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NOTE OF TH E E D IT O R

The name of our periodical Acta Mathematica Academiae Scientiarum Hunga- 
ricae has been abbreviated to Acta Mathematica Hungarica according to a decision 
of the Hungarian Academy of Sciences. This modification does not effect the status 
and the editorial policy of the journal.
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SOME PROPERTIES OF THE CATEGORY OF 
INTEGRAL DOMAINS

E. FRIED (Budapest)
To the memory o f my teacher P. Túrán

1. Introduction. A binding category is a category C such that there is a full 
embedding (for the definition see Section 2) G ra—C of the category of graphs into C 
(and therefore there is a full embedding A-+C of any category A of algebras [H — PJ, 
[H —L]). Let Int0 denote the category of integral domains of characteristic zero with 
unit elements together with their (unit preserving) homomorphisms. Int0 has been 
proved to be binding in [F —S2]. In particular, there are large integral domains with 
prescribed endomorphism monoids. The integral domains constructed are quite 
particular, however. For example, they contain no algebraic elements apart from the 
integers. Therefore, the following natural problem was raised by J. Sichler [S]:

(* ) Given an integral domain I  of characteristic zero and a monoid M, does 
there exist an integral domain J  containing I  such that End (J)s?M?

This question was answered in [F] for the special case when M  is a group. In 
the present paper we give an affirmative answer to this problem and some stronger 
versions of it.

Analogous problems (endomorphisms and category of structures containing a 
given substructure) have been investigated for unary algebras [KJ, [K2], lattices 
[A—S], and graphs [B—N].

The methods employed in this paper are, partly, from earlier papers of Fried 
and Sichler [F — Sx], [F —S2]. In 1976 the author proposed a related problem, not 
solvable by these methods, at the mathematical competition of the students of 
Hungarian universities. It has turned out that the proposer’s and the solver’s methods 
can be generalized to settle Sichler’s mentioned problem.

T heorem 1.1. Let I  be an integral domain of characteristic zero. Then the category 
of integral domains containing I  is binding.

Above, as throughout this paper, our integral domains possess unit elements 
and these are preserved under homomorphisms by definition.

One can ask how these homomorphisms act on I. Of course, in a simple construc
tion proving Theorem 1 it is natural to choose these actions to be trivial (the identity 
map). For small categories, however, one can essentially prescribe the action of the 
homomorphisms on I. (Recall that a category is small if its objects form a set.) We 
prove even more.

Theorem 1.2. Let Ж be a small category. For any functor Ф: J f —Int0 there 
exists a full embedding 'F: .if  -*Tnt0 suchthat Ф(Х)<= lP(X) for every Ob ( if )  
and for every morphism cp: X-+Y, the homomorphism Ф((р) is the restriction of 
P(X) to Ф(Х). In addition, one can require that all objects in the range o f 4? have the 
same cardinality.

l* Acta JViathematica Hungarica 41, 1983



4 E. FRIED

The following problem has been raised by L. Babai [В]. Let 01 be a set of rings 
with unit element such that each of these rings has the same additive group A. These 
rings together with their unit-preserving homomorphisms form a (small) category. 
The question was which categories have such a representation. We prove that every 
small category can be represented this way even by integral domains.

Theorem 1.3. Given a small category Ж, there exists an Abelian group A and a 
full embedding J f  — Int (A) where Int (A) denotes the category o f integral domains 
having A for their additive group.

In the study of endomorphisms we exclude characteristic p because of the trou
ble caused by Frobenius endomorphisms jo—xp. The category Intp of integral do
mains of characteristic p is never binding because of these ever present central endo
morphisms One can, however, form a factor category Intp by setting (p = ф if 
(p(x)pn—(p(x)pm for suitable positive integers n,m  and all jc in dom <p=dom ф 
(ер, ф any morphisms in Intp with common domain and range). The author and J. 
Kollár conjecture the following.

Conjecture 1.5. The factor category Intp is binding. Moreover, for any in
tegral domain /  of characteristic p, the category Intp(/) is binding (the objects of 
lntp(/) are those integral domains which contain /  and the morphisms are the mor
phisms out of Intp).

2. The main result. Before stating the main result we have to quote some defini
tions and results.

A concrete category is a category Ж together with an “underlying set” functor
□ : JT—Sets. The map □ : Н о т  (A, У)—Horn ( □  A, □ У) has to be one-to-one 
for each X, У^ОЪ(Ж) (mis faithful).

A functor F : Ж Z£ is a fu ll embedding if it is an embedding (i.e. one-to-one 
on objects and morphisms), and it is full (i.e., the map F: Horn (X, Y) — 
—Horn (F(X), F(Y))  is onto for each X, Г€ОЬ(Х)).

Let (Ж, □ )  and (:Sf, □ ') be concrete categories. A full embedding F: Ж Ж  
is a pseudorealization if n X ^k  U\'F(X) (áfgOb (Ж)) and for any morphism 
<p: X-+Y in Ж, □<? is the restriction of □ 'F(rp) to ÓX. A pseudorealization is 
exclusive if the image of the “excess” □ 'F(x) — O X  under □ 'F{<p) is disjoint from
□  Y, i.e., it is a subset of the “excess” □ /.Р (У )\[1]У.

Clearly, composition of (exclusive) pseudorealizations is (exclusive) pseudo
realization as well.

The following result of Hedrlin, Pultr and Vopenka [V—P—H], [H—P2] is 
fundamental for the theory of full embeddings.

Theorem 2.1. Every category o f general algebras (infinitary operations and 
relations admitted) has an exclusive pseudorealization in the category of graphs.

(Graphs are symmetric irreflexive binary relations.)
We need the following two observations on small categories.
Proposition 2.2. Every small category Ж can be endowed with a faithful set 

functor □ .

Acta Mathematica Hungarica 41, 1983



TH E CATEGORY O F INTEGRAL DOM AINS 5

Thus, in case of small categories we only have to deal with concrete categories.
Proposition 2.3. Every small concrete category has an exclusive pseudorealiza

tion in the category of graphs.
For the proofs see, e.g., [H—L],
Under an assumption on set theory much more powerful results have been proved 

by L. Kucera (see: [P—T] pp. 99—100) and Z. Hedrlin [H], [Ku].
(M) Assumption. The class of mesurable cardinals is a set. (In other words, there 

is a cardinal greater than any measurable cardinal.)
T heorem 2.4. (Kucera, Hedrlin). Assuming (M ), every concrete category has an 

exclusive pseudorealization in Gra (the category of graphs).
D efinition. Let (X ,  □ ) and (£?, □ ')  be concrete categories and Ф: X  -* 

be a functor. We denote by X U  Ф(Х)  the concrete category (X ,  □ ") defined by 
□ "((p)= □ ((р)0о'Ф((р) (<píX) (where | j  stands for disjoint union).

Now, we are able to state the main result of the paper.
T heorem 2.5. Let ( X ,  □ ) be a concrete category and Ф: —Int0 a functor

such that
(i) |Ф(А)| is bounded (Х£ОЪ X) .

Assume further that
(ii) there exists an exclusive pseudorealization P: X  U Ф(.зГ)-Gra.
Then there exists a full embedding ф: X  —Int0 such that Ф(Х) is a subdomain of 

ф(Х) and Ф((р) is the restriction o f Ф(ср) to Ф(Х) (q>: X — Y£X).
In addition, we may require that for any given small subcategory o f X  T  (Z) 

have the same cardinatily when X  ranges over Ob X 0.
R emark 2.6. (i) and (ii) are automatically satisfied for small categories. (For 

(ii) use Proposition 2.3.)
R emark 2.7. Under (M) condition (ii) is always satisfied by the theorem of Ku

cera and Hedrlin. (Theorem 2.4J .

We would like to get rid of the somewhat sophisticated condition (ii) without 
assuming (M). We do not know the answer to the following

Problem 2.8. Let Ф: G ra—Sets be a functor such that \Ф(Х)\ is bounded for 
all graphs X. Does there exist an (exclusive) pseudorealization Gra U Ф(Сга) — Gra?

(Of course, we may assume that (M) is false.)
A positive answer to this problem would make the assumption (ii) in Theorem 

2.5 superfluous.
Next we derive Theorems 1.1 through 1.3 from Theorem 2.5.
Proof of Theorem 1.1. Let us apply Theorem 2.5 with X = Gra, Ф(Х)=1 

(^TgObGra), Ф((р)=1д, (^ € Мог Gra) (i) is trivially satisfied, (ii) is an obvious 
consequence of Theorem 2.1. The conclusion is a full embedding T : G ra—Int0 
such that !Р(Л")5/ for every X. |

Proof of Theorem 1.2. X  can be viewed as a concrete category by Proposition

Acta Mathematica Hungarica 41, 1983



6 E. FRIED

2.2. (i) and (ii) of Theorem 2.5 are satisfied by Remark 2.6. The conclusion of 2.5 
restates that of 1.2 |

Proof of T heorem 1.3. We apply Theorem 1.2. Let I=Q, the field of rationals. 
Let us define the functor Int0 by setting Ф(Х)=1 for all A^Ob jf .  Then
Ф(ф) = idQ is automatically satisfied for each среЖ. The integral domains lP(X) 
obtained by Theorem 1.2 all have the same cardinality x and contain Q. Therefore 
they are jr-dimensional vector-spaces over Q hence their additive groups are isomor
phic and may be identified. |

Let us mention that the construction used in the proof of Theorem 2.5 will give 
us that A dependes only on the least upper bound of the cardinalities of □ (X) 
(JT€Ob ЛГ).

The method used in the proof of Theorem 2.5 is based on the fact that every 
homomorphism of integral domains preserves two properties of the elements:

(a) The element is invertible.
(b) The element belongs to the p-component of the multiplicative semigroup of 

nonzero elements and has infinite height in this component.
In the proof of Theorem 2.5 we shall extend the integral domains of the form 

I — Ф(Х) in many steps. In the first step we extend it by variables over I. This varia
bles will represent the vertices of the graph P(X) and some auxiliary variables which 
will be the vertices of a rigid graph. The second extension will make these auxiliary 
variables infinitely high so they will be “recognizable” . In the third step we extend 
the ring by inverses such that we will be able to recognize the vertices and the edges 
of the graph P(X). According to this way we shall break the proof into three parts:
1. Which elements are recognizeble and how can we recognize them. 2. How to 
construct the proper integral domain by means of graphs. 3. The actual proof of 
Theorem 2.5.

3. Some properties of integral domains. Let 1 be an integral domain (with unit 
1 and char 1=0) and let X  be a set of variables over I. Consider the polynomial
ring I(X). If X'  is the least subset o f X  such that f£l[X'],  for some given f€j[X] 
then we shall say that the elements of X'  occur in /  and the elements of X \ X '  do 
not occur in/. If there are disjoint subsets Xl t X2 of X such that f£ l[X j\ and g£J\X2] 
then we shall call /  and g disjoint polynomials.

An element a of an integral domain R will be called a power (in R) if there 
exists an element b£R  and an integer к ̂ 2  such that a=bk.

Proposition 3.1. Let cXO be an element o f the integral domain I; К  the alge
braic closure of the quotient field o f I; f£ l [X] \x1, xr£X elements not occurring in 
/ ;  кг, ..., kr non-negative integers with positive sum. Define the polynomial F(xx, ..., xr) 
by

F(xi, ..., x r)=c-xT11- - /
Then we have:
(i) I f  fAO then F is not a power in K[X\.

(ii) I f  f  is not a power in K[X] then F is irreducible in K[X].
Proof, (i) For r = l ,  F and its derivative are mutually prime, thus F is not a 

power in K[X], indeed. In case г ё 2 the condition F=Gk implies F(x, ...,x) = 
= G(x, x)k yielding, by the special case, k=  1. Hence (i) is proven.

Acta Mathematica Hungarica 41, 1983



T H E  CATEGORY O F  IN TEG RAL DOM AINS 7

(ii) Since К contains all roots of unity, in case r= 1 the reducibility of F would 
imply that /  is a power in K[X], which is not the case. Suppose r^ 2 , F=G- H.
Consider F'=F{xlt x j ,  G'=G(xla ..., Aq), H '= H (x1......лу). Now, we have
F'=G ' H ' and:

degF =  degG +deg//, degF ' =  d eg G '+ d eg # ' 

deg F = deg/", d eg G sd eg G ', deg FI s  deg H '.

These yield, using the special case, that one of deg G and deg H  equals zero, i.e., 
F must be irreducible. |

N otation 3.2. Let X  be a set of variables over /  and let L  be the algebraic 
closure of (the quotient field of) /[X]. For each natural number i and for each x £ X  
we choose and fix a unique satisfying 0x = x  and (,x)2= i_1x for /> 0
(we could choose any other fixed prime in the exponent instead of 2). Let, further, 
iX= {рс|л:(;Х} and „X= U tX  (i=0, 1, ...). We shall denote by /[„X] the subring of 
L  generated by 01X, i.e., the union of the ascending chain of the polynomial rings /[,X], 
For disjoint sets X  and Y of variables over /, /[„XU Y] will denote the subring of 
the algebraic closure of /[XU T] generated by /[„X]U/[T].

D efinition 3.3. Let I, X, Y be as in Notation 3.2. A subset H  of /[„XU Y] 
will be called normal i f  H  does not contain any element o f 1 and the elements o f H 
are not divisible by any element o f „XU Y {in /[„XU Y]).

N otation 3.4. Let /, X, Y be as in Notation 3.2. and let H  be a normal subset 
of /[„XU У]. We shall denote by /[„XU Y/H] the subring of the quotient field of 
/[„XU Y] generated by /[„XU T]U/ / _1 (H -1 consists of the multiplicative inverses 
of the elements of H). Further, /[;XU Y/H] will denote that subring of the above 
field which is generated by Z[(XU Y]UH,-\  where Ht stands for ЯП/[«ХиУ].

We have, clearly:
Proposition 3.5. For any field К the unique factorization holds in K[tX  U Y/H], |
In virtue of Proposition 3.5 we shall consider the elements of X[,XU Y/H] 

as quotient of two mutually prime elements of X[(XU Т].
Proposition 3.5 yields, also:
Proposition 3.6. I f  К is a field then an element o f X[,XU Y/H] is invertible in 

X[;XU Y/H] iff both the numerator and the denominator are products o f an element 
o f К and some irreducible divisors o f elements o f H. |

D efinition 3.7. An element a o f an integral domain I  will be called high (in I) 
i f  the equations x(2n)—a have a solution in I, for every natural n.

We want to find all the high elements of /[„XU Y/H]. Clearly, the elements of 
„X are all high. The converse is, generally, not true but we have:

Proposition 3.8. Let К be the quotient field o f /  and let и be a high element o f 
/[„XU f /Я]. Then u—a-t1- . . .- tr with some high a£K and with q , ..., ?r€ ;X, 
for suitable i.

Acta Mathematica Hungarica 41, 1983



8 E. FR IE D

Proof. We proceed through several claims.
Claim 1. If AT is a field and и is high in K(x) then u£K and и is high in K.
In this case we have mutually prime polynomials f  and gt, for i=0, 1, ..., 

satisfying (f / g d 2i = u. This yields, by unique factorization,/о = ( /;)Zi and g0 = (gi)2i, 
for each i. This means, however, that both the degrees of /„ and g0 are divisible by all 
powers of two, i.e., deg / 0=deg g0=0. Further, this implies deg/f=deg # ;= 0, 
hence, u£K  and и is high in K.

Claim 2. If Zis a finite set of variables over the field К  and uf_K(X) is high, then 
и is high in K.

This statement follows from Claim 1, using an obvious induction.
Claim 3. Let К be a field, x  a variable over K, L=K(x)  and M =L[{a>x}]. 

If и is high in M, then u = v(iX)J where v is high in К and j  is some integer.
fix)We may suppose, without loss of generality, that u= xJ where x, f
g(x)

and g are mutually prime ( j  any integer).
If и is high in L we are done, by Claim 1.
Thus, we may suppose that there is a vdM, v^L  such that v2”=u, for some k. 

If v2k~l^L, then we start with u2“”1 instead of u. Therefore, we may suppose, that и 
was chosen such that а2к~г^Ь . Now, we change v to i>2fc_1. Thus, we have v£M, 
v$L, such that v2=u. Now, we choose y=iX such that v^L(y) but v$L(y2) 
(such an tx  must exists, for v$L).

Since у  (as well as x) is transcendental over K, y $ L ( y 2), i.e., L(y) is an alge
braic extension of rank 2 over L(y2). Thus, v is of the form v—a+by with a, 
£L(y2). Since v2= u ^ L ^ L (y 2), we have a2+b2y2+2abydL(y2), yielding 2aby£
£L(y2). Now, the condition y $L(y2) implies either a—0 or b=0. The second/ 2\
case is impossible, for r ̂  L{y2), so v—by, i.e., v=y'- , with mutually prime

a /
p and q, which are not divisible by у and with an odd t. According to our choice,

* = / ' ,  i-e., y 2* р Ч у2) 
чЧу2)

— V2 — U — XJ f(x)
g(x) = y J

Now, we have, by unique factorization

f ( y 2‘)
g(y2‘)

y 2, =  y J-2l; P2(y2) =  q2(y2) =  g ( y 2i)-

The first equation gives us /=1, t —j,  for Г is odd. This yields p2(x)—f(x)  and 
q2{x)=g(x).

Since и is high so is either v or —v, and we may suppose v is high. Since u—v2, 
if v is high in L(y), we are done by Claim 1. Otherwise, similarly as before, there must 
be a w£M, w$L(y)  such that w2k=v, for some k. Now, we are going to show that
z=w2k 1$L(y).  Indeed, if z were of the form z= y r(,y2) 

s ( y 2)
with mutually prime

n(v2)
y, r, s then z2 could not be of the form y‘ — —5-  with an odd t. Therefore v has

q ( y 2)
exactly the same properties as и has.

Thus, we can continue our procedure, i.e., we have a sequence of elements
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f i x2)
u=0u, v= 1u ,2u,... such that iu=(i_1u)2 and {u = (;хУ • ‘ '■ (x, f , gt are

SiKi* )
mutually prim) satisfying /i = (/i+1)2 and gi = (gi+j)2.

These imply, however, that f i , g 0^K,  i.e., и is of the desired form.
Claim 4. Let X  be a finite set of variables over the field K, L=K(X)  and 

M=L[mX]. If и is high in M, then u = v ■ ti - ... ■ tr where v is high is К  and
h> • ••> г̂€ш-Т-

The claim follows by an obvious induction from Claim 3.
Claim 5. Proposition 3.8 is true for finite X  and Y.
Indeed, applying first Claim 4 to the quotient field of /(7 ), then Claim 2 to I 

we get the desired property.
Claim 6. Proposition 3.8 is true.
Since и depends only on finitely many variables, we may apply Claim 5.
We need one more preliminary result on monomials, i.e., on elements of I[X]\1 

which are products of elements of IUX.
Proposition 3.9. Let К be a field containing all roots o f unity and let и and v be 

disjoint monomials in K[X\. Then each irreducible divisor o f u — v is of the form w—z 
such that for some natural number к we have u=wk, v=zk. In particular, w and z 
are disjoint monomials.

Proof. We may suppose, by the disjointness, that u—v is of the form A -x"—В 
with some positive n, where x£X  and A, B^K[X^\ for some finite subset X 1 of X not 
containing x. If u—v is reducible over K(Xj), then it is, also, reducible over K[Xj\. 
Since и and v are disjoint A ■ xn—B=(C • x"—D) ■ E is impossible with C, D, E in 
K[Xj\, unless E belongs to K. Thus, the reducibility of u — v implies the reducibility 
of xn—B!A over K(Xj). Hence, there are polynomials P, Q in K[Xx] and a natural d 
dividing n such that (PIQ)d = BIA and P and Q are mutually prime. The unique prime 
factorization and the disjointness of A and В imply B —Pd and A =  Qd. Thus, 
u—v is the product of all P • xnld—e ■ Q where e runs over the d-th roots of unity. 
The conditions for P and Q give us that they are, also, disjoint monomials. Continuing 
the procedure the properties of degrees prove the statement. |

4. Properties of integral domains constructed by means of graphs. We can for
mulate the conditions in Theorem 2.5 as follows:

To any object X  in the given category Ж there is assigned an integral domain I 
the cardinality of which is under a given bound and a graph whose underlying set 
contains I, i.e., it is of the form /U Y. Having an other induced integral domain Г  
and a graph on the set / 'U F ' assigned to x f X f  and any map <p: x-+x' the exclu
sive peseudorealization assigns to (p a map P(<p) such that the underlying set mapping 
□ P(tp) sends /  into I '  (and is a “restriction” of a homomorphism) and sends Y 
into Y ’.

Our task is to construct integral domains “containing” ICY, I 'U  Y', ... such 
a way that the extensions of the graph-homomorphisms yield a “one-to-one” corres
pondence between the graph-homomorphism and the ring homomorphism.

Since we have a bound for the cardinality of all integral domains in question,
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we have a rigid graph <S{X, S) such that the cardinality of X  is greater than the given 
bound.

Thus, to construct the integral domain we are given an integral domain /, a 
graph S(IUY,  T)  and a rigid graph У(Х, S ) with |/ |<  |Z|. (The graphs are, for 
our purpose, directed, connected and loopless. A rigid graph is a graph with no other 
endomorphism but the identity.)

To manufacture the integral domain, described above, we shall constract a ring 
of the form I[01X  U Y/H] with a special H. Our aim is to recognize the elements of X, 
of 7U T and the relations T  and S. To this end, we shall use Proposition 3.8. 
However, in this proposition we had to use the quotient field К of /. This will not do 
any harm, for the homomorphism will map into K[mX  U Y/H] and it is enough to 
recognize the elements in question in this ring. However, this will make the formula- 
zations of the forthcoming propositions a little more complicated.

Firstly, we construct H:
D efinition 4.1. Let I be an integral domain, Y a set o f variables over Y, 

J { I  U Y, T) a directed, connected, loo pies graph and $(X, S) a directed connected 
rigid graph.

We define in 1[ШХ  U У]
(Í) #! =  {xi -X j \x„ X j£  X, Xt ̂  Xj)

(ii) tf2 =  {Xi -  2Xj — 11 (лг, , Xj) 65}
(iii) # 3 =  {x1+ x 2+rXi\rxi€rX; х1г x2 are two fixed elements o f X }
(iv) Hi = {x3 +  x4 +  M-x5+ti| (и, v)^T\ x3, x i , x 5 are distintc fixed elements o f  

X  such that {x4, х2}П{я-3, *4, *s} =  0 }
(v) , We choose and fix an infinite Subset (л:6, x7, ...} o f X  disjoint to 

{*!, х2,х 3,х 4,х 5} and define H3 = {x3k + x3k+1+ x3J+i + u\ufJU Y, k > \  integer}.
Let finally H =  H x U tf2 U H3 U U Hb.
Now, we are going to show that we can recognize the two graphs using only the 

algebraic properties of I[mX\JY/H].
Proposition 4.2. The elements o f H  are not powers and the elements of Ht 

(2 =k i = 6) are irreducible in K[aX  U Y] (К is the quotient field of I).
Proof. The conditions of Proposition 3.1 are clearly satisfied, using (i) for Ht 

and (i) and (ii) after for the other H r s. |
Proposition 4.3. Let и and v be high elements o f  /[raJ U  У] not both of them 

belonging to 1.1f  u—v is invertible in l[mX  U Y/H] then there exists a natural number 
k such that both u2“ and v2k are products o f an element o f the quotient field К of 1 and a 
power of some element o f X. In addition the quotient o f the two elements o f К is a root 
of unity.

Proof. By Proposition 3.8, u= c-u i and v—d -v1 where c and d are high in 
К  and Ui, Vi are products of elements of some „X. Since K[01X  U Y/H] is the union 
of all K[tX  U Y/H] we may choose n so that K[nX  U Y/H] contains, also, the in
verse of u — v. The invertibility of u — v, the normality of H  and Proposition 3.6 
imply that и and v are disjoint (monomials). Hence и and v are of the form

и = c • y}1 •... • y)’, v=d • j&Y • ••• • Угг,
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where yl t ..., ys, ys+1, ..., yr are distinct elements of „X and к1г k„ ks+1, ..., k r 
are non-negative integers.

Since и and v are disjoint, we may apply Proposition 3.9. Now, consider the 
irreducible factors of u—v in L[aX{JY], where L  is the algebraic closure of K. 
These are of the form w—z with disjoint monomials w and z.

By Proposition 3.6, w—z is a divisor of some element of H, i.e., by Proposition
4.2, either an element of H2U ... UH5 or a divisor of some element of H1. The first 
ones are not of the form w—z with disjoint monomials, so w—z must be of the form 
e- „Xi—г] ■ „Xj with some 2"-th roots of the unity e and rj. We may suppose, without 
loss of generality, that e=l.  By divisibility and disjointness, one of „x: and nXj 
occurs in u, the other in v, say „xi=y1, „Xj=ys+1. The divisibility yields:

•(Л+i)* (y,)k- = d . (y s+1)k ■ ( J r f

where e' is a root of unity. By unique factorization we must have

и — c • у I and v — d • y3

with a positive integer k, and we have e' -c=d, i.e., d/c is a root of unity. Since 
u, v ,yi ,yi^K[mX{dY], we have c, d£K[mXVJ Y], i.e., c,d£K.  |

Proposition 4.4. Let и and v as in Proposition 4.3, such that u—2v—l is inver
tible. Then there is an (xt, Xj)£S satisfying u= xt and v—Xj.

Proof. By Proposition 4.3 u=c-y$, v=d-y \  (yl5 у2£пХ), and d/c is a root 
of unity. We may, also, suppose that к is odd. Thus, by Proposition 3.1 u—2v— 1 
is irreducible. By Proposition 3.6, the invertibility of u—2v—\ implies that it is a 
product of an element of К and a divisor of elements of some Hi (7=1, ..., 5). By the 
irreducibility of u—2v— 1 we have only one factor. Since in our case u—2v — l de
pends only on two variables, /=4 and i=5 is impossible. Since the constant of 
u—2v— 1 does not equal 0, we have iV l and iV3. Thus, it is of the form 
a(xi—2Xj — l) with a£K, and (xt, Xj)£ S. This implies immediately «=0, к — 1, 
a~  1 and {У!, y 2}={Xi, Xj}. If y1=xJ, y2— then c—— 2, —2d= 1 and d/c= 
=  1/4 is not a root of unity. Hence y i= x f, y2=Xj. |

P roposition 4.5. Let uCl[a,XU Y/H] such that the elements х зк-\-хзк+1+ х3к+2+и  
(к >  1 integer) are invertible. Then u£IU Y.

Proof. The above elements are, of course, invertible, also, in 
where L is the algebraic closure of the quotient field К of I. Since L^X V j  Y/H] 
is the union of all L[tX  U Y/H], we may suppose that u—f/g with mutually prime 
/, g£L[„X\J Y], Since / and g together depend of finitely many variables only, there 
exists an integer k > \  such that neither of x 3k, A3fc+1, x3k+2 occur in / or g. We may 
suppose, without loss of generality that к =2. We may change n, if necessary, so 
that L[„X\J Y/H] contains, also, the inverse of x6-f xv+x8+//g. Since H  is normal, 
by Proposition 3.6, we have that both g and F = g ■ (x3+ x7+ xs) + f  are products of 
elements of L  and of irreducible divisors of elements of H.

By Proposition 3.9 and Proposition 4.2 these divisors are either of the form 
kXi—e-kXj with some root of unity e or they belong to H2U . ..UH3.

Acta Mathematlca Hungarica 41, 1983



12 E. FR IE D

We take care, firstly, of the elements of H2 and the elements of the form 
kXi~e-kXj. Denote y —kx t and z=kXj or y —x{ and z=Xj.  We are going to 
prove that y —a x —b (a, b£K)  do not divide F. Otherwise the substitution y —ax + b 
would send F  to 0. Observe, that xe, x7, x 8 do not occur in /  and at most two of 
them occur in y —ax—b, therefore the polynomial got after the substitution has 
positive degree in one of xe, x7, xg, unless the substitution sends g to 0. In that case 
the image of f = F —g(xe+ x 7+ x 8) will be 0 as well, implying that y —ax—b is a 
common divisor of g and / ,  in contrary that /  and g are mutually prime.

Thus, F is a product of elements of L U H3UH4UH&. Since x6, x7, x8 do not 
occur in / and g, the polynomial F has degree 1 in each of these variables. Therefore, 
one of the factors contains each of these variables, namely on first degree. Since F 
does not contain products of xe, x7, x8, these variables must occur in the same irre
ducible factor. The only elements of L(JH3UНА0 Hb which contain x6, x7, x8 are 
the elements o f H5, i.e., we get F= G ■ (x64- x7 +  x8 + 1>) with some v£lU Y.

Comparing the two expressions of F, as polynomial in x6 we conclude G—g 
and f —v ■ G. Hence

I

v-G
G =  r f / U f .

Proposition 4.6. Let L be the algebraic closure o f the quotient field К o f the 
integral domain I. Suppose, for some a£L and for some u, v d l U Y  the elements 
x1+x2+arx i and x3+xi + ux&+v are invertible in I[aX U Y/H]. Then, we have a— 1 
and (u, v) 6 T.

Proof. By Proposition 3.1 the given elements are irreducible, thus, by Propo
sition 3.6 they must belong to H. An obvious comparing gives that only the stated 
cases are possible. |

5. Homomorphisms of integral domains constructed by means of graphs. In
Section 4 we have, actually, given the action of the functor ф mentioned in Theorem 
2.5 on the objects. Next, our goal will be to describe the action on morphisms.

Definition 5.1. Suppose, we are given two integral domains I and Г, moreover, 
two graphs / = / ( / U F , 7 j  and J ' —J ( F  U Y', T) .

A homomorphism cp: will be called an J'-homomorphism if the restriction
o f (p to I is a 1 -preserving ringhomomorphism into / '.

Proposition 5.2. Let J ,  J^'€lnt0, (&=(0(X, S) a rigid graph, such that \X\>- 
>max (|/|, |/'|). Besides let each graph-homomorphisms <p: , f(I  U Y, 

f ' ,  T') be an J-homomorphism.
Then, there is a one-to-one correspondence between the J-homomorphisms

<p: J{ I \J Y ,  T) - / ( / 'U T ' ,  Г )  

and the \-preserving ringhomomorphisms

Ф: I L X Ö Y / H ] -  I 'L X Ö Y ' IH ']
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established by the extension and the restriction, respectively. (H ' is constructed by / '  
and similarly as H is by /  and (S.)

Proof. Suppose, first, that the homomorphism Ф is given. It maps X  into the 
quotient field of I'[aX  U Y'/H']. Since the elements of X  are high in l[mX U Y/H], 
so are their images. By Proposition 3.8 these elements are of the form a • tx •... • tr 
(adK', tidnX, K' is the quotient field of Г, n is a natural number). Since the elements 
of Я  are invertible, the restriction of Ф to X  is an injective mapping. Combining this 
with the condition |A '|> |/'|, we get that there exists an xtd X  satisfying u = Ф(х1)$ Г. 
Since 10 is connected, there exists an XjdX  such that (xt, Xj)dS. Thus, we can apply 
Proposition 4.4, which proves Ф(х,), Ф (xf) d X. Using the connectedness of X  and 
the above argument in finitely many steps, we get that Ф(Х) Q X  and the restriction 
of Ф to X  is a graph-homomorphism and by the rigidity of 10 Ф acts on X  identically.

Since Ф gives the identity on X, Ф (,*,)=£ • Txt for some root e of the unity. By 
Proposition 4.6, we have 8=1, i.e., Ф acts identically on aX.

Let, now, udIUY. х як+ хяк+1+ хяк+2+и are invertible, so Ф(и) satisfies the 
conditions of Proposition 4.5 implying Ф (и)£/'иГ ', i.e., Ф (/11У )£Ф (/'и Г ). 
Using Proposition 4.6, we get Ф (Г)с Ф(Т'), i.e., the restriction is a graph-homo
morphism. By our assumption this is an ./-homomorphism.

To prove the converse we start with an /-homomorphism ( p : / ( /U f ,  Г) — 
- / ( / '  U Y', T'). By the first part of the proof, the only way to extend it to a ring- 
homomorphism is to define it to act identically on aX. Since any homomorphism of 
an integral domain has at most one extension to any subring to its quotient field, 
there is at most one Ф to which <p extends. We have to show that this is a homo
morphism, indeed.

By the definition of an /-homomorphism the restriction of tp gives a 1-preserving 
ring homomorphism Ф: / —Г. We extend Ф to I[X\J Y] such that Ф(х^—х1 
and Ф(у) =  <p(y)(XidX, ydY).  Since / [ I U  У] is the free ring over /  such a homo
morphism does exist. Using the properties of algebraic extensions Ф can be ex
tended to /[MTU Y] such that Ф(гх 1)= гх 1 for all гх ^ гХ.

A homomorphism of an integral domain can be extended to a quotient ring of 
it iff no denominator is mapped to 0. However, this is obvious, for <p acts identically 
on aX. The only thing we still have to check that Ф maps into / '[mI U  Y', H']. 
To this end we are going to show that Ф(Н)ЯН'. Ф(Я,)QH- is clear, for 
i= l,2 ,  3, for Ф acts identically on ЮХ. Ф(Я5) д Я ',  for (p(IUY)QI 'UY'  and 
Ф(Я4)^ Я д , for (p is a graph homomorphism. |

6. The proof of the main theorem. Now, we are going to prove Theorem 2.5.
We start with the concrete category (j T, □ ) and let cp: A-+B be any morphism 

in X . By condition (i) we have a functor Ф: Jf--In t0 such that \Ф(Х)\ is bounded. 
We shall use the notation Ф(А) = 1Л, Ф(В)=1в, Ф((р)=ср1. Thus, we have in 
Int0: (pj: IA-+IB and we know that \IA\, \IB\ is less than a universal bound depending 
only on JT.

To deal with condition (ii), we have, first of all, the category JfU  Ф(^Г). This 
is the same category as but the underlying set functor □ " is defined such that

П"А =  U'IA, W'B =  U'IB, П"<р = П(р0п'(рА,
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where □ ' is the underlying set functor in Int0. Let □ * denote the underlying set 
functor of Gra and denote GA—P(A), GB=P(B), (pG=P(<p). According to (ii) 
we have:

a " (A )Q D  *{Ga), U\B)<gU*{GB),

and the restriction of □ *<pG to □*(G/t ) \D  "(A) maps into □*(CB) \Q  "(B).
Now, define YA= D*(GAy \ n ' I A and YB= 0*G B\ □ 'IB. Since □ >  =

=  nq>{JU'(Pi, we have that □  *(pG sends YA into YB and IA into IB, further this 
latter restriction is a ring homomorphism.

Thus, we have GA= S ( IAU YA, TA) and GB= J ( IB{J YB, TB). Since P is 
full each graph-homomorphism is of the form <pG, i.e., it is an /-homomorphism.

Now, let X  be a set such that \X\>\IA\ and consider the subcategory Gra of 
Gra consisting of all GA and cpG (/l^Ob Ж, cp^Mor Ж). Define I :  Gra—Int0, 
such that I (G ^)= IA[<aXVj YA/HA], Since each graph homomorphism GA-»GB 
is of the form (pG, we may apply Proposition 5.2 establishing a ring homomorphism 
Ф: E(Ga)-*E(Gb). By Proposition 5.2 the definition Е(<рс) = Ф gives us a full 
embedding.

Hence, \j/ = YoP is a full embedding as well. 1Л=Ф(А) is, of course, a sub- 
domain of IA[coX(JYA/HA] = Z (P(A)). By Proposition 5.2 the restriction of 
Y(P((p)), where cp: A —/?, to the graph GA is an ./-homomorphism, therefore the 
restriction to IA is the ring homomorphism cpt .

To finish the proof, consider any small subcategory Ж0 of Ж . Then the graphs 
of the form {G л \А(^Жп} form a set. When choosing X  such that |Х |> |/д | for all 
А£Ж  and \X\>\Ga\ for all А £ Ж п then we have \IA\mX[J YA/HA\ \ — \X\, when
ever А£Ж0. I
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ON CONGRUENCE и-DISTRIBUTIYITY OF 
ORDERED ALGEBRAS

G. CZÉDLI and A. LENKEHEGYI (Szeged)

1. Introduction. The triple (A, F, s )  is said to be an ordered algebra of type 
г if (A, F) is a universal algebra of type t, (A, s )  is a partially ordered set, and 
all f £ F  are monotone with respect to It is worth mentioning that т-terms induce 
monotone term-functions on ordered т-algebras. For т-terms g, h the string gSh  
is called an order-identity or, shortly, identity. (Note that an identity g = h is equi
valent to the conjunction of g = h and hSg).  Let H, S, P be the operators of taking 
homomorphic images, subalgebras and direct products, respectively. (These concepts 
are defined in the natural way. I.e., a homomorphism is a monotone map preserving
the operations, u ^ v  in f j  Ay means (Vy€F)(u (y )v (y ) ) and the original order

yer
is restricted in case of subalgebras.) The following result of Bloom [2] shows that the 
counterpart of the classical Birkhoif Theorem is valid for classes of ordered algebras: 
HSP is a closure operator on classes of similar ordered algebras, and a class of similar 
ordered algebras is closed under HSP iff it can be defined by a set of order-identities.

The concept of «-distributivity was introduced by Huhn [8,10]. This concept 
has proved to be a very useful tool in several investigations (cf., e.g., Huhn [8, 9, 10] 
and Herrmann—Huhn [7]).

A lattice is called n-distributive if the «-distributive identity

v  Ji =  V (x/\ V У,)1 = 0 j =0 i = 0

holds in it.
A variety of lattices is said to be a congruence variety (Jónsson [13]) if it is 

generated by the class of congruence lattices of all members of some variety of uni
versal algebras. It is known (cf. Nation [16]) that «-distributive congruence varieties 
are distributive, and this fact plays an important role in the theory of congruence 
varieties. Our aim is to generalize this result for the case of ordered algebras.

2. Order-congruences. If congruence relations of an ordered algebra (A, F, s ) 
were defined as congruences of (A, F), they would not depend on the ordering. More
over, there would be no reasonable way to define orders on factor algebras so that 
factor algebras would be order-homomorphic images under the canonical map. 
That is why the concept of order-congruences is introduced. Since our motivation will 
be given only in Proposition 2.1, the following definition might seem astounding at 
the first sight.

Definition. A binary relation 0  is called an order-congruence o f the ordered
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algebra (A, F, S )  if 0  is a congruence of the universal algebra (A, F) and

(* )
whenever a, b, a0, ak, ..., a,„, b0, blt bk£A suchthat 
a ”  Qq0 ax =! q^Qciq ^  a ̂ 0  a5 — ... am " b =  ^  b20 b 3 =
S b40 b5 ^  ... bk — a then aOb.

Proposition 2.1. Assume that 0  is a binary relation on an ordered algebra A. 
Then 0  is an order-congruence i f  and only if  there exist an ordered algebra В and a 
homomorphism cp: A -^B such that 0  = Ker cp.

Proof. Suppose 0  is an order-congruence of (A, F, S ). Set B=A/0  and, 
for a,b£A, define [a]0 s [ i ] 0  by “there exist a0,al t . .. ,at€A such that 
a=ao0a1Sa20a3^ a 40...a,=b”. The reflexivity of 0  and ^  (over A) together 
with (*) yield that S  is an ordering of B. If/ is an m-ary operation of A and [ai] 0  = 
Ш[b']0  (i= l, ..., m) then we have a1= a'00a{ =  a | 0 ... oJ=b‘ where, without loss 
of generality, we assume that t does not depend on i. Since/ preserves both 0  and S 
we obtain

/ ( a 1, ... ,am) = f ( a l ,  ... ,f l7 )0 /(a } ,. . . ,a?) S  f ( a \ ,  ...,a?)0  . . . / ( a ,1......a,m) =

which shows that
=  /(b 1 bm),

/ ( [ a 1]© ,..., [am]0 ) -  [ / ( a 1, ..., O ] 0  ё  [ f ( b \  ..., bm)]0  = /([b 1]©, ...,[bm]0 ).
Hence, equipped with this ordering, В  is an ordered algebra. Now the map cp: A — B, 
acp = [a]0 is a homomorphism and 0  — Кетср.

Conversely, if 0  = Ker cp for some homomorphism cp and а=ао0ах^  
s a 20  ..■am=b=bo0 b 1s b i 0...bk= a  then acp—a0cp=a1cp^a2cp = . . .—am=b, im
plying acp^bcp. Since bcpSacp follows similarly, acp—bcp, whence a0b. Q.e.d.

Let us mention two examples. The additive group Z=(Z, + , s )  of integers 
with the usual ordering has many congruences, but it has only the two trivial order- 
congruences. (Indeed, its proper factor groups do not admit nontrivial orderings.) 
In case of lattices equipped with the usual ordering congruences and order-congruen
ces are the same.

For an ordered algebra A let Con (A) denote the set of order-congruences of A. 
Since the meet of arbitrary many order-congruences is an order-congruence again, 
Con (A) is a complete lattice with respect to the set-theoretic inclusion. The join in 
Con (A) is described in the following

Proposition 2.2. Let A be an ordered algebra and let 0 O, 0 ls ..., 0 k be order- 
congruences o f A. Set Ф-{(а, b)£A2\ there exist a0, al t ..., am, b0, b1 ;..., b,£A 
such that

a — ao0 oa10 1a20 2  ... ak0 kak+k — ak-n@oak+30 i  ... Яаи-г^Огл+з —•••— am — b 
and

b — bo0 ob10 1 ... bk0 kbk+1 ^  bk + 20 obk+30 1 ... b2k+20kb2k+3 — ■■■ b, = o}.
П

Then Ф= V @i in the lattice Con (A). 
i = о
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Proof. It is straightforward to check that Ф is an order-congruence. The 
inclusion &iСФ is trivial. On the other hand, if f'eCon (A) and BtQ'F for all 
i then (* ) yields Ф<=4/. Q.e.d.

3. The main theorem. Now we can formulate
T heorem 3.1. For any class °U o f ordered algebras which is closed under taking 

subalgebras and direct products, and for any natural number n the following three con
ditions are equivalent:

(i) Con (A) is n-distributive for all A ^ - ,
(ii) Con (A) is distributive for all A^°li;

(iii) There exist a natural number к and ternary terms t0(x,y, z), t f x ,  y, z), ..., 
tk (x, y, z) (corresponding to the type o f aU) such that the identities

t0(x,y,z)  = x, tk(x,y,z)  = z, t fx ,y ,  x) = x  for i =  0 ,1......k,
tfx,  x, y) =  ti+1(x, x, y) for i = 0 (3), O s i < l c ,
t fx ,  y, y) = ti+1(x, y, y) for i =  1 (3), 0 S i< f c ,
t f x ,y ,  z) S. ti+1(x,y, z) for i = 2 (3), O s i < / c

hold in °U.
Before proving this theorem let some consequences and examples be mentioned.
Corollary 3.2. (Jónsson [12]). A variety У  of universal algebras o f type z is 

congruence distributive iff there exist a natural number к and ternary z-terms t0, tlt  ..., tk 
such that the identities

ta(x, y, z) = x, tk(x, y, z) =  z, t, (x, y, x) =  x for 0 S  i =£ k,
t f x , x , y )  =  ti+1(x, x, y) for i even, 0 S  i <  ft, 
h(x,y,y) = ti+1(x,y,y) for i odd, 0 si i <  к

hold in У.
Corollary 3.3. (Nation [16]). I f  a variety У  of universal algebras is congruence 

n-distributive then it is congruence distributive.
Both corollaries follow by the same consideration: Equip the members of У  

with the trivial order. Then congruences are the same as order-congruences and an 
order-identity t fx ,  y, z ) ^ t i+1(x, y, z) is equivalent to t f x ,  y, z) = ti+1(x, y, z).

If we call lattice varieties generated by the class {Con (A)\A£W) for some 
variety of ordered algebras °U order-congruence varieties and denote by J i(T )  the 
variety of all vector spaces over a field T  then we can describe the minimal modular 
order-congruence varieties:

Corollary 3.4. For any modular but not distributive order-congruence variety Ш 
there exists a prime field T  such that the (order-) congruence variety

HSP (Con (V)\V£Jl(T)}
is a subvariety of °U. (Note that HSP {Con (У)\У£Л(Т,)}, i—l, 2, are incomparable 
provided Tx and T2 are non-isomorphic prime fields.)
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For congruence varieties the same result was announced by Freese [4]. Herrmann 
and Freese [5] gave a very elegant proof for Freese’s result. Their proof is based on, 
among others, Corollary 3.3. Replacing Corollary 3.3 by Theorem 3.1 their argu
ment proves Corollary 3.4. (Since their work [5] had not appeared when the present 
paper was written, let us mention that their proof can be found in [3, Theorem 3.2], 
too.)

If a variety У  of algebras is congruence distributive then V, as an S and P 
closed class of ordered algebras (with the equality relations as orderings) is order- 
congruence distributive. (Indeed, Jónsson’s condition from Corollary 3.2 is stronger 
than (iii) of Theorem 3.1) Therefore if we intend to present examples for classes of 
ordered algebras satisfying the conditions of Theorem 3.1, we can equip any congru
ence distributive variety of algebras with the trivial orderings. Another example is 
the class of all lattices with the usual orderings. In order to give a nontrivial example 
(which is far from lattice orderings) consider the ordered algebra A=({a, b, c},f, ä ) 
where the ordering is {(x, x)\x£A}\J{(a,b),(a, c)}, and /  is a ternary majority 
function defined by

/ ( * 1,*2, x3)
(a if |{xj., x2, x3}| = 3 
{и€Л if |{/|xj =  и}| S  2.

Now the class SP{y4} satisfies condition (iii) of Theorem 3.1 since we can put к =2
and t , (x ,y ,z)=f(x,y,z) .

Finally, it is worth mentioning that for a single ordered algebra A the n-distri- 
butivity of Con (A) does not imply the distributivity of Con (A). (Indeed, choose a 
finite ordered A such that Con (A) is not distributive. Then Con (A) is «-distributive 
for any n greater than [Con (A)\.)

4. Proof of the main theorem. Let us define three further conditions besides the 
conditions of Theorem 3.1:

(iv) The identity

ő: xt\ V F; ^  (xA V F;)V(xA V Fi)i=0 i=0 i=l
holds in Con (A) for any AeW;

(v) There exist 1 and (n +  2)-ary terms t0, tlt ..., tk such that the identities 
h)(xo>xl5 ..., xn+1) — x0, ht(x0, Xj, ..., x„+1) =  xn+1, 
h(x, У!,Уг, . . . ,y„,x)  = x for 
h(x, x, ...,x, у, у  = ti+1(x, x, . . . ,x,y,  y, . .. ,y)  

j +1 7+i
where 0S j^ n ,  0 ^ i< k  and i = j  (n + 2),

fi(Xo> xx, ..., x„+1) ^ i j+1(x0, x lt ..., xn+1) 
for i= n+ \ (« +  2) and 0g /< ^  hold in 41',

(vi) (x0, x„+1)€ V (0 ,„ ,.+1A У  0 л .-Л „ -|)J = o 1 = 0
i*j

where &XsXt denotes the smallest order-congruence of Fv (x0, , ..
^-algebra over {w0, х1г..., x„+1}, under which xs and x, collapse.

xn+1), the free
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R emark. Since °ll is closed under S and P, the free algebra involved in (vi) 
(and that over an arbitrary generating set) exists. (The definition of free algebras 
and the proof of this remark are the same as in case of universal algebras, cf. Grätzer 
[6] or Birkhoff [1].) Note also that (v) is a generalization of Mederly’s condition [15].

Via the implications (i)—(vi)—(v)—(iv)—(ii)—(i) we intend to show that all the 
six conditions, (i), ..., (vi), are equivalent. (No matter that (iii) is not involved above. 
For n= 1 (v) and (iii) are the same, and 1-distributivity is the usual distributivity. 
Thus the equivalence of the other five conditions yields the equivalence of all the six 
ones.)

Since (x0, хя+1) € 0 ,оЯв+1Л (0ЖоЯ1о©,1Я1о...о® ,пХв+1) С 0 Яо:(|1+1Л у -ixn+l—i*
the implication (i)—(vi) is trivial. Distributive lattices are «-distributive (cf. Huhn 
[8]), which settles (ii)—(i).

n
. be denoted by Ф} ( j —

П
(vi) implies (v). Suppose (vi) and let V ®xi=о 

i/j П
=0,1 , ...,«). From the assumption (x0, xn+1)£ \ /  ( 0 X ,  and Proposition
2.2 we obtain that there are elements t0(x0, x 1, ...,x„+1), t,(x0, xt , ..., x„+1), ..., 
tk(x0, x l , ..., x„+1) in F%(x0, ...,x„+1) (where tt is a term) such that
(1) X 0 =  tg(Xg, X j ,  . . . , X n + 1), tk(Xg, X1, . . . , X „  + 1) =  Xn + 1,

(2) tj(x0, xl5 ..., x„+1) =  ti+j.(x0, Xu ..., x„+1) for i =  n +  l (n + 2),
(3) iifxo.Xi, . .;X„+1) 0 XoXn+1№ j  ti+1(x0,x l f ..., xn+1)
where O s/ё и  and i= j  (n+2).

Since 0 XoXn+1A<I>j = 0 Xoxn+in ,I,j, from (3) we obtain
(4) fi(x0,x l5 ..., хп+1)ФуГ(+1(х0, x1; ..., xn+1)
where 0 and i= j  (n + 2). Denoting (x0, xl5 ..., x„+1) by x, from (2) and (3) we 
obtain xo=tg(x)0XliXn+1t1(x )0XoXn+1. . .0XoXn+1tn+1(x)Stn+2(x )0 XoXn+1. . .^ . . . t i(x)... 
. . .0XoXn+1. . . ^ . .  tk(x)=x„+10 XoXn+1xo, whence (* ) yields
(5) Xg0xoXn+1ti(xo, x 1, ...,xn+1) for i =  0 ,1,..., k.
Since Fv (x0, ..., xn+1) is a free ordered algebra in °U, (1) and (2) show that all the 
identities of (v) which contain n+2  variables hold in °U. For the rest of identities (4) 
and (5) will be used. Consider indices i, j  (O^jSn,  0 = i ^ k  and i =j  (n + 2)) 
and the homomorphism <p: Fv (xg, xl5 ..., x„+1) — F*(x, y), x0cp = ...=x„_j(p = x, 
x„+1̂ j(p= ...= xn+1(p—y. Then Ker (p is an order-congruence by Proposition 2.1. 
Since, for iVy, (x„_i, xn+1_i)£Ker (p, we have Ф] =  V EKer cp. Thus
from (4) we obtain

ti(x, x, ..., x, y, y , ..., y) =  tt(xg(p, xk<p, ..., xn+1cp) = tt(x0, ..., xB+1)<jt> =
7+i

=  fi+i(x0, •••, xn+1)(p =  ti+1(x0<p,..., xn+1q>) = ti+1( x , ..., x, y , ..., y).
j+i

Hence the identity t fx ,  ..., x, y, y )= t i+1(x, ..., x, y, ..., y) holds in 41. Similarly,
j +1 "7+1
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considering the homomorphism ф: F%(x0, ..., xn+1)^F ^(x , у 1гу2, ...,yn), х0ф = 
=хп+1\1/=x, xs\j/=ys for l ^ s ^ n ,  and making use of (5) together with &XoX„+l(= 
E Ker ф, we obtain t^x, y ly ..., yn, х)= и(х0ф, хгф, ..., хп+1ф)=и{х0, x[, ..., 
хп+1)ф =х0ф=х, whence tt(x, y1, ..., y„, x )= x  holds in °K.

(v) implies (iv). Suppose (v) and let A^4l, a, ßQ, ßnf_Con (A). Considering an n—1 n
pair (a, b) of elements in a A y  ft and denoting V f t. V ßt by yn and y0,

1= 0 1= 0 i =  l
respectively, (a, b)£ (aAy„)V(aAy0) should be shown. Since the role of a and b 
can be interchanged, by Proposition 2.2 it suffices to find a sequence of elements 
a=d0, dlt . ..,dr—b such that for all / ( < r) we have either dia.!\yj di+i for some 
y'€{0, и} or dt^ d i+1. First of all (a, b)da and, by Proposition 2.2, there are ele
ments ctJ, ciJ, cJ+1>0, cs+1-°£A (г=0, 1, ..., s , j —0, 1, ..., n +  l) such that

a — COoßoCOlßlC02ßiC03 ßnc0,n + l — C10^0Cll/^lC12^2C13 ßnCl.B + l —
— C2oßoC2lßlC22ß2C23 ßnC2,n + l — •••— Cs0 ßo Csl ßl Cs2 Дг Cs3 ••• ßnCs,n + l —
— Cs + 1, 0 =  b

and
b = c00ßuc01 ßxC02 ... ßnc°-n+1 c10ß0c11ß1 с12 ... ß ^ 1-"*1 ...

... ßncs' n+1 Ш cs+1’° =  а.
Let us compute by the identities of (v) and keeping in mind that all term func

tions are monotone:

a = to(a> •••> a> a> b) —
=  •••> b) yntx(a,  . . . ,  a, Cgn, b) Уо A ( a > •••» a > ^o,n+i> b) =

= ti(a, ..., a, c10, Ь)уп^(а,  ..., а, с1я, b)y0*i(a, ..., a, c1>n+1, b) S .. .S  
s£ ti(a, ..., a, c50, f y y M a ,  ..., a, cs„, Ь)у0^(а , ..., a, cSf„+1, b) S

— А(а> •••>a) cs+i,o> b) =  ii(u, ..., fl, b, b) =
=  *2 0 , ..., a, a, b, b)ynt2(a, . .. ,a ,c 0„,b, b)y0t2(a, c0>n+1, b, b)
=  r2(a, . . . ,a,  c10,b,  b)y„t2(a, . . . , a , ca„,b, b)y0t2(a, ... a, clin+1,b,  b) S...=S 

á  i2(a, . . . ,a,  cs+1>0,b,  b) =  t2( a , ... a, b, b, b) =  i3(a, . . . ,a,  b, b, b) =  ... =

*n+l(a>ь, ь , ..., b) s  Гп+2(а, Ь, ..., b) =

л̂ + г(а>с00, .. .,с00, b)y„tn+2(a, с0п, •••> c0B, b)y0i„+2(a, co, Л +1 ,c°-"+1, b) ё
л̂+г(а>с10, .. .,с10, b)yntn+2(a, с1", • * *5с1", ЬЬсЛ+гО, c1,n + 1, ... , c1’"+1, b) SS...SS

cs0, .. ,,c s0, b)y„tn+2(a, с5", •••» c1", b)y0i„+2(a, Л +19 * • *3cs’"+1, b )S
л̂ + г(а>с*+1-°', ..., cs+1' °, b) =  fn+2(a> ...,a , a, b) =
п̂+з(̂ > ..., а, a> b)yntn+3(a, ..., a, 1"OH 5Ь)у0^л+з(а. •••. Со, Л + 1» b) =
л̂+з(й>...,а, СЮ> )̂Ул̂ л + з(а> •••>a.Ci„,b)y0i„+3(a, .. ■> a> cl, л + 1> Ь) =  ... =  ... —

=  tk(a, some elements of A ,b )—b.
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Now if we replaced y„ and v„ by а A y0 and aAy„, respectively, we would obtain 
a required sequence a=d0, dlt ..., dr=b. But this is possible since for any щ ,. . . ,ипа 
£A we have tfa, щ, ..., u„, b)txtfa, щ, ..., u„, d)=a, whence the elements of the 
above sequence are pairwise congruent modulo a.

(iv) implies (ii). Suppose the identity <5 holds in a lattice L and let x, y, z be arbi
trary elements of L. Let xl\y l\z  be denoted by w. Then

xA(yVz) = x/\ (>’VwVwV...VwVz) =  (xAO,VwV...Vw))V(xA(wV...VwVz) =

=  (xhy)\ /(x/ \z),
i.e., L  i ; distributive.

The proof of Theorem 3.1 is complete.
5. Some Mal’cev conditions. Roughly saying, a Mal’cev condition is a condition 

on classes of algebras (ordered algebras, resp.) of the form “there are certain terms 
which satisfy certain prescribed identities (order-identities, resp.).” (For a precise 
definition and classification of Mal’cev conditions cf., e.g., Jónsson [13].) For example,
(iii) of Theorem 3.1, Jónsson’s condition in Corollary 3.2, and (v) in the previous 
section are Mal’cev conditions. These conditions are named after A. I. Mal’cev, who 
has proved in [14] that a variety 41 of universal algebras is congruence permutable if 
and only if there exists a ternary term t, corresponding to the type of 41, such that 
the identities t(x, z, z )=x  and t(x, x, z)=z  are satisfied in ÖU. An analogous result 
is true for SP closed classes of ordered algebras with the surprising consequence that 
these classes allow only trivial orderings whenever they are order-congruence permu- 
table. (Therefore the permutability of order-congruences seems to have not much 
importance. However, to claim its unimportance we need the following generaliza
tion of Mal’cev’s result.)

P roposition 5.1. For any S and P closed class 4l o f ordered algebras the follow
ing three conditions are equivalent:

(i) °ll is order-congruence per mutable, i.e., i f  Ф and F are order-congruences of 
any member of 41 then Фо'Р=Ч'оФ;

(ii) 41 is congruence permutable (i.e., congruences in the usual sense o f its members 
commute) and its members have trivial (i.e., equality) orderings;

(iii) There exists a ternary term t (corresponding to the type of 41) such that the 
(order-) identities t(x, z, z)=x, t(x, x, z)=z hold in 41.

P roof, (i) implies (iii). Suppose (i) and consider 0 xy, 0j,2,the order-congruen
ces of the free algebra F^(x, y, z), generated by (x, y) and (y, z), respectively. Now 
( x , z )£0xyo 0 yz implies (x, z )£0yzo 0 xy, whence (x, t )£0yx and (/, z)£0xy 
for some t= t(x ,y ,z )£F4l(x,y,z).  Defining a homomorphism (p: Fm(x, y, z) — 
-+F<u(x,z') by xi-i-x, y>-*z, ZH—z, we have 0 yzQ Ker cp. Thus x=xq> = t(x, y, z)<p = 
=t(x(p, yep, zq>) = t(x, z, z), while the satisfaction of the other identity follows simi
larly.

(iii) implies (ii). It suffices to show that the members of alt do not allow nontri
vial orderings, because then congruences and order-congruences are the same and 
Mal’cev’s above mentioned theorem applies. (No matter that °ll is not necessarily a 
variety, consider the variety generated (in the usual sense) by it.) Assume that 
а,Ь^А^41, a ^b  and аШЬ. Then b — t(a, a, b)^t(a,  b, b)=a is a contradiction.
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Finally, (ii) trivially implies (i).
Now we intend to present an algorithm which associates a strong (i.e., containing 

a finite number of prescibed formulae) Mal’cev type condition M(p(m) ̂ Lq(l,y) with 
an arbitrary lattice identity p S q  and integers ш ,п й 2 such that the following result 
can be stated. (Note that M{p(m)^ q M) is not a Mal’cev condition in the sense of 
Jdnsson [13].)

T heorem 5.2. For any class °U o f ordered algebras closed under S and P and for 
any lattice identity p= q the following three conditions are equivalent:

(i) The lattice identity p= q holds in the lattice o f order-congruences of any 
member of °U',

(ii) For any integer m ^2 there exists an integer я is2 such that the Mal’cev 
type condition M(p(m)^ q (n)) is satisfied in °U\

(iii) p = q holds in the order-congruence lattices o f finitely generated members of °U.
Before defining the Mal’cev type conditions involved in Theorem 5.2 some re

marks will be made. This theorem can be considered as a generalization of Wille’s 
one [18]. (Really, if °U happens to consist of trivially ordered algebras then any uni
versal Horn sentence of M(p(m)^ q M) is equivalent to an identity and M(p(m)g  
^ # (n)) turns into a strong Mal’cev condition, which only slightly differs from Wille’s 
one.) Even their proofs are similar, the only essential difference is the use of Propo
sition 2.2 instead of the well-known description of join of congruences. (For the 
proof of Wille’s theorem see, beside [18], Pixley [17], but the proof cited in [11] is 
also recommended since its form is near to our approach.) Hence the proof of Theo
rem 5.2 would not be surprising for those who are acquainted with that of Wille’s 
theorem and Theorem 3.1. Thus the proof will be omitted because of its length.

To make our Mal’cev type conditions visible we shall use a pictorial approach. 
Finally note that if p ^ q  is the distributive law then (ii) of Theorem 5.2 is much less 
handlable than condition (iii) of Theorem 3.1.

The definition of M(pim)^ q M) starts with the recursive definition of Gm(p), 
the graph of the lattice term p of order m. The graph Gm(p) has coloured edges (the 
colours are the sign S  and the variables of p) and two of its vertices, the so-called 
left and right endpoints, have special role. In the figures the left endpoint will be 
placed on the left-hand side, and dually.

If p is a variable then Gm(p) has only a single edge coloured by p, which connects 
the two endpoints.

To obtain Gm(p1Api) take disjoint copies of Gm(Pi) and Gm(p2) and glue their 
left (right, resp.) endpoints together (Figure 1).

To define Gm(p1Vp2) consider 2m disjoint graphs I f ,  H2, ..., Hm, H 1, H - , ..., 
..., H m where and H l are copies of Gm(pfi for i = j  (3) and j£{  1,2}, while for
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/ =  0 (3) let Hi and Я ' be copies of the graph consisting of a single oriented edge 
coloured by ё :

o--------*o
Now glue together:

the right endpoint of Ht and the left one of Я;+1 for / —1, — 1,
the right endpoint of H l and the left one of H ,+1 for i=  1, n — 1,
the left endpoint of Я, and the right endpoint of H m, 
the left endpoint of H 1 and the right endpoint of Hm.

The obtained graph is GmG?iVp2)> its left (right, resp.) endpoint is the left endpoint 
of H x (Я 1, resp.). (Note that, exceptionally, the left endpoint of H ‘ is placed on the 
right-hand side on Figure 2, and conversely.)

The graph Gn(q) is defined in the same way. Let X~{x0, x r, xk} and T= 
— {i0, fj, ..., ts} be the vertex set of Gm(p) and G„(q), respectively, such that x n and t0 
are the left endpoints while xx and tx are the right ones. For each variable a occurring 
in p ^ q  let 0 X be the smallest equivalence relation of the set {0, 1, ..., k} under 
which i and j  collapse whenever x t and Xj are connected with an а-coloured edge in 
Gm(p). Now G(p(m)Sq(n)) is obtained from G„(q) via replacing the colour a, for 
all variables a of pSq,  by 0 X on each а-coloured edge of Gn(q).

For an equivalence 0  of {0, 1, ..., к} and /€{0,1,..., k) let z'0=min {j\j©i}. 
With a 0-coloured edge of G ( p ^ S q M) connecting the vertices t„ and t„ we 
associate the universally quantified Horn sentence “if x ^ X j  for all edges
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xt O— OXj of Gm(p) then tu(xoe, xw , ..., xke) — tv(xoe, xie , , хкв)" while with 
an edge iuo—-—-otv of G(p(m>̂ q <n)) the universal Horn sentence “if xtSXj  for 
all edges xt о ~ -o xs of Gm{p) then tu(x0, x k, ..., xk) ^ t v(x0, xu ..., xt)” will 
be associated.

Finally, M(p(m)^ q M) is defined to be the following condition:
“There exist (k + l)-ary terms /0(х„, хг, ..., xk), ti(x0, xl t ..., xk), ..., 

ts(x0, xlt ..., xk) such that the two endpoint Horn sentences “xt^Xj  for all 
edges x t o—=-— -o Xj of Gm(p) imply t,(xe, x lt x ^ = x ” (1=0, 1) and the Horn 
sentences associated with the edges of G(pim)^ q in)) are satisfied”.
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ENUMERATION OF CONNECTED SPANNING 
SUBGRAPHS OF A PLANAR GRAPH

С. I. LIU and Y. CHOW (Milwaukee)

1. Introduction

One of the important solved problems in graph theory is the enumeration of 
distinct connected spanning trees contained in a given connected graph; historically 
it was first solved by Kirchhoff. Since a tree graph contains no cycle by definition, 
the next question of importance is naturally the problem of enumeration, for a given 
connected graph, of connected spanning subgraphs each of which contains only a 
single cycle (besides the trees attached to the particular cycle). In general, the pro
blems of interest are the enumeration of the connected spanning subgraphs having a 
preassigned cyclomatic number, i.e. each containing a fixed number of cycles (besides 
the trees attached), for a given graph.

The enumeration of spanning trees for a labelled graph is usually computed by 
means of the adjacecy matrix of the given graph. On the other hand, in contrast to 
the adjacency matrix method (or essentially the “incidence matrix” method), we 
approached the problem some years ago by a dual notion and derived a computational 
expression using the concept of cycles in defining the required matrix entries [1]. 
The duality is, of course, referred to that between the vertices and the cycles', the 
matrix entries are indexed by the vertices of the given graph in the adjacency matrix 
method, while they are indexed by the assigned cycles in the latter approach. It was 
already apparent to us, at that time, that the computational effectiveness of these two 
approaches depends critically on the nature of the given graph. Some examples were 
given in that paper [1] to point out that the adjacency matrix method is clearly not as 
effective as the “cycle matrix” method if the given graph involves many vertices but 
very few cycles (and vice versa). However, the formal expressions derived by either 
approach are of equal simplicity and elegance. In the present investigation, we rely 
on the concept of cycles. However, a direct application of cycle matrices [1] does not 
appear to be very effective. As it turns out, the problems can be handled efficiently 
by introducing the so-called cycle-adjacency matrix for a given connected graph after 
labelling the cycles considered. In carrying out the dual notion to the usual adja
cency-matrix, it is necessary to impose the requirement that each edge of the graph 
can belong at most to two independent cycles.

Using this matrix, together with some further auxiliary notions, we derive the 
explicit expressions for the enumeration of the connected subgraphs (of a planar 
graph) each containing one and two cycles. These explicit expressions suggest immedia
tely the general expression for n cycles. Though it is natural to try to prove it by a 
mathematical induction on n, yet the involvement of determinants makes it compu
tationally very complicated. We resolve this by introducing the i-th “annihilation 
operator” which deletes the г'-th column and the z'-th row in the cycle-adjacency 
matrix. Together with a formal procedure, the operator method provides a straight-
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forward proof of the general expression for any given cycles. As a by-product, this 
method provides very neat expressions for sums of various enumerations; in parti
cular, the case of all spanning subgraphs has the form of an exponentiation of the 
annihilation operator acting on the cycle-adjacency matrix.

2. The cycle-adjacency matrix
Let G be a finite connected planar graph. Denote by S a set of independent

cycles in G over the field Z2. Let S  = {Cji=1....„ where Q  are cycles in S. Call n
the degree of S  (write n=deg 5). Let N  be the cyclomatic number of G, N=  
= e —v+l, where e and v are, respectively, total numbers of edges and vertices in G. 
For n=deg S ^ N ,  the cycle-adjacency matrix of G relative to S, denote by Es 
(or simply E when there is no confusion), is defined by

( 1)

En Ei, ■■ Eln
En £22 ■ ■ E2 „

Ел En, Kn
where E{j= —(total number of edges common to Ct and Cj), if zVy. E;i is defined 
as the total number of edges belonging to C;. We emphasize that, in defining (1), 
each edge of G can belong at most to two independent cycles of S. As an example, 
consider the graph o f Figure 1(a). The cycles considered are indicated by dotted lines. 
They are ordered, as indicated in the figure. If we consider only two of the cycles in 
this example, for instance, we choose S '=  {Q, C2}, then the cycle-adjancency matrix 
is just

(2)

where C; ={a, b, e, g} and C2 = {c, d, e, g} as indicated by dotted circuits in Fig. l(b.)

Fig. 1. Examples o f cycle-adjacency matrix

If, instead, we consider a set o f three independent cycles and choose 
=  {Cl5 C3, C4}, then the cycle-adjacency matrix is (see Fig. 1(c))

(3)
' 4 -1 - 1'

ES" = - 1 3 - 1
- 1 -1 3,

S" =

where C3= {d ,e ,f}  and C4~ {c ,/,g } .
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Example. A s another example, let us consider Fig. 2 in which the cycles 1, 2 
and 3 form an independent set yet the cycles 2 and 3 are not faces (in graph-theoreti
cal terms). The corresponding cycle-adjacency matrix is

(4) E  =
2

- 1
- 1

2
- 1

0
- 1 0 2

Fig. 2. Example o f cycle-adjacency matrix

For a set S  of independent cycles, it is useful to introduce the following equi
valence relation: two cycles C; and Cj are said to be in the same eqivalent class in S 
iff there exists a set of cycles in 5 (with labels kx, kr say) such that the product 
Eik1Ek1kr  -Ekrjr*0. Therefore, if there are two equivalent classes in S, then the cycle- 
adjacency matrix has the form

with S = S 'U S "  and S 'D S " = 0  where S '  and S"  are subcollections in S.
With G, S, Ci, n and Es defined as in the beginning of this section, we have the 

following useful fact.
Lemma I. For any given set S of indepedent cycles, det Es  is equal to all the pos

sible ways o f deleting n ( = d e g  S) distinct edges, each of which belongs to a diffe
rent cycle in S, such that the remaining subgraph is still connected.

Proof. First, if all the cycles in S are in different equivalent classes then the 
lemma is trivial. For two cycles not in the same equivalent class, (5) yields

(6) det Es = det E(< ■ det E£-.

Hence it is enough to consider the case where all cycles are in the same equivalent 
class.

It is convenient to construct a new symmetric matrix E* for a given S (deg S= n
is assumed) by 
(7) E *  =  E tJ for i j = = n

(8) E t n +i = ~ 2 E t j ,  i =  1 , . . .

and

(9)

j= i

E*+ i ,n+i =  - 2  E*+1,J.
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Then this matrix E* has exactly the form of a Kirchhoff matrix [2], i.e., it is symmetric 
and the conditions

2  E*j = 0, i =  1, n +  1
j —г

are satisfied. Hence, from the fact that detE is equal to the cofactor of E*+1>n+1 
in E #, we see that detE is the number of ways to delete n distinct edges, each of 
which belongs to a different cycle in S, such that the remaining subgraph is connected.

Theorem I. Let G be a connected planar graph and S  be a set of independent 
cycles in G. I f  the degree o f S  is equal to the cyclomatic number N, then the total num
ber of spanning trees cr0 o f G is given by

(10) <r0 = detE s .

Proof. It follows from Lemma I that the deletion of n(=degS) distinct 
edges, each from a different cycle of S, yields a spanning tree of G. This establishes 
the theorem.

We note that in certain cases it is more convenient to use (10) than the usual 
adjacency-matrix method. As an example, consider the r-sided polygon. (10) yields 
the trivial result (deg S=  1 here):

(11) er0 =  det Es =  det {a single entry, r} = r

while the adjacency matrix method is obviously more involved in this case. In this 
particular example, there is only one choice for S, i.e. the single cycle along the poly
gon edges.

3. Enumeration of spanning subgraphs containing one and two cycles

To simplify notation, from now on we fix a set S of independent cycles and write 
E in place of Es . We denote by E(i) the matrix obtained from E by deleting the ith 
row and ith column. Similarly, E (/',_/) is the matrix with ith and y'th rows as we lias /'th 
and j th columns deleted from E, etc. We next introduce the following conventions:

(12) E (l, ..., n) = 1, n =  deg S'
and
(13) E( i j , i m) = 0, if some ij = ik with j  k.

It is important to emphasize that in E(i) (and similarly for E (i,j), etc.) the dele
tion implemented in the matrix does not actually correspond to the graphic deletion 
of the edges associated with the itb cycle. Its precise meaning is rather that the Ith 
cycle does not enter our consideration.

Similar to the definition of a0 (i.e., the total number of spanning trees in G), 
we denote by the number of ways to delete (n —j)  edges, each of which belongs to 
a different cycle in S  (deg S = rí), such that the resulting subgraph remains connected. 
The cyclomatic number of this subgraph is just j  in the special case when n=deg S=  
=N, where N  is the cyclomatic number of the graph G. From now on, we shall res
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trict ourselves to the cases where n=N, the cyclomatic number o f G, unless otherwise 
stated.

T heorem II.

(14) <*1=2 detE(i)+4- 2  Eu detE(i, j).
i =  1 £  it j  =  l

P roof. It follows from Lemma I that detE(/) is equal to the number of ways to 
delete (n — 1) edges, each of which belongs to a different cycle in S —Ct, such that the 
resulting subgraph remains connected. In the first sum of (14), for any partial sum 
det E(/)+det E(j), the deletion of (и — 1) edges common to cycles Ct and Cj is effec
tively carried out twice. The number of repetitions amounts to —EtJ det E(i,j). 
Hence

det E(i) +  det E (j)+ Etj det E (i, j)

is exactly the number of distinct deletions of (и — 1) edges either entirely from S — Ct 
or entirely from S —Cj such that the resulting graph remains connected, without the 
repetitions of those deletions that involve the removal of any edge in Ct П С,-. Since 
the deletion of (n — 1) edges, each from a different cycle, yields a spanning subgraph 
containing only a single cycle (with trees atteched), this finishes the proof.

By an argument similar to Theorem II, we find

(15) <j2 = 2  det E(i, j)+  2  E ijd c tE (i,j,k )+ ~  2  ЕиЕк1 detE(i,y, к, Г).
i , j  i , j , k(1-=Л (i-=j) (fc-=

cr2 is the number of ways to delete (и—2) edges, each belonging to a different cycle of 
S such that the resulting spanning subgraph has cyclomatic number 2.

However, the result of cr0, <r1 and <x2, given by (10), (14) and (15), suggests a uni
fied elegant approach by adapting an operator method and a “formal” procedure, to 
be discussed in Section 4.

4. The general enumeration problem and a formal procedure

Following the discussion of the last section, it is now possible to consider the 
general enumeration problem of total number of (connected) spanning subgraphs. 
However, it is much more convenient to use a “formal” procedure. For every C f  S 
we introduce the so-called “annihilation operator” af:

(16) a;E =  E(f), (а,ау)Е =  E (i,j), etc.

Note that а(аг=0 and aia.j=a.Ja.i . Hence E(i,j)= E(J,i), etc.
To establish the formal procedure to be used in the proofs of theorems to follow, 

we introduce here a vector-space structure.
This vector-space V consists of all formal linear combinations with real coeffi

cients; of the form a1*A1+ ...+ am*Am where At are (symmetric) matrices whose 
entries are indexed by some subsets of n={l, ...,«}, а,- are real numbers. These 
formal sums form a real vector space under the following rules of addition and scalar
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multiplication:
(17) b(a*A) = (ba)*A = (ab)*A
(18) (a +  b)*A =  a*A  + b*A
(19) c (a*A + b*B ) =  (ca)*A + (cb)*B.

Since the “formal” sum does not allow the matrices to be added in the ordinary 
sense, we emphasize the following processes are not allowed:

a * (bA) =  (ab)* A (no-go!)
a * (A + B) — a * A + a *B (no-go!)

Hereafter we shall use the notation:
(20) E* =  1*E.
The annihilation operators are now defined as follows: for any formal sum 2  ak*^j 
and /en, define a i2  aj * ^ j ^  2  ak * 4 k(i) where Ak(i) is obtained from Ak by 
deleting the z'-th row and column if they occur in Ak and is zero otherwise.
(21) я;Е* =  E(z)*

(22) a,.E(0* =  E (iJ)*
(23) (а(...а^)Е* =  E(i, ...,))*
(24) (aa,.+ ba,-)E* = aE(i)*+ bE(j)*

(25) a( [aE (j )* +  ЬЕ (fc)*] = e E ( iJ )* + 6E(i, k)*.
Further successive operations by operators a; can be carried out similarly.

The final step in our formal procedure is to define the functional det on V:

(26) det: F -R
by

A*j = 2  ciidetAi,

where the det on the right-hand side of (27) is just the usual determinant of a square 
matrix. Denote det T =  T  and call T the generating formal matrix of T. As an example 
of (27), we have (assume zVy and k^ r ):

(28) det{a1 +  e2E(0* + fl,E O T  +  e4E(fc, m)* + a5E(r, s)*} =

= űj +  űadet E(z') +  a3 det E (j ) + ű4 det E(fc, m) + a5 detE(r, s).

Note that E(z') and E(y') have the same dimension, but we may not add them in the 
sense of ordinary matrix addition.

Define the following operator:

(29)
" 1

a =  2 ” “ z + ^ -
i = l  2

2  Eij*i*j-i,J=1
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We now complete the “formal” procedure: to each a} there corresponds a formal
matrix Gj defined inductively by
(30) u0 =  E \

(31) a, = 2  Е 0 Г + 4  2  E ^ i U j f  =  aE*
i ** i,  j

(32) <т2 =  ^ о с2Е*,е1с.

The formal matrices defined here are the “generating” formal matrices of <rr
T heorem III.

(33) —pO^E* m\

is a "generating” formal matrix for om, i.e. det ат—от.
Proof. We recall that om is the number of ways of deleting (n —m ) edges each 

belonging to a different cycle in S such that the resulting subgraph remains connected. 
The proof is carried out by an induction on m. The theorem is trivial for m = 0 
and 1. For m > \, let the theorem be true for Consider, in particular,
when E is E(i) or E(t,j) . Then, the term ^ a kE(i)* corresponds to the ways of delet
ing {n—h — 1) edges each from a different cycle in S — Ct such that the resulting graph 
remains connected. For i?±j, the sum

(34) -i-a*{E(0*+EC0*}

is a generating-matrix term provided the repetition of EtJ in the enumeration is remov
ed, i.e.,

(35) {E (0*+E (j )*}+- i -  Ец<хк E (i, j)*,

corresponds, in the sense of the “generating” formal matrix, the ways of deleting 
(n—к — 1) edges either entirely from S —Ct or entirely from S —Cj such that the re
maining graph remains connected, without the repetitions of those deletions that 
involve the removal of any edge in С; П C j. We note that the last term in (35) is in 
fact negative, due to the sign of Etj as defined in the beginning. Taking into account 
all cycles in S, (35) yields the matrix

(36) Т Г а" Д Е (0* + Х Г а '' ZEiMhj)*
(iij)

which is just — afe+1E*. Finally, we must remove the (k +  l)-fold repetitions appear-
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ing in — a*+1E*, i.e.,К!

(37) crk +1 —
1

(k + l)!
i‘+1E*

which yields the “generating formal matrix” corresponding to the ways of deleting 
(n—k — 1) edges each from a different cycle in 5 such that the resulting graph remains 
connected. This completes the induction.

By definition, it is clear

(38) <xmE* =  0 for m > n =  deg S'.
Hence

(39) 2 4  = e“E*
i = о

which yields immediately the following result.
T heorem IV. For a planar graph with n = N  (i.e., deg S=e — u + l ) >  e"E* is the 

“generating” formal matrix that yields the total number of all possible spanning 
subgraphs (with cyclomatic numbers 0, 1, 2, ..., etc.) o f  the given graph.

To get some feeling of Theorem IV, it is instructive to check the terms o„ and 
on- 1 by an expansion of e*E*. First, by (26)

n ! E*

where {/}= {/x, ..., z'„} are all possible permutations of {1, But E(z1; ..., /„}
is symmetric w.r.t. its arguments, such permutation yields an л! fold repetition 
hence, by (12),

(41) <r„ = ^ { n ! E ( l ,  ..., n)*} = E (l, ..., n)* = 1*.

(41) yields immediately
(42) on = det«r„ =  1.

Next, we compute оп- г from exE*:

(43)<r„_1 -  a" ‘E* { ( 2 a‘) +  2 £ Ец ( í  “*) a‘a>)E *( n - l )  

From (l = deletion of i)

(44) E* = 2  "if airE* = (n — 1)! 2  E ( l , ..., t, ..., n)*
{i} r = l  i =  1
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and

(45) 

we find

(46)

Thus

(47)

{(2 Ч )  =  (£ « * )  E(i,j)* =  (n—2)!E(1,..., n)* — (n—2)W

V i = Í E ( l ...... 21=1 2  i,7=i
ovy>

*„-1 =  2 E , i+ -  2  EtJ= -  2  EtJ.i = 1 i,j= 1 *,j=l
(МЯ (i<i)

Finally, let us consider the “generating” formal matrix for am which yields the 
following result.

°m = 2  Кr=0

T heorem V.

(48) 
where

(49) К =  Л  2  . 2  ••• . 2 .  2 .  EilhEi3il...E hr_liirdetE(i1, . . . , im+r),
• £ , < / „  í 2 r - l " e ‘2 r i 2 r + l * :  " ' = ,m  + r

/or r > 0, and k0 is given by Я0=  det Efo, /m), where all ik ( k = 1, ...
...,m  + r) are distinct.

