

(d) (Quadrature formula.) For every P € LLln-b
M

(3.8) A2*knP(xkn) =1 P(t)wq(t)dt
k=1

where xkn are as in (2.6b) and
(3.9) Afon = Xn(xkn).
Next, we develop a differential equation satisfied by pn.

P roposition 3.2 ([4], [2], [20]). Let Q be twice continuously differen-
tiable. Then, forn=1,2,... and x € R,

(3.10) pn(x) = An(x)pn-x(x) - Bn(x)pn(x)
where, with

(3.11) o,y TN

we have,

(3.12a) An(x) = Zgnj p20i)wQ(i)Q(x,t)dt,
(3.12b) Bn(x) :=2gnJ pn(t)pn-i(t)wQ(t)Q(x,t)dt.
Moreover, forn = 2,3,... and x € R,

(3.13) p'n(x) + MnXx)p'n(x) + Nn(x)pn(x) = 0
where,

(3.14) Mn(x) :=-2Q"(x) - An(x)/An(x)
and

315 N (X)*= An(X)An-\(x)n _ An-i(x)Bn(x)(x Bn) I
Qn—i Qn—1

+B,,(1)S,,-1(x) + BL(X) - )A<r?(7x55”(*)'

Next, we state a representation for Hn(f, x) in terms of the fundamental
polynomials.

Proposition 3.3 ([30]) We have, forn= 1,2,...,
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M M
(3.16) *<([.X) =S (FFen>*(*)&(*) +  Ykn(x - Xkn)lIn(x)
where k=l J
(3.17)
P
hn(x) n(x) mknPn—(xkn) 0 AmX n(x, Xfen):
J>{.(Zfcn)(z - Xkn) X - Xkn

and

(3.18) r*,(x) = 1- Zfen(xfen)(x - z*n) = 1- ’F:n\)-(l;rl]_;,(x - xkn) =

= 1+ Afcn(An(*ifcn))(* - Xfcn).

In view of (3.13) and (3.14), we obtain an alternative expression for vkn
when Q is twice continuously differentiable. We observe that in this case,
A'n(xkn)
An(xkn)

This observation plays a crucial role in our proof of Theorem 2.1.

Next, we state certain estimates concerning the various quantities related
to the system {pn}. However, we note that some of the statements in the
next proposition are valid under conditions weaker than those stated below.

Proposition 3.4. Let wq satisfy the conditions (W1), (W2), (W3)
stated near the beginning of Section 2. Then, there exist positive constants
¢,Ci,@,... and Du D2... such that each of the following statements hold.

(a) ([7])
(3.20) cgn < Xn < Dign, Q~ an, gn ~ g2n.

(b) ([71, [8]) For x e R,

(3.19) vkn(x) = 1- 2Q'(xk,,) + (x  xkn).

(3.21) Y  pk(x) = c(n/4n)wQ2(x),
k=0
(3.22) Y p'k(x) =c(n/™)3wQ2(x)-
k=0
(c) ([7]) For max{|x]|, [{k.>[*fc+i,n[} » D2gn,
(3.23) An(x) ™ c(gn/n)wQ(x),
(3.24) 03- ~ xkn- xk+ln<04-.
7 !
(d)
(3.25) wa(x) ~ wQ(y) if - y\ <c(gn/n).
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(e) [(20)] For every ¢ > 0 and |x| < cq,,,
(3.26) A, (x) ~ n/gn.
(e) ([13]) Let 0 < p < 2. Thenfor integer kK, 1 < K ™ n, we have,

(3.27) Afcn QP (x fen) l‘/l| \] WQ~p([)dt
where Xe+n
(3.28) ®n+1m *= 00? 2;0n -= —0.

We observe that (3.26) is stated in [20] under more restrictive conditions
on the weight function, but the proofreveals that the conditions (W), (W2),
(W3) are enough. Also, (3.27) is not stated explicitly in [13]. However, it is
an easy consequence of Lemma 3.2 in [13] if we observe that there exists an
even entire function G with positive Taylor coefficients such that

(329) G(X) ~ WqP(x), xe R

(cf. [14]). In fact, Lemma 3.2 of [13] is used in [13] in this way.

Finally, we state a known result about the modulus of continuity
CI*(Q,f,6) defined in (2.12), which is true for a far more general class of
weight functions. Let wqf € Co(R), 6 > 0. We define a A-functional by the
formula
(3.30) K(Q, /, 6) = inf[|lw0 (/ - 5)|| + ilium'll]
where the inf is taken over all continuously differentiable functions g such
that WQg' € Co(R).

Proposition 3.5 ([9], [10]). Let Q satisfy the conditions (W), (W2),
(W3). Then for wgqf € *(R) and 0 < S” 1,

(3.31) i1*(Q,f,6) ~ K(Q,f,6).

4. Proofs. In order to prove Theorem 2.1, we observe that

n

(4.2) A2 vkn(x)lIn{x) = 1 for every x e R.
Jt=i
Hence, for x € R,
(4.2)
Mn Mn
Hn(f,x) - /(x) = 3*(/(xfon) - f(x))vkn(x)lIn(x) + JCy*,,(x - x*n)/jfc,,(x).
k=1 =l

We start by replacing the differences f(xkn) —/(>) in the above sum by
[1*(p(J,/, [x —4fn|), where we recall that 0 < p < 2, and WgPf € Co(R). In
the sequel, we shall write wkn instead of wq(xkn), w instead of wq.
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Lemma 4.1. We have,
(4.3) if{xkn) - f(x)I™ c(l + pAQWX)\)w-p(x)w"il*(pQ,f, \x - xfen)).

P roof. Without loss of generality, we may assume that Q is nonnega-
tive on R and take p = 1. Let h :=x —Xkne Then,

(4.4) |/(xfo)-/(x)| g u;-10)[AT(u;/)(xjtn)|-|-|u;fory (x fon)u; A - u ™ 1(X)).

Now, since Q'w~I is an increasing function on [0, 00), the mean value theorem
yields
(4.6) - ™AX)| = |in_1(jxfc,]) - w_1(|x])| £

< max{|Q"(xfon)|u;"r, |g /(x)|u;-1(x) }Ix]| - |xFonl] 7

<[+ Q' @Nw_1(x)tI11 + |Q/(xfc,)[]Ix - xfoi *

< \/2[1 + 1Q,(X)|]Jto~1(x)xy [l + Q'2(xjt,,)]1/2|x - Xfc,).
Also,
(4.6) - m1(x)| % +tn_1(x) N 2u;-1(xX)wdr.
With the notation of (2.11), the estimates (4.5), (4.6) yield
(4-7) K - w-1(™)IS & + 13(@)|]*_1(a;)<5//,|("nm)|x - xkn\w
Substituting from (4.7) into (4.4), we get
(4.8)  If(xkn) - O <c[l + |Q,(x)[Ju;-1(x)u;"I{|Ah(w/) (x fc,) +
+1n1GN@E* M) n|/(x1bn)|} A c[1+ \Q\Wx)\Jw-x(x)w U (Q,f, |h]).

The estimate (4.3) follows from (4.8). O
Using the estimates (4.3) and (2.7) in (4.2), we arrive at

(4-9) \Hn(f, x) —/(x)] <
n

< ¢l + P\QU)\IW-p(X) 112 w=Ail*(pQ,f,\x -xjtn])Inf, (X)[*,, (X)} +
K+

t "Zkan Il xkn\In(x).
k=

Thus, in order to prove Theorem 2.1, we need to estimate the two sums
on the right hand side of (4.9). The details of this estimation are organized
in Lemmas 4.2, 4.3 and 4.4.
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We assume that
(4.10) [*| ~ Dq,,, D :=

where D\,D 2are defined in Proposition 3.4 and A* is the constant appearing
in (2.13). With 224 as in (3.24), we define three sets of indices

(4.11a) N := {k: kinteger, | <k ” n, |[x —x*n| " 2D4<s/n},
(4.11b)

M = {k: Kinteger, 1< k"™ n, \x- x*n| > 2D4gn/n, [x*,| < 2Dqn],
(4.11c) F := {k: kinteger, 1 < ft™ n, |x*n|> 2Dgn}.

We note that the set N can contain at most AD./D: members, where
D3 is defined in (3.24).

Lemma 4.2. Let ¢ be a nondecreasing, nonnegative function on [0,0c)
such that (2u) ~ d(n) for n € [0, 00). Then,

(4.12) 53 Xknd(\X- xkn\)II,,{x) ~
keN 4n
oo oo - NI <R T L
foeM cign/n
(4.14) k5§Afch(k- SfenlVfcni®) A CPn(*»K?n)-
[S]

Proof. In view of (3.17) and the Schwarz inequality,
(4.15) IL(x) = X2kRK 2(x,xkn) Z AknKn(x,x).

The estimate (4.12) now follows from (3.21), the conditions on ¢ and the
fact that N contains at most AD4/D 3 members. Next, using (3.17), (3.20),
(2.13), (3.23) and (3.24), we see that

(4.16)  lkn(x) = B2X2kp2n1(xkn) (*FiLU

pin
xkny €47 L aniwkn (" yn)2

kn - *fc+l,n
< cqnp 26x) A" i Inxkn™ '
MP2BVARY - xamp 1 CAMPINXKNT L e

Now, using (3.24) and the definition of M (equation (4.11b)), it is easy to
verify that

(4.17) X - f| ~ [x- xjfonl, € [*fcHi,n,**], keM.
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So using (4.16) and the properties of ¢ we get

(4.18) Y XkM X- Xkn\)ln(x) <
Kem
CZ,QH )
§ cqnp%ExS §_s A rl( Xkn )¢c+i,n§ = c9"P%%x)\ /I 3('2-)d'u.
KeM (X an) Ciq]f1/n U

The estimate (4.13) is thus proved.

When Kk £ F, we have |x - x*,| ~ an. So, using (3.17), (3.20), the
properties of ¢ and the quadrature formula (3.8) with P = p~-i € Mrn-r,
we get

(4.19)

Y Xk M X = xkn\)IRn(x) A (IMI-)Y QnPn(x ) XknPn-1(xkn)(.X - Xkn)~2 Vl
keF keF

AN(An)pl(x)Y XknPn-Nxkn) i cd(An)pA(x).

keF
This proves (4.14). O
Lemma 4.3. We have

(4.20) A N4> fo(x)| A er(L+ 1), ke N UM,
(4.21) Xknw E\ykn(x)\ * < exp(—jn), keF.

Proof. Ifk € N UM, then |x*n| < (A*/2)gn. Consequently, in view of
Proposition A.l in the Appendix, there exists ¢ > 0 such that

An(on) ~ A

(4.22) A, (o) =

Hence, (3.19) yields

(4.23)
Ko, ()7 c[I+(2/Q (xJa) [+ )(|X] + [xfaf)] < c(1+[x]) (1+|xfari) (1+]Q, (xfar))).

Since the function w2 p(y)(1+ |j/[)(1 + |g'(j/)|) is bounded from above on R,
(4.23) gives

wknPwkn(x)\ ~ ¢(1+ |x]).
The estimate (4.20) now follows from (3.23).
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To prove (4.21), we first obtain a general estimate. Let y € R. Using
Schwarz inequality and (3.22), we get

(424) 1W 1«£(EA.)) |=2(£7bl )  [5APFc(y)Pfc(y)] »

W 2UVa(y)(5"Pk(y)) 7 =c (") to_1(i")AvV2(i")-

In particular,
\ 3/2

(

Thus, in view of (3.18), (3.20) and (3.21),
( \ 3/2 I\ 32
®@lAA  =C ™*nAIN27n-

Now, let Kk £ F. Since [(p+ 1) < 2, it is easy to see using Proposition 3.4(f)
that

(4.27) AWar(P+l) < j  [i>0]2_*@+)dc £ I[w(t)]2~i(p+lUt <

*k+1,n cOn
(00)

< o— | QOI(MI2-3pH it < c—mesm)2-3(pH).

cqgn
In view of (4.26) and (4.27), if K GF, then
(4.28)

Afc, WItPK 1,(z)| % c(n/q,,)3/2gnwkZ rA”2 < cgnw(cqn)2 p < ¢ exp(-Cin).
This proves (4.21). O
Lemma 4.4. We have

(4.29) Xknw ~ < cgn/n, Ke N\UM
(4.30) =c exp(-Cin), Ke F.

Proof. The estimate (4.29) follows from (3.23) since w2~p is bounded
from above. The estimate (4.30) follows from Proposition 3.4 exactly as in
(4.27). O

Completion of the proof of Theorem 2.1. We shall denote
£1*(pQ,f,6) by il*(£). Then II* is a nondecreasing, nonnegative function
on [0,00), and satisfies the condition il*(26) ~ il*(£), $> 0. Hence, (4.20),
(4.12) imply that
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(4.31) 53 w*n*(1X- *b»|)Kn(*)t0 *) ~
keN
ANe(l + [x])— 53 ANITFIX - xkn\)lIn(x) ~ c(l + |x])w 2(x)ii*(g,,/n).
7L keN
Next, (4.20) and (4.13) imply that
(4.32) 53 »irn*(I* - xkn\)vkn(x)\lIn(x) *
Kem
cl9n
(! + I~ 53 AITF(K - *»N&(*) Sc(l + F)SANPL(xNei ~ f i du i
K*M ci/n
2n

<c(l+ |x|)g,,p2(x)-an*(q n/v)dv ~ ¢(1+ \X\)gqnp@(x)- J3 M*bln/k).
n n rzi

Next, (4.21) and (4.14) imply that

(4.33) 2 »LPOA-(]* - *b.)K.(*)|4,(x) S
keF
< c exp(—€j7i) 53 Atn~*(I* —*fenl)yMen(x) » cp2(x)exp(-cin)ir(g,,).
keF

We get from (4.31), (4.32), (4.33) that
(4.34) E—I Wanfi*(IX- *fen|)b*,,(x))/jtn(*)

<c(l + *P{ti» 2(x)fi*(g,./n) + g,,p2(x)i]53ir(gn/fc)}.
k-
Next, we let d(n) = n. Then (4.29) and (4.12) give

(4.35) 53 wr\x - XG,[/L(*) =c* S AlMnl*- *fenKL(*) » enT2(x)"-
keN keN

Next, (4.29), (4.13) and (2.13) give

(4.36) 53 w~Z\x - xfen/|n(x) < c”- 5™ A-xjx - xkn\IRn(x) £

jteM fceM
n
' A () 9N ay o A LALE
b cg.0*(X) - f - S com 2x) —+log n.
c29n/n

Next, (4.30), (4.14) and (2.13) give
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(4-37) Y, wkn\x - xkn\IL(x) » cexp(-CIn) Y Xkn\X- xkuVIn{x) "
kEF kEF

£ cexp(-cin)p2(x)gn < c exp(—€lre)u)_2(x).
In view of (4.35), (4.36), (4.37), we have proved

(4.38) “ xkn\ll,,(x) » ¢~ lognw \x).
fc=i
Theorem 2.1 now follows from (4.9), (4.34) and (4.38). O

Appendix
We wish to show the following.

Proposition A.l. Let w4 be a weight function which satisfies condi-
tions (WI), (W2), (W3) and let (2.13) hold. Then, there exists a constant
¢ > 0 such that

(A.D) K (x)/An(x)| ~ c, [x] ~ FA*qgn
where A,, is defined in (3.12a).

P roof. Using an argument based on the infinite-finite range inequalities
of [22], [23], [17], we obtain, exactly as in [20] that

(A.2) 2gn | pa(t)wl(t) T2000%) dt <c exp(—e\n),

for a suitable constant A\ > A* + 1. Next, we observe that

(A.3) _IE(Q) - Q\x) - QU(x)(t- x)| < osc(Q"x,[x - t\)
(t-x)2 - X —

Hence, using (2.13), we see that when |x| < (1/2)A*qn

A4 20 1 pl{twl(t —Q(xt) dt<cJ[ 05 X.u). <C%,
[t—x|< 1

Further,
(A.5)

osc(Q", x, |x - t\)
d
2@]\] pa(t)w(t) t=c ; A dt

[t-x[>1 [t-x|> 1

N egnQt{clgn) < cQ\gn) <cn/gn.
If |4~ A*gn then necessarily |x - f| > (I/2)A*g,, > 1. We then have
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o)
Pi(0Oyg (0 dt =
Algn<\t\<Algn
i | pa{t)wi{t)osc(Q",x,cqn)dt < cn/ql.
A*gn<At\UAlg,,

The estimate (A.l) follows from (A.2), (A.4), (A.6) and (3.26). .
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ERGODIC PROPERTIES OF SOME INVERSE
POLYNOMIAL SERIES EXPANSIONS
OF LAURENT SERIES

J. KNOPFMACHER (Johannesburg)

1. Introduction

Recently A. Knopfmacher and the present author [8] introduced and
studied some properties of various unique expansions of formal Laurent series
over a field F, as the sums of reciprocals of polynomials, involving “digits”
oi, B2, ... lying in a polynomial ring F[X] over F. In particular, one of these
expansions (described below) turned out to be analogous to the so-called
Liiroth expansion of a real number, discussed in Perron [13] Chapter 4.

