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NOTE OF THE EDITOR

The name of our periodical Acta Mathematica Academiae Scientiarum Hunga-
ricae has been abbreviated to Acta Mathematica Hungarica according to a decision
of the Hungarian Academy of Sciences. This modification does not effect the status
and the editorial policy of the journal.
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SOME PROPERTIES OF THE CATEGORY OF
INTEGRAL DOMAINS

E. FRIED (Budapest)
To the memory of my teacher P. Taran

1 Introduction. A binding category is a category C such that there is a full
embedding (for the definition see Section 2) Gra—C ofthe category ofgraphs into C
(and therefore there is a full embedding A-+C ofany category A ofalgebras [H —PJ,
[H—L]). Let IntOdenote the category of integral domains of characteristic zero with
unit elements together with their (unit preserving) homomorphisms. Int0 has been
proved to be binding in [F—S2. In particular, there are large integral domains with
prescribed endomorphism monoids. The integral domains constructed are quite
particular, however. For example, they contain no algebraic elements apart from the
integers. Therefore, the following natural problem was raised by J. Sichler [S]:

(*) Given an integral domain | of characteristic zero and a monoid M, does
there exist an integral domain J containing | such that End (J)s?M?

This question was answered in [F] for the special case when M is a group. In
the present paper we give an affirmative answer to this problem and some stronger
versions of it.

Analogous problems (endomorphisms and category of structures containing a
given substructure) have been investigated for unary algebras [KJ, [KZ, lattices
[A—S], and graphs [B—N].

The methods employed in this paper are, partly, from earlier papers of Fried
and Sichler [F—SX, [F—S23. In 1976 the author proposed a related problem, not
solvable by these methods, at the mathematical competition of the students of
Hungarian universities. It has turned out that the proposer’s and the solver’s methods
can be generalized to settle Sichler’s mentioned problem.

Theorem 1.1. Let I be an integral domain of characteristic zero. Then the category
of integral domains containing | is binding.

Above, as throughout this paper, our integral domains possess unit elements
and these are preserved under homomorphisms by definition.

One can ask how these homomorphisms act on I. Of course, in a simple construc-
tion proving Theorem 1it is natural to choose these actions to be trivial (the identity
map). For small categories, however, one can essentially prescribe the action of the
homomorphisms on I. (Recall that a category is small if its objects form a set.) We
prove even more.

Theorem 1.2. Let XX be a small category. For any functor &: Jf—IntO there
exists afull embedding 'F: .if -*Tnt0 suchthat ®(X)<=P(X) for every Ob (if)
and for every morphism ¢p: X-+Y, the homomorphism @((p) is the restriction of
P(X) to ®(X). In addition, one can require that all objects in the range of 4? have the
same cardinality.
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4 E. FRIED

The following problem has been raised by L. Babai [B]. Let 01 be a set of rings
with unit element such that each of these rings has the same additive group A. These
rings together with their unit-preserving homomorphisms form a (small) category.
The question was which categories have such a representation. We prove that every
small category can be represented this way even by integral domains.

Theorem 1.3. Given a small category >K, there exists an Abelian group A and a
full embedding Jf —Int (A) where Int (A) denotes the category of integral domains
having A for their additive group.

In the study of endomorphisms we exclude characteristic p because of the trou-
ble caused by Frobenius endomorphisms jo—xp. The category Intp of integral do-
mains of characteristic p is never binding because of these ever present central endo-

morphisms One can, however, form a factor category Intp by setting (p=¢ if
(p()p—p(x)pm for suitable positive integers n,m and all jc in dom <p=dom ¢
(ep,  any morphisms in Intp with common domain and range). The author and J.
Kollar conjecture the following.

Conjecture 15. The factor category Intp is binding. Moreover, for any in-
tegral domain / of characteristic p, the category Intp(/) is binding (the objects of
Intp(/) are those integral domains which contain / and the morphisms are the mor-
phisms out of Intp).

2. The main result. Before stating the main result we have to quote some defini-
tions and results.

A concrete category is a category XX together with an “underlying set” functor
O:JT—Sets. Themap O: HoT (A, ¥)—Horn (OA, OY) has to be one-to-one
for each X, Y"Ob(XK) (mis faithful).

A functor F: XX Z£ is afull embedding if it is an embedding (i.e. one-to-one
on objects and morphisms), and it is full (i.e., the map F: Horn(X, Y)—
—Horn (F(X), F(Y)) is onto for each X, F€Ob(X)).

Let (OK, O) and (S, O") be concrete categories. A full embedding F: XX X
is a pseudorealization if nX"k UV'F(X) (afgOb (>K)) and for any morphism
P: X-+Y in XK, [K? is the restriction of O'F(rp) to OX. A pseudorealization is
exclusive if the image of the “excess” O'F(x) —O X under 0O'H<p) is disjoint from
Ovy, ie, it is a subset of the “excess” O/.P(¥)\[1]Y.

Clearly, composition of (exclusive) pseudorealizations is (exclusive) pseudo-
realization as well.

The following result of Hedrlin, Pultr and Vopenka [V—P—H], [H—P7 is
fundamental for the theory of full embeddings.

Theorem 2.1. Every category of general algebras (infinitary operations and
relations admitted) has an exclusive pseudorealization in the category of graphs.

(Graphs are symmetric irreflexive binary relations.)
We need the following two observations on small categories.

Proposition 2.2. Every small category XX can be endowed with a faithful set
functor .

Acta Mathematica Hungarica 41, 1983



THE CATEGORY OF INTEGRAL DOMAINS 5

Thus, in case of small categories we only have to deal with concrete categories.

Proposition 2.3. Every small concrete category has an exclusive pseudorealiza-
tion in the category of graphs.

For the proofs see, e.g., [H—L],

Under an assumption on set theory much more powerful results have been proved
by L. Kucera (see: [P—T] pp. 99—100) and Z. Hedrlin [H], [Ku].

(M) Assumption. The class of mesurable cardinals is a set. (In other words, there
is a cardinal greater than any measurable cardinal.)

Theorem 2.4. (Kucera, Hedrlin). Assuming (M), every concrete category has an
exclusive pseudorealization in Gra (the category of graphs).

Definition. Let (X, O) and (£?, O') be concrete categories and ®: X -*
be a functor. We denote by XU ®(X) the concrete category (X, O") defined by
O"((p)=0 ((p)00'®((p) (<piX) (where |j stands for disjoint union).

Now, we are able to state the main result of the paper.

Theorem 2.5. Let (X, O) be a concrete category and @&: —int0 a functor
such that

(i) |®(A)| is bounded (XEOD X).

Assume further that

(ii) there exists an exclusive pseudorealization P: X U ®(.3)-Gra.

Then there exists afull embedding d: X —Int0 such that ®(X) is a subdomain of
B(X) and d((p) is the restriction of P(cp) to P(X) (= X —YEX).

In addition, we may require thatfor any given small subcategory of X T(2)
have the same cardinatily when X ranges over Ob X 0.

Remark 2.6. (i) and (ii) are automatically satisfied for small categories. (For
(ii) use Proposition 2.3.)

Remark 2.7. Under (M) condition (ii) is always satisfied by the theorem of Ku-
cera and Hedrlin. (Theorem 2.4J.

We would like to get rid of the somewhat sophisticated condition (ii) without
assuming (M). We do not know the answer to the following

Problem 2.8. Let ®: Gra—Sets be afunctor such that \®(X)\ is bounded for
all graphs X. Does there exist an (exclusive) pseudorealization Gra U ®(Cra) —Gra?

(Of course, we may assume that (M) is false.)

A positive answer to this problem would make the assumption (ii) in Theorem
2.5 superfluous.

Next we derive Theorems 11 through 1.3 from Theorem 2.5.

Proof of Theorem 11 Let us apply Theorem 2.5 with X =Gra, ®(X)=1
("TgObGra), ®((p)=:4, (“€Mor Gra) (i) is trivially satisfied, (ii) is an obvious
consequence of Theorem 2.1. The conclusion is a full embedding T : Gra—int0
such that !'P(/1")5/ for every X. |

Proof of Theorem 1.2. X can be viewed as a concrete category by Proposition

Acta Mathematica Hungarica 41, 1983



6 E. FRIED

2.2. (i) and (ii) of Theorem 2.5 are satisfied by Remark 2.6. The conclusion of2.5
restates that of 1.2 |

Proof of Theorem 1.3. We apply Theorem 1.2. Let 1=Q, the field of rationals.
Let us define the functor Int0 by setting ®(X)=1 forall A”Ob jf. Then
®(th) = idQ is automatically satisfied for each cpeXX. The integral domains P(X)
obtained by Theorem 1.2 all have the same cardinality x and contain Q. Therefore
they are jr-dimensional vector-spaces over Q hence their additive groups are isomor-
phic and may be identified. |

Let us mention that the construction used in the proof of Theorem 2.5 will give
us that A dependes only on the least upper bound of the cardinalities of O (X)
(JTEOD ).

The method used in the proof of Theorem 2.5 is based on the factthat every
homomorphism of integral domains preserves two properties of the elements:

(@) The element is invertible.

(b) The element belongs to the p-component of the multiplicative semigroup of
nonzero elements and has infinite height in this component.

In the proof of Theorem 2.5 we shall extend the integral domains of the form
I —d(X) in many steps. In the first step we extend it by variables over I. This varia-
bles will represent the vertices of the graph P(X) and some auxiliary variables which
will be the vertices of a rigid graph. The second extension will make these auxiliary
variables infinitely high so they will be “recognizable”. In the third step we extend
the ring by inverses such that we will be able to recognize the vertices and the edges
of the graph P(X). According to this way we shall break the proof into three parts:
1. Which elements are recognizeble and how can we recognize them. 2. How to
construct the proper integral domain by means of graphs. 3. The actual proof of
Theorem 25.

3. Some properties of integral domains. Let 1 be an integral domain (with unit
1 and char 1=0) and let X be a set of variables over I. Consider the polynomial-
ring 1(X). If X" is the least subset of X such that fEI[X'], for some given f€j[X]
then we shall say that the elements of X' occur in/ and the elements of X \X "' do
not occur in/. If there are disjoint subsets XItX2o0f X such that fEI[Xj\ and g£J\XJ
then we shall call/ and g disjoint polynomials.

An element a of an integral domain R will be called a power (in R) if there
exists an element b£R and an integer k2 such that a=bk

Proposition 3.1. Let ¢cXO be an element of the integral domain I; K the alge-
braic closure of the quotientfield of I; fEI[X]\x1,  xr£X elements not occurring in
/b; Kr, ..., krnon-negative integers with positive sum. Define the polynomial F(xx, ..., XI)

y
F(xi, ..., xnN=c-xT1- -

Then we have:

(i) If fAO then F is not a power in K[X\.

(i) Iff is not apower in K[X] then Fis irreducible in K[X].

Proof, (i) For r=1, Fand its derivative are mutually prime, thus Fis not a
power in K[X], indeed. In case ré 2 the condition F=Gk implies F(x, ...,x)=
=G(x, x)k yielding, by the special case, k=1 Hence (i) is proven.

Acta Mathematica Hungarica 41, 1983



THE CATEGORY OF INTEGRAL DOMAINS 7

(i) Since K contains all roots of unity, in case r=1 the reducibility of F would
imply that/ is a power in K[X], which is not the case. Suppose r*2, F=G- H.

Consider F'=F{xlt xj, G'=G(xla ..., A9, H'=H(x1...ny). Now, we have
F'=G' H' and:

degF = degG+deg//, degF'= degG'+deg#'

deg F = deg/", degGsdegG', degFls degH".

These yield, using the special case, that one of deg G and deg H equals zero, i.e.,
F must be irreducible. |

Notation 3.2. Let X be a set of variables over / and let L be the algebraic
closure of (the quotient field of) /[X]. For each natural number i and for each x£X

we choose and fix a unique satisfying &X=x and (x)2=i_Ix for />0
(we could choose any other fixed prime in the exponent instead of 2). Let, further,
iX={pcn:(;X} and ,,X= UtX (i=0, 1, ...). We shall denote by /[,,X] the subrlng of

L generated by (X, i.e., the union of the ascending chain of the polynomial rings /[, X],
For disjoint sets X and Y of variables over /, /[,,XU Y] will denote the subring of
the algebraic closure of /[XU T] generated by /[,,X]JU/[T].

Definition 3.3. Let I, X, Y be as in Notation 3.2. A subset H of /[,,XU Y]
will be called normal if H does not contain any element of 1and the elements of H
are not divisible by any element of ,XU Y {in/[,,.XU Y]).

Notation 3.4. Let/, X, Y be as in Notation 3.2. and let H be a normal subset
of /[,,XU ¥]. We shall denote by /[,,XU Y/H] the subring of the quotient field of
/[,,XU Y] generated by /[,,XU T]U// 1 (H -1 consists of the multiplicative inverses
of the elements of H). Further, /[;XU Y/H] will denote that subring of the above
field which is generated by Z(XU YJUH,-\ where Ht stands for AM/[«XnY].

We have, clearly:

Proposition 3.5. For anyfield K the unique factorization holds in K[tX U Y/H], |

In virtue of Proposition 3.5 we shall consider the elements of X[,XU Y/H]
as quotient of two mutually prime elements of X[(XU T].
Proposition 3.5 yields, also:

Proposition 3.6. If K is afield then an element of X[, XU Y/H] is invertible in
X[;XU Y/H] iff both the numerator and the denominator are products of an element
of K and some irreducible divisors of elements of H. |

Definition 3.7. An element a of an integral domain | will be called high (in I)
if the equations x(2)—a have a solution in I, for every natural n.

We want to find all the high elements of /[,,XU Y/H]. Clearly, the elements of
,X are all high. The converse is, generally, not true but we have:

Proposition 3.8. Let K be the quotientfield of / and let n be a high element of
/[.XU f/d]. Then u—a-tl-...-tr with some high a£K and with q, ..., ¥€;X
for suitable i.

Acta Mathematica Hungarica 41, 1983



8 E. FRIED

Proof. We proceed through several claims.

Claim 1 If Alis a field and u is high in K(x) then uf£K and wis high in K.

In this case we have mutually prime polynomials f and gt, for =0, 1, ...,
satisfying (f/gdd=u. This yields, by unique factorization,/o=(/})4 and g0=(gi)3,
for each i. This means, however, that both the degrees of/,, and gOare divisible by all
powers of two, i.e., deg /0=deg g0=0. Further, this implies deg/f=deg #;=0,
hence, UEK and u is high in K

Claim 2. If Zis a finite set of variables over the field K and uf_K(X) is high, then
u is high in K.
This statement follows from Claim 1, using an obvious induction.

Claim 3. Let K be a field, x a variable over K, L=K(x) and M=L[{a}].
If nis high in M, then u=v(iX)J where v is high in K and j is some integer.
fix)
9(x)

We may suppose, without loss of generality, that u=xJ where X, f

and g are mutually prime (j any integer).

If nis high in L we are done, by Claim 1

Thus, we may suppose that there isa vdM, v~AL such that vZ’=u, for some k.
If vad~L, then we start with u2”linstead of u. Therefore, we may suppose, that n
was chosen such that az"b. Now, we change v to B2tl Thus, we have VEM,
v8L, such that v2=u. Now, we choose y=iX such that v~L(y) but v$L(y2
(such an tx must exists, for v$L).

Since y (as well as x) is transcendental over K, y$L(y2, i.e, L(y) is an alge-
braic extension of rank 2 over L(y2. Thus, v is of the form v—a+by with a,
£L(yd. Since v2=u”~L"L(yd, we have a2+bz2+2abydL(yd, yielding 2abyf
£L(y2. Now, the condition y $L(y2 implies either a/—% or b=0. The second

case is impossible, for r*L{y2, so v—by, i.e., v=y'- ;o with mutually prime
a
p and g, which are not divisible by y and with an odd t. According to our choice,

e, yZ pUy? —\P—U—XJ f(x) —yJ f(y2)

g(x)
Now, we ha\L/‘e,ybay unique factorization 9(y2)

*:/',

y2 =yJ2; P2y = q2(y9 = g(yay
The first equation gives us /=1, t—, for ls odd. This yields p2(x)—(x) and
q2{x)=9(x).
Since un is high so is either v or —v, and we may suppose V is high. Since u—v2

ifvishighin L(y), we are done by Claim 1. Otherwise, similarly as before, there must
bea wEM, w$L(y) suchthat w2ev, for some k. Now, we are going to show that

z=wZX 1$L(y). Indeed, if z were of the form z=y rE’yg with mutually prime
s{y

n(v
y, I, s then z2 could not be of the form y‘—(—é with an odd t. Therefore v has

: a(yd
exactly the same properties as n has.

Thus, we can continue our procedure, i.e., we have a sequence of elements

Acta Mathematica Hungarica 41, 1983



THE CATEGORY OF INTEGRAL DOMAINS 9

u=Q, v=1,,... such that iu=(i_l)2 and {J:(;xy-;_Lqu))-(x,f , gt are
1 *

mutually prim) satisfying /i=(/i+])2 and gi=(giH)2
These imply, however, that fi,g0"K, i.e., nis of the desired form.

Claim 4. Let X be a finite set of variables over the field K, L=K(X) and
M=L[mX]. If nis high in M, then u=vmi-.. &r where v is high is K and
h> ees> QIFT-

The claim follows by an obvious induction from Claim 3.

Claim 5. Proposition 3.8 is true for finite X and Y.
Indeed, applying first Claim 4 to the quotient field of /(7), then Claim 2 to |
we get the desired property.

Claim 6. Proposition 3.8 is true.
Since n depends only on finitely many variables, we may apply Claim 5.

We need one more preliminary result on monomials, i.e., on elements of I[X]\1
which are products of elements of IUX.

Proposition 3.9. Let K be afield containing all roots of unity and let n and v be
disjoint monomials in K[X\. Then each irreducible divisor of u—v is of the form w—z
such that for some natural number Kk we have u=wk, v=zk. In particular, wand z
are disjoint monomials.

Proof. We may suppose, by the disjointness, that u—v is of the form A-x"—B
with some positive n, where Xx£X and A, BAK[X™ for some finite subset X 1of X not
containing x. If u—v is reducible over K(Xj), then it is, also, reducible over K[Xj\.
Since u and v are disjoint A xn—B=(C «x"—D) ®E is impossible with C, D, E in
K[Xj\, unless E belongs to K. Thus, the reducibility of u—v implies the reducibility
of xn—B!A over K(Xj). Hence, there are polynomials P, Q in K[Xq and a natural d
dividing nsuch that (PIQ)d=BIA and P and Q are mutually prime. The unique prime
factorization and the disjointness of A and B imply B—Pd and A= Qd. Thus,
u—v is the product of all P exnld—emQ where e runs over the d-th roots of unity.
The conditions for P and Q give us that they are, also, disjoint monomials. Continuing
the procedure the properties of degrees prove the statement. |

4. Properties of integral domains constructed by means of graphs. We can for-
mulate the conditions in Theorem 2.5 as follows:

To any object X in the given category X there is assigned an integral domain |
the cardinality of which is under a given bound and a graph whose underlying set
contains |, i.e, it is of the form /U Y. Having an other induced integral domain I
and a graph onthe set /'U F' assignedto xfXf and any map <1 x-+x' the exclu-
sive peseudorealization assigns to (pa map P(<p) such that the underlying set mapping
O P(tp) sends / into I' (and is a “restriction” of a homomorphism) and sends Y
into Y’

Our task is to construct integral domains “containing” ICY, 1'U Y', ... such
a way that the extensions of the graph-homomorphisms yield a “one-to-one” corres-
pondence between the graph-homomorphism and the ring homomorphism.

Since we have a bound for the cardinality of all integral domains in question,

Acta Mathematica Hungarica 41, 1983



10 E. FRIED

we have a rigid graph <S{X S) such that the cardinality of X is greater than the given
bound.

Thus, to construct the integral domain we are given an integral domain /, a
graph S(1UY, T) and arigid graph ¥Y(X, S) with |/|< |Z|. (The graphs are, for
our purpose, directed, connected and loopless. A rigid graph is a graph with no other
endomorphism but the identity.)

To manufacture the integral domain, described above, we shall constract a ring
ofthe form I[QX U Y/H] with a special H. Our aim is to recognize the elements of X,
of 7UT and the relations T and S. To this end, we shall use Proposition 3.8.
However, in this proposition we had to use the quotient field K of /. This will not do
any harm, for the homomorphism will map into K[mX UY/H] and it is enough to
recognize the elements in question in this ring. However, this will make the formula-
zations of the forthcoming propositions a little more complicated.

Firstly, we construct H:

Definition 4.1. Let | be an integral domain, Y a set of variables over Y,
J{1UY, T) adirected, connected, loopies graph and $(X, S) a directed connected
rigid graph.

We define in 1[LUX UY]

(M) #! = {xi-Xj\x,,XjEX, Xt* X))

(i) tf2= G- 2Xj—1YT,, Xj) 65}

(iii) # 3= {x1+x2+Xi\,xi€rX; x1rx2 are twofixed elements of X }

(iv) Hi = {x3+ x4+ M-x5+ti| (n, v) T\ x3,xi,x5 are distintc fixed elements of
X such that {x4, x}I{a-3, *4,*s} = 0}

(v) , We choose and fix an infinite Subset (n:6, x7, ..} of X disjoint t
{*!, x2,x3x4,x5 and define H3={xX+x3k+l+x3+i+ul\ufJU Y, k>\ integer}.

Letfinally H= HxUtf2UH3U UHh.

Now, we are going to show that we can recognize the two graphs using only the
algebraic properties of I[mMX\JY/H].

Proposition 4.2. The elements of H are not powers and the elements of Ht
(2 =ki= 6) are irreducible in K[aX U Y] (K is the quotient field of I).

Proof. The conditions of Proposition 31 are clearly satisfied, using (i) for Ht
and (i) and (ii) after for the other Hrs. |

Proposition 4.3. Let nand v be high elements of /[RIU ¥] not both of them
belonging to 1.1f u—v is invertible in I[mX U Y/H] then there exists a natural number
k such that both uZ‘and vXare products of an element o f the quotientfield K of1and a
power of some element of X. In addition the quotient of the two elements of K is a root
of unity.

Proof. By Proposition 3.8, u=c-ui and v—d-v1 where c and d are high in
K and Ui, M are products of elements of some ,.X. Since K[UX UY/H] is the union
of all K[tX UY/H] we may choose n so that K[nX U Y/H] contains, also, the in-
verse of u—v. The invertibility of u—v, the normality of H and Proposition 3.6
imply that nand v are disjoint (monomials). Hence n and v are of the form

N =_CceyHe...oy)", v=dej&Y eeee oM,
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where ylt...,ys,ys+l, ..., yr are distinct elements of ,,X and k1r k,, ks+1, ..., kr
are non-negative integers.

Since n and v are disjoint, we may apply Proposition 3.9. Now, consider the
irreducible factors of u—v in L[aX{JY], where L is the algebraic closure of K.
These are of the form w—z with disjoint monomials w and z.

By Proposition 3.6, w—=z is a divisor of some element of H, i.e., by Proposition
4.2, either an element of H2U ... UH5 or a divisor of some element of H1. The first
ones are not of the form w—z with disjoint monomials, so w—z must be of the form
e-, Xi—]m. X with some 2"-th roots of the unity e and rj. We may suppose, without
loss of generality, that e=I. By divisibility and disjointness, one of ,x:and rX]
occurs in u, the other in v, say ,xi=y1, ,,Xj=ys+l. The divisibility yields:

o (N1+)* (ke =d.(ystDk  wsrr
where €' is a root of unity. By unique factorization we must have
n—ceyl and v —dsey3

with a positive integer k, and we have e'-c=d, i.e., d/c is a root of unity. Since
u, v,yi,yi*K[mX{dY], we have c, dEK[nXVJY], i.e., c,dEK. |

Proposition 4.4. Let n andv as in Proposition 4.3, such that u—2v—I is inver-
tible. Then there is an (xt, Xj)ES satisfying u=xt and v—Xj.

Proof. By Proposition 4.3 u=c-y$, v=d-y\ (yl5y2£rX), and d/c is a root
of unity. We may, also, suppose that k is odd. Thus, by Proposition 3.1 u—2v—1
is irreducible. By Proposition 3.6, the invertibility of u—2v—\ implies that it is a
product of an element of K and a divisor of elements of some Hi (7=1, ..., 5). By the
irreducibility of u—2v—1 we have only one factor. Since in our case u—2v—I de-
pends only on two variables, /=4 and i=5 is impossible. Since the constant of
u—2v—1 does not equal 0, we have iVl and iV3. Thus, it is of the form
a(xi—2Xj—1) with a£K, and (xt, Xj)£S. This implies immediately «=0, k—1,
a~1and M, y3={Xi, Xj}. If yl=xJ,y2— then c——2, —2d=1 and d/c=
= 1/4 is not a root of unity. Hence yi=xf, y2=Xj. |

P roposition 4.5. Let uCl[a,XU Y/H] such that the elements x 3k-\-x3k+1+ x 3k+2+ 1
(k > 1 integer) are invertible. Then u£lU Y.

Proof. The above elements are, of course, invertible, also, in

where L is the algebraic closure of the quotient field K of I. Since LAXV]j Y/H]
is the union of all L[tX UY/H], we may suppose that u—f/g with mutually prime
/, 9EL[,,X\J Y], Since/ and g together depend of finitely many variables only, there
exists an integer k>\ such that neither of x3k, A3fctl, x32 occur in/ or g. We may
suppose, without loss of generality that k =2. We may change n, if necessary, so
that L[,,X\J Y/H] contains, also, the inverse of x6-fxv+x8+//g. Since H is normal,
by Proposition 3.6, we have that both g and F=gmx3+x7+xs)+ f are products of
elements of L and of irreducible divisors of elements of H.

By Proposition 3.9 and Proposition 4.2 these divisors are either of the form
kXi—e-KkXj with some root of unity e or they belong to H2U...UH3.
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12 E. FRIED

We take care, firstly, of the elements of H2 and the elements of the form
KXi~e-kXj. Denote y—kxt and z=KkXj or y—x{ and z=Xj. We are going to
prove that y —ax—b (a, b£K) do not divide F. Otherwise the substitutiony —ax +b
would send F to 0. Observe, that xe, x7,x8 do not occur in/ and at most two of
them occur in y—ax—b, therefore the polynomial got after the substitution has
positive degree in one of xe, X7, xg, unless the substitution sends g to 0. In that case
the image of f=F —g(xe+x7+x8 will be 0 as well, implying that y—ax—b is a
common divisor of g and/, in contrary that/ and g are mutually prime.

Thus, F is a product of elements of LUH3UH4UH& Since x6, x7, x8do not
occur in/ and g, the polynomial F has degree lin each of these variables. Therefore,
one of the factors contains each of these variables, namely on first degree. Since F
does not contain products of xe, x7, x8, these variables must occur in the same irre-
ducible factor. The only elements of L(JH3UHAO Hbwhich contain x6, x7, x8 are
the elements of H5, i.e., we get F=G mx64-x7+ x8+ B with some vEIU Y.

Comparing the two expressions of F, as polynomial in x6 we conclude G—g
and f—vmG. Hence

v-G
G - rf/U f.

I

Proposition 4.6. Let L be the algebraic closure of the quotient field K of the
integral domain 1. Suppose, for some aEL andfor some u,vdlUY the elements
x1+x2+arxi and x3+xi+ux&-v are invertible in I[aX UY/H]. Then, we have a—1
and (u, v)6T.

Proof. By Proposition 3.1 the given elements are irreducible, thus, by Propo-
sition 3.6 they must belong to H. An obvious comparing gives that only the stated
cases are possible. |

5. Homomorphisms of integral domains constructed by means of graphs. In
Section 4 we have, actually, given the action of the functor ¢ mentioned in Theorem
2.5 on the objects. Next, our goal will be to describe the action on morphisms.

Definition 5.1. Suppose, we are given two integral domains | and I', moreover,
two graphs /=/(/U F,7j and J'J(FUY' T).

A homomorphism will be called an J'-homomorphism if the restriction
of (pto | is a 1-preserving ringhomomorphism into /'.

Proposition 5.2. Let J, JM€Int0, &=0(X, S) a rigid graph, such that \X\>-
>max (|/|, |/']). Besides let each graph-homomorphisms < ,f(1UY,
f', T') be an J-homomorphism.

Then, there is a one-to-one correspondence between the J-homomorphisms
@ J{INY, T)-/(/'UT", TN
and the \-preserving ringhomomorphisms
®: ILXOY/H]- I'LXOY'IH']

Acta Mathematica Hungarlca 41, 1983



THE CATEGORY OF INTEGRAL DOMAINS 13

established by the extension and the restriction, respectively. (H' is constructed by /'
and similarly as H is by / and §.)

Proof. Suppose, first, that the homomorphism @ is given. It maps X into the
quotient field of 1'[aX U Y'/H']. Since the elements of X are high in 1[nX U Y/H],
so are their images. By Proposition 3.8 these elements are of the form a-etxe... tr
(adK', tidnX, K" isthe quotient field of I, n is a natural number). Since the elements
of A are invertible, the restriction of ®to X is an injective mapping. Combining this
with the condition |A'|>|/'|, wegetthatthere existsan xtd X satisfying u=®(x)$T.
Since 10is connected, there exists an XjdX such that (xt, Xj)dS. Thus, we can apply
Proposition 4.4, which proves ®(x,), ®(xf) dX. Using the connectedness of X and
the above argument in finitely many steps, we get that ®(X) Q X and the restriction
of ®to X is a graph-homomorphism and by the rigidity of 10 ® acts on X identically.

Since ® gives the identity on X, ®(,*,)=£ <kt for some root e of the unity. By
Proposition 4.6, we have 8=1, i.e., ® acts identically on aX.

Let, now, udlUY. xsk+xskHl+xsax+2+u are invertible, so ®(n) satisfies the
conditions of Proposition 4.5 implying ® (WE/'nl", ie., ®(/L1Y)ED(/'nl).
Using Proposition 4.6, we get & (I")c d(T'), i.e., the restriction is a graph-homo-
morphism. By our assumption this is an ./-homomorphism.

To prove the converse we start with an /-homomorphism (p:/(/Uf, I)—
-/ (/"UY', T). Bythe first part of the proof, the only way to extend it to a ring-
homomorphlsm is to define it to act identically on aX. Since any homomorphism of
an integral domain has at most one extension to any subring to its quotient field,
there is at most one @® to which <pextends. We have to show that this is a homo-
morphism, indeed.

By the definition of an /-homomorphism the restriction of tpgives a 1-preserving
ring homomorphism &: /—. We extend ® to I[X\J Y] such that ®(x*—x1
and ®(y) = <p(y)(XidX, ydY). Since /[IU Y] is the free ring over / such a homo-
morphism does exist. Using the properties of algebraic extensions ® can be ex-
tended to /[MU Y] such that ®(x)=mx1 for all " rX

A homomorphism of an integral domain can be extended to a quotient ring of
it iff no denominator is mapped to 0. However, this is obvious, for spacts identically
on aX. The only thing we still have to check that @ maps into /'[mMU Y', H].
To this end we are going to show that ®(H)AH'. &(A,)QH- s clear, for
i=1,2, 3, for ®acts identically on K&. ®(A5a44°', for (p(IUY)QI'UY"' and
d(AHY~A g, for (pis a graph homomorphism. |

6. The proof of the main theorem. Now, we are going to prove Theorem 2.5.

We start with the concrete category (j T, O) and let g A-+B be any morphism
in X . By condition (i) we have a functor ®: Jf--Int0 such that \@(X)\ is bounded.
We shall use the notation ®(A)=1U1, ®(B)=18, ®((p)=cpl. Thus, we have in
Int0: (pj: 1A-+HIB and we know that \IA\ \IB\is less than a universal bound depending
only on JT.

To deal with condition (ii), we have, first of all, the category JfU ®("I"). This
is the same category as but the underlying set functor 0O " is defined such that

M"A = U'IA, W'B = U'IB, IM'<p = M(pOn'(pA,
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14 E. FRIED

where O" is the underlying set functor in Int0. Let O* denote the underlying set
functor of Gra and denote GA—P(A), GB=P(B), (@G=P(<p). According to (ii)
we have:

a"(A)QD *{Ga), U\B)<gU*{GB),

and the restriction of O*@Gto O*(GA)\D "(A) maps into O*(CB\Q "(B).
Now, define YA=D*(GAy\n'lA and YB=0*GB O'IB. Since O > =
= ng>{JU'(Pi, we have that O *(Gsends YAinto YBand IAinto IB, further this
latter restriction is a ring homomorphism.
Thus, we have GA=S(IAU YA, TA and GB=J(IB{YB, TB. Since P is
full each graph-homomorphism is of the form G i.e., it is an /-homomorphism.
Now, let X be a set such that \X\>\IA\ and consider the subcategory Gra of

Gra consisting of all GAand qG (/I*"Ob XX, cp*Mor X). Define I: Gra—Int0,
such that 1(G")=I1A[XVj YAHA], Since each graph homomorphism GA-»GB
is of the form (pG, we may apply Proposition 5.2 establishing a ring homomorphism
®: E(Ga)-*E(Gh). By Proposition 5.2 the definition E<pc)=® gives us a full
embedding.

Hence, \j/=YoP is a full embedding as well. U1=®(A) is, of course, a sub-
domain of IAJoX(JYAHA]=Z (P(A)). By Proposition 5.2 the restriction of
Y(P((p)), where o A—?, to the graph GAis an ./-homomorphism, therefore the
restriction to A is the ring homomorphism qt.

To finish the proof, consider any small subcategory XX0of )X . Then the graphs
of the form {Gn\A("Xn} form a set. When choosing X such that |X|>|/g| for all
AEX and \X\>\Ga\ for all A£XXn then we have \IANX[J YAHA\—\X\, when-
ever A£>XX0. |
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ON CONGRUENCE w-DISTRIBUTIYITY OF
ORDERED ALGEBRAS

G. CZEDLI and A. LENKEHEGY] (Szeged)

1. Introduction. The triple (A, F, s) is said to be an ordered algebra of type
r if (A, F) is a universal algebra of type t, (A, s) is a partially ordered set, and
all fEF are monotone with respect to It is worth mentioning that T-terms induce
monotone term-functions on ordered T-algebras. For 1-terms g, h the string gSh
is called an order-identity or, shortly, identity. (Note that an identity g=h is equi-
valent to the conjunction of g=h and hSg). Let H, S, P be the operators of taking
homomorphic images, subalgebras and direct products, respectively. (These concepts
are defined in the natural way. l.e., a homomorphism is a monotone map preserving
the operations, u”v in yyr Ay means (VYE€F)(u(y)v(y)) and the original order

is restricted in case of subalgebras.) The following result of Bloom [2] shows that the
counterpart of the classical Birkhoif Theorem is valid for classes of ordered algebras:
HSP is a closure operator on classes of similar ordered algebras, and a class of similar
ordered algebras is closed under HSP iff it can be defined by a set of order-identities.

The concept of «-distributivity was introduced by Huhn [8,10]. This concept
has proved to be a very useful tool in several investigations (cf., e.g., Huhn [8, 9, 10]
and Herrmann—Huhn [7]).

A lattice is called n-distributive if the «-distributive identity

Yol =3 (N )
holds in it.

A variety of lattices is said to be a congruence variety (Jonsson [13]) if it is
generated by the class of congruence lattices of all members of some variety of uni-
versal algebras. It is known (cf. Nation [16]) that «-distributive congruence varieties
are distributive, and this fact plays an important role in the theory of congruence
varieties. Our aim is to generalize this result for the case of ordered algebras.

2. Order-congruences. If congruence relations of an ordered algebra (A, F, s )
were defined as congruences of (A, F), they would not depend on the ordering. More-
over, there would be no reasonable way to define orders on factor algebras so that
factor algebras would be order-homomorphic images under the canonical map.
That is why the concept of order-congruences is introduced. Since our motivation will
be given only in Proposition 2.1, the following definition might seem astounding at
the first sight.

Definition. A binary relation 0 is called an order-congruence of the ordered

2 Acta Mathematica Hungarica 41, 1983
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algebra (A, F, S) if 0 is a congruence of the universal algebra (A, F) and

whenever a, b, a0, ak, ..., a,,, b0, blt bkEA suchthat
(*) a” 0 ax= g"Qdg” a*"0a5—...am " b = N b20b3=
S b40 b5~ ...bk—a then aOb.

Proposition 2.1. Assume that 0 is a binary relation on an ordered algebra A.
Then 0 is an order-congruence if and only if there exist an ordered algebra B and a
homomorphism c¢p: A-*B such that 0 =Kerq

Proof. Suppose 0 is an order-congruence of (A, F, S). Set B=A/0 and,
for a,b£A, define [a]JOs[i]0O by “there exist a0,alt...,atEA such that
a=aclalSaXa3*a40...a,=b”. The reflexivity of 0 and ~ (over A) together
with (*) yield that S is an ordering of B. If/ is an m-ary operation of A and [ai]0 =
Wrb'10 (i=l, ..., m) then we have al=d00a{=a|0 ...0J=b* where, without loss
of generality, we assume that t does not depend on i. Since/ preserves both 0 and S
we obtain

/(al,...,am) =f(al, ...,fI7)0/(a},...,a?) S f(a\, ...,a?)0 .../(al...am =

1
= /(b bm),
which shows that ( "

/([a1©,... [a]0) - [/(al ..,O 10 & [f(b\ ..., bm]0 = /([bT©, ...[br]0).

Hence, equipped with this ordering, B is an ordered algebra. Now the map ¢ A—B,
acp=[a]0 is a homomorphism and 0 —KeTcp.

Conversely, if 0 =Kerq for some homomorphism @ and a=ao0ax"
sa20 .mam=b=bo0b1sbi0...bk=a then acp—alOcp=alcp”a2p=...—am=b, im-
plying acp®ocp. Since bcpSacp follows similarly, acp—bep, whence aOb. Q.e.d.

Let us mention two examples. The additive group Z=(Z, +, s) of integers
with the usual ordering has many congruences, but it has only the two trivial order-
congruences. (Indeed, its proper factor groups do not admit nontrivial orderings.)
In case of lattices equipped with the usual ordering congruences and order-congruen-
ces are the same.

For an ordered algebra A let Con (A) denote the set of order-congruences of A.
Since the meet of arbitrary many order-congruences is an order-congruence again,
Con (A) is a complete lattice with respect to the set-theoretic inclusion. The join in
Con (A) is described in the following

Proposition 2.2. Let A be an ordered algebra and let 0Q 0 Is ..., 0 k be order-
congruences of A. Set ®-{(a, b)EA2 there exist a0, alt..., am, b0, bl;..., b,£A
such that

a —ao00al0 1a . ... akOkak+k —ak-n@oak+30i ... Han-r*Orn+3 —see—am—>b
and
b —bo00b10 1... bkO kbk+L~ bk+20 obk+30 1 ... b2k+20kb2k+3 — mmb, = o}.

M
Then &=V @ in the lattice Con (A).

i=o
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Proof. It is straightforward to check that @ is an order-congruence. The
inclusion &IC® is trivial. On the other hand, if f'eCon (A) and BtQ'F for all
i then (*) yields ®=4/. Q.ed.

3. The main theorem. Now we can formulate

Theorem 3.1. For any class “Uof ordered algebras which is closed under taking
subalgebras and direct products, andfor any natural number n the following three con-
ditions are equivalent:

(i) Con (A) is n-distributive for all A"-,

(ii) Con (A) is distributive for all A”°li;

(iii) There exist a natural number k and ternary terms tO(x,y, 2), tfx, vy, 2), ...,
tk(x, y, z) (corresponding to the type of dJ) such that the identities

to(x,y,z) =x, tk(x,y,z) =1z tfx,y,x)=x for i=0,1...Kk

tfx, x,y) = ti+l(x,x,y) for i=0(3),0Osi<lc,
tfx, y,y) = ti+l(x,y,y) for i=1(3),0Si<fc,
tfx,y, z) S. ti+l(x,y,z) for i=2(3),0si</c

hold in U
Before proving this theorem let some consequences and examples be mentioned.

Corollary 3.2. (Jonsson [12]). A variety ¥ of universal algebras of type z is
congruence distributive iff there exist a natural number k and ternary z-terms t0, tlt ..., tk
such that the identities

ta(x,y,z) =%, tk(x,y,z)=12z t(XVy,x)=x for 0S i=£Kk
ti+l(x,x,y) for ieven 0S i< f

tfx,x,y)

h(x,y,y) = ti+l(x,y,y) for iodd Osii< K

hold in Y.

Corollary 3.3. (Nation [16]). Ifa variety ¥ of universal algebras is congruence
n-distributive then it is congruence distributive.

Both corollaries follow by the same consideration: Equip the members of ¥
with the trivial order. Then congruences are the same as order-congruences and an
order-identity tfx,y, z) ti+l(x,y,z) is equivalent to tfx,y, z)=ti+1(x,y, 2).

If we call lattice varieties generated by the class {Con (A)\AEW) for some
variety of ordered algebras °Uorder-congruence varieties and denote by Ji(T) the
variety of all vector spaces over a field T then we can describe the minimal modular
order-congruence varieties:

Corollary 3.4. For any modular but not distributive order-congruence variety LLI
there exists a prime field T such that the (order-) congruence variety

HSP (Con (V)\VEJI(T)}

isasubvariety of °U (Note that HSP {Con (¥)\Y£/(T,)}, i—I, 2, are incomparable
provided Tx and T2 are non-isomorphic prime fields.)
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For congruence varieties the same result was announced by Freese [4]. Herrmann
and Freese [5] gave a very elegant proof for Freese’s result. Their proof is based on,
among others, Corollary 3.3. Replacing Corollary 3.3 by Theorem 3.1 their argu-
ment proves Corollary 3.4. (Since their work [5] had not appeared when the present
paper was written, let us mention that their proof can be found in [3, Theorem 3.2],
too.)

If a variety Y of algebras is congruence distributive then V, as an S and P
closed class of ordered algebras (with the equality relations as orderings) is order-
congruence distributive. (Indeed, Jénsson’s condition from Corollary 3.2 is stronger
than (iii) of Theorem 3.1) Therefore if we intend to present examples for classes of
ordered algebras satisfying the conditions of Theorem 3.1, we can equip any congru-
ence distributive variety of algebras with the trivial orderings. Another example is
the class of all lattices with the usual orderings. In order to give a nontrivial example
(which is far from lattice orderings) consider the ordered algebra A=({a, b, c}.f, a)
where the ordering is {(x, X)\xEAR\J{(a,b),(a, ¢)}, and / is a ternary majority
function defined by

J(*1%2,x3 @ if {xj.,x2,x3j =3

{eN if |{/Ixj = uny S 2.
Now the class SP{y4} satisfies condition (iii) of Theorem 3.1 since we can put K =2
and t,(x,y,z)=f(x,y,z).

Finally, it is worth mentioning that for a single ordered algebra A the n-distri-
butivity of Con (A) does not imply the distributivity of Con (A). (Indeed, choose a

finite ordered A such that Con (A) is not distributive. Then Con (A) is «-distributive
for any n greater than [Con (A)\.)

4. Proof of the main theorem. Let us define three further conditions besides the
conditions of Theorem 3.1:
(iv) The identity
6: xt\ i\=/0 F; N (XA i\=/0 FHIV(XA i\=/I Fi)
holds in Con (A) for any AeW;
(v) There exist land (n+ 2)-ary terms t0, tlt ..., tk such that the identities
h)(xo>xI5..., xn+l) —x0, ht(x0, X], ..., X,,#1) = xn+1,
h(x, YLyr, ....¥,,,X) = x for

h(x, X, ..X, ¥, ¥ = LK, X, XY YY)
jt+1 T+i
where 0Sj*n, 07i<k and i=j (n+2),
fixo>xx, ..., X, *D N ij+1(x0, xIt ..., xn+D)
for i=n+\ («+2) and 0g/<” hold in 41,

(vi) (X0, X,,+1)€ J\éo(o,,,,.ﬂA]i%’p on.-n ,,-|)

J
where &%&¢ denotes the smallest order-congruence of Fv(x0, ,.. xn#H), the free
~-algebra over {w0, x1r..., X,,+1}, under which xs and x, collapse.
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Remark. Since °ll is closed under S and P, the free algebra involved in (vi)
(and that over an arbitrary generating set) exists. (The definition of free algebras
and the proof of this remark are the same as in case of universal algebras, cf. Gratzer
[6] or Birkhoff[1].) Note also that (V) is a generalization of Mederly’s condition [15].

Via the implications (i)—(vi)—{v)—iv)—(ii)—(i) we intend to show that all the
six conditions, (i), ..., (vi), are equivalent. (No matter that (iii) is not involved above.
For n=1 (v) and (iii) are the same, and 1-distributivity is the usual distributivity.
Thus the equivalence of the other five conditions yields the equivalence of all the six
ones.)

Since (X0, xa+)€0,aB+U1 (00©,1Ao...0®,mX6) C 0 (11 y -ixnH—

the implication (i)—(vi) is trivial. Distributive lattices are «-distributive (cf. Huhn
[8]), which settles (ii)—().

f
(vi) implies (v). Suppose (vi) and let i\_/0®x . be denoted by @} (j—
T
=0,1, ...,«). From the assumption (x0,xr+1)£ \/ (0X, and Proposition

2.2 we obtain that there are elements tO(x0,x 1, ...,x,,+]), t,(x0, xt, ..., X,,*D), ...,
tk(x0, x1, ..., X,,#1) in FU(xO, ...,x,,+1) (where tt is a term) such that

Q) xo0 = tg(Xg, xj, ....x n+D), tk(Xg, X1, ..., x, +) = Xn+1,
)] tj(x0, x15..., x,,+) = ti+j.(x0, Xu ..., x,,+1) for i=n+1 (n+2),
®)) iifx0.Xi, ..;X,,+1) 0 XINe j ti+1(x0,xIf..., xn+l)

where Os/én and i=j (n+2).

Since 0 XoXHAdS =0 Xom+n |j, from (3) we obtain
@ fi(x0,x 15 ..., xn+)Py(+1(x0, X1; ..., xr+l)
where 0 and i=j (n+2). Denoting (X0, xI5 ..., x,,+1) by x, from (2) and (3) we
obtain  xo=tg(x)0XiXwit1(x)0 XXl .. 0 XaXHin+1(x) Stn+2(x ) 0 XXl .. A ... ti(X)...
LLOXoXL LM L tk(X)=X,,+10 XoXnHlxo, whence (*) yields
(5) XgOoxoXti(xo,x 1, ..., xn#1) for i=20,1,..., k
Since Fv(x0, ..., xn+l) is afree ordered algebra in °U (1) and (2) show that all the
identities of (v) which contain n+2 variables hold in °U For the rest of identities (4)
and (5) will be used. Consider indices i,j (O”jSn, 0=i*k and i=j(n+2))
and the homomorphism <1 Fv(xg, XI5 ..., X,,#1) —F*(X,y), X0@=...=X,, j(p=X,
X, (p=...=xn+1l(p—y. Then Ker (p is an order-congruence by Proposition 2.1.
Since, for iVy, (X,,_i, xn+l i)EKer (o, we have ®]=V EKeraq Thus
from (4) we obtain

i, X, oo X, ¥, Y, e, Y) = tt(xg(p, Xk ..., xn+lgy) = tt(xO0, ..., XBH>=
T+
= fi+i(X0, soe, xnL)(p = ti+1(x0<p,..., XN+1P) = ti+l(X,..., X, ¥, ..., ¥).
jti
Hence the identity tfx, ..., X, y,  y)=ti+l(x, ..., X, ¥, ..., ¥) holds in 4L Similarly,
j+1 "7+l
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considering the homomorphism d: F%(xO0, ..., XD FA (X, y1ry2, ...,yn, x0h=
=xm+I\l/=x, xs\j/=ys for I*s”n, and making use of (5) togetherwith &XoX HE
E Ker ¢, we obtain t"x, ny L yn, x)= M(dep Xra, ..., xmeld)=n{x0, x[, ...,
xm)p =x0p=x, whence tt(x y1 ..., ¥, X)=X holds in oK

(v) implies (|v) Suppose (v) and let AN, a, BQ Bnf_ Con (A). Considering a

pair (a, b) of elements in aAy ft and denotlng V ft. V Bt by yn and y0,

respectively, (a, b)E (aAy,,)V(aAy() should be shown Slnce the role of a and b
can be interchanged, by Proposition 2.2 it suffices to find a sequence of elements
a=do0, dlt ...,dr—b such that for all /(<r) we have either dial\yjdi+i for some
yv€{0, u} or dt*di+l. First of all (a b)da and, by Proposition 2.2, there are ele-
ments ctJ, ciJ, cHIX0, cs+1-°EA (r=0, 1, ..., s,j—0, 1, ..., n+ 1) such that

a —CoRoMIRID2RAB  RncOn+H —CLOMN0AINIC2MN2C3  Rnd.B+ —
—Q0RoQIRIC2R2CB  RN@2NnH —eee—COROGIRI G2 G3 o ANGNH —

—G+10=Db
and

b = cORucARXC®... Rnc®-m+l  ¢clR0c1R1c2... B~ 1"*1
.. Bncs' nHl Lcs+1’° = a.

Let us compute by the identities of (v) and keeping in mind that all term func-
tions are monotone:

a = to(a>s>a>a>h) —

= ees> b) yntx(a, ..., a, Qn, b) YoA(a>eee» a>"o,n+i>b) =

= ti(a, ..., a, cl0, b)yn*(a, ..., a, clq, b)y0*i(a, ..., a, cI>L, b) S...S

s ti(a, ..., a, 0 fyyMa, ..., a, cs,, b)y0*(a, ..., a, c,+1, b) S

—A(a>ee>a) csH,0> b) = ii(u, ..., fl, b, b) =

= %0, ..., a3, b, byntAa, ...,a,cq,,b, b)y0t2(a, cCntl, b, b)

= r2(a, ...,a, c10,b, b)y,t2(a, ...,a,ca,,b, b)y0t2(a, ... a, clin+l,b, b) S...=S

a i2(a, ...,a, cs+1X0,b, b) = t2(a,... a, b, b, b) = i3(a, ...,a, b, b, b) = ... =
*ntl(@>b, b,..., D) s M+2(a, b, ..., b) =
Ar(asc ...,c00 b)y,,tn+2(a, cOn we> @ b)y0i,+2(a, COTH  cor41 b) &
~rr@>cld . .,c 10 byntn+2(a, €I’ ex5c1" bbe/1+r0O, CLn+1 ..., c1™""+l, b) SS..SS

oD, ..,,cS0, b)y,.tn+2(a, C5" wey c1, b)y0i,,+2(a, MHgxges™+, b)S

Mr(a>C™l-", .., cs+l'% b) = 2> ...,a, &, b) =
NH3(™> ..y & a>b)yntn+3(a, ..., &, tBBb)y0MH3(a. s, kI b) =
NH3(>---, 8, GOIYIT+3(a>eee>a.Cl,, 0)Y0i,+3(a, .. wa>cl, b = ... = ... —

= tk(a, some elements of A,b)—b.
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Now if we replaced y,,and v,,by aAy0 and aAy,,, respectively, we would obtain
arequired sequence a=d0, dlt ..., dr=b. But this is possible since forany w,...,una
£A we have tfa, w, ..., u,, b)txtfa, w, ..., u, d)=a, whence the elements of the
above sequence are pairwise congruent modulo a.

(iv) implies (ii). Suppose the identity $holds in a lattice L and let x, y, z be arbi-
trary elements of L. Let xI\yl\z be denoted by w. Then

XA(yVz) = x\ GVwVwV..VwVz) = (XAO,VWV..VW))V(XAWV..VwVZz) =

= (xhy)\/(x/\z),
i.e., L i; distributive.
The proof of Theorem 31 is complete.

5. Some Mal’cev conditions. Roughly saying, a Mal’cev condition is a condition
on classes of algebras (ordered algebras, resp.) of the form “there are certain terms
which satisfy certain prescribed identities (order-identities, resp.).” (For a precise
definition and classification of Mal’cev conditions cf., e.g., Jénsson [13].) For example,
(iii) of Theorem 3.1, Jonsson’s condition in Corollary 3.2, and (v) in the previous
section are Mal’cev conditions. These conditions are named after A. 1. Mal’cev, who
has proved in [14] that a variety 41 of universal algebras is congruence permutable if
and only if there exists a ternary term t, corresponding to the type of 41, such that
the identities t(x, z, z)=x and t(x, x, z)=z are satisfied in @ An analogous result
is true for SP closed classes of ordered algebras with the surprising consequence that
these classes allow only trivial orderings whenever they are order-congruence permu-
table. (Therefore the permutability of order-congruences seems to have not much
importance. However, to claim its unimportance we need the following generaliza-
tion of Mal’cev’s result.)

Proposition 5.1. Forany S and P closed class 41 of ordered algebras the follow-
ing three conditions are equivalent:

(i) °ll'is order-congruence permutable, i.e., if ® and F are order-congruences of
any member of 41 then ®o'P=Y'0®;

(i) 4lis congruence permutable (i.e., congruences in the usual sense of its members
commute) and its members have trivial (i.e., equality) orderings;

(iii) There exists a ternary term t (corresponding to the type of 41) such that the
(order-) identities t(x, z, z)=x, t(x, X, z)=z hold in 4L

Proof, (i) implies (iii). Suppose (i) and consider 0 xy, 0j,2,the order-congruen-
ces of the free algebra FA(X,y, z), generated by (x, y) and (y, z), respectively. Now
(x,2)E0xyo0yz implies (x,z)EOyzo0xy, whence (x,t)EOyx and (/,z)EO0xy
for some t=t(x,y,z)EF4(x,y,z). Defining a homomorphism (p: Fm(x,y, z) —
—H<u(x,z") by xi-i-x, y>*z, 44z, we have 0yzQ Ker q@ Thus x=xg>=t(x, Yy, 2<p=
=t(x(p, yep, P =1t(X, z, z), while the satisfaction of the other identity follows simi-
larly.

(iii) implies (ii). It suffices to show that the members of dt do not allow nontri-
vial orderings, because then congruences and order-congruences are the same and
Mal’cev’s above mentioned theorem applies. (No matter that °ll is not necessarily a
variety, consider the variety generated (in the usual sense) by it.) Assume that
a,b”AnM1, a*b and alb. Then b—t(a, a b)"t(a, b, b)=a is a contradiction.
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Finally, (ii) trivially implies (i).

Now we intend to present an algorithm which associates a strong (i.e., containing
a finite number of prescibed formulae) Mal’cev type condition M(p(m~Lg(y) with
an arbitrary lattice identity pSq and integers w ,ni#2 such that the following result
can be stated. (Note that M{p(m" g M) is not a Mal’cev condition in the sense of
Jdnsson [13].)

Theorem 5.2. For any class “Uof ordered algebras closed under S and P and for
any lattice identity p=q the following three conditions are equivalent:
(i) The lattice identity p=q holds in the lattice of order-congruences of any
member of U,
(if) For any integer m”~2 there exists an integer ais2 such that the Mal’cev
type condition M(p(M"q @) is satisfied in °U
(iii) p=q holds in the order-congruence lattices o ffinitely generated members of U

Before defining the Mal’cev type conditions involved in Theorem 5.2 some re-
marks will be made. This theorem can be considered as a generalization of Wille’s
one [18]. (Really, if “Uhappens to consist of trivially ordered algebras then any uni-
versal Horn sentence of M(p(m*qM) is equivalent to an identity and M(p(mg
~# () turns into a strong Mal’cev condition, which only slightly differs from Wille’s
one.) Even their proofs are similar, the only essential difference is the use of Propo-
sition 2.2 instead of the well-known description of join of congruences. (For the
proof of Wille’s theorem see, beside [18], Pixley [17], but the proof cited in [11] is
also recommended since its form is near to our approach.) Hence the proof of Theo-
rem 5.2 would not be surprising for those who are acquainted with that of Wille’s
theorem and Theorem 3.1. Thus the proof will be omitted because of its length.

To make our Mal’cev type conditions visible we shall use a pictorial approach.
Finally note that if p~q is the distributive law then (ii) of Theorem 5.2 is much less
handlable than condition (iii) of Theorem 3.1.

The definition of M(pim*qM) starts with the recursive definition of Gm(p),
the graph of the lattice term p of order m. The graph Gm(p) has coloured edges (the
colours are the sign S and the variables of p) and two of its vertices, the so-called
left and right endpoints, have special role. In the figures the left endpoint will be
placed on the left-hand side, and dually.

Ifp is a variable then Gm(p) has only a single edge coloured by p, which connects
the two endpoints.

To obtain Gm(p1Api) take disjoint copies of Gm(Pi) and Gm(p2 and glue their
left (right, resp.) endpoints together (Figure 1).

To define Gm(p1Vp2 consider 2m disjoint graphs 1f, H2 ..., Hm H1 H-
., Hmwhere  and H 1 are copies of Gm(pfi for i=j (3) and j£{12} while for
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/=0 (3) let Hi and A" be copies of the graph consisting of a single oriented edge
coloured by & :

Now glue together:

the right endpoint of Ht and the left one of A+l for /—1, —1,
the right endpoint of H1 and the left one of H,+1 for i= 1, n—1,
the left endpoint of A, and the right endpoint of Hm

the left endpoint of H1 and the right endpoint of Hm.

The obtained graph is GmG?iVp2> its left (right, resp.) endpoint is the left endpoint
of Hx (A1 resp.). (Note that, exceptionally, the left endpoint of H “is placed on the
right-hand side on Figure 2, and conversely.)

The graph Gn(q) is defined in the same way. Let X~{x0, xr, xk} and T=
—{i0, fj, ..., ts} be the vertex set of Gm(p) and G,,(q), respectively, such that xnand t0
are the left endpoints while xxand txare the right ones. For each variable a occurring
in p~g let 0 Xbe the smallest equivalence relation of the set {0, 1, ..., k} under
which i andj collapse whenever xtand Xj are connected with an a-coloured edge in
Gm(p). Now G(p(mSqg() is obtained from G,,(q) via replacing the colour a, for
all variables a of pSq, by 0 Xon each a-coloured edge of Gn(q).

For an equivalence 0 of {0, 1, ..., k} and /€{0,1,..., k) let z'0=min {j\jOi}.
With a 0-coloured edge of G (p”SqM) connecting the vertices t,, and t,, we
associate the universally quantified Horn sentence “if x”~Xj for all edges
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xtG— OXj of Gm(p) then tu(xoe, xw, ..., xke) —tv(xoe, xie, , xkB)" while with
an edge iuo——otv of G(p(m q <) the universal Horn sentence “if xtSXj for
all edges xto ~ -oxs of Gm{p) then tu(x0, xk, ..., xK*tv(x0, xu ..., xt)” will
be associated.

Finally, M(p(m*qM) is defined to be the following condition:

“There exist (k+ )-ary terms  /O(X,, Xr, ..., XK,  ti(x0,xlt..., xK), ...,

ts(x0, xIt ..., xK) such that the two endpoint Horn sentences “xt*Xj for all
edges xto—=— -0 Xj of Gm(p) imply t,(xe, xIt  x*=x" (1=0, 1) and the Horn
sentences associated with the edges of G(pim)*qin) are satisfied”.
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ENUMERATION OF CONNECTED SPANNING
SUBGRAPHS OF A PLANAR GRAPH

C. I. LIU and Y. CHOW (Milwaukee)

1. Introduction

One of the important solved problems in graph theory is the enumeration of
distinct connected spanning trees contained in a given connected graph; historically
it was first solved by Kirchhoff. Since a tree graph contains no cycle by definition,
the next question of importance is naturally the problem of enumeration, for a given
connected graph, of connected spanning subgraphs each of which contains only a
single cycle (besides the trees attached to the particular cycle). In general, the pro-
blems of interest are the enumeration of the connected spanning subgraphs having a
preassigned cyclomatic number, i.e. each containing a fixed number of cycles (besides
the trees attached), for a given graph.

The enumeration of spanning trees for a labelled graph is usually computed by
means of the adjacecy matrix of the given graph. On the other hand, in contrast to
the adjacency matrix method (or essentially the “incidence matrix” method), we
approached the problem some years ago by a dual notion and derived a computational
expression using the concept of cycles in defining the required matrix entries [1.
The duality is, of course, referred to that between the vertices and the cycles', the
matrix entries are indexed by the vertices of the given graph in the adjacency matrix
method, while they are indexed by the assigned cycles in the latter approach. It was
already apparent to us, at that time, that the computational effectiveness of these two
approaches depends critically on the nature of the given graph. Some examples were
given in that paper [1] to point out that the adjacency matrix method is clearly not as
effective as the “cycle matrix” method if the given graph involves many vertices but
very few cycles (and vice versa). However, the formal expressions derived by either
approach are of equal simplicity and elegance. In the present investigation, we rely
on the concept of cycles. However, a direct application of cycle matrices [1] does not
appear to be very effective. As it turns out, the problems can be handled efficiently
by introducing the so-called cycle-adjacency matrix for a given connected graph after
labelling the cycles considered. In carrying out the dual notion to the usual adja-
cency-matrix, it is necessary to impose the requirement that each edge of the graph
can belong at most to two independent cycles.

Using this matrix, together with some further auxiliary notions, we derive the
explicit expressions for the enumeration of the connected subgraphs (of a planar
graph) each containing one and two cycles. These explicit expressions suggest immedia-
tely the general expression for n cycles. Though it is natural to try to prove it by a
mathematical induction on n, yet the involvement of determinants makes it compu-
tationally very complicated. We resolve this by introducing the i-th “annihilation
operator” which deletes the ~th column and the z-th row in the cycle-adjacency
matrix. Together with a formal procedure, the operator method provides a straight-
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forward proof of the general expression for any given cycles. As a by-product, this
method provides very neat expressions for sums of various enumerations; in parti-
cular, the case of all spanning subgraphs has the form of an exponentiation of the
annihilation operator acting on the cycle-adjacency matrix.

2. The cycle-adjacency matrix

Let G be a finite connected planar graph. Denote by S a set of independent
cycles in G over the field Z2. Let S = {Cji=L....,, where Q are cycles in S. Call n
the degree of S (write n=deg 5). Let N be the cyclomatic number of G, N=
=e—v+I, where e and v are, respectively, total numbers of edges and vertices in G.
For n=deg SN, the cycle-adjacency matrix of G relative to S, denote by Es
(or simply E when there is no confusion), is defined by

En Ei, mEln
En £22 mE2,
(D

En En Kn

where E{j= —total number of edges common to Ctand Cj), if zVy. E;iis defined
as the total number of edges belonging to C;. We emphasize that, in defining (1),
each edge of G can belong at most to two independent cycles of S. As an example,
consider the graph of Figure 1(a). The cycles considered are indicated by dotted lines.
They are ordered, as indicated in the figure. If we consider only two of the cycles in
this example, for instance, we choose S'= {Q, CZ}, then the cycle-adjancency matrix
is just

(2)
where C;={a, b, e, g} and C2= {c, d, e, g} as indicated by dotted circuits in Fig. I(b.)

Fig. 1 Examples of cycle-adjacency matrix

If, instead, we consider a set of three independent cycles and choose S"=
= {CI5 C3, C4}, then the cycle-adjacency matrix is (see Fig. 1(c))

Y4 -1 -1
3) ES'= -1 3 1
-1 -1 3

where C3={d.e,f} and C4~{c,/,g}.
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Example. As another example, let us consider Fig. 2 in which the cycles 1, 2
and 3 form an independent set yet the cycles 2 and 3 are notfaces (in graph-theoreti-
cal terms). The corresponding cycle-adjacency matrix is

) E= -1

Fig. 2. Example of cycle-adjacency matrix

For a set S of independent cycles, it is useful to introduce the following equi-
valence relation: two cycles C; and Cj are said to be in the same egivalent class in S
iff there exists a set of cycles in 5 (with labels kx,  krsay) such that the product
EiklEKkr -Ekjr*0. Therefore, if there are two equivalent classes in S, then the cycle-
adjacency matrix has the form

with S=S'US" and S'DS"=0 where S’ and S" are subcollections in S.

With G, S, Ci, nand Es defined as in the beginning of this section, we have the
following useful fact.

Lemma |. For any given set S of indepedent cycles, det Es is equal to all the pos-
sible ways of deleting n(=deg S) distinct edges, each of which belongs to a diffe-
rent cycle in S, such that the remaining subgraph is still connected.

Proof. First, if all the cycles in S are in different equivalent classes then the
lemma is trivial. For two cycles not in the same equivalent class, (5) yields

(6) det Es = det E(< et E£-.

Hence it is enough to consider the case where all cycles are in the same equivalent
class.

It is convenient to construct a new symmetric matrix E* for a given S (deg S=n
is assumed) by

©) E* = EWJ for ij==n

(8) Etn+i=~2E tj, i=1,
i=i

and

9) E*+i,n+i = - 2 E*+1J.
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Then this matrix E* has exactly the form ofa Kirchhoff matrix [2], i.e., it is symmetric
and the conditions

2 E§=0, i=1 n+1

are satisfied. Hence, from the fact that detE is equal to the cofactor of E*+I>n+l
in E#, we see that detE is the number of ways to delete n distinct edges, each of
which belongs to a different cycle in S, such that the remaining subgraph is connected.

Theorem |. Let G be a connected planar graph and S be a set of independent
cycles in G. If the degree of S is equal to the cyclomatic number N, then the total num-
ber of spanning trees a0 of G is given by

(10 40= detEs.

Proof. It follows from Lemma | that the deletion of n(=degS) distinct
edges, each from a different cycle of S, yields a spanning tree of G. This establishes

the theorem.
We note that in certain cases it is more convenient to use (10) than the usual

adjacency-matrix method. As an example, consider the r-sided polygon. (10) yields
the trivial result (deg S= 1 here):

(11) a0= det Es = det {a single entry, r} =r

while the adjacency matrix method is obviously more involved in this case. In this
particular example, there is only one choice for S, i.e. the single cycle along the poly-
gon edges.

3. Enumeration of spanning subgraphs containing one and two cycles

To simplify notation, from now on we fix a set S of independent cycles and write
E in place of Es. We denote by E(i) the matrix obtained from E by deleting the ith
row and ith column. Similarly, E (/,_/) is the matrix with ithand yth rows as we lias /th
and j th columns deleted from E, etc. We next introduce the following conventions:

(12) E(l, ...n =1 n=degS
and
(13) E(ij,im =0, ifsome ij=ikwith j k.

It is important to emphasize that in E(i) (and similarly for E (i,j), etc.) the dele-
tion implemented in the matrix does not actually correspond to the graphic deletion
of the edges associated with the itb cycle. Its precise meaning is rather that the Ith
cycle does not enter our consideration.

Similar to the definition of a0 (i.e., the total number of spanning trees in G),
we denote by  the number of ways to delete (n—}) edges, each of which belongs to
a differentcycle in S (deg S = ri), suchthat the resulting subgraph remains connected.
The cyclomatic number of this subgraph isjustj in the special case when n=deg S=
=N, where N is the cyclomatic number of the graph G. From now on, we shall res-
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trict ourselves to the cases where n=N, the cyclomatic number of G, unless otherwise
stated.

T heorem |l.

(14) <*1=2 detE(i)+4- 2 EudetE(ij).
i= itj =

Prooft. Itfollows from Lemma | that detE(/) is equal to the number of ways to
delete (n—1) edges, each of which belongs to a different cycle in S—Ct, such that the
resulting subgraph remains connected. In the first sum of (14), for any partial sum
det E(/)+det E(j), the deletion of (n—1) edges common to cycles Ct and Cj is effec-
tively carried out twice. The number of repetitions amounts to —Etldet E(i,j).
Hence

det E(i) + det E(j)+ Etjdet E (i,])

is exactly the number of distinct deletions of (n—1) edges either entirely from S —Ct
or entirely from S —Cj such that the resulting graph remains connected, without the
repetitions of those deletions that involve the removal of any edge in CtMC,-. Since
the deletion of (n—1) edges, each from a different cycle, yields a spanning subgraph
containing only a single cycle (with trees atteched), this finishes the proof.

By an argument similar to Theorem Il, we find

(15) = 2 detE(i,j)+ 2 EijdctE(i,j,k)+~ 2 EMEKdetE(iy, K, I).
d=n ) 0=

a2is the number of ways to delete (n—=2) edges, each belonging to a different cycle of
S such that the resulting spanning subgraph has cyclomatic number 2.

However, the result of a0, <land <@, given by (10), (14) and (15), suggests a uni-
fied elegant approach by adapting an operator method and a “formal” procedure, to
be discussed in Section 4.

4. The general enumeration problem and a formal procedure

Following the discussion of the last section, it is now possible to consider the
general enumeration problem of total number of (connected) spanning subgraphs.
However, it is much more convenient to use a “formal” procedure. For every CfS
we introduce the so-called “annihilation operator” af:

(16) aE = E(f), (a,a)E = E(i,]), etc.

Note that a(ar=0 and aiaj=aJai. Hence E(i,j)=E(J,i), etc.

To establish the formal procedure to be used in the proofs of theorems to follow,
we introduce here a vector-space structure.

This vector-space V consists of all formal linear combinations with real coeffi-
cients; of the form al*Al+...+am*Am where At are (Symmetric) matrices whose
entries are indexed by some subsets of n={l, ...,«}, a-are real numbers. These
formal sums form a real vector space under the following rules of addition and scalar
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multiplication:

17 b(a*A) = (ba)*A = (ab)*A
(18) (@+b)*A = a*A+b*A
(19) c(a*A+b*B) = (ca)*A+ (ch)*B.

Since the “formal” sum does not allow the matrices to be added in the ordinary
sense, we emphasize the following processes are not allowed:

a*(bA) = (ab)*A (no-go)
a*(A+B)—a*A+a*B (no-go!)
Hereafter we shall use the notation:
(20) E* = 1*E.

The annihilation operators are now defined as follows: for any formal sum2 ak*"j
and /en, define ai2 aj*"j» 2 ak*4k(i) where Ak(i) is obtained from Ak by
deleting the Z-th row and column if they occur in Ak and is zero otherwise.

(21) AE* = E(@@)*

(22) a,.E(0* = E(iJ)*

(23) (a(...aMNE* = E(i, ...,))*

(24) (aa,.+ ba,-)E* = aE(i)*+ bE(j)*

(25) a([aE (j )*+ bE(fc)*] = eE (iJ)*+6E(i, k)*.

Further successive operations by operators a; can be carried out similarly.
The final step in our formal procedure is to define the functional det on V:

(26) det: F-R
by
A*j = 2 ciidetAi,

where the det on the right-hand side of (27) is just the usual determinant of a square
matrix. Denote det T= T and call T the generating formal matrix of T. As an example
of (27), we have (assume zVy and k*r):

(28) det{al+ e2E(0* + fI,EOT + edE(fc, m)*+ a5E(r, s)*} =
= (jj + (adet E(Z) + a3det E(j ) + tddet E(fc, m) + aSdetE(r, 9).

Note that E(Z) and E(y') have the same dimension, but we may not add them in the
sense of ordinary matrix addition.

Define the following operator:

"1
(29) a= 27 z4n- ijzlEij*i*j—

Acta Mathematica Hungarica 41, 1983



ENUMERATION OF CONNECTED SPANNING SUBGRAPHS 3

We now complete the “formal” procedure: to each a} there corresponds a formal
matrix Gj defined inductively by

(30) u0= E\

(31) a,=2 EOF+42 E™iU jf = aE*
i ** 0L

(32) = "oc2E*.el.

The formal matrices  defined here are the “generating” formal matrices of <r

Theorem llI.

(33) —pONE*

is a "generating” formal matrix for om, i.e. detaT—oT.

Proof. We recall that omis the number of ways of deleting (n—m) edges each
belonging to a different cycle in S such that the resulting subgraph remains connected.
The proof is carried out by an induction on m. The theorem is trivial for m=0
and 1. For m>\, let the theorem be true for Consider, in particular,

when E is E(i) or E(t,j). Then, the term " a kE(i)* corresponds to the ways of delet-

ing {n—h —1) edges each from a different cycle in S—Ctsuch that the resulting graph
remains connected. For i?4j, the sum

(34) -i-a*{E(0*+ECO0*}

is a generating-matrix term provided the repetition of EtJin the enumeration is remov-
ed, ie,

(35) {E(0*+E(j)*}+-i- BKE (i, )™,

corresponds, in the sense of the “generating” formal matrix, the ways of deleting
(n—k—1) edges either entirely from S—Ct or entirely from S —Cj such that the re-
maining graph remains connected, without the repetitions of those deletions that
involve the removal of any edge in C;IMCj. We note that the last term in (35) is in
fact negative, due to the sign of Etj as defined in the beginning. Taking into account
all cycles in S, (35) yields the matrix

(36) Tra" [ E(0*+ XFa"(Z_)Eith)*
iij
which is just —afetlE*. Finally, we must remove the (k+ I)-fold repetitions appear-
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ing in ma*+lE*, ie.,

1 s
(37) gk+1_(k+ ! i‘+1E

which yields the “generating formal matrix” corresponding to the ways of deleting
(n—k —1) edges each from a different cycle in 5 such that the resulting graph remains
connected. This completes the induction.

By definition, it is clear

(38) sE*=0 for m>n= degS.
Hence
(39) 24 =¢E*

1=0
which yields immediately the following result.

Theorem IV. For aplanar graph with n=N (i.e., deg S=e —u+I)> "E* is the
“generating” formal matrix that yields the total number of all possible spanning
subgraphs (with cyclomatic numbers 0, 1, 2, ..., etc.) of the given graph.

To get some feeling of Theorem 1V, it is instructive to check the terms o,, and
on- 1 by an expansion of e*E*. First, by (26)

E*
n!

where {/}={/x ..., 2.} are all possible permutations of {1, But E(z%; ..., 1}
is symmetric w.r.t. its arguments, such permutation vyields an n! fold repetition
hence, by (12),

(41) 4= AMNE(lL, ., M =E(, ., i)* = 1%

(41) yields immediately
(42 on = det«r,, = 1L

Next, we compute on-r from exE*:

(43)<r,_1- (p.1) & ‘E* {(2a) + 2 £ Eu(i“% a‘a>)E*

From (I=deletion of i)

(44) E* = %} "if airE* = (n—1)! 2 E(l. b oy 0¥
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and

(45 {(24) = (E«*) E(i,j)* = (n—=2)!E(1,..., N)* —(n—2)W

we find

(46) V=i (1.2 7=

Thus >

(A7) *-1= 2F i+- . Etl=- 2 Et.
SR

Finally, let us consider the “generating” formal matrix for amwhich yields the
following result.

Theorem V.
(48) m= 2,K
where
(49) K=J1 2 .2 e 2. 2. EilhEi3il...Ehr_liirdetE(il,...,im#),
/or r>0, and kO is given by D= det Efo, /m, where all ik (k=1 ..

...,m +r) are distinct.
Proof. By (29) and Theorem 1V,

<0) = UT*"E' =
(4 / 1

K TeTUE" (?I'eE
The expansions of & a/g; and (7i«i)n1’r may be written as:
o1 2 BjctOgY = 2 - 2 Ehii... Eiir-lltril 7 «af
(51) (2 Ejotog sy ENVHT--- Eiir-lltrnil 7 «ald
and
(52) (2 a;lm-r= (m—)! 2, “vH - ai,h

where the property a;ar=0 is used in (52). Hence, one finds

.. . 2 . 2 Ell*e'«Eiir_li2raii **aim+r”"
rl 'Jgf' 12r— ~*ir ‘ar+x"'"'|m+r

2. 2 Al f2r *Ed2r-12r " (h> *[1+1)
TR, s -
which establishes the theorem.
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5. Discussion

For a 2-connected planar graph, one can choose the cycles to be the faces. From
the viewpoint of graphic duality, a spanning subgraph with m independent cycles
corresponds to an (m+ [)-forest in the dual graph. It is thus obvious that the results
in Theorems | to V are applicable to the counting of forests in a planar graph.
A further generalization of the formal procedure formulated here, via the annihila-
tion operators, has also been carried out. It led to the solution of the enumeration of
forests in any non-planar graph [3].

We would like to thank the referee for his valuable suggestions which resulted
in an improvement of the manuscript.
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MOST DARBOUX BAIRE 1 FUNCTIONS MAP
BIG SETS ONTO SMALL SETS

J. CEDER (Santa Barbara) and G. PETRUSKA (Budapest)

The space of all bounded Darboux Baire 1functions on a given real interval is a
complete metric space with the sup norm (denoted by b<3&x). Analogous to the case
of the real-valued continuous functions on [0, ] having the subclass of nowhere
differentiable functions as a residual subset, we may also ask what subclasses of “unu-
sual, irregular” functions in b3H¥ax form residual sets. In other words what “unusual,
irregular” properties of b2 28 functions are typical in the sense of category. In [4]
Ceder and Pearson confronted this question, obtaining several residual classes de-
fined in terms of the behaviour of derived numbers and posed many unsolved pro-
blems.

In this paper we establish that a typical b3>33xfunction maps the set of its appro-
ximate continuity points (resp. continuity points) onto a nowhere dense, null set.
Moreover, this result can not be improved by replacing nowhere dense by countable
for in this case a 14 category F,, dense set is obtained.

In particular, since the class of all constant functions is a nowhere dense subset
of b3>3%, a typical b23Al function maps its set of approximate continuity points
which is Borel, residual and has full measure, onto a nowhere dense set of zero mea-
sure yet the range of the function is a nondegenerate interval. In other words, a typi-
cal b3>38x function maps “big” sets into “small” sets, both in the sense of category
and measure.

Examples of such typical b2)S&Xfunctions can be generated using the theorem of
Agronsky [1] (see also Theorem 2.4 in [2] p. 13) which asserts that: if A is a bilaterally
c-dense in itself F,, subset of /, then there exists a b@& function/ such that /(x)"0
ifand only if xdA. Ifsuch an A is chosen to have zero measure too, then we obtain
one of our typical b3)38x functions.

Moreover, our results have analogues in the space b.d of bounded approximately
continuous functions (Theorems 9, 10, 11 and Corollary 3).

Notation and terminology

In the sequel I will be any nondegenerate real interval and all the functions in
h2>S5x or bsi are assumed to have domain I. A function will always be identified with
its graph. By C+g, x), where x is a right limit point of dom g, we mean the right
cluster set of g at x. Similarly with C~(g, x). A function/belongs to £4(P) where P
is any set iff\P, the restriction of/ to P, is Baire 1lrelative to P. A function/ with
domain P belongs to Q>{P) if /(x)EC +(/, x) [resp. C~(f, X)] whenever x is a right
[resp. left] limit point of P. If P is an interval then 2 A XP) coincides with the 0)2ax
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functions defined on P. This equivalence does not hold any longer, if is not
supposed, therefore it is emphasized that the symbol Q without denoting a set behind
it always means the usual Darboux, that is the intermediate-value property (on an
interval). This is important in Theorem 3.

By \A\ we mean the Lebesgue measure of A. By a portion of a perfect set P we
mean a set of the form (a, b)C\P where a is a right limit point of P and b is a left
limit point of P.

By Cf or C (f) we mean the set of continuity points of/. When Cfisa
residual Gs. By Af or A(/) we mean the set of approximate continuity points of/.
When , Af is residual, Borel and has full measure. For other information on
Darboux Baire 1 and approximate continuity the reader is referred to Bruckner [2].

The proofs of the above mentioned results require some preliminary lemmas and
theorems which we now present.

Lemma 1 Let P be a perfect set and fcASfP). Then there exist sequences
L =1 of functions and of sets such that

(1) for each k, {£7}, i is a family of disjoint sets each of which is an F,, and G3
subset of P and whose union is P;

(2) for each k, {5f+1}* xis a refinement of {Bf}f=L;

(3) for each k and i, ffjM fP) andfkis constant on B\\

(@) for each k, LUJI-/L < and ||/*+1-/*|]|

Proof. See [5] p. 294, § 27. VIII. 3
The next lemma is a generalization of Lemma 2 of [3].

Lemma 2. Let P be aperfect set and C be afirst category (relative to P) subset
of some portion G of P. Let ¢ be a real number and X be any positive extended real
number. Then there exist h£3>3)fG) and a set HQG such that

() HdP —C s aclosed (relative to G) set of measure 0 and is of Isi category
(relative to P);

(2 {x: b(x)9+c}A"H, and \h—c|sA;
(3) If N is any neighbourhood of either a or b then

rng h|[iVri(a, b)[IP] = (c—X, c+X);

(@) h\{x: h(x)?£c} is bilaterally c-dense in itself.

Proof. First choose {/,}’=1 and to be sequences of disjoint portions of
G, which converge monotonically to a and b, respectively and such that for each
m and n, Inf]lJm—0. For each n choose Pnand Qnto be non-void perfect, first

category, null subsets of In—C and J,,- C, respectively. Put H=n(gl(PnUQn).

Choose P,,and Q,,to be bilaterally c-dense-in-themselves F,, subsets of Pnand Q,,,
respectively. Let {/,.}"=l be a sequence such that X,\X. According to [1] there exist
functions fn and g,, on In and Jn, respectively such that j\fQi3ifln and

and rngfn=[c, c+X,,] or [c-Xn,c] according to whether n is even or
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odd and such that mgg,=[c, c+An] or [c—Xn, ] according to whether n is even
or odd. Moreover, fn(x)*c ifand only if xdP'n and g,,(x)"c ifand only if xd Qn,
If follows from [1] also that f,\P'n and g,\Q,, are bilaterally c-dence-in-themselves
sets. Finally define

/.(*) if XdIn
h{x) = gn(x) if XdJn
c otherwise.

It is easily checked that h is the desired function.
In Bruckner, Ceder and Keston [3] the following result was proven.

Theorem 1. Let fd&i on an interval | and let E be a set offirst category. Then
there exists gdfrP%i suchthat {x: /(x)""(x)} is afirst category, null subset of | —E.

The next result relativizes this theorem to a perfect set.

Theorem 2. Let P be a perfect set and let fdaSfP) and E be afirst category
(relative to P) subset of P. Then there exists gd@@i(P) such that {x:f(x)"g(x)}
is afirst category (relative to P), null subset of P—E.

Proof. The proof is basically the same as that of Theorem 1, except for the
proofthat gd3>(P). Accordingly, assertions whose proofs parallel those of Theorem
1 will not be proven whereas assertions whose proofs are different will be justified.
Let fk (A—L1,2, ...) and B[ (i,k=12, ...) be specified as in Lemma 1

For each k put Dk=P—_iint B\ (where interior is taken relative to P).

Then {Dfcy=i is an ascending chain of closed nowhere dense subsets of P whose
union, D, is a first category Fa subset of P. Let Do=0.

The proof involves an induction on a double sequence of portions of P,
{G*}ums=i such that for a fixed k and m,fk is constant on Gkn. In order to describe the
induction more clearly let us assume that we have such an open portion Gknand apply

Lemma 2 where C=EUD, Gk=G=PC\(a, b), {c}=fk(Gk), N when k> 1
and +°° when K—L Leti hh&)and H kbe functions and sets stipulated by Lemma 2.
For each i put At—k(glleHm Then each A, is a first category null set disjoint

from EUD and AiQAi+L for each i

To begin the induction let {G"}=L be an enumeration of the components (i.e.
open relative intervals maximal with respect to inclusion) of the setsint B} (/= 1, 2, ...).
(For notational convenience we can assume that there are infinitely many components
here and also in later stages of the induction.)

Define gt on P as follows

K.(x) if xdGl
9i0) = yxy if xi UGl

Let P' denote P—{infP, sup P). Then it is easily checked that gi£3>&\(P)
and Ai{JD1 is closed in P".
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Now assume we have constructed for each i such that 1 a sequence
{G,}* =1 of disjoint portions of P together with sequences {/r)"=xand {#"}~=1and
a function gi such that

(O gttaa™py,

(2) AiUDi s closed in P\

(3

(4) hinH"Qg, whenever j"i.

Then P—DkOAK"D) will be open in P\ and letting {G*}~=1 be an enumeration
of all components of the sets of form SMint B\ (i= 1,2, ...) where S isacomponent
of P—(DKk\JAK ™) we define

1(*) if XxEDk
g*(x) = hk(x) if xEG*
gk-iix) if x£Ak-i

Then conditions (1), (2) (3) and (4) follow as in the proof of Theorem 1with the
exception of gk(i238x{P).

To show that gk*e>ax{P) it will suffice to show that whenever x is a right limit
point of P then (x, gk(x)) is a right limit point of gk. We have three cases to consider.

Case 1. For some m, xEGk. Since hknQgk and hkES>(Gk) it follows that
gk(x)eC+(gk,x).

Case 2. xEDk and gk(x)=f(x). Let i be the integer for which xEDi+—Dx.
Then i<k and x(LG). Let {j}=/j(Gj). Moreover x$ n(u“llGAﬂ' Let <5>0 and
choose Ghtir)ix, x+0)r\GI9 0 and let {i, }=/i+i(G'+]). Then rng hfl=
= (in-2ITT, ~ + 2I'm)- Since hi+l\H “+1Qgk wealsohave r, t2Ur)e

£mggt|G'+L Since ||/i+i-/i]] and \\f-f\\ <NTT we have and

1 3
\f(x)-i]< 2I'TT- Consequently |/(X) —,,|<—rT » K now follows that /(x)€
€C+(g*, X).
Case 3. xEAk k and gk(x)="_1(x). Choose m and j so that xEH&HQGH
with j<k. Let {s}=fj(Gd). If hih(x)?*s, then (4) of Lemma 2 yields hJ(x)£

£C +(gk,x) and hence gk(x)EC +(gk,x). So we may suppose that hi(x)=s. Let
<5>0 and choose n such that Gd+IP\(x, x+0)[)C1,A0- Let {?,}=/1+1G;j+D).

Then and tn+ -\ < gm g ha+\HI+1Q mggk\GH\ Since
{Ai}?L1is ascending we have gk(x)=gk 1(x)=... —gj(x)=/id(x)=s. It follows that
gk(x)€C+(gk,x).

This completes the induction. Hence, {gt}r=i is a uniformly Cauchy sequence
of functions in Q28X(P) and therefore converges to some function g. It is easily check-
ed, as in the proof of Theorem 1, that g is the desired function.
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Corollary 1. Let P be perfect, ffAfP), mgfQ [c,d] and E be countable.
Then there exists gf b3HOx(P) such that {x: g{x)Zf{x)} is a null subset of P—E
and rngg = [c, d\.

Proof. Truncate the function given by Theorem 2 between c¢ and d.

Corollary 2. Let P be perfect, €=infP, Z>=sup P, fASSfP), E countable,
5>0 and x£ (a, b)MP. Suppose yEP implies that \f(y)—(x)|<e. Then there
exists g"bSi&fP) such that {x: g(x)Zf(x)} is a null subset of (-PI(a, b))—E
and rngg=C~(g, b)=CHag, a)=[f(x)-(5 +¢), /(X) + &+¢)].