Proof. By (29) and Theorem IV,

(50) = 1ÍT “" E'  =

=ж1 тети £''“'4 (?“Г'Е*-
The expansions of a/)r and (7« i)m” r may be written as:Vi<j У i

( 2  EijCttOtjY = 2  -  2  Eh ii...
I ‘ir-l^hr

(51)
and
(52)

Eiir-lltr^il ” • aÍ2r

( 2  a;lm-r =  (m —г)! 2 , “.v+i - ai„+,

where the property а;аг=0 is used in (52). Hence, one finds

7 1 . 2  • 2 . 2 E l l  *2 • ' • E i ir  _  !  i2r a i'i * * * a im + r  ̂rl i j C f , l2r — 1 ^ ‘i r  ‘ar + X ^ ' " ' l , m + r

т г , 3 2 . 2 ^ 1  Í2 ' ' * E Í 2 r - l Í 2 r ^ ( h >  */Л+г)rl i ^ l , ‘2r+ lm + r

which establishes the theorem.
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5. Discussion

For a 2-connected planar graph, one can choose the cycles to be the faces. From 
the viewpoint of graphic duality, a spanning subgraph with m independent cycles 
corresponds to an (m+ l)-forest in the dual graph. It is thus obvious that the results 
in Theorems I to V are applicable to the counting of forests in a planar graph. 
A further generalization of the formal procedure formulated here, via the annihila
tion operators, has also been carried out. It led to the solution of the enumeration of 
forests in any non-planar graph [3].

We would like to thank the referee for his valuable suggestions which resulted 
in an improvement of the manuscript.
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MOST DARBOUX BAIRE 1 FUNCTIONS MAP 
BIG SETS ONTO SMALL SETS

J. CEDER (Santa Barbara) and G. PETRUSKA (Budapest)

The space of all bounded Darboux Baire 1 functions on a given real interval is a 
complete metric space with the sup norm (denoted by Ь<3&х). Analogous to the case 
of the real-valued continuous functions on [0, 1] having the subclass of nowhere 
differentiable functions as a residual subset, we may also ask what subclasses of “unu
sual, irregular” functions in b3H%x form residual sets. In other words what “unusual, 
irregular” properties of b 2  2&x functions are typical in the sense of category. In [4] 
Ceder and Pearson confronted this question, obtaining several residual classes de
fined in terms of the behaviour of derived numbers and posed many unsolved pro
blems.

In this paper we establish that a typical b3>33x function maps the set of its appro
ximate continuity points (resp. continuity points) onto a nowhere dense, null set. 
Moreover, this result can not be improved by replacing nowhere dense by countable 
for in this case a 1st category F„, dense set is obtained.

In particular, since the class of all constant functions is a nowhere dense subset 
of b3>3Sx, a typical Ь23А1 function maps its set of approximate continuity points 
which is Borel, residual and has full measure, onto a nowhere dense set of zero mea
sure yet the range of the function is a nondegenerate interval. In other words, a typi
cal b3>38x function maps “big” sets into “small” sets, both in the sense of category 
and measure.

Examples of such typical b2) SAX functions can be generated using the theorem of 
Agronsky [1] (see also Theorem 2.4 in [2] p. 13) which asserts that: if A is a bilaterally 
c-dense in itself F„ subset of /, then there exists a b@H%x function /  such that /(x )^ 0  
if and only if xdA. If such an A is chosen to have zero measure too, then we obtain 
one of our typical b3)38x functions.

Moreover, our results have analogues in the space b.d of bounded approximately 
continuous functions (Theorems 9, 10, 11 and Corollary 3).

Notation and terminology

In the sequel I  will be any nondegenerate real interval and all the functions in 
b2>SSx or bsi are assumed to have domain I. A function will always be identified with 
its graph. By C + (g, x), where x is a right limit point of dom g, we mean the right 
cluster set of g at x. Similarly with C~(g, x). A function/belongs to £%X(P) where P 
is any set if f\P, the restriction of /  to P, is Baire 1 relative to P. A function /  with 
domain P belongs to Q>{P) if /(x)£C  + (/, x) [resp. C ~(f, x)] whenever x is a right 
[resp. left] limit point of P. If P is an interval then 2 Я Х(Р) coincides with the 0)2дх
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functions defined on P. This equivalence does not hold any longer, if is not 
supposed, therefore it is emphasized that the symbol Q) without denoting a set behind 
it always means the usual Darboux, that is the intermediate-value property (on an 
interval). This is important in Theorem 3.

By \A\ we mean the Lebesgue measure of A. By a portion of a perfect set P we 
mean a set of the form (a, b)C\P where a is a right limit point of P and b is a left 
limit point of P.

By Cf  or C ( f ) we mean the set of continuity points of / .  When Cf  is a
residual Gs. By Af  or A ( /)  we mean the set of approximate continuity points of /.  
When , A f  is residual, Borel and has full measure. For other information on 
Darboux Baire 1 and approximate continuity the reader is referred to Bruckner [2].

The proofs of the above mentioned results require some preliminary lemmas and 
theorems which we now present.

Lemma 1. Let P be a perfect set and fcä S fP ). Then there exist sequences 
Ш Г =1 of functions and o f sets such that

(1) for each k, {£?},“ i is a family of disjoint sets each of which is an F„ and G3 
subset o f P and whose union is P;

(2) for each k, {5f+1}“ x is a refinement o f {Bf}f=1;
(3) for each к and i, f f jM fP )  and f k is constant on B\\

(4) for each к, ЦЛ-/Ц <  and ||/*+1-/* ||

Proof. See [5] p. 294, § 27. VIII. 3.
The next lemma is a generalization of Lemma 2 of [3].
Lemma 2. Let P be a perfect set and C be a first category (relative to P) subset 

o f  some portion G of P. Let c be a real number and X be any positive extended real 
number. Then there exist h£3>3)fG) and a set H QG  such that

(1) H d P —C is a closed (relative to G) set o f measure 0 and is o f lsi category 
(relative to P);

(2) {x: Ь(х)9±с}Я^Н, and \h — c|sA;
(3) I f  N  is any neighbourhood o f either a or b then

rng h|[iVri(a, Ь)ПР] =  (c —X, c+X);

(4) h\{x: h(x)?±c} is bilaterally c-dense in itself.
Proof. First choose {/„}”=1 and to be sequences of disjoint portions of

G, which converge monotonically to a and b, respectively and such that for each 
m and n, Inf]Jm — 0 .  For each n choose Pn and Qn to be non-void perfect, first
category, null subsets of In — C and J„ -  C, respectively. Put H=  (J (Pn U Qn).

n= 1
Choose P'„ and Q'„ to be bilaterally c-dense-in-themselves F„ subsets of Pn and Q„, 

respectively. Let {/„}“=1 be a sequence such that X„\X. According to [1] there exist 
functions f n and g„ on In and Jn, respectively such that j\ fQ i3 ifIn) and 

and rng f n=[c, c+X„] or [c-Xn,c] according to whether n is even or
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odd and such that rng g„=[c, c+Án] or [c — Xn, c] according to whether n is even 
or odd. Moreover, f n(x)^c  if and only if xdP'n and g„(x)^c if and only if xd Q'n, 
If follows from [1] also that f„\P'n and g„\Q'„ are bilaterally c-dence-in-themselves 
sets. Finally define

h{x) =
/.(*)
gn(x)

if Xdln 
if XdJn

c otherwise.

It is easily checked that h is the desired function.
In Bruckner, Ceder and Keston [3] the following result was proven.
T heorem 1. Let fd& i on an interval I  and let E be a set o f first category. Then 

there exists gd£rP%i suchthat {x: /(х)^^(х)} is a first category, null subset o f I —E.
The next result relativizes this theorem to a perfect set.
T heorem 2. Let P be a perfect set and let fdäSfP) and E be a first category 

(relative to P) subset of P. Then there exists gd@@i(P) such that {x:f(x)^g(x)}  
is a first category (relative to P ), null subset o f P — E.

Proof. The proof is basically the same as that of Theorem 1, except for the 
proof that gd3>(P). Accordingly, assertions whose proofs parallel those of Theorem 
1 will not be proven whereas assertions whose proofs are different will be justified. 
Let fk (A: —1,2, ...) and B[ (i, k=  1, 2, ...) be specified as in Lemma 1.

For each к put Dk = P — U int B\ (where interior is taken relative to P).
(=i

Then {Dfc}r=i is an ascending chain of closed nowhere dense subsets of P whose 
union, D, is a first category Fa subset of P. Let Do= 0 .

The proof involves an induction on a double sequence of portions of P, 
{G* }um=i such that for a fixed к and m ,fk is constant on Gkm. In order to describe the 
induction more clearly let us assume that we have such an open portion Gkm and apply

3
Lemma 2 where C=EUD, Gkm = G=PC\(a, b), {c}=fk(Gkm), ^ when k>  1
and +°° when к —1. Let hkm and H k be functions and sets stipulated by Lemma 2.Í oo

For each i put At— (J U Hm- Then each A, is a first category null set disjoint
k= lm = 1

from EUD  and AiQ Ai+1 for each i.
To begin the induction let {Ĝ }“=1 be an enumeration of the components (i.e. 

open relative intervals maximal with respect to inclusion) of the sets int В} ( /=  1, 2, ...). 
(For notational convenience we can assume that there are infinitely many components 
here and also in later stages of the induction.)

Define gt on P as follows
К,(х) if xdGl

gi(x) = /(X) if x i  U Glm = 1

Let P' denote P—{inf P, sup P). Then it is easily checked that gi£3>&\(P) 
and Ai {JD1 is closed in P '.
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Now assume we have constructed for each i such that 1 a sequence
{Gj„}“ =1 of disjoint portions of P together with sequences {И1т)^ =х and {Я^}~=1 and 
a function gi such that

(О g t ta a ^ p y ,
(2) AiUDi is closed in P '\

(3)

(4) hJm\H^Qg, whenever j ^ i .
Then P —(DkÖAk^1) will be open in P \  and letting {G* }~=1 be an enumeration 

of all components of the sets of form S  П int B\ (i =  1, 2, ...) where S is a component 
of P —(Dk\JAk_^) we define

g*(x) =
/(*)
hkm(x)
gk-iix)

if x£Dk 
if x€G* 
if x£Ak-i

Then conditions (1), (2) (3) and (4) follow as in the proof of Theorem 1 with the 
exception of gk(i238x{P).

To show that gk^e>äx{P) it will suffice to show that whenever x is a right limit 
point of P then (x , gk(x)) is a right limit point of gk. We have three cases to consider.

Case 1. For some m, x£G km. Since hkmQgk and hkm£S>(Gkm) it follows that 
gk(x)eC+(gk,x).

Case 2. x£D k and gk(x)=f(x). Let i be the integer for which x£Di+1 — Dx. 
Then i< k  and x(LG). Let {j}=/j(Gj). Moreover x$ (J G^+1. Let <5>0 and

m = 1
choose G‘n+ir)ix, x+ö)r\GiJ9í 0  and let {i„}=/i+i(G‘+1). Then rng h‘n+1 = 

=  ( ín - 2ÍTT, ^ + 2Гм)- Since h‘n+1\H ‘+1Qgk wealsohave г ,  ?п+ 2Цт ) е

£ m g g t |G‘+1. Since ||/i+i- / i || and \ \ f- f\ \  <  ̂ iTT we have and
1 3

\ f ( x ) - i]<  2ГТТ- Consequently |/(x) —i„ |< — гг • К now follows that /(x)€ 
€C+(g*, x).

Case 3. x£A k_k and gk(x)=^_1(x:). Choose m and j  so that x£HJmQGJm 
with j< k . Let {s}=fj(GJm). If hJm(x)?*s, then (4) of Lemma 2 yields hJ„(x) £ 
£C + (gk,x ) and hence gk(x)£C + (gk, x). So we may suppose that hJm(x)=s. Let 
<5>0 and choose n such that GJn+lP\(x, х+0)Г)С1,А 0- Let {?„}=/J+1(G;j+1).
Then and tn+ - ^ \< g m g  hJn+1\HJn+1Q m g g k\GJn+\  Since
{Ai}?L1 is ascending we have gk(x)=gk_1(x)= ... —gj(x)=/iJm(x)=s. It follows that 
gk(x)€C+(gk,x).

This completes the induction. Hence, {gt}r=i is a uniformly Cauchy sequence 
of functions in Q)2&X(P) and therefore converges to some function g. It is easily check
ed, as in the proof of Theorem 1, that g is the desired function.
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C orollary 1. Let P be perfect, f f ^ f P ) ,  m g fQ  [c, d] and E  be countable. 
Then there exists g£_b3H%)x(P) such that {x: g{x)Zf{x)} is a null subset of P — E 
and rn g g  = [c, d\.

Proof. Truncate the function given by Theorem 2 between c and d.
Corollary 2. Let P be perfect, <2=inf P, Z>=sup P, f^SSfP ), E  countable, 

5 >0 and x£ (a, b) П P. Suppose y£P  implies that \f(y)—/(x)|< e. Then there 
exists g^bSi& fP) such that {x: g(x)Zf(x)} is a null subset o f (-РП (a, b)) — E  
and rng g = C~(g, b) = C +(g, a) = [ f(x )-(5  + e), /(x ) +  (<5 + e)].

Proof. Choose monotonic sequences (a„}“=1 and {6„}“=1 in P such that 
an\ a , b n/ b  and the terms are bilateral limit points of P, finally a1=b1. Let

E ' — EÖ {x: x = an or x = bn for some n}.

We have rn g /g [/(x ) —(c>+e),/(x) +  <5+s]. Apply Corollary 1 to E ' and each in
terval [ö„+i , ű„] and [bn,bn+1] to obtain g^bSHäS^Pf] [an+1, a„]) and hn£b2>@1 
(PD[b„, bn+1]) such that {x: g„ (х)^/(х)} and {x: hn(x) Zf(x)} are null sets of P \ E '  
and rng g„=rng hn= [f(x)—e—Ö, /(x)+e+<5] for each n. Define

g =  (Ü  g„) U ( J J  *„)u {(a,/(a)), (b,f(b))}.

Note that g(x)=/(x) for points of E'. It follows that g is the desired function.
T heorem 3. Let f£bS81, h£bS> and | | /— A||<e on an interval I. Then there 

exists g£b<2)l%1 such that ||g—/ | |á 4 e  and g = f a.e.
Proof. It clearly suffices to prove it for an open interval (a, b).
The proof is carried out by transfinite induction. Let ß  denote the first uncoun

table ordinal. For every a<  ß  we are going to define a triplet (ga, Gx, Ex) satisfying
(1) Gx is open, Ea is countable and ExczGx;
(2) g<ze ^ ^ 1(GJ and gx= f  a.e. in Gx;
(3) liga—/II =4e;
(4) for ExczEß, GxczGß and gß\G,=ga’,
(5) if G ^ ia , b) then Gx+1 ̂ Ga\
(6) whenever I  is a component of Gx and x (U \E x then there exist Ух<х<у2,

and z ! < x < z 2, z1(z2€ /  for which £ а (л )> /(* )+ 2e (A: —1, 2) and 
ga(2t)< /(* )- 2e (k —\, 2).

Suppose all these were done. Then the (relative in (a,b)) closed sets Z x — 
= (a, b )\G x form a decreasing transnifite sequence, which has to be constant from a 
countable ordinal a„. By (5) we have Gx=(a, b) for a ^ a 0 and hence by (2) and (3) 
gXo is our desired function.

Let x0€ C (/)  and let the interval (c0,d 0)Эх0 be chosen such that for any x, 
c0^ x ^ d 0 we have |/(x )—/(x 0)| < e. We apply now Corollary 2 on P=[c0,d 0] 
with E = 0  and ő=2s to get the function g. We put (g0, G0, E0) =  (g, (c0, d0), 0  ).

Now (1) is trivial, (2) is stated by Corollary 2. Since mg g0= f/(x 0) —3e, 
/(x 0) +  3e], we have for any y£(c0,d 0) the estimation \ f (y )—g{y)\=^v, thus (3)
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is obvious. Property (6) is again implied by Corollary 2, since C + (g0, c0) = 
= C~(g0, da) — [f(xo) — 3e,/ (x0) + 3a]. Suppose now that we have defined (ga, Ga, Ea) 
for every a<  ß, where fl is a given ordinal and (ga, Ga, Ea) satisfies (1)—(6). 

First we put Hp= U Ga. Hß is open (and if ß=y + 1, then of course Hß = Gy).
a<ß

The function (J ga satisfies all the requirements of our theorem on Hß, therefore
a< ß

we may finish the induction process, if Hß — (a,b), by putting Gy=(a,b), gy— \J ga
for every y = ß. Otherwise the closed set Z ß= (a ,b )\H ß is non-empty.

Case 1. Suppose that xß is an isolated point of Zß. Then Gß = Hß(J{xß} is an 
open set which strictly contains all the former Gx sets (a<  ß) and we define

U g, 
gß(x) =  V ?!

j(x), if x£H ß 

f(x ), if X  —  xß.
Let Eß= (J Ea U {Xß}, then Eß is countable. The only non-trivial assertion to bea</3
proved is Darboux property in xß (even (6) is obvious by xßdEß). Since h£2i we 
can find sequences {и„}“=1, {a„}”=1 in Gß\ E ß suchthat v„ —x from the left, un^ x  
from the right, and lim A(w„)=lim h(vn)= h(xß). Since \ \ f— A||<e, we may, without 
loss of generality, assume that there exist Ax, A.2d(h(xß) —e, h(xß) + e) such that 
/ ( « „ W i ,

Fixing n there exists a component Ia of some Ga where a<  ß such that un £ Ix. 
Since un(J Ea and +=»), we can apply (6) and thus we obtain y„, z„ satis
fying xß< yn,z n<un and

gß(jn) = g*(yn) >/(«„) + 2e > / ( « „ ) - 2e >  ga(z„) = gß(zn).
Hence mg gß\Ixn (xß, un)^ [ f (u n)-2E, f ( u n)+2e], Letting n ^  + °° we obtain 
[Aj —2е,Я1 +  2e]czC + (gß, xß). On the other hand |Aj—f ( x ß)\^\X1-h (x ß)\ + \h(xß) — 
- f ( xß) l<2e, thus we have gß(xß)= f(xß)^C  + (gß, xß). Similarly gß(xß)6C ~(gß, xß), 
and property (2) is verified.

Case 2. If the set Z ßZ 0  contains no isolated points then it is (relative in (a, b)) 
perfect, and now we pick a point xß£ C (f\Z ß), which is a two-sided limit point in Zß. 
Then we can find two-sided limit points cß,dßdZß, such that cß< xß<dß and 
|/(x )- f ( x ß\< e for every x ^ Z ßC\[cß, dß\.

We apply again Corollary 2 on the perfect set P = Z ßO[cß, dß\, and E  denotes 
all those points in P which are end-points of intervals contiguous to P, and <5 = 2г. 
Denoting by g the function of Corollary 2 we define

Gß = Hß U (cß, dß), gß = J jJ  gtIj Ug, Eß = [aU Ц  U E.

Property (1) is obvious for Gß and Eß. It is also clear from the construction, that gß 
is Baire 1 on Gß and g = f  a.e. on Gß. To check the (local) Darboux property we have 
to do it at the points of Z ßClGß only. By Corollary 2, the function g~ gß\ZßC\Gß 
is Darboux on the set Z ß П Gß. Therefore gß is Darboux in the two-sided limit points 
of ZßC]Gß. Suppose, that x ^ Z ßC)Gß is a left hand side limit point of Z ßC\Gß, 
and ZßCl(x, x+ tj)~  0  if tj is small enough. Then we can repeat the argument of
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Case 1 in the right hand side neighbourhood of x to obtain gß(x)= f(x)£C  + (gß, x). 
On the other hand gp(x)= f(x) = g(x)£C~(g, x )cC ~ (g p, x) by Corollary 2, thus 
gß is Darboux at x. To verify (3) it is enough to consider again the points of 
ZßC\Gß. For x£ Z ßr\Gß we have f ( x p) — s-=/(x)</(xp) + £ and

f ( x ß) -  3e S  gß(x) =  g(x) = f ( x ß) + 3e 

and hence \gp (x)—/(x )|s4 s.
Properties (4) and (5) are obvious. Let /  be a component of Gß. If I^ (cp, dp) 

then (6) holds on I  by the induction hypothesis. Let I —(cp, dp) (this is, in fact, a com
ponent of Gp, since cß,d ß$Gß), and x £ l \ E p. If x({Zp, then (6) holds again by 
the induction hypothesis. If x ^ Z pC\I, then we have f ( x p) —e< /(x)< /(x^)+ e 
and by Corollary 2

C+ (g, cp) =  [f{xp) -  3e, f ( x p) + Зе], C (g, cp) =  [f(xp) -  3e, f ( x p) + 3e],

thus we can find points yk, zk (resp. j 2> zi) in IC\ZP arbitrarily close to cp (resp. dp) 
suchthat gp(yk)= g(yk)>Ax)+2s and gfi(zk)=g(zk)<f(x)~2e (k=  1,2).

This completes the induction construction and the proof of our theorem. 
Theorem 3 gives a quick proof of the following surprising result.
T heorem 4. The class o f all b!3381 functions g such that g (Ag) [ resp. g (Cg)]  

is finite is dense in b@H%1.
g

Proof. Let h^b2iŰS1 and e> 0 , choose fd3Sx with rng/finite and | | /—/j||-c— .
Applying Theorem 3 we can obtain gZbSi&i suchthat ||g—A||<e and g —f  a.e. 
It is easy to verify that g (Ag) is finite. Since CgQ A g, g (Cg) is also finite.

Now we can prove our main result.

T heorem 5. The class o f all bS>̂ S1 functions f  such that f(A f ) [resp. f{C f)] 
has measure zero is a residual Gs set in Ы2>38к

Proof. We will carry out the proof for “A / \  The proof for “ C / ’ is the same. 
Let Ж  consist of all /  such that f(A f ) is null. By Theorem 4 Ж is dense so it suffi
ces to show that Ж is a Gs subset of bQ>28x. Let F„ consist of all f^b3HiMl for which 
------  1 °°\f{Af ) \ ^ ~ .  Then |J  F„=bS>3S1 — УР so it will suffice to show that each Fn is closed.

f t  n  =  1
For any s>0 and set A, let Ne(A) denote {x: |x—a|<£ for some a£A). 

For sets A, В let d(A, B) — 'm{ [e: A QNfiB) and 5 g A c(T)}. Observe that if 
II/—g | | < E ,  then d(f(A j), g(Ag))s2e. This can be shown as follows: let x£A f . 
Then there exists a P with x£P  and л(Р)>0 and \f(y) —/ ( x) |< e whenever 
ydP. Then |g (y)-/(x )|< 2£  for all y£P. Pick z£P i)A g. Then |g(z)—/ ( x) |< 2 e. 
Hence, f(A f )Q N 2e(g(Ag)) from which the result follows.

Now let us show F„ is closed. Let \\fk—f\\ —0 where f k£F„.
Suppose \f{A f)\< —. Then there exists an open set G containing f{A[) suchfl

that |G |<—. By compactness we can find £>0 such that Nc( f(A f ))QG. Then
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choosing к  such that || f k - f \ \  < j  we have d(f(A f ), f k(A/lt) ) ^  so that f k(Afk)QG  

and I a  contradiction.

Corollary 3. The class of all b3>281 functions f  such that f{A f) [resp.f(Cf )] 
is nowhere dense and null is a residual subset of b 3 3 k.

Proof. This class contains the residual class of Theorem 5.
It is unknown whether or not the class of all /  such that f{Af) [resp. /(Cy)] is 

null is a Gg set. Hence, we can not improve Corollary 3 to assert that the class is a 
residual Gs. However, if we just consider those /  such that f(A f) is nowhere dense, 
then we do get a residual Gg as the next result shows.

T heorem 6. The class o f all b3SAx functions f  such that f{Af) [resp. f(C f )] is 
nowhere dense is a residual Gg set in bS>3S1.

Proof. By Theorem 4 the class Ж  of all/ such that f{A  f) [resp. f(Cf)] is nowhere 
dense is dense in b 2 > . So it suffices to show Ж is a Gg set. We will carry out the 
proof for “A / ’ since the proof for “C / ’ is the same.

If /([ Ж  then there exists a rational interval J  such that JQ f(A f ). Letting 
{/„}“=1 be an enumeration of all the rational intervals, let £„ = {/: J„ ^ f(A f )}.
Then ЬЗЗ&х — Ж — U En.

n=l
Let us now show that each En is closed. Let f k£E„ and || f k—f\\ ->-0. It suffices 

to show that each open subinterval W of Jn hits f(A f ). Suppose W=(a, b)^=J„ and 
e—(b—a)/3. Choose m such that ||/m—/ | |< e  and put V=(a+e, b — e). Since 
У n f m(A/m) ̂  0  there exists a set Г of positive measure such that f„(T) Q V. Choose 
z67TMy. Then f m(z)£V  and /(z)£ W. Hence, f(A f ) П 0  and Ж  is a Gg.

We can not improve the above results by requiring f{A f)  [or f(C f )] to be coun
table instead of nowhere dense and/or null as the next results show.

Theorem 7. The class o f all f^b33Sk such that f(A f)  [resp. f{Cf)] is countable 
is a dense, first category subset of b 3 3 k.

Proof. Let us prove that the class Ж  of all b 3 3 k functions /  such that f(C f ) 
is countable is a dense, first category set in Ь 3 3 к. By Theorem 4 Ж is dense.

Let {/„}“=! be an enumeration of the rational intervals. Put An= {f: f  is
constant on JnC\Cf ). Let f k£A„ and /* —f  Clearly/is constant on / , n ( n c ; )  

But П c fkr c f  is dense in Cf . Hence, f£A„  and A„ is closed. Moreover, it is
k = 1

CO

easy to see that each A„ is nowhere dense. Hence, (J An is a first category set. If
n—1

f(C f ) is countable, then the residual Gs set Cf  is covered by countably many sets of 
the form / - 1(c) where c£f(C r). Hence, there exists cdf(Cj-) and Jm such that
/"H e) is dense in Jm, that is, f£ A m. Therefore, Ж Q 0  An and Ж is of first category.П= 1
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Let 8  be the class of all f^b2>dS1 such that f{A f) is countable. Since 8Q Ж, 
8  too is 1st category and dense (by Theorem 4).

T heorem 8. The class o f all f^b3>3Sx such that f{Af) [resp. f{C f)\ is finite is a 
dense, first-category F„ subset o f b2)8Sl .

Proof. Let Ж  be the class of all /  such that f(A f)  is finite. Then by Theorem 7 
is dense and first category. For each n define F„={f: card (f(C f ))^n}. Then, 

Fn is easily seen to be closed from the fact that d(f{Cf ), g(Cg))^ 2 s  whenewer
II/—g||<£. Since Q F„, У8 is an Fa set. The same proof works for the 
“Д Л / ” case. n=1

Theorem 9. Let f£b^Sk and £>0. Then there exists g£bsd with |g |< £  
such that h(Ch) is finite where h = f—g. n

Proof. Consider a decomposition [0, 1]= U Лк such that the sets Ak are pair-
k = 1

wise disjoint, each Ak is an ambiguous Fa-Gs set and for the oscillation of /  the 
estimation co(f; Ak)<e holds. Let MkczAk be a countable set everywhere dense in 
Ak and pick mk£ Mk. Now we put (p{x)=f{mk) if x(zAk. Then cp̂ .dS1 and \ f — (p\ <  £. 
According to Theorem 3.2 in [6] (p. 191) there exists g^bsd, |g| ё £ such shat ( / — cp)

U Mk = g u M k. For any x £ \J M k we have f(x )  -  g(x) = f(x) -  [f(x) -  cp (л:)] =
Jfc= 1 k = 1 1

<p(x). Thus the function h = f—g takes only finitely many valus on the everywhereП
dense set |J  Mk. Therefore in a point of continuity it must take one of these values.

k=1
Hence h(Ch) is finite.

The class of all bounded approximately continuous functions, bsd, and the class 
of all bounded derivatives, bA, form closed subspaces of b3>3Sk with bsdQbA. So 
it is natural to ask if the analogues of Theorems 5 and 6 are valid in these spaces. 
The question for bA is open and it seems difficult*. More precisely, for any fd A  
we always have f(A f )= m gfi Indeed, referring to a well known theorem of Denjoy, 
a set {x: is either empty or has positive measure and then f(A y )= rn g /
readily follows. On the other hand, we do not know whether f{A f ) is a null set for 
a typical derivative*. For the case of bsd or bA we can prove that the analogues of 
Theorems 5, 6, 7 and 8 and Corollary 3 when applied to “Cf ” are all valid.

Note that for f^bsd, Af  is the domain interval I.
First we have the analogue of Theorem 4 which is much simpler because bsrf 

and bA are closed under addition whereas b3)S8k is not.
T heorem 10. The class o f all f^bsd(f£bA) such that f(C f) is finite is dense in 

bsd {bA).
Proof. Let f^bsdifiA) and £>0. Applying Theorem 9 there exists g£bsd 

such that ||g ||<£ and h{Ch) is finite where h = f—g. Then | | / —й||<£ and 
h£bjd(bA).

* This problem has recently been settled by the second named author. It is proved, that for 
any bounded derivative / , / ( / f lA /)— f{ i)  for any subinterval / с [ 0 ,1].
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An examination of the proofs of Theorems 5, 6, 7 and 8 as well as Corollary 3 
shows that forf(C f ) they are all valid when “As/” or “bA” is substituted for “b3>(k” 
and no other changes are made. Therefore,

Theorem 11. The analogues of Theorems 5, 6, 7 and 8 and Corollary 3 stated 
for f(C f) are valid both in bsd and bA.

The authors wish to thank M. Laczkovich for providing useful comments during 
the preparation of this paper.
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SOME RECURRENCE RELATIONS AND  
EINSTEIN’S CONNECTION IN 2-DIMENSIONAL 

UNIFIED FIELD THEORY1

К. T. CHUNG (Seoul) and C. H. CHO (Onyang)

I. Introduction

IA. Two dimensional unified field theory (2-g-UFT). In the usual Einstein’s 
2-g-UFT the generalized 2-dimensional Riemannian space X2, referred to a real 
coordinate system xv, is endowed with a real nonsymmetric tensor gXfl which may be 
split into its symmetric part hXll and skew-symmetric part kxfi:

(1.1a) giß ^A/i“Ь^Ад)
where
(1.1b) g =  D e t((g A(t))^ 0 , I) =  D et ((ЙА„))^0 , 1 =  Det ((kXllj) = (k12)2?£0.
We may define a unique tensor AAv by
(1.2) hx =
In 2-g-UFT we use both hAß and hXv as tensors for raising and/or lowering indices 
of all tensors defined in X„ in the usual manner.

The densities defined in (l.l)b  are related by
(1.3a) 9 — I)+I.
so that
(1.3b) g =  1 + fc,
where
(1.3c) 8 =  9 A)> & =  i/i).
In particular, we note from the last condition of (1.1b) that there exists only the 
first class of k Xß in 2-g-UFT.

The differential geometric structure is imposed on X2 by the tensor gXll by means 
of a connection F A/i given by the system of Einstein’s equations

(1-4) — gXa,
where Da is the symbolic vector of the covariant derivative with respect to FAfl and

(1.5) s u * n w .

1 The results presented in this paper were supported by 1980-Research Grant of Asan Foun
dation.

2 Throughout the present paper, all indices take the values 1, 2 and follow the summation 
convention with the exception of indices x, y, z. Greek indices are used for the holonomic com
ponents of a tensor and Roman indices for the nonholonomic components.
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It has been shown that ([5], pp. 52) if the system (1.4) admits a solution ГХ/1, it must 
be of the form
(1-6) =  +  + [/)„ ,

where j / ^ J  are the Christoifel symbols with respect to the tensor hXlI and

(1-7) U \ ,  =

IB. Purpose. The generalized 2-dimensional Riemannian space X2 has some 
particular properties, probably due to the simplicity of dimension. In this paper we 
derive, in the first, several useful recurrence relations in X 2 which do not hold in a 
higher dimensional space. The purpose of the present paper is to obtain the solution 
of Einstein’s equations in a simple tensorial form in 2-g-UFT, using newly obtained 
recurrence relations. This solution is the simplest ever obtained.

II. Recurrence relations in X2.

In this section we derive several powerful recurrence relations, establishing 
a nonholonomic frame in X2.

The eigenvalues M  and the corresponding eigenvectors av in X2, defined by

(2.1) (MhXfl+ kX)l)afl = 0, (M : a scalar)

are called basic scalars and basic vectors, respectively. There are exactly two linearly 
independent basic vectors av satisfying (2.1), where the corresponding basic scalars
M  are solutions ofi
(2.2) Det ((Mhx„ + kxJ )  =  l)(M2 + k) = 0.

Therefore, the basic scalars M  and M  are given by

(2.3) I ifT  for k>  0 ; 
(У— к for 0.

Since av and av are linearly independent, there esixts a unique reciprocal set of two
. . 1 2linearly independent covariant vectors ak and ak such that

(2.4) 9" ax = <5$, ax ax =  ab

using the vectors av and ax a nonholonomic frame of X2 will be established in
the following way: If Tx - are holonomic components of a tensor, then its nonholo
nomic components Tj;;; are defined by

(2.5) T):; =  T l ; ; a vf -
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which are equivalent to
(2.6) T l:  = Ty;;q'áx ....

It has been shown that ([5], pp. 22) the nonholonomic components of (p)k f  are 
given by
(2.7) ^ k f  = M" Slx (p = 0,1,2,...), 
where
(2.8) (eV  =  5S, =  k f ,  W V  =  (' - 1) W -

Theorem (2.1). (The first set of recurrence relations.) We have

(2.9) o + V k f+ kW k f = 0 (p = 0 ,1,2,...).

Proof. Since the basic scalars M  satisfy M2+ k= 0 by virtue of (2.3), the first
X  X

recurrence relations may be derived in the following way, using (2.6) and (2.7): 

ip+2)k^  + k(r)kx> = £  ^ + ^ k /  + k ^ k / ) a x av = 2  M p(M 2 + k)axav = 0.
x , y  У x  x  x  x

In order to derive further recurrence relations, we use [the following] Mishra’s 
abbreviations ([6]), denoting the tensor Tmiiv by T:

(2.10a)

(2.10b)

p q r  df
A * ß y  = =  (P ) V  <*(4 )k  ß{r) U  у 

■/ *(opv  #v<Ö iVv

pqr d f df w df df 000T =  T =  Aaßy T T — T =  T1  J  OJ11V S 1 (ÚUV X  Ct fív 5 X  X  COUV ■* •

pqr  . .
If the tensor Тш„у is skew-symmetric in the first two indices,

pqr
T =

qpr
T I I I(2.11) * a>ii\ iw>v •

Lemma (2.2). The basic scalars satisfy 

(2.12a) M + M  = 0,
X  у

(2.12b) М М —к =  0
x  у

for all values o f x and у  when x ^ y .
Proof. The identities (2.12) are direct results of (2.3).
Theorem (2.3). (The second set o f recurrence relations.) I f  Taiiv is a tensor skew- 

symmetric in the first two indices, then

(2.13a)

(2.13b)

(10)r
T  = 0

l lr  00 r
T = к T  .

(r = 0, 1, 2,...)
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Proof. Using (2.6), (2.7), and (2.10), we have
p(q)r (pe)r (pi)r x у z
T Tailv Z  Txyz &px, y,z

=  4- 2 ’ T i j ^ k J  ^ k yJ+Mkx‘ (p)kyJy r)kzk aa a„ av =& x,y,z

= j 2 z ТХУЛМ" M“ + M q M p)M r аш a„ av

for p ,q ,r= 0, 1, 2, 3, .... Hence the second set of recurrence relations may be derived 
from the above result in the following way, respectively, using the skew-symmetry 
of the tensor Tmilv when x ~ y  and Lemma (2.2) when x ^ y :

(10)r 1 x у z
T -  — Z  Txyz(M + M )M r atoallav -  0,£ x,ytz X у z

Hr OOr x у z
T - k T  = Z  Txyz(MM—k)M r аш a„ av = 0.x,y,z * у z

. . ЮгThe condition (2.13a) implies that the tensor Tmllv is symmetric in the first 
two indices, even though the tensor Tafiy is skew-symmetric in the first two indices; 
that is

10r 10r
(2.14) Тшцу= Tyav (r =  0,1,2,...).

T heorem (2.4). (The third set o f recurrence relations.) I f  ТШ11У is a tensor skew- 
symmetric in the first two indices, then

(2.15a)

(2.15b)

r(10)
2 \>[<ар] —  0

(f = 0, 1, 2,.. .)
rll rOO
Tvlmji] к I\[cĵ ]■

Proof. As in the proof o f the previous theorem , we have

!■(pq) '(.РЧ)
' v[co/x] =  2  Txlyz] Z  Txtyzi МГ(МРМ Ч + М Ч М р)а,ашац.

x.y.z

Hence the third set of recurrence relations can be obtained in the following way:
I" (10) 1
Tvic»/,] — у  2  ТхЬг,М г{М +М )ауаша„ — 0,A x - w z, y , z

rll rOO x у z
Tvl(arí- k  Гу[шм] =  Z  Тхь* Мг(М М -к)а ,а тац = 0.

x , y , z  x  У z
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III. Einstein’s connection in 2-g-UFT

Using the recurrence relations obtained in the previous section, we find a unique 
solution of the system of equations (1.4) in this section. The solution obtained in 
this section is the simplest ever found.

Lemma (3.5). In X2 we have
[̂co/iv] — 0.(3.1)

Proof. Since all indices take the values 1, 2 only in X2, (3.1) follows from the 
skew-symmetry of the tensor Sailv in the first two indices.

Theorem (3.6). I f  the condition
(3.2) g *  0
is satisfied, the system (1.4) admits a unique solution

(3.3) c — J -\7 hrĈOfiy v v̂ co/t >о
where Vv is the symbolic vector o f the covariant derivative with respect to {£,„}. 

Proof. Using the relation

(3.4) =  — Sailv
equivalent to (3.1), and employing the notations introduced in (2.10), we have from
(1.4)

001 001
(3.5) gcola — З̂ уСрсо] +  2S'v[it(a] <̂0(1V "b 2S,y[((ta].

On the other hand, one finds by virtue of (1.6)

(3.6a) П F — J) I  _ря V __Fa L- - V  if - W  Ifc -' vcoд  ( / v rv ( ú Ц •* соv ^a/x /iv 'v coa v Ачод V-'cov i cov/'va/i

Substituting
(3.7)

— (‘5«»* +  C7auv)fcatt — /cCO(1 + 25vr(im] + 2C/ [/iCt)]v •

001

и ,Хц =  2S »(A/i)
equivalent to (1.7) into (3.6a), and using (3.4), (2.13a), and (2.15b), one obtains from 
(3.6a) that

001 (10)1 o n  001
(3.6b) Dyk,ail =  Vv кшд + 25’у1;/1ш)—2 S^y+ 2S’V|vOJ1] =  Vv kmii + 2Sv[liCO]+2kSv[toll] =

001
=  Vv k(0fl + 2Svit/ico]

(3.8)

Comparing (3.5) and (3.6b), we have (3.3) if the condition (3.2) is satisfied. 
Theorem (3.7). I f  the condition (3.2) is satisfied, the tensor £/„„ is given by

u i ß = - | ( v . * ( . W
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Proof. Substitution of (3.3) into (3.7) gives (3.8) in the following way:
ooi 2

= 2ft» Sa(ail) =  — 2hva k(/ S a)xß =  -  --(V, k icf ) k j .
о

Now that we have obtained the tensors S (ailv and Uvafi in terms of gXß, it is 
possible for us to determine the connection „ by only substituting for S and U 
into (1.6). Formally,

Theorem (3.8). I f  the condition (3.2) is satisfied, the Einstein s connection 
I'ljf, in 2-g-UFT is given by

(3.9) Гт„ =  { J j  + j A "  v ^ - | ( V . V ) V ) .
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ABSTRACT MEASURE DIFFERENTIAL 
INEQUALITIES AND APPLICATIONS

G. R. SHENDGE and S. R. JOSHI (Maharastra)

1. Introduction. The problems regarding existence of solutions, uniqueness of 
solutions as well as the existence of extremal solutions of an abstract measure dif
ferential equation (AMDE) have been considered by Sharma [2,3]. In this paper we 
consider the same AMDE and establish a basic inequality in the form of a mono
tonicity theorem, using the lattice fixed point theorem due to Tarski [4].

In Section 3, the difference between two approximate solutions of an AMDE is 
estimated. Uniqueness of a solution and its continuous dependence on initial con
ditions follow as a consequence of this estimate.

2. Notations and definitions. Let R denote the real line and X  a linear space over 
the field R. For any subset S of X  and a tr-algebra M  on S, let the symbol ca (S, M ) 
denote the space of real measures (as a subspace of the set of all complex measures 
defined on M). It is known that ca(*S, M) is a Banach space [1, p. 161] with respect to 
the norm || • || defined by

IIpll =  \p\(S), p£ca(S,M ),

where |p| is the total variation measure of p. For any x £ X  define the sets Sx and Sx 
as follows: Sx— {rx: — °o<r-= 1} and Sx={rx: — ^  1}. Let xB be a fixed element
of X. For any zeX  for which Sxacz Sz, we shall denote the set Sz — SXo by x^z and 
write z> x0. For any z > x 0, let Mz denote the smallest cr-algebra on Sz, containing 
{x0} and the sets Sx, x£x^z.

In what follows p will stand for a finite positive measure and pdc& (Sz, Mz). 
For a given positive number b, let I  be the interval (—b, b) and /  be a real valued p- 
integrable function defined on SzX l. For any real number a £ / consider the equa
tion

(2.1) =  f{ x , P(SX))
with the initial condition
(2.2) p(SX0) =  a,

where is the Radon—Nikodym derivative of p with respect to p. dp
D efinition 2.1. A real measure <p£ca (Sz, Mz), z> x 0, is said to be a solu

tion of (2.1) satisfying (2.2) if

(i) <P(5X0) =  a,
(ii) (p(E)a, E£M z,
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(iii) (p<Kß on x 0z,
(iv) (p satisfies (2.1) a.e. [p\ on x^z.
R emark 2.1. Clearly if (p is a solution of (2.1), it is bounded. However if I  is 

replaced by R, it may be either bounded or unbounded.
R emark 2.2. F rom  the definition (2.1), it is clear that cp is a solution of (2.1) 

satisfying (2.2) if  and only if <p (S Xo) =  a, and

4 >(E) = f  f ( x ,  cp(Sx))dfi, E c  Äöz, E£M Z.
E

A solution cp of (2.1) satisfying (2.2), will be denoted by <p(x0, a).
D efinition 2.2. Let g be a real /r-integrable function defined on Sz, z ^ x „,

7
p£ca.(Sz, Mz) and p « p ,  Then by the inequality-^— ^  g(x) we mean

p (E )^  f  g(x)dp, E£MZ, E  d  xoz.

D efinition 2.3. Let e>0. A m easure <p€ca (Sz, M z) is said to  be an £-appro
ximate solution o f (2.1) on x^z if

(i) cp<$cp on x0z,

(ii) =£, a.e. on XqZ.

Note that if e=0, q> is a solution of (2.1) on x0z.
R emark 2.3. The conditions (i) and (ii) in the above definition imply that for 

an e-approximate solution cp of (2.1) on x^z, we have

/ / (* >  <P(Sx))dp-ep(E) == <p(E) s  f  f ( x ,  (p(Sx))dp+ep(E),

whenever E£MZ and E c  x0z.

3. In this section we obtain an estimate for the difference between two approxi
mate solutions of (2.1). We need the following assumptions.

(Ax) p{x0} = 0.
(A2) /  is a real yu-integrable function defined on SZXR  for every z ä r 0, and 

satisfies the Lipschitz condition

\ f ( x ,y d - f { x , y £ \  zsb\y1- y 2\, L  >  0.

(A3) There exists a real /i-integrable function w defined on Sz, such that

\f(x, j>)I S  w(x), (x, y)dSzXR-
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(A4) For any positive measure <т£са(SZ,M Z), and any measurable subset 
Ex of xjjz, there exists a constant M > 0, such that

(i) LM  <  1, (ii) f  <t(E,)dp =2 Mo(Ex).
EX

We now prove the following theorem.
T heorem 1. Let the assumptions (Ax) to (A4) hold. Let px_and p2 be ex- and e2- 

aproximate solutions of (2.1) onxfz, respectively, satisfying px(SXo) = ax and p2(SXo)~  
—a2, where ax and a2 are constants. Let 8 and в be nonnegative real numbers such that 
|a4—a2| ̂ 8  and £4+62—e. Then

\PÁF)~PÁF)\ F ^M z '

Proof. Since px and p2 are ex- and a2-approximate solutions of (2.1), for any 
E d  x^z, we have by Remark 2.3

(3.1) px(E )-p 2(E) =£ вр(Е)+ f  [ /(x , PÁSx) ) - f (x ,  p2(Sx)j]dp.

Letting E = x0x, x£x0z and using (A2) we obtain from (3.1)

|p i(Ä ^ )-p 2( ^ ) |  S  ер(x^x) + L \ p x(Sx) - p2(Sx)\dp sS

^ e p ( x ^ ) + L  f  Ipx( S J - p2(Sxa) \ d p + L  J j p x(* ö * ) - p2(x^x)\dp.
xox

Set a —px—p2. Then the above inequality implies that

|<r(x̂ T)| S  ep(x^z)+L8p(x^z)+L J  \ofxfx)\dp S.

^  (e+L8)p(x^z)+L f  \o\(x^x)dp.

This, by virtue of definition of \a\ implies that

\<r\Qĉ x) ^  (e+L8)p(x^z)+L f  \o\(x^x)dp.

Using (A4) in this inequality we then obtain

(e+LS)p(x&
1 K o ) -  (1 -L M )  '

Since this is true for every xZx^z, we conclude that

HOE) ^  ’ E i M z, E d x T z .
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This also implies that

(3.2) Ы Е ) - Р % т  = ~ ( ^ Ь М ) 2) ’ E c z ^ -

Now if F£M Z, then F ean  be written as F= SXoUE, for some ЕсУхуг. Hence 
using (3.2) and the hypothesis \Pi(SXo)—p2(SX0) \s ő  we obtain the desired inequality

(3.3) \Pl(F )~P ,(F)\ a  <3+ (£+(^ щ 2 ), F ^ M z-

Remark 3.2. It is clear that when £i—0, Pl is the solution of (2.1) satisfying 
Pi(SxJ—<*i. In this case the inequality (3.3) reduces to

|Л ( Л - Р 20Ю1 si <5 + ( e 2 + L5)P(x^z) 
(1 —LM ) FdM z.

Further if e2 is also zero, then 

(3.4) M F ) - p M s S [ i +  ̂ ^ \

This gives an estimate for the difference between two solutions Pl, /;2, satisfying 
Pi(SXo)=cc1, p 2(SXo)=a2.

It is also clear that if oq—a2=oc, we can choose <5=0 and hence (3.4) implies 
that Pi(F)=p2(F) for each F£M Z. This means that there is a unique solution of
(2.1) satisfying the initial condition (2.2).

Remark 3.3. The inequality (3.4) also indicates that the solutions of (2.1) de
pend continuously on the initial conditions in the following sense. If Pl(x0, oq) 
and p2(xo, a2) are two solutions of (2.1) then for a given e>0, there exists a <5 =  
=<5(e)>0 such that \Pl(F) — p2(F)\^E, F ^M Z whenever |oq — a2|s<5.

4. A monotonicity theorem. We shall now prove a differential inequality which 
can be viewed as a kind of comparison theorem. The proof is based on the lattice 
fixed point theorem due to Tarski [4]. The following definition is required.

Definition. A solution pM(x0, a) of (2.1) satisfying (2.2) existing on x^z, 
z S x 0 is said to be a maximal solution of (2.1) if for any other solution <p (x0, a) 
of (2.1), the inequality <p(E)^pM(E), E£M Z holds.

A similar definition can be given for the minimal solution of (2.1). It is clear 
that, whenever the maximal and minimal solutions exist, they are unique.

We now need the following assumptions.

(Bi) /(*> У) is a real valued monotonically non-decreasing function in y. 

(B2) J  w(x)dp, S W 0 for some W0 >  0,
X q Z

where w is the same function which occurs in (A3). 
(B3) S =  {p£ca(Sz, Mz): ||p|| ^  A}

where K=\a\ + W0, a being the same as in (2.2).
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If Pi>Ps€S> then by Pi=p2, we mean p1(E )^p 2(E), where E£MZ. Note 
that S' is a complete lattice with respect to this order relation.

We shall first prove the existence of the maximal and minimal solutions of (2.1) 
and then establish the main inequality.

Theorem 2. Under the assumptions (Ax), (A3) and (Bx) to (B3) the equation (2.1) 
has maximal and minimal solutions existing on x^z and lying in S.

Proof. Define an operator T  on S  by

(4.1) Tp(SX0) = a, Tp(E) = f  f( x ,  p(Sx))dp, E rzY fi.
E

Using (A3), (B2), (B3) and the definitions of T, one can show that T  maps S into 
itself. Also the assumption (Bx) together with the positivity of p it is observed that T 
is an isotone increasing on S. Since S is a complete lattice, we can apply the lattice
fixed point theorem due to Tarski [4] to conclude that the set {«6 S: Tu=u} is
non-empty and is also a complete lattice. Consequently the equation (2.1) possesses 
maximal and minimal solutions existing on x^z and lying in S.

T heorem 3. Let all the assumptions of Theorem 1 hold. I f  a real measure q£S  
satisfies the condition q(SXo) ^  a and

(4.2) q(E) — f  f ( x ,  q(Sx))dp, E c  xfz,
E

then
(4.3) q(E) = Рм(Е), ЕЧМг,

where pM(x0, a) is the maximal solution of (2.1) existing on ~xfz and lying in S.
I f  the inequality (4.2) is reversed then

(4.4) q{E) =  pm(E), E£M Z,

where pm (x0, a) is the minimal solution of (2.1) existing on sfz and lying in S.
Proof. We only prove (4.3) since the proof of (4.4) follows on similar lines. Set 

7t=sup S. Clearly n exists, since S  is a complete lattice. Consider the lattice interval 
[q, 7г]. This also exists since q£ S  and 7i=sup S. Define an operator Г  by (4.1). 
Then, as in Theorem 2, T is isotone increasing. We shall now show that T  maps [q, ri\ 
into itself. Let p£[q, я]. Then p £ S  and p = q. Hence by using (Bj) and (4.2) we 
obtain

Tp(E) =  J  f{ x ,  q{Sx))dp 3= q{E), E ezx fz.
E

This together with the definition of л implies that Tp£[q, ж]. Now an appropriate 
application of the lattice fixed point theorem [4] shows that the maximal solution 
pM(x0, a) of (2.1) exists on x^z and lies in [q, я]. The desired inequality (4.3) is now 
an immediate consequence of this.

5. Applications. We shall now give two applications of Theorem 3.
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Let a in (2.2) be positive. Let g(x, y) be a nonnegative ^-integrable function 
defined on SZX R +, z ^ x 0, where R + is the set of non-negative real numbers. Let r 
be a positive measure belonging to ca(.!?z, Mz). Consider the differential equation

(5-1) g(x , r(Sx)
with the initial condition
(5.2) r(SX0) = a

Theorem 4. Let the assumptions of Theorem 2 hold, with f  replaced by g. Assume 
further that the function f  o f (2.1) satisfies the condition

(5-3) \f(x ,y )\ =£ g(x, bl).

Let rM(x0, a) be the maximal solution of (5.1) existing on xjjz. Then for any solution 
p(x0, a) of (2.1) existing on xjjz we have

(5.4) \p (E )\^ rM(E), E£M Z.

Proof. Since p(x0, a) is a solution o f (2.1), we have

P(E) = f  f{ x ,p { S x)dp, E£M Z, E czx^z.
E

This together with (5.3) implies

\p(E)\ á  f  g(x, p(Sx))dp, E C x^z.
E

From this inequality it can be deduced that

\p\(ß) sä / g(x, \p\(Sx))dp, E c  x^z.
E

Now an application of Theorem 3 yields the desired inequality (5.4).
We now merely state a uniqueness theorem for (2.1). The proof follows by a 

simple application of Theorem 3.
Theorem 5. Let all the assumptions o f Theorem 2 hold with f  replaced by g. 

Further let the function f  o f (2.1) satisfy the condition

\ f ( x ,y d - f ( x ,y £ \  ^  g(x, b i - j 2|).

Suppose that the identically zero measure is the only solution o f (5.1) existing on x^i. 
Then the equation (2.1) has at most one solution satisfying (2.2) and existing on xjjz.
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ON NASH EQUILIBRIUM. II

D. T. LUC (Budapest)

In this paper we study Nash equilibria from a view point of topology. Using the 
methods in [1] and [2] we obtain new results for Nash-Pareto equilibria described 
in [8].

Let us consider the multiobjective model consisting of two subsystems with

Suppose P and Q are smooth manifolds with dim P=p, dim Q — q, f  and g 
are continuously differentiable mappings.

D efinition 1 (see [2]). Let IP be a smooth manifold with continuously 
differentiable functions ut: W ^R  (i— 1, ..., m), where msSdim W. Let и : Ж—Rm 
be defined by u=(ux, ...,u m), and Pos(Rm)czRm be the set of (ylt . . . ,y m)£Rm 
suchthat for each /. Let #(x) =  Du (x)_1(P°s Rm) where Du(x): TX(W)-+
-*Rm is the derivative of и at x  considered as a linear mapping from the tangent 
space of W at x  to Rm. A point W  is called “Pareto Optimal” (or critical Pareto) 
of и if H (x)= 0 .

D efinition 2. We call (x,* y*)£P xQ  Nash-Pareto equilibrium of model if 
x* and y* are Pareto optimal of the mappings }{x)—f{x,y*)\ P-*Rn and g(y) — 
=g(x*,y): Q-*Rm, respectively.

Let в be the set of Nash-Pareto equilibria (in the sense ofD efinition 2). It is clear 
that the classical Nash-Pareto equilibria set (see [8]) belongs to в, but, in general, it 
does not coincide with 0. The following simple example shows this.

Take P —Q—R and let f, g: P xQ -»R 2 be defined by

In this model, Jacobians of /  and g at the points (— 1, — 1), (0, 0), (2, 2) are of the 
following form:

Hence these points belong to 0, but only (2, 2) is a Nash-Pareto equilibrium in the 
sense of Definition 2 in [8].

Z1 — P, Z 2 — Q 
и1 = / :  P x ß  — Rn 
u2 = g: PXQ -*Rm.

f i x ,  y) =  (
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Let us recall some notions from differential topology. Let P be a smooth (C°°) 
manifold and У be a closed subset of P. By a stratification of У we will mean the 
closed subsets Y pi: Y= YpizoYp*zo . . . d P o  . . . ,  where рх>рг> ...>pk> ... are 
such that

i) Грл \у г л_, js a smooth submanifold of dimension px. Its connected com
ponents are called strata.

ii) For any stratum A, its boundary dA= Ä \A  is a union of strata of dimension 
smaller than dim A.

Let U and V  be two strata of У such that VczdU, x£V. The Whitney’s con
ditions are the following:

(a) if {x(} is a sequence of points in U, xt —x, and TUXt converges (in the Grass- 
mannian of (dim C/)-planes in T W )  and T=lim TUX( then TVxax.

(b) if for the sequences of points {xf} and {yt} in U and V, resp. such that 
Xj—x, yt-*x, x ^ y t, x tyt converges (in the projective space P "-1) and TUXi conver
ges (in the Grassmannian of (dim C/)-planes in Rn), then /£т where /= lim xiyl 
and г =lim TUXl.

We will say that a stratification satisfying (b) with any triple (U,V,x) where 
x£V , Vz>dU, U and V are strata, is Whitney’s stratification (see [5]).

1. Generic property

Let now P and Q be smooth compact manifolds without boundary, and let /  
and g be of class С ,  г ё 3.

Let Cr(PxQ , Rn) be a space o f mappings of class C  from PXQ  into Rn 
with the natural structure of Banach spaces, and let J r(PXQ, R") be the space of all 
r-jets P x Q —Rn with topology included by that of C~ (PxQ, R"). Denote

Л  =  { /V e/H F X ß, Rn)\D<p{x, y)~1(PosR") = 0 }

Jo =  {M tJ ^ P X Q , Rm)\D^{x, y )~ \P o sR m) = 0 } ,

= {(x, y )^ P x Q \J xf( x ,  y )£J0), N0 = {(x, y)eP XQ \J1g(x, y)Uo),

where ф(х,у) is the mapping q> (x, y ) : P-»Rn when у  is fixed, and ф (x, y) is the 
mapping ф(х,у): Q^-Rm when x is fixed.

From definitions 1 and 2 we conclude at once

Lemma 1. 70( /0) is a set with Whitney’s stratification in J 1(PXQ, Rn) (in 
J 1(PXQ, Rm)).

Proof. Let У denote the set i?n\[(P o s  Ä") U (— Posi?")]. Taking yn= y a n d  
Yk as the set of all coordinate ^-planes of Rn (к— 1, ...,«  — 1) and Y° — {0} then 
yn-^ yn-i-j эу !г )У °  form a Whitney’s stratification of У. Suppose M is a smooth 
manifold. We will prove that

J0 =  R")\D(p (x)-1 (Pos R") = 0 }

Acta Mathematica Hungarica 41, 1983



ON NASH EQUILIBRIUM. II 63

is a set with Whitney’s stratification. Setting

j%n =  R")\lmDcp(x) с  У*1}
we have
(1) JX" =  A  з Jo"'1 3... 3 7?* 3 = Л•

This is a Whitney’s stratification of Indeed, by definition

(2) = { j'cp tJ 'W , Rn)\lmD<p(x) c  У*}\{у>*€/1(М, 7?")|Im7Mx) c

<= У*"1} =  { j'cp tJ 'W , 7?")|ImD<p(*) с  У* and 1т0<р(х)П(Ук\У * -1) tí 0 }.
For k=n, Yn\ Y " ~ 1 is open in R", therefore / 0̂ "\ЛЛ,П"1 is °Pen in J l iM, 7?"). 
Consequently it is a smooth submanifold of J k(M, R").

For k~cn, У* = у  У* is the union of all coordinate /с-planes Yk in Rn. From
i

linearity of Dcp(x) we have 70Nk = U JoY where J»k = {j1q>£J1(M, Rn) | Im Dcp(x)<zYk}.
i *

But Yk is a subspace of 7?", hence J$* is a bundle subspace of J 1(M, R").
Let A?k = {pyZ J 'iM , Rn)\lmDcp(x) с  У- and Im £><?(*) ГКУГчУ*"1) И 0 }

then
i

We see that / ^ кГЫу>‘= 0  for iVy; i',y'=l, ..., TV (A:) (jV(At) is the number of 
coordinate А-planes of 7?"). In fact, if there is a mapping cp: M —7?" such that 
Im D<p(x)C(У/ХУХ1) ^  0  and Im Dcp(x)П{[У*, У* ] \(Yf U Yk)} A 0 ,  then
Im D(p(x) does not belong either to Yk or to Y), i.e. ßcp $ A fk and ßcp $ A ß .  
(Here [У-1, Yj] is a linear hull of Yk with Yk.) This implies A ß f]A ß =  0  for i ^ j. 
Moreover A ß  is a smooth submanifold of J 1(M, R").

Further, (2) yields

d{Jok\ J o k-') = Jok\ J o k' l\ ( J o k\ J o k- 0 =
=  {j1(p^J1{M, 7?")I\m.Dcp(x) c  Yk and lmDcp(x)f)(Yh\ Y k- 1) = 0 }  =

=  {j1cp^J1{M, Rn)\lmDcp(x) с  У*-1}.

This is a union of some strata of smaller dimension.
In this way, (1) is a stratification of J0. In order to prove that this stratification 

satisfies Whitney’s condition (b), suppose U is a stratum of Jok\ J o k~1 and V is 
another stratum in <)U. Let {7V,•}={(■*,•>У,-,Pi)} and {y'Vi}= {(*,-,J Í ,PÍ)} be 
sequences of points in Í7 and in V converging to j 1cp={x, y, p) and ßcp, respectively. 
Let e—lim j 1cpi j 1cp'i and r=lim  TUjiVi. Does e belong to r? We have

TU j^t = (TMxt, TR"yi, T {J\m , k))Pl)
where m=dim M, к  is a dimension of the coordinate А-plane Yk with 
Im D ( P i ( x i )  c  Yj and

Im Dcpi (Xj) П (Y ) \Y k ~k) *  0

(as ßq>i£ U for every i, hence Yk is the same for any j 1(pi).

TUJ,<Pl = (:TMxt, R", J \m , k)).
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Therefore x= (TM x, Rn, к)). On the other hand,

j 'V J V i =  (xtx{, yty'i, Pip'd
implies lim x.x-grM *, lim y ty- £R" (as M  is a smooth manifold and R" is a finite
dimensional space.) Since j 1q>'l £Vc.dU, Im D(p[{x'{) belongs to Yf, in other 
words p'i £ J1(m, k). Consequently, lim PiP-dJfm, k). (Note that J'(m, k) is a 
finite dimensional space.) Then we conclude as required.

Hypothesis (T) . f f ^ J 0 and j 1ga\J0, M0n\N0 in PxQ .
We explain this hypothesis. By Lemma 3, J0 and are sets with Whitney’s 

stratification. Say, J lf  is transverse with respect to this stratification if it is transverse 
to each of the strata. If the first statement of the hypothesis is satisfied then by 
Lemma 2 below, M0 and N0 are sets with stratification. Say, M0 is transverse to N0 
in PXQ  if any stratum of stratification of M0 is transverse to any one of the stratifi
cation of N0 in PXQ.

Lemma 2. Under Hypothesis (T), M0 and N0 are sets with Whitney’s stratifications.
Proof. From differentiability of / ,  it follows that J 1/:  P X Q -»J1(PXQ, R") 

is of class C2.
By we can apply Corollary 8.8 in [5], which asserts that in this condi

tion the inverse image of Whitney’s stratification is Whitney’s stratification. Hence 
M 0= O'V)~1 (Л) is a set with Whitney’s stratification. For N0 the proof is analogous.

Proposition 1. Under Hypothesis (T), в is a set with stratification.
Indeed, by Lemma 2, M0 and Na are sets with Whitney’s stratification and by 

Hypothesis (T) MamN0, therefore M0P\No=0 is a set with stratification. (Note, 
that if M0 is not transverse to N0, then in general в is not a set with stratification since 
the intersection of two manifolds in general is not a manifold when they are not 
transverse.)

Proposition 2. The set o f pairs o f the mappings ( f  g) such that Hypothesis (T) 
is satisfied, is open and dense in C3(PXQ, R")XC3(PXQ, Rm).

Proof. It is easy to show that condition (b) implies condition (a). Hence, Pro
position 2 is an immediate corollary of Lemma 1 and Thom’s transversality theorem 
on sets with stratification. Thom’s theorem asserts the following: let Y be a closed 
set of Jr(N, P) with stratification of finite number of submanifolds, satisfying Whit
ney’s condition (a), and let N  be a compact manifold. Then the set

ß =  { /€ C “ (W ,F ) |//m T }
is open and dense for large enough r. (In [4] and in other references, we usually have 
Thom’s transversality theorem and the simple transversality theorem on the set with 
stratification. However, Thom’s transversality theorem is still valid on a set with 
stratification. The proof is analogous to that of the above mentioned two theorems.)

Remark. In the case n=m = 1, it is clear that M0 and N0 are submanifolds in 
P X Q  (see [1]) and in this, by Hypothesis (T), M 0ClN0—9 is a submanifold. In gene
ral, if n or m X l,  в is not a submanifold.
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2. Necessary and sufficient conditions for Nash-Pareto equilibria

First of all, recall the notion of an admissible curve introduced by Smale 
in order to examine Pareto Optimal sets (see [2]). Let W be a smooth manifold, 
иг, um be smooth functions defined on W. Let u: W-»Rm be defined by u= 
—(ux,...,um). A curve cp: ( - s ,s ) — W  defined on an interval is admissible if
—  for each t£(—s,s) and each Observe that the point
x£ W  is a Pareto optimum iff there is no admissible path for x.

Here we consider the smooth manifolds P and Q with functions f :  PXQ-+R" 
and g: PxQ -»Rm of the class Ck(k^2 ). A C^curve cp: (— e, s)-*PxQ  defined 
on an interval is an admissible curve of (/, g) if Df (<p(t))(<pí(t))sO and 
Dg(cp(t))(cp'2(t))^0  for each t£ (—£, г), and at least one of these inequalities is 
strict, where <px and cp2 are components of cp, in detail, <рх: (—г, e)—P and cp2: 
( - e ,  e ) - ß .

P roposition 3. I f  the Euler—Poincaré characteristic of P and Q is not 0 (in 
the case oriented) or is odd (in the case non-oriented) then 9 X 0 .

P roof. Consider the vector field Txj+ T yg on P X Q ■ By our hypothesis on the 
Euler—Poincare characteristic it follows thatthere is a point (x ,y )£ P xQ  at which 
this vector field vanishes, i.e. Txf=  0 and Tyg—0, consequently x and у  are Pareto 
optima of /  and g, respectively (see [3]), or (x, y) £ 0.

P roposition 4. A point (x, y )£ P x Q  is Nash-Pareto equilibrium i f  and only if 
there is no admissible path for (x, y).

Proof. Suppose (x, y) is a Nash-Pareto equilibrium, i.e. x and у  are Pareto 
optima of f ( - ,y )  and g(x, •), respectively. If there is an admissible path cp — 
= (<Pi, <p2) e) —.PXQ  through (x, y), for example q>(0) = (x, y), thenD/^^O)) 
(<pi(0))>0, and Dy (r/>2(0)(<pá (0)) SO.

We can consider Dj((Pi(t))((p{(t))>0 for each t£ (—£,' e') for some s': 0 < s '< e  
(observe that /  is of class C2 and /(<Pi(0)—/(<Pi(0> У) with у fixed). Thus cpt 
is an admissible curve of / ( •, y) which contradicts x being Pareto optimum of 
/ ( •. У)-

Conversely, if (x, y)£PXQ  is not a Nash-Pareto equilibrium, i.e. either x 
or у  is not a Pareto optimum. For example, x is not a Pareto optimum of / ( •, y). 
Then there is an admissible path <px: (—s,s)-+P such that cpy(0)=x and 
Df((pi(t))((p'i(.t))^-0 for each t£ (—e, s). <p2 is defined on (—8, s) with values in Q 
by <Pi(t)=y■ The curve cp=((px, (p2) will be an admissible path of ( /, g) at (x, y). 
This completes our proof.

From Proposition A in [2] and Proposition 1, we have the following:
P roposition 5. A point (x, y )£ P x Q  is a Nash-Pareto equilibrium i f  and only 

i f  one o f following equivalent conditions is satisfied:

a) D ffx) ( i= l,  ...,n) and Dgj(y) ( j— 1, m) do not lie in the same open

half space of Г £ ,,)(Р Х 0  = Г * (Р )ф Г ;(0 .
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b) There exist Xlt ..., Xn, ц1} ..., цт£R+ with not all Я, zero, not all fi, zero such
that

n  m

Д  hD flx)  =  0 and J ? HjDgj(x) =  0.

Thanks to the notion of admissible paths of (/, g), one can define the set of stable 
Nash-Pareto equilibria and obtain results analogous with the stable Pareto set (see
[2] and [3]).
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DEGREE OF APPROXIMATION OF 
FUNCTIONS IN THE HOLDER METRIC

R. N. MOHAPATRA and P. CHANDRA (Beirut)

1. Definitions and notations. L et/b e  a periodic function of period 2n and inte- 
grable in the Lebesgue sense over [—n, л]. Let the Fourier series of /  be given by

1 “  ~
(1-1) -7г-а0+ 2! (a„cosnx+bnsmnx) = 2  An(x).£ /1 = 1 /1 = 0

Let C2n be the Banach space of all 2w-periodic continuous functions defined on 
[—tt, л] under sup norm. For 0 < a ^ l  and some positive constant K, the function 
space Hx is given by the following:

Нл = {/<ес2я: ! /(х) - / С и)| ^  л:|*-^ |-}.

The space Ha is a Banach space ([7]) with the norm || • ||e defined by 

(1-2) 11/11, = H/Ц c+sup {A*f{x, j)}.
X ,  У

where
ll/llc =  sup | / 0 )|— n^x^n

and
(1.3) Л*[/(х, у)] = \ f ( x ) - f(y ) \/ \x -y \*  (x y).

We shall use the convention that A°f(x, y)=0. The metric induced by the norm (1.2) 
on Hx is called the Holder metric.

The set of functions /  with ^f\\xs K  is a compact subset of C[0, 1].
It can be seen that ||/ ||^ (2 л )а-/!||/ ||а for 0 ^ /? < a S l. Thus {{Hx, || • ||a)} 

is a family of Banach spaces which decreases as a increases.
Let A —(ank) (к , и=0, 1, ...) be an infinite matrix of real numbers. We denote 

by T„(f) the Л-transform of the Fourier series of/  given by

(1.4) Tn{ f - , x ) = 2 anksk{x) (n = 0, 1, ...),
/1 =  0

where sn(x) is the и-th partial sum of the series (1.1). If A=(a„ik) is lower-triangular 
i.e. ank= 0 for k>n, we write

(1.5) /„ (/; x )=  2  a„ksk(x) (и = 0, 1, ...).*=o

Acta Mathematica Hungarica 41, 1983



68 R. N. MOHAPATRA and P. CHANDRA

Throughout the paper, we shall let К denote an absolute positive constant which 
may be different at different occurrences. We shall also use the following notations:

( 1 . 6 ) (px(t) =  f ( x + t ) + f ( x - t ) - :
к

( 1 . 7 ) Я n k  =  2
r = 0

( 1 . 8 ) ^ n . k f

( 1 . 9 )
n

& n k  2  n̂r •> 
r = k

( 1 . 1 0 ) % =  ( t )  ^ 1 —

2. Introduction. Alexits [1, p. 301] studied the degree of approximation of func
tions of Hx by the Cesáro mean of their Fourier series in the sup norm. Since C2n 3  

for Prössdorf [7] obtained an estimate for \Wn( f ) —f\ \p
for /£  where a„ ( /)  is the Fejér means of the Fourier series of/. Precisely, he proved 
the following theorem:

Theorem A [7, Theorem 2]. Let / £ # a (0 < a S  1) and 0 s ß < a .  Then

Í0 (n ß~x) (0 <  а <  1),
(2..) |< г .( Л - /1» =  {0 [ „»-1(1+1ов„),-» ] (а = 1 ) .

The case ß=0  of the above result is that of Alexits referred to earlier.
With a view to generalizing Theorem A, Chandra (^Theorems 1 and 2] obtained 

estimates analogous to (2.1) by replacing c„(/) with (N ,p„) and Nörlund means of 
the Fourier series of /.

The object of this paper is to generalize the results of Chandra [3] by obtaining 
estimates using the ^-transform of the Fourier series of f^ H x. In §4, we specialise 
the matrix A and obtain corollaries some of which cannot be obtained from the 
results hither-to-known (see Corollary 2).

We shall prove the following:
Theorem 1. Let A = (a„k) be a lower triangular infinite matrix satisfying the 

following:

(2.1) ank Ш 0(n, к = 0,1, 2, ...) and j?  ank = 1,
k  =  0

(2.2) а„к ^ а пЛ+1 (к =  0, 1,..., и- l ,  n = 0, 1, ...).

Then, for 0 = /1< а^  1 and f(_Hx

( 2 . 3 ) \\tn( f ) - f \ \ß
О (a™ " log*'* (nann + 1)) (0 <  a <  1),

О ja™'* jlo g ^ l +na J + l o g 1-^ (y -)} j О =  !)•
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APPROXIMATION OF FUNCTIONS IN THE HOLDER METRIC 69

T heorem 2. Let the lower triangular matrix A=(ank) satisfy (2.1) and (2.2). 
Then for f£H a, and 0ё/?<осё1,

(2.4)
Г0 (п',- ‘‘) + 0 (п1-*+Ч т) (for 0 < a <  1) 
[O (nß- 1) +  О {a mnß (log n )1- 11} (for a  =  1).

Theorem 3. Let A = (ank) be an infinite matrix satisfying the following:

(2.5) a n k S t  0  (n, к =  0 , 1, . . . ) ,  2  a „k =  1 (n  =  0 , 1 , . . . ) ,k = 0

(2.6) 2  (fc+l)ant =  0 ((n + l)) (n =  1, 2,...),
fc = n  +  l

(2.7) апк^ а пЛ+1 (к =  0 ,1 , ...) for n =  0 ,1 .......
Then, for 1 and f£ H a,
( 2.8)

f( П 1/3/* f n
\\T fin - f\ \ß  = o (nß-* )+ o [{ z i k - 'ä n{(k+i))\ { 2 f c - 1-*«n((fc+i))j ]•

T heorem 4. Let the lower-triangular matrix A=(ank) satisfy (2.5) and (2.2). 
Then for f£ H a and 0 s /? < a ^ l ,

ft " лр/а ( n 11—/3/al
(2.9) \\tn(f ) - f \ \ fi =  0 (n^ ) + 0 ^ k2 k - ^ n. k\  [ i r ' X . - i j  J-

3. We shall need the following lemmas:
Lemma 1. Let the lower-triangular matrix A = (ank) satisfy ank̂ 0 (k  = 0,1, ..., n\ 

n — 0 ,1, ...) and (2.2). Then

Д  a„к sin [n +  j )  t = 0{ t_4„},

uniformly in 77? й й е<ш7у proved by Abel’s lemma.
Lemma 2. Let Л = (ank) satisfy (2.7) and

(3.1) ank^  0 (n,fc =  0 ,1 , ...,).
Then

Д  ank sin (n + y )  t = 0 {ä„(t)}.

This lemma can be proved by using arguments similar to that of McFadden [5,
p. 182].

Lemma 3. Let the lower-triangular matrix A = (ank) satisfy (2.2) and апкщ 0 
(&=0, 1, ..., n; n—0, 1,...). Then

Д  a nk sin (fc + y ) ?= 0{<„_t+i}.
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70 R. N. MOHAPATRA and P. CHANDRA

Proof. We write

Д  a„к sin [/с + у )  t =  ( Д  +  и 2_ J  апк sin (к + t.

Clearly, the second sum on the right does not exceed 0 (a ' „_T+1) and since 
{ank) l =о is monotonically increasing, the first sum does not exceed

0 (t 1u„>„-t+1) =  О ( ^  =  0 (a n „_t+1).
\ k  =  n  —  т - f l  /

On collecting the results, the lemma follows.
4. In this section, we shall prove the theorems mentioned in §2.
We observe that for f €_H x, 0 < a ^  1,

(4.1) \<Px<j)-4>y(t)\ = 4K \x -y \x 
and also

(4.2) k v ( 0 - < p y(0 l -  l / ( * + 0 - / (*) I + 1 / ( * ) - / ( * -  0 1 + I/ О ' + 0 ~ / O ) l  +

Proof of theorem 1. Let ln(x) = tn(_f ; x ) - f (x), where

'„ ( /;  * ) - / ( * )  =  { j  ^  ( 2 4 *  sin (fc+1 ) tj dt.

Then

f71 о

2 sin- j '

1 f  W x ( f ) - < p y ( J ) \

2 sin — t

n (, 1 )12  ank sin
k  =  0

- т ( 7 " + / ) _ л + , ! ' 5ау'
However, by (4.2) and (2.1),

(4.3) h  = 0 (1) ' f  t-'\cpx{t)-<py{f)\dt =  0 (0 ,
о

and by (4.2) and Lemma 1,

r \ ° W ,(4.4) h  = 0 { a j  f t - 2+°dt = \
/  [ O lan,

,) for 0 <  a <  1 
,lo g (l/a J]  for a =  1.
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APPROXIMATION OF FUNCTIONS IN THE HÖLDER METRIC 71

Since, by (2.1) and (2.2), it follows that (n +  l)a„„Sl therefore by (4.1) and (2.1), 
we have

(4.5) A =  0{\x-y\*) f  t _1| ^ a „ t |sin^fc + y j / |J d r  =

=  0(\x-y \* ) f  ( д  (* + 1И*) dt+ f  r ' j i a ^ A
П +  1

=  ö ( k - y | 'lo g  (naBB + l)) 

and, by Lemma 1 and (4.1), we obtain that

(4.6) A = 0 ^ \x -y \* a nn f  t~2dt} =  0 { |х -у |а}.
ann

Now, for k=  1,2, we observe that Ik= Il~ ß,*lfc,a. Thus, by substituting the 
estimate for Д from (4.5) in I f 1“ and the estimate for 7X from (4.3)_in l\~ßlx, we get

(4.7) A =  0 { \x -y \ßal~ß logp/0I(«aTO+l)} 

and, by (4.4) and (4.6)

/ = 1°  [I x ~ y \Pa™ß] f o r 0 < a < 1 >
10[ |x - y |p{a„nlog(l/a„„)}1_p] for a =  1.

Hence we observe that

sup \Aßl„(x, j) | = sup
X , y  X y é y

\ Ш - Щ \
\x -y \ß

_ í0 [a‘- '! logw*(nann+ l)] for 0 <  a <  1, 
l ° K ^ { log 4 nann + D+log1_4 V a J} ]  for a =  1. 

Now, proceeding as above, we obtain

(4.10) sup
0-сх-с2я

0 (a*„) for 0 <  a <  1, 
0 [aBBlog ( I / O ]  for a =  1.

Since a , „ i l  and log (l/a„„)^— , we have on collecting results from (4.9)
&nn

and (4.10),
IIt m _ f n p K n _plog^(nann + l)] for 0 < a <  1,

ß lO[aJB_/’{logi (naBB+ l)+ lo g 1-^)l/aBB)}] for a = 1,

This completes the proof of Theorem 1.
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72 R. N. MOHAPATRA and P. CHANDRA

Proof of theorem 2. We have, as in Theorem 1,

/ М Ь Ш
n о .  . 1

2 s m 2 t

" ( 1 1
Z  Sln

k  =  0 r i ) '

' Tt/n 0\
f  + f  =

VO TC/tl /

say.

and

VO n/n
Proceeding as in the proof of (4.3) and (4.4), we have J1=0(n~I) (0 < a S l)

fCKn1 ‘ i i j  0 <  a <  1, 
"" \o (a n„ log n) a =  1.

Similarly, letting am = n/n in (4.5), we obain Jx= 0  {\x—y\*}. Also, by (4.1) 
and Lemma 1, J2= 0 {\x—y|ana„„}. Now Jk = Jl~ß,xJ£/x (к =  1,2), therefore Jx = 
= О {\x—y\ß nß ~x) 
and

Hence

lO{\x—y\ßnß x+1ann for 0 <  a <  1,
/г = jo  {\x—y\ßtiß,xann log1_i/an} for a =  1.

. . . .  ,  4I \0 (nß- x) + 0 (nß- x^ a j  
supM 'l,(* ,H | =  {0 ( „»-i) + 0 ( „»0<i|ogl- (

for 0 <  a <  1, 
n) for a =  1.

Now, proceeding as above

II/II =  i ° (»"“) + О  0 < a <  1,
" C [0 (n ~1)+ 0(am log rí) a — 1.

Now, combining the results, we obtain

= (O(nß- x)+ 0(nß-* + 1a J  for 0 «= a <  1, 
ß {О (nß-*)+О {a nnnß log1 ~ßri) for a =  1.

This completes the proof of Theorem 2.
Proof of theorem 3. From (1.4) and (2.5), we get

1
T„(f\ x ) - f{ x )  — 2  a n k  f

An п = о ft

* ^(O sin[fe + y j  ,

. 1 sin — /
dt =

= é  /  " Л Г  l l  A , sin ( t + i )  <} * .
sm T '
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APPROXIMATION OF FUNCTIONS IN THE HOLDER METRIC 73

the change of order of summation being permissible by the facts that <Px(t) = 0(t*) 
and Zk\ank\<°°.