In a partly parallel way, Artin [1] and Magnus [9, 10] had earlier studied
a Laurent series analogue of simple continued fractions of real numbers,
involving “digits” Xi,X2,... in a polynomial ring as above. In addition to
sketching elementary properties of an Te-dimensional “Jacobi-Perron” variant
of this, Paysant-Leroux and Dubois [11, 12] also briefly outlined certain
“metric” theorems analogous to some of Khintchine [7] for real continued
fractions, in the case when F is a finite field. The main aim of this paper is
to derive some similar metric or ergodic results for the Laurent series Liiroth-
type expansion referred to above. (For analogous results concerning Liiroth
expansions of real numbers, see Jager and de Vroedt [5] and Salat [14], and
also [16, 17, 18].)

In order to explain the conclusions, we first fix some notation and de-
scribe the inverse-polynomial Liiroth-type representation to be considered:

[e]e]

Let C —F((z)) denote the field of all formal Laurent series A = ~ cnzn

n=v

in an indeterminate z, with coefficients c,, all lying in a given field F. Al-
though the main case of importance usually occurs when F is the field C of
complex numbers, certain interest also attaches to other ground fields F and
most of the results of [8] hold for arbitrary F. It will be convenient to write
X —z~xand also consider the ring F[X] of polynomials in X, and the field
F(X) of rational functions in X, with coefficients in F.

If ¢, ¢ 0, we call v = v(A) the order of A above, and define the norm

(or valuation) of A to be ||A|]| = g~Vv(A\ where initially g > 1 may be an
arbitrary constant, but later will be chosen as q = card(F), if F is finite.
Letting u(0) = +oc, ||0]] = 0, one then has (cf. Jones and Thron [6] Chap-
ter 5):
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{ Pl > 0with ]A]l = 0iff A= Q
NAB\ = PH «\\B\\, and

\\aA + BB\\ < max(P]|l|, ||5]]) for non-zero a, e F,
with equality when p || ¢ |JJ7]].

By (1.1), the norm |j | is non-Archimedean, and it is well known that £ forms
a complete metric space relative to the metric g such that g(A, B) = ||A—=27|.

In terms of the notation X = z~1 above, we shall make frequent use of
the polynomial [A] = cnX ~n G F[X], and refer to [A] as the integral

V=n=0

part of A £ C. Then v = v(A) is the degree deg[A] of [A] relative to X,
and the same function [ Jwas used by Artin [1] and Magnus [9, 10] for their
continued fractions. (For a recent application of Artin’s algorithm, F finite,

H 4].
;enfe :G?\)g_rs] LA]n)da @,t_ Mhote(atha%ll(%],,ﬁc,,ﬂo_ﬁ. If soméfA(_l(rAi) O>orlayher®
fhis Tebhirsiol: pfotdss Kbl Ae Wadstbvin B is)atReadinideligedithvh 1B5ds 'S

a finite or convergent (relative to g) Llroth-type series expansion

(1.2) A= a0H-—hY" Si@i- 1)...ar_1(ari- Dar’

where ar G F[X\, ao = [A], and deg(ar) > 1 for r > 1. Furthermore this
expansion is unique for A subject to the preceding conditions on the “digits”
dr e

If I denotes the ideal in the power series ring .F[[z]], consisting of all power
series x such that a:(0) = 0, then another way of looking at this expansion
algorithm is in terms of operators a: | - {0} —=#F[X], T :1 —*1 such that
a(x) = [1], T(0) = 0 and otherwise T(x) = (a(x) —1)(xa(x) —1). Then, for
x = A\ GI, ai = ai(a;) = a(k), and more generally an = a,,(x) = a\(Tn~Ix)
if 0 Tn-1x GI. It will be shown below that x G/ =T(x) GI.

From now on, unless otherwise stated, it will be assumed that F = Fq
is a finite field with exactly g elements. Then it will be shown below that
T: | —»l is ergodic relative to the Haar measure p on | such that p(l) = 1.
This fact will then be used to deduce in particular:

THEOREM 1. (i) For any given polynomial k GFJX], deg(A) > 1, and
all x G outside a set of Haar measure 0, the digit value Kk has asymptotic
frequency

nI|_r.20 |n#{r <n:ar(x) =k} = 12 = g- 2de«(0.

(if) For all x G| outside a set of Haar measure O there exists a single
asymptotic mean-value
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r=|
(ili) For all x £ |1 outside a set of Haar measure 0,

llz-u;nf| = g (~"+o{))n as n —»oo,
where

w=wn(z)=v N m=1 A=

r=| °r ai(ai —1).. .ar(or —1)'

Before turning to proofs, it is interesting to note that the limit in (ii)
above coincides with an analogous one quoted by Paysant-Leroux and Dubois
[12] for their very different Jacobi-Perron expansion. Regarding (iii) above,
it may also be noted that it was shown in [8] that

||z —a>,|| < g-2"-1 for all x,

a similar but weaker algebraic result.
2. Ergodic properties of the basic operator

In order to show that x G =T(x) € /, first note that 0 p x 6 | =
=V (A) < -1 =>a(x) = [A] ®0and v(a(x) - 1) = v(a(x)) =v (A) ~ -1.
Further

o/i1i6 /" - :a(x)+rﬂck*r~> say =1=xa(x)+x”" cTzr=
X r>|

=v(xa(x) —1) = v*x "2 K2') =>v(xa(x) —1) > v(x) + 1
r>|

Thus (even if F were an infinite field)
0rxEl=> v(T(x)) =v(@a(xX)—H+v(xa(x)-1) >-v(x)+(t>(x)+1) => T(x) e I.

Lemma 1. The operator T: | —»l is ergodic relative to the Haar mea-
sure p on I with p(l) = 1.

Proof. A convenient description of the Haar measure p on the ideal |
of power series x in F,[[z]] with x(0) = 0 is given in Sprindzuk [15], pages
67-70. In particular p(C) = g~r for any circle (“disc”, “ball”’)

C=C{xqg-r~):={y€C:llz- y| * g— 1}
of radius 5-r_1. So p(l) = 1, since I = C(0,q_1).
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Now note that every “digit” a(x) lies in T\ := {k € FI[X] :deg(A) > 1}.
For any given digits Ai,... ,kn € IF\, let

In —In(ki,... ,fm) = {x € L!10i(x) = fci,..., an{x) = kn}

and call In a basic (Liroth) cylinder of rank n. Also let Ig= 1.
The Liroth-type expansion (1.2) of any x £ I,, then has the form

X =u,, +
rsp antl(@an+l 1) Rr—Kflr— T)ar
where A0 = 1, A = for 1< r < n, and un = Xr.
Thus x = un+ AnTn(x) = \J},,(Tn(x)), if = Tlku ... k,,) : 1 2/, is
defined by tn(y) = v, + A,y (y € 1). The “linear-type” map ip,, is then 1-1
onto, with inverse map Tn:/, —al. In particular /,, = Im(Vh) = wn + A,l.

Since | = C(0,g_1), it then follows that /,, = C(u>,,, —21/A,|) and has Haar
measure /i(/n) = q~v(Xn* = ||A,,||. Hence

@h ) —)eteknkn—D)|  wwe .M 2
since deg(Ar) = deg(A: —1) for deg(fc) > 1.

Using (2.1), we readily deduce that the digit functions ar: | —{0} —T\
are identically distributed independent random variables relative to p. In a
standard way, quite similar to that followed by Jager and de Vroedt [5] for
real series, one may then conclude that the operator T is measure-preserving
and ergodic.

Knowing Lemma 1 and the fact that the ar are identically-distributed
random variables, various deductions may now be made with the aid of
standard results like the Ergodic Theorem or the laws of large numbers.
However, here we shall merely sketch a few arguments which include ones
leading to Theorem 1 above:

By special choices of / in the ergodic formulal

1 f
lim — /(Tr_1x)= [/ fdp ae,
r=1 |

we obtain:
(i) If / is the characteristic function of a basic cylinder 1\(k), we get

lim #{r <n:ar(x) = kj =p(h(k)) - |A]* ae.

(i) Ifinstead /(x) = deg(ai(x)), then for almost all x ("since I - {0} =

= U h(kj
k&7i (J}
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= | [dA= 53 | de8(I(*)<fy* =
r=1 /-{0} kA Ih(k)

= 53 Kh(k)) deg(*) =E r9~2r"&“ 1)r="* T-

Jfcen r=i 9

(iii) It follows from (ii) that there exists a Khintchine-type constant
lim Jlai(x)a2(@;) ... «,@)Ny" = ~/(g-1) ae.

(iv) If f(x) = [|oi(x)]||, then J /<fyi = -foo but a well-known truncation
I
argument shows Wat, in contrast with the finite asymptotic geometric-mean,
we have lim A  Thr(K)| = +o00 a.e.
Il$o r.:I

(v) By choosing / to be the characteristic function of any given circle
C Q /, it may be deduced that the values x, Tx,T2x,... are uniformly
distributed in I, for almost all x.

(vi) Every non-rational i £ / can be written as x = lim uin in C, where

1
un=wax) =53, AO=L X2 Giax- 1)...ar(ar - 1)

Soxe In=/,(ai,... ,an) = C(un,q 1An||), and x =un+ AnTn(x). Thus
I*- wn|| £ 9_1||A,l| = g"V(/n),

and
X = wW,+i + An+1IT"+1(X) = v, + Anti(ant+i - 1+ Tn+1(x)).
Since ||an+i|| = |lan+i —1I = 9 > ||Tn+1(x)||, it follows also that
W eon TE = (W Tl L)+ e L(*)] = [, #, ] |6 +1]] >, Min).
Thus 5 |1-u,,|]| < qg-"ti{lIn), giving

n+1 n

i-Ehg.W I122iogJ|x-wn|s -1 - 53logJkll2-
r=1 —

Choosing / as in (ii) above, these inequalities then imply that
Higo 100, - nll = —gacy
which yields part (iii) of Theorem 1.
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(vii) Wi ith reference to Billingsley [2] Section 13, say, the preceding argu-
ment also now shows that the basic operator T above has entropy

_ : _ 2gbgeg
n(T) = - digpogep(im = 22797

Various other and stronger results may be derived in the present context,
from the laws of large numbers (and iterated logarithms), but details are
omitted here.

Acknowledgement. The author thanks the referee for constructive com-
ments.
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A CLASS OF OPERATORS ASSOCIATED WITH L\

N. S. FAOUR (Kuwait)

1. Introduction

The space L\ is the space of all harmonic functions / defined on the
open unit disk D such that they are square integrable with respect to the
area measure dA = -dydx. Following similar arguments to that used by
Conway [2, p. 175] it can be shown that is a closed subspace of L2 with
orthonormal basis ... ,\/3r2,y/2z, 1,y/2z,\/322, __ The Bergman space A2
is the space of all analytic functions / defined on D and square integrable
with respect to the area measure. It is known that A2is a closed subspace of
L2 with orthonormal basis {\/n + l-zn}n>0. The space L\ = A2® A%, where
Aqis the space of all complex conjugates of functions in A2 which vanish at
the origin.

Let ip € L°°(D) and Q be the orthogonal projection of L2 onto L\.
Define the operator Cv on L\ by Cv(f) —Q(<p=+/). The Toeplitz operator
Tv is defined on A2 by Tv{f) = P(if-/), where P is the orthogonal projection
of L2 onto A2. Let Bv = PCV. Note that Bv restricted to A2is Tv. It can

be easily established that
Caij>iH3p? = ooCdy T BCfoi P12~ L (D), oi,k € C,
Cip = Cdp where Cd is the adjoint of Cdp, and t e L°°(D). Similar results

are true for Toeplitz operators defined on A2.
In this paper it is shown that ifip€ L°°(D), ¢p € C(D), then C*"p—C"Cdp
and Cu,C —CdCdp are compact. Also a result related to Toeplitz operators

defined on the Bergman space A2 is proved. Finally, the spectrum of Cv is
studied.

2. Results

Theorem 1. Letip e L°°(D), ® e C(D). Then C*p - C*C¢p and
C"Ch —CpCy are compact operators on L\.

To prove Theorem 1, a definition and two lemmas are needed.
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Definition 1. For/ € L°°(D), define the operator Hf. L\~* (L by
Hfg = (1-Q )fg and the operator Sf. (LR)L -* (L\)Xby Sjg = (1-Q )fg.
Lemma 1. (i) The adjoint operator Hf \ (Z~)1 -* LR is given by Hfg =
= Qtjog).
Q(|Ji?)Cfg - CfCg=H=Hg, f,g e L~(D).
(Ui) Hfg = SfHg + HfCg.
Lemma 1 is easily established by straightforward computation.

To state and prove Lemma 2, we use the fact that L2 = Lj- © (LE)L
Thus using this decomposition of L2, one can easily see that forn > 1

(1) =" (KO -1le ((2)"-4z]2- ~ p r J.

and if r, m are non-negative integers, then
i+1

2 z*'2|2m = t+ 1 7¢O (z*'|z|2m
2) | 1 (\/ 12 m+r+1

m+ r+
From (1) and (2) it follows that

CijCz = and - \xo, =

Lemma 2. (i) The self-commutator of Cz, CzCz—CzCj is of trace class.
(ii) Cup - CzCz and C|2p —CjCz are of trace class.

Proof. By using (1) and (2), it is easily verified that for n > 0,

3) Cjc.z" = N+ 2

Note that for n = 0, CjCzl = CZCZ1 = 1. Moreover, for n "t 1,

CzCzzn= A N
(5) CfCzz” = " T l,»’
and
(6) CzCzzn = :ilz—n
For simplicity of notation, let en =y/n + Izn,en =\Jn + Iz". Then
@ @ @ -
£((CjC,-C,Cr)ene.)=-£<(CiC,-.C,CTe,,,,>= — — — <
«—3 n— «=1"' |\ '
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This proves (i) due to the fact that a compact self-adjoint operator is of trace
class if the sum of the absolute values of its eigenvalues is finite. A similar
calculation yields (ii).

Proof of Theorem 1. Let A = {/ g C(D) : 4/ is compact}. Note
that H\ = 0, thus 1€ A. It is easily established that A is a closed subspace
of C(D). In addition, by Lemma 1, A is an algebra. Further Czz —CACX =
= H*HZ, and Czz —CZCZ= HzHj; thus according to Lemma 2, H*HZL and
Hj Hj are compact operators on L\. Consequently, Hz and Hz are compact,
and therefore z"z are elements in A. The Stone-Weierstrass Theorem implies
that A = C(D), and thus Id is compact. It follows that the operator
Gqp- CACh = W H is compact. Since CpC™ - CCh = (CpCv - Cdwv) +
+ (CW ~ Cu=Cth) and (CpCy - CprY = CAC-"—C ~, then the property just
established implies that CpCv - CACdp is compact. The proof of the theorem
is complete.

Remark 1. The technique used in the proof of Theorem 1 is similar to
that used in [1, Proposition 8].

Theorem 2. LetTp=ip\+ g2, ip = Vh + "2 Dbe elements in Lff(D) c

CL\ = A2®Aq, and. let T"Tdh = T . IfC o r Cdi2 has dense range in L\
then ip GH®® orp£ H°° respectively.

Proof. For all non-negative integers n and m we have
(TyTdp2n, 2T) = <T"z",zro>.

Thus,
(Tdorn, TprT) = (ipzn,lpzm).
Therefore,
{ipzn-Tdprn,<prr) = 0,
and hence,
@) (xpzn - Tdprn,<prT - T"zm) = 0.

Forn =0, m = 0, it follows from (7) that (ip2,42) = 0. Moreover, if n = 0,

m = 1, we get (ip2,42Z —P([p>2-1)) = 0. Using the fact that #2 € Aq, it
follows that {ip2,<fi2zz) = 0. Continuing this process for n = 0, m ~ 0, we get

(8) (ip2<P2Zm) = 0.
By the same techniques it is easily established that for n > 0,
(9) = 0.

If C\2 has dense range, (8) and (9) will imply that ip2 = 0, and hence ip G
G H°°. By similar argument, it can be concluded that if Cp2 has dense
range, then g2 = 0, and hence TpG #°°.

From Theorem 2, the following corollary is easily established.
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Corollary 1. Letp = p\ + pi, & = ®d\ + 2 be elements in Lff(D),
V>2 or pi e L°°(D). IfTvT+ = Tvip, then fopi € (Ljf)L.

It is well-known that the spectrum of the Toeplitz operator T2, &(Tz)
is D. Moreover, it is easily established that the operator Cz is a bilateral
weighted shift, c(C z) is dD, and the closed convex hull of the essential range

of z, c6(A(z)) is D. Consequently, cr{Cz) is different from c6(A(z)). However,
we have the following:

Proposition 1. Ifp is afunction in L°°(D), then

c1(C") C c5(A(y>))-

Proof. Suppose that 1€ C, 1~ co([(</>)). Since R(p) is a compact
subset of the complex plane, there is a disk D with center Zo containing R (p)
but not the point A Thus

|A- zo| > ess sup Ip(z) - z0| = \\p - zoll«, > ||ICV_,0]].

From this it follows that A—z0 ~ o{Cv- 2)) and hence A" and hence
A £ cr(C"), completing the proof.

Remark 2. The Toeplitz operator Tz is hyponormal. However, the
operator Cz is not hyponormal; this is due to the fact that every hyponormal
operator whose spectrum has zero area is normal.

