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ZU EINEM SATZ VON RÉDEI 
ÜBER KREISTEILUNGSPOLYNOME

K. JOHNSEN (Kiel)

Für eine natürliche Zahl n sei Фп( ( )^ [ ( ]  das и-te Kreisteilungspolynom. 
Durchläuft p die Primteiler von n, so ist <Pn(t) der größte gemeinsame Teiler der 
Polynome <Pp(tn/p)£ Z[t]. Obwohl Z[t] kein Hauptidealring ist, gilt der bemer
kenswerte

1. Satz von R édei [2]. Für jede natürliche Zahl n gibt es zu den Primteilern p 
von n Polynome f p(t)£Z[t] mit

О) ФЛ0 = 2 1 Р(0 * Р« п/р)>
p \n

m. a. W. das Hauptideal (Ф„(t)) ist Summe der Hauptideale (<Pp(t"lPj).

Der erste korrekte Beweis dieses Satzes wurde von de Bruijn in [1] gegeben. 
Mit einem einfachen Induktionsschluß beweist Rédei den Satz in [3]. Offenbar 
unabhängig davon weist Schoenberg die Formel (1) in [4] nach und folgert daraus 
einen Satz über lineare ganzzahlige Abhängigkeiten zwischen den и-ten Einheits
wurzeln.

Wir wollen diesen Satz von Schoenberg hier in algebraisch begrifflicher Weise 
zeigen; der Satz von Rédei ist dann ein Korollar.

Es sei n=pjLpp...pap die Primzahlzerlegung von и und n0:—pip2---psl sei 
En die Gruppe der и-ten Einheitswurzeln und Q„ =  Q [£„] der и-te Kreisteilungs
körper. Ist R ein Repräsentantensystem von E„0 in En, so ergibt sich durch Vergleich 
der Q-dimensionen

Q„ =  2 ® Q n jrtR
und daraus
(2) Z[En] = 2 e  Z [E Jr.

riR
Mit ZEn bezeichnen wir den ganzzahligen Gruppenring der zyklischen Gruppe 

En, wobei wir zur besseren Unterscheidung die kanonischen Basiselemente von ZEn 
mit bx für x£ E„ bezeichnen. Offenbar ist die Abbildung

cp: ZE„ Z[En]

2  z*bx ^  2  z*x
x i E n

ein Ringepimorphismus.

I*
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Für einen Primteiler p von n und eine n-te Einheitswurzel у sei

®p,y‘ ^у Z  •
z i E p

Für zwei и-te Einheitswurzeln y, y' mit y'€Epy  gilt dann 

(3) aPty =  aP}y.
Der Satz von Schoenberg läßt sich in der Form aussprechen:
2. Satz. Kern cp wird als abelsche Gruppe von

A„:= {ap,y\p Primteiler von n, ydEn}
erzeugt.

Es sei x0£En eine primitive и-te Einheitswurzel, also E„=(x0). Der Homo 
morphismus

e: Z [/] ZEn

Z  zd 1-* Z  Zibx,
i =  0 i =  0

induziert einen Isomorphismus

e: Zj7]:= Z [/]/(/" — 1) -*■ ZE„.
Da Ф„(t) irreduzibel ist, folgt 

(4) Kern cp =(Ф„0)ё).
Es sei nun y£E„ und y= x l0; nach (3) ist aPiXt=aPtXu, falls /= / mod ĵ- ist, so

ndaß wir im folgenden о. B. d. A. 0 ^ / < — annehmen können. Es gilt

n .

<5>
p- 1

,y = ap,x’0 = bxio ■ 2  h f l*  = (? ■ Фр(Р/р))£.

Aus (4), (5) und 2. folgt, daß es Polynome / p(i)£Z[l] mit grad/p(i)-=-^- gibt, 
so daß

фдоё =  z f P№ r ( t nl,,rEp\n
gilt. Daraus folgt aber (1).

Wir kommen nun zum
Beweis von Satz 2. Es ist

(6) ZEn = Z e Z E no-br,
riR

und mit (pr:=(p\zE„-br folgt
(ZEnobr)cPr = Z [EJr.

Wegen Kern <pr= (Kern cp̂ )br und (6) genügt es zum Beweis zu zeigen:

Acta Mathematica Hungarica 52, 1988
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(*) Kern <p1 wird als abelsche Gruppe von
Ащ:= {apJ p  Primteiler von 770, у£Е„о}

erzeugt.
Zunächst gilt

ap,y(pi =  (b y 2  bz)4>i =  У • 2  z  =  У • 0 =  О,

also ist K ern^j.
Wegen E„0=EplXEPaX ...X E Ps ist

=  ZEpi • Z Ерг •... • ZEPs = ZEpi® ZEPi<g>... 0 Z£Pj;
ferner gilt

Z [£ J  =  Z [ £ J  • Z [EpJ Z =  Z [£pi]®Z[£pJ ® ... <8>Z[E„s].
Setzen wir für alle и mit 1 S m<5

<PÍu):= <Pi IzePu>
so ist offenbar

<?<“>: Z£p„ -  Z [ £ J
ein Epimorphismus. Da wegen der Irreduzibilität des p„-ten Kreisteilungspolynoms

2  z*x  =  ( 2  2х Ъх)Ф[и) = 0xtEPu xíEPu

genau dann gilt, falls alle zx gleich sind, folgt
Kern tpíu) = Z aD j.PU) 1

Nun ist aber
V>i

und deshalb
s

Kern tp1 = 2® Z£pi(g>.. . <g>ZaPujl
U = 1

also wird Kern cpx von A„0 erzeugt.
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CONVOLUTION EQUATIONS IN BEURLING’S 
DISTRIBUTIONS

S. ABDULLAH (Macomb)

Solvability of convolution equations was investigated by L. Ehrenpreis [2] and 
L. Hörmander [3] in the space of Schwartz distributions. In this paper we discuss 
solvability of systems of convolution equations in Beurling’s distributions; the results 
of this paper extend some of Hörmander’s [3]. The first section contains notations 
and the preliminary results which will be used later in the work, in the second section 
we give an existence theorem in the case of one convolution equation, the third 
section contains existence theorems for systems of convolution equations.

Björk [1] gave a thorough study of Beurling test function spaces and distribu
tions. Here we give a very brief account of the definitions and the basic results which 
we are going to use later. In particular, we use the Paley—Wiener theorem in a 
form slightly weaker than the one given by Björk. For proofs of these results we 
refer the reader to [1].

By Л  we denote the set of all continuous real-valued functions со on R", sat
isfying the following conditions:

(d) coU)=y(|{|) for some increasing continuous concave function у  on [0, °°).

Definition 1.1. Let co£J i \ by £>a we denote the set of all ф  in D IR ") such 
that ф  has compact support and

where ф is the Fourier transform of i//. The elements of Dm will be called Beurling 
test functions.

If £2 is a subset of R", let — Supp ф ей}. If К is a compact
subset of R", Da(K) is a Frechet space when provided with the topology defined

1. Preliminary results

(a) 0 =  <y(0) ^  ^  cű(^) +  cű(ij) for all ц in R".

(c) there exists real a and positive b such that

ffl(0 S  a + blog (1 -t-|£l) for all £ in R",

1ЖЦ =  Ш х  = / l l? ( ö |e Aa,(4)d í <°° for all 2 > 0,
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by the semi-norms || • ||m, m = \, 2, ... . Let Kt, i= \  be a sequence of compact 
subsets of R" so that Kt is contained in the interior of Ki+1, and the union of the 
Ki s is R". We define the topology of D(:1 as the inductive limit of the topologies of 

It turns out that Da is an algebra under pointwise multiplication, and for 
each X >0 one has

IIWÍaSS - ^ М лШ х for all <р,ф in Da.

Definition 1.2. Let ca^JI, then D'm is the space of all continuous linear func
tionals on Dm. D'a will be given the weak topology, which is the topology of point- 
wise convergence on DC). We remark that conditions (a)—(d) guarantee the non
triviality of Dra, Dm is closed under differentiation, and that Dm is dense in D, the 
space of Schwartz test functions.

Definition 1.3. Let со£Л, by Ea we denote the set of all complex-valued 
functions ф in R" such that if cpZDi0, then (p\j/£ D,„. The topology in Ea is given 
by the semi-norms ф-*\\срф\\л for all A>0 and all <p£Da.

D efinition 1.4. Let ca^Ji, then E[„ is defined as the space of all continuous 
linear functionals on E0>. It follows that one can identify E'a with the set of elements 
in D'a which have compact support.

If co( )̂ = log (1 +  |f|) then Dffl, D'a , Еш and E'a will coincide with D, D', E  and 
E ', respectively, where the latter are Schwartz spaces of test functions and distribu
tions. It follows from the definitions, condition (c) and Proposition 2.1 (below), 
that DaczD, D’c-D'a, EmczE and E 'a E 'a, for all

P roposition 1.1. I f  co£Jf, then w (q) ■■
= 0 ( l

IÉI
• log |£|

D efinition 1.5. Let co1, We will write со.
and positive C we have co2(0  —A+Ccoft;), qí R".

] as

öl, if, for some real A

P roposition 1.2. Let сог, I f  (o2<ao1 then Dm(Q) is a dense subset o fMiV
alJQ) for each open set ß c R ”. Conversely, iffor QcR* with nonempty interior, 

~m2(ß), then oo.i ^oo1.
■D_
DCOi(Q)dD

Paley—W iener T heorem. 1. An entire function u(() is the Fourier transform 
o f a function in Dm with support in the ball BA = {.v£ R": |.x|<4} i f  and only if for 
each A>0 there exists a constant C-A so that

|m(0I S  Cxe - ^ +A 1*1, C -  <̂ +  ii/€C".
2. An entire function u(f) is the Fourier transform o f a generalized distribution 

with support in the ball ВA if and only i f  there are two constants X and C such that
|н(01 ^  С е ^ )+лМ, C =  iq + irjdC".

T heorem 1.1. Let к be a compact subset o f R" and FIk be its support function. 
The following two families of semi-norms on D0,(K) are equivalent:
(1) {cp -  sup e ^ m ) \ ,  X >  0},

i€R"
(2) {cp — sup e^a>(i)-HK(4)-W |ф(£)|5 X >  0}.

С={+1ч ссп
Acta  Mathematica Hungarica 52, 1988



CONVOLUTION EQUATIONS IN  B EU R LIN G ’S DISTRIBUTIONS 9

Theorem 1.2. Let u£E'm and К a compact subset o f  R". In order that 
sing<u supp uczK it is necessary and sufficient that imply

\u(^ + iq)\ S  Сшея<о(?)+нк(ч); m = 1, 2, ...,
Cm is a constant which depends on m.

H örmander’s Lemma [3]. Let F, G andF/G be entire functions. Then for any r> 0 

\F(z)/G(Z)\ == sup |F(0|- sup \G(0\l( sup |G(OQ*.
|z —C|-e4 r |z -C |-= 4  r  |z -C |-= r

By DZ we denote the product of m copies of Dra(R"), D” denotes the Fourier 
transform of D'Z- A product subset К of R"OT is an m-tuple of the form (Kl f ..., Km) 
where is a compact subset of R", 1=1,2, m. Let K=(Klt ..., Km) as above 
and (p=((px, ..., (p„)£DZ- We say that supp<pc.K if supp (pjCzKy, j= \ ,  ..., m. 
By DZ(K) we denote the set of all with support in K. For any compact
ÄieR''m we define the topology of D” (W) by the following family of semi-norms:

m

рк(ф) =  рАФí ,  02, •••, ФтУ) = 2  Ш \к ; к = 1 ,2 , з , ...i=i
where j| • ||fc is the family of semi-norms which defines the topology of Dfiki). 
Clearly the semi-norm pk is well defined for each k. E 'f denotes the Fourier transform 
of (E'us)m and E'Jm denotes the product E ffiX E f'. For S=(Sij)£E'Jm we denote by 
S‘ the element of E ff  given by (5j;).

2. Existence theorems in D'a

Let SdE'a,. We give necessary and sufficient conditions on S (the Fourier 
transform of S)  so that the equation S * u = v  has a solution iF.D'a for every

Definition 2.1. Let / b e  an entire function which satisfies the second estimate 
of the Paley—-Wiener theorem. We say that /  is eo-slowly decreasing if there exist 
positive constants C, A such that

(1) sup |£(je + {)l S  Ce~Ao>({\  £6R".
1*1 SAu>(i) 

x ( .R n

Lemma 2.1. Let К be a compact subset o f R". The topologies o f Dra(A') =  
= {ф: (pdDC0(K)} defined by the following families of semi-norms are equivalent:

(i) {ф !-► sup eAío(í)|<p(£)|; X > 0};
Í6R"

(ii) {ф sup е«о>М)-нх(ч)-|ч| a= »0};
tec»С=«-НчеС"

(iii) {ф >-+ sup er<B(i)|0 (O|, r >  0).
|l/|Srco(0C=i+i4£C»

Acta  Mathematica Hungarica 52, 1988



1 0 S. ABDULLAH

Proof. The equivalence of (i) and (ii) follows from Theorem 1.1. We prove 
the equivalence of (i) and (iii). One can assume that KaB(0, s). Let r be any posi
tive real number. There exist positive numbers r\, C such that

sup еКм+гио-НкМ-М 10(01 — C sup еА"К)ф|(§)|,
?€C" £€R"

which implies that
(2) sup еКя+ЧвЮ-ЯдМ |ф(^)| =s c  sup еАш®|ф(£)|.

k l s r e ®  46R"C€C"

Since KczB(s, 0) and \tj\^rco(^) one has

(3) HK{t]) ^  max 2  \xj\ \4j\ = nrsm(c).XÍK J=1

By substituting the estimate (3) in (2) one gets
sup e™® |0 (O| C sup e*“«>|0 (ö |,

|(r|Sro>U) ?€ R”
S£C"

which concludes the proof of the lemma.
Theorem 2.1. Let SdE'0). The following statements are equivalent:
(a) S is co-slowly decreasing;
(b) S*D'm=D'(0;
(c) The operator S  has a fundamental solution E£D'm.
Proof. The implication (b)=>(c) is obvious.
Proof o f (a)=>(b). Given v(zD'lo we wish to find udD'cl such that S*u= v. 

Define the map
A : s * Dw — C, s* (p I-*- (v, (p).

If we can prove that A is continuous then the theorem follows from the Hahn— 
Banach theorem. Since the Fourier transform is a continuous map from Dra into 
Do, and v is continuous, it suffices to prove that the map Т-ф-*ф from 7Т)Ш into
Do, is continuous, where T=S. Since the topology of Do, is the inductive limit 
topology of the spaces D{, = {ф: cp£Di0(Kj), Kj = B(Q,j)}, j= l ,  2, ... it suffices to 
show that the linear map Тф ^ф  from T-Y)Jm into DJa is continuous, where the 
topology of D{a is generated by any one of the equivalent families of semi-norms 
given in Lemma 2.1.

Let Ij/=S*(p  where (pdD^Kj). From the Paley—Wiener theorem it follows 
that if, Fand ф — ф/Т are entire functions. By Hörmander’s Lemma with r=Aco(^), 
where A is as in condition (a), for any R" one has (with z —x+iy^. C ):

(I) \Ф(0\ = Ш |тг  ^  sup \$(z)\ sup |T(z)|/t sup |T(z)|]2.M (.Cll |r-í|-:4Ato({) |z-̂ |-:4Aco(í) |z—í|«=Aco©
Since T is slowly decreasing and a> is symmetric it follows that

sup |T(z)| S  sup |T(x+c)l =  Ce-A<D®, for every £(iRn.
|z-{|-=A(0«) ]x]-=Aco(i)

A cta  Mathematica Hungarica 52, 1988



CONVOLUTION EQUATIONS IN  BEURLING'S DISTRIBUTIONS 11

Hence

(4)
1

[ sup |J(z)|]2 -  C2
|z-i|-=Ao>(£)

^  1 M

From the Paley—Wiener theorem there exist positive constants Clt X and N  such that 

(5) sup \T(z)\ ^  Ci sup eNbl+^(*), ^R ".
|z-{|«=4Ara(£) |z-£|«=4Aca(<!;)

z£ C " z€C "

Thus for any ^€R" one has

(6) 10(01 ^ C ,  sup \<j/(z+Z)\e2Aa(i) sup e»W+^(*+i);
|г|<4Ло>(£) 

z€ C"
|г|<4Лсо(<*;) 

z(E Cn

á  C2 sup |$ (z + 0 |e (2'4+4N'1+A)‘o(i) sup еЛиМ,
|z|<4y4íö(̂ ) |г|<4Л(»(̂ )

z 6 C" z € Cn

where C2=C 1/C2. From Proposition 1.1 it follows that w(*)=A/(l -f 4̂ 1a>(c)) 
whenever |z|< 4 ^ cü(í ), where Л/ is some constant. It follows that for any 
one has for any positive integer к

(7) eto(í)|0(£)l с 2еме -[' - (к+2Л+4ЛЛ,+л+4МЛЯ)]шЮ sup |$(z+£)|eto({),
|z|-=4A«o(i)

z£C"

where / is a positive constant to be determined later.
Since the left hand side of (7) is bounded by a constant whenever |£| is small, 

there is no loss of generality in assuming that |£| is large. From Proposition 1.1 it
1Я

follows that co(g)< у  whenever \£\ >B for some constant B. This implies1004
IÉIthat |zu| — “25- whenever Hence a>(x)Sa>(£+x) for such £’s and the above

specified x’s, which implies that ta(£)=2<u(x+0 whenever £ is large. Thus for 
large  ̂ one has

eM?) g  jnf g2l«>(*-K)
X Rc z 

|z |* :4A m (0 
z £ C "

and (7) becomes

(8) ека,™\ф(0\ С2еме -(,- ‘,)юЮ sup |0(z + £)|- inf e2'“(x+<) sä
|z |-e4A o(£) D|z l-=4Aco(i)

z ^ к е  z =  x, z t

^  C2eMe_(!_‘i)“(i) sup |^(z+^)|e2lw(*+i),
|z|<4̂ co(i)

z£C"

where d=k+2A+4AN+X+4XMA. By choosing l> d  one gets from (8)

(9) e*“(i)|0(£)| S  C3 sup |i/i(z +  i)|e2,“(jt+i) si C3 sup |0(z)|e2to(3t),
|z |<8.4co(x+£) |Im (z—$)|<8.4co(x)

z € C "  z€ C "

Лс/а Mathematica Hungarica 52, 1988



12 S. ABDULLAH

where C3 is independent of which could be any given point in R" with \£\ large. 
Since the left hand side of (9) is bounded by a constant whenever |c| is small one 
can find a constant C  so that
( 10)

sup е|1“(?)|ф(01 ^  C sup sup \ij/ (z)\e2la,<-x) = C sup \ф(г)\е2,0,м.
££ R" í£ R " tim (z -ö |-= 8 /l£ o (x )  |Imz|«:8/lco(;t)

z€  C " z € C "

Let m = max {8A, 21, yo} when j 0 is the smallest / so that \j/=s* (pCDmfKj)- Then
(10) gives рк(ф)^Срт(\jj) which is the desired continuity.

Proof of (c)=s(a). We notice first that condition (a) is implied by the condition: 
there exists a constant ^ > 0  such that for all ^gR", \q\=sx, one has

sup |S(x+{)l =  for some A > 0.
|x lsA co ( i)

Suppose the implication does not hold, then it follows that for any j — 1, 2, ... there 
exists ij€R", as and

(11) sup |£(x+<C)| <
bHjraKj)

Choose <p£Dl0 so that <p=z0, supp <pczß(0, 1) and ф (0) = 1. Let ^=[co(^)]; 
the greatest integer less than or equal to For each / > 0, define <pj=
=е1̂ г-)((р*... *<p) where (p is taken k} times. Thus supp (pjCB(0, kj). Since 
S * E = ö  for some ECD'c> one has

(12) l<Pj(x)| =  \(S*E, Tx<Pj)\ =  \(E, S_x*űpj)\ =  \(É, t - x(S*(pj))\.

Hence

\<Pj(x)\ == A x pk(r-x(S*(pj)),
Ax and к are positive integers. Hence

(13) \<Pj(x)\ ^  A  sup ek̂ \ S ( 0 \  ■ \4>j(Q\ =
Í€R"

=  A [  sup ек°>Ю\№\\ФА&\+ sup ек̂ \ § Ш Ф Д ) \ 1

where A is a fixed constant. Now we estimate each of the two terms on the right hand
sideof(13). By definition one has <pJ(0  =  [<5(c-Cj)]Vancl \0j(O\—( /  |<p(x)| d x fj^ .

!*|si
“  1. Thus we have for some constants M, C, ,

(14) sup ек̂ \§ Ш Ф Л О \ ^  sup ek̂ + < ? \S^  + E)\ S
■fER" J Í  £R"

^ еШека>ир sup e™ \S\\S^ + t  )| zg Cie«+kMA- № ?
l«NXm(iy)

Í£R"
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CONVOLUTION EQUATIONS IN  BEURLING’S DISTRIBUTIONS 13

whenever j> A, Cx is constant. By the Paley—Wiener theorem and the definition 
of both kj and cpj it follows that

(15) \Ф](Л)\ = e*kje -kM *-V  ts e»—(«-^»Xíjie-íí-ep,

where X is some constant. By (15) and the Paley—Wiener theorem one has for 
some constants C4, N

(16)

sup екю(<)|0у(£)||£(£)| ^  Q  sup е(Н 1*М{)+и-«к-(»»(у+®(?-()
£€R " í €R"

= C4 sup et*+)v+i-«>(íj)]ra(í-íj)+()[+,v+-l)“(íj)_
i€R"

Since со is increasing and by taking j  large enough so that

m — min {y—k —kMA, co{Aco(^j)—A M (k+ N + \)—k —N —Xj >■ 0

and &+ÍV+1 <  co(Cj) one gets
( 1 7 )  e [ k + N + l - m (iy) ] « ({ - í j )  g  Q g C a - ö U ö í í jD I w í í j ) ^

where <x=MA(k+N+l) and C&=eM<-k+N+1). By substituting (17) in (16) one gets 
for j  large enough

(18) sup екс,(()\§(0\\Ф Д)\ S  Q C se [i- “(',B(y )]
£ € R"

where ß —a.+k+N+X. From (14), (18) and (13) it follows that for j  large enough,

(19) \q>j(x)\ S  Af'e—"(V, M ' = A ^  + A .Q Q .

By definition it follows that

(20) 1 = (# /£ ,)) 1 =  I /  e-4*-V<Pj(x)dxI
R”

=2 2" М 'г ш(У[а)(у]".

As j  —► oo the left hand side of (20) remains one while the right hand side goes to 
zero; this contradiction proves the implication. This completes the proof of the 
theorem.

We say that the generalized distribution SdE', is ю-invertible if and only if 
it satisfies anyone of the equivalent conditions of Theorem 2.1.

T heorem 2.2. Let S£E', be invertible, then
(i) S+cp is invertible for any cp£D'0J;

(ii) i f  cp£Da is identically one in the co-singular support o f S  then cpS is invertible.

Acta Mathematica Hungarica 52, 1988



14 S. ABDULLAH

Proof. From the Paley—Wiener Theorem and Proposition 1.1 it follows that 
for any A>0 there exists a constant C; so that for any real x
(21) sup |<р(х+у)| = CaeAto(:t) sup е~Лсо(у•* ^  с ' е(л-шА)а(х)^

|у|з5Аш(х) |)>|3Am(x)
y€Rn y£R"

where A is the constant which comes from the invertibility of S. From the invert- 
ibility of S  and (21) one gets, for any x€R",

(22) sup |(5'+<р)(л: + >0| S  Се~АаМ[1 -С "е (- ш л- л- А)‘оМ].
h i SAC0(X)

y€R"
By choosing A large enough it follows from (22) that

sup \{ S + ip ){ x + y ) \^ ^ -e -AcoM\
|y | ^ A co(x ) 

ydRn

this proves (i). The second assertion follows from the first because S(cp— 1)€X)iU.
We remark that the sum of two invertible convolution operators is not neces

sarily invertible. This follows immediately from (i) above.

3. Existence theorems in D 'f

Given S£.Eam and V£ D'f, in this section we give necessary and sufficient 
conditions on S  so that the equation S * u —V has a solution uf D’f .  We also 
prove other related results.

Lemma 3.1. The map Ф -S *  Ф from  D'" into D™ is continuous.
P roof. Since the Fourier transform is continuous it suffices to show that the 

map Ф— S ■ Ф from D” into D™ is continuous. This follows immediately from the 
continuity of the corresponding map on D™(1T) and the definition of the topology 
of D™, К  is any compact subset of Rmn. For any k = 0, 1, 2, ... one has by the 
Paley—Wiener theorem applied to the entries of S

Рк(ЗФ) — 2 II 2 §1гФг\\к — 2 2  \\$,гФЛк — A 2 1101-llfc+iv — Лрк+п(Ф),
Z= 1 г = 1  r = l  Z= 1  r=  1

where A and N  are constants which depend on S  only.
From the lemma it follows that E'Jm is the space of convolution operators 

on D'J.

D efinition 3.2. Let S£E'Jm, Í21= ( f íu , ß 12, ..., ß lm) and ß 2 =  (ß21, ß 22, ..., ß äm) 
be tuples of open subsets of R”. The couple (ß1} ß 2) is said to be S-convex if for 
any compact subset K 2 of Rm” there exists a compact subset K 1 of Rmn so that

q>£D™(Qf, supp S'xqxzk2 =>• supp (pck1.
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CONVOLUTION EQUATIONS IN  BEU R LIN G ’S DISTRIBUTIONS 15

The couple is said to be strongly S-convex if for any compact subset K2 of Rm" 
there exists a compact subset K 1 of Rmn so that

q>£ E'™(Qf), supp (S{*(p)czK2 => supp (paKi1,
(реЕ'шт, singra supp (S'*(p)c^K? => singa) supp q>c.Kf

One can choose the К}’s so that K} is contained in the interior of Kf+1. This setting 
will be used in the proof of the next theorem.

T heorem 3.1. Let S iE '2m. I f  det (S') is w-slowly decreasing then

S*D'™ =  D'™.

Proof. The theorem follows immediately from the Hahn—Banach theorem 
provided we prove the continuity of the map Б‘*Ф^Ф  from S‘*D™ into £>“ . 
To prove the continuity of this map we follow a technique introduced by Hörman
der [3]. Let p be any continuous semi-norm on D”. We show that there exist a con
tinuous semi-norm q defined on D™ and a constant C so that

p(q>) á  Cq(S'*(p), (piD^.

This will follow from the following lemma.
m

Lemma 3.2. Let q be a semi-norm on £ “ so that q{^)= 2  ll<Ai!li>i=i
ф=(ф1, ..., iAm)6i>S and p(q>)^q(St*(p) i f  <piD™, supp (p(z(Kf, where
KtJ is a compact subset o f R". Then for every s >0 there exists a semi-norm q' defined 
on D™ such that
(23) p(<p) = q'{S’*(p) i f  swpTp(pd(K^+lil,Kl+1>2, . . . ,K f ihm) 
and
(24) q'(\J/) = (l+ e)q(ф) i f  supp фc (Kf_uг, K?_h2, ..., K(Lh J .

Proof. Suppose the statement of the lemma were false. Since (24) is true for
m

q' — (l+e)q+r where r is any semi-norm on / /  E01(CLltJ) it follows that there
l=i

m
exists a cpiD™, supp (S’ * (p) c  f j  Kf+1 j so that

l=i
(25) p(cp) — q'(S'*(p) = (1 + e)q(S'*(p) + r(S'*(p),

where r is as above and £ is some positive number. Let {/-„: 0 = 1, 2, 3, ...} be a 
strictly increasing family of semi-norms on n E a(CKfiltJ), from (25) one gets

(26) p((p) fe(l+ £)9(S’,*<p) + re(5'*g)).

For each 0 =  1 ,2 ,... ,  let ae=(l +£)/[(l +£)q(S'*(p)+re(S'*(p)] and define the 
function cpe by aecp. From (26) one has

(27) P(cpe) ^ (  l+ £)
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16 S. ABDULLAH

but on the the other hand

ч _  (1 +s)q(S‘*(p)
Q (l+e)q(St*cp)+re(S,*(p) ^  ’

and since re is strictly increasing it follows that
(28) q(S ,*(pe) -+■ 0 as q -* °°.

m
Now, given an arbitrary semi-norm r on JJ EC](CKj_u), let re—Qr;

j = i
Q —1,2,3 , . . .  and we get

hence

(29)

r(S**<pe) =i r (S'*(pe) S  e _1(l+e),

S‘*<Pg-~ 0 in n  Ea(CK^_ltJ) as p —*■ °°. 
7 = 1

Let Ф be the completion of the set {<p£L>™: supp (pC JJ Kf+1J\ provided with
j = 1

the topology defined by the semi-norms q{S'*(p) and || / • (S'* (p)\\k where
m m

k —1,2, ... and /£  JJ D(o(CKi-i j)- We claim that Ф is contained in JJ Eto(CKj_1 J) 
7 = 1  ’ j = i

and the inclusion map is continuous. For ср=(<р1, ..., <pm)f£D™ put S‘* (p = \p = 
= (1J/u  ..., Ij/my, i.e. S '-ф=ф. By Cramer’s rule it follows that

(30) Ф} = det (&) ’
where Wj is the determinant of the matrix which one gets by replacing the y-th 
column of §* by \J/. Using the fact that det (S‘) is slowly decreasing, the Paley— 
Wiener theorem applied to the entries of it follows from (30), by Hörmander’s 
Lemma, that
(31) |0,1 ^  Cex<0̂  sup eM(i)|0 ,(^ |.

Í6R"

From (31) and the assumption that q(J/)= 2  IIMi it follows that ФсЕ^т. If
г=1

m m
<p(z Ф one has S t*cp£ JJ Е10(СК1_ц), hence <р€ JJ Eill(CKj_l J). Since the space

j=1 ’ . 7=1
Ф with the given topology is a Frechet space it follows from the closed graph theo-

m
rem that the inclusion map Ф с . JJ Ea{CKi_ltj) is continuous. From (27) and

7=1
(28) it follows that the sequence {(p0: q= 1, 2, 3, ...} is bounded in Ф. The con-

m
tinuity of the inclusion map Ф c* JJ ЕЮ(С К ^  J) implies that {<pc} is bounded

7 =  1 
m

in JJ Ea{CK}_i j) which is a Montéi space. Hence {<pe} has a convergent sub-
7 =  1
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CONVOLUTION EQUATIONS IN  BEURLING’S DISTRIBUTIONS 17

sequence which we denote also by {<p0} and we assume that (pB-»q) in JJ Em(CKf_x,j)-
7=1

m
We claim that cp= 0 in JJ CKl_ltJ. Indeed, S?*(pe-+St*(p and since S‘* (pB̂ 0

7=1
m m

in JJ Ea(CKf_x j) by (29) it follows that S{*cp=0 in JJ Em(CKf_x j). By the 
7 = i ’ 7=1

m
choice of the Kf s it follows that cp = 0 in JJ Em(CKl_xj).

7=i
Let Xj be a C“ -function with support in Kjj which is equal to one in Kf_xj\ 

/ =  1, 2, m. Define x=(Xi, ■■■, Xm), thus supp x<P=(,Xi<Pi, Хт<Рт)г<̂К1=
m

=  JJ K fj . Since <pB converges to zero in C K f , it follows that (pB—(} —x)(pe 
7=1 ’ . . .

converges to zero in CK}_x. Hence S '* (p'e converges to zero in D™ and in particular 
q (S t *(p'B) = q(S ‘*(l — x)<pff)< e /3 for large g. N ow one has (pe= ( } - x)(Pe+ X(Pe and

2
F((l -  X) (Pe)+P(X(Pc) = p ((Pe) = 1 +£ which gives P(xcpB) s  1 + y  s because (1 -  f)cpB
converges to 0 in D"1. On the other hand

q (S t* X cPe) -  1 (s ‘* (Pe) + q (s ‘*(l - x ) <Pe)  <  1 +e/3,
which contradicts the hypothesis of the lemma because supp xVa^Kl- The con
tradiction proves the lemma.

Now back to the proof of the theorem. Choose £j >0  s o  that e;<  °°. Using
1 =  1

the lemma we can successivively construct semi-norms qt on £>”' so that
m

(32) qi+1 = ( l+ £ ik i0/0 if supp фа JJ K?_lt j
7=1

and
m

(33) p(q>) ^  qfS'*cp) if supp (pa JJ K,\x, j ■
7= i

Define the semi-norm q by д(ф) =lim qJJ), JdD™. The semi-norm q is well-defined.
Í—*- “

m
For let Ij/dD™; there exists i so that i/i£ JJ DCI(KJ). From (32) it follows that

7=i

q(\J/) — JJ (1+£;)<?;(<A) which converges by the choice of the e;’s. The semi-norm
i

m
q is continuous because its restriction to JJ В01(К^) is continuous for every

7=1
/= 1 , 2, 3, .... From (33) and the fact that qt is an increasing sequence of semi
norms it follows that

p(cp) S  q(Sr*(p) for all cpdD™,

which completes the proof of the theorem.
Theorem 3.2. Let SdE '£m- I f  S*D'™=D'™ thenthemap Л: S’ * (p^cp from 

Бг* D™ into D™ is continuous.
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18 S. ABDULLAH

Proof. Since S’*D™ is the inductive limit of S ,*D™(Kj)'s which are metriz- 
able, it suffices to show that the map A is bounded on bounded sets. Let S'* В 
be a bounded subset of S‘*D™. By Macky’s theorem, to show that В is bounded 
it suffices to show that В is weakly bounded. The boundedness of S‘*B  implies 
that there exists a constant M  so that |(w, S'*(p)\ -JäM for all cp£B and for any 
given u£D'™. Now let v be any element of D'"\ by hypothesis there exists uf D[f 
so that S*u=v. Thus, for any cp£ B one has

K», <P>I = К-S'*«, (p)\ = \{u, 35 M,
i.e. В is weakly bounded in D™.

The converse of the above theorem is true, it follows immediately from the 
Hahn—Banach theorem.

We say that S  is со-invertible whenever det (S‘) is m-slowly decreasing. 
Throughout the rest of the section v will be an element of E'J", and for each 

7= 1, ...,m  we denote by Wj the determinant of the matrix which one gets by 
replacing the y'-th column of S' by v.

T heorem 3.3. I f  S  is eo-invertib/e and the function vvj/det (S') is entire then 
there exists u C E f so that S * u  = v.

P roof. By the invertibility of S' one has Sü=v for some u^D 'f. 
rule one gets

(34)
W;

det (§ ‘)
j  = 1, 2, ..., m.

By Cramer’s

Applying Hörmander’s lemma with r=Aco(^) + ]ri\ when £ = i  +  irj is any given 
point in C" and A is the constant of Definition 2.1, one gets
(35) |Mj (C)I — sup \wj(z)\ sup [det(S')(z)|/[ sup |det(S')(z)|]2.

|z —i|«=4r |z —d -= 4 r |z —
z 6 C "  z e e -  z € C "

By applying the Paley—Wiener theorem to each of the entries of S' it follows that
(36) sup |det(S')(z)l ^  C2 sup e;v1co(*)+A1|y| g

|z -C ]-= 4r |z -C H 4 X ffl(0 + 4 |l,|
z = j + i y £ C "  z € C "

g  C1eiVl“(0+^ll,'I sup gNjCoW + Adyl g  QgJv1Me()V1 + 4iV1MA + 4XiA)to(a+(4MiV1+4̂ 1)|4| •
|z |^4A<b( 0 + 4 | ij1

for every C€ C” where Cl5 Nt , M  and Ax are constants. Similarly, since viE'J1 
one has
(37) sup |w,(z)| == Caew»®ra+^l’»l,

|z - £ |< 4 rz£Cn
for some constants C2, N2 and A,,. On the other hand invertibility of S  implies that
(38)

sup |det (£')(z)| =  sup |det(5 ')(z+ 0l S  sup |det(5')(x + ̂ )| S
Iz -C l-c r  |z - i i ; |< X ii) ({ )+ |4| |х -1 |) |« :Х м (0 + 1 ч |

z e e

5= sup |det (,$ ')(*+ÖI £  C3e -A°>™|xI-=Ata(0
Acta Mathematica Hungarica 52, 1988
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substituting (36), (37) and (38) in (35) gives

\üj(0\ ^  CeN“M+Alil, f = f +  if,6C", j  = 1, 2, .... m; 
where C, iV and T are constants, i.e. и3СЕ'а for each j — 1,

Definition 3.1. Let u=(ux, ..., a compact subset K=(Kx, Km)
of Rm" is said to be the ca-singular support of u, denoted singra supp и if each K3 
is the co-singular support of u3; j=  1, ..., m.

Theorem 3.4. Let S £ E ^ m be invertible. For any compact set K2a Rm" there 
exists a compact set Kx a  R"m such that

u^E’J ,  sing^ supp (S*u) c  K2 =  singra supp и c  Kx.
Proof. Let C=£+it]£Cn so that \rj\^rco(^); r= l, 2, 3 ,__ Put S*u= v  then

Sü = v and by Cramer’s rule one has

(39) W j  . _

det(S') ’ m,

where й3, w3 and det (S‘) are entire functions. For z=x+iy£  C", |z|<4/lco(c;)+4|i/[ 
one has \y+rj\^(4A+5r)co(£) and

l* +  fl
l«l

^ M s ( 4 +  + 5r) co(0
IÉI '

Proposition 1.1 implies that |^ |sl00 |^+ x | whenever \£\ is large enough, hence 
co(<i;) =  100co(£+.x:) for |£| large. By applying the Paley—Wiener theorem to the 
entries of § and Theorem 1.2 to the components of v we have for each /=  1, 2, ..., m

ГЛС\\ I -  /  M /О А ю (х+0+/11|з>1+ X  H i tv) _(40) sup \Wj(z)\ Ш Cr sup e Ш
|г -? |-= 4 А о )(9 + 4 |ч | |z| < 4Л ш (0 + 4 [^ |

x  + i y = z £ C n z £ C n

i'ffl{5)+ X  H,(n)+A\  |>/| X  H i09
^  C' e 1=1 sup e1=1 ,

|z|-z4AfflK)+4|l|l

whenever \ri\^rco(£), where Cr, C'r, A, A', Ax and A{ are constants and Ht is the 
support function of Ku \ Кг= (Klx, K12, ..., Klm). Since the Ku’s are compact one 
can find constants kt so that Hl{y )^k l\y\.

Now, applying Hörmander’s lemma with г=Асо(£)+\г]\ to (39) and using (36), 
(38) and (40) we get

m

„ . . . .  • *м о +ам + I  Hi\i\(41) |Wj(C)l — CJre 1=1 whenever \r/\ s  rco(£),

C =  ̂ +ii?6C", r= l ,2 ,  3, ... , and С/, A3, A3 are constants independent of £. For
m

each У=1, 2, ...,m  define the function #/(/7)=;4/M + ^  where the i/j’s
i=i

are as above. Clearly Hj is a support function of some compact subset K2J of R”.
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Hence one could rewrite (41) as 
(42)

\új(Q\ ^  CJrexj0><-^+HJM whenever |i/| ^  ra>(t;), r = 1,2, ... j  — 1, 2, m, 
i.e. singm supp Ujc K2j. Hence sing,,, supp u<zK2=(K21, ..., K2J).

R em a rk . I believe that the continuity of the map S { *q>~* <p from S* * D"‘, 
into D™ implies that det (S ')  is ю-slowly decreasing but I do not have a complete 
proof for this claim. If proved this will complete the cycle made of Theorems 3.1 
and 3.2. In case 777=1 this was part of Theorem 2.1.
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A FINITE METHOD FOR GLOBALLY M INIM IZING 
A CONCAVE FUNCTION OVER AN UNBOUNDED 

POLYHEDRAL CONVEX SET AND ITS APPLICATIONS

T. V. THIEU (Hanoi)

1. Introduction

In this paper we shall be concerned with the following concave programming 
problem:
(1) Globally minimize f{x), subject to x£D,

where / :  Rn-*R is a real-valued function, concave and continuous on R". D is a 
polyhedral, not necessarily bounded convex set in R". Usually, D is given explicitly 
by a finite system of linear equalities and inequalities of the form

(a’, x) + bt = 0, i£/°,
(a\ x) + bt S  0, i £ / _,

with a* being «-dimensional vectors, b; real numbers and 7°, l~ finite sets of indices.
For the case where the constraint set D is bounded, i.e. is a polytope, this prob

lem was first studied by H. Tuy in [7] and then by a number of researchers. Recently, 
some of the authors have also been interested in the more general case where*© 
may be unbounded (see [1], [8], [12]) and, as far as we known, the most general 
problem of minimizing a concave function over an arbitrary closed convex set 
was considered for the first time in [11] (see also [9]). The algorithms presented in 
[8], [12] are that of the branch and bound type which proceed according to the cone 
splitting scheme and the cone bisection procedure worked out in Tuy [7] and in 
Thoai and Tuy [6] respectively. However, both algorithms are in general infinite 
(though surely convergent) and require that a linear program be solved at each 
step of an infinite iterative procedure. The recent algorithm of V. T. Ban [1] which 
is a further development of the basic ideas proposed in [6, 7] — is finite, taking 
in account the linear structure of the constraint set. However, in many applications 
we have to treat a sequence of concave minimization problems which differ from 
one another just by one additional constraint. It is therefore of interest to construct 
an algorithm which could take advantage of this property. Such an algorithm was 
given in [4] for the case of polytopes. The purpose of the present paper is to develop 
another algorithm of this kind for the more general case where the constraint set is 
a polyhedral, not necessarily bounded, convex one.

The paper consists of six sections. After the Introduction, we shall present in 
Section 2 a comparatively simple and suitable technique for determining the vertices 
and the extreme directions of a polyhedral convex set obtained from a given poly
hedral convex one, whose vertices and extreme directions are known, by adding a 
new linear constraint. This technique is frequently used in solving Problem (1) 
by the algorithm we shall present and can be regarded as a further development



22 Т. V. TH IEU

of the previous one for the case of polytopes [4]. Then, in Section 3, we shall develop 
a finite algorithm for globally minimizing a concave function over a polyhedral, 
not necessarily bounded, convex set which proceeds according to the same scheme 
presented in [4] for the polytope case. This method is based on relaxing the con
straints of the problem to be solved and on gradually adding constraints, one per 
iteration, until an optimal solution is reached. The present algorithm is different 
from that of V. T. Ban [1] and, as shown in the sequel, it is practically suited to 
solve a sequence of problems which differ from one another just by one additional 
constraint. In Section 4 we shall discuss several particular features of applying the 
present algorithm to the bilinear programming, the linear complementarity prob
lems and concave minimization problems with special structure. In Section 5 a 
two-dimensional example is presented to illustrate how the algorithm works in 
practice and in the last section some computational experience is reported.

2. A subsidiary problem

In this section, we examine how to determine the set of vertices and extreme 
directions of a polyhedral convex set obtained from a given polyhedral convex one, 
whose vertices and extreme directions are known, by adding a new linear constraint. 
The main results which will play a basic role in solving Problem (1) may also have 
some interest in themselves.

Let there be given a polyhedral convex set M  defined by a system of linear 
inequality constraints
(2) gi(x) = (a‘, x) + bt 0, i = l ,

where a‘ are л-dimensional vectors, bt are real numbers, m = n. Suppose we already 
know the set U of vertices and the set V of extreme directions of M, i.e. we have 
the representation

M  = со U+cone V.

We shall assume that U ̂  0 (M  has at least one vertex) and V may be empty (M 
is a polytope). Given an affine function

h(x) =  (h, x) + g
with h being an л-dimensional non-zero vector, g a real number, let
(3) N =  МГ){х£Лп: h(x) = 0}.
Clearly N  is also a polyhedral convex set. The question arises as to determine the 
set P of vertices and the set О of extreme directions of N.

To answer this question denote
(4) U -  = {m€ U: h (и) <  0}, U + = {u£ U: h (и) >  0},
(5) V~= {veV: (h,v) <0}, V + = {v£V: (h, v) >  0},

H = {xeR": h(x) = 0}.
With these notations in mind we now prove several results.
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Proposition 1. I f  U+ = V l =0 then N = M , i.e. P=U and Q=V.

Proof. From the hypotheses, h(it)^ 0 for all u£U and (h,v)sO  for all 
v£V. Every x€M  can be expressed in the form

x  = 2  «u“ +  2  ßvVueu vev

with a„sO, ßv^ 0  and 2  au — h  hence

h(x) = 2  auh (u )+ 2  ßv(h, v) =. 0.

This means that xdN  and therefore, MczN. The converse inclusion is obvious. 
Thus N=M, as was to be proved.

Proposition 2. Suppose U~ = V~ =0. We have
a) I f  U+ — U then N=0, i.e. P=Q = 0.
b) Otherwise, P = U \U + and Q = V \ V  +.
P roof, a) U+~U  and F ~ = 0  imply /z(w)>0 for all udU  and (h ,v )^0  

for all v£V. Therefore, we have for every x£M

h(x) = 2  «uM«) + 2  ßvOh v) > 0uiU c(K

(note that there exists at least one au>0). So, N=0.
b) U~ = V~  =0 implies h(u)^0  for all u£U and (h, а)ш0 for all v£V. 

Therefore, h(x) isO for all x£M  and hence, M c j r :  h(x)^ 0}. So we have

N = МП (x: h(x) = 0} =  М П Н  Ф 0

(since U \(U + U U ~ )= U \U + 5*0). This shows that N is a face of M. Therefore, 
each vertex (extreme direction) of N  is also a vertex (an extreme direction) of M. 
Thus P = U \U + and Q = V \V +, as was to be proved.

Proposition 3. I f  U+ U V + 5* 0 and U~ U V~ 5*0, then we have
a) P 0 U = U \U +;
b) any vertex w £P \U  must he the intersection of the hyperplane H  either 

with a bounded edge of M  connecting a vertex u£ U~ with a vertex u f U +, or 
with an unbounded edge of M  emanating from a vertex udU~ (U +) in a direction 
v£V+(y~).

Proof, a) Every U+ will not belong to N  and hence, neither to P (since 
h(u)>0). Conversely, every u £ U \U + still belongs to N  (since /z(u)sO), hence 
it is still a vertex of N. So we have U \U + = P(~)U (this relation still holds even if 
U \U + =0).

b) Let now w£P\U . Denote by F(w) the smallest face of M  containing w. 
Since w$U we must have F(w )^ {и} and hence, dim F(w) Ш 1. If dim F(w)>l 
then F(w) would have in common with H  a line segment containing w in its relative 
interior, which would contradict the fact that w is a vertex of N. Therefore, 
dim F(w) = l and F(w) is an edge (bounded or unbounded) of M. Two cases are 
possible:
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Case 1. F(w) is a bounded edge of M. For example, F(w)=[u, u'] with u, u f  U. 
Then w=tu+{\ — t)u' for some t: 0 < i< l .  This implies h(u)zO, h{u') x  0. 
From the relation

li(w) =  th(u)+( 1 —t)h(u') = 0 
it follows that h(u) ■ h(u')<0.

Case 2. F(w) is an unbounded edge of M . For example, F(w)={u+6v: 0sO} 
with udU, v£V. Then w=u+tv for some t >0. This implies h(u)z0, (h, v )z0 . 
Since

h(w) =  h(u) + t • (h, v) = 0
we must have h(u) ■ (h, r)<0, completing the proof.

Proposition 4. Under the hypotheses o f Proposition 3 we have
a) Q f) V = V \V +]
b) any extreme direction v £ Q \V  satisfies (h,v)=0 and is o f the form v = ?.p + uq 

with A, a n d  (p, q)(i V~ X V + defining a two-dimensional face of the recession 
cone of M.

Proof, a) Let К  and T  denote the recession cone of M  and N  respectively. 
It follows from (2), (3) that

К = coneF =  {x€J?n: (a‘, x) ^  0, i =  1, ..., m),
T = cone Q = ЛГП {x<E Rn: (h, x) á  0}.

This shows that V \ V + =QC\V.
b) Let now v£Q \V . Since v£Q, among the constraints defining T  there 

are (и— 1) linearly independent constraints binding for v. Further, since v (£ V, 
one of these n— 1 binding constraints must be (h, r)=0. Let J  denote the index 
set of the remaining n—2 binding constraints: / с {  1, ...,m}, \J\=n—2. Then

Z(fi) = {x£K: (a', x) = 0, i£J}
is the smallest face of К containing the ray {tv: i^O}. Certainly, Z(v) ̂  {tv: ISO}, 
for otherwise v would be an extreme direction of M, i.e. v£V. Therefore, 
dim Z(u)=2 and hence, Z(v) is a two-dimensional cone defined, for example, by 
two extreme directions p and q that belong to V. We thus have

v — Xp-Fpq with some 2, p >  0.
This implies (fi,p )^0 , (h, q)Z-0. From the relation

(h, v) = X(h,p)+g(h, q) = 0
it follows that (h, p) ■ {h, q)< 0, completing the proof.

On the basis of Propositions 3, 4 one can determine the new vertices of N  
(that belong to P \U )  and the new extreme directions of N  (that belong to Q \V ) ,  
in the case l / + U F + ^ 0  and as follows.

R ule A  for finding the new vertices of N.
a) For any pair (и, u )d_ U~ X U+ determine the point

w =  t • u + (l — t) ■ u', where t =  h(u')/(h(u') — h(u)).
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b) For any pair (и, n)£ {U~ X F +} U {U+XV~) determine the point 
w = u+ t-v, where t = — h(u)/(h, v).

For each w defined by a) or b) denote by I(w) the index set of constraints of 
the form (2) that define M  and are binding for w:

7(w) = {i: gi(vv) =  0, i = 1 , m}.
It can be seen that in Case a)

7(w) =  {i: g fu ) =  gi(u') =  0, i = 1, m)
and in Case b)

7(w) = {i: g fu ) =  (a\ v) = 0, i =  1, ...,m } .

Then, as can easily be verified,

F(w) = {xeM: g;(x) = 0, iC 7(vv)}

is the smallest face of M  containing w. Therefore, if |/(w )|<«— 1 or if there exists 
a vertex z€ t/\{n , u'} (in Case a)) or z£U \{u}  (in Case b)), such that g;(z)=0 
for all i£I(w) (i.e. z£F(w)C\U), then dim 7'(и’)=-1 and hence, by Proposition 3, 
w cannot be a vertex of N: Otherwise, dimF(w) =  l and w is a vertex
of N: wiP.

R ule В for finding the new extreme directions of N.
For any pair (p ,q )£V ~ X V +, determine the point v=(h, q)p — (h,p)q. It is 

easily seen that v£K and (h,v)—0. Let J(v)={j: (a f v)=0, j —l, m}. It 
can be seen that J(v)={ j: (aj, p)=(aJ, q )= 0,j= l, m}. Then, as can easily be
verified,

Z(v) = {x£K: (aJ, x) = 0, j£J(v)}

is the smallest face of К  containing the ray {tv: /ё0}. Therefore, if \J(v)\<n—2 
or if there is at least one z£ V \{p , q), such that (aJ, z) = 0 for all j£J(v) (i.e. 
z^Z(v)C\K) then dim Z(y)>2 and hence, by Proposition 4, v cannot be an extreme 
direction of N: v Q. Otherwise, dim Z(v)=2 and v is an extreme direction of 
N: veQ.

We have already taken up the question of determining the set of vertices and 
extreme directions of a polyhedral convex set generated from a given polyhedral 
convex one, whose vertices and extreme directions are known, by adding a new 
linear inequality constraint.

We now turn to consider a special case of the above question where instead 
of (3), N  is defined by
(6) JV =  Affl{r6Ä": li(r) =  (li,r) + g =  0},

i.e. N  is obtained from M  by adding a new linear equality constraint. Since one 
equality is equivalent to two inequalities, to determine the set of vertices and extreme 
directions of N  given by (6) we can repeat twice the above procedure and as an 
immediate consequence of Propositions 1—4 we have
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Corollary 1. Let there be given a polyhedral convex set M  with vertex set 
U and extreme direction set V. Let TV be obtained from M  by (6), and let P and Q be 
the vertex set and the extreme direction set o f TV respectively. With U~, U+, V~, 
V + being as before (see (4), (5)) we have:

a) Suppose U+ =  V+ =0. I f  U~ — U then TV=0, i.e. P=Q=0. Otherwise, 
P = U \U ~ , Q = V \V ~ .

b) Suppose U — V =0. I f  U+ — U then TV=0, i.e. P=Q=0. Otherwise, 
P= U \U + , Q = V \ V  + .

c) Suppose U + U V +^ 0  and U~ U V ~ ^0 . Then
РП t/ =  U /{U  + {J U-}, QHV = V \{ V  + U V-}.

Furthermore, any vertex w £ P \U  must be the intersection o f the hyperplane 
h(x)=0 either with a bounded edge [u,u'] o f M, such that h (u) ■ h (ur) <  0, or with 
an unbounded edge {u + 6v: 0^0} o f M  such that h(u) • (h, r)<0; and any extreme 
direction v(zQ \V  satisfies (h, v) = 0 and is o f the form v — ?.p + pq with Я, 
and (p, qfi V~ X V + defining a two-dimensional face o f the recession cone of M.

In Case c) the method for determining the new vertices of N  (that belong to 
P \ U ) and the new extreme directions of N  (that belong to Q \V )  is completely 
similar to the previous one.

Furthermore, if M  is a polytope (i.e. V=0) then of course TV is a polytope 
too and the determination of the vertex set P of TV is a comparatively easy task. 
Namely, we get

Corollary 2 (inequality constraint case). Let there be given a poly tope M  with 
vertex set U and let TV be obtained from M by (3) with vertex set P. With U~, U+ 
being defined by (4) we have:

a) I f  U+ =0 then N=M, i.e. P=U.
b) I f  C/_ = 0  then TV=0, i.e. P=9, in the case U+ =U and P = U \U +

in the case U+ =̂= U.
c) I f  U+ ^ 0 , U~ 7^0 then P f]U = U \U + and any vertex wf_P\U must be 

the intersection o f the hyperplane h(x) = 0 with some edge of M  connecting a vertex 
u£U~ with a vertex v£U+.

We thus recover in this special case the results of [4].
Corollary 3 (equality constraint case). Let there be given a poly tope M  with 

vertex set V and let TV be obtained from M by (6) with vertex set P. With U~, U+ 
being defined by (4) we have:

a) Suppose U+—0. I f  U~ = U then TV=0 and P —0. Otherwise, P = U \U ~.
b) Suppose U~ =0. I f  U+= U  then TV=0 and P=0. Otherwise, P = U \U +.
c) I f  U+t±0 and U~ 7^0 then PC\U= U \  {U+ U C ~} and any vertex P \U  

must be the intersection o f the hyperplane h{x) = 0 with some edge o f M  connecting 
a vertex u£U~ with a vertex v£U +.

In Case c) of Corollaries 2, 3, to determine the new vertices of TV (that belong 
to P \U )  one can carry out as before (but only w=tu+{\ — t)v  with u£U~, 
v£ U + must be examined).

R emark 1. It can be easily verified that the above still holds even if M  is given 
by a finite system of linear equality and inequality constraints.
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R emark 2. In the case where M  is a simplex the intersection of the hyperplane 
h(x)=0 with any edge of M  connecting a vertex u£U~ with a vertex vd U+ is 
exactly a vertex of N, so the determination of the new vertices of N  in this case is 
quite easy.

R emark 3. By repeated application of the above, one can determine all the 
vertices and all the extreme directions of a polyhedral convex set D of the form
(7) D =  {x6i?+: (a\ х) + Ь,-Rt0, i = 1,
with Rt being one of the three relations = , S , by starting with 5’1=7?+ con
taining D. Clearly Sx has the only vertex 0 — the origin of coordinates, and n extreme 
directions eJ — they'-th unit vector in R" (y = 1, и).

3. Finite algorithm for concave minimization under linear constraints

The problem of concern can be restated as follows.
Minimize /(x), subject to

(8) (a\ x) + bi ^  0,
(9) X j^O, у = 1, , n,
where / :  R"~»R is a concave function, defined throughout Rn (hence continuous), 
a’ are и-dimensional vectors and bt are real numbers. Denote by D the set of all 
points x satisfying (8), (9).

We first prove two lemmas we shall need later.
Lemma 1. Let f(x) be a concave function on a convex set M. I f  f  is unbounded 

below on a ray o f M  with direction w and continuous at every point o f this ray, 
then f  is also unbounded below on any ray that lies entirely inside M  and has the same 
direction w.

Proof. Let f(x )  be continuous and bounded below on the ray Г1 — 
— {w+/lw: A^O} and Г2= {v+Áw: isO jc M . Suppose the contrary that/ ( x) is 
bounded below over Г2, i.e. /(x)Sy for all х£Г2. Define ß=min {y,f(u)}. 
Since f(x )  is unbounded below over Гг there is Ах>0 suchthat / ( u + Í1w)-=:/f. 
By virtue of the continuity of /  on Гг there exists <5>0 such that f(x) < ß for all 
xdMC\W, where W  is the ball of radius 3 around u+ ^w . On the one hand the 
points

x — ay + ( l —a)M +  A1w = M + A1w +  a(t; — и), 0 < a <  1
with a<<5/||y—u|| will belong to M f\W  and hence, /(x)</?.

On the other hand for all points of this form we have

f(x )  = / [ 0!(i, + “ VV) + ( 1—«)и| =

”  а / (” +  ̂ ! Н  + (1_а)/(м) ~  а7 + (1_ а)Я м) -  ß-
We thus arrive at a contradiction and hence, the proof is complete.
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Lemma 2. Let f(x) be a function, concave and continuous on a given polyhedral 
convex set M  having at least one vertex. I f  f  is bounded below in any extreme ray o f M  
then f  is also bounded below on an arbitrary extreme ray of any polyhedral convex set 
N  contained in M.

Proof. It follows from the hypotheses that /  attains its minimum over M  
at some of its vertex u. If Г is an arbitrary (fixed) extreme ray of N then rczN c: 
czM  and

inf{/(x): х£Г) ^  inf {/(x): x£M ) = f(u) =- — °°.
This shows that /  cannot be unbounded below over Г, as was to be proved.

Observe, in passing, that under the hypotheses of Lemma 2 the minimum of 
/  over N  is also attained in at least one vertex of N.

Denote now by S) the orthant Rn+. Let U1 be the vertex set and Vx the extreme 
direction set of Sk. It is easily seen that C/1 =  {0}, V1 = {e1, ..., e"}, where ej is the 
y'-th unit vector in I?" ( /=  1, ..., n). Let Ix— {m + \, ..., m+n) be the index set 
of the constraints defining (the index m + j corresponds to the constraint лу=0).

Iteration k = l, 2 ,..., m. At this iteration we already have a polyhedral con
vex set Skz>D along with the set Uk of vertices and the set Vk of extreme direc
tions of Sk (generally, Uk is non-empty, but Vk may be empty) and the index set Ik 
of the constraints (8), (9) defining Sk. Let J k = { 1, ..., m } \Ik.

Step 1. It is known that a concave function is either unbounded below over 
a ray or attains its minimum at the origin of this ray (see e.g. [2]). Therefore if 
there exists v£Vk and 0 > 0 such that /(0 c )< /(0), then /  is unbounded below 
over the ray {tv. i&0} and hence, by Lemma 1, /  is unbounded below over any 
ray emanating from some point of Sk in the direction v. Compute

( 10) a = max {(я', v)}.
iiJk

a) If a ^ o , i.e. (a‘, v)xi0 for all i= l ,  ..., w, terminate, since whenever D Xs0, 
the problem has no finite optimal solution and v is a direction of recession of D over 
which /(x) is unbounded below.

b) Otherwise, select
(11) ik — arg max {(a1, v): i(:Jk} 

and go to Step 3.
Step 2. If there is no such an extreme direction v then the minimum of /(x) 

over Sk is always attained in at least one vertex of Sk. So, we select

wk — arg min {f(u): u£ Uk}

(if there are several candidates, take any one of them). Compute

(12) ß =  max {(a\ wk) + bi).i£Jk
a) If /7=0, i.e. (a\wk)+ b i-&0 for all i—\,.. .,m ,  stop: wk is an optimal 

solution of problem (7)—(9).
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b) Otherwise, select
(13)
and go to Step 3.

ik =  arg max {(a\ wk) + bt: i f  Jk)

Step 3. Form the new polyhedral convex set
(14) 4 +i =  4 П {x: (aik, x)+ bik S  0),

4+1= 44' {<fc}, 4+1 = 4\{h}-
Find the set Uk+1 of vertices and the set Vk+1 of extreme directions of Sk+1, using 
the techniques described in Section 2 (see Propositions 1—4, Rule A, Rule B). If 
4 +1=0 is discovered then D — 0 and stop. Otherwise, set k*- lc + l and return 
to Step 1.

Proposition 5. The above algorithm stops after at most m iterations.
Proof. Since at each iteration the current polyhedral convex set Sk is obtained 

from the previous one, 4 -i> by adding one new constraint, since all these con
straints are taken from the system (8), it is easily seen that the above algorithm 
stops after at most m iterations.

R emark 4. If at a certain iteration к the situation 1 does not occur, by Lemma 2, 
neither will it at any iteration h>k. So, henceforth, at each iteration h ^ k ,  having 
found the set of vertices and extreme directions of 4+1 one could turn directly 
to Step 2. Specifically, for the case where D is bounded, i.e. is a polytope, each itera
tion of the Algorithm consists of Steps 2—3 only, and the Algorithm is in this case 
just the same one developed in [4].

R emark 5. For convenience we have restricted ourselves to the problem with 
linear inequality constraints only. With minor modifications the above algorithm 
goes through in the case of linear equality constraints. Indeed, if we replace, for 
example, (8) by

with 7° = {1, ..., r} and 7 ={r + l, ..., m}, then we have to replace (10)—(13) 
by (10')—(13') respectively:

(S ') {;
(ai,x )  + bi = 0, i£ l°  
(a1, x) + bi ^  0, i£7~

(100 a =  max {.max {1(4, r)|}, .max {(a\ vi£Jknr-
(110

(120

(130
and (14), if /4  7°, by

(140 4+1 =  4 П {x: ( a \  x) + bik = 0}.
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R emark 6. In the proposed Algorithm instead of Rn+ we can start from an 
arbitrary polyhedral convex set SkZ2 D provided its vertices and extreme direc
tions are known (or easily computed). The Algorithm can also be applied to the 
case where f i x ) is continuous on the chosen S \ .

4. Applications

In this section we shall apply the above algorithm to some important problems 
of mathematical programming.

I. The bilinear programming problem

Minimize F(x,y) = cTx + x TQTy+ d Ty  subject to
x£D  =  {xdR": A x  & a, x  ^  0}, 
y £ E =  {y£Rn' : ВтуШ Ь, у =5 0},

where A, BT and QT are mXn, m 'X rí and nXn' matrices, respectively, and 
c, d, a and b are n, rí, m, /я'-vectors, respectively. We shall assume that D is a poly
hedral convex set in Rn and that E  is a polytope in Rn‘.

This problem has been extensively studied in the literature during the last ten 
years. Until now most of the methods developed for the solution require an assump
tion about the boundedness of D and E. The above algorithm can solve this prob
lem provided either set is bounded. It is based upon the fact that the bilinear pro
gramming problem may always be converted into a concave minimization problem 
(see [3]). Namely, setting
(15) f{x) — min [F{x,y): y£E} — cTx + min {(d+Qx)Ty: ydE) =

= cTx + max {bTu: Bu ^  d + Qx, uSO }
(the last equality follows from the Duality Theory in linear programming), we 
have a concave function /  defined on Rn and the bilinear programming problem 
is reduced to minimizing /  over D. Since for every x the value of /(x) can easily 
be computed by solving a linear program (depending upon x) over the polytope E, 
the above Algorithm applies and yields a finite procedure for solving the bilinear 
programming problem.

Note that in this case the verification of whether /  is unbounded below 
over any (fixed) ray emanating from a given point xf Sk in an arbitrary direction v 
of Sk (with Sk 3  D as described in the above Algorithm), is a comparatively easy 
task. Indeed, according to (15) we have

f ( x  + 6v) = cT(x + 0r) + max [bTtr. Bu ^  d-yQ^y + Ov), и £  0}.
Solving the linear program (for determining the largest Я such that f(x+?.v) is 

still greater than or equal to fix)):
Maximize Я, subject to

ÁcTv + bTu ^ f i x )  — cTx, —XQv+Bu ^  d+Qx; X S  0, « 5 0 ,
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we obtain the optimal value I. If 1 = + °°, f{x) attains its minimum over the ray 
{x+0t/: 0^0} at 3c, i.e. f  is bounded below on this ray; if not (I<  +  by a well 
known property of concave functions, /  is unbounded below in the ray under 
consideration.

The problems of the above described form to be solved at the same iteration of 
the Algorithm, associated with different extreme directions v, differ from one another 
just by one column corresponding to the variable L  Therefore, to solve these prob
lems one should use reoptimization techniques in linear programming which could 
take advantage of this property.

II. The linear complementarity problem 

Find an /г-vector x, an и-vector y, a //-vector z satisfying

(Ax + By+ Cz+ b  = 0,
( 16) \  T(x Ty  =  0, x , y , z ^  0,

where A, В are m Xn  matrices, C is an m Xp matrix, b is an /и-vector.
As is shown [3], (x, y, z) is a solution of (16) if and only if (x, y, z) is an 

optimal solution of the following problem
n

(17) min{Z(x, y, z) =  _2'min(xi,j 'i): Ax+By + Cz+b = 0, x, y, z S  0}
i=l

with l(x ,y ,z )= 0.
Since the objective function of (17) is clearly a concave function, (17) is a 

concave programming problem under linear constraints. Thus, instead of finding a 
feasible solution of the linear complementarity problem (16), we can solve the cor
responding concave minimization problem (17). If an optimal solution (3c, y, z.) 
exists such that Z(x, y, z )= 0, it is a solution to the linear complementarity problem; 
otherwise the linear complementarity problem has no solution.

The above Algorithm applied to problem (17) has several particular features 
taking account of the special structure of the problem.

a) Since /(x, y, z)§0  for all points (x, y, z)£B2"+p and since Sk (Sk is a 
polyhedral convex set containing the constraint set D of (17)), as constructed in 
the above Algorithm, is contained in R2_£+p, l(x, y, z) is bounded below over 
every ray of Sk. Therefore, during the performance of the above Algorithm for 
solving problem (17), Step 1 shall never occur (though Sk is not necessarily bounded). 
So, by Remark 4, each iteration consists in this special case of Steps 2 and 3 only.

b) If at a certain iteration к

min {/(x, y, z) : (x, y, z)£ Uk)  >  0 

(recall that Uk is the vertex set of Sk), then from

min {/(x, y, z): (x, y, z)£D} ^  min {Z(x, y, z): (x, y, z)£Sk} =

=  min {Z(x, y, z): (x, y, z)£ Uk} >  0
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it follows that the linear complementarity problem (16) has no solution. (In this 
case we need not solve problem (17) to the end.)

We now turn to consider a special case of problem (16). If m=n, B ——E 
(E  is the unit matrix) and C = 0  the problem (16) becomes: Find x£Rn, y£R” 
such that
(18) y = A x + b ^ 0 ,  x Ш 0, х ту  =  0.

The linear complementarity problem of this form has been studied by a num
ber of researchers (see [12]), but most of them solve the problem under some addi
tional assumptions about the matrix A. The above Algorithm can also be applied 
to the problem in all cases where it is solvable, by means of solving the equivalent 
concave minimization problem.

Minimize f ( x ) such that
(19) Ax + b ^ 0 ,  x
where

(20) /(x) =  2  min {*i» 2i = l j= 1
If an optimal solution x exists such that /(x )= 0 , it is a solution to the linear com
plementarity problem (18); otherwise (18) has no solution. (Observe that unlike (17), 
problem (19) contains x-variables only.)

In solving problem (19) by the above Algorithm it is easy to verify whether/is 
unbounded below on a ray emanating from a given point и in a direction v. 
Indeed, we have from (20)

f (u  + 9v) = 2  min {г/; + 0г;, 2  au Uj + bi + 0 £  a^Vj} = j?  min {мг + 0г(, cq + 0ß,},
i=l j j i = 1

where a.t—̂ 2 a^Uj+bi, ß i= 2  au vj- Therefore, for all /=1, ..., n with large 
j j

enough в we have

min {iii+Ovi, a;
iii + Ovi
a i+0ßi

if vt = ßi, 
otherwise.

Hence, for large enough в

f(u  + 6v) — 2  (Mi +  0r;)+ 2  (oq + 0/1;) — 2-+ 0/0
i K. i $ K

where
K = { i : y i ^ ß i } ,  X = Z ui + 2 ai and b ^ Z v t + Z ß i -

i £ K  ;<£K i £ X  i i K

Therefore, if /<<0 f(u  + 0v) — °° as 0— otherwise /  is bounded below over
the ray {u+6v: 0^ 0}.

By an argument similar to the previous one, we finally observe that if at a 
certain iteration к
(21) min {/(x): x£Sk} >  0,
the linear complementarity problem (18) has no solution.
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III. Concave minimization with special structure

In a recent work [10] H. Tuy has developed a decomposition method for solving 
the following class of concave minimization problems under linear constraints with 
special structure:

Minimize f(x), subject to
(22) Ax + By + c S  0,
(23) xex , у er,
where X, Y  are polyhedral convex sets in Rp, Rq respectively, A an mXp-matrix, В 
an mXg-matrix, c an m-vector and / ( x) a continuous concave function over X. 
Here p is assumed to be small as compared to n=p+q.

The basic idea of the method is to convert the original problem (21)—(23) 
to a finite sequence of concave minimization problems in the variable x  under linear 
constraints. Among them the first one is to minimize f(x )  such that x e X  and the 
following one is obtained from the previous one by adding a new linear constraint. 
Therefore, to solve these problems one could use the above Algorithm which has 
taken advantage of this recursive property.

5. A simple illustrative example

A two-dimensional example below was chosen to illustrate how the algorithm 
might perform on problems with unbounded constraint set.

We consider the following problem:
Minimize

y(x) = *i*2 O.OSfa-Xg)2

subject to 

(1) —3xx+ x2— 1 ^ 0

(2) —3xj — 5*2+23 = 0

(3) * i—4x2— 2 ё 0

(4) — хг-|- x 2— 5 s 0

ОAlliHя

X2 ^  0.
Fig. 1 illustrates the constraint set D (note that f(x) is a concave function, defined 
and continuous on R% zd D).

The Algorithm starts from Sj= R \  with vertex set 171={m1} and extreme 
direction set V1={v1,v 2}, where zd =  (0 ,0); f(u1)=0, n1 =  (l,0) and u2 =  (0, 1).

Iteration 1. On the halfline {x= tv1==(t, 0): ?s0} we have

f{x) =  —0.05? -I—  °° (as t <*>),
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i.e. /(л:) is unbounded below over this halfline. According to (10) we compute
a = max ( — 3, —3,1, — 1} =  1 > 0 ,

and select 4=3. Thus
S2 = S’iD ix : xt —4x2—2 ^  0},

U~ — {n1}, Í7+ =  0, T -  =  {r2}, V + = {v1}.
The pair (u1, vx)^U~ X V + generates, in accordance with Rule A, a new 

vertex m2=(2,0) with /(w2)=  — 0.1 and the pair (v2, v')£V~ X V + generates, in 
accordance with Rule B, a new extreme direction v3=(4, 1). So we have, by Proposi
tion 3, Ui ={u1,u 2} and, by Proposition 4, V2={v2,v 3}.

Iteration 2. On the halfline {x= tv3={4t, t): tsO} we have

f ix )
4̂ _ 
51

-0 .05X 9 i2 
51 0.71t (as t - * °o),

i.e. / ( a) attains its minimum at the origin of this halüine.
On the halfline {x=tv2=(0, t)\ t^0} we have

f(x)  = —0.05i — — o° (as /- ° o ) ,
i.e. f(x )  is unbounded below on this halfline. Compute

a = max {1, — 5, 1} = 1 > 0 .
We select 4=1. Thus

S3 = $ 2  П {x: — 3xj+x2 — 1 S  0},
U - = {и1, и2}, U+ = 0, V - = {r3}, V += {t;2}.

The pair (и1, v2)£U~ X V + generates a new vertex и3=(0, 1) with / ( m3) = 
=  —0.05, thepair (и2, v2)^U~ X V + generates no vertex and the pair (v3,v2)£V~X  
X V + gives a new extreme direction r4=(l, 3).
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So we have
U3 =  {и1, w2, и3}, V3 = {vs, F4}.

Iteration 3. f ( x ) is bounded below on the ray {tv3: 0} as well as on the
ray {tv1: ?^0}. So we have

min {f(x ): x£Ss} =  min {/(w]) , / ( m2) , / ( w3)} = min {0, —0.1, —0.05} =  —0.1 
and w3=u2 = (2, 0). In accordance with (12) we compute

ß = max {17, —7} = 17 >  0.
Select /,= 2  and

—3xx —5x2+23 ^  0},
U ~ = 0 , U + = {u \u 2,u3}, V~ — {г3, г;4}, F + = 0.

(и2, v3)£ U+ XV~  gives a new vertex u4 = (6, 1) with /(г /)=0.67857143 and 
(u3, u4)6 E/+ XV~  gives a new vertex u5= ( l , 4) with /(z/‘)=0.71 (the other pairs 
in U+ X V~ give no vertex). We thus have

Ui =  {и4, ub) and Vi = {u3, u4}.
Iteration 4. There is no extreme ray of over which f(x )  is unbounded below, 

so we have
min {f ( x ): =  min {/(г/4), / ( m5)} =  0.67857143

and vv4=w4= (6, 1). According to (12), compute

yS =  —10 <  0

and hence, the optimal solution и4= (6, 1) is found with objective function value 
/ (t/4)=0.67857143.

6, Computational experience

The above Algorithm was coded in FORTRAN IY and has been run on an 
IBM 360/50. It was tested on a number of concave minimization problems having 
a bounded constraint set, with negative quadratic piecewise linear concave, linear 
fixed-charge and exponential objective functions. The largest problem so far attempted 
using this algorithm is a 16-variable, 14-constraint problem having a linear fixed- 
charge objective function. The Algorithm solved the problem after three iterations 
generating 497 vertices. The computer time was 6.11 minutes. The preliminary 
results which are presented below show that the average number of iterations to be 
required for receiving an optimal solution is about m/2 (m is the number of linear 
equality and inequality constraints with the exception of non-negativity constraints) 
and that it is a viable method for concave minimization problems with a moderate 
size. Some other computational experiments carried out by Ng. V. Thoai [5] have 
also demonstrated the efficiency of using the above Algorithm combined with the 
decomposition technique proposed in [10]. Additional computational experience 
for problems having an unbounded constraint set will be reported in a forthcoming 
paper.
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Problem Size of A Objective function Number of 
iterations

Maximal 
number of 
generated 
vertices

CPU time 
(minute)

1 4 X 2 Quadratic 2 4 0.01
2 4 X 2 — 2 5 0.02
3 8 X 2 — 3 5 0.02
4 5 X 3 — 5 8 0.02
5 9 X 3 — 5 10 0.05
6 2 X 4 — 1 8 0.02
7 4 X 5 — 4 24 0.04
8 4 X 8 — 1 25 0.03
9 6 X 8 — 3 46 0.07

10 6 X 8 Piecewise 3 48 0.10
linear concave

11 5 X 1 2 Quadratic 3 48 0.82
12 1 1 X 1 0 — 4 116 0.61
13 1 1 X 1 0 Exponential 5 231 2.24
14 1 4 X 1 6 Fixed-charge 3 497 6.11
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SOME RANDOMLY SELECTED ARITHMETICAL SUMS

J.-M. DE KÖNINCK (Québec) and J. GALAMBOS (Philadelphia)

1. Introduction

Let px(и)< p2( и ) (n) be the sequence of distinct prime divisors of n; 
that is,

n =  П рУ(п), n ^ 2 ,  
l=i

where <n=cu(n) is the number of distinct prime divisors of n.
Recently, several authors investigated the behavior of

2
1

Pj(n)
=  R j (.x )

for some specific choices of j . In particular, for j = 1, or whenever j  is preassigned, 
it is not difficult to show that R j(x)~cjx  with a computable constant Cj. On the 
other hand, when j —(o(ri), the problem of finding good approximations to Rj(x) 
becomes very difficult; by refining several earlier results, Ivic and Pomerance [5] 
found the best known approximation. Quite remarkably, the case of j=a)(n)— 1, or 
j —со{п)—к  with к fixed, shows no similarity to the case of j — coin), and asymptotic 
expressions are in fact known (Erdős and Ivic [3]):

Ro>—к (a) Ck
x(loglogx)4 1 

log*
к S  1,

where ck is a constant.
In order to obtain an “average type of information” on the magnitude of 

Pj(ri), when j  does not belong to the mentioned cases (i.e. either j  is fixed or j —(a —k  
with к  fixed), we set up the following probabilistic approach. For every integer nSx, 
pick one pin) of its prime divisors Pj(ri) with equal probabilities (hence p(n)=Pj(n) 
with probability 1/ю(и)), and consider the sums

( 1) R(x) = 2 l
p i n ) '

Here and in what follows we assume that x  is an integer. Evidently, there are 
w(2)cu(3) ...cü(x) sums of the type in (1), and

2
l

РЛn) ^ R ( x ) 2
l

P lin ) ’
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It turns out that “almost all” sums in (1) are asymptotically equal to the same expres
sion, ex/log log x, indicating that Rj(x) does not vary much with j  when j  is not 
an extreme (constant or co—k  with к constant).

This probabilistic approach to Rj(x) led us to investigate several other arith
metical sums
(2) Q ( x ) = Z r ( n ) ,

n^x

where r(n) is one randomly selected member of a set A„ associated with n. We estab
lish that Q{x) is asymptotically the same value for “almost all” selections of r(n). 
For example, if An is the set of the reciprocals of the divisors of n, then it turns 
out that

(3) 6 0 ) у  O 'О )

n é x  n t ( n )  ’

where a(ri) is the sum of the divisors of n, and x(n) is the number of divisors of n. 
On the other hand, if A„ is the set of all divisors of n, then (again for almost all 
selections of r(n) in (2)),

(4) Q(x) у  o(ji)
n S x  ? ( « )  '

These results, therefore, give a probabilistic meaning to the arithmetical sums on 
the right hand sides of (3) and (4), involving well known arithmetical functions.

2. The sum of reciprocals of random prime divisors of n

As in the introduction, p 1 (ri)<p2(ri)< ...< рю(п) denote the distinct prime 
divisors of n, and we select one p(n) of these prime divisors at random (with equal 
probabilities). Set

(5) R (x ) = 2
1

p(n) '
Note again the total number of sums of the form of (5) is ш(2)ш(3)...со(х). We 
shall say that a property holds for almost all sums in (5) if the number N(x) of the 
sums with the property in question satisfies

N(x)/co(2)co(3)... co(x) — 1
as x-* + o°.

Theorem 1. For almost all sums in (5),

а д  =  Cl*log log X+о ( (log log x)2 )

where cx= ^  1 /p2, the summation being over all primes p.
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The proof is based on the Chebyshev inequality stated below.

Lemma. Let An={a1, a2, ..., a/(n)}, и *=1, be a sequence o f finite sets. For every 
« = 1, pick one member r(n) o f An at random with equal probabilities (i.e. г(п) = а2- 
with probability 1 If ifi)), and set

(6) Q(x) =  2  r(n)-tl̂ X

Then the number NQ(x) o f sums in (6) for which

where

and

satisfies

\Q (x ) — E \ ^  V 5/8 

1 Л")
E = i

1 /(И) (  \ Л и ) \ 2

v  — 2  -fTY 2  а) -  2  -?г г  2  ajf (n) j fx  3 nsx \ f (n) j t l  J)

N Q (X ) Ш V - ^ f ( \) f (2) ...f i x ).

Proof. See Galambos [4].

Proof of Theorem 1. With the notations of the lemma,

(7)

Clearly

Hence

2  ——  2  — =  2  — 2  — -— .
2 -̂ пШх CO(n) p\n p ршх P m-̂ xlp CO (pm)

1 l 1
co(m) + 1 co(pm) co(m) ' 

1 1
со (pm) co(m) О ( co(m)2 ) ’

where the 0(...) is uniform in m s2. Therefore

(8) 2
1 1

= 2 ±  2
l

ps* P тшх/р со (pm) psi p 2 smsx/p co(m) ■ + o Í 2  — 2 —-— ) ■cffx P zsá&xip co(m)2 )

Now

(9) 2 — 2  —-— s  - L  2  2  1 s  - L  2  — =ifccpsx P zsmisxlp C°(m) у x  рШх nvmxlp Ух ps* p  

= О ( fx  log log x) =  0(x/( log log x)2).
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We recall the estimates

( 10)

and

( 11)

■+o________________ , v f____ - ___ )
2s m ä x  log log x ((log log x)2)

r)((log log x)22 J L x oj(m f ° ( (
proved in De Köninck [1]. Using (10), we have

^  P 2sMxip co(m) ”  p ^ -  p log log (x/p) + °  ( (log log (x/p))2 ) •

But since, for p S ] /x \

then

(13)

Ч * - Й Й - 0 ( 1),

1
log log (x/p)

1

l o g l o g * + I o g ( l - t e )  1 +  ̂ J H

log log X 
Using this in (12) yields 

1

Since

log log x ,

1

log log x ((loglog x)

log log X 

((log log x)2) -

A JL X  1 /

P 2 sMxip (o(m) ~  log log X p| - /  + 0 1(log log x)2

, ^ 7  =  ? ¥ + 0 Ш  =  С1+ 0 Ш -  say’

)•

psf.

we finally obtain

(14) 2 i- 2p^Vx p isáixip co(m) Cl log log x T u  ((log log x)2,

Also, using (11), we have

^  J j i  2 sMxipCo(m)2 ~  ° [ pÄ ;  P (log log (x/p))2) “  °  ((log log x)2) ’

-+o ((log log x)2)-

because of (13).
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Now combining (14) and (15), and using once more (9), (8) becomes

( 16) p ^ x  P  m M ip  CO (p m ) Cl log log X +  °  ((log log x )‘((log logx)2) '

Hence

E = Cj ■log log

By similar calculations, we get

x ((loglogx)2) ’

V — У  _ L _  У  ——  У  i —i — y —) 
г£яхы(п) pW P2 2d£*хУсо(п) % p )

and thus the lemma implies Theorem 1.

c2x
log log x '

3. Random sums related to the divisors o f n

Let now d ^ d 2-< dt be the divisors of n, where dj =dj (n) and т =  т(rí) 
is the number of divisors of n. In addition, let <7 (и) be the sum of the divisors of n. 
Again, for each и ё 2, we pick one r(n) of the divisors dj, and, with a given function 
h( •), we define
(17) Q(x) = 2  Л(г(и)).

S S n S x

Because the number of sums in (17) is t(2)t(3 )...t(x), we now say that a 
property holds for almost all sums in (17) if it holds for N* sums such that 
ЛГ*/т(2)т(3)...т(д:) —1 as x — +°°.

Although the basic idea of the computations is the same for a large variety of 
choices for h(u), we carry out the computations when h(u) is either l /и or u. Their 
significance is that the major terms in the asymptotic expressions below are familiar 
arithmetical sums.