Writing ln(x) = Tn(f\ x )- f(x ), we have

1 f  \ < P x ( f ) - ( p , ( t ) \

s i n j i

Í 1)1
2  a n k  sin fc+T Hk  =  0 t 2; 1t\ dt =

By (4.2) and (2.5),

/  n / n  я \

= (2я) -1 /  +  /  = h + h ,  say.
VO n/n )

h  =  o \ j  / * - = 0(n—). 
And by Lemma 2 and (4.2)

n

h  = 0 ( 1 )  f  f - ' ä ß n /t])dt =
n / k

n / n

0(1) 2  f  < -12,([я/<])Л = 0 ( 1 ) 2 к - 1- , 81(к+1).
t = 1 ic/(k + l) *=1

Now using (4.1) in place of (4.2) we estimate h  and /2.
n / n

w
к х (0 ~Фу(0 |

|sin(l/2)/| Í Í ?  +  2 )an*smife+-i-) i df =  / u + / i 2.
\ \ k  =  0 fc=n +  l /  \

Clearly

hi =  o | | x - j f  f  Y kt 0a"k{k + l>)tdt} =

by (2.5). In view of (4.1) and (2.6)
n / n

2  ank(k + l)t
k = n  +  l

dt =  0 \  | x - j | a(n +  l)
n / n  \/ d<I-0 J

0{\х - уГ).
On collecting the above results we thus get h —0 (\x —y\*). 

From the definition of /2, (4.1) and Lemma 2,

h  = o (\x - y \* f  Ц ^ - d t) =  o i \x - y \’ "Z /

= o(\x-y\* k2 k - 4 n(k+l)),

since a„(t) is a non-decreasing function of t.
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74 R. N. MOHAPATRA and P. CHANDRA

For r= 1,2, we write Ir—I}~ßlxI ßllt. Then 1г = 0 { \х—y\ßnß~x} and

{ (  » У / »  Г n 4 1 - ß /a

Hence
17 » у/* /  » y-í/a]

sup \Aßla(x ,y ) \  =  0 (n ß-* )+ 0 ^ kZ k - 4 n(k+ l)} { 2 i k - 1- xän(k +  1)J J.

Also, it is easy to observe that

P J e  =  sup \T„(f-,x)-f(x)\  =  0(n-*) + o {  Z k - 1 - Xan(k + 1)\.

Thus collecting the results obtained for ||/„||c and sup \Aßl„(x, y)\, the proof of
а ,  У

the theorem may be completed.
Proof of theorem 4. Observe that by (4.2) and Lemma 3

0 -11) /
к/п

\ ( P Á ‘ ) - < P y ( t ) \

. 1 sin — t 2

n ( 1)2  ank sin [k + 2 ) Í= 0 n/n

n 1 jp/fc l
= 0 ( i ) " f  }  =  i f c - 1- « ; - * .*=1 */(*+1) * = 1

since 0< a-= l and a ’„,n- x is a non-increasing function of t.
By using (4.1) in place of (4.2) and proceeding as above, we see that the integral 

on the left of (4.11) is

° { \ Х ~ У \ *  kZ k ~ l a ' „ , n - k l -

The theorem can be proved by modifying the proof of Theorem 3.
5. In this section, we specialize the matrix A to obtain interesting corollaries. 
Let {/>„} be a sequence of non-negative constants such that p0>0 and P„ = 

= Po+Pi+ ... +p„-
Then the transformations

(5 -1) N„(f; x )  =  ( Л , ) - 1 2  P k S k ( x ) ,k = 0
and

(5-2) N n(f - x ) =  (Pr, ) -12 P n - ^ ( x lfc = 0

are the (AT, pn) and (N, pn) transformations of the Fourier series respecti-
n = 0

vely (see [4] for definitions of (IV, p„) an (N, p„) methods). Let Ex be given by

(5.3) Z E 'nx" = { \~ x ) - ' - 1 ( W < 1).
n =  0
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APPROXIMATION OF FUNCTIONS IN THE HÖLDER METRIC 75

We write for Nn(f-, x), ar„(f; x) or Hn(f; x) according as рп=Ц ,~1 (r=>—  1) or 
pn=1 j ( n 1) (л=0, 1, ...) in (5.2), respectively. We also write for Nn(f; x), Ln(/; x) 
when p„=l/(n + l), n —0, 1, ... in (5.1).

Corollary 1 (see [3]; Theorem 1). Let and 0 ^ / J < a ^ l .  Then

ш т _Л1 _  ÍO{ ( p j ( l o g ( n p J P n))\ (0 <  a <  1),
P  J Л '  lo{ (P J^ ) 1 {logß(npJPn) + log1 (PJPn)} (a =  1),

where \pn) is a positive non-decreasing sequence of n.
Proof. Under the hypotheses on {pn}, P„^(n+\) p„. Hence the corollary 

follows from Theorem 1, (2.3), on setting ann=pn/P„.
R emark. On setting ß =0  we obtain a result of Chandra [2].
From Theorem 3, we obtain
Corollary 2. Let f£ H x and 0 ^ < a/2, 0 < a < l .  Then 

(5.5) \\L n{f ) - f b  =  О ((log nfW «)-1)-

R emark. The case ß =0  of Corollary 2 is considered in [6].
Corollary 3 (see [3], Theorem 2). Let {p„} be a positive and non-increasing 

sequence and f£H x, 0 S /?< a ^  1. Then

(5.6) ||iV „ (/)- / ||/! =  0 ^(P„)-1| 2 R,/c-1- “|  \ k2 ( P J k ) } J + 0 (n“- “).

This follows from Theorem 4 by setting a„„=\/P„ and a'n n_k~P kjPn. 
On setting p„ = EZ~1 (0 < y <  1) in Corollary 3 we obtain
Corollary 4. Let f f H a and 0 ^ / i< a < y .  Then

(5.7) ш л - f h
jo in“- “) ( 0 < a <  1 ;  0 < y  <  1),  

{o(nß_1(log n y-ß) (a =  1 =  у).

Remark. The case ß =0  of Corollary 4 is due to Alexits [1, p. 301]. 
Corollary 5. Let and 0< а< 1 , 0^ /i< a/2 . Then

(5.8) il# „ (/)-/IU  =  O((logn)-1+2̂ ) .

On putting ß=0  we can obtain estimates in the sup norm from our theorems or 
corollaries.

The authors owe their thanks to the referee for his comments which led to the 
improvement of Theorem 3.
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ON THE STRICT TOPOLOGY IN THE NON-LOCALLY 
CONVEX SETTING. II

A. K. KATSARAS (Joannina)

1. Introduction

The strict topology was for the first time defined by Buck [1] on the space of all 
bounded continuous functions on a locally compact space X. Sentilles [18] and Frem- 
lin—Garling—Haydon [7] have considered the case in which X  is completely regular. 
Several other authors continued the investigation of the strict topology ß0 on the 
space Cb(X, £ ) of all bounded continuous £-valued functions on X  where E is either 
the scalar field or an arbitrary locally convex space. The case of an arbitrary topologi
cal vector space E  was considered by Khan [14] and by the author [13]. In this paper 
we continue the study of the strict topology assuming that E  is a topological vec
tor space. We show that the dual space of (Cb(X)®E, ß0) is a certain space 
M,(Bo(V), £ ')  on £'-valued measures defined on the cr-algebra Во (X) of the Borel 
subsets of X. In case Cb(X)® E\s /?0-dense in Cb(X, E), we have that (СЬ(Х, E), ß0)' = 
— М ,(Во (X), £ ') . By [13] and [14], this in particular happens in each of the follow
ing cases:

1) X  has finite covering dimension.
2) Every compact subset of X  has finite covering dimension.
3) E  has the approximation property.
4) £  is a complete metrizable space with a basis.
5) X  is a P-space.

It is shown that ß0 is finer than the topology of uniform convergence on the tight 
subsets of M ,{Bo (X), £ '). If £  is locally bounded and X  a P-space, then ß0 is finer 
than the Mackey topology for the pair <£, £ ')  where F=(Cb(X, £), ß0). We also 
look at the problem of the separability in the strict topology as well as at some other 
properties of this topology.

2. Preliminaries

Throughout this paper, X  will denote a completely regular Hausdorff space, £  
a real Hausdorff topological vector space, Cb (X, E) the space of all bounded £- 
valued functions on X  and C,b(X, E) the subspace of all totally bounded members 
of Cb(X, £). We will denote by Cb(X) the space Cb(X, R) (R is the space of real num
bers). The algebraic tensor product Cb(X)<g>E is isomorphic to the subspace of 
Cb(X, E) spanned by the functions f® s, fd C b(X) and s£E, where /<g>s is defined 
on Xby (f® s) (x)=f(x)s. The uniform topology и on Cb(X, £ ) is the linear topology 
which has as a base at zero the family of all sets of the form { f£ C b(X, £): f{X )a W )  
where Ж is a neighborhood of zero in £. The strict topology is the linear topology ß0 
which has as a base at zero all sets of the form {ДСЬ(Х,£): (gf)(X) c l f j  where

Acta Mathematica Hungarica 41, 7983



78 A. К. KATSARAS

Ж is a neighborhood of zero in E and g a bounded real function on X  vanishing 
at infinity. If p is a seminorm on E, then, for every subset A of X  and every F-valued 
function /  on X, we define \\f\\AtP and \\f\\p by

ll/lL.p =  SUP {p(/(*)): x iA } , | |/ | |p =  \\f\\x,p-

Finally, we will let M(X) denote the space of all bounded real-valued finitely-additive 
regular (with respect to the family of zero sets) measures on the algebra B(X) of 
subsets of X  generated by the zero sets (see Varadarajan [21]). By MZ(X) and M,(X) 
we will denote, respectively, the subspaces of all т-additive and all tight members of 
M(X).

3. The space M (B(X), E')

Let IV be a neighborhood of zero in E. We denote by M W(B(X), E ') the space 
of all m: B(X)-*E ' with the following two properties:

a) For each siE , the set function ms: B(X)-»R, (ms)(A)=m(A)s, belongs 
to M(X).

b) There exists a member ji of M (X) such that \ms\^p. for all s í  W  (|nw| 
denotes the total variation of ms).

If m iM w(B(X), E'), then (since M(X) is an order complete lattice) the Supre
mum m ^=sup {|mí|: s iW }  exists.If W is symmetric, then mw=sxvp {ms: s i  IF}. 
We will refer to %  as the IF-variation of m. If В is a base at zero in E, then we will 
denote by M (B(X), E ') the space U{MW(B(X), E'): W iB}.

We omit the proof of the following easily established
Proposition 3.1. Let W be a symmetric neighborhood o f zero in E and let m be 

an E'-valued function on B(X). Then, m iM w(B(X), E ') iff m siM (X) for all
n

s iE  and sup 2  00 where the supremum is taken over the family o f all
i =  l

finite B(X)-partitions (At)1=1 o f X  and all choices o f slt ..., sn in W. Moreover, for 
each A iB (X ), we have

m}y(A) = sup m(A^)si: s f  IV, (Ai)1=1 a B(X)-partition of dj.

For p a continuous seminorm on E, we define Mp(B(X), E ')  to be the set 
M W[B(X),E ') where W=Wp= {siE : p ( s ) ^ \ ) .  For an m iM p[B(X), E '), we 
define mp to be the measure mw.

Let now IF be a symmetric neighborhood of zero in E and let IF00 be the bipolar 
of IF with respect to the pair (E, E'). Let q—qw be the Minkowski functional of the 
absolutely convex set IF00. We have the following

Lemma 3.2. A set function m : B(X)-+E' belongs to M W(B(X), E ') iff 
m iM q(B(X), E '). Moreover, we have mq=mw.

Proof. Since W(z{s£E: ^ (j) ^ 1}, it follows that m iM w(B(X), E'), when
ever m iM q(B(X), E'), and that mw^ m q. On the other hand, let m iM w(B(X), E ')
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and 1st A£B(X). For each x 'fE ',  we define jx'j^^sup |x'(.y)|. Then W°=sew
— {x'dE': \x'\wS l} .  It is easy to see that |x '|^=sup {|xXOI: ^(.у)^!} . From 
Proposition 3.1, we get that

mw(A) = sup] 2  \m iAd\w: (Ai)Ui a j9(T)-partitionU = 1

It follows now easily that mq(A )^m w(A) and this completes the proof.
Next we define integration of £-valued functions on X  with respect to members 

of M(B(X), E'). The definition is similar to the one in the locally convex case (see
[7,12]). Let A be a non-empty member of B(X) and consider the collection QA of 
all a={A1, ...,A„; x lt x„} where {Ax, ..., A„) is a finite 7?(T)-partition of A 
and X; £Ai. For «i, <xt £S2A, we define s  «2 iff the partition of A in ax is a refine
ment of the partition in a2. In this way, QA becomes a directed set. For f  and £-valuedП
function on X and a = {A1, ...,A„; x lt . . . ,x n}£QA, wedefine sa( f )  = £  m{A^f{x^.
We say that /  is w-integrable over A if the limit lim s j  f )  exists. The value of this
limit is called the integral of/ over A and we will denote it by Jfdm . For A = 0 ,

л
we define J  fdm —0. If / i s  integrable over each A£B(X), then we will say that /

is integrable. We will write simply J  fdm for the integral J  fdm.
x

For W  a neighborhood of zero in E , f  a bounded F-valued function on X  and 
A c X ,  we will denote by WA(f)  the number inf {A>0: f(A )aX W }. Modifying 
slightly the argument used in the locally convex case (see [7, 12] we get the following.

Proposition 3.3. Let m £M w(B(X), E ') and let f d С,Ь(Х, E). Then f  is 
m-integrable and for each A in B(X) we have fdm\-^kmw(Ä)WA(J). Moreover,

for g£Cb{X) and sdE, we have

J  g ® sdm — J  gd{ms).

From the preceding proposition we get easily the following.
Propoistion 3.4. I f  mdM(B(X), E'), then the mapping /-*-m (/)= f  fdm, 

fd C ‘b(X, E), is an element o f the dual space of (C,b(X, E), u).
We have also the following result whose proof is analogous to the proof of 

Theorem 2.2 in [10].
Proposition 3.5. Let m d MW(B(X), E'). I f  W is balanced, then for each cozero 

set A in X  we have

mw(A) = sup {\m(f)\: fd C tb(X,E), f{A )aW , f =  0 on X —A} =

= sup {\m(f)\: fd C b(X)®E, f(A)<zW, f =  0 on X - A }.
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Corollary 3.6. I f  m1, m2£M(B(X), E ') are such that m1(f)= m 2(fi) for 
each /£  Cb (X) <g) E, then m1=m 2.

Proposition 3.7. Let cpd (Cb(X)tg>E, u f . Then, there exists a unique
m £M (B(X),E ')  such that (p(f)—Jfdm  for each fd C b(X)<g>E.

Proof. There exists a balanced neighborhood W of zero in E such that 

{fiC »{X)® E : f{X)<zW)<z{f: \<p(f)\ ^  !}•
For each s£E, the mapping Ts: Cfc(T) -*R, Ts(f)  = <p(J<gis), is continuous with 
respect to the uniform topology on Cb(X). Hence (see [21]) there exists a unique 
fis£M(X) suchthat (p{f® s)= J fdps for each f£ C b(X). For A£B(X), we define 
m(A): E-+R, m(A)s=fis(A). It is shown now easily (the proof is similar to the 
corresponding one in the locally convex case) that m£M (B(X), E ')  and that q>(f) = 
=m (f) for each f£ C b(X)<g>E. The uniqueness of m follows from the preceding 
corollary.

4. Some properties of the topology ß0

Suppose that F is a real locally convex (not necessarily Hausdorff) space. For p 
a continuous seminorm on F, we let ß0p denote the locally convex topology on 
Cb(X, F) generated by the family of seminorms pg, pg(f)  = \\gf\\p, where g ranges 
over the family of all bounded real functions on X  which vanish at infinity.

We have the following easily established
Lemma 4.1. The topology ß0p has as a base at zero the sets of the form 

П {/£ Cb (X, F ): \\f\\Kn,p ^ a n)П= 1
where (K„) is a sequence o f compact subsets o f X  and 0

Let now up denote the locally convex topology on Cb(X, F) generated by the 
seminorm />-4 |/|lp and let rCtP be the locally convex topology generated by the 
seminorms f*-*\\f\\K,P, where К  ranges over the family of all compact subsets of X. 
If CrjX , F) is the space of all f£ C b(X, F) which have relatively-compact range, 
then it is shown in [8] that on Crc(X, F) the topology ß0p coincides with the finest 
locally convex topology which agrees with rc p on up-bounded sets. As the next 
Theorem shows, the same happens on the space Cb(X, F).

Theorem 4.2. a) ßfip is the finest locally convex topology on Cb(X, F) which 
agrees with tC;P on unbounded sets.

b) ß0p is the finest locally convex topology on Cb(X, F) which agrees with ß0p 
on up-bounded sets.

Proof, a) Using the preceding Lemma it follows easily that ß0p agrees with 
zc>p on Up-bounded sets. Conversely, let г be a locally convex topology on Cb(X, F) 
which agrees with zCtP on up -bounded sets. Assume first that p  is a norm on F. For 
each f£ C b(X, F), we have | | / | |p=sup ||/ ||к,р where A ranges over the family of
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compact subsets of X. Also, let Kx, ..., Kn be compact subsets of X, s>0, K=  IJ Kti=i
and d=\\f\\K'P+e. The open set V={x£X: p(f{x))< d} contains К and hence 
there exists a g£Cb(X), with g = l  on К and g= 0  on X — V. If f x= g f
and / a= (l ~g)f, then f = f x+f2, ||/2||K,P =  0 and \\fx\\p^ d .  This (by Wiweger [23], 
Lemma 1) proves that ß0p coincides with the mixed topology уp=y[up, тС;Р]. Since 
every up -neighborhood of zero is up -bounded and since up nad t CiP  are both Haus- 
dorff, yp is the finest locally convex topology on Сь (X, F) which agress with t CjP  
on мр-bounded sets. Assume next that p is an arbitrary continuous seminorm on F. 
Set Mp={s£E: p(s) = 0} and Fp=F/Mp. On Fp we consider the norm p (s+ M p) = 
=p(s). Let W be an absolutely convex т-closed neighborhood of zero. For each 
positive integer n, there exist a compact set K„ and 0<<5„<1 such that

Wn = { fe C b(X, F): \\f\\Kn,p sS <5„, \\f\\p ^  n}cW.
Set

Vn = { fe C b(X, Fp): \\f\\Kn,-p ^  ön, \\f\\p ^  n}.
oo

The absolutely convex hull V0 of the set IJ Vn is a ß0p neighborhood of zero since pП = 1
is a norm and V0 is a neighborhood of zero for the finest locally convex topology on 
Cb(X, Fp) which agrees with t CjP  on up -bounded sets. Hence, there exists a bounded 
real function on X  vanishing at infinity such that

V = { fe C b(X,Fp): \\gf\\P ^  1}c F0.

We will show that the set

0 = { f i C b(X ,F ): ||g /||p S l}

is contained in W. In fact, let W. Since lim S f= f in the topology t, it suffices
to show that őfd W for each 0<<5< 1. Sólet 0 < ő < l. For each h£Cb(X, F), 
let R=noh where n: F-*Fp be the quotient mapping. The set Ap—{R: h£Cb(X, F)} 
is Tcg-dense in Cb(X ,F )  because Cb(X)<S> FpczAp. Since f £ V c V 0, there are

N N
f d V „, i= l ,  and AjgR with У  \Xx\ ^ l  and / =  h f .  Let e> 0  bei — 1 i=l
such that e + (5 • and e + <5 /г,<иг for г = 1, Let К bean arbitrary
compact subset of X  and set Gi=KUK„., i= l , . . . ,N .  Let_ 1г-£Сь(Х, F) be 
such that W i-R 'tW o^^e, i= l , . . . ,N .  Then |IMIlG(>P4 |f iilk ,P^e+<5ni< n i. 
Hence the open set Zi={x£X: р(й,-(х))<иг} contains the compact set Gt. 
Choose (pi£Cb(X), O ^ c p ^ l, cpt= 1 on G;, (pt= 0 on X — Zt and set йг=<р(h\. 
Then ||/г(||р=ёЛ;, \\öf-hi\\к,р<е and ||А,||.КИ1,р:§е+(5||/Мп.>Р=£г+0• <5ni<<5Bi. Thus
hi£Wni<zW andso/i0=  у  ̂ h ^ W .  Let 0 be such that | |/ | |P< M  and n ^ M
for j= l ,  ThesetA = {hdCb(X,F): ||fi||p S  M ) isup-boundedand Sf£A. Also

\\h0-S f\\K,p S  ^  |Aj| ||Я,—̂ yf|| Ш ei = 1
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and h0£A. This proves that ö f  belongs to the zcp -closure of W in A. Since z agrees 
with xCtP on A and since W is т-closed we have Sf£ W. This proves that Oc W and 
so W is a ß0p-neighborhood of zero.

b) It follows easily from a).
Corollary 4.3. An absoluetly convex subset W of Cb(X, F) is a ß(^-neigh

borhood of zero iff for each M >  0 there exist a compact subset К o f X  and <5>0 
such that

{feC h(X, F): \\f\\K,P ^  «5, \\f\\p s  M)czW.
Proposition 4.4. ß0p=y[up, гс>р].
Proof. Let W be an absolutely convex neighborhood of zero in Cb(X, F) 

for the topology y„=y[up, тср]. By the definition of yp (see [23]), there exist a se
quence (Kn) of compact subsets of X, a sequence (<5„) of positive numbers and <5>0 
such that

Ü (^1 n  v + v 2 n  2V+... + V„ n  nV)czWn=l
where Vt= { fe C b(X,F): | |/ | |Xi>̂ ^ }  and V = {f: \\f\\p^d). Let M >  0. I f «  
is such that nS >M, then

{ f í C \ X ,  F): \\f\\p ^  M, \\f\\Kn'P ^  <5n}cFn П nVczW.

Thus W is ß0p -neighborhood of zero by the preceding corollary. This proves that 
yp^ ß 0'P. For the inverse inequality, we observe first that the result holds when p 
is a norm in F  as we have seen in the proof of the Theorem 4.2. In the general case, 
let Mp, Fp and л  be as in the proof of Theorem 4.2 and let IF be a ß0p -neighborhood 
of zero. By Lemma 4.1, there exist a sequence (K„) of compact subsets of X  and a 
sequence (an) of real numbers, with such that

W i = n  { f£ C b(X, F): | | / | |K„ ^  an}aw .П= 1

Since p is a norm, we have ß0,p=y[up, xc,p]=yp and hence the set 

m =  n  {f € C b(X,Fp): \\f\\K ^  a j
n= 1 ">P

is a yp -neighborhood of zero. Hence, there exist a sequence (Gn) of compact subsets 
of X, a sequence (<5„) of positive numbers and <5=-0 such that

О = 0  (Fi П y + v 2 П 2V+... + V„ П nV)aW 2n = l
where

V„ = {f e c \ x , Fp): \\f\\Gn _ ^  <5„}, V =  { Д С \Х ,  Fp): ||/||_ ^  <5}.
Setting

=  {f £ C \ X , F): | | / | |Сп р <  S„), Z  = { f£ C b(X, F): \\f\\p <  6),
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we have that

u  {Zx n  z+z2 n  2Z + .. .+ Z , П nZ}czW71 = 1

and so Ж is a yp -neighborhood of zero. This completes the proof.
As in the locally convex case (see [7]), we will call an element m of MW(B(X), E ')  

т-additive iff ms£Mx(X) for each s£E. An argument similar to the one used in the 
locally convex case shows that an mdM w(B(X), E ')  is т-additive iff there exists an 
extension of m to a set function p=mx: Bo (X)-+E' such that:

(1) ps is a т-additive regular Borel measure for each s£E.
(2) М Л  < 00, where, for А в Bo(X ),pw(A) denotes the supremum of all

П
2  |ju(Zj) ji| for all finite Bo (^-partitions (Al)"=1 of A and all choices of st£ W.

i = 1
It is also shown that \i is unique, p is a т-additive regular Borel measure on X  and 

mw coincides with the restriction of pw to B(X). Integrals, with respect to p, of E- 
valued functions on X  are defined as in the case of m with the only difference that we 
consider partitions into Borel sets. We will denote by MWx(Bo(Ä), E') the space of 
all p: Bo(X)-^E' with properties (1) and (2) and by Mx(Bo(X), E ') the union of 
all M Wtl(BO(X), E ')  for all neighborhoods W  of zero in E.

We omit the proof of the following easily established.
P roposition 4.5. Let В be a base at zero in E and, for each W£ B, let qw 

denote the Minkowski functional o f the bipolar Ww> of W. Then, the locally convex 
topology on E generated by the family of seminorms qw, W£ B, coincides with the 
finest locally convex topology on E coarser than the given topology of E.

We will denote by Ec the vector space E equipped with the finest locally convex 
topology on E coarser than the given topology. It is easy to see that E '—E'c.

D efinition 4.6. 1) A set Ф of linear functionals on Cb(X, E) is called tight iff 
there exists a neighborhood W  of zero in E satisfying the folloving two conditions:

a) There exists A>0 such that the set {f£C b(X, E): f{X )c.X W )  is contained 
in the polar Ф0 of Ф in Cb(X, E).

b) For every e>0 there exists a compact subset К of X  such that \<p(f)\^e 
for each ср£Ф and each f£ C b(X ,E ) with f(X)<zW  and / = 0  on K.

2) A subset H  of M(X) is called tight iff H  is norm bounded and for each e>0 
there exists a compact subset К  of X  such that |w |(F)Ss for each mpH  and each 
V£B(X) contained in X —K.

3) A subset H  of M(B(X), E ')  is called tight iff there exists a neighborhood W 
of zero in E with H a M w(B(X), E ') and such that the set {mw: m £H\ is a tight 
subset of M(X).

4) A m£M(B(X), E') is called tight iff the singleton {m} is tight.
It is easy to see that every tight member m of M(B(X), E ') is т-additive and hence 

it has a unique extension mr to a member of M r(Bo(X), E'). It is also easy to see 
that if m£Mw(B(X), E ') is tight, then given e>0 there exists a compact subset К 
of X  suchthat (mz)w(X—K )^e . We will denote by M ,(Bo(X),E ') the subspace
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of all tight members of Mt(Bo(JT), E'). We can verify easily that if m £M t - 
•(Во (X), E '), then every f£ C b{X, E) is m-integrable.

Proposition 4.7. Let m£M,(Bo(X), E'). Then, the mapping 
is an element o f the dual space o f (Cb(X, E), ß0).

Proof. Let W be a neighborhood of zero in E for which mw(X)<°° and p 
denote the Minkowski functional of W00. Then mw—mp. Let now r>0 and choose
a compact subset К  of X  such that mp(X — K )< ^ .  Let d> 0 be such that 

dmp(X )< - i .  If now f£ C b(X, Ec) with \\f\\K,P=d and ||/Hp- r ,  then

|y"/t/m| — J fd m  +  f  fdm — dmp(X) + rmp(X —K) — 1.

This (by Corollary 4.3) shows that the set V= {f£C b(X, Ec): fdm 1- 1} is a

ß0p-neighborhood of zero in Cb(X, Ec). Thus there exists a bounded real function g 
on X  vanishing at infinity and such that

V ^ { f ^ C \ X , E cy. ||g /||p - l } c F .
If now f£ C b(X ,E ) with (gf)(X)c:W , then f ^ K  and so \ f f d m \ ^ l .  It follows 
that the mapping f ^ m ( f )  is /?„-continuous in Cb(X,E).

T heorem 4.8. (Cb(X )® E ,ß0)'= M t(Bo(X),E ').
Proof. Every m£M,(Bo(X), E ')  defines a /?„-continuous linear functional on 

Cb(X)® E  by the preceding proposition. Conversely, let cp£(Cb(X)®E, ß0)'. 
Since /?о = и, there exists (by Proposition 3.7) a unique m£M(B(X), E') such that 
(p(f)= Jfdm  for each f£ C b(X)® E. We will show that m is tight. In fact, let e>0 
and let V —{f£C b(X)®E: \q>(f)\ — 1}. There exist a balanced neighborhood W  of 
zero in E, a sequence (Kn) of compact sets in X  and a sequence (a„) of reals, with 
0=>a„ — such that

П  { fd C b(X)®E: f(K n)<zanW}c:V
П — 1

(by [13], Theorem 3.1). Let n0 be such that a„^ 1/e, if п> пй. If K= IJ Kt and
i=l

S = min {cal , ..., sa„ J ,  then
{ fe C b(X)®E: f(X)czW,f(K)czöW}c:EV.

Using Proposition 3.5, we get that mw(A )^e  for each cozero set A contained in 
X —K. For every zero set Z a X —K there exists a cozero set A with ZczAczX—K 
and so mw(Z)<m w(A )^ e. By regularity, mw(A)^ e  for each AfB(X) disjoint 
from K. This proves that m is tight. If mx£M,(Bo(X), E') is the unique extension of 
m, then (p(f)= J fd m =  J f  dmx for each f£ C b{X)®E  and the result follows.

Corollary 4.9. I f  Cb(X)® E is ß0-dense in Cb(X,E), then (Cb(X, E), ß0)'=  
= M,(Bo(X), E').
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It is clear that every tight linear functional cp on Cb (X, E) is continuous with 
respect to the uniform topology. Thus there exists a unique /и9СЛТ(В(Л'), E') 
such that <p(f)=Jfdm  for each fd C b(X)(g)E. The following Theorem gives the 
relationship between tight subsets of M(B(X), E ') and tight sets of linear functions 
on Cb(X, E).

T heorem 4.10. I . I f  Ф is a tight set o f linear functionals on СЬ(Х, E), then the 
set Нф = {mv: <р£Ф} is a tight subset o f M(B(X), E').

II. Let H c M t(B(X), E') and let Фн = {фт : m£H}, where (pm(f)= J fd m  
for all f£ C b(X, E). Then H is tight iff Фн is tight.

III. I f  Cb(X)® E is ß0-dense in Cb(X, E), then a subset Ф of (Cb(X, E), /?„)' 
is tight iff the set Нф is tight.

Proof. I. Let IV be a balanced neighborhood of zero in E and A=»0 be such 
that a) and b) of 1) in Definition 4.6 are satisfied. By Proposition 3.5, we have 
mw(X ) s  1/A for all т=тч,{(р£Ф). Let e>0 and let К be a compact subset of X  
such that И /) |= ёе  for all f f f f b(X ,E ) with /= 0  on AT and f (X )a W .  If V is 
a cozero set contained in X —K, then (by Proposition 3.5) we have (т,р) 
for all ср€Ф. Using the regularity of mv , we get that (m<p)w(A)^e  for each A£B(X) 
disjoint from К and each (р£Ф. Hence Нф is tight.

II. If Ф is tihgt, then HH is tight by I. Conversely, suppose that H  is tight and let 
IP be a balanced neighborhood of zero in E such that the set {mw: m£H} is a 
tight subset of M(X). If p is the Minkowski functional of IP00, then mp=mw for 
each mdH. Let d>  0 besuchthat mp(X )^ d  for all m£H. If e>0, then, using 
the Corollary 4.3, we get that the set

A = j/G C i (Ar, Ec): | J /dm| ё  в for all m£#}

is a /?0 -neighborhood of zero in Cb(X, Ec) and hence there exists a bounded real 
function g on X  vanishing at infinity such that

{f£C b(X,Ec): IIg/llp — 1}c A.

Let К be a compact set in X  such that |g (x ) |s l if x$K. If now fd C b(X, E) 
vanishes on К and f(X )a W ,  then g(x)f(x)£ W for each x£X  and so ||g /||p^ l
which implies that \J fd m \^e  for each m£H. Also if f(X)<z-^W, then \<pm(f)\ =

— \ J f d m ^ \  for all m£H. This proves that Фн is tight.

III. It follows easily from I and II and from Corollary 4.9 since, for ср£Ф and 
m=m4>, we have J fd m  = cp(f) for all f f C b(X, E).

Proposition 4.11. I f  X  is not empty, then ß0 is locally convex if f  E  is locally 
convex.

Proof. Clearly ß0 is locally convex when E is such a space. Conversely, suppose 
that ß0 is locally convex and let IP we a zero-neighborhood in E. Let x06 X  and let h 
denote the characteristic function of the singleton set {x0}. Then the set

V=  {/€ СЬ(Х, E): (hf)(X) c: IP}
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is а До-neighborhood of zero. By hypothesis, there exists a convex Д0-neighborhood 
Vx of zero contained in V Let Wx be a balanced neighborhood of zero in E and g 
a real function on X  vanishing at infinity with || g|| s  1 and such that

V2 = { fe C b(X ,E): (gf)(X)czW 1}czV1.
Since Vx is convex, it follows easily that the convex hull W2 of WL is contained in W. 
This proves that E  is locally convex.

Proposition 4.12. On Cb(X ,E ) the topology o f uniform convergence on the 
tight subsets of M,(Bo(2f), E') is coarser than Д0. I f  X  is not empty and E not locally 
convex, then the two topologies are not equal.

Proof. Let H aM ,(Bo(X ), E ')  be tight. As we have shown in the proof of 
Theorem 4.19, there exists a continuous seminorm p on E and a bounded real func
tion on X  vanishing at infinity such that

{ f iC b(X ,E): ||g/]|p — 1}c H°

where H° denotes the polar of H  in Cb(X, E). This proves the first part of the pro
position. The second part follows from the preceding proposition.

Suppose now that E is locally bounded and let || • || be a p-norm (0 < p s l)  
giving the topology of E. If JV—\seE: Ml —1}> then °° for each
т£М(В(Х), E ') and the mapping m>-+mw(X) is a norm on M(B(X), E'). Thus 
M(B(X), E ') becomes a normed space. The same happens on the space Mt ■
• (Bo(A), E').

T heorem 4.13. Let E be locally bounded and let F=Cb(X, E) and 
G=M t(Bo(X), E'). Then every absollutely convex <j (G, F)-compact subset A of G 
is norm-bounded.

Proof. Let || • || be a p-norm on E giving its topology and let W={s£E: 
Ml S i}. If q is the Minkowski functional of the bipolar W00 of W, then mq(X)— 
=mw(X )< oo for each mfM,{Bo(X), E'). If f£ C b(X, E), then \{ fd m \^ \\f\ \q- 
■mq(X) for each m£G. Hence the set B={f£F: | | / | | ,S  1} is o{F, C)-bounded. 

Also, the polar A0 of A in A is a Mackey neighborhood of zero in F for the pair 
(F,G). Hence there exists 0 suchthat B(zdA° and so t c t 00c Ä  So, for 
т вA, we have

mw(X) =  mq(X) = sup{\ffdm \: f £ ß j  s  d

which shows that A is norm-bounded.
In case A is a P-space, every compact subset of X  is finite. Thus, by [13], Theorem

3.3, Cb(X)<S)E is До-dense in СЬ(Х, E) and so the dual of the space (Cb(X, E), Д0) 
coincides with the space Mt{Bo{X), E '). Modifying now the argument used by Ku- 
rana-Choo [17] for the case of a normed space E, we have the following analogous 
result.

T heorem 4.14. I f  E  is locally bounded and X  a P-space, then for every countably 
o(M,(B0(X), E'), Cb(X, E))-compact subset A of M t(Bo(X),E ') and every £>0 
there exists a finite subset К of X  such that mw(X -K )-^ e  for each m£A.
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Theorem 4.15. I f  E is locally bounded and X  a P-space, then the strict topology 
on Cb(X, E) is finer than the Mackey topology for the pair (F, F'), where F= Cb(X, E).

Proof. Every absolutely convex a(F', F)-compact subset A of F ' — 
=  Mt(Bo (X), E ') is tight (Theorems 4.13, 4.14). The result now follows from 
Proposition 4.12.

Next, we will look at the question of when is the space (Cb(X, E), /?„) sepa
rable. We will need the following

Lemma 4.16. The mapping
T: {Cb{X),ß0)* E -~ (C b{X ,E ),ß0), T (J ,s)= f® s,

is continuous.
Proof. Let / a—f  in (Cb(X), ß0) and sa—s in E. We will show that f a®sa-+ 

-+f®s in (Cb(X, E), ß„). In fact, let W be a neighborhood of zero in E and h a 
bounded real function on X  vanishing at infinity. Set V={g£Cb(X, E): (hg)(X)c: 
c  W}. Choose a balanced neighborhood Wx of zero in E with Щ + +
There exists d ^ l  suchthat \\hf\\^d  and s£dWx. Let a0 be such that sx—s£d~1l¥1 
and \\h(fx—/) || if а ё а 0. If now a S a 0, then, for each x£X, we have

h (x)[fx (x) sx- /(x )  s] = h (x)[fx (x)-/(x)](sa - s )  + h (x)[fi (x) -/(x)] s +
+ h(x)f(x)(sx—s)£JV1 + W1+W1<zW

and so f a®sx—f<gis£.V. This completes the proof.
Recall that X  is called separably-submetrizable if it can be mapped by a one-to- 

one continuous function onto some separable metric space.
T heorem 4.17. Suppose that X  is not empty and that the dual space E ' o f E  is 

not trivial. Then:
1) I f  (Cb (X, E), ß0) is separable, then E is separable and X  is separably-sub

metrizable.
2) (Cb(X) <g)E, ß0) is separable iff E is separable and Xis separably-submetrizable.
3) I f  Cb(X)(g)E is ß0-dense in Cb(X, E), then (Cb{X, E), ß0) is separable iff 

E is separable and X  is separably-submetrizable.
Proof. 1) Let (/„) be a sequence in Cb(X, E) which is ß0 -dense and let x£X . 

It is easy to see that the sequence (/„(x)) is dense in E and thus E  is separable. Also, 
choose tpeE', <p^0, and define T : (СЬ(Х, E), ß0)—(Cb(X), ß0), T ( f)  = q>of 
It is easy to see that r i s  continuous and onto. Thus (Cb(X), ß0) is separable and so X  
is separably-submetrizable ([20], p. 509).

2) If (Cb(X)®E, ß0) is separable, then an argument similar to that used in 1) 
shows that E is separable and X  is separably-submetrizable. Conversely, let E  be 
separable and X  separably-submetrizable. Then {Cb(X), ßn) is separable ([20], p. 
509) and so F= (Cb(X), ß0)X E  with the product topology is separable. Let

S: F -  (<Cb{X)®E, ß0), S ( f)  = /® s.
By Lemma 4.16, S is continuous and thus S(F), with the topology induced by ß0, 
is separable. Since Cb{X)®E  is the linear span of S(F), the result follows.

3) It follows easily from 1) and 2).
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UN THÉOREME SUR LA MESURABILITÉ 
DES FONCTIONS DE DEUX VARIABLES
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Soient R l’espace des nombres réels et R2= R xR . On sait que la mesurabilité 
(au sens de Lebesgue) [la propriété de Baire] de toutes les sections f x(t)~ f(x, t) 
d’une fonction / :  R2-»R et á la fois la continuité approximative et la continuité 
presque partout (relativement ä la mesure de Lebesgue) de toutes les sections f y(t) = 
f( t, у) impliquent la mesurabilité (également au sens de Lebesgue) [la propriété de 
Baire] de la fonction /  comme la fonction de deux variables (voir [6]). D’autre part, 
l’hypothése du continu implique l’existence d’une fonction f :  R2-*R non-mesurable 
et n’ayant pás de la propriété de Baire et teile que toutes ses sections f x sont boréliennes 
et toutes ses sections f y sont approximativement continues (voir [2]).

Dans cet article nous introduisons une condition (plus faible que la continuité 
approximative et la continuité presque partout á la fois) relative aux sections f y 
qui implique la mesurabilité [la propriété de Baire] de la fonction /  ayant ses sections 
f x mesurables [avec la propriété de Baire].

Definition. On dit qu’une fonction g: R-*R  a la propriété (H) lorsqu’il exis- 
te pour tout point x£R  deux ensembles ouverts U fx) et U fx)  ayant ses densités 
supérieures positives au point x  et tels que la fonction partielle g/lU fx) U{x}] est 
semi-continue supérieurement au point x  et la fonction partielle g/[U2(x)U {x}] 
est semi-continue inférieurement au point x.

Theoreme 1. Si toutes les sections f y d ’une fonction f: R2-*R ont la propriété 
(H) et toutes les sections f x sont mesurables, la fonction f  est également mesurable.

Dans la démonstration de ce théoréme nous profitons des lemmes suivants:
Lémmé 1 (voir [1] et [3]). Sóit (X, M, р) un espace dönt la mesure o-finie est p. 

Supposons qu’une fonction f:  X-+R sóit telle que, quel que sóit le nombre e>0, la 
classe d’ensembles

De = {D£M: о sc /  S  e}
D

satisfasse á la condition suivante:
(E) il existe pour tout ensemble AZM de mesure p positive un ensemble DdDc 

tel que D a  A et p(D)> 0. Alors la fonction f  est p-mesurable, oil p désigne le com- 
plété de la mesure p.

Lémmé 2 (voir [4]). Sóit A a R 1 un ensemble mesurable. II existe un ensemble 
BczA du type Fa et tel que m2(A —B) = 0 (m2 désigne, comme d ’habitude, la mesure 
de Lebesgue dans R2) et В с  +B; c’est-á-dire: quel que sóit le point (x, y)£B, x  est
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un point de densité de l’ensemble By= {t£R: (t, y)£B} et у est m  point de densité de 
l’ensemble Bx = {t£R: (x, t)f_B}.

D emonstration d u  théoréme 1. On peut supposer que la fonction /  soit 
bornée, comme dans le cas contraire on peut considérer la fonction arctg/.

Démontrons que la fonction /  satisfait ä la condition (E) du lemme 1. Soit 
Ac.R2 un ensemble mesurable tel que m2(A)> 0. Fixons le nombre e>0. En 
appliquant le lemme 2 ä l’ensemble A, on peut écrire qu’il existe un ensemble B a A  
du type F„ et tel que В a  +B  et m2(A — i?) =  0. Désignons par a l’infimum essentiel 
infess /(x).

L’ensemble B1 = {(x, y)€B: a s /(x ,y )< fl+ e /8} est de mesure extérieure po
sitive. Les sections f y ayant la propriété (H), il existe pour tout point (x, y)^B i un 
intervalle ouvert d’extrémités rationnelles U(x, y) tel que Byf]U(x, y) ̂  0 et 
f(t,y)<ct+e/8+e/8=a+e/4 pour tout point t£U(x, y).

La famille des intervalles ouverts d’extrémités rationnelles étant dénombrable 
et l’ensemble Вл étant de mesure extérieure positive, il existe un intervalle de la 
famille {U(x, y)}(JCi:v)€Bl, que nous désignons par U0 tel que l’ensemble C= 
=  {(л:, y)£B1; au point (x, y) correspond l’intervalle C/0} est de mesure extérieure 
positive. Soit D0={y£R; il existe x tel que (x,y)£C}. L’ensemble D0 est de 
mesure extérieure positive. Désignons par D l’ensemble de tous les points de den
sité extérieure de l’ensemble D0 et par F  l’ensemble (U0xD)C) B. L’ensemble F 
est mesurable et de mesure positive, puisque m(Fy) > 0 pour presque tous les points 
y£D0 et F czB cA .

Démontrons encore que /(x , y )s a + e  pour presque tous les points (x, y) 6 F.
En effet, supposons, au contraire, que l’ensemble G={(x, y)£F: /(x , y)>a+e} 

soit de mesure extérieure positive. Les sections f y ayant la propriété (El), il existe 
pour tout point (x, y)£G  un intervalle ouvert d ’extrémités rationnelles V(x, y ) c  U0 
tel que V(x, у)Г\Вух  0  et. f(t, y)>ö + e pour tout t£V(x, у). De nouveau, la 
famille de tous les intervalles d’extrémités rationnelles étant dénombrable, il existe 
un intervalle de la famille {V(x, y)}(Xtŷ G, que nous désignons par V0 tel que 
l’ensemble

К =  {y£R: il existe un point x£R  tel que (x, y)cG  et au point (x, y) corres
pond l’intervalle V0} est de mesure extérieure positive.

En désignant par N  l’ensemble de tous les points de densité extérieure de Геп- 
semble К, remarquons que N a D . Fixons un point (хг, уч) € (F0 X N) П B. On a, 
d’une part, /(x l5 yj^-a+а pour tout y c K  et d’autre part, pour tout у  f  D0,

f ( x i ,y )  <  a + e/8 + e/S = a + e/4,

ce qui contredit la mesurabilité de la section f Xl. Par conséquent, l’ensemble 

L  =  {(x, j)eF : a ^ / ( x ,  y) ^ a + e )

est mesurable, de mesure positive et osc/= £ . Comme, de plus, L c F c B c z A ,  
l’hypothese du lemme 1 est done satisfaite et notre démonstration est achevée.

Remarque 1. L’hypothése du continu implique qu’il existe une fonction 
/ :  R2-*R non-mesurable et telle que toutes ses sections f x sont approximativement 
continues et toutes ses sections f y sont telles que, quel que soit le point x£R , il

Acta Mathematica Hungarica 41, 1983



SUR LA MESURABILITÉ DES FONCTIONS DE DEUX VARIABLES 91

existe un ensemble onvert U(x) tel que ш ([/(х)ПК)>0 pour tout entrourage ouvert 
V du point x et la fonction partielle / / [ U(x) U {x}] est continue au point x (voir [5]).

Theoreme 2. Sóit f :  R2-*R une fonction. Si toutes les sections f y ont la pro- 
priété (H) et toutes les sections f x ont la propriété de Baire, la fonction f  a également la 
propriété de Baire.

On peut démontrer ce théoréme d’une fa?on analogue que le théoréme 1. Pour- 
tant nous montrons une autre démonstration.

Dans ce but remarquons que:
R emarque 2. Si la fonction g: R-+R a la propriété (H), eile est ponctuellement 

discontinue.
R emarque 3. Sóit S e i ?  un ensemble dense et dénombrable. Si la fonction 

g: R —R a la propriété (H), on a
lim inf g(i) á  g ( x )  ^  l i m  sup g(i) 

res res
pour tout xeR.

D’apres le Théoréme 3 de Particle [6] le Théoréme 2 résulte immédiatement des 
Remarques 2 et 3.
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DIFFERENTIAL LIPSCHITZIANNESS TESTS ON 
ABSTRACT QUASI-METRIC SPACES

M. TURINICI (Iasi)

0. Introduction

An important problem concerning a wide class of mappings between (quasi-) 
metric spaces is that of finding sufficient conditions in order that a “local” Lipschitz 
property should imply a “global” one (the words “local” and “global” being precised 
by the context of the problem considered). As fundamental results in this direction 
one must consider Dieudonné’s mean value theorem [14, eh. VIII, § 5] on one hand, 
as well as Brezis—Browder’s semigroup invariance theorem [7, Theorem 2] on the 
other hand, proved — under a continuity hypothesis — by a supremum and, respec
tively, ordering technique. It is the main aim of the present note to demonstrate 
that these results may be viewed as particular cases of a general differential lipschitzi- 
anness test for a class of (not necessarily continuous) closed mappings depending 
upon a “spatial” parameter, the basic tool in proving such a common extension 
being a maximality principle on (quasi-) ordered quasi-metric spaces that may be 
considered as an abstract version of the well-known Ekeland-Brondsted’s one
[16,8]. A number of further applications of our main result, especially to flow- 
invariance problems as well as to projective completeness criteria will be discussed 
elsewhere.

1. A maximality principle

Let X  be an abstract nonempty set and let S. be a quasi-ordering on X  (i.e., a 
reflexive and transitive relation on X). For any nonempty subset Y of X  and any 
x£Y,  Y(x, =)  will denote the subset of all y€ Y with х ё у . A sequence (x„: 
ndN)  in X  will be called monotone iff x ^ X j  whenever i s / ,  i,jdN, and bounded 
above iff x„^y, all n£N, for some y £ X  (in which case, у  will be termed an upper 
bound of this sequence). Furthermore, if we introduce a quasi-metric d on X  (that is, 
a mapping d: X 2-*R+ satisfying all the requirements of a metric except sufficiency) 
a sequence (jc„; n£N) in X  will be called quasi-asymptotic iff for any e> 0  there 
exists л=п(а)бА with d(xn, x„+1)<£, and an element z ^ X  is said to be d-maximal 
iff y£ X  and z ^ y  imply d{z,y)=0. A satisfactory motivation for introducing these 
notions will be offered later; for the moment, we are only interested to state and prove 
a useful Zorn maximality principle on this class of quasi-ordered quasi-metric struc
tures, a result that may be formulated as follows.

T heorem 1. Suppose the quasi-metric space (X, d) and the quasi-ordering ^  on 
X  are such that

(i) any monotone sequence in X  is a quasi-asymptotic one,
(ii) any monotone Cauchy sequence in X  has an upper bound.
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Then, for every x£X, there is a d-maximal element z£X  with the property x ^ z .  
Proof. F irstly, we claim any x£X  has the  property

(1) for every £>0 there exists y ^ x  suchthat d(y, z)>e, for all z^y .

Indeed, suppose (1) is not valid; then there must be a number e>0 such that for 
every y ^ x  there exists zgy  with d(y,z)^e.  It immediately follows that a mono
tone sequence (y„; n£N) in X(x,  S ) may be found with d(y„, уп+1)Ше, all 
n£N, contradicting (i) and proving our claim. In this case, given x£X,  a monotone 
sequence (xn; n£N)  in X(x, may be constructed with

(2) n£N, y£X  and x „ S y  imply d(x„,y) <  (1/2)".

By (ii), xn^ z ,  all n£N, for some z£X; so combining with (2), x„— z as 
Evidently x á z . Now suppose y ^ X  is such that zs.y; then xnS y ,  all n£N, so 
that, again by (2), x n-*y as n —°° and this gives d(z,y)=0. Consequently, z satis
fies all the requirements of the theorem and the proof is complete. Q.E.D.

As an important particular case, let (X , be an abstract quasi-ordered set
satisfying

(iii) any monotone sequence in X  is bounded above
and let <p be a function from X  into R, decreasing ( x ^ y  implies q> (x) S (p (y)) and 
bounded from below (<p(x)^b, all x£X,  for some bfR).  Then, defining a quasi
metric d on X  by the convention

(3) d{x,y) =  \(p{x)-<p(y)\, x, у £X,

conditions (i) +  (ii) are automatically satisfied and the above result reduces to the 
well-known Brezis—Browder’s ordering principle [7] (see also I. Ekeland [17]). More
over, it was shown in Brezis—Browder’s paper that their fundamental contribution 
may be regarded as a considerable extension of the Bishop-Phelps’ maximality result
(4) (see also J. P. Aubin and J. Siegel [1], A. Brondsted [10] as well as I. Ekeland [15]) 
or. equivalently, — after a pattern discovered by N. Bourbaki [5] and refined by A. 
Brondsted [9] — of a fixed point Caristi—Kirk’s result [12,19] (see also F. E. Browder 
[11] as well as C. S. Wong [31]) and therefore the above theorem may be also consi
dered as extending all these results.

A close analysis of the conditions involved in Theorem 1 shows the boundedness 
property imposed in (ii) is, in fact, not intimately related to the notion of Cauchy 
sequence so, it seems to be natural to replace it by a more appropriate property such 
as convergence. To do this, we need a number of new notational conventions. Let 
X, and d be as before. A subset Y of X  will be termed order-closed iff for any 
monotone sequence (x„; ndN) in Y  and any x £ X  with xn-*x as n-*-<»we have 
x g f ;  in this context, the considered quasi-ordering^ on X  is said to be self-closed 
iff X(x, ё )  is order-closed for all x£X.  Also, the underlying quasimetric space 
(X, d) will be termed order-complete iff any monotone Cauchy sequence in X  is 
a convergent one. Now, as a useful variant of the above result, we have
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Theorem 2. Suppose the elements X, ё  and d are such that condition (i) as well 
as

(iv) S  is a self-closed quasi-ordering,
(v) (X, d) is order-complete

hold. Then, for every x£X, there is a d-maximal element z£ X  with the property
X S . Z .

Proof. Let (xn; n£N)  be a monotone Cauchy sequence in X. By (v), xn-*x 
as n-»“  for some x£ X  which gives, by (iv), x„^x, all n£N,  proving x is an upper 
bound of this sequence. Consequently, Theorem 1 applies and the proof is complete.
Q.E.D.

Let us call a sequence (x„; n£N ) in X asymptotic (M. Turinici [28]) iff 
d(xn, x n+1) ^ 0 as n —oo? and the underlying quasi-ordering S  on I  semi-closed 
(L. Nachbin [22, p. 100]) iff X(x, =) is closed for all x£X.  In such a situation, if 
we suppose condition (i) is replaced by the stronger one

(i)' any monotone sequence in X  is an asymptotic one
and/or condition (iv) by

(iv)' S  is a semi-closed quasi-ordering
then, the corresponding variant of Theorem 2 appears as a quasi-order as well ад 
quasi-metric extension of a similar author’s result [27]. Moreover, if the underlying 
quasi-ordering ^  on X  is taken of the form x ^ y  iff d(x,y)^ f(x) —/(>’), /  being 
a function from X  into R satisfying

(vi) f  is lse and bounded from below
the above theorem reduces to Ekeland-Brondsted’s maximality result [16,8] (see 
also M. Turinici [26] and J. D. Weston [30]) or, equivalently — by the same Bour- 
baki—Brondsted’s pattern — to the Caristi—Kirk’s fixed point theorem quoted 
before (see also S. Kasahara [18], L. Pasicki [23], as well as J. Siegel [25], for a number 
of interesting new viewpoints in this direction) so, Theorem 2 appears also as a com
mon extension of all these contributions.

2. The main results

Let (V, d) be a complete quasi-metric space. For any v£V, rsO  and any non
empty subset W of V, let d(v, W) denote the usual distance between v and W 
(the infimum of all d(v, w), w£ W) and, in case v£ W, let W(v, r) denote the W- 
closed sphere with center v and radius r (the subset of all w£ W with d(v, w)^r).  
Let /  be a given interval of the real axis and F a (nonempty) closed subset of V. By 
a (J, F)-closed process on V we mean a mapping (t, v)^—S(t, v)=S(t)v from J x V  
into V satisfying the closedness condition

(vii) for any decreasing sequence (?„; n£N) in J  and any sequence (vn; n£N) 
in F with t„-»t,v„—v and S(t„)vn-*w as n-*-°° for some t£J, v£F  and 
w£ V respectively, we have S(t)v=w.
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As a notational convention, for any t£J  and any subset W of V, S(t)W  will denote 
the subset of all S(t)w, W. Now, under these preparatory facts, the main dif
ferential lipschitzianness test of the present note may be stated as follows.

Theorem 3. Let J, F and S  be as above and suppose there exist a couple of func
tions К and H  from J  into R with К  increasing, H  strictly increasing, a number A==0, 
and a denumerable subset A o f J  such that

(viii) for any s£A, not identical with the left end-point of J, we have

(4) lim inf ( l/ (H(s)-H(s-t)))d(S(s)v,  S(s- t)F(v,  K(s)~K(s-t)))  == A, 

for all elements vdF,
(ix) for any s£JC\A, not identical with the left end-point o f J  we have

(5) limmf d(S(s)v, S(s- t)F(v,  K(s ) -K(s- t ) ))  == A (tf(s)-tf (s-0)),

for all elements vdF.
Then, necessarily, the following kind o f Lipschitz property holds:

(6) d(S(b)u, S(a)F(u, K(b)-K(a ))) == X(H(b)~H(a)), all u£F, all a, b£J, a <  b.

Proof. Let n>->-an be a bijection of A onto A and let g: J->-R be defined, for 
every t£ j  by

{^{(1/2)"; an S  0 , if {л€А; an s  t) ^  0 ,
8K) l0 , if {«€A; ű, s í ) =  0 .

Evidently, g is monotone increasing on J  and,

(7) g (a„ )-g (0  S  (l/2)n, all t£J, t <  an, all n£N.

Define a new function / :  / —R  by the convention /( / )= yH{t)+ eg(t), t£J, 
у> 2  and e>0 being arbitrary fixed; clearly,/is also monotone increasing on J. 
Now, a,b£J, a<b  being fixed, let I  denote the (compact) interval [a, b] and X  
the cartesian product I x F  quasi-metrized by the usual “product” quasi-metric

e((t, u), (i, n)) =  |i-i |+ d (w , v), (t, u), (j , v)eX

and quasi-ordered by the convention

(8) (i, и) ё  (s, v) iff t a  s, d(u, v) ^  K(t) — K(s) and d(S{t)u, S(s)v) ^  f ( t )—f(s).

Firstly, X  is complete (hence order-complete) and, moreover (by a reasoning similar 
to that exposed in author’s paper [28]) order-asymptotic. Secondly, we claim that—in 
addition to these properties — the quasi-ordering ё  is also a self-closed one. Indeed, 
let the element (s ,v )£X  and the sequence ((?„, u„); n£N)  in X  be such that

(s, v) ^  (tn, un), n£ N, (/„, un) ^  (tm, u j ,  n ^  m, and (i„, un) -  (/, u)

Acta Mathematica Hungarica 41, 1983



DIFFERENTIAL LIPSCHITZIANNESS TESTS 97

as n -*■«> for some (t, и) £ X, that is,

(9) s = t„, d(v, u„) = K(s)-K(t„), d(S(s)v, S (Q un) ^ /(s )- /( t„ ) ,  n£N,
(10) tn S  tm, d(u„, u j  K(t„)-K(tJ,  d(S(tn)un, S ( t j u m) n ^ m ,
(11) tn — t and un -*■ и as n —*■ °°.
From the first part of (9) and (10) it immediately follows (by (11) and the monotoni
city of K) s ^ t  and d(v, u)^K(s)  — K(t). Moreover, from the second part of (10), 
(S(t„)u„; n£N)  is a Cauchy sequence in V hence, by completeness, S(tn)u„-+w as 
n -► oo for some w£V so that, again by (11) combined with our closedness hypothesis 
(vii), S(t)u=w which gives (taking the limit as in the second part of (9) and
remembering/is monotone increasing) d(S(s)v, S(t)u)^ f(s )—f(t) ,  and this proves 
our claim. In this case, Theorem 2 can be applied, so, for the prescribed element 
(b, u)£X an e-maximal element (s, v)£X (with respect to the underlying quasi-order
ing may be found with (b, u)s(s ,  v). We claim s=a. Indeed, suppose by con
tradiction s>a. For every r£l, r<s, and every w£F(v, K(s) — K{r)), the relation 
(s,v)^(r,w)  does not hold and therefore (since and d(v, w)^K(s)—K(r)) 
we must have (by the convention (8) combined with the definition of the function / )

d(S(s)v, S(r)w) >  y(H(s)-H(r)) + £(g(s)-g(r)),
so, taking infimum with respect to w and denoting for simplicity t —s —r,

(12) d(S(s)v, S(s — t)F(v, K ( s ) - K ( s - t ) ) ) ^ y ( H ( s ) - H ( s - t ) )  +

+ e(g(s)-g(s-t)) ,  0 < i ^  s — a.

Now, two cases are open before us: either s £ J \ A  or s£A. The analysis of these two 
cases may be performed as follows.

Case 1. s £ J \ A . In this situation, as an immediate consequence of (12) we have

d(S(s)v, S(s- t)F(v,  K(s) — K(s — t))) S  y(H(s) —H(s-t)),  0 <  t ^  s — a,

so, dividing by H(s)—H(s—t) and taking lim inf as t-+ 0+ we get a contradiction 
with respect to (4).

Case 2. s£A, that is s=a„ for some n€_N. Then, by (12) and the evaluation
(7), we get

d(S(s)v, S(s- t)F(v,  K (s ) -K (s - t ) ) )  ё  y(H(s)~H(s-Q)) + £(l/2)n, O ^ t ^ s - a ,

so, passing to lim inf as t —0 + , (5) will be contradicted. Therefore, in any case we 
reached an impossible situation and this shows s —a, as claimed. In this case, again 
by (8) coupled with the definition of / ,  the relation (b, u)^(a, v) becomes

ЪШа, d(u, v) s  K(b)—K(a), d(S{b)u, S(a)v) y(H(b)-H(a))+e{g(b)-g(a))

and this immediately implies

d(S(b)u, S(a)F(u, K(b) -K(a ))) S  y(H{b)-H(a))+s(g(b)-g(a)),
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a relation equivalent in fact to (6), because y>X and £>0 were arbitrarily chosen. 
Q.E.D.

Let F  be an abstract nonempty set and let D be a family of quasi-metrics on F, 
with (V, d) complete for any d£D. Also, let J  be a given interval of the real axis and 
F a subset of V, closed in (V, d) for any d£D.  By a (/, F, D)-closedprocess on V we 
mean a mapping (i, v ) ^ S ( t ,  v) = S(t)v from J x V  into V satisfying the closedness 
assumption (vii) with respect to every quasimetric d of D. In such a case, as an imme
diate extension of the main result, we have

Theorem 4. Let the elements D, J, F and S  be as before and suppose the couple 
of functions К and H from J  into R satisfies the general assumptions of the main result, 
as well as

(x) for every ddD, a number I(d )äO  and a denumerable subset A(d) o f J  
may be found such that (viii) and (ix) hold with X replaced by X(d) and A by 
Aid).

Then, necessarily, the evaluation (6) will be valid (with X = X(d)) for any quasi-metric 
d of D.

3. Some particularizations

Let (F, d) be a complete metric space and let F be a closed subset of V. By an 
F-closed process on F we mean a mapping ( t , v )^S ( t ,v )  — S(t)v from R +X V  
into V satisfying the closedness hypothesis (vii) with J = R +, as well as

(xi) S(0)v=v, all v£V.
Of course, any F-closed process is identical with an (R+, F)-closed process (in the 
sense of the preceding section) satisfying (xi). In this case, as an important particula
rization of the main result, we have

Theorem 5. Let F and S  be as before and suppose there exist a couple o f functions 
К and H from R + into itself with К increasing, H  strictly increasing and K(G) = H (0) = 
=  0, a number AsO and a denumerable subset A of R+ such that (viii) and (ix) hold 
with J  replaced by R+. Then, necessarily,
(13) d{S(t)u, F{u,K(t))^XH{t),  all t£R+, u£F.

Concerning this result, it must be observed that in case 2=0, the evaluation
(13) becomes
(13)' S(t)ueF(u, K(t)), all t£R+, m£F,
so, it may be interpreted as an invariance result with respect to the flows t>-+S(t)u 
issuing from F; for such a reason, Theorem 5 above is usually termed a “flow- 
invariance” result with respect to the F-closed process S on V, in which case, it may be 
compared with a classical Brezis—Browder’s result [7] (see also I. Ekeland [17]) as 
well as a number of concrete “non-semigroup” invariance conditions used by N. 
Pavel [24] and R. H. Martin Jr. [21] in case of a Banach space.

Again let (F, d) be a complete metric space and let У be a given interval of R. 
A mapping T: / —F will be termed order-closed provided that
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(xii) for any decreasing sequence (t„; n£N) in J  with tn-*t and Ttn-*w as 
n — °° for some t£ J  and w£V respectively we have Tt=w.

Evidently, any order-closed mapping T from J  into V may be identified with a (/, in 
closed process S  on V, constant with respect to its “spatial” variable (i.e., 
S(t)v=Tt, all tdJ, v£V). In this case, as another important particularization of the 
main result, we have

Theorem 6. Let J  and T be as above and suppose there is a strictly increasing 
function H from J  into R, a number A £0 , and a denumerable subset A of J, such that

(xiii) for any s £ j \ A ,  not identical with the left end-point of J, we have

(14) liminf (1 /( tf (s )- tf (s -O ))  d(Ts, T ( s - t )) ^  A,

(xiv) for any s£A, not identical with the left end-point o f J, we have
(15) liminf d(Ts, T ( s - t )) A (tf(s)-tf (s-0)).
Then, necessarily,
(16) d(Tb ,T a)^ l (H{b)-H (a) ) ,  all a,b£J,  a < b.

Evidently, the above result appears as a mean value theorem on abstract metric 
spaces, extending, from this viewpoint, a classical Dieudonné’s one [14, eh. VIII, § 5] 
(see also A. K. Aziz and J. B. Diaz [2] as well as N. Bourbaki [6, eh. I, § 3]). On the 
other hand, in case A is empty, the same theorem extends a similar Clarke’s result 
[13] (see also W. A. Kirk and W. O. Ray [20], as well as M. Turinici [29]). Finally, it 
should be noted that another way of investigating these problems is that offered by 
the differential inequalities theory (see, as a reference, J. Bebemes and G. H. Meisters
[3]); some of these aspects will be treated in a forthcoming paper.
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ON STRONG SUMMABILITY OF ORTHOGONAL 
SERIES BY EULER METHODS

H. SCHWINN (Gießen)

1. Let {(р,(х)} be an orthonormal system in [0, 1]. We consider real orthogonal 
series 2  c i (P t ( x )  with corresponding partial sums s k ( x )  and the Euler means of

i = 0
order q ((E, q)-means; 0<<?< 1)

where

(1)

We will show

n n n

t n ( x )  =  2  anksk (x) = 2  C i < P i ( x )  2  ank,
k =  0 1 = 0 k =  i

(n ^ k )  
(n <  k).

Theorem. I f  the orthogonal series 2  CiVÁ*)* 2  ™ q)-summable1 = 0 i = 0
1) to f(x) in [0, 1], then for any у >0

(2) lim 2  ank\sk(x)-f(x)\y =  0.
k =  0

(Summability and convergence have the meaning o f summability a.e. and conver
gence a.e.)

If (2) is satisfied, we call the underlying series strong (E, q)-summable with order 
у ([(£, q)]y-summable). In the classical case у = 2 similar results were established for 
different summability-methods, e.g. for (C, 1) by A. Zygmund [5]. For arbitrary y, 
G. Sunouchi [3] was the first to prove an analogous theorem for [(C, a)]7-summa- 
bility (a> 0) of orthogonal series.
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2. Some lemmas. We require some lemmas:

Lemma 1. I f  2 c?< co> en f or a > 0 , y > 0  1=0

I Í sup 2  dx  S  A (a, y) 2  C\S k=o J J i=o
1 kwhere ak (x)= ----— 2  sj(x)- (G. Sunouchi [3], Lemma 2).

к +1 j =о
oo CO

Lemma 2. The series 2  c í (P í ( x )> 2  c? <00» is (E, q)-summable (0<<7< 1) ij
i=0 1=0

and only if  {jmi(x)} is convergent, where

(3) a /m j <  mi+1 — mi <  ß'fml (0 <  a <  ß  <  °°).

Proof. With m t = i2 this was proved by O. A. Ziza [4]; c. f. also H. Schwinn [2].
oo

Lemma 3. Let {mt} satisfy (3). I f  2  c? ̂  °°> then the means
i = 0

(4)
a* (x) — 0 if 0 ^  n S . m k 

an (*) =  T - “ ----. 2  (sk ( x ) - s mi_1 (x))
П f J l j - i  t = m (_ 1+ l

are convergent to 0.
=  2  ( l -  ' m‘ 1 1 i f  т ^ п Ш т 1+1, i s i .*=mi_1+iV и —mf_! /

Proof. At first we can see that er* (x)—0 by

Now let
2 jKM)fdx^2 2 cli — 2 q i — 2 k — mt _ j +1

<5iW: =  m max K +1(x)-<r*(x)|* ^  | 2  K + i(* ) -< (* ) I

We get with (3)
— (mi+1—m,) 2  On+iOx)-< (x))2.

n=m , +  l

2 ” f  öi(x)dxrs 2  ß f ^ i  ‘2  („ 1— vT 2 1 ( k - m ^ f c l  ^
» =  2 о i= 2  n =  mf+  1 (W m f_ i )  k =  mi _ 1 +  l

00 /--- mí + i + 1
^ ß 2 ^ mi 2  2" 7----------ry —

1=2 t = m i _ 1+ l  B=max№-1, т ( +  1) (И —

s e j_  2  ci  — С* 2  cli~ 2  mi+1—т г ^=„7^,+! *=о

i.e. ^г(х) —0 (i-*• oo) and so <г̂ (х)-*-0 (fc->co).
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Lemma 4. For the elements (1) of (E,q) (0 < # < 1 )
1

( д  <*}r ^  ссо /Г тО - т )  (r >  l)
holds.

Proof. Depending on the order q we define n as the smallest natural number v 
with n^qv. Putting

n0 = l ,  ni+i =  «i +  t V ^ 1 (i =  0 ,1, ...)
each sequence {и,} and {«,} satisfies a gap-condition (3). The natural numbers can 
be devided by {nj into intervals

Ji‘-= (nt,ni+1- 1> =  {n€N|nj rg n <  ni+1}.
We will use the sets / г_К(+1, , / г, . . . ,J i+Lt, whereby A"; and L ( are

determined by the relations [(<?—£)«;]£/,• _Kj resp. [(^+е)й;]6 /1+1_. (e may be fixed 
with 0 < q —6 < ^ + £ < l) . We notice that

With the estimations

v
»fi 4

Hf a ( v $  ; J J _ _  / i + , j .

"v „ C * (? )

fc:—a >n"|n I
(L. K antorowitsch [1], Lemma 1) and

■yd + D2
= H < H i + 1 ; k£Ji+i, -- K i ^ l <  0}=S r  y

1 t i t '
v<l-Da

=  H < n i + 1 ; 0 < l r  y1 TÍ=~ ’ \ ni
тах{япк|иг == n <  ni+:l ; î} = -7=-У h ;

for 0 <  у — у (q) <  1 (cf. [2]) and with

| / i + , | :  =  ni+l+1- n l+l =  J =  Vni+Li S  Сз1щ ( - K i  s  s  Ц)

we get finally for п ^ п < п 1+1

2  a 'nk  —  2  a n k  + 2  2  a n k  =  (— Г з- 1 H +  C4 2  »Ч + l L e17) —
*= 0 I _1 i=-Ki kíJi+l ( na ) / = - * ,  l - F n . Jfc: —9 >n *

as asserted.
-  Cs«I* "*  -  Cen^(1-r)

1 [a] denotes the integral part of а.
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3. Proof of the theorem. (I) Case 0<y =  2: In [2] it was shown that the asser
tion is true if y =2 .  If y<2 we get by Holder’s inequality

У У

2  a„*k(x)-/(x)|v  ̂{2 2{ 2  влк(*)-/(ж)12}* - о.
k =  0 (fc=0 J lfc=0 J

(II) Case у > 2 : With an arbitrary index sequence {ra,} (w„=0) satisfying (3) 
and defining A (A) by A(0)=0, гаЯ№)< 1 ё Иад+1 (A: = 1) we consider now (cf. (4);

т„(л): =  2  ank\sk{x ) - f{x ) I” k J  2  a„k\sk(x ) -sm ^  W -<??(•«)Iy +
k — 0 \ k = 0

+  2  в л |* т д < к >_1( * ) - / ( * ) | Г +  2  Ö H lk k íW I ’’}  =  K 1 M * ’ ( * )  +  Tn2) ( * )  +  Tn3) (* )} •
k—0 k = 0 J

By the regularity of (E, q) and with the aid of Lemmas 2 and 3 t*2)(x) —0 and 
t*s)(jc)-*-0 are true. For the remaining part we get for an arbitrary r>  1 |r ' =  — 
by Holder inequality and Lemma 4

tfHx) S  { Í o< | | J  (x)—s„Mk)_t(x) — <х*(лг)|уг' |г — ATaj-Lj? \sk(x)~
1

w r j 1" •

The assertion is proved by Kronecker’s lemma if we show that

— s,»»A(k) Wl f ^ k S
Я (п ) m i n ( / n i  +  1 n)

I 2 2 ’l V m x w  i = 0 k= m i+ 1

(5) t (x): =  2 ~ j =  2  к ( * ) - ^ .1_1(*)-**(*)1,’г' -= °°-‘=1 У mi к = т( + 1

To this end we consider (yr'>2)

1 2 1 ~  f  1 m. i  —

/(* (* ))* '' dx ^  f  2  1 -7 =  2 1 k W - ^ M W - ^ w r r  ^
<Г / м [ | Ц ь « ( +1 J

With the aid of Lemma 1, putting for any к with mt~=:k^mi+1 (/ fixed)
1 V^ S i (*) ( у := к -т 1_1 , k>m i_1) and a,(x):=— Д 5/(x)(= a*k(x) if

AWi< k^m i+1), we get with mi+1-/H i_1s2)?l/mi (cf. (3))

/ a  Mj f
0 l / m f k=m, +  l

2

1 "
2 Г 1 m i + l ~ mi - l  1 --- г  mí + i

- ̂  /  TTn 1 ^  |5?(ДС)-«т;(х)Г Г 2 40 I ( m + l - m - l )  V =  1 J k = m i_1+ 1
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and thus
J L  ~  mi + i

/  ( iW )" ' d x ^ K t z  2  cl •=- °°-0 i=l t=mi_l+l

B. Levi’s theorem finally gives (5) which completes the proof.
I would like to express my sincere gratitude to Professor Dr. L. Leindler for 

his interest and remarks.
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ON VERY STRONG SUMMABILITY OF 
ORTHOGONAL SERIES BY EULER METHOD

L. LEINDLER (Szeged), member of the Academy

1. Let {(pn(x)} be an orthonormal system on the interval [0, 1]. We shall consider 
orthogonal series

(1-1) Z cnVn(x)
n = 0

with real coefficients satisfying

( 1.2) Z  Сл <  °°-

By the Riesz—Fischer theorem, the series (1.1) converges in the mean to a square 
integrable function f(x). By s„(x) and t„(x) we denote the nth partial sums and the 
nth Euler means of order q ((£, #)-means; 1) of (1.1), i.e.

where 1

n  It

sn(x) =  Z  Ci<Pi(x) and t„(x) = Z  anksk(x),
i =  0 =  о

and

a n k  —

0
if n = k, 
if n <  k.

Very recently H. Schwinn [6] proved the following theorem in connection with 
the strong Euler summability:

Theorem A. I f  the orthogonal series (1.1) is (E, q)-summable to f(x) in [0, 1] almost 
everywhere, then for any positive p

(1.3) lim Z  a„k\sk( x ) - f ( x ) |p =  0
fc =  o

holds in [0, 1] almost everywhere, i.e. (1.1) is strong (E, q)-summable with order p.
The aim of the present paper is to give a sufficient condition in order that (1.1) 

should be very strong Euler-summable, i.e. that for any increasing sequence {vj 
of natural numbers

(1.4) lim
k=0

should hold in [0, 1] almost everywhere.
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108 L. LEINDLER

For the classical arithmetical means or for the (C, a>0)-means problems of this 
type have been discussed in great detail (see e.g. the book of G. Alexits [1], p. 107, 
or the papers of K. Tandori [8], G. Sunouchi [7] and L. Leindler [2]), as regards the 
Riesz-means we refer to J. Meder [4] and L. Leindler [3].

To prove (1.4) we shall use Theorem A and the method of proof given by us in [3]. 
First we prove
Theorem 1. Let {v*} be an arbitrary increasing sequence o f natural numbers. 

I f  (1.1) is almost everywhere (E, q)-summable to f ( x )  in [0, 1] and

(1.5) z \  2  cl log*(2+fcm)<«~,

where hm denotes the number o f indices vk2 lying between m1 2 3 and (ra-f l)2, then

(1.6) lim 2 ’a„fc|sVfc(x )- /(x ) |p =  0
*=o

also holds for any positive p in [0, 1] almost everywhere.
Using Theorem A and Theorem 1 we prove
Theorem 2. I f  (1.1) is almost everywhere (E, q)-summable to f(x) in [0, 1] and

there exists a positive sequence {a„} with the following properties: 2 ' fln<00> 
cl=0(al) and "=0

(n + l)2
(1.7) A l :=  2

k = n * + 1

then (1.1) is also very strong Euler-summable in [0, 1] almost everywhere, i.e. (1.4) 
holds for any increasing sequence {v*} in [0, 1] almost everywhere.

From Theorem 2 we get immediately
Corollary. I f  (1.1) is (E, q)-summable and

c" ~  c"+1
then (1.1) is also very strong Euler-summable.

2. We require the following lemmas. For the sake of brevity, from now on, con
vergence and summability have the meaning of convergence and summability almost 
everywhere in [0, 1].

1 We mention that condition (1.7) can be weakened, namely instead of (1.7) it is sufficient to 
claim that there exists a constant К  and a natural number fi such that for any positive / and m

К L  s  Af+m3 = 0
holds.
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Lemma 1. (1.1) is (E, q)-summable i f  and only i f  the partial sums sni(x) are con
vergent.

This lemma was proved by O. A. Ziza [9]; cf. also H. Schwinn [5].
Lemma 2 ([3]). Let {pm} and {qk} be increasing sequences o f natural numbers. I f  

rm denotes the number of the terms qk lying between pm and pm+1, then the condition

~ ( Pm + 1 )
Z \  2  C* log2(2 + rm) < ~m = l l " = P m + l  )

implies that
J™ (spmW - se,W) = 0

holds for any qk with pm<qk<pm+1.
3. Proof of Theorem 1. By Lemma 1 the (E, #)-summability of (1.1) implies 

that the partial sums sm,(x) converge to f (x) .  Thus, using Lemma 2 with pm=m2, 
qk—vki and rm=hm, on account of (1.5), we obtain that the partial sums sVkt(x) 
also converge to f{x).

Now we construct a new orthonormal system and a new-sequence of coefficients 
by means of the given sequence {vj. Putting v_x= — 1 we define

and

Ф„(х) := 

It is clear that

c l  := 2  ef for n s  0,
i=vn.,+ 1

V

c - 1 Z  WAX) ifif C„*  0,

(v„-v„_!)-1/2 Z  <Pi(x) if Cn =  0.
i = v+ „ - i 1

(3.1) Sk(x) := Z  Cj<Pj(x) =  Z  Ci<Pi(x) =  sVk(x),
j-0 i=0

thus the convergence of Svkf x )  implies that of S k  *(x), whence by Lemma 1 we obtain 

that the orthogonal series Z  С„Фп(х) is {E, </)-summable.n — Q
Thus Theorem A gives

(3.2) lim Zank\Sk(x)-f(x)\" = 0,
*=o

and by (3.1) statement (3.2) means exactly the same as (1.6) does.
The proof is complete.
Proof of T heorem 2. On account of Theorem 1, it will suffice to show that 

under the assumptions of Theorem 2, (1.5) holds for any increasing sequence {vfe}.
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Indeed it is obvious that2
°o ( (m+1)2 'j со

(3.3) 2 \  2  c l\lo g \2  + hm) = K1 2  A2Jog*(2 + hm)rz

2  A l ( 2  + hm) = K3 + K2 2  A I K -m = 0 m = 0
To prove the finiteness of 2  A2mhm we mention that by the definition of hu<

m — 0
the inequality

(3.4) 2 K ^ N + l ,
и =  0

follows for any N.
Hence, by (1.7), we obtain that

(3.5) 2 A * nh„= j?  A*.
n=0 n=0

Namely, if e.g. hm> \ then by (3.4) there exist at least hm—1 indices n ^ m  such 
that h„= 0, and if we replace the sum A% by A 2ni (hm-  l)-times, then

110 L. LEINDLER: ON VERY STRONG SUMMABILITY OF ORTHOGONAL SERIES

holds obviously; and this “replacing-procedure” conveys statement (3.5).
The estimations (3.3) and (3.5) verify (1.5) for any {v*} under the assumptions 

of Theorem 2, and this ends the proof.
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BI-SELECTIVE DERIVATIVES ARE OF HONORARY 
BAIRE CLASS TWO

R. J. O’Malley* (Milwaukee)

I. Introduction

In this paper, we answer a question posed by M. Laczkovicz in [4]. In one sense 
this answer is a by-product of research into selective derivatives, in particular [8]. 
The author feels that the reader could benefit from a brief restatement of the history 
and basis of the problem.

In [6], the present author introduced and developed the idea of selective diffe
rentiation theory. In that paper it was shown that selective derivatives need not be 
Baire class one but in some cases could be seen to be Baire class two. M. Laczkovich, 
in [4], was able to show that selective derivatives were always Baire class two. In 
establishing this result, he introduced the concept of 1—r differentiation which includes 
the aforementioned selective process. He also proved that a 1—r derivative was of 
Baire class two. Then he asked whether all 1—r derivatives are of honorary Baire class 
two. (In [1], Bagemihl and Piranian defined a function g as honorary Baire class two 
if there exists a Baire class one function h such that {x: h(x)7 ±g(x)} is at most 
countable. See also [3], [9].) Initially, using a technique developed in [8], we answered 
this question for selective derivatives. It was a corollary of a simple but very useful 
lemma about selections. However, we did not publish this lemma or corollary. Later 
we realized that the process of 1—r differentiation could be equivalently redefined in 
a way that made its connection with the selective process clearer. Further, the lemma 
could be restated in this framework. The connecting term is something we label a bi
selection. We have presumed to state our results in this context.

П. Definitions, notation and background results
Throughout the paper [x, y] will denote the interval having endpoints x  and у 

regardless of whether x < y  or y-=x.
D efinition . A selection is an interval function s defined on the set of all nonde

generate closed subintervals of [0, 1] satisfying x<s[x, for every [x, y], x<y.
Next, let /:[0, 1]—R be fixed. The various analogues of the classical derivatives 

o f /a t  x with respect to the selection 5 are typified by the definition and notation for 
the selective derivative.