Acknowledgement. The author would like to thank the referee for his
constructive criticism which simplified and corrected an earlier version of the
paper.
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CONGRUENCE LATTICES OF PLANAR LATTICES

G. GRATZER and H. LAKSER (Winnipeg)*

1. Introduction. Let L be a lattice. It was proved in N. Funayama and
T. Nakayama [5] that the congruence lattice of L is distributive. For a finite
lattice L, the converse of this result was proved by R. P. Dilworth: Every
finite distributive lattice D can be represented as the lattice of congruence
relations of a suitable finite lattice L. The first published proof of this result
isin G. Grdtzer and E. T. Schmidt [15]. For another proof of this result by
the present authors, see [6, pp. 81-84]. See also [1], [2], [9], [10], [18], [21].

In all these proofs, we construct a lattice L starting from a finite dis-
tributive lattice D with n nonzero join-irreducible elements. This lattice L
turns out to be rather large: it has 0(4") (or more) elements; it is also rather
complex: it is of order-dimension O(n) (or higher).

There are results in the literature providing stronger forms of Dilworth’s
result by constructing finite lattices L representing D as the congruence
lattice and having additional properties:

(i) L is sectionally complemented and the length of L is 2n —1. See G.
Gratzer and E. T. Schmidt [15].

(i) The length of L is 5m, where m is the number of dual atoms of D.
See S.-K. Teo [20]; for m = 1 and for the conjecture solved by Teo, see E. T.
Schmidt [17].

We add to this list with the following result:

Theorem. Let D be afinite distributive lattice with more than one el-
ement. Then there exists a finite planar lattice L with no proper automor-
phism such that the congruence lattice of L is isomorphic to D. The lattice L
can be chosen to have 0(|J(D )|3) elements, where J(D) is the set of nonzero
join-irreducible elements in D.

There are many other related results relaxing the condition that D or L
be finite. These go beyond the scope of this paper. For a brief review, see
G. Gratzer [9].

Now consider the automorphism group of L. Obviously, it is a group.
The characterization theorem of the automorphism group of a finite lattice
is due to R. Frucht [4]: Every finite group G can be represented as the auto-
morphism group of a suitable finite lattice L. In fact, Frucht’s construction
yields a simple lattice of length three.

*This research was supported by the NSERC of Canada.



252 G. GRATZER and H. LAKSER

As an application of the Theorem, we prove a result of V. A. Baranskii
and A. Urquhart (see [1], [2], [21]) that the congruence lattice and the auto-
morphism group of a finite lattice are independent:

Corollary 1. Let D be afinite distributive lattice with more than one
element, and let G be afinite group. Then there exists afinite lattice L such
that the congruence lattice of L is isomorphic to D, and the automorphism
group of L is isomorphic to G.

Again, the lattice L we construct is much smaller than the lattices in [2],
[21;.

Combining Frucht’s result with the result of G. Sabidussi [16], the au-
tomorphism group of a lattice is characterized as an arbitrary group. As
another application of the Theorem, we prove a result of V. A. Baranskii [1]
and [2]:

Corollary 2. Let D be afinite distributive lattice with more than one
element, and let G be an arbitrary group. Then there exists a lattice L such
that the congruence lattice of L is isomorphic to D, and the automorphism
group of L is isomorphic to G.

The Theorem of this paper is closely connected to several other results
in the literature: the independence of the congruence lattice, the automor-
phism group, and the subalgebra lattice of a (universal) algebra, finitary
or infinitary (G. Grétzer and W. A. Lampe, see Appendix 7 of G. Grétzer
[7] for a complete discussion); the independence of the complete congruence
lattice and the automorphism group of a complete lattice (G. Gratzer [8], G.
Gratzer and H. Lakser [11], and G. Gratzer and H. Lakser [12]).

The basic notation is explained in 8§2. In 83, we introduce the coloring of
a chain, which originated in S.-K. Teo [19], and investigate the congruences
of the associated extension. We discuss in &4 a generalization of this con-
struction introduced in G. Gréatzer and H. Lakser [13]. This is then applied
in 85 to construct the finite lattice L representing D. In 86, we show how to
modify the construction to make L planar, proving the Theorem. Finally,
in 87, we augment L to additionally represent G as an automorphism group,
proving the corollaries. Some concluding comments are collected in §8.

2. Notation. D is the finite distributive lattice we want to represent in
the Theorem. J(D) is the partially ordered set of (nonzero) join-irreducible
elements of D. 9/13 denotes the five-element modular nondistributive lattice.

For a lattice A, let Ip A denote the set of prime intervals in A, i.e., the
set of all intervals p = [u, v], where u v (uis covered byv)in A. Ifp = [u
is an interval of A, then for any lattice B and b € B, we use the notation
p x {6} for the interval [(u, b), (v,b)] of Ax B. Note that if pis prime, then
px {6} GIp(A x B).

Let po = [xo, t/o] be a (prime) interval of Ao, and let pi = [21,21] be a
(prime) interval of A\. It will be convenient to refer to the elements of the
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sublattice of A x B generated by p0 X (xi) and {x0} x pi as follows (see Fig.
1):

0(po,pi) = <0*1>, a(po,Pi) = <4,I),
b0, Pi) = <A0Xi),  *(po, Pi) = <20 1iiy*

po X pi shall refer to the interval [o(po, pi),i(po,Pi)]*

For an interval p = [u,Vv] in the lattice A, we shall denote by 0a(p)
or Qa (u,v) the congruence relation generated by the interval p. If Ais
understood, we use the notation O(p) or O(u, v). Note that u = v (0) is
equivalent to O(p) £ O.

We refer the reader to G. Grétzer [6] for the standard notation in lattice
theory.

3. Coloring. A coloring of a chain C is a surjective (onto) map
¥iip C -»J(D).

If p Glp C and pip = a, one should think of O#(p) as the congruence
representing a € J(D) in some extension K of C.

Following S.-K. Teo [19], for the chains Co and Ci and colorings <o and
<qi, respectively, we define the lattice K = Co Cj, as follows: the lattice
A is Co x Ci augmented with the elements m(po, pi) whenever po G Ip Co,
pi Glp Ci, and pofo = pi¥>i; we require that the elements

(3.1) o(p0,pi), a(p0,pi), b(p0,pi), *(po,Pi), n»(p0,pi)
form a sublattice of K isomorphic to 943, as illustrated by Fig. 1.

In Teo’s paper, Co = Ci and <fio= <ii, but the idea is the same.
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As an illustration, let D be the distributive lattice of Fig. 2; the join-
irreducible elements are marked with . Then J(D) has four elements, as
illustrated. Let Co and Ci be the chains of Fig. 3; the color of a prime
interval appears to the right of the edge. Fig. 4 illustrates K = Co x9 C\.

The congruences of Co X C\ are of the form ©o X ©i, where ©o is a
congruence of Co and ©i is a congruence of C\. Now take only ©o and ©i
with the following property:

Fig. 3
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(3.2) Ifp0€ Ip Co, pi Glp Ci, and pOyo = pi”i, then
0(po)”0o MW O0(Pi)<Oi.

Now, we extend the congruence 0o x 0i on Cox C\ to a congruence 00 xv Oi
on K as follows:

Let po Glp Co and pi GlIp C\. If po<ho = pi<y?, then let the elements in
(3.1) be in one congruence class modulo 0o Xy 0i.

It is easy to compute (see also 84) that the congruences of K are exactly
these 0o X” Oi.

As an example, take the congruence 0o of the chain Co and the congru-
ence 0i of the chain Ci of Fig. 5. Then 0o xv Qi is the congruence of K as
illustrated by Fig. 6.

Thus the congruences of Cox”Ci are in one-to-one correspondence with

subsets of J(D); hence the congruence lattice of Co X” Ci is a finite Boolean
lattice.

4. Generalized coloring. In [13], we generalized the construction CoX"Ci
of 83 as follows.

Let L be alattice and let /1 be a set of proper intervalsin L, i.e., intervals
with more than one element. We define a lattice L[JT] by adjoining the family
of new pairwise distinct elements {Tn/ | I G /1} to L, and requiring that
n<mj=<v foreach I = [u,u] G/
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Fig 6

We associate with x € £[/1] the elements x and x of L: for x G L, set
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X =x —x; for/ = [ur] € A, set To/ = wun and 10/ = v. We then, more
formally, define the relation < on the set L[A] as follows:

x =Y ifandonly if x =y or x " by,

where ~ /, denotes the partial ordering in L.

Then (2/[A],") is a lattice extending L. If X is a subset of L[A], then
V X exists in L[A] if and only if either there is an i € X such that, for all
y G X, we have x >y, in which case \J X = x; ot there is no such x and
\/L(x Ix GX) exists, in which case

\JIx =\/(x \xex),
L

where \JL is the complete join in L; and dually for .

Let Co and C\ be finite chains with colorings w, and ipi, respectively, as
in 83. Let A = Co x C\. Observe that Co C\ can be obtained as A[A] in
the obvious way with

N = {po Xpi Ipo Glp Co, pi Glp Ci, podo = Pi¥>i}-
The following result describes which congruences extend from L to X[A]:

One Point Extension Theorem [13]. Let K be a set of nontrivial,
nonprime intervals in the lattice L, and let 0 be a congruence relation on L.
Then 0 has an extension O[A] to L[A] if and only ifQ satisfies the following
conditions and their duals (see Fig. 7):

Condition (4.1) Condition (4.2)

Fig. 7
(01) For [u,t)]JeA, i,y £1 withy <v andun <X,
y=v (0) implies that X=vVx (0).
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(02) For [u,u], [n,to] EN, withv g w andy £ L withy <,
y=v (0) implies that n=vin (0).

The extension O0[/1] of 0 to X[A] is unique. It can be described as follows:
For all a £ X[A], set a = a (0[/1]). For all a,b £ X[A], with a ¢ b, set

a=b (0[N])

if and only if the following three conditions hold:
(03) aAb= flV b (0).
(04) aAb £ L oraAb £ L and there is an xaf £ L with

aAb < Xnm and aAb=x,m (0).
(05) aVbEL oraVb” L and there is a yavb £ X with

Ydb<aVb and yavb= a Vb (0).

An interesting special case can be developed by generalizing the concept
of coloring from 83. Let P be a set of nontrivial intervals in A. A (generalized)
coloring ip of a lattice A by a set X is a surjective map x P —»X.

For each i = 0,1, let A, be a lattice with a coloring €= P, —X. We
consider the set A of all intervals in Ao x A\ defined by setting

n=tox Nioe By Ne Pt ani -fopo-

Let us denote the lattice (A0 x Ai)[A] by A0 xv A\, and the element T /0Xg
by 7n(/0,Xi).

The next result is an application of the One Point Extension Theorem
to determine the congruence relations on Ao x Ai that extend to A0Ox9 A\.
Recall that any congruence relation 0 on the lattice A = Ao x A\ is of the
form 0o x 0i, where, for i = 0,1, 0, is a congruence relation on A-.

Colored Product Extension Theorem [13]. The congruence rela-
tion 0 = 0OX 0i on Ao x Ai extends to Ao X V Ai if and only if the following
two conditions and the dual of the second condition hold:

(CIl) For IQE Po, I\ £ Pi, ifloTo =hVi, then
0(JO ~ 0o is equivalentto O0(/i) S Oi.
(C2) Fori=0,1, ifl —[n,v]EPi and there isay <v withy =v (0,),

then 0(/) = 0,-
In that event, the extension is unique.

The reader should find it evident that the last statement of §3 follows
from the Colored Product Extension Theorem.
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5. Constructing L for D. Now let D be given. In order to construct a
lattice with no nontrivial automorphisms in an efficient manner, we restrict
the construction outlined in 83to those D where each join-irreducible element
is comparable to some other join-irreducible element.

Specifically, we can set

D =D'x B,

where B is Boolean and each element of J(D') is comparable to some other
element of J(D') — see Fig. 8 for the D' associated with D of Fig. 2. We
note that B can be represented as the congruence lattice of a chain.

We now construct a lattice V whose congruence lattice is isomorphic to
D"

For every a,b € J(D') with a <b (note: a <bin J(D'), not in D),
we construct a four-element chain C(a, b), see Fig. 9, with elements o(a,b),
m(a,b), n(a,b), i(a,b), satisfying the relations:

o(a, b) <m(a, 6) <n(a, 6) <t(a, b).

Ha bl 0
b
n@ b O

m(a b) O
b C(a, b)
o@ab O
Fig. 9

We define a map ipaij, of Ip C(a,b) into J(D") by

[o(a,b),m(a,b)\ipatb =6,
[T(a,b),n(a,b)]<pesb =a,
[n(a,6),i(a,6)]v?ab =6.
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We list all covering pairs in J(D'):
do <bo, a\ <bi,... ,ani <6én_i*
We construct two chains:
Co". e\ < ... <Crri, and C\:dowd\ <... <dj,
where j = |J'(Z?,)|. Observe that n = 0(j2), and so |Co| = 0(j2).
fank-n-)cch O

i(a,. b,)=0(a2. b2) = cs

CS

Ha . b,) Co
C«
i(a0. b0)=o(aj . bj ) = c»
1(a0. b0)
ci
0(a0. bo) = co
Fig. 10

We regard Co, see Fig. 10, as the ordinal sum of
C(00,60), C (ar,6X,... ,C(an_i,bn—),

with i(a0,b0) identified with o(ai,6i), i(ai,bi) identified with 0(02,62)? and
SO on.

In Co, let /(0, 6) denote the interval [o(a, 6),i(a,6)] for a,66 J(D') with
a <6.

We define a coloring <o of Co. First of all, we define the set of intervals

Po=IpCoU{l(a,b)lo,6 GJ(D"),a < 6}.

Now if p GIp Co with p G/(a, 6), we define p<o = pgat For all 3,6 GJ{D)
with a <6, we set /(a, b = b.

Set Pi = Ip Ci, and choose <\ as an arbitrary surjective map. Note
that cp\ is a bijection, and so in C\, for every a GJ(D"), there is a unique
Pa € Ip Cl with pay> = a. Set pa = [(a)0, (a)X].
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We define V by setting

L'= Cgxv C\

The lattice L' for the lattice D' of Fig. 8 can be obtained by omitting the
unit element of the lattice depicted in Fig. 11. Note that \L'\ = 0 (j3) where
3 =\J(D"\.

Fig. 11

Now we prove that the congruence lattice of V is isomorphic to D'. With
every hereditary subset T of J(D"), we associate a congruence relation QH
as follows: for i = 0,1, we define on the chain C{ the relation 0~ (x,y 6 C;,
X <y):

x=y (0, iff p(fi€ H forany p€ Ip[*»].
Let us verify that Conditions (Cl), (C2), and the dual of (C2) hold for

Qg and 0. Indeed, (Cl) holds by definition if Jo is prime. Let Jo = J(a, ft)
for some a, t GJ(D') with a <ft Then

0(Jo) = 0(J(a, ft)) = 0(o(a, ft), m(a, ft)) VO(m(a, ft),n(a, ft)) =
= 0(o(a, ft),m(a,ft)),
since 0(m (o, 6), n(a,ft)) < 0(o(a, ft),m(a,ft)) by virtue of a < ft. Now this

case is reduced to the case of the prime interval [o(a,ft), m(a, ft)], already
considered.
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To verify (C2), observe that it obviously holds for prime intervals in
chains. Hence we are left with the case i = 0 and Iq= /(a, 6) for some a, b €
€ J(D') with a <b. Since y < i(a,b) implies that y < n(a,b), it is obvious
(again utilizing that a mb) that any congruence collapsing y and i(a, b) also
collapses all of I(a,b), concluding (C2). The dual of (C2) follows similarly.
By the Colored Product Product Extension Theorem, 05 and 04 uniquely
determine a congruence 0a of V.

Conversely, let 0 be a congruence of V. By the Colored Product Ex-
tension Theorem, 0 is uniquely determined by its restrictions 0o and ©x to
Co and C\ respectively, which satisfy Conditions (Cl), (C2), and the dual of
Condition (C2). Forr= 0,1, define

Hi = {PIP€Ip Ci, O(p) ~ 0,}.

Then Condition (CI) yields that Ho = Hi; set H = HO = H\. Obviously,
H is a subset of J(D'). It is hereditary. Indeed, ifa <bin J(D'), b €
£ H, then [n(a, 6),t(a, 6)] is collapsed by 0o since it has color b. Applying
Condition (C2) with r= O | = /(a,6), and y = n(a, 6), we obtain that
I(a,b) is collapsed by ©o- Thus [m(a, 6), n(a, 6)] is also collapsed by ©o-
Since [m(a,b),n(a,b)]ifo = a, we conclude that a € H by the definition of
Ho = H. Thus H is a hereditary subset of J(D').

It is now straightforward that H 04 is an isomorphism between the
lattice of hereditary subsets of J(D') and the congruence lattice of L', and
so the congruence lattice of V is isomorphic to D".

Finally, if the Boolean lattice B has t atoms, let C be a chain of length
t. Then the congruence lattice of C is isomorphic to B. Let the lattice L be
the ordinal sum of V and C with the unit element of L' identified with the
zero element of C — see Fig. 11 for the lattice L constructed for the lattice
D of Fig. 2. Then

- ConL=ConlL'xConC=D"'x B =D,
where Con A denotes the congruence lattice of the lattice A.