Theorem 2. For almost all sums in (17),

(i)

and

(ii)

2  - 4 r  =  2  - ^ + о ( * 5/8) =  - т = + о
2Sn=5* П Н )  2 S n S *  t n ( n )

o(n)

/log.*

2  r(n)=  2  ^ r + o ( x ^ )  = - ^  + o
2 ^ n ^ x  2 ^ n ^ x  ~ \ n )  ) / lO g  X

( (log x)3/2 ) ’ 

((log*)3/2) '

Proof. We again use the Chebyshev inequality stated as Lemma in the previous 
section.
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(i) The case of 1 /г(rí):

1 - 2 — = Z 1 У —
Г-(Л) d\„ 2̂ Wx ni(n)2^tv^x t ( a )  d\n d 2^пшх d\n d 2 ^n^x ax

An asymptotic expression for the last sum above can easily be obtained by using 
Dirichlet generating functions. As a matter of fact, since

-g° o{n)jnx{n) =
n=1 И1 p

4 ( i + i /p) U i+ i/p + i/p * )
Id-------- -x------- 1------------ XX-----------h ...

where R(s) = 0 ( \)  for Re (s)> — , we have that

(18)
у  g («) i? (l)x  Г л: \ 

„4х пх(и) г ((log х)312) ‘

Now,

V = Z 1
т(я) 2 -жdin Cl

- Z
2 S B S I

which can easily be seen to satisfy F = 0 (x) (more accurate computation is also 
possible, but this rough estimate suffices). Hence, Lemma concludes the proof of 
the statement in part (i).

Turning to (ii), E  takes the form

E = Z  ~ r s 2 d =  Z  8 4'C V?) ííI/1 2^n^x ^ V4

which, by partial summation in (18), yields the asymptotic formula of (ii) upon 
observing that the estimate V =  О (л3) is immediate.

Let us conclude by mentioning that several other familiar arithmetical sums 
do have probabilistic meaning similar to the ones appearing in Theorem 2. For 
example, if we pick an exponent oc(ri) at random in the prime factorization п=Прх, 
then, for almost all choices of cc(n),

Z  « (» ) 2
Q (n) 
<n(n) ’

where Q(ri) is the total number of prime divisors of n. This latter sum has been 
investigated in much detail in De Köninck and I vie [2], yielding

z  а(и) ~  X,n^x

for almost all sums on the left hand side.
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THE CYCLIC LENGTH OF A />-GROUP 
NEED NOT BE LOGARITHMIC

G. PAZDERSKI (Rostock)

The cyclic length 1(G) of a finite supersolvable group G is defined to be the 
smallest number / such that there is a series G= Âo >yVx > ... —1, where
N0, Nlt are /+1 different normal subgroups of G and all factor groups
Ni-JNi ( i= l,  ...,/)  are cyclic. L. Rédei asked the question whether or not the 
cyclic length has a logarithmic property on the class ofp-groups: i.e. does /(G\ X G2) = 
=l(G1)+l(G2) hold, whenever G1; G2 are p-groups for a certain prime p? At the 
first glance the answer could be expected to be in the positive, especially in view 
of the validity on the class of abelian p-groups. In the present note we will bring 
this expectation to nought not only by means of a single counterexample but more 
generally by assigning a p-group G to each abelian p-group H  so that /(G X ff)<  
</(G)+/(7f) takes place. The notation will be standard and can be found in [1]. 
All groups under consideration are finite.

Lemma. For an arbitrary prime p and integer лёЗ  there exists a group G of 
order p2" presented by

G = (a, b, c\ap = b”"-1 = с?" = [b, c] = 1, [b, a] = cpn~\ [c, a] = ЬрП-г).
It has the following properties:

1) The center Z(G), the Frattini subgroup (P(G) and the commutator subgroup 
G' o f G are

Z(G) =  4>(G) =  <bp, cp), G' = (bpn- \  c”"-1).
Further, |G: <f(G)| =p3.

2) Each cyclic normal subgroup of G is contained in Z(G).
3) G has cyclic length 4, i.e. /(G)=4.
Proof. As to the existence of G we start with an abelian group B—(b)X(c), 

where the elements b, c have orders pn~’, p", respectively. The mapping b ^ b c p"~\ 
c>-+cbpn~~ can be extended to an automorphism a of B, the order of a is p. Now G is 
defined to be the semi-direct product G — (a) ос B, where a has order p and acts

a-*-a
on В according to
(1) a~'ba = bcpn~\ a ^ c a  = cbp"~2.

1) The assertions about Z(G) and G' come from (1) and the equations 
b_1ab = ас~рП- \  c ^ a c  =  аЬ~р"~г,

which arise from (1). As to <P(G), notice that G/Z(G) is elementary abelian.
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2) We have

(2)
ibJpckp if p >  2,
\ bikp»-t+2j cy„—i+ a  jf p  =  2 .

Notice that G is a regular p-group if p > 2. Now let (g)=G with g=aibJck. Then 
there exist integers r, s, t such that [g, a\=gpr, [g, b] =gps, [g, c]=gpt, which yield 
in case p>2
(3) kpn 3 =- jr  mod pn~2, jp"~2 = kr modpn~1,
(4) 0 =  js mod p"~2, —ip"~2 =  ks mod p"-1,

(5) — ipn 3 =  j'/m odpn~2, 0 =  kt mod p”- 1,
and in case p —2

(6) kp"-3 =  (ikpn~3+ j)r  m odpn~2, jp n~2 = (ijpn~2+ k)r  modp"-1,

(7) 0 =  (ikpn~3+ j)s  m odpn~2, - i p —2 = (ijpn~2 + k)s modpn_1,

(8) — ip"~3 =  (ikpn~3+ j)t m odp"~2, 0 = (ijpn~2 + k)t mod pn~l.
From (3) we obtain p\k after having multiplied the left-hand congruence with k. 
Then we multiply the right-hand congruence of (3) with j  and get p\j. A similar 
procedure with respect to (6) yields p\k, p \ j  too. Hence p\k, p \ j  can be stated in 
any case p> 2  or p —2. Now (6), (7), (8) reduce to (3), (4), (5), respectively. From
(4) and (5) we attain p2n~3\jskt so that pn~1\ks or pn~x\jt. In the first of these 
cases (4) brings about p\i and in the second one we get p\i by (5). Now g£Z(G) 
is confirmed.

3) Obviously the ordered system a, c, b, cp of generators of G is such that the 
subgroups generated by its right segments are normal in G. Hence 1(G) s  4. Assume 
/(G) <4. Then there is a series

G =  N 0 S  Nj. S  N2 a  N3 = 1

of normal subgroups Nt of G with cyclic factor groups N t-JN i (i—1, 2, 3). By 1) 
and 2) we have N2=Z(G) = <P(G) and therefore G would be generated by two ele
ments. This is impossible in view of |G: <P(G)\=pz (see 1)).

Now the announced result on the cyclic length of a direct product is in
Proposition 1. Let G„ be the group of order p 2n from the above Lemma and H  

an abelian p-group of exponent pe, say. Then for each n with n^e+ 2  we have 
/(G „ X # )< /(G n) + / ( # ) .

Proof. Let 1(H)—: l. Then there is a system hx, h.2. ht of generators of H. 
Further, let a, b, c like in the Lemma. We consider the system

(9) lh ,h 2, a, c, b ,cph,

of generators of G„XH. Under the assumption e S /i-2  we have

[b,a] = cp" = (cPh,)!’"-1
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and therefore the subgroups generated by the right-hand segments of (9) are all 
normal in GnXH. This implies l(G„X Н ухЗ + 1 < l(G„)+l(H).

Finally we will show that the condition n ^ e + 2  in Proposition 1 cannot be 
omitted. In connection with this we characterize those p-groups H for which 1{G„XH) 
has its smallest possible value 4.

Proposition 2. Let G„ be as in Proposition 1 and H an arbitrary p-gronp o f 
exponent pe. Then l(GnXH) =  4 i f  and only if H  is cyclic and n ^e+ 2 .

Proof. Let H  be cyclic and n S e + 2 . Then besides 4 = /(Gn) ̂ l(G„X.H) we 
have by Proposition 1 / (G „ X # )< /(G „ )+ /(# )^ 5 , hence l(GnX H ) = 4.

Conversely, let l{GnX H )= 4 and let
(10) gxfix, g2/i2, g3h3, g4h4
with g fG n, h f J I  (/=1,2 ,3 , 4) be a system of generators of GnX H  such that 
its right segments generate subgroups which are normal in GnXH. Then necessarily 
(gn)l^Gn, hence by 2) and 1) of the Lemma gi£Z(G„) = <P(G„). Now (g4, g2, g3) =  
—G„ and in order to generate an arbitrary h f H  by means of the elements (10) in 
a related equation

(gih1)xf g 2h2)^(g3h3)xs(gi hiy^ = h
p\xi holds for /= 1 ,2 ,3 . So we have H={hpx, h\, /if, /i4)=(/i4), and Я  is cyclic. 
To prove the assertion on the exponent of H  put /z3=:/i£. By the above Lemma 
(gi, gz, ga)=Gn implies g3$ <p(Gn) = Z(G„) and consequently (gf> is not normal in 
G„. Therefore at least one of the elements

( И )

[g3>a] =  [g sh ,a ]  =  (g-fhyfgJh)'' ,  
[g3,b] =  [g3h ,b ]  = ( g s h ^ i g ^ f  
[gs, c] =  [g3h3, c] = (g -J h ff g^hdh

is not contained in (g3). This implies that at least one of t1,t2, t3 is not divisible by 
рп~г. Let

g3 =  a‘b]ck, g4 =  bpucPD.
Since g3$.Ф(G„), at least one of the numbers /, j,  к is not divisible by p. Because 
g3\  gfj2, g33 are in (b, c), we obtain that isx, is2, is3 are all divisible by p. If p\i, 
then the powers gf1, g32, g| 3 can be worked out immediately. If however p\ /, then 
p divides each of sx, j2, s3 and we can apply (2) when working out gfl, g32, g|3. Now 
the equations (11) yield in case p> 2  or p\i

( 12)

kp”~2 = js1+put1 modp"-1, jp*-1 = ksx+pvtx modp", 
0 =  js2+put2 modp"-1, —ip"*1 =  ks2+pvt2 m odp", 

, — ip"~2 = js3+put3 modp"-1, 0 = ks3+pvt3 mod p",
further in case p = 2 and p \i

kp"~2 =  ikp"~3s1+js1+put1modp"~1,
( 13) 0 = ikpn~3s2+js2+put2modp" \  —ip 

—ip"~2 = ikp”~3 s3+js3+put3 mod рп~г,

jp"~x = ijp"~2s1 + ksx + pvtx modp", 
"~1 =  ijpn~2 s2 + ks2+pvt2mod pn,

0 =  ijpn~2s3+ks3+pvt3 mod p".
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Additively in all cases xsr + tr= 0 mod \H\ holds for r = 1,2,3. We now will 
lead the assumption p"~1||/ / | to a contradiction. Under this assumption we have 
x sr + t r= 0  modp"-1 for r =  l,2 , 3 and hence g.c.d. {s,r,p " _1}[fr for r —1,2,3. 
Thus p"~l\sr for at least one r. We can eliminate the tr in the congruences (12) and
(13). From (12) we obtain
(14) kpn~2 = Sx(j —pux) modpn~1, jpv-i =  s ^ k —pvx) modp",

(15) 0 =  s2( j —pux) modp"-1, — ip"-1 =  s2(k —pvx) modp",
(16) — ipn~2 =  s3( j —pux) modp"~1, 0 =  s3(k — pvx) modp".
(15) and (16) yieldp2n~1\s2s3( j —pux)(lc~pvx) so thatpn\s2(k —pvx) or p"\s3( j —pux). 
In the first of these cases (15) brings p\i and in the second one we get p\i by (16). 
Ifp \k  then from the right-hand sides of (14), (15), (16) it resultspn~1\sr for r=  1, 2, 3, 
a contradiction. Hence p\k. If p \ j  then the congruences in (14) turn out a con
tradiction with regard to the power of p in jj. Consequently p\j. But as it was 
stated above the numbers i, j ,  к cannot be divisible by p  simultaneously. In order 
to treat the remaining case p —2 and p \i  we take those congruences into con
sideration which arise from (13) by eliminating the tr. Then we can conclude in a 
similar manner as above that p\i, which finishes the proof.

In consequence of Proposition 2 we have for a cyclic p-group H  of order 
Spn_1 4 and precisely l(GnXH)=5=l(G,,)+I(II). Therefore the as
sumption u ^ e + 2  cannot be dropped in Proposition 1.

The author is indebted to Dr. P. P. Pálfy for a critical remark.
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WEAK COMPACTNESS IN L \

S. S. KHURANA (Iowa City)

If (X, 21, p) is a finite measure space, E  a Banach space, К  a convex weakly 
compact subset, L \  the space of Bochner integrable functions from X  into E, then 
it is proved in ([1], [3]) that { /: X ^ K , f£L)}  is weakly compact. In this paper we 
give a different proof of the more general case when E  is a locally convex Haus- 
dorff space.

N otations. All locally convex spaces are taken over reals and notations of
[4] are used. {X, 21, p) denotes a complete finite measure space. For the theory of 
lifting, notations and results from [8] are used. Let i f  be the set of real-valued 
2l-measurable functions on X, the essentially bounded elements of if. We fix 
a lifting q: i f “ — M°° and on X  we always take the lifting topology re ([8], p. 59; 
this topology is denoted by Te in [5]).

Let £  be a Hausdorff locally convex space whose topology is generated by a 
family {II • ||p, p(LP) of semi-norms filtering upwards. On the vector space F0 of all 
functions from X  into E, we define the functions {Up: p£P}:

For / :  X —L, I/p (/)= J  II/||p dp, where J  is the upper integral ([8]; note 
for any g: A—[0, <»], J g  dp=ini { j f  dp: f:  A —[0, °°], measurable, f=g})-

The vector space F= {Д  F0: for every p£P}, with filtering upwards
seminorms {Up: pdP} is a locally convex space and contains S, the set of all 
simple L’-valued measurable functions on X. The closure of S  in F we denote by if^ 
and the associated Hausdorff locally convex space by L \  ([7], p. 775). L \ is a Haus
dorff locally convex space with generating seminorms {Up: p£P}. Denoting by 
(Ep, II • ||p) the completion of the quotient normed space, arising from the semi
norm II • ||p on E, E  is a subspace, with induced topology, of the product space 
/7  Ep, and L \  is a subspace, with induced topology, of the space [J L \ . If
ptp píp 'p
E= R, the reals, L \  is denoted by ZA For xf_E, f£E ', ( x , f )  will also be used 
for f(x).

Let AT be a weakly compact convex subset of E  and W = {f£ L \: f(X )c:K }  
(this means in the class of functions f  there is a function /  with f(X )a K ).

T heorem. W is weakly compact in L \.

P roof. First assume that E  is a Banach space. The elements of W  can be con
sidered as continuous functions from X  into (К, o(E, E')\K) ([8], p. 65, Theorem 4; 
note that by [6], p. 200, Theorem 3, such functions are strongly measurable). Since 
it is enough to prove that every sequence in W  has a cluster point in IV, and since

4
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for every f€ L \ ,  f(X )  is separable (note that E  is a Banach space), so there is no 
loss in generality in assuming that К  is separable. Also assume that E  is gen
erated by K.

Since W is a bounded subset of the Banach space F = L \, it is enough to prove 
that W  is closed in (F", cj(F", F')). Let { /J c J F , f„-*(p in (F", o(F", F')). 
For any g£E', sup sup \gofJX )\ is finite and so {go f x} is relatively weakly

a
compact in ZA Since F '= L^. [E{ ([8], Theorem 1, p. 94), there exists a continuous 
function f g: X ^ R  such that gof^-*fg weakly in ZA Define / :  X-*RE\  (f(x))q = 
= fg(x). With product topology on RE' , f  is continuous. Also E, with weak topology 
can be considered a subspace of RE', and so KczRE'. We prove that / ( j ) c Z .  
If not, by separation theorem ([4], p. 65), there exists a g fE ' such that, for some point
Xo£X, f g (x0) —p >sup g (.К) =  q. Let A -  |лА X : f g (x) {p +  g) j . Then p(A)>0.

From g o f ^ f g weakly, it follows that J f gdp = lim J g o fx dp. Since J  f g d p ^
A A A

^ —(p+q)p(A) and f  go fx dp(A)^qp{A), V«, a contradiction. Thus f(X)<zK.
^ A

Since /  is continuous, by ([6], p. 200, Theorem 3), /  is strongly measurable and so 
f£ L \.  From what we have done it follows that for any simple measurable func
tion h: X-*E',

<р(Ю — f  (K / )  dp.
Define a norm p on G =E', p(g) =  sup |g(A)|. Then the dual G' of (G,p) 

is contained in E  and so G' is norm-separable (note that К  is separable). Take an 
h£LF[E]; h(X) can be considered to be a bounded subset of E ' ([8], p. 94, Theo
rem 7). h: X —(G,p) is strongly measurable. Since {{h,fa) )x is uniformly bounded 
on X, it is weakly compact in L 1 and so J  \(h,foc)\ dp-*0 as p(A)-*0, uniformly on a.

A
Also J  \(h,f)\ dp-*0 as p(A)-*0. Fix e>0. There exists a 0 such that

A
p(A)<S implies |<p(%x)l< £ and J  \{h,f)\ dp<e. Take a sequence hn: X-*E',

A
of simple measurable functions, such that p(hn- h )-*0 uniformly on X \ A  with 
p(A)<ö (Egorov’s theorem, [2], p. 94). Now J  ((h„—h )xx\A^Á) dp-*0, uniformly in a 
(note tha t/; are A-valued). Thus (p{(hn-h ) x x\ A)-*0. Also f  ((hn-h )x x \A ,f)  dp-*0. 
Take an n0 such that |q>((hno- h ) x x\ A)\<E and \J({hno-h )xx \A ,f)d p \< e . Thus

\cp (h )-f <h , f ) dp\ ==

=  \<p(hxA + (h ~ K 0)Xx\ a) - J ( } v/.a> f  )dp —f  ( ( h - h J x x/ A, f)dp\ S  4e.

Thus (p=f So W  is weakly compact in L \ .
Now we come to the general case when E  is any Hausdorff locally convex space. 

All notations about E  introduced at the beginning will be used. Denoting by (pp 
the canonical mapping from E  to Ep, Kp=<pp(K) is a weakly compact convex subset 
of Ep. This means Wcz [ j Wp, where Wp= {fd L 1E : f(X )czK p}. Since each Wp is

p íp  P
weakly compact in L \ , it is enough to prove that W is closed in G— [J L \  (note

p píp p
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that W is convex). Let { /J  с ^ / . - Д  JJ WpcG. /c an  be assumed to be JJ Kp-
píp píp

valued. By ([8], p. 65) /  can be considered to be continuous from X  into JJ Kp,
píp

with induced weak-topology from JJ Ep. If for some х0вХ, f ( x 0)$K, by separa
tion theorem ([4], p. 65) there exists a g€(/J E„)' such that a=go/(x 0)>sup g(K)=ß.
Let A = jx£JT: £о/(х)>-у(а+Д)| . Then g(A)>0 (note that /  is continuous).

Since each f a is IsT-valued and Jgof^dg-* f  g o f dg, we g e t—(a+ ß)g(Ä )^

^ßg(A). This implies a=ß, a contradiction. Thus /  is iC-valued. Now for any 
p£E, (p„of is continuous and so by ([6], p. 200, Theorem 3), (ppof: X —Ep is 
strongly measurable. From this it easily follows that f(zL\. This proves the theorem.
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ON PELCZYNSKI’S PROPERTY и FOR BANACH SPACES

J. HOWARD (Las Vegas)

A Banach space X  is said to have property и if for every weak Cauchy sequence 
(x„) in X  there exists a sequence (>’„) in X  such that (a) the series 2Ü y t is weakly

; = i

unconditionally Cauchy (wuc) and (b) the sequence jx„ — 2  J'ij converges weakly
to 0. Denote the weak* sequential closure of JX  ( /  is the natural map) in X" (the 
second dual space) by KX. NX  is to be the set JX  plus all o(X", X')-limits of wuc 
series in A. Then JXQNXQKX. Recall that NX=KX  if and only if A has property 
и [2] and that JX  =  KX  if and only if X  is weakly sequentially complete. Then 
clearly every weakly sequentially complete Banach space has property u. Let i denote 
the identity map of a subspace Y into X. From [3], we know i"KY=i"Y"C\KX. 
We show the same is true for NX.

Lemma 1 [5]. Let Y  be a subspace o f X. I f  F£NX and GdKY are such that 
i"G —F, then GZNY.

T heorem 2. Let Y be a subspace o f X. Then i"N Y= i"Y"D N X .
P roof. First observe that i" is an isometry from Y "  into X"  and if F=i"G  

and G£Y", then F ( / ) —G (f\Y )  for all f£X '. Suppose F£i"NY; then there
n

exists a wuc series in У such that if y„= 2J zi then G=o(Y", Y ')—\\mnJy„
and i"G = F. So F ( /)  = G (/ |T )  = lim„/yn( / |T )  = lim„/(yn) for every f£ X '  and, 
hence, F ^{i"Y ")^N X . It then follows that i"NY<L(i"Y")ПNX.

Conversely, if Fd(i"Y")!~)NX then there exists a G in Y"  such that i"G=F  
and also F£NX. Since NXQKX, ( /" Y  ") ПNXQ (i" Y ")ПKX—i"KY. So FfJ"KY,
i.e. G£KY. FdNX, G£KY, and i"G = F imply by Lemma 1 that G£NY; hence, 
F£i"N Y  and it follows that (i "Y")D NXQ i"NY.

Corollary 3. Let Y be a subspace o f X. I f  NX=JX, then N Y= JY.
Pro o f , i"N Y = (i"Y")C\NX= (i"Y")f]JX= i"JY.
The next easily verified result shows that it is sufficient to consider only separable 

subspaces to obtain the converse.
Corollary 4. NX= JX i f  and only if N Y= JY  for each separable subspace 

Y o f X.
We can also use Theorem 2 in the case NX—X".
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C orollary 5. I f  X  is a Banach space such that NX=X", then N Y = Y " for 
all subspaces Y o f X.

P roof, i "N Y —( i" Y ")r \N X = (i"Y " )f)X "= i" Y ".
It is well known that if wuc series are unconditionally converging (uc) series in a 

Banach space X, then X  has no subspace isomorphic to c0 [1]. This is also equiv
alent to the property J X —NX. By using this we have:

P roposition 6 [4]. I f  in a space X  having property u, wuc series are uc series, 
then X  is weakly sequentially complete.

P roof. JX = N X  since all wuc series are uc series. Since X  has property u, 
NX=KX. Thus JX= K X , i.e., X  is weakly sequentially complete.

T heorem 7 [4]. I f  X  has property u, then X  is weakly sequentially complete if  
and only i f  no subspace o f X  is isomorphic to c0.

P roof. If X  is weakly sequentially complete, K X —N X—JX; thus, NX—JX, 
so no subspace of X  is isomorphic to c0. Conversely, if NX—JX  and NX=KX, 
then JX=KX.

Property и can be considered as an inherited property.

T heorem 8 [4]. I f  X  has property u, then every subspace Y has property u.

P roof. If X  has property u, then NX=KX. By Theorem 2 and [3] we have 
i"N Y = (i"Y ")f)N X = (i"Y ")nK X = i"K Y , so N Y —KY. Thus Y  has property u.

C orollary 9 [4]. The space X  has property и i f  and only if every separable 
subspace has property u.

P roof. Let Y  be a separable subspace. If N Y —KY, it follows from Theorem 2 
and [3] that (i "Y")D KX—i"K Y = i"N Y = (i"Y")ПNX, so (1'Х")Г)КХ=(ГХ")Г) 
C\NX for every separable subspace Y. If F^KX, then there exists a sequence (x„) 
in X  such that F=a(X", X ')—\imnJxn. If Y is the separable subspace generated 
by (x„), then FfJ"Y"- so (i"Y 'j ПK X = (ГУ") ПNX. It follows that FC.NX.
Thus K X—NX. The converse follows from Theorem 8.

Recall that the semi-reflexive space J  given by R. C. James does not have prop
erty и [4].

Lemma 10. does not have property u.

Proof. J ' is separable, hence there exists a map from onto J'. This means 
that J" can be embedded in /„; and thus so can J. Since J  does not have prop
erty u, neither can /„  since property и is hereditary for subspaces (Theorem 8).

T heorem 11. I f  X  is a conjugate space with property u, then X  is weakly se
quentially complete.

P roof. By arguing as in the proof of the lemma above, N  is not isomorphic 
to a subspace of X. But X  being a conjugate space means that neither can c0 be 
isomorphic to a subspace of X  [1]. The conclusion follows from Theorem 7.
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ANALYTIC CONTINUATION OF GENERALIZED
FUNCTIONS

J. F. COLOMBEAU1 (Talence) and J. E. GALE2 (Zaragoza)

§ 1. Introduction

In the new theory of generalized functions introduced in Colombeau [2—6], 
Aragona—Colombeau [1], we defined the holomorphic generalized functions on 
QczCn as the generalized functions F on Q as solutions of dF=0, see Colombeau— 
Gálé [7] and Colombeau [5], Chap. 8. There we obtained several counterexamples 
showing that these holomorphic generalized functions have unusual properties con
cerning the analytic continuation, viz. there exists functions G, H  as above such 
that: a) G is holomorphic on |z|-eÄ (i?=-l), not identically zero, but G’<n)(0)=0 
for every и=0, 1, 2 ,.... b) H  is holomorphic on C, not identically zero, but
H ^\ —- )= 0  for every n= 0, 1, ... . However the result stated below shows that
the main formulation of uniqueness of the analytic continuation in C" remains 
true in the setting of generalized functions. Following the classical pattern, its con
sequences for the theory are numerous and basic. The purpose of this note is to 
prove this result.

We follow the definitions and notations of Colombeau [6] which are simpler 
and more convenient (further we have to use here the set Ji[Q \ defined in 1.1.11 
there). We denote by (SX{Q.) the algebra of the holomorphic generalized functions 
on an open subset Q of C". We assume Í2 is non-void and connected. Our result is

T heorem . I f  F£/3ye(Q) is zero on a non-void open subset V o f 12 then F= 0  in Q.
We begin by proving the theorem in case n—1. The general case will be a slight 

modification of the above one. A sketch of the proof in case n — 1 is in Colombeau 
[6] Appendix 5.

§ 2. Proof of the theorem

We may assume V is the ball B(a,R) centered at a£Q with radius 0. 
In order to prove that F is zero in 3ye(Q) it suffices to verify that it is zero on a neigh
borhood of each point of Q (this follows immediately from the definition of the 
generalized functions on Q). Let z be a given point of Q. As usual, there is a con-

1 The work of this author was done at the University of Uppsala, Sweden, in November 1983. 
This author is indebted to C. O. Kiselman and L. Walbroeck for discussion on the result o f this 
paper.

2 The work of this author was supported by the Vicerrectorado de Investigación de la Uni- 
versidad de Zaragoza, Spain.
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tinuous path у contained in Q, with endpoints a and z. Further, if 0 denotes 
the minimum of R and the distance between supp у and C \Q  we can consider 
a finite number of points {zj\ j = 0, 1, in supp у with z0=a, zp=z and
such that the open balls Bj=B(zy, d/A) cover supp y, and Bj C\Bj+1̂ 9 . We 
consider a fixed point A0fß i  and we choose a point ю0 in B().n, d/2)C\B(a, d/4) 
which can be written as оэ0=А0 + д0е \  with 0odR, ß0=|eo0—A0|. By continuity 
of the mapping (A, 0)i-*-A +  eoe10, there exists 0<r<if/4 such that the set 
K={A+g0eiedC: |A—A0|S r , \9— 0o|^ r}  is a compact subset of B(A0, d/2)D 
PlB(a, d/4) a  V. It is clear that there is a finite collection of real numbers 01, ..., 0m 
such that the union for |A—A0| of the circles {X + g0ew: OdR) is covered by

(J В(А+д0е1\  r).
P-AolSr 

fc =  0 , l  m

Now, F being holomorphic on Q, there exists a representative of F, f(cpE, z)
(cpe(:Jdi), which is a genuine holomorphic function on z£B  | ao, (see Colom-
beau—Gálé [7], and Colombeau [5], p. 224). For any A with |A—A0| ̂ r , let us 
consider the function

m
g<Pc,Á z)  = I J  /(</»«; A +  ei0t ( z —A)),

k=0

which is analytic on the closed discB(A, £>0). For any z  satisfying \z— A| — g0, 
there is an index k(z)d{0, 1, m} such that A + (z— X)ewH^dK. Therefore, as 
F is zero on V, for (p£x/q, q large enough and for £>0 small enough we have an 
inequality of the kind

I f{(pe, A + (z — A)ewH*>)\ S  csc,(-q)~N (а£Г),

(see Colombeau [6], (1.1.11)) uniform in A, if |A—А0|ёг . On the other hand, for 
kjík(z)  we have inequalities of the kind

f((Ps, A + (z —A)ei9«)| S  c ' / e n '

still uniform in |A—A0|= r.
It follows that sup \giPc'X(z)\Sc"E*(q)~N" for suitable c",N",(x(q). In

|z - A | =  e0
fact, this bound is valid for each point in {|z— A|<e„}, by the Maximum Modulus 
Principle. So, if |A—Ao|Sr,

that is
sup I/(<p„ A)I S  [c"e«w-w*]V» = Ce««)-N

|A -A 0|S r

for some ßdy and Nx a positive integer.
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We have proved that for any A0£B1 there is an r> 0 such that the restriction 
of F to В(A0, r) is zero in ^(B(A0, r)). (The bounds requested for the derivatives 
of the representative follow, by Cauchy’s formula, from the above one.) As a con
sequence F is zero on Bx. Repeating again this process we obtain that F is zero on 
B2, and, finally, F is zero on Bp. This proves the first part.

Now, for the sake of simplicity we consider only the case n = 2 to prove the 
general one (the case n>2 is an immediate adaptation). We assume F zero on 
the open polydisc B(a1, R)XB(a2, R), a—{ai,  u2)€i2, 0. If b = (bx, b2)£Q, an
easy argument of connectedness and uniform continuity on compact sets shows 
that there exists a continuous path у joining b and a, and a finite collection of points 
Zj = (z{,zQ (./= 0, 1, ...,p) on supp у with z0=a, zp=b such that the polydisc 
B2j = B{z{, d/4) X B(z£, d/4) cover supp у and such that В2С\В') + 1 X  0 ( /= 0 ,1, p).
Here d denotes the Euclidean distance from supp у to C \Q . Without loss of genera
lity we may assume that the open polydisc B(ax, R)XB(a2, R) contains the compact 
subset B(a1, d/4)XB(a2, d/4). Let A=(AX, A2)€ B\ be given and /(<pE, z1? z2) be 
a holomorphic representative of F on B (l}, 3d/4)XB(22, 3d/4). We put O; — 
= B(A;, d/2)r\B(ai, d/4) (/=1,2). Note that the balls В(Аг, d/2) and £(a;, i//4) 
are related in the same way as they were in the case n=\. In particular, there exists 
r > 0 such that the sets А;={А +  еге,0бС: |A—kt\s r , \6—öjjsr} (/=1, 2) are com
pact in B(/4, d/2)C)B(ai, d/4) respectively (o;, 0; are obtained in a similar way as 
in the case n= 1). Then, for any z26g 2 we consider the function gZ2(cpe,z )  = 
=f(cpe, z, z2), holomorphic in the usual sense on B(Xx, 3d/4), and the same argu
ment as in the case n= 1 works for the function g,2, so that one obtains

sup lgZa(<P*,A)| SC£a,' )-*
[я-ljlsr

(cpdstfq, with q large enough and then for e>0  small enough depending on <p, 
and for some ос£Г). Further, the bound by csx(,1>~N is uniform in z2f ü 2, since it 
follows from the bounds of the representative f((pe,z , z 2) on the set Kr X Q2 which 
is a precompact subset of B{ax, R)XB(a2, R) where F is zero. So, we have

(*) sup \f(<pc, A, z2)| S  cex(q)~N.
| A - A j |  S r

z2€C2

Finally, for any z, such that |zx—Ax|X r  we define hZl((pe, z)=f((pc, zx, z), 
which is holomorphic on the disc В ().2, 3d/4). By repeating again the usual process 
we have sup \hZl((pe, /i) |^ c /£p(,,)_iV'. This last bound is also uniform in

\ц A2| ^ r

|zj —Ax|S r  since it is obtained from bounds involving the representative f(cpc, .. .) 
acting on the points (zt ,z 2) such that \z1—A1\Шг and z2dK2, and K2c Q 2. 
Then it suffices to apply (*). We have proved that F is zero in the polydisc _B(AX, r)X  
XВ (/>>, r). As (Ax, A2) is arbitrary in B\, F is null in B\. The proof that F is zero 
in a neighborhood of b follows as usual after a finite number of steps.
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ON A MIXED PROBLEM FO R A CLASS 
OF NONLINEAR KLEIN—GORDON EQUATIONS

L. A. MEDEIROS and G. PERLA MENZALA (Rio de Janeiro)

Introduction

In [6] I. Segal proposed the system
□ и =  a2u + g2v2u, □« = ß2v+h2u2v,

Э2 . . .□ = A —77-5-, as a model to describe the interaction of scalar fields u, v of mass ot
a, ß, respectively, with interaction constants g and h. This system defines the motion 
of charged mesons in an electromagnetic field. More recently V. G. Makhankov [5] 
mentioned some properties of such kind of interacting relativistic (scalar) fields.

In order to study the mixed problem for the above mentioned system, we observe 
that there is no loss of generality if we analyse only the case in which a=ß=0  and 
g=h = 1. We shall consider the system

О
d2u
dt2

—Au + v2u = f x, d2v
W — Av + u2v = /2

where f x(x, t) and f 2(x, t) are two known real valued functions.
We shall prove that the methods to prove existence and uniqueness for the

d2usolutions of the mixed problem for a single equation-7y^— Au + u3—f  can be
extended to the case of the system (*).

We would like to express our sincere thanks to Prof. M. Milla Miranda for 
valuable suggestions concerning this paper. 1

1. Existence and uniqueness

In this section, we shall prove that the mixed problem for the nonlinear system 
(*) has a weak solution. Let us set up some terminology and basic notations. We 
represent by Q a bounded open set of R" with smooth boundary Г. By Q we represent 
the cylinder fiX[0, T[, T> 0, whose lateral boundary is denoted by Г =  ГХ[0, T[. 
Hm(Q) will denote the usual Sobolev space of order m in Q and H"'(Ű) is defined 
to be the closure of 26(Q) in H m(Q). Here 2>(Q) denotes space of C“ functions 
with compact support contained in Q. If X  is a Banach space and l^ p ^ ° ° ,  by 
1/(0, T; X) we represent the space of measurable vector functions и: ]0, T[—X, 
such that ||н(0||х(:1/(0, T) with the norm

T

M Í p(o,t-.x)=  f  \\u(t)\\px dt, if l S / i < l « >
0
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and
Н |ь “(0,Г;Х) =  ess sup \\u(t)\\x, if p = +CO.

0<r<7'

We represent by (• , •) the inner product in L2(£2) and by a((p, \p) the Dirichlet 
form associated to cp and ip in Щ(О), i.e., a(q>, ip)— J  grad (p ■ grad ip dx. Now,

n
Poincaré’s inequality implies that the norms (a(cp, <p))'/2 and ||<р|| in H„(Q) are 
equivalent. To simplify our notation we shall write a{q>) instead of a((p, cp). All 
the scalar functions considered in this paper will be real valued. We denote by 

T) the space of distributions on ]0, T[.
T h e o r e m  1. Let u0, v0dHg(Q), ux, v f L 2(Q), / i , / 26L2(0, T; L2(Qj). Suppose 

that í2cR", n= 1, 2, 3, is a bounded open set. Then there exists a pair o f real valued 
functions u, v defined on Q, satisfying the conditions:

(1) u, v€L~(0, T; H}(Q))

(2) ut,v fL ~ ( 0 ,T - L 2(Q))

(3) u, v are weak solutions of (*), i.e.,

Q> w)+a(u(t), w)+(v2(t)u(t), w) = ( f f t) ,  w),

w)+a(v(t), w) + (u2(t)v(t), w) =  ( /2(0 , w),

for each wCHl(Q), in the sense o f .&'((), T).

(4) m(0) =  u„, v(0) = v0, u,( 0) = щ, v,(0) = vx.

R emark 1. The requirement that и and v vanish on I  follows from (1). To 
verify that и(0), v(0), u,(0), v,(0) make sense we observe that by (1) and (2) it fol
lows that и and v are weakly continuous from [0, T] on //,}(£?), so u(0), u(0) are 
well defined, see Lions—Magenes [4]. By (3), u„=Au— v2u + f  in the vector dis
tribution sense. By (1), z1m6L“ (0, T; where H ~ 1(Q) is the dual of Hg(Q).
We also have v2(t)u(t)£L3,2(Q), for example, continuously embedded in 
since Hg(Q)<zLq(Q), continuously, whenever q s 6, by Sobolev’s embedding theo
rem. Consequently v2u£L°°(0, T; Н ~ г(к1)). Identifying L2(Q) to its dual, it fol
lows that L2(Q) is identified to a subspace of then, we obtain f  belongs to
L2(0, T; This conclusions plus (2), and Lions—Magenes, op. cit., we
obtain u, is weakly continuous from [0, T] into L2(i2), and wt(0) is well defined. 
Mutatis mutandis, it follows that v,(0) are well defined.

P roof of Theorem 1. Let (wv)v£N be a Hilbertian base of V=H(](Í2) and let 
us denote by Vm —  l w x ,  w 2 , ..., vt>m] the subspace of dimension m  of V generated 
by the first m vectors wv. We use Galerkin approximation procedure, i.e., we solve 
an approximated problem in V,„ and then we take limits as m approaches infinity, 
to obtain the desired solution.
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i) Approximated system. We look for a pair of functions
m m

Um(t) -- 2  SjmiOWj, v j t )  = 2  hjm (t) Wj, in Vm ,
j= 1 J= 1

which are solutions of the following system of ordinary differential equations:
(5)i («£(/), Wj) + a(um(t), Wj) + (v2m(t)u jt) , Wj) = ( f f t), Wj)

(5)2 (v'm(t), W j )  + a(vm(t), Wj) + (u2m(t)vm(t), Wj) = (fiit), Wj)
for j — 1, 2, m, with the initial conditions:

| Wm( ° )  =  u0n -  Щ- Vm i 0 )  =  v0m -  v0, strongly НЦй)
Im;(0) =  ulm -  U i ,  v'JQ) = vlm -  v±, strongly L2(ß).

Note that we used above instead of djdt.
The system (5)1? (5)2 contains 2m unknows gJmit), hJmit), j = 1,2, m. It

follows that (5)j, (5)2, (6) has a local solution w„,(0, vm(t) on [Ó, In order to 
extend these local solutions to the whole interval [0, T[, we need a priori estimates. 
These will be obtained in the following step.

ii) A priori estimates. Multiply (5)x by 2g'jmit), (5)2 by 2h'Jm(t) and add from 
j — 1 to j —m. We obtain:

jj\u 'm(.t)\*+ ^a(umit))+ f  v -J t ) ^ u 2m(t)dx = 2 ( f f  t), u'mit))

(7), j j K i t ) \ i + j i a(vm(t))+ f  u l i t ) ^ v l ( t ) d x  = 2( m ,  «4(f)).

Adding (7)l5 (7)2 we get

■4 (l"mWI2 + km(0 l2 + «(«m(0) + a(fm(0)+  f  u2m(t)v2mit)dx) =  ai й

-  2(A(t), U'm(t))+(f2it), v'Jt)).
Integrating this equation from 0 to i< im, we obtain

\“ m U )\2 + \v'mit)\2 + a(um(t)) + a(vm(tj)+ J  u2mit)v2mit)dx =
Q

= |wiJ2 + |Fim|2 + a(>oJ + «(% J+  /  t$mi%mdx +

+ f  \A(t)\*dx+ f  \f2it)\4 x+  J  (\u'mis)\2+\v'mis)\2)ds.
0 0 0

Our condition (6) implies that the sequences (|Mlm|2)m6N, (K „|2)m£N, (aiuam))m(N, 
(«(%n))m€N are bounded. It remains only to bound the term ulmvlm. In fact, by
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hypothesis, H$(Q)c:L4(Q), continuously, for l s g s ő ,  because и=1,2,  3. Then, 
by Schwarz inequality and Sobolev’s embedding theorem we obtain that

I /  «ОшVlmdx\
Si

is bounded. It follows, for m large enough, that

(8) |Ит(012 +  1»т(012 + ||и*(0 ||Я+||от ^)||2+  /  U2m(t)v%(t)dx
Si

s  K + f  (\u'm(s)\4\v'm(s)\2)ds.
0

From (8) and Gronwall inequality, we find:

(9) |MmO)|2 +  bm(0|2+ l« m(OI|2 +  lkm(012+  /  U%(.QvPm(t)dx <  C,
ii

where C is a constant independent of m.
Inequality (9) implies that we can extend um{t) and vm(t) to the whole interval 

[О, Т]. Furthermore

(!0)i (um)mcN, Om€N are bounded sequences in £~(0, T ; 7/(I(ß)).
(10) 2 (M',)meN, (r'm)mCN are bounded sequences in L°°(0, T ; L2(Q)). 

Consequently, we can find subsequences (av)vCN, (rv,)v!1N, such that
iuv -*■ «, vv ^  v weak star in Z,“°(0, T\ Ifg(Q))

^  ^  I и' u \ v'v a' weak star in L” (0, T; L2(i2)).
Clearly, (11) implies

T  T

f  (u'v(t), w)0(t)dt — j  (ii'(t), w)0(t)dt,
0 0

for all 0£@(0, T) and w£Hj(i2), i.e.,

(u'm(t), w) — (m'(0 , w) in ®'(0. F).
Therefore we obtain

(12) -^j(u'v(t),w) - -^j(u'(t),w) in ^ '(0 ,7 ) ,

for all w^Hg(Q).
Similarly

(13) á-(u'y(t),w) -  -^(v 'v(t),w) in 3>'(0,T), 

for all wdHi(Q).
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A similar argument implies that
(14) a(wv(i), w) -- a(u(t), w); ci(vv(t), w) a(v(t), w) in S>'(0,T) 
for all w£Hi(Q).

iii) Analysis o f the nonlinear terms. By the estimates (10)x, (10)2 and the com
pactness theorem of Aubin—Lions, see Lions [3], we obtain subsequences, which 
we still represent by (i/v)vfN, (fv)v£N, such that

uv -*■ и, v„-*v strongly L2(0, T; L2(Q))
and almost everywhere (a.e.) in Q. Thus we conclude:

f ulvv — u2v a.e. in Q,
(15) 2 2 • ^(VyUv vi u a.e. m Q.

By Hölder inequality, for 1 — + Д-=1, we obtain
P P

I /  (u*vv)4xdt\  S / \utf*\vv\4 x d t  S ( /  \uv\2qp dxdt) llP ( / \ v ^ ' d x d t f p'■
Q Q a Q

If 2qp^6 ,qp '^6 , Sobolev’s inequality implies that u2vv is bounded in Lq(Q) 
for 1< ^ ^ 2.

All of the above informations together imply

(16)
и2 сv u2v a.e. in Q,
u2vу are bounded in Lq(Q), 1 <  q ^  2.

It follows from Lions, op. cit., that (16) implies u2 vv -> i f  v weakly in Lq(Q), 
1<<7^ 2.

If we restrict 2 it follows that g'= ^ ^ =6 and H l(Q )(zLq' (Í2),
dual of Lq(Q). We then get, from the weak convergence in Lq(Q), that

T  T

(17) j  (u2(t)vy(t), w)9(t)dt — J  (u2(t)v(t), w)9(t)dt,
о о

for all w£H„(Q) and ОеЩО, T).
Mutatis mutandis, we have

(18) /  (v2,(t)u,,(t), w)9(t)dt -  J  (v;(t)u(0, w)6(t)dt
0 0

for all w£HZ(Q) and 0£9'(0,T).
Now taking the limit in (5) and using (12), (13), (14), (17) and (18), it follows 

that u, v satisfy condition (3) of Theorem 1, i.e., u, v are weak solutions of the coupled 
Klein—Gordon equations (*).

The initial conditions (4) can be verified by observing (16), (11) and the defini
tion of weak solution. This concludes the proof of Theorem 1. Q.E.D.
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2. Uniqueness

Suppose we have two pairs of solutions (u, v) and (ü, Ű) in the conditions of 
Theorem 1. Let U =u—u, V=v—v. Thus, U and V  satisfy
(19X U " -A  U+v2u - v 4  =  0,
(19)2 V " -A V  + u 2 v - u 2 v  = 0,
with initial conditions
(20)! U( 0) =  0, K(0) =  0,
(20)a U'( 0) =  0, V'(0) = 0.

To prove the uniqueness it is sufficient to prove that |(7(s)| =  |F (s)|=0 on 
[0, T[. The standard energy method which consists in taking the scalar product of
(19)! by U'(t) and (19)2 by V'(t) and integrating on [0, T[, does not make sense 
because U”{t), V"(t)£H ~l{Q) and U'(t), V'(t)ZL2(Q), which contains НЦй) 
properly. By this reason, we define convenient functions (p(t) and i//(t) belonging to 
Ho(Q), and for these functions the uniqueness method works. (See Visik—Lad
yzhenskaya [7] and Lions op. cit.)

T heorem 2. The solution o f Theorem 1 is unique.
P roof. For s in ]0, T[ let us consider functions cp and ij/ defined on ]0, T[ 

as follows:

and

<P( 0

S

— J  U(o)do
t

0

if

if t =- s

Ht)
— J  V(o)do if

t
0 if

t S  s 

t >  s
where the integrals are considered in the sense of Bochner in the Hilber space Hl(Q). 
Therefore, q>(t) and f i t )  belong to L°°(0, T;

t t
If we represent <Pi(0— /  U(o)do and f 1(t)= J  V(o)do, we have 

о 0
<p(0 = <Pi(0~<Pi(s) and f i t )  =

for 0
Taking the scalar product of (19)i with <p and (19)2 with f ,  we obtain

s s s

(21)x /  (U", cp)dt+ J  a(U, q>)dt+ J  (v2u — v2ü,(p)dt = 0,
o o o

(21)2 /  (V", ip)dt+ f  a(V, f)d t+  j  (u2v - ű 2v ,f)d t = 0. 
0 0 0
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A simple computation shows that

(22) f  (U",<p)dt=-l-\U(s)\*
о 2

and

(23) /  a(U, <p)dt ||p1(s)||a.
о z

Substituting (22) and (23) in (21),, we obtain

(24) | | £ / ( 0 l 2+ | l K ( 0 1 2 = f  (v2u - v 2ű, (p)di.
z  z  о

The triangle inequality implies that
s s s

j  {v2u — v2ú ,(p)d tS  J  (y2U,<p)dt+ J  (ú[v + v\V, cp)dt.
о o o

Since I  + - + i = l ,  by Holder’s inequality and Sobolev’s embedding theorem, 2 3 6
we get

(25) (v2U,cp) = f v 2U<pdx-s J \v 2\\U \\(p\dx^
я я

S ( /  \ u \ 4 x ) 1'2 ( / 0V2f d x f 3 ( f M U x ) 11* =
ß ß ß

- : ||®(0|1$я) I ̂ (0к«(п)1̂ (01х.*(П) — Cil t/(0lz.2(íj) • IÍ'PÍOIIhJcíí) •
By a similar argument, we also find

(26) (u[v+v]V, cp) = J ü[v + v]V • cpdx S  у* |й ||u + i5 | |J^ | |^> |S
я n

S  ( /  |F |^ x )1/2 ( /  M 6rf*)1/6 ( /  |й|в)1/6( /  |F+Í5|e)1/6 s  c 2|K|Li(n). Мвхт-
ß ß ß ß

Substituting (25), (26) in (24), we have

(27) , l |C /( s )|2 +y||<p1(s)||2=Sc / (\U\ + \V (t)\)W m dt.

By a similar argument we get

(27), ||П *)12+||^(5)11г ^ с  /(|C/(0I+ 1*401)11 iKOIIdt.
Z Z 0

5* .4 с/л Mathematica Hungarica 52, 1988



6 8 L. A. M EDEIROS and G . PERLA  M ENZALA

Let us fix our attention on (27)!. Since (p(t)=(p1(t)—q>1(s), then (27)x im
plies that

y |C /(s)l2+ y lK (s ) !2^ c  /  (I £7(01 +  1*401) \\<Pi(t)Ut+
L z 0

+ y  /  (I U{t)\ + \V(t)\y-dt+ ||<p1(s)||2.
z о z

Thus

(28)! I |C /(s)P  + ( y - y )  \\(Pi(s)\\2 ^  c /  (|C/(OI2+ in O I2 + ll<P1(OII2) ^ )

where c denote various constants.
We also obtain from (25)2

(28)2 y |F (s ) |2+ ( y - y ) | | ^ ( s ) | 2 S c  /  (| C7(0I2 + |F(0 I2+ « ^ ( 0II2)* -

Adding (28)1; (28)2, we have:

(29) I ( |t7 ( s )|2 +  |F(s)|*)+(y-|-)(||«p1(s)||2+||I/r1(s)||2) ^

S  c  / ( | t / ( 0 l 2 + | F ( 0 l 2  +  | | < P i ( 0 « 2 + l l ' A i ( 0 l l 2 ) * .

1 Cií 1
Choose j0 in [0, Г[ suchthat —— Y  = ~4’ *-e-’ S°=~2c '
It follows from (29) and Gronwall inequality that |С/(r)| =0, |F(l)| =0  for all 

since for such t we have

1 tc 1 S0 C _  1

T  “ T  ~ T  Г  ~ T '

If s0<  T, we use the same argument with initial data zero in s0 and we con
sider s0<s<T. As was done above, the coefficient of ||<Pi(s)||2-l-||i/q.(s)||2 is
1— c ( j S o ) _ 3  ^  such that . So, =2s0. This

implies that |С/(Г)| + 1F(i)| =0  on [s0,2s0]. By continuing this process we con
clude that U and F  are zero almost everywhere, i.e., u=ű, v=v, which ends the 
proof of Theorem 2. Q.E.D.
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ON D ERRIEN N ICS ALMOST SUBADDITIVE 
ERGODIC THEOREM

K. SCHÜRGER (Bonn)

1. Introduction

Recently, Moulin—Ollagnier [17] derived a new mean ergodic theorem which 
might be called an almost subadditive ergodic theorem. This allows a fairly simple 
proof of the Id-part of the Shannon—McMillan—Breiman theorem of informa
tion theory (cf. [17]). Shortly after, Derriennic [6] showed that Moulin—Ollagnier’s 
mean ergodic theorem holds under weaker moment conditions and that it can be 
extended to yield an individual ergodic theorem. This, in turn, allows a simple 
(martingale-free) proof of the almost sure part of the Shannon—McMillan—Brei
man result (cf. [6]). Derriennic’s [6] almost subadditive ergodic theorem is an inter
esting generalization of Kingman’s [12] ergodic theorem, and might be considered 
as a stochastic analogue of the following simple result on real sequences which are 
“almost subadditive”.

L em m a 1.1. Let (a„)czR and (cn) c R + be sequences satisfying the following 
two conditions:
(1.1) am+n- a m-a „ ts c n, т,пШ  1;

(1.2) l im — c„ — 0.n n

Then lim,, (1 /n)a„=a exists and satisfies — °= S a< “>.

For the simple proof cf. [6]. Related results are contained in [7] and [8].
A stochastic analogue of (1.1) is obtained as follows. Let X= (XStt)(zL1 and 

h = (hsfi<zL\ be two families of real random variables defined on some probability 
space (Í2, sä, P ) (the index set of families like {XStt) will be throughout 
I — {(s, i) |0 ss< (, s, t integers}). Then, X might be called almost subadditive (w.r.t. h) 
provided the following analogue of (1.1) holds:

(1-3) XS'U- X Stt- X t'U?shuu, (s, t), (t, u)eI.

The subadditivity condition occurring in Kingman [12], [13] corresponds to the case 
when each hs<t identically vanishes. Derriennic [6] has considered families X  and 
h which are stationary, i.e., X  and h have the same distributions as the corresponding 
shifted processes CL+iu+i) and (hs+ltt+1) (instead of considering one parameter 
families together with a measure-preserving transformation (cf. [6]), we prefer to 
deal with two parameter families). Now suppose that X  is almost subadditive and
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satisfies (as in [12], [13])

(1.4) i n f Í £ [ Z 0>n] > - - .
п П

Then, according to [6], converges in L1, provided

(1.5) l i m i ^ [ h o,„ ]-0 .
n П

If, however, the much stronger moment condition

(1.6) sup£[fc0;„ ]« ~П

is satisfied, X0,„j also converges almost everywhere (a.e.) (cf. [6]). Our main

result in Section 2 implies that ^  X0i „j converges a.e. even if instead of
(1.6) only

(1.7) lim inf— j?  E[h0,] <  °°n n i = 1

holds (we still assume that (1.5) is satisfied). Note that (i.7) is neither stronger 
nor weaker than (1.5). Condition (1.7) implies lim inf iJ[/j0,„]< °°.П

Our proof given in Section 2 uses Burkholder’s [5] technique which is based 
on the following deep result due to Komlós [14].

T heorem  1.1. Let (Z„) с  V  be an L 1-bounded sequence of real random variables. 
Then there exists a random variable Z ^ L 1 and a subsequence (nk) such that, for 
any subsequence (mk)cz(nk),

(1.8) I™ \  2  Z mi = г .,  a.e.
к К  i =  1

The basic idea is now to apply Burkholder’s [5] technique to the process (T5j() 
while restricting the indices 5 and t to suitable residue classes. It is, perhaps, interest
ing to note that this requires the full strength of Komlós’ result, whereas Burk
holder utilized (1.8) for the sequence (nk) only. The following observation (to be used 
later) suggests that our procedure might work.

Lemma 1.2. Let X = (X S!,)c L 1 and h=(hSit)czL1+ be stationary and suppose 
that condition (1.3) is satisfied. Then, for any fixed integers p=2 and 1,

(1.9) lim inf — X0 „ n n = lim infi7rT7Zo.np+r n np-\-l a.e.
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P r o o f . Let us first show that for any integers p ^ 2  and O ^ r ^ p —1,

( 1. 10) lim infn —  jr0, , „  =  liminf —  A",.., a.e.

In fact, by (1.3) we have

( 1. 11)

Since the stationarity of X  and h entails

we get from (1.11)

lim inf
П

The converse inequality is proved similarly. Hence, in view of (1.10), (1.9) will be 
proved provided we can show

Let p-=2 be fixed. By (1.10) there exists a set Qp of P-measure one such that (1.10) 
holds on Qp for all O ^ r ^ p — 1. Let co£i2p be fixed. There exists a sequence 1 

... (depending on со) such that

Hence there exists an integer 0 ^ r oS p — 1 and a sequence 1 (both
depending on со) such that

This proves (1.12).
In Section 3, the results of Section 2 are extended to processes X  and h which 

are superstationary in the sense of Kamae, Krengel and O’Brien [11]. The obtained 
almost subadditive superstationary ergodic theorem generalizes ergodic theorems 
of Krengel [15] and Abid [1]. As an application, we get an ergodic theorem for 
very general classes of random sets. This extends some results of Schürger [18].

( 1. 12) lim inf — X0 „
n П

= lim inf— X0 a np a.e., p ^ 2 .

lim inf-— Xq ,,(co) = lim — X0 „.(со).
n П k n k
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2. The stationary case

Throughout this section, we will consider real processes I = ( I s,,)c L 1 and 
h=(hStt)<zL\ which are stationary. It is convenient to define Z(>,=0, hut=0, t^O. 
Our main result in the stationary case is the following.

Theorem 2.1. Suppose the processes X=(XSit) and h=(hSit) satisfy the fol
lowing four conditions:

Хг.ы- Х ш, , - Х ии S  htiU, (s, t), (t, u)er,( 2. 1)

( 2.2)

(2.3)

(2.4)

inf — £ [2f0i„] >  —
n П

lim — E[h0i„] = 0;
п П

lim inf — 2  E[h0'i\ <oo.
" ci i=1

Then converges a.e. and in L 1 to the invariant random variable Xm given by

(2.5) X m = lim — [lim j  Д  ^ jm s+d) >

where the inner limit exists a.e. and in L1, and the outer one in If.
Let us put

(2.6) Уп = Е[Х0J ,  » S 1 .
If conditions (2.1), (2.2) and (2.3) are satisfied, it follows from Lemma 1.1 that 
the limit

(2.7) lim ~ У п — Уn П

exists and is finite. Then, we also have (cf. the proof of Théoreme 2 of [6]) that 
converges in I f  to X„ given by (2.5), and

( 2.8)

which implies
X„ =  lim sup — X0 „ a.e. n n

£  [ lim sup — 1 =  y.
L "  и J

Therefore, Theorem 2.1 will be proved if we can show

(2.9) £  [lim inf X0t „J ё  у.
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The proof of (2.9) will proceed via two lemmas. In order to simplify notation, we 
introduce the symbolic shift operator U by

UkXStt =  Xs+ktt+k, UkhS't = hs+k't+k, / ^ s > 0 ,  k >  0,

and let Uk act linearly. Furthermore, we put

X0i„ = Xn, h0in = hn, n ^ O .

Then (2.1) can be written as

(2.10) Uk(Xm+n- X n-U " X m) ^  Un+khm, 0.

Following Burkholder’s [5] technique, we put, for any integers p s 2  and 0S r S
= P ~ L

g(HP’r) = |  2  (Xip+r- U pX(i_1)p+r), n ^  1.
и  i = l

By (2.7),
(2.11) lim E [ g ^ ] = p y .П

In view of Theorem 1.1, the following simple observation will be important.

L emma 2.1. Let p ^ 2  and O s r S p —1 be fixed. Then the sequence (g ^ ’r)) is 
L1-bounded if the sequence

(4 -  2 m P+r i)V n k i= o  /
is bounded.

P roof. Apply (2.10) and (2.11).
Following the computation in [5], we get from (2.10), for any integers

ÉÉnSl,
И —1 1 Ш м П —1

(2.12) 2  u kp8Ü'r) s  Xnp+—  2  U"phip+r + —  ( 2  UkpXp- X np)+
k = 0 m  i =  1 m  k = 0

1 n —1 n—k 1 n —1 m

+ 7  2 P ft+1)' ( 2 W r ) + 7  2 ^ 1),( 2  fc(«-D,+,)-
'К  k = 0 i = l  m  k — 0 i = m - k  + 1

In fact, consider integers O ^ k ^ n — 1, /?^2 and O ^ r ^ p — 1. Clearly

m m—k n—k m
mukpg ^  =  2  ukp(xip+r- u px ít_1)p+r) = 2  + 2 +  2  •

i = l  i= n  +  l —к i = l  i= m  — k+1

Applying the inequality

2fíp+, -  UpX(i_1)p+r ^ X p+ Uph(i_1)p+r

(being a consequence of (2.10)) to the last two sums and summing for к from 0 to
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п— 1 we get
и—1

m Z  s
n—1 m
2  2 " (с /кр̂ (г-*)р+г- ^ (к+1)̂ ((_4_1)р+г)+

k = 0 i = n + 1

/i — l  и—1 it — к  m

+ n Z  U*’XP+ z V W ( Z  Ä(l- 1)p+r+  2  fc(.-1)F+,).
fc=0 fc=0 i = l  i= m  — k +  1

By changing the order of summation and applying (2.10), the first double sum is 
easily seen to be dominated by

( m - n ) X np+ Z  U”»hip+r.i= 1

Combining this with the above inequality, we arrive at (2.12) (note that the h Sit are 
nonnegative).

Now let 1 ё и ^ й г ё . . .  be a n y  fixed sequence tending to infinity, and put

s (/ ' r) = \ z  g £ r\  j s i .J m = 1
Then, by (2.12), for any fixed 1,

(2.13) 2 u*>spr> S  o(\)+xnp+ и f i  z  4 -  2  4 + r )
k=0 \ J  m=l Ит j = i 7

+

1 J 1 n- 1
+ -r  2  —  2  ^ (к+1)рJ  m — 1 Mm k =  0

n m

2  h( i  — l )p + r= nm- k + 1

(<?(1) denoting a random variable converging to zero a.e., as /-► ©o). For the last 
term on the right hand side of (2.13) we get, by Fatou’s lemma and (2.3),

(2.14) lim i n f i  Z  ~  "Z U<'k+1)p Z  A(, - 1)p+r =  0 a.e.
J  J  m — 1  k  =  0 i  =  n m  — k  +  1

Lemma 2.2. F o r  a n y  i n t e g e r  p  = 2, w e  c a n  f i n d  a  s e q u e n c e  (n k), a n  i n t e g e r  0 S r S  
=p — 1, a  c o n s t a n t  K > 0 a n d  s t a t i o n a r y  s e q u e n c e s  (AJ;p’r)) c L 1, (<j/ <„p ' ry) c i L \  

s u c h  t h a t

(2.15)

(2.16)

lim S!ftr) =  /<p' r) a .e .,
j

lim U‘ ( i  2  ~ ~  2  ^ip + r) =  Фгр,г> a-е-, t S  0,
J t-У /71 — 1 flfn i = 0 '

(2.17)

(2.18)

n—1
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Proof. By (2.4), there exists a constant K > 0 and a sequence ( j k) such that

— 2 Е Ы ^ К ,  f c s i .
Jk ■' = 1

Hence, for any p s 2, we can find a sequence (/nk)(z(jk) and an integer 
=p— 1 suchthat

l
(2.19) —  Z m p+rl^2 K , k £ l .

i=o
Combining (2.19), Lemma (2.1) and Theorem 1.1, we thus have a sequence (nk) c  
<z(mk) and random variables A<up'r)€L1, \j/lp’rf_L'+ such that (2.15) and (2.16) (for 
t=0) hold. Finally, define t/q(p>,'), t S l ,  by (2.16), and put A{p,r) =\im U‘S ‘-P,r̂
a.e., t s l .  By (2.13) and (2.14), we get (2.17). In order to prove (2.18), first note 
that, by (2.10)

Xp- s y - ' 4 u p{±- j  — L

An application of Fatou’s lemma, combined with (2.16), (2.19) and the observation 
that, by (2.11),

lim F[Sjp-r>] =  py,
yields (2.18).

P roof of Theorem 2.1. As already noted, it remains to prove (2.9). Consider 
any fixed p=2  and let r (depending on p) be defined as in Lemma 2.2. By (2.17) 
and BirkhofFs ergodic theorem,

e \lim —  n2 W p r)] = ~ E [ W ' r)] 2? Ifim inf— z j .L n np k=0 j P V n np PJ
Therefore, applying Lemma 1.2, we get

E [lim inf—aJ  íé — E № %I «  n J p
By (2.18), this proves (2.9).

3. The superstationary case

In this section, Theorem 2.1 will be extended to processes (XSyt) and (hs>,) which 
are merely supposed to be superstationary in the sense of Kamae, Krengel and 
O’Brien [11] (see also [10] and [1]).

Let F1=Ai denote the partially ordered Polish space endowed with the product 
topology and the usual order relation on R, taken coordinate-wise (cf. [10], [11]). 
The elements of Fk will be conceived as sets (aSy,) c  R (the index set being I). The 
shift t : F1-^F1 is then defined by

(3.1) T(fls,r) — (ös+i,t+i)> (s, 0€7
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(cf. [1]). For any topological space F let J4 (F) denote the family of all probability 
measures defined on the Borel subsets of F. If Px, Pf^Ji(F^), Pfy~Px means 
that Px is stochastically smaller than P2 (cf. [10], [11], [15]). Throughout this section, 
it will be assumed that the families X  =  (XSi,)c:L1 and h=(hs>t)czL1+ (both con
ceived as random elements o f Fx) are superstationary families o f real random variables 
(cf. [1], [11], [15]). We put

(3.2) a„ = inf E[hS'S+n\ = lim E[hStS+n], n S  1.
s s

In this section, we derive the following extension of Theorem 2.1:

T heorem  3.1. Let the processes T = ( X Sj() and h=(hsf)  satisfy condition (2.1), 
and suppose that, for some constant К >0,

(3.3) £[*,.,+,] s ^ O , f £ l .

Then, if the relations

(3.4) lim — a„ =  0n n
and

(3.5) lim inf— Y a f <°°
п ft i — 1

(an given by (3.2)) hold, converges a.e. and in I f .
This result generalizes Abid’s [1] ergodic theorem, who studied the case when 

the process h vanishes identically.
The main idea of the proof of Theorem 3.1 consists in showing that the process 

(T,;() can be approximated by a suitable stationary process (cf. Lemma 3.2 below) 
to which Theorem 2.1 applies (in the special case of an identically vanishing process 
h, this was observed by Abid [1]).

Let us put

(3.6) у„, =  а д . (], (s,t)el.

Combining (2.1) and (3.3), we have that the limit

(3.7) iimys J+( =  y, = —Kt
S

exists for any iS  1. By (3.4) and Lemma 1.1, the limit

(3.8) =  lim i( lim £ [L s,s+J) = у = y(X )к П n П s

exists, and (by (3.7)) is finite (y=y(X) is sometimes called the time constant 
o f X).

For the proof of Theorem 3.1 we need two lemmas.
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L emma 3.1. Let Pnd J t(If)  and QndJ((Ff) denote the distributions o f znX  
and znh, respectively, n g 0. Then, the sequences (P„) and (Q„) are tight, and con
verge weakly to probability measures and Qx , respectively. Furthermore,
(3.9) P0 > P„, Q0>Q ~.

P r o o f . Let PSit denote the distribution of XSit. Since
sup£[|* ,>1+,|] <°o, ( s  1,

S

each family {PSiS+I|i^0}  is tight, f s l .  Hence, by Tyhonov’s theorem, (P„) is 
tight. Similarly, (Qn) is shown to be tight. The weak convergence of (P„) and (Q„) 
is implied by [11, Proposition 4 and Theorem 6]. Finally, by Propositions in [11],
(3.9) holds.

Lemma 3.2. There exists a real process X=(Xst) and a real stationary process 
h = (hs,t)a L \(P )  defined on a certain probability space (fl, Ä, P) (possibly dif
ferent from (Q, sd, P)) with the following properties (Ё denoting expectations 
w.r.t. P):

(a) X  and Ё  have the same distribution;
(b) __ 2  has a decomposition X —T + Z  such that X ^ Y , the process Y=( Ys ,) c  

<z L \  (P) being stationary;

(c) (s,t), (t,u)dP,
(d) E [ f0J ^ - K n ,  n ^ \

(K being the constant in (3.3));

(e) = an, и =  1;
(f) lim£[;Fs+n,f+n] =  £ [ f Sjf], (s,t)dl.П
P roof. For any (s, t) ,(t,u )d l let the mapping F1XF1-^R  be de

fined by
<ps,,JC ,D )  =  CSiU — CSi( — C(i„— Dtu , C,DdF1.

Note that (ps,t<u is continuous. By (2.1),
<Ps,t,u(.?nX, znh) si 0, n 0, (s, 0, (t, n)€/.

Hence, if we put
(3.10) A = П (pZt.ui.— °°> 0]
(the intersection taken over all (s, t), (t, u)fl), A d  FkX.Fr is closed, and
(3.11) P{( znX, z”h)dA} = 1 , «S O .
By Lemma 3.1 and Prohorov’s theorem (cf. [4, pp. 37 and 41]), the family of dis
tributions of the random elements (znX ., z"h), пЫ), is tight. Hence, for some sub
sequence (nk) and some PdJi(FkX If), (т"ьX, zn><h) converges in distribution to P. 
Therefore, by (3.11) and the Portmanteau Theorem [4, p. 24],
(3.12) P(A) =  1.
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Clearly, by Lemma 3.1, the marginal distributions of P are and Qm, respec
tively. Let us show that there exists some PZJt (ffXCFiXFi)) which is concen
trated on the closed set

Q =  {(x, y, z)£ iq  X Fi XFjlx i? y, (y,z)£A},

and has the marginal distributions P0 and P. In fact, by Theorem 11 of [19] or Corol- 
laire 2 of [9], it suffices to check that, for any compact sets C c F 1; D(zF1XF1 
suchthat ( C x ö ) n ß  —0, we have
(3.13) P0(C )+ P (D )tS l.
In order to see this, put

ßo =  {-xG-Fil for all (y, z)6Z>, x ф у  or (y, z)$A holds}.

Clearly, C c ß e, and the set Q \Q 0 is closed and increasing (cf. [10]). Hence, by 
(3.9) and (3.12),

F0(C) S  P0(Q0) ^  Р„(Й 0) = РЦйоХР^ПА),

which implies (3.13), since (ß0XFx)C]AC\D = Q. Let us define %=n1, Y=n2 and 
h= n3, where nt denotes the projection of the product space F±X Ft X Fx onto 
its i-th factor. Clearly, Y  and and h are stationary since the shift т is continuous. 
It is now easy to verify (a)—(f) (without loss of generality, we may assume that the 
inequalities in (b) and (c) hold everywhere on Q).

Note that, by (a) and (f),

(3.14) y(X) = y ( i )  = y ( f) .

P roof of T h eo rem  3.1. Applying Krengel’s [15] ergodic theorem to the super- 
stationary sequences (U"JXn) and (UnJhn) (for fixed rí) and taking into account
(3.14) , (2.10), (3.7), (3.4), (3.8) as well as Lemma 3.2, one sees that ^  con
verges a.e., and

(3.15) E \ l i m X0 „1 =  l i m i E[X0J = y ( X ) .
I n n  J П П

On the other hand, it follows from Theorem 2.1 that ?0i„j (see Lemma 3.2) 
converges a.e. and in L 1{P). Since, by (3.15) and (3.14),

lim — £ [2 0 ] = 0, 
n  n

Lemma 3.2 entails that T0,„j also converges in ZA This proves Theorem 3.1.
Theorem 3.1 can be used to arrive at an ergodic theorem for very general families 

of random sets. Theorem 3.2 below generalizes results obtained by Artstein and 
Vitale [3], Artstein and Hart [2] and Schürger [18].
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Let со denote the family of all nonvoid convex compact subsets of Rd (d~ 1). 
Let q denote the Hansdorjf metric restricted to со fi, and put ||C || =sup {||c|| |c£C}, 
C£co (€ (||c|| denoting the Euclidean norm of c). Then we have the following result 
(cf. [18] and [16] for further notation and terminology).

T heorem 3.2. L et 0=(0S,,) and x —(Xs,t) be superstationary families o f с о 'id- 
valued random sets such that (II0,(/||)с Ё г+ an<-i (IIxs,(II)c LV. Put
(3.16) bn = infE [||Zs,s+„||], n s  1.

s

Suppose that в and x satisfy the following four conditions:
(3.17) 0s,uc 0 Sit +  0(i„+x(iU, (s, t), (t, n)e/;
(3.18) there exists a constant K ^O  such that

El\Bt„+t\l*kKt, s S O ,  / s i ;

(3.19) lim^-h„ =  0;
и n

(3.20) lim inf — У. b: -c oo. " n iti

Then — 0O, „J converges a.e. in (со (6\ o) to some со -valued random set £ such 

that ||i||€L+, and

l im E [e ( l 0o>„, ?)] =  0.

Proof. Put S,1 = {x£7?‘,[||x|| = l}. For each p £Sx put

X ^  =  ffp(0s.t) and h $  = (ap(Xs,t))+> (®, 0 € i
where <7p(C)=sup {pc|c£C}, p £ S x, Cf_co fi, and a+ =max (a, 0), a€i?. It can 
be easily checked that, for each p€Sx, = {X $ )  and h(p>=(h(f ty) satisfy the 
hypotheses of Theorem 3.1. From Theorem 3.1 and [18, Lemmas (4.3) and (4.24)]
we deduce that 0O> „j has the asserted convergence properties.
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THE PREVALENCE OF STRONG UNIQUENESS IN U

J. R. ANGELOS (Mt. Pleasant) and D. SCHMIDT (Rochester)

1. Introduction

Let (X, I ,  p) be a positive c-finite measure space and let M  be a finite dimen
sional subspace of L 1 =L 1 (X, Z, pi). For fd L 1, we say that g ^ iL 1, is a strongly 
unique best approximation to/from M  if there is a constant r> 0  suchthat \\f—
= \\f— £*lli+r|lir—g*IU for all g£M. In recent years, strong uniqueness of best 
approximations has played a fundamental role in algorithms to compute best approx
imation [3, 5, 8] and has been the focus Nof several articles (see [1, 2, 7] and others). 
The purpose of this article is to assess the prevalence of strong uniqueness in ZA 
Results in this direction are known for other spaces. In U  (l-=p-<°°) or in any 
smooth space, only those elements of the approximating space have strongly unique 
best approximations [15]. It is known that each f(LC[0,1] possesses a strongly 
unique best approximation from a Haar subspace [9]. Recently, Nürnberger and 
Singer [11] have shown that if M  is an almost Chebyshev subspace of C[0, 1], then 
the set of functions having strongly unique best approximations from M  is dense in 
C[0, 1]. We obtain the analogous result for ZA

Define UM.— { f^ U :  f  has a unique best approximation from M) and 
SUM:= { f f L 1: / h a s  a strongly unique best approximation from M}. Clearly, 
SUMQUM. Our main result in Section2 asserts that SUM is dense in UM. The 
density of SUM in ZA will then follow when M  is almost Chebyshev. We further show 
that SUM = UM when ZA is finite dimensional.

In view of the density result, it is natural to ask whether L 1\ S U M is of first 
category in L1 when M  is almost Chebyshev. This question derives from a result 
of Garkavi [6] which asserts (in this setting) that if UM is dense in L \  then L 1\ U m 
is of first category in L1. In Section 3 we answer this question in negative with a 
rather striking contrast to Garkavi’s result. Particularly, if X  contains no atoms 
then SUM is a dense set of first category in ZA

2. Density results

For fE L1, the support of/ is the set supp ( / )  =  {x£X: f(x) X 0} and the zero 
set of / is Z ( / ) = T \su p p  (/). We shall require a characterization of the elements 
of SUM due to Nürnberger [10].

T heorem  1. Let f f  L l\ M  where M  is a finite dimensional subspace of ZA Then 
0 is a strongly unique best approximation to f  from M  if  and only i f

j  #sgn ( / ) i fy |<  / |g| dpi
su p p tf)  Z ( / )

for all g € M \{ 0}.

6*
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Theorem 1 is essentially the strong Kolmogorov criterion idealized to finite 
dimensional subspaces. For f£ L l, let PM{ f)  denote the set of best approxima
tions to / from M. The set valued map PM is called the metric projection associated 
with M. We shall also need a method due to Rozema [13] of redefining a function 
in L1 so as to preserve one of its best approximations.

L emma 1. Let M  be a subspace o f L1, g0 £PM(f) , and A£Z. Define
/ о=/Хас+£о'/.л7 where Xb denotes the characteristic function ofB. Then g0 £-PM( / 0)g
E-Pm( /) .

We now establish the main result.
T heorem  2. Let M  be a finite dimensional subspace o f U . Then SUM is dense 

in UM.
P ro o f . Let /6  UM with unique best approximation g* from M. Replacing /  

with f —g*, we may assume that 0 is the unique best approximation to /  from M. 
Indeed, 0 is the unique best approximation to /  from any subspace of M.

By a well known characterization theorem for best approximations (see [14]), 
there exists <p£L“ with ||(p||„ =  l suchthat J g d p  = \\f\\1, and

(2.1) f<pgdp = 0
for all gZM. Then (p=sgn(/) a.e. on supp ( / )  and S(<p):={x€X: |<p(x)|<l}^ 
g Z ( / )  (where we have redefined <p on a set of measure zero if necessary). Let к 
be the maximal dimension of a subspace M k of M  from which 0 is a strongly unique 
best approximation to / .  It is certainly possible that k=0. The object of the proof 
is as follows. For e>0, we find an f o d L 1 such that | | / — / 0 | | i < £ ,  P j m ( / o) = { 0 } >  

and 0 is a strongly unique best approximation to /  from a (k + 1 j-dimensional sub
space of M. The result would follow by inducting on k.

Let g0£ M \M k, and let M k + 1  be the direct sum of M k and the space spanned 
by g0- We shall let / 0 =f / Ac for a suitable choice of A£Z  where

(2.2) j  l/l dp <  e.
A

We would then have \\f—/ 0||i<£ by (2.2) and PM(fo)= (0} by Lemma 1. We 
decompose Mk into two sets: s4 — {gf_Mk\ g+g0=0 a.e. on S(<p)} and ŰS= Mk\s d .

If gd&, then Ig+golHíKg+go)! on a subset of S(<p) of positive measure. 
Since S{(p )^Z (f), (2.1) implies that

/  (g + go)sgn(/)d /i| =  | -  f  (p(g + go) dp\ <  / | g  + g0|d/i. 
su p p (/)  Z ( / )  Z ( / )

With fo~fxAc> supp ( / 0)=supp (f)C \A c and Z ( f 0) = Z ( f ) i ) ( A Dsupp (/)). Since 
/= /o  on supp (/o),

/  (g + go)sgn(/0)i/g | ^  I J  (g +  g0) sgn ( /)  dp [ +  /  |g + gol dp <
s u p p ( / 0)  s u p p  ( / )  s u p p ( / ) n  Д

<  f \ g  + go\dp+ J  |g + gol dp.
z  ( / )  s u p p  ( / )  П A
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/  (g + go) sgn (f„)dpI < f  \g+g0\dli
supp (/„) 7 ( f  ’)

for all gd In a similar fashion, we can obtain 

(2.4) I J  g sgn (/„) dg I «= f  |g| dn
supp (/„) Z ( /0)

for all g6Mfc\{0} using Theorem 1 and the fact that 0 is a strongly unique best 
approximation to /  from Mk.

Finally, we choose AdZ so that (2.2) holds and for all gdsi

{< P ( g + g o )  > 0  on a subset of A of positive measure and 
< K g  +  g o )  <  0 on a subset of A of positive measure.

We have supp ( /0) = supp ( / )П Л С and Z ( / 0) = ( Z ( / ) n + c)Ú A. If A satisfies (2.5), 
then for gdsi we have from (2.1)

0 =  f  <PÍS + S o )d n =  f  cp(g + g0) d g  + f  (p(g + g„)dg +  J  cp(g + g0)dfi.
supp (/„) A  z(/)n A c

Since ip = sg n (/)= sg n (/0) a.e. on supp ( /0)^supp ( /) ,

/  (g  +  g o )sg n (/o )íih | S  I f  <p(g + go)dfi\ + \ J  (p(g+g0) d g \ .
supp (/о) A  7 , ( f )D Ac

Since |<p|Sl a.e.,

and (2.5) yields

Thus

/  ^  (g +  go) dg  j = /  | g + g 0l dfi
Z ( f ) C A c Z ( f ) n A c

I /  <P(g + go) d/i| <  /  |g +  gol dg.
A A

(2.6) j /  (g + g0) sgn (/o) dg I < J  |g + gol
supp (/„ ) Z ( /0)

for gdxé. For A real and gd Mk, we apply (2.3), (2.4), and (2.6) for the three cases 
(l/X)gddS, g + 0 and A = 0 and (1 /X)g£st, respectively, to get

/  (g + 2g0) sgn (/o) dg\ <  /  lg + 2g0| dg
s u p p ( /0I Z ( /0)

for all g+Ag0€-Mfc+i> and 0 is a strongly unique best approximation to /  from 
Mk+i-

The remainder of the proof is devoted to demonstrating the existence of AdZ 
such that (2.2) and (2.5) hold.

For gdsi, g+g0 is nonzero on a subset of X\S(<p) of positive measure. 
By (2.1) both the sets

Ug = {xdX\S(cp): (p(x)(g(x)+go(x)) >  0}
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and
vg = {x£X \S((p): <p(x)(g(x)+g(l(x)) <  0}

have positive measure. We claim that one of the following must hold:
(1) Ug(Vg) contains a subset of positive measure which contains no atoms,
(2) Ug(Vg) is a countably infinite union of atoms, or
(3) Ug(Vg) is a finite union of atoms and /  vanishes on at least one of these 

atoms.
To prove the claim, suppose that neither (1) nor (2) hold for Ug, say. Then Ug

m
is a finite union of atoms, say Ug=  (J Aj where each Aj  is an atom. We may assume

J = 1
th a t/is  constant over each atom. Let XjZAj and assume that f(x j)A 0 fo T j—l, ..., m. 
Select 0 such that

r- max |g(* ,)+g0(xy)|< min |/(x ,)|.

Then C/gg su p p ( /)  and sgn ( / - r ( ,g + g 0))=sgn ( / )  =  <? on Ug. Since gZstf, 
g+go=°  a-e- on jr \(C /gU ^) and therefore <p(g+g0) = - |g + g 0| on Щ. Let 
f*= fXve- By Lemma 1, BM(/*)={0}, but using (2.1), we have

ll/*lli =  /  If \ d n =  f  (p fd n -J  cpr(g + g0)dg =
u„

=  /  <p{f-r(g + g0) )d n -  J  cpr(g + g0)dg = 
v°

= /  l / - r ( g  + g0) |d / i+ J  |r(g + g0)|d/i =  J \ f* - r ( g  + g0)\dii = | | /* - r ( g  + g0)||1. 
vg vi

This is a contradiction. The proof for Vg is similar, and the claim is now established.
The set Ug(Vg) is called a type (1), (2), or (3) set according to whether Ug(Vg) 

satisfies (1), (2), or (3), respectively. Define M J= Ug is of type (y)} and
N j = {g£s/: Vg is of type (/)} for j=  1, 2, 3. We construct a portion of the set A 
for each of these six sets.

Consider the set M 1. For g<zMl, there exists r9>-0 and Pa Q Ug with positive 
measure and containing no atoms such that (p(g+g<J>rg on Pg. Let {g1, ...,gk} 
be a basis for Mk. Since gt , gk are integrable on Pg, there is a set AgQPg of 
positive measure such that for some mg> 0 we have |g;|^»i9 a.e. on Ag for 
i = l ,  к. Let Og= {h£Mk: (p(h +g0) >0 on AJ. We show that Og is a neigh
borhood of g relative to M k.

к к
Since Mk is finite dimensional, the norms || • ||x and II 2  <*jgi\|*= 2  lail аге

i = l  i =  1
к

equivalent on Mk. Let h= 2  Uigi£Mk with \\h\\*<rg/mg. Since \(p\^l a.e., we
1 =  1

have for x£Ag
<p(x)(g(x) + h(x) +g0 (x)) S  rg + (p(x)h(x) ^  rg-\h(x)\

= rg-  2  l«illgiWI =  rg- m g 2  l«il =  rg — mg\\h\\* > 0.
i = 1 i=  1

Thus g+h^Og and Og is a neighborhood of g.
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Now the interiors of the sets Og, gdM ' , cover M 1. Since Mk is finite dimen
sional, there is a countable subcollection t of {Og}gim that covers M 1.
Then for each g£Af\ g>(g+g0) > 0 on some Agi= At.