D efinition. A finite function g:[0, 1] -~R is called the selective derivative of/, 
denoted sf', if for all x in [0, 1]

limA-0
/(s[x, x + h]) —f  (x) 

s[x, x+h]—x = g(x) =  sf'(x).

* Research supported in part by N. S. F. Grant #  MCS 8102494.
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For the same function / ,  let l and r be two interval functions, defined on all 
nondegenerate closed subintervals of [0, 1], satisfying

min(/[x,y], r[x,y]) <  s  max (l[x, y], r[x,y]).
У  *

We say that / and r are admissible for /  when they satisfy the above inequality.
Again, the concept of 1—r differentiation can be illustrated by the definition and 

notation associated with the 1 —r derivative of / .
D efinition. A finite function g: [0,1]—/? called the 1—r derivative of/, denoted 

{ /',  if for each x in [0, 1],

Дш l[y, x] = g(x) = ,/'(* ) =  Д т  r[x, у].

M. Laczkovich pointed out, [4], that all selective derivatives are 1—r derivatives. We 
will have need of several results of that paper. Included is the following about pairs 
of admissible interval functions and the relations between the resulting extreme deri- 
vates.

L-Theorem 2 [page 102, 4]. I f  both ljx , y], rx[x , y] and l2[x, y], r2[x,y] are 
admissible for f  then {x: i'1/(x )< |'!/(x)} is countable.

(Here, for example, is the notation for the upper extreme derivate of /  rela
tive to li—r2.)

We introduce now the notion of a bi-selection.
D efinition. A bi-selection, b, consists of an ordered pair of interval functions и 

and v defined on all closed nondegenerate subintervals of [0, 1], satisfying the con
dition that и is a selection. An alternate equivalent statement may help clarify matters. 
Namely: A selection can be thought of as picking a point out of the interior of the 
interval [a, b\. A bi-selection can be thought of as picking a point out of the interior 
of the infinite strip {(x,y): a « x s 6 } .

Next, the notion of bi-selective differentiation for our function /  should seem 
very natural.

D efinition. A finite function g : [0, 1] is called the bi-selective derivative of /, 
denoted fcf ,  if for each x in [0, 1],

v[x,x+h\ —f{x)lim -i--------  g(x) =  b f  (x).»-o u[x ,x+h]—x  6V '  J v ’
It is clear that each selective derivative is a bi-selective derivative.

Ш . New results

First we establish the equivalence between 1—r differentiation theory and bi- 
selective differentiation theory. This will be done only for the corresponding deriva
tives. Yet the proof indicates how we may switch between admissible pairs and bi
selections.
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T heorem 1. Let f :  [0, 1 ] be fixed. Then g: [0,1]-*-/? is a bi selective 
derivative of f  i f  and only i f  it is a l —r derivative o f f.

Proof. (=>). Suppose u{x,y], v[x,y] form the bi-selection. We merely define

l[x,y] =
f ( y ) - v [x ,  y] 

y -u [ x ,  y] and r[x, y] = У] ~ f ( x )  
u[x ,y ] -x

Then it follows that / and r are admissible for /  and that \ f '= g .
(<=) This requires more computation. First, let / and r be the admissible pair 

generating g(x). Let us consider the secant chord, C, connecting (x,/(x)) and 
(>’,/(jt)) for a fixed pair 0 ё х < у ^ 1 . Over [x, y], consider the segment, Lly through 
(x,/(x)) with slope r[x,y] and also the segment L2, through (y, f(y))  with slope 
l[x, у]. The fact that / and r are admissible for / forces one of the following cases to 
occur.

Case 1. C=L1=L2.
Case 2. C=L1t±L2.
Case 3. C=L29 i L1.
Case 4. C ^ L ^ L ^ C ,  but L1DL2 =  (x0, y0) with x < x 0<y.

We begin to define the bi-selection.

In Case 1: let Ф ,У ] = ? ¥ ,

In Case 4: let u[x,y] = x0, v[x, y]=y0.
The definition in Cases 2 and 3 is slightly more complicated. But because Case 3 

follows the same reasoning as Case 2 we will only present that situation: One of the 
two line segments, over [x, y], through (x,f(x))  with slopes r[x, y ] ± ( y - x )  intersects 
L2 at a point (x0, yü) with In Case 2, we define u[x, y]~xa, v[x,y]=y0.

It is not hard to see that relative to this bi-selection b , f  has bf'=g. In fact for 
fixed x and 0 we have both

v(x — h,x]—f(x)  
u[x — h, x]—x — l(x — h, x) = h and v[x, x + h]—f(x)  

m[x, x+h] — x — r(x, x + h) -1 h.

From this point, we will state our results in the parlance of bi-selections.
We are now ready to state our basic lemma about bi-selections. As above, we 

will not state the lemma as it applies to all the various bi-selective derivatives but 
only enough to indicate the scope.

Lemma 1. Let f:  [0, and b, a bi-selection, be fixed. Let P be any closed
subset of[0, 1]. Then there is a new bi-selection t such that:

i) for nearly all points x  o f P

lim inf
y ~ x
y £ P

f ( y ) - f ( x )
y - x tf'ix),

8 Acta Mathematica Hungarica 41, 1988
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ii) for all x  in [0, 1 ]\P
,/'(x ) =  ьГ(х).

Here , f  is the notation for the lower extreme derivate o f f  relative to t.
Proof. The proof is extremely simple. Let [x,y] be fixed, 0^x<_y^ 1. If P 

intersects the interior of [x, y] let x0 be a point of that intersection. We define the 
selection part, u, of t as u[x,y]=x0. The other part v, of t, we define as v[x, y] = 
=f(u[x, y])=f(xu). If P does not intersect the interior of [x, y] let n[x, y] and v[x, y] 
be the values given by the original bi-selection b. For every bilateral limit point x of 
P i) holds and for all x in [0, 1 ]\P , ii) is valid.

Though simple, this lemma, in conjunction with L-Theorem 2, becomes very 
useful when /  is assumed to have a bi-selective derivative over P.

We restate L-Theorem 2 in terms of bi-selections.
L-Theorem 2. For a given function f:  [0, 1] -+R and two bi-selections, bx and 

b the set {x: O ^ x ^ l and fcl/ '( x ) > b2/'(x )}  is countable.

Proposition 1. Let f:  [0, 1]—R and P a closed set be fixed. Suppose f  is bi- 
selectively differentiable, with respect to b, for every x in P. Let D = {x: f  has a deri
vative, relative to P, at x} i.e. Z) =  jx : lim -- ----—lifl_  exisTiJ. Then for nearly

yCP y
all x in D, bf'(x) = lim А у ) ~ А *1 . г 

y - x  у  —  X  
y C P  J

Proof. Let t be the modification of b mentioned in the proof of the lemma. Then 
for nearly all x in D we have

b f  (x) =  bf ' (x )  =  '/ '( x )  ё  lim sup
y - x
y C P

A y ) - f i x )
У- x

= lim inf
y - * x
yep

f ( v ) - A x )  ш 
y - x

^  ,f'(x) & T ( x )  =  bfXx).

Proposition 2. Let f :  [0, 1]— R, P and b be as in Proposition 1. Suppose in/у \ /у \
addition, lim inf —-------------^ a  for a fixed. Then for nearly all x  in P bf'(x) s^a.

yep y x
Proof. Obvious.
Perhaps the relevance of these propositions to the present discussion should be 

explained. In [6, page 88] an example was constructed to show that a selective deri
vative need not be of Baire class 1. It was pointed out by M. Laczkovich that this 
selective derivative was of honorary Baire class 2. The characteristics of the example 
were as follows:

1) [0, \] = uyjP  where U is a dense open set, U f] P = 0 ,  and P is perfect.
2) sf'  is Baire 1 on each component of vU.
3) /  was differentiable, relative to P, at every point of P.
4) sf'  is not Baire 1 over P.
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The above results indicate that any such example would be of honorary Baire 
class 2. The function h defined as:

h(x) -
sf'(x)  (x€ U)

У ~ Х
y i P

У - Х (* € P ) ,

is Baire class 1 and equals s f  nearly everywhere.
We now proceed to show that all bi-selective derivatives are of honorary Baire 

class 2. We will need an additional lemma. Its nature and proof are similar to Lemma 2 
[4, page 103] and Lemma 3 [6, page 86].

Lemma 2. Let f :  [0, l]-<-i? be bi-selectively differentiable, relative to b. Let 
c<d be fixed and e> 0  be given.

A = jx : c <  v(x, y') ^ whenever 0 <  \x — y\ <  e}
l u{x,y) — x  i

and let A* denote the closure o f A.
f ( x  л _  f ( x  \

Then if  xx and x2 belong to A* and 0<|xx—x2|<e, c^ -— -------—^d .X2  Xi
P roof. The conclusion is valid if xx and x2 both belong to A. Next, let x0 be 

the limit of a sequence of points xk from A. Assume without loss of generality that 
x0< x fc< x 0+£. Let uk=u[x0, x k] and vk=v[x0, x k]. Since bf'(x0) is finite and uk 
converge to x0 it follows that vk converge to /(x 0). In addition, we have vk+ 
c(xk—uk)<f(xk)<vk+d(xk—uk), so f ( x k) converge to /(x 0). This suffices to show 
that /  is continuous relative to A*. In turn this is sufficient to yield the entire conclusion.

Proposition 3. Let f :  [0, 1]-*-jR be bi-selectively differentiable with respect to 
b. Then b f  is honorary Baire class 2.

P roof. There are several ways of establishing a function as honorary Baire class 
2 see e.g. [2], [3], [9]. We have chosen to use one based on [2]. Namely: a function h is 
of honorary Baire class 2 if and only if each of its associated sets differs from an Fa 
by a countable set. Let a be given and consider the sets U={x: bf ' (x)>a)  and 
B={x: bf'(x)<a}. It will suffice to show that U has the desired structure.

U =
1— \-a n

v(x, y ) - f ( x )  
u ( x , y ) - x = Ü U n .

Lemma 2 gives that for each n and for x in U*

a a 4—  s  lim infП y^xyeun

f ( y ) - f ( x )
y - x

Proposition 2 yields that for nearly all x in U* b f ' ( x ) ^ a + — a. Therefore U=

=  U U *\C  where C is at most countable.
n= 1
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We will make use of the machinery of Lemmas 1 and 2 to prove a final result.
Proposition 4. Let f : [0,1 ] be bi-selectively differentiable with respect to b. Let 

P be any perfect set. Then there is a point x0 in P at which f  is differentiable relative to 
P, and its relative derivative is bf ' (x„).

Proof. We wish to show the existence of a point x0 in P such that

iim № - n *  Q> =
УуТг° У~ Х°

bf'(xo).

We show first that there is a dense Gs subset of P at which the relative derivative 
exists. Then by Proposition 1 we are finished. Let e> 0  be given. We may define 
a double sequence of set An>m such that

. f v(x,y)—f ( x )  . 1 1i) A„ m = \x: c„ -- — ----- ------- <  d„ whenever 0 <  be—у =! — IL u(x,y) — x  ml

ii) 0 < dn- c n <  e

iii) \J(c„,d„) = Rn = 1

iv) ü Ü Ae,m =  [0, 1].n = 1 m = 1

We know the behavior of/ over the closure of An m = A*um by Lemma 2. By applying 
the Baire category theorem to A*tMP\P, we get a set Ue dense and open, relative to P, 
such that for each x  in Ue we have a c„,dn and m such that 0<d'„ —cn<e and
_ _  / 0 ) —f ( x) _ j  whenever 0 < |v —x |< — and y(zP. This will show the exis- 
" y - x

tence of the desired dense G}.
It is interesting to compare this result to one obtained in [7]. Suppose/is appro

ximately differentiable. Then in the conclusion of Proposition 4 rather than a point 
we can find an entire portion where the relative derivative exists and equals the 
approximate derivative.

We end the paper with a question. In what way are all selective or bi-selective 
derivatives characterized by properties exhibited by the example in [6, page 88]? 
More specifically, if g is a selective derivative is there a dense open set on which it is 
Baire 1?
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A UNIFICATION OF GENERALIZATIONS OF THE 
LAPLACE TRANSFORM AND GENERALIZED* 

FUNCTIONS

G. L. N. RAO (Jamshedpur)

1. Introduction. Some well known generalizations of the classical Laplace 
transform exist in many forms whose kernels involve various kinds of special func
tions. To cite some of them, Meijer [6] has given in the form

(1.1) F ( p ) =  f  (p t ) -k- ^ e - ^ P,W , (pt )f (t )dt .
о a ’

Meijer’s another generalization [5] is

(1.2) ^ ) = | / | /  {РФ  K v{pt)f { t)d t .

Varma’s generalizations [14], [15] are

F(p)= /  {2 p t ) -^ W Km(2pt)f {t )dt  
0

F(p)= f  (pt)m^ e - ^ p,Wk,Jpt) f ( t )d t .
0

In 1950, Erdélyi [3] gave an important generalization on which the author publi
shed some considerable work in the distributional sense. In 1968, Srivastava [12] 
gave a unification of all these generalizations in an elegant form as follows:

S£2,m[ / ( 0 ;p ]  = F(p) = f  ( , p i ) ° ~ e ~ qP'wk'm{Qpt)f(i)dt
0

ÍO(/áeef) for large / > 0  
|o ( r a') for small t

and Re[(?+e)p—2e]> 0 and Re(<T+(5/±w  +1)>0. The reducibility of (1.1) to

* A condensed version of this paper was presented by the author at the International Con
ference on Generalized Functions and their applications for Mathematical Physics in Moscow in 
November, 1980.

(1.5)

where

(1.3) 

and

(1.4)
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(1.5) to the classical Laplace transform (see also [13]) is based on the known formulas

K i ( z )  
1  2

and the relation
W k (z) =  zY+m, ±m

fVo.v(2 z) *.(*)•

For example, for g =  l, o=%—m, q = 1 (1.5) renduces to classical Laplace 
transform. Saksena [9] also gave another generalization of the Laplace transform in 
the form

F(P) = P° f  (<1Р‘)С~Т  (P~ ) P' Wly m (qpt) cp(t)dt
0

which, for dilferent values of the parameters, reduces to the various generalizations.
L. Schwartz [10] was the pioneer in the work of extension of the Laplace trans

form to distributions. Later many authors including H. G. Gamir, V. S. Vladimirov, 
A. H. Zemanian, J. L. B. Cooper, John Benedetto and T. Ishihira discussed the La
place transform of several classes of generalized functions and deduced some impor
tant properties.

2. Notation, terminology and some definitions. The notation and terminology 
used in this paper follow that in Zemanian [17] and [18] and the author [7], [8]. The 
definitions of testing function spaces D(I), La(I), S, La_b and their duals are given in
[18], [7] and [8]. However the definition of La(I) is given as follows:

Let I  denote the open interval (0, °°). Let a be a real number. We define La(J) 
as the space of all smooth functions <p(y) on /  such that

(2.1) 7„,„(<?) =  Sup \ea,D"(p(01-=°° (n =  0, 1, 2, ...)
0 < í < o °

and its topology is generated by the semi-norms {7„,„}Г=1 • L '(/) is the space of 
continuous linear functionals on I. We also note that D(I)czLa(l) and the conver
gence in L'a(I) implies convergence in D'(I). In a similar way we can define the test 
function space La b as in Zemanian [18, p. 48] in order to enable us to discuss the 
two-sided lb-transform of generalized functions in Section 4.

3. Some preliminary results. Let us put, for convenience,

Tipi) = {pt)m- ^ e ^ f - W KmiQpi).

(a) r(p 0 € L e(/) i f  a ^ ^ i ß  + я)-

Proof. By using the seminorms (2.1), the asymptotic relations of Wk>m func-
к —Xtion [11, p. 61] namely Wk m(x) = 0 ( x  e T), x large and the differential property
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[11, p. 25] namely

D l [ e ^ Xx m-^W Km(x)}  =  ( - 1  {х)

we have with x = gpt

=  ( 0 P ) " e 2
1 j

2  <£)(-!Уе-х/гх 2 2 W j j ( x )X  
L j =  0 *  +  T ’ T

x  2 1 (n-j)xA,mJ,i 
1 =  0

x ? - m - l e  y e ) X Дq,Q,n-j-l

where Aa mj tl and Дв>е„_;_( are some polynomial expressions without p or x. 
Consider now

(3.1) \eat D'}T(pt)\.
A typical term of this expression is found to be asymptotic to

e v 2 2 '(gpt) ~Y+e~l+k

which —0 as t-~ °° if a<-^(g+q). Similarly we can prove that T(pt)£Lab 

[18, p. 48] if a<-^(g+q)~zb.  Let now / —0. We have
± ( m —1 Л + 2 .

W j j (gpt) ~  (gpt)  ̂ 2> 2
fc+T 'm“T

. ,  •whence, as before, a typical term of the expression (3.1) is asymptotic to e 2 X 
X f i—i±m—j which—0 as i —0 if cr±m>l+j (1 = 0, 1, ..., n— j), ( j = 0 , 1,..., n).

Hence T(pt)£La(I) if a<^(g+q).  Furthermore T(pt)£Laib if й<-^}(£?+(7)<0
and g±m>l+j.

(b) The Lemma 3.2 of [7] can also be proved in one dimensional case. It can be 
stated as follows. Let a,b ,a^Rx with a< R ep<b. If O^S, then 6[T(pt)]^La b. 
If {0v}r=i converges to 0 in S, then {[r(pi)]0v}“=1 also converges in La b to 0.

4. (a) The л-dimensional JF-transform. We follow the notation in a paper of 
the author [7]. For example

d|n|
t = {tu t2, tn} £ R n, [pt]* = Pih-Pih-■■■•Pntn, Dnx -  д„1д„г d„n

where |л|=и1+ л 2+ ...+ и „. a ^ b  means ctj^bj ( j=\ , . . . ,n) .

T h e o r e m  4.1. Let a, p, g, q, cr£Rn. Then \T(pfj\*£La b if
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To prove this, it is enough if we prove

Sup \[е°ТВПТ(р1)Г\ <  о».
0 < í<  CO

By considering the / “* component, we can prove this as we did in Section 3. The fol
lowing results are also easy to prove as in [7] and [17].

T heorem 4.2. [T(pt)]*f£S' i f  and only i f  -  -g S ',  provided ж - ^ - х

X ( Q + q ) ^ b .

T heorem 4.3. I f  feL'űib then [T(pt)]*f£S'.
(b) Boundedness property for generalized functions in L'a b. This can be stated 

and proved as in [7] and [17] and hence omitted.
(c) The two-sided Ж-transform of generalized functions: A generalized function 

/ i s  Ж-transformable if there exist two points a,b£Rn (a<b) such that /gZ,' b. 
A point pgC" is said to be in Г/ i f  there exist two points a, b£Rn (ж£>) such that 
/gZ ,'>b. The Ж-transform of a Ж-transformable generalized function /  is defined as 
(Fp) from the subset Г / of C" into C1 given by

(4.1) F(p) =  < /(0 , № )]* >

where p g r/. The rihgt-hand side of (4.1) has a sense as the application of f ^ L ab 
to [T(pt)]*£La b for every fixed value of p in Г/.

5. Analyticity. In this section it is assumed that a, b, s, t, q, s, q, ngj?1, p  being 
replaced by s.

T heorem 5.1. Let F(s) be given by (4.1) p being replaced by s and in one dimen
sion. Then F(s) is an analytic function o f s in F f and

DsF(s) = ( f ( t ) , - ^ T (st)y

Proof. Let s be an arbitrary but fixed point in F f  and let r> 0  be such that 
ű < R e i - r < R e i+ r < i .  With s as centre we construct a circle C of radius rx in 
Г/such tha t r< rx. Let |ds| be a non-zero complex increment in s such that \As\<r. 
Consider

(5.1)

where

<Aas(0 =
Г т
As (s + As) 2e 2<s + Js)V Jtim(e(s + d s ) /) - s<T 2 e 2?V * ,m(esO

Our theorem would be proved if we show that (5.1) converges to zero as |d s |—0. 
This can be done by showing that iJsAs(t) converges in La b to zero as \As\ —0 since
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f(t)£L'a b. After some simplification i/ijs(i) can be seen to be equal to

(si)
m  — —  Z l if12 л 2 2  ? ,^s, m)Wk+n_ m+n_(est)

by the help of [11, p. 29, equation 2.6.10], where N„ is a polynomial in q ,  p, q, As, m 
of degree n. We have again

A V .s(0 =  A
(est)

° 2 e 2 (e 4)Wk,m(est)N0(e, P, q, ds, m)

Now by Cauchy’s integral formula [2] we have, after some simplification, by using the 
definition of Ka b(t) [18, Section 3.11] and the asymptotic properties of Wk m func
tion for all z£C  and — » < oo and since |z—j |= rx and \ z - s - As\>rk—r,

\Ka,b(t)D ^ ás{i)\
^  \A s\2K Q  r \dz\

2 л J r?(rx- r )
Ms] 2 , k <p
n (T i-r )

where KQ is some constant independent of z and t for q=0, 1, ..., v. Thus as |ds| — 0, 
the right hand side converges to zero and i/'as(i)-*0 in La b as |ds| —0. Hence
(5.1) varishes as |ds|—0 and the theorem is proved.

The above theorem can be extended to n dimensions by Hartog’s theorem [1, 
p. 140]. The following result is also true and can be proved as in [18, p. 59]:

DlF(s) = ( f ( t ) ,  ^ [ Г ( 50Г)(56Г Л  for и =  1 ,2 ....

6. Inversion. The classical inversion theorem for fC-transform proved by 
Srivastava [12] is now extended to a class of generalized functions in the following 
theorem.

T heorem 6.1. Let F(x) be given by F(x)=(f(y), T(xy)) as in (4. П where

Let f(y)£L'a(I) and

T  (xy) =  (xy) 2 e -  ~ ~  Wki m (exy).

Ф(s) — f  x~sF(x)dx.

/  1 c+it 
limit f  <\ 2rci t—  c / r <P(s)y~sMds, <p(y) ) = ( f ( y ) ,  cp(y)

Then

( 6.1)
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in the sense o f convergence in D '(I) where

M -1 =
Г (er i  m +1 — s)

|_ 9 + е у +т+1™$Г/
- X

Н Ч Ь * )
X 2Fl \ m - k + l - s ,  m - k + \ ;  o - k + ^ - - s ;  q~ g l ,L 2 2 q+Qi

3
provided ct —fc+—— o O  and a± m  + l — c > 0  where s=c + iw.

Proof. Since the integral on s on the left-hand side of (6.1) is a continuous func
tion of y, the right-hand side of (6.1) without limit notation can be rewritten as

c  +  ix

(2лi) 1 J  M<P(s)y~sds,

Let (p(y)£D(I). Then the above expression is equal to
c +  i tc  *t* I t  00 \

(Ini)-1 f  m J  x - f f ( y ) ,  T (xy))d xy-Sds, (p(y))

(6.2)

(6.3)

=  ((2л) 1 f  M  f  x~s(f(y), T(xy))dxy~4w,<p{y)
'  — T 0

s =  c +  iw
/ T 0 0

= ((2л) - 1 f  f  ( f ( y ) ,T (x y )x - sM )dxy~ sdw,<p(y)

(6.4) =((2n) 1 У  ( / O ’), f  T(xy)x~s Mdx^)y~sdw, cp(y)^ .

That (6.2) is equal to (6.3) is obvious by the ordinary properties of generalized func
tions. (6.3) and (6.4) are equal by a result [16, Corollary 5.3—2b]. By another result 
[4, p. 337]

1  — I x y q
WK m (Qxy)x~sMdx =f  b y )0

m +  —
q  2 M r(G -s± m  + \)y s- 1

2̂ 1 X

1 , I 3 , q - oX m — s + o-+l;m  — k + -^, <r + — — k  — s; ■ -■
L 2 2 Г
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Hence (6.4) is equal to

(6.5)

( ( 2л)" 1 f  y - s( f ( j ) , y s~1)dw ,(p(j)') = (2n)-1 f  {y~s{f(y), / _1>, <p(y))dw =
'  — T —x

= (2n)~1 f  (f(y), y s- 1)(y~ s, <p(y))dw = (2л) 1 f  <f(y ) ,(y  1,cp(y)))dw =
-  rt - t

=  ( f{y ) , (2л)" 1 f  ( y - sys- \  q>(y))dw^ =

(6.6) = //OO, (2л)"1 У  y "s / y s- 1(p(y)dydw) =  { / ( j ) ,  (2ТГ)"1 /  ^ " S<p(s)dw

where <p(.s) is the Millin transform of <p(y). The equality of steps from (6.5) to (6.6) 
can be established by using the standard results on the integration odf distributions 
and testing functions with respect to parameters [16, Sec 2.8]. As t —°o

X

J  y~sy(s)->-2n(p(y) uniformly with respect to у  [18, Theorem 4.3.3], it is the-
— T

refore proved that

((2л)"1 limit f  МФ(s)y~sds, <p( y ) )  = (2n)~1(f(y ), 2ncp(y)) = <f ( y ), <p(y)) 

which proves (6.1)

Remark. Some more results pertaining to the Ж-transform can be proved just 
like in the author’s published papers.
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QUASI-CENTERS, QUASI-COMMUTATORS, 
AND RING COMMUTATIVITY

H. E. BELL* (St. Catharines)

For an arbitrary associative ring R, define the le f t  q u a s i-c e n te r  Ci=Ct(R) to 
be the set of all y£R  with the property that for each x ^R  there exists an integer 
n ~ n ( x ,  y) for which y x —nxy—0; and define the r ig h t q u a s i-c e n te r  Cr— Cr(R) 
analogously. The first major result of this paper (Theorem 2) asserts that for rings 
with 1, both quasi-centers coincide with the center. This theorem suggests that quasi
commutators — that is, elements of form yx  — nxy for n an integer — may be used in 
place of ordinary commutators in studying commutativity; and in Section 3 we pre
sent some theorems showing that this is in fact true.

The motivation for attempting to prove Theorem 2 was an application to commu
tativity theorems, which will be reported in a separate paper [3]. The proofs of Theo
rems 5 and 7 contain other applications.

Various authors have recently done closely-related work [4, 8, 9, 10], some of it 
in the context of non-associative rings; in particular, a result of Chung and Luh [4] 
contains the special case of Theorem 2 in which Ct is assumed equal to R, and Theo
rem 4.2 of [4] may be regarded as a variant of Theorem 2 under a more restrictive 
definition of quasi-center. However, their proofs do not seem to yield Theorem 2.

Throughout the paper, C or C(R) will denote the center of R, fé(R) the commu
tator ideal of R, and R + the additive group of R. For SQ R , A fS ) , Ar(S) and 
Т(А) will denote the left, right, and two-sided annihilators of S. For x ,y£ R , the 
usual symbol [x, y] will represent the commutator xy—yx. The symbol Z will be 
reserved for the integers, considered as a set or a ring according to context.

1. The left and right quasi-centers

The sets C, and Cr are in some sense center-like, and they obviously contain C; 
however they may be quite different from C, as the following examples show.

Example 1. Let p be a prime greater than 3, and let a  and b  be nonzero elements 
of GF(p) with a 2=Ab2. Denote by A the algebra over GF(p) with basis {oq, oc2, a3} 
and multiplication given by a1a2=aa3, a2a1 = &a3, and aixJ = 0 for all other choices 
of i , j .  It is readily verified that oq and a2 are in C,(A). Moreover, if we choose к  and j  
so that a k + b j =  1 and b k + a j = 0, as the fact that a 2^ b 2 permits us to do, we have 
(oq +./a2) (oq + k x 2) = a3 and (a1+ka2)(a1+y'a2)=0, hence oq+y'oqtj; C,(A). Thus, in 
general, C fR ) need not be a subring of R.

* Supported by the Natural Sciences and Engineering Research Council of Canada, Grant 
No. A 3961.

A eta Mathematica Hungarica 41, 1SS3



128 E. BELL

Example 2 [10, p. 378]. For any field F of characteristic ^ 2 ,  let A be the algebra 
over F with basis (al5 a2, a3} and multiplication given by a1a2 =  a3, агау = — a3 and 
a,a = 0  for all other choices of i, j .  Then A satisfies the identity x y = —yx, hence 
C fA )—A. Thus, even if C,(A) is a subring, it need not be commutative. In fact, it 
need not be anti-commutative either, as is pointed out in [8].

Example 3. Let Z6 denote the ring of integers mod 6 and let R be the ring with 
additive group Z 6®Z6 and multiplication given by (a, b)(c, d)=(ac, ad+3bc). 
It is easily verified that CfA) = {(k, b)\k = 0 or 3}, hence C fA ) is a commutative 
subring of A. Since (0,1) is clearly not central, we see that even when Cx is a commu
tative subring, it may be strictly larger than the center. As may be readily verified, 
this example also shows that in general CfK)y^CfR).

It is not clear what properties of R force Ct(R) to be a subring, or in the event 
that CfR) is a subring, what further properties imply that R is commutative. In the 
case of rings with torsion-free additive group, however, the situation appears to be 
slightly better, as the following easy theorem shows.

T heorem 1. Let R be a ring with R + torsion-free. I f  C,(R) is a subring, then 
C f R) is either commutative or anti-commutative. If, moreover, rij(A) = {0}, then 
C fR ) must be commutative.

Proof. We use repeatedly the following easy result, which we denote by EG — 
if Hx and H2 are subgroups of the group G with Hx\JHt =G, then I f= G  or H2—G.

Let y, z£ C fR );  then there are m = m (y,z) and n=n(y, z)£Z  such that 
y z —nzy and zy =  myz, hence (mn—\)yz=(mn — l)zy=0. Either yz= zy~0, in 
which case we obviously have [z, y] = 0, or m = n = ± l.  For fixed y, let S fy )  = 
=  {zfXi(R)\yz = zy} and S fy )= { z ^ C fR ) \y z= -z y ) .  Clearly Sy(y) and S fy )  
are subgroups of Ci(R)+ with union equal to the entire group. Thus, by EG, each 
y fC fR )  satisfies (i) [y,z]~0 for all z£C fR ), or (ii) y z= —zy for all z£CfR). 
Letting Sj and S2 be the sets of all у  satisfying (i) and (ii) respectively, and applying 
EG again, shows that CfR) is either commutative or anti-commutative.

Assume henceforth that A fR )  is trivial, and that CfR) is anticommutative. To 
show that C fR )  is commutative, we need only show that [y,z]x= 0 for all x£R  
and y, z^C fR ).

Consider any pair y ,zd C fR )  with yz^O  and let x€_R be arbitrary. Choose 
n ,m ,k£ Z  for which

(1) yx  = nxy, zx  — mxz, (y + z)x  = kx(y+z).

Denoting (n —k)y — (k—m)z by w, we see from (1) that xw = rxw = 0 for any r£R. 
Since wZCfR), we now have wx = wrx=0, hence w belongs to the left annihilator 
A of the left ideal generated by x. Now R=R/A  also has torsion-free additive group; 
and
(2) (n — k)y =  (k — m)z,

where y, z denote the canonical images of у  and z in R. Of course, if either у or z 
is Ö, then [y ,z]x= 0; otherwise, unless n —k = k —m =0, (2) yields [y, z ]= 0, 
which forces [y, z]x=0.
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Now assume n=m =k, and choose j£ Z  such that {y+yz)x= jx{y+yz)\ it 
follows, by appeal to (1), that
(3) (n - j ) xy = jx y z  -  yzx.
The anti-commutativity of Ct{R) forces z2=0, and the fact that each u£R  yields 
t£Z  for which zu = tuz now implies zuz=0 for all u£R. Thus, right-multiplying
(3) by z  gives {n—j)xyz= 0; and if nZj, we get xyz= 0 = y zx =zyx, so [y,z]x= 0. 
The only remaining possibility is that n=j, in which case (3) yields yzx=nxyz. 
But (1) and the fact that m —n give yzx—nyxz= n2xyz, hence (n2—n)xyz=0. 
Of course, if xyz= 0 we get [y,z]x—0; otherwise n2—n —0, so that n= 0  or 1. 
Since «= 0  means that yx= 0 —zyx=yzx=[y, z]x, we conclude that if [y,z]xZ  0, 
we must have n—m = 1.

Summarizing our results, we have that for fixed y, z^C t(R) and x£R , either 
(a) [y, z]x= 0 or (b) [y , y]=[x, z]=0. Keep y, z fixed, and let T1 and T2 be the sets 
of all x£R  satisfying (a) and (b) respectively. Another application of EG shows 
that TX=R  or T2=R. If TX=R, then our hypothesis on the left-annihilator of R 
gives [y ,z \—0; if T 2=R, then y, z£C. Thus, [y, z]=0 for all y, z ^C t(R).

For rings R with multiplicative identity, the results on quasi-centers are the best 
we could hope for, as the following theorem shows.

Theorem 2. I f  R has 1, then C,=Cr=C.

Proof. Since C = Cr, we need only show Cr£C . Accordingly, suppose that 
y£ Cr\ C ,  and consider first the case where у  has infinite order in R +. Choose x  such 
that [x ,y ]^  0 ; then there exist integers n ,k ^  1 for which
(4) xy — nyx, (y+ 1) >> =  fcy (y +1),
and hence ( k - l ) y —(n—k)yx. Letting f —k - l  and g —n —k, we have

(5) f y  =  gyx; 
and multiplying this equation by n yields

(6) gxy = nfy.

Since yeC r, there exists t£ Z  for which ( - f+ g x)y—ty (-f+ g x );  and substitu
ting (5) and (6) into this equality gives

(7) / ( п - 1 ) 7  =  0,

which is impossible since f ( n —\)z0 .  Therefore y£C.
It remains to consider the case of torsion elements y, which we may assume to 

be of additive order ps for some prime p. We proceed by induction on s. If s=  1, 
then in (4) neither n — 1 nor к —1 can be congruent to 0 (mod p), so we obtain a 
contradiction by simply repeating the above argument modulo p. Moreover, for any 
s, if there exists an y „ such that [y 0 , >'] ̂  0 and x0y= jyx0 with j  ̂  1 (mod p), 
then in equation (4) we may assume that к  ̂  1 (mod p) and in equation (5) that 
fyä 0 (mod p), so that (7) yields the contradiction n = 1 (mod ps).

Assume as inductive hypothesis that for all /z<s, elements of Cr of order ph 
are central; and suppose у  d Cr\C ,  p 'y^O Z p^^y  and x y —nyx with n = 1 (mod p).
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Note that by the inductive hypothesis py£C, so that p[x,y] —0. If r—r(x) is the 
largest integer for which n =  1 (mod pr), then
(8) xy  =  (bp' + l)yx  and [x, y] -  bp'уx 
for some b prime to p, hence
(9) 0 =  p[x, y] = pr+1yx.
Choose x  such that r (x) is the minimal member of {г (и) | [и, y\?± 0}; and let r= s—slt 
i i S l .  Then using the minimality of r(x), we obtain for each i£ Z  an integer m ^O  
(mod pSl) such that
(10) (x+ips*~1)y  = (mpr+ l)y (x+ ip ’i~1).
Since pr+1y x —p sy=0, we immediately get [x, y]=0 if m = 0 (mod p); furthermore, 
if m =b (mod p) for some choice of i ̂  0 (mod p), then subtracting the first equation 
of (8) from (10) yields the contradiction ps_1y= 0 . Therefore for each 1=1, 2, ... 
. . . ,p —1, in (10) we have m^á0, b (mod p), so there exist distinct ilt /2£{1, ...,p  —1} 
whose corresponding m1 and m2 in (10) are congruent (mod p). Subtracting the two 
versions of ( 10) yields
(11) (m2- m 1)pryx+ (m 2i2- m 1i1)ps- 1y  = 0;
and letting m2—vp-\-mx and recalling (9) gives 0 —m1(i2—ii)ps~1y —ps~1y, a con
tradiction. This completes the induction, and hence the proof.

Semi-prime rings have a comparable theory of quasi-centers; note the following 
result, which appears in [4].

Theorem 3. I f  R is semi-prime, then Cl — Cr=C.

2. Some applications of quasi-centers to commutativity theorems

Theorem 3 yields a slight improvement of a class of commutativity theorems. 
Let 1, and let Z[n\=Z[Xlt ..., X„] denote the ring of polynomials with integer 
coefficients in n non-commuting indeterminates; let J  be a subset of Z[n] containing 
no polynomials with non-zero constant term. A ring R will be called Q-central 
(left 1-quasi-central) if for each ordered и-tuple (xx, x2, ...,x„) of ring elements, 
there exists a polynomial f £ l  suchthat /(x l5 ..., хп)£С(£С,). A number of known 
theorems assert that for certain 1, any J-central ring must have nil commutator ideal 
4>(R) — for example, if 10 is the set of all positive integral powers of a single indeter
minate X, a ^-central ring is radical over its center, and the assertion that %  -central 
rings have 4>(R) nil is a classic result of Herstein [5].

Theorem 4. Suppose 1  is a set o f polynomials with the property that every 2,- 
central ring has nil commutator ideal. Then every left 2-quasi-central ring has nil 
commutator ideal.

Proof. Let R be left ^-quasi-central, and factor out the maximal nil ideal N. 
Then, by Theorem 3, R= R/N  is J-central, hence commutative.

A number of standard commutativity theorems may be formulated as statements 
that for certain sets 2, all ^-central rings are commutative — this is the case if we
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use £ 1={X— X n\n—2, 3, ...}. While it is natural to ask whether the hypotheses can 
be weakened to require only that R be left i?-quasi-central, the answer is in general 
negative. For example, the ring of Example 3 is left -quasi-central but non-commu
tative. However, we do have the following extension of Herstein’s result that periodic 
rings with all nilpotent elements in the center must be commutative [6].

T heorem 5. Let Rbe a periodic ring in which all nilpotent elements are in С, П Cr. 
Then R is a subdirect product o f a family {Ra}, each member o f which is either a nil 
ring, or a commutative ring in which every non-nilpotent element is invertible.

Proof. We require two basic facts about periodic rings, namely that some power 
of each element is idempotent and that nilpotent elements of homomorphic images of 
R may be lifted to R [2, Lemma 1]. The latter guarantees that the property of nilpo- 
tent elements lying in С,ПСГ persists under taking homomorphic images.

Let R be any ring satisfying our hypotheses, and let e be any idempotent of R. 
Then for each x£R , ex—exe and xe—exe are both in С,П Cr, so that ex — exe =  
= xe—exe=0, hence idempotents are central. Now consider any subdirectly irre
ducible image Ra of R. Idempotents being central, any non-zero idempotent must be 
a multiplicative identity; hence either Rx is nil, or it has 1 and every non-nilpotent 
element has a power equal to 1. In the latter case, Theorem 2 guarantees that nilpo- 
tent elements are central, and Rx is commutative by Herstein’s original result.

It is to be noted that С, П Cr cannot be replaced by Cr or C, in the hypotheses 
of Theorem 5; indeed, the ring of Example 3 has the property that nilpotent elements 
are in Ci, but it cannot satisfy the conclusion of Theorem 5 because it has a non
central idempotent.

3. Applications of quasi-commutators to commutativity theorems

The theorems in this section indicate that quasi-commutators may play a role in 
the study of commutativity theorems analogous to that normally played by ordinary 
commutators. Theorem 6 is a generalization of the well-known result that R) is
nil if R satisfies the identity [[x, y], [z, w]] =  0, while Theorem 7, apparently a 
rather deep result, extends a well-known theorem of Herstein [7]. We shall make fre
quent use of the following lemma.

Lemma 1 [1, Theorem 1]. Let Rbe a ring satisfying an identity q(X)=0, where 
q(X) is a polynomial in a finite number o f non-commuting indeterminates, its coeffi
cients being integers with highest common factor 1. I f  there exists no prime p for which 
the ring o f 2 x 2  matrices over GF(p) satisfies q(X)= 0, then R has nil commutator 
ideal and the nilpotent elements o f R form an ideal.

Theorem 6. Let R have the property that for every quasicommutator c = x y — 
—jyx in R, and every pair z, w o f elements o f R, there exists a quasi-commutator 
d=zw — kwz for which [c, d] = 0. Then T!{R) is nil.

Proof. By standard structure-theory arguments, it suffices to establish commu
tativity of R under the additional hypotheses that R is prime with no non-zero nil 
ideals. Suppose first that R has characteristic 0. Then beginning with x ,y£ R  and 
c = xy — 2yx, we are guaranteed k £ Z  such that [xy — 2yx, y x  — kxy] — 0, a condi
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tion which reduces to (1—2k)[xy, yx] = 0; hence R satisfies the identity
(12) [xy, yx] = 0.
On the other hand, if R has characteristic p >  0, our hypothesis implies that R 
satisfies any identity of the form
(13) П[ху—iyx, zw — jwz] — 0
where i, j  range over the set ( 1, 2, and the factors are multiplied in arbit
rary but fixed order. But, as is easily verified, there exists no prime q for which the 
ring M2(GF(q)) satisfies either (12) or (13); thus R is commutative by Lemma 1.

I suspect that the hypotheses of Theorem 6 can be weakened to the following: 
given x, y, z, w£R, there exist j,  k£Z  suchthat [xy—jyx,zw  — kwz] = 0.

T heorem 7. Let R be a ring with 1, and suppose that for each x, у £R, there 
exist an integer j= j(x ,y ) and an integer n —n(x,y)> \, such that

(t) (xy -jyx )a = x y - jy x .
Then R is commutative.

Proof. We begin as is traditional, with the case of R a division ring. If for each 
x,y£R , there exists k —k(x,y)  for which xy — kyx^C, then R  satisfies the identity 
[xy, yx]=0 and is necessarily commutative by Lemma 1. Therefore we assume there 
exist x ,y£ R  and k ,n £ Z  with «>1, such that a= xy—kyx(l C and aB= l .  
Noting that C(a) is a normal extension of C, and letting cp be a non-trivial auto
morphism of C(a) over C, we apply the Skolem-Noether theorem to obtain b fR  
for which (p(a)= bab_ 1= a. Thus, we have b£R such that
(14) ba = a‘b, a* t6 a.

Now choose j f Z  and m >  1 such that
(15) (ab-jba)m — a b —jba-, 
and substitute (14) into (15), obtaining

(16) ((a —ja‘)b)m = (a - j a ‘)b.

Now it follows from (14) that bas=aisb for each positive integer s; hence for any 
polynomial p(X)£XZ[X], there exists a polynomial q(X) in XZ[X] for which 
bp(a)=q(a)b. Thus from (16) we obtain a polynomial f(X)£XZ[X] such that 
f(a)bm=(a—ja l)b; and provided that a—ja‘^ 0 ,  we must have f(a )^0  and hence 
bm~1=(a—jat)(f(a))~1. In particular, letting P be the prime subfield of R and not
ing that P(a) is a finite extension of P, we see that b is algebraic over P.

We also wish to show b is algebraic over P if a - ja ‘= 0, in which case (14) 
yields
(17) a b = ja 'b = jb a .

Choose / ,  mgZ, m>  1, such that ym=y, where у denotes (a+\)b—fb (a + 1); 
then
(18) (O'- / ) ba +  (1 - / ) b f  -  (j - / ) ba + (1 - f ) b .
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If y = 0 and (_/—/ )  1=0, then (1—/ ) 1 —0 and we get the contradiction [a, h]=0; 
on the other hand, if y =0 and ( j —/ ) 1^ 0, we have ( j —/ )д + (1—f ) \  = 0, which 
yields the contradiction a£C. Therefore, we conclude y ^  0. If it happens that 
( / - / )  1= 0, (18) then yields ((1 —f)b )m—(\ —f)b  and b is therefore algebraic over 
P; hence we may suppose (b(sa+t))m=b(sa+t), where s, t£Z  and sxO. Now 
(sa+t)b=sab+tb=sjba+tb=b(sja+t); and we use this result to obtain a polyno
mial p(X)dZ[X], of degree h>  1, for which bmp(a)=b(sa+t). Since y = 
= b(sa+ t)^0 , p (ű) X 0 and bm~1=(sa+t)(p(a))~1£P(a), hence again b is alge
braic over P, which is what we set out to prove. Thus, in view of (14) and the fact 
that a"=l, in all cases the algebra A (a, b) generated by a and b over P is a finite 
extension of P.

If P is finite, then A (a, b) is commutative by Wedderburn’s theorem, contra
dicting our assumption that [a, fi] X0; consequently we may assume P is the rational 
field Q. Note that in a finite extension of Q, there must be a fixed N £Z  such that if и 
is any root of unity, then uN= 1.

Assume that A (a, b) is non-commutative, and choose two of its elements x, у 
for which xy Xjyx for all jdZ . Letting A be as above, consider integers A , / , - -  
—JN,jn+i such that
(19) (x iy - j t  iyx)N =  1, i = 1 , A+ l ;

and note that the /  must be distinct, since j,= jt for s A t implies

(sN- t N) ( x y - jsyx)N =  0,

contrary to the choice of x, у and the assumption that s and t are distinct positive 
integers. For i = 0, 1, ..., N, denote by pt(x, y) the sum of all terms in the expansion 
of (xy—yx)N having г factors of yx; then (19) reduces to the statement that the pt(x, y) 
satisfy the system

2 Ä Pt(x,y) =  1 l(k"), k = 1, ..., N + 1.
1= 0

Since this system has as coefficient matrix a non-singular Vandermonde matrix, we 
see that p0(x, y)=(xy)N is a rational multiple of 1, and hence

(20) [(xy)", yx] = 0.

The argument above applies to any x, y£A (a, b) suchthat xyAjyx for all y/Z, 
and it is obvious that (20) also holds for all other x, yf_A(a, b). Thus (20) is a poly
nomial identity satisfied by A (a, b), and a straightforward application of Lemma 1 
yields commutativity of A (a, b), contradicting our original property that [a, b]A 0. 
This completes the division ring case of Theorem 7.

As usual, to treat the semi-simple case, we need only consider the primitive case; 
and verifying that 2x 2 total matrix rings do not satisfy our hypotheses shows that 
primitive rings satisfying these hypotheses must be division rings. Thus, we have R 
commutative if R is semi-simple; and we proceed now to the general case, assuming 
without loss that R is subdirectly irreducible. The subdirect irreducibility guarantees 
that 1 is the unique non-trivial central idempotent, and that R + has p-torsion for at 
most one prime p. A consequence of (f) is that whenever ab=0, ba= 0 as well;
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this property, in the presence of subdirect irreducibility, implies that the set D of zero 
divisors is an ideal (see [1, Lemma 2]).

Let J(R) denote the Jacobson radical, and let adJ(R) be arbitrary. For x£R, 
choose jd Z  and n >  1 for which (ax —jxa)"=ax —jxa. Now (ax—jxd)n~x is an 
idempotent belonging to J(R), hence must be trivial; hence ax = jxa  and J(R) Q C 
by Theorem 2. Now R/J(R) is commutative by our previous work, so (é(R) 9  
QJ(R)QC; and it follows easily that R  satisfies the identity [x,y][v, tv]=0, hence 
that (^ (R ff  — 0. The fact that <£(R)QC also shows that for each x£ R  and each 
idempotent e, [e, ex]=ex—exe and [xe, e]=xe—exe are both central, hence idem- 
potents of R are central and 1 is the unique non-zero idempotent.

Suppose now that R is non-commutative and choose x(£C. Then by Theorem 2, 
there must exist ydR  suchthat x y ^ k y x  for every k £ Z \  and choosing jd Z  and 
n>  1 suchthat (xy—jyx)"= xy-jyx , we see that (x y —jyx)"~2 is a non-zero idem- 
potent, necessarily 1. Now
(21) x y - jy x  = (1 -j)yx+ [x , y],

hence computing modulo %>(R), which we have shown to be a nilpotent ideal, we have 
a nilpotent element и such that

(22) ( ( l - j ) y x y ~ x = l + u.

But 1 +u is invertible, hence so is x; therefore all non-invertible elements are central 
— in particular, DQC.

Continue with x, y , j  and n as in the preceding paragraph, and let q be any prime 
not dividing 1 —j,  such that R + is ^-torsion-free. If we had qxy = kqyx  for some 
kd Z , we would have q(xy—kyx) = 0, contradicting our choice of x and y. Thus 
there exist fd Z  and m> 1 such that (qxy—qfyx)m = qxy — qfyx^ 0 and hence 
(qxy — qfyx)m~1— 1. Of course, we may assume that n — m — that is

(23) (xy - jy x )n _1 =  (qx qfyx)n-1 =  1.

Consider R = R/D, and for arbitrary w£R, let w be the canonical image of w in R. 
Since (éí(R)<^D, (23) yields

((l - j)"-1- 9"-1(l - / ) " - 1) (^ )n_1 =  Ö;
hence, since yV 1 and q does not divide 1 —j, R must have finite characteristic, which 
we denote by p. It follows that p x d D ^ C  for all xdR ;  and from (21) and the fact 
that x y - jy x  is invertible, we have 1 —j  not divisible by p. It now follows from (22) 
that in R, xy= k\ for some positive integers m and k, hence xy generates 
a finite subring, necessarily a subfield, of R. Thus, for some positive integer n, 
xypr=xy, so that (xy)pr—xyd.DQC. But since ^(R )Q C  and pwdC  for all 
wdR, we get [(xy)p,w]=p(xy)p~1[xy,w ]= 0 for all w£R\ hence (xy)pr£C and 
therefore xydC, contradicting the fact that [x, y] ̂  0. This completes the proof of 
Theorem 7.

In the statement of Theorem 7, we cannot dispense with the assumption that R 
has 1; Example 2 makes that clear. However, we do have some measure of commutati
vity even if R fails to have 1.
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T heorem 8. I f  R is an associative ring and i f  for each x ,y£ R  there are integers 
j  and n ,n > \, for which (xy —jyx)"—xy —jyx, then ^{R) is nil.

Proof. We need only establish commutativity under the additional hypothesis 
that R is prime with no non-trivial nil ideals. If R is semi-simple, then R is commu
tative by the proof of Theorem 7; in particular, if J(R) denotes the Jacobson radical, 
[x, у]бТ(Л) for all x, у £R. Now J(R) is itself a prime ring, and it contains no 
non-trivial idempotents; hence for each x,y£J(R ), there exists j f iZ  such that 
xy =jyx  — that is Ct(J(R)) = J(R). Therefore, by Theorem 3, J(R) is commutative 
and R satisfies the identity [[x, y], [z, w]]—0. A routine application of Lemma 1 now 
yields commutativity of R.

In view of the work in [9], it is natural to ask whether a ring R with 1 is necessarily 
commutative if for each x,y£R , there exist relatively prime j , k £ Z  and an integer 
и>1 for which (jx y —kyx)n=jxy — kyx. The following example demolishes that 
possibility.

Example 4. Consider the ring JR of 2x2  upper triangular matrices over GF(2), 
which is a non-commutative ring with 1. For arbitrary * = [ q and 
in R, we have

[ ad ae + b f 1 . fad db + ec'\
0 cf| and̂  = [o ]•

If ad=cf=  1, then xy—x y —2yx is invertible and there exists n for which
(xy—2j’x)'i= | q j  j. If ad— 1 and cf= 0, then x y —2yx, being of form * j ,
is idempotent; and a similar argument applies if ad=0 and cf=  1. If ad= 
—cf= 0, then either x y —yx or one of xy and yx  is trivial with twice the other also 
trivial. Thus, in all cases, there exist relatively prime j, k£Z  with (Jxy—kyx)n= 
= jxy—kyx.

Our final theorem shows that this difficulty can occur only if j ,  к  are permitted 
to vary with x and y.

T heorem 9. Let R be a ring with 1; and suppose there exists a fixed pair j, к o f  
relatively prime integers such that for each x ,y £ R  there exists n = (x, y )> l with 
(jxy—kyx)n =jxy  — kyx. Then R is commutative.

Proof. Making the substitutions x = l ,  y —j  and x —k , y — 1 yields s , t > I 
such that (j2—kj)s= fi—kj and ( jk —k2y = jk —k 2. Rewriting these conditions as 
j s( j —k)s—j(J —k) and ( j—k y k t = ( j—k)k, and invoking unique factorization in Z, 
we see that either j —k —±  1, or one of j, к  is 0 and the other is ±  1. In both cases, 
R satisfies the hypotheses of Theorem 7, hence is commutative.
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THE DISTRIBUTION OF THE CHARACTER 
DEGREES OF THE SYMMETRIC ^-GROUPS

P. P. PÁLFY and M. SZALAY (Budapest)

1. Introduction. For fixed prime p, let P„ denote the Sylow p-subgroup of the 
symmetric group Sp- on pn letters. We call these groups P„(n= 1,2, ...) “symmetric 
p-groups”. We have obviously
(1.1) \Pn\ = p'+p+-+P"-\

The thorough study of the symmetric p-groups was initiated by L. A. Kaloujnine 
[6], [7].

In this paper we shall investigate the degrees of the irreducible characters (i.e., 
the dimensions of the pairwise non-equivalent irreducible representations (over the 
complex field)) of P„ from the point of view of the statistical (or probabilistic) group 
theory. Since the character degrees divide the order of the group, in our case each 
degree is a power of p, therefore we rather consider logp у (I). The probability meas
ure will simply be the proportion of a subset of irreducible characters. So the number 
h„ of conjugacy classes of Pn will also play an important role. Our main purpose is 
to prove that logp y(l) shows an asymptotically normal distribution.

In a previous paper (P. P. Pálfy and M. Szalay [10]) we investigated the distri
bution of the orders of the elements of P„. This work was inspired by the celebrated 
series of papers [4] by P. Erdős and P. Túrán on the statistical group theory dealing 
with the distribution of the orders of the elements of Sn and related problems. (For 
a simpler proof of their main distribution theorem, see J. D. Bovey [2]. J. Dénes, 
P. Erdős and P. Túrán [3] proved an analogous distribution theorem for the alternat
ing group An.)

For the dimensions of the complex irreducible representations of S„, one has the 
trivial upper bound

Yn\ =  exp j - j  n log n —j n  + O (log n)J.

Dealing with the value distribution of the complex irreducible characters of S„, 
P. Túrán [13] (see also [14]) remarked that the maximal dimension is

owing to the relatively small class number of Sn which is pin), the number of parti
tions of n. M. P. Schützenberger called afterwards his attention to the interest of the 
question what can be said on the distribution of the dimensions. According to the 
first result (M. Szalay [11]), the dimensions of almost all complex irreducible represen-
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tations of S„ are of the form

(1.3) exp j-i- n log n—0(n  log log n)J.

By means of the statistical investigation of partitions (M. Szalay and P. Túrán [12]), 
this was improved to

(1.4) exp n log n — + A j n + О (n7/8l og4 n)J

with a positive constant A. As P. Erdős remarked, this cannot be improved to
exp {g (n) +О (n1/2log _1 n)}.

Another natural probability measure for the irreducible representations of a 
group G is the Plancherel measure, where the probability of the character x is 
X2(1)/|G|. Results concerning the Plancherel measure of S„ have been obtained by 
A. M. Versik and S. V. Kerov [15].

In what follows we are going to investigate the distribution of the dimensions for 
the symmetric p-group P„. As to the maximal dimension, we shall show that, e.g., 
for p > 2 and n>  1, it is

pl+p+...+p"-i

(see Proposition 1). Our main purpose is to prove the following distribution theorem 
by the moment method. (Our random field consists of all possible choices of complex 
irreducible characters of Pn with equal probabilities.)

Theorem. There exist positive constants a = a (p ) , ß=ß(p) with

(1.5) 
and

( 1.6)

1
p P - 3 ■c a <  1 +

1
P -1

Д < 1-
1

p P - 3 +
2

pP~2

such that, for a randomly chosen complex irreducible character x ° f  Pn> we have

(1.7) lim ProbП—►oo
f logpXCl)-«p” 2 
I Д р ( л - Р + 1 ) /2 /  е~,г/2 dt.

— oo

Another result worth mentioning here is the following formula for the class num
ber hn of P„ (see (3.4)—(3.5)):

K = 0 if p  >  2
1 if p = 2

where y=y(p) is a constant with 1 (cf. (3.6)).
The constants ä, ß, у are given by infinite series containing the class numbers 

hn ( /i= l, 2, ...) (cf. (4.6) and (4.11); (4.9) and (4.11); (3.3) and (3.5)). Fortunately hn 
grows rapidly, hence the convergence is fast. Here we give the values of ä, ß, у for 
the smallest primes.
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p a У

2 0.904 366 0.465 601 0.428 430

3 0.960 487 0.521 875 0.463 819

5 1.211479 0.962 249 0.603 746

7 1.166 250 0.999 588 0.714 311

For p ^ l l ,  the approximate values are

ä «  1 +~г~г> ß ** l, у « 1~
Р- 1 Р

within the accuracy of p -(p-3) ( < 10-8).
2. The recurrence formula. Let £„ denote a random variable which assigns the 

logarithm of the degree of /  (to the base p) to a randomly chosen complex irreducible 
character x of Pn, i.e., <^„(y)=logp y(l), £n is integer-valued. The distribution of 
is reflected by the generating function

(2.1) An(z) =  J ” a»kZ*.
k =  0

where ank denotes the number of complex irreducible characters of P„ with 
logp /(1) = L. The sum in (2.1) is clearly finite, so A„(z) is a polynomial. Substituting 
z = l ,  we obtain the number of complex irreducible characters of P„, i.e., the class 
number h„ of P„,
(2.2) 4 ,(1) =  h„.
Similarly, substituting z= p2, we get the square-sum of the degrees of complex irre
ducible characters, i.e., the order of P„,

p n — 1

(2.3) An(p2) =  \P„\ =  p ~ .
We define P0 as the trivial group and A0(z) = ], h0= l. Obviously Рг is a cyclic 

group of order p and A1(z)=p, h1=p. We remind the reader of the recurrence rela
tion
(2.4) Pn+i = Pnr (jP i И 1 )
where Qj denotes the wreath product (see, e.g., [8], 2.30). The characters of wreath 
products are completely described by A. Kerber (see [8], 5.20). In our case P1 is of 
prime order and this fact considerably simplifies the construction. PnJrl contains a 
normal subgroup of index p which is isomorphic to the pib direct power of Pn. The 
complex irreducible representations of this normal subgroup are the outer tensor 
products of those of Pn, the corresponding characters are the direct products of com
plex irreducible characters of Pn. The characters that are stabilized by Pn+1, namely 
the direct powers of complex irreducible characters of Pn, have p distinct extensions 
to Pn+1. The remaining characters induce irreducible characters of Pn+1 and such 
characters induce the same if they are conjugate in Pn+1, so always p of them induce
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the same character of Pn+1. In these two ways we obtain every complex irreducible 
character of P„+1 (cf. these considerations also with [5], p. 86, and [1], Theorem 4). 
Since the degree of direct product of characters is the product of the degrees and the 
induction from a subgroup of index p multiplies the degree by p, we obtain our basic 
recurrence formula

(2.5) An+1(z) = pAn(zp) + j ( A p(z)-A„(zp)) = j  Ap(z) + (p — A„(zp)

for л^о. We have A0(z)= 1 and Ax(z)=p. Hence e.g., A2(z)=p2+(pp~1 — l)z.
As a first and easiest application of (2.5) we determine the maximal degree of 

irreducible characters of Pn.
Proposition 1. The maximal degree of complex irreducible characters of P„ is

pn- 1 —1

(2.6) p P_1 for p =» 2, n ^  1 and p =  2, n — 1,2 ;
and
(2.60 23'2"-3- 1 for p =  2 , n s  3.

Proof. By definition, this maximal degree is p á^ AAz). For deg A n(z)= s,
S

A„(z)— 2  ankzk> the formula (2.5) implies that an+ u= 0  for k> ps+ 1 and *=o
& n + l ,p s + l  P  (P n s  t í ns)>

For />>2 and anŝ 2, we get

_  a ^ K f 1- ! )  _  2 (2P_1—1)
an+i,ps+i ---------- - =  -

(since p/2p~1 — 1).
For p —2 and önsS  3, we get

a n + l ,2 s  + l
n̂ŝ Pns I) 

2 = 3.

S  2

In the above cases, for N ^ n ,  we have
deg An + 1 ( z )  = 1+pdeg AN(z).

This gives the result by induction beginning with A1(z)=p for p>2 and with 
v43(z) = 8 + 6z + 6z2 for p = 2.

3. The class number. Substituting z=  1 in (2.5), we obtain a recurrence for
mula for the number of complex irreducible characters of P„, i.e., for the number h„ 
of conjugacy classes of Pn, namely,

(3.1)

We have h0— 1, hx=p. 

By induction, we get

hn +1 —

Now, (3.1) implies that
p - 2 _ 1

h„ = p P i » - 1) рп+Т = Т  for

hi =pp~1+p2- l  andhn+1̂ j h p. 

n S l .  To get a nontrivial lower
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(5 Y " - 2
bound for p —2 too, we begin with n= 2 and obtain A„ s  2 1 у  I for p =
2, n^2 . This rapid growing of hn (compare with |/>n|=/?(p"-1)/(p-1)), will enable us 
to derive good estimations in the forthcoming calculations.

Proposition 2. For n ^ l ,  we have

(3.2)
and

(3.20

[ 1ypn-1-----

p p-‘J if p > 2
[

ypn-\—i——1
P ^ J - l  if  P =  2,

where y —y(p) is an (implicit) constant defined by

(3.3) У =
n - 2  1 “  1 , ( ,  p 2 - 1 )

p ( p - 1) + logp Ж  pk o g l + hi: } )'

Proof. The series defining у is obviously convergent. Rewriting (3.1), for k ^ l  
we get

log hk log /ifc-i logp
nfc—1 - + > E(1+9f)-

Since A0= l ,  we have

log h„
yr1 = 2  -

logp

■ - £ f

-  2 =  ? i ° g p + - ^ f - - 4 -  2 _̂ log ( 1 +  'P :rT‘)k = n + l P \ “fc-1 ' P — A P k-n+1 P V “fc-1 >

n ̂  1. Hence,

log/.. =  , p - l o g p + ^ i f - i l o 8 ( l + T b i ) - i i t i i i r lo g ( l  +  ̂ ) ,  

log(pA„+1)1/p -  ypn log P + - ~ ~ r ~  2  - j r n r l o g ( l + 4 ^ ) -p — 1 *=n + 2 P V “fc-1 /

0 - . 1 ,  ̂  Ч 1+ w b  108 (1+w ) -
Consequently,

/ Р"+^ Г  f p . - n _ 2_  f P+ l ) 1/P
"  (pAn+1)1/p " ( 1+ h ^ l  Г ~ ц -  l 1+ h r , l ) •

i.e.,

Here,
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Therefore,

(РК+1Уlp <  р РП+̂ Т <  (рК +1 + Р^ Х 1}) 11Р S  [hü + t f -  l)hn + -№ pt P )
1/P

for 1.
For p >2 and /1̂ 1, we get

1yp'H-----
К  <  (рйп+1) ^  <  p ' - 1 ( h g + ( p 2- l ) f t „ +  p (ph+ 1 ) ) 1/p

S  (hp +P2hn+ l)1/p == (ЛР + p / i r 1 + l)1/p <  Л.+1.

For p = 2  and «fel, we get

h n +  l  <  (h® +  3 h „ ) 1/2 =  (2hn+1)1,!t <  2 « " + i  <  ( й 2 +  3 й п +  6 ) ^  ^  h „  +  2 .  

Corollary 1. For л fel, we have

(3.4) A 4 ’^ . № -■ » ]-{?  f  ' Г
2

i f  P = 2

where y=y(p) is given by (3.3).
As to the magnitude of

(3.5) У = ( Р -  1)У,
we infer from (3.3) that

(3.6) 1-----<  у <  1
P

2 p —1 1 , (. p2—1)
P + logp p ( p - l )  ° g l +  /if-1 )

1
Pp—2 log p '

4. The expectation and the variance. As usual, the expectation M(£„) and the 
variance Z>2(£„) can be expressed in terms of the derivatives of the generating func
tion, namely,

(4.1) M ( 0  = A '(l)

(4.2)

Now our aim is to derive recurrence formulae for the expectations and the variances. 
Differentiating (2.5) and substituting z=  1 (notice that An(\)=hn), the application 
of (3.1) yields

^ +i(i) -  W 1+ p 2- i K ( i ) + y ( h ; - h B) pK+1
К ^ ( l )  + (̂ n + l - p / ln)
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and
a u  i(i)  =  щ - 1+ р3- р) а ; (1 )Н р - т г 2(А'п(1)У+

+ (2 (h r1- l) + P * - p i -p + í)A 'n(l) =

= (i ^ + p3- p* - p + i ) a : № ( p - w ( ^ )  +

Now, owing to (4.1)

A'n+i(i)  _ a ;( i )M (tn+1)=  = p ^ -  +
and, by (4.2),

+ (2 (h r1- í ) + p 3- p 2-p+ í)A '„(l).

hfi + 1

n 2„  ч _  < +i ( i )  , ^n-pi(i) (a;+1w y
E— + ~ K 7 ,  Г Х Т ~ 1  ■

- ' т м ' ч ъ т ш й -

ence formulae

M(tn+1) =  p M ( U + [ i - - ^ )

(4.4) D ^ n+1) =  (p +  (p2 -  l)(p - 1 )  - ^ )  Z>2 (£„) +  ( i  -  - £ ^ )  ^

Thus we have the recurrence formulae

(4.3) 
and

for n i l .  We notice that M (^)= 0  and D2(£1)= 0. 
Proposition 3. For пШ 1, we /rare

(4.5) cep" —
1

p -1 Af(£„) <  apn-
1 2p

p - 1  ЛГ1 ’

where <x=a(p) is a constant defined by

1(4.6) ■y fyt-i
Á  T^-Xh.  •p ( p - l )  к=грк khk
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Proof. The series defining a is obviously convergent. Rewriting (4.3), we get 

M(Zk) _  M (£k. J  1 Л*_х
I lP P‘

for &s2. Since M(£j)=0, we have

Л-i pk kK

Щ Ы  ± 1r 1 K_ 1 ]1 1 1Í1 1 1p" fcis'l pk pk~1hk) p - 1  1Ip p" J n+1 pk 1hk
for u s 2  and, trivially, for n — 1 too. Hence,

and here

0 K -k-1

n + 1  P  

P 2 P
*=„+1 pk~1~nhk *=n+l K ~k '

Corollary 2. For и->-<=°, we have

(4.7)

where a =a(p) is given by (4.6).
Proposition 4. For и S i ,  we have

Щ Ы  = aPn- ~ f + ° ( 1)’

(4.8) ß2Pn-  2ß2pnhr - ? 2P <  Я2( 0  <  /?2Р",

where ß2~ ß2(p) is a constant defined by

(4-9) ß2= П  (l +fc=2 p hi \ hi ) i=k+1V
(p2- i) (p - i) f t i~ i

Phi )•
Proof. Owing to the rapid growing of /i„ (cf. (3.1)—(3.3)), the infinite products 

in the definition of ß2 are convergent. Rewriting (4.4), we get

ОЩк) =  L  ! (р2- 1 ) ( р - 1 Ж -1 ) f>2f c - i )  | 1 L  р К - Л р К ^  
У phk ) pk~l pk { hk ) hk

for £ s2 . Since D2(^1)—0, we have

Р 2Ю  ff L  , (p2- l ) ( p - l ) h ,_ 1)
P" / Д Д  ph. )

(P2~ l )  (p -l)ftt- i
phi ) -

V Л*-1 íl Pft* - l l ff (, , (p2- l ) ( p - l ) f i f - l ) 
p k-n+1 p b - 'h  l pht )
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for я ё 2  and, trivially, for и= 1 too. Since

К  =  ~ hk - i + [ p ~ )  hk- 1 -  Phk-1.
we get

= ß2p" i=g \ } +  {pt~ l)ph~ 1)h,~1)  '~

у  hk~ 1 fl Phk - l) Л  f, , (p2- l ) ( P ~ l ) f e |- l ) - 1 .
Ьл+I / " ‘‘ "/it 1 К pht )

>/?2p"exp j —p3 Z  h r J r » } -  2  -J -T -n u  >
I l = n+ 1 i fc = M + l P  rlk

>  j32p"ex p { -p 3 Z  (pl~1~”hn) - (p- 1)\ - 2 p h ~ ip- 1) S
l I=n+1 1

9fi2 п"+з+ 2п
^  /?V  exp { - 2p3/.-<»’- 1>}-2pft-<'’- 1> => ß2pn~  P P Z  - •

Taking into account (3.2) and (3.2') we obtain 
Corollary 3. For we have

(4.10) D \ U  = ß2pn-o {  1),
where ß2—ß2(p) is given by (4.9).

In order to get a better imagination we multiply a and ß by suitable powers of p 
(because a, /?—0 if p-<-°°). Let

p - 1
(4.11) a =  p2 a, ß — p 2 ß.

Proposition 5. With notation (4.11), we have

1 _ , 1<  a <  1 +(4.12) Í+ — ~r P- 1
and

1 pp~3(4.13)

P -1

5 . 1 2

Proof. Multiplying (4.6) by p2 we get

ä =  1H--- —j—  2 - ^ n r -P- 1 k=2 pk 3hk
Here,

00 h
o <  z  fc_1 +  2k=2 pk 3hk h2 Á  pk 3H _l

: £ +h2 (p -l)/i£
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P2 !
i i +  1 1 i i +  M 1 -  p2 Ii l l  1 1I . 1

к 1l /if _2J h 2 Il + v I - p P - l  +  p 2 _ l  I11 + р ' - 0 1 '  p P - 3

These yield the estimates in (4.12).
Multiplying (4.9) by pp_1 we get

ß2= p p -i 5 - f e - i i —^ - 1  n  f i+*=a p* xh k V /ifc / i4 + i v 

For p=2, j5 > 0 > 1 --^гз- F or p ^ 3 , we get

(P2- l) (p - l) fe /- i
Phi )

p h 2

j (pp~1-

P / l l l 1 _  *
p - i ( p p - i _ l )

h 2 J

l - p ~ +
 

1

2̂ ^

&t

f l  1 ) “
l  P p ~ 3 )

These yield the lower estimate in (4.13). We turn to the upper estimation of [1. For
fcs  3,

К  ( h k - i Y 1 _  h i  _ h i  _  p ^  p 1
hk+i

Thus, for j s  3, ^  —Д

f  h t - i ) ™ 1 =  h j  ^  h j

'  h k )  h k + 1 h k _ 1 1 . . .  f t j t - i  h 2 p— nk nk_ 1

Therefore,
h j -  P j ~ 3 h 3

P ,  р, - ‘{ Д ° 1р ( 0,’~ 1>̂ 7 1>'" -) } { д -  (' - $ ) + J t % 1  s

( (p2— 1) (p— 1) у  h2 ) J h 2 — p h x ” h 2 I
l p г4 з р '- 3/13Д  А! *=з p2*—4й» J

S  pp_1expI
P г” з p‘ °й3 Д  *“ з p »a

- í ~ - p ( 0 P - « £ ) { ^ + - 5 é i 5C}-
For p —2, this is

2 exp (з — ){— +  "J72Ö̂} 1 =  [l ~-22=3 + 2 2=?)
For p = 3,

3'Д8-4 У{8 17 1u 4 - Í j 1
172 4 8-17-99J 9 “  l 33-3
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For р ё 5 ,

h 3 ^  h g - 1 ^  p 7 h l ’

“ ' ( ^ 1> г Н л )  1+ - И !  “ РШ  -  1+У

p 1 H p p- 1- 1
h i

+

r , P - i ( p P - l _ l ) nP-1
p*h \^  pph\hi + ■ +

У *
Ш

l  = 1- É ! ± + i É z l f ___ 1—
1 p f - , ,  P - 1

1  ‘ _ p - l

„ 1 1 p ‘1---- Г̂ Г +  ' „ J ,' +p P - 3  1 p P - 1  ‘ p 2 P - 2
1 2

1 PP~3 + PP- 2 ‘

5. The higher moments. Now we are going to investigate the random variables

(5.1) 4n ß p " /2
(n = 1, 2, ...).

(rjn is, within a small error, the standardized form of £„.) Observe that t]„ takes on 
only finitely many values, hence every moment M{r\);) exists and is finite.

P r o p o s i t i o n  6. For every k=  1 ,2 ,..., we have

(5.2) lim M(z/£) =И-*- 00
• ( k - 1) z/ /с epe«, 

z/ к odd;

i.e., the к-th moment o f the standard normal distribution.
P r o o f .  For k = 1, 2 the assertion follows from Corollaries 2 and 3. For 3 

we proceed by induction on k. The moments of z/„ appear as coefficients in the charac
teristic function I//n(t) of z/„, namely, for real t,

Ш  = M  (e"»") =  2 ^ T T - 0 0 k- 
k =  0 zc!

The definition (5.1) of t]„ yields that

i/z„(i) = exp
— ap" +

P - !  .
ßp”/2 i t - L - A S e ^ y
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Now the recurrence formula (2.5) implies that

Фп+Л‘) =  exp
— txpn+1 +

P -1  .it 1 ____i i  g i t / ß p ' " ( e i l / /S p l "  +

i+l IPß p (n+i)H

+ ^ p - — e‘,/l>p(n*u/,j  An(ep“/ßp(n+1)/1) j  ==

л̂ + 1
exp

-a pn+1 +
P- 1

ßp(n+ l)/2 it h”■ exp
ap

P- 1 pH
ßpn/2 ip

+

Í „ 1

(J«-w ,< »+ «/i_ i.jfcllexp
a p " -— —

Finally,
(5.3, * . „ «  -  ---------

This formula involves a recurrence for the moments of rjn+1. The coefficient of 
(it)k/k\ in IЩЬ/Ур) is a polynomial in M(pkn), more exactly, it is

Fk{M{ny  ..., M W r ^  + P — ^r,
UP)

where Fk is a polynomial. Denoting the moments of the standard normal distribution 
by m.j (y=0, 1, ...), the equation

(exp {—{t/Y p)2/ 2))p =  ex p (- ;2/2)

(the characteristic function of the standard normal distribution) implies that Fk 
satisfies the equation
(5.4)

Now, we infer from (5.3) that

^ , . mkFk(m0, ..., mk_!) +  p-
(УрУ

= mk.

О = 1 T ^ { P- j ) ) №(AT(f|»), ....

M p‘+»M (ni)
+7^г1ДЫ •
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Consequently,

Щг1кп+г )-т к = ( l - - A - ( p - i ) J  (Fk(M ^ n), ...,M(r,kn~ '))-F k(m0, ...,»!*_,)) +

+  (1~ Т 7 г ( Р - 'р ))р1-*/2 (М(̂ л) -  mk) +  - J ~  [ p - ~ ) p k/2 (M (^) ~ mk) +

+  — L -  — | ( _ l + p * / 2 \ w  +  h n  V i f c ]  P 1 + JI2M ( T ] { )

By the induction hypothesis, lim M(rjJn) — nij for j  =  0 , .. . ,  к  — 1. Thus the 
moments are bounded and

Jim Fk{M(t]nn), ..., AfOriT1)) =  ^(™o, •••, w*-i).

Using also the relation

(5.5) 
we get

—  =  o(l)
ln + 1

Hence, for every e>0, there exists an п1=п1(г, к) such that the relation 

\ M ( r j k„+1) - m k \ == P 1+k/2) \ M ( t l k) - m k \ + s

holds for n ^ n k. Let Since k s 3 and рш 2, we have 1.
Using again (5.5) we get |M(i/*+1) — mk\Sa\M(tik) — mk\ +e for 
Consequently,

lim sup |M(//Jj) — mk l — o- ’

and this holds for every e>0, therefore lim M(rik) — mk.

6. The limit distribution. In the simplest special case the celebrated Moment 
Convergence Theorem (see, e.g., [9], p. 185) states that if the k th moments (for every 
k —1, 2, ...) of a sequence i/„ of random variables converge to the corresponding 
moment of a normal distribution, then the distribution functions of i/„ converge to 
the distribution function of the given normal distribution. Hence in our case Pro
position 6 implies that the distribution functions of rjn converge to

1
^2n

f  e~‘*l2dt.
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Translating it for we obtain

lim ProbП-»оо -= up" -L =  f  e-'4*dt.
У 2n -'L

Obviously, the term — (p — l) -1 does not play a significant role, so we can get rid of 
it without altering the limit relation. What we obtain is exactly the statement of our 
Theorem.
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ÜBER DIE CESÄROSCHE SUMMIERBARKEIT 
DER FUNKTIONENREIHEN

К. TANDORI (Szeged), Mitglied der Akademie

1. Es sei A= {А}Г eine nichtabnehmende, von unten konkave Folge von posi
tiven Zahlen mit — (k — =»). Ohne Beschränkung der Allgemeinheit können wir 
Xi =  1 voraussetzen. Für jede nicht-negative ganze Zahl s sei Z s die Menge der natür
lichen Zahlen k, für die 2s<At ^ 2 5+1 erfüllt ist. Auf Grund der Voraussetzungen 
gilt Zst í0  0 = 0 , 1, ...). Es sei Zs={v(s) +  1, ..., v(s-H)}. Aus der Konkavität 
folgt

( 1 )
v p + 1 ) __ 2v(s + l) 

v(s) — Av(s)
2S+1 —1 1 1) (s =  1,2,...).

Für eine reelle Zahlenfolge a —{ak}5° setzen wir

A\ -  2  al h  0  =  0, 1,...).kiZs
Es seien (X, A, y) ein Maßraum mit y(X)<  °° und <p = {(pk(x)}^ ein System der 

Funktionen cpk(x)£L(X, А, у) (k=0, 1, ...), weiterhin sei

L\{(p\ x) = f  I J ' f l —~-A(pk(x)(pk(t)x n + l ) dy(t) (n = 0, 1,...).

Wir werden erstens den folgenden Satz beweisen.
Satz I. Gelten

Ц,(<Р; x) =  0(X„) (xeX; n =  0,1,...)
und

2  As <  ” ,
s=  0

so ist die Reihe
oo

2  ak(Pk(x)k = 0

in X  fast überall (С, 1 )-nummierbar.
Einen ähnlichen Satz hat der Verfasser vorher für die Konvergenz bewiesen 

(Acta Sei. Math. Szeged. 42 (1980), 175—182).
Ähnliche Sätze können auch für andere Summationsmethoden, z. B. für die Riesz- 

sche Methode bewiesen werden.
2. Zum Beweis des Satzes I benötigen wir gewisse Hilfssätze.
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H ilfssatz I. Unter der Bedingung Ц,(<р; x) = 0(/.„) (x£X; n= 0, 1, ...)

11/2 1
f 4 = 0

1 —
П +  1 K<pk{x) du = О(t! 4

^ v (s )+ l

1
И +  1

für beliebige Folge {й*}Ц mit n£Z s (s = 0, 1, ...).

Beweis des H ilfssatzes I. Es sein n в Zs und

E :{x £X: Í  (l —- L ^ b .c p fx )  >  oj, E~ = {х£Х: Д  

Mit den Rademacherschen Funktionen r„(i)=sign sin 2nnt gilt

(2) / Ц ( 1-Т Т г )',‘'г’*(*)) *  =
It

- Д Д Д ^ * 4 Д ( 1_4 т Ь И л 4 ' ,

Ък<рк{х)

d/л (х)

dt= / Ц  Ь М ‘Щ  U(‘ -  4 т ) Г><'** w

* { /U w o ) *} { / ( /  (J ii- w b ('),H ‘,'‘w

- Ц « Г 1/1

4 H

2̂ 11/2 
dr =

\гк(1)<Рк(у)Ш(у) \dt

X

/ ( , l ( ‘- 4 r ) X

dß(x)dfi(y)

= {„#.«} ( i f i f s

s { i  4f  {/ ( / 1 i  Wf '
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Durch zweimahlige Abelsche Umformung erhalten wir

Л ( 1_й т )  V‘ ^ M = TÍÍTW‘ iZ « + l) K l ix ,y ) +(n + 1)2 kf о
worbei

Kl(x,y) = 2  ( l — ( * MÖ0

bezeichnet. Daraus, folgt auf Grund der Voraussetzung

/ 2 i - <Pk(x)(pk(y)k = 0  ̂ H+ 1

in Falle n£Zs. Daraus und aus (2) erhalten wir

(3)

dg{x) = О (A„) =  О (AV(J) + 1) ( je  X)

/ 1 # ,  (1- й т К * (4 ' ‘ = ° ( U **} % “ ) •
n

Durch Anwendung dieser Abschätzung mit dem System {— <p*(x)}“  folgt

/
E -

Z . 1- И+1 bk<Pk(x) dg = О

Daraus and aus (3) ergibt sich die Behauptung des Hilfssatzes I.
H ilfssatz II. Unter der Bedingung Ц,(ср; x) = 0 (1„) (x£X\ n = 0, 1, ...) gilt

/ 2  bk(pk(x)k = 0 J “ = ° U bf l̂/(s) + 1

für jede Folge {Afc}g mit n£Zs (s=  1,2, ...).