6. Planar lattices. The lattice L constructed in 85 is close to being
planar; it is in fact of order-dimension 3. It is not planar because of the
elements of the form 1(1(a,b),pb) where a <bin J(D"') (recall that /(a, b)
is the interval of Co defined in 85, and pb is the unique prime interval of C\
of color b). There are two such elements in Fig. 11; they are black-filled.

To transform L into a planar lattice without changing its congruence
lattice requires a few steps.

For the first step, let

e0,ej,... ,gt—
list all the nonminimal elements of J(D'); these are the elements that occur
as the element bin a pair a,b € J(D') with a <b. We rearrange the list of
all covering pairs in J(D"):

do <bo, ai <b i, , an x <6n_x
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so that we start with all the pairs of the form x, eo followed by all the pairs
of the form x,ei, and so on.

In the second step, we redefine i so that the bottom prime interval of
Ci is colored by eo, the next with e\, and so on. Past e™-i we do not care
how the coloring is done except that <i be onto.

As the third step, we define a subset L'x of V. Let (x,do) belong to L[
iff x € /(a, eo) for some a £ J(D"); let (x,dj) belong to L'x iff x £ 7(a,e0)
or x € 7(a,ei) for some a £ J(D")\ in general, let (x,e4) belong to Lx iff
x £ 7(a,e,) forsome a £ J(D') and s ~ i. All (x,dt) arein L\ fork <t <j.
We retain all the elements of V of the form of m(7, J).

Observe that we only threw away elements that play no role in deter-
mining the congruence structure of 7/, so that the congruence lattice of L\
is still isomorphic to D'. To be more precise, any prime interval of V is
projective to a prime interval of L\, and any two prime intervals of L[ that
are projective in V are already projective in L[.

L\ is still not planar; however, all the elements that cause problems
(that is, the elements of the form T(1(a,b),pb) where a X bin J(D"')) are in
intervals 7(0,6) x pb where the “left-side” of the direct product is also the
“left-side” of the lattice L[.

As the fourth, and final, step, observe that, by the One Point Extension
Theorem, the role of the element m(7(a, b), pp) can be taken over by the
element

T(7(a,b),[(B)o,(b)!]), where pb = [(ft)o,(b)i].
After these replacements, the resulting lattice T/2 is planar. Let T2 be the
ordinal sum of L2 with the chain C, with the unit element of L2 and the zero
element of C identified; the lattice L2 we obtain for the lattice D of Fig. 2
is shown in Fig. 12. Although the lattice 72 is smaller than L, we have not
improved the order of |[L2|; we still have |72 = 0(|3(7))]3).

To conclude the proof of the Theorem, we need only prove that 72 has
no proper automorphisms. Clearly, we need only show that L2 has no proper
automorphisms. If D' is trivial, then so is L2, and we are done. Otherwise,
let a be an automorphism of V2. Ifj = 1, then D' would be Boolean; hence
J =1, and so [dj-i,dj] ¢ [do,di]- Since < is bijective, this implies that

[dj-i,dj]<pi ¢ [dO,di]<pi = [co,ci]y>0.

It follows that (co, dj) is the only doubly-irreducible element of L2 that
lies in an interval that is a four-element Boolean lattice. Thus (c0,dj)a =
= (co, dj), and consequently a is the identity mapping on the chain {co} XC\.
Since those elements of L2 that are not doubly-irreducible are precisely the
remaining elements of Cgx C\ in L2, it follows that a is the identity mapping
on (Co x Ci) ML2. It is then immediate that a is the identity mapping,
concluding the proof of the Theorem.

7. Automorphism groups. R. Frucht [3] proved that we can represent
the group G as the automorphism group of a connected undirected graph
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0 = (V,E) with more than one edge and without loops, where V is the set
of vertices and E is the set of edges.

Next, we represent G by a bounded lattice and lattice automorphisms.
As in R. Frucht [4], from 0, we form the lattice:

H = VU.EU{0,1},

where, for all v€ V and e € E, the relations 0 < v < 1and 0< e < 1 hold;
let v<ein H iffv € e. Note that H is of length three.

The graphs constructed in R. Frucht [3] and G. Sabidussi [16] have the
following property:

(7.1) Forv € V, there are eo,ei € E with v £ Bo, ¢\ and solMe\ = 0.

It is easy to prove that if the graph O has Property (7.1), then the
associated lattice is simple. Hence, H is a simple lattice.

Let L be the lattice we obtained at the end of 86 (see Fig. 12) with o
and i as the zero element and unit element of L, respectively.

If L is a chain, let the lattice K be defined by replacing the bottom prime
interval of L by M — see Fig. 13. Then, since H is simple, the congruence
lattice of K is isomorphic to D. Clearly, the automorphism group of K is
isomorphic to G.

Attach H to L by identifying 1 with o. Set v = (ci,di), in the notation
of 85. We add a relative complement q of o in [0, i>], and obtain the lattice
K — see Fig. 14.

It is easy to see that any automorphism of K keeps o fixed. Therefore,
any automorphism takes L into L and H into H. Since, by the Theorem, L
has no proper automorphism, any automorphism of K is an automorphism
of H trivially extended to K. It follows that the automorphism group of K
is isomorphic to G.

A congruence 0 of K —{9} is formed from a congruence of I and a
congruence of L. Since H is simple, we only have the two trivial choices on
H. That the congruence lattice of K is isomorphic to that of L follows from
the following lemma, concluding the proofs of Corollaries 1 and 2.

Lemma. A congruence 0 on K —{9} extends to K if and only if either

(1) ©na = <h and ojav (01)
or
(2) ©8a = 1h and o=v (©1)
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Proof. The One Point Extension Theorem applies to extending 0 to
K. Since J1 = {[0, u]} is a singleton, Condition (02) holds vacuously.

Assume first that 0 extends to K. Then Condition (01) and its dual
hold. We show that either Condition (1) or Condition (2) of the Lemma
holds.

Let 04 = < If o =v (Oi), then, in Condition (01), set y —o and let
X € Hwith 0 < x <1 Theny =v (0) and so x = v (0), that is, x = 1
(©#)> contradicting 04 = w>H Thus, if0a = *a» thenodv (01)-

On the other hand, if 0 ¢ nH, then 08 = Ih- But then set y = o and
let x be any lower cover of v in L. Applying the dual of Condition (01), we
conclude that x = 0 (0), and sothat o =v (01).

Thus, if 0 extends to K, then either Condition (1) or Condition (2)
holds.
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K
Fig. 14

Now let one of Condition (1) and Condition (2) hold. We show that 0
extends to K by establishing Condition (01) and its dual.

We establish Condition (01). Lety <vandlety =v (0). Then o=v
(01). Thus Condition (2) holds, and so 0# = t#, thatis, 0 = o (0).
Consequently 0 = v (0), and Condition (01) follows immediately.

Next, we establish the dual of Condition (01). Lety > 0 with 0 =y
(0). Then 0a = "H) and so Condition (2) holds, that is, 0 = v (©£,)* Thus,
0= v (0), whereby the dual of Condition (01) fohows immediately.

8. Concluding comments. We can make the lattice L of the Theorem
smaller by making the intervals 7(a,, 6,) and /(a,+1i, 6,+i) overlap in Co by two
elements provided that 6; = Note that the Colored Product Extension
Theorem permits the intervals to overlap. While this can reduce the size of
L by up to a third, it does not affect O(|L]|).

In [10], we prove a generalization of the theorem of Dilworth: Given two
finite distributive lattices D0 and Di, and a {0, I}-homomorphism <Pof DO
into Di, we show that there exist a finite lattice L and an ideal | of L such
that the congruence lattice of L is isomorphic to Dq, the congruence lattice
of T is isomorphic to Di, and the restriction of a congruence from L to |
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induces the homomorphism tp. See also E. T. Schmidt [18] for a different
proof.

Using the construction developed in this paper, we can improve on this
result by requiring either that L be planar, or alternatively, that L and /
have given finite automorphism groups. The details will appear in [14].

The main problem, originally raised in [6], see Problem 11.18, remains
unresolved: Is the congruence lattice of a lattice always independent of the
automorphism group?
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BERICHTIGUNG ZU MEINER ARBEIT:
KONSTRUKTION DES REGULAREN SIEBZEHNECKS
MIT LINEAL UND STRECKENUBERTRAGER1

J. STROMMER (Budapest)

In die Arbeit ist ein Fehler unterlaufen. Um dies zu verbessern, sind
folgende Verdnderungen vorzunehmen:
1) Auf S. 222 ist der vorletzte Absatz durch das folgende zu ersetzen:
Da ferner
(X2 + x6)(x8--x7) = -1

ist, so sind die -GroRen
(9 Zi =X2+ X6 (> 0),
(10) 72 —X7 (< 0)
Wourzeln der quadratischen Gleichung:

x2—(ui + tg)x —1 = 0;

also ist
=\(ui + vi) +\V (ui + ti)2+ 4,
2 =\iut + vl) - AM\/(“l +ul)2+ 4.

Die GroBen w\, v2, u\, n2, v\, 2, z\, z2 kénnen wir als Strecken mit un-
seren beschrankten Hilfsmitteln leicht konstruieren, und so auf der Zahlenge-
raden OA, deren Anfangs- und Einheitspunkt O, bzw. A ist, auch die Punkte
von der Abszisse Wi, w2, «i, U2, Vi, V2, Z\, Z2 bestimmen.

2) Auf S. 223 ist statt der beiden Absdtze nach der Formel (8) folgendes
ZU setzen:

Aus den Gleichungen (6), (9) und (2) folgt, daR

2u2+ z\
Xl 2+ v2

ist. Mittels dieser Formel kann man die GroRe x\ mit Hilfe der vorgelegten
beschrankten Hilfsmittel leicht konstruieren und dann aus den Gleichungen

1 In diesem Acta, 59 (1992), S. 217-226.
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(2), (5), (7), (1), (3), (8) und (4) der Reihe nach auch die GroéRen X4, xe, x2,
X7, X5 und X3 als Strecken geometrisch bestimmen.

(Eingegangen am L. Juni 1992.)

TECHNISCHE UNIVERSITAT
LEHRSTUHL FUR GEOMETRIE
H -111l BUDAPEST
STOCZEK UTCA 2-4
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ON A PROBLEM OF P. ERDOS

G. N. SARKOZY (Budapest)

1. Throughout the paper the following notations will be used: |fa:|| de-
notes the distance of x from the nearest integer. We write e2irx = e(x).
The cardinality of the finite set X is denoted by |[X|, JI(Te) is the Mangoldt
function and 7r(a:) is the number of prime numbers not exceeding x.

2. Divisibility properties of sums of integers have been studied by many
authors (see, e.g., [1], [2], [3] and [10]). P. Erdos asked the following related
question: IfA,B C {1,... ,N}, M. C (1,... ,[VX]}, |[N41= k, the elements
of M. are pairwise coprime and m f a+b foreverya £ A, b£ B,m £ M., then
how large can |A||Z?| be? In this paper we will study this problem. We will
give the nearly best possible bound for max |M||Z?| under these assumptions.
One may ask the question why the condition that the elements of M should
be less than or equal to y/N is needed. We will return to this question.

In Section 3 we will give the upper bound |M||2?| » for |A|#| and the
proof will use the large sieve. An application of this result will be shown. It
is easy to see that this upper bound is the best possible apart from constants

and a factor (logfc)2. To see this let us take A —B = "*n\lI*n < n
integerj and M = jp | <p” VA, pprimej,then m f a+ bfor every

m £ I, a£ 1, bE B and |A|# ~ AUTAT) Section 5 we will show

that the upper bound is best possible not only for this special, large k but
for all k-s. Finally in Section 6 we will estimate |A||B| for fixed \M\ and we
will derive a corollary in the case of prime powers.

3. In this section we will give an upper bound for |A||R] if m f a+ b for
everyaf /1, bEB, m £ M.
Theorem 1. LetN be apositive integer, assume thatA, B C {1,... ,n},

M C{1,... ,[VX]}, the elements of M are pairwise coprime andm f a+ b
for everya£ A, b£ B, m £ A4. Then

4N 2
VAR~ o

For the proof we need the following lemma:

Lemma 1. Assume that /14 C {1,... ,N} and the elements of A4 are
pairwise coprime. For each m £ M remove f(m) different residue classes



272 G. N. SARKOZY

mod m. Then the number of positive integers n ~ N which remain is at
most
N + Q2
£ mf m-f(m)

m\
mEﬂ/I

where the dash indicates that q is the product of distinct elements of M .

P roof. Gallagher writes in [5] on page 492, that this can be shown in
a similar way as Montgomery proves it in [8] for primes instead of M. For
the sake of completeness we give here the sketch of a proof.

Let us define (a,b)m in this way: it is a divisor of both a and b and
a product of elements of /14, and this is the largest number with these two
properties. Write

"1 ifn=1
(—Dr ifn=mlm2...mr where mi,m2,.. .mr

are distinct elements of M
.0 otherwise.

Pm(n)

We prove the lemma in the following form:

Letan (M -f1~ n < M+ N) be arbitrary real or complex numbers. For
each m GM let /(m) be the number of residue classes h mod m for which
on = 0 whenever n = h (mod m). Then for any Q > 1

< N +0Q2
Q £ bl 2-
= EQAM rTI;I érik
! mEM

Our lemma follows from this, if the a,,’s assume only the values 0 and 1.
Let us write S(x) = "I_Ia ne(m). First we prove:

I f(m)
(1) 6[ rIn_I m —f(m) = E_I
9 (@M=

If g is not the product of distinct elements of M, (1) is trivial. Thus we may
say that qis the product of distinct elements of M. Let R(q) consist of those
numbers r, 1 < r < g, for which (n —r, g)m — 1 whenever an ¢ 0. From
the definition of /(m) and the Chinese remainder theorem we see that R{q)

contains precisely JJ /(m) numbers. We replace the Jensen-Ramanujan
m\q r
mEA:
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identity

M?)= e(~) "’ (ix=1
(a,9)=1
by the following generalization of it:

Um{u)y = "2 e (") where (M)n< = 1
0=l

To see this we have to generalize the Moebius inversion for M -divisibility,
but this can be done in the same way.
Hence for every r GR(q) we have

4
arILI,M{{FI)\ = \Zl_sll a"'e E S.r]_-g.;_)..?)/\
@ax=]

We sum this over n and all r GR(q) to obtain

(InE—)*«<«) nlﬂ /M= (OSI);:'cl g |\I|E 4 5:)) Qele(g) N
mE O£

(a,i)x=I
By Cauchy’s inequality we see that
(2)
1
ESiPwn/iw2s( E K)M)( E 1E «(T)MN
mi9 =l refl(q)
m€.M (o, 9)aL| 1 (o, 9)a =
Now a little consideration shows that the second factor is multiplicative.
Hence it is
— (11
=M(El E ( Y >
mi  ‘a=l reEA(T) mg MEA(T) mEA(T) a=I '
mEM mEM
The value of the innermost sum is m - 1 or —1 according as m \  —ri or

not, so the above is

= n ((m- Hm)- /(m)(/(m)- )= J] /(m)(m - f(m)).
L ®
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This together with (2) proves (1).
Now we use the analytical form of the large sieve:

Lemma 2. Leta, (M -f1~ n~ M + N) be arbitrary real or complex
numbers and put
S(X)= ~1ane(ni).
M

Let X be a set of real numbers for which |[x —x7| > 6 > 0 whenever x
and x" are distinct members of X. Then

E£Ne > |2E(r'1+mE bl 2
X B X n
The proofis in [9].
We now derive Lemma 1 from this lemma. We choose X as the set of the
fractions g < Q, where qis the product of elements of M. and (a,q)ju = 1.

It is easy to see that in this case 6 > Q~2, thus we have

£' £ K;)|2S(Jv+eE i*i2
= Ma_n;:]_ 4 n
and this with (1) proves our lemma.

Proof of Theorem 1. Let us assume that for m € M there are /(m)
residue classes mod m which contain no element of A and there are g(m)
residue classes which contain no element of B. If m f a + b, then it is clear
that <(77) m —f(m), i.e., g(m) +f(m) > m. Using the previous Lemma 1
with Q = y/N we get

N + Qi N
(3) \A\<: Q /" _ ’
e (<) o~ = e
T
N + Q2 N +Q2 2N
\B\ < W n _ 1 = '/(m)
%=Q* 'EHT\‘A Ve TaeM oL viEE Sy
m
By Cauchy’s inequality we see that
2TV)2 4iV2
\AW\B\< @)
=( BuNe )* Ne )* )~
4iV2 AN2
~No~'

(efa< 2}
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4, Step (3) plays an important role in the proof. In certain cases, when

many products of the m’s are less than y/N, then it gives a very “rough”
estimate and it can be improved by the missing factor (logfc)2. But if no

product of the m’sis less than VJV, (3) is an equality and we cannot save in
this way. An example for this case is

Coroltlary 1. Let £ and N > Nqg(f) be positive integers, A,B c {1,

If
(4) \A\\B\ > A2-*(logA02,
f2(1-2-?2)2
then there exists a prime p such that <pl <y/N andpl \a+bfor some
aeA, beB.

Proof. We use Theorem 1 choosing

. Vn
M —{p* IP prime, — =P*=Vn }.