Since/is integrable, there exists <5=»0 such that if E(LZ with ц{Е)^д, then 
J  | / | ф < г / 4 .  Since At contains no atoms, we may select A}QAt such that

E

0^ц(А}Ы512‘ (*=1,2, ...)• Let Ax= Q A}. Then AKZ, f | / |  r//i<e/4, and
í=í / i

for every g^M1, tp(g+g0)>0 on a subset of A 1 of positive measure.
We now construct a set A 2 for M 2. Since X  contains at most countably many 

disjoint atoms, (J Ug consists of at most countably many disjoint atoms. In fact,
96 M 2

if M 2 then this set indeed contains infinitely many atoms. Write, IJ Ug —
в£Мг

= (J Ai where each At is an atom. Again, we assum e/is constant over each atom.
i = l

Choose cijZAj for j =  1, ... . Since /  is integrable, there is a positive integer N  
such that

2  If(aj)\n(.Aj)  <  e/4.
i=JV

00 rLet A2= U A;. Then A2€Z and J \f\dfi<e/4. Since only finitely many atoms 

were discarded from IJ Ug, <p(g-hgo)>0 on a subset of A2 of positive measure
96 M2

for every g fM 2.
We finally consider M 3. As with M 2, J  Ug consists of at most countably

Sl€M3
many atoms. Write J) Ug= J | A j where each Aj is an atom. Let A 3 be the union

9 6 M 3 j =  1

of all the Aj over which/vanishes. Then A3£Z, J  | / |  ф = 0, andby(3)
.43

on a subset of A 3 of positive measure.
A similar analysis for N1, N 2, and N 3 yields measurable sets В1, B2, and B 3 

where / | / | ф < е / 4 ,  J  | / |  ф < е /4 , J \ f \d f i= 0 , and for all g€N j, <p(g+g0)< 0
B1 в 2 B 3

on a subset of BJ of positive measure (7=1, 2, 3). The proof of Theorem 2 is now
3

complete by writing A — U (Aj u  b j). □
j=1

Garkavi [6] defined an almost Chebyshev subspace M  of a Banach space to 
be one for which the complement of UM is of first category. It is of interest to note 
that Garkavi showed that if the underlying Banach space is separable and the sub
space M  is reflexive, then M  being almost Chebyshev is equivalent to UM being 
dense in the Banach space. Rozema [13] characterized the finite dimensional almost 
Chebyshev subspaces of I /  In particular, when X  contains no atoms, all finite 
dimensional subspaces of L1 (X, Z, /л) are almost Chebyshev. The next result fol
lows immediately.
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Corollary 1. I f  (X, Z, pi) is nonatomic and M  is a finite dimensional subspace 
of I f ,  then SUM is dense in I f .

We complete this section by turning our attention to the case in which (X, I ,  fi) 
is purely atomic with finitely many atoms. This is precisely the case where L 1 is a 
finite dimensional space with a weighted l1 norm. We shall retain the notation of 
L 1 for the sake of consistency with the previous theorems.

Theorem 3. Assume that (X, S , fi) is purely atomic with finitely many atoms. 
For a finite dimensional subspace M  o f I f ,  SUM=UM.

P roof. Let f Z I } \ M  with unique best approximation 0 from M. By a char
acterization of unique best approximation in L 1 due to Cheney and Wulbert [4]

/  g sgn( /+  g) dp >  [ \f\dpi
Z t f+g)

for all g 6Af\{Q}. By the condition on (X, E, pi), there is an e>0 such that if 
g<EM\{0} with 0< ||g ||,< e , then sgn (/+ g )= sg n /  on supp (/). Then for such 
geM

J  g sgn (f+g)dp. = f  g sgn (/+ g ) dp+ f  gsgn(f+g)dp  ^
s u p p  ( / )  Z  ( / )

^  /  g sgn/d/i-f f  |g| dp.
suppCO z (/)

Thus
/  Igl dp Sr f  g sgn ( /+  g)dp— f  g sgn (f)d p  > 

z ( / )  s u p p ( / )

>  /  \ f \ d p -  I  g Sgn (f)d p  s? -  f  g sgn (f)dp.
Z( f+g )  suppC T ) s u p p ( / )

Replacing g with —g,
| /gsgn(/)dju |  <  J  \ g\dp.

zif)
for 0<  И g"IIi<e. Theorem 1 and homogeneity now show that 0 is a strongly unique 
best approximation to /  from M. □

3. First category result

In this section we show that SUM is of first category in I f  when X  is nonatomic. 
We shall require the following variation of the Lyapunov theorem on vector measures 
(see Phelps [12]).

Lemma 2. Suppose that the measure space (X, I ,  pi) is nonatomic, cp is a meas
urable function on X  with M=Sl pi-a.e., and qx, qn<^If{X, I ,  g). Then there 
exists a measurable function ij/ on X  with [i//| =  l pi-a.e. such that

f  \j/qidpi= j  (pqtdp ( i= l , . . . ,n ) .
X  X
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T heorem  4. Let (X , X, g) be a nonatomic о-finite measure space and M  be a 
finite dimensional subspace o f L l (X, X, g). Then SUM is o f first category in 
L \X , X, fi).

P r o o f . Since L 1 (X, X, fi) is isometric to L 1 (X, X, fi) for some finite measure 
ß, we may assume that g is finite. For n a positive integer, define

SUM(n) =  {feSU M: у, 3- 1 In)
where

У/ =  in f{ ( ||/-g ||- ! l /-g /||) / l!g -g /||:  g£M \{g f }} 

and gf  is the best approximation to / from M. Evidently, SUM= U SUM(n). We
n = l

first show that each SUM{n) is closed in the I^-norm. Let { fk} be a sequence in 
SUM{ri) and f ^ L 1 where f k —/  in the L’-norm. Let gk be the best approximation 
to f k from M. Then | |g J ^ 2 | | / J  — 2 |[/||, and since M  is finite dimensional, we 
may assume that gk-*g0 in the iZ-norm where g0£M. For any g£M,

H /—g lli—II/- golli — Wfk—s l l i— \\fk—f\\i—II/- /Ü l i—11Л -  gklli—II gk — golli — 
s ( l / « ) | g - gfcli- 2 | | / t - / | | i - | | g t - g 0||i s

=  ( l/и) II g-  goll 1 -  ■2 II fk - /II1 -  (1 + 1/«) llgfc -  golli •
Passing to the limit as к —*■ oo yields

I / - g |i  —II/- golli =  О /«) II g - golli ■
Therefore, g0 is the strongly unique best approximation to /from  M  and f f S U M(n).

Finally, we prove that SUM has empty interior from which it follows that each 
SUM(ri) has empty interior. Let f i S U M\ M  with best approximation g0 from M, 
and let e>0 be given. By a characterization of best ^-approximations [14], there 
exists a measurable function q> on Z ( / — g0) with |<p|sl suchthat

/  gsgn( f - g 0)dg + f  grp dg = 0
supp ( r - 90) Z ( /- jT 0)

for all g£M. By Lemma 2, we may assume that |rp| =  1 on Z ( / —g0). Set

f/  on supp ( / - g 0) 
e~ \f-£ < p  on Z ( / - g 0).

Then Wf- f f i ^Eg(X)  and Z ( / - g o)=0, since M =  l. Also,

J  gsgn(fe- g 0)dg = f  gsgn( / - g0)dg + I  grp dg =  0
s u p p ( / - p 0) Z ( / - e 0)

for all g£M.  Flence, goÉPjuC/)- Since g ( Z ( f —g0))=0, Theorem 1 implies that 
f i $SUM. If f £ M  we appeal to the above argument and to Corollary 1. The proof 
is now complete. □

We conclude by observing that the condition that X  be nonatomic is essential 
in Theorem 4. When the underlying measure space is purely atomic with finitely
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many atoms, there certainly exist Chebyshev subspaces of L1, and Theorem 3 implies 
that SUtt=U u =L1. Needless-to-say, SUM is not of first category in this case. 
As a final note, we mention that it is not known whether the set SUM is of first 
category when M  is an almost Chebyshev subspace of C[0, 1].

Acknowledgement. The original version of Theorem 4 included the condition 
that ii(Z(g)) = Q for g£M \{0}. The authors would like to thank Dr. András Kroó 
for extending Theorem 4 and simplifying its proof.
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APPROXIMATIONS OF REAL NUMBERS 
BY THE SEQUENCE {««} AND THEIR METRICAL THEORY

SH. ITO (Kodaira) and H. NAKADA (Yokohama)

Introduction

For an irrational a, 0 < a < l,  we denote by [a1? a2, ...] its simple continued 
fraction expansion. We put

and

(1)

A« -  ( ?  о)

[Чп ín-il föl Uffla П
U  A _ J  U  0 A 1 oJ

for и ё  1. It is well-known that

~  — Ul» > аЛЧп
holds.

Let N  be a given positive integer. Then we can find a non-negative integer l 
such that q ^ i^ N -zq i. We define, inductively,

and Y -i =

for /= 1 ,2 ,.. . , / ,  where Nt=N  and [x] is the integral part of the real number x. 
Moreover, we put b t= 0 for / s / + l .  Then we get a representation

(2) N = 2  bi4i-i  = 2  bi4 t-1.i = l i = 1

From (1) and the definition of we see that

(3)
0 = Ь; = Я; for i :: 2,
if bi — a{, then = 0 for i g  2,
0 ~  ~  Uj — 1.

On the other hand, let ß  be a real number such that — — a and
ß  y ih .  (mod 1) for any negative integer /. Then ß  can be uniquely represented by

ß =  2  bi(ß)(4i-i<*-Pi-i) » = 1(4 )
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where bfß) satisfies the condition (3) (see Sh. Ito [2] or M. Stewart [8]). The represen
tations (2) and (4) play an important role in some problems related to the theory 
of uniform distributions (cf. e.g. V. T. Sós [7]).

Let us consider the relation between (2) and (4). Suppose that {iV„} is a sequence 
of positive integers such that

lim Nn<x = ß (mod 1).1l-*~ oo

For each Nn, we denote the representation (2) by

i = l
Then we have the following:

T heorem 0. For any positive integer L, there exists a positive integer l0 such that 
b(il> —bi(ß) for l ^ i s L  and /Ы 0.

We put

U„ =  2  bi03)?i-i for » Sr 1.
i = i

Then the representation (4) implies

ß =  lim м„а (mod 1).
ft -*■ o°

By using this fact and the uniqueness of the representation (4), we can prove the 
assertion of Theorem 0. In the sense of Theorem 0, we call {unoc (mod 1)} the 
canonical approximating sequence of ß with respect to a. Since if bi+1(ß)=0 for 
some i, then ut=ut+1, un is not monotone increasing, in general. By putting u*— 
- u c(n) with

c(n) -  min{m; # {/; 1 s  I á  m, b, 0} =  и},

we get the monotone increasing sequence {u*} from {«„}.
In this paper, we discuss the increasing rates of {»„} and {«*} and the con-

П
vergence rate of 2  b i ( ß ) ( < J t -i) f°r almost all (a, /?); in particular, we

i = l
prove the following theorems.

Theorem 1. For almost all (a, ß),

and

1 7Г2lim — log un - — -— -  n—“ n 12 log 2

lim
П -+00 - log u*

7l2

61og2’
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T h e o r e m  2 .  For almost all ( a ,  ß).

#{л: 9n\ß- É  bt(ß)(<li-i<x-Pi-i)\ ^ z , l S / i S J V }
lim -----------------— ------------—-------------------------------- = z(2 — z)лг-~ N

for O s z ^ l .
To prove these theorems, we make use of the natural extension of the non- 

invertible transformation. This method is also useful for some problems in diophan- 
tine approximations and we refer to [3] for such problems.

§ 1. Preparations

First, we recall some fundamental properties of simple continued fraction 
expansions. For an irrational number a= [a1, a.,, a3, ...], we put
(5) 0n = qna —pn 
and

( 6 )  a n =  t a n + l> a n + 2; a n + 3> •••]

for n s 0. Then we have the following:

(7)

( 8)

(9) 
and
( 10)

[n„, an—i,  an- 2, ..., Hi],
4n

u = Рп+Рп-Л  
Яп + Ч п-А  ’

Рп-1Яп-РпЯп-1 = (-1)"

«о = ( - 1У в«
for пШ 1. Furthermore, the following properties are well-known (see [1]):

( 1 1 )

and
lim — log q„ = ——----- for almost all an-~ n 12 log 2

1 7C2(12) lim — loga0a, ... a„ = — ——— -  for almost all a.n—°= n 12 log 2
Next, for the discussions in §§ 2 and 3, we introduce the transformation (X, T) 

and its natural extension (X, T). We put

and define
X = {{a ,ß ); 0 ё а < 1 ,  - а  < ß <  1}
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for (a, ß)£X, where

b(a, ß) = шах 

We also define the digits an and bn by
( И - M .  ■>)•

for /1^1 

and

an =  a„(a) 7 — 1 and bn = bn(a, ß) = b ioc^, Д,_г)
X„_1 J

with (a„, ß„)=Tn(<x, ß). From these, we can get 

a =  [a1,a2,a3, ...]

(13) /J = 2  M .-i-1 = 1

It is easy to see that the representation (13) is identical with the representation
(4) of /3 if — a-=/?< 1 —a. Now we introduce the transformation (X, T), which 
is called the natural extension of (Л', T). Let us define the domain X  by

X =  XlX {(y,<5); O s y s  l ,O s < 5 < l} U Z 2x{(y,á); 0 ^  у =5 l, 0 s  у < 0} 
with

Хг = {(a, ß)\ 0 ~ a < 1, —a < j i S l  —a}
and

X2 = {(a, ß); 0 S  a <  1, 1 - a  <  /? < 1}.

The transformation T of X  is defined by

T(a, ß, у, ő) =  (П а, ß), — — .
V ? +  «l Г + űi/

for (а, ß, у, Ő)£X. It is not so hard to show that the transformation T is one-to-one 
and onto on X  except for a set of Lebesgue measure 0. Furthermore, the density 
function h of the absolutely continuous invariant measure /7 for T  is given by

(14) й(а, ß, у, <5) = 1 1
log 2 (1+ау)3

for (а, ß, у, 5)£Х. Thus the density function h of the absolutely continuous in
variant measure ц for T is given by the marginal density function of h. So we have

(15) h(a, ß)

1 2 + a
2 log 2 (1+ a )2 

1 1

if (a JK X , 

otherwise.2 log2 (1+ a )2

(The details of the above discussion can be found in Sh. Ito [2].)
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Finally, we note that (X, T, /i) is ergodic (and so is (X, T, Д)). Moreover, 
it is possible to show that T  satisfies conditions of Schweiger and Waterman [6] 
and this means that a Gauss—Kuzmin theorem holds for T. By using this theorem, 
we can apply the quantitative Borel—Cantelli lemma of W. Philipp [5] to give an 
estimate of the remainder terms of the limits below. However, we do not discuss 
them in this paper.

§ 2. Asymptotic properties of the canonical approximations (1)

In this section, we give immediate consequences of § 1.

Proposition 1. For almost all (a, ß),

(16) lim —— ({«: I S í i g i f ,  b„ = к} =

ir  i f  к = 02 J
21og(/c+ 1) —log/c — log(fc + 2) о

2 log 2

Proof. Since (Г, ц) is ergodic, the left hand side of (14) is equal to

H{(cc,ß)‘, bj =  k) =  ff h(a,ß)dctdß 
0>i=q

for almost all (a, ß). Moreover, it is easy to compute that this is equal to the right 
hand side of (16) (see Fig. 1).

R emark. In Monteferrante—Sziisz [4, Theorems 1 and 2], only the existence of 
the left hand side of (16) is proved for quadratic irrational a, while we prove the 
existence for a.a. a and give its explicit value which is independent of a.a. a.

Proposition 2. For almost all (a, ß),

lim — log \ß -  2  b,(?,--ia-Pi-i) =И 1 i=i 1 12 log 2

Proof. From (5) and (10), we have

\ß~ Z b i( ? i - ia - .P i - i ) |  =  I z  b / i t f i - ia -P i-1)| =  l/?nlaoai ■■■<*„-!
i = l  i = n + l

with T"(a, ß)=(ccn, ßn). Hence

1  И J  j

— log [/?- 2  b i(?i-ia-P i-i)| =  — ló g h a t! ... a„_j)+—log |^„|.fi { = 1 Ai Л/
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Fig. 1

Now we show that

(17) Um “ logl/U =  0n
for almost all (a, ß). Since

MIÄ.I <  V) =  H(\ß\ <  »?) = ((2 + 1]) log 2 -  (2 -  г]) \og (2- r i) - t i  log (l +»?))

for any t], 0< i)< l ,  we see that

2  V(.\ßn\ <  е“П£) < + “
П = 1

for any £>0. Thus, by using Borel—Cantelli lemma,

4  eta Mathematica Hungarica 52, 1988
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for almost all (a, ß). This implies (17). Consequently, by (12), we have the asser
tion of the proposition.

Since T  is ergodic with respect to ц, the proof of the above proposition also 
implies the following:

Proposition 3. For almost all (a, ß),

${n: lön-il“1 ■ \ ß - 2  biiqi-iCi-Pi-i)] < z }

=  ~-i lo,T 2 P  + z) log 2 -  (2 -  2 ) log (2 -  z) z -  z • log (1 + z)] 

for any z, 1.

§ 3. Asymptotic properties of the canonical approximations (2). 
Proof of the theorems

In the preceding section, we have only made use of properties of T. On the 
other hand, we need some properties of the natural extension T  of T to show Theo
rems 1 and 2. The following lemma is essential.

Lemma. For any (a, ß)€_X,

T"(a, ß, 0, 0) -  Í T n(a, ß), - ^ ) .
 ̂ 4n 4n '

The proof of this lemma follows by an easy induction.
P roof of Theorem 1. Since we have

lim — log un S  lim — log qn
л — “  П  И — ° °  П 12 log 2

for almost all a. Thus, to complete the proof, it is sufficient to show that for any e >0,

(18) # |и : “ "logun <  ~ l° g in ~ £J < + “

for almost all (a, ß). We note that

“  log un <  -^Tog qn — e

is equivalent to ujqn^ e ~ m. If we put (a„, ßn, y„, <5„) =  Г”(а, ß, у, ö) for (а, ß, у, <5)6 А, 
then for any q, 0< i /< l ,  and any 0,

2H~1
Lhf} 2  <  ^i"}/1 = 1

+
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So we see that
#{л: ő„ <  dt]n} ■*= + <

for almost all (a, ß, у, 5) by using Boréi—Cantelli lemma. On the other hand, 
from the lemma, there exist constants Cx and r\x, 0<% <1, such that

Thus, by putting
K ~ v . e r f .

d = 2CX and ц — max {t]x, e_E},

we see that (18) holds for almost all (a, ß). The rest of the proof follows from 
Proposition 1.

P roof of T heo rem  2. From (5), (8), (9) and (10), we see that

n
q«\ß- 2  biiqt-iU-Pi-i)] =  tfJÄJaoiXi •■•a„-1a„a- 1 = qn\6n\ Iftja"1 =

1 =  1

=  qn\qn<x-Pn\ ■ IßnWn1 = -----------------^ --------------- •

qn
So we get, by the lemma,

#{»■• q » \ß -2  s  z, l s n ^ T v }  2 L ( T n(c(,ß, o,o))■ ■* n = 1
N N

where y_ is the indicator function of the set

{(a, ß, у, Ő)ÍX: ~ m  

On the other hand, it is clear that

+ ay

(19) lim
2  Xz{T"(cc, ß, у, 5))

п=1

N

z}.

v 1 +  ay )

for almost all (a, ß, у, 5). It is possible to compute that

■ [ z<I- 2),og 2- 4 ]

V 1 + ay )
log: 

l
log 2

if 0 <  z S  — 2

[(2z - z 2)log2 + z lo g z  + | - - 2- j  if j < Z S l
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and

i - K ^ - ^ z Uv 1+ ay )
logЫ т - т - г1о« ( - г)] if - 1 2 S " 2

log
1 Í' 1 z2 , J  . .  1
V2 U + X +Z 0g2J lf - y < z < 0 ’

Thus we see that the right hand side of (19) is equal to z(2—z). Now let

T"(a, ß, у, S) = (a„, ß„, y„, <5„).
Then we have

ßn ßn w" ,,
1 + «„У„ l+a„ 3 l

4n
qn Уп

Since it is possible to show that there exist constants jj2, 0<?;2<1, and C2>0 
such that

we see that if 

then

4n
—Уп <  СгчЪ,

L (T n(«, ß, У, 8j) И Xz(T"(a, ß, 0, 0)),

ßnZ - C 2r\l 5Í
1 + «пУп

S  z+CrfZ-

From (19), it is easy to estimate that

i  Д { z - C t r , l  3= S Z + Q ^ + c c .

Thus, by using Borel—Cantelli lemma,

#{n: z - C 3i?gg- / V  ^  z + C 2i?o]< + °°

for almost all (a, ß, у, <5). Consequently,

#{«: Xz{T"(<x, ß, у, S)) *  x2(T"(a, ß, 0, 0))} <  + ~  

for almost all (a, ß, у, d) and this completes the proof of this theorem.
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In this paper we shall continue and finish the proof of Theorem A of [7]. We 
should mention that in cross references with respect to [7] the number 7 will be 
omitted. Thus 6.1 (ii) will refer to condition (ii) in Section 6.1 of [7] etc.

Sections 7 and 8 are of preparatory character while Section 9 deals with an 
important existence theorem. Based on it Section 10 completes the proof of Theo
rem A.

7. Continuous paths

We first recall some notions and simple facts from [1] and [3]. Thereafter two 
lemmas about subdivision of certain paths will be formulated and proved.

7.1. First recall from [3] the notion of the /-category.
An i-category is a category 'ii together with a contravariant functor S' : 7? -*4, 

suchthat SF ■ SF=id% and Sr(B) = B for each object В of 'if.
We shall use the symbols c6 \ 3 '  etc. for /-categories. If 7Г= (7f, S') is an /-cat

egory then the class of objects (morphisms) of 7? will be denoted by Ob ((S (Мог 7Г)- 
For any af Мог 7Г, a' may also be written instead of S' (a), a is the involutoric 
conjugate of a. Any morphism a: A-+A' of A" is said to be closed if its domain is 
the same as its range, i.e. A=A'.

7.2. Now recall some further notions from [3].
Let У be a topological space. A (continuous) path K: q-*z (q, zf_Y) of Y  

is a class of equivalence of continuous mappings / :  [b, c] Y ([b, c] is a degenerated 
(b = c) or a proper closed interval (b<c) in the space of the reals R) such that 
f(c) = q, f(b)= z  where the mappings / :  [b, c] — Y  and g: [b',c'] — Y  are said 
to be equivalent if there exists a strictly monotonous increasing epimorphic function 
s: [b, c]-*[b', c'] for which gos=f.

An element / :  [b, c] — Y of the equivalence class K: q~+z is said to be a 
representative of the path K.

7.3. Let K: q—u be a continuous path of Y  and f:  fb, с] —У a representa
tive jafJL  The subspace f([b, c]) of У is called the body of К  and it is denoted 
by К. К is obviously well defined.

* Research supported by Hungarian National Foundation for Scientific Research Grant 
No. 27—3—232.
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7.4. Now let fi: [c,d]-*-Y be a representative of Ifi: q-+u and fi:  [b,c]-*Y 
a representative of A2: u ^ z .  Then K2Kp. q-*z is defined as the equivalence 
class of the mapping g: [b ,d ]^Y  where g |[„,C]= /2 and g|[Cii/]=/i.

In this way we obtain a category Жу. The objects of Жу are the points of Y 
and the morphisms are the continuous paths of Y.

7.5. To each path A : q~*z of Жу we can assign a path A': z^-qdMor Жу 
such that if / :  [b, c \ ^ Y  is a representative of A and h: [b, c] -*[b, c] is defined 
by the formula h(x)= b+c—x  then fo b  is a representative of A‘.

The category Жу together with the functor !F: Жу-*Жу: K<-+K' is an /-cat
egory (see [1] 2.8). We shall denote it by Жу.

7.6. If A: q-+q is a closed morphism of Жу i.e. a closed path of Y  then q 
is said to be the base point of A.

7.7. Next, in accordance with fl] 5.9, we mention that a closed path A: q^-q 
of Y  is said to be a Jordan path if there exists a representative / :  [b, c] -* Y  of A 
for which b ^ c  and if b ^ x t < x2 = c then f ( x 1)= f(x2) implies хг = Ь and x2=c.

Notice that if A: q-»q is a Jordan path then each of its representatives has the 
properties described above.

It is also to be noted that if Y  is a Hausdorff space then the body A of each 
Jordan path A of Y  is a closed Jordan curve.

We now turn to the subdivisions of a continuous path A.
Let Y  be a T2 -space.
7.8. D efinition. Let A be a continuous path of F. A representation of the form 

K=Km...K 2Ifi is said to be a subdivision of A. A,, ..., Am are the factors and m 
is the degree of this subdivision.

7.9. R emark. Let A =A m...A1 be a subdivision of the continuous path A 
of F. We then have evidently K=Km U ... U Rx.

7.10. D efinition. Let A be a continuous path of F and let fl be an open covering 
of the space A. The subdivision A=Am...A1 of A is said to be a refinement o f ß  
if for i =  l, ..., m Ki is contained in a member of fl.

7.11. R emark. Let A be a continuous path of F  and let fl be an open covering 
of the space A. Then there is a subdivision K=Km...K1 of A which is a refinement 
of fl (see [1] 3.6).

7.12. D efinition. Let A be a closed path of F. The closed path K ' of F is 
said to be the image of A by rotation — and we write A '~ A  — if there is a sub
division A =A aA1 of A such that A ' =  A1A2.

7.13. R emark. ~  is a relation of equivalence on the set of continuous closed 
paths of F  (see [1] 4.2). Thus the class of continuous closed paths of F decomposes 
into equivalence classes with respect to the relation ~ .

7.14. D efinition. The equivalence classes o f the relation ~  are said to be 
directed families of paths of F. For any continuous closed path A of F we write Kr 
for the directed family of paths of A i.e. K£Kr.
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7 . 1 5 .  R em ark . If K ~ K ' for any closed paths К  and K' of Y  then we have 
evidently K=K'.

7 . 1 6 .  L emma. Let К  be a continuous closed path of Y and let Q={UX, U.,} 
be an open covering o f the space К such that K<tUx and K f:U 2. Then there is a 
K '£K r and a subdivision K ' = K2m... К2 K[ of K ' such that the relations

#,_!<= f . ' c [/2 and
hold for i= l,.. .,m .

P r o o f . Let us consider the set of degrees of all subdivisions of the paths of 
Kr which are refinements of Q. 7.11 shows that this set of positive integers is non
empty. Consequently there is a minimal element m0 in this set. Since Ref. L\ and 
K (fU 2 taking also 7.15 into account we get m0^2 . Select K f_K r and the sub
division
(72) K ' =  K ’mi)... K K [
such that this subdivision should be a refinement of Q.

Observe that for i= 1, ..., m0— 1, K(UK{+1 cannot lie neither in Ux nor in U2, 
since otherwise

K ' = К'Пй ... K[+fK 'w K {)K U  ... K{

would be a subdivision of K' of degree m0— 1 which is a refinement of Q.
On the other hand U K'm<1 cannot lie in the same member of Q, since other

wise for the continuous closed path К"=К'та_г ...K 2K[K'ma which belongs to K r 
as well, the subdivision K"=K'mo_x... K2 {K[K'mo) of degree m0—1 would be a 
refinement of Q.

Consequently m0 must be an even number: m0 = 2m and we have two pos
sibilities.

(a) К{с:иг. Then (72) is clearly a subdivision of the required type.
(b) K[czU2. Then consider the continuous closed path K " = . . .K{K’ma 

of K r and for i = l ,  ..., w0— 1 let Kf+1=K(. Moreover let K^=K'„a. Then the 
subdivision K" = Kfm...Ki is of the required type indeed and this proves the 
lemma. □

Now we turn to the simple and Jordan paths.
7 . 1 7 .  D efin itio n . Let v be a simple arc in Y  with the endpoints qx and q2. 

Then there exists a unique continuous path К : qx q2 with K=v and such that 
the representations of К  are injective maps. We denote this path by [q2vqi\. Paths of 
this type are called proper simple paths.

7 . 1 8 .  D e fin itio n . T o each point q of Y, i.e. to each object of гЖу there belongs 
a unique identity eq: q-*q of JYr . These identities are said to be degenerated simple 
paths and their bodies are the degenerated arcs of Y. For each degenerated arc {q\ 
of Y  the point q is said to be the endpoint of {q}.

If v is a degenerated arc with the endpoint q then instead of eq we also write [qvq].
7 . 1 9 .  D e fin itio n . By an arc of Y  we mean a simple arc or a degenerated arc 

of Y. By a simple path of Y we mean a proper or a degenerated simple path of Y.
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7.20. R emark . Let v be an arc of Y  with the endpoints q and q'. Let q" be an 
arbitrary point of v. Then there is a unique arc vx(zv with the endpoints q and q" 
and a unique arc v2c:v with the endpoints q' and q". Moreover we have

[qvq'] = [qv1q"][q"v2q'].
On the other hand let K=[qvq'] and K=K1K2. Then there is a unique q"£v 

such that Kx=[qvx^], K2= [q"v,q'] and vx, v2 are the same arcs as before. More
over we have v1Uv2=v (cf. [1] 5.6).

7.21. R emark . Consider the com p osition

Í4ovi4i][<hЩ<h\ Vlm-ivmqm]
of simple paths of Y. Then we shall also denote this composition by

[<loViqiv2q2 ...qm-iv mqm].
Then we have obviously

\ 4 o v l  • • • v k Ч к \[ Ч к ЮкУ 1 Vm Я т \ =  ••• v k 4 k  v k  + 1  ■•■v m Clm]
and

[qoVj, ...vmqm]‘ = [qmvm

(see [1] 5.7).
In particular if [qvq'] is a simple path of Y  then

(73) [qvq']' =  [q'vq]
(see also [1] 5.5).

7.22. R emark . Let К  be a Jordan path and let K' be the image of К  by rotation 
(see 7.12). Then K ' is a Jordan path as well (see [1] 5.9).

7.23. R emark . Let K=K1...Km be a subdivision of the Jordan path K. Then 
there are two possibilities excluding each other:

(a) Exactly one of the factors Kt is equal to К  and the other factors are degen
erated simple paths (trivial case).

(b) m S2, each Kt is a simple path and at least two of the factors are proper 
simple paths (nontrivial case) (see [1] 5.11).

7.24. R emark . Let К  be a Jordan path and K = K 1. . .Km a subdivision of K. 
For i'= l, ..., m — 1 let K i = K t: qi-*qi+i. We then have obviously Km= K m: qm̂ q 2. 
Let l s / '< ( '" s m .  Suppose that qv Y-qt- . Then

Ki.U ...U K r - 1 = v
and

^ U - . U ^ U ^ U . - . U ^ - x  =  v'
are simple arcs where

vUv' = К  and vClv' = {qv , qr ).
On the other hand if qf=qi" then one of the compacts KvU ... U a n d  

£,» U ...  U U £  U ... U is ^  itself and the other is a singleton (see [1] 5.14).
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7.25. R emark . Let /  be a Jordan curve and let qx and q2 be distinct points of J. 
Let vx and v2 be the two simple arcs with the endpoints qx, q2 contained in J. Then 
K —[q1v1q2v2q1] is a Jordan path with the body J  (see [1] 5.17).

Consequently each Jordan curve is the body of a Jordan path.
7.26. L emma. Let J  be a Jordan curve o f Y and let N be a proper closed subset 

of J  {NczJ and N 9^J) with at least two points. Let W be an open subset o f J  con
taining N  and different from J (N czW aJ  and W ~/J). Then there exists a Jordan 
path o f the form

К — \qI v2mq2mv2m~l q2m-i ••• Ч2 ь\Ял\
such that

(a) K=J,
(b) qx, ...,q.2m£N,
(c) for /=  1, 3, ..., 2m — 1, vj is a simple arc and only the endpoints o f these 

arcs belong to N,
(d) for j= 2, 4, ..., 2m, Vj is an arc and VjCW.
P r o o f . Let K" be a Jordan path with K"=J. 7.25_shows the existence of 

such a A". Let Q={W, J \N } . Q is an open covering of K "= J  such that K"<t W 
and K "< tJ\N . According to 7.16 there is a K fK " r and a subdivision
(74) К' = К  
such that for i= l, ...,m  the relations
(75) ^ _ lC J\]V , KfalV, K't< tJ \N
hold. By 7.22, K' is a Jordan path as well.

Now for j= \ ,  ...,2m — 1 let K[=K{: ql—ql+i. We then have obviously 
^2m—dC2m ■ Я2т~*~Ч1ш

It will be convenient to introduce the following notations. For i, j f  {1, ..., 2m} let 

i ® j  = ! +*,„ j  and i Qj = i - 2m j
(see 3.1). In particular

fi +  1 if i <  2m 
(ф1 = 11 if i = 2m.

Under these notations for /=  1, ..., 2m we have

Щ = Щ-. q'j -  q'jei ■
Now (75) and 7.23 show that (74) is a nontrivial subdivision of K ' hence each 

К} is a simple path. Consequently for j=  1, ..., 2m one has
Щ =  [q'jeiv'jq}\

where v]—K} is an arc in J. Moreover we have

(76) K '= [q1v2mq2m ... q-^qi].

Since for j — 1,..., 2m the endpoints q] and q'J@1 of v} belong to W П ( J \N )  and 
by (75) v'j=Kj <t W f) (J \N )  it follows that v] is a simple (nondegenerated) arc.
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Consequently if /,_/£ {1, 2m} and j$  {i, i® 1, i©  1} then
(77) v'jHv'i = 0
(see [1] 5.13).

Now for i =  m let N2i=Nr\v'2i. (77) shows that N2, . . . ,N 2m are pair- 
wise disjoint sets and by (75) we have

N =  Z N 2i.
i = l

Since for /=  1, ...,m  we have v2i<tJ\N , it follows that N2i is a nonempty 
compact subset of v2i. Let us take the natural order <  of the points of % where 
q'u^q'ucB-t- Let q2i be the first and q2iS)1 the last element of N2i with respect to this 
order. Thus we get three uniquely determined subarcs v2i, v2i and v2i@1 of v'2i such 
that the endpoints of v2i are q2i and q2i, the endpoints of v2i are q2i and q2i91 and the 
endpoints of v2i@1 are q2iel and q2i@1. Since q2i and q'u<bx belong to J \N ,  it follows 
that v2i and % ei are simple arcs but v2i might degenerate. Also, observe that

(78) i£, П N = f e }  and v'2iei П N  = {q2im}.
Moreover for / — 1, ..., m we have by 7.20

(79) K2i = [^2>©l%?2i] — [q2ieiv2leiq2iSlv2iq2ivu9ii]’

Now for i=l ,  ...,m  let

(80) i>2i—1 =  u2;U r2;-iU í̂2í—l •

We are going to show that v2i- 1 is a simple arc.
In fact for i =  l, ...,m  let

u'21'-1 =  v'2i U ... U v'2m\Jvi U ... U u2' ;_2.

In particular v'1=v'2ö  ... Uv2m. According to 7.24 v'n~l is a simple arc with the 
endpoints q'a-i, q2i and we have

v2i- if)v  21 1 — {q^-i, ?2i}-
Since
(81) r2i—iCZu2;02 and v2icz v2i

it follows ^ U r ^ i c r ' 2" 1. We also have %Пи2г_1 =  0. This follows obviously 
from (81) and (77) if m&2. If m=  1 then N2=N, consequently N2 has at least 
two points and thus q ^ q ^ x —qy  Hence the subarc v2 of v2 with the endpoints 
q2 and q2 is disjoint to the subarc v291=v'i of v2 with the endpoints q1 and q[. 
v2ir\v2i_i is empty (for the only /=  1) also in this case. These considerations show 
that ь’аг- i is a simple arc with the two distinct endpoints q2;-i and q2i indeed. 

Observe that for /=  1, ..., m we have by (80), (78) and (75)

(82) П N  = {#2;-i, <72;}.
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Moreover by 7.20 we obtain

(83) \ .^ 2 iv 2 i—l?2i-l] ~  [ ^ 2 i v 2 i ^ 2 i v 2 i - l 9 2 i - l v 2 i - l?2i-ll-

Now by (76), (79) and (83) we get

К  =  \ ,q \ V 1 Ц х v 2 m 9 im v 2m 4 i m  v 2 m - l  ■ 

—  \ eh v l 4 Ú \ . 4 l v 2 m 4 2 m v 2 m - \

Consider now the path

• • v3q3v3 q3v3q3v2 —

• 7;! v 2 чА \.Чг v 2 q> r'i qA-

K — [q± v3m q%m V2111 — 1 • • • r/4 v3q3 v2 q^\[q3v3 72 vi qA [<7i r’i 7i] —

— \qiV2m4im V2m- 1  • • • q3 v 2 4Á \Яг vl4\\ — iqiv2m 2̂mv2m-l #3 ü2 V 1 9ll-
We clearly have K£K'r and thus K£K"r (see 7.13 and 7.14) which implies K = K "= J  
(see also 7.15). On the other hand 7.22 shows that

A — [ q \ V i m q 3 m v 2 m - l 4 2 m - \  ••• <72̂1 f7l]
is a Jordan path.

Hence the conditions (a) and (b) of the proposition are fulfilled. (82) shows 
that condition (c) is satisfied as well. Since for i=l ,  ..., m v3i<z.v'2i=K3i and K3i<^W 
(see (75)) it follows that (d) is satisfied, too.

This completes the proof of the Lemma. □

8. Linking paths and curves

This section collects the notions and results about linking Jordan curves elab
orated in [6]. Also, it deals with linking closed paths. In addition, we shall formulate 
and prove some simple facts and lemmas about these subjects.

First we recall the notions and results of [5] and [6].

8.1. By a homology theory we always mean a partially exact homology theory 
defined on the category of compact pairs. For a homology theory H  and a com
pact space X  we denote by Ht{X) the /-dimensional homology group Hf X)  for 
/> 0  and the reduced zero-dimensional homology group for /=0. If / :  X-*Y  is 
a continuous mapping then / / ,( /)  or also / / ( / )  will denote the map of Й,(Х) 
into H ,(Y ) defined by the induced map /*: Ht(X )^ H t(Y).

8.2. A mapping u: AXB—C where A, В and C are abelian groups is said to 
be a bihomomorphism if the following condition is satisfied:

u(a + a', b + b') = o(a, b) + u(a', b) + o(a, b') + v(a', b').

We say that a bihomomorphism u: A XB-+C is trivial if u(AXB)=0.

8.3. Now suppose we are given the и-dimensional euclidean space R", two 
homology theories H  and H ' an abelian group C and nonnegative integers t, t' 
satisfying the relation t + t'= n — 1. A theory of linking o f compacts in Rn for the
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homology theories H  and H ' is a map 83 = 9 3 which makes correspond 
a bihomomorphism

»U.M-: Й (М )Х Й '(М ')  -  C
to each ordered pair (M, M ') of disjoint compact subsets of R", such that for any 
compact subsets M, M ', N, N ' of R" satisfying M a N , M 'czN ' and of course 
NClN '—Q, the condition

«0 =  vNiN-(Ht(i)(u), Ht’,(i')(u'))
is satisfied for every u£Ht(M) and u'€_Ht'.(M') where i: M<zN and i': M 'czN ' 
are inclusion maps. The group C is said to be the range of the theory 93.

Notice as a direct consequence of this definition that if 93 =  9 3 ‘s a 
theory of linking of compacts in Rn and M, N, M ' are compacts in Rn such that 
M c J V c (k \M ')  then

»m.m'O , u') = vN'M (Ht(t)(u), u')
holds for every u£Ht(M) and u Йг'(М г) where i: MczN  is the inclusion map. 

Likewise holds the relation

for every и£Й,(М) and mT  where V: M 'czN ' is the inclusion map and
N 'a (R n\M ) .

8.4. We shall say that the theory of linking 93 =  93n,H',c,t,t' ° ‘ compacts in 
R" is degenerate if for every nonintersecting compact subsets M, M ’ of R",
is a trivial bihomomorphism.

8.5. We say that the spheres S  and S ' of dimension t and t ' respectively con
tained in Rn are mutually linked if the following conditions are satisfied:

(a) t+ t'= n —1,
(b) the center of S  belongs to S '  and the center of S ' belongs to S,
(c) the planes R and R' supporting S  and S '  respectively intersect in a line,
(d) R and R' are perpendicular in the natural sense that any vectors a in R 

and a' in R' which are perpendicular to the line R  П R' are mutually perpendicular.
And now the uniqueness and existence theorem of the theory of linking leads 

as follows:
Let H  and H ' be any homology theories. Let C be an abelian group. Let t, t' 

be nonnegative integers such that t + t'= n — 1 and let S, S ' be mutually linked 
spheres in R" o f dimension t and t ' respectively. Then for every bihomomorphism

»„ =  <)„: f l t(S)XH t' f S ' ) ^  C 
there exists one and only one theory o f linking

— <U

o f compacts in Rn which takes the value o0 on the pair (S, S').
8.6. Let p be a prime number and G' an elementary cyclic p-group, i.e. G' 

is isomorphic to the additive group Z p of integers mod p. Let H ' be a continuous
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homology theory defined on the category séc of all compact pairs and based on the 
coefficient group G'. Then H ' is isomorphic on sdc to the Cech homology theory 
over G'. We shall keep it fixed in the sequel.

Let R" be the и-euclidean space where nШ2 and let P be a compact subspace 
of R".

Let H  be a homology theory and let и be an element of Д ,_2(Р). Let C be an 
abelian group and let 93 =  33H,H',c,n- 2,i be a theory of linking of compacts in Rn.

D ef in it io n . A Jordan curve /  of Rn\ P  is said to be a linking Jordan curve 
of и (with respect to 33 = ®л,н',с,„-2л) if there is a u'fH', (J) such that 
Vp,j(u, u') A 0.

8.7. R emark. Let /  be a linking Jordan curve of u. Then for each nonzero 
element и{ of (J) we have

vP,j(u, u[) Z 0
(see [6] 2.2).

8.8. T heorem . Let p and H ' be the same as in 8.6 . Suppose that G is an ele
mentary cyclic p-group and H  is a continuous homology theory defined on the cat
egory o f all compact pairs and based on the coefficient group G. (We shall keep it 
fixed in the sequel, too.) Let C be an abelian group. Suppose that 33 = 33я ,н'.с,п- 2д 
is a nondegenerate theory o f linking of compacts in R" where пШ2. Let P be a com
pact set in R" and щ a nonzero element o f Д ,_2(Р). Then there exists a linking Jordan 
curve o f u0 with respect to 3? (see [6] 2.3).

8.9. We now show the existence of a nondegenerate theory of linking of the 
required type.

First observe that there exist continuous homology theories H  and H ' defined 
on the category of compact pairs such that their coefficient groups are isomorphic to 
Zp. (The coefficient group of a homology theory H  is H0(P0) where P0 is the one 
point space with the only element 0, i.e. Po={0}.)

In fact, let H = H '= H 1( •, Zp) where 7/ 1 (•, Zp) is the Cech homology theory 
over Zp on the category of compact pairs.

Observe that since the coefficient groups of H  and H ' can be considered as 
compact LCA-groups it follows that the homology theories H  and H ' are exact 
(see [8] p. 248).

Next, for n ^ 2  there are mutually linked spheres S  and S ' in K“ of dimen
sions n—2 and 1 respectively (see 8.5). Now both of the groups Hn̂ 2(S) and 
H ((S')= H {(S') are isomorphic to Zp. Let Zp be the range of the theory in ques
tion. Let u, u' and u" be generators of ÍJ„-2(S), Hi (S') and Zp respectively. Now 
for the rational integers k, k' let

Then the mapping
v0(ku, k 'u ') = kk'u'fiZp. 

u0: Hn_2( S ) X H ; (S ') ^ Z I>

is well defined and it is a nontrivial bihomomorphism. Hence by the uniqueness 
and existence theorem of the theory of linking there is a theory of linking 
33 =  33H(H,jZj;j„_2tl of compacts in Rn which takes the value o0 on the ordered pair

Acta Mathematica Hungarica 52, 1988



п о М. BOGNÁR

(.S', S'). © is clearly a nondegenerate theory of linking. We shall keep it fixed in the 
remainder of this section. Hence R n will be kept fixed, too.

8.10. Let (X , A) be a compact pair in R n homeomorphic to (£’n~1, S'"-2) 
where £"-1 is an (n— l)-ball in i ?"-1 and Sn~2 is the boundary sphere of E”~x. 
Such a compact pair (Z, A) will be called an (n-l)-cell in Rn. Let i/r: En~1-+X 
be a homeomorphism. Then il/(Sn~2)=A.

The compact pair (Z, A) as well as En~ \ S"~2, Rn_1 and the homeomorphism 
i//: En~x-+X will be kept fixed in this section.

8.11. D e f in it io n . A Jordan curve /  lying in Rn\ A  is said to be a linking 
Jordan curve of A  (with respect to 33) if there is a u f fín_2(A) such th a t/is  a linking 
Jordan curve of и (see 8.6 and 8.8).

8.12. R e m a r k . Let J  be a linking Jordan curve of A. Then for each nonzero 
element щ of Я„_2(А), J  is a linking Jordan curve of щ.

Indeed, select и£Й„_2(А) and u'C-H[(J) suchthat vAtJ(u, n')Z0. Defini
tions 8.11 and 8.6 show the existence of such elements u and u'. Since Я„_2(А) is 
isomorphic to Hn- 2(S"~2) and thus to Zp it follows the existence of an integer m 
suchthat u—mux. Consequently

0 Z v a, j («, Ю = W)
and this implies oAt](u1, u')?±0. Hence /  is a linking Jordan curve of u1 indeed.

8.13. Let q be the metric in R n. This metric will be kept fixed in this section. 
Now we are going to formulate and to prove a lemma about linking Jordan

curves.
Lemma. Let J  be a linking Jordan curve o f A and let s= q(A, J). Let (X \ A') 

be an (n~ ] )-cell in Rn as well and suppose that there is a topological mapping 
f ' :  A-+A' such that for each y€ A, e (y ,//(j))'=ß- ThenJ is a linking Jordan curve 
o f A’, too.

P roof. Let
w  = u  \y, f ' ( y )]yiA

where for y£A [y,f'{y)\ is the segment in Rn joining у  and f'(y). Then W is clearly 
a compact subset of Rn and we have (AÖ A')czlV  and 1СП/=0. Select м€Я„_2(А) 
and u fH [{J)  such that vAtJ{u, u f^O . Since /  is a linking Jordan curve of A, 
there exist such u and u .

Let ij: A a W  and z2: A 'a W  be inclusions. Then ip. A  ̂W  and i2f ':  A -- W  
are clearly homotopic maps and thus

fí(.h) (u) = H(i2)H (f')(u).
Consequently

Oa , j ( u . u )  =  v цг^(Н(ц)(и), u’) =  о w,](H(i2)H (f')(u), u') =  vA-,j(H(f')(u), u')

(see 8.3) and thus v>A,j(H (f')(u), u ) ^ 0.
/  is a linking Jordan curve of A' indeed. □
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8.14. R em a r k . Let /  be a Jordan curve lying in X \A ,  Then J  is a nonlinking 
Jordan curve of A.

In fact, since J a ( X \A )  it follows il/~1(J)cz(E"~1\ S n~2) (cf. 8.10). Let 
E'"~l be an (n— l)-ball lying in E n~1\ S n~2 and containing t/ ^ 1 (./). Let N '=  
= ij/(E'n- 1).

N ' is a homologically trivial compact set containing J  and lying in X \A .  
Let i': J  C-N' be the inclusion map. Let и and u' be arbitrary elements of Hn_2(A) 
and Hí (J) respectively. Since N ' is homologically trivial it follows that H[ (i') (u')=0. 
Consequently

va,j (u> «') = va,n‘{u, H[(i')(u)) = 0 

which proves the assertion.

8.15. The preceding remark shows that for each linking Jordan curve J  of A 
we have J \ X  ̂  0.

We now prepare the definition of a linking path of A.

8.16. First recall the existence of an important function described in [4] 11.
Let Y= nR \A .  Then there is a function * which makes correspond to each

continuous closed path К of Y  (see 7.2 and 7.6) an element A* of H{(K) (cf. 7.3) 
satisfying the following conditions:

(a) For each continuous path Kx of Y (K1 need not be closed) (A"1A'i)+=0 
(cf. 7.4, 7.5 and [4] 14).

(b) If Kx and K2 are continuous paths in Y  such that both of the products 
KXK., and K2KX exist (and thus K1K2 and АкА\ are closed paths), then (KlK2).M = 
= (* 2*i)* (cf. ]4: 15).

(c) If Kx and K2 are continuous closed paths of Y  with the same base point 
and K=KXK2 then

h*'(Ki*)+hAK2J  =

where for / = 1,2 г',*.: Н[(КА-*НЦК) is the homomorphism induced by the in
clusion if. K j d K  (cf. [4] 16).

(d) If К is a Jordan path of Y  (see 7.7) then Kx A0  (cf. [4] 13).
We keep fixed this function * in the sequel.
And now we turn to the definition of the linking path.

8.17. D ef in it io n . A continuous closed path К  of Rn\ A  is said to be a linking 
(closed) path o f A (with respect to 93) if there is а и? Я„_2(Л) such that 
vA,K(u, KJAO  (cf. also 8.16).

8.18. R em a r k . Let К be a linking closed path of A. Then for each nonzero 
element щ of Hn_2(A) we have va,r(ux, K J X 0.

In fact, let и be an element of /7„_2(d) such that K f  X 0. Definition 8.17
shows the existence of such a u. Then there exists an integer m such that u=mux 
(see 8.12). Hence

0 ^  »a,r(u, K J  = тъАЛ(щ, Kf)

and this implies Юл.кОб- If*)5^0 indeed.
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8.19. R em ark . The function * described in [4] which makes correspond to 
each closed path if of Rn\ A  an element if* of H[ (K) is not uniquely defined. 
However, if * and are such functions described in [4] then there is an integer m 
such that for each closed path К in X \ A  we have K^ = mKt- (see [4] 12). Con
sequently for u £ H „ - 2 ( A )  the relation v a , r ( u , 0  implies

0 5* vAtR(u, lnK, ,) = mvA'R(u, *V)
and thus da , r ( u , AT) AO, i.e. the fact that К  is a linking closed path of A fails to 
depend on the special choice of the function *.

8.20. R em ark . F o r  any Jordan path К  lying in R " \A , К  is a linking closed 
path of A iff К  is a linking Jordan curve of A.

In fact, let 0 ^ u € H n„2(A). By 8.16 (d) we have 0. Hence according to 
8.12, К  is a linking Jordan curve of A iff da,r(u, if* )^  0 and by 8.18 this relation 
holds iff К is a linking closed path of A.

8.21. R em a rk . Let К  be a closed path lying in an open ball S(q, e) con
tained in R "\A  i.e. K aS{q , e)czR"\A. Then К is a nonlinking closed path of A.

In fact, let 0 t±u€ Hn- 2(A) and let Y ' be a closed ball in S(q, e) containing K. 
Such a ball obviously exists. Let / ':  K e  Y ' be the inclusion map. Since Y ' is a 
homologically trivial compact space and thus H ((Y ')= 0, we get H((i')(KSr)=0 
whence

t>a,g(w> k *) = v A , r ( u ’ = »a.rOh 0) = 0
indeed.

8.22. R em a rk . Let J  be a Jordan curve lying in an open ball contained in 
Rn\ A .  Then J  is a nonlinking Jordan curve of A.

In fact let if  be a Jordan path with J = K (see 7.25). The assertion is now an 
immediate consequence of 8.20 and 8.21.

8.23. R em ark . Let if  be a continuous closed path of Rn\ X .  Then if  is a 
nonlinking closed path of A.

In fact, let исД ,_2(̂ 4) and let i: A c X  be the inclusion map. Since X  is 
homeomorphic to the closed ball £ '1-1 it is contractible to a point over itself con
sequently it is homologically trivial and thus Й„_2(Х )—0. Hence

K*) =  vXtK(H(i)(u), if*) = ид-,£(0, if*) = 0. 

if is a nonlinking closed path of A indeed (cf. 8.17).
8.24. R em ark . Let /  be a linking Jordan curve of A. Then /Г ITV0.
In fact, let if be a Jordan path with K = J  (see 7.25). Then by 8.20, if is a linking 

path of A and thus by 8.23 we have

JD X  = K H X ^ ß .

We now recall from [3] the definition of the category homomorphism.
8.25. D efin itio n . Let YY be an /-category (cf. 7.1) and M  an abelian group. 

A relation ц : YT-^M which maps the class of the closed morphisms of YY into 
M  is called a category homomorphism if it satisfies the conditions
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(i) for each a£ Мог 'if we have rj(m’)=0,
(ii) if ax, a2£Mor 'if and axa2 is defined and it is a closed morphism then

Ц (ai аг) = ^(«2 ai)»

(iii) if ax, <x2 are closed morphisms of 4>' with the same domain then

^(«Л ) =  /?(«!) +  »?(а2).

8.26. R emark . Let 'if be an /-category, M  an abelian group and r\\ 41’-+M a 
category homomorphism. Let o r .  A-+A be a closed morphism of 'if. Then /7(a*) =

In fact, the properties (iii) and (i) of 8.25 imply 

i/(a) +  ?/(a') =  ц  ( a x ' )  =  0
indeed.

8.27. Let 0?±и£Нп- г(А) and let Y = R "\A . Now to each continuous closed 
path К  of Y  we can assign the element p(K )= vA,R(u, 7<Q of the group Zp where 
Zp is the range of the theory of linking 33 =  23H_H, Z ,„-2,1 (see 8-9). 8.18 shows 
that К is a nonlinking path of A if and only if p(K)=0. Moreover 8.16 (a) and 
8.16(b) show that the relation /1: pfy’-+Zp satisfies the conditions 8.25 (i) and 
8.25 (ii). It satisfies 8.25 (iii) as well.

In fact, let Кл and K2 be closed continuous closed paths of Y  with the same 
base point and let K=K1K2. For j —1,2 let /,•: KjtzK  be the respective inclusion 
map. Then taking also 8.16 (c) into account we get

niKyKz) = vA<R(u, K J  = vAtR(u, iw (Ku )+i2y(K2>,)) =

= va,r(u, iw(Ku )) + vAiRu, i2̂ (K 2J) = vAiRl(u,Ku ) + vAiRt(u, K2jf) = p{Kx) + p{K2)

Hence the relation p: ZTy ^ Z p is a category homomorphism.
We shall keep fixed this category homomorphism in the following two sections.

8.28. R emark . Let К be an arbitrary continuous path of R n\ A  — Y  (К  need 
not be closed). Then by 8.25 (i) we have p(KK') = 0 and thus K K ‘ is a nonlinking 
closed path of A.

8.29. Lemma. Let qu  ...,q m be points o f Rn\A .  For / =  1, m—1 l e t  
Kp. qi~+qi+i and K{: q^qi+x be continuous paths in Y = R n\ A .  Also, l e t  
Km: qm-*qx and K 'm: qm-»qx be continuous paths in Y=Rn\ A .  Let

K = K m ... K2KX and K ' = K ’m... K2K f

Suppose that for i=  1, ...,m  the closed path Щ К{: qr*qi is a  nonlinking p a t h  
o f A and that K': qx-+qx is a nonlinking path o f A as well. Then K: qx-+qx is a  
nonlinking path o f A.

P roof. Let Y= R n\ A  and let и be a nonzero element of 77„_2(d). Consider 
the category homomorphism p: 3fy—Zp described in 8.27 i.e. let p(K") =
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= о a,R'(u’ К") for any closed path K" of Y. Since K', K{K{, ..., K’mK'm are non
linking closed paths of A we get
(84) p(K') =  ц (K{ Kl) = ...=  (K-m К'т) = 0.
Taking also 8.18 into account we only need to prove that ju(K)=0.

We proceed by induction. First let m=  1. Then K = K 1 and K ’=K[ are 
closed paths with the same base point qx. Hence by 8.26, (84) and 8.25 (iii) we obtain

h(K) = -n (K ‘) = ~ (p(K ’)+p(K')) = -g (K 'K ')  = -tx(K[Kl) = 0 
as required.

Now suppose that m>  1 and that the assertion is true if we replace иг by m — 1. 
Let

—1 '  KmKm — 1 - 4 m  — 1 4 l ’ ^ m  — 1 K m K m — l*  4  m —X 4x

and for 1= 1, 2 let K t=Ki and K[=Ki. We then have

(85) K = K m_1Km̂ . . . K 1 and K ' =  K'm. xK'm̂  ... K[.

On the other hand, taking also 8.25 (ii) and 8.25 (iii) into account, by (84) we get

=  Ц(Кт^К'тК^К'п.-г) = g(K'm̂ K 'm^ K 'mK'm) =

=  ß (K'm̂ K :n^ )  + lx(K-mK'J = H lK m -x K ^  + tiiK m K ) = 0.

Moreover, in the case тшЪ for г'=1, ..., m —2 we have ц(К\К'0=р(К\К()=0. 
Consequently, by (85) and by the induction hypothesis we obtain g(K) = 0 
indeed. □

8.30. C o r o lla r y . Let у  and y' be distinct points o f R”\ A  and let v, v' and v" 
be simple arcs in Rn\ A  all with the endpoints у  and у'. Suppose that [yvy'] [y'v'y] 
(see 7.17) and [y'v"y\[yv'y'] are nonlinking closed paths o f A. Then [yv"y'][y'vy] 
is a nonlinking path o f A as well.

In fact, let
Кx = \y'vy], K2 = [yv"y'],

Kl =  [y'v'y] and K( = [yv'y'].

Then by assumption K{K( and KlK( are nonlinking paths of A. However K [= (K ff 
(see 7.21 (73)) and thus by 8.28, KlK[=Kl (Kl)‘ is a nonlinking closed path of A 
as well. Consequently by Lemma 8.29

K2Kx = [yv"y'][y'vy]
is a nonlinking path of A indeed.

Now we are going to prepare the main lemma of this section.

8.31. L em m a . Let V be a nonempty subset o f X \ A  which is open in X. Then 
there exists a Jordan curve J  in Rn\ A  such that J  is a linking Jordan curve o f A and 
JO X= JO V.
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Proof. Let 0 ^-u C H n_2(Ä ).
Since i/j~1(X \A )= E n~1\ S n~2 (see 8.10) it follows xl/-1(V)czEn- 1\ S n- 2. 

is clearly a nonempty open set in J?"-1. Let qf\j/~ r(V) and let S(q', e) 
be an open ball in Rn_1 around q' lying in ф~г(У). Let W= \jj(S{q', e)). We then 
have WczV.

Sn~2 is a deformation retract of E"~1\S (q ',  e). Hence A is a deformation 
retract of the compact set X \JF . Thus for the inclusion map i: A cz(X \lV )  the 
induced homomorphism г'*: Hn_ 2 (T)-*Hn_2( Z \ 1L) is an isomorphism (see [8] 
p. 30). Consequently we have Д ,-2(()(к)=г)(и) ^ 0  and thus by Theorem 8.8 and 
8.9, there exists a linking Jordan curve /  of Hn- 2(i)(u) with respect to 5B.

Let 0 y u fH [{ J ) .  Since J  is a linking Jordan curve of f ín_2(i)(u) taking also 
8.7 into account it follows

u ' )  =  v x \ w , j ( H n - 2 ( i ) ( u ) ,  и ' )  F  0 .

Hence /  is a linking Jordan curve of A and since J D X c W  we get

indeed. □
J D X = jr \W  =  JEW

Now we formulate the main lemma of this section.
8.32. Lemma. Let V be a nonvoid subset o f X \ A  which is open in X. Then there 

is a Jordan curve J '  in R " \A  such that
(i) J ' is a linking Jordan curve o f A,

(ii) J 'n x = J 'D V ,
(iii) J ' f l X  is connected.
Proof. Let q£V. Let G be a spherical neighbourhood of q lying in Rn\ A .  

Let Vx be a subset of X \ A  homeomorphic to E"~1\ S n~2 open in X \ A  and 
satisfying the condition q£Vx<zVC\G. Such a Vx clearly exists. Let /  be a Jordan 
curve in Rn\ A  such that /  is a linking Jordan curve of A and JC\X=JCWx. 
By 8.31 there exists such a J. If /П  Vx=JC\X is connected then J  is of the required 
type. Hence we can suppose that N = jr)X= JC \V1 is nonconnected. Consequently 
taking also 8.24 into account, N  consists of at least two points. On the other hand 
8.15 shows that N A J.

Let W =GEJ. W is an open subset o f / .  Since VxciG and N = J C\VX it 
follows N ^  W. 8.22 shows that J  <tG and thus W AJ.

Let us take a Jordan path of the form
К = \qxvimqimvim- xqim- x... q2vxq^

satisfying the conditions (a), (b), (c), (d) of 7.26. By 7.26 there exists such a K. Since 
K=J  and /  is a linking Jordan curve of A it follows by 8.20 that К  is a linking 
closed path of A.

Now for i =  l, ..., 2m— 1 let v[ be an arc in Vx with the endpoints qt and qi+x 
and let v'2m be an arc in Vx with the endpoints q2m and qx. Since N = JD V xc:Vx 
and Vx is homeomorphic to E n~1\ S n~i it follows the existence of such arcs 
vx, ..., v2m. Let

К = [qxv2mq2m... q2vxqx].
Since K'czVx(zG it follows by 8.21 that K ' is a nonlinking closed path of A.
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Now for i =  l, 2m— 1 let

Ki Qi 4i+ii Ki [qi+1Viqi]. q, —*■ cfa+̂
and let

X 2 m =  \.(i l V2m 4 b A  '■ Чът 4 l  a r *d ^ 2 ra  =  [ d l  V2m (?2m] '■ 4 ‘lm  4 \ -

Thus K = K 2m.. .K2K1 and K ' = K 2m ...K2K { .
Now for j —2, 4 , 2m we have

KJKj' =  Kj U K'j =  Vj U Vj c ( ( f U  Vj) c  G,

consequently by 8.21, KjK- is a nonlinking closed path of A. Thus there is an 
/6 {1, m} such that

# 2 i - l  "*■ Í 2 Í - 1

is a linking closed path of A since otherwise by 8.29, К would be a nonlinking closed 
path of A. Consider such a linking closed path of A.

%_! is a simple arc with the endpoints q2i_x, q2i and thus rái-i is a simple 
arc with the same endpoints. On the other hand we have v ^ - iC Vt a X  and

1>21-хГ\Х =  ^ i - i П У П Х  =  v 2j—1 П N  == {q 2i ~ i > ? 2 i}-

Consequently u2;_j U t>2i- i  is a Jordan curve J '  where

K2i-iK2i—i = i9 2 (- i l

is a Jordan path with the bod)' / '  (see 7.25). Thus 8.20 shows that J '  is a linking 
Jordan curve of A.

On the other hand the set J '  CiX=v'2i- 1 is connected and since t4_xc  K jC f 
we have J ’ D X = J ' OV. Thus J '  satisfies all the requirements (i), (ii) and (iii) of 
the assertion. The proof of the Lemma is complete. □

9. The main existence theorem

This section concerns systems of и-bricks lying in Rn+1 i.e. where the bodies 
of the systems are topological subspaces of the (n-fl)-euclidean space R"+1. Systems 
of such kind determine local orderings on their bases. This fact will be prepared 
in this section by an important existence theorem.

Let и be a positive integer and let (У, D ,f)  be a system of и-bricks (see 5.1) 
such that Г is a subspace of Rn+1. Let (Bn, q>) be a coordinate pair of (У, D, f )  
(see 5.1). We shall keep them fixed in this section.

9.1. N o t a t io n s . B" is an и-brick in R". Let Я"“1 be the boundary of B".
For q£D denote f ~ 1({q}) — <p{BnX{q}) (see 5.1 (26)) by Bq. Let Aq = 

=  <р(Тл- 1 X {#}). Aq is clearly independent of the special choice of the coordinate 
pair (Bn, <p). Aq is said to be the boundary of Bq. (Bq, Aq) is clearly an и-cell in Rn+1 
(cf. 8.10).

Observe that B" is the closure of B"\A"~l in B" and thus for q£D Bq is the 
closure of Bq\ A q in Bq.
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Let R+ be the set of positive reals.
For the points x, y£Rn+1 let n(x, y) denote the distance between them.
9.2. D efinition. The ordered pair ( U, V) of open sets U, V  in Rn+1 is called 

regular (with respect to {Y, D ,fj)  if V c U  and if for each q£D Bq П F X 0 implies 
that BqC\V is confined to a component of UПBq (see also [2]).

9.3. R emark. Let (U, V) be a regular pair with respect to (Y ,D ,f ) and let 
q, q' be distinct elements of / ( F  (T Y). Then Bq П F  is contained in a component 
of U \B q..

In fact Bq= f  1 ({ry}) and Bq.= f 1({q'}) are disjoint sets, consequently the 
component C  of Uf]Bq containing Vf )Bg lies in U \B q. and thus C  is con
tained in a component of U \B q,. Hence Bq(~)V is contained in the same com
ponent of U \B q

9.4. D efinition. The ordered pair (U, V) of open sets U, V  in Rn+1 is said 
to be normal (with respect to (Y, D. f  j) if it is regular and for any three pairwise 
distinct q i,q 2,q 3£D where BqiD V ^0 , BlhП f V 0 and B93f l F ^ 0  there is a 
permutation (h ,i2,h) of (1,2,3) suchthat

(a) (Bq UBq )i~)V is confined to a component of U \B q ,
*i H *з

(b) {Bq is confined to a component of U \B q ,
h *3 h

(c) Bq CIF and Bq. f lF  lie in distinct components of U \B  .
*1 *8 44

Now the existence theorem mentioned at the very beginning of this section 
reads as follows.

9.5. Theorem. Let q0£D and y0€Bqo\ A qo. Let U1 be an open neighbourhood 
o f y0 in Rn+1. Then there is a normal pair (U, V) with respect to (Y, D , f ) such that 
y ^ V a U ^ U ,.

We now prepare the proof of this theorem by a preliminary remark.
9.6. Let X  be a compact space, Y' an arbitrary topological space and Z a metric 

space. The metric in Z will be denoted by q'. Let t/r: Z X T ' —Z  be a continuous 
mapping. Let q£Y' and s£R+. Then there is a neighbourhood W  of q in Y ' 
such that for each x£X  and q'f_ IV we have

в'(Ф(х, q), ф(х, q’)) <  a.

In fact, denoting by S{z, r,) the open ball in Z of radius q and center z, select 
for each x£Z  the open neighbourhoods Ux of x in X  and F(x) of q in Y ' such that

jlf(UxXV ( x ) ) c s [ i Kx ,  q), l ) .

Then for each x'tU x and q 'qV (x) we clearly have

в'(Ф(х', q), ф(х', q 'j)< s.
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Selecting now a finite subcovering {UXl, ..., UXk} of the open covering {Ux\ x£X}  
of the compact space X, the neighbourhood W —V(xx) П ... П V(xk) of q fulfils the 
requirement.

Now we are going to the proof of Theorem 9.5.
9.7. Let p  and H ' be the same as in 8.6. Let H  be the same as in 8.8.

Let SB — be a nondegenerate theory of linking of compacts in R"+1.
8.9 shows the existence of such a theory SB.

In the remainder of this section we shall keep fixed the number p, the homology 
theories H  and H ’ and the theory of linking SB.

9.8. For any r\£R+ denote by Uirj) the open ball in Rn+1 with center y0 and 
radius t] (y0£Bqo\ A qo (see 9.5)).

Now select ek£R+ such that

(86)

and
(87) U(2sj) c  Ux.

Ux is an open neighbourhood of y0 in 7?"+1 (see 9.5). Let
( 88) U = U( 2ex).

Let x 0(z Bn be defined by the relation <p(x0, q0)=y0 (see also the very beginning 
of this Section 9). Then лг0€В',\ Т " -1 (see also 9.1).

Let Z  be an open ball in Б " \Т ',_1 c  R" with center x0 such that
(89) (p(Zx{q0})cz U(El).

Then ^>((ßn\Z ) X f e 0}) is a nonempty closed set containing Aqo and being dis
joint to the singleton {y0}. Let

(90) е2 = в {Уо,(р ((Bn\ Z )  X {<?„}))•
However Bqa is a connected set and thus taking also (89) into account we get 
(91) 0 < e2S b1.

Now U
( r ' !)

C\Bqo is a nonempty subset of Bqi\ A qo which is open in Вво-
Let /  be a linking Jordan curve of A (with respect to SB) in Вп+1\  А„а such that
J  П Bqo is connected and

U (t ^) ПД,

As we have seen in 8.32, there exists such a Jordan curve J  (see also 8.24). 
Let v be a simple arc in J  with the endpoints у and y ’ such that

(92) J ^ B qoa  v czU
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and

(93) У,У'$В90.
Since by 8.15 J  ct Bqo, there exists such a simple arc v. Moreover (92), (91) and (88) 
show that
(94) VC.U.

On the other hand у  and y' are the endpoints of exactly one simple arc v in /  
which is distinct from v, and we have
(95) vH v' = {y,y'} 
and
(96) vUv' = J.

Consequently taking also (92), (93), (95) and (96) into account we get v' П Bqo=0. Let
(97) a 3  =  q ( v ' ,  B J .
We then have

(98) 0 <  £3 < y £ 2 < « i

and by (96), (97), (92), (90) and (98) we get

(99) q{J, (p((Bn\ Z ) X {(/„})) ^  83.
Let W  be an open neighbourhood of qa in D such that for each xZB" and 

qf W we have
(100) g ( ( p ( x , q 0) , < p ( x , q j ) < E 3 .

According to 9.6 there exists such a W.
Select e4(: R+ such that

(101) £4 — ез 
and U(e4) is disjoint to f ~ 1(D \W )  i.e.

(102) С(84)П /-Ч О \Ж ) =  0.

Since y0£ ßeo=/ _1(feo}) it follows that y0d Y fails to belong to the closed sub
set f ~ 1(D \W ) of Y. Consequently there exists an s4 with the required properties. 

Now let
(103) V = V (e4).
We then have
(104) c l / c t / j .

Hence for proving Theorem 9.5 we only need to show that (U, V) is a normal 
pair with respect to (F, D,f).
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The proof of this last statement proceeds in several steps. For the sake of brevity 
if  we refer to the formulas of this last section we omit the sign of the section, i.e. 

nstead of 9.8 (92) we only write (92).
9.9. By (102) and (103) we have f(VC \Y)c.W . Thus for any q<PD the rela

tion VTlBq^ 0  implies q£W.
9.10. For q£W, instead of (p(ZX {q}) we also write Zq.
Now let q£ W. Then by (100) and (98) Bq\ Z q lies in the у  e2 neighbour

hood of Bqo\ Z qo. Thus by (90), (98), (101) and (103) we have v n (B q\ Z q) = Q. 
Consequently taking also 9.9 into account for each q£D we have (FH 5?) c Z r

9.11. Let q£W. Then by (100) and (98), Zq lies in the ex-neighbourhood of 
Z qo and thus taking also (89) and (88) into account we have Zqcz U. Consequently 
for q£D VPlBqX0  implies Zq<z U and thus Z?c  UC\Bq.

9.12. The ordered pair (С/, V) is regular with respect to (Y, D ,f ).
In fact, (104) shows that F c t / .
Now let q be an element of D such that BqflF ^O . Then by 9.10 and 9.11 

we have
Bqn V c z Z qc  UOBq.

However Zq= \Jj (Z X {<y}) is homeomorphic to the connected open ball Z in R'f 
and thus Z q itself is a connected set. Consequently, it is contained in a component 
К  of Uf]Bq. Hence BqC\V is confined to the component К of BqC\U as well. 
Thus the pair ({7, V) is regular with respect to (F, D, f )  indeed (see 9.2).

9.13. We now show that for qf  W  the Jordan curve J  defined in 9.8 is a linking 
curve of Aq.

In fact, since Z c JB"\T',~1 we have An~1czBn\ Z  and thus Aqoa B qo\ Z qo. 
Consequently (99) implies g(J, AqJ x s a.

Observe also that both of the pairs (Bqo, Aqo) and (Bq, Aq) are /г-cells in Rn+1. 
Now for each y" = r[/(x, q<>)£Aqo let

Ф ( у " )  =  4> i x ,  q ) d A q .

The mapping ф: Aqo-»Aq is clearly well defined and it is a homeomorphism. On 
the other hand (100) shows that for y"€Aqo we have e(y", ф(у"))<£3.

Hence by 8.13, /  is a linking Jordan curve of Aq indeed.
9.14. (99) and (100) show that for each q£W,

УП5, =  JHZq.
9.15. (100) and (97) show that for each qdW  we have v'ClBq=0 and thus

Jf )Bq = ( t/\{y ,y '} )n 5 e =  vC\Bq.
9.16. (86), (88), (98) and (100) show that for q(LW we have UP\Aq = 0.
9.17. Let -c be the natural order on the simple arc v with y< y' where у and 

y ’ are the endpoints of v (see 9.8). We shall keep fixed this order <  in the remainder 
of this section.
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Let qd W. Then by 9.13, 8.24 and 9.15 we have
0 A  JC\Bq = vf]Bq.

Denote by yq the first and by y'q the last element of the nonempty compact set vf)Bq 
in the order < . According to 9.15 we then have obviously

У <  Уч =  y'q <  / •
On the other hand, 9.14 shows that

(105) yq,y'qdZq.
9.18. Lemma. Let qdW and let уг and yi be points o f v such that

У <  У1 <  yq S  y'q <  Ух <  у'.
Then there is no simple arc in U \B q with the endpoints jy and y i .

P roof. We argue by contradiction.
Suppose the existence of a simple arc v[ in U \B q with the endpoints yx and y i . 

Let vx be the subarc of v with the endpoints y\ and yi. Then by (94) we have vxc:U 
and thus the continuous closed path [yiv1yi][yiv'1y1] is contained in the open ball 
U where by 9.16 U is disjoint to Aq, and thus by 8.21 this path is a nonlinking closed 
path of Aq.

On the other hand let
v'i = (J\ri)U{>-j,y;}.

v'i is a simple arc in J  with the endpoints yx and yi and distinct from vx. Moreover 
we clearly have ViC]Bq=&. Thus [yiv'lyyilyyrjyi] is a continuous closed path 
lying in Rn+1\ B q, consequently by 8.23 it is a nonlinking path of A q as well. 

Hence 8.30 shows that
K = [y 1v'iyi][yiv1y1]

is a nonlinking closed path of Aq. However, by 7.25 К  is a Jordan path with the 
body J  and thus by 8.20, /  is a nonlinking Jordan curve of Aq in contradiction 
with 9.13.

The assumption about the existence of the simple arc vi in U \B q was false. 
There is no such simple arc indeed. □

9.19. Lemma. Let qx and q2 be distinct elements o f W. Then y ?l< y 42 implies
j4 < j v

P roof. We argue by contradiction. Suppose that

У.П <  Уч. =  Уч. <  Уяг-

Then yqiA yqr Let vi be a simple arc in Z4l with the endpoints y4i and y'qr  Since 
yqi,y qf Z qi (see 9.17, (105)) and Z?1 is homeomorphic to the open ball Z, it fol
lows the existence of such an arc vi. Now the arc vi lying in Z ^ c B ^  is clearly 
disjoint to Bq2. On the other hand, by 9.11 we have rjcz U and thus r j c  U\Bq2. 
But this is impossible by 9.18.

Thus y4l-=y«2 implies y\< y'q% indeed. □

Acta Mathematica Hungarica 52, 1988



122 M . BOGNÁR

9.20. L emma. Let qx, q2, q3 be distinct elements o f W  such that yqi<yq,<yq3- 
Then Z qi U Z42 is contained in a component of U \B q3 and Z43 U Z43 is contained 
in a component o f U \B qi.

P r o o f . By 9.19 we have у41< у '2< у '3. Let vx be the subarc of v with end
points yqi and yq„ and let v[ be the subarc of v with endpoints y '2 and y'q3. We then 
clearly have

V i^B q3 = W, v1DZqi^ 0 ,  Z42 0,

vinBqi = 0, v'xn z q3* 0, v in zq2^ 0

(see 9.17, (105)) and by (94) we also have i^U v[<zvcz U. Thus taking also 9.11 
into account, ZqiU Z q2U vx is a connected subset of U \B q3 and Z42 U Z43 U vx 
is a connected subset of U \B qi. Consequently, the subset Z „U Z 4! of Z qi U Z42 U vx 
is contained in a component of U \B q3 and the subset Z92UZ43 of Z q2 U Z?3 U v[ 
is contained in a component of U \B qi indeed. □

9.21. L emma. Let qx, q2 andq3 be distinct elements o fW  such that 
Then Z9i and A 3 lie in distinct components o f U \B q„.

P ro o f. By 9.19 we have y4l-=y®s-=y43.
Since Z4| and Z q3 are connected sets, 9.11 shows that for /=1, 3, Z4. is con

tained in a component of U \B q3.
Now if Z4i and Z q3 were contained in the same component of U \B q, then 

by y®,€Zii and yq3£Z q3 there would exist a simple arc v[ in U \B q, with end
points yqi and y '3. But this is impossible by Lemma 9.18.

Thus Z?i and Z q,, lie in distinct components of U \B qi indeed. □

9.22. We now finish the proof of Theorem 9.5 by showing that (U, V) is a 
normal pair with respect to (F, D ,f ) (see 9.4).

First observe that by 9.12 the pair ({/, V) is regular with respect to (F, D,f).
Now let qx, q2, q3 be three distinct elements of D such that for /= 1 ,2 ,3 , 

Bq.C\V7±0. Then by 9.9 we have qx, q 2 ,qs£W  and by 9.10 for /=1,2 ,3  one has

(106) F i l ^ c Z , ,

Let ix, i2, i3 be a permutation of 1, 2, 3 such that

Obviously, such a permutation exists.
Now by (106) and by Lemmas 9.20 and 9.21 we have
(a) (Bq. U Bq ) П V  is confined to a component of U \B q ,
(b) (Bq. U Bq ) П V  is confined to a component of U \B q ,

*2 *3 h
(c) Bq. П V and Bq П V lie in distinct components of U \B q (see also 9.3).h *3 . h
(U, V) is a normal pair with respect to (F, D, f )  indeed.
The proof of Theorem 9.5 is complete. □
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10. Systems of и-bricks in Rn+1

In this section we continue the investigations which have been started in the 
preceding section. We describe exactly the notion of local ordering determined 
by a system of и-bricks lying in Rn+1. We also examine systems of и-bricks in Rn+1 
joined with respect to a joining function.

Finally we show that the и-dimensional solenoid cannot be embedded in Rn+1 
and we finish the proof of Theorem A.

Let и be a positive integer. We shall keep it fixed in this section.
10.1. Let (Y, D ,f ) be a system of и-bricks such that У is a subspace of Rn+1. 

For q£D let Вв= / _1({с/}) and let Aq be the boundary of Bq (see 9.1).
10.2. Let (U, V) be a normal pair with respect to (Y, D ,f)  (see 9.4).
Denote by M(y 'D,f) or — if there is no confusion — by M v the subset f (  V П Y)

of D. My is clearly an open subset of D (cf. 5.1).
The triadic relation Rffi v’)f) on M v is defined as follows: For q, q', q"£M v let

(q, q', q * )Z R $ №
if BqDV  and Blf, П V lie in distinct components of U \B q, (see also 9.3).

The ordered pair (Mv, R\a\v’) ]) is clearly an ordered set (see 9.4 and 6.1). 
Observe that if there is no confusion we write R(u,v> instead of ВЦ] Dv f .
10.3. Let (U, V) be a normal pair with respect to (Y, D ,f) and let q£M v = 

= f(V П Y). Then the sides of q in (Mv , R (u,v)) (see 6.4) are open subsets o f D.
In fact, by the definition of R(u,v) for (/', q"£Mv\{q } , q' and q" belong to the 

same side of q in (M v , R (UtV)) (see 6.4) if and only if VC)Bq, and V П Bq- are 
contained in the same component of U \B q (cf. also 9.3 and 9.4). Hence the non
empty sides of q in (Mv , R(U,v)) are the projections by /  of the traces of certain 
components of U \B q in VClY.

More exactly, if {Zß; ß£Bj is the set of the components of U \B q and 
Bx = {ß£B; ZßD VD Y Z  0}

then Bx has at most two elements and the nonempty sides of q in (Mv, R(U<vß are 
the sets f{Z ßCWC\Y) where ß runs over Bx.

Now observe that since U \B q is an open subset of the locally connected 
space Rn+1, it follows that each Zß (ß£B) is open in U \B q and thus it is open in 
Rn+1. Consequently for ßdB^ ZßD VO Y  is open in Y  and since / :  У—D is an 
open map (see 5.1) it follows that the nonempty sides f (Z ßr\VC\Y) (ß(zBx) of q in 
{My, R(u,v)) are open subsets of D.

The empty sides of q in (Mv, R^.v)) are clearly open in D as well. Thus each 
side of q in (M v, R(u,v)) is an open subset of D indeed.

10.4. Let VczU aU ' where V, U and U' are open subsets of Rn+1. Suppose 
that both {U, V) and (U \ V) are normal pairs with respect to (Y, D ,f ). Then

-fyu, v) — lo
in fact let qx, q2, q3ef(V i)Y ) = My. Suppose that (qx, q2, q:i)£R<v,v) i-e. 

that Bqi П V and Bq3 П V are contained in distinct components of U '\B q2. Then
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by U<zU', Bqi(~)V and Bn ClV are clearly contained in distinct components of 
U \B q2 as well (see also 9.3) and thus (qx, q2, q:t)€JR(Ut v)- 

Now suppose that
(Ю7) (qx, q2, (lz)§.R(u\v)-
If qx, q2, q3 are not pairwise distinct then we have (qx, q2> ci:dfiR<u,v)- Suppose 
now that qx, q2, q3 are distinct elements of f ( V П Y). Then there is a permutation 
(/1; i2, i3) of (1 ,2 ,3) suchthat

(Ю8)

and thus according to the preceding argumentation we have

(109) (G h ^ h ^ iX ^ iu .v )-
However, by (107) and (108) we have i2^ 2  and since (Mv. R(U,v)) is an ordered 
set it follows by (109) that (qx, q2, q3)$ R(u,v)) (see also 6.1). Hence R<u,v) —R(v, У) 
indeed.

10.5. Let (U, V) be a normal pair with respect to (Г, D ,f)  and let V  be 
an open subset of V. Then (U, V') is obviously a normal pair with respect to (Y ,D ,f) 
and we clearly have

R(U, V') =  R(V,V)\mv ’
(cf. 6.3).

10.6. Let q£D  where D is the same as in 10.1. Let Eq be the system of all 
ordered sets (M, R) such that q£_M and M  is an open subset of D.

Now the ordered sets (Mx, R x) and (M2, R2) of Eq are said to be q-com- 
patible — and we write (Mx, R1) ^ ( M 2, R2) — if there is an open set W in D 
suchthat q£W <^(М1ПМ2) and Т?1|)у=Л2|ж.

The relation ~  is clearly an equivalence on Eq (cf. 6.3).

10.7. Let (U, V ) and (U V ' )  be normal pairs with respect to (У, D ,f). 
They are called neighbouring normal pairs if either V czV 'cU =  U' or F 'c F c  
czU=U' or V = V '^ U c :U ' or V —V'czU'ciU.

