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UPCROSSINGS OF THE RANDOM WALK

D. P. JOHNSON (Calgary)

In this note we prove the following
Theorem. Let Xn, n=0, 1, ... be a random walk on the integers with
P[Xntl = *+1*« = i]=P >0 and P[Xnml=i- 1X,=i=q=1-p >0.

Let U be the number o f upcrossings of the interval [b, c] by {Xn} up to the time that
{Xn} leaves the interval [a,d] where a<b<c<d are integers. Then

E(U\X0= 0 =

(['-(Fr KYT

\c—pt2 for p g and a”i” b—\
HHH-G)
NTWwryri

(i—ay-)(d—b{-2)
(r—a+2)(c—h+2)
(&—a)(d—i+ 1)
V(c—a+2)(c—b+2)
Proof. Let Xxi=£'(C/|T0=/) and let ji=£'(7|T0=/) where 7 equals 1 if
{X,.} reaches (c, °°) before it reaches (— b) and O otherwise. Then the xt sat-
isfy the following equations:

for p~q and b”™iS d,

for p=q= 12 a® aS zS b—],

for p—q=212 ancf h? /55d.

(1) X=0 for iAa—1
) AL =pxiHl+gxi-1 for a=/e b-2
©) xb-i = gxb-sHpxb+pyb
4 xt= gxi_1+pxi+l for b~" is d

®) =0 for i=d+1
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For example equation (3) follows from
X" =E (,u\Xii=b-\) =
= P(Xr = b-2\X0= b-1)E(U\X0= 6-1, Xy= 6-2)+
+P(Xy = b\X0= b-1)E(U\X0= 6-1, Xx= 6) =
=N _2tpE(E/+F RO= ) = F,,_gt>, . #/v
From equations (1) and (2) we see that

yi—atl
*r+i-*f =-j(xt-xt-) =...= [y] (xa—xa-i) = (I)

and summing from a to j—*b —2 yields
yfa+l
|

(6) -Xa, 1
1 -1

Similarly from equation (4) we get
=~(xi~xi-)=...= (I] (xb~xb_,)

and summing from b to j —Isd vyields

'(‘l’P

J-b+1

lxh—f_(f) VAL brSjSd+ 1
1-1

1-1
p p
Replacing/ by c/+1 in this last expression yields
\i-b+2
v (U

= d-b+2 *6-1

H a

and substituting back into the original equation now gives us

Lo
N Dfea’
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UPCROSSTNGS OF THE RANDOM WALK 5

or, using equation (6) to compute
@
a4 . d

e 1l e

M ) [Ha 1 («-7)

Equations (6) and (7) now give us expression for xt'r, Xxb_2and xbin terms of xa.
Substituting these into equations (3) and solving for xa gives

(-

N ri

But ybis the solution to the ruin problem and so equals

na bSjAd+1l

W =

Substituting this last expression for ybinto the expression for xa and substituting
the resulting expression for xaback into equations (6) and (7) proves the theorem
for p~g. For p=qg one can take the limit as

(Received April 9, 1987)

UNIVERSITY OF CALGARY
DEPARTMENT OF MATHEMATICS
CALGARY, ALBERTA

CANADA
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YNCNOBAA OBJIACTb JIMHEMHbIX OrEPATOPOB
B MPOCTPAHCTBAX C MHOE®PNHUNTHOWN METPUKOU

L. BAACIANAH (YnaH-batop)

B HacTosllLeli 3aMeTKe [OKa3aHa BbINYKIOCTb YUCNOBOW 061acTW MPOU3BOIb-
HOro SIMHeHOro onepaTopa B NPOCTpaHCTBe C UHAE(UHUTHON MeTpukoin. Kak ee
NpUIoXeHWe, NpMBeAeHa OfHA MPOCTas CBA3b MeXAY CNeKTpoOM W YWC/IOBOWA
061aCTbI0 NONOXMTENLHOrO oreparopa B npocTpaHcTBe KpeliHa (cMm. LL).

B KOMMJEKCHOM /IMHEAHOM MpoCcTpaHCTBe H 3afaHbl 3pMMTOBa GUMHERHas
topma (x,y), onpeaeneHHas ans Bcex X,YEH W NMHeliHbIA onepaTop A, onpe-
[leNeHHbIA BCOQY B HEM.

Teopema. MHO>KeCTBO
V(A) = {(Ax, x): (x, x) = T
BbINYKNO.

[JokasaTtenbcTBO. [MycTb CyLlECTBYIOT BEKTOpPbl X,YEH, Takme uto (X, X) =
=(y,y)=1, (Ax, x)>0, (Ay, y)<0. Torpga Haigetca zf H co cBoiictBamu (z, z)= I,
(Az,2)=0.

[eicTBuTensHo, Mbl Mwem z B Buge z=tIx+t2y, rge txu OT/INYHbI OT
Hyns. Beefdem cnegytouine 0603HaueHNs:

(Ax,x) = an, (Ay,y) = aZ (Ax,y) =al2 (Ay,x) =an.
Torpa ypasHeHve (Az, z)=0 MOXHO nepenucatb B BUAE

all+— M = 0.
0

h

Wnn BBOAA 0603HaYeHMe " =0, nony4yaem ypaBHeHue

+ +0(092+412) —O0
OTHOCUTENLHO B. B 0603HaueHuax a2l=c+di, al2=6+si, 0~01+02i, nocnegHee
ypaBHEHWE CBOAMTCA K CUCTEME YpaBHEHWI
A+ @2(6]+0)) +  (c+ 9+ 02E—d) = 0,
@ \el(e+d)+e2(c-6)=0.

12

W3 ycnoBuid (z,z2)=1 1 s crnefyeT paBeHCTBO

1112(1 + 02+ 2 Re(0(y,x))) = I.
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OTctoaa Heo6XOAMMO BbITEKAET HEPABEHCTBO
2 1+ |02+ 2 Re(O(y,x)) >0.

Takum 06pa3om, HaM [0CTaTOYHO HAWTW TaKOW B, UYTO OH YAOBMETBOPSET
(1) n (2). Ecin e+d=0, To nonoxum B2=0, B 3aBUCUMOCTU OT 3Haka Re (y, X),
Mbl BbIOMpaeM B KauyecTBe Br O4HO M3 peLUeHWid KBafpaTHOrO YpaBHEHWUS W3 CUC-
Tembl (1). Ecim xxe E+d”O, 10 (1) 1 (2) nepenuiiemM B BUae

Mbl BblOMpaeM OfIHO W3 pPeLUeHWiA KBagpaTHOro ypaBHEHMS U3 cucTembl (3).
[Hanee, nycTb BekTOpbl X,yfH o06nagatoT cBoicTBamMu

(X! X) = (y1 y) = l’ (AX1 X) = l, (Ay, y) =-1.
Torpa ana npomssonbHoro t£(—1, 1) mbl nvmeem HepaseHcTBa ((A —t)X, X)>0,
((A—t)y, y)<0. B cuny pgokasaHHoro, cyuwlectsyeT zdH Takoe, uto (r,r)=1
(Az, 2)—.
Tenepb, Kak B [2] (cTp. 305), Ana npoussonbHbix X,YEH ¢ (Ax, X)*(Ay,Y)
n (x,Xx)—y,>)= | Hailgem NOCTOSHHbIE I W /] Takne, 4TO
(=A+B)X, x) = 1, (yA+B)y,y) =-1
Torga, no npegpligywemy, ana /€[—L1,1] cywecteyer zEH ¢ (z,z2)=1 #u
{@A+R)z, z)—t. MopgcTaBnaa 3HayeHMs a U 3, Mbl NPUXOAMM K PaBEHCTBY
-i-M- (A, x) + -L-- (Ay, y) = (Az, 2).
Cnepgcteue. MycTb A — NONO>KMTENbLHBIN ONepaTop B NpocTpaHCTBe KpeliHa
Torga uMeeT MeCcTO BK/IHUeHWe
a(A)dV+ANIV.(A),
rae a(A) —cnekTp onepaTopa A 1
VHA) = {(Ax, x): (%, x) = 1} V.(A) = {HAX, x): (x,x) = -1}.

3ameTuM, 4TO B cuny npedblayluein Teopembl MHOXecTBa VHA) n K. (A)
BbIMYK/IbI.

[Joka3zaTenbcTBO. BBeaem 0603HaueHUs

e+t = inf (Ax, X), X_ (x%g_l(—(Ax,x)).

Acta Mathematica Hungarica 57, 1991
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Ecnn a_=a+, TO no gokaszaHHOW Teopeme MHOXecTBO V-+(A)JIV_(A) BbINyKno,
cneposatenibHo, No [3] nmeem

a(/) ¢ [mina(A), waxa{A)] ¢ K (A) UV(A).

Ecnu e a_<a+, TO onepatop A (yHAameHTanbHO NpuBoAuM (cMm. [4], cTp.
146) B cuny 4Yero cnefcTBue BEPHO U B 3TOM CrlyYae.

NuTepatypa

[1] J. Bognar, Indefinite inner product sPaces. Ergebnisse der Mathematik und ihrer Grenzgebiete
78, Springer-Verlag (Berlin, Heidelberg, New York, 1974).
2] M. Xanvow, Mnb6epToBO NMPOCTPaHCTBO B 3ajadax, Mup, 1970.
3] B. Textorius, Minimaxprinzipe zur Bestimmung der Eigenwerte nichtnegativer Operatoren,
Math. Scand., 35 (1974), 105-114.
[4 U. BascranaH, O dyHAaMeHTanbHOW MPUBOAMMOCTY MOMOXMTE/NbHBIX OMepaTopoB B MPOCT-
paHCTBax C MHAE(MHUTHOI MeTpuKoii, Studia Sei. Mat. Hungar., 13 (1978), 143-150.

(MocTynuno 11. 5. 1987.)

MOHIONbCKUN FTOCYLAPCTBEHHbLIA YHUBEPCUTET
YNAH BATOP
MOHIonnaA

Acta Mathematica Hungarica 57, 1991
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ON S-CLOSED SPACES

A. S. MASHHOUR, A. A ALLAM and A. M. ZAHRAN (Assiut)

1. Introduction

Throughout the present paper X and Y mean topological spaces on which no
separation axioms are assumed. Let S be a subset of X. The closure of S and the
interior of S will be denoted by cl (S) and int (.S), respectively. A subset S of X'is
called regular open (resp. a-set [3], semiopen [3], /(-open [1]) if 5=int(cl (A)) (resp.
Stint (cl (int (SY))), Stcl (int(S)), Sccl (int (cl(S)))). The complement of reg-
ular open (resp. semiopen, /(-open) is called regular closed (resp. semiclosed [3],
/(-closed [1]). A function /: X -Y is called a-open [7] (resp. almost open [14], semi-
closed [8], regular closed [12], /(-closed [1]) if the image of each open set of X is an
a-set in F (resp. / _1(cl (K))ccl (/- 1(F)) for each open set V of Y, the image of
each closed set of X is semiclosed in Y, the image of each regular closed set of X is
closed in Y, the image of each closed set of X is /1-closed in F). Every closed func-
tion is a regular closed function and semiclosed and every semiclosed function is
/(—closeld. Also every open function is a-open, but the converses are not true in
general.

In 1976, Thompson [13] has defined a topological space X to be S-closed
if for every semiopen cover {Up. iff} of X, there exists a finite subset 100f | such
that X= U (cl (Ui): /£/,}. In 1977, Noiri [9] has defined a subset A of a topolog-
ical space X to be S-closed relative to X if for every cover {(7,: /E/} of A by semi-
open sets in X, there exists a finite subset /,, of / such that Ac: U{cl ((/,): /£/.}.
A topological space X is said to be almost compact if for every open cover {t/;: /£/}
ofX, there exists a finite subset Wof/such that X= U(cl (Ui): /€/,}. Every ~-closed
space is almost compact, but the converse is not true in general (see Remark 1.5 [5]).

In the present paper we introduce and study the concept of weakly semiclosed
functions and by using this concept we investigate some properties of S-closed
spaces. Also, we strengthen some results in [2, 5, 11].

2. On /(-open sets and A-closed spaces

Theorem 2.1. If afunction f: T—F is an a-open bijection and Y is S-closed,
then X is almost compact.

Proof. Let {Up /£/} be an open cover of A, then {f{U): /E/} is a cover of
F by «-sets of F. Since F is S-closed, there exists a finite subset 70 of | such that
F=; U{cl(/(C7;)): I£/,,}. This impliesx

x = u {/-(cl (f(UD))): £} ¢ U{d (f~ LF(Ui)): /£1,}
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by Corollary 2.1 of [6]. Hence Z=U {cl (£/,): iflG- Therefore Xis almost compact.

Corollary 2.2 (Mashhour and Hasanein [5]). If afunction /: T—T is an
open bijection and Y is S-closed, then X is almost compact.

Theorem 2.3. Let X be an extremally disconnected space and f\ X-»Y a reg-
ular closed, almost open surjection and/ - 1(y) be S-closed relative to X for each yfY.
If G is almost compact relative to Y, then/ 1(G) is S-closed relative to X.

Proof. Let {F;: ifi) be a cover of/ _1(G) by regular closed sets of X. For
yfG, by Lemma 2.1 of [11], there exists a finite subset I1(y) of | such that f~ 1(y)c.
¢ U{F;: ifl(y)}. Since X is extremally disconnected, for each if I, F;=cl (int (Ff)
is open in X. Now put £/(y)=U{F;: ifl(yj) which is regular open in X. By
Lemma 2.2 of [4] there exists an open set V(y) of Y such that yfV(y) and
[ _WF(y))c[/(>) Since {V(y}: yfG) is a cover of G by open sets of Y, then
there exists a finite number of points yx,y2,y3, ...,¥,, in G such that
Cc U{cl (KCV)):j= 1,2, ..., «}. By using almost openness off we obtain

f~x(G) ¢ UL/l (VOY]I): | = 1,2,3, ., <} C
¢ ULeH {f-"(VAYD)). j = 1,2, 3 e C

c Uu{d(fi(yjj):j=1,2,3 ....«}=[J U_R.
j=uatyj)
It follows from Lemma 21 of [11] thatf~ x(G) is G-closed relative to X.

Theorem 2.4. Let X be an extremally disconnected space and f: X-+Y a reg-
ular closed, almost open surjection with compact point inverses. If Y is an almost
compact space, then X is S-closed.

Proof. Since in an extremally disconnected space every regular closed set is
clopen, each compact subset is relatively S-closed.

Corollary 2.5. Let X be an extremally disconnected space and f: XY a
regular closed, almost open surjection with compact point inverses. I f Y is an S-closed
space, then X is S-closed.

Corollary 2.6 (Noiri [11]). Let X be an extremally disconnected space and
f: X-~Y a closed open surjection with compact point inverses. If Y is an S-closed
space, then X is S-closed.

Theorem 2.7 [15]. A subset A is S-closed relative to X ifffor every R-open cover
{Ui: iff] of A, there is afinite subset /,, of I such that Ac U {cl (£/)): iff,,}.

Theorem 2.8. Let X be an extremally disconnected space and f: X—Y be a
R-closed, oi-open surjection andf~ 1(y)be S-closed relative to X for each point yf V.
IfG is S-closed relative to Y, then/ _1(G) is S-closed relative to X.

Proof. Let {i[: iff} be a cover off~ 1(G) by regular closed sets of X. For
each yfG, by Lemma 21 of [11], there exists a finite subset I1(y) of | such that
[-4>")c U{F]: if/(v)}- Since X is extremally disconnected for each ifl, fj=
=cl (int (Ff) is open in X. Now, put U(y)= U{/v ifl(y)} which is open in X,
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then there exists a B-open set V(y) of Y such that y€V(y) and / _1(F(y))cE/(y)
[1, Theorem 2.3]. Since {V(y): YEG} is a cover of G by [Lopen sets of Y, there exists
a finite number of points yIryt, ..., y,,in Gsuchthat GcU {cl (F(y,.)):y=1 2, ...,«}

by Theorem 2.7. By [6, Corollary 2.1] we obtain f~ 1(G)cz 13/ _1(cl (V(vj)j)cz
i=1

c Ulcl (f-4r(yp)))<=U cl (U(yj))=u U R. It follows from Lemma 21 of
= j— j =1 i<LI(yj
[11] that f~4G) is S-closed relative tb X.

3. Weakly semiclosed functions and S-closed spaces

Definition 3.1. A function f.X Y is said to be weakly semiclosed if the
image of every regular closed set in X is semiclosed in Y.

Remark 3.2. Every semiclosed function is weakly semiclosed, but the con-
verse need not be true in general as follows:

Exampe 3.3. Let X={a, b, c}, z={X, 0, {b}, {a, h}} and B={X, 0, {a}, {c}, {a, c}}
The identity function i: (X, r)-»(X,B) is weakly semiclosed but not semiclosed,
since {a, c} is closed in (X, t) but i({a, c})={a, c} is not semiclosed in (X,0).

Theorem 3.4. Let f: X”~-Y be a weakly semiclosedfunction. If VaY and U
is a regular open set of X containing/~ 1(F), then there exists a semiopen set W of Y
containing V such that f~ 1(W)a U.

Proof. Clear.

Theorem 3.5. Let X be an extremally disconnected space, f. X"-Y a weakly
semiclosed, almost open surjection andf~ 1(y) be S-closed relative to X for each yfY.
If G is S-closed relative to Y thenf~ 1(G) is S-closed relative to X.

Proof. Let {Fp. i£l} be a cover of/ _1(G) by regular closed sets of X. For
each yEG, by Lemma 2.1 of [11] there exists a finite subset I1(y) of I such that
S v)er {fe]: ifl(yj\. Since X is extremally disconnected, for each i€J, Ff=cl (int (Ff)
is open in X. Now, put U(y)= U{Fp. iyl(yj) which is regular open in X. By
Theorem 3.4 there exists a semiopen set V(y) such that yfV(y) and / _1(F(y))c
<U(y). Since {V(y): y< G is a cover of G by semiopen sets of Y, then there exists a
finite number of points yr,y2,ys, yn, in G such that

Gc U{d(V(yf):j = 1,2,3,
By using almost openness off we obtain

f4G) ¢ Li/-LelFy)= O/ 1 (int(VL) e U.cl(/_1int (V) ¢
i=i i= =

0 cl(f~1(V(yj))) C G cl(U(yj)) = U R
¢ g, elt=1vom) € g clLom =Y. 4
It follows from Lemma 2.1 of [11] thatf” 1(G) is S'-closed relative to X.
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Corollary 3.6 (Noiri [11]). Let X be extremally disconnected, f: X--Y a
semiclosed, almost open surjection and let (V) be S-closed relative to X for each
point yEY. If G is S-closed relative to Y, thenf ~1(G) is S-closed relative to X.

Theorem 3.7. Let X be an extremally disconnected space, f: A—Y a weakly
semiclosed, almost open surjection and let f~'(y) be compactfor each yEY. IfY is
an S-closed space then X is S-closed.

Corollary 3.8 (Atia, ElI Deeb and Hasanein [2]). Let X be an extremally dis-
connected space, f: X—Y a semiclosed, almost open surjection and f~ x{y) com-
pactfor each yfY. IfY is an S-closed space, then X is S-closed.
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PERIODIC SOLUTIONS FOR SCALAR
LIENARD EQUATIONS

J. J. NIETO (Santiago de Compostela) and V. S. H. RAO (Hyderabad)

1. Introduction

In this paper we consider the scalar Lienard equation
(1Y u"+cu'+g(u) =e
with the periodic boundary conditions
(12 m0) = u(T), u'(0) = u\T)

in which the functions g: R *R and e: [0, T]—R are continuous and c is a real
constant. If e is periodic of period T, then it may be seen that a solution of the peri-
odic boundary value problem (PBVP, for short) (1.1)—(1.2) is a periodic solution
ofperiod T for the equation (1.1). We refer the readers to [10, 16] and the references
there in for the literature on the existence of periodic solutions for the equation (1.1).
The important special case ¢=0 (also known as the conservative case) is treated
for T=2n in [4, 9], and more recently in [7, 15, 17].

This paper is organized as follows. Section 2 deals with the existence of solu-
tions for the PBVP (1.1)—(1.2). While studying this problem, we distinguish two
cases for the nonlinearity namely, the cases when (I) g is decreasing and (Il) g is
increasing. For the case (I), we use a result of [6]. We show that when g is strictly
increasing the method of [6] is not useful, and in the case (11) we employ an abstract
existence theorem for problems at resonance [3, 13, 14]. Also, we present existence
results based on the techniques of [5]. We note that our methods and techniques
are different from those employed in [10, 16], and thus our results extend some of
the results in [16].

In Section 3, we study the structure of the set of solutions of the PBVP (1.1)—
(1.2). Here also we consider two cases:

0 and (ii) cogBoundary (Range g).

It is shown that if g is monotone and (i) holds, then the solution set is nonempty,
connected and acyclic (Theorems 3.2 and 3.5(a)). On the other hand, ifg is monotone
and (ii) holds, then it is shown that the solution set is either empty or connected and
unbounded, and in the latter case the solution set is homeomorphic to a closed and
unbounded real interval (Theorems 3.3 and 3.5(b)).

If g has monotone character only “at infinite” then the solution set may be
“chaotic”. Also we construct a g such the set of periodic solutions of the equation
u'+cu'+g(u)=0 is a given set K (Theorems 3.8 and 3.10), and this set can be
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even a Cantor set. Indeed, the results of this section are in the spirit of those in [12]
about semilinear parabolic partial differential equations. Although results dealing
with the multiplicity of the solutions are known (see for instance [11]) we think
that our results about the structure of the solution set of (1.1)—(1.2) are new.

2. Existence of solutions

We now consider the second order equation
(2. -u"="f(t,u,u)

in which we assume that/is continuous on the set 5= {(t, x, y): i£[0, T], X, YER}.
A function a£C2[0, T] will be called a lower solution of (2.1) on [0, T] if —a"s
=f(t, a,a) on [O T]. Similarly BfC 2[0, T] will be called an upper solution of
(2.1) if -g"~f(t,8,8" on [0, T].

We shall state the following result of [6].

Theorem 2.1. Assume thefollowing:

(@) there exists aand BB lower and upper solutions of (2.1) on [0, T], respectively,
with a(0)=a(T), B(0)=R(T), and a(t)*B(t) for every i£[0, T]\

(b) the inequalities «(0)*y.'(T) and R'(0)*R'(T) hold; and

(c) / satisfies the following Nagumo condition relative to < 8 [2, p. 25]: There
exists /;,EC[[O, °°), (0,=°)] such that \f(t,u,v)\*.h(\v\) whenever a(t)*u”R(t),

t£[0, T] and h is such that {2 59 zeo
0 Hys)
Then the PBVP
(2.2) —u" =f(t, n,n’), u(0) =u(T), u’(0) = u(T)

has at least one solution n such that a(t)Su(t)"B(t) for every A[O, T].

This theorem is proved by using an abstract existence theorem at resonance
developed in [3]. We note that this result is proved in the Hilbert space setting and
the resulting solutions will be in L%o0, T).

We write f(t, u, u)=cu'+g(u)—e(t) and state the following:

Lemma 2.2. Let a, B be lower and upper solutions of {1.1), respectively, sat-
isfying the conditions (a) and (b) of Theorem 2.1 Thenf satisfies the Nagumo condition
(c) of Theorem 2A relative to a, RB.

Proof. For (1.1), using the notation of Theorem 2.1, we have f(t,u,v)=
=g(u) +cv—e(t). Taking into account that g and e are continuous we see that there
exists K>0 suchthat |g(w(0)|+ \e(t)\ LLK for oc(t) u”(t), tE[O, T]. Thus, we
can take h(s)=cs+K.

Now we discuss the existence of solutions for the PBVP (1.1)—(1.2) in the fob
lowing cases:

I: g is decreasing on R, that is for u, rf R and uSv, g(u)*g(v).

I: g is increasing in R, that is for u, nER and u”v, g(u)*g(v).

Acta Mathematiea Hungarica 57, 1991
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Case I: We assume that g is decreasing on R and prove the following main
result.

Theorem 2.3. If g is decreasing, then the PBVP (1.1)—(1.2) has a solution if

1]
and only if o= — J e(t) dt(i Range g.

Proof. Assume that cogRangeg. Then there exists rgR suchthat g(r)=co.
Observe that the linear problem
(2.3) u"+cu’ =e—g(r), u(0) = u(T), u'(0)= u'(T)

T

has a solution since J [e(t)—g(r)]dt=0. Let v be the solution of (2.3) satisfying
0

.
J v(t)dt=0. Choose constants a and b such that v(t)+a”r*v(t)+b for each

0
tg[0, T]. Define x=v+a, and B=v+b.
Thus,

—X" = —=y"=cv'+g(r)—e —ex'+g(r)—e S ex'+g(x)—s,
and
—" =-v" = cv'+g(r)-e = cR'+g(r)-e S cR'+g(R)-e,

so that a and 13 are lower and upper solutions of (1.1) respectively. From Lemma 2.2,
it follows that f(t,u,u')=cu'+g(u)—e satisfies a Nagumo condition relative to
X, . Hence, in view of Theorem 2.1, the PBVP (1.1)—1.2) has a solution u such
that x*u”B on [0, T].

Conversely suppose that n is a solution of the PBVP (1.1)—(1.2). Integrating
(1.1) on [0, T] and using (1.2), we get

T

T
f g(u(0)dt=f e(t)dt=T7co.
0 0

Since g is decreasing, we have g(c°)*g(u)*g(—"°) for ngR. Then, we have
J T "

;T(]; g{u(t))dte[g(°°),g(-°°)] and this implies that cog[g(°°), £(-<*>)]=Range g.

If cogRange g, then either co=g(—"°) or cosg(°°), and this, in view of the
fact that cog[g(°°), g(—°°)], implies that either co=g(°°) or co=g(—C). Sup-
pose co=g(°°). If ocogRangeg-, then g(u(t))xo for every ?g[0, T] and hence

T

J g(u(t))dt>Tco, which is a contradiction. Now suppose that co=g(—o°). If
0

T

co™Rangeg-, then g(u(t))<co for every /€[0, T] and hence J g(u(t))dt<Tco,
0

which is again a contradiction. This completes the proof of the theorem.
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18 J. J. NIETO AND V. SREE HARI RAO

Case II: We now turn to the case in which g is increasing on R. We first show
that the method of upper and lower solutions described in Theorem 2.1 is not useful
if g is strictly increasing. Indeed, assume that conditions (a) and (b) of Theorem 2.1
hold and also assume that g is strictly increasing. We have from (a) that R"—a""
dc(a'-R")-rg(a)—g(R) and integration on [0, T] together with (1.2) yields

f [g9(<x)-g(R)](R-a)dts=0.
;
On the other hand, since g is strictly increasing we have / [g(a)-g(R)](R-«)dt*iO.
0
.
Thus, J [9(<)—g(R)](R—x) dt=0. This implies that a=R since g is strictly in-
0

creasing.

Also, we see that the conclusion of Theorem 2.3 does not hold in general as
may be seen from the following

Example. In the equation (1.1) let ¢=0, T=2n and g(u)=u, so that g is
strictly increasing and Rangeg=R. Also cogRangeg, for any e. However, equa-
2K 2n

tion (11 has no solution unless J e(t)sintdt=0 and J e(t)costdt=0.

0 0
Therefore, we need a different method to study the PBVP (1.1)—(1.2) when
g is increasing. We employ the alternative method developed in [3, 13]. In what

follows, we shall consider only the nonconservative case which corresponds
to c"O.

We consider the equation
(2.9) Lu = Nu

in which L: D(L)czE-»F and N: E-*F are linear and nonlinear operators re-
spectively, and E and F are Banach spaces. We assume the following assumptions.

(H1) there exists projections P: E-+E and Q: F-»F such that
(@ H({—Q)Lu=(1—P)u, for every udD(L);
(b) QLu=LPu, for every uf-D(L)\
() LH(1—Q)Nu=(1—Q)Nu, for every ufE;

in which H: (I-Q)F-»(I—P)E, the partial inverse of L, is a linear operator.
Equation (2.4) is equivalent to the system

(2.5) n—Pu+H(I—Q)Nu  (auxiliary equation).

(2.6) Q(Lu—Nu) =0 (bifurcation equation).

Weset EO=PE, E1=(1—P)E, F0—QF, and F1=(1-Q)F.

(H2) £0=Ker L, Fx=Range L =D(H), £j = Range H, and dim ii0=dim BE)°°.
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(H3) there exists cdntinuous maps B: IXF-+R and /: FO"E 0 with
(@) B is bilinear and / is one-to-one and onto;
(b) VOEFO, VO=0 if and only if B(uO, vQ=0 for each uQdEQ;
(c) Jv0=0 if and only if t8=0;
(d) B(JIv0, %)=0 for each VOdFO;
(e) B(JvO,vQ =0 if and only if vO=0;
(f) B(u0,J~1w0=0 ifand only if u0=0; and
(@) B(uo,v0=B(Jv0,/ _Iw) for each uCEEO and VOEFu.

It may be noted that under the hypotheses (HI), (H2) and (H3), the solutions
of the operator equation (2.4) are the same as the fixed points of the operator
T\ E-*E defined by Tu—Pu+F[(I—Q)Nu+JQNu. We state the following result
of [14] which extends the results of [3, 13] by dropping the boundedness assumption
on the nonlinear operator N. This result is used in our subsequent work.

Theorem 2.4. Assume that hypotheses (HI), (H2) and (H3) hold. In addition
assume that H is compact and N maps bounded sets into bounded sets. Finally, suppose
that there exists numbers R>Rus~0 such that

(@) the set C(R)={ulfELl: ul=aH (1—Q)N{u0+ul) for some ?.C|[0, 1] and
ufE n with [140] 2R] is bounded, and

(b) B(u0, A'(N0+n,))r=0 for every u=ulO+ux, where |u)|=R() and u,=
=?.H(I—Q)N(uO+ul) for some 2£[0, 1].

Then equation (2.4) has at least one solution.

Now we consider the PBVP (1.1)—(1.2). Let
E = {WECHO, T]: u(0) = u(T), u'(0) = u'(T)}

and F—L20, T). Define L: D{L)*E+F by Lu=u"+cu', in which D{L)=
={u£E: ngC20, T)} and N: E-»F by Nu=e—g(u). The projections P: E-+E

and O: F-*F are given by Pu=u{0) and ou=-1 [ u(t)dt. Finally, the operator
N

H: Fl-~E1 may be defined by Hv=u if and only if u"+cu'=v, n(0)=n(F)=0,
u'(0)=u'(T). It is easy to see that the hypotheses (HI) are satisfied. Further, EO,
the kernel of L consists of all constant functions and the range of L is the class of
all functions whose average is zero, that is, Range L={u£F: Qu=0}. On the other
hand, it is obvious that (H2) holds.

.

We define B: EXF—R and J: FO-*FO respectively by B(u,v)=J u(t)-v(t)dt
0

and Jv0=v0, so that (H3) is satisfied.

Clearly H is compact (the inclusion of H2into C1is compact) and N maps
bounded sets into bounded sets. We now verify the conditions (a) and (b) of Theo-
rem 2.4.

Let 0 and u”CiR), sothat ul=ZH(I—Q)N(u0+ul) for some 2g[0,I] and
UCEEQ. Hence, n"+ cu" =/.(/—O)N(t/0+ «,) and wy is T-periodic. Multiplying by
u{, we get

2.7 B(u'f n))+ cRW[, uD = ?.B((I-Q)N(u0+ul, nD.

2% Acta Mathematica Hungarica 57, 1991
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Now, B(u",u[)=0 and B(g(uO+uld,u')—0 since i4=(n0+Wi)\ nOis a constant.
Then (2.7) becomes

(2.8) cB(U[, M) = XB((1-Q)e, u[).

But B((1—Q)e,u'Y)=B(e,u'] since . Hence, from (2.8) we have cB(u'Lu'l)=
=XB(e,u[) and this in turn yields c¢W1\i=X(e, u[), where (,) denotes the usual
inner product in L2 and |u|[2= (m, m). Using the Cauchy—Schwarz inequality
we get

(2.9) -IHI-K 11 ~A¢c|[MIPs|H N I«il|.

If cji0, then from (2.9) we have

(2.10) = A.
Using (2.10) in the identity ul(t)=ul(0)+J u[(s) ds, we get
0

(2.12) MOI'S / |n(i)lds S IMIx YT./MHS YT-A =B.
0

From (2.11) it is clear that C(R) is bounded in H 1(0, T) and moreover it is bounded
independently of 0.

Now for wEC(K), we have ii'i=e—ail~g(uO+ul). If jmoy™ R, then u[ is
bounded in L2and C(R) is bounded in H2(0,T), and in consequence, C(R) is
bounded in CX[0, T] and in E. Take R=RO0 so that

2.12 C(Ro)|| = sup_ IMiB = y(RO.

(212) IC(Ro)| R y(RO

Thus, condition (a) of Theorem 2.4 holds and a bound for the set C(R) is given
by y(R).

We next verify the condition (b) of Theorem 2.4. Note that

T

B(u0,QNu) = f NI[<?(/)-g(n(i))] dt.
Then ’

sgn mo1 *B(u0, QNu) = sgn fT [e(t)-g(u(t))\ dt,

and hence we need to study the behaviour of f [e(t)—g(u(0)] dt. Now, if we
(]

suppose that there exists R0O>0 such that

T

f [e(0-«-(0+W(O)] dt SO and
(2.13)
/ [e(t)-g(- Ro+uM)] dt LLIO
KO
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for every W"C(KO0, then the condition (b) of Theorem 2.4 is satisfied and thus the
equation (2.4) has a solution. However, (2.13) is difficult to verify since y(R0) depends

on RO. But from (2.11) we obtain that |zq(?)I=R=/F¢|c|_1-]e||, a constant which
depends only on \e\. Thus from (2.10) and (2.11) we have

(2.14) IMIB = Sup MOI+ IKH SSA+B = 6.

i£[0,T]
Therefore, C(RQ is bounded in E independently of RO.
Now (2.13) is equivalent to the following condition: there exists R0>-0
such that
(2.15) QNAMN+uJ"OMQNi-Ro+ulJ

for every 1 such that ul=AH(I—Q)N(u0+ul.
By the above arguments we have proved the following

Theorem 2.5. The PBVP (IA)—(1.2) has a solution if cVO and condition (2.15)
holds.
Now assume that rljrpmg(u):g(i<») exists and

(2.16) g(—"°) " g(u) ~ g(°°), for every nER.
The well-known Landesman—Lazer condition [8] is
(2.17) g (- °0) < ca< g(0o0).

Corollary 2.6. |fg satisfies (2.16) and (2.17) holds, then the PBVP (1.1)—(1.2)
has at least one solution, provided that cvO.

Proof. Let d=A+B=\c\~1j< «(L A-\T), where A and B are as in (2.10)
and (2.11) respectively. Thus, in view of (2.14), we get

—&n ul(t) ~ 6

for every zg€C(i?0- i€[0, T] and 0.
From (2.17), there exists 0 suchthat j(-6)<ts<g(a) for u>M. Choose
POUWp+M so that ROA-u(t)*M and —RO+ul(t)”—M.
T

Then, u0e f [e(t)—g”o +iq)/))] dt"O for Z0=+7?0 and thus condition (2.15)

0
of Theorem 2.5 is satisfied.

Corollary 2.7. Suppose that g is increasing and ¢V 0. Then the PBVP (1.1)—
(1.2) has a solution if and only if o»xCRange g.

Proof. Suppose cofRangeg. From (2.16) we have that g(-“)sosj(»).
If g(—=°)<co<g(°°), then the PBVP (1.1)—(1.2) has a solution in view of Corol-
lary 2.6.

Consider now the case w=#(<*>) and similar proof holds for the case where
co=g(—"°). Since «itRange g, there exists a number r such that g(r) =co. Hence,
g(r)=g(vo) and g(u)=g(c) for u”r since g is increasing. Now the problem (2.3)

T

has a solution v (say) satisfying (1.2) since J [e(t)—co]dt=0. Let 0 be a
[¢]
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constant such that v(t)+a”r for i£[0, T]. Then u(t)=v(t)+a is a solution of
(1.1)—(1.2) since g(u(t))=co for /€[0, T].

The remaining assertion may be proved by integrating (1.1) and reasoning as
in the proof of Theorem 2.3.

Remark 2.8. We notice that condition (i) on [16, page 78] implies that g is
strictly increasing, and condition (ii) implies that g is strictly decreasing. Further-
more, in both cases Range g=R. Thus our results in Theorems 2.3, 2.5 and Corol-
lary 2.6 are fairly more general than those of [16].

In [5], PBVP’s for equations more general than (1.1) are considered and con-
ditions for the existence of solutions are given by employing the methods consisting
of Liapunov —Schmidt, Leray—Schauder degree and monotonicity. Those results
specialized for our problem (1.1)—(1.2) yield the following theorems.

Theorem 2.9. Let g be continuous and let there exists a constant 0 such that
ug(u)*0 for |m|™0. Then, for any continuousfunction e: [0, Tj-*R with Qe=0
and c£R, the PBVP (1.1)—(1.2) has at least one solution.

Theorem 2.10. Let g be continuous and let the following conditions hold.
(@) there exists a constant g>0 suchthat ug(u)*0 for |nj=e; and

(9)] Iilrylggp " 4n2 (T = 1.

Then for any given continuous function e: [0, T]-*R with Qe=0, and cER,
the PBVP (1.1)—(1.2) has at least one solution.

The proof of Theorems 2.9 and 2.10 is a straightforward application of Theo-
rems 3.1 and 3.2 of [5] respectively.

We note that for ¢c*0 we do not require condition (b) of Theorem 2.10 (see
Corollaries 2.6 and 2.7).

Remark 2.11. From the results of [5], it is possible to drop the Nagumo con-
dition in Theorem 2.1 for the PBVP (2.2) but this study is not pursued here.

3. Structure of the solution set

If g is strictly decreasing and to6Rangeg, then any solution of (1.1)—(1.2) is
unique. Indeed, if u, vdD(L) are solutions we get

0= (L(u—=v),u-v)+(g(u)-g(v), u-v) & (g(u)-g(v), u-v) WO

which implies that u=v since g is strictly decreasing. On the other hand, if g is
decreasing, uniqueness does not occur in general as may be seen from the following

Example 3.1. Letg be decreasing and g(u)=0 for mf(—1, 1). For the problem
u"+cu'+g(u)=0, with the periodic conditions (1.2), any constant a£(—il, 1) is a
solution, and thus the problem has infinitely many solutions,.

In the results below we study the structure of the set, Si={u£E: Lu=Nu},
that is, the set of solutions of the PBVP (1.1)—(1.2). We shall distinguish two cases:

(i) cn€lnt (Range g), and

(i) <ufr)(Range g).
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Theorem 3.2. Suppose that g is decreasing and cuflnt (Rangeg). Then the
set ofsolutions ofthe PBVP (1.1)—(1.2) is nonempty, compact, connected, and acyclic.

Proof. Consider the sets
S0= {n"KerT: NudRangel),
S+ = {udE: Lu = XNu, for some H€(0, D)},
S+= {u0: n = Uo+u”S+j, S+ = {up. n= w +UxdSf).

T

We first show that SOis bounded. If udSO, then f [g{u(t))—e(t)\dt=0. Since

0
n is constant, we see that g(u)=co and therefore SOis bounded since g-(°°)<©<

<?2(-“)e

&Ne)next show that S+ is bounded. If u=u0+uldS+, then there exists A£(0,1)
such that MI=AA(7—0 /1 mo+m1). We have already seen in Section 2 that the set
C(R) is bounded independently of R. Hence, the set .S+ is bounded in E. On the
other hand if 0 is large we have for every if[0, T] and uf.S\ that

(3.1 g(R +uft)) = au—gl-R+uft)).

If udS+, then by integrating we get that (1; g(u(t))dt=Tco. From (3.1), we see
that S°+is also bounded. Therefore, S +is bounded. Now define the maps G: R-+E
andGii F-+RbyG(a)=aandG1v=0Qv. Let £(a) =G1-N-G(a) =— j | [e(t)—g(a)]d.

Clearly for large a> 0, we have c,(@) *£(—a)<0 and degree (§, 0, (—a, a))p0. Taking
0 such that SOUS+cz{udE: |m||E*a), we conclude from [1] that 57="0 and
S\ is compact in E.

In the following we show that 5Xis connected. For each positive integer n
define the operator Nn: E-*F by Nn(u)=Nu+-*u. It is easy to see that Nncon-

verges to N uniformly as on bounded subsets of A since  [JT,M—NU\ ——|[n].
Let vdS1.

If udS,,(v)—{udE: Lu—Nmu=Lv—Nuws}, then nsatisfies the PBVP u" +cu'+
+g(u)- Fu=v"+cv'+g(v)- TV u(0)=u(T), u'(0)=u'(T), or equivalently

(3.2) u"+cu'+G(u) = E(t), u(0) = u(T), u'(0) = u'(T

where G(u)=g(u)—"-u and E(t)=v"(t)+cv'(t)+g{v(t))— v(t). Now (3.2) has

a unique solution since G is strictly decreasing and Range G= R. Therefore the set
Sn(v) is a singleton and, therefore, connected for every n and vdSx. As a con-
sequence of the results in [1], Sxis connected.
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Finally we show that Sx is acyclic. Let 0 be such that SOMJSICi
{u£E: Ju|E*a}. Let K,=Sup {[iviw—IMle: |Im|e= a}. Clearly —0 as n—=° and
the problem Lu—N,,u—v has at most one solution for any vEE. Consequently Sx
is acyclic (see [1]). This completes the proof of Theorem 3.2.

Note that in Theorem 3.2, g(—°°) and g¢g(°°) need not be finite, that is g
need not be bounded, unlike Theorem 3 of [12].

Theorem 3.3. If g is decreasing and &>£t)(Rangeg), then either Sx is empty
or connected and unbounded. In the latter case, S1is homeomorphic to a real interval
of the type [a °°), (~°°, b], (-co, 00).

Remark 3.4. It is interesting to note that the case S1=0 is possible under
the hypotheses of Theorem 3.3. Indeed, consider g(u)=e~u and the PBVP

(3.3) u"+cu'+g(u) =0, Uu£E.

Thus, Rangeg=(0,co) and a6d(Rangeg); but the PBVP (3.3) has no solution
since g(n)>0 for every nER.

Proof of Theorem 3.3. If S, 99, then by Theorem 2.3, cofRange g. We con-
sider the case where co—g(°°) and the prooffor the other case, that is co=g(—"°), is
similar. Let r=Inf{u: g(u)=co}*—°= Hence g(u)=co for u>r and g(u<a>

T

for If nis a solution of Lu—Nu, then J g(u(t))dt=Tco. Therefore u(t)"r

[¢]
for every ?£[0, T]. This implies that u satisfies the linear problem
(3.4) u"+cu'+(o = e, U(zE,

and it may be seen easily that St={u: u solves (3.4) and Iiér} where
6=min (n(i): ?€[0, T}}. If a is a solution of (3.4) satisfying Ov=0, then St—
= {i>tn: v+a”r}, and further this set is homeomorphic to the interval (-=», 00)
if y= —e0 and to [—n, co) if /e>— 00. Now it is clear that SLis connected and
unbounded. This completes the proof.

When g is increasing, following the same reasoning as in the proof of Theo-
rems 3.2 and 3.3, we may prove the theorem given below.

Theorem 3.5. Suppose that g is increasing. We have

(@) if ojf Int (Rangeg), then Sxis nonempty, compact, connected and acyclic;

(b) if cnid(Rangeg), then either .S\=0, or .S is connected and unbounded.
Further, in the latter case, Sx is homeomorphic to a closed and unbounded real in-
terval.

Remark 3.6. If, instead of g being monotone (either increasing or decreasing),
g satisfies

reither g(—°°) * g(u) S g(°°), for each wER
lor g(«=)sg(ii)sg(-=°), foreach u”™R
then the results of this section on the structure of the solution set S, are no longer

valid. Even Theorem 2.3 and Corollary 2.7 are not true. This may be seen from the
following example.
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Example 3.7. Define g(u)—u if w0, g(u)=-~— if n>0, and consider
the PBVP
(3.6) u"+cu'+g(u) = sint, UutE.

In this case a>=0"d(Range#) since Range g=(0, °°). On the other hand, g sat-
isfies (3.5) but the problem (3.6) has no solution. Indeed, if u is a solution, then
T

J g(u{t))dt=0, and this implies that u(t)=0 for all TE[0, 7] since ~=0. But

0]
u=0 is not a solution of (3.6).

In the next theorems we shall show that the solution set may be “chaotic” ifg
satisfies (3.5) only.

Consider the PBYP

(3.7) u"+cu'+g(u) = 0, udE.

Let /: R-+E the canonical injection.

Theorem 3.8. Let K be a nonempty closed subset of R bounded above (or below).
Then there exists g : R -R continuous and satisfying (3.5) such that oj= 0£0(Range g),
and S!'=i(K) for the problem (3.7).

Proof. Assume that K is bounded above. Let b=ma\K. Define

) if n™b
h(uy= u—b if b<un<b+1
1 if nib+1
where/is as given in Lemma 2 of [12]. Then arguing as is in the proof of Theorem 8
of [12] one can complete the proof. The case when K is bounded below is similar.
To give an analogous result with coglint (Range g), we need some preliminary

results.
For j€R, define the function

-1 if aSj-1
[.n) = u—s if s—1<u<J+1
1 if mli+1

For £>0, consider the following PBVP
(3.8) u"+cu'+g(u) =0, UufE
where g=£f.

Lemma 3.9. There exists /i>0 such thatfor we have:
(@) any solution n of (3.8) is such that u(t)d(s—L1j+1) for every i£[0, T];
(b) the set of solutions of (3.8) is nonempty, compact, connected and acyclic.
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Proof. For e small we have that [Wi|E* 7° 1 for any solution of the auxiliary
equation corresponding to (3.8). If nis a solution of (3.8) and for some tad[0, T] we
t t

have n(tQ>j+ 1, then from the relation u(t)—u(tQ+ J ii'(s)ds=u(tQ+ J u[(s)ds
and the estimate for M, we obtain that u(t)>s+| —T'||nil[t>> i. Hence, g(u(/))>0
T

for every A0, T] and J g(u(t)*dt*0. This is a contradiction since integrating
(0]

;
(3.8) between 0 and T we get J g(u(t))dt=0. The case when w(/Q<£—1 for
0

some /OE[O, T] is similar. This proves (a). Part (b) follows from Theorem 3.5.

Theorem 3.10. Let K be a compact subset of R which is not a singleton. Then
there exists g: R—R such that (3.5) holds, o= 06Int (Range g) and the solution
set for the PBVP (3.7) is S1=i(K)UB where i(K)C\B=0 and B is connected.
Moreover, if a=m\nK and udB then u(t)<a—1 for every /€[0, T].

Proof. There exists hdC1(R, R) with and K={udB.\h{u)=Q). Set
min K=a<b=max K, s=a—2 and define

£/,(«) if ns a—l
—s(h—) if a—l<u< a

g(u) ={eh(u) if a~u”b
u—b if b<wus. b+s
E if u> b+e.

Thus, |g(u)|<E for every «6R. We choose e>0 small. If adK then u=i(a)dS1
which shows that i(K)c:Si. On the other hand, reasoning as in the proof of part (a)
of Lemma 3.9 we have that if n is a solution of (3.7), then u{t)jta—\ for every
tw,T].
Ifnis a solution and u(t)>a—1 for every td\Q, T] then g(n(t)) =0 for every
T

t€[0, T]. Since J g(u(t))dt=0 and g(u) is nonnegative for Héa-1, we have

(0]

that g(u(t))=0, ?6[0, T], that is, u is a solution of the linear problem u"+cu'=0,
udE. Hence, n is a constant and udi(K). Now, if nis a solution and u(t)<a—1
for every i£[0, T], then n is a solution of (3.8) with s=a—2. By Lemma 3.9, we
see that taking s>0 sufficiently small, any solution of (3.8) is such that n(t)<a—,
for every i£[0, T]. Therefore, the solutions of (3.7) with n(t)<a—1l are exactly
the solutions of (3.8). Denote by B the set of solutions of (3.8). By part (b) of
Lemma 3.9 we know that B is connected. Hence, 51=/(7sT)UB where B is con-
nected and such that i(K)C\B=& Moreover, if udB, then u satisfies (3.9). This
concludes the proof of the Theorem.
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OBOBLIEHVNE OAHOW TEOPEMbI
P. . CAKCEHA 1 C. P. MUCPA

O. 1. BEPMAH (JleHnHrpag)

MycTb C— MHOXECTBO BCeX (hyHKUWIA, HeNpepbIiBHbIX B [—1, 1] n NycTb XK1=
=cos (2k—1)s/2n, k—1, 2, n,n=12,. . O6o3Haunm 4epe3 pn(f, x) MHoro-
unebl CcTeneHn 4n—I1, O4HO3HAYHO oOnpefensloWwmiica n3 ycnosun p,,(f, xx)=
=f(xk)> Pnu/l xk)=@® /=1,2,3, k=\, 2, ..., . WM3BecTtHO [1], uTO Ans Nto6OoiA
ff C BbInonHseTcs pasHomepHo B [—1,1] cooTHoweHwe p,,(f, X)M(x), n—
PesynbTatbl 13 [2—4] npueenn K usydeHuto npouecca {pn(f, x)}’=1, nocTpoeH-
HOro Npwn y3nax

() doa+2= 1, xknm:2 ~cos(2k 1)n/2n, k=12, .., 0, Xm>n+2= 1,
n=12, ..

W. L. Cook n T. M. Mills [5] fokasanu, uto npouecc {p,,(f, X)}~=1, NOCTPOEHHbIN
npu y3nax (1) ana g(x)=(1—x33 pacxoamtca npn x=0. HepaBHO R. B. Saxena
n S. R. Misra [6] gokasanu, uyto npouecc {pn(g, X)}*“=1 pacxogutcs Bcrogy B (—1, 1).
B HacToslLLeil 3amMeTKe Cpeau NpodMx pesy/nbTaTOB [OKasblBaeTCs Teopema 3 U3
KOTOpoi Teopema Saxena M Misra BbITEKAeT, KaK MPOCTELUMIA YaCTHbIW cryyail.
[ns panbHeMLwero Hy>Hbl HEKOTOpble pe3ynbTatbl U3 [7]. Ana /(C 1 HaTypanb-
HOro n paccmoTpum MHorouneHbl Snr{f, x), r=0, 1, 2, 3, KoTOpble onpeAensatoTCA
cnegyowmm obpasom. S,.tT(f, X ) — MHorouneH creneHn 4n+2r+1, OAHO3HAYHO
onpeaensoLMinca n3 ycrnoBui

S,,,Afxxn): A X K»), SW(f, XM‘I): 0, i = 1,2,3, K = 1,2,..., N,
S,Af+1)=/(+1, SFff +1)=0 j= 1 ..r

OueBngHo, 4yto Npn =0 nocnefHne ycnosus onyckaroTca. CnpaBefnusbl Cnegyto-
e TeOpPEMbI:

Teopema 1 MycTb f(X) MMeeT orpaHuMyeHHyi0 BTOpPY0 MNpousBogHyto f'(x)
B [1,1]. Ecm xoTb ogHO w3 uucen /'(x1) OT/MYHO OT Hynar TO npouecc
X)}“=1, nocTpoeHHbli npu y3nax (1) anaf(x), pacxoguTes Bcogy B (—L, 1).

Teopema 2.1 MNycTbf(X) MMeeT orpaHUUeHHy0 TPETbi0 NPOU3BOAHYH0 B [—1, ]]

unycts f'( )=0. Torparecnm f*(1)*0, mo npouecc {Snf f x)}"=1, NOCTPOEHHBbIA
npu y3nax (1) anaf(x) pacxoguTces scrogy B (—1, 1).

1 B TeopeMax 2 1 3 npegnonaraetcs, yto f(x) — yeTHasa hyHKLmA.



30 0. N. BEPMAH

Teopema 3. MycTb f(X) MMeeT OrpaHUYeHHyl0 4eTBEPTYIO MPOM3BOAHYHO B
[1,1] nnycTs /'(1) =/"(1)=0. Torga, ecnn/ 3(1D~ 0, To npouecc xX)}=1,
NocTPoeHHbI npu y3nax (1) gnafix"), pacxoauTces seogy (—1, ).

Bce Tpy Teopembl [0Ka3blBalOTCA OAMHAKOBbIM 06pa3oM. [103TOMy OrpaHu-
YMMCA [0Ka3aTeNbCTBOM TeopeMbl 3. Paan NpocToTbl cumTaem, uto f(x) — yeTHas

hyHKUMS.
Beegem nonmHom KpbinoBa—LLTaepmaHa [8], MOCTPOEHHbIA npu y3nax Ye-

ObllLeBa2

P(f,x) = 280) AK)BKX), AKX) = AkI) = o

T,y = cos narc cosx, Bk(x) = BKi(X) =

- (I-xx,r+(x-xtf [2(N*- ' f
Mpusegem thopmynbl 13 [7]
S,.M,x)-pjf, X) =y ™) [A+x)(f()-p..(f, D+ @-x)(F(~D-p.. (f, - DI,

Sni(f x)=S,,'0(f, x) = &n/(p,,) (I~xY " (x), PdV(p,,) = P"—4n2p,,

pry =pX /, 1.
8., 2(f>x)-S,, ]X{f, X) FTO02) 2 g nerems

N Jo ] 8«TH2+ )2,

G';L\.ﬂ,Pn)—Pn — (821 +1)p, Hemeoeoeeemomemee S
S,.s(fx)-Saa(f, x)= — T*(x)(1 - x 235

Pna(Pr) = pr(3)-6(4n2+1)p, ™ +2(16n* + 32n2+ 3)pri - -~ -8 H 2(608H4+365M2+ 62),

K1 ¢ (A DI (36x1~316xk 2(xI1+29xk+\6)\ 60(x1-6xk-2)

(2) 0"3(AKBK)- - {- (T -xKky + (1-xblF— ) 11----—-- .

M3BecTHO [4], uto ana no6oro X£(—1, 1) MOXHO HaWTK TaKylo NocfiefoBaTe/lb-
HOCTb HaTypanbHbiX uncen {nk}KLx, Nx<n2<... , 4YTO BbIMOMHAETCA PaBEHCTBO
lim F2(x)= 1 To3aTomy B cuny TeopeMbl 2 HYXXHO AoKa3aTb,3 uTo lim @, s(pn -AQ

be3 orpaHuyeHMs OBLUHOCTM MOXHO cumTatb, 4to /(1)=0, 160 MHa4e MOXHO
paccmatpuBaTb yHKUmMIO O (X)=/(x)—H1). Mo ycnosusam Teopembl/'(1) —"* (1)=0.

2 MonaraeM XK ‘=XK.
3Cwm. [7].
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Moatomy no copmyne Telinopa
/0) = / (3()3(1) (x-13+ (‘2!(0) 0-1)4 X 1

Crano 6biTb, ®,,3(p,)=H,,+ 12, rae
r)My n 1 n

L I P p— | - (XK~ 1)3~n.A-Ak BK), T2, = < j_fC=i f A (CK)(XK~ 1)47n,3(M1c)

i kéL
OuyeBUAHO, 4TO T23,=0|"-). [ofcumTaem BblpaxeHue TI>1 [pu 3TOM BOCMO/b-

3yeMca TOXAecTBaMu
2nl+n2

ki l-xt = " 15 (1-x,)2 3
N gpyrmMm HeobxoauMMbiMK ToXaecTBamu (cMm. [9]). B pesynbTate nonyyvm, 4To

lim T20= -7 -/ (30,

Crano 6biTb, lim ®,30?,,)%0.

B [5] v [6] paccmatpmBaeTcs cnyyair, korga /(x) = (1—x33 sacHo /'(1)=/"(1) =
=0, / B3(1)=48. Moatomy K ¢yHkumm (1—x23 npumeHnma Teopema 3. NTak,
Teopema 13 [6] —u4acTHbIA cnyyaii Teopembl 3.

3amevaHune. ®opmyna (2), KOTOpPOl MONb30BANCL MPW BbIMUCIEHUN T U
OLEHKe T2,,, BbIBOAUTCA COBEPLUEHHO 3/1EMEHTapHO, HO BbIYWCNEHUS TPOMO3JKUe
1 No3ToMy onyckatotes. Cwm. [7].

BblpaaHo 61arofjapHOCTb PeYUEH3EHTY.

NuTepatypa

[1] H. M. Kpbinos, U. A. LLTtaepmaH, Sur quelques formules d’interpolation corivergentes pour
toute function continue, 3anucku gms.-maTem. oTa. AH YCCP, 1(1922), 12—13.

[2] O. N. BepmaH, K Teopun uHtepnonsummn, JAH CCCP, 163 (1965), 551—554.
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ON THE CONSTRUCTION
OF LJUSTERNIK—SCHNIRELMANN CRITICAL
VALUES IN BANACH SPACES

A. LEHTONEN (Jyvaskyls)

1. Introduction

Existence theorems for nonlinear eigenvalue problems of the form

g'(x) = gf'(x),

where/ and g are functionals on a Banach space A, are considered in many papers.
The existence theorems are based on the existence of a critical vector with respect
to the manifold Mr—{x"X: f(x)=r}. Morse theory can often be used to obtain
precise information about the behaviour of the functional close to the critical level.
However, this would limit the study to Hilbert spaces and functions with non-
degenerate critical points. These assumptions are not always satisfied in applica-
tions and are not needed when applying the Ljusternik—Schnirelmann theory.
Therefore, Ljusternik—Schnirelmann theory has been widely used to study various
nonlinear eigenvalue problems. Very general results for Banach spaces can be found
in H. Amann [1] and in E. Zeidler [12], which also contains an extensive bibliography
on critical point theories.

In the case of a Hilbert space iterative methods for the construction of all
Ljusternik—Schnirelmann critical values and critical vectors has been presented by
J. Necas [7], by A. Kratochvil and J. Necas [4], [5] and by J. Necas, A. Lehtonen
and P. Neittaanméki [8]. In [8] we also present numerical examples of the method.

In this paper we shall give an extension of the method used in [5] and [8] to
study the eigenvalue problem for the constraint function f(x) =W\ in uniformly
convex Banach spaces.

2. Iterative construction of the first Ljusternik—Schnirelmann critical value

Let A be a real, uniformly convex Banach space with norm | «| and duality
(*,*)' Furthermore, we assume that X* is uniformly convex. We
set S= (xfX: |[¥|= 1} Letg be a continuously differentiable functional on X such
that the derivative g' is strongly continuous, i.e. for each sequence (x,)’=1c A
converging weakly to x06A, the sequence (g'(x,,)™=1 converges to g'(x0.

Assume that the following conditions are fulfilled:

(2.9) g(0)=0, g'(0) =0;
(2.2 if gx) 0 and |x|S 1 then g'(x) AO;
(233) (9'(x)~g'(y), x-y) S-y(|[x-yIl)

3



34 A. LEHTONEN

holds for some nonnegative, continuous function y: [0,°°[0, °*°[ and for all
x, YEX with [[id|==1 and ||y[|"I.

We denote by /: X-»X* the duality mapping of X. Thus J(x) is the unique
point in X* such that |/(X)]|=M and (J(x), X)=|WI2 Also, / is the derivative

of the mapping jih-1 |x|[2 see [6, p. 254] or [3, p. 93].
We need to know a quantity to describe the uniform convexity of X. Let O Ss”
A2 R and define
<K = infjtf-y I+ ell:  YAX, \W\x-y\ ié e || si 4, |yl & tfj.
Similarly, let & denote the corresponding quantity for X*. Furthermore, put $-rfi
and <G*=4l. Then 06R(E€)=RO(s/R).

Lemma 2.1. For X, yEX such that ||x||=i? and |ly||=i? holds

(2.4) 2ROR(\\x-y\\) si (J(x), x-y)
(2.5) 4= ((Ix-yll) si (J(x)-I(y), x-y).
Proof. Set e=||x—y|. Since |/(X)|| we get from the definition

R2(R-6K(E)) » R\Wx+y\ s (J(X), x+y) =
= 2(3(x), x) + (I (x),y-x) = 2R2+ (J(X),y-X).

Thus, the first inequality follows. Changing the roles of x and y and adding the
results yields the second inequality.

For the lower bound y in (2.3) we assume that the following hypothesis is
fulfilled: there exists a constant c0*0 such that

£
(2.6) E)] y(s)s-1ds si cOS(e)

for O<e”?2.

Remark. For Hilbert spaces <5g)= 1—h 1—(e/2)2 This follows from the paral-
lelogram law. From Clarkson’s inequalities we obtain for //-spaces <5@e)= | —
—1—e/2if p-=2 and <5@e=1—1—€2p)lp, if I</?<2 and p'=
=P/(P~1)-

qf g ?s a C 2function satisfying conditions (2.3) and (2.6), and X=LR pX2,
then g"(x)aO, thatis, g is convex. To show this we note that <5(e)(e/2)% where
q=p, if p>2, and gq=p~ if p<2. Assume now that for some x, uEX, |[x||<1,
IM=1 and a>0 wehave (g"(X)u,u)=—a. Let x—y=tu in (2.3). Then —xt2+
+0(idS —y(i). Thus aty(t)/t+o(t). Integrating this yields ar/25r02’ ,E +
+o(e). Letting e—0 results a”O.
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CRITICAL VALUES IN BANACH SPACES 35

Theorem 2.2. Let the above assumptions be satisfied. Let xfiS and
0 < B < min{l/y(l), 4/(co+2y(I))}.
Assume that gCO"O. Define a sequence (x)LP=1l by

(27) r( 4_ J(X,,)+Qg'(X,,)

( nH)  \I(xn)+0g'(x)\ m
Tirclr there exists a subsequence of(xn)f=L converging to a critical point of g\S. Hence,
there exists a point X0ES and a number pCR such that

(2.8) 9'(xQ = pJ (x0.

Proof. First, from the definition it follows ||/(x,,+1)||= 1 On the other hand
Aw+i)ll =l|x,, +ill and therefore |x,+1|=1.
Put r,,=\J(x,,)+eg\xn\\. Then

meé (J(x,)+eg'(xn,xn) = Wi\2+0(g'(xn),xn € 1-07(1).

We show that the sequence (g(A,))iT=i is increasing. For short we set
e= ||x,,+1—x,,||. Using the fundamental theorem of integral calculus we get the fol-
lowing lower bound for g(xn+l)—g(X,,)

E
(2.9) (9'(X,,), xnHl-x,,)- £ y(s)s~1ds.

For the first term we obtain from definition (2.7) and Lemma 2.1

(2.10
e(g'(xn), xn+l-x,,) = rn(J(xBH)>xn+l-X,,)+ (I (xn), xn- X n+1>€ 2(r,,+ 1)0(e).
Combining these two inequalities yields

(2.11) g(xnt)-g(x,,) *j(rn+t])S(£)-f y(s)s~1ds.

Assumption (2.6) shows now that the sequence (g(x.,),[=i is increasing. Because
of the strong continuity of g' the functional g is bounded on S. Therefore, the limit
IJ;k_ngD g(xn) exists.

Since X is reflexive, there exists a subsequence of (xn)f=L converging weakly to
some x0. We keep the same notation for the subsequence as for the original one.
Furthermore, we may assume that r,,—0. Finally, since X* is reflexive and ||/(x,,)|| = 1
we may assume that J(xn)->x* weakly in X*.

Now, using the definitions of xn+l and myields (rO0—)x*=0g'(x0. Further-
more, as £(n'Qé#(n',,)>0, we have by (2.2) g'(xQAO. Therefore x0"0, x*"0
and rOx 1. To show that the sequence (x,,)“=1 converges in norm to x0 we write
(2.7) in the form

(2.12) (1-0-7 (O = r,,(3(x,,+1)-J (x1j)-Og'(x1).
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We shall show that J(xm+l)-J(xn-+0. Then the right-hand side converges in
norm to —6g'(x,,) and on the left | —,,-+I—r0. Since 1—0"0, we obtain the
desired convergence from (2.12) and the fact that the duality mapping / -1: X*-+X
is continuous, cf. [3, p. 77].

We apply Lemma21 to X* and to u—J(xn+) and v=J(xn. For i]>0
small enough we have

e(g(x,,+)-g(x,,)) = r,,(J(xn+D) ,xn+l-x,,) + (I(X,,),xn- X L) -6 c 0B(€) =
—4A<S(n—v |[) + (8(1—%) —40y (1) —0co<5(e).
Therefore, we have for some constant ¢'>0,

45*(||lbi-t0]]) = (u-v, /- L(bl )-/-1(»)>" c'6(g(X,,+)-g (xn).

Since X* is uniformly convex, <5*(r)>0 for all >0, cf. [12, p. 604]. Furthermore,
we have g(xn+1)—g(x,,)—0, and hence J(xn+)—J(xn)-»0. Therefore, Theorem 2.2
follows.

3. Higher order critical points

To study higher order critical points we recall some definitions concerning
the Ljusternik—Schnirelmann theory in an infinite dimensional Banach space.

We use the notion ofthe order of a set rather than the category or genus, cf. [2].
Let K be a symmetric closed set in X. We say that ord K=0 if K is empty; that

ord K=\ if K=K 1{JKi, where the K{are closed subsets of K and neither Kx nor
n+ 1

K2 contains antipodal points. In general, ord K=n if K= (JIKh where the Kt
=

are closed subsets of K not containing antipodal points and n is the least possible
number. Finally, ord K=°° if no such n exists.

For simplicity we assume that g(x)>0 for x*O. Let \k denote the set of
all symmetric, compact subsets K of S such that ord KAk and g(x)>0 on K.
Denote

3.1 k= i .
(3.1) yk= sup min g(x)

Let the assumptions of Theorem 2.2 hold for the functional g. Furthermore,
assume that g is even on S, i.e., g(—x)=g(x) when |x|=1. The fundamental
theorem of the Ljusternik—Schnirelmann theory states that there exists a sequence
of critical points xk of g such that g(xk=yk, yk\0 . and xkr*0 weakly. For a proof
see [1] or [12, Ch. 44]. A proof using the method of steepest descent has been
given in [7].

Let yk and y2 be the first and second Ljusternik—Schnirelmann critical values

fis> Ti"Ta- Let there exist a positive constant r such that there are no critical
values in the interval Jy2—s, y4. Let KLbe a compact symmetric subset of S such
that ord"T1&2 and

(3.2 y2-s < min g(x) < y2
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We denote by @the function used to define the iteration in (2.7), i.e.
J(x) +0g'(x) ]
\J(x) + 99" )\V)-

Then (pis a well-defined, odd continuous map S-»S. Choose x“Kr, and put
xn+i = Q(xn)=(p"(x), where ' denotes the u-fold composition <po...o<p.
For each integer n let xj,0 be a vector from Kl such that

(3.4) Qin o<p(xj) = g((pn(4 0))-

(3.3) D) =J

Theorem 3.1. Let the above assumptions be fulfilled. Then the following asser-
tions hold:

(D) fpa((P (x"))=y2,
(2) there exists x(0y/sTL such that

1im g((pn(x0) = y2;

(3) there exists a subsequence of (x"0,)“=1 converging to x (0);
(4) for each x (0 satisfying (2) there exists a subsequence of (<p"({09) converging
to some X, such that
9'(xQ = pJ (0.

The proof of Theorem 3.1 given in [8] applies; see also [5]. In a similar way
we obtain the following result

Corollary 3.2. Let the assumptions of Theorem 3.1 befulfilled. Let
Tj =E£..siy*>yt+l=.. .= 7 >Tft+i+i
be the positive Ljusternik—Schnirelmann values ofg\S. Let there exist a constant s>0
such that there are no critical values in the interval Jyk+Hi—£, yt+I. Let Kxbe a com-
pact symmetric subset of S such that

ord Kt Stk+1, yt+i-£ < min g(x) < 7*+).
For 1>_<Ey_ KL let the sequence (x£)))“=1be defined by (3.4).
N Jim, A<p'0.0)) = vk,
and there exists a point xw dKk such that
lim g(cpn(xw)) = ykH.
Moreover, the assertions (3) and (4) of Theorem 3.1 hold.
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4. Application to partial differential equations

Let p be a number such that 1</;<°® and G: R—R a continuously dif-
ferentiable function. Let Q be a bounded domain in Rv. Denote by G'(u) the func-
tion x>-+G'(u(x)). We will apply the previous results to the following boundary
value problem

Y B (IBuv 'Bul

(4.1) I~ 94 1Bx, BxJ
n—0 on 9Q.

XG'U) in Q.

We assume that G(0)=G'(0)=0 and that G'(r) is strictly increasing. Further-
more, we assume that there exists a constant ¢>0 suchthat |C'(r)|*c(1+ |r|p 1)
for all r(R.

We use the norm

IM =

in the Sobolev space X=WQLP(Q). It is well-known that X is uniformly convex
and for X* this implies the uniform smoothness of X, cf. [12, p. 604].
Let g: X*R be the functional

g(n)= f G(u(x)) dx.
n

Then g is continuously differentiable and the derivative of g is given by

(g'(u),v}= J G'(uyvdx for all VvEX.

Conditions (2.1), (2.2), (2.3) and (2.6) are fulfilled for y=0 and c,=0.
Problem (4.1) is equivalent to finding uf X such that

Bu Ao —dy= (G
4.2) Véfdxt <))L(};M,dx iG uvdx forall vex,

where y= TA
Let ®(r)=rp~1 Then the duality mapping of X relative to &, cf. [6, p. 174]
is given bv

(Jo@),v) = 2 f Dup2du By
i=ln fX:
Recall that /¢ is the derivative of m-*IP(|nl]), where 4'(r)=J (I>(s)ds. There-

0
fore, / pand the duality mapping J of X differ only by the constant multiple (1)
on the siinit sphere. Theorems 2.2, 3.1 and Corollary 3.2 hold, if we use JO instead
of/ since ®()=1
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CRITICAL VALUES IN BANACH SPACES 39

Hence, problem (4.1) is equivalent to
(4.3 g\u) = pJO(u).

That g' is strongly continuous follows from Rellich’s theorem, cf. [6, Ch. 2.2.6].
Hence Theorems 2.2, 3.1 and Corollary 3.2 can be applied to construct a sequence

(=1 of solutions of (4.1) such that .
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CONGRUENCE UNIFORM DISTRIBUTIVE LATTICES

M. E. ADAMS (New York) and R. BEAZER (Glasgow)

1. Introduction

A congruence relation on an algebra is uniform provided every congruence
class has the same size and an algebra is congruence uniform if every congruence
on it is uniform. In general, congruences on distributive lattices are well under-
stood. However, uniform congruences appear to be an exception to the rule.

It is well-known and easily seen that every Boolean algebra is congruence
uniform. Furthermore, as shown in [2], a (semi-) lattice with pseudocomplementa-
tion is congruence uniform iff it is Boolean and, moreover, a finite distributive
lattice is congruence uniform iff it is Boolean.

Our starting point, Theorem 3.5, is a characterization of countable congruence
uniform distributive (0, I)-lattices in terms of two special congruences. This im-
mediately suggests a construction to show that every countable distributive (0, 1)-
lattice is a homomorphic image of a countable congruence uniform distributive
(0. D-lattice (Theorem 3.6). Consequently, not every congruence uniform distribu-
tive (0, I)-lattice is Boolean. In fact, Theorem 3.5 is a stepping stone to Theorem 4.6
which characterizes countable congruence uniform distributive lattices in terms of
certain naturally occurring congruence relations. Equivalent formulations are provided
by Theorem 4.9 which also shows that Theorem 4.6 is indeed a generalization of
Theorem 3.5.

883 and 4 shows that congruence uniformity is related to properties of particular
congruences on the lattice concerned. §5 is of a different flavour. For simplicity,
discussion in this section is restricted to distributive (0, I)-lattices where, to begin
with, a relationship between a congruence uniform distributive (0, I)-lattice and
its injective hull is considered. Thereafter, an example is given of the relationship
between a congruence uniform distributive (0, I)-lattice and some of its subsets.
Although, in each case, alternative characterizations are obtained of countable con-
gruence uniform distributive (0, I)-lattices, this section probably raises more ques-
tions than it answers.

Throughout, algebraic techniques are combined with the representation of
distributive (0, I)-lattices by means of topological spaces. For the sanity of the
reader, we have attempted not to intertwine the two. Thus, with the exception of
Example 5.4, 84 and 5 are algebraic whereas, §3 uses topological duality (the basic
essentials of which are given in §2).

Before proceeding, we should mention that, in the broader setting of universal
algebra, congruence uniformity was first considered by W. Taylor in [9]. Further
examples of congruence uniform algebras include all algebras in any variety gen-
erated by a quasi-primal algebra (W. Taylor [9]) and all finite members of any
directly representable variety (R. McKenzie [8]). For further background and moti-
vation, the reader should consult the text S. Burris and H. P. Sankappanavar [4].
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2. Some preliminaries

This section briefly summarizes the required facts concerning the representation
of distributive lattices by topological spaces: further information on this topic may
be found in either of the survey papers B. A. Davey and D. Duffus [5] or H. A. Pries-
tley [11]. For algebraic aspects of distributive lattices, the reader is referred to either
of the texts R. Balbes and Ph. Dwinger [1] or G. Gratzer [7].

For a partially ordered set P, let Max (P) and Min (P) denote the maximal
and minimal elements of P, respectively. Further, for OT P, let (Q] and [Q) denote
the order ideal and filter generated by Q, respectively. Then Ois decreasing, increasing,
or convex provided Q=(Q], Q=[Q), or Q=(Q]D[Q), respectively. For partially
ordered sets P and P', a mapping < P7-P' is order-preserving if (p(x)LLcp(y)
whenever xsy.

Given a topology z defined on a partially ordered set P, the pair (P, z) is
called an ordered space. The space is totally order-disconnected provided, for x, yd P
with x$y, there exists a clopen decreasing QQP such that y€ Q and xdQ. If
(P, 1) is a compact totally order-disconnected space, then it is called a Priestley
space. As shown by H. A. Priestley [10], the category of all Priestley spaces together
with all continuous order-preserving maps is dually equivalent to the category of
distributive (0, I)-lattices with (0, I)-lattice homomorphisms. If, under this duality,
L and (P, t) are associated, then P is the poset of prime ideals of L suitably top-
ologized and the elements of L correspond to the clopen decreasing subsets of P.
Further, if /: L-+L"' is associated with the continuous order-preserving map
@: P'*-P, then f(a)=b iff cp~1(A)=B, where A and B are the clopen decreasing
subsets that represent a and b. Inspection shows that/is onto iff @ is an order-
isomorphism. Thus, since congruences correspond to onto (0, lattice homo-
morphisms, it follows that the congruences of a distributive (0, /lattice L are in a
one-to-one correspondence with the closed subsets of P. In which case, for a con-
gruence B associated with a closed set O,

a=DbG) iff Af)Q = BC\Q,

where a and b are represented by A and B.

3. The bounded case

The immediate goal of this section is a characterization of countable con-
gruence uniform distributive (0, 1/lattices in terms of two natural congruences
(Theorem 3.5).

For a distributive lattice L with a unit 1, let the relation ®+ be given by

a= b(@+) iff [a)+ = [b)+
where [u)+={c£L: a\lc=1}. As shown in [3], ® ‘is a congruence relation on L
the co-kernel of which is trivial and, moreover, ®+ is the largest such congruence.

Clearly, if L is congruence unifoi'm, then ®+= co.
The following was also observed in [3]:
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Lemma 3.1. For a distributive lattice L with a unit 1, the following are equiv-
alent:

() er=<y;
(ii) for a,b£L,a-<b implies aVc”l and b\lc= 1for some c£fL;
(iii) for a,b£L,a-<b< 1 implies bv c=1 for some c£L suchthat a<c< 1l 0O

Lemma 3.2. For a distributive (0, 1flattice L with Priestley space (P, r), ®+=to
iff QPI Max (P)AI> for every non-empty dopen set O f P,

Proof. Suppose ®+=co and O is a non-empty dopen set. By compactness
and total order-disconnectedness, it is not hard to see that there exist a non-empty
dopen convex set RfQ and dopen decreasing sets Aa B such that B\A =R.
Clearly, it is sufficient to show that 7?MMax (P)T"0. Suppose that this is not the
case. If a, bEL are associated with the dopen decreasing sets A, B, then, by Lemma
3.1 (ii), aVvc?il and bdc=1 for some c£L. Since [x)[TMax (P)"0 for every
rEP, if CfP is the dopen decreasing set that represents c, then RQC is forced
b%/ blglc=l. Thus A{JCfB. In other words, aMc”b and so aVc=I1 which is
absurd.

Suppose alternatively that <2lMMax (P)*0 whenever OfP is non-empty and
dopen. If for some a,bdL, then, by Lemma 3.1 (ii), it is sufficient to find
cdL such that adc”l and hVc=1 Let A and B be the dopen decreasing sets
associated with a and b. By hypothesis, there exists x£(B\A)MMax (P). Using
compactness and total order-disconnectedness choose a dopen increasing set R
such that xdRQB\A. The element c represented by P\R has the desired prop-
erties. O

Analogous to the above, for distributive lattice L with a zero 0, the relation
&* eiven by

a= b(d*) iff (a*= (*]*

where (a]*={c£L: aRc=0}, is the largest congruence on L having a trivial kernel.
Clearly, statements dual to those of Lemmas 3.1 and 3.2 hold for @*
Thus, if a distributive (0, I)-lattice is congruence uniform, then ®u= dx .
We remark that, although ®+=co iff ®*=co for any finite distributive lattice,
simple examples show that the two conditions are not equivalent in general.
Already the Boolean-likeness of congruence uniform distributive (0, I)-lattices
is apparent. For example, consider the following:

Proposition 3.3. Let L be a distributive (0, 1)-lattice and suppose that b covers
a, denoted a<b, for some a,bEL. IfL is congruence uniform, then there exists
cfCecn (L), the centre of L, such that

b=aMc and 0 <c

Proof. If A and B are the dopen decreasing sets of the Priestley space (P, t)
of L that are associated with the elements a and b, then the dopen set B\A has
precisely one element, say X. Since L is congruence uniform, it follows from
Lemma 3.2 and its dual that xfMax (P)ITMin (P). The element ¢ represented
by the dopen set {a}, which is both increasing and decreasing, satisfies our require-
ments. O
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Since a clopen decreasing set A represents an atom or a co-atom iff \A\=1
or |P\/1| =1, respectively, the observation that any isolated point in the Priestley
space of a congruence uniform distributive (0, I)-lattice is both maximal and minimal
also yields

Proposition 3.4. Let L be a distributive (0, 1)-lattice. I f L is congruence uniform,
then |Atoms|= |Co-atoms|. O

Moreover, since every point of the Priestley space (P, t) of a finite distributive
lattice L is isolated, if L is congruence uniform, then P is an antichain. That is to
say, the poset of prime ideals of L forms an antichain and, as mentioned in the
introduction, it follows that every finite congruence uniform distributive lattice is
Boolean.

All of the preceding remarks concerning congruence uniform distributive (0, 1)-
lattices are consequences of ®+= d*=co. In the countable case, this condition will
actually characterize congruence uniformity:

Theorem 3.5. A countable distributive (0, 1)-lattice is congruence uniform iff

h+=p*=0)

Proof. Assume that L is a countable distributive (0, I)-lattice for which ®+=
= =10 Let (P, t) denote the Priestley space of L and suppose 9is a congruence
on L with associated closed set Q”P. Recall that, for a, bdL, a=b(s) iff AC\Q=
=BC\Q, where A and B are the clopen decreasing sets associated with a and b.
There are two cases to consider:

Suppose first that P\Q is finite. Since P\Q is open, it must be clopen.
Thus, by Lemma 3.2 and its dual, every element of P\Q is both maximal and
minimal. In particular, Q is clopen decreasing and so too is any subset of P\Q.
For adL, if b=a(0), then B{"Q=Af\Q. Hence, B is the union of AMNO and
a subset of P\Q. Since any subset of this form is clopen decreasing, |[a]0|=
= |"(P\<2)| where S denotes the power set. Thus, |[«]O| is independent of the
choice of a.

It remains to consider the case where P\Q isinfinite. Itis enough to show that
every congruence class is infinite as L is countable. For adL, one of the open sets
P\(QUA) or A\Q must be infinite by hypothesis. In the former case, it follows
from Lemma 3.2, compactness, and total order-disconnectedness, that there exists
a family of distinct clopen decreasing sets (Ci€P'fO'J A): i<at). Let Bt=AUC,

for each and note that ACIQ—BICiQ. If bfL is associated with Bh then
the infinite set {bp. i-*0j)f[a] 0. In the latter case there exists a family of distinct
clopen increasing sets (Cff=A: /<w). For let B~A\C{ O

That not every congruence uniform distributive (0. I)-lattice is Boolean now
follows from

Theorem 3.6. For every countable distributive (0, \)-lattice L, there exists a
family (L;: 2") of non-isomorphic countable congruence uniform distributive
(0, lyiattices such that,for i<2°, LsiLi/Oi for some congruence 6t on

Proof. Clearly, it is sufficient to establish the claim in the case that L is a
free algebra. Suppose that this is the case and let (P, t) denote its Priestley space.
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It is well-known that P has a minimum point p which is a limit point of the space.
Consider a countably infinite Boolean lattice B with Stone space (S, a). Since B
is infinite it is possible to choose a distinguished point s£S which is also a limit
point.

Let R=SXP and define a partial order on R by

@ (G.x)"y.y) iff x*y in P;
(i) (s, p)S:(x,p) for all xES.

Then it is a routine exercise to establish that (R, g) is a Priestley space where g
is the product topology. Since (x,y)ER is both maximal and minimal unless x=§
or y=p, the choice of p and vensures that every non-empty clopen set contains
both a maximal and a minimal point of the space. Thus, by Lemma 3.2, its dual,
and Theorem 3.5, the distributive (0, I)-lattice LB represented by (R, g) is con-
gruence uniform. Furthermore (P, t) is order-isomorphic to a closed subspace of
(R, g) and so L is a quotient of LB. The space (S, a) is homeomorphic to the
closed subspace {(x,p)\ XxES} of (R, g) the elements of which are distinguished
by belonging to some maximal chain of length two. It follows that LB"L B iff
B=B". In conclusion, observe that there are 2* non-isomorphic countable Boolean
lattices. O

We remark that Theorem 3.6 remains valid for any néto. Although the given
construction will still suffice, Theorem 3.5 may no longer be used to establish con-
gruence uniformity. We omit the details.

To conclude this section, it behoves us to show that the condition given in
Theorem 3.5 is insufficient to determine congruence uniformity in general. In fact,
we do a little more. First, recall that, for any prime ideal 7 of a distributive (0,1)-
lattice L, the natural equivalence relation associated with the partition {/, L\1}
of L is known to be a congruence on L. Therefore, in the event that L is congruence
uniform, we have |/| = |L\/|, for any prime ideal 1li=b.

Example 3.7. There exists a distributive (0, I)-lattice L of cardinality 2tosuch
that &®+= d*=0> and |/|=|L\/| for any prime ideal IQL, but L is not con-
gruence uniform.

Let A denote the real line [0, 1] and 1 the rational elements. Let C be the or-
dered sum ®(C;: i£X), where Ct is a two-element chain for i£X\r/, 1+ co*+
+00+1 for i£fA\{0, 1}, and a one-element chain for i£{0, 1}. Since C is a com-
plete chain with the jump property, the interval topology on C is compact and totally
disconnected. Let 2 denote the discrete space on a two-element set and define a partial
order on P=CX2 by setting

(»0)< (i,0) iff rcj in C\(CA{cuf, a}: i£t]\{0, 1}).

The product topology T on Pis compact and it is not hard to see that it is also totally
order-disconnected. Let L denote the distributive (0, I)-lattice associated with the
Priestley space (P, ©).

Since the isolated points, each of which is both maximal and minimal, form a
dense subspace of P, it follows that ®+= ®*=co. The prime ideals of a distributive
(0, N-lattice are the elements of the canonically associated Priestley space. Iden-
tifying the elements of P with the corresponding prime ideals of L, an element of
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L belongs to a prime ideal 1QL iff the associated clopen decreasing subset fails to
contain IdP. Since every element of Cx{l} is incomparable with every other
element of P, |/ 1=|L\I\ =2° for every prime ideal I1*L. Finally, consider the
congruence 0 on L corresponding to the closed set {(1, 0)}U(CX{1}). For adL,
a= 1(0) iffri3{(l, 0)}JU(Cx{I}), where A is the clopen decreasing set associated with
a. Whereupon, every element of the clopen set P\AQ U (C\{co*, co}: idt]\{0, 1})
is an isolated point. In particular, P\A is finite and so |[I]0|=co. On the other
hand, |[O]0|=2kD since a=0(0) for every clopen decreasing set A f(C\{I}X
X{0}.

4. The unbounded case

The initial objective of this section is the characterization of countable con-
gruence uniform distributive lattices as given in Theorem 4.6.
The first preparatory lemma is well-known: see, for example, G. Grétzer[7],

Lemma 4.1. Let L be a distributive lattice and let F be afilter of L. Then the
relation ®(P) defined on L by

x =y(®(P)) iff z~Ax/\y and xfyfzdF imply zdF
is the largest congruence on L having F as a whole class. O

If F=[a), then we will write ®afor ®(A).

We remark that if L has a unit 1, then, by definition, ®1is the largest con-
gruence on L having a trivial co-kernel and, therefore, ®r=o+,

The next lemma gives a new characterization of da which will prove useful
later.

For a distributive lattice L and adL, let [x)+« denote the filter {zdL: zVxSa}.

Lemma 4.2. Let L be a distributive lattice and let adL. Then
X =y(®g iff [rm= )

Proof. Define a relation ®+«on L by
v=y(@+°) iff [X)+«= [y)+a-

We will show that da=+«.

Let x=y(dad and suppose that zd[x)+- or, equivalently, zVx=n. Then
zMy~rxfy and xVjV(zVj)SzVx£a. So, by Lemmadl, zMy”a. Thus,
[X)+«E[y)+«. Similarly, [y)+“U[x)+« in other words, x=y(®+°) and, hence,
d“r5gh+a

Alternatively, suppose x=y(® +*). Then, by definition, w'Jx=za iff wdy=a
Let (i) z*x/\y and (ii) xMyfz*a. By (ii), for w=x\lz, wVySa and so WV~
Vx”*a. In other words, xVzSa. An analogous argument shows that yVzSa.
But, by (i),

z = (XAj)Vz = (xVz)A(*Vz) » al\a = a

Thus, x=y(®a) by Lemma 4.1. Hence, ®+«*d“ and so dPa=P+<. as re-
quired. O
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Let L be a distributive lattice and a”b for some a, bbJ-. If B(a,b) denotes
the smallest congruence of L collapsing the pair a, b then

NV=y(9(x, b)) iff xAa —yAa and xMb—yMb.

Clearly, [b]6(a, b)—a b]. Set ®+H“v*=®bllB(a,b) and observe that [h] ®+[ab]=
= [b)M[a, b] = {h}. Consequently, if L is congruence uniform, then, for all a,b£L
with a”b. ®+a'g=w

Analogous to the above, for an ideal I<=L, the relation ®(1) defined on L by

x = y(d{1)) iff zAxVy and xAyAzbl imply z£I

is the largest congruence on L having | as a whole class. Should 1—@] we will
write dafor ®(/) and, in the event that L has a zero Q ®0= @&* is the largest con-
gruence on L having a trivial kernel. If (AJ*« denotes the ideal {zblx. zAx".a),
then, as in Lemma 4.2, x=y(®3q iff (X]*«=(y]*«. Set d*lar*=dal\s(a, b). Then,
arguing in a similar vein to the above, for a congruence uniform distributive lattice
L, ®lab=a for all a,bbL with awb.

Hence, if a distributive lattice Lis congruence uniform, then ®+*,]=®* “r]=n
forall a,b£L with azib. Our objective is to show that this characterizes congruence
uniformity in the countable case. The heart of the matter lies in the following lemma
which considers the restriction of each such congruence to the associated bounded
interval.

Lemma 4.3. For a distributive lattice L and a, bEL with ar’b, the restriction
of oA to [a b] is the largest congruence on [a b] having a trivial co-kernel.
A dual statement also holdsfor the restriction of &*¢‘b] to [a, b].

Proof. Since [b] ®Har,]={b}, P+“t"\[a,b\ obviously has a trivial co-kernel.
Thus, it is enough to show that if d+&b denotes the largest congruence on [a, b]
having a trivial co-kernel, then ®+aB* @ +Ha'v\[a,b].

To see this, suppose that x,yE[a,b] and x=y(®+d). Then x=y(0(a, b)),
since 9(a,b) collapses [a,b], and, by definition,

{zb[a, b]: zMx = b} = {zb[a, b]: zVy = b}
We use this and Lemma 4.2 to show that x =y(dy from which it follows that
x =y(PblM\B(a, b)) or, equivalently, x=y(® +1an). Let wE[x)+»and let z=(w\ja)Ab.
Then z£[a, b] and hszVx=(wVx)Ab=b. Thus, zMx=b and so z\y =b. In

other words, (w\/y)Ab—b and so wWy”b. Hence, wd[y)+b and it follows
that [X)+b™[y)+b. Similarly, [T)+bA[X)+b and so, by Lemma 4.2, x=y(®b. O

That, in the countable case, it is sufficient to consider the bounded intervals of
a distributive lattice in order to determine whether it is congruence uniform is shown
by Lemma 4.5. We first observe:

~ Lemma4.4. Every bounded interval of a congruence uniform distributive lattice
is congruence uniform.

Proof. Let L be a congruence uniform distributive lattice and B a congruence
on a bounded interval [a, b\. Since the relation ®on L given by

x = y(P) iff x=y(0(a, b)) and (x\Va)Ab = (y\l a)Ab(0)
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is the intersection of two congruence relations on L, it too is a congruence relation.
But, for x£[06, b\, x=y(®) iff y£ [ab] and x=y(0); thatis, [x]O=[x]P. Thus,
the congruence uniformity of [a b] follows from that of L. O

Lemma 4.5. A countable distributive lattice is congruence uniform iff every bounded
interval is congruence uniform.

Proof. By Lemma 4.4, it is enough to consider a countable distributive lattice
L for which every bounded interval is congruence uniform. Let 0 be a congruence
on L. Ifevery class of O is infinite, then, obviously, 0is uniform. Suppose, then, that
0 has a finite class [x]0. By necessity, [X]0 is a finite bounded interval [c, d], say.
Let yEL and consider [y]0. Two cases arise:

First, [y]O is finite. In this case, [y]O is a finite bounded interval [<?/], say.
Let a=cAe, b=dS!f. Clearly, [x]dQ[ab] and [y]9Q[a, b] so that |[x]O|=
=\[x]6\[a,b]\ = \[y]=0I[a,b]\ =\[y]9\, since [a,b] is uniform.