If N is large enough in terms of £ then by the prime number theorem we
have
Nh(l—2-») =7(1-2-7)
" 2logN 77 I°g A
For this sufficiently large N by (4) we have
2

i [ EN&(1- 2~7)"
4v2 2 ( ) 4ra- 2-7) 2A2-7(logN)2 < \AVB\.

< 4A
K2 =

\ log A
Hence by Theorem 1 there exist a prime p and integers a, b such that <
Spl <y/N,aeA, bGB and pl \'a+ band this completes the proof of
Corollary 1.

If we drop the condition pi > then many products of the m’s are
less than V~N, and using this fact we get similarly

Corollary 2. Let £ and N > No(£) be positive integers, A,B C
c{1, 1 f
\A\\B\ > c(E)N*~I,

then there eixsts a prime p such thatpl ~ \/N andpl \a+ bfor somea € A,
beB.

We remark that in the special case £ = 2 this corollary improves a result
of [4] by Ne.

5. In this section we give a lower bound. First we give a proof ofexistence
for all kK and then for “small” k's we construct M and A, B.
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Theorem 2. IfN > j\M0, then there exists a constant ¢\ > 0 such that
for every positive integer Kk with K < XyN ) —7@('") there exist M, J1 and

B such that A,B C {1,... ,N}, M C {1,... ,[V*V]}, \M\ = k, the elements
of M are pairwise coprime,

N 2
A2(log A)2
andmta+ bforeverymfM, a£ /1, b£ B.

Proof. First we are going to show that there exist constants 02,03 > 0
such that for all 1~ k 5 Q(t(\/N) —x(*-)) there exist Kk pairwise coprime
numbers belonging to a subinterval of length at most csklogk < of the
interval >/N].

If Q(n(y/N) —X(3*)) < kK <>@yN) —71r (") then let M. be the set of
any k primes from the interval and let A —B = |n I1l<n<

5) \AWB\ > ci

< n integerj. It is easy to see that (5) holds with a constant c[ for all
such fc’s.

Lemma 3. IfN >N\ andz " then there exists a constantc4 > 0
such that

v| , <N <\TI\/,p|n:>p>z}I>o4V—n.

logz
Proof. There exists a number 6 > 0 such that for z < the
assertion follows from Brun’s sieve ([6], page 82, Theorem 2.5), while for
greater z’s it suffices to take the primes between and y/N to see the

inequality to be proved.
It is clear by this lemma that there is a constant G > 0 such that for all

z ™ there exists an interval of length at most z in the interval [~ , y/N],
which contains at least numbers whose prime factors are greater than
z. But then these numbers are pairwise coprime. So we have found @,3 > 0

such that for all natural numbers 1 < A< Q(k(VN) —7r(-")) there exist
K pairwise coprime numbers belonging to a subinterval of length at most

GAlogA < of the interval [*,>/”~] and this was to be proved. Let M
consist of these numbers and let us denote the right end of this interval by L.

Then M C [L—03klogk, L]and here L > Let us multiply the elements
of M by i. These products belong to the interval [iL —ic3k\ogk,iL] and
therefore the intervals (iL,iL + j) do not contain multiples of elements of

*MttoSiSaB&iif-i.
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Then the construction is the following:

1

- . il i _ oA
A —B jin liL <n <L , nintegerj where 0 i1 i Ac3klogK) 2
This set is not empty because c3k\ogk * For these A, B, for every

a GA, bGB we have a+ b6 (rX, rX-f f) for some 0 £ r < 2(c3<4igfcy —1

thus m f a+ £for every m 6 M, a € [, b £ B. Furthermore, if iV > A2,
then

X X N
M =T1E 4 (cafelog k) 5(c3fclogk) 5 > 100c3Xlogk

Hence
ar N2
11c2(log k)2
so that choosing ¢\ = min(cl,c"), (5) holds for all k.

We remark that this construction cannot he improved apart from a con-
stant factor. Namely, it is easy to see that an interval of length H can

contain only at most C\~fj pairwise coprime numbers. In fact the number

of primes not exceeding y/H is at most ci and each of them may have
one multiple among our numbers, and the number of those integers, all of
whose prime factors are greater than or equal to y/H, is less than or equal
to c2l0*H by Brun’s sieve ([6], p. 72, Corollary 2.3.1).

Now | would like to return to the question, why we need the assumption
that the elements of M. be less than or equal to y/N. If the m’s may exceed
y/W, then the same construction can be given with X > y/Nk\og k and then
A, B may contain the positive percentage of the integers up to N, so that
m | a - b never holds since 2(cko%k)b > cN. Thus for “small” k going a

little over y/N, there are M,A,B such that A, B are dense and m\ a + b.
At the end of this section we give a constructive proof of the lower bound
for “small” k's:
Theorem 3. Let N > Nq be a positive integer. For every positive in-
teger Ko K < we can construc® M,A,B such that \M\ — K,

M. C {1,...,[ViV]}, the elements of A4 are pairwise coprime, A,B C
C{1,--,N},
N 2
> 32400fc2(log k)2

andm f a+ bfor everym £ At, a£ A, b£ B.
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Proof. Let us fix a number ko < K < bg>7p+ Let us define the
number x by the inequality
(6) a:([2A;log AN 5 V~N < (x + D([2A;logfc]).

Let L = z([2A:log A]") and let us denote the i-th prime number by p-. Then
by the prime number theorem, for A> k\ we have pk < 2AllogA:. Define A4
in the following way:

M={L-pili=1,.. A}

We are going to show that A4 satisfies our conditions. Clearly \M\ = K
and by (6) every element of A4 is less than \fN. The elements of A4 must
be pairwise coprime. Let us assume indirectly that there are two elements
of A4 having a common prime factor. In fact, let p \L —pi and p | L —pj
where r<j < A Then p |pj —p,-, consequently, p * Pj < 2k\ogk but then
p IL thusp Ipi and p |pj, i.e., p = Pj = Pi which is a contradiction. So we
have A4 C [L —2AllogA:, L] where L > and from here the proofis the
same as in the previous theorem.

6. In this section we will study that for fixed A4 how large |X||#| can
be under the condition that m | a + b never holds. First we will discuss
the case when A4 consists of “small” numbers where we drop the conditions

that the elements of A4 must be less than y/~N and pairwise coprime and an
application will be shown.

Theorem 4. Let N > Ngq be a positive integer. Assume that A4 =
= {mi,... mf} C (2,... ,iV) where TT < m2 < ... < mk. Letr " Kk,
P :=mi...rnr and assume that P < j.- Let

(7) E
am
K
(8) .
i=r+ M

where assume that <27 < |. Then there exist A,B C {1,... ,1V} such that
mj;a +bifm£f A4, a6 A, b£B and

N ] 1Vi
\I\B\ > mina’ V! 1 where - —o0.
8e27 14PJ m e 2i\ 0

Proof. Let us take all the positive integers n such that n ~ 0 (mod m,)
for 1< r<r. Then by a well-known lemma of Behrend ([7], Lemma 5, p.
263) these numbers form at least

(9) (Ifm, - D)=/>0(1-L) = Pxp (|>g(l -
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residue classes mod P. Let us use the trivial inequality log(l —x) > —=2x if
0< x =1* Here 1£ M implies \ > 0. Therefore by (7) and (9) we
get

AJ(m, - 1) > P exp > Z’T

=1 €
Thus those integers not exceeding N, which are not divisible by any of
mi, m2,... ,mr, form at least arithmetic progressions of difference P.

Now let us give an upper estimate for the number of those “bad” integers
not exceeding N, which are divisible by at least one of mr+i, mr+2,... ,

By (8)

— < NS.

Hence the arithmetic progressions above contain at most nsg 21 “bad” num-

bers on the average, thus at least arithmetic progressions contain at
most “pad” numbers. Let us denote the set of these arithmetic pro-
gressions by V ,then

P
10 i
(9 2e2 *

Let us consider an arithmetic progression V= {h,h+ P,... ,h+ KP} £V,
where 0 <h% P, h+ KP <N <h+ (K + 1)P. Then K =[~ ] whence
jr —2 < K ™ p-. Let the “bad” elements of this arithmetic progression be
h-fk\P, h+ k2P,... /h+ kTP where by the discussion above T < 2Np 2L

Let kt+1=K +1and Z min(["], [8 b ])- Bet us define the subset Z?(V)
of Vin the following way: for 0 < j < K let h+jP € N(V) if and only if for
every 1< t”™ Zwehave h+jP +iPE£{h-fkiP,h+ k2P,... h+ kT+iP}.

Now we will give a lower estimate for |#(V)|. Obviously, for one of the
K j's, satisfying the condition 0 < j < k, h + jP e B(V) does not hold
if and only if for some 1~ i < Z and for some I f~ T + lwe have
h+jP 4-iP = h + k/P, ie,j = ki —i. Here | and i can be chosen in
T -1-1 and Z many ways, respectively, thus h + jP £ B(V) holds for at most
(T+ 1)Zj's. Therefore (by P < j) we have

(H)
.~ . N 1
HIMW| k- (T+1)2>, —2- + 1) min
HIOV)|~ K- (T + 1) ) M (b ggen ) >
N N N__jV
>P 4P ~ 4P ~ 4P ~ 4P
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Now the construction is the following:

Usw), aA={r2r,.. , zP}.
VEV

It follows from the construction that m \ a+bform e M., a GA, b€ B,
and by (10) and (11) we have

N 1

(
\AWB\> Z\VAmm\B (V)\> | UPI 4,_8/\62/\3)

This completes the proof of the theorem.

Corollary 3. Lett and N be positive integers, I ~ 2, N > Nqg(T).

Then there exist sequences A, B C {1,... ,N} such that pl t a + bfor every
primep, a£ A, bGB, and

(E—DiV(loglVv)/-1
VAWBY > ggeazey- 1
Proof. We apply the previous theorem with
M = {pl Ip prime, pl < 2N} and p[p2...pI r<V~N <p[p2...plF =P

Then 7 can be chosen in the following way:

1 _ = 2
EA<Enc E’\ El =Q)="<2:=r.
=1Pi =1Pi n=l n=1
Furthermore
\/K- 1 V- 1 f 1 [ 1, 1
20 i< i< Z, .,/ <J xtdx- (1_n [-le
o=[| P' P Fhl P» n="Pr+l Pr 1( - )Pr
By the prime number theorem
logpE logP-~i Mn) ~ tvr,
1=1 P
i.e., pr~ Thus
tIP <\s
(logpy pf ~ 7" P>
whence log P log N (so that P < y holds for N > Ni). Hence
logN log N
Pr 1 U for N > N2{f)
and
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A 1 (3<)'-m
Af, Pl (<-D(loglV)->m =m

Then for N > N3(1), 6e2* < | holds trivially. Applying Theorem 4 there
exist sequences «4,B C {1,... ,N} such that pl fa+ band

(I-1X1ogAQ*-1  (E-1)(logNY-"'
(3iy~'8e* 65(3ly-'e*

Namely we have to take the second term of the minimum in Theorem 4,
since the orders of magnitude [*>] and [5* 77] are y/N and a power of log N,
respectively.

P. Erdos and A. Sarkdzy remark that in the special case t —2 there exist
sequences A,B C {1,-.. ,N} such that —»00 and p24a+ h.

In Theorem 4 At is chosen in a special way. One may ask what can be
said for an arbitrary set J14 (e.g., if /14 is the set of primes not exceeding

VN). Then the following lemma can be used:

Lemma 3. There is an effectively computable constant ci such that if
N > ci is a positive integer and t <log N, then there exist sequences A, B C
C {1,... ,N} such that \B\ = t,

N> <2 log A)«?

and A + B consists of primes between » and N.

Proo+. This can be found in [10].
This implies that for N > cj and for an arbitrary set M. there exist
sequences A, B C {1,... ,N} such that \B\ =t <logN,

N
\A\\B\ > 2logNY

and mta+ bforevery mE£M ,af A, bEB.
Finally | would like to thank Professor Erdos for his valuable remarks.
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NEW UNIFIED RADON INVERSION FORMULAS

A. KURTJSA (Szeged)

1. Introduction

Let / be a real function on R" and assume that it is integrable on each
hyperplane. Let P" denote the space of all hyperplanes in R". The Radon
transform Rf of / is defined by

Rf(0 = [ f(x)dx,
i

where dx is the natural measure on the hyperplane £ Each hyperplane £
£ Pn can be written as £= {x £ Rn: (x,u) = p}, where n £ Sn~1is a unit
vector and is the usual inner product on Rn. In what follows we identify
the continuous functions ¢pon Pn with continuous functions ¢pon 5n_1 x R
satisfying do(n,p) = p(-u,-p).

We introduce also the dual transform Rt which maps a continuous func-
tion p GC°(P") to the function Rtth£ C°(Rn) defined by

Rtdp{x) = [/ d(w, (u>x))du}.
Sn ~1
First Radon [10] and John [8] proved that any C°° function / of compact

support can be reconstructed from Rf. More precisely, if L denotes the
Laplacian on R" and du is the area element on Sn_1 then

1y f(X) =2@m-n(-T)("-1>2 / Rf(u,(u,x))du ifnis odd,

5n1
(2)
00
f(x) = H2w)_n(—L)(n_2)/2 i i Rf(u,p)-----f—-du if n is even.
J J (u,x)-p

Sn-1 —00

In formula (2), the Cauchy principal value is taken. Later these formulas were
proved under many different assumptions [4, 6, 7, 9, 11]. These proofs are
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based on advanced potential analysis and the inversion formulas are different
in the odd and even dimensional cases. Deans [3] gave a unified inversion
formula which covered both cases but his formula was not so explicit as (1)
and (2).

In this paper we prove two explicit unified inversion formulas, given in
the next theorem, using elementary geometry and analysis rather than the
potential theory employed by previous authors. In the following theorem,
5(Rn) denotes the Schwartz-space of smooth rapidly decreasing functions on
Rn.

Theorem. Iff e S(Rn), 2<neNand

(1.1)
00)

hA(u,p) =CbmJ(r2-1)"Mr Rf(u*P+re)+{") Rf(u,p-re)jdr,
1

(1.2) hB(u,p) =C Inn | r"~2(":) (Rf(u,P-r))dr,

H>e

where C = (-1)n-1r(n/2)Tr¥2/T ((n - 1)/2)(2tr)n, then f = RthA = RthB.

It is well known that the dual transform Rt has non-trivial kernel. So,
for any function /, the above functions hA and hB are in the preimage of
/ at Rt,i.e. hA,hB £ Rf1l/- For a clearer formulation, we introduce the
operators O and 5! by

0o

af(u,p) = Clim f(u,p+re)-f(u,p-re)jdr,

=flu,p) =Clim ] " _2(~:) U(u,P~ r))dr.
H>e

Then our inversion formulas appear in the form / = RtaRf and / = RfERT.
These formulas are very similar to the Radon formulas / = cRtAn~1Rf,
where J1is the Calderon-Zygmund operator in one dimension [12]. Straight-
forward but lengthy calculations on the Taylor expansion of (r2—1)("-3)/2
show that O = /1"-1. Also H = A"*“1 can be proved by integration by parts
(see (12) on p. 11 of [5]). We do not go into details in this paper.

The dual transform notion Rt appears in the previously mentioned form
in the literature [6]. Now we slightly modify this notion because this (equiv-
alent!) version is more treatable in our considerations. To avoid misunder-
standing, this version is said to be boomerang transform and it is denoted
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by B [13]. The function space C°1?(R"\0) consists of such continuous re-
al functions on Rn\0 which can be extended into continuous functions also
at the origin 0 along any line lying on 0. The boomerang transform B :
C°5(Rn\0) -> C°(R") is defined by

Bf(x) =\ ] f{u(u,x))du.
Sn-l

The simple connection between Rt and B can be described as follows. For a
real function / on R" let P f be the function on P defined by Pf{£) = f(x"),
where is the orthogonal projection of the origin 0 on the hyperplane £.
Then Bf = RtPf.

Also a useful geometric interpretation of the boomerang transform can
be given as follows [13]. Let /,,(<) be a continuous function defined on the
line 1— {tu :t G R). Then the function G C°(R"), defined by

(x) := fu((x,u)), is a so called ‘plane wave’with the axis u. The function

is constant along the hyperplanes which intersect the line lLLbrthogonally.
Now take a function / G C°5(R"\0) and for any 1 G 5n_1 consider the
function fu(t) := f{tu) on 1l Then the map 1 —» is a function-valued
(plane wave-valued) function defined on 5n_1. The integral of this function
is just Bf i.e.

B[=\ | ffd*.
Sn-I

Finally we sketch the main ideas of the paper. We start by the investi-
gation of the radial function; this is the main point of our approach. First
we show that the transform B is one to one on the space Gqgof smooth radial
functions and prove three inversion formulas on this space Go. (It is worth
to note here that a different consideration of the boomerang transform on
this space Go can be found also in [13].) In the next step, we prove inver-
sion formulas for the radial functions which are defined around an arbitrary

point P € R™. Using Dirac sequences and convolution, we prove our general
inversion formulas from these special ones.