Proof. Choose monotonic sequences (a,}*=1 and {6,}=1 in P such that
an\a,bn/b and the terms are bilateral limit points of P, finally al=bl. Let

E' —EO{x: x=an or x =bn for some n}

We have rng/g[/(x) —c>+e),/(x) + <5+s]. Apply Corollary 1to E' and each in-
terval [o,+i, G and [bn,bn+l] to obtain g"bSHAS"Pf] [an+l, a,]) and hnfb2>@1
(PD[b,,, bn+1) such that {x: g, (x)"/(x)} and {x: hn(x) Zf(x)} are null sets of P \E"
and rng g,,=rng hn=[f(x)—e—Q /(x)+e+<5] for each n. Define

g= (U g)U@J *)u{@@/@), (bfb)}

Note that g(x)=/(x) for points of E'. It follows that g is the desired function.

Theorem 3. Let fEbS81, h£bS> and ||[/—A|l<e on an interval I. Then there
exists gfb<?)%l such that ||g—/|&4e and g=f ae.

Proof. It clearly suffices to prove it for an open interval (a, b).
The proofis carried out by transfinite induction. Let  denote the first uncoun-
table ordinal. For every a< B we are going to define a triplet (ga, Gx, EX) satisfying

(1) Gxis open, Eais countable and ExczGx;

(2 g " 1(GJ and gx=f ae. in Gx;

(3) liga—HI =4e;

(4) for ExczER, GxczGR and gRG=ga,

(5) if G”ia, b) then Gx+l" Ga\

(6) whenever I is a component of Gxand x (U \E x then there exist ¥Yx<x<y2,
and z!<x<z2, z1(z2€/ for which £a(n)>/(*)+2e A—L1,2) and

ga(2)</(*)- 2e (k—\, 2).

Suppose all these were done. Then the (relative in (a,b)) closed sets Zx—
=(a, b)\G x form a decreasing transnifite sequence, which has to be constant from a
countable ordinal a,,. By (5) we have Gx=(a, b) for a”a0 and hence by (2) and (3)
g is our desired function.

Let X0EC (/) and let the interval (c0,dQ3x0 be chosen such that for any x,
c0*x~d 0 we have |/(x)—Hx0|<e We apply now Corollary 2 on P=[c0,d(]
with E=0 and 6=2s to get the function g. We put (g0, G0, EQ = (g, (c0,d0, 0 ).

Now (1) is trivial, (2) is stated by Corollary 2. Since mg g0=f/(x0—3e,
/(x0Q+ 3e], we have for any y£(c0,d0 the estimation \f(y)—g{y)\="v, thus (3)
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is obvious. Property (6) is again implied by Corollary 2, since C+(g0,cQ=
= C~(g0, dg—[f(x0) —3e,/ (xQ+ 3a]. Suppose now that we have defined (ga, Ga, E9
for every a< B, where fl is a given ordinal and (ga, Ga, Eg) satisfies (1)—(6).

First we put Hp= alérg Ga. HRis open (and if B=y+ 1, then of course HR=Gy).

The function a(gggasatisfies all the requirements of our theorem on HE, therefore
we may finish the induction process, if HR—(a,b), by putting Gy=(a,b), gy—\J ga
for every y=R. Otherwise the closed set ZR=(a,b)\HR is non-empty.

Case 1 Suppose that xBis an isolated point of ZRB. Then GR=HR(I{x[} is an
open set which strictly contains all the former Gxsets (a< ) and we define

U glJ(), if xEHB
Bx) = V72!
PO 00 i« x.
Let EB=agSEaU{XB}, then ER is countable. The only non-trivial assertion to be

proved is Darboux property in xR (even (6) is obvious by XRdER). Since h£2i we
can find sequences {u.}*=1, {a.}=L in GRE B suchthat v,,—x from the left, un"x
from the right, and lim A(w,,)=lim h(vi)=h(xf). Since \\f—A||<e, we may, without
loss of generality, assume that there exist Ax, A2d(h(xB)—e, h(xR+e) such that

[(«, W i,
Fixing n there exists a component laof some Gawhere a< [ such that unflx.
Since un@Ea and +=»), we can apply (6) and thus we obtain vy,,, z,, satis-

fying xB<yn,zn<un and
gR(n) = g*(yn) >/(«,) +2e>/(«,,)-2e> ga(z,) = gi(zn.

Hence mg gB\xn(xB, un*[f(un-2E, f(un+2e], Letting n” +°° we obtain
[A—2e, A1+ 2e]czC +(gR, xR). On the other hand |A—F(x B\MNX1-h (x B\ + \h(xR)—
-f(xRl<2e, thus we have gR(xR)=f(xRA"C +(gB, xR). Similarly gR(xR)6C~(gR, xB),
and property (2) is verified.

Case 2. Ifthe set ZRZ 0 contains no isolated points then it is (relative in (a, b))
perfect, and now we pick a point xBEC (f\Z[3), which is a two-sided limit point in ZR.
Then we can find two-sided limit points cB,dRdZR, such that cB<xB<dR and
|/(x)-f(xR<e for every x"ZBC[CB, dR\.

We apply again Corollary 2 on the perfect set P=2ZRO[cR, dR, and E denotes
all those points in P which are end-points of intervals contiguous to P, and $=2r.
Denoting by g the function of Corollary 2 we define

GR= HRU(cR, d?), o8 = JjJ dijUg, ER=[aU L, UE

Property (1) is obvious for GB and ER. It is also clear from the construction, that gi
is Baire 1on GRand g=f a.e. on GB. To check the (local) Darboux property we have
to do it at the points of ZRCIGR only. By Corollary 2, the function g~gR\ZRC\GR
is Darboux on the set ZRIMGR. Therefore gl is Darboux in the two-sided limit points
of ZRC]GB. Suppose, that x*ZRC)GR is a left hand side limit point of ZRC\GR,
and ZBCI(x, x+tj)~ 0 if tj is small enough. Then we can repeat the argument of
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Case 1in the right hand side neighbourhood of x to obtain gR(x)=f(x)EC +(gB, x).
On the other hand gp(x)=f(x) =g(x)EC~(g, x)cC~(gp, x) by Corollary 2, thus
gl is Darboux at x. To verify (3) it is enough to consider again the points of
ZRC\GR. For x£ZRBr\GRwe have f(xp—s-=/(x)</(xp)+ £ and

f(xB) - 3eS gR(X) = g(x) = f(xR)+3e

and hence \gp(x)—(x)|s4s.

Properties (4) and (5) are obvious. Let / be a component of GB. If 1*(cp, dp)
then (6) holds on | by the induction hypothesis. Let |1 —(cp, dp) (this is, in fact, a com-
ponent of Gp, since c,dRSGR), and x£I\E p. If x({Zp, then (6) holds again by
the induction hypothesis. If x~ZpC\l, then we have f(xp—e</(x)</(x")+e
and by Corollary 2

C+@9 cp) = [H{xp)- 3e f(xp+ 3, C (9, cp) = [f(xP- 3e f(xp)+ 3,

thus we can find points yk, zk (resp. j 2>zi) in IC\ZP arbitrarily close to cp (resp. dp)
suchthat gp(yR=g(yR>Ax)+2s and dfi(zZh=g(zR<f(x)~2e (k= 1,2).
This completes the induction construction and the proof of our theorem.
Theorem 3 gives a quick proof of the following surprising result.

Theorem 4. The class of all bB381functions g such that g(Ag) [resp. g(Cg]
is finite is dense in b@ol.

Proof. Let h"b2iUS1 and e>0, choose fd3Sxwith rng/finite and ||/—/j||-cg—.

Applying Theorem 3 we can obtain gzbSi&i suchthat ||g—A|l<e and g—f a.e.
It is easy to verify that g(Ag) is finite. Since CgQAg, g(Cg is also finite.
Now we can prove our main result.

Theorem 5. The class of all bS>'S1functions f such that f(Af) [resp. f{Cf)]
has measure zero is a residual Gs set in bE=8%k

Proof. We will carry out the proof for “A /\ The proof for “C /’ is the same.

Let XX consist of all/ such thatf(Af) is null. By Theorem 4 XX is dense so it suffi-
ces to show that XX |s a Gssubset of bQ>28. Let F,, consist of all f"b3HiMI for which

\f{Af)\" . Then |J F,,=bS>3S1—YP so it will suffice to show that each Fnis closed.

For any s>0 and set A, let Ne(A) denote {x: |[x—a|<£ for some atA).
For sets A, B let d(A, B)—m{[e AQNfiB) and 5gAc(T)}. Observe that if
I/—g<e, then d(f(Aj), g(Ag)s2e. This can be shown as follows: let XEAT.
Then there exists a P with xEP and n(P)>0 and \f(y)—#(x)|<e whenever
ydP. Then |g(y)-/(x)|<2£ forall yEP. Pick zEPi)Ag. Then |g(z)—+(x)|<2e.
Hence, f(Af)QN2(g(Ag) from which the result follows.

Now let us show F,, is closed. Let \\fk—\\ —0 where fkEF,,.

Suppose \f{Af)\<W. Then there exists an open set G containing f{A[) such

that |G|<—. By compactness we can find £>0 such that Nc(f(Af))QG. Then
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choosing k such that ||[fk-f\\ < j wehave d(f(Af), fk(A/lt) ) » so that fk(AfK)QG

and | a contradiction.

Corollary 3. The class of all b3>281functions f such that f{Af) [resp.f(Cf)]
is nowhere dense and null is a residual subset of b 3 3 k.

Proof. This class contains the residual class of Theorem 5.

It is unknown whether or not the class of all/ such that f{Af) [resp./(Cy)] is
null is a Ggset. Hence, we can not improve Corollary 3 to assert that the class is a
residual Gs. However, if we just consider those/ such that f(Af) is nowhere dense,
then we do get a residual Gg as the next result shows.

Theorem 6. The class of all b3SAxfunctions f such that f{Af) [resp. f(Cf)] is
nowhere dense is a residual Gg set in hS>3S1.

Proof. By Theorem 4 the class XK ofall/ such that f{Af) [resp.f(Cf)] is nowhere
dense is dense in b2 > . So it suffices to show X is a Gg set. We will carry out the
proof for “A /’ since the proof for “C /’ is the same.

If /([ XK then there exists a rational interval J such that JQf(Af). Letting
{/.}=1 be an enumeration of all the rational intervals, let £,={/. J,,"f(Af)}
Then b33&x—K—U, En.

Let us now show that each Enis closed. Let fkEE,, and [fk—A\ >0 It suffices
to show that each open subinterval W of Jnhitsf(Af). Suppose W=(a, b)*=J,, and
e—(b—a)/3. Choose m such that [|[/m—||<e and put V=(a+e, b—e). Since
YnfmA/m)” 0 there exists a set I of positive measure such that f,,(T) Q V. Choose
z67TMy. Then fm(z)EV and /(z)E W. Hence, f(Af)IN 0 and X is a Gg.

We can not improve the above results by requiring f{Af) [orf(Cf)] to be coun-
table instead of nowhere dense and/or null as the next results show.

Theorem 7. The class of all f*b33Sk such thatf(Af) [resp. f{Cf)] is countable
is a dense, first category subset of b3 3k.

Proof. Let us prove that the class XX of all b33k functions/ such that f(Cf)
is countable is a dense, first category set in b 33 k. By Theorem 4 X is dense.
Let {/,}*=! be an enumeration of the rational intervals. Put An={f: f s

constant on JnC\Cf). Let fkE£A,, and /*— Clearly/is constanton /,n(n c ;)
But T cfkrcf isdense in Cf. Hence, fEA,, and A, is closed. Moreover, it is

easy to see that each A, is nowhere dense. Hence, (JlAn is a first category set. If
n_

f(Cf) is countable, then the residual Gs set Cf is covered by countably many sets of
the form / - 1(c) where c£f(Cr). Hence, there exists cdf(Cj-) and Jm such that

["He) isdense in Jm that is, f£ A m Therefore, XX Ql%lAn and XK is of first category.
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Let 8 be the class of all f*b2>dS1 such that f{Af) is countable. Since 8Q XX
8 too is 1« category and dense (by Theorem 4).

Theorem 8. The class of all f"b3>3Sx such that f{Af) [resp.f{Cf)\ isfinite is a
dense, first-category F,, subset of b2)8SI.

Proof. Let X be the class of all/ such that f(Af) is finite. Then by Theorem 7
is dense and first category. For each n define F,,={f: card (f(Cf))*n}. Then,

Fn is easily seen to be closed from the fact that d(f{Cf), g(Cg)*2s whenewer

I1/—g||<£. Since QF,, Y8is an Faset. The same proof works for the
“0 11 /” case. =1

Theorem 9. Let fEb"Sk and £>0. Then there exists g£bsd with |g|<£
such that h(Ch) is finite where h=f—g. "

Proof. Consider a decomposition [0, 1]= kglﬂK such that the sets Ak are pair-

wise disjoint, each Ak is an ambiguous FaGs set and for the oscillation of/ the
estimation co(f; AQ<e holds. Let MkczAk be a countable set everywhere dense in
Akand pick mkE Mk. Now we put (p{x)=f{mR if x(zAk. Then cprdSLand \f —(@ < £
According to Theorem 3.2 in [6] (p. 191) there exists g”bsd, |g| & £ such shat (/—)

Jléle=gk_u1 MK. For any x£\JlM kwe have f(x) - g(x) =f(x) - [f(x)- @()]=
<p(X). Thusl_lihe function h=f—g takes only finitely many valus on the everywhere
dense set I(|_J1Mk. Therefore in a point of continuity it must take one of these values.

Hence h(ChH is finite.

The class of all bounded approximately continuous functions, bsd, and the class
of all bounded derivatives, bA, form closed subspaces of b3>3% with bsdQbA. So
it is natural to ask if the analogues of Theorems 5 and 6 are valid in these spaces.
The question for bA is open and it seems difficult*. More precisely, for any fdA
we always have f(Af)=mgfi Indeed, referring to a well known theorem of Denjoy,

aset {x is either empty or has positive measure and then f(Ay)=rng/
readily follows. On the other hand, we do not know whetherf{Af) is a null set for
a typical derivative*. For the case of bsd or bA we can prove that the analogues of
Theorems 5, 6, 7 and 8 and Corollary 3 when applied to “Cf” are all valid.

Note that for f*bsd, Af is the domain interval I.

First we have the analogue of Theorem 4 which is much simpler because bsrf
and bA are closed under addition whereas b3)S8k is not.

Theorem 10. The class of all f*bsd(fEbA) such thatf(Cf) isfinite is dense in
bsd {bA).

Proof. Let f*bsdifiA) and £>0. Applying Theorem 9 there exists g£bsd
such that |[|g||[<€ and h{Ch is finite where h=f—g. Then ||/—#||<E€ and
h£bjd(bA).

* This problem has recently been settled by the second named author. It is proved, that for
any bounded derivative /,/(/fIA/)—f{i) for any subinterval /c[0,1].
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An examination of the proofs of Theorems 5, 6, 7 and 8 as well as Corollary 3
shows that forf(C f) they are all valid when “As/” or “bA” is substituted for “b3>(k”
and no other changes are made. Therefore,

Theorem 11. The analogues of Theorems 5, 6, 7 and 8 and Corollary 3 stated
for f(Cf) are valid both in bsd and bA.

The authors wish to thank M. Laczkovich for providing useful comments during
the preparation of this paper.
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SOME RECURRENCE RELATIONS AND
EINSTEIN’S CONNECTION IN 2-DIMENSIONAL
UNIFIED FIELD THEORY1

K. T. CHUNG (Seoul) and C. H. CHO (Onyang)

I. Introduction

IA. Two dimensional unified field theory (2-g-UFT). In the usual Einstein’s
2-g-UFT the generalized 2-dimensional Riemannian space X2, referred to a real
coordinate system xv, is endowed with a real nonsymmetric tensor gX which may be
split into its symmetric part hXl and skew-symmetric part kxfi:

(11a) gil  MAI'BVAD)

where

(1.1b) g= Det((gAD)"0, D= Det ((1A))"0, 1= Det ((k¥f) = (k1)2?£0.
We may define a unique tensor AA/ by

(12 hx =

In 2-g-UFT we use both hABand hX as tensors for raising and/or lowering indices
of all tensors defined in X, in the usual manner.
The densities defined in (I.1)b are related by

(1.33) 9 —1)+1.

so that

(1.3b) g= 1+fg
where

(1.3¢) 8= 9 &= ili).

In particular, we note from the last condition of (1.1b) that there exists only the
first class of kX3 in 2-g-UFT.

The differential geometric structure is imposed on X2by the tensor gXl by means
of a connection F Al given by the system of Einstein’s equations

(1-4) — o4
where Da is the symbolic vector of the covariant derivative with respect to FAland
(15 su*nw.

1 The results presented in this paper were supported by 1980-Research Grant of Asan Foun-
dation.

2 Throughout the present paper, all indices take the values 1, 2 and follow the summation
convention with the exception of indices x,y, z. Greek indices are used for the holonomic com-
ponents of a tensor and Roman indices for the nonholonomic components.
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It has been shown that ([5], pp. 52) if the system (1.4) admits a solution "X, it must
be of the form

(1-6) = + ).,
where j/~J are the Christoifel symbols with respect to the tensor hAl and
(1-7) U\, =

IB. Purpose. The generalized 2-dimensional Riemannian space X2 has some
particular properties, probably due to the simplicity of dimension. In this paper we
derive, in the first, several useful recurrence relations in X2 which do not hold in a
higher dimensional space. The purpose of the present paper is to obtain the solution
of Einstein’s equations in a simple tensorial form in 2-g-UFT, using newly obtained
recurrence relations. This solution is the simplest ever obtained.

1. Recurrence relations in X2.

In this section we derive several powerful recurrence relations, establishing
a nonholonomic frame in X2
The eigenvalues M and the corresponding eigenvectors avin X2, defined by

(2.1) (MhXfi+kXDafl = 0, (M: a scalar)

are called basic scalars and basic vectors, respectively. There are exactly two linearly
independent basic vectors av satisfying (2.1), where the corresponding basic scalars

IYI are solutions of
(2.2) Det ((Mhx,,+kxJ) = I)(M2+k) = 0.

Therefore, the basic scalars M and M are given by

I ifT for k>0;

@3) (Y—« for 0.

Since avand av are linearly independent, there esixts a unique reciprocal set of two
linearly independent covariant vectors e%k and a%k such that

(2.4) 9'ax= <& axax= ab-

using the vectors av and ax a nonholonomic frame of X2will be established in

the following way: If Tx - are holonomic components of a tensor, then its nonholo-
nomic components Tj;;; are defined by

(2.5) T):;; = TIl;;avf-
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which are equivalent to
(2.6) TI: =Ty;;q'ax....

It has been shown that ([5], pp. 22) the nonholonomic components of (pk f are
given by

(2.7) rkf=M"Sk (p=0,1,2,.),

where

(2.8) v = 5§, = kf, WV =(-OW -
Theorem (2.1). (The first set of recurrence relations.) We have

(2.9) o+Vkf+kWkf=0 (p=0,1,2,...).

Proof. Since the basic scalars M satisfy lyI2+ k=0 by virtue of (2.3), the first
recurrence relations may be derived in the following way, using (2.6) and (2.7):
ip)k" +k(Nkx>= £ ~+ "k/+k~k/)axav=2 Mp(M2+k)axav= 0.

X

In order to derive further recurrence relations, we use [the following] Mishra’s
abbreviations ([6]), denoting the tensor Tniiv by T:

Py T (o). <)k B{ny
(2.10a) W (opv o i’
rodf df w df df
(2.10b) T = Jow = sﬁgé Jeivs 0 — daw =

If the tensor EIg[Ll,y is skew-symmetric in the first two indices,

par qpl_’
(2.11) ¥l = Tieve
Lemma (2.2). The basic scalars satisfy
(2.12a) M+M =0,
(2.12b) M l\;l —Kk =10

for all values of x and y when x”"y.
Proof. The identities (2.12) are direct results of (2.3).

Theorem (2.3). (The second set of recurrence relations.) | f Taiiv is a tensor skew-
symmetric in the first two indices, then

(10)r
(2.13a) T =0
(r=012..)
Ir 00r

(2.13b) T=xkT.
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Proof. Using (2.6), (2.7), and (2.10), we have
par - (pe)r (i)r x yz
T Tailv nyz Txyz &

= %&Z Tijrkd Ak yd+Mkx (pkyly nkzkaa a,, av =

=j2 zTXMM" M“+ MgM pM raua,,av

for p,q,r=0, 1, 2, 3, .... Hence the second set of recurrence relations may be derived
from the above result in the following way, respectively, using the skew-symmetry
of the tensor Tmilv when x~y and Lemma (2.2) when x"y:

@

H @ Xy z
T-kT = _Z Tyz(MM—k)Mraua,av= 0.
XY,Z y z

X Yy z
fx%,‘szyz(%H)\/l)I}/Iratoallav— 0,

The condition (2.13a) implies that the tensor t%l\/ is symmetric in the first
two indices, even though the tensor Tdfiy is skew-symmetric in the first two indices;
that is

o

0y
(2.14) Twuy= Tyav (r=0,1,2,...).

Theorem (2.4). (The third set of recurrence relations.) 1f TLHYis a tensor skew-
symmetric in the first two indices, then

r(10
(2.15a) 2\s[<ap] — 0
il @ (f=012..)
(2.15b) Tvmii] &k N["m

Proof. As in the proof of the previous theorem, we have
'%Xl =2 ("T';ayz] Z Txtyzi MC(MPM Y4 M UM p)a,aLad,
X.y.z
Hence the third set of recurrence relations can be obtained in the following way:
I'(10)

) 1
TvioY] ' x,2y . Txbr,M r{\lylv + I\Z/I )ayaus,, —0,

rll (€] Xy z
Tvi@ri-k NfuM= Z Txb* Mr(MM -K)a,aTal = 0.
X,y,z X Y z
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1. Einstein’s connection in 2-g-UFT

Using the recurrence relations obtained in the previous section, we find a unique
solution of the system of equations (1.4) in this section. The solution obtained in
this section is the simplest ever found.

Lemma (3.5). In X2 we have
(3.1 Noaliv] —O0.

Proof. Since all indices take the values 1, 2 only in X2, (3.1) follows from the
skew-symmetry of the tensor Sailv in the first two indices.

Theorem (3.6). If the condition

32) g* o0
is satisfied, the system (1.4) admits a unique solution
3.3) '%Cﬁy_J(;\W>

where W is the symbolic vector of the covariant derivative with respect to {£,.}.
Proof. Using the relation
(34 = —Sailv

equivalent to (3.1), and employing the notations introduced in (2.10), we have from
(1.4)

L o
(3.5) goola —3yQooo] + 2SMite - ~<OVH2S V(@ -
On the other hand, one finds by virtue of (1.6)

(363) n 'ECOA _(])v rlv(uu—gﬂcov\(alx—':%v I\‘/_coa -V vi;«t),q_ W/-'cov i covI \(/;a/i -

—(5o*+ Camfeatt —  /oQ+ 25w+ 2 picyyy -
Substituting
001

37) U= 25 A

equivalent to (1.7) into (3.6a), and using (3.4), (2.13a), and (2.15b), one obtains from
(3.6a) that

001 (10)1 on 001
(3.6b) Dyk,al = Vvkug+ 25V)—2 S y+ 2S\WA = Wknii+ 2SViE)+2kSvitoll] =

001
= WK+ 2Sic]
Comparing (3.5) and (3.6b), we have (3.3) if the condition (3.2) is satisfied.
Theorem (3.7). If the condition (3.2) is satisfied, the tensor £/,,,, is given by

3.8) UiR=-|(v.* (. W
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Proof. Substitution of (3.3) into (3.7) gives (3.8) in the following way:
00i 2
= 2ft» Sa@l) = —2hwak(S a3 = - --(V, kid) kj.
0

Now that we have obtained the tensors S (@lv and Uwfi in terms of gXg, it is
possible for us to determine the connection ,, by only substituting for S and U
into (1.6). Formally,

Theorem (3.8). If the condition (3.2) is satisfied, the Einsteins connection
I'ljf, in 2-g-UFT is given by

(3.9) M,={Jj+jA" v A-|(V .V)V).
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ABSTRACT MEASURE DIFFERENTIAL
INEQUALITIES AND APPLICATIONS

G. R. SHENDGE and S. R. JOSHI (Maharastra)

1. Introduction. The problems regarding existence of solutions, uniqueness of
solutions as well as the existence of extremal solutions of an abstract measure dif-
ferential equation (AMDE) have been considered by Sharma [2,3]. In this paper we
consider the same AMDE and establish a basic inequality in the form of a mono-
tonicity theorem, using the lattice fixed point theorem due to Tarski [4].

In Section 3, the difference between two approximate solutions of an AMDE is
estimated. Uniqueness of a solution and its continuous dependence on initial con-
ditions follow as a consequence of this estimate.

2. Notations and definitions. Let R denote the real line and X a linear space over
the field R. For any subset S of X and a tr-algebra M on S, let the symbol ca (S, M)
denote the space of real measures (as a subspace of the set of all complex measures
defined on M). It is known that ca(*S, M) is a Banach space [1, p. 161] with respect to
the norm | || defined by

il = \p\(S), p£ca(S,M),

where |p| is the total variation measure ofp. Forany x£X definethe sets Sxand Sx
as follows: Sx—{rx: —°o<r-= 1}and Sx={rx: — N 1}. Let xBbe a fixed element
of X. Forany zeX for which Sxacz Sz, we shall denote the set Sz—S> by x"z and
write z>x0. For any z>x0, let Mz denote the smallest cr-algebra on Sz, containing
{x0} and the sets Sx, XEx"z.

In what follows p will stand for a finite positive measure and pdc& (Sz, M2).
For a given positive number b, let | be the interval (—b, b) and/ be a real valued p-
integrable function defined on SzXI. For any real number a£/ consider the equa-
tion

2.0 = f{x, P(SX)

with the initial condition

(22) P(SX = a,

where dp is the Radon—Nikodym derivative ofp with respect to p.

Definition 2.1. A real measure <pfca(Sz, M2z), z>x0, is said to be a solu-
tion of (2.1) satisfying (2.2) if

(i) P9 = a,
(i) (p(E)a, EEMz,
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(i) (KB on X,

(iv) (p satisfies (2.1) a.e. [p\ on X"z

Remark 2.1. Clearly if (pis a solution of (2.1), it is bounded. However if | is
replaced by R, it may be either bounded or unbounded.

Remark 2.2. From the definition (2.1), it is clear that is a solution of (2.1)
satisfying (2.2) if and only if 9(SX)=a, and

«>(E) = f f(x, cp(SX)dfi, Ec Adz, EEMZ
E

A solution @ of (2.1) satisfying (2.2), will be denoted by <(x0, a).
Definition 2.2. Let g be a real /r-integrable fu7nction defined on Sz,z"x,,

p£ca.(Sz,Mz) and p«p, Then by the inequality-*—" g(x) we mean
p(E)" f g(x)dp, EEMZE d xoz.

Definition 2.3. Let e>0. A measure <p€ca(Sz, Mz) is said to be an £-appro-
ximate solution of (2.1) on x"z if

(i) p<kp on x,
(i) =£, ae. on XL

Note that if e=0, ¢is a solution of (2.1) on xC.

Remark 2.3. The conditions (i) and (ii) in the above definition imply that for
an e-approximate solution @ of (2.1) on xz, we have

11(*> <P(Sx))dp-ep(E) = <pB s f f(x, (p(S))dp+ep(E),

whenever EEMZ and Ec x(C.

3. In this section we obtain an estimate for the difference between two approxi-
mate solutions of (2.1). We need the following assumptions.

(A% p{xGt = 0.

(A2 / is a real yu-integrable function defined on SZXR for every zar0, and
satisfies the Lipschitz condition

\f(x,yd-f{x,y£\ zsb\yl-y 2, L >0
(A3 There exists a real /i-integrable function w defined on Sz, such that
\f(x, PIS w(x), (x,y)dSzXR-
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(A9 For any positive measure <t£ca(SZM 3, and any measurable subset
Ex of Xjjz, there exists a constant M >0, such that

(i) LM< 1, (i) f <(E,)dp =2 Mo(Ex).
Bx
We now prove the following theorem.

Theorem 1 Let the assumptions (AX to (A4 hold. Let px and p2be ex and ez
aproximate solutions of (2.1) onxfz, respectively, satisfying px(SX) =ax and p2(S>) ~
—a2, where axand a2are constants. Let 8 and B be nonnegative real numbers such that
|ad—a2"8 and £4+62—e. Then

\PAF)~PAF)\ FAMz'

Proof. Since px and p2 are ex- and a2-approximate solutions of (2.1), for any
Edx"z, we have by Remark 2.3

3.1) pPX(E)-p2(E) £8p(E)+ f [/(x, PASY)-f(x, p2(Sx)j]dp.
Letting E=xX, xExQ@ and using (A9 we obtain from (3.1)
[Pi(A™)-p2(~ )| S ep(x™x)+ L \p x(SX)- p2(SX)\dp S
Nep(x™N)+L f Ipx(SJ- p2AS@\dp+L Jjp x(*6*)- p2(x*x)\dp.

XOX
Set a—px—p2. Then the above inequality implies that

[<rGT)| S ep(xz)+L8p(x"z)+L J \ofxfx)\dp S.
AN (e+L8)p(x~z)+L f \o\(x"x)dp.

This, by virtue of definition of \a\ implies that
\<AQX) A (e+L8)p(x"z)+L f \o\(x"x)dp.
Using (A9 in this inequality we then obtain

(e+LS)p(x&
1 Ko)- l-Lm) '
Since this is true for every xZx"z, we conclude that

HOE) ~ ’ EiMz,EdxTz.
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This also implies that
(32 bBIE)-P% T =~("bM )2’ Ecz" -

Now if FEMZ, then Fean be written as F= SXO0UE, for some EcYxyr. Hence
using (3.2) and the hypothesis \Pi(SX)—p2(SX)\s8 we obtain the desired inequality

(3.3) PI(F)~P,(F)\a <+ @E{N w  2), FAMz

Remark 3.2. It is clear that when £i—0, Pl is the solution of (2.1) satisfying
Pi(SxJ—=4. In this case the inequality (3.3) reduces to

. (e2+L5)P(x"2)
|1 (1-P20KOL si &+ (1—LM) FdMz.
Further if e2 is also zero, then
(3.4) MF)-pM sS i+~ ~ \

This gives an estimate for the difference between two solutions Pl, /;2, satisfying
Pi(SX9=ccl, p2(SX9=a2.

It is also clear that if og—a2=oc, we can choose <5=0 and hence (3.4) implies
that Pi(F)=p2(F) foreach FEMZ This means that there is a unique solution of
(2.1 satisfying the initial condition (2.2).

Remark 3.3. The inequality (3.4) also indicates that the solutions of (2.1) de-
pend continuously on the initial conditions in the following sense. If PI(x0, og)
and p2(xo, ad are two solutions of (2.1) then for a given e>0, there exists a &=
=<5(e)>0 such that WI(F)—p2(F)\*E, F*MZ whenever |oq—a2|s<5.

4, A monotonicity theorem. We shall now prove a differential inequality which
can be viewed as a kind of comparison theorem. The proof is based on the lattice
fixed point theorem due to Tarski [4]. The following definition is required.

Definition. A solution pM(x0,a) of (2.1) satisfying (2.2) existing on x"z,
zSx0 is said to be a maximal solution of (2.1) if for any other solution <p(x0, a)
of (2.1), the inequality <p(E)*pM(E), EEMZ holds.

A similar definition can be given for the minimal solution of (2.1). It is clear
that, whenever the maximal and minimal solutions exist, they are unique.

We now need the following assumptions.

(Bi) /(*>Y) is a real valued monotonically non-decreasing function iny.

(B2 J w(x)dp, SW O for some WO> 0,

where w is the same function which occurs in (A3.
(B3 S= {pfca(Sz,M2): |jp| ~ A}
where K=\a\+W0, a being the same as in (2.2).
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If Pi>Ps€S> then by Pi=p2, we mean p1(E)"p2E), where EEMZ Note
that S is a complete lattice with respect to this order relation.

We shall first prove the existence of the maximal and minimal solutions of (2.1)
and then establish the main inequality.

Theorem 2. Under the assumptions (AX), (A3 and (BX to (B3 the equation (2.1)
has maximal and minimal solutions existing on x"z and lying in S.

Proof. Define an operator T on S by

(4.2) Tp(SX9 =a, Tp(E) =f f(x, p(Sx)dp, ErzYfi.
E

Using (A3, (B2, (B3 and the definitions of T, one can show that T maps S into
itself. Also the assumption (BX together with the positivity of p it is observed that T
is an isotone increasing onS. Since S is a complete lattice,we can apply thelattice

fixed point theoremdueto Tarski [4] to conclude thatthe set{«6S: Tu=u} is
non-empty and is also a complete lattice. Consequently the equation (2.1) possesses
maximal and minimal solutions existing on x*z and lying in S.

Theorem 3. Let all the assumptions of Theorem 1 hold. If a real measure q£S
satisfies the condition q(SX)"a and

(4.2) q(E) —f f(x, q(SX)dp, E c xfz,
then
4.3) q(E) = Pm(E), EUYMr,

where pM(x0, a) is the maximal solution of (2.1) existing on ~fz and lying in S.
If the inequality (4.2) is reversed then

(44) of{E) = pmE), EEMZ
where pm(x0, a) is the minimal solution of (2.1) existing on sfz and lying in S.

Proof. We only prove (4.3) since the proof of (4.4) follows on similar lines. Set
#=sup S. Clearly n exists, since S is a complete lattice. Consider the lattice interval
[a, #]. This also exists since g£S and #d=sup S. Define an operator I by (4.1).
Then, as in Theorem 2, T is isotone increasing. We shall now show that T maps [q, ri\
into itself. Let p£[q, s]. Then p£S and p=qg. Hence by using (Bj) and (4.2) we
obtain

Tp(E) = J f{x, q{SX)dp 3=09{E), Eezxfz.

This together with the definition of n implies that Tp£[q, >§ Now an appropriate
application of the lattice fixed point theorem [4] shows that the maximal solution
pM(x0, a) of (2.1) exists on x*z and lies in [q, a]. The desired inequality (4.3) is now
an immediate consequence of this.

5. Applications. We shall now give two applications of Theorem 3.
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Let a in (2.2) be positive. Let g(x,y) be a nonnegative "-integrable function
defined on SZXR + z”~x0, where R +is the set of non-negative real numbers. Let r
be a positive measure belonging to ca(.!?z, Mz). Consider the differential equation

(61 g(x, r(S¥
with the initial condition
(5.2) r($>X9 = a

Theorem 4. Let the assumptions of Theorem 2 hold, withf replaced by g. Assume
further that the function f of (2.1) satisfies the condition

(5-3) \F(x,y)\ £ g(x, bl).

Let rM(x0, a) be the maximal solution of (5.1) existing on Xjjz. Thenfor any solution
p(x0,a) of (2.1) existing on xjjz we have

(5.4 \p(E)\*'rM(E), EEMZ
Proof. Since p(x0, a) is a solution of (2.1), we have

P(E) = f f{x,p{SX)dp, EEMZ Eczx”"z.
E

This together with (5.3) implies

\PENA f g(x, p(SX))dp, E C x*z.
E

From this inequality it can be deduced that

\P\(R) s / g(x, \p\(SX)dp, Ec xz.
E

Now an application of Theorem 3 yields the desired inequality (5.4).
We now merely state a uniqueness theorem for (2.1). The proof follows by a
simple application of Theorem 3.

Theorem 5. Let all the assumptions of Theorem 2 hold with f replaced by g.
Further let the function f of (2.1) satisfy the condition

\(x,yd-F(x,yE\ ~ g(x, b i-j2).

Suppose that the identically zero measure is the only solution of (5.1) existing on x"i.
Then the equation (2.1) has at most one solution satisfying (2.2) and existing on Xjz.
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ON NASH EQUILIBRIUM. Il

D. T. LUC (Budapest)

In this paper we study Nash equilibria from a view point of topology. Using the
methods in [1] and [2] we obtain new results for Nash-Pareto equilibria described
in [8].

Let us consider the multiobjective model consisting of two subsystems with

21—P, 722—Q
m=/. PXB —Rn
u2=g: PXQ -*Rm

Suppose P and Q are smooth manifolds with dim P=p, dimQ—q, f and ¢
are continuously differentiable mappings.

Definition 1 (see [2]). Let IP be a smooth manifold with continuously
differentiable functions ut: WAR (i—1, ..., m), where msSdim W Let un: XX—Rm
be defined by u=(ux, ...,un), and Pos(RmczRm be the set of (ylt ..., ym£Rm
suchthat for each /. Let #(x)= Du (x)_XP°sRm where Du(x): TXW)-+
-*Rm is the derivative of u at x considered as a linear mapping from the tangent
space of Watx to Rm A point W is called “Pareto Optimal” (or critical Pareto)
of n if H(x)=0.

Definition 2. We call (x,*y*)EPxQ Nash-Pareto equilibrium of model if
x* and y* are Pareto optimal of the mappings H{x)—{x,y*)\ P-*Rn and g(y)—
=g(x*,y): Q-*Rm respectively.

Let B be the set of Nash-Pareto equilibria (in the sense ofD efinition 2). Itis clear
that the classical Nash-Pareto equilibria set (see [8]) belongs to B, but, in general, it
does not coincide with 0. The following simple example shows this.

Take P—Q—R and let f, g: PxQ-»R2 be defined by

fix,y)=(

In this model, Jacobians of/ and g at the points (—1, —1), (0, 0), (2, 2) are of the
following form:

Hence these points belong to 0, but only (2, 2) is a Nash-Pareto equilibrium in the
sense of Definition 2 in [8].
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Let us recall some notions from differential topology. Let P be a smooth (C°°)
manifold and ¥ be a closed subset of P. By a stratification of ¥ we will mean the
closed subsets Ypi: Y=YpizoYp*z0...d P o ..., where px>pr>...>pk>.. are
such that

i) Fpn\yrn_, js a smooth submanifold of dimension px. Its connected com-

ponents are called strata. )
i) Forany stratum A, its boundary dA= A\A isa union of strata of dimension
smaller than dim A.

Let Uand V be two strata of ¥ such that VczdU, xEV. The Whitney’s con-
ditions are the following:

(@) if {x(is a sequence of points in U, xt—x, and TUX converges (in the Grass-
mannian of (dim C/)-planes in TW) and T=lim TUX then TVxax.

(b) if for the sequences of points {xf} and {yt} in U and V, resp. such that
Xj—x, yt-*x, x *y t, xtyt converges (in the projective space P"-1) and TUX conver-
ges (in the Grassmannian of (dim C/)-planes in Rn), then /E£T where /=limxiyl
and r=lim TUXL

We will say that a stratification satisfying (b) with any triple (U,V,x) where
x£V, Vz>dU, U and V are strata, is Whitney’s stratification (see [9]).

1. Generic property

Let now P and Q be smooth compact manifolds without boundary, and let/
and g be of class C, rés3

Let Cr(PxQ, Rn) be a space of mappings of class C from PXQ into Rn
with the natural structure of Banach spaces, and let Jr(PXQ, R") be the space of all
r-jets PxQ —Rn with topology included by that of C~ (PxQ, R"). Denote

N = {/Ve/lHFXR, R)O\D<pfx y)~1(PosR") = 0 }
Jo={MtI"PXQ, RM\Dx, y)~\PosRm =0},

= {(x y)"PxQ\IF(x, y)£JO, NO= {(x,y)ePXQ\Jlg(x, y)Uo),

where d(x,y) is the mapping (X, y): P-»Rn when vy is fixed, and d(x,y) is the
mapping d(x,y): Q”-Rm when x is fixed.
From definitions 1 and 2 we conclude at once

Lemma 1 70(/0 is a set with Whitneys stratification in J1(PXQ, R (in
JLPXQ, Rm).

Proof. Let ¥ denote the set i?[(Pos A")U(—Posi?")]. Taking yn=yand
Yk as the set of all coordinate ~-planes of Rn (k—1, ...,.« —1) and Y°—{0} then
yn-~yn-i-j ay!lr)Y ° forma Whitney’s stratification of ¥. Suppose Mis a smooth
manifold. We will prove that

J0= R\D(p (x)-1(Pos R") = 0}
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is a set with Whitney’s stratification. Setting

j%n = R"\ImDcp(x) ¢ ¥4
we have
@ X'= A 3J0"13...37>3 =Jl-
This is a Whitney’s stratification of Indeed, by definition
) = {j'cptI'W, RONImD<p(x) ¢ Y*P\{y>*€/1(M, 7?")[Im7Mx) ¢

<Y*'T= {j'cptI'W, 72)ImD<p(*) ¢ ¥* and 1TO<p(x)M(YRY *-1) i 0 }.

For k=n, YAY"~1 is open in R", therefore /@"\JI/TT1 is °Pen in JIiM, 77").
Consequently it is a smooth submanifold of Jk(M, R").
For k~cn, ¥*=Y ¥* is the union of all coordinate /c-planes Yk in Rn. From

linearity of Dcp(x) we have 70k= U JoY where J»k= {jIg>£J1(M, R)|Im Dcp(x)<zYK}.

But Ykis a subspace of 77', henlce J$* is a bundle subspace of J1(M, R").
Let A?k= {pyZJ'iM, RO\ImDcp(x) ¢ ¥- and Im£E<2(*)IKYTuy*") N 0}
then

We see that /A kIbly3=0 for iVy; i'y'=l, ..., MA) (MAY is the number of
coordinate A-planes of 77). In fact, if there is a mapping o: M—7?" such that
Im D<p(X)C(Y/X¥Y XD~ 0 and Im Dep(x)M{[¥* Y*J\(YFUYKR}AO, then
Im D(p(x) does not belong either to Yk or to Y), i.e. Bcp$Afk and Rep$SAR.
(Here [¥-1 Yj] is a linear hull of Ykwith Yk) This implies ARfJAR= 0 for i*j.
Moreover AR is a smooth submanifold of J1(M, R").

Further, (2) yields

d{JoRJok-")Y=JoRJo k' NJoRJIJokO0 =
= {JApNYM, 77Y\m.Dcp(x) ¢ Yk and ImDcp(x)f)(Yh\Y k-0) = 0} =
= {jlpMIL{M, RiNImDcp(x) ¢ Y*-1}

This is a union of some strata of smaller dimension.

In this way, (1) is a stratification of JO. In order to prove that this stratification
satisfies Whitney’s condition (b), suppose U is a stratum of JoRJok-1 and V is
another stratum in QU Let {7V,}={(w>Y-Pi)} and {y‘VE}: {(*-J1,P1)} be
sequences of points in I7and in V converging to j Icp={x, y, p) and cp, respectively.

Let e—imj 1pj Igd and r=lim TUjiVi. Does e belong to r? We have
TUj M = (TMxt, TRYi, T{J\m, k))F)
where m=dim M, «k is a dimension of the coordinate Awplane Yk with
Imoixiy ¢ Yj and
IMmDpi G M(Y)\Yk~K * 0
(asRg=i£ U for every i, hence Ykis the same for anyj 1(pi).
TUJ, = (TMxt, R", J\m, K)).
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Therefore x=(TMx, Rn K)). On the other hand,
I'VIVi = (xtx{, yty'i, Pip'd

implies lim x.x-grM*, limyty- £R" (as M is a smooth manifold and R" is a finite-
dimensional space.) Since j 1 £Vc.dU, Im Dp[{x{) belongs to Yf, in other
words pi£J1(m, k). Consequently, limPiP-dJfm, k). (Note that J'(m, k) is a
finite dimensional space.) Then we conclude as required.

Hypothesis (T).ff~J 0 and j ga\JO, MOn\NO in PxQ.

We explain this hypothesis. By Lemma 3, JOand are sets with Whitney’s
stratification. Say, JF is transverse with respect to this stratification if it is transverse
to each of the strata. If the first statement of the hypothesis is satisfied then by
Lemma 2 below, MOand NOare sets with stratification. Say, MQis transverse to NO
in PXQ ifany stratum of stratification of MOis transverse to any one of the stratifi-
cation of NO in PXQ.

Lemma 2. Under Hypothesis (T), MOand NOare sets with Whitney’s stratifications.

Proof. From differentiability of /, it follows that J1: PXQ-»J1PXQ, R")

is ofclass C2
we can apply Corollary 8.8 in [5], which asserts that in this condi-
tion the inverse image of Whitney’s stratification is Whitney’s stratification. Hence
MO0=0'V)~1(J1) is a set with Whitney’s stratification. For NOthe proofis analogous.

Proposition 1 Under Hypothesis (T), B is a set with stratification.

Indeed, by Lemma 2, MOand Naare sets with Whitney’s stratification and by
Hypothesis (T) MamNQO, therefore MOP\No=0 is a set with stratification. (Note,
that if MOis not transverse to NO, then in general B is not a set with stratification since
the intersection of two manifolds in general is not a manifold when they are not
transverse.)

Proposition 2. The set ofpairs of the mappings (f g) such that Hypothesis (T)
is satisfied, is open and dense in C3(PXQ, R")XC3PXQ, Rn.

Proof. It is easy to show that condition (b) implies condition (a). Hence, Pro-
position 2 is an immediate corollary of Lemma 1and Thom’s transversality theorem
on sets with stratification. Thom’s theorem asserts the following: let Y be a closed
set of Jr(N, P) with stratification of finite number of submanifolds, satisfying Whit-
ney’s condition (a), and let N be a compact manifold. Then the set

R= {/€C*“(W F)|//mT}

is open and dense for large enough r. (In [4] and in other references, we usually have
Thom’s transversality theorem and the simple transversality theorem on the set with
stratification. However, Thom’s transversality theorem is still valid on a set with
stratification. The proofis analogous to that of the above mentioned two theorems.)

Remark. In the case n=m =1, it is clear that MOand NO are submanifolds in
PXQ (see [1]) and in this, by Hypothesis (T), MOCINO—9 is a submanifold. In gene-
ral, if nor mXI, B is not a submanifold.
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2. Necessary and sufficient conditions for Nash-Pareto equilibria

First of all, recall the notion of an admissible curve introduced by Smale
in order to examine Pareto Optimal sets (see [2]). Let W be a smooth manifold,
ur, umbe smooth functions defined on W Let u: W-»Rm be defined by u=
—(ux,...,un). A curve qx (-s,s)—W defined on an interval is admissible if

— for each t£(—s,s) and each Observe that the point

XxE W is a Pareto optimum iff there is no admissible path for x.

Here we consider the smooth manifolds P and Q with functions f: PXQ-+R"
and g: PxQ-»Rm of the class Ck(k"2). A C-curve oo (—, s)-*PxQ defined
on an interval is an admissible curve of (/,g) if Df(<p(t))(<pi(t))sO and
Dg(cp(t)(cp'2(t))"0 for each t£ (—£, 1), and at least one of these inequalities is
strict, where gxand q® are components of @ in detail, 9x: (—,e)—P and q®:
(-e,e)-RB.

Proposition 3. If the Euler—Poincaré characteristic of P and Q is not 0 (in
the case oriented) or is odd (in the case non-oriented) then 9XO0.

Proof. Consider the vector field Txj+ Tyg on P X Q mBy our hypothesis on the
Euler—Poincare characteristic it follows thatthere is a point (x,y)EPxQ at which
this vector field vanishes, i.e. Txf= 0 and Tyg—0, consequently x and y are Pareto
optima of/ and g, respectively (see [3]), or (x,y)£OQ.

Proposition 4. A point (X, y)EPxQ is Nash-Pareto equilibrium if and only if
there is no admissible path for (x, y).

Proof. Suppose (X,Y) is a Nash-Pareto equilibrium, i.e. x and y are Pareto
optima of f(-,y) and g(x, *), respectively. If there is an admissible path q—
= (<Pi, 99 €)—PXQ through (x,y), for example g0)=(x, y), thenD/~"0))
(<pi(0))>0, and Dy =2(0)(<pa(0)) SO.

We can consider Dj((Pi(t))((p{(t))>0 for each tE£ (—£,'e") for some s': 0<s'<e
(observe that/ is of class C2 and /(<Pi(0)—4<Pi(0>Y) with y fixed). Thus qt
is an admissible curve of /(*, y) which contradicts x being Pareto optimum of
[(=Y)

Conversely, if (x,y)EPXQ is not a Nash-Pareto equilibrium, i.e. either x
ory is not a Pareto optimum. For example, x is not a Pareto optimum of / (s, y).
Then there is an admissible path <x: (—s,s)-+P such that qy(0)=x and
DFf((pi(t))((p'i(.t))~-0 for each t£(—e, ). Ris defined on (—8,s) with values in Q
by <Pi(t)=ymThe curve cp=((px, (Pd will be an admissible path of (/, g) at (x, y).
This completes our proof.

From Proposition A in [2] and Proposition 1, we have the following:

P roposition 5. A point (x,y)EPxQ isa Nash-Pareto equilibrium if and only
if one offollowing equivalent conditions is satisfied:

a) Dffx) (i=1, ...,n) and Dgj(y) (j—L m) do not lie in the same open

half space of T£,,)(PX0=T*(P)dpI;(0.
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b) There exist Xit ..., Xn,ul} ..., y TER+ with not all 4 zero, not all fi, zero such
that

[ hDflx) = 0 and J?HjDgj(x) = O.

Thanks to the notion of admissible paths of (/, g), one can define the set of stable
Nash-Pareto equilibria and obtain results analogous with the stable Pareto set (see
[2] and [3]).
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DEGREE OF APPROXIMATION OF
FUNCTIONS IN THE HOLDER METRIC

R. N. MOHAPATRA and P. CHANDRA (Beirut)

1. Definitions and notations. L et/be a periodic function of period 2n and inte-
grable in the Lebesgue sense over [, n]. Let the Fourier series of/ be given by

l -~
(1D —Zr—ao+/l=21' (a,,cosnx+bnsmnx) =/l=20 An(x).

Let Chbe the Banach space of all 2w-periodic continuous functions defined on
[—t, 1] under sup norm. For O0<a”l and some positive constant K, the function
space Hxis given by the following:

Hn= {/<ec2s. 1/(x)-/C y| ™ n:|*-"-}.
The space Hais a Banach space ([7]) with the norm | ¢|le defined by

(1-2) W, = Huc+sup {A*Hx, j)}.
X,y
where
/e = _ NP, [/0)

and
(1.3) J(x, y)1 = MO -F(y)VAX-y\*= - (x ).
We shall use the convention that A°f(x, y)=0. The metric induced by the norm (1.2)
on Hx is called the Holder metric.

The set of functions/ with *f\\xs K is a compact subset of C[0, 1].

It can be seen that ||/||*(2n)a-/l]|/]la for 0~/?<aSIl. Thus {{Hx, | *||a}
is a family of Banach spaces which decreases as a increases.

Let A—@k) (k, n=0, 1, ...) be an infinite matrix of real numbers. We denote
by T,,(f) the N-transform of the Fourier series of/ given by

(1.4) ™{f-x)= 2arksk{(d) (1=0,1,..)

where sn(x) is the u-th partial sum of the series (1.1). If A=(a,,ik) is lower-triangular
ie. ank=0 for k>n, we write

(L5) Ll )= 2 aksk() (=01 ..).
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Throughout the paper, we shall let K denote an absolute positive constant which
may be different at different occurrences. We shall also use the following notations:

(1.6) () = f(x+t)+ f(x-t)-:
(1.7) Ank = 2
r=0
(1.8) An.kf
(1.9) & nk % Anr§>
(110 %= (t) " 1—
2. Introduction. Alexits [1, p. 301] studied the degree of approximation of func-

tions of Hx by the Cesé&ro mean of their Fourier series in the sup norm. Since Ch3

for Prossdorf [7] obtained an estimate for Wh(f)—\\p

for /£ where a,(/) isthe Fejér means ofthe Fourier series of/. Precisely, he proved
the following theorem:

Theorem A [7, Theorem 2]. Let /E#a(0<aS 1) and OsB<a. Then

i0(nR~® (O<a< 1,
2.) |<r.(N-/1»={0],»-1(1+1o8,,),-»] (a=1).

The case =0 of the above result is that of Alexits referred to earlier.

With a view to generalizing Theorem A, Chandra (“Theorems 1and 2] obtained
estimates analogous to (2.1) by replacing c,,(/) with (N,p,) and Norlund means of
the Fourier series of /.

The object of this paper is to generalize the results of Chandra [3] by obtaining
estimates using the ~-transform of the Fourier series of fAH x. In 84, we specialise
the matrix A and obtain corollaries some of which cannot be obtained from the
results hither-to-known (see Corollary 2).

We shall prove the following:

Theorem 1 Let A=(aR be a lower triangular infinite matrix satisfying the
following:

(2.1 ark LUO(n, k = 0,1, 2,..) and j? ark=1,

(2.2) ak"anwHl (k=0,1...,mu-1,n=0,1..).
Then, for 0=/1<a” 1 and f(_Hx

O@™"log** (nam+1) (0< a< 1),

(2.3) \\m(f)-f\\B Oja-rlw*jlog/\l +nal + Iog 1-n (y_)}] O = |)o
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Theorem 2. Let the lower triangular matrix A=(ark satisfy (2.1) and (2.2).
Then for fEHa, and 0&/?<océl,

N@,-9+0ML*+YT) (for O<a< ]
[O(nR- D+ OfamnB(log n)1- 1 (for a = 1).
Theorem 3. Let A=(ark be an infinite matrix satisfying the following:

(2.4)

(2.5) ankst 0 (N, K= 0,1, ...), it 1 (n=o01,.),
(2.6) 2 (fc+tDant=0((n+1)) (n=12..),
(2.7) ank*anHl (xk=0,1,..) for n=0,1.....
Then, for 1 and fEH a,
(2.8

f( N 13*f n

WTfin-f\B = o(nR-*)+o[{zik-"an{(k+i))\ {2fc-L*«n((fc+i))j ]

Theorem 4. Let the lower-triangular matrix A=(ark satisfy (2.5) and (2.2).
Then for fEHa and 0s/?<a”l,
ft " ma( n 11-#4
(29) Wn(f)-f\i= 0™ )+ 0~ k-~ nR [ir'X .-ij J-

3. We shall need the following lemmas:

Lemma 1 Let the lower-triangular matrix A= (ark) satisfy ank*0(k = 0,1, ..., n\
n—0,1..) and (2.2). Then

A aksin[n+j) t=0{t_4,},

uniformly in T i e<uity proved by Abel’s lemma.
Lemma 2. Let /1= (ark) satisfy (2.7) and

(3.1) ank» 0 (nfc= 0,1, ...).

Then

O arksin(n+y) t=0{a,(©}

This lemma can be proved by using arguments similar to that of McFadden [5,
p. 182].

Lemma 3. Let the lower-triangular matrix A= (ar¥ satisfy (2.2) and amy 0
(&=0, 1, ..., n; n—0, 1,...). Then
O ansin(fc+y ) ?= 0{<,,_t+}.
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Proof. We write

O aksin[lc+y)t= (4 +wn2_ Jarksin(k+ t

Clearly, the second sum on the right does not exceed 0(a',_T+) and since
{a®) I=0is monotonically increasing, the first sum does not exceed

ot u>-t+d=0( ~ = 0(an,,_t+).
\k =n—T1-fl /

On collecting the results, the lemma follows.
4. In this section, we shall prove the theorems mentioned in §2.
We observe that for f €Hx,0<a” 1,

4.2) \<Pxg)-4>y (H\ = 4K\x-y\x
and also

@2) kv(0-<py(Ol- T/(*+0- 1 I+ L/¢x)y-1(*-0+ 10"+ 0~/0 )] +

Proof of theorem 1 Let In(x)=tn(f; x)-f (x), where

WY1y ={j ~ (24 * sin (fc+1) tj dt.
2sin-j'
Then

L Wx(D)-<py ) 2_arksin ( 11

2sin—t

-T(7T"+ ) Sy
However, by (4.2) and (2.1),

(4.3) h=0( 'f t-\cpx{t)-<py{f\dt= 0 (0 ,
0

and by (4.2) and Lemma 1,

4.4 h = 0faj ft- 2w\ W, ) forosast
. = - +0 — 1
44 {aJ/ }OIan,Iog(I/aJ] for a= L
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Since, by (2.1) and (2.2), it follows that (n+ )a,,,,SI therefore by (4.1) and (2.1),
we have

(4.5) A= 0{\x-y\*) f t_1"a,tlsinMfc+yj/[ddr =

= 0(\x-y\*) f (g (*+WM*)dt+ f r'jia™ A
1
= 6(k-y|'log (naBB+ I)
and, by Lemma 1 and (4.1), we obtain that

(4.6) A=0Mx-y\*am f t~2dt} = 0{|x-y|a}

ann

Now, for k= 1,2, we observe that Ik=11~{*lfc,a. Thus, by substituting the
estimate for [ from (4.5) in 1fX*and the estimate for 7from (4.3)_in I\~Rlx, we get

4.7 A= 0{\x-y\Ral~Blogp/d(«aTo-1)}
and, by (4.4) and (4.6)
/= 1° [Ix~yWPa™E] forO<a<1>
10[|x-y|p{anlog(l/a,,,)}l p] fora= 1.

Hence we observe that

_ VL -\
sxuyp ARL,(x, J)| = f’yue? \X-yu\JIB

_i0 [a*-"Tlogw*(nam+1)] for O0< a< ],
I°K ~{log4nam+ D+logl 4VaJ}] fora= 1
Now, proceeding as above, we obtain

0@*,) forO<acx< 1,
(4.10) 002 0 [aBHog(l/0] for a= 1.

Since a,, il and log (I/a,,,,)"gn, we have on collecting results from (4.9)

and (4.10),
Itm _fn pKn_plogM(nam+1)] for 0<ac< 1,

B 10[aJB/ {logi (naBB+I)+log1-~)l/aB}] for a = 1,
This completes the proof of Theorem 1
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Proof of theorem 2. We have, as in Theorem 1,

/M b LW ) ( 11
no o1 kZO Smr|)I
2sm2 t
"Th O

Mg +m&1 - say.

Proceeding as in the proof of (4.3) and (4.4), we have J1=0(n~1) (0O<aSl)

and
fCKnl “iij O<ac< ],
"\o(an,logn) a=1

Similarly, letting am=n/n in (4.5), we obain Jx=0 {\x—\*}. Also, by (4.1)
and Lemma 1, J2=0{\x—y|ana,,.}. Now Jk=JI~BxJE/X (K = 1,2), therefore Jx=
= O {\x—y\BnR~X)
and

IO{\x—y\BnR x+lam for 0< a< 1,

Ir = jo {\x—y\RtiBxamlogl i/an} for a= 1.
Hence
oo, A \Oénl's->_<3+0én|'$-x’_‘ajl for 0< a< 1
supM'l,(* H| = {0 +0 (,»0<i|og -(n) for a= 1

11»_|

Now, proceeding as above

e = i°(»"9+ O O<ac< 1
"C [0(n~D+0(amlogri) a—1.

Now, combining the results, we obtain
= (O(NB-Y+0(nBR-*+laJ for O«wa < 1,
B {O(nR-*)+O{annnBlogl~¥i) for a = 1.
This completes the proof of Theorem 2.
Proof of theorem 3. From (14) and (2.5), we get

1 *N(Osin[fe+yj ,

T,.(\ x)-f{x) —an n%o”kitf 1 dt =
sin—/

=€/ "Nr 11 A,sin(t+i) 3*.
smT '
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the change of order of summation being permissible by the facts that <& (t) =0(t*)
and Zk\ank<°°,

Writing In(x) = Tn(f\ x)-f(x), we have

1 f \<Px(H)-(p, (O D) _
) B kg oa ak SIN th+‘Q, dt -
sinji

!/ nin
=29)-1/ +/ =h+h, say.
(25) w i y.

a\

By (4.2) and (2.5),

h=o0\j /*-=0(n-o.
And by Lemma 2 and (4.2)

h =0(1) f f-"aRn/t])dt =

n/n
n/k

o) 2, id(kfrl)< ~12,[A/<)1 = 0(1)2 K- -, 81(k+1).

Now using (4.1) in place of (4.2) we estimate h and /2.

w o 0e vl i, 2

[sin(1/2)/] -0 fc=n+|/)an*sm\ife+-i-) bdf=Ju+/i2
Clearly

hi=olfx-jf f Y kOak{k+I>)tdt} =
by (2.5). In view of (4.1) and (2.6)

nfn \
ank(k+Dt dt = 0\IX-j|a(n+|)! dﬁl-

0{\x- yI.

On collecting the above results we thus get h —0 (\x—A\*).
From the definition of /2, (4.1) and Lemma 2,

h=o(\x-y\*le,"-dt):oi\x-y\’"Z /

= o(\x-y\* R k - 4 n(k+l)),

since a,,(t) is a non-decreasing function of t.
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For r=1,2, we write Ir—I}~RIxI@lit Then 1r=0{\x—y\BnR~x} and

( » YI/» T n 41-R/a
Hence {
1*1 » y-i/a]

7 »
sup \ABla(x,y)\ = O(nR-*)+0"kZ k -4 n(k+|)}Y {2ik-1-xan(k + 1)J

Also, it is easy to observe that

Ple = sup \T,(f-x)-fF(x)\ = 0(n-*)+0{ Zk-1-Xan(k+ L)\.

Thus collecting the results obtained for ||/,Jlc and sup \AQ,,(x, y)\, the proof of
the theorem may be completed. "
Proof of theorem 4. Observe that by (4.2) and Lemma 3

0-11) [ ‘(PAD-<PYN Znarksin( b

i sin?lt =0 [k+2)1 n/n
nl jk |
:O(I)uz */(,}_I_:D = *izﬁc-l-((;-*,

since 0<a-=I and aj,n-xis a non-increasing function of t.
By using (4.1) in place of (4.2) and proceeding as above, we see that the integral
on the left of (4.11) is

c{\X~Y\*kz k-~la"‘,,n-kl-

The theorem can be proved by modifying the proof of Theorem 3.

5. In this section, we specialize the matrix A to obtain interesting corollaries.
Let {} be a sequence of non-negative constants such that p0>0 and P,,=
=Po+Pi+ ... +p,,-
Then the transformations
(5-1) N,,(f; ) = (n)-1 2| ZESk0.
and
(5-2) Nn(f -x) = (Pr,)-l%:di’ n-"(xl
are the (AT, pn) and (N, pn) transformations of the Fourier series respecti-

n=0
vely (see [4] for definitions of (IV,p,,) an (N, p,,) methods). Let Ex be given by
(5.3) ZE'm" ={\~x)-"-1 (W <.
n=0
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We write for Nn(f-, x), ar,(f; x) or Hn(f; x) according as pn=L,,~1 (=>— 1) or
pn=1j(n 1) (n=0, 1, ...) in (5.2), respectively. We also write for Nn(f; x), Ln(/; x)
when p,,=l/(n+1), n—0, 1, ... in (5.1).

Corollary 1 (see [3]; Theorem 1). Let and 0~/J<a”l. Then

w T N1 _ o{(pj(log(npIPA)\ (0< a< 1),
P J o lo{(PJM)1 {logB(npJPR+logl (PJM)} (a= 1),
where \pn) is a positive non-decreasing sequence of n.

Proof. Under the hypotheses on {pn}, P,,A(n+\)p,,. Hence the corollary
follows from Theorem 1, (2.3), on setting am=pnP,,.

Remark. On setting R =0 we obtain a result of Chandra [2].
From Theorem 3, we obtain

Corollary 2. Let fEHXx and 0~ <a/2, O0<a<l. Then
(5.5) Wn{f)-fb = O((lognfW«)-1)-

Remark. The case R=0 of Corollary 2 is considered in [6].

Corollary 3 (see [3], Theorem 2). Let {p,} be a positive and non-increasing
sequence and fEHx, 0S /?< a”™ 1. Then

G6) [liV.,()-/A= 0 P,)-1 2 RJc-1-9 \R(PJIk)} |+0(n“".

This follows from Theorem 4 by setting a,,,,=VP,, and dann k~PKPn.
On setting p,,=EZ~1 (0<y< 1) in Corollary 3 we obtain

Corollary 4. Let ffH a and 07/i<a<y. Then

jOin“-‘) (0<a< 1; 0<y < 1),

S won-th B 10ogny-f) (@a= 1=y)

Remark. The case R=0 of Corollary 4 is due to Alexits [1, p. 301].
Corollary 5. Let and O<a<1, 07/i<a/2. Then

(5.9) il#,,(/)-/1U = O((logn)-1+2").

On putting =0 we can obtain estimates in the sup norm from our theorems or
corollaries.

The authors owe their thanks to the referee for his comments which led to the
improvement of Theorem 3.
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ON THE STRICT TOPOLOGY IN THE NON-LOCALLY
CONVEX SETTING. 1l

A. K. KATSARAS (Joannina)

1. Introduction

The strict topology was for the first time defined by Buck [1] on the space of all
bounded continuous functions on a locally compact space X. Sentilles [18] and Frem-
lin—Garling—Haydon [7] have considered the case in which X is completely regular.
Several other authors continued the investigation of the strict topology R0 on the
space Cb(X, £) of all bounded continuous £-valued functions on X where E is either
the scalar field or an arbitrary locally convex space. The case of an arbitrary topologi-
cal vector space E was considered by Khan [14] and by the author [13]. In this paper
we continue the study of the strict topology assuming that E is a topological vec-
tor space. We show that the dual space of (Cbh(X)®E, R0) is a certain space
M,(Bo(V), £') on £'-valued measures defined on the cr-algebra Bo (X) of the Borel
subsets of X. In case Ch(X)® E\s /20-dense in Cb(X, E), we have that (CHX, E), R0)' =
—M,(Bo (X), £'). By [13] and [14], this in particular happens in each of the follow-
ing cases:

1) X has finite covering dimension.

2) Every compact subset of X has finite covering dimension.
3) E has the approximation property.

4) £ is a complete metrizable space with a basis.

5) X is a P-space.

It is shown that R0 is finer than the topology of uniform convergence on the tight
subsets of M ,{Bo (X), £'). If £ is locally bounded and X a P-space, then BOis finer
than the Mackey topology for the pair <£, £') where F=(Cb(X, £), B0). We also
look at the problem of the separability in the strict topology as well as at some other
properties of this topology.

2. Preliminaries

Throughout this paper, X will denote a completely regular Hausdorff space, £
a real Hausdorff topological vector space, Cb(X, E) the space of all bounded £-
valued functions on X and C,b(X, E) the subspace of all totally bounded members
of Ch(X, £). We will denote by Ch(X) the space Cb(X, R) (R is the space of real num-
bers). The algebraic tensor product Ch(X)<g>E is isomorphic to the subspace of
Ch(X, E) spanned by the functions f®s, fdCb(X) and sEE, where /<g>s is defined
on Xby (f®s) (x)=f(x)s. The uniform topology non Ch(X, £) is the linear topology
which has as a base at zero the family of all sets of the form {f£C b(X, £): f{X)aW)
where >Xis a neighborhood of zero in £. The strict topology is the linear topology R0
which has as a base at zero all sets of the form {ACHX,£E): (gf)(X)c Ifj where
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X is a neighborhood of zero in E and g a bounded real function on X vanishing
at infinity. 1fp is a seminorm on E, then, for every subset A of X and every F-valued
function/ on X, we define \\WAtP and \\f\\p by

WILp = SP{p(/(*)): xiA}, |l/llp= \A\x,p-

Finally, we will let M(X) denote the space of all bounded real-valued finitely-additive
regular (with respect to the family of zero sets) measures on the algebra B(X) of
subsets of X generated by the zero sets (see Varadarajan [21]). By MZX) and M, (X)
we will denote, respectively, the subspaces of all T-additive and all tight members of

M (X).
3. The space M(B(X), E")

Let 1V be a neighborhood of zero in E. We denote by MW(B(X), E') the space
of all m: B(X)-*E' with the following two properties:

a) For each siE, the set function ms: B(X)-»R, (ms)(A)=m(A)s, belongs
to M(X).

b) There exists a member ji of M(X) such that \ms\*p. for all si W (jnw]|
denotes the total variation of ms).

If miMw(B(X), E"), then (since M(X) is an order complete lattice) the Supre-
mum m?~=sup {|mi|: siW} exists.If W is symmetric, then mw=sxvp {ms: si IF}.
We will refer to % as the IF-variation of m. If B is a base at zero in E, then we will
denote by M(B(X), E') the space  U{MWB(X), E'): WIiB}.

We omit the proof of the following easily established

Proposition 3.1. Let W be a symmetric neighborhood of zero in E and let m be
an E'-valued furr110tion on B(X). Then, miMw(B(X), E") iff msiM(X) for all

siE and sup_gI 00 where the supremum is taken over the family of all

finite B(X)—part}tions (AY1=1 of X and all choices ofslt ..., sn in W. Moreover, for
each AiB(X), we have

m}y(A) = sup m(AMsi:sf IV, (Ai)l=la B(X)-partition of dj.

For p a continuous seminorm on E, we define Mp(B(X), E') to be the set
MW[B(X),E") where W=Wp={siE: p(s)*\). For an miM p[B(X), E'), we
define mp to be the measure mw.

Let now IF be a symmetric neighborhood of zero in E and let 1FQ@be the bipolar
of IF with respect to the pair (E, E'). Let g—qw be the Minkowski functional of the
absolutely convex set IFQQ We have the following

Lemma 3.2. A set function m: B(X)-+E' belongs to MWB(X), E") iff
miM q(B(X), E'). Moreover, we have mg=mw.

Proof. Since W(z{sEE: "(j)~ 1}, it follows that miM w(B(X), E"), when-
ever miM q(B(X), E"), and that mw”m g. On the other hand, let miM w(B(X), E")
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and let A€B(X). For each x'¢E’, we define |x’ ]W—sup Ix5i(s))s Then s l0=

={x"€E": |x'|p=1}. It is easy to see that |x’|=sup {lx(v)] qg(s)=1}. From
Proposition 3.1, we get that

my (A) = sup {é; |m(A)|w: (4,)7-, a B(X)-partition

It follows now easily that m,(4)=my(A4) and this completes the proof.

Next we define integration of E-valued functions on X with respect to members
of M(B(X), E’). The definition is similar to the one in the locally convex case (see
[7,12]). Let A be a non-empty member of B(X) and consider the collection 4 of
all a={4,, ..., 4,; x1, ..., x,} where {4,, ..., 4,} is a finite B(X)-partition of A
and x;€ 4;. For oy, ay€ Q 4, we define o ‘saz iff the partition of A4 in «, is a refine-
ment of the partition in a,. In this way, Q, becomes a directed set. For fand E-valued

function on Xand a={4,, ..., 4,; X1, ..., X,}€R,, wedefine s5,(f)= Zn' m(4;) f(x)-
We say that f is m-integrable over A if the limit 11m s.(f) exists. The value of this
limit is called the integral of f over A and we w1ll denote it by f fdm. For A=,
we define f fdm=0. If f is integrable over each A¢B(X), then we will say that f
is integrabfe. We will write simply f fdm for the integral f fdm.

X

For W a neighborhood of zero in E, f a bounded E-valued function on X and
AcX, we will denote by W,(f) the number inf {A>0: f(4) cAW}. Modifying
slightly the argument used in the locally convex case (see [7, 12] we get the following.

PROPOSITION 3.3. Let mecMy(B(X), E’) and let fcC®(X,E). Then f is
m-integrable and for each A in B(X) we have | f fdm|<mW(A) W (f). Moreover,

for geC®(X) and scE, we have

fg ® sdm = fgd(ms).

From the preceding proposition we get easily the following.

PROPOISTION 3.4. If méM(B(X),E’), then the mapping f—m(f)= f fdm,
fEC®(X, E), is an element of the dual space of (C*(X, E),u

We have also the following result whose proof is analogous to the proof of
Theorem 2.2 in [10].

PROPOSITION 3.5. Let m€ My (B(X), E”). If W is balanced, then for each cozero
set A in X we have

my, (4) = sup {{m(f)|: fEC®(X, E), f(A)CW, f=0 on X—A} =
= sup {|m(f)|: feC*(X)®E, f(A)cW, f=0 on X—A}.
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COROLLARY 3.6. If my, myc M(B(X), E") are such that my(f)=my(f) for
each fcCP(X)QE, then my=m,.

PROPOSITION 3.7. Let @€(C*(X)®E,u). Then, there exists a unique
meM(B(X), E’) such that (p(f)=j fam for each fcC*(X)QE.

ProOF. There exists a balanced neighborhood W of zero in E such that

{feC*(X)QE: fX)cW}c{f: lo(H) =1}

For each scE, the mapping T,: C°(X)-R, T.(/)=¢(f®s), is continuous with
respect to the uniform topology on C?(X). Hence (see [21]) there exists a unique
U, €M(X) such that go(f@s):ffa’,us for each f€C?(X). For A¢B(X), we define
m(A): E-R, m(A)s us(A). It is shown now easily (the proof is similar to the
corresponding one in the locally convex case) that me M(B(X), E’) and that ¢(f)=
=m(f) for each f€C’(X)® E. The uniqueness of m follows from the preceding
corollary.

4. Some properties of the topelogy pS,

Suppose that Fis a real locally convex (not necessarily HausdorfT) space. For p
a continuous seminorm on F, we let ﬁo‘, denote the locally convex topology on
CP(X, F) generated by the family of seminorms p,, p,(f)=|gfl,, where g ranges
over the family of all bounded real functions on X which vanish at infinity.

We have the following easily established

LeMMA 4.1. The topology B, has as a base at zero the sets of the form

N FEC?®, P): 1flk, p = an)

where (K,) is a sequence of compact subsets of X and 0<a,—oo.

Let now u, denote the locally convex topology on C?(X, F) generated by the
seminorm fi—| f], and let <., be the locally convex topology generated by the
seminorms f»—»“ fllk,p» where K ranges over the family of all compact subsets of X.
If C,C(X F) is the space of all feC®(X, F) which have relatively-compact range,
then it is shown in [8] that on C,.(X, F) the topology f,, coincides with the finest
locally convex topology which agrees with 7, , on u,-bounded sets. As the next
Theorem shows, the same happens on the space C?(X, F ).

THEOREM 4.2. a) fy, is the finest locally convex topology on C®(X, F) which

agrees with t, , on u,-bounded sets.

b) Pop is the finest locally convex topology on CP(X, F) which agrees with P,
on u,-bounded sets.

ProoF. a) Using the preceding Lemma it follows easily that f,, agrees with
T,p, ON U,-bounded sets. Conversely, let 7 be a locally convex topology on C*(X, F)
which agrees with 7, , on u,-bounded sets. Assume first that p is a norm on F. For
each feC'(X, F), we have Ifll,=sup | flk,, where K ranges over the family of
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compact subsets of X. Also, let Kx, ..., Knbe compact subsets of X, s>0, K= iI_Ji Kt

and d=\\\\KP+e. The open set V={x£X: p(f{x))<d} contains K and hence
there exists a gECh(X), with g=1 on Kand g=0 on X—V. If fx=¢f
and /a=(1 ~g)f, then f=fx+f2 |[/2IKP=0 and \\X\p~d. This (by Wiweger [23],
Lemma 1) proves that $0p coincides with the mixed topology yp=y[up, TCH. Since
every up-neighborhood of zero is up-bounded and since up nad «cir are both Haus-
dorff, yp is the finest locally convex topology on Cb(X, F) which agress with «ge
on mp-bounded sets. Assume next that p is an arbitrary continuous seminorm on F.
Set Mp={s£E: p(s) =0} and Fp=F/Mp. On Fpwe consider the norm p(s+Mp =
=p(s). Let W be an absolutely convex T-closed neighborhood of zero. For each
positive integer n, there exist a compact set K,, and 0<<5,,<1 such that

Wh= {feCb(X, F): \\\KnpsS<§, \\\p” n}cW.
Set
Vn= {feCb(X, Fp: \\Knp " &n, \\\p" n}

[00]
The absolutely convex hull VO0of the set Ijig_an is a B neighborhood of zero since p

is a norm and VOis a neighborhood of zero for the finest locally convex topology on
Ch(X, Fp) which agrees with «gr on up-bounded sets. Hence, there exists a bounded
real function on X vanishing at infinity such that

V ={feCb(X,Fp: \gf\\P" 1}c FO.
We will show that the set
0={fiC b(X,F): |lg/|lpS 1}

is contained in W. In fact, let ~ W. Since lim Sf=f in the topology t, it suffices

to show that &fd W for each 0<<b6<1 Sdlet 0<6<Il. For each h£Ch(X, F),
let R=noh where n: F-*Fp be the quotient mapping. The set Ap—{R: hECb(X, F)}
is Tcg-dense in Ch(X,F) because Cb(X)N®chzAp. Sinﬁe fEVcVO, there are

fdv,, i=I, and AjgR with izl\xxm and /=i—l hf. Let e>0 be
such that e+ (e and e+ gr,<ur for r=1 Let K bean arbitrary
compact subset of X and set Gi=KUK,,.,, i=1,...,N. Let 1r-£Cs(X, F) be
such that Wi-R'tWo™e, i=1,...,N. Then |IMIGE|fiilk,P*e+<5ni<ni.

Hence the open set Zi={xEX: p(i1,-(x))<ui} contains the compact set Gt.
Choose (piECh(X), O”cp”l, qt=1 on G;, (=0 on X —Zt and set Wr=<p(\.
Then |/r(|p=&/T;, \\6f-hi\\k,p<e and ||A|.KWp:§e+(5||//Mn>P=£r+0+&i<<5H. Thus

hiEWni<zZW andso/i0= y "h"W. Let 0 be such that ||/|[|[P<M and n*M
for j=1, ThesetA = {hdCh(X,F): |fijpS M )isup-boundedand SfEA. Also

\ho-SF\\Kp S i“_ n A 19 —2yf]| LWe
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and hOEA. This proves that 6f belongs to the zcp-closure of W in A. Since z agrees
with x@Pon A and since W is T-closed we have SfE W. This proves that Oc W and
so W is a ROp-neighborhood of zero.

b) It follows easily from a).

Corollary 4.3. An absoluetly convex subset W of Cb(X, F) is a R(*-neigh-
borhood of zero ifffor each M >0 there exist a compact subset K of X and <5>0
such that

{feCh(X, F): WA\\KP" & \\f\\ps M)czW.

Proposition 4.4. ROp=y[up, rch.

Proof. Let W be an absolutely convex neighborhood of zero in Ch(X, F)
for the topology v,,=y[up, Tcp]. By the definition of yp (see [23]), there exist a se-
queﬂceh(Kn) of compact subsets of X, a sequence (&, of positive numbers and <5>0
such that

nU—I (MLn v+v2n 2V+...+V,, n nV)czW

where Vt={feCh(X,F): |[/|[|X* "} and V={f: \\\prd). Let M>0. If«
is such that nS>M, then

{FIC\X, F): WA\p~ M, \WA\KIP~ &i}cFn Tl nVezW.

Thus W is RQp-neighborhood of zero by the preceding corollary. This proves that
yp R OP. For the inverse inequality, we observe first that the result holds when p
is a norm in F as we have seen in the proof of the Theorem 4.2. In the general case,
let Mp, Fpand n be as in the proof of Theorem 4.2 and let IFbe a RQp-neighborhood
of zero. By Lemma 4.1, there exist a sequence (K,,) of compact subsets of X and a
sequence (an of real numbers, with such that

_ ] A
W i rQ:l{f£c b(X, F): ||/]|K, arfaw.
Since p is a norm, we have BOp=y[up, xc,p]=yp and hence the set
m= n {fECHX,Fp): WK, " a]

is a yp-neighborhood of zero. Hence, there exist a sequence (Gr) of compact subsets
of X, a sequence (&|) of positive numbers and <5=0 such that

0=0 (FiMy..:M2V+.. +V,MnV)aw2

where
V,={fec\x ,Fp: \\\&h_* g} V= {4C\X, Fp: /I~ <

Setting
= fEC\X,F): [/||p< S,), Z ={fEChH(X, F): \\\p< 6),
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we have that

4L, xn Z+22n 2z+..+Z, N nZ}czW

and so XX is a yp-neighborhood of zero. This completes the proof.

As in the locally convex case (see [7]), we will call an element m of MW(B(X), E")
T-additive iff msEMx(X) for each s£E. An argument similar to the one used in the
locally convex case shows that an mdMw(B(X), E") is T-additive iff there exists an
extension of m to a set function p=mx: Bo (X)-+E" such that:

(1) ps is a T-additive regular Borel measure for each sEE.
I'I (2 M N1 <00, where, for AsBo(X),pw(A) denotes the supremum of all

igl ljuzjji| for all finite Bo (*-partitions (A)"=L of A and all choices of st£ W.

It is also shown that\i is unique, p is a T-additive regular Borel measure on X and
mw coincides with the restriction of pw to B(X). Integrals, with respect to p, of E-
valued functions on X are defined as in the case of m with the only difference that we
consider partitions into Borel sets. We will denote by MWx(Bo(A), E") the space of
all p: Bo(X)-"E" with properties (1) and (2) and by Mx(Bo(X), E') the union of
all MWtI(BO(X), E") for all neighborhoods W of zero in E.

We omit the proof of the following easily established.

Proposition 4.5. Let B be a base at zero in E and, for each WEB, let qw
denote the Minkowski functional of the bipolar Ww-of W. Then, the locally convex
topology on E generated by the family of seminorms qw, WEB, coincides with the
finest locally convex topology on E coarser than the given topology of E.

We will denote by Ecthe vector space E equipped with the finest locally convex
topology on E coarser than the given topology. It is easy to see that E'—FEc.

D efinition 4.6. 1) A set ® of linear functionals on Ch(X, E) is called tight iff
there exists a neighborhood W of zero in E satisfying the folloving two conditions:

a) There exists A>0 such that the set {fECb(X, E): f{X)c.XW) is contained
in the polar ® of ® in Cb(X, E).

b) For every e>0 there exists a compact subset K of X such that \<p(f)\"e
for each cpE® and each fECh(X,E) with f(X)<zW and /=0 on K

2) A subset H of M(X) is called tight iff H is norm bounded and for each e>0
there exists a compact subset K of X such that |w|(F)Ss for each mpH and each
VEB(X) contained in X—K.

3) A subset H of M(B(X), E") is called tight iff there exists a neighborhood W
of zero in E with HaM w(B(X), E') and such that the set {mw: m£H\ is a tight
subset of M(X).

4) A mEM(B(X), E") is called tight iff the singleton {m} is tight.
Itis easy to see that every tight member m of M(B(X), E") is T-additive and hence
it has a unique extension mrto a member of Mr(Bo(X), E'). It is also easy to see

that if mEMw(B(X), E') is tight, then given e>0 there exists a compact subset K
of X suchthat (mw(X—K)"e. We will denote by M,(Bo(X),E") the subspace

6 Acta Mathematica Hungarica 41, 1983



84 A K. KATSARAS

of all tight members of Mt(Bo(JT), E'). We can verify easily that if mEMt-
*(Bo(X), E"), then every f£Cb{X, E) is m-integrable.

Proposition 4.7. Let mEM,(Bo(X), E"). Then, the mapping
is an element of the dual space of (Ch(X, E), R0).

Proof. Let W be a neighborhood of zero in E for which mw(X)<°°® and p
denote the Minkowski functional of WQ Then mw—mp. Let now r>0 and choose

a compact subset K of X such that mp(X—K)<”. Let d>0 be such that
dmp(X)<-i. If now fECbh(X, E9 with W\A\KP=d and ||/Hp-r, then
ly"ft/m| — Jfdm + f fdm —dmp(X)+rmp(X—K) —L1

This (by Corollary 4.3) shows that the set V={fECb(X, Eq: fdm1l- 1}is a

BOp-neighborhood of zero in Ch(X, EQ. Thus there exists a bounded real function g
on X vanishing at infinity and such that

VA{fAC\X Eq. ||lg/|lp-1}cF.

If now fECh(X,E) with (gf)(X)c:W, then fAK and so \ffdm\~Il. It follows
that the mapping fAm (f) is /?,-continuous in Cb(X,E).

Theorem 4.8. (Ch(X)®E,R0)'=Mt(Bo(X),E").

Proof. Every mEM,(Bo(X), E') defines a /?,-continuous linear functional on
Ch(X)®E by the preceding proposition. Conversely, let cpE£(Ch(X)®E, R0).
Since fo=wn, there exists (by Proposition 3.7) a uniqgue m£M (B(X), E") such that
(p(f)=Jfdm for each fEChH(X)®E. We will show that m is tight. In fact, let >0

and let V—H{fECBh(X)®E: \g>(f)\ —L}. There exist a balanced neighborhood W of
zero in E, a sequence (Kn) of compact sets in X and a sequence (a,,) of reals, with
0=>a,— such that

rl;l_1 {fdCh(X)®E: f(Kn<zanW}c:V

(by [13], Theorem 3.1). Let nO be such that a,,*1/e if n>ni. If K= _I_JI Kt and

S=min {cal, ..., s3,,J, then
{feCb(X)®E: f(X)czW,f(K)cz6W}c:EV.

Using Proposition 3.5, we get that mw(A)"e for each cozero set A contained in
X —K. For every zero set Za X —K there exists a cozero set A with ZczAczX—K
and so mw(Z)<mw(A)”"e. By regularity, mw(AY*e for each AfB(X) disjoint
from K. This proves that mis tight. If mxEM,(Bo(X), E') is the unique extension of
m, then (p(f)=Jfdm=J fdmx for each fECb{X)®E and the result follows.

Corollary 4.9. If Ch(X)®E is R0dense in Ch(X,E), then (Ch(X, E), R0)'=
=M,(Bo(X), E").
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It is clear that every tight linear functional @ on Cb(X, E) is continuous with
respect to the uniform topology. Thus there exists a unique /MOCNT(B(/T), E")
such that <p(f)=Jfdm for each fdC b(X)(g)E. The following Theorem gives the
relationship between tight subsets of M(B(X), E") and tight sets of linear functions
on Cb(X, E).

Theorem 4.10. |. If ®is a tight set of linear functionals on CHX, E), then the
set Hop={mv: <pEd} is a tight subset of M(B(X), E").

Il. Let HcMt(B(X), E") and let ®u={gr: mEH}, where (pm(f)=Jfdm
for all fECDb(X, E). Then H is tight iff ®H is tight.

1. If C(X)®E is R0O-dense in Ch(X, E), then a subset & of (Ch(X, E), /2,)
is tight iff the set Hdpis tight.

Proof. . Let IV be a balanced neighborhood of zero in E and A=»0 be such
that a) and b) of 1) in Definition 4.6 are satisfied. By Proposition 3.5, we have
mw(X)s VA for all T=Ty{(pED). Let e>0 and let K be a compact subset of X
such that W /)|=ée for all ffffb(X,E) with /=0 on Aand f(X)aW. If Vis
a cozero set contained in X—K, then (by Proposition 3.5) we have (T,p
for all cp€d. Using the regularity of mv, we getthat (m9Qw(A)"e for each AE£B(X)
disjoint from K and each (pE®. Hence Hdis tight.

I. If distihgt, then HHis tight by 1. Conversely, suppose that H is tight and let
IP be a balanced neighborhood of zero in E such that the set {mw: m£H} is a
tight subset of M(X). If p is the Minkowski functional of IP@ then mp=mw for
each mdH. Let d>0 besuchthat mp(X)~d for all mEH. If e>0, then, using
the Corollary 4.3, we get that the set

A=j/GCi(A&EQ: |9/dm| & B for all mE#}

is a /0-neighborhood of zero in Ch(X, Ec and hence there exists a bounded real
function g on X vanishing at infinity such that

{fECH(X,EQ: lg/llp —1}c A.