Secondly, [y]O is infinite. Let al=c,\y, b1=d'Jy. If [y]9Q[al, bf\, then, since
[x] O£[di, bj, we have, as in case (i), |[X]O|= |[y]0| which is absurd. Therefore
there exists yi£[y]O\[ifi, &] We claim that there is a bounded interval [a b]
suchthat [x]6Q[a, b] and O<|[y]0M[a, 6]];4|[x]0|. Indeed, if this is not so, then,
for every bounded interval [a b] satisfying [x]0C[a, b] and O<|[y]OHi[a, b]\,
[y] Of\[a, b] must be finite and have the same size as [x]0. It follows, on writing
ai-cfyfyi and b2=dMy\lyl, that, for /€{1, 2), [y]OMN[a;, hj is finite and has
the same size as [x]0. But [v]OTl[ay, c[y]OM[a, b2, since yli[a2b2\{albT],
and we have a contradiction. Hence the claim is substantiated, but it is contrary

to the congruence uniformity of [a, b]. We conclude that case (||) cannot arise and
so Ois uniform. O

The remarks preceding Lemma 4.3, together with Lemma 4.3, Theorem 3.5,
and Lemma 4.5 combine to give

Theorem 4.6. Let L be a countable distributive lattice. Then L is congruence
uniform iff g+c«.b]=p*as]=0oo for aii a,bEL with a*b O

~The remainingbgqal of this section (Theorem 4.9) is to exhibit congruence con-
ditions on a distributive lattice L equivalent to requiring (p+““d-=qpl1*“*=w for

all a,b£L with a”b. Furthermore, it will be shown that, in the event Lis bounded
(b+[ar>] d*[ab]=to0 for aii a,bEL with a”b is equlvalent to ®+= d*=co.

course, Theorem 4.9 enables us to give alternative versions of Theorem 4.6.

For a distributive lattice L and a, bEL with a”b, write xa for the natural
congruence on L associated with the projection homomorphism x->-(xVa)Ah from
onto [a b], so that

x = y(nd) iff (xVa)Ab = (yVa)Ah.
The following is well-known: see, for example, G. Gierz and A. Stralka [6].
Lemma 4.7. Let L be a distributive lattice with a,b£L satisfying a:ab. Then
II'I6b=B*(?, b), where 0*(a, b) is the pseudocomplement of 9(a,b) in the congruence
attice of L. O
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Lemma 4.8. Let L be a distributive lattice and let a, bEL. Then
MNac: aNc)” a and (T(#cil: ¢ 1 b) T .

Proof. Let x=y(IN)(ad;: cnb)) and, hence (xVc)l\b=(y\/c)Ab, forall cnb.
If z€[x)+i>, then zVXE(> and so

b = (xVz)Afc = (xV(zAb))Afc = (yV (zAb))Ab —(yVZz)Ab,

since c=rAbnb. Thus, zMy”b and so zd[y)+b- In other words, [X)+b<"[y)+b.
Similarly, [y)+»W*)+* and so, by Lemma 4.2, x=y(®b. A dual argument shows
that M (nac\ anc)n®a. O

Theorem 4.9. For a distributive lattice L thefollowing are equivalent:

(i) p+C-Y= p*[o.b]=£0, for ay a,b£L satisfying anb;
(i) ®,,=M(nac: aJ/ic) and P=T\(ncb: cnb), for all a,b£L;
(iii) T(a)=co, for all aEL, where T(a) denotes dalnda.

If, in addition, L is a (0, 1)-lattice, then each of the above is equivalent to:

(iv) d+=d=m

Proof. (i)—(ii). Observe that, for all cnb, ®+lcy'=a> iff dul\s(c, b)=co iff,
by Lemma4.7, ®/inch. Thus, ®+cH=co, for all b, cEL satisfying cnb, iff
@b M\(nck: cnb), for all bd.L, iff, by Lemma 4.8, d=T(ncb: cnb), for all
bEL. A dual argument completes the proof.

(i) —(iii). Suppose first that (ii) holds. Let adL and x=y(T (a)). Then
x=y(®3a and, hence, x=y(C)(nac: a"c)); thatis, (x\la)Ac=(y\la)Ac, for all
cén. For c=xVa, we obtain

XWa = (xVu)A(xVa) = (yVa)A(xVa) = (YAX)Vu.

Similarly, taking c=yVa, we derive yV0=(xAy)Va and, hence, deduce that
xVa=y\la. Since we also have x=y(d4d), a similar argument yields xAa=yAa.
Therefore, by distributivity, x=y and, hence, 4/ (a)=w.

Now suppose that (iii) holds. For clla, O(a, c)n ®g since ®da collapses [a).
Therefore, ¢alM\9(a, c)nd allda=T(a) =c0. Thus, by Lemma 4.7, dan IN(nac:aSc)
and so, by Lemma 4.8, ®a= I1 (nac:a/lc). A dual argument shows ®b= 1 (ncb:cnb).

Finally, let I be a (0,l)-lattice.

(iii) —{iv). Suppose (iii) holds. Then, in particular, Y'(1)=®1Md1=co. But
®!'= ¢+ and dxis the largest congruence on L having (1]=L as a whole class.
Thus, dx=1 and, therefore, ®+=co. Similarly, it follows from 4J(0)= o that
d*=

(iv) —{i). Suppose ®+=a> We show that dHar>]=C0) for all a, bdL satis-
fying anb. Indeed, X

[Je+12 = [ ®M[1]0(a, b) g [b)M[1]O(O, b) = [b)N[b)+ = {1}.

Since @+ is the largest congruence on L having a trivial cokernel, T
A similar argument shows that if ®*=a>, then ®*a¥=a> for all a,b£L with
anb. 0O

4 Ada Mathematica Hungarica 57, 1991



50 M. E. ADAMS AND R. BEAZER

5. Other approaches

This section provides two different approaches to congruence uniformity; both
yield alternative characterizations in the countable case (Corollaries 5.2 and 5.6).
For the sake of simplicity, we restrict ourselves to (0, I)-lattices.

If F is a distributive (0, I)-lattice, then its filter lattice F(F) is a pseudocom-
plemented distributive lattice. Recall that, for afL, [a) f= {ccL: aVc=I} is the
pseudocomplement of the filter [@) in F(F). Thus, for consistency, let + denote
pseudocomplementation in F(L). Then the skeleton F(F(F))={F+: FEF(F)} of
F(L) is a complete Boolean algebra (B(F(L)); V, N, +, {1}, F) where V is defined
by FVG=(F+nG+)+, for F,GeB(F(L)).

Recall that a sublattice S of a complete lattice L is said to be meet dense (in L)
if, for every afL, there exists T~S suchthat a=/\T.

Theorem 5.1 (). Let L be a distributive (0, D-lattice. Then d+=c0 iff L is
isomorphic to a meet dense sublattice of its injective hull BL.

Proof. Suppose first that &®+=co. Observe that, by the theory of pseudo-
complemented distributive lattices, for any a, bEL,

’ [aAb)+= (fa) V[=)y+ = [a)+M[b)+
an
[avb)+ = ([a)A[b))+ = [a)+V[b)+.

Since ®+= o> it follows that a—fa)+ is an embedding of L into F(F(F)). Further-
more, for FAB{F(L)),

F=F++= (V([u): aEFH))+ =(T([a)+: aE£F+).

Therefore, Fis isomorphic to the meet dense sublattice F+= {[u)+: a*L) ofF(F(F))
under the embedding a-»[a)+.

To complete this part of the proof, we now show that B(F(L)) is the injective
hull of F+. That is, we require B(F(Lj) to be an injective essential extension of F+.
Since F(F(F)) is complete, it will be enough to show that it is an essential extension
of F+. In other words, if 9 is a congruence on F(F(F)) such that 9\L+=co, then
we require 0=a= To see this, suppose 970). Then the co-kernel of 0, namely
[L]9, is non-trivial, since congruences on Boolean lattices are completely deter-
mined by their co-kernels. Suppose F£[F]0 and F~F. Then, for some atF,
[a)+£[F]0 where [u)+"F, since F+ is a meet dense sublattice of F(F(F)). This
contradicts OiF+=ca Hence, 0=

Suppose now that F is isomorphic to a meet dense sublattice of its injective
hull BL. By the congruence extension property for distributive lattices, there is a
congruence B on BLsuch that B\b=® +. We want to show that ®+—c. If ®+”co,
then 97 co, and, since BL is Boolean, the co-kernel of 9 is non-trivial. Thus, for
some b<zBL distinct from 1, bd[l]9. But F is a meet dense sublattice of BLand so,
for some sfL, s 1 and a= 1(0) which is absurd since the co-kernel of ®+ is
trivial. Hence, ®+—co. O

For a bounded distributive lattice F, its ideal lattice is also a pseudocomple-
mented distributive lattice. Let B{l(Lj)=\J*: I1d7(F)} denote its skeleton, where
* denotes the operation of pseudocomplementation (chosen to be consistent with
(a]*= {&F: anc=0}).
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Arguments similar to the above show that if ®*=a> then L is isomorphic
to ajoin dense sublattice of its injective hull BL. This time, the appropriate embedding
is given by a-*(a]** which maps L onto a join dense sublattice L**={(@]**: a- L)
of B[I(Lj). Furthermore, B(I(L)) is the injective hull of L**. Similarly, if L is iso-
morphic to a join dense sublattice of its injective hull, then an argument using ker-
nels instead of co-kernels shows that @®*=10. Consequently, we have

Theorem 51 (b). Let L be a distributive (0,1)-lattice. Then ®*=a> iff L is
isomorphic to ajoin dense sublattice of its injective hull BL. O

Corollary 52. A countable distributive (0, 1)-lattice is congruence uniform iff
it is isomorphic to ajoin dense sublattice and to a meet dense sublattice of its injective
hull. O

Since B(F(L)) and B{I(L)) are both isomorphic to BL, we also conclude:

Corollary 53. For adistributive (0, \)-lattice, if ®+= &*= 0> then B{F(L])si
=B{I(L)). O

Although B(F(L))*B(I(Lj) for any finite distributive lattice, Corollary 5.3
still reflects the Boolean nature of the lattices concerned. As the following example
shows, an obvious attempt to sharpen it goes adrift.

Example 5.4. There exists a countable distributive (0, I)-lattice L such that
d+=¢*=o but F(L)skI(L).

Since T 1 is complete and has the jump property, its interval topology is
compact and totally disconnected. Let P=(co+ I)X((a+ 1) and define an order
relation on P by (x,00)=5(y, co) iff xsdy. Then P with the product topology T is
a compact totally order-disconnected space. Let L be the distributive (0, I)-lattice
associated with the Priestley space (P, t).

Since the isolated points, each of which is both maximal and minimal, form
a dense subspace, ®+= =

Ideals (filters) of L correspond to open (closed) decreasing subsets of P. If
IEI(L), then the associated open decreasing set is U{T: af£l} where, for afl,
A denotes the clopen decreasing set representing a. Thus, for I,JEI(L) associated
with open decreasing sets Q, RQP, respectively, 1fJ iff Q"=R. Let/ correspond
to the open decreasing set (co+l)Xco. Then [DQI(L) is an co+l chain. On
the other hand, if FEF(L), then the associated closed decreasing set is C\{A:afF).
Consequently, for F, GTF(L) with associated closed decreasing sets S, T. respec-
tively, FQG iff SAT. If (co, w)*5' or SIT((co+l)Xco) is infinite, then [F)
contains an oo* chain. Otherwise S and, hence, [F) are finite. Either way, for any
FEF(F), [Fiel). O

Let us mention that we do not know, for example, whether every congruence
uniform distributive (0, I)-lattice is isomorphic to a (simultaneously, meet and
join) dense sublattice of its injective hull. Nor do we know whether a lattice that is
isomorphic to a dense sublattice of its injective hull is necessarily congruence uniform
(except, of course, in the countable case).

Rather than considering the effects of congruence uniformity on particular
congruence relations of the lattice in question, one may consider the effect on well-
defined subsets. We conclude with one such example.
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Lemma 5.5. For a distributive lattice L with a unit 1, each of thefollowing
(i) L is congruence uniform;
(i) for a,b£L suchthat a”b, |[a b]| = |[6)D[fe)+|;
(iii) d+=co
implies the next.

Proof, (i)—(ii). Let a,bEL satisfy az-lb and consider the principal con-
gruence B(a,b). Itis easily verified that [a]Q(a, b) =[a, b] and [1]0(a, b)=[a)C\[b)+.
If Lis congruence uniform, then \[a]s{a, b)\= \[1]8(a, b)\ and the claim follows.

(ii)—»(jii). Suppose ®+"03. Then, for some a,b£L with a<b, [a)+=[b)+
Whence, for c£L, aVc=1 iff hVc=1 In particular, if hVc=1 for some c< ],
then a”c and, hence, ct[a)C][b)+. Consequently, |[a)(T[h)+|=K1}=1 whereas
\[a,b]\*2. O

Lemma 5.5, its dual, and Theorem 3.5 combine to give

Corollary 5.6. A countable distributive (0, 1flattice L is congruence uniform iff,
for all a,bEL suchthat a”b,

\[ab]\ = |[[a)T T = |(b]M(ap|. O

We do not know whether Corollary 5.6 holds for any cardinality.
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SOME REMARKS ON GARAY’S CONJECTURE

M. MROZEK (Krakow)

1. Introduction

Let (X,d) be a metric space and let MQX be a compact subset. We will
say that the function V: X ->[0, °°) is distance-like with respect to M iff it vanishes
precisely on M and {x,,}QX, V(x,,)-*0 implies d(x,,, M):=inf {d(xn, y)[yEM}-*-0.

We will say that the pair (X, M) or briefly M satisfies the condition (G) iff
for every function V: A—0, °°) distance-like with respect to M there exists a
metric g o n | equivalent to d such that

) gm=dWM and \JxeX aq(x,M) = V(x).

B. M. Garay conjectured in [4] that the compact M satisfies the condition (G)
iff it is a retract of X. He also proved in [5] that the conjecture holds true in the
planar case. In this paper we prove that every compact subset M of a Banach space
X satisfying the condition (G) is acyclic in the sense of the Alexander—Spanier
cohomology. This yields partial (positive) answer to Garay’s conjecture: Euclidean
neighborhood retracts with commutative fundamental group satisfy the condi-
tion (G) iff they are absolute retracts.

Since the answer to Garay’s conjecture seems to be difficult in general, we
introduce a stronger condition (G") defined below and show that in the finite dimen-
sional case Garay’s conjecture for the modified condition is true. This enables us to
reformulate the original conjecture in terms of some kind of equicontinuity.

An important tool in the proofs of the above results is the projection of X
onto M along q (also called the nearest point map), i.e. a multivalued map which
assigns to every point XxEX the set of points y in M such that the distance from x
to y equals the distance from x to M. This map was implicitly used in a charac-
terization of retracts by Kuratowski (see [8]). The application of this map to the
study of Garay’s conjecture seems to be an essential contribution of this paper.

2. A cohomological necessary condition for (G)

Let (X, I<ll) be a fixed Banach space and for x,yEX let d(x,y):=\\x—\\
be the natural metric on X. Let g be any metric on X equivalentto d. If AQ X then
diame A, o(x, A), Ke(A, e) will stand for the diameter of A with respect to o, the
distance from x to A and the closed ball around A of radius e, respectively. For
A, BAX we will write

a(A, B):=  {a(x,y)\xEA, yEB).
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The closed convex hull of A will be denoted by conv A and the family of all non-
empty subsets of A by 8P(A). The functors of singular homology, singular cohomology
and Alexander—Spanier cohomology will be denoted by H, H* and H*, respec-
tively. All homology and cohomology will be considered with coefficients in the
ring Z of integers. N will stand for the set of positive integers.

Recall that the set M is called acyclic with respect to a particular homology
(cohomology) if the zero-dimensional homology (cohomology) group is Z and the
higher dimensional homology (cohomology) groups vanish.

The main result of this paper is the following

Theorem 1 Assume M satisfies condition (G). Then M is acyclic with respect
to the Alexander— Spanier cohomology.

The above theorem provides strong limitations for the possible counter-exam-
ples to Garay’s conjecture. For instance no counter-examples can be found
among spheres (compare also [2]), tori etc.

The proof of the above theorem will be given further on. Here we prove the
following corollary, which gives the positive answer to Garay’s conjecture in a
restricted case.

Corollary 1. Assume MCR™ is an ANR-space with commutativefundamental
group. Then M satisfies condition (G) iff M is an AR-space.

Proof. Garay implicitly proved in [5] that condition (G) is necessary for M
to be an AR-space. Hence it remains to prove that this condition is also sufficient.
Let M satisfy (G). Then by the above Theorem, M is acyclic with respect to Alexan-
der—Spanier cohomology. However in case of an ANR-space, which is locally
contractible (see [1], Chapt. V, (2.6)) the Alexander—Spanier cohomology and
the singular cohomology coincide ([10, §6.9, Corollary 5]). Thus M is acyclic with
respect to the singular cohomology. However, the singular homology of a compact
ANR-space is of finite type (see [11]), so we can apply Theorem 12, §5.5 in [10] to
obtain the short exact sequence

0 - Ext(tf«+1(M), Z) - Hg(M) - HoT (HLUM), Z) - 0

for #=0,1,2,.... Putting Hq(M)=0 for q>0 and H°(M)=Z in the above
sequence, we get the following short exact sequences

0-tf,(Af)-0 for #>0, 0- HUM)- Z- 0,

which show that M is acyclic also with respect to the singular homology. In particu-
lar M is arcwise connected (see [7], (10.6)) and by ([7], (12.2)) the Hurewicz homo-
morphism y: ni(M)*-H1(M) from the fundamental group of M to the first singular
homology group of M is an isomorphism and consequently nfM)=0. Now M
is an AR-space directly by ([1]. Chapt. V, Theorem (10.8)).

By a multivalued mapping from X to A~X we mean a mapping F:. X-+8P(A).
We say that Fis upper semi-continuous (u.s.c.) iff for every x0EX F(x,,) is compact
and for every e>0 there exists n>0 such that

d(x, x0) < 6 =>F(x) Q Kd(F(xo), e).
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By the diameter of a multivalued map F with respect to a metric g we mean the
number
diameF:= sup {diamBF(x)\x£X}.

Let g be a metric on X equivalent to d and let M be a compact subset of X.
Definition 1 The multivalued mapping FejM\ X—M given by

Fe,M(x) := {yiM\o(x, y) = a(x. M)}
will be called the projection of X onto M along g.
Lemma 1. The projection FeMis u.s.c.

Proof. Assume F:=FeM is not u.s.c. at some XCEX. Then there exists e>0
and sequences {x.}, {yn}Q X such that xn-»x0, ynEF(xn) and g(yn, F(xQ) =££. Using
compactness of M and taking subsequences if necessary, we can assume that {y,,} con-
verges to some yO0EM. Obviously o(y0, F(xQ)=e. Put r:=g(x0, M). We have
g(x0, Yay*1' because yOBF(x0. Thus /i :=q(x0,yQ—r>0. Choose an NEN such
that g(xn,xQ<p/6 and g(yn,yQ<p/2 for n*N. Then g(x,,, M) =ga(xn, yiw
=B(x0’Y0)-8(xn>X0)~B(Yn’Yo)=r+L-T/2-¢p=r+p./3. On the other hand
g(X,,, M)*g(xn,x0+g(x0, M)Sr+p/6<r+n/3, which contradicts the previous
estimation. The proof is complete.

Let F: X*M be a multivalued map. Define a new multivalued map
Conv F: X~X by

(Conv F)(x) := conv F(x),
where conv A denotes the closed convex hull of A.
Lemma 2. Assume F is u.s.c. Then Conv F is u.s.c. and
diam,j (Conv F) S diamdF.

Proof. Fix x0cM. The set conv F(x0 is compact by Theorem 3.25 in [9].
Take £>0. Then there exists <5>0 suchthat d(x, xQ<<5 implies

F(x) Q Kd(F(x0, e) C Fd(conv F(x0), s),
Since the last set is closed and convex, we have also
conv F(x) Q Kd(conv F(x0), e).

which proves the upper semicontinuity of Conv F. The remaining inequality is
obvious.

Proof of Theorem L Put V(x):=d(x, M) and for any positive integer n let
Vh(x):=min (F(x), 1/n). Then for every n the function \his distance-like with respect
to M, so we can find a metric g,,on X equivalent to d and satisfying (1). Let F,, denote
the projection of X onto M along gn. Observe that

) diamF,s 2/n.
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In fact, fix x0EX and take y\, y2£Fn(x0. Then
d{yi, ¥ = BOi,¥r)=BOi,*)+e(X,yd = 2q(x,M) = 2V(x) S 2/n,

which proves (2).

By Lemma 2 condition (2) holds also for C,,:=Conv Fn and consequently for
any x£X, Cn(x)AK,,(M, 2/n).

The following part of the proof is based on the idea of the map of cohomology
groups induced by a multi-valued map (compare [6]).

Put U,\=Kd(M,2/n) and I,;:={(x,y)EXxUnyeC,,(x)}. Let pn: "X and
G... I,,"-Un denote projections and 1: M-+X and i,,; M-*Un denote inclusions.
Set also cn: M3x-*(x, X)El'n. The last map is well defined because for xEM
we have

Cn(x) = convF,(x) = conv {x} = {x}

Obviously t,=gnocn and i=pnocn. Thus, applying the Alexander—Spanier co-
homology functor we get

H*(O = H*(c)oH*(q) and H*(i) = H \croH*(pn.

Let AQX be compact. Since p,,1(A)Q AXCn(A) and C,,(A) is compact by [6, (1.2),
p. 25], we see that p~x(A) is compact, i.e. p,, is proper. Hence by [6, (1.7), p. 26] pn
is a closed map. It has also acyclic fibres, because C,,(x) is convex. Thus we can_apply
the Vietoris—Begle Theorem (see [10], §6.9, Theorem 15) to conclude that H*(p,,)

is an isomorphism. Since X is contractible we get for 0 that Hk(X)=0 and
consequently that Hk(i)=0. Hence
(3) Hk(O = Hk(i)oHk(pn - 1loHk(,,) = 0

By Theorem 2, §6.6 in [10], M is a taut subspace of X, i.e. H*(M) is the direct
limit of H*(U,,). This together with (3) shows that Hk(M)=0 for 0. Part (A)
of the proof of Theorem in [5] can be adopted without change to show that M sat-
isfying (G)is connected. Thus it follows from ([10], §6.4, Corollary 7) that H°(M) =Z
and the proof is finished.

3. A reformulation of Garay’s conjecture

From now on we assume that X=E is a finite dimensional Euclidean space,
LILL stands for the Euclidean norm on E and d(x, y):=||x—y|| is the corresponding
metric. Denote by .// the family of all metrics on E equivalent to d and by 4(M)
the family of all functions on E which are distance-like with respect to M.

We will say that the the family {q, N£13QJII is uniformly weak with respect
to d iff for every e>0 there exists a <5>0 suchthat

d(x,y) < 5=>0,(x,y) < e for all if/.

We will say that the compact M QE satisfies condition (G") iff for every equi-
continuous family {V\i£I}Q”(M) one can find a corresponding family
{& | which is uniformly weak with respect to d and satisfies condition (1)
with V and q replaced by V, and n, respectively.
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We have the following
Theorem 2. A compact MQE is a retract of E iff it satisfies (G').
Before proving the above Theorem we state the following obvious

Corollary 2. Garay’s conjecture holds true in E iff conditions (G) and (G")
are equivalent. (Note that (G') always implies (G)J.

The proof of the theorem is based on the following Lemma and Proposition.

Lemma 3. For every compact retract M of E there exists a retraction r: E->-M
which is uniformly continuous.

Proof. Fix any retraction rl: E-*M, take r>0 such that

Mg A:={xeE\d(x,0) s s}
and put
£3 (x for x£A
P-EX ixllid  otherwise.
Since p is Lipschitz continuous with constant 1, the mapping r:=i\\Aop is the
required uniformly continuous retraction.
One can easily prove the following

Proposition 1L Assume {A,} is a sequence of subsets of a compact set M such
that diamdAl-+0. Then there exists a subsequence {C,,}Q{A,.} which converges
to a point gfM in the sense that for all s>0 there exists an NEN such that
d(qg, C,,)<e.

Proof of Theorem 2. Assume M is a retract of E. By Lemma 3 we can take a
retraction r: EAM which is uniformly continuous. Assume {Vfi£l}Qsd (M) is
equicontinuous. Following Garay’s paper [5] define for x,yEE and r£/

dfix, y) := min {1, d(x,yj), LWx):= min {1, Vix)},
al(x, y):= sup {\ILO)AX(x, 2)-H{(y)d1(y, 2)\: Z£E),
b(x,y):= d(r(x).r(yj)

Q.(xy):= max{\V,(x)-V:(y)\, a,(x.y), b(x,y)}-

Like in [5] one can verify that {g\i£1}QJ? and (1) is satisfied with o, V replaced

by 0i, V, for all idl. resp. The fact that the family {uJiG/} is uniformly weak

with respect to d follows directly from the fact that r is uniformly continuous and

the family {V\i£l} is equicontinuous. This finishes the first part of the proof.
Now assume M satisfies (G'). Let V(x)\="d(x, M) and, for nEN,

V,,(x):= min {V(x), /n}.

and

Obviously the family {V,} is equicontinuous. Thus we can apply condition (G") to
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find a corresponding family of metrics {g.}. Take a compact ball B such that M<=B
and consider the projection of B onto M along g,, given by

F; BOX - {YEM\QN(X,y) = a.(x, M)}.
Observe that for xd.M and any ndN we have
(4) Fn{) = {x}.
Fix nEN and xdB and take y\, yr€E,(x). Since F,,(x)*M we get from (1) that
d(yx,yd = Q,(¥i,y2 = Qn(yi,x) + Qn(x, ¥.9 = 2W(x) = 2In.
Thus
®) sup {dian*WI.vti?} —O.

We will show that the sequence {9} is equicontinuous in the sence that for
every £>0 there exists an NdN and <5>0 such that for n*N

(6) d(x,y) < 6 =>d(F,,(),F,.,(y) < £

To this end take a>0 and, using the fact that the family {p,} is uniformly weak
with respect to d, find <5>0 such that

d(X,y) < $=> Q.x.y) < e/3 for all ndN.

Let NdN be such that YNse/3. Take x1, x2dB such that d(xlItx2<<5 and let
YidF(Xi) for i=1,2. Then for n*N we have

H{Fn(xi). F..(x2) ~ d(yLy2 = Q..(yi.y) =5
= QO0i,W+6,(-Vi, *+Bn(x2,yr) < UN+e/3+ /T £
Thus (6) is proved.

Since every metric compact space is separable (see [3], 4.1.18) we can find
a countable set A ={an}QB such that A is dense in B and 4 M is dense in M.

By the Proposition and condition (5) we can find a subsequence which
converges at ax to a point of M. Recursively, we can find a subsequence {Fjk+!}i=
= which converges at points u,, a., ..., ak+H. Then the diagonal sequence

{G,.}={F..n} is a subsequence of the sequence {/,,} and it converges at a, to a point
f(a,,)dM for all natural n. Thus we have defined a function f : A—M. It follows
directly from the equicontinuity of the sequence {F,} that the function/is uniformly
continuous on A. This means that for two closed, disjoint subsets M1, M2 of M
the closures of and / - 1(M2 in X are also disjoint. Thus, (by [3], 3.2.1
and 2.1.9)f admits precisely one continuous extension r: B-»M. It follows from
(4) that for x€ 4(TM we have f(x)—x, hence r\M=\aM. This means that M is a
retract of B. Since B is a retract of E, Theorem 2 is proved.

Acknowledgment. The author expresses his gratitude to Professor S. Sedziwy
for his valuable remarks during the preparation of this paper.
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A NOTE ON EUCLIDEAN RAMSEY THEORY
AND A CONSTRUCTION OF BOURGAIN

N. ALON and Y. PERES (Tel Aviv)

1. Qualitative facts
Let v be a fixed unit vector in a Hilbert space Q. Denote
Qc = {coed\(v,0) = ¢, M|=1}

for a real 0<c-=I. Bessel’s inequality implies that any orthogonal sequence in Qc
is finite. Thus, Ramsey’s theorem implies

Fact 1 From any infinite sequence {«,}"=i in Qcan infinite subsequence can be
extracted, with no two vectors orthogonal.

We will be interested in the “size” of the subsequence which can be extracted,
especially when a further restriction is put on the sequence {co,}. In particular, we
show that a subsequence of positive density cannot always be extracted.

Definitions. |. A sequence of vectors {w,} in a Hilbert space is stationary if
(coi+,,, cad+n) =(a)i, coj) for all /,./, n.

Il. Asetofintegers He N is a Van der Corput set if every probability measure
/I on the circle satisfying fi(h)=Je~Mdfi(t)—0 for every hdH satisfies g{0}=0.

I11. A set of integers He:N is a Poincare set if for every set ScN of positive
density, H intersects the difference set S—S. (For an alternative ergodic theory
definition see [3].)

Kamae and Mendes France [5] proved that all Van der Corput sets are Poin-
care sets. Recently, J. Bourgain [1] has proved that the reverse implication does not
hold. This implies

Fact 2. There exist a 0<c<I| and a stationary sequence of vectors {«,} in
Qcsuch thatfor any 5¢ N ofpositive density, co,xa>mfor some m, n£S.

Proof Let H be a Poincare set which is not Van der Corput. There exists a
measure p for which B(n)=0 t/nfjf and /({0}=c->0. Let Q be the Hilbert space
L2[0, 2n). Let an(t)=eM, and denote

Clearly otf Qc. For any sequence 5¢cN of positive density, some m, n"S sat-
isfy T—n£H and hence fl(m —ri)={wm, co,)=0. O



62 N. ALON AND Y. PERES

Bourgain’s construction is difficult; thus we note

Fact 3. From any sequence {&>} satisfying the conclusion of Fact 2, one can
easily construct a Poincare set which is not Van der Corput.

Proof. By the stationarity of {cor}, the sequence {(a>,, oo0}} is positive definite,
so by Herglotz’s theorem [6], there exists a positive measure /< on the circle, such
that B (ri)= (tu,,, ) for all n. From (con, v)=0 0 it easily follows that /r{()}=0.
(Indeed, {con—cv} is stationary and hence there is a positive measure v so that
i)(nN)={(0,, —cv,w0—cv) =B(ri)—c2 This implies fi=v+c2S0 and p{0}écr.) Thus
H={n=-0\B(n)=0} is the desired Poincare set. O

If we ignore the geometry and concentrate on the combinatorics of Fact 2,
we get

Fact 4. For some K,,, the edges of the complete graph on N can be 2-coloured
so that
I. there is no white Clique of size KO,
Il. there is no black Clique ofpositive upper density, and
I11. the colouring is stationary: {/,/} and {i+n,j+n} are coloured identically.

H. Furstenberg and B. Weiss [private communication] have given an elegant
example which shows Fact 4 with Kn=3: Colour {/,_/} white if for some integer
X, i—=xs, black otherwise. There is no white clique of size 3, because of Fermat’s
last theorem with exponent 3; there is no black clique of positive density because
the set (x3p€EN is a Poincare set (see [3]). O

2. Two Ramsey-like functions

Definition. For 0<c<I, define a function Jic: N—N as follows: Ac(k) is
the minimal N such that from any stationary sequence {cu,|OLLIn-*N} in Qc, K
elements can be extracted, no two of which are orthogonal. Fc(k) is defined similarly,
without the stationarity constraint.

Clearly nc\rc

Fact 5. Fe(2)= Tc(2)=[C 4+ L

Proof. Put fv=jvc=[c_20+1 and d=\ 1—Tv)c2 Let A be an orthogonal
by N matrix whose first column is the vector (c, ¢, ..., ¢, d). Let v be the N-di-
mensional vector (1,0, ..., 0), and let w0,...,a>N 2 be the first J»—1 row vectors
of A. Clearly 0),,dQc and (con,<u)=0. Thus FJ2)*"AQ2)>N—L It remains
to show that TG2)~JV. Indeed, if this is false, there are Jv orthogonal vectors
{co0,,|0s«<JV} in Qc. Bessels inequality \(v, cu)|2= cs-JV>l gives the
desired contradiction. O

Fact 6. Fc(k):*R(NC k) where R(N, k)*| a,_j | is the Ramsey number
corresponding to N and k (see [4]).

This is immediate from Fact5. O
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The upper bound above is not tight. For Ac we do not have a better upper
bound. Regarding lower bounds we note

Proposition 1. Jlc(k) does not increase linearly with k,for some 0<c< I.
Proposition 2. There exist 0< c< 1, 051 and an increasing sequence {/g|/er1}
satisfying Tc(k,)é~k1 for all I.

Proposition 1 follows from Fact 2; Proposition 2 is a consequence of the fol-
lowing result, due to Frankl and Wilson [2]:

Theorem. [2]. LetFF be afamilyofsubsets of {1,...,«} such thatfor every r:rr,
|F|=/c, andlet q<k be aprimepower. | feverydifferent F,Ff iF satisfy \FC\F'\ f
Nk mod q then \M\ =

Proof. Denote n=2\ N=

of size — . Define vectors {cu,}-" in R" by
(o}

wi = n~122«1fj—)
where 1P is the indicator vector of F.
Define also v=-—n~12(1, 1, ..., DER". For I~isN we get
ME = IKIT =1, M «>= 5=
Cixa>j <\Ff\Fj\ = n/8 = (mod

4=-" is a power of 2. Thus the theorem cited above shows that any subset S' of

{cti, ..., ¢%} which does not contain orthogonal vectors, satisfies

where h(x)=—xlog x—1—x) log (L—x) is the binary entropy function. Any X
smaller than the entropy ratio above will do. O
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A THEOREM ON ANTI-INVARIANT MINIMAL
SUBMANIFOLDS OF AN ODD DIMENSIONAL SPHERE

M. KON (Hirosaki)

Introduction. Let M be an (n+ 1)-dimensional anti-invariant submanifold, tan-
gent to the structure vector field £, immersed in a (2n+l)-dimensional unit sphere
S2'4"lwith Sasakian structure ((p,b,t],g9). We put TXM)* = (p2Tx(M)=Tx{M) —{b},
where TX(M) denotes the tangent space of M at a point x. We consider the restric-
tion of the sectional curvature K of M to TX(M)* for each x, which will be denoted
by Khand called the horizontal sectional curvature of M. If the second fundamental
form of M vanishes on TX(M)* for each x, then M is said to be totally contact ge-
odesic (cf. [2]). In this paper, we will prove the following result, which corresponds
to a theorem of Urbano [1].

Theorem. Let M be an (n+I)-dimensional compact anti-invariant minimal sub-
manifold immersed in S2'+1 tangent to the structure vectorfield bof S2+L If Kh>0,
then M s totally contact geodesic.

1 Preliminaries. Let S2'+1 be a (2«+I)-dimensional unit sphere with Sasakian
structure (o, b, f], g). Then the structure tensors satisfy
q2X =-X+r,(X)b, <pb=0, >?(<K)=0, 4(0 = 1,
Vxb = <PX (WPY =-g(X,Y)b+tlY)X
for any vector fields X and Y on 52n+1, where V denotes the operator of covariant
differentiation with respect to the Levi—Civita connection of S2%1 Let M be an
(n+ I)-dimensional submanifold immersed in 52n+1L We denote by the same g the
induced metric on M from that of S2+, and by V the operator of covariant dif-
ferentiation with respect to the induced connection on M. Then the Gauss and Wein-
garten formulas are respectively given by
VXY =VxY+B(X,Y) and WxV =-AvX+DxV

for any vector fields X, Y tangent to M and any vector field V normal to M, where
D denotes the operator of covariant differentiation with respect to the linear con-
nection induced in the normal bundle of M. We call A and B the second fundamental
form of M and they satisfy g(B(X, Y), V)=g(AvX, Y). We denote by VB the
covariant derivative of B and we define the second covariant derivative of B by

(VB)(X,Y,Z,W) =DX((VB)(Y, Z,W)) —VB)(VXY,Z ,W )~
~(VB)(Y, VXZ, W)-(VB)(Y,ZXxW)
for any vector fields X, Y, Z and W tangent to M.

5
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Notice that B and VB are symmetric. Let R and R1- denote the curvature ten-
sors associated with V and D, respectively. Then we have

(1.1) {VB)(X,Y,Z, W) = (VB)(Y, X,Z, W)+ Rx (X, Y)B(Z, W)-
-B(R(X, Y)Z, W)-B(Z, R(X, Y)W).

Suppose that M is tangent to the structure vector field £ of Sl and anti-
invariant with respect to q@ Then BX(M)=Tx(M)z for each xdM, where TXM)
and TAM)-1 denote the tangent space and normal space of M at X, respectively
(see [2], [3]). Then the second fundamental form of M satisfy

(12 VYc = 0,

(1.3) B(X,c)= €, B(q,0 =0

for any vector field X tangent to M. Moreover we have

149 Dx <pY= <PKY, AWNXY=-<pB(X,Y)+g(X,Y)Z-r,(X)Y
for any vector field X and Y tangent to M. Further

(1.5) AVXY = AiprX

for any vector fields X and Y tangent to M and orthogonal to Q From these equa-
tions we obtain

(1.6) g(R£(X,Y)(pZ, cpW) = g{R(X,Y)Z, W)
for any vector fields X, Y, Z and W tangent to M and orthogonal to

2. Proof of Theorem. Let UT(M) be the unit tangent bundle of M. Define a func-
tion /: UT(M)-~R by f(v)=g(B((p2v, v), <pv)=g(B(V, V), <pv)-2q(v)g(<pv, <pv).
Since UT(M) is compact,/attains the maximum at a unit vector v tangent to M at
a point x. For any unit vector n tangent to M at x, let <x®)={y(t), V(t)), — 9H
be a curve in UT(M) such that y(t) is the only geodesic in M with y(0)=x and

y'(0)=u, and V(t) the parallel vector field along y with V(0)—v. Then, using (1.2)
and (1.4), we obtain

0 = dfy(u) = 0d/dt)g(B(V(t),V(1)), <pV(®)(©) = g((VB)(u, v, V), cov).
From (1.2) and (1.4) we also have
(2.1 0 ' d-fv(u, u) = g((V2B)(u, n, Vv, v), (pv).
Now suppose that vis orthogonal to £ Then (1.1), (1.5) and (1.6) imply
g((V2B)(u, u, v, v), () = g((VB)(u, v, u, v), cv) =
= g((V2B)(v, u, u,v), () +g(R-L(u, v)B(u, v), (pv)-
-g(B(R(u, v)u,v), (pv)—g(B{u, R(u, v)v), () =
= g((V2B)(v, v, u, u), (pv)+2g(R(u, v)v, (pB(Y, v))+g(R(u, v)u, (pB(v, v)).
Substituting this equation into (2.1), we obtain
(2.2 0 mdZv(u, u)=g((VB(v,V,u, u), (pv)+2g9(R(u, v)v, (pB(u, v)) +
+g(R(u, v)u, cpB(v, v)).
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Let UTXM) be the fiber of UT(M) over x. Then J\UTX(M) attains the maxi-
mum at v orthogonal to £ by the definition off and so, if B(t), tE(—0, <§ is a curve
in UTX(M) such that (0)=v, \B'(t)\=\ and R'(0)=u, where uis orthogonal to
we have, by (1.5),

(23) 0= d{flUTx = (dJelt)g(B(B(t), /1(0), #40)(0) = 3g(B(v, V), cpu)

and

(24)  0is P(/|C/Tn(M)),(Mn) = 6g(B(B'(0), # #'(0))+3g(B# *), #"(0)) =
= 69(B(u, v), q>u)-3g(B(v, v), gw) = 6g(B(u, n), (pv)—3f(v).

Since (2.3) is true for any unit vector un orthogonal to v and £, we have f?(a, p)=
=f(v)cpv, and hence, g(Avwv, u)=0 for any unit vector n orthogonal to vand £ and
g(Avwv,v)=/(v). Here, choose an orthogonal basis {; e,,..., <} of TXM) for which
g(Awvei, «?)=), (=1,  w), h,—(v), g(A,peh eR)=0 (/#)e Then (2.4) gives

(2-5) f(v)-2ht” 0

foreach /(=1 = «—1). Therefore, from (1.3), (1.4), (1.5), (2.2) and given that M
is minimal, we obtain

Os_iIdZ#,.,#=_2’l #I# -2#.

1= 1=

Since Kh>-0, it follows that h =f(v)I2 for /= 1, ..., n—L Thus we have O=trace #,,=

= («+ 1)/(p)/2, from which f(v)=0. From the definition of/ we see that f(—u)—
= —+#{u). Since vis a maximum for/, we have /=0. Moreover, by a method quite
similar to that used to obtain (2.3), we have B(v, r)=0 for any vector v orthogonal
to £ Hence M is totally contact geodesic.

Remark. Let RP" be a real u-dimensional projective space of constant curva-
ture 1 imbedded in a complex «-dimensional projective space CPn with constant
holomorphic sectional curvature 4 as an anti-invariant and totally geodesic sub-
manifold. Then the circle bundle (RP", SI) over RP”is a totally contact geodesic
anti-invariant submanifold of 5211 (see [4, p. 148]).
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LOTS AND GO SPACES

C. R. BORGES (Davis)

If S isalinear order on a set X, we let r(=) denote the topology on X which
is generated by all the open intervals Ja, b[={x£X\a<x<b). A space (X,r) is
said to be weakly orderable (called KOTS in [7]) if there exists a linear order
on X such that «(s ). «. (Clearly, a compact KOTS is a LOTS.)

For our purposes, it suffices to recall that GO-spaces are characterized as
topological subspaces of LOTS; therefore, it is easily seen that GO-spaces are KOTS.
The behavior of GO-spaces is amazingly different from that of LOTS, except when
they are connected or compact (in either case they are LOTS). Our results prove
that connected and locally connected KOTS are LOTS, but connected KOTS may
fail to be LOTS.

The following result has several interesting applications which include simpler
proofs of known results.

Theorem L Ifa LOTS (E, p) is connected then it is maximally connected and
locally connected.

Proot. First, let us recall that a connected LOTS is locally connected. (See,
Proposition 1 in the Appendix or Corollary 2.3 and Theorem 4.2 of [3].) Let
j: X4~<E be a continuous bijection from a connected and locally connected space
X, and let us prove thatj is an open function: Assume U is an open connected sub-
set of X such thatj(U) is not open. Then, sincej(U) is connected, we get that j(U)
is a (bounded or unbounded) interval with an endpoint which is not an end of E.
Then, letting A=j{U) and p(A) be the simple extension of p by A (see [1]), we
get that j: A—E, p(A)) is still a continuous bijection, which leads to a contradic-
tion, since (E, ju(Ad)) is not connected (if A=[ab[ then [a,N and ]-«-,a[ dis-
connect (E, p(A)); the remaining cases are similarly resolved). Since X is locally
connected it then follows immediately thatj is an open continuous bijection; hence
j is a homeomorphism.

Consequently, by Theorem 4.1 of [2], p is a maximally connected and locally
connected topology.

Example 5 shows that the euclidean topology of the real line is not a maxi-
mally connected P-topology, where P stands for a variety of topological prop-
erties.

The proof of Theorem 1 automatically establishes an equivalent formulation of
this result which appears more convenient.

Theorem Y. Let j: X-»E be a continuous bijectionfrom a space X to a LOTS
E. If X is connected and locally connected thenj is a homeomorphism and E is locally
connected.
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It is known that connected GO-spaces are LOTS (e.g. Lemma 6.1 of [5]; it
also follows automatically from Theorem 1.13 and 1.14 of [4]); hence, connected
GO-spaces are automatically locally connected. It is therefore noteworthy that the
space M of Example 5is a connected KOTS which is neither locally connected nor a
LOTS (nor a GO-space).

Theorem 2. A connected and locally connected KOTS (X, r) isa LOTS.

Proof. Let g bea linear order on X such that r(g)ci, Then the iden-
tity map j: (X, © —T, t(=)) is continuous. Therefore, by Theorem 1',/is a hotneo-
morphism.

Theorem 3 (Theorem 4.2 of [3]). Let (X, ©) be a connected 7j-space in which
there exist two nests ofopen sets AE and 01 such that TEU&? generates a 7) -topology
on X. Then X is locally connected if and only if TE\AOt. is a subbasefor the topology
of X.

Proof. By Lemma 3.1 of [3], (X,i) is a KOTS. By Theorem I, (X,r) isa
connected and locally connected LOTS if and only if (X, z) is locally connected.
This completes the proof.

According to Michael[6], if t#c2i and A ~ —X is a continuous function
such that JI(A)€A, for each then Ais called a selection for X. Michael [6]
essentially proved the following result (see Lemmas 7.2.3, 7.4.1 and 7.5.2 of [6]).

Proposition 4 (E. Michael). For any Hausdotjfspace (X, 1), (d)=s(c)=>-(b)-=>().
I f X is locally connected or connected then (a), (b) and (c) are equivalent. If X is also
compact then (a), (b), (c) and (d) are equivalent.

(@) There exists a selection f: &r(X)-+-X,

(b) There exists a selection A C(X)~-X,

(c) There exists a linear order on X such that the order topology is coarser than z
(i.e. X isa KOTS),

(d) X is a LOTS.

Remark. From Theorem 2 and Proposition 4 one immediately gets that con-
ditions (a)—(d) of Proposition 4 are also equivalent in any connected and locally
connected space.

Surprisingly, there exist er-compact metrizable spaces for which conditions
(a)—(d) are not equivalent.

Example 5. Let M be the subspace of the euclidean plane defined by
M —{(*, sin 0 < x< 1ju {(0,0)}Uj|v, sin I—1< x < 0j.

Clearly, M is connected but not locally connected (at (0, 0)) and M is a u-compact
metrizable space. The function n: M-]—1, 1], defined by n||x,sin j=v, is

clearly a continuous bijection which is not a homeomorphism (since 1—1, 1 is
locally connected).
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Since 1—1, 1] is homeomorphic to E 1, Example 5 shows that

(i) The euclidean topology of the real line is not a maximally connected regular
(normal,Lindelof,  metrizable) topology, since the topology of 1—1, 1 is
strictly contained in the quotient topology tn and (J—1, 1, r,) is homeo-
morphic to M,

(i) M satisfies condition (c) of Proposition 4 but M is not a LOTS: For
X, YEM, let provided that n(x)s2n(y). Then the si-topology on M is
{n~1(UN\U is open in ]—L, 1} which is coarser than the euclidean topology on M.
Therefore, M satisfies condition (c) of Proposition 4. However, M is not a LOTS,
since it is connected but not locally connected.

Appendix

The following result is folklore but there appears to be no elementary proof of it.
Here is one.

Proposition L If (X, t) is a connected LOTS then X is locally connected.

Proof. Let :i be the linear order on X which generates t. Suppose X is not
locally connected. Then there exists Ja,ii[cl which is not connected; say, Ja, b[=
=UOV suchthat U,Vft and (7ME=0. Pick c,df\a,b\ such that c£{7 and
deV- say c<d. Then U'=(Un[c,rf])U Jc[ and V'=(vr\[c, fDU]d, -[ are
open disjoint subsets of X such that X=C/'UV', a contradiction.
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ON ESSENTIAL RIGHT CONGRUENCES
OF A SEMIGROUP

R. H. OEHMKE (lowa City)

1. Introduction

In ring theory one can give several approaches to the introduction of the con-
cept of semisimplicity and a large number of equivalent formulations of this con-
cept [5, 13]. Analogues of some of these formulations have been made, and studied,
for semigroups [4, 6, 7, 8, 10, 11, 12] in terms of ideals or congruence relations. It
seems possible that suitable and effective analogues can be made for each of these
ring theoretical formulations in terms of congruence relations. However, unlike
the situation for rings most of these analogues give inequivalent formulations in
semigroups.

One of the weakest of these is the nonexistence of a proper, essential right
congruence. A right congruence g in a semigroup S is essential if for any right
congruence a we have gfl =/ (the identity relation) implies a=i. The main
result of this paper is a characterization of semigroups with the d.c.c. on right ideals
and having no proper essential right ideals and having no proper essential right
congruences.

The first step in this characterization is a description of the lattice of right
ideals in such a semigroup. Our results of this description in Section 2 should be
compared with the work of Feller and Gantos [2] and Fountain [3]. While the class
of semigroups studied in these two papers are defined quite differently than the
class in this paper there is a striking similarity in the results; thus, suggesting a com-
mon area of investigation.

In the subsequent sections the main technique used is the examination of a
selection of proper right congruences and the implications on the multiplicative
properties obtained from the assumption of nonessentiality.

2. Necessary conditions

We shall assume our semigroup S has an identity element 1. A right congruence
on S'is an equivalence relation a such that if a relates a and b (written aab) then
for any c£S we also have (ac) a (be). Two distinguished right congruences are
present in every semigroup: z, the identity relation, and v, the universal relation.
They are defined by

alb <sa=b avbo a bES.

Right congruences are ordered in the same way as equivalence relations are ordered.
We write a”BR. The intersection and union of two right congruences a and B are
written respectively as allf and aU/i. The intersection of a and R is their inter-



74 R. H. OEHMKE

section as equivalence relations. Their union is the smallest right congruence that
contains both @and RB. It is clear that the union is well-defined.

A right congruence a is said to be essential if for every right congruence all z
we have x o a~ 2. Clearly, vis an essential right congruence. We say a is proper
if er*v.

Let @ be the class of semigroups with an identity element 1 and having no
proper essential right congruences.

Theorem 1 Let S be a semigroup in Sh. Every right ideal of S is generated
by an idempotent: i.e., ifJ is a right ideal of S then there is an idempotent m such that
J=mS.

Proof. LetJ be the set of all right ideals of S not generated by an idempotent.
Assume J is not empty. We can partially order ./ by inclusion. Let SP be a linearly
ordered subset of J . Let 7= UEP. Clearly, 7 is a right ideal of S. If I=mS for
some idempotent m then mdl and mdja for some lais if. Butthen mSQI,,Ql=mS.
Therefore mS—Ila and 1/iJ m This, of course, is a contradiction, so we must
assume 1dJ".

With the assumption that .J is not empty we can apply Zorn’s Lemma to ob-
tain a maximal element 1 of J . Let g be the right congruence defined by aob if
and only if

{w: audl} = {r: bvdl}-

Assume o is a right congruence distinct from z and such that ctlle= Z

Let aab and udS where audl and budi. Such a pair must exist since
crlle= Z We have audauS and therefore ai/SUTfi. Thus, auSUId.f since
I is maximal in . f. Therefore there must be an idempotent m such that auSU/ —mS.
Either mdauS or mfl- If mf I then m SfIfm S and mS=1, a contradiction.
So we assume mdauS and let aus—m. Recall that budi implies i=busdL Now
since aob we have (aus)o (bus) and mai. Therefore (mi') a (ii") for all i'dl.
But 1QmS and mis a left identity for mS. Thus mi'—i', (i') n (ii") (since V and
ii" are in 7) and also i'aii'. However, we must then have i'=ii' since gljo= L.
This says that i is a left identity for I, /*=/ and iS=I. Again, we have a contradic-
tion. Hence we must have ¥ empty and thus every right ideal is generated by an
idempotent.

Theorem 2. Let S be a semigroup in 3>. The set of right ideals of S is linearly
ordered by inclusion.

Proof. Let J and 7 be two right ideals. The right ideal JU | is generated by
an idempotent m; i.e., mS—J(JI. But then mdJ or mdL It follows that either
J=mS or I=mS and either 1QJ or JILL

The next theorem shows that every right ideal that is not minimal has an im-
mediate predecessor.

Theorem 3. Let S be a semigroup in S. 1fJ is a right ideal that is not minimal
then there is a right ideal K of S such thatfor any right ideal | we have JLILK im-
plies 1=J or 1—K

Proof. Let J=mS and Um={x: xS—mS}. Let K=J—Um. If udS and
kdK then kudJ since/ is a right ideal. If kuS=mS$S then there is an sdS such
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that kus=m. But then mfkS, kS=mS and kf_Um. Since this is a contradiction
we must have ku§ Um. Hence K is a right ideal. But mi K so JAK. Now assume
JIfIIfK and IfK. Let I=tS where tis an idempotent. Since tfj and t$K
we must have tfUm. Therefore tS=J and /=./. This completes the proof of the
theorem.

It is now clear that if S is in Q and if the sets Umare defined as above then S is
the disjoint union of the  s.

3. The descending chain condition

We let f be the subclass of  of all semigroups that have the descending chain
condition on right ideals.
By the results of Section 2, for semigroups S in  we have a finite chain

s=/»iAi...i1 |

of right ideals of S, each right ideal of S is in this chain and each right ideal is gen-
erated by an idempotent.
We let n. be the set of generator of /,. So Utcontains an idempotent and li+l=
Therefore Ut—t and S=UfMx=Uf)UfM.1=Ufd...fUt.

Theorem 4. |f S is a semigroup in  then every right ideal is two-sided.

Proof. Let i be the largest integer such that there is a uf Ut and a vfli+l
such that uv is an idempotent e of U,. Assume vfUj where i-cj and assume /'is
an idempotent of Uj. Since f=eS and fff we have ef=f. We need the fol-
lowing lemma.

Lemma. If wfUj then uwfU,.

Proof. We first prove this result for w—f. We have (uf)v=u(fv)=uv=e.
Therefore m=eSQufSf /, and ufi U,. If wEUj there exists ay such that wy=f
But then uwy=ufE£Ui. Therefore we must have uwiUt and the lemma holds.

To return to the proof of the theorem we assume v andf are as above. Since
vEfS=1j wemusthave vfif. Assume vfE£ Uj. By the lemma we then have u(vf)=
= £/. But u(vf)=(uv)f=ef=fiuU{. Hence we must have vfi Uj, i.e., ifEUk for
some k>/. Let g be an idempotent of Uk. We have (fu)(vf)=f(uv)f=fef=ff=f.
But then fuiUj and vfEUK. This contradicts our choice of i. Hence for every i
and every uiUt and every idempotent e in Ut we have uv=e only if viUr for
some rAi.

We are now ready to show f is two-sided. Let wf, uif and uw$f. (This
would contradict/; being a two-sided ideal.) Then uwf£Uk for some k--i. There-
fore, if g is an idempotent of Uk there exists an x in S such that (uw)x=g and
{gu)(wx)=g. But gufUk and wxif. Hence we contradict the result of the above
paragraph. Thus f is a two-sided ideal of S.

Corollary. If ifj, then UjUjfUj. In particular, Uj is a subsemigroup.

Proof. Assume sf£ Uh vfUj. Select idempotent/ and e, respectively, in Ut
and Uj. Let n and t be elements of S such that st=f and vu—e. Since eS is a
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two-sided ideal, te is in €S and thus e(te)~te. But then (se)(te)=s(ete)=ste=
=fe=re. We also have e(se)=se so setUj. Now consider (sv)u=s(vu)=se(L Uj.
Also, sv=s(ev)=(se)vEeS. Therefore we must have svf Uj and UtUjQUj.

Theorem 5. IfS is a semigroup in <€thenfor each i we have Ui is a right group.

Proof. Let utUt and e an idempotent in Ut. There exists an s in S such
that us=e. Assume s£Uj. In the proof of the above theorem we saw that we
must have j Si. Now u(se)= (us)e=ez=e. We have se in the two-sided ideal eS.
Again since se serves as a right inverse of u relative to e we must have set UkC\eS
for some k”i. Therefore set Ut. Hence we have that Utis a right group.

Since Utis a right group and contains idempotents we can write [1]

Ui = GiXKi

where (7; is a group and Ktis a right zero semigroup. We will denote the identity
element of < by 1;. Every idempotent in Utis of the form (If, /c) for some kfKi-
Every such idempotent is a left identity for the ideal

We wish to relate the multiplications of the individual U f to the multiplica-
tion of S.

We continue to assume S is in €.

Theorem 6. For each pair i andj such that there is a homomorphism cpit
of Gi into Gj such that (pjk°(Pij=<pik and su°h that

D (gi, kt)(gj, ki) = (opij (91) 9] ki)
2) (9i, ki)(gi, k) = (ai <), d((gi, k T kj))
for all (gi, kJtGiXKi and (gj, kftGjXKj.

Proof. Let e be any idempotent of Uj and s and t elements of Ut. Consider
the mapping a(s)=se of Utinto Uj. (See the corollary to Theorem 4.) We have
OL(st)=(st)e=s(te)=s[e(te)] =(se)(te) = u(s)!x(t). Hence a is a homomorphism.

Now write e=(lj,kj) for some kjtKj. Let a(s)=(gj, kf) for some gjtGf
and k'jtKj. From a(v)c=a(j) we see that kj=k'j, i.e., tx(s)=(gj, kj). We
write s=(gi,ki) and c.(5)=([i(gi, kB, kj). Let k\ be a second element of Kt.

Then
«((go £,)(1;, K)) = «((go kf) = (B(gi, K), kj)
and

«((ft, ki)(\i, K)) = (fHai, ki), kj) (B, K'i), kj) = (B(gi, ki)B(\i, k\), kj).

Since a is a homomorphism we must have (/?(1;, k'f, kj) an idempotent and hence
/1(L;, k'i)=\j. Therefore B(gi, kB =R(gi, kB and R is independent of kt. We shall
write 8 as (pij. The fact that stJis a homomorphism is immediate from the result
that a is a homomorphism.

Next let

(9j, ki)(gi, kB = (hj, 1j)
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for some hj~Gj and IjEKj. Then
(hj, 1) = [(gi, ki)(gi, k91(lj, 1j) =

= (g, kpL(ai, ki)(1j, 1] = (@, K)(<pidgi), 1j) = (giCPijigd, Ij).
Also

(hj, 1) = (@, ki) (1j, kpI(gi, ki), = (gj, kL, kj)(gi, fc)]

Therefore Ij must be the ~-component of (lj, kj)(gi, /c) and hence is independ-
ent of gj.

4. The class 8

We shall define the class Si to be all semigroups S such that
1) S is the union of disjoint right groups f/;=G;XAj for /=0, t;
2) Q0= GO has an identity element 1 for S;

3) (J Ut is a two-sided ideal of S for r—0,1, 1

i=r

4) the multiplication on S has the properties described in Theorem 6.

The class # is contained in the class Si.

We wish to examine the right congruences on semigroups S that are in Si.
In [9], one type of right congruence was described for a slightly more general class
of semigroups than the class Si. If we restrict ourselves to semigroups in Si we can
give an improved version of that result. The construction of this type of right con-
gruence is as follows.

Let W be a subgroup of G, and for each coset Wa of Gt let abe an equivalence
relation on Kt such that

(4.1) k(@) | implies i//((g;, k{ k)(ragit@))ip((gi, k9, /).

Let e=(lIt,kt) be a specified element of U, that isin W XL where L is an equiv
alence class of fjt. Define a relation o on U, by

(9,J9)Q(g'tI't) g 'tgrleW and lt(rjl't.

By Theorem 1 of [9], g is a right congruence on Ut. Next we define a relation a
on S"by
c €d <>(ec) q(ed).

We can again cite Theorem 1 of [9] to give us the result:
A relation a on S is a right congruence on S for which the right ideal Ut inter-
sects every equivalence class non trivially if and only if a is constructed as above.
Still using the results of [9] we see that if V is any equivalence class of < then
VIMut=wWaXL', where L"is an equivalence class of l'a. It also follows immediately
that 1ae and ais independent of which idempotent we choose in WXL. We will
say a is defined by (W, Ia,e).
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Theorem 7. Let a be a right congruence on S such that Let T be the
equivalence class of a containing 1. Assume TC\UtX0. Then a is contained in a
proper right congruence of one of the following types:

1) qis defined by (Gt, q, €);

2) qisdefined by (W, I, €) where Mais the universal relation on K,for all a£Gt.

Proof. Let a be a right congruence such that TF\UtVO. Let V be any equiv-
alence class of a and xfV. Let ydTCiU,. We have lay and x ayx. But yxdUt.
Therefore VD U,X0- Thus a must be a right congruence as constructed above.

If TC)Ut=GtXL then a is a right congruence of type 1). So we let TC\U,=
=WXL and assume WXGt. For each a£S we let nabe the universal relation
on Kt. Let e be any element IVXL. We define a right congruence o using
(W, na, e), i.e., a right congruence of type 2). It follows immediately that if (g;, kt)
and (gj, kj) are two elements of S then

(at, ka B (9], ki) o (pit(gi)<Pj,(g))~4W.

Therefore it is also immediate that a”Q.
We now consider the case that 7T1(7t=0.

Theorem 8. Let a be a right congruence on S such that TC\U,=0. Thenfor
some r”t, a is contained in a proper right congruence g defined by the decomposi-
tion S=UUV where U=U0U ... UUr"*1 and V= Ur(J... U Ut.

Proof. By the corollary to Theorem 4, U is a subsemigroup of S. Since V is
a two-sided ideal of S it is clear that the decomposition VUU corresponds to a
right congruence which is proper since T(-MJOX$ and TC\U,=Q

Assume r is the smallest integer such that TC\ Ut=0 for all i such that r”i~t.
Let W be an equivalence class of a such that WnU kX0 for some k*r. Assume
in addition that WCIUjV0 for some j</\ Let WEWH Uj, xd W M Uk and zETC\
flt7,_i. Since z£1j=wsS there is an sdS such that z=ws. But then wex im-
plies zoxs. Now xs£T and xsdUi for some i*k. Hence we have a contradic-
tion. Therefore WQV and, more generally, the decomposition corresponding to o
is smaller than VUU, Therefore o”g.

5. The main theorem

We continue to assume that our semigroup is in class Jd. The first three of the
following theorems relate properties of S to the properties of certain right con-
gruences being essential.

Theorem 9. For the following are equivalent:

1) For each 17trXt and every idempotent x in f/r_, there is an idempotent y
in Ursuch that yx=y and if a, beLr-i then ya=yb=>a=bh.

2) The decomposition of S into the two subsets U—UOU...UUr, A and
V=UrU...UU, corresponds to a nonessential right congruence n on S.

Proof. We saw in Theorem 8 that the relation 4 defined in 2) was a right con-
gruence.
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1) =>2). Define a relation < by aab if and only if there exists a u such that
{xu, yu)—{a, b) or a=b. The elements x and y are as defined in 1). Clearly a is
reflexive and symmetric, so assume {xu, yu) ={a, b} and {xv, yv)={b, c). If ubyS
then xu=yu=u and a=b since nis also in xS. Butthen aac. Thus we assume
u, v8yS. Therefore xu, xv are in Ur_, and we could equally well have chosen u=xu
and v=xv and u, vfxS. Now if bbyS then b=yu=yv and therefore by 1) we
have u=v. Butthen a=u—v=c and again aac. If b(xyS then u=v=b, yu—yv
and aac.

We have shown a to be an equivalence relation. That < is a right congruence
follows immediately. Every nontrivial equivalence class of a contains exactly one
element of U and one element of V. Therefore gDa=2z and g is nonessential.

2) =»1). If q, as defined in 2), is a nonessential right congruence on S then
there is a right congruence aA | such that gDa—z. A nontrivial equivalence
class of a contains exactly one element from U and one element from V. Assume
aab where abU and bfV. In fact, assume abU-t where /<r. Let x be any
idempotent in 1/,-xQaS. There exists a c£>S suchthat ac=x and thus x a be.
Since x(bc)=bc we have (be)a (be)2 But both be and (be)2 are in V. Therefore
be is an idempotent. Call ity. We have x ay, x ayx and hence yx=y. If y€Ut
where k>r and z is an idempotent of Ur we have xzayz. But xzf Ur,yz({ Ur,
xz"yz, and both are in V. This contradicts the property gD\a=i. Therefore
we must have y(LUr.

Finally assume a,bE£Ur-1 such that ya=yb. Then a—xaaya, b—xb ayb
and aab. Again, since gD\a=/, we must have a=b and 1) holds.

Theorem 10. For S in .LLthe following are equivalent.
1) G, is a group having no proper essential subgroups.
2) Any proper right congruence as defined in 2) of Theorem 7 is nonessential.

Proof. 1)=>2). Assume 4 is a right congruence as defined in 2) using the sub-
group WAG,. Since G, has no proper essential subgroups there is a subgroup
H of G, such that HDW={ 1} We now define a relation a by aab if and only
if a=b or a=(g,,kt), b=(g',,k',) are in Ut and g',gflbH and kt=k't. It is a
straightforward computation to show a is a right congruence on S. An element
¢, not in U,, lies in a singleton equivalence class of a. Two elements of U, are equiv-
alent if and only if their # components are the same and their G, components lie
in the same coset of H.

Now assume a”b and af{gMa)b. We must have a and b in U, in order to
satisfy aab. Write a=(g,,kt) and b=(g',,k't). To satisfy both agb and aab
we must have ¢',gplbHD\W and hence g',—gt. Tosatisfy aab we must have
K, =k't and hence a=bh. Thus g is not essential.

2)=>1). Assume IF is a proper essential subgroup of Gt. Use any idempotent
e=(It, ht) and IF to define a right congruence o as in 2). There must exist a right
congruence such that aD)g=Z. Let a and b be a pair of elements, not
related by Q but related by a. Write a=(gi, k)b If, b=(gj, kfi- Uj where /s7.
Then (<Pij(gi), kj) a (gj, kf). Let g=<ij(gi)gfl We must have (\}, kf)a (gn kf)
for all positive integers n and also (It, kt) a {(pjt(9)", k,) for all n and all k,fKt.
But IF is essentia] so some power of cpjt(g) lies in IF, say (Pj,(g)mbW. Then
(b, kf) g (it(g)m k,). Since £>n<x=Z we must have (pj,(g)=It. We now have
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@it(gi%@jt(gj)ﬂ: Pjt(g)=hENerm Therefore agb and we have a contradiction.
Therefore W cannot be an essential subgroup of Gt.

We temporapily assume S has the d.c.c. and that it has no proper essential
right congruences. If t>0 then there are right congruences as described in 2) of
Theorem 9. Hence 1) of Theorem 9 holds. If t=0 then 1) of Theorem 9 holds
vacuously. We will only consider the case 0. By 1) of Theorem 9 we can con-
struct asequence 1,et, ofidempotents such that where fe=max {/,j }
and if a,bEUj-.1 then eja=ejb-=>a=h.

We say a right congruence a is generated by a pair [a, b) if a is the smallest
right congruence such that aab.

A partition ' of Ktis said to be ~-admissible if whenever 1T and S£S we
have il/(s, DT\j/(s, V).

Theorem 11. Let I be an S-admissible partition of Kt. Let e, be as defined
above. Let o be the right congruence determined by I and et as in 1) of Theorem 7.
Then there exists a right congruence aj* L such that aC\Q=1 and a is of one of
the following two types.

1) a is generated by a pair of elements (gt,/) and (gt, It) in Ut.

2) a is generated by an and an idempotentf in Ut.

Proof. Let I, e, and 4 be as defined in the statement of the theorem. Since
we are assuming there are no proper essential right congruences there must exist a
right congruence <1z such that gG<t=£. Assume there is a Ur with distinct
elements a and b in Ursuch that aab. Of all such right congruences we assume
we have chosen one which maximizes r. Now assume r<t. Define a relation d by
cad ifandonly if c=d orthere exists a pair ¢', d" in Ursuch that ¢'ad', c=er+1c',
and d=er+1d'. We will show d is transitive. Let {er+1c\ er+1d'} M {er+va\ er+lb'}*&
where a'ab',c'ad' and a',b',c',dfiUr. If er+ic'=er+la’' then by the way we
choose er+l we have c'=a' and d'ab'. Therefore (er+1d") d (er+lb") and d is
transitive. Clearly d is an equivalence relation. To show it is a right congruence let
S”%er+18S then if (er+1c") d (er+1d") where ¢' and d' are in Urand c'a d' we also
have c's, d's in Urand (c's) a(d's). Hence (er+ic's)a (er+1d's). If sder+lS,
c'sad's and c's,d's are in Uk for some k>r. By our maximization of r we
must have c's=d's and er+lc's=er+ld's. We now have that d is a right con-
gruence. Since e.er+lc'=etc’ and eer+ld'=etd" we have aC\Q—i implies
U(Tp=Z. But this contradicts our choice of a. Hence we must have r=t. So
assume (gn lt)ya(g't,/) where (g, 19*(g't,/") and both are in Ut. Multiplying
on the right by e,=(l,, kt) gives us (gt, kt) a (g{, Kt). But these two elements
are congruent modulo g. Hence we must have gt=g'tm The right
congruence generated by (gt, Iy and (gt,It) will have the desired properties of 1).

We now assume that for every right congruence a” z such that aC\g—L
and every pair a, b in any Urwith aab we must have a=b. So assume we have
a pair a, b such that a”b, afU:, b£Uj, i<j and aab. We can finda ¢S such
that ac=eJ_ 1. Hence eJ labc. Butthen (be) a (be)2 and both sides are elements
in Uj. Therefore be is an idempotentf) in Uj. We have (,xaf. If eJ la=cJ_1h
it follows that fji and fjb are in the same Uk and f)a af)b. Hence we must
have fja=fjb by our assumption on a. The converse works equally well so we
obtain

gj-ia =ej-ib ofjd =fjb.
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We use this property to show that the equivalence classes of the right congruence a
generated by ej 1and f) are doubletons and singletons. We now define a relation
o' by (ejc)o'(ej+1d) where cdd, cEUj_1 and dEUj. In the same manner as
above it follows that o' is a nontrivial right congruence and o:cia= |. We have
satisfied 2) using o'.

Theorem 12. For every idempotentf of U, and every pair of elements s, u in
U, ! we have
fs =fu=>s —u.

Proof. Let i7=all elements of the form (g,f) where/has the above property.
Since we are still working on the assumption that S has no proper essential right
congruence we have E/0. We let V=U', the complement of U in Ut. If
{g,In"V, s$U, and (g,I")sEU, then (g, I)su=(g, I)sv and uyv$ Ut-x im-
plies u=v and su=sv. Now if (g, I')’x=(g, I")w where x, w are in Ut_t then
there exists an x' and w' in 1 7 ,such that x=sx', w=sw'. But then (g, |')sx'=
={g,I")sw', x'—w' and x=w. Therefore we must have (g, /)€ U. Similarly, we
see U is closed under right multiplication by elements of U,,,x. The partition ob-
viously accepts right multiplication by elements of Ut. Therefore the partition
{U, V} is S'-admissible. Let g be the corresponding right congruence as defined
in 1) of Theorem 7 and using ef U. By Theorem 11 there exists a o, one of two
special types, such that o?+L and erfle= Z We first examine the second type,
i.e.,, 0 is generated by et xandf for some idempotentf in Ut. If a and b are ele-
ments of £/, ! such that fa="fb then et xa~et xb and a=b since et xis a
left identity for U ,”. Thereforef is in Uand o could equally well be defined using
f instead of et. Since fte,-x—f= ff we have et xgf and a contradiction.
Therefore g must be essential and hence equal to v. But this means V=0 and the
theorem holds.

So we shall assume the alternative that the only o such that (1% z and oC\g= Z
is when o is of the first type, i.e., «is generated by a pair of distinct elements (gt, /)
and (gt, It) in Ut. Since olN\g—z we must have (g, /,)fU and (gt I')<zV or
conversely. Assume the first. This means there are elements nand vin Ut_xsuch that
(gt,I'thu=(g,, I')v and (gt, Qu™ig,, I,)v. But then (gt, I,)u(0cC\Q)(g,, It)v. Hence
we have a contradiction and again V=0 and the theorem holds.

We are now almost ready to state our main theorem which gives a characteriza-
tion of semigroups that have the d.c.c. on right ideals and have no proper essential
right congruences.

First, we make the following definition: A partition I' on K, is C/,_j-transitive
if for every pair of idempotents / and V on U, of the form \[/(s, m,)—, i//(s', mt)=1I"
where s, s" are in Ut- Xand mt, mt are in K, there is a iid Ut- Xsuch that ij/(su, T,)I'1".

Theorem 13 (Main Theorem). Let S be a semigroup with identity and with d.c.c.
on right ideals. Then S has no proper essential right congruences if and only if all of
thefollowing hold:

1) There is a sequence of two-sided ideals S=/,"2/ ~ g 7.

2) Every right ideal of S appears in this sequence.

3) For each i, the set Ui ofgenerators of/ is a right group containing an idem-
potent. Write Ui=GiY,Ki where Gi is a group and Kt a right zero semigroup.
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4) Foreachpair i™j thereis a homomorphism (py: Gt-»s} suchthat <pkQPu~
=@k and a mapping dy: (GtXKH)XKj-+Kj such that duy(dk, y(ct, kj))—
=qig (cidk, kj) for all dk*.Uk,cfU i,kfK j andwhere k”j andwhere /=max {k, /}.

5) For i j multiplication is defined asfollows:

(Si> &) = (<Pij(gigi, kj),
@, &)(& *)) = (9jVijigi), 'Ijitei, kih kj)).
6) For each 1Sr~S.t and every idempotent x in Ut-k there is an idempotent
y in Ursuch that yx—y and also if a, bEUr-x then ya—yb implies a=b.
7) Gt has no proper essential subgroup.
8) If I is an S-admissible, Utransitive proper partition on Kt then there is
an S-admissible partition n on Ktsuch that " On is the identity relation on K,.

9) For every pair ofelements a, b in {/,_! and every idempotent t in U, we have
fa=fb implies a=b.

Proof. We first assume S is a semigroup with identity and with d.c.c. on right
ideals and having no proper essential right congruences. The theorems of Section 3
give properties 1) through 5) of this theorem. Under our assumptions conditions 1)
of Theorem 9 and 1) of Theorem 10 give us properties 6) and 7) of this theorem.
Condition 9) is just Theorem 12. We are left with proving 8). Let I" be an S'-admissible,

-transitive proper partition of Kt. Let et be defined as above and let q be the
right congruence determined by I and e, as in 1) of Theorem 7. There is a right

congruence L such that oC\Q=1 and such that a is as described in Theo-
rem 11, i.e., eris generated by a pair et_land an idempotent f in Ut. We had seen
that we must have f=fiet-,. Since " is QI x-admissible there is an s in , such

that i/V(.y,/,)Flc( where et=(\,,kf). Also (et xs)trfs. In the construction of o
we saw that g could equally well be defined by using ' and (1,, d(s,f)) since
(s, f) Mk,. But then f(et-1s)=(fiet Ds=fs and f(fs)—Fs. Hence we must
have (et_1s) g(fs). Since these two elements cannot be equal we must deny our
assumption on the existence of a o of the second type of Theorem 11. Hence there
must be one of the first type. Assume o is such a right congruence. We have a non-
trivial and its nontrivial equivalence classes are in Ut. (gt,/)a(,fi,/,) only if
gt=g't- Therefore < induces a nontrivial partition n on K, which must be ~-admis-
sible since it arises from a right congruence. Clearly oMa=1 implies nMl is
the identity relation on Kt. Hence 8) holds.

We now examine the converse. We assume 1) through 9) holds and wish to
show S has no proper essential right congruences. If o is an essential right con-
gruence on S and 5S 5 then clearly S is an essential right congruence on S. Hence
we need only show the “large” right congruences are not essential. These “large”
right congruences are the ones given in Theorem 7 and Theorem 8.

Theorem 9 takes care ofthe right congruences defined in Theorem 8. Theorem 10
takes care of the right congruences defined as the second type of Theorem 7. Hence
we are left with the task of showing that there are no essential right congruences
goftype 1) of Theorem 7. Assume B is defined by I' and e and that " is not Ut x-
transitive. There must be a pair of distinct equivalence classes of ' containing ele-
ments of the form /) and dw,1',) where s, udU,”-, and such that for no
veUt do we have d(sv, 1,)I'dp(n, It). It follows immediately that also there is no
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w$Ut such that \j/(s, I)r\j/(uw, /) From this it follows that there is no w3$Ut
suchthat i[/(sw, 1,)I'cp(rT, /'). Let 1)) and /2=(1,, dp(m, I')). We con-
sider the right congruence a generated byf and/2. It is immediate from condition
9) that the nontrivial equivalence classes of a are doubletons of the form {/iy,/rY)
where yC.Ut*. (We need only consider £/, ], sincef contains a right hand

factor that is an idempotent in Now if for any y in U, 1we have fxy gf2y
the ij/(sy, 1,)I'b(uy, It). But this contradicts the above statement. Hence cr/
and gfj(T=i.

Finally, we assume I is t/,_, -transitive. Hence there is an ~-admissible parti-
tion 7t of Kesuch that nMT is the identity relation on K,. We define a relation a
on U, such that (g,/) a(g,V) ifand only if In V. Since nis an equivalence rela-
tion so is a. Since n is S'-admissible, so is a, i.e., ais a right congruence. Clearly
<TMe=/. Hence the theorem holds.

The necessary conditions of the theorem provide an important collation of
results that can be used in studying semigroups of this type. As sufficient conditions
the list is rather lengthy. We have not investigated the independence of these con-
ditions. Conditions 1) through 6) describe the multiplication on S and conditions
7) through 8) describe how S acts on the 5-system GtXK,.
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OPTIMAL INTERPOLATION WITH EXPONENTIALLY
WEIGHTED POLYNOMIALS ON AN UNBOUNDED
INTERVAL

T. KILGORE (Auburn)

Introduction

In this communication, we establish that the set of functions spanned by mono-
mials of the form e~attk, for k=0, ...,n and for 04/« », is a space for which
the criteria of Bernstein and Erd6s characterize optimal interpolation. This article
represents the first generalization to weighted polynomials and to an unbounded
domain certain results on interpolation of optimal norm which hold for various
range spaces defined on a closed and bounded interval. After presenting some needed
notation and defining some terms, we will present our results in more precise lan-
guage and then move to the proofs.

Notation and terminology

We begin by defining C[0, °°] to be the space of functions continuous on the
half-line and CO[0, °°] to be its subspace of functions with limit (or value) 0 at °°.
We will let Yn(or, where there is no need to be so precise about dimension, Y) be a
space of those functions spanned by the monomials of the form e~ajtk, for k=0, ..., n,
as mentioned in the previous paragraph. We note that each of the spaces Ynis a
subspace of CO[0,»] and is spanned by a Markov system on the interval [0, <.
Thus, given a set of points (nodes) t0, ...,/,, such that 0=/ , < . . itis
possible to obtain fundamental functions yfY,,, /=0, ...,n, satisfying yi(tJ)=8iJ
(Kronecker delta) for /,/=0, ....n. An interpolating projection Pn (P, for short)
may then be constructed for the purpose of approximating any function / in
CO0[0,co] by:

@ pf= 2§ vi-

The operator P thus constructed is a linear projection which has norm given by

) HTIHUM I-

The function defined inside the norm on the right side of (2) is called the Lebesgue
function of P. Clearly, regardless of the value of n, the Lebesgue function is 1 at
each node, and if n>0, its norm is greater than 1, since it is clearly greater than 1
on each interval (r;_15f), for /=1, ..., n. On each such interval, we let A-be the
maximum value there, and we let 2] denote the point at which that maximum occurs.
For i=1, ..., n, we denote by A, the linear combination of y0, ..., yn which agrees
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with the Lebesgue function on the interval tY), and by X,,+1 we denote that
linear combination of y0, ..., y,, which agrees with the Lebesgue function on the
interval (/,,, °°). We correspondingly define +x to be the rightmost maximum
value of the function Xrn#land T,,+rto be the point at which this rightmost maximum
occurs (note that  + is not guaranteed by the definition, nor by the inherent
nature of the functions being used). With these definitions completed, we note that

(3) IP|| = max{Al5 ..., A+1},
and
4 Xi(My=0 for i=1,..., n+l.
Denoting by Z,,, n=0, ..., the space of functions spanned by expressions of

the form exp (—at2pn(t), where pnis a polynomial of degree n or less, we merely
observe that the above constructions of fundamental functions and interpolating
projections can be carried out on any set of nodes t0, tn on the real line. The
norm of such an interpolation is given in like manner as (2), and the associated
Lebesgue function is bounded on the entire line, with a maximum value of a
function X0 which agrees with the Lebesgue function of the leftmost unbounded
portion of the domain. We will say that this maximum occurs at the point T0, and
(3) and (4) are now seen to hold, with the inclusion of the index O.

The Bernstein and Erd6s conjectures on interpolation

The history of the Bernstein [2] and Erdds [4] conjectures on optimal Lagrange
interpolation will be presumed known to the reader, and they will be paraphrased
in such a way as to fit the immediate context. Suffice it to say that the two con-
jectures have been shown to characterize optimal interpolation in many other spaces
of functions than the ones for which they were originally framed, justifying the
usage “criteria” in the first paragraph. Reference will be made to Kilgore [5] and
de Boor and Pinkus [3], in which the original proofs of these two conjectures were
laid out, since these proofs serve as a model for this present case as well as for pre-
vious extensions of the original problem.

As they relate to the problem at hand, the Bernstein and Erddés conjectures for
the spaces Yn are respectively that the norm of P is minimized when the values
A ..., A are equal, which occurs at a unique placement of the nodes /,. ..., tn,
and that there is associated with each space Y,, & Lebesgue constant ¢, equal to the
norm of optimal interpolation, for which, if P is a particular projection into Y,,
whose norm is not minimal, there exists some i such that Af<c,,

For the spaces Z,,, the above account is also valid, if one changes the lowest
index of the As from 1to 0. We are now ready to statp our results.
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Theorems

Theorem 1. The conditions laid down by Bernstein and Erdds, as described
above, characterize optimal interpolationfrom CO[0, °°] into each of the the spaces
Y,, of spaces spanned by functions of theform e~atk, k=0, n, 1;>().

In Theorem 1, the left endpoint is chosen to be O for convenience. A simple
argument, based on inspection of the structure of the fundamental functions, suffi-
ces to show that the norm of interpolation with such a space is in fact independent of
the left endpoint of the interval of interpolation.

Theorem 2. The conclusions of Theorem 1 remain valid, if to the spaces Y,, are
adjoined the constant functions, and interpolation is carried out from CJ0, °°] into
the spaces thus defined, with the rightmost node of interpolation being

It is also possible to speak of interpolation on a finite interval with the same
set of functions as in Theorem 1, and we have the following result. Note that, for
these spaces also, the norm of interpolation in fact does not depend on the location
of a or R separately but will depend upon the length of the interval [a, 3].

Theorem 3. The conditions laid down by Bernstein and Erdds characterize inter-
polationfrom Cloc, B] (choosing t0=a and t,,=R) into the spaces Y,, restricted to
the interval [a, /1]. Forfixed @orfixed B, the norm of interpolation on this interval
decreases as the length of the interval decreases, having the norm of Lagrange inter-
polation into the space ofpolynomials of degree n or less as its lower limit.

Corollary 1. Theorem 3 remains true without any restriction on the value of a
in the expressions e~al.

Corollary 2. Theorems 1, 2, and 3 remain true if the argument t is replaced
by ty,for any y>0, in which case the polynomial part of the interpolants used will
be a polynomial in V..

Theorem 4. Theorem 1 remains true if the space z,, is substitutedfor the space Yn.

Theorem 5. Theorem 3 remains true on an interval [a b] if the space z, is
substitutedfor the space Yn.

Theorem 6. The results of Theorem 3 and 5 remain true if the interpolation is
carried out into the spaces spanned by the multiples o fafunction in Ynor z,, respectively
by a polynomial pmof degree m with real zeroes atfixed locations outside of the in-
terval [a, b].

Remark. Theorems 3 and 5, among other things, demonstrate that the norm
of the minimal interpolating projection into the spaces Ynand Z,, increases without
bound as n increases. One would not expect, therefore, that the convergence of
interpolation is automatic. Rather, one would conjecture that the behavior of the
norm of interpolation into these new interpolant spaces is essentially similar to the
behavior of Lagrange interpolation.
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Proofs of the Theorems

We begin with some general observations concerning things which have here-
tofore been relevant to proofs of all theorems of this type. The proof of Theorems 1
and 2 proceeds by showing that the matrices

A = (dXJdjTjzIUitk

which are functions of the nodes tx, ..., t,, are globally nonsingular. This fact
may then be seen to imply, by a finer analysis, that the sign of the determinant alter-
nates with k. This second fact is shown in de Boor and Pinkus [3] in a form suffi-
ciently general to be acceptable for all special cases of the interpolation problem
for which the first fact of the nonsingularity of these matrices can be shown. Thus
we will confine our attentions to demonstrating the global nonsingularity. Theorem 3
follows from Theorem 1and from the additional fact that the nonsingularity can be
shown if the index i runs from 1to n only, while the indexj is restricted to the values
from 1to n—L1

We defer for the moment the proof of the nonsingularity and briefly discuss how
the proof of Theorems 1 and 3 may be completed once the nonsingularity and the
alternation of sign of the determinants have been shown. Necessity of the Bernstein
condition of the equality of AL ..., A+l follows immediately, for, assume that
not all of the maximum values Als ..., Ar1 are equal. Then there is an index K
such that ?kis least. Nonsingularity of the matrix A then implies that the mapping
(tf ..., oo, A*-1 ActHl, ..., A1) is a local homeomorphism. Thus, there
exists a small perturbation of the nodes which will simultaneously decrease all of
A5 ..., A+l except, of course, for the possible exception of A®, which, by continuity
cannot in any case jump suddenly to the position of being the greatest of the values.
Thus, by (3) we have succeeded in decreasing the norm of interpolation. The suffi-
ciency of the Bernstein condition follows from the uniqueness of the nodes which
cause the A’s to be equal, which, along with the Erdés condition, follows from the
second condition, of alternation in sign of the determinants of Ar, ..., An+l (This
alternation implies that the mapping (tk, ..., t,)—(A—2, ...,A,,—A+D) is a local
homeomorphism, which can be combined with a general topological argument to
show that one in fact has a global homeomorphism.) Theorem 3 will obviously
follow from similar arguments if the nonsingularity of the corresponding matrices
can be established.

We move now to the proof of the claimed nonsingularity properties. We may
best begin with the study of the matrix

N = (dkjiUjTjiiux.
The first observation concerning A is that the entries of it have an explicit representa-
tion in terms of the functions in the space. One has for all applicable i and j the

formula
5) dXBtd = -y J(THX"i(t)

and writes the corresponding entries of A in this fashion. One then notes that an
explicit formula for yj may be constructed by setting

yi(0 = w(t)[(t~tj)w’(tj)]-\
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where

0
(6) MO = exp(—at) n™-U)-
1=0

Therefore, it is possible to perform the following cancellations on the matrix A,
which leave a matrix which is equivalent with A, and whose corresponding sub-
matrices are also equivalent:

First, one multiplies the yth row of A, for y'=1, ..., n, by the quantity
Then, one divides the /lh column of what remains by w(7]). The resulting matrix is
one in which the (/,/)'h entry is (tj —Ti)~1Xi(tj). There remains in each row for
y =1,..., n the contribution of a factor exp (—atj) which occurs in the derivative
X'i(tj). This too can be cancelled from the matrix, leaving a matrix which consists
of the evaluation of a dilferent function in each column at successive points tx, ...,/,,
as one moves down the column. Closer scrutiny reveals that for /=1,..., n+1 the
function

gi(t) = exp (at)(t—Ti)-1 X'i(t),

which is the function evaluated in each column, is a polynomial of degree n—1
or less. We remark that, in addition, the polynomials gx and gnand gn+x must in
fact be of degree n—1, while the others are certainly of degree at least n—2. The
problem of showing that the matrices AX, ..., A,,#1 are nonsingular therefore is
reduced to that of showing that {?i, s, *n+i}\{"} is linearly independent for
each k, k=1, ..., n+1. This fact in turn will follow for example from Kilgore [6]
if it can be shown that the g’s obey certain sign properties on the ordered set
7j, ...,Tn+x. Specifically, we must have (assuming that qi(TY>0 for the sake of
regularity)

@ (-Di9lTD>0 for /=2, ..., n+l

(ii) qi(Tj)AO0 for all applicable [

@iii) N(T;)9;(7H<0 for /=2, ....«, y'=2, ..., n+\, iA]j
(iv) gx(T)aj(Tj)=0 for 7=2,

In fact, these sign properties are implied by the fact that the zeroes of the func
tions XX, ..., X'+ strictly interlace on the interval [0, °=). For the purpose o
establishing this fact, the step-by-step zero-counting arguments of Kilgore [5], for
example, will suffice with only mild adaptation.

The steps which have just been outlined suffice to prove Theorem 1. The same
steps may be carried out with no essential differences to prove Theorem 4, except
that the dimensions of the matrix corresponding to A are n+1 by n+2, and the
degree of the polynomials of the form qgtis n or less.

The proofs of Theorems 3, 5, and 6 also depend upon the analysis which we
have just carried out. However, it is insufficient for the conclusions of these theo-
rems that a set consisting of all but one of the functions gx, ..., gn is linearly inde-
pendent, in view of the fact that the degree of these polynomials is more than n—2.
We have available, however, Kilgore [7, Proposition 2] which deals exactly with
such a situation, in which we have polynomials gx,...,q,, of degree n+m—2 or
less and points T, .... Tn+m ordered from left to right, on which the polynomials
satisfy the sign conditions (i)—(iv). Then, for points tx, X, located such that

Acta Mathematica Hungarica 57, 1991



90 T. KILGORE: OPTIMAL INTERPOLATION

it is the case, for k —\, that
dbt (dioj))j=11=1, i*k 5" o0.

This fact is exactly what is needed in order to complete successfully the proofs of
Theorems 3, 5, and 6.

Concluding remarks

The new results linking polynomial interpolation on an infinite interval to
bounded interpolation in certain spaces defined on the same interval may open a
new method for the estimation of error of approximation by such procedures. At
the same time, the affirmation of the Bernstein and Erdds characterization of optimal
norm interpolation into these related spaces of exponentially weighted polynomials
will, it is hoped, provide a theoretical measure of nearly optimal procedures of
interpolation, as has been done in the more classical case of Lagrange interpolation.
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COHOMOLOGICAL PSEUDOMANIFOLDS

M. BOGNAR (Budapest)

The aim of this paper is to prove some theorems about fc-manifolds which have
been stated in a preceding article [2] without proofs. To this end we first introduce
the notion of the cohomological pseudomanifold and investigate its basic prop-
erties.

1. Basic notions and theorems

11. Definition. Let Z2be the cyclic group of order two and let q be a non-
negative integer. By the ~-dimensional cohomology group Hg(Y) of a locally com-
pact T2-space Y we always mean the ~-dimensional cohomology group of Y with
coefiicients in Z2with compact supports (see [5] p. 6).

12. Definition. Letn be a positive integer. A space Y is said to be a cohomolog-
ical n-pseudomanifold (briefly: n-cpm) if it is a nonempty locally compact 72-space
and it has a basis A satisfying the following conditions:

(@ For wn™g 77(U)—Z., (= means here “isomorphic”),

(b) For n”A and for every nonempty open subset U' of U

H"(U\U') =0 and Hg(U") =0

holds for all g>n.
It is to be noted that condition (b) is clearly equivalent to the following one.
(b For w™ A and for every proper closed subset F of U

H"(F)=0 and Hq(U\F) =0

holds for all g>n.

Now we can formulate two immediate consequences of this definition.

1.3. Each nonempty open subspace of an n-cpm is an n-cpm as well.

14. Each n-dimensional manifold is an n-cpm.

Indeed an n-dimensional manifold M is clearly a locally compact 72-space.
Moreover the basis A consisting of all open subspaces of M homeomorphic to Rn
satisfies conditions (a) and (b') of the Definition (see [5] 1.2.14, 1.3.9 and 1.3.5).

Before starting the investigations about cohomological n-pseudomanifolds we
recall two important facts about cohomology theory which we shall use frequently
in the sequel.
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15. Let X be a locally compact T2-space and {Xx; afA} a decomposition
of X into pairwise disjoint open sets. Then for each integer q the homomorphism

Hq(XJ - Hg(X) (see [5] 1.§ 1.3)

is @ monomorphism, and Hq(X) is the direct sum of the images (see [5] 1.2.13).

16. Let (X, A) be a pair, where X is a locally compact T2-space and A is a
closed subspace of X. Then the cohomology sequence of the pair (X, A) is exact
(see [5] 1.1.6).

Now let Y be an n-cpm. We select a basis 38 of Y satisfying the conditions of
Definition 1.2. We shall keep it fixed in this section.

Next we make two remarks.

17. For U338 wehave U”Q. Thisis an immediate consequence of H"(U)—
=Z2 (see 1.2(a)).

18 If V is an open subset of a W3I3B and g>n then H4{V)=0. This is
true by 1.2(b) if VAO and it is obvious if V=0.

Now we can formulate the first fundamental theorem.