Now let q£D  and let (U, V ) and (U \ V') be neighbouring normal pairs 
with respect to (Y , D ,f)  such that

q£f(VD Y) П /(V 'O Y )  =  M v (T M y .
Then by 10.4 and 10.5 we clearly have

{Mv , R^u.v)) ̂ (M y , R(v ,v')Y
10.8. For q£D, let E* denote the set of normal pairs ({/, V) with respect to 

(Y, D ,f)  satisfying the condition q£M v= f(V f)Y ).
By a q-chain we mean a finite sequence

s = (U1,V 1),...,(U k,Vk)
in Z* such that for 1=1,... Tt—1 (17,-, VJ and (C7i+1, Vi+1) are neighbouring 
normal pairs. We say in this case that ({7X, FT) and (Uk, Vk) are connected by the 
q-chain s.
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The normal pairs (U, V) and (£/', V') of Z* are said to be q-connected — and
we write (U, V )^ (U ', V') — if there is a «/-chain connecting (U, V) and (U \ V ). a

The relation «  is clearly an equivalence on Z*
Moreover, taking also 10.6 and 10.7 into account we can state that

(U,V) f (U',V')
implies

( M y ,  R ( V , V ) ) ^ ( M y ,  R(U',V'))-

10.9. R em ark . Let q£D and (U, Then КП(В4\ Т в)^ 0  (see also 9.1).
In fact, since (U,V)£Z* we have q€f(VO f) and thus VC\f~1({q}) =

= V П Bq ̂  0. However, V V\Bq is an open subset of Bq and Bq itself is the closure of 
Bq\ A q in Bq (see 9.1) consequently we clearly obtain F(T(5?\ T e) ^  0.

10.10. L emma. Let q f  D. Then for arbitrary two elements (U \ V') and (U", V") 
o f I* we have (U', V ')^ (U ", V").4

Proof. First observe that
(no) u j i / f K ^ v g ;  (u> v k z *} = B f\A q.

This follows immediately from Theorem 9.5.
In the remainder of the proof we argue by contradiction. Suppose that 

(U ',V')£Z*, (U",V")£Z* and (U', V') and (U", V") are not ^-connected.
Let Z*1 be the set of (U, V)iZ* satisfying the condition

(U, V) «  (U \ V )4
and let Z*2=Z*\Z*1. We then clearly have
(111) (U\ V')eZ*\ (U",V'%Z«.
Now for i= l ,2  let

Gt =  u  { F n ^ v g ;  (и , v)ez*‘}.
Then by Z *=I*4JT *2 and by (110) we have G1UG2 =  5i\ T ?. By (111) and 
10.9, G, and G, are nonempty open subsets of B„\A„ and since Ba\ A a is a conn
ected set it follows Gx П Go ̂  0.

Let y£Gi nC 2. Select (С/х, V1)eZ*1 and (U2, V2)eZ*2 such that yeV 1HV2. 
Let (Us, Vo) be a normal pair with respect to (Y, D ,f) such that

y e V zd U ^ V , n v2.
By 9.5 there exists such a normal pair (U3, V3) and we have obviously (U3, V3)£Z*. 
Nov/

S =  ( (U ^ V f (Uy V3), (U3, V3), (U2, V3), (U2,V2))
is a //-chain connecting (Gl5 Vj) and (U2, V2) (see also 10.5). Consequently 
(Ui, V])zsz(U2, V2) and “thus by (U', V ')^ (U 1, V,) we have (U2, V2)^ (U ',  V')
and this yields (U2, V^^Z*1 in contradiction with (U2, V2)dZ*2.
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The assumption about the existence of (U', V'), (U", V")£Z* which are not 
^-connected was false. Hence arbitrary two members of Z* are ^-connected indeed. 

The proof of the Lemma is complete. □
10.11. Notice as a direct consequence of 10.10 that for q£D and for any two 

members (U V ' )  and (U", V") of Z* we have

R (V”,V"))
(see also 10.8).

10.12. Let q£D  and y£Bq\ A q. Let G and W  be open neighbourhoods of у 
in Rn+1 and q in D, resp. Then there is a (U, V)£Z* (see 10.8) such that y £ V a  
c [ / c C  and q£f(V<AY)=MvCLW.

In fact, f ~ 1(D \W )  is a closed subset of Y  and by f(y )  = q£jV we have 
y $ f - \ D \ W ) .

Let Ux be an open neighbourhood of у in Rn+1 such that U1C\f 1 (D \W ) = 0 
and thus q£f(Ul C}Y)czW. Such а Ux clearly exists. Now let (U, V) be a normal 
pair with respect to (Y, D ,f) such that

yeV dU ciU .D G )
(see 9.5). We then have (U, V)£Z*, y£V cU (zG  and

qef(V D Y) = Mv(=f(Ui nY)czW
as required.

10.13. Let q€_D and y£Bq\ A ir Let G be an open neighbourhood of у in 
i ?"+1 and let (С/', V') be an element of Z*. Then there is a (U, V)£Z* such that 
y£V<^UczG, q ^ M y c M y  and

R ( U , V )  =  R ( U ' , V ) \ M y -

In fact, let (Ux, Vx) be a normal pair with respect to (Y ,D ,f) such that 
y€V x. By 9.5, such a pair exists and (Ux, VX)€Z%.

By 10.11 one has
(My1, R(Ui, Vj)) 'q' (M y  , R( U',V)) 

i.e. there is an open subset W  of D such that

q£W(z(MVin M y )  and Rfu^v^w — R(w,v')\w
(see 10.6).

Let (U, V) be a normal pair with respect to (Y, D ,f)  such that 
у c  Fez U<z (Li П G) c  (Ux П G)

and
q£f(yC]Y) = MvaW .

10.12 shows the existence of such a pair (U, V). Now by 10.5 (Ux, V)£Zq and 
we clearly have (U, V)ZZ*, y^V aU ciG , q£f(Vf] Y )= M va W c M y- and

R (u ,v )  =  R (Ui,v) ~  R (Vi ,v í )\m v  =  (•̂ (Ui.vpWImv = {r w , v ')\w ) \m v — R (v ' , v )\m v  

(see also 10.4 and 10.5) as required.
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10.14. Let q£D. Let (C/t , Vx) and (U2,V 2) be elements of Lq. Then there is a 
(JJ, V)€L* such that

qeM v d(M Vir)My2)
and

R ( U , V )  =  R ( U x, V i )\m v  =  R ( U 2, V 2) \ m v -

In fact, let >'(:(.В4\ Л 4)ПК1. By 10.9, such a у  exists. Let (JJ, V) be an element 
of L* satisfying the conditions

y^.V dU dV 1c.U1, qdMydMy.,, R(u,v) = R(.u2,vs)\mv -

10.13 shows the existence of such a pair (U,V). However, by yfV czV j we also have

qeM yd(M Vin M Vi).

On the other hand taking also 10.5 into account we get (их, V)£Zq. Moreover 
we have

R(Vi,Vi)\mv = -fyl/i.F) =  -R(U,V)

(see 10.5 and 10.4) as required.
10.15. Let q£D and let W be an open neighbourhood of q in D. Then by 5.1, (a) 

Bq= f~ x({q\)YV> and since Bq is the closure of Bq\ A q in Bq we get Bq\ A q^0 . 
Thus by 10.12 there is a (JJ, V)£Lq such that q£M v cW .

10.16. Let {(Ua, Fa); <x£A} be the set of normal pairs with respect to (F, D ,f). 
For oc£A, denoting by {M„, R J  the ordered set (MVac, R(u«,vx)) 10.15, 10.14 and 
10.3 show that

& = {(Ma,JQ; <x£A} 

is a local ordering of D (see also 6.8).
This is the local ordering determined by the system of n-bricks (Y, D ,f). We 

denote this local ordering by Q(Y>D’f \

10.17. Let (F, D ,f)  and (Y ',D , f ') be systems of и-bricks such that f U f ' c  
d R n+1. Let ф: D-+D be an autohomeomorphism of D and suppose that the 
system of и-bricks (F, D ,f) is joined to (Y \  D , f )  with respect to the joining 
function i/i (see 5.3).

For qdD we denote the s e t / - 1(fe}) by Bq and the boundary of Bq (see 9.1) 
by Aq. On the other hand, for q'£D we denote the set / ' “ ’({i/}) by Bq. and the 
boundary of 5 '. by Aq..

For any open set G of R"+1, G is said to be a joining set o f  (F, D ,f) and 
(Y \  D ,f')  with respect to ijj if G n F = G D F ' and if for each yGGflF we have
< K /o o ) = /m

For any joining set G of (F, D ,f)  and (F ', D ,f )  with respect to if/ and for 
each q£D we have
(112) G nB q = Gr)B'+(qy,

and if (JJ, V) is a normal pair with respect to (F, D ,f)  such that U dG  then ({/, F) 
is a normal pair with respect to (Y ', D ,f) .  Conversely, each normal pair (U, V)
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with respect to (Y ',D , f ') such that UaG, is a normal pair with respect to 
(Y, D ,f).

Normal pairs of this kind, i.e. normal pairs lying in a joining set will be called 
binormal pairs with respect to (F, D ,f ), (¥ ', D ,f ') and t//.

For the binormal pair (U, V) by (112) we have

•KA4y,D,/)) =  ^ (/(F flF ))  = / '( F f lF ')  = А ф -В-П
and

и щ т =
(see also 6.6).

10.18. Let (F, D ,f ), (F', D ,f') and ф be the same as in 10.17. Then for q£D
(Bq\ A q)n (B ^ q)\A 'M ) X 0.

In fact, let qfD . Let B" and B'n be properly joined и-bricks in Rn (see 5.2), 
W  an open neighbourhood of q in D and

(p: (BHUB'n)X W  -  f~ 4 W )U / '_1(ФС«7))

a homeomorphism such that for each q'u W  one has

(113) <p{B’" X W } ) = f - 1({q'}) = Bq. 
and

(114) <p(5'"X {</'}) = / ' - 1({lK?0}) =  К и п  

(see 5.3, (27) and 5.3, (28)).
Let in tBnflin t B'n (see 5.2). Then y —cp(x0,q ) belongs to both sets 

B ^ \A q and Вф(чу \Лф(Ч).
10.19. Let (F, D ,f), (Y', D ,f')  and ф be the same as in 10.17. Let q£D 

and у€(Вя\ А ч)П(Вф(9)\А'фМ). Then there is a joining set G of (F, D ,f)  and 
(F \  D ,f')  with respect to ф such that yfG .

In fact let B", B'n, W  and <p be the same as in 10.18. Then there is a unique 
x0(:BnUB"‘ such that cp(x0,q)= y  and by 10.18 (113) and 10.18 (114) we have

v0£int Bn flint B ' " .

Since y€F and by f(y)= q  у fails to belong to the closed subset f~ 1 (D \W )  
of F  it follows that there is an open neighbourhood U1 of у  in R"+1 being disjoint to 
f ~ 1 (D \W ). Likewise у  is in Y ' and fails to belong to the closed subset 
/ ,_1(D\i/^(lF)) of Y '. Thus there is an open neighbourhood V2 of у in Rn+1 being 
disjoint to

у  also belongs to c p ( ( B n U ß'")X lF) and fails to belong to the closed 
subset

<p (((Bn U 5"’) \( in t  Bn П int B ' n j )  XlV)

of q> ((13" U B'n) X W). Thus there is an open neighbourhood Us of у  being dis
joint to

cp (((5я U B '»)\(int Bn flint 5 '”)) XW ).
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Let G — U1 П U2 П U3. Then G is an open neighbourhood of у  and we have
GDF =  G f)Y' =  Gr\(p((mtBnr)m tB 'n)XW).

Thus for y'dGHF we have y' = cp(x', q') where x f int BnDint B'" and q' = 
=f(y ')£ W  (cf. 10.18 (113)). Consequently taking also 10.18 (113) and 10.18 (114) 
into account we get

«Я /60 ) =  iKe') = / ' ( / ) •
Hence the open neighbourhood G of у is a joining set of (F, D ,f)  and (Y \ D ,f )  

with respect to ip indeed.
10.20. L emma. Let (F, D ,f), ( Y \  D ,f )  and ip be the same as in 10.17. Let 

0  be the local ordering o f D determined by (F, D ,f) and 0 ' that one determined by 
(Y ' , D , f ) i.e. 0  = 0 (y'Dl/) and 0 '= 0 ^-D ,f) (see 10.16). Then i//(0 )~ 0 ' (cf. 
also 6.12 and 6.9).

Proof. Let q£D and q'=\p(q)£D. Select (Ma, Rq)£0  and (M*., 7?'.)€©' 
suchthat q£Mx and q f M f  We need only to show that there exists an {M '(1, R'ß)£ 0 ' 
such that

?'е м ;с ( ^ ( м , ) г ш ; )
and

Rß = RoL'\M’ß =  ll/ (R(x)\Mjl ■

First observe that for the sake of brevity we write [Mv,, R^u-.v)) instead of 
whenever (£/', V') is a normal pair with respect to (F, D ,f)  

and we write (M^., R{w,v)) instead of R fry f* )  whenever (U', V')
is a normal pair with respect to (Y \  D ,f').

Let y€(Bq\ A q) П(Вф(1])\Аф(11)) (see 10.18) and let G be a joining set of (F, D ,f)  
and (Y ', D ,f )  with respect to ip such that y£G (see 10.19). Let (Ux, Vx) be a 
normal pair with respect to (F, D ,f ) satisfying the conditions y£V x,

(115) q iM y ^ M ',  
and

(116) Д*|му —

Since (Ma,R ^= (M v.,R (V.tV,)) for some (U', V')€Y* (see 10.8 and 10.16), 10.13 
shows the existence of such a normal pair (Ux, Vx). On the other hand, let {U2, V2) 
be a normal pair with respect to (F ', D ,f )  such that y€V2,

(117) q' = iP(q)£MP^M;. 
and

(118) Rx \m'Ví — R{vlyVi)-

By 10.13, there exists such a pair (U2, V2). Finally, let (U, V) be a normal pair 
with respect to (F, D ,f)  such that
(119) у <E F c  t / c  (Vx П F2 П G) c  (Gj. П U2)
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(see 9.5). Then (U, V) is a binormal pair with respect to (Y, D ,f), (Y', D ,f ') and 
ф (see 10.17). Hence

(My, 7?(l/jV))C0, (My, R{u,V))£®'5
(120) Ф(Му) = M(r 
and

(121) ll/ (R(u.v)) — R(u,v)-
Moreover,
(122) q£My and q'4My.

However, by 10.5 (Ult V) is a normal pair with respect to (Y, D ,f)  and (U2, V) 
is a normal pair with respect to (Y ', D ,f')  and by 10.4 and 10.5 we get

(123) )\mv — R ( U 1}V) —
(124) M’v = R [ u 2, V)  — R[v,vy

Now taking also (122), (120), (119), (115) and (117) into account we obtain 

q'£My — ф (My) С ф (MVl) С ф ( M x) ,  q ' t M i ^  М(,г c M ’x,

and thus
д' е м ^ с ( ф ( м х)пм'а.).

On the other hand, (121), (123) and (116) show that

R ' ( U , V )  —  Ф ( К ( 0 , Г ) )  — ll/ ( R ( U i , V 1) \M ir )  =

=  Ф Ш му)\м’у = (Ф (Ю \имУ1))\M’v =  Ф(Ю\м(.

(see also 6.6 and 6.3).
Moreover, taking also (124) and (118) into account we have

R \ v , V )  — R ( V 2 , V 2) \m 'v =  ( K \ M 'V  ) lM'v  =  Д « ’1 M ’v -

Hence (My, R'(UtV)) ^ 0 '  satisfies all the requirements about (M’ß, Rß)£0' and 
thus we have ф(0 ) ~ 0 ' indeed.

The proof of the Lemma is complete. □

10.21. T heorem . An n-dimensional solenoid cannot be embedded in Rn+1.

P roof. We argue by contradiction. Let S„ be an и-dimensional solenoid deter
mined by the absolutely cyclic map ф: D -*D where D is a space homeomorphic 
to the Cantor discontinuum (see 4.6) and let h: Sn-^h(S,1)a R “+ 1 be a topological 
mapping of Sn onto the subspace h(Sn) of R"+1.

Let (У1; -D,/i) and (Y {,D ,fi)  be systems of и-bricks such that Yx and Y{ 
are subspaces of S„ and (У15 D ,/x) is joined to (Y{, D ,f{) with respect to two 
distinct joining functions. The first of them is the identical map idB of D and the 
second is ф (see 5.6).
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Let Y=h(Y1), Y'=h(Y{),
hí =  h\Yl: Yt -* Y, h[ = h\Y{: Y{ -  Y \  

f = f 1 hr1: Y  + D, f  =fíh[~1: Y ' D.
Then (У, D ,f)  and (Y ',D , f ') are systems of и-bricks such that У U Y 'czR " +1  

and (У, D ,f)  is joined to (¥ ', D ,f )  with respect to the joining functions idB and 
i/f(see 5.4 and 5.5).

Let 0  be the local ordering of D determined by (У, D ,f)  and 0 '  that one 
determined by {Y \ D ,f ') (see 10.16). We then have by 10.20

idD(0 ) = 0 ~ 0 ' and Il/(0 )~ O '.
Hence by 6.11 we have i/t(0)~0. But this is impossible by 6.14 (see also 6.13).
Sn cannot be embedded into Rn + 1  indeed.
The proof of the theorem is complete. □
10.22. Now we are going to prove Theorem A.
As we have seen in 2.3 we need only to show that the space of a connected 

but non locally connected и-dimensional LCA-group cannot be embedded in Rn+1.
However, by 4.9 the space of such a topological group has a subspace homeo- 

morphic to an «-dimensional solenoid, and thus by 10.21 the space of such a top
ological group cannot be embedded in ld'+1 indeed.

The proof of Theorem A is complete as well. □
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INTEGRAL ELEMENTS WITH GIVEN DISCRIMINANT 
OVER FUNCTION FIELDS

I. GAÁL (Debrecen)

1. Introduction

The main purpose of this paper is to give an effective algorithm to determine 
all integral elements with given discriminant in a finite extension of a function 
field of characteristic zero. We shall give some applications of our theorem to dis
criminant form equations, power integral bases and integral elements with given 
discriminant and given norm.

The analogous problem for algebraic integers with given discriminant over 
algebraic number fields has been already solved. Let L  be an algebraic number 
field and denote by 0 L the ring of integers of L. The algebraic integers a and a* 
are called Ol -equivalent if a — a*dOL. In this case for their discriminants DLM/L(oc) = 
= D L(a»)/z,(a*) holds. In a series of papers Győry [7]—[12], [19] obtained several 
effective results on polynomials with algebraic integer coefficients and given non
zero discriminant. As a consequence of these results Győry proved that there are 
only finitely many pairwise non-equivalent algebraic integers with given degree and 
given non-zero discriminant over L  and a full set of representatives of such integers 
can be effectively determined. These theorems were proved by combining Baker’s 
famous effective method (see e.g. [1]) with a so-called graph-method of Győry (cf.
[14] or [20]).

Later Győry [22] extended some of the above-mentioned results to the more 
general case when the ground ring is an arbitrary integral domain R which is finitely 
generated over Z (absolute case) or over a field к of characteristic 0 (relative case). 
He proved among others that if a is an element of a finite extension К  of the quotient 
field L  of R  and if a is integral over R  with given non-zero discriminant with respect 
to K\L, then a is А-equivalent to an a* (that is a —a*6R) where in the absolute 
case a* is of bounded size, and in the relative case a* is of bounded degree. (For 
the definition of the size and degree of elements of a finitely generated integral 
domain, see [22].) In the absolute case this theorem implies that there are only 
finitely many А-equivalence classes of integral elements in К  over R with given 
non-zero discriminant and a full set of representatives can be effectively deter
mined. In the relative case the bound given for the degrees of oc*’s does not, how
ever, imply the finiteness of the А-equivalence classes.

On the other hand, in a recent paper [3] Evertse and Győry showed that the 
number of such А-equivalence classes is finite also in the relative case and they 
derived a good bound for the number of А-equivalence classes. This implies that 
if in particular L  is an algebraic function field of one variable over1 к then there

1 We remark that in the function field case the ground field к is usually supposed to be alge
braically closed, but in [3] only a much weaker assumption is necessary on k.
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are only finitely many pairwise i?-inequivalent elements in K, integral over R, which 
have a given non-zero discriminant with respect to K/L. But this theorem does 
not make possible to determine effectively a full set of representatives of these jR-equiv- 
alence classes. Our main aim is just to give such an algorithm under some additional 
hypotheses concerning k. The proof of our result is based on Mason’s effective 
theorem on unit equations in three variables ([27], [28]).

2. Preliminaries concerning function fields

Throughout our paper we shall use the following notation, к will denote an 
algebraically closed field of characteristic 0. We shall suppose that к is explicitly 
given in the sense of Fröhlich and Shepherdson [4], which in our case means that 
we can perform all the field operations with elements of к and we can effectively 
determine the roots in к of any polynomial in one variable with coefficients in k. 
As usual /c(z) denotes the rational function field over k. Let A be a finite extension 
field of k(z).

Let us denote by QK the set of all (additive) valuations on К  with value group Z. 
For any non-zero ad К let

HK O) =  -  2  min {0, i'(a)}

be the additive height of a. Obviously H K(a) =0 if and only if adk. (If a= 0  
we may put H K(a) —0.) The additive form

2  v(a) =  0
v i S i K

of the well-known product formula implies that

H K(am) = \m\HK(a),
HK{aß) S  HK{a)+HK(ß), H K(a + ß) ä  HK(a) + HK(ß)

for any non-zero a, ßdK  and md Z. We remark that if L  is an other extension 
field of k(z) and L a  К then

i / K(a) -  [ K : L ] H l ( oc)

for any y.£L (see e.g. [21] or [28]). For other properties of valuations of function 
fields and of the height function we refer to Mason [28].

In our results L, M, К will denote finite extension fields of k(z) with L a M ^ K  
and [M :L\= n^2. We shall suppose that A is a normal extension of L. Denote 
by <Tl5 ..., <r„ the L-isomorphisms of M  in K.

Let Ok be the ring of those elements of К  which are integral over к [z] (that is 
у d. 0 K if and only if r(y )s0  for all finite valuations2 v in QK). We define Ol and 
Om similarly. Ok , ОL and 0 M are called the ring of integers of K, L  and M, respec
tively.

vPQk is called finite if s(z)SO , other valuations are called infinite (cf. e.g. [28]).
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Let Ql and QM denote the set of all additive valuations of L and M, respec
tively, with value group Z. Denote by S  a finite subset of 12 L, which contains the 
infinite valuations of L  and let R a  QM and Tc  QK consist of all extensions of 
the valuations of «S to M  and K, respectively. For the cardinalities of R, T  and S  
we have |i?|^[M:L]|5'|, \T\ s5[A':L][6'j. Let 0 L S be the ring of ^-integers of L, 
that is the set of those elements ydL for which v(y) ̂ 0  for all QL\ S .  We 
define similarly 0 MyR and 0 KyT. It is easily seen, that 0 LyS, 0 MyR, 0 K T are rings, 
k[z]QOl^ O Lis and similar assertions hold also for 0 MjR, Ok t . Further we have 
0 LySa  Om,r =  ОK'T. We remark that 0 L S is integrally closed in L, 0 K<T is an integral 
ring extension of 0 LyS and if a.' is the image of any 0 K T under an arbitrary L-iso- 
morphism of K, then af O KyT also holds.

If T0 is any finite subset of 12 K, containing the infinite valuations, then a non
zero element y£K is called 7',,-unit if т(у)=0 for all v£ QK\ T 0 (that is both у 
and y-1 are in 0 Ky To).

Finally, let g and r be the genus and the number of infinite valuations of K, 
respectively.

3. Results

In the following (5 will denote a given non-zero element of L. The elements 
a, a*€0KyT are called Ol s -equivalent if a —a*60ijS. If a^K  we shall write, 
for brevity, D(u) instead of DLfz)/L(a). Our main result is as follows:

Theorem 1. Suppose that a£0KyT is o f degree /гё  2 over L. I f  
(1) D(a) -  S

then a is Ol s -equivalent to an «*€ 0 K T which belongs to an effectively determinable 
finite set. Moreover Нк(ос*)Ш— HK(S) i f  n — 2 and

(2) # K(a*) s  2 (n -l)(3n -7 )(m + tf* (< 5)+ 2g-2 )
i f  n ^ 3.

In the following we shall denote by C the constant -^-HK{S) if и= 2  and the
constant on the right hand side of (2) if n ^3 .

We remark that the general estimates of Gy dry [22] concerning integral ele
ments with given discriminant over finitely generated integral domains yield also a 
bound for H K(a*) in the special case of function fields of one variable but our bound 
is much stronger. Similar remarks are valid also for our estimates (6), (9), (11) in 
Theorems 2, 3 and 4, respectively (see the results of Gy dry [22] and [21]).

In our papers [5], [6] we investigated some inhomogeneous generalizations of 
the problem of integral elements with given discriminant over numbers fields and 
finitely generated integral domains. An analogous result over function fields is the 
following:

Corollary 1. Suppose that a, Ok T and let n ^ 2  and m be the degree of 
a+A and a over L, respectively. I f
(3) D( a + A) =  <5
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and Нк (2) -

(4)

1
4 m (m — 1)

HK (D fa)) then a is О LS-equivalent to an oc*£0KtT suchthat 

Я * (а * )ё 2С.

In fact Theorem 2 of [6] also implies a bound for HK(a*) in the special case 
of function fields of one variable, but from our Theorem 1 we get a much better 
estimate here.

We remark that under the conditions of Corollary 1 oc may assume infinitely 
many pairwise Ol>s -inequivalent values. To prove this observe that by Theorem 1 (3) 
implies that a + 2  = a*+a where a* is an element of a finite subset of 0 KT and 
a£0LtS is arbitrary. The proof of Corollary 1 shows that the restriction on the 
height of 2 implies that Я is of bounded height. In fact, nothing more can be

1 - HK(D(of). Hence a = (a* — 2)+«expected as a consequence of I f K(/,)< ^mtm_  j^
where a* may assume finitely many values and I fK(X) is bounded. But under these 
conditions a* —2 may assume infinitely many pairwise 0 L S -inequivalent values, 
that is the finiteness assertion in the inhomogeneous case does not hold in general. 
We do not have finiteness assertion in Corollary 2 for similar reasons.

Mason [26], [27] (see also [28]) and [29] has derived an algorithm for solving 
Thue’s equations, hyperelliptic equations and norm form equations, respectively, 
over function fields of one variable. Now we apply Theorem 1 to give an algorithm 
for determining effectively all solutions of discriminant form equations over func
tion fields.

Gy dry [9], [10], [13], [15]—[18] and Gyó'ry and Papp [24], [25] gave effective 
bounds for all integer solutions of discriminant form equations over number fields. 
In this case the bounds for the solutions make possible to determine all solutions. 
These theorems were extended by Gyó'ry [21], [23] to the case of equations con
sidered over finitely generated integral domains. In the absolute case, the bounds 
given for the sizes of the solutions enable one to determine the solutions, but in the 
relative case the bounds given for the degrees of the solutions do not imply even the 
finiteness of the number of solutions.

To formulate Theorem 2 let «0 = 1, al5 . .. ,a m (m Sl) be given elements
linearly independent over /.. and denote°f Ok,ti

М=Ь{ау, ..., am) over L. Let us suppose that max Я к(а,)=^-
by я ( а 2) the degree of 

Consider the solu
tions (xl5 ..., x,„)f O'I' s of the discriminant form equation

(5) DM/L(a1 x 1 + ...+  amx j  =  <5.

Theorem 2. There are only finitely many solutions o f equation (5) and these 
can be effectively determined. Further, if (xt , . x m)£G’f s is a solution of {5) then 
we have
(6) max f fK(xi) sí 2m(mA + C).

i =  m

Here C is the constant defined after Theorem 1.
In [5] and [6] we studied inhomogeneous generalizations of discriminant form 

equations over number fields and over finitely generated integral domains, respec
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tively. In the case of function fields of one variable the analogous problem is to 
consider the equation
(7) T)M/L(a1x1 + . . .+а,„д:„, +  Я) =  <5

where xx, ..., xmíO LS are dominating variables and /.£Om r is a non-dominating 
variable which is in a certain sense “small” compared to the dominating variables.

C orollary 2. I f  xx, x„f 0 L S and 0M>R is a solution o f equation (7)
and HK (Á) < max HK (x;) then we have

4 /7 7  1

(8) max HK(.xi) 4m(mA + C).

Applying Theorem 1 of [6] to the special case of function fields of one variable 
we also get a bound for the heights of the solutions of equation (7), but only a much 
weaker bound than (8).

In view of the remark after Corollary 1 we do not have finiteness assertion in 
Corollary 2.

In order to formulate Theorem 3 let M  be a fixed extension field of L  in К 
with n = [M:L]^2. An important question is to decide when 0 M R has a power 
basis {1, a, ..., a"-1} over 0 LiS (a£ 0 MtR), that is when does there exists an oc£ 0 MjR 
such that {1, a, ..., a"-1} is a basis of Om r  as a free 0 L>s-module. If this is the 
case, then 0 MiR=Ol<s[ol\. Hence the ring extensions having this property are 
called simple or monogenic. Győry [11], [22] solved this problem for number fields 
and obtained also effective results [22] in the case of finitely generated integral 
domains which solved the problem in the absolute case. Evertse and Győry [3] 
proved a finiteness theorem for simple ring extensions over finitely generated integral 
domains which concerns also the relative case and thus the case of function fields of 
one variable. We shall prove that in the case of function fields of one variable all 
power bases can be effectively determined.

If such a power basis of 0 MiR exists then 0 M,R must be a free 0 /->s-module. 
Hence we may assume that the discriminant D of a basis of О R over Ol s is given. 
Further, denote by 0£jS the group of units of 0 LtS. Lemma 3 of Evertse and Győry [3] 
implies that every unit e£0£jS can be uniquely written in the form £ = IQtf{1... 
where I f k ,  t\%, ..., r j f  are fixed independent units and cq, ..., a f  Z. (We 
remark that the above quoted lemma implies also that p ^ s — 1 where s is the num
ber of valuations of S  which are pairwise inequivalent on L.) We shall suppose 
that are given and max H K(t]j)sE. It is clear that if {1, a, ..., a"-1}

l = i i = i  P

is a power basis of 0 MiR over 0 LiS then {1, a*, ..., a*'1-1} is also a power basis for 
a * = e a + a  with any e€0£,s and adOLiS-

Theorem 3. I f  oc£0MtR and {1, a, ..., a"-1} is a basis of 0 M>R over 0 L:S 
then oc is ОLyS-equivalent to an ea* where 0 [ s and a* is an element o f an effectively 
determinable finite subset o f 0 MtR. Moreover
(9) HK(a * )* 2 (n -\)Q n -5 )[ \T \+ H K{D )+ n {n -\)(\S \-\)E + 2 g -2 \.

An other important application of theorems concerning integers with given 
discriminant is to determine all integral elements with given discriminant and given
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norm, and further to determine the units with given discriminant. This problem 
was considered by Győry [11], [12] over number fields and by Győry [22] over finitely 
generated integral domains. Again the effective bounds in this latter result do not 
imply the finiteness of the number of integers in question in the case of function 
fields. The finiteness follows from a general result of Evertse and Győry [3] but 
this theorem does not make possible to determine this finite set of integers.

In Theorem 4 S, ц will denote given non-zero elements of Ol s and we shall 
write N(a) instead of NLM/L(a) for any a£K.

Theorem 4. There are only finitely many a f  0 Kt T of degree и ё 2 over L  
such that
(10) D(x) — ő and TV (a) =  p.
Further, all these a can be effectively determined and (10) implies
(11) HK(a) ^  1 4 (n - l) (3 n -5 ) (m + tfA.(d) +  2 g -2 )+ tf* (p ) .

Denote by Оа>г and OltS the group of units of 0 KtT and 0 LiS, respectively, 
and let и и „ be given generators of 0*L s with max HK(i]i)^E as in Theo-y ’ l^i^p
rem 3. For units of 0 KiT with given discriminant we have the following

Theorem 5. There are only finitely many units е £ 0 £ >г of degree пШ 2 over L 
with D(s)=5 and all these г can be effectively determined. Moreover

(12) tfK(£)3 i 14(n—l)(3n —5 )(m + tfA(<5) +  2g-2)+2(|i?| —1)£.

4. Proofs

The proof of our main theorem is based on the following result of Mason3 [28] 
(see Lemma 2 and its Corollary in [28]):

Lemma 1. Let S  denote a finite set o f valuations on К and suppose that y1? y2, y3
are non-zero S-units in К such that У1+У2+У3 —0- Then either — £k, when

У 2
( y.  ̂ y.
—  I = 0 , or —  has only finitely many possibilities in K, which may be effectively 
V2I У2

determined and

Let us observe that under the condition У1+у2+Уз=0 either any quotient
у . .
—  ( l^ /< y s 3) lies in k, or none of them he in k. 
yj

3 We remark that the assertion of our Lemma 1 as well as Lemma 2 holds for any finite exten
sion field К of k(z).
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In our proof we shall use a special case of a general result of Evertse and Győry [3] 
concerning polynomials over integral domains. Following the definition of [3] we 
say that f(x)£  0 LtS[x] is a special polynomial, if
(13) f( x )  = prh ((x +  a )"o/p) (х+аУ
where г, л„, 3 are integers with r>-0, л0>0, 3£ {0, 1}, rn0 + ö ^3  and 3=0 if л0=1, 
where a£0 L,s , 0 and where h(x)ik[x] is a polynomial of degree r with 
non-zero discriminant and with h (0) ys 0 if nn >  1. We remark that since к is alge
braically closed, the roots of h(x) also lie in k.

We shall use the following special case of Lemma 1 of Evertse and Győry [3]:
L emma 2 . Let n=^3 be an integer and let / ( x ) £  0 L S[x] be a polynomial of 

degree n with zeros ax, an£K. Then the following statements are equivalent:
(i) f  is special in Ol<s[x]

(ii) there are adOLiS, 0 and cl5 .... c„£k such that =  ctX — a 
0 = 1,

(iii) there are integers i , j  with 1 S i , j ^ n ,  i?±j such that —— 1= 1, n.OCi — OLj
In our proof we need only the implication (iii)=>(i).
P roof o f T heorem  1. Put M=L(a). Then by assumption n=[M :L\^2. Let 

us denote by a =  oc1, the images of a. under the L-isomorphisms op. M->-K
( i = l , rí).

The case n= 2 is trivial since in this case from (1), that is from (ax—а?)2=3 
we can effectively determine q = oq—a2 up to a square root of unity in к and H k(q) ̂
ё у Я к(3). Further, a = a i^ K2£ 0 LiS and thus oc=a1 can be written in the 

form а=а* +  а where а * = у 6 0 к>г is effectively determinable and H K{a*)^

In the following we shall suppose that я^З . In this case (1) can be written 
in the form
(14) п («I- « jY  = s.

l s i c j s n

I. First let us consider the case when there exist three different indices, say
1, 2, 3 such that ——— 4 k. Let us consider the identity 

«i- а з
(15) (oq—а2)+(а2 —а3) +  (а3 —oq) = 0.
Let Ж(д)= {vdQK\v(ő)>0} and let Тг = Т 0 Ж (3). We remark that for the car
dinality of Ж (8 ) we have \Ж{д)\ ё Я к(3). In view of equation (14) oq — a2, a2 — a3,
a3— oq are all Тг-units. Applying Lemma 1 to (15) we obtain that Qu = ~ ——

а l —а3
can be effectively determined and

HK{Qn) ^  |7 \ |+ 2 g -2  ^  |Г |+ Я к(3)+22 - 2  =  C3.
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Let г7= ах—а3, о23=1 —g12 and 013= 1. Then we get <xi—<xJ=<FQy (1 ^ г< /= 3 ) 
where QtJ can be effectively determined and m a x  ̂HK (o,_,)=C3.

We shall use induction to determine all аг— Xj (1 ё г < /ё и )  in the form 
where u is as above, <2;i can be effectively determined and is of bounded height. 
The step from /—1 ( ^ 3) to / is as follows.

Suppose that we have a; — ccj = an^ for l ^ i < y s / — 1 where can be effec
tively determined and max H k{qíj) ^ C 1_x. Our aim is to determine all аг—а,
( l s f é / - 1) in a similar form.

Consider the quotients ——— and ———. If both of them were in к then ах —aa а2- а 3
also — ——  would be in к which is a contradiction. I We assumed that — — — & k ,  

а2- а 3 V «1- а 3
which in view of (15) and the remark after Lemma 1 implies ~ . So we

may suppose for example that ——— $k. Consider the identity
oĉ  — a2

(16) (ocx — а,) +  (а,-ал) + (а2 — ах) = О
where the summands are again T x -units. Applying Lemma 1 to (16) we obtain that
qu =  --—— can be effectively determined and H k(qu) ^ C 3. Put а = и a2, q2i= — 1 а, —a2
and Qi2 =Qu + l, then we have ax—a; = üß1(, a2—аг = (тр21 and cq — a2 = aöi2 where 
qu , q21, q12 are effectively determinable with height at most C3. But ax — oc2 =<tq12

also holds which yields ö= oq where can be effectively determined and
f?13

H K ( q )  — 2C3. Thus we obtain cq — oci =  a g v  and а2 —а;=с7£?2г where 0 ц  =  С>ви and 
Q21 — QQ21 are effectively determinable with height at most 3C3. Further, for any i 
with 1 we have

а;- а ,  =  ( a j - а;) - ( a j — аг) = <X0i(
where ви= ви ~  ви  can be again effectively determined with  ̂jnax  ̂НК(дц)^
S3C 3+C,_1 =  C!, which completes the inductive step. We remark that finally we 
have C„ = (3n — 8) C3.

Using аг— d j—aQij ( lS !< )S n ) , in view of equation (14) we obtain

g.ntn-i)
IS I

5
П  Qb
■=jSn

whence a can be determined up to an n(n— l)-th root of unity and HK{cr)=S
----— HK(<5) +  (3n—8)C.,. Now we have shown that all the differents 5у = аг—aj

(1 ^ !< )S n ) are effectively determinable and

max tfK(s,7) i ^ ^ ( « + 2 ( 3 » - 8 ) C s .
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Let a Í12 +  ...+ Í1, and a—n n
be effectively determined and a£0LtS. Further,

Then a—a1 =oi*+a, a*£0KyT can

HK(oc*) — 1 # к(<5) +  2 (3и -8 )(и - 1)C3 n
whence (2) follows.

II. Let us consider now the opposite case, when for any three different indices 
i,j, l we have ———£&. Then condition (iii) of Lemma 2 is satisfied and by (i) weCCi CCj
obtain that the defining polynomial f(x )= (x —cc1)...(x—ocn) of a over L  is a special 
polynomial in Ou s[x].

Using an argument of Evertse and Győry [3] we prove that

(17) ai =  Qki& — a (i =  1, ...,n)

where g is a fixed primitive и-th root of unity, DfOKiT, aZOLyS and {kx, ...,&„} 
is a permutation of {1, ..., и}.

(i) implies that f(x )  is of type (13). B u t/is  irreducible over L and thus in (13) 
(5=0 and h is irreducible. Further, since the roots of h are in k, hence r= 1 is nec
essary in order that h be irreducible. But then we obtain that there exist (M/i„€ 0 LyS 
and a £ 0 LiS suchthat f(x )  = (x+a)n—ц0. From this it follows that if 3 is a fixed 
и-th root of ц0 and о is a primitive и-th root of unity, then we have (17) with a suitable 
permutation {k1 ,...,k„}  of {1, ...,и). Since in (17) oc =  a1£ 0 Kir and adOLS, 
hence &(LOKyT.

Combining (14) and (17) we have

(18) JJ (eki-Q kjy = ,5.
j  tain

Since in this equation JJ (gk‘— gkj) 2 may assume only finitely many effectively 
determinable values, and since it is an element of k, hence from (18) we may deter
mine all possibilities for 3, which are finite in number and # K(3)=—,----tt H k(S).и(и— 1)
Thus from (17) we obtain that a= a1 = a*—a where a.* = gki9 ^ 0 KyT can be effec
tively determined, LfK(a*)g~—-■ - - HK(3) and afO L s, whence the assertion ofи(и— 1)
Theorem 1 follows in this case, too.

P roof of C o ro llary  1. Applying Theorem 1 to (3) we obtain that a + 2=  
= a.*+a where a*€0KyT with height at most C and a£0LyS. Let ay = <тг (a) — <7,-(a) 
and define similarly /.íj = gí(?.) — gj(á) and «*■ = (a*) — Oj(a.*) for any i, j  with 
l ^ / < j= n . Then we have

(19) Z iJ  +  '- i j  =  ccfj (1 =S i  <  j  ^  и).
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By assumption Я К(Л)< H k(D(oí)) which implies

(20) HK( X ) - z j H K<toj)

where the indices г,у are fixed so that Я к(а,/)=  max H K ( alV>). By (19) and (20)
1 3Si0«=/0=Sn

we get

H A « i j )  ^  H K ( * t j ) + H K { k i j )  S  2 C + J Я к («у)

whence 77к(а,у)=4С' and in view of (20) HK( / )< C. Now let a**— a*—), then 
<x = tx**+a, a.**eOK'T and Як(ос**)=§2С.

P roof of T h eorem  2 . Let (л у , xm)f_0"^s be a fixed solution of equation (5). 
Put /(х)=а,лу+  ... +amxm and denote by /(X) the linear form x1 X1 + ...+amXm 
in Xx, ..., Xm. Applying Theorem 1 to equation (5 ) we obtain that

(21) /(x) = oc* + a

where а*бОк>г can be effectively determined, H K ( a * ) = C  and Put
atj = («*)-  <tj(<**) and ltJ(X) =  (oy(a,) -  <rJ(x1))T1 +  ... +  (a ,(aj -  o y (a j)Xm for any 
i,y, 1 ^ i< j~ n .  It follows from (21) that x1, x m is a solution of the system of 
linear equations
(22) /y(X) =  a*j ( l á i < j S  n)

where the coefficients on the left side are given with height ^ 2A and the constant 
terms on the right side are also effectively determinable and their heights are s=2C. 
al5 ..., am are linearly independent over L  whence (22) has a unique solution. Solving 
this equation system by Cramer’s rule we can effectively determine x1 , . . . , x m. 
Further, since there are finitely many possibilities for a*, hence there are only finitely 
many possibilities also for лу, x m.

Using Corollary to Lemma 8 of Mason [28] for the solutions лу, ..., xm of the 
system of linear equations (22) we have

max HK(Xi) s  2m(mA +  C)
l ^ i ^ m

which proves (6).
P roof of C o r o lla r y  2. Let x t , xm̂ OLtS and be a fixed solu

tion of equation (7) and put X =  max Як(лу). Let /(x), /(X) and /fi(X) be as in
the proof of Theorem 2. Applying Theorem 1 to (7) we obtain that

(23) / ( x ) t 2  =  oc* +  a

where a*£0KiT with Я к(а*)^С and adOLS. Let a*j =ai(a*)—ffj (a.*) and 
Ätj = oy(A)—oy(A) (1 = ;</=«). Then (23) implies that лу, ..., x m is a solution of 
the system of linear equations

(24) /y (X) =  «5-Ay ( l S i < j S » )
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where A,-J)s2 C + 2 ffK(A) and the heights of the coefficients on the left
side are at most 2A. Using again Corollary to Lemma 8 of Mason [28], (24) implies

X  ^  2m(mA + C)+2mHK(X)

whence, by our condition HK(X)<—  X, we get4 m

X  < 2  m(mA + C) + ̂ -X

which implies (8).
P roof of T heorem  3. If a£OiVfiK is such that {1, a, a"-1} is a basis of 

O m , r  over 0 L'S, then the discriminant DM/L{\, a, ..., a"-1) of this basis equals 
Further, a well-known argument shows that

(25) T>M/L( a) = sD

where e£0£jS (see e.g. [2]). In view of our remarks before Theorem 3 e may be 
written in the form where l0£k  and ax, ..., apf  Z. Obviously
p = s— 1—IS] — 1. Let ű;=n(n— 1)(/г+гг where q ^ r ^ Z  and 0 ё ^ < и (п -1 )  
(г'=1, p). Denote by !x an n(n— l)-th root of I0 { l^k  since к  is algebraically
closed) and put — e2 =ri[t...ri'p. (25) implies

(26) X>m/l (sl lfl0 — ^F).

Here e2D has only finitely many possibilities in Ol s which can be determined and

(27) HK(e2 D) S  HK(D) + n (n - l) ( \S \- l)E .

Applying Theorem 1 to (26) we obtain that gf 1а=а*+а, that is a=% a*+ax 
where ct*(_0M R can be effectively determined, SjC0*L S and a,ax£ 0 L<s. Further, 
writing the right hand side of (27) instead of HK{d) in (2), we get (9).

P roof of T heorem  4. Let M —L{a), then we have n=[M:L]=2. Applying 
Theorem 1 to D(oi)—ő we obtain that a= a* + a  where R may be effec
tively determined, H K(a*)<C and a£0L S. Let af —<7г(а*), i =  l, ..., n (a* = a*) 
denote the conjugates of a* over L. Then N(a)=p may be written in the form

(28) JJ(jf+ a) = p.
1 = 1

n

Let us consider the polynomial F(X)= [J (a* + X)—p. Clearly the coefficients
i=l

of F(X) are in K. Our assumption that к is explicitly given implies that К  is also 
explicitly given (cf. [4], or [30] pp. 128—131), hence we can split F(X) into irreducible 
factors in K[X] and we can effectively determine all the roots of F(X) in K. Further, 
we can decide if F(X) has roots in Ol s, which means that we can effectively deter
mine all possibilities for a£0LiS in (28) which are finite in number. From this it 
follows that all possibilities for tx=a*+a are also finite and can be determined.
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In order to get a bound for HK (a) consider the identity 
(29) (aí + a)-(a£  + a) + (a2* -a í)  =  0

(obviously a* = aj a2). Let Jf(a2 —aí)=  (t;6 fíK|t;(a2 —ajf)?íO} and Ж(ц)=  
=  {vf_ QK\v(n)>0}. For the cardinalities of these sets we have |.Jf (a2 —a()| ̂  
^ 2 H K(y*-a*)-éí4C and \Ж (ц)\^Н к(ц). Put T2 = TU i f  (a2* -  oc*) U tfiji). Then 
in (29) all summands are T2 -units and applying Lemma 1 to (29) we obtain

„  f  a*+a ) 
K la2 — a* J | r 2|+ 2g - 2

whence in view of a=a.l+a and H K(a*)s=C, (11) follows.
P ro o f  of T heorem  5. Put M=L(e). Then by assumption n=[M:L] ̂ 2 .  

Using Theorem 1 again D(e)=5 implies e= a*+a where a*£0MiR is effectively 
determinable with HK(ot*)^C and a £ 0 LtS. If е€0£>г then iV(e)60£iS, that is

N(e) =  . . .  ifp-
where l0 £k, at , ap£ Z. Let a.*=ai(a.*), /=  1, n (a*=ai) as before. Then the 
above equation can be written in the form

(30) JJ (ot* + a) = /„i/?1 ••• 4 aPp-
i=i

Consider the identity
(31) (a Í + a) -  (a2 + a) + (a2* -  a?) = 0

(where a* — а£^а2). Let ^ ( а 2 — ajf)= (nf í2K|r(aí — а*)^0} be as in the proof of 
Theorem 4 and let

h) = {v£&k\v(>1í) ^  0}, i = h •••, «•
If we put

T3 =  T  U ^ ( a 2*-ai)U ir(> /1)U ...U ir  (tjp)
then by equation (30) all summands in (31) are Г3 -units and for the cardinality of 
T3 we have
(32) |2з1 — |T |+ 4C + 2(|S | —1)F.
Let us apply Lemma 1 to (31). There are two possible cases. 

e a* + aIf oc.T — ai к then by Lemma 1 there are only finitely many effec

tively determinable possibilities for hence we can determine also e= aí+ n .

In the opposite case, if —
a 2

Since DM/L(e)=d, hence we get

a2 — a 
s ai+C* —l ^ k  then M=L(e) = L(a2 —aí).

aí

(33) 6  — Dm,l ( a*) — l'l,J' 1 )k)MjL(y\ — otí).
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In this equation DM/L(a%—a.*) can be effectively determined (together with a*), 
that is (33) enables us to determine all possibilities also for lx, which are finite in 
number. We conclude that e= a t+ a = / 1(a |—a*) can be effectively determined in 
this case, too.

To prove (12) we apply the second part of Lemma 1 to (31) and we obtain

Я, +a ) 
l a ? —a t ) \T 3\ + 2g - 2.

Combining it with (32) and using that HK(x*)^C, we get (12).

Acknowledgement. I am thankful to Professor Kálmán Győry for his useful 
remarks in the preparation of this paper.
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ON STRONGLY NONLINEAR ELLIPTIC 
VARIATIONAL INEQUALITIES

L. SIMON (Budapest)

Dedicated to Professor I. Kátai on his 50th birthday

The aim of this paper is to prove existence of solutions of variational inequalities 
in a possibly unbounded domain Q<^R" with respect to operators of the form
(0.1)

«*— 2  ...)]+ 2  ( - 1)1*1 IT[ge(x ,u ,...,D fu ,...)]\a\̂ m ja|̂ m —1

where ß=(ß1, ..., ß„), \ß\= j?  ß}, \ß\ шт, D* = Dl1...Dfr. Here on
j=i _ _ °xj

f a(x, £,) no growth restriction is imposed with respect to £, further f a(x, c) satisfy 
some special conditions; the functions gx(x, c) must have certain polynomial 
growth with respect to £. It will be proved that solutions of the variational inequalities 
can be obtained as limits of solutions of variational inequalities considered in £2r— 
= QDBr (Br= {xeR n: |x|<r}).

The Dirichlet problem for the operator (0.1) with ga=0 and rather general 
growth condition with respect to C ^ fa(x, Q has been considered by Landes ([1]—[4]) 
where existence of solutions has been proved. General variational inequalities in 
bounded domains Í2 for (0.1) with ga= 0 and f a(x, £)—ha(x, tja) (without any 
growth condition on h7 with respect to ca) have been studied by Simader and Musto- 
nen ([5]—[7]) where also uniqueness and stability results have been shown. Similar 
existence theorems on boundary value problems for second order equations in 
bounded domains have been obtained in [8] with less restrictions on f a, gyy=0. Oper
ators, where only in some lower order terms no growth restriction is imposed, have 
been considered e.g. by Webb [9], Mustonen [6] and the author ([10]—[12]). 
The proofs of this paper are based on arguments used in [3], [5], [8].

1. The formulation of the results

Let Qc.Rn be a (possibly unbounded) domain such that for sufficiently large 
r> 0  Qr=QC\Br has the weak cone property (see [13]), p >  1 and m a positive 
integer. Denote by W ”(Q) the usual Sobolev space of real valued functions и whose 
distributional derivatives of order s-m belong to LP(Q). The norm on IV'” (Q) is

W  =  { Z  f l ir u p d x } 1" .
Vi « « в  ’

W™'0 (Q) will denote the closure in || • [] w.n(Q) of C^(Q), the set of infinitely dif
ferentiable functions with compact support contained in Q.
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148 L. SIM O N

Let N, M  be the numbers of multiindices a, satisfying \a\Sm  resp. \a \^m — 1. 
The vectors <?;=(£„, ...)£RN will be written in the form 0  where ц
consists of those 0  for which \ß\ Шт— 1. Assume that

I. For |oe|=772 the functions f a: Q X R N-»R satisfy the Carathéodory condi
tions, i.e. they are measurable in x  for each fixed £dRN and continuous in £ for 
almost all x£Q. For |oc|Sm—1 the functions f,x: Q XRM-*R also satisfy the Cara
théodory conditions, i.e. they are measurable in x  for each r\(LRM and continuous 
in rj for almost all x€ Í2.

II. For all (ri,£),(ri,C)£RN with CxC' and a.e. x£Q

2  UÁx, n, O - f A x ,  r,, C')]«.-£) > o.|a| =m
III. There exist constants clf c2 and кг, k 2^L 1(Q) such that for all c, <l'(LRN 

and a.e. x£i2
( 1 . 1) 2  Г А х Л К а ^  2 fA x ,Z ')C + c 1 2  i(*),

for all t],t]'£RM and a.e. x£Q

( 1.2) 2 fAx,ri)̂ = 2 fAx,v')£* + C2 2 fAx,r])̂  + h(x).
| a | ^ m  —1 |a |^ m  — 1 |a |^ m  —1

IY. For any 0 there is a function f sfD (Q r) for all /• such that for 
a.e. x£Q

\fAx, 01 — fs(x} if 10 ^  s, |ot| =  m,

\fAx, i?)| ^ fs (x )  if \ч\ == S, |a| S  m — 1.
V. There exist nonnegative functions kx, k3^L 1 (Q) and a constant c3>0 

such that for all £dRN, q£RM, a.e. x£Q

f a(x,OZ* S -k « (x ) if | a | = m ,  / a(x, 0 0  s t -/<*(*) if | a | ==m- l ,

2  /.(*,4)i.+ 2  /.(x.Oi.sc.dCl'+liin-fe.W.|a|^m — 1 |a|=m

VI. The functions px,r x: Q XRN-»R satisfy the Carathéodory conditions and

?« =  P« +  »-« ( N ^ m - l ) .

VII. There exist a nonnegative function k ^ L 1 (fl), a nonnegative constant 
c4< c3 and a bounded ß ' c ß  such that for all ^ R N,rj£RM and a.e. x£ i2

2  A (* ,0 í« S -c 4(|CI, + l4l')-fc4(*),|a|^m—1
A(*, 0  = r.(x, 0  = 0 if x£Q \Q '.

VIII. There exist functions Фх£Ьр/вi«i(ß'), hx£L4 (Q') ^ -  + - |-= lj and a con
tinuous function Ca such that for all £C:_RN, a.e. x£ fl

IP Á X ,  01 S  C . ( 0 [ # . ( * )  +  |{T i-> ], |r«(*, 01  S  A.(x)

,4 eta Mathematica Hungarica 52, 1988
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where £=(£', £") and f  consists of those for which \y\<m

P - 1 -  ei«i P -
x | (m-\<x\)p 

n в|«1 = P-

n

IX. V is a closed subspace of fVp(Q) and K c V  is a closed convex set con
taining 0. Denote by K° the set of all v£K such that D“v£L°°(Q) for \a\^m  and 
v(x)=0 a.e. for sufficiently large |jc|. Assume that for each v£K° there are v fC d (R n) 
suchthat Vj\n£K, Vj\a -+v with respect to the norm of W"(Q) and sup \DxVj\^ca.

T heorem 1. Suppose that conditions I to IX are fulfilled. Then for any Gd V* 
(i.e. for any linear continuous functional over V) there is u£K such that for each r

(1.3) f f i - ,u ,  . .. ,D ßu, ...)£L fQ r), ...,D ßu, ..jD ^udL 1 (Q),

(1.4) 2  [ fx(x ,u ,...,D i!u,...)(D,xv -D c‘u)dx +
|a|=Sm д

+ 2  Í gx(x ,u ,... ,D ßu,...)(Dlxv-D ',u )d x ^ (G ,v  — u)

for all v£K°.

This theorem will be a simple consequence of Theorem 2 to be formulated 
below.

Let Vr be the closure of

Wind- <pecf(Br)c \v )
in Wp(Qr) and

Kr = УгП{и\Пг: udK),
i.e. the closure of

Wind <рес?(вг) п к }

in Wp(Qr). Then Vr is a closed linear subspace of W™(Qr) and Kr is a closed con
vex subset of Vr containing 0. Extending functions «6 VT as 0 on Q \Q r, the exten
sions belong to V.

Let s>max {n,p}. Then by Sobolev’s imbedding theorem W™+1 (Qr) is con
tinuously imbedded in Wj;(Qr) and C'?(Qr), i.e. the space of m times continuously 
differentiable functions with bounded derivatives equipped with the norm

Nlcrm,.) = 2  sup|£>aK|.|a|̂ m ßr
(See e.g. [13].) Further, let

Wr = W™t1 (Br) ПУГ and Kr1 = KrC\Wrr = KrnW?+ 1 (Br).

Then Wr is a closed linear subspace of l-V™+1 (Qr) and K} is a closed convex subset 
of Wr. Define Sr by

(S fu ) ,v )=  2  [\D*u\s-*(D*u)(D’v)dx,
|a |^ m + l
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u, v£Wr. Then Sfiu) is a continuous linear functional on Wr and Sr: Wr—W* 
is a bounded (nonlinear) operator. By Sobolev’s imbedding theorem

(Tfiu), v) = 2  f  f f ix ,  u, ...,D pu, ...)D*vdx,

u, v£Wr also defines a bounded (nonlinear) operator Tr: Wr-+W*. Define q^\ by

(1.5) +
Р/в |a| 4\z\

Then by assumption VIII Dxu^Lq\^(Q') if u£Wp(Q), is continuously
imbedded in Lq\*t(Qr) (see [13]) and thus by VIII and Holder’s inequality

{Qr{u),v)=  2  j  g fix ,u ,.. .,D yu ,...)D avdx,
|a|sm-l ß/

u ,v 6 Wr defines a bounded (nonlinear) operator Qr: Wr-*W*. Finally, for any 
G£V* define the functional Gr£V* by

(Gr, ur) =  (G, Lr ur), ufi Vr
where

fnr(x) if x€flr 
if

(According to the above argument, L rufiV.)
T heorem  2 . Assume that conditions I to IX are fulfilled and lim rn = + ° ° .  Then 

for sufficiently large n there exists at least one solution u„£Kjn of the variational 
inequality (considered in QrJ

(1-6) -i- (Srn (un) , v -  u„> +  <T,n (w„), v -  u„) +

+ {QrSun), v - К )  = (Gr„, v - u n), for all v£K?n.
Further, extend the functions u„ to 12 by 0 out o f Q,n and denote the extensions also 
by u„. Then there is a subsequence (u'„) o f  (u„) which is converging weakly in V (and 
strongly in IF” _1(co) for any bounded coczQ) to a function u£K, satisfying the 
variational inequalities (considered in 12) (1.3), (1.4). I f  (1.3), (1.4) may have at most 
one solution then also (u„) converges to the unique solution и o f  (1.3), (1.4) weakly in V 
and strongly in Wp~1 (co) for any bounded cocQ.

R em ark  1. Condition III is fulfilled e.g. if in assumption V kx= 0,

\ffix , 01 =  \ffix , 0 \ if \lß\ = \^ß\,
further for \<x\=m ff ix , q, does not depend on q (then (1.1) is a consequence 
of II) and for \a \^m — 1

(1-7) 2  Iffix, n ) - f f ix ,  Ш И г -М  is 0.|a|^m—1
For a discussion on condition III we refer to [14], [8].
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R em ark  2. Assume that f a(x, q) and fa{x, tj) are continuous and they are 
continuously differentiable in £ resp. ц. Then by Newton—Leibniz formula

2  Ш х, n, O - fÁ x , n, О Ш .- О  =
1*1-m

= / [  2  L ß{x ,ri,c+

where fzß-~xr-- Consequently, condition II is fulfilled if for all (rj, Q f RN and 
dip

a.e. x€ Q the matrix

(1-8) [f*ß(.X,ri,0]\*\,\ß\=m

is positive definite. Similarly, if the matrix

(1-9) l f * ß ( x , r , ) ]  n . ipi^ - i

is positive semidefinite then condition (1.7) is fulfilled.
R emark  3. By Remarks 1, 2 conditions I to V are satisfied e.g. when 

f x(x, 0  = (£«)<?«(*, Cw) if N  =  m,
f*(x, n) = К Ю<Р*(х, »7W) if M = m — 1

where and tjw  denote the vectors '( resp. t] without the coordinate . Here the 
functions hx are supposed to be continuously differentiable such that

К Ю > 0  for ^ > 0, ha(U  <  0 for £ . < 0,

Iä«(ÜI э с Ж .,1 '-1
(cx>0 is a constant). Further, the functions cpx are continuous and they are con
tinuously differentiable in C[a] resp. 17м  such that

cx S  (px(x, Cw ) for |a| =  m, cx ^  <pa(x, 17м ) for |a| si m — 1.
Finally, the matrix (1.8) is positive definite, the matrix (1.9) is positive semidefinite 
where

and for ß^a.

J^O»«)</>«(*, Cw) for |a| =  m 
L Á X ’  °  “  \ k ( U < P z ( X ,  П Ы )  for | a | 3 = m - l

(K(Z*)<P*ß(.x,Pay) if |a| = m 
*ß X’ ~ W iO V zß ix , nw) if |a| = m — 1.

The last condition is fulfilled e.g. if (px(x, £w), <pa(x, 17й ) do not depend on 
resp. 17м  and /t'> 0 for \a\=m, h' ^ 0  for \x\Sm — 1.

R em ark  4. Condition IX is fulfilled if there is an extension operator 
L : K 0 -~W™(Rn) and a constant c such that if u£K° then da(Lu)^L°0 (Rr‘) and

2  W(L»)hr<r>tz c 2  I M ™ ;
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further there is A a K °  such that for each v£A, the convolution L v* rjsf_K if 
e> 0  is sufficiently small — where tie£Co(R"), )jc= 0, f  це= 1, supp г]са В Е — and 
for each w£K° there is a sequence (wj) of functions WjdA such that (wj)-+w in 
Wp(Q) and 11У Wj(x)| =  dx (d7 does not depend on j  and x).

Since, in this case any v£K° can be approximated by Wj£A and Wj can be 
approximated by LWj*r]s. The above assumptions are satisfied for sufficiently 
smooth d£2 in the following special cases:

a) K=V=W™(Q); then A may be chosen as K°.
b) S c  Q is a compact smooth (и— l)-dimensional surface or S cd Q  is a 

compact smooth (n— l)-dimensional surface such that the distance of S' and 3 Q \S  
is positive,

K = V  = {(p€W™(Q): cp\s =  0).
Then A may be chosen as the set of cpfK0, vanishing in a neighbourhood of S.

c) d£2 is bounded and
V = W ”0(ß), K={<p6 V: a ^ c p ^ b }

where — +  ». Then A may be chosen as the set of (р£Ка, vanishing
in a neighbourhood of dQ.

2. Proof of Theorem 2

According to the existence theorem of [12] the variational inequality (1.6) 
admits at least one solution u„dKln for sufficiently large n. (See also [15].) Applying
(1.6) to v= 0  one finds that

(2. 1) — (Srn(u„), ип) + (ТГп(и„), un) + (Qrn(un), un) 3= (Grn, u„),

thus by V, VII, VIII there is a constant c5>0 such that

- 7 I K I I V ,  +  c s l l uJ\vr -  f k3 d x— [  fc4dx — 2 I I * J í « ( 0 ) K I k i .  = \\G\\v*\Wn\vr ■ n r" r" £ ß Ha».-1
Consequently (since p =- 1)

(2.2) — ||i/„||fr is bounded,n 'n
(2.3) и»11Г, > II «и  II V is bounded.

(The functions un are supposed to be extended to Q as 0 out of Qrn.) (2.3), V, VII, 
VIII imply that

(2.4) 2  f  fÁ x, u„, ...,В *ип, ...)D«undx S  c6, 
M=m пГп

2  //«(*> un, ■■■,D1 un, ...)D«undx = c6.
|a|Sm-l Qr
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Further, from (2.2) it follows that

(2.5) IjwJir, = const. n1,s.

Since

j ( S r„(un), v)

thus by (2.5) for any fixed j,  w£Wrj

lim ~  (Srn(u„), w> = 0
n-*°о П

(for n>j w(x) is defined by 0 out of Br.) and so (as (Srn(u„), и„)ёО)

(2.6) lim sup — (S. (un), w — ur ) = 0.“  n " "
By (2.3) there exist a subsequence (u'„) of (u„) and u£ V such that

(2.7) (u'„) и weakly in V, 
further,
(2.8) (Dyu'n) ->- Dyu a.e. in Í2 for \y \ ^ m — 1

because by theorems on compact imbeddings (see e.g. [13]), VII, VIII, (1.5) it may 
be supposed that

(2.9) (Dyu'n)-» Dyu in Lp{Qr), (Dyu'n) ^ D yu in Ü*ir|l(Q') for | y | S m - l .  

Lemma 1. For all a. with |a| and each fixed r > 0 the integrals

(2.10) /  \U x,u 'n, . . . ,D ‘1 u'n,...)\ dx
Or

are uniformly bounded and the functions

(2.11) / . ( • ,« ; , . . . , .d /4 , . . . )
are uniformly equiintegrable in Qr, i.e.for any e>0 there is ő > 0  such that E d  Qr, 
A(E)<<5 (A (Is) denotes the Lebesgue measure o f a measurable set E) imply that 
for all n

(2.12) / I f x(x, u'n, ...,D ßu'n, ...)| dx <£.
E

Further, there exist a subsequence (u'f) o f (u'„) and a function Fa such that for 
each fixed r=- 0 /Д  -, u'', ...,D ßu", ...)-*Fx weakly in L1(Qr). For \ix\Sm— 1

Fx(x) = fa(x, u(x), ...,D yu(x), ...) a.e. (|y| ^  m -1 )

and / a( •, u'n, ..., Dyu'„, ...)-»Fx in the norm o f L 1 (Qr).
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Proof. Applying (1.1) to 4 = 0  sgn/a(x, £) and c'ß=0 for ßF-y (|a|=m, e=*0) 
we obtain that

Q Sgn/ а(х, £)/*(*, 0  =S/a(x, O e  sgn/a(x, £) + Cl 2 ” fa(x, £) 4  + (*)>
\a\ = m

where |£'l =  |g sgn/Дх, 01 =  8 - Thus by assumption IV

(2.13)

\L(x, 01 ^  I /.(*, OI+-£ 2  fSx , 4 4 + ^  S / e(*)+^
|a | =  m Q  Q

2  fÁx, 0 4 +
M  =  m

M *)
Q

(2.13), (2.4) imply that the integrals (2.10) are uniformly bounded. Further, by
(2.13) for any measurable E a Q r

j  \fa(x, u'„, ..., Dpu'n, ...)\dx si j \ f e(x)+l̂ A d x  +
E E 1 8 }

+ — Z  [ fÁ x ,u ’n,---,D pu'n,...)D xu'ndx.
8  |«|=Ш£

л
Taking q=— by (2.4), V we find that for sufficiently small A(E) (2.12) holds
if |a|=jw. Analogously, it can be proved that for |<x|Sm— 1 the integrals (2.10) are 
uniformly bounded and (2.12) holds.

Therefore, by Dunford—Pettis theorem (see e.g. [16]) there exist a subsequence 
(u") of (u'„) and Fa such that for each fixed /•=-0

/* (• , «», • D^u", Fa weakly in V-{Qr).

From Vitali’s convergence theorem, assumption I and (2.8) it follows that for each 
r> 0, \ac\äm— 1

f a(.,u 'n,...,D^u'„, . . . ) - / « ( • , « ,  . .. ,D iu , ...) in LHßr)

(here |y |^ W2—1) and so Fa(x)= fa(x, u(x), ..., Dyu(x), ...).

Lemma 2. There exists a subsequence (n„) о /  (и'') such that

(2.14) limsup Z  /  [/a(r, йЛ, ..., . . .) -F JD “M„dx ё  0.

(Cf. Lemma 3 of [5].)

Proof. Applying (1.6) to и= и£К }^К }п for и=/, we obtain

(2Л5) — (Srn(u„), Uj-u„)+(TrJ u n), Uj — un) + (Qrn(u„), U j-un) £  <G,n, Uj-u„>.
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Thus

(2.16) 2 ’ / [fab, - , D ßiC ...) -F x]D«u';dx ^|a| 35m

= ~~{Sr"(u”), u 'j-u")+  2  f  fa b , u", ...,D pu", ...)DxUjdx+
П 1-1** Or"

+ (Qr”S < ), u'j-u")+(Grn, U n -u f)-  2  f  FaDxu"dx.
I«l S" fi

In virtue of Lemma 1

(2.17) lim 2  [ fa  (x, K , ...,D l>ul...)D*u]dx= 2  f  FXDX u] dx.
-—  i-i— o^

By (2.7) and the definition of Grn we have

(2-18) Inn (G,n, i£ -  «;> =  <G, и -  <>.

Further, by (1.5), VII, VIII, Holder’s inequality and Sobolev’s imbedding theorem 

I(6  »bn), uj ~ un)\ — 2  II г«(п')ЦТ*“n j~D au'lLi>(n') +71 |a|̂ m —1

+ I^l_2_i IIP«(*> u«! ■ ■■,Dßun, ...)llLp/e|(I|{n̂ ' ll-®“«/ — ■®°lM'>llt p/el«i(n') —

S  const. 2
|a|3m-l v

whence by (2.9)

(2.19) limsup \(QAu"), u 'j-u ")| =i

const. 2|a|^m —1

From (2.6), (2.16)—(2.19) follows

(2.20) Hm sup ! 2 m f  [fa (x, < , D» FX]DX u'' dx S

S  2  [ FxDxu'j dx + (G, u — u'j) — liminf 2  [ FxDxu"dx +
\a fs m  Sir" " ~ ° °  M - m fi

+ const. 2  [\\D*u';-Dxu\\L<,M +\\Dxu '!-D xu\\Lns)0]
where

liminf 2  [ F xDxu"dx>— oo.
l«|*» f
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Since, by (2.15)

2  j  fa (*, К, ...,D»uZ,.. .)DX Uj <S « ) ,  U;  -  uf) +
l“l —m Sir'J

+ 2  f  fa (X, u" , ..., Dßu", ...)DX ul dx + (Q* (ul), ui -  u")+ (G, u'j -  u’’)
W*“ n

and thus (2.6), Y, (2.17)—(2.19) imply

2  J F<xDxu]dx j  k3dx+(G, u" — u) — 
l*lsmn я

const. 2  [WD'u'j-D'uW^., + \\D *u'j-D 'uh’m l[a| Sm-1
Hence by (2.7), (2.9)

lim inf 2  f  FxDxu'-dx S — f  k3dx. 
J ~ ° °  Ы=>т Л  Л|a|=Sm fi я

Consider a subsequence (й„) of (u") with the property

lim 2  í  FaDxűjdx  = lim inf f  FxDxn"dx.
J~*°° l«|Sm n n

Then applying (2.20) to üj instead of u", as j-»°° by (2.7), (2.9) we obtain

lim sup 2  J[f*(x, ün, . . . ) - F x]Dxündx  ^  0.
"■*” М ^ я

Therefore, to show (2.14) it is sufficient to prove 

(2.21) liminf 2  /[/«(*> w„, ••■,Dyün, . . . ) - F a]Dxündx  ё  0.

Because of (2.8) and assumption 1

(2.22) lim 2  [ fa (x ,u , . . . ,D yu , . . . ) - f x(x ,ün, . . . , D yün,...)]Daün = 0
n—“° | « | s m - l

a.e. in Q (here \y\-^m — 1). Moreover, due to (1.2)

(2.23) 2  (/«(*> . . . ,D ’ u, ...)-/•(* , Ö., - , D ' ü n, ...)]Dxü„ S

^  c2 2  f a(x, u, . . . ,D yu, ...)Dx u+ k2(x),
|a|̂ m —1

where by Fatou’s lemma, V, (2.4) the term in the right is integrable over Q since 

lim 2  [fÁx, K , . . . ,D yün, ...)Dxün+kx] =

=  ^  [/a(x, u, Dyu, ...)DXU + K\ a.e. in fl.
|a|^m—1
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Applying Lebesgue’s dominated convergence theorem to the positive part of the 
term in the left of (2.23), we find

limsup 2  /[/«(*> w, Dyu, .. .) - f i(x ,  й„, ...,D yß„, ...)]D*ündx sä 0
"■*°° klSm-lQ

which implies (2.21) since according to Lemma 1

= L (x , U,  ...,D yu, . . . )  if |a |^ m  — 1.

Thus the proof of Lemma 2 is complete.
Set

4n(x)= 2  [/«(*> й„, ... ,D yün, ...,D ßün, . . . ) -
|« |= m

-/«(*, ö„, .... Z>4, .... D»u, ...)](Daun-D*u) 

where |y |Sm —1, \ß\=m.
In virtue of Fa, f t^.L1(Qr), D*u£Lp(Q), (2.8), I and Jegorov’s theorem for 

any (sufficiently large) positive integer к we can choose measurable sets Q'k a  Qfk 
such that

(2.24) Д(йГк\ й 0 = = 1 ,

(2.25) D*u, F£Lr(QQ  for |a| S  m, f,£L~(Q’k) for s =  1,2, ... 
and

(2.26) Dyti„^D yu uniformly on Qk if |y |S m  — 1,

(2.27) f a( . , ü n,. . . ,D yan, ...,D ßu , . . . ) ^ f x(x,u, Dyu, D»u,...) 

uniformly on Q'k (|y|Sm—1, \ß\ =m). Clearly, it may be supposed that

(2.28) Q'k c  Q'k+i.

Lemma 3. For each fixed к

(2.29) lim f  q„dx — 0.
К

P roof. We have

(2.30) / fi(x, ün, . . . ,D yün, . . . ,D ßu, ...)(D*an-D *u)dx =

= f  [f*(x, ü„, ...,D yi7„, Dßu, . . . ) - f x(x, u, Dyu, ...,D ßu, ...)]X
Í

X(Dx űn—D*u)dx+ J  f x(x, u, ..., Dy u, ..., Dßи, ün—D*u)dx.
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By Holder’s inequality 1 j

/  \DX űn—Dxu\dx ^  [A(ŰO]Vf [{ f  \D«a,ydxy,p+ {  j  \D«u\>dx}VP] 
si'K o'k a’k

where the right hand side is bounded (as n — °°) because of (2.3), thus (2.27) implies 
that the first term in the right of (2.30) converges to 0. Further, from (2.7), (2.25), 
IV it follows that also the second term in the right of (2.30) converges to 0 as n — °°. 
Consequently,

(2.31) lim 2  //«(*> K ,  . . . ,  Dyü„,..., Dßu, ...)(Dxűn- Dau)dx = 0.II-*- oo I —I__ ' ni

By (2.7) and (2.25) we have

lim 2  [ Fx(D*ün-D *u)dx = 0.

Thus (2.31), (2.25), Lemmas 1 and 2 imply

(2.32) lim sup f  qndx =
Ofc

= lim sup 2  f  f a(x, u„, ...,D yun, ..., ...)(DaGn- D xu)dx = 

=  lim sup 2 " /[ /а (л , й„, . . . ) - F a](BítM„-Z)IIw)& =

=  lim sup 2  /" [/*(*, •••, . . . ) -F a]£>“ö„dA: á
H— 4

— limsup 2  f  [/«(*, w„, ...,D ßü„, . . .) -F x]D*a„dx +

+ lim sup 2  [  [Fa- f x(x, К , ..., £>0ö„,..-)]Z)am„dx sl
|«|=m -  C,

“  lim sup 2  /  [^«-/«(•*, й«, ...)]-D“öBd*.
|.Т=«оч^

Now — similarly to [3] — we show that there is a function Г£Ьг(й) such that 
for a.e. (2

(2.33) 2  [Fx- L ( x ,  an, ...,D ßün, ...)]D*űn =£ Г(х).
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(2.33) with (2.32) and qn=0 (see II) will imply (2.29) since by (2.32), (2.33), (2.24),
(2.28)

0 =  lim sup f  q„dx S  f  rd x  — 0 as к — °°
Qk С2\Пк

which implies (2.29) since the sequence (lim sup j  q„ d x }2 i is nondecreasing.
S2'k

In order to prove (2.33) we apply Mazur’s theorem (see e.g. [17]) to the sequence 
of functions /я (- , ü„, ...,D ßü„, ...), converging to Fx weakly in L l(QrJ  for any 
fixed k. Thus for each / there exist numbers

(2.34) 

such that

coj 0 with 2  mj — 1 
j=1

2  (■ , d j , Dßüj, ...) -  in ь г(йГк)
J=1

and so for a subsequence (denoted in the same way) also a.e. in Qr, . Hence, in virtue 
of (2.34) and (1.1)
(2.35) 2  [F*-L(x, ...,D ßü„, ...)]Dxün =

|a| =m

^ l i m j ^ w ' t  2  Á(x, uj, ... ,D ßüj, ...)Dxü„- 2  f*(x,ün, ...,D ßü„, ...)£>ай„]}
l~*°° j =1 |a|=m \a\=m

lim inf 2  т)1с 1 2  L(x, üj, • ••, Dßüj, ...)Dxüj + k1(x)].
j = l  | a | = m

Since by V 

(2.36) 2  2  U*(x, üj, ...,D ßüj, ...)Dxüj + ka] 0
j =1 |a| = m

and by [2.4)
(2.37)

f { 2 (0j 2  [f*(x,ü j,..., Dßüj, ...)Dc‘üj + klx] } d x ^ c 6+ 2  f  Kdx
П, j =1 |tt|=m 1*1 =™ n

rk

thus from Fatou’s lemma and k^U {Q )  it follows that

lim inf 2  2  L(x, üj, ...,D ßüj, ...)D*üj
j=l ]«| = m

is integrable over Q,k.
Define Г =  lim inf Гк where

Гк(х) =  lim inf 2  (°ljC! 2  fÁ x, üj, ...,D ßüj, ...)Dxüj + kk{x), х€йГк
j=1 |a|=m
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and Гк(х) = 0 if xd Q \Q rk. Then Tk£L1(Q), further, by (2.36), (2.37) and Fatou’s 
lemma Г is integrable over Q, moreover, since for any fixed x f  ß

2  [Fa-fÁX, йп, ...,D ßÜn, ...)]D*Ü„ S  r k(x)
\x\=m

if к  is sufficiently large (see (2.35)) so we obtain (2.33) and thus the proof of Lemma 3 
is complete.

Lemma 4. There is a subsequence (un) o f (ü„) such that
D*ü'n -+D*u a.e. in ß  for |a| = m.

P ro o f. Since qn^ 0  thus Lemma 3 implies that for arbitrary fixed к
lim \\qn\0-(п’) 0.

Consequently, for a fixed к  there is a subsequence of (qn) which tends to 0 a.e. in 
£2k. As A (i2 \U ß()= 0  thus we can choose a subsequence q'„ such that

lim q'„(x) =  0 for x£ß0 where X(Q \Q 0) = 0.
П -+-00

In virtue of (2.8) it may be supposed that

Dyu'„(x) -*■ D7u(x) if x €ß0, |y |á m  — 1.

Now, by I, II, IV (for a fixed x€ Q0) we can apply Lemma 6 of [4]. So we 
find that

lim D^u'nix) = Dxu(x) if x£ß0, |a| =  m

and thus Lemma 4 is proved.
Proof of T heorem 2. Denote the subsequence (un) (defined in Lemma 4) by 

(uni)  and apply (1.6) to u„k thus we obtain that for all

(2.38)

— (unk), v -  u„k) +  (T  (u j , v-u„k)+ (Q (u j , v -  u ,J  3?(G v -  u„k).

According to (2.6) 

(2.39)

In virtue of (2.8), Lemmas 1 and 4, assumption I and Vitali’s theorem 
f a(- ,u , ..., Dßu, ...)€Tl (ß r) for each r,

(2.40) Jim (Г (u„k), v)=  2  f  L (x , u, ...,D ßu, ...)Davdx
k~*°° "k |a|Sm о

(v is a fixed function, r(x )= 0  a.e. if x is out of a bounded set). Further, 
combining (2.8), Lemma 4, I, V, (2.4), Fatou’s lemma shows that the functions
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f j  •, u, ..., Dßu, ...)Dxu are integrable over Ű (so we have already shown (1.3)) and

(2.41) lim inf (T (u ), u ) a  2  f  f x(x, u , ..., D"u, ...)D*udx.

(2.8), (2.9), Lemma 4, VI to VIII, Holder’s inequality and Vitali’s theorem 
imply that

(2.42) lim (Q (u ), v -  u ) = lim (Q (u ), v ) -  lim (Q (u j , u„k) =
k-+  *° r n u  к  к  к - *  oo r n .  k - * c o  r n k

= Z  J  SÁX, U, ..., D'u, ...)(D*v-D*u)dx
MSm-lfy

because

j  SÁx, u„k, ...,D ßu„k, ...)D*u„kdx — f  g„(x, u, ...,D ßu, ...)D*udx =
ß' ß'

= f  gx(x, u„k,..., DßиПк, ...)(D*u„k-D *u)dx +
ß'

+ f[ga(x, U„k ,  . . . , Dßu„k, . . . ) - g a(x, u, ..., Dpu, ...)]Dxu dx.
ß'

Finally, from (2.7) it follows that

(2.43) lim (Gr , v u„k) = (G ,v-u).
k - * ° °  nk

Thus from (2.38)—(2.43), as k-*°° we obtain that (1.4) holds for each v(̂ K'r . 
According to assumption IX for each v£K0 there exist Vj£Cő(Rn) such that 
Vj\n£K, Vj\n -^v in IVp(Q) and sup \D%Vj\ ^ c a. Choosing a subsequence, it may 
be supposed that EFvj^-D^v a.e. in Q for |a |Sm. Then v,\q£K} for sufficiently 
large к and thus (1.4) holds for v=Vj, whence — as J —*■ CO   by Lebesgue’s dom
inated convergence theorem and Sobolev’s imbedding theorem we find that (1.4) 
holds also for v£K°.

According to (2.7) and (2.9) u„k-+u weakly in V and in the norm of W ”- 1(<a) 
for any bounded o a Q .

If (1.3), (1.4) may have at most one solution but («„)-► и weakly or in PF™ _1(со) 
does not hold then by the argument of the proof of Theorem 2 it is easy to get a 
contradiction.

R em a rk  5. If Q is bounded and it has the segment property (see [18]) then for 
sufficiently large r Qr=Q, Vr—V, K = K , K}=KC\W™+4Q).

R em a rk  6. Without assumption IX we find that (1.3) is valid and (1.4) holds 
for each »£ (J K}. Consequently, (1.4) holds for each v<zK, v=(p|n where
<PeC»(R").

R em a rk  7. Suppose that for |a |^ m —1 f x is a Carathéodory function of type 
f x: Q XRn-*R; further, instead of II assume that the strict monotonicity condi
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tion is fulfilled:

2  UÁX, Ö -L (x ,  П Ш а -О  > 0  for t * t '|a|^m
and in V, kx= 0. In this case Theorems 1 and 2 can be proved in a similar way.

R emark 8. Instead of IV assume that for each a f x=fa(1> +f*2) where f xj> 
satisfy the Carathéodory conditions and the following conditions. Denote by A the 
set of multiindices a with the property |a| and let A = UAV where a, x*£Av 
if and only if f x(1)=fxP- Assume that for any v and there exist a function
f V'SdLl{Q) and constants c3, c3>0  such that for almost all x£i2

I 01 S / v,s(x)+c3 №  |/«(x, 01 d \W - \  \ct\ =  m
resp.