Let K be a compact set in X such that |g(x)|sl if x$K. If now fdC b(X, E)
vanishes on K and f(X)aW, then g(x)f(x)E W for each xEX and so ||g/||p"|

which implies that \Jfdm\~e for each m£H. Also if f(X)<z-"W, then \qm(f)\ =
—\Jfdm "\ for all mEH. This proves that @ is tight.

I11. It follows easily from | and Il and from Corollary 4.9 since, for cpt® and
m=m4> we have Jfdm =cp(f) for all ffC (X, E).

Proposition 4.11. If X is not empty, then R0 is locally convex iff E is locally
convex.

Proof. Clearly BOis locally convex when E is such a space. Conversely, suppose
that R0is locally convex and let IPwe a zero-neighborhood in E. Let x06X and let h
denote the characteristic function of the singleton set {x0} Then the set

V= {/€ CHX, E): (hf)(X)c:IP}
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is a Jo-neighborhood of zero. By hypothesis, there exists a convex [p-neighborhood
\k of zero contained in V Let Wx be a balanced neighborhood of zero in E and g
a real function on X vanishing at infinity with |g||s 1 and such that

V2= {feCb(X,E): (gf)(X)czW LiczV1

Since \kis convex, it follows easily that the convex hull W2 of WL is contained in W.
This proves that E is locally convex.

Proposition 4.12. On Ch(X,E) the topology of uniform convergence on the
tight subsets of M, (Bo(2f), E") is coarser than [p. I f X is not empty and E not locally
convex, then the two topologies are not equal.

Proof. Let HaM,(Bo(X), E") be tight. As we have shown in the proof of
Theorem 4.19, there exists a continuous seminorm p on E and a bounded real func-
tion on X vanishing at infinity such that

{fiCb(X,E): |lofllp —1}c H°®

where H® denotes the polar of H in Ch(X, E). This proves the first part of the pro-
position. The second part follows from the preceding proposition.

Suppose now that E is locally bounded and let | ¢| be a p-norm (0<psl)
giving the topology of E. If JV—\seE: MI—I}> then °e for each
TEM(B(X), E') and the mapping m>-+mw(X) is a norm on M(B(X), E'). Thus
M(B(X), E') becomes a normed space. The same happens on the space Mtm
*(Bo(A), E).

Theorem 4.13. Let E be locally bounded and let F=Cb(X,E) and
G=Mt(Bo(X), E'). Then every absollutely convex (G, F)-compact subset A of G
is norm-bounded.

Proof. Let | *| be a p-norm on E giving its topology and let W={s£E:
MI Si}. If g is the Minkowski functional of the bipolar W of W, then mq(X)—
=mw(X)<oo for each mfM,{Bo(X), E'). If fECDb(X, E), then \{fdm\"\\f\\g-
mg(X) for each mE£G. Hence the set B={fEF: ||/||,S 1} is o{F, C)-bounded.
Also, the polar AO of A in Ais a Mackey neighborhood of zero in F for the pair
(F,G). Hence there exists 0 suchthat B(zdA° and so tc t0 A So, for
TBA, we have

mw(X) = mq(X) = sup{\ffdm\: fERj s d

which shows that A is norm-bounded.

In case Ais a P-space, every compact subset of X is finite. Thus, by [13], Theorem
3.3, Ch(X)<S)E is Oo-dense in CH(X, E) and so the dual of the space (Ch(X, E), )
coincides with the space Mt{Bo{X), E"). Modifying now the argument used by Ku-
rana-Choo [17] for the case of a normed space E, we have the following analogous
result.

Theorem 4.14. |f E is locally bounded and X a P-space, thenfor every countably
o(M,(BO(X), E"), Ch(X, E))-compact subset A of Mt(Bo(X),E") and every £>0
there exists afinite subset K of X such that mw(X-K)-"e for each m£A.
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Theorem 4.15. If E is locally bounded and X a P-space, then the strict topology
on Ch(X, E) isfiner than the Mackey topologyfor thepair (F, F'), where F=Ch(X, E).

Proof. Every absolutely convex a(F', F)-compact subset A of F'—
= Mt(Bo (X), E") is tight (Theorems 4.13, 4.14). The result now follows from
Proposition 4.12.

Next, we will look at the question of when is the space (Ch(X,E), /?,) sepa-
rable. We will need the following

Lemma 4.16. The mapping

T: {Cb{X),RQ*E-~(Cb{X,E),RQ, T(J,s)=f®s,
is continuous.

Proof. Let /a—f in (Cb(X), 80) and sa—s in E. We will show that fa®sa-+

-+f®s in (Ch(X, E), &,,). In fact, let W be a neighborhood of zero in E and h a
bounded real function on X vanishing at infinity. Set V={g£Ch(X, E): (hg)(X)c:
¢ W} Choose a balanced neighborhood Wx of zero in E with W+ +

There exists d 1 suchthat \\hf\\*d and s£dWx. Let aObe such that sx—s£d~1I¥1
and \\h(fx—)|| if aéa0. Ifnow aSa0, then, for each x£X, we have

h (X)[fx(x) sx-/(x) s] = h(X)[fx(x)-/(x)](sa-s) +h(X)[fi (X)-/(x)] s+
+h(X)f(X)(sx—s)EIVI+ W1+W1<zW

and so fa®sx—f<gis£.V. This completes the proof.
Recall that X is called separably-submetrizable if it can be mapped by a one-to-
one continuous function onto some separable metric space.

Theorem 4.17. Suppose that X is not empty and that the dual space E' of E is
not trivial. Then:

1 If (Cbh(X, E), BO) is separable, then E is separable and X is separably-sub-
metrizable.

2) (Ch(X) YE, RO) isseparable iffE is separable and Xis separably-submetrizable.

3) If Ch(X)(g)E is BO-dense in Cb(X, E), then (Cb{X, E), R0) is separable iff
E is separable and X is separably-submetrizable.

Proof. 1) Let (/,,) be a sequence in Ch(X, E) which is B0-dense and let x£X.
It is easy to see that the sequence (/,,(x)) is dense in E and thus E is separable. Also,
choose tpeE', <p™0, and define T: (CHX, E), BQ—Cb(X), RO, T(f)=g>of
It is easy to see that ris continuous and onto. Thus (Ch(X), B0) is separable and so X
is separably-submetrizable ([20], p. 509).

2) If (CH(X)®E, RO is separable, then an argument similar to that used in 1)
shows that E is separable and X is separably-submetrizable. Conversely, let E be
separable and X separably-submetrizable. Then {Ch(X), Bn) is separable ([20], p.
509) and so F= (Ch(X), BQXE with the product topology is separable. Let

S: F- (CB{X)®E,R0, S(f) =/®s.

By Lemma 4.16, S is continuous and thus S(F), with the topology induced by R0,
is separable. Since Cb{X)®E is the linear span of S(F), the result follows.
3) It follows easily from 1) and 2).
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UN THEOREME SUR LA MESURABILITE
DES FONCTIONS DE DEUX VARIABLES

Z. GRANDE (Bydgoszcz)

Soient R I’'espace des nombres réels et R2=RxR. On sait que la mesurabilité
(au sens de Lebesgue) [la propriété de Baire] de toutes les sections fx(t)~f(x, t)
d’une fonction /: R2-»R et & la fois la continuité approximative et la continuité
presque partout (relativement & la mesure de Lebesgue) de toutes les sectionsf y(t) =
f(t, y) impliquent la mesurabilité (également au sens de Lebesgue) [la propriété de
Baire] de la fonction/ comme la fonction de deux variables (voir [6]). D’autre part,
I’hypothése du continu implique I’existence d’une fonction f: R2-*R non-mesurable
et n’ayant pas de la propriété de Baire et teile que toutes ses sectionsf x sont boréliennes
et toutes ses sections f y sont approximativement continues (voir [2]).

Dans cet article nous introduisons une condition (plus faible que la continuité
approximative et la continuité presque partout a la fois) relative aux sections f y
qui implique la mesurabilité [la propriété de Baire] de la fonction/ ayant ses sections
fx mesurables [avec la propriété de Baire].

Definition. On dit qu’une fonction g: R-*R a la propriété (H) lorsqu’il exis-
te pour tout point XER deux ensembles ouverts Ufx) et Ufx) ayant ses densités
supérieures positives au point x et tels que la fonction partielle g/IUfx) U{x}] est
semi-continue supérieurement au point x et la fonction partielle g/[U2(x)U {x}]
est semi-continue inférieurement au point x.

Theoreme 1. Si toutes les sectionsf y d’une fonction f: R2-*R ont la propriété
(H) et toutes les sections f x sont mesurables, la fonction f est également mesurable.

Dans la démonstration de ce théoréme nous profitons des lemmes suivants:

Léemme 1 (voir [1] et [3]). Séit (X, M, p) un espace dont la mesure o-finie est p.
Supposons qu’une fonction f: X-+R soit telle que, quel que soit le nombre e>0, la
classe d’ensembles

De= {D£M: osc/ S €}
D
satisfasse a la condition suivante:

(E) il existe pour tout ensemble AZM de mesure p positive un ensemble DdDc
tel que Da A et p(D)>0. Alors lafonction f est p-mesurable, oil p désigne le com-
plété de la mesure p.

Léemmé 2 (voir [4]). S6it AaR 1 un ensemble mesurable. Il existe un ensemble
BczA du type Faet tel que m2(A—B)=0 (m2désigne, comme d habitude, la mesure
de Lebesgue dans R et B¢ +B; c’est-&-dire: quel que soit le point (x, y)EB, x est
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un point de densité de I'ensemble By={tER: (t, y)EB} ety est m point de densité de
I’ensemble Bx={tER: (x, t)f B}.

Demonstration du théoréme 1 On peut supposer que la fonction / soit
bornée, comme dans le cas contraire on peut considérer la fonction arctg/.

Démontrons que la fonction / satisfait & la condition (E) du lemme 1. Soit
Ac.R2 un ensemble mesurable tel que m2(A)>0. Fixons le nombre e>0. En
appliquant le lemme 2 & I’ensemble A, on peut écrire qu’il existe un ensemble B aA
du type F,, et tel que Ba +B et m2(A—i?)=0. Désignons par a I'infimum essentiel
infess /(x).

L’ensemble B1={(x, y)€B: as/(x,y)<fl+e/8} est de mesure extérieure po-
sitive. Les sectionsf y ayant la propriété (H), il existe pour tout point (x,y)*Bi un
intervalle ouvert d’extrémités rationnelles U(x,y) tel que ByfJU(x,y)" 0 et
f(t,y)<ct+e/8+e/8=a+e/4 pour tout point tEU(X,Y).

La famille des intervalles ouverts d’extrémités rationnelles étant dénombrable
et I'ensemble Bnétant de mesure extérieure positive, il existe un intervalle de la
famille {U(x, y)}XV€BI, que nous désignons par U0 tel que lensemble C=
= {(t,y)EB1; au point (X,y) correspond l’intervalle QO} est de mesure extérieure
positive. Soit DO={yER; il existe x tel que (Xx,y)EC}. L’ensemble DO est de
mesure extérieure positive. Désignons par D I’ensemble de tous les points de den-
sité extérieure de I’'ensemble DO et par F I’'ensemble (UOxD)C) B. L’ensemble F
est mesurable et de mesure positive, puisque m(Fy)> 0 pour presque tous les points
yEDO et FczBcA.

Démontrons encore que /(x, y)sa+e pour presque tous les points (x,y)6F.

En effet, supposons, au contraire, que I’ensemble G={(x, y)EF: /(X, y)>a+e}
soit de mesure extérieure positive. Les sections f y ayant la propriété (El), il existe
pour tout point (x,y)EG un intervalle ouvert d’extrémités rationnelles V(x,y)c U0
tel que V(x,y)l\Byx 0 et. f(t, y)>06+e pour tout tEV(X, y). De nouveau, la
famille de tous les intervalles d’extrémités rationnelles étant dénombrable, il existe
un intervalle de la famille {V(x,y)}0&" G, que nous désignons par VO tel que
I’ensemble

K = {y£R: il existe un point XxER tel que (x, y)cG et au point (X, y) corres-
pond l'intervalle \O} est de mesure extérieure positive.

En désignant par N I’ensemble de tous les points de densité extérieure de 'en-
semble K, remarquons que NaD. Fixons un point (xr,y4d)€(FOXN)MB. On a,
d’une part, /(xI5yj*-a+a pour tout ycK et d’autre part, pour tout yf DO,

f(xi,y) < a+el8+¢e/S = a+el4,
ce qui contredit la mesurabilité de la section f XI. Par conséquent, I’ensemble
L={x]j)eF: an/(x,y) ra+te)

est mesurable, de mesure positive et osc/=£. Comme, de plus, LcFcBczA,
I’'hypothese du lemme 1 est done satisfaite et notre démonstration est achevée.

Remarque 1. L’hypothése du continu implique qu’il existe une fonction
/. R2-*R non-mesurable et telle que toutes ses sections f x sont approximativement
continues et toutes ses sections f y sont telles que, quel que soit le point XER, il
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existe un ensemble onvert U(x) tel que w ([/(x)MK)>0 pour tout entrourage ouvert
V du point x et la fonction partielle //[U(X) U{x}] est continue au point x (voir [5]).

Theoreme 2. SOit f: R2-*R une fonction. Si toutes les sections f y ont la pro-
priété (H) et toutes les sectionsf x ont la propriété de Baire, lafonctionf a également la
propriété de Baire.

On peut démontrer ce théoréme d’une fa?on analogue que le théoréme 1 Pour-
tant nous montrons une autre démonstration.
Dans ce but remarquons que:

Remarque 2. Silafonction g: R-+R alapropriété (H), eile est ponctuellement
discontinue.

Remarque 3. SOit Sei? un ensemble dense et dénombrable. Si la fonction
g: R—R a la propriété (H), on a

liminfg(i) & o) ™ 1im sup g(i)
res res
pour tout xeR.

D’apres le Théoréme 3 de Particle [6] le Théoréme 2 résulte immédiatement des
Remarques 2et 3.
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DIFFERENTIAL LIPSCHITZIANNESS TESTS ON
ABSTRACT QUASI-METRIC SPACES

M. TURINICI (lasi)

0. Introduction

An important problem concerning a wide class of mappings between (quasi-)
metric spaces is that of finding sufficient conditions in order that a “local” Lipschitz
property should imply a “global” one (the words “local” and “global” being precised
by the context of the problem considered). As fundamental results in this direction
one must consider Dieudonné’s mean value theorem [14, eh. V111, §5] on one hand,
as well as Brezis—Browder’s semigroup invariance theorem [7, Theorem 2] on the
other hand, proved — under a continuity hypothesis — by a supremum and, respec-
tively, ordering technique. It is the main aim of the present note to demonstrate
that these results may be viewed as particular cases of a general differential lipschitzi-
anness test for a class of (not necessarily continuous) closed mappings depending
upon a “spatial” parameter, the basic tool in proving such a common extension
being a maximality principle on (quasi-) ordered quasi-metric spaces that may be
considered as an abstract version of the well-known Ekeland-Brondsted’s one
[16,8]. A number of further applications of our main result, especially to flow-
invariance problems as well as to projective completeness criteria will be discussed
elsewhere.

1. A maximality principle

Let X be an abstract nonempty set and let S. be a quasi-ordering on X (i.e., a
reflexive and transitive relation on X). For any nonempty subset Y of X and any
XEY, Y(x, =) will denote the subset of all yEY with xéy. A sequence (X,
ndN) in X will be called monotone iff x* X j whenever is/, i,jdN, and bounded
above iff x,,”y, all nEN, for some y£X (in which case, y will be termed an upper
bound of this sequence). Furthermore, if we introduce a quasi-metric d on X (that is,
a mapping d: X 2-*R+ satisfying all the requirements of a metric except sufficiency)
a sequence (jg,; nEN) in X will be called quasi-asymptotic iff for any e>0 there
exists n=n(a)6A with d(xn, x,,+1)<£, and an element z*X is said to be d-maximal
iff yEX and z”*y imply d{z,y)=0. A satisfactory motivation for introducing these
notions will be offered later; for the moment, we are only interested to state and prove
a useful Zorn maximality principle on this class of quasi-ordered quasi-metric struc-
tures, a result that may be formulated as follows.

Theorem 1. Suppose the quasi-metric space (X, d) and the quasi-ordering ~ on
X are such that

(i) any monotone sequence in X is a quasi-asymptotic one,
(if) any monotone Cauchy sequence in X has an upper bound.
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Then, for every x£X, there is a d-maximal element z£X with the property x*z.
Proof. Firstly, we claim any X£X has the property

() for every £>0 there exists y”~x suchthat d(y, z)>e, for all z"y.

Indeed, suppose (1) is not valid; then there must be a number e>0 such that for
every y”x there exists zgy with d(y,z)"e. It immediately follows that a mono-
tone sequence (Y,,; NEN) in X(x, S) may be found with d(y,, ym)LLe, all
nEN, contradicting (i) and proving our claim. In this case, given x£X, a monotone
sequence (xn; NEN) in X(x, may be constructed with

©) nEN, yEX and x,,Sy imply d(x,,y) < (1/2)".

By (ii), xn*z, all nEN, for some z£X; so combining with (2), x,—z as
Evidently x4z. Now suppose y~X issuch that zs.y; then xnSy, all nEN, so
that, again by (2), xn-*y as n—°° and this gives d(z,y)=0. Consequently, z satis-
fies all the requirements of the theorem and the proof is complete. Q.E.D.

As an important particular case, let (X, be an abstract quasi-ordered set
satisfying

(iii) any monotone sequence in X is bounded above

and let pbe a function from X into R, decreasing (x"y implies ¢(X)S (p(y)) and
boundedfrom below (<p(x)b, all XEX, for some bfR). Then, defining a quasi-
metric d on X by the convention

©) d{x,y) = \(p{)-<p)\. x, yEX,

conditions (i) + (ii) are automatically satisfied and the above result reduces to the
well-known Brezis—Browder’s ordering principle [7] (seealso I. Ekeland [17]). More-
over, it was shown in Brezis—Browder’s paper that their fundamental contribution
may be regarded as a considerable extension of the Bishop-Phelps’ maximality result
(4) (see also J. P. Aubin and J. Siegel [1], A. Brondsted [10] as well as |. Ekeland [15])
or. equivalently, — after a pattern discovered by N. Bourbaki [5] and refined by A.
Brondsted [9] — of a fixed point Caristi—Kirk’s result [12,19] (see also F. E. Browder
[11] as well as C. S. Wong [31]) and therefore the above theorem may be also consi-
dered as extending all these results.

A close analysis of the conditions involved in Theorem 1shows the boundedness
property imposed in (ii) is, in fact, not intimately related to the notion of Cauchy
sequence so, it seems to be natural to replace it by a more appropriate property such
as convergence. To do this, we need a number of new notational conventions. Let
X, and d be as before. A subset Y of X will be termed order-closed iff for any
monotone sequence (X,, ndN) in Y and any X£X with xn-*x as n-*-<»we have
x g f; in this context, the considered quasi-ordering”™ on X is said to be self-closed
iff X(x, &) is order-closed for all xEX. Also, the underlying quasimetric space
(X, d) will be termed order-complete iff any monotone Cauchy sequence in X is
a convergent one. Now, as a useful variant of the above result, we have
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Theorem 2. Suppose the elements X, & and d are such that condition (i) as well
as

(iv) S is a self-closed quasi-ordering,

(v) (X, d) is order-complete

hold. Then, for every x£X, there is a d-maximal element z£X with the property
XS.Z.

Proof. Let (xn; nEN) be a monotone Cauchy sequence in X. By (v), Xxn-*x
as n-»“ forsome x£X which gives, by (iv), x,,”x, all n£N, proving X is an upper
bound of this sequence. Consequently, Theorem 1applies and the proofis complete.
Q.E.D.

Let us call a sequence (X, nNEN) in X asymptotic (M. Turinici [28]) iff
d(xn,x) 0 as n—0ad? and the underlying quasi-ordering S on I semi-closed
(L. Nachbin [22, p. 100]) iff X(x, =) is closed for all Xx£EX. In such a situation, if
we suppose condition (i) is replaced by the stronger one

(i)' any monotone sequence in X is an asymptotic one
and/or condition (iv) by
(iv)" S is a semi-closed quasi-ordering

then, the corresponding variant of Theorem 2 appears as a quasi-order as well ag
quasi-metric extension of a similar author’s result [27]. Moreover, if the underlying
quasi-ordering ~ on X is taken of the form x"y iff d(x,y)* f(x) 4>,/ being
a function from X into R satisfying

(vi) f is Ise and bounded from below

the above theorem reduces to Ekeland-Brondsted’s maximality result [16,8] (see
also M. Turinici [26] and J. D. Weston [30]) or, equivalently — by the same Bour-
baki—Brondsted’s pattern — to the Caristi—Kirk’s fixed point theorem quoted
before (see also S. Kasahara [18], L. Pasicki [23], as well as J. Siegel [25], for a number
of interesting new viewpoints in this direction) so, Theorem 2 appears also as a com-
mon extension of all these contributions.

2. The main results

Let (V, d) be a complete quasi-metric space. For any v£V, rsO and any non-
empty subset W of V, let d(v, W) denote the usual distance between v and W
(the infimum of all d(v, w), wE W) and, in case vEW, let W(v, r) denote the W-
closed sphere with center v and radius r (the subset of all wE W with d(v, w)"r).
Let / be a given interval of the real axis and F a (nonempty) closed subset of V. By
a (J, F)-closed process on V we mean a mapping (t, v)*=S(t, v)=S(t)v from JxV
into V satisfying the closedness condition

(vii) for any decreasing sequence (?,; nEN) in J and any sequence (vn; n£N)
in F with t,,-»tv,,—v and S(t,,)vn-*w as n-*-°° for some t£J, vEF and
WE V respectively, we have S(t)v=w.
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As a notational convention, for any t£J and any subset W of V, S(t)W will denote
the subset of all S(t)w, W. Now, under these preparatory facts, the main dif-
ferential lipschitzianness test of the present note may be stated as follows.

Theorem 3. LetJ, Fand S be as above and suppose there exist a couple offunc-
tions K and H from J into R with K increasing, H strictly increasing, a number A=0,
and a denumerable subset A of J such that

(viii) for any s£A, not identical with the left end-point ofJ, we have
4 liminf (I/(H(s)-H(s-t)))d(S(s)v, S(s-t)F(v, K(s)~K(s-1))) =A
for all elements vdF,
(ix) for any s£JC\A, not identical with the left end-point of J we have
(5) limmfd(S(s)v, S(s-t)F(v, K(s)-K(s-t))) =A(tf(s)-tf(s-0)),
for all elements vdF.
Then, necessarily, the following kind of Lipschitz property holds:
(6) d(S(b)u, S(a)F(u, K(b)-K(a))) =X(H(b)~H(a)), all uF, all a, b£J, a < b.

Proof. Let m>>a be a bijection of A onto A and let g: J->-R be defined, for
every tE£j by
{M@2)";, anS 0, if {n€A; ans t) » 0,
10

8K) , If {«€A; G, si)= 0.

Evidently, g is monotone increasing on J and,
(7 g(a,)-g(0 S (I/2)n, all t£J, t< an, all nEN.

Define a new function /: / —R by the convention /(/)=yH{t)+eg(t), t£J,
y>2 and e>0 being arbitrary fixed; clearly,/is also monotone increasing on J.
Now, a,b£J, a<b being fixed, let | denote the (compact) interval [a b] and X
the cartesian product IxF quasi-metrized by the usual “product” quasi-metric

e((t, u), (i, ) = [i-i[+d(w, V), (t u), (j,v)eX
and quasi-ordered by the convention
(8) (i,m & (s,v) iff tas, d(u v)™ K(t)—K(s) and d(S{t)u, S(s)v) " f(t)—(s).

Firstly, X is complete (hence order-complete) and, moreover (by a reasoning similar
to that exposed in author’s paper [28]) order-asymptotic. Secondly, we claim that—in
addition to these properties —the quasi-ordering € is also a self-closed one. Indeed,
let the element (s,v)£X and the sequence ((?., U,,); NEN) in X be such that

(v ™ (tn,un), nEN, (/,,, un » (tmuj, n” m, and (i,, un) - (/, U)
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as n “me> for some (t, EX, that is,

9 s=t,, d(v, u,) = K(s)-K(t,,), d(S(s)v, S(Qun ~/(s)-/(t,,), nEN,

(10) tnS tm, d(u,,, uj  K(t,,)-K(tJ, d(S(tiun, S(tjumn) n*m,
(11) th—t and un“mu as n —m°°,

From the first part of (9) and (10) it immediately follows (by (11) and the monotoni-
city of K) st and d(v, u)*K(s) —K(t). Moreover, from the second part of (10),
(S(t,,)u,,; nEN) is a Cauchy sequence in V hence, by completeness, S(tQu,,+w as
n-»oofor some w£E£V so that, again by (11) combined with our closedness hypothesis
(vii), S(t)u=w which gives (taking the limit as in the second part of (9) and
remembering/is monotone increasing) d(S(s)v, S(t)u)”f(s)—F(t), and this proves
our claim. In this case, Theorem 2 can be applied, so, for the prescribed element
(b, u)£X an e-maximal element (s, v)EX (with respect to the underlying quasi-order-
ing may be found with (b, u)s(s, v). We claim s=a. Indeed, suppose by con-
tradiction s>a. Forevery rEl, r<s, and every wEF(v, K(s)—K{r)), the relation
(s,v)™(r,w) does not hold and therefore (since and d(v, w)*"K(s)—K(I))
we must have (by the convention (8) combined with the definition of the function/)

d(S(s)v, S(rw) > y(H(s)-H(r)) +£(g(s)-9(r)),
so, taking infimum with respect to w and denoting for simplicity t—s—,
(12) d(S(s)v, S(s—t)F(v, K(s)-K(s-t)))"y(H(s)-H(s-t)) +
+e(g(s)-g(s-t)), O0<i” s—a

Now, two cases are open before us: either sEJ\A or s£A. The analysis of these two
cases may be performed as follows.

Case 1 s£J\A . Inthis situation, as an immediate consequence of (12) we have
d(S(s)v, S(s-t)F(v, K(s)—K(s—t))) S y(H(s) —H(s-t)), 0 < t” s—a,

so, dividing by H(s)—H (s—t) and taking liminfas t-+0+ we get a contradiction
with respect to (4).

Case 2. s£A, thatis s=a,, for some n€ N. Then, by (12) and the evaluation
(7), we get

d(S(s)v, S(s-t)F(v, K(s)-K(s-1))) & y(H(s)~H(s-Q)) +£(I/2)n O *"t"s-a,

so, passing to lim infas t—0+ , (5) will be contradicted. Therefore, in any case we
reached an impossible situation and this shows s—a, as claimed. In this case, again
by (8) coupled with the definition of/, the relation (b, u)*(a, v) becomes

blla, d(u, V) s K(b)—K(a), d(S{b)u, S(a)v) y(H(b)-H(a))+e{g(b)-g(a))
and this immediately implies
d(S(b)u, S(a)F(u, K(b)-K(a))) S y(H{b)-H(a))+s(g(b)-g(a)),
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a relation equivalent in fact to (6), because y>X and £>0 were arbitrarily chosen.
Q.E.D.

Let F be an abstract nonempty set and let D be a family of quasi-metrics on F,
with (V, d) complete for any d£D. Also, let J be a given interval of the real axis and
F a subset of V, closed in (V, d) forany dED. Bya (/, F, D)-closedprocess on V we
mean a mapping (i, v)"S(t, v)=S(t)v from JxV into V satisfying the closedness
assumption (vii) with respect to every quasimetric d of D. In such a case, as an imme-
diate extension of the main result, we have

Theorem 4. Let the elements D, J, F and S be as before and suppose the couple
offunctions K and Hfrom J into R satisfies the general assumptions of the main result,
as well as

(x) for every ddD, a number I1(d)a0O and a denumerable subset A(d) of J
may be found such that (viii) and (ix) hold with X replaced by X(d) and A by
Aid).

Then, necessarily, the evaluation (6) will be valid (with X=X(d)) for any quasi-metric
d of D.

3. Some particularizations

Let (F, d) be a complete metric space and let F be a closed subset of V. By an
F-closed process on F we mean a mapping (t,v)"S(t,v) —S(t)v from R+XV
into V satisfying the closedness hypothesis (vii) with J=R+, as well as

(xi) S(0)v=v, all VvEV.

Of course, any F-closed process is identical with an (R+, F)-closed process (in the
sense of the preceding section) satisfying (xi). In this case, as an important particula-
rization of the main result, we have

Theorem 5. Let Fand S be as before and suppose there exist a couple offunctions
Kand Hfrom R +into itselfwith K increasing, H strictly increasing and K(G)=H (0) =
=0, anumber AsO and a denumerable subset A of R+such that (viii) and (ix) hold
with J replaced by R+. Then, necessarily,

(13) d{S(t)u, F{u,K(t))"XH{t), all tER+ ufF.

Concerning this result, it must be observed that in case 2=0, the evaluation
(13) becomes

(13)' S(t)ueF(u, K(t), all tER+, nfF,

so, it may be interpreted as an invariance result with respect to the flows t>-+S(t)u
issuing from F; for such a reason, Theorem 5 above is usually termed a “flow-
invariance” result with respect to the F-closed process S on V, in which case, it may be
compared with a classical Brezis—Browder’s result [7] (see also I. Ekeland [17]) as
well as a number of concrete “non-semigroup” invariance conditions used by N.
Pavel [24] and R. H. Martin Jr. [21] in case of a Banach space.

Again let (F, d) be a complete metric space and let ¥ be a given interval of R.
A mapping T: / —F will be termed order-closed provided that
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(xii) for any decreasing sequence (t,,; nEN) in J with tn-*t and Ttn-*w as
n—°° for some t£J and WEV respectively we have Tt=w.

Evidently, any order-closed mapping T from J into V may be identified with a (/, in-
closed process S on V, constant with respect to its “spatial” variable (i.e.,
S(t)v=Tt, all tdJ, vEV). In this case, as another important particularization of the
main result, we have

Theorem 6. Let J and T be as above and suppose there is a strictly increasing
function Hfrom J into R, a number A£0, and a denumerable subset A ofJ, such that

(xiii) for any s£j\A, not identical with the left end-point of J, we have
(14) liminf (1/(tf(s)-tf(s-O)) d(Ts, T(s-t)) * A

(xiv) for any s£A, not identical with the left end-point of J, we have
(15) liminf d(Ts, T(s-t)) A(tf(s)-tf(s-0)).

Then, necessarily,
(16) d(Tb,Ta)*(H{b)-H(a)), all a,b£), a<h.

Evidently, the above result appears as a mean value theorem on abstract metric
spaces, extending, from this viewpoint, a classical Dieudonné’s one [14, eh. VIII, §5]
(see also A. K. Aziz and J. B. Diaz [2] as well as N. Bourbaki [6, eh. I, 83]). On the
other hand, in case A is empty, the same theorem extends a similar Clarke’s result
[13] (see also W. A. Kirk and W. O. Ray [20], as well as M. Turinici [29]). Finally, it
should be noted that another way of investigating these problems is that offered by
the differential inequalities theory (see, as a reference, J. Bebemes and G. H. Meisters
[3]); some of these aspects will be treated in a forthcoming paper.
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ON STRONG SUMMABILITY OF ORTHOGONAL
SERIES BY EULER METHODS

H. SCHWINN (GieRen)

1. Let {(p,()} be an orthonormal system in [0, 1]. We consider real orthogonal
series i2:Oci(P1(x) with corresponding partial sums sk(x) and the Euler means of
order q ((E, g)-means; 0<<?<1)

n n n

tn(x) = k2=0anksk(x) = 120 Ci<Pi(x)k:2i ank,

where
@

We will show

(n"k)
(n< k).

Theorem. If the orthogonal series f: OCiVA*)* i ;0 ™ g)-summable
1) tof(x) in [0, 1], thenfor any y>0

@ lim 2 _arksk(x)-f()\y = 0.

(Summability and convergence have the meaning of summability a.e. and conver-
gence a.e.)

If (2) is satisfied, we call the underlying series strong (E, g)-summable with order
y ([(£, g)]ysummable). In the classical case y=2 similar results were established for
different summability-methods, e.g. for (C, 1) by A. Zygmund [5]. For arbitrary v,
G. Sunouchi [3] was the first to prove an analogous theorem for [(C, a)]#summa-
bility (a>0) of orthogonal series.
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2. Some lemmas. We require some lemmas:

Lemma 1. If12=0c?<co> en for a>0, y>0

é I sup Iéo JdeSA(a,y)i'zzOC\

where ak(x)= ——%——é( sj(x)- (G. Sunouchi [3], Lemma 2).
K+1 j=o0 - o
Lemma 2. The series iz_oci(Pi(x)> 130 €?<00» is (E, g)-summable (0<<7<1) ij

and only if {jmi(x)} is convergent, where
3) almj < mi+tl—mi< B'fml (0< a< B < °).
Proof. With mt=i2 this was proved by O. A. Ziza [4]; c. f. also H. Schwinn [2].
Lemma 3. Let {mt} satisfy (3). If iziooC?A > then the means
a*(x) —0 if 0~ nsS. mk

“ an() = T i e e (KO)-smLL)

=*=n%_l+i\§’|' ‘mm;n?'_!l/ if T AnlldTi1+, isi.
are convergent to 0.
Proof. At first we can see that e* (x)—0 by

2| KM Tdxq2 2., d
Now let
<GiW:= mmax K +#(x)-<r*(xX)|*~ | 2 K+i(*)-<(*)I
—(mi+l—m,) n—2m » On+iOx)-< (x))2
We get with (3) o

27f vi(x)dxrs 2 Rfri 2 L, 1—VvT 21 (k-mAfcl ~
»=20 =2 n=mf+1 ( mf_i) k=mi_1+I
® F- niH + 1
AR2Ami 2 2" T-mmmmmemen ry —
1=2 t=mi_1+1 B=maxNe-1, T (+1) (N —
S &, mivi—t r Az, g+ o —C*.Z,cl

i.e. Ar(x)—0 (is00) and so <r\(X)-*-0 (fc->co).
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Lemma 4. For the elements (1) of (E,q) (0<#<1)
1

(g <*}r ~cco/lTO-T) (r>1)
holds.
Proof. Depending on the order q we define n as the smallest natural number v

with n”~qv. Putting

n0=1, ni+i= «i+tvV~1 (i=0,1, ..)
each sequence {n} and {«} satisfies a gap-condition (3). The natural numbers can
be devided by {nj into intervals

Ji*= (nt,ni+1l- 1>= {n€NJ|nj rg n < ni+1}.

We will use the sets [t K+, /1 ... i+, whereby A and L( are
determined by the relations [(<—£)«;]E/,»_K resp. [(“+e)i1;]6/1+L. (e may be fixed
with 0<g—6<”*+£<I). We notice that

v Hf (v$ ;33 li+,]j
a \Y ; i+,].
))ﬁ 4 o !
Wlth the eStiI |ati0 S
"\/ 7 : ()
il I

(L. Kantorowitsch [1], Lemma 1) and

D2

= H<Hi+1; kEJi+i, ~KirI< 0}=Sr W
1tit!
wi-Da
= H<oni+l; o< | r.y.- .,
1

Tax{Arur=n < ni+|; A} = _}741:;_
for 0O<y—y(@ <1 (cf [2]) and with
[/i+,]: = nitl+l-nIH = J= Vnitli s C3lw, (-Kis s L)
we get finally for n*n<n1#

W2 pamk — 2 ank ¥ 2000 2 pank = f— [ v+ C4 2 »YUHL e —
=0 fc—é>rT1* i= K|k|?]|+| E na ) /=%, |‘-Fn].-9

- Cs«l*"* - Cen\(1-1)
as asserted.

1[a] denotes the integral part of a.
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3. Proof of the theorem. (I) Case O<y=2: In [2] it was shown that the asser-
tion is true if y=2. If y<2 we get by Holder’s inequality

28N {2, | X2 BKHOIIZ - 0

(1) Case y>2: With an arbitrary index sequence {ra} (w,=0) satisfying (3)
and defining A(A) by A(0)=0, raN\y< 1éWMaag+1l (A= 1) we consider now (cf. (4);

T,(n): = k2_O anksk{x)-f{x) I kJ\kg0 a,kK\sk(x)-sm N W -<??(e«)ly+

+ 2 BA*TA<K>_L(*)-/(*)|l+ k2_

K=o OHIKKIW 1My = KM ** (%) + Tn2) (*) + Tnd) (*)}

0

By the regularity of (E, g) and with the aid of Lemmas 2 and 3 t%)(x)—0 and
t%)(j9-*0 are true. For the remaining part we get for an arbitrary r> 1|r'=—
by Holder inequality and Lemma 4

tH)S (o< |13 (0—8,M16) —seumye I —ATaj-Lj> B~
A(n) min(/ni+1 n) - l
—5»))%9 WI f N kS'IVmXW |% i W rjl'.

The assertion is proved by Kronecker’s lemma if we show that

(5) t(x): = ‘2=1~>}rr=1i FZI.(_'_lK(*)'A-l_l(*)-**(*)l,f _— oo_

To this end we consider (yr'>2)

21kW -"M W -~wrr "
« (+1 J

2 1

1 ~
SN N f 2

fo1
1-7
/ |

o I

With the aid of Lemma 1, putting for any k with mt~=:k"mi+l (/ fixed)
NS i (™) (y:=k-Ti1, k>mi_D) and a,(x)::—lAVS/(x)(:ak(x) if
A<k~ mi+l), we get with mi+1-/Hi_1s2)?l/mi (cf. (3))
/ a IVF
0 I/mf k=m,+1
mi+l~mi-I|

1 "
2T 1 1t i
- AJ | m . \2\1 |57(£D«|',(>9I'JI_ k:ml_1+14
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and thus
JL ~ mi +i
H mi /\
6 (iw)"" dx Kt|Z=It=n%_I+I

CI — oo_

B. Levi’s theorem finally gives (5) which completes the proof.
I would like to express my sincere gratitude to Professor Dr. L. Leindler for
his interest and remarks.
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1. Let {¢,(x)} be an orthonormal system on the interval [0, 1]. We shall consider
orthogonal series

(1.1) 2 cn®n(%)

with real coefficients satisfying

(1:2) D €= oo,
n=0

By the Riesz—Fischer theorem, the series (1.1) converges in the mean to a square
integrable function f(x). By s,(x) and ¢,(x) we denote the nth partial sums and the
nth Euler means of order g ((E, g)-means; 0<g<1) of (1.1), i.e.

sn(x) — ig(') ci(pi(x) and tn(x) = kZO anksk(x)s
where 0<g—<1 and
Bl nek
1— R
ke [k)q( gyt il nek,
i< k.
Very recently H. Schwinn [6] proved the following theorem in connection with
the strong Euler summability:

THEOREM A. If the orthogonal series (1.1) is (E, g)-summable to f(x) in [0, 1] almost
everywhere, then for any positive p

(13) lim 3 auls, () —/ P =0

holds in [0, 1] almost everywhere, i.e. (1.1) is strong (E, q)-summable with order p.

The aim of the present paper is to give a sufficient condition in order that (1.1)
should be very strong Euler-summable, i.e. that for any increasing sequence {v}
of natural numbers

(L.4) lim 3 auls, 0~/ =0

should hold in [0, 1] almost everywhere.

Acta Mathematica Hungarica 41, 1983



108 L. LEINDLER

For the classical arithmetical means or for the (C, a>0)-means problems of this
type have been discussed in great detail (see e.g. the book of G. Alexits [1], p. 107,
or the papers of K. Tandori [8], G. Sunouchi [7] and L. Leindler [2]), as regards the
Riesz-means we refer to J. Meder [4] and L. Leindler [3].

To prove (1.4) we shall use Theorem A and the method of proof given by us in [3].

First we prove

THEOREM 1. Let {v.} be an arbitrary increasing sequence of natural numbers.
If (1.1) is almost everywhere (E, q)-summable to f(x) in [0, 1] and

oo (m+1)2
[ 2 C§] log?(2+h,,) < <,

k=m2+1

(1.5)

where h,, denotes the number of indices vis lying between m? and (m+1)?, then

m=0

16 lim 3 auls, () =7 COlP = 0

also holds for any positive p in [0, 1] almost everywhere.
Using Theorem A and Theorem 1 we prove
THEOREM 2. If (1.1) is almost everywhere (E, q)-summable to f(x) in [0, 1] and

there exists a positive sequence {a,} with the following properties: 2 ai< oo,
c2=0(a?) and N=0
(n+1)2

(1.7 A= > ap=Ania,?

k=n+1

then (1.1) is also very strong Euler-summable in [0, 1] almost everywhere, i.e. (1.4)
holds for any increasing sequence {v} in [0, 1] almost everywhere.

From Theorem 2 we get immediately

CoroLLARY. If (1.1) is (E, g)-summable and
(- 2= (5 2

then (1.1) is also very strong Euler-summable.

2. We require the following lemmas. For the sake of brevity, from now on, con-
vergence and summability have the meaning of convergence and summability almost
everywhere in [0, 1].

! We mention that condition (1.7) can be weakened, namely instead of (1.7) it is sufficient to
claim that there exists a constant K and a natural number x such that for any positive / and m

K 3 4= 4.
holds. ]
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ON VERY STRONG SUMMABILITY OF ORTHOGONAL SERIES 109

LemMa 1. (1.1) is (E, q)-summable if and only if the partial sums s,:(x) are con-
vergent.

This lemma was proved by O. A. Ziza [9]; cf. also H. Schwian [5].

Lemma 2 ([3]). Let {p,.} and {q,} be increasing sequences of natural numbers. If
r,, denotes the number of the terms q, lying between p,, and p,, ., then the condition

m=1\n=p_ +1

oo Ppsa

> [ > cﬁ] log2(2+71,,) < =
4

implies that _

5im (s,,()—s5,, () = 0

holds for any q, with p,<gy<Ppi1-

3. ProoF OF THEOREM 1. By Lemma 1 the (E, g)-summability of (1.1) implies
that the partial sums s,,:(x) converge to f(x). Thus, using Lemma 2 with p,,=m?
gx=Vi2 and r,=h,, on account of (1.5), we obtain that the partial sums sy, (x)
also converge to f(x).

Now we construct a new orthonormal system and a new-sequence of coefficients
by means of the given sequence {v,}. Putting v_;=—1 we define

]
n
Cras 2 ~a for neo
i=v, _,+1
and

Gt 3 e if C,#0,
¢“(x) := ‘=vn-1+l V"
(vn_vn—l)-_ll2 Z (P,-(X) if Cn=0
i=v+ 1

n=-1

It is clear that
k v,
(3.1) Sp(x)i= jé:) C;®;(x) = ig‘; ¢ 0i(x) = s, (x),

thus the convergence of sv,,(x) implies that of Sk:(x), whence by Lemma 1 we obtain
that the orthogonal series f C,®,(x) is (E, g)-summable.
n=0
Thus Theorem A gives

(32) lim 3 0,18,/ =0,

and by (3.1) statement (3.2) means exactly the same as (1.6) does.
The proof is complete.

PrOOF OF THEOREM 2. On account of Theorem 1, it will suffice to show that
under the assumptions of Theorem 2, (1.5) holds for any increasing sequence {v,}.
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Indeed it is obvious that2

o2 g ®
(3.3) 2\ 2 clNlog\2+hm)=K12 A2og*(2+hmrz
rr%:o AI(2+hn)=K3+Krr21:5 AlK-

To prove the finiteness of 2 ABRhm we mention that by the definition of hu
0

m —

the inequality
(3.4) 2KAN + 1,

n=0
follows for any N.
Hence, by (1.7), we obtain that

(35) 2A*nh,= [2A*

Namely, ife.g. hm>\ then by (3.4) there exist at least hm—L indices n“m such
that h,,=0, and if we replace the sum A% by AB@ (hm- I)-times, then

holds obviously; and this “replacing-procedure” conveys statement (3.5).
The estimations (3.3) and (3.5) verify (1.5) for any {#}under the assumptions
of Theorem 2, and this ends the proof.
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BI-SELECTIVE DERIVATIVES ARE OF HONORARY
BAIRE CLASS TWO

R. J. O’Malley* (Milwaukee)

l. Introduction

In this paper, we answer a question posed by M. Laczkovicz in [4]. In one sense
this answer is a by-product of research into selective derivatives, in particular [8].
The author feels that the reader could benefit from a brief restatement of the history
and basis of the problem.

In [6], the present author introduced and developed the idea of selective diffe-
rentiation theory. In that paper it was shown that selective derivatives need not be
Baire class one but in some cases could be seen to be Baire class two. M. Laczkovich,
in [4], was able to show that selective derivatives were always Baire class two. In
establishing this result, he introduced the concept of 1— differentiation which includes
the aforementioned selective process. He also proved that a 1— derivative was of
Baire class two. Then he asked whether all 1— derivatives are of honorary Baire class
two. (In [1], Bagemihl and Piranian defined a function g as honorary Baire class two
if there exists a Baire class one function h such that {x: h(x)-xg(x)} is at most
countable. See also [3], [9].) Initially, using a technique developed in [8], we answered
this question for selective derivatives. It was a corollary of a simple but very useful
lemma about selections. However, we did not publish this lemma or corollary. Later
we realized that the process of 1— differentiation could be equivalently redefined in
a way that made its connection with the selective process clearer. Further, the lemma
could be restated in this framework. The connecting term is something we label a bi-
selection. We have presumed to state our results in this context.

M. Definitions, notation and background results

Throughout the paper [x y] will denote the interval having endpoints x and y
regardless of whether x<y or y-=x.

Definition. A selection is an interval function s defined on the set of all nonde-
generate closed subintervals of [0, 1] satisfying x<s[x, for every [Xx y], x<y.

Next, let /:[0, I]—R be fixed. The various analogues of the classical derivatives
of/at x with respect to the selection 5 are typified by the definition and notation for
the selective derivative.

Definition. A finite function g:[0, J-~R is called the selective derivative of/,
denoted sf', if for all x in [0, 1

o J(s[X, x+h)—F (x) _ — e
H % x+h]—x = g(x) = sf'(x).

* Research supported in part by N. S. F. Grant # MCS 8102494.
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112 R. 1. OMALLEY

For the same function/, let | and r be two interval functions, defined on all
nondegenerate closed subintervals of [0, 1], satisfying

min(/[x,y], r[x,y]) < s max (I[x, y], r[x,yD.

We say that / and r are admissible for/ when they satisfy the above inequality.
Again, the concept of 1— differentiation can be illustrated by the definition and
notation associated with the 1—r derivative of /.

Definition. A finite function g: [0,1]—? called the 1— derivative of/, denoted
{/', if for each x in [0, 1],

Aw Iy, x]1=g(x) =./'(*) = A 71 rlxy].

M. Laczkovich pointed out, [4], that all selective derivatives are 1— derivatives. We
will have need of several results of that paper. Included is the following about pairs

of admissible interval functions and the relations between the resulting extreme deri-

vates.

L-Theorem 2 [page 102, 4]. If both IjX,y], rx[x,y] and I2[x,y], r2[x,y] are
admissible for f then {x: i'1(x)<|'¥(x)} is countable.

(Here, for example, is the notation for the upper extreme derivate of/ rela-
tive to li—2)
We introduce now the notion of a bi-selection.

Definition. A bi-selection, b, consists of an ordered pair of interval functions u
and v defined on all closed nondegenerate subintervals of [0, 1], satisfying the con-
dition that nis a selection. An alternate equivalent statement may help clarify matters.
Namely: A selection can be thought of as picking a point out of the interior of the
interval [a, b\. A bi-selection can be thought of as picking a point out of the interior
of the infinite strip {(x,y): a«xs6}.

Next, the notion of bi-selective differentiation for our function/ should seem
very natural.

Definition. A finite function g: [0, 1 is called the bi-selective derivative of/,
denoted ff, if for each x in [0, 1],

T

» g u[x x+h
It is clear that each selective derivative is a bi-selective derivative.

L. New results

First we establish the equivalence between 1—r differentiation theory and bi-
selective differentiation theory. This will be done only for the corresponding deriva-
tives. Yet the proof indicates how we may switch between admissible pairs and bi-
selections.
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BI-SELECTIVE DERIVATIVES 113

Theorem 1. Let f: [0, 1 ] befixed. Then g: [0,1]-*-/? is a bi selective
derivative off if and only if it is a |— derivative off.

Proof. (=>). Suppose u{x,y], v[x,y] form the bi-selection. We merely define
_f(y)-vix. vl Y ~f(x)
Xyl =y upx, v ufx,y]-x

Then it follows that / and r are admissible for/ and that \f'=g.

(<=) This requires more computation. First, let / and r be the admissible pair
generating g(x). Let us consider the secant chord, C, connecting (x,/(x)) and
(>/(jt)) for a fixed pair 0éx<y~1. Over [x, y], consider the segment, Lly through
(x,/(x)) with slope r[x,y] and also the segment L2, through (y,f(y)) with slope
I[x, y]. The fact that / and r are admissible for/ forces one of the following cases to

occur.
Case L C=L1=L2
Case 2. C=L1xlL2
Case 3. C=L2ilLl
Case 4. CALALMC, but LIDL2=(x0,y0Q with x<xO0<y.
We begin to define the bi-selection.

and r[x, y] =

In Case 1. let d.Y]|=?¥,

In Case 4: let u[x,y]=x0, v[x, y]=yO0.

The definition in Cases 2 and 3is slightly more complicated. But because Case 3
follows the same reasoning as Case 2 we will only present that situation: One of the
two line segments, over [x, y], through (x,f(x)) with slopes r[x, y]+(y-x) intersects
L2at a point (x0, yi) with In Case 2, we define u[x, y]~xa, v[x,y]=YyO0.

It is not hard to see that relative to this bi-selection b, f has bf'=g. In fact for
fixed x and 0 we have both

v(x—h,x]—(x)
u[x—h, x]—x
From this point, we will state our results in the parlance of bi-selections.
We are now ready to state our basic lemma about bi-selections. As above, we
will not state the lemma as it applies to all the various bi-selective derivatives but
only enough to indicate the scope.

Lemma 1 Let f: [0, and b, a bi-selection, be fixed. Let P be any closed
subset of[0, 1]. Then there is a new bi-selection t such that:

V[x, x +h]—(x)

mx, x+h] —x —r(x,x+h) -1h

—I(x—h,x) = h and

i) for nearly all points x of P
lim inf T T iy,
y~x y-X
yEP
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114 R. J. OMALLEY

i) for all x in [0, 1]\P
J'(X) = bl(X).

Here , f is the notation for the lower extreme derivate o ff relative to t.

Proof. The proof is extremely simple. Let [x,y] be fixed, 0"x<_y~1 If P
intersects the interior of [x, y] let xObe a point of that intersection. We define the
selection part, u, of t as u[x,y]=x0. The other part v, of t, we define as v[x, y] =
=f(u[x, y])=f(xu. If P does not intersect the interior of [x, y] let n[x, y] and v[x, y]
be the values given by the original bi-selection b. For every bilateral limit point x of
P i) holds and for all x in [0, 1]\P, ii) is valid.

Though simple, this lemma, in conjunction with L-Theorem 2, becomes very
useful when / is assumed to have a bi-selective derivative over P.

We restate L-Theorem 2 in terms of bi-selections.

L-Theorem 2. For a given function f: [0, 1]-+R and two bi-selections, bx and
b the set {x: O~x”*l and fd/'(x)>K'(x)} is countable.

Proposition 1. Let f: [0, 1]—R and P a closed set be fixed. Suppose f is bi-
selectively differentiable, with respect to b, for every x in P. Let D={x: f has a deri-

vative, relative to P, at x} i.e. 2)=jx: lim - -——ifl _ exisTiJ. Then for nearly
yor oy
all x in D, bf'(x)=lim Ay)~A *1.r
S I

Proof. Lettbe the modification of b mentioned in the proof ofthe lemma. Then
for nearly all x in D we have

f(v)-Ax) w

bf(x)=H"(x) ="/"(x) & limsup Ay>)/-fxix) = liminf
yor yep
AF(X) & T(x) = bfXX).

Proposition ;y {_et [0, 1]1—R, P and b be as in Proposition 1. Suppose in

f:
Iy \
addition, liminf —----------- ~a for afixed. Thenfor nearly all x in P bf'(x) s"a.

yep y X

Proof. Obvious.

Perhaps the relevance of these propositions to the present discussion should be
explained. In [6, page 88] an example was constructed to show that a selective deri-
vative need not be of Baire class 1. It was pointed out by M. Laczkovich that this
selective derivative was of honorary Baire class 2. The characteristics of the example
were as follows:

D [0, \]=uyjP where U is a dense open set, Uf]P=0, and P is perfect.
2) sf' is Baire 1 on each component of vU.

3) / was differentiable, relative to P, at every point of P.

4) sf' is not Baire 1 over P.
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The above results indicate that any such example would be of honorary Baire
class 2. The function h defined as:

sf'(x) (x€U)
h(x) - (*€p),

y-x o ¥y-X
yiP
is Baire class 1 and equals sf nearly everywhere.
We now proceed to show that all bi-selective derivatives are of honorary Baire
class 2. We will need an additional lemma. Its nature and proofaresimilarto Lemma 2
[4, page 103] and Lemma 3 [6, page 86].

Lemma 2. Let f: [0, I[]-<-i? be bi-selectively differentiable, relative to b. Let
c<d be fixed and e>0 be given.

- iy AN
A jIX. c< vgg{ )2/% . whenever 0 < x—y\ < (?}

and let A* denote the closure of A.
Then if xxand x2 belong to A* and 0<|xx—x2<e, CN-— ---x:—

Proof. The conclusion is valid if xx and x2 both belong to A. Next, let xObe
the limit of a sequence of points xk from A. Assume without loss of generality that
XO<xfe<x 0+£. Let uk=u[x0,xK] and vk=v[x0,xK]. Since bf'(xQ is finite and uk
converge to x0 it follows that vk converge to /(x0. In addition, we have wk+
c(xk—uk) <f(xK<vk+d(xk—uk), so f(xKk converge to /(x0Q. This suffices to show
that/ iscontinuous relative to A*. In turn this is sufficient to yield the entire conclusion.

Proposition 3. Let f: [0, 1]-*jR be bi-selectively differentiable with respect to
b. Then b f is honorary Baire class 2.

Proof. There are several ways of establishing a function as honorary Baire class
2 see e.g. [2], [3], [9]. We have chosen to use one based on [2]. Namely: a function h is
of honorary Baire class 2 if and only if each of its associated sets differs from an Fa
by a countable set. Let a be given and consider the sets U={x: bf'(x)>a) and
B={x: bf'(x)<a}. It will suffice to show that U has the desired structure.

_ 1 vxy)-f(x) -
U= n \a U(X,y)-X - U Un.
Lemma 2 gives that for each n and for x in U*
f(y)-f(x)

a a4—|_|s |Iﬁl)|(nf y-x
eun
Proposition 2 yields that for nearly all x in U* bf'(x)*a+— a. Therefore U=

= U1U*\C where C is at most countable.
n=
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We will make use of the machinery of Lemmas 1 and 2 to prove a final result.

Proposition 4. Letf: [0,1] be bi-selectively differentiable with respect to b. Let
P be any perfect set. Then there is a point x0in P at whichf is differentiable relative to
P, and its relative derivative is bf'(x,,).

Proof. We wish to show the existence of a point x0in P such that

iim Ne  -n* @= bf'(xo).
yie Yy~ X

We show first that there is a dense Gs subset of P at which the relative derivative
exists. Then by Proposition 1 we are finished. Let e>0 be given. We may define
a double sequence of set Aremsuch that

i) A,m= \E(: G, -- ll(j)((;(-%)_-f-_%):-2< d,, whenever 0 < be—y =I1_r1nll

i) 0<dn-cn<e

i) \J(c,,.d..) = R

iv) rgﬁglAe,m= [0, 1

We know the behavior of/ over the closure of Anm=A*um by Lemma 2. By applying
the Baire category theorem to A*tMP\P, we get a set Uedense and open, relative to P,
such that for each x in Ue we have a c¢,,,dn and m such that 0<d',,—cn<e and

10 —)f((x) _j whenever 0<|v—x|<— and y(zP. This will show the exis-

—

tence of the desired dense G}.

It is interesting to compare this result to one obtained in [7]. Suppose/is appro-
ximately differentiable. Then in the conclusion of Proposition 4 rather than a point
we can find an entire portion where the relative derivative exists and equals the
approximate derivative.

We end the paper with a question. In what way are all selective or bi-selective
derivatives characterized by properties exhibited by the example in [6, page 88]?
More specifically, if g is a selective derivative is there a dense open set on which it is
Baire 1?

Acknowledgement. The author would like to thank Prof. Bagemihl for his ready
assistance in obtaining information about honorary Baire class 2 functions.
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A UNIFICATION OF GENERALIZATIONS OF THE
LAPLACE TRANSFORM AND GENERALIZED*
FUNCTIONS

G. L. N. RAO (Jamshedpur)

1 Introduction. Some well known generalizations of the classical Laplace
transform exist in many forms whose kernels involve various kinds of special func-
tions. To cite some of them, Meijer [6] has given in the form

(1.1) F(p)= f (pt)-k-~e-~PW , (pt)f(t)dt.
0 a’

Meijer’s another generalization [5] is

a2 N = |77 {PO Kv{pt)f{t)dt.

Varma’s generalizations [14], [15] are

(1.3) P(p)zo/ {2pt)-AWKm(2pt)f{t)dt
and
(1.4) F(p)= 5 (pt)m e - ~ p Wk Jpt)f(t)dt.

In 1950, Erdélyi [3] gave an important generalization on which the author publi-
shed some considerable work in the distributional sense. In 1968, Srivastava [12]
gave a unification of all these generalizations in an elegant form as follows:

(15) SE2,m[/(0;p] = F(p) =5 (,pi)°~e~Pwkm{Qpt)f(i)dt

where ;
I0(/aed) for large />0

o(rd) for small t

and Re[(?+e)p—=2e]> 0 and Re(<T+&+w +1)>0. The reducibility of (L.1) to

* A condensed version of this paper was presented by the author at the International Con-
ference on Generalized Functions and their applications for Mathematical Physics in Moscow in
November, 1980.
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(1.5) to the classical Laplace transform (see also [13]) is based on the known formulas

Ki(z w =
1(2 ) $im, D = 2
and the relation

fVo.v(2z) * (*)e

For example, for g=1, 0=%—m, g=1 (L5) renduces to classical Laplace
transform. Saksena [9] also gave another generalization of the Laplace transform in
the form

FP) =P f «P)GT (P~ ) PWym(gpt) cp(t)dt

which, for dilferent values of the parameters, reduces to the various generalizations.

L. Schwartz [10] was the pioneer in the work of extension of the Laplace trans-
form to distributions. Later many authors including H. G. Gamir, V. S. Vladimirov,
A. H. Zemanian, J. L. B. Cooper, John Benedetto and T. Ishihira discussed the La-
place transform of several classes of generalized functions and deduced some impor-
tant properties.

2. Notation, terminology and some definitions. The notation and terminology
used in this paper follow that in Zemanian [17] and [18] and the author [7], [8]. The
definitions of testing function spaces D(I), La(l), S, Lab and their duals are given in
[18], [7] and [8]. However the definition of La(l) is given as follows:

Let | denote the open interval (0, °°). Let a be a real number. We define La(J)
as the space of all smooth functions <p(y) on / such that

(2.1) T,(<?) = Sup \aD"(p01-=>° (1=10,12, ..)

and its topology is generated by the semi-norms {7,,,,H=le L'(/) is the space of
continuous linear functionals on I. We also note that D(I1)czLa(l) and the conver-
gence in L'a(l) implies convergence in D'(l). In a similar way we can define the test
function space Labas in Zemanian [18, p. 48] in order to enable us to discuss the
two-sided Ib-transform of generalized functions in Section 4.

3. Some preliminary results. Let us put, for convenience,
Tipi) = {pt)ym ~ e~ f- W KmiQpi).
@ r(pO€Le(/) if ar?ill +g9)-

Proof. By using the seminorms (2.1), the asymptotic relations of Wem func-
tion [11, p. 61] namely V\km(x)=0(xKe_"F), x large and the differential property
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[11, p. 25] namely
DI[e™Xxm~AWKm(x)} = (-1 {x)

we have with x =gpt

1]
= (0P)"e2 2 <E)(-1Ye-xIrx 2 2W j J(x)X

Li=o 4T

X 2 L(n-j)XA,ndix-nte v o X BqQnj-l

where Aanj tl and [>e,_; (are some polynomial expressions without p or x.
Consider now

3.1 \eat D'}T(pt)\.
A typical term of this expression is found to be asymptotic to

e v2 2 ‘(gpt)~YHe~lHk
which —0 as t-~°° if a<-*(g+q). Similarly we can prove that T(pt)£Lab

[18, p. 48] if a<-~(g+q)~zb. Let now /—O. We have

+(m—11+2.
W] p(gpt) ~ (gpt) » 2> 2
it et (9P ~ (9PD)
whence, as before, a typical term of the expression (3.1) is asymptotic to e 2 X
X fi—tm—+ which—0 as i—0 if crxm>I1+j (1=0,1 .., n—), (j=0,1,..., n).
Hence T(pt)ELa(l) if a<”(g+q). Furthermore T(pt)ELab if h<-"}(£?+(7)<0

and gxm>I+j.

(b) The Lemma 3.2 of [7] can also be proved in one dimensional case. It can be
stated as follows. Let a,b,a”Rx with a<Rep<b. If O"S, then 6[T(pt)]*Lab.
If {Ov}r=i converges to O in S, then {[r(pi)]Ov}*=1l also converges in Lab to O.

4. (a) The n-dimensional JF-transform. We follow the notation in a paper of
the author [7]. For example
d|n
t = {tu t2, tntERN [pt]* = Pih-Pih-mmmePntn, Dr - ,cl,,,’L,lJ,,,r| | d,n

where |n|=ul+n2+...+un,. a*b means ctj*bj (j=\,...,n).

Theorem 4.1, Let ap, g q crERN Then \T(pfj\*£Lab if
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To prove this, it is enough if we prove

0<S,up \[e°TBAT(p1)M\ < o»

By considering the /“*component, we can prove this as we did in Section 3. The fol-
lowing results are also easy to prove as in [7] and [17].

Theorem 4.2. [T(pt)]*f£S" if and only if - -gS’', provided x -~-x
X(Q+q)"b.
Theorem 4.3. |If feL'(ib then [T(pt)]*f£S".

(b) Boundedness property for generalized functions in L'ab. This can be stated
and proved as in [7] and [17] and hence omitted.

(c) The two-sided >K-transform of generalized functions: A generalized function
/is X-transformable if there exist two points a,b£Rn (a<b) such that /gZ," b.
A point pgC" is said to be in I7if there exist two points a, b£Rn (k£>) such that
/gZ,">h The X-transform of a X-transformable generalized function/ is defined as
(Fp) from the subset '/ of C" into C1given by

(4.1) F(p) = </(0, Ne )]*>

where pgr/. The rihgt-hand side of (4.1) has a sense as the application of fAL ab
to [T(pt)]*£ELab for every fixed value ofp in I'/.

5. Analyticity. In this section it is assumed that a, b, s, t, g, s, g, ngj?L p being
replaced by s.

Theorem 5.1. Let F(s) be given by (4.1) p being replaced by s and in one dimen-
sion. Then F(s) is an analytic function ofs in Ffand

DsF(s) = (f(t),-~T(st)y

Proof. Let s be an arbitrary but fixed point in Ffand let r>0 be such that
(<Rei-r<Rei+r<i. With s as centre we construct a circle C of radius rxin
[Msuchthat r<rx. Let |ds| be anon-zero complex increment in s such that \As\<r.
Consider

(5.1)

where

<%s(0 = FA:' (s+As) 2e 2sHJs)V dim(e(s+ds)/)-sI 2e 2V * ,m(esO

Our theorem would be proved if we show that (5.1) converges to zero as |ds|—©.
This can be done by showing that ikAs(t) converges in Labto zero as \As\—0 since
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f(t)EL'ab. After some simplification ifijs(i) can be seen to be equal to
iy 22 2,As, M)Wke+n_mrn_(est)

by the help of [11, p. 29, equation 2.6.10], where N,, is a polynomial in 4, p, g, As, m
of degree n. We have again

AV.s(0=A (esh) °2e2( 4Wkmest)NO(e, P, g, ds, m)

Now by Cauchy’s integral formula [2] we have, after some simplification, by using the
definition of Kab(t) [18, Section 3.11] and the asymptotic properties of Wk m func-
tion for all zZEC and —» < o and since |z—f|=rx and \z-s-As\>rk—,

A \AS\2KQ o \dd Ms] 2, kg

\Kab(t) D "as{i) 2n J r2(rx-r) n(Ti-r)

where KQis some constant independent ofz and t for q=0, 1, ..., v. Thus as |ds|—0,
the right hand side converges to zero and i/'as(i)-*0 in Labas |ds|—0. Hence
(5.1) varishes as |ds|—0 and the theorem is proved.

The above theorem can be extended to n dimensions by Hartog’s theorem [1,
p. 140]. The following result is also true and can be proved as in [18, p. 59]:

DIF(s) = (f(t), ~[T (50T)(56r 1 for w=1,2....

6. Inversion. The classical inversion theorem for fC-transform proved by
Srivastava [12] is now extended to a class of generalized functions in the following
theorem.

Theorem 6.1. Let F(x) be given by F(x)=(f(y), T(xy)) as in (4. where

T(xy) = (xy) 2e- ~~ Wkm(exy).
Let f(y)EL'a(l) and
P(s) —f  x~sF(x)dx.
Then

[ 1 _  cHt _
(6.1) \ g 'imit § - <PE)y-sMds, <p(y)) = (f(y). cp(y)
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in the sense of convergence in D'(l) where

IEeri m+1l—s)

M-1 X

- |_9+ey+T+1™7/

HUb*)
X2FI}_m -k+1-s, m —k+§; o—k+"2——s; 818{

3
provided a—fc+—o00O and axm+1—>0 where s=c+iw.

Proof. Since the integral on s on the left-hand side of (6.1) is a continuous func-
tion of y, the right-hand side of (6.1) without limit notation can be rewritten as

c+ix

(2ni) 1 J M<P(s)y~sds,

Let (p(y)ED(l). Then the above expression is equal to

¢t @® \

(In)-1 f m J x-ff(y), T(xy))dxy-ds, (p(y)

(6.2) =((2n) 1f M x~s(f(y), T(xy))dxy~4w,<p{y)

/ 7TT 0 Ss=c+iw
(6.3) =((2n)-11 f (f(y),T(xy)x-sM)dxy~sdw,<p(y)
(6.4) =((2n) 1Y (/O"), f T(xy)x~sMdx")y~sdw, cp(y)".

That (6.2) is equal to (6.3) is obvious by the ordinary properties of generalized func-
tions. (6.3) and (6.4) are equal by a result [16, Corollary 5.3—2b]. By another result

[4, p. 337]

—1Ix

1 yq
WKM(Qxy)x~sMdx =
of BY) (Qxy)
o 2Mr(G-stm +\)ys 1
r(G-s )ys ™ X
X m—s+ o-+%;m—k+-2|’\, <r+2§—k—s; i3 r
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Hence (6.4) is equal to
(6.5)
(2" 11 y-s(f(§),ys-dw.(p()) = (2n)-1 T {y=s{f(y), / _1> <p(y))dw =

= @n)~1 (), ys- Dly=s <pydw = (@) 11 <(y).(y  Lep(y))dw =
= (Hy), @)"11 (y-sys-\ g=>(y))dw" =
(6.6) = /100, (2n)"1 Y y"s/ ys-1p(y)dydw) = {/(j), @M)"L/ ""Sp(E)dw

where <(s) is the Millin transform of <p(y). The equality of steps from (6.5) to (6.6)
can be established by using the standard results on the integration odf distributions
and testing functions with respect to parameters [16, Sec 2.8]. As t—

J y~y(s)->-2n(p(y) uniformly with respect to y [18, Theorem 4.3.3], it is the-

—T

refore proved that

(2m)"Uimit f  M®(s)y~sds, fy)) = (2n)~Lf(y), 2ncp(y)) = <F(y), <PH)

which proves (6.1)

Remark. Some more results pertaining to the >X-transform can be proved just
like in the author’s published papers.
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QUASI-CENTERS, QUASI-COMMUTATORS,
AND RING COMMUTATIVITY

H. E. BELL* (St. Catharines)

For an arbitrary associative ring R, define the left quasi-center Ci=Ct(R) to
be the set of all yER with the property that for each xR there exists an integer
n~n(x,y) for which yx—nxy—0; and define the right quasi-center Cr—Cr(R)
analogously. The first major result of this paper (Theorem 2) asserts that for rings
with 1, both quasi-centers coincide with the center. This theorem suggests that quasi-
commutators — that is, elements of form yx —nxy for n an integer — may be used in
place of ordinary commutators in studying commutativity; and in Section 3 we pre-
sent some theorems showing that this is in fact true.

The motivation for attempting to prove Theorem 2 was an application to commu-
tativity theorems, which will be reported in a separate paper [3]. The proofs of Theo-
rems 5 and 7 contain other applications.

Various authors have recently done closely-related work [4, 8, 9, 10], some of it
in the context of non-associative rings; in particular, a result of Chung and Luh [4]
contains the special case of Theorem 2 in which Ctis assumed equal to R, and Theo-
rem 4.2 of [4] may be regarded as a variant of Theorem 2 under a more restrictive
definition of quasi-center. However, their proofs do not seem to yield Theorem 2.

Throughout the paper, C or C(R) will denote the center of R, £(R) the commu-
tator ideal of R, and R+ the additive group of R. For SQR, AfS), Ar(S) and
T(A) will denote the left, right, and two-sided annihilators of S. For x,yER, the
usual symbol [x, y] will represent the commutator xy—yx. The symbol Z will be
reserved for the integers, considered as a set or a ring according to context.

1. The left and right quasi-centers

The sets C, and Cr are in some sense center-like, and they obviously contain C;
however they may be quite different from C, as the following examples show.

Example 1 Letp be a prime greater than 3, and leta and b be nonzero elements
of GF(p) with a2=apb2. Denote by A the algebra over GF(p) with basis {og, a2, a3}
and multiplication given by ala2=aa3, aZzal= &3, and aixJ=0 for all other choices
ofi,j. Itisreadily verified that oqand a2are in C,(A). Moreover, if we choose k andj
sothat ak+bj= 1 and bk+aj=0, asthe fact that a2~ b2 permits us to do, we have
(og+./a9 (oq+kx2 =a3 and (altkad(al+y'ad=0, hence oq+yoqt; C,(A). Thus, in
general, CfR) need not be a subring of R.

* Supported by the Natural Sciences and Engineering Research Council of Canada, Grant
No. A 3961.
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Example 2 [10, p. 378]. For any field F of characteristic 22, let A be the algebra
over F with basis (al5a2, a3t and multiplication given by ala2= a3, aray=—a3 and
a,a=0 for all other choices of i,j. Then A satisfies the identity xy=—yx, hence
CfA)—A. Thus, even if C,(A) is a subring, it need not be commutative. In fact, it
need not be anti-commutative either, as is pointed out in [8].

Example 3. Let Z6denote the ring of integers mod 6 and let R be the ring with
additive group Z6®Z6 and multiplication given by (a, b)(c, d)=(ac, ad+3bc).
It is easily verified that CfA)={(k, b)\k=0 or 3}, hence CfA) is a commutative
subring of A. Since (0,1) is clearly not central, we see that even when Cxis a commu-
tative subring, it may be strictly larger than the center. As may be readily verified,
this example also shows that in general CfK)y"CfR).

It is not clear what properties of R force Ct(R) to be a subring, or in the event
that CfR) is a subring, what further properties imply that R is commutative. In the
case of rings with torsion-free additive group, however, the situation appears to be
slightly better, as the following easy theorem shows.

Theorem 1. Let R be a ring with R+ torsion-free. If C,(R) is a subring, then
CfR) is either commutative or anti-commutative. If, moreover, rij(A)= {0}, then
CfR) must be commutative.

Proof. We use repeatedly the following easy result, which we denote by EG —
if Hxand H2are subgroups ofthe group Gwith Hx\JHt=G, then 1f=G or H2—G.

Let y,zECfR); then there are m=m(y,z) and n=n(y,z)EZ such that
yz—zy and zy=myz, hence (mn—\)yz=(mn—I)zy=0. Either yz=zy~0, in
which case we obviously have [z,y]=0, or m=n==*Il. For fixed y, let Sfy) =
= {zfXi(R)\yz=zy} and Sfy)={z"CfR)\yz=-zy). Clearly Sy(y) and Sfy)
are subgroups of Ci(R)+ with union equal to the entire group. Thus, by EG, each
yfCfR) satisfies (i) [y,z]~0 for all zECfR), or (ii) yz=—zy for all zECTR).
Letting Sj and S2be the sets of all y satisfying (i) and (ii) respectively, and applying
EG again, shows that CfR) is either commutative or anti-commutative.

Assume henceforth that AfR) is trivial, and that CfR) is anticommutative. To
show that CfR) is commutative, we need only show that [y,z]x=0 for all XER
and y, z"CfR).

Consider any pair y,zdCfR) with yz*O and let x€ R be arbitrary. Choose
n,m,kEZ for which

(D yX = nxy, zx —mxz, (y+z)x = kx(y+z).

Denoting (n—k)y —(k—m)z by w, we see from (1) that xw=rxw=0 for any r£R.
Since wZCfR), we now have wx=wrx=0, hence w belongs to the left annihilator
A ofthe leftideal generated by x. Now R=R/A also has torsion-free additive group;
and

2 (n—k)y = (k—m)z,

where y, z denote the canonical images ofy and z in R. Of course, if either y or z
is Q then [y,z]x=0; otherwise, unless n—k=k—m=0, (2) yields [y, z]=0,
which forces [y, z]x=0.
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Now assume n=m=k, and choose jEZ such that {y+yz)x=jx{y+yz)\ it
follows, by appeal to (1), that

©) (n- J)xy =jxyz- yzx.

The anti-commutativity of Ct{R) forces z2=0, and the fact that each u£R vyields
tEZ for which zu=tuz now implies zuz=0 for all uER. Thus, right-multiplying
(3) by z gives {n—)xyz=0; and if nZj, we get xyz=0=yzx=zyx, so [y,z]x=0.
The only remaining possibility is that n=j, in which case (3) yields yzx=nxyz.
But (1) and the fact that m— give yzx—nyxz=nXyz, hence (n2—)xyz=0.
Of course, if xyz=0 we get [y,z]x—0; otherwise n2——0, so that n=0 or 1
Since «=0 means that yx=0—zyx=yzx=[y, z]x, we conclude that if [y,z]xZ 0,
we must have n—m=1

Summarizing our results, we have that for fixed y, z*"Ct(R) and x£R, either
@) [y,z]1x=0 or (b) 1v.yl=[x, z]=0. Keepy, z fixed, and let T1land T2be the sets
of all xER satisfying (a) and (b) respectively. Another application of EG shows
that TX=R or T2=R. If TX=R, then our hypothesis on the left-annihilator of R
gives [y,z\—0; if T2=R, then y,z£C. Thus, [y,z]=0 for all y,z"Ct(R).

For rings R with multiplicative identity, the results on quasi-centers are the best
we could hope for, as the following theorem shows.

Theorem 2. If R has 1, then C,=Cr=C.

Proof. Since C=Cr, we need only show Cr£C. Accordingly, suppose that
y£ CAC, and consider first the case where y has infinite order in R + Choose x such
that [x,y]"0; then there exist integers n,k” 1 for which

4) Xy —nyx, (y+ 1)>= foy(y+1),
and hence (k-1)y—(n—k)yx. Letting f—k-I and g-—n—k, we have
©) fy = gyx;

and multiplying this equation by n yields

(6) gxy = nfy.

Since yeCr, there exists tEZ for which (-f+gx)y—ty(-f+gx); and substitu-
ting (5) and (6) into this equality gives

(7) /(n-1)7 =0,

which is impossible since f(n—\)z0. Therefore y£C.

It remains to consider the case of torsion elements y, which we may assume to
be of additive order ps for some prime p. We proceed by induction on s. If s= 1,
then in (4) neither n—1 nor k—1 can be congruent to 0 (mod p), so we obtain a
contradiction by simply repeating the above argument modulo p. Moreover, for any
s, if there exists an y, such that [yo,>]*0 and xOy=jyx0 with j~ 1(mod p),
then in equation (4) we may assume that kK~ 1(modp) and in equation (5) that
fya 0 (mod p), so that (7) yields the contradiction n=1(mod p9).

Assume as inductive hypothesis that for all /z<s, elements of Cr of order ph
are central; and suppose y dCAC , p'y*OZp”"y and xy—yx with n= 1(mod p).
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Note that by the inductive hypothesis py£C, so that p[x,y]—0. If r—r(x) is the
largest integer for which n= 1(modpr), then

(8) xy = (bp'+1)yx and [x y] - bp'yx
for some b prime to p, hence
9) 0= p[x, y] = pr+lyx.

Choose x such that r(x) is the minimal member of {r(u)|[n, W?£0}; and let r=s—slt
iiS1. Then using the minimality of r(x), we obtain for each i£Z an integer m”*O
(mod p9) such that

(10) (x+ips*~Dy = (mpr+1)y(x+ip’i~).

Since pr+lyx—p =0, we immediately get [x, y]=0 if m=0 (mod p); furthermore,
if m=b (mod p) for some choice of i 0 (mod p), then subtracting the first equation
of (8) from (10) yields the contradiction ps_ly=0. Therefore for each 1=1, 2, ...
...,p—1, in (10) we have m”a0, b (mod p), so there exist distinct ilt /2£{1, ...,p —1
whose corresponding mland m2in (10) are congruent (mod p). Subtracting the two
versions of (10) yields

(11 (m2-m Dpryx+(m2i2-m lidps-y = 0;

and letting m2—vp-\-mx and recalling (9) gives 0—m1(i2—ii)ps~ly —ps~ly, a con-
tradiction. This completes the induction, and hence the proof.

Semi-prime rings have a comparable theory of quasi-centers; note the following
result, which appears in [4].

Theorem 3. If R is semi-prime, then CI—Cr=C.

2. Some applications of quasi-centers to commutativity theorems

Theorem 3 yields a slight improvement of a class of commutativity theorems.
Let 1, and let Z[m\=Z[XIt ..., X,] denote the ring of polynomials with integer
coefficients in n non-commuting indeterminates; let J be a subset of Z[n] containing
no polynomials with non-zero constant term. A ring R will be called Q-central
(left 1-quasi-central) if for each ordered u-tuple (xx, x2, ...,x,,) of ring elements,
there exists a polynomial f£ I suchthat /(xI5 ..., xQ£C(£C,). A number of known
theorems assert that for certain 1, any J-central ring must have nil commutator ideal
4>(R) —for example, if 10is the set of all positive integral powers of a single indeter-
minate X, a *-central ring is radical over its center, and the assertion that % -central
rings have 4>(R) nil is a classic result of Herstein [5].

Theorem 4. Suppose 1 is a set of polynomials with the property that every 2.-
central ring has nil commutator ideal. Then every left 2-quasi-central ring has nil
commutator ideal.

Proof. Let R be left ~-quasi-central, and factor out the maximal nil ideal N.
Then, by Theorem 3, R=R/N is J-central, hence commutative.

Anumber of standard commutativity theorems may be formulated as statements
that for certain sets 2, all ~-central rings are commutative — this is the case if we
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use £1={X—Xn\n—2, 3, ...}. While it is natural to ask whether the hypotheses can
be weakened to require only that R be left i?-quasi-central, the answer is in general
negative. For example, the ring of Example 3 is left -quasi-central but non-commu-
tative. However, we do have the following extension of Herstein’s result that periodic
rings with all nilpotent elements in the center must be commutative [6].

Theorem 5. Let Rbe aperiodic ring in which all nilpotent elements are in C, I Cr.
Then R is a subdirect product of afamily {Ra}, each member of which is either a nil
ring, or a commutative ring in which every non-nilpotent element is invertible.

Proof. We require two basic facts about periodic rings, namely that some power
of each element is idempotent and that nilpotent elements of homomorphic images of
R may be lifted to R [2, Lemma 1]. The latter guarantees that the property of nilpo-
tent elements lying in C,MCI persists under taking homomorphic images.

Let R be any ring satisfying our hypotheses, and let e be any idempotent of R.
Then for each xER, ex—exe and xe—exe are both in C,[1Cr, so that ex—exe=
=xe—exe=0, hence idempotents are central. Now consider any subdirectly irre-
ducible image Raof R. Idempotents being central, any non-zero idempotent must be
a multiplicative identity; hence either Rx s nil, or it has 1and every non-nilpotent
element has a power equal to 1 In the latter case, Theorem 2 guarantees that nilpo-
tent elements are central, and Rxis commutative by Herstein’s original result.

It is to be noted that C,MCr cannot be replaced by Cror C, in the hypotheses
of Theorem 5; indeed, the ring of Example 3 has the property that nilpotent elements
are in Ci, but it cannot satisfy the conclusion of Theorem 5 because it has a non-
central idempotent.

3. Applications of quasi-commutators to commutativity theorems

The theorems in this section indicate that quasi-commutators may play a role in
the study of commutativity theorems analogous to that normally played by ordinary
commutators. Theorem 6 is a generalization of the well-known result that R) is
nil if R satisfies the identity [[x, Y], [z w]]=0, while Theorem 7, apparently a
rather deep result, extends a well-known theorem of Herstein [7]. We shall make fre-
quent use of the following lemma.

Lemma 1 [1, Theorem 1]. Let Rbe a ring satisfying an identity q(X)=0, where
q(X) is a polynomial in afinite number of non-commuting indeterminates, its coeffi-
cients being integers with highest commonfactor 1. I f there exists no prime pfor which
the ring of 2x2 matrices over GF(p) satisfies q(X)=0, then R has nil commutator
ideal and the nilpotent elements of R form an ideal.

Theorem 6. Let R have the property that for every quasicommutator ¢=xy—
—jyx in R, and every pair z, w of elements of R, there exists a quasi-commutator
d=zw —kwz for which [c,d]=0. Then TY{R) isnil.

Proof. By standard structure-theory arguments, it suffices to establish commu-
tativity of R under the additional hypotheses that R is prime with no non-zero nil
ideals. Suppose first that R has characteristic 0. Then beginning with x,yER and
c=xy —2yx, we are guaranteed k£Z such that [xy—2yx, yx —kxy]—0, a condi-
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tion which reduces to (1—2k)[xy, yx] =0; hence R satisfies the identity

(12 [xy, yx] = 0.

On the other hand, if R has characteristic p> 0, our hypothesis implies that R
satisfies any identity of the form

(13) M[xy—iyx, zw—jwz] —0

where i,j range over the set (1, 2, and the factors are multiplied in arbit-
rary but fixed order. But, as is easily verified, there exists no prime g for which the
ring M2(GF(q)) satisfies either (12) or (13); thus R is commutative by Lemma 1

| suspect that the hypotheses of Theorem 6 can be weakened to the following:
given x,y, z, WER, there exist j, kKEZ suchthat [xy—jyx,zw —kwz]=0.

Theorem 7. Let R be a ring with 1, and suppose thatfor each x, y£R, there
exist an integer j=j(x,y) and an integer n—n(x,y)>\, such that

(t) (Xy-jyx)a= xy-jyx.
Then R is commutative.

Proof. We begin as is traditional, with the case of R a division ring. If for each
X,YER, there exists k—k(x,y) for which xy —kyx"C, then R satisfies the identity
[xy, yx]=0 and is necessarily commutative by Lemma 1 Therefore we assume there
exist x,yER and k,nf£Z with «>1, such that a=xy—kyx(IC and aB=1I.
Noting that C(a) is a normal extension of C, and letting @ be a non-trivial auto-
morphism of C(a) over C, we apply the Skolem-Noether theorem to obtain bfR
for which (p(a)=bab_1= a. Thus, we have b£R such that

(14) ba =a‘h, a*tba
Now choose jfZ and m>1 such that

(15) (ab-jba)m—ab—jba-,

and substitute (14) into (15), obtaining

(16) (a—ajbm= (a-ja b.

Now it follows from (14) that bas=aid for each positive integer s; hence for any
polynomial p(X)EXZ[X], there exists a polynomial gq(X) in XZ[X] for which
bp(a)=g(a)b. Thus from (16) we obtain a polynomial f(X)EXZ[X] such that
f(a)bm=(a—jalb; and provided that a—ja‘~0, we must have f(a)*0 and hence
bm~1=(a—at)(f(a))~1 In particular, letting P be the prime subfield of R and not-
ing that P(a) is a finite extension of P, we see that b is algebraic over P.

We also wish to show b is algebraic over P if a-ja‘=0, in which case (14)
yields
17 ab=ja'b=jba.

Choose /, mgZ, m>1, such that ym=y, where y denotes (a+\)b—fb(a+ 1);
then

(18) (O-/)ba+ (1-/)bf - (j-/)ba+(-f)b.
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If y=0 and (/) 1=0, then (1—+#)1—0 and we get the contradiction [a, h]=0;
on the other hand, if y=0 and (j—) 1" 0, we have (j—)a+ (1—)\ =0, which
yields the contradiction a£C. Therefore, we conclude y”~ 0. If it happens that
(/-1) 1=0, (18) then yields ((1—)b)m—\—)b and b is therefore algebraic over
P; hence we may suppose (b(sa+t))m=b(sa+t), where s,tEZ and sxO. Now
(sa+t)b=sab+tb=sjba+tbh=Db(sja+t); and we use this result to obtain a polyno-
mial p(X)dZ[X], of degree h>1, for which bnp(a)=b(sa+t). Since y =
=b(sa+t)"0, p(l) X0 and bm~1=(sa+t)(p(a))~1£P(a), hence again b is alge-
braic over P, which is what we set out to prove. Thus, in view of (14) and the fact
that a"=I, in all cases the algebra A (a, b) generated by a and b over P is a finite
extension of P.

If P is finite, then A(a, b) is commutative by Wedderburn’s theorem, contra-
dicting our assumption that [a fi] X0; consequently we may assume P is the rational
field Q. Note that in a finite extension of Q, there must be a fixed NEZ such thatifu
is any root of unity, then uN=1.

Assume that A (a, b) is non-commutative, and choose two of its elements X, y
for which xy Xjyx for all jdZ. Letting A be as above, consider integers A ,/,--
—JN,jn+i such that
(19 xiy-jtiyx)N=1, i=1 , A+l;

and note that the / must be distinct, since j,=jt for sAt implies

(sN- t N (xy-jsyx)N= 0,

contrary to the choice of x, y and the assumption that s and t are distinct positive
integers. For i=0, 1, ..., N, denote by pt(x, y) the sum of all terms in the expansion
of (xy—yx)Nhaving rfactors ofyx; then (19) reduces to the statement that the pt(x, y)
satisfy the system

2APH(xy) = UK), k=1 ., N+1

Since this system has as coefficient matrix a non-singular Vandermonde matrix, we
see that pO(x, y)=(xy)N is a rational multiple of 1, and hence

(20) [(xy)", yx] = 0.