1.9. Theorem. Let V be an open subset of Y. Then Hq(V)=0 provided
that g>n.

Proof. First consider the case, when V can be covered by a finite number of
K
members of 38, i.e. Fc Ik Ut where V is open in Y and U&3& for /=1, ..., k.

i=1
To prove the assertion in this case we proceed by induction.

If k=1 then the assertion is true by 1.8. Assume now that m is a positive
integer and the assertion is true for k"m. Consider the case k=m+1 and let
P—UfJ...UUm Let V'=PC\V and V"=Um+IDV. Then V'D V"c=Um+l and
thus by 1.8 Hr(V'nV")=0 for all r>n. Let q>n and consider the segment

Ho(V)®Hq(V")-UU Hg(V)A~* Hg+L(VT\V")

of the Mayer—Vietoris sequence of the decomposition V=V'UV" (see [5] p. 68).
Since by the induction hypothesis Hq(V') =Hg(V")=0 and as we have seen above
Ha+(V' C\V")=0 moreover since the Mayer—Vietoris sequence is exact, it follows
H9(V)=0 indeed.

Thus the assertion is true for open sets covered by a finite subsystem of 38,

Consider now an arbitrary open subset V of Y. Let gq>n and b£Hq(V).
Then there is an open subset V'czV such that the closure of V' in V is compact
and bM\mxy<y, i.e., there is an aEHq(V') with b=XytV{d) (see [5] p. 15).
However V can clearly be covered by a finite subsystem of 38 and thus a=0. Hence
b=0, Hq(V) =0 as required.

We now prepare the next fundamental theorem.

1.10. Let UES8 and let U' be a nonempty open subset of U. Then the homo-
morphism xV'V: is an epimorphism.

Indeed, consider the segment

Hn([/") Hn{U) “mH"(U\U")
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of the cohomology sequence of the pair (U, U\U'). By 12(b) we have
Hn(U\U ') =0 and thus 1.6 shows that tu\u is an epimorphism as required.

111, Let Ux, Uzf38 where UxczU2. Then xUltUi: Hn(UD H n(U2 is an
isomorphism.

Indeed, by 1.2(a) we have Hn(U)=HnU2=2Z2. On the other hand 1.7 and
1.10 show that Tuxut is an epimorphism. Thus tvxuxis an isomorphism as required.

112. Definition. The members Ul, U, of 3 are said to be compatible if
UxaU 2 or t/oCUx.
For the compatible members Ux, U2 of 3 let

, _ (4xut if UxczU2
TU"U~Wu,)-1 if U2CZUX

Since rWuU is the identity homomorphism of H"(UX it follows tvxux—
=(?ul,u X 1- Consequently tpI22is well defined also in the case UX=U2.

1.13. Let Uxand U2be compatible members of -Band let V be an open sub-
space of Y containing UxU U2. Then the diagram

H"(UX H f/1(U2)

zUv V

\ Hn{V)*

is clearly commutative.

1.14. Definition. A finite sequence C=(UX ..., Un) of members of 3B is
said to be a 38-chain if for /=1, ..., m—1, U{and Ui+l are compatible members
of 38 The body of C (denoted by C) is the set <?=C/1U...Ui7m Uxis the initial
and Umthe terminal member of C. We say that C connects Uxand Um. If V is an
open subset of Y and CczV we then say, that C isin V.

For any JTchain C=(UX Um in the case TLL2 let

c* = u_]"n-XV” |Uz,ugtﬂbtv Hn(UX)-H n(Um)

and if m=1 let C* be the identity homomorphism of Hn(UX. C* is clearly an
isomorphism.
1.15. Let V be an open subspace of Y and C=(UX ..., Un) a &?-chain in V.
Then the diagram
H"(UY-? —~H"(Um

Lv,,v'

is clearly commutative.

1.16. Proposition. Each member of the basis 38 is a domain, i.e. a connected
nonempty open subspace of Y.

Proof. Let U338. Uis clearly open and by 1.7 it is a nonempty subspace of Y.
To show the connectedness of U we argue by contradiction.

Suppose that XI—VkUV2, where V1, V2are nonempty disjoint open subsets of U.
1.10 shows that for /=1, 2 tv.tU: Hn(VI)-*Hn(U) is an epimorphism and thus by
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Hn(U) -Z 2 we have Hn(Y)?H). However H"(U) is isomorphic to the direct sum
of A" (") and H"(V2 (see 1.5). But this is impossible since the group H"(U)=Z2is
indecomposable.

The assumption was false. U is connected indeed.

1.17. Observe as a corollary of 1.16 that Y is a locally connected space.

1.18. Definition. An open subset V of Y is said to be offinite class if it is
the union of a nonempty finite subsystem of 4.
Now we can formulate and prove the second fundamental theorem.

1.19. Theorem. Let V be an open connected subspace ofY and let U be a member
of  contained in V. Then the homomorphism rUiV: H"(U)-*Hn(V) is an epi-
morphism.

K
Proof. We first consider the case when V is of finite class, i.e. V= [) Ut where
S

ufas for /=1, ..., k. ’
If k=1 then by 1.10 and 1.7 the assertion is obviously true.
Next, assume that m is a positive integer and the assertion is true for kLLUT.

m+ |

Consider the case k=m+1, i.e. V=\'J-I U{. We may suppose that the numeration

1=
is chosen so that V'—U-fiJ... UUm is connected (cf. 1.16). Since V is connected it
follows C'MC/T+170 and thus there is a member U' of 3d lying in V'fJUm+L
We first show that rv4V: Hn(V')-+Hn(V) is an epimorphism.
Indeed, by the induction hypothesis Tuy and ru,umtl are epimorphisms.
Consider now the segment

Hn(V)®HUM)LU H"(V)dU HrRY 'TTnT+1)

of the Mayer—Vietoris sequence of the decomposition V=V'UUm+L By Theo-
rem 19 we have H"+L(Y'IT1 UmH)=0 and thus by the exactness of this sequence
it follows that ¢ is an epimorphism. Let bcH"(V). Since for (al56GH"(F)®
®HN(UmH) we have

Kdi,ad =rv.vW -Ty".vtez)

and the homomorphisms tp, and Tv4Untl are epimorphisms it follows the
existence of cl5cfH n(U') suchthat

b — TK'KTu',I'(F'l) TUm+i,VXU' Um+i(C2) = TU',V(Cl) ~~TU',V (C2) = TIMV(ci~ cr)-

Tu'ty is an epimorphism as required.

Now let C=(U1=U", ..., Ur=U) be a ~-chain in V connecting V and U.
Since V is connected it follow's the existence of such a 4?-chain C. However by 1.15
we have tv,v =xu,vC* and since tv*v is an epimorphism it follows that zWV is
an epimorphism indeed.

The assertion is true if V is of finite class.

Now let V be an arbitrary connected open subspace of Y. If V=0 then the
assertion is obviously true. Thus we can suppose that V0. Let bEH"(V). Then
there is an open subspace V'ofV such that the closure V'of V' in Vis compact and
bE£T\XY'Y, ie. b=tV,v(a) for some aEH"(V') (see [5] p. 15). Since V is compact
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and V is nonempty and connected, there is clearly an open connected subspace V"
of V of finite class containing V .

Select Uf3& such that U’aV". Since V" is of finite class it follows the
existence of a cEH"(U") such that xu*y(c)=xV,y’(@) and thus

TC,f(C) = TK"p'rc/F"(C) = tv"v'tv',v" (%) = Xy,via) = b.
Let C=(U1=U, ..., Ur=U") be a &?-chain in V connecting U and U'. Since V
is connected there clearly exists such a chain C. However C*. H"(U)-~H"(U")
is an isomorphism (see 1.14) and thus there is a d£H"(U) such that C*(d)=c.
Now taking also xu=ru*vC* (see 1.15) into account we get

xu,v(®@ = xij’.yC (d) = Tu"y(c) = h.

TUV is an epimorphism indeed.
The proof of the theorem is complete.
Now we formulate the third fundamental theorem.

1.20. Theorem. Let V be an open subspace of Y and let U be a member
contained in V. Then the homomorphism tv>V- is a monomorphism.

Proof . We first consider the case when V is connected and of finite class, i.e.
V:\E_ Uh where Uf.38. If k=1, then the assertion is true by 1.11. Assume
thau’r_nI is a positivenﬂeger and the assertion is true for kSm. Consider the case
k=m+1, ie. V= _(_J Q@; where Uf38 for /=1, ...,m +\. To prove the assertion

in this case we make some preliminary remarks.

(@) We may assume the numeration is chosen so that V’=L”U...UUm is
connected (cf. 1.16). Since V is connected, it follows V'T t/m+1"0.

(b) We show that H"(V")=2Z2.

Indeed, zUj~: H"(L\) -H"{V') is a monomorphism by the induction hypo-
thesis and it is an epimorphism by 1.19. Thus xuuv is an isomorphism. Consequently
since HN(UD =22 (see 12(a)) it follows H"(V')=Z2 as required.

(c) Now let V" be a domain in V'f)Um+l. Then both homomorphisms
xv v Hn(V")*"Hn(V') and v+ H"(V")—Hn(Umt) are isomorphisms and
H(V")=z2

Indeed, select Uf38 such that U'aV". Then by the induction hypothesis

(1) XViyy = Xy"syX Uy"
and
@ Tc',umHl= TK'tYmHn/F"

are monomorphisms. Hence xv.tV,,is a monomorphism and by 1.19 it is an epi-
morphism as well. Consequently Tv.tV" is an isomorphism and thus taking also 1.2(a)
into account we have

3) [I"(H™")=2Z2
However by 119 xu’v, and xv.tUmtl are epimorphisms and thus by (1) and (2)
ry~tV and xV',umtl are epimorphic mappings. Taking also H”(V")=Hn(V') —
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—H"(Um)=2Z2 (see (3), (c) and 1.2(a)) into account it follows that *v*V and
i V',vmtl are isomorphisms as required.

(d) Let P=V'C\Um+i. Next we show that for the homomorphisms
tP'V;: H"(P)*Hn(V") and zRUn+: H"(P)*Hn(Um+l) we have

ker Tp'V. = kertPtUn+L

Indeed, let {Vx; a£A} be the system of components of V'C\Um+L—P. Since
the space Y is locally connected (see 1.17) it follows that for each aBA, \kis a
nonempty open connected set.
Now let aEHn(P). Then there is a finite subset al5 ..., a, of A and elements
in Hn(VX),  Hn(VX) respectively such that

a =xv 4p(ifi) + ... + ty gp(ag
(see 1.5). Consequently

rP,v’(a) = zvai,v'(ai)+eee + TKQt,F'(U()
and
*p,umtl(a) = Tvai, umHl(ai)+ mmTrRZ,umH(at)-
Since the homomorphisms z\d.  and z\&k>Pmtl are isomorphisms and
H"(VJ =...= H"(V") = H"(V') = Hn(Um#+]) =z 2
(see (c), (b) and 1.2(a)) it follows that both relations aEker and aCker xRUn+l
hold if and only if an even number of the elements ax, ...,at are nonzero. Thus

ker tP'V = ker zRUm+L
as required.

(e) The homomorphism xum+lv: is a monomorphism.
Indeed, select bE£H"(Umt+l) so that zUnmH<«(b)=0. Then for (0, b)EHN(V)®
®H"(Umtl) we have

Tk',r(0)_%,,u,r(4, —o.
Let P=Y'TInTH and consider the segment

H"(P)-5U H" (V) @Hn(Um+l)  H"(V)
of the Mayer—Vietoris sequence of the decomposition V=V'UUm+1l. Since

® (0, b) = Zy>tV(0) — Xum+i,v(b) = 0

taking also the exactness of the Mayer—Vietoris sequence into account it follows
(0, h)Eker i/*=im q@ Consequently there is an a£Hn(P) such that (0, b)=(p(a),
ie. 0=tP'v(a) and b=xPtUn+l(a). Hence afker zPV, and thus by (d) we have
aCker zRtmtl which implies b=zPUmnl(a)=0 as required.

(f) We now prove the assertion in case k=m+ 1

Let C—U1=U, ..., Ur=UmH) be a &?-chain in V connecting U and Um+L
Since V is connected there exists such a chain. However zVtV=zUmHyC* (see
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1.15) where C* is an isomorphism (see 1.14). Hence (e) implies that xUiVis a mono-
morphism indeed.

Thus the assertion is true if V is connected and is of finite class.

Now let V be an arbitrary open connected subspace of Y and U a member of
28 contained_in V. Then there is a member U' of 28 such that U'czV and so that
the closure U' of U"in V is compact.

We first show that xv*v: Hn(U")-+Hn(V) is a monomorphism.

Indeed, select bEHN(U") such that xu, v(b)=(). Then there is an open sub-
set V' of V containing V and being such that the closure V of V' in V is compact
and for which xuy(b)=0 (see [5] p. 15). Let V" be an open connected subset of
finite class containing V . There clearly exists such a V" and we have

Tr.v'(b) = xv,v" Xuw'(b) —O0.

Since — as we have seen above — xv"y. is a monomorphism, it follows b=0.

xu'ty is a monomorphism as required.

Now let C=(U=UY ..., Ur=U") be a &Fchain in V connecting U and U".
Since V is connected there exists such a chain C. However xv v=xv.<«C* (see 1.15)
and thus since C* is an isomorphism (see 1.14) and xv>¥'is a monomorphism it
follows that xVty is a monomorphism indeed.

Finally let V be an arbitrary open subset of Y and U a member of 28 contained
in V. U is connected (see 1.16) and thus it is contained in a component V of V.
However Y is locally connected (see 1.17) and thus V' is an open connected sub-
space of Y. As we have seen above t( f.: Hn(U)->-H"(V') is a monomorphism
and since Xy<v: is @ monomorphism as well (see 1.5) it follows
that xUV=XyyWxUV. is a monomorphism.

The proof of the theorem is complete.

We now show some corollaries of Theorems 1.19 and 1.20.

1.21. Let V be a domain in Y and let V be an open nonempty subset of V.
Then for g”n
_ , _ Xy,y-- Ho(V') - Ha{V)
is an epimorphism.

Indeed, for g>n we have Hq(V)=0 by 1.9 and thus the assertion is obviously
true. Suppose now that g—n and select Ud28 so that UczV'. Since xUV=
=XytyXMty and xu<v is an epimorphism by 1.19, it follows that xv4V, is an epi-
morphism as required.

1.22. Let V be a domain in Y and V a nonempty open subset of V. Then for
g=u, Hq(V\Vv') =0.

Indeed, consider the segment

Ho(V) Hq(V) - Ho(V\V') - Ha+l(V")

of the cohomology sequence of the pair (V, VA\V'). Since by 1.21, xytVis an epi-
morphism and by 1.9, Hg+l(V')=0, the exactness of this sequence (see 1.6) im-

plies Hg(V\V ') —0 as required.
1.23. It is immediate from 1.22 that for each domain V in Y, for an arbitrary

proper closed subset F of V and for qSn we have Hg(F)=0.
1.24. Let Fbe a domainin Y. Then by 1.19, 1.20 and 1.2(a) we have H"(V)=Z2.
In particular,
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1.25. If ¥ is a connected n-cpm then by 1.24 Hn(Y)=Z2.

1.26. Let V be an open nonempty subspace of Y. Then by 1.20 and 1.2(a) we
have H{V )"O0.

1.27. Let K be a domain in Y. Then by 1.24, 1.22 and 1.9 the conditions 1.2(a)
and 1.2(b) are fulfilled for V. Hence, taking also 1.16 into account 83 can be replaced
by the system (B of all domains of Y and we have

128. Let V be a nonempty open subspace of Y. V is connected (V has two
components respectively) if and only if H"{V)=Zz (Hn(V)=Z2®Z2 respectively).

Indeed, let {k"; aEA} be the system of components of V. Since Y is locally
connected (see 117) it follows that each \k is a domain. Thus for each aBA,
Nav- H"(VR-*H"(V) is a monomorphism and Hn(V) is the direct sum of the

images im (see 1.5). Consequently the assertion is an immediate corollary
of 1.24.

1.29. Let VWkand V2 be domains in Y such that \kaV2. Then according to 1.27
and 111 the homomorphism TybK,: A"(K")-»7/"(k") is an isomorphism.

Finally we show two important properties of the n-cpm-s.

1.30. Let V and V' be nonempty open subsets of Y such that V'czV and so
that distinct components of V lie in distinct components of V. Then the homo-
morphism ry tV: is a monomorphism.

Indeed, let {V; a”A'j be the system of components of V and {Vx; aEA}
the system of components of V such that A'a A and for zfA' one has V'<zVx.
These requirements could clearly be satisfied.

Since Y is locally connected (see 1.17) it follows that each \k and each \ais
open in Y.

Now let x“kerTy'yY, ie. xEH"(V") and
@ *y-v(x) = 0.

Since each “vxv' mHn(W)—H"(V") isa monomorphism and Hn(V') is the
direct sum of the images (see 1.5) we have a representation

(5) (n'x) + eyt oy, (Xr)

such that oq, ...,otr are pairwise distinct elements of A'. However for 7=1, ...,r

holds and thus by (4) and (5) we have

Consequently, since each tKojFE Hn{\§-»Hn(y) is a monomorphism and
Hn(V) is the direct sum of the images (see 1.5) we obtain

VQ’Vd(t)z 0 for i=1..,r

Taking also 1.29 into account we get xx=...=xr=0 and thus by (5) x=0.
1y ty is a monomorphism as required.
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131 Let V and V' be nonempty open subsets of Y such that V'<zV and so
that there exist two distinct components of V contained in the same component
of V. Then the homomorphism Tyyw: H"(V')-+H"(V) fails to be a monomorphism.

Indeed, let V{ and Vi be components of V contained in the same component
\VOof V. Since the space Y is locally connected it follows that Vi, V2 and \Ware domains
in Y and thus by 1.24 we have

6) H"{Vi) = H"(VO = H"(\) = Z2

For /=1,2 let et be the nonzero element of H™(V{). Since for /=1,2,
TV,vf H"(Vi)-»H"(VO is an isomorphism (see 1.29) taking also (6) into account
we get

(7 r\//'byo(ei) +ryyvded =0

Let \3=V'\(ViUVi). Then by 117 Vi is open in Y and thus {Vi, Vi, Vi} is a
decomposition of V' into pairwise disjoint open sets. Let 0=e3EHn(Vi) and

(8) y = md v.{ei)+tv' v,(ed+V K'(e3) = *v' v'(eJ +rri V(eMeH"(V'"

Then by 1.5 we have
(9) Yy 940.
However for /=1,2 one has

Tv,VAy'fy' Vo,V \%
and thus by (8) and (7) we get
V .f£(t) = xvav(xv¥ vO(ei) +rvi, vO* 2) = 0.

Hence by (9) fails to be a monomorphism as required.

A-manifolds

We now collect the notions related to k-manifolds and recall the fundamental
theorems proved in the article [2].

Let R be a T2-space and {X, A) a compact pair in R, i.e. X is a compact sub-
space of R and A a closed subspace of X.

2.1. Definition. Let V be a domain i.e. a connected nonempty open subspace
of R. We say that K is a regularly intersecting domain of (X, A) if

(@) KFrM=0,

(b) VHX is a domain of X\A.

If Vis a regularly intersecting domain of (X, A) and U=VDX we then say
that V regularly intersects the compact pair (X, A) in U.
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2.2. Definition. A domain V of R is said to be k-regular mod (X, A) if the
following conditions are fulfilled:

(@ V is a regularly intersecting domain of (X, A).

(b) V\X consists of two components.

(c) The closure of each component of V \X contains VOX.

2.3. Definition. The compact pair (X, A) itself is called a k-manifold in R
if it satisfies the following two conditions:

(@ X\A is a nonempty connected space,

(b) for every gqfX\A the /cregular domains that contain the point g form a
basis for the neighbourhood system of the point q in R.

2.4. Observe as a direct consequence of 2.3 that for a L-manifold (X, A) in R
the subspace X \A is a locally connected domain of X.

Observe also that for a fc-manifold (X, A) in R the set X\A is clearly no-
where dense in R.

Now we recall two theorems proved in [2].

In the remainder of this section let (X, A) be a /c-rnanifold in R.

25. Theorem. Let V be a domain in R regularly intersecting (X,A) and such
that L\A is nonconnected. Then V is a k-regular domain mod (X, A) (see [2] 3.4.)

2.6. Theorem. Let V be a k-regular domain mod (X, A) and let V be a domain
in R confined to V and regularly intersecting (X, A). Then V is a k-regular domain
mod (X, A) (see [2] 3.5).

We now recall a definition from [2].

2.7. Definition. A /c-regular domain V mod (X, A) is said to be a subdividing
domain of (X, A) if the two components of V \X are contained in the same com-
ponent of R\X.

In connection with this definition we recall a theorem.

2.8. Theorem. If at least one mod (X, A) k-regular domain is a subdividing
domain of (X, A) then each mod (X, A) k-regular domain has this property (see [2]
Theorem 4.1).

Finally we give the definition of the bounded and closed ~-manifold.

2.9. Definition. (X, A) is said to be a bounded (closed respectively) k-mani-
fold ifits /c-regular domains are subdividing (non subdividing respectively) domains
of (X, A).

2.10. Remark. Suppose that the space R is locally connected.

Let (X, A) be a /c-manifold in R and let V be the component of R\A con-
taining X\A. Since X\A is connected and nonempty it follows the existence
of such a component V and V is clearly a domain in R. It is clearly a regularly inter-
secting domain of (X, A) and it contains all mod (X, A) “-regular domains.

Now (X, A) is a bounded /c-manifold if and only if V \X is connected.

Indeed, suppose that is connected. Then F\Af is a component of
R\X. Let V' be a fc-regular domain mod (X, A). Then V'czV and thus V'\Xc.
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cF\l. V is a subdividing domain of (X, A) and thus (X, A) is a bounded
k-manifold.

Now suppose that F\X is nonconnected. Then by 25 V is a mod (X, A)
A-regular domain. On the other hand the components of V \X are certain com-
ponents of R\X. Hence the two components of V \X can not be contained in
the same component of R\X. Vs not a subdividing domain of (X, A). (X, A) is
not a bounded k-manifold as required.

3. A-manifolds in A"+1

Let n be a positive integer and Rn+l the euclidean (n\- I)-spacc.

3.1. We first remark that by 1.4, Rn+lis an (n+l)-cpm.

We shall make connection between the k-manifolds and certain n-cpm-s in
R',+1 To prepare it we make a preliminary remark.

3.2. Let M be a closed and P an open subset of a topological space O such
that Mc P. Suppose that Q is connected and Q\M has two components Q,
and Q,. Then P meets both <9 and Qzand thus P\M is nonconnected.

Indeed Qx and Q2 are open subsets of O. If P did not meet both Q, and Qt
(say PM62=0), then (PURJU Q2 would be a decomposition of Q in two dis-
joint nonempty open subsets. But this is impossible since Q is connected.

3.3. Theorem. Let (X, A) be a compact pair in Rn#l such that X\A is a
connected n-cpm (see 1.2). Then (X, A) is a k-manifold in R"+L

Proof. Let gEX\A and let XX be a neighbourhood of g in Rn+L. Let G be a
spherical neighbourhood of g lying in fV\A. Let U be the component of (7MX=
= Gn(A'sv4) containing g. Uis open in X\A by 1.17 and it is clearly a closed
subspace of G. By 1.24 we have

10) Hn(U)=2Z2
On the other hand 1.9 shows that

(11 H n+1(U) —O.
However G is homeomorpbic to Rn+l and thus

(12) Hnt+'(G)=22,
(13) Hn(G) =0

(see [5] p. 46). Consider the segment
Hn(G) - Hn(U) - Hn+(G\U) - Hn+l(G) - Hn+l(U)

of the cohomology sequence of the pair (G, U). By (13), (10), (12) and (11) this
segment has the form

0-Z2- Hn+(G\U) %Z2-m0
and thus by the exactness of the cohomology sequence (see 1.6) we have
(14) Hn+'(G\U) =Z 2®Z2.
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Consequently G\U”&. G\U is a nonempty open subspace of the (n-bl)-cpm
Rn+l (cf. 3.1) and thus by (14) and 128 G\U consists of two components.

Now let V be a domain in f?"+L such that FcC and VP\X=U. There clearly
exists such a domain V. Taking also 3.1 and 1.24 into account we obtain

(15) Hntl(V)=2Z2

U is clearly a closed subset of V and thus the cohomology sequence of the pair
(V, U) is exact (see 1.6). Consider the segment

Hn(U) - Hn+L(V\U ) - HnH(V) - Hin#l(U)

of this cohomology sequence. According to (10), (15) and (11) this segment has
the form
Z2- Hn+tl(V\U) -Z 8- 0.

Consequently we have either

H"+i(V\U) =z2
or else
Hn+l(V\U) =Za®Z2.

Hence V\U is a nonempty open subset of Rn+1

Now let Q=G, P=V and M=U. Then by 32, P\M =V\U is non-
connected and thus by 128 Hn+l(V\U)—Z2 can not occur. Consequently
Hn+tl(VA\U) =Z2®Zi and thus by 128 V\U =V\X has two components, say
Vland V2.

To prove the theorem we only need to show that V is a k-regular domain
mod (X, A) (see 2.3 and 1.2). As we have seen above conditions 2.2(a) and 2.2(b)
are satisfied for the domain V. We are going to show that condition 2.2(c) is sat-
isfied as well.

Let g'EU. We have to show that ' is a limit point of both Wk and V,,

Let W' be a neighbourhood of g in Rn+l and let U' be a connected subset of
U such that g'dU'czW"' and U" is open in X\A. Since X\A is locally con-
nected (see 1.17) it follows the existence of such a U'. Let V be an open subset of
R"+l such that V'aW'OV and V'P\X=U'. There clearly exists such a V.
Now U\U" is closed in U and thus it is closed in V. Hence O'=V\(U\U") is
open in Rl and U'=Q'P\X=Q'OU is a closed subset of Q'.

Consider the segment

Hn(U\U') - Hn+(Q) - Hn+l(V) - HH(U\UY)

of the cohomology sequence of the pair (V, U\U'). By 1.22 we have Hn(U\U ') =
—H"+1(U\U ") =0 and thus by the exactness of the cohomology sequence in ques-
tion (see 1.6) taking also (15) into account we get

H"+1(Q") = Hn+l(V)=Z.i.

Hence the open set Q of Rn+l is nonempty and by 3.1 and 1.28 it is connected.
Since Q'\U'=V\U it follows that QU "' has two components and these
are Wand Vs.
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On the other hand by V'aV and V'(1X=U' we have U'czV'czQ' Let
P'=V' and M'=U". By3.2 P'=V' meets both components of Q'\M'=Q"\U"
and thus taking also V'cW "' into account W' meets both Vk and L>as well, q' is
a limit point of both V, and V2as required. The closure of each component of V \X
contains vn X —U.

We have proved that V is a k-regular domain mod (X, A).

The proof of the theorem is complete.

3.4. Theorem. Let (X, A) be a k-manifold in Rn+L Then X \A is an n-cpm.

Proof. X \A s clearly a nonempty locally compact T2-space.

We now introduce a new concept.

An open ball G of R"+Lis said to be normal mod (X, A) if it is contained in a
K-regular domain mod (X, A) and GD X"0.

Observe that since each normal ball G is contained in a K-regular domain V
and VCIA=0 we have GDA=0 and thus CMA=(?M(.T\).

Let S be the family of all components of the sets GM(T \/i)=GDT where
G runs over all normal balls mod (X, A). Since X\A is locally connected (see 2.4)
it follows that &? is a basis of X \A (cf. also 2.3(b)).

To prove the theorem we only need to show that each satisfies condi-
tions 1.2(a) and 1.2(b).

Let G be a normal ball mod (X, A) and V a k-regular domain mod (X, A)
containing G. Let U be a component of CMNT-CM(X\A). Let V be a domain
in /?"+1 such that UaV'aGczV and V'DX=U. There clearly exists such a V
and V is a regularly intersecting domain of (X, A). Since V'cV, it follows by
2.6 that V is a k-regular domain mod (X, A) and thus V'\X =V "\U consists of
two components. Now consider the segment

(16) H"(U) - Hne(VU) - H(VY)

of the cohomology sequence of the pair (V', U). V and V'\U are nonempty
open subsets of the (n+1)-com R"+l (see 3.1) where V is connected and V'\U
has two components. Thus according to 1.28, H"+1(V')=Z2 and H"+L(V'\U) =
=Z2®Z2. Consequently the segment (36) is of the form

Hn(U) -Z 2®Z2-Z 2
and since the cohomology sequence in question is exact (see 1.6) it follows
(17) H"(U) Z 0.
(L U\U) is clearly a fc-manifold in Rn+l as well and G is a regularly inter-
secting domain of (U, U\U).

Since UczX\A and X\A is nowhere dense in Rty (see 2.4) it follows Ga U.
Thus U is a proper closed subset of G, consequently by 1.23 and 3.1 we have

(18) Hn+(U) = 0.
Consider the segment

tf"@G0 - H"(U) - Hn+L(G\U) - Hn+HL(G) - Hn+L(U)
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of the cohomology sequence of the pair (G, U). By (18), 3;3(13) and 3.3(12) this
segment is of the form

(19) 0 -+Hn(U) -~Hn+(G\U) -Z 2-0

and thus by the exactness of the sequence (see 1.6) and by (17) we have H"+1(G \U ) A
AZ2. Hence by L28, G\U is nonconnected and thus by 2.5, G is a fc-regular
domain mod (U, U\U). Consequently G\U consists of two components, say
Gxand G2, and this implies by 1.28

Hn+(G\U) = Z2®Z2.

Hence by the exactness of the sequence (19) we obtain #"’(t/)=Z2

Condition 1.2(a) is fulfilled for t/€42.

Now _let U' be a nonempty open subset of U. Since G is a K-regular domain
mod (U,U\U) and U=GC\WU it follows that U'is on the boundary of both
Gx and G2 (see 2.2(c)). Hence GXJU' and G2{JU' are connected sets and thus
Q=G1{JG2{JU" is connected as well. However Q is open in R"#l and G\Q =
=U\U"'. Consequently U\U"' is a proper closed subset of G and thus by 3.1
and 1.23 we have

(20) Hatl(U\U') =0.
Consider now the segment
(21 Hn(G) - H"(U\U") - H"+(Q) - H"+1(G) - Hn+1(U\U")

of the cohomology sequence of the pair (G, U\U'). Gand Q are domains in Rn+l
and thus by 3.1 and 1.24 we have

H"+1(G) = H"+1(Q) =Z 2.

On the other hand 3.3(13) shows that Hn(G)=0. Thus taking also (20) into accoun
the segment (21) is of the form

0- H"(U\U") -Z2-Z2-0

and thus by the exactness of the cohomology sequence in question (see 1.6) we get
Hn(U\U") =0.

Now U' is a proper closed subset of the domain Q of Rn+L Hence by 3.1 and
123 we have Hq(U")=0 for g*n+1, ie. forall g>n.

Condition 1.2(b) is fulfilled for as well.
The proof of the theorem is complete.
3.5. Theorem. The k-manifold (X, A) in R"+lis bounded if and only if the

homomorphism /*: Hn(X)*H n(A) induced by the inclusion i: Ac:X is a mono-
morphism.

Proof. Let V be the component of R"+M\A containing X\A. According
to 2.10, (X, A) is a bounded k-manifold if and only if F\Z is connected.

Consequently (X, A) is a bounded k-manifold if and only if distinct components
of R"+\X lie in distinct components of R"+\A .
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Hence, introducing the notations P=Rn+\A and Q=Rm\X, and taking
also 3.1, 1.30 and 1.31 into account, we find that (X, A) is a bounded k-manifold
if and only if t@P: H"+1( 0 —H"+1(P) is a monomorphism.

Observe that t mttgp=tqr>+ where tPRH=%R+: Hn+l(P)-+

*H"+1(Rn+l) and tg,-+1= tq,K-+1: H"+1(Q)"H"+1(R"+]) (see [5] p. 13). Hence
ker tg pczker ToiR and thus ker T{aP=ker (Te>Plker tQr>+), ie. tgp and the
restriction rQjP|ker Tg"n+i have the same kernel. Consequently we can state that
(X, A) is a bounded k-manifold if and only if TO>P[ker Talk+L is a monomorphism.

Consider now the segments

H"(R"+]) - HN(A)— -*-~H n+{P),

H"(Rm) Hn(X) H"+1(Q) H n+1(Rn+)

of the cohomology sequences of the pairs (Rm+, A) and (A"+1, X). Since these
sequences are exact (see 1.6) and H"(R"+)=0 (see [5] p. 46) it follows that dR«+>4
and 6R+H'X are monomorphisms and the relation

(22) im dR»H™ —ker TQR==k

holds. Also, consider the commutative diagram

Hn(X) — Hn(A)
JiRnHjX | S+
. +

A'+1(0 — . H"+(P)

(cf. Theorem 1.1.6(2) of[5]p. 18). Since &»HIA and &hHtA are monomorphisms,
taking also (22) into account it follows that i* is a monomorphism if and only if
S0 is

rQ,P1™ ~Rn+''X — tq,pl kerrg,R" +1 >

i.e., as we have seen above, if and only if (X, A) is bounded k-manifold.
The proof of the theorem is complete.

4. The main theorems

We are going to prove the theorems of [2].

4.1. First observe that a compact pair (X, A) in Rlis a k-manifold in R1if
and only if X \A s a singleton.

We have to mention that A need not be the empty set. The respective assertion
in [2], namely that A must be empty (see [2] §5), is false.

Observe also that each k-manifold (X, A) in R1is clearly a closed k-manifold
in R\

4.2. Theorem.Let n be a positive integer and let {X, A) be a compact pair
in R"+1 such that X\A is a connected n-manifold. Then (X, A) is a k-manifold
in Rn+L
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This is Theorem 5.2 in [2] and it is an immediate consequence of 1.4 and 3.3.

4.3. Theorem. Let (X, A) beak-manifold in R* (n=1) andlet (Y,B) bea
compact pair in Rn homeomorphic to (X, A). Then (Y,B) is a k-manifold in R"
as well. Moreover if (X, A) is a bounded k-manifold then so is (Y, B).

This is Theorem 5.5 in [2] and it is an immediate consequence of 41 and of
Theorems 3.3, 3.4 and 3.5 (cf. also 2.3(a)).

4.4. Theorem. Let (X, A) be a k-manifold in #+1 (n~1) such that ,4=0.
Then (X, A) is a closed k-manifold in R"+L Moreover R"+L\ X consists of two
components and X is the boundary of these components.

Proof. According to 3.4 and 1.25, taking also A=0 and 2.3(a) into account,
we have H"(X)=H"(X\A)=ZzZ2 and Hn(A)=0. Hence the homomorphism
/*: Hn(X)->H"(A) induced by the inclusion i: AczX fails to be a monomorphism.
Consequently by 3.5 (X, A) is a closed fc-manifold in R"+L However Rn+l is the
only component of = R,1H and thus by 2.10, f7I+I\A is nonconnected.

On the other hand R"+lis a regularly intersecting domain of (X, A) (cf. 21
and 2.3(a)) and thus by 2.5 R"+Llis a K-regular domain mod (X, A). Hence R"-+\X
consists of two components and the closure of both components contains /?1+1I1
OX=X (cf. 2.2). Thus the boundary of each component of A"+\T is X itself
indeed.

Observe that this Theorem 4.4 is the same as Theorem 5.4 in [2].

We are going now to prove Theorem 5.3 of [2]. First we introduce a new notion.

4.5. Definition. Let n be a positive integer. Let (X, A) be a compact pair
and p£A. p is said to be an n-euclidean boundary point of (X, A) if there exists a
neighbourhood W of p in X and a homeomorphism @ of W onto the halfball

{r=(a, ..., X,,); X)2+...+(x,,)2< 1, A,a 0}
of Rnsuch that

(p(WnA) = {+ = (ny, .., xj; 2 CR< U n= 0}

1=
Theorem 5.3 of [2] reads as follows.

46. Theorem. Let (X, A) be a k-manifold in R"+L (n=1) with at least one
n-euclidean boundary point. Then (X, A) is a bounded k-manifold in R"-+L

Proof. Let p be an n-euclidean boundary point of (X, A) and let W and (o
be the same as in 4.5. Without loss of generality we can clearly suppose that <p(p) =
=0=(0,..., 0). Let int W be the interior of W in X. Then p£int W and cp(intW)
is an open neighbourhood of 0 in cp{W). Hence there is a positive real e such that

Q = [XE(p{W)\ lgl (A)2-c 623C(p(int IV).

Let IV'=cp~1(Q) and (p'=(w.: W'-+Q. W is an open neighbourhood of
p in X and cp: W'-*Q is a homeomorphism. Since

Q\(p'(W'C]A) = Q\(p(Wf)A) 0
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it follows
(23) WHNA=W'C\(X\A) * 0.

Q is a proper closed subset of the open ball

x=C1, ..., xN); @ﬂ)2+ ==t (x ,,)2—‘<@>

of R" and since R"is an u-dimensional manifold by 1.4 and 1.23 we have H"(Q)=
Hn+1{Q)=0 and thus

(24) Hn(W) = Hn+(W') = 0.

Q is connected, consequently W is a domain in X. Hence there is a domain
V in Rn+lsuch that V'f]X=W" and thus W is a closed subset of V . By 3.1 and
1.24 we have

(25) HnHAV'") = Z2
Consider now the segment

Hn(W') - Hm{VAW') - Hml(V') - Hn+(W?)

of the cohomology sequence of the pair (V', W"). By (24) and (25) this segment
has the form
0- Hntl(V'\W') -Z a- 0

and thus by the exactness of the cohomology sequence (see 1.6) we get
HnHl(VI\W )=2Z2.

Consequently V'\W 'X0 and taking also 31 and 1.28 into account we find
that V'\W '=V '\X is a domain in R"+L

Let q €14/, M(A"\)= C'M(1'\/1). By (23) there exists such a point g. Let V
be a k-regular domain mod (X, A) such that e£Vc V'. By 2.3(b) there exists
such a domain V. Since the two component of V\X lie in the connected set
VAIV-'-=V "\ X it follows that the two components of V \X lie in the same com-
ponent of Rn+\X . (X, A) is a bounded /c-manifold, indeed (cf. 2.9, 2.7 and 2.8).

The proof of the theorem is complete.

mFinally we prove Theorem 5.1 of [2].

47. Theorem. Let (X, A) be a k-manifold in R2 Then X \A s either a closed
Jordan curve or it is homeomorphic to the real line V.

=Proof. The proof proceeds in several steps.

@ There is no open subspace of X \A which is a singleton or which is homeo-
morphic to a closed halfline.

Indeed, the singleton and the closed halfline may be considered as proper
closed subspaces of the connected 1-euclidean manifold R1 Hence for such a sub-
space W by 1.4 and 1.23 we have H 1(W)=0 while for each nonempty open sub-
space W of /IF\1 by 3.4 and 1.26 we have H 1(W")X"0.
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(b) A triédé is a space homeomorphic to the union of three distinct segments
of R2issuing from the same point and lying on distinct lines.

(c) There is no triode in X \A .

We argue by contradiction.

Suppose the existence of a triode in X \A . That means there is a point q and
three simple arcs Ws v2, B8in x \A such that q is the endpoint ofeacharcvb /= 1,2,3,
and for iAj (/,/£{1,2,3}) we have viCwvj={q}. For /=1,2,3 let r; be that
endpoint of M for which rtAq. Let K(g, €) be a closed circular disc around g
such that

AU (r4,r2,r3 cz RAK(q, s)

and let C(q, €) be the boundary circle of this disc. Going from q to r; on the arc
vi let ri be the first point of vt(rC(q, ) and let vj be the subarc of vt with the end-
points g and r'i. Then by the Jordan curve theorem and the decomposition theorem
(see [1] Zerlegungssatz, Korollar p. 390) the compact set C(q, ) U UraUv3 divides
the plane in four domains Dx, D», D3, D4such that g is on the boundary of three
of them, say

(26) qEDt for /= 1,2,3

and D4= 122K (~, ). Hence Du D2, D3lie in K(q, e).
Now let K be a /fc-regular domain  mod (x, A) containing g and lying in K(q, s).
By 2.3(b) there is such a domain V and

Vix = (D1nVv)\X) U@xnv)ix) Ugpsn K)\X).

However x \A is nowhere dense in R2 (see 2.4) and thus taking also (26) into
account for /=1,2,3 we have

(AMH)\X = L, FX)\(X\1) A 0.

Consequently L\X is the union of three nonempty pairwise disjoint open sets.
But this is impossible by 2.2(b).

Hence there is no triode in x \A indeed.

(d) x \A is completely metrizable.

Indeed, this is obvious if X \A is compact. On the other hand if x\A is
noncompact then its one point (Alexandroff) compactification (see [4] p. 222) is a
compact metrizable space and each metric of this space is complete. Moreover
X \A is an open subspace of this complete metric space. However since complete
metrizability is hereditary with respect to Gs sets (Theorem 4.3.23 of [4] p. 342) it
follows that x \A is completely metrizable as required.

(e) Taking also (a) and (c) into account X\*4 can be considered as a separ-
able connected and locally connected complete metric space which is not a singleton
and fails to contain any triode. Hence according to a theorem of A. Csaszar (see [3]),
X \A is homeomorphic either to a circle or to the line R1 or to a segment of r10r
to a closed halfline of R1

However according to (a) x \A is not homeomorphic to a closed halfline or
to asegment of R1 Hence x \ A s either a closed Jordan curve or it is homeomorphic
to the real line R1las required.

The proof of the theorem is complete.

All theorems of [2] are proved. Our program is finished.
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ILIADIS ABSOLUTES FOR ARBITRARY SPACES

A. CSASZAR (Budapest)*, member of the Academy

0. Introduction. According to V. I. Ponomarev [2], the absolute of a Hausdorff
space X is an extremally disconnected (see Section 1 below for the terminology)
Hausdorff space PX such that X is the image of PX under an ultraperfect map;
this property determines PX up to a homeomorphism. S. lliadis [I] has constructed,
for a Hausdorff space X again, an extremally disconnected Ts-space EX such that
X is the image of EX under a ,9-perfect map; uniqueness up to a homeomorphism
is still valid. (For more historical details, see [5].)

The construction of PX has been extended for arbitrary topological spaces
by V. M. Uljanov [4]; it is an extremally disconnected space whose X is the image
under an ultraperfect and separated map.

The purpose of the present paper is to define EX for arbitrary topological
spaces X and to show that its fundamental properties remain valid with suitable small
modifications.

1. Preliminaries. A topological space is said to be extremally disconnected (EDC)
iff the closure of any open set is open. In an EDC space, if G and H are disjoint
open subsets, then GIMH =0. An EDC space is zero-dimensional (i.e. has a base com-
posed of clopen sets) iff it is regular (this being understood without postulating T0).
A dense subspace of an EDC space is EDC as well, and it is C*-embedded (i.e.
every continuous map from the subspace into a compact Hausdorff space possesses
a continuous extension to the whole space).

Let X and Y be topological spaces, and /: A—Y. The map/ is said to be
closed ifff(F) is closed in Y provided F is closed in X. It is said to be compact iff

is compact for yd Y. it issaid to be irreducible iff it is surjective and / ( F) 7Y
whenever FAX is closed in X. A continuous, closed, compact, irreducible map
will be called ultraperfect (perfect usually means closed and compact, sometimes
continuous, closed and compact).

The map/is said to be 3-continuous iff, for xd X, f{x)d fcF, V openin Y,
there is an open U<"X suchthat xdU and f(U)c f. A continuous map is 3-con-
tinuous; the converse is true provided Y is regular. The composition of two 3-con-
tinuous maps is ,9-continuous as well. A ,9-continuous, closed, compact, irreducible
map will be called 3-perfect.

The map/is said to be separated iff x,, x2X, x, * x2,fix,) =f(x2d imply that

* Research supported by Hungarian National Foundation for Scientific Research, grant
27-3-232.
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Xj and x2have disjoint neighbourhoods in X. If X is /,, then every map /: X—Y
is separated.
Let /: X—T be surjective. For AaX, we define

1(A) = Y -f(X-A).
Then f(A)c=XA),f-i(f(A))<zA, f(X)=Y,
f(Af)B) =f(A))F(B).

If/is closed and G el is open, then/(G) is openin Y; if/is closed and irreducible,
then /(G) A0 provided G”0 is open in X.

Let X be a topological space. A filter in X is said to be open iff it is generated
by a filter base composed of open sets. A maximal open filter is said to be ultra-
open. Every system of open sets that is centred (i.e. has the finite intersection prop-
erty) is contained in an ultraopen filter. An open filter s is ultraopen iff Gdsec s
implies Gds whenever G is open; here

secb = {dcZ: THS ®O0 for every S/s}.

Consequently, if s is an ultraopen filter and A is either open or closed, then either
A or_X—A belongs to s. If s is an ultraopen filter and G cJ is open, then GE£s
iff Gds. If 5 Ws2 are ultraopen filters, then there exist open sets G /s; such
that G1flG2=0. Every xdX is limit of at least one ultraopen filter (because the
neighbourhood filter of x is open); the space X is EDC iff every xdX is limit of
one and only one ultraopen filter.

Let us denote by UX the set of all ultraopen filters in X. The following state-
ments have been formulated in [1] for Hausdorff spaces, but they are easily seen
to hold for any space X.

For an open set GcX, define

s(G) = {seUX: Gds}.
Then j(0)=0, s(X)=UX,
siG.DG,) =siGJDsiGz),

hence the sets s(G) constitute a base for a topology on UX that is compact and
Hausdorff. It is also EDC because

Ux(G)=aU o;

hence the clopen subsets of UX are precisely those of the form s(G).

A space X is said to be almost compact iff, in each open cover of X, there are
finitely many members whose union is dense, or equivalently, iff every ultraopen
filter is convergent. A compact space is almost compact, and the converse is true
if the space is regular. Any product of almost compact spaces is almost compact.
The image of an almost compact space under a d-continuous map is almost com-
pact. A T2-space is almost compact iff it is //-closed.

In a space X, a set R is said to be r-open (regular open) iff 7?=int R or equiv-
alently iff R is the interior of a closed set. In an EDC space, r-open sets coincide
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with the dopen sets. The space X is said to be semi-regular iff there is a base com-
posed of /-open sets. A regular space is semi-regular.

The /--open sets of X constitute the base for a semi-regular topology, coarser
than that of X. The set X, equipped with this topology, is said to be the semi-regular-
ization of X and will be denoted by RX. The map idx: RX—X is "-continuous.
If X is EDC then so is RX.

2; Construction of EX. Let X be an arbitrary topological space. Denote by
IX the same underlying set equipped with the indiscrete topology. Consider the
product space TX=IXxUX and the subspace

EX={(x5): s- xin X}c TX.

Theorem 2.1. TX is a regular EDC space and EX is dense in TX, so EX is reg-
ular and EDC as well.

Proof.Both IX an UX are regular. The open subsets of TX have the form
XxH where HaU X is open, and XXH=XXH is open since UXis EDC. Hence
TX is EDC.

Let (x0,sOfTX. The sets XXs(G), where GfsO is open in A, constitute a
neighbourhood base of (x0,s0. For a set having this form, choose xfG and an
ultraopen filter s containing the neighbourhood filter of xfX. Then s—x in
X, Gd$ds(G), (x, SYAEXG{Xx.s(G)). Thus EX is dense in TX, therefore it is
EDC. O

Let kx: EX-+X be defined by
kx(x, s) = X.
Then we have:

Lemma 2.2. For x(fX, let {s;: ifi) be thesetofall elements of UX that con-
verge to x0in X, and let GfiSj be openfor ifl. Then there is afinite subset /Qc |

such that (J OGi is a neighbourhood o f x0.
nr

Proof.Assume G—IJ GjXO for every open set G containing x0 and every

. itlo . . .
finite set /,<=/. Then these sets constitute a filter base of open sets that is con-
tained in an ultraopen filter s. Since Gfs for every open neighbourhood of x,

necessarily s->-x0, and s=s/o for some iff. By definition, X—GicEsio which is
impossible. O

Theorem 2.3. kx is a 9-perfect, separated map.

Proof.For (X0, %)fEX. MtV be an open neighbourhood of x0fX. Then
Vfs0, and U=(XXs(V))C\EX is a clopen neighbourhood of (x0,s,) in EX.
If (x,s)dU, then Vfs and s—x in X, hence xfV. Hence kx is 3-continuous.

kx is surjective because the neighbourhood filter of any xfX is contained in
some:s€f/X for which s->-x, (x, s)fEX, kx(x)=x.

In order to see that kx is irreducible, it suffices to show that DczEX is dense
whenever kx(D)=X. Now if E=(XXM(C))MEX, 0#GcT, G open, is a basic
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open set in EX, choose XxEG and s£UX such that (x,s)EE> Then s—x,
G£s(zs(G), (x,s)aDG\V.
For x0EX, assume kxl(x()ci_gJI (XXs(Gt)) where GjCJ is open for tE£/.
i

Then every sdUX converging to x0is contained in some n(Cy), i.e. G fs, so that,
by 2.2, V=\J Gi is a neighbourhood of xafor some finite set 70c7. Thus, for

sdkx 1(x@), v'vEé]Ohave VE&, consequently G fs for some t6/0. In fact, otherwise
X —Gi would belong to s for every /£/,, so that X —(J Gfs would hold which

is impossible. Therefore 7cj1(x0c _|€J/O(ATXi(G;)), and kx is compact.

|
Suppose now that FcEX is closed and x0E X —kx(F). Then (x0,s,)$F when-
ever sf UX, Si~+x0 so that, for every 7, we can choose an open set G fs; satisfying

(TXj(G,))nF=0. By 2.2, V=_\€JloGi is a neighbourhood of x0EX for some

i

finite 70. If ANint V and sf UX, s—x, then VE£s and Gfs fora suitable i€ki-

ltcnee (%, $)EXXs(Gi), (x, s)rF. Therefore kx(F) is closed, and kx is closed.
Finally kx is separated because, if (xt, SHEEX, (xt, 5)T\(x2 59, kx(xi,Si)=

=kx(x2,s>), then xr—x2 and SjXSo, thus there are open sets G, such that Gfts;,

GiriG2=0, and XXs(G,) isa neighbourhood of (xt, s;) in T Xsatisfying (TXf(GI))n

n(TXJ(G2)=0. O

Let us denote by UQX) the subspace of UX composed of the convergent ultra-
open filters.

Theorem 2.4. Thefollowing statements are equivalent:

(@ Xis T2

(b) The projection from TX onto UX, restricted to EX, is a homeomorphism
from EX onto UCX.

(c) EXis T

Proof. (a)=>(b): If X is T2, then the restriction described in (b) is bijective.
It is continuous, and it is open since the image of (TXi(G)riFT is &(G)ilGcT.

(b) =>(c): Obvious.

(©) =>(a): If X is not T2, then there are xr, x2X, xrXx2 such that every op
neighbourhood of xr intersects every open neighbourhood of x2. Let s be an ultra-
open filter containing all these non-empty intersections. Then (xI5s) and (x2, s)
are two points of EX without disjoint neighbourhoods. O

By this, the construction in [1] furnishes in the Hausdorff case a space homeo-
morphic to EX.

Theorem 2.5. Thefollowing statements are equivalent:
(@) X is regular and EDC,

(b) kx: EX<aK is a homeomorphism,

(c) EX and X are homeomorphic.

Proof. (a)=*(b): If X is EDC then kx is bijective. It is continuous whenever X
is regular, and it is closed, too.
(b)=Kc)=>(a): Obvious. O
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Theorem 2.6. A space X is almost compact iff EX is compact.

Proof. X is a ~-continuous image of EX. On the other hand, if X is almost
compact, then UXX—UX, hence EXa |>%/(XXS(GJ), G, open in X, implies UXa
)

a >lé/s(G;) and then, by the compactness of UX, finitely many sets s(G{ cover
EX. O

3. The mapping/. In this section, let X and Y be topological spaces, /: X—T
9-continuous, closed and irreducible. The statements 3.1—3.5 are formulated in
[1] for T2-spaces X and Y with very short hints of proofs.

Lemma 3.1. If UX, then the system
(3.1.2) {/(G): G£s is open}

is afilter base in Y that is contained in one and only one t£ UY. For an open set
Hay,

(3.1.2) Het iff intf -yioes.

Proof. Since/is irreducible and closed, (3.1.1) is a filter base composed of
open sets in Y. Assume t£ UY contains (3.1.1), and let H be open in Y. Then

(3.1.3) intd =/(int/-1G)).

In fact, let yeint H, y=/(n) for some Xx£X. By the 9-continuity of/, there is
an open set G el such that xEG and

/(G) cintflc 4A.
Then G af-LUH) and Ga'm\f~'(H), so that
xAX-intf -UM), yeY —HX—int/-1(H)) =/(int/-U4)).

Hence c: holds in (3.L3). On the other hand, the right-hand side of (3.1.3) is an
open set contained in H.

Now if Het is open, then intHei so/hat int§ intersects every set /(G)
with GE£s open, i.e., by (3.1.3), intf~I(H) intersects every such G, and
int//1(H)Esecs, intf~1(H)E5. Conversely, if int/ -J(Me.b, then by (3.1.3)
int Hei, Hei-

Thus the open elements ofa tE UY containing (3.1.1) are uniquely determined
by (3.1.2) and so is t itself. O

For seUX let us denote by /(s) the only element of UY that contains (3.1.1).
Corollary 3.2. For sE UX, Ha Y open, we have
A£/(6) iff int/-1(H)E5 O
Theorem 3.3. The map /: UX-UY is a homeomorphism.
Proof. / is continuous because, by 3.2,
(3.3.1) [-UM A)) =sjimtf-wT)
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where sx and sY denote the operator vdefined for X and Y, respectively, and HczY
is open. .

/ is injective because, if sfU X, s”s,, then,there arc open sets G /s; such
that G1C\Gi=0, and then /(G;)€/(s;), J(GDf]f(GI=&,/K )"/ (32.

/is surjective. In fact, if tE UY, then the: sets int Hf where HZt is open,
clearly constitute a filter base in Y. By (3.1.3), the system composed of the sets
intf~'(H) is centred so that it is contained in some s(LUX. By 3.2, Hff(z,) for
every open set HZt, i.e. tc;/(s), t=/(s). S A I I

The proof is completed by observing that UX is compact and UY is 7). O

Theorem 3.4; If SZUX, s—x, then /(s)—Hx). Hence f(UcX)czUc(Y).

Proof. Let H be an open neighbourhood of f(x)ZY. By the 9-continuity
of f there is an open neighbourhood G of x such that /(G)crH. Hence
xeint/'-HHHs, and HfJ(s) by 3.2. O

Theorem 3.5. | ff is 9-perfect, then
f(UcX) = Uy
so that JMWUCX is a homeomorphism from UgX onto UCY.

Proof. According to 3.3 and 3.4, it suffices to prove UcYczf(UcX). Now if
sEUX, f(s)—yZY, then s-*x for some xCf~y(y). In fact, otherwise every point
of f~ I(y) would have an open neighbourhood that does'hot'intersect a suitable
element of s, and, by the compactness of f~'(y), there woild exist an open set
G 7Df~1(y) that does not meet some open G'Zs. Then clearly f(G) is an open
neighbourhood of y, f(G")fj(f), /(G)M/(G,)=0, which contradicts /(s)—y. O

4. The mapping/*. We are now able to prove that good maps/: X--Y induce

continuous maps from EX into EY\ \if

Theorem4.1. Let X, Y be topological spaces and /': [Xe"Y be 9-continuous,
closed and irreducible. Then there is one and only one contmuous map f* : EX->EY
such that : R

(4.1.1) f°kx = icyof*.
This map is defined by
(4.1.2) fx(x, s) = (/(x),/(9),"

Proof. By (3.3),/* given by (4.1.2) is continuous>and clearly satisfies (4.1.1).

The part concerning unicity will be derived from a more general statement.
In order to formulate it, let us consider the product space X'XUX &nd let us denote
by PX the subspace N AN

{(x, $)ZXX.UX: SiX in v},

i.e. the same set as the underlying set of EX bub equipped with'an obviously finer
topology. It is shown in [3] that PX is, up to homeomorphism, the only EDC space
whose X is the image under an ultraperfect, separated map. Now we can prove:
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Lemma 4.2. Iff: X-*Y is”continuous, closed and irreducible, and g: PX-+EY
is continuous and satisfies

(4.2.1) fekx =kYog,
then g=f*.

Remark. The wunicity stated in 4.1 clearly follows from 4.2 because
idP™ p x ~ e x IS continuous.

Proof of 42. Assume that g: PX-*EY is continuous and satisfies (4.2.1).
Then there is a map
h: UCX —UY
such that

4.2.2) g(x, s) = (f{x), h(s)) ((x,s)ePX).

In fact, (4.2.1) implies that the first coordinate of g(x, s) is f(x). Now if
(xi,s)EPX (/=1,2), then g(Xi, s)=(/(x,),t.) and tyXt2 would imply that
(f(xi), t,) and (f(x2, t2 have disjoint neighbourhoods in EY. By the continuity
ofg, (xx,s) and (x2,s) would have disjoint neighbourhoods in PX. However, this
is impossible because, if G(,A;C1 are open for /=1,2, and xfGt, sc,sx(//,),
then <AM(7,MHxMI1fs, and if x[ is an element of this intersection and s/ UX,
Si—x[, then clearly (xj, SI)€(<7XXsx(A,))M(C,Xsx(H,,))[)PX. Therefore the sec-
ond coordinate of g(x, s) does not depend on x.

Assume /?(sQx/(s0 for some sOEUCX. Choose x fX suchthat sO—xO0 in
X. Then, by 3.1, there is an open set <6s0such that f(G 0$h(s0, thus /((7NINLG=0
for some open Hfh(s0). By the continuity of g, there are open sets (7, HczX
such that xfG, sfsx(H) (i.e. HdsO, and

(4.2.3) g((GXsx(H))nPX a (YXsY(HO)r)EY.

Since sO-2)0 implies G£s0, necessarily GDGOf)HxQ, hence f(G(~)GnriH )ftt
becausef is closed and irreducible. Choose y£/(CI\Cal)1l), then xfX such that
y=f(x), whence x(CMCOMA, finally sEUX such that s-~x. Then #£s,
(x, S)E(GXsx(Hj)f)PX, so h(s)Esy(HOQ by (4.2.3), i.e. Hfh(s). On the other
hand, g(x,s)=(f(x),h(s)) implies h(s)=/(xK/(<7MGOHitf)c/(G,,), /(<TQEA(S)
which contradicts /(COMAo=0. O

/* defined by (4.1.2) has essentially better properties iff is 9-perfect:

Theorem 4.3. If f: X-+Y is 9-perfect, then f*: EX"EY is ultraperfect
and open.

Proof. /* is surjective. In fact, let (y, t)EET be given. By 3.5, t=/(s) for
some $dUcX. If s—x£X, then f(x)=y by 3.4, so that /*(x, s)=(y, t).

According to the surjectivity off* and the bijectivity of flUcX: UX - UCY,
we obtain from (4.1.2)

(4.3.1) f*((XXA)C]EX) = (F XJ(A))C\EY

for any A(zUcX. Consequently, by 3.5,/* is both open and closed. Again by the
bijectivity of f\UcX, we see thatf* is irreducible.
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If (y, )EEY, then t)clIx/_1(t)=Ix{5}, where s=/-1(t). If an
open subset of EX intersects Ix{s}, then it contains (TX{s})MEX. Therefore
t) is compact, and/* is compact as well. O

Theorem 4.4. Iff: X"Y is 9-continuous, closed, irreducible and separated, then
f* : EXMEY s injective.

Proof. Suppose (x;,S"E X, (xt, Sx)yi(xa, s, f*(xIt sD=/*(jca,Sy). Then
J(sj)~f(sj), so sl=s2=s by 3.3, thus xr*xr. Moreover, /(x1)=/(x2 implies
that Xj and x2 have disjoint neighbourhoods in X. This fact contradicts s-*xIt
s—x2. O

Corollary 4.5. If f: X—Y is a separated, 9-perfect map, then /*: EX-*EY
is a homeomorphism. O

Theorem 4.6. For two topological spaces X and Y, the spaces EX and EY are
homeomorphic iff there is a topological space Z whose both X and Y are images under-
separated, 9-perfect maps.

Proof. If such a Z exists, then, by 4.5, both EX and EY are homeomorphic
to EZ. Conversely, if h: EX--EY is a homeomorphism, then Z=EX can be
chosen using kx and kYoh. O

Theorem 4.7. Let X be regular and EDC. If f : X*-Y is 9-continuous, closed
and irreducible, then there is one and only one continuous map g: X -EY such that
f=kYog. I|ffis 9-perfect, then g is ultraperfect. | ff is separated, then g is injective.
I ff is both separated and 9-perfect, then g is a homeomorphism.

Proof.By 2.5, kx is a homeomorphism. Hence g=f*okx1 will do by 4.1,
43,44 and 45. O

The following statement serves as a fundament in recognizing the character
of an absolute with respect to EX:

Corollary 4.8. If Z is a regular EDC space whose X is the image under a
separated, 9-perfect map, then Z and EX are homeomorphic. O

By this, all essential results for EX contained in [1] in the case of T»-spaces are
established for arbitrary X.

5. The category 3-Top. A part of 4.7 admits an elegant formulation if we
introduce a suitable category.

Lemma 5.1. If f: X~-Y is surjective, 9-continuous, closed and compact, then
Y-1(A) is compact whenever KczY is compact.

Proof . Assume f" x{K)cz lJ/G,, where G,riX is open for every i. For y€K,
)

/ -1(y) is compact, hence it is contained in the union G(y) of finitely many sets (7,.
Then f(G (y)) is an open neighbourhood of y, and Kcz (j f(G(y)) for a finite set

3>€F
FczK. So
f~4K)cz U /-'(/(GW ~c U G(y). O
yEF yEF
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Corollary 52. If/: XV and g: Y~Z are 9-perfect, thenso is gof O

Therefore we can define a category 9-Top whose objects are all topological
spaces and the morphisms are the 9-perfect maps. Now we obtain from 4.7:

Theorem 5.3. Thefull subcategory of 9-Top whose objects are the regular EDC
spaces is coreflective. The coreflection of X is EX with the coreflector kx. O

The statement of 5.3 remains valid if we replace 9-Top by the subcategory
j9-Top in which the morphisms are the n-separated 9-perfect maps; we say that a
map /: X-+Y is n-separated iff xI5x2EX, xrAx2, f{xf)=f(xf) implies that xx
and x2have disjoint closed neighbourhoods. This is a category indeed, because the
composition of 9-continuous, n-separated maps is clearly n-separated. We deduce
from 4.7 the analogue of 5.3 by observing that a separated map starting from a
regular space is n-separated.

In general, a separated map need not be n-separated. In fact, let Tbea T2-space
that is not Urysohn, a, bEX, aAb, and suppose that a and b do not have disjoint
closed neighbourhoods. Let /: XY be a surjective map such that f(a)=f(b),
but fA\X —{u} is injective. Let us equip Y with the quotient topology. Then/is
ultraperfect, separated, but not n-separated.

6. EX and PX. We show that PX determines EX in a certain sense.

Lemma 6.1 (see [3]). If
U= U (GtX j X,
! /( s(Hj)nP

where G;, Htare open in X, then the closure of U in PX is (XXs(H*]) PiPX, where
H* — U Ne 4.
mer

Proof. If (x0,sQE£UDPX, then, for open G,HaX and xfG, sOds(H),
we have
(GXs(H))n(GtXs(H,))nPX X 0

for some i. Let (x, s) be an element of this intersection. Then 4, A/s, and s—x
implies G/s, sothat AM6,-14A/0. A fortiori ANA*?£0, H*Esec sO, A*650,
(x0, 50e(Tx M (a*))MPX
Conversely, if (x0, sQEPX, sOds(H*), then, for open sets G, //c X, XCEG,
sCEs(H), we have GEsCEs(G), hence Gr\HC}H*A& and CHOANC,-MA#0
for some i. Let XCCMArK/M4A; and s£UX, s—x. Then (x, s)6(GXi(ff))ii
n(G;Xj(ff,))nPT so that every neighbourhood of (x0,sQ intersects U. O

Corollary 6.2. The space PX is EDC. O

Corollary 6.3. The r-open (i.e. the clopen) sets in PX are precisely the sets of
theform (XXs(H))C\PX where H(zX is open. Consequently EX is the semi-reg-
ularization of PX. O

Corollary 6.4. The map idEX: EX"P X is "*-continuous. 0O
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Theorem 6.5. If f: X-+Y is continuous, then there exist (in general several)
continuous maps g: EX—EY such that fo kx=kYog.

Proof. In [3], it is shown that there exist continuous maps h: PX-PY such
that fokx—kYoh. Let g: EX-+EY be defined by g=idEYohoidEX; it is "-con-
tinuous because idEX EX®mPX is *-continuous and id£y: PY-+EY is continuous.
However, g is continuous since EY is regular. O

Observe that many of the results on EX (e.g. the proof of 2.3) can be derived
from the analogous properties of PX, but their direct proofs (given above) are
simpler than those concerning PX.
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HOMOGENEOUS CONNECTIONS AND THEIR
OSCULATIONS ON THE VERTICAL SUBBUNDLE

B. KIS (Debrecen)

1. Introduction

In the recent treatments of Finsler geometry the notion of Finsler connection
over a manifold is usually considered as a pair composed of a general and a linear
connection, the first of which is given in the tangent bundle, and the other one in
the vertical subbundle of the tangent bundle. It seems that it is not uninteresting
to search for structures which can determine Finsler connections. As it is already
known [7], [2] a regular linear connection in the vertical subbundle induces a non-
linear connection in the tangent bundle. Therefore, if we are given a regular linear
connection in the vertical subbundle, then we have a Finsler connection over the
base manifold too. However, in the classical Finsler geometry mainly homogeneous
connections are used instead of general (i.e. nonlinear) connections, so we will
consider homogeneous connections mostly.

Our aim in the present paper is to investigate the converse way in this case:
we will construct a linear connection in the vertical subbundle from a given homo-
geneous connection in the tangent bundle. This of course means that a homogeneous
connection in the tangent bundle completely determines a special Finsler connec-
tion over the base manifold. We note that our construction can be performed easily
in the case of complete nonlinear connections also. The completeness of this non-
linear connection is a significant point in this paper, but after slight modifications
it is possible to use our method even to non complete nonlinear connections.

All the discussions presented here are general also in the sense that we do not
assume that the stage for our considerations is a tangent bundle; rather we will
take an arbitrary vector bundle for our startpoint.

After introducing some notions and notations in Section 2, in Section 3 we
define and describe the Berwald—Hashiguchi connection as a special Berwald con-
nection (V). Then we characterize homogeneous connections by completeness and
by the 1-homogeneity of the holonomy map using a theorem of W. Barthel [3].
Finally in Section 4 we investigate the osculation on the vertical subbundle of a
homogeneous connection by a linear connection, and we show that the arising os-
culating connections are identical with the Berwald—Hashiguchi connections.

The central idea of the paper is the notion of osculating. In this way our con-
struction may be regarded as a continuation of the osculating method given by
O. Varga [11], [10] for the Finsler metrics, under different conditions.
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2. Basic notions and notations

In this section we will introduce some basic notions and their notations which
will be used in the following parts.

We will denote the total space, base space and projection of a vector bundle
£ by tI£ bs £ and pr£, resp. The tangent bundle of the manifold M is denoted
by rM. We also use the following notations: TM=t\xM, (PM=pr £

The pair (a, B) means a bundle map between the vector bundles £ and ij if
the diagram

teE —- U
|pr? |pry
bs £ — - bsij

is commutative and the maps a, 8 are smooth. When the map 8 is the identity we
say that the bundle map (a, B) is a strong bundle map. If (a, B) is a bundle map
between vector bundles and the restrictions of the map a to the fibers are linear
we say that (oc B) is a vector bundle map. We also use the terminology “strong
vector bundle”, a completely determines the map B, so we will use the simpler nota-
tion a instead of the more deductive but longer (a, R).

Let (p: M —bs be a smooth map, where £ is a vector bundle. We construct
the pull-back bundle (gH; of £ by (p in terms of the commutative diagram

tl (cp'c) adEp tii
o) pE
bs ((p'0=M —"-* bsE

which is the so-called pull-back square associated to ¢eand  The bundle gH; is not
canonically determined: its usual representative is the bundle (MX(tl £ pr2 M).
However, the vector bundle map ad*@ is canonical relative to the bundle <g£,
i.e. @i determines ad *p canonically.

3. Local expressions and holonomies

A trivialization of the vector bundle £ and an atlas of its base space bs £ com-
pletely determine the canonical local description of the bundles (pr £mt;, r bs £,
(pre)tebsc, Tt £ rtl(prc)tg and their component spaces and maps induced by
these spaces and bundles. This local description includes local trivializations, atlases
and local representatives of maps. From now on the existence of these local de-
scriptions are assumed. The best property of these local descriptions is perhaps
the fact that local representatives of bundle projections are restrictions of some
component projections of some product manifolds to certain open subsets. We
usually do not make distinction between the notation of an object and its local
representative.
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A) The local description of a connection on f Let

) S5- (prNe x 1* A (Pr

be a connection in the vector bundle £ ([12], [9]). If n=dimbs £, k=rank £ then
the local representatives of maps

J?: (pr —Til f,
cxtlt —(pr£)'x bsc,

v xtle - (prf)-f

hv: (prM)kbs £ —xtl £

to some open sets, where calx], vl): R"-»IF is linear and smooth in its argument.
The connection (V) is called linear iff m(xLy D is linearinyl
B) The local description of xtl £ associated to (V) and linear connections in

xtl ((pr £)'m). If (x9i=L....,, isalocal coordinate system on bs £and (ej)j=li and
(yDj=i, are alocal basis of tl £ and the local coordinate system associated to it
then a canonical local basis of Ttl £ is
A A d d)
1) (dxl ’ dxn’ dyl’ dyk)
From this we can construct another basis provided that (V) is a connection on
S_ d_ d_ _d_
(32) le’ ox" 7 dyl’ dyk m
where

and (@f)is the matrix of (»(x1,y1. (We are using the Einstein summation conven-
tion; the range of Latin (resp. Greek) indices is the set ({1, ri) (resp. (1, k))).

(3.2) is called the basis of xtl £ associated to (V). The bases of the cotangent bundle
x*tl £ associated to the bases (3.1) resp. (3.2) are denoted by (dxl, ..., dx", dyl, ..., dyk)

and (dxJ, ..., dxn dyl, ..., SR respectively, where

= dy(—ofjdxi @= 1, ..., K).

Now, if (V) is a linear connection in the vertical subbundle of ~ and
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are local bases of tl Wb, resp. tl F*c then the local representative of the connection

form of (V) (described in terms of covariant derivative) can be formulated with
respect to these bases in two ways:
a) Using the canonical basis (3.1) of rtl £:

A
Ajyclxj igidyyig) +B fdyR0 d f®
b) Using the basis (3.2) of Ttl ¢ associated to (V):

VA fdxJ®dyy®  +vB f SyRgdyyg— m

The last description is called the Carton normal form of connection (V). We can
state the following relationship between coefficients A, B and VA, \B:

(3.3) Af=vAf- ofjllly, Bf =1L y.
Definition 1 The pair S' = (V, V) is called a Finsler Connection ([6]) on f If

(3.4) V4J : dyy
and
(3.5) =0

then we say that S' is the tl Berwald connection associated to (V). Omitting the last
condition, we get the notion of the Berwald—Hashiguchi connection ([1], [4], [5]).

C) Parallel translation: Let y(t) be a curve in tl ¢ whose local representative is
(x(t),y(t)). If 7=((pr0°Y)(0 then its local form is x(t). The necessary and
sufficient condition of parallelity of y by (V) is locally the equation

(3.6) y(t)-a>(x(1), y(1))(x(t)) = 0.

D) The case of linear connection: In case (V) is linear equation (3.6) can be
considered as a system of ordinary linear differential equations and so it has a unique
solution for any initial condition. From the theory of ordinary linear differential
equations (see for example [8]) we know that this solution is determined everywhere
where all the coefficients are continuous, and depends linearly on the initial con-
ditions. The global translation of this fact can be summarized as follows:

A general (i.e. nonlinear) connection (V) on a vector bundle c is complete if
the parallel translation of any vector along any curve 7 of bs i; by (V) is defined on
the whole range of 7.

Corollary 1. Every linear connection is complete.
Let (V) be complete and 7 be a smooth curve in bs g If p=y(t0, g=y(t") are
two points of 7 we can define the map
a’to, <1. y Ep =
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v = the parallel translation of v€gyQ into cqby (V) along y.
This map is called the holonomy map of (V) along y associated to t0, ti. The family

Ay N\ = Wo, n, ye iy«o) M(mUodirdomy}

is tlie holonomy o/ (V) along .
Referring to the classical results of the theory of systems of ordinary differential
equations we get the following

Proposition 1 @) aic=id3(®.
(b) 3-b.c.y""a.b.y_ Na,c,y* .
c) aaby s a diffomorphism. )
The connection (V) is linear iff it is complete and all of its holonomy maps
are linear.

We can generalize the last statement to the case of homogeneous (V).

Definition 2. The connection (V) is called homogeneous if mix1 yX(x2? is
1-homogeneous in the variable y1, and maps determined by (V) are smooth only on
the “dotted” bundle | ;i.e. on bundle arising when the zero section is splitted out
from the corresponding vector bundle f

Theorem 1 The connection (V) is homogeneous iff

(1) The connection (V) is complete and

(2) Every holonomy map of (V) is a 1-homogeneous smooth map between the
fibres off .

Proof . Sufficiency. The homogeneity of the connection (V) follows from the
condition (2). This condition means that AyOEijp is taken by aQ(y into
whenever yOEEP is taken into yi€lg- But both y=y(t) and Xy(t) must be solutions
of equation (3.6), and thus

y—co(x, y)(x) =0 and Xy—co(x, Xy)(x) =0

front- which one can conclude the 1-homogeneity of c>in y.
Necessity. Consider the initial value problem

(3-7) y =/(/,>'(/)), vy =y=»
for a system of ordinary differential equations, where
- /: [a,h]XRm - Rm y\[a,b]-* Rm (a,beR, a<b)

are..smooth, f(t,y) is 1-homogeneous in the variable y and t*d(a,b), y*£Rm
Thé system (3.7) has a unique solution y(t), tc[a. b] and this solution depends in
1-homogeneous way on y*. (For the proof see Barthel [3] Theorem 2.)

Now we can prove the necessity part of the statement. Since @ is assumed to
be' 1-homogeneous in y, the local condition (3.6) of the parallel translation can be
considered as an initial value problem of the form (3.7). By Barthel’s theorem we
get that any homogeneous connection is complete. By completeness we can define
the holonomy of (V). Now the holonomy maps are 1-homogeneous because of the
solution’s 1-homogeneous dependence on initial values. Q.E.D.
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4. Osculation of a homogeneous connection

As we have seen the holonomy maps are not necessarily linear in the case of
homogeneity of (V). To get linear maps we take their tangents:

Definition 3. Let Jf={a,0,ljy} be the family of holonomies of (V). Associate
to every holonomy map

atoliy: 1,(f) —~(n) smooth, t0, domy,
the map

D«on. yvm((prof)u  ((proige.. YY) (V€1 Y9),

y))(O

where (da,*,uy(u)) is the fiber derivative of a,0(y at u. The map Da,0x.yj,, is called
the osculating holonomy map induced by a(@(>y, the family

Djf:= {DaQ®w. |aCfl y< E uty,d
is called the family of the osculating holonomy maps.

Now we can associate to the map Da(g(liy>u a map between fibres of (pr £)’E

to get a situation more similar to the case of holonomy maps. The curve y and
£\to determine a curve yuof tl  which is the parallel translation of u along y
by (V) and for which domy,,=domy. The data (tQ/,,yl completely determines
the map Da,o(I>>u, so we can transcribe it to the form /J,0,1?u. If we realize that yu
is a curve in tl (pr £)mE, naturally emerges the following question: does there exist

a linear connection (V) on (pr c)!§ whose holonomy maps are exactly the maps
Bio.ti.yj The answer is negative if we formulate the question in this way, because
the maps Rtatl,yaare defined only for those curves y,, which are parallel to (V). How-
ever, slightly modifying the question we will get an affirmative answer.

Question. Istherea linear connectiion (V) on (or £) £whose family ofholonomy
maps include the whole family of the osculating holonomy maps 2., B
parallel along some y fron bsc, t0, /7~dom y, n€| WO}

In order to answer this question recall that the Dombrovski map of a linear con-
nection (V) on (pr c)li; can be written locally as

(51) D(xLylz\x232Z) = (nlylz2-(01(xL yl zn(xd-ox(x\ yl zn(y-))

where @l(xLy1z)(xd and o}2(xr,yLrrn(yd are linear in z1 x2and zl, y2re-
spectively.
With regard to (3.6) and (5.1) the map Rlotlyais a holonomy map of (V) iff

B> o , t MO B, r,YWm))(x(t))-ox(x(/), y(t), B,Otliuw)(y(t) = 0
for every weE(prc)!,,sRk where (x(t),y(t)) is the local form of vy, and

Aonj,:= (~7 Rto.d».)[» Sowe fet YO0=* , and

y()-i>(x(0,y(0)(*(0) = o.
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Composing the above equations, we obtain:
(5-2) B0, yu(w)-a> 1(x (1), x,0°,"Y(n), Bto,,yu(w))(x(t))—

-c02(x(1), at0't y(u), B,0.ufu(w))(-a>(x(t), at<hty(u))(x(i))) =0
for every u, wfR\ Similarly, is the holonomy map of (V) iff
53 atdt'y(u)-a>(x(t), alo*y(u))(x(t)) =0 for every n61,(,0).
Differentiating this by «» and taking into consideration that according to the first
part of this section & = 4 and thus « = gy we get

(54) (“u[aiciy(n)-co(v:(0, a,ary(u))(x(0)])(n0 =
= a<,,1,2(W))(X(0)(A,,,u?2Jw)) = 0
for every wfRk Now comparing this last equation with (5.2) we get

(55) d2co(x(t), aio, y(n)) (x (0) {Btat,ju(w)) =
= aWil), FOEJED), 8. 0'Uyu(w)) (x (1))~ (0 2(x(t), ot0iUy(u), B10,t,9u(w ))x

X (=w @, x10,,,y (u)) (x(1)})-
Let t=t0. Then

(d2co(x(t0), u)(x(t0)W) = oT(M'(H), u, w)(x(t0)-(02x(t0, u, W)(u)(x(t0, W) (A(..)).

After these we formulate and prove the following

Lemma 1 If (Y)is a linear connection on (prec)-¢ with Dombrovski map (5.1)
then the equation

(d2w(x, r)(p))(s) = wi(x, r, S)(p)-<x=>2(x, r, s)(co(x, r)(fij) (r,j€Rk /if R")

is the sufficient and necessary conditionfor the osculating holonomy maps o f connec-
tion (V) to be the holonomy maps of (V).

Proof. The considerations following the Question show that the condition of
the Lemma is necessary. So we have to prove only the sufficiency. If the condition
of the Lemma is satisfied for every values r, s, /i then it is satisfied also by the special
values a,0y(m), ,uw) and x(t). So equation (5.5) is satisfied. ((5.3) and (5.4)
hold good, since a is supposed to be the holonomy map of (V).) From (5.5), (5.4)
and (5.3) follows however (5.2) which is the local condition of the Lemma.

Note that the homogenity of connection (V) were used only because of the
completeness of the homogeneous connections, and only in the definition of the
osculating holonomy maps. If we define these osculating holonomies as partially
defined maps the whole discussion presented here remains valid for general non-
linear connections, too. Q.E.D.

D efinition 4. If a linear connection (V) on Vc satisfies the condition of the
Lemma, then we say that it osculates the connection (V). The family of the connec-
tions which osculate the connection (V) is denoted by {dV}.

Acta Mathcmatica Hungarica 57, J997



B. KISHOMOGENEOUS CONNECTIONS AND THEIR OSCULATIONS

Now we can state and prove the following
Theorem 2. There exists a natural correspondence between the family {dv} and

the family of the Berwald—Hashiguchi connections associated to (V).

Proof. A linear connection (V) is an element of (dV) iff it satisfies the condition

of the Lemma. Now comparing this condition with condition (3.3) in the case of

the

[1]
[2]
[3]
[41
[5]
(6]
[71

[8]
(0]

[10]
[11]

[12]

Berwald—Hashiguchi connection we can see that they coincide. Q.E.D.
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EXTENSIONS OF THE SPACES ¢ AND cO0 FROM
SINGLE TO DOUBLE SEQUENCES

F. MORICZ (Szeged)

1 Convergence in Pringsheim’s sense and regular convergence. We will consider
double sequences A={amm: m, n=1,2,..} of complex (or real) numbers. We
remind the reader that A is said to converge in Pringsheims sense if there exists a
number / such that amn converges to / as both m and n tend to <° independently of
one another:

(1D mlhr%ann= l.

It is almost trivial that A= {am,\ converges in Pringsheim’s sense if and only
if for every e>0 there exists an integer N=N(e) such that

\aJk—am)a e whenever min {/, k, m,n} ' N.

The crucial difference between the convergence of single sequences and the con-
vergence in Pringsheim’s sense of double sequences is that the latter does not imply
the boundedness of the terms of the double sequence in question.

Following Hardy [1], a double sequence A ={anm) is said to converge regularly
if it converges in Pringsheim’s sense and, in addition, the following finite limits exist:

(12) Ili%arm= km (m = 1,2,
(1.3) limam=1/, (n=1,2,.

(For more details, see also [2].)
Obviously, the regular convergence of A implies the convergence in Pringsheim’s
sense as well as the boundedness of the terms of A, but the converse implication fails.

2. Linear spaces of double sequences. We will consider the following linear
spaces of double sequences A= {anm}:

2This research was completed while the author was a visiting professor at the University of
Tennessee, Knoxville, during the academic year 1987—388.
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130 F. MORICZ

IV = {A: nun HI = 2 2 j\amn\ < o °};
1?7 = {1: MIU = sup \anm\ < °°};

cf, the space of regularly convergent sequences;
cf={A:am- 0 as max {/?,, n} — };

CE, the space of sequences, convergent in Pringsheim’s sense;
@l = {A: amm- 0 as min {/?;, n)

£ 111 d¥ —@ih$g:

As is known, /J and /|° are Banach spaces. We will prove that cf, &cf, cfBand

OcEBendowed with the norm | ¢|U are also Banach spaces.
Furthermore, we define the pseudonorm

(2.1 \Ap = HI[m sup_ \am)

for AEc%. We will prove that c£ is complete under this pseudonorm and observe
that |y4lp=0 holds identically for any ~dQcE.

Remark 1 It is impossible to introduce a nontrivial norm in c£ or &£ in such
a way to make them Banach spaces. This follows immediately from the following
two well-known facts:

(i) The linear space m of all single sequences cannot be complete under any
nontrivial norm.

(if) On the other hand, tu can be imbedded into Oc£ in a trivial way. Namely,
given any single sequence {a-}, define ak—aj if k—1; j= 1,2,...; and =0 other-
wise. Clearly W }€ otf-

Theorem 1 cf and (c§ are Banach spaces under the norm | «||TC

Proof. The only thing we have to prove is completeness. We present it in the

case of c8.

To this effect, assume that {AM: q=1,2, ..} is a Cauchy sequence in cf.
Let A9={a”:m,n=1,2,..}. By assumption, for every £>0 there exists an
integer q0=q0(e) such that

M9 _N<n)|e A £ if min{qg,r)S qo.
This implies that for all m and n,
(2.2) 1 a\q- ai'l™ £ if min{(,r) q0.
Consequently, the finite limits

exist for all m and n. Letting y —oo in (2.2) yields
(23) K™ -0 =£ if 4=4
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EXTENSIONS OF THE SPACES ¢ AND ¢, 131

for all m and n. Setting A= {a,..}, (2.3) shows that
(2.9) q[jpgo P<«>—v4|U = 0.

We still have to verify that AEc$. By (2.3),
(2.5) \ak-am =1 —gg|+1 | + k&>—am| " 2e+\a$-a%l\

where g~qO is fixed. Even simpler inequalities hold for the differences \ah—anm
and \amk—anm\. Since 4<)6cf, we can conclude Af cf, as well.

Theorem 2. cf is complete under the pseudonorm | ||P.

Proof. Completeness follows in a standard way if we take into account that
|[T]IP=|/] where /is the limit of A in Pringsheim’s sense (cf. (1.1) and (2.1)).

A norm I«Wis said to be a norm “with continuous coordinates” if for each pair
(m, n) there exists a constant Knn such that for every A= {amm} belonging to the
space in question we have

(2.6) kissK.JM II.

Theorem 3. There exists no norm in ccf with continuous coordinates.
Clearly, cf also enjoys the same property.

Proof. On the contrary, suppose that | ¢| is a norm in Gcf satisfying (2.6) for
each pair (m, ). We define am=mKnl if m=1,2,...; n=1 and; =0 otherwise.
Then AEQS and ||T|"\amlVKml=m for each m. This implies ||T||=«>, which is a
contradiction.

Remark 2. There exist “artificial” norms in cf and &f. To get one, we choose
a Hamel base for cf, say, i.e. a maximal linearly independent subset {Ay: T7]
in the linear space cf, where I is a set of indices (see, e.g. [3, p. 52]). Then any T£cf
has a unique representation

K K
A=2Z -M , and consequently, |/l = 2 L
j=i

j =
provides a norm in cf. But we cannot expect this norm to be complete.
Theorem 4. cf® and &cf® are Banach spaces under the norm | «||TO

Proof. We prove the completeness in the case of cf® To this end, assume that
{A(Q): q=1,2,...} isa Cauchy sequence in cf® Then, as in the proof of Theorem 1,
the {ad : q=1,2, ...} are Cauchy sequences with the limits arm for all m andn.
Furthermore, given any i>0 there exists g,=q((c) such that (2.3) is satisfied for
all m and n, and consequently, (2.4) is also satisfied.

It remains to check that AGcf®. The convergence of A in Pringsheim’ sense
follows from (2.5), while the boundedness of A follows from (2.3) since T(?)£cf®.

3. Linear functionals in cf and Ccf. In this paper, by a linear functional we always
mean a bounded (or continuous) one.

9* Acta Mathematica Hungarica 57, 1991



132 F. MORICZ
Theorem 5. Every linearfunctional L in eg is of theform
(3.1 L(A) —IRm+ T2:1knfS|TO+V':21 InfS(]'|+_r2:1n%1 amim

where A= {am}, the I, kTand /, are defined in (1.1)—(1.3), and the B are complex
numbersfor which

3.2) Hill = T i}/

Remark 3. In the particular case where Afc* we have I=km=In=0 for all
m and n. It follows from Theorem 5 that every linear functional L in @£ is of the
form

W=y gy amEm
where B={Rnm}£I\ and ||Z| = HMU.

Thus, the dual space of both cf and Ge£ is isomorphic to the same space I\.
This phenomenon is well-known in the case of single convergent sequences.

Proof of Theorem 5. Sufficiency. It is almost immediate. Since |/|, |feml, |/,,|S
L An rradmand n, it follows from (3.1) that

(3.3 [li|| S m=0 =0If3rml-
By (3.2), this means the boundedness of L.

Necessity. We assume that a linear functional L is given in ef and prove the
existence of a double sequence {Bm, m,n=0, 1, ..} of complex numbers such
that conditions (3.1) and (3.2) are satisfied.

To this effect, we define Bln={b@> m, n=\, 2, ...}, B(o) {b(}, C(r) {c(n}
and C={cm} as follows. For all m, n, g, r we set b<g)= 1if (m,n)=(q,r) a
otherwise; bgh=1 is m=q and =0 otherwise; ¢ =1 if n=r and =0 otherW|se,
and cm=1. Furthermore, we set

(3.4) B{e) = A—1C— 2 (km-1)B () 2 (/,,-/)C(>-

2 (a.-km!nt)B<™
=1

where A ={am}£cz. Itis not hard to see that 1

lli>@)IuU = max sgﬁ \am,-1,,\, su \allit Kk T\, su \am-11),
[m>q ke n>qann§)rw\r m>qaﬁn>r
whence

lim [&">U =.0.
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Letting G—=* and r—»® in (3.4) yields

A=IC+ 2 (km-1)B~+ ZOn-1)C™+ 2 ?(<*mn-km|n+|)&rm).
Now we set o
y=L(C), Bm=L{B™), yn=L{C(>), RBm= L(B"mm).

Since L is linear and continuous, it follows that

(3.5) L(A) = ly+ nﬂkml)BWnZ:I On-l)Yn+ rn2:|nZ:’|‘mn—km~In + NRmn-

We reveal a few properties of the coefficients m, y,, and Bmm. For this aim, we
define A(o)={a%?} as follows: =sgn Bmm if m =1,2, n=1,2,....q;
and =0 otherwise. Then by (3.5),

2 2 IA) = 1(@") =iizi M@u = liz]),

m=1n=1

Letting q—< and A ..o Yyields

(3.6) 2 2 \3m <co-

m=1 n=|

Next we define A@)={atLl), where agh=sgn fmif m=12, ..,q; n=1,2,...;
and =0 otherwise. Again by (3.5),

L(A@) = 2\Bm\+ 2 1 g(sg1f3m~l)l3mn

whence

L(A)e 2 \Bm~2 2 2 \ml

m=1 b=1

Combining this with the boundedness of L gives

2 N —1z| +2 gl gl |/U
Letting g-*°° and taking (3.6) into account, we get that

(3.7) 2 1A

We can conclude similarly that

(3.8) 24119
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Thanks to (3.6)—(3.8), we can rearrange the right-hand side of (3.5) as follows

3.9 A) — i
(3.9 L(A) —IRva+ n%zlkmBmOJrn:ZI hBun+mZ:1/lglamf§m

where
BO=Y- g, 0m- 25 e 2,2 m

MO—fm 2 Bm: fon M 2, G

By (3.6)—(3.8) we have {fmm: m, n=0, 1, ...}6/f, while (3.9) concides with (3.1)
to be proved.
Finally, we prove the equality part in (3.2). For this purpose, we define C(*)=

={4,")} as follows

sgn Bmm if m 12,...,Q9; n=12 ..r,;

sgnBn® if m=12..,q n=r+1r+2, ..;
sgn if m—qg+\,q+2,...; n=212, ..., 1\
sgnoo if m=q+lq+2, .., n=r+\, r+2,

Then by (3.5),
L(C(r) —\Bj +f12:| \&‘rd\+ﬁgl \fZ»on\+mg|/i2:I \&m\ +

+ 2f| gm» SPNRm +M=%+1rlon“rsou+m:é+ln%lrlm,,89n R On+

+ )]2=| /|2=r+| &mSgnj8m0+nFc%ﬂ n:r2+| BrmSgnBO,,

By the boundedness of L,
Il = (ILHICCIL, € \L(C™)I &

© o R0 Mg R2BMM 2o ety BV gyt T

Letting G—e0 and »D yields
(3.10) LITH é )%(: 0 %:O\anl

Combining (3.3) and (3.10) results in (3.2).

4. Linear functionals in cf. We recall that | «||P defined by (2.1) is only a pseudo-
norm in cf, but it is complete.

Theorem 6. Every linear functional L in cf is of the form L(A)=yl where
y is a complex number and | is the limit of A in Pringsheim’s sense, and ||L||=|y|.
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Proof. Sufficiency. Trivial.
Necessity. Let C={cm=1I; m,n—1,2,...} and y=L(C). Next, we observe
that if A(D) and A<>have the same limit / in Pringsheim’s sense, then
\L(Aw)-L (AM\ S iizii WA™-A™\\p = (,
whence L Aay)=T(A€). Since A and 1Chave the same limit, we can conclude that
L(A) =L(IC) = IL(C) = ly.