Beweis des H ilfssatzes II. Es sei n£Zs 1). W ir betrachten die Folge

Da
d(s+2) 
к

Ck =

к

bk, к = 0,..., n,
0, к =  n + 1, ..., v(s +  2).

кs+2) ( к \ " ( к \
I1—v(s + 2)— l b *»1*) -  . ^ [ ‘- »C +  a  + l b ^ W  =f (s+ 2) + 1

/1 — 1 / к
v(s+2) +

v(s +  2) + l

W » I  ( i  iW'W) + (‘~ v(S+ 2 )+ l). l .  *•*•<*>
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gilt, besteht die Gleichung

(4) ( И  \ n v(s+ 2) ( k \
1~тй+а+г)Д>‘,,‘(х)° Д (‘- д а К 1

1

v(s +  2) +  ]

" z i i b . v . w ) -  (( = 0 \/ = 0 >v(s +  2) +  l  t=
Durch Anwendung des Hilfssatzes I auf die Folge {c*}S(s+a) erhalten wir

v(s+2) /  К \  I fv(s+2) -.1/2 ч

га /  Д  (1- T ( r r w ] w ‘(T ' , = 4i*-" <4J ;:s*im ) =

= ОЦ«Г*ь4
Weiterhin erhalten wir durch Anwendung des Hilfssatzes I auf die Folge

(6) f
1 «-1
-  2  n k=o 2  biViix)\\dn =  О1 = 0

ß
n-1 11/2
. 5  « v̂'is) +11 —

Aus (4), (5) und (6) folgt

(7) / ( “ v (s +  2) +1 J |fc=o 

Im Falle n£Zs gilt auf Grund von (1)

n v(s + l)

- ° (и * ,Г дь4

^  = o í { i h ! } 1/2; ^ )+1J.2  ьк<рк(х)

l l
v(s+2) sv(s+2) + l

Daraus und aus (7) ergibt sich die Behauptung des Hilfssatzes II.
H ilfssatz III. Unter der Bedingung L^cp; x)—0 (Ä„) (x£X; n —0, 1, ...)

gilt
- "(*> f f e i

/  2  i -  „ , t U ,J fc = v(s) + l n(x) +  1 J
du = 0(A S)

/йг beliebige meßbare Funktion n(x) mit ganzzahligen Werten, v(s)< n(x)^v(s+ 1)
(s =  0, 1,...).

Beweis des H ilfssatzes III. Es seien
f »(*) i
\xex: 21 ft = v(s) + l ' 1 k }ak<Pk(x) > 0}n(x) + l )
r »(*) ( k )1 I
\xeX: zl * = v(s)+l l 1 П(Х)+1; (*) <  0}
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Mit der im Beweis des Hilfssatzes I angewandten Methode ergibt sich

• »(*),
(8)

dn(x) ={̂(/иХял(0)(|!1-1к1 йЬ('),,‘Нл
К  V (S + 1) 4  (  ( n (.x ), k  \  \

’ Д - | , +Л г*(0 ) |

(s+ l)  -.2 л 1/2 Í  * ( „ / • " (* ) /  k  \  \

. | )+1“л (,)) *} { / | Д Д ( 1_ w r ) r‘(')ft(T ' ,(5t)

{v(s)+ i I 1/ 2 f f  , / » W /  k  \  \

2 1 1 /2  

dt \  =

X

1/2( r í k \ \ \ 11/2 r VW+1 I1
x { /U ( ‘-  = { , ^ )+1 *:}

х { Д { ( / ( 1 2 ( 1- о т ) ( 1- 1 к Д г ) г‘<'^ « ' - ' (̂ м ) л ) х

}* '*  (  v ( s+ l)  , 1/ ä f  /m in («(*),« W ) ,  r. .

- U . . « }  { ,{ ,{ (  д  Н ж г ) х

i  k \ Л 11/2 r  v(s+1> n1/2

x l1" i í ö ^ b (*)ft(yT /|(*>l#lW} H - á + i * 8} x

x Ш Г  IT0 (‘“-ДДЬ̂Н
Durch zweimahlige Abelsche Umformung erhalten wir

( ‘“ S ö l+ r)
2  min (п(л) ,пСу))

2  (k+ l)K i(x ,y )~

min (n(x), n(y)) . 

2

(n(x)-H)(n(jO + l) 1=0

min(n(x),H(y)) j 
(n(x) +  l)(n(j) + l) “ «“(»(*).»(»))KX,yh
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du (x) = o  (;.v{s) + 1) Cv€ X).

Daraus folgt auf Grund der Voraussetzung
min (n(x), «00) (  и  V  к

/  Л (1-- íö 5 T r )lI" V rt+ r ],,*M,’*ü')
Hieraus und aus (8) ergibt sich

„ /•  n(x ) , k \  t  /  f  v ( s + l )  1 i / 2
(9) f \  2  f l — - 7 2  ай  ЛУ*)+1 = 0(AS).

/ + [*  =  v(s) +  l l ,  n(x)+l ) J U f c = v ( s ) + 1  J

Durch Anwendung dieser Abschätzung auf das System {— erhalten wir

f  2  f i - — )l  *=4+i l  « + ij
ak(pk(x) du =  0(AS).

Daraus und aus (9) folgt aber die Behauptung des Hilfssatzes III.
H ilfssatz IV. Unter der Bedingung x) = 0(Ä„) (x£ X ; n = 0, 1, ...) gilt

г  vT  fi____ — }i  *=4)+i[ n(x) +  l j

V (ff)  +  1

ak<Pk(x) -  2
& =  v(<x) + l

1— k
v(s) +  l ak(pk(x) du = О v(g)

v(s)

für jede meßbare Funktion n(x) mit ganzzahligen Werten, v ( s ) < / i ( i ) ^ v ( s + 1) und 
für alle Indizes <7= 1, . . . ,s — 1.

Beweis des H ilfssatzes IV. Nach der Umformung 
kv(<T +  l)  

*  =  v( ct)  + ■NW + l
l

v(ff +  l)
ak(pk(x ) -  2

*=v(cr) +  l

1

[l v(s) + l)
v(ff +  l)
2  kakcpk(x)

akcpk(x)  =

v(s)+l n(x) + l Jk=í^)+l 

und nach Anwendung des Hilfssatzes II erhalten wir
v(<7+i) / k }

J  n (лг) +1 J
V(<T +  1)

ak<Pk(.x)~ 2k — v(<r ) -f- v(s) + l
v(<r +  l)

ak<pk{x)  

1/2

dg - Í

1 I v(<r +  l) (  1 i  v(<r +  l) у
= -т7т г /  2  kak(pk(x)dn = o \— r-j 2 "v(s) J |* = v(ff)+l |* = v ( »  + l  J

woraus sich die Behauptung des Hilfssatzes IV ergibt.
3. Beweis des Satzes I. Ohne Beschränkung der Allgemeinheit können wir 

ak = 0 (k = 0, ..., v(l)) voraussetzen. Es sei

b*(*) -  v(s) m |vx +1) knW “ ffv(s)WI (s = 1,2,...),
wobei

a„(x) =  2  U -= 0 n + 1 ak(pk{x)

Acta Mathematica Hungarica il, 1983



ÜBER DIE CESÄROSCHE SUMMIERBARKEIT 157

ist. Für jede natürliche Zahl i ( ^ l )  sei ns(x) die kleinste ganze Zahl, für welche 
v (j)< f!,(r)S v(i+  l)und

bestehen. Dann gilt

s .W  = 2<r = l

<5 , (*) =  \<r„M  (x) -  ffy(j) (x)| (x€ X)

v(<r +  l)  (v(<T +  l ) Í к )2
ft = v(<r)+l K w + J +

+
n,(x)

2 1- ak(PÁX)fc=^)+il. ns(x) + l 

Durch Anwendung der Hilfssätze III und IV bekommen wir

i1 v(ff)/ Ss( x W  = 0 [ Д  -Щ - Л .+ Л ] (s =  1, 2, ...), 

und so gilt auf Grund von (1)

.1  / « * * ■ - " ( . f e l  -  ° ( 1 1 , т У  -

= ° ( Д  '  “ •

2  <U*)S=1

Daraus folgt, daß

( 10)

fast überall besteht. Da

kv(.+i)W -ffvw(*)l -  ö*(x) (x£X; s =  1, 2, ...) 

gilt, ergibt sich, aus (10) daß

2  kv(S+i)W-o-v(5)W| <  °°

auch fast überall gilt, also konvergiert die Reihe

2  (°v (s  + l )  ( x )  &\(s) (-^))
5 =  1

fast überall. Daraus folgt, daß lim c v(s)(x) fast überall existiert. Es sei n beliebige
natürliche Zahl (n>v(l)) und sei v (i)< « S v (r+ l) . Da |<7„(x) — crv(s)(x)|á 
^ d s(x)-*-0 (.5 — 0°) fast überall besteht, folgt, daß die Folge {cr„(x)} fast überall 
konvergiert.

Damit haben wir Satz I bewiesen.
4. Man kann auch den folgenden Satz zeigen.
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Г v(s) 1 “
Satz II. Unter den Bedingungen des Satzes I konvergiert die Folge \ 2  akcpk(x) f

u=o Jo
fast überall.

Beweis des Satzes II. Aus dem  Hilfssatz II folgt

/
v(s+ l)
2  ak(pk{pc)

*=v(s) +  l

( (  v ( s + l )  11 /2  1

du  =  e j j  A $)+1J =  0 (AS) (s =  1 ,2 ....) ,

woraus sich
tso

Л /

v(s+1)
2  ak<pk{x)к =v(s)+X

dp =  o ( j  л .) -=

und daher die Behauptung des Satzes II ergibt.
5. Wir erwähnen die folgenden Behauptung.
Satz III. Unter der Bedingung L\(cp; (x )= 0 (Л„) (x£X; n= 0, 1, ...) gilt

J \(pn(x)\dfi =  O W *).

Beweis des Satzes III. Im Falle n£Zs folgt aus dem Hilfssatz II

/  \<p m w  =  о д а +х) =  о т
x

auf Grund der Definition der Folge (v(s)}.
6. Endlich beweisen wir, daß ohne der Bedingung 2  die Behauptung

s—0
des Satzes I im allgemeinen nicht zutrifft.

Satz IV. Gilt für die Folge а 2 ! so gibt es ein System <p =  {<?*(*)}“
s = 0

der Funktionen q>k(x)£L(Q, 1) (fc=0, 1, ...) mit

dt =  0 (A„) (x6 (0, 1); n =  0, 1,...)LK v, x) = f  2  f l—“XT 
о *=<>( И + Н

derart, daß die Reihe

(П ) 2  nk<pk{x)k = 0

in (0, 1) überall nicht (С, 1 )-summierbar ist.
Beweis des Satzes IV. Es sei <pk(x) =  0 (x £ (0, 1); k = 0, ..., v(0)). Es sei 

л (ё 0 )  eine ganze Zahl. Ist A s—0, so seien <pk(x ) =  0 (x£(0, 1); n = v ( j ) + l ,  ... 
. . . ,  v ( j + 1 ) ) .  Ist aber Л5>0, so seien Ik(s) (&=v(.s) +  l, ..., v ( s + l ) )  paarweise
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disjunkte Intervalle mit
v(s+ l) „2

U Ik(s) =  (0,1), mes Ik(s) =  v(s)+*----  (к = v(s) +  l , v ( s + l ) ) ,
t  =  v(s) +  l  Ч Г  о

und wir setzen
2  4! =  v(s) +  l

( t — W + l .......V(S + I».

(Im Falle ak—0 sei (pk(x) = 0 (x£(0, 1))).
Es sei *6(0, 1). Dann gibt es für jede natürliche Zahl s ( ^  1) eine Folge (x)}f 

mit folgenden Eigenschaften: es gelten

v ( s ) < n , ( i : ) S v ( s + l )  (s =  1, 2,

<?«.(*) = AJan. (s =  1, 2, ...),

<Pk(x ) =  0 (v(s) <  к — v(s + l), к  ^  ns(x); s =  1, 2, ...).

So gilt für jedes x£(0, 1) und für jedes s ( ^ l ) ,  auf Grund von (1):
v(s+ l) /

2 i -k = 0 V v(s + l) +  l

Daraus folgt, daß die Reihe (11) überall in (0, 1) nicht (C, l)-summierbar ist. 
Es sei x£(0, 1). Dann gilt

(12) L\{(p\ x) = 0 =  0(A„) (n =  0 , v(0)).

Es sei n>v(0). Dann gibt es eine natürliche Zahl s mit v (s )< n ^v (s+ 1). Ist 
n<ns(x), so gilt

}  1-1 S_1 .
(13) LXcp; x )=S  J  2  1Ф».(»(*)<?».(*)(01 dt =  2  f  =

о "=1 /»„(,)
s—1 Л2 /  V(d +  1) s—1 /  v(<r +  l) s —1

=  2 - £ - < J  2  4 = 2  A l  2  4 = 0 {  1 ) 2 -
<r = 1 a na (x) I  * =  »(») + ! ® =  1 I t  =  v (» )+ l » =  1

•v(ff + l)

— 0 (AV(S)) — 0 (An),

auf Grund des Definition der Folge (v(j)}.
Ist aber ns(x)^n , so gilt ähnlicherweise

(14) Ц,((р; x) — О  ̂ 2  ^v(<r+i)j =  ^(^v(s+i)) = 0(Av(s)) =  0(Xn).

Aus (12), (13) und (14) folgt Ц((р; x)=0(Xn) (x€ (0,1); n = 0, 1, ...).
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Damit haben wir den Satz IV bewiesen.
Bemerkung. Für das Funktionensystem cp im Beweis des Satzes IV ist 

auch die strengere Forderung
1 n

f  2  \<Pk(x)(pk(t)\dt = 0().n)
0 k—0

(*€(0, 1); n =  0, 1, ...)
erfüllt.

(Eingegangen am 9. September 1981)

JÓZSEF ATTILA U N IV ER SITÄ T 
BOLYAI IN STITUT
SZEGED, ARADI V ÉR TA N Ü K  TERE 1. 
H —6720
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SOME REMARKS ON THE NOTION OF REGULAR 
CONVERGENCE OF MULTIPLE SERIES

F. MÓRICZ (Szeged)1

1. Consider a d-multiple series

( 1) 2  2 2 " ак1,кг. ...,ka>
kd=1

whose terms are real (or complex) numbers and d is a fixed positive integer. The rec
tangular sums defined by

" l  "d
s(m1, . . . ,md-,n1, . . . ,nd) =  2  ••• 2  ak.....kd>

ki=mi kd=ma
where 1 ^n tj^r ij for each j, play a decisive role in the study of convergence beha
viour of the series (1). In particular, if nij—1 for each j,

"i "d
S/ti..... /id s ( L  **м 1) 1 ’ •••) Hd) 2 * ••• 2  ^ k i , . . . , k dkx = l fcd = l

are called the rectangular partial sums of (1).
We remind that (1) converges in Pringsheim’s sense to a finite number s if for 

every £>0 there exists a number N=N(e) such that
(2) |sni....Пл — л| <  £ whenever min (и1; ..., nd) ^  N.

Following Hardy [3], the d-multiple series (1) is said to be regularly convergent if
(i) it converges in Pringsheim’s sense, and
(ii) for each choice of the indices 1 ...< je^ d  with 1 ^e< d , and, denoting

the remaining indices of {1, 2, ..., d) by 1 ... for all fixed values of
klt+1, . . . ,k ld(= 1, 2, ...), the e-multiple series

2  ••• 2  a k i ......kd
‘л- 1 kJ . =1

also converge in Pringsheim’s sense.
This definition is actually given in [3] only for double series, while for arbitrary 

multiple series it can be found e.g. in [4, p. 34]. We mention that this kind of conver
gence of multiple series is essentially contained already in [2] in a special case.

1 This research was conducted while the author was on leave from Szeged University and a 
Visiting Professor at Ulm University, West Germany.
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The notion of regular convergence was rediscovered by the present author in [5], 
where it was defined by an equivalent condition and called convergence “in the res
tricted sense” . More precisely, our definition is the following: the d-multiple series
(1) is said to be regularly convergent if for every e>0 there exists an N=N(e) such 
that
(3) \s{mlt ...,т л;п1г ...,»<,)!< e 
whenever
(4) max (nix, ..., md) 5s N  and 1 g w j g  n} for each j.

The equivalence of the two definitions can be verified with the aid of [5, Theorem 
1'] which, however, is stated there in a wrong form. The corrected statement reads as 
follows.

Theorem 1. The series (1) is regularly convergent i f  and only i f
(i) it converges in Pringsheim's sense, and

(ii) for each choice o f the index y( =  1, ...,d)and for all fixed values o f кj(=  1,2,...), 
the (d-\)-multiple series

kd

are regularly convergent.
The requirement expressed by conditions (i) and (ii) in Theorem 1 is a reformu

lation of the definition due to Hardy. On the other hand, using our definition, con
ditions (i) and (ii) together are equivalent to the following two ones: for every e>0 
there exists an N=N(e) such that

(i') inequality (3) is satisfied whenever
min (mlt ..., and for each j \  and

(ii') inequality (3) is satisfied whenever m ~ n ~  1,2, ..., N — 1 for some j, but
т а х ( т ь  ..., mJ_l , mJ+l, ..., md) N  and l S m j S  л,- for each j.

Now on the basis of (i') and (ii') one can apply an induction argument on d 
for the proof of equivalence of the two definitions of regular convergence.

Example 1. Consider the triple series (1), whose members are defined as follows: 
for k=  1 , 2, . . .  set

ak,k, 1 =  ~ ak, k, 2 — 1>

a 2 k - l , 2 k ,  1 — a 2k, 2 k ~ l ,  1 — ~ a 2 k - l , 2 k , 2  ~  ~  a 2k, 2 k - l ,  2 ”  l j

otherwise akl *2> *3= 0.
This triple series converges to 0 in Pringsheim’s sense and all its single series 

(i.e. fixing two indices of к1г k 2, k3 arbitrarily and letting the third index run over
1, 2, ...) are also convergent, but it fails to be regularly convergent.

Remark 1. A d-multiple sequence { .^....kj: kj=  1, 2, ... for each /} is said to
be regularly convergent if
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(i) it converges in Pringsheim’s sense, i.e. for every £>0 there exists an 
N=N(e) such that (2) is satisfied;

(ii) for each choice of the indices 1 = j\<  ... <ye=r/ with 1 S e e d ,  and, denot
ing the remaining indices of {1, 2, ..., d) by 1 ^ /e+1<  ... < ld~d, for all fixed values 
of kt' +1, ... , k la ( = 1, 2, ...), the e-multiple sequences {skl....kd: kh  = l,2 ,

kJm= 1,2, ...} converge in Pringsheim’s sense.
This definition for double sequences is given also by Hardy [3].
In accordance with the connection between the members of a multpile series and 

its rectangular partial sums, this definition can be reformulated as follows. The d-
multiple sequence ....kfi  is regularly convergent if for every e>0 there exists an
N=N(c) such that

2 -  Z ( - D E
£j = 0 ed = 0

whenever (4) is satisfied.

e d  c
m i  +  (1  — 8 i)  « 1 , . . . ,  e<f m , j  +  ( 1 — B d ) t i d

2. Now we are going to present the generalization of a few well-known conver
gence tests from single series to multiple series, while using the notion of regular con
vergence. It is also of some interest to point out that these generalizations become, 
in general, false if one uses the convergence notion in Pringsheim’s sense. That will 
be illustrated by counterexamples.

We begin with the extension of the so-called Leibniz rule to multiple series. To 
this effect, set

^ « l ........£da ki .........kd — d j i ( " - ( d j . a k1, . . . , kd)

where e,=  l for j= jly . . . ,je with l ^ e S d  and e~ 0 for the other j  from (1, 2, ... 
..., d}, and

^ j a k i  kd =  dkl k j- i ,k j ,k j  + i  kd~ a ki k j - i , k j  + l ,k j  + i,.. .,kd -

The following theorem is known for d= 1 as the Leibniz rule.
Theorem 2. Let [akl....kd: kj=  1, 2, ... for each j )  be a d-multiple sequence of

positive numbers with the following poperties: for all fixed values of s1; ..., sd, where 
Bj= 0 or 1 for each j  and Ej = 1 for at least one j, denoting by e the number o f those e} 
for which Sj=l, l ^ e ^ d ,  we have

(5) /̂ ci,...,ed&k1,...,kd

and

nonnegatvie in the cases e = l ;
o f constant sign (depending perhaps on ex, ..., ed) for all 
values of k x, . . . ,k d ( = 1, 2, ...) in the cases e ^2 ;

(6) akl....kj -  0 as max(fcl5..., kd) -  со.
Then the series

(7)
is regularly convergent.

2  ••• 2  ( - 1  )ki + - +käa
*,=i *i. kd

The proof of Theorem 2 is based on the following elementary
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L emma. Under conditions (5) we have

(8)
”d

2  ••• 2  (—1 )k*+ "+käakl....kd
k .  =  m .

== Cj ad u m i,

where Cd is a positive constant depending only on d.
Now from (8) and (4), the definition (3) of regular convergence follows imme

diately.
P roof of the lemma. We apply an induction with respect to d. Inequality (8) 

is obvious for d=  1. Assume that (8) has already been proved for 1,2, . . . ,d -  1 
and prove it for d itself.

If ntj—nj for some j, then (8) is a consequence of the induction hypothesis. Thus 
we may assume that for each j.

It is enough to verify (8) with a constant C(de) in the special case when n}—nij+l 
is even for each j. Indeed, in the general case

" ds(mi> ..., md; nl5 ..., nd) = 2  -  2  ( - l ) 'c,+- +k«a*1....kd,
kd=md

can be represented as a sum of a “smaller” rectangular sum ..., md; n[, ..., n'd), 
where и'=Я; or п; — 1 according as n j—m j+l is even or odd, and of certain (d— 1)- 
multiple “remainder” rectangular sums whose number is at most d. Applying the 
induction hypothesis, we obtain (8) in the general case with Cd — C^e) +dCd_x.

From now on suppose that n j—nij+ l is even for each j. Groupping the terms 
of s(mx, ..., md\ nx, ..., nd) into 2 x 2 x  ... X2 blocks in the way as it is suggested by
the definition of Ax> tlakl....kd, we can see that s(mx, md; nx, ..., «d)=0 or
SO according as Ax....t akl....kd and (— l)mi+ - +md are of the same sign or not,
respectively.

On the other hand, consider the decomposition 
(9) 5( т 15 ..., md; nl t ..., nd) =  s(m1; m2, ..., md; mlt n2, .... nd) +

+  s(m! + l, m2, ..., md\ nx- 1, n2, ..., nd) + s(nl5 m2, ..., md, n l t  n2, ..., nd),
where the middle term on the right is 0 if n1=m1 + 1. By the above observation con
cerning groupping the terms, s(mx+ 1, m2, ..., md\ nx — \ ,n 2, nd) and s(mlt ... 
..., md, nx, ..., nd) have opposite signs. Consequently, applying the induction hypo
thesis to the first and third terms on the right in (9), we get 2Cd_1ami....ma as an
upper bound for \s(mx, ...,m d; n l t  . . . ,n d)\, i.e. Cie) =  2Cd_x.

Remembering that Cd=Cde) + dCd^x, we can write Cd=(J+2)C d_1. The 
proof of our lemma is complete.

It seems very likely that f8) is true even with Cd =  1, but we are unable to prove 
this stronger statement.

R emark 2. Both conditions (5) and (6) are essential for the conclusion in Theo
rem 2, as it is shown by the following examples.

E xample 2. Set
_  7Г2 " 1

Acta Mathematica Hungarlca il, 1983



REGULAR CONVERGENCE OF MULTIPLE SERIES 165

and

a l , 2 n  -  ~ 6 ~ k 4 1 ~ k ? ~  ( n + l ) 3
(n =  1, 2, ...),

further, let aik=ahi+k ( i ,k = 1, 2,...) .
It is clear that Alt0aik^ 0 and A0tlaik^ 0 (but now Alflaik is not of constant 

sign). Since
v ±  _  ^

Á  k* ~  6 *
condition (4) is also satisfied. Nevertheless, the double series

(10)

diverges even in Pringsheim’s sense. Indeed, we have

4 Í  1 1 L  " 1 _  1 1
i ± í K ) a ‘’ z l Á W + I ) 2 ( i  +  l ) 3 )  -  J ( /  +  n )  2 1 *  -  31  2 1 *

for l=n, n + l , ..., 2n — 1, while

2  2 ( - i ) i+4 *i = l k = 1

2 /j n  1  1

Д ( - 1 ) ,+Ч « + 1  =  Д  ( j  +  / +  l) 3  -  2(/ +  l)2 for l = n, n + l , ...

Hence, for n= 2, 3, ...
2/1 — 1 л /  ̂ \ 2 n  — 2 / i  ^

S 2 n - l .2 n - S in - 2 .2 n  =  2  2  “  Д  Л  ( i  +  i  + 1)8 “

__ V  ( 1 11 v  1 _  1 1 1
-  l ü  1з/ 214 , й  2 (/ + l )2 S  6 2(n —1) 2n

Example 3. Setting ö(fc=l/min (i, A:) (/, fc= l,2, ...), condition (5) is satisfied 
with J ^ a ^ s O . But instead of (6) we have only

(И )
Since

0 as min (i, к) —► oo.

■ s n - i , n  =  2 ( - l ) n + *: - t  - t - 0  a s  и - * “ » *=i К
the series (10) does not converge in Pringsheim’s sense.

Example 4. Setting aik=(i+l)/ik (i,k  = 1,2, . . .),conditions(5) (nowAltlaik^Q) 
and (11) are satisfied. But again

v - s n- 1.n =  - ^ i ( - i ) ' ,+4 ^ °  as » - - ■П  k =  1  A

3. The following Theorem A of Hardy [3] and Theorem 3 (the latter is also stated
in [3] but in a wrong form) demonstrate the power of the notion of regular conver-

Acta Mathematica Hungarica 41, 1983



166 F. MÓRICZ

gence. First we recall a definition (cf. [3] for d=  2). A J-multiple sequence {Iki....ka:
k j= 1, 2,... for each 7} is said to be of bounded variation if

2  Ml....1 k̂i,kd-0 • 'd times
kd

where we agree to  set l kl....kd—0 if k}= 0 for at least one j.
Hence it follows, in particular, that for each choice of the indices l á ; ^  ... 

... -=/e=i/ with 1 S e< d , and, denoting the remaining indices of {1, 2, ..., d} by 
1 S /e+1<  ...<  Id^ d ,  for all fixed values of kle+1, ..., kld ( = 1, 2, ...), the e-multiple 
sequences (Afcl.... kd: kh —1,2, kJt= 1,2 ,...}  are also of bounded varia
tion.

Theorem A [3, Theorem 13]. The necessary and sufficient condition that the 
series

( 12) , 2  ••• 2  *̂1....kdaki.... kd&!==! krf —1

be regularly convergent whenever the series (1) is regularly convergent is that the 
d-multiple sequence {Atb fcd} be o f bounded variation.

Theorem 3. I f  {Atl....kd} is o f bounded variation,

(13) K,....kd -  0 as max(kl t ..., kd) -

and the rectangular partial sums o f the series (1) are bounded, then the series (12) is 
regularly convergent.

Theorem A is proved in [3] for d=2. Both the proof of Theorem A in the gene
ral case and the proof of Theorem 3 can be carried out analogously with the aid of 
a ^-multiple Abel transformation (for a ^-multiple forward Abel transformation see 
[1] and also [6], while for a ^-multiple backward one see [6]).

Remark 3. Theorem 3 is stated in [3, cf. Theorem 11] in a wrong form, requiring, 
instead of (13), only the weaker condition that {Alb >fcd) tends regularly to zero. But 
this condition (together with the condition that {Хкъ kd) is of bounded variation) 
is not enough to imply the conclusion of Theorem 3. This is shown by the following

Example 5. L et

aik —
f ( - l ) i+*
10

and

for i=  1, 2 and k=  1, 2, ...; 
otherwise;

hk —&
for 1=1 and k = 1, 2, 
otherwise.

oo oo
Then the double series 2! 2  aik converges in Pringsheim’s sense and, in addition,i=l k = l
its rectangular partial sums are bounded. Further, {Ai([} is of bounded variation and
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tends regularly to zero. Nevertheless, the series 2  2  does not converge even 
in Pringsheim’s sense. i=lk=1

R emark 4. Example 5 also shows that Theorem A is no longer true if in it 
the term “regular convergence” is replaced by the term “convergence in Pringheim’s 
sense” .

On the other hand, for certain particular choices of {Aki....kd} one can still
assert an analogous theorem to Theorem A, using the convergence notion in Pring
sheim’s sense both in the condition and in the conclusion.

T heorem 4. I f
/ ' k l  k d Mmax(fci k d) ( f c j  ~  1> 2 ,  . . .  fOT each / ) ,

where {ц(: i= 1, 2, ...} is o f bounded variation, and the series (1) converges in 
Pringsheim's sense, then the series (12) also converges in Pringsheim's sense.

Proof. We only sketch it for d=2. Given an £>0, by (2) there exists an 
N=N(e) such that
(14) Is(p, 1; in, IV) | <  e, |s(l, q\ N, n)| <  e 
and
(15) Is(p, q\ m, n)| <  £ whenever both m ^  p s  N  and n ё  q ^  N, 
where, in accordance with the notation used so far, we write

m  n

s(p, q; ™,n) = 2  2
i = p  k = q

m  n

Setting also S(p, q \m ,ri)=  2  2  hkaik and Smn =  5(1,1; m, n),
i = p k=q

one can decompose
S„„—Snn = S (N + í , í ; m, N) + S(l, n + 1; N, n)+ S(N + l, N + l; m,ri).

A single backward Abel transformation and (14) provide that
nt m

\S(N+1, 1; m, JV)| £ 2  \Pt~Pi-i\+e\HN+i\ ^  e| 2  \Pi~Pi-il
i = N  +  2 i =  l

where /io=0. Similarly,

|5(1, N + l;  N, n\) ä  £ 2  \Pi~ht-i\-
i =  1

Finally, using a double backward Abel transformation (see, e.g. [6]):
m  n

S (N + 1, ЛЧ-1; m, n) =  2  2  s0‘> k ‘> ti){Aik- A i. Uk- A Uk. 1+Ai^uk. 1)+
i = N  +  2 k = N  +  2

m  n

+  2  s(i, N + l;  m,n)(Ai'N+1- Á í- 1'N+1)+  2  s(N + l, к; m, n)(AN+ltk-
k = N + 2 k = N + 2

~■2N+1>t_1)+s(iV +l, A + l ; m, n)Ajy+ljJV+1,
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whence, by (15), we obtain
max (m, n)

|5(iV+l, N + l; m, n)| ^  3£ J?
i =  1

Since {/íj is of bounded variation, the proof is complete.
Acknowledgement. I express my sincere gratitude to Professor W. Kratz for rai

sing the problem of finding convergence tests concerning regular convergence.
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ARITHMETICAL PROPERTIES OF PERMUTATIONS
OF INTEGERS

P. ERDŐS, member of the Academy, R. FREUD and N. HEGYVÁRI (Budapest)

For the finite case let a1,a2, ...,a„ be a permutation of the integers 1,2, ...,n  
and for the infinite case let ax, a2, . . . , a i ,  . . .  be a permutation of all positive integers.

Some problems and results concerning such permutations and related questions 
can be found in [2] (see in particular p. 94). In [3] the density of the sums at+ai+1 
is estimated from several points of view.

In the present paper we shall investigate the least common multiple and the 
greatest common divisor of two subsequent elements. First we deal with the least 
common multiple. For the identical permutation we have [af, ai+1\ — i( i+ 1). We 
show that for suitable other permutations this value becomes considerably smaller. 

First we consider the finite case
T heorem 1. We have

(!) =  (1 + °W ) 4I3FT

where the minimum is to be taken for all permutations ax, a2, ...,an.
One might think that the main reason for not being able to get a smaller value 

lies in the presence of the large primes (see also the proof). Theorem 2 shows that this 
is only partly true.

T heorem 2. Omit arbitrarily g(n)=o(n) numbers from 1,2, ..., n and form a 
permutation of the remaining ones.

Then for any fix  £>0, and n large enough we have

n \  min max [a,, ai+1l >  n2_£./sisn-aM-1

On the other hand, for any e(n)-*-0 we have with a suitable g(n)=o(n) 

rv\ min max [a,. ai+1l <  n2_£(n).
W )  l s i s n - g ( n ) ~  l l  1 , +

log (min .m ax [af, a i+1]}
An equivalent form of Theorem 2 i s : _______ la>-" g(n) 1-------------  must

logn
tend to 2 for any g(n)=o(n), but it can do this from below arbitrarily slowly for 
suitable g(n)=o(n).

In the infinite case we obtain a much smaller upper bound:
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Theorem 3. We can construct an infinite permutation satisfying

(4) [a„ a í+1] <  ie'TiögTiogiog/
for all i.

In the opposite direction we can prove only a very poor result: 
Theorem 4. For any permutation

(5) lim sup i
_ 1___

1 — log2 3,26.

Very probably this lim sup must be infinite, and one can expect an even sharper 
rate of growth.

Concerning the greatest common divisor only the infinite case is interesting.
Theorem 5. We can construct an infinite permutation satisfying

(6) (Oi, ai+1) >  y  i
for all i.

On the other hand, for any permutation

(7) lim inff
( a i> a i + l)

i

The right value is probably —, but we could not yet prove this.

Proofs

Proof of T heorem 1. First we show that any permutation must contain an 
fli for which

[ai, a i+1] s ( l  + 0(l))T i^ - .

Consider the primes between and n, the number of these is about — — . Hence2 2 log n
at least one of them has a left neighbour s ( l  +o(l))-^ ^  ^ , and thus the least

common multiple here is s ( l + o ( l ) ) n n
2 log n 2

Now we construct a permutation satisfying

(8) s { l +»(!)} 4^ -
for all i=n — 1.

The idea is to take the multiples of a prime p as a block, and to separate the 
blocks by “small” numbers. Then the l.c.m. will not be too large at the border of the
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blocks. And inside a block

(9) [a,-? ßj+i]
n2

P
which is good if p is not too small. Finally we have to arrange the numbers having 
only small prime factors.

Let us see the details. For the primes p up to n let kp be the minimal exponent 
for which s4 1 o g n  (i.e. q„=p if p = 4 log n).

We now define the set S of the “small” separator numbers: take JJ(n) — JJ( /«  ) 
numbers from 1 to some L just leaving out the values qp and 2qp. Obviously L =

We start the permutation by writing down alternately the primes between n and
— in decreasing order and the first elements of S  in increasing order. (Here a block 
consists of p alone.) To show (8) we observe that when we arrive to p~cn, then 

we have used up / 7(cw) ~ 0  — c)-r—— small numbers, i.e. the l.c.m. of p
and its neighbour is

( 10)

log n

c ( l - c ) log n
S  4 log n.

For the primes between and У n we slightly improve the construction. We take
the largest prime, insert all its multiples (up to ri) after it, leaving its double to the end. 
Now we choose the next even number of S as separator, start the next block with the 
double of the next prime, put in all the multiples and terminate it by the prime itself. 
Then we insert the next odd number of S as separator and repeat the alogirthm. (9)
and (10) show that (8) is satisfied. We note that for we do not have to be so

О

careful about the parity of the separator number, and for —  П - -  we do not
4 flog и

really need separators at all.
Next we proceed similarly with the qp values between У n and 4 log n, but here 

of course we take only those multiples of qp which have not yet been used up (either 
in the blocks, or as separators). qp and 2qp lie at the two ends of a block (they were 
excluded from S  to be now at disposal), hence we can either omit the separators, or 
put in arbitrarily large numbers as separators. We shall insert as separators the num
bers still left, i.e. which have all their prime power factors less than 4 log n (and 
which were not in S). There are at most

C
2 U * ( 4 1 o g n ) ^ w lo g lo g n

Such numbers, where JJ*(X) denotes the number of prime-powers up to x  
since there are JJ(yTi)>~n1,2~e blocks for 4 log n ^ q p^ Y n , we can consume as
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separators all the numbers left. We have obviously

[ai ■> ai+1]
2qpn s£ 2n3/2
n2 n2— = --------qp 4 log и

at the border of the blocks 

inside.

Proof of T heorem 2. To prove (2) we observe the well-known fact that
„l-£/2there are cn numbers up to n which have a prime factor greater than 

^c=(l +o(l)) log ——-jß  I > hence we must keep nearly all of them. When we jump from
a multiple of a large prime to a multiple of another large prime, then we either jump 
directly, but then the l.c.m. is at least (n1_£/2)2, or we insert a small number as sepa
rator, but then we need at least (l + о (1)) -r~ — separators, and so we obtain a l.c.m.v '  log n
greater than nx~el2~.------.log n

To prove (3) we keep only those numbers whose largest prime factor lies bet
ween n£("> and n1~iin). It is well known that we omitted just o(n) numbers (see e.g. 
[1]). We start the permutation by the largest prime left and its multiples, then we put 
the next prime followed by its multiples, etc. Here

[ai,ai+1]
о— и2_£(п), for two multiples of the same p

«•n1_£(n), when jumping to a next prime.

Proof of T heorem 3. First we note that it is enough to construct a per
mutation ax, a2, ..., of a subsequence of the natural numbers which satisfies (4), since 
we can insert the remaining elements afterwards arbitrarily rarely into this permu
tation.

We shall use the (probably well-known and nearly trivial) statement of the fol
lowing lemma:

Lemma. Let H  be a finite set, \H\=h and t^ h . Then we can order the subsets 
having exactly t elements so that j/fj Г\Hi + l \ = t — \ holds for all i.

Proof of the Lemma. We prove by induction on h. The initial step is obvious. 
Now assume that the assertion is true for h — 1 and for all t. Consider now h and 
any t. We fix an element x0, take first all subsets containing x0 and then take the other 
ones. Both parts can be ordered suitably by the induction hypothesis for h — 1, t — \, 
and for h — 1, t, resp. We have no difficulty either at joining the two parts, since if a 
“good” order exists, then a simple bijection of H can transform it into another “good” 
order with a prescribed first (or last) subset.

The construction of the permutation runs by an iterative process. Assume that 
for some n and k —n'°tn we have ax,a 2, ...,a k ready and no one of them has a prime
factor greater than —. We take now all primes between and n, and form all the
products consisting of v such (distinct) primes where r=log n +4 log log n. By the 
lemma we can arrange these products so that any two subsequent terms should dif
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fer only in one prime factor. This arrangement will be the next segment of the permu
tation from ak+2. For a transition element ak+1 we can take e.g. any prime between
у  and n. For i ^ k + l  clearly

[ßt> i+J =  n"+1 ~  ke2̂ iogkloe{ogk =5
We have formed about

( 11) r
n

2 logn
log и + 4 log log n

new terms of the permutation thus we arrived at least to ar.
The algorithm will work if

(12) r >  (2n)log2n
holds. Estimating the binomial coefficient in (11) as a power of the smallest factor in 
the numerator and the greatest factor in the denominator we obtain

2 log л — logn —4 log log и
log«+ 4 log logn

log и +  4 log logn 
and (12) follows by an easy calculation.

з Л _ М
Uog3nJ

logn+ 4 log logn

Proof of Theorem 4. First we give a very simple proof of weaker form of
(5) with — instead of 1

1 —log 2 , i.e. that no permutation can satisfy

(13) [at, ai+l] < 
We use the inequality

(14)
which is equivalent to

—— ej i with a fix e for

■ S i { l + _ L }
[fl;> a i + i ]  3 1 щ ai+1)

(15) 3 =2 Oi + -
( ß i > a i +  l )  ( a i i a i +  l )

i s  i'o-

and hence it is obvious, since the minimal value of the two terms on the right-hand 
side of (15) is 1 and 2.

Assuming (13) we obtain
n _ t ___

\.a i i  a i + 1]
-  2

1
• =  i0 [a i> a i +  l ] ( T + , ' ) . l „ 7 s ( 7 + t ' ) lc,g" - A:'

On the other hand, using (14) we have
n _1___

\ ß i  1 a i + l]
log n + K'

which is a contradiction if n is large enough.

Acta Mathematica Hungarica 41, 1983



174 P. ERDŐS, R. FREUD and N. HEGYVÁRI

Now we tűm to the proof of (5). Assume indirectly that for some permutation, 
£>0 and i0 we have

(!6) [at, ai+1] <  i -— , „ if i S  i'o-
This clearly implies also

1 — log2 + e 

1
a‘ ^  1 1 — log 2 + £ 

hence аг,а 2, ..., a„ are all smaller than

(17) N  — n

for i s  i0

1
1 — log 2 — £

if n is large enough. From now on we shall consider only the ars with i^n .
Let us call the primes greater than \  N  and smaller then N  “large primes”. If at 

and ai+1 have different large prime factors, then [at , ai+1]5 iV in contradiction to
(16). Hence we must insert “separators” between ar s containing different large prime 
factors (the separators cannot have large prime factors, of course). If щ is the greatest 
separator element and ai+1 has a large prime factor then [at, ai+1] ^ a t YN. Hence 
we again arrive at a contradiction by showing that there are at least Yn  separators, 
or equivalently, there are at least Yn  large primes which occur as factors of at -s.

We know that there are (1 + o(l))A  log 2 numbers up to N  having a large prime 
factor and we have (1 — log 2+s)N at-s (see (17)], hence at least eN  ar s have a large 
prime factor. All of these ar s cannot be multiples of less than /TV large primes: 
indeed, the number of multiples up to N  of /Ä  large primes is

>f>cP П” x„these p '
2

У N - c p S N V  2 + i / 2

1 £
2 + J

[ y ]  = (1 + <  eN.

Proof of T heorem 5. The permutation 1, 2, 6, 3, 12, 4, 20, 5, 35, 7,... 
clearly satisfies (6), i.e., if we have already constructed a2n and к is the smallest number 
which was not yet used, then a2n+1 should be a common multiple of a2„ and к (e.g. 
the smallest one still available) anf put a2n+2—k.

To prove (7) we observe first the following facts:
Let Z>i, Z>2, ... be arbitrary different natural numbers not greater than n. Then:

( 18)

(19) (*i, h )  ^  - j  or (b2, b3) s  y ,

(20) m m ( i „ y s j .

(18) is obvious. To show (19)assume indirectly that e.g. 2  b2) ^ (b 2, b3).
Then either bx—d and b3—2d or bx=2d and b2—d, but in both cases b3 must be
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at least 3d which is a contradiction. We can show (20) by similar methods. Put

d =  fei+ i) =  (**> bk+i)•
Arguing again indirectly we have {bk, bk+1) {d, 2d, 3d}, and taking step by step the 
neighbouring numbers, and having in mind that the greatest common divisor must 
be at least d, we obtain that

№ .-.& «} £  \ d , 2 d , 3 d , ^
which is a contradiction.

Now we are ready to prove (7). Assume that (alt ai+1) > —i if i is large eno
ugh. Then {ak, a2, ..., acn}2{l, 2, ..., n} if n is large enough. On the other hand, 
taking acn/2, ..., acn- i,  acn, at mos tevery second number can be less than or equal to 
n, since

, . 1 . 1 СИ
» 7 i * 7 " 5 -

n
2

which is impossible by (18) if both at and ai+l are less than or equal to n.
Similarly, using (19) we obtain that at most the two third part of acn/3, acn/2 

is not greater than n, and finally using (20) we conclude that at most the 4/5 part of 
a cn/i> ■■■>a cn/a is smaller than n. Hence

i.e. —^  — , as asserted. c 90
R emarks. 1. We can improve (7) somewhat, if we use further inequalities of the 

type (18), (19) and (20). But this does not seem to give a serious reduction, and also
the discovery of the proper inequalities is not too easy. E.g. i i+1) á y ,
and here 12 cannot be replaced by 11, as shown by the numbers

81/, 162j, m j, 54/, 216/, 72/, 144/, 48/, 96/, 192/, 128/, 64/

|n  = 216/, d = 48/ = J -n j.

2. We mention the following related problem, where we can determine the extre
mum exactly:

Theorem 6.

(21) lim inf
i

min [at, кч-1-a.-l}
i

is true for any permutation, and we can construct a permutation where equality holds.
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Proof of T heorem 6. The following permutation shows the possibility of 
equality:

1, 2, 3, 6, 4, 8, 5, 10,...,
i.e. we always take the smallest number still available followed by its double.

To prove (21) we assume indirectly that there is a permutation satisfying
(22)

+  and \al+1—at\ =- [-^ + e] 1 for 1 — i’o with a fix e> 0.

Then all the numbers up to f-̂ - +  ej TV must occur among al t ...,% , if (Vis large enough.

This also means that at least +  e j N  numbers smaller than + cj TV must appear
Namong ßjv/2+i, aN. Thus we obtain an , for which both a; and ai+1 are 

smaller than ^  +  £ j N. Say ai+1^ a i, then

(t +£) n  >a;+1 =  C«»+i—«/) >  2 (- |-+ е) г‘ >  2 ( j +e) Y

which is a contradiction.
We note that the proof gives slightly more, since we did not make really use of 

the e in (22).
Acknowledgement. The authors express their gratitude to Prof. M. Simonovits 

for this remarks concerning Theorem 1.
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ON SUMS OF SUBSEQUENT TERMS OF 
PERMUTATIONS

R. FREUD (Budapest)

For the finite case let aly a2, ..., an be a permutation of the integers 1, 2, ..., n 
and for the infinite case let ax,a 2, ..., ah ... be a permutation of all positive integers.

Some problems and results concerning such permutations and related questions 
can be found in [2] (see in particular p. 94). In [1] the least common multiple and the 
greatest common divisor of two subsequent elements is estimated.

In the present paper we shall investigate the density of the sums of subsequent 
elements. As a special case we shall also obtain an answer to a question of N. Hegy
vári, which asked for the smallest possible value of the maximum of the sums 
a i + a t + i  (1 =i=n — 1) concerning all such permutations of 1, 2, ..., n ,  where the sums 
öj+öi+i are distinct (see the results on /(и) in Theorem 3).

Let us consider first the infinite case. For an infinite permutation put 
T={t\t=ai+ai+x is solvable for some /}, and

where T(x) denotes the number of elements of T  up to x.
For the identical permutation T  consists of the odd numbers greater than 1, and

We shall show that the identical permutation is, in some sense, best possible 
(see 1.2 in Theorem 1), but this is not the case from several other points of view (see 
1.1 in Theorem 1, and Theorems 2 and 3).

Theorem 1. 1.1. The largest possible value of R is 2/3. More precisely, to any 
function H(x) with lim sup H(x) = °° we can construct a permutation satisfying

for infinitely many values of n, and this is best possible, since for any permutation

( 1)
„ T(x) ,. . c T(x)7< =  limsup------, r = hminf------

(2)

(3) Г ( п ) - у п  - -- OO.

Moreover =  y  implies r= 0.
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1.2. The largest possible value o f r is More precisely, for any permutation

(4) Пп) <  [ | ]

must hold for infinitely many values of n, and this is best possible, since e.g.for the iden
tical permutation

(5) T(n) =  [ i = i ]

for all n. Moreover r = y  implies R = y .
1.3. In general

(6) 2R2- l  + ^ ~ ^  gO1 — r

or equivalently (since by (6) clearly 1 —2R2^0 ):

(7)
R (2-3R ) 

-  1 - 2  R2

Remarks. 1. (6) [or (7)] contain some part of 1.1 and 1.2 as special case, namely:
2 2 1 1  1 R á y ,  R = y  implies r= 0 , r á y  and r=  — implies R = y .
2. Concerning 1.2, there are other “extremal” permutations too which satisfy

(5), e.g.: y,у- l , 7 -2 , •••, 1. У, V ~ } , —, j + 1» У, •••
3. The results in 1.1 and 1.2 might suggest that one or more of the following 

inequalities hold:
(i) 3R + r  2,

(ii) R + r á l ,

(iii) Rr á  у .

It is easy to check that (i) implies (ii) and (ii) implies (iii), and they clearly hold for
1 2 R á  — , and also for R = — .
For the identical permutation we have equality in all three cases, thus the truth 

of (i)—(iii) would show another extremal property of the identical permutation. 
These inequalities are, however, not always valid:

Theorem 2. There are permutations for which (i), (ii) and (iii) are false. Namely 
we can construct permutations with

(8)
1 9 —14R ( 9 )

Г 8 ' 2 - 3 R [R -  14) or R = 9 —16r 
14 —24r ’
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and then optimizing the left hand sides o f (i)—(iii) we obtain

(9) <R+ r  =  1 +
3—2 ^2 

12

„ 1 11 —4 ]/7
^ ' т =  "4"1 72 0,256

2 1 ]
3 б У б )

)
1 )

1 6 ^ 2 '

2 1 }
3

R emarks. 1. On the other hand, using (7) we can easily check that (ii) holds for 
Ä S 0,619 and (iii) holds for Rs0,608, and for all permutations we have

( 10)

3R + r ^  2,236 
R + r ^  1,042 
Rr == 0,270.

2. (8) and consequently (9) can be improved, e.g. we can construct permutations 
also with

( 11)
12r2 —7r

R ~  12r2 —6r — 1

which is greater than the value of R given in (8) for —- <  r <  —. We shall sketch this
o  Z

construction at the end of the proof of Theorem 2. Even this construction can be 
improved, but we think that the main interest lies in the falsity of (i)—(iii), and there
fore we did not elaborate the technical details of the further improvement. Anyway, 
we mention that using (11) optimization yields 3 R + r~  2,184, R + r  ~  1,018 
and Rr ~  0,257.

Now we turn to the finite case, where we have two different though similar for
mulations of the problem.

For the first one consider permutations of 1, 2, ..., n and put

/(n) =  max the number of different values of at+ai+1 
max {а; + а(+1}

I S i S n - l  1 ‘ , +

where the maximum is to be taken for all permutations.
For the second formulation take permutations of 1, 2, ..., m for any m, and put

g(n)
max {the number of different values of а4+ ei+1, where ü;+ß;+1=«}

and the maximum is to be taken for all m and for all permutations. 
T heorem 3. Both f(n) and g(n) are у  + More Precisely

( 12)
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and

(13) g(3j) =  * ( 3 / - l )  =  | p p  g (3 j-2 ) = ^ | .

Finally, we mention that we can obtain analogous results for the sums of more 
than two subsequent terms of permutations. We just state here some results for the 
infinite case. Let

Rk — lim sup-------  and rk — lim in f------- ,
*~=o X  X

where Tk(x) is the number of different values of at+ai+1 + . . .+ai+k_1 up to x. 
(T2(x) = T(x), R2=R, r2=r.)

T heorem 4. 

or equivalently 

In particular

k R l - 1 + (1 Rk)2 0
1 ”  r k

R k [2 — (fc+ l)/?fc]rk s§

Rk

1 -k R l

k + 1 ’
1

r* - T -
1Equality can hold, but then necessarily rk—0 and Rk= —, resp.
К

P roof of T heorem 3. Concerning f(n) consider the permutation 
(14) 2j, j, 1, j+ 1 , 2, j+ 2, 1, 2j — l
for n=2j and omit the first term for n —2j—\. This shows that / (2j) = 2j - l

3)
2i —2and / ( 2 /—1 )£ ———. To prove the converse inequalities in (12), take an arbitrary 
У ^

permutation ak,a 2, ..., an, and assume that there are n — \ —v different values of the 
sums at+ai+1 while i jnaх_^{а1+а1+л)= М . Then the quotient in question is

П * V-. ClearlyM
n — 1 — v 

M

= (M+v) (n — 1) —

By (15) it is enough to show that

(15)
and

n — 1
(16) s  = 2  (ifi+flii = l

M+v

( n - l ) ( n - 2 )

(17a) M +v  S  3j  for n = 2j
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and
(17b) M +v ^  3j—2 for n = 2j—1.
We carry through the calculations for (17a), the case of odd n runs similarly. Assume 
indirectly that M + v s3 j—l (n=2j), then applying (16) we obtain
(18) S ^  2/(2/ —1).
On the other hand, we get a lower estimation for S by observing

S  =  2(1+2+ ... + n )-(a 1 + a„) ё  (n + l)n —2n +  l  = 2/(2/—1) +  1,

which is a contradiction to (18).
Concerning g(n), consider again the permutation (14) for n=3j, and omit the 

first term for n = 3j—l and n — 3j—2. This shows that

g ( 3 j ) ^ ^ ~ ~ ,  g(3; - l ) s ^ - | -  and g ( 3 j - 2 ) ^ | - | .

To prove the converse inequalities in (13) assume that for some permutation there 
are w different values of я ,+ ат  up to n. If we take the sum 5" of these ai+ai+x, 
then

wfw — 1)(19) S' ^  n+  (n — l) + ... + (n — w + 1) = mv------- -----
and on the other hand

(20) S' S  2(1 +  2+ ... + (w—l)}+w + (w+1) =  w(w +  l)+ l,

since any number can be a term in at most two sums ai+ai+1 (once as аи once as 
ai+j) and also not all numbers can occur twice. Hence the best case is to take the 
first (w—1) numbers twice plus w and w +  1 once. Confronting the two estimations 
we obtain

w (w + 1) +1 =  nw —w(w —1) 
2

or

i.e.

2n —1 2w +  —  ------ -—3 3w

[ i i L l i ]  if 3 f 2 n - l  

[ + . + ] _ ,  if 3 1 2 - 1

which give exactly the right hand sides of (13).
Proof of Theorem 1. 1.1. The result we obtained for g(n) in Theorem 3 

2 2immediately yields R s  —, and the proof also shows that implies r = 0 : if
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for a sequence nk we have

T(nk) = l n k + o(nk)
then

must also hold.
To prove (2) we use an iterative translated version of (14). Let c1< c2< ...<  

< c k< ... be arbitrary positive itegers, and consider the following permutation:

(21) Í1’ Cl +  1’ 2’ ci+ 2>-->ci> 2ci> 2ci+l> ck + ct + 1, 2cx+ 2,
IC1 + C2+ 2, Ci+Cj, 2c2, 2c2+ 1, c2+ c3+  1, 2c2+ 2, c2+ c3+ 2, ...

Thus while the ar s run through the interval [2ck +1, 2ck+1] similarly to construction 
(14), the sums at+ai+1 cover the interval [3ck+ck+1+2, ck+3ck+1] (and the sums of 
the border points of the subsequent intervals give the values 4ck+ 1).

It we choose ck+1 to be very large compared with ck, then we can satisfy (2) for 
n ck ~b Зск 1.

To show (3) we use estimation (20) and a modified version of (19). Take a large 
but fixed K, and let n0 be a number for which T(n0)^K . Denote the sum of the 
(distinct) values of at+ai+1 up to n0 by U. Consider now an n much larger than n0, 
put w=T(n), and estimate the sum S ' of the different values of а{+а1+1 up to n. 
On the one hand

S 'se if+ n  +  (n —l) + ...+(n —w +  1+ЛГ) = U + n(w ~K )~  ^
and on the other hand (20) is valid. Hence

or
w (w + 1) +1 á  n (w — K) —(w K') (w К  1) | v

w(w +  l) w — K —l U (AT+l)w w K + \n    ------ -A---------------------------- w + ------- -----1---------- -—w -K  2 w - K  T w—K  2 2
U

w—K ~

3 K + 1
^  ■jH' +  ̂ + l ) -----2------£

i.e.
2 K + 1w ^  — n ----- r---- be3 3

which proves (3).
1.2. We have to show only (4) (the implication r —^=>R = ̂ - can be derived

— as we have already mentioned — from (6)).
Assume indirectly that for some permutation 7’(n)s|-^-j f°r n ^ n 0.
Denote the distinct elements of T  in increasing order by tk, t2, __ Let 2j\ be

the maximal even number for which J’(2j1)<j\ (possibly j x= 1). Then obviously
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^(2/ i)= A - l ,  and
tjl — 2/j + l, tj1+i — 2jx+2, tjl+2 — 2/1+ 4, tj ^  2j, ... .

Hence

(22)

where
S' =  2  h — F + 2 + 4+...+(2w  — 2) +  2w =  L + w(w+l)

i = 1

J- — 2  (h~2.k).fc =1
Estimating S ' from below by (20) we do not arrive to the desired contradiction; we 
need a slightly sharpened form. Since ax can be a term in at most one tk, we have
(23) S' S  2 (1 + 2 + ... + w) — a1+(w +l) =  w(w +  l)+  (w+1) — ax.
Comparing (22) and (23) we obtain (w+1 )—ax^ L  which is a contradiction if w 
is large enough.

1.3. Take an n with w=T(n)~Rn, and consider S'. For an upper estimation 
— roughly speaking — the “worst” case is, if the tk elements follow each other as 
rarely as r permits this, and at the end we take each integer that T(n) should really 
grow up for the value Rn. Thus till an у we take about every 1 /г-th integer (and do 
not take anything if r=0), and between у and n we take all integers. Then 
ry+ (n—y ) ~ R n  i.e.

1- 1?

and we have

S' s  ~  — (1 + 2+ ... +yr)* +(_y+l)+(y+2)+... + n ~  r

/■V/ 1 + (1-Д )2]
T — 1 Г

On the other hand by (20) 5 'ё~ (1?л)2 i.e.

R2n2 s t "!{1 + ( 1 - * ) 2|
T —  1  J

and dividing by n2 we obtain (6). Clearly, the proof can also be purely formalized.
P roof of T heorem 2. First we note that the falsity of (i) can be shown already 

by construction (21). To calculate R and r we have to estimate T(ri)/n for n=ck+3ck+1 
and for n = 3ck+ck+x, resp. and we obtain

2c<c+i _  2
3 c k +  l  +  c* 3 , c k

and 2cfc = ___2
3ck + ck+i ry , ck+1

, resp.

CM
3 + -

c 2Thus denoting liminf—— by d, we have 1? =  - — — 
ck+i 3 + d

* For r= 0 we simply omit this term.

Ck
and r — 3 +  1 Id '
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Hence

ЗЯ + r =  2 +  4 d - d 2
3 + l0d + 3d2

2 — VJ ( - 3  + 1^3'lwhich gives the maximal value 2 + 4 ----- -— ~ 2,134 Ĵ for d—----—----1. Thus
(i) is false, but it is easy to see that (ii) [and (iii)] cannot be disproved using construc
tion (21).

Now we construct permutations satisfying (8), by an iterative process.
Step 1. We assume that for some x we have already constructed the segment of 

the permutation using the first Rx  numbers as ar s and obtained about R x  distinct
sums ű;+a,+i up to x ^i.e. .

Step 2. Between x and

(24) — x =  2Sx r
r j l  /  \

no number will occur as ai-\-ai+1, hence for n=2Sx, ------~r.
Step 3. We continue the permutation by taking each integer between Sx+  1 

and Tx (T  will be suitably chosen later) and hence we obtain the odd numbers between
2Sx+2  and 2Tx  as the sums at+ai+1. 

1increasing, since r ^ _

T(ri) did not fall below r, moreover it is

Step 4. The next segment of the permutation should be

Лх+1, (2Г— 2?)x+l, Rx+2, (2T— R )x+ 2 , . . . ,  Sx, (2T+S—2R)x,

i.e. we take the numbers from Rx  to Sx  and from (2T —R )x  to (2T+ S—2R)x  alter
nately. Thus we obtain all numbers between 27x+2 and (2 T + 2 S —2R)x  as the sums 
cti+ai+1. T(n)/n clearly keeps increasing.

Step 5. The next segment will be again a (14)-type construction for the numbers 
from Tx  to (2T — R)x:

„  , 3 T - R  , „  „ 3 T - R  „ 3 T —RГх+1, — -— x + 1 , Tx+2,   — x + 2 ,..., ^— ■ x, (2T - R ) x .

^
The corresponding sums at+ai+1 will be all numbers from — -— x + 2  to
1 T -3 R x. We want that these values should join to the values obtained in Step 4,
i.e.

2 T + 2 S -2 R  =
5 T - R
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or
(25) T =  A S-3R
and we choose this value for T.

Finally we want that we should arrive after Step 5 to a similar situation as in
rjj1_

Step 1, w ith ---- ----- x instead of x, and this requires only the equality

(26)
n j1_ ”2 D

R - - - - -  =  2T+ S-2R .

Inserting first (25) and then (24) into (26) we obtain (8).
Now we sketch the construction of permutations satisfying (11). Steps 1, 2 and 

3are the same as before.
Step 4. Between 27x and

(27) T -S + R x  = Ux

again no number will occur as а;+а,-+1, hence also for n=Ux we have T{n) ~r.

Step 5. We take the numbers from Rx to Sx and from ( U—R) x to (U +  S  — 2R) x 
alternately (cf. Step 4 in the previous proof), and so the sums a;+ai+1 cover the in
terval [Ux+2, (U + 2S-2R )x ].

jj_^-j- у  u _л  I 'j'
Step 6. We take the numbers from Tx to ----- ------ x and from ------ ------ x

to (U— R)x alternately, and so the sums ö ,+ai+i cover the interval 
3 U -3 R + T

IU -R  + 3T x + 2,

(28)

. We want this to join to the pervious interval i.e. 

U+2S—2R =  и ~ Я +ЪТ.

And finally, after Step 6 we want to arrive to a similar situation as described in Step 1, 
i.e.

3U -3R  + T(29) R- = U + S-2R .

(24), (27), (28) and (29) imply (11) by an easy calculation.
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A GENERALIZATION OF THE FREUD—SHARMA
OPERATORS

N. M1SRA (Lucknow)

1. Introduction

In 1964, G. Freud [1] constructed an almost interpolatory operator of degree 
at most 4n — 3, which led to an independent proof of Jackson’s theorem in the closed

In 1974, G. Freud and A. Sharma [5] considered the similar problem and obtained a 
direct proof of A. F. Timan’s theorem [4] for a continuous function in [ — 1, 1], 
through the construction of some good sequences of polynomials of degree S /j(1+C); 
C > 0. They further improved the operator to obtain Teljakowski [2], Gopen- 
gauz [3] type estimate in [6].

In this paper we generalize Freud—Sharma (shortly F—S) operators J ^ ,ß) (/; x) 
and A^fß) ( /; x) respectively based on the zeros of Jacobi polynomials P<n*’l>)(x) 
and (1 — x2) / ,,(,a’̂ )(A') with a, — 1, defined in [5] without affecting their degree. 
The generalized operator J £ ’pß) ( /; x) (see Section 2, 2.6) is non interpolatory while 
Ajj%» ( /; x) (see Section 2, 2.10) is interpolatory in each closed sub-interval of 
(—1, 1) and both of them produce Timan’s estimate for f (p>(zC[ — 1, 1]. Our main 
aim for generalizing the F—S operators is to achieve theorems on simultaneous

Theorem 1. Let / (P)€C[ —1, 1] and denote ojf<,,>(ö) its modulus o f continuity. 
Then for O ^ tS p

interval . This result gave rise to an extensive literature in this direction.

approximations for a differentiable function in the special case of x= ß=  ——. We 
prove 1

where Cp is a constant depending on p and independent o f n and x. 
Theorem 2. Let / (P)€C[ — 1, 1]. Then for O ^ t^ p

where Cp is a constant depending on p and independent o f n and x.
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188 N. M1SRA

2. The operators J^'pß\ f ,  x) and Aj,%P) ( f ; x)

Let {**,„}£=1 be the zeros of the Jacobi polynomial F^“’P)(x); a ,ß >  — l and 
denote lk,„(x) the fundamental polynomial of Lagrange interpolation based on these 
nodes. We shall denote xkt„ by xk; lk<n by lk for the sake of convenience.

Let m=[«e], for some q, 0 t where 2r>max (4, a + 5/2,
ß + 5/2). We set

<P,„(x, y )

0 +/>)2<p+1>’

1 Tm+j (x)Tm(r) - T m+1 (y)Tm (x)
m ( * - j )

where Tm(x)=cos mO, x  = cos 0 so that ([5], p. 238)

1 1 sin(2/?i + l )0
( 2 . 1)

. 4 I f  1 1
(P m (x , X )  =  —  [ m +  —  +  T sin 0 ]■

Now we introduce the polynomials il/p( x , y )  of degree ^ 2 pm defined as follows:

\<Pm{x,y)  if p — 0
( 2 .2) Vp(x,y) Vp-i(x, j), if p S  1,

where IFp-xfx, y)—2— S/P_1(x, y). Simplifying (2.2) we obtain

(2.3) 
and

(2.4) 
Let

V p ( .X ,  y) =  <pm(x, V) [J [1 +  {l-^m i^k)}2' 1], P = 1 
1 =  1

sin (2/71 + 1)0 
sin0 f , c p s l >.

(2-5) W  = l=kr[ ')| [o /Й  +

i i £ + l i /< » ( - ! )
i=0 /I

Now we define

(2.6) /<%«(/; x) =  Ap(x) +  Í j  j  (X v XkY / (i)(x*)-Ap(x)]V f + »(xk , x ) lk(x ).

The operator Jf£’pß> (/; x) is non-interpolatory and of degree n+3p+m(r+p)2p+1 = 
^и(1+С ), C=>0 being fixed. Since 2p+1{r+p)mS.n—\

(2.7) Wf; + 2p(x, x) -  Д  К  'Щхк,х)1к(х).
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From (2.6) and (2.7) we obtain

(2.8) /(*)-•/<%«(/; x) =  Í  [ / ( * ) - Í  /<■'>(**)] • r i ^ ( x k,x)Ik(x) +
k = i  L i=o i!  J

+ [ / ( * ) - A , ( * ) ] [ l - ^ 2'(*,*)].
Let / P€C[ — 1, 1], then using (2, 3), Lemma 3 (F—S [5]) and adopting the method of 
proof of Theorem 1 of Freud—Sharma [5], we obtain from (2.8) the Timan type 
estimate

(2.9) !/(*)-•/<?•/>(/;*)!
Cp[ ( ^

+

The operator (/; x ) cannot be made interpolating like the F—S operator 
J (nx'ß> (/; x), because the expression фр(хк, xk), (p^s 1) vanishes when <pm(xk, xk)=2. 
However, if we set for <5>0 (S being fixed) and 2,

(2.10) Afrpfi) ( / ;  x) = J£'pß) ( / ;  x) +

2  f i ^ 7^ / (,)( ^ - A Pw ]
x . £ [ - l + á , l - < 5 ] L i = 0  I !  J

'Flr+*’ (xk, x)l*(x)Ll -  ¥'2/ +2р(**> x)]
n r+2p (**>**)

then Л<“/> ( / ;  x*) = /(x*) for x*e[-l+<5, 1—<5].
Again using the facts that for x*€[ — l+<5, 1 — <5]

(2. 11)

(2.12)

( 1 )2P 1
^ Р(хк,х к) ё  l - ( — j = 1—22Г for m = 2

1\1-Ч>р(хк,х^\ш  m2P.

we obtain as in Theorem 2 (F—S [5])

(2.13) I f ( x ) - A £ pß\ f - x ) \

с д а ^ + М ] '[ М/(р)( И ) + Ш / м Ш ].

3. Some lemmas

In this section we establish lemmas needed for our purpose. Let

X l. = cos (2 k -l)n  
2 n ;k  = l , n

be the zeros of the Tchebycheff polynomial T„(x)= cos n0; cos 0—x  and let 4(x) 
be the fundamental polynomials of the Lagrange interpolation based on these nodes. 
Then we have the following:
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190 N. MISRA

Lemma 1.

(i) sin Dq<pm(xk,x )  ^  Q w 2«-1,

(ii) sin q0 sin  ̂^ D“(pm (xk, a) S  C.,m4~1, 

(iü) sin [ ° 2°к^ВЧк(х) ^  С3П2«-1,

(— r ) D41̂  -(iv) sin «0 sin

vhere D4 = dq
dx4 * 

Lemma 2.

(i) { x -x k)Dqlk (a)

(ii) ( х - х * ) ^ [ П г+2р(**>*)] S  С ^ +̂ ( х к,х ) (Ч p).

Proof of lemma 1. We shall first show that

(a) |7’й 1(л )-Г < ? ) (х)| =S C j im 29 sin 0 /2 + m 2*- l]

(b) sine(0)|7’(? ii-7 ’i?)WI S  C2[m« sin 0/2 +  m«-1].

We shall obtain the estimates (a) and (b) by induction. Let q= 1, so

i ’i t i W - i ' . ' .W  =  m
sin(m 0 ) . .. sm(m +  l ) 0— ^ ---- (m + 1) — >■. 'sin 0 sin 0

Therefore T'm+1( l) -T 'm(l)=  -(2ш +1); and

IT m+1W -T ’mWI -  m
sinni0 sin (m + 1)0 
sin 0  sin 0

[sin(m + 1)0| 
sin в

__ 2m sin 0/2 |sin(m + l)0|
sin 0 sin 0

So that (a) and (b) are true for q=l.
Let us assume that the result is true for integers ^ q  — 1. From the differential 

equation satisfied by Tm(x); (1 -  x2)Г"(x)- xT'm(x) +  m2T„,(x) = 0 we get

(1 — x 2)T%p(x)—(2q— 3)xT*?- 1)(x) +  (m2 — ( q - 2 Y ) T ^ ( x )  = 0.
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Hence
(1 - * 2) | r i l W - r «  M | (2q - 3)|x|||TiVÍ) (*)- n , - 1)(*)]| +

+ \ [ n r - ( Ч - 2 П I[rfci> (ДС)-Г<?-» (*)]|+2m +  1)|Г^12)Ml ^
ё  C[/?r<‘, - 1)s in ö /2  +  7?r‘>-3].

Therefore estimates (a) and (b) follow.
Now we prove Lemma l(i) and (ii). Since

„ „4 _  1 f ^  + l M ^ W - T ’m + lW ^ M l
[- ( ^ - )  J>

therefore
(3.2) (* -  xk)Dqq>m (xk, X) + qD4 - Vm M  . *) =

=  i  [(r m ll(x )~ T (x))Tm(xk)~ (T m+1 (xk) - Tm(xk))T« M ]•

If q— 1, then using Lemma 3(i) (iv) (F—S [5]) and estimate (a), we get

and

<Pm(xk, x )
<Pm(xk,x)

2 sin
)

-+c
[m( s in |.+ s i n | )  +  l ]

sin 0 sin (-^Ц— ) <p'm(xk, X)

2 sin Í

c.

l 2 )
^  m

Thus Lemma l(i) and (ii) is true for q= \. If we assume that the lemma is true for 
q —1, then using estimates (a) and (b) and the fact that T<q) (x)— Lemma 
l(i) and (ii) follow from (3.2).

We omit the proof of Lemma l(iii) and (iv) as it is similar to the proof of Lemma 
l(i) and (ii).

(
ci 1 b \m &m I bm

2  I S — 2—  and Lemma

l(iii) and (iv) we get

( x - x k)qD qlk(x)  S  c j s in  0 sin | ( ^ 2 ^ ) |  +  sin2( ^ 2 ^ ) ]  lkq)M  =

S. c js in 2,| —- ^ - j  + sin’ öj Sin, ( ~ - ^ Lj|]U,)M  —

S c[I s i n - 1( ^ ) | n- + |s in - 2( b ^ ) | n i - 1] .

Thus lemma 2(i) is proved.
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We establish Lemma 2(ii) by the method of induction. Now owing to (2.3), 
Lemma 3(i)(iv) (F.S [5]) and Lemma 1 (i) and (ii) we have

|(x-;t*)/>[!P*+2'(**,*)]| ^  c [  sin 01 sin sin2(“ 2“^)] •

■ \(рт+2Р~ \х к, x)\\(p'm(xk, x)\ ^  c [ l+ m  sin 1 ^ '  ] 1 (Pm+2p~4xk,x)\ ^

=  C(p%+2p~2(xk, x).

Thus the lemma is true for q— 1.
Let us assume that the lemma is true for q=t. Then

(3.3) К ж -^Ру+ ^С дг* , jc)](*> á  Cq>l+*p-*(xk,x).

Differentiating (3.3) and using Lemmas 1 (i), (ii), Lemma 3 (F—S [5]) we get

\ ( x - x ky +i'F%+” (xk,x)]t+'\ =S C < p ^ " - ^ ( x k,x).

Hence Lemma 2(ii) is true for q~p.

4. Proof of Theorem 1

In the sequel Cp denotes constant not necessarily the same depending only on p. 
From (2.8) we have

(4.1) / « > ( x W ™ ~ 1/2)(,)( / ; *) =  2  2  f/ ( * ) -t=ls=OP) L

- , i  f w(xk) ] j y m + » ( x k, X)lk(x)]+ i ( j ) ^ ' " s[ / W -

-  4/2; +2p(x,x)] =  Ai‘Hx)+AP(x).

Using (2.3), Lemma 2, Lemma 3 (i), IV (F—S [5]), we have

(4.2) \A ^ ( x ) \^ C p 2 \ x - x k\p 'co/(i,>|[x-xt]| +
k  =  1

+  2 2  \ x - x k\s\D ^ 4 '2;+ ^(x k,x)D‘4kl(x)\ Ш
s =  0 q =  0

Cp[ (1 f )1/2+ - ^ - f  2  OJf(P>0.X-Xk\) [<p%(.xk,x)\lk(x)\+\<p%“ (xk,x)\] ё

S C ,
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From (2.4) and the identity

22Я Т  i  {2p: 1) k i+*)2p+i_v( i - * ) v+ (i - ^ ) 2p+i- v( i+ * ) i  - 1

we have

(4.3) |£»'-s[ /(x ) - ; .p(x)]| S  Ср(1- .т 2)^'+ '[(1 +х)со/<Р,(1 —* )+ (! -x)cof U  1 +*)] 
and

(4.4) | ( 1 - д а 1 - ^ ^ ( ^ х ) ] |

where и ш (х) -- sin (2ni + l)0 _ Thus from (4.3) and (4.4) we obtain
sm в

(4.5) |Л?>(*)| ■§ C,[-(—  *2)1/2

~ [ i + c / 2mW ] r - ^ c p[

j  Г(1+л:)сиЯР)(1 -х ) +  (1-л)ш / (р,(1+^)] •

(1 —x2)112
+ i r M ^ b - - > l b ) -

Thus from (4.1), (4.2) and (4.5) we have Theorem 1.

5. Proof of Theorem 2

The proof of the theorem is based on Theorem 1. From (2.10) we have

(5.1) A x ) - A ^ ’ - ^ ( f - , x ) =  f ( x ) - J t P1,2’- 1/24 f - , x ) +  2  [ / ( * ) -
:cfce[—l  +  <5, 1 — 5] l

_  J  ( x - x ky /(l)( J  4 'f+ ^(xk,x ) lk(x )[ l- 4>*;^(xk,x k))
i = o  i! J

2  [/(* )-* ,(* )]
JCk£ [ - l  +  á , l - á ]

K +2P(xk, x k)

K +W(xk, x)lk(x)[\-4>?+**{xk, xk)] 
K r+2p(xk, xk)

=  f ( x ) - J t p il2' - ll2)( A  x)+ B l (x) + B2(x). 
Using (2.11) and (2.12) and (4.2) we have

(5.2) №*>(*)! á  - ^ \A [ ' \ x ) \

Г (1—*2)1/2 |лг| 1P Г í l - ^ ) 1'2 m i
= 4  n + ^ J  К Ч — л— + ^ <р>Ы ] -

Similarly we have(,3) wwl«
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Thus from (5.1), (5.2), (5.3) and Theorem 1, we have

! / (‘> (* ) -< - ; /2- -1/2)(,)( /;* )  1 =

_ Г (1—лг2)1/2 ( (1—лг2)1/2 )
-  l----- n----- +  "У] V °'w  (------n----- J +

This completes the proof of Theorem 2.
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SETS OF MULTIPLICITY ON THE DYADIC GROUP
K. YONEDA (Sakai)

1. Introduction

Let
R ~  2k=ofi(k)wk(x)

be a Walsh—Fourier series o f a Radon measure mtl on the dyadic group [1]. A dyadic 
interval of rank n, —j, is the set of all x =  (x1? x 2, ...) such that
2 k= ixkßk =  p/2”. Let l„(x) be the dyadic interval of rank n containing л\ For
convenience, denotes v= (x1, x 2, ...) if lim xk = \

k - +  oo

denotes x  otherwise.
A set E is said to be a set o f  multiplicity for the class o f Walsh—Fourier series o f 

Radon measures satisfying a condition (A) (simply: E is a set o f multiplicity under 
the condition (A)), if there exists a Walsh—Fourier series of Radon measure mfl 
which satisfies

( 1)
2 » - l

lim 2  fl(.k)wk(.x) = 0
k= 0

except on E  and (A), but p(k)?± 0 for some k. When a set is not a set of multiplicity, 
it is called a set o f uniqueness.

In this paper we shall prove the following three theorems.
T h e o r e m  1 .  A perfect set o f  Haar measure zero is a set o f multiplicity under the 

condition

(2) lim 1  2  [/l(k)l2 =  0.
n  k=о

A perfect set of Haar measure zero needs not to be a set of multiplicity in the 
classical sense.

T heorem 2. There exists a perfect set o f Haar measure zero which is a set o f 
multiplicity under the condition

(3)
1 2n —1 

«-°° z P=0 2  fi(k)wk(p/2n)
k =  2"

= 0.

It is easy to see that the condition (3) implies

(4) lim fi(k) — 0.
n~*- °°
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196 К. YONEDA

Theorem 3. I f  {<5„}“=1 is a sequence o f positive numbers such that 

2  1<У2 = oo and lim <5„ =  0, then there exists a Walsh—Fourier series o f posi-||=1 П-»-«»
five Radon measure satisfying (1) except on some dense set o f Haar measure 
zero and max \fi(k)l=ön for all n.2Psk-z2n+1 J

2. Proof of Theorem 1.

Set

for /2—0, 1,
u  [ £ ,ill'll L2

where
p e w(n)

(P + 1)- 
2"

Щп) =  {p: [ £ ,  ^ ± ^ ] П £ * 0 .

It is clear that £ =  f)E n. For n= 0 ,1 ,... and //= 0 ,1 ...... 2" —1, let N„(p)
П—1

be the number of к satisfying

Г к (/c +  1) - ] n [p  (p + i) ]
[ 2n+1’ 2n+1 J L2" ’ 2" J П£ 0.