The argument above applies to any x, yEA (a, b) suchthat xyAjyx for all y/Z,
and it is obvious that (20) also holds for all other x, yf A(a, b). Thus (20) is a poly-
nomial identity satisfied by A(a, b), and a straightforward application of Lemma 1
yields commutativity of A(a, b), contradicting our original property that [a b]JAO.
This completes the division ring case of Theorem 7.

As usual, to treat the semi-simple case, we need only consider the primitive case;
and verifying that 2x 2 total matrix rings do not satisfy our hypotheses shows that
primitive rings satisfying these hypotheses must be division rings. Thus, we have R
commutative if R is semi-simple; and we proceed now to the general case, assuming
without loss that R is subdirectly irreducible. The subdirect irreducibility guarantees
that 1is the unique non-trivial central idempotent, and that R +has p-torsion for at
most one prime p. A consequence of (f) is that whenever ab=0, ba=0 as well;
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this property, in the presence of subdirect irreducibility, implies that the set D of zero
divisors is an ideal (see [1, Lemma 2]).

Let J(R) denote the Jacobson radical, and let adJ(R) be arbitrary. For x£R,
choose jdZ and n> 1 for which (ax—xa)"=ax—jxa. Now (ax—jxd)n~x is an
idempotent belonging to J(R), hence must be trivial; hence ax=jxa and J(R)QC
by Theorem 2. Now R/J(R) is commutative by our previous work, so €(R)9
QJ(R)QC; and it follows easily that R satisfies the identity [x,y][v, tv]=0, hence
that (*(Rff—0. The fact that <£(R)QC also shows that for each xER and each
idempotent e, [e, ex]=ex—exe and [xe, e]=xe—exe are both central, hence idem-
potents of R are central and 1is the unique non-zero idempotent.

Suppose now that R is non-commutative and choose X(EC. Then by Theorem 2,
there must exist ydR suchthat xy~kyx for every k£Z\ and choosing jdZ and
n>1 suchthat (xy—yx)"=xy-jyx, we see that (xy—jyx)"~2is a non-zero idem-
potent, necessarily 1. Now

(21) xy-jyx = (1-))yx+[x,yl,

hence computing modulo %), which we have shown to be a nilpotent ideal, we have
a nilpotent element u such that

(22) ((I-))yxy~x=1+u.

But 1+u is invertible, hence so is x; therefore all non-invertible elements are central
— in particular, DQC.

Continue with x, y,j and n as in the preceding paragraph, and let g be any prime
not dividing 1—, such that R+ is "-torsion-free. If we had gxy=kqyx for some
kdz, we would have q(xy—kyx)=0, contradicting our choice of x and y. Thus
there exist fdZ and m>1 such that (gxy—qfyx)m=qgxy—qfyx® 0 and hence
(gxy —qfyx)m~1—1 Of course, we may assume that n—m — that is

(23) (xy-jyx)n 1= (gx qfyx)n-1=1

Consider R=R/D, and for arbitrary w£R, let wbe the canonical image of win R.
Since @i(R)<"D, (23) yields

((-j)-1- 9"-1(1-N"-n(M)n1= G

hence, since yV 1 and q does not divide 1—, R must have finite characteristic, which
we denote by p. It follows that pxdD ~C for all xdR; and from (21) and the fact
that xy-jyx is invertible, we have 1— not divisible by p. It now follows from (22)
that in R, xy=k\ for some positive integers m and Kk, hence Xy generates
a finite subring, necessarily a subfield, of R. Thus, for some positive integer n,
Xypr=xy, so that (xy)pr—xyd.DQC. But since *"(R)QC and pwdC for all
wdR, we get [(xy)pw]=p(xy)p~Yxy,w]=0 for all wER\ hence (xy)prEC and
therefore xydC, contradicting the fact that [x,y]” 0. This completes the proof of
Theorem 7.

In the statement of Theorem 7, we cannot dispense with the assumption that R
has 1; Example 2 makes that clear. However, we do have some measure of commutati-
vity even if R fails to have 1
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Theorem 8. |IfR is an associative ring and iffor each x,yER there are integers
j and n,n>\, for which (xy —yx)"—xy—yx, then ~{R) is nil.

Proof. We need only establish commutativity under the additional hypothesis
that R is prime with no non-trivial nil ideals. If R is semi-simple, then R is commu-
tative by the proof of Theorem 7; in particular, if J(R) denotes the Jacobson radical,
[x,y]6T(1) for all x,y£R. Now J(R) is itself a prime ring, and it contains no
non-trivial idempotents; hence for each x,yEJ(R), there exists jfiZ such that
Xy =jyx —that is Ct(J(R))=J(R). Therefore, by Theorem 3, J(R) is commutative
and R satisfies the identity [[x, y], [z, w]]—0. A routine application of Lemma 1now
yields commutativity of R.

In view ofthe work in [9], it is natural to ask whether aring R with 1is necessarily
commutative if for each x,yER, there exist relatively prime j,k£Z and an integer
n>1 for which (jxy—kyx)n=jxy—kyx. The following example demolishes that
possibility.

Example 4. Consider the ring JR of 2x2 upper triangular matrices over GF(2),
which is a non-commutative ring with 1 For arbitrary *=[q and

in R, we have
(ad ae+bfl . fad db+ec\

gand™ =[o
If ad=cf=1, then xy—xy—2yx is invertible and there exists n for which
(Xy—2j%)'i= |q, J. If ad—1 and cf=0, then xy—2yx, being of foom  *j,

is idempotent; and a similar argument applies if ad=0 and cf=1 If ad=
—cf=0, then either xy—yx or one of xy and yx is trivial with twice the other also
trivial. Thus, in all cases, there exist relatively prime j, KEZ with (Jxy—kyx)n=
= jXy—kyx.

Our final theorem shows that this difficulty can occur only ifj, K are permitted
to vary with x and vy.

Theorem 9. Let R be a ring with 1; and suppose there exists afixed pairj, Kk of
relatively prime integers such that for each x,yER there exists n=(x,y)>| with
(jxy—kyx)n=jxy —kyx. Then R is commutative.

Proof. Making the substitutions x=1, y— and x—k,y—1 vyields s,t>1
such that (j2—kj)s=fi—kj and (jk—k& =jk—k2. Rewriting these conditions as
js(j—k)s—(J—k) and (j—kykt=(j—k)k, and invoking unique factorization in Z,
we see that either j —k —* 1, or one of j, x is 0 and the other is = 1. In both cases,
R satisfies the hypotheses of Theorem 7, hence is commutative.
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THE DISTRIBUTION OF THE CHARACTER
DEGREES OF THE SYMMETRIC ~-GROUPS

P. P. PALFY and M. SZALAY (Budapest)

1. Introduction. For fixed prime p, let P,, denote the Sylow p-subgroup of the
symmetric group Sp- on pnletters. We call these groups P,,(n=1,2, ...) “symmetric
p-groups”. We have obviously

(1.1) \Pn\ = p'+p+-+P"-\
The thorough study of the symmetric p-groups was initiated by L. A. Kaloujnine
[6], [7]

In this paper we shall investigate the degrees of the irreducible characters (i.e.,
the dimensions of the pairwise non-equivalent irreducible representations (over the
complex field)) of P,, from the point of view of the statistical (or probabilistic) group
theory. Since the character degrees divide the order of the group, in our case each
degree is a power ofp, therefore we rather consider logp y(l). The probability meas-
ure will simply be the proportion of a subset of irreducible characters. So the number
h,, of conjugacy classes of Pnwill also play an important role. Our main purpose is
to prove that logpy(l) shows an asymptotically normal distribution.

In a previous paper (P. P. Palfy and M. Szalay [10]) we investigated the distri-
bution of the orders of the elements of P,,. This work was inspired by the celebrated
series of papers [4] by P. Erd6s and P. Turan on the statistical group theory dealing
with the distribution of the orders of the elements of Snand related problems. (For
a simpler proof of their main distribution theorem, see J. D. Bovey [2]. J. Dénes,
P. Erd6s and P. Turéan [3] proved an analogous distribution theorem for the alternat-
ing group An.)

For the dimensions of the complex irreducible representations of S,,, one has the
trivial upper bound

Yn\ = expj-j nlogn—jn +O(log n)J.

Dealing with the value distribution of the complex irreducible characters of S,,,
P. Tarén [13] (see also [14]) remarked that the maximal dimension is

owing to the relatively small class number of Snwhich is pin), the number of parti-
tions of n. M. P. Schiitzenberger called afterwards his attention to the interest of the
question what can be said on the distribution of the dimensions. According to the
first result (M. Szalay [11]), the dimensions of almost all complex irreducible represen-
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tations of S,, are of the form
(1.3) exp j-i- nlog n—0(n log log n)J.

By means of the statistical investigation of partitions (M. Szalay and P. Turéan [12]),
this was improved to

(1.4) exp nlogn— +Ajn+0(n78o0g4n)J

with a positive constant A. As P. Erd6s remarked, this cannot be improved to
exp {g(n) +O(n2og_1n)}.

Another natural probability measure for the irreducible representations of a
group G is the Plancherel measure, where the probability of the character x is
X(1)/|G|. Results concerning the Plancherel measure of S,, have been obtained by
A. M. Versik and S. V. Kerov [15].

In what follows we are going to investigate the distribution of the dimensions for
the symmetric p-group P,,. As to the maximal dimension, we shall show that, e.g.,

for p>2 and n>1, it is
pl+p+...+p™i

(see Proposition 1). Our main purpose is to prove the following distribution theorem
by the moment method. (Our random field consists of all possible choices of complex
irreducible characters of Pn with equal probabilities.)

Theorem. There exist positive constants a=a(p), R=R(p) with

1
(1.5) op.g Ma< 1+ b1
and
1 2
(1.6) A<l e ¥ ppop

such that, for a randomly chosen complex irreducible character x °f Pn>we have

(17) lig, Prob | 109pXCl)-«p™ 2 I -2t

Op(n-P+1)/2
—0

Another result worth mentioning here is the following formula for the class num-
ber hn of P,, (see (3.4)—3.5)):

_ 0 if p>2
K= 1if p=2
where y=y(p) is a constant with 1 (cf. (3.6)).

The constants &, B, y are given by infinite series containing the class numbers
hn(/i=1, 2, ...) (cf. (4.6) and (4.11); (4.9) and (4.11); (3.3) and (3.5)). Fortunately hn
grows rapidly, hence the convergence is fast. Here we give the values of &, B, y for
the smallest primes.
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p a Y

2 0.904 366 0.465 601 0.428 430
3 0.960 487 0.521 875 0.463 819
5 1.211479 0.962 249 0.603 746
7 1.166 250 0.999 588 0.714 311

For p~I1l, the approximate values are
d« 1+~r~r> RB*>*]|, y«l~
P- 1 P

within the accuracy of p-(p-3) (< 10-8).

2. The recurrence formula. Let £, denote a random variable which assigns the
logarithm of the degree of / (to the base p) to a randomly chosen complex irreducible
character x of Pn, i.e., <7, (y)=logpy(l), £nis integer-valued. The distribution of
is reflected by the generating function

(2.1 An(z) = sz ;’a»kZ*.

where ark denotes the number of complex irreducible characters of P,, with
logp /(1) =L The sumin (2.1) is clearly finite, so A,,(z) is a polynomial. Substituting
z=1, we obtain the number of complex irreducible characters of P,, i.e., the class
number h,, of P,,,

2.2) 4,01 = h,,

Similarly, substituting z=p2 we get the square-sum of the degrees of complex irre-

ducible characters, i.e., the order of P,,
pn—1

(2.3) An(p2=WP\=p ~ .

We define POas the trivial group and AOQ(z) =], h0=1. Obviously Pr is a cyclic
group of orderp and Al(z)=p, hl=p. We remind the reader of the recurrence rela-
tion
(2.4) Pn+H =Pnr(jPi N 1)

where Qj denotes the wreath product (see, e.g., [8], 2.30). The characters of wreath
products are completely described by A. Kerber (see [8], 5.20). In our case Plis of
prime order and this fact considerably simplifies the construction. Pnld contains a
normal subgroup of index p which is isomorphic to the pib direct power of Pn. The
complex irreducible representations of this normal subgroup are the outer tensor
products of those of Pn, the corresponding characters are the direct products of com-
plex irreducible characters of Pn. The characters that are stabilized by Pn+1, namely
the direct powers of complex irreducible characters of Pn, have p distinct extensions
to Pn+l The remaining characters induce irreducible characters of Pn+l and such
characters induce the same if they are conjugate in Pn+1, so always p of them induce
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the same character of Pn+1. In these two ways we obtain every complex irreducible
character of P,,+L (cf. these considerations also with [5], p. 86, and [1], Theorem 4).
Since the degree of direct product of characters is the product of the degrees and the
induction from a subgroup of index p multiplies the degree by p, we obtain our basic
recurrence formula

(25  Antl(z) = pAnzp + j(A p(2)-A,.(zR) =] Ap@)+ (p— A.(zp

for n”o. We have AQ(z)=1 and Ax(z)=p. Hence e.g., A2(z)=p2+(pp~1—I)z.

As a first and easiest application of (2.5) we determine the maximal degree of
irreducible characters of Pn.

Proposition 1. The maximal degree of complex irreducible characters of P,, is

pn-14
(2.6) p P1 for p»2,n® 1land p=2,n—12;
and
(2.60 232'-3 1 for p=2,ns 3

Proof. By definition, this maximal degree is p& AAz). For degAn(z)=s,
A,,(z)—gzsoankzk> the formula (2.5) implies that an+u=0 for k>ps+1 and

&n+l,ps+l P (Pns  tins)>

For />>2 and ams" 2, we get

AK f1-1)  2(2P 1
ANTH 5+ Toomemen < ) _ 2P 1) o,

(since p/2p~1—1).
For p—2 and 0msS 3, we get

s 1) g

an+l,2s+1 2

In the above cases, for N~n, we have
deg An+i(.) = 1+pdeg AN(2).

This gives the result by induction beginning with A1(z)=p for p>2 and with
W3(z)=8+ 6z + 622 for p=2.

3. The class number. Substituting z=1 in (2.5), we obtain a recurrence for-
mula for the number of complex irreducible characters of P,,, i.e., for the number h,,
of conjugacy classes of Pn, namely,

(3.1 hn+1—

We have h0—1, hx=p. Now, (3.1) implies that hi=pp~1+p2-1 andhn+l® jh p.
p-2 _ 1
By induction, we get h, = pPi»-npn+T=T for nS1. To get anontrivial lower
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5Y"-2
bound for p—2 too, we begin with n=2 and obtain A,s Ziy for p=

2, n"2. This rapid growing of hn (compare with |/>n[=/?(g"-1)/(p-1)), will enable us
to derive good estimations in the forthcoming calculations.

Proposition 2. For n~1, we have

1L
and p PJifp>2
(320 i

J-1 ifP=2
where y—y(p) is an (implicit) constant deflned by

n-2 1 “ 1, (, p2-1)
p(p-1 + logp X pk ogl + hi:})

Proof. The series defining y is obviously convergent. Rewriting (3.1), for k"1
we get

(3.3) Y=

log hk log /ifc-i Iogp_+
o1 > E1+49f)-

Since A0=1, we have

log h, logp

yri= 2 -

m-£f

P\ el = 2000 p]b'_’,\o\f'p4' e B 100g1+ BTy
n” 1. Hence,

log/..= ,p-logp+~if-ilo8(1+Thbi)-iitiii rlog(l+~ ) ,

e,

log(pA,+D)1/p - ypnlogP + -p~_~f~ *qioprnrlog (I+4.9)r
Here,

0-.1,”~ 4 1+w Db 1B8(1+w ) -
Consequently,

] P+AT  f p.-n_2 f P+
" (PAMDUp " (1+ hAI T ~y - 11+ hr,I) o
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Therefore,
1/P

(PK+Ylp< p AW T< (pK+L+PAX 1}) UPS [hi+tf- DhntNe pt P )

for 1.
For p>2 and /11, we get

1

K < (p|7|rr+1)" <p -1 (hg+(p2-1)ft,,+ p(ph+1))1lp
S (hp+P2hn+ NYp=(@P+p/irl+ DUp< N.+1
For p=2 and «fel, we get
hn+t | < (@+ 3h,)12= (LR < 2« +i < (#2+ 3in+ 6)~ ~ h, +2,

Corollary 1 For nfel, we have

2
34 N - {72 '
3.4) Ad . No -m»]-{~ fs Pr=2
where y=y(p) is given by (3.3).
As to the magnitude of
(3.5) Y=(P- DY,
we infer from (3.3) that
_____ 2 p— 1, (. p2d)
(36) L5<Y< L bitogp p(p-l) gl + fif-1)
1
Pp—2logp '

4. The expectation and the variance. As usual, the expectation M(£,,) and the
variance Z2(£,) can be expressed in terms of the derivatives of the generating func-
tion, namely,

(4.1) Mo =AM

4.2)

Now our aim is to derive recurrence formulae for the expectations and the variances.
Differentiating (2.5) and substituting z= 1 (notice that An(\)=hn), the application
of (3.1) yields

MG - W Bp2iK () +y (hi-hB PR A (1) eneiop /iy
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and
aui(i) = w -1+p3- p)a;(1)Hp- T 1 2AN1)Y+
+(2(hrl-)+P*-pi-p+i)A'n(l) =

=(@(" + p3p*-pri)arNe (p-w (") +
+(2(hr1-i)+p3-p 2-p+D)A",,(I).
Now, owing to (4.1)
— AnH(i) _ _ ay(i)
M (tn+) = b1 =p +
and, by (4.2),

N2, 4_ < Hi(i) , Mnepif)  (a;Hwy
E-~ +-~K7, MXT~1 =m

Thus we have the recurreamce formulae

4.3 M(tnH) = pM (U +[i--7)
and

(4.4) DAnml) = (p+ (p2 D(p-1)- ") ZAE)+ (i--£7) "

for nil. We notice that M (*)=0 and D2E)=0.
Proposition 3. For nlU1, we /rare

(45) et AfE) < apn-  © %

1
p-1 p-1  Nre

where <x=a(p) is a constant defined by

1

(46) p(p-l)  RerptR
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Proof. The series defining a is obviously convergent. Rewriting (4.3), we get
M(ZK _ M(£k.J ]] J* x
P ' pk KK
for &s2. Since M(£j)=0, we have
LI, bl +11  K.i] 1
o feistpk petnigt ph 4
for us2 and, trivially, for n—1 too. Hence,

m pk hk

n+l1 P
and here

Kk-1 P 2P
*=,+1 pk~1~nhk  *=n+l K~k'

Corollary 2. For n><=, we have

0

(4.7) Wbl = aPn- ~ f+° (1)
where a=a(p) is given by (4.6).
Proposition 4. For uSi, we have

(4.8) R2Pn- Rhr -2 2P < A0 < /2P,

where (2~R2(p) is a constant defined by

o i
(4-9) B2=g2p hi\  hi )iJ'K+1(}+(p DD ')

Proof. Owing to the rapid growing of /,, (cf. (3.1)—(3.3)), the infinite products
in the definition of B2 are convergent. Rewriting (4.4), we get

OWR = L ! (p2-1)(p- 1XK-1)B2fc-i) | 1 L pK -1 pK~
Yy phk ) pk~l pk { hk ) hk

for £s2. Since D2(*)—0, we have
P20 ff L , (p2-I)(p-1h,_1)

P* 10 A ph. )
(P2~1) (p-I)ftt-i
phi ) -
vV o g1 il Pl ff O, (p2-1)(p-D)fif-1)
p k-n+lpb-'h | pht )
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for aé2 and, trivially, for n=1 too. Since

K=~ hk-i+[p~) hk-1- Phk-1
we get

=Rx"img \} + {pt~)ph~ Dh~1) '~

y  hk=1 fl Phk-1) 1 f, , 21)(P~D)fe|-1)-1.
ba+l /™ <"it1 K pht

>Nayéxpl—ﬁ%=£lhrJr»J-ﬁ%+I#-T4WM >
>j:§p"exp|{—p3 z (pI~1~’hn)|—:§ﬁ)J-rll)\l—2ph~ip— DS

9fi2 n"+3+ 2n
N2V exp { - 2p3/—<»- B}-2pft-<"- B>=>R2pn~ PP Z -«

Taking into account (3.2) and (3.2") we obtain
Corollary 3. For we have
(4.20) D\U =R2%pn-0{2),

where R2—32(p) is given by (4.9).

In order to get a better imagination we multiply a and 8 by suitable powers of p
(because a, [7—0 if p-<-°°). Let
p

-1
(4.11) a=pa B—p 2 R
Proposition 5. With notation (4.11), we have

) 1 1
4.12 — ~ < a< 1+

( d) "+ P-1
an

w13 5 1 2

1 pp~3
Proof. Multiplying (4.6) by p2we get
4= Ihp3r 2500 S

® h
O< Zopkfhc  h2* & pk 3H_I

Here,

Yot (p-)lig
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For p—2,

For pé3,
P21 - L1
K iH /iﬁ_Z.]] h2 iltl- VM i'-'pP-Ip2p2_| !IJ_I+p'1-011' ppP-3

These yield the estimates in (4.12).

Multiplying (4.9) by pp_1 we get

=pp-i 5 - S —n . (P2-1)(p-1)fel-i
B2=ppig e V"l idhi I Phi

For p=2, $>0>1--~r3- For p”~3, weget

P, _ L Poi(PR-IT)
-

ph2 h2J &t

N n
. n

j (pp~1- I-p~ 01y
| Pp~3)

These yield the lower estimate in (4.13). We turn to the upper estimation of [L For

fcs 3,
K (hkilyis= hi ~ hi _p M p 1

+i ' hk hk+1hk 1 1. fjt-i h2
hk+i ) + _ —nknk_l Jt-i p

Thus, for j A
us, for js 3, b -7?'~3h3 Therefore,

P, p-{A°p0~AN72" )} {a-(-$)+J t%1ls

S pp 1exp|( (pz_l)(p_l) y h2 )JhZ—phx he |
- P Ba3p-34 A ey dibe

-i~-p (0P -«E£){™+ -58i5C}-
For p—2, this is

2exp (3 —){—+"720% 1= [I~22=3+.2=?)

For p=3,I
8 17 1 P
-— 4 -1
3|£II 4 X724 8-17-99J ¢ = |J 333
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For pé5,

h3 ~ hg-1" p7hl’

“U(AN D> T H ) +-UCPW - 1+Y

) IHpp1- 1, yC
hi

rP-i(pP-1_1) nP-1
hi T o™ pph\ W

| =1-E 1+ +iE zIf___ 1—
1 p f - ., P-
1 _p-Il

vl ‘ 1 2
’l——-p-,f_/\f"i p1p‘11 * prP-Z 1 PP-3+PP-2°

5. The higher moments. Now we are going to investigate the random variables

(5.1) " =12 ..).

Rp"/2

(jnis, within a small error, the standardized form of £,.) Observe that {],, takes on
only finitely many values, hence every moment M{r\);) exists and is finite.

Proposition 0. FOr every k=1,2,..., we have
. _ o(k-1) z/ [cepe
(62) ot MZ/E) = z/ K odd;
i.e., the k-th moment of the standard normal distribution.

Proor. FOr k=1, 2 the assertion follows from Corollaries 2 and 3. For 3
we proceed by induction on k. The moments of z,,appear as coefficients in the charac-
teristic function ¥/n(t) of z,, namely, for real t,

W =ME»)= kgOATZ-fIJ—l -00 k-
The definition (5.1) of ], yields that

—ap"+

P-!
Bp’12

i/z,(i) = exp it -L-ASe’y
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Now the recurrence formula (2.5) implies that

1+
T,

®n+T) = ex . it Lo g itlB op ot (eilisplt+
) p Bp(n+i)H i+l 1P

+ A p -—e'fipitu/,j An(ep (/) j =

-apn+L+ ap

P-1 h-exp P-1 pH

ex
1P Rpn* "' Rpn2 ip

ap"'——l—
(J«-w,<»+«/i_i.jfcllexp

Finally,
(53, *.,« - e

This formula involves a recurrence for the moments of rjn+l. The coefficient of
(i)Kk\ in LLLb/Yp) is a polynomial in M(pR), more exactly, it is

Fk{M{ny .., MW r®* +P— *r,
UP)

where Fkis a polynomial. Denoting the moments of the standard normal distribution
by mj(y=0, 1, ..), the equation

(exp{—{t/Yp)22))p = exp(-;22)

(the characteristic function of the standard normal distribution) implies that Fk
satisfies the equation
k

A m
(5.9 Fk(mQ, ..., mk 1)+ p- = mk.

Now, we infer from (5.3) that

O = 17 ALP-j))Ne(AT(fp), ....

M p‘+»M(ni)

+77r1 0B .
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Consequently,
WrrH)-Tk= (I--A -(p-i)J (FKM*n), ....M(r,k~"))-FkmO, ...»!*_))+

+(-T7r(P-"p))pl-2(MM™M)- mK+-J~[p-~)pk2(M(™) ~ mk) +

+ - L o= — [ (_ 1+ p*i2\w + hn Vifc] P1+JI2M (T10)

By the induction hypothesis, lim M(rjd) —nij for j = 0,..., k—1 Thus the
moments are bounded and

Jim FM(EN), ..., AFOTD) = A(™o, ese, w*-i).

Using also the relation

(55) — =o(
we get "

Hence, for every e>0, there exists an nl=nl(r, K) such that the relation

WM (rjk+1) - m k\ = P1+k/2)\M (tIk) - m k\+S

holds for n~nk. Let Since ks3 and pw?2, we have 1
Using again (55) we get |M(i/*+)—mKSa\M(tik—mk\+e for
Consequently,

lim sup [M(/Jj) —mk |—o°

and this holds for every e>0, therefore lim M(rik—mk.

6. The limit distribution. In the simplest special case the celebrated Moment
Convergence Theorem (see, e.g., [9], p. 185) states that if the kth moments (for every
k—1,2,..) of a sequence i/, of random variables converge to the corresponding
moment of a normal distribution, then the distribution functions of i/,, converge to
the distribution function of the given normal distribution. Hence in our case Pro-
position 6 implies that the distribution functions of rjn converge to

1
A2n

f e~"{2dt.
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Translating it for  we obtain

im. Prob = up" -L= fe "4*dt.
H!H: P y2n -

Obviously, the term —{p—1)-1 does not play a significant role, so we can get rid of
it without altering the limit relation. What we obtain is exactly the statement of our
Theorem.
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UBER DIE CESAROSCHE SUMMIERBARKEIT
DER FUNKTIONENREIHEN

K. TANDORI (Szeged), Mitglied der Akademie

1. Es sei A={A}l eine nichtabnehmende, von unten konkave Folge von posi-
tiven Zahlen mit — (k—=»). Ohne Beschréankung der Allgemeinheit kénnen wir
Xi= 1 voraussetzen. Fiir jede nicht-negative ganze Zahl s sei Zsdie Menge der natir-
lichen Zahlen k, fir die 2s<At”25+1 erflllt ist. Auf Grund der Voraussetzungen
gilt Zsti0 0=0, 1, ...). Es sei Zs={v(s)+ 1, ..., v(s-H)}. Aus der Konkavitat
folgt

vp+1l) _ 2v(s+1) 25t1—1 1
(1) v(s) — AV(S)

Fir eine reelle Zahlenfolge a—{ak}p setzen wir

A- 2 alh 0 =01.).

D (5= 12.).

Es seien (X, A, y) ein MalRraum mit y(X)< °°und <= {(k(x)}* ein System der
Funktionen gk(x)EL(X, A,y) (k=0, 1, ...), weiterhin sei

P\ X) = f 13 F1—=APKO(PKD dy(® (0 = 0.1...).

Wir werden erstens den folgenden Satz beweisen.

Satz |. Gelten
LL(<P; x) = 0(X,,) (xeX; n=0,1,..)
und

2,885
so ist die Reihe
k2=Oaka3k(x)

in X fast dberall (C, 1)-nummierbar.

Einen ahnlichen Satz hat der Verfasser vorher fur die Konvergenz bewiesen
(Acta Sei. Math. Szeged. 42 (1980), 175—182).

Ahnliche Sétze kdnnen auch fir andere Summationsmethoden, z. B. fiir die Riesz-
sche Methode bewiesen werden.

2. Zum Beweis des Satzes | benodtigen wir gewisse Hilfssatze.
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152 K. TANDORI

Hirtfssatz |. Unter der Bedingung LL(<p; X)=0(/.,,) (XEX; n=0, 1, ...)

12 1
f 4=0 l_|_|+ 1 K<pk{x) du=0 4 Av(s)+I

fir beliebige Folge {#l mit n£Zs(s=0, 1, ...).

Beweis des Hilfssatzes |. ES sein nBZs und

E{x£X: | (I—-L"b.cpfx) > oj, E~ = {xEX: 4 1 S 1 Hax{X)

Mit den Rademacherschen Funktionen r,(i)=sign sin2mt gilt

@ [ (LTTr)  m)* =
d/n(x)
-4 Ao ag~* 40 (1L4tb Und
dt .
=/ 4 bM ‘L U-47T)IP<**
2 112

*L/Uwo)* {/(/Jii-w b OH “w ™ ~

U«
J(,1( ¢4 p) TKO<PROW) AL, H X
% dR()ci(y)
= L#<F ( i . : . .
s{i& {/(/1 W'
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Durch zweimahlige Abelsche Umformung erhalten wir
n(1rnT) N 12Mo= TIHTW iZ«+ K lix,y)+

worbei

Kl(x,y) = 2 (I— (*MO0
bezeichnet. Daraus, folgt auf Grund der Voraussetzung
| Roni-pe 1 <PKOIMKG) dgix) = O(A) = OAD+)  (je X)

in Falle n£Zs. Daraus und aus (2) erhalten wir

©) . e .
[1#, (L ATK * (@4 "*=°(U =} % ).

Durch Anwendung dieser Abschédtzung mit dem System {—<p*(X)}* folgt

| z. 1- 4, bk<PK®dg =0

E-

Daraus and aus (3) ergibt sich die Behauptung des Hilfssatzes I.
Hirfssatz Il. Unter der Bedingung LL(cp; x)=0 (1) (XEX\ n=0, 1, ...) qilt

2Pk S m"ll(s)ﬂ

fur jede Folge &g mit n£Zs (s= 1,2, ..).

Beweis des Hilfssatzes Il. ES sei nf£Zs 1). Wir betrachten die Folge

bk, k=0,...,n,
&= 9 = n+1, .., v(s+ 2).
Da
ds*3 ( K\ " ( Ko\
K 11—f(s+2+1b *») - A[*- yG+D+Ib AW =
=/ K

VST » 1 (0 IW W) + (= W(SH2)+1). 1. *orect>
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gilt, besteht die Gleichung

. \'n v+ ( k o\
“) Fria+a+r)0=,%° O (-wrar K 1

1
v(s+2)+ | EhfoV - W3-
Durch Anwendung des Hilfssatzes | auf die Folge {c*}S(std) erhalten wir
v(s+2) / K \ | fv(s+2) -.1/2 y

ra [ 4 (T (rrw]w (T ", =4i*" 4] ;:s*im) =

=0
Weiterhin erhalten wir durch Anwendung des Hilfssatzes | auf die Folge
1 «1 o . n-1 112 .
6) f 1o l%ObNux)\\dn =0 5 « Nig)+11—
-°(n* " o4

Aus (4), (5) und (6) folgt

(7 /(u V(S+2)+1J|fg=()bK<p((X) ANz oi{ih 1} U2~ )+,
Im Falle nf£Zs gilt auf Grund von (1)
n V(S+ I) I
v(s+2) + | V(s+2) s

Daraus und aus (7) ergibt sich die Behauptung des Hilfssatzes II.
Hitfssatz . Unter der Bedingung L*cp; x)—0 (A, (xEX; n—0, 1, ...)

gilt
- e f fei _
b ot=fg+ T npdY 20 du = 0(AS
/it beliebige meRbare Funktion n(x) mit ganzzahligen Werten, v(s)<n(x)"v(s+1)
(s=0,1...).
Beweis des Hilfssatzes Ill. ES seien
f o) i
})®C1t= 9+' ! n(x§+l ;akdék(x) > 0}
. k 2 I
s=foH 1l neo+1; (<0}
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Mit der im Beweis des Hilfssatzes | angewandten Methode ergibt sich

»(*),
(8
K vis+1) (n(x),
4 -, N r*(O)I
(s+1) 20 a2 K (e () k \ \ 2 up

D)) <y {718 A (Lw r) rO)ft(T ")

(s)+i  TU2fF [ I>W [ k \ \
{ =

(r ik o\ o\ 12 r oWl IR
X (U (- ={,7 Hx}

x{4{(/(12(k0 17 )(L1lkAr)rN«"-""m )n)Xx

\* ( v(s+l) ,1af Imin («(*),«W ), r. .
}-U..«} {{A{( & H X r)x

i k \ n 112 r v(s+1> nd2
1 iio ™~ b Oft(yT /|(>W H -4+1*8 x

X I (gH

Durch zweimahlige Abelsche Umformung erhalten wir
min (n(x), n(y)) -
2 (** s6l+r)
2 min (n(n),nG))
(nG)-H)(n(o+1) 0
min(n(x),H(y)) ]
() + D(n(G) + 1) “EE)»)KXYh
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Daraus folgt auf Grund der Voraussetzung

min (n(x), «00) ( ] \ K
/ 65T r) ™V rter] oM sy 0070 (O 60,
Hieraus und aus (8) ergibt sich
S, \ t Jfov(s+l)  1i2
(9) /f+\[*=v(s)+ll I’]ZX)+| ) 3 Ufc=v(s)+1 a'?' []yk)+]_ - O(AS'

Durch Anwendung dieser Abschatzung auf das System {— erhalten wir

f

| *:24+i I i- — ijak(n((X) du = 0(AS.

Daraus und aus (9) folgt aber die Behauptung des Hilfssatzes IlI.
Hirfssatz IV. Unter der Bedingung X)=0(A,) (XEX; n=0,1, ..) gilt

V(ff)+ 1

it ay+if ' —negs sk du =0 [

flir jede meflbare Funktion n(x) mit ganzzahligen Werten, v(s)</i(i)*v(s+1) und
fur alle Indizes =1, ...,s—L1

J}ak<Fk(x) & v(<x)+| l_V(s) + 1

Beweis des Hilfssatzes |IV. Nach der Umformung

V<T+ 1) v(ff+ 1)
* = v(en + + | ak(Fk(X) *—v(cr)+l [l V(S) + |) akepk(x) =

I 1 v(ff+ 1)
v(s)+l  nx)+I Jk=2|/\)+| kakopk(x)

und nach Anwendung des Hilfssatzes Il erhalten wir

<H) / k } ug+ 1) .
3 a1 BRI 2 akeko dg -l
1 | v(<r+ )] 1 i v<r+) y 112
—Tzs)rj l*_v(ﬁ) Ikak(|d<(x)dn = o\— r- f —v2(>>+l ]

woraus sich die Behauptung des Hilfssatzes IV ergibt.

3. Beweis des Satzes |. Ohne Beschrankung der Allgemeinheit kénnen wir
ak=0 (k=0, ..., v(I)) voraussetzen. Es sei

b*(*) - 9 m|x +1) knW“ f\edW1 (s=1,2,...),
wobei

a,,(x) = 2=0U “n+1 ak(k{x)
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ist. Flr jede nattrliche Zahl i(~1) sei ns(x) die kleinste ganze Zahl, fiir welche
v(j)<fl,(r)Sv(i+ lund

S() = wM (x)- O] (x€X)

bestehen. Dann gilt

wTE) K ) v+ 1)
s.W = %I ﬁ:g(<r)+| K w+J N
n,(x) )
2l Y n+ 1 APAX)
Durch Anwendung der Hilfssatze 111 und IV bekommen wir
/ssxw =o[ATMD n+ny 5= 12 .0
und so gilt auf Grund von (1)
A/«**m-" (.fel -° ( 1 1, 171Y -
- o (ﬂl ] u.
Daraus folgt, dai3
(10 &1 <U%)

fast Uberall besteht. Da
kv(+D)W-ffw(*)l - 6%(x) (xEX; s= 1,2, ..)
gilt, ergibt sich, aus (10) dal

2 Kv(SH)W-0-vOW| < °°

auch fast Uberall gilt, also konvergiert die Reihe

2 q (Cv(s+l) (x)  &\(s) (-Y))

fast Uberall. Daraus folgt, dafl lim c\s)(x) fast lberall existiert. Es sei n beliebige

natlirliche Zahl (n>v(l)) und sei v(i)<«Sv(r+l). Da K,(X)—avs)(x)la
Ads(x)-*-0 (5—0°) fast Uberall besteht, folgt, dafl die Folge {cr,(X)} fast Uberall
konvergiert.

Damit haben wir Satz | bewiesen.

4. Man kann auch den folgenden Satz zeigen.

Acta Mathematica Hungarica dl, 1983



158 K. TANDORI

r 1=
Satz Il. Unter den Bedingungen des Satzes | konvergiert die Folge \uvg(:akqd<(x)J1;

fast Uberall.
Beweis des Satzes Il. Aus dem Hilfssatz Il folgt

v(s+l) (C v(s+l) 11/2 1
/ 2() akpkf) du = ejj A$)+I=0(A9 (s= 1,2...),
*=v(s) +
woraus sich
0 v(s+1)

N1 kg akgk{x) dp=o0 (j n.) =

und daher die Behauptung des Satzes Il ergibt.
5. Wir erwéhnen die folgenden Behauptung.
Satz IlIl. Unter der Bedingung L\(cp; (x)=0(/1,) (xEX; n=0, 1, ...) gilt

J \pne)\dfi = O W %),

Beweis des Satzes IlIl. Im Falle nf£Zs folgt aus dem Hilfssatz 1l

I 'mw =oga®=0T
X
auf Grund der Definition der Folge (v(s)}-
6. Endlich beweisen wir, daR ohne der Bedingung _20 die Behauptung
S
des Satzes | im allgemeinen nicht zutrifft.

Satz IV. Giltfur die Folge a g(!) so gibt es ein System <= {<*M}*
der Funktionen k(X)EL(Q, 1) (fc=0, 1, ...) mit
LK =f 2 fl—XT dt=0(A,) (x6(0,); n=0,1,...
V’X)o*=<>(I/I+H (A) (x6(0, 1) )
derart, dal die Reihe
() 2ok

in (0, 1) Uberall nicht (C, 1)-summierbar ist.

Beweis des Satzes IV. Es sei 9k(x)=0 (x£(0, 1); k=0, ..., v(0)). Es sei
n(éo) eine ganze Zahl. Ist As—0, so seien pk(x)=0 (XE(0, 1); n=v(j)+I, ..
vy v(i+ 1)y Ist aber N5>0, so seien Ik(s) (&=v(.s)+ 1, ..., v(s+l)) paarweise
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disjunkte Intervalle mit

t: SQ)IH Ik(s) = (0,1), mes k() = vlgs)gg“———; kK=v(@)+1,v(s+l)),

. I=v(s)+ 1
und wir setzen

(t— W +1... V(S+ I».

(Im Falle ak—0 sei (k(x)=0 (xX£(0, 1))).
Es sei *6(0, 1). Dann gibt es fir jede naturliche Zahl s(~ 1) eine Folge  (x)}f
mit folgenden Eigenschaften: es gelten

v(s)<n,(i:)Sv(s+l) (s= 1,2
<X =AJan (s= 1,2 ..),
x) =0 (v(S) < k —v(s+1), Kk~ ns(x); s= 1,2, ..).
So gilt fiir jedes x£(0, 1) und fir jedes s(~1), auf Grund von (1):

v(s+l) /

lgo Voov(s+ )+

Daraus folgt, daB die Reihe (11) tberall in (0, 1) nicht (C, I)-summierbar ist.
Es sei x£(0, 1). Dann qgilt
(2 L{(p\ x) =0=0(A,) (n=0 , v(0)).
Es sei n>v(0). Dann gibt es eine natirliche Zahl s mit v(s)<n”v(s+1). Ist
n<ns(x), so gilt

} 11 S1 ¢
(13) LXcp: x)=5 J 2 1dw(o(*)<m.()0ldt= o T =
0 "o

=L ()

s—1 12 I V(d+1) s—1 I v+ 1) h s—1
=2 l_ar%(xi < *:»%»)+!4 =oAL t:v(%)+| 4=0{1)2- )
—0 (AM9) —0 (A0,
auf Grund des Definition der Folge (v(j)}
Ist aber ns(x)”n, so gilt ahnlicherweise
(14) LL((p; x) —O"2 M<rH)j = A(Mv(sH)) = 0(AUE) = 0(Xn.

Aus (12), (13) und (14) folgt L((p; x)=0(Xn (x€(0,1); n=0, 1, ..).
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Damit haben wir den Satz IV bewiesen.

Bemerkung. Fir das Funktionensystem @ im Beweis des Satzes IV ist
auch die strengere Forderung

1n
I 2K\t = 00.n

(*€(0,1; n= 0, 1, ..)
erfilllt.

(Eingegangen am 9. September 1981)
JOZSEF ATTILA UNIVERSITAT
BOLYAI INSTITUT

SZEGED, ARADI VERTANUK TERE 1
H—6720
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SOME REMARKS ON THE NOTION OF REGULAR
CONVERGENCE OF MULTIPLE SERIES

F. MORICZ (Szeged)1

1. Consider a d-multiple series

(1) 2 2 kgziald,w. k>

whose terms are real (or complex) numbers and d is a fixed positive integer. The rec-
tangular sums defined by

"l “d
s(ml,....md-nl...,nd= 2 e 2 ak..ld>
ki=m kd=ma

where 17ntj”rij for eachj, play a decisive role in the study of convergence beha-
viour of the series (1). In particular, if nij—1 for eachj,

are called the rectangular partial sums of (J).
We remind that (1) converges in Pringsheim’s sense to a finite number s if for
every £>0 there exists a number N=N(e) such that

2 sni....Th— < £ whenever min (1%, ..., nd ~ N.
Following Hardy [3], the d-multiple series (1) is said to be regularly convergent if

(i) it converges in Pringsheim’s sense, and

(ii) foreach choice ofthe indices 1 ...<jerd with 1"e<d, and, denoting
the remaining indices of {1, 2, ..., d) by 1 for all fixed values of
kit+1, ...,kld(=1, 2, ...), the e-multiple series

2 e 2 aki...kd
‘n-1 w.=1

also converge in Pringsheim’s sense.

This definition is actually given in [3] only for double series, while for arbitrary
multiple series it can be found e.g. in [4, p. 34]. We mention that this kind of conver-
gence of multiple series is essentially contained already in [2] in a special case.

1 This research was conducted while the author was on leave from Szeged University and a
Visiting Professor at Ulm University, West Germany.
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The notion of regular convergence was rediscovered by the present author in [5],
where it was defined by an equivalent condition and called convergence “in the res-
tricted sense”. More precisely, our definition is the following: the d-multiple series
(1) issaid to be regularly convergent if for every e>0 there exists an N=N(e) such
that

(3) \s{mlt ..., Tn;nir ... »<,)I< e
whenever
@ max (nix, ..., md N and 1lgw jg n} for each j.

The equivalence of the two definitions can be verified with the aid of [5, Theorem
17 which, however, is stated there in a wrong form. The corrected statement reads as
follows.

Theorem 1. The series (1) is regularly convergent if and only if

(i) it converges in Pringsheim's sense, and
(ii) for each choiceofthe indexy(= 1, ...,d)andfor allfixed valuesofkj(= 1,2,...),
the (d-\)-multiple series

kd

are regularly convergent.

The requirement expressed by conditions (i) and (ii) in Theorem 1is a reformu-
lation of the definition due to Hardy. On the other hand, using our definition, con-
ditions (i) and (ii) together are equivalent to the following two ones: for every e>0
there exists an N=N(e) such that

(i) inequality (3) is satisfied whenever

min (mlt ..., and for each j\ and
(ii") inequality (3) is satisfied whenever m~n~ 1,2, ..., N—1 for somej, but
Tax(Tb ... m3 I, mJ+l,....,m) N and ISm jS n- for each j.

Now on the basis of (i) and (ii") one can apply an induction argument on d
for the proof of equivalence of the two definitions of regular convergence.

Example 1. Consider the triple series (1), whose members are defined as follows:
for k=1,2, ... set
akk 1= ~akk2—1>

a2k-1,2k, 1— a2k 2k~1, 1— ~ a2k-1,2k,2 ~ ~ a2k 2k-1,27 1j

otherwise akl *2>*3=0.

This triple series converges to 0 in Pringsheim’s sense and all its single series
(i.e. fixing two indices of k1rk?2, k3 arbitrarily and letting the third index run over
, 2, ... are also convergent, but it fails to be regularly convergent.

Remark 1. A d-multiple sequence {."....kj: kj= 1,2, ... for each/} is said to
be regularly convergent if
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(i) it converges in Pringsheim’s sense, i.e. for every £>0 there exists an
N=N(e) such that (2) is satisfied;

(ii) for each choice of the indices 1=j\< ... <ye=r/ with 1Seed, and, denot-
ing the remaining indices of {1, 2, ..., d) by 1*/e+1< ... < ld~d, for all fixed values
of kt'+, ... kla(=12,..), the e-multiple sequences {skl...kd: kh=1,2,

kdrw=1,2, ..} converge in Pringsheim’s sense.

This definition for double sequences is given also by Hardy [3].

In accordance with the connection between the members of a multpile series and
its rectangular partial sums, this definition can be reformulated as follows. The d-
multiple sequence ....Kfi is regularly convergent if for every e>0 there exists an
N=N(c) such that

51%0' méd—D E b (L —8i) L, e<fny + (1—sa)

whenever (4) is satisfied.

2. Now we are going to present the generalization of a few well-known conver-
gence tests from single series to multiple series, while using the notion of regular con-
vergence. It is also of some interest to point out that these generalizations become,
in general, false if one uses the convergence notion in Pringsheim’s sense. That will
be illustrated by counterexamples.

We begin with the extension of the so-called Leibniz rule to multiple series. To
this effect, set

Alodakio..kd — dji("-(dj.akl,... kd)

where e,=1 for j=jly...,je with 1"eSd and e~ 0 forthe otherj from (1,2, ...
..., d}, and

rjaki o k= dK kj-ikj.kj+H  kd~ aki  Kkj-i,kj+1.KjH,... kd-
The following theorem is known for d=1 as the Leibniz rule.

Theorem 2. Let [akl...kd: kj= 1,2, ... for eachj) be a d-multiple sequence of
positive numbers with the following poperties: for allfixed values of s1; ..., sd, where
Bj=0 or 1for eachj and E=1 for at least onej, denoting by e the number of those €}
for which Sj=I, 1"e”~d, we have

nonnegatvie in the cases e=1;

(5) /,....e0&.... . kd of constant sign (depending perhaps on ex, ..., ed) for all
values of kx, ...,kd (=1,2,...) in the cases e"2;

and

(6) akl...kj - 0 as max(fcl5..., kg - co.
Then the series

) *Z_i- 2 (-1)k+-Haan, |d

is regularly convergent.
The proof of Theorem 2 is based on the following elementary
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Lemma. Under conditions (5) we have
!
(8) 2 - gm (—Dk*+"Haakl....lkd = Cjan;,

where Cd is a positive constant depending only on d.

Now from (8) and (4), the definition (3) of regular convergence follows imme-
diately.

Proof of the lemma. We apply an induction with respect to d. Inequality (8)
is obvious for d=1. Assume that (8) has already been proved for 1,2, ...,d- 1
and prove it for d itself.

If ntj—j for somej, then (8) is a consequence of the induction hypothesis. Thus
we may assume that for eachj.

It is enough to verify (8) with a constant C¢f) in the special case when n}—nij+I
is even for eachj. Indeed, in the general case

s(m>...,md;nl5..,nd = 2 - 2° (-1)'cH+ +ka*l...kd,
ko=d

can be represented as a sum of a “smaller” rectangular sum ..., md; n[, ..., o,
where n'=4; or n;—21according as nj—mj+1 is even or odd, and of certain (d—21)-
multiple “remainder” rectangular sums whose number is at most d. Applying the
induction hypothesis, we obtain (8) in the general case with Cd—C"e+dCd x.

From now on suppose that nj—nij+1 is even for eachj. Groupping the terms
of s(mx, ..., md\ nx, ..., nd into 2x2x ... X2 blocks in the way as it is suggested by
the definition of Ax> tlakl...kd, we can see that s(mx, md; nx, ..., «)=0 or
SO according as Ax...takl....kd and (—)ni+ -+md are of the same sign or not,
respectively.

On the other hand, consider the decomposition

9 5(115..., md; nlt..., nd = s(mL m2 ..., md; mltn2, .... nd +
+s(m!+1, m2, ..., md\ nx- 1, n2, ..., nd+s(nl5m2, ..., md, nit n2, ..., nd,

where the middle term on the right is 0 if nl=m1+ 1 By the above observation con-
cerning groupping the terms, s(mx+ 1, m2, ..., md\ nx—\,n 2, nd and s(mlt ...
..., md, nx, ..., nd have opposite signs. Consequently, applying the induction hypo-
thesis to the first and third terms on the right in (9), we get 2Cd lami....na as an
upper bound for \s(mx, ...,md; nit ...,nd\, ie. Cie)=2Cd x.

Remembering that Cd=Cd)+dCd*x, we can write Cd=(J+2)Cd 1. The
proof of our lemma is complete.

It seems very likely that f8) is true even with Cd= 1, but we are unable to prove
this stronger statement.

Remark 2. Both conditions (5) and (6) are essential for the conclusion in Theo-
rem 2, as it is shown by the following examples.

Example 2. Set
yV "1
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and
n=12"..),

al,2n - ~ 6 ~ k4 1~k?~ (n +1)3

further, let aik=ahi+k (i,k=1,2,...).
It is clear that AltOaik® 0 and AOtlaik® 0 (but now Alflaik is not of constant
sign). Since
Vv * A
A k¥~ 6*
condition (4) is also satisfied. Nevertheless, the double series

(10) 2y24{-i)i+4*
diverges even in Pringsheim’ sense. Indeed, we have
41 1 1 L " 11 1
i+ iK ya ‘'zl AW + 1)2 (i+ 1)3) - J(/+ n) 21* - 31 21%
for I=n, n+1, ..., 2n—1, while
O (-1)4Ua+l = [ (+/+13 - 20+1n2 for I=nn+l, .
Hence, for n=2, 3, ... ]
a2 nl N \2n=2/i n
$2n-1.2n-8in-2.2n = 2 2 “O n @+i+ 18
V(1 11 v 1 1 1 1

~ 1o 13/ 214 B 2(+1)2S 6 2(n—) 2n

Example 3. Setting o@=1/min (i, A) (/, fc=1,2, ...), condition (5) is satisfied
with J*a”~sO . But instead of (6) we have only

) 0 as min (i, K) »0.
Since

msn-i,n = .,g_i-l)n+*:-K-t-o as n - *

the series (10) does not converge in Pringsheim’s sense.

Example 4. Setting aik=(i+1)/ik (i,k =1,2, ...),conditions(5) (nowAltlaik*Q)
and (11) are satisfied. But again

v-sn-ln=-"~i(;i)"'+4."° as »--m

3. The following Theorem A of Hardy [3] and Theorem 3 (the latter is also stated
in [3] but in a wrong form) demonstrate the power of the notion of regular conver-
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gence. First we recall a definition (cf. [3] for d=2). A J-multiple sequence {lki....ka:
kj=1,2,... for each7}is said to be of bounded variation if

Ml,..1%i, |d
k&O dtines
where we agree to set Ikl...kd—0 if k}=0 for at least onej.

Hence it follows, in particular, that for each choice of the indices la ;~ ...
... -=le=i/ with 1Se<d, and, denoting the remaining indices of {1, 2, ..., d} by
1S/etl< ...< Ild*d, for all fixed values of kle+, ..., kld (=1, 2, ...), the e-multiple
sequences (AM.... kd: kh—1,2, kJt=1,2,...} are also of bounded varia-
tion.

~ Theorem A [3, Theorem 13]. The necessary and sufficient condition that the
series

(12 Bt gL daki.... id

be regularly convergent whenever the series (1) is regularly convergent is that the
d-multiple sequence {&b f} be of bounded variation.

Theorem 3. |f {Al...kd} is of bounded variation,
(13) K,..ld- 0 as max(klt..., kg -

and the rectangular partial sums of the series (1) are bounded, then the series (12) is
regularly convergent.

Theorem A is proved in [3] for d=2. Both the proof of Theorem A in the gene-
ral case and the proof of Theorem 3 can be carried out analogously with the aid of
a "-multiple Abel transformation (for a ~-multiple forward Abel transformation see
[1] and also [6], while for a *-multiple backward one see [6]).

Remark 3. Theorem 3isstated in [3, cf. Theorem 11] in a wrong form, requiring,
instead of (13), only the weaker condition that {Alb ) tends regularly to zero. But
this condition (together with the condition that {Xxv kd) is of bounded variation)
is not enough to imply the conclusion of Theorem 3. This is shown by the following

Example 5. Let
f(-Ni+* for i=12 and k= 1,2, ...;

alk — 19 otherwise;
and
for 1=1 and k=1, 2,
hk & otherwise.
® ®
Then the double series |2_'] k2_I aik converges in Pringsheim’s sense and, in addition,

its rectangular partial sums are bounded. Further, {A(}is of bounded variation and
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tends regularly to zero. Nevertheless, the series 2 2 does not converge even
in Pringsheim’s sense. i=lk=1

Remark 4. Example 5 also shows that Theorem A is no longer true if in it
the term “regular convergence” is replaced by the term “convergence in Pringheim’s
sense”.

On the other hand, for certain particular choices of {Aki....kd} one can still
assert an analogous theorem to Theorem A, using the convergence notion in Pring-
sheim’s sense both in the condition and in the conclusion.

Theorem 4. |f
Ikl kd Mmax(fei  kd) (fj ~ 1>2, ... TOT each 1,

where {u(:i=12, ..} is of bounded variation, and the series (1) converges in
Pringsheim's sense, then the series (12) also converges in Pringsheim's sense.

Proof. We only sketch it for d=2. Given an £>0, by (2) there exists an
N=N(e) such that

(14) b(p, 1; in, M)|<e [s(I, g\ N,n)<e
and

(15) Is(p, g\ m,n)] < £ whenever both m~ps N and né g”" N,
where, in accordance with the notation used so far, we write

m n

s(p, Q; TM’n) = igp k%q

Setting also S(p, g\m,ri)= i2=m|0k2:nqhkaik and Smn= 5(1,1; m, n),
one can decompose

S, =S(N+1i,i;m N)+S(I,n+1; N,n)+S(N+I, N+1I; m,ri).
A single backward Abel transformation and (14) provide that

nt m
\S(N+1, L;m, M| £ 2 \Pt=Pi-i+e\HN+i\ A ¢ 2 \Pi~Pi-il

where /io=0. Similarly,

+

5L, N+1; N,n\) & £2 \Pi~ht-i\-
i=1

Finally, using a double backward Abel transformation (see, e.g. [6]):

m n

S(N+1, 14-1; m,n) = 2 . 2 2sO‘>k> ti){Aik-A i. Uk-A Wk 1+AiMuk. D+
i=N+ =N +
+ 2 s(i, N+1; mn)(AIN+1-Ai-INH)+ 2 s(N+1, k; m, n)(AN+ltk-
2 2

k=N+ k=N+

~WNH>t D+s(iV+I, A +1; m, nAyHjIVAL,
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whence, by (15), we obtain
x(MN
SEVAL N+ m o~ 3D

i=1
Since {/ij is of bounded variation, the proof is complete.

Acknowledgement. | express my sincere gratitude to Professor W. Kratz for rai-
sing the problem of finding convergence tests concerning regular convergence.
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ARITHMETICAL PROPERTIES OF PERMUTATIONS
OF INTEGERS

P. ERDOS, member of the Academy, R. FREUD and N. HEGYVARI (Budapest)

For the finite case let al,a?2, ...,a,, be a permutation of the integers 1,2, ...,n
and for the infinite case let ax,a2, ... ..:. ... be a permutation of all positive integers.

Some problems and results concerning such permutations and related questions
can be found in [2] (see in particular p. 94). In [3] the density of the sums at+ai+l
is estimated from several points of view.

In the present paper we shall investigate the least common multiple and the
greatest common divisor of two subsequent elements. First we deal with the least
common multiple. For the identical permutation we have [af, ai+l\—i(i+1). We
show that for suitable other permutations this value becomes considerably smaller.

First we consider the finite case

Theorem 1. We have
O = (1+°W) 4I3FT

where the minimum is to be takenfor all permutations ax, a2, ...,an.

One might think that the main reason for not being able to get a smaller value
lies in the presence of the large primes (see also the proof). Theorem 2 shows that this
is only partly true.

Theorem 2. Omit arbitrarily g(n)=o(n) numbers from 1,2, ..., n andform a
permutation of the remaining ones.
Thenfor anyfix £>0, and n large enough we have

n\ mm/siswﬁa)i\/l-l[a” ai+ll > n2 £

On the other hand, for any e(n)-*-0 we have with a suitable g(n)=o(n)

v\ min

i+ <
w) Isisrmg?()r(1)~l Lai' a,'+1| n2_£(n).

An equivalent form of Theorem 2 is: la | o (R ust
ogn

tend to 2 for any g(n)=o(n), but it can do this from below arbitrarily slowly for
suitable g(n)=o(n).
In the infinite case we obtain a much smaller upper bound:

Acta Mathematica Hungarica 41, 1983



170 P. ERDOS, K. FREUD and N. HEGYVARI

Theorem 3. We can construct an infinite permutation satisfying

(4) [a,, ai+1] < ieTiogTiogiog/
for all i
In the opposite direction we can prove only a very poor result:

Theorem 4. For any permutation

. 1
(5) lim sup i 11092 3,26.

Very probably this lim sup must be infinite, and one can expect an even sharper
rate of growth.
Concerning the greatest common divisor only the infinite case is interesting.

Theorem 5. We can construct an infinite permutation satisfying

(6) Ci, ai+) > y i
for all i
On the other hand, for any permutation

i>ai+l)

@ limdnf 2
The right value is probably —, but we could not yet prove this.

Proofs

Proof of Theorem 1 First we show that any permutation must contain an
fli for which

[ai,ai+] s (1 +0(IN)Ti" - .

Consider the primes between 5 and n, the number of these is about ARTE Hence
at least one of them has a left neighbour s (I +o(l))-* ~ ~, and thus the least
n n

common multiple here is s(1+o (I
P ( (1) 2logn 2
Now we construct a permutation satisfying

(®) s{ 1+»()} 4~ -

for all i=n—L
The idea is to take the multiples of a prime p as a block, and to separate the
blocks by “small” numbers. Then the l.c.m. will not be too large at the border of the
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blocks. And inside a block
©) [a,-? Rj+i]

which is good if p is not too small. Finally we have to arrange the numbers having
only small prime factors.

Let us see the details. For the primes p up to n let kpbe the minimal exponent
for which s4logn (i.e. q,,=p if p=4logn).

We now define the set S of the “small” separator numbers: take JJ(n) —JJ(/« )
numbers from 1to some L just leaving out the values gp and 2qp. Obviously L =

2

We start the permutation by writing down alternately the primes between n and
— in decreasing order and the first elements of S in increasing order. (Here a block
consists of p alone.) To show (8) we observe that when we arrive to p~cn, then

we have used up [7(oW)~0 —e)-rm small numbers, i.e. the l.c.m. of p
and its neighbour is

(10 c(l-c) logn S 4logn.

For the primes between  and Yh weslightly improve the construction. We take

the largest prime, insert all its multiples (up to ri) after it, leaving its double to the end.
Now we choose the next even number of S as separator, start the next block with the
double of the next prime, put in all the multiples and terminate it by the prime itself.
Then we insert the next odd number of S as separator and repeat the alogirthm. (9)

and (10) show that (8) is satisfied. We note that for , e do not have to be so

careful about the parity of the separator number, and for 7 fII'I -- we do not
ogu
really need separators at all.

Next we proceed similarly with the gp values between ¥n and 4 logn, but here
of course we take only those multiples of gpwhich have not yet been used up (either
in the blocks, or as separators). gpand 2qplie at the two ends of a block (they were
excluded from S to be now at disposal), hence we can either omit the separators, or
put in arbitrarily large numbers as separators. We shall insert as separators the num-
bers still left, i.e. which have all their prime power factors less than 4logn (and
which were not in S). There are at most

C
2U*(41ogn)~wloglogn

Such numbers, where JJ*(X) denotes the number of prime-powers up to x
since there are JJ(yTi)>~nl2~e blocks for 4log n*gqp*Y n, we can consume as
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separators all the numbers left. We have obviously

2gpn s£ 2n32 at the border of the blocks

[aimei+]  n2 = 2 inside.
g 4logwm
Proof of Theorem 2. To prove (2) we observe the well-known fact that
there are cn numbers up to n which have a prime factor greater than »I-£/2

Ae=(l +o(l)) log—-jB I>hence we must keep nearly all ofthem. When wejump from

a multiple of a large prime to a multiple of another large prime, then we either jump
directly, but then the l.c.m. is at least (n1 £/2)2 or we insert a small number as sepa-

rator, but then we need at least 9 +0() —|r0~g7 separators, and so we obtain a l.c.m.

greater than nx~el2~------.
log n

To prove (3) we keep only those numbers whose largest prime factor lies bet-
ween nf>and nl~iin). It is well known that we omitted just o(n) numbers (see e.g.
[1]). We start the permutation by the largest prime left and its multiples, then we put
the next prime followed by its multiples, etc. Here

[ai,ai+] w2 £r), for two multiples of the same p

«*nl £(n), when jumping to a next prime.

Proof of Theorem 3. First we note that it is enough to construct a per-
mutation ax, a2, ..., of a subsequence of the natural numbers which satisfies (4), since
we can insert the remaining elements afterwards arbitrarily rarely into this permu-
tation.

We shall use the (probably well-known and nearly trivial) statement of the fol-
lowing lemma:

Lemma. Let H be afinite set, \H\=h and t*h. Then we can order the subsets
having exactly t elements so that j/fj \HiH\=t—\ holdsfor all i.

Proof of the Lemma. We prove by induction on h. The initial step is obvious.
Now assume that the assertion is true for h—1 and for all t. Consider now h and
any t. We fix an element x0, take first all subsets containing xOand then take the other
ones. Both parts can be ordered suitably by the induction hypothesis for h—1, t—\,
and for h—1, t, resp. We have no difficulty either at joining the two parts, since if a
“good” order exists, then a simple bijection of H can transform it into another “good”
order with a prescribed first (or last) subset.

The construction of the permutation runs by an iterative process. Assume that
for some nand k—n"tn we have ax,a?2, ...,akready and no one ofthem has a prime

factor greater than —. We take now all primes between  and n, and form all the

products consisting of v such (distinct) primes where r=log n+4 loglog n. By the
lemma we can arrange these products so that any two subsequent terms should dif-
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fer only in one prime factor. This arrangement will be the next segment of the permu-
tation from ak+2. For a transition element ak+l we can take e.g. any prime between

y and n. For i*k+1 clearly

Rt>i+J = n"+ ~ ke2‘iogdoe{ogk =5
We have formed about
n
(12 r 2 logn
logun+4loglogn

new terms of the permutation thus we arrived at least to ar.
The algorithm will work if

(1) r> (2n)logh

holds. Estimating the binomial coefficient in (11) as a power of the smallest factor in
the numerator and the greatest factor in the denominator we obtain

log«+4loglogn
—logn —4loglog

logn+4loglogn

2logn Tn ™
logun+ 4loglogn Uog3nJ
and (12) follows by an easy calculation.
Proof of Theorem 4. First we give a very simple proof of weaker form of

(5) with — instead of . , 1.e. that no permutation can satisfy

1—og 2
(13) [at, ai+l]] < —eji with afix e for is io
We use the inequality
] Si{l+_L
(14) [fl>ai+i] 3{1LLI, _&1i+1})
which is equivalent to
(15) 3= 9

(Ri>ai+l) (aiiai+l)

and hence it is obvious, since the minimal value of the two terms on the right-hand
side of (15) is 1 and 2.
Assuming (13) we obtain

n t 1

\a_ii a?l i -gio iraicn  (T+,).1,,7s (7+t)lcg" - A
On the other hand, using (14) we have

n

i dai+l]
which is a contradiction if n is large enough.

logn+K'
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Now we tim to the proof of (5). Assume indirectly that for some permutation,
£>0 and i0we have

('6) [at, ai+]] < '_l_—|0924 g if iS io
This clearly implies also
1 .
a'™ 11—og2+£ for i's i0
hence ar,a?, ..., a, are all smaller than
1
(17) N —n 1—og2—£

if n is large enough. From now on we shall consider only the ars with i*n.

Let us call the primes greater than \ N and smaller then N “large primes”. If at
and ai+1 have different large prime factors, then [at, ai+15 iV in contradiction to
(16). Hence we must insert “separators” between ar s containing different large prime
factors (the separators cannot have large prime factors, of course). If w is the greatest
separator element and ai+l has a large prime factor then [at, ai+1]*atYN. Hence
we again arrive at a contradiction by showing that there are at least Yn separators,
or equivalently, there are at least Yn large primes which occur as factors of at-s.

We know that there are (1+o0(l1))A log 2 numbers up to N having a large prime
factor and we have (1—og 2+s)N at-s (see (17)], hence at least eN ar s have a large
prime factor. All of these ar s cannot be multiples of less than /TV large primes:
indeed, the number of multiples up to N of /A large primes is

1 £
> 2 +J
,,thefsPﬂ’ x YN-cpSNV2+ir2 [y] = (l+ < eN.

Proof of Theorem 5 The permutation 1, 2, 6, 3, 12, 4, 20, 5, 35, 7,...
clearly satisfies (6), i.e., if we have already constructed azhand « is the smallest number
which was not yet used, then a2+l should be a common multiple of a2,and Kk (e.g.
the smallest one still available) anf put az2n2—k.

To prove (7) we observe first the following facts:

Let Zi, 2, ... be arbitrary different natural numbers not greater than n. Then:

(18

19 (*i,h) ~ -j or (b2,b3 s vy,

(20) mm (i,ysj.

(18) is obvious. To show (19)assume indirectly that e.g. 2 b2~ (b2 b3.

Then either bx—d and b3—2d or bx=2d and b2—d, but in both cases b3 must be
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at least 3d which is a contradiction. We can show (20) by similar methods. Put
d= fiti) = (> bk

Arguing again indirectly we have {bk, bk+1) {d, 2d, 3d}, and taking step by step the
neighbouring numbers, and having in mind that the greatest common divisor must
be at least d, we obtain that

Ne.-.&«} £1\d,2d,3d,”
which is a contradiction.
Now we are ready to prove (7). Assume that (alt ai+l) > —i if i is large eno-

ugh. Then {ak, a2, ..., ao}2{l, 2, ..., n} if n is large enough. On the other hand,
taking aon2, ..., aot+i, acn, at mos tevery second number can be less than or equal to
n, since

. 1. 1 a4 n
» 7 1* 7 "5- 2

which is impossible by (18) if both at and ai+l are less than or equal to n.

Similarly, using (19) we obtain that at most the two third part of acv3, am2
is not greater than n, and finally using (20) we conclude that at most the 4/5 part of
acn/i> mmw>acn/a IS Smaller than n. Hence

ie. —" —, as asserted.
e =" 50 erted

Remarks. 1L We can improve (7) somewhat, if we use further inequalities of the
type (18), (19) and (20). But this does not seem to give a serious reduction, and also

the discovery of the proper inequalities is not too easy. E.g. ii+d)ay,
and here 12 cannot be replaced by 11, as shown by the numbers

81, 162, M}, 54/, 216/, 72/, 144/, 48/, 96/, 192/, 128/, 64/
[n = 216/, d = 48/ = J-nj.

2. We mention the following related problem, where we can determine the extre-
mum exactly:

Theorem 6.

min [at, ky-1-a.-1}

(21 Iimiinf |

is truefor any permutation, and we can construct a permutation where equality holds.
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Proof of Theorem 6. The following permutation shows the possibility of
equality:
1 2, 3 6 4 8, 5 10,..,
i.e. we always take the smallest number still available followed by its double.
To prove (21) we assume indirectly that there is a permutation satisfying

(22)

+ and \al+l—at\=[-*+¢e] 1 for 1—7io with a fix e>0.
Then all the numbers up to -+ ej TVmust occuramongalt...,%, if (Vis large enough.
This also means that at least + ej N numbers smaller than + ¢j TVmust appear
among BRv/2+i, aN. Thus we obtain an N , for which both a; and ai+l are

smaller than ~ + £ N. Say ai+1*ai, then

(t +£) n >a;+1 = Corti—/) > 2 (-|-+e) > 2(j+e) Y

which is a contradiction.
We note that the proof gives slightly more, since we did not make really use of
the e in (22).

Acknowledgement. The authors express their gratitude to Prof. M. Simonovits
for this remarks concerning Theorem 1
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ON SUMS OF SUBSEQUENT TERMS OF
PERMUTATIONS

R. FREUD (Budapest)

For the finite case let aly a2, ..., anbe a permutation of the integers 1,2, ..., n
and for the infinite case let ax,a2, ..., ah ... be a permutation of all positive integers.

Some problems and results concerning such permutations and related questions
can be found in [2] (see in particular p. 94). In [1] the least common multiple and the
greatest common divisor of two subsequent elements is estimated.

In the present paper we shall investigate the density of the sums of subsequent
elements. As a special case we shall also obtain an answer to a question of N. Hegy-
vari, which asked for the smallest possible value of the maximum of the sums
ai+at+i (L =i=n—1) concerning all such permutations of 1, 2, ..., n, where the sums
Oj+0i+i are distinct (see the results on /(1) in Theorem 3).

Let us consider first the infinite case. For an infinite permutation put
T={t\t=ai+ai+x is solvable for some /}, and

(1) &= Iimsup—T——Q(—)—, r= h‘mim‘:——T—(—)—(2

where T(x) denotes the number of elements of T up to x.
For the identical permutation T consists of the odd numbers greater than 1, and

We shall show that the identical permutation is, in some sense, best possible
(see 1.2in Theorem 1), but this is not the case from several other points of view (see
11 in Theorem 1, and Theorems 2 and 3).

Theorem 1. 1.1. The largest possible value of R is 2/3. More precisely, to any
function H(x) with limsup H(x)=° we can construct a permutation satisfying

?
for infinitely many values of n, and this is best possible, since for any permutation

©) r(n)-yn- -@

Moreover =y implies r=0.
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12. The largest possible value of r is More precisely, for any permutation

4 nn) <[]

must holdfor infinitely many values ofn, and this is best possible, since e.g.for the iden-
tical permutation

©) T(n) = [i=1]

forall n. Moreover r=y implies R=y.
1.3. In general

6) 2R2-1+7~ " gO

or equivalently (since by (6) clearly 1—2R2"0):
R(2-3R)
@) . 1-2R2
Remarks. 1. (6) [or (7)] contain some part of 1.1 and 1.2 as special case, namely:
, 2 2 . . 1 1 L 1
Ray, R=y implies r=0, ray and r=— implies R=Y.

2. Concerning 1.2, there are other “extremal” permutations too which satisfy
(5), €90 Yy-1,7-2, 000 1Y V~} —j+ DY, o

3. The fesults in 1.1 and 1.2 mlght suggest that one or more of the following
inequalities hold:

0 R+r 2,
(ii) R+ral,
(iii) Rray .

It is easy to check that (i) implies (ii) and (ii) implies (iii), and they clearly hold for
Réi, and also for R=—.

For the identical permutation we have equality in all three cases, thus the truth
of (i)—(iii) would show another extremal property of the identical permutation.
These inequalities are, however, not always valid:

Theorem 2. There are permutationsfor which (i), (ii) and (iii) arefalse. Namely
we can construct permutations with

L 9—R(  9) . _ 9—dbr
® r 8'2-3R [R- 14) ~ 14-—24r°
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and then optimizing the left hand sides of (i)—iii) we obtain

2. 1
3 6Y6)
3—2"2 )
= 1
9 RHr=1+" . 6A2?
" 1 14y 2
Nrtr=""1 T2 0,256 3 1}

_ Remarks. L On the other hand, using (7) we can easily check that (ii) holds for
A S0,619 and (iii) holds for Rs0,608, and for all permutations we have

3R+r”" 2,236
(10 R+r” 1,042
Rr =0,270.
2. (8) and consequently (9) can be improved, e.g. we can construct permutations
also with
12r2—r
1D R~ 12r2—6r—1

which is greater than the value of R given in (8) for —< r< — We shall sketch this

construction at the end of the proof of Theorem 2. Even this construction can be
improved, but we think that the main interest lies in the falsity of (i)—(iii), and there-
fore we did not elaborate the technical details of the further improvement. Anyway,
we mention that using (11) optimization yields 3R +r~ 2,184, R+r ~ 1018
and Rr ~ 0,257.

Now we turn to the finite case, where we have two different though similar for-
mulations of the problem.

For the first one consider permutations of 1,2, ..., n and put

the number of different values of at+ai+l

ST fa+ Ay

where the maximum is to be taken for all permutations.
For the second formulation take permutations of 1, 2, ..., m for any m, and put

/(n) = max

" max {the number of different values of a4+ ei+1, where i;+;+1=«}
g(n

and the maximum is to be taken for all m and for all permutations.
Theorem 3. Both f(n) and g(n) are y + More Precisely

(12
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and
(13) 9(3)) = *@/-)=1pp 9@Bj2)=" 1.

Finally, we mention that we can obtain analogous results for the sums of more
than two subsequent terms of permutations. We just state here some results for the
infinite case. Let

Rk—limsup———;(——— and rk—Iiminf——-;—-—,

*.=Q

where Tk(x) is the number of different values of at+ai+l+...+ai+k 1 up to x.
(T2(x)=T(x), R2=R, r2=r.)

Theorem 4.
KRI-1+ (1 RK)?2 0
1 rk

or equivalently

Rk[2—fc+ 1)/?0
rkss 1-kR|
In particular
1

k+1’ r*-T -
Equality can hold, but then necessarily rk—0 and Rk= Ki resp.

Rk

Proof of Theorem 3. Concerning f(n) consider the permutation
(14) 2,0, Lj+1, 2, j+2, 1, 2j—l
for n=2j and omit the first term for n—2j—\. This shows that / (2j)= '4"?:)'
and /(2/—1)£§/'—_/2\—. To prove the converse inequalities in (12), take an arbitrary
permutation ak,a2, ..., an,and assume that there are n—\ —v different values of the
sums at+ai+l while ijnax Mal+al#)=M. Then the quotient in question is

* \L
n M \L. Clearly

(15
and

n—1—v
M M+v

1
(16) s = 2, (ifi+fli

= (M+v) (n—1 ("D n-2)
By (15) it is enough to show that
(17a) M+v S 3 for n=2
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and
(17b) M+v ~ 3j—2 for n=2j—1

We carry through the calculations for (17a), the case of odd n runs similarly. Assume
indirectly that M +vs3j—I (n=2j), then applying (16) we obtain

(18) S~ 2/(21 ).
On the other hand, we get a lower estimation for S by observing
S=2(1+2+..+n)-(al+a,) & (n+hn—=2n+1 = 2/(2/—1)+ 1,

which is a contradiction to (18).
Concerning g(n), consider again the permutation (14) for n=3j, and omit the
first term for n=3j—l and n—3j—2. This shows that

g3 " ~~, 9@ -1)s”-[- and g(3j-2)"]-].

To prove the converse inequalities in (13) assume that for some permutation there
are wdifferent values of a,+aT up to n. If we take the sum 5" of these ai+ai+x,
then

(19) S'r*n+ (n—)+..+(h—w+ 1= mv———w—?—l—)
and on the other hand
(20) S'S2(1+2+...+ (wWw—)}+w+ (w+l) = ww+ 1)+1,

since any number can be a term in at most two sums ai+ai+l (once as an once as
ai+) and also not all numbers can occur twice. Hence the best case is to take the
first (w—1) numbers twice plus w and w+ 1 once. Confronting the two estimations
we obtain

ww+D)+1 = nW—W(WZ_l)
or
we N1 2
3 3w
i.e.
[iiL 1i] if 3f2n-I
[+ .+]_, if 312-1

which give exactly the right hand sides of (13).
Proof of Theorem 1 11 The result we obtained for g(n) in Theorem 3
immediately yields R s i, and the proof also shows that 2 implies r=0: if
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for a sequence nk we have
T(nk) = I'n k+o(nk)

then

must also hold.
To prove (2) we use an iterative translated version of (14). Let cl<cXx ...<

<ck<... be arbitrary positive itegers, and consider the following permutation:

(21) 11’ A+ 1’ 2’ ci+ 2>-->ci> 2ci> 2ci+1> ck+ ct+ 1, 2cx+ 2,
ICl+ @+ 2, Ci+Cj, 22, 2c2+ 1, 2+ 3+ 1, 2c2+ 2, c2+ c3+ 2, ...

Thus while the ar s run through the interval [2ck+1, 2ck+1] similarly to construction
(14), the sums at+ai+1 cover the interval [3ck+ck+1+2, ck+3ck+l] (and the sums of
the border points of the subsequent intervals give the values 4ck+ 1).

It we choose ck+l to be very large compared with ck, then we can satisfy (2) for
n ck-b3ck 1.

To show (3) we use estimation (20) and a modified version of (19). Take a large
but fixed K, and let nObe a number for which T(nQ”"K. Denote the sum of the
(distinct) values of at+ai+1 up to n0Oby U. Consider now an n much larger than n0,
put w=T(n), and estimate the sum S' of the different values of a{+al+lup to n.
On the one hand

S'ssiftn+(n—-)+ ..+(n—w+ 141N = U+n(w~K)~
and on the other hand (20) is valid. Hence

wiw+ )+1 4 nw—k)—& KW KD v

or
w(w+ I)_A w—K —l| U  we (AT+hw , w  K+\ u
w-K 2 w-K T w—K 72 2 w—K ~
3 K+ 1
AN mjH+N+ ) 2------ £
ie.
wr SnSE L pe

which proves (3).

12. We have to show only (4) (the implication r—"=>R="- can be derived
— as we have already mentioned — from (6)).

Assume indirectly that for some permutation 7’(n)s|-*-j f°r n”n0.

Denote the distinct elements of T in increasing order by tk, t2,  Let 2j\ be
the maximal even number for which J'(2j)<j\ (possibly jx=1). Then obviously
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A@2l)=A-1, and

tjl —2/j+ 1, tjlH —2jx+2, tjl+2—2/1+ 4, ™ J, ... .
Hence
(22) S'= i2-1h —F+2+4+..+(2w —2)+ 2w = L+w(w+l)
where

> — 2,2,

Estimating S' from below by (20) we do not arrive to the desired contradiction; we
need a slightly sharpened form. Since ax can be a term in at most one tk, we have

(23) S'S2(1+2+...+w—al+(w+l) = ww+ )+ (w+1) —ax.

Comparing (22) and (23) we obtain (w+1)—ax*L which is a contradiction if w
is large enough.
13. Take an n with w=T(n)~Rn, and consider S'. For an upper estimation

— roughly speaking — the “worst” case is, if the tk elements follow each other as
rarely as r permits this, and at the end we take each integer that T(n) should really
grow up for the value Rn. Thus till an y we take about every Ur-th integer (and do

not take anything if r=0), and between y and n we take all integers. Then
ry+(n—y)~Rn e

1 D

and we have

S's ~ T(1+ 2+ +yn)*+(_y+D)+(y+2)+..+n ~

(1-4)2]
“ T
On the other hand by (20) 5'é~(17n)2 ie.
(1-*)2
RmZS t "!{l+ T—1 2

and dividing by n2we obtain (6). Clearly, the proof can also be purely formalized.

Proof of Theorem 2. First we note that the falsity of (i) can be shown already
by construction (21). To calculate R and r we have to estimate T(ri)/n for n=ck+3ck+1
and for n=3ck+ck+x, resp. and we obtain

20<CH _ 2 2ct = _2
e T3 and 3ok ckti ¥, et resp.
avi &
L 2
> == —
Thus denoting liminf—— by d, we have 1= -——and r—, . ..

* For r=0 we simply omit this term.
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Hence
_ d-d2
FINC= 2445 1 lod+3d2
- - N'
which gives the maximal value 2+4__§__ -V ~2,134 S"for d——§—+—l———31. Thus
(i) is false, but it is easy to see that (ii) [and (iii)] cannot be disproved using construc-
tion (22).

Now we construct permutations satisfying (8), by an iterative process.

Step 1. We assume that for some x we have already constructed the segment of
the permutation using the first Rx numbers as ars and obtained about Rx distinct

sums (i;+a,+i up to x “.e.
Step 2. Between x and
(24) —rX = 2Sx

no number will occur as ai-\-ai+1, hence for n=2Sx, ------ ~T.

Step 3. We continue the permutation by taking each integer between Sx+ 1
and Tx (T will be suitably chosen later) and hence we obtain the odd numbers between

. T(ri . o
2Sx+2 and 2Tx as the sums at+ai+1. (1) did not fall below r, moreover it is
. . . Al
increasing, since r” ~

Step 4. The next segment of the permutation should be
Nx+1, (2r—2?)x+l, Rx+2, (2T—R)x+2, ..., Sx, (2T+S—2R)x,

i.e. we take the numbers from Rx to Sx and from (2T—R)x to (2T+S—2R)x alter-
nately. Thus we obtain all numbers between 27x+2 and (2T+2S—2R)x as the sums
cti+ai+1. T(n)/n clearly keeps increasing.

Step 5. The next segment will be again a (14)-type construction for the numbers
from Tx to (2T —R)x:

rx+1, TR x+1, Tx+2 3T-R x+2,...,3TT_R %, (2T-R)x.
AN
The corresponding sums at+ai+l will be all numbers from —-— x+2 to
1T-3R

x. We want that these values should join to the values obtained in Step 4,
i.e

2T+2S-2R = ST-R
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or
(25) T= AS-3R

and we choose this value for T.
Finally Wre__vi/ant that we should arrive after Step 5 to a similar situation as in

JL
Step 1, with---—--—-x instead of x, and this requires only the equality

(26) R ----- = 2T+S-2R.

Inserting first (25) and then (24) into (26) we obtain (8).
Now we sketch the construction of permutations satisfying (11). Steps 1, 2 and
3are the same as before.

Step 4. Between 27x and

T-S+R
X

(27) = Ux

T{n)

again no number will occur as a;+a,-+1, hence also for n=Ux we have ~r.

Step 5. We take the numbers from Rx to Sx and from (U—R)x to (U+ S—2R) x

alternately (cf. Step 4 in the previous proof), and so the sums a;+ai+l cover the in-
terval [Ux+2, (U+2S-2R)x]. N |
i M- u_n 17

Step 6. We take the numbers from Tx to N x and from ---==----—-=- X

IU-R+3T
X

to (U—R)x alternately, and so the sums 6,+ai+i cover the interval +2,

SU-3R+T . We want this to join to the pervious interval i.e.

(28) U+2S—2R = n~A+DbT.

And finally, after Step 6 we want to arrive to a similar situation as described in Step 1,
i.e.

(29) R_SU—BR +T

= U+S-2R.
(24), (27), (28) and (29) imply (11) by an easy calculation.
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A GENERALIZATION OF THE FREUD—SHARMA
OPERATORS

N. M1SRA (Lucknow)

1. Introduction

In 1964, G. Freud [1] constructed an almost interpolatory operator of degree
at most 4n—3, which led to an independent proof of Jackson’s theorem in the closed

interval . This result gave rise to an extensive literature in this direction.

In 1974, G. Freud and A. Sharma [5] considered the similar problem and obtained a
direct proof of A. F. Timan’s theorem [4] for a continuous function in [—, 1],
through the construction of some good sequences of polynomials of degree S/j(1+C);
C>0. They further improved the operator to obtain Teljakowski [2], Gopen-
gauz [3] type estimate in [6].

In this paper we generalize Freud—Sharma (shortly F—S) operators J* B) (/; X)
and AMMR) (/; x) respectively based on the zeros of Jacobi polynomials Pg(X)
and (1—x2/,@MA with a, —1, defined in [5] without affecting their degree.
The generalized operator JE[f) (/; x) (see Section 2, 2.6) is non interpolatory while
Ajj%» (/; x) (see Section 2, 2.10) is interpolatory in each closed sub-interval of
(—L, 1) and both of them produce Timan’s estimate for f [EzC[ —1, 1]. Our main
aim for generalizing the F—S operators is to achieve theorems on simultaneous

approximations for a differentiable function in the special case of x=3= —— We
prove 1

Theorem 1 Let / (PEC[—L, 1] and denote qjf<,>(0) its modulus of continuity.
Then for O"tSp

where Cp is a constant depending on p and independent of n and x.
Theorem 2. Let/ PEC[—L, 1]. Thenfor O "t"p

where Cp is a constant depending on p and independent of n and x.

I*
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188 N. M1SRA

2. The operators JMA\f, x) and Aj,%P)( f;X)

Let {**,,}£=1 be the zeros of the Jacobi polynomial F**°P)(x); a,8> —I and
denote Ik,,,(x) the fundamental polynomial of Lagrange interpolation based on these
nodes. We shall denote xkt,, by xk; Ik by Ik for the sake of convenience.

Let m=[«e], for some q, 0
B+5/2). We set

b )29+ where 2r>max (4,a+5/2,

1 T ()T(r) - T mEL(y) Tm(x)
m (*-1)
where Tm(x)=cos mO, x =cos 0 so that ([5], p. 238)

<P,.(x, y)

.4 If 111 sin(2fA+1)0
(2.0 (Pm(x, X) = — [m+ — + T (sinO ) ].

Now we introduce the polynomials 1/p(x,y) of degree ~2pm defined as follows:

\<Pi{x,y) if p—0

(2.2 Vp(x,y) Vp-i(x, 5, if pS Y

where IFp-xfx, y)—2—8P_1(x, y). Simplifying (2.2) we obtain

(2.3) vp(x, ) = m(x, V) l[Jl[l+ {I-*mi*k)}2' 1, P=1
and
sin (271+ 1)0
(24) (Sino)f,cpsl>.
Let
5 W =I=kr[ Y [o /N +

TiE + lil<»(-1)
i=0 /I
Now we define

(2.6) 1<%«(l; X) = M)+ 1] § OXCVXKY 1 (O*)-Ap(X)]V f+» (xk, x) IK(x).

The operator JIEf>(/; X) is non-interpolatory and of degree n+3p+m(r+p)2ptl=
An(1+C), C=>0 being fixed. Since 2p+l{r+p)mS.n—\

2.7) WE+D(x, x) - 4 K LXKX)LK(X).
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A GENERALIZATION OF THE FREUD—SHARMA OPERATOR 189

From (2.6) and (2.7) we obtain

(28) I()-~/<%c(l; )= T [I(*)-1 [ erin (x kxtkeo +
FLC)-A LA 2(5,9)].