5. Linear functionals in cFBand &cFB We recall the following commonly used
notations. If SCis a Banach space, then c¢(3C) means the space of the sequences
X={Xjd2£: j= 1,2,...} such that the finite limit

J||_rn Wx+Hr = /

exists. If /=0, then we write XdcO(SC). As is known, ¢(3C) and cO(SC) endowed
with the norm

mm. = sILSJpl i’-iu
are also Banach spaces. Furthermore, 11(SC)
sequences X={xj€SE} suchthat

stands for the Banach space of the

nmiii = . .
i=i

In the sequel /* is the familiar Banach space of the bounded single sequences
endowed with the supremum norm.

Theorem 7. Thefollowing isomorphisms hold true:
(5.2) t{B%c(/“) and QBB %c0(/“)*

Proof. Let A={am,; m, /?=1,2, ...} be given. We relabel the elements armin
the following way: let

af) = an, aif = al2 af> = a2, =al3 af> = a3l ...
and more generally, for /= 1,2,... let
Qjj, alf* N+ 2, ...).
Furthermore, let AQ)—{alj): k=1,2, ..} and sd={AU): j= 1,2,...}.
It is easy to see that foreach ¥=1,2,...
7R 11 = 348 14

Consequently, sdfc(l°°) or cO(/*) if and only if AEcPB or BB respectively;
the mapping A—sd is one-to-one and M||,, = |||.9/]||ce.

In order to find the dual spaces of cPBand Oc£EB we refer to the commonplace
that if SCis a Banach space, then the dual space of ¢(SC) is isomorphic to [1(S£*)
where SC* denotes the dual space of SC The dual space of cO(3S) is also isomorphic
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to LWX*). In particular, M
(5.2) (<)== and  (cO(/~))* ~ I*((/-T).

We remind the reader that the dual space of /* is the Banach space ba(Z+, 3P, p)
of all bounded and finitely additive set functions  defined on the class SP of all
subsets of the positive integers Z + and endowed with the norm

MI = sup |/I(P)],
P<Z&

the so-called total variation of p on Z +. (See, e.g. [4, pp.l 18—119]. where the example
of (E“)* is presented in details; but this covers (/“)* by using counting measure.)
Combining (5.1) and (5.2) provides our last result.

Theorem 8. Thefollowing isomorphisms hold true:
(cfT ~H(M*) and (ClBr ()]

In other words, an element M in /X((/“)*) is a sequence M={pj-. j= 1,2, ..}
of bounded and finitely additive set functions defined on SPand such that

lmhi, = 2 INI —
i=1

Remark 4. The spaces introduced and results proved in this paper extend in
a natural way to J-multiple sequences, as well, where d is a fixed integer, d”"3.
(Concerning the definition of regular convergence for (/-multiple sequences and
series see e.g. [2].)
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ON BANACH SPACES OF ABSOLUTELY
AND STRONGLY CONVERGENT FOURIER SERIES. 1l

I. SZALAY (Szeged) and N. TANOVIC-MILLER* (Sarajevo)

1. Introduction and preliminaries

Let (sk be a sequence of real or complex numbers. If sk-*t in the ordinary
sense, we write sk-+tl; and if 2 15 in which case sk-*tl, for some
number t, we say that (sk) converges to t absolutely and write skl 1].

The latter notion was extended to larger indices A>1, called the absolute
convergence of index 1 and denoted |7|a. The strong convergence of index
denoted |7|fa, is a convergence type that lies between the absolute convergence
|/|s and the ordinary convergence 7, i.e., |7|s=>[7]s=>7. We shall denote the strong
convergence of index 1simply by [7]. For definitions and basic properties of these
notions we refer the reader to [7], [8] or [11].

Given a trigonometric series

(LY +k2—| akcos kx+ bksin kx

2
let s,,(x) and <1,,X) denote the ordinary and the Ceséro Cj, n-th partial sums of
(1.2), resp. As usual, let Lp,p s1, be the Banach space of all real or complex valued

Z7iperiadic integrable functions /7 with the norm  |[Uly= where

the integral is taken over any interval of length 2n. Let C be the Banach space of
all continuous real or complex valued 27t-periodic functions/ with the norm ||/||c=
=sup \f{x)\. If (1.1) is a Fourier—Lebesgue series of a function /P72 we shall

write snf, anf and fc(k), fjk) for the partial sums v, anand the coefficients ak, bk
respectively.

In a series of recent papers [5] through [11], the above concepts of the absolute
Tk and strong [7]a convergence were applied to trigonometric and Fourier series.
This led to questions about properties of classes of functions whose Fourier series
are |7|a or [7]; convergent, pointwise a.e. or uniformly, defined for A 1 as fol-
lows :

Y* = {NC: snf » f T7|a uniformly},

= {/EC: J,,/— |7|a uniformly},
5v= {/EU: sj~ f\l\kae},
Ax= {/€L1: snf —f |7|7 ae}.

* The work on this paper by the second author was partially supported by the Research
Council of the SR Bosnia and Hercegovina.



138 I. SZALAY AND N. TANOVIC-MILLER

The first two are naturally related to the following well-known Banach spaces of
uniformly and absolutely convergent Fourier series, respectively:

= {/€C: s j ™ f | uniformly}, [|/||* = sup |Kk,./||c,

s*={/€C: s jnf |/] uniformly}, LYJI* = L, A+ 2 \LLU \ +\LL \-

We recall that
sfa Tla {feLl:shf -/ | ae}

properly, while
* ={/E&: sj~ f\I\ ae} = {/: ~f\I\ ae}

For these well-known facts see Theorem A in [7] or [4]. Clearly stfl=Al=s/. By
our previous results, see [8], S4 We shall denote ifxand S1by if and S
respectively.

The class if was studied in [6] and the classes ifk, A>1 and S\ 1 have
been investigated in [11]. It was shown there that both SI and S\ Xé 1 are
Banach spaces with the respective norms determined by the partial sums s,,f. For
convenience of this presentation, in the following theorem, we list some of the basic
properties of the classes.

Theorem A. Let A&1l. Then
@) ffSl ifandonlyif/6 If and

(12) —5j- 2 k\\W \ +\W\Y =0f\) (u-co).
f<HTI if and only if JCC and (1.2) holds.
(i) Let E=U,C. IffEE then (1.2) holds if and only if

(13) if 1 » | A —o(D) (n—).

(iii) ifxczifx' and SxczSx for A>A'él.
(iv) d if properly and Sx, | |[tA is not a Banach space. ifxc.4J properly
and ifx, is not a Banach space.

(v) Sxand ifxare Banach spaces endowed with the norms

(1-4) Ills*0 = syp L'Im j . k2:”0 No +\)skf-ks k_1f\>7\\”p|':L*
W 1 n JM/A

(15 11170 = Spp ||\/n_+1|g;0KA+|KZ‘bt'”A$

respectively. Moreover

(1-6) H/1* =i SUP IK/ILA =2 ||/]|SAO
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and
(L.7) I1/lie = syup 1k/llc = Wil R [|/]|*.0

(vi) If fESx then Is,,f-f\\s*.0=0() (n-=0). If f~ x then Ik/-/||",, =
=0(1) (n-°°).

Here in (1.4), (1.5) and later expressions like s_xf and are to be inter-
preted as zero. Statements (i) through (iv) are contained in Theorem 1, Lemma 1
and the Remark 1 in [11]. Statements (v), and (vi) are Theorems 2 and 3 in [11],
respectively.

By Theorem A (i), S' and Y x are characterized as the respective subspaces
of Lx and C satisfying (1.2), a condition expressed in terms of the Fourier coeffi-
cients only. However the above norms (1.4) and (1.5) are given in terms of the partial
sums skf It is therefore natural to consider other norms on these spaces, describable
by the Fourier coefficients and equivalent to those given by (1.4) and (1.5). For
the classes £fx this idea was already explored in [7]. Namely we have introduced
there certain new norms denoted | ||* ;, r=1, 2,3, equivalent to the original
norm given by (1.5), see Theorem 1in [7]. As a corollary of those results we have:

Theorem B. Cfxis a Banach space under the norm

\WVA

,énOKX{\LU \ +\LU \Y) + 1 I

( 1
* -

(18) \\f\s*3 = SUP T

The classes séx were introduced and studied in [7]. Using some earlier results

of the first author, on the absolute |/|a convergence of trigonometric series [5],

and inspired by the above mentioned properties of the classes ¥ x we have shown

in [7, Section 3] that the classes séx can be endowed with the corresponding mutually

equivalent norms | | i=1,2,3. The most interesting among these norms is

I 0 ,3. Collecting some of the results proved there (see Theorems 3 through 6 in
[7]) we have:

Theorem C. Let 271. Then
(i) /Caldifand only if fEC and

(1.9 kgd<x-\\LIJ \+\l \Yy ~n
(ii) IffEC then (1.9) holds if and only if

(1.10) lI(ifc A dk/-**-i/1%) 1o

(iii) sdx and sdx' are incomparablefor 2>A"'sl.

(iv) sdx<\9x properly and sdx is not a Banach space under the norms | |[[*n r
/=1,2,3.

(v) sdx is a Banach space under the norm

(112) HNU.3 = {2 k=W A+ W ) +\Vm,
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moreover

(1.12) WU A [[/]],a3SFI/H** .
(vi) If f<iséx then Ik, /-/[|~ 3=o(l) (n-°°).

Theorems A, B and C show an obvious analogy between the spaces £fxand six.
The difference is illustrated by properties (iii). Moreover, the above mentioned
norms, given by (1.8) and (1.11) are described in terms of the coefficients and the
4Anorm. However for 1=1, séx=stf and the norm ||/||rf is determined by the
coefficients only. This will turn out to be natural in view of the properties of the
spaces Ax and the fact that T1=.n/ also.

The objects of this paper are the classes Sx and Ax. Inspired by the just de-
scribed results on the classes ffx and ,s/\ proved in [7] we shall consider the cor-
responding norms for the classes Sx and Ax, 171. Naturally we will obtain anal-
ogues of the properties listed in Theorems B and C, i.e., of the corresponding theo-
rems proved in [7]. Whenever an analogy between the classes Sxand £fx, respectively,
Ax and séx, is discussed, we shall avoid repeating the arguments that are similar
to those presented in [7]. Moreover, we shall prove that the spaces Sxand Ax, A>1
are Banach spaces endowed with the norms determined by the Fourier coefficients
only. This is clearly consistent with the above mentioned fact for Al—".

2. Banach spaces Sx and some equivalent norms

The essential properties of the classes Sx have been recalled in Theorem A,
Section 1 Our goal here is to show that Sx can be endowed with a norm described
in terms of the Fourier coefficients. Due to the obvious similarities with the classes
9oXwe should naturally define the new norms on Sx simply by substituting | ||c
by I H* in the definitions of the norms | ||*n>/=1,2,3 in [7, Section 2]. The
most interesting among those norms was certainly | ||*&38, consisting of a part
determined by the Fourier coefficients and the tAnorm, see (1.8). It will be shown
here that more can be achieved in the case of Sx, />1. Modifying a little the ap-
proach used in [7, Section 2], we define the following norms on Sx, /=£1:

Al

nc_1 " 1
(2.1) Il/Hur = SLrJ]P “t—ll_|'+r|1- é&h +\) x\skf - s k f\x; "
( 1 » n " VIA
(2.2) [I/llw = s Y, P 1éo(K+l)X(\LU \ +\LU \y)> ,
(2] M2 = M+ 3p KAA
(2.4) I/sA3 = 11/1lw + sup \\s,,fA\L*,

Clearly ||/||sa2 and ||/||sa8 correspond to the norms ||/||ya2 and ||/||* A3
introduced in [7, Section 2] and we could define, similarly, the norm ||/LL51g cor-

responding to /LU~ nga. In view of the results of this section this later norm is how-
ever, less interesting.
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Remark!. Let Asl. Then for each fES\ ||/||w, ||/||w- and [|/||SAf, i=2, 3
are finite and do define norms. Moreover

(2.5) H/w' ~ 1/Hw
and
(2.6) [/Is™0 ~ liyils-2~ 11/1U-3-

Proof. Glancing at (2.1) and (2.2) the inequality (2.5) is obvious. That these ex-
pressions are finite for each /6 Sx follows from Theorem A (i). By Minkowski’s
inequality

(1 VM
VAT I(2=0I(k+l).vt/- b k1|4 s

(1 w \19 (1 n
N g Ne Hifk NI e = T 20K LA
and clearly
i
1bl T.|W n+ 1 kfo K/

Hence the inequality (2.6) follows immediately from (1.4), the above definitions
and (2.5). That ||/||sAi, i—2,3 are finite for each /651 is clear from (1.2), (1.6)
and Theorem A. Finally that all of the above expressions, given by (2.1) through
(2.4), do define norms on 5sacan be easily verified, applying Minkowski’s inequality.

@.7)

Theorem 1. Let A~Il. The norms | |w- and | ||[] are equivalent. Further-
more, the norms | ||sn>;, z'=0, 2, 3 are mutually equivalent.

Proof. We prove the first statement by showing that for each /6 Sx:
(2.8) W/lur = 1AL = 4||/||U]-

Now the left inequality is (2.5) and the inequality on the right follows by the same
argument as in the proof of Theorem 1 in [7]. Namely, by [7, Lemma 1] we have

(1 n f1/A "1 » _ _ Y I3
\H'”_ m2£*+OWC(*)I + V‘®!H 84 WH i T fc2=0(H 1 )JJ(M_ I/I JT liLa

Hence (2.8).
To show the equivalence of | |51, /=0, 2, 3, by (2.6) it suffices to prove that
there exists a constant K such that

(2.9 lI/Hs*a ™ *1l/1lsAo-
But from (2.8) clearly ||/(isa.3 =4 1/]]sa2 and by Minkowski’s inequality and (2.7)
IIsa,2 = 1l/llsaot ZsHp [~ /11.

Consequently by (1.6) ||/||SA2=31I/llsAo and (2.9) holds with K= 12,
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As a corollary of Theorem A and the second statement of Theorem 1 we can
now write the following analogue of Theorem 2 in [7], and in particular of Theo-
rem B.

Theorem 2. Let A& L
(i) For each i=0, 2, 3, Sx, | ||SAf is a Banach space and

(2.10) W% sup VsrF\\L% A ]/]]sa,

(i) For every ff Sx andfor each /=0, 2, 3, [|xn,=0(1) (n—0).
(iii) S-a I f properly; Sx, | i« is not a Banach space and

(2.11) sup ll/llsv/IINIL*=~, = 0,2,3.

Proof. Statements (i) and (ii) are immediate consequences of (v) and (vi) of
Theorem A and Theorem 1. The inequality (2.10) follows from (1.6) and (2.6).

Statement (iii) can be proved similarly as the corresponding claim of Theo-
rem 2 in [7] or the Remark 1in [11]. That SxcL x properly follows from (iv) of
Theorem A. So take fELX S x and suppose that (2.11) does not hold for some
/=0,2,3. Then by a well-known fact, see [3] or [12], Vorf —||1a=o(1) (9—"°),
consequently |ler,,/—#|s\i =0(I) (n—=°). But onfESx for each n and (w,/) is
a Cauchy sequence in Sx, || |[ta Thus (cr,/) is a Cauchy sequence in S\ 1 ||SAj,
which by the above contradicts statement (i) because we have assumed that f$ S x.

The most interesting among the norms appearing in Theorem 2 is certainly
I/1sa3= I/llgd + slhp IK/lIzA- Our next result will show that for 9> 1, Theorem?2

can be improved, i.e. that, Sx, | ||w is a Banach space for A>1.
Lemma 1. Let /.>1. Then there exists a constant K, such that for each f£Sx

(2.12) sup WsJ\L* si KXWV

Proof. Suppose $=-1 and let i satisfy 1A+ I//r= 1 Choose l<p<min (#,f)
and let q be such that 1/p+ 1/#=1. Arguing separately for 1<{AS2 and #>2 it
can be easily verified that </>max (5, 2).

Suppose fGSx. Then by Theorem A, /cIx and (1.2) holds. Moreover, since
1<p<k, fdSp and (1.2) holds for p. An application of Holder’s inequality for
g/k yields

(2.13) Wsf\L =\sJ\L4.

By the Hausdorff—Young theorem we have

IK/L. ~ (2 (\L \2+\LLU \QPYIR

Consequently from (2.13) it follows that

(2.14) KAL* A (i (WAL Y ) 1P
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On the other hand, by partial summation, using the assumption that 1
<min (A/ /) we have:

(2(\LUN+\LLN)PYPs Y ZU TTAw) i(* + i) plile()1+11.(0 1)+

1 "
T (n+ p iR D/l + 1s(Hp - =
l y =
(k+ Dp l+ (n+%y—12][p UU_ |IJY Piimm -

By Holder’s inequality, once more, ||/|[[pI<|!/|[[#]- Hence from (2.14) and the
last two inequalities we conclude that

WSnfh> s ( ~ f WA \w
which implies (2.12).
Theorem 3. Let A>1. Then Sxendowed with the norms | || or | ||[A isa
Banach space. For each ff Sx [y, /—||["l=0(2) (n

Proof. By Lemma 1, (24) and (2.12) there exists a constant Kx such that

(2-15) H/Hw AT s-, 37 (1+ A) HTTEA T,

Hence by (i) Theorem 2, Sx | ||U] is a Banach space. Furthermore by the first
statement of Theorem 1, Sx, | ||[4]. is also a Banach space. The second statement
of the theorem is obvious by Theorem 2 (ii) and the above inequality (2.15).

Remark. 2. From (2.3), (2.8) and (2.12) it is trivial to see that also:
(2.16) W/llur = liflis-ba N (1 +4/ )M -

3. Banach spaces A" and their relationships to s4' and Sx

The spaces sil have been studied in [7, Section 3] and their basic properties
have been collected in Theorem C of Section 1L Theorem A shows an obvious
correspondence between the classes tT1and Sx. Here we will investigate the classes
A'\ the analogues of the statements listed in Theorem C and other properties of
these classes. Furthermore, by considering several norms on Ax, paralleling the
approach used in [7, Section 3] and in Section 2 here, we will prove that Ax, A&l
are Banach spaces endowed with the corresponding norms | L determined by
the Fourier coefficients only. This will illustrate a similarity of the spaces Ax, Asl
with the spaces Sx, A> 1 and a difference in regard to the spaces s4x, A-ml

Theorem 4. Let Asl. Then:
“ (i) Ax ifandonlyif/€ Lx and

(8.1) /ui = {kg(;{K+\)x—\\I.IJ \+ \Ll \M 'x= e
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Moreover if fl Lx then (3A) holdsif and only if

(32 W= [[[LF+ i)A T 10 - 11 JAlk-

(i) si=A andfor A>1 .4 xa Ax properly.
(iii) /lsand A-' are incomparablefor A>A'"1
(iv) AxczSxciif properly and Ax is not a Banach space under the norms | |jsa;,
/=0,2,3.
(v) Ax={f: sn-~f |/|aae]j, Axc T1 LP andfor A>1, AxfL°.
phi

Proof. We begin by remarking that AxczSx, since |/|;=>|/|n forall A~I, see
[8] or property 3) in [7, Section 1] and the references cited there.

(i) Suppose /£ Ax. Then by the above and Theorem A (i), clearly, /£ if.
Moreover by the definition of the \I\X convergence, see either [5], [7], [8], [10] or [11],

(3.3) 24N+ DN WE-SK-IA® <%0 ae,

Consequently (3.2) holds. Writing
mhflf-Sk-Jix) = qcos (kx +yKk)

where el=}?(k)+fs(k) and <k depends only on the coefficients, it follows that
1 &
(3.4 2 (K+\)x~1BK"r- f |co5(kx+ a*)adm<="°.

By Lemma 1in [7], (3.4) implies (3.1). That (3.3) implies (3.1) follows also from
(1) Theorem 1in [5], but the later discussion is needed in the rest of this proof too.

Conversely, suppose that fALx and that (3.1) holds. Then by the Fejér—
Lebesgue theorem f ae.,ie., snf-»f Ck a.e. and (3.1) clearly implies (3.3).
Consequently, by property 4) in [7, Section 1], snf-»f \I\X a.e. Thus f\A x if and
only if fELx and (3.1) holds.

Moreover (3.1) clearly implies (3.2). The converse is also immediate from the
above, since we have already proved that (3.2) implies (3.4) which in turn implies
(3.1) by Lemma 1 in [7]. Hence for each fELx (3.1) if and only if (3.2) and this
completes the proof of (i).

(ii) By the well-known properties of the class si, described in Section I, clearly
A=si. That sixc:Ax is also clear by part (i), which we have just proved, and by (i)
of Theorem C, because (1.9) and (3.1) are obviously equivalent. It remains to be
shown that this inclusion is also proper. Consider the series

(3.5) cos kx.

1
é'l Klog (k+1)
Then by a well-known result, see [3, Vol. 1], the series (3.5) converges a.e. to a func-
tion fAL 1 and is the Fourier series of that function. Moreover its coefficients sat-
isfy (3.1). Thus by statement (i), JfA x. However (3.5) does not converge for x=0
and consequently it does not converge uniformly, so that f\six
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(iii) Suppose A>A'1. We will show that Ax and Ax' are incomparable by
considering precisely the same examples as in the proof of (iii) of Theorem C, that
is of (ii) of Theorem 4 in [7]. Namely let:

(3.6) [.(*) = Z531ircos2Jx
and

3.7)

where 1/A+1/7=1. Then by [3, Vol. I] or [12, Vol. I]/a and gr are well defined,
fx,gx-£C and each series is the Fourier—Lebesgue series of the corresponding
function. Arguing the same way as in the proof of (ii) of Theorem 4 in [7], it is easily
seen that:

W y-|<0° and H/AIU =°°;

. M'Mui =°° and HI'lIlm <0°-
Consequently by statement (i) we conclude that:

fAAK and //KMA gr$A; and gr£Ax

Thus Ax and AX are incomparable.

(iv) We have already remarked that Axa Sx. To see that this inclusion is also
proper, consider the function gx defined by (3.7). Then it is enough to observe that
by the above gx$Ax; while by Theorem A (i), g~ Sx. The second proper inclusion
is true by Theorem A (iv). That AX, | 1-=> is not a Banach space for /=0, 2, 3 can
be shown similarly as in the proof of Theorem 2 (iii).

(v) This statement is clearly true for A=1. So let A=-1. Then clearly Axc
c {/: s,,-+f\l\x a.e.}. To show the converse inclusion suppose that sn-»f\l\x a..
(Here snis the w-th partial sum of (1.1).) Then s,-+f[7], and consequently, since
A>1, by Theorem 1 (iv) in [11], /E Sx. In particular then (1.1) is the Fourier—
Lebesgue series of/and hence fAL 1 and s,,f-*f[I]x a.e. Thus f£ A x. Consequently
Ax={f: sn"f[I]x a.e.} for all A=rl.

Now by Theorem 1 (iv) in [11] again, SJc f| F and therefore AXCprll Lp.

Finally to see that Ax<tL°® consider the sum function/ of (3.5). Then by the pre-
vious remarks f£ Ax. However, by [10, p. 131] /$£“. This completes the proof of
the theorem.

Remark 3. Bythe same argument as in the proof of (v) of Theorem 4 and using
(iv) of Theorem 1in [11] we also have the equality s*"x—{f: sn>/ |/ |a uniformly}.
This fact was not pointed out in [7]. Thus by the above, Theorem 4 (v) and by Theo-
rem 1 (iv) in [11], the equalities of this type hold for all the classes ifx, Sx, séx and
Axand for all X=\ except for theclass S for which 5>c:{/: sn"-f\I\ a.e.} properly,
by a much deeper result, see Theorem 1 (v) in [11] and the references cited there.

In the remainder of this section we discuss the norms on Ax and prove that
for A>1, Axis a Banach space endowed with the norms | |jw, or | L, defined
by (3.1) and (3,2) respectively. Following the approach used for the classes Sx
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in Section 2 and the classes 8 xin [7, Section 3] it is also natural to define, for AS 1:
(3-8) T 1n2 = II/IIur+sHp K /Hil,

(3.9) I/IL-3 = H/Hyj+syp TVHLA,

Remark 4. Let Asl. For each /€1\ ||/||ur, [|/||m and |//|L*,n /=23,
are finite and do define norms.

Proof. That |[|/|||4, |I//'ui and H/H”.n /=2,3, are finite follows imme-
diately from Theorem 4 (i) and the above definitions. Moreover, that these expres-
sions do define norms on Ax follows easily by several applications of the Minkowski’s
inequality.

Now itis trivial to seethat | ||m is equivalentto | ||* and that sup i /[|L"
—/1lip Thus for A=1 the norms defined by (3.1) and (3.9) are both equivalent
to the standard norm on A—si. It turns out that this fact extends also to the other
two norms for n= 1 Our goal here is to show the mutual equivalence of all four
norms, also for A>1. It will be shown that the classes Ax for all A”l behave
like sé. Hence there will be no need to consider distinctions such as those expressed
by Theorems 2 and 3 for the classes 54, separating the cases Asl and A>1.

Lemma 2. Let A”l. Then there exists a constant K, such thatfor each /6 Ax

(3.10) s, ALY KAf\W .
Moreover
(3.12) H/1wAD/1I HI-

PROCF. We first verify (3.11). By partial summation it is easily seen that:
-nL_L i 20(K+ WAL\ +\W\Y =

- n_+Ui 2:Oi];k (/+Da (Tc(H T+ M)A ig 0 M

Hence by the monotonicity of the power function it follows that (3.11) holds.

The inequality (3.10) is trivial for A=1. Now for A=l by Lemma 1 there
exists a constant Kxsuch that (2.12) holds and (3.10) follows immediately from (2.12)
and (3.12).

Remark 5. The above inequality (3.10) can be also proved directly, using an
argument very similar to the proof of Lemma 1

Theorem 5. Let A&1l. Then there exists a constant K- such thatfor each ff Al;

(3.12) W/Lui'Si 111U 2S (1+3Q ||/||w,,
(3.13) WM = WblL3 = (1+%)WMnf>
(3.14) 4-41/1u, » Wlup ~ 1y,

Consequently the norms ||/|||A., |I/|||A and L/UMA, /=2,3, are all equivalent.
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Proof. By (3.8) and (3.9), inequalities (3.12) and (3.13) are immediate con-
sequences of the preceding Lemma 2.

Now the right side inequality in (3.14) is also trivial. To show the inequality
on the left of (3.14) we apply again Lemma 1 from [7]. Namely as in the proof of
Theorem 4 (i), writing

Skf{x)-Sk--J(x) = 008 (kx + dk)
we have clearly,

(& (P+DN10n 2/ cos(kx+o\xdxj =£|)/||Ul..

Consequently by Lemma 1in [7] it follows that

2-1(2, (*+DAIN) U™ 1Hur
and therefore since el=f?(k)+f?(k) we conclude that

. - 4-M1/Hpi~ 1/1ur
which verifies (2.14).

Theorem 6. Let 2=£1 Then JT- endowed with the norms Li/LUw-, [I/llpi or
[|[/1U ,, /=2, 3, is a Banach space. Furthermorefor every Ak, lIsnf —f\\w=o0(l)

(n—=m
Proof By Theorem 5 it sufficies to prove that Ax, | |~ is a Banach space.

First, we notice that by the definition of | ||sai3, see (2.4), and by Lemma 2,
there exists a constant Kk such that for each /£/1 A

(3.15) MsAa = 1/Ilw+ sup [[j,/[tAN (1+2)1/Tui-

Suppose that (/,,) is a Cauchy sequence in Ax, | |||4. Then clearly (/,,) is a
Cauchy sequence in SI, || ||sa8. From Theorem 2 we conclude that there exists a
function /€ Sx such that
(3.16) /-13s*.3= 0(1) (h—vo).

We will show now that f A x. Since (/,,) is a Cauchy sequence in Ax, | |||4 given

e>0 there exists an integer n0such that
(3.17) (2 (k +\Y~4\LAK)4Z(K)\+\U k)-fim f) vX~
k=0

= Win-fmWu\ < ¢/2 for n.ma na and for all N.
From (3.16) and (2.10) it follows that |[|/,,—+m|iy=0(l) (/n—=a Consequently

fo(k)-fm(k) = o(l) and fs(k)-f,,Jk) = o(D) as /[H-°°,
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uniformly in k. Letting in (3.17) we obtain the estimate

(@0 (k+ D)*-Y\Ec(k)~LW\+\E (k)-LU \ x"e
for all n*n0 and for each N. Hence

"/,,-Mui = 0() (»— ).
But fn—f£L x clearly and therefore by Theorem 4 (i), /,, —+ £Ax. Since fEL x and
/1 = 11/-/mllg) + 11/, 11uj<>° it follows that also f~ A x. Consequently Ax, | |[U
is a Banach space.
The second statement of the theorem is trivial observing that

ik,,/—/iiui=(k=in+1 (K+1y-\\w \+\/> T xy/kX

so that clearly \enf —|||n]| =0 (l) (n—=°) for each f£ A x.

Remark 6. Among the norms appearing in Theorems 5 and 6, the most inter-
esting is clearly | |||A. Due to the fact that Ax, | L is a Banach space for all
1= 1, where the latter norm is determined only by the coefficients, the norms | WA*ti,
i=2,3, are not very important. We have, howevpr, included them in the above
presentation mostly for the sake of comparison with the results obtained for the
classes sdx, £fx and Sx.

Remark 7. We have observed already in Theorem 4 (iv), that for all Asl,
AxczSx properly and that Axis not a Banach space with respect to the inherited
norms. Moreover we can now write that for all A~

/€Aﬂs:¥4.960ae I/m/Ms\i =, “=0,23

Remark 8. We have also observed by Theorem 4 (ii), that for all Asl, s/xczAx
properly. Using Theorem C and the results of [7, Section 3] and arguing the same
way as in the proof of Theorem 2 (iii) or Theorem 4 (iv), it can be easily established
that sdx is not a Banach space under the inherited norm; moreover

sup  |]/b \i/lNlm =°°, /=1,2.3.

A corresponding statement is also valid for the spaces 9> that is ,9»a S x
properly and ¥ xis not a Banach space under the inherited norms.

In conclusion of this paper and using the results proved here, we can now
deduce the following theorem about the Banach spaces i f xand séx, slightly improving
the corresponding statements of Theorems B and C and illustrating another look at
these spaces.

Theorem 7. The spaces STx, Ais| and sdx, A>1, respectively, endowed with
the norms

li/lIA = /llw + WHc and  WIU* = [|/|| Ul+||/||c
are Banach spaces.
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Proof. By statements (i) of Theorems A, C and 4, clearly 9>=--CC\Si- and
sf'-=CC\AIl. Moreover clearly C, | |lc is a Banach space. Now by Theorems 3
and 6, Sx, I I[g and Ax, | |||A are Banach spaces for A=»l and by Theorem 2,
S, I ||s8is a Banach space. Moreover A”czS”alLl, L\ | jlb is a Banach space
and 0 |[1i=| |lc- Assuming first that 2>1 and noticing that by Lemmas 1 and 2,

I b=M1 h ~K xI [U]s/i:j |UL,

by a well-known result, it follows that and séAare Banach spaces under the
corresponding sum norms : I 1I**, respectively | LM, for all A>1. For A=1 the
statement follows from the above, noticing first that similarly, ¥*is a Banach space
endowed with the sum norm | ||Si3+|| lie- Now by Theorem 4 in [10], ||/||s,3=
—w+ Wil for each fES and consequently

WAt A s 3+1000c A Hw+2[1e S 2L/ *,

Hence  endowed with the norm | || is a Banach space.
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ON THE WEIGHTED MEAN CONVERGENCE
OF INTERPOLATING PROCESSES

I. JOO and J. SZABADOS (Budapest)*

In [2], the first named author defined the positive linear operator

i « : = Nx-Ad
(i) /5 X kZ:I(xk)\; i A|I/(x).
Here —I<asO, O~x"...N X, are the roots of the Laguerre polynomials L"(x),

_ L)
W= w0 (x-xK

are the fundamental polynomials of Lagrange interpolation based on the Laguerre
nodes, and f(x) is an arbitrary function defined on (0, °°). It was proved in [2]
that for —<a”0 this procedure has a remarkable stability property, and under
pertainlgrowth conditions on /(x), uniform error estimates can be given on finite
intervals.

In this paper we investigate the weighted mean convergence of (1) on [0, °°).
As a corollary, we shall get the same result for the Hermite—Fejér interpolation.
We will consider the following class of functions:

@ CA) ={/(X)|/(x) is continuous on [0, occ) and lim f(x)e~X = 0}.

k=1 n)

To an /(X)EC(A), we shall associate the function
©) F(x) =0x*)e-**w

uniformly continuous on (—=°, °°). co(F, h) will denote the usual modulus of con-
tinuity of F(x) on (—-s °°].

Theorem 1. If —I<oc”0 and 1 then
f Xxe xf{x)- PM(/, )| dx = O (W"F, —

for any J(x)tC (/). Here the O sign indicates a constant depending only on ¢ and A

We break the proof of this theorem into a series of lemmas. In what follows
the O sign will always be meant as a constant depending possibly on a and A but
always independent of n and x.

* Work was partly supported by the Hungarian National Science Foundation for Research,
grant No. 1801.



152 1. JOO AND J. SZABADOS

Lemma L Given Jlkg<1 and integer, to every /(X)EC(A) there
exist polynomials p(x)f Mn such that

@ 1/(x)—p{x)\ = OE*qw(F ~)+(~) } ©OSx" a2,
) /Y e-'lIM - M |1 =of{<»(")+(A) + (M (") ji
© [P = 0(ex\*-= |V, +1j (0<xS az).

Proof, (a) Applying Jackson’s theorem to (3) on the interval (—a, a), we get
a polynomial pg(x)£M,, such that

(4) [F(x)-<?(x)| = Ola)gg |/|) (x|~ a).
Since F(X) is even, we may assume the same about q(x). (4) implies
(5) [/(x)-*A?(/x)|] = O(eix) o| f, (Osix a2.
Let
©®) pO) = A(Y%) 2, u EI7"
Then by (4)

*|p (x)-eFAUX)] Si gy 2. DK o *

P 0 Za LiTr™,/1
(0 si x si a2.

Since xke~,Ix attains its maximum on [0,») at x =k/p, we get

) e--lp (x)-"?2(/x)|= 0o (i(") ~) =o(("]

(Osix ™ ad.
Thus we get from (5) and (7)

[/(x)-p(x)] =0 (O o (f,1) +0(eM (») =0(c>M\co(f, +(~)}

(0SS a2.
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(b) We obtain from (a)

Jarxxe~x\f(x)—p(x)\ dx =0 I_brv-)(xe (@ uxdx =

= 0\(o\|/] ) L1l '|

On the other hand, by (2) and (6)

()] ©
(8) foxxe-*\f(x)-p(x)\ dx f Xee~x{\f(x)\+e*x\q(Yx)\}dx =
qZ

=0[f je*e-(I-A*{1+ |<?(/;)|} dx].

Since q{yx)*Mn2 is uniformly bounded in Os"Sa2 (see (4)), its increase in

[a2 °°) is restricted by © NO 1 (see e.g. Natanson [3], Theorems I1.6 and
Corollary). Hence and from (8)

f Xxe x\f(x)-p(x)\dx =0 j f oxn2e 11 exxe 9 "xdx.

ec .S ¢ |n/2. we obtain

/ A_Ne b ’le e—Oi—VXdX=

- L .
(c) We obtain from (6)

9) \p\W)\ = 09||%(\) éo (ﬂg“ 4 (r,t*)(% _%}k_ =0("){ I\/ZI}%XL + i}>

0 < x " ad.

By a well-known result of S. B. Steckin (see e.g. A. F. Timan [6] Problem 20 to
Ch. 1V) we have

Ne)l =° (fse?) “ ("eir)" 0B w(«eir) (Ws [ |

Acta Mathematica Hungarica 57, 1991
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where co(g, ¢) is the modulus of continuity of q(x) on the interval (-a, a). This
yields by (4)

k'0i*)| = O (1) {0, - Fi)+«.(fF,3 = (=wf)a,(f, ©sS.
Substituting this into (9), we get (c). O

Lemma 2. For the polynomial p(x) defined in Lemma 1 we have

J xae~xlp(x)-PW(p, ¥l dx = O lco(f, * -~ j] m

Proof. From the theory of Hermite—Fejér interpolation (see e.g. Szeg6 [5],
(14.1.7), (14.1.9), (14.5.5)) and (1) we get

Xk(xk- & + X(a+1 - xK)

P(x)= k2:1\|p()(k) +P'(xk)(x-xk)JII(x)

= Pix)(p.x)+ 2 {p'(xk)- P(™)HX- X4 (x),

whence using Lemma 1 (a) and (c) with

(10) a = [\nlog2n]
we obtain
(n b (X)-FrX)(p, *)I = k2=1 \p'(XK)-p(XKk)\ = 1(x) =
vn
Y2Ylog2n

First we show that

(12) LW (x )2 ~ 0 (n-x~10 V*k e~\Bk (k = I»es>n; v< J).

Namely, if xk*n then this follows from the relations (9)—(13) of Névai [4] and
Szeg6 [5], (15.3.5):

_ Xk=0(m)xk1L? (x*)“2= 0(n~12xk+H12B-**,
i.e.

LP'(xK)-2= O (M~a~12Yxke~'xK) xk+1e (1 V)* = O (n~x~12¥xke~x®) (xkS n)
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since the function xx+le~(1~vx is uniformly bounded on [0, °°). Now if xk>n
then by Freud [6], Lemma I11.15 applied to G(x)=xewx we get

TRk K - raewk LN (xK2~ J xatte (L vyxolx <

L*y(xW-2= C)(n-y)e-w*= O (n-*-12ixke~wK) (xkS u);
whence (12) is completely proved. Using (12) with /i< v< 1 we get from (11)
log2n)'

| [«
(13) >()-7), <> =0 /|9|I092]n *=i |X-X*|

O <r< vi).

(Here we used the fact that co(F, ¢)>0. This follows from (2) and (3) if f(x)jao0,
and the latter may be evidently assumed.) Thus in order to show Lemma 2 we have
to prove the estimate

(14) § xxe x 2. e e 7%dx = 0(nxlog2n).

Case 7; 0gxs=x,/2. Then using the relations

xk ~ LZ A=1..,n)
(Szeg6 [5], (6.31.11)) and
(15) L<>(x) = 0(ms) (O Sii xJ2 ~ c/n)
(I51, (7.6.8)), we obtain
*d2 n TE@x\2 ni >?2
f x*e~X . ®m"™u , e“T*iXx=o0(n-x 2 6 — xxdx = 0(n2+)x?+1 = 0(na).
0 *=po|* t=i xk J

Case 2: xjI*"x"n. Then let |x—*y|= min |x—j. Using

[X-XK S YX |)/x-x*| , (lA(r—1 A (A=1..n)

(cf. [5], Problem 35), the relations
LX) = x"s/2_/40(n72. 14 ex2 (c/n™ X S n)
([5], (7.6.8) and Theorem 8.91.2),
L<*{x) =-1£?72mI])(X)

Matheniatica Hungarica 57, 1991
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([5], (5.1.14)), as well as the mean value theorem we get

f Xxxe~x ¥ ¥Y" --7-e~pedx = o f (xxx~x~12nx~12 Z Y-n +
4% *=k [4 t{ Yx \j-k\
+XKX-«/2-1/4.2/2-1/4p - D m dx\ = O(iflog/) f _dx.+
o d xJZ

+O(nx2~10) T *«/*-il«e-*/2 |IE.Y >(f)] rfx = O («*“log2«)-

x12

0

+0(if) f xef2V4g, a/2 3V i-*)2dx = 0 («“log2«) +

+0(if) M— = 0(nxlog2n) (i6(x, Xy); |x-£] = 0 (D).

x, 12 b3

Can?5; nsx < This is the only case when we make use of the factor
in (13). Now instead of (15) we use

|L<a>(X)| = O (nx2+2/3) x~x2~rex2 (x = 1)
([5], Theorem 8.91.2) to get

“ n THx)2
f x*e~x2 I
* fe

Al . 2
g~"* = 1 xxe-x Lix)(x)2dx xr%vz —+

+a- 112 f xxe~x\L ¢e=(x)2 "

§»/2 [ x| il |£|,*)(X)£I'—>'(()|}<|* =
K%

=0 (0 f xxe-x {LMHx)2logn +\LixHX)L<x#40\} ax

=0(0+0(e-INM)f xxe~xnx2+23ex~x2~1m*/20 2+7/6™ al2_3/2e _4r<x =
n
M wux
=0 (0 +0 (e-Vr2“+nf6) f —qz=0(rf)

(E€(x, x,); [x—<§ =0(1)).
Hence Lemma 2 is completely proved. O

Lemma 3. ///(x) rr defined in (o0, °°) /nan

6[ xxe~xX\BX)\ x)\dx = ngnax H(x®<@ "“* (// < 1arbitrary).
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ON THE WEIGHTED MEAN CONVERGENCE OF INTERPOLATING PROCESSES 157
Proof. First we prove that
(16) V(x) = eXk—Pf)(<* x)+y *2-i eli*k(x ~xk)tk(x) = 0 (x 0).
Namely, it is easy to see that V(xR =V'(xK=0(k=I, Thus ifwehad V(t* O
for some £i=0, then repeated application of Rolle’s Theorem would yield a §2>0
such that F@)(*2=0. But this contradicts F(2)(x)=/r2'e";t=>0.
Multiplying (16) by xae~x and integrating over (0, °°) we get

co @
J x*e~xP " (eMKx) dx ~ J dx < °°,
0 0

where we used the orthogonality property of L~ (x) as well. Thus we get by the
positivity of the operator

j x*e xIP,Z(/, a)ldx —
0
A R, {\/(XK)\e~*X«)Jf X*e~x Kzzleuxx\(/ AxkA x—a; k(x) dx =

= 8 (/\f(xk)\e *k’?/j xae XPR(eRX x)dx =0 (Imk% [/(xt)le "N). O

After these preparations the proof of our theorem is easy. We have by Lemma 1
(@), (b) with (10), Lemmas 2 and 3:

(_1; xce -x\f(x)-P,, @(f, x)| dx SUJ Xxe X\f(x)~p(x)\ dx+
@ 00
+ J xae~x\p(x)—Pr@)(p.x)\dx+ J xae~x\P(a)(p—£,x)\dx =
0 0

=°H 7 r))+0(S =o(a(f,” )j. O

(Notice that the only part where as=0 is used is Lemma 3, namely the positivity
of P,X)(f, x)). We do not know if the mean convergence in the class C(X) holds
for a>0. (In fact, it holds for any polynomial by Lemma 2.)

Finally, consider the Flermite—Fejér interpolation

xk(xk-y) +x{a+\-xB 4

x k

Ta

17) HA(f,x) = Zf(xK (x)-
k=1

Theorem 2. If —I<a”0 and 2<1 then we have

f xae x\J(X)- (/,¥)|dx =0 log2» 1)
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Proof. (1) and (17) imply
Hn }(f x) = P™(/, x)~ %f{xk)(x—x K1{x).

Thus using Theorem 1, (2), (12) with A<v<lI, 0<st< v—A and (14)

f xae~x\f(x)-Hj)(fx)\d x" f xae~x\f(x)-Pn{fx)\ dx +
0 0

tf oxre x 2 () eIx~xkl{x)= 0 © +
o] *o
+0(n-=12 f xte=* iAT T T ~Xte (WA IX=
J k=i 1~ Afcl
LA(xf .
e~IXKdx =
\x - X k\
log2«!)
\n )’
It is interesting to note that Theorem 2 holds for a=0, while it is well-known
that (x, 0)-40=/(0) (cf. Szegé [5], the proof of Theorem 14.7).

The process (1) was introduced and investigated for a=0, from the point of
view of pointwise convergence, in [7], resp. [8].
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FACTORIZATION OF PERIODIC SUBSETS

A. D. SANDS (Dundee) and S. SZABO (Budapest)

1. Introduction

Questions concerning the factorization of finite abelian groups first arose when
Hajds [4] solved a long standing problem of Minkowski. He reduced this problem
to one involving a direct factorization by simplices and solved it by showing that
one simplex must be a subgroup. Fuchs [3] asks whether or not, if a direct product
of simplices is a periodic subset of a group, one of the simplices must be a sub-
group. He may have had in mind the possibility of finding a shorter proof for Hajos’
theorem. If a direct product of simplices is equal to the group then it is easy to
show that either a given simplex is a subgroup or the product of the remaining
simplices is periodic. We note that in this case this periodic set is also a direct factor
of the group.

Fraser and Gordon [2] gave positive answers to Fuchs’ question in the cases
of/~-groups and of cyclic groups, but gave a negative answer in general by providing
a counter example in the non-cyclic group of order 18. In this example the periodic
subset has order 16 and so cannot be a direct factor of the group.

Any simplex is a direct product of simplices of prime order. Rédei [5] generalized
Hajos’ theorem by showing that if a group is a direct product of subsets of prime
order then one of these subsets is a subgroup.

In this paper we shall consider Fuchs’ question and similar questions concerning
periodic direct products in finite abelian groups. We show that Fuchs’ question
has a positive answer if the additional condition is imposed that the periodic subset
is a direct factor of the group. However we make use of Hajés’ results on zero divi-
sors in group rings and so cannot claim any essentially new proof for Hajés’ theo-
rem. For p-groups we show that Rédei’s generalization can be applied to the Fraser
and Gordon result i.e. that the direct factors need not be simplices but can be taken
only to be subsets of prime order containing the identity element of the group. The
example by Fraser and Gordon shows that this cannot hold in (p, r/j-groups, where
p, q are distinct primes. In these groups we obtain a positive answer with the addi-
tional assumption that the periodic subset is a direct factor of the group. These two
results make use of a generalization of Hajos’ results on zero divisors in group
rings as well as Rédei’s methods using group characters.

In [6] it is shown for cyclic groups that Rédei’s result holds for subsets of prime
power order. We give an example, in the cyclic group of order 30, which shows
that it is not possible to replace “simplex” by “subset of prime order” in the Fraser
and Gordon result for cyclic groups nor to replace p-group by cyclic group in our
earlier result. However using the methods of [6] involving cyclotomic polynomials
we show that if a periodic subset is a product of subsets of prime power order and
is also a direct factor of the group then one of these subsets is periodic. For cyclic
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groups whose order involves at most two prime factors we can drop the condi-
tion that the periodic subset is a direct factor but need to restrict the factors to being
of prime order.

In any abelian group a periodic subset of prime order is essentially a subgroup.
In general this result fails to hold if the order is not prime. In an elementary abelian
2-group any subset of order 2 is periodic and it follows from this that any periodic
subset of order 4 is essentially a subgroup. We show that for elementary abelian
2-groups previous results for subsets of prime order holds for subsets of order 4.

Finally we state an open problem concerning a possible common generaliza-
tion of the main theorems in [5] and [6]. By using a previous result in [7] and Theo-
rem 6 we are able to give a positive answer in one case.

2. Preliminaries

Throughout the paper the word group will mean multiplicative finite abelian
group. The product of subsets A,, ...,, Ak of a group G is said to be direct if each
gEAi-..Ak can be expressed uniquely as g=al...ak, with afcA,, IS/~fc. If
hA—A for some subset A of G we say that h is aperiod of A. The set H of all periods
of A forms a subgroup of G and there is a set Alsuch that A=HAt is direct. If
H-/-{e), the identity subgroup, we say that A is periodic. Since in any direct product
factorization of G any subset At may be replaced by gAt, which has the same periods,
we shall assume throughout that the identity element e belongs to each subset Ah
A subset A is called a simplex if A={e, a, a2 ..., a"-1}, where n is not greater than
the order of a

Hajos [4] made use of the integral group ring Z(G). Corresponding to each
subset A of G we have an element A of Z(G), where

A=2 a
aG A
If b=2 nigi>n&Z, giEG belongs to Z(G) we shall denote by (b) the subgroup of
G generated by the support of b, i.e. those elements such that >A0. We shall
also use (A) to denote the subgroup of G generated by the subset A of G and
(bk, ..., b,,,) will denote the subgroup generated by the supports of bfcz(G),
1=rBm. If
|<hl5  bri\ = pV—Pkk>

V\Zg(le(re pkb,_...,pk are distinct primes we shall denote the exponent sum 2 ei by
r(bk, ..., bj.

Rédei made use of group characters i.e. homomorphisms / from G to the
multiplicative group of complex numbers. These extend to ring homomorphisms
X from Z(G) to complex numbers, where y (2 niSi)—2 niX(gi)mHe called the set
of all x such that y(/I)=0 the annihilator of the subset A of G and denoted it by
Ann (A). He observed that A=B if and only if y(/l)=/(RB) for all characters
Xof G. In particular the product A1A2...Ak is equal to G if and only if \AK\...\AK\=
= |G| and for each non-identity character y there exists A; with /(J1;)=0. So if
\AN=\Bi\ and Ann (74,)cAnn (4) in any direct factorization of G involving At
we may replace At by Bt.
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Our first result tests, by means of characters, whether or not a given subgroup
is a direct factor of a subset.

Theorem 1 If A is a subset and H is a subgroup of G then H is a directfactor
of Aifand only if Ann (A)c: Ann (A).

Proof. Let A=HAX Then y£Ann (WL, implies x(A)=x(H)x(AXY—0 and
so yEANn (A). Hence Ann (A)cAnn (A).

Conversely let Ann (H)czAnn (A). Let h£H,_x(h)A1 Then y()=0, since
A is a subgroup. Hence y(A)=0. Therefore x(hA)=y(h)x(A)=0=y(A). Clearly
if y(/i)=1 we have y(/r)=y(1). It follows that hk =A. Thus A is contained
in the subgroup of periods of A and so there exists a subset Axwith A=HAX

This result generalizes to a result involving two subgroups. We use the nota-

tion U to denote a disjoint union.

Theorem 2. If A is a subset and H, K are subgroups of G then there are subsets
Aj, A2 such that A=HAIUKA2 if and only if Ann (A)MAnn (A)cAnn (A).

Proof. Let A=HAXUKA2. Then, for any character y, we have
X(A) = x(H)x(AD+x(K)x(AD.

Hence y(A)=y(A)=0 implies y(J1)=0.

Conversely let Ann (A)NAnn (A)c Ann (A). We assume first that 4, A are
cyclic subgroups with generators h, kK respectively. Let A3be a maximal subset of
A with period h and let A4be a maximal subset of A—A3with period k. We claim
that A=A3UA4=HAL1UKA2. We need to show that B=A—A3UA% is empty.
As y(A)=0 implies y(J1,)=0 and y(A)=0 implies y(J1)=0 we have that
X(h)AI, x(k)Al implies y(5)=0. It follows that in the group ring Z(G) we have
\e—h)(e—k)B =0 i.e. B+hkE=hB+kB. Elements of BCihkB and hBCIkB have
coefficient 2. Then there exist subsets Bt of B satisfying the following equalities.
B1=BDhkB=hBnkB, Bx=hkB2=hB3=kB4 and hB2=B4, kB2=B3. Also B -B x=
=B3UB6, where B3=hB-, Bt=kBs. From this we have Bf\hB—B10 B5=
=h(B3\JB7) and so B=B10OB&JBe=B3\jB7(jB9, where hBa=hkB10, B9=KkBI).
Similarly BINkB=B10 Bt=k(B40Bs) and so B=B4G B30Bn, where kBn—

=hkB12 Bll=hB12 From BPihB=B1UBS5 it follows that B4UBnczBxiJB5 and
so that B3aBs. Then B6=kBa implies i/lJ=|A8 and so If —Bs. Then from
Be=kBe and the definition of A4it follows that #6=0. Similarly using BIMN\kB we
obtain B3= 0 m This gives B=BX and so B—hB—kB. Hence B=0 and A=
—A3UA4 as required.

We now assume, using induction on |A|+ |4, that if A3is a maximal subset
of A with A as a direct factor then the complement A4—A —A3 has K as a direct
factor. Suppose say that K is not cyclic. Then K=KX2, where Kx, K2are proper
subgroups of K. x(H)=x(KX=0 implies y(H)=y(TQ=0 and so y(/1)=0. By
the inductive assumption with A3as above Kxis a direct factor of A4. Similarly K2
is a direct factor of A4. It follows that every element of 4 is a period of A4and so
that A is a direct factor of A4as required.
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We have mentioned that cyclotomic polynomials can be used to study factoriza-
tions of cyclic groups. If G is cyclic with generator g and \G\=n, then with each
subset A={e, g'2 ..., g} we may associate a polynomial A(X)=\ +xr-+...—xw.
Since r=s (mod 1) if and only if x'=xs (modx"—1) we have a factorization
Al..Ak=G if and only if (modx”-1). Since G(x)=
—(x"—I)/(x—I) each cyclotomic polynomial Fd(x) divides some At(x), where d
divides nand d>\. This method relates to the group character approach since if
X(s)~Q is a primitive d-th root of unity then Fd(x) divides A,(x) if and only if
A {(a) = 0 and so if and only if y(J1)=0. In the case where p, q are distinct primes,
n=pagb and Fn(x) divides A(x) of degree -<n, there is a result of de Bruijn [1]
showing that A =A1UA2 where Ax has period gnp and Ar has period g"'f Theo-
rem 2 generalizes this result. If H=(g"/P) and K=(gng then y(A)=y(K)=0 if
and only if x(g) is a primitive n-th root of unity. Thus F,,(x) divides A(x) if and only
if Ann(A)NAnn (A)cAnn (A).

We now turn to the needed generalization of Hajos’ result on zero divisors in
the group ring Z(G). We model our proof on that of Fuchs [3, Lemma 84.8]. We
wish to apply the result to subsets of prime order instead of just simplices and so
we have to consider elements of Z(G) which are sums of a prime number of any
elements of G.

Theorem 3. Foreach i=1,...,k let btEZ(G) have one of theforms
i) e-a,
(i) e+ Ui+ Gf+...+ofl |
(iii) e+ai2+ ... +aipi,
where pt is prime, and suppose that, in case (iii),
Ann (e+ aig+... + aip ¢ Ann (e+au+ afj+ -+ afj~

for each /=2, Now let h£Z(G) be such that bbl...bk—0 and that no term
bicanbe omittedfrom thisproduct without violating the equality. Thenr(b, bi, ..., bk —
—r(b)<k.

Proof. We proceed by induction on k+d, where d is the number of elements
bt which are of type (iii) but not of type (ii). If d=0 then this is just Hajos’ result
as presented in [3]. Let k=1 with bbk—0, where bk has type (iii). Let blj=e+
+all+all+...+al}~1 j=2, ...,/?l¢ Since /(6)=0 implies y.(blj)=0 it follows
that bbij=0. Now we have r(b, bl)~r(b)=(), i.e. aK’(b). This implies (bfa
cz(b) and so r(b, bi)—r(b)=0, as required.

From (bbl...bg)bs+l...bk=0, for j=1, ...,k—1, we deduce, as in [3], that
(D r(b, bk, ..., bQ-r(b, by, ..., bf < k-s
and similarly, by recording the terms, that
(2 r(b, bk, ..., b)—r(b, bk < Kk - 1

If bk has one of the forms (i) or (ii) the result follows as in [3]. Otherwise we
may replace bk by bkJ=e+akj+dkj+... + akj~1 to obtain bbl...bk_1bkj=0, which
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has fewer terms solely of type (iii). The term bk] cannot be cancelled. When all
possible terms bt are cancelled we obtain, on reordering, either that bb1...b,bkj=0
or that bbkJ=0. If the first case occurs for anyy then, even if t=k—1, we obtain
by induction on k+d that r(b,bk, ...,bt, bk) —r(b)<t+ landsothat r(b, bs, ..., b)—
—r(b)*t. Upon adding this to the s=t case of (1) we obtain the desired result.
In the second case from bbkj—0 we have akJE(b), for eachj, and so (bK)c(b).
This gives r(b, bk)—r(b) =0 and adding this to (2) gives the desired result.

3. Results

We give first a positive answer to Fuchs’ question, [3, Problem 82] with the extra
condition imposed that the periodic subset is a direct factor.

Theorem 4. Let G be afinite abelian group and let the periodic subset A be a
directfactor of G and be itselfa direct product ofsimplices. Then one o f the simplices
is a subgroup.

Proof. Let AB=G and let A=A1...Ak where each Atis a simplex of prime
order. We prove the result by induction on k. If k=1 then A—A, is periodic
and a periodic simplex is a subgroup. So we may assume that no product of k—\
simplices in Al...Ak is a periodic subset. Letg be a period of A with g”e. We can
assume that the order of g is a prime. Then in Z(G) we have (e—g)Al...Ak=0
and no term JI- may be omitted here, as if the product in Z(G) were still zero the
corresponding direct product in G would have g as a period. Hajos’ zero divisor
theorem now applies and gives that r(g, Au ..., AK<k+1. Let K=(Ak ...,AK).
Them AB=Gand A a /*implies A(BMK) =K. This implies that |A\ divides |AT. From
\AKL..NAK—AL and r (K )"k we deduce that A=K. Let Ak={g, ak. a\, .... afk 1}. If
akk=e then Ak is a subgroup. Otherwise Al...Ak-1is periodic as it can be seen
from Al...Ak_1(e—akk)=0.

We now generalize the result of Fraser and Gordon forp-groups replacing the
simplices by subsets of prime order. In order to use Theorem 3 we need to have
available the extra condition there. However Rédei [5, Satz 10] has shown that in
ap-groupif His aset of prime order q different from p then /()"0 for any char-
acter x, as a sum of g roots of unity orders a power ofp cannot be zero. Thus A can
always be omitted from any product equal to 0in Z(G). If A has order p then y(A)=0
if and only if {x(a): aEA}={g*: i=0, 1, 1} where g is a primitive p-th
root of unity. Thus each element afA, a”e is sent to such a root and

X(e+a+a2+..+ap~) = 0.

Thus Rédei’s results show that the additional hypotheses of Theorem 3 are satisfied
in p-groups.

Theorem 5. Let G be afinite abelian p-group. | f a direct product of subsets of G
ofprime order is periodic then one of the subsets is a subgroup.

Proof. Let A=AL1...Ak be periodic, where each subset At of G has prime
order. Assuming as before that no product of k—1 terms is periodic we have in
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Z(G), for any non-identical period g of A, (e—g)Al...Ak=0. As we have already
shown the conditions of Theorems 3 are satisfied. Hence r(g, AL ..., A<k +1 if
g is of prime order. Since G is a /7#group we have |(g, Al, ..., AQ\*pk. However
pk=\AK\..NAKPM (AL ..., N*)|MF It follows that Al...Ak=(AL...,AK and we
have a factorization of a subgroup into sets of prime order. By Rédei’s theorem one
of these subsets Atis a subgroup.

We now consider (p, ~-groups where p and g are distinct primes. The example
of Fraser and Gordon shows that Theorem 5 does not extend to this case. How-
ever when we introduce the extra condition, as in Theorem 4, we have a corresponding
result. The subsets must then have order equal to either p or g. It follows as in Satz 6
and Hilfsatz 14 of Rédei [5] that the additional conditions needed in Theorem 3 do
hold for the annihilators of such subsets in (p, *-groups.

Theorem 6. Letp, g be distinct primes and let G be afinite abelian (p, q)-group.
I f aperiodic subset A of G is a directfactor of G and A is a direct product o fsubsets of
prime order then one of these subsets is a subgroup.

Proof. Let G=AB, A=AIl...Ak where each At has order p or g. We may
assume that no product of A—L subsets here is periodic. Let g be a non-identical
period of A of prime order. Then (e—g)A1l...Ak=0 and no term may be omitted.
As we have already mentioned the results of Rédei show that Theorem 3 may be
applied. It follows that r(AL ..., AR"k. Let (Ak, ..., AW=H. Then AaH_ and
AB=G implies A(BIMH)=H. Since \AK..\AK=\A\, \A\ divides \H\ and r(H )"k
we must have A=H. Hence Al...Ak=H. It follows by Rédei’s theorem that one
of the subsets A{is a subgroup.

We now turn to cyclic groups. Rédei’s theorem on factorizations of the groups
by subsets of prime order had already been shown to hold in cyclic groups for fac-
torizations into subsets of prime power order [6]. Fraser and Gordon gave a posi-
tive answer to Fuchs’ question in cyclic groups. The following example shows that
we cannot prove Theorem 5 in the case of cyclic groups.

Let G be a cyclic group of order 30 with generator g. Let A={e, g, g10 916 g3},
B={e,g5. Then \A\=5, |R|=2, B is a simplex but A is not. Now

AB = 9,95096 gla}{e, 15}

and so is periodic with period g15 but neither A nor B is periodic. We should also
note that AB is not a direct factor of G.

We now show that we can generalize the result of [6] to periodic subsets of
cyclic groups provided that the periodic subset is a direct factor of the group. The
proofuses cyclotomic polynomials exactly as in [6] and we only indicate the necessary
changes to the proof there.

Theorem 7. Let G be afinite cyclic group. Let the periodic subset A be a direct
factor of G and let A be a direct product of subsets ofprime power order. Then one
of these subsets is periodic.

Proof. Let Ghave order nwith generator g. As has been pointed out already we
can associate a polynomial with each subset of G. Let G—AB and A =At...Ak
where the subset A, has order for some primept. We have Afix)... Ak(x)B(x)=
= G(x) (mod xn—1). Exactly as in [6] it follows that et cyclotomic polynomials Fd(x),
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d=p{iS divide Afx) and from this that the elements in the 7*-component of the
elements of At are distinct. Let H be the set of periods of A. Then A=HC and so
ALX)...Ak(x)=H(x)C(x) (mod x"—I). Now H is a subgroup of order greater than
1 and so F,,(x) divides I1(x). It follows that F,,(x) divides some Afx). As in [6] it
follows that this subset Anis periodic.

For cyclic groups of order pagband subsets of order p or g we can use Theorem 2
to remove the condition that the periodic subset be a direct factor of G.

Theorem 8. Letp, q be distinct primes and G be a cyclic group of order pagb. | f
a subset A of G is periodic and is a direct product of subsets At of ordersp or g then
one of these subsets is a subgroup.

Proof. Let n=pagb and letg be a generator of G. As in the proof of Theorem 7
we may show that F,,(X) divides Afx) for some i. Now Theorem 2 may be applied
to give Aj=(g",p)CL) (g",)D. If |T,|=p then we have p=p\C\+q\D\ and so
JCI= 1, \D\=0. It follows that Atis a subgroup. Similarly \At\=q implies |C|=0,
ID|=1 and again Atis a subgroup.

In any group a periodic subset with a prime number of elements is a subgroup.
This need not be the case if the order of the subset is not prime. However in an
elementary abelian 2-group a periodic subset of 4 elements is a subgroup and we
now show that previous theorems involving prime orders hold in such groups for
subsets of order 4. We first consider a factorization of the group.

Theorem 9. Let G be an elementary abelian 2-group. 1f G is a direct product of
subsets A, of order 4 then one of these subsets is a subgroup.

Proof. Let G=Ax...Ak with \A]=4. If k= 1 then the result is trivial. So
we may use induction on k. Let At={e, at, bt, ¢} where ci=aibidi. Since the
product is direct the elements of {at,by. 1"i*k} are independent and so are a
set of generators for G. Let ff;={c, ah bh aft}. Then G is the direct product of
these subgroups . Let y be a character of G with y(Tj=0. Since y sends ele-
ments to 1or —1 and y(e)=I itis routine to check that y(d,)= 1. It follows that
y(H,)=0. By the result of Rédei we may replace A, by 4, in the factorization of G.
This gives

G/Ht jHi (Aj4,)/4,.

By the inductive assumption, some subset (T74;/4; is a subgroup. This implies
that djdHi. Thus given any i, there exists an/(/) with f(i)Ai and df(iflli. There
is a cycle (f,i2 ..., i suchthat fO\) =ii, ....,/(/r_)=ir,f(in—h m If r-"k then
AijczHh...Hir=H for ./=1, ..., r. Since the products of the Atj is direct and its
order is 4r=\H\ we have a factorization of the subgroup H. The inductive assump-
tion then implies that one of these subsets is a subgroup. Otherwise r—k. If no
Aj is periodic the elements dj are different from e and belong to k distinct subgroups
in a direct product giving G. This implies that {dx, ..., dk} is an independent set of
elements. Thus there is a character y of G with x(dj)=—L1, 7=1, ..., k. For this
character y we have y(Aj)n 0 for allj, but y(G)=0, and this contradicts AL...Ak=G.
Hence some dj=e and the corresponding subset Aj is a subgroup.

We now extend this result to cover the case of a periodic subset which is a product
of subsets of order 4.
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Theorem 10. Let G be an elementary abelian 2-group. |f a periodic subset B is
a direct product of subsets of order 4 then one of these subsets is a subgroup.

Proof. The result is trivial if B has order 4. We proceed by induction on the
order of the periodic subset. Let B=A1...Ak, where At={e, ah b:,ct} and Hj—
= { ah bh (ijbj}. Let g be a non-identical period of B. Suppose first that gf/7,.
We need consider only g=0j and g=aibi. Let g=0j. Let

i

Then B=aiB=aiAiD=AiD. It follows that {Qjbj, a;c}A={i;,cj)D. Since
£)Mun;T>=0 it follows that aibiD=ciD. Hence either D is periodic and the induc-
tive assumption implies that some set Aj is a subgroup or ct=a;bt and Ajis a sub-
group. Let g=aibi. Then as above, {afi, aibici}D={e, ¢,}2). Now from ajDf)
MbiD=0 we obtain a,£;£>I'W=0 and so aibiD=ciD. Once again the desired
result follows.

_ Now we consider the case when gilL for any /. As before, for any character /,
X(Aj))=0 implies /(H;)=0. We also see above that H,D is a direct product, though
not necessarily equal to B. Now B={e, g}C sincegis *period of B and so_x(g)= —1
implies x(B)=0. Then B=A;D implies either x(D)—0 or else x(Aj)=0 and
hence y(A,)=0. Thus x(s)=~ 1 implies /XHiD)=0=x(gHiD). Of course
~A(g)=1 implies x(HiD)=x(gHID). By Theorem 1g is a period of ;£ giHt
then gives a period gHt in 61/7/, of

jlf_\li @\jHd/H;.

The inductive assumption then implies that some set (AjHfH; is a subgroup.
Ifwe let §=ajbjdj it follows that given any i there exists an/(/) with f(i)Ai and
dfii)GHt. As in the previous theorem there is a cycle (i\, i2, ..., i,) with a factoriza-
tion of a subgroup H into a product of r of the subsets Aj. By Theorem 9 one of
these subsets is a subgroup.

Results about factorizations of periodic subsets may be useful tools to study
factorizations of groups. We illustrate a case of this now and also state an open
problem.

As has been stated already Rédei’s theorem on factorizations using subsets of
prime order holds for cyclic groups for subsets of prime power order. The following
open question arises concerning a possible generalization of both results. Letpr, ...,Pi
be primes and let the px, ...,Pi components of G be cyclic. If G—AIl...Ak and
for each i either the order of A:is prime or is a power of one of the primes pr, ...,pi
does it follow that one of the subsets Aj is periodic? We do not know the answer
to this question in general but we can use our results to settle positively the first
unsolved case.

Theorem 11. Letp, q be distinct primes and let G be a ip. g)-group whose p-com-
ponent is cyclic. If G=AIl...AkB1...BI, where each Aj has order a power of p and
each Bj has order q then one of these subsets is periodic.
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Proof. Let B=Bx...BIl. Then the factorization G—ALl...AkB satisfies the
conditions of [7, Theorem 2]. It follows that either some A, is periodic, giving the
desired result, or that B is periodic. If B is periodic then Theorem 6 applies to show
that one of the subsets Bj is periodic.
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SATURATION THEOREMS
FOR HERMITE—FOURIER SERIES

I. JOO (Budapest)
Dedicated to Professor Paul Erdés on the occasion o f his 75th birthday

The Bernstein theorem states that if / is a continuous 27t-periodic function
then / 6Lip a, O<a< 1 is equivalent to the norm estimate |<T,/~||c=0

where andenotes the n-th Fejér mean. If /€ Lip 1 then only \\o,,f~f\\c =0 {\og n/n)
is valid. The function dass for which \\o,,f—\\c =0{\In) was described by G. Alexits
[2] by the condition /6 Lip 1L The notion of the Hermite conjugate function was
introduced by Muckenhoupt [4], he proved the boundedness of the conjugation
operator in the weighted Lp space

{/: |IMp:=( f \Ne \'e-*dy)Wp

The following version of the Hermite-weighted Lp space is also frequently used:

LWe~*y*):= {/: e~yiXEL p(R)}.

The corresponding norm estimate of the conjugate function is valid. In the papers
[6], [7] we initiated the possibility to apply this conjugate concept to obtain Alexits
type theorems. These investigations were continued by A. Bogmér [9] for the Jacobi
expansions. A saturation theorem for the Abel—Poisson means will be also proved
below. In [10] M. Horvath obtains both Alexits and Abel—Poisson saturation
theorems for the Jacobi and Laguerre expansions. In [8] we give the same theorems
for the Walsh expansions, based on the Walsh conjugate defined by Hunt [5].
The Hermite polynomials hn(x) are given by

f e Xn()hk(x)dx = S tk.

Remark that the polynomials are dense in Lp(e~y22, I"~oo, see [12]. If
fe -x~BcLP(R), then there exists the Hermite—Fourier expansion of f

(@] f(x)~2 aJhM, ak= f f(x)hk(x)e~x"dx.
Denote by R, the n-th Riesz mean of parameter -- of/, i.e.

Rn(f,x) = | L\l/— ;ri1=+rl)§khk(x).
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The boundedness of the Riesz means
2 We—-22Rn(f *)II, S c\\e-*'1*f(x)\\p (1

can be proved just as the corresponding estimates of Freud on the Fejér means,
see in [3]. Remark that for Laguerre expansions this fact is much more complicated
to prove ([13]). The following statement is a variant of of the Alexits lemma ([2])
and has a similar proof.

Lemma 1. Let ()T e an arbitrary sequence in a Banach space E. Fix a sequence
(a)r with

0~ nOc limX, = AN AHLS A (5> 0, n=1.2).
Define the means

°n= 2 1- <K =2\~ 9%k A c

a) U A& K, then there exists ofE with
\en-a\\M 4 K/YTn
b) If Va,—a\*"K/\'nnfor some ofE then

C(S)\K + \/AL M

The case A,=n will be used below since the corresponding means o, <* are
Riesz means in this case. Remark that if a, denotes the ordinary Fejér means then
the implication

M 2 1ak9k)-<*Il = O{'/—\Ln]) =\a{2 ikakg®)| = 0(1)
does not hold; that is why we prefer Riesz means to Fejér means in the case of

classical orthogonal expansions on infinite intervals.
The Hermite conjugate function/of fAL p(e~y242 is defined by

3) e-**feL”(R), F(X)~2 akhk-i(x).

This is essentially the definition of Muckenhoupt [4]. He proved the boundedness
of the conjugation operator in Lpe~y22, the case of Lp(e~y2?2) can be
dealt with similarly:

4 Ik“*22'p 3=c\\e~x"12\\p, 1l<p<m
Introduce the following modulus of continuity defined by Freud [3]:
(5) <o(f,S)p:= sup \W(x+0 e -~ 22-f(x)e-x/2Ap+\\t(0x)f(x)e-*2AAp,

where
if idsS 1
if g~ 1L
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Denote further
(6) _ ’i?»\] 0*22 ¢ ppy

En N

where Pnis the set of polynomials of order rSn. In [3] the following Jackson type
inequality is proved for and e~x"X£L p(R):

The following converse statement can be obtained:
Lemma 2. Let In/iroo0, fe *2ELp(R), then

8 i/,-L} »
® “k In;"p

N~A=-Z 4 =+1ll«?0(N- (0B, /W - -* Alp+HIK(«-V2x)/(x)e-M2|
jin+1 ko yk+1

where g0 is the best approximating constant polynomial.
For the proof we need the following
Lemma 3. Let and pr{3XK Then

(9) \(pne~ xV*)'lip » c]in [[[?ne - xSI2||p.
Remark that G. Freud proved a similar inequality in [15], namely

(10) \ne *r2p”~ c\In \\pe *r2||p.
Further information on this topic can be found in [16].

Proof of Lemma 3. Denote 9,,:="'+ S+ +7211 the wu-th de la Val-

Iée-Poussin means of an Hermite series. We see that  leaves fixed the polynomials
of order —n. We shall use the result of W. E. Milne [17] who proved the case
p=ox> of (9). To prove the case p= 1 we use duality:

I(Pn? /||i = su 1J ,.(X)e x‘P)g(x)e x'/2dx\ =
(Pn? X2/ \\gﬁ@rgm_m(p() )'9(x)

= sup I f (pn(x)e-xl2)'9n+1(g,x)e-xl/l2dx1 =

\\ge~ s2/~ |00~ I -00

= lePus ' TP (0e X200 +H(g, xje-xtiy"dx

= ILP<*22He  sup [l(On+1(",

= cY" \\pne - x“, 2\ ||ee-§%81Usl [9n+1(g, x)e~x2T\\,,  c\ n ||/7,<-*22i.
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Here we used the norm estimate

(11) \\e-xll2U \\P" c(p)\\e-*4*f\\p (1S/»S«, e-*4*fdUNe)

proved by Freud [3] and mentioned also after (2). Now consider the operators
T,. LPR) - L'(R), ge-"z~ [3etife, x)e~xr'7].

We know that for p=1 and p =00 the estimate

IIr,(ge xd2\Wp Y n\\3n+l(g,x)e x4U\p” c]/n \\ge *2p

holds. By the Marcinkiewicz interpolation theorem the same is true for l«=p«=0
with a constant c(p) instead of c:

WT{ge-xHi)\WP~Ac(p)}/n\\ge-x'1%.
If g is a polynomial of degree we obtain (9).

Proof of Lemma 2. Let g be the best approximating polynomial of w-th
order, i.e.

\\e-xtl4 f-g N\P = E,,(f)p.
Then gn (Fp

(12
W(x+t)e x+yR2—f(x)e *2pé |f(x +t)e K+y2—gn(x+t)e (+>Fu+

+\Wgn(x)e-x'li-f(x)e-xidAp+\gn(x+t)e-ixtyi*-gn(x)e-xli\ =
= 2E,,(f")p+\gn(x + t)e~<x+,y/2 —gn(x) e~x2/2\p.
Here the first member can be estimated by

orm - c NEn(f)P _ c o, Ek(f),
p~ Y~n+r ko Vk+\ - yTT fk+r m

The second member is
\gn(x+i)e~(x+t)iiz-gn (x)e-x44p = [|0,,(e"N(Xx+,)2/2-£>-X1/2|p+

+ \\gn(x+i)e~(x+t=42-gn<,x)e-xil * - g 0{ e - (x+tyl * - e - x4*)\\p =:1r+12,

4 = |$/ [on(x +T)e (x+zy'2-g Oe (*+)22]' dx\\p =5

3:5 \[gn(x+T)e-Ix+'yl*-g Oe-<x+'yI"\\pdr =
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Using the fact that isl//n and Lemma 3 we get for r satisfying 2r+1*n<2r+2:

7 =-{lI[(g'nW -*W)e“xaQ/||p+ 2 |I[(Ft'W-Ne-*(jf))e_*/.J/|| =
n ~\7n={Vn \\(gn-gr)e x22|IP+ EOZi,Z\\(gZ—g 2-*)e x2pp —

g 1 E(DP+EAD, )+ 2 ZEA(f)p+Eas (D)

Taking into account that
Ei(f)p+EQ(f)pS 2EQ(f)p,

2°\E A J1 p+E*-r(/ip » cE2-i(f)p *2 1-N=r S ¢
k

=202 [k+1 k=2t-2 [fc+ |
i=1 ),

~ 2r—1 1 2r—1 [ (f\
En{f)p+ EAf)PACEAF)p 2
yn{ENNP+EANPACEAND 2 2 v P

we get
c EN p c__ j? Ek(f)P
/In+1t=0 /k+1 Yn+1lk=0Yk+1
which proves Lemma 2 by (12). O

Define the de la Vallée-Poussin means

W x):= (t2R*,n(f, *)-«.(/,*))-

/12-1

124t In 1
Since 9, leaves fixed the polynomials of order “~u, hence
03) £2,+i(/)pS \e-x'I\f-S nf)\\pS c£,,(/)p.

Using the ideas from the proof of the corresponding trigonometric result of Steckin
[14] we obtain for 1 fe~x22Lp(R) the estimate

(14) \\e-A(f-Rm\\pS 70 = 2 Ek(f)p
I'n

+1 k=o /k +1

Indeed, let mfN be given such that 2m*n<2m+L Using the formulas (they follow
by Abel transform easily):

(1) = T[(H 1) 1St

2n+

@2r—)(n+ Dré' = k:2 | P+1)r-~]St
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we get

(n+\)rK = SO+(2"I)f--20 2*9’\-!+k 2 P+Dr- 7

=2m

] M
R = TR TY {00—) +,2) 2" @r—) (0@mi—) +

2 [(fc+iy-Al]

k=2m

+[(n+ )r—2m] (n+r-2"r

An obvious modification of the proof of (13) gives that
2 [(kk+iy-k']Sk

-x*/2 k=2m

(n+ Dr- 2m -f S CEam(Dp,

and hence from (13) we get

\\le-x' \K - T Ps 7{ft1\r§)r {£o(/)+ﬁgg>"-E2,(f)p+ I((n+iy-2"1EMT)B
Now from
2"r s {2 1+ Dr- 1+ 2"-1+ 2)r- 1+... + 2',(r- D}

it follows
ML

»E*(fiprc 2 (feriy-~CHl,
=t

and by (h+ )r—2mr*c2nmr we get

[(@+1)r- 2miE*-()),, Ck’S_O-'l(K+ iy-*Ek(f)Pm
Finally
W\e-"K-f)||p~ fn¥U T(2;:0(*+0r— w(Hp

and (14) follows.
Define the Lipschitz classes by the aid of the Freud modulus. Namely if 1Sp
and fe~x2£Lp(R) then let for 0<a”l:

Cef
/€Lip (a, p) 0 co(/, YpSc<ba.
Now (7)—(14) gives the following Bernstein type theorem.

Theorem 1. Lei I7p~roo and e~x/2dL p(R).
a) If f(ILip (oi,p), oc<l, then

\\e-x24RJ-f)\\p” cn-42
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and if f£ Lip (1,p), then
\\e-xd2{RJ-f)\\p clog n/n

and this estimate cannot be improved.
b) If a<l and xf(x)e~xRELp(R), then

\e~x2B(RJ-f)\\p=0(n~a) ~/€Lip (a, p).
Next we come to the Alexits type theorems. Some lemmas are needed.

Lemma 4. Let <p,iCL(R), ex2.2<, ex2B(En, ex2y. ex22h™ LRR) for some 1=, ~
sco, Suppose that

\exd2@n~g)\\p +0, e2Z(Pn-h)\\p-*0 (n- 4
Then h is locally absolutely continuous and h'=g ae.

Proof. Let x*O (the case x<O is similar). The improper integral f <

exists since qn(x)exr,2aLP(R) and e~x+2£Lq(R) +—= ].J Consequently the
limit lim gn(x") exists and from ex22<p, £Lp(R) it follows that this limitis zero, thus

J 9n = -<Pn(x).
X

It is clear that (for p* 1)

e2m,(x)+ f gl = ex®22jf (@,.- 9)| S e*2(J e-"dg2dy]W\Wn-g)ex'|A
and for p=1

exl'2\<p,,+f gl=g J ey22(En-g\dy*"\\{(p'n-g)e y-I2p.

Since
if x=81

~ N
Feyady™ ¢ o vg2dy Sl—e xR if xS 1
X J X
hence for 1s/iSt» we get

(15) ex2R\(m(x)+f g| —0 (n-*00, x-0).

On the other hand, ex‘/2(qn(x)—h(xj)-*-0 in LP(R) so for a subsequence denoted
again by gqn,
ipn(x) * h(x) ae. (n-°°).
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From (15) we see that ©

h(x)+J g=0 ae.
and this was to be proved. O

Lemma 4'. Let (ijjdcC'fR), e~x22qm, e~xi/2(g,, e~x¥2y, e~xX22hE
ELP(R). Suppose that

We-x2/4cp'n-g)\Wp - 0, \e-*/\(pn-h)wp- 0 (n— ).
Then h is locally absolutely continuous and li =g a.e.
The proof is similar.

Theorem 2. Let 1 fe~x22ELp(R). Then the following two statements
are equivalent

a) \e-xi'\RJ-f)\\p=0 \ » ,

b) / is locally absolutely continuous and
[e~x*f(x)Y ex2/2d L p(R).

Proof. We shall use the following equivalence from [6]: if I<p~r°° then a
formal Hermite series Z akhk is the expansion of some /£ Lp(e~y2?2) if and only
if the Riesz means are bounded in norm:

\e-x2/2Rn(Z a khKk\\p = 0 (1).

Using the above observations we see that in case

We-x*N\Rnf-f)\\p= 0 (-L ]

if and only if
\\e-x* R {2 ik akhk\\p =0(1)

if and only if there exists gdLp(e~y29, Z ¥« akhk. Since ([1])
(16) [K-Nx)e~xt]' = -¥Y 2k hk{x)e~x2

this is equivalent to the fact that [e~xX(x)Y ex22£Lp(R). Indeed, suppose first that
there exists g£Lp{e~y22 with

17) g~ Z -"a khk.
By (16) we get

[e-*2Rj(x)Y 2= R,,(Z ~ ¥Y2k akhK)
and then O ) Te

llex212(g (x)-[e-x R, f(x)Y\p - 0, \erz(f(x)e-~~R j(x)e-% - O
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Using Lemma 4 we obtain that

[f(x)e~x¥ = g(X)e~X ae.
Conversely, let
cp(x):= [e-xf(x)\ex2~ 2 M/c

be the Hermite series of <pflp(e~x*D). We see that for jc>0

Vi

I/ [e~'m  di\ A UN** [e-x2(x)Y\\p(J dt)
ol <10
Ne\—f te-"dtJq
hence ’
Aim e Af(x) hk(x) = 0.
Now

bk= f (p(x) hk(x)e~xl dx = [e 3F(x) hk(x)Y

- f e xt(x)y2ichk-1(x)dx=-f2kak.

Theorem 2 is proved.
Using the formula

K(x) = V2nhn-1(x)
we analogously get

Theorem 2'. Under the conditions of Theorem 2 the following statements are
equivalent:

a) \e-x24Rnf-f)\\P=0{y=1],

b) f is locally absolutely continuous and f'(x)e~xA2AdLp(R).
Define the Abel—Poisson transform
Txf(y)m=2 e~JfTrakhk(y) (x> 0),
and the conjugate transform
Txf{y):= 2 e~y2nxakhk-i(y) (x> 0).
The semigroup properties
18) TATaf = AT TXAfXRf = TXRRS
can be easily obtained from the definition. The continuity property
(19) \e-xd\T xf-f)\\p- 0, \Ne-x*NTxf-f)\\p~r0 (x - 0+)
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can be proved as in [4]. Define the infinitesimal generator A of the semigroups (71)
as follows. If "* ---- converges to a function g in Lp(e~y¥2) then we define Af—g.

We immediately get that if/'belongs to the domain D(A) of the infinitesimal gen-
erator A then

(20) A f~-Z)f2kakhk.

Conversely if the right-hand side of (20) is the series of some g(:Lp(e~y2B then
g=Af (since A(R,,f)=R,,g and A is a closed operator, see [11]). We know from [11]
that a continuous operator semigroup is saturated with the order O(x) and the
saturation class is D(A). Hence we have proved the following.

Theorem 3. Let I<p-=00 and fdL p(e~y'1D. Then

a) \e-**(Txf-f)\r=o0(x) (x m0+)of= ¢,

b) \e~22ATxf - )\\p =0 (x) ~ [e-yr*Lay)Y eyA*C_1J(\I).
Using the fact that Txf=Txf we analogously get

Theorem 3'. Let 1--p<» and fELp(e~y*). Then

a) le-M (Txf-f)WP=o0(x) (x - 0+)«=>/=¢,

b) \e-y*"\Txf-f)\\p=0(x) o f'€ L p(e-y*).

Remark. Theorems 2 and 2' are also saturation theorems. E.g. in Theorem 2
we can state that

le“x@2R,,/ Hllp =0 =j (n-«)

implies f=c. Indeed, in this case

—\;1n+=1 leXl = Ke-x44 Rnf~f), e-K)\ = 091/”, Ik— khk\ = O\Sflnz)) »- ~
for any fixed k£{1,2,...}, ie. Ykak=0(1) (h-—>) hence ak—0 (k=1 2,... ).
Taking into account the well-known uniqueness theorem for Hermite—Fourier
series (see e.g. Kaczmarz—Steinhaus: Theorie der Orthogonalreichen, Warsawa—
Lwow 1935) we obtain f=c.
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A NOTE ON LACUNARY TRIGONOMETRIC SERIES

. BERKES1 (Budapest)

1. Introduction

The following theorem was proved by P. Erdés [1]:
Theorem A. Let (nk) be a sequence ofpositive integers such that

(1) nk+i/nk =£ 1+ck/]1/k, ck- oo

Then cos 2nnkx satisfies the central limit theorem i.e. setting SN= kSN cos 2nnkx
we have2

(1.2) (2/Ny/"BN—=* N(0, 2).

On the other hand, for every c¢>0 there exists a sequence (nk) of integers such that

nk+l/nk W 1 +c/ ik Ne 5 1)

and (1.2) is not valid.

Theorem A shows that in terms of the growth speed of (nk), (1.1) is a best pos-
sible condition for cos 2nnkx to satisfy the central limit theorem. It is natural to
ask if this condition implies more general independence properties of cos 2nnkx,
e.g. the validity of the LIL and other standard limit theorems for i.i.d. bounded
r.v.’s. For the law of the iterated logarithm Takahashi [5] proved the following

Theorem B. Let (nK) be a sequence of integers such that

(1.3) nk+ln« 5e 1+c/k\ a < 1/2.

Then cos 2nnkx satisfies the law of the iterated logarithm i.e.

(1.4) (Alog log N)~V2 £ cos2renfc;t=1  ae.
JV-00 kSN

Note that (1.3) is stronger than (1.1): it requires that (1.1) holds with ck in-
creasing at least as kEfor some s>-0. A minor modification of the proof of Theo-
rem B shows that (1.4) holds actually if

nk+ilnk iE 1+ (log K)V Yk

1 Research supported by Hungarian National Foundation for Scientific Research, Grant
no. 1808.

2 The underlying probability space for cos2nnkx is ((0, 1), n) where M is the Borel
c-field in (0, 1) and His the Lebesgue measure.
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for a sufficiently large y but for small y the proof breaks down. Thus the log log be-
haviour of cos 2nnkx remains open if (1.1) holds with a very slowly increasing ck.
The purpose of the present paper is to show that condition (1.1) does not imply
the law of the iterated logarithm for arbitrary In fact we shall prove the
following

Theorem. There exists a sequence (nk) of positive integers satisfying (1.1) (and
thus the central limit theorem) such that (1.4) isfalse, namely

(TVlog log Ty~12 2 "cos 2nnkx < y a.e.
oa kSN

for some constant y< 1.

In our example ck=conste(log log k)12 As we shall show in a subsequent
paper, this example is not far from optimal in the sense that if (1.1) holds with ck=
= (loglog/c)v for a sufficiently large y then cos 2nnkx satisfies not only (1.4) but
also Kolmogorov’s upper-lower class test. Whether there exists a similar example with

lim(.)sy>1 ae
remains open.
2. Proof of the theorem

Lemma 1 We have

(2.1 ( Y)cos2njxY dx ~y T™V2 as V—o003
J=1

/
0
Proof. C|eal‘|y

(j2_lcos 2p)3= Tr2 cos2n(xJi tAtja)x

where the sum is extendted for all values |=j\,j\,/3="1TV and all possible choices
of the signs +. Since J cos 2n!x dx= 1 or 0 according as the integer | equals 0 or

0
not, it follows that the left side of (2.1) equals 1/8 times the number of solutions of

(2-2) +j\+j2+j3=0, 1=ji,j\,j3—N-
Clearly (2.2) has no solutions such that all signs are identical and the number of
its solutions such that the signs are —and j\=v (I"vSN) is v—L Thus

N
the total number of solutions of (2.2) is 6\%_1(v—1)=3TV2—31V, proving (2.1).

3a,~0, means lim ajbn= 1
n—ao

Acta Mathematica Hungarica 57, 1991
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Lemma 2. Let al<a2?<... be positive integers such that the ratios ak+Jak are

also integers. Then there exist functions Ck(x) 1) such that the Qk(x) are
independent r.v.’s. over the probability space ((0, 1), SS, X) and
(2.3) |“(n-)-{a*n}| ~ aklak+l

where { } denotesfractional part.

This lemma is implicit in [3]; we give here the very short proof. Set
4k~ak+Jak and
Qk(x) =

where [] denotes integral part. Clearly if j/gks{akx}<(j+ I)/gk for some integer
07jrgk—I then Qk(x)=j/gk. Hence (2.3) is valid. Further ok(x) is constant on
each interval [j/ak+l, (J+ I)/ak+l) (0~jrak+l—l) and is periodic with period
Vak. From these facts it follows that the Ck(x) are independent r.v.’s.4

The following lemma is Feller’s generalization of Cramér’s large deviation theo-
rem (see [2]):

Lemma 3. Let (YK be a sequ%nce of independent r.v.’s such that EYk=0, EYk<
<+« (k=1,2,...). Set m= k2_1EY? and assume that \YK\sXssk where k,, is a
numerical sequence with Xn\0. Thenfor 0<xs* 1/(12/.,) we have

P<yi+...+Y,>sH) = exp{-1x26, L -((1 ~P(x))+B).ne ™ x4

where \0\"9 and Qn(x)—2 is afunction analyticfor |x[sl/(122,,) whose

coefficients gnv depend on the moments of Xx, X,, ..., Xn. In particular

(2.4) 4.1="571I
and

2(EYK

(2.5) \and A —2xmy o Shov L
We now turn to the proof of the theorem. Let ak=2k and mk=[Ak/log log K]
(kxs3) where A is a small absolute constant to be chosen later. Let Ik=

={ak,2ak, ..., mkak}; clearly the sets Ik, k=3,4,... are disjoint if A is small
enough. Define the sequence (nK by

(=0 h-

K
We show that cos 2nnkx satisfies the requirements of the theorem. Set Mk= 2 3mi\
1=
4 For the rest of this paper, with the exception of formula (2.8), { } will denote ordinary

brackets and not fractional part.
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clearly
A K2

(2.6) Mk 2 loglogk '

Thus if Mk_1-=/< Mk then letting i=j—Mk_1 we have

nj+i 1 _, , loglogk
a j+ (loglogMgy 2 ~ j+ (Iog_log /_)]/3 ks kn).
21/ANMAM ~ 2 1A fj

Also, if j=Mk then nj=mkak, nJ+l=ak+l and thus nj+1/rij*2 if kEka Hence
(nK) satisfies (1.1) with ck=c (log log k)>2 Set

MK )

2.7) Xk 2 cos 2nnvx, f(x)= 2 cos2njx.
v=Mk_j+1 j =

Then e a

(2-8) Xk = fmk(akx) = fmk({akx})

and thus putting
Zk = fmk(@Qk(x)), Yk= Zk—EZk

(where gk(x) are the functions in Lemma 2) we have by Lemma 2, \f{{(x)\"2Ti2
and the mean value theorem

(2.9 IXk-Z K\ 2nmkak/ak+1« 2 k

(Here a,<dn means that \ajb,,\=0(\) uniformly.) Moreover, Yk are independent
rv.’s. Since EXk=0, (2.9) impiies

(2.10 \Xk-Y K« 2 ~ k

and thus \Xk\~mk and the mean value theorem vyield
(2.11) \Xk—Yk\« 2~kmk« 2~K\
(2.12) XK —Yk\« 2~km\ « 2~K2

We now apply Lemma 3 to the sequence (Yk). Clearly EXk=mki2 and thus by
(2.12) and (2.6)

2
(2.13) sI—.kgaEYIQ—’Z\ /Ea>nk+0(l)~f1 loglog n
Further by Lemma 1, (2.7), (2.8) and (2.12) we have
(2.19) 2EY?= 2 +0(i)~ 2 4"ml B
| 2EY?= 2 exuro(l) 2 4 (log log n)2
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(Note that, by periodicity, the integrals of /®f(x) and f%k(akx) over (0, 1) are
equal.) Set

K = 8 YA (log log /i)-1/2.
Then by (2.10), (2.13) and \XK\~mk we have
WK\~ k ksk, k ™k O.