Set «?„[0,1 ] =  1 and

/22, Í—[ 2”+! ’
( s + l f

2n+1

[ /K ip )  • /22,  [ £ ,  (P+2l } ] if Nn(P) *  0

] and
(0 otherwise

( s + 1)- f l£  *  0

for /2= 1, 2, ... and s=2p, 2 p + \. It is easy to see that mß is a positive Radon 
measure. Since £  is a perfect set, if x£E, {ln( x ) \ In+1(x)}C\E ^  0  for infinitely 
many 22. Hence we have

2m„(/n+1(x)) =  mß(In{x))

for finitely many 22. For x£E, we have lim mß(/„(x)) =  0. If x(££, then mß(ln(x)) = 
=  0 for sufficiently large /2 and

2n_1
2"mß(I„(x)) = 2  fi(k)wk(x).

k = 0
Therefore (1) holds except on E. It is obvious that

2n —1
fim /22 (/„(x)) =  lim 1/2" 2  p(x)wk(x) = 0 

everywhere. From Theorem 6 of [2], (2) follows.
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3. Proof of Theorem 2. Let {/„}“= x be a sequence of integers tending to infinity 
and set

E = % - Í [_ E _  O’+ D - L Ш " )  Q .(n )+ i)  ]l 
n p=o H 2N" ’ 2N- Г Ч 2л, +1 ' 2*v»+i Jj

for и = 1 ,2 ,... where Nn = i1+i2 + ...+ in and 2i« + ip S jp(n)<2i- + i(p + 1). Set
Е=Г)Е„.n = 0

Let mß be a positive Radon measure satisfying the following conditions:

1_] =  1

^ 1 ] =  Í0 /Í2 V -1)) if y s - ,

- ]  =  ° J if
(/c + 1)-

0 -

For ЛГ„_1^Л Г<ЛГ„ there exists only one v such that

Am , f v  (v + l)~ l|
I 2n 2N J

Am p (p+ i ) - i
2n ’ 2N

- D )

where

dm,, Я (<7+1)"
д I 2№ ’ 2Л’

Therefore we have

j  = 0 if p ^ v  

r j l _  (2g +  l ) - l Ш f (2g+l )  (2g +  2 ) - ]
[2JV+1 > 2)v+1 J L 2№+1 ’ 2^+1 J

2»-l
2p = n

( p + l ) l  
2N \

Since

П  (2*fc—1) tf(1 /(2 '* -l))  =  1/(2'"—1).
1 L = 1

f  Г» Гп-1-13-1 2» + l-l
^ „ [ 2 ,  AE±_L_j =  ]/2л' Д  fi(k)Wk(p/2N),

mfl satisfies (3). Obviously (1) holds except on E.
Corollary 1. The perfect set o f Haar measure zero in Theorem 2 is a set o f 

multiplicity in the classical sense.
Corollary follows immediately from the following two lemmas:

Lemma 1. I f  (1) holds everywhere, then ft(k) = 0 for all k.
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Proof. Set
(p+i)-

m\ ^ n ’ (P+J r  ~] =  i inI  /  kZ f i ( k ) Wk(x)dx
P

22V

for n — 0 ,1 ,... and />=0, 1, ..., 2"—1. Then satisfies

m„ f p (P + 1 ) - ] 2 P (2p + l )~ 1 ... Г(2 p + l) (2p +  2 ) - l
l2 ” ’ 2" =  mr [ 2"+1 ’ 2"+1 j +  rnß [ 2n+1 ’ 2n+1 J

t here exists a sequence of dyadic intervals

lÍP« (P»+l)~]}°°
U2"’ 2" J|„=1

such that

K [ 0! 1 1 | s 2 k | ^ ) (PlV } 9« mn Pn (P„+i)~
2”

[0, !  - p  3 Í i ^ LJ =  — =  [ 2и» 2" J = ”

Set .5, If - ^ = {x0}. Then

!m «[0, I ]| S  2', |w f,( /„ (x 0))j
2'* — 1
2  ß(k)wk(xo)k = 0

From the hypothesis the right hand side of preceding formula converges to zero as 
Hence тДО, 1~] = 0. Similarly ;«„(/)=0 for all dyadic intervals /. This 

proves that $(&) =  () for all k.
Lemma 2. When E is a closed set o f Haar measure zero, then

(5) 2 fi(k)wk(x) = 0 except on E
k  =  0

i f  and only i f  (1) holds except on E  and (4) holds.
Proof. Obviously the sufficient condition holds. We shall prove the necessary 

condition. If /  is a dyadic interval adjacent to E, then from Lemma 1, (1) holds in L
p (p + 1) set x _. p/2s + t/2s. We haveFor x a =  h r ,

2rt —1 2n -  s — 1 ((j +  1)2* — 1 )
2  fi(k)wk(x) = 2  I 2  fl{k)wk(x)\ =

k = 0 j  — 0 l k = j 2* J

2»*-s —1 f ( j  + 1)2®— 1 » 2n  -  * — 1 t ( J  + 1 ) 2 * -1  j

= 2 ) 2  fi(k)wk(p/2s+ t/2s)\ = 2  ] 2  p(k)wk(p/2s)\wj(t).j = 0 l  k=j 2* J  j — 0 I  k — j2s J
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Hence for every t the above expression converges to zero as n-+ From Lemma 1, 
for y'=0, 1, ...

0+1)2®—1
2  ß(k)wk(x) = 0 in 7.

For x£ I  and /2s^ /i< (y + l)2 s, we have

2  fi(k)wk(x)k~j2s
S  2s max |ű(fc)|. 72»sk<(y+i)**2  fi(k)wk(x)1 = 0

This proves (5).
4. Proof of Theorem 3. Set

m„[0, I"] =  1

< 4 - 0 .  ^ £ ± g ± i t ] = 1/2(1+ ( - в д > , ^ .  ц р ц .

t- г2
Since 1 -H = c 4 for and by the law of large numbers

и- l  / м - l  41/2 + c
Z  <5кщ*(х) =  ox I 2  öt\ (e>0)

o Vfc=o /

a.e. if we get

2"т ( /ш(х)) =1 exp ( “z  dkwik( x ) - ~  "z <5f) -  0

a.e. if «-*-<*> for i= 0 , 1, и = 0 ,1 ,... and p —0, 1, ..., 2" —1. It is obvious that 
is a positive Radon measure and |/2(&)|Sl for all k. For k —0, 1, ...,2й—1, 

we have
2>i-l

/2(2" + fc) =  Z  Лтч
P = 0

_p (p + 1)- 
2"  ’  2"

w*(p/2")

с \P_ (P + 1)-
< " , J/i [ 2" ’ 2"

Then from the hypothesis (4) holds. Moreover since Am 
w0(p/2n)= l we have

P (p + 1 )

wk(T/2") =  S„fi(k).

P (P+1)Ĵ 21]so and
2'* — 1

/2(2" )=  2  
p =  0

d;?7„ 2"  ’  2"

On the other hand for х= (х1гх2, ...) we have

S  <5„.

2"m (f„(x)) = П  (I +w,,k(x)Sk).
k = 0
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C orollary 2. Under the condition o f Theorem 3, there exists a dense set o f 
Haar measure zero which is a set o f  multiplicity under the condition

2" - l
2

P =  0

, f P_ 0 + 1) - l l _  1 V
Í 2" ’ 2" J | -  2" plj> 2 " i  1 ß(k)wk(pl2")

k = 2n
for all n.

Set especially ^ = 1  and <5fc =  log k\~\[k for k=2, then {<УГ=1 satisfies the 
hypothesis of Theorem 3. It is easy to see that

2” +1 — 1 2" - l
2  l/í(fe)la =  2» 2

P =  0k = 2n Am , [ £ ,  ~  Д ( 1+ д а +1

as n ->■«>. Since the last formula tends to zero as we have

(8) iim * 2 1 m w  = 0.
fc =  2 "

C orollary 3. There exists a dense set o f Haar measure zero which is a set o f 
multiplicity under the condition (8).

When ök = ő for all к where 0 s |á |< l ,  set

\m,(l„(x)) =  1 /2" (1+ S)N*M (1 — (5)"- Л'"(л)
IS  = {x: lim iV„(x)/n =  1/2}

where N„(x) is the number of elements of { l ^ k ^ n :  xt =0}. Then m, is a positive 
Radon measure and (1) holds on S. Obviously mes S = l.
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THE SEMIGROUP OF PARTIAL /-ISOMORPHISMS 
OF AN ABELIAN /-GROUP

В. B. BAIRD and J. MARTINEZ (Gainesville)

1. Introduction

If G is an abelian /-group then /  (G) will denote the semigroup of all /-isomor
phisms whose domains and ranges are /-subgroups of G. The operation on /  (G) 
is partial composition of functions. An element b in a semigroup S  has an inverse 
a if a —aba and b = bab. If every element in S'has a unique inverse then S'is called 
an inverse semigroup and the inverse of b is denoted by Ь~г. If / € / (G) and 
/ :  H-»K then the inverse mapping / _1: K-+H is the unique inverse for /  and so 
/ (G) is an inverse semigroup. In this paper we will investigate the structure of /(G ), 
particularly its lattice of ideals, and use this to gain information about the /-group G.

The technique of characterizing a mathematical object by an inverse semigroup 
of one-to-one partial morphisms has often been employed. For example, if G is a 
group and T(G) the inverse semigroup of all isomorphisms between subgroups of G 
then T(G) is a complete invariant for finite abelian groups; that is, for finite abelian 
groups G and G', T(G) is isomorphic to T(G') if and only if G is isomorphic to G' 
([9]). T(G) is also a complete invariant for finitely generated abelian groups ([7]). 
For a different type of example let X  be a topological T1 space and let T(X) be the 
inverse semigroup of all homeomorphisms between closed subsets of X. Then T(X) 
is a complete invariant for X  ([1]). If you replace closed subsets with open subsets 
the result still holds.

In general, for an /-group G, the inverse semigroup /(G )  is not a complete in
variant. For example, if p is a prime number, let Qp= \— : a,n  integers with

(a, n) = 1 j  with the inherited order of the reals R. If q is a prime number different
from p then Qp and Qq are not isomorphic even though / ( Q ;,) and X  (Qq) are 
isomorphic. The isomorphism of the inverse semigroups stems from the fact that 
the only subgroups of Qp are trivial, cyclic, or isomorphic to Op. Thus / ( ( / )  has a 
very sparse structure. Even though the semigroup ./(G) is not in general a comp
lete invariant, it does give us information about G.

Idempotents in / (G )  (maps /  such that f f= f )  are precisely the identity maps on 
/-subgroups H  and will be denoted by iH. The identity on the trivial subgroup will 
be denoted by 0. We investigate Green’s relations for ./(G). Two maps /  and g are 
/-equivalent if they generate the same principal left ideal; i.e., / ( G ) / = / (G)g. 
For / , g £ /(G ) /Z g  if and only if domain of /=domain of g. The definition of 
/-equivalence is analogous and we obtain: fűig if and only if range o f /=  range of g. 
We say that fXCg if both f3tg and /Z g .  Thus for an idempotent iH, its / ' ’-class is 
the group of all /-automorphisms from H  onto H (denoted Since Z ° /= ^ » Z
we define Z  =  Z=Z. Two maps/ ,  g € /(G ) are ^-related if the domain o f / i s  /-iso-
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202 В. В. BAIRD and J. MARTINEZ

morphic to the domain of g. Elements /  and g are /-equivalent if they generate the 
same principal two-sided ideal. Idempotents iH and iK will be ./-related if and only if 
H  contains an /-subgroup /-isomorphic to К  and conversely. For a general discussion 
of inverse semigroups and Green’s relations we refer the reader to ([5]).

We will denote the lattice of ideals of -f (G) by 1(G). If G is nontrivial then 1(G) 
always has a smallest nontrivial ideal, which is generated by iH where H  is a cyclic 
totally ordered group. We denote this ideal by Ix. Our principal results concern the 
ideals which cover Ix. We enumerate all possible covers and examine the implica
tions for G in each of these cases (these different possibilities can be distinguished 
within the semigroup structure of / ( G)). The ideal l x may not have a cover and this 
situation is also explored.

The last section of the paper deals with the ideal structure of the isomorphism 
semigroup of the /-group of bounded integer-valued functions, and closes by posing 
several questions.

2. Covers for l x

An /-group is a group with an underlying lattice so that the group operation dis
tributes over the lattice operations. We assume throughout the paper that all /-groups 
G are abelian. Q will denote the rationale and Z the integers; we assume that sub
groups of the reals R have the total order inherited from R. If [ax: 1^/1} is a subset 
of an /-group G then (ax) will denote the /-subgroup generated by the a/s. If a£G 
a > 0 then (a) is an o-subgroup of G. If f£G  then ( / )  will denote the principal two- 
sided ideal of J  (G) generated by / .  Every principal two-sided ideal can be generated 
by an idempotent iH and the ideal (iH)= [Jf J'iG): domain and range of/ are /-iso
morphic to /-subgroups of H }. An ideal I  covers an ideal J  if . /< /  and there exists no 
ideals strictly between J  and I.

We present a few results and notation from the theory of /-groups (for reference 
see [2]). Let I  be a well ordered set and for each /£ / suppose G, is a totally ordered 
group. If G is the direct product of the G; then for g£G we define g > 0  if the first 
nonzero component gk of g is positive (in its o-group Gk). This makes G a totally 
ordered group, called the direct lexicographic product of the G; and we denote it by
[J  G,. I f / is  finite we write G1x...3cG„_1xG,,. If G is the direct sum of the G; we 
• €/
can form an /-group by defining g£G  to be positive if each g; is positive. Then we 
denote G by [+] G;; if I  is finite we write G\ + |G2

i t l
pointwise order on G.

An /-group G is called archimedean if for each pair of positive elements a and b 
in G there is a positive integer n such that na <f b. By Holder’s theorem ([4]) an archi
medean o-group is o-isomorphic to a subgroup of R. In addition, if G and G' are 
subgroups of R then each o-isomorphism from G into G' is a multiplication by some 
positive real number ([4]).

An /-subgroup M  of an /-group G is convex if whenever a>  0 and afM  and 
O ^b S a  then b f M . Note that any/-automorphism of G induces an automorphism 
of the lattice of convex /-subgroups of G. An /-group G with no convex /-subgroups 
must be archimedean and totally ordered and hence is a subgroup of R ([4]). Convex 
/-subgroups M  are called values if they are maximal with respect to not containing

+  ... I +  |G„. This will be called the
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an element x€G; M  is called a value of x. Every value M  will have a unique convex 
/-subgroup (denoted M *) which covers it. Since the factor M*/M  contains no convex 
/-subgroups it must be an o-subgroup of the reals.

We will also need a few results from group theory about the notion of types of 
rank one torsion-free abelian groups (for reference see [6]). These groups can be 
thought of as subgroups of the rationals Q. For p a prime and a an element of G the 
p-height of a is the largest integer к  such that pk divides a; if no such largest integer 
exists then the //-height of a is Thus to each element a in G can be associated a se
quence (4 , 4 , /5, ...) of //-heights. Two such sequences (4 , 4 , 4 , ...) and (/2, l3, /s, 
...) are called equivalent if ff,\tp — \ p\ is finite (where oo — oo =  0). We call an equiv-

p
alence class a type. Now if G is a subgroup of Q then all elements of G have the same 
type and so we can associate with G a type (4 , t3, ...). Two torsion free groups of 
rank one are isomorphic if and only if they have the same type; every type is realized 
by a rational group ([6]). Note that the group Qp mentioned in the introduction has 
type (0, ..., 0, °°, 0, ...) where °° occurs in the /zth position. Thus if q is a prime dif
ferent from p we have that Qp and Qq are not isomorphic.

Recall that 4  is the ideal generated by iM where a is any positive element in G ; 
4 is the smallest nontrivial ideal in 1(G). We consider whether or not 4  has covers; 
and if so which covers can occur. We call 4 chain accessible if there exists an infinite 
chain of ideals J x > / 2 > ... such that П/„ =  4 -

P roposition 1. Suppose G is a попсуclic rank one group o f type (4 , 4 , ...)  
where 4 ̂  00 for all i. Then f  has no covers, is chain accessible, and contains an infi
nite number o f distinct /-classes.

P roof. First suppose, on the contrary, that f  has a cover /. Since there
exists an isomorphism f i j  such that the domain H o f /is  not a cyclic group. Then 
Л 1 and so </„)=/. Now H  is not cyclic, so II is not of type (0, 0, ...). Since 
H  = G this means H  is of type (/2, l3, ...) where /г=̂  °° for all i and infinitely many 
ltj*0. Without loss of generality suppose /г̂ 0  for all i. Then H  contains a sub
group if of type (/2, 0 , / 6,0 , ...). Thus 4-= (/*)< /, which is a contradiction since /  
covers 4 . Thus 1г has no covers.

Now, by using the same idea we can partition the type (t2, t3, ...) of G (again 
assume, without loss of generality, that 4 ^ 0  for all /) to get infinite descending 
chains of types:

(45 •••)

(4> 4» ••■) (0» 4> 0, 4 , ...)

(4 , 0, 0, 0, 4 , 0, ...) :
(0, 0, 0, ...)

Each of these types will give rise to an o-subgroup К  of that type which will in turn 
generate an ideal (if); different types will correspond to distinct ideals and hence G 
contains an infinite number of distinct /-classes.

Now, if 4  does have a cover we enumerate the possibilities:
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Theorem 2. I f  G is an abelian l-group then I  is a cover fo r f  i f  and only I= {iH) 
for some l-subgroup H o f G where H is l-isomoprhic to one o f the following l-groups:

1) zF]z
2) Z 'xZ
3) the o-subgroup (1, r) o f  R, where r is an irrational number
4) Qp for some prime p.
Proof. Suppose that f  has a cover I. As shown in the proof of Proposition 1, 

lx must be a principal ideal (/H>. If H contains two disjoint positive elements then it 
contains an /-subgroup /-isomorphic to Z + fZ , which implies that iH and iz \+\z are
/-equivalent since (iH) covers f . But the only /-subgroups of Zj+jZ are trivial, 
cyclic or /-isomorphic to Z[+_|Z. Thus H  is itself /-isomorphic to Z\ + \Z. Now if H 
has no pairwise disjoint elements it must be totally ordered. Suppose there exist 
0 -=u, bf_H such that na< b for all positive integers n. Then (a, b) is o-isomorphic 
to Z x Z  and once again we have that H  must be o-isomoprhic to Z x Z .

If neither of the above two cases occurs we may suppose that H  is an archimedean 
o-group, and hence that H is a subgroup of R. If the rank of H  exceeds two then H 
contains a subgroup К of rank two. But then Ix<(iK)<I, which is a contradiction. 
Thus H  is of rank one or two. If H  is of rank one then suppose H  has type (i2, t3, ...). 
If ti7i со for all i then infinitely many t;X0 (otherwise H  is cyclic). But then by Prop
osition 1 f  has no cover. Thus there is some tio such that tio=°°. But then H  con
tains an /-subgroup К of type (0, 0, 0, 0, ...) where tio— °° and so Л < (* /)=
= (iK)- Since (г'я ) covers Ix the maps iK and iH must be ./-equivalent. Thus the type 
of К equals the type of H  and hence 4) holds.

The only remaining case is where Я  is a rank two subgroup of the reals. We may, 
without loss of generality, assume 1 £#. Then H  is generated by 1 and an irrational 
number r (rank of H is two) and hence 3) holds.

For the converse, note that in cases 1), 2) and 4) the only /-subgroups of H  are 
trivial, cyclic, or /-isomorphic to H. Thus (iH) covers f . We will show that this is also 
true for case 3). So suppose H  is of the form (1, r) where r is irrational and Я is a 
nontrivial, noncyclic /-subgroup of H. Then К  is of the form nt)Z+rmaZ  where 
и0,и10хО. Consider the/-isomorphism a: H —n0Z+rm0Z  where a is multiplication 
by n0m0. Then y.(H)^nllZ + rm0Z  and so К  contains a copy of H. Thus /я €(/к) 
and hence iH and iK are /-equivalent. So we have that (iH) covers f .

D efinition. Following the order of the scheme of Theorem 2, if (iH) covers f  
then we will call H  and (iH) of class i (for /= 1 , ...,4).

Proposition 1 and Theorem 2 immediately yield:

Corollary 3. Let G be a noncyclic abelian l-group. Then Ix has no covers i f  and 
only i f  G is o-isomorphic to a rank one subgroup o f Q of type (/2, t3, ...) where fi-X °° 
for all i and i,-X 0 for infinitely many i.

Proof. One direction is the content of Proposition 1. For the other direction 
suppose that f  has no covers. Then note that, as shown in the proof of Theorem 2, 
G must be rank one archimedean o-group. If G has type (t2, t3, ...) where °° 
for some / then /, has a cover of class 4. Thus for all i and since G is not cyclic
G cannot have type (0, 0, ...) and so f,XO for infinitely many /.
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One of the aims in studying J(G ) for an /-group G is to use the inverse semigroup 
to gain information about the /-group. Recall that the group of /-automorphisms of 
an /-subgroup H (si (H )) is just the Ж -class of the idempotent iH and hence can be 
recognized within ./(C). Now /-subgroups К of H  satisfy the equation iKiH = iK. 
Therefore, for each /-subgroup H  of G its lattice of /-subgroups is also recognizable 
in /(G ). If I\ has no covers then Corollary 3 gives us information about G. On the 
other hand, if Д has covers then we would like to be able, within the semigroup /(G ), 
to distinguish between different classes of covers. The next propositions assure us 
of this. Before stating the first of these let us agree to call a real number r quadratic 
if it satisfies an equation ax2+bx + c= 0 with a,b ,c£Z, a^O.

Proposition 4. Suppose I=(i„) is a cover o f / , .  Then
1) si(H )  ss Z2 i f  /= 1 ,
2) s i  (H ) {0} i f  i =  3 and r is not quadratic,
3) si(H )  =  Z i f  i= 2 , i f  /=4, or i f  i —3 and r is quadratic.

Proof. Observe that if /=1 then the only automorphisms of Z +  Z are the 
identity and the map that sends (a, b) to (b, a).

Now suppose that i= 3 ; hence we may assume Я = (1 , r) with r irrational. 
If r is not quadratic then any automorphism of (1, r) is multiplication by a real number 
and so is of the form n0+m0r. But then (n + mr)(n0 + m0r)= l for some n,m £Z  
and hence (since r is not quadratic) m0—0 and n0= 1. If r is quadratic it is known 
([3]) that si(H )  is cyclic.

If i= 2  then assume H = Z x Z  and thus contains only one nontrivial proper 
convex subgroup, M  =  {(0, m) : Z}, and each cpdsi(H) must leave this sub
group fixed and so induces the identity on it. Moreover, (p induces the identity on 
H/M. Thus (p acts as follows: <p(m, n)=(p(m, km+n) where к depends on (p. 
Indeed, the assignment cp^k sets up on isomorphism of s i ( Z x Z )  onto Z.

If /= 4  then H ^ Q P for some prime//. The «-automorphism of H  are the 
powers of p\ hence s i(H )^ Z .

Note that two /-subgroups H and К  of G are /-isomorphic if and onyl if iH and 
iK are ©-related; distinct ©-classes can be distinguished within ./(C). This idea will 
help to differentiate the cases where s i(H ) = Z.

Proposition 5. Suppose I = (/„) is a cover of f  and s i(H )^ Z .
1) I f  /= 3  then . / ( / / )  has infinitely many -classes.
2) I f  i —2 or 4 then . /  (H ) has exactly three 2-dasses and in fact Si) = for 

•i(H).
3) I f  /= 2  or 3 then there exist two nontrivial idempotents iK, i j f l  such that 

iKij=0. I f  /= 4  then no such idempotents exist in J (H ).
P roof. 1) By Proposition 4, 2) r must be quadratic if r = 3. If r is quadratic 

we may assume without loss of generality that r = \n ,  with n a positive integer. 
Then for each prime number p such that (p, /;)= 1 the subgroups (//, / / 2) give 
an infinite class of nonisomorphic groups.

2) Note that if / / = Z x Z  then all «-subgroups of H are either trivial, cyclic, 
or of the form n Z xm Z  and the map <p(a, b)=(na, mb) from Z x Z o n t o  n Z X mZ 
is an o-isomorphism. This means. / (Я ) has exactly three distinct ©-classes. If H=QP 
(i.e., /=4) then again, all subgroups are either trivial, cyclic, or siomorphic to Qp.

Acta Mathematica Hungarica 41, 1983



2 0 6 В. В. BAIRD and J. MARTINEZ

3) If /= 2  or 3 then H has rank two and therefore has two subgroups with triv
ial intersection. From this we easily get the desired idempontents. If i'=4 then no 
such subgroups exist, since the rank of H is one.

R emark. If H  and К are both /-subgroups of class 1 or both of class 2 then iH 
and iK are ^-equivalent. Hence they are ^-equivalent and so /, can admit at most one 
cover of class 1 and at most one of class 2. However, f  may admit infinitely many 
covers of class 3. For instance, if {r+. 1+Л} is an infinite family of algebraically 
independent real numbers then the ideals generated by the /(l rj) are distinct. Note 
also that if p and q are distinct primes then iQ and iQ are not ^-equivalent. So /, 
may admit infinitely many covers of class 4.

Let us now turn to a result that describes how the presence in 1(G) of certain 
covers of Д (or else the absence of these covers) reflects on the structure of G.

Theorem 6. Suppose G is a поп-cyclic abelian l-group. Then
1) /, admits no covers o f class 1 i f  and only i f  G is an o-group.
2) /, admits no covers o f class 2 i f  and only i f  G is archimedean.
3) /. admits no covers o f class 1 or 3 i f  and only i f  G is an o-group and for each 

value M o f G, M */M  has rank one.
4) f  admits no covers o f class 2 or 3 i f  and only i f  G is archimedean and every 

o-subgroups has rank one.
5) f  admits no covers o f class l, 2 or 3 i f  and only i f  G is a rank one subgroup o f 

R, (i.e. a subgroup o f Q).
6) /, is chain inaccessible and only admits covers o f class 2 i f  and only i f  G is an 

o-group and for each value M, M */M  is cyclic.
7) /, is chain inaccessible and only admits covers o f class 1 i f  and only i f  G is 

archimedean and every o-subroup is cyclic.
Proof. 1) If G is not totally ordered then there exist a, b£G such that a is 

incomparable to b. Let x= a —(aAb) and y=b — (aAb); then x, y > 0  and xAy =  0. 
The /-subgroup generated by x and у  is /-isomorphic to Z + Z which means f  admits 
a cover of class 1. Since Zj +  jZ is not an o-group the converse is obvious.

2) Clear.
3) Suppose that f  admits no covers of class 1 or 3. Then G is an o-group by 1). 

Let M  be a value of G and consider M*/M. If M *jM  has rank greater than 1, there 
exist a,b£M* such that (a+ M , b+M ) has rank 2; i.e., na+mb^M  for all 
n,m £Z. Hence (a, b)C\M=0. Thus

. ,. (a,b) + M (a+ M ,b  + M)
(a, b) ^  ^ -------- гг-------M M

But then (a, b) has rank 2, which means that f  admits a cover of class 3, this is a 
contradiction. Hence M*/M  has rank 1.

Conversely, observe that by 1) f  admits no covers of class 1. f  will admit no 
covers of class 3 if and only if G contains no archimedean o-subgroup of rank 2. 
Suppose H is such an o-subgroup. Let M  be the largest convex subgroup of G such 
that HClM= {0}. Since H is of rank 2 there exist 0 -<a, bC 11 such that if na—mb 
for some n, m £Z  then n=m = 0. Let К be the convex subgroup generated by M
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and a. Then since H  is archimedean, b£K. Then M  is a value of a and b, and M *=K. 
Observe that НПМ*Х{0}, and since H  contains no proper convex subgroups this 
means HC\M* = H. Now

„  _  (H ,M ) _ M*
~  M  -  M  ’

and so M*/M  contains a rank 2 subgroup, which is a contradiction.
4) and 5) are obvious.
6) Suppose Д is chain inaccessible and only admits covers of class 2. Then by 

3) G is an o-group and each factor M*/M  is of rank one. Now suppose M */M  is 
not cyclic for some value M. Then there exist Oca, b£M* such that (a + m, b + m) 
is not cyclic; hence (a, b) is not cyclic. Furthermore, the o-subgroup (a, b) is archi
medean since a and b have the same value M, and M*/M  is archimedean. Hence if 
(a, b) is of rank 2 or more, /, admits a cover of class 3. If (a, b) is of rank 1 but not 
cyclic then either Ix admits a cover of class 4, or else Ix is chain accessible by Propo
sition 1. Either way we have a contradiction, and so M*/M  is cyclic.

For the converse, note that by 3) /, admits no covers of class 1 or 3. Suppose that 
G contains an o-subgroup H  of rank 1. By using the same technique of the proof of 3), 
there is a value M  such that H is o-isomorphic to a subgroup of M*/M. Hence H  is 
cyclic. This means that IL admits no covers of class 4.

Now suppose we have a chain of ideals {/„} such that Д =  П/„. If each J  „ 
contains an idempotent iHn such that H„ is not archimedean, then each /„ contains an 
idempotent iKn where K„ is o-isomorphic to Z x Z .  Thus each /„-and, consequently 
also Д-contains all such idempotents, which is a contradiction. Hence we have an n0 
such that for each m ^ n 0 all the idempotents of /,„ are of the form iH with H archi
medean. As the /„ form a chain we may then without loss of generality assume that 
all /„ have the above property.

Suppose H  is an o-subgroup and /„£./,,. If the rank of H  exceeds one, then H  
contains a subgroup of rank 2, and therefore Ix admits a cover of class 3, which is a 
contradiction. Thus H  has rank one, and by the previous part of the proof/:/must be 
cyclic. Hence every idempotent of /„  belongs to / , , which says that ./„= Ix. This 
proves /, is chain inaccessible.

7) Suppose that Ix is chain inaccessible and only admits covers of class 1. Then 
by 2) is archimedean. If H  is an o-subgroup of G then H  can be considered a subgroup 
of R. If the rank of H  is greater than one then H  contains a copy of (1, r) with r 
irrational. This gives a cover of class 3 for Ix; therefore H must have rank one. If 
the type of H  is (t2, t3, ...) with tp=°° for some p then H contains a copy of O,,, 
and so /, admits a cover of class 4. Thus tpc  «. for every prime p. Since l t is chain 
inaccessible only finitely many tp >  0; this suffices to conclude that H is cyclic.

If, on the other hand, G is an archimedean /-group and each o-subgroup is cyclic, 
then clearly I, admits no covers of class 2), 3) or 4). As in 6) suppose Jx = П/„ where 
{/„}is a chain of ideals. If /„ X Jx for each n, then there is an idempotent iHJzJ„ such 
that H„ is not totally ordered; (otherwise H4^ Z ) .  But then //„ contains a copy of 
Z) + |Z and hence /, =  П/„ contains an idempotent iH with Zj +  jZ. This is a 
contradiction, and hence /, is chain inaccessible.

We have completed the proof of Theorem 6.
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R emark. If G is /-isomorphic to an /-subgroup of Qx (where the rational-valued 
functions are ordered pointwise) then every o-subgroup of G has rank one, and by
4) of Theorem 6, Ix admits no covers of class 2 or 3. It is unknown whether every 
/-group in which all «-subgroups have rank one is embeddable as an /-group of ratio
nal-valued functions as specified above.

Similarly, if G is /-isomorphic to an /-subgroup of Zx, then every o-subgroup of 
G is cyclic, and hence Ix is chain inaccessible and only admits a cover of class 1. As 
above it is unknown whether the converse is true.

3. Examples and covers

In this section we first restrict our attention to /-groups which can be embedded 
in the /-group B(X, Z) of bounded, integer-valued functions on the the set A. Such 
/-groups G are hyperarchimedean (every /-homomorphism is archimedean) and in
deed have the property that each value M  is maximal and GjM  is cyclic ([8]). In par
ticular, 1(G) only admits a cover for Д of class 1.

Suppose G is an /-subgroup of B(X, Z) and G has an infinite pairwise disjoint 
set {хг,х 2, ...}. Let //„  be the /-subgroup generated by this set and let Hn be the 
/-subgroup generated by {лу, ..., x„}. Then //„ is /-isomorphic to z[+~jzj + j... 

_Z(n-fold). We will denote the corresponding principal ideals generated by /д and
i f f  by / « ,  and /„. Note that |J  /„ is also an ideal. We examine 1 ( G ) :

n-f-l
Proposition  1. Let G be an l-subgroup o f B(X, Z); suppose G contains an in

finite pairwise disjoint set and suppose J  is an ideal o f . /  (G). Then

1) {o}</1</2<...< u W -n = l
2) Either J  is one o f these ideals o f 1) or else / то< / .

Proof. 1) It is clear that iHn and iHm are ^/-equivalent if and only if n = m and 
that (J /„ is an ideal properly containing each /„. Note that /«, properly contains

n = l

(J /„ since L  is a principal ideal whereas (J /„ is not.П = 1 11=1
2) Let J  be an ideal of J^(G). If there exists an idempotent i f i j  such that H  

contains an infinite pairwise disjoint set, then I„=J- In an archimedean /-group K, 
if n is the maximum number of pairwise disjoint elements then К  is /-isomorphic to 
a direct sum of subgroups of R [(2)]. Thus if n is the maximum number of pairwise 
disjoint elements in any /-subgroup K, where iK£J, then J —I„. If no such bound
exists but all such sets are finite then / =  (J /„.

»1=1
We now consider the question of whether or not 1(G) is a chain. The answer is 

no in general.

Proposition 2. Let X  be an uncountable set; H = {f£B(X , Z): / is eventually 
constant), K =  {f£B(X, Z): f  has countably infinite support). Then (if) and (if) 
are incomparable ideals and hence J(B(X, Z )) is not a chain.
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P roof. The /-subgroup К  has the following property: for each 0 < / (W  there 
exist / i , / 2>0 in К  so tha t/iA /2=0  and /= /iV /2. This property is not true for 
the elements of H  and hence H contains no /-isomorphic copy of K. Thus iK$ (iH). 
On the other hand, H  contains an element (the constant function 1) with uncountably 
many values but in К  each nonzero element has only countably many values. Thus 
i,f (iK). Hence the ideals are incomparable.

We would still like to know when 1(G) is a chain (G again consists of bounded 
integer-valued functions), so let us restrict ourselves to the /-group of bounded in
teger-valued sequences; we denote this /-group by B. Our first result lengthens the 
chain of ideals found in Proposition 1.

P roposition 3. Let / те1 be the principal ideal o f J  (B) generated by iH where H 
is the l-group o f all eventually constant sequences. Then

1)
2) I f  J  is an ideal o f 1(B) then either or ■

P roof. 1) H  contains elements with infinitely many values; this in conjunction 
with Proposition 1 gives us that /„ < /« ,д .

2) Suppose/is an ideal of 1(B) such that / ф / те. Then /  property contains I„. 
Then there is an /-subgroup К of В such that iK£J—I„ ; К must then contain an 
element x> 0  with infinitely many values. We wish to show that К contains a copy 
of H. First suppose that K ' is the convex /-subgroup of К  generated by x. If K' 
has no infinite pairwise disjoint sets then, as before, K ' is /-isomorphism to a finite 
cardinal sum of copies of Z. This is impossible since x  has infinitely many values. 
Thus, suppose that {x1; x2, ...} is an infinite pairwise disjoint subset of A". Since K'
is generated (as a convex /-subgroup) by x, xAx„>0 for each n= 1 ,2 ,__ We may
therefore replace x„ by xAx„ and assume that x^x„ for each n.

Furthermore, since К  is hyper-archimedean ([2]), there is, for each integer n, 
a positive integer k„ such that x Лknxn=xA (k„ +1) x„. Replacing x„ by k„xnAx 
we may assume that x agrees with x„ (for each n) at every point of the support of x. 
From this it is clear that x=sup {xx, x2,...}. Now in H, for each n, define e„ by 
en(m)= 1 if n=m and 0 otherwise and let e be the constant function 1. The 
elements en and e generate H  in the obvious way. Define cp(e„)=xn and cp(e)=x, 
and extend q> to all of H. Then cp will be an /-isomorphism from H into K. Thus iH£ 
£(if)-^J  and hence /M l s / .

Above /«,д things are a bit more obscure. We shall next discuss the role of 
various /-groups of periodic sequences and conclude this discussion with several 
open questions.

Let P denote the /-subgroup of В of periodic sequences. Since P is a countable 
set and В is not, the ideal (ip) is properly contained in J'(B). For each positive number 
q let Pq denote the /-subgroup of P generated by all periodic sequences whose period 
divides qk, where к is any non-negative integer. Note that the /-subgroup generated 
by Pq and P, will be P,n where m is the least common multiple of q and t. Although 
we do not know if (iP)= (iPq) we do have the following

P roposition 4. For any positive numbers q and t, (iPq) = (iqt).
P roof. We will show that Pq can be /-embedded in Pt for any numbers q and I; 

this will prove the proposition. To do this it will be sufficient to define an embedding
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(p on elements of Pq whose periods are powers of q (these elements generate Pq). So, 
let r be the smallest positive integer such that q < f .  We define cp inductively on n 
for elements of Pq of period q".

Suppose s=(sl s2.s?j...)ePll and period of л is q. Define (ps of period f  as follows:

fs; 1 ~  i = q — 1 
((ps)i = W  q ^ i ^ f

{((ps)j j  =  i mod f  with 1 = ./ = tr.

Now assume that (ps is defined for elements in Pq of period less than or equal to 
q" in such a manner that if the period of л is qk then the period of (ps is trk and ip is 
an /-embedding. Suppose s fPq has period qn+1 and let s= S 1S2...S qS1S 2--- Sq..., 
where S’i=í(í-i)í»+2....r(i-i)«,,+e"- We define (ps of period /("+1,r as follows:

(ps Tj T2 ... Tq _ j Tq Tq ... Pq T\ T2 • • •
tr-(g-l)

where Tt is the block of length tnr that defines (p(SiS;Sj...). We leave the details of 
verifying that (ps an /-embedding to the reader.

E xamples. 1) q = 3, t—2, r= 2,
Ф (123456789...) = ( 1233456678997899... 1 
09(123112233111222333112133123. ..) =

=  (1233112223332333111122223333333311222333123312331122233312331233...)
2) q—3, t—5, r=  1.

(P ( 123456789. . . )  =  ( ! 233345666789997899978999...) .

We close the article with a list of open questions and several remarks pertaining 
to them. Let us start by mentioning some specific questions relating to B, the /-group 
of bounded, integer-valued sequences.

I. Are iP, and iPq ^/-related? Is (ip) a maximal proper ideal? Is 1(B) a chain?
II. What are the implications on an /-group G of having a finite lattice of ideals 

/(G)? We can mention a few (the arguments are straightforward). G must then have 
finite rank and thus the root system of values is also finite. In addition, if M is a 
value of G and M */M  has rank 1, its type (t2, t3, ...) must satisfy tt= 0 for all but 
finitely many indices. We have not been able to decide whether these conditions on G  

and its values are sufficient to make 1(G) finite.
If we make restrictions on , f (G)  we obtain more information. Suppose ./(G) 

has a finite number of ^-classes. Since an archimedean o-group of the form (1, r) 
(with r  irrational) has infinitely many non-isomorphic subgroups, cannot admit 
class 3 covers. Now and so we have that 1(G) is finite and G therefore has the
properties mentioned in the above paragraph. Now an abelian /-group having a 
finite root-system of values must be a Hahn-group V(A, Rp  ([2]) where A is a finite 
root system and is a subgroup of R. Since I\ admits no class 3 covers each R, 
is a group of rank 1 whose type has at most finitely many nonzero entries. Conversely, 
suppose that G—V(A, R;) where A is finite and each R, is a rank 1 group with the 
above property. It is then clear that G has (up to /-isomorphisms) only finitely many 
/-subgroups; that is, J (G) has finitely many ^-classes. We summarize:
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Theorem 5. For an l-group G the following are equivalent:
1) . /  (G) has finitely many St-classes.
2) G=V(/i,  R; ) where Л is a finite root-system and each Rx is a rank 1 group 

whose type (t2, t 3, t 5, ...) has at most finitely many nonzero entries.
In this case f  admits no class 3 covers.
III. Suppose 2(G)  has finitely many ^-classes (and therefore satisfies Theorem 

5 above) and also /, admits no class 4 covers. Then G is a Hahn-group V(A, Z ;) 
where Л is finite and each Z ; is cyclic. Is . /  (G) a complete invariant under these cir
cumstances? This leads to a more general question: what conditions on G or . / (G) 
are necessary to make 2(G)  a complete invariant?

IV. We know that if 2 = /  in 2(G)  then /, admits no class 3 covers. The con
verse is not true but what conditions must hold to have 2  = fi'l Or what are the 
implications for G if 2  =
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«-CONTINUOUS AND a-OPEN MAPPINGS
A. S. MASHHOUR, Í. A. HASANE1N and S. N. EL-DEEB (Assiut)

Introduction

Let X, Y and Z  be topological spaces on which no separation axioms are assumed 
unless explicitlystated. Let S be a subset of X. The closure (resp. interior) of S  will 
be denoted by S (resp. S°). A  subset .S' of a space X  is called a-set [6] (resp. semi
open set [4], preopen set [5]) if S e S ° ~ °  (resp. S e S ° ~ ,  S e S  ~°), the complement 
of an а-set (resp. semi-open set, preopen set) is called а-closed set (resp. semi-closed 
set, preclosed set). The familly of all а-sets (resp. semi-open sets, preopen sets) in X  
will be denoted by a(X) (resp. SO(X), PO{X)). It is clear that each а-set (resp. 
a-closed set) is semi-open and preopen (resp. semi-closed, preclosed), but the conver
ses are not true. A mapping / :  A— Y  is called almost continuous [8] (resp. 0-conti- 
nuous [1], weakly continuous [3]), briefly a.c. (resp. б-cont., w. c.) if for each x£X  
and each open neighbourhood V of/(x)_there exists an open neighbourhood U of 
x such that f ( U ) c V ~ °  (resp. f (U)cz V, f ( U ) e  V) and it is called semi-contin- 
uous [4] (resp. precontinuous [5]), briefly s.c. (resp. p.c.) if the inverse image of each 
open set is semi-open (resp. preopen). A mapping / :  X-+Y is called semi-open [4] 
(resp. preopen [5]) if the image of each open set in X  is semi-open (resp. preopen) and 
it is called semi-closed [7] (resp. preclosed) if the image of each closed set in X  is 
semi-closed (resp. preclosed).

In the present note we introduce and study the concepts of а-continuity and a- 
open mappings. Also we strengthen some results in [5] by using this type of non-con- 
tinuous mapping.

1. a-continuity

D efinition 1.1. A mapping f :  X-+Y is called а-continuous (briefly, a-cont.) 
if the inverse image of each open set of Y  is an a-set.

Theorem 1.1 is an easy consequence of Definition 1.1, and the proof is thus 
omitted.

T heorem 1.1. Let f :  X-+Y be a mapping, then the following statements are 
equivalent.

(i) f  is a-cont.
(ii) For each x£ X  and each open set V c Y  containing f(x) ,  there exists 

W£a(X) such that xFW, f( fV)eV .
(iii) The inverse image of each closed set in Y is a-closed.
(iv) f(A~°~)(z (f(A))~ for each d e l .
(v) (f ~ 1(M )) -o -c z f -1(M -)  for each M e  Y.

Acta Mathematica Hungarica 41, 1983



2 1 4 A. S. M ASHHOUR, I. A. HASANEIN and S. N . EL-DEEB

Corollary 1.1. Let f:  X-+Y be a-cont., then

(i) f (A ~ )c  (f(A))~ for each AfPO(X).
(ii) ( / -1(M ))_ c : / -:l(Af “) for each MfPO(Y).

Proof. Since for each A£PO(X),  A~=A~°~,  therefore the proof follows 
directly from statements (iv), (v) of Theorem 1.1.

Theorem 1.2. Every a-continuous mapping / :  X-- Y  is в-continuous.
Proof. Let x £ X  and K e f  be an open set containing f(x). By statement (v) 

of Theorem 1.1, ( / _1(F ))_0“ c / _1( F _). S ince/is a-cont., we have, / _1(F)c: 
c ( / - i ( F ) ) » - ° c ( ( / - 4 F ) ) 0- (,) - c ( / - 1( F ) ) - » - c / - 1(F -). Put ( /- i(F ))» -°=  
= U, so U is a neighbourhood of a such that U czf  ](F  ), namely f ( U  ) c F  . 
Therefore, /  is 0-cont.

It is clear that the class of а-continuity contains the class of continuity but it 
is contained in the class of each of 0-continuity [1], precontinuity [5] ( =  almost con
tinuity in the sense of Husain [2]) and semi-continuity [4]. The concepts of a-conti- 
nuity and almost continuity in the sense of Singal and Singal [8] are independent of 
each other.

The following diagram summarizes the above discussion.

semi-continuity
ft

continuity a-continuity = > • precontinuity
ft ft

almost continuity => 0-continuity =>• weak continuity

The examples given below show that the converses of these implications are not 
true in general.

Example 1.1. An injective mapping / :  X —Y  form an indiscrete space into a 
discrete space is p.c., but not a-cont.

Example 1.2. Take X —{a,b,c}, Tt ={X, q>, {a}, {c}, {a, c}} and /> = Dis
crete topology. Let / :  (X, T^-^^X, Тг) such that f (a )= a , f (c )  = b, f(b)=b.  So, 
/  is s.c., but not a-cont.

Example 1.3. An injective mapping f:  X^-Y  from an excluding topological 
space X  with excluding point p into a particular topological space Y with a particular 
point f(p)  is 0-cont., but not a-cont.

Example 1.4. Let X = Y =  {a, b, c) and Tx — TY={X, q>, {a}}. Then, a mapping 
/ :  X-*Y  which is defined by f (a)=f(b)  = a and f(c) = c is a-cont., but not con
tinuous.

Remark. According to the above diagram and the fact, “w.c. mapping is con
tinuous if the range is a regular space [3]”, we have that for a mapping/'from a space 
into a regular space, the following are equivalent.
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(1) /  is W .C.
(2) /  is 0-cont.
(3) /  is a.c.
(4) /  is a-cont.
(5) /  is continuous.
Lemma 1.1. Let A£PO(X ) and B£a(X), then AC\B(La(A).
Proof. Since А Г \ В а А - 0ПВ0- 0= (А -0ПВ0-)°с:(АПВ0)-0, so А П В а  

с (АГ)В0) -0ПА = 1п1а ((АГ)В0)-0П А)^1 п1а ([АГ\В°)~C\A) = lntÄ (С1Л(АГ\В°)) = 
=  Int^ (С1Л (In /, (Л П .8 °)) ) с Int^ (С1л (1 п /,(Л П 8 ))) , where In t^ (...)  and С1л (...) 
denote the interior and the closure with respect to the subspace A. This implies 
that AC\B£oc(A).

Theorem 1.3. I f  f :  X-»Y is a-cont. and U£PO(X), then f \U  is a-cont.
Proof. Let V c Y  be an open set. then f ~ 1 2(V)£a(X). Since U£PO(X), 

by Lemma 1.1, we have U П / ~1(V)=(f\U)~x(V)(ia(U). Therefore f \ U  is a-cont.
Lemma 1.2. Let A c Y c z X ,  Y£a(X) and A£cc(Y), then A£a(X).
Proof. Since Inty (Cly (lnty (-4))) is open in Y, there exists an open set U a X  

suchthat Inty (Cly (Inty /4 )))=  УГЛУ. Since У€а(Т), Лс{УПУ0~°с:(£/П У)0_0 = 
=  (Inty (Cly (Inty(^))))°-°|((Inty (^ )))-)°“°=(ln ty (Л))~°. Since Inty (A) is open 
in Y, there exists an open set V a X  such that Inty (A)=VDY,  so Лс(КП  7 0_0)_0c  
с (Р П 7 )0_0=  (Inty (A))°~°c:A0~0. Hence, A£a(X).

Theorem 1.4. Let f :  X —Y be a mapping and {Up. i£l} be a cover o f Xsuch 
that UiPa(X) for each i£I. Then, f  is a-cont. i f f \U t is a-cont. for each idl.

Proof. Let VczY be an open set, then (/|{У;)-1(К)£а(£/;). Since С//а(Х),
by Lemma 1.2, ( / |L i)“1(F)€a(T) for each iU .  But, / _1(F) =  U ( ( / |^ |) -1(Ю).

id
then / (V )£a(X) because the union of а-sets is an а-set. This implies tha t/is  a-cont.

More characterizations of а-cont. mappings f:  X —Y  are given in the following.
(i) If X  is a connected space, then f ( X )  is connected.

(ii) If /  is surjective, then Y  is almost compact if X  is almost compact.
Also one may deduce that:
(1) Let / :  X —Y  be a mapping and let g: X-»XXY,  given by g(x)= (x, f(x))  

be its graph mapping. Then /  is а-cont. if and only if g is a-cont.
(2) L e t / :  Xt -*Yt be a mapping for each i f i  and / :  7гТ;—яУ; be a mapping 

defined by /({x;})= {/(x,)} for each {х,}£яА/ T hen ,/is а-cont. if and only if f  
is а-cont. for each /£/.
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2. а-open and a-closed mappings

Now, we introduce new classes of mappings called а-open and a-closed mappings.
D efinition 2.1. A mapping / :  А-*-Г is called а-open (resp. a-closed) if the 

image of each open (resp. closed) set in X  is an а -set (resp. a-closed).
From the above definition one may have the following diagram.

preopen (resp. preclosed)
if

open (resp. closed) mapping => а-open (resp. a-closed)

semi-open (resp. semi-closed)

The converses of these implications are not true as the following examples 
illustrate.

Example 2.1. An injective mapping from a discrete space into an excluding 
topological space is semi-open and semi-closed, but neither а-open nor a-closed.

Example 2.2. An injective mapping from a discrete space into an indiscrete 
space is preopen and preclosed, but neither а-open nor a-closed.

E xample 2.3. Let X = Y = { x , y , z }  and Tx = T r={X, <p, {x, y}, {x}}. Then, 
a mapping / :  A — Y which is defined by f (x)=x,  f ( y ) = z  and f (xz )=y  is a-open 
and a-closed but neither open nor closed.

Theorem 2.1. A mapping f :  A — Y is а-open i f  and only i f  for each x€A  and 
each open set U o f X  containing x, there exists an a -set f i t  Y containing f(x) such 
that Wcf(U).

Proof. Follows immediately from Definition 2.1.
Definition 2.2. The intersection of all a-closed sets containing a subset A c X  

is called а-closure of A and is denoted by C\y(A).
Theorem 2.2. A mapping f:  A — Y is a-closed i f  and only i f  C\a( f  (A))cf(A~)  

for each Ac:X.
Proof. Follows directly from Definition 2.2.
Theorem 2.3. Let f :  A —F  be а-open (resp. a-closed). I f  f i t Y and FezX 

is a closed (resp. open) set containing f ~ l (W), then there exists an a-closed set (resp. 
an a -set) IIczY containing W such that f ~ 1(H )eF .

Proof. Let H —Y —f ( X —F). Since f ~ 1(lV)c:F, we have f ( X —F ) c Y —W. 
Since / i s  а-open (resp. a-closed), then H is a-closed (resp. an а-set) and f ~ s(H) = 
= X —f ~ 1( f ( X —F))cz(X—F)=F.

Corollary 2.1 . I f  f :  A-»-F is а-open, then
(i) f ~ 1( B - ° ~ ) c ( f - 1( B ) y  for each set B e  Y.
(ii) f - \ A ~ ) c z ( f - ( A ) ) -  for each AfPO(Y).
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Proof, (i) ( /  1(Ä)) is closed in X  containing /  1(B) for a set BczY. By 
Theorem 2.3, there exists an а-closed set H c Y, H zdB such that / _1(Я )с  
c = ( /-1W ) _- Thus, / - 1( ^ - ° - ) с : / - 1( Я - '> - ) с / -1(Я )с ( / -Н В ) ) - .

(ii) Follows directly from (i).

3. Comparison

The following lemma is very useful in the sequel.
LEMMa 3.1. [5]. I f  f :  X ^ Y  is preopen, then f  ~\V°-)<=.(f ~X{V))-  for each 

Fez Y.
Theorem 3.1. I f  f:  X-*Y is p.c. and s.c., then f  is a-cont.
Proof. Let F c T  be an open set, so f ~ 1(V)^PO(X) and f ~ 1(V)£SO(X).  

Then, f ~ 1( V ) c ( f ~ 1(V))°~, / _1( F ) c ( ( / -1(F))0_) ~ ° = ( / - 1(F ))0_0. Therefore, 
/  is a-cont.

Theorem 3.2. I f  f :  X-+Y is a-cont., preopen, then the inverse image o f each 
a-set in Y  is an a-set.

Proof. Let F c T  be an а-set, so / _1( F ) c / _1(F0_0) c ( / _1(F0_0))0_0c
c ( / _1(F0_))0_0. By Lemma 3.1, we have / _1( F ) c ( / _1(F 0)) -0. S ince /is  a- 
cont., by Theorem 1.1, / -1( F ) c ( / - (F))°~°. This implies that / -1(F)£a(X).

Corollary 3.1. I f  f :  X -*Y is a-cont. and preopen, we have:
(1) The inverse image o f each а-closed set is a-closed.
(2) f(C\a(A))c:C\xf(A) for each set AtzX.
Proof. This follows immediately from Theorem 3.2.
Theorem 3.3. Let f :  X - - Y  and g: Y--Z  be two mappings. I f  f  is preopen, 

а-continuous and g is a-continuous, then go f  is a-continuous.
Proof. Follows immediately from Theorem 3.2.
A. S. Mashhour, et al. [5] have shown that for every p.c., open mapping the in

verse image of each preopen set is preopen. The following theorem is a slight impro
vement of this fact.

Theorom 3.4. Let f:  X-+Y be p.c., and a-open. Then the inverse image o f each 
preopen set is preopen.

Proof. Let VePO(Y), s o / - 1( F ) c / - 1( F - 0) c ( / - 1( F - ° ) ) - ° c ( / - 1( F - ) ) - 0. 
Since/is а-open, by Corollary 2.1, we have, / -1(F )c  ( /~ 1(F - ))~ °c  ( ( / 1(F )~)_0 = 
= ( f  ~1(V))-°■ Therefore, f  ~г(У)^РО{Х).
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ON THE SHADOW LINES OF A CONVEX SURFACE
P. PAMFILOS (Iraklion)

0. Introduction

Shadow lines are called the curves on a convex surface which are defined as sepa
rating lines between illuminated and shadowed sides of the surface, when the latter is 
illuminated by a point light-source (see Fig. 1) or through parallel light in a given 
direction e (Fig. 2). Several properties of the shadow lines relating to the geometry of

p

Fig. 1

the convex surface are known (see [I], [2], [3], [4]). The problem we are concerned 
with here, is the calculation of variation of the function f i ( p )  (resp. f 2(e)) which 
gives the length of the shadow line ap as a function of the point p (resp. the length 
of ae as a function of e). This is done by means of a naturaly defined submersion whose 
fibres are isometric to the shadow lines. We use also a simple general lemma on varia
tions of integrals over the compact fibres of a submersion. The variation formulae 
thus obtained (see (23), (24)) show that if for some point p (resp. direction e) the 
corresponding shadow line ap (resp. a j  coincides with a geodesic of the surface, then 
p (resp. e) is a stationary point of f x (resp. / 2).

Every function, vector field, etc. apearing in our discussion is supposed to be 
C°°-differentiable. An alternative discussion on functions similar to our f x , / 2 but 
using approximations of the convex surface by convex polyedra can be found in [5]. 
Note that our method can easily be adapted in order to compute variations of any 
order of the functions f x, / 2.

I. Submersions whose fibres are isometric to the shadow lines

Let M  be a C“ -differentiable convex surface of the Euclidean space E 3. Let £ 
be the unit normal vector field on M  pointing “outside” M. We think of the convexity 
of M  as equivalent with the condition
(1) (Aw, w) 0, for every tangent vector w ^  0 of M.
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Here ...) denotes the induced metric of M  (from E 3), A denotes the second fun
damental form with respect to £ (see [6] for general definitions and formulae).

A. First we construct a submersion whose fibres are the ap's. Let P denote the 
open unbounded part of E 3 consisting of points lying “outside” M. Let M X P  have 
the Riemannian product structure and F be the C“ -function

\F\ M x P - P
\F(m, p) =  (£m, m — p), for every mf_M and p£P.

m —p£E3 is identified with a tangent vector of E 3 at m, according to the standard 
identification

(3) ()x1 ( ) X 2
(a, b, c).

The same identification will be used throughout our discussion without other explicit 
mention. Let now M  be defined as
(4) M  =  F-4{0}) =  {(m, pKMxP\(Zm, m -  p) = 0}.

Lemma 1.1. M  is a four dimensional submanifold o f MXP-
Proof. In fact, if (m, p)£ M  and (oift), x.fif)) is a curve lying in M with 

a1(0) = m, a2(0)—p, <x1(0)=v1£TmM, a2(0) = v2f T pP then we have

because 
(m, p)£_ M 
(5)

d_
dt R ^fit), a2(0) =  - j j

= ( ~ A mvi,  m - p )  + (f„, Vy- v2) =
(m-p ,  £m>=0 and (г\, £m) = 0. 

is

(W ), ohCO—aa(0> =I
: ( - A m(m -p) ,  v1)+(£m, -Vi),

Hence the gradient of F at points

- ( A m(m-p)®£m) A 0,
and the lemma follows from the implicit function theorem.

Proposition 1.2. The restriction n = n'\M o f the natural projection n ': 
MXP-*P on the second factor is a submersion o f M whose fibres rXl(p) are isometric 
to the shadow lines ap.

Proof. The last assertion becomes clear if we observe that
(6) 7z 1{p)= {(m, p)|<£m, m — p) =  0 )c IX { p ) ,
which, for fixed p, is precisely the differential geometric description of the shadow 
line ap, as a set of points of M x { p }  = M  (Fig. 3). Let now (m, p)£M. From (5) 
and the definition of M  we have
(7) Tim>p)M =  { w jS W i tT ^ ' ^ M x P K A ^ m -p ) ,  щ)+(£т, w2> = 0}.
Hence to prove that я is a submersion, we have to show that for every wfi TpP, 
there is a w1dTmM  such that

( A J m - p ) ,  wfi =  w2>.

From (1) we have Am(m—p)X 0, hence this is always possible.
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B. The construction of a submersion whose fibres are the ajs  follows the same 
pattern:

We first consider the product M X S  of M  with the unit sphere S  of E 3, whose 
points are identified with the “directions” of E 3. We define F by

(8) \ F■ M X S ~*R
\F{m,e) =  (£m, e), for every m£M  and e£S.

Let M  be the subset of M X S  defined by

(9) M = F"4{0}) =  {(m, e)€M x5|<^, e) = 0}.
At (m, e)£ M  the gradient of F is easily computed to be

00) (~ A m(e))®em*  0.
Hence we have the following:

Lemma 1.3. M is a three dimensional submanifold o f M X S .
Proposition 1.4. The restriction n —n'\M o f the natural projection n': 

M X S - * S  on the second factor is a submersion o f M whose fibres 7t~1(e) are isometric 
to the shadow lines ae.

Proof. The last assertion becomes clear if we look at
(11) 7г-г(с) =  {(m,e)|<£m, e) = 0} c  MX{e},
which for fixed e is precisely the differential geometric description (Fig. 4) of the 
shadow line ae as a set of points of M X {e}=M. The metric of M is the induced one 
from the product MXS.

Let now (m,e)£M. From (10) and the definition of M  we have
(12) ты,е)М = {w1e w 2€ r (m>e)AfXS,|<^m(e), wj) = <£m, w2)}.
Since M  is convex, given wfi TeS we can, always find a w fiTmM such that 
(Am(e), vv1)=(c,„, iv2). This proves that 7r+|(mj e) is surjective, hence л: is a submersion.
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2. Formulation of the problem

Let Jm denote the positive л/2-rotation of the tangent plane TmM. From (5) 
(resp. (10)) we know that

(13) X(m,P) = JmAm(rn-p)®  0p,
(resp.
(14) = JmAm{e)®0.)

is a tangent vector field on M  which spans at every point (m, p)£M  the tangent 
space of the shadow line ap (resp. ae) at that point.JThus the dual со of E=X/\\X\\ 
with respect to the metric of M is a one form on M which, when restricted to the 
shadow line, coincides with its volume form. By means of this form со let f i  (resp./2) 
be defined as
(15) fAp) = f  со, for every pfP.

7t-l(p)
(resp.
(16) ff ie)  =  f  со, for every e£S.)

jt-i(e)

Clearly f i(p) (resp. f 2(p)) gives the length of the shadow line ap (resp. ae). Thus our 
problem is reduced on that of computation of the variation of integrals of a dif
ferential form со over the fibres of a submersion.

3. Variation of integrals over the fibres of a submersion

Although it is a simple one, I do not know whether the following formula is well 
known or not (see however [7]). Anyway, for the sake of completeness I give a short 
proof of it. Recall first that if я : M ^-N  is a submersion between Riemannian mani
folds (M, g,), (N, g2), then the restriction of the tangent maps n.¥p to the orthogonal 
complements of the tangent spaces of the fibres is an isomorphism.1 By means_of this 
isomorphism every vector field X  on N  can be “lifted” to a vector field X  on M such 
that

(i) X  is orthogonal to the fibres
(ii) X  is я-related to X: n^X—Xon.
Lemma 3.1. With the preceding notation and the additional condition that the 

fibres пр = тс~1(р) for p£N are compact, let со be a differential form on M of degree 
r =  dim M =  dim N. Define f  (p) =  J  со for every pZN. Then for every vector

p
field X  on N  we have

X f =  f L x co.

1 Not necessarily an isometry.
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P roof. Let tp(q, t), <p(p, t ) denote the flows of X  resp. X. From (ii) we have

(17) n(tp(q> 0) = tp(n(q), t).

Щ  P =  lim^- Л-0 h h ) ) - f ( p )) = lim-j-Ä-0 h ( /(я  (<?(?, h )))-/(p)), where n(q)

(* ) = lim-|- I t o -  f c o ),, u fl
.Ä») *- J

From (17) we have
(*  *) п(х(Ф(ч,ь)))== <Ph(Kp)

hence from (* ) and (* *) it follows that

xfr  =  I « » / " - / " ] =  / l i m  =  f L x co.

4. First variation of f x and f 2

Let P, S, n be the same as in Section 1 and to as in Section 2. We apply Lemma 
3.1. For this we need the lift A' of a vector field X  on P (resp. S  ) which is easily 
computed as follows.

A. If 7r: M —P then T(m p)M is given by

(!8) T(miP)M = {(w1, w2)eT(m<ll)M xP \(A m(m-p),  щ)+(£т, w2) = 0}. 

Condition (i) of 3.1 is equivalent to

(19) (JmA 0m - p ), Wi) =  0.

These relations together with (c„,, w1)= 0  imply that X  has the form

(20) X\(m,p) = - ^ 1~ ( A m( m - p m - p 1U )  + 0 „ M X - ^ m, X ) U ,
P I

where p1 = (Am(m-p),  Am(m-p)).
B. Analogously when n: M-+S we find that

(21) X(m,e) =  % X p - ( A m(e)®p2t;m) + Om0 (X —<*, Q U -
H 2

where we put again p2=(Am(e), Am(e)). For the evaluation of the integral of 
Lxto we note that
(22)

Lxco(E) =Xco(E)-to(lX,E]) = -to(VxE) + co(VEX) = co(VEX) = - ( V eE, X),
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where denotes the product metric of M X P  and V the corresponding Levi-
Civita connection. Because of (20) the last equation is equivalent to

Lxco(E) = -< { „ , Z> (kAm( m - p ), Am(m—p))Qq)~s/2 = - ( $ т,Х)к(р1) - ^
where к is the geodesic curvature of the shadow line, hence we have

f i ( p )

(23 ) m ,  = - J  <<t,xp)k{mril2ds.
о

By a similar reasoning we obtain, using (21),
Me)

(24) XU\C =  f  f , X e)k(p2) -^ds .
0

From these formulae it imediately follows that:
Proposition 4.1. I f  for some point p (resp. direction e) the shadow line ap 

(resp. ae) coincides with a geodesic o f the surface M, then p (resp. e) is a stationary 
point o f f I  (resp. fa).
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ZAPPA PRODUCTS*
M. KUNZE (Darmstadt)

In this paper we study a general type of product that was introduced for groups 
by G. Zappa in 1940 [31]. Sometimes this product is referred to as a bilateral semi- 
direct product. About 1950—1960 applications in group theory were investigated by 
Szép, Rédei, Huppert, Itó, Wielandt, and others. In spite of some inherent difficulties, 
important results eventually were proved (cf. Section 4). Moreover, several useful 
constructions in semigroup theory can be reduced to the Zappa product, but origi
nally they were obtained by other means (Section 5). In fact, the Zappa product can
not be understood very well unless considered as a construction at the crossroads of 
automata theory and algebra (Section 7). Many questions concerning semigroup de
compositions (Section 6) and semigroup automata remain open. Nevertheless, in 
both cases the concept of Zappa products turns out to be meaningful. Furthermore the 
intimate relationship between automata theory and classical algebra — without 
sliding to classicism — that is made explicit by the notion of Zappa product is re
markable.

1. Definition and basic properties

D efinition (1.1). A Zappa product o f  two sem igroups S, T is a sem igroup iso 
m orphic to  SXT ,  о where

(si > h) 0 (s2? 2̂) — (si * (h > 5г)» [h 5 s2] ‘ 2̂)

for some functions ( , ) :  T x S - * S  and [ ,] :  TXS--T .  For a Zappa product of mo
noids we require (1, 1) to be the identity element of SXT ,  o. Similarly, a Zappa 
product with zero is a semigroup isomorphic to S'XT’U {(0, 0)}, о where (0,0) 
is a zero element and о is defined as above, but ( , ) ,  [, ] are functions with range 
SU{0}, resp. TU {0}, satisfying

LP0. [/, s] =  0 о  (t, s) =  0,

[0, s] = [t, 0] =  0 =  <0, s> =  </, 0>.

For any set X  denote by !X(X) the full transformation semigroup on X. Ob
viously, we can rewrite the functions ( ,) ,[ ,]  in terms of transformations by the follow-

* This research was supported by Grant A7877 of the Natural Sciences and Engineering 
Research Council of Canada.
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ing mappings S, г :
ő: T  {0}), /н»((5,: s >-» ő,(s) =  <í, s>),
t : S  — ^ (T U  {0}), s m -( i (s) ;  í r *  =  [í, s]).

Since both the symmetric notation and the asymmetric one will be used later on, we 
state the following conditions in both notations for the convenience of the reader.
LPl.
(a) i1 =  t It, 1] =  t
(b) Is =  1 [1, s] = 1

(c) 5,(1) =  1 <U> =  1
(d) W  = s tó11/'чtoT—<

Of course, this condition is applicable only if S  and T  are monoids. On the other hand, 
in most cases identity elements due to condition LP1 may be adjoined to S  and T, 
if desired. The essential conditions are
LP2. fiOd = (tsi)s! [1, S2S2] =  [ [r ,  5 j ,  s 2]

LP3, М * = 1*,(».р2 [tfii, s] =  [*!, </2, s)]-[i2,s]

LP4. ótlt2(s) = őtl(St,(s)) (M11N

LP5. S,(siS2) = S,(si) ■ So, ( s 2) (t, S i S i )  =  (t, S i )  • <[/, Si], s 2>.

LP2 says that S' is acting on T U {0}; i.e., т is a homomorphism. Dually LP4 states 
that ő is an anti-homomorphism. We do not know an illuminating interpretation of 
LP3 and LP5 in purely algebraic terms, but those conditions are to be understood 
easily in automata theory as will be clear in section 7.

Proposition (1.2). Let S, T  be semigroups and о a multiplication on S X T  as 
defined above.

(a) 7/L P2 —LP5 are valid, then S X T ,  о is a semigroup.
(b) I f  S, T are monoids and LP1 — LP5 are satisfied, then SXT,  о is a monoid 

with identity (1, 1).
(c) [15, 31] I f  S, T  are groups, then every Zappa product of S, T  is a group.
Similarly Zappa products with zero are obtained i f  LPO—LP5 are fulfilled.
Proof, (a) [Cf. 31] ((sx, h)o(s2, i2)) °(s3, ts) = (sx • </x, s2>, [il5 sjta) ° ( s 3, t3) =

=  S2> ( [ h , S2] / 2, s3>, [ [ h , S2] L, S ,] /e) =

LP4 LP3

=  (S1 (^1 ? Sä)  { [h  » f ' i i  S3) ) ,  (^2) ^3) ]  [̂ 2 5 ^з] 7i) =

LP5 LP2
— (sl(h> s 2 ' Ss)), [h> S 2 • (Li SS)] [t2 5 S3]̂ :i) =

— (Si, (l) °(s2(̂ 2> «»>, [t2, S3]i3) = (Sj, ?j) o((s2, t2) o (s3, t3))
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(b) (h  0°(1 , 1) =  (s(t, 1), [7,1]) =  (j , t) by LPla, c,
(U )° (h  t) =  «1, s), [1, j]i) =  (s, t) by LPlb, d.

(c) The inverse element of (s, t ) is (1, r _1)o (j_1, 1) = j -1), [t~x, s'-1]).
P roposition (1.3). I f S X T ,  о is a Zappa product o f monoids S, T  [with identity 

element (1, 1)], then LP1—LP5 are valid. [Cf. 15, 31].
P roof . LPla,c. (1, t ) = (1, r)o(l, 1) =  «/, 1), [t, 1]).

LPlb, d. (s, 1) = (1, l)o(^, 1) =  «1, j>, [1, s]).

In order to exploit the associativity, we compute

((1, h) ° (h , h)) ° ( h ,1) =  (<h, s2>, [h, s2]i2) o(s3, 1) =

=  ((hi h) (th ? h ]h 5 h)i [[hi h] h i ss])i
(1, h )° ((h i h) °(s3, 1)) =  (1, h) ° (h (h i S3>, [h, s,]) =

— ((hi h (h i sa)')-> [hi h (h  1 h)][hi hi)*
By considering the second components we get

LP23 [[hi hlh» h ] =  [hi h (h i h)][hi hi-
For LP2 put h = l :  [[hih], h ] ^ h ih ( l .h > ] [ l ,h ]  and note <1, j 3)= j3,

IUJ=l.
For LP3 put Ja= l :  [[h, l]h ,h )] =  [h ,< h ,h> ][h ,h ] and note [h, l] = h- 
By considering the first components of the above calculation we get

LP45 (h i h)([hi 52]hi h )  = (hi s2(hi h»-

For LP4 put Ja= l :  (h , l)([h. l]h i •Уз>=(Ь, ( h , -Уз» and note <h, 1)=1, 
[hi 1] ~  h •

For LP5 put h =  1: (h> h>([h, hJi h )  =  (h , h (F  h »  and note <1, v3) = j3.
R emark (1.4). If SX T ,  о is a Zappa product of monoids, then both 

S-+SXT,  ji->(j , 1) and T-»SXT,  /•—►(!, /) are monomorphisms.

P roof . ( j x, 1) o( j 2, 1)=(ji(1, j2). [ l ,h J )= (h h » 1) by LPlb, d.
(1, h )°(l, h )= ((h , l ) .[h , 1]h)= (l, hh ) by LPla, c.

Green’s relationson S, T  determine those on SXT ,  о to a certain extent. 
L emma (1.5). Let S X T ,  о be a Zappa product o f S  and T. Then 

(hi h) = s» (h i h ) ^  h  — я *2 in S,
(hi h) — x  (h1 h) =► h = 2? h T,
(hi h) — я (hi h )=*■ h  — a h  in S,
(h i h) — se (h i h)=^ h —seh in T.

P roof. Straightforward.

A c ta  Mathematica Hungarica 41, 1983



228 M. KUNZE

R emark (1.6). The mappings <5, г of a Zappa product SXT,  о satisfying LP2— 
LP5 have the following properties:

(a) Every т(s) preserves the left ideals of T: x£T t2=>xs£Tt2 by LP3, i.e., 
хШ#y=>xsS # y s for every x, y£T.  Similarly, every <5 preserves the right ideals of S, 
by LP5: х ^ яу=*0,(х)Щя 5,(у) for every x ,y£S .

(b) v(s) is an endomorphism, if s£  f)Fix 5t. S X T ,  о is a semidirect product,
<er

if every (5,=ids . (In that case LP4, LP5 are fulfilled vacuously.)
(c) t(.v) is a right translation, if <5t( j)= l for every t£T. If every <5, =  const! =  

=  (ah->1s), then LP4, LP5 are fulfilled trivially.
(1.6)b and c may indicate already that the range of Zappa products is very com

prehensive.

2. Zappa products and semigroup extensions

If M  is a Zappa product of monoids S  and T, then we know by (1.4) and (1.3) 
that M  contains isomorphic copies S, T of S, T  such that every element of Msz  

XT,  о is uniquely representable as a product of elements of those submonoids: 
(s, t)=(s, l)o (l ,  t ). Conversely we show

Proposition (2.1). Let H  be a semigroup with subsemigroups S, T  such that 
(i ) H  = S - T ,
(ii) Vjli =  s2t2 => s1=s.2/\t1 = t2 for every slt s2£S  and tlf t2£T; i.e., every 

element of H is uniquely representable as s ■ t where s£ S  and tCT. Then H is a Zappa 
product of S and T. Similarly, i f  0 £ H \ S T  and every element o f H {Q} is uniquely 
representable as a product s • t, s£ S, t£ T, then H is a Zappa product o f S  and T  with 
zero.

Proof. Assume that (i), (ii) are valid and define

(t, s) = the ?;€ S  suchthat ts=v-u  where v£ S  and u£ T,
[t, i] =  the u d T  suchthat ts=v-u  where v£S  and u£T.

By (i), (ii) these mappings T X S -^ S ,  resp. T, are well defined and SXT ,  о is a grou- 
poid where о is given by the formula of (1.1). Consider the mapping <p: H — S X T  
x  >-►(.?, t) such that x= s- t ,  s£S, t£T. We have to prove that <p is an isomorphism 
H, ■ -+SXT, o. For this purpose take s1,s2€S, q , t2£T  and compute

(«1 *i)<P °(s2t2)(p =  (sl5 h )o (s2, t2) =  ( s f L ,  s2), [q , s2]t2) =

= (ih(h, s2»([h, s2lt2))(p = ( s f ( t1, s2>[q, s^)t2)(p =  (sfA s2)t2)cp =  ((s^j) • (s2t2))q>

by definition of ( , ) ,  [, ]. Concerning the Zappa product with zero, define 
a)=[/, j] =  0 in case ts=0 and as above otherwise. Furthermore let 0(p = 

=  (0,0). Clearly xcp oy<p = (x • y) <p is trivial, if x =  0 or y=0. But we have to 
consider the possibility txs2= 0 in the above calculation:

Case l1.s'2 =  0. Then (tL, .y2) =  [0, v2] = 0, and therefore

(siti)cp°(s2t2)(p =  (sx • 0, 0 • t2) =  (0, 0) =  0q> =  ((spy) ■ (s2t2))<p.
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Case t1 s2 7 i 0 . Then (tx, s2)£S  and [q, .v2] €T and therefore s1(t1, s2)^S  
and [i1; s2]t2dT. Moreover s1(t1, j2)[h, .v2] t2X0, because S ■ T. Thus the above 
calculation remains valid in this case.

Let us compare the concept of Zappa products with the ordinary (i.e., Schreier 
type) extension theory of semigroups. A semigroup extension (E, 0) of a semigroup 
T  by a semigroup S' is a semigroup E containing_a subsemigroup T isomorphic to 
T, together with a congruence 0 on E such that Tis a 0-class and that the factor 
semigroup E/в is isomorphic to S. [27]

In contrary to that situation of semigroup extensions, a Zappa product S  X T, о 
of monoids contains isomorphic copies of both T  and S as noted above. Nevertheless, 
we may ask for the intersection of the two theories.

Proposition (2.2). A Zappa product S  XT, о of monoids is a semigroup exten
sion (.SXT,  0) o f T  with respect to the isomorphic copy {1}XL o f T  and the mapping 
S-»(SXT)/6,  ai— 1 )]e, i f  and only i f  it is a semidirect product of T and S  with 
respect to the homomorphism t : S^ .Z (T ).

Proof. Given a Zappa product SXT,  о of monoids, define an equivalence by 
(Sl, Í!)~(S2, to) OS! = s2.

Clearly ~  is a left congruence on SXT,  o. In fact, ~  is the unique left congruence 0 
containing {lJXT as an equivalence class and separating (x1? 1), (s2, 1) for s2 Xs2:

(l, 1)0(1,0 => (j, 1)0(J, t).
Thus ~  is a congruence on SXT,  о iff for every (s, t), (s, t ' f iS 'XT

(s, t)o(s2, t2) ~  (s, t')o(s2, t2),
i.e., s(t, s2)=s(t', s2). For v = l and t'=  1 this condition reads (i, j2) = ( l ,  s2)= s2 
by LPld. Therefore ~  is a congruence, iff all á,=ids in the alternative notation. 
But in that case SXT, о is a semidirect product by (1.6).

3. Congruences

As an immediate consequence of LP2—LP5 the functions (, ), [, ] of a Zappa 
product SXT,  о are usually determined by their values on a generating system (for 
exceptions see the general case of LP-machines in Section 7), i.e., by their restrictions 
to T ' X S '  where S '  and T' are generating systems of the semigroups S  and T  respecti
vely. (As noted by Rédei, the situation is different for generating systems of groups; 
cf. (4.7)).

But while the definition of some functions ( ,) ,[ ,]  on free generating systems is 
subject to no conditions whatsoever, verification of axioms LP2—LP5 may be dif
ficult in general. The following proposition establishes an alternative access to Zappa 
products via factorization.

Proposition (3.1). Let S X T ,  о be a Zappa product with respect to [ ,] ,( ,) .  
Given two congruences, both denoted by on S  and T respectively, define

(s, 0 ~ (s ' О о  s~s'A i~C .
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Then ~  is a congruence on S X T ,  о i f

(*) x s' At~t'=>
j(t, s) ~  ( t\  s') and
Ь ,  *]-[/', si.

For Zappa products o f monoids the converse is also true.
I f  (*) is valid, then we have S X T I ~  sTS7~) X(77~) for appropriately defined 

functions ( ,) , [ ,]  on (T /~ )X(S /~ ) .
Proof. If (* ) is valid and х;~х,', tt~ for /= 1 ,2 , then

(si! h )° (s2i /2) = X2/S [A> хг]/г)>
(si» / i ) ° ( s2 ? D  =  (xi{(i> 2̂)5 [(1> xi] C)

show that ~  is a congruence on SXT,  o.
Conversely assume that S X T ,  о is a Zappa product of monoids, x~x', i~ / ' ,  

but [/, x ] x ' ]  or (/, x ) x ' ) .  Then (x, l)~ (x ', 1) and (1, f)~ (l, t'), but

(1, t)o(s, 1) = «/, s), [,t, sD*«*', s'), [/', sD = (1, О  о (s', 1).
Of course we cannot expect to describe all congruences of SXT ,  о in such a simple 
manner.

Proposition (3.2). Let S X T ,  о be a Zappa product o f monoids with respect to 
( ,) ,[ ,]  and ~  a congruence relation on T such that
( + ) / ~ /'=>■[/, s]~[/', x] for every s£S.
Define an equivalence on S by

( +  +  ) x ü s ' ö V / T : [ í, xH ' , 4

7 /7 '/~  is right cancellative, then (s, i) ~  (s', t ') o s m s ' A t~ t '  is a congruence on 
SXT ,  o.

Proof. ^  is a right congruence because
s^s'=>[t, s]~[i, s'] by ( +  +  )

=► [[', s], x j  ~ [[/, xl, x2] by (+  )
=> [/, ss2] ~[/, s' s2] by LP2.

Clearly rí is also a left congruence by LP2. Now let t ~ t '  and x%x'. Since 
[/, x]~[/', x] by ( +  ) and [/', x]~[/', x'] by ( + + )  we have [/, x]~[l', x'], i.S., the 
second part of (* ). In order to prove ( t , s ) ^ ( t ' ,  s'), we have to show [/,, (t, s)]~ 
~  [h, (/', s')] for every tfiT. Forarbitrary tf i T  weknow [tfi, x]~ [tfi', x'] bythe 
second part o f(* )  and therefore s)] •[/, x]~[/1; ( f ,  s')] • [/', s'] by LP3. If cp de
notes the canonical homomorphism Г —T /~ , this statement reads as follows:

[h, (t, s)]<p • [/, Ф  = (h, ( t\ s')]q> ■ [f, s']cp.

But [t,s]<p=[t',s'](p as noted above, and 77~  is right cancellative. Thus 
[*i, (/, x)]~[/j, ( / ',  x')], and (3.1) yields the desired result.
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As an example for a situation dual to (3.2) take T —Z* and S as the set of states 
of an accepting automaton A=(S,  Z, ő, q0, F) for a language L ^ Z * .  Equip S 
with right zero multiplication to fulfill the additional assumptions of (3.2) vacuously 
(cf. 5.1 and section 7), put [a, í ]=1, (a,s)=öa(s) where d is the state transition 
function of A, and consider any equivalence ~  on S' satisfying: ~  s2 implies 

«=> Sw(s2)dF  for every wdZ*. If ~ is the equality, then Z*/ ̂  is the 
transition monoid of A. If ~  is the coarsest possible equivalence (yielding the mi
nimal automaton for L), then Z*j ̂  is the syntactic monoid of L. Thus, (3.1) and
(3.2) are related to the reduction of automata, especially in cases where we can 
understand the Zappa product SXT,  о itself as an automaton by means developed 
in Section 7.

4. Zappa products in group theory

In order to give an impression of group theoretic aspects of the Zappa product, 
let us recall the following theorems.

T heorem (4.1). I f  a finite group G is a Zappa product o f cyclic groups, then G is 
super solvable. [író, 4].

On the other hand it turned out to be difficult to determine all Zappa products of 
groups of a given type, even for the case of cyclic groups [1, 16].

T heorem (4.2). I f  an arbitrary group G is a Zappa product o f Abelian groups, 
then G" =  {1} where G" denotes the second commutator group o f G. [8, 5].

T heorem (4.3). Every finite group which is a Zappa product o f nil potent groups is 
solvable. [30, 11, 5].

Sometimes the possibilities for decompositions of a given group into a Zappa 
product of subgroups are recognized easily.

R emark (4.4). If G is a finite solvable group and |(j | is not a prime power, then 
G is a nontrivial Zappa product.

P roof. Indeed G is a Zappa product of Hall subgroups.

R emark (4.5). No cyclic p-group (where p is a prime number) is factorizable as 
any Zappa product in a nontrivial manner.

Proof. Note that Zappa factors o f  a finite group have to be subgroups. But 
cyclic p-groups contain a unique maximal subgroup.