Let / PEC[—Y, 1], then using (2, 3), Lemma 3 (F—S [5]) and adopting the method of
proof of Theorem 1 of Freud—Sharma [5], we obtain from (2.8) the Timan type
estimate

N
29) )iy P +
The operator (/; x) cannot be made interpolating like the F—S operator
JX>(/; x), because the expression p(xk, xK), (p"s 1) vanishes when <pn(xk, xK=2.
However, if we set for <650 (S being fixed) and 2,
(2.10) Afreli) (/5 x) = IE'W) (/; X) +

Flr+* (xk, X)I*(L1 - ¥'2+2p(*>x)]

2 A S PW:! n r+2p(**>**)

x.E[-1+4,l-<5]Li=0 I
then N</>(/; x*) = /(x*) for x*e[-1+<5, 1—§
Again using the facts that for x*€[—+<5, 1—§

1)P 1
(2.11) A P(XK XK & |—((—j) = 1—2I for m=2
2.12 \1-Y>p(XK, X"\ m%P.

we obtain as in Theorem 2 (F—S[5])
(2.13) F(x)-A£@R\f-x)\

ca a A~ +MI[M/(p) WU ) +LW /mLW ]

3. Some lemmas

In this section we establish lemmas needed for our purpose. Let

(2k-Dn .
2n K

be the zeros of the Tchebycheff polynomial T,,(x)=cos n0; cos 0—x and let 4(x)

be the fundamental polynomials of the Lagrange interpolation based on these nodes.
Then we have the following:

X1 = COS =1,n
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190 N. MISRA
Lemma 1

(i) sin Dgpn(xk,x) » Qw -1,

(ii) sincp sin AN D{pm(xk,a) S C.,m4~1,

(i) sin[° 2°k"BYk(x) » C3Itxk-1,

(iv) sin<Qsin (—r ) Da» -

dqg
dx4*

Lemma 2.

vhere D4=

) {x-xKDdk(a)

(i) (x-x*)M[Mr+2p(*>*)] S C "~ 44 (x KX)(H p).
Proof of lemma 1. We shall first show that
(@ [7% 1(n)-F<?)(x)| =S Cjim29sin 0/2+ m2*- 1]
(b) sine(0)|7°(?ii-7"IHWI S CZnksin0/2+ m«-1].
We shall obtain the estimates (a) and (b) by induction. Let q=1, so

ﬂn)(mO)

, sm(m+ )0
iVitiw -i'.' W = m—/ ----(m+l)—£l+)

sin0
Therefore  Tm#(D)-T'm(l)= -(2w+1); and

sinni0  sin(m+1)0  [sin(m+ 1)Q|

MmeW -T'mWl - m g sin 0 sin B

__2msin0/2  |sin(m+ )0
sin0 sin0
So that (a) and (b) are true for gq=I.
Let us assume that the result is true for integers ~q —1. From the differential
equation satisfied by Tm(x); (1- x23I"(x)- xT'mx)+mZ2T,,,(x)=0 we get
(1—xAT%p(X)—(29—3)xT*>DP(x) + (m2—q-2Y )T (x) = 0.
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A GENERALIZATION OF THE FREUD—SHARMA OPERATOR 191

Hence i
@-*2|rilW -r« M| (2g- 3)X|TIVI)(*)- n, -]+

+\[nr-(4 -2 I[rfci> (AC)-T<?-» (*)]|+2m + 1)|FA12MI A
& C[/ar<’-1)sin6/2 + 753,

Therefore estimates (a) and (b) follow.
Now we prove Lemma I(i) and (ii). Since

A4 1f~M+H M AW -Tin+IW~AM |
B ("~ -) >
therefore
32) (*- xKDegpm(xk, X) + D4 VmM . *) =
=i [(rmHX)~T  ))TmXK~(TmHEL(xK) - Tm(xK)T«M Je

If g—1, then using Lemma 3(i) (iv) (F—S [5]) and estimate (a), we get

PTGk .X) e [m(sin|.+sin]|) +1] .

2sin 2sin |
12 )

<Pm(xk, x )

and
sin Osin (-"L—) Pmxk, X) G
Thus Lemma I(i) and (ii) is true for q=\. If we assume that the lemma is true for
g—1, then using estimates (a) and (b) and the fact that T<q)(X)— Lemma
I(i) and (ii) follow from (3.2).
We omit the proof of Lemma I(iii) and (iv) as it is similar to the proof of Lemma

I(i) and (ii).

d 1b\m_ &nlbm

¢ 2 I S—2— and Lemma
I(iii) and (iv) we get

(x-xKaDglk(x) S cjsin 0sin [(N27)] +sin2(N2M)] kM =
S.cjsin2,|—"-j+sin’ ¢j Sn, (~ -~ 4jJU)M —

S c[lsin-2( "~ ) |n +]|sin-2(b™)|ni-T.

Thus lemma 2(i) is proved.
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192 N. MISRA

We establish Lemma 2(ii) by the method of induction. Now owing to (2.3),
Lemma 3(i)(iv) (F.S [5]) and Lemma 1(i) and (ii) we have

|(X=;t)/>[1P*+2(**,*)]| * c[ sin01sin sin2(* 2“M)]

(TP~ \X K, )N\E'MxK, )\ A c[I+m sin1 ~ ' ] IPm2p~4xk,x)\ ~

= C(p%+2p~2(xk, X).

Thus the lemma is true for q—L1
Let us assume that the lemma is true for g=t. Then

(3.3) KX-"Py+ArCpar*, jg](*>a Cog=l+*p-*(xk,x).
Differentiating (3.3) and using Lemmas 1(i), (ii), Lemma 3 (F—S [5]) we get
\(x-xky HF%+" (xk,x)Jt+\=SC < p " - (x k,X).

Hence Lemma 2(ii) is true for g~p.

4. Proof of Theorem 1

In the sequel Cp denotes constant not necessarily the same depending only on p.
From (2.8) we have

(4.1) Je> (XW ™ ~12((/%) = 2 200y [I(*)-
- fwxkTjym + » (xk, X)KO)T+ i ()~ /W -

- AR +2p(x,X)] = Ai'HX)+AP(X).
Using (2.3), Lemma 2, Lemma 3 (i), IV (F—S [5]), we have

4.2) \AM(X)\MCp 2 \x -x Kp ‘col(i,>|[x-xt]| +

+ 2 2 0\x—xk\s\D"4'2+"(xk,x)D‘4kI(x)\ L
s

s=0

Cp[(L f)1/2+-2-f 2 OXPO.X-XKY) [k, x)\MKOO\A<p% (xk,x)\] &

SC,
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A GENERALIZATION OF THE FREUD—SHARMA OPERATOR 193

From (2.4) and the identity

1 P (2
7——2( P 1 (=g ] =

we have

4.3) D" [f(X)—2,()]| = C,(1 =3P~ (1 + X)0s(1 —X) + (1 — X)0 s(1 4 X)]
and

1
— v2YS DS[1 — W2r+2p Ses— b ST ) 2P —5
(4'4) |(1 X ) D [1 Tp (x’ x)]! G (2"1)251 —5 [1 +|U2dn (x)]] >
where U,,(x) = ﬂr.‘_(i_:g%% Thus from (4.3) and (4.4) we obtain

VN T O 1
@9 1P =62 10 00 000 )+ X+

TR (5= U0 o M () PO €1

n2
Thus from (4.1), (4.2) and (4.5) we have Theorem 1.

5. Proof of Theorem 2

The proof of the theorem is based on Theorem 1. From (2.10) we have

(G1) F@=AGE (SR = I 0+ [ 700~

X el— 1+6 1-4]

Z(x xk) f(l)( )

i=0

] SyZpr+2p(xk’ x)lk(x)[l— q/ir+2p(xk, xk)] -
‘Pi’“p(xkoxk)

Y220 (x,, ) (x)[1— P2 2P (x, , )]
I 2 [f () —2,(x)] -+ = q’if+§l’(xk,xk) ke OB

x,e[—1F8,1-4]

= f(x)—J3*1UB(f; x)+ By (%) + By ().
Using (2.11) and (2.12) and (4.2) we have

-1
52) 1BOC] = (1—85) —r 1400 =

1 2)1/2 p—t 1— x2)1/2 1
SOTEE | o |

n
Similarly we have

(5.3) |BPx)| = c,,[(l_;—fz)ma—m p_'[w,u,) (—(—1——"1—)1—2]+w,()(—:—-]]

n:
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194 N. M1SRA: A GENERALIZATION OF THE FREUD—SHARMA OPERATOR
Thus from (5.1), (5.2), (5.3) and Theorem 1, we have

/(> (*)-<-;/2--U2)()(/;*) 1=
_ M—mR (o)

- [-—-- n—-——-+"Y] V°'w (- n---—-J+
This completes the proof of Theorem 2.
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SETS OF MULTIPLICITY ON THE DYADIC GROUP
K. YONEDA (Sakai)

1. Introduction
Let
R ~ 2k=ofi(k)wk(x)
be a Walsh—Fourier series of a Radon measure mtl on the dyadic group [1]. A dyadic
interval of rank n, —j, is the set of all x=(x1?x2,...) such that
2k=ixkBk = p/2”. Let I,,(x) be the dyadic interval of rank n containing n\ For
convenience, denotes v=(x1,x2, ...) if kl_mxk:\

denotes x otherwise.

A set E issaid to be aset of multiplicity for the class of Walsh— Fourier series of
Radon measures satisfying a condition (A) (simply: E is a set of multiplicity under
the condition (A)), if there exists a Walsh—Fourier series of Radon measure mfl
which satisfies

2»-1
(1) lim 2 - fi(kywk(x) = 0
=0

except on E and (A), but p(k)?+0 for some k. When a set is not a set of multiplicity,
it is called a set of uniqueness.
In this paper we shall prove the following three theorems.

Theorem 1. A perfect set o f Haar measure zero is a set o f multiplicity under the
condition

) lim 1 2 [@12= 0.

=0
A perfect set of Haar measure zero needs not to be a set of multiplicity in the
classical sense.

Theorem 2. There exists a perfect set of Haar measure zero which is a set of
multiplicity under the condition

1 1
(3) «® 7 P=0 ng. fi(k)wk(p/2n) = 0.
It is easy to see that the condition (3) implies
) lim fi(k) —O0.
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THeorREM 3. If {6,);=, is a sequence of positive numbers such that
D04 = and lim 6, =0, then there exists a Walsh—Fourier series of posi-
n=1 PR
tive Radon measure m, satisfying (1) except on some dense set of Haar measure

zero and 4 02X |a(k)| =9, for all n.

|§k<2ﬂ+l

2. Proof of Theorem 1.

Set

El s pEV ) [7, T

for n=0;1, ... where
W(n) = {p: [L —————(p+"1) ]ﬂE # J.

It is clear that E= ﬂE For n=0,1,... and p=0,1,...,2"=1, let N,(p)
be the number of k satlsfymg

e, S n[2. @32 ns

Set m,[0,1]=1 and
ima-m [ 2 ZE7] i w0

ou.2
(s+1)~ ] )
mu[2n+1’ I+l ] Gt [2_"3:1_, (Sz—tiz ]HE¢®

(0 otherwise

for n=1,2,... and s=2p, 2p+1. It is easy to see that m, is a positive Radon
measure. Since E is a perfect set, if x€E, {,(x)\Z,+1(X)}E = @& for infinitely
many »n. Hence we have

2m,(I,+1(%)) = m,(1,(x))

for finitely many n. For x¢E, we have lim m, (7, (x)) = 0. If x¢ E, then m,(1,(x))=

= 0 for sufficiently large # and
on—1

2'm,(1,(x)) = ) ;;; () wy (x).

Therefore (1) holds except on E. It is obvious that

2n—1

lim m,(7,(x)) = lim 1/2" ¥ A(x)wi(x) = 0
n—>oo % | R k=0
everywhere. From Theorem 6 of [2], (2) follows.
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3. Proof of Theorem 2. Let {i,};>, be a sequence of integers tending to infinity
and set

E,=[0,1 ]\[’°(O), (j"(O)H)_

Enz‘“’%"{[_l’_ (p+1) ]\[]p(n) (jp(n)+1)-}

2N, 2Vnsr’ 2Nuia

for n=1,2,... where N,=i+i+...4+i, and 2h+ip=j,(n)<2hn+1(p+1). Set
E=(\E,
n=0

Let m, be a positive Radon measure satisfying the following conditions:
[m,,[O, L=l
k I»+1 k+1
ym, [ZT’ ( ) ] ]](1/(2‘ -1) if [2” : ( ) ]ﬂE

[2\, (k-H) ] 0 if [%, (k+]) ]ﬂE .

For N,_,=N<=N, there exists only one v such that

Am, [-2‘_”’ (v+l) ]\ = ]'7,1(1/2i.i—1))

1 :
Am,,[—z‘%, _(p_—;?)_ =0 if p=v
where
g ol s 29 (q+1)” (2g+1) (q+2)”
Mul2v> — o8 | = ™u|28+1° ~—o8m1 |~ ™| 84T 0 TN

Therefore we have

2N —1
p=0
Since
2N +1__ 1

()~ ]

m,, satisfies (3). Obviously (1) holds except on E.

COROLLARY 1. The perfect set of Haar meastre zero in Theorem 2 is a set of
multiplicity in the classical sense.

Corollary follows immediately from the following two lemmas:

Lemma 1. If (1) holds everywhere, then [i(k)=0 for all k.
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Proof. Set i
(pH)-

mAn’ PRr ~] = iinl / KZ fi(k)Wk(x)dx

v

for n—0,1,... and />=0, 1, ..., 2"—1. Then satisfies

m fp (P+1)-] 2P (2p+1)~1 . r(2p+l) , (2p+2)-l
S A = mrpges1c 2vd j+ mB[2n+l 2ntl )
there exists a sequence of dyadic intervals
[P« (P»+D)~TF°

ua’ 2' J|,,=
such that

M (P,,+i)~

K[ol11|s 2k [~ ) (PIV } X mn o

O ' 3= —fw 20 3=~

5 1f-A = {x0r. Then
’ 21
m«[0, I']'S 2% |wi(/,, (x0)] o BK)wk(xo)

From the hypothesis the right hand side of preceding formula converges to zero as
Hence 140, 1~]=0. Similarly ;«,(/)=0 for all dyadic intervals /. This
proves that $(&)=() for all k.

Lemma 2. When E is a closed set of Haar measure zero, then
(5) 2 fi(k)wk(x) = 0 except on E

if and only if (1) holds except on E and (4) holds.

Proof. Obviously the sufficient condition holds. We shall prove the necessary
condition. If/ is a dyadic interval adjacent to E, then from Lemma 1, (1) holds in L
For xa= hp, (P+1  set X _. p/2s+t/2s. We have

2t—1 on-s—1 ((j+ nor—

. )
2o f0OWK) = 2 1 2, fikwk(J) =

2o*-s—1 f(j + 1)20—1 » - *—1 t(J +1)2%-1

fiwk(pi2s+t/29\ =, 2 1, 2 p(k)wk(p/23)jJ\Wj(t).

j2=o )I %=j2*
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Hence for every ¢ the above expression converges to zero as n— <. From Lemma 1,
for. 7=001
G+D2-1

1(k =0 1 I
k%g AK)w(x) in
For x€l and j2°=n<(j+1)2°, we have

la(k)|.

S aw@| = | 3 aw )| =2

125<k<(j +1)2s

This proves (5).
4. Proof of Theorem 3. Set

m,[0,17] =1

2p+i  (Rp+i)+1)~ ; p
L ( pIER! ) = ]/2(1+(_1)5t:)'nu on 3

12
Since 1+t=e * for —1=t=1 and by the law of large numbers

(pznl)‘]-

my,

n—1

1/2+¢
2 S War(x) = o, (Z’ 52) (e=0)
a.e. if n—oo, we get

2'm, (1, (x)) = exp["Z'1 5kwok(v)——i "2'1 52] L0

a.e. ‘if m—>o fori=0, 1, n=0,1,..; and p=0,1, ..., 2% 1.4t isrobyieus: that
m, is a positive Radon measure and |a(k)|=1 for all k. For k=0,1,...,2"—1,

we have
y 1 +1 —
pe R = 3 am [, CE L 12y =
e
g +1)= -
=0, 3 m, ;-’ U 2—,.) ]‘Vk(P/Z")=5,./1(k)-
p=0

Then from the hypothesis (4) holds. Moreover since Am,‘[—g—;, M] =0 and

wo(p/2")=1 we have

o1

pey = =

(p+1)~ ] o
Am, 2"’ D I -

On the other hand for x=(x;, x,,...) we have

A=

2"m,(1,(x)) = g : (1 + War (%) 6;).
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Corollary 2. Under the condition of Theorem 3, there exists a dense set of
Haar measure zero which is a set of multiplicity under the condition

2" -1 ’ _[
|

bl
N
o

PO+ -H_ 1V .
e 0% j‘ = s Gy LBOWKGIZ)

for all n.

Set especially ~=1 and &= log K~\[k for k=2, then {<M=l satisfies the
hypothesis of Theorem 3. It is easy to see that

21— 2" -1

(Lo Vi(fe)la = 2>>Pg0 Am, [£, ~0(1+ ga+l
as n-me Since the last formula tends to zero as we have
(8) iim 2 Im w =0.

Corollary 3. There exists a dense set of Haar measure zero which is a set of
multiplicity under the condition (8).

When o¢k=6 for all k where 0s|d|<I, set
\m,(1,,(x)) = 12" (1+S)NM (1 —5'™- JT(n)
IS = {x lim iV,,(X)/n = 12}

where N,,(x) is the number of elements of {I"k”~n: xt=0}. Then m, is a positive
Radon measure and (1) holds on S. Obviously mesS=1.
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THE SEMIGROUP OF PARTIAL /-ISOMORPHISMS
OF AN ABELIAN /-GROUP

B. B. BAIRD and J. MARTINEZ (Gainesville)

1. Introduction

If G is an abelian /-group then .# (G) will denote the semigroup of all /-isomor-
phisms whose domains and ranges are /-subgroups of G. The operation on .#(G)
is partial composition of functions. An element b in a semigroup S has an inverse
aif a=aba and b=bab. If every element in S has a unique inverse then S is called
an inverse semigroup and the inverse of b is denoted by b~ If f€£#(G) and
f: H—K then the inverse mapping f~': K—H is the unique inverse for f and so
#(G) is an inverse semigroup. In this paper we will investigate the structure of £ (G),
particularly its lattice of ideals, and use this to gain information about the /-group G.

The technique of characterizing a mathematical object by an inverse semigroup
of one-to-one partial morphisms has often been employed. For example, if G is a
group and 7'(G) the inverse semigroup of all isomorphisms between subgroups of G
then T(G) is a complete invariant for finite abelian groups; that is, for finite abelian
groups G and G’, T(G) is isomorphic to 7(G’) if and only if G is isomorphic to G’
([9]). T(G) is also a complete invariant for finitely generated abelian groups ([7]).
For a different type of example let X be a topological T, space and let 7'(X) be the
inverse semigroup of all homeomorphisms between closed subsets of X. Then T'(X)
is a complete invariant for X ([1]). If you replace closed subsets with open subsets
the result still holds.

In general, for an /-group G, the inverse semigroup .# (G) is not a complete in-

L : . : a . :
variant. For example, if p is a prime number, let Qp={-;l-: a,n integers with

(a, n) = 1} with the inherited order of the reals R. If g is a prime number different

from p then Q, and Q, are not isomorphic even though .#(Q,) and J(Q,) are
isomorphic. The isomorphism of the inverse semigroups stems from the fact that
the only subgroups of Q, are trivial, cyclic, or isomorphic to @,. Thus #(Q,) has a
very sparse structure. Even though the semigroup .#(G) is not in general a comp-
lete invariant, it does give us information about G.

Idempotents in .# (G) (maps f'such that ff=f) are precisely the identity maps on
I-subgroups H and will be denoted by iy. The identity on the trivial subgroup will
be denoted by 0. We investigate Green’s relations for .#(G). Two maps f and g are
P-equivalent if they generate the same principal left ideal; i.e., £ (G)f=S(G)g.
For f,g€#(G) f%g if and only if domain of f=domain of g. The definition of
Z-equivalence is analogous and we obtain: fZg if and only if range of f=range of g.
We say that f#g if both f&g and f%g. Thus for an idempotent iy, its #-class is
the group of all l-automorphisms from H onto H (denoted &/ (H)). Since LR =R-&
we define 2 =%-2. Two maps f, gc.# (G) are Z-related if the domain of fis /-iso-
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202 B. B. BAIRD and J. MARTINEZ

morphic to the domain of g. Elements/ and g are /-equivalent if they generate the
same principal two-sided ideal. Idempotents iHand iKwill be ./-related if and only if
H contains an /-subgroup /-isomorphic to K and conversely. For a general discussion
of inverse semigroups and Green’s relations we refer the reader to ([5]).

We will denote the lattice of ideals of -f (G) by 1(G). If G is nontrivial then 1(G)
always has a smallest nontrivial ideal, which is generated by iHwhere H is a cyclic
totally ordered group. We denote this ideal by Ix. Our principal results concern the
ideals which cover Ix. We enumerate all possible covers and examine the implica-
tions for G in each of these cases (these different possibilities can be distinguished
within the semigroup structure of / ( G)). The ideal Ixmay not have a cover and this
situation is also explored.

The last section of the paper deals with the ideal structure of the isomorphism
semigroup of the /-group of bounded integer-valued functions, and closes by posing
several questions.

2. Covers for Ix

An /-group is a group with an underlying lattice so that the group operation dis-
tributes over the lattice operations. We assume throughout the paper that all /-groups
G are abelian. Q will denote the rationale and Z the integers; we assume that sub-
groups of the reals R have the total order inherited from R. If [ax: 1*/1} is a subset
of an /-group G then (ax) will denote the /-subgroup generated by the a/s. If af£G
a> 0 then (a) is an o-subgroup of G. If fEG then (/) will denote the principal two-
sided ideal of J (G) generated by/. Every principal two-sided ideal can be generated
by an idempotent iHand the ideal (iH= [JfJ'iG): domain and range of/ are /-iso-
morphic to /-subgroups of H}. An ideal | covers an ideal J if ./</ and there exists no
ideals strictly between J and 1.

We present a few results and notation from the theory of /-groups (for reference
see [2]). Let | be a well ordered set and for each /£/ suppose G, is a totally ordered
group. If G is the direct product of the G; then for gEG we define g>0 if the first
nonzero component gk of g is positive (in its o-group GK). This makes G a totally
ordered group, called the direct lexicographic product of the G; and we denote it by

%} G,. If/is finite we write G1x...3cG,, IXG,,. If G is the direct sum of the G; we

can form an /-group by defining gEG to be positive if each g; is positive. Then we
denote G by [;rl] G;; if I is finite we write G\ +|G2+ ... I+ |G,,. This willbe called the
1

pointwise order on G.

An /-group G is called archimedean if for each pair of positive elements aand b
in G there is a positive integer n such that na <fb. By Holder’s theorem ([4]) an archi-
medean o-group is o-isomorphic to a subgroup of R. In addition, if G and G' are
subgroups of R then each o-isomorphism from G into G' is a multiplication by some
positive real number ([4]).

An /-subgroup M of an /-group G is convex if whenever a>0 and afM and
O”™bSa then bfM. Note that any/-automorphism of G induces an automorphism
of the lattice of convex /-subgroups of G. An /-group G with no convex /-subgroups
must be archimedean and totally ordered and hence is a subgroup of R ([4]). Convex
/-subgroups M are called values if they are maximal with respect to not containing

Acta Mathematica Hungarica 41. 1983



THE SEMIGROUP OF PARTIAL /-ISOMOPRHISMS OF AN ABELIAN /-GROUP 203

an element x€G; M is called a value of x. Every value M will have a unique convex
I-subgroup (denoted M *) which covers it. Since the factor M */M contains no convex
[-subgroups it must be an o-subgroup of the reals.

We will also need a few results from group theory about the notion of types of
rank one torsion-free abelian groups (for reference see [6]). These groups can be
thought of as subgroups of the rationals Q. For p a prime and a an element of G the
p-height of a is the largest integer k such that p* divides a; if no such largest integer
exists then the p-height of a is . Thus to each element a in G can be associated a se-
quence (Z,, t5, 15, ...) of p-heights. Two such sequences (f,, t3, t5, ...) and (ly, I3, /5,
...) are called equivalent if 3'|t,—1,| is finite (where co—e>=0). We call an equiv=

p

alence class a type. Now if G is a subgroup of Q then all elements of G have the same
type and so we can associate with G a type (Z,, t;, ...). Two torsion free groups of
rank one are isomorphic if and only if they have the same type; every type is realized
by a rational group ([6]). Note that the group O, mentioned in the introduction has
type (0, ..., 0, =, 0, ...) where < occurs in the pth position. Thus if ¢ is a prime dif-
ferent from p we have that Q, and Q, are not isomorphic.

Recall that 7; is the ideal generated by i(,) where a is any positive element in G;
I 1s the smallest nontrivial ideal in 7(G). We consider whether or not /; has covers;
and if so which covers can occur. We call 1; chain accessible if there exists an infinite
chain of ideals J,>J,>... such that NJ,=1;.

PROPOSITION 1. Suppose G is a noncyclic rank one group of type (t,,ts, ...)
where t;7 < for all i. Then I, has no covers, is chain accessible, and contains an infi-
nite number of distinct ¢-classes.

Proor. First suppose, on the contrary, that 7, has a cover /. Since I;<I there
exists an isomorphism f€/ such that the domain H of f'is not a cyclic group. Then
I <(ig)=1 and so (ig)=1. Now H is not cyclic, so H is not of type (0, 0, ...). Since
H=G this means H is of type (/y, /5, ...) where /; < for all i and infinitely many
;0. Without loss of generality suppose /%20 for all i. Then H contains a sub-
group K of type (%, 0, 15,0, ...). Thus I;<(ix)<I, which is a contradiction since /
covers ;. Thus /; has no covers.

Now, by using the same idea we can partition the type (%, #3, ...) of G (again
assume, without loss of generality, that #;=0 for all i) to get infinite descending
chains of types:

Eitsdion)

i N
(1500 50 w2) 0 Lo 10 e )

(rZ’Oy()’O,tl:O; ---) E
(0,0,0, ...)

Each of these types will give rise to an o-subgroup K of that type which will in turn
generate an ideal (ix); different types will correspond to distinct ideals and hence G
contains an infinite number of distinct #-classes.

Now, if /; does have a cover we enumerate the possibilities:
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THEOREM 2. If G is an abelian I-group then 1 is a cover for I, if and only I1={iy)
for some l-subgroup H of G where H is I-isomoprhic to one of the following I-groups:

1) Z|+|Z

2) ZXZ

3) the o-subgroup (1;r) of R, where r is an irrational number

4) Q, for some prime p.

ProoF. Suppose that 7; has a cover /. As shown in the proof of Proposition 1,
7, must be a principal ideal (7y). If H contains two disjoint positive elements then it

contains an /-subgroup /-isomorphic to Z|+|Z, which implies that i, and iz[¥]z are
F-equivalent since (i;) covers /;. But the only /-subgroups of Z|_+:|Z are trivial,

cyclic or l<isomorphic to Z|+|Z. Thus H is itself -isomorphic to Z|+|Z. Now if H
has no pairwise disjoint elements it must be totally ordered. Suppose there exist
0O<a, b€ H such that na<b for all positive integers n. Then (a, b) is o-isomorphic
to ZXZ and once again we have that H must be o-isomoprhic to ZXZ.

If neither of the above two cases occurs we may suppose that A is an archimedean
o-group, and hence that H is a subgroup of R. If the rank of H exceeds two then H
contains a subgroup K of rank two. But then /;<{ix)</, which is a contradiction.
Thus H is of rank one or two. If H is of rank one then suppose H has type (%, 3, ...).
If 7,5 = for all 7 then infinitely many 7,70 (otherwise H is cyclic). But then by Prop-
osition 1 /; has no cover. Thus there is some #; such that #;;=<. But then H con-
tains an /-subgroup K of type (0,0, ..., 0, =, 0, ...) where #; =< and so I;<(ix)=
=(ig). Since (iy) covers I, the maps ix and i; must be #-equivalent. Thus the type
of K equals the type of H and hence 4) holds.

The only remaining case is where H is a rank two subgroup of the reals. We may,
without loss of generality, assume 1€ H. Then H is generated by 1 and an irrational
number 7 (rank of H is two) and hence 3) holds.

For the converse, note that in cases 1), 2) and 4) the only /-subgroups of H are
trivial, cyclic, or /-isomorphic to H. Thus (i) covers I,. We will show that this is also
true for case 3). So suppose H is of the form (1, ) where r is irrational and K is a
nontrivial, noncyclic /-subgroup of H. Then K is of the form n,Z+rmyZ where
ny, my#0. Consider the /-isomorphism o: H—nyZ+rmyZ where o is multiplication
by ngm,. Then o(H)=nyZ+rmyZ and so K contains a copy of H. Thus iy€(ix)
and hence iy and ig are #-equivalent. So we have that (i) covers I;.

DeriniTION. Following the order of the scheme of Theorem 2, if (i) covers [
then we will call H and (iz) of class i (for i=1, ..., 4).
Proposition 1 and Theorem 2 immediately yield:

COROLLARY 3. Let G be a noncyclic abelian I-group. Then I, has no covers if and
only if G is o-isomorphic to a rank one subgroup of Q of type (15, t3, ...) where 1,7 o
Jfor all i and t;7#0 for infinitely many Ii.

Proor. One direction is the content of Proposition 1. For the other direction
suppose that 7; has no covers. Then note that, as shown in the proof of Theorem 2,
G must be rank one archimedean o-group. If G has type (Z,, 5, ...) where #;=<
for some i then 7, has a cover of class 4. Thus #;7 = for all i and since G is not cyclic
G cannot have type (0,0, ...) and so #>0 for infinitely many i.
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One of the aims in studying .# (G) for an /-group G is to use the inverse semigroup
to gain information about the /-group. Recall that the group of /-automorphisms of
an /-subgroup H (</(H)) is just the /#-class of the idempotent iy and hence can be
recognized within #(G). Now /l-subgroups K of H satisfy the equation igxiy=ix.
Therefore, for each /-subgroup H of G its lattice of /-subgroups is also recognizable
in £ (G). If 1, has no covers then Corollary 3 gives us information about G. On the
other hand, if 7; has covers then we would like to be able, within the semigroup .7 (G),
to distinguish between different classes of covers. The next propositions assure us
of this. Before stating the first of these let us agree to call a real number r quadratic
if it satisfies an equation ax*+bx+c¢=0 with a,b, c€Z, a=0.

PROPOSITION 4. Suppose I=(iy) is a cover of I,. Then

1) oA (H) = Z, if i=1,

2) #(H) = {0} if i=3 and r is not quadratic,

3) A(H) = Z if i=2, if i=4, or if i=3 and r is quadratic.

PROOF. Observe that if i=1 then the only automorphisms of Z|+|Z are the
identity and the map that sends (a, b) to (b, a).

Now suppose that i=3; hence we may assume H=(l,r) with r irrational.
If » is not quadratic then any automorphism of (1, r) is multiplication by a real number
and so is of the form ny+mgr. But then (n+mr)(ny+mgr)=1 for some n, meZ
and hence (since r is not quadratic) m,=0 and n,=1. If r is quadratic it is known
([3]) that &/ (H) is cyclic.

If i=2 then assume H=ZXZ and thus contains only one nontrivial proper
convex subgroup, M={(0, m): méZ}, and each ¢€.«/(H) must leave this sub-
group fixed and so induces the identity on it. Moreover, ¢ induces the identity on
H/M. Thus ¢ acts as follows: ¢(m,n)=q(m, km+n) where k depends on o.
Indeed, the assignment ¢-—k sets up on isomorphism of &/ (ZXZ) onto Z.

If i=4 then H=Q, for some prime p. The o-automorphism of H are the
powers of p: hence o/ (H)=Z.

Note that two /-subgroups H and K of G are /-isomorphic if and onyl if i;; and
iy are Z-related; distinct Z-classes can be distinguished within .# (G). This idea will
help to differentiate the cases where &/ (H)=Z.

PROPOSITION 5. Suppose [=(iy) is a cover of I, and o/ (H)=Z.

1) If i=3 then J(H) has infinitely many 9-classes.

2) If i=2 or 4 then S (H) has exactly three 2-classes and in fact 2= ¢ for
J(H).

3) If i=2 or 3 then there exist two nontrivial idempotents i, i,¢1 such that
ixgi;=0. If i=4 then no such idempotents exist in J(H).

PrOOF. 1) By Proposition 4, 2) r must be quadratic if i=3. If » is quadratic
we may assume without loss of generality that r=)/n, with n a positive integer.
Then for each prime number p such that (p, n)=1 the subgroups (p, Vn) give
an infinite class of nonisomorphic groups.

2) Note that if H=ZXZ then all o-subgroups of H are either trivial, cyclic,
or of the form nZ X mZ and the map ¢(a, b)=(na, mb) from ZXZ onto nZ. X mZ
is an o-isomorphism. This means J (H ) has exactly three distinct Z-classes. If H=Q,
(i.e., i=4) then again, all subgroups are either trivial, cyclic, or siomorphic to Q,.
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3) If /=2 or 3 then H has rank two and therefore has two subgroups with triv-
ial intersection. From this we easily get the desired idempontents. If i'=4 then no
such subgroups exist, since the rank of H is one.

Remark. If H and K are both /-subgroups of class 1 or both of class 2 then iH
and iKare *-equivalent. Hence they are *-equivalent and so /, can admit at most one
cover of class 1 and at most one of class 2. However, f may admit infinitely many
covers of class 3. For instance, if {r+ 1+/1} is an infinite family of algebraically
independent real numbers then the ideals generated by the /(I rj) are distinct. Note
also that if p and q are distinct primes then iQ and iQ are not ~-equivalent. So /,
may admit infinitely many covers of class 4.

Let us now turn to a result that describes how the presence in 1(G) of certain
covers of [l (or else the absence of these covers) reflects on the structure of G.

Theorem 6. Suppose G is a non-cyclic abelian I-group. Then

1) /, admits no covers of class 1 if and only if G is an o-group.

2) /, admits no covers of class 2 if and only if G is archimedean.

3) /. admits no covers ofclass 1 or 3ifand only if G is an o-group andfor each
value M of G, M*/M has rank one.

4) f admits no covers of class 2 or 3 if and only if G is archimedean and every
o-subgroups has rank one.

5) f admits no covers ofclass I, 2 or 3ifand only if Gis a rank one subgroup of
R, (i.e. a subgroup of Q).

6) /, is chain inaccessible and only admits covers ofclass 2 if and only if G is an
o-group andfor each value M, M*/M is cyclic.

7) /, is chain inaccessible and only admits covers of class 1 if and only if G is
archimedean and every o-subroup is cyclic.

Proof. 1) If G is not totally ordered then there exist a, b£EG such that a is
incomparable to b. Let x=a—aAb) and y=b —(aAb); then x, y>0 and xAy=0.
The /-subgroup generated by x and y is /-isomorphic to Z + Z which means f admits

a cover of class 1. Since Zj+ jZ is not an o-group the converse is obvious.

2) Clear.

3) Suppose that f admits no covers of class 1 or 3. Then G is an o-group by 1).
Let M be a value of G and consider M*/M. If M*]M has rank greater than 1, there
exist a,bEM* such that (@a+M, b+M) has rank 2; ie, na+mb"M for all
n,mE£Z. Hence (a, b)C\M=0. Thus

(a, b) A M’ _______

But then (a, b) has rank 2, which means that f admits a cover of class 3, this is a
contradiction. Hence M*/M has rank 1

Conversely, observe that by 1) f admits no covers of class 1. f will admit no
covers of class 3 if and only if G contains no archimedean o-subgroup of rank 2.
Suppose H is such an o-subgroup. Let M be the largest convex subgroup of G such
that HCIM= {Oy. Since H is of rank 2 there exist 0-<a, bC11 such that if na—mb
for some n,mE£Z then n=m=0. Let K be the convex subgroup generated by M
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and a. Then since H is archimedean, b€ K. Then M is a value of @ and b, and M *=K.
Observe that H( M * {0}, and since H contains no proper convex subgroups this
means HNM*=H. Now

(H,M) M*
M M’

H e

[IA

and so M*/M contains a rank 2 subgroup, which is a contradiction.

4) and 5) are obvious.

6) Suppose 7; is chain inaccessible and only admits covers of class 2. Then by
3) G is an o-group and each factor M */M is of rank one. Now suppose M*/M is
not cyclic for some value M. Then there exist 0<a, bé M™* such that (a+m, b+m)
is not cyclic; hence (a, b) is not cyclic. Furthermore, the o-subgroup (a, b) is archi-
medean since a and b have the same value M, and M*/M is archimedean. Hence if
(a, b) is of rank 2 or more, /; admits a cover of class 3. If (a, b) is of rank 1 but not
cyclic then either 7; admits a cover of class 4, or else 7, is chain accessible by Propo-
sition 1. Either way we have a contradiction, and so M*/M is cyclic.

For the converse, note that by 3) 7; admits no covers of class 1 or 3. Suppose that
G contains an o-subgroup H of rank 1. By using the same technique of the proof of 3),
there is a value M such that H is o-isomorphic to a subgroup of M */M. Hence H is
cyclic. This means that /; admits no covers of class 4.

Now suppose we have a chain of ideals {/,} such that 7;=NJ,. If each J,
contains an idempotent i;; such that H, is not archimedean, then each /, contains an
idempotent iy where K, is o-isomorphic to ZX Z. Thus each J,-and, consequently
also /;-contains all such idempotents, which is a contradiction. Hence we have an #,
such that for each m=n, all the idempotents of J,, are of the form i, with A archi-
medean. As the J, form a chain we may then without loss of generality assume that
all J, have the above property.

Suppose H is an o-subgroup and iy€J,. If the rank of H exceeds one, then H
contains a subgroup of rank 2, and therefore 7; admits a cover of class 3, which is a
contradiction. Thus H has rank one, and by the previous part of the proof H must be
eyclic. Hence every idempotent of J, belongs to I;, which says that J,=1;. This
proves I, is chain inaccessible.

7) Suppose that 7; is chain inaccessible and only admits covers of class 1. Then
by 2) is archimedean. If H is an o-subgroup of G then H can be considered a subgroup
of R. If the rank of H is greater than one then H contains a copy of (1, r) with r
irrational. This gives a cover of class 3 for I;; therefore # must have rank one. If
the type of H is (t,, t;, ...) with 7,=co for some p then H contains a copy of Q,,
and so /; admits a cover of class 4. Thus #,<< for every prime p. Since /; is chain
inaccessible only finitely many 7,=0; this suffices to conclude that H is cyclic.

If, on the other hand, G is an archimedean /-group and each o-subgroup is cyclic,
then clearly 7, admits no covers of class 2), 3) or 4). As in 6) suppose I,=(\J, where
{/.} is a chain of ideals. If J, I, for each n, then there is an idempotent i €J, such
that H, is not totally ordered; (otherwise H,=Z). But then H, contains a copy of
7/+|Z and hence I,=(\J, contains an idempotent i, with H=Z|+|Z. This is a
contradiction, and hence /; is chain inaccessible.

We have completed the proof of Theorem 6.
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Remark. If Gis/-isomorphic to an /-subgroup of Qx (where the rational-valued
functions are ordered pointwise) then every o-subgroup of G has rank one, and by
4) of Theorem 6, Ixadmits no covers of class 2 or 3. It is unknown whether every
/-group in which all «-subgroups have rank one is embeddable as an /-group of ratio-
nal-valued functions as specified above.

Similarly, if G is /-isomorphic to an /-subgroup of Zx, then every o-subgroup of
G is cyclic, and hence Ixis chain inaccessible and only admits a cover of class 1. As
above it is unknown whether the converse is true.

3. Examples and covers

In this section we first restrict our attention to /-groups which can be embedded
in the /-group B(X, Z) of bounded, integer-valued functions on the the set A. Such
/-groups G are hyperarchimedean (every /-homomorphism is archimedean) and in-
deed have the property that each value M is maximal and GjM is cyclic ([8]). In par-
ticular, 1(G) only admits a cover for [ of class 1

Suppose G is an /-subgroup of B(X, Z) and G has an infinite pairwise disjoint
set {xr,x2, ...}. Let//, be the /-subgroup generated by this set and let Hn be the
/-subgroup generated by {ny, .. 3Then /], is I-isomorphic to Z['|ﬂ+j...

_Z(n-fold). We will denote the corresponding principal ideals generated by /g and
itt by /<, and /,,. Note that rer /,, is also an ideal. We examine 1(c) :

Proposition 1. Let G be ari I-subgroup of B(X, Z); suppose G contains an in-
finite pairwise disjoint set and suppose J is an ideal o f./ (G). Then

) O/x.< U W -

2) Either J is one of these ideals of 1) or else /To</.

Proof. 1) Itisclear that ithand iHnare ~/-equivalent if and only if n=m and
that (J /,, is an ideal properly containing each /,,. Note that /«, properly contains

l@ /, since L is a principal ideal whereas ]f—i /,, is not.

2) LetJ be an ideal of J(G). If there exists an idempotent ifij such that H
contains an infinite pairwise disjoint set, then I,,=J- In an archimedean /-group K,
if nis the maximum number of pairwise disjoint elements then K is /-isomorphic to
a direct sum of subgroups of R [(2)]. Thus if n is the maximum number of pairwise
disjoint elements in any /-subgroup K, where iKEJ, then J—I,,. If no such bound

exists but all such sets are finite then /= 1‘91 /,,.
3=

We now consider the question of whether or not 1(G) is a chain. The answer is
no in general.

Proposition 2. Let X be an uncountable set; H={fEB(X, Z): / is eventually
constant), K= {fEB(X, Z): f has countably infinite support). Then (if) and (if)
are incomparable ideals and hence J(B(X, Z)) is not a chain.
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Proor. The /-subgroup K has the following property: for each 0<f€K there
exist f;, />0 in K so that f;Af,=0 and f=f,Vf,. This property is not true for
the elements of H and hence H contains no l-isomorphic copy of K. Thus ix§ (iy).
On the other hand, H contains an element (the constant function 1) with uncountably
many values but in K each nonzero element has only countably many values. Thus
iy ¢ (ix). Hence the ideals are incomparable.

We would still like to know when /(G) is a chain (G again consists of bounded
integer-valued functions), so let us restrict ourselves to the /-group of bounded in-
teger-valued sequences; we denote this /-group by B. Our first result lengthens the
chain of ideals found in Proposition 1.

ProrosITION 3. Let 1. ; be the principal ideal of % (B) generated by iy where H
is the I-group of all eventually constant sequences. Then

1) deo=1s 4

2) If J is an ideal of 1(B) then either J=I., or I.,=J.

PROOF. 1) H contains elements with infinitely many values; this in conjunction
with Proposition 1 gives us that /.<I. ;.

2) Suppose J is an ideal of /(B) such that J=/... Then J property contains /...
Then there is an /-subgroup K of B such that ix€J—1..; K must then contain an
element x>0 with infinitely many values. We wish to show that K contains a copy
of H. First suppose that K’ is the convex /-subgroup of K generated by x. If K’
has no infinite pairwise disjoint sets then, as before, K’ is /-isomorphism to a finite
cardinal sum of copies of Z. This is impossible since x has infinitely many values.
Thus, suppose that {x;, x,, ...} is an infinite pairwise disjoint subset of K’. Since K’
is generated (as a convex /-subgroup) by x, xAx,>0 for each n=1,2, .... We may
therefore replace x, by x/\x, and assume that x=x, for each n.

Furthermore, since K is hyper-archimedean ([2]), there is, for each integer n,
a positive integer k, such that xAk,x,=xA(k,+1)x,. Replacing x, by k,x,\x
we may assume that x agrees with x, (for each n) at every point of the support of x.
From this it is clear that x=sup {x;, x5, ...}. Now in H, for each n, define e, by
e,(m)=1 if n=m and 0 otherwise and let e be the constant function 1. The
elements e, and e generate H in the obvious way. Define ¢(e,)=x, and ¢(e)=x,
and extend ¢ to all of H. Then ¢ will be an /-isomorphism from H into K. Thus i€
€(ix)=J and hence I.. ;=/J.

Above [..; things are a bit more obscure. We shall next discuss the role of
various /-groups of periodic sequences and conclude this discussion with several
open questions.

Let P denote the /-subgroup of B of periodic sequences. Since P is a countable
set and B is not, the ideal (i,) is properly contained in .# (B). For each positive number
g let P, denote the /-subgroup of P generated by all periodic sequences whose period
divides g*, where k is any non-negative integer. Note that the /-subgroup generated
by P, and P, will be P,, where m is the least common multiple of ¢ and ¢. Although
we do not know if (ip)={(ip,) we do have the following

PROPOSITION 4. For any positive numbers q and t, (ip,)="{i,).

Proor. We will show that P, can be /-embedded in P, for any numbers ¢ and ¢;
this will prove the proposition. To do this it will be sufficient to define an embedding
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(p on elements of Pqwhose periods are powers of g (these elements generate Pg). So,
let r be the smallest positive integer such that q<f. We define @ inductively on n
for elements of Pq of period q"

Suppose s=(sls2sj..)ePll and period ofnis q. Define (ps of period f as follows:

fs  1~i=g-
i=W AN f
() {((ps)i jq= imodf with 1=/=tr

Now assume that (psis defined for elements in Pgof period less than or equal to
g" in such a manner that if the period of nis gk then the period of (ps is trkkand ip is
an /-embedding. Suppose sfPq has period gn+land let s=S1S2...5gS1S2—Sq...,
where Si=i(i-1)i»+2...r(i-i)«,+"- We define (ps of period /("+Lr as follows:

(s TT2.. To jTqTq... PQT\ T2 eee
tr-(g-1)

where Ttis the block of length trr that defines (p(SiS;Sj...). We leave the details of
verifying that (ps an /-embedding to the reader.

Examples. 1) q=3, t—2, r=2,
®(123456789...) = (1233456678997899... 1
09(123112233111222333112133123...) =
= (1233112223332333111122223333333311222333123312331122233312331233...)
2) g—3, t—5, r= 1.
((123456789...) = (1233345666789997899978999...).

We close the article with a list of open questions and several remarks pertaining
to them. Let us start by mentioning some specific questions relating to B, the /-group
of bounded, integer-valued sequences.

I. Are iP, and iRy */-related? Is (ip) a maximal proper ideal? Is 1(B) a chain?

Il. What are the implications on an /-group Gof having a finite lattice of ideals
/(G)? We can mention a few (the arguments are straightforward). G must then have
finite rank and thus the root system of values is also finite. In addition, if M is a
value of G and M*/M has rank 1, its type (t2, t3, ...) must satisfy tt=0 for all but
finitely many indices. We have not been able to decide whether these conditions on ¢
and its values are sufficient to make 1(G) finite.

If we make restrictions on ,f(G) we obtain more information. Suppose ./(G)
has a finite number of "-classes. Since an archimedean o-group of the form (1, r)
(with « irrational) has infinitely many non-isomorphic subgroups,  cannot admit
class 3 covers. Now and so we have that 1(G) is finite and G therefore has the
properties mentioned in the above paragraph. Now an abelian /-group having a
finite root-system of values must be a Hahn-group V(A, Rp ([2]) where A is a finite
root system and is a subgroup of R. Since I\ admits no class 3 covers each R,
is a group of rank 1whose type has at most finitely many nonzero entries. Conversely,
suppose that G—V(A, R;) where A is finite and each R, is a rank 1 group with the
above property. It is then clear that G has (up to /-isomorphisms) only finitely many
/-subgroups; that is, J (G) has finitely many ~-classes. We summarize:
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Theorem 5. For an I-group G the following are equivalent:

1) ./ (G) has finitely many St-classes.

2) G=V(/i, R;) where N is afinite root-system and each Rxis a rank 1 group
whose type (t2,t3,t5, ...) has at most finitely many nonzero entries.

In this case f admits no class 3 covers.

I11. Suppose 2(G) has finitely many ~-classes (and therefore satisfies Theorem
5 above) and also /, admits no class 4 covers. Then G is a Hahn-group V(A, Z;)
where J1 is finite and each Z; is cyclic. Is ./ (G) a complete invariant under these cir-
cumstances? This leads to a more general question: what conditions on G or ./ (G)
are necessary to make 2(G) a complete invariant?

IV. We know that if 2 =/ in 2(G) then /, admits no class 3 covers. The con-
verse is not true but what conditions must hold to have 2 =fi'l Or what are the
implications for G if 2 =
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«-CONTINUOUS AND a-OPEN MAPPINGS

A S. MASHHOUR, I. A. HASANEIN and S. N. EL-DEEB (Assiut)

Introduction

Let X, Y and Z be topological spaces on which no separation axioms are assumed
unless explicitlystated. Let S be a subset of X. The closure (resp. interior) of S will
be denoted by S (resp. S°). A subset .S of a space X is called a-set [6] (resp. semi-
open set [4], preopen set [5]) if SeS°~° (resp. SeS°~, SeS ~°), the complement
of an a-set (resp. semi-open set, preopen set) is called a-closed set (resp. semi-closed
set, preclosed set). The familly of all a-sets (resp. semi-open sets, preopen sets) in X
will be denoted by a(X) (resp. SO(X), PO{X)). It is clear that each a-set (resp.
a-closed set) is semi-open and preopen (resp. semi-closed, preclosed), but the conver-
ses are not true. A mapping /: A—Y s called almost continuous [8] (resp. 0-conti-
nuous [1], weakly continuous [3]), briefly a.c. (resp. 6-cont., w. c.) if for each xEX
and each open neighbourhood V of/(x)_there exists an open neighbourhood U of
x such that f(U)cV~° (resp. f(U)cz V,f(U)e V) and it is called semi-contin-
uous [4] (resp. precontinuous [5]), briefly s.c. (resp. p.c.) if the inverse image of each
open set is semi-open (resp. preopen). A mapping /: X-+Y is called semi-open [4]
(resp. preopen [5]) if the image of each open set in X is semi-open (resp. preopen) and
it is called semi-closed [7] (resp. preclosed) if the image of each closed set in X is
semi-closed (resp. preclosed).

In the present note we introduce and study the concepts of a-continuity and a-
open mappings. Also we strengthen some results in [5] by using this type of non-con-
tinuous mapping.

1. a-continuity

Definition 1.1. A mapping f: X-+Y is called a-continuous (briefly, a-cont.)
if the inverse image of each open set of Y is an a-set.

Theorem 11 is an easy consequence of Definition 1.1, and the proof is thus
omitted.

Theorem 11 Let f: X-+Y be a mapping, then the following statements are
equivalent.

(i) f is a-cont.

(if) For each x£X and each open set VcY containing f(x), there exists
WEa(X) such that xFW, f(fV)eV.

(iif) The inverse image of each closed set in Y is a-closed.

(iv) f(A~°~)(z (f(A))~ for each del.

(V) (f~1M))-o-czf-1(M-) for each MeYY.
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Corollary 1.1. Let f: X-+Y be a-cont., then

(i) f(A~)c (f(A))~ for each AfPO(X).
(i) (/-1(M))_C:/-I(AF*) for each MfPO(Y).

Proof. Since for each AEPO(X), A~=A~°~, therefore the proof follows
directly from statements (iv), (v) of Theorem 1.1

Theorem 1.2. Every a-continuous mapping /: X--Y is B-continuous.

Proof. Let xEX and K ef be an open set containingf(x). By statement (v)
of Theorem 1.1, (/_1(F))_0“c /_1(F_). Sincel/is a-cont.,, we have, / _1(F)c:
c(/-i(F))»-°c((/-4F))0-(@Q)-c (/-12(F))-»-c/-LF-). Put (/-i(F))»-°=
= U, so Uis a neighbourhood of a such that U czf ](F ), namely f(U )cF
Therefore, / is 0-cont.

It is clear that the class of a-continuity contains the class of continuity but it
is contained in the class of each of O-continuity [1], precontinuity [5] (= almost con-
tinuity in the sense of Husain [2]) and semi-continuity [4]. The concepts of a-conti-
nuity and almost continuity in the sense of Singal and Singal [8] are independent of
each other.

The following diagram summarizes the above discussion.

semi-continuity

ft
continuity a-continuity =>+ precontinuity
ft ft

almost continuity => 0-continuity =>¢ weak continuity

The examples given below show that the converses of these implications are not
true in general.

Example 1.1. An injective mapping /: X—Y form an indiscrete space into a
discrete space is p.c., but not a-cont.

Example 1.2. Take X—{a,b,c}, Tt={X, & {a}, {c}, {a,c}} and />=Dis-
crete topology. Let /: (X, TA-AX, Tr) such that f(a)=a,f(c)=b,f(b)=b. So,
[ is s.c., but not a-cont.

Example 1.3. An injective mapping f: X*-Y from an excluding topological
space X with excluding pointp into a particular topological space Y with a particular
point f(p) is 0-cont., but not a-cont.

Example 1.4. Let X=Y= {a b, ¢) and Tx—TY={X, o% {a}}- Then, a mapping
/. X-*Y which is defined by f(a)=f(b)=a and f(c) =c is a-cont., but not con-
tinuous.

Remark. According to the above diagram and the fact, “w.c. mapping is con-
tinuous if the range is a regular space [3]”, we have that for a mapping/'from a space
into a regular space, the following are equivalent.
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L/ is wec.

(2)/ is 0O-cont.
(3)/ is a.c.

(4)/ is a-cont.
(5) / is continuous.

Lemma 1.1. Let AEPO(X) and Bfa(X), then AC\B(La(A).

Proof. Since AT\BaA-0rMBO0-0=(A-0rBO0-)°c:(AlNBO-0 so ATllBa
c (AMNBO-0NA =1nla((AF)BQ-0MA)*1nla (JAMNB®)~C\A) = IntA(CUIAMB®)) =
= Int™ (C1(In/, (N T1.8°)))c Int* (Cln (1n/,(N1N8))), where Int”(...) and Cln (...)

denote the interior and the closure with respect to the subspace A. This implies
that AC\BEoc(A).

Theorem 1.3. If f: X-»Y is a-cont. and UEPO(X), then f\U is a-cont.

Proof. Let VcY be an open set. then f~19V)£a(X). Since UEPO(X),
by Lemma 1.1, we have UM /~1(V)=(f\U)~x(V)(ia(U). Therefore f\U is a-cont.

Lemma 1.2. Let AcYczX, YEa(X) and Afcc(Y), then Afa(X).

Proof. Since Inty (Cly (Inty(-4))) is open in Y, there exists an open set UaX
suchthat Inty (Cly (Inty/4)))= YIJIY. Since Y€a(T), c{¥YNMY0~°c:(£/M ¥)0 0=
= (Inty (Cly (Inty (™M) °-°|((Inty (™)))-)°“°=(Inty (J1))~°. Since Inty (A) is open
in Y, there exists an open set Va X such that Inty(A)=VDY, so 1c(KIN 70.0) Oc
c(PM7)0 0= (Inty(A))°~°c:A0~0. Hence, Afa(X).

Theorem 1.4. Let f: X—Y bea mapping and {Up. i£1} be a cover of Xsuch
that UiPa(X) for each i£l. Then,f is a-cont. iff\Utis a-cont. for each idl.

Proof. Let VczY be an open set, then (/{Y;)-1(K)Ea(£/;). Since C/la(X),
by Lemma 1.2, (/|L )“1(F)€a(T) for each iu. But, / 1(F) = iLch (| -1(HO).
then/ (V)£a(X) because the union of a-sets is an a-set. This implies that/is a-cont.

More characterizations of a-cont. mappings f: X—Y are given in the following.

(i) If X is a connected space, thenf(X) is connected.
(i) If/ is surjective, then Y is almost compact if X is almost compact.

Also one may deduce that:

(1) Let /: X—Y be a mapping and let g: X-»XXY, given by g(x)= (x, f(x))
be its graph mapping. Then/ is a-cont. if and only if g is a-cont.

(2) Let/: Xt-*Yt be a mapping for each ifi and /: 7rT,—aY; be a mapping
defined by /({x;})={/(x,)} for each {x,}£5A/ Then,/is a-cont. if and only iff
is a-cont. for each /£/.
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2. a-open and a-closed mappings

Now, we introduce new classes of mappings called ¢-open and «-closed mappings.

DerINITION 2.1. A mapping f: X—Y is called a-open (resp. a-closed) if the
image of each open (resp. closed) set in X is an a-set (resp. a-closed).
From the above definition one may have the following diagram.

preopen (resp. preclosed)
f

open (resp. closed) mapping = a-open (resp. a-closed)
U

semi-open (resp. semi-closed)

The converses of these implications are not true as the following examples
illustrate.

ExampPLE 2.1. An injective mapping from a discrete space into an excluding
topological space is semi-open and semi-closed, but neither a-open nor a-closed.

ExAMPLE 2.2. An injective mapping from a discrete space into an indiscrete
space is preopen and preclosed, but neither a-open nor a-closed.

ExampLe 2.3. Let X=Y={x,y,z} and Tx=Ty={X, ¢, {x,y}, {x}}. Then,
a mapping f: X—Y which is defined by f(x)=x, f(y)=z and f(xz)=y is a-open
and a-closed but neither open nor closed.

THEOREM 2.1. A mapping f: X—Y is a-open if and only if for each x€X and
each open set U of X containing x, there exists an a-set WCY containing f(x) such
that Wcf(U).

Proor. Follows immediately from Definition 2.1.

DeriNiTION 2.2. The intersection of all a-closed sets containing a subset 4ACX
is called a-closure of A4 and is denoted by Cl,(A4).

THEOREM 2.2. A mapping f: X—Y is a-closed if and only if Cl,(f(A4))cf(47)
for each AcCX.

Proor. Follows directly from Definition 2.2.

THEOREM 2.3. Let f: X—Y be a-open (resp. o-closed). If WY and FCX
is a closed (resp. open) set containing f~*(W), then there exists an a-closed set (resp.
an a-set) HCY containing W such that f~'(H)CF.

Proor. Let H=Y—f(X—F). Since fY(W)cCF, we have f(X—F)cY—W.
Since fis a-open (resp. a-closed), then H is a-closed (resp. an a-set) and f~1(H)=
=X—f Y f(X—F))c(X—F)=F.

COROLLARY 2.1. If f: X—Y is a-open, then
(@) fX(B ) (f ~(B))~ for each set BCY.
(i) £ (A7) (f ~(A4))~ for each A€PO(Y).
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Proof, (i) (/ 1(A)) s closed in X containing / 1(B) for a set BczY. By
Theorem 2.3, there exists an a-closed set Hc Y, HzdB such that / _1(A)c

=(/- - Th S Yr-0-)e:/-AA-">-)cl- - -
¢ (/(ii%vgo%ﬁws-rdlijrséctlly %r(om (i)).C [UA->)el- A )e-HB))

3. Comparison

The following lemma is very useful in the sequel.

LEMMa 3.1. [5]. If f: X~Y s preopen, then f ~\V°-)<=(f~XV))- for each
FezY.

Theorem 3.1. If f: X-*Y is p.c. and s.c., thenf is a-cont.

Proof. Let FcT be an open set, so f~ (V)*"PO(X) and f~ L(V)ESO(X).
Then, f~1V)c(f~LV))°~/ _L(F)c((/-1(F))0_)~°=(/-1(F))0.0. Therefore,
/ is a-cont.

Theorem 3.2. If f: X-+Y is a-cont., preopen, then the inverse image of each
a-set in Y is an a-set.

Proof. Let FcT be an a-set, so / 1(F)c/ 1(FOO0) c (/_1(F00)0 Oc

c (/_1(F0))00. By Lemma 3.1, we have / _1(F)c (/_1(F0Q)-0. Sincelis a-
cont., by Theorem 1.1, / -1(F)c (/- (F))°~°. This implies that / -1(F)£a(X).

Corollary 3.1. If f: X-*Y s a-cont. and preopen, we have:

(1) The inverse image of each a-closed set is a-closed.
(2) f(C\a(A))c:C\xf(A) for each set AtzX.

Proof. This follows immediately from Theorem 3.2.

Theorem 3.3. Let f: X--Y and ¢g: Y--Z be two mappings. Iff is preopen,
a-continuous and g is a-continuous, then gof is a-continuous.

Proof. Follows immediately from Theorem 3.2.

A. S. Mashhour, et al. [5] have shown that for every p.c., open mapping the in-
verse image of each preopen set is preopen. The following theorem is a slight impro-
vement of this fact.

Theorom 3.4. Let f: X-+Y bep.c., and a-open. Then the inverse image ofeach
preopen set is preopen.

Proof. Let VePO(Y), so/-1(F)c/-1(F-Qc (/-1F-°))-°c(/-1(F-))-0.
Sincelis a-open, by Corollary 2.1, we have, / -1(F)c (/~1F-))~°c ((/XF)~) 0=
= (f ~1(V))-°m Therefore, f ~r(¥)"PO{X).
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ON THE SHADOW LINES OF A CONVEX SURFACE

P. PAMFILOS (Iraklion)

0. Introduction

Shadow lines are called the curves on a convex surface which are defined as sepa-
rating lines between illuminated and shadowed sides of the surface, when the latter is
illuminated by a point light-source (see Fig. 1) or through parallel light in a given
direction e (Fig. 2). Several properties of the shadow lines relating to the geometry of

p

Fig. 1

the convex surface are known (see [I], [2], [3], [4]). The problem we are concerned
with here, is the calculation of variation of the function fi(p) (resp. f 2(e)) which
gives the length of the shadow line ap as a function of the point p (resp. the length
ofaeas a function of ). This is done by means of a naturaly defined submersion whose
fibres are isometric to the shadow lines. We use also a simple general lemma on varia-
tions of integrals over the compact fibres of a submersion. The variation formulae
thus obtained (see (23), (24)) show that if for some point p (resp. direction e) the
corresponding shadow line ap (resp. aj coincides with a geodesic of the surface, then
p (resp. e) is a stationary point offx (resp. /2.

Every function, vector field, etc. apearing in our discussion is supposed to be
Cee-differentiable. An alternative discussion on functions similar to our fx, / 2 but
using approximations of the convex surface by convex polyedra can be found in [5].
Note that our method can easily be adapted in order to compute variations of any
order of the functions fx, /2.

I. Submersions whose fibres are isometric to the shadow lines
Let M be a C“-differentiable convex surface of the Euclidean space E3 Let £

be the unit normal vector field on M pointing “outside” M. We think of the convexity
of M as equivalent with the condition

® (Aw, w) 0, for every tangent vector w” 0 of M.
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Here (..., ...) denotes the induced metric of M (from E?®), A denotes the second fun-
damental form with respect to ¢ (see [6] for general definitions and formulae).

A. First we construct a submersion whose fibres are the a,’s. Let P denote the
open unbounded part of E? consisting of points lying “‘outside” M. Let M X P have
the Riemannian product structure and F be the C=-function

@) F: MXP—R
F(m, p) = {,,, m—p), for every me M and p€P.

m—p€eE?® is identified with a tangent vector of £? at m, according to the standard
identification

0
3 a—
3 o
The same identification will be used throughout our discussion without other explicit
mention. Let now M be defined as

@ M = F~({0}) = {(m, p)e M X P|(§,,, m— p) = O}.
Lemma 1.1. M is a four dimensional submanifold of M X P.

0
b
b i 0Xy

- (a, b, ¢).

m

PrOOF. In fact, if (m, p)¢ M and (o, (7), 2s(t)) is a curve lying in M with
o, (0)=m, a3(0)=p, 0;(0)=v,€T,M, dy(0)=v,€T,P then we have

d d |z
ar OF(‘Xl (1), 22(D) = ar 0<‘;11(;)~ oy () —ax()) =

= <_Amvl’ ’n_p>+<ém’ U1—172> s <—Am(n1—p)s Ul>+<€m~ _02>a

because (m—p, ¢,,)=0 and (v,,¢,)=0. Hence the gradient of F at points
(m, p)EM is

(5) _(Am(rn_p)@im) #= 0’
and the lemma follows from the implicit function theorem.

PROPOSITION 1.2. The restriction m=n'|M_of the natural projection m’:
M X P—P on the second factor is a submersion of M whose fibres n~1(p) are isometric
to the shadow lines a,.

Proor. The last assertion becomes clear if we observe that
6 7=1(p) = {(m, p)|({m, m—p) = 0}c M X {p},

which, for fixed p, is precisely the differential geometric description of the shadow
line a,, as a set of points of MX{p}=M (Fig. 3). Let now (m, p)e M. From (5)
and the definition of M we have

(7) ]w(m,p)jW = {w1®w2€Tl(m,p)M><P[<Am()n _p)’ ‘v1>+<ém3 W2> = 0}‘

Hence to prove that 7 is a submersion, we have to show that for every w,cT,P,
there is a w,€T,,M such that

(A(Mm—p), wy) = — (&, Wa).
From (1) we have A4,,(m—p)+0, hence this is always possible.
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B. The construction of a submersion whose fibres are the «,’s follows the same
pattern:

We first consider the product M XS of M with the unit sphere S of E3, whose
points are identified with the “‘directions” of E2. We define F by

® {F: MxS—-R
F(m,e) = (&, e), for every me M and ec€S.

Let M be the subset of M XS defined by

© M = FY({0}) = {(m, e)€ M X S|{&p, e) = 0}.
At (m,e)¢ M the gradient of F is easily computed to be
(10) (—4n(e)®E, #0.

Hence we have the following:

LemMA 1.3. M is a three dimensional submanifold of M X S.

PROPOSITION 1.4. The restriction n=n'|M of the natural projection n’:
M X S-S on the second factor is a submersion of M whose fibres = (e) are isometric
to the shadow lines a,.

ProoOF. The last assertion becomes clear if we look at
(11) n=1(e) = {(m, e)|(¢m, €) = 0} © M X {e},

which for fixed e is precisely the differential geometric description (Fig. 4) of the
shadow line a, as a set of points of M X {e}=M. The metric of M is the induced one
from the product MXS.

Let now (m,e)é M. From (10) and the definition of M we have

(12) T(m,e)H T {W1® W2ET(M.2)MXS|<Am(e)’ w1> e <€m’ W2>}'

Since M is convex, given wy€T,S we can, always find a w,€T,M such that
(An(e), wi)={(&y, wy). This proves that 7|, ., is surjective, hence = is a submersion.
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2. Formulation of the problem

Let Jm denote the positive n/2-rotation of the tangent plane TnM. From (5)
(resp. (10)) we know that

(13) X(mP) = JmAm(rn-p)® Op,
(resp.
(14) = JmAm{e)®0.)

is a tangent vector field on M which spans at every point (m, p)EM the tangent
space of the shadow line ap (resp. ae) at that point.JThus the dual o of E=X/\\X\\
with respect to the metric of M is a one form on M which, when restricted to the
shadow line, coincides with its volume form. By means of this form wletfi (resp./?
be defined as

(15) fAp) = f o for every pfP.
()

(resp.

(16) ffie) = f oo for every e£S.)

jti(e)

Clearlyfi(p) (resp.f2(p)) gives the length of the shadow line ap (resp. ae). Thus our
problem is reduced on that of computation of the variation of integrals of a dif-
ferential form oo over the fibres of a submersion.

3. Variation of integrals over the fibres of a submersion

Although it is a simple one, | do not know whether the following formula is well
known or not (see however [7]). Anyway, for the sake of completeness | give a short
proof of it. Recall first that if 5: M”~-N isa submersion between Riemannian mani-
folds (M, g,), (N, g2, then the restriction of the tangent maps n¥ to the orthogonal
complements of the tangent spaces of the fibres is an isomorphism.1By means_of this
isomorphism every vector field X on N can be “lifted” to a vector field X on M such
that

(i) X is orthogonal to the fibres

(i) X is a-related to X: n~X—Xon.

Lemma 3.1. With the preceding notation and the additional condition that the
fibres np=Tc-l(p) for p£EN are compact, let c be a differentialform on M of degree
r=dim M=dim N. Define f (p) = J © for every pZN. Then for every vector
field X on N we have ’

Xf= fL xo.

1 Not necessarily an isometry.
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Proof. Let tp(qg, t), <p(p, t) denote the flows of X resp. X. From (ii) we have

17) n(tp(q>0) = tp(n(a), t).
wr= {9k h))-f(p)) = Ry (/(2 (<22, h)))-/(p)), where n(q)
(*) = lim- | to- fco)
» A =

From (17) we have

(* ™) n(x(@u,p)))= <FKp)

hence from (*) and (* *) it follows that

xfr=1 « » ["-/"]= [lim = fL xoo

4. First variation of f xand f 2

Let P, S, n be the same as in Section 1and to as in Section 2. We apply Lemma
3.1. For this we need the lift A' ofa vector field X on P (resp. S) which is easily
computed as follows.

A If . M—P then TMmp)M is given by

(18) TMPM = {(wl, wleT (M xP\(Am(m-p), w)+(£T, W) = 0}
Condition (i) of 3.1 is equivalent to

(19) (JmAOm-p), W) = 0.

These relations together with (c,,,, w)=0 imply that X has the form

(20) X(mp=-*"F(Amm-pm-plU) +0,,MX-"m X)U,

where p1l=(Am(m-p), Am(m-p)).
B. Analogously when n: M-+S we find that

(21) X(me) = % |)§é)-(A m(e)®p2tm + Q0 (X —*, Q U -

where we put again p2=(Am(e), Am(e)). For the evaluation of the integral of
Lxto we note that

(22)
Lxco(E) =Xco(E)-to(IX,E]) =-to(VXE) +co(VEX) = co(VEX) =-(VeE, X),
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where denotes the product metric of M XP and V the corresponding Levi-
Civita connection. Because of (20) the last equation is equivalent to

Lxco(E) =-<{,,, Z> (kAm(m-p), Am(m—p))Qq)~s2 = - ($ T, X)k(pD - *
where K is the geodesic curvature of the shadow line, hence we have

fi(p)

(23) m, :-% <, xpk{mril2dk.
By a similar reasoning we obtain, using (21),

Me)
(24) XU\C= 6 f,Xek(pd-~ds.

From these formulae it imediately follows that:

Proposition 4.1. |ffor some point p (resp. direction e) the shadow line ap
(resp. ae) coincides with a geodesic of the surface M, then p (resp. €) is a stationary
point offl (resp. fa).
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ZAPPA PRODUCTS*

M. KUNZE (Darmstadt)

In this paper we study a general type of product that was introduced for groups
by G. Zappa in 1940 [31]. Sometimes this product is referred to as a bilateral semi-
direct product. About 1950—1960 applications in group theory were investigated by
Szép, Rédei, Huppert, 1t6, Wielandt, and others. In spite of some inherent difficulties,
important results eventually were proved (cf. Section 4). Moreover, several useful
constructions in semigroup theory can be reduced to the Zappa product, but origi-
nally they were obtained by other means (Section 5). In fact, the Zappa product can-
not be understood very well unless considered as a construction at the crossroads of
automata theory and algebra (Section 7). Many questions concerning semigroup de-
compositions (Section 6) and semigroup automata remain open. Nevertheless, in
both cases the concept of Zappa products turns out to be meaningful. Furthermore the
intimate relationship between automata theory and classical algebra — without
sliding to classicism — that is made explicit by the notion of Zappa product is re-
markable.

1. Definition and basic properties

DerFINITION (1.1). A Zappa product of two semigroups S, T is a semigroup iso-
morphic to SXT, o where

(515 1) O(52, 1) = (5, - (s, So)s (11, 2]+ 1)

for some functions (, ): TXS—S and [,]: TXS—T. For a Zappa product of mo-
noids we require (1, 1) to be the identity element of S'XT, o. Similarly, a Zappa
product with zero is a semigroup isomorphic to SXTU{(0,0)}, o where (0, 0)
is a zero element and o is defined as above, but (,),[,] are functions with range
SU{0}, resp. TU{0}, satisfying

LPO. [ts]1 =0 5)=0,
[0, 5] =T1,0] = 0=0, s) = {z, 0).

For any set X denote by Z(X) the full transformation semigroup on X. Ob-
viously, we can rewrite the functions (,), [,] in terms of transformations by the follow-

* This research was supported by Grant A7877 of the Natural Sciences and Engineering
Research Council of Canada.
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ing mappings J, 7:
8: T~ T (SU{0)), t—(8,: s—3,(s) = {t,5)),
. S = T (TU{0)), s—(t(s): t £ =][1,5)).

Since both the symmetric notation and the asymmetric one will be used later on, we
state the following conditions in both notations for the convenience of the reader.
LP1:

(a) =it 1] =t
(b) 1?2 =1 [1ss)i=i1
(c) =1 {172
(d) Si() =3 (1,8 =1%.

Of course, this condition is applicable only if S and 7" are monoids. On the other hand,
in most cases identity elements due to condition LP1 may be adjoined to S and T,
if desired. The essential conditions are

LP2: 16159 = (£51)% [2, se52] = [[7, 51}, s2]
LP3. () =¥ 15 [t 85, sh =4, , {tgs )~ [ty5 5]
LP4. O4s(8) = 0,,(0,, () {trty, 5) = (t1, {tz, 5))
LPS. e(s152) = du(s1) - desi(s2) (1, sus2) = {1, s1) - ([1, s1], 52).

LP2 says that S is acting on TU {0}; i.e., 7 is a homomorphism. Dually LP4 states
that & is an anti-homomorphism. We do not know an illuminating interpretation of
LP3 and LP5 in purely algebraic terms, but those conditions are to be understood
easily in automata theory as will be clear in section 7.

ProrosITION (1.2). Let S, T be semigroups and o a multiplication on SXT as
defined above.

(a) If LP2—LPS5 are valid, then SXT, o is a semigroup.

(b) If S, T are monoids and LP1—LP5 are satisfied, then SXT, o is a monoid
with identity (1, 1).

(c) [15, 311 If S, T are groups, then every Zappa product of S, T is a group.

Similarly Zappa products with zero are obtained if LPO—LPS5 are fulfilled.

PROOF. (a) [Cf. 31] (51, #1) 0(Sg5 1)) 0 (S5, 13) = (51« (t1, ), [th, Salta) O (53, 25) =
= (51<t1a s2) {[t1, Salta, S3), [[tla Sa]ta, Ss] ts) =

LP4 L.P3
= (sl <zla 52> <[tlv sz], <t29 S3>>, [[tl’ 52]’ <t2, S3>] [t2, S3] 13) =
-_— PN m—
LPS L2

= (s1<t1, sg+ {2, s3>>, [t1, 52+ (ta, s3)][1s, Sslts) =
= (51, 1) o (s2(ta, 53, [t2, Sslts) = (51, 1) 0((52, 1) 0 (s3, 13))
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®) (s,1)o(1,1) = (1, 1),[1,1]) = (s,7) by LPla,c,
(1,1)o(s, t) = ({1, 5),[1,5]t) = (s,¢) by LPI1b, d.
(c) The inverse element of (s,¢) is (1,77 o(s™%, 1) = (¢, s72), [t~ s7Y)).

PROPOSITION (1.3). If SXT, o is a Zappa product of monoids S, T [with identity
element (1, 1)], then LP1—LP5 are valid. [Cf. 15, 31].

Proor. LPla,c. (1,¢) = (1,¢)o(1, 1) = ({z, 1), [¢, 1]).
LP1b, d. (s, 1) = (1, 1)o(s, 1) = ({1, 5), [1; s]).
In order to exploit the associativity, we compute
{0, By ol )ols, 1) = (@, ;.5 [4. 5l 68, 1) =
= ({t1, so) ({11, S2ltas 53), [[t15 Sl 2, 55])s
(L, 1) ol(s2s 1) 285, 1) ="(1, 1) o(8x{les ), [has Sa)) =
= ({11, sate, Sa)), [th, Salta, s)ltas Sal)-
By considering the second components we get
LP23 [[t:, sslts, s3] = [t1, S2(ta, s3))[2s, S5l

For LP2 put t,=1: [[t;, s3], s3]=[t1, sx(1, s3)][1, 53] and note (1, s3)y=1s;,
B =

For LP3 put s,=1: [[t;, 1]ta, s3]=I[t, (ta, ss)][ts, 53] and note [#, 1]=¢,.

By considering the first components of the above calculation we get

LP45 {t1s 82) ([tr, Saltas 53) = <t1, s3(ta, sa>>-
For LP4 put s,=1: (t;, IX[t, 1]ta, s5)=C(t1, (2, 53)y and note (t,, 1)=1,
{tls 1]=t1'

For LP5 put t,=1: (t;, so)[t1, Sal. S3)={t1, 5(1, 53)) and note (1, s3)=s;.

REMARK (1.4). If SXT, o is a Zappa product of monoids, then both
S—+8SXT, s—~(s,1) and T—-SXT, t—(1,¢) are monomorphisms.

PROOF. (1, 1)o(s3, 1)=(s(1, 55), [1, sa])=(sy55,1) by LPIb, d.
(1, t)o(1, t2)=((1r, 1), [t1, 1]1)=(1, 175) by LPla, c.

Green’s relationson S, T determine those on SX T, o to a certain extent.
LeMMA (1.5). Let SXT, o be a Zappa product of S and T. Then

(515 1) = (s3, 1) =5, =45, in S,

(1, 8) =e(Sa, )=t =21, in T,

(515 1) =a (52, )= 5, =g, in S,

(sih) =So(s )=>t=0tin T.
ProOF. Straightforward.
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REMARK (1.6). The mappings J, 7 of a Zappa product SX T, o satisfying LP2—
LP5 have the following properties:

(a) Every t(s) preserves the left ideals of T: x€Tt,=x*¢Tt; by LP3, ie.,
X= ,y=Xx°=4,)* forevery x, y€T. Similarly, every 6 preserves the right ideals of .S,
by LP5: x=4y=0,(x)=40,(y) for every x,y€S.

(b) 7(s) is an endomorphism, if s€ ﬂT Fix 6,. SXT, o is a semidirect product,

te

if every 6,=idg. (In that case LP4, LP5 are fulfilled vacuously.)

(c) (s) is a right translation, if d,(s)=1 for every t€T. If every d,=const,=
=(s—1g), then LP4, LP5 are fulfilled trivially.

(1.6)b and ¢ may indicate already that the range of Zappa products is very com-
prehensive.

2. Zappa preoducts and semigroup extensions

If M is a Zappa product of monoids S and 7', then we know by (1.4) and (1.3)
that M contains isomorphic copies S, T of S, T such that every element of M =
=~ SXT, o is uniquely representable as a product of elements of those submonoids:
(s, 2)=(s,1)o(1, 7). Conversely we show

PRrROPOSITION (2.1). Let H be a semigroup with subsemigroups S, T such that

WWH=S-T,

(i) 5.8, = So1p = ;=85 \t;=1, for every s,, $,€S and t,, t,€T; i.e., every
element of H is uniquely representable as s - t where s€S and t€T. Then H is a Zappa
product of S and T. Similarly, if 0¢ H\ ST and every element of H\ {0} is uniquely
representable as a product s-t, s€ S, t€T, then H is a Zappa product of S and T with
zero.

Proor. Assume that (i), (ii) are valid and define

(t, sy = the v€S such that ts=v.u where »€S and u€T,
[t, 5] = the u€T such that ts=v-u where v€S and u€T.

By (i), (ii) these mappings 7'X.S—S, resp. T, are well defined and SX7T, o is a grou-
poid where o is given by the formula of (1.1). Consider the mapping ¢: H -~ SXT
x+—(s, 1) such that x=s-1, s€S, t€T. We have to prove that ¢ is an isomorphism
H, . -SXT, o. For this purpose take s, 5,€S, t,, 1,6 T and compute

(512)P 0 (Sata)P = (1, 11) O(Sa, 1) = (5:1{t1, Sa), [11, Salte) =

= ((Sl<f1’ 52>)([f13 Sz]tz))(/) = (51 (<t17 52>[fls 52])’2)4’ = (31 (t sz)tz)‘P = ((51 t)- (sztz))ﬁo

by definition of (,), [,]. Concerning the Zappa product with zero, define
(t, s)=[t,s]=0 in case #s=0 and as above otherwise. Furthermore let Op=
=(0,0). Clearly x@oyp=(x-y)e is trivial, if x=0 or y=0. But we have to
consider the possibility #.s5,=0 in the above calculation:

Case t;55=0. Then (1, s,)=[t;,s5,]=0, and therefore
(s1t)@ o (sat)p = (5,-0, 0-1,) = (0,0) = 0¢p = ((3111) % (sztz))‘/"
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Case t;5370. Then (t1,s:)€S and [t;,5]€T and therefore s,(, 53)€S
and [t;, s,]1,€T. Moreover s,(t;, S2)[t;, 52]157#0, because 0¢ S-T. Thus the above
calculation remains valid in this case.

Let us compare the concept of Zappa products with the ordinary (i.e., Schreier
type) extension theory of semigroups. A semigroup extension (E, 0) of a semigroup
T by a semigroup S is a semigroup E containing a subsemigroup T isomorphic to
T, together with a congruence 6 on E such that Tis a O-class and that the factor
semigroup E/0 is isomorphic to S. [27]

In contrary to that situation of semigroup extensions, a Zappa product S X7, o
of monoids contains isomorphic copies of both 7"and S as noted above. Nevertheless,
we may ask for the intersection of the two theories.

PROPOSITION (2.2). A Zappa product SXT, o of monoids is a semigroup exten-
sion (SXT, 0) of T with respect to the isomorphic copy {1}XT of T and the mapping
S—~(SXT)[0, s—[(s, 1))y, if and only if it is a semidirect product of T and S with
respect to the homomorphism t: S—7(T).

ProoFf. Given a Zappa product SXT, o of monoids, define an equivalence by
(515 1) ~ (s, 12) <51 = 5.

Clearly ~ is a left congruence on SXT, o. In fact, ~ is the unique left congruence 0
containing {1} X T as an equivalence class and separating (s, 1), (52, 1) for s;#s5:

(1, Da1) = (5, 1)8(s,1).
Thus ~ is a congruence on SXT, o iff for every (s, 1), (s,t)eESXT
(S, t)O(Sg, t2) o (Sa t,)O(Sg, 12)9

i.e., s(t, s3)=5(t’, s5). For s=1 and t’=1 this condition reads (t, s;)=(1, sp)==5,
by LP1d. Therefore ~ is a congruence, iff all J,=idg in the alternative notation.
But in that case S X7, o is a semidirect product by (1.6).

3. Congruences

As an immediate consequence of LP2—LP5 the functions (, ),[,] of a Zappa
product SXT, o are usually determined by their values on a generating system (for
exceptions see the general case of LP-machines in Section 7), i.e., by their restrictions
to T X S’ where S” and 7" are generating systems of the semigroups S and T respecti-
vely. (As) noted by Rédei, the situation is different for generating systems of groups;
cf. (4.7)).

But while the definition of some functions (,),[,] on free generating systems is
subject to no conditions whatsoever, verification of axioms LP2—LP5 may be dif-
ficult in general. The following proposition establishes an alternative access to Zappa
products via factorization.

ProPOSITION (3.1). Let SXT, o be a Zappa product with respect to [.], {,).
Given two congruences, both denoted by ~, on S and T respectively, define

(s, )~(s' ) & s~ Nt~ t.
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Then ~ is a congruence on SXT, o if

j(t, s)~ (t\ s") and
b, *]-[/, si.

For Zappa products of monoids the converse is also true.

If(*) is valid, then we have SXTI~ sTS7~) X(77~) for appropriately defined
functions (,),[,] on (T/~)X(S/~).

Proof. If (*) is valid and x;~X,, tt~ for /=1,2, then

(*) X S'At~t'=>

(sit h)°(s2i /9 = XIS [A> x>
(si» /i)°(s2?D = (x{(i> 25 [(1>xi]C)
show that ~ is a congruence on SXT, o.

Conversely assume that SXT, o is a Zappa product of monoids, x~x', i~/",
but [/,x]x"'] or (/,x)x"'"). Then (x, D)~(x', 1) and (1, f)~(l, t"), but

1, t)o(s, 1) = «/,s), [t,sD*«*',s"), [/',sD = (1, O o(s', D).

Of course we cannot expect to describe all congruences of SXT, o in such a simple
manner.

Proposition (3.2). Let SXT, o be a Zappa product of monoids with respect to
(,),[,] and ~ a congruence relation on T such that

(+) [~ =>n[/, s]~[/', 4 for every sSES.
Define an equivalence on S by
(++) xis'6 V/IT:[i,xH ', 4

71/7'1~ is right cancellative, then (s, i)~ (s, t')osms"'At~t"' is a congruence on
SXT, o.

Proof. N is a right congruence because

shs'=>[t, s]~[i, ] by (++)
=>[, sl xj ~ I/, xI, X3 by (+)
=/, ssq~[/, s'sq by LP2.

Clearly ri is also a left congruence by LP2. Now let t~t' and x%x'. Since
[, x]~[', X by (+) and [/', x]~[/", X] by (++) we have [/, x]~[I', X], IS, the
second part of (*). In order to prove (t,s)”(t', s'), we have to show [/,, (t, s)]~
~ [h, (', s"] forevery tfiT. Forarbitrary tfi T weknow [tfi, x]~ [tfi', X] bythe
second part of(*) and therefore S el/, x1~1/1; (f, sH] [/, s by LP3. If @ de-
notes the canonical homomorphism I'—T/~, this statement reads as follows:

[h, (t 9kp=l/, @ = (h, (t\ S)lo>uff, STep.

But [tss]<p=[t's'](p as noted above, and 77~ is right cancellative. Thus
[*i, (/, )1~[/i, (/', x)], and (3.1) yields the desired result.
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As an example for a situation dual to (3.2) take 7=Z2"* and S as the set of states
of an accepting automaton A=(S, X, J, ¢,, F) for a language LS X*. Equip S
with right zero multiplication to fulfill the additional assumptions of (3.2) vacuously
(cf. 5.1 and section 7), put [a,s]=1, {a, s)=0,(s) where J is the state transition
function of A4, and consider any equivalence ~ on S satisfying: s; ~ s, implies
0u($)EF < d,(s)€F for every weZ*. If ~ is the equality, then X*/~ is the
transition monoid of 4. If ~ is the coarsest possible equivalence (yielding the mi-
nimal automaton for L), then X*/~ is the syntactic monoid of L. Thus, (3.1) and
(3.2) are related to the reduction of automata, especially in cases where we can
understand the Zappa product SX7, o itself as an automaton by means developed
in Section 7.

4. Zappa products in group theory

In order to give an impression of group theoretic aspects of the Zappa product,
let us recall the following theorems.

THEOREM (4.1). If a finite group G is a Zappa product of cyclic groups, then G is
supersolvable. [IT6, 4].

On the other hand it turned out to be difficult to determine all Zappa products of
groups of a given type, even for the case of cyclic groups [1, 16].

THEOREM (4.2). If an arbitrary group G is a Zappa product of Abelian groups,
then G”={1} where G” denotes the second commutator group of G. [8, 5].

THEOREM (4.3). Every finite group which is a Zappa product of nilpotent groups is
solvable. [30, 11, 5].

Sometimes the possibilities for decompositions of a given group into a Zappa
product of subgroups are recognized easily.

REMARK (4.4). If G is a finite solvable group and |G| is not a prime power, then
G is a nontrivial Zappa product.