Hence Lemma 3 implies for any 07c”2 and Asl0O~5
(2.15) P(Y3+...+Yn> csn(2 log log i,,)I/2) <cexp|- y x\Qn(X,,)|2 - exp|- ¥ x&}

where x,,=c(2log log and Q,,(x)=" #>xv is an analytic function for
v=1

[x|" ¥(12.,) whose coefficients g,tVsatisfy (2.4), (2.5). Now by (2.13), (2.14) we have

?ni~-"~-(loglogn) 12

and
\gn A Sy (96/1)" (loglogn) w2 unSi, vsl.
Thus
\Q.06\S g x,,- 2, UnJK S
v=2
0 (log log«) 1/2x,, -ng t (96 (lo8logn)-v2xm
Y2A *° y9,4 2 Y2A
- 0, _ - - e
o T ézt (% y Ry (2c)vs 2~ c- - «20024c2s ),
for any Oscs2 and N1sil0 12 Hence by (2.15)
(2.16) Nr3+ ...+ F,> cj,(2log log 7,)12) «

« exp|- -y2-ciOglog -y c22loglogj,)| =

= expj-~y™c3+cgd (I +o(l) loglognj.

Now the function /(c)=c2+j/2,4 c324 satisfies /(1)> 1 and thus there exists a
Ocy<I suchthat f(y)> 1 Hence by (2.16)
(2.17) P(Y3+...+ Yn> ysn(2 log logjJ 12 « exp (- (1+£) log log n).

Acta Mathematica Hungarica 57, 1991



186 I. BERKES: A NOTE ON LACUNARY TRIGONOMETRIC SERIES

where €0>0. By the standard proof of the upper half of the LIL for independent
rv.’s (see e.g. [4] pp. 261—262), (2.17) implies

K
(2.18) Jim sk 1(2 log logsk)- /2 y ae.

Setting sN= J’%I{I cos Intijx and using (2.6), (2.7), (2.10) and (2.13) we get smk=
= 2 Yi+0(1), s\~MK2 and thus (2.18) yields

i=3
(2.19) hm (Mklog log MK V2sMk=y a.e.

But if MkKiAN<MKk+L then \SN-S MA"mk+1* Mk by (2.6) and thus (2.19)
implies
,\M&D(IVIog logN)~1/2Snsy <1 ae.

completing the proof.
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ON THE FIRST CLASS OF BAIRE GENERATED
BY CONTINUOUS FUNCTIONS ON R* RELATIVE
TO THE ALMOST EUCLIDEAN TOPOLOGY

H. W. PU and H. H. PU (College Station)

1. Introduction. Throughout this paper, functions are defined on RY. We shall
use topological terms without modifier to refer to the Euclidean topology for RY.
Let % denote the class of continuous functions. & the class of ordinarily approxi-
mately continuous functions, and £ the class of almost everywhere continuous
functions. If & is a class of functions, then %,(%) denotes the class of functions
which are pointwise limits of sequences of functions in & and %,(F)=2%,(%,(F)).

In [3], Grande defined, for N=1, a class of functions (AP;) and showed
that %,(of NP)C B,(4) B, (P)N(AP,). Then he asked if this inclusion is actually
an equality. Nishiura [5] investigated Grande’s question for N=1. Cox and
Humke [1] also tried to answer Grande’s question. Although this question is not
settled, fruitful results are obtained in both [1] and [5). They form the basis of the
present research, in which two closely related classes of functions (AP;f) and (AP;*)
are introduced and the equalities %,(/ N 2)=2%,(#/)N(APF*) and (AP})=(AP,)
are proved.

2. Preliminaries. Let u denote the Lebesgue measure on RY. If XcRN is
measurable and x€RY, then d(x, X) and d(x, X) denote the upper and lower
ordinary density of X at x respectively (for definition, see [9]). It is known that
& and /N2 are the classes of continuous functions relative to the ordinary density
topology d and the almost Euclidean topology Z for R¥ respectively [2, 5, 6].
A set X is d-open if it is measurable and the ordinary density d(x, X) is equal to
1 at every x€X. A setis J -open if it is d-open and can be written as GUZ, where
G is open and Z is null (i.e., p(Z)=0). The term “almost Euclidean™ is suggested
by O’Malley [6, 7].

For XCRY, we shall use X° and X to denote the interior and the closure of
X respectively. 4(X) denotes the d-closure of the d-interior of X. We shall use the term
interval to mean an open interval {x=(x,, ..., Xy): a;i<x;<b;, i=1, ..., N} in R".
We call the interval a cube if b;—a;=b,—a, for i=, ..., N. Also, A and B are
the collections of cozero and zero sets of /(12 respectively.

The class of functions (AP,) is defined in two equivalent ways [1, 3, 5]:

JE(AP,) if for each a<b and nonempty sets U and V such that Uc {x: f(x)<a},
Vc{x: f(x)>b}, Uc4(U), and VcA(V), it is true that U—V=0 or V—U=0.

JE(AP,) if whenever a<b and U, V' are nonempty sets such that Uc{x: f(x)<a},
Vc{x: f(x)=b}, then UUV ¢A(UNT).

We shall need the following results. (2.1)—(2.6) are from [5], (2.7) and (2.8)
are from [1] and [8] respectively.

1*



192 H. W. PU AND H. H. PU

(2.1) 1£x is measurable, then A(X)= {x\ 3(x, A")>0}.

(2.2) 11X is closed, then A (A X)) = A(X).

(2.3) x is 3r-perfect if and only if X=A(X).

(2.4) 1f X is closed, then X —A(X) is contained in an Fa null set.

This result is not listed but used in ([5], p. 327). We give a simple proof here.
For n=1,2,..., let Fh=~xdx: [i(If(T/)<-jp(l) for every cube 7 with x£1

and <5(/)<-"j, where 3(1) is the diameter of 1. Then each rn is clearly closed. It
can be shown that

(xex: 3(x, x) < 1} ¢ UF,c {*£*: d(x, x) 51},

Hence UF,, is an ra null set. By (2.1),
X-A (X )3 {xdx: 3(x, x) = 0}0 {*€31: a(x, x) < -1},
2.4) is proved.

(2.5) ££93 if and only if B is d-closed and can be written in the form F—2Z,
where F is closed and Z is an F,, null set.

(2.6) fdsafsd F\3P) ifand only iffor each ad R, we have (i) {x:/(x)>a}€Off
and (ii) (a:/(x)Sfl}£9la. Clearly (ii) can be replaced by {X:/(n:)<a}£58,,.

27 (APJc”™in
(28) @x(sd)=@f<e).
(2.9) If F is a closed null set, Hd.Gia and HczF, then HfiBa.

Proof. Let #=U#,,, where each H,dcs. Then v= U(F—F—H,)) and
we need only show that F—(F—#,)ES for each n. Let b be fixed. Since
p(F—(F—H,)~p(F)=0, F—(F—H,) is iZclosed. F—Hn is clearly an Fa null set.
The conclusion follows from (2.5).

(2J0) Let H be a FT-perfect set. If {Al,} is a sequence of 3~-closed sets such
that HczUKn, then there exists an n0 and an interval | such that 07|-| HHCAF,,U.

Proof. For each n, since k., is ~'"'-closed, there exist closed set r, and null
set Z,, such that kn=Fn—zn. Being closed in RN H is of the second category in
itself. Hence_ Ha UK,,<z UFn implies the existence of no and an interval 1 such
that O /M Flc/v,0l_It follows immediately that IDH~Q. Let xdlOH. By (2.3)
and (2.1), H=A(H\ 3(x, H)>0 and hence 3(x,7MA)>0. Thus 3(x,Krf =
=3(x, K9 3(x, /M A)>0, which implies x£K,,0. The proofis complete.

3. Result, We start with defining two classes of functions.
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ON THE FIRST CLASS OF BAIRE 193

DerINITION 1. fE(APY) if for each nonempty Z -perfect set H each and &=0,
there exists an interval I such that INH#0 and o(f,INH)=e, where

o(f, INH) = sup {| f(x)—fO)|: x, yeINH}.

DEFINITION 2. f€(APF*) if for each nonempty Z -perfect set H and each £=0,
there exist an interval I and a set B€®B such that §=INHcINB and o(f, INB)=e.

It is trivial that (AP;*)c(AP;). We shall show that %,(&N2P)=%,(L)N
N(APF*). The proof is strongly suggested by that of Baire’s theorem concerning
B,(%). (See [4], pp. 143—148.)

THEOREM 1. &, (/N P)(APF*).

PROOF. Suppose f€Z,(«/NZP). Then there exists, in /MNP, a sequence
{f.} converging to f everywhere. Let >0 and 0#H=A(H) be given. Set

B = {x: 1) S = &}, B=N{Baim=1,2,..}.

Then, for each n, m B,,€B and since B is closed under countable intersections,
B,£8B. For each xcRM, since lim f,(x)=f(x), there exists n, such that x€B, C

cUB,. Therefore HcR¥=UB,. By (2.10), there exist n, and an interval I,

such that 0=I,NHCB,,. Let x, be a fixed point in I;NH. By Z -continuity
of f,, at x,, there exists a J -open set U such that x,cUcI, and

(1 [£2 () =L )] <3ﬁ whenever x, yeU.

Since U is J-open, H=A(H), and x,cUNH, we have d(x,, UNH)>0 and
hence u(UNH)=0. Also, since U is J-open, u(U—U%=0. It follows that
u(U°NH)=>0 which implies U°NH:0. Therefore there exists an interval IcU?°
such that INH=0. Now we have O0=INHcCUNHcLNHCB,, and hence
9=«INHCINB,,.

To show that o(f, INB,)=¢, let x, ycINB,,. By the facts x€B, CB,, for
all m and ,,].LT, Jro+m(¥)=/(x), we have

& e
©)) o) =fC) =5 and £, (0)—/O)l =5
(the latter can be seen similarly). We see easily from (1) and (2) that | /(x)—f(y)|<e.
Theorem 1 is proved.
THEOREM 2. %,(£/)N(APF*) %, (£ NP).
To prove this theorem, we need the following lemma.

LeMMA. Let feB,(A4)N(APF*) and a<b. Then there exists SEB, such that
Sc{x: f(x)=a} and R"—Sc{x: f(x)<b}.

Proor. Let ¢ be a positive number less than (b—a)/3. We shall define four
transfinite sequences of sets K, H,, I,, B, (x<®) as follows. Let K,=R". When
the closed set K, is defined, we take H,=A4(K,) and distinguish between two cases.
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194 H. W. PU AND H. H. PU

Case 1: H,=0. Then we take I,=B,=0.

Case2: H,=0. By (2.2) and (2.3), H, is J -perfect. Since fE(APF*), there
exist an interval I, and a set B,€®B such that 0=1,NH,c1,NB, and o( £, I,NB,)=e.
Suppose now O<a<® and that the closed set K; is defined for every ﬁ<a If a
is a limit ordinal, then we let K,=N{K;: B <a}. Otherw1se, o has a predecessor
a—1. Weput K,=H,_,—-1I,_;. Clearly K, is closed.

In this way we deﬁnc Ko sildys Tosei3, for every a<£. Since K, is closed, from
the construction, K,,,cH,=4(K,)cK, holds for every a<Q. Thus {K,: a<Q}
is a decreasing transfinite sequence of closed sets. By the Cantor—Baire Stationary
Principle (see [4], p. 145), there exists A<Q such that K,=K, for every a=Aa.
We claim that K;=0. Indeed, suppose first u(K;)=0. Then H,#0 and K;.;=
=H,-I,cK,—I,§K, since I,NK,DI,NH;#0. This contradicts K,,,=K;.
Therefore we have u(K;)=0. It follows that H;=A4(K;)=0 and K;,,=0. Con-
sequently K,=K;,,=0. Let A be the first ordinal with K;=0. We shall show

3) RN =U{H,—K,,;: 0=a<A}UU{K,—H,: 0 =a<A}.

Let xéRY be given. Since K;=0, there exists a,=A such that «, is the first
ordinal that x¢ K. In view of the way we define K, (2<®), o, is not a limit ordi-
nal. There is a B<l such that a,=p+1. If x€Hj, then x€ U{H,—K,+,: 0sa<A4}.
If x{Hy, then x€ U{K,—H,: O=a<A}. (3)is proved.

Recalling that af H, #0 then I, is an interval, B,9®B, I,NH,cI,NB,,

o(f, ,NB)= s<—(b a), and K,,,=H,—I,, we find

U{H,—K,+1: 0=a <A} cU{,NB,: 0 =a <41}

and each I,N B, is a B, set contained entirely in at least one of the sets {x f(x)>a}
and {x: f(x)<b} Also, since K, is closed and H,=A4(K,), by (24), K,—H, is
contained in an F, null set and hence so is U{K,— H O=a<A}. Therefore

SHINB: 0= < UU{E: n=12 ..}
where each F, is a closed null set. Let
P =U{I,NB,: I,NB, c {x: f(x) > a}}
Q =U{L.NB,: L,NB, ¢ {x: f(x) > a}}.

By the above observation, P, Q are B, sets, Pc{x: f(x)>a}, Qc{x: f(x)<b},
and RN=PUQUUE,.

Let S=PU(UEN{x: f(x)>a}). Since fcB,(), by (2.8), {x: f(x)>a}cG,,
and hence, by (2.9), {x: f(x)>=a}NFcB, for each n. It follows that S¢%B,,
Sc{x: f(x)>a}, and

R¥—S c QU(UF,N{x: f(x) = a}) < {x: f(x) < b}.

The lemma is proved.

and

PRrROOF OF THEOREM 2. Suppose f¢%,(«)N(AP;*). Let acR be given. First we
show that {x: f(x)>a}€®B,. For each positive integer n, a<a+(1/n). By the lemma,

Acta Mathematica Hungarica 57, 1991



ON THE FIRST CLASS OF BAIRE 195

there exists S,68, such that S,c{x: f(x)>a} and RN—S§,c{x: f(x)<a+(1/n)}.
Let §=US,. Clearly S€3B, and SC{x:f(x)>a}. We now show that {x: f(x)>a}CS
If f(x0)>a, then there is an n, such that f(x,)>a+(1/n,). Therefore x,¢RN—
That is, x,€S,,CS. Consequently {x: f(x)>a}=S€B,.

To show that {x: f(x)<a}cB,, we need only note that —f is also in the
class %, (/)N (AP;*). By what we have just shown, {x: —f(x)>—a}€B,. Owing
to (2.6), f€%,(s/NP) and the proof is complete.

Theorems 1 and 2 clearly indicate that %, (of N 2)=%,(#4)N(APTY).

THEOREM 3. (APY)=(AP,).

Proor. First we show that (APF)c(AP,). Let f€(AP;) be given. We assume
that f4(AP,;). Then there exists a<b and sets U, V such that §=Uc{x: f(x)<a},
D=V {x: f(x)=b}, UcA(U), Vcd(V), U~V=0 and V-U=0. It follows that
UcV,vcU, and hence U=V. Let H=A4(U). Then H>U=0. By (2.2) and (2.3),
H is T -perfect. Let e=b—a. Since f¢(AP}), there exists an interval I such that
INH#0 and o(f,INH)=e. On the other hand, H=4(U)=4(V) and INH =0
imply INU#0P=INV and hence INU#P=INV. Let x€INU and x,€INV.
Then f(x,)<a and f(x,)>b. Moreover, x;,cINUCINA(U)=INH and x,cINVC
<INA4(V)=INH. This contradicts o(f, INH)=e. Consequently (AP})c(AP,).

Next we prove that (AP,)C(AP7). Let f€(AP,) be given. Let H be a non-
empty Z -perfect set and £>0. We need to show that there exists an interval I such
that INH=0 and o(f, INH)=e. Since H=A(H), we can define functions g,
h on H by setting

0

4) g(x) =limsup f() and h(x) = liminf f(p).
yeH yen

It suffices to show that there is a point xé H with g(x)—h(x)<e. Suppose this is
not true. Then H=UH,, where

(5) - {er: £0) =22, h() <-(-”:31£}

By (24), H—H=H—A(H) is contained in an F, null set. Let H—HcUR,
where F; is a closed null set for each k=1,2,.... Then each F is nowhere dense
in H. Indeed, if F, was dense in a portion INH#0 then, as F, is closed, {,oINH
and hence u(INH)=0. But H=A(H) and INH=0 imply that p(INH)=>0.
This is a contradiction.

Therefore H—H is of the first category relative to H and hence H is residual
in H. Since H=UH,, it follows that there is an interval I and an integer n such
that 9INHcH,. Let

_—.{ercH: flx) < (e 1)8} and V={xEIﬂH:f(x)>%}.

Then, by (4) and (5), INH,cUNV and hence INH,cINH,cUNV. Consequently,
UUVcINH=INA(H)cA(INH)cA(INH,)c4(UNV). This is a contradiction to
the hypothesis f€(AP;). The proof is complete.
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196 H. W. PU AND H. H. PU: ON THE FIRST CLASS OF BAIRE

Finally we remark that, owing to (2.7) and our theorems, Grande’s problem is
equivalent to the following:

Is the inclusion 38x(sf)MM(APJ*)c  (sf)M(AP*) actually an equality?

Acknowledgement. The authors would like to thank the referee who made
valuable suggestions for this paper.
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APPROXIMATE SMOOTHNESS AND BAIRE* 1

L. LARSON (Louisville)

It is well-known that /: R—R is in the class Baire 1if and only if for every
nonempty perfect set p, the restricted function f\p has a point of continuity. The
real function/ is defined to be in the class Baire* 1 if and only if for every non-
empty perfect set p, there is an open interval 1 such that /[l ZV0 and f\nP is con-
tinuous. From this definition, it is immediate that Baire* 1is a subset of Baire 1
The terminology Baire* 1was introduced by Richard O’Malley [3]. Various types of
functions have been shown to belong to Baire* 1, such as the approximately dif-
ferentiable functions [4] and the Lp-smooth functions [3]. The purpose of this paper
is to show that the collection of functions which are both approximately continuous
and approximately smooth is in Baire* 1

A function is said to be a-smooth (aSO) at X, if and only if,

AZ(x, h)

H—% hx

AZ(x,h) =f(x+h)+f(x-h)-2f(x)

where

is the second symmetric difference of/. In the case when a=0, the function is
said to be symmetric at x and when a=1, /is said to besmooth at x. I f/is a-smooth
at each point in its domain, then we just say it is a-smooth. The generalization to
approximate a-smoothness is done in the obvious way.

In the following, R is the set of real numbers, N denotes the natural numbers
and Q is the set of rational numbers. Let AciR. The complement of A is written
Ac. If A is measurable, then the density of A at x is written <5(x, A). The distance
between x and A is d(x, A)=inf(|Jx—y|: y€A}. The oscillation of a function/ at
X is written a)(f, X).

Theorem. I1f f: R—R is approximately continuous and approximately smooth
at each point of aperfect set P, then there is a portion Q of P such that f ‘C is con-
tinuous.

Proof. Foreach neN, define @, to be the set of all xEpP such that whenever

O<a<llIn, then
[{h€(0, a): |zIZ(Xx, hy/h\ < 2} > a/2.
It is clear that

0) P =n!€k9
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Suppose that O<a-=1/a, €(0, a) and x£g, suchthat

\AVE(X, hy/hy < 2.
This implies both

/(X)—h < max {f(x+h),f(x—h)} and f(x)+h > min{f(x+ h),f(x —)}
It follows easily from these inequalities that for all oc£(0, 1/n) either

%)) I{ft€(0, @): f(x + h ) >/(x)-a}| > a/4,
or

(29 [{h€(0, a): f (x -h ) >/(x)-a}| > a/4
and that for all a€(0, 1/n) either

(3) \{he(0,a):f(x +h) </(n:)+a} > a/4
or

(39 {hE(, a): f(x -h) </(Xx)+a} > a/4.

Now, fix n€EN and choose x0eQ,. We wish to show that
4) lim f(x) =f(x0).

Assume (4) is not true. Then, there exists a sequence {xmiaQ, such that
xm-+xu, butf(xm) does not converge tof(x0). Without loss of generality, we may
assume

(5) xmx0, f(xj-f(x0>25>0 and x0—xx-<min(l/n, ).

Let amFx0—xm for each meN. If hdaco, am) and f(xmt h)>/(X,,)—am then
Am+A€(xm x0 and
f(xm+h) >/(XQ+2<5—am>/(x Q+£.

Hence, if (2) holds for x=xm and a=a,,, then we have
(6) {xE(xm x0): /(x) >/(x0Q+ <K} > (x0—x,,,)/4.

On the other hand, if both /z£(0,am) and f(x m—h)>f(xm —am. then Xxm—
—zE(2xm—x0, xm) and

f(xm-h) >/(XxQ+2«5-am>/(x Q+<5.
Thus, if (2') holds for x=xm and a=a,,,, then we have
(69 [{XE@2xmx 0, x0 :/(x) >/(xQ+<B} > (XO-x m/4.

However, for m large enough, both (6) and (6) contradict the fact that/is approxi-
mately continuous at x0. Therefore, (4) is true for each x,,€8m which immediately
implies /] Sm is continuous for each hzEN.

To finish the proof, we apply_the Baire category theorem and (1) to find an
ZEN and an interval / such that Q,n/= P /"0.

Corollary 1. If a function f : R -R is both approximately continuous and
approximately smooth, thenf is in Baire* 1.
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With little change in the proof of theorem, we can also prove the following

Corollary 2. Ifafunction f. R—R is approximately continuous and approx-
imately a.-smooth for any 000, thenf is in Baire*

It is shown in [1] that in Corollary 2, if the requirement for approximate
a-smoothness is strengthened to a-smoothness, then the requirement that/ be ap-
proximately continuous can be weakened to the point where only measurability is
required. In fact, the set on which a measurable a-smooth function can be dis-
continuous is characterized as precisely a separated set in the sense of Hausdorff [2].
The assumption of measurability is required. This can be seen by noting
that any nonmeasurable solution of the Cauchy functional equation f(x+y)-~-
—/(*)+/(y) has the property that A-f(x, h)—o forall x and n and is therefore

smooth.
The example given below shows that Corollary 2 cannot be extended to ap-

proximately symmetric functions.

Example. There is an approximately continuous symmetric function /: R—R
which is discontinuous precisely on the rational numbers.

Proof. Let /, be any sequence of closed intervals from [0, 1] such that /,10
and 6(0, |J 7,)=0. Define h: R—R as follows:
nEN

A when  xe[0, 00)\u
bEN

h(x) = gi(ﬁ'—f), when  x£1,,;

—h(—x), when <0.

It is easy to see that h has the following properties:

(@) n is continuous, and consequently symmetric on R\{0};
(b) n is odd and /r(0)=0, so h is symmetric at x=0;

(c) n is approximately continuous at x=0;

(d) JA(x)|=si, for all x€R, and

(e) co(h, 0)=2.

Let Q={qn: nEN} and for each n define

[,(*) = hX0, W) and f(x) = 2 Ux).

From (a)—(d) and the fact that the series defining/ converges uniformly we
see that/ is continuous on Qcas well as approximately continuous and symmetric
everywhere. To see that/ is continuous precisely on Qc we note that éﬁf is con-

tinuous at gn. Since (o(fn,qn=21 n>0 it follows that f=f,,+i§/hf is discon-
tinuous at gn.
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ON GENERALIZED LEHMER SEQUENCES

BUI MINH PHONG (Budapest)*

1. Introduction

Let G=G{G0, GIt A, B)={G,,}%" be a second order linear recurrence defined
by integer constants GO, GIt A, B and the recurrence

(D G, = AGn-1-BG,,-i (n> 1),

where AB"O, D—A2—48="0 and IGd+ IGjI*O. If <0=0 and (7,=1, then we
denote the sequence (7(0, 1, A, B) by R=R(A, B). The sequence R is called Lucas
sequence and R,, is called a Lucas number.

In 1930 D. H. Lehmer [2] generalized some results of Lucas on the divisibility
properties of Lucas numbers to the terms of the sequence U=U(L, M) ={Un}"
which is defined by integer constants L,M,U0=0, 1 and the recurrence

LU, .-MUn-i for n odd
MU,,-2 f°r n even,

where LM?+0 and K=L—4M"0. The sequence U is called a Lehmer sequence
and U, is a Lehmer number. It should be observed that Lucas numbers are also
Lehmer numbers up to a multiplicative factor.

Here we shall define generalized Lehmer sequences. Let HO, HIt L and M
be integers with the conditions LM*O, K—L —AM”0O and |#0/+ |#1="0. A gen-
eralized Lehmer sequence is a sequence HO, HIt ..., H,,, ... of integers satisfying a

relation
XAM1—MdAMn2 for n odd

(2 A, 1—M4d, 2 for n even.

We shall denote it by H=H(HO, # 5L, N/)={A,}~=0, and so H(0,I,L,M) is
the Lehmer sequence U (L,M).

The purpose of this paper is to study the properties of the generalized Lehmer
sequences H(HO, HIf L, M). We show that the terms of sequences G are also
terms of sequences A up to a multiplicative factor and we give and explicit form
of A,,. We improve a result of P. Kiss [1] concerning the zero terms in the sequences
G and A. Furthermore we give lower and upper bounds for the terms of the se-
quences H.

* Research (partially) supported by Hungarian National Foundation for Scientific Research
Grant No. 907.



202 BUI MINH PHONG

2. Preliminary results

Throughout this paper we shall use the notation
for n odd
{ for n even.
Using the function e(n), the relation (2) can be written in the form
3 Hn= WK>Hn-r—MHm-2 (for n> 1).
We prove some properties of the sequence H(HO, H1, L, M).

Proposition 1. If HO=GO, H1=AG1, L—A2 and M=B, then

()] Gn(GO, GIt A, B) = A~«*Hn{G0, AGIt A2 B)
for any néo.

Proof. We shall prove (4) by induction on n. The statement is obvious for
n=0 and wn=1. If (4)is true for n—1 and n (n”l), then using (1) and (3),
we have

Gt = AGn-BGn ! = p*("+1>+M G, —/T4c(+1)-£<"+1) G,, i =

= A-cntD)[A2 ) Hn-BH ,,*"] = A~"H) [ZEM)Hn-M H "] = A-‘(mH) Hn+,
which proves the assertion.

Remarks, a) From Proposition 1it follows that the sequences H(HO, I f, L, M)
are more general than the sequences G(GO, Gx, A, B).
b) In particular we have

(5) Rn(A, B) = A-'(>tf,(0, A, A2 B) = Al~¢n) Un(A\ B).
Proposition 2. If Un=Un(L, M) and Hhn=Hn(HO, H1, L, M) then
(6) Hn= #! U—L‘OMHOn#r
for any n*O with the convention M U ——L1L
Proof. From the definition of the sequences U and H, (6) is obvious for n=0
and n=1 Suppose that (6) is true for 1—1 and n. Then by (3) using that r(n+1)=
=e(n—1) we have
tfntl = Lt(+)H,,—MH,,-i = U (1) [H1U,—L‘MMHO
—M[Hx {/,,_! —Te(n_HYMS0C/,, 7 =
-1 i )MAO[P () tf.-x-JIf  J = AxUn+l-1f" +1)MHnun,
which proves (6) by induction on n.
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PROPOSITION 3. Let a and B be the roots of the equation 2—YLz4+M=0. If
a=H,—VL H,p and b=H,—JL H,a, then we have

@) H,(Ho, Hy, L, M) = (VI 2 ’;’f ;
Prookr. It is well-known that
8) U, = U(L M) = (VE):(»);%B.

(see e.g. [7]). Since a+B=VL and af=M, using (6) and (8) we get
Hn = HIU,'—LG(”) MHOUn—l =

& o Hy (ﬁ)z(n) (" —B")—L*™ Hy(" B—apr) (V Z)c(n—l) .
= — -

B
(VL)ﬁ2 [(H,— VLH, B)a" —(H,~VLHox) p'] =

aoc —bp"
= (VI S,
where a=H,—VLH,f and b= HI—VLHooc.
REMARKS. a) From (4) and (7) we get the well-known formula
cd"—dy"
o—y
where 6 and y are the roots of the equation x*—Ax+B=0 and c=G,—G,y,
d=G,—G,5 (see e.g.[5]).
b) In what follows we say that the sequences G(G,,G,, A4, B) and

H(H,, H,, L, M) are non-degenerate if cddy=#0, d/y and abaf=0, a/f are not
roots of unity, respectively.

(9) Gu(GO, Gl’ A, B) =

PROPOSITION 4. For any n=0
(10) H,(Hy, Hy, L, M) = —i"+*™H (—H,, H,, — L, — M),
where i*=—1.

Proor. We shall prove (10) by induction on z. Our statement is obvious for
n=0 and n=1. If (10)is true for n—1 and n, then using (3) and i?=—1, we have

n+1(HOs Hl’ L M) n+1 = L.("+1)H MH =1 =
= A4 D(— LY+ P H (— Ho, Hy, —L, — M) -
'—M(_ i"_1+‘("_l))Hn—1(_ HO’ Hls _Ls _M) =
=% m+1+2(n+1)[(—L)'("+l)Hn _HOs Hl) gL, ’_M)—
—(—M)H —1(“Ho- H,, —-L, —M)]= —i("+1)+'("+l)Hn+1(—Hoa Hb =L, “M),
which proves (10).
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Propositions. Let d=(L, M), L'—Ljd and M'=M/d. Then
(11) H,(HO,Hx, L, M ) S (Ydy+™ -*Hn(dHO, Hx,L*, M").

Proof. Ifa and B are roots of z2—yL z+ M =0, then sx=a/yd and Bx=Rli~d
are roots of zz—"L'z+ M '=0. Let

a = Hx—yLHDORB, b= Hx—Y 1HDO0a,
and

Gi = #i~ IT7{dHORX, bx= Hx—yU(dHO0 a*.
It can be easily seen that ax=a, bx=b. Thus by (7) we have

tF,(tf0, n x, 1 M) = (/Z)£) = {idynﬁn\yny*.aa't'_zfi'
= (M)mEP-2.0L )0 ={fd fr-* mHn(dHO, Hx, L\ M%

i-R1
which proves (11).

3. Lero termsin the sequences H

Some authors have studied the lower and upper bounds for the terms of non-
degenerate sequences G=G(GO, Gx, A, B). Let y and $be the roots of the equa-
tion x2—Ax+B=0. We can assume that |y|* |<H. In [3] K. Mahler proved that if
D=A2—4B<0 and s is a positive constant, then there is an effectively computable
constant n0 depending only on e such that

IG,| S |ly|[<LBm for n> w,.
From a result of T. N. Shorey and C. L. Stewart [6] it follows that
|G| & lyl"-".108»

for n>c2, where cx, c2are positive numbers which are effectively computable in
terms of GO, Gx, A and B.
A similar result was obtained by M. Mignotte [4] for linear recurrences of
higher order.
‘ In [1] P. Kiss gave the explicit value of the constants proving that G,,~0 for
n>nx, where

nx = max [2510(log |85|) 5 (log |GQ+log 4 /|Z>])],

furthermore if D<0 and n=~nx, then

lc| 2|c|
2Y\ii\n yuL M’

where ¢—Gx—G0y and
c3= 2e+200« log\W \m(1 +log log |851). log 11651 Gg+Gf).
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We extend the results mentioned above to the sequences A(SA0, HIt L, M).
We give necessary and sufficient conditions for sequences A which have zero terms,
and give lower and upper bounds for the terms. These improve the reults of
P. Kiss [1].

Theorem 1 Let H=H(H<J HIt L, M) be a non-degenerate generalized Lehmer
sequence with (L, M)~ 1 and (//,,, H)=h. Then thefollowing statements are equiv-
alent:

(O Hn=0 (nw 0),

(i) HO=eh U,, Hl=ehL'*MU~",

(iii) Hk = ehLeWcWM kU,,-k for k =0, 1, n,
where Un=Un(L,M), M U —1, and g=1| or Q=—L1L

Corollary. Let A=4(4,,, Hit L, M) be a non-degenerate generalized Lehmer
sequence with (L, M)=d. Then Hn=0 ifand only if

lidy~rH o=2(dHOHDUN,
and

(Yd)n+cM#i = +(dHO, U,)LanMUN_1,
where Un=Un(L,M).

Theorem 2. Let H=H(HO, HIt L, M) be a non-degenerate generalized Lehmer
sequence with (L, M) =d.
If LK>0 then H,,*0 for n>max[13, min (]A0+ 1, |41+ 2)].
If LK-*0 then H,,9"0 for n>-max (JVj, N.J=NO, where
Nk = min (267log ¥M |, e38
and

N*=min[17218m °utoblogbl -

Theorem 3. Let A=4A(A0, HI, L, M) be a non-degenerate generalized Lehmer
sequence with condition LK<0. Thenfor

n>2"log|4M|(A*+4])
we have

M |a]"n~c 2%,
2 \LK | <o lal”,

where
c0= 28log [4M Ielog log |[4M lelog |[4M | (Hi+ H\),

and a is any solution of zi—fLz-\-M=0.

Proof of Theorem 1 Let first Hn=0 for an integer né0O. If n=0 or n=1
then (ii) follows easily. Suppose n>1 By (6) H, =0 implies that

H1lUn= L‘toMHOU,,-1,
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from which it follows
(12) H{U,, —L*"n)MH'0

where and HO=HQh. Since (L, M)=1, it can be easily seen that
(Un,DM)=1, (U,, M)=1 and (Un, nn-r)=1 Thus by (12) we get

HO=xh U, and Hl=%h-L°M-MUn-1,

which proves that (i) implies (ii).
Now we prove that (ii) implies (iii). Suppose

HO=h-U,, and tfj = heLe(MMUn-x.

Thus (iii) is true for k=0 and k—1. If (iii) is true for k—1 and k, where /c<4,
and e=1, then from (3) we have

Hk+l = L Ik+t)HKk—MHk-x =
= Ltk+VhLIM(K)M kUn- k—MhL* ii*k~XYM k_1Q,,_*+x =
= hLcMe(k+1)M KL« k+1) Un-k- U n- k+1] = hL*M«k+» M k+1U,,-ik+1),

since
e(fc+ 1)+e(a)e(/c)—e(n)e(k+1) = e(n—k + 1)
and
e(/c+l) = e(k—1).
This proves (iii) in the case e=1. If g=—1, then we can similarly show that (ii)
implies (iii).

Finally (i) follows clearly from (iii) with k=n. O

Proof of the Corollary. Let d=(L, M) and U=L/d, M'=M/d. By (11) it
can be easily seen that H,,= Hn(HO, HI, L, M) =0 if and only if Hn(dHO, Hk, L', M ) =
=0. From Theorem 1we obtain that #,=0 if and only if

(13) dHO=£(dHOHQ)UN(L',M") and Hx=x(dHO,HAL' "M 'U n-1(L', M").
Since

U.(L M) = (I/()+£>2- Un(L’, M),
by (13) and its conclusion we have

(fd)n+cMHO = £(dHO, H)Un(L, M)
and

@d)nHEWtf1l = £(dHO, HR L t(M nn-x(b, M),
which proves the corollary.

Before proving Theorem 2 we introduce some notations and recall some results
due to M. Waldschmidt [8], M. Ward [9] and C. L. Stewart [7].
Denote

N
aoXN+...+aN=a0 /7 (*-«,)6Z[Vv]
i=1
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the minimal polynomial of an algebraic number a=«,. Put

N
M) = |a,| -ig max {1, |a;]}
and i

h(x) = IT log M ().

TuEOREM A (M. Waldschmidt [8]). Let a,, ..., o, be non-zero algebraic numbers,
and let By, Py, ..., Bm be algebraic numbers. For 1=i=m let loga; be any deter-
mination of the logarithm of o;. Let D be a positive integer, and let Vy, ..., V,,, W, E
be positive real numbers, satisfying

D =[Q(y s %ms Bos Brs - Bw): Ol
V; = max {h(,), |logo;|/D, 1/D}, 1=i=m,
W= max (h(B)}, Vi=..=V,
and

1 < E = min [e?3; 1m‘in {4DV/|log o;|}].
=i=m

Finally define V;* =max {V;, 1} for i=m and i=m—1, with Vy*=1 in the case
m=1. If the number

A= By+ By logoy+ ...+ B, loga,,
does not vanish, then

|A] > exp {—c(m)D"+2V, ...V, (W +log (EDV,'))(log EDV,;* ;) (log E)~™~}
where c¢(1)=2%, ¢(2)=2%, c¢(3)=2" and c(m)=2°"+1.m* for m=3.

We shall use a result of C. L. Stewart [7] on a linear form in two logarithms.
Let « be an algebraic number of height at most 4 (=4) and degree d; further let
b, and b, denote integers with absolute values at most B (=4). Set
A = by log (— 1)+ by log a,
where the logarithms are assumed to take their principal values.

Tueorem B (C. L. Stewart[7]). If A#=0 then |A|>exp (—Clog 4 log B),
where C=2%%.(3d)*.

Finally, we recall a result due to M. Ward [9] on primitive prime divisors of
Lehmer numbers. Recall that a primitive prime divisors of the Lehmer number
U,(L,M) is a prime dividing U, but it does not divide LKU,...U,_,, where
K=L—4M.

Tueorem C (M. Ward [9]). Let U(L, M) be a non-degenerate Lehmer sequence
with conditions L=>0 and K=0. Then U,(L,M) has a primitive prime divisor for
n=>12. Every primitive prime divisor of U,(L, M) is of the form nxt].

Now we prove the following result.
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Lemma. Let U(L, M) be a non-degenerate Lehmer sequence with conditions
£>0 and 0. ThenM~2 and

(14) IU,,(L, M)| > M n,(i
for

n > min (281log 4M, e38)—N 1.

Proof. Since £>0 and U(£, M) is a non-degenerate Lehmer sequence,
we have
<E,M) * <1, 15 15 3 1), 4.
Thus if £=£-4M <0 then M=s2.

Let a and B be the roots of z2—\fLz+M =0. By our conditions we obtain

(15) la] = \®\ = YM.
By (8) we have
(16) WUn = \Un(L M)\ (fLyA) &R

b2—32

k" L ( By\ lal Q
\L\KL (= 2)/E[7s] tlog(-1)-nlog —

where log denotes the principal value of the logarithm function and |/|"2u,

because 1_ 4r is the length of a chord of the unit circle which is greater than
the half of the smaller circular arc. Set

17) A: tlog( 1) rilog® .
Since ®/a. is not a root of unity, we have J1"O.
First we prove that (14) holds if n>267log 4M. We apply Theorem A to (17).

In this case m—2, 'F=log2n; og=—1, M(oq)=1, h(a)=0; a2=R/a, M(ad=M.
The algebraic number a2=R/oi is a root of the equation

Mx2—L—2M)x+M =0
so A(@2 = -~-log M. From these

D=2 =VS =j, W=VS=Ilog4M, E=4
follow. By Theorem A we have
i =epr—c(2)-24y log 4M (log 2n+ log (8 log 4M)) ¢log 4ne(log4) 3 >

> exp {—9 «2s®»log M(log 2n+log (8 log 4M))},
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and so if n>41log 4M then
(18) |A] > exp {—9-257.1og M -log 2n} = M~—9-3*"-log2n,
On the other hand it follows from O0<L<4M that

K| = |L=2M|+2M =2M+2M = 4M,
and so

(19) 1 1

1
2VLIKT  2yaM.am M
By (15), (16), (18) and (19) we get
(20) |U,| = Mn/2—9-2%7-log 2n—4

for n>41log4M; furthermore a short calculation shows that

=M1

B _g.o% .
(21) 3 9.2%]og 2n 4>4
ifun=2%.
Thus by (20) and (21)
(22) | Uyl > M™*

for n=>2%log 4M.

Now we prove that (14) holds if n>¢**®. We apply Theorem B to (17). It is
easily seen that in our case 4=2M and B=2n, furthermore d=2. From Theo-
rem B we get

(23) |4] = |tlog'(—1)—nlog b > exp (—2*.3%.1og2M -log 2n) =

r]
= exp (—2%5.39%.]og M -log 2n) = M —2'*-3%-log2n_
Thus by (15), (16), (19) and (23) we obtain

IUnI = Mn/2—2485.3% log -4
and so
(24) U] > M
if n>e%%,

By (22) and (24)
|U,| > M"* if n>min(2¥ log4M, &%) = N,
which proves the Lemma. O

PRrROOF OF THEOREM 2. Let H,=H,(H,, H,, L, M)=0. By Proposition 4 we can
assume without any essential loss of generality that L=>0.

First we assume that K>0. By Theorem C and the Corollary of Theorem 1,
if n>13 then U, has a primitive divisor of the form nx+1 which divides H,;
and U,_, has a primitive divisor of the form (n—1)y+1 dividing H,. Thus

n=|Hy+1 and n=|H;|+2,
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from which
n” min(|//0+1, |41+ 2) =: Ns

follows. This implies that Hn?£0 if «>max (13, N3.
Now let K<0. If (L,M)—1, then by Theorem 1we have

HO=+(HO,HQ)Un and //,. =+ (tf0,//JLI()MY/,_1
If n*Nx, then by the Lemma

[tfO S IUN\ > Mniiis 2"/4
and
[ffj| ~ \MUmM\ >M = > 2n/4
which imply
n-=min(i"T log|do> b iT log = Nim

Thus Hnet0 if nértax (JT15 A4).
Finally let 4<0 and (L,M)—d. By Proposition 5 it follows that

H,,(HO, Hi, L, M) = 0 if and only if Hn(dHO, HIt L/d, M/d) =0
But we have proved that if Hn(dHO, Ht, L/d, M/d)=0 and n>NI5 then

n< min (jOg2 log |4/a°»1" 2 'log =:Ar'

Thus Hn(HO, Hi, L, M)+&0 if n=»max (NIt N2=: NO.

Proof of Theorem 3. As in the proof of Theorem 2 we can assume without
any essential loss of generality that 0.
Let K<0 and n>NO (NOis defined in Theorem2) and so \HM\>0. The

numbers a=Hr—YL HOB, b—Ht—\L HOa are complex conjugates therefore — as
in the proof of the Lemma — for some integer t

(25) It = (i yN\LI;i\ -Kin*

M Mn
2M\LK\

where the logarithms take their principal values and ts2n+2.
Theorem A can be applied to o

0#i = ilog(—L)—nlog-~-—og —.

ilog(-1) filog~ log -

In this case m—3, W—2log n, at= —1, a2=/?/a, a3=b/a, D—2 since ajb is a root
of ux2—vx+u=0, where

m= L, - LHOHi+ LMHgq, v =2HI- 2LHOtf, + L-LL, +2LMHg.
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ON GENERALIZED LEHMER SEQUENCES 211
Using these, Vi=n/2, Vo=V,*=log 4M, V,=V;*=2log dAM(H3+H?) and E=4
follow. Thus for n>N, we have

|A] > exp {—c;log4M -log (8 log 4M) - log (4M (H+ HP)) X

X (2logn+log 16 log 4M(H+ HY))},
where

¢ = 0,86-2" > ¢(3)2°- 2.2 (log 4) ™.

Since log (8 log 4M)<4 log log 4M, we have
(26) |A| > exp {—4c, log 4M loglog 4M log 4M(H3+ HY)(2 log n+log n)} =
— p—12¢,log 4M-log log 4M-log 4M(H§+H§),
if n=>2%.log4M(H3+H{)(=N,).
Thus, by (25) and (26), we get
[H,| >
for n>2%.log 4M(H$+ H{), where
¢, =2%1log4M -loglog4M -logdM(HE+HE) >
> 12¢; log4M -loglog 4M -log 4M (HE + H?),

which proves the first inequality of Theorem 3. The second inequality is obvious
by the explicit form of H,.

lal - o
2/ILK]

n=*c
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BOUNDEDNESS IN UNIFORM SPACES,
TOPOLOGICAL GROUPS, AND HOMOGENEOUS SPACES

C. J. ATKIN (Wellington)

Some twelve years ago, I observed that certain Banach Lie groups have the
property of “boundedness”, whilst others which appear very closely related do not.
In fact, the natural context for this notion of boundedness is in uniform spaces, and
this note aims to present the definitions and theorems that seem likely to be useful
in further work. All the material is very straightforward, and much of it may be
connected to well-known results (for instance on symmetric spaces). However, it is
not entirely trivial, and in some respects is even rather confusing.

The idea of a bounded Banach Lie group has been of some slight use in work
of Banaszczyk (see, for instance, [3]). I hope subsequently to show that it has other
and more powerful applications.

Where my notation and terminology in this paper are not self-explanatory,
they are in accordance with Chapter 6 of [5].

§ 1. Boundedness in uniform spaces

(1.1) DerNITION. Let (X, ¥7) be a uniform space. Say that the subset 4 of
X is bounded in X when, for each V€%, there exist a finite set FEX and a positive
integer m such that 4 SV ™[F].

(1.2) RemARKS. (a) It evidently suffices that the condition hold for vicinities
which form a base for ¥~ — for instance for symmetric vicinities (those which sat-
isfy V=V"1).

(b) If A4 is bounded in X, so is any subset of A. If 4 and B are bounded in X,
sois AUB.

(c) The subset 4 may be given the subspace uniformity

¥ =V N(AXA): VEV).

Say that A is bounded in itself if it is bounded in the uniform space (A4,%}). This
implies boundedness in X (see below, (1.6)), but is usually more restrictive (see
(3.5).

(d) If A and B are bounded in themselves they are both bounded in
(AUB, ¥48), by(1.6),and consequently, by (b), AUB is bounded in itself. How-
ever, a subset of a set bounded in itself is usuvally not bounded in itself (see (1.8)).

(1.3) Let V€¥" besymmetric. Define a relation ~ on X by saying that x~ y
if and only if xcV™[y] for some positive integer m. Say that x~y if and only
if x~, y for every symmetric vicinity V€¥ .
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(@) Both ~Fand ~ are equivalence relations on X. | shall call the ~ F-equiv-
alence classes the F-components of X, and the equivalence classes of ~ the pseudo-
components of X. The pseudo-components of a subset A of X are of course defined
with respect to the subspace uniformity VA.

(b) Each F-component of X is both open and closed. Hence any connected
subset of X is included in a single F-component, and in a single pseudo-component.
More precisely, each quasi-component of X (see [4], p. 430) lies within a single
pseudo-component.

(c) If X is compact (so that it has only one compatible uniformity), each com-
ponent is a quasi-component and a pseudo-component. (See [4], p. 431.)

(d) If X is bounded, each F-component is bounded in itself.

(1.4) Lemma. Thesubset A of X isboundedin X if and only if,for each symmetric
vicinity V~.% A meets only finitely many V-components of X, and, for each V-com-
ponent W, there exist wf_W and a positive integer m such that AC\W Q Vm[w]. When
A is bounded in X and W is a V-component of X, there existsfor each vEW an integer
nSl such that AOWQVIv].

Proof. The condition’s sufficiency is obvious. Suppose that A is bounded in
X, and F-1=FOF Then, as in (1.1), AQVn{F]; so A is included in the union
of the F-components of the points of F, and meets no others. Let IF be a F-com-
ponent; then Ar\WQVm[FCIW]. Therefore, if /EFfHF and uflF certainly
there is an integer 7(/)é1 with f£ Vmv], Set

n = max {m(f)+m: ffw OF}.
It follows that ADW Q Vn[v].

(1.5) Corollary. If A is bounded in X and VAV, the set F of (1.1) may be
chosen to be a subset of A. When V=V ~1 the number of elements of F cannot be
less than the number of V-components of X which meet A, and F may be chosen both
to be a subset of A and to have exactly that number of elements (indeed, form F by
taking one element arbitrarily from WOA, for each F-component IF that
meets A).

(1.6) Lemma. Let <x (X, ~V)*(Y, W) beauniformly continuous map o f uniform
spaces, and AQX. If A is bounded in X, <p{A) is bounded in Y. If A is bounded in
itself, so are cp(A) and cp(A).

Proof. Let WEIV; thus (pX(p)~1WE.ir and, if A is bounded, there exist a
finite set FQX and a positive integer m such that (((pXg>)~1IW)mF] *A. However,

A(<XN-Wy-fF]} QWm[(p(F)).
Therefore, (p(A)QWm[cp(F)], and in turn
~(Aj giF mi[<p@P)]

As <p(F) is finite, this proves <p(A) is bounded in Y.
The concluding assertion follows by noting that both

cpA: (A~rA)~(cp(A),irHA)
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BOUNDEDNESS IN UNIFORM SPACES 215

and inclusion plik i
(P (A), Woewy) ~ (@ (A), W)

are uniformly continuous.

(1.7) LEMMA. Let A be a subset of the locally convex topological vector space E.
Then A is bounded in E with respect to the standard uniformity on E if and only if it
is bounded in E in the sense of von Neumann ([7], p. 25).

PrOOF. Suppose A4 is bounded in the uniformity; let U be any absolutely con-
vex neighbourhood of 0 in E. Then

Vo = {(x, )EEXE: y—x€U}
is a vicinity of the uniformity, so there is a finite subset F of E such that, for some m,
ASV[F]=F+U+U+...+U (m repeats of U)

= F+mU (as U is convex).
As F is finite, there exists g such that FEqU, and so AS(m-+q)U. Hence A4 is
bounded in the sense of von Neumann. Conversely, if 4 is von Neumann-bounded
and U is an absolutely convex neighbourhood of 0, then there is an integer m with
AEmU=V{'[0], so that 4 is bounded in the uniformity.

(1.8) Nortes. (a) If B is convex and von Neumann-bounded, it is also bounded
in itself in the uniformity. Without loss of generality, suppose 0€B, and let U be
as above. Then there is a positive integer g such that BESqU; given b€ B, ¢ 1bc UN B.
Consequently

b=g 1b+q71b+...+q 1 bc{(BXB)NVy}[0]

(since mg~1beB for 0=m=q).
(b) An infinite orthonormal set in Hilbert space, for instance, is von Neumann-
bounded but not bounded in itself in the uniformity. See (1.2) (d).

§ 2. Further properties

(2.1) LemmA. Let A be a subset of the uniform space (X, ¥). Then A is bounded
in itself if and only if A is bounded in itself.

Proor. Clearly one may assume A=X. One implication follows from (1.6).
So now suppose X is bounded (in itself). Take V€Y thus Vo=V N(AXA) is a
typical vicinity of ¥;. Choose W€~ such that W=W ~1, W3<V. Then there are
a positive integer m and a finite subset F of X such that W™[F]=X. For each
x€X, choose £cANWI[x] (which is possible, as A is dense). Let F={f: fc F},
which is a finite subset of A.

Take any acA. As acW™[F], there are points f€F and Xx;, X, ..., Xpy—1€X
such that (f, X)€W, (Xpm—1, @)W, and (x;, X;3)EW for 1=i=m-—2. Thus
(f, R)EWS, (Rp-1, A)EW?, and (%, £, )EW?3 for l=i=m—2. Since W3CV,
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216 C. J. ATKIN

this proves that
aE(V H (AxA))m[F] = VF].
Hence, as required, AQV™[F],

(2.2) Proposition. Let {(Xy, Yy). yE['} be any indexed class of uniform
spaces; let X—1]J X.., and let ny: X-*Xy be theprojection. Then AQX is boun-

er
ded in the produ)ét uniformity ¥ ifandonly if, for each ydF, ny(A) isbounded in Xy.

Proof. ny: (X, ¥Y)-+(Xy, ¥y) is uniformly continuous by definition, so one
implication results from (1.6). Suppose, therefore, that ny(A) is bounded in Xy
for each yEI. There is a base for ¥ consisting of sets of the form

VvV = N (MCyXn,)-1",

where A is an arbitrary finite subset of I and W is an arbitrary member of Yy for
each yEA. Now, for each y£A, there is a finite subset Fy of Xy, and a positive

integer m(y), such that
ny(A)QVy’M[F\.

Take m=max {m(y): y(zA], and let F be any finite subset of X for which the map
F o JAXY-f~ {(Ky(A
has image including f_;‘_\ F. For instance, choose x.fX., arbitrarily when y<$A and

. Y17 . . L
let F consist of all points whose --coordinate is xy for -$A and lies in Fy when
yEA. For any such set F, clearly

AL i1 (y(A))QV™IF],

since each coordinate may be treated independently.

(NOTE. The analogous statement with ‘in itself’ in the places of ‘in X’ and
of ‘in Xj is in general false, even when I has only two elements; the reason is that
one may have ny(A)=Xy for each - although A~X.)

(2.3) Lemma . Let I be a directed set, and nyi: Xd-*Xy an inverse system over
" of uniform spaces (X.., W) and uniformly continuous maps nyS. Suppose that X
is the limit of the system, and the canonical projections ny: X-*Xy are all surjective.
Then AQX is bounded in X if and only if, for each 7£I", ny(A) is bounded in Xy.

Proof. Because I" is directed, sets of the form (nyX ny)~1% (where - and
WE'™) constitute a base for the uniformity of X. If Byis a finite subset of Xy and
m a positive integer with ny(A)AYyr[R], choose a finite subset Fof X with ny(F)—
~Fy\ then, trivially,

A £ n™(ny(A) g {(ityXitj -+ VIm[F].

(2.4) Theorem. Let A be a subset of the uniform space (X, ¥). Thefollowing
three statements are equivalent.

(@) A is bounded in X,

(b) Every real-valued uniformly continuous function on X is bounded on A.
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BOUNDEDNESS IN UNIFORM SPACES 217

(c) A is of finite diameter with respect to every uniformly continuous pseudo-
metric on X. [A pseudo-metric is described as uniformly continuous if it defines a
uniformity included in 77.]

Proor. (a) implies (b) by (1.6). If 4 is a uniformly continuous pseudo-metric
on X, and a€ A, define, for all x€X, f(x)=d(x,a). Thus f: X—R is uniformly
continuous. Ergo, (b) implies (c). It remains to prove that (c) implies (a).

Let ¥V be a symmetric vicinity; if possible, let W, W, W;, ... be an infinite
sequence of distinct ¥-components (see (1.3)), all meeting 4. Define, for any x, y€ X,

d(x,y) = le(x)—e ),

where ¢(x)=n when x€W,, ¢(x)=0 when x¢ G W,. Now ¢ is a uniformly
n=1

continuous function on X, and d is a uniformly continuous pseudo-metric. If (c)
holds, then, d(x, y) is bounded for x, y€ A, and this is a contradiction. Therefore
A meets only finitely many V-components.

The standard construction ([5], pp. 185-6) gives a uniformly continuous
pseudo-metric dy such that, if x and y lie in the same V-component and 1 is a positive
integer, dy(x, y)=m if and only if x€V™[y]. Hence, if (c) holds and W is a V-com-
ponent, weWN A, ANWSV"[w] for any integer n greater than the dy-diameter
of A. So both conditions of (1.4) are implied by (c); (a) follows.

Norte. It is insufficient in (c) to consider only a class of pseudo-metrics defining
the uniformity; they might all be bounded, and also not distinguish ¥-components.

(2.5) The uniform space (X, ¥”) is uniformly locally compact (or precompact)
if there is a vicinity V€% such that V[x] is relatively compact (or precompact) in
X for each x€X.

In such a case, suppose U is a symmetric vicinity with U<V, and let 4 be a
precompact subset of X. Then there is a finite subset F of X with U[F]24; so

Uld] < U*[F1 S VIF],

and V[F] is relatively compact or precompact, as the case may be, in X. One con-
cludes inductively that, for any finite subset F, of X and any positive integer m,
U™[F,] is respectively relatively compact or precompact in X. One instantly deduces
the next lemma.

(2.6) LemMA. (a) If A is a precompact subset of the uniform space (X, V"), then
A is bounded in X.

(b) If (X, ") is uniformly locally precompact, then A is bounded in X if and
only if A is precompact.

(©) If (X, ¥") is uniformly locally compact, then A is bounded in X if and only
if A is relatively compact.
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§3. Boundednessin topological groups

My notations for groups will be standard (e denotes the identity element).

(3.1) Lemma. Let H be a subgroup of the group G. Suppose e£AQG, and,
for some positive integer r, Ar includes a subgroup K of H offinite index in H. Then
there is apositive integer s~ r such that Asll H is itself a subgroup of H offinite
index in H.

Proof. K, AKIF\H=(AT)H)K, A2KI)H, A3KMH, ... IS an increasing sequence
of unions of left cosets of k in H, of which there are only finitely many. Thus there
is a positive integer m such that

(1) L= ATK{IH = ANKANMN = AT+*KNH =
However, as L fH , for any g~
(2) L AgLf)H = (AqnH)L = [A*AH)ATH)H)K =
2 (Am+qflH)K = AT+uKM\H = L.
By hypothesis, A'ciH~k. By the chain (2) of equalities,
LL = (AmfIH)KL | (ATAH)(A'T\H)b | (Am+ri)H)L = L,

so that L is closed under multiplication.

Take /EL. As k is of finite index in H, there are distinct exponents n, p such
that T and 1p both lie in the same left coset of k. Consequently there is a negative
integer t such that 1'ex. Since K fzL,

l-i = hi-,peL-i-, K[ 1-i-"1 ] L

(for —1—~o0 and L is closed under multiplication; read L°> as meaning {e}).
Hence Z, is a subgroup of 1, and, as it includes «, is of finite index in H.
Finally, L ~anc\H for any n~m, by construction (1), whilst by hypothesis
L=AmKOHQAm+mH. Itfollows that L=A m+rf]H, as required.
(3.2) Henceforth 1 shall write  for the left, and Vr for the right, uniformity
on a topological group c. A base for is furnished by the vicinities

W = {Cxy): x-'ytiU},

where u runs through a base of neighbourhoods of e in G.
In the same way, a base for % is given by the vicinities

Vv = {(*, Y)- xy~x£ U}.

Lemma.Let A, B be subsets of the topological group G.

(a) A is bounded in G, or in itself, with respect to % ifand only if A-1 is bounded
in the same sense with respect to

(b) If A hasfinitely many pseudo-components, and is bounded in G, with respect
to VT, then it is also bounded in G with respect to ir; and conversely.

(C) I fA, B are both bounded in G, or in themselves, with respect to %, then AB
is bounded in the same sense; and similarly for "”
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ProoF. For (a), note that the inversion x—-x~* is a uniform homeomorphism
of (G, ¥;) with (G,?¥7). For (b), form a set F with one point from each right pseudo-
component of 4. Given any neighbourhood U of e in G, one may choose another
neighbourhood W such that WS fU for every f€F; it follows that W*"fC fU"
for every n=1 and f€ F. Now, by (1.3) (b) and (1.4), there exists m=1 such that

AS WYy [F]=W™F

(an easy computation). Consequently 4 < FU™=(Vy)™ [F], which proves the result.
Notice that the connectedness hypothesis is needed to obtain a set F indepen-
dent of W.

For (c), suppose first that 4 and B are ¥,-bounded in G. Given any neighbour-
hood J of e in G, there exist a finite subset F; of G and an integer p=1 such that

A S (VO)P[F] = UPE.

Now, there is a neighbourhood W of e in G such that fW S Uf for each f€F;; and,
in turn, there are a finite subset F, of G and an integer g=1 such that BCW?FE,.
Hence

AB S UPEWF, € UPYIEF,.

This clearly proves the result in this case.

Suppose that 4 and B are ¥;-bounded in themselves, and let U be a neigh-
bourhood of e in G. Take a neighbourhood U, such that U,U; S U. Then there
exist a finite subset /; of A4, and an integer m=1, such that, for any ac A4, there
is a sequence a,=a, a,€U,a,, ..., a,cU,a,_,NF, of points of 4. Choose a neigh-
bourhood U, of e such that fU,S U, f for every f€F,. Now there are a finite
subset F, of B, and an integer n=1, such that, for any b€ B, there exists a sequence
by=b, b,cU,b,, ..., b,cU,b,_,NF, of points of B. Take F=FF,, a finite subset
of AB.

Then, for any element ab of AB (where ac A and b€B), there exist sequences
Gy, Gy ..., Gy and by, by, ..., b, as specified above. The sequence X,=a,b,, X;=
=0, D55 s X =02 Dns Xe i d=diby s i X e =arh... of . points " of “4B_ is istieh ‘that
X;+1€ Uy x; for each i (since a,€F,, and so a,U,SU,a,), and a,b,€F. This
proves the result. (In fact the same argument could be used for the first case, if all
terms of the sequences after a, and b, were allowed to lie anywhere in G.)

(3.3) ReMARrks. In (3.2) (b), note that 4 may have finitely many pseudo-com-
ponents with respect to ¥, but not with respect to ¥;. Thus one might say, slightly
less exactly, that for symmetric or for connected subsets of G it does not matter
which uniformity, ¥ or ¥/, is used to define boundedness in G. This is false when
one asks whether a set is bounded in itself.

Since continuous homomorphisms of topological groups are uniformly con-
tinuous with respect to left or right uniformities, various results of §§ 1, 2 translate
instantly to statements about such homomorphisms.

(3.4) TueoreM. Let H be a subgroup of the topological group G. The following
Statements are equivalent.
(a) H is bounded in G (in either uniformity; see (3.3)).
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(b) For any neighbourhood U ofe in G, there is an integer 1 such that Um
includes a subgroup of H offinite index in H. .

(C) For any neighbourhood U ofe in G, there is an integer nf 1 such that Unf)H
is a subgroup of H offinite index in H.

Proof. Certainly (b) implies (c), by (3.1). Assume (c). Given a neighbourhood
u of e in 6, there exist a finite subset F of H and an integer nS1 such that
F(UnC)H)=H; hence HQFuUn—(vun[F]. This proves (a). Now, assume (a),
and let u be a symmetric neighbourhood of e in . So there exist a finite set FQH
(see (1.5)) and an integer pé1 such that Fup—(vu)p[F]24.

Consider the increasing sequence U f) F, U 2pC\F, U 3pC\F, .... As F is finite,
there is an integer /€& 1 such that for all Ké1, uipc\F=ukpc\F. Certainly i/(+)p
is symmetric and contains e. Suppose x, YEE/(,+1)[1A. Then C2(+Dpn//, and,
for some feF, xy£fu p(-)H. As u is symmetric, it follows that /£ u (2+3)p, and
therefore that fd u 1p (by the choice of/). Hence xyfi C/(+1)pMA. Thus £/(+L)pM4A
is a subgroup of A, and it is of finite index therein, since Fur1+H. This proves
(b) when u is symmetric; the general case is an obvious corollary.

(3.5) Let (2 denote the Hilbert space of square-summable complex sequences

indexed by all the integers, and let u be the group of its unitary operators, topologised
as a subset of the Banach space of all bounded operators on /2 Then u is a top-
ological group — in fact a Banach Lie group — bounded in itself (see (6.5), (6.8) (a),
and [2]). However, the powers of a shift operator form a closed subgroup which is
not bounded in itself; compare (:.2) (d) and (: .8 ).

§ 4. Thestandard uniformity on a left coset space
(41) Let (X, ¥Y) be a uniform space and n: X-+Y a surjection. Define
n*y ={V: Vgy XT and (nXs)":[€~}.

Then n”Y is a filter in YXY, every member of which includes the diagonal. If
% is a base for ¥ then {(nXn)W: Wiity forms a base for

In general, will not be a uniformity, although only because the “triangle
inequality” ([5], p. 176, (c)) may fail. When it is a uniformity, it may be called the
guotient uniformity induced by n. It is the finest uniformity on Y which makes n
uniformly continuous.

Suppose a group H acts on X on the right. Say that Y is (right) A-invariant
if there is a base % of "V which consists of A-invariant sets; that is, for each h£H,

V = {(*y): (xh,yh)€V).

Equivalently, v is A-invariant if the class of right translations by elements of Fi
is uniformly equicontinuous with respect to ¥ (for, in that case, define for v~y

2= hEIH {(xh,yh): (x,y)£V);
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the sets ¥V, as V varies over ¥; form a base of ¥; because of the uniform equicon-
tinuity, and they are H-invariant).

(4.2) LeMMA. Let ¥~ be an H-invariant uniformity on the right H-space X, and
let m: X—~X/H be the quotient map on the orbit space. Then n, V" is a uniformity
on X/H.

Proor. If Qcn,¥, there exist WE¥ such that (aXn)WSQ, and WiEv
which is H-invariant and satisfies W,oW,SW; set Q,=(nXn)W,en, ¥, If
(@, )€Qy0Q,, there exists BeQ, with (o, B)€Q, and (B, y)€Q,. Take a, b, ccX
with n(a)=a, n(b)=p, n(c)=y. As (o, f) and (B,y) belong to Q,, there exist
hy, hy, hg, hy in H such that (ah,, bh,)eW,, (bh;, ch,)éW,. Since W, is H-invariant,
(ahyh3t, chyhs V)eW,oW, S W, and, applying n X, (o, p)E(nXT)W S Q. So we have
{ound QgEn:*"V such that Q,00,S£ 0, and this proves that =,¥" is a uniformity
see (4.1)).

(4.3) The case of most interest is when G is a topological group and H a sub-
group (not necessarily closed) acting by right multiplication on G. The quotient
space G/H 1is the space of left cosets. The right uniformity ¥, on G is invariant
under the right action of H, and indeed under the right action of G on itself; thus,
by (4.2), there is a quotient uniformity on G/H, which I shall call, and treat as, the
standard uniformity. Notice that the standard uniformity on a LEFT coset space
is the quotient of the RIGHT uniformity on G.

When H is a normal subgroup of G, the standard uniformity on G/H is just
the right uniformity of the group G/H. Symmetrically, the left uniformity on G
quotients to the left uniformity on G/H. Notice that the quotient uniformity exists
here — because the left and right coset spaces are identified — although ¥; is not
usually right H-invariant; (4.2) is not a necessary condition.

(4.4) TueOoREM. Let H, K be subgroups of the topological group G, with K< H;
and let n: G/K—~G/H be the natural projection. Then:

(a) m is uniformly continuous with respect to the standard uniformities;

(b) if A is a subset of G/K bounded in G/K (or in itself), then n(A) is bounded
in G/H (or in itself);

(¢) if ASG/K and n(A) is bounded in G/H, and HJK is bounded in G/K,
then A is bounded in G/K.

Proor. Let o: G—~G/K be the projection. Then the standard uniformity on
G/H is
0) {V S G/HXG/H: (roXno) WeY} =

={V S G/HXG/H: (nXn) WV €a, %} = n, 0, %;

thus it is, in fact, the quotient of the standard uniformity on G/K. This proves (a),
and (b) follows by (1.6).

Suppose ©(A) is bounded in G/H; let U be a neighbourhood of e in G. There
exist a finite set FEG and an integer m=1 such that

() SR n(d) S ((nXm) (o Xa)V V)" [0 (F)] = no (U™ FH),
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by an easy computation. Consequently
(2) A g n*nfA) = o(UnFH).

As Fis finite, there is a neighbourhood W of e in G such that fW g Uf, and in-
ductively fW 4QUd for all yu=\, whenever fEF. Since H/K is bounded in
G/K, there are a finite subset Fj of G and an integer usi such that

<7()A((<7x<nK"7-[<7 (FR],
or, as at (1), H*WF~"K. It follows that
©) UmFH g UmFW"FIK g Um+'FFIK,
so that, by (2), and as at (1),
A g a(UmmnFRXK) = ((FEX<T)Fm, [(T(FFD)],
which (as o(FFt) is a finite subset of G/K) proves the result.

(4.5) Note. The standard uniformity on H/K, the quotient of the right uni-
formity on H, which is itself the subspace uniformity induced from the right uni-
formity on G) is the same as the subspace uniformity induced from G/K.

(4.6) Lemma. The left action of G on a left coset space G/K consists of uniform
homeomorphisms with respect to the standard uniformity.

Proof. Let cr: G-*G/K be the projection. A basic vicinity for G/K is
(oX0)Vv, where U is a neighbourhood of e in G (see (4.1), (4.4) (0)). Now

(oXo)Vu = {(o(x),0(y)): x,yEG and x"UyK)-,
thus, for any g£G,
(gXg)(0Xo0)Vv = {(o(gx),0(gy)): x,yEG and x*"UyK) =
= {(<(*¥)> xx,yfG and x"gUg-'y*"K) =(0X0)Vv»i
The result follows.

(4.7) coronrary. If G, K, H, n are as in (4.4), allfibres of n are uniformly
homeomorphic (as subspaces of G/K).

(4.8) Theorem. Let G, K, H, n be as in (4.4). Suppose H/K is bounded in itself
and B is a subset of G/H bounded in itself. Then n~1{B) is bounded in itselfin G/K.

Proof.Let a: G-~G/K be the projection, and write Bt for (no)~1B. Take
any symmetric neighbourhood U of e in G.

Then Vv and (noXno)Vu are symmetric (see (4.4) (0)), and so must be
V=(BxB)C\((noXne)Vv). By (1.4), B has only finitely many F-components,
and, by (1.3) (d) and (1.2) (d), it will suffice to suppose it has exactly one. Further-
more, in view of (4.6), one may arrange by translation that no(e)£B. By (1.4),
there exists m ~1 suchthat Vm[no{e)}=B. So, for any b£Br, there is a sequence
X0, Xi, ..., xm=e of points of such that m+1=xxf€U for 0”/<m and
x0=bh~xEbH. Now H/K is bounded in itself; therefore there are a finite subset F
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of H and a positive integer »n such that, as at (4.4) (3), H=(UNH)"FK. (This
is a simpler condition than for B, because H is closed under muitiplication.) Hence
there exist elements wy, w,, ..., w, of UNH, f€F, and k€K, such that h=w, w,...w, fk.
It follows that

b=xoh=uuy...u,wyws... w,fk,

where, since B;H=B,; and e€B,;, all the partial products b, u7'b, ..., w, fk, fk, k
lie in B,. This proves that ¢(B;)==n"1(B) is bounded in itself, as required.

§ 5. More on coset spaces

(5.1) The standard uniformity on the left coset space G/H (see (4.3)) is always
defined, but is not, in general, itself G-invariant, despite (4.6). For instance, let G
be the group of self-homeomorphisms of a connected finite-dimensional manifold
M, and let H be the isotropy subgroup of x€ M. By [1], G is a topological group
in the compact-open topology; the natural mapping G/H-~M 1is (not quite trivi-
ally) a homeomorphism. But there can be no vicinities of M which are G-invariant,
no matter what the uniformity (if it gives the correct topology). It is not difficult
to give other examples where G is even locally compact and the quotient uniformity
is not G-invariant.

If, however, there is a G-invariant uniformity which induces the topology on
G/H, then (as the projection is both open and continuous) it must be the quotient
of the left uniformity; I shall call it the left quotient uniformity. By (4.2), the left
quotient uniformity exists when the left uniformity on G is right H-invariant. It
also exists when H is normal in G, by (4.3). Thus, for example, it must exist if H is a
compact extension of a normal subgroup of G.

(5.2) THEOREM. Let G be a topological group, and H a subgroup. Suppose the
left quotient uniformity on G/H is defined, and let A be a subset of G/H. Assume
either

(a) that A has finitely many connected components, or

(b) that G is locally connected.

Then A is bounded in G/H in the standard uniformity & if and only if it is bounded
in G/H in the left quotient uniformity &. (Compare (3.2) (b).)

Proofr. Define V'Y, ¥y as in (3.2).

(a) It suffices to assume A is connected. Let a=mn(a,)€A; suppose W is any
neighbourhood of e in G. Take a symmetric neighbourhood U of e such that Ua, &
Ca,W, and therefore U%a,Sa,W? for g=1. If 4is &-bounded, then, by (1.3) (b)
and (1.4), there exists m=1 such that

¢)) A S {(rxXm)V }"[a] = n(Uma,H) = n(U™a,).
(Compare (4.4) (1). As U is symmetric, so is (zXn)VV.) Hence 4Cn(a,W™H)=

={(rXn)Vy}"[a], and this shows A4 is Z-bounded. The analogous argument in
the opposite direction is now obvious.
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(b) Here G has a base  of connected symmetric neighbourhoods of e. Take
g=n(q0ZG/H. Then, as at (1),

{(nXa)F T bl =ABmgo), {(sXu) VBm[g] = n(q0B”).

Both these sets are connected. Hence the (nXn)*"-components and the (nXn)VB-
components of G/H are all open and connected (see (1.3)); consequently they
cc%inc}de (irrespective of the choice of B"sM) with the connected components
of G/H.

Suppose A is A-bounded in G/H. By (1.4) and the last remark, A can meet
only finitely many connected components of G/H. Choose a finite set FQG such
that n(F) contains one point from each such nonnull intersection. Now, given

choose such that, for all /EF, UfQfW. By (1.4), there is a positive
integer m such that

AL {(7TtXT)FTNe)] = Jt(UmF) (see (1))
g Jt(fr) = {(nX2)Vwimn(F)].

As W was arbitrary in 38, this proves that A is if-bounded. The converse argument
is, mutatis mutandis, identical.

N ote . Pseudo-connectedness is insufficient here, since it need not hold simul-
taneously for SF and for if. The hypothesis of local connectedness in (b) makes it
possible to choose F before U.

(5.3) Theorem. Let G, K, H, n be as in (4.4), and suppose the left quotient uni-
formities are defined on G/K and G/H.

(@) =®is uniformly continuous with respect to the left quotient uniformities.

(b) IfA is asubset of G/K bounded in G/K (or in itself) in the left quotient
uniformity, then n(A) is bounded in G/H (or in itself) in the left quotient uniformity.

(c) If AQG/K and n(A) is bounded in G/H in the left quotient uniformity,
and H/K is bounded in G/K in the left quotient uniformity, then A is bounded in
G/K in the left quotient uniformity.

Proof, (2), (b) are proved as in (4.4), with 'Ll in place of Yt. If G is locally
connected, (4.4) and (5.2) give (c); but I sketch a direct (and more general) proof.
Take a neighbourhood W of e in G. There is a finite subset b\ of G such that
HQF1WnK for some integer aé 1 Take a neighbourhood U of e in G such that,
for all fEF1, UJQjW; then there are an integer m sl and a finite subset F of G
such that (no)~JAQFUmH, where a: G-+G/K is the projection. Consequently,

z-UA) A o(FUMFWnNK) A o(FFIWmnK),
which (as FFXis finite) gives the result. Compare (4.4).

(5.4) Scholtia.In (5.3), the left quotient uniformity on H/K is necessarily
defined, and tallies with the subspace uniformity induced from the left quotient
uniformity on G/K. The left uniformity 'f] on G is right //-invariant if and only
if there is a base of neighbourhoods of e in G such that, whenever and
h£H, hUh~1—U. (This is the same as left A-invariance of the right uniformity
on G).
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(5.5) THEOREM. Let G, K, H, 7 be as in (4.4). Suppose the left uniformity on G
is right H-invariant, so that the left quotient uniformities on G/K and G/H are
defined. With respect to these uniformities, suppose that H/K is bounded in itself
and B is a subset of G/H bounded in itself. Then n=*(B) is bounded in itself in the
left quotient uniformity on G/K.

PRrOOF. As before, let o: G—~G/K be the projection. The boundedness of B
in the left quotient uniformity means that, for any neighbourhood U of e in G,
there exist a finite subset F; of B;=(no) !B, and an integer m=1, such that, for
any beB,, there are points X, Xy, ..., X, in B, and h;, h,, ..., h, in H with
X€F, X,=bhg'€bH, and Xx;'x;4,€h;Uhiy for 0=i<m. In view of (5.4), it
may be assumed here that hUh~'=U for all heH.

As HJ/K is also bounded in itself, there exist a finite subset F, of H and an
integer n=1 such that H=F(UNH)"K.

In particular, there are elements f€F,, k€K, and 0Un41, ---» OmsaC UNH
such that

ho =fvm+1 "‘vm-f-nk‘

Define, for 0=i<m, v;.,=f"1x;71x;4,f€U (recall that fUf~1=U). Ergo,

b =xphy =X for [T foo /7 oo fom ST Somaree Omink = Xo S 010200 Ok

Here x, f belongs to the finite set F; F;, which depends only on U and is included
in B;H=B,; k€K; and, setting y,=x,fv,0,...v;, one sees that, for 1=/=m,
yi=x,feBiH=B,, and, for m<I=m+n, y€x,H, which is a subset of B, by
construction. Of course y;ly,.,€U for 0=/<m+n (if one takes y,=x,f); and
Ym+n€bK. Hence o(B;)=n"*(B) is bounded in itself in the left quotient uniformity
on G/K.

(5.6) Compare (5.5) with (4.8). I expect the weaker hypotheses that the left
quotient uniformities on G/K and on G/H both exist (neither implies the other,
in general) to be inadequate in (5.5), but I have no counterexample.

It was observed in (3.5) that one may easily find unbounded subgroups of
bounded groups; so one cannot reverse (4.8) or (5.5) to conclude that the fibre
is bounded. There is, however, a limited converse, when the base is compact.

(5.7) TueoREM. Let G, K, H, © be as in (4.4). Suppose B is a compact subset
of G/H such that n=*(B) is bounded in itself in the standard uniformity. Then H/K
is bounded in itself in the standard uniformity, provided that either

(a) H is locally connected, or

(b) the right uniformity on H is left H-invariant.

PrOOF. As previously, let 6: G—~G/K be the projection; let B,=n~1(B) and
By=0""(B,). First, I shall show that in case (a) one may assume H/K has only
one pseudo-component.

Let H), be the principal component of H. It is an open normal subgroup of H;
so H,=H,K=KH, is an open subgroup of H which includes K. Factorise n=gon,,
where m,: G/K—~G/H, and ¢: G/H,—~G/H are the projections.

Acta Mathematica Hungarica 57, 1991



226 C. J. ATKIN

Take a symmetric neighbourhood Ux of e in G such that U*f)HQHO. The
covering

(@) {naixUj): xEBG}

of B has a finite subcover x1U1H, ...,xmUxH, and there exists a symmetric open
neighbourhood U of e in G such that, for each /, x['1UxiQU1. Suppose X£BO;
w5u2dU; and wx, u2x have the same images under no, so that ulxH=u.ixH.
Then x~1uilux£H. However, there exist uf Ux and i such that x=x,u, and
therefore x~1u{lux=u~1Ix r lu{Ixix flu2xiu, where xfluilxi and xflu21xi be-
long to Ux by the construction of U. Hence x~u{lu2xf U?P\HQHO, so that
ulxHO=u2xHO and consequently ulxH1=u2xH1. This means that Qmnxo{Ux) is
one-one for each XxEBO. Since G/H and G/H1 both have quotient topologies,
it follows easily that e is a homeomorphism of nlo(Ux) with no(Ux). (One may
think of g as a uniform covering map.) Let XX be a neighbourhood of e in G such
that WWA™.U. Thus c\GH(no(IVx))Qno(Ux) and the homeomorphic counter-
image nlo(Ux)r\e~1(BC\c\GHno(IVx)) must be compact. It includes 5XT
(“clem”nyoiWxj), which is therefore also compact for each xf_BO. Hence g~1(B)
is a uniformly locally compact subset of G/Hx, in the subspace uniformity. Since
itis n1(Br), itis bounded in itself, by (4.4) (b); and therefore it is compact, by (2.6) (c).
Suppose y, z belong to the same fibre of e|e-1(5), wherey=n1lo(yJ1 and z=nlo(zJ.
If TtroiWyM]g~x{B) and nio{Wzl)C\Q~1(B) meet, they are both included in
7ii<j(Ux) for some xdBO. As gis one-one on nxo(Ux), this proves that y=z.
It follows that the fibres of eli?-1(21) are finite, since otherwise the sets Wy, as y
varies over an infinite fibre, — my notation uses the action of G on G/HI — would
form an infinite disjoint family, and this would contradict the precompactness of
A~r(B). Consequently H/Hx is finite, and, for the conclusion of the theorem, it
will suffice to prove that HJK is bounded in itself, by (1.1) (d) and (4.6). But %
and o—1(B) satisfy the same conditions as were assumed for n and B, whilst HJK
has only one pseudo-component (since HOis also “pseudo-connected”).

Now return to the general case, and cancel the previous notations. One may
conveniently suppose (by (4.6)) that e£B0. Let U be an arbitrary neighbourhood
of e in G, and choose a symmetric neighbourhood UOsuch that Co8g U. By com-
pactness, there exist yi,y2, ..., ymdBa such that

2 {n(t(y;U0: I's/s m} covers B.
Construct a symmetric neighbourhood W of e in G such that
(3) yriwytg U0 for 1s i=m.

Next, construct a section t: B-»B0 of no (t must usually be discontinuous)
such that
TB)g U ytUo and t(no(e)) = e.

1SiSm

This is clearly possible. Given any x£B, there exists y{ such that T(x)£y;t/0,
and so

4) tW W t(i)g UlyilwyiUog Ul
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In turn, B may be covered by
) {re(Wr(z)): 1 =j=n},

for suitable points no(e)=z,, 2,, ..., z, in B.

By hypothesis, B; is bounded in itself. Let ¥ denote (B,XB,)N(cXao)V%;
then, by (1.4), B; has only finitely many V-components. For each V-component
which meets o(H), choose a point of H whose image under ¢ lies in the intersec-
tion; these points form a finite subset F, of H. If one adds to ¢(F,) a point from
each V-component that does not meet o(H), one obtains a set F;, £B;, and there
is an integer p=1 such that V?[F]=B,, by (1.4). Thus V?[o(F)]20(H), for
the V-components of the other points of F, do not meet ¢(H).

Say that a pair («, f) of integers between 1 and n, where #n is as in (5), is a
“good pair” if

(6) W3t(z,)N1(z5)H # 0.
If (o, B) is good, so is (B, ), and I choose
@) h(a, B) = h(B, @) "*€ HN1(25) "W *1(2,).

Let F be the finite symmetric subset of H consisting of all products with p or fewer
terms of elements of the form #h(a, f). (In fact much of F is redundant, as
will appear.)

Suppose that a€H. Then there exists a sequence a=x,, X;, ..., X, in B,
such that

(8) x,€RK and, for 0=i<p, xx;heW.
(This is merely the statement that V?[o(F,)]20¢(H).) For each i, 0=i=p, there
exists j(i), 1=j(i)=n, such that x;,€W1(z;)H (by (5)), and one may assume j(0),
Jj(p) are both 1, since x,, x, both lie in H. From (8)

T(zja))EW x; H SW 2x; . H SW3t(25441) H,

so that (j(i),j(i+1)) is a good pair (see (6)).
Let n,=h(j(i+1),j(0)), so that

©) (204 1)EW 31 (zi0) ;-

As x;€Wt(z;;))H, there exists h,€H such that

(10) x,-GW‘r(z_,(,-))h,-.

It follows that

(11) hihi € t(2p0) T WX XA W (2)440) S

€ () TWWW-W3t(2;) mi5 by (8), (9)
< Ustn; S Un,, by (4).

In case (b), one may assume, by (5.4), that h~*U,h=U, and h=*Wh=W for
all heH. Modify h; to gq;=x;h;, where xy=e and »;=nyn;...n;—; for 1=i=p.
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Then

iitfi+i = AMIAAT-N1 0 UAtlixr+i by (11)

X, UAXrl= Cus E t/-

Furthermore, mz(zj(0)=e=2z(zj(p)) by the construction of the functions j and «.
By (10), therefore, qOXol€tV and gpZxpWxp=Wxpxp. In consequence, the se-
quence a=x0,q0, qgp, XpXp, which | may call u0, w, ..., np+2, has the prop-
erties that a=u0, UiUf+"J for Oé/ép+1, W;€# for all/, and up+2£FFOK. Since
FROis a finite subset of H which does not depend on the choice of a or of the se-
quence (xt) in Bo, this proves that H/K is bounded in itself; in fact

H = (Uf]Hy+2FFOK.

In case (a), it was proved that one may assume H/K to be pseudo-connected.
So | may take FO={e}; and, since F is finite, there exists g”~l such that
FQ(Uf)H)gK. By (11), MrflernN AT N whilst from (10) a£(WnH)hO and,
by (8) and (10) together, hpd(IVC\H)K. Consequently aZ(UC\H)p(q+1)+2K. This
proves the result, since a was an arbitrary element of H and p and q do not de-
pend on a.

(5.8) In (5.7) (a) and (5.2) (b), local connectedness of a group is used only
to prove that the pseudo-component of the identity (which is necessarily a closed
normal subgroup, and is the same for both left and right uniformities) is open,
and consequently is the F-component of the identity for all sufficiently small vicinities
V of the uniformity in question. The same is true in many other circumstances, for
instance if the group is dense in a locally connected space.

It should perhaps be emphasized that the subgroup H in (5.7) need not be
closed, but must have the subspace topology. The compactness of B is used at (1),
(2), and (5). If, as in case (b), the left quotient uniformity on G/H exists, (1) and
(2) require only precompactness in that uniformity, whilst (5) uses precompact-
ness in the standard uniformity.

(5.9) Theorem. Let G, K, H, n be as in (4.4), and let the left uniformity on G
be right H-invariant. Then, if B is a compact subset of G/H and n~r{B) is bounded
in itselfin the left quotient uniformity on G/K, H/K is necessarily bounded (in itself;
notice that the left quotient uniformity on H/K exists and coincides with the stand-
ard uniformity).

Proof. The argument for case (b) of (5.7) requires the following modifications.
Take Ugand W to be invariant under conjugation by any element of H, and let
V=(B1Y.B/)r\(GXo)Vw. Read in (6) W2z(zJW in place of W3r(zX, with the
corresponding change in (7). In (8), read Xxrlxr+l in place of xtxr+i. Choosing
(/) as before, one finds t(zju+D))EW 2z(zfU)W//, and so T(zJ(i+))eW 2z(zjV))Wtji.
for t]i= h(j(i+ 1_/())* (Notice that giw=Wt]i.) With h- as in (10),

Xr Xi+1™"Wnh't- 1x(zm ) - IWWT (zJ0+1)) Hi+1,

Acta Mathematica Hungarica 57,1991



BOUNDEDNESS IN UNIFORM SPACES 229

and so
Whi ;33 N1(z;0) W2t (2)441y) # 0, as Whi = hiW.

Hence hihi71cWt(z;p) W2 W2t (z;;)) Wn; SUg*n;, using (4), and the rest of the
proof follows as before. This proves H/K bounded in the standard uniformity,
but, as already remarked, both uniformities coincide on H.

§ 6. Representations and geometry

(6.1) Let E be a normed space, with completion E. The group of bounded
linear operators in E which have bounded inverses is denoted by GL(E). (Thus
GL(E) embeds in GL(E).) By a representation of the topological group G on E, I
mean a homomorphism ¢: G—~GL(E). If ¢ is continuous with respect to the
weak operator topology on GL(E) (which is not a topological group in that topology,
unless E is finite-dimensional), call it a weakly continuous representation; if it is
continuous with respect to the operator-norm topology on GL(E), call it a con-
tinuous representation. Say that ¢ is bounded on the subset 4 of G if there is a con-
stant M such that

0)) (vxed) o)l = M;

when ¢ is bounded on the whole of G, describe it as a bounded representation, and
call it locally bounded if it is bounded on some neighbourhood U of e in G: for
some constant N, and all xeU,

©) le@)l = N.

(6.2) THEOREM. (a) A continuous representation of G on E is locally bounded.

(b) If G is metrizable and E complete, a weakly continuous representation of G
on E is locally bounded.

(c) If H is a subgroup bounded in G (see (3.3)), then any locally bounded represen-
tation of G on E is bounded on H.

(d) If the representation ¢ of G on E is bounded on the subgroup H, there exists
a norm on E (defining the correct topology) such that ¢ (H) consists of isometries.

PROOF. (a) is trivial. For (b), let (U,), n=1,2, ..., be a decreasing base of
neighbourhoods of e in G. For positive integers n and M, set

C(n, M) = {(¢&, DEEXE’: (vx€U,) A (px)E) = M}.

It is clear that C(n, M) is closed in EXE’ in the norm topology, and weak con-
tinuity of the representation implies

U C(n, M) = EXE’.
n,M

Consequently C(p, N) has an interior point (&,, 4,) in EXE’, for some positive
integers p and N. But all four points (+¢&,, + 4,) must also be interior to C(p, N),
and it follows that (0, 0) is interior to C(p,4N). From the Hahn—Banach theo-
rem, one infers that ¢ is bounded on U,.

For (c), suppose U, N are as in (6.1) (2). There are a finite subset F of G and
an integer m=1 such that HS FU™ (see (3.4) (1)). Given x€H, there exist fo€ F
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and u,, u,, ..., u,€ U such that x=f,u,u,...u,; so
le@ = le (ol le @l e @l ... l¢ (@)l = N™max le (NI,

which is a number independent of x, as required.
For (d), let M be as in (6.1) (1), and set for (€EE

NI = sup llo(h) &Il = MIZ].
he€H

Since ||| ||| is evidently a norm on E not less than || |, the above inequality shows
it is equivalent to | ||; and it is clearly invariant under ¢(x) for any x€H.

(6.3) By a Finsler manifold, I shall mean a manifold X of differentiability class
at least C!, modelled on a normed space E, and furnished with a Finsler structure
I Il (in the sense of [6]). The Finsler structure induces a metric ¢ on each individual
component of X. By the Finsler uniformity ¥~ of X, I understand the uniformity
of the disjoint union of the components {X,: ycI'}, when each X, has the metric
uniformity #; induced by g. That is,

¥ ={V:V S XXX and (vyel) (i,Xi,) 'V €Y},

where i,: X,—~X is the inclusion, and ¥; is the uniformity on X, generated by a
base consisting of sets of the form

'K'.y = {(x’ y)eXyXXy: Q(x’ }’) = 8}

for arbitrary positive ¢. These notations will be used in (6.4) and (6.5) below.

(When I is infinite, ¥~ is strictly finer than the uniformity given by extending
o to a metric ¢ on X in any manner whatever. Provided that ¢ satisfies the natural
condition that the distances ¢ (x, y) between points x and y in different components
of X have a positive lower bound, the results below still hold for such metric uni-
formities.)

(6.4) LEMMA. There exists Vo€ ¥~ such that, for any VeY with V=V 1V,
the V-components of X are the same as the connected components.

PrROOF. Take Vo= UJ (X, xX)). If xeX, and WV,2V¢c¥, then V™[x]S
€er
CVPx]SX, for any m=1. Now apply (1.3) (b).

(6.5) PROPOSITION. A subset A of the Finsler manifold X is bounded in X in the

Finsler uniformity if and only if it meets only finitely many components of X and its
intersection with each component has finite o-diameter.

PROOF. Suppose A4 is ¥ -bounded. By (1.4) and (6.4), it meets only finitely
many components of X. Let v€ 4N X, and &=>0; by (1.4), there exists m=1 such
that ANX,S¥.%[v]. By the triangle inequality, this implies that, for any x€ AN X,,
o(x, v)<me.