For further results on decompositions see Section 6. The relation between the 
functions ő and т of a Zappa product has been studied by Rédei and Szép:

P roposition (4.6). Let S, T  be groups and t : S T ( T )  a homomorphism such
that lT6Fix t ( s )  for every s£S (i.e., LPla, b and LP2 are valid). I f  Kern t={1}, 
then there exists at most one function <5: T-*.T(S) such that aóds> =  (ac)s-(cs)-1 
for every a, cd T and sd S. In this case S, x give rise to a Zappa product o f S  and 
T. [15]

In contrary to the situation in (4.6) we mention Rédei’s
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E xample (4.7). [Cf. 16]. Let T  be the infinite cyclic group (a) and S  the cyclic 
group (A) of order 8. Then the action of S  on T  defined by xA=x~k may be com
bined with the following “state transition” functions ö (cf. section 7):

<>>1 A (> )г A
a A3 a A3
a ~1 A3 а~г A7

(A9, ai)o 1(Ak, aJ) = (A9+k+ik<-imod2), a ,' <-1>k+-'), 
(A9, a‘) o 2(Ak, a1) = (A9+k+2«kmod2),

5. Applications to semigroups

The following examples will give an impression of the range covered by the con
cept of Zappa product in semigroup theory. Sometimes a certain semigroup H  is 
easily recognized as not expressable as a Zappa product of two proper subsemigroups. 
However, such a statement does not imply immediately that the construction of 
Zappa products is meaningless for H. There are examples where the gap between 
Zappa products and such a semigroup H  is very slight and may be bridged naturally 
by either a factorization or an embedding.

5.1. Transformation monoids

Let A be a transformation monoid acting on a set T. Consider T  as a right zero 
semigroup and define [t, =  by the action of S’ on Г  and (t, x )= ls for every
t£T, s f  S. Then LP2 is a restatement of the definition of transformation semigroups 
and LP3—LP5 are fulfilled vacuously. A XT, о is a Zappa product with multiplica
tion ( ii, Ь)о(х2, t^)=(si, h) which is rather trivial. If an identity element l r 
is adjoined to the right zero semigroup T  such that 1 r  is a fixed point of the trans
formations in S  and furthermore LPld is observed, then the Zappa product 
SX(TU{1}), о is reflecting the transformation behaviour of (S , T ), i.e., (s0, t)c  
o(.y, l) =  (v0, ts) for every i^T. On the other hand, if we consider T  as a left zero 
semigroup and define (t , s )—s, [/, s] = ts, we obtain a semigroup S x T ,  о with 
multiplication (jl5 t1)o(s2, t.2)=(s1s2, hv.) representing both the structure of S and 
the action of S  on T.

5.2. Translational hull

Let T  be a semigroup, S' a monoid, and r: S —T(T) a homomorphism of S into 
the monoid P(T) of right translations of T. Define <5, = const for every tfT.  
Then LPla, c, LP2, LP3 hold by assumption, and LP4, LP5 are fulfilled trivially as 
noted already in (1.6). The multiplication in S X T ,  о is

(Si ,?i) o(s2,Í2) = (Si , / Í (S2)- í2).
An interesting special case of such a product is SQ P (T )  and t  =  id. An identity 
element subject to conditions LPlb, d may be adjoined to T if desired.
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5.3. Ideal extensions

Let E  be a semigroup with 0, 1 and T  an ideal of E. Consider S=E/T  and de-

it, s] =
its if s £ E \T  
j o  if s = T.

By the special case of 5.2, SXT,  о is a semigroup with multiplication (.sy, tx)o 
o(j2, /2) =  (ati , /jl .y212) where tx-T  is defined to be 0. If an identity element is adjoined 
to T, we have

(Si, Í!)o(s2, t2) |(SiS2, t2) if h = 1 
[(«!, txs212) otherwise.

Therefore the mapping qr. SX(TÖ  {1})— E, (where T £S= E/T  is
treated as zero element) is a surjective homomorphism. The corresponding congruence 
on SXCrU {1}) is (st , h )~(s2,

5.4. Bruck-Reilly extensions

Let Я  be a monoid and 9 an endomorphism of Я. The generalized Bruck-Reilly 
extension ВЯ(Я, 9) is the set N0XffXN0 with multiplication

(m, a, n) ■ (p, b, q) — (jn — n + t, a9,~n ■ b9‘~p, q—p+f)
where t = max (n, p) and 0° = idH [3, 10]. BR (Я, 9) is the Zappa product of N0, + 
and the semidirect product H X N0 with operations

e
[(a, n), p] = (a0max(n’p)~", max(n, p) — p), ((a, n), p) — max (a, p) — n.

5.5. Rees matrix semigroups

Every Rees matrix semigroup J i ° [ G ,  / ,  A, P ]  may be canonically extended to a 
Rees matrix semigroup J t ° [ G ,  I', Л', P'] where / '= / ( j  {|}, A ' = A ( j { |} and

i.e.,
PiX

Ipu if i€7, A(=A, 
11 otherwise;

P' =
1-----1)

I P
1

A.

Then S=  {(/, 1, |)|/£/'} and Г={(|, a, 2) \a£G, A£/T} are subsemigroups of 
Ji°[G, / ' ,  A', P'], because p\j=l.  Now consider Г  as a left zero semigroup and A' 
as a right zero semigroup. Clearly S'—I'  and T ^ G X A '  (direct product), because
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Рх| =  1. Furthermore every element (/, a, /.)£_.Jéa\G, Г, Л', P'] {0} is uniquely
representable as a product £ S - T :

(i, 1, I) • (I, a, A) = (i, p I I a, X) =  (i, а, X).

Thus Jf°[G, Г , А ', P'] is a Zappa product with zero by (2.1). The function т in
volved therein is given by [(a, X), j]=(apXJ, |), while the function ö given by 
((a, X), j )=  I is not interesting because of the left zero multiplication in I'. De 
facto this construction is an application of a slightly generalized version of 5.2.

5.6. Semigroup extensions of groups

Let T be a group and 5’ =  C^-(j-)(l)= { /: T-*T|1/=1} the stabilizer of the ele
ment l r within the full transformation semigroup on the set T. Define [,] to be the 
action of У(Т)  on T, and (x,/ ) : T-+T, (x/)-1. Clearly l T€Fix((x,/ ) ) ,
i.e., (x, f ) £ S  for every x£T, fd S .
LPla. idr is the identity element of S.

b. by definition of S.
c. y (x , l ) = y x  • x ~1= y , i.e., (x, l)= idT.

LP2. composition of mappings.

LP3. [xl5 <x2,/>]-[x2, / ]  =  x1<x2,/> -x 2/ '=  (x1x2)/-(x 2/ ) - 1)-x 2/ =
=  ( X i X 2) / =  [ X j X a , / ] .

LP4. y ( x iX2,/>  = Ooqxa)/- ( f o x ,) / ) “ 1, y(xl5 <x2,/> )  =
=  (yxi)<x2, / )  • (x ^ X a ,/) ) -1 =  (yXjX2)f-  (x j y 1 • ((xxx2)/- ( x , / ) “ 1)“ 1 =

=  (yXiX2)/- (x2/ ) _1 • ((x2/ ) -1) -1 • ((XjX,)/)“1.

LP5. l(x,AA ) =  (y x )f j 2 ■ (x(AA))-1.
T<[xJi)([xJi]./2> =  (((lx)A  • (х/ i ) “1) ■ (x/ x) ) /2 • ((x/OA)" 1 =  (>>x)A / 2 • (x(A A))_1- 

I f /  is the mapping x>-»-x \  then (x, / )  is the composition of/  and the inner auto
morphism induced by x:

L<x,/> =  (ух)/- ( x /)“ 1 = (jx)"1 • x =  x - ^ x  =  x _1(y/)x.

Furthermore /(ES is an endomorphism of T  iff (x , f ) —f , and /€ S  is a right trans
lation of Г iff ( x , / ) = id r = l s . Replacing S by a subsemigroup S'satisfying x€ TA  
Af £ S '=>(x , f ) £ S ' yields further examples. For S ' —Aut (T) we obtain the holo
morph of T. In the general case it may be interesting to notice that there are virtually 
no constraints for multiplications in a semigroup extension of a group insofar as any 
transformation/ may become an inner left translation (induced by ( /  1)) with respect 
to the T-component. But when we drop the assumption that T  is a group, the situaton 
becomes rather different as noted in (1.6)a.
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6. Decompositions of semigroups

Much work remains to be done in this area. But because of the inherent interest 
let us mention some preliminary remarks and results.

If a semigroup Я  is a representable as a homomorphic image of a subsemigroup 
of a Zappa product SXT,  o, then we have a decomposition of Я  depending on the 
following data:

— the multiplication in S  and T,
— the operations [,] and (,),
— a description of the involved subsemigroup and/or congruence.

The usefulness of such a decomposition of a given semigroup corresponds more or 
less to the accessability of those data. (Compare e.g. decompositions by means of the 
wreath product.) Especially one may ask for decompositions Я, • SiSXT,  о where 
S  and T  are ^  {1}. In that case Я  is called factorizable [15]. Besides (4.4) and (4.5) 
we have

Example (6.1). PSL(2, 13) is no t factorizable. [7].

On the other hand there are interesting examples of simple groups which are 
factorizable.

E xample (6.2). The alternating group Ab is factorizable into S =((123), (234))^ 
= A4 and a cyclic group 7’=((12345)) of order 5. [cf. 29].

Proof. Since (124) = (234)2(123) and (134) =  (234)(123)2, S' contains all cycles 
of length 3 leaving the letter 5 fixed. Therefore S  consists of all even permutations 
with the letter 5 as fixed point [e.g. 2, Lemma 5.4.1], i.e., S = 4 4. If s1t1=s2t2 where 
s1,s2dS  and t4, t2dT, then =  tf  1€SPlT. But Sfl7’={l}, because |S| =  12 
and |T| =  5. Thus S T  contains 12-5 = 60 different elements of A5 and hence 
S - T = A 5.

In terms of generators we can represent the Zappa product S  ■ T  by the follo
wing table (cf. Section 7).

Ab: A В where A3 = B3 = (AB)3 = 1, c5=  1. 
c B2c2 Ac

Concerning decompositions by the wreath product every finite aperiodic semigroup 
may be obtained from almost nothing, i.e., from the right zero semigroup of order 3. 
But let us start investigating what kind of semigroups can be obtained from right 
zero semigroups by the Zappa product.

Proposition (6.3). For a semigroup H the following properties are equivalent:
(i) Я  is a homomorphic image o f a subsemigroup o f a Zappa product o f two right 

zero semigroups, (i.e., H divides a Zappa product o f two right zero semigroups.)
(ii) Every product o f two elements o f H is a right zero, i.e., x  ■ у  • z= y • z for 

every x, y, Я.
Proof. If S  and T are right zero semigroups, the multiplication in any Zappa 

product SXT,  о reads as
( Sl -  ( l )  ° ( S2; I2)  ~  ( ( b ,  S2/ ,  t2).
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Therefore every product (sx, t1)o(s2, t2)o(s3, ts) equals ((t2, s3), t:i)=(s2, t2) о 
о (л'3, ?3). Since property (ii) is invariant under homomorphisms and passing to 
subsemigroups, this proves the assertion (i)=>(ii).

For the converse let Я  be a semigroup satisfying the equation x -y  ■ z= y • z 
and take the sets S  and T  equal to H, but equipped with right zero multiplication. 
Then the definitions (x, y) = x  • у  in H, [x,y]—x  give rise to a Zappa pro
duct, because LP2—LP5 are fulfilled:

L P 4 . {t,t2, s) =  </2 , s )  = t2 ■ s = t, • t2 ■ s =  ( / x , </2, s> ),

L P 5 . </, Si s 2> =  (t, s 2> =  <[/, s j ,  s 2> =  (t, s 1><[i, s j  s 2>,

and LP2, LP3 are valid trivially. Now consider the subsemigroup of S X T ,  о gen
erated by D=  {(x, x)\x(LS=T=H}.  Every element of (D) is either in D or is of the 
form (x ■ y, y) where x ,y£H:

(x, x)o(y, y) =  (x ■ y, y),  (z , z) o(x ■ y, y) =  (z ■ x ■ у ■, y) =  (x ■ y, y).
We shall complete the proof by showing that the mapping (p: S X T —H, (x, y)'-+x 
restricted to (D), о is a homomorphism.

Case 1. (x, x)(p ■ (z, u)(p—x - z —(x • z, u)(p= ((x, x)o(z, u))(p.
Case 2. (x -y, y)(p ■ (z, u)<p=(x-y) ■ z = y - z = (y  ■ z, u)(p= ((x-y, y)o(z, u))cp. 

Thus H, ■ is a homomorphic image of the subsemigroup (D) of SXT,  o.

7. Semigroup automata

In this section we present some ideas of formal language theory and interpret 
them from the algebraic point of view. Concerning the Zappa product, this section 
provides a natural motivation and surveys several useful applications related to 
automata theory. On the other hand little will be done to develop an algebraic theory 
of semigroup automata in its own right.

In the algebraic setting, a formal language (Z*, L) is a structure consisting of the 
free monoid Z* generated by a finite alphabet Z together with a unary relation, i.e., 
a subset L. A  central question is that of asking for effective representations of L. It 
belongs to the folklore of theoretical computer science to understand the definition 
of a language L  by a generating grammar as an embedding (Z*, L)Q(V*, {wdV*\S*> 

such that L  is the intersection of Z* and the standard type language {и>6 
í>w} for some S£V,  given by the compatible pre-order relation induced by a 
grammar. But in a similar manner it is possible to understand the concept of recogni
tion devices for languages as a special case of the algebraic concept of embedding 
(Z*, /.) Q (M, P): in this case the multiplication in M  is to be defined effectively by 
some type of algorithm while the standard type language P may be taken as 
{x£M|x • <70— 1}, i.e., the set of left inverses of a fixed element q0dM. A  suitable 
multiplication algorithm for M  is that of derivations according to a formal grammar.

D efinition (7.1). A semigroup automaton (S, T, <5, t )  consists o f two generated 
semigroups S=(S,  S'), T=(T, T') and wto mappings <5: T— ̂ ( S D  {0}), т : S'— 

U {0}) such that the conditions LPO—LP5 are satisfied.
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A generated semigroup S= (S, S ') is_a semigroup S  together with a distinguished 
set S ' of generators of S. The structure (S, T, <5, t) is to be understood as an automa-

by means of the following dictionary:

S' set of states
S' set of operators
• in S sequential processing
T input/output
■ in T concatenation
Ö state transition function
T output function
0 operation undefined
Is no-operation state
l T empty input/output
LP3 sequential processing rule
LP5 serial composition rule

Axioms LP2—LP4 say that S  is acting like a sequential transducer. In this framework 
LP3 and LP5 appear not only as fundamental properties, but also as the most natural 
ones to impose. A standard type of semigroup automata is provided by the linear 
parallel processing machines (LP-machines) where operators A,B,C,  ... are acting 
from one side on an input sequence a , ... a*€ Z* by processing rules a A -+Bk... 
...B„bl ...bm in such a way that is governed by the formalism of grammars, (“linear” 
stands for 1-dimensional, and “parallel” indicates that operators may act simulta
neously as usually in derivations.)

D efinition (7.2). A deterministic LP-machine is a formal grammar ( 1 ,TUT, 
P,q0) such that РЯ=1ГХГ*1* and P is a partial function. [12, 13].

Proposition (7.3). Every deterministic hP-machine ( I ,  TU Г, P, q0) corresponds 
canonically to a semigroup automaton (Г*, I*, ő, т) with initial state q0 where the 
functions 5, г are given by

aA -* B1...B„ b1...bm in P 
(a, A) [a, A]

and (a, A)=[a, A] = 0 i f  there is no rule in P with left side aA.

Furthermore the operations ( , ) , [ , ]  are defined to be 0 in case a derivation of 
a1...akA1... Aj would run forever rather than yielding a final result. Final results of 
derivations according to LP-machine grammars are unique whenever existing [12]. 
LP-machines are conveniently given by a partial multiplication table of the extension 
semigroup Г*1* U {0}, о where

_  Jy if <xß у such that у£Г*Т*,
[0 otherwise,

as in (LI). By virtue of (7.3) and (1.2) associativity is provided automatically. A small
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example of such a table is
initial state

terminals

I
E I Q

а IE Qa I
# 1 # 1

operators

for an LP-machine that will accept the language { # a 2"-1|/tGN0}. Without going 
into details let us mention the following 
Applications (7.4) o f LP-machines [12]:

— computation of functions: linear-time integer multiplication
— uniform representation of Chomsky hierarchy:

type of rules for LP-machines corresponding classical automata

a A ^ B finite automaton

aA-^By... Bn deterministic pushdown automaton with 
a single state

deterministic pushdown automaton

аА- { вв \ : : вв пь
----------- /

(subclass of context-sensitive languages)

aA~*Bx... B„ ... b,„ equivalent to Turing machine

— context-sensitive languages: parsing algorithms for (special) non-context-free 
generating grammars for a rather comprehensive subclass [13].

Besides the case of LP-machines where the semigroup S of states in a semigroup 
automaton (S, Z*, S, r) is chosen to be a free monoid Г*, it is worth-while to study 
finite semigroups of states (with non-trivial multiplication, in contrary to the example 
given in Section 3). This possibility seems to allow an interesting access for investi
gations in complexity of rational and especially finite languages where many other 
tools fail to be useful.
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CONTINUOUS INCIDENCE RELATIONS 
OF TOPOLOGICAL PLANES

G. GRIME1SEN* (Stuttgart)

0 . In topological planes the link between the geometrical and the topological 
structure is established by the requirement that the partial external operations 
“joining of points” and “intersecting of lines” be (op-) continuous (for the terminol
ogy, see Section 1). It seems that nowhere in the literature one has discussed the 
question, if and under which conditions the incidence relation (or other relations deri
ved from it) underlying to the notion of a topological plane is (resp. are) “continuous” 
in some natural sense, or whether, in a more general setting (see Remark 6), the 
incidence relation should be required to be “continuous” . In this paper, it turns 
out that the incidence relation of each topological plane and its inverse are lower- 
semicontinuous and they are continuous (in the sense introduced by the author in [3]) 
in certain classes of topological planes (Theorem 4, Propositions 5 through 8).

As a byproduct in this paper, we characterize (in Theorem 1) the continuity of 
certain relations between a topological space and a product of topological spaces 
(which has a simple consequence in Proposition 9) and describe (in Theorem 3) the 
topology of the set of lines (of a topological plane) in terms of limits (via the notion 
of the power of a topology).

1. Auxiliary considerations from the general topology

In this section, we collect some facts from the general topology with a minimum 
of a systematic representation.

For each set M, we denote by ФМ the class of all filtered families (/, K, a) 
in M; for each topological space (M , A), we denote by 33; , LimA, lim inf; , 'fi[A] the 
neighborhood operator induced by A, the limit operator induced by A (extended to 
ФМ), the limit inferior induced by A (which is defined on Ф^М)  and the (first) 
power of A (which is a topology of the power set )ßM of M  and has been denoted by 
фА in [3]), respectively (see [3]). For the set-theoretical terminology used in this paper, 
see Monk [8] and [3].

For the whole section, let (E , t), (F, <t) be topological spaces. Down to Proposi
tion 1, let <p be a mapping from E X E  into F, i.e. with Dmn tp QEXE  and Rng <p X F 
(read Dmn as “domain of definition of” and Rng as “ range of”). One may call such 
a mapping a (binary) partial external operation in E. Occasionally, it is useful to

* Support by Deutscher Akademischer Austauschdienst (Bundesrepublik Deutschland) and by 
the University Paris VI is gratefully acknowledged.

Acta Mathematica Hungarica 41, 1983



2 4 2 G. GRIMEISEN

consider a kind of “continuity” of <p which differs in general from the (xXx, ̂ -con
tinuity :

We call (p (x, a)-op-continuous (o r: operation-continuous) if and only if for each 
(x, j>)£ Dmn (p and each U€ 93ff (p (x, y) there are sets V£ iilrx and W£ such 
that VXWQDmn cp and (p(VXW)QU . (For E = F  and x — a this definition is 
contained in the definition of op-continuity in [4], p. 184.)

P roposition 1. <p is (t, a)-op-continuous i f  and only i f  Dmn cp is (т Xx)-open 
and (p is (xXx, (r)-continuous.

P roof. □
We recall that a relation R Q E X F  is said to be (x, a)-continuous if and only if 

for each (x,y)£R  there is a (x, cr)-continuous mapping <p: Dmn R —F such that 
(x, y)£(p^=R, or, equivalently, if and only if there is a set 8E ^(D m nÄ , Rng R) 
such that R = U23, where Dmn R  and Rng R are endowed with the corresponding 
trace topologies (see [3], p. 37). For Theorem 1 and Remark 1, let (Fd, <Jd)diD be a 
family of topological spaces, (F, er) their product and (Rd)diD a family of relations 
RdQ E X F d (D is a set).

T heorem 1. We define a relation S Q E X F  by letting у S  f  i f  and only i f  
У Rd f(d)  for all d£D (for all (y, f )£EXF) .  Then, S  is (x, a)-continuous i f  and 
— provided that, for some set M, Dmn Rd—M holds for all dP_D — only i f  R d is 
(x, о ̂ -continuous for all d£D.

P roof. 1. Assume that all R d are (x, erd)-continuous. Let у S  f .  Then у R d f i d ) 
holds for all d£D. Therefore, there exists a family {(pd)d(D of (x, crd)-continuous 
mappings cpd: Dmn Rd — Fd such that (y, f(d))£(pd^ R d (use of the continuity of 
R d and of the axiom of choice). By the definition of S', we have Dmn S =  f )E Dmn Rd

diD
(where the index E  indicates the convention П£0  = F ). We define a mapping 
X: Dmn S —F by letting x(z)—(<Pd(z))d£D f°r all z£D m n S. Since all cpd are 
(x, o-d)-continuous, x is (x, ffj-continuous (see Dugundji [2], p. 201, Corollary 2.3). 
Using the definition of x an(i the choice of the mappings (pd, one obtains 
(у, /)£ х ; using additionally the definition of S, one gets that xfkS.  We have 
showed that S is (x, o-)-continuous.

2. Assume that for some set M,  Dmn Rd~ M  holds for all df D. Let S be 
(x, (r)-continuous. Let cffi) and у  Rc x. Then yfDmn Rd= M  holds for all 
d£D. By the axiom of choice, there is a mapping h 4 F such that у Rd h(d) holds 
for all dfD.  We define a mapping /€ F  by letting f ( d ) = x  for cl=c and f id)  = 
=  h(d) for all d£D \{c}. Then, by the definition of S, one has у  S  f .  Since S is 
(x, o-)-continuous, there is a (x, cr)-continuous mapping <p: M - F suchthat (у, /)€
(pQ S  (use of M ^D m n S). We define a mapping ф by ф — ргсо<р (where prc: 
F — Fc denotes the c-th projection), ф is (x, <Tc)-continuous, and one has Dmn ф =  
=  Dmn ^>==M=Dmn Rc. Since (у , /)€<?>, one has (y, x)= (y, prc(/))€i/i. In or
der to show the continuity of Rc, it is left to show ф U Rc. Let (z, н>)£ф. Then, one 
obtains, by the definition of ф, (fp(z)) (с) = и\ therefore (using that (pQS implies 
(z, cp(z))£S), in view of the definition of S , z  Rc w. We have showed that Rc 
is (x, trc)-continuous. □
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R emark 1. If, especially, Rd is a mapping on E  into Fd for all d£D, then S, 
defined in Theorem 1, is a mapping on E  into F, and we regain a well-known theorem 
saying that S  is continuous if and only if all Rd are continuous (see, e.g., Dugundji
[2], p. 101, Corollary 2.3).

We formulate, next, a simple assertion serving as a lemma soon:
Proposition 2. т is the finest topology q o f E  such that for all topological spaces 

(G, 2) and all mappings g: G ^ E  the statement (* ) holds:
( *) I f  g is (A, x f  continuous, then g is (A, g)-continuous.
Proof. □
Now, we recall the notion of lower-semicontinuity of a set-valued mapping. 

Let for the following cp be a mapping from E  into tyF, i.e. with Dmn cpQE and 
Rng (p Q 'f?/ . Then, cp is said to be (t, o)-lower-semicontinuous if and only if

<p(Limt (/, K, a)) ^  ip(lim inf,, (cpofi K, a))
holds for all (/, К, a)€ Ф Dmn cp (see [3], p. 39, where we chose this definition as a 
characterization). A relation R Q E X F  is said to be ( t , a ylower-semi continuous if 
and only if the canonical mapping R induced by R, which is defined by R(x) = 
=  {y\xRy} for all .rfDmn R, is (t, <r)-lower-semicontinuous. Recall (from [3], 
p. 40) that if R is (t, cr)-continuous, then R is (t, cr)-lower-semicontinuous.

We remark that (p is (t, c)-lower-semicontinuous if and only if q> is (t, '(l [a] )- 
continuous (see [3], p. 39, where this characterization of lower-semicontinuity is 
chosen as its definition); therefore, one obtains by means of Proposition 2 the follow
ing description of s(1[t] :

Proposition 3. iß [t] is the finest topology q o f  ф E such that for all topological 
spaces (G, A) and all mappings g: G-»tyE the next statement (* ) holds:

(*) I f  g is (A, x)-lower-semicontinuous, then g is (A, g)-continuous.
Because of Proposition 3, the author inclines to call ißj/r] the topology o f lower- 

semicontinuity o ftyE  w.r. to T (cf. also Cech [1], p. 623, and Grimeisen [5]).
For later use, we agree to denote the limit operation in a Hausdorff space (F, t ) ,  

i.e. the relation RQ(<PE)XE defined by (f , K , a ) R x  if and only if x£ 
€Limr (/, K, n) (for all ( ( / ,К, а), х)^(ФЕ)ХЕ)  by limr.

2. The space of the lines as a subspace of the power 
of the space of the points

A class M  is said to be decomposed into classes A and В if and only if M = A \J В 
and 0  — А ПВ. If R is a relation, it is decomposed into a function fun R: = {(x,y)£R\ 
if (x, z)dR, then y=z}  (called the functional part of R) and a relation rel 
jR: = R \fun  R (called the relational part o f R), which is a function (namely empty) 
if and only if I? is a function.

Let (P, (5, /) be a triple of sets P, (5, /  such that IQPX®.  We define a relation 
S(Q(PXP)X(5)  by letting (p,cj) S G if and only if p I G and q 1 G for 
all ((/;, q), G)£(PXP)X(5 and a relation 7’(^((5X tö)X P) by letting (G, Fl) T p
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if and only if p I G and p 1 H for all ((G, H), /?)б(©Х©)ХР. We denote 
fun S by V and fun Г by A.

(P, ©, 7) is called an incidence structure if and only if Dmn I=P,  Rng7=©, 
rel5' = 5tidp and rel J ,= T’iide (where idK: =  {(k, k)\k£K) for a set К  and f 
stands for “restricted to”). (Realize that, up to the natural bijective mapping 
between idPX © and PX ©, the relation A'tidp coincides with 7, while in an analogous 
sense, iTfid® coincides with 7_1; so, (P, ©, 7) is an incidence structure if and only if 
Dmn 7= P, Rng 7= ©, S  is (essentially) decomposed into V and 7 and T  is (essen
tially) decomposed into A and 7_1.) In an incidence structure (P, ffi, 7), we adapt 
the common use to call the elements of P  “points”, those of ©, “lines”, 7 the “inci
dence relation”, V the “joining of points” and A the “intersecting of lines” .

R emark 2. The triple (P, ©, 7) is an incidence structure if and only if it is a “re
guläre Inzidenzstruktur” as defined by Pickert [9], p. 2, such that for each p£P 
there are G, 7/6© with the properties G ^ H ,  p I G and p I H. Furthermore, if 
(P, ©, 7) is an incidence structure, then for each G€© there is a p f P  with non 
(p I  G) and, dually, for each p i P  there is a G6© with non (/; 7 G). Of course, 
(P, ©, 7) is an incidence structure if and only if (©, P, 7-1) is an incidence structure.

If (P, ©, 7) is an incidence structure, then Dmn V ^ (P X P ) \id P and 
Dmn A £  (© X ©)\id<5.

For the remainder of this paper, let (P, ©, 7) be an incidence structure; without 
loss of generality we assume that © Q S]3P and that 7 is defined by p 7 G if and only 
if p£G (for all (p, G)€PX©).

(P, ©, 7) is called a plane if and only if (P x P ) \ id PgDmn V. Of course, 
projective planes, affine planes and absolute planes (for the terminology, see Karzel— 
Sorensen—Windelberg [6], pp. 12, 29 and 96) are planes. Let т and a be Hausdorff 
topologies of P  and ©, respectively. We call (cf. Salzmann [11], p. 4, where the notion 
of the underlying incidence structure differs slightly from that chosen here) 
E: = ((P, t), (©, a), I ) a topological incidence structure (Salzmann, loc. cit., says 
“topological geometry”) if and only if V is (r, er)-op-continuous and A is (a, t)-op- 
continuous. Of course, if E  is a topological incidence structure, then E  is called a 
topological plane [Salzmann, loc. cit., says “ topological plane geometry”] (topologi
cal projective plane, etc.) if and only if (P, ©, 7) is a plane (projective plane, etc.).

It is well known that in topological incidence structures т determines о and, 
conversely, a determines t  in the sense of the following

Proposition 4 (Salzmann [10], p. 490, there for topological projective planes). 
Let E be a topological incidence structure. Then, one has (a) and (b):

(a) For each G€© and all рг, p2 with px X/;2 and pt I G (/=1,2), one has

93ffG =  jr.iKjVK.lKje®,/», for /= 1 ,2 } .
(b) denotes the dualization of (a) (one obtains from  (a) by replacing G, ©, pl , 

p2, 7, cr, г and V by p, P, Gl5 G2, 7 r, a and A in this order).
Proof. Since ((©, c),(P, т), 7“1) is a topological incidence structure, it suffi

ces to prove (a):
1. We show that ЪаС<^Ж9 {УхУУл\ У ^ тр 1 for /=1,2}. Let y€33„G. 

Since p± Xp2 and (p1,p2) S  G hold, we have G=pfJp2 (because of rel 5'=5'fidP).
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Since V is op-continuous, there are neighborhoods Ц£Я$хр( (i= 1,2) suchthat 
F jX FagD m nV  and V ^ X V J Q y .

2. We show that {ViMV2\VfiBrpi for i= l ,  2}Q 93ffG. (From this follows 
^©{FjVFalVi£RTPi for / =  1,2 } g SB„G.) Let V f ^ zpt for /= 1 ,2 . Since r is 
Hausdorff, there are neighborhoods Wf  33T/?£ ( /= 1,2) such that W1DfV2= 0  
and WfQVj for / =  1, 2.

Let /’C{1,2}. Because of pt I G, there is an 7/(б© with pt I  Я, and G X Ht 
(see Remark 2). Since (G, H,)$id0 and (G, #,) T pt, we have p = G  AHt (use 
of rel 77=Ttids). Since A  is op-continuous, there are neighborhoods y f  41ffG and 
^£33,,//; such that y;X<5;gDmn A and Л especially, one has
LAH fW i  for all L€y,-.

Now, let ТбУхПуг- Then, one has qt:= Lt\H t^Wi for / =  1,2. Since 
)^ГШ2= 0> one obtains (qk, q^)$.idP\ on the other hand, one has (qk, q2) S L 
thus L = ql Mqi (use of rel 5'=5fidP) and so L£WkVW2MMVxVF2. In view of 
the choice of L, we have proved that 7i П y2 therefore, because of УхПу2б
£%aG, V ^ V ^ . G .  □

In Proposition 4 and later the following conventions are used: If A ,B Q P  
then AM В denotes the set V (AxB ):  = V((^XB)flDmn V); if A,BQ($>, then 
A AB is defined correspondingly. If C is a set and ад ф С , then Жс а denotes the 
set {D£tyC\AMkD for some Лба}.

For the remainder o f this paper, we assume that E is a topological plane.
As the set © “can be reproduced” from the set ipP (by applying the mapping 

ids to ÍPP), the topology о of © can be reproduced from the power sp [ t ] of the 
topology T (see Section 1):

Theorem 2. (т =  (чР[т])в , i.e., a is the trace o f the topology ф[т] in the set ©.

Proof. We prove that Lim<T=Lim((4,[l])s). Let ( f  К, а) б Ф©.

1. Let G6 Lim,, (/, K, a). By the definition of the power ф[т] of t , one has 
Lim((<p[t])(g) (f,K,  а) =  ©П ('P(lim inf, ( f  K, a))). We show that G6SP lim inf, ( f,K,  a) 
and take, for this purpose, pZG. Let G'6 21t />- Then, there is a qdG with 
qXp  (since (P, ©, I) is an incidence structure); thus G=pMq (since DmnV = 
= (P X P )\id P). Since P 6 35,<y, one has by Proposition 4 UMРб l'BaG. Thus, there 
is an Лба suchthat fk d  UM P for all k£A. Let /сбЛ. Then, there is a zk£ U and 
a wk£P suchthat (zk, 1x̂ )6 Dmn V and f k = z kMwk. One has zkdUOfk ,  thus 
UClfkX 0 .  This holds for all k£A,  therefore, since Лба, one obtains (by the 
choice of U) p€lim inf, (/, K, a), thus (by the choice of p) G glim  inf, ( f  K, a), 
therefore, because of <76®, G6 © П(SP lim inf, ( f  К, a)).

2. Conversely, let G6©lT (ф lim inf, (/, K, a)). We show that then G6Lim„ 
( f ,K,  a). Let UCB„G. Since (P, ©, I) is an incidence structure, there are p, qZG 
with pXq.  Since т is Hausdorff, there are (by Proposition 4) neighborhoods Кб Штр 
and 93,9 such that V C W = 0 ,  VMWQU and VV\^ » „ G .  Because 
V£iBxp, />6G and G glim  inf, (/, K, a), there is a set Лба such that V C \ fk X 0  
holds for all k£A. By the axiom of choice, there is a mapping <p: A —P  such that 
(p(k)d V П f k  holds for all k£A. By the analogous argument, one obtains the exist
ence of a set Bf a and of a mapping ф: B-»P such that ф(к)£1¥Г\f k  holds for 
all k£B. Let k£AC\B. Since VC\W=0,  one has (q>(k), ф(к))£Т)тп V (because
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Dmn V =(PXP)\idp),  therefore (because of the choice of the mappings (p and ф) 
f k  = (p{k)\J\jj(k)kv\/W and so f k k u .  This holds for all k£AC\B. In view of the 
choice of U, one has finally G6Limff (/, if, a), since A P\Bfa. □

Theorem 2 allows to describe the limits of filtered families of lines in a simple 
way:

T heorem 3. For all ( f  К, а)£Ф© and all G£©, one has G = lim„ ( f  K, a) 
i f  and only i f  G — lim infr (/, K, a).

Proof. Let (f,K,a)£<P(5 and G£©.
1. Let G = lim inft ( f  K, a). Then, by Theorem 2, G€Lim„ ( f  K, a). Since a 

is Hausdorff, one obtains G = \ima ( f K , a )  (for the terminology, see Section 1).
2. Conversely, let G=\ima ( f  K, a), thus G6LimCT ( f  K, a). Then, by Theorem 

2, one has GQjlim infT(/, if, a).
We show that fiminfT(/, if, a) ÍÍG. Let j^ lim  infT (/, K, a). Since (P, ©, I) 

is an incidence structure, there is a qdG suchthat qAp.  Since Dmn V = (P X P )\idP, 
p f  q is defined; put p\/q=H.  If we can show that H=G,  we obtain p£G (since 
p£H)  and lim inft ( /, К , a)QG will be proved.

In order to show H=G, we take U6 //. By Proposition 4, there are neigh
borhoods V€ Штр and W€ ‘ii^q such that V V W f  U and (since т is Hausdorff) 
V n W —0 .  Since p, ^£hm infT ( f  if, a) (here, we use ^£G^lim infT (/, if, a)), 
there are sets A,B£a  suchthat Р П /к Х 0  for all k£A  and [V P \ fk^ 0  for all 
k£B.  Therefore, by the axiom of choice, there are mappings <p: A-*P and ф: B-+P 
suchthat (p(k)£VC\fk and ф(k)^WПfk  for all k£AC\B. Let k£A(~)B. Since 
V(1W=  0 ,  one has (сp(k), ф(к))6Dmn V, thus (by the choice of the mappings <p 
and ф) f k  = (p{k)^/ф(k) and so f k £ V 4 W .  This holds for all к£АПВ,  thus 
f ( A n B ) Q U .  Since ЛГ)В£а, one obtains (in view of the choice of U) that 
HZ Limff (/, if, a). Together with GgLim,, (f  K, a), this implies H=G,  since a 
is Hausdorff.

So, we have proved G=lim inft (/, if, a). □
In order to illustrate Theorem 3, we use it to prove a simple (certainly well- 

known)
Corollary. I  is % X o-closed.

Proof. Let ( f ,K,a)^FI,  say f (k)=(g(k) ,h(k))  for all k£K, and (p, G)Z 
€Limt (g, K, (fJXLim,, (h, K, a). Let U£iBrp. Then, there is an A f  a such that 
g (A )^ U \  thus, since g(k)Zh(k) for all kZK, иГ\к(к)^  0  holds for all k£A, 
therefore, in view of the choice of U, /?£ lim inft (h, if, a). By Theorem 3, one obtains 
pZG. □

3. Lower-semicontinuity and continuity of incidence relations

For the remainder of this paper, we omit (except for some cases) all prefixes 
(namely exactly the prefixes (t, o)-, (a, %)-, (tXt, <j )-, (<rX<r, t)-, (tX ct, a)- and 
(iXff, о Xu)-) for the adjectives “continuous” and “lower-semicontinuous” of map
pings or relations occuring in the text, without causing any confusion.

Theorem 4. I  and 7 _1 are lower-semicontinuous.
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Proof. 1. In order to prove that I  is lower-semicontinuous, we have to show that

(1) /(Limt ( /, К, a)) g  ф (lim inf, (/о/, К, a))

holds for all (/, К, а)£ФР. (We have used that Dmn I=P;  for the terminology, see 
Section 1.)

Let (/, К, а)£ФР, pdLimT( f  К, a) and Gdf(p). Since (P, (6, /)  is an inci
dence structure, there is a qdG such that pXq.  Let Ud S3, G. By Proposition 4, 
there are sets V d ^ zp and Wd$$zq suchthat VVWQU, VVtVdWaG and VCMV= 
=  0  (since x is Hausdorif). In view of the choice of p, there is an Ada such that 

f (A )Q V.  Let kdA. Since qdfV, f k d V  and V D W = 0 ,  one has ( fk ,q)dDmn V 
(use of Dmn V =  (P X P )\id P) and fkVqdVMW;  furthermore, one has fkMqd 
df(fk) .  Therefore, one obtains UC\ ( /( fk))X 0 ,  because VMWQU. In view of the 
choice of U, A and k, one gets G£lim inf, (Iо/  K, a), therefore, in view of the choice 
of G, í(p)d*$ (lim inf, (/о /, К, a)). We have proved (1).

2. In order to show that I~ l is lower-semicontinuous, we have to show that

(2) P"(L im , (/, K, a)) Q Sß (lim inft ( P ' 0/ ,  К, a))

holds for all ( /  К, о)€Ф©. (We have used that D m n /-1 = (5.)
Let ( / / ,а )Е Ф (5. Since / —1 =  ide (where ids =  {(G, G)|G€©}), the inclusion 

(2) holds by Theorem 3. □
Let for the moment E be a topological affine plane and denote by par the map

ping on PX© into © assigning to each (/;, G)dPx  © the line H through p and paral
lel to G. Then, we say that E has continuous parallelism (see Salzmann [11], p. 52, 
where this notion is mentioned but not applied) if and only if par is continuous. In 
this terminology, we have

Proposition 5. Let E  be a topological affine plane with continuous parallelism. 
Then I  is continuous.

Proof. Let p I  G. Since E has continuous parallelism, the mapping par (., G): 
P —©, defined bypar (., G)(x)= par(x, G)forall x£P, is continuous. Furthermore, 
one has par (., G)(p)=par (p, G) =  G and par (,,G)QI. □

R emark 3. In Proposition 5, it suffices (in view of its proof) to require that for 
each G£© the mapping par (., G): P - ©  be continuous.

Using this Remark, we prove
Proposition 6. Let E be a topological affine plane such that x is induced by a 

metric d o f P and (*) holds for all G, Hd ©:
(* ) I f  G and LI are parallel, then distrf (x, # ) —const for all xdG.
Then I is continuous.
Remark 4. The converse of (*) holds in each metric affine plane.
Proof of Proposition 6. By Remark 3, it suffices to show that the mapping 

par (., G) is continuous for each G£©. Let G€©. For abbreviation, we put par
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{.,G)=cp. By Theorem 2, it suffices to show that
(3) (p (Limt (/, К, a)) c  «ß (Hm inft {(pof, К, a))
holds for all {f,K,a)£<PP. Let {f,K,a)£<PP and x£Limt (/, K, a). Let y£(p{x) 
and иаУ$ху. Then, there is a real e> 0  such that B{y,e)QU  (where B(y,e) 
denotes the open ball around у  with radius e). By the choice of x, there is an A£a 
with f{A)QB{x,  e). Let k£A.  Then,

distd(y, cp (f { k ))) =  inf d(y, z) =  inf d{x, z) == d(x, f(k )) <  e,
z£(p{f{ky) z  € <pyf(k))

where we used (*). Thus, there is a w£(p(f{k)) such that d(y, >v)<e, therefore 
UC\<p(f{k))?£ 0 .  This holds for all k£A.  In view of the choice of y, U and A, one 
has proved that <?(*)£lim inft {(pof, К, a) and so (3). □

Let for the moment is be a topological absolute plane (for the terminology, see 
Karzel—Sorensen—Windelberg [6], p. 96) and denote by orth the mapping on T’X© 
into © assigning to each (p, G)£.PX© the line H through p and orthogonal to G. 
Then, we say that E  has continuous orthogonalism if and only if orth is continuous. 
In this terminology, we have

Proposition 7. Let E be a topological absolute plane with continuous orthogo
nalism. Then 7_1 is continuous.

Proof. Let {G,p)dl~l. We define an auxiliary mapping A: PX © —©X© 
by letting Á{y, X) = (X, orth {у, X))  for all {y, JL)€PX© and, by means of A, 
the mapping ф: ©—P by ф{Х)={1\оХ){р, X)  for all X£©.

The mapping A is continuous, since the projection {у, X)*->X ({у, X)6PX©) 
and the mapping orth are continuous, furthermore A  is continuous, thus, since 
RngACDmn A  (see [6], p. 100), the mapping ф is continuous.

Furthermore, one has (G,p)£i/i and фЯ1~х. □
Combining the Propositions 5 and 7, one obtains (for the terminology, see 

Karzel—Sorensen—Windelberg [6], p. 133)
Proposition 8. Let E be a topological Euclidean plane with continuous orthogo

nalism. Then I  and 7_1 are continuous.
Proof. Since par {y, X )=orth  ( j ,  orth {у, X )) holds for all {y, X)£PX© 

(see [6], p. 133) and, by supposition, orth is continuous, also the mapping par is con
tinuous, i.e. E  has continuous parallelism. Thus, we are allowed to apply Proposition 
5, and so I  is continuous. On the other hand, E  is a topological absolute plane, thus 
Proposition 7 is applicable. □

4. On the relations S, T, S -1 and Т~г

We refer to the definition of S  and T  in Section 2 and recall that V is the functio
nal part of S  and A  is the functional part of T.

Theorem 1 implies as a very special case
Proposition 9. S'-1 is continuous i f  and only i f  7_1 is continuous. Г -1 is 

continuous i f  and only i f  I  is continuous.
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Remark 5. Of course, instead of S  and T  one may study, for each set D, the 
relations SD and TD defined by letting /  SD G if and only if f{d) I  G for all 
dfJJ (for all (/, G)£PDX©) and /  TD p if and only if p i  f ( d ) for all d£D 
(for all (/, p)G©DXP). Let now £ M 0 .

Then, by Theorem 1, S ß 1 is (a, xD)-continuous i f  and only i f  Z“ 1 is continuous; 
furthermore, Tß1 is (t, aD)-continuous i f  and only i f  I  is continuous. For D —2, 
one has S = S D and TD=T.  (Here, x° and oD denote product topologies.)

Remark 6. In the proof of Proposition 9, the continuity of V and A is not used 
in any way. This suggests to study incidence structures (P, (6, 7) together with the 
topologies г and a of P  and © such that the only link between the geometric structure 
and the topological structure consists in the requirement that 7 and (or) 7_1 be con
tinuous.

We recall the remarks immediately after the definition of an incidence structure 
and add, now: Since the mapping (p, p)'-+p(p£P) resp. (G, G)^G(Gd(5) is a 
homeomorphism between (idP, (т XT)idp)  and (P, i )  resp. between (id®, (ffXff)id(8) 
and (©, <t),

{ the relation S)id/> resp. Pfid® is (tX t, a)-lower semicontinuous 
resp. (crXir, Tyiower-semicontinuous

(by Theorem 4), and

{S ) id p  resp. T id® is ( t X t , a)-continuous resp. (<rX <x, x)-continuous 
i f  and only i f  I  resp. 7_1 is continuous.

Although in the sense of the preceding paragraph, the relation S  resp. T  is 
(essentially) decomposed into the semicontinuous or (possibly) continuous rela
tion I  resp. Z-1 and the continuous relation (mapping) V resp. A, S  resp. T  need 
not be even semicontinuous, as Proposition 10 resp. Proposition 11 below shows:

Proposition 10. Assume the existence o f a (p, G)dl such that p is a x-accumu- 
lation point o f the set G (for the terminology, see [7], p. 41). Then S  is not lower-semi- 
continuous (thus not continuous).

Proof. Assume that S  is lower-semicontinuous. Since p  is a т-accumulation 
point of G, there is an (/, K, a)6<P(G\{p}) such that />£Limt ( / ,  K, a). Since S  is 
lower-semicontinuous, one has

(6) S (LimT x t (g, K, a)) g  <P(lim inf, ($o g, K, a)),

where the mapping g be defined by g(k)=(p, f{kf)  for all k£K.  Because p I  G, 
f (k )  I G, f ( k )X p  and (P, ©, I) is an incidence structure, pd f(k )  is defined and 
S{p,f{k))= {pV/(k)}= {(?} holds for all k£K. Therefore, the right side of (6) is 
equal to ф(«г{С}) =  ̂ 8 {G}, since о is Hausdorff (observe that in this paper (as in
[3]) “topology” is a synonym for “closure operator” in the sense of Kuratowski). 
On the other hand, (since x is Hausdorff) the left side of (6) equals to S {(p, p)}— 
={{Z£©|p 1 ZjJ, therefore, by (6) (since no line is empty), §{(p, p)}={{(7}}, which 
contradicts the supposition that (P, ©, I) is an incidence structure. □

5 Acta Mathematica Hungarica 41, 1983



2 5 0 G. GR1MEISEN: CONTINUOUS INCIDENCE RELATIONS OF TOPOLOGICAL PLANES

Proposition 11. Assume 0  (f P and the existence of a (p, G)£l such that G is 
a a-accumulation point o f the set {Z£(5\p I Z}. Then T is not lower-semicontinuous 
( thus not continuous).

Proof. Dualize the proof of Proposition 10 and, doing so, use 0  $ P instead 
of the words “no line is empty” . □

Remark 7. In the proofs of the Propositions 10 and 11, we did not make use 
of the continuity of V or A, nor did we use (P X /’lXidp^Dmn V. Thus, they re
main valid if one replaces the underlying hypothesis “E is a topological plane” by 
“(P, (5, I) is an incidence structure together with Hausdorff topologies т and <r of P 
and (5, respectively” .
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ON SUMS OF DISTINCT INTEGERS BELONGING 
TO CERTAIN SEQUENCES

A. PERELLI and U. ZANNIER (Pisa)

Many papers have been devoted to the problem of representing integers as sums 
of distinct numbers belonging to fixed sequences.

We mention for example the paper of Birch [1], in which he proves the conjecture 
of Erdős concerning the representability of all large integers as sum of distinct terms 
of the type paqb where p, q are coprime, the very general results of Cassels [2], which 
contain Birch’s result, and the paper of Erdős [3].

Here we give conditions, different from those of Cassels and Erdős, on a sequence 
guaranteeing that all large natural numbers are sums of its distinct terms.

We introduce some notation: s i  is said to be o f type b if, for every large x, we 
have (x, (1 +b)x)C\si ̂  0 .  Let s i  and 38 denote sequences of natural numbers; 
we say that the product si38={ab,a£si,b£38} is direct if ab=a'b' implies a = a', 
b = b'.

Further, let S(si)= {m , m=a1 + ...+av, а1^ а г> ...>я„, a fis i} , and, as usual, 
set s i (x)= 2  1-

ű£ s /  a^x
Our results are the following
Theorem 1. Let s i  be o f type 1 such that Idsi.  Then there exists a number 

L = L (s i) with the following property: i f  08 is a sequence such that
(i) s i38 is direct

(ii) 38(y)>L log2 у for some 7  >10,
then S (s i  38) contains an arithmetical progression o f the form {km, m£N}.

Before stating our second theorem, we need another definition. We say that 
d—d{si) is the g.c.d. of the sequence s i  if d is the largest positive integer dividing all 
sufficiently large elements of s i, provided these numbers are bounded.

Theorem 2. Let s i  and 38 be as in Theorem 1, with 1 £38. Assume d{si)=  1. 
Then S{si38) contains all large integers.

Remark. If the product is not direct and we allow each term with its “multi
plicity”, then the theorems maintain their validity; the proofs are the same.

A straightforward application of Theorem 2 gives a result of Birch’s type, but 
slightly weaker, namely

Corollary. Let n be a positive integer and px, ...,pbbe pairwise coprime numbers.
Then there exists L = L(n,pi, ...,p6) such that every large m may be written as

5

m= r j+ . ..+!■£, ?-!>...>/-„>0 and rd— JJpaf ,  a ^ O  and u3+ a4 +  a5̂ Z,.
j = 1

We remark that the proofs are entirely elementary.
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Some lemmas

Lemma 1. Let M  be a finite set. Let C cz[M]t={BclM,\B\  = T} be such that 
Bt , ..., BsdC=>3i,j, ifif, Btr\Bj?± 0 . Then 3m£M such that

\{ВСХ,т£В}\*= |C l+ (T - lX s - l)
T (s - l)

Proof. Let .v„ be the least integer such that the hypothesis holds with s replaced 
by i„. Then there exist Вг. BSo_jdC with BiC\BJ—0  if it*/. Moreover if 
Bf C then there exists ./, l ^ j ^ s 0— 1, such that BC\Bj?£ 0 .  By Dirichlet’s box 
principle we can find p, \ ^ p ^ s 0— 1, such that

\{B£C,BnB/t *  0} | S  |C1~ S°+1 + l.
s0—t

But \Bt\ = T, hence, by the box principle again, we obtain the conclusion.
Lemma 2. Let f : [J [M\3-*A satisfy the following properties:

1 SjST
(i) Blt ..., Bfi[M]>C\f~1{a), for some j  and a£A=*3p,v, p ^ v, ß„ПВ ^  0 ,

(ii) f({m}\JB)=f({m)\jB')=*f(B)=f(B').
Then we have \M\-^{T\)2ITs\A^n +T.

Proof. Let a,fA.  We apply Lemma 1 setting C = /_1(a0)U[M]T, thus ob
taining the existence of m f M  such that

\{Be[M]T n f - H a о), т ев} | s  lL~l(ao) n  [M]T'Ts
Using property (ii) we deduce

\[му  п у - ч ^ ) !
Ts

for some afiA.
By a repeated application of this argument we obtain, for every j, the existence 

of afiA  such that

(2) I [M f- '- i  П /"H a,-+1)| S
\ [ M Y - ^ f - \ a f ) \

s ( T - j )

Set j = T —2. Then, by (i) we have \[M]T 1 ЧТ/ 1(aJ+1) |= i, and using this 
fact together with the inequalities (2) for j = T —2, T —3, ...,0 , we get

(3)
1 [MY  п / - > 0)1

sT_1r! for every a0£A.

By the box principle there exists a , fA  such that \[M]TC\f x(a0)|i IW Y  
\A\

and now (3) gives the estimate |[M]r | s \A\sTT\.  Recalling that |[M]T| =  ̂ ^ j s
(\m \ - t Y

T\ the lemma follows.
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Lemma 3. Let sd be o f type 1. Then there exists L 1=L1(sf) such that every 
integer m can be written in the form in =  at +a2 +... +  av +  c where ax >  a2 > ... >  av >  c, 
a f s d  and 0 ^ c  = L1, я„ё2.

P roof. Let Lx be such that (x/2, x ) П л / ^  0  if x > L x. We prove the lemma by 
induction on m. If тШЬх the assertion is clearly true. Suppose / o l ,  and the lemma 
true for ш=1, 1. There exists a£jrf suchthat k/2^a<k.  Applying the
inductive hypothesis to k —a we obtain easily the lemma.

Lemma 4. Suppose is a sequence such that 34(y)^4F log2 у for some 10. 
Then there is a number В such that

Ко)
в = Z  bjV, v =  1,2,..., [F], 

j = г

where the bjv£& for every j, v, and are all distinct.
Proof. Set M =\b£0i, bsy},  T=[logy], s=[F], f (R)=  2  A -4 =  {1, 2, .... 

...,[7y]} in Lemma 2. г Л
(ii) is trivially satisfied. If Lemma 4 is not true, then (i) too is satisfied. We then 

should obtain: á?(y)^(F!)2/rF(Fy)1/:r-|-r^2(logy)2 F y1/r-t-F<4Flog2y, for 
у >10, which is inconsistent with our hypothesis.

Proof of Theorem 1. Set F = 4 (F 1+1) and let В be as in Lemma 4, with 
F=L1+ 1. By Lemma 3 we may write Bm=Bax+ ...+ Bav+Bc with ax>...
0S c g l b  üj£s/, Oj=2. Using Lemma 4 we obtain:

Bin — {bxx+... + bj(x)x)(ax+ ...
o+i m

~av)+ 2  2  bjr
r = 2  j =  1

JOi 0
2 2 =

j =  1 s = l
bJ1as+ 2  bJr

J,r

whence Bm£S(sd^)  since 14sd and the numbers bJxas, bj r are pairwise distinct.
Proof of Theorem 2. By replacing eventually the constant L  with a larger one, 

we may assume Theorem 1 true with .#  {1} in place of 2i. We thus obtain the ex
istence of В such that {Вт, m£N}QS {1})). Let d be the least integer with
the following property: there exists a finite set f , , c i  such that for every m>md, 
dm = Iaibi+ 2  of  where afsd,  b^dS—{ 1}, a f i  distinct.

The above observation implies the existence of such a d. We note that this prop
erty implies {dm, m >m0c:S(srf&)}. We shall prove that d— 1.

Let © =  {<r (mod cl), there exist infinitely many ac.+d, a=o (mod d)} and pick 
such that (a, d )= minimum= d'. Set o=yd', d=M',  (y, A)=l. Choose 

a ^ . . . -^а, such that а, = а (mod d), a^ m ax  ű. Set {al , . . . , a >),
я “e^

md,= 2  ai+dmd. Let m>md,, m = k' (mod A), l^A 'sA ; and find f  1 S /sA , 1=1
f y = (mod A).

We have:

d'm—ax —... — Uj = d 'k '—f o  =  d'A'—fy d ' =  0 (mod d)
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and d'"t — al — . . .—af >dmll. By our assumption we may write 
d'm = a^+...+af + У, а, + 1а;Ь(

ii&’
whence, by the minimality of d, d ' = d. In view of our choice of d', we obtain a= 0 
(modr/) for all large . But this means d= 1.
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ЯЛ-ADDITIVE FUNCTIONS. I
I. KÁT AI (Budapest), corresponding member of the Academy

§ 1. Definition of ЯЛ-decomposition

Let q>  1 be a fixed integer. Let /  and /„ denote the set of natural numbers and 
of nonnegative integers, respectively. Let 7^= {0,1,..., qN — 1}. R and C will 
denote the field of real and complex numbers, respectively. Rk is the ^-dimensional 
Euclidean-space over R.

Let ЯЛ* (A: =1,2, ...) be a sequence of disjoint subsets of nonnegative integers 
having the following properties:

(1) Every element mk of ЯЛ̂  is smaller than qk. The set ЯЛ* may be empty.
(2) For every n£l() there exist exactly one к and тк£Шк for which n=m k 

(mod qk).
Let ЯЛ=иЯЛ* and for niGЯЛ let /.(in) be defined as the unique index к  for 

which тп€ЯЛ*, i.e. ш£ЯЛЛ(т).
A set ЯЛ being given, we define the ЯЛ-decomposition of n£l0 as follows:

The numbers mkl, ..., mk (m> are called the digits of n in the ЯЛ-decomposition. 
p(ri) = 0 only if 7i=0. For n= 0  the set of digits is empty.

where / / ( • ; / )  is defined on ЯЛ, and has values in Rk for every / =  1 ,2 ,.... If, in 
addition, H(0; j ) = 0 ( /= 1 ,2 , ...), then we say that / i s  an ЯЛ -additive function.

D efinition 1.2. A function g: I0-*C (or I0-*R) is called quasi-'M-mu/tipli- 
cative, if it can be represented as

where K( • ; / )  is defined on ЯЛ and has complex or real values for every /= 1 , 2, —  
If, in addition, K(0; / ) = 1  ( / = 1 , 2 ,  ...), then we say that g  is ЯЛ-multiplicative.

( 1. 1)

D efinition 1.1. A function / :  /„ —Rk is called quasiSR-additive i f  it can  be  
represented as

( 1.2) f (n)  =  2
j=1

(1.3) g  0 0  =  П  K ( m k ; j )
j=i
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§ 2. (/-additive and (/-multiplicative functions

If we choose SUij to be {0, 1, ...,(/ — 1}, SUI=SRl5 then we shall come to the (/-ary 
expansion of integers:

n — a0 + a1q+... +arqr (a,€®l).

The notion of (/-additivity has been introduced by A. O. Gelfond [1]. / :  /0 — is 
(/-additive if

/(«)= Z f (ajqJ), /(0) = 0.j= о

/  is ^-multiplicative if /(0 )= 1 , and

/ 0 0  = П
j= o

The existence of limit distribution of ^-additive functions was considered by H. De- 
Jange [2].

We say that a real valued function f(n) has a limit distribution with the distribu
tion function F(x) if

hm y “ 1 #  {n <  y \ f ( n )  <  x} = F(x) 

for every continuity point of F(x).
Delange proved that a (/-additive function has a limit distribution if and only if 

the following series converge:

(2.1) 2  2  J \aq j),
j=0a=l

(2.2) Í  2  fHaqi).
J = 0 f l = l

Furthermore, for (/-multiplicative functions he proved the following assertion. 
For a (/-multiplicative function satisfying |/ ( n ) |s l  the mean-value

linax-1 2  / 0 0  =  M U )x

exists and is nonzero if and only if

(2.3)
and

2  /(«<7-0 ^  0
a = 0

(j =  0 ,1 ,2 ,...)

(2.4) 2  2  / ( « / )
J =  0 a = 0

converges.
Let be an infinite subset of /„ with counting function A (x), that is

A (x) — #  {n S  x|n£.s/}.
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We say that a real valued function /(и) (defined at least on si), has a limit distribu
tion F(y) on si, if

H m - ^  #  {n x\n£si, f in )  <  >} =  F(y)

for almost all y.
The following assertion is proved in [3]. Let q be an odd prime, s i  be the set of 

primes, n(x)—A(x). Then the ^-additive function/ has a limit distribution on the 
set of primes if the series (2.1), (2.2) converge. If g(n) is a «/-multiplicative function, 
\g(n)\sl  and the series

2  К " 1 "  2  S ( a q r)  I
r = 1 V a= 1 /

converges, then

—7-7 2  s(p) -  n(g) (x -  oc),Ti ) р̂ вХ
where

H (g) =  - 7-7 2  S(«) f l ^ - U  + i f  g(aqr)\.Ф\Q) (a,q)=l r=l Q \ a= 1 /

The proof is based upon the following result due to Barban, Linnik and Tshudakov
[4]. Let q be an odd prime, D run over the powers of q. Then

li X
(* ) n(x,D, l) = ( l + 0 ((logx)-c) ) - ^ r ^

holds uniformly for (/, D)= 1 and x ^ D 3.
By using some recent results of Iwaniec we get (* ) for every «/> 1 and conse

quently our theorem holds for q> 1.
The question whether the convergence of the series is necessary for the existence 

of the limit distribution is still open and seems to be quite hard.

§ 3. The Dl-star-deeoniposition

Let 93ifc, 931 be as above, N  an integer. For every n£J$ we define

(3.1) n =  n0, tij =  m k j t l+ q kj+ inJ+1 (j =  0, 1 , ..., у*(п)-1), 

where vN(n) is defined by the inequalities:

(3.2) kt +... + kv„oi) — ^i + — + K N(n)-i N.

This decomposition is almost the same as the 'Di-decomposition, the only difference 
is that we put some О-digits down as many times as it is needed for the fulfillment of
(3 .2 )  .

Now we define the quasi-'Di-star additivity and multiplicativity as follows.
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D efinition 3.1. A function / :  Ig ^ -R k is called a quasi-W-star additive function 
if

(3.3)
vjv(")

/ ( « )  =  2  H(mk ; j) ,
j=1

where Я (  • ; / )  is defined on 9Л and  has values in Rk for every / = 1 , 2 , __ If, addi
tionally, Я(0; / ) = 0  ( /= 1 ,2 , . . . ) ,  we say that /  is an Ш-star additive function.

D efinition 3.2. A function g: Ig-*C  (or / * —/?) is called a quasi-'SR-star- 
multiplicative function, if it can be represented as

Vn(")
g(n) =  П  K (mkjl Л

j =1
where K{m, j )  is defined on 9Л, and has complex or real values. Moreover if 
K(0, / )  =  1 ( /= 1 , 2, ...), then we say that g(n) is an Ш-star-multiplicative function.

We can see immediately that the notions of quasi-star additivity and of the quasi
additivity are not the same, while the star-additivity and additivity are identical no
tions.

Let Н{пг, / )  (т£Ш , /= 1 ,2, ...) be given functions, f (n)=fN(n) be defined 
by (3.3). We consider the frequencies

q~N*  {«6/34 Í n - B k ~ -  <  *} =  FA*)
(An , BN are real numbers).

We shall say that B ^ i f y ^  — Ay) (n£lfl) has a limit distribution F(x) if 
Fy(x)^F(x)  for almost all x€ Rk.

We are interested in determining under what conditions there are suitable se
quences of An and By by which limit distribution exists.

§ 4. Change of digits after multiplication

Every n£lg can be be written uniquely in the form

(4.1) n = 2  Ej A  0’j  = 0, 1, ..., q - 1).7=o
Let x(n) = Xr.j and consider the difference (d,,(n) = )d  (n) = oc(hn) — a(n) where 

2 is an integer.
We are interested in dealing with the statistical behaviour of A (/?). We can see 

that Ah{n) is an ЭЛ-additive function for a suitable ЭЛ-set.
Let t be an integer satisfying h<q'. Let 9К1=9Л,_1=  0 , and for k> t 9ЛЛ 

contains those elements mk for which 1 ̂ .mk<qk~' and that do not occur in Шг for 
r<k.  In other words, putting every п£1д~' in i/-ary expansion with к digits: n =

к- 1
=  2! ö jA’ 9W* contains exactly those of them for which the sequence (á0, ők, ..., 

1  =  0
..., 8k- 1) contains t consecutive zeros exactly at the end of the sequence: ök_t=... 
... =<5*_! = 0.
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Let inkl be the first 931-component of n, i.e. rt=mkl+qk'n1. Then lm=lvnkl +
+ qk'{hn i).

Observing that hmkl<qki and that ot(n) = a(mkl) + ot(n1), we get
A(n) = A(mkl)

Hence we get that
»»(»)

(4.2) d ( n ) = 2 ^ « > .
j = i

By using this representation, and some ideas usual in probability theory, L. Dringó 
and I ([5], [6]) proved the following assertion: If q= 2, h is not a power of 2, and

K„(pe) = 2 -N*{A (n) <  xß„ ÍN ,  п€/?},
then KN(x)-+<P(x). ßh is a suitable constant.

The case q ^ 2  can be considered in the same way. We could get local limit 
theorems for A (n) as well. They will follow from some more general theorems.

A lot of other questions lead to quasi-9Ji-additive functions.
1. Let (1= )/i0</i1< . . .< / ia:(<^') and

R(n) = (a(h0n), aC/ijii),..., a(/tK»)).
Then R(n) is a (A'+1 (-dimensional ЭЛ-additive function.

2. For every n£l  we consider the c/-ary expansion (sN_k, ..., e0) defined by
(4.1). Completing it with eN= ...=eN+t^ 1=0, we get

П — (Ejv + t- i ,  ..., £jy, £jv-1? ■■■■> 0).
For h<q* and ndlfl we have hn^l^+t, and so

iv+r-l
hit — 2  í -j=o

Given и and v £{0,1,..., q — 1}, we define
JV+I-l

f (n ,  it, v) =  , 2  1.
E. = U,Ő. = V

It is obvious that /(и, it, v) is a quasi-91i-star-additive function. 
Let ylk = card (9Jife). It is quite easy to see that

(4.3) 
and that

(4.4)
for every fixed a.

2  A /Y  =  i,fc = 0

X7 ^  к k

Acta Mathematica Hungarica 41, 19S3



260 I. KATAI

§ 5. Length of the decomposition

For arbitrary e>-0 we can construct a set 'JJi for which

2  —и < e- qk
Furthermore, for every 9Jl satisfying the conditions stated in § 1 we have

(5.1) 
Let
(5.2)

(5.3)

*,v(tf): = <1~N#  {«€/оК(и) =  H}, 

ßN(H): = q~N ф{пе1$\ц(п) = Я}.

Let N^O. For n-~qN we have vN(n )^2  if and only if n=mk + qku for к < N,
тк£Щ.

Therefore,
2  <*ЛН) =  < rN 2  Ak4N~k-

Я ё 2  k < N
Since ocN(0)=0, we have

(5.4) M l )  =  l -  2 « А Ю  = 1~ Z ^ 4 \ l ~ Q -Hsa k~=N q

Let H Si2. For nf l^  we have vN(n) =  //  if and only if n=mk+ q ku, vN_k(u) = 
—H — 1. So we have

' ,n«n(h ) =  2 АкЯ*~к«я-кШ-1)k~̂ N
and hence

(5.5) «jv(ä ) =  2 4 « » - * ( я -1 ) .
k-= :N  9

Let us assume that 1. We shall prove that
(5.6) % ( Я ) - е н-Ч 1 -е )  ( я s i ) .

Relation (5.6) holds for Я = 1. Assuming (5.6) with Я — 1 instead of Я, and 
using (5.5) we get (5.6) for Я.

Let us consider now ßN{H). Assume that g < l .  It is obvious that g(n) = 0 
only if n=0. Furthermore, from /.i(ri)SvN(n) we have

ßN (1) +  ßN (0) & Vjv(l),
and so by (5.4) we have
(5.7) lim inf ßN (1) s  1 — q.
Let Я & 2. We have, as before, that

qNß A H )=  Z A q N- kßN- kW - 1),fc-=JV
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and deduce by induction that
(5.8) liminfftv-i#) s ( l - e ) e H_1 ( Я ё  1).
Since the sum over H  of the numbers standing on the right hand side of (5.8) is l, 
these inequalities involve that
(5.9) lim ßN(H) = (1 -  £?)e» - 1 (N  -  ~).

Indeed, assume that lim sup ßN(H*)=(l — q) qh* 1+<5, <5>0 and let HL be so 
large that

Observing that
2  1 <  //>я,

ő_ 
2 ■

1 S  lim sup (^ (1 ) + .. .+ßN(H1)) s  lim sup ßN(H*) +
»1 s

+  2  lim inf ßN(j) s  2  O - 0)OJ_1 + á >  l + -y,

we get a contradiction.
We have proved
Theorem 5.1. Assume that g < l .  Then for every 1

(5.9) lim ßN(H) = lim <xN(H) = (1 - q) qh~К
The case g ~ l  is more interesting. In this case lim vN(H)=0 for every H, as 

it follows by the previous argument.
Under some additional conditions for 9Л we can give local limit theorems for 

vN(n) and /;(«), that are quite easy consequences of well-known limit-theorems for 
the sum of independent lattice random variables. It is possible to deduce asymptotic 
expansion for aN(H), /?№(Я ) as well.

Let Xlt X2, ... be a sequence of independent random variables distributed iden
tically according to the law

P(Xr = k) = ^ .

Let Y,=Xx + ... + Xt . It is obvious that
(5.10) #  {n£Ig\vN(n) = H) -  2  #{Я(т1) + . . .+ Я (т я“1) =  5} 2  1-

S <  Л; — 1 m H < q b r~ s

Here on the right hand side m1, ..., mH run over all the possible values of ЯЯ, 
as indicated in (5.10).

First we observe that

(5.11) 
Let
(5.12)

#  ... +A(mH" 1) = S} =  qsP{YH^ = S ) .

t r =  2  1 (=«*(i));
m < q R  

A(m)§= К
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in runs over the elements of 9Л. For k < R  mk occurs as first component qN~k 
times among the integers of Ifl. By using the properties of 9И we get

qR= 2 AkqR~k+TR.
Hence, and from g=l  we get

(5.13) q~RTR = 2  =  P(*i S  R).
k s R  q

Taking into account (5.10)—(5.13) we get

(5.14) «»(Я) =  2  P& i S  t)P{YH_x =  N - t )  (H ё  2).

If we define P(T0=0) =  1, P(Y0=k )—0 for k > 0, then (5.14) is correct for H — 1 
too.

In a similar way we can deduce the formula

and thus
qNßN(H ) =  2  qsP ( Y = S) 2 *  10^S^N—1 in<qN- s

(5.15) ß N( H )  =  2 .  . Р ( У и - 1 =  S ) ß N- s ( l )  =  2 ß , W P ( Y H- i  =  N - t ) .

Let

(5.16) a = MX,  : 2 fcyfi.

(5.17)
We shall prove that
(5.18)
Let

к q 
a2 =  M X \  — a2.

2A(i) = e.

y,(i) 2  I-m<q£

Then >9,( 1 )  =  7 ,(1 )  — 1 /# ' .  Using (5.12), (5.13), we have

</'7,(i) = 2  1 + 2  1 = № ^ о + £ ,
m < ije m  <

To prove (5.18) it is enough to show that

(5.19) 2 ^ № - 1 )  =  о.,ei q
Since

1 “ 1 - , 1 1  1
2  ~ T  —  2  2  / A m )  + j  2  „ Я (т )  ‘ ' _  1 —  я _  1 ’

Í/ m  j  =  l  Ц  in  I / у  А Ч  I

therefore (5.19) and so (5.18) hold.
Now we prove
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LfiMMa 5.1. I f  MX*<°° for a s 2 ,  then

(5.20) Z f - ' ß t  ( ! ) < - •
Proof.

2  XA(1) ^  2  =  2 г + 2 г ,
where

2 i  = 2  p ~1p {x 1 ^  t), 2 г  = 2
We have

2 i  = Z P ( * i  = Q Í 2 1*-1)  S  2 ^ 4 r  =  M X l <  со.к \tsk J к 4
Furthermore

Z2 = ZP-1q-t Z 1 -
í m -cq*

A ( m ) < i

«  2 ” ?_A(m)(A(m))“_1«  Л/Л'Г1 <
m

So (5.20) holds.
Let A" be a lattice-random variable that takes the values from the arithmetical 

progression a + kd (k = 0, ±1, ±2 ,...). We shall say that X  is of maximal step d if 
there does not exist a proper subset of a + kd  that is an arithmetical progression which 
contains all possible values of X.

Now we assume that the maximal step for Xx is 1. We suppose that °°.
Under these conditions we have

(5.21) lim sup |<r fH P (Y H =  Ю -Ф и .гд ]  =  0,
H - « . N

where
„  N -H a  , . 1 (

(5.22) Х " ' » = Т 7 Г '

as it is asserted by a theorem due to Gnedenko (see [7]).
Hence we deduce easily
T h e o r e m  5.2. Let a —MX1, o2= M X f  — a2 be finite. Assume that Хг is o f 

maximal step 1. Then

(5.23) t » — )

a3/2 / Ha_N \ , ,_
(5.24) ßN(H) = - — cp[— j = \ + o ( \ I Í N )  (N -* ~)

er VIV (f f f  N/a J
uniformly in H.

Proof. We prove only (5.24). The proof of (5.23) is almost the same.
By using (5.15), (5.18), (5.21) we get

ff l ' t f -1 ßN{H) =  Z  Ä ( 1)V > (* H -i,jv - f)  +  o ( l ) =  2  f t ( l ) < P ( ^ H - i , x - t )  +  o ( l ) ,t= 1 t= 1

Z d -A(m) ( l(m)+j)x+1
qJ
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where TN tends to infinity arbitrary slowly. Assume that N ~ 1/2Tn-+ 0. If #<= 
~=-N/(2a) or H>2Nla, then uniformly in t ^ T N, consequently
the right hand side tends to zero, as well as u<p(.vH_ltJV) + o(l) tends to zero.
For we have

ViXH-l'.N-t) — (P(Xh-1,n) + °{1)> 
so

(5.25) о У(ЁГ-\)ßN(H) =  a<p(Xtf-:i,iv) +  0(l)
uniformly ín H.

Let H0=N/a, H = H 0+L,  assume that \H — H0\ ^ bnN 3,í, en-*0 slowly. Then

N — ( H - \ ) a  _  a -L a  
a J / / / -1  ~  a )' H0 +L — 1

consequently

and (5.24) holds.

-La

* 1

+ ° ( l ^ ) + ° ( 1/ ^ ) =  — ^ + 0(1).

<P( X H - 1 , N )  —  Ф
H a - N

+  o(l),

If # ё # 0 +  еЛгА3/4, then (p(xH^ 1N)-*0. From (5.25) we have ßN(H) = 
— о (1/(///), consequently ßN(H) = o (l/УN) which involves (5.24). Repeating 
this argument we can prove (5.24) in the range

For H<N/(2a) we consider (5.15), (5.20) and use the Chebyshev-inequality. We 
have

P(YH^  = N - 0 ^ P ( Y H^ m N - t ) « ^  for f s ^ ( = n  

while from (5.20) we have
2 A ( i ) « r - ‘ =  о  (ív- 1).t^T

From these we get
ßN(H) = o(N-i/z) (H ш N/2a).

Let P(Y0=k}=  1 or 0 according to k = 0 or k^O . We define Q(n) as

Q(n) = 2  P{Yj = П), (n S I ) ;  ö (0) =  1.j=o
We shall use the following
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Lemma 5.2. ([8]) I f  M X then

(5.26)

i f  MX\<  í/ien

(5.26) '

Q(n) = ~  + o(l/n);

Theorem 5.3. Let the maximal step o f Хг he 1. Assume that M X* <  o°. Then 
(5.27)

Nuniformly in H, where L = H -----. Furthermore

(5.28)

(5.29)

2  ßN(H) «  P(YH S  N),
h>hx

2  ß s ( U ) «  p [ yh. S jv- 4 ) + 0 ( R ~ 3),

ЛГwhere H« = ----- 7?, A s l .a
Proof. First we prove (5.28) and (5.29). We have

2  Д»(я) =  2 A ( 0  2  p (yh- i =  N —t).H^H1 t^N H^HX
Taking into account that

2  Р(ГЯ =  S )  =  2  P ( Y H l  =  M )  2  P ( Y H - H l  =  S - M ) s
Я > Я 1 M ^ S  H > H X

s  2  = AO =  Р(УЯ1 s  5),M^S

2  ßs(H) «  2  ß t ( X ) P ( Y H  S  N - t )  «  P ( Y H  S  N),
Н=-Я, t

we have

and so (5.28) holds.
To prove (5.29) we observe that

So we have

Since

2  A(1 ) « R ~ 3.
t z = R / 2

2 ДЛЯ) s 2 A(i) 2 P(T„-x-iv-o+o(/?-«).
Н < Я „  i ^ R / 2  Я < Я „

2  Я(Уя-1 =  N - t ) S P  Ífh S  Я - 4 )  for t
Я < Я 2 V 2  /

we get (5.29) immediately.

Rl 2
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Now we prove (5.27). Under the conditions of the theorem

(5.30) a )///—1 Р(У„_ 1 =  r) =  s(xH_ljr; H) + o{H~'),
where

(5.31) s(x; Я ) =  1 + 6 iO ) , ös(*)+ -f A - l  Я — 1 <?(*),

Qi(x), Q 2( x )  are suitable polynomials, where deg Qt=3, deg <22=6 and
r —ua
a^u

(see [9]).
Taking into account (5.28), (5.29) it is enough to prove (5.27) for

^c]/N  log A. Assume that H = H 0 + L, H0—— ; \L\^c]/N log A. Let L* 
=  max (1, |£|). From (5.31) we deduce immediately that

(5.32) \ s ( x ,  H) — s ( x ,  H0+ 1)| ^  d  +  W6) ^  <?(*)•

Furthermore, by an easy calculation we get

(5.33) |s (* h - i , jv-»; A ) - s ( x H_ ljJV; Я )| « -jt=-(1 + | х „ _ 1>лг|6) ^ ( х и _ 1>л,)

in the interval I s í é L, r = A 1/3log A. Hence and from (5.30) we get that
(5.34)

|i>(FH_1 =  A - 0 - F ( F H- 1 =  A ) |« - Í r ( l+ |x H_1>JV|6)<?>(xw_1,JV) +  o(A-*/S!).

Starting from (5.15)
М Я )  -  Z i + H H ,  A),

where
2 i =  2  А(1)Р(Гя-1 =  N - t ) , S ( H , N ) =  2 A ( 1 № . i =  jv- o .

I g r  I > r

Observing that P(YH=r)<szN 1/2 holds for every /•, by (5.20) we get

1
(5.35) s (h , n ) « n - ^ Z № ) « t 3 ^ ,

From (5.34) by (5.18), (5.20) we deduce that 
(5.36)

2i = p(yH-i =  A )a +  O (A -1/2r 3) +  0 ( A - 3/2) +  o ( ^ r ( l + | x i/_1>N|6)<p(xH_1>i¥))
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Taking into account (5.35), (5.36), (5.30), (5.32) we have 

(5.37) ßN(H) = а £ (5 н -1 .^ Д о + 1) +

Since

a ) / / / - 1

+ 0  |(1 + кн-i.vl6) (l + ^ )  + « ( ^ 3/2)-

I(Я -  1)-1/2- Я 0- 1/2| «  L*N~3,i

the same relation holds, if we change \H —1 to \!Hn in the denominator of the first 
term on the right hand side.

Furthermore we have
La £ i £

XH-1,N =  XH0 + L-1,N =  ------- г mr — S1 +  S29

where
-L a 312

^  = — j= r , Ъ = 0(L*2N-M).

Since с2=0(3), we get

1«({1+ ^ ,я 0+1)-5(^1,я 0+1)|« |£*И£х).
Taking into account this inequality and that

I*«1. я 0+ 1 ) - ч » ( « |« J V - ^ a  +  lé iIX e i) ,
we get the desired result.

§ 6. Mean value of iW-quasi-multiplicative functions and some consequences

Theorem 6.1. Assume that Iq ~ kAk=\,
(6.1) мх\ =
and that Л] is o f maximal step 1.

Let g be a complex-valued quasi-Wl-multiplicative function defined by
F(")

(6.2) g(n) =  / 7  K(mJ; j)
7=i

where m1, ...,m ',(n) are the Ш-digits o f n. Assume that

\K(m; j)\ ^  1 (Vra€9K, j  =  1, 2,...).

Suppose that the series

(6.3) v- 1 - K ( m , j )
„ ,4  qUm)
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converges for j=  1, 2,...,
(6 .4 )  <Xj И  1 O' — 1 , 2 , . . . )  

and that the series
(6 .5 )  Z * j

converges. In ( 6 .3 )  in is arranged according to the increase o f I  (in). Then the product
(6.6) M = f f  (1 — <Xj) 
exists, M  0, and
(6.6) lim .v"1 У S (n) — 4/.

*  — “  . 5 1

I f  g(n)=g,(n) is a family o f functions depending on a parameter t and conditions
(6.3), (6.5), (6.6) are satisfied uniformly in tcST then (6.6) holds uniformly in t£.9~.