Proor. Indeed G is a Zappa product of Hall subgroups.

REMARK (4.5). No cyclic p-group (where p is a prime number) is factorizable as
any Zappa product in a nontrivial manner.

PrOOF. Note that Zappa factors of a finite group have to be subgroups. But
cyclic p-groups contain a unique maximal subgroup.

For further results on decompositions see Section 6. The relation between the
functions § and 7 of a Zappa product has been studied by Rédei and Szép:

PROPOSITION (4.6). Let S, T be groups and t: S—Z(T) a homomorphism such
that 1,€Fix t(s) for every s€S (i.e., LPla,b and LP2 are valid). If Kern t={1},
then there exists at most one function 6: T—7(S) such that a®® = (ac)*-(c*)~*
for every a,c€T and s€S. In this case 6, t give rise to a Zappa product of S and
T. [15]

In contrary to the situation in (4.6) we mention Rédei’s
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ExAMPLE (4.7). [Cf. 16]. Let T be the infinite cyclic group {(a) and S the cyclic
group (4) of order 8. Then the action of S on T defined by x4=x"1 may be com-
bined with the following “‘state transition” functions ¢ (cf. section 7):

<’>1 A <’ >2 i
a A3 a A3
a t1a a=l |47

(49, ) 0 (4F, @) = (do¥H+iKimod®), gh(-Dir))

(Ag, ai)oz(Ak, af) — (Ag+k+2i(kmod2), ai-(—l)k+j).

5. Applications to semigroups

The following examples will give an impression of the range covered by the con-
cept of Zappa product in semigroup theory. Sometimes a certain semigroup H is
easily recognized as not expressable as a Zappa product of two proper subsemigroups.
However, such a statement does not imply immediately that the construction of
Zappa products is meaningless for 1. There are examples where the gap between
Zappa products and such a semigroup H is very slight and may be bridged naturally
by either a factorization or an embedding.

5.1. Transformation monoids

Let S be a transformation monoid acting on a set 7. Consider 7" as a right zero
semigroup and define [¢,s]=?s by the action of § on T and (¢, s)=15 for every
teT, s€S. Then LP2 is a restatement of the definition of transformation semigroups
and LP3—LPS5 are fulfilled vacuously. SX 7, o is a Zappa product with multiplica-
tion (s, t)o(Ss, 1)=(sy, 7;) which is rather trivial. If an identity element 1,
is adjoined to the right zero semigroup 7 such that 1, is a fixed point of the trans-
formations in S and furthermore LP1d is observed, then the Zappa product
SX(TU{1}), o is reflecting the transformation behaviour of (S, 7T), i.e., (sg,1)c
o(s, 1)=(s,, ts) for every t€T. On the other hand, if we consider 7" as a left zero
semigroup and define (7, s)=s, [t, s]=1s, we obtain a semigroup SXT, o with
multiplication (sy, #;)o(8s, t5)=(s,52, 1;5,) representing both the structure of .S and
the action of S on T

5.2. Translational hull

Let T be a semigroup, S a monoid, and t: S—~P(7) a homomorphism of S into
the monoid P(T) of right translations of 7. Define J,=const for every t€7.
Then LPla, ¢, LP2, LP3 hold by assumption, and LP4, LP5 are fulfilled trivially as
noted already in (1.6). The multiplication in SXT, o is

(51, 1) 0 (52,19) = (51, 12 - 1).

An interesting special case of such a product is SE P(T) and t=id. An identity
element subject to conditions LP1b, d may be adjoined to T if desired.

Acta Mathematice Hungarica 41, 1983



ZAPPA PRODUCTS 233

5.3. Ideal extensions

Let E be a semigroup with 0, 1 and 7" an ideal of E. Consider S=E/T and de-
fine (t,s)=1,
_fts if s€ENT
[”S]‘{o if §=T.

By the special case of 5.2, SXT, o is a semigroup with multiplication (s, #;)o
o(s2, ta)=(s1, t1521,) where t, - T is defined to be 0. If an identity element is adjoined
to T, we have

(5150, 1) if ;=1
S15 1) 0(83, B) = ;
(51, 1) 0 (52 22) {(sl, 1,551,) otherwise.

Therefore the mapping ¢: SX(TU{l})—~E, (s,t)—st (where TES=E/T is

treated as zero element) is a surjective homomorphism. The corresponding congruence
on SX(TU {1}) iS (Sl, tl)N(SZ, t2)<:>sl t1:S2 t2.

5.4. Bruck-Reilly extensions

Let H be a monoid and 6 an endomorphism of H. The generalized Bruck-Reilly
extension BR(H, 0) is the set NyXH XN, with multiplication

(m,a,n)-(p, b, g9) = (m—n+1t,ab"~"-b6"~?, g—p+1)

where t=max (n,p) and 6°=idy [3, 10]. BR(H, 0) is the Zappa product of N, +
and the semidirect product H X N, with operations
0

[(a, n), p] = (a@™**™P =" max(n, p)—p), {(a,n), p) = max(n, p)—n.

5.5. Rees matrix semigroups

Every Rees matrix semigroup .#°[G, I, A, P] may be canonically extended to a
Rees matrix semigroup .#°[G,I’, A’, Pl where I'=Ij{|}, A'=A{} and

i Dis, if iel’ AEA,
Pis=11 otherwise;

1.e.,
1—1) |

P=||p } b
1
—_——
[
Then S={(,1,|)|ic’} and T={(,a,2)|acG, i€ A’} are subsemigroups of
MOIG, I, A”, P’], because p;=1. Now consider I’ as a left zero semigroup and A’

as a right zero semigroup. Clearly S=~/'and T=GX A’ (direct product), because
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Px|= 1L Furthermore every element (/,a /)£Jéa\G, I, T, PlT {0} is uniquely
representable as a product £S-T:

(1,1, he(l,a, A) = (i,plla, X) = (i,a X.

Thus Jf°[G, ", A', P'] is a Zappa product with zero by (2.1). The function T in-
volved therein is given by [(a, X), j1=(apXJ, |), while the function 6 given by
((a, X), j)=1 is not interesting because of the left zero multiplication in I'. De
facto this construction is an application of a slightly generalized version of 5.2.

5.6. Semigroup extensions of groups

Let T be a group and 5= CA-(j-)(1)={/: T-*T|1/=1} the stabilizer of the ele-
ment Ir within the full transformation semigroup on the set T. Define [,] to be the
action of ¥(T) on T, and (x,/) : T-+T, (x)-1. Clearly ITEFix((x,/)),
i.e., (x,f)ES for every x£T, fdS.

LPla. idr is the identity element of S.
b. by definition of S.
C.y(x,)=yx ex~1=y, i.e., (X, 1)=idT.

LP2. composition of mappings.
LP3. [XI5 <x2,/>]-[x2,/] = x1<x2,/>-x2'= (XIXQ/-(x2) - D-x2 =
= (XX = [XiXa.ll.
LP4. y(xiX2,/> = Oogxa)/- (fox,))“], y(xI5</>) =
= (yxi)<x2,/) o(x"Xa,/))-1= (yXXAf- (x jy Le((xx/- (x,/)“D“1=
= (YXX/- (x2) 1+((x2) -1)-1 «((XjX,)))*1L
LP5. 1(x,AA ) = (yx)f j 2m(x(AA))-1.

T<[xJi)([xJi].12> = ((1x)A *(Xi)“D mx/ X)/2¢((x/OA)"1= (>x)A[2¢(x(AA))_1-
If/ is the mapping »>»x \ then (x,/) isthe composition of/ and the inner auto-
morphism induced by x:

L<x,/> = (yx)/- (x/)“1= (jx)"lex = x -~ x = x_1(yHx.

Furthermore /(ES is an endomorphism of T iff (x,f )—f, and /€S isa right trans-
lation of [ iff (x,/)=idr=1s. Replacing S by a subsemigroup S'satisfying x€ TA
A £S'=>(x,f )ES ' vyields further examples. For S'—Aut(T) we obtain the holo-
morph of T. In the general case it may be interesting to notice that there are virtually
no constraints for multiplications in a semigroup extension of a group insofar as any
transformation/ may become an inner left translation (induced by (/ 1)) with respect
to the T-component. But when we drop the assumption that T is a group, the situaton
becomes rather different as noted in (1.6)a.
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6. Decompositions of semigroups

Much work remains to be done in this area. But because of the inherent interest
let us mention some preliminary remarks and results.

If a semigroup H is a representable as a homomorphic image of a subsemigroup
of a Zappa product S XT, o, then we have a decomposition of H depending on the
following data:

— the multiplication in § and 7,

— the operations [,] and (,),

— a description of the involved subsemigroup and/or congruence.

The usefulness of such a decomposition of a given semigroup corresponds more or
less to the accessability of those data. (Compare e.g. decompositions by means of the
wreath product.) Especially one may ask for decompositions H, - =~ SXT, o where
S and T are #{1}. In that case H is called factorizable [15]. Besides (4.4) and (4.5)
we have

ExampLE (6.1). PSL(2, 13) is not factorizable. [7].

On the other hand there are interesting examples of simple groups which are
factorizable.

ExAMPLE (6.2). The alternating group 4;is factorizable into S'=((123), (234)) =
=~A, and a cyclic group T={((12345)) of order 5. [cf. 29].

Proor. Since (124)=(234)%(123) and (134)=(234)(123)%, S contains all cycles
of length 3 leaving the letter 5 fixed. Therefore S consists of all even permutations
with the letter 5 as fixed point [e.g. 2, Lemma 5.4.1],i.e., S=A4,. If s,¢;=s,t, where
51, 8:€S and t;, t,€T, then s;31ls;=1,17'€SNT. But SNT={1}, because |S|=12
and |T|=5. Thus S-T contains 12-5=60 different elements of A; and hence
S <=

In terms of generators we can represent the Zappa product S-7 by the follo-
wing table (cf. Section 7).

As: A, B, .where A%= B8 — (AR -="1,c’=1,
¢ \|B%e¢? Ac
Concerning decompositions by the wreath product every finite aperiodic semigroup
may be obtained from almost nothing, i.e., from the right zero semigroup of order 3.

But let us start investigating what kind of semigroups can be obtained from right
zero semigroups by the Zappa product.

PROPOSITION (6.3). For a semigroup H the following properties are equivalent:

(i) H is a homomorphic image of a subsemigroup of a Zappa product of two right
zero semigroups. (i.e., H divides a Zappa product of two right zero semigroups.)

(ii) Ewery product of two elements of H is a right zero, i.e., x-y-z=y-z for
every x,y,z€H.

Proor. If S and T are right zero semigroups, the multiplication in any Zappa
product SXT, o reads as

(51- 1) o(s2, ta) = ({24, 52\/, fy).
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Therefore every product (sl,t,)o(sz,tg)o(sa,ts) equals ((tz; S3), ts)= (sz, ty) 0
o(sy, t3). Since property (ii) is invariant under homomorphisms and passing to
subsemigroups, this proves the assertion (i)=(ii).

For the converse let H be a semigroup satisfying the equation x-y-z=y-z
and take the sets S and 7 equal to H, but equipped with right zero multiplication.
Then the definitions (x, y) = x.y in H, [x,y]=x give rise to a Zappa pro-
duct, because LP2—LP5 are fulfilled:

LP4. (hty, sy = (ty, sy =ty-5 =ty - ty-5 = (1, {ta, 5)),
LPs. <f, S1 52> = <t’ 52> = <[f7 51), sz> == <’, 51><[t, 51 sz>,
and LP2, LP3 are valid trivially. Now consider the subsemigroup of SX T, o gen-

erated by D= {(x, x)|x¢ S=T=H}. Every element of (D) is either in D or is of the
form (x-y, y) where x,ycH:

(X, x)O(y,y) = (x'y’ }’)- (Z: Z)O(x')’,.l’) = (Z'x'}":J’) =(xy1y)

We shall complete the proof by showing that the mapping ¢: SXT—+H, (x, y)—x
restricted to (D), o is a homomorphism.

Case 1. (x,x)@ - (z, u)p=x-z=(x-z,u)p=((x, x) o (z, u)) .

Case 2. (x-3, )¢ - (2, W)o=(x-y)-z=y-z=(y-z,u)p=((x-y, y) o (z, u)) 9.
Thus H, - is a homomorphic image of the subsemigroup (D) of SXT, o.

7. Semigroup automata

In this section we present some ideas of formal language theory and interpret
them from the algebraic point of view. Concerning the Zappa product, this section
provides a natural motivation and surveys several useful applications related to
automata theory. On the other hand little will be done to develop an algebraic theory
of semigroup automata in its own right.

In the algebraic setting, a formal language (X*, L) is a structure consisting of the
free monoid X* generated by a finite alphabet X together with a unary relation, i.e.,
a subset L. A central question is that of asking for effective representations of L. It
belongs to the folklore of theoretical computer science to understand the definition

of alanguage L by a generating grammar as an embedding (Z*, L)S(V*, {we | 2o (8
= w)) such that L is the intersection of X* and the standard type language {w¢ V' *|S2>

éw} for some S€V, given by the compatible pre-order relation % induced by a
grammar. But in a similar manner it is possible to understand the concept of recogni-
tion devices for languages as a special case of the algebraic concept of embedding
(Z*,L)S (M, P): in this case the multiplication in M is to be defined effectively by
some type of algorithm while the standard type language P may be taken as
{x€M|x-q,=1}, ie., the set of left inverses of a fixed element g€ M. A suitable
multiplication algorithm for M is that of derivations according to a formal grammar.

DerINITION (7.1). A semigroup automaton (S, T. 8, 7) consists of two generated
semigroups S=(S,S’), T=(7T,T’) and wto mappings 6: T—~7(SU{0}), 7: S~
—-7(TU{0}) such that the conditions LPO—LP5 are satisfied.
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A generated semigroup S=(S,S’) isa semigroup S together with a distinguished
set S of generators of S. The structure (S, T, 9, 7) is to be understood as an automa-
ton by means of the following dictionary:

S set of states

s set of operators

- in §  sequential processing
T input/output

-in T  concatenation
o state transition function
T output function
0 operation undefined
| % no-operation state
T empty input/output
LP3 sequential processing rule
LP5 serial composition rule

Axioms LP2—LP4 say that S is acting like a sequential transducer. In this framework
LP3 and LPS appear not only as fundamental properties, but also as the most natural
ones to impose. A standard type of semigroup automata is provided by the linear
parallel processing machines (LP-machines) where operators A, B, C, ... are acting
from one side on an input sequence a,...q,€X* by processing rules ad—B,...
...B,b; ... b, insuch a way that is governed by the formalism of grammars. (‘‘linear”
stands for I-dimensional, and ‘“‘parallel” indicates that operators may act simulta-
neously as usually in derivations.)

DEeFINITION (7.2). A deterministic LP-machine is a formal grammar (X, ZUT,
P, qo) such that PC X' XI'*Z* and P is a partial function. [12, 13].

PROPOSITION (7.3). Every deterministic LP-machine (£, 2UT, P, q,) corresponds
canonically to a semigroup automaton (I'*, £*, 6, t) with initial state g, where the
functions 6, are given by

aA ag .2 Bl...B" bl"'bm i’l P
N !\ !
(a, 4y [a, 4]

and {(a, Ay=|a, A1=0 if there is no rule in P with left side aA.

Furthermore the operations (, ),[ , ] are defined to be O in case a derivation of
a,...a A, ... A; would run forever rather than yielding a final result. Final results of
derivations according to LP-machine grammars are unique whenever existing [12].
LP-machines are conveniently given by a partial multiplication table of the extension
semigroup I'*Z*U{0}, o where

y if af 3y such that yeI'*3*,
0 otherwise,

aoﬁ:{

asin (1.1). By virtue of (7.3) and (1.2) associativity is provided automatically. A small
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example of such a table is

initial state

I
E 1| Q operators

. a IE Qa |
terminals # 1 # 1

for an LP-machine that will accept the language {#a2'-1|/tGNC}. Without going
into details let us mention the following
Applications (7.4) of LP-machines [12]:

— computation of functions: linear-time integer multiplication

— uniform representation of Chomsky hierarchy:

type of rules for LP-machines corresponding classical automata
aA"B finite automaton
aA-"By... Bn deterministic pushdown automaton with

a single state

deterministic pushdown automaton

/
aA-{B\::Bmb (subclass of context-sensitive languages)

aA~*Bx...B,, ..h,, equivalent to Turing machine

— context-sensitive languages: parsing algorithms for (special) non-context-free
generating grammars for a rather comprehensive subclass [13].

Besides the case of LP-machines where the semigroup S of states in a semigroup
automaton (S, Z*, S, r) is chosen to be a free monoid I'*, it is worth-while to study
finite semigroups of states (with non-trivial multiplication, in contrary to the example
given in Section 3). This possibility seems to allow an interesting access for investi-
gations in complexity of rational and especially finite languages where many other
tools fail to be useful.
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CONTINUOUS INCIDENCE RELATIONS
OF TOPOLOGICAL PLANES

G. GRIMEISEN* (Stuttgart)

0. In topological planes the link between the geometrical and the topological
structure is established by the requirement that the partial external operations
““joining of points” and “intersecting of lines” be (op-) continuous (for the terminol-
ogy, see Section 1). It seems that nowhere in the literature one has discussed the
question, if and under which conditions the incidence relation (or other relations deri-
ved from it) underlying to the notion of a topological plane is (resp. are) ‘‘continuous”
in some natural sense, or whether, in a more general setting (see Remark 6), the
incidence relation should be required to be ‘“‘continuous”. In this paper, it turns
out that the incidence relation of each topological plane and its inverse are lower-
semicontinuous and they are continuous (in the sense introduced by the author in [3])
in certain classes of topological planes (Theorem 4, Propositions 5 through 8).

As a byproduct in this paper, we characterize (in Theorem 1) the continuity of
certain relations between a topological space and a product of topological spaces
(which has a simple consequence in Proposition 9) and describe (in Theorem 3) the
topology of the set of lines (of a topological plane) in terms of limits (via the notion
of the power of a topology).

1. Auxiliary considerations from the general topology

In this section, we collect some facts from the general topology with a minimum
of a systematic representation.

For each set M, we denote by @M the class of all filtered families (f, K, a)
in M; for each topological space (M, 1), we denote by B,, Lim;, lim inf;, ‘B[4] the
neighborhood operator induced by 4, the limit operator induced by 4 (extended to
®M), the limit inferior induced by A (which is defined on ®BAM) and the (first)
power of A (which is a topology of the power set BM of M and has been denoted by
P in [3]), respectively (see [3]). For the set-theoretical terminology used in this paper,
see Monk [8] and [3].

For the whole section, let (E, 1), (F, o) be topological spaces. Down to Proposi-
tion 1, let ¢ be a mapping from EX E into F,i.e. with Dmn ¢ SEXE and RngoCEF
(read Dmn as “‘domain of definition of”’ and Rng as “‘range of”’). One may call such
a mapping a (binary) partial external operation in E. Occasionally, it is useful to

* Support by Deutscher Akademischer Austauschdienst (Bundesrepublik Deutschland) and by
the University Paris VI is gratefully acknowledged.
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consider a kind of ““‘continuity” of ¢ which differs in general from the (7 X1, ¢)-con-
tinuity :

We call ¢ (t, 0)-op-continuous (or: operation-continuous) if and only if for each
(x, »)€Dmn ¢ and each UcB,¢(x, y) there are sets VeV . x and WEB,y such
that ¥XWSDmn ¢ and o(VXW)ZS U. (For E=F and =0 this definition is
contained in the definition of op-continuity in [4], p. 184.)

PROPOSITION 1. @ is (1, 0)-op-continuous if and only if Dmn ¢ is (tX1)-open
and ¢ is (tX1, 0)-continuous.

Proor. J

We recall that a relation RS EXF is said to be (z, 0)-continuous if and only if
for each (x, y)€R there is a (7, 6)-continuous mapping ¢: Dmn R—F such that
(x, ¥)€E@ SR, or, equivalently, if and only if there is a set B %(Dmn R, Rng R)
such that R=U®B, where Dmn R and Rng R are endowed with the corresponding
trace topologies (see [3], p. 37). For Theorem 1 and Remark 1, let (F,;, 0,);¢p be a
family of topological spaces, (F, o) their product and (R,)cp a family of relations
R,SEXF; (D is a set).

THEOREM 1. We define a relation SZSEXF by letting y S f if and only if
v Ry f(d) for all deD (for all (y, f)CEXF). Then, S is (t, o)-continuous if and
— provided that, for some set M, Dmn R,=M holds for all deD — only if R, is
(t, og)-continuous for all deD.

ProOF. 1. Assume that all R, are (7, o,)-continuous. Let y S f. Theny R; f(d)
holds for all deD. Therefore, there exists a family (@,),cp Of (7, 6,)-continuous
mappings ¢,: Dmn R;—~F, such that (y, f(d))€@,S R, (use of the continuity of

R, and of the axiom of choice). By the definition of S, we have Dmn S = ();Dmn R,
deD

(where the index E indicates the convention Ny =FE). We define a mapping
z:Dmn S—~F by letting 3(z2)=(¢4(2))scp for all zeDmn S. Since all ¢, are
(7, o,4)-continuous, y is (t, o)-continuous (see Dugundji [2], p. 201, Corollary 2.3).
Using the definition of y and the choice of the mappings ¢,, one obtains
(¥, f)€y: using additionally the definition of S, one gets that y<.S. We have
showed that S is (t, o)-continuous.

2. Assume that for some set M, Dmn R,=M holds for all deD. Let S be
(1, o)-continuous. Let c¢€D and y R, x. Then yeDmn R;=M holds for all
deD. By the axiom of choice, there is a mapping h€ F such that y R, h(d) holds
for all deD. We define a mapping f€F by letting f(d)=x for d=c and f(d)=
= h(d) for all de D\ {c}. Then, by the definition of S, one has y S f. Since S is
(7, o)-continuous, there is a (7, o)-continuous mapping ¢: M —~F such that (y, f)€
@< S (use of M=Dmn S). We define a mapping by y=pr.op (where pr,:
F—F_ denotes the c-th projection). ¥ is (t, 6.)-continuous, and one has Dmn =
=Dmn ¢==M=Dmn R,. Since (y, f)€¢, one has (p, x)=(y, pr.(f))€y. In or-
der to show the continuity of R,, it is left to show ¥ S R.. Let (z, w)€y. Then, one
obtains, by the definition of ¥, (¢(2))(c)=w, therefore (using that ¢ S implies
(z, 9(2))€S), in view of the definition of S,z R. w. We have showed that R,
is (1, o.)-contmuous. []
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ReEmARK 1. If, especially, R, is a mapping on E into F, for all deD, then S,
defined in Theorem 1, is a mapping on E into F, and we regain a well-known theorem
saying that S is continuous if and only if all R; are continuous (see, e.g., Dugundji
[2], p. 101, Corollary 2.3).

We formulate, next, a simple assertion serving as a lemma soon:

PROPOSITION 2. 7 is the finest topology o of E such that for all topological spaces
(G, ) and all mappings g: G—~E the statement () holds:

(%) If g is (4, ©)-continuous, then g is (A, 0)-continuous.

Proor. O

Now, we recall the notion of lower-semicontinuity of a set-valued mapping.
Let for the following ¢ be a mapping from E into BF, i.e. with Dmn ¢ CF and
Rng ¢ SPF. Then, ¢ is said to be (t, g)-lower-semicontinuous if and only if

o(Lim, (£, K, a)) S B(lim inf, (pof, K, a))

holds for all (f, K, a)¢® Dmn ¢ (see [3], p. 39, where we chose this definition as a
characterization). A relation RS EXF is said to be (t, a)-lower-semicontinuous if
and only if the canonical mapping R induced by R, which is defined by R(x)=
={y|xRy} for all xéDmn R, is (z,0)-lower-semicontinuous. Recall (from [3],
p- 40) that if R is (z, o)-continuous, then R is (7, o)-lower-semicontinuous.

We remark that ¢ is (7, g)-lower-semicontinuous if and only if ¢ is (7, B[o])-
continuous (see [3], p. 39, where this characterization of lower-semicontinuity is
chosen as its definition); therefore, one obtains by means of Proposition 2 the follow-
ing description of B[z]:

PROPOSITION 3. SB[1] is the finest topology o of BE such that for all topological
spaces (G, ) and all mappings g: G—~BE the next statement () holds:

(%) If g is (4, v)-lower-semicontinuous, then g is (4, ¢)-continuous.

Because of Proposition 3, the author inclines to call B[z] the topology of lower-
semicontinuity of BE w.r. to t (cf. also Cech [1], p. 623, and Grimeisen [5]).

For later use, we agree to denote the limit operation in a Hausdorff space (£, 7),
i.e. the relation RS (PE)XE defined by (f,K,a) R x if and only if x¢
€Lim, (f, K, a) (for all ((f,K, a),x)E(PE)XE) by lim,.

2. The space of the lines as a subspace of the power
of the space of the points

A class M is said to be decomposed into classes A and B if and only if M=A4AUB
and @ = AN B. If R is a relation, it is decomposed into a function fun R:={(x, y)€ R|
if (x,z)ER, then y=z} (called the functional part of R) and a relation rel
R:=R\fun R (called the relational part of R), which is a function (namely empty)
if and only if R is a function.

Let (P, ®, /) be a triple of sets P, ®, I such that /Z PX 6. We define a relation
S(S (PXP)X®) by letting (p,q) S G if and only if p /G and ¢ IG for
all ((p, q), G)E(PXP)X® and a relation T(S(GX®)XP) by letting (G,H) T p
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if and only if p /G and p I H for all ((G, H), p)e(GXG)XP. We denote
fun S by V and fun T by A.

(P, ®, 1) is called an incidence structure if and only if Dmn /=P, Rng I=6,
rel S=Stidp, and rel T=Ttide (where idg:={(k,k)k€K} for a set K and
stands for ‘‘restricted to”). (Realize that, up to the natural bijective mapping
between idp X ® and P X ®, the relation Stidp coincides with 7, while in an analogous
sense, Ttidg coincides with 771; so, (P, ®, /) is an incidence structure if and only if
Dmn /=P, Rng I=0, S is (essentially) decomposed into V and / and T is (essen-
tially) decomposed into A and /~L) In an incidence structure (P, ®, 7), we adapt
the common use to call the elements of £ “‘points™, those of ®, “lines”, 7 the “‘inci-
dence relation”, V the ““joining of points™ and A the ““intersecting of lines”.

REMARK 2. The triple (P, ®, /) is an incidence structure if and only if it is a “‘re-
guldre Inzidenzstruktur” as defined by Pickert [9], p. 2, such that for each pcP
there are G, HE® with the properties G+=H, p I G and p I H. Furthermore, if
(P, ®, I) is an incidence structure, then for each G€® there is a p€ P with non
(p I G) and, dually, for each peP there is a GE€® with non (p I G). Of course,
(P, ®, 1) is an incidence structure if and only if (®, P, / ~1) is an incidence structure.

If (P,®,1) is an incidence structure, then Dmn V S(PXP)\id, and
Dmn A S (G X6)\idg.

For the remainder of this paper, let (P, ®, /) be an incidence structure; without
loss of generality we assume that ® S 3P and that / is defined by p / G if and only
if pcG (for all (p, G)EPXG).

(P, ®, 1) is called a plane if and only if (PXP)\idpSDmn V. Of course,
projective planes, affine planes and absolute planes (for the terminology, see Karzel—
Sorensen—Windelberg [6], pp. 12, 29 and 96) are planes. Let t and ¢ be Hausdorff
topologies of P and ®, respectively. We call (cf. Salzmann [11], p. 4, where the notion
of the underlying incidence structure differs slightly from that chosen here)
E:=((P,7), (6,0),1) a topological incidence structure (Salzmann, loc. cit., says
“topological geometry’’) if and only if V is (t, ¢)-op-continuous and A is (o, 7)-0p-
continuous. Of course, if E is a topological incidence structure, then E is called a
topological plane [Salzmann, loc. cit., says ‘‘topological plane geometry’’] (topologi-
cal projective plane, etc.) if and only if (P, ®, /) is a plane (projective plane, etc.).

It is well known that in topological incidence structures 7 determines ¢ and,
conversely, o determines 7 in the sense of the following

PROPOSITION 4 (Salzmann [10], p. 490, there for topological projective planes).
Let E be a topological incidence structure. Then, one has (a) and (b):
(a) For each GE® and all py, ps with py#p, and p; I G (i=1,2), one has

‘l;o-G = jf@{V1VV2]V,€ m,p; fOI‘ i= 1, 2}.

(b) denotes the dualization of (a) (one obtains from (a) by replacing G, ®, p,,
pas1,0,t and NV by p, P,G,,Gy, 71, 1,0 and N in this order).

PROOF. Since (((ﬁ, 6),(P; z):.1 ‘1) is a topological incidence structure, it suffi-
ces to prove (a):

1. We show that B,GC H{V.VV,|ViEB.p; for i=1,2}. Let y€B,G.
Since p;#p, and (p1, p) S G hold, we have G=p,Vp, (because of rel S=Stidp).
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Since V is op-continuous, there are neighborhoods V% p; (i=1,2) such that
ViXVeSDmn V and V (Vi XVy)<Sy.

2. We show that {V,VV,|V,B,.p; for i=1,2}CB,G. (From this follows
He{ViVVo|ViER p; for i=1,2}SB,G.) Let VieB,p; for i=1,2. Since 7 is
Hausdorff, there are neighborhoods WiB.p; (i=1,2) such that WiNW,=Q&
and W,C¥ for i=1,2.

Let i€{l,2}. Because of p; I G, there is an H;¢® with p, I H; and G#H;
(see Remark 2). Since (G, H;)¢idg and (G, H;) T p;, we have p;=GAH; (use
of rel T=Ttidg). Since A is op-continuous, there are neighborhoods y;€%8,G and
0€B,H; such that 79;X6,SDmn A and A(y;X3d;)SW,; especially, one has
LANHeW; for all Le€vy,.

Now, let Ley,MNy,. Then, one has ¢;:=LAHW; for i=1,2. Since
W,NW,= @, one obtains (¢;,q,)¢idp; on the other hand, one has (q;,¢5) S L
thus L=¢,Vq, (use of rel S=Stdp) and so LEW,VW,SV,VV,. In view of
the choice of L, we have proved that y, Ny, SV, VV,, therefore, because of y;MNy.€
€B,G, ViVV,£8,G. O

In Proposition 4 and later the following conventions are used: If 4, BEP
then AVB denotes the set V(4XB):=V((4XB)NDmn V); if 4, BE®, then
ANAB is defined correspondingly. If C is a set and a S PC, then H#a denotes the
set {DEPC|ASD for some A€a}.

For the remainder of this paper, we assume that E is a topological plane.

As the set ® ‘“‘can be reproduced” from the set BP (by applying the mapping
idg to PP), the topology o of & can be reproduced from the power P[z] of the
topology 7 (see Section 1):

THEOREM 2. o=(P[1])g, i.e., o is the trace of the topology B[1] in the set G.
Proor. We prove that Lim,=Limg)e - Let (f, K, a)€ 26.

1. Let G€Lim, (f, K, a). By the definition of the power %P[z] of 7, one has
Lim e (/2 K, 9)=6 N (P(lim inf, (f; K, a))). We show that GEP lim inf, (£, K, a)
and take, for this purpose, p€G. Let UcB, p. Then, there is a g€G with
q#p (since (P, ®, 1) is an incidence structure); thus G=pVgq (since DmnV =
=(PXP)\idp). Since P€DB.g, one has by Proposition 4 UVPEB,G. Thus, there
isan A€a suchthat fkcUVP forall kcA. Let k€ A. Then, thereisa zcU and
a w,€P such that (z;, w,)éDmn V and fk=z,Vw;. One has zcUNfk, thus
UNfk#= @. This holds for all k€A, therefore, since Ac€a, one obtains (by the
choice of U) p€liminf, (f, K, a), thus (by the choice of p) G ESliminf, (f, K, a),
therefore, because of GE€®, GEGN(P lim inf, (£, K, a)).

2. Conversely, let Ge®N (P lim inf, (f, K, a)). We show that then G€Lim,
(fLK,a). Let U¢B,G. Since (P, ®, 1) is an incidence structure, there are p, g€G
with ps#q. Since 7 is Hausdorff, there are (by Proposition 4) neighborhoods V€3, p
and WeDB,q such that VNW=g, VVWESU and VVWeB,G. Because
VeB.p, pcG and G ESliminf, (f, K, a), there is a set 4€a such that V(N fk# &
holds for all k€ A. By the axiom of choice, there is a mapping ¢: A—P such that
@ (k)eV N fk holds for all k€ A. By the analogous argument, one obtains the exist-
ence of a set Bca and of a mapping ¥ : B—~P such that Y (k)eW( fk holds for
all k€B. Let k€ ANB. Since VW=, one has (¢(k), y(k))éDmn V (because

Acta Mathematica Hungarica 11, 1983



246 G. GRIMEISEN

Dmn V=(PXP)\idp), therefore (because of the choice of the mappings (p and ¢
fk = (p{k)\J\jj(k)kv\/W and so fkku. This holds for all kEAC\B. In view of the
choice of U, one has finally G6Limff(/, if, a), since AP\Bfa. O

Theorem 2 allows to describe the limits of filtered families of lines in a simple
way:

Theorem 3. For all (f K, aQ)£®© and all GE©, one has G = lim,, (f K, a)
if and only if G — Iliminfr(/, K, a).

Proof. Let (f,K,aQ)E<P(5 and G£O.

1 Let G=Iliminft (f K, a). Then, by Theorem 2, G€Lim,, (f K, a). Since a
is Hausdorff, one obtains G=\ima(fK,a) (for the terminology, see Section 1).

2. Conversely, let G=\ima(f K, a), thus G6LimQ{ f K, a). Then, by Theorem
2, one has GQjlim infT(/, if, a). B

We show that fiminfT(/, if, a) [IG. Let j*lim infT(/, K, a). Since (P, ©,I)
is an incidence structure, thereisa qdG suchthat gAp. Since Dmn V=(PXP)\idP,
p f q is defined; put p\/g=H. If we can show that H=G, we obtain p£G (since
p£H) and liminft(/, K,a)QG will be proved.

In order to show H=G, we take U6 //. By Proposition 4, there are neigh-
borhoods VELWm and WEii*g such that VVWTf U and (since T is Hausdorff)
VnW—0. Since p, "Ehm infT(f if, a) (here, we use "EG/lim infT(/, if, a)),
there are sets A,BEa suchthat PM/kX 0 forall kEA and [VP\fk"0 for all
kKEB. Therefore, by the axiom of choice, there are mappings <t A-*P and ¢: B-+P
suchthat (p(k)EVC\fk and d(k)*WTnfk for all KEAC\B. Let kEA(~)B. Since
V(1W= 0, one has (p(k), b(k))6Dmn V, thus (by the choice of the mappings
and ¢) fk =(p{k)(k) and so fkEV4W. This holds for all kEAMB, thus
f(AnB)QU. Since JIMNB£a, one obtains (in view of the choice of U) that
HZ Limff(/, if, a). Together with GgLim,, (f K, a), this implies H=G, since a
is Hausdorff.

So, we have proved G=lim inft(/, if, a). O

In order to illustrate Theorem 3, we use it to prove a simple (certainly well-
known)

Corollary. | is %Xo-closed.

Proof. Let (f,K,a)*FI, say f(k)=(g(k),h(k)) for all kEK, and (p, GZ
€Limt (g, K, (fIXLim,, (h, K, a). Let UEiBrp. Then, there is an Afa such that
g(A)MU\ thus, since g(k)zh(k) for all kzZK, n"\k(k)"* 0 holds for all kEA,
therefore, in view of the choice of U, /?E£liminft (h, if, a). By Theorem 3, one obtains
pZG. O

3. Lower-semicontinuity and continuity of incidence relations

For the remainder of this paper, we omit (except for some cases) all prefixes
(namely exactly the prefixes (t, o)-, (a, % (eXt, §)-, (<X, ©)-, (tXa a)- and
(iXff, o Xu)-) for the adjectives “continuous” and “lower-semicontinuous” of map-
pings or relations occuring in the text, without causing any confusion.

Theorem 4. | and 7 _1 are lower-semicontinuous.
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Proor. 1. In order to prove that 7 is lower-semicontinuous, we have to show that
0)) I(Lim, (£, K, a)) S P (lim inf, (/o f, K, a))

holds for all (f, K, a)c ®P. (We have used that Dmn /=P; for the terminology, see
Section 1.)

Let (f,K,a)€®P, pcLim,(f,K,a) and Gel(p). Since (P, ®, 1) is an inci-
dence structure, there is a g¢G such that p#q. Let Uc®B,G. By Proposition 4,
there are sets V¢ B, p and WeB.q such that VVWC U, VVWeB,G and V(W=
= @ (since 7 is Hausdorff). In view of the choice of p, there is an 4€a such that
f(A)SV. Let k€ A. Since geW, fkeV and V(\W= g, one has (fk,q)¢Dmn V
(use of Dmn V=(PXP)\idp) and fkVgeVVW; furthermore, one has fkVg¢
€I(fk). Therefore, one obtains UN (I(fk))# &, because VVWC U. In view of the
choice of U, 4 and k, one gets G€lim inf, (/o f, K, a), therefore, in view of the choice
of G, I(p)eP (lim inf, (/o f, K, a)). We have proved (1).

2. In order to show that 7' is lower-semicontinuous, we have to show that

2) I/—\I(Lim, (LK, a) S P [lim inf, ([/—\10f, K a]]

holds for all (f, K, a)c 6. (We have used that Dmn /'=6.)

P i

Let (f,K,a)€®®. Since [ '=ids (whereidg={(G,G)|GEG}), the inclusion
(2) holds by Theorem 3. [

Let for the moment £ be a topological affine plane and denote by par the map-
ping on PX ® into ® assigning to each (p, G)E PX G the line H through p and paral-
lel to G. Then, we say that E has continuous parallelism (see Salzmann [11], p. 52,
where this notion is mentioned but not applied) if and only if par is continuous. In
this terminology, we have

PRrOPOSITION 5. Let E be a topological affine plane with continuous parallelism.
Then I is continuous.

PROOF. Let p I G. Since E has continuous parallelism, the mapping par (., G):
P—~®, defined by par (., G)(x)= par (x, G) forall x€ P, is continuous. Furthermore,
one has par (., G)(p)=par (p, G)=G and par (.,G)SI. 0O

REmMARK 3. In Proposition 5, it suffices (in view of its proof) to require that for
each Ge€® the mapping par (., G): P—~® be continuous.
Using this Remark, we prove

PROPOSITION 6. Let E be a topological affine plane such that t is induced by a
metric d of P and () holds for all G, HEG:

(%) If G and H are parallel, then dist;(x, H)=const for all x€G.
Then I is continuous.
REMARK 4. The converse of (*) holds in each metric affine plane.

PROOF OF PROPOSITION 6. By Remark 3, it suffices to show that the mapping
par (., G) is continuous for each Ge®. Let Ge€®. For abbreviation, we put par
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(., G)=¢. By Theorem 2, it suffices to show that

3) ¢ (Lim, (f; K, a)) S P (lim inf, (¢o £, K, a))

holds for all (f, K, a)e ®P. Let (f, K, a)¢®P and xcLim,(f, K,a). Let yco(x)
and U€®B,y. Then, there is a real ¢=0 such that B(y,e)SU (where B(y,¢)
denotes the open ball around y with radius ¢). By the choice of x, there is an A€a
with f(4A)SB(x,&). Let k€A. Then,
= — = <
dIStd(ys (P(f(k))) zE;r(lft;k)) d(}’, Z) ze(?(l};k)) d(x’ Z) == d(x7 f(k)) &,
where we used (*). Thus, there is a weg(f(k)) such that d(y, w)<e, therefore
UNe(f(k))= @. This holds for all k€ A. In view of the choice of y, U and 4, one
has proved that ¢(x)Zliminf, (pof, K, a) and so (3). O

Let for the moment E be a topological absolute plane (for the terminology, see
Karzel—So6rensen—Windelberg [6], p. 96) and denote by orth the mapping on PX G
into ® assigning to each (p, G)€ PX® the line H through p and orthogonal to G.
Then, we say that E has continuous orthogonalism if and only if orth is continuous.
In this terminology, we have

ProPOSITION 7. Let E be a topological absolute plane with continuous orthogo-
nalism. Then 1~ is continuous.

Proor. Let (G,p)el~t. We define an auxiliary mapping 1: PXG -G X6
by letting A(y, X)=(X, orth (y, X)) for all (y, X)€EPX® and, by means of 4,
the mapping ¥: ®—>P by Y (X)=(Aold)(p,X) for all Xe6.

The mapping 2 is continuous, since the projection (y, X)—X ((y, X)EPXG)
and the mapping orth are continuous, furthermore A is continuous, thus, since
Rng ASDmn A (see [6], p. 100), the mapping ¥ is continuous.

Furthermore, one has (G,p)€y and Yy <S/I7. O

Combining the Propositions 5 and 7, one obtains (for the terminology, see
Karzel—Sorensen—Windelberg [6], p. 133)

PRrOPOSITION 8. Let E be a topological Euclidean plane with continuous orthogo-
nalism. Then I and I~ are continuous.

Proor. Since par (y, X)=orth (p, orth(y, X)) holds for all (y, X)ePX®
(see [6], p. 133) and, by supposition, orth is continuous, also the mapping par is con-
tinuous, i.e. F has continuous parallelism. Thus, we are allowed to apply Proposition
5, and so I is continuous. On the other hand, E is a topological absolute plane, thus
Proposition 7 is applicable. [

4. On the relations S, 7, - and 71

We refer to the definition of S and 7 in Section 2 and recall that V is the functio-
nal part of S and A is the functional part of 7.
Theorem 1 implies as a very special case

PROPOSITION 9. S~ is continuous if and only if 1= is continuous. T ™' is
continuous if and only if I is continuous.
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REMARK 5. Of course, instead of S and 7' one may study, for each set D, the
relations S, and 7' defined by letting /S, G if and only if f(d) I G for all
deD (for all (f,G)EPPX®) and f T, p if and only if p I f(d) for all deD
(for all (f, p)e®GPXP). Let now D= Q.

Then, by Theorem 1, S5 is (o, t°)-continuous if and only if 17! is continuous;
furthermore, T is (z, oP)-continuous if and only if I is continuous. For D=2,
one has S=S8, and Tp=T7. (Here, 2 and o denote product topologies.)

REMARK 6. In the proof of Proposition 9, the continuity of \V and A is not used
in any way. This suggests to study incidence structures (P, ®, /) together with the
topologies 7 and ¢ of P and & such that the only link between the geometric structure
and the topological structure consists in the requirement that 7 and (or) /~* be con-
tinuous.

We recall the remarks immediately after the definition of an incidence structure
and add, now: Since the mapping (p, p)—>p(pEP) resp. (G,G)—~G(GE®) is a
homeomorphism between (idp, (7 X17)ia,) and (P, 7) resp. between (idg, (0X0);4,)
and (0, o),

“)

{the relation Stidp resp. Thidg is (z X1, 6)-lower semicontinuous

resp. (o X 6, t)-lower-semicontinuous
(by Theorem 4), and

. {Sridp resp. Ttidg is (t X1, 0)-continuous resp. (6 X o, T)-continuous
©) if and only if I resp. I is continuous.

Although in the sense of the preceding paragraph, the relation S resp. T is
(essentially) decomposed into the semicontinuous or (possibly) continuous rela-
tion 7 resp. /7! and the continuous relation (mapping) V resp. A, S resp. T need
not be even semicontinuous, as Proposition 10 resp. Proposition 11 below shows:

ProrosiTiON 10. Assume the existence of a (p, G)€I such that p is a t-accumu-
lation point of the set G (for the terminology, see [T], p. 41). Then S is not lower-semi-
continuous (thus not continuous).

Proor. Assume that S is lower-semicontinuous. Since p is a t-accumulation
point of G, there is an (f, K, a)€ ®(G\{p}) such that pcLim, (f; K, a). Since S is
lower-semicontinuous, one has

(6) S(Lim, . (g, K, a)) S P(lim inf, (Sog, K, a)),

where the mapping g be defined by g(k)=(p, f(k)) for all k€K. Because p I G,
f(k) I G, f(k)#p and (P, ®, I) is an incidence structure, pVf(k) is defined and
S(p, f(k))={pVf(k)}={G} holds for all kcK. Therefore, the right side of (6) is
equal to P(o {G})=P{G}, since o is Hausdorff (observe that in this paper (as in
[3]) “topology” is a synonym for “closure operator” in the sense of Kuratowski).
On the other hand, (since 7 is Hausdorff) the left side of (6) equals to S {(p, p)}=
={{ZcG|p 1 Z}}, therefore, by (6) (since no line is empty), S {(p, p)}={{G}}, which
contradicts the supposition that (P, ®, /) is an incidence structure. [J
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Proposition 11. Assume 0 (fP and the existence ofa (p, G)£I such that G is
a a-accumulation point ofthe set {ZE(5\p | Z}. Then T is not lower-semicontinuous
(thus not continuous).

Proof. Dualize the proof of Proposition 10 and, doing so, use 0 $P instead
of the words “no line is empty”. O

Remark 7. In the proofs of the Propositions 10 and 11, we did not make use
of the continuity of V or A, nor did we use (P X/’IXidp~"Dmn V. Thus, they re-
main valid if one replaces the underlying hypothesis “E is a topological plane” by
“(P, (5, 1) is an incidence structure together with Hausdorff topologies T and < of P
and (5, respectively”.
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ON SUMS OF DISTINCT INTEGERS BELONGING
TO CERTAIN SEQUENCES

A. PERELLI and U. ZANNIER (Pisa)

Many papers have been devoted to the problem of representing integers as sums
of distinct numbers belonging to fixed sequences.

We mention for example the paper of Birch [1], in which he proves the conjecture
of Erd6s concerning the representability of all large integers as sum of distinct terms
of the type pagbwhere p, q are coprime, the very general results of Cassels [2], which
contain Birch’s result, and the paper of Erd6s [3].

Here we give conditions, different from those of Cassels and Erdds, on a sequence
guaranteeing that all large natural numbers are sums of its distinct terms.

We introduce some notation: si is said to be of type b if, for every large x, we
have (x, (1 +b)x)C\si® 0. Letsi and 38 denote sequences of natural numbers;
we say that the product si38={ab,afsi,b£38} is direct if ab=a'b' implies a=a’,
b=b"

Further, let S(si)={m, m=al+...+av, al*ar>...>q,, afisi}, and, as usual,
set si(x)=2 1

GE s/
arx

Our results are the following

Theorem 1. Let si be of type 1 such that Idsi. Then there exists a number
L=L(si) with thefollowing property: if 08 is a sequence such that

(i) siXB is direct

(ii) 38(y)>L log2y for some 7 >10,

then S(si38) contains an arithmetical progression of the form {km, mEN}.

Before stating our second theorem, we need another definition. We say that
d—d{si) is the g.c.d. of the sequence si ifd is the largest positive integer dividing all
sufficiently large elements of si, provided these numbers are bounded.

Theorem 2. Let si and 38 be as in Theorem 1, with 1£38. Assume d{si)= 1.
Then S{si38) contains all large integers.

Remark. If the product is not direct and we allow each term with its “multi-
plicity”, then the theorems maintain their validity; the proofs are the same.

A straightforward application of Theorem 2 gives a result of Birch’s type, but
slightly weaker, namely

Corollary. Let nbeapositive integer andpx, ...,pbbepairwise coprime numbers.
Then there exists L=L(n,pi, ...,p6 such that every large m may be written as

m=rj+..+mg ?-1>.>/- >0 and rd—JJph, a”O and u3+as4+ax‘Z,.
We remark that the proofs are entireIJ _ellementary.
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Some lemmas

LEMMA 1. Let M be a finite set. Let CC[M]"={BcM, |B|=T} be such that
B,, ..., B£C=73i, j, i#], Bi\B;# . Then 3mcM such that

|C|4+(T—-1)(s—1)
T(s—1)

Proor. Let s, be the least integer such that the hypothesis holds with s replaced
by so. Then there exist B, ..., By,_,€C with B;N\B;=¢g if i#j. Moreover if
BeC then there exists j, 1=j=s,—1, such that B(B;> @. By Dirichlet’s box
principle we can find y, 1=u=s,—1, such that

|{B€C, meB}| =

|C]—s0+1

[{BEC, BNB, # @} =
So—1

+1.

But |B,|=T, hence, by the box principle again, we obtain the conclusion.

LemmA 2. Let f: |J [MY—~A satisfy the following properties:
T

1sj=

(1) B, ..., BE[MVNf~(a), for some j and acA=3pu,v, p=v, B,NB,# &,

(i) f({m}UB)=f({m}UB")=f(B)=f(B).
Then we have |M|=(T')*Ts|AYT+T.

PrROOF. Let ayc¢A. We apply Lemma 1 setting C=f"1(a,)U[M]7, thus ob-
taining the existence of meM such that

-1 vy
KBeIM]T N f~1(ay), mEBY| = L/ (ao;sﬂ (] .

Using property (ii) we deduce

T -
172 1 =20y = DS (@)

Ts

for some a,€A4.
By a repeated application of this argument we obtain, for every j, the existence
of a;6A4 such that

TP g : = I[M]T_J rW.f‘_l(aj)l
@) IAE# 4 Ol =
Set j=T—2. Then, by (i) we have |[[M]T=i=1Nf~1(a;;,)|=s, and using this
fact together with the inequalities (2) for j=T7-2,T-3,...,0, we get

o= M7 0 2 a)

3) To17] for every a € A.
T.
By the box principle there exists @y€A4 such that [[M]"Nf(ap)|= I[]l‘ill |
and now (3) gives the estimate |[[M]7|=|4|s7T!. Recalling that I[M]le(M;l]z
_ T
EQ—A—IJT'—T)— the lemma follows.
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LEMMA 3. Let &/ be of type 1. Then there exists L,=L,(&) such that every
integer m can be written in the form m=a,+a,+...+a,+c where a,>a,>...>a,>¢,
acsd and 0=c=L,, a,=2.

PrOOF. Let L, be such that (x/2, x)N&Z# @ if x=>L;. We prove the lemma by
induction on m. If m=L, the assertion is clearly true. Suppose k=L, and the lemma
true for m=1, ..., k—1. There exists ac.s/ such that k/2<a<k. Applying the
inductive hypothesis to k—a we obtain easily the lemma.

LemMA 4. Suppose A is a sequence such that #(y)=4F log®y for some y=10.
Then there is a number B such that

i)
= 2 by, v=12..,1[F]

IS
where the b; & for every j,v,and are all distinct.

PROOF. Set M={bcA, b=y}, T=[logyl], s=[F], f(R)= 2 Ly A =110 ,
[Ty]} in Lemma 2.
(ii) is trivially satisfied. If Lemma 4 is not true, then (i) too is satisfied. We then
should obtain: Z(P)=(T)TF(Ty)'T+T=2(logy)® F yVT+T<4F log*y, for
y=10, which is inconsistent with our hypothesis.

PROOF OF THEOREM 1. Set L=4(L,;+1) and let B be as in Lemma 4, with
F=L,+1. By Lemma 3 we may write Bm=2Ba,+ ...+ Ba,+ Bc with a,>...=a,>c,
0=c=L,, a;cs/, a;=2. Using Lemma 4 we obtain:

c+1 j(r) jay v

Bm = (by+...+b (1)1)(‘11'*‘ +az)+ Z 2 b 2 2 2 b_lla +2b1r*

J=1 =1

whence Bme S(##) since 1€/ and the numbers b; ;a,, b; , are pairwise distinct.

Proor ofF THEOREM 2. By replacing eventually the constant I with a larger one,
we may assume Theorem 1 true with 2™\ {1} in place of Z. We thus obtain the ex-
istence of B such that {Bm, me N}C S (o/(#—{1})). Letd be the least integer with
the following property: there exists a finite set #,C ./ such that for every m=m,,
dm=2a,-b,-|—fé;,af where a €, bc B—{1}, F' ZF,, a;b; distinct.

The above observation implies the existence of such a d. We note that this prop-
erty implies {dm, m=m,c S(#/%)}. We shall prove that d=1.

Let ©={o (mod d), there exist infinitely many a€.o/, a=o (mod d)} and pick
6cO such that (o,d)=minimum=d’. Set o=yd’, d=d’, (y,2)=1. Choose
Qi (a, such that a;=¢ (mod d), @ >max a. Set. Fp=F,U{a;, ..., a;};

ac ¥,

My, = 5'a+dm,, Let m>my, m=1"(modl), 1=41"=1; and find f, 1=f=4,

=y (mod A).
We have:

dm—ay—...—a; =d'’—fo = d’’—fyd’” = 0 (mod d)
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and d"t—al—...—af >dmll. By our assumption we may write
d'm = ar+...+af +_ Y, a+ la;b(
&

whence, by the minimality ofd, d'=d. In view of our choice ofd’, we obtain a=0
(modr/) for all large . But this means d= 1
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STIADDITIVE FUNCTIONS. |

I. KATAI (Budapest), corresponding member of the Academy

8 1. Definition of SFtdecomposition

Let g>1 be a fixed integer. Let / and /,, denote the set of natural numbers and
of nonnegative integers, respectively. Let 7°= {0,1,...,gN—1}. R and C will
denote the field of real and complex numbers, respectively. Rk is the *-dimensional
Euclidean-space over R.

Let 9 (A=1,2, ...) be a sequence of disjoint subsets of nonnegative integers
having the following properties:

(1) Every element mk of M is smaller than gk. The set Tt may be empty.

(2) For every n£l( there exist exactly one Kk and TkELLK for which n=mk
mod gk).

( L%t) AN=nAn* and for niGAN let /.(in) be defined as the unique index k for
which mEAT, i.e. wWEAI().

A set 91 being given, we define the ftdecomposition of n£10 as follows:

(1D

The numbers mkl, ..., mk (m>are called the digits of n in the Sltdecomposition.
p(riy=0 only if 7i=0. For n=0 the set of digits is empty.

Definition 1.1. A function /: /,,—RK is called quasiSR-additive if it can be
represented as

(1.2 f(n) = 2

j_
where //(+;/) is defined on S and has values in Rk for every /= 1,2,.... If, in
addition, H(0; j)=0(/=1,2,...), then we say that /is an Stadditive function.

D efinition 1.2. A function g: 10-*C (or I0-*R) is called quasi-'M-mu/tipli-
cative, if it can be represented as

(1.3) g00 = M K(mk;j)
|

where K( «; /) is defined on Fand has complex or real values for every /=1, 2, —
If, in addition, K(0;/)=1 (r=1.,2, ...), then we say that g is Stmultiplicative.
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§ 2. g-additive and ¢g-multiplicative functions

If we choose M, to be {0, 1, ..., g—1}. M=M,, then we shall come to the g-ary
expansion of integers:
n=ag+a,q+...+a.q" (a;eM).

The notion of g-additivity has been introduced by A. O. Gelfond [1]. f: I,—~R 1is
g-additive if

foy= 3 faa), fO)=

S is g-multiplicative if f(0)=1, and
S = IT f(a;9).

The existence of limit distribution of ¢g-additive functions was considered by H. De-
Jange [2].
We say that a real valued function f(n) has a limit distribution with the distribu-

tion function F(x) if
lim = # {n < y|f(n) < x} = F(x)

y-—oo

for every continuity point of F(x).
Delange proved that a g-additive function has a limit distribution if and only if
the following series converge:

(2.1)

J8

§ (agq’),

II

2.2)

II [\Ag

55 o

Furthermore, for g-multiplicative functions he proved the following assertion.
For a g-multiplicative function satisfying |f(n)|=1 the mean-value

limx~t 3 f(n) = M(f)

n=x

exists and is nonzero if and only if

q—1
(2.3) > flagh)=#0 (j=0,1,2,..)
a=0
and
(2.9 Z Z faq’)
converges.

Let o/ be an infinite subset of /; with counting function A (x), that is
Ax) = #{n = xlne}.
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We say that a real valued function f(n) (defined at least on /), has a limit distribu-
tion F(y) on o, if

llmA(1 #{n = xned, f(n) <y} = F(y)

for almost all y.

The following assertion is proved in [3]. Let ¢ be an odd prime, «/ be the set of
primes, 7m(x)=A(x). Then the g-additive function f has a limit distribution on the
set of primes if the series (2.1), (2.2) converge. If g(n) is a g-multiplicative function.
|g(m)|=1 and the series

co q-1
gl[q—l— > g(aq’)]
converges, then

- 2 g~ H(@ (x— =),

n(x) p=x

where

1 sl | =
HE) = - 218("),1:71;(‘*“5““‘”]'

a

The proof is based upon the following result due to Barban, Linnik and Tshudakov
[4]. Let ¢ be an odd prime, D run over the powers of g. Then

(%) n(x, D, I) = (1+0((log x)

(D)

holds uniformly for (/,D)=1 and x=D3.

By using some recent results of Iwaniec we get () for every ¢=>1 and conse-
quently our theorem holds for g=1.

The question whether the convergence of the series is necessary for the existence
of the limit distribution is still open and seems to be quite hard.

§ 3. The Ni-star-decomposition
Let 9M,, M be as above, N an integer. For every n€J) we define
(3.1) n=ng,n;=my, +q% 5 (j=0,1,..,vym-1),
where vy(n) is defined by the inequalities:
3.2) k+...+k,wm=N, k+..+k,m-1<N.
This decomposition is almost the same as the M-decomposition, the only difference
1(?3 .t;)e.lt we put some 0-digits down as many times as it is needed for the fulfillment of

Now we define the quasi-Mi-star additivity and multiplicativity as follows.
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Definition 3.1. A function /: 1g”-Rk is called a quasi-W-star additivefunction

if
()
(3.3) /[(«) = 2 _ H(mk;]j),
i=1
where A (+;/) is defined on Yland has values in Rkfor every /=1,2, If, addi-

tionally, A(0;/)=0 (/=1,2,...), we say that / is an Ll-star additive function.

Definition 3.2. A function g: I1g-*C (or /*—/?) is called a quasi-'SR-star-
multiplicative function, if it can be represented as

Wy
g(n) = jgl K (mkjl 11

where K{m, j) is defined on 9/1, and has complex or real values. Moreover if
K, /)=1(/=1, 2, ...), then we say that g(n) is an LU-star-multiplicative function.
We can see immediately that the notions of quasi-star additivity and of the quasi-
additivity are not the same, while the star-additivity and additivity are identical no-
tions.
Let H{nr,/) (TEW, /=1,2,..) be given functions, f(n)=fN(n) be defined
by (3.3). We consider the frequencies

q~N* {«6/34 in-Bk~- < *} = FA¥)
(An, BN are real numbers).
We shall say that B ~ify~ —Ay) (nflfl) has a limit distribution F(x) if
Fy(x)"F(x) for almost all x€RKk.
We are interested in determining under what conditions there are suitable se-
quences of An and By by which limit distribution exists.

8 4. Change of digits after multiplication

Every nflg can be be written uniquely in the form

(4.1) n=72=0EjA 05=01..,9-1.

Let x(n)=Xrj and consider the difference (d,,(n) =)d (n) = oc(hn)—a(n) where
2 is an integer.
We are interested in dealing with the statistical behaviour of A(/?). We can see
that Ah{n) is an Jtadditive function for a suitable Jtset.
Let t be an integer satisfying h<q'. Let 9K1=9/1, 1= 0, and for k>t 911
contains those elements mk for which 1*.mk<gk~' and that do not occur in LLr for
r<&. lIn other words, putting every n£la~' in i/-ary expansion with Kk digits: n=

= 21 0jA’ 9N contains exactly those of them for which the sequence (&0, 6k, ...,

1-0
..., 8k- 1) contains t consecutive zeros exactly at the end of the sequence: ok _t=...
.. =<5* 1=0.
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Let inkl be the first 931-component of n, i.e. rt=mkl+qknl. Then Im=Ivnkl+

+
bsérving that hmkl<gki and that ot(n)=a(mkl)+ot(nl), we get
A(n) = A(mKI)
Hence we get that
»)é»)
(4.2) d(n)=2"«>.

By using this representation, and some ideas usual in probability theory, L. Dringd
and | ([5], [6]) proved the following assertion: If g=2, h is not a power of 2, and

K..(pe) = 2-N*{A (n) < x},,IN, n€/?},

then KN(x)-+<P(x). Bhis a suitable constant.

The case q”2 can be considered in the same way. We could get local limit
theorems for A(n) as well. They will follow from some more general theorems.

A lot of other questions lead to quasi-9Ji-additive functions.

L Let (1=)/ikk/il<...</ia(<™") and

R(n) = (a(hon), aClijii),..., a(/tk»)).

Then R(n) is a (A'+1(-dimensional Jtadditive function.
2. For every nf£l we consider the c/-ary expansion (sN k, ..., e0) defined by
(4.1). Completing it with eN=...=eN+"1=0, we get

MN—@v+t-i, ..., fly, 17 m=0).

For h<g* and ndIfl we have hn”I*+, and so
iv+r-|

hit — .2 i-

J=0

Given n and v £{0,1,..., q—1}, we define

JV+HH

f(n,itvy= ,2 1
E=ub=V

It is obvious that/(u, it, v) is a quasi-9li-star-additive function.
Let ylk=card (if. It is quite easy to see that

(4.3 ZoAIY =1,
and that
(4.4) X7 Kk

for every fixed a
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§ 5. Length of the decomposition

For arbitrary &=0 we can construct a set 9 for which

Ay
Lk =

Furthermore, for every M satisfying the conditions stated in § 1 we have

(5.1) = 2—,’55 :

Let

(5.2) ay(H): = g~V 4 {n€l|vy (n) = H},
5.3) By(H): = g 4 {n€ I |u(n) = H}.

Let N=0. For n<q" we have vy(n)=2 if and only if n=m+q¢*u for k=N,
m M.
Therefore,
W) = a7 Z A"t

Since ay(0)=0, we have
y A
(5.4) ay(D)=1- 3 ay(H)=1- 3 =\ 1-¢.
H=2 k=N g
Let H=2. For n€l) we have vy(n)=H if and only if n=m+q¢*u, vy_, ()=

=H—1. So we have
Nay(H) = kZN Aq" oy (H—1)

and hence

A
(55 ay(H) = 3 oy ((H—1).
k=N q

Let us assume that o—<1. We shall prove that
(5.6) ay(H) - " 2(1—-@ H=1).

Relation (5.6) holds for H=1. Assuming (5.6) with H—1 instead of H, and
using (5.5) we get (5.6) tor H.

Let us consider now fy(H). Assume that o<1. It is obvious that pu(n)=0
only if n=0. Furthermore, from p(n)=vy(n) we have

By(D+ By (0) = vy(1),
and so by (5.4) we have

(5.7) liminf By (1) = 1—o.
Let H=2. We have, as before, that
q" py(H) = k(Z; A q" By (H—-1),
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and deduce by induction that
(5.8 liminf By (H) = (1—0)o* (H =1).

Since the sum over H of the numbers standing on the right hand side of (5.8) is 1,
these inequalities involve that

(5.9) limBy(H) = (1—-@)e" ™" (N — <o)

Indeed, assume that limsup fy(H*)=(—0)o" '+6, 6=0 and let H, be so
large that

Z (=g = %-

H=>H
Observing that
1 = limsup (By (1) + ...+ By (Hy)) = limsup By (H*)+

Hl
+ 3 liminffy() = 3 (-)ei1+5 > 1+,
4 &

£ 2
J=H* %

we get a contradiction.
We have proved

THEOREM 5.1. Assume that o<1. Then for every H=I
(5.9 lim By (H) = limoy(H) = (1—0) oL

The case ¢=1 is more interesting. In this case lim vy(H)=0 for every H, as
it follows by the previous argument.

Under some additional conditions for 9 we can give local limit theorems for
vy(n) and u(n), that are quite easy consequences of well-known limit-theorems for
the sum of independent lattice random variables. It is possible to deduce asymptotic
expansion for ay(H); By(H) as well.

Let X}, X,, ... be a sequence of independent random variables distributed iden-
tically according to the law

PX. =k = %

Let Y,=X,+...+X,. It is obvious that
(5.10) #{nelllvy(n) = H} = . %’ : #{AMY+...+AmFH=8} 3 1

<N— mHZgN-S
A(mE)>N—S§

Here on the right hand side m?, ..., m¥ run over all the possible values of M,
as indicated in (5.10).
First we observe that

(5.11) #{A(mY)+...+A(mE ) = S} = ¢SP(Yy-,=S5).
Let
(5.12) Te= 2 1 (=oaxD);

lTnf)qu
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in runs over the elements of 91 For k<R mk occurs as first component gN~k
times among the integers of Ifl. By using the properties of 91 we get

dR= 2 AkgR~k+TR.
Hence, and from g=I we get
(5.13) g~RTR= kgR q = P(*i S R).

Taking into account (5.10)—(5.13) we get

(5.14) () = 2 P&i S t)P{YH x= N-t) (Hé& 2).

If we define P(T0=0)=1, P(YO=k)—0 for k>0, then (5.14) is correct for H—1
too.
In a similar way we can deduce the formula

gNBN(H) = O"SZ\N—quP (Y = S)in<a\lfs 1

and thus
(5.15) ®N(H) = 2. .P(Yu-1=S)BN-s(l) = 2B, WP (Y H-i = N-t).
Let
(5.16) a=MX, 2 f‘;’ﬁ
(5.17) a2= MX\—a2
We shall prove that
(5.18) 2A() =e
Let
y. (i) el

Then 1) = 7,(1)—1/#. Using (5.12), (5.13), we have
7@ = 2 1+2 1=Ne ~o + £,

m<ije m <

To prove (5.18) it is enough to show that

(5.19) e -1) =0
Since ’
1 “ 1 -,11 1
2 ~|’/T -2 j2:I ulAm)+j 2in 'l?‘(T) “y* lA - A 1I '

therefore (5.19) and so (5.18) hold.
Now we prove
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LemMa 5.1. If MX${<oo for a=2, then

(5.20) b i R
PROOF.
h S B =2 () = 21+ s
where
Zl = Z’ ta_lP(Xl = t), 22 = Zta_lq_'Bt.
We have
we k*Ay -
21=;P(X1=k) t;;t 5; e = MX{ < <.
Furthermore v
g A(m)+j)+*
—_ > 3k t 1 = —A(m) ( :
2 Z q ;?%‘ %’q _,Z'————qf <
m)<t

< J ¢g*™(Am))* < MX{ < o,
m

So (5.20) holds.

Let X be a lattice-random variable that takes the values from the arithmetical
progression a+kd (k=0, +1, +2, ...). We shall say that X is of maximal step d if
there does not exist a proper subset of a+ kd that is an arithmetical progression which
contains all possible values of X.

Now we assume that the maximal step for X; is 1. We suppose that MX§< <-.
Under these conditions we have

(5.21) lim sup |o VI—JP(YH = N)—¢(xg, 3| =0,
H+o N

where
o N—Ha 1 2
e e[y - R ) g ]

(5.22) H,N e VW (p( ) V'2—n Cxp( 2

as it is asserted by a theorem due to Gnedenko (see [7]).
Hence we deduce easily

THEOREM 5.2. Let a=MX,, 6*=MX3}—a* be finite. Assume that X; is of
maximal step 1. Then

a’’? Ha— N ad
(5.23) oy (H) = ~ ch[a VN—/a)+0(1/VN) (N = =)
_ a¥® (Ha—N = -
(5.24) By(H) = avw“’[awv—m)*"“/‘ N) (N

uniformly in H.
PrOOF. We prove only (5.24). The proof of (5.23) is almost the same.
By using (5.15), (5.18), (5.21) we get
N T
cVH—1py(H) = ‘;;ﬁt(l)(p(xll—l,lv—t)'i"o(l) = 2; B:(D o (xp-1,n-)+0(1),
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where Ty tends to infinity arbitrary slowly. Assume that N ~127y—0. If H=
< N/(2a) or H>2N/a, then |[Xy_; y_,/—c uniformly in 7=Ty, consequently
the right hand side tends to zero, as well as ap(xy_,; y)+o0(1) tends to zero.

For HE[N 2N] we have

@ (Xg_1;8—0) = @(xg-1,5)+0(1),
SO
€5.25) o V(H—1)py(H) = ap(xg_1,5)+0(1)

uniformly in H.
Let Hy=N/a, H=H,+L, assume that |[H—Hy|=¢eyN**, &y—0 slowly. Then

i O N0 a—La *
Gt o VH—-1 o VH0+L—1
—La
o' —_—
a
consequently

Ha— N

q)(xH—l,N) = VW
o' —
a
and (5.24) holds.

If H=H,+eyN®**, then ¢(xg_;x)—0. From (5.25) we have By(H)=
=0 (1/VH), consequently fy(H)=o(1/yN) which involves (5.24). Repeating
this argument we can prove (5.24) in the range

+o(),

He[z ’ GNNM]

For H<N/(2a) we consider (5.15), (5.20) and use the Chebyshev-inequality. We
have

P(Yy_,=N—p= fv’ for t=N(=T),

while from (5.20) we have
2B Q) <T1=0N™).
t=T

From these we get
By(H) = o(N7Y?) (H = N/2a).

Let P(Yy=k)=1 or 0 according to k=0 or k0. We define Q(n) as
Q(n) = jé']P(Y,- =n), (n=1);00)=1.
We shall use the following
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Lemma 52. ([8]) IfM X  then
(5.26) Q(n) =~ +o(l/n);
if MX\< ilien
(5.26)

Theorem 5.3. Let the maximal step of Xr he 1. Assume that M X*< ¢°. Then
(5.27)

uniformly in H, where L=H————N—. Furthermore

(5.28) h%hXBN(H) « P(YH S N),
(5.29) 2 Bs(U)« p[yh S jw4)+0(R~3,

where H« = '2:"7?’ Asl.

Proof. First we prove (5.28) and (5.29). We have
l_ﬁHlﬂ'»(Fl) = tzl@ (0 HZHXp (yh-i = N—t).

Taking into account that

2 P(T'A=5s)y= 2 p(yHi=mM) 2 P(YH-HI = S-M )s
asa1 M ~S H>HX

S IV%‘S = A0 = P(¥4s 5),
we have
2 Bs(H) « 2t se(x)p(vH S N-t) « p(vn S N),
H=-1,
and so (5.28) holds.
To prove (5.29) we observe that
1z:2R/2A(1) «R~3

2 AY 2 BT, >Iv-0+o(23

i"R/2 A<4a,

So we have
2 APs

Since

2 AYa-1=N-t)SP ifh S A4-4) for t RI2
A<A2 \% 27

we get (5.29) immediately.
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Now we prove (5.27). Under the conditions of the theorem

(5.30) a)lll—1P(Y,_1= r) = s(xH_ljr; H) + o{H~"),
where _
(5.31) s(x; A) = 1+ fGA'O_)I Jr'%s(_) <*),

Qi(x), @2(x) are suitable polynomials, where deg Qt=3, deg <2=6 and
r—ua
a™u
(see [9]).
Taking into account (5.28), (5.29) it is enough to prove (5.27) for

Ac]/N log A. Assume that H=HO+L, HO——; \L\"*c]/N log A. Let L*
=max (1, |E]). From (5.31) we deduce immediately that

(532) \s(x, H)—s(x, HO+ l)l Nd o+ W@ A <?(*)‘

Furthermore, by an easy calculation we get
(5.33) Is(*h-i,gv»; A)-s(xH_Ijav; A)|« -ji=-(1 + |x,,_ w6~ (xu_1n)

in the interval Isié L, r=A 13log A. Hence and from (5.30) we get that
(5.34)
i>FH 1= A-0-F(FH-1= A)|«-Tr (I+|xH_BMO<>0w_1N+ o(A-*/9.
Starting from (5.15)
MA)- Zi+HH, A),
where
2= IzgrA(l)P(rﬂ-l = N-t),S(H,N)= IgrA (1N .i= jv- o.

Observing that P(YH=r)<szN 12 holds for every /o, by (5.20) we get
1
(5.35) sth,n)« n-"Z Ne )« t3" ,

From (5.34) by (5.18), (5.20) we deduce that
(5.36)
2i =p(yHi= A)a+ O(A-V2r3+0(A-32+ o0 (~r(I+]|xi/_1>NE<p(xH_1¥)
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Taking into account (5.35), (5.36), (5.30), (5.32) we have

(5.37) BN(H) = a£(5H-1.2Qo+1)+
a)lll-1
+0 |(1+kH-ivlg  (I+7) +« (N 3D
Since

(A-1)-2/2-A 014« L*N~3i

the same relation holds, if we change \H —1 to \!Hnin the denominator of the first
term on the right hand side.
Furthermore we have

La £if£
XH-IN = XHH-I,N = T mr — si+ 529
where
-La3P
N=— ja=r , b =0(L*N-M).

Since ¢2=0(3), we get
I+ N, a0+1)-5("La0+1) |« [EXUEX).
Taking into account this inequality and that

I*«1. 90+ 1)-u» («|« JV-"a + 1éilXei),
we get the desired result.

8 6. Mean value of iW-quasi-multiplicative functions and some consequences
Theorem 6.1. Assume that 1g~kAk=\,
(6.1) MX\ =
and that JT] is of maximal step 1.
Let g be a complex-valued quasi-WI-multiplicative function defined by
(6.2) g(n) = 7/Ffi)K(mJ;j)
where ml, ...,m'(0) are the LLkdigits of n. Assume that
\K(m; AN 1 (Vra€oK, j = 1, 2,...).
Suppose that the series

63 v 1-K(m,j)

-4 gl
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converges for j=1,2,...,

(6.4) XM 1 0 —1,2,..)

and that the series

(6.5) zZ *j

converges. In (6.3) in is arranged according to the increase of I (in). Then the product
(6.6) M=ff (1—Y

exists, M 0, and

(6.6) lim v'1 SX S(n) —4/.

If g(n)=g,(n) is afamily offunctions depending on a parameter t and conditions
(6.3), (6.5), (6.6) are satisfied uniformly in tcST then (6.6) holds uniformly in tE9~

Remark. If a,=1, then K(m; j)=0 for every TELU. Consequently g(n)=0
if p(n)LLY. In this case the limit in (6.6) exists and equals zero.

Proof of Theorem 6.1. The existence of M, and the assertion M~ 0 is an
immediate consequence of the convergence of (6.5) and (6.4).

First we shall prove some lemmas.

Here and in the sequel %n denotes a summation over 9. The star denotes

that m—0 is omitted.

LEMMa 6.1. Let t(m, /)~0 bedefinedon SDA{0} for j= 1,2,..., nd (n) denote
the last digit of n. Then

g~N z t(m*\A()= Z Zqg~*Z*NT,H)P(YH 1= N -t).
I~ u<gN H A1tAN m

Proof. Let pHdenote a general number having H digits inl, ..., mH and put
N(pH)=n(T 1+ ..+},(mH. Let us consider those n<qgN which can be written as

n = pH-x+g"H-dm

with a fixed TE£W. The number of gH x satisfying the condition A(pH_1)=S is
gsP(YH'1=S). Consequently

4N _Z M evpttil) = Y 2 <TG tn H)P(YHx = S).

Putting S=N—t we get our lemma.

Lemma 6.2. Let /(n) be a nonnegative quasidil-additive function defined by
(6.7) /00 = 2 t(mJj),
j=1

where t(m, j)=0 /or mean, /=12, Let

* = 121
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be finite. Then
(6.9 q~NngqN/00 S K

Proof. Let us consider those integers n<qgN for which n(ri)>j and they-th
digit of which is hi. The number of these integers is *qN-An» Consequently (6.8)
follows immediately.

LEMMa 6.3. We have
(6.9) q~N#{In < qujsrr?%(-i klvm )s 4}1- IVWS' —0.

Proof. Since A(m)”l for every mf9Ui, therefore n(ri)SN if n<gN The
frequency of integers n”~gN having in’as the y-th digit is ~ g~ M= Consequently
(6.9) is smaller than

N 2 g~M) = NP(X1>" NI = en.
From (6.1) we get that the right hand side tends to zero: en-*0.
Let Ty be a sequence that tends to zero monotonically and satisfies the relation
alHP(YH=r) = s(xHr', H) +0{zNH~)
uniformly for H”AiN. Its existence is a consequence of (5.30).
Lemma 6.4. Let OSN—S/N 11*

(6.10) R(H;5,L) =P(YH=S-L)-P(YH=S).
Then
(6.11) R(H;S, L) =" s'(xs,H)+0(L2H~2+0(rN

where s(x)=s(x, H) is defined in (5.31), s'(X$H) is bounded in S and H.

Proof. Since the derivatives s',s" are bounded and

s(i+») = sE)+rs'(t)+0(rs"(0),
by putting

oz S S = xs-
£=xssH= S \H q—a\h— (E+ 5 = xs-2z,h)

from (5.30) we get the desired result.
Lemma 6.5. For x>1 let N=NX be defined by gN~1"xSqgN Let JN—
=[#0—gnYn, HO+gnYn 1, where HO=— and gn tends to infinity arbitrarily

slowly. Then
x-1#{n < pgr(>)$./*} —0
as nm—=.
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This is an immediate consequence of Theorem 5.2.
LEMMa 6.6. Let

(6.12) f(n) = 2 6(mJj),
7-1

where S(m, j) are complex valuedfunctions defined on S)ifor /= 1, 2, ... satisfying the
condition \S(ms, /)|S 1. Let

=2 5(m,j)9~xim Aj= 2 I5(« j)2tf oM, w; = <5(w, 7)A4(w)?-JK1),

Lei Xy denote the set of those n<qN for which
max X(mJ L — N2

holds. Let S be an integer in the interval N—N /4*S~N, and
*(S)=qg~s 2 2* 1/00I2

HiJIN g(n)=H+1

where the star denotes that we sum upfor those nonlyfor which p(m) +...+p (mH=S
holds. Then

(6.13) S (S) cmax \r,,\2+e%+EN+(eN+max |FH|)e* fEA +/ - + Q NTNEN.

Proof. For A(m)S-"-IV14 let the value of 5(m, j) be zero. Let 8, z;,w;, O-,
Fn,r,,,EHbe the corresponding variables. Let

S (tf, S) = q—sa(&,):S 72:1HmJ,j)

where we sum up over all p,, which satisfy the condition A(uB)=S. It is obvious
that

2 s).
Furthermore HeJ»

<(l>(tf,S)=iJgH i a0~ 4M)- 4mIB(NL)S(r2 )P (YH 2= S-1.(m D -1 (m 2)
f I

+.2 [2 gcKEMO B[ H-1= 5-A(m))j = #<(H, s)+**»(H, S).
Since
%_'W i-i=S-A(m))sl,
therefore
2dT\H ,s)«2A"EN.
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Let us consider the sum: S). Observing that
P(Yh 2=bl M -1 U ) = P(YH 2= S)+R(H-2 S, 1N +1M ),
by using (6.11) we get

£«\H,S) = P(YH 2= 9) iﬁ‘HnEnﬂ<rﬂT,>-,q(T,)£(T\ Htn\j)~
)

Syt 2 .f:JH o2, T MM (D + A (1) N« 02 (T 27) +

+0(A-2 }ZEH 9- AT>-"1,>(2(TO+A(T)2<5(T\ i)| N(m2))| +
1
+o(A-32) 2 " 2nD) AT)IS(TL ] 0 J)| =
1e)
=74, 5)+X,(4, S)+.r3(H, 5)+ .44, S).

RS Pesi £,

Since

therefore
X4($, 5) = 0(xnEhH-i'2
uniformly in A4 as #-*°°
Observing that ("H +ATAATATA+ A M 2 and M/I< we get

XS, 5) « A-2[2_ 2 "<TAMIKT, DHl2A(m)f2«

The sum standing after P(HH 2=S) can be written as |[fH2—2 |z,12; conse-
quently isH
A(A L, S) = (IfH2- 2 N2/>(TH_2= 9).

Similarly, the sum in M2(A, S) can be written as

2 (z,-coj + coizj) = 2 RefuFH- 2 Re (2 c6;).
S ff

i'{ej
From Lemma 6.4 the derivative / is bounded and so
S)« A-YTH1K+;2 1*1).
Now we observe that

[22s (2 7w (2 @IS, A~

;28 (2 9_AMA2(m))d; & a\M X\)AI.
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Consequently

12w S (2 BRIV 2 [A121/2« EH, \Fh\A v'H (2 W 2«

Furthermore
FTH-TH= 2 2 g-x(mo{m, j),
I~ H A(m)s-f‘-lJVi/4
and so

IMH-T [ "eN-eN= NP [xr" 1 " 14

holds uniformly in H. Ba*0 as
Collecting our results we have

5)« ([rnf2+4+apP(yH_2= 4

(A, S) « #->{(%+|FH)}/a”+ aH}
Let now
*i(S) - H% nri(s, 5).

Since 2H E(Yb-2.=5)sl, we have
A(5)« (4 +£v+ max |L,,|2.

Observing that for HEJN, HAN, and that the length of INis 2gn/N, we have

*i(S) « (%+ max |[H|)e,, +
Similarly we have
*I(S)« "=2, W ) « QT*E*,

Adding these estimates for ~ we get the desired inequality.
Lemma 6.7. Under the conditions stated in Theorem 6.1 we have

2 2 ?2-n(M|L-A (1;F)2< “
j m
The convergence is uniform ifK depends on aparameter t"ST, andso the limit is bounded
if t runs over a compact subset of ST.
Proof. This is an immediate consequence of the inequality
O é |1—zJ2S 2(1—Rez) for |z|s L

Indeed, \K(m; the real parts of the terms in (6.3) are nonnegative, from the
convergence of (6.5) we get the desired result.
Now we consider the sum IfﬂXS(n)— Let gM~1Sx*qHK. Let R=RM be a

monotonically increasing sequence of integers satisfying RM~0(\og M). Let
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. M — M
Jr(M) be the interval [T_xRVM’ —a—+xRVM], where xgp—~occ as R-—oo,
For an integer n having the digits m?, ..., m*™ let

pn(n)—1

S=8{m) = z 2 (m')

and n(R) be the number composed from m?, ..., mR. That is n(1)=m*, n(j+1)=
:n(j)-}-q/l("(j))mj'i‘l'

LEMMA 6.8. We have

(6.14) g M {n < gMum)¢ Jr(M)} ~0 (M —~ =),
(6.15) g M#{n < ¢™n(R) =2Ra} ~0 (M —~ =),
(6.16) o #{n =g jér‘p(ﬁl)x_li(mf) = %M‘“} -0 (M — =),

(6.17) g Ma{n<gMM—S(n) =Ty} -0 (Ty —~ =)

PRrROOF. (6.14) is an immediate consequence of Theorem 5.1. To prove (6.15) we
observe that the number of n-s satisfying n(R)=Uy is g™ -4Ur), consequently the
left hand side is

g *Ur) = P(X;+...+Xg > 2Ra).

A(Ug)=2Ra

From the Chebyshev inequality we get that this tends to zero. (6.16) is obviously
=¢gp(—0). (6.17) can be estimated by

3 RO I P¥ya =M= < 3 B1)(~0.

By this the proof of our lemma is finished.
Let now uyp be fixed. Let us consider the sum

(6.18) : g‘ lg(n)—g(ur),

where the sum is extended over those integers » for which the following conditions
hold:
1. n(R) = ug,

o

max A(mf) < %M”“,

j=pm-—1
3. M—-S(n) - TM’
4. pu(n)eJg(M).

LEMMA 6.9. The sum (6.18) extended over the integers satisfying conditions 1—4
is o(qg™) uniformly for A(ug)=2Ra, if tg is suitably chosen.
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Proof. Let us fix UR. We put n=uR+qgAsKy, v qM-Awx\ Let us define

I*(n)
Gr(v) = . E K(mJj).
. j= +1
We have to estimate the sum

vsqvtvR 1€ ()= 11

satisfying the conditions involved by 1—4. Let S(m, j)=\-—K(m, /). For
\8(m, j)\= 1/2 we have _

K(m, j) =
whence

IC«(y) - 1] = o 8(mJ, ) ( |2\®\8{m' ')\%
- J=%-I+1 IJ +1 JIJ >'

The last inequality is obviously valid if B(mJ, /)| = 1/2 holds for at least one /. Let
M-JT1(m,,)=1T".

For the sake of convenience we denote the digits of v by inl, ..., m*“(). In this
notation we have the inequality

nw_o_ (M Y
(6.19) \Gr(v) -1\ jgl 8{mj,j +R) +0\ 2 \8{mJ,j +R)\2,
We now define the functionsf, f2,f3as follows:
&)
flip) = 2 8(mJj+R); f2(v) = n(v) + R)\;
7+1

Is(«0 = 2 \8(mJ j +R)\2

7=1
Observing that [<BW(), Ti(r;}))|2s|6(m'KD), julp))| from (6.19) we have
|G*(t>)-1] « \A(v)\+Mv)+f(v).
To prove the lemma, it is enough to show that the sums
q~NV§qNI/iW , q~NV§qu iv) 0=2.3)

tend to zero.
From Lemma 6.7 we have 8{m, /)}*0 as y—°° for every fixed m. So

n@ém?HP B(mJ y+Av)! - 0

if TM s suitably chosen. Hence

g~N 2 W " om{\)2 q-'BAV2 pV h-i =N-t) = oTm{\).
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By Lemma 6.2 we get
qN2 AW« %22 Na

The right hand side tends to zero as
Now we consider the sum

< T2
6.20) XN 1/i00I2-
Since S(n)=S(v) +1(uR), therefore we may assume that N-S(v)"TM. We
shall use Lemma 6.6. Observe that

A _ H —%%

En jA%H%n q-UmM\S(m, )\2 (=**),

and that L

max I H a i SPR.

X @r&- j=%+1aJ S

The quantities KR, PRtend to zero as Let now gN=xR and krYkr”" Q.
Then for every fixed S, S(S)=o0(\) uniformly in the interval N—S=TM. Conse-
quently (6.20) is smaller than

) Zft(i)*G S)«o(i).
This proves the lemma.
Now we finish the proof of our theorem.
Collecting our results we have

r125X 900 = }'I(llﬂz)r:ZHH S(ur) 1# 1 ) A(Ur}sZQaQ(UR)q At>+0(x).
Finally we observe that
2 q -WJ - 0o (A - o0
navk)=-2Ra
and
2 g000? JI¥4) = . —M.

=r
The proof is complete. :

Theorem 6.2. Assume that the conditions statedfor Xrin Theorem 6.1 are valid.
Petf(n) be a real valued gquasi-dR-additive function defined by

a(»)
/00 = 72=i H(mO0 })m
Assume that the series

(« i
[H(m, 7)1=1

®) 2 2 H(mje-Mw

Iv) 2 £ HIAm ))a-xn)
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converge. Thenf(ri) has a limit distribution F(x). The characteristic function (p(z) is
(6.21) (M) = A {"e"n<>)?"TN}-

Theorem 6.2 is an immediate consequence of Theorem 6.1.
From (6.21) we see that F(x) is the distribution function of gq—2
£I5 C,

where
are independent random variables with distribution

i=1
pzi =H{mM,j)) =q-~x
Let
dj=Plc-=0= 2. _<rdm.
i=P-=0)= 2 (<ra
A known theorem of P. Levy [10] asserts that F(x) is continous ifand only if Idi= ».
Similar theorem holds for vector-valued quasi-SOi-additive functions.