1/*(1 )0 ,  »7)1 = Л , а ( х )  +  с з М р , IЛ К х ,  fl ) I ^  с ' М " - 1, |a |  iS  m  — 1

if |<Jy|S s  for y£Av and \£'\ =s where the vector contains those for which
|y| <m—~ .  Further, assume that iJ/£Co(Rn), v£K imply ij/v£K and there
are functions K'Z = 0 such that Ky(1)£ Ll (Q),

f p ( x ,  0 0  s - K P ' ix )  (|«| = m), /« (* , riKx S  (|«| á m - 1).
Then Theorems 1 and 2 hold, further 

(2.44) / « О ,  и, ....Д 'н , ...)eLHO), - , D pu, ...)€L*(Q)

+ and (1.4) is valid for each v£K, satisfying Dxv£L°°(Q) if \a\Sm.
Clearly, we have only to show the first part of (2.44). One can prove

l/.0 ,(*. 01 s  sup {I /W (x, o i : |{TI <  s for V€Av} + -  Z  \fyW (x, 0 « ,
s у

thus by Sobolev’s imbedding theorem for sufficiently large .?>0

IL w (x, u, Dpu, ...)| =s/v,5(x) +  c3 z  \Dyu\p+
l7l am

+ — 2 ” [fya)(x, u, , Dpu, ...)D y u-\-2Ky{x)]
s yiAv

where the term in the right is integrable over Q.
Now we give an example, satisfying I to V and the above conditions:

A(1\ x ,  0  = h ^ i O v ^ i x ,  Р*)+1& ЧЫ № (х, Cw),
fi'l){x, 0  =  К » ( Ш г)(х, cw ), |a| = m;

/a(1)(^. П) =  W i& V P ix ,  t1W) +  Hi1)(.Q v i1)(.X, i/Ca]),

Л(2)(*> fl) =  К 2Ч^)(Рх\х,  rjw ), |a| ^  m - 1
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(£w , i/M are defined in Remark 3). Here h{J \  h(2  are continuously differentiable 
such that
№ > 0. for ^ > 0, <  0, <  0 for ^ < 0,

I ^ Í U I  S  c j i j ' ,  C . l i . l ' - 1 ^  I W W I  S  C 3 I Í . I '- 1
(clt c2, cs are positive constants; the functions (p9\ ф{2  are continuous and they 
are continuously differentiable with respect to resp. 17м  such that

0 S  (p£ \x ,  C[2]) =  хЛх)ФЛСы), 0 ~  Ф1г)(х, Cw) ^  c4,
c5 ^  срЫ(х, £w) ^  Cq (|a| =  m)

(c4, c5, c6 are positive constants), yafU(Q:), |i/ra|S c4, фх is continuous; and sim
ilarly

0 S  <рр(x, riw ) = ХхЫФЛч1*1), 0 S  Ф11)(х, i?[i]) ^  c4, 
c5 =s <p(2)(x, 17м ) S  ce (|a| S  m - 1).

Finally, the matrix (1.8) is positive definite, the matrix (1.9) is positive semidefinite. 
The last conditions are fulfilled e.g. if cpiJ)(x, (w), cp̂ J)(.x, /j[ctl), ф £\х , £[e]), Ф1и (х, 17м ) 
do not depend on £w resp. 17w and (/i 2̂)) '> 0  for \ot\=m and ё 0 for |a |sm — 1, 
further (AW/eO, (Ä « ) 's0.

R em ark  9. Instead of V assume that there exist nonnegative functions 
k*, k fL '(Q )  and a constant c3> 0  such that

2  f a( x , t l ) Z . ^ c 3\ri\p-k* (x) ,  2  /« ( * ,{ ) * .  = s c ,|C |'-* (* ) .
|a |^ m —1 |a |= m

Then Theorems 1 and 2 remain valid such that instead of (1.3) we have only

/ . ( - ,« ,  ...)eL \Q r),
2  / „ ( • , u, . . . ,D ßu, ...)Dau£L1(Q), 2  f t (> ,u , . . . ,D fu , . . . )D ? u a H Q ).

|a|^m—1 |a|=m
R em ark  10. Assume that I to IX are fulfilled and there is a constant o O  

such that
2  [/«(*, n, 0 - / . ( * ,  4, O K « .- £ )  М С - С Г

|a | =  m

for all (tj, £), (17, C)£RN and a.e. x£f2. Then by (2.9) and Lemma 3 (й„)—м also 
in tFp (со) for each fixed bounded coaQ. (If the solution of (1.3), (1.4) is unique 
then (m„) converges to и in Ж™(а>).)
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ON SIMPLICITY-CRITICAL MOORE AUTOMATA. I

A. ÁDÁM  (Budapest)

Dedicated to Professor Pál Erdős on his 75th birthday

1.

The present paper contains some contributions to the problem of simplicity 
of finite Moore automata. Our goal is to reduce the question of separation of simple 
automata from non-simple ones to some more particular problems.

Section 2 is devoted to the introduction of basic notions. Section 3 is also 
of preparatory character: it presents a survey of the subautomata of an automaton 
by graph-theoretic tools.1 The main results of the article are contained in Sec
tions 4—6. The theorem stated in Section 5 shows that the crucial difficulty in 
answering the question “when is an automaton simple?” lies in characterization 
of the simplicity within the particular class that consists of strongly connected auto
mata, and in exploring the structure of two special automata classes, whose elements 
are called simplicity-critical automata.

In the second part of the paper some structural results about simplicity-critical 
automata will be obtained.

From among the previous publications, this paper has the closest connections 
with [4].2 For the sake of completeness, let it be noted that the simplicity of initially 
connected automata can be analyzed in a certain constructive approach, too. This 
line of investigations was initiated in [1]; out of the adjoining articles, let now [2] 
(Sections 4—6), [3] and the works [5], [6] of M. Katsura be mentioned.

*

The author expresses his thanks to the referee, Dr. Gy. Pollák, for his various 
useful advices; primarily, for his assistance concerning the formulation and proof 
of Proposition 7 in Section 6.

1 The subautomata o f an automaton are often referred to in the further considerations. This 
fact perhaps justifies the systematic overview of the subautomata of an automaton, even if the 
content o f Section 3 may be considered to be folkloristically known.

2 See the survey exposed in Section 7.1 of [4]. Now we deal with the version (C) o f the basic 
problem in sense of Section 7.1. If only initially connected automata are taken into account, then 
the version (В) & (C) is got.
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2.

In this paper finite Moore automata (written in the form A=(A, X, Y, <5, 1)) 
are considered. The notions of subautomaton (in particular: proper subautomaton, 
maximal subautomaton, the subautomaton generated by a subset H  of A) and 
isomorphism are used in the customary sense.3 A is called autonomous if \X\ =  1.

An automaton A is called connected if for each ordered state pair a, b there 
exists a sequence
(1) a0,x 1,a 1, x 2,a 2, x 3, ...,xk,ak (к Ш 0),

consisting of states and of input symbols alternately, such that a0=a, ak—b and 
one of the equalities

1, *;) =  <50;, *;) =  ö;_i

holds for every choice of г (lS/sA :). Each automaton A can be obtained as the 
union of certain of its pairwise disjoint connected subautomata Ax, A2, ..., A, 
( f^ l) .  We say that Al5 A2, ..., A( are the connected components of A.

Let H  be an arbitrary subset of the state set A of an automaton A. We say 
that H  is a strongly connected set if for each ordered pair a{dH), b(£H) there 
exists a sequence (1) such that aQ—a, ak=b, the states a0,ak, ...,ak belong to 
H  and <5(ű;_i , x i) = ai for every choice of г (1 ^ i^ k ) .

If the set of states of a subautomaton В of A is strongly connected, then it is 
said that В is a strongly connected subautomaton of A. It is clear when A itself is 
called strongly connected. Strongly connected autonomous automata are called 
cycles.

By a block, we understand a maximal strongly connected subset H(QA). It 
is obvious that each state of A is contained in exactly one block. If В is a strongly 
connected subautomaton of A, then the state set of В is a block in A; consequently, 
the strongly connected subautomata of an automaton are pairwise disjoint.

We denote by Г (Н ) the subautomaton generated by H(QA). If H  consists 
of a single state a, then Г (a) will be written instead of Г ({a}). If Г(Н) = A, then 
H  is called a generating system of A.

If Г(а) = A for some a(£A), then a is called a generator of A. If a is an ele
ment of A such that the proper inclusion Г(1))эГ (а ) is satisfied by no b(£A), 
then we say that a is a quasi-generator of A. b(f_A) is called accessible from a(£A) 
if b is a state of Г (a) (or, equivalently, if Г(Ь)ЯГ(а)).

Two states a, b of an automaton are said to be distinguishable if there exists 
an input word p such that /. (d (a, p)) A /. (<5 (b, p j). In the contrary case, a and b 
are called undistinguishable; the undistinguishability is clearly an equivalence rela
tion (to be denoted by ятах in Section 4).

A state a of an automaton A is called a source if 5{b, x) A- a for any choice of 
b(£A) and x(£X).

3 The set X  o f input symbols is viewed to be invariant; e.g., a(S(a, x))=S(a(a), a )  is pos
tulated when a is an isomorphism.
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In the remaining part of this section we assert some simple facts concerning 
the notions introduced above. The truth of most of these facts is evident. 

a(£ A) is a source if and only if the following three conditions are valid: 
a is a quasi-generator, 
a constitutes a one-element block, 
ő(a, х ) ^ а  for any x(£X).

Each automaton has at least one quasi-generator. If a block H  contains a quasi
generator, then every element of i f  is a quasi-generator.

Г(а)=Г(Ь) if and only if a and b are in the same block.
The following three assertions are equivalent for an automaton A:

A is strongly connected, 
each state of A is a generator,
A has no proper subautomaton.

Consider a proper subautomaton В of an automaton A. Then В includes at 
least one strongly connected subautomaton of A and В is included in at least one 
maximal subautomaton of A.

L emma 1. Let Я1; Я2, ..., Hk be all the blocks consisting o f quasi-generators 
o f A (where k ^ l ) .  A subset H  o f A is a generating system o f A i f  and only i f  each 
o f the intersections

t f  П # !, Я П Я 2, ..., Н ПН к
is non-empty. I f  k = 1, then every quasi-generator is a generator, as well. I f  к  =-l, 
then A does not have any generator.

P roof. It suffices to verify the first of the three statements of the lemma. 
Suppose Я П Я ,И 0 for every г (where l ^ i ^ k ) .  Choose an arbitrary a(£A). 

Let us form an increasing sequence
f t ó c f W c r W c . , .

of subautomata (generated by a single state) until the procedure breaks up; we 
arrived to а Г (b) where b is a quasi-generator of A. Then

aer(b) = Г (hf) Q Г(Н)
where i is determined by Ь^Н, and h; is a state belonging to ЯПЯ,. We have 
А =Г(Я ) because a has been chosen arbitrarily.

Now assume Г (Я )= A and consider a state h* in a block H t. Since /г*€Г(Я), 
there exists an h(£H) suchthat h*^r(h). Hence Г (h*)Qr(h), we have Г (h*) = 
=Г(/г) since h* is a quasi-generator. Thus

Я П Я г i  {h} ?i0. □

3.

In this section we get an overview of the subautomata of an automaton by 
graph-theoretical means. The graphs considered are finite and directed. The most 
familiar concepts on directed graphs are supposed to be known. The notions of 
accessibility and (versions of) connectedness are used for directed graphs in com
plete analogy with their uses for automata.
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By a cycle of a graph, we mean a simple closed directed chain. A vertex v of a 
graph is called a source if no edge terminates at v, v is a sink if no edge starts from v.

Let i f  be a subset of the set " V  of all vertices of a graph i f  is called an inde
pendent set if the elements of i f  are pairwise inaccessible in < S .

Consider an automaton A. Recall that the blocks form a partition of the 
set of states. We write (mod p) if a, b are in the same block.

The characteristic graph f  (A) of an automaton A is defined by the following 
two rules.

There is a bijective assignment у from the equivalence classes of A (modulo p) 
to the vertex set of f(A ). We write afy~ ' (y) if у (a) = v.

There exists an edge vw in f  (A) if and only if v ^ w  and there is a triple 
ű(€y_1(r)), x(€A) suchthat ö{a,x)=b.

The characteristic graph does not depend on the output function Я.
Now we shall state four assertions which are easy consequences of the defini

tion of the characteristic graph.
A (A ) is a cycle-free graph and it has no pair of parallel edges.
A has a generator if and only if there is only one source in ^(A); if f  is the 

only source, then exactly the elements of y~} ( / )  are the generators.
f(A )  consists of a single vertex (and no edge) if and only if A is strongly con

nected.
у (a) is accessible from y{b) in У (A) if and only if a is accessible from b in A 

(or, equivalently, if T(a)Qr(b)).
The converse of the first assertion is also true:

P r o po sitio n  1. Let У be an arbitrary cycle-free graph without parallel edges. 
There exists an automaton A such that f  =  f(A ) .

P roof. Let the state set A of A be the vertex set of eS. Let the number of input 
symbols of A be the maximum of the out-degrees occurring in f .  The output func
tion Я of A can be defined arbitrarily.

Consider a vertex p of denote by wx, w2, ..., w, all the vertices vv of f  
such that there is an edge vw in ^  (the ordering of the w’s is arbitrary). 
We set

if 1 =  i = i,
if i >  t.

The obtained automaton A fulfils f  — □

Let A=(A, X, Y, <5, Я) be an automaton. Consider an independent vertex set 
i f  in its characteristic graph f(A ).  Let a subautomaton

g(<f):= В =  (В, X, Y, ő, Я)

be assigned to i f  in the following way:
b£B if and only if у (b) is accessible from an element of if.

P ro po sitio n  2 . q is a bijective mapping from the set o f independent vertex sets 
i f  of f  (A) to the set o f the subautomata В o f A.
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P ro o f . First we show that i f x  f  i f x  implies g { i f x )  ^  р(У2)- There is a vertex 
a in i f x  U i f 2 such that, for each vertex и (б (ifx U 5^)— {«}), v is inaccessible (in f#(A)) 
from ve. (If no v with this property existed, then 0/(A) would have a cycle.) We can 
suppose v^ifx without an essential restriction of generality. The elements of y- 1(r) 
are states of о  ( i f x )  but not of o ( i f j ) .

Consider an arbitrary subautomaton В of A. Denote by H  a minimal state 
set such that T (H )—B. The elements of H  are pairwise inaccessible (in A), thus 
pairwise non-equivalent modulo p. Let i f  be the set of vertices y{c) where c runs 
through H. It is evident that i f  is an independent vertex set that satisfies
Q(Sf)=B. □

The following statement is obvious.
P roposition 3. a(-if) is a strongly connected sub automaton of A i f  and only if 

if= {v ) where v is a sink o f 'S (A). The number of strongly connected subautomata 
of A equals the number o f sinks o f &(A). □

Now we introduce two notations. For a vertex v of ^(A), let y(y) be the set 
of vertices w for which the edge vw exists. For a subset i f  of the vertex set 3?(A), 
let г {if) be the set of all vertices v ^ i f )  such that v is not accessible from any 
element of i f — {r} (in ^(A)).

It is easy to see that the next two assertions are valid.
P roposition 4. Denote by i f  the set of all sources o f И{к). Then we have 

o(iF) = A. Moreover, Qiff ) is a maximal subautomaton of A if and only i f  f#(A) 
has at least two vertices and there exists an f l f i f )  such that

i f  = t((J*— {/})U^(/)).
I f  A is not strongly connected, then the number o f maximal subautomata of A 
equals \if\. □

Recall the notations Hx, H2, ..., Hk from Lemma 1.
Lemma 2. The complements o f the maximal subautomata of an automaton A 

are pairwise disjoint. More precisely, the following three statements are equivalent for 
a subset H( fA )  o f the state set A o f A:

H  is one of the blocks HX,H 2, ..., Hk,
the elements o f A —H  constitute a maximal subautomaton of A,
the characteristic graph ®'(A) has a source f  such that H=y~1( f) .  □

4.

A partition я of the state set A of an automaton A is called a congruence (of A) 
if a=.b (módit) implies

S (a, x) = S (b, x) (mod 7t)
and k(d)=k(b) where a, b are arbitrary states and jc is an arbitrary input symbol. 
The minimal partition of A is the trivial congruence of A. We say that A is simple 
(or reduced) if A has no non-trivial congruence. The following statements are easy 
consequences of the considerations of [1], § 5:
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P roposition 5 . Denote by 7tmax the partition o f A defined by the rule that 
a= b  (mod 7imax) exactly if a and b are undistinguishable. 7tmax is a congruence of A 
and each congruence o f  A is a refinement of 7imax. An automaton A is simple if and 
only i f  each pair a, b is distinguishable (where a£A, b(LA, aAb).

The following two assertions are almost evident: each subautomaton of a 
reduced automaton is reduced; two different subautomata of a simple automaton 
are necessarily non-isomorphic.4

Keeping Lemma 2 in mind, we can verify the following statement:
P roposition 6 . Suppose that an automaton A has two isomorphic subautomata 

Cx and C3, furthermore, each maximal subautomaton o f  A is reduced. Then Q  and 
C2 are maximal subautomata of A and A has no other maximal subautomaton.

P roof. Denote the maximal subautomata of A by Bl5 B2, ..., Bfc (where k=s\). 
Let Hi be the set of states which do not belong to B,. Denote by a an isomorphism 
from Cx onto C2.

We can choose a state a of Cx such that a ?'■ a (a). There is an iL (l =it =k) 
such that a is a state of B;i. Since Bl5 . . B* are simple and a, a (a) are undistin
guishable, a (a) does not belong to B;j. Either k — 1 or there exists an i2 (where 
1 S i 2=k, i2 A h) such that a (a) is a state of BÍ2. We distinguish three cases, the first 
and third ones will lead to contradiction.

Case 1: k=  1. Then a{a)^Hx and Ил is the set of generators of A, thus 
Г(а(а))=А  and C2=A. We have got that A is isomorphic to a proper subautomaton 
Q , this is impossible.

Case 2: к =2. Then adHi2 and y.(a)£Hil. We can assume (without an 
essential restriction of generality) that ix—2 and n =  1. It is easy to see that T(d) = 
=  <^ =  6! and Г (a (a)) =€2 = 62.

Case 3: k ^  3. There is a number /  such that

j€{  1, 2, ..., k } -{ iu  i2}.

It follows that a and cc(a) are states of B ;̂ hence By is not simple, contradicting the 
supposition. □

5.

D efinition 1 . An automaton A is called strongly simplicity-critical (or, for the 
sake of brevity, strongly s-critical) if the following four conditions are satisfied:

(1) A is not strongly connected.
(2) A is not simple.
(3) Each maximal subautomaton of A is simple.
(4) The subautomata of A are pairwise non-isomorphic. 1

1 The verification o f  these assertions will be contained in the proof of (the sufficiency part of) 
the single theorem o f this paper, too.
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D efin itio n  2 . An automaton A is called weakly simplicity-critical (or weakly 
s-critical) if (3) is valid for A and the following two conditions are fulfilled:

(5) The number of maximal subautomata of A equals two.
(6) The maximal subautomata of A are isomorphic.

Each weakly л-critical automaton fulfils (1) and does not satisfy (4). An autom
aton cannot be both strongly and weakly s-critical.

T heorem . An automaton A is not simple i f  and only if A has a (possibly non
proper) subautomaton В such that one of the following three statements is valid for B:

(A) В is strongly connected and non-simple.
(B) В is strongly simplicity-critical.
(C) В is weakly simplicity-critical.

R em a r k . For a fixed subautomaton B, at most one of (А), (В), (C) can hold.

P ro o f. Sufficiency. Denote by the maximal congruences of A and
B, respectively. Suppose first (A) or (B). There are two different states a, b of В 
which are congruent mod , a and b are undistinguishable, thus they are con
gruent for , too. — Assume now (C). There is an isomorphism a from a maximal 
subautomaton C\ of В onto the other maximal subautomaton C 2. There exists a 
state a of Q  such that a^a(a). We have again got a state pair, namely a and a(a), 
which are undistinguishable and congruent mod .

Necessity. If A is not simple, then there is a subautomaton В of A such that 
В is non-simple and all the maximal subautomata C l5 C 2, ..., Cq of В are reduced 
(where q ^ 0). If q= 0, then Condition (A) is valid. If q> 0 and the proper sub
automata of A are pairwise non-isomorphic, then Condition (B) holds.

It remains still the case that (B is non-simple, q ^ l ,  each proper subautomaton 
of В is reduced and) there is a pair Dx, B2 of different but isomorphic subautom
ata in B. The assumptions of Proposition 6 are satisfied, hence (C) is valid. □

Having this theorem, the task of distinguishing between simple and non-simple 
automata has been reduced to the following three problems (whose solution by 
sufficiently constructive methods is desirable):

P roblem  1. Find a criterion of simplicity within the class of strongly con
nected automata.

P roblem  2. Characterize strongly л-critical automata.

P roblem  3 . Characterize weakly л-critical automata.

The solution of Problem 1 is known for autonomous automata (see [4], third 
sentence of Corollary 2); in the general case, however, Problem 1 is an unsolved 
question which seems to be difficult.

We shall see some results concerning Problems 2 and 3 in the continuation of 
this paper.
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6.

In the present section some preparations will be made for the second paper 
with the same title; namely, we prove a result on the structure of strongly я-critical 
automata. Recall that (ä (A) denotes the characteristic graph of A.

P r o po sitio n  7 . Let A—(A, X, Y, ő, X) be a strongly simplicity-critical autom
aton. Denote by F the set o f generators o f A, by В the difference set A — F and 
by 7rmax the maximal congruence o f A. The following conclusions are valid:

(i) Whenever a£A, b£A, aX b and a = b (mod7rmax), then at least one of 
the equalities А =Г{а), А=Г(Ь) holds.

(ii) A is connected and F A1 0.
(iii) i#(A) has only one source f  and F=y~1(f) .
(iv) The set В constitutes a subautomaton В, В is simple and В is the only maximal 

subautomaton o f A.

Pr o o f . It suffices to verify (i); (ii) is then evident and (iii), (iv) are easy con
sequences of (i) by our earlier results concerning the correspondences between A 
and ^(A).

Let c be an arbitrary state of Г (a) and d be an arbitrary state of Г (b). Define a 
many-to-many assignment ц so that ct]d holds if and only if there is an input word 
p such that c=5{a,p) and d=S(b,p).

If cr\dx and crjd2, then dx and d2 are undistinguishable (because both of them 
are undistinguishable from c). Therefore either Г(Ь) = A or dx—d2 (by (3)). Anal
ogous inference holds by interchanging the roles of c and d and of a and b.

If A equals Г (a) or Г(Ь), then (i) is valid. In the contrary case (i.e., when both 
Г (a), F ( b )  are properly included in A), it is easy to see that q  is an isomorphism 
between Г (a) and Г(Ь); the existence of such an isomorphism contradicts either 
(3) or (4) (according to whether Г(а)—Г(Ь) or Г (а) А Г (b)). □

7. (Appendix)

In the previous paper [4] an explicit criterion has been stated (Proposition 6, 
p. 269) for an autonomous automaton in order to be reduced. The reader may ask 
why we did not choose the way of natural generalization of the earlier criterion 
in the present paper. Now we are going to show that the immediate generalization 
fails to hold.

Certain considerations from the former sections are repeated in the following 
assertion:

F a c t . If eith er
(i) there exists a non-simple strongly connected subautomaton of an autom

aton A, or
(ii) A has a pair of isomorphic strongly connected subautomata, or

(iii) A contains two different states a, b such that ). (a) =  a (b) and d (a, x) = 
— ö(b, x) for every choice of x ( fX ) ,

then A has a pair of undistinguishable states, hence A is not reduced.
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The criterion exposed in [4] was obtained from this fact so that 
an explicit characterization of simplicity of strongly connected autonomous 

automata has been incorporated into the result, and
for the particular case of autonomous automata, the converse implication has 

been proved, as well.
The situation changes radically if the autonomousness is abandoned (i.e., when 

\X\ may be an arbitrary natural number). Not only the simplicity of strongly con
nected automata becomes then an unsolved question, but also the converse of the 
fact stated above loses validity. This is shown by the following example due to
M. Katsura (personal communication).

Example. Let an automaton

К = ({al5 a2, as, a4}, {xl5 x2}, {yx, y2), ö, X)

be defined by Table 1 (see also Figure 1). К possesses only one strongly connected 
subautomaton Kl5 this subautomaton has the states a.z and a4. K4 is simple. Thus
(i), (ii) are not satisfied by К ; it is easy to check the falsity of (iii), too. К is not simple, 
its maximal congruence is

<{al t a2}, {a3,a 4}>.

In addition, К is a strongly s-critical automaton.

Table 1

a m ő(a, Aj) ő(a, *2)
Oi У1 a3 аг
a2 Уу at аг
Ö3 У2 а1
Ű1 Уг а* ű2

Fig. 1
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ON THE LOCAL TIME PROCESS STANDARDIZED 
BY THE LOCAL TIME AT ZERO

E. CSÁKI and A. FÖLDES (Budapest)*

1. Introduction

Let {W(t), tsO} be a standard Wiener process and L(a, t) be its (jointly 
continuous) local time at a up to time t defined by H(A, t )= J  L(a, t) da and

A
H(A, t) = A(s: 0S í i t ,  ÍV(s)fA), where A stands for the Lebesgue measure and 
A is any Borel set on the real line. In this paper our aim is to investigate the limiting 
behaviour of L(a, t)—L(0, t), suitably normalized, as (-►«>,

The first result of this type for random walk is due to Dobrushin [5]. Let 
{Xt, г'^1} be a sequence of i.i.d. integer valued random variables, put St= 
=X1 + ...+ X i, and N(a, n )= # { i: St=a, 1 ^ iSn}, a= l, 2, ... , n= 1 ,2 ,. . . .

T heorem A (Dobrushin). Let P ( I p + l ) = P ( I j = - l ) = l / 2  and let f( i)  be
CO

a function such that 2  / ( 0 —0 and f{i) differs from zero only for finitely many i. 
Then

(1.1) lim P{ 2  f(S k)/dnV« ^ x )  = P (U Y V \^  x),
n~ ~  k=l

where U and V are two independent standard normal variables and

(1.2) d2 = 4 2  k f 2(k) + 8 2 2  m m -  2  P (k).
k =  — oo — oo<  j < J <  CO k = —OO

If f{a )= \, /(0) =  — 1 and /( /)= 0  if rVO or a, then d2=4\a\—2 and this 
gives for a = ± l ,  ± 2, ...

(1.3) N (a ,n )-N (0 ,n ) D 
(4 |a |—2)1/2и1/4 u y  W\, as n-*- °°

where denotes convergence in distribution.
Dobrushin’s theorem was extended for general random walk by Skorohod and 

Slobodenyuk [10], Borodin [2] and Kasahara [8]. The latter established also a func
tional form of this limit theorem. The analogue of Dobrushin’s theorem for the local 
time of a Wiener process is also known in functional form (cf. Papanicolaou et al.
[9] and Kasahara [8]). Yor [11] proves the following general result:

* Research supported by the Hungarian National Foundation for Scientific Research Grant 
No. 1808.
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Theorem В (Y or). For each A > 0 , denote by P, the law o f the stochastic process 
from (t, a)d-R+ to R3;

j L ( a ,P t ) ,  ^ i= ,(£(e,A »0 - i ( 0,A*0))

defined on C (R \, R3). Then for Px converges weakly to the law of

(fV (t),L (a ,t),W *(L(0,t),a ))

inC (R 2+,R 3) where W*(u, a), (u, a)CR2+, denotes a Brownian sheet starting from 
0, and independent from W(t).

Moreover, Csörgő and Révész [4] gave the following iterated logarithm laws:

T heorem C (Csörgő and  Révész). For a — ± 1 ,  ± 2 ,  ... , in the case o f 
P(X1= + l)= P (X 1= - l ) = l /2  we have

(1.4) 
and

(1.5)

lim sup № ,  n)-N (0 , w)|
(N(0, n) log log n)1/2

lim sup 1-^(1, n)—N(0, ri)\ 
n1/4 (log log n)3/i

-  2(2|a| — l)1/2 a.s.

The aim of the present paper is to give a slightly more general version of Theo
rem C in the Wiener local time case.

T heorem 1. For any a d R , and a ^ l / 2  we have

,л ,, ____  IL(a, t)—L(0, Q]_________ i/TT
(hé) hm sup г(1-2«)/4(1/(0)0)Ч1о§1о§0(3- ^ /4 ~  a's

where

(1.7)
| 2(8- 2«)/4( i _2a)(1- 2“)/4(3 -2 a ) (- 3+2ot)/4

K* = \2 f2
i f  a -c 1/2 
i f  a =  1/2.

From this theorem one can see that the normalizing factor for (L(a, t)—L(0, t)) 
can be either (L(0, 7))1/2, or r1/4, or the combination of these two factors 
(L(0, i))ai(1“ 2a)/4.

Note that the constants in Theorem C and Theorem 1 are “equal” in the follow
ing sense. For the standard deviations we have a(L(a, 7 \))= 2 ’/|a |, o(N(a, Tj))= 
=  / 2 /2|а| — 1 (where r1=inf{/: />0, St = 0}, 7'1=inf{f: L(0, i) = l})- Now ob
serve that

*0
o{L{ 1, 7У)

^0
2

128
zT

< ? №  *,)) ]/2 -y#
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and
Kll2- j ä  = Kll2-]la 2(2|g| —1)1/2 

a(L{a, Tfj) 2 У a <r(N(a, tJ )

We reformulate Theorem 1 for the random time Tr defined by
(1.8) Tr =  inf {t: L(0, t) s  r}
i.e. the first passage process associated with L(0, t).

T heorem  2. For any a€R, and 1/2 we have

(1.9) lim sup
Г - * - о о

iL(a, Тт) - г I
J ’ ( l - 2 o t ) /4 ( l o g  J Qg  r y 3 - 2 « ) / 4 =  / й а ; a.s.

Only the proof of Theorem 2 will be given, since it easily implies Theorem 1. 
We use the following result, a particular case of Theorem 2.4 in Borodin [2]:
T heorem  D (Borodin). Let f(x )  be a nonnegative piecewise continuous function,

A (0 =  I  f(w(s))ds+ 2  CiL(ai t t).
о i=1

Then

(1.10) D (x)=  I  e~XrEx(exp (— A (Tr)))dr
0

is the unique continuous solution o f the problem

( t u )

jD " (x )- f(x )D (x )  = 0, X6R\{0, al t ..., ak)

• Z>'( + 0) -£ > '(-0) =  22D(0) - 2,
£)'(а; +  0) - 0 '(а(- 0) =  2CiD(at), i =  1, ..., к, at ^  0 
D(x) is bounded for  x£R.

Ex denotes the expectation under the condition {W(0)=x} (E0=E).

2. Proof of the law of the iterated logarithm

Theorem В clearly implies that

L (a ,t) -L (0 ,t)  л L(0, t)
(L(0, t))1'2 F>2

are asymptotically independent when t —°°. Thus for the random time Tr we have

(2.1) P > h )  ~  P(2a1/2U\V\1,2~* >  A),
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where U and V are independent standard normal variables, provided that h is a 
constant. To prove however the law of the iterated logarithm (Theorem 2), we 
have to put h=h(r)-~°° as r -+°° and for this case (2.1) can not be claimed. We 
need large deviation for the left hand side of (2.1) which we can obtain by rather 
complicated calculations only.

Note that in the course of the proof we use notations C, C(s), etc. for constants 
whose values are unimportant in the proof and therefore they may denote different 
constants at different places.

Without loss of generality, assume that a>0. To obtain 

£(exp {-(tiT r + cL(a, 7)))})

we have to apply Theorem D. Let f(x)=rj, hence A{t)=r\t+cL{a, t). Solving 
the system of differential equations (1.11) in case f(x)= t), z=l, ax—a, сг=с, and 
computing D(0), we get by inverting the Laplace transform with respect to X, that

(2 .2) E(exp-{t]Tr + cL(a, Tr)}) =  exp { -
ce2 ̂ °У2г1 +2rje2̂ a 

c(e21̂ “ — 1) - f - 2л/ е2У^а
r}•

According to the inversion formula (Erdélyi et al. [7], p. 244 (31))

(2.3) eh,s— 1 = j  e~suV  —  Ii(2.yuh)du,

where 7X(.) is the modified Bessel function of order 1:

ч2/ +  1«*>=,|7!(тЫт) •
We obtain, that for и ̂  0
(2.4) E0(exp(-rjTr), L(a, Tr)£du) =

where

(2.5)

=  B(rj, a) exp {— (r + a)e2a + u ]/2/;}|/^- / х(22?(»/, а) Уruea^ ) d u

№В(ч, a) =

(2 .6)

e1afb\_ J

(T̂ o(exp (—t]Tr), L(a, Tr) =  0) = exp{-B(t], a)re2â } ) . 

L emma 2.1. For xr>0, rjr>0, hr>0 satisfying

(*A>* 0 — ~ 0 , as r ~ ~
rfr fr
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and for any £>0, there exists an ra(e) such that
Tr) L(a, Tr) — r

1 hr ( x2h2)V*i- — — — exp J  — \dx
V2n 21la l 8a J

(2.7) — ----- 4 ----- r-------—-  . . . .  1
p-V^n __

У2п i f ,
for r>r0(s), \x \^x r.

P roof. The proof of (2.7) can be obtained from (2.3) and the well-known 
asymptotic form

(2.8) A O O =(l+o(l)) ,---- ,
У2nz

1 ,2 ’We get JE^expj— ■ Г £dxj  from (2.4) by substituting r/ by ^

and и by r ^ \ + Y ^ ,d u  by hr |V dx. (Observe that under conditions (2.6) the

argument of /i( .)  goes to infinity as 
For notational convenience denote

(2.9)

where
(2. 10)

+ 2B I

£(exp(-’# i(t rr "H
e-Y^i————p^exp 

/ 2тг 2 У a

xh

l 8a J
PeQ,

dx

e = - " ( 2 + t M M ^ " + ^ + T F  +

(■ ?’ a
1 _j_ fhlL. ea f2ij/>yr -4 M*-

a f/2>7 xj! h2 2а У2г\г x?; h, а УЪг.
H--- X---  =  — ----------------- 1------- F^H-----~----  < £2r ~  8a r ' 16a f r  ' 2r 

if r is big enough, and (i)—(iii) hold. Similarly 
„ i n  ax2h2r]r 4 Xrhrt]r 4atjr x2h2 fh \r хгЬтУ2цг
(2.11) ö  — „2 ,.3/2 • >  Б4г fr
if conditions (2.6) hold and r is big enough. 

On the other hand,

(2. 12) P = ( lh rf í (2a)V2{B [ f í ’ p))1/2(1+ p (1)) =  l+ o(l),
i 1 + / 7  J

if conditions (2.6) hold. (2.9)—(2.12) clearly imply our Lemma 2.1.
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Lemma 2.2. For any e>0,
fL(a, Tr) — r

(2-13) r=• a ) S  О +«> Юф{ - T ^ j  

i f  lim D3a3/r1/2 =  0 and r is big enough.
Г-*-оо

P roof. The moment generating function of L(a, Tr) can be obtained from
(2.2) by letting íj— 0 :

(2.14) £ (exp {uL(a, Tr)}) = exp '

(This is given also in Bass and Griffin [1].) (2.13) can be easily seen by the exponential 
Markov inequality.

xrhr 0 1
ri/e У?г 0, JCr ̂ l — 0 as r -* “

ГГ, L(a.Tr) - r  €dx

У  J r

j I dx  ^  (1 +  e)e_1/(2j,) A ___ - * 2A*/(8o)

2У 2na

Lemma 2.3. For лгг>0 , j r> 0 ,  йг> 0 satisfying

(2.15)

and for any e> 0

(2.16) 4 r

i f  r>r0(e), \x\7Sxr,ys?yr.

Proof. By Lemma 2.1 and the exponential Markov inequality,

■- s  e" <l +  { - 1Я -

and (2.16) follows by putting t] = l / ( 2 y 2) .
Now define the events Ar by

(2.17)
((Tr y i - 2*)/4 L (a ,T r) - r  1

л  = I N  -= А Г Г  }'

( 1 + 2 e  \ ( 3 —2a)/4
Lemma 2.4. For hr=y ^  loglogrl and s>0,

(2.18) F(Ar) ^  c(£)(logr) 1 E

i f  r is bigenough, where K* = (Sa)~2,(-3~2x) (1 — 2a)2/(3_2a) + (l — 2a)_(1_2“)/(3_2!')j .
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P r o o f . Clearly, for a< l/2 ,
(2.19)

« A )  =  /  r f e -=*«■-», =  / ' +  / ' +  /  =  1+ Ц + ™ .
« V'  n r \  Г '  0 Hr Dr

Hr =  (2(l+e)loglogr)~(1_2<l)/4, 

n _  (8a(l+e)loglog r)1/2
К

where
(2.20)

(2.21)

Now for large r ,  being

(2.22) tfr4/(1- 2l)) S  Hr exp { - у  7/,г4/(1_2а)} ^  (log r)"1" ' 

and by Lemma 2.2,

(2.23) III g  P ^ a,h T̂ r ^  (1 + s)e-D' h' ^  Ш ( l+ e )e -(1+e)loglogf.

Furthermore, by Lemma 2.3, 

(2.24)
н г 2 \ 2 л а  1 ^

4/(1 -  2 « )_ X2/l2
8a I  d x .

By elementary calculations, one can easily see that the integrand has a maximum 
on at the point

>у(1 —2«)/(6-4a)
(2.25)

hence
(2.26)

>= i _ 8a. _ T
U 2( l - 2a)J

{ 1 r*2h2___ 4 /(1 - 2 a )  л  “ гтт (1 -\-e)hrDrII sí -— exp . - „ .
2 ] / 2 n a  1 2  8a

^  C(e)(loglog r)1/2e - (1+2£)l°81°gii g  C(e)(logr)_1_c

if r  is big enough. Now (2.18) follows from (2.19), (2.22), (2.23) and (2.26) in the 
case a < l /2 .  For a = l /2 ,  Lemma 2.4 follows immediately from Lemma 2.2.

Our next goal is to give a lower bound for P(Ar).
L emma 2.5. F o r  xr>0 , yr> 0, h r > 0  s a t i s f y i n g  t h e  c o n d i t i o n s  (2.15), lim yr= 0 ,

Г - * о о

lim r ~ 1 ,4y ~ 2 exp (l/yr)= 0  a n d  f o r  e>0  w e  h a v e
Г-*- со

(2.27) P <  y, TjL r r €dxj I  dx S  C(e)yhr е-И+ЧШ-хЧЦт

i f  r > r 0 ( e ) ,  \ x \ ^ x r ,  y r ^ y ^ 2 y r .
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P roof. Start with

(2.28) E(e-*Trl'\ L 4 d x )  =  r\ j  е~ч°Р [Ц  <  s, L*€dx) ds =
0 ' r '  

r - l / l  JI(I -  s) J>(1 +  г) >>(2 +  s) oo

= n /  + 1  f  +1  f  +4 /  +4 /  = /i + /2 + /*+/4 + /6,
о r - i / 4  y (l—c) 3>(l+e) j>(2+e)

where L*—{L{a,Tr)—r)j{hr ^r ) and e>0.
Put 11 = 1 /(2y2) and estimate /х to /5 from above.
Using Lemma 2.1 for j/=0 we get

(2.29) h  ^  ^ P O ^ d x )  =S -Cr V * h r  e - x 4 ^ a )d x  s= e h r e - l l y - x 4 ' K8a)d x .2  y 2

From Lemma 2.3,
Kl-c) 

2y2 r-i/i
/ а =£- ^т  У)  ) e - ’l№  e~lKis)- x,h'KSa)dsdX.

2v2 J-  2 У2na

But вхр {— 2^2*“ ^v} is increasing if i ^ j ( l - s ) ,  hence

(2.30) I2 C e x p { - - L  +1 - a )  - dx =£ dx.

Furthermore,

(2.31) /3 ^  - ^ г в ^ - а - ж а д р ^  <  j ( i + E), L*€dx).

Again, by Lemma 2.3 and since exp { _ 2p - ^ }  *s decreasing if s ^ y ( l  +e),

(2.32) /4 S  C - ^ e x p { - y - ( l + e + T ^ j ) —^ J d x S e ^ e - ^ - ^ ^ d x .2y
Finally,

(2.33) /5S ^ T  /  e - ’l ^ t> P (L * e d x )d sS ^ -e - i2+eŴ - x,h'lm d x ^
2 У  3>(2+a)

^  eftre - (lM- ^ /(8o)dx.
By Lemma 2.1, for t] = 1 l(2y2),

(2.34) £ Íe -"T> ’, r gdx) s
l hr Уг )

( C - e ) h re -1 * - * ' t№ä>dx = (C-~E)hr e~lly- x4' l(Sa)dx
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with an absolute constant C. Hence, from (2.28), (2.29), (2.30), (2.32), (2.33) and
(2.34) ,

(2.35) 73 (C-5E)hre - lly- xth'im  dx 

and taking (2.31) into account,

(2.36) P ^  <  j ( l  +e), L*edxj ^  C(e)yhre~a+c)K2y)~xth'K8a)dx

and (2.27) follows by replacing y ( l+ e )  by y.

, - f l - E  \(3 -2«)/4
Lemma 2.6. For hT=K„ya\-.-----log log r |  , a <  1/2 and e > 0  we haveV 1+e )

(2.37) Р(Л г)^ С (е )(1 о ё г ) -1+г

i f  r is big enough, where A, is defined by (2.17).

P ro o f . Let

(2.38)

Then by Lemma 2.5

x* i _ _ ^ ____Í
l h2r( l - 2a) )

(1 —2a)/(6—4a)

P(Ar)=  J
К f r  )

x*ym
g  £ ^ * 4 / (1 - 2 a )h J  e - ( l + 0 / 2 x - 4/<1- 2“> -J tsA“/(8o) ^  ^

g  (7(g )j^*4 /(l.—2a) + 1 / j ,  g  — (l +  e)/2** ~4/(1" 2a<) —x*2(i +  i)Aj/(8a) ^

^  C(e)hT2/(3_2l) (log r)-1+c ^  C(e)(log r)~1+e/2

for r large enough. Since e>0 is arbitrary small, we have (2.37).
Now we are ready to prove Theorem 2. First we show that for large enough r, 

we have

(2-39) Щёё,г *  О +«)*«•) 9.S.

with /г(г) = ]/аЛ^((1 + 2e) log log r)(3~2x>/4.
Put rk=exp {к/log k}. Then by Lemma 2.4 and Borel—Cantelli it fol

lows that
L ( f l , T J - r k* i i T £ - uV*h(rJ for к >  fc0.
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Now assume that rk^ r < r k+1, k > k n. Then

L(a, Tr) — r _  L(a,Trk) - r k+L(a,Tr) - L ( a ,T  ) - ( r - r k)
гаТ’/ 1_2°')/4

— h(rk) +

It is well-known that 

(2.40)

r« У а -*«)/«

sup (L (a ,Tr) -L (a ,T ri) - ( r - r k))
гк — г̂ гк + 1

гаГ 0 - 2.}/ 4

Г ,^ с 1;--- ^ -----, /С=£кгlog log rk

with some constant Cx. Theorem 3.1.1 of Csörgő and Révész [5] implies that 

(2.41) sup (L(a,Tr)-L (,a ,T rk) - ( r - r k) ) ^
rk ~ r rk + l

= C2[(rk+1- r k) (log Гк +loglogrt) |  , 
V 4 r k  + l ~  r k ' )

with some constant C?. Hence for fc^max(&0, kl9 k2), 

L(a, Tr) — r —  ' 1/2‘
..хта-юи = Нгк) + с ( -Гк+1...*>■) (log — “  “ hlog log i"j. 1 x
'  1 r v r k '  ' r& + l — r k '

X (log log rt)(1 - 250/4 ё  (1 + e) h (rk) S  (1 + e) h (r),
showing (2.39).

One can see similarly that

(2.42) r — L(a, Tr)
j.X'p (l-2oc)/4 — (1 +s)h(r)

for r big enough, hence the upper part of the law of the iterated logarithm (1.9) 
follows.

To show the lower part, let а <1/2, rk—eckl°tk with some £>>0 and put
—  E \ (3 -a « ) /4

h(r) = Kccya log log rj . Then Lemma 2.6 and Borel—Cantelli imply
that
(2.43)

L (a> Trk+1)~L(a , TrJ - ( r k+1- r k) ^  h(rk + 1- r k)(rk + 1~ rkf(T Tk+t- ГГк)(1 - 2“>/4 

holds for infinitely many k.
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One can easily see that the following limit relations hold:

(2.44) lim
k-*- oo

h(rk + l - r k) 
h(rk+1) -  1,

(2.45)

(2.46)

(2.46)

(2.47)

lim
k-*-oo

follows from

= 0

lim =  0,
k~°° rk +1

a.s. for suitably chosen q >  0.

Cr2 T
log logr r2(log r)2+E a.s.

if r is large enough and e > 0, which is easily seen from the exact distribution of 
T-§■, and the Borel—Cantelli lemma. (2.43)—(2.46) imply

C2 48') ^ (a, 7ric+i) r k + i  > r)h(r ) I L(a, Trk) rk
Zi  ^T (l-2 a )/4  — v 1 е ) П [ Г к + 1) +  T ( l_ 2 a ) /4 -
Гк + l h U i  r* + l J '-k + i

But (2.47) and the law of the iterated logarithm for L(a, Tr)—r imply that

/ 1о8 1о8 гл(1оВ1о8 r k + i)(1- 2tt)/4 ^  e h ( r k + 1)

for к large, hence

Z.(u, Trk+1) i*fc + i
r0L 7Г(1-2а)/4 
Гк  + l-írk+i

(1 —2e)h(rk+1)

holds for infinitely many k.
The proof of Theorem 2 is complete in the case 1/2.
For а =1/2, Theorem 2 follows from the usual law of the iterated logarithm, 

since L(a,Tr)—r is a process with stationary independent increments.
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ON SUMMABILITY OF THE CONJUGATE SERIES 
OF FOURIER SERIES AT A POINT

Y. OKUYAMA (Nagano)

The purpose of this paper is to give a general theorem on a triangular matrix 
summability of the conjugate series of Fourier series which implies Hirokawa and 
Kayashima’s theorem [5] and deduce various results from the theorem.

1. Let C=(c„ k), k —0, 1,.. .,  n, be a triangular matrix and let

П
{n = 2 Cn,ksk’ *=0

where {.s*} is a given sequence of numbers. If /„ converges to a value л as 
then the sequence {.v„} is called summable (C) to s.

n
In this paper we assume that c„)k̂ 0 for k=0, 1, ..., n and 2  c«,k = l-

k=о
Let a function c„(t) be nondecreasing and nonnegative in (0, и) such that 

c„(k)=c„'k for k=0, 1, 2,.. .,  и, and put

t
Cn(t) = J  c„(n — u)du for 0 = / => и. 

0
Then we have

C„(U ~ 2  c n , n - m for n = 1,2, —
m  =  0

Let / ( / )  be a periodic finite-valued function with period 2n and integrable (L) 
over (— u, n). Let its Fourier series be

(1.1) 4- a0 + 2  ( a n cos nt + b„ sin nt) = 2  A„(t).
^  11 = 1 n = 0

Then the conjugate series of the series (1.1) is

( 1.2) 2n = 1
(bn cos nt — an sin nt) = 2! (0 *

n = l

1*
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Throughout this paper, we write

<P(f) =  4- {A x+ t)+ f(x - t) -2 f(x )} , Ф0) =  /  |<p(«)|dw,

iKO = 4-{/(*+0-/(*-0}» ^ (0 =  /  l<A(w)| i/w 
2 «?

and T=[rc/i], where [x] is the integral part of x.
2. Rajagopal [9] previously proved the following nice theorem on the Nörlund 

summability of Fourier series.
T heorem  A. Let a function p(t) be monotone nonincreasing and positive for t^O. 

Let pn=p(и) and let
t

P(t) =  J  p(u)du-»°° as 
о

If, for some fixed ő, 0<<5< 1,

ö
f  *(0

d P(n/t) 
~dt It dt =  о (Pn), as и 1»,

then the series {\Л) at t= x  is summable (N ,pn) to /(x).
Recently Dikshit [1] proved the following theorem on the summability of 

Fourier series by the regular linear method of summation determined by a trian
gular matrix.

T heorem  В . Let {c„ik} be nondecreasing with respect to k. Let x(t) be a positive 
function defined over (0, °°) such that as

(i) и/(и) = 0 (1) and
n

(ii) /  x(u)Cn(u)du =  0(1).

Then i f  Ф (0= о (х(л/0) as t--0  +  , the series (1.1) at t= x  is summable (C) 
to /(x).

Furthermore, Okuyama [8] has generalized these Theorems A and В in the 
following form.

T heorem C. Let {c„fk} be nondecreasing with respect to k. If, for some 5, 0<<5< 1, 
the condition

d
j  Ф( t) d

dt
C„(n/t)

t dt = o(l) as n —°°

holds, then the series (1.1) at t —x is summable (C) to /(x).

Acta Mathematica Hungarica 52, 1988
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3. Now the conjugate-analogue of Theorem A was obtained by Hirokawa and 
Kayashima [5] as follows.

Theorem  D. Let {/;„} and P{t) be defined as in Theorem A. If, for some <5, 
0<<5<1,

provided that the integral exists as a Cauchy integral at the origin.
Here we generalize Theorem D in the following form.
T heorem . Let {сиД} be nondecreasing with respect to k. If, for some 6, 0 <  <5< 1, 

the condition

holds, then the series (1.2) at t= x  is summable (C) to f(x) provided that the integral 
in (3.2) exists as a Cauchy integral at the origin.

This theorem is the conjugate-analogue of Theorem C.
If we put cn{u)—p„_jP„ for k ^ u c k  + 1, then our Theorem reduces to 

Theorem D.
Corollary 1. Let {с„д } be nondecreasing with respect to k. Let y(t) be a 

positive function defined over (0, °°) such that as n-+°°,

(i) ny(n) =  0 (1) and

Then i f  lF(t)=o(y(n/t j) as i-*0 + , the series (1.2) at t= x  is summable 
(C) to f{x) provided that the integral in (3.2) exists as a Cauchy integral at the origin.

P roof. For a positive number ö such that 4*(t)=o(y(n/t)) for /6(0, <5), we 
have by (i) and (ii)

n/n

then the series ( 1.2) at t—x is summable (N ,p n) to

(3.2)
0

(3.3) as n ->-k>

n

(ii) f  x(u)C„(u)du = 0 (  1).
1

=  О Í /  x m ^ ~ - d t )  = o (  J  x(t)Cn{t)dt) =  0(1)
7t/n TC/Ő

A d a  Mathematica Hungariea 52, 1988
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by virtue of the fact that cn(n—n/t)/t—0(C n(n/t)). Therefore, by our Theorem, 
this completes the proof of Corollary 1.

Corollary 1 is the conjugate-analogue of Theorem B.
Now, since {c„.J is nonnegative and nondecreasing in k, we have

(n~k)cn,k= 2  cn.m — !•
m = k + 1

Thus for each fixed k, c„tk-» 0 as и — Hence we remark that the triangular 
matrix C=(c„fk) is a regular method.

For the proof of our Theorem, we require the following two lemmas.
Lemma 1 [7]. I f  {cn t} is nomegative and nondecreasing with respect to k, then 

for 0^=a<b< a», 0<  and any positive integer n,

I 2  c»,n-kei(n~k)‘\ = ACn(n/t).
k = a

Lemma 2. Condition (3.3) implies 4f (t)=o(t).
This lemma is similarly proved by the same method as that used in the proof 

of Rajagopal’s lemma (see [9] or [8]).

4. Proof of Theorem. Let us write

sn(x) = 2  Bk(x) and ln(x) = 2  c ksk(x).
*=1 k=0

By Lemma 2, we can choose a positive number ö such that 4'(t)=o(t) for 
s á .  Then

- s  \ ? /  \ 1 Г I /л  cos (k + 1/2) / 1 /  , /л cos ( k  + 1 /2 )  t* « - / ( * ) = -  J m  siD(/2 dt = - j  m

where, by the Riemann—Lebesgue theorem,

.. 1 r . , . co s(k+ l/2)i
(4.1) r,k = - f H t ) sinf/2 d t ~ 0  as fc— .

Thus we obtain

dt+t]k

i n ( x ) - f ( x ) =  2  c . , i { 4 W ~ / W }  =
k = 0

1 r in
=  - /  iKO 27Г '  k=o

7L c„jkcos(/c-|-l/2)i
sin tj2 t/2

where

K(n, t)=  2  c n .k  cos (fc + 1/2) r.k=0

Лс/а Mathematica Hungarlca 52, 1988
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By (4.1), together with the regularity o f  the method o f  summation (C), we obtain

ft
=  2  с»лЧк -  0 as в - с о .

fc =  0

Hence we have to show that

/ = — f  фО) — 0 as nn у r  '  sin t/20 t/2

Since the integral (3.2) exists, we can obtain a positive integer n0>n/ö  such that
j  it In

— f  cot t/2 dt = o ( l)  for n ^ n 0.
7Z J 0

Thus, for л ё л 0, we write

say. Then we have

<«> í - t Í ^ - Í Í * «
ЛГ(л, t )—Cn(n) cos t/2

1 л/П f »
=  — /  *A(0 2  ся,n 1 4=0

t/2 n J sini/2

cos (k+ 1/2) t —cos t/2

d t+ o ( l)  =

sin t/2 j dt+o(  1)
for л ^ л 0. Since |sin A:/|sfc|sin i| when A: is a positive integer, we have 

" cos(fc+l/2) i —cosr/2 . " sin (fc + 1 ) t/2 sin kt/2
(4'3) Л с- ‘-S H p ---------- = ~ 2 Л С- 1---------- й ^ 2 ------------

=  0 ( 2  kcn,k( k + l ) t )  = 0(n2t 2  cn,k) = 0(n2t).
k=0 k=0

Hence, from Lemma 2, we get by (4.2) and (4.3)

r1 = o ( — f  \i//(t)\n2td t \  + o(l) = 0 ( n  f  \i//(t)\dt}+o(l) =  o ( l )  for л ё л 0.

N ext, we obtain by Lemmas 1, 2 and (3.3)

I t b A j m £ m d t * A
n/n

V(.S)— ^ — П Ф )С я( п ) ^О TZ +

+ A j  «P(0
л/п

d c „ m
dt t

This completes the proof o f Theorem

dt =  о(С п(л/(5) +  Сп(л ))+ о (1 ) =  o ( l )  for n ^ n 0.

Acta Mathematica Hungarica 52, 1988
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5. Finally we consider some applications of our theorem.
C o r o l l a r y  2 (Hirokawa and Kayashima [6]). If, for some fixed 6, 0< 1,

f ^ ) L i ogl d U = 0(l0 g Klt) as t -* 0 + ,“ и и

then the series (1.2) at t —x  is summable (N, l/(n + l)) to f(x) provided that the 
integral in (3.2) exists as a Cauchy integral at the origin.

C o r o l l a r y  3 (Saxena [10]). Let {pn} be a sequence such that
P n > 0 ,  p „ \ ,  P h - oc, and logn =  0(ß(P n))

where ß(t) is a positive monotone nondecreasing function such that t/ß(t) is also 
monotone nondecreasing. I f  4 '(t)—o(t/ß(Px)) as t-*0 +  , then the series (1.2) at 
t= x is summable (N, p„) to f(x ) provided that the integral in (3.2) exists as a Cauchy 
integral at the origin.

C o r o l l a r y  4 (Saxena [10]). Let {/>„} be a sequence such that

Pn> 0, pn\, P„ and log« =  0(y(FJ),
whce y(t) is a positive function such that

J w j т "  = о й )  "
I f  'F(t)=o(t/y(Pxj) as i —0 + , then the series (1.2) at t= x  is summable (N ,p„) 
to f(x) provided that the integral in (3.2) exists as a Cauchy integral at the origin.

C o r o l l a r y  5 (Dikshit [3]). Let {/;„} be a sequence such that

Pn > 0, Pn \ > Pn -  and а (и) log n =  0(P„),

where a (t) is a positive monotone nondecreasing function. I f  W(t)=o(a(n/t)t/Pz) as 
t-*0 + , then the series (1.2) at t= x is summable (N,pn) to f(x ) provided that the 
integral in (3.2) exists as a Cauchy integral at the origin.

This corollary coincides with Dikshit [2] for a(t)—l.
C o r o l l a r y  6 (Hirokawa [4]). Let {pn} be a sequence such that

Pn>Q, Pnl and Pn~*oo.

Let }.{t) be a positive integrable function such that

f du =  0(P„) as « —o°,J u
V

for any fixed t]>0. I f  W (t)—o(tl(n/t)/Px) as t^ 0  + , then the series (1.2) at 
t= x  is summable (N, p„) to f ( x ) provided that the integral in (3.2) exists as a Cauchy 
integral at the origin.
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C orollary 7 (Hirokawa and Kayashima [6]). Let {/?„} be a sequence such that 

Pn >  0, /U  and P„ -oo.

Let p (t) be a nonnegative function such that

(i) {p(t)/(tlogt)} is monotonic,

(ii) p(t) = О (log t), t — °° and

(iii) 2  P(k)PJ(k log k) = 0(Pn) as n -k=2
I f  P(t)=o(tp(n/f)/log (к/t)) as t-*0 + ,then the series (1.2) at t= x  is summable 

(N,pn) to f(x ) provided that the integral in (3.2) exists as a Cauchy integral at the 
origin.

As these corollaries are analogously proved, we shall prove here only Corol
lary 7.

P roof of Corollary 7. In our theorem, we put c„ik=pn_JPn. Then for a 
positive number b such that P (t)=o(tp(n/t)/log (к/t)) for f£(0,5), we have

/ n o
d c„(7Г/0

It/n dt dt Mil tfi(ti/t) P(n/t)
n ф  \0g(7t/t) Í2

p(k)P f

dt) -

r i  , J  =  0fi  J  _  0(1)
wlogw J VP„ klogfc J» г/л

by virtue of the hypotheses of Corollary 8.
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INCREASING PATHS LEADING TO A FACE 
OF A CONVEX COMPACT SET IN A HILBERT SPACE

LEONI DALLA (Athens)

1. Introduction

Let C be a convex compact set in a normed space E. A point c of C is an extreme 
point of C if it is not contained in the relative interior of a line segment lying in C. 
The exposed points are extreme points that can be expressed as the sole intersec
tion of C with one of its support hyperplanes. The r-skeleton o f C for r a non-nega
tive integer will be defined to be the set of all points of C that do not belong to the 
relative interior of an (r+l)-dimensional convex subset of C. The set of extreme 
points of C coincides with the О-skeleton of C. Let / be a continuous functional 
on E non-constant on C. In [1], D. G. Larman proved the existence of an l-strictly 
increasing path on the one-skeleton of C. In a recent paper [2] it is proved that if 
the face F=  {x6C: l(x)— max l(y)} is of infinite dimension then for every
n = l ,  2, ... there are n /-strictly increasing paths on the one-skeleton of C mutually 
disjoint that lead in F (Corollary 2.1 in [2]). In this paper it is proved that if the 
dimension of F is к then there are k + 1 such paths with the above mentioned 
property for every k = 1,2, ... . Furthermore, we give an example showing that 
this result is the best possible in a Hilbert space.

2. The results

We quote the following propositions:
P ro po sitio n  2.1. Let C be a compact convex set in a normed space E and let l 

be a continuous linear functional on E, non-constant on C whose maximum on C is 
taken on a face F o f C with dim F—k  (k ^ l) . Then there are k + 1 mutually dis
joint paths on the one-skeleton o f C, leading to F, along each o f which the functional l 
strictly increases.

P ro po sitio n  2.2. Let Ж  be a Hilbert space of infinite dimension, l a non-con
stant continuous linear functional and к an arbitrary positive integer. Then there 
exists a convex compact set I ,  which is o f infinite dimension and on which l is non
constant, such that the face F = {x£I: l(x)=  max /(y)} is o f dimension к and I
has the property that on its one-skeleton, it is impossible to find к +2 l-strictly in
creasing paths, mutually disjoint that lead to F.

j® P roof o f P ro po sitio n  2.1. We assume thatTdim F=k. Then" there exisT T+l 
e1} e2, ek+1 linearly independent vectors in E and k + \ linear functionals 
li=l, /2, 4+1 for which the following hold:
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(i) li(ej)=Sij ,  1,7 =  1, 2, ..., /с + 1 where StJ is the Kronecker delta and
(ii) dim n0(F)=k, where n0 is the projection

n0(x) =  l fx )e 1 + l2(x) e2+ ... +  lk+1(x) ek+1, x£E.

From now on, the steps required to find the appropriate k + 1 paths on the 
one-skeleton of C are similar to those in the proof of Theorem 2.1 in [2], so we 
omit them. This concludes the proof of the proposition.

Before we proceed to the proof of Proposition (2.2) we introduce some appro
priate notation: Let Ж0 be a separable Hilbert space of infinite dimension and let 
I be a continuous linear functional on Ж0 of norm 1. Then there exists a unit vector 
ux such that l(x) = (x, щ) for every x£ jf0. Let {м„}Г=1 be a complete orthonormal 
system in Жй. We denote by Q the convex compact set

\х€Ж 0: x = %  cnttn, 0 = c„ =  —, n — 1,2, ...}.

Also, let Н~(а) = {х£Ж„: l (x) sí a} be the closed half space, where a is a real num
ber and let H(a) be the boundary of H~(a). Next we quote and prove the following 
lemma which is essential in the proof of Proposition 2.2.
Sts-,

L emma. Let l be a non-constant continuous linear functional on a separable Hil
bert space Жй, fcs 1 be an integer and p< (k + 1)-1 a positive real number. Then 
there is a sequence o f convex compact sets (T;)í^i with such that

1) I f  a(,)=  max l(x), then the sequence is strictly increasing.

2) Si+in H -(**>) =  Z„ i =  l , 2 , ....

3) The sets Aw  =  Т1ПЯ(0)=соп { (J x^0)} unc/d(i) = Tin i i ( a (i)) = con{lj' х<г)к
71 =  1 71 =  1

1 =  1, 2, ... are convex compact sets o f co-dimension 1.
4) F(lJ =con ..., Xfc+i) is a k-dimensional face o f A(i> with

1 * A + i  II ~  X"° II ^  г =  °, 1, 2, ....

5) max Ы ‘> —* Г Ч1 <  pk+l, i = 0, 1, 2, ....lSjSk+l J 1 "
6) The point Xjl> is joined to the point xj‘+1) by a single edge o f the convex com

pact set Tj+1, 1 ^y'S/c +  1, г = 0, 1 , 2, ... .

7) lim llx^-x^o ll 3, A(i) =  {
and

0 <  <  p!k+i

1 for i =  2n where n — 0, 1, 2, ...
2 for i =  2/z +1

j  = k + 2, ..., i = 0, 1, ....
8) I f  k+ 2  disjoint l-strictly increasing paths in the one-skeleton of 27+1 lead 

from A(i) to d (‘+1> then one must contain a line segment o f length exceeding p — 3pk+i, 
í= 0, 1, 2, ... .
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Proof. Let х{0)=0, х£0)=и2/2, = mä+1/(A: + 1 ) an d  x f $ j = n k + J u k + j ,
oo

j ^ 2 .  Then lim x̂ 0)=x1(0), hence d°=con ( [J x̂ 0)) is a compact convex subset
“  п=1

of Q with ext d (0)=exp d (0) =  IJ x<0), where ext d (0) and exp d (0) are the set of
n= 1

extreme and exposed points of d (0), respectively.
Conditions 4) and 7) are satisfied for the points {x'0,}“=1. Let u j  Q and

Р ^ с о п ^ и  x<0)}U{n1}}=con (d(0)U{mj}). We can choose 0 < « (1)<1 sufficiently
n = l

small, so that with xjx)=con (xj0), м^П-Ща^), the inequalities of conditions 4) 
and 5) are satisfied for \ ^ j ^ k + \ .  Let =con (xj0), п1)П //(а (1)),7^/с+2. Then

fc + 1 oo
Г =  Р'ПЯ(а<1>) = то п (и  W X)}U U { jj1*})

7 = 1  j= k + 2
is a compact convex subset of Q.

We choose x^dcon (yW, x ^ ) ,  j s k +2 suchthat 0«= ||xj1) — x£1)||< /i’t+1 and 
lim xj1)= x |1) and so that d (1) =  con(U  xjx)) is a convex compact set with co-
7-*“ j=i
dimension 1. Then we define

ly  = c5n(d(0)Ud(1>) =  cön( IJ {xí0)}U U {xix)}).
И = 1 П=1

Then ly is a compact convex subset of Q, which satisfies conditions 3) to 8).
Assume now that we have constructed a finite sequence of m (m ^l) compact 

convex subsets of Q, having properties 1)—8). It will be shown that a compact 
convex set £m+1 can be constructed so that the enlarged sequence also satisfies 
the required conditions. Let d£Q be a point with a(m)-=/(J)< 1 and con (dU2Jm) = 
= I mUcon (dUAim))QQ. Let a(m+1) be chosen greater than a(m), so that with xjm+1) 
defined for, l S j ^ k  + l by xjm+1)=con (xjm>, (/)ПЯ(а("+1)) the inequalities of 
Conditions 4) and 5) are satisfied. Let now

k + l  ~
T  =  cön(rmUd)nJT(a(m+1)) =  cön( J  xjm+1)U (J yjm+1>)

7 = 1  7 = k + 2

where yjm+1), j ^ k + 2  is joined to x)m) by a single edge of the compact con
vex set con (X,mUfiOn#~(a(m+1)). Let x}m+1), j^ k + 2  be a point of the edge 
con (yjm+1), x^m+1)) (1 = 1 or 2 iff m + 1 is even or odd) of T  chosen so that

0 <  ||xjm+1)- x i m+1)|l <  //+<m+1>, lirnxjm+1) =  xim+1) and d (m+1> =  cön( 0  x<m+1))
7 - ~  n = i

is a compact convex set of co-dimension 1. Next, we define

£m+1 =  cö n (lmUd(m+1)) =  cön(U  Ü x™).
i = 0 и =  1

m-f-1 oo
Then ext Zm+1=exp Tm+1=  (J  \J xjf*. We observe that conditions 1)—7) apply

i — 0 5 =  1
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to the sequence of convex compact sets Г15 Г2, I m+1 by construction. But con
dition 8) requires proof.

7Я + 1 fc+l
Let Sm+1= U U xjl) be the vertices of I m+1 which satisfied conditions 4)

i=0 j =1
and 5). Suppose that Рг, P2, Pk+2 are k+ 2  disjoint/-strictly-increasing paths 
in the one-skeleton of Xm+1, joining A(m> to d (m+1). Suppose that none of these 
paths contain a line segment of length exceeding /z—3/ik+m. Let xjm), x|im+1)€extl'm+1 — 
—Sm+1. Then using conditions 7), 5) and 4) we can see that ||xjm)—xjm+1)||>  

3fik+m and

Hence xj”° can only be joined to x ^ 1* and the vertex х)т+1) with xj|j&+1). There 
remain к disjoint paths between A(m> and d (m+1) which do not pass through x ^ +1) 
and xj”+)1). If one of these paths joins two vertices xjm), xfm+1), i ^ j  with 
xjm), x/m+1)i  5"m+1 then we can show that

||xjm)- x im+1)|| > /i-3 /i* +m.
If one of these paths join two vertices xj"1̂ Sm+1, x}m+1)£Sm+1, х(('п+1)^х^"+)1) 
then again ||xjm)—x,(m+1)|| > ц — 3цк+т. Similarly, if one of these paths join two 
vertices then xjm+1)$Sm+1, x}m)£Sm+1, x,(m) ^  x^m+n- This contradiction establishes 
Condition 8) for the sequence of convex compact sets Гх, ..., I m+1.

P roof o f  P ro po sitio n  2.2. Let / be a non-constant continuous linear functional 
on Ж. We may assume without loss of generality that / is of unit norm. Then /(x) = 
=(x, Mj) for some unit vector щ in Ж. We select a closed separable subspace 
of infinite dimension such that щ£Ж0. Then / is non-constant on Ж(). Define 
T = cön(U  I n)Q Q  where I„ , n = 1,2, ... and Q are as in the previous lemma.

n=l
Then 1 is compact convex and the functional / assumes its maximum value on I  
over the whole of a face J j  with dim Fx= k  by the construction ot Z„, n = 1, 2, ... 
and I .  It is impossible to find k+2  paths in the one-skeleton of I  which lead 
to Fx, yet which are disjoint outside Tj. If such paths did exist then, by condition 8) 
of lemma, one of the paths would contain a sequence of disjoint line-segments of
length exceeding у  (taking the limit). This is impossible for a path P, since P
is the continuous image of [0, 1] on the one-skeleton of I .  This completes the proof 
of Proposition 2.2.

References

[1] D. G. Larman, On the one-skeleton of a compact convex set in a Banach space, Proc. London
Math. Soc., 34 (1977), 117— 144.

[2] L. Dalia, Increasing paths on the one-skeleton o f  a convex compact set in a normed space,
Pacific J. Math. 124 (1986), 289—294.

(Received June 13,1985; revised April 10,1986)
DEPARTM ENT O F  M ATHEM ATICS
UNIVERSITY O F  ATHENS
PANEPISTEM IOPOLIS
154 81 ATHENS
GREECE

Acta Mathematica Hungarica 52, 1988



Acta Math. Hung.
52 (3—4) (1988), 199—205.

ON THE DEGREE OF APPROXIMATION OF A CLASS 
O F FUNCTIONS BY MEANS OF FOURIER SERIES

P. CHANDRA (Ujjain)

1. Definitionsand notations. Let /  be 2n-periodic and £-integrable on [— тг, я]. 
The Fourier series associated with /  at the point x, is given by

( 1 . 1) — a0 + 2  ( a n cos nx + bn sin nx).2 n=i

A function /6  Lip a (a>0) if

(1.2) f ( x  + h) - f ( x )  =  ООН]*) (h -  0) 

and if /  is defined on [— л, n] then the expression

(1.3) co(<5) =  co(5,f) = sup \f(x1) - f ( x 2)\, Ixj-xal S  S
*1>х г

is called the modulus of continuity of /  (Zygmund [5], p. 42).
Let A=(a„:k) (к, n =0, 1,...) be a lower-triangular infinite matrix of real 

numbers. We denote by T„(f) the ^-transform of the Fourier series of /  given by

(1.4) Tn(f; x )=  2  anksk(x) (n =  0, 1, ...),
k=0

where sn(x) is the n-th partial sum of the series (1.1). 
Suppose A=(ank) is defined as follows:

(1.5)
0 ^  к S  n 
к >  n,

where (p k) is non-negative and that P „ = p 0 + P i  + + р п А 0  ( п ш 0). Then the matrix 
is called Riesz matrix and the means are called Riesz-means or (R, pj-means. In 
this case we write Rn( f ; x ) for T„(f; x). Also if

( 1.6) к >  n,

The matrix (a„k) is called Nörlund matrix and in this case we write N„(f;x) 
for Tn( f;  x). Throughout (ank) will denote a lower triangular infinite matrix.
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We use the following notations in this paper:

(1-7) ФЛ0  =  y  { f ( x  + t ) + f ( x - t ) - 2 f ( x ) } ,

( 1-8) bnk =  2  anr; bnk =  b„(k),
r= 0

(1.9) T =  [л//], the integral part of к /t  in 0 <  t S  n,

(1.10) C*[0, 2л], the space of all 27r-periodic continuous functions defined on [0, 2n].

Throughout, the norm || • || will be the sup norm on 0 ^ x ^ 2 n  and co(t) will 
be the modulus of continuity of /€C *[0, 2n].

2. Introduction. By employing Riesz matrix, we [1] obtained the following 
result concerning the degree of approximation:

T heorem A. Let /6C*[0, 2n] and let / 6Lip a  (0 < aS l). Then the degree o f 
approximation o f f  by (R, p„)-means o f its Fourier series is given by

IK  ( / ) - / !  =_  Го{(л,/ЛЛ;
ÍO {(pn/Pn) log (PJpn)}-,

0 <  a <  1
a =  1,

where (pn) is positive and non-decreasing with n=sn0.
Recently this result was extended to the lower triangular matrix in the Hölder 

metric (see [4]).
In this paper we first extend Theorem A by using the modulus of continuity of 

f  in the following form:
T heorem 1. Let (ank) satisfy the following conditions:

(2.1) ank^  0 (n, к -  0, 1, ...), 2 ank = l,
k=0

(2.2) ank^a „ ik+1 (k =  0, 1,..., n - 1, n = 0, 1,...). 

Suppose co(t) is such that
Tt

(2.3) /  t~2co(t)dt = 0(Н(и)) (и —- 0+),
U

where 0 and that

(2.4) tH(t) =  o(l) (/ -  0 +  ) 
and

t
(2.5) /  H(u)du = 0{tH(t)} (t -  0+).

0
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Then
(2.6) \Т '( Л - Я  =0{a„„H(aJ}.

We also prove
T heorem  2. Let (ank) satisfy (2.1) and (2.2) and let oj(t) satisfy (2.3). Then

(2.7) \\Tn( f ) - f \ \  =  О {o>(nln)} + 0  {amH(nJn)},
where H  is non-negative. If, in addition to (2.3), u>(t) satisfies (2.5) then

(2.8) \Tn{ f) - f \ \  — О {amH(njn)}.
Lastly, we intend to investigate some results, one of which is analogous to 

Theorem A in the case when (p„) is non-negative and non-increasing. In fact, we 
first obtain general results for a triangular matrix by using the modulus of con
tinuity of / from which the desired results may be obtained. Precisely, we prove the 
following:

T heorem  3. Let (a„k) satisfy (2.1) and let
(2.9) апк^ а П'к+1 (к = О, 1,.... л -1 , и =  0, 1, ...).
Then

(2.10) I I ( / ) - / !  =  О {(о(тс/п)+ 2  k~l(ß(njk) Ъп(к + 1)}.

T heorem  4. Let (апк) satisfy (2.1) and (2.9) and let co(t) satisfy (2.3), (2.4) and
(2.5). Then
(2.11) I I ( / ) - / «  -  O H„tf(a„0)}.

3. We shall use the following lemmas in the proof of the theorems:
L emma 1. Let co(t) satisfy (2.3), (2.4) and (2.5). Then

r

j  t-'coifjdt = 0{rH (t•)} (r — ОТ).
о

P r o o f . Integrating by parts, we have
r  1C r i t

J  i- 1co(0 d / = [ —/ J  u~2co(u) J  dt J  u~2co(u)du =
0 t 0 t

r

= 0{rH(r)} + 0 ( \)  I  H(t)dt = 0{rH(r)},

by (2.3), (2.4) and (2.5).
This completes the proof of the lemma.
L em m a 2. Let (a„k) satisfy (2.9) and let a„k^ 0 (и, k = 0, 1, ...). Then, uniformly 

in 0< / T 7t,

i  a n k  sin (fc T  j ]  t =  0{6„(t)}.
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P roof. Since a„k^0 , we have by Abel’s lemma

2  a nk sin \ k + -1 - ) 1 g  2  a n k +  2  «nifcSin fc+ т  t \  =
k = 0 V Z S  I * = о T \  1 )  I

=  K ( t )  +  0 {  Tűnt} =  0 { Ь „ ( т ) } ,  

by (2.9). This completes the proof of the lemma.
4. In this section, we shall prove the theorems mentioned in Section 2. 
Proof o f T heorem  1. We have

T„(J\ x ) - f ( x )  = 2  anksk( x ) - f ( x )  =
k = 0

=  I / { { ^ ( 0 / ( 2siny i ) } ( i « n fcsin(fe+ j) ')dt,

by (2.1). Now we observe that ||<P(t)||^co(f), therefore

( 4 . 1 ) r „ ( / - / ) i  s  I  /
7Г /

ш(0

0 2 sin у  t
2  °nk «И

л=о
in ffc+ I) t\dt =

=  * ( / " " +  I )  =  11 + / * ’ s a y -о
However, by (2.1), the sum in the integral does not exceed 1 and hence

h  =  0(1) ° f nt-'a>(t)dt =  0{annH (aJ},
0

by Lemma 1. Also, by (2.2) and Abel’s lemma
Tt

h  =  0 (ö ,J  /  t~2co(t)dt = О {annH (aJ},

by (2.3).
Combining 7X and /2, we get (2.6) and this completes the proof of the theorem.
P roof of T h eorem  2. We have from (4.1)

\\Tn(f)~f\\ ^
0 2 sin y ^

n/n

2  «л* sin
fc =0

in («=+t.) t d/ =

= / )  = 7l+7*’ say-0 n/n
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Using the inequality |sin jfc+ y j t |s ( f c + y )  / and (2.1), we get

It In

/j =  0(n) j  a>(t)dt = O{co(n/n)}.
о

Also, by (2.2) and Abel’s lemma

h  =  0{a,mH(n/n)}.

Combining 7X and 72, we get (2.7).
For the estimate (2.8), we first observe that

7t/n

Ik =  0(n ) J  co(t)dt.
о

Now integrating by parts and using (2.3), (2.5) we get
я/л n я /л  Jt

J  co(t)dt =  [—/2 J  (co(u)/u2)du]*,n+ J  2td t J  u~2(o(u)du =
0 t O f

я/л

= О {n~2H(n/n)+ J  tH(t)dt} =  0{n~2H(n/n)}.
о

Hence
Ix = О {n~1H(n/n)}.

And proceeding as in 72 above, we get

h  = О {annH(n/n)}.

However, by (2.2), {ank}l=0 is non-decreasing and hence

(n+ l)ann ^  2 a „ k =  1,
k =  0

by (2.1). Thus using the inequality n ~ 1 = 0 ( a „ „ ) in Ix and combining it with 72 
we get (2.8).

This completes the proof of Theorem 2.
Proof of Theorem 3. Proceeding as in Theorem 2, we get

\Tn( f ) ~ f \  = h + h ,
where

and
h  =  0{(o(njri)}

/ .  =  |  /
co((t)

*‘n 2 sin — t
2  ank sin

k = 0
( k + j ) t \d i .
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By Lemma 2, we get
i t  n _ X  i t / *

l 2 =  0 ( l )  f  t - 1co(t)bn([nlt])dt =  0 ( \ )  2  f  t-'(o(t)bH([7i/t])dt =
к/п *-1  ic/(k+1)

n — 1 n — 1
= 0(1) 2  о)(л/к) J  /-1b.(|>r/i])df = 0( 1) а,(П/к)Ъя(к+1-)к-К

*=1 ir/Ot+l) *=1
Thus combining /j and /2, we get the required result and hence the proof of 

the theorem is complete.
Proof of Theorem 4. Splitting up the integral in (4.1) into the sub-integrals 

J and J and proceeding as in Theorem 1, the proof of the theorem may be com-
0 a„a
pleted.

5. In this section, we specialize the matrix A —(a„k) to obtain corollaries of 
the theorems.

By (1.5), we get the following corollary from Theorem 1:
Corollary 1. Let co(t) satisfy (2.3), (2.4) and (2.5) and let (pH) be non-negative 

and non-decreasing. Then

\\Rn<J)-f\\ =  o  {(pJPn)H(pjp„)}.
If /€Lip a (0 < « s l) ,  then co(t) =  0 ( tx) (0<ac^l) and

rr(tA _  | 1о§ W “) a =  1 
H (u )- \ u * - '  0 < a < l .

Hence Theorem A is a particular case of Corollary 1.
It is interesting to note that one can get the estimate oi c-orollary 1 by using 

Nörlund matrix (see (1.6)), in place of Riesz matrix. On setting ank=p„_JPn in 
Theorem 4, we get

Corollary 2. Let co(t) and (/;„) be as defined in Corollary 1. Then 
II Nn ( / ) - / !  =  О {(pJPn)H(pJP„)}.

Now we give the following corollary from Theorem 3:
Corollary 3. The degree of approximation o f /€C*[0, 2n] by the (R ,pn)- 

means o f Fourier series o f f  is given by

(5.1) ll*„(/)-/ll = 0{(Л,Гх 2  к - 'Р ксо(л/к)},k = l
where (p„) is non-negative and non-increasing.

Proof. We have, by (1.5),
k + l

bn(k + 1) =  2  a„r = Pk+1/Pa.r—0
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However (/?„) is non-increasing therefore

bn(k+ 1) =  0(Pk/P„)
and (k~1Pk) is non-increasing and hence

a)(n/n) (P J - 1 2  ю(я//с)/с_1РА.
k = 1

Using these estimates in (2.10), we get the required result.
It is interesting to note that the estimate in (5.1) was earlier obtained in [3] 

by using Nörlund matrix as defined by (1.6), where (p„) is defined as in Corollary 3.
Since / 6Lip a implies that 0)(t) = O(tx), we deduce the following corollary 

from Corollary 3:
Corollary 4. Let /£ C * [0 , 2n\ and let / £ Lip a ( 0 < a S l ) .  Then the degree 

of approximation of f  by (R, p„)-means o f its Fourier series is given by

Ш Л -fW  = o {(\iP n)k=l
where (pn) is non-increasing and non-negative.

Once again, the estimate in Corollary 4 was earlier obtained in [2] in the case 
of Nörlund matrix generated by non-negative and non-increasing sequence (/>„)•
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Introduction

There has been a good deal of interest recently in graded rings and strongly 
graded rings and in their sets of homogeneous elements (see [2] and its 129 ref
erences).

The sets of homogeneous elements of graded rings are not really rings and 
therefore we call them Grings or d-Grings, where d is the group used for the grading. 
Profs. Anderson, Sulinski and I [1] studied such Grings graded by a group of order 2. 
The present paper extends the results on simple Grings to d-Grings, where d is any 
finite abelian group.

Let d be an abelian group. For every a in d we assume there is an abelian 
group Gx. Let ^  be the weak direct sum of the Gx, CS= 2  Gx, where each ele-

ment in ^  is a finite sum of elements from the Gx s. Let ^  be the set of all homo
geneous elements of i.e. elements from each Gx but no sums are in sums from 
different Gx s with nonzero elements. We shall write <&=(G0, Gx, Gß, ...). This 
is not a group because it is not closed under addition. We call ? a d  graded abelian 
group.

We further assume that an associative multiplication is defined in У such that 
G<zGßQGx+ß, and that it is both left and right distributive with respect to the addi
tion of elements from the same Gx. This gives us a d graded associative ring R. In 
that case we shall call the Gx s, Rx s_and shall write it all as R = (R 0, Rx,R ß, ...). 
This is contained in the overring R =  2  R<x > the weak direct sum. Now R is

add
not a ring because it is not closed under addition. However R0 is a ring. The Rx 
for аИО, are additive subgroups of R. We shall call R  a d-Gring.

A subset (/„, Ix, Iß, ...) is said to be an ideal of R if every Ix is a subgroup of 
the corresponding Rx and if for every a and ß in d we have

Rß =  I<z+ß and Rßlx ?= Ix+ß-

Then /„ is an ordinary ideal of the ring Rn. Furthermore RxIßRyQIx+ß+r and in 
particular

RXI0R_X for every a in d.

Let J0 be any ideal of R0. We shall say that J0 is special if RaJ0R_xQJ0 for 
every a in d. If J0 is not special then we can expand it to

Jo= J o + 2  K'JoR-*.a.
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Then J0 is special because RßJ(lR_ß=RßJ(iR -fi + 2  RßR*JoR -<xR - f  an(l this is
_ a

all QJ0. Of course the ideal 2  R„JoR -a is itself special but it may not con-
a

tain J0.
Let I0 be any special ideal of R0 and define for every yxO,

Iy =  I0Ry + R y I0 + 2
a

Then (To, 7a, Iß, ...) is an ideal of R. To see this we note that

Iy Rs — loRy Rd + Rd 4  R6 T 2  Ra IoRy-аRi =  Iy + 60C

and similarly R3IyQIy+s. When <5 =  — у this is

IyR-y Q I0R0 + 2  R* IqR - x ü  4
a

since 70 is special.
Note that defining Iy to be 2  is not good enough because /„Ry

a
must be in Iy and in this definition Iy contains R0 4  Ry and this might be smaller 
than I0Ry. Similarly we cannot be certain that RyI0 is in Iy.

Thus every nonzero proper special ideal of R0 leads us to a nonzero proper 
ideal of the d-Gring R. We shall say that R„ is minisimple if it has no nonzero proper 
special ideals.

We are interested in simple d-Grings and we have:
Lemma 1. I f  R is simple A -Gring then R0 must be minisimple.
The ring R0 may be simple itself. If R is simple and R0 is not simple, then let 

J0 be any nonzero ideal of R0. Then J0+ 2  is special and nonzero. Since
a

R0 is minisimple, this special ideal must be all of R0. We thus have:
Lemma 2. I f  R is simple and ./„ is any nonzero ideal o f  R0 then

Jo + 2  RxJoR -a ~  Ro-
a

We shall now assume that R0?±0 and that for some nonzero a in d, 74x0. 
We shall later consider the cases where 7?„=0 and where 7?0XO with all 74=0 
for a X0.