2. Inversion formulas on radial functions

A function f(x) € C°(Rn) is said to be radial at P GR", if there exists
a function /: R+ —*R such that f(x) = /(\x —P|). If / is radial at 0 then

x/2
(2.1) Bf(x) = |5"-2| J cosn-2(a)/(|x| sin a)da.
0
Lemma 2.1. Ifh is a continuous radial function then
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(2.2) Bh{x) = |S"-2|\] h(p\x\)(I - p 2)("~3)/2dp
0
and so if /,(x) = |x|* (i € N) then

(2.3)

The proofis a simple calculation which is left to the reader.

Corollary 2.2. Iff is a continuous radial function, then
@) fn-iB(fn*B f) = a"-1(/)(2T1r)"-1,

@ii) fn-2B (hBf) =1"-\f)(2irr-\

@iii) fn-iBf = Q(n x*2(/)(27r)(" X/2 if n is odd, where

Qf(x) = |x|/ f(t)dt and 1/(x) :\] f(t)dt.
0 0
Proof. If / = /e then the formulas follow directly from Lemma 2.1.
Since B, Q and | are linear operators, the formulas are valid for polynomi-

als as well. As these integral operators are continuous with respect to the
uniform convergence, the proof can be finished by the Weierstrass theorem.

Let Gp denote the space of C°° radial functions at the point P € Rn.
The following theorem gives our inversion formulas for the radial functions
| € Go-

Theorem 2.3. The boomerang transform is an injection on Go onto Ggq.
Iff € Go then

(i) B~'f= = (2*
(1) B-v = h2=(r*)1- ~ )""*(A-2S(/V)),
(iii) S-1/ = h3 = (2»)<1-">/2(3i;)( if n is odd, where £

is the radial differentiation.

Proof. Suppose that h is a continuous radial function and Bh = 0.
Then by Corollary 2.2 we get In~I(h) —0. Using differentiation (n —1)-
times, we have h —0, i.e. the boomerang transform B is one-to-one.

Since the three cases are very similar we deal only with the second one.
h2 € Go follows immediately from

(2.4) H™-28 (/1) (1) = IS"-2]  /(p)p(Ix]2
0
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To see / = Bh2, integrate (ii) (n —I)-times. Since h2is zero in order n —1
at the origin, we get

fn-iB(fif) = In-\h 2)(2n)n-\

This implies / = Bh2 by (ii) of Corollary 2.2.

The following statement easily follows from h*f(x + y) = hu((x,u>) +
+ (y,u)) and from

(2.5) Bh=\ J h~du-
5"-1

Lemma 2.4. Iff = Bh, then
(2.6) l.=8(a(x+x")),

where fy(x) = f{x +vy).

Notice that by this lemma and by Theorem 2.3, inversion formulas can
be introduced for the radial functions at an arbitrary point P. Using radial
Dirac-sequences and convolution, the procedure leads to the general inversion
formulas. We follow this way in our proof. A sequence of functions {#*} is
called delta-convergent if it tends to the Dirac distribution in the dual space
of continuous bounded functions.

P roposition 2.5. Let f € 5'(Rn) and let {u*} C Go be delta-conver-
gent. If the sequence

(2.7) hk(x) = J Rf(ex,\x\-r)B ~lvk{\r\)dr, i £ER"\0
R
where ex = x/\x\, has limit function h, then f = Bh.

Proof. By the substitution r = x| —s and by the Fubini theorem we
get

(2.8) hk(x) = JR f(ex,s)B~1vk(x—sex)ds =j f(y)B~lvk(™x"-"jdy.
R R"

From Lemma 2.4 we obtain

(2.9) Bhk(x) = f(y)vk(x - y)dy, x € R",
R"

which proves the proposition completely.
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3. Proofof the main theorem
We need two technical lemmas. The first statement immediately follows
by integrating in polar coordinates.
Lemma 3.1. If{vk} c Go is a delta-convergent sequence, then

(3.1) wk:R->R (r™ |r|n-1tR(|r|)|5n-1]|/2)
is also delta-convergent.

Lemma 3.2. Ify € C°°(R) and /(r) =7(r) —7(—), then £ (") &t/ €
GC°° and

LT HAY (D)=/(M|(1)p T i!-

Proof. Byinduction we get
(3-2) (™) [I(r) = Tfc(r) - 7fc(-r),

where yk € C00 and 7jt(0) = 0. This proves the first statement. The second
assertion follows immediately using the Taylor expansion of 7.

Now we prove our main theorem. The function Rf(ex, .. —) is denoted
by <p(r). When the r-dependence is important, we denote it by <&x(r).

Proof of (1.1). By (ii) of Theorem 2.3 and by Proposition 2.5, we
have

(3.3)  hk{x) = 2m1~nJ(g>(r) + <p(-r))™"j  (/,,—2#(/iufc))|re dr.
0
By Theorem 2.3 there exists a function Uk £ Go such that Vk —BUk and so

(3.4) nUK = Q701" (~-)n“1 ra(/n_25 (/1uf)).

Therefore by integration by parts in (3.3) we get
(3.5) hk(x) = (-2TMN)2-"J (v2(r) + f(—F))rn~2B(fiVk)(rex)dr,
0
where the remainders vanish at 0 by (3.4) and at 00 by Rf € 5(5"-1 X R)

[7]. Use (2.4) and Lemma 3.1 furthermore reverse the order of integrations
to see

olCn-21 % T ( 2_ 12\(n-3)12
(3.6) hk(x) = (-2TMN)2-"-d - N J Wk(t) J g(r)---------------——- drdt,
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where g(r) = (gj:)" 1<p(r) -f (:37)" r) and wk comes from Lemma 3.1.
Making use of the substitution r —st in the inner integral results in

(3.7) h(x) = Wn hk(x) = (~2tr)1~n|™*n_]| IimJ g(st)(s2- I)(n~"l2ds,
t
which completes the proof.
P roof of (1.2). By (i) of Theorem 2.3 and by Proposition 2.5 we have

(3.8) hk(x) =@2n-)L nJI(f(r) +@(~r)){") (fn-iB (fn-ivk)) reXdr.
0
As in the previous proof, use integrations by parts to get

(3.9) hk(x) —(—=2m1)1 "] (™) +tp(-r))rn 1B (fn- 1vk)(rex)dr.
0

The function g(r) = (~)n ~"(r) + pf—r))rn 1is of class C°° by Lemma
3.2. Therefore use Lemma 3.1, Lemma 2.1 and the Fubini theorem to get

(3.10) ht(x) = (-2K)1- | A j:DB,q(x) J@A (1 - s2r2)<"-3)V r*,
0 *

where wk comes from Lemma 3.1. Thus we have
(3.11) ®

Kx)= Km hk(x) = lhnj ~ (1 - 52/r2)(n_3)/2dr.

To obtain the theorem, we have to prove that
@

(3.12) 0=lim { ~ (1 - (L- s2/F)(n_3)2)dr.

For this purpose break up the integral into two parts as [s,2s] and (2,s, 00)
and transform the first part into an integral on [1,2] to see that it tends to
zero. The other integral on (2s, 00) converges to zero simply by the Lebesgue
dominated convergence theorem. This completes the proof.

It should be mentioned that the odd dimensional inversion formula (1)
can be proved easily using (iii) of Theorem 2.3, Proposition 2.5 and Lem-
ma 3.1.

The author would like to thank Z. I. Szab6 for proposing the problem
and making valuable remarks on the form and contents of this article.
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RELATORS GENERATING THE SAME
GENERALIZED TOPOLOGY

J. MALA (Nyiregyhaza)

Introduction

A nonvoid family 17 of reflexive relations on a set X is called a relator
on X [8]. If A C X, then the set

intj(A) = {xe X :3R€TZ:R(x)C A}
is called the ~-interior of A. The members of the family
Tn ={V CX :V Cmtn(V)}

are called the 7”-open sets.
If TZis a relator on X , then the relator

KA={5ClIxl:Viel:ie int*(S(*))}

is called the topological refinement of 7Z. Namely, if 1Zand S are relators on
X, then by [8, Corollary 5.16], we have ints C int” ifand only if S C TZA or
equivalently SA C TZA. Hence it is clear that 1ZA is the largest relator on X
such that intftA C int®. Moreover, int*A = int”.

Since the ~-interiors of subsets of X need not be 7”-open, the correspond-
ing assertions do not, in general, hold for T-n instead of int™. Therefore, it is
of some interest to point out that by introducing the transitive modification

K~={( " :R6ft}

n=1

of a relator 7Z, we can still prove some similar equivalents of the inclusion
Ts CTn-
For this, it is convenient to consider first a singleton relator {72} which
can often be identified with thg relation R without any danger of confusion.
The author is indebted to Arpad Szaz who suggested many improvements
in the notation and the formulation as well as the proofs of theorems.
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1. Topologies generated by singleton relators

Because of the definition of open sets, we clearly have

Theorem 1.1. IfR is a reflexive relation on X and V C X, then the
following assertions are equivalent:

(i) V e TR;

(i) R(V) CV;

(iii) R(V) = V.

Using this obvious theorem, we can easily prove

THEOREM 1.2. IfR is a reflexive relation on X , then tr is closed under
arbitrary unions and intersections.

Proof. If (K),e/ is a family in 1+, then by Theorem 1.1, we evidently
have

«(n1l0=u n«)=nmn"

and el 1el el
UrH cllaNe )=nK"
el 1el 1el
and hence

u v;eTr and n We TR.
iei iei
Moreover, simple applications of the definitions of T~ and IZA give

Theorem 1.3. IfTZ is a relator on X, then

T = [J TR
Ren,

Proof. IfV £ 1+, then for each x £ V, there exists an Rx £ 71 such
that Rx(x) C V. Thus, by defining R C X x X such that R(x) = Rx(x) if
X £V and R(x) = X if x £ X \ V, we can at once state that R £ I1ZA such
that R(V) CV, ie, V £ TR.

Conversely, if V £ 7+ for some R £ TZA, then R(x) C V for all x £ V.
Hence, since x £ int*(A(x)) for all r € X , it is clear that x £ int*(y) for
all x £ V. Thatis, V Cint§(U), and thus V £ 7.

2. Singleton relators generated by topologies
Now, as a certain converse to Theorem 1.2, we can also prove

Theorem 2.1. If A is afamily of subsets of X and R C X x X such
that

R(x) =P){-4£A: xX£A)
for all x £ X, then
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(i) R is the largest reflexive relation on X such that A C 1r;
and
(i) 7= = A ifand only if A is closed under arbitrary unions and inter-

sections.

Proof. IfAGA and x £ A, then by the definition of R it is clear that
-R(x) C A. Therefore, A £ 1. On the other hand, if 5 is a reflexive relation
on X such that AcTs and x £ X, then x £ A £ A implies that S(x) C A.
Therefore, S(x) C R(x).

From Theorem 1.2 we know that if A = 1r, then A is closed under
arbitrary unions and intersections. On the other hand, if V £ 7+, then by
Theorem 1.1 and the definition of R, it is clear that

v= u f){AGA :xeAY
xev

Therefore, if A is closed under arbitrary unions and intersections, then V £
GA also holds.

Remark 2.2. The relation R defined in Theorem 2.1 is always transi-
tive. Namely, if y GR(x) then x GA GA impliesy £ A. Therefore, we also
have R(y) C R(x).

A simple application of Theorem 2.1 and Remark 2.2 gives
Theorem 2.3. If R is a reflexive relation onX, then

R- =y Rn
M=1
is the largest reflexive relation on X such that 7+ C 7r- . Moreover, Tr =
= Tr--
Proof. Because of Theorems 2.1 and 1.2, we need only show that if
S C X x X such that

S(x) = f]{V G1r :x GV},

for all x GX, then S = R~. From Theorem 2.1 and Remark 2.2 we know
that R C S and S2 C S. Hence by the definition of R~ it is clear that
R~ ¢ S. Moreover, if x G X, then also by the definition of R~ it is clear
that

R{R~{x)) = U Rn+1(x) ¢ R~{x).
fl=1
Thus, we have not only x G R~(x), but also R~(x) G 1r. Whence, by the
definition of S, it is evident that 5(x) C R~(x) also holds.

Remark 2.4. Note that R~ is the smallest transitive relation such that
R C R~.
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3. Relators generating the same generalized topology

Now, combining Theorems 1.3 and 2.3 and using the obvious notation
Z ={A :RE£R}1
we can easily establish the following improvement of [8, Corollary 5.19].

Theorem 3.1. IfTZand S are relators on X, then the following asser-
tions are equivalent:
(i) Ts C Tu;
(i) 5JF ¢ tza;
(W) 51 NC TzA
(iv) sA~ ¢ tza~.

Proof. If (ii) holds, then by Theorems 1.3 and 2.3 it is clear that

Ts= (J Ts= (J Ts-= (J r7C [j TR=Tr.
sesn sesn TeEn_ Ae7rN
That is, (i) also holds.
On the other hand, if T £ S A~, then there exists an S E SA such that
T = S~. Hence, by Remark 2.4 and Theorems 1.1, 2.3 and 1.3, it is clear
that
T(X) £ETj=Ts CTs

for all x £ X. Therefore, if (i) holds then we also have T(x) £ TR for all
x £ X, which implies T £ 7ZA. Consequently, if (i) holds then (ii) also holds.

Finally, the equivalence of (iii) and (iv) to (ii) is an immediate conse-
guence of the fact that the mappings

TZ—»7ZA and TZ —»7Z~

are increasing idempotent operations on relators such that 72 C TZA and
TZ~ C 1ZA.

Now, as an immediate consequence of Theorem 3.1, we can also state

Corollary 3.2. If TZ and S are relators on X then Tr = Ts if and
only iflZA~ = SA~.

Hence by noticing that
2xxX - (0 -, —and TAX = V(X),
we can also easily get

Theorem 3.3. IfTZisa relator on X, then

(i) Tr = {0,X} if and only ifTZA~ = {X x X};

(i) T = V(X) ifand only ifTZA~ = {4} n~.

Remark 3.4. The first statement of this latter theorem is identical to
[4, Theorem 3.5].
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4. A new characterization of topological relators

To show that [8, Corollary 5.19] can also be derived from Theorem 3.1,
we have only to prove the next striking analogue of [9, Theorems 2.10 and
3.4].

Theorem 4.1. IflZ is a relator on X then the following assertions are
equivalent:

(i) 1z is topological;

(i) TZA~ is topologically equivalent to 7Z

Proof. By Remark 2.4 and [9, Theorem 3.3], it is clear that 1ZA~ is a
topological relator on X. Therefore the implication (ii) = (i) is an immediate
consequence of [9, Corollary 2.4].

On the other hand, by Theorem 3.1, it is clear that 1ZA~A C IZAis always
true. Therefore, to prove the converse implication (i) =% (ii), we need only
show that if (i) is true then TZA C 1ZA~A i.e.,, TZC 1ZA~A'is also true.

For this, note that if (i) holds, and R € TZand x € X, then by [9,
Theorem 2.3] and Theorem 3.1 we necessarily have

intg(A(x)) £ Tv. C Tyn-.
Therefore we also have
X e int*A-(int3(A(z))) C inteia- (R (x)),

which shows that R £ TZA"A.

Now, as an immediate consequence of Theorems 3.1 and 4.1 we can also
state

Theorem 4.2. IflZ and S are relators on X such that S is topological,
then the following assertions are equivalent:

0) 7s ¢ Tn;
(i) SAc TzZA;
(iii) S ¢ 1ZA.
Hence, by Theorems 1.3 and 4.1, it is clear that we also have

Corollary 4.3. If 1Z is a topological relator on X, then 7ZA is the
largest topological relator on X such that C Tp_. Moreover T-uy1 = Tp..

Combining Theorems 3.3 and 4.1, now we can also state

Theorem 4.4. IflZisa topological relator on X, then
(i) 7a = {0,~} ifand only iflZ= {X x X};
(i) rn =V{X) ifand only iflZA = {4a-}n.
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5. A few useful counterexamples

The fact that the conditions of topologicalness cannot be omitted from
the above assertions can also be at once seen from the next simple

Example 5.1. If X = {1,2,3} and R ¢ X x X such that
A1) = {1.2}, R@= {73}, AE)={13},
then V, = {A} is a relator on X such that
T* = {0,X} and Tn-i = {0,X}

but 71n and (7£-1) are still incomparable.
Remark 5.2. Since

R~\1) = {13}; A-1(2)={1,2}; R-\S) = {2,3}

now we also have
n N(7r-Dn= {XxX}.

Moreover, in addition to the above example, now we can also easily prove

Example 5.3. If X is a set with card(X) > 3, then there is no largest
relator 7L on X such that Tn = {0,X}.

Proof. If B C X, then for each proper subset A of B
RA=Ax BU{X\A) x X

is a reflexive relation on X such that Tra = {0,X}. Therefore, if 7Z is
the largest relator on X such that Tn = {0,X}, then we necessarily have
Ra € 71 for all proper subset A of B. Hence, it is clear that B € Tn if
card(R) > 2, which is a contradiction if B ¢ X. Consequently, the assertion
of the example is true.

Remark 5.4. Clearly if card(X) » 2 then 71 = {X x X} is the only
relator on X such that Tn = {0,X}.

The above proof also yields a remarkable example to Theorem 1.3 and
[4, Theorems 3.1 and 3.5].