Theorem 6.3. Assume that the conditions stated in Theorem 6.1for Xt are valid.
Let /(n) be a quasi-WIl-additive function defined by

1) ,
/00 = 2 H(m\})).

J=r

Let

0J= % H(m,S)g-«mx rH=j,§_FJ.

Assume that the series (a), (y) in Theorem 6.2 converge. Thenf(n)—I My has a limit
distribution F(x). The characteristic function of it is
(6.22)

Da) = 77{2

Let us assume that \TH— HA-*0 uniformly for \Hr—HAWXxu"H r, H1—°°
where th—° arbitrary slowly. Let furthermore

dj — Z ﬂ—ﬂ(T) 7 dj —oo
Then

limx 1# ¢ < x\f(n)-rb)® < y} = F(y)
for every real y, where b(x)=

Proof. The first part of the theorem follows easily from Theorem 6.2. /(n)—,,@®
is a quasi-®l-additive function:

/00

= j2=| (H(.mJ,j)-Sj).
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We need to observe only that the conditions (a)(/J), (7) in Theorem 6.2 hold for
Hy(m, j)=H(m, f)—6j. Indeed,

4 pm —U
\Sj\2 2 H(m, j)\2g~M) = Aj
and I1Aj< o», we have
2 2 min(l, \Hiim, j)f)g~xp« 2 Aj+2 2 g~Mn <

[H(m,j"larl

for everyj. Since

By using P. Levy’s theorem, from Id — < and (6.22) it follows that F(x) is conti-

nuous. The number of those n up to x for which \q(n)—b(X)j” ibX)}b(ig is a(x).
But in the remaining case

M00~A(X)L = °(1)>

and this involves the second part of the theorem.
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ON A CLASS OF SCHUR AW*-ALGEBRAS

A. HARMANCI (Ankara)

Let R be an associative ring with an identity 1. R is called a Schur ring if for all
a,beR, Ra+Rb=R and ab=ba imply aR+bR=R. We call an algebra R a
Schur algebra if it is a Schur ring. In [5] Herstein and Small showed that all Artinian
rings and all rings satisfying a polynomial identity are Schur rings. In [4] Handelman
and Raphael proved that complete regular rings with a rank function are Schur rings.
When the author was on a short visit to the University of Ottawa in 1979, D. Handel-
man put the following question: Are the Baer*-rings Schur rings? In this direction we
prove the following:

THEOREM. Let R be a finite AW *-algebra. Then R is a Schur algebra*.

We follow the terminology of [1] generally.
To begin with we need

LEMMA. Let R be a finite AW *-algebra and for a€R, let r(a) denote the right
annihilator of a in R. Then r(a)=0 implies a is invertible in R.

Proor. Itis known that r(a)=eR for some projection e in R. Since the maximal
algebra Q of quotients of R is regular (in the sense of von Neumann) [7] and a Baer*,
ring, the right annihilator r(a), of a in Q is of the form e,Q, for some projection e-
in Q. From [1], e,€R, and so (r(a)oNR)=r(a) and e;=e. Assume r(a)=0,
then r(a)o=0 and a is invertible with inverse ¢~ in Q. We claim a~! lies in R. If
not, then a is not invertible in R, and so it is a topological zero divisor, i.e., we can
find a sequence {a,} consisting of elements of R such that {aa,} coverges to zero and
|a,|=1. Since the singular ideal of R is zero and the set /={x€R|xa *€R} is an
essential left ideal in R, for any integer n there corresponds an x in I with the follow-
ing properties, which are easily checked, xa,#0, |x|=1 and 0#xa '€R. We
take such a x and define ¢, as 0 if xa,=0, and |xa,|* if xa,#0. Then the sequen-
ces {aa,t,} and {(xa=')(aa,t,)}={xa,t,} converge to zero. This is a contradiction
and we conclude that a='€R.

Proor or THE THEOREM. Let a, béE R be such that ab=ba and Ra+ Rb=R.
Then xa+yb=1, for some x,y€R. This implies r{a, b}=0. For any t€r(b),
b(at)=a(bt)=0 implies at€r(b). Since R is an AW*-algebra we have r(b)=eR
r(a)=fR for some projections e; f in R. It follows that aecr(b)=eR and eae=uae.
In the same way fbf=bhbf.

* A Banach algebra with an involution is called an AW™*-algebra, if |X-X*|=|X||® and
every left and right annihilator is a one-sided ideal, generated by an Hermitian idempotent element
(see [6]).
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If r(b)=0, the Lemma implies b is invertible, and there is nothing to do in this
case. Assume r(b)=eR”0, r(a)=fR?iQ We claim that e and / can be taken as
mutually orthogonal, i.e., so that ef=0 holds. Since Q, the maximal algebra of
quotients of R, is regular, r(h)Q=el3, r{d)(i—f 1Q for some idempotents ex, j\
in Q. By combining r(a)Qjr(b)czr {a, b}Q=0 and Corollary 2.12 in [3] we may
assume el/1=0. Hence ff(l —efQ and exf=0. This implies /£(1 —XQ.
From the relation elQ=eQ, we obtain (I —e1)Q=(l—€)Q. This gives rise to
ef=0, proving the claim. We now right multiply xa+yb=1 by e and use eae=ae
to obtain e=(exe)(eae). It follows that eae=ae is invertible in eRe. Similarly
fb f—bf is invertible infRf. As in the proof of Theorem 4 of [4], we let Q denote the
collection of sets {(c;,/) } i€r of pairs of projections satisfying:

(@ 1 is well ordered,

(b) {c}U {/m} is an orthogonal set of projections,
(c) efae( are invertible in eiRe{,

(d) fbfi are inveitible in fR f

(e) (1—er|£) enaej = 0 if /</:,

® (l-siueplp {ei+f))afj=0 for all jel,
()] (1_SigP et)bei=0 for all /£/,
h) (1 fj + 1)E>1,=0 if n<k,
) (—gp i+ sp 1> =0 i n

(i) 0 occurs at most once in {cJU{/}

The set {(e, /)} consisting of the pair chosen earlier shows Q is nonempty. We order
Q by {(f, /;)}= {(/?j, qj)}j if / is an initial segment of J and el=pt, f —qt for all
ieimWe apply Zorn’s lemma to obtain a maximal element {<,, Q} in Q. We set
e=supeh f=supf and g=I1—e—f. It can be easily shown that eae is invertible
in eRe, fbf is invertible in fR fand that the Pierce matrices of a and b are

eae eaf eag ebe ebf ebg
0 faf fag and 0 fbffbg respectively,
.0 0 gag. .0 0 ghg.

gaggbg=gbggag and r{gag, gbg}=0 in gRg are now obtained from Lemma 2
ol [4]. It is known that gRg is a finite W4/ *-algebra. If r(gag) =0 in gRg, then gag
is invertible and therefore a(1—f) +bfis an upper triangular matrix which is inver-
tible. So aR+bR=R. Assume r(gag)70 and r(ghg)*{) in gRg. As before, we
may find non-zero orthogonal projections p and g such that r(gag)—pgRg and
r(gbg)=qgRg in gRg. We add {(/> gj) to @ extending the partial order so as to
yield a larger element {(eg, / })}U \(p, 9)} of Q. This is a contradiction, and so g—0.
It follows that ae+ bf is invertible and this completes the proof.

Remark. In the case of finite AlF*-algebras, Schur property is right-left sym-
metric.
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Corollary. Let Rbe afinite AW*-algebra, let A, B, C, D be in Rn, the matrix

algebra over R, such that CD=DC. Then X= is invertible in RAif and only
if AD—BC is invertible in Rn.

Proof. We first prove the sufficiency. AD—BC being invertible in Rn implies
that Y(AD)—Y(BC)=I, for some Y in R,,. Thus RnD+RrC=Rn. The matrix
algebra R, is also a finite valF*-algebra [862, 1], and since CD =DC, the Theorem
of this note implies that DR,,+CRn=R,, and so DV+CU=I, for some F, U in
R,,. The equality

\AB1 I DU]_ \AD-BC AU-BV1
bdY\-cv\-\ 0 /

shows that X is invertible. To prove the necessity, we assume

W FI B1 B1 W FI | PR
[WZ\}<A a\ - |(<A atl k 7\ - [6 & where un, V, W Z£R,,.

From this we may obtain

(@ WA+ZC=0, WB+ZD=L (b) UA+VC=I, UB+VD=0, (c) CV+DZ=I.

Using CD=DC, equations (a) and (c) yield the equations (d) W(AD —BC) =
= —C, U(AD—BC)=D. If AD—BC is not invertible, then it it will be a topo-
logical zero divisor [2], that is we can find a sequence {Tn} in Rnsuch that |T,\=1
and {(AD—BC)T,,) is convergent to zero. Equation (c) implies CRn+DR,,=Rn,
and from the Theorem we obtain R,,C+R,,D=R,, and so MC+ND=1 for some
M, NfR,,. From this equality, the fact that {(AD—BC)T,,) converges to zero and
equations (d) it follows that {T,} converges to zero. This contradicts ||TJ =1
Hence AD—BC is invertible which completes the proof of the corollary.
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CHARACTERIZATIONS OF SCHAUDER
DECOMPOSITIONS IN BANACH SPACES

K. AHMAD (New Delhi) and S. M. MASKEY (Delhi)

1. Introduction

The concept of a decomposition is a natural generalization of basis which was
initiated in [5] and further studied in [3, 4, 8, 10,11, 12]. Later on, in view of Enflo’s
example [2] which exhibits that every separable Banach space does not have an
approximation property and hence no basis, the study of decompositions became
more interesting and worth studying. It is worth noting that every separable Banach
space do have a decomposition, but there are (non-separable) Banach spaces which
do not have a Schauder decomposition; consider for instance the Banach space I,,.
Consequently, an attempt was made to obtain a criterion for the existence of Schau-
der decomposition of a Banach space and in this direction a theorem has been veri-
fied which corresponds to the theorem of Nikol’skii for the existence of bases [7].
Motivated by this work very recently Jain and Ahmad [6] obtained certain charac-
terizations of Shcauder decompositions in terms of best approximations in Banach
spaces. The purpose of this paper is to obtain some characterizations of
Schauder decompositions in Banach spaces, which establish a new proof of the
theorem of existence of Schauder decompositions of a Banach space (see [7], p. 93).

2. Notations and terminology

Let E be a Banach space. A sequence (A/,) of subspaces of E is a decomposition
of E ifand only if for each XEE there exists a unique sequence (xi) such that xx

foralliand x = th the convergence being in the norm topology of E. The uni-
queness implies the eX|stence of (not necessarily contlnuous) associated projections P,
of E onto Mtdefined by Pi(x)=xi, where x —ZJI xi with xEMt. These projec-

tions are obviously orthogonal ie. PiPJ=5ijPj, where a~0 for i"j and
6tj= 1 for i=/. If, in addition, each 7J, is continuous, the decomposition i?_lcalled

Schauder decomposition, and we write it as (Mh Pt). Let S,,(x) = i"_IT,(x),
XEE. Then S,, is a partial sum operator on E and is continuous.
A sequence (M) of subspaces of E is said to be

(@) finitely linearly independent, if every finite subsequence of (M) is linearly
ndependent:
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00

(b) #-linearly independent, if 2 xi~ OxtEMi="xi=0 for each i;

() minimal, if XXM i.%Mi = 0.

Obviously, every minimal sequence of subspaces is O-linearly independent and every
fl-linearly independent sequence is finitely linearly independent. For finite sequences
of subspaces the converse statements are also valid, but the converse need not be
true in the case of infinite sequences of subspaces.

The distance between two subspaces F,G of E is given by

dist (F, G) —inf {||x—y/|| :x£EF,
Let o>= {x€F:||x|| = 1}. Define the number (F; G) —dist(o>,G). Let L,, =

U L"= U Mi and L = U Mi where the bracketed expressions
= i=1

i=1 i=n+ 1 i=
denote the closed linear spans of the sequence (Mj) of subspaces of E.
A sequence (M,) of non-trivial subspaces of E is said to be complete if

M E

3. Main results

Theorem 3.1. Let (v , be asequence of nontrivial closed subspaces of a Banach
space E. Then the following statements are equivalent:
(@) (Mi) is minimal.
(b) There exists a sequence (F;) of projections on L such that PiPj=dijPj,
where & =0 for i*j and ay=1 for i=j.
(c) There exists a sequence of constants /(, =( (/=1,2, ...) such that
M
2 1IF; A

where x f M; for /=1,2,
(d) We have L=Ln®L".
(e) There exists a sequence (U,,) of endomorphisms on E such that

M XEL,,, n=12 ..
0, x(LL*, n=1, 2, ...
(f) For each positive integer n, there exists a constant C,,, 1" C,, < °° such that
ML

Xt & g X
for all positive integers n,m and x f Mj for each i.
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(@ We have dist(er®, L")>0 (n=\,2,
(h) For each positive integer n there exists a constant C,, 1sC'<°°, with the
property that for each hO(zL,, there exists an fEE* such that

(3.2) f(hQ = \\ho\,
(3.2 fly) =0 (yiL%
(3.3 Issii/n sc;.

(i) The norm of the linear operator Snon L is given by

s = sup IS,(A)|]<« (n=1,2,.).

1IAISL

Proof. (a)=>(b). Let (a) hold. The nontrivial closed subspaces Mtand U Mj
ot
of E are such that
Min UMj . O,
L;i
so that L can be expressed as
L—Mn U Mj
7-1
JVi
Hence, there exists a sequence (Pt) of projections on L such that PiPJ=8iJPJ,

where &=0 for i~j and 8tJ=1 for i=j.
(b)=>(c). Let (b) hold. Put

1
i 0=1,2,.).
hi 2-41P: )

Then, for all xfM-t (7=1,2, ..., n), we have

Xi® u+LUPT - 2R N1*»
so that
-1
2, Italic A 2, Gi+r 2*t 2

(c)=>(a). It is obvious from the given inequality that the finite subsequence of
(Mi) is finitely linearly independent. Consequently, from the definition, the finite
subsequence of (/1/,) is i2-linearly independent and hence it is a minimal sequence of
subspaces.

(b)=>(d). Let (b) hold. Then Sn(L)=L,,, which shows that Snis a continuous
projection of L onto L,, along IT. This verifies (d).
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(d)=>(e). Given L=Ln@Ln S, is a continuous projection of L onto L,, along
L*, so that 5n(x)= " xt. Thus

e XxELn, n=1,2,...

5.(0 - 10, xEL", n = 1,2

Let U, be an endomorphism on E so that U,,(x) —" x{ Consequently, S,,(x)—
=Un(x) for every xEL. This shows that S,, can be Ie_xltended to Un. Hence
\x, XELn, n» —1,2, ...
={« xEL", n = 1,2,....
(e)=>(f). From (e) we have

n+m
iglxt 2 xi
This verifies (f), if we put C,,=||f7J (nﬁ 1,2, ..).
(f) =>(g). Let (f) hold. For everyl,zf and XEMwu /=n+l1, n+2,..,

..,N+m, we have
T S 21 S @ &X ST
Hence, dist (oLn, Ln)>0.

(9) =>(h). Let hCEL,,. If h0=0, there exists /€£* satisfying (3.1), (3.2) and
1M = arbitrary constant.

If h0*0, we have -Tn/Ir hence by (g),

1"oll

dist (-LL~> £") - dist(<+,”£") = dn> 0.
Then, by the Corollary of Hahn—Banach theorem, there exists a functional
fEE*, satifying (3.1), (3.2) and ||/|| = h
(h)=>(i). By (3.1), (3.2), and (3.3), for every h= I2=I X&L, xtf_Mt for each i,
we have

S,(h)= S,i2+.) = 2 xi= K(say),
and

f(h):/(izzl*') = /\(/i2=1*<+ 2 *-,.):F”O-

i=n+1
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Thus,
\S,,(W\ = ||hQ| = /(1 O] = [/(/i)]  Cr\h\.
This implies that
lISJ = sup |[5n(h)|| < oo
i

(i)=>(c). Let Snbe a continuous linear operator on L such that

\Sri\= E PSAI < = (=1.2,..),
I

Putun= 2« 1(||5 1115 J) (n= '>2>)e Then /i,,>0 and for every finite se-

quence of vectors XjEMj, i=1, 2, n, we have
. 7-1 .
- m CRURN R
VIO = g ps e v i) (LI s E|)
2M411M + IS ) S oM Ryxi U LD

Hence, the result follows. This completes the proof of the theorem.
Theorem 3.2. Let E be a Banach space and (A/;) a sequence of nontrivial closed

subspaces ofE such that 1(J Mt = E. Then the following statements are equivalent:

L4
(@ (Md is a Schauder decomposition of E.
(b) There exists a sequence (Un) of endomorphisms on E satisfying

XEL,,, n=1,2,...

i Ix’
Unix) lo, XELn n=12, ...

and 1aC x= SUP It/J <
1l<00

In this case, the sequence ((/,,) is uniquely determined and coincides with the se-
quence (S,,) of partial sum operators associated to the Schauder decomposition (J1/,).
(c) There exists a constant C2 with 1"C2< 0 such that

nmm
2 Xi 2NA

for all positive integers n,m and xfM t for each i.
(d) We have C3=7nf dist(aln, L™) >0.
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(e) There exists a constant C4, 1&C4<=», with the property that for every n
and every hOELn there exists an fEE* satisfying (3.1), (3.2) and

(3.4) 1S|/||S C 4
(f) We have
IA?]Lé%O F@E \\S,,(h\ < 0.

mwinr1
For the proof of the theorem we need the following lemma:

Lemma. Let E be a Banach space and (Mj) a sequence of closed subspaces of E
and (Pi) a sequence ofprojections on E. Then thefollowing statements are equivalent:
() (Mt, Ft) is a Schauder decomposition of E.

(i) For every x£E, the expansion " lex) is convergent and its sum is X i.e.
i=

we have lim S,,(x)=x for all x£E.
(i) (Mi) is complete and Sup IS, (x)||<'» for all XEE.
~M<oo

(iv) (Mi) is complete and there exists a constant M s 1 such that ||SJ*
"M (n=l, 2, ..).

Proof. (i)=>(ii). If (i) is given, then (ii) is obvious from the definition of decom-
position of a space.

(i) =*(iii). If (ii) exists, then (M;) is complete. Also, since the sequence (>S,,(X))
converges, we have YR [[BU(x)||<°°.

(iii) =>(iv). This implication is a consequence of the principle of uniform bound-
edness i.e.

sup [IS,.(X)|| < °o=> sup HSJ< o
Hence there exists a constant M sl such that \\S,\\=M.
(iv)=>-(i). Since (Mi) is complete in E, there exists a dense subset of finite
linear combinations " X t, (=1, 2, m; m=1,2,...) in E such that

i=1
2 m\=2 m-
=l ) i=1

Then rlj*mn Sn(x) = x for all xEE. Hence the result follows from the definition of
Schauder decomposition.

Proof of Theorem 3.2. (a)=*(b). If (M;, Pj is a Schauder decomposition
of E, then, by the lemma and Theorem 3.1, the sequence (Sn) of partial sum operators
associated to the Schauder decomposition uniquely satisfies

I* *€T,, n=12 ..
W) - jo, xLn n=1,2,..
AN 1 = oo
and 1~ Cj = 1A§JL_I(%O||S,,||< :
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(b)=(c). From (b) we have
The implications (¢)=(d)=(e)=(f) are immediate from Theorem 3.1.

(f)=(a). Since (M;) is a complete sequence of nontrivial closed subspaces of E
and sup |S,|<-<e, by the implication (iv)=(i) of lemma, it follows that (M)

1=n<eco

is a Schauder decomposition of E. This completes the proof.

n+m
= = Cl

THEOREM 3.3. Let (M;) be a complete sequence of closed subspaces of E such that

Then (M;) is a Schauder decomposition of E.
PRrROOF. Put

B = [[iL:JlM.- ;M,,H) (=120

and B = ]J[B,. Then O0<B=1. For all positive integers n,m and x,6M; for
n=1
each 7, and by (3.5) we have

n+m n+m—1 ) n+m—1 |
! xi“ =l 2 x| dlSt[G["+m_1 ,M,,+,,,] 2 x,-| =
i=i i=1 M i=1
=
n+m-—1
= ﬂn+m—l ‘2; xi' =
n+m-—2 n n
o Borncsfirncall 3 SN = Ryt T e Sl
= i= =

Hence the result follows by using the theorem 3.2.
Finally, our thanks are due to Dr. P. K. Jain for his consistent help in the pre-
paration of this paper.
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UNIFORM APPROXIMATION BY SZASZ—MIRAKJAN
TYPE OPERATORS

V. TOTIK (Szeged)

81

The purpose of this paper is to investigate the uniform approximation problem
for the Szdsz—Mirakjan operators

S, (f; x) = 20f {A) PIk() (P *(*) = e~'XNIT~"* - )

on the whole positive real line. So far, beyond local results, the approximation prop-
erty of Snwas settled in polynomial weight spaces by M. Becker [1] (here the order
of approximation has the form (x/ri)*), in exponential weight spaces by M. Becker,
D. Kucharski and R. J. Nessel [5] and B. D. Boyanov and V. M. Veselinov [8] have
results for the case of uniform approximation when the function/ has a finite limit
at the infinity.

We shall be working in CB, the set of bounded and continuous functions defined
on [0, °0). The continuity is a necessary assumption at uniform approximation and
the boundedness will turn out to be a convenient one, although many of our consi-
derations remain valid just as well in the unbounded case.

Unlike Bernstein polynomials (which, otherwise, have very similar properties
to S,,) for S,, a new question arises: to identify those/for which S,,(/) converge uni-
formly on [0, °°) to/. The answer for CB is given in Theorem 1 below.

Let
AL(F;x) —F(x)—2f(x+h)+F(x+2h)

and let us introduce the following modified modulus of smoothness which is the
appropriate one in our problems:

co(S)=co(f; §= sup ARM (f; x)] (©> 0)

(in the following we use the shorter form a>(S)). This  has the known properties
of moduli of smoothness: it is an increasing function, and a standard argument gives
that

o(I1S) ¢ K).20(S) (Aa i)

with an absolute constant K.
Now we have

Theorem 1 For an fECB the following are equivalent
() Sn(f)-f=0(1) («--),
(i) ft>(<5)=o(l) (O-0),
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(i) f(x+h Yx)-f(x)=0(1) us h-+0 uniformly in x,
(iv) thefunction f(x2 is uniformly continuous.

We mention that (ii)==(i) for any continuousf but itisan open problem whet-
her (i) implies (ii) without the boundedness assumption. Our proof will show that
the equivalence (i)<=>(ii) holds even if/ECB is replaced by the weaker assumpti-
on: ACJO0, °°), cu(l)<®°.

For the Lipschitz-case we have

Theorem 2. Let 0<as 1. For an fECB
@) Sn(f)— —0(n~X)

and
(©)

(1.1) W< = 0(0)

are equivalent.

Here we mention that (1.1) is equivalent to x*Al(f; x)SKh2 (h>0), so our
result is the mate of M. Becker’s one [1, Theorem 1], namely the weight x ““is moved
from the approximation to the smoothness condition.

For a similar result in the saturation case a=1 see [4, Satz 4.11].

It is interesting to consider the analogous problem for the Kantorovich-type
modification of S,,:

0 f (M-l)n \

K,,(f-x)= *2:22 Jn f(u)du)\p k() (x&0).

Kncan be used to approximate/ in various integral metrics which we shall do in a
forthcoming paper. Here we are interested in uniform approximation and for this
we have

Theorem 3. For an fdCB
() Kn(f)-f=0(\) (n-«)
and
(i) co®)=o(l) (<5-0)
are equivalent.
Theorem 4. Let 0<asS1 For an /<ECB (i) and (ii) below are equivalent:
() K,,(f)-f=0(n-%
(i) (1) co(6)=0(6*), (2) Ne - Ne =0(h*).
Let us mention that conditions (ii) (1) and (2) are independent of each other.
We want to settle also the multidimensional case. We carry over our results

only to two dimensions; the higher dimensional problem can be treated similarly.
One possible variant of Snin two dimensions is the operator

Jao  AM ) i T

with two parameters n,m= 1,2, ... Let C2Bdenote the set of continuous and bound-
ed functions defined on the first quadrant x*O, 0.
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Theorem 5. For an f€.C2B the following are equivalent
(0 Snm(f)-f= 0(1) as
(i) <oSu @ =o(l) as <5,S2—0,

(iiiy fix+h~x, y+h2fy)-f(x,y)=0o(l) as hy,h2+0 uniformly in ysQ
y"O,

(iv) the function f (x2,y2 is uniformly continuous.

Here

; W<5i, 02 = n"O,)/‘O,Oc]E%"lO<A2<r2\AI1fZ *f (7; x,y)|
an

Ahy.hff', x, y) =fix, y)+f(x,y+2h9+f(x+2hl,y)+f(x+2h1ly+2h2 -
-4f(x+hly+h2.

Theorem 6. Let 0<aél. For an /éC 2B the following are equivalent

(0 Sar{ f)-f = 0(n~x+m~%

(i) co(61,62 = 0(06? +4I*).

We mention that in an other paper we shall prove the analogues of Theorems 1,
2 for the Baskakov and Meyer—Konig and Zeller operators.

The paper is organized in the following way: §2 contains some necessary for-
mulae. In 83 we prove Theorem 2, the ideas of which are used in the proof of the
other theorems in §4.

8 2. Some formulae and estimates

First we give an other expression for Sn(f). Let
AR x) = J(=1)*-"(*)/(x+ 0
be the Asth difference-function. A simple computation gives that

n n c"(lf-\ﬁ: ’S?(~nlx)k %

k=0 K k=0"

f(Jj\ (nx® = v Ait fe0)
Vi) K\

k=0 n

We have also (see [1, p. 136])

(2.2) S"(f; x) = nZEOan/; :-;pn,k(x),
(2.3) W os*) =4 i /] k()p/K
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where
r,,.k(x) = ————x\)
and

k\
S: (fx)_nf%—-or\"

For pnk we shall often use the following estimates. Let pk(x)=e xi . For

a given x the largest of the pk(x) is pM(x) for M —[x] (the integral part ofx) and the
sequence {n(n)}*10 is increasing from k=0 to M and decreasing for k~=M
With the notation k=M+h we have for \h\"2x35 the asymptotic expression

(2.9) Pk(x) = — e-*»/<)fi+ Q (I*I + 1.)+Q(J*P)j .
We also have
(2.5 27, Pk(x)=0(e~MN

with /< , and for 0<£<1

(2.6) 27 PK(X) = 0(e-"*)

with 1 —-i-£2

For all of these results see [7, p. 200].
We shall also frequently use without any further reference the identities

ﬁ PnAx) = xPnk-IW Ohk =\,2,..).

8 3. Proof of Theorem 2
I. Proof of (ii)=>(i). Let X>0, 6=1/-y, and
(3.1) ="V PRt te u )t 2(u+ V) dudy.
For this (see [1, p. 139))
T -W = {L ) _j A IM  tdudv, fI(t) = S~%*AWA i)-A\{f D)\
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and so

1/(0-N1(01L s o» (/¥)-
by which, using the inequality co().t)*JG.2o(t) we obtain

f@ idai
7
(3.2) 1/(0-/a(01 S K-
f@r i>X
1
and
for -~ x
(3.3) \rm a K

Tio(Th) for /> x
Let

EX() = 200 AT

iS* is defined also for functions which do not have any value at the origin.
Now

\sn(f,x)-f(x)\'s \F(x)-fsGO\+\S,,(U x)-fs@)\+\s; (fO- fi *)|+
+e-"*1/(0)—,(0)] - A+B+C+D.
By (3.2) A"iKoj , and taking into account the positivity of Sn, S* we obtain
f'r'(')'r'ﬁ"(3'.'2)"é'ﬁd( L%ar%ma 1 below that C"K'to vzr\ and from (3.3) and Lemma 2
that B*"Kco |—2 |. Finally, for D we have by Lgr)nma 3 below that

1Kn~*e-nx(nxY2 Kn-
Thus,
\S,, (f;x)-f(x)\ =i kK Kn

with a K independent of x and our proof will be complete after the justification of
Lemmas 1—3 below.

LEMMa 1. If x>0 and
for ts x

for t~ X
then ||S1(g; x)[s3.
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PrOOF.
[nx] nx b [nx] nx
SE@ix) = D= Pt 2 PSR ipy ()1 =
= o k=[nx]+1 =1 k+1
[nx]
= 2;2; Pax+1(*¥)+1=3.

LemMA 2. If x>0, g€Cy is twice continuously differentiable on (0; <o) and

for t=x
lg”)| =

xl»—t er—

for t=x
then
K
ISa(g: ) —g =— (=12,..)
with a K independent of x.

Proor. Let
tlog ¢ : for ¢

A

X

= xlogan(tﬂc)(logchrl)Jrzix(I—X)2 for: 1=

h is continuous on [0, =) and twice continuously differentiable on (0; <) with second
derivative

% for t=x
h”(t): 1

— for ft==x.

%

An easy consideration gives that S, (r; x)=r(x) for convex », so, by our assumption,
S,(h+g; x)=(htg)(x) and together with this |S,(g)—g|=S,(h)—h. Thus it has

remained to show that S,(h)—h = % with a K independent of x. Using that S,

S, ((t—x)%; x)=x/n (see [1]) and that the linear functions are reproduced by §,,,
this is equivalent to |S,(r; x)| = I:, where

tlogt—tlogx—(t—x) for t=x
FAS 0 for &=x.
Now (with the convention 0-log 0=0)
I 0 k [k ]] B
Sa(r; x) = k;; [;log};— —=X|| Pn,u(x) =
1 ["xl( k ] 1
= — — —_ dofrs
klog o (k—nx) | p,(x) def - R(nx).

n k=0
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Let u=nx. For n<2 clearly |R(u)|=K, and for u=2 we have

u—[u8/5] u k
R =3+ _ "_%,w)(k log £ — (k- ) e-12 = Ry + Ry(w).
By (2.5)
|Ry(1)| = KuPe ™ =K.

For u=k=u—u*? let 7,=u—k. With this we have (see (2.4))

— uk K —t2/(2u)
e*r ——eg %
k= Vu
and
k T
klog;—(k—u)[ = |(u—1;)log 1—— +17.| =
Tk Ti
= |(u—1)|— +0 +7%|=0 7Y
hence
[u8/5] l+1 2 , o (2i+1-D[yu]
Rl =k 3 L emmzg 57 57 )=
=0 1=@"-Dyu]

= Klj:;e—zsi-22i+1ﬁ(2i+1l/§)zu-—a/2 =K
and collecting the above inequalities our proof is complete.
LemMma 3. If O<a=1, f€Cy and w(6)=Koé* then |4i(f; 0)|=Kh".
ProoF. Let »(d) = Sup, |43(f; 0)|. For an arbitrary h=0 let d=h/2. Using
the functions f; introduced in (3.1) we have
[45(S: 0)| = |45(f5: O+ f:0)—Ff O] +2[ f5(W)— f (W) +] f5(2h) —f 2h)|.
Here the last two terms are less than Kw(}/ﬁ)éKh“, furthermore,

o(®).

2 h/a

[ ) f [ 42, (f; O)dsdt

1£s(0)—f(0)] =

and since |f5(1)| = W [}/ ]

|4i(f550)| = ‘fff (t+s)dtds| = e ff(t+s)""dsdt = Kh*—2|43(22—=; 0)| =

= Kh*>-2h2—%='Kh"
if O<a<1 and
|42(f5; 0)| = K|42(tlog ;0| = Kh
=1,

8 Acta Mathematica Hungarica 41, 1983



298 V. TOTIK

We have proved that i)(/!)Sff+ii(/i/2), which implies easily v(h)"KIf-
and this is what we wanted to prove.

Il. Proof of (i)=>(ii) in the nonoptimal case 0< a«=1l We use the ideas of the
so called elementary method of inverse results developed by G. G. Lorentz, H. Be-
rens, M. Becker and R. J. Nessel (see [1, 2, 3, 6]).

The essence of our result is contained in Lemma 4 below, by which the proof
of (i)=>(ii) iseasy: Let 0<<5, As 1, and let us choose n so that (n+ 1)”1/2<(5Sn_1/2
be satisfied. We have

Aly-x (f- )™ \Aly- (E,,(/); X[+ Atrx(Sn(f) -f-x) s=

- fi I'SnC/; x+s+t)\dsdt+ Kn~xS .k|(n-* + AX|n X+ T |—

(O(h) =" a 21+ ™ ((a 2+ cu(«5))|.
Adding to this the trivial estimate h2S.0X+ fl% &+ 10((5)), we get for
12(h)—h2H-oj(h) the inequality
Q(h)"K[6**+"Q (6)}

which already implies Q(h)=0(h2X) (see [3, Lemma]) and this is exactly (ii).
Thus, it is left to prove

Lemma 4. |f fECB and S,,(f)—$=0(n~X) (0<txS 1) then

\S"(f-,x)\*"K -\n-x+w (ic> 0,m=1,2,.).
Proof. Let x: With the function (3.1) we have
m°-s- R r
(3.4) K({/;x)i =\s:(f-ux)\+\s:(ux)\.

We shall estimate the terms on the right hand side separately,
a) Using (2.3) we have (if x<1/m then T2—0 below)

\s:(f-ux)\ A kn B il/(A-)-1i(2)|p,y (X)) =
[nx] «.
=2 +2 + 2 =/XH[r+T3
k=0 k=1 f=[nx]+1

a) To estimate If we prove first
LEMMa 5. If fECB and Sn(f)—+$=0(n~x (0<aS 1) then

\AI(f-,0)7SK{h*+co(Yh)) (fi> 0).

Acta Mathematica Huvgarica 41, 19S3



UNIFORM APPROXIMATION BY SZASZ—MIRAKJAN TYPE OPERATORS 299

Proof. Using the expression of S,, given in (2.1) we get

dTrMrTr) - {/(»)+(/W -/H+N (/;0)n}-47) =

- Nl -t T4 (14) =4<];0>44+ )+

+°HTretr I (‘T2)=e-i(/:0,+0(»(-j4))

and since the left hand side is O(n-*) we get
(35) Mii/-;0)| LUK n-“+w (h=1.2,..).
Let now 0</i~l be arbitrary, and let n be defined by ?+l 1 <As = Then

(3.6) WY 0)-A{(f; 01  2|/(1] —r(n) |+ |/[i)-/(2A)
and here (see (3.2))

N3 S
U HHIA

for some A Since/j_ is bounded, |/4 (x)|s A5 for all x*O, by which

\fi[?)-fiNe EKn-"*Kh, ie [/(")-/(A) a K(h+(o(YW)). A similar estimate

can be given on the second term in (3.6), and we get the desired result from
(3.5)—(3.6).
Let us turn to If. Using that r0(x)—x2 we obtain from Lemma 5

Zj Kn26+w(/6))e-r*="n-*(nx) 2% -nx+

Yy 17 r Y ) S K»-+»(-A))(1+™ *-“ a1t (»-+-(4r
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B) In 12 we have

» (1 \nx
S (71r)Tr
hence
. ij2 \Ln*Jn\r w]
% X I yn = |r4’?|pl(73 1 y[B/z]I_
n3 / 1\r I'I[‘*’l 1
S K— to ||x 26 -HXxNn.Y +25,((r-x)2; x) JVtMJ =

where we used (2.6), and the relations

M(-F)zF) = K -
N In 13 we have (see B)) [/[“j~/i[~]j| S wly=]j bY which
3- S JL R&)Me3-$ bl H "o+
VTR = 0 Wilbw g TONT x Tri)

b) Using (2.2) we have jogain, 12=0 if

CD ( Is \ [rtdt] [e¢]
S'n(fé'x) = n22 Al\fa\ —)Pnk(*) =2 + 2 + 2 = li+li+la-
k-0 nJ i=o k=1 fo= [anr] + X

a) By Lemma 5

1M A e-"\n*\Aly-, 0)+ MA\(/-/,; O))) A *pln-«+u>(JL-)] m

se~mx+nAf (0)—fr(0)je~"*+ 3/rw (I'3c)e” j s

= [f-7-|n_+cin-2-|[{(un:)e_"+(ux) 14i2e- " (1 + (nX))2~ng S

“VHI)
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) In X, we have

1/n

st = fF

k
-+ AE(f;F +u+v]

hence

-

1/n
[ +u+v]|dudv<ff5 [ 92[ +u+v]
2

<£ -2 ;— <£ L = e = .
]dudu:nzé w[l/Tc']:kw(V;{] (1=k=nx);

nx

12, = K — w(l/—}‘[;; i D) = K— "’[Vln)

y) For Z; we get similarly

| s = % a)[ VL]L=[§;+1 P (@) = —;a)(%]

(3.4) and a) b) prove Lemma 4.
1. Proof of (i)=(ii) in the saturation case x=1. First we prove

Lemma 6. For the function h(x)=xlogx we have
S,(h; x) —h(x) = C 711— Jor x= %, where C=0 is a constant.

PrROOF. A simple computation gives

e k+1
S,(h;x)—h(x)=x Z[log % —log x] 7y (0
k=0

o k
= ]—u 2(—log—k—]e‘"i' = -'-l—uT(u)

n  k=o

with w=nx. Thus, it is enough to show that «T(«)=C for u=1.
T(u) is the y-coordinate of the weight point of the weight distribution: the

weight pr=p(u)=e™" is placed in the point (k; glogl—k]. Since for large
{

kv
u and |k—u|=Vu we have (see (2.4))

e of ),

an easy consideration gives the following: there are constants 0<p, y<1 inde-
pendent of u such that for large enough u we can replace the welght-system {r:}
by two such systems {p(l)} {pP}, ie. p=pP+p2, pP, p@=0 in such a way

that 2’1)(1)—y pl S’kp(l)—u and p®P=0 for |k—u|=pVu be satisfied. Then

p —
. 2nu

we have automatically (1—7y)! ka}f):u, i.e. the weight points S, S®, §®
k=0
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of the weight-systems {pk}, {/?]/}, {pk2\ have u as their first coordinate. Let S=
=; T(j), S™M=(u; T™MW)), S™=(u; T*(u)). We have T(u)=yT*(u)+

+ (@ —y)T(@)(u), and by the convexity of the function liu(x) = —log— we have

TW(u)™0 and T2un )" " (um(n+pYin)+unn-[: \b)) since the positive weights

in {/42} are all above the line joining the points (M—Rfw; —3fu)) and
(u+B /r/; hu(u+B W)). Since

K(«tplZ)+K(»-Bfr)=to g 1"+ ilog I+t jsifi

for large n, we have for biSuO uT(u) s ~"B2- However, /(1) is strictly convex in

x and continuous in n which give easily that uT(u)*c also for 17ir=iun with
a constant c¢>0.

We have proved our lemma.

After this we turn to the proof of the implication (i)=>(ii). We shall use an idea of
A. Grundmann (see [1]), namely the possibility of the application of a convexity argu-
ment.

Since S,,(f)—$=0(n~1), Lemma 6 gives that with a suitably chosen constant
C we have for the functions

f £(x) = Cxlog xxf(x)

the inequalities (see also the statement and the proof of Lemma 2)

S,([£:x)SIt(*) for x~1;5,(/£)-I+ =0(u-I.

Now at this point we could use the ideas of C. A. Michelli to conclude that the func-
tions f + are convex but for the sake of completeness and also to remain on an
elementary level we prove this in

Lemma 7. If f(x)=Kxlog y+/, where ffC B, Sn(f; v)isf(x) for xis—

and S,,(f)—+ —0 i-"j thenf is convex.

Assuming the validity of this lemma the proof can be completed as follows.
The convexity of /+ gives d2/-(/+; x)&0, i.e.

x) ~ -cd”;(ilog /; x) & —er2

Similarly, from f~ we get dLj(/; x)Lc2 and these together give (ii) for ot=1

It is left to prove Lemma 7. Let [a, h] be an arbitrary finite interval with a>0.
It is enough to show that/is convex in (a, b). By S,,(f)—¥=0(n~1), n(S,,(f)—)
is a uniformly bounded sequence on [u, b] so, by weak compactness, there is a
gdL™a, b] and a subsequence {nk} for which nk(S,.k(f)—f) converges weakly to
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gon[a,b]. Since S,(f)—f=0 on [a, b] for all large n, g is non-negative. Let F be a
primitive function of /. By the above proved part of our theorem S,(f)—f=0(n"")

implies @ (8)=0(0%?) ie. 43(f; x)=0((h/Va)**) on [2 y 2b] and so (as it is
well-known) f is continuously differentiable and f ’ELipi, |f’|=Ka-% o0

[% ; 2b]. By a simple Voronowskaja-type result n(S,(F: x)—F(x)) — —;C— f’(x) uni-

formly on [a, b]. Finally, let
(k+1)/n

Bfin =5 { A f(u)du] Pas)

be the associated Kantorowich operator. Since f ’ELip% on [%, 2b] we have

ro=rer (-l )G

n [ r@du =15+ 51 () rom ['—Ife(%,Zb)]

k/n

and so

by which, using (2.6), we get that n(K,(f: x)—S,(f; x))—lS (f’; x) tends

uniformly to O on [4 b] and since f” is continuous in [a, b] and |f/(x)|=
=Kx~%* for all x we get easily that n(K,(f/: x)—S,(f; x)) tends uniformly to
-;—f’(x) on [a, b].

Let now h be any continuously differentiable function with compact support in
(a, b). Integration by parts yields

X

f(@ ”’(")] n(S,(F; x)— F(x)dx = — f DO (5,03 %) f ())dlx—

a

g f @n(K"(f; x)_Su(f; x))dx.

Putting here n=n, and letting k tend to the infinity we obtain by the above consid-
erations

Y R Y h() h(x) 1
[ (27 wax= afT"g(x)dx—af’x > (),

X

b b b
[ W@ @dx=— [ h(x)@dx = [ W (®G)dx
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where G (x) denotes a primitive function of 25)—?2 Since g(x)=0, G is increasing,
and since the above equation holds for all /2 of the above kind we can deduce easily

that f’(x)=G (x)+c on [a, b] with a constant ¢, i.e. f” is increasing, thus f is convex.
The proof of Theorem 2 is complete.

§ 4. The proof of Theorems 1 and 3—6

ProOOF OF THEOREM 1. (i1)=>(i). Since S,(f; x)—f(x)=0(1) uniformly on
finite intervals, we may assume x=1. But for x=1 the proof of Theorem 2 gives

S.(f; Y)—f(x)=0 |o (—V%) =o(1) uniformly. Thus (ii) implies (i).

(i)=(i). We follow the proof of (i)=(ii) in Theorem 1 in the case O0<ua<1.
Again, by the continuity of f we may assume in the estimation of A,,y-( %)
that x=1. Let O<h,d<1 and (n+1)""2<d=n"12 Let 0s(1) denote a quantity
which tends to zero together with &. By Part II of § 3 we have

nyx
iy=(f; 0| = o1+ [ [ 187 (f; x+s+0)|dsdr.
n 0

The proof of Lemma 4 gives for x=1

ISy (f3 0| =K [""‘"+ w(l/ln )] [0‘“”“’(;/1;1 )]
and so

(4.1) o(h) = 05(1)+K( ] (05(1) +(5)).

Since the boundedness of f gives w(1)<e=, (4.1) implies easily @ (h)=o0,(1).
(if)=(iii) is standard: it is enough to consider the case x=1, and let m and M

be defined by 2"=x<2"+1 and M=hV2"/Yw(h). For g()=fyw(0) (see (3.1))
we have

g ()= ()| +|g (e +hYx)—f(x+hVx)| = Keo(h).
By the boundedness of ' we obtain for some &€(x, x+M)

2 (@) = 1 g(X+ﬁ2—g(X) ' - ZSuApdlfl & %
and since
” 20 et 2 K hl/z_m -/ K 2
O (452 5 01+ iy ) = e o[ = g ote=2
we have.
g @] = gD+ fg”(r)d = ﬁ +K ‘;’,f,’;g M (t€ (x,x+M))
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and so

lg(x)—g(x+hVx)| =

which proves (iii).
The other implications in Theorem 1 can be proved very easily.

x+hyx
[ g @ar

X

= hl/—(£+K c;,flhz MJ = KYw(h)

Proor oF THEOREM 3. (ii) implies easily the uniform continuity of f€Cj, (see
Theorem 1) by which S,(f)—K,(f)=o0(1) uniformly, thus Theorem 1 can be applied.

Conversely, if K,(f)—f=o(1), then, since |K/(f; x)|=2nsup |f| we have that
£ is uniformly continuous and we can apply again Theorem 1 to derive (ii).

PROOF OF THEOREM 4. 1. Proof of (ii)=(i). We show that (ii) implies | f(x+/h)—
—f(x)|=Kh* uniformly in x, by which K,(f)—S,(f)=0(n"%) and (i) follows from
Theorem 2.

Let first O<=a<1. For O=x=<h (ii) (2) gives the desired estimate, and on the
interval (h, =) we get from (ii) (1) 43(f; x)=Ko(Vh)=Kh* and it is well-known
that this implies |f(x+h)—f(x)|=Kh* (0O<a<1).

For a=1 we argue as follows. It is well-known that (ii) (1) implies that f has an
absolutely continuous derivatitive on (0; ) with |f”(x)|=K ~x. (see also § 3, III).
(i) (2) gives |f(t)—f(0)|=Kh for h=t=2h by which [f’(&)|=K for some &€
ée(h, 2h). Since |f”(t1)|=K “h for te(h,2h), we can infer |f’(f)|=K (h=t=2h)
and hence |f’(f)|=K (t=0) (h=0 was arbitrary) and the proof is complete.

II. Proof of (1)=(ii) in the non-optimal case 0<a<1. To prove (ii) (1), we follow
the argument of § 3, I1. If we write there K, instead of S, and apply Lemma 8 below
instead of Lemma 5, everything remains valid. (ii) (2) follows from (ii) (1) and Lem-
ma 8.

LEMMA 8. If O<a=1 and for feCy we have K,(f)—f=0(n"7*) then |f(0)—
—f ()| =K(h*+w(Vh)) (h=0).
(k+1)/n

Proor. Let F,,=n [ f@)du and 4,,=F,—2F, 1+Foss Ex-

k/n
actly as in the proof of Lemma 5 we get that

K{15) = =gy S Z 0 (o

and so, using our assumption, we can infer the relations

A, f(0) = Fy o+ O(n~9), B,,:f‘[%]:F,,,I+A,,,0e—1+0[n—z+w[%)].

3/6n 2/6n 1/6n
The expression of %AZH—A3,,+%A6,, gives 0=n[f -3 f +3f ]f(u)du—{-
0 0 0
+0(m *)=4dg,,0+0m % and Aj,—A4g gives that Fe,, o— Fen.1=0(m%. Using
2 1
these we get from Bg,— A, the estimate f(0)—f ( ] [n"‘-{-w( V—]] by
n

which we can argue for arbitrary h=>0 as in Lemma 5.
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1. Proof of (i)=»(ii) (1) in the saturation case a=1. Above we showed that
w(5)=0((532, and so (see 83, III)

S..(f; x)-f(x) = (Kn(/; x)-f(x))+ (Sn(f; x)-Kn(f;x)) = o (i)
uniformly on each interval [a, b\ with 0 . Hence df(/; x)SKabh2(x£ (a, b))
with a constant Ala fl depending on a and b (see the proof in 83, Ill which, using
(2.6), works also locally). It is well-known that the last relation implies that / has
an absolutely continuous derivative f on (a, b), and since a, b were arbitrary, /'

is absolutely continuous on (0, °°).
By our assumption n(K,,(f)— ) is bounded, and

(R« *)-1(*7)) x)-f(x))+n(Kn(f; x)-S,,(f; X))
tends to -~-x/"(x)+-"-/'(x) almost everywhere (see §3, Ill and the fact

that n(S.,(f; x)-/(x)) tends toj.r/"(x) ae.), thus x/"(x)+/'(x)=(xe/'(*))'=

1" gy)ch ie. I'(x) — ot
0 X
]

/
H— j g(r)ch, and since here the last term is bounded and/is continuous at 0
X 0

we get ¢=0 and together with this the boundedness of f'. Thus xf"(x)=g(x) —
—f'(x) is also bounded and an application of Lemma 2 and Theorem 2 (i)=>(ii)
gives the desired result.

For the proof of Theorem 5 see that of Theorems 1 and 6 below.

Proof of Theorem 6. First of all let us notice that (ii) is equivalent to the fact
that (1.1) holds for the functions/ ( ¢, y) andf(x, ¢) uniformly iny and x, respectively.
In fact, putting h2=0 into (ii) we obtain (1.1) for f(-,y), and conversely, by adding
the inequalities

-, y+Kfy £tKfy)-,x) = O(/if), 2AIljx(f(-,y+h2yy,x) = Ofiff),
Aljy(f(x+hi\'xxh1Yx-,-y,y) = 0(hf), 2AIMN(f{x+hf'x\-)\y) = Ofhf)

we get (ii).
Thus, (ii)=>(i) follows easily from Theorem 2, since

S, n(fl X, y)—f(x, y) = S,,(f(my); x)-f(x, y) +Sn(Sm(f(t: -);y)~
-f(t;y);x) =0(n“4nr").

To prove (i)=>(ii), for a fixed n let m tend to the infinity in (i). Since / is con-
tinuous and Smcowerges for bounded continuous functions, we get for each i

Acta Mathcmatica Hungarlca 41, 1983



UNIFORM APPROXIMATION BY SZASZ—MIRAKJAN TYPE OPERATORS 307

This gives by [2*+NI/I“]I' G \
«

(in fact, (2.6) gives 2 Pnk(X)=0(e~tnx)=0(n~1) for xsl/f/i and ((nx)i+1l
k=1[2nx]

A+ D)D/((mge), /') i /| for I'n by which 2 Pnk(x)=K/n)
SCU I
[ev+nfid] ~ /5 1\
[s.(/(-.«;*)-/1(*.T)|= i™ 2 o /(7.

(VI'?‘)' (Tley— f(x,y)+0(n J = ml_ml'z 2\-f{x,y)+0{n
i: lim(n-*+m-*+n-D)air/r

and so we have, by Theorem 2, that/(-, y) satisfies (1.1) uniformly iny.
We have completed our proof.
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ON ALMOST DIVISIBILITY PROPERTIES
OF SEQUENCES OF INTEGERS. I

P. ERDOS (Budapest), member of the Academy and A. SARKOZY (Budapest)

1. Throughout this paper we put e"nix=e(ct). We write {a}=a—{a] and ||a|| =
=min ({a}, 1—{a}) (i.e., ||al] denotes the distance from a to the nearest integer).
c,cxc% ... denote positive absolute constants.

We may say that the positive real number b is almost divisible by the positive

real number a if is “small”. More exactly, we may say that if >0,

then b is e-divisible by a and a is an r-divisor of b: in this case, we write a\Jb.
The aim of this series is to study the r-divisibility properties ofsequences of inte-
gers. In particular, in this paper we study the r-divisibility by consecutive integers.
2. In Section 3, we show that if t is not much greater than n, then there exists an
integer j such that
(1) 1i/S /I
and (n+j)\e. In fact, Theorem 2 in Section 3 contains this assertion in a sharper
form, namely the interval (1) is replaced there by a smaller interval of the form
(2) 1sj'S P(n,t)
(where P(n, t) is much less than n).

Theorem 2 will be derived from Theorem 1 below; this section is devoted to the
proof of Theorem 1

Theorem 1. There exists a positive absolute constant Cj such that thefollowing
assertion holds:

Let e>0, n a positive integer satisfying n>/jO(e), t a real number such that
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(note that for |Iz§ t i.e, t*nci, we havey n2/(k+2)«=P sn
(L and

= for o~ a< B~ ).
(6) N R) = 2 1 ( a i)

Then we have
™ \m, B)-~(B—)P\ < eP for o~ o< =1

Proof of Theorem 1. The proof will be based mostly on Vinogradov’s ideas;
see [3] and [4]. We need three lemmas.

Lemma 1 Let a, 8, A be real numbers satisfying
)} 0<d-=12 A"B-a”l-A.
Then there exists a periodic function ¢ (x), with period 1, satisfying
(i) d(x)=1in the interval a+ —ASx"} —A,

ii X)=0 in the interval B+-"- AAXM+tx —A,
(i) d(x)

(iii) 0*p (x)*1 in the remainder of the interval a— /Isx"Nl+«*y A,

(iv) d(x) has an expansion in Fourier series of the form

h(x) = B—a)+ 2 (amcos2nrnx+bmsin2nmx)
where
tam\ -- = \bms — ]

am —2(B—ct), \bmm2(R-0i),

2 2
lam < yrwaA > A A n2mo2A '

This lemma is identical with the special case r=1 of Lemma 12 in [4], p. 32.
Lemma 2. Letr, M, M' be positive integers, u, w real numbers such that

9) nS 2r+3
(10) OSvval,

r+3
(11) M~ =un=Mri
and
(12 M M'=22M.
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Then we have

i C2M1—1/2r—1—1/2'-1(r+1) u1/2'-1(r+1)10g u

ge( u )
m=M \M+W

where ¢, is an absolute constant (independent of r, M, M’ u, w).

(13)

This lemma can be proved by using Weyl’s method and it is identical with Theo-
rem 1 °1n [S], p:22.

LEmMMA 3. There exists an absolute constant cg such that if k, P are positive inte-
gers, Q is an integer, o, o, ..., &, are real numbers,

(14) k = c
and
(15) 0<2(k+1)Pla| =1,

then writing
F(x) = oax* 4o xk+ ... oy x+ 0,
we have

Q+P
(16) L%’He(f(n))

|
= zelsklogszl—llﬁkzlogklog P+2|al—-1/k‘

This lemma can be derived from an estimate of Hua (see [1]), and it is identical
with Theorem 4.2 in [2], p. 286.
Now we are going to show that the assertion of Theorem 1 holds with

¢; = max (c3+i, 20)

(where ¢, is defined in Lemma 3).
In order to prove (7), we may assume that e<1 and let 5, ¢ be arbitrary real
numbers satisfying 0=ny<p¢=1 and

€ €
Then writing

€ & &
(18) “—ﬂ*ﬁ, ﬁ_Q+E3 4 _§"

we have 0<A=—§-<% and

& & & &
PR ko B (e+ﬁ]—[n—ﬁ) =(e-m+g =
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so that (8) holds and thus Lemma 1 can be applied with the numbers «, 8, 4 defined
by (18). We obtain that there exists a periodic function F(x) with period 1, satisfying

(19) F(x)=1for n=x=g,
(20) F(x) = 0 for Q+—8—§ x= 1+n—§
210 0=F(x)=1 for all x,

and such that it has an expansion in Fourier series of the form

22) )= [Q —n+—= )+ Z’ (a,, cos 2rmx+ b,, sin 2rmx) =

- ( —n+ )+ 2 Re (a,,—ib,)e(mx) = [Q—’]+%)+:2:: Red,,e(mx)

m=1

where
We 1
— e 2)1/2 < L
23) ] = | — ib| = (a2 + [bafDV2 = == < —,
(24) ldy| = |a,,—1b,,| = (|a,u[*+ b2 = 2V2(B—0a)
and
2Y2 16Y2 1 3
S o = /2 =
@0 1l = lon—ibal = (anlt+ bl < o = 25— < —.
Let

Then by (19), (21), (22), (23) and (25), we have

4
\26) N, m = 15‘72;? L 151§PF({71+J'}) B
né{"—iT}«.:
P ¢ P ¢
- Zrlig) - Blereir Erene(n i) -
[ g m, P ¢ P 4o ¢
= Q—n+—§)P+m=1Re[dmj;;e[m n+j]]+jz;m_%'+lRedme( n_—i—J]é
& mg P oo
=(e-ntg)p+ 2| Ze(F)|+ 2.2, 10 =
=(e-n+g)ps 3 L1 5e( ]( > 2o
8 mmim /=1 \n+j m=m,+1 EM?
e my 1] £ mt 3 fhy .00 1
G (e—"+§]P+m=1Z jgle(n-i-j] +?Pm=mo+lm a
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g £ ) -

[Q n+—- )P+ 2

m=1mMm |j=1 \n+j 8 m m m
NN 1Y AT
TR < m |5 \n+j P

€ ™o 2 mt] 3 .
o (Q—'H_?] = ,;; (n+J 48/e2

my

3
X Ze( mt'n'
1m|j=1 \n+j

2
16

3e
= (e-n+55) 2+

Now we are going to show that

my 1o E mt
2 | AC (T,) R

We have to distinguish two cases.

logt?

logn

apply Lemma 2 with &, n, n+P—1, mt and 1 in place of #, M M’, u and w respecti-

vely. In fact, for large », (9), (10) and (12) hold trivially. (Note that k=0 follows
from (3).) Furthermore, we have

log? l((zl‘lﬁ.-s)w] 1 k+3)
u=mt=t=nloer =p? logn =n'

and for large n,

@7 P

Case 1. Assume first that

<c¢; (i.e., t<n). In this case, we are going to

49 49 K 49 el 3)+1 49 k+

= = PR [P [ I S 2 logn 2 k+2
u—mtfm0t<£2t R 62n B
so that also (11) holds. Thus we may apply Lemma 2. We obtaln for lage n that
m P m
41 Ze( i ] - Z"_I_C Pl = V=114 D) (g )16+ D [0 it <
m=1M |j=1 n+j m=1Mm
g =4 £ V264D
< D cz—nl‘l’zk'l(——) mlog mt <
m=1 m n
logt
—08F _3)ex-1(k+1
— szonl—llzk—l (logn J ¢ ) og mot<
ca 1-12¢- 1+[ 3 o8], —s +_]/2k 1k+1) 49
<-tpn Jogs log— ne <
82
bt 1/2“-1+(%(k+1)+-;—)/2’<—1(k+1)
—=n logn =
e £8 1121412 U k4D o0 = _anl—uzk-1+1/2k+1/2k+lldgn i
g2 g
C5 1-1/2k+1 Cs 1—1ok+a, —1/2k+2 € r,1-1/2x+1 &
=—n logn = —n n logn < —[n =—2P
g% g g2 g 16 [ ] 16

which completes the proof of (27) in this case.
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Case 2. Assume that

(28) 1 ~ - d=rT1ax(C3+y ’ 20)-
Let us write
jfit
/W = 2 (-1V-Sr*.

Then by the well-known inequality

N—e@)I! S 2K,
we have P
w1l P ) 1 mi
(29) meim &S §/m m_jj_; T omEim iéie 1
1+=
l
m 1 1lp /['+* ml
X1 U iU < DHDVADr
no 1 o
mM m 1'4/mC +|=%:2(_ by n
A + 4> 4
2 |mr »ée{LIJ) +2\e\LIJ+I 2
"0 l ' ml 400 -
glm i%ie()/UJO))l+i%i2n T j=240(-i)1
m=1 t7=1 j=1 n \u |/ J

m)(\ pk +3
Yy «(/m(l)) DA L= 2 I2</m0)) +2T™ [N

m

400 Pk+3

2\\12 (LLI)+27CA§2)”"nk+3 me1 2, PUm0)) i o

Now we are going to estimate the parameters ir, P. Firs we note that in this case,
(4) can be rewritten in the form

fcSifil+1 f+1
(30) logn 2
i.e.,
(31) jik-1/2 iS t < nk+172
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Furthermore, with respect to (31) we have

()  I>=[(— -(172) m(?7=")
and |
(33) 5/2 *+ 1&:&_%/22) 1/Ne +

/ EH—!SHZHl/(K+2> 1
b —n2na+2y_2 > _ n2igct2)

(note that n2'k+2)=>+ = follows easily from (3) and (30)).
For large n, the last term in (29) can be estimated in the following way:

34 400 Pk+3 409 [nsk:f:glzz\l/(uz) o2
&) i~ | 7{ T 3

400 n*+52 P 400 1 £

i =TT p< =P

Finally, we estimate the sum ,gie{fm(j)) by using Lemma 3 with 0 and
fm(x) in place of Q and f(x), respectively. In fact, by (28) and (30) we have

logt 1 i f n i
logn 2 ~d 2-T3+2) 2~

so that (14) holds. Furthermore, with respect to (30) we have

t JEEL-k-2
(35) a = (-1)4 n+2 = m—gry = mnI67
A mOm log” 2' 2< —n~32

(3), (30), (32) and (35) yield for large n that
0 =< 2(L+ I)P|a] < 2,K|'°9t | 2)

nc 1 (log n)sfi

[ 49
~Vlogn logloglogn §)L—| 22 n~32< (logn)14
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so that also (15) holds. Thus Lemma 2 can be applied, and we obtain that

|
(36) ‘ 2 e(fu (J'))i = 218k gtk p1-1/aitlogk o0 Pt 2 ] ~UE,
I

First we estimate the first term on the right hand side. By (3), (30), (32) and (33),
for large n we have

(37) 2e15k log*kpl—l/ekslogk log P —

= 2Pexp (1 Sklog?k ke +log log P]
6k*log
1
— n2lk+2)
log > 1

< 2Pexp 15( loggn +?] log? ( gt +_l.) = +log log n¥/k+d| —

1 logn 2 6k?log
<2Pexp |30 108! 102(1°g']— logr ___ Lioglogn| <
P logn g logn 6k*(k+2)logk ki
i dogmy" . [ 1 (log n)5“] logn
marap [30 logn loglogn ? logn loglogn) 18k3logk t+loglogn) <
¢ g ") logn
< 2Pexp|30————— (log log n)?— +loglogn| <
log 18 logt +L 310 logt +1
( logn 2) g(logn 2]
< 2P exp |31(log n)*loglogn— : losg = 1 =
i
100( oK ] log( Og’]
logn logn
< 2P exp|31(log n)*loglogn— logsn
(log n)'/* (log n)*/
00 lo
loglogn loglogn
< 2Pexp|31(log n)'/*loglogn— iogH =
M“_ loglo
(loglogn)? BReH
= 2Pexp (31 (log n)*loglog n ——— (log n)Y*(loglog n)z)

< 2Pexp ( o1 —— (log n)"*(log log n)2] < Pexp (—(log n)'5).
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With respect to k=c¢;=20, (3); (28), (30), (31), (33) and (35), for large n the
second term on the right hand side of (36) can be estimated in the following way:

—1/k k+2 VK k231/k
sl o) o)
8l 2e . (n"+2 . mt = t

AT P+ G k5 \1k=1/ k)
— 2[ J e 2( ) ( ) n- Vi<
t t {

pk+5/2 \2/Hk+2) k572 \2IKE+2)
=4P nVE = 4P| —— n=3k —
- t 7 nk=1/2

- 4P’26/k(k+2) 1/2k 4Pn(10 k)/2k(k +2) =

= 4Ppnki2—K)2k(k+2) — 4Pp—14k+2) _ 4 pp 112k —

1
~spexp (~ B8] < apewp [-—LEn__) -
logn 4 2
logn logn

<4Pexp| — exp —WJ = Pexp (—(log n)**).

(logn)/* 1 )
2 loglogn +7

(29), (34), (36), (37) and (38) yield for large n that
i P ( t ] m,,
j;;e o n+j ’ 5 o= |

nf:I E
< 2’ (P exp (—(log n)'/?)+ Pexp (—(log )1)3/“)) +— P <

m 0

400 P

—_—
nk+3

e(fm )|+

]_

< 2my P exp (—(log ;1)1/5)+§ P =

=2 [[1—?]-{-1] Pexp (—(logn)l/5)+;—2P Al SN S

32 32 16 "

which proves that (27) holds also in Case 2.

(Note that like Case 1, also Case 2 could be treated in a simpler way by replacing
Lemma 3 by Theorem 1 in [5], p. 47; in fact in this way we can show that the exponent
5/4 in the upper bound in (3) can be replaced by the greater on 3/2, but, on the other
hand, this methods yields the much worse estimate P~ pl—¢Uogtlogn=2 , pl—c/k?
for P: this is why we have preferred the more complicated way based on Lemma 3.)

We obtain from (26) and (27) that

3¢ P
N, ) < (—r1+16]P+ 6P=[g~n+z]1’
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provided that (17) holds:
(39) N(n,B) < [e-4 +-j] P for jre-i/sl-1

Assume now that 0SR-i;<e/4. Then (39) yields (with 5’+£—in place of q)
that

(40) N(Gj,e)S N at” -(e-nmjj =N «+]) <

< + + p=TfFf - (B-»/+y)r for 0SR-/?2<fil4.

£
Finally, let 1—<g—tj=1. Then we have

41) N, 9S -~ = |(1— P< (e-i+y-)* for 1] <Q-n=1

(39), (40) and (41) yield that

(42) NI, )< [R—F+yj P for 0Sg-illl.

On the other hand, by using (42) repeatedly, we obtain that
(43) tf(a, B) = N(Q, 1)-A(0,a)-N(B, I)- P-N(0,a)- N(B, ) >

>P-(«+Mp-[i-B+Y)r (R—a~E)P forall 0”ra<~gl.

(42) and (43) yield (7) and this completes the proof of Theorem 1.
3. In this section, we prove the following consequence of Theorem 1.

Theorem 2. Let e>0, n a positive integfr satisfying n”nfic), ta real number
such that

0g Nn)5/4)
log n)'

Let us define k by (4) (where cx denotes the constant defined in Theorem 1), and write

n< t< exp

nifn<t<n2
[n1 V/2k+] if 2N t< Ttl

Ao~ YA+ 52 \1/(*+2)-
(=) 1v »m=
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Then there exists a positive integer j such that

(44) 1S/SP

and

(45) (n+j\t.
Proof. We have to distinguish three cases.
Case 1 Let

(46) /'</m< en2

If n</-=2n+2, then (45) holds with

O n<i<HH+I
[—iv for n+17™N/<2n+1
for 2n+ 1~rt<2n+2

(for large ri). Thus we may assume that 2«+2” ; hence

Let us write t in the form

(48) t= |—ij-j-J(n+1)+r where 0Sr<n+|
and
(49) t=[-~](@2n)+s where 04 s< 2n,

respectively. (48) and (49) yield that

(50) 2[bl Th bl ["=bl 7 UD—+s

By (47), (48) and (49), we have
(51) Icrj](h—1)—F+sS 2(nh—1)— > 2(n—1)—n+1)=n—3>0

for n>3. (50) and (51) yield (for n>3) that

Thus there exists an integer j such that i=/é n—1 (=/*—1) and

(52) In+j\  Ln+j+id

We are going to show that this integer j satifies also (45).

319
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Let us write q=[#j]. Then by (52), we have 3o >m,

thus with respect to (46)
L t t t
= 3 | rRRE - e - . o
n+j n+j n+j+1 (n+j)(n+j+1) n?

which implies (45) and this completes the proof of the theorem in this case.
Case 2. Let
(53) en? =t < n

For j=1;2, ..., n—1, let

=

q<

Al t t i !
17 n4j n+j+1 T (m+)m+j+D)°

Then obviously,
(59 0 =d si=ide g = 0 =dy=d;.

By (53), for sufficiently large n we have

t t

3 b=yt = mtD(nt2)  @n—[n3) @n—[n/3]+1)
I ST S e
A° 2 Fead 400l S ni e s
52 (57)
Let p denote number such that
10 20
(56) - P= =y

(It is well-known that for x=2, there exists a prime number ¢ such that x<g<2x.)
(56) yields that

(57) 1 e

P10
(55) and (57) imply that there exists an integer a such that

a a+1
(58) dn-[n/3] == ; = = dl'
Then either
(59) (@ p)=1

or (a+1,p)=1 holds; we may assume that (59).
(54) and (58) imply that there exists an integer u such that

(60) 1§u§n—[n/3]—1<%
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and
(61) du+1 = i = du'
p
By (53), for j=1,2,...,n—2 we have
62 O : :
< . —_ N - — e
(62) IO (i) (n+j+1D) (n+j+D)(m+j+2)
2t 2t

2
i <—g=<— (forj=12,....,n-2).
G bR T s n—2)

(61) and (62) yield that

b g B i 2
P n
hence

63) 2

R

: prd
n

p

Obviously, there exists an integer b such that

t b 1
(64) = —-;‘<E.
Define the integer / by
(65) al = b (mod p)
(such an [ exists by (59)) and
(66) 1=1=p.
Put g= i and j=u+I. (56,) (60) and (66) yield for large n that
8 2n 2n 20 24 5
67) (1 :)j—u+l<T+p<-3—+T<T+?—n.

For i=1,2,...,n—1—u, we have
du+i = du+(du+l—du)+(du+2_du+l)+"'+(du+i—du+i—l)
thus by (62) and (63),

a a
68 ld" .i‘_—| é du i_du +|d""“—' é
(68) | = M5

2 Dt 2(i+1
Y S IS S e i PO D Y B A

(for 0=i=n—1—u).
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Furthermore, we have

t t ot (t t o\ ( t t

n+j n+u+| n+u\n+u n+u+l) W+M1l n+u+2

11 n+u+l) n+u M WAL o USE1—

b—a X . ' b _
P ~RalH o) ~ Kn+u P>1+<7—20(/‘vrﬂ— %>)
thus with respect to (56), (57), (64), (66) and (68)

t t b I . -apg +i)
n+j 4 ntu p T, duti B 2p it,o

<J_ 22 n 1 2p2 e 800 e e
2p+ v - 2p+ n M 20+ e2n N 20+ T <£E

which implies that

(69) . e
n+j
(67) and (69) show that (44) and (45) hold also in Case 2.
Case 3. Let
((log n)5/4)
"= i<explbilr7j-

Then by using Theorem 1with g in place of e, we obtain for large n that

1= 7 2 1= NIr0g) =

ISj'SP lajsp 1SJsP

fex W <- “ -
sP+(N(O,e)—eP)A eP—liV(O,e)—eP\ > rpP——P=—p > 1

which shows that there exists an integerj satifying (44) and (45), and this completes
the proof of Theorem 2.
4. In this section, we show that if t is large (in terms of n) then it may occur that
there does not exist an integerj satisfying 1*jsn and (n+j)\et.
Theorem 3. Let >e=*0, $>0. Then for u>u2(e), there exists a real number
t such that

(70) n<t< exp ((2+<5)n)
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and there does not exist an integer j satisfying 1=j=n and

1 (n+7) 1.

PROOE. Let ={052; vy 2n]+% (where [1, 2, ..., 2n] denotes the least com-

mon multiple of the numbers 1, 2, ..., 2n); then n<¢ holds trivially. For p=2n,
define the positive integer o, by

P = 2n < p%tl.

Then by the prime number theorem, we have

log(l, 2, ...,2n]-—-10g( ]]p“p] = > log p*»~2n
p=2n p=2n
so that for large n,

t=[1,2, . 2n]+% = exp [(2 +%] n]+% ~ exp ((2+3)n)

which proves (70).
Furthermore, if 1=j=n then

{n:-j} i {[l’ e ..1.1’3;]4—"/2} 4 {[1’ 2:1+_]’ = o 2(nn+j)} 4 {Z(nn—{—j)}'

Here we have

3
2

1 n n

_—_——S—— .l —
4 4n = 2(n+j) 2n
hence
1

% {n:—j}={2(nn+j)}= i+l o 2

=

IIA

which implies that
1

4

Thus (71) does not hold which completes the proof of Theorem 3.

5. Note that there is a considerable gap between Theorems 2 and 3. In fact, let
f(n, &) denote the infimum of the real numbers ¢ such that n<¢ and there does not
exist an integer j such that 1=j=n and (n+j)|,t. Then for n>n,(¢), Theorem 2
shows that

(log n)>/4

(72) exp [To_gm) = f(il, 8)

and on the other hand, Theorem 3 yields that
(73) S (n, &) = exp((2+0)n);

we guess that both the lower estimate (72) and the upper estimate (73) are far from the
best possible.
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BEMERKUNG ZU DER ARBEIT
,,UBER DIE LEBESGUESCHEN FUNKTIONEN. II”

K. TANDORI (Szeged), Mitglied der Akademic

1. Es sei A={4);" eine monoton nichtabnehmende Folge von positiven Zah-
fen. Fiir ein orthonormiertes System ¢={@,(x)};> im Intervall (0, 1) seien

1

Lg;®= [

0

dt,

k;”l @x(X) ()

1
dt, Li(@;%) = [ max
¢ 1=vEn

2 a0

| & o ()i (D)

L,.[%;x)=of >

T

>, @k (X) i (2)

s §
dt, L (_qo_;x] = [ max
ﬁ oj‘lévén 2

- N

dt

{n=1,2,...) die verschiedenen Lebesgueschen Funktionen.
Offensichtlich gelten

P - 4
L,(p;x) =L;(®; x), L,.(—-;x]é L:[—;x} x€0,1);n=1,2,...).
Vi T )
‘Weiterhin kann man leicht zeigen, daB3 die Implikationen

L,,[T/‘i_— ;x) —0(1) (€O, 1);n=1,2,..)=L,(@; %) = O(A)
(x€@.1);n="1,2,...)
L;:(% ;x] =0(1) (x€©1);n=1,2,..)=L(@;x) = 00k
(xc @ 1n= 12 ..)
bestehen. Aus der Bedingung

0 I} (% ; x] =0(1) (x€(0,1;n=1,2,..)
folgen also die Bedingungen

2 L(¢i;x)=0(,) (x€(0,1); n=1,2,...),

)] LY @i; ) =0 (x€(0,1);n=1,2,...),

“ L,,[%;x) =0(1) (x€(0,1);n=1,2,..).

In der Arbeit [3] haben wir den folgenden Satz bewiesen.
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Satz A. Es sei X eine von unten konkave, monoton wachsend gegen Unendlich
strebende Folge von positiven Zahlen mit A,= O (log2n). Gilt fir eine im absoluten
Betrag monoton nichtwachsende Folge {ak}

2;ath = °

so gibt es ein orthonormiertes System <p={(x(x)}" im Inervalle (0, 1) mit (2) derart,
dal die Reihe

5) &) AR(X)
in (0, 1) fast Uberall divergiert.
In der Arbeit [4] haben wir dieses Resultat verscharft.

Satz B. Unter den Bedingungen der Satzes A gibt es ein orthonormiertes System
<P={<Pk()}T im Intervall (0, 1) mit (4) derart, dal’ die Reihe (5) in (0,1) fast uberall
divergiert.

In dieser Arbeit beweisen wir den folgenden Satz, der alle erwahnten Satze
verscharft.

Satz. Unter den Bedingungen der Satzes A gibt es ein orthonormiertes System
cp={(pk()}i in (0, 1) mit (1) derart, dal die Reihe (5) in (0, 1)fast Uberall divergiert.

Bemerkung. Aus diesem Satz folgt die folgende Behauptung. Unter den Be-
dingungen des Satzes A gibt es ein orthonormiertes System {%(*)}* in (0, 1)
mit (3) derart, dal die Reihe (5) in (0,1) Uberall divergiert.

Diese Behauptung verscharft einen Satz von L. Csernyéak [1].

2. Zum Beweis des Satzes bendtigen wir den folgenden Hilfssatz.

Hilfssatz. Es seien 2), q positive ganze Zahlen. Dann gibt es ein in (0, 1)
orthonormiertes System von Treppenfunktionen gt(p,q;x) (/=1, ..., 2pq) mit den
folgenden Eigenschaften.

Es gilt

/ max.. 2 gi(P><Fx)gBp,g;t) dt = Cjlogd (x€(0,1);C, S 1),
Inv )&1] -1

und esgibt eine einfache Menge E(  (0,1)) (d. h. ist E die Vereinigung endlichvieler
Intervalle) mit mes(E£)=-"- derart, daB fur jedes X£E ein Index m(x)(<2pq)
existiert, fur welchen gjp, g\ 0 (/=1,..., m(x)) und

>
iy gi(p, q;x)*s CAZpq logp

erfullt sind, wobei C2 eine positive Konstante bezeichnet.
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Beweis des Hilfssatzes. Der Beweis kann mit der in [2] angewandten Methode
gefuhrt werden. Es sei

fi(P',x)=jc_p_i_\j2. far (k=1i,..., 4p;1 = 10,..., 2p).
Dann ist

fff(px)dx=—4 (k_p_I_I2y V= ->2p),
woraus

6 fff(p;x)dx~-~- (1= 1
© P o P

folgt. (C3,C4,... bezeichnen positiven Konstante.) Wir setzen

4
<=/ o;imp @WAj Azprin),

Durch einfache Rechnung folgt fir i>j

=" 1 1
ay pksik—p—i—12 k—p——12

1 4( 1
_ PO XK\k—p—i-12 K-p-j-1/2)

1§34 1. 1
= P(i-J)U [ D - 1T Aalpﬂ 7A1/2j:
1 1 Py 1]
= p(i-v) L -1 77172 - ,=34-0177172]°

und so gilt

() kijl —f- (i,j =1, ....2p;i 9j).

Im Intervall [4, 5] definieren wir die Funktionen ft(p; x) folgenderweise. Wir teilen
das Intervall[4, 5] in N=2p(2p—1) paarweise disjunkte Teilintervalle 1i}J(i,j=1,...
...,N; i?74)) gleicher Lange. Dann sei fur 1=1, ...,2p

fur xelu ;j=1,..2p,j 5/,

Ji(P'x)
fur xeljjd

1]
.H
N
o)
=

sonst.
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Die so definierten Treppenfunktionen f(p; x) (/=1,...,2p) bilden im Intervall
[0, 5] offenbar ein orthogonales System. Wir setzen

5 4 N

= [TH@sxdx = [ Jip: dx+ 3o,
0 0 T
J=l

Aus (6) und (7) folgt
) -—éa?‘é% @ =15 2p).

Wir betrachten die orthonormierten Funktionen

fie; ) = ;i;f,(p; B U=1.28.

Diese sind offenbar Treppenfunktionen in [0, 5], weiterhin gibt es fiir jedes x€[2, 3)
eine von x abhiingige positive Zahl m(x)<(2p) derart, daBB die Ungleichungen

m(x)
©) @i =0(=1,.mx), > filp;¥)= CsV2plogp

erfiillt sind.
Offensichtlich gilt

5

W [,

4

—flvs2
i TEEs

SAe0fwio|dr= [ 3 1 itws 0 fcos ol =

1=sv=2p

Zf(p x)f(p,t)ldt+f max

3 A ) Ao r)]dt

= R, (x)+ Ry (x).

Es sei 0=x<4p. Dann gibt es einen Index k(x) (1=k(x)=4p) mit x€ (k(;i

_k;x)). Nach der Definition von f;(p; x), auf Grund von (8) gilt

Il'\

4ap » 2p 1 1
Ri¥)= 2 ,/;[, 1o [(kG)—p—1—1/2)(k— p—l~1/2)|]

4p 2p 1

22 e @D —p—T—1R)k—p—I=1/2)] =

=

iz 1 1
=C°+C’k2 ke A Fe=p==1a =111
Daraus folgt:
(1n R,(x) = Cyolog p)*  (x€[0, 4)).
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Weiterhin, bekommen wir auf Grund von (8)
*m<*>s ¢"p,l il.(p;*w*

2P l . .

=CnP 3 W(x)~p—|—|/2\ 2 mes(Ajjli + 1 mes(/,.,)d j Nalyd\
» 1
- ClI2,5]|1™)-p-Z2-1/2])

woraus
(12) [?22(r) » C13log p (X£[0,4))

folgt. Aus (10), (11) und (12) erhalten wir

13) J AKX, 27 i(p;*)./iG0 dt = CHlog p)2(<€[D, 4)

Es sei nun x6[4, 5]. Dann gibt es Indizes i(x),j(x) @7 i(x]), i(x) S 2p,i(x)

329

j(x)  mit xfJi(Jix). Es gelten f(p-,x) = 0(1 = 1,....2p, I M i(x), | ~j(x)) und

U;()(?; x)\NM(X) (p; *)I = C15. Somit ist

04) /, maxq 2/(p"x)f(P"0 dtsg ClplJ K, M (p; \dt+ £ KFjM(p; t)|d/j.

Da
I W (p;01* =1 j |t, J,_12l+ImesWk. )"y +

+Imes(/ifry tfl«,j S CIAN -+ 1)
jvi

besteht, erhalten wir aus (14):

d ifB%, 2/ (p>)/(p;0 dt S Ci8logp (x6[4, 5)).

Daraus und aus (13) ergibt sich

(15) d mex 2 f(P Ix)f(P 1o dt™ CHlogp)z (x6[0, ).
Es sei
g.(p;x) = ¥5/(p; 5x) (x€(0,1);/=1, ...,.2p).
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Offentsichtlich bilden die Treppenfunktionen gi(p; x) (/=1, ...,2p) ein orthonor-
miertes System in (0,1). Aus (15) folgt

(16) ;) max 2 gi(P'x)g.(pit) dt S CHllogp)2 (x€ (0.1)).

Weiterhin, folgt aus (9), daB fiir jedes x££=|g/2, )?j ein von x abhangiger Index
m(x)(<2p) derart existiert, da die Ungleichungen

an 0.(pix) >0(1 = 1, ..m(x), 2 gi(pix) = C32plogp

erflllt sind.
Fiir eine in (0,1) definierte Funktion f(x) und fir ein Intervall 1—(a,b)
(7(0, 1)) setzen wir

1= (S) «>>
sonst.

Fir eine Menge H(Q (0, 1)) sei weiterhin H (/) die Menge, die aus H unter der
Transformation y—b—a)x+a entsteht.

Es sei yj (i=1,...,q), und wir setzen

gl+i PP, 4;x) =gM: pix)Ifg (/= 1...2pii=1,...09) E W e@)e

Auf Grund von (16) und (17) ist es klar, dall flr diese Funktionen gi(p,q;x)
(/=1, ..., 2pq) und flr diese Menge E alle Forderungen des Hilfssatzes erftllt sind.

3. Beweis des Satzes. Der Beweis des Satzes erfolgt mit der in [4] angewandter
Methode. Auf Grund der Annahmen des Satzes gibt es eine nichtabnehmende,
gegen Unendlich strebende, von unten konkave Folge p.={p(k))k mit /i(1)é 1 und

(18) A\ e (k/ “p
fur die

(19) Je«&t(*)=~
besteht.

Nach der Voraussetzung Uber X und nach (18) gibt es eine positive Konstante
C2A(™1) mit
(20) /<k) S C2log2k (k = 2,3,...).
Wir definieren eine Indexfolge folgenderweise: Es seien mk=1 und mk+l
die Kkleinste natlrliche Zahl mit g(mk+)>-2p(mK) (k=1, 2, ...). Wegen der Konka-
vitat gilt

o{2m)-p{mk+\) ~ p(Tk+1)-p(ny)
mk—1 —  mk—ml+1
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woraus

folgt. Nach der Definition von mk+1 gilt also mk+1>2mk. Daraus erhalten wir
nach (20)
Qi logani*+!-mk > C2Zlog2mk & u(mk) (kK =2,3,...).

1st k gentigend grol® (k>k0, so gelten die Ungleichungen
4T ~ n(mk-1)+ 1, u(TR/CICAE 8§,
und es gibt eine positive ganze Zahl gk mit mk+l—mk>2gk und

(Hier bezeichnet [a] den ganzen Teil von a, und Cxist die Konstante aus dem Hilfs-
satz.) Es seien m0=1, nk=mk+ko, gk=gk+ko (A=1,2, ...). Dann gelten die Bezich-
nungen

(21) nk+H > 2nk (k =1,2,...),
(22) p(nk+i) S 4/z(7fe—1) (fc= 1,2, ..),
(23)
Ohne Beschrankung der Allgemeinheit kénnen wir (A= 1,2, ...) voraus-
setzen.

Wir definieren erstens fir jedes k (&=2) ein in (0, 1) orthonormiertes System
von Treppenfunktionen g>,((k;x) (I—k, ..., nk+¥1—1) derart, daR fir jedes k

(25) max  Ng<P,(k; X)+... +ampm(k; x)\ & CBAk (xfEK

gelten, wobei

bedeutet, und fir die einfache Menge Ek (*(0, 1))
(26)

besteht.
Wir wenden zu diesem Zweck den Hilfssatz im Falle

P= . g=dki
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an. Die entsprechenden Funktionen bezeichnen wir mit gs(x) (s= 1, 2pg). Dann
gelten auf Grund des Hilfssatzes und der Ungleichung (23)

1
(27) 4 POR®%n 2 8AX)gA0 dt ~ p(nk) (*€(0,1)),
(28) lan"miopu +"8" (U + eem+ alk+(1-1)(,,k-nK-)+T8T(X) 1 —
e A Ttk—1 * nk -fi(nk -nk .j)1 7 (nMa) (x£E, I 1, ..., c(k)j.

Aus (27) folgt, auf Grund von (18),

(29) J1dveip | &1 Susy) di

R

S=1 Vz,k+S-1  Ank+s'o Is@sazxp Sglgs(x)gsm +df
+ l—f max 2 *)gs(O\dts 24 ~ *£ (0.1
7 08X gs(*)gs(0\dt s (*€ (0,1)).
Es seien 10=().

oK)
§ 2 akknki)/2 p akelkenk) 0 1 o),
w@)+i=1 und 7i= (ji_Lj) (i=I, ...c(k)+1). Wir setzen

<?(((*.;*) /meS(/I) 8- (ilks (i- 1)(nte-B fe-1y+1(7i> 0"

fur «*+(/)(wit—t_D)Sn<wlid-/(/ije—k-Y+2pq, und /=1,  c(A). Weiterhin
sei

oK
Ek= U £(/.).

Aus der Definition der Menge Ek und aus dem Hilfssatz folglui ). Andlich seien
Jx,J%, ... paarweise disjunkte Intervalle in (yc(t), xt)+1) und die

Funktionen <pn(k;x) fir nk+(i-\)(nk-nk_I)+2pgSn<nk+i(nk—k X; /=1, ...
...,€(k) und fur nk+c(k)(nk—nk-i)+2pg~n~nk+l seien der Reihe nach gleich
mit den Funktionen

1

I»(*)  fmes(d,) (x€Jn,
0

sonts.
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Aus dem Hilfssatz und aus (29) erhalten wir durch einfache Rechnung

L(Mb) c
2~ 1 Xx€ U 4 1i
- - ! I% il
/o max (kX)) g
Ait9 (cotj+1 1

Daraus ergibt sich (24) wegen /i(/;)S1 (v=1). Endlich folgt auf Grund der Defini-
tion der Funktionen <Pi(k; x) und aus (28) auch die Ungleichung (25).

Aus (19), (21), (22), aus der Monotonitat der Folge {a*}" und aus der Definition
der c(k) folgt

“c(k)
(30) kEZAI 2:2i2: (nk- n k-i)aBk+i(,k-,,K_ju(nk) S Cznzzng aB”(n) =

Wir definieren eine Indexfolge {kr},,Jfolgenderweise: Es sei kO—2; wenn kr{r=0)
schon definiert ist, dann sei kr+1 die kleinste natlrliche Zahl (groéRer als kr), fiir die

(31) r+1,
und
(32) (K+i —n)

erfullt sind. Wegen (18) und (30) existiert eine solche Indexfolge.