Lemma 3. I f  R is simple then R has no total annihilators.
P ro o f . Let Ix =  {xx in Rx: xxR = R xx = 0}. Then (0, Ix, 0, 0, . . . )  is an ideal 

of R. Then 4 = 0  and thus {x in R : xR=Rx=Q}=0.
H

Example 1. Let R be all 2 x 2  matrices over a field. This is our overring and of 

course it is simple. It contains the 2-Gring (R0, R,) where 7?0 = {(s 9 } and

7?i = | i ^  q| | .  Here7?ő=7?0, 7?f=7?0and 747?0=7?074 = 74. The ring7?0 is minisim-
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pie. It does have two nonzero proper ideals, namely i(S 2)) and « 0 3 } . Neit

her one is special because o)J {(o b)} and ^i{(o ь)}^1 = {(о о)}-
There are no total annihilators and this 2-Gring is simple (see [1]). Note that Ra Rß = 
— Rx+ß for all a, ß and R0 = RXR_X for all a.

Example 2. We use the same overring as in Example 1. Let R0 =

Ri=  {(o q) |  and q|J .  This gives us a 3-Gring (R9, Rx, R2). Here

R0R0=R0, R .R ^ O , R2R2=0, R . R ^ f ^  J)} and * 2* i= { (o  J)}- Also R0R1=
=R1R0=R1 and R0R2 = R2Ro=R2■ Then R0=R1R2 + R2R 1. The ring R„ is mini
simple. It does have two ideals, namely R iR 2 and R2R1, but neither one is special 
because Rx- R2R1- R2=R1R 2 and R2 • R1R2 ■ R1=R2R1. There are no total an
nihilators and this 3-Gring is simple.

Example 3. Let К be all 3x3 matrices over a field. It is a simple overring. 

Take R0 =

Then (7?0, R1, R2, R3) is a 4-Gring.
10 0 0\] (le 0 oY

Now 2̂ 3=  (|0 b OIK R2Ri — 10 b o | and R2R2 = 0 0 0 1 . Since

la 0 0\ (/
0 b 0 ’ * i = i

\0 0 c) \

x 0\ /0 0 a\ 10 0 oY
0 y\ ■ ? Ri — 0 0 0 and R3= \y 0 0
0 0/ \ ß 0 0/ Vo <5 0!

la 0 0\ 10 0 0\ 'e 0 oY
0 b 0 > R* Ri — 0 b 0 and R2R 2 = 0 0 0

Vo 0 0/ Vo 0 c) Vo 0 f )

R> (R\ R3) R3 =

(о о 
o o o , the ideal R\R3 is not special. Also R3(R1R3)R1= R3R1.

\0  0 xj
In fact R0 has 6 nonzero proper ideals, none of them special, and R0 is minisimple. 
Also R0R1=R1R0=Ri, R0R2=R2R0=R2 and R0R3=R3R 0=R3.

If (/0, Ix, /2, 13) is an ideal of R then I0= R 0 or 0. If it is R0 then R0Ri = 
—Ri^Ii for i =  l, 2, 3 and thus the ideal is all of R. On the other hand if /„=0 
then R3I1= 0  and this happens only when fj =0. Similarly R2I2 = 0 implies 
I2= 0 and R1I3= 0 gives 73=0. Therefore the ideal is 0 and this R is a simple 
4-Gring.

Example 4. Let R be all 2x2  matrices over a field, a simple overring. Take

*0 = {(о £)}’ Äi={(o o)}’ Ro=R3= ...= R n- 2=0, and *„-!={($! o)}- Then 
(2?0, Rx, R2, ..., Rn- 2, Rn- 1) is a 4-Gring where 4 is the cyclic group with n elements.

Then а д _ ! = { ( о  o)}=A and 2?„_12?1={(q £ )}= /2. Here R,Ra=0 for all
a^O. The ring i?0= /1+ /2. Also R0RI=RXR0=RX for all a. R0 is not simple but it 
is minisimple.

We could simply discard all the zero pieces, R2...R„_2 and relabel Rn_г as 
R2 and obtain the 3-Gring of Example 2. In any case this example is a simple 4-Gring.
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Lemma 4. I f  R is simple then there exists a ^ O  in A such that RxR_x9i 0.

Proof. I f  R xR _ x=0  for every nonzero a in A then (0 , R x, Rß, ...) is an 
ideal o f I?. Since it is proper (R0^ 0) and nonzero (some Rx^ 0  for a^O) this is 
impossible.

Lemma 5. I f  R  is simple then for all у in A with R y?± 0, there exists ß in A such 
that RßRy^ß^O.

P roof. Take R y^ 0 .  I f  RßR y_ß= 0 for all ß then (Rn, R x, ..., 0, Rs, . . .) 
where 0 is in the y,h position, is a  nonzero proper ideal o f R, which is impossible.

Lemma 6. I f  R  is simple then fo r  every oc^O we have

R* — + RoR*-̂  2  RßRoRx-ß-ß
P roof. For every a^O define Ix= Rx Ra + R0RX + 2  Rp Ro Ra-p and consider

ß
(R0,I x, Iß, Iy, ...). This is an ideal of R because IxRy—RxR0Ry+R0RxRy + 
+ 2  RßRoRi-ßRy ~ I x+y  Similarly RyIxQIx+y. Also R{)R. and RyR0 are both

ß
g / v. This is a nonzero ideal and thus must be all of R. Therefore IX=RX for 
every a ^ 0.

T heorem  1. I f  R  is simple then for all a in A and every nonzero ideal /„ o f R0 
we have

R<x = 2 RpioR-x-ß- 
ß

Proof. The ideal 2  RßloR-ß is special and since R0 is minisimple, the ideal 
is 0 or R0. Suppose that it is 0. Then the ideal I0 is itself special and thus I0=R0. 
Then 2  RpRoR-p=Q- Then Also R% is special because RßRqR - p =
fzR pRaR_ß= 0 fzR l. Then R% is 0 or Rg. It cannot be R0 for then 0=R%=RlR0 = 
=R%=R0 and we are assuming R 0^ 0. Thus Rft =0. In that case take Rx as in 
Lemma 6 and we have

RXR - X =  RXR0R - X+ R 0RXR - X+ 2  RpRoRx-pR-x ~  R l + 2  RßR«R-ß-

Now Rq=0 and 2  RpRoR-p^O. Thus RXR _X= 0 for every a^ 0 . This con
tradicts Lemma 4 and therefore 2  RßlßR-ß^O. Thus 2  Rß A> R -p= R 0-

For a^O, the sum 2  Rß ДоRa-p + Ry R0 +  R„RT which is Rx, can now be 
rewritten (letting R0= 2  RyIoR -v) as

Rx = 2  -Rp-RyioR-yRa-ß+Rx 2  Rylo R -y+ 2  R ,IoR -yRx =
P. У

=  2  Rß+yh R<z-(ß+y)+2  2  R y f R a - y  =  2  ДаЛ>Д*-а =  Д»-ß, У У У 6

Thus Rx— 2  RshR*-i f°r « ^ 0  and combining this with R0= 2  RphR-p
<5

we have the theorem.
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Corollary 1.

К  = 2  RßRoK-p  =  2  RpR*-ß> f ° r ever.у <* in A-
ß ß

Proof.

К  =  2 RßIoK-ß  g  2 RPR0R*-ß S 2 RßRa-ß g 
Corollary 2.

Ro — 2 RßRoR - ß ~  2 RßR -ß- p* 0 0 * 0

P ro o f . Let g„= 2  RpRoR-p- This is an ideal of i?0, Ä0ß 0̂ o =  ßo- It is 
0 * 0

also special because for a^O,

RxQoR -x =  2  RxRßR0R -ßR -x =  RxR -xR0RxR -xA- 2  Rz + ßR0R -(x + ß)-ßp±0 tZ + ßp̂ O
The 2  is clearly g ß 0 while RXR_XR0RXR ^X̂ R XR0R_XQQ0. Thus ß 0 is 0  

or R0. Suppose ß„=0. Then RXR0R_X = 0 for every nonzero a in A. The theorem 
then tells us that Rf,= 2  RpRoR -p= RoRoRo- Then R0 = R% = RlR0Q R l. Thus

p
Rl = R0. Furthermore, for any nonzero ideal /„, R0= 2  RpIoR -p=Rô oRo+ ^= h-

ß
Thus R0 is simple.

Now Lemma4 guarantees there is an oc^O such that RxR_x?±0. This is an 
ideal of R0 and thus is =R0. If R_XRX = 0, then Rx ■ R - XRX ■ R -x=R%=Ro=0 
which is impossible. Thus R_xRx?±0 and is also then = R0.

Now R0RX=RXR„X RX=RX R_XRX=RXR0. Then R0=R0R0=R0RXR_X= 
—RxR0R_x=0 which is impossible. Therefore Qo^O and Q0=R0 which gives 
us the corollary. The last equality follows from

Ro=  2 RßRoR -ß Ш 2 RßR- ß ^ Ro-ß 9 < 0 * 0

We have assumed that R is a simple d-Gring (R0,R X, ...) with 7?o^ 0  and 
some Rx9±0 with a^O. Now we shall also assume that A is finite.

Consider П RXR -X • =  -J0- Suppose that / 0^0. Then
â O

Rx+ß =  2  RyJoRa+ß-y =  2  Ry Rx-yRy-xRx+ß-y~^Rx^ORß =  RxRß Ü  Rx + ß-
У У*<*

Therefore we have:
Theorem 2. IfR  is simple and if  П Rx R _* ̂  0 then for all a, ß we have Rx Rß =

a p ^ O

— R flR x — R a + p-
Corollary. Rn R0 = R0.
So suppose f l  Ä ,Ä -„=0.

a p* 0

We consider all the ideals RXR^X of R0 for a^O. Some are not zero. We con
sider all intersections of 2 of them, of 3, of 4 and so on, until we find an integer t
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such that the intersection of any / +1 of them is 0 and there is at least one inter
section of t of them which is not zero. Then 1, if A has order n.

t
Define /„• =  • П R,.R^x.^ 0  where the a,- are nonzero and distinct. There

i=1
may be several choices for I0 (or there may be just one) and we pick any one and 
call it 70. Assume there are r possible choices 70, Ix, That is there are r
distinct intersections of t ideals of the form RxR _a, which are ^ 0 . All other such 
intersections are 0 and all intersections of more than t are 0.

t t
If 7=  n  and J — n  RßtR-ßi^Q and if the set o f  a; is not identical1 l

to the set of ßt then I ^ J .  For if I —J  then 7 is in each RX.R -Xl and in Rß.R_ßi 
where is ^ 0  and different from all the a;. Then 7 is in more than t ideals and 
is therefore 0. Also IJ= JI—0. Thus the ideals I0, i j ,  ..., /r-1 are all different and 
i j j =o if ivy.

From Theorem 1 we know that R0= ^  RyI0R ^ y.
У

Any given term RyI0R_y is in R yR_y and also in RyRx.R -!l.R_yQRy+XtR ^y_Xi 
for every i = \ . . . t .  The numbers y, y+al5 y + oc2, . . . ,  y+a,  are all distinct because 
the a; are all distinct. If none of them is 0 then the term is in t + 1 ideals and is 0. 
Thus the only possible survivors are those terms with y=0 or y =  — a; for some/. 
Thus each term is QR0R0. combining this with the corollary to Theorem 2 
we have:

Theorem 3. Every simple A finite Gring with R 0 -A  0 and Ra 0 for some a^O  
has: R0R0=R0.

Lemma 7. I f  In is an ideal o f R 0 and 7070 = 0 then /o=0.

Proof. R0= RyI0R_y by Theorem 1, if 7о=^0. Each piece is nilpotent since
у

R yI0R-y ■ RyI0Ry ^ R yI0R0I0R_y=0. Since A is finite, R0 is a finite sum of nil- 
potent ideals. Such a sum is itself nilpotent. But i?0=7?|=7?3 for all n and is not 
nilpotent. Thus /„ must be 0.

L em m a  8 . R0 has no total annihilators in it.
Proof. Let V = {x  in R„: xR 0= R0x= 0}. Then V ■ V =0 and by Lemma 7 

V = 0.
Corollary, {x in R0: x7?0= 0 }  =  {x in R0: R (ix=0}=0.
We also know (in the case when J0= fj RXR _ X =0) that

1X9̂0

R0 — + ■■■ A- R - XtI0RXl.

Each term is in RaR0 and in t other terms with nonzero subscripts, of the form 
RXR_X. Thus each term is one of the 70, / l5 ..., Ir-1. We can remove any terms 
that are the same. Call the remaining terms S0, ..., 5r_i and we have

Ro =  >So + iSi  + ...
where S, C 7;. Now SiSj= 0 if /V /  In fact S t П S ,=0 if i ^ j .  So these 5,’s
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are disjoint ideals of 7?0. In fact this is a direct sum because if 0=x0+xx +  ... -t-x,._x 
then if xiSj =0 for every jj±i. Also xtSi= 0 because x; = — x0—xx—... 
... —x,_x—x,+x—...—x,_x and S, annihilates the right hand side. Thus XiR0=0. 
Similarly 7?„хг=0. Thus x t annihilates jR„. But this contradicts Lemma 8 and thus 
x;=0. Thus 0 is uniquely represented as 0 + ...+ 0  and

R0 = So®^!®...®^,.-!.

Now S i^ R - t  JoR,, Q one of the 7; = П (ideals of the form RXR_X). Then R0 =
l

= /o+ /1 + . . .+ /r_i and this sum is also direct. Then 5̂  =  7; for if there is an ele
ment z  in I  I which is not in S t then z = j0+ j1 +  ...+ Jr_i or 0= —j 0—5,1—...—z — 
—st—...— and this is in the direct sum 70®...®7r_x. Then z —st which is
in must be 0 and z=.v; is in S{. Thus Si—If.

Furthermore 7?0=7?0/{0=5o®...®>S^-i. Then 5 f= 5 ,= 7 i=7i2. We thus have
T heorem 4. I f  R is simple then

i?o = 70® 7i® ...® /r_i
t

where the 7; are idempotent disjoint ideals, each one is the f] with 1 S r  Si.
l

Furthermore It = R0 7, R(i, and Ry fj R_x is 0 or is one o f the f .
In the case when then R0=I0=J0= П Д  R -x, i.e. Ry R_x = R() for

a?íO
every a.

Take an a^O with Д -К -^О . Then some of the 1,- are in Д7?_я and others 
are not. Let 70,7X, ...,74 be in  Д7?_а and 74+x, ..., 7r_x not in RXR_X. Then 
I0+ ...+ IqQRxR_x. Also I j-R aR_x=0 for j> q  because the product would be 
in more than t ideals of the form RßR - ß. Similarly RXR _X- lj=0  for j> q. If 
there is an element x in RXR_X which is not in 70+ ... +Iq then

X = У0 + У1 + ■•■+yi+yq+i + ■■•+yr-i
and

x - y 0 - y i ~ - - ~ y q =  J 9 + i  +  - ” + T r - i

is in RXR_X. Now the left hand side annihilates f  for j> q  because it is in RXR_X. 
It also annihilates f  for ji=q because the right hand side does. Thus it annihilates 
R{) and is thus 0 by Lemma 8. Then x —y0+ ...+ yq is in 70 +  ...+74. Thus

RxR - a — 70+ ... + 74.

Lemma 9. For every a with RXR -X9i 0, RxR„x =  the sum o f those I f s  which it 
contains.

Corollary. R x R _ x = R 0 R x R - x = R x R - x R 0 — R x R - x R x R - x = R x R 0 R - x .

P roof. For the last equality

RxR^XRXR - X Q RxRnR - x Q RXR_X = RXR_XRXR_X.
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Define J  • =  • {a in A: R XR _ X5^0} and S 0- =  ■ {ß in A: R ßR _ ß=0}. Since 
R oRq—Rô O, 0 is in S . Also if a is in S  then — a is in J  because RXR_X= 
—R xR_xRxR _x^ 0  and thus R _ XR X?±0. Therefore if ß is in S 0, so is —ß.

Define Cx - =  • {x in Rx: xR _x=R_xx = 0}. From Lemma 8 we know that 
Co=0. For ß in S 0, Cß=Rß. For a in CxczRx. We plan to show that all the 
Cx are 0.

Define /= (С 0, Ся, ...). Since Co=0, I  is a proper subset of R.

Lemma 10. I  is an ideal o f  R and therefore I  is 0.

Proof. We must show that CxRß+RßCx^ C x+ß. Thus we must show that

(CzRii+RßCJR-a-ß — 0 — R_x^ß(CxRß+RßCx).

Clearly CxRßR - x_ßQCxR_x = 0 and R -x- ßRßCxQ R _xCx=0. This leaves us only 
RßCxR_x_ß and R _x^ßCxRß. If either one is nonzero then it is a nonzero ideal 
of R0. But their squares are 0 and thus by Lemma 7 both RßCxR_x_ß and 
R - a- ßCxRß are 0. Therefore I  is an ideal of R and since it is proper it is 0.

Theorem 5. I f  RxR_x^ 0  then Cx=0—C ^x. I f  RßR_ß= 0 then Rß=0= 
= R -ß.

Proof. For ß in S 0, Rß=Cß=  0 and R ^ß- C - ß=0.
For any a in S ,  RxR_xt±0 and by Lemma 9 RxR_a=I0® ...® Iq. Now R0 

itself is (by Theorem 4) =I0® ...® Iq®Iq+1® ...®Ir- 1—RxR -x+K  where K=Iq+1®... 
. . .® /r_l5 the Г s that are not in RXR_X. Consider R0RX = (RXR_X+K)RX= 
= R XR -XRX+KRX.

Now KRX̂ R X since К QR0. Also KRX ■ R_x=A (/0® ... ®/4)=0. Is R_x ■ KRx=0? 
If it is, then KRx^ C x=0 and R0RX=RXR_XRX. Suppose R_aKRx?£0. It is an 
ideal of R0 and R _XKRX ■ R_xKRx=0. Therefore by Lemma 7, it is 0. Thus KRX Q 
QCX=0.

Therefore R0RX=RXR_XRX.
Similarly RXR 0=RXR_XRX+ R XQ where Q is the sum of those Г s which do 

not belong to R - XRX. Then R_x RxQ=0 and RXQ R -X is 0 since it is a nilpotent 
.deal of R0, as above. Then RXQ <==CX= 0 and RXR0=RXR_XRX.

Theroem 6. R0RX=RXR0= RX for all a. in A.
Proof. If a is in S 0, Rx=0 and the theorem holds. If a is in J  then we know 

that R0RX= R XR0= R XR_XRX.
To show that R0RX = RX we take J=(R0, R0RX, R0Rß, ...). We want to show 

that this is an ideal of R. To this end we need R0RxRß+RßR0RxQRnRx+ß. Now 
R 0RxRßQR0Rx+ß and RßR0Rx= R 0RßRxQR0Rx+ß. This is a nonzero ideal and 
thus must equal all of R. Thus R 0RX=RX for all a.

We now have the following results: If R is a simple d-Gring with A finite and 
Ro?±0 and Rxt± 0 for some оси 0, then

1. R0 is minisimple (Lemma 1).
2. Ся = {л: in Rx: xR_x=0 = R ^ xx}=0 for all a (Theorem 5).
3. R0RX=RXR0=RX for all a (Theorem 6).
These three conditions are enough to give us a converse.
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T heorem 7. Let R=(R0, Rx, Rß, ...) be a A-Gring with A finite. Assume R0?t0 
and RxA0 for some a^O. Then R is a simple A-Gring if  and only i f  R0 is minisimple, 
Сл—0 for all a. and

R0RX =  RXR0 = Rx f o r  all cl.

P roof. We have proved that if R  is simple, the three conditions hold. Now we 
assume the three conditions and let 7=(70, /„, Iß, ...) be an ideal of R. Since 7? is 
the O'* component in an ideal, /„ must be a special ideal of R0. Since R0 is mini
simple I0 must be 0 or all of R0.

Suppose first that 70=0. Then IXR_X+R_XIX must be ^7o=0. Thus Ix ̂ =CX 
but this is 0 and thus the ideal 7 would have to be 0.

Suppose then that I0=R0. Then RaRX̂ I X. But R0RX=RX and thus Ix — Rx 
for all cl and the ideal I —R. Therefore R is simple.

We can now consider the other cases. First let us take 7?0^ 0  and all the Rx=0 
for clAO. Thus R= (R0, 0, 0, ...). Clearly this is going to be a simple d-Gring 
if and only if R0 is a simple ring.

The final case occurs when we have 7?0=0 and some Rx A 0 so R = (0, Rx, Rß, ...).
We are assuming that A is finite. Suppose it has n elements and thus и —1 

nonzero elements. When R0=0 we can prove:
Lemma 11. RXl ■ Rx„...RXn=0 where the oq are any elements o f A.
P roof. The n elements a1?a2+ a2, ..., «1+а2+ ...+a„ are all in A. If one of 

them is 0, say ax+ ... + a ,= 0, then

Rm ... RXn Q Rx!+...+a,Ra,+i =  = 0-

On the other hand if they are all different from 0, two of them must be equal. Then

oci+...+oir =  а1+ ...+ а г+ аг+1 +  ... +ocw.

Then ar+1+ ...+ a w=0, and

RXl... RXrRXr̂ x... RXw ... RXn Q R n -.-RXrR0Rx„+1... RXn = 0.

Thus in all cases RXx...RXn=Q.
Let us then take any RXl A 0. Either RXlRp=0 for all ß or there exists a2 

such that RXlRx,jé0. We continue in this way and there must exist an integer m, 
such that Т^Тг^.-.Т^^О  but RaiRx,...R Xm-Rß=0 for all ß in A. The integer 
m is 1 ^m < n.

Then we consider Rß ■ RXlRX2...R Xm. Either all of these are 0 or there exists 
ßx such that RßlRXlRX2...RXmA0. Then there must exist an integer r such that 
Rßr...R ßlRXlRXi■ ■ ■ Ram — Qa O"but Ry-Rßr...R Xm=0 for a l ly in d .A n d  r+m<n. 
Then this nonzero product Q f=R r m and QRß= 0—R.,Q for all ß,y. Q con-

LEßi+ijaj)l \
sists of total annihilators of the d-Gring R.

Then 7=(0, 0, ...,0 , Q, 0, ...,0) is a nonzero ideal of the d-Gring R. Since 
R  is simple, I= R . Furthermore Q can have no proper nonzero subgroup W for 
then (0, 0, ..., 0, W, 0 ,..., 0) would be a proper nonzero ideal of R. We thus have:
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T h e o r e m  8 . I f  R is a A-Gring with A finite and Ro=0 then R is simple i f  and 
only i f

R — (0, 0, 0, Ry, 0, ...»0)

where Ry^ 0 has no proper nonzero subgroups and R R —0. In reality then R is 
just a simple zero ring.

P r o o f . If  R is simple then R=(0, 0, 0, R7, 0, ...,0 ) as above and con
versely, every such simple zero ring with a tail of 0’s attached is a simple d-Gring. 

Putting all of this together we have:
T h e o r e m  9. I f  R = (R0, Rx, Rß, ...) is a A-Gring with A finite, then R is simple 

i f  and only if:

Case 1: 7Jo=0, R=(0, 0, 0, Ry, 0, 0) where R, is a simple zero ring.
Case 2: all Rx = 0. /?=(/?„, 0, 0, 0) where R0 is a simple ring.
Case 3: R ^ 0, some Rx?±0 for a ^ 0 . R0 is minisimple, RnR, = R7 Rn =  Rx 

for all a and Cx = {x in Ry: xR _xx= R _xx  = 0}=0 for all a.
This extends Theorems 1 and 2 in [1].
R e m a r k s . Note that J  need not be a subgroup of A. See Example 4 .  Note 

that R() need not be simple even when RxRß=Rx+ß and R0=RXR ^X for all a. 
See Example 1.

For any d-Gring R=(Rn, Rx, Rß, ...) we consider the overring 2  Д* • =  -01.
a.£A

If Я  is a simple ring then the d-Gring R  must be simple because if /  is a nonzero 
ideal of R, I= (l0, 4» ...) then 2  4  is an ideal of &. To see this we recall that
IxIßQIx+ß. Thus 2  f= d t .  Then I0 + Ix + Iß + ...= R 0 + Rx+Rß + ... . Thus each 
IX=RX and R  is simple.

Conversely suppose that R is a simple d-Gring. If Л0=0 then R=M  is simple. 
If with all the Rx—0, then again R=0l is simple. The meaty case arises
when Ry^O and Rxt±0 for some x^0 . d'hen we know (Theorem 9) that R0 is 
minisimple, that Ra R7 — R7 R0=RX for all a and that C*=0 for all a.

Let us assume that 01 is not simple and has a nonzero proper ideal /=  2  4-
a

Define 70- =  • iPl R,,. This is an ideal of the ring R0 and it is special because 
RxI0R -x= Rx(ir\R 0)R -x is in R0 and is certainly in /  and thus is in /0, for all a. 
Since R0 is minisimple /„ =  R„ or 0. Suppose /„ = R„. Then /?„£/. Then R„ Rx = 
=RX̂ I  for all a and therefore 1= all of 01. Since I  is proper we must have 4 = 0 .

Then /П1?о=0. Now IH R X must also be 0, for all a, for if x  is in /(Ti?a 
then xR_a is in R0 and in /  and must therefore be 0. Also R x ■ x=0. Then x is 
in Cx which is 0. Thus x = 0  and IC\RX—0 for all a.

Thus /  does not contain any “singles” , i.e. nonzero elements from any single Rx. 
Of course /  must contain some nonzero elements and thus there must exist a 

positive integer m such that m is minimal and rXl + ... + rXm is in I, where all the 
a; are distinct and where all the ra. are nonzero. Then 2 the number of elements 
in d. Since Cai=0, there must exist an element r_ai such that rxir_xi^ 0. Then 
I  contains •Уо+‘у71+--- +-y7m_1 f°r some nonzero elements syj with the distinct.
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Lemma 12. 2  Ra^oR-x= Ro-ОС
P r o o f . The left hand side sum is certainly a special ideal of R0 and thus is  

all of R0 or is 0. If it is 0 then Ras0R - x=0 for every a and in particular J?oj 0i?o=0. 
Then j 0J?0 is an ideal of R0 and it is special because Ra • s0R0 ■ R_a=Rx s0R_a= 
=0 Qs0R0. Since s0Ra cannot be all of R0 because R0s0R0=R0R0= R0 cannot be 0, 
we must have soRo=0. Similarly R0s0—0. Then is in C0=0. But and
thus 2  Rxs0R_x5^0 and the lemma is proved.

Lemma 13. The ideal I  contains elements o f the form r0+ry + ...+ гУт_х where 
every Гд in R0 appears and appears only once, in this form.

P r o o f . Take any r0 in R0. Then r0=  2 rßsor-ß for some set of ß's. From
ß

in/w eget 2  rß(so+■■■+^ym. 1)r-ß in /andth is is /•0+r-n +  ... +r7m_1. 
Thus r0 does appear.

For the second part assume that r0+ iyi +  ... + tym_i is also in /. Then 
(rn —/7i) + . . .+ (r,m _ 1—r7m _ i) is in I, contradicting the minimality of m unless each
rv ,= tir

Lemma 14. I f  j0+ j7i+ . . .+ 5Ут_г is in I  then for all yt , / =  1 ... m — 1, every 
ry. in Ry. appears once and only once in this form, in an element o f I.

P r o o f . Let Vyi be the subgroup of Ry. that has the property that an element 
rr. appears as a component in an element in /  where the subscripts 0, yl5 ..., ym_j 
are used, if and only if ryi is in Vyi. Then

VyiRo+RgVn + 2 RßVnR -ß E  Уу,- ß
Define Ig to be Fyii?_7i+/?_7jFy.+ £  R»V-„R-yt-»- This is a special ideal of R0.
It cannot be 0 for then VyiR _yi= R _yiVyi=0, VytQCn =0. But Vyi?±0 by the 
minimality of m. Thus Ig=R0. Then

Ryi ~ RoRy, — VytR-yiRyi + R-yiVytRyi + 2 RsyyiR-yt-iRy, = VytRg +ő
+ 2 RtVytR -t i  vyi.»

Therefore Vyi= Ryi and every element in appears. As in Lemma 13, it can 
appear only once in this form.

Therefore /  contains a set of elements of the form r0+ rn +  . . .+ r7m_l where 
every r0 in R0 and every ry. in R./t appears precisely once. This gives us a 1 — 1 cor
respondence between R0 and every Ryi and between any two of the Ry’s.

These 1 — 1 correspondences clearly preserve addition and thus R0^ R yi^ . . .  
...SiRym_i as abelian groups. However the relationships go even deeper.

Theorem 10. R0^ R yi^ . . .~ R ym_1 as rings.
P r o o f . For any two elements ryt and tyi in Ryi, 

way, namely
г0+ ... +  гГ(+ ...-|-гУт_1 in

they appear in /  in only one 

I

3 Acta Mathematica Hungarica 52, 1988



2 1 8 N. DIVINSKY: d-GRJNGS

and
/о+ +  /,m l in /.

Thus ry. has a unique partner /•„ in R0 and ty. has t0 in R„. Furthermore 
го(*о +  --+ *5>т-1) ar|d +  both have r0t0 in the 0th component and
thus rytt0=r0tyi. We define multiplication in Ry. as: ry.* tyt=r0tyi=ryit0. This is 
well defined and closed. Tt is also associative and distributive. Thus Ryi is a ring. 
The natural 1 — 1 correspondence preserves multiplication because r0t0*-r0tyj = 
=rn*t?r

E xam ple  5. Let R0 be a simple nontrivial ring and let R0[=Rß = ,..—Ra for 
all a, ß in A. Then R = (R0, Rx, Rß, ...) with RxRß=Rlx+ß is a simple Gring. The 
overring = 2  R* >s not; simple because it has the ideal /= {x0+xa+x^ + ...} 
where each x, really equals xß but is merely in a different subscripted image of R0.

E xam ple  6. Let R0 =  {(S ?)} and Rr =  1(2 S)} . Let R2=R0 only think of
it as being painted red, and let ^3 =  ̂  only it is painted red. Then R=(R0, Rl , R2, R3) 
with Rx Rß = R, + ß is a simple Gring. The overring 2  Д« however, is not simple 
because it has the ideal

4 ( 2  “) M °  s ) + ( s " ) + (“ o)}-
red red

Here the minimal m is 2.
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PLANE SECTIONS OF THE UNIT BALL O F L p

R. GRZASLEW1CZ (Wroclaw)

1. Introduction

The intersection of a symmetric convex set C with an и-dimensional plane 
through its centre О will be termed a plane section of C. At the end of his paper 
[9], V. Klee proved that every finite-dimensional section of the unit ball of the space 
c0 is a polyhedral and posed the problem of determining all the finite-dimensional 
sections of the unit balls of other well-known Banach spaces. The purpose of this 
paper is to describe the plane sections of the unit balls of Lp[0, 1] and lp, 1 °°
(Theorems 1 and 2). This description is an extension of the results of [3] from the 
case p =  l to arbitrary p. We also establish a class of convex sets which is called 
/7-cozonoids. Briefly we say that /7-cozonoids are the plane sections of the unit ball 
of Z/[0, 1]. Some ideas we use here were presented earlier by Levy [11]. For other 
result connected with plane sections of the //-spaces see [4], [5], [14].

A convex body (non-void, compact convex set) in the Euclidean space R", 
which is a finite sum of line segments is called a zonotope. For a zonotope P, which 
is the sum of the line segments [—x,*;] (/=1,2, ... ,/) ,  the support function Hp 
of the zonotope P (Hp(u)= sup (и, x ), m£R") may be written in the form

X Í P

Hp(m)=  Д ^ -jj ĵj-. u^Qi (h€R"),

where ( . , . )  denotes the scalar product in R".
It is easy to see that there exists a compact convex set К in R” such that its 

support functions can be represented in continuous form of the above, i.e.

HK(u) =  f  \(x, u)\dp(x)
S4 - l

where p is measure on the unit sphere 1S'"_1 =  {x€R": ||jc|| =  1} (by measure on 
S’"-1 we mean a nonnegative, finite, c-additive set function on the c-algebra of 
the Borel subsets of A convex subset of R” whose support functions have the 
above integral representation are called zonoids. Zonoids are limits of zonotopes 
in the Hausdorff metric. In R2 the set of zonoids coincides with the set of all cen
trally symmetric convex bodies. W. Weil [18] presented an example of an n-dimen- 
sional convex body (и^З) which is not a zonoid, although all of its ^-dimensional 
projections are zonoids (k=2 , 3, ..., и—1). The set of all zonoids is a closed con
vex cone in the space of all centrally symmetric convex bodies equipped with the 
Flausdorff metric. Since the simplicial polytope (i.e. all faces of which are simplices) 
is not a zonoid and the set of simplicial polytopes is dense, the set of all zonoids is 
nowhere dense. More details can be found in [12], [19], [20], [17].

3*
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2. p-cozonoids

In this paper we consider the convex bodies which are adjoint to zonoids and 
also their certain generalization. This class of convex bodies is used to characterize 
the plane sections of the unit ball of //-spaces.

To each norm N  on R" there corresponds naturally a convex centrally sym
metric body in R" with non-empty interior, namely its unit ball {x£Rn; jV(jc)^ 1 } . 
Let lS / ) < “ . We say that the norm N  on R" is p-cozonoidal, if it can be represented 
in the form

(*) N (u)=  [ /  |<«, x)\pdp(x)]llp

where p is a suitable measure on S®-1. We may and do assume that p is symmetric, 
i.e. p(A )—p(—A) for any Borel set A (zSn~l . A convex subset of R" which 
is a unit ball of some /vcozonoidal norm is called p-cozonoid. The set of all 
p-cozonoids in R" is denoted by (i p. We have directly from the definition that if 

and Kx is linearly equivalent to K2, then K2̂ € p. If p in (*) is a discrete 
measure with Z„ point mass equal to 1/2 at

(±1 ,0 ,  . . . , 0 ) , (0, ± 1 , 0 ,  . . . ,0) ,  . . . ,(0,0,  . . . ,o ,  ± i ) e s ”- \

then the corresponding norm is an /-norm  on R”, i.e. B(lp)£r€p (B(JP) denotes 
the unit ball of lp). Note that for any arbitrary measure p on S'"-1, (*) defines a 
seminorm on R" such that N(u0)=0  if and only if supp pcuo DS"-1. Thus 
throughout this paper we assume that there does not exist an (и — l)-dimensional 
plane P such that supp p a S n~1C\P.

Let A be a norm on Rn. Let B(N) and B(N*) denote the unit balls of (R", N) 
and its dual (Rn, N)*, respectively. Then B(N) is an и-dimensional zonoid if and 
only if B(N*) is an «-dimensional 1-cozonoid. Therefore coincides with the 
set of all symmetric convex bodies with interior points in R 2. For » a 3 there exists 
an «-dimensional symmetric convex body which does not belong to <̂’1.

3. Uniqueness o f representation

C. Hardin ([7] Theorem 1.1a) proved that for 0</?^2N and p,v positive meas
ures on R" the condition

/  11 +  2  Ajz\ pdp{z) =  f \ l  + Z  Xizi\P dv(z)
Rn •'= 1 R» * =  1

for all Я1э A2, R implies p=v. By a simple modification of the above con
siderations of Hardin we may obtain:

Let 0</?£2N and p, v be a symmetric positive measure on S'1-1. If

/  I 2  Яi X i \ p d p ( x ) =  /  I 2  A(X,|p d v ( x )
Sn-l i=l sn-1 i=1

for all Af€R, then p = v.
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This implication shows that in the representation (* ) of p-cozonoidal norms 
the measure p  is unique (up to a symmetry) for lSp$2N . For p = 2 , 4, 6, . . . ,  
this is not true. Indeed, the Euclidean ball could be represented by infinitely many 
different measures. First of all if p  is the Lebesgue measure on S "-1  then we obtain 
the Euclidean norm. Now suppose that p —2m , m £N. Let p m be a discrete measure

( к A: I cos 2^-, sin I, k = \ , 2 , ..,,4m .

We have

N(x, y)  — [ /  K(*> y)> (z ii z2))|pdg(z)] — [2 2 ! x c o s - ^ - + y  s in-^- l  ]
si L k= 1  2m  I J

Let (p€[0, 2л] besuchthat
cos (p = x

Vj c ’
sin cp = У

)/x2+ y 2 ’

Then N((x, ji))=Vjca+jia where
Г 2m (  k n  'l l1/2"1

Since the derivative of f((p) is equal to 0, we obtain that f((p) is constant, so N  is the 
Euclidean norm.

Remark. W. Blaschke [2] (pp. 154— 155) considered a wider class of convex 
bodies, which is called generalized zonoids. A centrally symmetric convex body 
whose support function is of the form (* ) with p —1, but a measure p is a suitably 
signed Borel measure on Sn~x, is called a generalized zonoid. Blaschke showed 
that all sufficiently high differentiable convex bodies are generalized zonoids. Gen
eralized zonoids are dense in the space of all symmetric convex bodies equipped with 
the Hausdorff metric. Schneider ([15], [16]) has also treated generalized zonoids. In 
particular, he presented generalized zonoids which are not zonoids and symmetric 
convex bodies which are not zonoids.

One may also consider generalized p-cozonoids. It would be interesting to deter
mine such convex bodies. In particular there arises the question, whether the set 
of all generalized p-cozonoids is dense? From the corresponding result for generalized 
zonoids the answer is affirmative if p =  1. Note that there exist signed measures 
such that (* ) defines a norm. For instance, let p= 4, n —2 and p be a measure 
supported on 10 points such that

/*((±1, 0)) =  j ,

Indeed, we have
((*?•

25
48 ‘

[A((x, y))]4 =  /  (xu+ yvfdp =
Si

=  j x 4- ^[(х+ уУ + (х-уУ ] + -^[(х+ 2уУ + (х-2уУ ]  =  x4+ y 4.
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4. Plane sections of Lp[0, 1] and lp

T heorem  1. Let 1 rS/>< °°. The set o f all n-dimensional plane sections o f the 
unit hall o f L p[0, 1] coincides with the set (€p.

P roof. Let / i , / 2, Lp[0, 1] be linearly independent. First we construct
the subspace of Lp generated by {f}1=1. Let (xl7 хг, ..., x„)€R \ Put r(t)=

= | / ± / ? ( 0 , and define a measurable function ф: [0, 1] —5" 1 by

* v >= ( 4
/ i ( 0  / .(0  /„(0

)•
W e have

'(0  ’ K 0  ’ r (0

. . . , x„))]p =  \ \ 2 x i f \ \ p =

=  /  |2 *//i(0 |'</' =  / 2 Ч-

i = l

4 ( 0 1
к о

rp(t)dt =

= /  [(к ,.* ,, ......т Ш ) Г ' ' '<' )‘" =

-  /  K4.),^(0)|V40^= /  K W .w y ^ W
0 S"-1

where ^ is a measure on S71-1 such that p(A)= f  rp{t)dt, A(zS"~1
+-ЧЛ)

|we assume that -jj- = o j. Note that if4  are simple functions then p is a discrete 
measure on S"-1. Observe that p is positive. The measure p is also finite. Indeed

/  dp(y) = f  rp(t)dt = I  ( 2 /,*(0 )p'* d t^
Sn-l „ Q 1-1

 ̂ / [(2 \ m \ n piidt = кi ш \\рs(ii/jp)'v 1 ;_1 г_-i1 = 1

Therefore the section of the unit ball of Lp[0, 1] is a p-cozonoid.
Now suppose that K€/dp i.e. the corresponding norm NK has the form

N A x) = ( /  \(u,x)\pdp(x)Y'p.
S"-*

Let LP(S"~1, p) denote the Banach space of all classes of real measurable func
tions /  such that

f  \f(u)\pdp(u) <°°
Sn-l
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with the L'-norm. The space Lp(Sn x, p) can be embedded isometrically in Lf [0, 1] 
([10], Theorem 14, § 15 p. 130). Let £: Lp(Sn~1, p )^ L p[0, 1] be a linear isometry. 
Define g ^ L fS " -1, p), * =  1, 2, •••, и by gi(u)=u(, u=(ult w2, Put
f = i ( g i ) .  We have

x„) = ( /  I Z  x iui\pd p (u ) fT =

=  |j z  *;?.•!*=i ÍLP(S"-»,r)

Therefore A is the unit ball of a subspace of Lp[0, 1] generated by {./i}"=i, i.e. К 
is a plane section of the unit ball of / / [ 0, 1].

R em ark . J. Lindenstrauss proved in [13] that T^O, 1] is a universal space for 
all two-dimensional Banach spaces of equivalently two-dimensional sections of the 
unit ball of Z-40, 1] give us (up to an affine equivalence) all two-dimensional sym
metric convex bodies. This result is an immediate consequence of Theorem 1, be
cause every norm on R2 is 1-cozonoidal. On the other hand, from Theorem 1 every 
1-cozonoidal finite-dimensional Banach space is a subspace of Lx[0, 1]. Independ
ently this result was obtained by Herz [8], who uses convex set theory language 
Note that for я ё 3 there exists an и-dimensional Banach space, which is not 
1-cozonoidal, so Z.x[0, 1] is not universal for и-dimensional Banach spaces (cf. 
also [3]).

T h e o r e m  2 .  Let 1 The set К is the unit ball o f the n-dimensional sub
space o f lp if and only i f  its corresponding norm NK has the representation (*) with 
a measure which is a countable sum o f mass points.

P r o o f . The method we use is similar to that in the proof of Theorem 1. Let 
{fi), (fl) , ..., (Л)€/р be и linearly independent vectors and let (x1? x2, ..., x„)€R". 
We have

[iV((x п))У = II i *«/«||; = i 12 *./<? = / K*. u)\pdp(u),1=1 j=1 1=1 Sn - l

where the measure ja is a sum of mass points r j őUj,

The measure ц is finite because

z r 3 = z [ z ( m p,2̂ z [ z m p=\\2\f\\\p,^(2
j  J ‘ j  i > *

Conversely, if we have a measure p on SЛ~1 which is a countable sum of point 
masses m^ 0 at uj—(u), u), ..., ujjf S"^1 and the corresponding p-cozonoid K, 
then by analogous arguments К is the unit ball of subspaces of lp generated by the 
vectors Л , /2, where

(ft =  =  (»Н т у)Г=1> * =  1, 2, ... и.
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We have
2 \fiS\P =  2  l« ílp =  2  mj  =  v i s " - 1)  < “
J j  j

i.e. / f€/p. The proof is complete.
Using analogous arguments to those in the proof of Theorem 2, the following 

result can be obtained.
P r o po sitio n . Let 1 The set К  is an n-dimensional plane section o f the

unit ball o f  /p i f  and only i f  its corresponding norm NK has representation (* ) with 
symmetric measure supported on at most 2m points.

R e m a r k . Let us also mention the plane sections of /“ . By the well-known 
result of S. Banach and S. Mazur [1], the space of continuous functions C[0, 1] 
is universal for all separable Banach spaces and by the fact that C[0, 1] is con
tained in /” , every symmetric convex body in R" can be obtained as a plane sec
tion of B(l°°). Plane sections of B{1°°) might be considered directly using the method 
presented above. Let Y  be a linear subspace of /“ generated by (u{), (u{),..., (uJ„). 
Then

Q =  conv {± (u i,u í, ..., uJn)eR", j€N}
is the unit ball of Y* and B(Y)=Q* (ß* is the dual convex body to Q). Con
versely, let Q be an и-dimensional symmetric convex body. Denote by Q* its dual 
convex body. Choose the sequence Vj =(vj, ..., i>")eR", j£ N  such that Q* = 
=conv {vj-. j€N}. Then

П П
Na(x) = sup |<x, y) I =  sup \ 2  X i V ) \  =  \ \ 2  *i«i|L

where Щ=(ь[, t4, ...)€/“ , /= 1 , ..., n. Therefore Q is the unit ball of the subspace 
of /“ generated by the vectors {щ, u2, In particular we have

i l « i  M i + a j s W a l l o o  =  V a f + a !

where mx= ( cos 1, cos 2, ...), w2=(sin 1, sin 2, ...)£l°°. Thus we obtain the Euclidean 
ball as a plane section of B(l°°).

Since the Lebesgue measure can be obtained as a weak limit of discrete measures, 
the space lp (1 =/?< °°) is sufficiently Euclidean (cf. Dvoretzky’s result [6]). Ob
viously Lp[0, 1] contains a subspace isometrically isomorphic to l2„.

Q u e st io n s . The set ^  forms a convex cone. Since consists of all и-dimen
sional ellipses, it is also a convex cone. Are the sets ^ p convex for other p i  We 
have Do we have the sequence of inclusions
We have

B(lp)£<#i for и ё З ,
(cf. [3], Theorem 6.6). For which p, r, n do we have B{T„)^P2
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ON VECTOR LATTICES OF CONTINUOUS FUNCTIONS 
IN LOCALLY COMPACT SPACES

DUONG TAN THANH (Budapest)

I. The first theorem of Gelfand—Kolmogorov

Definitions and notations. Let Г be a Tihonov space,
C(T) = { f \ f :  T~*R a n d /is  a continuous function},
C*(T) = { f\ fe C (T )  an d /is  a bounded function},
Cc(T) = { f\ f£C(T) and /has a compact support}.

If f£C(T) then' Z ( / )  =  {/£ T \/( /)  — 0}, Zc( f )  = T \Z ( f ) .  X(T) is a vector lattice 
iff X (T)aC (T), fig e X (T )  and R imply fV g£X (T), /Л g£X(T), f+ g£X (T ), 
ctfex(T).

Let 7}, T.2 be Tihonov spaces, Х{Тх), Y{T2) two vector lattices, tp: X (Tx) — 
— Y(T2) is said to be a linear lattice homomorphism iff <p is a lattice homomorphism 
and xt , x 2̂ X(T) implies (p(x1—x2)=(p(x1) — (p(x2).

X{T) is said to be a completely regular vector lattice over T  iff, whenever F 
is a closed set and / is a point in its complement, there exists a function f£ X (T )  
such that O s / s l ,  f(F)={0} and /(£ /)  = {!}, where U, is a neighbourhood of t.

We shall omit the easy proof of the following properties:
1. Cc(X), C*(X), C(X) are vector lattices, Ce(X)<=C* (X)czC(X).
2. Let tp: X{T)-»R  be a linear lattice homomorphism, i.e. let tp be a lattice 

homomorphism and (p(x1—x2)^=(p(x1) — (p(x2) for xz, x,,fX(T),
a) If / ,  g€Ker<p, then /-g € K e r  tp.
b) If /€Ker <p, g£X(T), \g \^ n \f\ ,  then g€Ker tp.
P roposition  1. I f  T is a locally compact T2-space then Cc(T) is a completely 

regular vector lattice.
Let F be a closed set and /■} F. Because T  is a locally compact T2 -space, T  is 

completely regular. There exists a,€C(T) such that a,(F) = {0}, a,(i) =  l, then 
a, =(0V2ü()Al€C (7), 0^.a't ^ \ ,  ut'(7’) = {0}, a',(JJ,) — {\} where U, is a neigh
bourhood of t and Ut a  T \F .  Since T  is locally compact T2, there exists 17/ such 
that U[ c  U, and U( is a compact neighbourhood of t. By an argument analogous 
to that used above we have e fC (T ), e,(T\ i / / )  =  {0}, et(U") = {1}, U " c T \F ,  U" 
is a neighbourhood of t, Z c(e,)a U’t , 0 s ie ,^  1 • Then e,kcc(T)- The proof is 
complete.

Lemma 1. Let X(T) be a completely regular vector lattice over T, tp: X(T)-+R 
a linear lattice homomorphism, Ker cp = {f£ X (T )\f( to)=0}, t0̂ T. Then <p(f)=xf(t 0) 
where % is a positive constant.

P r oof . There exists x£X(T) suchthat xsO , x(t0) = l. Let <p(x) =yf (x*>-0). 
We shall prove that <?>(/) =Х*Л/о)- First we prove that
( 1) <p(xf) = X<p(Jl if / i Y ( 7 ).
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To obtain (1), it is sufficient to verify it for /& 0, xSO. If / ( i o)=0,/£K er q>, then 
x/€Ker (p and (1) is true. If / ( t 0)̂ = 0, then < р(/)^0. It is obvious that (1) is true 
for every r a t io n a l I f  x is an irrational number, for n£N  there exists m£N  suchthat

_ m m + 10 ^  = 
n k

+  1 m f ̂  f ̂  m + 1  * Ím A ̂  (m+] A
It follows that

(2) v t i f )
<p(f) X -  n

for every n£N.

From (2) we get (1) for every / .  Let g = f—f ( t 0)x, then gf_X(T), g(t0) =0. We have 

0 =  <p(g) -  ( p ( f - f ( t0)x), 0 = ( p ( f ) - f ( t0)<p(x), q>(J) = X*/Oo)-

The next propositipn will play a crucial role in the following development.
Pro po sitio n  2 . Let T be a T2-space, X (T) a completely regular lattice over T. 

(p: X(T)-+C(Y) (Y  is a topological space) a linear lattice homomorphism and sup
pose that, for every y£Y, there exists a function f£X(T)C\Cc(T) such that 
ф(1)(.У)**0. Then there exist continuous functions k: Y-+T and a: Y-*R, such 
that <p(f)(y)=( f°k )(y ) ■ (j(y), о is a positive continuous function. Conversely, a cp 
o f this form defines a linear lattice homomorphism.

P roof. It is a simple matter to prove that if к : Y ^-T  and o: Y-*R are 
continuous functions, (p(f) = ( fok ) ■ о then (p: X(T)-+C(Y) is a linear
lattice homomorphism. Now let y f  Y. Define a function ф: X(T)-+R by iA(/) =  
=  <p(/)(>'o). It is obvious that ф is a linear lattice homomorphism. First we prove 
that П Z (g )^ 0 .  From the condition there is f*£X(T)C\Cc(T) with /*$  Ker ф.

gOLenli ______ _____
If ggKeriA then Z (g )n z c(/* )^ 0 . Assume in fact Z (g)flZ c(/*)=0. Then 
Igl^O in Zc(/*), hence

0 < e =  inf IlslQ))

(because Zc(/* ) is a compact set). /*€С с(Г), therefore/*  is a bounded function,
YYl

i.e. \f* \^m . Then — |g|^|/* |=>/*£K cr ф. We thus arrive at a contradiction.

Observe, further, that Z (g1)riZ (g 2)=Z(|gi|V |g2|) and Z c( f* )  is a compact set, 
so we have П Z (g )y0 . Let t06 Г) Z(g). We shall prove that if hdX(T)

g£Kert / r  д£Кетф
and h(t0)=  0 then /i€Ker ф. Assume on the contrary that ф (h) 0, i.e. ф{1г)=г1. 
Without loss of generality we may assume that e^O . Since X(T) is a completely 
regular vector lattice there exists x£X(T) such that x((7,0) =  {l}, U,0 is a neigh
bourhood of t0. So х^Кегф , hence ф(\х\)=а>0. Since h(t0)= 0, there exists 
for e2>0 a neighbourhood F,0c t /,0 of t„ such that |/г|(/)<е2 if t£V,o. Then 
there is y£X(T) suchthat y 0 0) =  l, y ( T \F (n) =  {0}. Then there exists n£N  such 
that i/'(n|y|)>£1 (because i^(|y|)>0). Let h*={n\y\\\h\). It is obvious that
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A*(0 = 0  if t€ T \V to, A*(0<e2 if and i//(h*)=e1. If n*>— and e2-<—*•,Tl
we have А**=и*А*, A**^|x|, while 1//(И**)=п*ф(И*)^~ф(\х\). We thus arrive at a 
contradiction.

Now we turn to the proof of the proposition. Since Ker ^  — { f£ X (T )\f( t<))=Q)} 
it follows that <K/)=X/(*o)> X>0. Let k: Y-+T, k (y 0)= t0. We must prove that 
к : Y-~T  is a continuous function. X(T) is a completely regular vector lattice, hence 
Z C(X(T)) is a base of the topology of T  (if t£ Ut, U, is open, there exists xdX(T) 
suchthat х(Г\(У,) = {0} and x(i) =  l, so tdZc(x)<z U,), and

k - '{Z (f))  =  {y\(fok)(y) = 0} =  {yW (f)b ’) =  0} = Z(<p(/)).
Hence к is a continuous function. To complete the proof it remains to show that о 
is a continuous function. We have <p(f)(y)=(fok)(y) ■ o(y). Let y*£Y, k(y*)dT. 
Since X(T) is a completely regular vector lattice, there exists f*£X(T) such that 
/*(£/*(?*))={!}, uk(y*) is 3 neighbourhood of k(y*). Because A: is a continuous func
tion, we have Vy, c  Y, Vy, is a neighbourhood of y* such that k(y)(z Uk(yt) if y£ Vy, . 
So y£Vy, implies (p(/* ) =  a(y), hence a is a continuous function at y*.

T heorem  1. Let X, Y be Tihonov spaces, V, (X), VZ(Y) completely regular vector 
lattices over X, Y respectively and cp: V1{X)-*V2(Y) a linear lattice isomorphism 
such that

a) for every xdX  there exists f(zV2{Y)C\Cc(Y) satisfying <p_1 (/)(* )
b) for every y£Y  there exists g(iV1{X)C\C C{X) with <p(g){y) X  0.
Then X, Y are homeomorphic.
P r o o f . Taking Proposition 2 into account, we get that there exist continuous 

functions k: X-~Y, h: У— X  such that, for every fe V ^X ), (p{f)= {f°h) ■ oy 
(ffj^O), and, for every g£V2(Y), (p~1ig)-{gok) ■ a2 (<r2>0).

We shall prove that koh=idY, hok=idx . It is enough to show AoA=idx. 
Assume in the contrary that Aofc^id*, i.e. there is x£X  suchthat (hok)(x)=x*, 
where х * ^х . Since Vx(X) is a completely regular vector lattice there exists/,/*  
suchthat f , f* £ V 1(X), /(x )= 0 , /(лг*)^0, /*(х)^0. We have

f ix )  =  (р~г{(р(Л)(х) = q>-l{{foh)of){x) = [((/cA)ff1)(/c(x))] a2{x) =

= {fo(hok))ix)a1{kix))- o2ix).

By an argument analogous to the previous one we get
/*(*) = ( f* 0(hokj)(x)ol(k(x)) ■ o2{x).

So

f ix )  ■ (f*o(hok))(x) • cr1(/c(x)) • o2(x) = f*(x) ■ (fo(hok))(x) ■ c fk (x ))  ■ o2(x).

But f(x )  = 0 while f * ( x ) ^ 0, (/о(Ао/с))(х)=/(х*)^0, гт1(к(х))^0, <т2(х )^ 0, we 
thus arrive at a contradiction. So we have hok—\dx ,koh= \dY, i.e. X, Tare homeo
morphic.

C o ro lla ry . Let X, Y be locally compact T2-spaces. X, Y are homeomorphic 
iff Cr(X), Cc(Y) are linearly lattice isomorphic.
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R emark. “If X, Y  are locally compact T2 and C(X), C (Y ) are isomorphic 
then X, Y  are homeomorphic” is false [2, Chapter V].

D efinitions. X a C (T )  is said to be a quasi-affine lattice iff it is a lattice, 
contains all constants and c £ T f , f£ X  imply cfdX, where i f <zR is a set of real 
numbers containing 0, — 1 and unbounded from above. A lattice homomorphism 
<p\ X-+R (С(Г)) is said to be quasi-affine iff <p(y)=y if у is a constant (function) 
and <p(c/)=c •</>(/) for c£Tf. X (T )  is said to be strongly completely regular 
over T  iff, whenever F  is closed, x$.F, there exist f ,g £ X (T ) suchthat f(F )=  {0}, 
f(x)=  1 and g(F) =  {1}, g(x)=0. If  X(T) is a completely regular vector lattice 
and contains all constants, X(T ) is a strongly completely regular quasi-affine lattice.

L emma 2 . Let X (T) be a strongly completely regular quasi-affine lattice and 
tp: X (T )—R a quasi-affine lattice homomorphism where

Ker q> =  { ffiX (T )\f( t0) =  0}, t0£T.

Then <p(f)=f(t0).
P roof. Assume the contrary, i.e. <p(f)Ff(t0). Let (p(f)= a,f(t0)=b. If a>b 

and 0, since/is continuous, there exists a Vto, where V,o is an open neighbourhood
of t0 and f(V to)c:(— c) (c>0, a> c). Since X(T) is strongly completely regular, 
there exists x£X(T) suchthat x (7 '\F ,o) =  {0},x(/0) =  l. Hence Ker tp, <p(|x|)>0. 
So there exists п£Г\х\ such that (р(и,|х|)=я;<р(|х|)>я. Let £=(и ,|х |A/), then 
<p(g) — a and g ( t)^ 0  if t£ T \V ,0, g (0  = c if t£V,0. So a=(p(g)^cp(c)=c. We 
thus arrive at a contradiction.

If a>b and a ^ 0 ,  since/is a continuous function, there exists a Vt , where 
Vt<j is an open neighborhood of /„ and f(V ,0)c ( — c) (c< a). Since X(T) is strongly
completely regular, there exists x£X (T )  such that x ( J \ F , 0) —{1}, jc(?o)= 0. So 
there exists я / Гх such that — и(< с . Let g={(—nix)f\f)] then <p(g)=a and 
g ( t) ^ c  if t€Vl0, g (t)=  —nt if <C T\F,o. So a = (p(g)^(p(c)<a. We thus arrive 
at a contradiction.

If a<b then <p(—f )  = —a, —f ( t 0) = —b and — a>— b. So the above argu
ment applies. Now by an argument analogous to the proofs of Proposition 2, Theo
rem 1, we have

1. If X(T) is a strongly completely regular quasi-affine lattice over a T2-space, 
Y  is a topological space, tp: X(T)-*C (Y) is a quasi-affine lattice homomorphism 
and, for y£Y, there exists ffiX(T)C \Cc(T) such that <р(/)(у)^0, then there 
exists a continuous function к : Y-+T such that (p (f )= fck.

2. Let X, Y  be locally compact T2. There exists a quasi-affine lattice isomor
phism (p: C(X)~*C(Y) with <p(Cc(X))=Cc(Y ) iff А, У are homeomorphic.

II. Stone— Weierstrass’ theorem in a locally compact space

The following theorem is a generalization of Stone—Weierstrass’ theorem in a 
compact space (see [1]).

( *) Let E be a compact topological space and Ф either a semi-affine lattice (i.e.
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i- f ,  ge#  =>/vg, /Age<i>,
2. /£Ф, => /+а£Ф ,
3. /€Ф, убГ =>yf£<P

where Г is a set o f real numbers containing 0 and unbounded both from above and 
from below) or a subtractive lattice ( i.e. it satisfies 1 and f ,  g£ Ф =>f—g£ Ф) composed 
of continuous functions, containing all constants and separating the points o f E. 
Then every continuous function on E is the limit o f a uniformly convergent family 
taken from Ф.

But in a locally compact, non-compact space X, Cc(X) (the family of all con
tinuous functions which have a compact support) cannot contain constants, so the 
following theorem is not a consequence of (*) by applying it to the one-point com- 
pactification of X.

T heorem  2. I f  X  is a locally compact T2-space and Ф is a completely regular 
vector lattice over X, then, for every e>0 and for every fdC c(X), there exists g£ Ф 
such that |g(*)—/(x ) |< s  i f  x£X.

P r o o f . We shall begin by showing that
a) For xx, x2dX, x17i x2 and c\, c f R  there exists /€  Ф suchthat f ( x 1)=c1, 

f ( x 2)= c2. Ф is a completely regular vector lattice, so we have u, vf_ Ф such that 
u(x1) =  u(x2) = 0, и(x2)^ 0, v^x^xO.

Define
_  cxv [ c2u 

v(xx) u(x2) '

b) If f£C c(X), xdZ c(f) ,  г>0, then there exists gx£ Ф suchthat gx(x)=f(x) 
and gx(t)> f(t) — e (i€Zc(/)). From a) for every y ^X  we get hy,€Ф such that 
hy(x)=f(x), hy(y)=f(y). hy is a continuous function, so there exists an open neigh
bourhood Iy of у  such that hy(t)> f(t) — £ for t f  f .  Since Zc( / )  is a compact 
set, we get yx, y2, ..., ym suchthat Zc( / ) c / n U ...U /Jm. Let

gx= max (hn , ...,А,т)€Ф.

c) For f£C c(X), 6>0, there exists /г€Ф suchthat \h(x)—/ ( x)|-=e (x€Zc(/)). 
From b) for every x£Zc(/) , there exists gx€ Ф suchthat gx(x)=f(x) and gx(t)>  
> f( t)—e (t€Zc(/)). Since gx is a continuous function, there exists an open set 
Vx such that x£Vx, gx(t)< f(t)+ e (t€Vx). Z c( f )  is a compact set, hence it follows 
that there exist х г, ..., xmsuch that Zc( / ) c  VXl U ... UVXm. Let h =  min (gXl, ..., gXm).

Now we turn to the proof of the theorem. Let /^ 0 ,  f£C c(X). From c) there 
exists А£Ф such that \h(x)—/(x )|< e  (x6Zc(/)). f  h are continuous functions, so 
U={x: |/z(x)—/(х)|-<г} is an open set and UZDZc{f). Since Ф is a completely 
regular vector lattice, for every x£Z c(f) ,  there exists axd_ Ф suchthat 0 ^a x= l,  
ax(Ar\ £ / )  =  {0}, ax(Ux) = {\], where Ux is an open neighbourhood of x. Uz>
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c  (J Ux ^ Z c{ f ), so that there exist x1?...,xm such that U z> (J UXlZ)Zc( f) .  Let
xiZHT) ____  i=1

a —max(aXl, . . . ,a Xn). Then a(Zc( f )) = {[} and a(X \U )= {0}.
There exists mdR such that \h\Sm  on Zc(/) . Let /*  = (0VA)A|a|m. Then 

/*€Ф ; define /(x) =  |/*(•*) —f(x)\, so that x£Zc( / )  implies x £ U \Z c( f )
implies /(x)g£, x Z X \U  implies /(x)=0. Now let f£ C c(X) be arbitrary,/i=/VO,

/ 2=/A0,/==/i + /2. For / i  there exists AjSO, АХ€Ф suchthat |Ai—./i |< y , for / 2

there exists A2^0, А2€Ф such that |Л2+ /2|< у .  Let h=h1—h2. Then Л6Ф,
|A—/|ё |А г —/ i | +  |A2+ /2|<£. So for every f£C c(X), £>0, there exists А€Ф such 
that |A(x)—/ ( x) |< e (xCA').

C o r o lla r y . Let Ф be a complete algebra over a locally compact T,-space X  
and let ФГ\С*(Х) be completely regular. Then Ф з С с(1).

P r o o f . It is obvious that ФГ)С*(Т) is a lattice. So ФПС*(Х) is a vector 
lattice. Applying the above theorem we have Ф оС с(1).

Finally, I would like to express my sincere thanks to Prof. Ákos Császár 
for his help and encouragement.
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FUNCTIONAL CENTRAL LIMIT THEOREM 
AND LOG LOG LAW FOR MULTIPLICATIVE SYSTEMS

N. KÖNO (Kyoto)

§ 1. Introduction. Let S„ be a partial sum of real valued random variables 
Xt ,X 2, ... , and let Yn(t) be the random function on [0, 1] obtained by linearly 
interpolating Sk/Yn at t=k/n,  where k =0 ,  1, 2 , n.

It is well known that for i.i.d. sequences having mean 0 and variance 1 the 
functional central limit theorem (Donsker’s theorem) and the functional log log law 
(Strassen’s theorem) hold. In this paper we have the analogous theorems for a 
multiplicative system of random variables in the following sense:

D e f in it io n  (Alexits [1]). A sequence of real valued random variables Хг, Хг, ... 
is called a uniformly bounded multiplicative system if and only if

(i) there exists 0, such that for all n \X\„^K a.s. and
(ii) for any r = l , 2, ... and 1ё и г< и 2< ...< и Г

2. Theorems. Now we can state our theorems.
T heorem  1. Let {X„} be a uniformly bounded multiplicative system satisfying 

the following additional condition:
(* ) There exists a non-negative sequence a0, ax, ... such that

Then the distributions (F„(i); O S iS l} ^ ! converge weakly on C[0, 1] to the Wiener 
measure.

T heorem  2. Under the same conditions as Theorem 1, {T„(/)/l 2 log log и} is 
relatively compact in C[0, 1] a.s.

T heorem  3. Under the same conditions as Theorem 1,

E[Xni... X„r] = 0.

(i) £[(2f„2- l ) № - l ) ] S a |n_m| 
holds for all n and m, and

(ii) 2  ak <  + “ •

P ({The cluster set o f {Yn(t) j\2  log log« } in C[0, l]cAT1) = l,

where

4
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Remark. Under the conditions of Theorem 1, Takahashi [10] has proved

]/2 log log n

Here, under somewhat stronger condition, the equality sign also holds (cf. Ré
vész [7]) which suggests that the corresponding extension of Theorem 3 is also true.

3. Proof o f  the theorems. The proofs of our theorems are rather easy by using 
known lemmas which will be restated here for the later use.

Lemma 1 [8, Theorem 3]. Let {X„} be a uniformly bounded (by a constant K) 
multiplicative system. Then

2 exP ( - 2 ^ )
holds for any x sO  and и — 1, 2, . . . .

Lemma 2 ([9, Theorem 3.7.2]). Let Zl , Z2, ... , be real valued random variables. 
I f  there exists a non-negative sequence a0, a , , ... , such that

(i) E[ZnZ J  = 
holds for all n and m and

oo

(Ü) 2  ak -= +  °°,k~0
then (Zl + ... + Z n)/n converges to 0 a.s. (The strong law of the large number holds.)

Now we start proving Theorem 1. First we will show the tightness of {Yn} 
To do so, it is sufficient to check the inequality

( 1) £[|УлГ0 - В Д 14] ^ с1|Е-*|*,

where the constant сг does not depend on t, s and n. When k /n ^ s ^ (k  + ])/n^  
^ k ' /n ^ t ^ ( k '  + l)/n holds, it follows that

A |y n(s)-y „(i)l — maxOS^»—«Sk|, IS*'—«S^+il, I^a'+i •5*1» l*S*'+i—■*S*+il)-

By taking account of Lemma 1, we have

( 2 )  P ( | F „ ( 0 - T n ( s ) |  ^  ] / | r - s | x )  ё  c 2 e x p ( —c 3x 2) ,

where the positive constants c2 and c3 do not depend on n, s, t and x. This gives 
us our required inequality (1). Next we show that any finite dimensional distribu
tion of Y„(t) converges to that of the Wiener measure. Fix any 0 = 1 .  
Using an asymptotic formula

ez =  ( l  + 2 ) e.»/2+»<W) ( |2 | - 0 ) ,
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we have

(3) exp {/ Í  Uj(Yn(tj) -  r„(0-i))} =  exP 0{kjfn ) П  П  =
j =  1  j  =  1  n t j _ 1 < p ^ n t j

=  'Яр О ( к / У п ) П л IT nt [(> + i « j ^ ) e x p ( - - ^ + » ( u ^ 7 « ) |  =

= exp(0(k/yn) + o(max\uj\K2tkj) IJ  ]J { \+ iUjXpj ^ n ) t x p [ - ^ A .
j= 1 ntj_1-zp̂ ntj \ *-fl )

Fl n) =  П  {(1 + iuj x r ! fn) exp

Setting

and

we have

(4)

1)/2 П  (1 +iujXp/y n),
"tj-l^P^ntj

|Fjn)| +  |Gj">| á 2  П  |(1 + iUjXp/fn)\ 2emaxluJ)K',J2.
ntj_1-cp^ntj

Since by Lemma 2 we have

t follows that 

(5)

lim 2  x p/n = t j - t j - 1 a.s.,

lim IF j^ -G ^ I =  0 a.s.
Л—00 J J

Combining (3), (4) and (5) with the multiplicativity we have

lim £[exp {i
к

2
i = 1

W,( r n(0) -F „ (0 -i))}] -  П e - 'to - 'j -M ,
3=1

which completes the proof of the theorem.
To prove Theorem 2, we need the following lemma which is a modification 

of Fernique’s inequality [3]. We can prove Lemma 3 by the same way as that of 
Lemma 10 [4].

Lemma 3. Let {3f(i); 0s=/S 1} be a real valued stochastic process having con
tinuous sample path which satisfies the following conditions:

(i) There exist two positive constants c4 and cb such that

P(|Ar(i)-A '(s)| S  ^ It-s lx ) ^  c4exp (-c5jc2) 
holds for all xSO, and OSf, j S l .  Then

P [  sup \X ( t ) - X ( s ) \ ^ x ( l  + lO Í  е~‘̂ Л ) ^ 6 с ,  У е - ^ е - ^ / б
V0 S ] t - s ] « Ä  V 0J  ”  11=0

holds for all J tS j/^ l + 4  \ogp)/c5, p>  1 and 0 < d S l .
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Now we start proving Theorem 2 by using the same idea as that of Oodaira’s 
Theorem 1 [6].

Since we have

sup sup |K „(t)-T B(s)| =S f2  sup |JV (/)-lV (s)|,
í ’- U bS S '  | t - s |S Ä  |f - j |= £ ä

it is sufficient to show that

(6) 2  p (Ar(e, <5)) <  +  ”
r

holds for any e> 0  choosing ő sufficiently small, where

Ar(e, Ő) = { sup |T2r(0 -T 24s)| >  e /loglog2r- 1}.

By taking account of (2) and Lemma 3, it is easy to check that (6) holds, which 
completes the proof of Theorem 2.

To prove Theorem 3 we apply the theorem due to Kuelbs [5] which is restated 
here as a lemma for convenience.

Lemma 4 . Assume that
(i) Р({У„ //2  log log n} is relatively compact in C[0, 1]) =  1,

(ii) for any signed measure with bounded variation v on [0, 1],

Р (Ш  f  Y„(t) dv(t)/Y2log\og n ^  ( £ [ ( /  Ж 0*М 0)2])1/2) =  1,
n~°° о 0

where {B(t); O s /á l}  is a standard Brownian motion, so

E [ [ f  B(t) d v (/))“] = f  [ f  dv(s)f dt = K*.
0 0 t

Then
P (the cluster set of {YnJY 2\og log и } c  /f) =  l,

Г 1 / ̂  \2 1
where Af=|x£C(0, 1); x(0)=0 and f  dt=  11-

By our Theorem 2, it is sufficient for proving Theorem 3 to show the second 
condition (ii) of Lemma 4. Define

and set

( P j n ) ( 0  =

1
n t - a - i )
0

for j/n  sS i 1 
for ( j - l ) / n  á  t s j / n  
for 0 S / S  (j — \)/n

1
f  (p^(t)dv(t) = af>. 
0
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Then it follows that

J Yn(t)dv(t) = 2  a]a)X jftn

Easily we have
7=1

i™ E i U  \ =  /  ( /  dv(s)fdt.
Now setting

z„ = 2 K W J - 1  )Я
j=i

we have

E[Zl] = n~2E \ 2  \a*)n)\*(Xj — 1У+ 2  ^  cjn ,
7=1 7Vj'

where c6 does not depend on n. Therefore, for any 0>1, taking n*=[0'i] (the 
integer part of 0*) we have

(7) \im 2  \ a ^ \ 2Xjlnk = j  [ j  dv(s)f dt.
J - 1 0 I

By using Takahashi’s method [9, Theorem 3] we have

(8) £  [exp {A„ Д  aj">ЛГ,/^ - J  |a <•"> |2Z?/(2«)}] S  exp {(/„ K f^ n ) .  

Choosing Л„=К~1 )/2 log log n it follows for any £>0 that

£  [exp (A„k 2  X jlin k- > \  2  a("k)Т,2/(2ль) -  (1 +fi)log log /г*)] s  c7k~<1+eK
j=l 7=1

Since the right hand side is a convergent term, it follows for any M>  0 that 

ilm (A„k 2  a¥k)xi - f t k 2  aYk) 2xjl(2nk) -  (1 +  C) log log tik) =s- M  a.s.,
*■*“ 7=1 7=1

which implies that
1

(9) Пт J  Y„k(t) dv(t)j]/2 log log nk r:5 £ v a.s.

To establish the condition (ii) of Lemma 4, we have to estimate the remainder terms 
between nk_k and nk. We have

1 _________  1 __________
(10) I /  Tn(0 dv(i)//21oglogu— /  T^COdvCO/^loglognuj s

0 1 0
á  /  IY„(t)-Ynk(t)\dv(t)/]l2 log log nk. 1 +

0

+  /  |ТЯ|с(0 dv(f)| |(2 log log n)~1/2—(2 log log л*)-1/г|.
0
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Since we have

у  nit) -  Y„k(t) = { / n j n  -  \)Y„k(t) + У 7ф (Г „ к(ш /п к) -  YJt)),  
by taking account of (9) and equicontinuity, for e>0 there exists 1 such that

1
1нпл B f \Y„(t)-Y„k(t)\dv(t)/y2\og\ognk_1 ?se a.s.,

Easily we can get the same estimate for the second term of (10). Therefore finally 
we have

l
fim j  Y„(t) dv(t)j]/2 log log n g Kv a.s., 

which completes the proof of Theorem 3.
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NON-LINEAR CONNECTIONS IN A FINSLER SPACE
S. C. RASTOGl (Nsukka)

1. Introduction. Various aspects of non-linear connections in a Finsler space 
have been studied respectively by Vagner [9], Barthel [1], Kawaguchi [2], Rund [7, 8], 
Misra and Mishra [3], Rastogi [4, 5] and others. Using notations of Rund [7, 8] it 
has been proved that when the geodesics are auto-parallel curves in F„, the con-

i
nection parameters Г)к(х, Y) are symmetric. We have studied certain commuta-

l
tion formulae and obtained a representation for the tensor ßj* defined in [7]. Further 
we have given a generalisation of the ex-central connections of Rund [8] and studied 
some semi-symmetric connections and their curvature properties in a Finsler 
space F„.

Let X ‘(x) and Y,(x) be two differentiable vector fields in a Finsler space Fn
l a

with metric tensor gu (x, X) and non-linear connections Г‘к(х, X) and FJk(x, Y), 
positively homogeneous of degree one in X  and Y, then we have [7]:

(1 .1 ) r ‘jk(x, X)  =  A j h ,  XJr lJk =  h ,  A j= d /d X J
and
( 1.2) r ‘jk(x, Y) = Л'ГJk, Y ,rljk = Tjk, Al = d № .

If the vector field Yi is conjugate to X х such that Yi~ g iJXj and if X х under
goes a parallel displacement then so does Yt, then under the condition that the 
length of a vector remains unchanged for a parallel displacement we have [7]:

(1.3) 2G‘ = Г[Хк +  g ihYj(rikXk- r i ) .

Throughout this paper it is assumed that geodesics are auto-parallel curves in 
Fn, Rund [7] such that
(1.4) 20‘ = Г‘кХ к,

(1.5) r ‘j = 2С )-Г )кХк,

h j  = ^ + у & - ^ ; 4 )

h  =

(1.6)

and
(1.7)
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where

These connections also satisfy

( 1.8) 

and 

(1.9) 
where

X ‘h

1 1 1  
o L  =  T ú - r i

Х ‘Пк, Ykn k =  Yhn k

YjQÚ = YjQ{k = 0,

2 2 2 

Qit = r L - r L .£hk —  1 hk J **•

Based on these connections for an arbitrary tensor S)(x, X ) we have [3]:

(1.10) s y k = dkS ij+ (A mS))(dkX n + S r r U - S imh -
2

2. The tensor Qhjk. From equation (1.7) one can easily obtain

(2.1) ß i ^ i + g * ' ! rjA M k.
Now differentiating the first part of (1.9) with respect to Z 'and using A1YJ=gJt 

we get
(2.2) gljQik+Yj Alnik = 0.

Substituting from (2.2) in (2.1) we can easily obtain on simplification

(2.3)
Hence:

= o.

Theorem 2.1. I f  the geodesics are auto-parallel curves, the tensor Q\k vanishes
2

and the connection parameter Г{к becomes symmetric in i and k.
Let U‘(x, X )  and Vj(x, Y) be two arbitrary vector fields, then it is easy 

to obtain
(2.4a)
and
(2.4b)

2u;[kh] = и щ к„

2Vj,im  — ~ViR)kh,
where [Щ means skew symmetric part and R‘kh (x, X) and R)kh (x, Y) are given 
by [3] in the following form:

(2.5a) kkH -  {дкг )к + (Атг)к)(днх п  + г т Л к}-ь\к*

-h\k means interchange of indices h and к and substraction.
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and

(2.5b) k jkb =  {dhr ‘jk + (А”Г)к)(д„Y J  + Г%П,н)-h \k .

If in place of U‘ and Vj we take X ‘(x) and Yj(x), we get

(2.6a) 2X‘ikh] = R‘kh
and
(2.6b) 2 YMM = - R Jkh,
where [3]:

(2.7a) R‘kh(x, X ) = { д ь Н + Г и Г Я - т
and
(2.7b) RJKh(x, Y) = {dhr jk+ r% rnh}-h \k .

l
It is known that if Г‘кк(х, X) is symmetric, geodesics are auto-parallel curves, 

but the converse is not true in general, therefore if geodesics are auto-parallel curves, 
one can easily establish the following curvature identities:

(2.8a) (R‘kh -  Q‘kh J ) + cycl. (./, k, h) = 0
and
(2.8b) Rjkh+cyc\. (j , k, h) = 0,
where cycl. (/', k, h) means addition of three terms by cyclic permutation of the 
indices j,  k, h.

Multiplying (2.8a, b) by У, we get

(2.9a) (YtRjkh — ij_jQkh)+cycl. (j, k, h) = 0
and
(2.9b) .tf^+cycl. (j, k, h) = 0.

If Yt is a non-zero vector whose covariant derivative is zero, equation (2.9a) 
reduces to
(2.10) Yi# ja + cydL(j,k,h) = 0.

Further if we differentiate (2.4a) with respect to xJ covariantly and add three 
terms obtained by cyclic permutation of the indices k, h, j  we get by virtue of (2.4a) 
and (2.8b)
(2.11a) Ri,khJ+cyc\.(k, h ,j) =  0.

Similarly from (2.4b) we obtain

(2.11b) R)khJ+cyc\.(k, h ,j) =  0.
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Multiplying (2.11a) by X 1 and (2.11b) by Y{ we get

(2.12a) ( k * j  -  X ‘j R‘kh) + cyc\. (k , h, j ) =  0
and
(2.12b) Rlkhtj+cyc\.(k, h ,j) =  0.

1
3. The tensor Q‘hj. It is known that [3]:

(3.1) Ак(и:к) - ( А ки ‘),к = и тАкГ'тк+(Ат U‘) r kk, 

therefore for X ‘ in place of U' we shall have

(3.2) Ak(x;k) = (АкХ 1\ к+Х"АкГ‘тк+Нн- 
1 1 1

Since Xm АкГ‘тН=ХтАтГкк and Г'кк is homogeneous of degree zero in Xm we get

(3.3) Х тАтГкк =  0, 

which when substituted in (3.2) gives

(3.4) Ak(x:„)-Ah(x:k) -  (АкХ ‘1„ -(А кХ ‘)л .

Also since it is known that [3]:

(3.5) (AkU‘),h = dkAkUi + (AmAkUi)(dhX'") + (AkU ")rimk- (A mUi)r?k, 

therefore we obtain on simplification

(3.6) (AkX ' ) h = Г‘кк Г'кк, 

which leads to
(3.7) (АкХ ‘\„ -(А нХ ‘),к = Q‘kk.

Substituting from (3.7) in (3.4) we get

(3.8) Qkh — Ak(X'h) —Ah(X ‘k), 
which gives

1
T heorem  3.1. The necessary and sufficient condition for the tensor Q'kll to vanish 

is that Ak(X‘h)= A h(X‘k) or equivalently (АкХ') к=(АнХ')>к.
l

Now if we assume that the tensor Q'hJ is given by

(3.9) Q\tJ = 6'hPj - d ) p h,
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where Pj(x, Y) is a covariant vector field, from (1.6) we obtain

(3.10) h j  = Gij+ у  (SÍPj -  d)Ph+ X ‘AjPk -  S‘kXkAjPk), 

which gives

(3.11) Qij =  Sihpj - S ijpk + j [ X i(AJpl, - A hpJ)+ X t (öiJákpk- ő ihAJpk)].

Comparing (3.9) and (3.11) we obtain
(3.12) X i(Ajph- A hpj)+Xk{dij AhPk-ö),Ajpk) = 0.

Contracting (3.12) for i and j  we obtain
(3.13) X ‘(Aipl,+(n — 2)Ahpi) = 0.
Hence:

1
T h e o r e m  3.2. The necessary condition for the tensor Í2'hj to be expressed as

(3.9) is given by (3.13).
Further if őjAhpk=ö‘hAjpk, then on contracting it for i and j  we get 

(и— l)Ahpk=0, which implies pk is a function of coordinates only, whereas if we 
can contract it for / and A: we get AkPj-A jp h~ 0. Thus if dij Ahpk = 8ihAjpk, then 
equation (3.12) is satisfied. Hence:

l
T h e o r e m  3.3. djAhpk — S'hAjpk is a sufficient condition for the tensor C2'kj to be 

given by (3.9).
If we replace Pj by Yj, from equation (3.13) we get on simplification T}=0. 

Hence we have:
l

T h e o r e m  3.4. I f  the tensor ß)u- is expressible as d], Yj — d'j Yh we get Yh= 0, 
showing that Q‘hJ is identically zero.

4. Ex-central connections. We here define the following generalised ex-central 
connections
(4.1a) ’Г)(x, X) =  Г) (x, X ) +  T) (x, X)
and
(4-1 b) 'h j(x , Y) =  h j(x , Y) -  VjVh
where T) is an arbitrary tensor and Vj is an arbitrary со variant vector field.

From (4.1a, b) we now define
1. def 1 1 

Ак'Г) =  'Г‘к] = Гк] + АкТ}

■ 2 der 2. 2A ' 'r kj =  'r kj = r kj - A ‘(VjVk)

(4.2a)
and
(4.2b)
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such that 
(4.3a) 
and 
(4.3b)

1
'D fQ‘kJ = Q‘kJ+ (AkT j-A jT l)

2
'Щkj 0 .

On the basis of these connections we define

(4.4a) 'к и  =  {dh'h + 'h ,H 'h } - h \k ,

(4.4b)
2 j  г 2 2 2

' Rjkh =  {a* r Jk+T?kT m„}-h\k,

(4.4c) 'Rjkh =  {d„ ’frjt+Wm 'К)(дьХт) + ’Г% 'Л*} — h\k
and
(4.4d) ’R)kH= {дн 'Г%+(Am 'h k )Q h Y J  + ’h ' h * ) - h \ k ,

which satisfy
(4.5a) 'kk  = яЬ,ЦП;Н-(А тП )х $ -к \к ,

(4.5b) 'Rjkh = Rjkk + (KVj;k + VjVh'k + Ym'hA”'(Vj Vk) ) - h \k ,

(4.5c) 'R)kh =  k jkh+(AJ(Tl;h) - ( A mTi)(AJX X )-(A J T U ) J ? ) -

and
(4.5d) 'R)kh=  R)kh + к + (Лткк)К,К + ám(Vj Vk)A ‘(Ym,h))
where
(4.6) S};k =  dkS } + v ms № kx m)+ s?  T L -S L  r%.