For the converse, it evidently suffices to assume A is included in X, and of
finite p-diameter R. Take v€ A. Then, for any x€A4, there exists a C* path joining
v to x in X,, of length less than R+1. Given ¢=0, let N(¢)=N be the least in-
teger not less than (R+1)/e. Choose successive points py=0v, p;, Pas ..., Py=X ON
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this path so that the length of the path-segment between i and p;,,, for 1=i<N,
is less than (R+1)/N. Thus ¢(p;, pi+1)<e for each i, so that (p;, pi+1)€EV,,
and x€V.%[v]. The choice of N was independent of x, and so A4SV [v]. Flnally,
forany V€9 thereexists e>0 suchthat ¥, ,SV (see(6.3)), andthen A4SV ¥®[y].
Hence A4 is ¥"-bounded in X.

(6.6) NotEe. If Y is a (C') submanifold of the Finsler manifold X, it carries an
induced Finsler structure. Thus it carries two induced uniformities: its own Finsler
uniformity, and the subspace uniformity derived from the Finsler uniformity on
X, which is usually strictly coarser. When ¥ is bounded in itself as a subset of X, it
need not be bounded in its own Finsler uniformity.

(6.7) Now let ® be a Banach Lie group, with Lie algebra g; let H be any sub-
group. There is a one-one correspondence between norms on g which define the
correct topology and left-invariant Finsler structures on ® (see § 2 of [2]).

THEOREM. Let the subgroup H be bounded in . Then there exists a left-invariant
Finsler structure on ® which is right-invariant by H.

Proor. By (6.2) (d), there exists a norm on g which is invariant under the
adjoint representation of H. The corresponding left-invariant Finsler structure on
® is also right H-invariant, by a trivial verification.

(6.8) REMARKS. (a) Any left-invariant Finsler structure on & defines a Finsler
uniformity (see (6.3)) which coincides with the left uniformity of G. Thus (5.3) and
(5.9) apply in the circumstances of (6.7).

(b) In particular, on a bounded Banach Lie group the left and right uni-
formities coincide. This superficially remarkable statement is not true for a general
bounded topological group. Let D be the group of orientation-preserving self-
homeomorphisms of the closed unit interval in the compact-open topology. The
left and right uniformities of D do not coincide (see [5], p. 212, for a discussion and
for original references). But D is bounded. Let U, be the basic neighbourhood of

ein D
{feD: (vt€[0, 1]) 1/(—1 < 1/n},
and suppose g€D. Define, for 0=i=n, and 0=t=1,
&) = (1—i/n)t+(in) g (D).
Then g;.,87'€U, for O0=i<n, and so D=Up.

(c) The assertion (b) may be generalised; compare the remark of Weil [8] on
right-handed completion, cited on p. 212 of [5]. Say that a mapping h: (X, ¥")—
—=(Y,#") of uniform spaces is uniformly continuous over the subset 4 of X if, for
every We#, there exists V€Y~ such that

(hXh)™W 2V N(4AXX).
Then one has the following generalisation of (b).

(6.9) PROPOSITION. Let H be a subgroup bounded in the topological group G;
suppose there is a neighbourhood U of e in G such that inversion is uniformly con-
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tinuous over UDH with respect to the left uniformity of G. Then the left uniformity
of G is right H-invariant.

Proof. Take any neighbourhood Ux of e in G. Then, by the uniform con-
tinuity, there is a neighbourhood U2 of e in G such that, for any hEUC)H,

(hU2~1=U21hQhU 1;

consequently h M hUlh~1 is a neighbourhood of e in G. Since there exist a posi-
eunm

tive integer m and a finite subset F of H such that H=F(UC\H)m (see (3.4) (1)), a
finite induction now vyields the result — recall (5.4).

Note. It is evidently immaterial which uniformity one considers, left or right,
when defining uniform continuity of inversion over a symmetric set in G. Also, it
suffices for (6.9) that there be a neighbourhood W of e in G such that inversion is
uniformly continuous with respect to the subspace uniformity on WC\H induced
from the left uniformity on G and the left uniformity on G itself; the proof first
shows the existence of such a U as is required in (6.9).
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CONVERGENCE OF FOURIER SERIES OF A FUNCTION
ON GENERALIZED WIENER’S CLASS BV{p(ri)t°)

H. KITA (Oita)

8 1. Introduction

Let / be a function defined on (—<=°°) with period 2n. A is said to be a parti-
tion with period In, if

A: C o0tk 2<...< IM< tm+i €.,

satisfies tk+m—tk+2n for k=0, £1, 2, , where m is a positive integer. We
shall generalize the concept of bounded variation.

Definition 1.1. When 1=p(«)tp as where 1=p= +°°, /is said
to be a function of BV(p(n)\p) if and only if

v (/; p(n)ip) = sy sup {( 2 IAO-/(Fic-)IpM)IAT); RUO s 2x127) < + <

where e(d)=inf \tk- tk. K\

When p{n)=p for all n, BV(p(n)\p) coincides with BVp which is the Wiener’s
class of bounded /"-variation [5]. When p=+°the space BV(p(n)t°>°) plays an
important role for the uniform convergence and quasi-uniform convergence of the
Fourier series.

In [3], some fundamental properties of the space BV(p(n)t«=) and the in-
clusion relations between Chanturiya’s class V[v] and our class are given.

In this paper we consider the uniform convergence and the quasi-uniform con-
vergence of the Fourier series of/in BV (p(n)t°°).

Let S,,(f;x) denote the u-th partial sum of the Fourier series of/ at the point x.
Wiener [5] proved that if/ is a function of bounded p-variation, that is, fdBVp
(l=p< +°°), then t|i_rH)S,,(f; x)—¥(x) almost everywhere in [0,2n], and that in

particular if fEBV2, then

(1.1) im S,,(f; x) = (1/2) {f(x+0)+f(x-0)} at every x£[0, 2n].

/tI-fOO

Siddiqi [4] proved that if fEBVp (1 +«=), then (1.1) holds.

Wiener [5] showed that functions of the class BVp could only have simple dis-
continuities. It is proved in [3] that for the class BV(p(n)t°°) there exists a func-
tion which has a discontinuity not of the first kind. We also consider the control
function of (1.1) which introduced in [6] by Yoneda.
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In [3] we have proved that

I’\pl<J+a)BVP£ OK(p(n)H g B[0,21]
and BV(p(n)*)=B[0,2n] if and only if the sequence {/>(«); n~1} satisfies the
condition sup {n/p(n): nsl}<+°°. (5[0, 2m] denotes the space of real valued
functions/ with period 2n such that ||/||B=sup (|/(x)|: x£E[0, 2n]}< +°°.)

In Section 2 we consider the uniform convergence of the Fourier series of
functions in BV(p(n)t°°). In Section 3 we give a concept of quasi-uniform con-
vergence. In Section 4 we show that there exists a function fEBV(p(ri)t°®) and
O V[v] such that the Fourier series of/ is quasi-uniformly convergent.

§2. Uniform convergence of functions in BV(p(n)te°)

Let/ be a real valued continuous function with period 2n, and co(f; S) (<5>0)
be the usual modulus of continuity of a function/ in the class C(O, 2n). It is well-
known (see [1] p. 310) that if/is continuous and fdBVp for some p (1=p< +°°),
then the Fourier series of/ converges uniformly in [0,21]. When fEBV\p(ri)t°0),
we have the following theorem.

Theorem 2.1. Letf be afunction in the class BV(p(n)t°°). Jf p(2n)*Cp(n)
for all n* 1, where C>0 is a constant and

(2.1) to(/; W) = o(\p ([log U]) logp ([log 1)) as n —+ <2
then the Fourier series off converges uniformly in [0, 2n].

Proof. Put fx{t)=f(x+t)+f(x—t)—2f(x) for real x, t. Since/ is continuous
on [0, 2n],
(2.2) limfx(t) = 0 uniformly on [0,27].
Then, it follows that

. jnin H
s.0; )-f) = <1 " Mix@drroy =12 S Mxdt+oq),
1 j=1U-n/n

where o(l) is a magnitude which tends to zero uniformly.

As is described in [4], by change of variable the above expression can be written
by (2.2) as follows:

23) soff: x)-t(x) - n IVHET AR

fx(t+(V+Dn/?)\ -
<+(2/4- yn/n jsin ntdt +o(2)

) ff Wl '+y*n-M ‘“+an- m
IoI-il 1+2jnln |
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n/n [n/2

wt [ S A @ D)~y S o (1) =

=LA (f; )+ LD (f; x)+o(D).

First we consider

n/n 1,0 . = "
@4) P 0 = miead} [ [2” Vi 2 f;(t+(21+])n/n)ld

For any positive integer n we choose an integer k(n) such that 2KM-1=2p<2km,
Let {¢,; n=0} be a decreasing sequence of positive numbers such that

2.5) l=¢gy>¢ > >...>¢>...>0 and ¢,J0 as n -+,

which we will select later. Set s,=p(k(n))/e, and 1/s,+1/t,=1. If we apply Holder’s
inequality on the sum of the integrand of (2.4), we obtain from the fact n/n=
=2n/2¥®) that

2 | £ (¢+2jn/m)—f(t+(2j+ Dn/n)|
2 7 E
| £ (e 2jm/m)— £ (24 25+ De/m) |t =2

& Zl |t 2 /m) — £ (t-+ @+ 1) n/m)e ; 2

= {jiz | £t +27m/m) — £, (t+ 25+ D)m/m)[P* oD }enl ok ¢

<] o0 |0+ 2jm/m) A (42 1) n/n)lﬂ—en)rn}um H

=1 Jtn

=V (fus (1)) {0 (i m/m)}ton {g’l (1))t =

= (2 (s pO1 S 200 w3 7,

Now consider the sum

S0y = 1+ [ (1) dr = 141/ =1) = 5, = p((r))on.

Hence we obtain from (2.4)

LR (f; 0 = (1/m) {V(f; p(m)tee)}on {@(f; n/n)}r=4np(K(n))/e,.
Since 2" =4n, k(n)=4[log n] for n=e%. So we have p(k(n))=C,p([logn]) and
(2.6) IED (f; ¥)| = (Co/m) {¥ (f3 p(m)t =)} {0 (f; =/m)}'~ p([log n]) /e,

C,C,, C,, ... will denote positive constants not necessarily the same at each oc-
currence.

Put h(x)={log (1/x)}/(1—x) for O<x<1. Then h is a decreasing function
on the interval (0, 1) and liln_loh(x)= 15 xlin+1°h(x)= +<=. Now take a sequence
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{£,,, né0} defined in (2.5) as follows: h(e,)= log log/?([log n]) for sufficiently large n.
Then it follows that

2.7 e,,(log/?([log n]))1*» = 1
Therefore we get from (2.1), (2.6) and (2.7)

K@/; #EA o)LV H(nyte2)»{1/N([log v]) (log/) ([log u]))}1—/)([log ri\)en =

From (2.7), we get = 0(0) {V{f\ ’'W t“)}" M[log »])}"

e, log™([log vl) = {1/(log/7([log n]))1- »}log/)([log n]) =
= {log/>([logn])}e> = exp {£,log log/)([log u])} =
= exp {(log log/)([log n]))/(log p([log v])1""}.
Hence the sequence {/)([log n])&} is bounded, and therefore we obtain
(2.8) |7 (15 )1 * n(D){F (/) (n)t»)}

We will now estimate [742)(/; x)|. Let s>0 be any positive number such that
0<e< 1/2. Then we get

. */n In12] ) 1 l _
<2 (/;x)|=€é(1/a) f 2=1 \fx{t+(2j+1)n/n)lI t+2jn/n t+(2j+ Dnin dt =
= (1/,,, T f/,(>+(v+d")|

0o 3=i (t+2jn/n)(t+(2j+1)n/n)

=) T 8§ |[/.(-+P3+ Nm/»)[ JI+
0 3=1 (t+2jn/n)(t+(2j+1) n/n)

H mof3=lﬁ]+1-!:+j21en/9)(g(2’jk+l')r<1</n9 I » )W tl (ft4

Let n>1/e, then it follows that
dt S

S sup {|/,(i)]: O asa 4ra}d/da) ~ (1//)2S C2a>(/; 4en).
.

=1
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Next we will estimate |7j®i(/; X)|.

* LU
oW =wn T o AL
0

it (2ininf 4T
=(WILL 2 ON)*s (W ga)(1/M).
Therefore we get
(2.9 I,2(/; *)| S C2co(f; 4es)+(||/||[In) (I/[en]).
Hence from (2.3), (2.8) and (2.9), we obtain
1S, (/; *)-1(*)! & o(D{K(/;p(n)t «=)}-+C2w(/; 4en)+ (||/||e/a)(1Den]) + o(1).
Taking limits as n - + we get lim,sup [5,,(/; x) —(x)|sCzco(/; 4es), where
£>0 is an arbitrary positive number. This completes the proof of Theorem 2.1.

§3. Quasi-uniform convergence

Let (p be a function defined on [0, «=) satisfying the following properties:

<p0) =0, <) =0 if /=-0,
(3.1) <p(i)t+~ as fmt+
<p(i) is continuous on [0, “).

Denote by @ the set of all functions o satisfying (3.1).

Yoneda [7] introduced a concept of quasi-uniform convergence. When
{/,; n—1,2,3, ..} is a sequence of real valued functions defined on the closed
interval [a, b] and
(3.2 HIim/n(x) =/(x) ae.on [a b],

then there exists a positive and a.e. finite valued function $such that for every e>0
there exists a positive integer n(e) satisfying |/,,(xX)—(x) |< e&(x) everywhere for
all n>u(e). The function Sis termed a control function of the a.e. convergence (3.2).

Definition 2.1. When 5 is a control function of (3.2) and S(x)>a for some
a>0, if (p(5(x)) is also a control function of (3.2) for each £®, then we say that
(3.2) is quasi-uniformly convergent.

Yoneda [7] proved that if fEBV2, then the Fourier series of/is quasi-uniformly
convergent. We have the following theorems.

Theorem 3.1. If fn—f£L°°[a, b] for nal, then the following statements are
equivalent:

(1) (3.2) is quasi-uniformly convergent,

(2) the majorantfunction M (x)=sup{|/,,(xX)—(x)\: na 1} isessentially bounded,

(3) for each (pE®, there exists a control function S=dv of (3.2) such that

(3.3) meas (x€[a, b]<B(X) > t) s Clcp(t) for all t > 0,

where C is a constant.
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Theorem 3.2. Let fEBVSp(ri)\oo)- \Y
(34) fo; NN = 0 (17p (g v togp (tog )
then the convergence of the Fourier series off is quasi-uniformly convergent.

Proof of Theorem 3.1. The equivalence of (1) and (2) was proved in [7]. We
prove that (2) and (3) are equivalent.

First suppose that [|[M][,<+°° and cpEd. We shall construct a control
function 6=06v of (3.2) which satisfies the condition (3.3). Set

(3.5) 1,*¥(*) = max {I/m, sup {1/*(*)-/(x)|}} for n=12123 ..,
k~n
then it follows that
IMIU+ 1EM (X)+ | A (X)MN2ZW s...S/F(x)s...sO ae.

and /*(x)|0 a.e. on [ab]. Let {s,, n=0, 1,2, ..} be a decreasing sequence of
positive numbers such that

(3.6) f0= 16£18E1&...6£K5...>0 and £%0 as A—+

By the Egoroff’s theorem we can choose a sequence of measurable sets
{Ek; k=0, 1, 2, ...} such that

(3.7) E1AE®A..AEk4..., EkS{[ab],
(3.8) wea5(™M)M{(b-a)<p(||M|n+ D)H{2™(|IM[n + D)le)} for A= 1.2....
(3.9 nI_i+ror])/,”‘(x) =0 wuniformly on Ek, for k =1,2,3,...

From (3.9) there exists a monotone increasing sequence of positive integers
{nk\ A=0, 1, 2, ..}, n0=1, such that for k=12, ...

(3.10) max {(l/ei)f*(x): /=0, 1,2, ..., A~} S (L/£%/,*(x) on Ek.
Define a sequence of functions {6k; £=1,2,3,...} and S by the following way:
6k(x) = max {(UEY,*(*): /=0,1,2, ...,k - 1} for k=123, ..,

sup (<G*(X): k & 1}, if 0 Ek,
(3.11){ 5()() =

+“, if x£[a, b] U Ek.
k=1
From (3.10) and (3.11), it follows that Sk(x)”(\/eKf*k(x) on Ek. Hence we
get M(x)=@E+1(X) and &6(x)=06k(x) on Ek. Therefore it follows from (3.6) that
(3.12) B = Sk(x) » max {UEN/(x): /=0, L, 2....A-1} =
= 0/Sk-i)A*(x) on EKk.

Since meas ( (J ER—b—a from (3.8) Bis an a.e. finite valued function.
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Now, we prove that the positive function § constructed above is a control func-
tion of (3.2). Let £>0 be an arbitrary positive number. Then there exists a positive

integer k’=k(e) depending only on ¢ such that e>g.>0. If x¢ G E,, then from
k=1
(3.5) and (3.11) it follows that

£0(x) > £:0(X) = g Oy 11(x) = a,‘,(l/ek:)f;':' x) =
=/, (%) = sup {|£,(x)—/X)|: n = n}.
Hence we have that if n=n,., then
I/,(x)—f(x)] < &6(x) for all x€[a, D],

and ¢ is a control function of (3.2).
We prove (3.3). For each >0, we get from (3.7) and (3.8)

meas {x€[a, b] |6(x) > 1} = meas {x€ E,| 6(x) > 1}+
+k§: meas {x€EN\E;-1/0(x) > 1} = J; +J,.
Since 6(x)=06,(x)=fi"(x)=M(x)+1 on E,,
J, = meas {x€E;| fi*(x) > t} = meas {x€[a, b]| 1" (x) >t} =
= meas {x€[a, b]|M(x)+1 = ¢}.

By hypothesis, |[|[M| o< +o. If t>|M|.+1, then J;=0 holds. If O<t=
=|M|o+1, then J;=b—a and ¢(t)J;=(b—a)¢(|M|.+1). Therefore we get

(3.13) Ji={b-a)e(|M].+1)}e() for all t=>0.
On the other hand, from (3.12) we have

Jy = f meas {x€E\E;_|6(x) >t} = kzz meas {x€ EN\E 1| fi*(x) > & 11} =
k=2 -

= kg meas {x€E{_;| i (x) > g1} = é’: meas {x€ E¢|fi*(x) > g.1}.
Since 0=/*(x)=M(x)+1=||M|..+1 almost everywhere, it follows that
meas {x€ E{| fi*(x) > gt} =0 for each ¢t > (|M|+1)/g.
And if 0<7=(|M|.+1)/e, then from (3.8) we get
@ (7) meas {x€ E{| fi*(x) > &1} = (1) meas (Ef) = ¢((| M||. +1)/e,) meas (Ef) =
= (b-a)e(IM|.+1)/2"
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Therefore, it follows that
(3.14) J27(b-a)cp(\\M\U +1\) ki{l/(y>(i)2*)} =
=1

= {b—d)<p(IM8a + )I<p{t) for i> 0.

From (3.13) and (3.14), we get (3.3).
Conversely, we prove (2) from (3). If 5=0" is a control function of (3.2) such
that (3.3) holds, then there exists a positive integer n0 such that

(3.15) 1/,,(*)-/1(*)! = <KX everywhere for all n0.
Hence we have from (3.15) that

meas {n:£[a, b]M(n:) = 7} meas {xg[a, bj\sup {!/,(*)—HX)|: 1SnS n0—1}> i}+
+ meas {x£[a, b]\sup {\f,,(X)-f(x)\: n ~ nC}> f} &
S meas {x£[a, b]jsup {!/,(*)—(*)|: Is/is n0—1} > [}+ meas {xE[a, h]|(B(X) > i}.

Put a(«Q=sup {\fn—II»: ISnSn0-1}. Since {/,—#; n"l} is a sequence of
bounded functions, a(nQ is finite. If />a(n0, then from (3.3) it follows that

meas {x"[a, b]\M(x) > t} * Clg>(t).
Further if 0</?a(n0> then we get
cp(t) meas {xE[a, b]\M(x) > i} * <p(a(nQ)(b—a).
Hence it follows that
(3.16) meas {x€[u, b]\M(x) > /} S CJ(p(t) for all t=0,

where Cj=max {C, (p(ot(nQ)(b—a)}.
Finally, we prove from (3.16) that M is a bounded function. Now suppose that

\Jj(t) = meas {x£[u, b]\M(x) > [} =0 forall t=0.

Since ifi is a decreasing function tending to zero as there exists a function
PEDP suchthat 1/(i//(t))2*<p(t) for sufficiently large 0. Then we get

<p() meas {nrefa, b]M(x) > i) = (p()i//(t) € Vefir) —+°° as t-*+».

From (3.16) we arrive at a contradiction. This means that there exists a positive
number /,>0 suchthat ij/(t)=0. Therefore we get M£L°°[a,b\. Theorem 3.1 is
proved.

Proof of Theorem 3.2. This is done by the same way as in the case of Theo-
rem 3.1. From (3.4) we have

sup {|S,,(/: X)|: ns 0} c <+ o0 for all x6[0, 2n].
By Theorem 3.1, the Fourier series of/is quasi-uniformly convergent.
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§ 4. A relation to Chanturiya’s class for quasi-uniform convergence

Chanturiya [2] has introduced the concept of the modulus of variation, de-
fined by

t>(/; n) = sHp *2—i /(41

where T, is an arbitrary system of n disjoint intervals A£[0, 21] and /(4)=
=/(sup 4)—Kinf4)- V[v] denotes the class of functions for which v(f; n)=0(v(n))
as n-*+'=°In [3] we proved that V[v]=B[0,2n] if and only if ngm n/v(n) < +°°.

Now we have the following theorem.
Theorem 41. Let Unn/v(n)=+«= and I<p(n)t+°°. Then there exists a

function fEBV(p(n)ico) and [ V[v] such that the Fourier series off is quasi-uni-
formly convergent.

Proof. Let {nk; fcfel} be an increasing sequence of positive integers such that

4.0 p(nu-i) S logk for k" 2
Put
4.2 ak= 2ri2"x and Bk= akexp(l/2W for k=123 ....

We shall define a function/ constructed on the interval [—n, n] as follows. Set
ou=10 if a x”"Rk<n for k=123 ..
10 otherwise,

and extendf to (—°°, °°) with period 2t

First we prove that fE.BV(p(ri)\°°). Let JI: ...<r_Il<4<rl<...</nx ... be
any partition with period 2n and a(A)w2n/2". Then there exists an integer k such
that nk_1<n”~nk. Then we get p(nk*)”~p(n)”~p(nk. Since 2k/2rk"2n/2K
<24/2"»-1, it follows from (4.1) that

{2 \f(tj)-F(tj-)\pM}yL,pM's C(2k)VpM s

A 2CKkUp() s 2Ck}I™-0 B2CKI0K = 2Ce < + «.

Therefore we have fEBV(p(ri)\°°).
Next we shall prove that 4 V[v]. We choose a system of non-overlapping
intervals {lk; k~ 1} as follows:

4 —lak>&] and ak< ak< bk< Bk for k =1,2,3 ....
Then we get

n= 2, \(bK-f(akl ~ v(f: n).

IffEV[v\, it follows that v(f;n)~Cv(n) forall 1, andweget [n n/r?(n)<
We arrive at a contradiction. This proves that 4 7][c].
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Finally we shall prove that the Fourier series o f/is quasi-uniformly convergent.
It follows from the definition off that

5CN *>= (m» 3 r”*srjﬂ_f‘-(l-—_&)-* +om
—X t X =1 a( i—x
When x=0, we get
Sn(f; o) = (Im i fk dt+o(l).
£=4 *

Then it is easy to see that

IS, (/; 0) s (1/n) Ig_i|l°gf1k~ logxk\+°(l) = 0/*)%:(”2 ®+o0 (1) = 0(1).

When 0<x<27t, there exists an integer m=m(x) such that «i+1<x5aw Then

it follows that
2 J{?k sin n(_t—x) di= 2 OYSY 4

- Ln(ak-x)

m X) cirj / “ m sin t
=2 J _ —dt+ 2 f ~l dt —T(n, m,x)+U(n, m, X).
*=1n(a,;-x) f t=m + 1 r()(k"'))() ‘

Now we estimate |T(n, m, x)|.

m(n, mx)l & |F(n, m-\,x)\ + r(rta’*zx)X)s_intn.

It is well-known (cf. [1] p. 106) that there exists a positive constant C>0 such that

*
a

b
fn t—dt s C forall a h€(— »).

Therefore we have
m-1 "Wie*) 1
\(T(n, m, x)\T(n, m-1,x)+C s k2 f ) —dt+C =
=l 11K-* *

= 2, log {(A~*)/(«-*)} +C = 2 log{(ale A)/(x-a*)+I}+C.

Since 0<xSam<am i<...<as<...<al and

at = 2742k 2u/2mi > 2n/2n™= am” X,
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we get o,>0,/2=x for k=1,2,3,...,m—1. Then it follows that
IT(n, m, %)| = k"'él log {(2,— B/((@/2)— o) + 1} +C =
= ,‘Zl log {2((Bi/a) —1)+1} +C = le (Bt —1}+C =

m—1 m—1
= 3 2{exp(1/)—-1}4+C = 3 2.3(1/2)+C<6+C =<+,
k=1 k=1

Next we consider |U(n, m, x)|. We obtain by the same way as the estimate of
|T(n, m, x)| that

m+2 n(Br—x) o t
Ummxl= > | [ —=—d|+|U(m m+2,x)| =
k=m+1 (o) t

=|U(n, m+2, x)|+2C = k_j:  Tog {(x—w)/(x— B} +2C =

= 5 {(exp(1/2)-1}4+2C = 343C <+,
k=m+3

Therefore we get
|S,(f; x)| =C,; for all n and x.

By Theorem 3.1 the Fourier series of f is quasi-uniformly convergent.
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ON THE IMPROVEMENT OF THE SPEED
OF CONVERGENCE OF SOME ITERATIONS CONVERGING
TO SOLUTIONS OF QUADRATIC EQUATIONS

I. K. ARGYROS (Las Cruces)

Introduction. Consider the equation

@) x = T(x),
where I is a nonlinear operator between two Banach spaces Ex and Ei given by
@ T(x) =y+B(x, X).

Here y£EXx is fixed and B is a bounded bilinear operator from EIXE1 to E2.

A number of very interesting problems appearing in astrophysics [3], [4] and in
elasticity theory [1], to mention a few, are special cases of (1). For example, the
famous Chandrasekhar equation (Nobel of physics 1983)

x(i) = 1+Ax() f ——x(t)dt
S s+t

with AER and EX=CJ0, 1] is a special case of (1).

Using the contraction mapping many authors have found existence and unique-
ness results for a solution x* of (1), [2], [7].

The results obtained here are applied where the ones already known cannot.
Moreover motivated by the work in [6] and the references there, we define the rate
of convergence of an iteration of the form

(3) xml=T(xf, n=0,12,..

as a function and not as a number as it is the case in [2], [7].
In particular we will find a function o. N—R+ such that

4 |ta—7™| & an), n= 12,...

where x* is a solution of (1).
This allows us to improve the rate of convergence of (3) to a solution x* of (1).

[, Preliminaries

Definition 1 An operator B : ELXE1-*E2 sending (x, y)dE1xE 1to B(x, y)EE2
is called bilinear if it is linear in each variable separately and symmetric if

B(x,y) = B(y, x) for all x,yEEXx.
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Definition 2. Then mean B of B on EIxE | is defined by

B(x,y) =j(5(x, y)+B(y, x)) forall x, yEEX.

Note that
B(x, X) = B(x, x)
and
B(x,y) = B(y,x) for all x,yEEx.

Therefore the operator B appearing in (2) can*always be assumed to be symmetric,
otherwise we replace it with the mean of B, B which is symmetric.
Definition 3. A bilinear operator B: EIXE1-*E2 is said to be bounded if
there exists ¢>0 such that
IFGYIS cllx|| mlyll  for all (x,y)eEIXEL.

The quantity ||S||=  sup [IR(x, y)|| is called the norm of B.

From now on we assume that B is bounded symmetric bilinear operator and
EX=E2.

Definition 4. Let /={rER+|-1"/*<r2} for some fixed rx and .. A function
®: /—f is called a rate of convergence on | if the series

(5) afr) = j2 coM (r)
n=0

is convergent for each /-£/, where the iterates w(,) of oare defined by w(Q(>)=/- and

() (r) = w(coM(r)), n=0,12, ... .
Note that
(6) a(a>(r)) = a(r)-r.

[, Main results

We now prove a consequence of the contraction mapping principle for (1).

Theorem 1. Let B be a bounded bilinear operator on ELXE2 and suppose y
and z belong to E2. Set

a \T(2)-z\] 112
2= ppy— 2 =12 o
and assume rx is nonnegative and r2X0. Then
() T has a uniquefixed point in U(z, /= {xiF1|||x—z|| <rZ};
(ii) thisfixed point actually lies in U(z, rX).
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Proor. The hypothesis, ;=0 and r,>0, imply that r,>0 and

s 1T(2)—z|

rs— = 0.
> Bl

Fix r such that r,=r<r,.

CLAM 1. T is a contraction operator on U(z,r). If x,, x.€U(z,r), then it is
routine to show

s IT ) =T (x| = 1B(X1, X1)—B(x2, Xa)l| = 2(r+1zID Bl - |1 —xall.
€

(7 q* =2(r+|z[)-1B].
By hypothesis

<5TET ” 7] ==l
so, 0<g<1 and the claim is proved.
CLAM 2. T maps U(z, r) into U(z, r). We have
ITx)—zl = [[Tx)-T(2)+(T(2)-2)|| =
= ||B(x, x)—B(z, I +1T(2)—z| = | Bl r*+2|B] -l z]| - r+1T(2)—z].-
Define the real quadratic polynomial g(r) by
g(r) =BI2+CIBI Izl =) r+|T(2)— 2.

To establish the claim we must show that g(r)=0, for all », r,=r<r,. Now the
quadratic function g(r) is convex, with smallest root at r; and minimum occurring
at ry. So for r,=r<r,,

1Bl - r2+2||B] - | zll r + | T (2)—z]| = r.
The theorem now follows from the contraction mapping principle [5], [8].
COROLLARY 1. If 4| B| -||yll<1 then
(i) the equation x=y+B(x,x) has a unique solution x* in U(0,7,), where

28
(ii) moreover, x*cU (0, 7,), where
i 1-yY1-4|B] -l
; 2|8l X
Proor. Take z=0 in Theorem 1.
We now state Rall’s Theorem for comparison. The proof can be found in [7]

THEOREM 2. If 4|B| -||yll<1 then
(i) equation (1) has a solution x*€E, satisfying

"x*" - ' 1_4"3" "y” .
B 2|B| .
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(ii) moreover x* is unique in  U(x*, R), where

\ 1—4 |« HI
20B\\

Note that Theorem 2 and Corollary 1 provide the samejestimate on ||x*||, but
Theorem 2 guarantees uniqueness in U(x*, R) and not in 1/(0, r).

Corollary 1 is a crude application of Theorem 1 Sometimes it is possible to
introduce an auxiliary quadratic equation which is “close to” (1) but easier to handle.
In particular, we have the following theorem.

Theorem 3. Consider the equation
(s) z=y+F(z,2)

where F: E1IXE1.» 1 is a bounded symmetric bilinear operator andy isfixed in El.
Suppose that there exists a solution z of (s) satisfying

(9) M - [2/P T(UPAFji+ /W )]-1.
Then

(i) equation (1) has_a unique solution x*ZU(z, r2;

(ii) moreover, x*£U(z,r3), where

5 r3= {1=2{|B]] «[|z] —(2lISI| «[|z] —)2—4B—H| « b1 =[312(2[|5]))_1

(iii) iteration (3) convergesfor any X0EU(z, r3) to the solution x* of (1) such that

(10) [Ix,-x*L, =a I*i—*oll, n=0,1,2,...

where
q = 1—{(2[I5]| *lizl ——4[|R —T|| *||z]|3 V2

Proof. We have
(D) [IT(r)-2]| = W\B—F)(z,z)+ F(z,2)+y—2\ S
S \(B—F)(z, 2H+||F(z, )+ y—\  ||E—F|M|zZ||*.

Now, (9) implies the hypothesis of Theorem 1 since

2By >0
while by (9) and (11) we have
1 B-F 1
2|18]] ;)
or
\T(2)-2\\
i ~ Q.
L W
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Part(i) and (ii) now follow from Theorem 1. Moreover, by Theorem 3, we have
q=2(ri+\2\) I 1= 1-[AOWU N - 1)*~4||A—F| «|I£]| *||z]|q12

Example. Theorem 3 may be applicable even if the hypothesis in Corollary 1
or Theorem 3 is violated as the following example in F1=R easily inducates.
Let
x= —251+x2 for x = y+B(x, Xx)
and
z= —251+.822 for z =y+F(z, 2).

Proposition 1. Assume:
(i) the hypotheses of Theorems 2, 3 and Corollary 1 are satisfied;
@) (IFIl IF—F1DN1zP-IM I+1W 1>0.
Then Theorem 3 provides a sharper estimate on x* than Theorem 2 or Corollary 1

Proof. By Theorem 3,
[IX*-r|] r2, so |**sr 2+lz|.

By Theorem 2 and Corollary 1,
1-/1-44404-bI11

=1 S 2\B\

so it is enough to show
[ —QII-SII < llzll =) 2—4[[F|| «lIB—F]| <l|z[]21/2] (2]IB]])-1 <

<[I-(1-411B [.ly 1) ¥ (2[[F][)-i

(B I-1IF-F 1) lzl12-12[]+ [I>] > 0

or

and the result now follows from (ii).

Note that up till now the rate of convergence of (3), g was defined as a number.
But we can find better error estimates if we define the rate of convergence of (3) as
a function.

Proposition 2. Let ¢ be such that 0<c< 1 and /=[rx, r2, where ryandrr are
as defined in Theorem 1. Then
(@) thefunction co, given by

(12) co(r) = r(l-c)
is a rate of convergence on | and the corresponding function o is given by
(13) o(r)

(b) Moreover, thefollowing equalities hold:
(14) co™r) =r(l-c)n n=0,1,2,...
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and
o-(w(m0)) =-£-¢('-c)n, n=20,1,2, ...
Proof. Letus consider the real polynomial /()= c(j —p), for any real number
p and O0<c<I. Consider the iteration
WFi = sn-f(sn, n=0,1,2, ..
where sO=p + i; then we have sO—s1=f(sQ=r. Now taking
(o(r) = SI-s2="f(s))

we obtain the expression (12). The sequence {v}, n=0, 1,2, ... is a decreasing
sequence which converges to p. Using induction on nwe can easily show that

oM(r) = s,,—s,,+1, n=0,1,2,...
and consequently

a(r) = s0—a =

Part (b) now easily follows from part (a) and using induction on n,
n=0,1 2, ....

We now state the following simplified version of the Induction Theorem whose
proof can be found in [6].

Proposition 3. Ifmis a rate of convergence on | and afamily of sets Z(r)aE 1,
re£l exists such thatfor some xfE x the following are true:

(16) x0ez(r0 for afixed roOEl,

17) (r€l and xX£Z(r)) => T(X)£ U(x, r)flZ(co(/*)).
Then iteration (3) converges to a solution x* of (1) such that

(18) xnez(co("Hr0),

(19) I il ~ coM (rQ)

and

(20) Ix,-x*|| S <t<u@(~)), N= 1,2, ...

We can now prove the main result.

Theorem 4. Let xfE I befixed. Assume:
(a) the hypotheses of Theorem 1for x0=1z are true;
(b) there exists ¢, with 0<c< 1 such that

(21) res+(||5|M 1T Ha-/-)c 2+ (/-0-/-)(2]BM I~ + 1) c+]|5|(ro-r)27 0

for any r~lczl=[r1, r(], where rland r2are as defined in Theorem 1and /y™ <r2.
Then iteration (3) generates a sequence {g,}, n=0, 1, 2, ... which converges to
a solution x* of {1) such that

(22) II*,,-*oll S *2_,loiw (r9, n=0,12,..
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and
(23) N*c-**|| = a@@e), N=0 1,2, ..

where oo, a are given by (14) and (15) respectivelyfor r=r0.

Proot. We attach to iteration (3) the rate of convergence a>given in Proposi-
tion 2 and the family of sets

@4)  Z(r) = {xeEll [|[x-x0 ~ a(rQ-o(r), and [:T(x)-x|| S 1), /o£/.

According to Proposition 3 we need to show (16) and (17). Note that Z (/)=
= {xG}= {z} so that (16) is satisfied. Now let xEZ(r) and set

) v = X+{T(x)—X)
then
I>—zl| = [|(v-x)+(x-2)|| & [[i>-*|]-H[x-z|| s§ r+(o(rQ-o(rj) = a(rQ - o (co(/)).

To show (17) we need to show also that

(25) IIF(x)-x|| co(r)
But,
IIF(x)-x[| S B, X)|| + [|z-X]| S [|B(X-z+2z, x-z+2Z)|| +||z-x][| »

B 1][x—2]|2+2|[B|| ||zl] \x-2\\+\B\\ o|[z[[2+ [|x -z ]
S 115||*(T9-cr(/-))2+2|[B]| .[lzl|(n(/-0-cr(r))-H[B|| .\zV+ (a(rQ-<7(r-)).

That is (25) holds if (21) is satisfied.
Therefore (17) is satisfied. The rest of the theorem follows from Proposition 3
and (14) and (15).

Remarks, (&) The number rOis usually chosen as r0=r1.
(b) Note that the estimate (23) on the solution x* is better than the corre-
sponding estimate (10) with g=q* given by (7) if ¢ can be chosen to satisfy (21) and

0 < 122(r+]||z]]) sIBUI < c < 1, /+€[/1, r2.
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ON SOME QUESTIONS OF GER, GRUBB
AND KRALJEVIC

M. CRNJAC (Osijek), B. GULJAS (Zagreb) and H. I. MILLER (Sarajevo)

Roman Ger (Katowice, Poland) has asked if there exist compact subsets A4
and B of the real line such that one of the sets 4+ B and 4—B contains an interval,
while the other one does not.

Dan Grubb (DeKalb, U.S.A.) has asked if A+c¢B must contain an interval
for all ¢ sufficiently near 1 if 4+ B contains an interval.

Hrvoje Kraljevi¢ (Zagreb, Yugoslavia) has asked about the connectivity of the
set {c: A+cB contains an interval}. More precisely, he asked: If ¢, and ¢, are
positive reals and the sets A+c¢;B and A+c, B both contain intervals, does it
follow that A+c¢B must contain an interval for each ¢ between ¢; and c,?

In this paper we will prove two theorems which will provide answers to the
questions of Ger, Grubb and Kraljevi¢. In addition, other related questions will
be considered.

1. Introduction. We will start by mentioning some results related to the material
that we will present.

‘THEOREM OF STEINHAUS. [f A and B are measurable subsets of R (the real line),
each having positive measure, then the set A+B={a+b: ac A, be B} contains an
interval.

THEOREM OF PICCARD. If A and B are both Baire subsets (i.e. have the Baire
property) of R and both are of second Baire category, then A+ B contains an interval.

Proofs of the theorems of Steinhaus and Piccard can be found in [6] and [12].
Various authors have generalized these results, for example see [3], [4], [5], [7], [8],
[14], and [15].

Of course the conditions in the theorems of Steinhaus and Piccard are suffi-
cient but not necessary. This is the case since C+C equals [0, 2], where C is the
Cantor set. In a recent article [2] the present authors have shown that f(CXC)=
={f(x,y): x, y€C} contains an interval for every f: RXR—R satisfying ap-
propriate conditions.

In [9], using transfinite induction and assuming the continuum hypothesis, a
set N is constructed that is concentrated on the rationals (see [13], p. 74) and such
that N—N=R.

F. Bagemihl [1] has observed that m(4)=0 (here m denotes Lebesgue meas-
ure) and B a Baire set of second category does not imply that the set A—B=
={a—b: acA, bc B} contains an interval. For example, if B is the set of Liouville
numbers and 4 is taken to be R\JB, then m(B)=0 and 4 is of first category

3
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(see [12]) and A—B contains no rational numbers (see [10]) and hence A—B
contains no interval. This negative result is generalized in [10], where it is shown
that if /: RxR—R satisfies appropriate conditions then there exist a set A of
positive Lebesgue measure and a Baire set B of second category such that f(AxB)
contains no interval.

In [11], using transfinite induction and the continuum hypothesis the following
theorem is proved.

Theorem. Assume thatf and g arefunctions on R.XR into R such that

(@) fx, fy, gxand gy (partial derivatives) exist and are continuous on an open
neighborhood oj the origin;

(b) f x(0, 0),/y(0, 0), gx(0, 0) and gy(0, 0) are all non-zero;

(c) /(0,0)=g(0, 0)=0;

(d) the numbers f x(0, 0)/fy(0, 0) and gx(0, 0)/gy(0, 0) have opposite signs.

Then there exist sets A, B such that A, BczR and f(AxB) contains an interval,
but g(AxB) does not.

2. Results. Our first theorem will provide answers to the questions of Grubt
and Kraljevic mentioned at the beginning.

Theorem 1 If (p,,) and (g,,) are any two sequences of non-zero real numbers
suchthat pnXpm and gnXgmfor all nXm and p,,Xgmfor all nmdN (the set
oj natural numbers), then there exist subsets A and B oj the reals such that

(@) A-\-p,,B=R Jor every and

(b) A +q,,B contains no intervalJor each ndN.

Proof. We remark at the outset that A+pB stands for the set
{a+pb: adA, bEB}.

Let wc denote the first ordinal number having cardinal c, the cardinal of the
continuum. Let {xaa\t be a well ordering of R. By transfinite induction, for each
a<wc we will construct two sequences, (ya)Z= 2nd (za,)“=l in such a way that
the sets

A = {yam. a<wc and ndN} and B = {zan: a < wc and ngN)

satisfy the conditions of the theorem.

We first construct the sequences (pi,,)r=i and (zIn)“=L by ordinary induction.
To start the inductive process we need yrl and zu. We will show that we can pick
yn and zn such that Yn+par¥=x1 and >n+%,zn is an irrational number for
each nEN.

If we take yn=x to be an arbitrary real number, then in order for yu+
+PiZnz=x1 to hold we must have zn =(x1~x)p{1 Using this value for zir we have

Yn+ Y*u = gnXiPIl1+ (\-gnPilx.

Clearly, by our hypotheses on the sequences (p,,) and (gr), the last expression is
irrational for each fixed n for all XER with denumerably many exceptions.

Finally, if yn=x and zn=(x1—x)pfl then yn+PiZli=x1 and yn +q,,zn
is irrational for each ndN provided xdR\D, where D is a denumerable set.
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Suppose that (y,,)¢-; and (z;,)%-, have been defined so that y;,+p,zi,=x;
for each n=1,2,...,k and y;+q,z; is irrational for every 1i,j€{l,2,..., k}
and nEN.

If we take y;,,+1=x to be an arbitrary real number and z; ;,;=(x;—X)pi,
then arguing as before, we have y,,+p,z;,=x; for every n=1,2,...,k+1 and
V1i+4q,z,; is irrational for every i,j€{l,2,...,k+1} and every n€N provided
XERN\ E, where E is denumerable.

Therefore, by mathematical induction there exist two sequences (y,)5=; and
(214)7%1 such that the following holds: y,,+p,z,,=x, forevery néN and y;+g,z;
is irrational for every i,j, n€N.

Now suppose that a<w, and for every b<a the sequences ()=, and
(Zpn)5=1 have been defined in such a way that y,,~+p,z,,=x, for every b<a and
for every n€N and y,;+q,z,; is irrational for every b,d<a and 1i,j, néN.

By the definition of w,, arguing as before (using mathematical induction), the
sequences (Y,,)n=1 and (z,,);2; can be defined in such a way that: y,,+p,Zm=X,
for every n€N and y,;+¢,z,; is irrational for every b,d=a and i,j, n€N.

Therefore, by transfinite induction, for each a<w, we obtain two sequences,
(Va1 and (z,,)r>; and if we set

A={y,: a<w,and néN} and B ={z,: a<w, and ncN}

we have 4+p,B=R for each »n€N and s+g¢,¢ is irrational for each n€N, s€ 4
and t€B. Therefore, for each n€N the set 4+¢g,B contains no interval.

The following results are immediate consequences of Theorem 1 and provide
answers to the questions of Grubb and Kraljevi¢ mentioned at the beginning.

COROLLARY 1. There exist subsets A and B of the reals and a sequence (p,),
Pn#1 for each n, with lim p,=1, such that A+B contains an interval and A+p,B

contains no interval, for each neN.

COROLLARY 2. There exist subsets A and B of the reals and positive reals ¢, <
<c<cy suchthat A+c;B and A-c,B both containintervals, but A+ cB contains
no interval.

The proofs of these corollaries are immediate and are therefore omitted.

We will now proceed to provide a positive answer to the question of Roman Ger
mentioned at the beginning, namely we will show that there exist compact sets 4
and B such that 4—B contains an interval, but 4+ B does not.

THEOREM 2. There exist compact subsets A and B of the real line such that A—B
contains an interval, but A+B does not.

PRrROOF. Let
S ={3 a/T; a€{0,2,6}).
i=1

We will show that if we set 4 and B equal to S then the conditions of our theorem
will be satisfied. To see that 4+ B contains no interval it is sufficient to show that
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A+B has Lebesgue measure zero. However
A+B ={2 -_ZI bjlb£{0, 12,3,4,6}}.
1=

This clearly implies that m(A+B)~ 0.
We will now show that A—B=[—1, 1]. To see this observe that 1= 2! &/7*
i=
and therefore

1 —B —iLi cjll, cf6{0, 4, 6}}.
This in turn implies that

A+(1-B) ={J d jI <£{0, 24,6, 8, 10, 12}}.
This last equation implies that
A+0 -B) = {2-]g_lei/I“ et€{0, 1, 2, 3,4, 5, 6}}

and hence A+ (I-B)=[0,2] or A-B=[-\, 1].
We conclude this paper with a few remarks.

Remark 1. The facts that, in the proof of Theorem 2,

S+S={2m2 bjlb£ {01234 6}
1=

and S—5=[—1, 1] can be shown geometrically imitating a proof of Utz (see [16]).

Remark 2. If A, ~czR, is a measurable set of positive measure or a set of
second category that has the Baire property then clearly, by the Theorem of Stein-
haus and the Theorem of Piccard A+pA contains an interval for each p£R\{0}.
Professor H. Kraljevic has asked if sets that are not in these classes can have this
property. The answer to this question is in the affirmative. From a recent result of
the present authors [2] it follows that C+pC contains an interval for each pER\{0},
where C is the Cantor set.
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LOCAL LIPSCHITZ CONSTANTS AND KOLUSHOV
POLYNOMIALS

M. W. BARTELT (Newport News) and J. J. SWETITS (Norfolk)

1. Introduction. Let K be a compact subset of [a, b] and C(K) the space of
continuous real valued functions on K endowed with the uniform norm | ||. Denote
the set of algebraic polynomials of degree » or less by IT,,. For fin C(K), let B,(f)=
=B,(f, K) denote the best uniform approximate to f on K from II,. Denote the
set of positive extremal points of f—B,(f) by

(1.1) E} (f) = {x€K: (f~B,(N))(x) = |/~ B.(NI}-

Let E; (f) denote the set of negative extremal points. Let E,(f) be their union and
|E,(f)| denote its cardinality.

Lipschitz constants for the best approximation operator have been extensively
studied ([3—6], [8, 9]). Recently local Lipschitz constants have been the focus of
research [1, 2] which related the local Lipschitz constant to the derivative of the
best approximation operator, Lebesgue constants and Cline polynomials [5].

Following [2], let the local Lipschitz constant for f be

(1.2) In(f) = Jlim sup {||B,(f+@)—B,(Nl/lell: 0 <ol <}

It was observed in [2, p. 146] that if |E,(f)|=n+2 for all sufficiently large n and
K=]a, b], then

(1.3) lim A4(f) = <.

This observation relied on the Losinski—Kharshiladze Theorem that if P is a linear
projection from Cla, b] onto II,, then |P|=log(n)/8Vn ([4,10]).

In this paper, a class of polynomials introduced by Kolushov [7] (hereafter
called Kolushov polynomials) are used to investigate the behavior of A4( f). Theo-
rem 1 characterizes AL ( f) for fixed n and finite K in terms of Kolushov polynomials.

Theorem 2 shows that (1.3) holds in the more general case when E,(f) contains at
most m alternants, where m is independent of n.

2. Kolushov polynomials. For n fixed, an alternant of f—B,(f) is a set
{x09 vsey xn+l}gEn(f) Wlth

(f=B.(N)(x) = (=D /=B,(Nl sgn (f=B,(N))(x), i=0,...,n+1.

Kolushov showed that given ¢ in C(K), there is a unique real number, a=u(¢p),
and a unique polynomial p,(f, ¢)=p,(¢) in II, such that

2.1 (P()—Pa(@)(x)) sgn (f—B,(N)(x) = &, x€E,()).
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In addition there is an alternant of/ where equality holds in (2.1). Kolushov then
proved that

(2.2) Km (4, (/+ tep)- Bn =p.(@)

with convergence being in the uniform norm.

Let A9(f)=Av denote an alternant of/ associated with g The following
properties of the Kolushov polynomials follow from the above, the theorem of
de la Vallée Poussin on K [4] and, in part (vi), from Lemma 3 in [1]. Let B,,(cp, X)
denote the best approximant to (p from Mnon X. We prove only (vi).

Proposition 1 (i) If (p£Mn, then pn(cp)=cp and x(cp)=0.

(ii) PA<p)=Bn(cp, Af).

(Hi) If IE,,(H)\=n+2, then pn(cp)=Bn(cp, En(fj).

(iv) If ¢>0, then pn(ccp) =cpn(cp), colccp)=cx(cp), and Ac=A(p

(v) 1f Ap=Ad, then p,((p+")=pn((p) +PnVW, a(cp+d)=a(cp) +a(th), and
Aot A Ad. _ _

(vi) If n+27|K |«», then there exists d>0 such that pn(cp—Bn(p K) if

-1 «5.
" I(Ivn)spn(f): Bn(f) and x(f)=\\f—Bn(f)\\.
(Vil) Pn(f+(P)=Pn(f)+Pn(<P)-

Proof of (vi). If <5>0 is sufficiently small, then from Lemma 3 of [1] it fol-
lows that En(cp)QEn(f) if I1/—<p<<5 since K is discrete. Furthermore, cp—Bn(q)
and f —Bn(f) have the same sign on En(cp). Hence any alternant of gis an alternant
off. Thus (2.1) is satisfied with p,,(cp)=Bn(cp, K), a= ||cp—B,,(cp, K)||, with equality
on any alternant of q

3. Main results. The following lemma gives a lower bound for A'(/) valid for
any compact subset of [a, b] having at least n+2 points. Theorem 1 which fol-
lows shows that the lower bound is also an upper bound when K is finite. We then
define a collection of projection operators which are used in Theorem 2 to provide a
lower bound for X\[(f) when K is infinite.

Lemma 1. Let K be a compact subset of [a, b] and fdC(K). Then
(3.2) A(/) S sup {\Pn(f 9)||: \p\ * 1, veC(K)}.
Proof. Let cpEC(K) and ||<p||sl. Then
A1) = Jig, sup {An(/+g)-A?n(/)/ilg]]: 0 < lgll < 8} S
a ou-B]r sup {\Bn(f+tcp)-Bn(f)\Vt: 0< t< & S
S Hm IBn(/+ t<p—Bnif)\\lt = \pn( f cp)ll,

where the last equality follows from (2.2).

Theorem L Let K be afinite subset of [a b] with [K|én+2 and let fEC(K).
Then

(3.2) A = sup {1/,,(/, YLL 190~ 1, <ECK)}.
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Proof. Without loss it may be assumed that 4 ,(/)=0 and ||/[|= 1. By (vi)
of Proposition 1, choose <5>0 so that p,,(fg)=Bn(g, K) if ||/-g||<<5. For 0,
define (pEC(K) by g=f+tg> and || =1. By (iv), (vii), and (viii) of Proposition 1
we have B,,(g, K)=pn(fg) =pn(ff+ Up)=pn(/,/) +pn(/, Up)=tpn(f, . Thus

\\Bn(g, K)WA\f-g\\=\\pn(f,cp)\\,
and, hence,
A'(/) S sup {\pn(f, cp\\: MI S 1, cpeC(K)}.

Lemma 1 completes the proof.

Suppose En(f) contains only a finite number of alternants, A", i= 1, ..., a(ri).
Let p], /=1, ...,a(n), denote the linear projection from C(K) onto I, given by
Pl(g)=Bn(g, Af) for g<iC(K). Let ||p‘| denote the operator norm of pl..

Theorem 2. Let K be an infinite compact subset of [a b], and let fdC(K).
If, for infinitely many n, En(f) contains at most m alternants, where m is independent of
n, then there exists a constant C >0, independentofn, and a sequence ofindices {n(k)}
such that

(3.3) Aw (/) Cmin{p‘®l:i=1 .., mh

Proof. For convenience assume that for each n, the number of alternants
is m. If cp£C(K), let pn(f (p Av) denote the Kolushov polynomial where Av=A"
for some /=1,..., m. By (ii) of Proposition 1, if Ag=Ang it follows that

(3.4) pl, (9) = pn(f, g, Ad) = pfifi g, Ae).

We can write C(K) as the union of sets, sdf, /=1, ..., m, where s/j, consists of all
(p such that the alternant of/ corresponding to (pin Kolushov’s polynomials is A?
Note that Pj restricted to «s/f is p,,.

Let {AJ,, be a sequence in C(K) such that, for all n, ||AJ||SI and

(3.5) \\p'M)W\ SM Jpill,
where M xis independent of n. For each /=1, ..., m and for each n, let
c,(n) = lIPIiIADIIM.
(ci(wW}n is bounded away from 0. By rearrangement and passing to subsequences,

we can assume that (c;(«)}.,, /=1, ...,i(l), are bounded away from 0, and that
Cj(nN—0 (n—=°) for /(1)-=/. Now let {/i‘},, be such that ||A®||sl for each n and
(3.6) TWB(D)+1(A2)| ~ M2Ipia)+1],

where M2is independent of n, and repeat the above process for /(])</. Since there
arem [ﬂjections, then after r steps, for some r, we obtain r sequences of functions
{h, 1=1, ..,r, and r blocks Bl={s/f, s/fo}, Bz= n+,...,
Dr={j3ff(r_1)+1, ..., ")}, with their corresponding projections, such that, with
i'(0)=0, i(D+ ...+i(r)=m,

(3.7 \W\pi,m\ & Mj\\p% i(j-1)+1=£/=810"),
and
(3.8) Wpi,m\ =0(AU7-11), i(j) < L
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By the projections in a block we mean the projections corresponding to the sets in
a block.

We now show by induction on r that there is a sequence {gr}, g,,£C(K), such
that Hgjsl and
(3.9) [IPi(gll A~ C min {Up'll: / = 1, ..., m).
If r=1, then {gr} ={hl} satisfies (3.9) by (3.7). We next consider r—2 to show
how to combine two consecutive blocks into one block. There are three possibilities.
Let i(\)—g, and suppose first that

(3.10) WPHOWN A W% 1= 1,...,?

where b is independent of n. Then, discarding {hi}, the sequence {hi} satisfies (3.9)
for the combined block {s/", gL} In the second instance suppose that

(3.11) [pi(©1 = o(llp'ly, /=1, ...,2.

In this case define g,,=(hl+hl)/2. Then {g,} satisfies (3.9) for the combined block.
Suppose now that neither (3.10) nor (3.11) hold. By rearrangement and passing to
subsequences, we can assume that

(3.12) WUWW s blip'll, 1s/s/
and
(3.13) WK\ = o(llpH), I+ I"irg.
Define
(3.14) g,=max{Wpim/im : 1~ /S [}
(3.15) K = min {lIp*(MIlp*ll: 1 —Ff —d>
(3.16) o =4,./2p,,,
and
(3.17) gn= (hl +unhl)/(I1+an.
Both unand  are bounded above by 1and are bounded away from 0. For 1sis/,
(3.18) [lp'(gj » @+a.)-1(l/=i(ADll-ocjpim ) ~
S (1+a,,)-UAlp-l -(Ad2)lIpll) S Xnun(2p,.+ A.)-1 lipg[ 1L
For 1+17iSq,
(3.19) [[p'fe)ll & L +ar 1L K)\\ -« JTpX)\\ s

s (I+ an)-H2Jpil|-o(Bp'l])).
For g+ Isi®*m,

(3.20) Ip'023 S (L+aB-1«Ip' (M) -[bTW)II) £
sfl+aJ-HRlIIpill-odlp'll)).

Hence by (3.18)—(3.20), {g,.} satisfies (3.9) for the combined block {s/", ..., j/"}.
Now suppose that (3.9) is valid for r blocks, and we are given r+ 1 blocks.
Combine the last two blocks into one block as was done in the case r= 2, observing
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that (3.7) and (3.8) are valid for all the blocks. Apply the induction hypothesis to
produce the required {g,}. Finally, &#€*/" for some /. Hence, Pn(gn=p,,(f gn, A?),
and an application of Lemma 1 completes the proof.

Remarks, (i) If K—a b], then, under the assumptions of Theorem 2,
Iirﬁ%p Ai,(NH=°".

(if) In Theorem 2, the assumption concerning the number of alternants of/ is
satisfied if there exists a positive integer M such that \En(f)\*n+2+ M for all n.
There is a sequence of indices {n(k)} such that Bn(K)(/)" B a(K+1(/). Then EnW( f)
has at most M Malternants.
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E-RINGS AS LOCALIZATIONS OF ORDERS

Theodore G. FATICONI (Bronx)*
Dedicated to Professor Adolph J. Faticoni on his 60" birthday

Introduction. Throughout this work, the term group refers to a torsion-free
abelian group of finite rank.

An E-ring as defined in [13] is a ring R for which the map R-End; (RY),
sending x€R to left multiplication by x, is an isomorphism. The importance
of E-rings is seen in the classification problems of the End (A4)-module structure
of a group 4. For example, E-rings are the building blocks for those groups A
which are projective [10], finitely generated [12], or serial [6] left End (4)-modules.
E-rings are also a source of many illuminating examples of various group theo-
retic properties. For example, each countable reduced torsion-free group is a pure
subgroup of an E-ring [4], and there exist strongly indecomposable E-rings of pre-
scribed cardinality [3]. Despite this utility, examples of torsion-free E-rings of finite
rank previous to [11] were restricted to p-pure subrings of the p-adic integers, p a
rational prime. In [11], R. Pierce and C. Vinsonhaler demonstrated that a fixed
number field F is p-realizable (i.e. the field of fractions of an integrally closed p-local
E-ring) for infinitely many rational primes p. To establish the p-realizability of F,
Pierce and Vinsonhaler studied coset conditions in the Galois group of the Galois
closure of F. Unfortunately, their techniques do not readily provide for the con-
struction of more general classes of E-rings, nor do they afford much flexibility in
the group structure of the implied p-local E-rings. Such flexibility is desirable if
E-rings are to be used in the construction of groups A possessing subtle End (A4)-
module structure.

In the present paper, we consider torsion-free E-rings R of finite rank which
are integrally closed in their field of fractions F. As an integrally closed subring
of F is a localization of the ring J of algebraic integers in F, we determine which
localizations of J are E-rings. This idea is implicit in [11] and [9]. However, in con-
trast to the approach in [11], we choose to classify E-rings via a condition on the
maximal ideals of J (Lemma 2.1). From this point of view it is easily shown that
a minimal field extension F/Q is p-realizable precisely when p splits in F (Corol-
lary 2.4). Further, these techniques provide an uncomplicated scheme for con-
structing local E-rings R of specified rank and residue degree (Proposition 2.6).
For number fields F we show that E-rings are densely distributed in the lattice
Z(F) of subrings of F containing J (Theorem 3.6) and that #(F) contains an
uncountable rigid class of E-rings & such that each R€& is homogeneous of
type type (Z) (Proposition 3.9). This flexibility in the rank, p-rank, and ideal struc-
ture of R is not found in examples from [2], [6], [9], [11].

* This research was supported in part by a Fordham University Faculty Research Grant.
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A more detailed description of the sections follows.

Section 1 is a collection of preliminary results on number theory and localiza-
tion. Results not appearing in our standard references [7] and [8] are proved.

Section 2 begins with the ideal theoretic classification of E-rings in % (F). It
is then casily shown that a minimal field extension F/Q is p-realizable iff p splits
in F. Borrowing a construction from [11], we construct for each pair of integers
n>m=1 a local E-ring of rank n and with residue degree m (Proposition 2.6).

Now let F be a number field. Using the lattice isomorphism from Section 1
and the classification from Section 2, Section 3 illustrates that E-rings are densely
distributed in Z(F) i.e. if [S,, S;] is a closed interval in the lattice % (F) and
if [J, S)JULS;, F] is finite, then there is a closed interval [R,, R{]C[S,, S;]
such that [J, R,JU[R,, F] is finite, and for which each R€[R,, R;] is an E-ring.
(See Theorem 3.6.) The paper closes by constructing an uncountable rigid class
&C % (F)such that each RE& is a homogeneous E-ring of type type (Z).

1. Preliminaries

The basic references are [1] and [5] for group theory, and [7] for ring theory.
We use [8] as a reference for number theory.

At all times, p denotes a rational prime, E and F denote finite field extensions
of Q, Jr denotes the ring of algebraic integers in E, and % (E) denotes the lattice
of subrings of E containing J;. We let J=J; and we use spec(R) to denote the
set of maximal ideals of a ring R.

Most of the number theory used in the sequel can be found in [11] or the first
two chapters of [8]. We list those ideas which are central to our discussion. Let E
be a subfield of F, let P¢spec (Jg), and let M¢spec (J). We say that M lies over P if
Pc M, and we let Az(P)={Mecspec (J)|M lies over P}={Me¢espec(J/)|MNE=P}.
For unramified Pé¢spec (Jg), [F:E]=X[J/M: Jg/P] where the sum is indexed by
Ar(P). Thus for distinct P, P’€spec (Jg), Ap(P) and Ap(P’) are disjoint finite sets.
If |Az(P)|=2, we say that P splitsin F, and if |1z(P)|=[F:E], we say that P splits
completely in F. Thus P splits completely in F iff J/M=Jg/P for each M¢Ag(P).
By [8, page 162, Theorem 6],

(1.1) Infinitely many Péspec (Jg) split completely in F.

Now let K denote the Galois closure of F, let G=Gal (K/Q) and let
H=Gal (K/F)cG. Let M¢espec(Jg) and let P=MNF. The decomposition group
of Mis C(M)={gcG|gM=M}. Then by [11, page 18],

(1.2) For unramified M, C(M)NH=Gal (Jx/M|J/P) is a cyclic group.

Hence, P splits completely in K iff C(M)NH={1}.

Let R,, R, ¢4 (F). If R,CR,, we let [R,, R,] denote the closed interval in
% (F) with endpoints R, and R,. Given a closed interval [R,, R,] in Z(F), then
by convention R,CR; and R,, R,€ % (F). The closed interval [R,, R;] is cofinite
if the closed intervals [/, R;] and [R;, F] are finite sets.
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Now let R be any ring containing J. The support of R in J is op(R)=
={Mespec (J)|RM#R}, and the divisibility of R in J is

0r(R) = {Mcspec (J)|RM = R}.

Observe that oz(R) and 6p(R) form a partition of spec (/). In general, we use o
to denote the support of a ring and J to denote the divisibility of a ring.

For sets ocCspec (J), let J,=N{Jy|M¢co}, where Jy is the localization of J
at the maximal ideal M. By convention, we have Jg=F.

Our classification of E-rings in .#(F) is an ideal theoretic interpretation of the
following due to R. Beaumont and R. Pierce.

(1.3) For ReZ(F), R is an E-ring iff for each proper subfield EcCF, R#SJ,
where S=RNE [1, Example 14.5, Theorem 14.6].

In order to translate (1.3), it is necessary to understand how R and spec (R)
arise as localizations of J. In what follows, let R€.Z(F).

(1.4) Let ¥={ccJ|Rc=R}. Then R=J[¥7']. [7, page 73, Exercise 7]. Further, if
% is any multiplicatively closed subset of J, then

op(T[%1]) = {Mespec ())IMNE = 0}.

(1.5) Given ReZ(F), the maps ¢: op(R)—>spec(R) and ¥ : spec (R)—ar(R)
given by @(M)=RM and Y (N)=N(\J are inverse bijections. [7, Theo-
rem 34.]

The next lemma shows that R is completely determined by its support in J. As a
precise statement is unavailable in our standard references, we include a proof.
However, a version of (1.6) can be found in [14, page 144].

LemMa 1.6. The assignments R—cp(R) and o—J, define inverse lattice anti-
isomorphisms between & (F) and the lattice of subsets of spec (J).

Proor. We leave as an exercise the (elementary) verification that the map
defined by the assignment o¢—J, reverses inclusion, take intersections to joins,
and unions to intersections. That these properties hold for the map R-—o(R) is
a consequence of the inverse relationship between the two maps.

Let cSspec(J) and let J,=R. Certainly occor(R), so let Mcor(R). By
(1.5) RM=N¢spec (R), and by [7, Theorem 113], there exists M’€o such that
Ry=J). Observe that Ny(\J is a proper ideal of J containing M, so M= NyNJ.
Similarly, M}, NJ=M’. Inasmuch as Ny=»Mj}, is the unique maximal ideal of
Ry, M=M’co. Hence a=0z(R)=0cr(J,).

Now let R€EZ(F) and let o=0p(R). By [7, Theorem 65] each valuation ring
V satisfying JCRcV CF is of the form V=Ry=J,, where N=rad (V)R and
M=rad (WV)NJ=NNJ. By [7, Theorem 64] Ry is a valuation ring for each
Néspec (R). Thus by (1.5), {Ry|Né€spec (R)}={InnsIN€Espec (R)}={/y|MEa}. The
local-global theorem shows R=J,. O

For convenience, we state two consequences of (1.6).

COROLLARY 1.7. (a) The assignment R-—Jp(R) defines a lattice isomorphism
Jrom £ (F) onto the lattice of subsets of spec (J).
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(b) Given RAJE(F), [/, R] is bijective with the set of subsets of SHR), while
[i?, F] is bijective with the set of subsets of aH{R).

Proof, (@ folloas from (1.6) and the fact that aP(R) and 6F(R) form a parta-
tion spec ().

(b) Use part () and (1.6). O

The following well-known results of this section determine the support of sub-
rings of F. We include proofs.

Lemma 18. Let REJF(F), let E be a subfield of F, and let S=ROE.
@ If MdoHR) then Mi 1 £2EQ).-

(b) For P€spec (JB, P "EKS) iff kHP)tfoF(R )".

(c) af(Sy)=UU F(P)|Pe<TE(.S)}.

Proof,(a) Let M£oHR). Then S(Mf]E)c:RM”R, so 1$S(MOE)"S.

(b) Let PeeE(S). Since S'is a Dedekind domain, SPis a discrete valuation
domain with unique maximal ideal Pp=Spx for some xEP. As localization com-
mutes with finite intersections, we have x _1EP=RPC\E. Thus RpPp=RpX9iRp,
which implies that RP”R. But then RPc:N for some maximal ideal N of R.
By (1.5), Pc:NCIMXHP)r\oHR)7£\& The converse is part (a).

(c) Asin(1.4) S=JE[&~] for some " c/E, sothat SI=J[B~1. Let PE®(S).
Then for each M E£IRP), MM'#=MTM(ENB)=PMN&=0 by (1.4). Thus, Af(P)c=
czoF(SJ). On the other hand, if M£oHKSJ) then by part (a) AfDEicrES), so
that oFSJ)cz n{AE(P)|PE(7£(5)}. This proves (c) and completes the proof. O

Two useful results are immediate. The notation is that of (1.8).

Corollary 19. @ PdSE(S) iff XH{P)c:0F(K) iff PEOE(R).

(b) R=SJ iff jFP)<x<rHR) for each P".0E{S).

Proof. Part (a) follows from (1.8a, b). We prove part ). By (1.6) and (L.&),
if R=SJ then <E(/1)=n{AE(P)|Pe<TE(5)}, so that AE(P)c=crF(0 for each PE<r.
Conversely, assume |F(P)czoF(R) for each P£oE(S). Then given MEoHR),
Me*"AMOE) and Mr\E€oE(S) (1.8a). Hence each M£ge(R) is contained in
some j HP), which completes the proof. O

2. Localizations of the ring of algebraic integers

Our investigation begins with an ideal theoretic classification of F-rings in
ACO-

PROPOSITION 2.1. For crczspec (), thefollowing are equivalent.

@) J,, is an E-ring.

(@) For each proper subfield E of F, there exist M, M fispec (/) such that
Mdo, M\a, and MIM\E=M"'C\E.

(c) For each proper subfield E of F, there exists P6spec (JE) such that nE(P)MNo
is a nonempty, proper subset of j F(P).

Proof.The eguivalence (O<>(©) & derived from the fact that MEspec(7)
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lies over Pespec (Jg) iff MNE=P. It remains to prove the contrapositive of
(a)<(b).

Let ocspec(J), andlet J,=R. From (1.6), 6x(R)=0. Now Ris not an E-ring
iff there is a proper subfield E of F such that R=SJ, where S=RNE (1.3), iff
Ap(P)co for each Pcog(S) (1.9b). As this is the negation of (c), the proof is
complete. O

Note that (2.1) is nothing more than a translation of (1.3) into ideal theoretic
terms. However, this new point of view allows us to effectively discuss the existence
and contruction of E-rings in Z(F). The remainder of this paper is devoted such a
discussion.

It is well-known that if A4 is an integral domain with field of fractions F, then
the integral closure of 4 in F is the ring 4J generated by 4 and J, and AJ/A is a
finite group. Thus, A4 is an E-ring iff A7 is an E-ring. This and (2.1) provide a
classification of (not necessarily integrally closed) E-rings having field of fractions F.

COROLLARY 2.2. Let A be an integral domain with field of fractions F. Then A
is an E-ring iff for each proper subfield E of F there exist M, M’¢spec (J) such that
16§ AM, 1€ AM’, and MNE=M'NE.

ProOOF. Let R=A4Jc L (F). Then A is an E-ring iff R is an E-ring iff (2.1b)
holds for R iff for each proper subfield E of F, there are M, M’¢cspec (J) such
that 1¢ RM=AIM =AM, 1€ RM’'=AM’, and MNE=M'NE. O

Now consider the minimal field extension F/Q with Galois closure K/Q.
Pierce and Vinsonhaler [11, Lemma 5.3] have shown

(2.3) F/Q is not p-realizable for infinitely many rational primes p iff either
(i) [F:Q]=n is prime or (ii) Gal (K/Q) is doubly-transitive and contains
an n-cycle.

In contrast to (2.3), the next result avoids the Galois closure of F entirely.

COROLLARY 2.4. Let F/Q be a minimal field extension.

(a) F is p-realizable iff p splits in F. In this case J, is an E-ring for each non-
empty proper subset o of Ap(p).

(b) F is p-realizable for almost all primes p iff almost all primes p split in F.

PrOOF. (a) Let o€spec(J). Then by (1.9a), J, is p-local iff ¢ is a nonempty
subset of Ag(p). Further, as Q is the unique proper subfield of F, ¢ satisfies (2.1c)
iff o is a nonempty proper subset of Ag(p). Such a ¢ exists iff |1z(p)|=2. Thus,
F is p-realizable iff there is a nonempty proper subset ¢ of Ag(p) iff p splits in F.

(b) Follows from part (a). O

Another result on the distribution of E-rings in a minimal field extension F/Q
is contained in (3.8).

REMARK 2.5. The following construction of a minimal field extension F/Q is
contained in [11, Example 5.4]. For integers n>1, let S, be the group of permuta-
tions of {1, ...,n}, and let 4,CS, denote the group of even permutations. Identify
S,-1={,€S,|((n)=n}. To unify the discussion, let (G, H) be an element of
{(Sus Sy-1)s (4,5 A,-1)}. One shows that H is a maximal subgroup of G of index n.
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Hilbert has shown that there is a Galois extension K/Q with Gal (K/Q)=G.
Let FczK be the fixed field of H. Then the Galois correspondence shows that F/Q
is a minimal extension of degree n. Further, K/Q is the Galois closure of F/Q
since H does not contain a nontrivial normal subgroup of G.

As in [11, Example 54], if n is an even composite, and if (G, n,J,
then the field F is //-realizable for almost all p. (A,, does not contain an u-cycle in
this case, so (2.3) applies.)

Proposition 2.6. Let n and m be integers such that n=-/n”~l. Then there is a
discrete valuation domain R and a rational prime p such that

(@) R is an E-ring of rank n;

(b) Rp is the unique maximal ideal of R; and

(c) [R/IRp\Z/Zp]=m.
If n=m>\, there is a Dedekind domain R and a rational prime p which satisfy (a),
(c), and (b") Rp is a maximal ideal of R.

Proof. Use (2.5) to construct a minimal field extension F/Q of degree u
with Galois closure K/Q suchthat Sn=Ga\ (K/Q). Assume n > 1, and select
an unramified PCspec (/) of residue degree m as follows. Because ndm ~1, there
is an m-cycle (n—m+1, ..., n)=c. By the Tchebotarev Density Theorem [7, page
169], there exists an unramified MCspec (JK) possessing cyclic decomposition group
(c)=C(M)={geSngM=M}. (See (1.2).) Let P=Mf)F and let Zp=MDQ.
Note P is unramified. It is clear from our choice of c£S,, that C(M)M5'T 1={1}.
Thus P splits completely in K (1.2), so that JK/Ms=J/P. But then by (1.2),

C(M) &= Gal (J/KM\Z/Zp) as Gal (J/IP\Z/Zp).

Hence [J/P\Z/Zp]=m as required.
If A>Té1, then

2.7) [F: Q] =u>m=|C(M)| = [JIP: Z/Zp].

Since n=LQiXFP[JjQ-.Z/Zp], it follows that p splits in F. Then by (2.4a) the dis-
crete valuation domain R—JP*.S£(F) is an E-ring of rank n. Thus R satisfies part
(@). Let XF(p)={P, P2 ..., P and note that Rp=JPPP2..Pn=JpP=PP is the
unique maximal ideal of R=JP. Thus part (b) holds. Part (c) holds because R/Rp=
—Jp/Pp”j/P has degree m over Z/Zp.

Incase n=/n>1, let n>n/& 1. As above, there are unramified P, P'Cspec(J)
of residue degrees m and m' respectively. Let Zp=PC\Q and Zp'=P'C)Q. As-
sume without loss of generality that pZp'. (By The Tchebotarev Density Theorem,
there are infinitely many PCspec (J) of residue degree m.) Now as in (2.7) p' splits
in F, so there exists P'VP'Cspec(/) such that PITQ=P"nQ. Using (1.6)
choose RASF(F) suchthat aF(R)={P,P'}. Since P'zP", R is an E-ring, (2.1).
Then (a), (b"), and (c) follow as above. O
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3. The distribution of E-rings

Let F be an algebraic number field. This section explores the distribution of
E-rings and the existence of rigid classes of E-rings in Z(F) by investigating the
condition given in (2.1b). Some notation will prove useful.

Let E,, ..., E, be a complete list of the proper subfields of F, and for 1=i=¢
let J;=Jg,. Given sets d,aCspec(J) we will call (4, 0) an E-pair if for each
1=i=t there exist M6 and M;€$ such that M;NE,=M;NE,.

The role of E-pairs in the construction of E-rings is clear from the following
easy consequence of (2.1).

LemMmA 3.1. REZ(F) is an E-ring iff there are disjoint, finite sets 6Cdop(R)
and 6Cop(R) such that (5, ¢) is an E-pair. 0O

The next lemma shows that E-pairs exist in abundance.

LeEMMA 3.2. Let o, and o, be disjoint, finite subsets of spec (J). Then there are
disjoint, finite sets S, o Cspec (J) such that

(a) 0,C0, 6,Co, and

(b) (6, 0) is an E-pair.

Proor. We use induction to construct for each 0=s=t disjoint, finite sets
d,, o Cspec (J) satisfying

(3.3s) if 1=i=s then there are M;co, and M;€cJd, such that M;NE;=M;NE;.

Observe that §, and o, vacuously satisfy the condition (3.3)(0). Assume for
some O=s~<#, that we have chosen disjoint, finite sets d; and o, satisfying (3.3s).
Since J, and o, are finite, and since infinitely many Péespec (J54,) split in F (1.1),
we can select P.,€spec (Jy4+;) such that

(3.4a) P, splitsin F,
and
(3.4b) Ap(R+)N[6,Uc,] = 0.

By (3.4a), we can choose distinct M, Mg, 1€Ap(P,). Thenset 6,,,=06,U{M;,,}
and o,,,=0,U{M,,,}. It is clear from the induction hypothesis and (3.4b) that
0541 and o4, are disjoint, finite sets. Finally, since M, M, 1€Ap(Ly1), Bi1=
=M, ,NE, .,=M;, NE,.,. Thus, é,,, and o,,, satisfy (3.3) (s+1), which com-
pletes the induction process.

The sets §,=J and o,=o are then disjoint, finite subsets of spec(J) which
satisfy (3.2a and b). O

For the purposes of the following discussion, we will call a class & of rings an
E-class if each R€& is an E-ring. The closed interval [Ry, R;] in Z(F) is called
a closed E-interval if [R,, R,] is an E-class. The lemma provides a connection be-
tween E-pairs and closed E-intervals, as well as necessary technical material for the
proof of Theorem 3.6.

LemMmA 3.5. Let Ry, R,€ ¥ (F).
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(a) Assume the closed interval [EO, EJ exists. Then [/?,, EJ is an E-class if
there are sets 6a6F(R0Q and oa<7HRj) suchthat (6, o) is an E-pair.

(b) The closed interval [EO, EJ exists and is cofinite iff 6F(RQ and o>(EJ are
disjoint, finite sets.

Proof, (a) EG[EQ, EJ. Then 6a6HR0Qa0HR) by (1.7a) and aaopiRJa
aoF(R) by (1.6). From (3.1) R is an E-ring, and hence [EQ, EJ is an E-class.

(b) By convention, the closed interval [EO, R,] exists iff AOcA, iff 6F(ROa
6f(Ri) (1.7a), iff {I‘(E()n<7f(RJ) 0. Further, by (1.7b) [EO, EJ is cofinite iff
6Ff(R0O and o>(EJ are finite. This proves the lemma. O

The theorem is the promised result on the dense distribution of .E-rings in
JST(E).

Theorem 3.6. Let F be an algebraic number field, let J be the ring of algebraic
integers in F, and let JF(F) denote the lattice of subrings of F containing J.

(@) Each cofinite, closed interval in jSf(F), contains a cofinite, closed E-interval.
(b) Each E-ring in if (F) is contained in a cofinite, closed E-interval.

Proof, (a) Let [50, 5\] be a cofinite, closed interval in if (F). Then by (3.5b),
Hand Cqare disjoint, finite sets. Using (3.2) choose disjoint, finite sets 60>6a and
oaoO0such that (d, o) is an E-pair. Then by (1.7a) and (1.6), there exist RO, RfEF{F)
such that 6F(RQO=6 and i F(R1)=o. An application of (3.5) shows that [EO, EJ
exists and is a cofinite, closed E-interval. Because ¢ $ and oCa<r, (1.7a) and
(1.6) imply that SOaRO0 and RiaS1. Therefore [EO, EJCIE,,, FJ which com-
pletes the proof of part (a).

(b) Let E€if(F) bean E-ring. By (3.1), there are disjoint, finite sets 6a5HR)
and aaoHR) such that (5,d) is an E-pair. Use (1.7a) and (1.6) to produce
EOE'I|f(F) suchthat 6r(RQ=6 and of(R)=( Then (3.5) shows that [EOQ, FJ
exists and is a cofinite, closed E-interval. O

We remark that (3.6b) is an immediate consequence of [9, Proposition 3.4]
while (3.6a) seems to be new.

Consider an E-ring REEF(F). By (3.1), there are disjoint, finite sets 5aSHR)
and craoF(R) such that (6, a) is an E-pair. Since S is finite, we may assume that
(6',<j) is not an E-pair for any proper subset 6'a6. It follows from (2.1c) that
jHp)"6 for any rational prime p. But then by (1.9a). ROpARO for each rational
prime p. Hence EOfIQ=Z. Since ROis known to be homogeneous, we have shown

Corollary 3.7. If REEF{F) is an E-ring, then R contains a homogeneous
E-ring RfEF{F) oftype type (Z). O
Theorem 3.6 and Corollary 3.7 extend [9, Corollary 3.5].

It is natural to ask if there are cofinite, closed E-intervals [EO, EJ such that
[/, EQQ or [/?', F] has exactly two elements. The following proposition in con-
junction with (3.5) shows this to be true.

Proposition 3.8. (8) Let F/Q be a minimalfield extension and let p be a ra-
tional prime which splits in F. Given distinct M0, M f).F(p), then ({MG, {MJ) is
an E-pair.
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(b) Letp be a rational prime which splits completely in the field extension F/Q
and let Mffi,F(p). Let 8={M) andlet a—XF(p)\{M). Then (8, a) is an E-pair.

Proof, (a) Since the only proper subfield of Fis Q, and since MO, M xfX F(p),
(M@}, {MJ) is an F-pair.

(b) Let E be a proper subfield of F and let P=MI\E. Then by [8, page 25].
Psplits completely in F, so that X'{P)*{M). Thus (8, a) is an F-pairby (3.1). O

A class $ of groups is rigid if Horn (A, B)=0 for distinct A, Bf £. (See [1]
or [5].) The next proposition indicates the diversity of group structure in the class
of F-rings in JS?(F).

Proposition 3.9. There exists an uncountable rigid E-class £cz£P(F) such that
each RZ& is homogeneous of type type (Z).

Proof. By (I.1) there is a sequence of distinct rational primes A=(p0,p1, ...)
such that pi splits completely in F for each 1SO. Write XF(pQ={NI, ..., N,,} and
for each i1 choose distinct M;, MJ€AT (p;). Next, let I=LIi*"lI{MI, M\), and
choose any uncountable subset A d . Considering X£/1 as a set, let R(X)<EEE(F)
be the ring with divisibility GHR(X))={N2, ..., AJUA. We will show that
£ ={R{X)\XdA) is an uncountable rigid class of F-rings of type type(2).

Given distinct A/EN, SHR(X))?+6FHR(p.)), so that by (1.7a), R(X)"R(fi).
Since £ is then bijective A, E is uncountable. Now by (3.9b) ({AJ, {A2, ..., A}
is an F-pair, so R(X) is an F-ring, (3.1). Further, X has been chosen so that
XHp)&8FR(X)) for each rational prime p. As in the proof of (3.8), R(X) is homo-
geneous of type type (Z). Thus, £ is an uncountable F-class of homogeneous
groups of type type (2).

It remains to prove that £ is arigid class. Toward this end, we will show that
HOrank (F)=1 foreach RE££. Since N2, ..., Nf5 HR), Fp0= F7p0=FA1l...FA =
—RNi. Further, Ris a localization of J (1.4) and pOsplits completely in F, so there
are isomorphisms R/RN*J/N”Z/Zpo. Thus, pGrank (/?)= 1 as required.

Now consider distinct X, p£A and let /: R(X)-*R(p) be a nonzero homo-
morphism. Having p0O-rank one, any proper homomorphic image of R(X) is p0-
divisible. Since we have shown that type (F(g))=type (Z), / is a monomorphism.
Define the map F: R(X)—R(p) by F(x)=f(1)x—3(x). Then F(1)=0 means F=0,
so that/is a/-module homomorphism.

Finally, for distinct A g€zl, there is an integer ns 1 such that X(n)"p(n),
where X(n) denotes the nhterm in the sequence A Let M=A(n), and observe that
from our choice of SHR(A)), R(X)=R(X)M=R(X)Mk for each integer k while
R(fi)7iR(p)M. Since/ is a /-module homomorphism, f(R(X))—(R(X))Mk is a
subset of R(fi)Mk. But the Krull Intersection Theorem states that f) [F(/i)M]fc=0

for proper ideals R(fi)M of R(fi). Hence/(F(A))=0, proving £ is a r?gid class. This
completes the proof of the proposition. O
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THE EQUATION z,u,=0 FACTORS

£ 2

A. M. BRUCKNER (Santa Barbara), G. PETRUSKA (Budapest), D. PREISS (Prague)
and B. S. THOMSON (Burnaby)

In a recent correspondence with one of the authors, Lee Rubel asked whether
every solution (on the plane R?) of the partial differential equation

ou du

ox o0y
must be a function of one variable. For solutions in %2, the question is easily an-
swered: differentiate w,u,=0 with respect x and y, then multiply these equation
by u, and u, respectively, we obtain after addition (u%+u3)u,,=0. If in a point
PER? we had u,,=0 then ui+u;=0 would imply u=const, thus one finds that
a solution must satisfy u,,=0 on RZ whence u is of the form u(x, y)=f(x)+g(»)
and %g—;=f’(x)g’(y). If g’(y)#0, then f"'=0, so wu(x,y)=g(y)+constant.
In a later correspondence Rubel mentioned that W. Jockusch had obtained an
affirmative answer under the assumption that u€%*(R2).

The purpose of the present note is to show that Rubel’s question has an affirm-
ative answer whenever the equation makes sense; that is, whenever both partials
of u exist on all of R? In fact, our theorem shows a bit more. If # is continuous
in each variable separately and at each point in R? one of the partials vanishes,
then u is a function of one variable. We do not assume that both partials exist at
every point.

Our method is to first establish the result under the assumption that # is con-
tinuous and then to show that the hypotheses of our theorem actually imply
continuity.

LEMMA 1. Let u be continuous on a neighbourhood of a closed rectangle RcCR?,
let p be the lower left vertex of R, and let C be the component of the set
{9€R; u(q)=u(p)} containing p. Suppose that at each point of R at least one of the
partial derivatives exists and vanishes. Then C intersects at least one of the two edges
of R not containing p.

Proor. If C does not intersect either of the two edges of R not containing p, we
use the compactness of {g€R; u(q)=u(p)} to find disjoint relatively open subsets
U and V of R such that peU, the union of the two edges of R not containing p is
a subset of ¥, and {g€R; u(q)=u(p)}cUUV. (This follows, for example, from

* This work was supported by a grant from the National Sciences and Engineering Research
Council of Canada.
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the equality of components and quasi-components in compact spaces. See [1, § 47, 11,
Theorem 2].) Since  is continuous and R is compact, we may find ¢>0 such that
lu(q)—u(p)l=2¢e(lg,—pil +1g.—ps|) for every g€ R\(UUV). Let r be the largest
point in the lexicographic order of the set {g€U; |u(q)—u(p)l=e(lg1—pil +1g2—p2))}-
Since |u(s)—u(p)|=2e(|s;—pi| +|s2—ps]) for every scUN\U, r belongs to U.
Consequently, |u(g)—u(r)|=e(|lg,—ri|+|g.—rs]) whenever g is sufficiently close to
r, ¢.=r, and g,=r,. But this contradicts the assumption that #,=0 or u,=0.

LeEMMA 2. Suppose u, R, and p satisfy the conditions of Lemma 1. Then the value
of u at one of the corners of R adjacent to p is equal to u(p).

Proor. Let r be a corner of R adjacent to p such that the component C, of
the set {g€R; u(g)=u(p)} containing p meets the edge not containing p and having
r as one of the end points. Using Lemma 1 in a symmetric situation, we see that
the component C, of the set {g€R; u(g)=u(r)} containing r meets at least one of
the two edges of R not containing ». But then C,NC;#0, which immediately shows
that u(r)=u(p).

LEMMA 3. Let u be a continuous function defined in an open rectangle. Suppose for
each point of this rectangle at least one of the partials of u exists and vanishes. Then u
is a function of one variable.

Proor. If u is constant on all vertical lines, the statement holds true. Thus
suppose that there are two points p and g with the same abscissa and with different
values of u. Then for every point » with the same abscissa either u(r)#u(p) and
we apply Lemma 2 to rectangles with two corners at r and p to deduce that u is
constant on the horizontal line passing through r, or u(r)=u(g) and we apply the
same Lemma to rectangles with two corners at r and q.

LeMMA 4. Let u be defined on the plane R* and continuous in each variable sep-
arately. Suppose that at each point of the plane at least one of the partial derivatives
exists. Then every nonempty closed set PCR?® contains a portion on which u is con-
tinuous. ‘

Proor. Let pcP. Since at least one of the partial derivatives of u at p exists,
there is n=1, 2, ... such that for every ¢ in R® with |p—g|=<1/n and with the
same abscissa (or perhaps ordinate) the inequality |u(p)—u(q)l<n|p—gq| is sat-
isfied. For each n=1,2, ... let 4, denote those points of P for which the above
inequality holds with respect to the abscissas and B, the corresponding set with
respect to the ordinates. The Baire Category Theorem implies that for some » one
of the sets 4, or B, is dense in a portion Q of P. Suppose that it is 4,. To show that
u is continuous on Q it suffices to prove that for each point pcQ, :

u(p) = q»;l:l;?% e u(q).

Let p€Q and &=0. Because u is separately continuous, there is 0<&<g/(n+1) such
that if » has the same abscissa as p and |[r—p| <9 then |u(r)—u(p)|<e/(n+1). Let
q€ A, and satisfy |g—p|<d. Let r be the point with the same abscissa as p and the
same ordinate as g. Then |u(q)—u(p)l=lu(q)—u@)|+|u(r)—u(p)=n|lg—r|+
g/(n+1)=ne/(n+1)+¢/(n+1)=e.
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THEOREM. Let u be a function defined in R* and continuous in each variable
separately. Suppose for each point of R? at least one of the partials of u exists and
vanishes. Then u is a function of one variable, i.e. u,=0 or u,=0 identically.

Proor. By Lemma 3, it suffices to prove u is continuous. Let E be the interior
of the set of continuity points of #. By Lemma 4 we know that E is dense in R2.
We show RN\ E is empty. If this were not so, there would be, by Lemma 4 an
open squarc S such that P=S\E is nonempty and the restriction of # to P is
continuous. We show in fact that u, as a function on R? is continuous at each point
of P, and this implies a contradiction immediately. Let p€ P and ¢>0. Let H and
V be the horizontal and vertical lines through p, respectively. Then there is =0
such that if sc PUHUV and |s—p|<J then |u(s)—u(p)|<e. Now let gcE
satisfy the inequality |g—p|<d.

If u is not constant in any neighbourhood of ¢, by Lemma 3, # is a function
of one variable, say the first, on every rectangle T satisfying gcTCE. Let W be
the vertical line through ¢. It follows from the assumption of separate continuity
that there exists a segment JCW containing ¢ and a point s€e SNWN(PUH)
such that |s—p|<dJ and u is constant on J. The inequalities

lu(q)—u(p)l = lu(s)—u(p)l <&

establish the continuity of u at p.

In case u is constant in some neighbourhood of g there are two cases. Either
thereis r€ SN(PUHUY), |r—p|<d with u(r)=u(q); in that case |u(q)—u(p)|<e
or, there is r€ SMNE, |r—p|<d such that « is not constant in any neighbourhood of
rand u(r)=u(qg). In that case we apply the previous argument to r and once again
obtain |u(q)—u(p)|<e.

Thus # is continuous on all of S and P is empty, a contradiction.