Dann definieren wir flr jeden Index r(SI) ex orthonormiertes System von
Treppenfunktionen |4(r; X) (n=nkr+l, ...,nk+l4+x—I) mit folgenden Eigen-
schaften: Es gilt

) ,  max £ b(r;x)j"(r;f) dtrCc 2 (x€(0,1),
und
(34) .~ max \an'l',,(r;x)+... +anilim(r;x)\ S ~ (r-f 1)(*€#)),

wobei fiir die einfache Menge //r(Q(0, 1))

(35) U3es(™) S -ij-

besteht.
Es seien ndhmlich i0=0,

—2 Akr+j|/J}ft IAI 0=1, K+i-K),
und st) 0=1,..., kr+1—kr). Wirsetzen

&n(r;x) = <Milk;x)(nkrH n< nkrH+L P = 1, L k- ko,

1
Vmes(/i)
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und
= *! +
HT IJ_EX .
Aus (26) folgt (35). Aus der Definition der Funktionen in(r; x) und aus (25), (31)
erhalten wir (34). Endlich bekommen wir aus der Definition der Funktionen X)

und aus (18), (24), (32) auch (33).

Endlich definieren wir durch Induktion ein orthonormiertes System von Trep-
penfunkctionen <p,X) (n=1,2, ...) im Intervall (0, 1) und eine Folge von einfachen
Mengen Gr(Qj(0,1)) (r=I,2, ...), fir welche die folgenden Bedingungen erfillt
sind: Es gilt

(36) ;, max i2=i (Pi(x;cp,(t) dt =C® (xi (0,1)),

die Mengen Gr (r—1,2,...) sind stochestisch unabhédngig, und fir jede naturliche
Zahl r gilt

(37) mes (Gr) = — .

Ferner bestehen fiir jede positive ganze Zahl r die Abschatzungen

(38) max FPO ginc, T (r0,1),
(39) max \an>n(x)+ ...+ampm(Xx)\ S CAr+1) (X€Gr).

Es seien /* (n=1, ..., nkl+1—1) paarweise disjunkte Intervalle in (0, 1), und wir
setzen fur n—\, ...,nki+1—1)
1 XiJzZ),
<Pn(x) = Mes(Y*) ( )
0 sonts.

Dann besteht (36) offensichtlich.
Es sei r0 eine positive ganze Zahl. Wir nehmen an, dal die Treppenfunktionen

m(x) (n=I, ..., n*rotl—1) und die einfachen Mengen G1,...,Gro_ 1 (6(0, 1))
schon derart definiert sind, dal® diese Funktionen in (0,1) ein orthonormierteg System
bilden, diese Mengen stochastisch unabhéngig sind, ferner fur r=1, ..., 37),

(38) und (39) bestehen.

Dann gibt es eine Einteilung des Intervalls (0, 1) in endlichviele disjunkte Inter-
valle /* (s=1, .., € derart, dass jede Funktion (m(x) (n=I, ..., nkr +1—1) in
jedem Intervall /* konstant, und jede Menge G,(/-=1, ...,r0—1) die Vereinigung
gewisser I* ist. Die zwei Halften von 7* bezeichnen wir mit I*', bzw. mit /*".

Wir setzen

<Pn(x)= Z'l'nW "Ix)- 2®n(1*"" x) (n=nk +1, ..., w +1-1),
s=1

und

Go=wu (ar(/T)nar/M).
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Offensichtlich bilden die Treppenfunktionen <, (X) (n=lI, nkro+1—1) ein
orthonormiertes System in (0,1). Die einfachen Mengen Glt ..., Gro sind stochastisch
unabhéngig, ferner besteht (37) auch fur r=r0, auf Grund von (35). Aus (34) er-
halten wir sofort (39) fir r=r0. Endlich bekommen wir aus (33), (38) fir r—r0
durch einfache Rechnung.

Das ganze Funktionensystem [gn(*)}* und die Mengenfolge {Or} mit den
geforderten Eigenschaften erhalten wir also durch Induktion.
Aus (37) folgt

2 mes(Gr) = °°.
Da die Mengen Gr stochastisch unabhéangig sind, erhalten wir durch Anwendung
des zweiten Borei—Cantellischen Lemmas, daf3
mes(lim Gr) — L
Daraus und aus (39) ergibt sich, daB8 die Reihe (5) im Intervall (0,1) fast uberall di-

vergiert derart, dal
N

lim 2 "AW =
in (0,1) fast tberall gilt.
Endlich sei n eine positive ganze Zahl. Ist 1Sn<n*1+1, so gilt

(40) ZiML-jjcJsC* (x£(0,1)
auf Grund von (36). Ist aber WoHEn<un*rotl+l mit einem Index rQsl), so gilt

(41) L* x\'S f omax . PO

co o ma PHEO.,..

r=i J V +1“v'=4 + i+1li=nk,+i

+ f
& Vv W
Aus (40) und (41) ergibt sich:

n\r=5xj =0(1) (X€(0,1); n=12,..).

(Pi(xEPi(O dt~ CaTN+Y +.-.-b—j & CB (x€(0,1)).

Damit haben wir unseren Satz bewiesen.
AufGrund der Beweisfiihrung kann man sehen, daf fir dieses Funktionensystem
(<P (x)}r auch

k() (pk(t)\y
gilt.
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A GENERAL MOMENT INEQUALITY
FOR THE MAXIMUM OF THE RECTANGULAR PARTIAL
SUMS OF MULTIPLE SERIES

F. MORICZ (Szeged)*

1. A preliminary result

Let (X,A,p) be a positive measure space and let krnzZfcz
aV{X,A,n) where Z1={1,2, ..} and y is a fixed real, y~l. Studying the a.e.
convergence of the single series

(1Y

denote by S(.f) and M (.f) the partial sum of (1.1) extended over the integers contain-
ed in the interval ¥=(b1,bl+T1 and the maximum of the consecutive partial
sums extended also over j , respectively. That is,

and

Here and in the sequel bl£z+={0,1,...} and px, further, mx—\J\
denotes the number of the integers contained in the interval W e note that clearly

M{J) = max \S@)\ LL2M{J).

A nonnegative function f(J) of the interval ./ with integral endpoints is said
to be superadditive if for every J and for every disjoint representation Jrilu =A
we have the inequality /(" i) +/(«*r)—£(+/) Further, let <p{x, mx) be also a nonne-
gative function defined on R+XZx where R+ is the set of the nonnegative reals.

A recent result by the present author (1980) reads as follows.

Theorem 1 ([7]). Let y~ 1 be given. Suppose that there exist a nonnegative
and superadditivefunctionf(J ) of the interval J, and a nonnegativefunction (p{tl, mx),
nondecreasing in both variables, such that for every J we have

f\s@)vdp st{0)g>"{f{3), M3, mx- \J\.

* This research was conducted while the author was on leave from Szeged University and a
visiting professor at the Johns Hopkins University, Baltimore. The author gratefully acknowledges the
support received from the United States Office of Naval Research under contract NO0014—79—C—
0801.
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Then for every ¥ we have both

(12
and
f M°~ - fe])}’
In this paper the integrals are taken over the whole space X, [/] is the integral
part of t+, and the logarithms are with base 2. Furthermore, in the case =1 we

agree to take [logmj]—L to be equal to 0 and [mY2ti+l] to be equal to 1 on the
right-hand side of (1.2).

2. The main result

Let Z\ be the set of all (/-tuples k=(kl, kd) with nonnegative integers
for coordinates, where the dimension d is a fixed positive integer. As usual, kSm
iff kj-*rrij for eachj, and we write 1=(1, ..., 1). Ifall the coordinates kj are positive
integers, we write kEZ(.

Let {E*=£t(x): KEZ(}czLy(X, A, p) be given and consider the (/-multiple
series

2.3 2> = e KTI-

In the following, we denote by
R = R(b, m) =R(blt..., bd; mlt..., md =
d
= {kEZ(: bj < kj ~ bj+mj for each j, 1~ j Wd} = X(bj>bj+ntj]

an arbitrary rectangle in Z{ where b£Zd- and m£Z{. The rectangular partial sum
S(R) of (2.1) extended over the lattice points contained in R, and the maximum M(R)
extended over R to those rectangular partial sums whose left-hand bottom corners
coincide with that of R, are defined as follows:

ﬁ(bl, ceey bd; ml, ...[md) =

bi+mi ba+md
kdR !=%(+1' kd-%d+|4" -Id
-M{bx, ..., bd; mlt ..., mg =

4 ISrIQJ‘?ﬁw, P(b,,. m bd; plf

respectively. Here and in the sequel b£Zd and mdzf; further, nij denotes the num-
ber of the lattice points contained in the rectangle R in a row parallel to the yth

and
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axis, lsjsd. We note that clearly
M (R) ~ max |S(B)| N 2«m (rR).

A nonnegative function+(r ) of the rectangle r with corner points fromz \ is
said to be superadditive if we have the inequality

(2.2) I(AoH/ap 3FrR)
for every rectangle r and for every ; and pj where 1sj~d, 1=pj<mj, and
Rji — R (bi , bj,bj+i9..., bj, mx, mj_1,Pji Wjj+tii..» mj),
RJ2= R (blt ..., bj-!, bj+ pj, bJ+1, ..., bd; M1, m;,_X,nij-pj, mJ+1, ..., md).

In other words, Urj2—r isadisjoint decomposition of r by a hyperplane paral-
lel to each axis except the /h axis. For example,

f(R) = 2_ u

is even an additive function of r, where (uk: kez (3 is a given ~-multiple sequence
of nonnegative reals. We mention that the nonnegativity ofs(r ) and (2.2) imply that
f(R)=f(b!, ..., bd; mlt md) IS @ nondecreasing function in each variable nij,

Furthermore, by (p(t1,m)=<p(t1; mx, ..., md we denote a nonnegative function
defined on r + x zf, which is nondecreasing in each variable, i.e.

<p(ti; m i,..., m d) mx, m *'f)
whenever
Os tiSt and 1S mj”™ m+j foreach j, Is j ™ c.

After these preliminaries we give an upper estimate for the yhmoment of m (r)
in the terms of the given “a priori” upper estimate for the yth moment of s (r)

while r runs over all the rectangles in z {. This generalization of Theorem 1 reads as
follows.

Theorem 2. Let yAl and cfel be given. Suppose that there exist a nonnega-
tive and superadditive function f(R) of the rectangle R in Z{, and a nonnegative

function (pit!, m !, .. m d), nondecreasing in each variable, such that for every
R=R(b!, ..., bd, mX; ..., md) we have
f\SiR)\4p S fiR)(py(fiR); MX, ..., md).

Then for every R we have both the inequality

(2.3) fM4X)d/i s 3dy-VF(R)X

¢ iy f } I mi
V2 kit~ +kd L2*isn J? 0 4|2 £‘Tz]i|+l\\j\\llj

Acta Mathematica Hungarica 41, 3%;



340 F. MORICZ

and the inequality

(2.4) (V)" 1 (*)x

PIAY 4, 12, [R

Again we use the following convention: in case m ~\ for some7, 1=7=14, we
take [log W-]—1 to be equal to 0 and [mj/2k+1] to be equal to 1 on the right of (2.3).

3. Special cases
Without aiming at completeness we present here some special cases of Theorem 2
of interest in themselves.
Let us take cp(tr; mx, ..., mg= il(a )i with real a, a>1. Then

[logrtlj] [logmd] T

SA(y mx, om @) =2 wlog P kit

A (1 _2@-*)r)-%i1s 1)
independently of m«k, ...,m d.

Corollary 1 Let a>l, ys 1, and dfel be given. Suppose that there exists
a nonnegative and superadditive function f(R ) of the rectangle R in Z { such thatfor
every R we have
f \S(R)\ydp ~ f(R ).
Then for every R we have

fMyR)ydp S (Y )\1- 20-I"y*().

This result, apart from the factor (5/2)don the right, was proved by the present
author in [5, Theorem 7]. For ¢ = 1 see Longnecker and Serfling [3], and [4].

It is instructive to state this corollary for the still more particular case when
f(R )_kz( . uk> Where (uk: kezf) is a d-multiple sequence of nonnegative reals.

corotrary la. (The d-multiple version of the Erd6s—Steckin inequality.) L et
a>l, yA|, and (M*éOZ kfzi] be given. Suppose that for every rectangle R in
Z{ we hare

f AS(R)\ydp Q? Mja

Then for every R we have

f M fR)dp S (-])V -2 @-"H)-dy[|4)".
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As to the case d=1, see Erds[1] and Gaposkin [2, pp. 29—31], the latter author
making use of the oral communication of S. B. Steckin.

Now take o¢(t;; my, ..., m))=t&V/7yw(t,) where again a>1 and w(t) is
a slowly varying positive function, i.e. w(t,) is defined on R., w(t;)=0 for t,=0,
and for every positive C we have

w(Ct)
w(t)

We emphasize that w(t,) is not necessarily a nondecreasing function, only z{*~"/"(t,)
has to be nondecreasing. For example,

w(t) = {log (1+1)} {loglog(2+ 1)}’

is a slowly varying function; where ff and d are arbitrary reals. It is easy to check that
again we have

-1 as ¢ - oo

By(ty; my, ..., mg) = C(a, 3, d, W),V w(1y),
where C (o, 7, d, w) denotes a positive constant depending only on «, y, d, and w(t,).

COROLLARY 2. Let a=>1, y=1, and d=1 be given. Suppose that there exist
a nonnegative and superadditive function f(R) of the rectangle R in Z¢, and a slowly
varying positive function w(ty), t*="w(t,) is nondecreasing, such that for every R

we have
JIS@®Pdu = f*R)w(f(R)).

Then for every R we have
S @dn = (3) €1 v dw @ (7R),

Next take @(t;; my, ..., my)=A(my, ..., my) where A(m,, ..., m,) is defined on
Z4, positive and nondecreasing in each variable.

COROLLARY 3. Let y=1 and d=1 be given. Suppose that there exist a nonnega-
tive and superadditive function f(R) of the rectangle R in Z4, and a positive and non-
decreasing d-multiple sequence {i.(m): meZ$} such that for every R=R(b,, ..., b,
my, ..., my) we have

JIS®)dp = fFRZmy, ..., m).
Then for every R we have

llogm]—1  [logml—1 L m m .
[ M (Rydp = 30~ ”f(R){ R A([2+][2+])}

k=0 k;=0

with the same convention as in Theorem 2 in the case m;=1 for some j.

This moment inequality, apart from the factor 3~ on the right, was proved
also by the present author in [6, Theorem 1] in a slightly different form.

To illuminate the strength of Corollary 3, we present two particular cases. First,
assume that {£: k€Z¢} is a d-multiple orthogonal system. Then we obviously have

fS"(R)d,u = o’k where o} = fg%d}l
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Corollary 3a. (The ~-multiple version of the Rademacher—Mensov inequality.)
If {ck: KEZi} isad-multiple orthogonalsystem, thenfor every rectangle R = R (bx, ...
oo,bdy mx, ...,m (]) we have

f m2(R)dp Uks ei)ljl;ll(log (mj+1))2

As to the case ¢ —1, see e.g. [s, p. 83]

Secondly, assume that (p(tx; mx, ....m d)= Hmx, ..., md) essentially grows in
each variable in the sense that there exist an mozz x and areal 4, </>1, suchthat
for every f, \=j= 4, and for every mez( with + ~+ a we have

3] LT X .,mij-x,2nij, mj+x, ..., md) A
ﬂ(ml ..... mij_1,mij,mij+1,..., m d)
E.g. Am)= 33 ni** wjenij) is such a ~/-multiple sequence where a7>0 and w j(nij)

J=1
is a slowly varying function for eachj, 1=j=d4. Now (3.1) implies, in a routine way,
that

$d(txs mX, ..., md) = C(qg, mO)k (m x, ..., md),

where the positive constant c (¢, mo0) depends only on ¢ and on those values /(/»)
for which nijam ¢ for eachj, 1~j~d. In particular, c (m®= {qj(¢ —D}d if
i"0=1.

Corollary 3b. Let 1 and d51 begiven. Suppose that there exist a nonne-
gative and superadditivef untion f (R ) ofthe rectangle R in Z{ and a d-multiple positive
and nondecreasing sequence (ﬂ(T): mdZ(} satisfying relation (3.1) with a g > 1
such thatfor every R = R(bX ..., bd; mX, ..., md) we have

f B(R)\ydtir f(R )X y(m1,..., m d.

Then for every R we have
f My(R)dfi S (1)" cuUa, mpf(R)2y(mx, ..., md).

The special case d= 1, y>2, (R )=By~2k2_Ra*, and Amx) = m $ - 2)h with the
i

assumption that |£x ae. (=1, 2, ..) is known as the Mensov—Paley ine-
quality (cf. [9, p. 189)]).
Finally, it is worth mentioning that in any case we can conclude the following

Corollary 4. Under the conditions Of Theorem 2, for every rectangle R =
= R(bx, ...,bd; mx, ..., md) we have

f My{R)dp. B3b-»t{r)a>y (/(/?); [-"], ..., [-™]11 A (log (m,+ D)>,
where again in the case nij= 1 for somej we take [m f2] equal to 1.
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4. Proof of Theorem 2

The proof proceeds by induction on ¢. The case ¢ = 1 is stated in Theorem 1

Assume now that Theorem 2 holds for ¢« —1. We will show that it holds for 4.
Consequently, the induction hypothesis can be applied to the following “partial”
maximum:

Md_ 1(R) = m)= Md_1(bl, ..., bd; m1, Md_I15 m d)

= max .. max [5(bI5..., bd; pif ..., Pd_15 ma)\.
ISPjSmi Ispd_lsma_t

Proof of (2.3). By the induction hypothesis,

4.1) [ marw dp ~ 3(-18-1>/(apg_1(/CHO; »»l, ..., ma),
where
4>i-i(h; on, .omd_1,m d) =
lgm]-1  [logmd~ 1 ( tl Frmi 1 I md_1 ]

AT Ky, ANL2% 4-+*--ir bA+YT 2N -%10" md

and in the case m,=1 we mean o by [logmij\—1 and 1 by [nijr2ki+1].
Setting
togm]-l  [logiHd-l (i rw 4 r )

®k\ nh,  md - 0+ [armmmess 2% L2 * 410

with the above convention, inequality (2.3) to be proved can be rewritten as follows:

4.2) f M AIOdnAVb-nfiRW iAR); mlt..,md,
where
Md(R) = M(R) = max .. max |[S(bi5s ..., bd; pr, ..., po\ = maj Md_fR).
1-P d-md 1- pd -md
It is not hard to verify that ®[/,; w,, ..., mg can be also expressed by the aid of
Bd-i(h\ m1,..., m d) as follows:
[logmJ—1
&d(h; mi, md_i, md = w2, o1

with the same convention as above concerning the case md=1. This relation also
turns into the following recurrence:

(4.3) Tr, .., M= dn-fti, m1, ., md for md= 1 2, 3
and
(4.4) sh.. o md 2ind = on_r I} mj, . md.i, |

o<t T omi” nx--UT] for md ~ 4
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After these preliminaries we can prove (4.2) by using again an induction but this
time on md. Both the case of the initial values md=\, 2, 3 and the induction step are

similar to the argument explained in the proof of Theorem 1 in [7]. Therefore, we
only sketch the proof.

If md= 1, then (4.2) immediately follows from (4.1) due to (4.3) and the fact that
Md(b; mI t md-i, 1) = mis ..., md_x, 1).

In case md= 2 or 3 one can use the trivial estimate

pel+md
Md(b, M) S 2 Md-1{b1, .., BA3»kd~U m1, .., mdr1, 1)

and argue as in [7].
Now we assume, as the second induction hypothesis, that inequality (4.2) holds

true for all values of the first 24 —\ arguments vt, ..., bd\ Wis ..., ukb1 and for all
values of the (2d)m argument less than md, md~a.

The case f(r)=f(b, m)= 0 can be handled with ease since then m (r)= 0 a.e.

Hence we assume that /(jR)O. Then there exists an integer pd, 1s”™ m a, such
that

(4.5) f(b; m1,..., md-1l,pd- 1)~ — f(R)<f(b:; mlf..., md_i5pa),

the left hand side being 0 in case pd= 1 It is also convenient to set s(b,m) =
—M(b,m)=0 if wj—o for some/, 1~ jsd.
Applying (2.2) for j —d¢ and taking (4.5) into account we obtain

f(b1l, ...,bd I, bd+ pd; Tr, ..., md_x, md-p d) B

= mX, .., md-x, pd) <Y /(A)

The following three cases will be distinguished: pd=\, 2spdrmd—1, and
Pd—mdm

case (i): 2~pdsmd—1 Set

d v, if pa—1 is even,

an - . .

* -[v : Qd = \prd+l if pa—1 is odd;

oo Tmaopo iri if md~Pd is even
Qo =

d~ 1 2 Irt+i if md~Pd ‘s odd.

It is obvious that
Pd+qd=Pd- 1 and pd+qd = md-p d.

Ada Matherialica Hungarica 41, 1983



A GENERAL MOMENT INEQUALITY 345

Now, for we can establish the following upper estimate:

Ald-i(b; mlt..., mj-j., kg S

Md(b; Tr, p'd) for 1mkdnrpd,
M d_1(b; inl, md_1, qd) +
+ Md(b1l,...,bi_1,bd+ qd;m 1,..., m i-1,pd) for qd~ kdmpd- 1,
= \M d_1(b; mu ....mi.1,pd)+
+M d(bl,..., bd-1,bd+pd;m 1,..., m d-1,pZ) for pd~ kdWwopd+p'd,
Mrf-iO; mi, md-1, Pi+q'i)+
+ Md(bl,....,bi~rL,bd+pi+qd; MIs. . md 1f pw) fOr pd+ qd ™ kd W md;
whence
(4.6) Md(b, in) S Md_1(hl, b, bd, ms md~ , qd) +
+Afi-i(bi, bj-i, bi+q'aini!, ..., mi_1,pd-q d)+
+ MdrL{b1, ..., bd+pd; m1 t nij-i, qd)+
A-{My(bl, ..., bd !, bd\ m1, ..., md-1,pd +
+ M (b1, ..., bj-r, bd+qgd',nti, ..., md_1,pd)+
+ M (b1, ..., bd_I15bd+pd; mi? md a p;)+
+M a(bi,b,-1, bd+ pd+ qd; mx, ..., md~ , pd)}ly = A d+ Bd,

where a ¢ denotes the sum of the first three terms and s denotes the fourth term on
the right-hand side of (4.6).
case (ii): pd= 1 Setting

q if md—1 is even,
i = an ) .
Pi d+ 1 if md—1 is odd;

we can estimate in a simpler way:

4.7 Md{b, m) =SM ~ ¢ r, .., bd  bd; Nit,...,,md-i, 1)+
+ Mi_1(b1, ..., bd”~1, bd+ 1; MI5 o5 +
+ {M3(blt.Bhd+ bd+1, o HIj-1, PA)+
+ M g{b1, ..., bd !, bd+ qd; »h, ..., Th-r1, pd)}lly = Ad+Bd.
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Case (III) pd=m d. Now

(4.8) Md(b, m) —Md_fb x, bd_x, bd; mx, ..., md- x, qd) +
+ M d_x(bx, ..., b,j_I5bd+ md- 1; mx, ..., md-x, D)+
+ {M2(bi, mls  m,,-!, p?)+
+ Af2(bi, s, bd-i, ba+tfa; ">i, pd)}U/2>

where pd and qd are the same as in Case (ii).
The further reasoning closely follows that of the proof of Theorem 1 in [7]. We
omit it.

Proofof (2.4). Withoutentering into details we note that we only have to modify
estimates (4.6)—(4.8) in the following manner: in Case (i) ™ d(b,m)~Ad+Bd,
where B4 is defined in (4.6) and

Ad = {Md_x{b; m1, ..., md_x, qd)+
+w -1(b; inx, ...,md_1,pdy+ M d_1(b; m1, T @ x, pd+ qd)}l,y;
in Case (ii) ™ d(b,m)sAd+8d, Where s is defined in (4.7) and
AT = {Md_x(b; Tr, ..,mi_1, y+ M d_fb; mx, Md_15 qd)}lly;
and a similar modification of (4.8) in Case (iii).

Thus, by a double induction, one can prove both (2.3) and (2.4) for each
tvd—1,2,... and for each da= 1,2,
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A GENERALIZATION OF THE WEYL GROUP
J. SZENTHE (Budapest)

Some basic concepts in the structure theory of compact Lie groups can be
naturally derived by adhibiting results from the theory of compact transformation
groups. In fact, if a compact connected Lie group ¢ is given then by considering its
adjoint action Ad: G X g-g onits Lie algebra g concepts such as Cartan subalgebra,
Weyl chamber and Weyl group of ¢ can be obtained by applying results concerning
compact transformation groups ([3], pp. 15—23). It has been shown earlier that in
case of an orthogonal action or. GXR"-R™ of a compact connected Lie group such
that the isotropy subgroups of @are of maximal rank, concepts can be introduced
which generalize the Cartan subalgebra, the Weyl chamber and the Weyl group in
a natural way [12].

Some results will be presented below in order to show that such generalizations
are possible in a much more general setting. Actually, let m be a complete analytic
Riemannian manifold, ¢ a compact connected Lie group whose elements are iso-
metries of m and such that the isotropy subgroup of its action or. ¢ x M ~ M are
of maximal rank. Then concepts can be introduced which reduce to Cartan subalge-
bras, Weyl chambers and to Weyl group of ¢ in that special case when a is the ad-
joint action of ¢. In deriving the above results some theorems of J. H. C. White-
head concerning conjugate loci [14] are generalized too in order to provide some
auxiliary statements.

1. A generalization of Cartan subalgebras as the fixed
point sets of principal isotropy subgroups

Unless otherwise stated Riemannian manifolds and quantities considered below
will be supposed to be of class C°°.

Letm be a complete Riemannian manifold, ¢ a compact connected Lie group
whose elements are isometries of v and or.¢ x m -+ M the action of ¢. Then a is of
class C* or analytic according to as m is of class c - or analytic ([7] pp. 203—315).
Let ¢ x be the isotropy subgroup of a at a point xtm and

F X = {zla(g, z) — 2 for gzc x where zt£m )

the fixed point set of ¢ x. According to a basic result concerning fixed point sets of
isometry groups the components of r (G x) are totally geodesic submanifolds of m

and any two points in different components are conjugate to each other ([4], [5] pp
59—61). In the special case of the adjoint action Ad: GXg—g of a compact con-
nected Lie group ¢ the above fixed point sets are well-known for principal isotropy
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348 J. SZENTHE

subgroups. In fact, the orbit of X6p4 is principal if and only iff isa regular element
of o and in such case r(cx)=DNc g is a Cartan subalgebra. Actually, ¢ x is the
union of the maximal tori containing exp (x ) for any x( g by some basic algebraic
facts ([3] pp 15—16) and consequently r (G x) is the Cartan subalgebra containing x if
this element is regular. In what follows fixed point sets of principal isotropy subgroups
will be considered in case of isometric actions.

The following lemma presents a simple observation concerning the fixed point
set of a principal isotropy subgroup, where a basic fact is applied. In fact let ¢ x be
a principal isotropy subgroup of an action a and rx the component of F(cx
containing x then obviously any slice s x of the action a at x is included in Fx.

Lemma 1. Let M be a complete Riemannian manifold, G a compact connected
Lie group whose elements are isometries of M and a: GXM ~-M the action of G.
I ftheorbit G (x)ofx isprincipal then M =G (F X) isvalidfor the component F xof the
fixed point set F(G X) containing the point x.

Proof. In fact, let 2frim be an arbitrary point, z a point of ¢ (x) which is at
minimal distance from :* and gzc an element such that x=a(g, z) is valid. Then
x is a point of ¢ (x) having minimal distance from x'= a(g.,z*); consequently a
minimal geodesic segment y joining .vto x is perpendicular to ¢ (x) at x. Since ¢ (x)
is principal any point of y is left fixed by every element of ¢ x. Therefore, the image
of y is included in Fx and consequently z'6oc(g-1, Fx) is valid. Hence the assertion
of the lemma obviously follows.

The next lemma expresses such a property of the fixed point sets of principal
isotropy subgroups which subsists in that special case when the isotropy subgroups
of an isometric action are of maximal rank.

brMma 2. Let M be a complete Riemannian manifold, G a compact connected
Lie group whose elements are isometries of M and such that the isotropy subgroups of
its action a. G XM -mM are ofmaximalrank. Ifthe orbit G(x)of xEM is principal
and TxM = T xG (X)©N XxG (x) is the orthogonal decomposition of the tangent space at
this point, then Fx=expx (N xG(x)) holds for the component Fx containing x of the
fixed point set F (G X).

Proof. Since m is complete and ¢ (x) is principal the inclusion
EXPx (N xG (x))<zF x

is obviously valid. On the other hand the assumption that the principal isotropy
subgroups of a are of maximal rank implies the existence of an s=*o0 such that

B(x,e) MFx= B(x,e) MNexp*(nxc (X))

holds for the solid ball 8 (x, ¢) of radius s centered at n\ In fact, the non-existence of
such an e obviously entails that there is a veTxm such that v/~ xG(vj and
v=Txagv for gee x. But in this case there existsa v'dT1xc (x)—{0*} such that
vi= Txpgv' for gfe x. Since ¢ (x) is equivariantly isomorphic with c/c x the exist-
ence of such av' is in contradiction with the assumption that cxczc is of maximal
rank ([s] pp 66—70). Since m is complete and rx is totally geodesic, any point of 1 x
can be joined to x with a minimal geodesic segment y in Fx. But then the image ofy
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is included in exp, (N,G(x)) by the preceding observation. Consequently the in-
clusion F.cexp, (N.G (x)) is valid and the assertion of the lemma is established.
The above lemma. and a former observation imply that if « is an isometric
action such that its isotropy subgroups are of maximal rank and the orbit of the
point x is principal then for any slice S, of « at x the inclusion S.Cexp. (N (GY)
is valid. This fact has been already obtained earlier by a different argument [11].
The following lemma presents a fact which will be applied subsequently in gen-
eralizing the concept of the Weyl group of a compact connected Lie group.

Lemma 3. Let M be a complete Riemannian manifold, G a compact connected
Lie group whose elements are isometries of M and «: GXM—~M the action of G.
Then for any point x€M the equality

{gle(g, F(GY) = F(G,), g€G} = N(G,)
is valid, where N(G,) is the normalizer of the isotropy subgroup G, in G.

Proor. Consider first an element g€G such that «(g, F(G,))=F(G,) holds
and put z=wa(g,x). Then G,=gG.g~' and G,cG, imply that G,cgG.g™?!
is valid. Since G is compact G,=gG,g~ ' follows ([2] pp 3—4) and consequently
g€ N(G,) is obtained.

Consider secondly an element g€ N(G,) and a point z€ F(G,). If y=oa(g,2)
then G,cG. and G,=g~'G.g imply that

G.=g'G,gcg'G,g=G,

holds and hence y€F(G,) is valid. Thus «(g, F(G,))cF(G,) is obtained. Since
g7€N(G,) holds «(g™, F(Gy))C F(G,) is valid and consequently
u(g, a(g™, F(G,))=F(G,)ca(g, F(G,)). Therefore «(g, F(G,))=F(G,) follows.

2. The focal locus of an analytic submanifold having trivial normal bundle

In what follows some results will be presented concerning the focal locus of a
compact analytic submanifold in a complete analytic Riemannian manifold provid-
ed that the submanifold has a trivial normal bundle. These results which will be
applied subsequently in case of principal orbits of compact isometry groups of
complete analytic Riemannian manifolds, can be considered as generalizations in the
special case of Riemannian manifolds of some theorems of J. H. C. Whitehead con-
cerning the conjugate locus of a point in a complete analytic Finsler manifold [14].

Let M be an m-dimensional complete analytic Riemannian manifold, LcM
a k-dimensional compact analytic submanifold and consider the orthogonal decom-
position T.M=T_. L& N.L for x€L, where N,L is said to be the normal subspace
of L at x. The union of normal subspaces yields the normal bundle N(L)=
=U{N.L|x€L} of L which is an m-dimensional analytic subbundle of the tangent
bundle T(M). The exponential map of T(M) restricted to N(L) yields an analytic
map &: N(L)—-M which is surjective since M is complete and L is compact. Let
x€L and v€N,L then v is called a focal point of L in N(L) provided that the tangent
linear map T,e: T,N(L)—T.M is not injective where z=¢(v). In this case z is
said to be a focal point of L in M and the dimension of the kernel of T',¢ is called the
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order Of the focal pointsv and z. The set of focal points of L in n¢{L) and inm are
called the focal 1ocus of L in n (L) and in m, respectively.

A more restricted concept of focal point has been introduced by F. W. Warner
on account of the basic relation of focal points and some Jacobi fields [13]. Actually
let xeL and uen xL aunitvector. Then a geodesic y: R is defined by y (0)=
=x, y(0)=n. Consider now along y a Jacobi field x; r -1 (m ) then Ais said to
be an L-sacobifierd provided that the following conditions are satisfied:

L (x (1), y' (1)) =0 for t£R;
2. X W Txb\
3. X'(0)-auX(0)ENXL

where o,: TxL-*»7xL is the endomorphism defined at ,v for the direction of v by
the second fundamental tensor of the submanifold ([1] pp 220—224). An /.-Jacobi
field x is said to be astrong L-sacobifield ifinstead of condition 3 the following more
restrictive condition is satisfied:

31 x'(0) — (TX(0) = 0*.

The basic relation of focal points and Jacobi fields is given by the following asser-
tion: A focal point of L is given by v -fi for some £>0 if and only if there is
a non-trivial L -Jacobi field x along the geodesic y such that x (Q= 0 holds ([1] pp
244—226). Accordingly v=tu is called astrong focalpoint of L in N (L) provided
that there is a non-trivial strong /.-Jacobi field x along the geodesic y such that
A(£)=0 holds [13]. In this case the point z=¢(v) is said to be astrongfocal point
ofL in M. The set of strong focal points of L in ~ (L) and in m arecalledthe strong
focal locus Of L in ~n(L) and in m , respectively.

Consider as above a unit vector uenxL at some point x¢L and the geodesic
y defined by « and let r rL the parallel translate of  x. alongy to the point y(r) where
rf R Wesaythatthesacobiequation splits along y relative to L provided the following
condition is satisfied: The curvature transformation

Yy ~R2zv = R(Y, /() (1Y), vYETyM

maps the subspace etL<zTy(r)m into itself where r is the curvature tensor of the
Riemannian manifold [13]. If the Jacobi equation splits along y relative to L then the
space of /.-Jacobi fields defined along y is the direct sum of the subspace of Jacobi
field defined along y and vanishing at x and of the subspace of strong L-Jacobi
fields defined along y as some calculations show [13]. This fact has the following
obvious consequence given by

LEMMa 4. Let M be a complete Riemannian manifold and L a compact submani-
fold such that the Jacobi equation splits along every geodesic y defined by unit vectors
uk NXL where x is any pointofL. Then thefocal locus of L is the union ofits strong
focal locus and of the conjugate loci of points of L.

In the special case when the submanifold . is a principal orbit of an isometric
action whose isotropy subgroups have maximal rank the validity of the assumption of
the above lemma and its conclusion as well have been established earlier [11].
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The normal bundle n (L) of a submanifold L of a Riemannian manifold m is
said to be trivial provided that there is a vector bundle isomorphism n (L)-<-L x N xL
where xeL and L x n xL is the trivial vector bundle over L with nxL as typical
fibre. The induced Riemannian metric of the submanifold . and the euclidean me-
tric of the subspace n xL czT xm  define a Riemannian metric on the productL x N xL
which is analytic if m is analytic and L is an analytic submanifold. Thus there is a
unique Riemannian metric on the normal bundle n (L ) which renders the isomorphism
N (L)-~LXNxL isometric. Thus n (L) has the structure of an analytic Riemannian
manifold. Now the map Tve: TuN(L)-<-Tzm, Where ven (L) and z=e(v), iS @
homomorphism of euclidean vector spaces and consequently it defines a change
J(v) ofvolume; i.e., if vzand v, are the canonical volume form at. and v, respec-
tively then vv=13 (v)(Tve)*vz holds for the reciprocal image (tve)*vz of v.. Conse-
quently an analytic function /: ~(L)-+r is obtained. Now, the focal locus F (L)
of L in N (L) is evidently given by

F(L)={v\a(v) = 0, veNn(L)}.

In general F (L) is not a submanifold of n (L), however, it is an analytic structure in
sense of S. Lefshetz and J. H. C. Whitehead [14].

The following lemma generalizes a result of M. Morse concerning the order of
conjugate points in a Finsler manifold [18] for the special case of Riemannian mani-
folds.

LEMMa 5. Let M be a complete analytic Riemannian manifold and LaM a
compact analytic submanifold having trivial normal bundle and such that the Jacobi
equation splits along any geodesic orthogonal to L. Let udNxL be a unit vector
where x£L and consider the function D(u,X):y(X,m), XER. Then, v=xu with

is afocalpoint of L in N(L) if and only if D(u, x)=0 is valid. Moreover, if
v=xu is afocalpointofL then the order ofv is equal to the multiplicity ofthe root x
in the equation D(u,X):O.

Proof. The first assertion of thej_emma is evidently valid. In order to prove the
second one consider the unit vector xx~.Tvn (L) which corresponds to » under the
canonical isomorphism n~ xL-*1vnxL. Observe now that vt maps the subspace
of T vn (L) orthogonal to x x into a subspace of T xm orthogonal to x 1= y' (x)fT vsXi
and the kernel of tve is included in the_subspace of T vn (L ) orthogonal to x r. Con-
sider an orthonormal base (x1,..., x my Of Twn (L) such that C/Am-i+i, se>x~)
is a base of the kernel of tve. Then there is a unique extension X;(t), tER of xt
along the line «u, t£R for i=2, ..., m such that XrT)= 2TeXr(T), TgR is an
/.-Jacobi field; in fact, the T-Jacobi fields defined along y form an (m —)-dimensional
vector space ([1] pp 220—224) and thus the same holds for the vector fields defined
along the line «v, tER which are mapped into /-Jacobi fields by te. Moreover,
put x 1(m)= y'(¢r), R. In a sufficiently small neighborhood of yjr the following
equalities are obviously valid:

(M =y (r); xt(M) = x20+ (e- «)xt(X)
with a non-zero parallel field T?(x) where i=2,. .., m —1;

XfT) = (T-X)X}(T) + (T-X)%(T)
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where i= m—1+1  m. Consequently, in the above neighborhood of %R the
following equality is obtained:

D (u, T) = (T—X)XD (u, T).

Now, it is evidently sufficient to show that b (u, x)~0 holds. Actually, the value of
D (u, x) is given by a determinant whose columns are the coordinates of the following
vectors in an orthonormal base of 7 .m :

/ 00;

X fx) - X f(x) where i=2,..,m—1;

x'i(x) where i=m —1+ 1,
Therefore, it is sufficient to show that the above vectors are independent. In fact,

<?Ne> XJ(0y)—(Xi(0), X j(0)> = (quXi(0), Xj(0)>-<*i(0), auxj(0)) = 0

holds where i,j= 2, .., m since xt,x j are L -Jacobi fields and au is symmetric.
On the other hand, the functions

(Xi (1), Xj(©)> <Z;(v), Aj(> t€R

are constant, where i ,j =1, m , on account of a basic identity concerning Jacobi
fields. Consequently, (x[(x), x'j(x))=0 where i=2, 1 and j=m —1+ 1,

Since the Jacobi equation splits along y, even (x 1(x), x *(x))=o0 holds for
i—m—1+1 ..., m. Therefore, it is sufficient to show that each of the two separate
Systems (xr(x), ..., x T_r(x)) and (x'm_i+1(x), ..., Xx'm(x)) are independent. In fact,
the system (x x(x), ..., x m~1(x)) is evidently independent by its definition. On the
other hand, the Jacobi fields Am 1+1, ... x m are independent by their definition.
Consequently, since

xm-i+iM = ... = xmx) = 0,

the system (x'm- 1+1(x), ..., x~,(x)) has to be independent as well.

The following theorem generalizes for the special case of Riemannian manifolds
a theorem of J. H. C. Whitehead stating that the conjugate locus of a point x of a
complete analytic w-dimensional Finsler manifold in txm =~ (x) is (m — I)-dimen-
sional [14].

Theorem 1. Let M be a com plete analytic m-dimensional Riemannian manifold
and LaM acompactanalytic k-dimensionalsubmanifold having trivial normalbundle
N (L)and such that the Jacobiequation splits along the geodesic orthogonal to L. Then
the intersection of the focal locus F(L) of L in N (L) with the normal space N XL is
(m —k —\)-dimensional for x£L.

Proof. Let uenxL be a unit vector and assume that v —xu, where 9%>0,
is a focal point of order / of L in ~n(L). Fixavalue £5% such that is not a focal
point of L. Then the geodesic curve y(r)= r(ru), TE[O, £] has a non-degenerate
index form which is given by

(X, Y)y = § (<x'(r), T(T)>-</?2(/(r), x (r))y'(r), Y (T)»r/T+ (pux (0), F0)>

0

Ada Mathematica Hungarica 41, 1983



A GENERALIZATION OF THE WEYL GROUP 353

and the index of the geodesic y is equal to its augmented index which in turn is equal
to the sum of orders of focal points of L ony according to some basic results ([1], pp.
232—235) Moreover, if the unit vector #€ N, L is sufficiently near to # and (=0
is sufficiently near to { then the index of the geodesic §(7)=e(zir), t€[0, 7] is equal
to that of y on account of some fundamental results ([1], pp. 236—237).
Therefore in this case the sum of orders of focal points of L on j is not less than
the sum of orders of focal points of L on y. On the other hand, the set F(L)(\N.L
in the neighborhood M of the point v=sxu defined by the above neighborhoods of u
and of % is given by the equation J(t##)=D (i, t)=0. Since the function D is analytic
some fundamental results of the theory of analytic functions ([9] vol. I pp. 83—92)
yield the existence of a neighborhood W of the point (u, x) where the function

D(a, 7) is given by
D(ii,7) = '+ B, (@)t ' +... + B,(d)

where / is the order of the focal point v=xu and the functions B, (@), ..., B,(#)
are analytic. Therefore the preceding lemma yields that the order of a focal point of L
on a geodesic j specified above which is in a neighborhood of »=:u defined by the
nelghborhood W cannot be greater than /. Since the sum of orders of focal points
of L on § is equal to the sum of orders of focal points of L on 7, the order of a focal
point of L in the above neighborhood of v=xu has to be /. But then any ray 7#,
t=0 corresponding to a geodesic § specified above intersects ['(L) in the neighbor-
~ hood of v=su. Therefore the set F(L)NN,L must have codimension 1 in the
normal space N,L and thus the assertion of the theorem follows.

Generalizing a definition due to J. H. C. Whitehead [14] under the assumptions
made above a point c€ N,L of the focal locus F(L)C N(L) of the submanifold
LcM is said to be an ordinary point provided that the set F(L)(\N.L is given by
a cell of codimension 1 in N, L in a sufficiently small neighborhood of the point c,
otherwise the point ¢ is said to be a branch point. If the set of ordinary points of
F(L)in N,Lis A, and A4,.=C,U...UC, is the decomposition of 4, into its compo-
nents then C,, ..., C, are evidently submanifolds of codimension | in N,L.

3. A generalization of the Weyl chambers and of the Weyl group

Let G be a compact connected Lie group and consider its adjoint action Ad:
GXg—~g on its Lie algebra g. If the orbit of X¢€g is principal then F(Gyx)=hcg
is a Cartan subalgebra and the union of the walls of the Weyl chambers of G in
F(Gy) is the set of those points of F(Gx)=N which have singular orbits ([3], pp.
17—23). On the other hand, the set of those points of F(Gy)=1I which have singular
orbits can be obtained as the intersection of F(G) with the focal locus of a principal
orbit [10]. Consequently, the union of the walls of the Weyl chambers of G in
F(Gx)=1 is the intersection of F(Gyx)=Dl with the focal locus of a principal orbit
of the action Ad. This observation has been already generalized for orthogonal actions
with isotropy subgroups of maximal rank [i2]. In what follows the generalization
will be carried out in a more general setting.

Let M be a complete Riemannian manifold, G a compact connected Lie group
whose elements are isometries of M and o: GXM—M the action of G. If the orbit
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G {x) of xe_m is principal then the normal bundle of the compact submanifold
G (x)czm IS known to be trivial. Moreover, if the isotropy subgroups of the action a
are of maximal rank then the Jacobi equation splits along the geodesics orthogonal
to the principal orbit ¢ (x) by an earlier result [11]. Actually, some of Warner’s
results have been derived in the special case of principal orbits [11], where in una-
wareness of this results [13] terminology of Warner has not been applied yet. Thus the
following lemma follows on account of some former observations.

LEMMa 6. Let M be a complete Riemannian manifold, G a compact connected
Lie group whose elements are isometries of M such that the isotropy subgroups of the
action or. G XM -*M are of maximal rank. If the orbit G{x) of x£M isprincipal
then thefocal locus of G (X) is the union of the strong focal locus of G (x) and of the
conjugate loci of points of G (x).

The following theorem yields a description of the union of singular orbits in
terms of the focal locus of principal ones.

Theorem 2. Let M be a complete Riemannian manifold, G a compact connected
Lie group whose elements are isometries of M and such that the isotropy subgroups of
the action or. G XM -*M are of maximal rank. Let S be the union of the singular
orbits ofad. I fthe orbit G(x) ofx isprincipal then S is equal to the strong focal locus
of G(x).

Proof. Let the orbit ¢ (z) of zem be singular. There is no loss of generality
by assuming that x is a nearest point of c (x) to z. Consequently, a unit vector
u£N xG (x) exists such that for the geodesic y: R-»m defined by y(0)=Xx, y'(0)=u
thereisa £>0 with :=y(qQ. Now cxcza:z isobviously valid since ¢ (x) is principal
and sxxc: follows from the assumption that ¢ (z) is singular. Consequently, there
is an infinitesimal isometry x ¢4 such that x (x)xo and x(z)= 0 is valid. The
restriction of A to y is obviously a G(x)-Jacobi field ([1] pp. 222—223) which is strong
by a former result [11]. Therefore z is a strong focal point of ¢ (x).

Conversely, let a strong focal point :em of G(x) be given on a geodesic
y: R-+m which is defined by the unit vector vz~ xc (x) with y(0)=x and y'(0)=
=u\ and let x : R-+7m be a strong non-trivial G(x)-Jacobi field along y with
x (Q =0 where z=y(Q and £>0. There is an infinitesimal isometry Z£g such
that T*(x)=X(0) holds. The restriction of A to y is a strong G(x)-Jacobi field by a
former result [11]. Therefore, Aux(0) —aux(0) = 0 and Auk{x)—aux{x) = 0,
i.e. Aux(Qi)= Aux (x). Consequently, x coincides with the restriction of the infinitesi-
mal isometry considered. Thus the orbit ¢ (z) is singular.

Now Theorems 1 and 2 yield the following obvious corollary which will be
applied subsequently.

Corollary. Let M be a complete analytic Riemannian manifold, G a compact
connected Lie group whoseelements are isometries of M andsuch that the isotropy sub-
groups of the action or. G XM ~-M are ofmaximal rank. If the orbit G (X) of xXEM
isprincipal then the set S |_|F{G X) is ofcodimension lin F(GX where S is the union of
the singular orbits of a.

Letm be a complete analytic Riemannian manifold, ¢ a compact connected Lie
group whose elements are isometries of m and such that the isotropy subgroups of
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its action a: GXM—~M are of maximal rank. Consider a point x€AM such that
G (x) is principal and let F, be the component of F(G,) containing the point x. Then
F,=exp, (N,G(x)) holds according to Lemma 2; moreover, Theorem 2 yields that
the orbit G(z) of a point z€ F, is singular if and only if z=exp, (v) holds with
vEN,.G(x) such that »€N,G(x) is a strong focal point of G(x). In other words,

S N F, = exp,(F*(G(x)) N N,G(x))

where F*(G(x)) is the strong focal locus of G(x) in N (G(x)). Consider now a point
z€SNF,; then any neighborhood of z contains a point x’€ F, such that G(x’)
is principal. Consequently, there is a neighborhood of the zero vector in N,.(G(x"))
on which the restricted exponential map é&,. is diffeomorphic and the image of the
neighborhood is a neighborhood of x” in F, which contains x”. Accordingly the
point z is called an ordinary point of the set S F, if z has a neighborhood in
SN F, which is a cell of codimension 1in F,, otherwise z is called a branch point.
Let now C,U...UC, be the decomposition of the set of ordinary points of SN F,
into its components, then the subsets C,, ..., C‘q are submanifolds of codimension 1
in s

Let G be a compact connected Lie group and consider its adjoint action
Ad: GxXg—g on its Lie algebra g. Let the orbit of Xcg be principal, then
h=F(Gx)Cg is a Cartan subalgebra where the Weyl chambers are bounded by flats
Fcl of codimension 1 called the walls of the Weyl chambers. Moreover, to each
wall F there is an element g such that Ad, restricted to }) is equal to the reflection of
h on F and the group generated by the restricted actions of such g as F runs through
the set of walls of Weyl chambers in | is called the Weyl group of G. In a former
paper generalization of the Weyl group has been given for orthogonal action with
isotropy subgroups of maximal rank [12]. It is shown below that such generalization
works in a much more general setting.

THEOREM 3. Let M be a complete analytic Riemannian manifold, G a compact
connected Lie group whose elements are isometries of M such that the isotropy subgroups
of its action o: GXM—~M are of maximal rank. If the orbit G(x) of x€M is prin-
cipal and its focal point c is an ordinary point of the focal locus F(G(x)) then there is
an element g€G such that o, restricted to the component F.C F(G) is an involution
and maps F.NF(G(x)) onto itself keeping a sufficiently small neighborhood of ¢ in
this set pointwise fixed.

Proor. In fact, since ¢ is an ordinary point of F(G(x)) there is a unique geode-
sic y: R—M in the totally geodesic submanifold F(G,) with y(0)=c which is
orthogonal to F(G(x)) on account of Theorem 2 and of the preceding Corollary. If z
is a point of y such that G(z) is principal then z is a point of G(z) at minimal distance
from ¢ provided that z is sufficiently near to c. In fact assume that z is not at minimal
distance from ¢, then c is a point of G (¢) which is not at minimal distance from z and
then there is a point ¢’€G(c) which is at minimal distance from z, but then there is
a cut point of G(c¢) on the minimal geodesic segment joining # to ¢. But this yields
a contradiction if z is sufficiently near to c¢. Let now y be a point of y such that zcy
holds and let Z be a point of G(z) at minimal distance from y. If y is in a sufficiently
small strongly convex neighborhood U of ¢ ([1] pp. 246—250) then F(G(x))NU
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has only ordinary points and then : is on the same side of r{c ())[Tu in v asy;
in fact a minimal geodesic segment joining y and z cannot intersect the focal locus
of G(z). Let now ;' be a limit point of rasy tendstoc ony. Thereisages such
that z'= ot(g, z) isvalid. Now, as maps s onto itself by definition of s and ac maps
F (G x onto itself as well by Lemma 3. Consequently, og maps s INrcx onto itself
and therefore interchanges the submanifolds Clt..., Cqamong themselves. Let now
C be that one of the Cy, ..., Cqwhich contains the point ¢. Since ¢ is ordinary og
maps c onto itself if z is sufficiently near to c. Consequently, «g maps y onto a geo-
desic passing through -+ and orthogonal to C and therefore og maps y onto itselfif z
is sufficiently near to ¢. Consequently, oy leaves ¢ fixed and maps z onto ;. Assume
now that «y does not leave all points of ¢ fixed, then the set of fixed points of ag
is nowhere dense in c, since the existence of an open subset of fixed points of ¢
would imply that every point of C is left fixed by ag. Thus there is an ordinary point
cr 0f ¢ which is not left fixed by xg. The above construction of g applied now to c\
yields an element ¢~ ¢ with analogous properties. If a9l does not leave all points
of C fixed then there is an ordinary point ¢2 of C which is not left fixed by as and agl.
Thus the above construction of ¢ applied to c2 yields an element g2cc. The repe-
tition of the above process yields a sequence {g,| zEN} of elements of ¢. Since og.
maps r (¢ ¥ onto itselfg t is an element of n (¢ X by Lemma 3 for Z N. On the other
hand the restriction of <g. and <g.t0 F (G x) is differentif i j by the above construc-
tion. Therefore the natural homomorphism n (e x-»n (6 /6 x maps different ele-
ments of the sequence onto different elements. Since ¢ x is of maximal rank the group
N (G x/c x is finite and thus a contradiction is obtained. Therefore aghas to leave all
points of C fixed. Thus the assertion of the theorem follows.

Since the submanifolds , ..., Cqconsist of fixed points of isometries they are
open subsets of totally geodesic submanifolds rt, ..., /r of codimension 1in Fx. The
components of the set

fr-U {*W = 1,

are called generatized w eyl chambers Of the action a and the totally geodesic sub-
manifolds £ x , £ r are called walls of the generalized w eyl chambers. Moreover,
to each rt there is an element gfn (6 x) such that the restriction of ug to Fx is an
involution and every point of rt is left fixed by ag. Let now w czn (6 x) be the sub-
groups generated by elements ¢ which correspond to the totally geodesic submani-
folds Fx, ..., Frin the above way, then the group w = w /¢ ¢ is called thegeneralized
weyl group Of the action a.
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ON THE DIVERGENCE OF VILENKIN—FOURIER
SERIES

P. SIMON (Budapest)

Introduction

Throughout this paper we are concerned with the divergence of the Fourier
series with respect to the Vilenkin systems [17]. In the theory of the trigonometric
series a remarkable theorem of A. N. Kolmogoroff [8], says that there exists an in-
tegrable function with everywhere divergent Fourier series. In Kolmogorolf’s
proof this function is constructed by means of a rather complicated method. It is
worth mentioning that by a theorem of Y. Katznelson [4] it is enough to prove the
existence of an integrable function with almost everywhere divergent Fourier series
[7]; from this fact it follows already that there exists a function with everywhere
divergent Fourier series.

The analogous question for the Walsh—Paley system was investigated first by
E. M. Stein [16]. He proved the existence of an integrable function the Walsh—
Fourier series of which diverges almost everywhere. Later F. Schipp [12] [13], using
Kolmogoroff’s method, constructed an integrable function with everywhere diver-
gent Walsh—Fourier series. We remark that the analogue of the above mentioned
result of Y. Katznelson was verified for the Walsh—Paley system by D. C. Harris—
W. R. Wade [3] and Sh. V. Kheladze [5].

For the Vilenkin systems — with certain boundedness criterion «— Sh. V. Khe-
ladze [6] proved the existence of an integrable function with everywhere divergent
Vilenkin—Fourier series by means of Katznelson’s idea. He proved that the existence
of such a function follows already from the existence of an integrable function with
divergent Vilenkin—Fourier series on a set of positive measure. This follows from the
well-known theorem of S. V. Bockariev [1].

In this connection we remark that P. D. Getsadze [2] sharpened Bockariev’s
result in the following way:

Suppose (fk, 1) is a bounded functional orthonormal system satisfying the
condition

(n+1)1-1
liminf v  J1(o12< +°° for ae.

where / is a natural number independent of «. Then there is a function the Fourier
series of which for the system (fk, k ~ 1) is a.e. divergent.

Since the above conditions are true for all Vilenkin systems (e.g. /=1) the
existence of the a.e. divergence follows. The above mentioned Katznelson’s idea is
not known for all Vilenkin systems.

In this paper we construct an integrable function the Vilenkin—Fourier series of
which is everywhere divergent. We give the proof on the analogy of a beautiful simple
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construction of afunction, for the Walsh—Paley system by F. Schipp.1 In addition to
the general case we investigate the so-called “unbounded” case and give a construction
in this case, which is useful in the proof of certain statements on the divergence.
By means of these assertions for the divergence we shall illustrate the sharp contrast
between the “bounded” and the “unbounded” case. We are concerned also with the
growth of the partial sums of the Vilenkin—Fourier series.

81

In this section we establish the notation and terminology to be used in the sequel.
Let

m= (M0, m1? ..., mk, ...) (2 S mk, mkd N, kda N:={o, 1, ....,})
be a sequence of natural numbers and denote by z,,.x the m k  discrete cyclic group, i.e.
zmk := {0, 1, ..., in*—1} (/ce N).

Ifwe define the group ¢ m as the direct product of the groups z ., k, then ¢ m is a compact
Abelian group. Thus the elements of ¢m are of the form m= (10, jas ..., xk ...)
with 0 sxt<mt(/cEN) andfor x,y inc mtheir sumx-\-y is obtained by adding the nh
coordinates ofx andy modulo m ... The topology of ¢ m is determined completely by
the following sets in ¢ m:

Li*) m= {T€C,,,: y = (X0, XN J, Yoy --.)} (xdc m, NdN).
Next, let em:={\j/m\ /;EN} (the so-called Vilenkin system) denote the character
group of ¢,,. We enumerate the elements of ¢, as follows. For kEN let rk be the
function defined by
rk(x) = exp 2k (xeemii=/NT).

If we define the sequence (M k, kdN) by mo:= 1, M k+x:=m kM k (ledN), then
each nE£N has a unique representation of the form

n = 2 nkMk,
k—0

where 0~nk<mk, nkEN. For such /N we define the function cn by

L -— 7
m = Kk
We remark that ¢ m is a complete orthonormal system with respect to the normalized

Haar measure on ¢ m [17]. Furthermore, if mn—2 (n€EN) then cm is the Walsh—Paley
system.

1 Personal communication.
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For a function /$L1(Gnm) let

I(*) = I (*€N),

SnU) ::éo)((*m (n€EN), <x,,(/)::n|*J:iW ) («ENN{0»,
A, = "z1'k (nEN),
k=0

2 Ak(«€EN\{0}),

Ty{f)(x):="f(x
n fc=1

-y ) (x,y£EGm).
(-denotes the inverse of the group-operation).
The modulus of continuity and the integral modulus of continuity are defined by
,&(5‘()043 H/-tx()Il- (JEC(GJ),

co(f,S):=

® t(/,*):

Az)t(jg(éu/-Tx(/)Hl (16 1-1(<?,.)),
where <5>0 and A(,cl,c):z_z_OO~

noe— (x=(x0, xIs ..)E(7m), and ||/||p denotes the
/[-norm of/ @

§2

In the proof of the statements on the divergence mentioned in the introduction
the following “polynomials” of ¢m play an important role.

Let us assume that n,k—2 (/c=0,1,...) in the original occurence and introduce
the following notations:

AK (*€N),

([ ] denotes the entire part),

N := {nEN: an=* 0}, Nn:= 2 akmk («EN),
k=0

yfj-rij
K o= ‘ (Mk > 2) :
o fe6N), = 2 -rr D*k (A N)-
(-1Yrk = ™a—2) (febN), == tfo Mk

For the partial sums of the Vilenkin polinomials r k the following statements are
true [14]:
12
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O UK s cdogvin (xeLwd),
(i) IPJU S 3n (neN).

(C>0 will denote an absolute, although not always the same, constant.)
By means of the polynomials r,, we define the following functions:

s) .. JJ (1 I Fn+xk+1leks, (Pn) rn+f+I1Tcie ,(Pn))
— PJo { 6n )’
n—1i
where for k= 21 kmte {0, 1, ..., M,,—1}, eki, is defined by
>=0

ekrl.= (KOKIf... fe, 1,0,0,..)cCm.

It is immediate that the values of q,, are real and Q,,s0. Furthermore, it is easy to
prove that |jo3i= ¢ @, = 1. Indeed, if we observe that

‘ntb+I+Vn+Wn-1
n o+ fo+ 1nefe 2 Yikri9
M n+K+l

_ (mn+fc+1_1)Ain+fc+ 1+ (mn_ "In+ 4 Vi» ~ 1
rn+*+iT«fc,,Nom) = 2 ] yik'l'i
'=C",,+t+i-« M +k+i
(with some coefficients yi) and
-An+k+1+(Mn+1)-2n~1 2= Matk+1(ATHk+1—1) -= (mn+t+1 —1)Mn+k+, +
+ (T n~"n+ 1< M m+K+2,

then we can prove without difficulty the relations

r JL “+jt+ ejt,n(Pn)Prn+jcH ejt,n(Pn) _

(1 0én</<-<N1<BA"
From the above facts it follows that

Ak(Qn) S\f,,+k+1+n,,(Qn) ~ SMn+k+1(Q,,) —

_ ¢ (rn+k+1Tek,,,(Pn)Prn+k+1Tek,n(Pn)\,_ 1 /c fDW
— b Mn+k+I+N,,( fa o~ fart+k+1T<k,, ,(0iV,, (r n)J,
i.e. for xei,(elt) (k=0,m , —1) we have
I<5*(13,,)(™)| - \snn(p ,m\ S Clogm,

On the basis of the properties of the Vilenkin polynomials q, we can construct
already an integrable function with everywhere divergent Vilenkin—Fourier series
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using standard arguments. Let namely 0 (/cEN) be a sequence for which
00

0 ek< + °= holds. Then for all sequences of the indices (nk,k e N) the function
k=
(1) f'-=
belongs to L f¢ s and with pj:=M Mnj+1+ M nj+kj+1, qj:=pj+Nn. (je N, /c~0,...,
the equality

I~ (1)-~ (/)] = BjskI(Q nj)

holds. For an element xec m let the number kj be chosen such that x e injcekjin)

(ie «j= rjy x:Mr) Therefore
20

2 bro(f)(x) - saj(f)(x) 1= ejl\akj(@n (x) 1Srcejlogm nj

and if lim sup sjlogm nj> 0 then the Vilenkin—Fourier series of the above function
/ diverges everywhere. Thus we proved

Theorem 1. For all sequences m there exists an integrable function with every-
where divergent Vilenkin— Fourier series.

Later we shall discuss also the “unbounded” case, i.e. when limsupm = + °.
If the sequence m increases rapidly enough, we can construct an example with the
condition of Theorem 1 in a very simple way. We have to observe only that for mn>2

\SsnM L, +i(K)()\ = 2 Vvis cl°gmn On= 0).
1

We assume mn+1~ 2 2m* (neN) and consider the following Vilenkin polynomials:

—/ 2k+1 | 22k+
Rn-=k (1+m+18J n+tl-* M~

where zkn:=(0,0,...,0,k, 0, ..)EGm(k = 0,..., m,— 1). By a similar argument as

above it follows that IA 1= J rn=\,
om

|5 2ZKHMHAdIM(P?,,)(X) —s 2k tiVht] (R ) (x) | =
= M4n("N,M,,+i0O00))l = clogmn (x,, = « = 0, ....mn-I;n<EN).

For a sequence amn>0 (fcEN), ) let
=0

(3) g:= l%—(bn(Rn_iy
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Then obviously, g belongs to L'(G,,) and for all nEN, x€G,, k:=x, we have
|Sqoncsana, , 14,0, +1(8)(x) — Syaws1m,, , (E)(X)] =

= 0| Sy +anm, | +4 M, +1(R)(X) — Syexsinm, | (R)(X)| = Ca, log m,.

Since m,,,=2%" (ncN), the sequence (x; k€N) can be selected such that
lim sup o, -log m,>0 and therefore the function g has an everywhere divergent
Vilenkin—Fourier series.

In the next theorem we give a lower bound for the partial sums S,. We assume
that the following assumption for the sequence m is fulfilled:

; log M,
4 lim sup g1

— = 0.
ogMy, .,

Then the following sheoram is valid.

THEOREM 2. Let m be a sequence with property (4). Then for all sequences w,=
=o(loglogn) (n—<c) there exists f€L*(G,) such that

lim, sup M>O (x€G,).

Wy

We remark that for a bounded sequence m (4) is trivially true. On the other hand,
there is a sequence m with property (4) which is not bounded. (So e.g. m,:=2"+!
(n€N).) But (4) is not valid for all m. (E.g. my:=2, m,:=22"(n€N).) Theorem
2 for the Walsh—Paley system was proved by F. Schipp [12], [13].

In [15] we showed that for a function f€L'(G,,) each of the following conditions
implies the a.e. convergence of (S,(f), neN):

O Sm [ [17 G+ F0ID, () dx du < + o=
=0T ¢ le.

3) @) 2 moff ML] o s

Gi) o/ M—l] = o(log Mp)—1— (k—o)
and
(%) k;; m(log M) ™17 < 4 o (e =0).

It is evident that for a bouneed m we can omit the factors m, and the condi-
tion (*). We shall prove that conditions (5) (i) and (5) (ii) without the factors m,
generally do not imply the a.e. convergence. Since (i) follows from (ii), it is enough
to prove the following theorem.

THEOREM 3. There exist a sequence m and a function gcIL'(G,) such that

> wl(g, ALJ]< +oo and (S,(g), n€EN) is everywhere divergent.
k=0 k
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The following problem due to A. Zygmund [18] is well-known in the theory of
the trigonometric series: does the condition w,(f, d)=0(og 1/6)~* (6—0) for an in-
tegrable function fimply the a.e. convergence of the Fourier series of /?. This problem
— and the analogous question for G,, — is open. In this paper we shall investigate
the problem for G,,.

If the sequence m is bounded, then for a function f€L'(G,) the relation
@, (f,8)=0(w(5)) (60, w is a modulus of continuity) is equivalent to the restriction

(k— ). Therefore, in this case the question of A. Zyg-

mund has the following form: does the condition

©) o1 ML] = O(log M)-! (k=)

imply the a.e. convergence of (S,(f), n€N)? In the next theorem we prove that for
unbounded sequences m condition (6) is generally not sufficient for the a.e. conver-
gence.

THEOREM 4. There exist a sequence m and a function feIL'(G,) such that (6)
is true and (S,(f), nEN) is everywhere divergent.

We shall see in the proof that the sequence m in Theorem 4 is not bounded. There-
fore the complete solution of A.Zygmund’s problem for G,, remains open both in the
bounded and in the unbounded case. If we repalace ‘log1/6” by (weaker)
“log log 1/6”, then the following theorem is true.

THEOREM 5. (i) For every bounded sequence m there exists a function f€I*(G,,)
for which

O o,(f,8) = O(loglog1/8)~* (6-0)

holds and (S,(f), n€N) diverges everywhere.
(ii) There exist an unbounded sequence m and a function g€ L'(G,,) such that (7)
is true for g and the Vilenkin—Fourier series of g diverges everywhere.

We remark that part i) of Theorem 5 for the Walsh—Paley system was proved
by F. Schipp [13].
Related to the conditions (5) we make the following remarks. If for a modulus

o the estimation 2 mw(1/M,)<+ <= holds, then from
k=0

i ( i All_k] — 0(@(1/M) (k—e, fELI(G,)

the a.e. convergence of (S,(f), néN) follows (so e.g. in the case w(1/M,)=
=0(mi*- (log M) 17%) (k—<°,£>0)). However, w(1/M)=(logM,)™* (k—)

cannot be chosen, since for every m the relation > my(log M;) = 4 « holds.
k=1

In [15] we showed that the condition =o(mlog M)~ (k—<)
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implies the L,-convergence of (S,(f), n€N) (f€L*(G,,)). If we modify the proof of
this statement, i.e. we follow the method of the proof of the sufficiency for a.e. con-
vergence of (5) (i) (see [15]); then — taking into consideration the relation

M;

[| > ri| = 0(togn) = O(logm,)
Loli=
(n=1,...,my—1, s—>) — we obtain the following assertion:
Any of the following conditions implies the L'-convergence of (S,(f), n€N)

(fELY(Gy): ¢ .
@) 3 Gogmoy(f, 5] < +==

®) (ii) @, ( £, 7}4;] = O(log M)~ (k— oo, > 0) and

kZ (log my)(log M)~ 17% < + oo,
=1

Consequently, if (5) (i) or (5) (iii) is true, then (S,(f), n€N) converges a.e.
and in L*-norm. It is an open question whether the weaker conditions (8) are suffi-
cient for the a.e. convergence. Unfortunately, this will not bring us closer to Zyg-

e log my
=1 log M,

We remark that for certain sequences m condition (8) (i) is weaker than the above
mentioned w,(f; 1/M)=o0(m, log M)~ (k—<), eg. for m,:=2""1 (nEN).
By means of a counterexample, it was proved in [15] that w,(f, 1/M;)=o0(log M)~ *
(k—~o) is generally not sufficient for the Ll-convergence. If we put my:=2M:
(k€N) in this counterexample, then we attain the growth condition w,(f, 1/M,)=
=0(1/M;) (k- <°).

Finally, we remark that the analogous statements to the above mentioned asser-
tions for the L'-convergence are true for the uniform convergence if we use f€C(G,,)
and w(f, 9).

We shall investigate again the (C, 1)-summation of continuous functions. It is
known [9], [10] that for bounded sequences m the (C, 1)-means o, (f) of a continuous
function are uniform convergent. However, this is no more true in the unbounded
case, since J. Price [11] showed the existence of a continuous function with divergent
(C, 1)-means. In this work we prove Price’s theorem by means of a construction.

mund’s problem, since =+ for every m.

THEOREM 6. (J. Price [11]). For any unbounded sequence m there exists a conti-
nuous function f€C(G,,) such that lim sup |0y (f)(0)|= + <.

We remark that Price showed the relation lim sup ||K,||;= + o in the unbounded
case, from which Theorem 6 follows. On the other hand, from Theorem 6
lim sup| K[|, = + <= follows.

If the sequence m increases rapidly enough then we can prove that the function
fin Theorem 6 has a certain smoothness condition. So e.g. if a sequence (n,, k€N)

Acta Mathematica Hungarica 41, 1983



ON THE DIVERGENCE OF VILENKIN—FOURIER SERIES 367

of indices can be selected with the properties

9 @D my, <m,; <...
©) (i) limsup(logm,,) - M, ' = + =,
then the following corollary is valid.

COROLLARY (J. Price [11]). If(9) is true then we can choose the function fin Theo-
rem 6 with the following property:

o(f,1/My) = O(1/My)  (k—<).

It is evident that (9) cannot be true for all unbounded sequences m, e.g. for
m,:=n+2 (n€EN) we have

. logm, .. log(n,+2)
lim M, = lim 1 1] =0
§ 3. Proofs

ProOF oF THEOREM 2. We can assume that w,=p,loglogn (n—<), where
Bo=p1=... and lim B,=0, lim w,= + . Let (n,, kEN) be the sequence of indices

defined by > f, << and consider the function fin (1) with g&:=p, (kEN).
k=0
For x€G,, and for jEN let
;=1
kj:= 2 xiM;, q;: = MM,.j+1+Mn,-+kj+1a Py = q;+Ny,.

i=0

Then we have by (4)

lim_ sup 1S5, (1)) — S5, ()| = Clim; sup & log M,, = 0.
¥ By loglog p; By, loglog My, .,
From this (takmg into consideration the relation lim sup —% = >0] Theorem 2
Py

follows.

PROOF OF THEOREM 3. We consider the function g in (3) Then for every k€N
we have w,(g, 1/M)=C 2 o=saer Zwl(g, 1/M)=C Z'na Since the growth
condition m, 4 =2%" (nEN) holds ev1dently the sequence o,>0 (n€N) can be
selected with the properties n;') no, <+ and lim sup «, log m,=0.

PROOF OF THEOREM 4. Let us define the sequence m in the following way:
my:=4Mi (k€N). Then m, ., =2*" (k€ N) is evidently true and the Vilenkin—Fourier
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series of the function g:= vy, — s5——-<~13(em) in (3) is everywhere divergent. On
m,,
the other hand

. 1
) =2 = o).
cuj(g, 1m0 3 LJk-i logmn logmk_1 ( 1.2,.)

Since log ™ k= 0g M k_k+ log mA 1=log /»*_!+ log log mX 1<21oe mk_x, the es-
2

timation =----- R o s true, e, i () /M dsC-;

<- 77- follows.
logmk-x  logm «

1
log m «
Proof of Theorem 5. (i) For a bounded sequence m we introduce the follow-
ing notations: m :=sup m, nJ:=2J eJ:=2~-i (/EN) and we consider the function
[:= 2 txrm, +1Q.keL 1(Gm) in (1). Therefore the Vilenkin—Fourier series of f
"k

k=0
diverges everywhere and

O IA =, Z = e

where the natural number jo is defined by

j-i >, H
Jt2 +1< ks M2o

From this it follows that

COAfI/M )N 2 2-0=22pw"  C -m -7 A-*00),
) J=d-1 ¥ logic g log log ( )

i.e. on the basis of our earlier remark on the integral modulus we have

S) = O(log log I/b)“1 (&- Q).

(if) We consider the function ¢ in the proof of Theorem 4. It is enough to prove
that for this function (7) is fulfilled. Indeed, let x EN be the index for which M'

65 ¢ is true. Then

log m logmk_k loglogmk loglog U5

Proof of Theorem s. We assume limsupm — + °° and select the sequence
(nk, k£ N) of indices with the following properties:

0)

(ii) there exist numbers sk>0 (/cEN) such that limsupgklogm, = + °° and
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If we consider the function f:= 3 ph, €C(G,), then — on the basis of the
k=0
definition of h,’s — we have

O A Mg, 1 (f)0) = j‘f_-% ﬂjo'a,.ku,.k +1 (hnj)(o) = ﬂkod,.ank +1 (hnk)(o) =+

forl
+ Z:) Bja.a,.km,,k+1(hnj)(0) =: Ay+B, (keEN).
e

It is enough to give suitable estimations for A4, and for B,
A
i jM
=t 5 (1- g Me)L

Jj=1 AnkM +]
ie. limsup A= + oo.

17 ﬂk[ 2 ——1 = Cpilogm,,

o k-1 B; 4, M, +1
|B.] == N o e
lBkI g A M +1 tgl S (h,,l)(O)
g M 5V Fig s,
5. B; nyv1— M, L BiM, ., logm,,
TS M 1T s MZ S M) = 2 ey ® gy =

Therefore, lim sup [aA" M, (f)(0)| =lim sup |4;|—lim sup |By]

PROOF OF COROLLARY. Let (9) be true and define p,:=1/M,, (k€N). Then

oo

Sh= 3r <t
k=0 k=0
and

; 1
lim sup B, log m 208 M,

. e

ny

me = limsup ——=

Therefore, for the function f:= > fih
k

1 EC(G,,) the relation limsup |g,(f)(0)|= + <=
holds by Theorem 6. Furthermore, we have for jEN

o(f,1/M) = Z’ B=CIM,
where k;¢N is defined by n, _,<j=n

e >

Hence o(f,1/M;)=C/M; follows.
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A NOTE ON THE SHARPNESS
OF J L. WALSH’S THEOREM AND ITS EXTENSIONS
FOR INTERPOLATION IN THE ROOTS OF UNITY

E. B. SAFF: (Tampa) and R. S. VARGA: (Kent)

8 1. Introduction and statements of new results

Let Aedenote the collection of functions analytic in \2\< 4 and having a singu-
larity on the circle \2\= 4, where itisassumed that 1< g< °°. Next, for each positive

integer n, let /) denote the Lagrange polynomial interpolant, of degree at
most n—1, of f(z)£EAe in the n-th roots of unity, i.e.,

where a>is any n-th root of unity, and let

(L2) Pn-i(z;f) = ';goakzk

be the (n—)-st partial sum of /(z)=kZ=0akzk— Letting

(1.3 DT:= {zEC: \2\ < t};
then a beautiful result of J. L. Walsh [2, p. 153] can be stated as

Theorem A. For each f(z)dA,,, the interpolating polynomials of (1.1) and (1.2)
satisfy

(1.49) lim {pn_1(z; f) —Pn-1(z; /)} = 0, for all zEDQ.

Moreover, the result of (1.4) is best possible in the sense that there is some f(z)dAe
and some z with \A=qg2 for which the sequence {pn I(z; f) —PI*l(z; /)}"=i
does not tend to zero as n.-«--

Note that in Theorem A, no sharpness assertions are made for arbitrary functions
f(z)dAg; in particular, no statement is made on the behavior of the sequence

(15) {p«i(z; 1)-P,,-1(z; N}r=L

in |z|>e2 One of the aims of this note is to in fact address this behavior in |z|

As a special case of Theorem 1 below, we prove that, for any f(z)dAe. the sequence
in (1.5) can be bounded in at most one pointin jzl=4%2 This fact is of special interest
in the case when/(z) in Aeis also continuous in the disk . \s 4 for such functions,
it has been shown in [1, Thm. 2] that (1.4) is valid for all .\« q2.

1 Research supported in part by the National Science Foundation.
2 Research supported in part by the Air Force Office of Scientific Research, and by the Depart-
ment of Energy.
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For our own purposes below, we need a recent extension of Theorem A. For
additional notation, set

(1.6) N-1A%N = "Sakezk j =0,1,....
Then, the following result of Cavaretta, Sharma, and Varga [1, Thm. 1], which gives
Theorem A as the special case /=1, can be stated as

Theorem B. For each f (z)EAe, and for each positive integer |, there holds

(1-7) lim [p, eyl ) -0 Py, _it(z;1)] =0, for all zeDc+,

the convergence being uniform and geometric on any closed subset of Deu 1 Moreover,
the result of (1.7) is best possible in the sense that there is some f (z)£Ae and some z
with |1]=1> +1 for which the sequence

(1.8 k-i(*;/)-z4-i,.,(*;N}
| j=o0 Jn=1

with z=z and f=f, does not tend to zero as
Our first new result is

Theorem 1. For each f(z)£Ae, andfor each positive integer I, the sequence
(1.8) can be bounded in at most I distinct points in \2\=-gi+1. This result is sharp, in
the sense that, given any I distinct points {gk}k=L in the annulus oi+l< lIz|<,+2,
there is an f (z)£A,, for which

(1.9) NT{N _1(4/)-A P . 1.1(%/)}=»0, f=1,2,

There is an extension of Theorem 1 which we can also state. Note, of course,
that Theorem A involves only the Lagrange interpolation of / in the mth roots of
unity. For r a fixed positive integer, Theorem B can be extended using Fiermite inter-
polation. For notation, let /i,,_1(z; /) denote the Hermite polynomial interpolant,

of degree at most mv—1, to /,/', ..., f{r~r=in the un-th roots of unity, i.e.,

119 f) /@@, j=01..r-13,

where again @ is any n-th root of unity. If /(z) — ajZ) we set
o 3=0

(1.112) o(z; 1): = |i2=0 akzk,

and we set

(1.12) 7fm-i,j(z; f): = Bj(z") kA=o aktpty Drx j=1,2, ...,

where

(1.13) Bjiz): =4 (“+{~ V(z-Hk j=12....
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Then, the following result of Cavaretta, Sharma, and Varga [1, Thm. 3], which gives
Theorem B as the special case r=1, can be stated as

THEOREM C. For each f(2)€A,, and for each pair of positive integers r and I,
there holds

1-1
(1.149)  lim {h,,,_l(z; =2 H,.;5 2 f)} =0, for all z€Da+um,
n-—»eo i=o

the convergence being umform and geometn( Sfor any closed subset of Dgi+am.
Moreover, the result of (1.14) is best possible in the sense that there is some f(z)€ 4,
and some % with |2|=0'*U" for which the sequence

-1 -
(1'15) {hm—l(Z; f)—JZl; Hrn-l.j(z; f)} >

= n=1
with z=% and f=f, does not tend to zero as n— .

Our second new result, which sharpens Theorem C and gives Theorem 1 as the
special case r=1, can be stated as

THEOREM 2. For each j(z)EAQ, and for each pair of positive integers r and |,
the sequence (1.15) can be bounded in at most r+I1—1 distinct points in |z|> o' T/,
This result is sharp, in the sense that, given any r+1—1 distinct points {qJ;ti™" in

1
: 5. l+—= 3 L
the annulus o't <|z|<min{o't2; o " r1t, there is an f(z)€A, for which
& i e

-1

(19 ,!iﬁ;{hm-l(nk;f)—jg H,n_l,j(nk;f)}=0, k=12, .., r+l-1

Since the proof of Theorem 2 is completely analogous to the proof of Theorem 1,
we shall give only the proof of Theorem 1.

§ 2. Proof of Theorem 1
To establish the first part of Theorem 1, consider any (fixed fc4,, consider

any fixed positive integer /, and suppose that there are (/41) distinct points
{» it} in |z|>o'*! for which

-1
Q2.1) PO £)— 20 Po s =M, Yn=1, Vi=k=I+1.
V-

If /(z): = > a;z/, then the hypothesis that f is analytic in |z|<¢ with a singu-
=0

larity on |z|=p gives us that

@2) T ol = .
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Thus, for any e>0 with £ and with

(2.3) (2-e)'v2> QH,
there is an nO(e) for which

(24) a " AP no(e).

Next, since all the points {yr} lie in |z|>e'+l, then
(2.5 el+l<<rli= min lyJs max |yM=: <2

and we choose the least positive integer m for which

(2.6) a2< emtl, (where 1< m).

Applying Theorem B (with | chosen as in), we have that the sequence

\p nx(z\ /) _1:26 4-i (z;1) [ln:I converges to zero for all zEDem#. In particular,
as the points {jtH+l all liein DB™A from (2.5) and (2.6), then there exists a constant
Mj such that

(2.7) pn_nyK-,/)_Jzzopn-l,nyK\f) S Afls VnSI, VI=fcS/+I.

Using the hypothesis of (2.1), this in turn implies that

m
(2.8 jgi pn-n(Yk, /) =M2, VnSIl, Vieles /+1

A Recalling from (1.6) the definition of Pn_ItJ(z;/), then it follows from (2.4)
that

n* 2= J(4y V>

Thus,
(2-9) \P,,-Uj(z; )\ g ;o Vn A ono(fi), Viz| > 4. jé L1

This can be used as follows. From (2.9), we see that, if /+ 17 /n_i? then

»1-1 .. m——)n|z|" u /4 ,
(2.10) j=2|+l|on—u(z\ f) ((g_E)(/)+z|j,,| . Vs, 0(8), VI|zZ|>6-

Hence, from (2.8) and (2.10),
(2.12)

\PR-xAIYK\ /) 1 M2+ (B~ [~ AT, V<« uOE), VISfcS/ +1.
clot
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Now, because of (2.11), it further follows that

Mynly,["

(2.12) Ve Pu, i is £) =Py, 13 )] §Ma+m,

for all n=mn,y(e), all 1=k=I/4+1. Next, because of the definition of P,_, ;(z: f),
it can be verified that
I+n

(2'13) ZIPH,I(Z; f)_Pn—l.l(Z; f) 2 alu+1“-— Z alu-i—; -’J

j=n

‘Obviously, the last term in (2.13) is bounded, independent of #, in the points {3 Jit}.
whence from (2.12) and (2.13),

l+4n

2 AVl = M+ Miyn|y|"
Jj=n !

On divididg through by |y /" in (2.14), we obtain

1
Zan(l+1)+]yk

(2.14)

M; + Myn
Y

and so, from the definition of ¢, in (2.5), there follows

(2.15)

1

b j
2, Apa+1)+jVk
j/=0

M, Myn
= n 2 1+2)n
%~ praer

for all n=ny(e), all 1=k=/+1. If, for convenience, we set

(2.16)

2.17) T max{1 UJ—_IST*‘-}
then it follows from (2.3) and (2.5) that
(2.18) T %

Q

Next, we write a system of (/41) linear equations in the ‘‘unknowns”
Aqsn+j- 1€,

. e
(2.19) .Zo'yi‘,a(l-f-l)u-{-j::Jf;‘_", k: 1, 2, ceey l+1
i

where, from (2.16) and (2.17),
(2.20) [ fe.nl = Mgnt", ¥Yn=ne(e), V1=k=I+1.
In matrix notation, we can write the system of equations (2.19) as

Vet ey A +1)n fl,n
(2.21) 1 Yo ... yé X a(l+.l)n+1 =X f%,n

L Yis1 oo Vi A +1)n+1 fis1m
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The coefficient matrix, 4, in (2.21) is a Vandermonde matrix, and, as the points
{yv JitY are distinct by hypothesis, then 4 is nonsingular. Using Cramer’s rule, it is
easy to see from (2.20) and the fact that the {y,}i*' are fixed distinct points, that

(2.22) lag+1yn+jl = Mznt", VYn=ny(e), VO=j=1

However, (2.22) implies that

(2.23) ,}—iﬁ lq, |48 = e %,
the last inequality coming from (2.18). As this contradicts (2.2), then there can be at
most / distinct points {;}k; in |z|>'** for which the sequence (1.8) is bounded,
completing thefirst part of the proof.

To establish the second part of Theorem 1, let w;(z) be any monic polynomial of
degree / with precisely / distinct zeros in the annulus o'*1<|z|<'*2 ie.,

1
(2.24) wi(z) = "[7l (z—m) =: .Z(;ﬂjzj:
= Jm=
where
(2.25) pit <ilmiiceatis Aol =tle2. L ]

Consider then the particular function

(2.26) f@: = ?%Z)m

Clearly, f€4,, and f has /41 poles on |z|=p. We now show that with these defini-
tions, (1.9) of Theorem 1 is satisfied. From Theorem B, we know that

1
(2'27) '!in; {pn-l(:; f)_ .Z{)Pn—l,j(Z; f)} = Oa VZ€D01+2-
Jj=
We claim that
(2.28) '}Ln; Pu—l,l(nk; f) " 0: vl = k = l-

To establish (2.28), write f(z):= > dG,z*. It follows from (2.24) and (2.26) that
k=0

(2.29) Beersi g WI%UTJ Vo= j=l Ym0,
Next, by definition,

n—1
(230) Pn—l,l(z; f) = kgtl) éln+k:k’

and we consider the case when # is a multiple of (/+1), i.e., n=(/+1)s. On regroup-
ing terms in (2.30) for such n, P,_; ,(z: f) can be expressed as

s—1 1
(2.31) Psu+1)—1,1(23 f)= kz; R _Z;d(t+1)[st+k]+jz"-
S =
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But, the inner sum of (2.31) can be seen from (2.29) and (2.24) to be

1
S i wy(2)
(2.32) jg(; Guinist+i1+j2 = W

Since w;(i7;)=0 by definition, it follows from (2.31) that
(2.33) Pygi1y—1,10M; =0 visksl Ys=1

Having just considered the case when » is a multiple of (/+1), we now suppose that
n=s(l+1)+1, where 1=r=/. On similarly regrouping the terms in (2.30) and using
the fact that w;(n,)=0, it can be shown that

t—1

(2.34) Pya+1y+e-1,100 f) = _2; dsl(l+1)+lt+j"l{'
J=

Since the {n}i-, are fixed, and ¢ does not exceed /, then, as |@,|~0 as n—< from
(2.29), we have from (2.33) and (2.34) that

(2'35) 'E.n}o Pn—l,l(nk; f) = 0’ Vl = k = la

as claimed in (2.28). Thus, with (2.27) and the first part of Theorem 1, the sequence

n=1

=1
(2.36) {Pn—1(2§ f)—j;'; B (2 .f)}

is convergent (to zero), only in the points {i;}k—; and unbounded for all other points
in {zeC: |z|>¢'*}.

Added in proof. (April 14, 1983) The second part of Theorem 1 remains valid if any / distinct
points {n};, are arbitrarily chosen in [z|>'*?, with a similar improvement holding for Theo-
rem 2. This has been shown by the author and, more generally by T. Hermann, ’Some remarks
on an extension of a Theorem of Walsh™, J. Approx. Th. (to appear).
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