One can easily obtain the properties and identities satisfied by these curvature 
tensors in analogy to § 2. Now we shall consider some special cases of (4.1a, b).

Case I. If Tj=Sj, equation (4.1a) gives the ex-central connection of Rund [8].
Case II. If Vj = Yj, equation (4.1b) gives the other ex-central connection 

Rund [8].
Case III. If we assume that the arbitrary tensor Tj can be decomposed into 

the product of two arbitrary vectors U‘ and Vj, then (4.1a) can be expressed as

(4.7)
which implies
(4.8)

1 1
'Г*. — Г КTj = Г)+ U‘Vj,

,n J = n j+ V jA kU, + U,AkVj.
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If we further take Vj =  Y} and U' =  X 1, equation (4.8) gives

(4.9) 'h j  = hj+ Yjöjc+ X igjk.
Multiplying (4.9) by Xk and using (4.7) we obtain

(4.10) X k' r ‘kj — T ij+ X iYj .
From (4.9) we can also obtain

(4.11) 'Qij =  ü ij+ Y jS Í-Y ^ j,
t i

which easily implies since Q‘kJ can not be expressed as ö[Yj — d)Yk.
Remark. The curvature properties based on these connections can be studied 

in analogy to Section 2.
1

5. Semi-symmetric connections. If the tensor Q‘hJ is expressible as in (3.9), sub-
l

ject to condition (3.12), r ‘hj is expressible as

(5.1) H i = G ij+jiöipj-Ö ^Pb),

which represents a semi-symmetric connection whose properties can be studied in 
analogy to Rastogi [6].

2
It is known to us that r ‘hJ is symmetric in h and j, therefore we can define a

2

semi-symmetric connection based on r i j  as follows:

(5.2) * h  = h + ö riP j-g ijPr,
2 2

where gtip i=pJ, such that р1*Г'} = р'Гги .
2

From (5.2) we can obtain that the tensor is given by

(5.3) * 4  -  *h j -  * b  =  VPj -  VP* •
Furthermore, since we can easily obtain that

(5.4) h k = h + X ‘Alk ,
1

therefore if *Гкк is defined in the following form

*hi =  * П + Х 1А ,П ,

*hk = hk+ öipk- g lkPh,

(5.5)
then we can easily obtain

(5.6)
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which gives 
(5.7)

2 1
Now corresponding to connections *Г'и and *Г|), we define the following 

curvature tensors

*K)kh =  {дк*Г)к + (Ая *rJk)(dkYm) +  *f% *r‘mh} -h \k(5.8a) 
and
(5.8b) *K)kh =  {dh*rjk + (Am*rjk)(dhXm) + *Г?к *rmh)-h \k ,

respectively. From (5.8a) we can easily obtain

(5.9) *K‘Jkk =  R}kk + {öijPk,k~(gJkpi),k+p,gJkpk+pmgjkX ,Amr\k} -h \k .
1 1

R em ark . A similar relation can be obtained between *K}kk and R ‘jkk. Also 
we can obtain the relationship between the curvature tensors defined by (5.8a, b) 
with the help of (5.5).

2

If we consider a special value of Гу given as [8]:

(5.10) H j=  r f f -C r m X k,
from (5.2) we can get

(5.11) *ru = n j  -  C[J{kXk + SrPj -  gijp',
which is a semi-symmetric connection, whose properties can be studied in anal
ogy to [6].

2 1 
Further if r 'j  is given by (5.10), then from (5.4) one can easily obtain Гу=С|), 

which when applied on (5.6), gives rise to

(5.12) *Г)к = Gjk+SjPk—gjk ph, 
whose properties have already been studied by Rastogi [6].

From (5.11) and (5.12) we can obtain *Г\ = *Г^к+ 2 С ^ XJ, such that Х 1*Гк1к — 
= X l*rhlk and X k*rhlk = Xk*rhlk.

A c k n o w l e d g e m e n t . The author is grateful to the referee for the vaulable 
advice received during the revision of the paper.
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EXTENSIONS OF FUNCTIONALS 
ON OCTONIONIC LINEAR SPACES

J. L. LEWIS (Harrisonburg)

The Hahn—Banach theorem states that any linear functional defined on a 
linear subspace of a normed linear space has a norm-preserving extension to the 
whole space. Until 1938 it was not known whether or not this result was restricted 
to real linear spaces and real-valued functionals. In that year Sobczyk and Bohnen
blust [3] proved that a complex linear functional defined on a complex linear sub
space of a complex normed linear space has a norm-preserving extension to the 
entire space. Moreover, they showed that the subspace must be complex linear 
(not merely real linear) in order for such an extension to necessarily exist. In that 
same year Suhomlinov [4] generalized to prove the analogue of the Hahn—Banach 
theorem for quaternionic normed linear spaces as well. This paper investigates the 
extent to which the Hahn—Banach theorem is valid in the still more general case 
of linear spaces which are defined over the non-associative algebra О of real 
octonions.

Real octonions are all hypercomplex numbers of the form a„+a1e1+a2e2+ 
+ a,e3+ ai e4+ ar>e-a+ a& + a7e7 where a0, al9 ..., a7 are real coefficients with distri
butive products defined by the following multiplication rules for the unit 1 and the 
seven basic imaginary units el9 e2, ..., e7:

2 2 2 1e\ — ei e? =  — 1,

‘ 1 1 * с* Ci, i 1, 2 ,..., 7,

e i • e i + i  =  e i+ 3  =  — e i+ 1 • Ci

where the addition of the indices is taken mod 7.
The conjugate ä of the real octonion a=a0+a1e1+ ...+ a7e7 is given as

a — ű0 — a1e1 —... — a7e-

in direct analogy to complex conjugation. The product of a and its conjugate is 
called the norm-squared of a and is denoted

Q(a) =  aa =  aa = ац + а |+ .. .  + а,.

If 0=^0 then Q (a)^0  and the inverse of a is

a ~ 1 =  (1 I Q ( a ) ) a .

The subalgebra of О which consists of all real linear combinations of 1, el9 e., and
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eA is isomorphic to the skew-field of real quaternions H. In this sense the real quater
nions are a subalgebra of O. There are exactly six other such isomorphic copies of 
H  in O, but hereafter when we refer to the real quaternions H  we shall mean that 
isomorphic copy generated by 1, q ,  e2 and e4.

In studying the properties of the set O" together with the standard component
wise addition and scalar multiplication, and in keeping with the work of Goldstine 
and Horwitz [1] we make the following definition:

D e f in it io n . An octonionic linear space V  is a set of elements called vectors in 
which vector addition and scalar multiplication are defined and satisfy:

(a) x,y£V^>x+y£V;
(b) x + y = y + x  for x and у in V;
(c) (x+ y)+ z= x+ (y+ z)  for x, у and z in V;
(d) There is a vector в in V for which x + 0 = x  for any x in V;
(e) To each x in V there corresponds a unique vector —x in V for which 

—x+ x= 0 ;
(f) x€V  and a£0=>ax£V;
(g) (a+b)x=ax+bx  for x in V and a, b in O;
(h) a(x-hy)=ax+ay for x, у  in V and a in О ;
(i) a(ax)=a2x  for x in V  and a in O;
(j) a(bx)=(ab)x for x in V and at least one of a and b is real;
(k) a(a~1x )—x  for a in 0, 0 and x in V ;
(l) Ox=0 and lx = x  for all x in V;
(m) q(e3x)= eg(qx) for x  in V and q in H.

It is precisely the lack of multiplicative associativity in О that accounts for the weaker 
axioms i, j, к  and m. Property (i) is implied by the alternativity of O.

We need not explicitly define what we mean by quaternionic and octonionic 
linear subspaces (they are precisely what the reader would expect) except to say 
that we require closure with respect to scalar multiplication on the left only. Some 
authors [4] make the distinction between left and right subspaces, but we shall not 
do so in this paper. A functional /  is said to be real, quaternionic or octonionic 
linear if the relation

f(a x  + by) = af(x) + bf(y)

holds for all pairs of real, quaternion or octonion numbers a, b respectively. Finally, 
the motion of an octonionic normed linear space is clearly understood if we take |a| 
to mean (Q (n))1/2.

The real octonion

a = a0+ n1e1-ba2e2'i_a3e3“ba4e4 +  a5e5_ba6ee +  a 7e7

has the representation a=q0+e3q1 where q0 = a0+a1e1+a2e2 + ai ei and q1=a3 — 
—a7e1—a5e2+a6ei are two quaternions. Any real octonion may be uniquely rep
resented in this way. If /  is an octonion-valued function then we may express it in 
the form

(1) f ( x ) = f 0(x)+ eaf 1(x)
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where/0 and f x are quaternion-valued functions. We note that a may also he expressed 
in the forms

a = (a0+a1e1 + a2e2+ai ei)+es(a& — aee1 + a3e2 — a7ei),
a = (a0 + a1e1 + a2e2 + ai ei) - e 6iae + a5e1-a .1e2 — a3ei),
a = (a0 + ßi e1 + a2e2-i-ai ei)-{-e'1ia7-\-ase1-l-aee2-\- ab e4).

These representations suggest that any octonion-valued function /  may alternately 
be expressed in the forms
(2) f ix )  = /о О) + e j 2 (x),

(3) f ix )  = /о (x) + е6/з W .
(4) f ix )  = /о (x) + e7/ 4 (x)
where/0 is the f 0 in (1) a n d /2, / 3 and /4 are also quaternion-valued functions. I f /  
is an octonionic linear functional defined on an octonionic normed linear space, 
then equations (1) through (4) may be written
(1') f ix )  = fo ix )-e 3f 0ie3x),
(2') f ix )  — /о (x) — e6/ 0 (e5 x),
(3') f ix )  = /o (x )-e e/ 0(e6x),
(4') f ix )  = /o (x )-e 7/o(e7x).

T heorem . Let A be an octonionic normed linear space and let M  be an octo
nionic linear subspace of A. If f£M*\ the collection of all octonionic linear func
tionals on M, then there exists g£A* such that g extends/and ||g ||= ||/ ||.

P roof. For each x in M  we write

f ix )  = fo ix )-e 3foie3x)
where f 0 is a quaternion-valued function defined on M. By the independence of 1 
and e3 we see that

fo(x+y) = foix)+foiy), foiqx) = qfoix)

for all x and у  in M  and q in H. Thus /„ is a quaternionic linear functional on M. 
Also,

\foix)\ ^  («Q ifix))1/a) -  |/(x)| ё  ||/||||x||

so that /о is bounded and | | / 0|| ||/Ц. Now, regarding A and M  as quaternionic
linear spaces, we apply the quaternionic extension theorem of Suhomlinov [4] to 
establish the existence of a bounded quaternionic linear functional g0 on all of A 
such that g0 extends / 0 and ||g 0ll =11/oil- We now define g on all of A by the rule

g W  =  go(x) + e3g0(e3x).

C laim  O n e . g is an octonionic linear functional on A.
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Clearly g maps A into О. By the independence of 1 and e3 we see that g(x+y) = 
=g(x)+g(y), for all x  and v in A. To see that g is scalar (octonion) homogeneous 
we first observe that

g(qx) = g„(qx)-e3 g0(e3(qx)) =  qg„(x)-e3gt,(q(e3x)) =
=  qgB(x ) -e 3(qg0(e3x)) = qgB(x )-q (e 3gB(e3x )) =  qg(x) 

for any q in H. Next we observe that
g(exx) = ga(e3x) + e3g0(e3(e3x)) = gB(e3x ) - e 3g0( - x )  =

=  g0(«sJc) + e3goW =  e3g(x).
We have already observed in equations (Г)—(4') that

fsgotes*) =  «’s go Os*) =  eegn(e„x) = e7g0(e7x) 
for every .v in A, so that

gO,*) =  g0(eix ) - e ig0(ei(eix )) = g„(eix)+ ei g0( - x )  =
=  g t > ( ^ i X )  +  e i g 0 ( x )  =  e ; g  (л -)

for /= 5 ,6  and 7. From this it is clear that g(ax)=ag(x) for every a in О and 
x  in A.

C laim  T w o . g(x)=/(x) for all x in M.
For x  in M  we have

g0(e3x) + e3f 1(e3x) = f 0(e 3x)+e3f 1(e3x) = f(e3x) = e3f ( x ) =  e3/ 0(x)-/i(x)
where ,/i(x) =  —f B(e3x). Therefore g0(e*x) =  —_/i(x) and we have

g O) =  go O) -  e3 g0 (e3 x) =  /о (x) + f  (x) =  /(x ) 
for every x in M.

C laim  T h r e e . The extension g is bounded on A and ||g || = || / | | .
We have g(x)=gn(x) — e3gl)(e3x) for all x in A, so that

lg | =  sup {lg(*)h IMI =  1} =  sup {|g0(x )-e 3g0(e3x)|: |xf =  1} s  
=  sup {|g0(x)|: lx|| =  1} =  |jgo||.

We need only show that || g|| S ||g 0||. Suppose, by way of contradiction, that ||g ||^  
H jg0||. Then for g>0 sufficiently small we have [|g0!l + e<  ||g||. Then there must 
exist an element x0 with [|x0|| =  1 suchthat

lg(*o)l =- llgoll +s/2 ^  lgo(x)| +e/2

for all x for which ||x ||= l. But if we let A=g(x0)/|g(x0)|, where g(x„) = g0(x0) + 
+ ^ 0Оз*о), we get

g(Ax0) = |g(x0)| =  ig0(/.x0)I
which is a contradiction since ||Ях0|| =|A| ||x0|| =  1. Thus ||g|| = ||g0||. By the same 
argument, Ц/Ц = | | / 0||. Thus, because | |/0!| = ||g 0ll, we have ||g [|= ||/||.
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BIDUALS OF BANACH ALGEBRAS 
WHICH ARE IDEALS IN A BANACH ALGEBRA

B. J. TOMIUK (Ottawa)

1. Introduction

Let A and В be semisimple Banach algebras such that A is a dense ideal in B. 
In Section 3 we show how the algebra A** is related to the algebra B**, in each 
of the Arens products. In Section 4 we assume that В has a bounded approximate 
identity contained in A and that В is Arens regular. The existence of such an approx
imate identity enables us to express A** as a direct sum of two closed ideals, in 
each of the Arens products. This approach of expressing A** as a direct sum of 
two closed ideals was used in [2] to show that an A*-algebra which is a *-ideal in 
its 5*-algebra completion is Arens regular. (See also [15].) We use these direct 
sum decompositions of A** to find conditions on A and В which imply Arens reg
ularity of A.

2. Arens products

Let A be a Banach algebra, and let A* and A** be the conjugate and second 
conjugate spaces of A. The two Arens products on A** are given in stages as fol
lows [3]: Let x ,y£A ,f£A *  and F,G£A**.

(i) Define fo x  by (f°x )(y )= f(xy ), fox^A*.
(ii) Define F o f  by (Fof)(x) = F(fox), Fof£A*.

(iii) Define FoG by (FoG)(J) = F{Gof), FoGdA**.
A** is a Banach algebra under the Arens product FoG, and we denote this alge
bra by (A**, o).

(i) ' Define x o 'f  by (xo'f)(y)= f(yx), xo'f£A*.
(ii) ' Define fo 'F  by (fo 'F)(x) = F(xo'f), fo 'F dA .

(iii) ' Define Fo'G by (Fo'G )(f) = G(fo'F), Fo'G£A**.

A** is a Banach algebra under the Arens product Fo'G, and we denote this alge
bra by (A**, o').

Both of the Arens products extend the given multiplication on A when A is 
canonically embedded in A**. We say that A is Arens regular if the two Arens products 
coincide on A**. We recall that the product FoG is vv*-continuous in F for fixed G, 
while Fo'G  is w*-continuous in G for fixed F [4, p. 848]. We will denote by nA 
the canonical embedding of A into A**. We have nA(x)oF=nA(x)o'F  and 
FottA(x) — Fo'nA(x), for all x£A  and F£A** [8].
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If A has a bounded right (left) approximate identity then (A**, o) ((A**, o')) 
has a right (left) identity [4, Lemma 3.8, p. 855]. If A has a bounded approximate 
identity then there exists an element E in A** which is both a right identity for 
(A**, o) and a left identity for (A**, o') [9, Proposition 1.3, p. 93].

For at A, let La(Ra) be the mapping La(x)=ax (Ra(x)=xa) for all xtA . 
We call A weakly completely continuous (w.c.c.) if, for every at A, La and Ra are 
w.c.c. operators on A. It follows from the definition of Arens products and [6, VI, 
4.2, p. 482] that A is w.c.c. if and only if nA(A) is an ideal of A** in either Arens 
product.

Since we will be dealing mainly with a pair of Banach algebras A and B, it 
will occasionally be necessary to distinguish between the norms of A and B. In this 
case we will denote the norm of A (B) by || • ||л (|| • ||B). By an ideal we will always 
mean a two-sided ideal unless stated otherwise.

3. A** as a ß**-module

Let A and В be Banach algebras such that A is a dense ideal in B. If В is semi
simple then, by [11, Proposition 1.6, p. 299], there exist constants C >  0 and 0 
such that for all x fA  and y tB ,

(1) \\xy\\A С М л Ы в

(2) \\ух\\л = CblWWL
(3) M b = -0ML-

Since we will be only interested in Arens regularity of semisimple Banach algebras, 
we will assume henceforth that A and В are semisimple Banach algebras and that 
A is a dense ideal of В so that properties (1), (2) and (3) are satisfied. As there will 
be no danger of confusion, we will denote the Arens products in A** and B** by 
the same symbols о and o'. Since A is a left and right Banach В-module, it follows 
that A** is a left Banach (B**, o)-module and a right Banach (B**, o')-module 
under the adjoint module operations which are given as follows: Let x tA ,  ytB , 
f t  A*, F t A** and HtB**.

(a) Define f* y  by (f*y)(x)= f(yx), f*y£A*.
(b) Define F * f by (F*f)(y)= F(f*y), F*ftB*.
(c) Define H *F  by (H *F )(f)= H (F *f), H*F£A**.
(a) ' Define y * 'f  by (y* 'f)(x)= f(xy), y*'f£A*.
(b) ' Define f* 'F  by (f* 'F)(y) = F(y*'f), f# 'F£B*.
(c) ' Define F*'H  by (F * 'H )(f)= H (f* 'F ), F*'HtA**.

Let f t  A*, F, GtA** and HtB**. Then it is easy to check that 

(4) H o(F *f) = (H *F)*f
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(5) (FoG)*f = (F*(C7o/)).

The following proposition shows that A** is a left Banach (В**, o)-module.
P ro po sitio n  3.1. Let A and В be semisimple Banach algebras such that A is a 

dense ideal in B. Then for F, G£A** and H, KíB**, we have
(i) \\H*F\ C | | t f | | | |n

(ii) (KoH)*F= K*(H*F),
(iii) H*(FoG)=(H*F)oG.
P r o o f , (i) Let f£A*  and y iB . We have \{H* F ) ( / ) |= |t f ( F * / ) |s | |# | |  ||F* /||. 

Since (F *f)(y) — F (f* y )  and ||/* j> ||^ C ||/ || |Ы| (by (2)), we get | |F * / | |= S  
S C ||F ||| |/ | |.  Hence ||t f * F ||s C ||t f  || ||F||.

(ii) Let fiA * . Then

((KoH )*F)(f) = K{Ho(F*f))
and

(K*(H*F))(f) = K{(H*F)*f).

Applying (4), we obtain (ii).
(iii) Similarly, using (5), we can show (iii).
In like manner we can show that

| |Л 'Я || C ||F ||||i/||, F*'(Ho'K) =  (F*'H)*'K, (Fo'G)*'H =  Fo'(G*'H).

For g£B*, let gA be the restriction of g to A. By inequality (3), gA€A* and 
llfalla*^-DlklU*- For F£A**, let <p(F)£B** be defined by cp(F)(g) = F(gA). 
It follows that the mapping cp is a continuous algebra homomorphism of A** into 
B** for either Arens product ([2, p. 3], [15]).

We observe that if fíA *  and FiA** then (F *f)A—F c f  since f* x = fo x  
for all x£A. Likewise i f * ’F)A = fo'F.

P ro po sitio n  3.2. For Ff,A** and H i В**, we have
(a) q>(H*F)=Ho(p(F)
(b) cp(F*'H) = (p(F)o'H.

That is, (p is a module homomorphism for either Arens product.
P r o o f . We prove (a). Let g£B*. Then

(<p(H*F))(g) = (H*F)(gA) =  H(F*gA)
and

(Ho<p(F))(g) =  H(cp(F) og).
Since F*gA=(p{F)og, we obtain (a).

C o ro lar y  3.3. I f  В is Arens regular then (p(A**) is an ideal o f B**.
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N o tatio n . Let l(A**, o) = {G£A**: GoF=0 for all F€A**} and r(A**,o)=  
= {G£A**: FoG—0 for all FdA**}. Similarly we define l(A**, o') and r(A**, o'). 
Let ker (cp) denote the kernel of cp and R f  (resp. RÍ*) be the radical of (A**, o) 
fresp. (A**, o' )).

L emma 3.4. ker (cp) <= l(A**, о)Пг(А**, o').

P ro o f . Let F£ker (<p), G£A** and faA*. Then

(FoG)(f) = F(Gof) = F((G*f)A) = cp(F)(G*f) = 0.

Hence FoG = 0 so that F£l(A**, o). Similarly

(G o 'F )(f) = F(fo'G) = F((f*'G)A) = <p(F)(f*'G) = 0.

Hence Go' F=0 so that F£r(A**, o').
T heorem  3.5. (i) I f  (<p (/!**), o )  is semisimple then 

Rt* = ker (<p) =  l(A**, o).

(ii) I f  [cp (A**), o') is semisimple then

R t*  =  ker (cp) =  r(A**, o ').

P ro o f . We prove (i). The proof of (ii) is similar. Suppose that (<p(A**), o) 
is semisimple. Let R£R A* and F£A**. Since R oF ^R A*, the spectral radius of 
R oF  is zero. Therefore <p(RoF) = (p(R)o(p(F) has zero spectral radius (cp is con
tinuous) and consequently cp(R) is in the radical of (<p(A**'), o ). Since (q>(A**), o )  
is semisimple, cp(R) = 0 so that F£ker fp). Thus F**cker (cp). Now l(A**, o )c  
ciRt* and, by Lemma 3.4, ker (cp)czl(A**, o). Hence i?í*=ker (<p) =  /(>l**, o). 
(See [2].)

C o ro llary  3.6. I f  <p (A**) is semisimple in each o f the Arens products then 

R** = R** = ker (</?) =  l(A**, o )  =  r(A**, o)  =  l(A**, o') =  r(A**, o').

P ro o f . In view of (i) and (ii) above, we need only to show that /(A **, o)cz 
c/M **, o') and 7-(zl**, o')<r.r(A**, o). Let FO(A**, o). Then Fo'uA{a) = 
= FonA (a)=0 for all ad A so that, by the w*-continuity of the product o' on 
the right and the w*-density of nA (A) in A** we obtain Fo'G=0 for all GfA**. 
Therefore F£l(A**, o'). Hence l(A**, o)c~l(A**, o'). Similarly we can show that 
r(A**, o')czr(A**, o). This completes the proof.

P ro po sitio n  3.7. I f  В is Arens regular and В** is semisimple then (p(A**) is a 
semisimple algebra.

P ro o f . Suppose that В is Arens regular. Then, by Corollary 3.3, <p(A**) is an 
ideal of B**. Therefore every primitive ideal of cp(A**) is of the form ср(А**)ПВ, 
where P is a primitive ideal of B** [10, Proposition 2, p. 206]. Hence if B** is semi
simple then so is <p(A**).
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From Corollary 3.6 we see that if В is Arens regular and cp(A**) is semisimple 
then R**=R%*. From now on whenever these conditions on В and <p(A**) are met 
(in particular when B** is semisimple) we will identify R** with K$* and write it 
simply as R**. We observe that since A is semisimple we have жл (Л)П R**=(0) 
[7, Theorem 4.6, p. 130].

4. Direct sum decomposition of A** and Arens regularity of A

Let A and В be semisimple Banach algebras such that A is a dense ideal in B. 
Let {ex: oc£i2} be a bounded approximate identity of В contained in A. We will 
assume in the rest of this paper that wMim nB(e„)=E, where E is a right identity

a
for (B**, o )  and a left identity for (B**, o'). Whenever В is Arens regular and 
<p(A**) is semisimple (so that i?f*=i?£*=i?**) we have the following direct sum 
decomposition of A** for each of the Arens products. (See also [2] and [15].)

Theorem 4.1. Let A and В be semisimple Banach algebras such that A is a 
dense ideal in B. Assume that (i) В has a bounded approximate identity contained 
in A, (ii) В is Arens regular and (iii) (p (A**) is semisimple. Then the following state
ments are true:

(a) A**=R**®M, where M is a closed ideal in (A**, o ) .
(b) A**—R**®M', where M ' is a closed ideal in (A**, o').
(c) <p is an algebra isomorphism on M  and M'.
(d) I f  M = M ' then A is Arens regular.
Proof. Let {ep cc€f2} be a bounded approximate identity of В contained 

in A and let E=w*-\\mnB(ea). For /6  A* and Ff A**, we havea
(E*F)(f) = E(F*f) = lim nB(ex)(F*f) = lim (F*f)(eJ =

a a

= lim (Fof)(ex) = lim (nA(eJoF )(f),
a a

so that JE ^ F ^ -I im  (nA(ex)oF).a 4 7
(a) We observe that the mapping PE: F^-E*F  is a bounded projection on 

(A**, o ) .  In fact, from Proposition 3.1 we see that PE is continuous and that 
E *(E *F )= (E oE )*F = E *F  so that P \= P E. Let M ~ P e(A**)—{E* F: FdA**}. 
Given F£A**, we have (Proposition 3.2)

<p(F-E*F) = (p(F)-Eo(p(F) = (p(F)-cp(F) = 0

whence F—E*F£R** (Corollary 3.6). Since F=(F—E* F) + E* F, we get A** — 
= R** + M. Now suppose F£MC\R**. Then, bv Corollary3.6, F= E*F =  
=  w*-lim{jzA(e joF) = iv*-lim0=0. Hence A** = R**®M. For U,V£R** andtx a.
F,G£M, we have

( U+F)o(V+G) = UoV+ UoG+FoV+FoG = FoG = 

= (E* F) о G = E*(FoG)eM.
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Thus (Л**)2£1М and so M  is an ideal of (A**, o ). Since M =PE(A**) and PE is 
a continuous projection, M  is a closed ideal of (A**, o).

(b) This follows from (a) by symmetry of the argument. The mapping 
P'E: F-+ F * 'E is a continuous projection on A** and M ' =Pe(A**) = {F*'E ': Ff A**} 
is a closed ideal of (A**, o'). We have A**=R**@M' and (Л**)2£ А /\

(c) By Corollary 3.6, ker (<p) =/?**. Therefore <p is an algebra isomorphism 
on M  and M '.

(d) By (c), (p is an algebra isomorphism on M  and M'. Hence if M = M ' then 
the Arens products agree on M (M ')  and, by Corollary 3.6, they agree on R**. 
As R** and M  are ideals with R**(&M=A**, it follows that A is Arens regular.

R e m a r k  1. Let A and В satisfy all the conditions of Theorem 4.1. For F£A**, 
we have E* T=vv*-lim (nA(efioF) and Ft'E=w*-\\m  [Fo'nA(ea)). In what fol-cc oc
lows M  (resp. M ’) will denote the closed ideal of (A**, o) (resp. (A**, o ')) given by 
M =  {E*F: F£A*} (resp. M ' = {F * 'E : F£A**}). We have

R** = {F - E * F : FeA**} = { F - F * 'E : F£A**}.
For F, GZA**, FoG=E*(FoG)=(E*F)o(E*G) and Fo'G =(Fo'G)*'E=  
= (F * 'E )o '(G * 'E ).

P roposition  4.2. Assume that the conditions o f  Theorem 4.1 are satisfied. Let 
E  be the identity o f  B**. Then the mapping q : F-~E*F is a continuous algebra 
homomorphism o f (A**, o') onto (M, o). The restriction of q to M ' is a topological 
algebra isomorphism o f M ' onto M.

P roof. Clearly q is linear and continuous. Let F, G£A**. We claim that 
E*(Fo'G )=(E* F)o(E*G). By Proposition 3.2 and Arens regularity of B,

Also
(p(E*(Fo'G)) = cp(F)o(p(G). 

q>(E*F)o(p(E*G) = (p(F)o(p(G).
Since tp is one-to-one on M, we get

E* (Fo'G) = (E*F)o(E*G).
Now let F£M  and write F=F1 + F2 with F f M '  and F2dR**. Since E*F2=0, 
we get E* F=E* F1 = q(F1). But E * F = F  since FdM. Hence q is onto. This 
shows in particular that q(M ')= M . Finally, suppose that E * F '— 0 for some 
F fiM '.  Then 0 = (p(E* F')=Eo(p(F')=(p(F') so that F'€ker ((p)=R**. There
fore F'£_M'C)R** = (Q) and so q is one-to-one on M '. Hence the restriction of q  
to M ' is a bicontinuous algebra isomorphism of M ' onto M.

Likewise q ' :  F ^-F * 'E  is a continuous algebra homomorphism of (A**, o) 
onto (M', o ' )  and the restriction of q '  to Mis a topological algebra isomorphism of 
M  onto M'. We have (FoG)*'E— (F*'E)o'(G*'E). Therefore, in view of Remark 
1, it follows that, for all F, G£A**, E*(Fo'G) = FoG and (FoG)*'E=Fo'G.

C orollary  4.3. MoM is dense in M if and only i f  M 'o 'M ' is dense in M'.
C orollary  4.4. I f  A is Arens regular and M oM  is dense in M  (or equivalently 

M 'o 'M ' is dense in M ’) then M  — M ’.
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P r o o f . If F ,G £M ' then Fo'G=FoG£M  so that M 'o 'M 'c M .  Therefore 
M 'czM  Similarly M e  AT. Hence M =M '.

C orollary  4.5. I f  PE PE=PEPE then A is Arens regular.
P r(X)f . Let F, G€A**. We have

PEPE(FoG) =  F*((FoG)*'F)) =  Ew(Fo'G) = FoG
and

P'EPE{FoG) = (E* (FoG))*'E = (FoG)*'E = Fo'G.

Hence if PeP'e — P'e P e  then Fo'G = FoG and A is Arens regular.
P roposition  4.6. Let В be a Banach algebra which is Arens regular and con

tains a bounded left approximate identity {e%: ctf Q). Then for all g£B* and H£B**,

H(gcex) -  H(g).
P ro o f . We have

lim F(gof,) =  lim ((tfog)O j =  lim nB(ex)(Hog) = E(Hog) = (EoH)(g) = H(g).
X X  X

P roposition  4.7. Assume that the conditions o f Theorem 4.1 except (iii) are 
satisfied. Then for all f£A*, F£A** ar . M£B**,

(H *F)(foex) -  (H * F )(f).

P r oof . We have (H* F )(foex)= H (F *(foex))=H((F*f)oex). Since В is 
Arens regular and F*f£B*, by Proposition 4.6, H ((F#f)oex)^ H (F * f)  =  
= (H * F )(f).

T heorem  4.8. Let A and В be semisimple Banach algebras such that A is a dense 
ideal in B. Assume that (i) В has a bounded approximate identity {ex: a£ß} con
tained in A, (ii) В is Arens regular and (iii) (p (A**) is semisimple. If, for all ff_ A*, 
FfA** and m B ** ,

(F ,* tf)(/oeJ  -  (F * 'H )(f), 
then M = M ' and A is Arens regular.

P ro o f . By Proposition 4.7, (H* F)(foex)->-(H*F)(f). Assume that 

(F*' H )(fo ex) —■ (F * ' H )( f) .
Let H —E. Then

(E* F)(foex) -* (E*F)(f) = PEIF)(J)
and

(F*'E)(foex) -  (F*'£ ) ( /)  -  P'E(F)(f).

Now, by (1) in Section 3, foex extends to a bounded linear functional (foex)' on 
B, where (foex)'(y)= f(exy), y£B, and

(E*F)(foex) = cp(E*F)((foexy) = (Eo<p(F))((fcej') = <p(F)((/oeJ').
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Similarly
(F*'E)(foea) = (p(F)((foeJ).

Hence PE(F)=PE(F), for all F£A**, which gives PE=PE. Thus M  = M ' and 
therefore by Theorem 4.1, A is Arens regular.

C o r o l l a r y  4.9 [12]. Let A and В be semisimple Banach algebras such that A is 
a dense ideal in B. Assume that (i) В is Arens regular, (ii) В has a bounded approxi
mate identity contained in the center o f A and (iii) B** is semisimple. Then A is Arens 
regular.

P r o o f . Let {ex : a€£?} be a bounded approximate identity of В contained in 
the center of A. Then {nA (ea): a£Q} is contained in the center of (A**, o) and 
(A**, o'). Let Д А *, F£A** and #€£**. Then

(F*'H)(foea) = (F*'H )(fo 'nA(eJ) = (nA(ex)o \F * 'H ))(f) =

= ((F*'H)o'nA(O )( /)  -  ((F *'H )* 'E )(f) =  (F *'H )(f).

Therefore, by Theorem 4.8, A is Arens regular.

T h e o r e m  4 . 1 0 .  Let A be a w.c.c. semisimple Banach algebra which is a dense 
ideal in a semisimple Banach algebra B. Assume that (i) В has a bounded approximate 
identity contained in A and (ii) В is Arens regular. Then A is Arens regular.

P r o o f . Let {£>„: oc€ fi} be a bounded approximate identity of В contained 
in A. By [13, Lemma 3.2, p. 4], В is w.c.c. and therefore, by [14, Corollary 4.3, p. 298], 
B** is semisimple. Thus A** has the direct sum decompositions of Theorem 4.1. 
Let F, G£A**. Then, using the fact that nA(A) is an ideal in A** for either Arens 
product, we obtain (see Remark 1)

FoG = (F*'E)oG = w*-lim ((Fo'nA (eJ)oC) =

=  w*-lim((Fo7t^(ea))oG) = \v*-lim (Fo' (jiA(ex)oG)) = Fo'(E*G) = Fo'G.
(X Я

Therefore A is Arens regular.

T h eorem  4.11. Let A and В be semisimple Banach algebras such that A is a 
dense ideal in B. Assume that (i) В has a bounded approximate identity contained 
in A, (ii) В is Arens regular, (iii) every continuous linear map from В to B* is weakly 
compact (w.c.c.) and (iv) <p(A**) is semisimple. Then A is Arens regular.

Proof. Let {ex: x f  o} be a bounded approximate identity of В contained 
in A and such that E=w*-lim лв(еа). Let Д А *, F£A** and H€B**. We havea

(F*'H )(foeJ = H {(foef* 'F ).

The map T: B-~B* given by (T(b))—( f* b )* 'F , b£B, is continuous and 
therefore weakly compact.
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We can now apply the argument in [2, p. 5] to show that 
(F*'H )(foea) -  (F * 'H )(f).

Therefore, by Theorem 4.8, A is Arens regular.
Corollary 4.12. Let A be a semisimple Banach algebra which is a dense ideal 

in a B*-aIgebra B. Then A is Arens regular.
P r o o f . By [5, Proposition (1.7.2), p. 15], A contains a bounded approximate 

identity of В and, by [4, Theorem 7.1, p. 869], В is Arens regular and B** is semi
simple. By [1, Corollary II.9, p. 293], every continuous linear map T  from В into 
B* is weakly compact. Therefore, by Theorem 4.11, A is Arens regular.

Corollary 4.13. Let A and В be semisimple Banach algebras such that A is a 
dense ideal in B. Assume that (i) В has a bounded approximate identity contained in 
A and fii) В is reflexive. Then A is Arens regular.

Proof. Clearly В is Arens regular and B** is semisimple. By [6, Corollary 3, 
p. 483], every continuous linear map from В to B* is weakly compact. Therefore, 
bv Theorem 4.11, A is Arens regular.
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ON SUBWEBS OF 3-WEBS AND SUBALGEBRAS 
OF LOCAL Ж*-ALGEBRAS

M. A. AKIVIS (Moscow) and A. M. SHELECHOV (Kalinin)

2-dimensional subwebs of a 3-web have been investigated in [1], where it was 
proved that 2-subwebs are induced on transversal geodesic surfaces of a web. In 
the following we give a systematic investigation of the properties of 3-webs having 
subwebs of various dimension. Especially we prove that only the Grassmannian
3-webs have a maximal variety of sub webs. If a smooth manifold M  is equipped 
with a 3-web structure then for every point p£M  a coordinate loop can be in
troduced [4]. This loop multiplication defines a series of (c-linear operations 
(k= 2, 3, 4, ...) on the tangent vectorspace Te of this loop at the identity e satisfying 
some identities. This vectorspace Te with these operations of arity h ^ k  is called 
the local Wk algebra of the web. Local Ws algebras have been already investigated 
in [4] where they were called IT-algebras. Especially, the coordinate loops of a 
group 3-web are isomorphic to a Lie group, their I T ,-algebras are the corresponding 
Lie algebras, and the Wk-algebras (fcfe3) are trivial. We prove that if a 3-web W  
contains a subweb W  then the corresponding \Vk-algebras are subalgebras of Wk- 
algebras of the original web. With help of such subalgebras we characterize isocline 
and Grassmannian 3-webs: W2-algebras of the first and W3-algebras of the second 
are almost trivial.

1. We consider a 3-web W  defined on a manifold M  of dimension 2r by the 
foliations kx (x, ß, у — 1, 2, 3) of codimension r. We have the differential equations 
of these foliations (cf. [1])
(1) со1 — 0 , со' =  0 , со' = 0.

1 2  3

The forms col and of define a coframe on the tangent bundle T(M) satisfying the 
structure equations

The quantities a)k and Щи form tensorfields on T(M) called the torsion and curvature 
tensors of 3-web W. They are connected by the relations

(2) dm1 = оТЛсо; — а\ксо}/\ ook, ■2 2 1 ]K 2 2
(3) dm ) =  (o)/\ coj +  b'Jki (Ok/\co.

(4)
(5)

bljkl] — 2<3[”/fc<3|m|;], 
Va)k =  ЬущщЮ1 +  blljkVcol.

6
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By exterior derivation we get from the equations (3)
(6 )  Vb‘Jkl =  с‘Шт(йт- ф к1т(йт.

Equations (2) and (3) define an affine connection Г on the manifold M. The geodesics 
of this connection satisfy the equations

(7) da>‘ + coJ a>) = Otx>\ dco' + cô co'i = 0co‘,1 1 1 1 2 2 1
where d denotes the ordinary derivation by the (not necessarily affine) parameter 
of geodesic. From these equations we see that the leaves of the web W are total 
geodesic submanifolds with respect to the connection Г.

We need the following property of Г. Let Va be a leaf of the web through a 
point p£M. We denote by <paß the projection map of the leaf Va onto the leaf Vß 
defined on a neighbourhood of p with the help of the leaves of the third foliation 
Xy (a^ /M y ^a). This local diffeomorphism maps geodesics onto geodesics. If we 
denote by p  and p  the vectors of the tangent frame dual to the coframe {o>‘, m‘},
the tangent vectors to the manifold M  can be written in the form [1]

( 8) £  =

We can see that the vectors p , p  and et= —p  — p  are tangent to the leaves Vx, F2 
and V3 through p, respectively. Moreover we have (cf. [1])

(9) d<pjp(e,) = p .
a  p

2. We generalize the notion of transversal-geodesic 2-surfaces of a web in
troduced in [1]. Let the 3s tangent vectors Ca (a, b, c = l, s) be given

a

in the tangent space Tp at p£M . By property (9) of the map cpaß we have

d<P*ß \p (L)  =  L ,
« P

that is the subspace defined by the 2.v-vector

t = Zi A -.A ^A ^A .-.A ^
a  a ß  ß

is invariant with respect to the operator dcpxß\p. We call the subspace in 7j defined 
by this 2x-vector t a transversal subspace of the web W.

D e f in it io n  1. A submanifold M  of dimension 2s in the 3-web manifold 
(M, W) is called transversal geodesic submanifold if its tangent spaces are transversal 
2s-spaces of the web W.

D e f in it io n  2. Let Й  be a submanifold of dimension 2s in the 3-web manifold 
(M , W). A 3-web structure W  defined on the submanifold M  is called a subweb 
o f W if its leaves are intersections of M  with the leaves of W.

T h e o r e m  1. I f  the 3-web (M, W) is a subweb o f the 3-web (M, W) then M  is 
a transversal geodesic submanifold o f M.
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Proof. We denote by V a the leaves of the subweb W  through the point 
p^M czM . Let q>ap be the mapping of Vx onto Vf  defined with help of the third 
foliation of W  in a neighbourhood o fp. Since Vac V x the maps are equal to 
the maps <paß on Va:

= Votßlv.-
The tangent maps аф^\р: Tß are the restrictions of dcpxß\p: Ta^ T ß. Thus
the 2.v-vectors TXA Tß are invariant with respect to the maps d(paß\p. Since the 
2s-vector ТгА T2 determines the tangent space f p to the submanifold M  a t the 
point p uniquely, it is invariant with respect to d<p12\p and the theorem is proved.

3. We denote by {9a, 9“} an adapted coframe on the subweb (M, W). The 
differential of the imbedding / :  Й —М  can be written in the form

(10) w‘' =  &0a, ffl‘ =  f '0 a.

The leaves of the subweb W  are defined by the equations
(11) 9“ = 0, 0“ = 0, 0° + 0“ =  0.1 2  1 2
The forms 0“ and 0° satisfy the structure equations of a 3-web

(12) d9a = 9bA9ab + äabc9bA9c, d9a = 9bA9ab- ä bac9bA9c,

(13) d9“b = 9lA9° + K cd9cA9i,

similarly to the equations (2) and (3). On the other hand 0° and 0“ satisfy the exterior 
derivatives of the equations (10). Using (2) and (12) we get

(V ii-ftflD A f •+ ( f í% -e k t í£ Ö f  A f = 0,

(vfi-üeöAf-íftab-eJntííÖf Af = о,
where ViJ* =<#;*+^аа>). It follows

(14) V£ =  &0£
and
(15) a ) = Й ä\

We get from the equation (14) by exterior derivation and using (3) and (13)

(i6) а д й й  =

We remark that in the case v= 1 equation (15) is trivial and (16) gives Ь)ы& E,k£}= 
— í ‘b which was considered in [1].

By со variant derivation of (16) we get, using (10) and (6),

(17) i W i Ä ä i "  =  й Я ы /, с‘аjk lm ^  'a £ b c d f  •
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We can see that further derivations will give analogous relations between covariant 
derivatives of higher order. Thus we proved

T heorem  2 . The functions £j, defining the imbedding f:  M-*M satisfy the equa
tions (15), (16), (17) and their analogues connecting the fundamental tensors and their 
covariant derivatives o f the webs W and ÍV.

In the special case j = l ,  this theorem was proved in [1].
The canonical affine connection Г on the web manifold Й  defined by the forms 

Q% satisfy the structure equations (13). The parallel translation of tangent vectors 
corresponding to the connection Г on Й  is the same as the parallel translation 
corresponding to the canonical connection Г of the web (M, W). Indeed, a parallel 
vectorfield t] with coordinates fja on M  satisfies

a

dija + fjb6t, =  0, a = 1, 2; a, b =  1, ..., s.
a a

The coordinates of this vectorfield with respect to the frame et on M  are if =
a a. a a

Using the equations (14) we get
drf+rfca) — 0,

a a

that is the vectorfield ц is parallel with respect to the connection Г, too. It follows 
that a transversal geodesic submanifold Й  in M  is total geodesic. This generalizes 
a theorem on transversal geodesic 2-surfaces proved in [1].

4. Our aim is now to characterize the 3-webs (M , W) of dimension 2r having 
the following property: for every point p£M  and every transversal tangent sub
space a T pM  of dimension 2s (s is fixed, 1 ^ s ^ r )  there exists a transversal geodesic 
submanifold tangent to the given subspace. We shall denote this property by Ps. 
It is well known that 3-webs having property P, are transversal geodesic webs (cf. [1]). 
On the other hand, Grassmannian webs defined in [3] have the property Ps for 
.у=1,2 , r. Indeed, Grassmannian webs can be represented on Grassmannian 
manifolds of lines of a projective space Pr+1 and every projective subspace of dimen
sion j+ 1  determines a subweb of dimension 2s.

T h eorem  3. A 3-web (M, W) o f dimension 2r (r>-2) having property P2 is 
Grassmannian.

Pro o f . At first we prove that property Рг follows from P 2. In fact, consider 
a transversal 2-plane я in the tangent space Tp (M) and let ях and щ be transversal
4-spaces having the intersection n= n1h n i . By P2, there exist transversal geodesic 
4-submanifolds Mx and M2 tangent to and n2, respectively. Then their inter
section Mi П M 2 is a transversal geodesic 2-submanifold tangent to я. Thus we get 
property Pi and the 3-web W  is transversal geodesic.

If W has property P2, equations (15) are satisfied identically with respect to 
the variables . It follows that the tensor älc is a linear form of these variables. Since 
it alternates in the indices b and c, we have

ate =
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Й =

=  W k S ) ő cc' - K j ö № ' .

By contraction on the pairs of indices b, b' and c, c' we get

(18) a)k =  ctyőfl,
2where a j= ---- r]\j. If r> 2  this relation is satisfied if and only if W is isocline [1].

Since isocline and transversal geodesic 3-webs are Grassmannian (cf. [3]), the 
theorem is proved.

It follows that property P2 implies properties Ps for 2< jg r .

5. We give an algebraic interpretation of relations (15)—(17). It is well known 
that on a 3-web (M , W), for every point p£M  a local differentiable coordinate 
loop l{p) can be introduced. The binary and ternary operations

(19) Ш  = а)к№ 3? , ( Ш  = Ъ)к1Ш п Ч 1

are defined on the tangent space Te of the loop l(p) at the identity e, where £, t], ££ Te 
are tangent vectors. These operations are connected by the generalized Jacobi 
identity (4). The vectorspace Te with these operations is called fk-algebra [4]. In 
addition to these binary and ternary operations, further operations of arity к 
{к—4,5, ...) can be introduced on the vectorspace Te with help of the covariant 
derivatives of fundamental tensors of the 3-web W. Namely, the tensors t2=(a)k),
t'i—(bjki), t4 = (c‘-klm) etc. of type define operations tk: (Te)k-*Te of arity k,
where £ = 2 ,3 ,4 , . . . .  The vectorspace Te with these operations t2, t3, ..., tk is 
called the local Wk -algebra of the 3-web W at the point p. (The W3 algebra was 
called in [4] lU-algebra.)

Analogously, operations ik and corresponding -algebras are defined on the 
tangent space Te of the coordinate loop l(p) of the subweb ÍV, where Ik: ( Te)k — f e. 
We denote by i the imbedding i: Te-*Te defined by х ’=с̂ аха, where (x“)6 Te,

(xf)g Te and let tk=(tjv..jk), lk=(IS1...bk) be the tensors of type on the vector- 
spaces Te and Te connected with the relations

These relations are equivalent to the commutative diagram

(?e)k ̂  f e
4  !
(Te)k^  Te

and this means that the tk^-algebra on Te is imbedded into the Wk-algebra on Te 
as a subalgebra. Thus the following is proved:
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T heorem 4 . Let (Л /, ÍV) be a subweb o f the 3-web (M, W). The local ivk- 
algebra of the subweb (M, W) is a subalgebra o f the local Wk-algebra o f (M, W) 
fo r  every point M.

6. As a consequence of Theorem 3, we know that a 3-web has property Ps 
(s=2) if and only if it is Grassmannian. Property Ps can be formulated using the 
notion of Wk-algebras as follows: every linear subspace of the Wk-algebra of the 
coordinate loop l(p) is a ÍVk -subalgebra. We call the Wk -algebras having this prop
erty almost trivial.

T heorem 5. The local W2 -algebras of a 3-web (M , W) are almost trivial if  
and only if W is isocline (r>2).

T heorem  6 . The local W?-algebras of a 3-web (M, W) are almost trivial if  
and only if W is Grassmannian (/•=-2).

P roof of T h e o r em  5. Isocline webs are characterized by the form a‘jk—OljÖkl 
of torsion tensor, or equivalently by

[£»/] =  a{f)r\—a{r])^,

where e (^ )= y  for any tangent vectors £ =  £'<?,■ and That is the
2-plane spanned by £, and ц is a subalgebra of W2. It follows that every subspace 
Tea T e is a subalgebra of W2. On the other hand, if (15) is satisfied identically then 
we get (18), i.e. the web is isocline (by the assumption r>2).

P roof of T h e o r em  6. We know that the Wk -algebras of a Grassmannian 3-web 
are almost trivial. Conversely, we suppose that the W3-algebras are almost trivial. 
Then the relations (15) and (16) are satisfied identically. (15) implies that the 3-web 
W  is isocline ( r> 2) and the torsion tensor is of the form (18).

Similarly, the identity (16) implies that the curvature tensor can be written 
in the form
( 20)  b j ki =  2 j k S \ + p i j ö k + v ki ő j .

But the tensor of curvature of an isocline can be expressed as

(21) b)k I = a)ki+ fJkd\ + gijSk + hkld)

if /*>2, where а)к1, f jk, gtj and hkl are symmetric in the lower indices and a'ikl=0. 
The expressions (20) and (21) give by contraction of indices i and j

ß i k - f k ) + ( P i k -  g ik ) + r (y k l - h a ) =  0.

Contracting the pairs of indices (i, k) and (/, /) in (20) and (21) we get the similar 
equations

ßik -fik) + г (Pkt -  gki) + (vlk -  hlk) = 0,

r t t k , - f k i )  +  ( p i k -  g i k ) + ( v i k - h t k )  =  0.
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Alternating the indices к  and /  in these equations we have

—Л.[и]— /h/ш + П'ш] —
— ̂ [*i] +  r/*[IU]— VtH] =  0,

=  0 .

If r=»0, these homogeneous linear equations are independent, and Я[Ы] = ^ Ы] = 
~ vtfti] —0. Thus the tensors Aw, цк1 and vk, are symmetric. Then (18) and (20) imply 
that the 3-web W is Grassmannian, using the characterization of Grassmannian 
webs given in [3]. The theorem is proved.
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Einleitung

In dieser Arbeit wollen wir das Studium der Banachverbandsalgebren mit der 
multiplikativen Zerlegungseigenschaft, welches wir in der Veröffentlichung [9] be
gonnen haben, fortsetzen. Die Klasse dieser Banachverbandsalgebren umfaßt die 
Funktionenalgebren C(K ) und die Faltungsalgebren M (S)  und scheint die allge
meinste Klasse von Banachverbandsalgebren zu sein, über die man mehr sagen 
kann, als daß nur der Spektralradius positiver Elemente ein Spektralwert ist.

Im 1. Kapitel befassen wir uns mit der multiplikativen Zerlegungseigenschaft 
und zeigen, daß ihre eigentliche Bedeutung darin besteht, daß ein gewisser, von der 
Multiplikation induzierter Operator ein Verbandsoperator ist.

Im 2. Kapitel charakterisieren wir die Menge der komplexen Homomorphismen 
bei L-Algebren. Dies sind Banachverbandsalgebren, bei denen der zugrundeliegende 
Banachverband ein abstrakter L-Raum ist. Da allgemeine Banachverbandsalgebren 
mit der multiplikativen Zerlegungseigenschaft auf eine gewisse Weise Z,-Algebren 
induzieren, sind die hier gewonnenen Ergebnisse von grundlegender Bedeutung für 
die Behandlung dieser Algebren im 3. und 4. Kapitel.

Im 3. Kapitel zeigen wir unter anderem, daß bei halbeinfachen kommutativen 
Banachverbandsalgebren mit multiplikativer Zerlegungseigenschaft die Menge der 
komplexen Homomorphismen „signumsinvariant“ ist und die zentralen Homo
morphismen eine konjugations- und betragsinvariante Halbgruppe bilden.

Das 4. Kapitel befaßt sich mit maximalen Strukturidealen in kommutativen 
Banachverbandsalgebren mit multiplikativer Zerlegungseigenschaft. Das wichtigste 
Ergebnis dieses Abschnitts ist, daß jede solche halbeinfache und halbstrukturein
fache Algebra mit Einselement und ordnungsstetiger Norm Vervollständigung einer 
direkten Summe von struktureinfachen Algebren ist. Im endlich dimensionalen 
Fall bedeutet dies, daß eine solche Algebra eine direkte Summe von Gruppen
algebren ist.

0. Vorbemerkungen

Wie schon erwähnt, ist diese Arbeit eine Fortsetzung von [9]. Aus diesem 
Grunde übernehmen wir Bezeichnungen und Terminologie aus dieser Arbeit. Was 
die verbandstheoretischen Begriffe betrifft, halten wir uns eng an Schaefer [7]. Der 
leichteren Lesbarkeit wegen wollen wir aber doch die wichtigsten Begriffe ganz kurz 
in Erinnerung rufen.

Wie üblich bezeichnen wir mit N, R und C die Menge der natürlichen, reellen 
bzw. komplexen Zahlen. Unter einer reellen Banachverbandsalgebra A verstehen 
wir einen reellen Banachverband A, welcher gleichzeitig eine reelle Algebra mit
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den folgenden Eigenschaften ist: xy^O  und ||xy|| s ||x || || y|| für alle positiven Ele
mente x  und у  von A. Eine komplexe Banachverbandsalgebra Ac ist dann stets die 
Komplexifizierung einer reellen Banachverbandsalgebra A.

Ist E ein Banachverband und и ein positives Element von E, so bedeutet Eu das 
von и im verbandstheoretischen Sinne erzeugte Hauptideal. Es läßt sich bekanntlich 
mit einem Funktionen verband C (K ) identifizieren, und diese Identifizierung werden 
wir die kanonische Identifizierung eines Hauptideals nennen. Dem Element и ent
spreche dabei stets die Einsfunktion auf K.

Ist E ein komplexer AL-Raum, so ist der topologische Dual E' ein komplexer 
AM -Raum mit Einheit, also ein komplexer Banachverband C(Ä'), wobei К ein 
Stone’scher Raum ist. Der Bidual E"  von E kann daher mit dem Raum M{K) 
aller komplexen Radon-Maße auf К  identifiziert werden, und die kanonische Ein
bettung von E in M (K ) ist gleich der Komplexifizierung des Bandes der reellen 
ordnungsstetigen Radon-Maße auf K. Diese Identifizierung eines komplexen AL- 
Raumes spielt im folgenden eine wichtige Rolle und wird die kanonische Identifi
zierung eines solchen Raumes genannt.

Die Menge der komplexen Homomorphismen einer komplexen Banachalgebra 
В  bezeichnen wir mit Л .  Der Bidual В " von В wird durch Einführung des Arens- 
Produkts selbst zu einer Banachalgebra. Die für uns wichtigen Eigenschaften dieses 
Produkts haben wir in [9] zusammengestellt.

1. Über die multiplikative Zerlegungseigenschaft

In der Arbeit [9] haben wir für komplexe Banachverbandsalgebren Ac die fol
gende multiplikative Zerlegungseigenschaft 2£ eingeführt:

{2£) Im positiven Kegel von A gibt es eine totale Menge B, so daß für alle a, b£B 
die Beziehung gilt: {z£Ac ‘- |z |Sab} = abgeschlossene Hülle der Menge

n
{ 2  <xijaib j-- at, bj£Ac ( I s i s  /I, 1 = 7 =  m), 2  l«il =  «>

i j  i = 1

2  \bj\ = b, <xue c  mit \0Cij\ l}.
7=1

Auf sehr elementare Weise konnten wir dann zeigen, daß diese Eigenschaft 
2£ zur Folge hat, daß sogar der Absolutbetrag eines komplexen Homomorphismus 
wieder multiplikativ ist. Diese Eigenschaft 2£ hat, wie wir in [9] auch bemerkt haben, 
große Ähnlichkeit mit der folgenden Bedingung 2£, welche in Taylor [12] Bestand
teil der Definition einer abstrakten Konvolutionsmaßalgebra A ist:

{Ü) Sind x, у  und w positive Elemente von A mit w sx y ,  so gibt es zu jedem e>0 
Mengen {x;: l s / s n }  und {>»y-: positiver Elemente von A und
Zahlen a,7-6[0, 1], so daß gilt:

n m

2  x t zex, 2  yj  — у und \\w~ 2  <*ijXiyj\I ss E.
i=l 7 = 1 i , j
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In [9] gelang es uns nicht, einen Zusammenhang zwischen 22 und 22 herzustel
len. Im folgenden wollen wir nun zeigen, daß diese beiden Bedingungen gleich
wertig sind. Dazu müssen wir etwas weiter ausholen und einen gewissen Operator 
betrachten, welcher von der Multiplikation als einer positiven, bilinearen Abbildung 
induziert wird.

Es sei A eine reelle Banachverbandsalgebra. Bezeichnet Lr(A, A') den Banach- 
verband der regulären linearen Abbildungen von A in den topologischen Dual A' 
von A (s. [7], Kap. IV, § 1), so induziert die Multiplikation auf A wie folgt eine posi
tive lineare Abbildung M  von Ä  in den ordnungsvollständigen Banachverband 
Lr(A,A'): Für p£A' sei MpdLr(A, A') definiert durch (Mp)(x)(z):= p(xz) für 
alle x, z£A.

Die kanonische Fortsetzung von M  auf die Komplexifizierungen (A')c und 
(Lr(A, A'))c bezeichnen wir wieder mit M.

Der folgende Satz zeigt, daß die Bedingungen 22 und 22 implizieren, daß der 
Operator M  ein Verbandsoperator ist.

1.1. Satz. Für eine reelle Banachverbandsalgebra A sind die folgenden Aussagen 
äquivalent:

(i) Es gilt die folgende Bedingung 22*:
(22*) Zu positiven Elementen a, b, c f A mit c^ab und zu g>0 gibt es n posi-

n
live Elemente x t und n positive Elemente yt mit x t = a, 2  Уi — b und

i = 1 
n

| |c -  Z  Х ; У 1 \ Ы е .i = 1
(ii) Der Operator M  ist ein Verbandshomomorphismus.

(iii) Es gilt die Bedingung 22.
(iv) Es gilt die Bedingung 22.

Be w e is . (i)-*-(ii). Es genügt zu zeigen: (Mp)+=M p+ für alle p£A'. Seien a 
und b zwei positive Elemente in A. Für p2 A' gilt

(Mp) + (a) =  sup {(Mp)(x): x£A  und 0 ^  x  ^  a}
und
(*) (Mp) + (a)(b) = sup {(Mp)(Xi)(Vj) + ... + (Mp)(дг„)0„)} =

=  sup {p(x1y1)+ ...+ p(xnyn)},

wobei {xj, ..., x„} alle nichtleeren, endlichen Teilmengen des Ordnungsintervalls 
[0, a] durchläuft und die dazugehörige Menge {yx, . . . , y „} alle nichtleeren, end
lichen Teilmengen des Ordnungsintervalls [0, b] durchläuft und die Gleichung
Z  yi=b erfüllt (s. [7], Кар. IV, 1.3, (3)). Ferner ist
i— 1

(Mp+)(a)(b) — p + (ab) =  sup {p(w): w£A und 0 ^  w ^  ab).

Sei £>0 und c£A mit 0 s c s a b .  Aufgrund der Bedingung 22* gibt es dann n 
Elemente x{ und y{ mit den in der Bedingung 22* angegebenen Eigenschaften. Aus
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lk — 2x,y,\\SB  folgt |g(c)- 2  М х 1УдЫЫ\в- Für л:0:=0 und y0: = b - 2 Л = 0  
* = 1  1 = 1  1=1 

П n
bedeutet dies 2  /*(**Л)+  11̂11fi mit O ^ x ^ a ,  O ^ y ^ b  und 2 Уг—Ь. Ausi=0 i=0
der Darstellung (* )  von (Мц)+(a)(b) erhalten wir somit (Мц+) (a) (b) s  (Mg)+(a) (b). 
Dies bedeutet M g+s(M g)+. Da M  positiv ist, gilt trivialerweise (Mg)+s M g +. 
Es ist somit М ц+=(M g)+. Der Operator M  ist also ein Yerbandsoperator.

(ii)—(i). Diese Implikation kann wie in Lotz [3] gezeigt werden. Für positive
П

Elemente a und b sei K(a, h):={ 2  *iJi: xt,y i€A , ( I s i s « ) ,  N, 0SXjSe,
i = 1 

n
0 und 2  Yi—̂ }- Angenommen, es gelte nicht SS*. Dann gibt es positive

j =  l

Elemente x, у  und z mit O s z S x y  und z$K (x,y). Da K(x, y) konvex ist, gibt 
es ein fi£A', welches die Mengen {z} und К (x, y) streng trennt, d. h. es gibt ein 
oc€R mit g(w )Sa<g(z) für alle w£K(x, j). Da M  ein Yerbandsoperator ist, 
gilt (Мц)+(х)(у)= (М ц+)(х)(у). Wir erhalten somit

(Мц)+(х)(у) =  sup {ju(w): w£K(x, g)} s  a.
Andererseits ist (Mg+)(x) (g) =sup {g(w): 0 S  w S xy}S;i(z)>«. Dies ist der 

gewünschte Widerspruch.
~ n

fiii)-*■(!). Sei 2  &ijxiyj е*пе Linearkombination aus Ж und zy.= 2  0Lijx i- 
i,j *=1m M

Dann ist 2  zjy j eine Linearkombination aus SS*. Hieraus folgt, SS impliziert SS*.
l=i

(i)-(iii). Seien x  und x, (1 ёг 'ёп ) positive Elemente in A mit x;Sx. Mit 
Hilfe der kanonischen Darstellung des Hauptideals Ax als Funktionenverband С (К ) 
und einer geeigneten Partition der Einsfunktion kann man zeigen, daß es zu jedem

m
s> 0  positive Elemente z fiA  (1 sy'Sn?) und Zahlen a;j€[0, 1] gibt mit 2  zj = x

l=im
und ||xj— 2  aijzj\\ —8 für l a 'S n .  Für positive Elemente у und y t (1 S /Sn) ergibt 

l=i
m n

sich damit \\xtyi — 2  ao'zlAl|=e II Yill für I s i s «  und somit II 2  х 1Ук~ 2  a>iziJi|| =  
1 =  1 i = l  i, J

n n
S e  2  II Jill- L*a sich die Ausdrücke 2  *iJ. auf diese Weise beliebig genau durch

i=l i=l
die angegebenen Ausdrücke 2  xijzjyi approximieren lassen, impliziert die Bedin-

U J

gung SS* auch SS.
(iv)—(ii). Da der Beweis dieser Richtung im Prinzip wie der Beweis von (i)—(ii) 

verläuft, wollen wir uns hier kürzer fassen. Es genügt nun zu zeigen: |Mg| = M|g| 
für alle ц£(АсУ-

Sei В eine totale Menge im positiven Kegel von A mit der in der Definition 
von SS angegebenen Eigenschaft. Für g€(^c)' (= (A ')C) und a, b f B gilt

Af|/i|(u)(b) — sup {|g(w)|: w£Ac mit |w| s  ab},
|Mg|(a) = sup {|(Mg)(z)|: zdAc mit |z| S  a}
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und somit

\Мц\(а)(Ь) = sup {\n(z1y1)\ + ... + \n(znyn)\: z„ y £ A c (! =  ' =  «) 

mit |z,-|sa und 2  \УА-Ь}-
i= 1

Aufgrund der Bedingung Ж läßt sich jedes \v£Ac mit \w\^ab auf dieselbe 
Weise wie bei (iii)->-(i) beliebig genau durch eine Summe z1y 1 + ... +zny„ solcher 
zt und V; approximieren. Hiermit erhält man zunächst M\ß\(a)(b)^\Mfi\(a)(b). 
Da M  positiv ist, gilt auch die entgegengesetzte Ungleichung. Es ist also | Mfi\ (a) (b) = 
=M\ß\(a)(b). Da В total ist, folgt aus Stetigkeitsgründen \Мц\=М\ц\ für alle 
ß£A'c . Es ist also M  ein Yerbandsoperator.

(ii)—<-(iv). Wie beim Beweis von (ii)->-(i) zeigt man zunächst, daß für alle posi
tiven Elemente a und b das Ordnungsintervall {z£Ac : \z\^ab} gleich der ab-

n
geschlossenen Hülle der Menge { 2  21УА z;>y f ^ c  (1= /=n€N ) mit |z;|S ö und

i = 1 
n

2  |j>,js&} sein muß. Wendet man dann die Beweismethode von (i)-(iii) ent-
i = 1
sprechend auf das komplexe Ordnungsintervall {z£Ac : \z\=a) an, so erhält man 
die Gültigkeit von Ж, q.e.d.

Da die Bedingungen Ж, Ж und Ж* alle gleichwertig sind, sagen wir von nun 
an, eine reelle bzw. komplexe Banachverbandsalgebra besitzt die multiplikative Zer
legungseigenschaft (kurz: die Eigenschaft Ж), falls eine der drei Bedingungen er
füllt ist.

In der Arbeit [9] haben wir uns mit komplexen ^Z-Algebren befaßt, und dabei 
hat eine gewisse Teilmenge J tc der komplexen Homomorphismen die Schlüssel
rolle gespielt. Mit Hilfe des Operators M  können wir nun zeigen, daß in den noch 
allgemeineren L-Algebren, welche wir im 2. Kapitel eingehender untersuchen wer
den und welche von McKilligan—White [2] eingeführt worden sind, die multiplika
tive Zerlegungseigenschaft J t  = J lc impliziert. Wie schon in der Einleitung bemerkt, 
heißt eine reelle Banachverbandsalgebra eine L-Algebra, wenn der zugrundeliegende 
Banachverband ein AL-Raum ist. Eine komplexe L-Algebra ist dann die Komplexi- 
fizierung einer reellen L-Algebra.

Es sei nun Ac eine komplexe L-Algebra, und die Räume C(K) bzw. M (K ) 
seien die entsprechenden kanonischen Identifizierungen von (Ac)' bzw. (Ac)". Ferner 
werde Ac als Teilmenge von M (K ) betrachtet. Dann läßt sich der Raum (Lr(A, A'))c 
mit dem Raum Lr(Ac , C(K)) identifizieren (s. [7], IV, 1.8). Bekanntlich definiert 
nun jede auf dem topologischen Produkt K X K  komplexwertige, stetige Funktion 
/  wie folgt ein Element Tf £Lr(Ac , C(K )):

(Tf ß)(t):= j  f(s, t)dß(s)
к

für alle ii£Ac und t£j<.
Da die Abbildung f~*Tf  ein komplexer Vektorverbandsisomorphismus vom 

komplexen Banachverband C(KXK) in den komplexen Banachverband Lr(Ac ,C(K)) 
ist, kann also C(KXK) mit einem komplexen Unterverband von Lr(Ac , C(K))
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identifiziert werden, welchen wir mit C(KXK) bezeichnen. Der zu Beginn dieses 
Kapitels betrachtete Operator M: A'c -~Lr(Ac , A'c) ist somit eine Abbildung von 
C(K) in Lr(Ac ,C(K)). In Integralschreibweise gilt also Mf(/j.)(v)= J  f  dp-v für

/€C(K) und p,v£A c .
Auf M (K ) betrachten wir jetzt die Arens-Produkte es -s, für s,t£K. Aus 

der Definition des Arens-Produkts ergeben sich sofort für f£C (K )  und p, v£Ac 
folgende Aussagen:

(i) Für festes t£K  ist die zu /  assoziierte Funktion

F(s, t):= /  f(T)d£s-e,(t)
К

eine stetige Funktion in s£K.
(ii) Die Funktion f  F(s, /) dfi(s) ist stetig in t£K.

к

(iü) Es gilt j  { f  F(s, t)dp(s)) dv(l) = J  f(r) dp ■ v(r). 
к к к

Für jedes f£C (K ) läßt sich nun M f mit der assoziierten Funktion F(s, t) wie 
folgt darstellen:

Mf(jj)(y) =  /  ( /  F(s, t) dp(s)) dv(t). 
к к

Dies bedeutet
(M f)(ß)(t) =  J  F(s, t)dp(s) für alle t£K. 

к
Hieraus folgt: Ist für f£C (K ) die Funktion F(s, t) in beiden Variablen gemeinsam 
stetig, so ist M f£C(KXK).

Während bei ^/-Algebren das Arens-Produkt zweier Dirac-Maße ein Wahr
scheinlichkeitsmaß ist, ist es bei /.-Algebren nur ein positives Radon-Maß. Wir 
betrachten nun die Menge J t  der komplexen Homomorphismen auf Ac als Teil
menge von C(K) und definieren für komplexe /-Algebren die Teilmenge J t c von J t  
wie folgt:

J t c : =  { g £ J t :  g  ist konstant auf den Trägern der Radon-Maße es-s,
für alle s, t£K}.

Aufgrund der vorhergehenden Überlegungen können wir folgendes, wichtige Ergeb
nis über die Menge der komplexen Homomorphismen beweisen.

1.2. Sa t z . Die komplexe L-Algebra Ac besitze die multiplikative Zerlegungs
eigenschaft und erfülle ferner die Bedingung: Für die Einsfunktion eK auf К ist 
J ек(т)des-£t(i) eine stetige Funktion in s und t auf dem Produktraum K XK . 
к
Dann gilt J t  =  J tc.

Beweis. Nach 1.1 ist der Operator M  von C(K) nach Lr(Ac ,C (K )) ein 
Verbandsoperator. Es ist daher das Urbild / ’:=A /_1(C(KXW)) ein abgeschlosse-
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пег, komplexer Unterverband von C(K). Für gGJt gilt

G(s, t) =  f  g(x)des • £,(r) = g(s)g(t) für alle s, t£K. 
к

Dies bedeutet g£F. Die im Satz angegebene Bedingung impliziert eK£F.
Auf К bezeichne ~  die Äquivalenzrelation, die von F wie folgt definiert wird:

s ~  t о  f(s) = f{t) für alle f£F.

Dann ist bekanntlich F isomorph zum komplexen Banachverband C (A/~). Seien 
nun i  und t£K. Da die Einschränkung von M  auf F (=C (/f/~ )) ein Verbands
operator ist und C{KXK) ein komplexer Unterverband von П (А С, C{K)) ist, 
ist die Abbildung

g-* /  g(?)d(£s-£t)(t) 
к

ein komplexer Verbandshomomorphismus. Dies bedeutet, die Restriktion von £s -e 
auf den Unterverband F is t ein positives Vielfaches eines Dirac-Maßes auf K /~ . 
Es sind daher alle Funktionen aus F auf dem Träger von es ■ e, konstant. Ins
besondere ist jedes g f J t  auf diesen Trägern konstant, q.e.d.

In den Arbeiten Taylor [14] und Martignon [4] wird über Tensorprodukte eine 
Produktabbildung n bzw. ein Multiplikationsoperator M  definiert. Es scheint, daß 
unser Operator M  aus Satz 1.1 jeweils mit dem adjungierten Operator der erwähn
ten Abbildungen identifiziert werden kann. Es mag daher sein, daß einiges aus 
diesem 1. Kapitel Experten auf dem Gebiet der Tensorprodukte bekannt vorkommt. 
Aus diesem Grunde möchten wir betonen, daß die Aufgabe des 1. Kapitels nur 
darin besteht, die multiplikative Zerlegungseigenschaft zu erhellen und mit Satz 1.2 
für die weitere Entwicklung der Theorie einen geeigneten Rahmen zu schaffen.

2. Über L-Algebren

Was wir in diesem Kapitel über allgemeine Z.-Algebren zeigen, steht inhaltlich 
in enger Beziehung zu Ergebnissen von J. L. Taylor über halbeinfache kommuta
tive Maßalgebren (s. [14], Kap. 3). Bei den Beweisen von J. L. Taylor spielt aber 
die Strukturhalbgruppe dieser Algebren eine wesentliche Rolle. Da wir für L-Al- 
gebren den Begriff der Strukturhalbgruppe nicht zur Verfügung haben, unterscheiden 
sich unsere Beweismethoden sehr wesentlich von denen in [14].

Zunächst wollen wir eine Aussage über absolute Kerne in ^/.-Räumen machen. 
Ist E  ein Vektorverband und jи eine positive Linearform auf E, so wird die Menge 
N(n):={x£E: ju(|x|)=0} der absolute Kern von /л genannt. Für ein Maß v bezeichne 
Sv den Träger von v.

2.1. L e m m a . Es sei E ein reeller oder komplexer AL-Raum, C(K) die kanonische 
Identifizierung von E ', und E werde als Teilraum von M(K) betrachtet. Sei f£C (K ), 
/> 0 ,  N (f)X  {0} und G\— {s£K: /O )>0}. Dann gilt N ( f)  = {p£E: Sß<^K\G} 
(G== abgeschlossene Hülle von G) und N( f  )1- = {/(€£’: Sß G= 6). Ferner läßt sich die
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Bandprojektion P von E auf N ( f ) x mit Hilfe der charakteristischen Funktion von 
6 in der Form j g dPp — f g -x dp fü r  alle g£C(K) 

к к
(kurz: Pp=y- ■ p) darstellen.

Be w e is . Sei B:={p£E: SllQ K \ß } .  Die Inklusion B Q N (f)  ist klar. Sei nun 
P ^N {f) und о. B. d. A. 0. Da p ordnungsstetig ist, ist Sß offen und abgeschlos
sen und somit Xsß stetig. Aus Xs„=0 auf 0 folgt also Xsß = 0 auf <9. Dies bedeutet 
SßQ K \0 ,  also p£B. Wir haben somit N ( f)  — {p£E: SßQK\(9}.

Die restlichen Behauptungen ergeben sich aus der Zerlegung

p = x- • P + (ек — x-)- и für alle p£E, q.e.d.

Im folgenden sei A eine reelle oder komplexe L-Algebra. Ferner seien stets 
die kanonischen Identifizierungen vorgenommen (d. h. A '^ C (K ), A "^M (K j), und 
der Bidual M (K) sei mit dem Arens-Produkt versehen. Mit dem vorhergehenden 
Lemma können wir nun zeigen, daß bei L-Algebren das Band N (f)x einer posi
tiven multiplikativen Linearform / ,  welche auf den Trägern der Produkte von Dirac- 
Maßen konstant ist, eine Subalgebra ist, was zur Folge hat, daß die dazugehörige 
Bandprojektion ein Algebrahomomorphismus ist.

2.2. Satz. Es sei A eine L-Algebra, f£ J ic, /> 0  und N (f )  ̂  {0}. Dann gilt: 
fi) N( f  ) ist ein abgeschlossenes Strukturideal, d. h. sowohl ein Verbands- als 

auch ein zweiseitiges Ringideal.
(ii) N ( f ) x ist eine abgeschlossene Subalgebra.

(iii) Die Bandprojektion P: A ^ N ( f ) x ist ein Algebrahomomorphismus. 
Beweis, (i) klar.
(ii) Sei wieder G:—{-cdK\ / ( t) > 0} und s,t£&- Aus f f d s s-st= f(s)f(t)> 0

к
folgt 8s -£(> 0 , / ^ 0  auf SEs.Ct und somit S Cs.etQ0, d a /konstan t auf SCs.et ist.

Seien nun p und v positive Elemente von N ( f ) x . Dann gilt nach 2.1 Sß, S VQ&. 
Mit Hilfe des Bipolarentheorems läßt sich beweisen, daß es Netze (p;)  und (vg) 
gibt, so daß gilt:

1. Jedes /I; bzw. ve ist eine endliche Linearkombination von Dirac-Maßen mit 
Trägern in ß, also

Fx = ve = 2  ß j , e £ s j  e mit tux, sy></ 0 .;=i j=l
2. p=hm  px und v=lim ve in der schwachen Topologie o(M (К), С (K)). Aus 

Fx-ve = 2  ^uxßs.Q^,,X‘ESJ,e folgt nun S ^ .^ Q ß .  Aufgrund der Stetigkeitseigen
schaften des Arens-Prodixkts erhält man folgende Grenzwerte in der Topologie 
o(M (K),C(Kj): /i-ve= lim px -ve für festes д und p ■ v= lim p ■ vg. Eine weitere
Anwendung des Bipolarentheorems ergibt zunächst Sß.v f=(9 für alle д und dann 
Sß.vQ0. Dies bedeutet p ■ v £ N (f)x . Es ist also N ( f) 1- eine Subalgebra.
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(iii) Aus der Tatsache, daß der Kern P, nämlich N {f), ein zweiseitiges Ring
ideal und der Bildbereich, nämlich N ( f ) x , eine Subalgebra ist, folgt durch eine 
leichte Rechnung, daß P ein Algebrahomomorphismus ist, q.e.d.

Ist Y  ein Stone’scher Raum, so können wir für eine stetige komplexwertige 
Funktion /  auf Y wie folgt die Signumsfunktion sgn /  von /  definieren:

Sei ß:—{t^Y: / ( t ) ^ 0}. Für die Einschränkung von/ auf ß ist die Funktion
beschränkt und stetig auf ß. Da bekanntlich & zur Stone—Cech-Kompakti-

1/(01
fizierung ßß von ß homöomorph ist, besitzt diese Funktion eine eindeutig bestimmte 
stetige Fortsetzung/ auf ß. Es sei nun sgn/ : = /  auf ß und sgn/= 0 auf Y \ß .  
Da ß offen und abgeschlossen ist, ist also die so definierte Signumsfunktion sgn /  
auf Г stetig. Für / =  0 sei per definitionem sgn/=0.

Für komplexe L-Algebren können wir jetzt die Menge J lc wie folgt charak
terisieren :

2.3. Satz. Es sei Ac eine komplexe L-Algebra. Dann gelten folgende Aussagen:
(i) Eine Funktion g£C(K), welche konstant auf allen Trägern SCs.et ist, gehört

g(s)g(t)genau dann zu J ic, wenn gilt: g= —r----- — auf SCs.4 mit £s •£,>() und g (s)g(t)=0,
ll£s ■ £tll

falls es -£(=0 ist.
(ii) Für f  ge J tc gilt l/l, Je J lc und g-sgn faJL
Beweis, (i) Nach ([9], 2.2) gehört eine Funktion kZC(K) genau dann zu Jl, 

wenn j" к des - E,=k(s)k(t) für alle s, t£K  ist. Hieraus ergibt sich durch eine
к

leichte Rechnung die Behauptung.
(ii). Sei f g d J t c und f A 0. Aus (i) folgt | / |  und Der Beweis der

Aussage g ■ sgn fß;Ji ist dagegen schwieriger. Sei ß := {rí А: /(т )^0 ), s ,  t£ß  und 
/ =  a auf S 's.et. Aus (M /(j)/(0  =  f f d(es-e,)=x\\es -et\\ folgt £s -£t> 0  und

К

а _ /р / /Н )  0 p)ies be(jeutet Hieraus erhält man
II es • £fll

sgn / =  (sgn/) (j) (sgn/) (t)
auf SSs.St. Es ist daher

/  g sgn fd (e s ■ £,) = • (sgn/)(s) • (sgn/)(i)| es ■ et|| =
К  ll£s ' £íll

= (g-sgn/)(s)(g-sgn/)(t).

Die Linearform g • sgn/  ist also multiplikativ auf den Produkten von Dirac-Maßen, 
deren Träger in ß liegen.

Seien v und p£A  mit Sß, S vf ß .  Mit Hilfe der im vorhergehenden Beweis 
angegebenen Netze ( ß f  und (ve) und der dort betrachteten Grenzwerte folgt dann

/  g sgn/dCu • v) =  /  g • sgn f  dp ■ f  g • sgn fdv .
К К К
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Es ist somit die Linearform £ • sgn /  multiplikativ auf dem Band Afl/I)-1- 
(={p£A: S ^ C 1}). Nach (2.2, iii) ist die Bandprojektion P: A-*N (\f\)L multi
plikativ. Da nach 2.1 JV(|/|)={^€ ̂ 4: SflQK\(9} gilt, verschwindet die Linearform 
g sgn/  auf dem Band A (|/|). Es ist daher g sgnf  =g ■ sgn foP. Die zusammen
gesetzte Abbildung ist aber multiplikativ. Es ist also g • sgn f£ J t,  q.e.d.

Hinsichtlich der Aussage (2.3, ii) wollen wir bemerken, daß bei den AL-Al
gebren von [9] bzw. bei den kommutativen Konvolutionsmaßalgebren von [14] die 
Menge J ic bzw. Л  sogar eine Halbgruppe der Funktionenalgebra C(K) ist. Hierin 
besteht ein wesentlicher Unterschied zwischen diesen Algebren und den allgemeineren 
L- Algebren.

Ist Ec eine komplexe Banachverbandsalgebra, so nennen wir einen Algebra
homomorphismus T  zentral, wenn er auch zum Zentrum Z(EC) des zugrundliegen
den Banachverbandes Ec gehört, d. h. wenn es auch eine Konstante c gibt mit 
|7z |Sc|z | für alle z€£c (s. [9], 2.). Sei Ac eine komplexe /-Algebra. Für jedes 
f£C(K) sei der Operator Zf  : Ac~*Ac definiert durch J g d Z f p — j g  ■ f  dg für

к к
alle g£Jc und alle gdC(K). Die so definierten Operatoren Zf  gehören offen
sichtlich zum Zentrum Z(AC) des komplexen Banachverbandes Ac .

In ([9], 2.5) haben wir die Menge der zentralen Homomorphismen mit der 
dortigen Menge J lc identifizieren können: Die zentralen Homomorphismen sind 
dort nämlich genau die Operatoren Z f  mit /£  J(c. Für L-Algebren ist diese Identifi
zierung nicht mehr möglich. Denn die identische Abbildung I  ist stets ein zentraler 
Homomorphismus. Ist aber das Normfunktional eKdC(K) nicht multiplikativ, so 
ist zwar I —Z CK, aber eK£ J/c.

Für /-Algebren lassen sich die zentralen Homomorphismen mit Hilfe der Ope
ratoren Z f nun auf folgende Weise charakterisieren.

2.4. Satz. Sei Ac eine komplexe L-Algebra und T ein beschränkter Endo
morphismus von Ac • Der Operator T  ist genau dann ein zentraler Homomorphismus, 
wenn er sich in der Form T= Zf  ( ffC (K j)  dar st eilen läßt und dabei die Funktion 
f  auf jedem nichtleeren Träger S ts.Et (s, tdK) den konstanten Wert f(s ) f( t)  besitzt.

Beweis. Er verläuft ganz analog wie der Beweis von ([9], 2.5).

2.5. K o r o l l a r . Ist Tein zentraler Homomorphismus mit der Darstellung T = Zf, 
so sind auch die Operatoren \T\ (=Z\f\) und T  (= Z f) zentrale Homomorphismen.

Wie oben bemerkt, induzieren bei Л/.-Algebren die Funktionen aus J IC zentrale 
Homomorphismen. Interessanterweise tun dies bei /.-Algebren an deren Stelle ihre 
Signumsfunktionen.