Example 5.5. If X is a set with card(X) 3, then the family 71 of all
relations

R(ab) = A x B\J(X\ A) x X

with AcBc X, Ad B and card(5) > 2 is a relator on X such that
TR = {0,X} for all R e 71, but Tn = {V C X :card(F) ¢ 1}.

Remark 5.6. Note that in contrast to the transitivity of the Davis-
Pervin relations

Ra=R(aa)=AXxAun (X\A)xX,
where A C X, now we have
®R(ab)T =(R@b)? =X x X,
whenever A C B C X such that A ¢ B.
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ON A MULTIPLICATIVE PROPERTY
OF SEQUENCES OF INTEGERSI1

I. Z RUZSA and A. SARKOZY (Budapest)

1. Throughout this paper, we use the following notations: J1, A\, B, A4,...
denote (finite or infinite) sequences of positive integers. Ci,C2,... denote
positive constants. We write loglogx = /2(2), logloglogx = 13(x). The
least common multiple of the integers a, b is denoted by [a, 6]. p, denotes
the ith prime number (so that pi = 2, pi —3,p3 = 5,...). u(n) denotes
the number of distinct prime factors of n: u>(n) = a() 1 while ft(n) denotes

n

the number of prime factors of n counted with multiplicity: il(n) = X] a,
pa\\n

and we write V(x,u) = {n: n < x, Q(n) >u}. p(n) denotes the Mdbius
function.

2. Erdos and Graham [1, p. 88] raised the following question: “Is it true
that if ai < 02 < ... is a sequence of integers satisfying

(By (ai,aj) = 1. (@ says that (a,-,a7) —m+00 holds “on average”.) This
paper is devoted to the study of this problem. However, it will be shown
that to ensure (2), X] » must grow much faster: one must have

"2 1> exp (/G (2 (x))f2 /s (9)

where f(x) —>+00 and this is the best possible.
It is well-known that there is a constant Ci such that

1 Research supported by Hungarian National Foundation, Scientific Research Grant
No. 1811.



300 I. Z. RUZSA and A. SARKOZY

(3) £ N <h(x)4ci for x >3.
pbx

Theorem 1. For all e > 0, there are constants ,c3, G4, xo, ™ (all de-
pending one) such that ifx >xo0, A C {1,2,...,[x]} and » 4 > c¢?, then,

aeA
defining the unique integer K by

(hjx) +ci)k 1 1 < (h(x) + ci)fer1
(4) (k—1! =82ja K\

where ci is defined by (3)*, we have
( y

(5)
aaeAl. 1 \aeA |

where

/[brtsd -w *)
1 (logx)log4-1-e fork > (1 - 6)1i(x).

An easy computation shows that

los E i) (hWwf,2fx)"1- +~
,eA

implies k(li(x))~5 —»+00, whence L(x,k) —»-foo, and for all e > O there

is an 1y(> 0) such that c3b(x,k) > (logx)log4d 1 e for x > x0(e), ’\A4 >
ae

> (logx)1-"7. Thus we obtain

Corollary 1. For every L > 0 there are numbers K,xo such that x >
> xo0 and

£ N > exp (K (h(x))If213(x))
aeA

imply

jta > (So)
Corollary 2. For every e > 0 there are numbers xo,q(> 0) such that
X > xq and
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~>Ag*)1 7
aeA

imply

i.a'eA 1’ ) \a€A /
As the following theorem shows, Corollary 1 is the best possible.

Theorem 2. For every K > 0 there are numbers 30, H and an-infinite
set A of integers such that for x > xg we have

£\ > exp(*(blx))‘/2/3(<r)
afA,a’ K

and

(6) y _ < H(ae&aﬂ(i)z_

3. To prove Theorem 1, we need three lemmas.
Lemma 1. Ifx > 3 and t is apositive integer with t < /~(x), then

| < 4(~(*) + C)*
n n

Proof. If n < x and il(n) ~ t, then, writing n in the form n = u2u

where |/x(v)| = 1, we have v < n < x and w(u) = 1I({t?) < il(n) < t. Thus by
(3) we have
+00 t , ,
. " <
E ! S uE:\ EO tiQ(EV)FI vav \ge) \(:% »<*, )| ’)
fi u)=i 0(»)=«
<2f IMil+iii <2(@i+ )IMii+£DI <
((:O
< .Ne I+ £1)!

= (i-1)! m

Lemma 2. There is a constant C6(> 0) such that ife > 0 and x > xo(f),
then for every integer n with h(x) -fce <un < (2 —£/2(x) we have
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X (12(x)u—*
\V \ < CT;
(x.u) logx (Te—1)! 1 —h(x)
where ¢7 = c7(e) depends on e (but it is independent of x and u).

Proof. This is a slightly modified form of the first half of Corollary 1
in [4] and, in fact, it follows from this corollary and a result of Sathe [5] and
Selberg [6].

Lemma 3. FoOr x > xg we have
[E>(z, 1+ [120))\ = [{n : n S x,il(n) > /12(xX)}| > "x .
Proot. This follows from a theorem of Erdos and Kac [2], [3].

4. Completion of the proof of Theorem 1 Let A\ denote the
set of integers a with a GA, il(a) > k. Then by (4) and Lemma 1 we have

©) E ; =E - E
oGAi agA atEA fl(a) fc
n(h(x) + ci)k > A 1 _ 1y~
> atath (k- D' =Zad 2Zh37 2,8
Forn —1,2,..., let g(n) denote the number of pairs a, m with a G Ai,

fl(m) > [72(x)] and am = T and write M. = {re: ®”" x2,g{n) > 0}. If
' G /14, then we have

MN(re) = ii(am) = ii(a) + i)(m) > k -f [i2(X)]
so that, by Lemma 2,
(10) \M\<:\V (x2,k + [I2(X)] + I)\<

o (RZ2)FMF) k + [12(0} + 1
< Cllogx2 (k-F [2001)! K+ [2(0)j + 1- f2x2) ~
cr oo - COKFMRV 12(x)

< 08|ng {k+ [h(OI)\ for k< (1 —6)I2(x)

and
(n) \M\ < \V (x\k + [12xX)] + D\ < |ID(x2,[(2-i)/2(x)])| <

x2 (12z2)«2*)M*M {2 _
logx2 ([2 - B)I20)\ - D! [(2 - 1)/2(2)] - 12(x2)
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< Z2(logx)1 184+'/2 for Kk > (1 —6)I12(x)

if Sis small enough in terms of e.
By the definition of the function g(n), clearly we have

(12) 2(n) A E E 4 =

>
n=| n=1 \aG-4,a|n

-E E E . =EE E I=

n— \af.A,ajn a'£.A,a'\n j afA a'fA n<x:,[aa]n
2
—_ - 2
akA a'eA a6/Mla-6A 1~

On the other hand, by Cauchy’s inequality and Lemma 3, and in view
of (9), we have

(13)
2

I( " H (5%4 >(»)) =1 GA| m<x2/af%m>[/2(x)]1 t
ilh\ E E 4>

> 159= tse)> )

(5) follows from (10), (11), (12) and (13), and this completes the proof of
Theorem 1.

5. For a finite set B of integers we introduce the notations

/ 1 xi/2
el=8§ 1/6 "d n < [Lpeg 0 ) L]

We establish some properties of these “norms” that will be used to prove
Theorem 2.

Lemma 4. If/1n B = 0 ,then
(14) \AuB\ = \A\ + \B\

Ada Mathematica Hungarica 60, 1992



304 1. Z. RUZSA and A. SARKOZY

and

(15) 1MNBJ < WA\ + \B\\,

P roof. (14) is obvious. To prove (15), let D be the least common

m ultiple of all elements of A u B. For any set M of divisors of D and
1 < o1~ P let

= vy, L
deM,d\i

This defines a vector (x,) = xj*. We easily find (now |x| denotes the usual
Euclidean norm) that

i*a<i= X >*= E E 1= E T ¥] = ¢
& d,d'eM i%D,d,d"i dd'tM . J

Hence (15) follows from the triangle inequality.
We define the product of two sets by

(16) AB = {ab:aeA,beB}.

We call the sets A and B coprime, if (o,b) = 1 forall a GA, b£ B.
Lemma 5. If A and B are coprime sets, then we have

(17) \AB\ = \A\\B\,

(18) \AB\\ = WAWB\

Proof. To show (17), it is enough to observe that if these sets are
coprime, then the products ab, a € A, bEf B are all distinct. To prove (18)
we add that [ab,a'b'] = [a,a'1[6, b if (a,6) = (a,b") —(a',by = (a",b") = 1.

6. Proof of Theorem 2. Select ac > o (we shall specify it in terms
of K, and it will determine H). We define a sequence (xoi”i,--) of integers
by recursion. If x*_i is given, let xjt be the smallest integer such that

[

(19) ak = E 1/p > ck.

These numbers xk are obviously primes and by the minimality we have
(20) ck <ak” ck + I/xk.
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(19) implies that

(21) K = Zggpererro®

and that
53 /P = “l + —+ <ft=ck(k+ 1)/2 + 0(1),
pb**

hence

(22) Xk - ewp(cic(ferl)/2+0(1))_

From (21) we also infer that
(23) XiX2...Xk-1 < Xk

for x > «o.
Let Vk he the set of primes in (xfc_x,Xfc] and put

Nk = VK'Pk+i—Pu,
(product in the sense of (16)),

>1= U A.

This will be the set A of the theorem.

Take an integer x and put B = n M[1,®]. Our aim is to estimate \B\
from below and |[#||/|Z?| from above.

The maximal element of Aj is

Ui = xjXj+1—X2j.

Now define k by yk-\ * x < yk. This means that A\, ..., Ak-i are completely
contained in B, Ak may be partially contained or disjoint. Since the minimal
element of Ak+i is larger than

*Jfc+Hi-l-»*2fc+2«'-b

the sets Ak+i, ... are all disjoint to B. Write
K- 1

B= U AUC,
i=X

where C = Ak” [L@®].
First we estimate \B\. Since

X < yK = XK...X2K < X2JctX
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by (22) we infer
12(x) < ck2/2+ 0 (k),
that is,
K> (22(x)/c)l2 - 0(1).
Consequently we have

IB| M \Ak-i\ = afc x...a2kc 2> (*- I)...(2fc- 2) >
> (k —I)T;» exp (tf(/2(x))1/2/3(x))
as wanted, if c < 1/ K.

Now we begin to estimate |[|Z?|[/|Z?|.
If V is any set of primes with

pev
then we have

1

_ £ a2+ a,
hr \2=E 17.7]

thus

m <
n =
Consequently by Lemma 5 we have

(24) <

with H' —exp 1/c.
If C= 0, then by (24) Lemma 4 imphes

B\ < WAiW + 4 WIK-I o oAy + o+ Ak-T]) = HAB),

thus the conclusion of the theorem holds with H = H'. If C ¢ 0, we need
estimate also ||C||.
Put

U = Vk...VZk-x.
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The elements of C are of the form up, n GU, p 6 P~ x/u. Write
N2 ilp= J2 I/p-
PA'Pik,PUx/u X2k-1<P<min(x2k,x/u)

Let 7 = ﬁ];W M= Lg& 7... With this notation we have

(25) c\="lu/u ~ j\U\
UEU

We have also
HJI2= E E p~ij(Tu7u' + 7u)>
upupecle yJ wuueul’J

where the first summand corresponds to the terms with p ¢ pland the
second to those with p = p'. Consequently we have

(26) ICIl2<(F2+T )N 2

To make use of these estimates we need to show that I is not much larger
than 7.
Let n and u denote the minimal and maximal elements of U. We have

n = gjfe..£2*-1 < 1» “ > xk-l—x2k-2,

hence
u/u< Xu-i/xk-l <x2k-1-

If x > HxZ-i, then we have x/T1” x2fc-i > it/u, hence x/u = (x/i)(iA/n) ~
N (x/1h) 2, thus

r—7 = U/P<1-
XE<p<x/u

If x < uxZ-1, then x/u< XZ-i(u/u) < x2fc_1? hence

r = llp< £ ilp<1<7+1
x2k-1<P”x/u X2* 1<p<X*fc 1
again.
By view of ' < 7 + 1, we have N2+ I' < (7 + 2)2and thus (26) yields
(27) ni< (7 + 2)w.

We have \U\ = ak...aZk-i, hence
L AAK-\\ = oik-i/otk-i ~ (2K - 1)/(k - 1) -» 2,
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thus \U\ < 3|v4fc_i | for large k. Moreover, similarly to (24) we can deduce
HWIWI < H'.
Substituting these estimates into (27), by (25) we obtain
M1 A (7 + 2W| < H\7 + 2\ A H\C\ + 69'|A -i].

By Lemma 4 this implies

NN woy +- + Hb-i+ 1A < HVAN + o+ HO\AK-iV+
+H\C\ + bH\Ak-X\ < 79, («41] + ... + [>U_i| + [C]) = 7TH'\B\,

thus the theorem is proved with H = 7H".
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EIGENVALUES AND EIGENVECTORS OF SOME
TRIDIAGONAL MATRICES

L. LOSONCZI (Debrecen)l

1. Introduction

Let n, k be fixed natural numbers, 1 » Kk <n, and denote by Mnk
= M,,k(v,a,b,s,t) the (n + 1) X (n + 1) matrix

/ \
at v

atyv

(1)

v+ b

V

where v, a,b,s,t € C. The entries mjt (j,1 =0,..., n) of M,k are

v+DblJ

a+tv if j =0,...,k—1

mii= Vv if j =k,...,n—x (n+ 1—2k 0),
, b+v if j =n—k+1,...,n
a+v if j =0,%.¢,n—K
mii= a+b+v ifj—n—k+I,....,k—1 (n +1—258<0)
.b+v if j=k,...,n

and
s if j=t+k, t=0,...,n —K
rrift = { 0 if O0<\j- \Ndk
tif £=j +k j=0,..,n—k

In [7] we factorized det M,,tkk if s =t = 1 and used thisresult to find
the best constants in some quadratic inequalities. Here we apply another

1Research supported by the Hungarian National Foundation for Scientific Research
(OTKA), Grant No. 251.
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method to determine the eigenvalues of Mn”. This method enables us to
find the eigenvectors of M,,tk too. In possession of the eigenvectors we can
complement Theorem 4 of [6] by giving the cases of equality. Moreover, we
can find some new discrete quadratic inequalities of Wirtinger type.

We remark that multidiagonal matrices (i.e. matrices which have the
same entries in the diagonals — except possibly the main diagonal) appear
in different areas of mathematics [2], [3], [4], [9] Thus the investigation of
Mnk is of interest in itself too. Throughout the paper C, R, Z denote the
set of complex, real, and integer numbers respectively.

2. Evaluation of det t

Denote by D,k = D,,k(v, a,b,s,t) the determinant of Mrek(v,a,b,s,t),
and let Doti(v, a,b,s,t) =a b+v.

Theorem 1 Letn+ 1=kq+r (0 <r <k). Then we have

2 Dntk(v,a,b,s,t) = Dgti(v, a, ft,s, t)rDg-\4(v, a, 6, s, t)k~r.

Proof. Let us rearrange both the rows and columns of Mnk in the
order of indices

(3) O ,... 0kl b+ 2,0k +2;..r-01k+ r- |, o0kt r- L

(4) ok +r, (0 Dh+rpr+ L +r+1,00, (0 —=1k+r+ 1;...

oo —12A—1 ..., (q—hfc + ¢ —1.

We remark that throughout the paper {0,1,..., n} is used as the index set of
rows and columns of Mrek- This index set is more convenient for our purpose
than the usual set {1,2,...,n+ 1}.

3) contains r groups of g+ 1 indices while (4) has kK - r groups of g
indices. If r = 0, (3) is empty and all indices are contained in (4) .

The rearranged matrix has r blocks of (v, a, 6,s,t) and K —r blocks
of Mg-iti(v,a,b,s,t) in the “diagonal”. Hence (2) follows. O

A similar rearrangement has been applied by Egervary and Széasz [2] to
find MIy*;(—41,0,0,1,1). Next we find Dcpi(v,a,b,s,t). We may suppose that
st @ 0 since ifs = 0ort = 0then Dqg is a triangular determinant whose
value is the product of its diagonal elements.
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Theorem 2. Letq = 0,1,...;v,a,b,s,t £ C, st » 0, a = ysi. |If
v ¢ +2a then

t4+1

(5) Dai(v.ab,s,t) = . a+b

./ . - ab ..
- 3 Ml
0D sin(q + 2)d'H 5 sm(g + )i~ 1—als|n qfl
where . € C is such that v = 2<rcosd (sind ¢ 0). If v —=£2a then

(6)

Dgi(v,a,b,sit) = &1 (xl)gAq +2)+— (2I)*+1g+ )+ (£1)
i.e. in this case D4t\ can be obtained as the limit of the right hand side of
(5) as d —»mir where v= (—)m27, m £ Z

Dt can also be expressed by help of the Chebychev polynomials uj of
the second kind as

r /v a+brm/ v\ ab,, /[ v\

. - +1
(7) Dai(viabst)y=a*l b0 T Tk A n

where uj is defined as the extension of the polynomial
(8) th=-LM...).