REMARKS. (i) It is easy to construct examples to show that the assumption of
separate continuity cannot be dropped in the statement of the Theorem.

(ii) One can replace R? by any rectangular region in the statement of the Theo-
rem. The theorem fails, however, for any region that is not rectangular, even for
%= functions. On the other hand, any counterexample on a nonrectangular region
must be constant on some set with nonempty interior.

(iii) Finally let us point out that there is no analogous result in higher dimen-
sions. For example the function

xexp(—%-2), . 1if %2530

TGy 2) =10 if z=0
pexp(=z %), 9. z2<0
is in ¥(R®) and satisfies
SASY _,
dx 0y 0z

showing that u,u,u,=0 does not factor. Note that this example shows even that in
dimensions higher than two the equation u.u,=0 does not factor.
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A FEJER TYPE EXTREMAL PROBLEM

SZ. GY. REVESZ (Budapest)

1. Let us denote by ,, the set of trigonometric polynomials with degree =n» and
T =JZ,. C. Caratheodory and L. Fejér investigated several extremal problems
1

concerning nonnegative trigonometric polynomials. One useful result of Fejér an-
swers the following question: “How large can the coefficient of cos x be in a non-
negative polynomial of Z, with constant term 1?”” Formally, we define

k
S={g€T: g =0, g(x) = 1+ 3 b, cos nx}
4L
and ask for

o(k):= sup{b1 =% fg(x) cos x dx: ge.?;,}.

The assumption that g is a pure cosine polynomial does not restrict generality and
will be assumed in the sequel. Fejér obtained in [2] (see also in [3] I p. 869—870 or
[6] IT Ex. VI.52)

T
(1.1) (D(k) =2 COSs m.

In the present paper we calculate the following companion of the above problem
of Fejér. Let

(1.2) a(k):= sup {01 = % f S(x)cos xdx: fegf;},

where ¥

(1.3) Fo=F = {f€.7': f=0,f(x) =1+a,cos x+ f a, cos nx}.
k+1

If f€# and g€% we obtain in view of nonnegativity
1 =
0=— [fWglx+n)dx=2-ab,

and so taking supremum we obtain from (1.1)

(1.4) a(k) = 2/w(k) = 1/cos

Ak o
k+2°
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Our result shows that this estimate is sharp.

Theorem. We have a(/c) = - 1

cos K+ 2

The proof uses results of Caratheodory and Fejér. Finally we use some linear
algebra to calculate a(k). Computations will be marked out and omitted.

2. Let /€#" and F be defined by F(0)=1, FER[z] and Re F(eiX=f(x),
that is with/in (1.3) we put
2.1 F(z):= 1 2 "€R[z].
(2.1 (2) +arr+k+1a,,z [2]

The condition f=0 is equivalent to Re F*O in |z|sl. Therefore

(2.2) G(z):= ]l+./lé(_—iz; gR(2)

is regular for |z 1 and f SO is equivalent to

(2.3) IG@)I =1 (z[ ~ 1.

In a sufficiently small neighbourhood of 0, but then for all |z]-=1 we have with
some HER(z)

(2.4) G(2) = —i———s]—_’\'gz_—z)r -1 = bz+b*z*+... + bkzk+H(z)zk+1 (b:= aj2).

Denote the set of regular functions on some domain D by (9(D). Put
(25) «'(E):= max{s : 3G, tf€0(|z| < 1), |G| < I, G(z) = bz+...+bkzk+H (z)zk+1},

which exists in view of the Vitali—Montéi theorem. It is easy to observe that
(2.6)

Clearly, if u'(k)=r, then for any corresponding extremal function G M|G| =1,
and so the value of the Caratheodory—Fejér type extremal quantity
2.7 a(rn):= infislylp l9]: g(z) = rz+... +rk*+h(z)z1, g, h£0(\2\ < 1)}

«x

is exactly 1.
Now we can apply the theorem of Caratheodory and Fejér, cf. [1], [4] and [3] II.
p. 186, to the above special case. We obtain

(2 ) 1 = y4(r) - max {JA|: det(Cr—A/) =),
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where
rk . R ro
. oo
(2.9) cr=
r .0 00
0 .00 0

Taking into account that (2.9) has only real eigenvalues, (2.6)—2.8) entails

(2.10) @Kk) = ro:= min {fe > 0: det (Cr- 1)det (Cr+ 1) = O}
3. Now we determine the value of r0. Denote

(3.1 Pk(r):= —det(C,—), Qk(/*):=det(Cr+/),

and note that since

(3.2) r=mn{r o Fk(r)Q(r) =0},

we always have [/2<ro«=l. First we compute Pkand Qk for k=0, 1,2, 3 and 4.

PO(r)=1, R(N=r-1, A(r) = 1- 2 /1
r3 34 SoW =1, 6 iW = M+1, QZ(F)= 1
1 F3W = 2+¢1, P*r) = 1-3¥
630) = 1+r-r2 64(r)=1-r2
When calculating det (Cr—1) we can subtract from each column the next (starting
from the left) and obtain

—A 0 0o . . r 0
r -X 0o . . 0 0
0 r X . . 0 0
det (Cr—U)
r 0 o . . . -A 0
0 0 o . . . /o -A

Therefore, expanding by the last column, we obtain for the polynomials (3.1) the
determinant representations of order k below.

-1 0 . . 0 r 1o . Or

r -1 . r o -r 1. ro

(34) . . e VEREE ..
0 r . -1 0 o I . . 10

r 0. r -1 ro . .1
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Lemma 1. The polynomials (3.1) satisfy the recursive relations
PAI’) = Pk-2Ar)-rk-t(r), QKk(r) = Qk-2(r)-r2Qk-t(r).

Using (3.3) and (3.4) Lemma 1 can be deduced by elementary determinant
transformations — we leave the details to the reader. Now for any particular 1/2<
</e<1 denote

(3.5) [?2:=«=1-Y %]

A recursive recurrence relation

(3.6) X = X,,-r,, (n = 1,2 ..)

determines the sequence x,, (see e.g. [5], Ch. Y.4) as

(3.7) X, = AAn+BRn (n= 1,2, ..),

where A and B are the unique solution of the system
IA+B =x0

(38) lAa.+BR = xr’

In particular, if xOand X are real, then B=A is immediate. Denote
(3.9) g==arga = arctan\ 4r2—1€"0,y j.
Lemma 1 and (3.3)—(3.9) give that with some Alt Az, A3and A4 with

(3.10) argAx= (p, argA2= (p/2, argA3= p—n/2, argAd4— )

we have
(PN(r) = Alan+Alan= 2Re(Aa"), i*-iM = 2Re (Aral),
\Q2n(r) = 2Re (A3C), Q21 4(r) = 2 Re (Adar).

Since Re (z2)=0 is identical with arg(z)=%#2+ w1 (m£Z), we are led to the
equations

(3.11)

. . 2m+
P*n(r) =o if and only if , P (me Z),
s =o ifand only if | 22'::\1 (mez),
(3.12) -
Q*n(r) = 0 if and only if ©= = T (mez),
.. . . 2m
Qin-i¢ry - o ifand only if _ _ 2+l (mez).

Summing up, since 0<<p<a/2, we get
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Lemma 2. Fk(r) Qk(r)=0 ifand onlyifarc tan Y4r2—\—}"‘~ - with 1

C*“i-z z
In view of Lemma 2 the roots of the polynomial Pk(r)QKk(r) are
(3.13) ;1
2C0s Kt

According to (3.2) and (1.4) this proves the theorem.
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AN INTERPOLATORY VERSION OF TIMAN’S THEOREM
ON SIMULTANEOUS APPROXIMATION

KATHERINE BALAZS, T. KILGORE (Auburn) and P. VERTESI (Budapest)

In 1951, A. F. Timan [10] published a theorem on the approximation of a
g-times differentiable function by polynomials. Writing w(6) for the modulus of
continuity of f on the step 6, we have:

THEOREM A. Let fcC9[—1,1]. Then there is a sequence {B} of polynomials
of degree n or less, such that for |x|=1

Y= 1J" ( e | Lk
n +n2 el ko n g

1) -Be) =0

A refinement of this theorem laid down by R. F. Trigub [11] states that the
polynomials P, may be said in addition to satisfy for k=0,1, ..., g

V1—x?
n

W 1rom-re@ -0 L) oo

A further development of Timan’s result is the following theorem of Telya-
kovskii [9] and Gopengauz [3]:

THEOREM B. Let fcCl—1,1]. Then for n=4q+5 there exists a sequence of
polynomials { P} such that for |x|=1 and for k=0,1,...,q

f® (x)—B® (x)| = 0{[@}%"(0 (f(q); VITx{]}

n

From the standpoint of interpolation, we may say that the cited theorem
of Gopengauz—Telyakovskii gives polynomials which interpolate the derivatives
SO, O @D at the points +1, a fact which has made this theorem useful
in recent investigations of simultaneous approximation by interpolation (see, for
example, Szabados [8], Muneer [6], Runck and Vértesi[7], and Baldzs and Kil-
gore [1]). Thus, it might be of interest to establish a result, based on (1), which
involves interpolation at (not necessarily) distinct points clustered near =*1.

Additionally of interest in (1) is the fact that the step interval of w depends
upon the location of x, so that when |x| is near 1 the size of the step used in  de-
creases. However, in the applications just cited it seems in all cases necessary to

* Work supported in part by Hungarian National Foundation for Scientific Research, Grant
#1801 and by a travel grant from the Soros Foundation. Work completed in Budapest.
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replace this variable step by the uniform step 1n. It is possible to improve on
this uniform estimate for co(l/ri), as shown by D. Leviatan [4, Theorem 3]:

Theorem C. In the theorem of Trigub, it is possible to replace in (1)

by En-q(fw)> obtainingfor |*|s i and /c=o, q

) MW (x)-pW (%) = O + En-q(fE)}

In the following theorem, we show that both (1) and (2) can be combined with
certain interpolator properties.

Theorem. Let /EC*[—L, 1]. Let r—[~~~]> tmd a constant C>0
be given. Let points tOf,, ..., tr_In and sQt,  sr_It,, be given such thatfor each
HéTax {2r, C 1%}

-1 s ths...suM-l+c/n*

15 i0i =21-C/n2

Then, for each such n there exists a polynomial P, of degree n or less, such thatfor
|*|s| andjor k=0, ..., q

and

\fW (x)-PA(x)\=o{[*1* +7 ) "-co(<>;
or
\FKX)-P«fx)\ =0 {(fc~1+-L)e kE,,.
andfurthermore
E,,(x)=f(x) for *E{tO, tr-i,,,,sOm......
Iffor any specific n there exist one (or more) j and | such that

e — sj+1,n

then in addition

fm(tjd = Pm@®In for k=0, I
or respectively

Pm (Sj,n for k =0, l.

Proof. The first conclusion of our theorem is simply a restatement of (1) or
(2), which are already known. We may assume therefore that a sequence of poly-
nomials {i?} exists which satisfies (1) or (2). We may then define for each n a poly-
nomial Qnof degree 2r—1 which interpolates f(x) —P,,(X) at the points o trdt,
and s0,,, ..., The sequence of polynomials Pn+Qn will possess the desired
interpolation property. In what follows we will use the ad-hoc notation Mn(x)

I/j _x2 .
(() -------- —I—- , consistently through-

f W (Si..)

out the rest of the proof. It is possible to complete our proof, provided that one
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can establish for [x|s 1
©) Wwx)\ =0 +-"r)V,,(xX)}.

For then the inequality of Brudnyi [2] (cf. Lorentz [5, p. 71]) or the similar inequality
of Dzyadyk yields immediately

4) B?>(N=0{ppp+pj V,«}.
and for k=0, 1, q

[/NeW_p()(x)-6<)(D)i s [/« (*)-w*)[+|R®(*)] =

by use of (1) and (4), and our proof is completed. It remains only to establish (3).
Indeed, it suffices, by symmetry, to establish (3) only for half of the interval [—L, 1],
and we will establish (3) for —sjc®O. From here on, we will also simplify the
notation by dropping the cumbersome double subscripts.

We begin by writing Qmin the form given by Newton’s representation of the
interpolation on 10, ..., tr_Isjr_I5...,jO, obtaining

Sn(h>) +
+Qn(h, tQ(x-tQ+

+QnUr-> ..., 9 (x-t0Q...(x~tr- 2+

©) Q)= SAsr-i -], 1 (x-t0)...(x-tr-)+
+Qn(sr-2,sr-1, tr-1, ..., I0(x-70...(g-/r D(a- 5r_ D+
+Q,,(S0. seo»eY -l t -1, mmt0) (x-10)...(X-tr-i)(x-sr-1...(x-sD,
in which
Qn(h’*o):—Q”R'?n(t”)
and

M it m>t\_6n(h> h)~QnQi-Is =>0
h fo
for i—2, ..., r—1 The rest of the coefficients are given by

sncors 1 o) — On(-Yr-1" —1>e» h)  Qn{tr-n e» Q)
and for k=r—2, ..., 0 by

Qn(Sk> eeej'S'r—» tr-1i ees> ")

Qn($k* Nr-1? ees? M) + —17 > 1)
K~to
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We observe that Newton’s representation of interpolation is valid (if the func-
tion interpolated is sufficiently smooth, and 0 mis a polynomial) regardless of whether
the points coalesce totally, partially, or are distinct, or, for that matter, regardless
of whether the points maintain any order relation whatsoever. It is only necessary
and sufficient to interpret the difference quotients given above as the derivative
which they become in any eventuality when points of interpolation coalesce. Thus,
the following argument includes coalescing points from among {2, ..., 2. !} or
{2, ..., jr_1) without further discussion.

We will first establish estimates for the magnitude of the coefficients in (5),
Obtaining

(6) \Qn(ti,...,tO\ "M n{x)
for /=0, 1 and for arbitrary x£[—1, 1] and
@) IQAsk, /01=0(1)| QMr-i, tO\ = O (-")B r+LMn(x)

for k—+—1,..., 0 and for arbitrary *€[—1, 1].
To establish the formula (6), we note simply that

QnOi) = ( i) for /=0,..,/-1
whence
(8) \QM I=\(/-PX)\ =0 [+~ M n(t0)
and for /=1, ..., r—1 there exists by the Mean Value Theorem a point z( such that
/,,SZjSli and
9) k/-P) O!'= k- P)Owizn = O(-M)? n . (2)).

Now, since —ISquZiS/f.jSI+’\?—, we may replace M,,(t0 and Mm(z) all

by M,,(x), where x€[—L, 1] is any point considered desirable, obtaining the formula
(6) as a consequence.

To establish the formula (7), we first recall that for any j, k between 0 and
—1 we have

2C
(10 2-7 M -0 S|
Thus, we can say that

Qn(sr-1! fr-1> ee>h) _ Qn(tr-1s to)

(11) bu(sr-ii tr_i, ..., Ol Ui

= o(i)(ie,(j,-i, fr-i> w>h)| + 16 Bir-i> =-w=-to)]) —
= o([|<2mC?r-1a tr_1,..., N+ IR, (-1, h)\ +\Qn(tr-I, *) =
=omQn(s,-X, *,_,)!+12:O ... h)|.
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In the formulation of this estimate, we have used successively the identity

Q (S y t " t') A Qn(sr—h tr—l’ i) ti+l)_Qn(tr—1’ ot ti)
[t gh B BLTEr H RO Bls 7 Sl

Sp—1—

and the estimate (10). It is now clearly to be seen that the “worst™ term on the right
side of (11) is the term |Q,(%,—;, ..., %)|, and we thus can say that

1 9—r+1
10u 5o et o I = Oy oss o W = 0] 2,0

for any x€[—1, 1], using (6), and we have skown (7) for the case k=r—1.
One may in like manner establish that for k€r—2,...,0, one has

(12) lQn(slu sigsy Dp=Ly r » 4 RO to)l =5
=0(])“Qn(sk$ cees Sp—1s ’r—l’ L) tl)l+|Qn(sk+1’ ey Spm1, r s [ B to)”

and the desired result (7) follows by a double induction:

We assume that the result is known for all k’s, if r is any value less than the
given one (this suffices to estimate the first term), and that it is known for the given
r for all indices greater than k (this estimates the second term). Thus we arrive from
(12) to the estimate

1 q=r+2 1 q—r+1
168 o1 Sr=12 brm1s 55 L)| =70 (F] M, (s)+0 [F) M, (si41) =

o) ws

for any x€[—1, 1], and we have completely established (7).

Inspection of the expansion (5) of Q,(x) shows that the expression satisfies
the required property (3) term by term, provided that —l<x<—1+C/n%. On
the other hand, if —1+C/n*=x=0, then moreover 1—x=1, and

C =n*(1+x) = n*(1+x)(1—x) = n?(1—x2),
whence

(13)

1 1
— S
nyl—x2  yC

Therefore we may say, that for =0, ...,r—1 the i** term of (5) satisfies

q \2i
(14) o(L) - sy = o (LX) ol ) 4, 9.

In turn, we may estimate the first factor of (14) using (13), as follows:

(=2 _ (=) (T2 _
n2q—-2l neq—zi (V—_x_z q—2i

-5 =) 63
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after noting that q—2i>0, since I~ r—L Thus from (14) we derive the estimate

for the i)hterm of (6), in the case that —1+C/«2Sx S0, and the requirements of
(3) are satisfied for this term, if —~x"0.

If on the other hand we wish to consider any one of those terms of (5) occurring
beyond the (r—')_str we may employ the estimate (7) on the coefficient, substituting
into (14) using —1, to arrive at the same results. We have thus shown that the
estimate (3) is valid for all ;cE[—L,0], which suffices by symmetry. Along the
way, we have also shown that separate consideration of coalescing nodes is un-
necessary.

This completes the proof of the theorem.

Remark. In its original form, our Theorem contained a restriction on the
minimal distance between adjacent st's and /;’s. The possibility of omitting this
unnecessary condition was pointed out by J. Szabados whose remark induced the
authors to bring the Theorem into its present form.
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LOWER BOUNDS FOR PACKING DENSITIES

K. BEZDEK (Budapest) and R. CONNELLY™* (lthaca)

I. Introduction

If a packing of incompressible rigid convex objects is sufficiently compressed or
“compacted”, one expects that the packing density will not be small. The aim of
this paper is to show that certain conditions on a packing insure that there is at
least a lower bound on the packing density, which generalize some previous results
concerning such lower bounds.

One such condition is the notion of a compact packing of convex bodies due
to L. Fejes Téth in [6]. (Recall that a body in n-dimensional Euclidean space E"
is a compact set with nonempty interior, and a packing is a collection of sets with
disjoint interiors.) We say that a body A is enclosed by the bodies {#} if any curve,
connecting a point of A with a point sufficiently far from A, intersects |J Bt. Ifin

I
the packing each body is enclosed by the bodies having a point in common with it,
then the packing is said to be compact.
Two sets Sxand S2in E" are said to be homothetic if they are either translates
or there exists a point O (as origin) and a positive real number Asuch that

1.1 S2=ASt=Ne -0 =uyrP.-0), P~SJ,

where we always regard points as vectors. The homogeneity of a packing of convex
bodies is the infimum of the volumes (or areas in dimension two) of the bodies
divided by the supremum of the volumes. L. Fejes Téth [6] proved that, in the
Euclidean plane, the lower density of a compact packing of centrally symmetric
homothetic convex sets of positive homogeneity is at least 3/4, and he conjectured
that when the condition of central symmetry is dropped, then the bound 3/4 can
be replaced by 1/2. This was proved by A. Bezdek, K. Bezdek, and K. Bordczky
in [1]. Thus if d denotes the density of a compact packing of the Euclidean plane
by homothetic convex sets such that the ratio of the areas of any two sets is bounded,
then d” 12, Later K. Bezdek [2] proved that in E" («S3) the density of any
compact lattice packing formed by translates of a centrally symmetric convex body
is greater than 2¥(a-y(2I("~D+ 1) > ¥2. We shall generalize the theorems men-
tioned above. Namely we shall prove the following.

Theorem 1. If d denotes the density of a compact packing in E", n="2, con-
sisting of homothetic centrally symmetric convex bodies with bounded volume ratios,
then d~(n+ \)/2n, andfor ns3 there is a compact lattice packing of centrally
symmetric convex bodies where equality holds.

Partially supported by N. S. F. grant, number MCS-790251.



292 K. BEZDEK AND R. CONNELLY

Remark 1 It turns out that our lower bound (n+ 1)/2n is never sharp for
n”4, but we do not know of a suitable replacement. We omit the proof. See Griin-
baum [8], as well as our later comments about Griinbaum’s Theorem.

We say that two sets  and S2are homotheticly reversed if (1.1) holds for A
negative.

Theorem 2. Let d denote the density of a compact packing in the Euclidean
plane consisting of homothetic and homotheticly reversed convex sets with bounded
area ratios. Then i/sl/2.

Remark 2. When the condition of central symmetry is dropped, we present
the following problems: What is the greatest lower bound of the densities of com-
pact packings in En (s&3) consisting of homothetic convex bodies such that the
volume ratios are greater than a fixed positive number? What is the greatest lower
bound if we only suppose that our convex bodies are homothetic or homotheticly
reversed?

For dimensions n greater than two, the condition of being a compact packing
seems to be very strong. For instance, if each of the bodies is strictly convex, i.e.
each support plane intersects the body at a single point, then the packing cannot
be compact (for aé&3).

Thus we offer an alternative to compact packings, in dimensions greater than
two, that is more general at least for centrally symmetric convex bodies. Of course,
the penalty we pay is that the lower bounds are much lower than for compact pack-
ings. We say that a packing of E n by centrally symmetric convex bodies is a tri-
angulated packing if there is a triangulation of E nsuch that each vertex of the tri-
angulation is the central point of one of the packing elements, and a 1-simplex
between two vertices implies that the two corresponding packing elements intersect.
(Recall that a triangulation of a space X is a simplicial complex whose underlying
space is X.) In dimension two, for packings of centrally symmetric convex sets,
triangulated packings and compact packings are the same.

Theorem 3. Let d denote the density of a triangulated packing of homothetic
centrally symmetric convex bodies in En se2, with bounded volume ratios. Then
d™(n+1)/2", and there is a triangulated lattice packing of (congruent) centrally
symmetric convex bodies where equality holds.

Remark 3. Unfortunately for dimensions greater than two no packing of con-
gruent spheres can be triangulated.

By using a result of Hadwiger[10] and a result of Rogers and Shephard [12]
we can apply Theorem 3 to the case when the convex bodies are not necessarily
centrally symmetric. It turns out that any packing SPof translates of a convex body

B has an associated packing @ of translates of a centrally symmetric convex body
E, where each J5, corresponds to a unique such that MBj~ 0 if and only

if [1MEj7s0. We say that PP is a triangulated packing if and only if ®is a tri-
angulated packing.
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COROLLARY. Let d denote the density of a triangulated packing of translates of
a convex body in E". Then d=(n+ 1)/(2""].

We thank Branko Griinbaum for (gently) pointing out that our Lemma 4
below is essentially the same as his Theorem 1 in [8]. Griinbaum’s Theorem says
that if there are n+1 symmetric homothetic convex bodies in E" with pairwise
nonempty intersections, and each body is dilated from its center by 2n/(n+1),
then the dilated bodies have a common intersection point.

When Griinbaum’s Theorem is specialized to the case when the homothetic
bodies are translates (i.e. the homothetic ratios are all 1), Griinbaum points out
that his Theorem can be viewed (via Helly’s Theorem) as a Jung type of result.
Namely, in any Minkowski space (a finite dimensional normed linear space over
the reals) a ball of diameter 2n/(n+1) may cover, after a suitable translation,
any set of diameter =1, which is a result of Bohnenblast [3]. See also Leicht-
weiss [11].

On the other hand, Griinbaum also applies his Theorem to the problem of
the extensions of transformations [9].

We apply Griinbaum’s Theorem (Lemma 4 below) to both our Theorem 1 and
Theorem 3.

The main difficulty in Griinbaum’s Theorem is handling the homothetic ratios.

We include our own version of Griinbaum’s proof for two reasons. First, for
the sake of completeness, it is convenient to have this important result included
with the other ideas in our Theorem 1 and Theorem 3. Second, Griinbaum’s version
of his proof is very terse and gives no hint as to how he discovered the particular
relations he used. We show how to derive the factor 2n/(n+1) as well as explain
geometrically the two cases which Griinbaum considers in his proof.

II. Proof of Theorem 1

The following Lemma 1 is the key result needed in the proof of Theorem 1.
Lemma 1 is needed for Lemma 2, and Lemma 2 and Lemma 3 are used to prove
Lemma 4 which is used to find a point “close” to the packing elements that sur-
round a “hole”.

Let' (B, B, ..., B.+1)=0 be a simplex in E" Let A,, 455 +.., 4,41 beipositive
real numbers, and suppose we have a point £, ; (i<j) on each edge between B
and F; with the property that

(2.1) 2y(R—RE,;) = X(B, ;—B),
where 1=i<j=n+1, and points are regarded as vectors. Define 1 by
2(n—-1)
n+1 n+41 .
(3 2)(Z 47— (-]

(2.2) I=1+
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For any set x in E", p£En a a scalar, define
«X(P) = {Q\Q = &(P'-P)+P, P’iX).

Let Li denote the hyperplane containing Piti, P iii+i , P itn+l,

n+l
Lemma 1. Il ILAP"Q .
«=1
Proof. The idea is to find the intersection point P as the solution to certain
linear equations. This in turn will allow us to write P and | explicitly in terms of
matrices involving the /fs and A/s.
For any column vector p in E" let us define

the vector in En+l obtained by adding a one in the (n+ I)-st coordinate. (Regard
E" as the subset of En+lconsisting of the first n coordinates. All vectors are regarded
as column vectors.) Note that A, A, ..., PrH is now a basis for En+L

We now regard the hyperplanes Lt as the solutions to certain linear equa-
tions or equivalently as null spaces of certain linear functionals. Let f: £'+1—21
be the linear functional (uniquely) defined by /;(/;)=1, and f(Q)=0, for all Q
in Lj. We will calculate the//s next, explicitly in terms of matrices. Rewriting (2.1)
we get, for /</,

AN+ ANLG+AA+OTY-=hr

Applying/; we get, for iVy,
lj+*J,(Pj) =0, f(Pj) = —AjAfL
Define an (n+ 1)-by-(n+1) matrix F such that
fi(Pj) -V ul
(23) fPj = = +1

fn+APj). —A"An,

(Note that the first equality of (2.3) holds with any vector replacing 4 .)

We can encode this information in a single matrix as follows: Let J be the
column vector in Entl with all 1’s as entries. Then JJ* is the (n+ I)-by-(n+ 1) matrix
with all 1’s as entries, where ( )‘ denotes the transpose operation. J1J is the one-
by-one matrix with entry n+1. (We always regard a one-by-one matrix as a scalar.)
Also note that (—#/'+2/) is the (n+l)-by-(n+ 1) matrix with + I’s on the diag-
onal and —’s elsewhere, where | denotes the (n+ I)-by-(n+ 1) identity matrix.
Define another (n+ 1)-by-(n+1) matrix A by

A = (Pi, P2, ..., PnH).
Let D be the (n+l)-by-(n+1) diagonal matrix where the i-th diagonal entry is A.
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Then we rewrite (2.3) as

FA =D~1(-JJt+2I)D.
Then

F=D~1(-JJ,+21)DA~1

This is the desired explicit expression for F and thus the functionalst.
We next proceed to use this to find a similar expression for the intersection

A+ 1
point. Suppose P—TI1 XLi(Pi), for some scalar A Then for some QfcL,,

P = X(Qi-P i)+Pi = XQi+ (I-X)Pi,
and thus,

P = XQi+(I-X)Pi, f(P) — 1A
By the definition of F,

FP = —A-l])l, P=-(X-\)F~4 *-{X-\)AD~I(-JJ,+2I)-1DJ.

We can justify and simplify this expression for p by calculating the inverse of
{—JP +21), using the properties of J, for n>lI,

X (=33, +2D)~1= [—2(n— (n—1)7).
T

™ P = (A- 1) [2(n—)]"IAD~I[IP- { n - 1)/] DJ,
2.4) P = (X—D[2(—D]~1A [ {£b)D~I-(n-W]J>

n+1
since PDJ—_£I A, (2.4) is the desired explicit expression for P.
iz

Since the last entry of p is one, this gives us another relation to calculate A
Let F,,+1 be the (column) vector in E n+Lwith the last entry 1and all the other entries O.
Calculating the last entry of P we get

1= EmP = (A [2(n- IT'EUI A (i AD~1-(n- /] J.
But E:+A=/". Thus -
1= A=) [200—)]-1[('Z AP D ~4-(n-1)7*7],

2(«-1)(A-1)-1 = (“11A0C'LIAMD-(s1-1) (51 +1).

From this it is easy to calculate that A=A in (2.2). Thus for this value of A(only)
we see that (2.4) defines p and thus P.

Remark 4. In dimension 2 it is clear that P must lie in a. However in dimension
3 or higher, it could turn out that P lies outside a. This can be seen by calculating

+

n+1
the affine coordinates of P, tx, t2, ..., t,,#1 (i.e. P= t,i?) by the same method

as we use to find A Thus using (2.4) i=1

U= A—D[2(u—D]-1 [ATYAA )—n—1)].

i=1
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a-2)1r> "£ X,
( ) - J

*]

then Pt lies outside the Z-th face of a opposite Pt, because tt is negative. Figure 1,
below, shows the sets involved in Lemma 1, for n=2. Here it is clear geometrically
that P lies in a.

Fig. 1

There are other ways of calculating I, using Cramer’s Rule for instance, but
our method here seems as simple as any, since it does not calculate by explicitly
manipulating arrays of numbers, but uses closed form matrix properties instead.

In Griinbaum’ Theorem, his first case is when all the 0. He presents |
(he calls it p) as well as the affine coordinates of each point in B{that dilates to P,
and then he calculates that each point does indeed dilate to P. His second case is
when some 0, and he handles this differently than we do below.

In what follows we reinterpret the result of Lemma 1 in terms of expanding
half spaces. Using the above we define //, as the halfspace containing Ptwith bound-
ary Lt (recall Ltis determined by PM, P24, ..., [?_M, [ .+i, »,,, +).

Lemma 2. .r|| 2n(n+1)_: A;(/;)r(r"0.
1=

Proof. Note that since the harmonic mean is less than the arithmetic mean

we have
n-fl ny-1
((n+1)-12 AfO-“n+D-i 2 A
i=1

i=1

(n+iysfr*AzX1iV ),
i=1 i=l

n+1 n4x1

(N+1)*-(ci- )= 2(n+1)5(2) AN AF)—(*1)-
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Thus
2(n—Y

((84) (4 V) -(r2-1)

2(/»-1)

1=1+ 2(n+1)

=1+ = 2d/(n+ 1.

Thus

cmm C2«um+1)-144").
By Lemma 1 we get

n+1
(2.5) Dy 2u(n+1)-»BLA9*0.

We shall prove the Lemma by induction on n. It is clearly true for n= 1. We
shall assume the result for n—I1.

Note that 2«(«+ 1)~1 is a monotone increasing function for n>0.

Let fff denote the support half-space for <« whose boundary is the
hyperplane_ Ll spanned by the facet opposite Pt in a. le. L, is spanned by
n, r2 ... P+, Pi+l, .. i and

2. 'h = a.

(2.6) nw =a

We apply induction to each L? with HjOLf, j~i, replacing Hj, and crflLf re-
placing a. Thus

(27) 0* (arm?)"n 2(n-1)n-1Hjr)LH(Pj) c "f) HT'f) 2n(n+1)~41j(Pj).
i <
Thus by (2.5), (2.6), and (2.7) the 2(n+ 1) half-spaces
2n(n+\)-TtT, W, /=12,.,n+l,

have the property that every n+ 1 of them have a non-empty intersection. Thus by
Helly’s Theorem, they all must intersect, fini: hing the Lemma.

Let SP be a compact packing in En Let W, a hole, be the closure of a compo-
nent of the complement of the union of the elements of . Let 2Pwez2P be those
packing elements of S whose intersection with W is (n—I)-dimensional. W must be
bounded and SPWis finite since S is a compact packing and the elements of $
have volumes greater than a fixed positive number.

Lemma 3. For all Bi,B2\SPw, B"B"Q .

Proof. SUppOse not; suppose some Bx, B2£sPw are such that B ~B »—o
Suppose that the volume of B1lis not larger than the volume of 8 2. Then B2is not
a neighbor of Br, and there is a path from BLthrough W to the center of Br. Then
the ray from the center P, of B2 in the opposite direction from the center Pt of B1
completes a path to infinity that violates the compactness of SP.

To see this suppose not; suppose some neighbor B of Bx intersects B, at Ri
and the ray at P. Then construct 0» on the line segment (QIt P) so that the tri-
angles Q1PLP and Q2P2P are similar. Since B is convex, Q2 must be in B. But Q2
must be in the interior of B2 as well, since the coefficient of homogeneity for B2
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is larger than or equal to the coefficient for Bx. Packing elements cannot intersect
in interior points. Thus B cannot intersect the path defined above.
Thus BX\B2~$ for all Bx, Bra&'w. See Figure 2.

Remark 5. For Lemma 3 in the plane, we do not need the condition that the
elements of SP are homothetic. We can simply choose a ray going to infinity lying
between the two common support lines of Blt B2, where BXC\B2=9.

Fig. 2
Lemma 4 (Grinbaum). M 2n(n+1) 1Bi(Pi)?40, where Pt is the center of B

Proof. By Helly’s Theorem we need only show the result for n+ 1 elements of
2PV, say Bt, B, ..., Bn+l. We can also assume that the centers Px, P2, P+l
are affine independent and form a simplex a in E". By Lemma 3, we know that
there is a unique point Pij= B iC\BjC\{Pi, Pj), i<j, where (Pt, Fj) is the line
segment between ij and Pj. Let //, bethe half-space containing /¢ with PitJ, j™i,
on the boundary of Ht. Clearly //;Mcrc”;. Lemma 2 implies that

0™ "n 2u(n+1)-14|(70MN<yc "n, 2 1)~1Bi(PJ,
n 2u(w+1)-18| (T0M1<yc *n, 2n(n+1)~1Bi(

finishing the Lemma.

For what follows, we need to compare volumes, and it helps to consider a
slight generalization of the notion of the volume bounded by a surface. Let P be
a pointin E", and let S be an oriented surface possibly with boundary. For instance,
S could be a polyhedral surface with an orientation, or the boundary of a com-
ponent of the intersection of the complements of a finite number of convex bodies.
In the case of a polyhedral surface we define the signed volume from a point P to
5 by

Vol [S, P] = (n1)-1 2£!Sdet (Px—P, P2-P, ...,Pn-P),
<

for cr=(Pl, Pr), an oriented simplex of S. “det” denotes the determinant, and
vectors are n-by-one columns, as usual. If S'is a closed surface enclosing a bounded
region in En then Yol [S, PJ is the volume enclosed by S. By taking limits of
polyhedral surfaces, we can extend this definition to the case of more general sur-
faces, such as the piecewise convex surfaces mentioned above.

We say CczEn is a conefrom PE£En if iC(P)=C, for all 0<?. For any set
X let bdy (X) denote the topological boundary of X. For a convex body B we
choose an orientation on bdy (B) such that Vol [bdy (B), P] is positive and thus
equal to Vol (B), the usual Euclidean volume.
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Lemma 5. Let C be a conefrom P in E", and B a convex body containing P in
its interior. Let POdEn and A>1 be such that PGEAB(P). Then

(2.8) (A-1) Vol(BfIC) = (2—1) Vol[bdy (B)DC, P] * Vol[bdy (B)~DC, FQ,
where (*)~ indicates the opposite orientation.

Proof. We will show the lemma first in the case when C and B are both poly-
hedral. The more general case follow by approximating the surfaces with polyhedral
sets. Furthermore, by subdividing the boundary of B into simplices, we can further
reduce our considerations to the caseswhen BDC is a simplex a. We simply sum
over all simplices on the boundary of B, where each term is the case when C is the
cone from P over each simplex in BDC. Let H denote the half-space containing a
with boundary L containing the face opposite P. Let d denote the distance of P

from L, and let dOdenote the signed distance of FOfrom L, where d0is negative if FO
is in H. Then

nVol (ANC) = i/Vol*jiLnC), wuVol [L~DC, PJ] = doVol«-! (LDC),
where Vol,, ! is the (n—)-dimensional volume in L.

Then,
d+d0™ Ad, dOs (A—)d,
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since POEXB(P). See Figure 4. Thus
n Vol [L- MC, PQ] = dOVol. x(LHC) =8
S (A-JdVolrOLnC) = (A-1)n Yol(AMNC) = (A-I)n Vol (ANC).
(2.8) then follows, finishing the Lemma.

Proof of Theorem 1 The idea is to compare the volume of the holes of the
packing to the volume of the packing elements using Lemma 5. We get our estimate
to be the sharpest when there is a point sufficiently near to all of the packing ele-
ments next to the hole. Lemma 4 guarantees that there is such a point.

Let W be a hole for the compact packing SP. Recall that SWis the collection of
those elements of SP whose boundary and W intersect in an (n—I)-dimensional set.
Let Pi be the center of Bt, as in our previous notation. Let \ denote the cone over
BiOW from Pi, namely

L =T
where (Q, i?) is the line segment between Q and Pt.
By Lemma 4 there is a point

POE M 2n(n+ D)- 1A%(P0.

By Lemma 5 for A=2a(n+1)-1, and BtESPw,

Vol [bdy (B~ MW, PO =(n - 1)(n+1)-1Vol (V).
But

: 2 Vol [bdy 0Bf)- MW, Pg] = Vol (W).
BIZAW

Thus
Vol((f)M(«-1)(n+ir BZZWVoI(F;).

Let V= U VWi. Then in WUV

2n  ~ (n-D(n+1)-1Vol(K)+ Vol(F) “

Vol (V) Vol (V)
- Vol(W)+Vol (V) ~ Vol(mjF)'

Since the sets {WUV} have disjoint interiors and cover the complement of
the packing elements of $and since the volume ratios of the packing elements

are bounded, we have that the lower packing density of P is =—" —e

To complete the proof of Theorem 1, we need the following:

Construction 1. Let
B = {fo.. x)jixl+..+x,| BLx(=si, /= 1 ...,n},
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for n=2 or 3. Let Pbe the packing defined by taking translates of B by the lattice
n= {2kt ..., 2k,,)|/cj, kn are integers}.
Figure 5 shows B for n=2 and un=3.

Fig. 5

We claim that 3?is a compact packing of convex symmetric bodies with density
(«+ 1)/(2w) for n=2 and n=3. Itis clear that 3Pis a packing of convex symmetric
bodies. It is easy to_check that by translating each facet F of the square or cube to
the opposite facet F that_the relative interior of BOF is translated into the rela-
tive complement of BOF and the two sets cover the facet F. Thus the two sim-
plices that make up the complement of B in the cube or square are holes in the
packing 3P. Thus SPis a compact packing. The density is easily calculated to be
(n+ 1)/(2n) for n=2 and wn=3. This finishes the proof of Theorem 1

L. Proof of Theorem 2

Let SP be a compact packing of the Euclidean plane by homothetic and homo-
theticly reversed compact convex sets such that the area of all the packing elements
have a positive lower bound.

Recall that a hole IF is a connected component of the complement of the union
of the elements of SP.

By Remark 5 after Lemma 3 each w is the connected component of the com-
plement of a finite number SIt ..., SNE3P, where for iVy. Since
each Si is a convex set with non-empty interior in the plane, each set of 3 of the
Si’s, say s4, s2, S3must bound a connected region in the plane. If S4is in this bounded
region then w is not connected. If s 4is outside this region it is not part of the bound-
ary of W Thus n=3.

Let Ci be the centroid of St, /=1,2,3. Let /,/=1,2,3, zV/. If Stand Ss
are homotheticly reversed we define PU}IPJti to be the unique point on the line
segment from Cfto Cj in St(TSj. Note in this case PtJis the center of dilation
which moves St to Sj. If Stand Sj are not homotheticly reversed, then we choose
Pi'j to be any pointin  TSj. However, if S(and Sj correspond to another hole
we must be careful to choose the same PitJ.
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Let H(W) be the hexagon whose boundary consists of the union of the line
segments [Cif Pitd\, i”j, i,j—1,2,3. See Figure 6.

Note that if at least one of the sets is homotheticly reversed and at least one is
not homotheticly reversed, then two pairs of adjacent sides of the hexagon are
colinear, and we can think of our hexagon as a quadrilateral.

Lemma 6. The collection of hexagons {H(W)\W is a hole of gP} have disjoint
interiors and the union covers the complement of the union of the elements of gP.

Proof. £2A[ BIUS2US'3U # ()] is connected and unbounded, thus H (W)
must contain the bounded component of J?A15 1USjUS'3. l.e.,, WcH(W). Since
there are nq unbounded components of the complement of the union of the ele-
ments of gP, the union of the hexagons must cover the complement of the union of
the elements of ¢P.

By the construction of Sx, S2 SfgP for each hole, we see that no H(W)
contains an element of g°. Thus H(W) contains no centroid of an element of ¢P
and no PiyJ. Since no two of the segments that define the boundaries of the hexagons
can intersect except at their endpoints, any two hexagons must have disjoint interiors.
This finishes the proof of the Lemma.

If we know that the density of the packing gP, when each element is intersected
with one of the hexagons, is not smaller than 1/2, then the overall packing density
of gPis not smaller than 1/2. Thus the following Lemma finishes Theorem 2.

Lemma 7. For each hole W of ¢P
2(area W) area//(IT).

Proof. If all three of the packing elements corresponding to W are homothetic
or all three are homotheticly reversed, then the methods of A. Bezdek, K. Bezdek,
and K. Boroczkyjl] imply the result.

Thus we are left with the case when one of the packing elements is different
(homotheticly) from the other two. We assume that Sx is homotheticly reversed
from S2and Ss (and thus S2and Ss are homothetic). Since affine linear transforma-
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tions take centroids to centroids, preserve area ratios, and homothetic pairs of
sets, we may also assume that the triangle (B ,, B s, P;;) is an equilateral triangle
of side length 1. We must carefully estimate the area of W. Let Cj, for i=1, 2, 3,
be the point in S; furtherest from the line through B ;.,, £,;-, (indices mod 3)
on the same side as W. The quadrilateral (C;, B,;+,,C},B,;-,) is contained in
S; and roughly speaking we will use its area as a lower bound for the area of H(W )N
N.S;. See Figure 7. Note that it might happen that C; and C; are on the same side
of B 415 Bi-1-

Let absolute value of 4; be the altitude of (C;, B,;+,, B.i—;) from the vertex C;.
We define k; to be positive if C; and C; are on opposite sides of (B, ;y, B,;i-1),
otherwise A; is negative (or zero if C; is on the line throvgh B ;.;, B;_,).

Let h;>0 be the altitude of (Ci, B,;_,, B,;+,) from the vertex C;. We claim:

area[H(W)NS;] = —;— (h;+ h).

In case C; and C] are on opposite sides of the line through £ ;_, and B;,,, or
C; lies inside the triangle (Ci, B,;_y, B,+1), then %(h,-+h$) is the area of the

quadrilateral (C;, B,;—,,Ci, B ;+,) which is contained in H(W)NS;. On the
other hand, it is easy to see that when h;<O0, since |h;j|=h;, the claim still holds,

since the triangle (C;, B ;.,,C;) has area zi(h,--i-h{) and is contained in

H(W)NS;, assuming (without loss of generality) that the segments (C;, B,;;,) and
{Ci, B,;-,) cross. See Figure 8.

We now must estimate h;+h;, for i=1, 2, 3.

We observe that if L is a support line for S;, i=1,2,3, and b; is the breadth
of S; in the direction perpendicular to L, then d(C;, L)=b;/3, where d(C;, L)
is the distance from the centroid C; to L. (See Bonnesen and Fenchel [4], page 52.)
In particular when L; is the support line through Cj parallel to B;_,, B,;.,, then
d(C;, L;)=h;+h;. Thus we now look for lower bounds for the breadth in the direc-
tion perpendicular to the line through B ;_,, B,;4,. :
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We use the homotheties to find points far away from C\ in the given direction.
Let O i=1 2,3 be the absolute scalar constants of homothety for St. That is,
the ratio of the lengths of correspondig line segments from S, to Sj is X-JXj. Recall
Sk is homotheticly reversed from S2and S3. Let hkJ: Sk*-S, be the homothetic
dilation that takes the set Sk onto St, where k~I, k, /=1,2, 3. Define Pfol=
~hki{Pi J). Note that P*f is defined only when PitlP Sk, i.e. i—k or j=Kk.

We now compute the distance of P&i from the line through P23, P12. See
Figure 9.

Recall J—~12 and hit3(PIt3) —PU3
(3.1) \PI'E-PiJ _ \ni2¢ri,s)-niii(pi,z)\ = 3—nal ~~j--
But

PLE —",s(Ji,s) —"12"3,1(/5,3 —h33(PIt3) —PE3,
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since a composition of homothetic dilations is a homothetic dilation. Then

(3.2) /W -4M = pa-g%*1 =

—|n*.(*bl-*MNe .3)1 = -R;—|P1>S—P 3l ::-&3—-

Each of the above line segments makes a 60° angle with the line through Pli2 and
Pii3. So by (3.1) and (3.2),

y3 .
(.IPtf-PiA+IPtf-PI-ZD+K w b9,
(33)
Similarly

(34)

- (x +7 ) +ht - b2- 3(hi+hil

YU {~ +T )+ K- b3- W3+K)-
We get an estimate for hl+h[ by calculating P33.
109%1—"1,31 — 17831 (#2,3)  73,1(-",3)1---~Y~\Pi 3~ Pl,z2\ — ~
Thus
L -~-PrA +K"b,,

@9 [ -b 4B b 3(hl+hi)
Adding (3.3), (3.4), and (3.5) we get

, Hy Y I 3TA J%]+h[ Nt e =3 (hl M2 03 . h3. by,

Since 4L+Ap§—' 2and 4"M+42" -2, we Set

N
4+ 2 K a 3§2| hi+h'i), 2/34&3 2h +2 2 1_1K-
But h't*O, for all /=1,2,3, so
3
2/373 h,+hi).
iiﬂl +hi)
Thus

U-l0 2-UW - g i area[A((T)ns5;] =area[a(K)M(u S)].
= i=1

1 n i=i
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But Pfc{Pu ,iy ,PSl) and

Thus area w sS [N Jjlgsarea [A(LT)M(# S)]- Thus

2arealPs area [(FI(lT)I'I(igllS,))UIF] = area H(W)

finishing the Lemma and the Theorem.

IV. Proof of Theorem 3

We repeat here the same notation of Section Il, where (Px, Pn+l)=cr is
a simplex in En, and A}, A, ...,Antl are positive real numbers. P (/</) is a
point on each edge (P, pP-) between p and pj with the property that

Xj(Pi-P i,j) = Xi(PUj-Pj),
where 17/<y'*m+ 1 We regard P j=P Jii.
Lemma 8. Vol [Conv Vol a.

Proof. Without loss of generality, by applying an affine linear transforma-
tion we may assume that each edge has length 1. We will proceed by induction on n.
For n=1 and n—2 the statement is trivial and follows from the analysis in Sec-
tion Il respectively.

Call IF=conv {P,j}i*j. Let T,=conv [ij {/?,;}]. Then

n+l
(4.1) a= WUU P*rt,

where p*zt is the convex hull of p and t;, and each of the sets in the union has
disjoint interiors, p* zt is the /-th “corner” of a outside W. See Figure 10.

We now apply Lemma 2 to find a point such that for all i=1,2 , n+l
the half-space with ztin its boundary containing P when dilated (from P) by 2n/(n+1)
contains & Fix /=1, 2,..., u+1. Let It be the altitude from P in P*zt. Let /f
be the altitude from a in a*t, (the convex hull of a and t;), where, if a is on the
same side of ztas P, then /;<0, and a*zt is regarded as having negative volume.
Then
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~O

and

n—1
4.2) Voléxt, = = Vol Bx1;.

Let 6,=(B, ..., B—y, B4;, ..., B4+;) be the face opposite B. Let

Wi = conv (R, }i+jsrsi C O
Then

n+l n+1

W= éxWULU é=*r1.
i=1 i=1

Let h; be the perpendicular distance of & from the plane of ;. Since each pair of
sets in the above union have disjoint interiors, we get

n=1 n+1
VOI W= 2 %h‘ Vol,,._l W""‘ 2 VOI 6‘-* Tis
i=1 i=1
where Vol,_; denotes (n—1)-dimensional volume. By induction

Vol,_, W, = [1—-2,,—"_—1) Vol,_,0,.
Thus using (4.2)

Vol W= "+lf’i[1——"—]v O, s TR ) IR
o -—ié; = -1 Oly-10; ig; | i*XT) =
( ] VO] n+1 My, e
==
P 2n—-1 1 -
n+1 3
since Vol,_, 6;=Vol,_, oy, for all i. Since ¢ is regular 3 h;=any altitude of
0. Thus {e=1
n+1
b E L TR
n i=1
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By (4.1)
"S Vol (J4*T) = Vola- Vol W,
>
Putting this together we get
Vol(W)" 11— t)Vola+ (Vol a- Vol W),

2n
T4y VOIM AN\-2~y - 271)Vol Vol Vol<r,

finishing the Lemma.

We now can show the density estimate in Theorem 3. If a is an n-simplex in
the triangulation for the triangulated packing PP, then each vertex [ of o is the
center of some body B If Xt is the constant of homothety for Bh then points

n+l
PiJ(:(Fi, PjynBiHBj areasin Lemma 8 Thus P*TtdB, and WU (J Bida, and
ilﬂlNQ Mmao(r\* So

Vol (o-\fT) Vol ('i'yi Billc), Vola~\o\W * Vol (}gi BtMa),

Vol [U B.Clo]
1=1

n-L1IN A A N+1
1-—-- J-Jvolff ~ Vol[U A,MN«r], o T Voler
Thus M;,l ~d, where d=density of 2P.
To finish the Theorem we rely on the following:
Construction 2. Let r=¢(2r, ..., 2,)z] is an integer 1=1,2,..,ri)dEn

be the usual integral lattice. Let Ccf be vertices of the unit cube, i.e.,
C={(zi, z,)[for each i, z;=0 or 1}. We define a relation on ' by saying for
P, Qer, P-<Q if Q—P£C. Note the -< is a partial ordering on C, but not
all of I,

We now define the triangulation 9~ of En A simplex a={PL, P1) of ST
consists of PidT such that PL<P2<..Pm and Pi<Pj if Is/<ysmsn+]l.
l.e., well-ordered subsets of ' are the vertices of simplices of 3. This defines a well-
known triangulation of E napparantly originally due to Freudenthal [7]. See Todd [13],
for example, for a proof that we have indeed defined a triangulation.

For P a vertex of ST, we claim that the star of P in dr=st (P, -3T)=
= U{ff|tx€" P is a vertex of a} is the convex body BP defined by BP=P+
+{(*, ..., Xp)IIXi[SI, IXi-XjIML ivy, ['y=I,

To show this claim we assume, without loss of generality, that P=0, the
origin. If a simplex of Z, ad st (P, ST), then we can order the vertices of a so that
P-<...-<0=P-<...-<P,#1L (possibly with repeated P/s). All the coordinates of
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Pi, ..., Pi-x are 0 or —1, and all the coordinates of Pi+1, Pl are O or 1 In
order for Pr-<P,+1 the non-zero coordinates in the two collections must be disjoint.
Thus the vertices of a are in BOand hence o(zBu.

Suppose Q=(x!, ...,xnN£Bu. By reordering the coordinates, we may suppose
that x1s..,sxj.1sO=xisx i+ls,..sx n. Let
Pj=(~1e=>-1.0, =1 .., 01,
where the firstj coordinates are —1, and the rest are 0. Let Pt=0.
Pj=(0,...,1,1), j=/+1  n+1
where the last j coordinates are 1 Then defines a simplex
o=(Pi,, ..., ij#)) in ST, and ais in st (O, ST) since Pi—O.
To show that Qs in st(0, 2I) define ¥, /=1,..., u+l, by
K =x2-X!
U, Xi-I~X-2
0= - X,-!
U —i~xntxl
h+i = Xn Xn—%
K= xitl~ x|
It is easy to check that r,s0, for all i=1,..., n+l, i2_1 and i_2I KO = (2-

It is clear that 2I" is symmetric about any vertex of ST. Then we define a sym-
metric convex set BP=P+-"-B0 for each P£I. This is the convex hull of the

midpoints of all of the 1-simplices with P as one vertex. BPis symmetric since 2I"
is, and each BPis congruent to BQ P, Qar by a translation. Each BPI(T where
a"3~,P7a, is precisely the comer defined by Ax=12=...=2,,+1 in Lemma 8. Thus
the density is exactly (n+1)/2". See Figure 11

This finishes the proof of Theorem 3.

Remark 6. It turns out in Constmction 2 that the sets BP are all (congruent)
zonotopes. They are the convex hull of a cube of side length 1/2 and the reflection
of that cube about one of its vertices.

Note also that although no triangulated packing of equal spheres exists for
dimensions greater than 2, in dimension 3 we can find a triangulated packing with
just two sizes of spheres. Take the usual close lattice packing of equal spheres with
radius 1 say. Joining the centers of adjacent spheres we get a 1-dimensional com-
plex that can be regarded as the edges of a tiling of Ez by regular octahedra and
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tetrahedra of side length 2. In the center of each octahedron place a smaller sphere

of radius /2 —1, which touches all 8 of the surrounding spheres of the regular
octahedron. This then yields a triangulated packing of E3 by spheres of just two
sizes.

Proof of the Corollary. Let O be the origin in the interior of a convex
body B. Then the Minkowski average of B and —B,

i =Tb-\b~{\x-\,\x,kb)

is a centrally symmetric convex body. If Bt=pi+B and Bj=pj+B are translates
of B with disjoint interiors, then by a Theorem of Hadwiger [10] Bt=pi+S, 3j=
=Pj+B have disjoint interiors and intersect if and only if B{and B} intersect, as
mentioned in the introduction.

A theorem of Rogers and Shephard [12] says that

\o\B "-"-VolIB.

This then yields the Corollary via Theorem 3.
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RESTRICTIONS OF COMPACT NORMAL OPERATORS
J. PAEZ (Carabobo), Z. SEBESTYEN (Budapest) and J. STOCHEL (Krakow)

A recent characterization of subpositive and subprojection suboperators ap-
peared in Halmos [1], Sebestyén [2], [3], Sebestyén—Kapos [4]. The aim of this
note is to show that the characterization, problem of restrictions of compact normal
operators can be solved by referring to the spectral theorem and to the extension
process for subprojection suboperators given in [3].

Let H be a (complex) Hilbert space, HO a linear subspace of H and A0: HO-*H
a linear operator. The problem we shall solve is: when does there exist a compact
normal operator A on H such that AOis the restriction of A to //,,? This is a special
case of Problem 1 posed by Halmos in [1]. However, the solution is not formulated
in terms of the geometric behaviour of A,,, as desired there. Note that ([3]) a sub-
operator Q: HQ—H is subprojection, i.e. s is a restriction of an orthogonal projec-
tion P on H, if and only if the following identity holds:

@ WQX\2 = (Qx,x) for x in tf0.
The smallest such P satisfies further (by the construction in [3]):

2 Range P ¢ Range Q.

Theorem. The suboperator AOQ: #,,-»# has a compact normal extension to H
if and only if

(i) there exists a finite or infinite sequence of subprojection suboperators
Q. HO H, nsO such that rank for 0, (range Q,}ns0 is pairwise
orthogonal, and
(3) *= 2Q»x for any x in tf0,

nso

(i) there exists a corresponding bounded sequence of complex numbers {z.3na0
with A0=0 as the only possible point of accumulation and such that

4 AOx = nZ A.Qnx for any x in HO.
So
Proof. The necessity of (i) and (ii) is obvious by the spectral theorem for
compact normal operators. To prove their sufficiency define the projection operators

P, as follows. For n>0 take the smallest positive extension of Qnin [3] as Pn. By
(2), P, is offinite rank for 0. Itfollows from (i) that the series 2_I converges in
ni

the strong operator topology. Define PO by
(5) POx = X_r12ei Pnx for any x in H.
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Let A be defined by
() Ax = 2 KK* for  x inH,

The operator A is easily seen to be a compact normal operator on H. Further, A
is an extension of AO. This follows from (4) and the fact that every P, is an extension
of Q,,. Indeed, for n—0 we can apply (5) and (3), and the proof is complete.

Corollary. The suboperator A0: HO—H has a compact selfadjoint (positive)
extension if and only if the sequence {Ajngo in the Theorem consists of real (positive)
numbers.

This work was done while the first and third named authors were visiting the
Department of Applied Analysis of the Edtvds University Budapest.
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A GENERAL RIEMANN COMPLETE INTEGRAL
IN THE PLANE

Z. BUCZOLICH (Budapest)

Introduction. In [6], [7] W. F. Pfeffer defines a multidimensional Riemann
type integral such that the divergence of any vector field continuous in a compact
interval and differentiable in its interior is integrable, and the integral equals the
flux of the vector field out of the interval. In Section 7.4 of [6] the author men-
tions the possibility of a definition of an integral through special partitions. This
integral is a natural, simple alternative of his integral. In this paper we solve the
problem of the existence of special partitions in the plane. Unfortunately we were
unable to use our method for higher dimensions. Definitions of Riemann type
integrals are based on the ideas of Henstock and Kurzweil (cf. [1], [2] and
[3]). Mawhin’s integrals in [4] or [5] are suitable generalizations for the
divergence theorem but they lack the additivity, which one expects from an integral.
In the first section we prove the existence of 10~3-regular, d-fine and special parti-
tions of an interval 4cR? (Theorem 1.1). In the second section we give the defini-
tion of the Riemann complete type (GRC) integral. We prove the additivity of
this integral (Theorem 2.1). Finally we show that this GRC integral integrates the
derivatives of functions of intervals (Theorem 2.2). We remark that all lemmas,
propositions, theorems and corollaries in Sections 3—6 of [6] can be proved
for the GRC integral as well. Namely the GRC integral is almost everywhere dif-
ferentiable and the divergence theorem as stated in [6, 5.5] holds for the GRC
integral.

Preliminaries. By R we denote the real numbers. Suppose that x=(x;, x,)¢R?
and y=(),,-)€R? then dist(x,y):=max {|x;—y;|: i=1,2}. We shall use
exclusively this metric in R2 If EcR? then E°, bE, diam(E) and |E|
denotes the closure, the boundary, the diameter and the Lebesgue measure of E,
respectively. If Ec AcR? then by int (E; 4) we denote the interior of E in the
subspace topology of 4. All functions in this paper are real valued. The term
measurable means Lebesgue measurable. By an interval 4 we mean a set of the
form A=la,, b;]X[as, bs]=(ay, a;)+[0, ;1 X[0, ¢,] where ¢;=b;—a;>0 for i=1,2.

If A is an interval then the set of vertices of 4 will be denoted by v4. We denote
[0, 1]® by 1. We say that the intervals 4 and B are non-overlapping if int (4; R%)N
Nint (B; R*)=0. If the intervals A;c A4 (j=1,...,k) are non-overlapping then
we say that the set D={Aj: J=1,...,k} is a subdivision of A4. If furthermore
the subdivision D fulfills that 4=U{4;: j=1, ..., k} then we say that D is a divi-
sion of A.

DErFINITION 0.1. Suppose that ACR? is an interval then the parameter of
regularity of 4 is the number r(4)=the length of the smaller side of 4/the length
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of the longer side of A. If r€(0, 1) then we say that the interval A is /~regular if
r(A)~r. Ifp is a subdivision of A then r(p):=min {r(Aj): j —1, A} We say
that o is /~-regular if r(D)~r.

Deflnltlon 0.2. Let A be an interval in R 2 A partition of a is a collection

pP= j)‘ ., (Ak, xK} where D (P):={Ak, ..., Ak} is adivision ofa and xjdAj,
j=| ..... k. Given an /€0, I)> we say that p is /-regular whenever b (p) is
/--regular.

Definition 0.3. Suppose that v4c:R: and the function <& A —0, +°°) is
given. We say that the pair (A' x) is «&fine and special if xeva' and

A c {y: dist(x,y) " <SX)}.

A subpartition p of A is called «5fine and special if every (Aj, xfigp is <5fine and
special.

Definition 0.4. If we have a fixed interval A and pP={(A1, X,),..., (Ak, xK} IS
a subpartition of A then F(P):=U{AjIj=1,..., k} and G(P): —mt(F(P); A),
plainly F(pr) is closed and G (P) is open in A.

If aset 5¢czR: consists of finitely many intervals then we can define regular,
«&fire or special subpartitions and partitions of B analogously to the above def-
initions.

. The partition theorem

Theorem 1.1. Suppose that ™4CR2 is an interval and & A —0, +°°) is given.
Then A has a \0~3-regular, 8-fine and special partition.

First we prove this theorem from the following lemma, and then we shall prove
the lemma.

Lemma 1.1. weputif:=1/20. suppose that &/ —{0, +°°) and H : = {x£1: <5(X)}.
Then there exists a d 2-regular, 8-fine and special subpartition P={Aj, xfi:j= l,..., k
of | such that HcG (P).

Proof of Theorem 1.1. We put H,:={x£A: 8(x)~l/n} for n=1,2,.... We
want to define an increasing sequence p, of subpartitions of A with the following
properties for every n=1, ...:

(I) HnuG(Pnr) ¢ G(Pn),
(2) Ppnis a 10_s-regular, «<5fire and special subpartltlon of .

Since <5(x)>0 for every xeA we have A= IJ H,c |[J cpP,). Using the com-
n—1 n—1

N
pactness of A we can choose a natural number N such that A = IJc(Pn. Then
n=1
obviously PN is a 10~s-regular, <5-fire and special partition of A, required in our
theorem.
We have to prove the existence of the above sequence pn. We put /=0 and
r':=1/2. Suppose that aé 1 and for m=1, ..., n—1 we have defined pm fulfilling
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(1) and (2). From (2) it follows that ANG(P,_,) is the union of finitely many non-
overlapping intervals. That is we can choose a division D'={4;: j=1, ..., k} of
ANG(F,-,) and we may obviously suppose that diam (4;)<1/n. It is easy to
show that any interval can be divided into finitely many r’-regular intervals (cf.
[6, Lemma 2.3]). Therefore we may also suppose that D’ is r’-regular. For a
JE€{l, ..., k} and d4;=a;+[0, ¢, ;]X[0, ¢, ;] we define the affine transformation
T; by

7,69 = -a) (0! o )-

1/eg,
It is easy to see that T;(4;)=1. The inverse of T} is denoted by S;, that is
= 6,y 0 )
S;i(x) = a,+x[ 0 )

It is obvious from the definition that
diam (4;) = max {¢,, j, ¢; ;} and r(4;) = min(c,,;, ¢, ;}/max{e, ;, ¢z, ;}-

An easy computation shows that for any interval B we have
(3) diam(S;(B)) = diam (B)-diam(4;) and r(S;(B)) = r(B)-r(4;) = r(B)-r.

We put &’(x):=6(S;(x))/diam (4;). From (3) it follows that if B was a d*-reg-
ular, ¢’-fine and special interval then S;(B) is d?r’=10"3%-regular, é-fine and
special. Since diam (4;)<1/n we have 6’(x)=1 whenever S;(x)¢H,. Therefore
T(H,NA)cH :={x€I: §’(x)=1}. We can apply Lemma l.1 with &:=¢
and H:=H’. We obtain a d*regular, d-fine and special subpartition F =
{(Bi,;, xi,): i=1, ..., k;} of I such that H'cG(F)).

We put B, ;:={(S;(B;,;), Sj(xi,;)): i=1, ..., k;}. From the properties of S;
it follows now that B, ;is 10~3-regular, J-fine and special. Thus if we let B,:=F,_,U
U{R,;: j=1,...,k} then B, fulfills (2). It is obvious that G(B,_,)=G(R).
If x€H,N(A\G(F,-,)) and there exists a je{l, ..., k} such that x€int (4,) then
x¢int (F(B), A) and hence x€G(B). If x€H,(ANG(B-,) and there exists a
J€{1, ..., k} such that xcbd; then x€G(B, ;)(=int (B, ;; A;)) for every j’ such
that x€b4;.. Using also F(F,_,)cF(B) we obtain x€G(ZH,). Thus we proved
that B, also fulfills (1). This completes the proof of Theorem 1.1.

DermNITION 1.1. Suppose that the intervals B;, j=1, ..., m, are subintervals
of [0,1] and their lengths are b;, j=1, ..., m respectively. If 0<d<1 we say
that these intervals are d-ranked if for every j€{l, ..., m} there is a natural num-
ber n(j), the rank of B; such that b;=d"?. Let n,,n,,...,n, be the ranks of
the intervals B;, j=1, ..., m. We denote by N; the set of those indices j for which
the rank of B; equals ;.

Lemma 1.2. Suppose that 0<d<1/3 and the closed intervals B;, j=1,...,m
are d-ranked and they cover the interval [0, 1]. Then there exists a finite set of non-
overlapping closed intervals in C;, i=1, ..., t of length ¢; such that they cover [0, 1]
and for every i€{l, ..., t} thereis a j(i)€{l, ..., m} such that B;;,cC;, ¢;<4d"J®
and for every ncAN we have that \U{B;: the rank of B; is smaller than n}cC
c U{C;: the rank of By, is smaller than n}.
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Fbcof of Limma 1.2. We shall use the rotation of Defnition 1.1. Choose a
maximal non-overlapping subset of {Bj:jdN”~ and denote the index set corre-
sponding to this set by N{. Since this set of intervals is maximal, for every jd Nk
there exists a j*€N{ such that BjCIBy?zQ. Using the fact that the length of the
intervals Bj, jd Nk equals d"1we obtain that we can enlarge the intervals By (j'dN'j)
by at most 2d**1such that these enlarged intervals, denoted by BJtl, jJEN{, are non-

overlapping and jdN[}idU{B}:jdNj. Suppose that Nj(j~i—l) and
the intervals {BJii_1:jd /V/U...UNt _t} are defined, these intervals are non-over-
lapping and \J{Bj'i-i: jdN[U . . . U U{Bj: YEIV1 U...UISri_T}. If i<s then

choose a maximal non-overlapping subset of {Bj:jd.Nt} such that, denoting by N-
the corresponding set of indices, the intervals Bj i_1and By do not overlap for
JEN[{J ...UNi_x and j'dN\. By the maximality of the set {Bji jdN',} for every
JEN there exists either a j'dN't ora /EN [0 ..UIVj' i such that BjCiBj*Q or
BJC\Byii~1pi0. Using the fact that the length of the intervals Bj, jdNt, equals dnt
we obtain that we can enlarge the intervals BJtt_1,j'*N'1{J...UN'i_1 and Bj, jd ¥
by at most 2drf so that these enlarged intervals, denoted by Bj:i, jdN{0...UN-,
are non-overlapping and U{Bj y€IViU..UIV/}=) U{By: jdNxU...UNi}. Since
WVIU..UNSEMo we have U{6:’s:>1VIU...UJV;}=>U{5/:y€EM.}=[0, 1].

Thus, denoting by C;, i=1, ..., / the set of the intervals {BjtS:jdN1U... UN'},
the intervals Ct are non-overlapping and they cover [0, 1]. Furthermore if C;=R7S
and jdN-, then we obtained BXS from BJt jdNr, by a sequence of enlargements
first by at most 2d"t', then by at most 2dr<+» etc. Therefore the length of BJXSis
smaller than

dri+2 2 dnsk= P02 2 d < 4dn-

Finally the last property claimed in our lemma follows from
U{RB;,s: 761VIU..U1V;} 3 {Bjy. jeNi~.-UN"i} z>U{Bj: jdN~.-.UNi}

for every /ii.

Proof of Lemma 1.1. If there exists an x=(xIf x2dH such that ddkx”~l —d
and d~x2~| —d then we can divide / into four intervals with a common
vertex x. These intervals provide a J.-regular, <5-ire, special partition of I.

Thus we may suppose that [d, 1—d]x[d, 1—/]MA=0. For an xdH\bl we
shall denote by n(x) the natural number satisfying £n(X)>-dist (x, b/)Si/r*)+1. We
recall that b/=£,U£,U£;UE.. For an xdH\bl choose a k(x)d{\, 2, 3, 4}
suchthat dist (x, £1(x)) = dist (x, b7). Denote by w(x)dEk() the image point of x
under and orthogonal projection to EKM. Since dist (x, £Hi))=dist (x, b/) the one
dimensional interval B(x) with midpoint n(x) and of length d nM+1 is contained in
Ek(X). Denote by Al(x) the closed subinterval of 1 for which the length of the sides
orthogonal to Ek(j equals (1+d)dnM and B(x)cEkM is also a side of Al(x).
Put A2(x)=0.

For xdbl\vl choose k(x) and n(x) such that xdEk(x), 10dn(x)-<S(x) and
the one dimensional interval B(x) with midpoint x and of length d"(x)+1 fulfills
5(x)cint (EKX). We define Ax(x) such that B(x) is one of its sides and the length
of the sides orthogonal to B(x) equals (I+d)d'“X). We also put A2(x)=0.
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For x€vl choose an n(x)€4 such that 104"®<§(x). Denote by A%(x)
the subinterval of I such that x is one of its vertices and the horizontal side of 43(x)
is d"®+*1 and its vertical side is (1+d)d"®. Denote by A'(x) the rectangle which
we obtain by removing from A3(x) the closed vertical segment of A4%(x)Nbl
Denote by 4*(x) the subinterval of I such that x is one of its vertices and the vertical
side of A4%(x) is d"®+! and its horizontal side is (14d)d"™. Denote by A%(x)
the rectangle which we obtain by removing from 4*(x) the closed horizontal segment
of A*(x)Nbl.

Put T:=H®UDbI. The relative I-interiors of the sets A'(x)U 4%(x), x€¢ HUbI,
are obviously covering HUbI. If ycH® and p¢bl then one can choose an
x€HN\DI close enough to y such that dist (x, y)<d"®+%/2 and by the defini-
tion of A'(x) we have ycint(A4'(x),I); here we remind the reader that
HN[d, 1—d]X[d,1—d]=0 and hence TcI\(d, 1—d)X(d,1—d). Thus by the
compactness of 7" we can select finitely many x;€ HUbI (i=1, ...,m") such that
the union of the sets A'(x;), 4%(x;) covers 7. For a fixed edge of I say E we shall
denote by B;, j=1, ..., m those nonempty subintervals of E for which there exists
an i€{l, ..., m’}, and a pc{l,2} such that B;=(ENAP’(x;)) and for this j, i, and
p we put A4;:=A"(x;). From the definition of the rectangles A”(x;) it follows that
the one dimensional intervals B; are d-ranked and they cover E. Identifying E with
[0, 1] and applying Lemma 1.2 we obtain the intervals C;, i=1, ..., ¢ and the func-
tion j(i). If C; does not contain the endpoints of E then denote by 4; the closed
rectangle for which 4; N E=C; and the length of the sides of A4; orthogonal to E
equals the length of the corresponding sides of 4;,, namely, if the length of B
is d* then the length of C; is smaller than 4d* and not less than d*, and the length of
the sides of 4; orthogonal to C; equals (1+d)d*~'. If C; contains one endpoint of
E then denote by A; the closed rectangle for which 4/ NE=C; and the length of
the sides of 4" orthogonal to E equals the length of the corresponding sides of A .
Put A;=(4A\bI)UC;.

Using the notation of the proof of Lemma 1.2 we have U{C;: ¢,=d"}=
=U{B,,,: jENTU...UN;}DU{B,;: jeNjU...UN;}DU{B;: jeN,U...UN;} for
every i=s. This implies that U{4;j: i=1, ..., t}>U{4;: j=1, ...,m}. Since the
intervals C; are non-overlapping the rectangles A;, i=1, ..., ¢ are also non-over-
lapping. Repeating the above process on every edge of I and taking the correspond-
ing A; rectangles we can obtain a set of rectangles denoted by D;, i=1, ..., p such
that U{D;: i=1,...,p}>T and the rectangles D; intersecting the interior of the
same side of I are non-overlapping.

The choice of d implies that the rectangles D; intersecting opposite sides of 7
are non-overlapping. It is also obvious that overlapping problems arise only close
to the vertices of 1. Each D; intersects bl in a segment C; and the side of D; ortho-
gonal to C; is of length (1+4d)d™?. We shall say that this n(i) is the size num-
ber of D;.

Suppose that there are overlapping rectangles D; and D, such that D, E,#0
and D,NE,=0 (see Fig1.).

By symmetry we can also suppose that n(1), the size number of D,, is minimal,
that is, if n<n(1) is a natural number then any rectangle of size number » does not
overlap any other rectangle D; at this corner of I. Thus n(2)=n(1). Denote by Dj
the interval which has left vertical side common with D, and its right vertical side
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is in E2. We shall denote by D3the rectangle which intersects E2 and which contains
“from below” the right upper vertex of D[. This rectangle D3 exists since bl(czT)
is covered by the rectangles Dt but it may happen that D3coincides with D2. By the
minimality of n(1) we have n(3)éun(1) where n(3) denotes the size number of D3.
Since the vertical sides of -3 are smaller than 4dnW+1*4dnW+1 we can enlarge
the vertical sides of D[ by at most 4<f(:.+1 in order to obtain the interval D'{ of
which the upper horizontal edge contains the corresponding edge of D3. By the
minimality of n(l), other rectangles Dt above D3 does not overlap any of the rec-
tangles Di having common side with Ex.

Therefore we constructed D[ from Dx by enlarging its horizontal edges by at
most d"(I{\+d) and by enlarging its vertical edges by at most 4a"(1)+L If all
the overlapping rectangles at this corner are covered by  then we put T4 :=DX
If there is a rectangle Z. such that 1).ME£.~0, D~CIDi™R, and Z. ¢ Dx then we
may suppose that the size number, w4), of 24 is minimal, that is, rectangles Dt
of smaller size number do not have the property that DiCID'*Q and
D.ctDi (cf.Fig.2).

From the minimality of n(l) it follows that wn(4)én(1). Denote by D” the
interval we obtained from D[ by enlarging its horizontal sides to contain D4, that is,
the length of the horizontal sides of Dx is (1 +d)dnw.

We shall denote by D&the rectangle which intersects Ex and which contains
“from the right” the left lower vertex of D'". Again Db exists since blczT. We
also have n(5)™n(l) because if n(5)<n(l) then Zs overlaps £>, contradicting
the minimality of n(1). Thus enlarging by at most 4dn(1)+1 the horizontal side of
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D{” we obtain D{Y of which the left vertical edge contains the corresponding edge
of Dy. From the minimality of n(1) and n(4) it follows that D{* contains all the
overlapping intervals at this corner. After the above enlargements the horizontal
edge of D is less than

max {the horizontal edge of Dy, d"®(1+d)+4d"®+1} = d"V(14d)+4d"W+1,

The v?r)tical edge of D{® equals the vertical edge of D] and is less than d"®(1+d)+
+4d"V+1,

Deleting those rectangles D;, i=1, ..., p which are covered by D{* and replacing
D, by D{* we have a new system of rectangles which does not have overlapping at
the common vertex of E, and E,.

Using the above process at each vertex of I and taking the closure of the rec-
tangles D; we can modify the set {D;: i=1, ..., p} to obtain a set of intervals
{Q:: i=1,...,p’} which consists of non-overlapping intervals and

WO =k 1oT

Now we shall show that for every i=1, ...,p" we can find a d*regular, J-fine,
special partition of Q;. Each interval O, was obtained from a rectangle A?(x;)
after a sequence of enlargements. Suppose that x;¢ H\bI. In the sequel we shall
omit the index j. Since x€ H\bI, by the definition of the rectangle A4?(x), the
distance of x from the boundary of A?(x) is at least d"*+1/2, Since the sides of
AP(x) are at most (1+d)d"™ and these sides are enlarged by at most 2(1 +d)d" +
+8d"*)+1 the sides of Q; are smaller than 5d™*. The distance of x from the bound-
ary of Q; is still at least d"**'/2 and hence cutting Q, through x into four sub-
intervals we obtain a d?-regular, J-fine, special partition of Q; where the special
vertex of all the four intervals is x. We recall that x€ H and hence 6(x) = 1. If xeébI\I
then we can cut Q; through x into two d?-regular, d-fine, special subintervals; the
proof of this fact is similar to the above case and we shall omit the details, we only
remind that in this case 10d"*®<§(x). Finally if x€ol then Q; itself with the
special vertex x is the desired d*regular, J-fine, special partition. Therefore the
union of the above partitions of Q; for i=1, ...,p’ provides the subpartition of 7
claimed in Lemma 1.1.

2. The definition of the GRC integral and its properties

DEerINITION 2.1. If fis a function on an interval 4 and
P= {(Ala i)y 355 CAE xk)}
is a partition of 4, we let:

o(f, P) = z; G 14,

DErINITION 2.2. A function f on an interval A4 is called (GRC) integrable in
A if there is a real number J with the following property: for every &>0, there is a
6: A—~(0, +<=) such that |o(f, P)—J|<e for each 10~3-regular, J-fine and special
partition of A.
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We denote the number J by (GRC) ff orsimply by ff. The set of the

GRC integrable functions on A will be denoted by GRC (A).

From Theorem 1.1 it follows that for any interval “cR: and & A-*{0, +°°)
we can find a 10~s-regular, (5-fine and special partition of A. Thus in Definition 2.2
the set of 10_s-regular, (5fire and special partitions of A is not empty.

Theorem 2.1. Letf be afunction on an interval Ac: R2 andlet
D= {Aj:j= 1, ...k}
be a partition of A. If /¢ GRC (Aj) for ys{l, ...,&}, then /EGRC (A) and
K
I1f=2 /e
J=1

Proot. Let ®(X)>0 such that for all x€A, if x$Aj then & (x)<dist (x, Aj).
Now given find a 6ji Aj—0, +=<9 suchthat 6s«=t and

K—«—i‘_A-nsr

for each 10 s-regular, 6j-fine and special partition of Aj. For x£As we set
<5(x):=min {By(x): j= 1,..., AJUS (M), and select a 10~s-regular, <5fire and
special partition P={(Bi, x,): i=l,...,n} of A. Let (Bt, Xi)£P, y€{l,..., & and
suppose that int (Z2;; A) flint (Aji A)AO. Since gwa0 we have x~Aj and B{cA}
becuase for a special partition xt is a vertex of Bt. It follows that

Pj'= {CS;, x,): int (Bi; A)ITint (Aj\ A) A 0}
is a 10-s-regular, Sj-fine and special partition of Aj for each j—1, ..., k. Since

<1(/, P):JZ: 1<*(/> p)> we have
\°(f, P)-2 Jf\™ 2 UT PFj)~ff\ <-NIr 2 Aj= ¢
' J=1Aj 1 ae» Aj

\A\ J=I

This proves Theorem 2.1.
Let F be an additive function of subintervals of an interval A, and let x£A.
Following [s, Chapter 4.2], we say that F is derivable at x if a finite

w

\s n\

lim

exists for each sequence {Br} of subintervals of A such that x£Bn, n=1,2, ...,
lim diam (B,,)=0, and there exists an /*>0 such that the intervals Bnare /--regular.
If all these limits exist, then they have the same value, denoted by F'(x) and called
the derivative of F at x.

Acta Mathematica Hungarica 57,1991



A GENERAL RIEMANN COMPLETE INTEGRAL IN THE PLANE 323

THEOREM 2.2. Let F be a function of subintervals of an interval A such that
f(x):=F’(x) exists for every xcA. Then

[1e) = F(a).

Proor. Let >0 be given. Since F is differentiable we can choose for any
x€A a number §(x)=>0 such that if B is a 10~ 3%regular interval, x€¢B and
diam (B)<d(x) then |F(B)-—f(x)|B||<s[B|. Let P be a 10 3-regular, o-fine and
special partition of 4. Then plainly we have

k

lo(f; P)—F(4)| = g Vo)A~ F(A) = 3 eld,] = eldl.

Jj=1

That is for any ¢>0 we can find a function >0 required in the definition of the
GRC integral.

The author is indebted to professor M. Laczkovich for his comments during
the preparation of this paper.
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UBER DIE KONVERGENZ MEHRFACHER
ORTHOGONALREIHEN

K. TANDORI (Szeged), Mitglied der Akademie

1. In dieser Arbeit werden wir die Resultate von [s] Uber mehrfache Orthogo-
nalreihen verallgemeinern und die Resultate von [4] vertiefen.

Einfachkeitshalber werden wir unsere Satze nur fur doppelte Reihen verfas-
sen; sinngeman bleiben sie auch fiir beliebige J-fachige Reihen (zf>2) richtig.

Es sei N2={(k,l): k, 1=1, 2,...}. Wir betrachten im Intervall (0, 1) ortho-
normierte Systeme { < ? * , / fir die also

<Pk,i(x)eL2(0,i)  ((k, i)enaq, fi qkil(x) ghl(x)dx = jfol’ (kA= R

erfullt sind.
Es sei Mit Q(K) bezeichnen wir die Klasse der in (0,1) orthonor-
mierten Systeme <= {*i(*)}(*, ;)EN2 fur die

Ne* ()ISK  (x€(0,1); (k,1)iN2
besteht. Offensichtlich gilt
Q(KK g Q(K2 (1 A Kr < K2S ec).

(B(0°) ist also die Klasse aller orthonormierten Systeme in (0,1). ImFalle (p£Q{1)
gilt aber \(pki(x)\=1 ((fc, NENz) fast Uberall in (0,1); solche Systeme nennen wir
vorzeichensartig.)

Bemerkung l. Essei (pER(1). Wirsetzen
Ki(2x), *€(0, 1/2),
-Vk.i(2mr—1), *s(1/2,1),
Dann besteht ~Cf3(1) und

/I(I|Ik,i(X))p('J't.ii*))lldx : /t('l'k.iMinxf (iiikA{x) fd x

im Falle (k, 1)~(k',[) furjedes (p,q)EN2. Daraus folgt auf Grund eines bekann-
ten Satzes [2], dal3 das System &= WO, ;(*)}*, j€ls paarweise stochastisch unabhéan-
gig ist.

Mit einer Koeffizientenfolge a-~{akJ}keieiv2 bilden wir die Reihe

((k, o EN2.

1) fe=1 1=1
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weiterhin seien
m n
Smyn(@; @3 X) =k§ gl @, 0x,1(x)  ((m, n€ Ny)

die Partialsummen. (Im Falle m-n=0 sei s,.,(a; ¢; x)=0.)
Man sagt, daB3 die Reihe (1) im Punkt x reguldr konvergiert, wenn

my ny
2 Z Q1 P 1(x) =
k=my I=n,
= Sun s (@5 @3 X) =8y 0=1(85 @3 X)=Sny<1,05(35 P X)+ Sy =1,8,-1(3; @; X) =0
) (my = my, ny, = ny, max(my, ny) ~c)

gilt. Weiterhin sagt man, daB die Reihe (1) im Punkt x im Pringsheimschen Sinne
gegen s(x) konvergiert, wenn fiir jedes ¢>0 ein Index N=N(e) derart existiert,
daB |s,.(a; @; x)—s(x)|<e im Falle m,n=N besteht. Es ist bekannt, da3 die
Konvergenz im Pringsheimschen Sinne der Reihe (1) im Punkt x zur Relation

Smauns (@5 @3 X) =Sy, (@5 95 x) =0 (min (my, my, 1y, 1y) )

dquivalent ist. Es ist auch bekannt, daB sich aus der regularen Konvergenz einer
Reihe ihre Konvergenz im Pringsheimschen Sinne ergibt; das Umgekehrte ist aber
im allgemeinen unrichtig.

Fiirein 1=K=c sei M(K) die Klasse der Koeffizientenfolgen a={a;,i}x.1ycn,>
fiir die die Reihe (1) bei jedem System @€ Q(K) in (0, 1) fast iiberall reguldr kon-
vergiert. Offensichtlich gilt

) MKy) 2 M(Ky) (1=K, <K= )
Wir werden den folgenden Satz beweisen.
SA1Z I. Im Falle 1<K<o gilt M(K)=M(1).
BEMERKUNG II. Ob die Gleichheit M(-)=M(1) gilt, ist noch eine offene Frage.
Auf Grund von (2) erhalten wir Satz I unmittelbar aus dem folgenden Satz.

SATZII. Es sei 1<K-<o. Gilt a4 M(K), so gibt es ein System @=
={D; 1(*)}x.nen.€ 2(1) von Treppenfunktionen derart, daf die Reihe

M

3) g“ B B 1 ()

k=1

in (0,1) fast iiberall im Pringsheimschen Sinne nicht konvergiert.

BEMERKUNG III. Im Falle K=o gilt eine dhnliche Behauptung. Im [4] wurde
der folgende Satz bewiesen.

Im Falle at M() gibt es ein System ®={®P, (X)}xnen, von Treppenfunk-
tionen derart, daf3
rl'l.—_.n_o lSm,n(a; b, x)l S

in (0, 1) fast iiberall.
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BEMERKUNG IV. Unsere Sitze bleiben fiir in einem beliebigen nichtatomischen
MaBraum (X, 4, ) orthonormierte Systeme giiltig; einfachkeitshalber beschrianken
wir unsere Betrachtungen fiir in (0, 1) orthonormierte Systeme.

2. Zum Beweis unserer Sdtze miissen wir gewisse Definitionen, bzw., gewisse
Hilfssatze vorausschicken.

Eine Menge H<(0, 1) nennen wir einfach, wenn sie die Vereinigung endlich-
vieler Intervalle ist. Fiir eine in (0, 1) definierte Funktion f(x) und fiir ein Intervall
I=(a, b)(€(0, 1); a<b) sei

a<=X-=<Db,
S x) =
0 sonst;
weiterhin sei fiir eine Menge HZ(0,1) H(I) diejenige Menge, die aus H unter
der Transformation y=(b—a)x-+a hervorgeht.

Fiir eine Koeffizientenfolge a={a; }¢.nen, und fiir eine Menge QCN, sei
a(Q)={a;,1(Q)}x.nen, folgenderweise definiert:

ak, > (k’ I)QQ’
ai@={0" & neg (DEN)

’

Weiterhin setzen wir fiir ein 1=K=<, fiir eine Menge QS N, und fiir eine Folge
a={a i} nen,
1 my ng 12
lasK;Ql= sup {f sup (3 2 @i¢ ) ax}"

QEN(K) my=mgy,n,=n, k=m; l=n
: (ml.'nl). zm,l.n,):EQ 3

Auf Grund dieser Definition gelten die folgenden Behauptungen offensichtlich.
(i) Fiir jedes 1=K=o und fiir jede Folge a gilt
2 2= la K Noll* = OAPALY S

k=1

(ii) Fiir festgesetzte K und Q besitzt ||-; K; Q| die Eigenschaften der
Norm; dh.

a) aus [la; K; Q||=0 folgt a,,=0 ((k,)€Q);

b) fiir jede Folge a und fiir jede Zahl ¢ gilt

lea; K; Qll = Ie| lla; K; Ol (ca = {ca, i}, nens)s
c) fiir jede Folge a={a;,}a,nens b={br, i}k, nen, gilt
la+b; K; Q|| = lla; K; Qll+1b; K; Q  (a+b = {a,;+ by, 1} 1yen,)-
(iii) Im Falle Q,<SQ, gilt

fla; K; Qill = [a; K Qs
fiir jede Folge a.
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(iv) Im Falle KrxuK2 gilt
le; Kil Oli a ||a; K2, Qi
far jede Folge a und fur jede Menge Q.
Es sei
ON= {(k,): k,I=\,...,N} (Qo= 0).
(v) Flr jedes k und fir jede Folge a gilt
\a; K; QNV/ \Wa; K; NJj (1T /-).
Wir werden die folgenden Hilfssétze anwenden.
Hilfssatz I. Essei 17A"«=°. Gilt
Wa;K;NAQ NU-*0 (1V-«),
so konvergiert die Reihe (1) furjedes System <p£Q(K) regularfast Gberall in (0,1).
Beweis des Hilfssatzes i. Es Sei CpEQ(K). WIir setzen
m
Fn(x) = sup kI=2m1|=2nt akj(Pk,i)\ (N= 0,1,...).

milr*m2nitni
(«rt."i>, ("»i*n2)€NAQ n

Offensichtlich gilt
Fn(x) s W x)(£ 0) (IC6(0, I); iv

1,2,...).
Weiterhin folgt aus der Definition von |la; K; «|

1

f Fi}(x)dxs W& K\ NAQ NF (N = 0, 1..).

So folgt durch Anwendung des Fatouschen Lemmas, daf} ’\m)], Fn(x)=0 in (0, 1)
fast Uberall gilt, woraus sich die Behauptung des Hilfssatzes | ergibt.

Hilfssatz Il. Es sei 1 Gilt
\a;K; NAQ n\+0 (tf— ),

so gibt es ein System ®= {®*/(X)}ki;}EMER (1) von Treppenfunktionen derart, dal
die Reihe (3) in (0, 1) fast berall im Pringsheimschen Sinne nicht konvergiert.

Beweis der Satze. Es ist klar, daR sich aus den Hilfssatzen I—II die Satze I—II
ergeben.

3. Wir sollen also nur den Hilfssatz Il beweisen. Dazu bendtigen wir weitere
Hilfssatze.
Es sei v=v(k, /) eine umkehrbar eindeutige Abbildung von N2 in Nx—

={1,2,...}, und sei
QLi(x) = rvko (x) ((k, NEND,
wobei /m, (*)=sign sin 2mnx die s-te Rademachersche Funktion ist.
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Mit einer bekannter Methode (s. z. B. [1], S. 54—56) kann man den folgenden
Hilfssatz beweisen.

Hirfssatz lll. Ist die Reihe

00 00

R:lI:lak,IBk,l(x)

in einer Menge von positivem Mafl im Pringsheimschen Sinne konvergent, so gilt

a£l2 dh.

Hilfssatz IV. Es seien 1<K<°°, a={a*, }u.i)6Jv2 eine Koeffizientenfolge und
NIf N2 (Ni“Nz) positive ganze Zahlen mit

\a; K- QNAQ NIV s 128K* 2 ¢
(MERQN
Dann gibt es ein System ®= {'Pki(x)}<ki)EQN\QNER(l) von Treppenfunktionen mit
folgender Eigenschaft. Es gilt

max

(“1."1),(rr,nr)e QN \,Q Ni
wobei E(Q(0, 1)) eine einfache Menge ist, fiir die mes E” 1/10 besteht.

Beweis des Hilfssatzes IV. Wir gebrauchen eine Idee von B. S. Kasin [3]. Der
Hilfssatz IV soll nur im Falle \\a; K; Qa\ O vl >0 bewiesen werden; ohne Be-
schrankung der Allgemeinheit kénnen wir

Wr, K; OnXOp > = 4

|
k=

2 2 dkillki(x)\s — [ja; K; QN\Q NIV (xEE),

+1 I=n,+1

voraussetzen.

AufGrund der Definition von ||a; K; ¢ W&0Vvill gibtesein System ipdQ (K) mit
) )

of | msmnsi2 (I'[:2r1+1 =By AIPRIOITAX S flas K5 BVKE Wa—s-
(E= lla; K; QNVNQ NIW2).