2.6. Satz. Es sei Ac eine komplexe L-Algebra und Q AfdJtc. Dann ist der 
Operator Zsgnf  ein zentraler Homomorphismus von Ac-

Beweis. Es sei Z sgnf: M(K)-*M(K) definiert durch ji-*Zssafp mit 
f  gdZsgnfdp:= J g -s g n fd p  für alle p£M(K) und g£C(K). Dann bildet Zsgn/ 
к к
das Band Ac in sich ab und stimmt dort mit Zsgn f  überein. Es genügt daher zu 
zeigen, daß Zsgn/ auf Ac multiplikativ ist.
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Nach dem Beweis (2.3, ii) gilt sgn/=(sgn/)(.s)(sgnf ) ( t )  auf Sts.tt für alle 
s, t£Q\= {zdK\/(т)^0}. Hieraus folgt

Z senfEs-E, =  (Zsgnfes)-(Z sgnfet) für alle s,tdO-

Der Operator Zsgn/ ist o(M(K), C(K)) stetig.
Für n ,\d A c mit S^, SVQ& folgt nun wieder unter Benutzung der in den 

vorgehenden Beweisen betrachteten JNfetze (ßx) und (ve) die Beziehung Zscn f  (ß ■ v) =  
= Z sgn//i • Zsgn/v. Der Operator Zsgn/ ist also multiplikativ auf der Subalgebra 
jV(|/|)-L =  ^idAc: Da er olfensichtlich auf dem Band

W l )  = { ^ A C: Sß <gK\G]

verschwindet, ist er somit auf ganz Ac multiplikativ, q.e.d.
Falls nicht alle Linearformen aus J lc streng positiv sind, existieren also nicht

triviale zentrale Homomorphismen.

3. Über Banachverbandsalgebren mit multiplikativer Zerlegungseigenschaft

Ziel dieses Kapitels ist es, mit Hilfe der vorhergehenden Ergebnisse über /.-Al
gebren entsprechende Aussagen über allgemeine Banachverbandsalgebren mit der 
Eigenschaft 2£ zu erhalten.

In der Arbeit [9] haben wir bewiesen, daß bei komplexen Banachverbands
algebren die Menge J Í  der multiplikativen Linearformen auch zyklisch ist, falls 
sie betragsinvariant ist. Nun können wir zeigen, daß bei Algebren mit der Eigen
schaft 2£ die Menge Л  sogar „signumsinvariant“ ist. Dabei definieren wir für 
ordnungsvollständige Banachverbände den Begriff der Signumsinvarianz einer Teil
menge wie folgt:

Es sei E ein ordnungsvollständiger Banachverband und a,bdEc mit g=x O 
und 0. Ferner sei C(K) die kanonische Identifizierung des komplexen Haupt
ideals (£'с)|а| + |ь| von Ec- Die dem Element a bzw. b entsprechende Funktion be
zeichnen wir mit f a bzw./b. Da К ein Stone’scher Raum ist, existiert also die Signums
funktion sgn/a. Unter dem Element (sgn a)b verstehen wir dann die Funktion 
/ b-sgn/a, als Element von Ec aufgefaßt. Wir sagen nun, eine Teilmenge В von 
Ec ist signumsinvariant, falls (sgn d)bd_B für alle von 0 verschiedenen Elemente а 
und b aus В gilt. Wir wollen bemerken, daß eine signumsinvariante Teilmenge eine 
Austausch-Teilmenge im Sinne der in ([8], 1) gegebenen Definition ist. Der Beweis 
davon wäre aber an dieser Stelle zu aufwendig.

In ([9], S. 396) haben wir zu einer positiven, multiplikativen, nichttrivialen 
Linearform fi auf einer reellen Banachverbandsalgebra A eine reelle AL-Algebra 
A" konstruiert, welche kurz gesagt eine gewisse Vervollständigung der Quotienten
algebra A/N(ß) ist. Für eine positive, nichttriviale Linearform /л, welche sub
multiplikativ ist (d. h. ц(ху)^ц(х)ц(у) für alle x, ysO), liefert dieselbe Kon
struktion nun eine reelle /.-Algebra Aß bzw. eine komplexe /.-Algebra (Aß)c- 
Diese /.-Algebren sind im folgenden von großer Bedeutung, da sie es ermöglichen, 
gewisse Probleme in allgemeinen Banachverbandsalgebren auf solche in /.-Algebren 
zurückzuführen.
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Besitzt eine reelle Banachverbandsalgebra A die Eigenschaft Ж, so vererbt sie 
diese Eigenschaft auf die L-Algebren Aß.

3.1. Satz. E s  sei A eine reelle Banachverbandsalgebra mit der Eigenschaft Ж. 
Ferner sei ji eine nichttriviale, positive submultiplikative Linearform auf A. Dann 
besitzt auch die L-Algebra Afl die Eigenschaft Ж.

B ew eis. Der absolute Kern N(/i) ist ein Strukturideal von A, und die 
Quotientenalgebra A/N(fi), versehen mit der kanonischen Ordnung und der Norm 
11*11 :—ji{\x\) (x fx ), ist eine normierte Yerbandsalgebra.

Sei nun e>0, d, 5, cSO, 6Sä-B  und a, b, csO. Dann gibt es ein positives 
Element c€c mit cSab. Aufgrund der Bedingung Ж* existieren in A n positive

n n
Elemente x; und n positive Elemente yt mit xpPa, 2  yi=b und ||c— 2  x iyi\\ =£•

i=1 1=1
Der Übergang zu den entsprechenden Restklassen zeigt, daß auch die Quotienten
algebra die Bedingung Ж* von (1.1) erfüllt.

Die reelle L-Algebra Ац ist die Vervollständigung der normierten Quotienten
algebra A/N(p). Für die Richtung (i)—(ii) im Beweis von 1.1 genügt es voraus
zusetzen, daß bei der Bedingung Ж* die Elemente a und b nur aus einer totalen 
Menge des positiven Kegels sind. Wählt man in Aß den positiven Kegel von A/N(p) 
als solche totale Menge, so läßt sich leicht zeigen, daß auch Aß die Eigenschaft Ж 
besitzt, q.e.d.

Nach diesen Vorbereitungen können wir die Aussage über die Signumsinvarianz 
von J t  beweisen.

3.2. Satz. Es sei Ac eine komplexe Banachverbandsalgebra mit der Eigenschaft 
Ж. Dann ist die Menge M  signumsinvariant.

B ew eis. Sei p ,v£ J i. Aus ([9], 1.3) folgt |g|, \v\£Jt. Sei q := \h \ + \v\ZA'. 
Dann ist в  submultiplikativ. Wir betrachten die zu q assoziierte L-Algebra (Ae)c , 
deren Menge J t  wir mit J t (e) bezeichnen. Es se ien /^ ,/v, / jM| und f\v\ die den Ele
menten f i , v, |/r| und |v| entsprechenden Funktionen in der kanonischen Identifizie
rung C{K) von (A°)'c . Dann gehören diese Funktionen zu Für die Einsfunktion 
eK gilt eK= fM+ fM und somit

/ eKdes-E, = f M(s)f]ßl(t)+f\v](s)fM(t) für alle J|s, t£K.

Da (Ae)c die Eigenschaft Ж besitzt, ist nach (1.2) J t ^ —J t ^ .  Aufgrund von 
(2.3, ii) erhalten wir /„ -sgnf ßd-Afs).

Das von q erzeugte komplexe Hauptideal (A'c)e kann mit dem Raum (A'-’)'c , 
also mit C{K), identifiziert werden (s. [9], 3.). Dabei entspricht der Linearform 
(sgn fi)v die Funktion / v - sgn / д.

Für u, v£Ac ergibt sich nunmehr:
(sgn fi)v(uv) = f  f v sgn f ßd(ü ■ v) =

К

= /  /v sgn fßdü ■ f  / v Sgn f ßdO = ((sgn fl)v(w))((sgn fi)v(v)).
К к

Es ist also (sgn [£)v€Jt9 q.e.d.
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Wie der vorhergehende Beweis gezeigt hat, kann man zwei beliebige Elemente 
von J t  mit Hilfe von L-Algebren vergleichen, was mit .//.-Algebren oder abstrakten 
Konvolutionsmaßalgebren, bei denen das Normfunktional multiplikativ ist, i. a. 
nicht geht.

Mit Satz 2.2 erhalten wir für Banachverbandsalgebren mit der Eigenschaft 2 t 
die folgende Aussage.

3.3. Satz. Es sei A eine reelle Bamchverbandsalgebra mit der Eigenschaft 2 t, 
p eine positive, multiplikative Linearform auf A und N(p) ^  {0}. Ferner gelte 
{x£A +: v(x)=0 für alle у^.Ж mit v>0} =  {0}. Dann ist das Band N(p)x eine 
Subalgebra.

Beweis. Es sei x, y£N(p)x , z£N{p) und x, y, z>0. Nach der gemachten 
Voraussetzung genügt es zu zeigen: v(inf (z, xy))=Q für alle y ^ J i  mit v>0.

Für y^J t  mit v>0 betrachten wir die /.-Algebra Aß+V. Da der topologische 
Dual mit dem Hauptideal A'ß+V identifiziert werden kann, definiert p eine posi
tive multiplikative Linearform fi auf Aß+V, welche aufgrund der Eigenschaft 2t zu 

gehört.
Aus p(z)=0 folgt z£N(fi) und somit x, y£N(fi)x . Es ist also inf (z, x • j)) =0 

in Aß+V. Dies bedeutet (/i+v)(inf (z, xj))=0. Es ist somit v(inf (z, xj’))=0, q.e.d.
Sei Ac eine komplexe Banachverbandsalgebra. Wie in [9] ausgeführt, ist das 

Zentrum Z(Ac) ein komplexer Banachverband. Für jedes T£Z(Ac) ist also der 
Absolutbetrag \T\ erklärt. Besitzt T  die Darstellung Т=Тг+ iT2, so nennen wir 
den Operator Т := 7 \—/Г2 den zu Г konjugierten Operator.

Mit Hilfe von Korollar 2.5 erhalten wir folgende Charakterisierung der zentra
len Homomorphismen.

3.4. Satz. Es sei Ac eine komplexe Bamchverbandsalgebra mit der Eigenschaft 
{x£Ac- /i(|x|)=0 für alle positiven p(iJi) = {0}. Dann bilden die zentralen Homo
morphismen eine betrags- und konjugationsinvariante Halbgruppe.

Bew eis. Sei T  ein zentraler Homomorphismus von Ac . Es ist zu zeigen, daß 
|7j und T  wieder multiplikativ sind. Wir zeigen dies für \T\. Für T  geht der Beweis 
ganz analog.

Sei p^.ti, p > 0 und (Aß)c die zu p gehörige komplexe /.-Algebra. Wie man 
sich leicht überlegt, induziert jedes S£Z(AC) auf folgende Weise einen Zentrums
operator § auf (Aß)c". Es ist S(z):=Sz (z£Ac) auf dem Teilraum Acj(N(pj)c , 
und auf (Aß)c ist S  die kanonische stetige Fortsetzung dieser Abbildung. Eine Rou
tinerechnung ergibt ferner die Beziehung |<S| =  |,S|.

Sei nun x, y£A  mit x=-0 und j> 0 . Nach Korollar 2.5 is \f \  multi
plikativ. Es gilt daher \Т \х ’у  = \Т \х‘у = \Т \х -\Т \у= \Т \х -\Т \у  und somit 
/ i ( | | r |x j—|7jx-|7jj> |)=0. Die im Satz angegebene Eigenschaft impliziert dann 
\T \x y -\T \x -\T \y= 0 ,  q.e.d.

3.5. K orollar. Es sei Ac eine halbeinfache, kommutative komplexe Banach- 
verbandsalgebra mit der Eigenschaft 2t. Dann bilden die zentralen Homomorphismen 
eine betrags- und konjugationsinvariante Halbgruppe.

B ew eis . Mit p ist auch \p\£J(. Sei x£Ac . Aus |/i|(|x|)=0 für alle p ^ J t  
folgt, daß der Spektralradius von x Null ist und somit x —0 ist.
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4. Über Strukturideale in kommutativen Banachverbandsalgebren
mit Einselement

Unter einem Strukturideal einer Verbandsalgebra versteht man ein zweiseitiges, 
von der ganzen Algebra verschiedenes Ringideal, welches gleichzeitig auch ein 
Vektorverbandsideal ist. Ein maximales Strukturideal ist dann eines, das in keinem 
anderen echt enthalten ist. Wie üblich kann man mit Hilfe des Lemmas von Zorn 
zeigen, daß in reellen Banachverbandsalgebren mit positivem (algebraischem) Eins
element jedes echte Strukturideal in einem maximalen enthalten ist. In den Banach
verbandsalgebren C(K) bilden z. B. die Funktionen, die in einem festen Punkt 
verschwinden, ein maximales Strukturideal.

Es sei A eine reelle Banachverbandsalgebra und J  ein Strukturideal. Dann ist 
in der Komplexifizierung Ac der Teilraum J+ iJ  ein zweiseitiges Ringideal und 
ein komplexes Vektorverbandsideal, also ein Strukturideal von Ac - Umgekehrt läßt 
sich jedes Strukturideal von Ac als Komplexifizierung eines reellen darstellen. Man 
kann sich daher bei der Untersuchung von Strukturidealen auf reelle Banachver
bandsalgebren beschränken.

In einer kommutativen, komplexen Banachalgebra mit Einselement ist bekannt
lich jedes maximale Ideal Kern eines komplexen Homomorphismus. Der nächste 
Satz beschreibt eine entsprechende Beziehung zwischen maximalen Strukturidealen 
und absoluten Kernen. Wir setzen von nun ab stets voraus, daß das algebraische 
Einselement einer Banachverbandsalgebra positiv ist und die Norm 1 besitzt.

4.1. Satz. Es sei A eine kommutative reelle Banachverbandsalgebra mit Eins
element und der Zerlegungseigenschaft . Ferner sei J  ein maximales Strukturideal 
von A. Dann gibt es auf A eine positive multiplikative Linearform p, so daß J  gleich 
dem absoluten Kern von p ist.

Beweis. In Ac ist Je ein Ringideal. Es gibt daher ein v£.J? mit v^O und 
/ c  = v_1({0}). Sei x£J, z£Ac und |z |S |x |. Da Je ein Strukturideal ist, gilt z£Jc 
undsomit v(z)=0. Es ist also |v|(|x|)=sup {|v(j)|: y€Ac , |j |^ |x |} = 0 . Wirerhal
ten somit yQV(|v|). Die Eigenschaft impliziert \v\ZJL  Es ist daher V(|v|) 
ein Strukturideal und somit 7=V(|v|), q.e.d.

In den Banachverbandsalgebren C (K ) sind die maximalen Strukturideale ge
rade die absoluten Kerne der Dirac-Maße. Als Elemente des Banachverbandes M(K) 
sind die Dirac-Maße paarweise zueinander orthogonal. Der folgende Satz verallge
meinert diese Aussage.

4.2. Satz. Es sei A eine reelle Banachverbandsalgebra und px und p2 zwei posi
tive multiplikative Linearformen auf A, deren absolute Kerne N(px) und N(p2) zwei 
verschiedene maximale Strukturideale sind. Dann ist рл zu p2 orthogonal.

Beweis. Sei p= p1+p2, und / j  und f 2 seien die den Elementen p± und p2 ent
sprechenden Funktionen im topologischen Dual C(K) der zu p gehörigen L-Algebra 
Aß. Dann gilt fx=0, f 2 = 0 und / x- f /2= l .  Angenommen, es sei inf (/q, p2)>Q, 
also inf ( / j , / 2)>0. Dann existiert ein Punkt t(K  mit / j ( i ) > 0 und f 2(t)>0. 
Hieraus folgt f 2 ■ sign./i>0. Ferner gilt f 2 -sgn /js /a . Aus (sgn Pi)p2-^p2 folgt 
nun N(p2)Q N ((sgn /b)/i2).
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Sei х£Л, л'ёО, p1(x)=Q und &:= {s^K: /,(л)>0}. in AM erhalten wir dann 
J / ,  dx=0. Nach Lemma 2.1 ist daher sgn/,= 0  auf dem Träger Sx und somit 
к
(sgn/г1)^2(л')= J  f 2-sgn/] dx=0. Es ist also auch Nip^Q N ^sgu p^hz)- Da 

к
A((sgn р1)р2) ein Strukturideal ist, folgt 7V(/i1)=A’((sgn fii)n2)—N(fi2), was der 
gewünschte Widerspruch ist.

Analog zur Ringtheorie sagen wir, eine Banachverbandsalgebra ist struktur- 
einfach, wenn die Menge {0} das einzige Strukturideal ist. Das Strukturradikal 0t 
ist dann als der Durchschnitt aller maximalen Strukturideale definiert, und eine 
Verbandsalgebra heißt halbstruktureinfach, wenn St = {0} gilt.

Wie nicht anders zu erwarten, sind Quotientenalgebren nach maximalen Struk
turidealen struktureinfach.

Struktureinfache Banachverbandsalgebren sind keineswegs einfach, sondern 
äußerst kompliziert, wie es scheint. Wir sind nur in der Lage, den endlich dimensiona
len Fall vollständig zu klären.

4.3. Satz. Es sei A eine struktureinfache, kommutative reelle Banachverbands
algebra mit Einselement, mit Zerlegungseigenschafi Ж und dim A —n. Dann existiert 
eine Gruppe G, bestehend aus n Elementen, so daß A algebraisch- und verbandsisomorph 
zur Gruppenalgebra L(G) ist.

Beweis. Bekanntlich ist dann A verbandsisomorph zum Vektorverband R". Es 
besitzt daher A eine Basis, bestehend aus n positiven Vektoren elt ..., en, welche 
paarweise zueinander orthogonal sind und deren Hauptideale Aet (1 ein
dimensional sind. Zunächst impliziert die Eigenschaft 2£, daß das Produkt zweier 
Basisvektoren 0 oder wieder ein nichtnegatives Vielfaches eines Basisvektors ist, 
d. h. zu jedem Paar (/, k) gibt es einen Basis vek tor eitk und eine nichtnegative 
Zahl yitk mit et ■ ek=yUkeitk. Da A ein Einseleirent besitzt, ist {0}. Aufgrund 
der Eigenschaft j f  existiert daher mindestens eine nichttriviale positive multipli
kative Linearform p  auf A. Da A struktureinfach ist, gilt offensichtlich :=//;>() 
für lS / s n .  Aus er ek=yUkeiik folgt dann pt • Pk=7i,kMei,k) und somit
für l s i ,  k-xn. Für lS iá H  sei nun v;:=— et. Wie man leicht nachrechnet,

hi
ist die Menge 5':={u;: 1 eine kommutative Halbgruppe in A.

Es sei К  der Suskevic-Kern von S  und J  die lineare Hülle von К  in A. Die 
Annahme K ^ S  würde ergeben, daß die Menge J  ein echtes Strukturideal wäre. 
Da also S —K ist, ist somit S  eine Gruppe, welche wir mit G bezeichnen. Die Abbil-

n n
dung Ф: A-»L(G), definiert durch Ф( 2  xkek) 0';):= xihi für 2j xkek^A  (.vt f R)

l fc=i
und lS /S n , ist dann ein Algebra- und Vektorverbandsisomorphismus von A  auf 
die Gruppenalgebra L(G), q.e.d.

Ist die Norm einer reellen Banachverbandsalgebra ordnungsstetig, so ist für 
eine Linearform das Band der strengen Positivität sogar ein Projektionsband. Mit 
Hilfe der maximalen Strukturideale und des Strukturradikals erhalten wir in dieser 
Situation folgenden interessanten Darstellungssatz:

4.4. Satz. Es sei Ac eine kommutative halbeinfache Banachverbandsalgebra mit 
Einselement, mit Zerlegungseigenschaft 3£ und ordnungsstetiger Norm. Ferner sei
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{Jx\ /.(:Л} das System der maximalen Strukturideale von A, und es sei AX:=JX 
für alte /.£ /1. Dann gilt:

(i) Für jedes Id  Л ist Ax eine solide Subalgebra, welche für sich betrachtet eine 
struktureinfache Banachverbandsalgebra ist.

(ii) Für /.j, A f  /  mit AxV-Аг gilt AXl± A Xa und AXl ■ AXafjM.
(iii) Das von der Menge { (J Ax\  erzeugte Band ist gleich dem orthogonalen

дел
Komplement des Strukturradikals tM, d. h.

А =  © АХ®Я.д е л
B ew eis. Nach 4.1 gibt es zu jedem A£A ein p f J t  mit /гя> 0  und J,=N{px). 

Es ist also Ax= N(px)± für alle A€A.
(i) Nach 3.3 ist N ip f1- eine Subalgebra. Da die abgeschlossene, solide Sub

algebra N(px)± offensichtlich zu der Banach-Quotientenalgebra A/N(px) topo
logisch-, algebraisch- und verbandsisomorph ist, ist also N(px)1- auch struktur
einfach.

fii) Aufgrund von 4.2 bildet die Menge {px: /.£/1} ein Orthogonalsystem. 
Sei Ax, A f.A  mit Ax^  A2. Nach([7], TL, 4.10) gilt dann lV(inf {pXl, рХг})1 =  N(pXl)x П 
П А(ря,)х - Es ist daher А(рЯ1)х ПЛ,'(/гЯ2)-|- =  {0} und somit N(pxj)x ±N (nXl)-L.

Sei 0<x€7V(/rAi)x und O-^ydNip^)1-. Dann ist N(pxj)± Q N\рХг) und 
Ж^д2)х ЕЛ7(/ид1)- Hieraus ergibt sich px(xy)=px(x) px(y)=Q für alle A£ Л und 
somit xyd П N(px)=dt.

(iii) Dies folgt sofort aus Ax= N (px)±, (А(рд)-1-)1- =N(px), f) N(px) und
дел

der Ordnungsstetigkeit der Norm, q.e.d.
4.5. K o r o l l a r . Ist A zusätzlich halbstruktureinfach, so ist A die Vervollständi

gung einer direkten Summe von struktureinfachen Algebren.
Aufgrund des vorhergehenden Korollars ist es natürlich naheliegend, in um

gekehrter Richtung mit Hilfe von struktureinfachen Banachverbandsalgebren durch 
Bildung direkter Summen und Vervollständigungen halbstruktureinfache Algebren 
zu konstruieren: Zum Beispiel sind für l^ p < ° °  die Banachverbände lp, versehen 
mit der koordinatenweisen Multiplikation, auch Banachverbandsalgebren. Sie sind 
halbstruktureinfach und können im Sinne des vorhergehenden Korollars als Ver
vollständigung einer direkten Summe von Kopien der offensichtlich struktureinfa
chen „Banachverbandsalgebra R“ betrachtet werden.

Die Arbeit wollen wir nun mit dem folgenden Darstellungssatz, welcher sofort 
aus 4.3 und 4.5 folgt, schließen.

4.6. Sa t z . Jede kommutative, halbeinfache, halbstruktureinfache, endlich dimen
sionale Banachverbandsalgebra mit Einselement und der Zerlegungseigenschaft 2£ ist 
eine direkte Summe von Gruppenalgebren.
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SETS OF CONVEXITY OF CONTINUOUS FUNCTIONS
Z. BUCZOLICH (Budapest)

In [2] F. Filipczak proved that for every f£C[a,b] there is a perfect set Pz[a,b] 
on w hich/ is monotone. In [1] the authors raised the following problem:

Let /€C[a, b] be arbitrary and let и be a non-negative integer. Does there 
exist a nonempty perfect set Pc: [a, b] on which / i s  either и-convex or и-concave? 
(Filipczak’s theorem settles the case и = 1.) In this paper we answer this problem 
for и=2.

Theorem. For every continuous function f:  R—R at least one of the following 
statements is true:

(i) There is an interval Icz R such that / | ,  is convex.
(ii) There is an interval Icz R such that f \ ,  is concave.

(iii) There are nonempty perfect sets / / c R ,  H2crR such that f \ Hl is strictly 
convex and f \ H, is strictly concave.

D efinition 1. p€R  is a quasi-minimum [quasi-maximum] of / i f  we can choose 
<SP> 0 and Hip£R such that for any x d fp —öp,p  + öp) we have

f(x )  ^  f(p )  + mpix - p ), [/(*) zzf(p) + mp(x-p)].
We put

{/>€ R: p is a quasi-minimum},

Em.x := {pi R; p is a quasi-maximum},

Lemma 1. I f  Emin (or EmaJ  is of second category then there is an interval Icz R 
such that f  is convex (concave) on I.

Proof. For all p£Emm we denote by Sp and mp the numbers in Definition 1. 
For we put

АГу, := {p€£mi„n[/-, s]; (r, s )z(p -ö „ , p+ ,5P)}.
Plainly Emin = U [AryS; r,s£Q , r<s). Since Emin is of second category there is a 
pair of numbers r, s€ Q such that AryS is dense in an interval 7c(r, .v). We prove 
that f \ t is convex.

Indeed Icz(r, s )cz(p -ő p, p+S„) for all p£ATyS that is f(x )S f(p )  +  mp(x—p) 
for all x€J. This easily implies that /U ,,,n r is convex. The density of 1ПАГу, 
in /  and the continuity of /  furnish that / | / i s  also convex.
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Notation 1. d+f(q):={m€R ; there exists {#„}”= i such th a t qn\ q ,  f(q2„)>  
>f(q) + m(q2n- q )  and f(q2n-i)^ f(q )+ m (q 2n_1- q )  for n =  l ,2 ,  ...}.

Similarly w ith qn/ q  we can define d f(q ) and we p u t df(q):—d~f(q)Uиа+Л?).
We shall denote by Df(x) the  lower and by Df(x) the upper bilateral deriva

tive of f(x).
Lemma 2. Let f:  R-»-R be continuous on \a, b] and i£R . Suppose that

m - m . .
b —a

and the set {x£[a, b]\ Df(x)<s} is dense in [a,b]. Then there exists x0d(a, b) 
such that s£d+f ( x 0).

Proof. Subtracting a linear function we can assume that л —0. Then the first 
assumption o f the lemma yields th a t f{b)>f(a).
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Let

:= min {x€ [a, b] ; /(x) = f(b)}, ax := max {x<E [а, bx]; Дх) = f(a)}.

Obviously for x£(ax, bx)f(a)< f(x)< f(b). The second assumption implies that we 
can choose b2, t2 such that a ^ b '2< t2<b1 and flb^)>f(b2)> f ( t2)>f(afi. We 
also put

b2 :=тт{дсе(а!, b2]; f(x) e / 0 )  for all y£[ax, K]}
and

a2 := max {x€ К , b2); f(x )  = f( t2)}.

Plainly f(a 2)<f(b2) and the set {x€ [a2 > 62]; 2?/(x)< 0} is also dense in [a2, 62], 
Repeating the process above we get the sequences at, b{, tt (i= 2, 3, ...) such that

1) tt,

2) /Oh) = /0.) </(&,),
3) for all x€0h> b,), /(a ,) < /(x )  </(&,),

4) at <  ai+1 <  ii+1 <  fe;

for all (/= 2 ,3 ,...).
We define x0:=inf {йг; /= 1 ,2 , ...} and the sequence

#2;•— bi+i and ?2i - i ;—h+i» i —1>2, ... .

From Properties 1)—4) it follows that х0£{ах, £;) for all /= 2 , 3, ... and f(q 2i) = 
=/0>j+i)>/(*o) a n d / ( í2i-i)= /O í+1)</(^o) that is, by definition, 06d+/Oo)-

Lemma 3. Let f:  R->-R be a continuous function such that there is an interval 
(a ,b )e  R and a number j 0€R  for which

f(b ) - f(a )
b —a = sx >  s0

and the set {x£[a, b]; _D/(x)<s0} is dense in (a, b). Then there exists a nonempty 
perfect set H e  R such that f \ H is strictly convex.

D efin itio n  2. We say that f \ B is strictly d-convex if we have a function d:L->- R 
suchthat H e L  and for all p, q£H, p?±q, f(p)> f(q)+ d(q)(p—q).

R em ark  1. It is easy to see that if f \ H is strictly d-convex then f \ H is strictly 
convex.

Lemma 3/a. Suppose that the condition o f Lemma 3 is fulfilled. Let q, q f(a ,  b), 
q<qx • Suppose that the function d is defined on {q,qx} and d(q)£d+f(q), further
more d(q)>s0 and /|{9>4,} is strictly d-convex. Then for any e>0 there is a 
0г€(9) 9i)H(9, q+e) and a number d(q.,)£d+f(q2) suchthat d(q2)> s0 and f \ {q,qi,qi) 
is strictly d-convex. (See Fig. 3.)
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Fig. 3

P roof. Since / | {4i4l} is strictly d-convex, d(q)<:— ^ —JML an(j there is
x^{q ,q i)  such that f(q) + d(q)(xu-q )  =f(ql) + d(qx)(x0~ q x). From d(q)£d+f(q) 
it follows that there is an l0£(q, x0)C\(q, q+e) such that /(/„)>/(</)+d(q)(I„—q). 

We can find a point

Put

then obviously

Thus we put 

R emark 2.

rfl := max {x£(q, f(x) = f(q) + (l(q)(x-q)}.

d(q) <  if f (qi)~f(q)
q i - q

h := min{*€(r0, А,]; /(*) =  /(<yFb/'(x-</)}- 
Obviously, for every pd(r0, /x) we have f(p )< f(q)+ d '(p—q).
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Examining Fig. 4 we can easily check that
h ~ rо

></'(></(qr)=~.s0). By as
sumption the set If:  D f(x)<su} is dense in (r„, I f .  We choose an s with

Applying Lemma 2 we get a point q2̂ (r0, I f  suchthat s£_d+f(q f .  Define d(qf:=s. 
The fact that d (q f> d ' and Remark 2 imply that

It follows immediately that f\[q,q.,qii is strictly r/-convex.
Lemma 3/b. Suppose that the condition o f Lemma 3 is fulfilled. Let q€(a, b). 

Suppose d(q)fd+f{q) and d(q)>s0. Then for any e>0 there is a q%£(q, q+e) 
and a number d (q f£ d +f i q f  such that d(q2)>s0 and f\{q.it} is strictly d-convex.

The proof is similar to that of Lemma 3/a and we leave it to the reader.
D efinition 3. Define the function v: N —N by

Remark 3. Obviously for any n£N, v(n)^n  and for any nfN , v(k)=n  holds 
for infinitely many к.

Lemma 3/c. Suppose that the condition of Lemma 3 is fulfilled. Let

Hn-= Í Pi, ■~,Pn}c.(a, b).

Suppose that we have a function dn: Hn-+ R suchthat dn(pi)^.d+f(p i) and d(pi) ^ s ü 
for i=  1, ...,n , furthermore f \ Hn is strictly d„-convex. Then we can find a point

fid) > f i d f  +  d { q f { q - q f .
Since

and. by Remark 2,

we have
f id , )  <  f id )  + d ' iq ,~ q ) tS f id ) +  f -4-) f i4 )  i d t - d ) ,

4\~H

fidi) >f idi )+<iiq,) iqi-q,) -
By the choice of r0 and x„

and
fid,)  > f i d )  +  d iq ) id , -d )  

f i d з) > f i d i )  +  d i q f i d ,~ d f -

v
a if n — px where p is prime 
1 otherwise.

Pn +1
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and a function dn+1 such that (pv(n), рп+1)Г\Нп=0, dn+1: tf„+1^ R  where Hn+1 = 
U dn+1\[jn—dn, dn+1(pn + 1')dd+f(p n+i), dn+1(pn+l)>sn and f |яп+1 ts 

strictly d„+1-convex.

P roof. If there is a pk£H„, p V(„)<pk and (p^„), рк)Г\Н„=0 then we can 
apply Lemma 3/a with q:=pvW,qj :=pk and define/?„+1 and dn+1(pn+1) bypn+1:=q2 
and dn+1(pn+1):=d(q2).

a) A consequence of Lemma 3/a is that /|{pv(n),pn+1,Pk} is strictly dn+1-convex. 
ß) By assumption f\„ n is also strictly dn+1 -convex.
У) By the definition of pk, (pvM, pk)P\Hn+1={p„+1}.
The properties a), ß) and y) easily imply that / | Hn+1 is strictly i/„+1-convex. 
If there is no pk€H„ such that p v(„)<pk then we can apply Lemma 3/b to 

define p„+1 and dn+1; we leave the details to the reader.

L emma 3/d. Let f:  R — R be continuous. Suppose that we have a set Ha— 
={Pi, p2, p„, •■■} and a function d: Hm - R suchthat / | Ни is strictly d-convex
and pn+-it\pvW~ /Ь(п)+ ~ )  for every n = 1,2, ...; then there is a nonempty per
fect set H such that f \ H is strictly convex.

P roof. By Remark 3, for every j£ N we can choose a sequence nk (k = 1,2,...) 
suchthat nk<nk+1 and v(nk)=j. It follows that for every k = l , 2 , . . .  \p„k+x—pj\<
< — and hence lim p„k=Pj. That is is dense in itself and H:—Hm is aПк l£̂  + ~
nonempty perfect set. The continuity of /  immediately implies that / \Bto is convex. 
We prove that / i s  strictly convex on H. Suppose that there exist P\, p2, p-fH m, 

and an m€R such that f ( p t) + m (/;2- p x) = f(p 2) and f ( p 1)+ m (p3- p 1) = 
= f(p 3). Since H m is dense in itself there is a sequence pk, k = 1, 2, ... , such that 

рке н а and Pi< pk< p3, k = 4 ,5 , . . . ,  and lim pk= p2. The convexity of f \ n<a
k-*-oo

implies f(p i)+ m (p k—p1)=f(pk) for k =  4 ,5 ,... which is a contradiction because 
/ I Ha is strictly ^-convex and hence f \ H<o is strictly convex.

P roof of Lem m a  3. By Lemma 3/c we can define a sequence o f  sets H„ and
CO

of functions d„ (px and dx can be chosen according to Lemma 2). Define Ha := (J HnП— 1
and the function d  by d\Bn:—d„. We apply Lemma 3/d to find H.

L emma 3'. Let f :  R ^R  be a continuous function such that there is an interval 
{a, A) c  R and a number sf__ R for which

f ( b ) - f ( a )  _ „
~ ~ b ^ a  Sl S°

and the set {x£[a, A]; Df(x)>s0} is dense in (a, b). Then there exists a perfect set 
H crR such that f \ H is strictly concave.

P roof. We have to apply Lemma 3 to —/.
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L e m m a  4. Let f:  R->-R be continuous and

A 1x6 R ; lim sup Df(y) — lim inf Df(y) = Df(x) = Df(x) =  /'(x )£  R}.
*■ y-+x y->-x

Then either A is residual in R or there is a nonempty perfect set H e  R such that 
f \ H is strictly convex.

Remark 4. It is obvious that f ' \ A is continuous.

P r o o f . Let p>~q a n d  p u t

Ap.q:= ix > lim sup Df(y) >  p q >  lim inf Df(y)}.

Suppose that Ap_q is of second category. Then it is dense in a subinterval Jx of R. 
Since for x£A l q, lim sup Df(y)>p  we can choose a ^b  in Jx with

1 у-*х О — Cl
The density of Ap>q implies that {xffa, b]\ P f(x)<q} is dense in (a, b). Hence we 
can apply Lemma 3 and find the set H. Therefore we can suppose that APf q is of 
first category for any p>q.

We put ^L ^R X U  {APtq; p, qdQ, p>q} ', then A1 is residual. Let

d P.q ■= { x iA 1; Df(x) < q  <  p <  lim mf Df(y)}
and

AP .q { x - A 1; Df(x) > p > q >  limsup Df(y)}.

Suppose there is a subinterval J-, of R where Ap>q is dense. Since for x€A p,q,
lim inf D f(y)>p  we can find a<b in J2 such that >p. The densityy-~x — b — a
of Ap<q implies that {xf[a, b}\ Df(x)<q} is dense in (a, b). Hence we can apply 
Lemma 3 and find the set H.

Finally suppose that there is a subinterval J3 of R where Ap>q is dense. Since for
x£APtq, Df(x)>p we can find a<b in J3 such that The density of
ä Pp4 implies that {x£[а, й]; D f(x )D f{x )< q )  is dense in (a, b). We can again 
apply Lemma 3 to find the set Я.
Define

Ä1: = U  {APpq; p,  q€Q,  p  >  q } U U { A Ppq; P, q£Q,  P >  q)
and

A2 := A ^ B 1.

We proved that either B 1 is of first category or we can find the set H. Hence 
we can suppose that A2 is residual.

By definition, for x€A 2 ( e A 1)

Df(x) = lim sup Df(y) = lim inf Df(y) = Df(x).
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We put B \:— {x£A2; Df(x) — +  °°} and B t:= {x£A 2\ D f(x)=  — °°}. Obviously 
А=>А*\(В10В1).

Suppose that B t  is of second category. Then B t is dense in an interval (a, b).
We can apply Lemma 3 with s0:=^ ^  — 1 since {x£[a,b]\ — °°= Df(x) —
= Df(x)<s„} is dense in (a, b). We can find H  as before.

Now suppose that B \  is of second category; then B t  is dense in an interval 
(a, b). Here we are unable to apply Lemma 3 immediately on f. We put j(x) =  — x 
(x€R). If s(x)dB t then

+oo= (£>/)(s(;t)) — lim sup f(s (y ))-f(s (x )) f ( s ( y j ) ~ f ( s ( x ) )
-----==----p c-----=  lim sup — ------ ' 4 7 =

s W - s W  y ~ *  ( - y ) - ( - x )

= (— 1) lim inf f(s (y ))-f(s (x ))
y - x = -D (fos)(x ).

Thus we can apply Lemma 3 with fos, (—b, —a)=(s(b), s(a)), and

f ( b ) - f ( a )  f(s(s(b)))-f(s(s(a)))
S° b — a s(b)—s(a)

Lemma 3 is applicable because {x£(— b, —a); — °°=D(fos)(x)<s0} is dense 
in (—b, —a) since B \ is dense in (a, b). Hence we can find a nonempty perfect set 
H ' such that fo s \ir is strictly convex and then / | s(Ho is also strictly convex. This 
completes the proof of Lemma 4.

Lemma 4'. Let A be defined as in Lemma 4. Then either A is residual or there is 
a perfect set i /c :R  such that f \ H is strictly concave.

Proof. Using Lemma 3'.
Now we turn to the proof o f the theorem:
Suppose that neither of (i) to (ii) is true. Lemma 1 yields that E — 

= EminÜEmax is of first category. This implies that C = A \E  is residual and, a 
fortiori, C is everywhere dense. Thus the following lemma will complete the proof 
of the theorem.

Lemma 5. I f  C is everywhere dense then there exist perfect sets / /  and H„ such 
that f \ Hl is strictly convex and f  |Hz is strictly concave.

Notation 2. Let / b e  fixed. For a point p£C  let

d ?u -=  {(*> pXR2; x > p ,

Dprl := {(x, >’)€R ’; x > p ,  

Z>fu :={(x, y ) € R 2; x ^ p ,  

Df, := {(x, y)£ R2; x  <  p,

У > f ( p ) + f ' ( p ) ( x -p ) } ,  

У ~=f (p )+f (p ) (x -p ) } ,  

У > f ( p ) + f ' ( p ) ( x -p ) } ,  

У < f(p )+ f(p )(x -p )} .
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Fig. 5 

Put
Clr • ~  L*, 3y„£ a 0, 1, 2 ,..., уо p ■< уn, n — 1 ,2 ,. . . ,  Уп+i ^  Уп> 

n = 1, 2, ..., and with the function d: C -* R, d(v)'-= f'(y), / I  -
U v -

is strictly J-convex} 
and

С ц’-={р£С; 3y„£C, n =  0, 1, 2 ,..., y„ =  P >  У„, n = 
и =  1,2, ..., and with the function d: C -* R, 

is strictly rZ-convex}.

1, 2, . . . ,  Уп+1 — Ут

d(y):=f'(y), / I  -

We also put Cx := Cu U C]r.
P roof o f  L emma 5. It is enough to find a nonempty perfect set Hl such that 

f \ Hl is strictly convex. The concave case can be treated analogously using Lemma У 
instead of Lemma 3.

Suppose first Cj =C, and define the function d: C—R by d(p):=f'(p) for 
pdC. Letpx be an arbitrary point of C j. Suppose that we defined Ln = {p1, ..., /;„}cC

such that Pj+i^ p vu ) - - j ,  P v O )  + y )  for j= U  —,n ~ 1 and f \ Ln is strictly d-con
vex. Since Pv(n)£C =C l5 there is a sequence yk-+pv(n) suchthat yk£C and /

Pv(n)U fcU ,y fc

is strictly rZ-convex. By Remark 4, d(yk)^ d (p v(n)) (k=  1,2, ...). This and the fact 
that / \Ln is strictly iZ-convex imply that there is a yk- such that

РНп)~ — '> PvW +y]

and f \ t nupv) is strictly iZ-convex. Define p„ + 1 by p„+i—yk'- By induction, define
CO

Ln for и =  1,2, . . . ,  and put i / ra:= (J L„. Applying Lemma 3/d we get a non-
/1 =  1

empty perfect set Hx with strictly convex / | Hl.
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If there is a subinterval where the conditions of Lemma 3 are satisfied we are 
done. To complete the proof of Lemma 5 we show that if the conditions of Lemma 3 
are not satisfied by /  in any subinterval (a, b) of R then Cy =C.

Let p£C  be fixed. Then p is not a quasi-extremum thus there exists a sequence 
W n " i , xn-~P suchthat (*„; /(*„))££>£, UDf„. Put again s(x):= - x  (x£R). Ob
viously, if there is a perfect set H' such that (/o.y)|H, is strictly convex then f \ H 
is also strictly convex, where H:=s(H'), and hence we can also suppose that there 
is no interval (a, b) in which fo s  fulfils the conditions of Lemma 3. Thus we can 
reduce the case of xn/ p  to the case of s(xn) \s (p ) .

Hence we suppose xn\ p .  We will show that p£Cy>r. We have to find a se
quence {yn}~=1czC, yn\ p such that / и b„}U{p} is strictly/-convex where d(yn) =

is=f'(y„)- Suppose that we have {/;}U U {>’„}<= C such that /  u{>, }u{p}

strictly /-convex. The case when m =0, that is the definition of yt , only differs 
slightly from the cases when m£N. We shall mention these differences in the argu
ment below.

Let the point (/;, ym) be defined by

f(p) + f  (Р)(У ~P) = f ( y m) + / '  (Ут)(У -  Ут)- 
(When m=0 we do not have to define y.) Obviously

-  f ( y J ~ f (P ) fU. .  Л
f i p ) ~  —

Since f ' \ c is continuous we can choose e0=-0 with p-\-e0< y  and

Г  (pc) - - - (Ут)' f(p) for хе(р ,р  + е0)ПС.
Ут P

(When m—0 we do not have to define e„.)
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Since xn\ p  we fix an x„€(p,p+e0). (When m —0 we can choose an arbitrary 
Put

d ._ f(x„ )-f(p )  
xn~P

From {x„,f{x„))tDpru it follows that f'(p)<d.
Choose a number t such that

f '( p )  <  t <  min id, jr(->'m)" /(p ) ) d'.
У Ут-Р  >

(When m = 0 /'(/>)< d=: d'.) Put

r := max {*€(p, x„); f(x )  =  f(p )+ t(x -p )}.
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Since x„>r>p and t<d,

Let

f(x„) - f ( r )  , ( f(x„ )-f(p ) \
x „ -r  { xn- p  ) '

* ':=m in{x€(r, xn]; f(x) = f(p )+ d '(x -p )} .

This definition makes sense because f '(p )< d '^ d .  If there was no j m+i€(r, х')ПС 
suchthat f ' ( y m+1) ^ d '  then f \ q ) < d '  would hold on the set С  П (r, x'n) which is 
everywhere dense in (r, x'„). This would imply that the condition of Lemma 3 is 
satisfied in the interval (r, x'„). This is impossible and hence there is a 
Jm+i£(A х'„)Г\С suchthat f ' ( y m+i)=d'. Then we can add this ym+1 to the sequence
W i - i -

Indeed, from f '( y a+1)*sd' and f ( y m+1)< f(p)+ d'(ym+1- p )  it ollojws that

(a) f(p) >  / О т +1)  + / '(ym+i ) (p~ym+i)-
The choice of e0 implies that

f ( y m+1) < У m P

We have and, for x£(r, x'„),
Ут-Р

Hence

Summing up

f i x )  < f(p )+ d '(x -p ) .

ч л-_ч , f ( y j - f i p )
/ O m  + l )  < / O H ------ --------------------iym + l~P)-Ут-Р

/ О т )  > / О т  + 1 ) + Г  О т  + 1 ) О т  ~Ут +1)-
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(See Fig. 10.) Hence by ym+1< y  and

O'm + l./O 'm  + l))^™ * /O m  + l) > / 0 ' J  +Г(Ут)(Ут + 1-Ут)- 
Plainly from (ym+1, f ( y m+1))^D^u it follows that

(b) f ( y m+i) > f (p ) + f ' ( p ) ( y m+i-p)-
(When m = 0 we only need (a) and (b).)

Fig. 10

We have proved / m +1{p>UnUo(y„> is strictly d-convex. By induction we obtain the

sequence {y„}~=1, and consequently p(zC1.
The author wishes to thank M. Laczkovich for his comments during the prep

aration of this paper.
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ON A FUNCTIONAL EQUATION WITH POLYNOMIALS

1. For a fixed K, let K[x\ denote the ring of polynomials over K. Let R and C 
denote the field of real and that of complex numbers, resp.

We are interested in determining all non-trivial 0£ C[x] and all Л^С[х] with 
deg S = 2 for which

holds with a suitable c£C. Flere y€C, y^O.
We are far from being able to solve this problem in general. The main result 

of this paper is the complete solution of (1.1) if c, y£R, Q, STROr] and if Q has a 
real root.

We note that the special case S(x)=x*, c =  l, y =  — 1 was stated as a problem 
by J. Binz in [1]. Later J. Fehér [2] (see his related paper [3] too) considered and 
solved the polynomial equation

where sk runs over the rooots of unity of degree .v.
Let us consider the general case (1.1). The following remarks are quite obvious.
Remarks. 1. We may assume that the leading coefficient o f Q is 1, i.e. that Q 

is monic.

2. We may assume that the first degree term of S(x) is vanishing, i.e. that 
S(x) is of the form S  (x)=A x‘~ + E.

Proof. Let S  (x) = Ax2 + Bx+ C such that (1.1) holds with some Q. Let u* =
= Then S(x+u*) — Ax-+Bu'+C. Let R(x) = Q(x+u*). Then substi-2 A
tuting x+u* instead ofx in (1.1), we get R(Ax2+E) = Q(S(x+u*))=cR(x)R(x+y), 
with E=Bu* +C —  U *. So

Z. DARÓCZY (Debrecen), corresponding member of the Academy 
and I. KÁTAI (Budapest), member of the Academy

( 1. 1) Q(S(x)) = cQ(x)Q(x+y)

/ 7 / 0 * * )  =  /  0  s),

( 1.2)

Solving (1.2) we get the solutions of (1.1) by putting Q(x)—R (x —u*). 
In what follows we shall assume that

S’(x) =  Ax'- + E.
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3. We may assume that y = l.

Proof. Let ß , S  be a solution of (1.1). Let R(y):=Q(yy). Then Q(yy+y) = 
=i?(y + l) and Q(Ay2y2 + E) = R ^Ayy2 + —  j. So we get

(1.3)
Я(5(у)) =  сЛ0;)Я(у+1), 

S(y)  = Ayy2 + ̂ - .

Solving (1.3) we can give all solutions of (1.1) immediately.
2. T heorem  1. Let S (x)= A x2 +E, Q a solution o f (1.1), deg Q=N. Then

(2.1) ß ( - x )  =  (- l)* ß (x + y ).
P r o o f . Let s i  denote the set of all roots of ß  listing them with their multi

plicity. Let U(x) be the maximal degree monic divisor of Q(x) such that U(x)= 
= ±U (y—x). Let Q(x) = U(x)V(x). Since the left hand side of (1.1) is invariant 
under the transformation x-~ — x, we get Q(x)Q(x+y) = Q (—x)Q(y—x), con
sequently

U(x)U(x+y)V(x)V(x+y) = U(—x)U(y—x)V ( -  x)V (y—x).
Since U (x)= ±U (y—x),U (—x)= ± U (y—x), we have
(2.2) V(x)V(x+y) = V (-x )V (y -x ) .
Assume that deg F>0. Let £ be a root of V, V(£,)=0. From (2.2) we get V(— £)=0 
or F(y—£)—0. The last case cannot occur, since it would imply that U1(x)= 
= U(x)l(x) is a divisor of ß  of the form U1(x)= ±U (y—x), where

l(x) =
(x - 0 { x - ( y -£))
X -Z

if ^ T / 2 ,  
if £ = у/2,

and this contradicts that the degree of U was maximal. So F(c)=0 implies that 
V (—<̂ )=0, moreover the polynomials V(x), V(y—x) are coprime. Consequently
(2.3) V (x )= ± V ( -x ) ,
(2.4) V (-x + y )  = ±V (x+ y).

Let s i0 denote the set of roots of V. s iü<fsi. From (2.3), (2.4) we get
(Al) ddsi0 =>■ — s i0,
(A2) <56s i 0  => 2y—ö£si0.
Applying (A2) with —<5 instead of <5, we get

(A3) d£si0 =>2 y+ ő£si0,

consequently ő£si0=>2ky+ő£si0 (k= 1 ,2 ,...). si0 contains infinitely many ele
ments. This is impossible, V (x)=constant. Hence (2.1) immediately follows. □
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3. Theorem 2. The equation

(3.1) Q(Ax2) = cQ(x)Q(x+l)
has a nontrivial solution Q only i f  A = ±  1. All the monic solutions are:

(3.2) Q(x) = xm( x - i r  (m =  0 ,1 ,2 ,...)  i f  A = 1,
(3.3) Q(x) = (x — co)m(x — co)m (m = 0,1 ,2 ,.. .)  i f  A — — 1, 
where со = ein/3.

Proof. Let stf={ßi, ß2, • ••, An) be the set of roots of Q, where Q is a monic 
solution of (3.1). Since Q (x+ l)—(— i)N Q{— x) (see Theorem 1), we get that

Q (x)Q (-x) = ( - 1 Г  ä ( x 2-ß5) =  (~ \ )NQ(x)Q(x+l).
3=1

Moreover

Q(Ax2) =  n ( A x 2 — ßj) =  А-П [ x —^ j .

Then (3.1) implies that si={Aß2, ...,Aß%}, i.e. that x-+S(x)(=Ax2) is a func
tion for which S (s i)  = si.  Iterating к  times, we get
(3.4) s i  =  {A*-1 f t ,  ..., A ^ - 'ß f }  (к = 1, 2, ...).

First we observe that \Aß| =  1 or ß=0, if ß£si.  Assume that /М 0, \Aß\^  I, 
ßZsi. Then the sequence A2k~4 ß2k̂ s i ,  |J 2k_1j?2l£| is strictly monotonic, s i  con
tains infinitely many elements, which is impossible. Let /М 0. Then \A3ßi\ = l, 
Aß = 1, consequently \ß\ = l,\A\ = l. From (2.1) we get
(3.5) s i  = { l - ß 1, . . . , l - ß N}, \ l - ß i\ = 0 or 1.

This implies ßf£% = {0, 1, со, со), ca=en,/s. Assume that 0f_ si. Then by (3.5), 
l£ s i ,  by (3.4) A2k~xds i,  i.e. A, A3, A7£si,  and so A£3S. If A —со or со, then 
A3= — l£ s i ,  but —\§.é. Therefore A = 1. Let ß f A , ß i ^ 0,1. Then ßfdsi, 
since ßi=co or со, /??= — 1, we get /?■ =  —/!;. Then —ß fiS ,  which is impossible. 
So s i  contains only 0 and 1. From Theorem 1 we get immediately that Q has the 
form (3.2).

Assume that 0$ s i .  Then l(£si. Let ß£si. Since ß£38, therefore ß =co 
or со. Furthermore 1— co=cö, 1—со—с о ,  so s i  contains only the elements со, w 
several times, with the same multiplicity (see Theorem 1).

From (3.4) we get that Aco2, A3co4£ si, Am2, A3co4€si.  Assume first that 
Aco2=co. Then A=cő, Acö2=cö3= — 1 that is impossible, since —i f  AS. Let now 
Aco2=cő; then A= — 1.

To finish the proof it is enough to observe that the polynomials (3.2), (3.3) are 
solutions of (3.1), but this is obvious. □

4. Assume now that S(x)=Ax2+E, £V 0, y =  l and that Q is a solution 
of (U ),

Q {x)~  r f ( x - ß j ) ,  s i  = {ß1,ß 2, . . . , ß N}.
3=1
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Theorem 1 implies that sd — {\ —ßx, 1 — ß2, ..., 1 — ßN}. Let o{ß) be the multiplicity 
of ß in sá.

Lemma 1. We have o(S(ß))—o (ß ) ,o ( l—ß)=o(ß).
P roof. The assertion o(l — ß)=o(ß) is obvious. Now we prove that o(S(ßj) = 

=o(ß) for each /?£ л/.  Since ß£ sá, therefore S(ß)£ s/.  Let m=o{ß). Assume 
first that /МО. Starting from

Assume that ш ё2 . We have S'(x)=2Ax. Substituting x —ß, Q'(ß)=Q{ß)—̂  
implies that Q'(S(ß))= 0.

Continuing the differentiation, we deduce that Q(J)(S(ß))=0(j=0, 1, ..., m —1). 
This implies that o(S(ß))^o(ß).

Let ß —О^л/, o(0)=m, then S(0)=E£s4, let o(E)=k, then Q(x) =
= (x —E)kxmL(x), L{0)5*0, L{E)y±0, L£C[x\. Then from (1.1), and Theorem 1

Q(S(x)) = (S (x ) -E )kS m(x)L(S(x)) = ±cQ (x)Q (-x) =
= ± ( x - E ) k(x + E)kx2mL(x)L(-x).

Since £ (0 )? í0, 0, therefore (S(x) — E f  = (Ax2)k divides x2m, and x2m divides
(S (x )—E)k, and so k=m, o(0)=o{S(0)).

So o(S(ß))^o(ß) holds for each ß£sf. Then { S ( ß i ) , S ( ß taking 
into consideration the cardinality, we get
(4.1) s /  = {S(ß1) , . . . ,S (ß N)}, i.e. =

Lemma 2. For every t]£ stf there exists a unique т£л# such that S{x)=r\. I f  
ß£jrf and /М 0, then —ß$s/.

Proof. Let г]£л/. From (4.1) we get that rj£S(s/), so there exists х£л/ for 
which S(x)=rj.

To prove that т is unique, it is enough to show that — л / , ’Ч.е. to prove
the second assertion. Let fi, £r be the set of all distinct elements of л/.
From (4.1) we get that {*S(̂ x), <S(£2), ..., 5'(<̂ ,)} contains each element of sd at 
least once. If there were /, /, M j for which & = —£,, then from S(Zi)=S(£j) it 
would follow that the number of distinct elements in (5,(<̂1), ..., Л’(сг)} is at most 
r — 1. This is impossible. □

The next assertion is quite obvious.
Let S(x)=Ax?+E, = {y1, y 2, .. . ,yjV} an arbitrary finite set of not neces

sarily distinct complex numbers with the properties

Q(S(x)) =  cQ(x )Q(x+1)
and differentiating we get

Q '(S (x ))S '(x ) =  cQ '(x)Q (x+ l)+ cQ (x)Q '(x+ l) .

we get

(4.2)

(4.3)

&  =  0  - J l ,  1 -У-2, 1 - L y },

я  = {S(Li), s(y2), ..., S(yw)}.
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Then the polynomial
M

(4.4) R(x)=  I J i x - y j )
i=1

is a solution of the equation
(4.5) R{S(x)) = cR(x)R(x+\).
Indeed, from (4.2) we get 7?(x+l) = (— l)MR ( —x), and from (4.2)

R(S(x)) =  n(S (x )-S (y j) )  =  АмП(х2-у])  = AMR (x )n (x  + y}) =
=  ^ мЛ (л:)-(-1)мЛ(-л:) =  ЛмЛ(х)Л(л:+1).

So the following theorem is true.
T heorem  3. A polynomial

Q(x)= I l ( x - ß j )
j=1

is a solution o f the equation

(4.6) Q(S(x)) = cQ(x)Q(x+1)
г/ and only i f  for the set o f roots sd={ß1, ß2, ..., ßs} the relations

( 4 .7 )  s i  =  { 1 - A , . . . .  1 - Ы .  =  { -S O S i),. . . .  -SO S«)}

holds.
L emma 3. I f  A, E, N is fixed, then there exists at most one morde solution Q(x) 

o f  (4.6), with deg Q=N.
Let Q be a solution, written as in Theorem 3. Let ok= 2  ßv- 
From (4.7) we get

{Aft, v =  1, N} = {ßv- E ,  v =  1, ..., TV},
consequently

(4.8) Akau  = 2 ( A ß t f  = 2 ( ß , ~ E ) k = 2  ( -  l)k- lEk~l (*) a,.
ßv ßv i=o

Furthermore, {/?v|v =  l, ..., N} = { l—ßy\v = l , ..., TV}, consequently

°* +i = Z ( i - ß vr +\
ßv

whence

(4.9) 2<r2t+1 =

It is obvious that a0—N. Hence, by (4.8), ol ==N/2. The equations (4.8), (4.9) 
determine the whole sequence uniquely. The symmetric polynomials
<r0, ..., oN determine the elementary symmetric polynomials of the variables ßl t ßN 
(see Newton—Girard formulas), consequently there exists at most one solution 
of (4.6). □
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We shall say that a monic polynomial Q(x) is a primitive solution of (4.6) if 
there does not exist nonconstant proper divisor of Q which is a solution of (4.6). 

The following assertions are obvious.
(О If ßi> Ö are solutions of (4.6), ö i divides Q, Q\Q2~Q, then Q2 is a solution 

of (4.6) as well.
(2) Let Ö be a solution of (4.6) with roots = ßN}. Starting from an

element ßßstf,  construct the smallest subset {yJ? ..., for which
/lv£á?, y€á?=>l — and S(y)€&. Then

ö iO ) =  П (х-У у)
V =  1

is a primitive solution (4.6), the roots of öi(*) are simple.
(3) Every monic solution Q of (4.6) can be written as the product of primitive 

solutions

Q(x) = П Qj(x), 
j = г

where Q1, ..., Qs are uniquely determined by Q.
(4) The product of solutions is a solution as well.
Consequently, it is enough to determine the primitive solutions.

then Q(x)=x — — is a
solution of (4.6).

(2) I f  A = \, =  1 ~ 4 L ,  ßt = ±  + ± y i = 4 E t then

Q(x) = ( x - ß 1) ( x - ß 2)

is a solution o f  (4.6). It is primitive i f  1/4.

(3) I f  A = - 1, f t  = y - y / - 3 + 4 £ ,  ßi = l  + l y - 3 + 4 E ,  then

Q(x) =  ( x - ß 1) ( x - ß 2)

is a solution o f  (4.6). It is primitive i f  E t± 3/4.
(4) I f  A — \ß ,  E = ~ ,  then

е м  =  (*+-§)

is a primitive solution of (4.6)

Proof. (1) If ^ ( y ]  =  y ’ then the conditions (4.7) are satisfied for .*/ =  {1/2}.
(2) Now we have S(ß1)= ß1, S(ß2)=ß2, ßi+ß2=l,  so for s í  = {ßl , ß2} the 

relations (4.7) hold true. Q is a primitive solution if ß ^  1/2, i.e. if E ^  1/4.

5. Lemma 4. (1) I f  S И - « A i.e. ± , F = i
4 +  2
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(3) In this case S(ß1)=ß2, S (ß2)=ßi, ß i+ ß2=l, and so for s /= {ß1, ß ^  
the relations (4.7) hold true. Q is a primitive solution if ß ^ l / 2 ,  i.e. if £У 3/4.

(4) Let f t = —5/2, f t  =  l/2, ft=7/2. Then we have S(ßs)=ß3, S ( f t)= f t ,  
S(ß2)=ßi, 1 - f t = f t ,  1—f t = f t ,  so for {ft, f t ,  ß3}= si  the conditions (4.7) 
are satisfied. So Q(x) is a solution of (4.6). It is obvious that it is primitive. □

6. Let now S(x)= A x2+E£R[x], 2 GR[t] be a nonconstant solution of

(6.1) Q(S(x)) = cQ (x)ß(x+ 1).

Assume that Q has at least one real root. Let si~(Q si)  be the set of real 
roots of Q,

Qi(x) =  П  ( x -ß ) .
ß t - ^ v

It is obvious that ß£siv implies \ —ß£siv. Let siv={ßx, f t ,  ..., fti}- Then 
S(ßj)£R. Then (:=){S(ft), S(ßM)}Qsiv- Since S(ßd*S(ßj)  if f t ^ f t ,  there
fore the number of distinct elements in s i  is the same as that in s4„. Therefore

{S(ft), ..., S(ß„)} = s i v,
consequently the conditions (4.7) in Theorem 3 hold, so Q1 is a solution of (6.1).

Let Q be a primitive solution of (6.1) that contains a real root. Then all roots 
of Q are simple. Let s i  = {ßx, ..., ßN}. Then f t ,  ..., ßN are real numbers. Assume 
that f t< f t< . . .< f ty  Then ft, = l - f t ,  ßN-i = l - ß i+1 (1=0, ..., N - l ) .  Let 
L(x):=S(x)—x.

(1) Assume first that L(x) does not have a real root. Then the sign of L(x) 
is constant on the whole real line. Consequently the sequence xn+1=S(x„), x0£R 
is strictly monotonic, by starting with x0=ßv£s i,  we get xn+1£si.  This is im
possible.

(2) Assume that the roots f t, ft of L(x) = 0 are real:

B 1 - / 1 - 4  AE e 14-/1—4 AE
(6-2) f t  = -------24-------’ ------ ТА------- •

(2a) The case 4 > 0. (2al) Assume that f t= 0 . If s i  is nonempty then it 
contains a positive root. Let a£si,  a>0, and consider the sequence y0=a, y v+i = 
= S (y v). We have y v+i£si.  If f t< a < f t ,  then ft= S (ft)< S (a)< S (ft) =  ft, 
>S(a)<a, therefore f t< y v+1< y v< f t  holds for every v which is impossible. If 
a> f t , then S (a)> a, therefore the sequence y v is monotonic, yv+1> y v (v= l, 2, ...), 
which is impossible. If 0 < a < f t ,  then *S(ft)>5’(a)>a, consequently 0 < a <  

(< f t)  that is impossible as well.
Consequently, the only positive roots can be ft, ft,

s i  = (ft, ft, 1- f t ,  1 -ft} .

Assume that the numbers f t ,  f t, 1—ft, 1 —ft are distinct and £i£si. Then 
1 — 5 ( l - f t ) = 4 ( l - 2 f t ) + 5 ( f t ) = 4 ( l -2 f t ) + f t€ ^ '.  Furthermore, S(x)= x
has only two solutions, x = f t ,  ft, therefore 5(1—ft) =  l  —ft, consequently 
1 — £j£si, and so 1—(1 — ft-)€^/. Furthermore, <S(1—ft)= l — ft.
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Then we have j / =  {A , A , 1 ~ A ,  1 — 2̂}, Л (1-2А ) +  А = А ,  Л (1 -2 А )+ А =  
= A - This implies that Л(1—2A) =  —Л (1 ~ 2A), i.e. 1 = A + A -  But then A =  
=  1 — , and we assumed that 1—A and A are distinct numbers. In this case 
we do not have solutions. In the opposite case we have A = A  or A= 1 — A or 
A = l  — A with a suitable i  and yV f If A =A€-®A then 5(1 —A)€ s i ,  con
sequently 5 (1 —A )= l —А» and so 1 —A =  A> i.e. A = A  =  l/2. But in this case

^  = {y}, ß W = x - l /2 .  If A =  1~A, then f,= l/2 . Thus ß ( x ) = x - y  is a
first degree solution of (6.1).

If A = 1— A> then A +  A =  1. Assume that Z&si. Then 1-(1 — £j) = £j€s/. 
If A +  A =A  then A = l. In this case .s/ =  {A,A}- If A 5* A, then this leads 
to ß(x) defined in Lemma 4, (2).

(2a2) Assume that ^ < 0 .  Let

ßi -= ••• <  A ( ^  0) <  A + i  <  ... <  ßt+s,
where we write /= 0  if there are only positive roots. Since 5(x) is monotonically 
decreasing in xsO  and increasing in x^O, therefore

(6.3) 5(A) >  ... >  505,), S(ßt+1) <  ... <  S(ßt+s).

Since 1— ß1=ß,+„ 1— ß2 =ßt+s-i’ ■■■ > therefore r s / .  It is clear that A+*—A- 
In the case A +s^A  we consider the monotone sequence y v+i=S(yv), y0—ß,+s, 
yv€ л/, Jv+i^Tv» which is impossible.

(2a2a) The case A + s ^  A -  Let .й/  be defined as the solution of S(g) = 
=ßt+s• If £>>0, then £></?,+s since A+s is the largest element in si. But in the 
interval ( 0 ,  A ) = ( A >  £ 2)  w e  have (ßt+s—)S(g)< g, a contradiction. So £ > = 0 .  

Then, by (6.3) we get g=ßi, i.e.

Hence 

Since 

we get

A+. = S(ßd = 5(1 - ß t+s). 

ßt+s = A ( l - 2 ß t+s)+S(ßl+s). 

S(ßt+S)es/, s(ßt+s) S  ßt+s, 

ßt+, ^ A ( l - 2 ß t+s)+ßl+s,

i.e. 1-2A +,S0, A+,^1/2. Since A+S= l - A ,  weget A §=1/2, and so ß1=ßt+t= 
=  1/2. This implies =  {1/2}, 5  = 1/2, which leads to the polynomial Q (x) =
= x —1/2.

(2a2ß) The case A+s =  A- (i) If all the roots Д are positive, /?j< . . .< /i;V, then 
5 ( A - = 5 ( jS jy ) ,  so 5 (ß d —ßi (/=1, 2, ..., A). JV^2, since 5(x)—x = 0  has 
at most two solutions. If Á = 2  then A —A> but we assumed that A^O- If A = l,  
then A =  l/2, which leads to ß (x )= x —1/2.

(ii) If £ > 0  then 5 (/l)> 0  for every ß£ s i ,  consequently every root is positive.
(iii) If s i  contains only two elements, then they are A>1 —A- Then 5(1 —A) = 

=  1 —A, i-e. A — 1—A- This leads to ß(x) given in Lemma 4, (2), except when 
A =  1/2. Then we get Q (x)= x—1/2.
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(iv) From now on we assume that there exists at least three roots of Q, 
and 2.

Let y € j /  be the solution of S(y)=/?(+s_ i(< ^2)- We deduce that y^O. 
Assume in the contrary that y > 0. Since /1(+S_j€,s/ is the second largest, у + £2, 
therefore у  ̂ Ä + .-,• If y —ßt+s-л ? then S(y) =y, consequently у =  £1; but we 
assumed that But implies that /?,+,_!=S(y)«=y, which is
impossible. Therefore y^O. From (6.3) we get that y —ßi- So

S(ß i) = Ä +.- i ,  Ä =  l-Ä + ..

Assume that í ^ 3. Solve the equation ßt+s~2 =S(y) in у£л/. Since /?t+s_2 is 
the third largest root and S(y) + /?,+s_2 if y= ßt+s, ß2, therefore from (6.3) we get 
y= ß2 or Since ßt+s-  1+Д2 =  1 therefore S(/?,+s_0>S(/?2), consequently
y=/?r+s_a, i.e. ß,+s-2 =S(ßt+,^2), so we have f t+5_2=£i. This is impossible. 

Let now i-^2.
Let i= 2 , i=2. Then ß i^ ß 2( ^ 0 < )ß 3<ßi , S(ßi)=ßi , S(ß1)= ß3. Since 

2̂ + ̂ з=1, therefore S(ß3)>S(ß2), andso S(ß3)=ß3, S{ß^)=ß2. This would imply 
that |!  =  ̂ 3>0, which is impossible.

Let j = 2 ,/= 1 . Then ß1( s 0 ) ^ ß 2̂ ß 3, ß2= l - ß 2, ßt =l/2, S(ß3)= ß3, S(& )= 
=  1/2, 5(1/2)=& . Hence

1 ~ßi = ßz=  S( 1 ~ßi) = A (  1 - Iß J + S iß , )  = A(  1 -2)90+1/2,

and so — ßt =A(l —2/0). Since /?х +  1/2, therefore T = y .
Assume that Л =  1/2. Then

А  =  г. =  1 +  / 1 - 2 £  А = - У 1 - 2 £

From S' jy-J=/?! we get that — )1 — 2 E = y + F . The last equation has two solu-
21tions: £ = — — and E=3/S. The positive U is not interesting for us (see (ii)).

Put £ = - + .
1

Then 5 (л )= у Х 2- у ,  A = J ’ E =-~'y  and

ßi = -5 /2 , /? ,=  1/2, ß3 = j .

This leads to Q(x) stated in Lemma 4, (4).
Let j = l ,  t —1. Then s.4 = — £2}, and in the case 1 — c2+  f 2 we get

S(l — £2) =  1 — i 2, i.e. £i =  l — £2, whence + = 1 follows. This leads to <2(x) stated 
in Lemma 4, (2).

(2b) The case A < 0. Let B = —A > 0. Let

ß1 <  ... <  ft( =  0) <  ßt+1 <  ... <  A+s
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be the set of elements of si. Then iS l .  Furthermore S (ßj) ( j=  1, i+ j)  are 
all distinct,
(6.4) S iß J  -< ... <  S(ß ,); S(ßt+1) >  ... >  S(ft+s).

Since S(s i)  = s i ,  therefore E > 0. Indeed, if is<0, then S (ß )^ E  for every 
ß £ s i ,  i.e. 0 which is impossible.

(2bl) I f  1=0, i.e. the roots /? !< ...< ßN are positive, then ßi=S(ßN), ß2 = 
=SQSjv- i), ••• , and so by ßi+1 = l —ßN_t we get that each ßt is a solution of the 
equation x = S '( l— x). Since this equation has at most two solutions, N s 2. If
jV = 1 then $ Ш  =  1/2, then d/ =  {l/2}, Q ( x ) = x - 1/2. If jV=2, then s i  = {ß1,ß 2),
ß i+ ß2=l, S(ß1)= ß 2, S(ß2)=ßL. The equation <S(1 —x)=x  can be written in 
the form

Bx2+ ( l - 2 B ) x + B - E  = 0.
The roots /?l5 ß2 satisfy the condition ß1+ß2 = ̂  if (1 — 2B)/B= — 1, i.e. if В — 1. 

If B = 1, then

ßi — ~2~ — 1 — Ъ + 4Е, ß3 — — + ~2 У~~ 3 + 4.E.

This leads to the polynomial stated in Lemma 4, (3).
(2b2) Let ts^2. Since ßl+s= l —ß1> —ß1, we have S(ßt+s)< S (— ßß), there

fore / ,= S (1  - f t ) .  Then ß2 = S(ßt+s^ )  or ß2 = S(ß1).
(2b2oe) The case ß2 = S(ßt+s_1). Then ß3 and ß2 are solutions of the equation

jc =  S(1 — x), so

ßi = T b ]' 1 + * B {E - \) ,  ßt = \ - ^  + J j 1 \ + 4 B ( E - \ ) .

The condition ß2 = 0 implies that

\/ l+ 4 B ( E - l )  ш 1 - 2 B,
and so B ^  1/2, furthermore

1 + 4B(E— 1) S  1-4B  + 4B2,
which holds if and only if E ^B .

But max ß = max S  (ß) ш E, consequently
P i s i  r  ß i s i  J

min ß =  min (1 —ß) = 1 —max ß ^  1 — E  £  1 — В S  1/2 =- 0.
P i s i  P i s *  P i s i

This is a contradiction.
(2b2ß) The case ß2=S(ß1). Since ß1= S ( l - ß 1) = - B ( l - 2 ß 1)+S(ß1), there

fore ß i= B + ( l-2 B )ß lt ßt - ß 1= B ( l - 2 ß 1).
Let /?i+s=5 '(y1), jSt+s_1=S'(y2)5 У1 , y é i s i . It is obvious that уг is the nearest 

and y2 is the second nearest element of s i  to 0. It is clear that ßt + s ßt + s - l  — 
= -B (y \ - y \ ) .  Furthermore ßt+s- ß t + , - i = ( l - ß i ) - ( l - ß 2)=ß2- ß 1= B ( l-2 ß 1), 
and so 1 — 2/?! =y\ —y \ .
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Assume that there exists a£si, 0 < a <  1. Then there exists a in (0, 1/2]. Hence 
it would follow that | j 2l —1- Therefore 1 — 2ß1—y l ~ 1, i.e. ft> 0 ,
which is impossible.

Now we assume that the interval (0, 1) does not contain any element of si. 
Then since the elements of s i  are symmetric to 1/2. Then s= t  and f t=
=y1= S(ßt+s). Then \ - ß f s i ,  \y2\ ^ \ - ß t. Hence

1 - 2 f t  =  min( y \ - y \ )  ^  (1 - ß , f - ß 2, = 1 —2ßt,
Уг*У1

and ftfeft, but this cannot occur if t^ 2 .
(2b3) Let t=  1. Then f t S 0 < f t<  . . .< f t+1, f t +i =  l - f t ,  S'(ft+1) = f t .  Since 

S(ß2)>...=-S(ßt+l), we get ß2=S(ßs) = S ( l - ß 2), ß3= S ( l - ß a), and so on. Since 
the equation ^ ( l — x)= x  has at most two solutions, therefore j + 1 s 2. Then 
•^ =  {ft> As}, f t + f t  =  l , ßi = S(ß2), ß2=S(ß1). This implies that B= 1,

f t  =  y - y l /- 3+ 4 ft ß2 = j  + ~ Y -3 + 4 E .

This leads to Q(x) stated in Lemma 4, (3).
So we have proved the following assertion that we state now as

L e m m a  5. I f  Q is a nonconstant primitive solution o f  (6.1) having a real root, 
then Q is one of the polynomials listed in Lemma 4.

7 .  T h e o r e m  4 . Let S (x)= Ax2 +  E, A^O, E 0 , Q a nontrivial monic poly
nomial over R such that it has at least one real root and satisfies

(7.1) Q(S(x)) = cQ(x)Q(x+1).

Then s ( y |  =  l/2, or S(x)=x2 + E, or S ( x ) = - x 2 + E, or i(.x) =  i f - y .  
Let N = deg Q.

0) i f  s (t ) =1/2 then

(7.2) # ß ( x )  =  ( x - i - j  .

(ii) I f  S  t̂ I/2, A = 1, then there exists a solution Q only i f  2|N. Then

(7.3) Q{x) = ( x - f t ) m( x - f t ) m, m = ^ ~ ,

ßi = - f - j \ / [ ~4E, f t  =  l  +  l | /T 3 4 £ .
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(iii) If S t* 1/2, A — —1, then there exists a solution Q only if  2|N. Then

(7.4) Q(x) = ( x - ß })m( x - ß 2)m, m = - j ,

ßi = -j - j Y - 3+4E, ß2 — — + — ]/—3 + 4E ,

S(x)=-i- x2 — , then there exists a solution Q only if
3|2V. T h e n

(7.5) Q(x) = (x + 5/2)"' ( jc - i - )  ( x - ^ )  , m =  - y .

The polynomials (7.2), (7.3), (7.4), (7.5) are solutions of (7.1).

P roof. In Section 6 we proved that there do not exist solutions Q having real 
roots if or A A 1, A t* —l, Ат* I/2. Furthemore we proved that in

the case S ^ y j =  l/2, x —y = ß ( x )  is a first degree solution of (7.1). Then (7.2) 
is a solution of (7.1) as well. From Lemma 3 we get that there exists no other solu
tion. Let now assume that A = 1, S  ^  1/2. Then (x—ß1)(x—ß2) is a second
degree solution of (7.1). So (7.3) is the unique solution if 2|7V (see Lemma 3). Assume 
that there exists an odd number K, and an R(x)( = Q(x)) for which (7.1) holds. 
Then R2(x) is a solution of (7.1) as well, consequently

(7.6) R (xy  = ( x - ß 1)K( x - ß 2)K.

Then the roots of R  belong to the set {ß1, ß2}. Since ß^Aß^, therefore К is an 
even number. We can discuss the case A = — 1 in the same way, so we omit it.

Let us consider now case (iv). By Lemma 3 we get that there exists no other 
solution if 3|!V. Let R{x) be a solution of degree K. Then R(x)3 is the unique solu
tion of degree 3K, consequently

Я(х)з =  (х +  5 /2 )* (х - -1 )  ( , _ 4 )  ,

whence we get that 3|K.
The last assertion is obvious. □

8. Let now T (x)= Ax2 + B x+ C be a real polynomial of second degree. Con
sider the equation

(8.1) i? (x )- i? (x + l)  =  R(T(x))

where R(x) is a rational function over R. By a linear transformation we may assume 
that (T(x)=)S{x)=Ax2+E.
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Let us put R(x) in the form

я М = т . = Р Ы + «(*>
V(x) V(x) ’

where (U, F) =  l, P(í)íR [x], cleg «<deg V. Since | S ( x ) | - » o o  if |x | -  

м(л") ~  -  and
and

V(x)
( 8.2)

-0 as |x|- V(S(xj) 
P (x )-P (x + l)-P (S (x ))

- —0 as |x| — <*>, from (8.1) we deduce that 

0 as Ixl — °°.
But this is possible only if

(8.3) P(x) =  P(x+l)+P(S(x)).
If deg P —m, then the degree of the right hand side is 2m, while the degree 

of the left hand side is m .  Then degP=0 or Р(х) = 0. This gives that P(x) =  0. 
Consequently, if R(x) is a solution of (8.1), then deg {/<deg V.

We may assume that U and V are monic polynomials. Let U(x)=xk + 
+м*_1х*-1 +  . . . , F (x)=xiV + t;Jv_1xiV~1 + ... . Then

R(x) = x*_iV(l + m*_i X- 1)(1 — r^_1x _1) + 0(|x |k“ iv_2)
as |x| —► oo. Hence

(8.4) R(x) = xk- N + (uk_1- v N„1)xk- N- 1 + 0(\x\k~N-*).
Then

R(x) — R (x + 1) — (x*_JV—(х+1)*_м)+(м*_1—uJV_1)(x*~JV-1 —(x+l)*-JV_1)-F
+ 0(|x |k- * - 2), 

i.e.
(8.5) P (x )-P (x + 1 ) = (TV-AOx^-^ + OOxI*-*-2).
From (8.4) we get

(8.6) R{S(xj) = (A x2)k “ * + Ö (|x|2(k ~Л) - 1),

and comparing with (8.5) we deduce that 2{k—N )= k —N —\, i.e. k = N — 1, 
and A = l.

So if I? is a solution, then A = 1 and deg t/=deg V— 1.
Let TV= deg V. From (8.1) we get

(8.4) [U (x)V  (x+ \) — V(x)U  (x+ l)]F(5(x)) = t/(S(x))F (x)F (x+1).

Since {U ,V)= \,  therefore (U (S (x)), V(S (x))) =  1, consequently

V (S  (x))|F (x) F(x +1).

Comparing the degrees of the polynomials and observing that A — 1, we get

(8.5) V (S(xj) — V(x)V  ( x + 1).
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Then
(8.6) £ /(x )F (x + l)-F (x )t/(x + l)  =  t/(S(x)).
From Theorem 1 we know that
(8.7) V (x+ \)  = ( - l ) wF (-x ) .
Observing that the right hand side of (8.6) is invariant under the transformation 
x-*- —x , and applying (8.7), we deduce that

( - l ) NU (x )V ( -x ) -U (x + l)V (x )  = £ 7 ( -x ) ( - l)* F (x ) -£ 7 ( -x + l)F ( -x ) ,

(8.8) [C /(x )( - l)* + £ /( l-x )]F (-x )  =  [C(x+1) + C /( -x ) ( - l )w]F(x).
We proved in Lemma 2 that (F(x), F (—x))= l. Thus from (8.8), F(x) divides 

U(x)(—l)N+ U ( l—x), the degree of which is less than that of F. This implies that

Assume first that F(x) does not have a real root. Then A = even, degu— 
= A — 1 =odd, so there exists a real root of U. Let t] be the largest real root. From
(8.9) we get that >/>-0. Substitute x=t] into (8.1). Then

So R (S (t])) and R (r\ +1) are of distinct sign. Since R  (x) is continuous on the real 
line therefore there is a root  ̂of R(x), (R (^)=0) in the interval with the endpoints 
S(rj), í/ + 1. Since t] was the largest root of j?(x)=0 therefore Con
sequently the inequality S ( x ) s x  holds for a suitable real x. Let £ be the largest 
solution of S(pc)=x. Since A — 1, therefore £>0. Let us write х=% into (8.1). 
Then

Ä (i) -Ä ({  +  l) =  Ä(S'(f)),

whence J?(£ +  1)=0. But this is impossible since 5'(^-Fl)=-«?-Fl.
Consequently this case cannot occur. Assume now that F(x) has a real root.

and so

C7(x)(— l)w+  17(1 —x) =  0, t / ( —x)(—l)w+ U(x+\) = 0.
Consequently
(8.9)
( 8. 10)

i / ( x + 1) =  ( — l)N+1C/(—x), 
i? (x+ l) = - R ( - x ) .

R(r,+ l)+R(S(r,)) = 0.

Assume that 0. Then, by Theorem 4 we

Since
( 8. 11)

1 1 1
x —1/2 x+ 1/2  1

S ( * ) - y
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therefore

is a solution of (8.1). 
Let now

K(x) = 1
jc —1/2

Then
U(x) = — +h(x), d e g h < A —1.

Л (x) = = K(x) + Mix), M{x) = - £ Ц - ,

and by (8.1) and (8.11) we get that M(x)(=R(x)) is a solution of (8.1), i.e.

Mix) = M ix+ \)+ M (Six)).

Since degA ^A —2, therefore A(x) =  0. Assume that E=0. By Theorem 2 we 
get that Vix)=xmix — l)m, m i l .  From (8.6) it follows that xm\Uix2), i.e. x|t/(jt). 
But this contradicts the assumption that (С/, V )= l .  So in this case there exists no 
solution.

So we have proved the following
Theorem 5. I f  for a real rational function Rix) and for a real S ix)= Ax2+E  

the relation
R ix ) -R ix + \ )  = R(Six)) (jc€R)

holds, then 5 (x )= x 2 + l/4 and R ix )———j-^-.

9. Let now r(x) be an arbitrary non-constant polynomial the degree of which 
is not restricted, R(x) a rational function written in the form

Ж х ) = т Ы ’ (t/’K) = L
Assume that
(9.1) Л («)-Л (я+ 1) =  R(t(n)) 

holds for n = 1, 2, ... .
We shall determine all R  satisfying (9.1) under the assumption R, t are real. 
Since (9.1) holds for infinitely many values n, therefore

(9.2) R i x ) - R i x  + 1) = R(tix))  
holds for every complex number x. Hence we get that

[Uix)Vix + l ) - V  ix) Uix  + 1 )] F (/(*)) =  U (tix ) )V ix )V ix + \) .

Assume that i?(x)^0. Since ({/, V )= l ,  we get V[t(x))= cV(x)V ix+ \).  If 
d e g F s l ,  then deg t —2. This case was considered in Section 8.
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Let now assume that V(x)=constant =  1. Then R{x) is a polynomial satisfying
(9.2). R(x)=constant is not a solution. If d cs.R—M, then dee (5(x) — R(x +  1)) = 
= M —\, degR (/(x))= A Í-l.

Hence we get that /(x)=constant which was excluded.
From Theorem 5 we get immediately
T heorem 6. Let i£R[x] be a nonconstant polynomial, R a nonzero rational 

function over R, such that (9.1) holds. Then deg t=2, the leading coefficient of
which is 1. Let t (x) = x2 + Bx+C. Then — = C —~  + ~=r, R(x)=------ ------- , cf R.4 4 2 5  1
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