P roof. Expanding Dqgx(v,a,b,s,t) by the zeroth row and also expand-
ing the cofactor of t by the zeroth column we get

(9) D¢d(v,a,b,s,t) = (a+ v)Dqg_1A(v,0,b,s,t) - tsDg-.2tl(v,0,b,s,t)
\{g>2. (9) shows that

(10) dg := DgA(v, 0,6,s,t)

satisfies the linear homogeneous difference equation

(11) dt+2 - vdt+1 + tsdt =0 (£=0,1,...)
with the initial conditions

(12) d0=b+v, d\ = 6+ Vv)v—ts.

Since < ¢ 0 we can always find d £ C such that v = 2a cosd (i? is unique
if we require that —r  Rei? < ir, Imi? > 0 or —>K” Ret? 1 0, Imi? = 0
hold).

Then the roots of the characteristic equation

A2 —(2<7cosd)X 4a2=10
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of (11) are JIX2 = rjexv9. Ai b A2 if and only if d ¢ mir, m € Z. Hence

_ fal(cieM +c2e ,t0) if B mir (Ai p A2)
1 1~(cie'™ +cite'l3) if d=mir (Ai = A2

for | — 0,1,... where c\, c2 are constants to be determined from (12).
Calculating c\, c2 we obtain that

(13) d( = < SV [asin(E -f 2)d + bsin(£ + 1)$] if 2 d mir
all[<r(l+ 2)(-)mg+2>+ b(i + 1) (-1)mP+D)] if d = mir.

From (9), (10), (13) by applying the formula 2sina cosB — sin(a -f ) +

-f sin(a —B) several times we get exactly (5) and (6). (7) follows from (5)

and (8) taking into consideration that Dqg is a polynomial of its variables.
O

Remarks. In (5)-(13) any fixed value of the square root y/st = mr can
be used.

Day{v,a, b, 1,1) has been evaluated by Rutherford [10].

3. Eigenvalues and eigenvectors of Afiti

Let Abe an eigenvalue of Mqti(v,a,b,s,t) and consider the system of
eguations

(14) Ma,i(v - X,a,b,s,t)y =0
where y = (yo,..., yg)T and T denotes transposition. (14) can be written as
(@+v- Ayo+tyi =0
syo+ (v- Ayi+ty2=10
(15) < ;
syg-2 + (v- A)y,_i +tyg=20
, Sygq-1+ (6+ V- Ayg= 0.

Let a = ysi ¢ 0 and assuming v —A p +2a substitute v —X = 2t7cosi?,
i) £ C. From the first equation of (15)

) 1. n asin2d + asind
Vi =-1(a+ 2rcosi?)y0 = - y0.
We easily obtain by induction that
t alsin(E + 1)i? -faol 1sinid
16)  yt= (-1)t2snE*Di n (£=1,2,...,2).

tl sind
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Substituting yqg and yo~\ into the last equation of (15) we get after some
calculations that (-1)9

—— Dgi(v- Aabs,t)y0=o.

Since Dd(v —A a, b, s, t) = o, yo is arbitrary and y\,..., yqare given by
(16). If v—A= 2(H)m<, mg Z, then in (16) the limit of the right hand
side has to be taken as i? K

It can be seen that the dimension of the subspace spanned by the eigen-

vectors corresponding to the eigenvalue A (i.e. the geometric multiplicity of
A see [5], § 50) IS One. O

Hence we have proved

Theorem 3. Let X be an eigenvalue of Mdii(v,a,b,s,t) (st & o,
v,a,b,s,t € C). Then the eigenvectorsy = (y0,yr,..., yq)T corresponding to
A are given by

a7y yt= (-y) [sin(™* )i? FAsinfi2 C  (E-= 0.1,...,7)

ifv—A=2gcosP (i?™ DK m GZ) a = y/st and by
(18)

Yoo (tT)r[@+ ACAaiymg e (F=0,1,...?)

if v—A= 2crcosm”®, m € Z where C ¢ 0 is an arbitrary constant. Each
eigenvalue is of geometric multiplicity 1.

If f,£ G{0,1,—1} then the eigenvalues of Mad can be explicitly given.

Theorem 4. The following identities hold:
(19) Aji(v- A0,0,st) = (u- A- 20cos

(20
Dqi(v—A 0, a,s,t) = Dg(v-Aa,0,s,t)= O (u- A- 2<cos ~

(21) Mj,i(t>- AO0,-a,s,t)=A4,4(u- A-a,0,5s,i) =
2]+ 1M
CA- 2 (
A- 2acos 2q+3 )
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(22) Dag,i(v - Acrcr5; 2rcos YT
2+ 1) -
(23) Dgti- A7,-"
:lA-l(V 2a cos (221 ++12)'
j:O‘ g ).
(22) Dg,i(v - A-a,-a,s,t)= (V- A- 2acos~"~rj ,
j=o " 9+ |/

where a = y/st.

Proof. The proofis analogous to that of [7] hence it is omitted (we
remark that in [7] from (26) a factor —1 and from (28) a factor sini? is
missing). O

From the above formulae one can see that the eigenvalues of e.g.
Mod(v, a,a,s,t) are Xj =v - 2a cos g =20,..,0.

4. Eigenvalues and eigenvectors of Af,jt

By Theorem 1 the eigenvalues of Mn)jt(u, a,b,s,t) are the zeros J1of the
polynomials Dgd(v —A a, b,s, t) and Da-i,i(t>—A a, b, s,t). First we consider
the possibility of these polynomials to have common zeros.

Theorem 5. The polynomials Dd(v —A,a,b,s, t) and Dg-iti(v—X,a,b,
s, t) with st ¢ 0 have a common zero A if and only if

(25) ab = st

holds. In this case the common zerois A= v+ aTh.
In particular (25) holds if

where a = y/si.

Proof. By Theorem 2, Dgji(v-X,a,b,s,t) = Dg-iti(v—\,a,b,s,t) = o
holds if and only if either sin ¢ Oand v—A = 2a cos d satisfies the equations

(27) sin(g + 2)d + a’{; Asin(g + 1)d + ’a‘llsin gti —0,
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, \-b . . b . .
(28) sm/(q + 1)i? 4__51__;__ sin gtf 4—2»15m(g —Nt? = 0,

orifsin?=0, ?7=MW, m 6 Z v- A= 2()m< and the derivatives of the
left hand sides of (27), (28) vanish at i? = 1.

In the first case by the addition theorem of the sine function and by (28)
we can rewrite (27) as

(29) cos(q 4 1)i? 4-3%-bcos qi7’4--§-;|cos(g —1)i? = 0,

Multiplying (28) by i and adding it to (29) we get

(30) e*e4yJ (gi* + I'j * -0
thus
(31) Dol o Yo —eid

a a

Ife.g. ] = —"3 then

I+

1[0 C.0 ] E=1,2,.).

Substituting this into (28) we obtain after some calculations that (28) holds
if and only if
(a2—a2)(t72—ab) = 0

ie. if
(32) or ab= a2

a2 = a2implies e23 = 1, sintf = 0 which was excluded. Thus ab = &2 = st
is necessary for Dgg and Dg-i,i to have common zero. It is sufficient too
since (25) ensures that (28) holds while by (31) the equation (29) and hence
(27), too, hold.

2V J Ver  a) a

thus 1= v —2<cosd = v + a + b is the common zero.
Starting with the root £ = —e"9 of (31) we obtain the same result.

In the second case ? = T>K, m € Z and the derivatives of (27), (28) give
(33) (g4 2)(H)m@O+2) 4 — (?+ 1) (-1)m(«tl) + gg (-1)mg=0,
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(34) @+ DM@+ —  q=Dm+ (g - IK-D)™ "= 0

If m is even then the subtraction of (34) from (33) leads to

M K )= °

hence j = —d or £ = . If »~ = —1 then from (33) we get £ = —1 and
conversely £ = —1 and (33) imply ~ = —. Thus

(35) —= —= , \'=v—27cosd=v—2a=v+a+h
G

If m is odd then the difference of (33) and (34) can be written as

t-1A("-2)0 - 1)="

Thus j = lor j = 1 Ifeg. »~ = 1then from (33) we get £ = 1 and
conversely. Hence

(36) —= ;: 1, A= v—2cosd=v+2a=v+a+h
«f

Since (35), (36) are particular cases of (25) we proved that (25) is a
necessary condition. It is sufficient too since with d = ™K and with (35) or
(36) both (27), (28) and (33), (34) are satisfied. O

Theorem 6. The eigenvectors x = (Xo, X1, ..., X,,)T of Mn*{v,a,b,s,t)
corresponding to the eigenvalue X =v —2acosd are given by

(37) xu+hk = (- y) [sin(h + i? + ~sin Cu

ifdd ™K m € Z and by

8  >.« =(-7) [A+D(Dn+IAI-)"-BiC.

ifd =K m € Z In (37 ) 38)wm=20,1,.,r—1,h=0,1,.,9and
m=r,r+l, —1, h 0,1,...,—1. Co,C\,..., C*_1€ C are constants
such that

(i) Co,Ci,.. .Cr_i are arbitrary constants not all zero, Cr = Cr+1= ...
e« =C* i =0ifDe(u - Aa,b,s,t) =0d¢ Dagi,i(v- X,a,b,s,t),

(if) Co = Ci = eee = Cr_i = 0 and Cr,Cr+i,..., Cjt—2 are arbitrary
constants not all zero if Dod(u —A a, 6,s,t) 0= Dq _1ar>—A a, b, s, t),
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(iii) Co, Ci,..., Ck-1 are arbitrary constants not all zero if Dqg(n—A a, b,
s,t) = 0= Dg-i'i(v—Aa,b,s,t) (by Theorem 5 this case occurs if and only
if ab = st).

The geometric multiplicity of the eigenvalue A in the cases (i), (ii), (iii)
isr, K—Tr, K respectively.

Proof. We have to solve the system of equations
(39) Mnk{v - AaDbs,i)x =0.

Rearranging the equations of (39) according to (3), (4) one can recognize
that (39) decomposes to the following systems:

(40) Mdqi(v - X,a,b,s,t)zu=10

where zu — (xu, Xutfc’eee>*u+qk) 1a —0,1,...,r 1land
(41) Mg-iti(v —A a, b,s,)wu =0

where wu = (xu> eoe OHO—HK) ?a —r,r -k1,.. ¢,k L

In the case (i) Theorem 3 gives the solution (40) for each n = 0,1,...,
r —1. This justifies (37) and (38) form =0,1,...,r—1,h=0,1,..., q. (41)
has trivial solution only for each n = r,r+1,... ,k —1since the determinant
of the system Aj-i,i(v —Aya,b,s,t) is not zero. These trivial solutions are
included in (37) and (38) by requiring Cr = Cr+\ = eee= Ck-1 = Q.

In the case (ii) (40) has trivial solutions only (therefore Cq—C\ = eee=
= Cr_i = 0) and the solutions of (41) are (by Theorem 3) given by (37),
(38)form=r,r+1,..,k—1h=0,1,...,q—1

In the case (iii) both systems (40), (41) have nontrivial solutions which
are given by (37), (38).

The statement concerning the geometric multiplicity of the eigenvalues
iS obvious. O

5. Applications

Here we apply our results to study some discrete quadratic inequalities of
Wirtinger type. Let A be an Hermitian matrix of order Te-f 1 with eigenvalues

A=A " N A, and let ... ;X" be the corresponding linearly
independent eigenvectors. Then

(42) \n(x,x) A (Ax,x) ™ X0(x,x)

holds for every vector x € Cn+l where () is the usual inner product

Y=Y
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for x = (x0,...,Xn)T,y = (yo,..., yn)T®m The equality A, (kX) = (AX,X)
holds if and only if x = 0 or x is an eigenvector corresponding to A, (if
A, < A,_i, then xis a scalar multiple of x*1)). Similarly (Ax,x) = Xo(x,X)
holds if and only if x —O0 or x is an eigenvector corresponding to A (see e.g.
1]).
[])Let now v,a,b € R, a,8 € C\ {0}, t = all, s = t = al}, then
Mnk(v,a,b,all, aB) is an Hermitian matrix and

(43) (M,,tk(v,a,b,aR,al)x,x) =
= $3 faxi+k+Wwn2- (“+ MW -
3=0

-(b + |1?2)|x,|2] + (v+ a+ b kil2-
i=0
We are going to formulate inequalities of the form (42) in the cases when
the best constants (the least and greatest eigenvalues) can explicitly be given.

We have seen that this is the case if * = e, £ = p, E,p = 0,£1. The
possible values of e, p are listed in the next table.

Table 1

t Pi
1 0

2 0 1
3 0 -1
4 1 -1
5 1 1
6 -1 -1
7 1 0
8 -1 0
9 -1 1

With a = Eier = £t\al\, b = pier = pt\aB\, v = —a - b = aB\(Et + pi) in
(43) we have

n—k
(44) (A%x, x) = [laxitfc + RXj\2- (et\aR\ + |a|2)|xi+fc|2-
3=0
-{PNaR\ + \R\2)\Xj\2]
where
(45) = Mntk(-\aB\(Et + pt),£t\aB\,pi\aB\,&aR,alk)

Ada Mathematica Hungarica SO, 1992



EIGENVALUES AND EIGENVECTORS OF SOME TRIDIAGONAL MATRICES 319

for £ =
The eigenvalues of A,,\ are of the form

(46) N= v —2acos = Jal\(et + pt + 2cosfl).

Based on Theorem 4 it is easy to find the eigenvalues of A*k. By (46)

Table 2 gives the values of corresponding to the eigenvalues /1 of A\ and
also gives m(A), the algebraic multiplicity of A (which is now equal to the
geometric multiplicity).

Table 2
I (m(A) =) r (m(A) = K —T) i?
(m(A) = k)
0 + D)jt _ 0+ 1)» .
1 = = ..,9-1 -
q+ 2 = 9+1 U=o. )
20 + Dje . 2(j + Vs
2 =0,... =0, ..,9-1 -
a3 =00 TN 0001
(2 + D B (2j + prr B ) )
3 29 + 3 0 =0,e9,9) 2q+ 1 0 =0,..,9-1)
(2 + hir  _ @ +De ] B
4 29+ 2 =0 29 =° 90
5 0+1» g=0..9-10%*Y ¢=0,..,9-2) T
9+1 9
jic
0 = |,..., =1 ..,9'1 0
941 a) q 0 = I> )
same as 1=2
same as £=3
same as 1=4
In Table 3 we collected i?7ax such that foreach | = 1,..., 6, (46) gives
the minimal and maximal eigenvalue of a iy if i? = ., and d =

respectively. Here we used the relation

mi _ fg if 70

Lfcd \q_l if r=0
where [X] denotes the greatest integer not exceeding x. We omitted | =
= 7,8,9 since by Table 2 = A | *EE?> - far/ = 2,3,4 .
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Table 3
min max
T
1 T— mm
ffl+ 2
21 -
2 — .
2LLI|+3 | min
-
3 T- 2i?J2n
2 til +3
T
4 T- 12
2 W + 2
T
5 T
[fl+ 2
T
6 0
[fl+1

Finally we formulate the main result of this section.
Theorem 7. Letn,k befixed natural numbers, 1 * kK * n, ra+ 1 = kg-\-r

(0 < r < k). Forevery x — (xq,...,xn)T £ Cn+tl and | = the
inequality
(47) -\aB\ (et + pt + 2c0si?i2n) (*>*> = (ANKX'X) =

A~ ~\aR\ (ee +Pt+scostfir) (*,«)

holds where
n—k
(Anlkx'x) = 53 Naxi+*+ Rxi\2- + 112)13012-
30
- 0>IVRN + |?12) |2 /]
a,BE C\{0} and &t, pt; AN ¥x are given by Tables 1 and 3 respectively.

Equality on the left hand side of (47) occurs for | = 1,2,3,4,5 if and
only if

(48) xu+hk = [sin(/i+ 1)~ n+ &sinwW' cuU
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holds for
(49) w=20,1,...,r—1, h-0,0,....,q and
mn=r,r+ —1 h=0,1,...,9-1

while for t = 6 if and only if

f m V

(50) k= 4ty o

holds for the subscripts (49).
Equality on the right hand side of (47) is validfor | = 1,2,3,4,6 if and
only if

holds for the indices (49) while for t —5 if and only if
(52)

is fulfilled for the subscripts (49).

Here Co, ..., Cr_/ are arbitrary constants, CT = Cr+l = eee = Ck-i =
= 0 (ifr — 0 then all Cu’ are arbitrary) and Do,...,-Djt-i are arbitrary
constants.

Proof. The statement of Theorem 7 follows from the general result
(42) taking into consideration Theorem 6 and the calculations of Section 5

concerning A,,\ and its “parameters”. O

The cases t —7,8,9 can be obtained from | = 2,3,4 by exchanging et, a
to pi, B respectively.

Several special cases of (47) are known. Ifk = 1, a = = 1, (47) has
been proved by Fan, Taussky and Todd [3]. Their inequalities are discrete
analogues of Wirtinger’s inequality; see e.g. Hardy, Littlewood and Pdlya
[6], p. 184. ForR =1, g = 1, i=1,3,6, Theorem 7 (without the equality
clause) has been proved by the author [7] (the cases (i), (ii), (iii), (iv) of [7]
can easily be rewritten to the cases | = 6,3,3,1 respectively). Concerning
inequalities related to (47) we refer to [2], [8].
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