Es werde a (0O<a<1) so gewahlt, daB die Ungleichungen

(5) {\-{\-a*n\-a))la”K\
1 mzZ n2

(s) (1-a)(l-adf max (2 2 aki<Pki(x)f dx &

/(«i»ri>>(«"‘»r&€Q1’\\in k=m1+1 *=nt+1

'r},\ma%(m k(l, zl’ akilipka{x ) Fd x ~
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erfllt sind. Es seien (pkti(x) (& /)€ 6n°617) Treppenfunktionen mit

I (@ 1x)- K10y <A ((k HEQNAQ N)
und

(7) \<PKi)1 = IKZH) (€L, 1); (K, )ERMNA 6 vi)-
Wir setzen

a(ij,hj)= Of (P-i)<phj(x)dx  ((i.j), (UIKQNAQ N).

Die Anzahl der Elemente von QNMQN bezeichnen wir mit Z. Wir teilen
das Intervall (1—a2 1) in Z(Z—1) paarweise disjunkte Intervalle 1(i,j,l,j)

(0%j), (ij)€06jvaA s M* (13)~(U)) gleicher Lange. Ist f] genugend klein
so gelten die Abschatzungen

(8 / max 22 kI X)Ydx
o («i>l),(mvi)iUNANQNL <M IEmE

/ max (2 2 akj(pkj(x))4x-—,
o (M).(mt. €\.Qnl

l-a2Z(Z-1) )
9) & ) Oyj).aylyggﬁm . la(/,y, 13)] € K2
U.J)*(U)
(10 a(UhUj) = i-a: ((bY)e0nrsi20-
Wir setzen
nbl(*) =
x€(0,1- (1),
Z(Z-1) *€I(k, /, k1),
ap  12(KLKDI(1-22, Ek, DEQN2Q ni’
K, D r*(k /),

-~vE2 A falk, /, k, Do —adsignoek, /, k, 1), xE1(k, Lk, /),
(k, €O O ni>
k I (k)

sonst

((k, NEGjVAdVi)-
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Offensichtlich bilden die Treppenfunktionen tfi§(x) ((k, /)s (6,v2 ¢ W) ein
orthogonales System in (0, 1), weiterhin gelten

Ifo,i(*) = K (*€(°> i); (*. 0€0\O nX>

(11)
mo n
(12) | max 2 2 aKk,pK,(x))2dx S
o imMlnUmy,nQ"N\QN k~~+1 I~A+1
f (2 2 akJ$kI(x))2dx =
o MIn,X:iQMNQN =+ m+1 -v141
l-a*
| max 2 2 a&l@Elj~-\Xdx~
(nij.nj), (mt, r) €OAON,
=(l-adf max _2. 2 aki<Pki(x)Ydx,
S CinfriRthgn (= et
(13) I (pK,(x)Ydx S j ($kti(x))2dx = f <ph dx =
0 0 0 VA a'

= (1- R ak, Lk, OM 1- )2 (k DIQNQ N),
auf Grund von (7), (9) und (10). Es sei endlich

fo.i(jl aj, XE(O, 1- 5)
((k, 0OrOajX O a,)»

™, eki[X- x€(1-a, 1)

wobei mkil derart bestimmt ist, dal die Funktionen d¢w*(x) normiert sind; dh.
es gilt

(14) (1-a) f @kiIx))2dx+ml,a =1 ((k OOOXOvi)-

Auf Grund von (5), (13) und (14) folgt

mii - V-2 (Lo K, 0IQNIQ NI
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Die Funktionen ~k,i(x) ((k, )EQNQ N) sind offensichtlich Treppenfunktionen,
aus (11) erhalten wir {i"Ji(x)}N» egN\ gn £Q(K), weiterhin gilt

T T
max (2.2 AVKj()fdxs
(M), ERR)EDQyy T [N
/ mirfRn2 Qi (e 2K XY dx =
<m,1,), (m2>nr) € QiVjXCx,
=0 -«)/ max ( 2 2 ak,i”kj(x))2dx.
0 m2 Kmi+l +1
Daraus erhalten wir
(15) max (i 1 2 K,i(.x)fdx
(W,m), (@@i&w i T 1

a; K-QNM\Q NIV-z 4 Jle;  ON\Quiz (=2)

auf Grund von (4), (s), (s) und (12).

Es sei Ir=(ar, br) (br>ar) (r=I, o) eine Einleitung des Intervalls (0, 1) in
paarweise disjunkte Intervalle derart, daf? jede Funktion ~*<(x) in jedem Ir konstant
ist. Den Wert der Funktion

ar T
max i
ool LG 1R IKAX
(W, .8,), (bi2, b2) € QjVjXojV,

im Intervall Ir bezeichnen wir mit wr. Nach (15) gilt

(16) 4= la;K; QN\QNIV £2_~mes Ir lle; K; QN\Q N\ = 2,

Es seien IS/i<...</-AS{? diejenige Indizes r, flr die wr™ |l ist; die Indizes r
(I"rSg), die von rlt ..., rx verschieden sind, bezeichnen wir der Reihe nach mit
sX, ...,se- x. Aus (16) folgt

4~ I2_i< mes /r, > 1

Wir setzen =i+
K e-k
a= 2 wnmes7,, b= iZi mes 19l
Offensichtlich gelten
17 I<a=£4, O sfcsl.

Es seien a{=(a\, b]) (1=1, ..., A disjunkte Intervalle in (0, a) mit mesJ\=w 2 MesJn
und J"=(a", b{) (/=1, ..., a—A) disjunkte Intervalle in (a, a+h) mit mesJ{=
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=mes 75. Wirsetzen

=>Y)EDN, \ s ai)-
Es sei
<Ne ) = $k((a+b)x)/K (xe(0, 1); (k, ) iQNAQ N).

Offensichtlich bilden die Treppenfunktionen ¢rax) ((k, DEQN™M\QY 'n (0,1) ein
orthogonales System, und es gilt

(18) IKIOOIN  (*€(0,1); (k,KQN\Q NI).

Es sei E die Bildmenge des Intervalles (0, a) unter der linearen Transformation
y=x/(a+b). Aus (17) folgt

(19) mesE s 1/5.

Weiterhin gilt

20 *\| — ig"
(20) max 2 2. M) — jp

(*1 ( (mu)EQWON,

= Mrileg a;s n\Oall (*€£).

Es sei Js (j=I, 0) eine Einteilung des Intervalls (0, 1) in paarweise dis-
junkte Intervalle derart, daB jede Funktion dk%(x) 'n jedem Js konstant und E die
Vereinigung einiger Js sind. Den Wert von ipt*t(x) im Intervall J%bezeichnen wir
mit Qk'n. Fur jeden Indexe (laiS<r) sei (M}*,nea™\ gn ein orthogonales
System von Treppenfunktionen derart, dafl3

[ xik,0(x)dx = 0 ((k, DEQN\Q N)

0
gilt und jede Funktion yjM)(x) den Wertbereich (1-Rj*’0, —1—e*k,)} besitzt. (Im
Falle =1 setzeman xikI)(x)=0.) Aus (18) folgt

(21) &> (x)1*2  (X£(0,1), (k, DEQNAQ NI, *= 1....%).
Es sei

D) = D169+ 2 xik (5 %) ((C )eQNIQ N)-

Offensichtlich sind duuf(x) ((k, OC.Biv.XBiv,) Treppenfunktionen, und man kann
leicht einsehen, daR @= {ilski(x)}(ki)eQNA\QNE £2(1) ist. Fur jeden Index j (1gi~d)
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seien my(s), my(s), ny(s), ny(s) positive ganze Zahlen mit

my(s) = my(s), m(s) = ng(s) (mu(s), m(s))s  (ma(s), na(5))€On,\On,

und
m,y(s) ny(s) m,
@ Wi ()| = _max_ 2 @ W) (x€T)).
k=my(s)+11=ny(s)+1 ok "l)M(m’m"z.)ne Q;; \Q k=my+1l=n+
Dann gilt
(22)

Z”" | e Wi (%) = 4K - la; K; QN,\QNLII}%

mes {er,: max
my=mg, ny=n s
(mm), (mg, my € QyNQy, €T 1=t

my(s) ny(s) 1
aea ()] = 5 13; K3 OnNOu | =

k=m,(s)+1 I=n,(s)+1

= mes {xe.l,: |
m,(s) ny(s) 1
S a0 = 1o K3 0uNQul}-
k=m,(s)+1 I=ny(s)+1

my(s) ny(s)
a1 U5 X) = 7 las K; O \Oul} =

k=my(s)+1 l=ny(s)+1

= mes {xEJ,: |

-—mes{xEJs:

By
—mesfxes: _max 3 U=
My =My, 1y =hy k=my+1 l=n,+1
(my,ny), (my, 1) € QN N\QN,

= o 1 K Q\N\Ou ] -

. (s) my(s)
—mes{xes,: | a5 9| = g 10 K 0uNOul}-
k=m(s)+1 l=n,(s)+1
Nach (21) ergibt sich durch Anwendung der Tschebyscheffschen Ungleichung

my(s) ny(s) 1
a2 2| = i 145 K; QN,\QN,II} =
k=m,(s)+1 I=ny(s)+1
my(s) n,(s)
2 at, f (x&P () dx/llas K; On\Ow % =
k=m(s)+1 I= nl(s)+

my(s) ny(s)
> 2 aifla; K5 OnNOwlt =

k=m;(s)+1 I=ny(s)+1

1
> afla; K; OxNOy|I* = - mesJ,
U, DEQN\ON,

mes {xEJ,: |
= mes J; - 16K?

= mes J,- 64K?

= mes J, - 64K?
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auf Grund der Voraussetzung des Hilfssatzes IV. Daraus und aus (20) und (22)
bekommen wir:

(23)
mes{vesy:  max | 33 a0 =g le K onNCul)=
my=my, iy =0y k=m;+1 l=n,+
('"; "1). ('"g "g)eeN \Q
= mes J,/2.
Es sei
E= {er : max o 2’ % Wi (%) =
s:J.CE My =1y, My =0, k=m+1 l=n,+

(my,my), (mamy) € QN \ON,

1
= a3 K OuN\Oul}-

E ist offensichtlich einfach, und aus (19), (23) erhalten wir mes E=1/10.
Damit haben wir Hilfssatz IV bewiesen.

4. BEwers DES HILFSSATZ II. Auf Grund von (iv) kénnen wir voraussetzen,
daB im HilfssatzII K=1 ist. Weiterhin kdnnen wir auf Grund des Hilfssatzes III
{@, Y, 1yen.€ L voraussetzen.

Es seien

U ={tkor D, 1=1,2,..}, ¥, ={k,l), k=1,2,..}.

Wir werden zwei Falle unterscheiden:
a) fiir jedes k,, l,=1,2, ... gelten

la(Uy); K5 N2NOnll ~ 0, [a(¥,); K; NoN\QOhll -0 (N —<);
b) es gibt eine Index k, oder /, mit
la(Uk); K5 NoNOwll +-0 (N —<), oder [a(¥,); K; N;NQnll +0 (N —<).

Bewers DeS HILFsSATZES IT im Falle a). Auf Grund von (iii) und (v) gibt es eine
Zahl ¢>0 und eine Indexfolge (0=)Ny<...<N;j<DN;4i<... mit

la; K; On,. N\Onll Ze (=0,1,...).
Auf Grund von {a,}«,1,en,€/> kOnnen wir auch

lla; K; On,,,\Qn|* = 128K* Z' a, ((=12.)
(k, l)GQNH \2N,
voraussetzen.

Durch vollstindige Induktion werden wir ein System @={®, ;(X)q,necn,€ 2(1)
von Treppenfunktionen und eine stochastisch unabhéngige Folge {F};z; einfacher
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Teilmengen von (O, 1) derart definieren, daf}
a) mesFjSI/IO,

5) max 1 2 2 addi(x)\ » /4K (XEFY)
(Mm.n), (2 m) I htAQ ni

flr jedes /(=1.2,...) erflllt sind.
Es sei

&ki(x) = Qki(x) ((k>NHEQN\Q J -

Es sei /,, eine positive ganze Zahl. Wir nehmen an, dal die Treppenfunktionen
0ki X) ((k, NE 6v,0 und die einfachen Teilmengen Fi,...,Fio | von (0,1) schon
derart definiert sind, da {$t>i(x)}(ki)@2v\ Qv €R(l) ist, die Mengen Fs ..., FG-i
stochastisch unabhéangig sind, weiterhin a), B) flrjedes /=1, ..., /,,— erfllltwerden.

Wir wenden den Hilfssatz IV im Falle V:= N0+l, Nx= Nio an; die entspre-
chenden Funktionen, bzw. die entsprechende Menge bezeichnen wir mit (x)
((k, DeQN +1\Q N), bzw. mit Eio. Dann gelten

(24) mesFioé 1/10,

(25) flljs%ﬂ 2 2 akMm ()l . s FiQ.
(Hexi> "~ reEGI(H\OMo

Auf Grund der Voraussetzung gibt es eine Einteilung von (0,1) in paarweise
disjunkte Intervalle Ir (r=1, ..., (9 derart, daR jede Funktion ®m (x) ((k,1)£QN)
in jedem J konstant ist und jede Menge R (/=1, ..., h—1) die Vereinigung ge-
wisser Irist. Die zwei Hélften von 7, bezeichnen wir mit I*, bzw. mit 7"'(1,..., q).
Dann setzen wir

O M = 2_|«A|7|q/;;x)~ 2, x) ((k, i)tQNo+\Q %\

A =LA )

Aus (24) und (25) folgt unmittelbar, daR a), ) auch in Falle /=/,, erflllt werden,
das System {®*,/M}(mHes von Treppenfunktionen zu B (1) gehért, und die

einfachen Teilmengen F ..., FO von (0, 1) stochastisch unabhangig sind. Das
Funktionensystem @ und die Mengenfolge {/j}HU bekommen wir also durch
Induktion.

Durch Anwendung des zweiten Borei—Cantellischen Lemmas erhalten wir

und

mes (limF) = 1
auf Grund von a). Ist  fimF,, so besteht R) fiir unendlich viele /, woraus folgt,
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daB die Reihe (2) im Punkt x nicht regulir konvergiert, dh.

(26) fim S 3 3,®,()|=0 (xclm F).
X;J"l}lé(::::;)é-":o k=m,+1 l=n+1 PE¥.09

gilt. Auf Grund der Voraussetzungen des Falles a), durch Anwendung des Hilfs-
satzes I erhalten wir, daB die Reihen

lzl ako’l¢ko’l(x) (kO = 1, 2, ...), kzl a,‘.lo @k,,o(x) (10 = 1, 2, ...)

in (0, 1) fast iiberall konvergieren. Daraﬁs und aus (26) folgt, daB die Reihe (2)
in (0, 1) fast iiberall auch im Pringsheimschen Sinne nicht konvergiert.

BewErs DES HILFsSATZES IV im Falle b). Wir nehmen an, daB fiir einen Index k,
la(Uy,); K; No\Qyll+0 (N—-<). (Den anderen Fall kénnen wir dhnlicherweise be-
trachten.) Ohne Beschrinkung der Allgemeinheit kdnnen wir

la(Uy); K5 No\Onll 40 (N —e0)
voraussetzen.

Mit der im Falle a) angewandten Methode kann man eine positive Zahl o, eine
Indexfolge (0=)Ny=<...<N;<N;;;=<..., Systeme {1//{f),}{v=17vtl+1€ aa) (i=1,2,..)
von Treppenfunktionen und eine Folge {FE;};z, einfacher Teilmengen von (0, 1)
derart angeben, daf3

@) mes E; = 1/10,
(28) max | Z’ ay Yi?) (’C)I = 14K (x€E)
Ny<ny<ny=N;,, I=nm+1

fiir jedes i(=1,2,...) erfiillt sind.

Durch vollstandige Induktion werden. wir ein System {®; ;(X)}x.nen.€2(1)
von Treppenfunktionen und eine stochastisch unabhangige Folge {F};2, einfacher
Teilmengen von (0, 1) derart angeben, daB

) das System {9 ;(X)}«, nen v Stochastisch unabhingig ist,

1
8) [ ®uxdx =0 ((k, DENNU(D)
0

gilt, und
g) mes F, = 1/10,
Il, Q
M, max. |:=§+ A1 Pu()| = g (x€R)
fiir jedes i(=1, 2, ...) erfiillt sind.
Es sei

By (x) = 0i,1(x)  ((k, DEQW,)-
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338 K. TANDORI

Offensichtlich sind diese Funktionen Treppenfunktionen, und es gilt
{¢k.l(x)}(k.l)€QNl€ Q(1).

Es sei i, cine positive ganze Zahl. Nehmen wir an, daB dic Treppenfunktionen
@D,.1(x) ((k, )EQn, ) und die Folge A, ..., F;,_, einfacher Teilmengen von (0, 1)

derart definiert smd daB {D., ()}, Dea, €Q(1) ist, die Mengen F, ..., F,_,
stochastisch unabhéangig sind, die Funktlonen D,1(x) ((k, De szi \U(l)) stochas-
tisch unabhdngig sind, weiterhin 6) fiir (k, I)EQNi \U(1) und’ g), n) fiir jedes

i(=1,...,i,—1) erfiillt werden.
Dann gibt es eine Einteilung von (0, 1) in paarweise dlsjunkte Intervalle I,
(r=1, ..., 0) derart, daB jede Funktion &, ,(x) ((k, /)¢ QN:) in jedem I, konstant

ist, und jede Menge F; (i=1, ...,i,—1) die Verelmgung gewisser I, ist. Die zwei
Halften von I, bezeichnen wir mlt Il bzwomit I7 (r=1, ...50)
Wir setzen

D1,(x) = 20'!//""’(1:, x)— Z YR x) (I=N,+1, ..., Nyt
und

F, = 9 (E(I)VE(I)).

DannseiJ(s=1, ..., o) eine Einteilung des Intervalls (0, 1) in paarweise disjunkte In-
tervalle derart daB jede Funktion &, ,(x) ((k, [)€ On, U{(l wt1)s oo (1, Nien)))

in jedem J, konstant ist, und es sei

¢k.l(x) = sg:, Qk.l(Js; x) ((k& DG(QNio_H\QN,-o)\{(l! Nio+ 1)7 ceey (I’ Nio+1)})'

Offensichtlich sind die &, ,(x) ((k, DEON, ,,\On; ) Treppenfunktionen, F, ist ein-
fach, es gilt {&,, ,(x)}(,,,,)GQN‘ AN EQ(I), die Funktionen

@01(x) (ks DE@r, ., \OwINU(D)

sind stochastisch unabhingig, die Mengen F, ..., F,, sind ebenfalls stochastisch
unabhingig, weiterhin sind 6) fiir (k, l)E(QN, +1\Q~, NU1), €), n) auch im

Falle i=i, erfiillt. Das System {®, (x)}q, nen, und die Mengenfolge {F}iZ; mit
den erwihnten Eigenschaften bekommen wir also durch Induktion.
Aus §) folgt mes (}]E F)=1. Daraus, und aus ¢) erhalten wir, daB die Reihe

'21 a1 9Dy, (x)

in (0, 1) fast iiberall divergiert. Weiterhin bekommen wir wegen {a; ;}, ¢ A
und der stochastisch Unabhéngigkeit des Systems {®, ;(X)}«, nen\va) mit einer
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UBER DIE KONVERGENZ MEHRFACHER ORTHOGONALREIHEN 339
bekannten Methode (s. z. B. [5], S. 341—342), daB die Reihe

f Z.'o A, 1Py, 1(x)
k=2 l=1

in (0, 1) fast iiberall im Pringsheimschen Sinne konvergiert.

Nach obigen erhalten wir, daB die Reihe (3) in (0, 1) fast iiberall im Prings-
heimschen Sinne nicht konvergiert.

Damit haben wir Hilfssatz IV vollstindig bewiesen.
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SUFFICIENCY IN THE NON-WEAKLY DOMINATED CASE
GY. MICHALETZKY (Budapest)

[ntroduction

In the literature there are several conditions for the existence of the minimal
sufficient u-field in (Q, si, 3P) (see Halmos—Savage [3], Pitcher [s], Hasegawa—
Perlman [4], Luschgy—Mussmann [5]). But these conditions guarantee the existence
of the minimal sufficient «field not only in (Q, si, ?f) but in any statistical space
(B, si, 2) where 2 is another measure class which is in some sense “absolutely
continuous” with respect to 3? (for the precise definition see (1)).

In my paper | would like to give a necessary and sufficient condition for this
property. | will show that the prototype of these spaces is the following one.

Exemple (prototype). Let B=[0,1), si the <-field generated by the one-point
subsets of £2, ex, x€[o, 1) the measure concentrated at the point X,

1 if A is noncountable
0 if A is countable.

and finally let ~={E£X|xE[0, 1)}U{"}. In order to enlighten this claim we need
some definitions and notions.

Notation and preliminaries

Let (£2, si, 2*) be a statistical space. A rrfield 2Fa.si is called sufficient if
for each A£si there exists a common version S?A3F} of the conditional prob-
abilities P(A\&), P£0>.

Denote by 9 the closure of the convex hull of 3 taken in the norm of total
variation of measure and let

@) 3* = {Q\Q is a probability measure on (B, si) and
there exists a measure PY& such that Q <« P}.
Let 2czEP* be a measure class. Write
(2 /(1) = {A€siI\Q(A) = 0 for every Q£2).
In order to simplify computations we shall always suppose that if is a sufficient
ff-fieldin (£2, si, 2), then Ar(2)c:2'. Thisis not aserious restriction since a cr-field

1 This paper was partly written while the author was visiting the Statistics and Applied Prob-
ability Program, University of California, Santa Barbara.



342 GY. MICHALETZKY

3F is sufficient iff a{3P, sV(3)) is sufficient. Write
J{PA) ={3 C9*\Jf(3) =X}

Consider an event Adsi and a probability measure P defined on (Q, si).
Define a measure as follows:
DAE) = ‘P(B\A) if P(A)>0
AB) = 0 if P(A) = 0.
Denote si\A={Bds/\BcA}.

Definition. Let 3<zPA* be an arbitrary measure class. A measure 0d3 is
said to be strictly positive (in 3) on the event Adsi if for every event Bdsi for
which B\AdATr(3) and BdsV(3) we have Q(B)>0, i.e. on the event A the
elements of 3 are absolutely continuous with respect to Q.

It can be shown easily that there exists a largest event [mod XX (3)] — denoted
by Aq(3) — such that Q is strictly positive on AQ(3). The event AQ(3) is referred
to as the waistbelt of Q. If Q(Aq(3))=1, then Aq(3) is the parcel of Q. If every
measure of a statistical space has a parcel, then this space (or the measure class 3)
is said to be parcellable. Let

(3) 4i0(3) = {Adsi Ithereexists a measure Qd3 such that Ois strictly positive on A},
(4) 3)(3) = {Adsi\Af)BdAr (3) for every Bd~0(3)}
and let us use simply 3> for 3}(3A).

Remark. It can be shown easily that there exists a greatest event BQ(3)d 3>(3)
mod Jr(3) such that if Bd2)(3), BC\BQ3)dA/'(3), then Q(B)=0.

Returning to the so-called prototype we can observe that in this space
3>(3")={0}, %(3>) contains the countable subsets of £2

Going further we can observe that every measure in S& can be “divided” into
two parts. One of these parts has a parcel, the other one is equal to a constant multi-
ple of Ps, so it is “spread” over H"SA).

The following definitions are in some sense the generalizations of these ob-
servations.

Definition. We shall say that the statistical space {Q, si, PA has property H(a0
if the nondenumerable cardinality, a,,, is such that

(i) for every subsystem (/4i)iel of EX3A) whose cardinality is less than a there
exists an event Bdsi such that

(5) P(A\B) =0, PdPA idl,
and for any Cdsi for which (5) holds we have
G) P(B\C) = 0, PdPA\
(if) forany Adsi either silAn%0(”™) or n~Q(™) has the property that

the cardinality of every subsystem (J1;);e/ in it for which P (Ai\Aj)=0, PdPA i,jdlI,
is less than <0.
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SUFFICIENCY IN THE NON-WEAKLY DOMINATED CASE 343

REMARK. Denote B;A if, 4,B€o/ and B\ AEcAN(2), and let \/ 4; the
i€l
event B appearing in (5) and (6).

DEFINITION. Let 2C2* be a measure class. Denote
%y (2) = { A€ o | there exists a subsystem (4,);c;=%,(2) for which
III <a0 and A = V Ai]'
icl

Let us define the sum of %;;(2) and 2(2) as follows:
Ca(2)+2(2) = {Ac L|there exists a C€%,,(2), DEP(2) such that 4 = CUD}.

DEFINITION. Let 2c2*. We shall say that the statistical space (Q, &/, 2) has
property (R) if it has property H(«,) and
(i) there exists a measure P, such that

0 if ACEL(2) or ACD(2)
}3(‘4)={1 if A¢65(2+2(2),

(ii) for every measure Q€2 there exists a number dp=0 such that
0(4) = 0(4N 45(2))+Q(ANBy(2))+dy B (A).

REMARK. In the “prototype’ example «, is the first nondenumerable cardinal, P,
is exactly the measure in the previous definition.

Minimal sufficiency

[6] contains the following Theorem.

THEOREM 1. Let (Q, &Z,P) be a statistical space. The following two assertions
are equivalent:
(i) for every measure class 2¢#(P) there exists a minimal sufficient
o-field,
D) (i) a) (R, &, P) has property H (o),
b) for every 2¢ #H(P), if F is a sufficient a-field with respect to 2 then
9(2)cF.
c) it has property P..
In our paper we characterize statistical spaces having the following property:

(II) for every 2CP* there exists a minimal sufficient o-field in (Q, o7, 2).

Observe that property (II) implies (I), and what is more, it ensures that every sta-
tistical space (Q, &, 2) for which 2c#*, has property (I). Thus examining
property (II) we must check whether (R, &/, 2) has property H (o), property ()
and how the ideal 2(2) looks like.

The following theorem is true.
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344 GY. MICHALETZKY

Theorem 2. Let (Q, si, 2?) be a statistical space. The following two assertions
are equivalent:
() (12, si, 2?) hasproperty (1),
(i) @) (Q, si, P) hasproperty H(a0,
b) S={0},
c) it has property (Fs).
To prove this Theorem we need the following Lemma.

Lemma 1. If (Q,s4,2?) has property (I1) then s>={&}.

Proof. Take an event A£3>, ACJ/'{2?"). Due to the definition of 2?it can be
divided into two parts: Ax, Aia3), AXUA2=A in such a way that there exists a
measure POd"* for which PO(AD="0, PO(A2>0, PO(A)=\. Define

= {B\Bc Ax, PO(B) = 0}, 02= {B\Bc At, PO(B) = O}.

Let us choose maximal subsystems containing pairwise disjoint elements of 3x and
2Za modyl (*). Denote it by (Bii{)icS>1, (C,0/€Jcr©2. Suppose that |/|s|/|.
There exists an injection q: Let EE=BXJCcw There exist measures (i?)ielc
a?/* for which P.(Ei)=1, Pi(Bi)=Pi{CRji))=1/2. We can assume that PO(AX=
=2/3, F(AJ= 1/3.

Let J={i)|/€/FU{PC0} Clearly 3,c27*.

(Itisworth noting that in the proofof Lemma 1so far we did not make anything
else but collected the elements of the Pitcher counterexample for the nonexistence
of minimal sufficient cr-field.)

According to our assumption there ought to exist a minimal sufficient cr-field
in this statistical space. We will show that actually such a cr-field does not exist.
Denote EQ=ARY2) the waistbelt of POin 2L In this case AC\ARJ2l)= '\€f/ 5 AX.

1

Observe that

PO(AY____
PO(A\A~R(2)) " 2
Write
J/t={D\DC\EfJC(3.) or D\E?JC(2)}.
n"j, % = a(Et, /€/U{0}).
The cr-fields idl, are obviously sufficient with respect to 2, since f?(£})=0, if

i/j. On the other hand is contained in every cr-field which is sufficient with
respect to 2, and <#'= M a(%, sV(Pf). Consequently the minimal sufficient

. . i€AI{0>
cr-field is 2F, if any.
At the same time

SL(AX*) xNe) = W ®m x(Ed = (1/2)x(Ed, id/,

NW *) x(En = PAAXHX(EQ =0, V E =0Q (in & si, S

i€Ju{o}
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SUFFICIENCY IN THE NON-WEAKLY DOMINATED CASE 345

Thus 2(4,|7)=(1/2)x(A\E,) would hold, but
[ 1(4)dR, = B(4) > (2 B(ANE) = [ (1/2) 2(A\Eo) dF,

ANE, ANE,
i.e. Z is not sufficient. This implies that 2 ={0}.

REMARK. It can be easily shown that if 2={0} and the statistical space has
property H(a,) then for every (4;);c;C, |I|<w, there exists the supremum V 4;.
Namely, if there exists an index i€ for which A4;¢%; (%) then Q\A4;,£%,,(2)
and using property H(%,) there exists \/ (4,\4;) and VA=[V (4\4)]VA4,.

! i

Jel J
On the other hand, if for every i€l, 4; belongs to %;,(2), then there exist events
(Ci,)jcs, <% for which \ C;;=4;, |Jl<o. In this case VVC;;=V4;.
jeF, i J
PRrROOF OF THEOREM 2. First observe that in case 9={0} property (P) means
that for every P€Z there exists a real number 0=d,=1, such that

@) P = P(A4,)P4»+d, PR,

where A, is the waistbelt of P (in #). Due to the definition of #* every measure
Pc?* can be written in this form.

The implication (i)=(ii) b) is the assertion of the previous Lemma. Invoking
Theorem 1 (comparing with the introductory observations) we obtain (i)=>(ii)
a) and c).

Conversely, Property (II) means that for every 2c#* the statistical space
(R, o, 2) has property (I). But Theorem 1 characterizes the statistical spaces having
this property.

Step 1. 9(2)={0}. We already know that 2 (Z)={0}. Take anevent 4¢P (2).
Every measure Q€2 can be written as follows
0 = 0(4o(2)) Q4@ +dy R,

Clearly Ag(?)\A4o(2)€AN(2) thus Q4@ (A)=0. So if A€A'(2) then EF(A)=0
must hold, consequently P, would be strictly positive on 4, i.e. 4 would belong to
%(2). We obtained that A€ A#(2), so 2(2)={9}.

Step 2. Take a measure Qc€2. We will show that

Ag(P)UAp,(2), if Q(Ag(?) <1,

Ay (2), if O(4o(?)=1.

Denote 2,={Q4®|Qc2}. First we show that if Qc2, then A4y(2)=A4,(2)
Since A(2)D N (2) we have AQ(F}’)§ Ag(2). On the other hand, Q(AQ(Q’))=1
$0 Ap(P)\Ap(2)EN (2). Observe that Q(4o(2))=1. If Q€2 is an arbitrary
measure then due to (7) we obtain the desired assertion.

Now consider the measure P,. Since it is a 0—1 measure there are two pos-
sibilities : either P(4p,(2))=1, when P has a parcelin (Q, , 2), or F(4p,(2))=0,
when P, is spread over (Q, o/, 2) (of course including the possibility: for every
Q€2 we have Q€2,).

® 4,9 = (
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Step 3. Suppose that PB(Ap,(2)=1. Ap,(2) is unique mod 4'(2). In the
following consideration choose and fix an event as Ap (2).

We will show that in this case (R, #Z, 2) is parcellable, and for any system
(4i)ic;C the event V A; exists in (Q, &7, 2). (In this case we say that & is

complete with respect to .@ As long as the parcellability is concerned, it is enough
to observe that since P, has a parcel, so, due to (8), we obtain that every measure
Q€2 has also a parcel.

Consider now the second property. First we show that there exists the supremum
A= V Ao(2) and then we prove that .o/, is complete with respect to 2.

If QE,@O then Ay(?)NAp (2)€EAN(Q) but on Ag(#) we have N (Q)=
=N(2)=N(P) so AQ(g’)ﬂA,. (2)€ /(Q). At the same time since P(Ap, (.@)) 1
we have Ap (2)§%5,(2?) so Q\Ap, (2<%, (#), consequently dm\Ap (@ is com-
plete with respect to 2, so there exists the supremum A= \/ A4y5(2) in (2, &, P).

Q€2
Clearly, A€%;,(2) ie. |, is complete with respect to 2.

Obviously V Ap(2)=0Q\4p,(2)=4 in (Q,4,2). If Qc2, then
Q€32,
Ap(D\Ap(P)eN(Q), so V Ap(2)=A4 in (@, o/, 2). Take an event BCA.
We obtain B= V (AQ(Q’)OB)

If BE./V(.@) then BN A(P)eN (2) so BNAg(P)eN (P) thus BEN (D).
This means that A(2) and A (2) coincide on 4, i.e. &, is complete with re-
spect to 2.

On the other hand @\ 4= Ap (2) is an atom of & (since Fisa 0—1 measure),
consequently o/ is complete with respect to 2.

Summing up we have obtained in this case that (Q, o/, 2) is parcellable and
& is complete with respect to 2. In view of [6] this implies that (Q, o, 2) is weakly
dominated, thus there exists a minimal sufficient o-field in it (cf. [7]).

Step 4. Suppose that P(Ap (2))=0. First we examine the relation between
%o(Z?) and %,(2). Namely we show that if A€%,(2) then there exists an event

B/ such that B=|) B,, B,c%,(?) and ANBEN(9).
n=1
Since the waistbelt of A, is equal to 0, we have PB(A4)=0 if Ae%(,@) There
exists a measure class (Q,),enC 2y, such that [denotmg 0= — Q,,) AC A4y(2).

But Ap(2)=Ao(2?) so Aa(P)NA=A in (Q, o, 2) thus B Ap(P) is an
appropriate choice.

From this it follows that given an event 4¢€%,(2), we can suppose that 4=UB,,
B,c€,(?). Now we prove that if (4;);c;C%(2), |I|<a, then V4; exists in
(Q, o4, 2). To this end we show that if we choose the events (4,);c; in such a way
that A4;€%,(#) hold, then VA4;=A exists in (@, &,%), and VA4;=A also in
(Q, «, 9).

Since (2,7, %,) has H(wo,) it follows that VA;=A4 exists in (Q, s, P).
It remains to show that A=\/ 4;. Clearly 4;VAcA'(2). Take an event BC A,

2
and suppose that BN A4;€4°(2), icl, but B¢ A4(2). This means that there exists a
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measure Q€2 for which Q(B)=0. Due to P(A4)=0 we can assume that Q€Z,.
Consider the event By=BNAy(#). Q(B))=0. On this event A(2)= A(Q)=
=N (P), but BNAEAN(2), i€cl, so B,NAEN(P) ie. BN\AEN(P), BN
NA, €N (2). From this immediately follows that B,€A"(#). This is a contradic-
tion, thus V 4;=A.

3

Now consider the other part of property H(e,). Take an event A€sf/, and
suppose that A€%;,(2). We show that A€%,,(2). Let (4;);c; be a subsystem of
&,4N%,(2) containing disjoint events mod A4'(2). We ought to show that [I|<a,.

First we cut the “superfluous” part of 4 which belongs to A°(2). Due to
AE%;(2), A1, is complete with respect to # thus there exists the supremum

V (ANA4g(?) in (R, ,P), denote it by A(2). We will show that
2

Q¢
A(2)0 AE N (2).
If BcA(2) then B=\/ (BNAy(?)) in (2, ,?) and if besides this
Qc2

BeN(2), then BeAN (P). Thus N (2)=AH(P?) on A(2). On the other hand
A\ A€ N(2) and since B(A\A(2)=P(4)=0 and

Q(ANA4(2)) = Q((AN Ag(P)N\A) = 0

we obtain that 4o A(2)€A(2).

Replacing (A4)ic; with (4N A(2))ic;, we obtain disjoint non-empty-events
mod A(2), but N (P)=H(2) on A(2) so (A,NA(2).cx is also a disjoint
system mod A (Z). The relation A,ﬂA(.@);A implies that |I|<a,.

So far we have proved in the case PA(4p (2))=0 that (Q, o, 2) has prop-
erty H(xy), and 2(2)={0}. Examine property (£). We have only to show that
F, vanishes on %;,(2). Take an event A€</ and suppose that A€%; (2). There
exists a subfamily (4;);c; <% (2) such that \/ 4;=A4, |I|<a,. Since A4;£%,(2)

2

we can suppose that A4;€%,(#). Denote B=\/ 4;. This supremum exists in

P
(Q, o, P) since it has property H(a,), B<c%;(#), PB(B)=0. If Qc32, then
[4s(P)NAlo[Ax(P)NBlEA(2) since N (Q)=H(2)=H(P) on Ay(#). Thus
O(B\A)=0, 0c2,. If P(B\A)=0 held then P would be strictly positive on
B\A [in (Q, &, 2)] but we have assumed that P,(A4p,(2))=0. This implies that
Bo A€ N'(2), F(A)=F(B)=0.

Summing up, we have obtained that (Q, &7, 2) satisfies condition (ii) of Theo-
rem 1 so there exists a minimal sufficient o-field in it.

REMARK. Recall that in this case we can construct the minimal sufficient o-field
as follows. Since for every 2C2* the statistical space has the properties H (o),
(P), 2={9} we can restrict ourselves to the case (L, &/,%). For every PcP?
consider its parcel Ap and form the o-field generated on one hand by the Radon—
-j—%(d—Q—=0 out of A,.) and on the other hand by the null

Nikodym derivates P

sets N(P)

Fo=0(22 t0rr H(P), 0€2).
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Then the u-field
3F= {A\A(~)APE&p for each PE&>}

is the minimal sufficient c-field.

Finally a remark. Consider the prototype statistical space. It is worth to
note that if instead of the tr-field generated by the one-point subsets of Q we take the
u-field 3% generated by the sets having Lebesgue-measure zero, then the property
H(a0 does not hold, so there exists a statistical space (Q, 28, J), 2La&>* without
minimal sufficient c-field.
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CONCENTRATED BOREL MEASURES
Z. BUCZOLICH and M. LACZKOVICH (Budapest)

1. Introduction. Let 1 be a locally finite Borel measure on R and let b>0.
We say that L is b-concentrated at the point x if xGsupp (g) and

_fi((x—bh, x+bh))
& NRSY nifx—n x+h) -

holds. The set of points x at which v is b-concentrated will be denoted by Ch{p).
The measure fi is called b-concentrated if (1) holds for every xgsupp (g) that is, if
QOHsupp (9).

We shall prove that if b~ 1 then y(Cb(u))=0 for every measure /t (2.2 Theo-
rem). Hence for bs 1 the only b-concentrated measure is the identically zero meas-
ure. If b>1 then [A(Cb(g))=0 holds, where 1 denotes the Lebesgue measure
(2.4. Theorem).

Therefore, if b> 1 then every b-concentrated measure is singular with respect
to the Lebesgue measure. A more precise result is proved in 2.7: if b>1 then Cb(p)
is cr-porous for every g.

In Section 3 we give two examples of h-concentrated measures. First we show
that the Cantor measure (supported by the Cantor ternary set) is h-concentrated if
b is large enough but not h-concentrated for b=4 (3.1 Theorem). A better example
is given by 3.2. There, using a thinner Cantor set we construct a measure that is
b-concentrated for every b>2.

In Section 4 we show that there are no continuous b-concentrated measures
for the values b=21k (k= 1,2, ...). More exactly, we prove that for every con-
tinuous measure y and b=21k (k=1, 2, ...), g(Cb(g))=0 holds.

We do not know whether g(Ch(g))=0 must hold for any other number b€(1,2).
The problem, whether non-zero continuous b-concentrated measures exist for any
b€(1, 2) also remains open. The first author proved that non-zero continuous
b-concentrated measures do not exist for b<I + 10-e.

The distribution function of the locally finite measure u, is defined by

b

r Ne *)), if
X 199i([x, 0), if x<O0.

If ft is b-concentrated then the symmetric derivative

f(x +h)-f(x-h)

/;(x) = lim oh
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exists and equals infinity at each xgsupp (fi) (2.1 Proposition). In particular, the
Cantor function has infinite symmetric derivative at each point of the Cantor
set. (This fact was first observed by J. Uher [6].) We comment on this phenomenon
in Section 5.

Finally, in Section 6 we apply the results of Section 3 to generalized Riemann

derivatives (GRDs). Let the numbers ai9bt (/=1, ri) be given such that _2M =0,

i=1

2n m;b(=1. The GRD of the function/ at the point * is defined by

_ 2 aif(x +b,h)
@ Hrg— = D'1(0).

(This generalized derivative depends on the choice of the numbers ah bt. However,
it is easy to see that ifj'(x) exists and is finite, then Dxj(x)=f'(x) holds for every
system -, bt. For further details concerning GRD’s, see [1].) We shall prove that
there are continuous functions/ and GRD’s such that DIf(x)*0 everywhere and
/ is not increasing. We show that the negatives of the distribution functions of
some (»-concentrated measures have this property (6.1 Theorem).

In this paper we shall use the notation

I(x, h) = (x—h, x+h) (%, (iER; h =0).

2. Properties of (»-concentrated measures

21 Proposition. Let 1y be a locallyfinite Borel measure on R and letf denote
the distribution function of fi.

@® If xECh(fi) and 1 then /' (x)=0.

@ If XxECb(fi) and b> 1 then f,(x)="°°.

Proof. If XECD(fi) then (1) holds and hence there are £>0 and A0>0
such that

n(1(x, bhj)
H((x, h))

Since n(I(x, h))=f(x+h)—3 (x—h), this implies

(1—e)b (0 < h < hO.

f(x + bliy—f(x —bit) ,, .Af(x +h)-f(x-h)

&) 2bh (1~ ) 55 (0 h<ho.

Suppose first b< 1 If hcfbhO, hu] then

f(x +h)-f(x-h) _ n((x, hQ) dkf
2h - 20h0 -
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and hence, by (3), we have

SG+m)—f(x—h)
2h

whenever he[hyb*, hyb*~'] and k=1,2,.... Since f is increasing, this implies
fZ(x)=0 and, since for h=0

i (f(x+h)—f(x) f(x)—f(x—h)) _ S+h)—f(x—h)
h i h i h .

= (1—-¢* K

we obtain f”(x)=0.
Next suppose b>1. If h€[h,y, bh,] then

fetW—fx=B) _ p(IGh) w5
2h LAY T Y :

Hence, by (3),
Sx+h)—f(x— h) o
2 =Fi_ep
for every he[hyb=*, hyb=**'] and k=1, 2, .... Therefore we have f;(x)=c.

2.2. THEOREM. If p is a locally finite Borel measure on R then u(C,(p))=0
holds for every b<l1.

Proor. First we show that C,(u) is an F, set. Let

4, = {x: u((x—bh, x+bh)) = [b—%),u([x—h,x{—h]) for every 0 <h < l/n};

we prove that C; (;1)— U A,. The inclusion C,,(y)c U A, is obvious from
the definition of C,(u). On the other hand, if n>1/b, xEA and O<h’<1/n, then
pu((x—bh, x+bh)) = Jim. u((x—bh, x+bh)) =

= [b—%] hlilgq_ p([x—h, x+h]) = [b——i'] p((x—n, x+h))

and hence x€C,(u). It is easy to check that for every fixed 42>0 the function
f1(x)=p((x—bh, x+bh)) is lower semicontinuous, and the function f(x)=
=u([x—h, x+h]) is upper semicontinuous. This implies that 4, is closed for every
n and thus C,(n) is F, as we stated. In particular, C,(p) is - measurable

Let fdenote the distribution function of x and let /* denote the outer measure as-
sociated with the interval function f(y)—f(x) (see [5], III. § 5). It is well-known
that u(X)=s*(X) holds for every Borel set X. Let X={x: f’(x)=0}, then by
[5], IV. Theorem 9.6, f*(X)=0. By 2.1(i), we have C,(u)cX and hence u(C,(n))=

=u(X)=/*(X)=0.

2.3. COROLLARY. If p is a b-concentrated locally finite Borel measure with b=1,
then pu=0.

11* Acta Mathematica Hungarica 57, 1991



352 Z. BUCZOLICH AND M. LACZKOVICH

Proof. Since (1) is never satisfied for b=1, we have Ca(p)=0 and hence
\éve may suppose h<l. If g is h-concentrated then, by 2.2, p(supp (p))=0 and
ence 4=0.

24. Theorem. If g is a locally finite Borel measure on R then X(Ch(g))=0
holdsfor every 1

Proof. Let/ denote the distribution function of g and let X be the set of points
at which/ does not have a finite derivative. Since/is increasing, A(T)=0 by Le-
besgue’s theorem. By 2.1(ii), Cb(g)cX and hence /.(Cbh(g))=0.

25. Corollary. If g is b-concentrated then g is singular with respect to A

Proof. By 2.3 we may assume 1. Then 2.4 gives A(supp(g))=0 which
was to be proved.

Our next aim is to prove that for 1 Cb(g) is, in fact, c-porous. We recall

the definitions. For every H e R and we shall denote by I(H,a,b) the length
of the longest component of (a, b)\H. We denote
. I(H, x, x+h . /(A, x—h, x
pr(H:x) = liggyn ' ;0 = iy /XX

and p(H; x) = max (p+(H; x),p~(H; x)). The set A is called porous, if p(f;x)>0
for every xEH. H is a-porous, if it is the union of countably many porous sets.
It is well-known that every er-porous set is of Lebesgue measure zero and of first
category.

2.6. Lemma. Letg be a locallyfinite Borel measure on R, let 1 and A0>0
befixed, and define

4 H = jxCsupp (fi): S cfor every 0 < h < AQ.
Then there is a 0 such that

.. 14, x,x+h .. (A, x—h, x
(5) Ilﬁ[[l0|+nf ( h ) and I%'Df ( h )

holdsfor every x£EH.
Proof. Since 1<c<A, we can choose a large integer N such that
log8N loghb log b
logN logN logc
We shall prove that p= satisfies the requirement of the theorem. In order
to prove, say, the first inequality of (5) it is enough to show that for every x£H
and 0<A<J10 there is an interval I<z(x, x+h) suchthat /MA=0 and |/|=-"7 m
Let xEH and 0<A<AO be fixed. If p((x,x+hj)=0 then supp (g)C\(x, x+h)=8

Acta Mathematica Hungarica 57, 1991



CONCENTRATED BOREL MEASURES 353

and, as Tfczsupp (fi), we can take I=(x, x+h). Therefore we may assume that
p((x, x+h))= A =m0

Let 7~ x + h, x+-A-/ij (/=1 ....2N). In order to complete the proof it

is enough to show that there is an i with /;MA=0.
Suppose this is not true and let yfiliOH (/=1, 2N). Since yfiH and
0<1i<in0, we have

cfi A jj ™ n(l(yt, h) s p((x, x+h)) =A

for every m=1, 2,... .

Let m=4a~” A h+1. Then bm>8N, ——<—ﬁ— and hence the intervals
logo bm 8

I y2), -Aj (/= 1,..., N) are pairwise disjoint. Also,

£) <(x+%)

and hence
A=p(ox+i)~ 0 p(d 2,A)) " A N
This implies ¢c™*N. On the other hand, we have
6m" c(iog@viioghyH _ exp |-j— log 8N +logc) < exp (logN) —N

by the choice of N. This contradiction completes the proof.

2.7. Theorem. For every locallyfinite Borel measure p and b> 1 the set Chb(fi)
is a-porous.

Proof. By the previous lemma, the set H defined in (4) is porous. Since Ch(fi)
is the union of all these sets when c runs through the rational numbers of (1, b) and

hO:?(le, 2, ...), the assertion follows.

3. Examples of h-concentrated measures. The Cantor ternary set is defined as
follows. Let S denote the set of finite 0—1 sequences (including 0) and let |j| denote
the length of s£S. We put /0=[O, 1]. If Js=[u,v] has been defined for an S£S

then we put
j,0= [mu+(v-0)R], Jsl =[v-(v-u)R, V]

In this way we define Js for every s£S. The Cantor ternary set is
Cc « EO S%%—?S—
¥In
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It is well-known that there is a unique Borel measure L, such that ji is supported by
C and p(7s)=2"“Isl holds for every s£S. This measure p is called the Cantor meas-

ure. The distribution function of u is the Cantor function.

3.1. Theorem, (i) The Cantor measure is b-concentratedfor every b~81.
(ii) The Cantor measure is not b-concentratedfor b—4.

Proof, (i) Let bé8l be fixed, and let kK be an integer with 3* 1"b<3*;
then k&5 Let xEC and O0<h-=3"t be given, and choose an integer a>k such
that 3~m*h<3~n+l Since xEC, there is an s£S such that |=n and XE£7s.
Then, by 17,1=3-",

[x—h, x+h] 3 [x—3~",x+3-"]3 7S
On the other hand, bh<3~tt++1 implies that [x—bh, x +b/JNCc 7, with a
tES, \t\=n—k —\. Indeed, let tES besuchthat \t\"n—k—\ and x£J,, and put
A= U {mr: \r\=n—k—I, r*t}. Then dist (7, A)=3~ntk+l and hence
[x—bh, x+bh]nc ¢ [x—bh, x+bh]0(Jt\JA) a Jt.

Therefore we have

p(/(x, bh))  h(-T) _ _
OO S

since ks5. Thus
. p(/(x, bh)) 64
(6) imsuP “Haeon)) ~ 8

which proves that u is b-concentrated.
(ii) Let s,, denote the sequence

010010001 ... 10... 01

n

and let f| ={*}» We prove that u is not 4-concentrated at x. Let JS=[an, b,]
A=1 »
n=12,...). Itis easy to check that

lim £ a” =o.

Let hn=j(bn-an-(x-an; then
(x-hn,x+hnnc czJS0 (n=1,2,...).

On the other hand.
[x-4/i,, x+4h] 3 [an-2(bn-an), bn]
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for n large enough, and hence

; p(I(x,40) _ .. 2u(J,) _
w0+ u(I(x, b)) — ,!E’; uJs,0) et

Consequently, u is not 4-concentrated at x.

3.2. THEOREM. There exists a continuous probability measure 1. on R such that

. u(1(x, bh))

g aem) =2
holds for every xesupp (u) and b=>1. In particular, u is b-concentrated for every
b=2.

Proor. The measure p will be supported by a perfect set P defined as follows.
Let J3=[0, 1]. If J,=[u, v] has been defined for an s¢S then we put

Joo = [, u+@—uw)/(s|+4)] and J, =[v—@—u)/(s|+4),7].
This defines J, for every s€S. We put

oo

P="(Ne ol
n=0 scS
|s|=n
It is well-known that there exists a Borel measure pu supported by Psuch that u(J,)=
=2-bl for every s€S. We shall prove that p satisfies the requirements. Obviously,
1 is a continuous probability measure on R.
Let x€P and b=>1 be given. We show that

@) u(I(x, b)) = 2u(I(x, b))

if h>0 is small enough. Suppose first that x is the left end-point of the interval J.
If h<|J|/b then [x,x+bh]cJ; and hence I(x, bh)NCcJ,. Also, there is a non-
negative integer k=k(h) such that

[, x b UR] &, 0t I
k
and
[x, X bh] == JaO..,O = Lk+1.
Ed

k+1

Obviously, k(h)—c if h—0, and hence there is h,>0 such that k(h)=>2b for
every O<h<h,. If O<h<h, and x+bhcJ,, o, then bh=>|L¥|/2,

LA = |EAs+k+S) < 2o < b,
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and hence [x, x+h] 3 Lk+l This implies

bh))  fi(LK)
H(x, A) - fi(Lk+l)

On the other hand, if x+bh”J9Q 0i then R(I(x, bh))=jx{Lk+1). Also, in this case

IL'1+2 = [EfcHl/(j| + fe+6) < -~ < h

and hence [x, x+/z]z>L*+2. Therefore we have

N{(x, M) _ fi(L*+D)
A((xA) - n(77+2)

We proved that (7) holds for small h's whenever x is the left end-point of any
of the intervals Js. By symmetry, the same is true for the right end-points of the
intervals 7S

Thus we may suppose that x is not an end-point of any of the intervals 7S.
In particular, 0<x<I.

For every O0<A<min (x, 1—x) let s—s(h) denote the longest tES suchthat
I(x,bh)czJt. Since x is not an end-point, it follows that jx(/r)|]— as /8. There-
fore it is enough to show that \s(h)\>b implies (7). Let 0 be fixed, let s=s(h),
Js=[u, r] and suppose |s\>b. By the definition ofs we have /(x, bh)czJs,x+bh*JD
and x—bh$Jsl.

Since x£/5MC, we have xE£79U7sl. By symmetry we may assume X£/sQ.
As x£C, this implies in turn, x£7900U790L Suppose that x£Js00. Then, by ag x -
—bh, we have bhidx—u s|7900 and hence x+bh—u”2|790< (y+5)[7500 =
= |794). Since x +bh£JsO, this is impossible. Therefore we have X£7s0L

Let
Lk 7,ppn0 (A=0, 1 ..).
K
We show first that if x—h£Lk then
(s) v(Kx, bh)) n(LK.

Indeed, u x—bh implies bh~x—u” |790 and hence x+bh—u " 2|750< (|j| + 3) |70«
= |79—7sl|. Thus x+bh$Jsl and [x, x+bh]C\Cc:L0. This proves (8) if k=0.
Let 0; then x£LO,x—h£Lk imply xELk and hence hs\L K. Therefore |70 —
-(x -bh-u)=(\LO\-(x-u))+bhM\LRKR+b\LKN(\s\+k+2)\LK=\Lk N\-2\LK and
this easily implies [x—bh, x]C\C<zLk. Hence I(x, bh)f)CczLk and (8) follows.

There exists a non-negative integer k so that x—h£Lk and x-h$Lk+1. Then

x€E* and hence either x€701 10~ F or x£Lk+1.

If xeV then, by x+bh-u>\LQ,bh>\LK-\V\=(\s\+k+4)\V\>b\V\; that
is h>\V\. This contradicts x —h£Lk and hence x£F is impossible.

Next suppose xELk+1. If x+/r—w>|LQ then /(x, hy*>Lk+1 and we obtain
n(1(x,h) n(Lk+)=n(LK/2"n(1(x,bh))/2, i.e. (7) holds in this case as well.
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Finally let x+h—mS|7ﬂ Then, as x—h$Lk+1, x lies in the first half of Lk+1,
that is !...!<) A

Since x+bh—u><dol> we obtain bh>\Lk+D\—W\=(\s\+k, + 5)\W\>b\W\,
and hence I(x, /1)3)XK On the other hand, x+h—u"\JsO\ implies h*\Lk+l\ and
hence \J9\- (x —bh—U)M\Lk+\+bh& (1+b)\Lk+D\=\LK\—2\Lk+1\ from which we
obtain I(x, bh)f)C<zLk+i. Therefore

ti(1(x, bh)) S p(Lk+l) = 2n(W) =S2u(1(x, A)
and the proof is complete.

4 The case of b—21k In this section we prove that p(Ch(p))—0 holds for
every continuous measure 1 and b=21k (k=1 2, ...) and, consequently, for these
values of b no non-vanishing ~-concentrated continuous measure exists.

If 1 is an open interval and m»0 then ul will denote the open interval con-
centric with / and of length u\l\. That is, if T=I(x,h) then ul=I(x,uh). We
recall that p{H\ x) was defined after 2.5.

Ny Lemma. Let p be a locally finite Borel measure on R, let fc R be a non-
empty, bounded, perfect set and let {/,,}*=i denote the sequence of all bounded intervals
contiguous to P. Suppose that there are positive numbers p, K, n0 such that

(i) p(P\ x) smp for every Xx£P,
and

(i) p (jln =Kp(n (na no.

Then g(P)=>0.

Proof. Let/ be a bounded interval containing P. Since P is perfect, condition
(i) implies that

for every n. By the compactness of P this implies that for every n, there is ri>n
such that

n 2

Fc U—4-

k=n P

Hence we can define the numbers nO<«!<... inductively such that
"i+i-i 0
Pc U -P4 (/:0,1,)

F=

Suppose that /x(P)>0. Then
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for every i and thus, by (ii),

This implies 2 /*(/*)=00« On the other hand, Ikc:J for every k and hence
2 which is a contradiction.
4.2. Theorem. |f B is a locallyfinite and continuous Borel measure and b equals

any of the values 21k (k=1,2,...) then B(Chb(p))=0.
Proof. Ify is 21/-concentrated at x then u is also 2-concentrated at X, since

Therefore C2/i‘(R)czCi(R) for every k= 1,2, ... and thus it is enough to prove
B(CfR))=0. Let 1<c<2, 0 and h0>0 be fixed and let

H= jX£SUpp<m

Since C2(p) is a countable union of sets of this form, it is enough to show that

KH)=o.

éinge LLis continuous, H is closed. Thus there is a countable set D and a perfect
set P such that H=/)UP. Since p(D)=0 by the continuity of p, we only have to
prove that B(P)=0. We may assume P~ 0. By 2.6, there is a positive number
p>0 suchthat p(H\x)>p holds for every xEH. Since PaH, the same is true
for P that is, condition (i) of Lemma 4.1 is satisfied.

Let N be a positive integer such that 2N> F+ 2| Let /,=(@,,b,)(n=12,..)

denote the bounded intervals contiguous to P, let h,,—bn—a,,, and let nObe so large
that hn<h02~N holds for every nSn0. We shall prove that (ii) of Lemma 4.1 is
satisfied with K=cN+l/(2—c).

Let n*n0 be fixed. Since an, b,,£H and hn<hO, we have

B(I(an, 2hry) Wcp(l(an, hr)
nd p(I(bn, 2/0 ) ~ cB(I(bn, hr)).
Therefore
28(1(a,,, h,,))+2B((b,,, bn+ hn)) s p(l(a,,, 2hn)+B(1(b,,, 2hn) s
= cp(l(a,, hn))+cB(I(bn h,)) s cB(l(an, h,))+2p((b,,, bn+h,))+cB(In
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and hence we have

”(I(ans hn)) = 2f_c ”(I")'

Since a,6H and 2Nh,<h,, we also have

1(Iay, 2Vh)) = (1@, b)) = ——— ().

Finally, by the choice of N, we get —;-I,,cl(a,,, 2¥h.) and hence

u(L,).

Thus (ii) of 4.1 is satisfied. Then, according to that Lemma, p(P)=0 and this is
what we wanted to prove.

4.3. RemArk. The condition of continuity cannot be removed from 4.2. Indeed,
if u({x})>0 then, obviously, x€Cy(u) for every b>1 and hence u(Cy(1))=0.

4.4. CorOLLARY. If u is a continuous locally finite b-concentrated measure with
b=2"* (k=1,2,...) then u=0.

5. Some remarks on the range of symmetric derivatives. Let 4 be a continuous
non-vanishing b-concentrated measure and let / be the distribution function of p.
It follows from 2.1(ii) that f;(x)=<> holds for every xé&supp (). (For example,
by 3.1(i), the Cantor measure is b-concentrated for =81 and hence the symmetric
derivative of the Cantor function is -+ at each point of the Cantor set. This fact
can also be proved directly; see [6].)

Since f’(x)=0 if x¢supp (u), f is a continuous function with the property
that f; exists everywhere and its range is {0, «}.

The analogous phenomenon cannot happen for ordinary derivatives. In fact,
if £ is continuous and f” exists everywhere (finite or infinite) then f” is Darboux.
Hence the range of f” is an interval unless fis constant. In particular, the range of
S’ cannot be {0,e} for a continuous f. (For discontinuous f it can, as f(x)=
=sgn x shows.)

The range of the symmetric derivative of a continuous function may consist of
three finite values: consider, for example, f(x)=|x|.

'’

5.1. THEOREM. Suppose that f; exists everywhere. Then the range of f; cannot
consist of two finite values.

Proor. Suppose that the statement is not true and let f be symmetrically dif-

ferentiable with, say,
{f (x): xeR} = {0, 1}.

Then fis measurable by a theorem of Charzynski [2]. Thus f; (x)=0 implies that
there exists an increasing and continuous g such that g.(x)=f;(x) everywhere
([3], Theorem 4). Since g;(x)=1 everywhere, h(x)=x—g(x) is increasing ([3],
Theorem 3) and hence g is Lipschitz. Consequently, g is absolutely continuous and
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g'(x)=0 or g'(x)=1 holds for a.e. 1. Since g is not linear, A{x: g'(x)=0})>0
and A({Xx: g'(x)=1})>0. Then the sets A={x: ¢s(x)—0} and B={x: g'(;c)=1}
are disjoint measurable sets of positive measure such that y4U5=R. Since R is
connected in the density topology, it follows that there is a point x at which both
A and B have positive upper density. This easily implies that

g(x+h)-g(x-1i) 0

ling gup 2h
and
it SO0y

Hence £s(x)${0, 1} which contradicts g' =/," and //(*)€ {0, 1}.

6. An application to generalized Riemann derivatives. In this section we prove
that for certain systems ah bh there is a continuous function/ such that ZT/(x)50
holds everywhere and/is not increasing, moreover,/is non-constant and decreasing.

6.1. Theorem. Let p be a locally finite Borel measure, let b > o0 1 and sup-
pose that

9) lim sup 7 Th“_ Sc

holdsfor every xgsupp (u). Letf denote the distribution function of p.
I f the positive numbers W, u2, v satisfy

u2 i} —
c< =< b buw—u =

and the system ah bt (/=1, 2, 3, 4) is defined by
_ Ui a2—M3 33— M L,
(10 (15 oy, be=—v, b3—v,  fu=by
then DIf(x)*0 holds everywherefor the corresponding GRD. More exactly,
DIf(x) = 0 if supp (p)
and
Dxf{x) = —0 if jc supp (p).

4
Proof. The second condition on the numbers ul9 u2, v implies that _Zlai—"
1=

_24%dibi= 1 and hence the system (ai9bi) defines a GRD. Since tf5 f= —ab 6 i=
1=

= —hi (/=1, 2, 3, 4), the function

F(ch) = -2 aif(x + bjh)

1
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is even in h and hence
lim F(x,h) = lim F(x, h).
Zt-0- h-o+
If x”supp (fi) then obviously H_%F(x, h)=0. If xEsupp (p) and 0 then

F(x,h) = "mul(f(x+bvh)-f(x-bvh))-ru2(f(x+vh)-f(x-vh)) -

= bvh))-j up(I(x, vh) =

- S *>'*<*.*>.

By (9), Ii%gyp B(X, h)"cﬁ <0. By 21 (ii), h,I&)ng A(x, h)=<» Hence Dx(x)=
= lim F(x, h)y=—>.
6.2. Corollary. Letf be the Cantor function. Then there is a GRD such that
DIf{x) =-
at each point of the Cantor set. For example, such a GRD is defined by the system
al=—1, =199, a3=-99, ad=1
b\ — 50, b2——2"> b3——, h4= 50.

Proof. Aswe proved in3.1, the Cantor measure is ft-concentrated for,say,
h=100. More exactly, (6) shows that the Cantor measure satisfiescondition (9)
with ¢=80 and h= 100. Therefore we can apply the previous theorem with Hr= 1,

bP=99, v=1j, *=100.
6.3. Remark. Letf denote the Cantor function. As we saw before, //(x)=°°
and DIf(x)=—m hold simultaneously at the points of the Cantor set for some

GRD?s. This sounds rather paradoxical especially if we recall that whenever a func-
tion g has a finite derivative then necessarily gs(x)=D1g(x)=g'(x).

6.4. Corollary. Suppose that the positive numbers w, u2, v, b satisfy

2=— < b, bux—ut = =
«! 2v

and let the system (ah bt) (/= 1, 2, 3, 4) be defined by (10). Then there is a continuous,
non-constant and increasing function f such that DI(x)”0 holds everywhere for
the corresponding GRD.

Proof. This is an immediate consequence of 3.2 and 6.1.
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6.5. Remark. The GRD given in the previous Corollary has four terms.
was shown in [4] that there are GRD’s with three terms and continuous func-
tions/ such that D*fsO everywhere and/is not increasing. On the other hand,
it is easy to show that if/is continuous and D \fs 0 holds for a two-term GRD
then/is increasing.
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ON HERMITE—FEJER INTERPOLATION
OF HIGHER ORDER

T. HERMANN (Budapest)*

1. Introduction and main result

Let X ={{xk,,},’:=1},':"=1 be an infinite triangular interpolatory matrix where
(1.1) =1 =, <X, g <. Xy =4l

We consider the unique interpolatory polynomials H,,(f, X, x) of degree =mn—1
for feC[—1,1] defined as follows:

{Hnm(f; Xs xnk) zf(xnk)s 1= k =n,

(129 HO(f, X, x4) =0, l=k=nl=i=m-1.

When m=2 we obtain the well-known Hermite—Fejér polynomials investigated
in many paper. If X=X®# ie. when the nodes (1.1) are the roots of the n-th
Jacobi polynomial P*#, o, f>—1 and m is a positive, even number then P. Vér-
tesi proved the following result:

THEOREM A ([14], [15]). Let —1<A<1, a, B>—1 and m be a fixed even natural
number. Then

(1.3) JLnl "Hnm(.f! X(a,ﬂ))_f"[zl.ﬂ =0

Jor arbitrary feC[—1,1] if
a€[—0.5—2/m, —0.5+1/m), B=—-05-2/m, a—p =2/m.

One can ask: what can we say about (1.3) for other « and B? If m=2 and 4
then it is known ([7], [13]) that there are continuous functions such that (1.3) does
not hold for them. So in this case the question is: for which continuous functions
will (1.3) be true? This question was investigated by several authors when m=2
((12, [21, [31, [5], [71, [8], [10], [11]). We cite the following theorem of Vértesi:

THEOREM B ([11]). Suppose —1<A<I1, a€[p—1, p) when p is a positive integer.
Then for any fixed feC[—1,1]

lim [ Hya (/s X“P) Sl =0
if and only if
lim Hz,'(_f; X(a,ﬂ), 1) =f(1)’

n-»co

* Research supported by Hungarian National Foundation for Scientific Research No. 1801.
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moreover if a”™|l
[tf,,2(/, *<«m, =o(n*) (r=12, 1.
The main result of this paper is the following

Theorem 11. Let m be an even, positive, fixed integer, —1 1 real, a, R>
> —0.5—=2/1 arbitrary, /JEC[—L, 1]. Then

(1-4) Jim IH f, X A) -1 bi=0
ifand only if
(1.5) [Hm(f X A\ ~A-/()]r =0(n2) (/=0,1, ....p—0
(if p—0 then we omit this condition) where p is an integer such that
(1.6) m(«+0.5)/2 § » < m(a+0.5)/2+ 1,
Remark. The proof of Theorem 11 follows the ideas used in the proof of
Theorem B.

2. Quasi Hermite— Fejér interpolation of higher order

To prove Theorem 11 we need another operator which is interesting in itself.
Let us consider the uniquely determined polynomial hpg(x)=h,,np f D, E, Xla,n, x)
of degree "N=mn+p+q—1 (where p,q"0 are integers, /€C[—L, 1]) suchthat

hPAxK) =f(xk) (k= 1, ..., n),

h$(xk) = 0 (k= oo 0i= 12,0, m-l)

hp) (1) = dt (i=0,..,p—1; do=/(2; if p = Owe omit this condition),
hp)(—D) = e, (i=0,..,q9—1 e0=/(—1), if g = Owe omit this condition).

Let us introduce the notaions a(p):=a—2p/m, B(q):=R—2a/m. About the con-
vergence of the hpgprocess, what we call quasi Hermite—Fejér polynomial of higher
order, we state the following

Theorem 2.1. Let —I1</(< 1 be arbitrary. I f either
—0.5" cc(p) <l/w —0.5, XpPrRB(q)*2/m

or
—2/m—0.5 " <x(p) S. —0.5, —2/m—0.5

then

(2.1) lim ||hp (/) -/]|u>1lj = 0 for every /EC]

whenever

(2.2) 141 = o(n2) (/= 1,2 cenees p-1)

and

(2.3) kl =02 (/=1,2,...,q-1).

Remark. If p=q=0 then Theorem 2.1 reduces to Theorem A.
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Corollary. If

—2Im—05S. a(p) < V/m—0.5 and —2/m—05s B
then
dimy [[Apo(/)-/llu.i] = 0 /o™ «»ry AC[1, 1]

is true whenever (2 .2) is fulfilled.

3. Proof of Theorem 2.1

In the following we shall use the following formulae without further reference:
=(-1rw *n(-x), Pn(l) ~ n*
lISWI ~ u—0Ltj*-1,3nm =>cn'j— 13 if f€[, n—u],
IH(**)! ~ k-*~*t2n A if t€[0, n-p),
tk~k/n, (k= 1,2, ..,rn),
tk+i~tk ~ Im (k=0,1,...,1n; /0=0, /il = n),
[T ~ (j+fc)(\j-k\ + I)/n*, (fi k = 1,2, ..., n).

Here P,,(x)=Pric,R)(x), x=cos t\ Xj=cos tj is the nearest node to x (for a fixed ri)
and is arbitrary fixed. The symbol ([9, 1.1]) does not depend on
t, k and n. (See [9, (4.1.3), (8.9.2)], [4], [12, Lemma 3.2].) Here and later c, cu c2, ...
are different positive constants. Let us introduce the following notations:

é(n/sinU* if s= 0,2 4,4 ,...
/(n, k,s):- (n,_i/sin,+ihn if |, = If 3>5

a = m(a(p)+0.5), b= m(R(q)+0.5),
K = max {k : i*€[0, tt—fi]},

21— sgsjli” 2% ~pfss” 2 % TRk 2 1T kAen”

Let h(x)=hmx(C, D, E, X, x) be that unique polynomial of degree ~mn+p +
+q—1 for which

hw(xk =cki (k=12,..,ni=0,1 .. /nl),
AO0() =d, (i=0,l,....p-1),
h*4~1)=e, (i=0,1...,q9-0).

Obviously we have the following representation for h(x):

h(x) = IZzo’éckiCki(x)ﬂ:zo diDi(x)+lg0 eiEi(x)
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where

C'M- (E£ET1)" (éT1Tl n
dm=W M -~r r- T * Nx-'r/r”

ap-(-~"r)" (m¥m)'N4 AN efIx+TAr~

We shall prove our theorems by a series of lemmas. In the following we suppose
that /£[0, n—i],

Lemma 1 ([14, Lemma 3.8]). If n and M arefixed then
|(12()w| = 0(I(n, k,s)), Os js If.

Lemma 2.

Proof.

9(s) ) (s-I)\
Yok 3 arajs -

Lemma 3. Wka\=0(I(n, k, s)).
Proof. We prove by induction. yw=1I.

bl =

= 0(?7!0 /(n, k,s—i)I(n, k, N)) = 0(I(n, K, s)).

Lemma 4 ([11, (4.5)]). (Pu(*)/Pn(1))<*>=0(n*).
Lemma 5. [8|=0(n%) (j=0,1,...,~-1).
Proof. We prove by induction. ®=1.

141 =

=0{2, 2, (PEIMP(IM()n2) =0{2 n2- 2in3) = 0(n2).
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LEMMA 6. |g|=0(n*) (s=0,1,...,q—1).
PrOOF. Analogous to the proof of Lemma 5.

LemMmA 7.
0( ke+3/2 ¥ keIl K]
1) ={ \FFEGT R0 —k+D ks ol
O(n*~#-%(n+1—k)P+32 j===1%) if k¢[K,n].

Proor. It follows from direct computation.

LEMMA 8.
¥—x {(j/k)2 if ke[l, K]
1—x, \Gmp if kelK, n),
1+x N{ 1 if ke[l,K],
1+x, (n/(n+1—K))* if k€[K, n].

Proor. It follows immediately from the above estimations.

LemMA 9.

O((j+k)(j—kl+1)k)"=? if 1=k=K,

m—2
rg; Vil 1% — X" = {O(nzm_4(n+l_k)z-m) if K<k=n,

m—1

G+R(j—kl+DY)" " (+K)j—kl+1)
) 0( 3 ] {1+ [ }
'%; [Piel 12— X" = f =k=K,

O(n*=2%(n+1—k)~™) i K<kEn

ProoOF. It follows immediately from Lemma 3.
LeMMA 10. Let o and B be such that either

O0=a<1 and a-b=2

or
—2=a=0 and -2=0b.
Then
le [Cro(¥)] = O(1)
and

35 1Cu®] = o).
k=1 i=1
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Proof. Using the previous estimations we get
K

@IQOWI =

fom(a+l/2)
<m v, km* * w FrA~NW =M=]>I"" x
CyT|"HIno+t*r<ly -* |+ D" | K I X

14 (YH)(LY-*1+ 1)

( K2 ))_

kat+2
&u+m\j-k\+ir *U+k)(\j-K\+i))e

0

|
-%\A

So
21 icw®)| =0 (j-a*2ika+i+j~a~azZik") =od),
22 \ckOX\ =0 (2. (J]y-n|+i)-«+y-12 i (\J-k\+ 1)-D) = o(i),
Z*\CkO(x)\ = 0(j~a2ska-2 =0()
and
Y ICMI-OT7 (S;/FIM 7 y*"(.-o-«>531 + 1-&r<»+»/») Ne»->»
2 «|CmW, o (2,40/) P («+1D) (M+1- /ﬂ)"

=0(j~an*~b~22 1 n+\-kK) = 0 (D).
Similarly
n ™—

Ziq les)
S0@ (1MW " *«1h r1"TF hul— >I>)"

-°U (TED'"(TAT *« XK bl|***r)e
Further computations are analogous to the above one so we omit them.
Lemma 11. If a” - 2 then

IAMI =0(n-*0 (/=0 12, .
Proof.

IAC)! = 0 (y— iy/nja 3 1(n20/m)2n) = 0 (j~ a2,
r

Lemma 12. Under the conditions of Lemma 10

BA1=0(n~2) (i=012,..9- 1.
Proof.

|Ei(*)] = 0 (ne-p_/- “-L/12)mly/m|2*2 1n2 = 0(Na b-r=>j- a).
r-0
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Lemma 13. |f the conditions

2, [CW)HIDOX)[+Ne, ()t = 0(1), 1 .ZE 1Q,MI = 0(2),

1

R, (1+141) IAMI = o(i), ZO+hDIAMI = 0(i),

I
uniformly hold in [w i?]S[—L, 1] then
Jim \f-hp(Bhu.j =0 if /€C[- 1 1]
Proof. Analogous to the proof of [11, Theorem 3.1].
Proof of Theorem 2.1. It follows immediately from Lemmas 10—13.

4. Proof of Theorem 1.1

Lemma 14 ([11]). If {p,H=L  a sequence ofpolynomials such that

degftSn wm=12..)
and
Hm||/-pj =0 (/€C[- 1,1])

tlion/or erery fixed positive integer r

IPINMI = o(/i), *€[-1, 1].

Proof of Theorem 1.1. The necessity of (1.5) follows directly from Lemma 14.
Now we prove that (1.5) is sufficient. It is simple to verify the formulae

Km.,+i.0(x)-h,,m0x) = (P(x)/P(\))"[d,- hti'O(1)](X-1Y/r!
whence for any fixed réo
4.2) hrmOM = Him(x)+{P(x)/P())m2 [d-h "M U x - )"/l
Let us define  recursively by o
4:= moCr. {do, 4-i},E,X"\1) (/=12 ...p-D.
With this choice of D, (4.1) reduces to
Kmpo(f, x) = HnJf x).

Because of the Corollary to Theorem 2.1 if we can prove that dt satisfy (2.2) then
we are ready. We shall prove it by induction. For dOit is obvious. We defined etas dt=
=ftmi,po(l) so by (4.1) when r=i, <=A<2(1) hence by (1.5) </;=o0(/id). Q.E.D.
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ON THE INTEGRABILITY AND L-CONVERGENCE
OF DOUBLE WALSH SERIES

F. MORICZ (Szeged) and F. SCHIPP (Budapest)*

1. Introduction

We consider the Walsh orthonormal system {w;(x): j=0, 1, ...} defined on
the interval I=[0, 1) in the Paley enumeration. That is, let

re(x)=1 for 0§x<%, ro(x)-%—l for -;—§x<l,

Pl 1)= ng(x), L rj()=2g(2'x) 7 ="1%i.;)

be the well-known Rademacher functions. The Walsh functions w;(x) are then
given by :

co

wo(x) =1, w;(x) = [ rlu(x)

u=0
where

(1.1) j= gjuzu (jo=0or 1)

is the dyadic representation of the integer j=1. (See, e.g. [1] or [5].)
We will study the convergence properties of the double Walsh series

(12) 2 2 axm(m0)

both pointwise and in L*(I*)-norm, where {a;: j, k=0,1, ...} is a double sequence
of real numbers and I2=[0, 1)X[0, 1). Throughout this paper we assume that
{a;} is a null sequence of bounded variation :

(1.3) a; —~0 as max(j,k) e

and

(1.4 P [ aul <=
J=0k=0

where

Anap = j—8y41,5— )k 41+ 841,841+
Besides, we will use the notations

A8y = 83— 0,4, and Ay a, = ap—a; ;4.

* This research was completed while the authors were visiting professors at the University of
Tennessee, Knoxville, during the academic year 1987/88.
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We denote by
Smn(x,y) = T%HaJkW](X)Wk(y) (mn=12.)

7=0 0

the rectangular partial sums of the series (1.2). A double summation by parts yields

m- n—
(1.5) smi{x,y)= 2 2 Dj+I(x)Dklrl{y)Aliajk+
7=0 *=0

t20 B0

where
Dm(x) = 72=0 w(x) (m=12.)

is the Walsh—Dirichlet kernel in terms of x. It is well-known (see, e.g. [1]) that
AMI =-j M=12...;0<x<1).
It follows from (1.3) and (1.4) that for all Oct, y<I the series

_/2=0 k%) DJ+ (x)Dk+1(y)An ajk

converges absolutely and

am,Dm(x)Dn(y) - 0 as max(m,n) -
By (1.3),

~jo ajn —k2 ar

whence by (1.4),
(16) 2 Wwafl—2 2 Mufiid >m0 as n
j=o 7=0*>»

This implies that for all Oct, y<I
% N+HIW AW ANjo™ -0 as M-«
-0
uniformly in m. Similarly, for all Oct, y-=1
gzOAMA+iOONdJ -0 as m <>

uniformly in n. Combining these, we can conclude from (1.5) that the series (1.2)
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converges to the function f(x,y) defined by

1.7 fx. ) = jg k=2: Dy s1:()Dys1(¥) Ay

for all O<x, y<1 in the sense that

Smn(%s ) = f(x,y) as min(m,n) .

2. Main results

We introduce new classes /2 of double sequences of real numbers, which are
similar to the ordinary classes /P.

DErFINITION 1. A double sequence f={a;} is said to belong to the class £
if in case 1=p<ee

gm&l zu+l

5, « = l@ool + 2 2. Pkl _zm ]a 0l?]P -+ 22:- [2— 2" |a0k|p]1/p+

gm+l_] gn+l]

4 2 22m+n[2—m-n Z 2 Iajklp]1/p<°°a

m=0 n=0

while in case p=oo

1o, = il + 227, max, lanl+ 32", max, laul +
é' __,—’ S 2"'5j<%("‘+‘ 2"Sr}‘1<2"“ i
By Hoélder’s inequality, for every 1<p<eo,
(PA)) Il = 1Ll1, 4 = 1Ll p, o = 1], 4
where
Il = 3 3 layd
is the ordinary /'-norm of &/. Consequently,
i Gt c el
It is also easy to check that /2 is a Banach space with the norm | .|, , for each

1= =Sp=co.
DEFINITION 2. Motivated by (1.5) we introduce the modified rectangular partial
SUmMS u,,,(x, y) of series (1.2) as follows
m—1
(2.2) U (X5 ) = Sy (X, y)—go D 1(x)Dy(y) Arojn—
n—1
R kZ:) Dm(x)Dk+l(y)A01 Ok — aman(x)Dn(y)'
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According to (1.5),
(2.3) um(x,y) =2 2 Dj+i(x)Dk+Ll(y)An ak.
j=0k=0

We note that analogous modified partial sums were introduced by the first named
author [4] in the case of double cosine series.
In the sequel, let
As/ = {An ajk:j, k =0,1, ..}.

Our main result is the following.

Theorem L |fadouble sequence s/={ajk) issuch that condition (1.3) is satisfied
and As/dll for some 1, then the series (1.2) converges for all 0<x, 1 its
sum is thefunction f(x, y) defined by (1.7), and

(2.4) \\um,,-f\\ - 0 as min(m, n) «.

Here |+l denotes L~/"-norm. Later on, in Theorem 2 and Lemma 3, | *|
will denote Tx(/)-norT, too.

As a by-product of the proof of Theorem 1in Section 4, we obtain that for all
m, n*l and 1

(2.5) I20 k2 DJ+1(x)Dk+1(y)Aual g \ | WAL, ,,.
i=0 k-0 J

We draw two corollaries of Theorem 1.

Corollary 1 Under the conditions of Theorem 1, the sum /=/(x,y) of the
series (1.2) is integrable and (1.2) is the Walsh—Fourier series off.

Corollary 2. If a double sequence s/={ajk} is such that condition (1.3) is
satisfied, As/fill for some p>1, and

ob +

(2.6) IIAII{Mioaa1+n%=02n{2—m_’; Mioa;Jp|Vp} O a n
j=2m

2.7)  |IHI{Moi«nmo I+ 12 n[2-"22 1M oi*lplp} -0 as m—
n=0 k=2n
then

(2.8 Ikmn-/II-*0 as min(m, v)

ifand only if

(2.9) amm\DJ HAJl - 0 as min(m, n)
As is known [1],

(2.10) I A 1+2 Inm (m= 12, ..).

Thus, if conditions (1.3), (2.6), (2.7) are satisfied and As/O1 for some 1, then
amin(m+2) In(n+2) —0 as min(m,n) -0
is a sufficient condition for (2.8).
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We make some preparations before formulating Theorem 2. Under conditions
(1.3) and (1.4), we have

Ao -0 as j i and Z:)|A10a10| ISR
j=

A summation by parts gives that the first row of the series (1.2) (i.e. when k=0)
converges for O<x<1:

(2.11) ajow;(x) = fi(x), say.

i

8

I

Similarly, the first column of the series (1.2) (i.e. when j=0) converges for 0<y<1:

@.12) 2°° g () =£,0),  say.

We denote by s&(x) and s®(y) the partial sums of the series (2.11) and (2.12),
respectively.
As is known, the double sequence {a} is said to be convex if

(2.13) Allajk = max {All a_,-+1,k, All aj'k.'.l} (j, k == O, l, ...).

We note that (1.3) and (2.13) imply that 4,,a;, 4,0a;x, 401a; and ay, are neces
sarily nonnegative. In particular, condition (1.4) is satisfied, and 4,4a;, and 4ya;-
are monotone decreasing in j and k. This means, among others, that the single
sequences {a;o} and {ay} are convex.

THEOREM 2. If a double sequence {a;} is such that conditions (1.3) and (2.13) are
satisfied, then the sum f=f(x,y) of the series (1.2) is integrable, (1.2) is the Walsh—
Fourier series of f, and

"Smn—f" -0 as min (ms n) agihs~ |
(2.14) Is$—All =0 as m—eo,
Is?—fell >0 as n-—>oo
if and only if
(2.15) 4 In(m+2)In(n+2) -0 as max(m,n) ~eo.

We observe that if conditions (1.3), (2.13), and (2.15) are satisfied, then each
row and each column of the series (1.2) converges both pointwise (except possibly
at x=0 or y=0, respectively) and in L!(I)-norm. In addition, (2.14)<(2.15) can
be reformulated as the equivalence of the regular convergence of the series (1.2) in
L'(I)-norm with the fulfillment of condition (2.15). (Concerning the notion of
regular convergence, see [3].)

Theorem 2 is an extension of the corresponding theorems by Fomin [2],
Siddiqi [7], and Yano [8] from one-dimensional to two-dimensional Walsh series.
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3. Basicinequalities

The following inequality plays a key role in the proof of Theorem 1

Lemma 1. For any I<p”2, double sequence {bjk:j,k= 1,2,..} of real
numbers, and integers m ,n "1,

(31) Im= w1z 2 bKDj(x)Dk(y)t {-~1J(Tny-Y”[% J
i=i *=i vP—1> j=It=i

In the proofof Lemma 1, we will need the representation of the Walsh—Dirichlet
kernel stated in the following lemma.

Lemma 2 (Schipp [6]). For every integer 1,

(3.2 Dj(x) = Wj{x) 2 jufu(x)D2u(x)
n—0
wherejuis defined in (1.1].
Proof of Lemma 1. AsSsume

(3.3) 2MsSm<2M+H and 2*i«<2w

with some integers M, N s0. Applying (3.2) for Dj(x) with 7—m and Dk(y)
with k~n, and interchanging the order of summations, we can write that

m n m n

2.2 bIDICODKY) T2 2 bkWj()wk(y)X

/=1 fc=i

M N
X 2 il.W A-W 2 Krv(y)Dr(y) =

M N m n
-2 2 ru(x)rv(y)DAx)Dzv(y) 2 2 juKbjkWj{x)wk(y)
1=17=1

(observe that this time ju—0 for u>m and kv= 0 for v>N). Setting

bm(x, y) = sign [2, 2 bikDj()DK(Y)]

we have
1 1m 4
Lh=/ / 27 2 bkDj(x)Dk(y)hm(x, y)dxdy =
0 0 7=1*=i

: szogﬂlp I XY, (y)DAX)DA/(y)hm(x,y)x
X1 2Rl W (Y )axay.

7=1 fc=i
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Using the fact that
i if *€[0,2-"),
A-W = {0 otherwise;
(see, e.g. [1]), we can write that

Jm- HZ;FQOMVIVJ‘/ FU)rV(y) hrm(x, y)z LK DKwico why) dx dy =
2 WNT 7 jukbjke)

7=1k=1

o fU(X) ()P, Y wj(x)uk(y) dxay

are the Walsh—Fourier coefficients of the function

[U(X) PV(Y) NMx g0, =M b s-) 0o,

Xbeing the characteristic function of the interval indicated 'ryt e subscript.
By Holder’s inequality with the exponents U and a b ( —1), while taking
into account that |y, |*l and |[fc,|sl, we find that

(34) s 2 2 aw[) D\0MYp2 2 M ) Vi

u=0 u=0

where

Applying the Hausdorff—Young mequallty (see, e.g. [9, Vol. 2, p. 101]) extended
to two-dimensional Fourier expansions, we can estimate as follows
-V

-u

[72—112—IK \HLes [f Iz [ru(x) rv(y) hm(x, y)\pdx dy]1p = 2~<u+rp.
—R= o O
Combining this and (3.4) yields

ZA ?2|U+V|| ].p[T 2 ka\pY ps HZ(AfZJer(IT;/vT)y [2 2 b\]k\p]lwp

u=0v—0

This implies (3.1). Indeed, the auxnlary function z(?)= |(1—2 ) 1 increases for
iS0. Thus, z(2-1)-=z(1)=2, and consequently,
(1_2-(p-i>p)-29 [

The last auxiliary result is essentially contained in [3].

e J0E S04 B B b .,
Ip _lh:p'kn%]?*[z-fq&m \bj\py ,|OBK

114 M> «1

thenforall
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4. Proofs

Proof of Theorem 1 Part 1. Pointwise convergence. Clearly, the condition that
AstfZIl for some p> 1 implies via (2.1) that si = {ajk} is a sequence of bounded
variation. In Section 1we showed that the series (1.2) converges for all 0<x,y<1
provided its coefficients satisfy conditions (1.3) and (1.4).

Part 2: L1(12-convergence. By (2.1), the condition d«s/6/* is less restrictive
if p is closer to 1. Therefore, we may assume that I<p”2 in the sequel.
By (1.7) and (2.3),

f(x,y)-um(x,y) = 2 2 Di+i(x)Dkri{y)Allajk

U.k)iRmn

where Rm, denotes the set of all lattice points (/, k) with nonnegative integer co-
ordinatesj and k such that either j~m or k~n. We may assume that m, né 1
and define the integers M, NsO such that (3.3) is satisfied. We can represent Rnm
in the form of an infinite disjoint union of (partly dyadic) rectangles and accordingly

estimate as follows
M+11h+H42

H/-M mnll — 11 2 2 SN HI(*F)-0k +10 ;)400iB /> +
j=m k=n

AWH1_X -1 2mtl-1

+| 2 Dj+I(x)Di{y)Allal + 2., Dj+i(x)Dk+i(y)AngR\VA
j=m

i
v=0  j=m *=2

+]| 2 «®@RCHAI+i0O0Mnao*||+ 2 1 2 2 mN+HF)AtH(>) G|+

21 2 QDA 2 (1 2 i ki) e

w=M-+I1 j*=2u v=N+1 K=2"

+ 22 12 2 DHADAG)AEN\

(«m>)ERm +1jN+1" i = 2*  k—2v

We apply Lemma 1 and obtain that

/w3 A (A ) 2{2 2(4)<LUP [ 'S '1\An alOPY IP+
p —1'> u=M j=2¢

+ 2 * v+xn'- v» [2 IMuebITF+
v~N =2v
+ 2 2 2C»+«#2)(i-ilp)[22 12 1i\an ajkipy ip}.
(1, V)i Rmn 7=2%  k-2U

Now (2.4) is an immediate consequence of the assumption that Asi£l1%.
A similar argument proves (2.5).

Proof of Corollary 1. Obviously, /(L4+{12 follows form (2.4). Furthermore,
it is a commonplace that convergence in LX-norm (the so-called strong convergence)
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implies weak convergence. Then, by (2.2) and (2.4), for all i, /=0

Sl & s Lk ¢

Here we took into account that the limit of each term in the braces is zero due to
(1.3), (1.6) and its symmetric counterpart for Ay, a,,. This proves that (1.2) is the
Walsh—Fourier series of f.

Proor or COROLLARY 2. Sufficiency. By (2.2),

By Theorem 1, the first term on the right-hand side tends to zero as min (m, 7)) ~e.
By Lemma 3, conditions (2.6) and (2.7), the second and third terms tend to zero
as n—e and m--o, respectively. Putting these together with (2.9) yields (2.8)
to be proved.

Necessity. By (2.2),

and (2.9) follows from (2.4), (2.6), (2.7) (via Lemma 3) and (2.8).

PRrOOF OF THEOREM 2. Under (1.3) and (2.13), the condition A4sZ€/Z is equiv-
alent, for any p=0, to the condition

dyag+ 3 2"Apamm e+ 3 2" Apay et 2 2 2" Ay agm gn < oo,
m=0 n=0 m=0 n=0

which in turn is equivalent to

P3P Ay ay <-ee.

J=0k=0

This last condition is trivially satisfied since the sum is ay,. Consequently, con-
ditions (1.3) and (2.13) imply that A«/€l/? for all p>0 and Theorem 1 applies.
It remains only to prove the equivalence of the conditions (2.14) and (2.15).

Sufficiency. In a similar way, condition (2.6) is equivalent to the condition
"Dn" {AloaOn+m20 2mA10a2"',,,} -0 as n-—>oo,
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which in turn is equivalent to

HAJl /2 AlOan = aOM\DM\ —0 as n
But this follows from (2.15) due to (2.10).
Analogously, (2.15) also implies the fulfillment of condition (2.7), and (2.14)
follows from Corollary 2 and the corresponding one-dimensional result (see [2]

or [7].

Necessity. We apply the one-dimensional result just referred to and by the last
two relations in (2.14) we can conclude that

4-1) 6mollAJ*O and aJlIAJI-0
as and respectively.

As we have seen in the proof of the sufficiency part, the conditions in (4.1)
imply the fulfillment of (2.6) and (2.7) for all /?>0. Thus, we can apply Corollary 2,
according to which condition (2.9) follows from the first relation in (2.14). Clearly,
the(;:_o_uple of conditions (2.9) and (4.1) is equivalent, in the monotonic case, to the
condition

4.2 amnllAJ II-DJ —0 as max(w, n)-00.
Finally, taking into account that

\DM\ Sr-i for M, = + 2@ (I=12, ..)
0

k=0

(see [1]) and again the monotone decreasing property of ak inj and k, (2.15) fol-
lows from (4.2).
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