Remark. If a, = l, then K(m; j )= 0 for every т£Ш. Consequently g(n)=0 
if р(п)Щ/. In this case the limit in (6.6) exists and equals zero.

Proof of T heorem 6.1. The existence of M, and the assertion M  ̂ 0 is an 
immediate consequence of the convergence of (6.5) and (6.4).

First we shall prove some lemmas.
Here and in the sequel Z  denotes a summation over 9И. The star denotes

m
that m — 0 is omitted.

LEMMa 6.1. Let t(m, / ) ~ 0  be defined on SDf \{0 }  fo r  j =  1 ,2 , . . . ,  nd(n) denote 
the last digit o f  n. Then

q ~ N Z  t ( m * \  Ai(n)) =  Z  Z q ~ ‘ Z * П т ,  H ) P ( Y H_1 =  N - t ).
l ^ u < q N  H ^ l t ^ N  m

Proof. Let pH denote a general number having H  digits in1, ..., mH and put 
Л(рн)= л (т 1) + ...+ },(m H). Let us consider those n< qN which can be written as

n = pH-x+q^H-dm
with a fixed т£Ш. The number of gH_x satisfying the condition A (pH_ 1) = S  is 
qsP(YĤ 1 = S).  Consequently

q ~ N Z  t { m * \  p ( t i j )  =  У 2  <T(" - S) t ( m ,  H ) P ( Y H_x =  S ) .
1 =5 л - ; q N S<JV m<qN~s

Putting S = N —t we get our lemma.
Lemma 6.2. Let /(n )  be a nonnegative quasidül-additive function defined by

(6.7)

where t(m, j ) = 0  / or mean,

/ 0 0  = 2  t(mJ,j),
j = 1

/ = 1, 2, __ Let

*  = 2 2/ = 1 m
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(6.8)
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q~N 2  / 0 0  S  K.ncqN
P roof . Let us consider those integers n<qN for which n(ri)>j and they-th 

digit of which is hi. The number of these integers is ^ q N~A(m>. Consequently (6.8) 
follows immediately.

LEMMa 6.3. We have

(6.9) q~N # { n  <  qNI max k im 1) S  4- iV1/4|  — 0.
I  1 j s K - o - i  v ’  4  )

P roof. Since A(m)^l  for every m£9Űi, therefore n(ri)SN if n< qN. The 
frequency of integers n ^ q N having in’ as the y'-th digit is ^ q ~ Mml>. Consequently
(6.9) is smaller than

N  2  q~Mm) = NP(X1 >  ^  N 11*) = en  .

From (6.1) we get that the right hand side tends to zero: en-*0.
Let Tjy be a sequence that tends to zero monotonically and satisfies the relation

a Í H P (Y H = r) = s(xH r', H) + 0{zNH~1)

uniformly for H ^ i N .  Its existence is a consequence of (5.30).
Lemma 6.4. Let O sN —S ^ N 11*,

(6.10) R (H ; 5, L) = P(YH = S - L ) - P ( Y H = S ).
Then

(6.11) R (H ; S, L) = ^  s '(xs,H) + 0 ( L 2H ~2) + 0 ( r N

where s(x)=s(x, H) is defined in (5.31), s'(XSy H) is bounded in S  and H. 
P roof. Since the derivatives s', s" are bounded and 

s ( i  +  »/) =  s(£.) + r,s'(t) + O (r s " (0 ) ,
by putting

„ S —Ha —La
£ =  xs>H = — q = — j=  (£ + »/ =  xs- z.,h) 

a \H  a \ H

from (5.30) we get the desired result.

Lemma 6.5. For x > l  let N= NX be defined by qN~1^ x S q N. Let J N — 
= [# 0 — qnYn , H0+ qnYn Ji, where H0 = —  and qn tends to infinity arbitrarily 
slowly. Then

x -1 #{n <  дфг (/>)$./*} — 0
as л'—°°.
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This is an immediate consequence of Theorem 5.2. 

LEMMa 6.6. Let

( 6 . 12) f ( n )  =  2  ö(mJ,j) ,  
7 - 1

where S(m, j )  are complex valued functions defined on S)i for / = 1, 2, ... satisfying the 
condition \S(ms, / ) |S l .  Let

=  2  5(m, j ) 9 ~ xim\  Aj =  2  l<5(/«, j')|2tf Д(т), w; =  <5(ш, 7')Д(ш)?-Л(т),

Lei Xjy denote the set o f those n< qN for which

max X(mJ) L  — N 1!i

holds. Let S be an integer in the interval N —N 1/4̂ S ^ N ,  and

*(S) = q~s 2 2* I/OOI2
H ü J N д ( и )= Н + 1

where the star denotes that we sum up for those n only for which p (m1) + ...+p (mH) = S  
holds. Then
(6.13) S (S) <sc max \r„\2+e%+EN)+(eN + max |Гн |)е* fE ^ + ̂ ^ - + Q NTNEN.

Proof. For A(m)S-^-lV1/4 let the value of 5(m, j)  be zero. Let 8, z;, w;, Д-, 
F n ,r „ ,E H be the corresponding variables. Let

<f(1)(tf, S) =  q- s 2
a(u„)=s 2  HmJ, j)7=1

where we sum up over all p„ which satisfy the condition A(uB)= S. It is obvious 
that

2  s ).
r  , HeJ»Furthermore

<f(1>(tf,S)= 2 2 q - 4m')- 4m*)8(tn1i)S(rn2,j)P(YH_2 = S - l . (m 1) - l ( m 2))iJ^H mi,m*€9W
i*j

+ .2 [2 q-k(m)\Z{m, 0|2Р(Гя-1 = 5-A(m ))j =  #«(Я, S)+ **»(H, S).
Since

2 W i - i  =  S -A (m )) s l ,H
therefore

2 d T \ H , s ) « 2 A ^ E N.
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Let us consider the sum: S).  Observing that
P(Yh _2 =  Ы М - 1 И )  = P(YH_2 =  S) + R ( H - 2, S, 1 И + 1 М ) ,  

by using (6.11) we get

£ « \ H , S )  = P(YH_2 = S) 2  2  <гЯ(т,>-д(т,)£ ( т \  i)Htn\j)~i,j^H m1, m2
i*j

S' {Xs~ t  H~  2) 2  2  ‘7“ "(т1)“ Я(тг)(^(^1) +  ̂ (^ 2) ) ^ « 0 ^ ( т 2,7) +O’ (/l i,j^H ffl1,«!2
i*j

+ 0 (Я -2) 2  9- я(т1>-^т,>(2(тО+А(т2))2|<5(т\ i)| |^(m2 j)| +
i , } É H
i*j

+ о(Я -3/2) 2  ^_2(,п1)_А(т,)|<5(т1, i)| |<5(m2, j)| =
i.JS H
tej

=  ^ ( Я ,  5) + Х ,(Я , S) + .r3(H, 5) + .Г4(Я, S).
Since

therefore

uniformly in Я  as 
Observing that

!<Hm, 0 П 2
Â(m) J ё Я £ я ,

Х4(Я, 5) =  0 ( xnEhH - i'2)
Я-* °°.
( ^ Н + ^ т ^ ^ г ^ т ^ + А М 2) and МЛГ|< we get

Х3(Я, 5) «  Я - 2 í 2  2 ” <Гя(т)1<Кт, i)|2A2(m)l2 «  .Ч^Я ш 1 t i

The sum standing after P(HH_2= S )  can be written as | f H|2— 2  |z,l2; conse
quently isH

^ ( Я ,  S) = ( |fH|2-  2  Й|2)/>(Гн_2 =  S).

Similarly, the sum in ^Г2(Я, S ) can be written as

2  (z,- c o j  +  c ö i Z j )  =  2  R e  f и  F H -  2  R e  ( 2  cő;).
i . jS f ftej

From Lemma 6.4 the derivative /  is bounded and so

S) «  Я - 1(|Гн1!н| + ;2  l * l ) .
Now we observe that

|z(|2 s (2 <гЛ(т))(2 <гя(т)|3(т, Ol2) ̂
|й ;|2 ё  ( 2  9 _Я(т)А2(m))d; ё  a \ M X \ ) A i .
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Consequently

12 Ш  S  ( 2  ß l2)1/2( 2  [й,-12)1/2«  Ен , \Fh \ ^  v ' H ( 2 W 2«
Furthermore

Гн - Г н = 2  2  q - x(m)ö{m, j),
l ~ H  A (m )s-Í-JV i/4 

4
and so

1ГН- Г Д| ^ e N-,eN = NP [х г ^  1  ^ 1/4)

holds uniformly in H. £w-*0 as 
Collecting our results we have

5) «  (|г н|2+ 4 + я д)Р (ун_2 =  Я

ЛГ.(Я, S) «  #->{(% + |ГН|) } / я ^ + я н}.
Let now

*i(S) -  2  лГ|(я, 5).
H í J „

Since 2  E(Yb - 2 = 5,) s l ,  we have
H

^ ( 5 ) « ( 4  + £v + max |L„|2).

Observing that for H£JN, H ^ N ,  and that the length of JN is 2qn/N,  we have

* i ( S )  « (% +  max |Гн|)е„ +  .

Similarly we have

*i(S) «  ^ = 2 ,  W )  «  <?дт*£*.

Adding these estimates for ^  we get the desired inequality.
Lemma 6.7. Under the conditions stated in Theorem 6.1 we have

2 2 ? - л(т)|1- Я ( т ; 7-)[2<  “ •
j  m

The convergence is uniform i f  К depends on a parameter t^ST, and so the limit is bounded 
i f  t runs over a compact subset o f  ST.

P roof. This is an immediate consequence of the inequality
О ё  |1—z|2 S  2(1 — Re z) for |z| s  1.

Indeed, \K(m; the real parts of the terms in (6.3) are nonnegative, from the
convergence of (6.5) we get the desired result.

Now we consider the sum 2  8(n)- Let qM~1S x ^ q Ki. Let R = RM be all^X
monotonically increasing sequence of integers satisfying RM~0(\og M). Let
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J r(M) be the interval XgiM,  J, where xÄ—°=> as R — °°.
For an integer n having the digits m1, ..., ш"<п) let

M(n)-1
s = s ( n ) =  Z  № );=l

and n(R) be the number composed from m1 3 4, ..., mR. That is n(l)= m \ n (J+ 1) = 
=  n U )+ Ям"(J)) mJ+1 ■

Lemma 6.8. We have

(6.14) q M#{n  <  qM\n(n)$JR(M)} — 0 (Af — °°),

(6.15) q~M #  {n qM\n (R) ::l 2i?a} 0 (M -* °°),

(6.16) q-м  <  mi max X(m*) g
4 [ 1 * jsiW -i 4 J - 0  (M -oo),

(6.17) ? - м # { п < « м|М - Э Д ё Г м} - 0 (Гм -  -)■

P roof. (6.14) is an immediate consequence of Theorem 5.1. To prove (6.15) we 
observe that the number of n-s satisfying n(R)=UR is qM~A(vH\ consequently the 
left hand side is

z  g~4U*> = Р{Хг + . . .+Хк >  2Ra).
A(UH)S 2  Ra

From the Chebyshev inequality we get that this tends to zero. (6.16) is obviously 
= ем (—0). (6.17) can be estimated by

2  ßt( i ) Z P ( Y H- i  = M - t ) «  z  f t ( l ) ( - 0).
>=~тм H ,- 7'm

By this the proof of our lemma is finished.
Let now uR be fixed. Let us consider the sum

(6.18) Z  |g(«)-g(«*)l.
n < q M

where the sum is extended over those integers n for which the following conditions 
hold:

1. n(R)= uR,

2. max A(mJ) <  4 -M 1/4,jsrt»)-1 4
3. M - S ( n ) < T M,
4. ß ( n ) a R{M).
Lemma 6.9. The sum (6.18) extended over the integers satisfying conditions 1—4

is o(qM) uniformly for A(uR)^=2Ra, i f  rR is suitably chosen.
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Proof. Let us fix uR. We put n=uR+qA<-,,K)v, v ^ q M ~A(ux \  Let us define

l*(n)

Gr (v) = П  K( mJ, j ) .
j=R + 1

We have to estimate the sum
2 1 |с * (» ) -1|,vSqM-A(.VR)

satisfying the conditions involved by 1—4. Let S(m, j ) = \ —K(m, /'). For 
\8(m, j ) \=  1/2 we have

K(m, j ) =
whence

|i(n)
|С«(у) - 1| = 2  8(mJ, j)J= Л +1

( М(я) \
2  \8{mj, j) \2 .

7=R + 1 >
The last inequality is obviously valid if 18(mJ, /)| =  1/2 holds for at least one /'. Let 
М-Л(м„)=ЛГ.

For the sake of convenience we denote the digits of v by in1, ..., m“(v). In this 
notation we have the inequality

(6.19) \Gr (v) - 1 \ ^
mW
2  8{mj, j  + R)

j = 1
+

( M(f) ч
0 \  2  \8{mJ,j + R)\2),

We now define the functions f ,  f 2, f 3 as follows: 

a*(»)-i
.flip) = 2  8(mJ, j+ R ) ;  f 2(v) = n(v) + R)\;

7 +  1

/s(«0 =  2  \8(mJ, j  + R)\2.
7 = 1

Observing that |<5(W‘(,’), Tí(r;))|2s|ó(m 'i<1'), ju(p))| from (6.19) we have

|G*(t>)-l| «  \ Á ( v ) \ + M v ) + f ( v ) .

To prove the lemma, it is enough to show that the sums

q~N 2  l / iW ,  q~N 2  f i v) 0 =  2,3)v<qN v<qN
tend to zero.

From Lemma 6.7 we have 8{m, _/)-*-0 as y — °° for every fixed m. So 

max sup 18(mJ, y + Äv,)! -  0
mcq M j^ l

if TM is suitably chosen. Hence

q~N 2  Ш  ^  oTm{\) 2  q - ' ß A V 2 p V h- i = N - t )  = oTm{\).
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By Lemma 6.2 we get
q~N 2  A W  «  2  2  j)\a.txqN R m

The right hand side tends to zero as 
Now we consider the sum

<6.20) -ЛГ 2  
txqNl/iOOl2-

Since S(n)=S(v) + Л (uR), therefore we may assume that 
shall use Lemma 6.6. Observe that

and that
En ^  2  2  q -Um)\S(m, j)\2 (=**),j^Ä +lm

max IГH\ max>r+
L

2  ajj=R + 1
S P R.

N - S ( v ) ^ T M. We

The quantities KR, PR tend to zero as Let now gN = xR and krYk r ^ 0.
Then for every fixed S, S’(S) = o(\) uniformly in the interval N —S = T M. Conse
quently (6.20) is smaller than

Z ft ( i )* G S )« o ( i ) .
This proves the lemma.

Now we finish the proof of our theorem. 
Collecting our results we have

2  gOO =  2  S(ur) =  2  g(uR) q  A<u*>+o(x).nsx Л(1/я )г=2Яя 1 #  1 A(Ur)s  2Ra
Finally we observe that

and
2  q - W J  -  0  ( Ä  -  oo) 

Л(1Ук )=-2 Ra

2  gOoO? Л(Уя) =  — M.j=г
The proof is complete.

T heorem 6.2. Assume that the conditions stated for Хг in Theorem 6.1 are valid. 
Pet f(n) be a real valued quasi-dR-additive function defined by

д (» )

/ 0 0  =  2  H (m0 })■7=1
Assume that the series 

(«)

7 = 1

j m 
|H(m, 7)1=1

(ß) 2 2  H (m ,j)q -Mm>
j

lv) 2j
£  H 2(m, j)q~ x(m)
m
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converge. Then f(ri) has a limit distribution F(x). The characteristic function (p(z) is

(6.21) (p( т) =  Д { ^ е " н<т>;)? " Л('п)}-

Theorem 6.2 is an immediate consequence of Theorem 6.1.
From (6.21) we see that F(x) is the distribution function of q — 2  where

i =  1
£l5 C2, are independent random variables with distribution

P ( Z j  = H{m, j)) =  q - ^ K  

Let
dj = P(c,- =  0) =  2  <гЯ(т).H(m,j) = 0

A known theorem of P. Levy [10] asserts that F(x) is continous if and only if l d i = ». 
Similar theorem holds for vector-valued quasi-SOi-additive functions.
T heorem 6.3. Assume that the conditions stated in Theorem 6.1 for Xt are valid. 

Let /(и) be a quasi-Wl-additive function defined by

Let

r(n)
/0 0  =  2  H (m \ j).

J = г

ŐJ= Z H (m ,S)q -«m>, r H= Z S j .m j^H

Assume that the series (a), (y) in Theorem 6.2 converge. Then f(n )—Гм(л) has a limit 
distribution F(x). The characteristic function o f it is

(6.22) <p(z) =  77 { 2  .

Let us assume that \THl — ГН2\-*0 uniformly for \Нг—Н^Шхн^ Н г, H1 — °° 
where th—°° arbitrary slowly. Let furthermore

dj = Z Я -Л (т ) Z  dj — °°.

Then
limx 1 #  {/I <  x \ f ( n ) - r b(x) <  y} =  F(y)

for every real y, where b(x)= •

P roof. The first part of the theorem follows easily from Theorem 6.2. /(и )—Г„(в) 
is a quasi-®l-additive function:

/ 0 0  =  2  (H(.mJ, j ) - S j ) .
j = l
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We need to observe only that the conditions (a)(/J), (7) in Theorem 6.2 hold for 
H y(m, j)= H (m , f ) —őj. Indeed,

Zl ak(m) — U m Ц
for every j. Since

\Sj\2 2  IH(m, j )\2q~Mm) =  Aj
and IA j<  о», we have

2  2  min(l, \Hiim, j) f)q ~ x(m> «  2  Aj + 2  2  q~Mm) <
j  m  j  |H (m ,j ') |a r l

By using P. Levy’s theorem, from Id  — <=° and (6.22) it follows that F(x) is conti
nuous. The number of those n up to x  for which \q(n) — b(x)j ̂  i b(x)}b(jc) is a(x). 
But in the remaining case

|^00~А(х)1 =  °(1)> 

and this involves the second part of the theorem.
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ON A CLASS OF SCHUR AW-ALGEBRAS
A. HARMANCI (Ankara)

Let R be an associative ring with an identity 1. R is called a Schur ring if for all 
a,b£R, Ra+Rb = R and ab = ba imply aR+bR=R. We call an algebra R a 
Schur algebra if it is a Schur ring. In [5] Herstein and Small showed that all Artinian 
rings and all rings satisfying a polynomial identity are Schur rings. In [4] Handelman 
and Raphael proved that complete regular rings with a rank function are Schur rings. 
When the author was on a short visit to the University of Ottawa in 1979, D. Handel
man put the following question: Are the Baer*-rings Schur rings? In this direction we 
prove the following:

Theorem. Let Rbe a finite AW*-algebra. Then R is a Schur algebra*.
We follow the terminology of [1] generally.

To begin with we need
Lemma. Let R be a finite AW*-algebra and for a£R, let r(a) denote the right 

annihilator o f a in R. Then r(a) = 0 implies a is invertible in R.
Proof. It is known that r(a)=eR for some projection e in R. Since the maximal 

algebra Q of quotients of R is regular (in the sense of von Neumann) [7] and a Baer*j 
ring, the right annihilator r(a)Q of a in О is of the form exQ, for some projection e- 
in Q. From [1], exdR, and so (г(а)е П й) =  г(а) and ex — e. Assume r(a) = 0, 
then r(a)Q = 0 and a is invertible with inverse a"1 in Q. We claim a_1 lies in R. If 
not, then a is not invertible in R, and so it is a topological zero divisor, i.e., we can 
find a sequence {an} consisting of elements of R such that {aan} coverges to zero and 
||a„|| =  l. Since the singular ideal of R is zero and the set I — {jc€ jR|xű_1€R} is an 
essential left ideal in R, for any integer n there corresponds an x  in /  with the follow
ing properties, which are easily checked, ха„т±0, j[x|| =  1 and 0 x x a ^ idR. We 
take such a x  and define tn as 0 if xan—0, and ||jeeJ|_1 if xan A 0. Then the sequen
ces {aant„} and {(xa~1)(aant„)}= {xa„t„} converge to zero. This is a contradiction 
and we conclude that a_1dR.

ProoF of the Theorem. Let a,bdR  be such that ab—ba and Ra+Rb — R. 
Then xa+yb = 1, for some x,y£R . This implies r{a,b}—0. For any tdr(b), 
b(at)=a(bt) = 0 implies atdr(b). Since R is an AW*-algebra we have r(b) — eR 
r(a)=fR for some projections e, f  in R. It follows that aefr(b)=eR  and eae = ae. 
In the same way fb f—bf.

* A Banach algebra with an involution is called an TlF*-algebra, if 'X ■ X '\~  liAij2 and 
every left and right annihilator is a one-sided ideal, generated by an Hermitian idempotent element 
(see [6 ]).
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If r(b) = 0, the Lemma implies b is invertible, and there is nothing to do in this 
case. Assume r(b )= eR ^0, r(a)=fR?i Q. We claim that e and /  can be taken as 
mutually orthogonal, i.e., so that ef=  0 holds. Since Q, the maximal algebra of 
quotients of R, is regular, r(h)Q= e 1ß, r{ä)(i—f 1Q for some idempotents ex, j\  
in Q. By combining r(a)Q(jr(b)czr {a, b}Q=0 and Corollary 2.12 in [3] we may 
assume e1/ 1=0. Hence f f ( l  — e fQ  and exf=  0. This implies /£(1 —ex)Q. 
From the relation e1Q=eQ, we obtain (l —e1)Q = (l—e)Q. This gives rise to 
ef=  0, proving the claim. We now right multiply xa+yb = 1 by e and use eae = ae 
to obtain e=(exe)(eae). It follows that eae = ae is invertible in eRe. Similarly 

f b f —bf is invertible in fR f. As in the proof of Theorem 4 of [4], we let Q denote the 
collection of sets {(c;, / ) } i€r of pairs of projections satisfying:

(a) I  is well ordered,
(b) {c;}U {/'■} is an orthogonal set of projections,
(c) е{ае( are invertible in ei Re{,
(d) fb f i  are inveitible in f R f
(e) (1 —sup er)aej = 0 if /< /:,

r^k

(f) (1 -sup  {ei+ f))a fj = 0 for all je  I,
iei

(g) (1 — sup et)bei=0 for all /£/,
iei

(h) (1—sup fj +  sup /,)£>/„= 0  if n<k,
iei jsk

(i) 0 occurs at most once in {c,}U { /  }.

The set {(e, /)}  consisting of the pair chosen earlier shows Q is nonempty. We order 
Q by {(ef, /;)}/= {(/?j, qj)}j if /  is an initial segment of J  and eL = pt, f  — qt for all 
i e i■ We apply Zorn’s lemma to obtain a maximal element {(<?;, Q} in Q. We set 
e= supeh f=  supf  and g = l—e —f .  It can be easily shown that eae is invertible 
in eRe, fb f  is invertible in fR f  and that the Pierce matrices of a and b are

eae eaf eag ebe ebf ebg
0 fa f  fag and 0 f b f  fb g

. 0 0 gag. . 0 0 gbg.
respectively,

gaggbg=gbggag and r {gag, gbg}=0 in gRg are now obtained from Lemma 2 
ol [4]. It is known that gRg is a finite yl(4/ *-algebra. If r(gag) = 0 in gRg, then gag 
is invertible and therefore a( 1 —f )  + b f is an upper triangular matrix which is inver
tible. So aR+bR= R. Assume r(gag)7^0 and r(gbg)^{) in gRg. As before, we 
may find non-zero orthogonal projections p and q such that r(gag)—pgRg and 
r(gbg)=qgRg in gRg. We add {(/>, qj) to C2, extending the partial order so as to 
yield a larger element {(eg, / ;)}U \(p, q)} of Q. This is a contradiction, and so g —0. 
It follows that ae + b f is invertible and this completes the proof.

Remark. In the case of finite A!F*-algebras, Schur property is right-left sym
metric.
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Corollary. Let R be a finite AW*-aIgebra, let A, B, C, D be in Rn, the matrix 
algebra over R, such that CD=DC. Then X =  is invertible in R2n i f  and only
i f  AD—BC is invertible in Rn.

Proof. We first prove the sufficiency. AD —BC being invertible in Rn implies 
that Y(AD) — Y(BC) = I, for some Y  in R„. Thus RnD + RnC = Rn. The matrix 
algebra R„ is also a finite vá IF*-algebra [§62, 1], and since CD = DC, the Theorem 
of this note implies that DR„ +CRn = R„ and so DV+CU=I, for some F, U in 
R„. The equality

\A ВЛ Г D U] _  \A D -B C  AU -B V 1
\b d Y \ - c v \ - \  0 /

shows that X  is invertible. To prove the necessity, we assume
W  Fl \A в 1 (A В 1 W  Fl Г1 °1[W Z  \ к d \ - к d \ к  z \  -  [0 l \ where и, V, W, Z£R„.

From this we may obtain
(a) WA+ZC=0, W B+ZD=L  (b) UA + VC = I, UB + VD = 0, (c) CV+D Z=I.
Using CD=DC, equations (a) and (c) yield the equations (d) W(AD — BC) = 

=  —C, U(AD — BC )=D. If AD—BC is not invertible, then it it will be a topo
logical zero divisor [2], that is we can find a sequence {Tn} in Rn such that || T„\\ =  1 
and {(AD— BC)T„) is convergent to zero. Equation (c) implies CRn+DR„ = Rn, 
and from the Theorem we obtain R„C+R„D=R„ and so M C + N D = I for some 
M, N f R„. From this equality, the fact that {(AD—BC)T„) converges to zero and 
equations (d) it follows that {T„} converges to zero. This contradicts ||TJ =  1. 
Hence AD —BC is invertible which completes the proof of the corollary.
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CHARACTERIZATIONS OF SCHAUDER 
DECOMPOSITIONS IN BANACH SPACES

K. AHMAD (New Delhi) and S. M. MASKEY (Delhi)

1. Introduction

The concept of a decomposition is a natural generalization of basis which was 
initiated in [5] and further studied in [3, 4, 8, 10,11, 12]. Later on, in view of Enflo’s 
example [2] which exhibits that every separable Banach space does not have an 
approximation property and hence no basis, the study of decompositions became 
more interesting and worth studying. It is worth noting that every separable Banach 
space do have a decomposition, but there are (non-separable) Banach spaces which 
do not have a Schauder decomposition; consider for instance the Banach space l„. 
Consequently, an attempt was made to obtain a criterion for the existence of Schau
der decomposition of a Banach space and in this direction a theorem has been veri
fied which corresponds to the theorem of Nikol’skii for the existence of bases [7]. 
Motivated by this work very recently Jain and Ahmad [6] obtained certain charac
terizations of Shcauder decompositions in terms of best approximations in Banach 
spaces. The purpose of this paper is to obtain some characterizations of 
Schauder decompositions in Banach spaces, which establish a new proof of the 
theorem of existence of Schauder decompositions of a Banach space (see [7], p. 93).

2. Notations and terminology

Let E  be a Banach space. A sequence (A-/,) of subspaces of E is a decomposition 
of E if and only if for each x£E  there exists a unique sequence (хг) such that x x
for all i and x  =  У, x t, the convergence being in the norm topology of E. The uni-

; = i

queness implies the existence of (not necessarily continuous) associated projections P,
oo

of E  onto Mt defined by Pi(x) = x i, where x  — 21 x i with x£ M t. These projec-
i=l

tions are obviously orthogonal i.e. PiPJ=5ijPj , where ди~ 0 for i ^ j  and 
őtj=  1 for i=/. If, in addition, each 7J, is continuous, the decomposition is called

П
Schauder decomposition, and we write it as (Mh Pt). Let S„(x) =  ^  T,(x),

i = l
x£E. Then S„ is a partial sum operator on E  and is continuous.

A sequence (Мг) of subspaces of E  is said to be
(a) finitely linearly independent, if every finite subsequence of (Мг) is linearly 

ndependent:

7* Acta Mathematica Hungarica It, 1981
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oo

(b) й -linearly independent, if 2  x i ~  0» xt€Mi=^-xi = 0 for each i ;
i = l

(c) minimal, if ЖГ,П G Mii=l■Mj
=  0 .

Obviously, every minimal sequence of subspaces is O-linearly independent and every 
fl-linearly independent sequence is finitely linearly independent. For finite sequences 
of subspaces the converse statements are also valid, but the converse need not be 
true in the case of infinite sequences of subspaces.

The distance between two subspaces F,G of E  is given by

dist (F, G) — inf {||x— y|| :x£F,

Let o> =  {x€F:||x|| =  1}. Define the number (F; G) — dist(o>, G). Let L„ =

U
i =  1

L" = U  Mi
i  =  n +  1

and L  = U Mi
i = l

where the bracketed expressions
denote the closed linear spans of the sequence (Mj) of subspaces of E.

A  sequence (M,) of non-trivial subspaces of E  is said to be complete if

U Mi £=1
E.

3. Main results

T h e o r e m  3.1. Let ( M ;)  be a sequence o f nontrivial closed subspaces o f a Banach 
space E. Then the following statements are equivalent:

(a) (Mi) is minimal.
(b) There exists a sequence (F;) o f projections on L such that PiPj=dijPj, 

where <5y = 0 for i ^ j  and á y = l fo r  i=j.
(c) There exists a sequence o f constants /(, ;=-() (/=1,2 , ...) such that

П
2  l l* ; l lF ;  ^

where x f  M; for /= 1 ,2 ,
(d) We have L = L n®L".
(e) There exists a sequence (U„) o f endomorphisms on E such that

{ ■x, x£L„, n = 1, 2, ...
0, x(LL", n =  1, 2, ...

(f) For each positive integer n, there exists a constant C„, 1 ^  C„ <  °° such that

2  x i C„
и + ш
2  x i/ = 1

for all positive integers n, m and
i= 1

x f  Mj for each i.
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(g) We have dist(er^, L")>0 (n= \,2 ,
(h) For each positive integer n there exists a constant C'„, l s C '< ° ° ,  with the 

property that for each h0(zL„ there exists an f£E* such that

(3.1) f ( h 0) = \\h0\\,

(3.2) f ( y )  = 0 (yiL%

(3.3) l s s i i /n  s c ; .

(i) The norm o f the linear operator Sn on L is given by

11$.II = sup |S ,(Ä )|< «  (n =  1,2,...).h£L
IIÄIIS1

P roof. (a)=>(b). Let (a) hold. The nontrivial closed subspaces M t and 

of E  are such that

U M j 
j = 1jVi

Mi П

so that L can be expressed as

U Mj
j = i
j*i

=  0 ,

L — М л U Mj
7 =  1 
.jVi

Hence, there exists a sequence (Pt) of projections on L such that PiPJ=8iJPJ, 
where <5y= 0  for i ^ j  and 8tJ= l  for i = j.

(b)=>(c). Let (b) hold. Put

hi
1

2‘+1||P;
Then, for all x fM -t (7=1,2, ..., n), we have

0 =  1,2,...).

MJHL 1
Xj^ j и+ЦРЛ -  2J+1 Л *» (J=  1,2, ...,n)

so that
- 1

2  Italic ^  2  ö i+ r; — i i —-I 2 * t 2
i =  1

(c)=>(a). It is obvious from the given inequality that the finite subsequence of 
(Mi) is finitely linearly independent. Consequently, from the definition, the finite 
subsequence of (Л/,) is i2-linearly independent and hence it is a minimal sequence of 
subspaces.

(b)=>(d). Let (b) hold. Then Sn(L)=L„, which shows that Sn is a continuous 
projection of L  onto L„ along IT. This verifies (d).
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(d)=>(e). Given L= Ln@Ln, S„ is a continuous projection of L onto L„ along 
L”, so that 5'n(x) = ^  x t . Thus

S„(x) _ \ x> 
10,

x£Ln, n  = 1 ,2 ,... 
x E L " ,  n  =  1 , 2 , __

Let U„ be an endomorphism on E  so that U„(x) — ^  x {. Consequently, S„(x)—
i = l

= Un(x) for every x£L. This shows that S„ can be extended to Un. Hence
\x, x£Ln, n  — 1, 2, ... 

x£L", n  =  1 ,2 ,....
(e)=>(f). From (e) we have

= {«;

2  x t 
i = 1

n+m 
2  x ii = l

This verifies (f), if we put C„=||f7J (n= 1,2, ...).II
(f) =>(g). Let (f) hold. For every 2 and х £ М и /= и+1, и + 2 ,...,

í= 1
...,n+m , we have

n n +  m n + m  1 n i

b1* ; -  2  *i s  2 ” s  —  2 x i = т г -:1 Í = n+1 Í = 1 t-п í —1

Hence, dist (oLn, Ln)> 0.
(g) =>(h). Let h0€L„. If h0=0, there exists /€£*  satisfying (3.1), (3.2) and 

11/11 = arbitrary constant.
If h0^ 0 ,  we have -тпЛг hence by (g),

ll"oll

dist (-Щ~> £ ") -  dist (<+,’ £") = dn >  0.

Then, by the Corollary of Hahn—Banach theorem, there exists a functional 
f£E*, satifying (3.1), (3.2) and ||/|| = Un

(h)=>(i). By (3.1), (3.2), and (3.3), for every h =  2  X&L, x tf_Mt for each i,
i=l

we have

S„ (h) =  S„i 2 * , )  =  2  x i =  К  (say),

and

f  (h) =  / ( 2  *.) =  / ( 2  *<+ 2  *.■) =  Я Ю -
\ i  =  l  /  V i = 1 i = n + 1 /
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Thus,

This implies that
\\S„(h)\\ =  ||h0|| =  | / ( й 0)| =  |/(/i)| C'n\\h\\.

IISJ = sup ||5n(h)|| <  oo.hebIIAII =51

(i)=>(c). Let Sn be a continuous linear operator on L such that

\\Sn\\=  sup ||*S„(A)|| <  °° (n =  1,2,...),h£LИЛИ ^ 1

Put цп = 2<.~ 1(||5 1^115 J )  (n =  !> 2> - ) •  Then /i„>0 and for every finite se

quence of vectors Xj€Mj, i= l, 2, n, we have

WxjWfij = m \ 2 x  i i=1 +
7 - 1
2  x i i=l

2 ' + 4 I I S , l l  +  I I V i l l )  “  2 ^ ( 1 1 ^ 1 1  + I I 5 j _ i | )

2^Ч11^|| +  II S j^ l ) -  2J'H 2  x ii= 1 O '  =  1 ,  2 ,  n ) .

Hence, the result follows. This completes the proof of the theorem.
Theorem 3.2. Let E be a Banach space and (A/;) a sequence o f nontrivial closed

subspaces o f E  such that I (J Mt =  E. Then the following statements are equivalent: 
L«=i

(a) (Md is a Schauder decomposition o f E.
(b) There exists a sequence (Un) o f endomorphisms on E  satisfying

Unix) Iх’
lo,

x£L„, n = 1 ,2 ,... 
x£Ln, n = 1, 2, ...

and 1 á C x =  sup II t / J  <
1^П<оо

In this case, the sequence ((/„) is uniquely determined and coincides with the se
quence (S„) o f partial sum operators associated to the Schauder decomposition (Л/,).

(c) There exists a constant C2 with 1 ^ C 2< 00 such that

2  x i
n + m 
.2 xi

for all positive integers n, m and x f M t for each i.
(d) We have C3 =  ̂Jn f dist (aLn, L”) > 0 .
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(e) There exists a constant C4, 1 ёС 4<=», with the property that for every n 
and every h0£Ln there exists an f£E * satisfying (3.1), (3.2) and

(3.4) 1 S | / | | S C 4.
(f) We have

sup sup \\S„(h)\\ <  oo.l^n<oo h£L
ИЛИ ^ 1

For the proof of the theorem we need the following lemma:
Lemma. Let E  be a Banach space and (Mj) a sequence o f closed subspaces o f E  

and (Pi) a sequence o f projections on E. Then the following statements are equivalent:
(i) (Mt, Ft) is a Schauder decomposition o f E.
(ii) For every x£E, the expansion ^  P fx )  is convergent and its sum is x i.e.

i =  1
we have lim S„(x)=x for all x£E.

(iii) (Mi) is complete and sup ||S„(x)||<'» for all x£E.
1^П <оо

(iv) (Mi) is complete and there exists a constant M s  1 such that | |S J ^  
^ M  (n=l, 2, ...).

P roof. (i)=> (ii). If (i) is given, then (ii) is obvious from the definition of decom
position of a space.

(ii) =*(iii). If (ii) exists, then (M;) is complete. Also, since the sequence (>S„(x)) 
converges, we have sup ||5’и(х)||<°°.

1^П<оо
(iii) =>(iv). This implication is a consequence of the principle of uniform bound

edness i.e.
sup ||S„(x)|| <  °o=>. sup HSJ <  oo.

Hence there exists a constant M s l  such that \\S„\\=M.
(iv)=>-(i). Since (Mi) is complete in E, there exists a dense subset of finite

m

linear combinations ^ x t, (/=1, 2, m; m= 1 ,2 ,...) in E  such that
i =  1

(m  \  m

2  m \ =  2  m -
i=l ) i = 1

Then lim Sn(x) =  x for all x£E. Hence the result follows from the definition of
П-*- oo

Schauder decomposition.
P roof of T heorem 3.2. (a)=*(b). If (M;, P j  is a Schauder decomposition 

of E, then, by the lemma and Theorem 3.1, the sequence (Sn) of partial sum operators 
associated to the Schauder decomposition uniquely satisfies

Í*. *€T„, n =  1, 2, ...
“W )  -  jo, x^Ln, n = 1 ,2 ,... 

and 1 ^  Cj =  sup ||S„||<°°.
1 /̂j-coo
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(b)=>(c). From (b) we have
/I

=  Ci
n +  m

2  xi ■! = 1
The implications (c)=>(d)=>(e)=*(f) are immediate from Theorem 3.1. 
(f)=>-(a). Since (Mi) is a complete sequence of nontrivial closed subspaces of E 

and sup ||S'B|| -c by the implication (iv)=>-(i) of lemma, it follows that (Mt)1̂ П<оо
is a Schauder decomposition of E. This completes the proof.

Theorem 3.3. Let (M;) be a complete sequence o f closed subspaces o f E such that

(3.5) Л ( \ Я М ] ; М л  + 1)> 0 '

Then (Mi) is a Schauder decomposition of E.
Proof. Put

/?"=  (LÜ Mi] ;M "+1) (n =  1, 2,...)
oo

and /? =  П  ß n -  Then For all positive integers n,m  and x f M t for
П= 1

each i ,  and by (3.5) we have
n + m n + m  — 1 n +  m — 1
2  x i = 2  X i + Xn + m S  dist (Г(-л + т -1 + m 2  x i

i — i i =  1 [ ü  4  ’
i = l

— ßn и
n+m — 1 

2  x i

11 n + m — 2
ß n  +  m — l ß n  + m — 2 — ••• —  ß n  + m - l ß n  +  m - 2  ■■■ ß n 2  x i

i =  1
2  x ii=l

Hence the result follows by using the theorem 3.2.
Finally, our thanks are due to Dr. P. K. Jain for his consistent help in the pre

paration of this paper.
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UNIFORM APPROXIMATION BY SZÁSZ—MIRAKJAN
TYPE OPERATORS

V. TOTIK (Szeged)

§1

The purpose of this paper is to investigate the uniform approximation problem 
for the Szász—Mirakjan operators

S„(f; x) = 2 of { ^ ) Pnk(x) (p„,*(*) =  e~"x^ J T ~  ’ * -  °)

on the whole positive real line. So far, beyond local results, the approximation prop
erty of Sn was settled in polynomial weight spaces by M. Becker [1] (here the order 
of approximation has the form (x/ri)*), in exponential weight spaces by M. Becker, 
D. Kucharski and R. J. Nessel [5] and B. D. Boyanov and V. M. Veselinov [8] have 
results for the case of uniform approximation when the function /  has a finite limit 
at the infinity.

We shall be working in CB, the set of bounded and continuous functions defined 
on [0, °o). The continuity is a necessary assumption at uniform approximation and 
the boundedness will turn out to be a convenient one, although many of our consi
derations remain valid just as well in the unbounded case.

Unlike Bernstein polynomials (which, otherwise, have very similar properties 
to S„) for S„ a new question arises: to identify those/for which S„(/) converge uni
formly on [0, °°) to / .  The answer for CB is given in Theorem 1 below.

Let
A l(f;x )  — f ( x ) — 2 f(x+ h)+ f(x+ 2h)

and let us introduce the following modified modulus of smoothness which is the 
appropriate one in our problems:

co(S)=co(f; <5) =  sup |A2h^ ( f ;  x)| (Ő >  0)

(in the following we use the shorter form a>(S)). This со has the known properties 
of moduli of smoothness: it is an increasing function, and a standard argument gives 
that

со (IS)  ё  K).2co (S) (A a  i)

with an absolute constant K.
Now we have
T heorem 1. For an f£ C B the following are equivalent

(i) Sn( f ) - f= o (  1) ( « - - ) ,
(ii) ft>(<5)=o(l) (Ő-0),
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(iii) f ( x + h  Y x )- f(x )= о (1) us h-+ 0 uniformly in x,
(iv) the function f ( x 2) is uniformly continuous.
We mention that (ii) =>• (i) for any continuous f  but it is an open problem whet

her (i) implies (ii) without the boundedness assumption. Our proof will show that 
the equivalence (i)<=>(ii) holds even if /£C B is replaced by the weaker assumpti
on: ДС[0, °°), cu(l)<°°.

For the Lipschitz-case we have
Theorem 2 . Let 0 < a S  1. For an f£C B 
(i) Sn( f ) —f —0(n~x)

and
(Ü)

(1.1) ш(<5) = 0(02a)
are equivalent.

Here we mention that (1.1) is equivalent to x*Al(f; x)SK h2 (h>0), so our 
result is the mate of M. Becker’s one [1, Theorem 1], namely the weight x “ is moved 
from the approximation to the smoothness condition.

For a similar result in the saturation case a = l  see [4, Satz 4.11].
It is interesting to consider the analogous problem for the Kantorovich-type 

modification of S„:
со /• (M-l)/n \

K„(f-,x)=  2 \ n  f  f(u )d u \p  k(x) (хёО ).
*=<4 kfn )

Kn can be used to approximate /  in various integral metrics which we shall do in a 
forthcoming paper. Here we are interested in uniform approximation and for this 
we have

Theorem 3 . For an fd C B
(i) Kn( f ) - f= o ( \ )  ( и - « )

and
(ii) co(8) = o(l) (<5-0) 

are equivalent.
Theorem 4. Let 0 < a sS 1. For an /<ECB (i) and (ii) below are equivalent:
(i) K „ (f) - f= 0 (n -%

(ii) (1) co(ő)=0(ö*), (2) № - №  = 0(h*).
Let us mention that conditions (ii) (1) and (2) are independent of each other.

We want to settle also the multidimensional case. We carry over our results 
only to two dimensions; the higher dimensional problem can be treated similarly. 

One possible variant of Sn in two dimensions is the operator

j  ; | M  ) '"У ^i , jú о \ п  т )  i! /!

with two parameters n,m=  1,2, ... Let C2_ B denote the set of continuous and bound
ed functions defined on the first quadrant x^O , 0.
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Theorem 5. For an f€.C2iB the following are equivalent 

(0 Sn,m( f ) - f =  0(1) as
(ii) <o(Su (5a) = o(l) as <5,, S2 — 0,

(iii) f i x + h ^ x ,  y + h 2f y ) - f ( x ,  у) =  o(l) as hy, h2 -»• 0 uniformly in y s O,
y^O,

(iv) the function f  ( x 2 , y 2) is uniformly continuous.
Here

and
w(<5i, 02) =  sup \Alfz * л ( / ;  x, y)|л̂ 0,у̂ 0,0с/»1̂ ^1,0<А2<г2 1 2

Ahy.hff', x, y) = f i x ,  y )+ f(x ,y+ 2 h 2)+ f(x+ 2h l ,y )+ f(x+ 2 h 1,y+ 2h2) -

-4 f(x + h 1,y + h 2).

Theorem 6. Let 0 < а ё 1 .  For an / ё С 2 B the following are equivalent 
(0 Sa>m{ f ) - f  = 0(n~x + m~%

(ii) co(ől ,ő2) = 0(ö? + ől*).
We mention that in an other paper vve shall prove the analogues of Theorems 1, 

2 for the Baskakov and Meyer—König and Zeller operators.
The paper is organized in the following way: § 2 contains some necessary for

mulae. In § 3 we prove Theorem 2, the ideas of which are used in the proof of the 
other theorems in § 4.

§ 2. Some formulae and estimates

First we give an other expression for Sn(f). Let

Ä\ff\ x) =  Д (  — 1 ) * - ' ( * ) / ( x + i70  

be the A>th difference-function. A simple computation gives that 

n  n  c ( f • Vi =  ’S7 ( ~ nx)k v  f(J j\ (nx^  =  v  Ait f • o)
" ' k = o  к ! к = о ' V n ) k\ k = о n

We have also (see [1, p. 136])

(2.2) S"(f; x) = n2 Z M / ;  ~-}pn,k(x),
k  =  0 Л'ч n )

(2.3) W ; * )  =  4 i / |
X  k - o  '^У„,к(х)рпЛ(
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where

and

. . ( к f к
r„,k(x) = ---- x \  - 9* 5\n  ) tr

°° ( k \
s:,(f;x ) = n z * \  / ; -fc=o r,\ n J

xF or pn k we shall often use the following estimates. Let pk(x)=e x — . For
a given x  the largest of the pk(x) is pM (x) for M —[x] (the integral part of x) and the 
sequence {л(л')}^10 is increasing from k= 0  to M and decreasing for k~=M. 
With the notation k= M + h  we have for \h \^2x3/5 the asymptotic expression

(2.4) Pk(x) =  — e-*»/<t»)f i + Q ( l*l +  1.)+Q(J*P)j .

We also have

(2.5) 2 ’, Pk(x) = 0 (е ~ П

with // <  , and for 0<£<1

(2.6) 2 ’ Pk(x) =  0(e-'*)

with г — -i- £2.

For all of these results see [7, p. 200].
We shall also frequently use without any further reference the identities

к
n PnAx) =  xPn,k-lW  Oh k = \,2 , ...).

§ 3. Proof of Theorem 2

I. Proof o f (ii)=>(i). Let X> 0, ő = l / - y ,  and

n v  3/2
(3.1) / , ( t) = f f  [2f{t+ u+ v)-f(t+ 2(u+ v))]dudv.

For this (see [1, p. 135])

Г2\2 3,2
т - Ш  =  h -  f f  A I M  t)dudv, f l ( t )  = S~%*A\tf\ i ) - A \ { f  t)\\ °  ) •q*' 2

Acta Mathematica Hungarica 41, 1583



UNIFORM APPROXIMATION BY SZÁSZ—MIRAKJAN TYPE OPERATORS 2 9 5

and so

1 /(0 -Л (01  s  • » ( / ¥ ) •

by which, using the inequality co().t)^JG.2(o(t) we obtain

for i á i
(3.2) 

and

(3.3)

l / ( 0 - /a ( 0 l  S  K-

\ r m  á  к

Let

7 ®Ш
1 ®Ш

.7ю(т^)

for í >- X

for t  ~  X  

for / >  x.

£»(/;* ) =  2 /í -^ - )  А.,*)*)-
4=1 V n  /

iS* is defined also for functions which do not have any value at the origin.
Now

\sn( f , x ) - f ( x ) \  s  \ f ( x ) - f s(x)\ + \S„(U x ) - f s(x)\ + \ s ; ( f 0- f i  *)| +

+ e-"* 1/(0)—/,(0 )| -  A + B+C+D.

By (3.2) A^iKoj , and taking into account the positivity of Sn, S* we obtain
........................( 1 )

"  "  —j=r\ and from (3.3) and Lemma 2
Yn)

from (3.2) and Lemma 1 below that C^Kco 

that B^Kco |—̂ | . Finally, for D we have by Lemma 3 below that

Thus,
\S „ (f;x )- f(x ) \ =i к

1 Kn~*e-nx(nxY12 Kn-

Kn

with a К  independent of x  and our proof will be complete after the justification of 
Lemmas 1—3 below.

LEMMa 1. I f  x > 0  and

then |,Sn*(g; x ) |s3 .

for

for

t S  x  

t ^  X
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Proof.
[»*] nx [ид:] П Х

5„*(g; x )=  2 -j-Pn,k(.x )+ 2 PnAx) = 22 r, , ,
k = 1 /С *=[nx] +  l  fc= l AC-f-l

[их]

=  2 2 Рлд+ i M + i  = 3.

Lemma 2. I f  x > 0 , g£CB is twice continuously differentiable on (0; °°) and

|g"(OI S

then

— /о/- t ==* x 

1— /or t > X X

К
I-S'nte;*)-?(*)! =§ — (n = i ,2 ,...)

with a К independent o f x. 
Proof. Let

tlog t
h (0 = '

for

x logx  +  (t —x )(lo g x + l)+ 2^-(i — x)a for

x

x.

1
T for t Ä  X

1
X

for t >  X .

h is continuous on [0, «>) and twice continuously differentiable on (0; °°) with second 
derivative

h"(t)

An easy consideration gives that S„(r; x )S r(x) for convex r, so, by our assumption, 
.?>„(/*+£■; x)^(h± g)(x)  and together with this \S„(g)—g \^ S n(h)—h. Thus it has
remained to show that S„(h) — h ^  — with a К independent of x. Using that S„n
Sn((f—x)2; x)=x/n (see [1]) and that the linear functions are reproduced by S„, 
this is equivalent to ^„(r; x)| = — , where

{ t log t-—t log x —(t — x) for / S x  
0 for í >  X .

Now (with the convention 0 - log 0 = 0)

1 k \  1
= — 2  fel°g—  -(fe-ид) R(nx).n k = o \  nx )  n
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Let и—пх. For /г<2 clearly \R(u)\^K, and for « s 2  we have 

F
- [ l|3 /5 ]  +  l

l ^ (
For иш к> и—1р ,& let Tk—u—k. With this we have (see (2.4))

/ „ - [ „ 8 / 5 ]  u \(  к \  uk
* (« )  =  ( 2  +  2 .  J| A: log — — (/с—и) le -u -—r =  Äi («)+2?2(m).

v jt=o t=M -[ii3/5i+i7v и  )  k \
By (2.5)

'J
r 1 1 s uk

X T

VIIcЛ1

1 — u tr

and

К  _ т г/(2и) е~иГ— <  —— c
fc! ”  f ű

к log-----(к —и)и

hence

=  | ( H - T * ) l o g ( l - ^ - ) + T * |  =  

[“а/61 (/ -}- 1)2 ОО (2. +1 — 1)[уй]
Ши)\^К2^щ-е-^^К2 2 ( . . . ) з

‘ - О  I = ( 2 ‘ - l ) [ y S ]1=0 мл

-  ^ Д е_2’‘' ’2,'+11/м(2,+11/м)2м-3/2 ё  л:

and collecting the above inequalities our proof is complete.
ЬЕмма 3. I f  0< o cS l,/€ C B and co(S)^KS2x then |A 2h( f ;  0)\sKhx.
Proof. Let v(0) — sup |A 2h( f \  0)). For an arbitrary 0 let <5=/j/2. Using

0-=ЛЯ<5
the functions f d introduced in (3.1) we have

M i(/; 0)1 s  0)\ +  \ f d( 0 ) - f m  + 2 \ f A h ) - f ( h ) \  +  \ M 2 h ) - f ( 2 h ) \ .

Here the last two terms are less than Ксо(уй)^Юix, furthermore,
I , л ч 2 hi 4 /  » \

l / i(0 )- /(0 ) | =  Ш  f f  A \+Xf;0)dsdt s  

and since 1Л(01 =  jj t  »

И К Л ;0)| =  f f  fi(t+ s)d tds  / / (t+s)-*dsdt 0)|=S
*П AV

if 0<oc<l and 

if oc=f.

== Kh2x~2h2~x Khx 

\A2A f s-0 )\^  K\AUt\og f,Q \^ K h
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We have proved that i)(/!)Sff+ ii(/i/2), which implies easily v(h)^KIf- 
and this is what we wanted to prove.

II. Proof o f  (i) => (ii) in the nonoptimal case 0 <  a «= 1. We use the ideas of the 
so called elementary method of inverse results developed by G. G. Lorentz, H. Be- 
rens, M. Becker and R. J. Nessel (see [1, 2, 3, 6]).

The essence of our result is contained in Lemma 4 below, by which the proof 
of (i)=>(ii) is easy: Let 0<<5, A s 1, and let us choose n so that (n + 1 )”1/2<(5Sn_1/2 
be satisfied. We have

\Aly-x(f-,x )I ^  \Aly- (£„(/); x)[ + Atrx(Sn( f ) - f - x )  s=

- f i  I'S 'nC/; x + s  + t)\dsdt +  Kn~x S  .к |(п -*  +  А2х |п _х +  т | — 

i.e.

(0(h) == ^ | á 2"I+ ;̂ ( ( á 2* +  cu(«5))|.

h2Adding to this the trivial estimate h2xS.ö2x + -^r (<52* + ю((5)), we get for 
12(h)—h2!I+oj(h) the inequality

Q(h)^K[ő** + ̂ Q ( ö ) }

which already implies Q(h) = 0 (h 2x) (see [3, Lemma]) and this is exactly (ii). 
Thus, it is left to prove
Lemma 4. I f  f£C B and S „ ( f)—f= 0 (n ~ x) (0< txS  1) then

\ S " ( f - , x ) \ ^ K - \ n - x+w’U)) ( jc >  0 ,  и =  1, 2 , . . . ) .

Proof. Let x :
■°-s - ß r

With the function (3.1) we have

(3.4) K ( / ;x ) i  == \ s : ( f - u x ) \ + \ s : ( u x ) \ .
We shall estimate the terms on the right hand side separately, 

a) Using (2.3) we have (if х<1 /и then T2—0 below)

\ s : ( f - u x ) \  ^  kn,fcw i|/(^-)-/i(^-)|p„,ii(x ) =

[их] «.

= 2  +  2  + 2  = ^х+Гг + Тз-
k  =  0 k  =  l  fc =  [nx] +  l

a) To estimate If  we prove first
LEMMa 5. I f  f£ C B and S n( f ) —f= 0 (n ~ x) (0< aS  1) then

\A l ( f - ,0 )7SK {h* + co(Yh ))  ( f i>  0).
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P roof. Using the expression of S„ given in (2.1) we get

Ф т г М т г )  -  { / ( » ) + ( / Ш - / Н + Л (/;0 ) н } - 4 7 )  =

-  , I ^ r I < - 1>‘ - ' ( t 7 2) 4 ( / 4 )  =  4 < / ; о > 4 4 + . . . ) +

+ ° Н т г Ц е т  Д  (‘ T2)) = e- ‘i ( / : 0 , +O(»(-j4))

and since the left hand side is О (и- “) we get

(3.5) M ii/-; o)| шк  л -“+ш (n = 1,2,...). 

1Let now 0 < / i^ l  be arbitrary, and let n be defined by — < A s - .  Then
n + 1 n

(3.6) И Й У ;  0 )-A {(f;  0)1 2 | / ( 1 ]  —f ( h )  | +  | / [ i ) - / ( 2 A )

and here (see (3.2))

№)-Ha s
ЧЧ)+ХюШ+1НИ

for some  ̂ Since/j_ is bounded, | / 4 (x)|s A>j for all x^O, by which

\ f i [ ^ ) - f i № £ K n - '* K h ,  i.e. |/ ( ^ ) - / ( A ) á  K(h + (о(УИ)). A similar estimate

can be given on the second term in (3.6), and we get the desired result from
(3.5)—(3.6).

Let us turn to I f . Using that rn 0(x) — x 2, we obtain from Lemma 5 

Zj Kn2(ő + w (/ő ))e-n* = ^ п -* (п х )1+х12е -пх +

Ч т г  Ч )  s  К ' -L( » - + » ( - А . ) ) ( 1 + ™ * - “  -  а т ( » - + - ( 4 г ) )  ■

8* Acta Mathematica Hungarica 41, 1983
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ß) In I 2 we have
„ ( 1 \nx

s  (7 1 г)т г
hence

i j2  ✓  I  \  Ln * J  11 -v* [n.v/2] [ ,w ]

£2 ё 2 |r.,4(*)|p..k(*) = 2 + 2 =
X  I  y n  ) k = 1  f c  * = 1  y = [ B* / 2 ] + l

n3 / 1 \r  Л ["*1 1
S  K  —  to  | | х 2е - н,х n .Y + 2 5 „ ( ( r - x ) 2; x ) + — Д  J V t M J  =

3 * НтШ0 + * *M+r)
where we used (2.6), and the relations

^ ( ( í - * ) 2;*) =  K*(*)l s  + Л -

In I 3 we have (see ß)) | / [ “ j ~ / í  [~ j | S  w |y = j  ЬУ whichГ)

Гз - S J L  ,г-.‘(*)^(ж) -  $ 1иШ Н ,"дс)|;*)+

+ 2 1 •ArPn.kW] = 2  P..*-i(*)l =t=|M]+in j x vVn/Lw n *=["*l+i J x l \ri)

b) Using (2.2) we have jogain, I 2= 0 if

00 (  I s  \  [rtJt] OO

S'n(fö ',x) = n2 2  A l\ fa \  — )Pn,k (*) = 2  + 2  + 2  =  Í i+ Iü + Ia -
k - 0  n J  ü =  o k = l  fc =  [ялг] +  X

a) By Lemma 5

1^1 ^  e-"\n*\A \y-, 0)| +  n*\A\ ( / - / , ;  0)|) ^  * p |n -« + u > (J L - ) J  ■

• e~nx+ n 2\ f  (0 ) —f г (0 )je ~ "* +  3 / r w ( l'3c) e “ j  s

= /f-^ - |n _”+cü^—̂-||{(ил:)е_"х+(их)1+я/2е- ''дс+(1 +  (nx))2e~nx} S

“̂ИЧтг))-
Acta Mathematica Hungarica 41, 1983
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ß) In Г2 we have
1 ln

+

hence

J!(/ í ; ír) \ s f j \ r ‘ { ^ + u + v )\d “d v a ( I s , {s \A\ { f ; j + u + v ) \ +

+ “ + v )^J u J v s  T “  (-j^) (1 s  * s

y) For I 3 we get similarly

|r , |= s £ « > ( -T )  i  P - ( x ) ^ e . [ - L ) .
x  V f i i  ) k = l n x ] + l  X  V f i i  )

(3.4) and a) b) prove Lemma 4.
III. Proof o f (i) =>■ (ii) in the saturation case a — 1. First we prove 
LEMMa 6. For the function h(x) = x  log x we have

S„(h; x) —h(x) s C -  for . v s - ,  where C > 0 iv a constant, n n
Proof. A simple computation gives

00 ( к +1
S„ (h; x) -  /1 (x) = x  Д  (log ——  -  log x j  p„,k (x) =

I " f f c ,  fc) _ /  1 .
=  — « 2  — log— e мГ(м)n k=o\u u ) k\ n

with и—их. Thus, it is enough to show that иТ(и)шС for а ё  1.
F(m) is the у-coordinate of the weight point of the weight distribution: the

weight pk=Pk(u)=e~u~j^ is placed in the point lL; —log—j. Since for large

и and \k—u\S.Yu we have (see (2.4))

p‘ -  ^ « - ' w - ‘"№ ) i + o ( t i M ) + o ( t Ä ) ) .

an easy consideration gives the following: there are constants 0 < /1, y < l inde
pendent of и such that for large enough и we can replace the weight-system {p f 
by two such systems {/i[u}, {/;)2i}, i.e. Pk=P<P+P<k i, Pk \  pk2)= 0 in such a way

00 00

that 2 l ?(k ) = ŷ  У 1 2 ^ P (k )=l1 anc* Pk2) = ® f°r \k—u \^ß Y u  be satisfied. Thenk=0 k=0
we have automatically ( l —y)“1 k p ^ = u ,  i.e. the weight points *S, *S(1), *S(2)

k = о
Acta Mathematica Hungarica 41, 1983
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of the weight-systems {pk}, {/?]/}, {pk2)\ have и as their first coordinate. Let S=  
= (и; T(uj), S™=(u; Т™(и)), S™=(u; T ^(u )). We have T(u)= yT^(u)+
+ (1 — y)T(2)(u), and by the convexity of the function liu(x) = — log— we have

TW (u)^0  and Т 2( и ) ^ ^ ( 11и(и+ рУ й)+ 11и(и -[ 1 \Ъ)) since the positive weights

in {/42)} are all above the line joining the points (и — ßfw; — ß fu ))  and
(u+ß /г/; hu(u+ß У и)). Since

K ( « + p l Z ) + K ( » - ß f r ) =  l o g f l - ^ j + i l o g ^ l + ^ - j s i f i

for large и, we have for ы Ss u0 uT(u) s  ~^ß2- However, /;„(л') is strictly convex in
x and continuous in и which give easily that uT(u)^c  also for 1 ^ir=iun with 
a constant c>0.

We have proved our lemma.
After this we turn to the proof of the implication (i)=>(ii). We shall use an idea of 

A. Grundmann (see [1]), namely the possibility of the application of a convexity argu
ment.

Since S„(f)—f= 0 (n ~ 1), Lemma 6 gives that with a suitably chosen constant 
C we have for the functions

f ± (x) = Cx log x ± f(x )

the inequalities (see also the statement and the proof of Lemma 2) 

S „ ( / ± ; x ) S / ± ( * )  for х ^ 1 ; 5 „ ( / ± ) - / ±  = 0 (и -1).

Now at this point we could use the ideas of C. A. Michelli to conclude that the func
tions f ± are convex but for the sake of completeness and also to remain on an 
elementary level we prove this in

Lemma 7. I f  f(x) = Kx log .y + / ,  where f f C B, Sn( f ; .v) is f(x )  for x  is —-

and S „ (f)—f —0  i-^-j then f  is convex.
Assuming the validity of this lemma the proof can be completed as follows. 

The convexity of / +  gives d 2,/- ( /+ ; x)&0, i.e.

x) ~  -c d ^ ;( i lo g  /; x) & —с/г2.

Similarly, from f ~  we get d L j( /;  х)ШсИ2 and these together give (ii) for ot= 1.
It is left to prove Lemma 7. Let [a, h] be an arbitrary finite interval with a>0. 

It is enough to show th a t / i s  convex in (a, b). By S„(f)—f= 0 (n ~ 1), n(S„(f)—f ) 
is a uniformly bounded sequence on [u, b] so, by weak compactness, there is a 
gdL^[a, b] and a subsequence {nk} for which nk(S„k( f  )—f )  converges weakly to
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g on [a, b]. Since Sn( f ) —f=  0 on [a, b] for all large n, g is non-negative. Let F be a 
primitive function off .  By the above proved part of our theorem Sn( f ) ~ f~ 0 ( n ~ v)
implies ce(<5) = 0(<53/2) i.e. A\{f\ x) = 0((h/\>a)3i'2) on J- -̂, 2bj and so (as it is

well-known) /  is continuously differentiable and / ' £ Lip-^-, \ f '\s K a ~ 3,i on

[ - |,  2b]. By a simple Voronowskaja-type result n(S„(F; x) — F(x)) — - j / '( x )  uni
formly on [a, b]. Finally, let

• (k +  l ) /n

n f  f(u)duK A A x) = 2
k/n

p„Ax)

be the associated Kantorowich operator. Since / ' £ L ip -j on 2bj we have

and so

”T m d u = (M t 26))
by which, using (2.6), we get that n(Kn(f; x) — S„(f; x)) — —£ „ (/ ';  x) tends

uniformly to 0 on -^-b], and since / '  is continuous in [a, b] and |/ '(* ) l =
SK x~ 31* for all x we get easily that n(K,,(J) x) — S„( / ;  x)) tends uniformly to 

- j / '( x )  on [ö,b].
Let now b be any continuously differentiable function with compact support in 

(a, b). Integration by parts yields
D

/ (
h'(x) h (x)

j n ( 5 ,„(L'; x)—F(x)dx = -  f  x ) - f ( x ) ) d x -

-  f  n (K, ( /;  x) -  Sn ( /; x))dx.

Putting here n=nk and letting к tend to the infinity we obtain by the above consid
erations

j { A L - hA ] A
(xjdx /  h (x) /  h (x) 1f  - l - g ( x ) d x -  f  —  j f \ x ) d x ,

l. e.

/  h '(x )f'(x )d x=  -  f  h (x ) 7̂ - d x  = f  h'(x)G(x)dx
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2? (x)
where G(x) denotes a primitive function o f———. Since g(.r)SO, G is increasing,
and since the above equation holds for all h of the above kind we can deduce easily
that / '(x )= G (x ) +  con [a, b] with a constant c, i.e. / '  is increasing, thus / i s  convex. 

The proof o f Theorem 2 is complete.

§ 4. The proof of Theorems 1 and 3—6

Proof of T heorem  1. (ii)=>(i). Since S„(f; x )—f(x )—0 (  1) uniformly on 
finite intervals, we may assume x ^ l .  But for x s l  the proof of Theorem 2 gives
S „(/ ;  x ) - f(x )  = 0  = o ( l)  uniformly. Thus (ii) implies (i).

(i) =>-(ii). We follow the proof of (i)=>-(ii) in Theorem 1 in the case 0 < a < l.
Again, by the continuity of /  we may assume in the estimation of x)
that x S l. Let 0<h, <5<1 and (n + l)~ 1/2«=(5S/i~1/2. Let oá(l) denote a quantity 
which tends to zero together with S. By Part II of § 3 we have

i,)G
*)l =  o i(l)+ f f  IS "(f; x+s+t)\dsdt.

n 0
The proof of Lemma 4 gives for .v^ l

K < / ; , ) |  S (it))
and so

(4.1) co(h) S  o4( l ) + * ( y ) ‘(o4(l)+a>0)).

Since the boundedness of/g ives cu(l)<°°, (4.1) implies easily co(li)=oh( 1).
(ii) =>(iii) is standard: it is enough to consider the case x&1, and let m and M  

be defined by 2mS x < 2 m+1 and M =h [/2"'/}/oj(h). For g(t)—f ĥ ( t )  (see (3.1)) 
we have

\g (x )- f(x ) \+ \g (x + h Y x )- f(x + h \rx)\ Ka>(h).
By the boundedness of/ we obtain for some £€(x, x+ M )

I g ' C O I
g(x + M )-g (x )

M
and since

К
g,/(0 -  ОJ  W  01 ■+ U f a * / ;  01);

2sup 1/1 Ä
M -  M

К (h]Í2
Ii-2' ■ со

ь
к

Ti*2" co(h)(t^x)

we have,

1*401 ^  1*401 + f  g"(r)dr ~~M + K  M  (X> X + M ))2mh2
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and so

|g(x)-g(x+/i)/x)|
x+hfx

f  g '(0 dt

which proves (iii).
The other implications in Theorem 1 can be proved very easily.
Proof of Theorem 3. (ii) implies easily the uniform continuity of f(LCB (see 

Theorem 1) by which Sn( f ) —K„(f)=o( 1) uniformly, thus Theorem 1 can be applied.
Conversely, if Kn( f ) —f= o (  1), then, since \K'„(f; x)\s2n  sup |/ |  we have that 

/  is uniformly continuous and we can apply again Theorem 1 to derive (ii).
Proof of Theorem 4. I. Proof o f (ii)=*(i). We show that (ii) implies \f(x+ h)— 

—f(x)\sK h*  uniformly in x, by which K„(/)  — Sn( f ) = 0 («~3) and (i) follows from 
Theorem 2.

Let first 0 < a < l .  For 0< x < /i (ii) (2) gives the desired estimate, and on the 
interval (h, °=) we get from (ii) (1) d£(/; x)^K(o{]/h)S:Khx and it is well-known 
that this implies \f(x+ h)—f(x )\^K h x (0<a-=l).

For a=  1 we argue as follows. It is well-known that (ii) (1) implies that /h a s  an 
absolutely continuous derivatitive on (0; °°) with \ f " ( x ) \^ K /x .  (see also § 3, III), 
(ii) (2) gives \ f ( t)—f(0)\^K h  for h^t= 2h  by which \ f \ t f ) \ s K  for some C€ 
q€(Ii, 2h). Since \ f" ( t) \-^ K /h  for t£(h,2li), we can infer \ f '( t ) \^ K  (li^ t^2 li)  
and hence \ f '( t ) \ s K  (/>0) (/j> 0 was arbitrary) and the proof is complete.

II. Proof o f  (i)=>(ii) in the non-optimal case 0 < a < l .  To prove (ii) (1), we follow 
the argument of § 3, II. If we write there K„ instead of S„ and apply Lemma 8 below 
instead of Lemma 5, everything remains valid, (ii) (2) follows from (ii) (1) and Lem
ma 8.

Lemma 8. I f  0 < a S l and for fdC B we have Kn{ f)—f= 0 (n ~ x) llien |/(0) — 
—f(h)\^K(h*+co(]fh)) (li>0).

(А.- + ОЛ:
Proof. Let F„ik=n f  f(u)du and An_k=F„tk-2 F ntk+1+Fntk+2. Ex-

k/n
actly as in the proof of Lemma 5 we get that

Ф т г )  = - i r + - ) + лШ«-« ‘- f  .• %
and so, using our assumption, we can infer the relations

A , : /(0) = FB>0+O(n-'), -  F ^ + A ^ + O  .

j  j  t  3 /6n 2/611 1/6/14

The expression of — A2n—A3„+— Ae„ gives 0 = n \ J  —3 J  +3 f  \f(n )du  + 

+  O(n_i)= d e„>0+ O (n_I) and А3„ -А ви gives that F«„,o-Тв„л =  0 (h~*). Using 
these we get from Вв„ — Авп the estimate / ( 0 ) —/  S  К  L-jj by

which we can argue for arbitrary /i> 0 as in Lemma 5.
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III. Proof o f (i)=»(ii) (1) in the saturation case a =  l. Above we showed that 
w(5)=0((53/2), and so (see §3, III)

S„(f; x ) - f ( x )  = (Kn( /;  x ) - f(x ) )+ (S n(f; x ) -K n( f ; x)) =  o ( i )

uniformly on each interval [a, b\ with 0 °°. Hence d f(/; x )S K abh2(x£ (a, b)) 
with a constant Äia fl depending on a and b (see the proof in §3, III which, using
(2.6), works also locally). It is well-known that the last relation implies that /  has 
an absolutely continuous derivative f  on (a, b), and since a, b were arbitrary, / '  
is absolutely continuous on (0, °°).

By our assumption n(K„(f)—f ) is bounded, and

"(*«(/; * ) - /(* ) )  x )-f(x ))+ n (K n(f; x )-S „ (f;  x))

tends to -^-x/"(x)+-^-/'(x) almost everywhere (see §3, III and the fact 

that n(S„(f; x ) - /(x ))  tends to j . r / " ( x )  a.e.), thus x /" (x )+ / '(x )= (x •/'(* )) '=
X

/ С
g(y)ch i.e. / '(x )  — —+ 

о x
] /

H—  j  g(r)ch, and since here the last term is bounded a n d /is  continuous at 0
x о

we get c=0  and together with this the boundedness of f ' .  Thus xf"(x)=g(x) — 
—f'( x ) is also bounded and an application of Lemma 2 and Theorem 2 (i)=>-(ii) 
gives the desired result.

For the proof of Theorem 5 see that of Theorems 1 and 6 below.
P roof of Theorem 6 . First of all let us notice that (ii) is equivalent to the fact 

that (1.1) holds for the functions/ ( •, y) and f(x ,  •) uniformly in у  and x, respectively. 
In fact, putting h2= 0 into (ii) we obtain (1.1) for f ( - ,y ) ,  and conversely, by adding 
the inequalities

-, y + K fy  ± K fy )- ,x )  = О (/if“), 2 A ljx ( f( - ,y + h 2fy y ,x )  =  О {iff), 

A ljy ( f(x + h i\ 'x ± h 1Yx-,-y,y) =  0(h f), 2 A l ^ ( f { x  + h f ' x \ - ) \ y )  =  Ofhf)

we get (ii).
Thus, (ii)=>(i) follows easily from Theorem 2, since

S„,,n(fl X,y)—f ( x ,  y) = S„(f( ■, y ) ;  x ) - f ( x ,  y) + Sn(Sm( f ( t :  - ) ;y)~  

- f ( t ; y ) ; x )  =  0 (n ‘ 4 n r " ) .

To prove (i)=>(ii), for a fixed n let m tend to the infinity in (i). Since /  is con
tinuous and Sm cowerges for bounded continuous functions, we get for each i
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This gives by
[2«*+Пуй] Í ( i \ \

(in fact, (2.6) gives 2  Pn k(x) = 0 (e ~ tnx) = 0 ( n ~ 1) for x s l / f / i  and ((nx)i+1l
k = [2nx]

Д | +  1)!)/((идс),/ | '! ) ^ ^ й / | for ]'n by which 2  Pn,k(x )=K/n)
к=[«("]

[елх+л/й] ~ / ; Í \
[ s .( / ( - .« ; * ) - / ( * .  7) |=  i™ 2  Д / ( 7 .

(их)' (туУ
I !

lly— f( x ,y )  + 0(n  J) = lim Í 2  2 \~ f{ x ,y ) + 0 { n  y)
I ! m - * - o o  j = 0 /

í : lim (n- *+m- * +  n-1)á ír / r

and so we have, by Theorem 2, th a t/( - ,  y) satisfies (1.1) uniformly in y. 
We have completed our proof.
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ON ALMOST DIVISIBILITY PROPERTIES 
OF SEQUENCES OF INTEGERS. I

P. ERDŐS (Budapest), member of the Academy and A. SÁRKÖZY (Budapest)

1. Throughout this paper we put e"nix=e(ct). We write {a}=a — [a] and ||a|| =  
=min ({a}, 1 —{a}) (i.e., ||a|| denotes the distance from a to the nearest integer). 
c , c x, c %, ... denote positive absolute constants.

We may say that the positive real number b is almost divisible by the positive

real number a if is “small”. More exactly, we may say that if e>0,
then b is e-divisible by a and a is an г-divisor of b: in this case, we write a\Jb.

The aim o f this series is to study the г-divisibility properties o f sequences of inte
gers. In particular, in this paper we study the г-divisibility by consecutive integers.

2. In Section 3, we show that if t is not much greater than n, then there exists an 
integer j  such that
(1) 1 i / S / l
and (n+j)\et. In fact, Theorem 2 in Section 3 contains this assertion in a sharper 
form, namely the interval (1) is replaced there by a smaller interval of the form
(2) 1 s j ' S  P(n, t)
(where P(n, t ) is much less than и).

Theorem 2 will be derived from Theorem 1 below; this section is devoted to the 
proof of Theorem 1.

T heorem 1. There exists a positive absolute constant Cj such that the following 
assertion holds:

Let e>0, n a positive integer satisfying n>/j0(e), t a real number such that
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3 10 P. ERDŐS and A. SÁRKÖZY

(note that for log  t 
lo g «

i.e., t ^ n ci, we have y  n2/(k+2) «= P s  n

( Щ and
(6) N(tx, ß) =  2  1 1SJ'=IP

(for 0  ^  a  <  ß ^  i) .

Then we have
(7) \ m ,  ß)-~(ß—tx)P\ <  eP for 0  ~  oc <  /1 =  1.

P roof of T heorem 1. The proof will be based mostly on Vinogradov’s ideas; 
see [3] and [4]. We need three lemmas.

L emma 1. Let a, ß, A be real numbers satisfying

(8) 0 <  d -= 1/2, A ^ ß - a ^ l - A .

Then there exists a periodic function ф(х), with period 1, satisfying
(i) ф(x) = 1 in the interval a +  — A S x ^ ß  — — A,

(ii) ф(х)=0 in the interval ß+-^- A ^ x ^ l+ tx  — ~ A ,

(iii) 0 ^ф (х)^1  in the remainder o f the interval a — / l s x ^ l + « * y  A,
(iv) ф(х) has an expansion in Fourier series o f the form

where
ф(х) = (ß — a)+ 2  (amcos2nrnx+bmsin2nmx)

m  =  l

\ a m \ - -  ■ \bm\ S  — ,

\a m \  — 2(ß  —  ct), \bm\ m 2 ( ß - o i ) ,

2 2 
laml <  ц г ш аА  ’ ^  ^  n 2m 2A  '

This lemma is identical with the special case r= 1 of Lemma 12 in [4], p. 32. 
Lemma 2. Let r, M, M ' be positive integers, u, w real numbers such that

(9) и S  2r+3,

( 1 0 )  O S v v á l ,

( 11)
and
( 12)

r+ 3
M ~  = и = Mr+2 

M  M ' =2 2M.
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Then we have 

(13) У e (—-—) <  c2 M1 _1/2P'  +D u1,ir" 1(r +1)Iog иш=м vm + w7
where c2 is an absolute constant (independent o f r, M, M ',u ,w ).

This lemma can be proved by using Weyl’s method and it is identical with Theo
rem 1 in [5], p. 22.

Lemma 3. There exists an absolute constant c3 such that i f  к, P are positive inte
gers, Q is an integer, a, <xk, a0 are real numbers,

(14) 
and
(15)
then writing 

we have

(16)
Q  +  P

2  e(f(n))
n = Q  +  l

к = c3

0 < 2 ( / c + l ) P | a |  =  1 ,

f( x )  = <xxk+1 + akxk+ ■■■+<x1x+<x0,

2  e 15k\og*k p l - l /e U U o g l t  l 0 g  P  Jr 2 \'x \~ l lk.

This lemma can be derived from an estimate of Hua (see [1]), and it is identical 
with Theorem 4.2 in [2], p. 286.

Now we are going to show that the assertion of Theorem 1 holds with

Cj =  max (c3 +  y ,  20)

(where c3 is defined in Lemma 3).
In order to prove (7), we may assume that e< 1 and let t], q be arbitrary real 

numbers satisfying 0 S i/< ß S l and

(17)

Then writing

(18)

8 . E
4  =  e - ^ i - j .

x = h -4 z>  ß = e+4z>  ^ = i - .16 16
8 1we have 0<d = —<-=- ando 2

4 < { s e - , < H  =  *

4 ~ t ) +
Acta Mathematica Hungarica 41, 19S3



312 P. ERDŐS and A. SÁRKÖZY

so that (8) holds and thus Lemma 1 can be applied with the numbers a, ß, A defined 
by (18). We obtain that there exists a periodic function F(x) with period 1, satisfying
(19)

(20)

F(x) =  1 for t] ^  X S  Q,

F(x) — 0 for p +  x S  1+tj—^ ,

(21) 0 S  F(x) ^  1 for all x,
and such that it has an expansion in Fourier series of the form

(22) F(x) = [q — >/ +4-1 + 2 (a m  c o s  2nmx+bm sin 2nmx) =
V 8 /  m = l

=  +  2 ^ e ( a m- i b j e ( m x )  =  +  2 Re d ffle ( » u )

where

(23)

(24) 
and

\dm\ = \am-ibm\=(\am\2+\bm\2)112 ^ <  - j jp
\dm\ = \am — ibm\ = (\am\2+ |bm|2)1/2 S  2 /2 ( /? -« )

(21) \d j  =  \am- ‘bm\ =  ( k , |2+ |b j 2)1/2 
Let

2/2 16/2 1
Ti“ em* cm*n2m2A

Then by (19), (21), (22), (23) and (25), we have

(26) , Д /  К тгтт!) “

-  к г Ш  - i ( « - » + T + Ä R* ^ ( - i 5 7 ) )  -

- Í Q - r i + j ) p + 2 ^ [ d m 2 e ( m - ^ ) ] +  Z  2  R e ^ e i m - ^ U ;
8 /  m =  1 (  j =  1 V n ~T~J'J  j  =  l m  =  m0 + l  \  П + J )

( e ) m» \ p ( mt \\ p +“
- 1 в“ ч + т ) р + ^ 1 <,-1 ^ е Ьт?Г +  ^  2  14.1 =\  о /  m =  1  | j  =  l  \  ^  1 7  / 1 j  =  l m  =  m0 + l

( £ 1 1 I 4- Г mMl „ +Г 3
— I Q~ ,7 +  '5 " P " b  2 —  , 2 ^ —~7~-г | м * ^  2 — 2 <V 8 )  mt i  m |j= i \ n + j )I m=m,,+i em2

( «L 'd * v i»>Ol з„ +” l10  — ^ —  2e I — 7 “ г | Н — 2* ^  7- - - -
V 8  у  * = i  m  j = i  v n + j ) |  e  m = m 0+ i ( m - l)m
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(  £ )  r, 1 I '  Í  mMl 3 n +” f l  n
=  I Q — *7 + "e~m5+  2 — \2 e  I—гт|Н — P  2 I------ i-------1 =V 8 ;  M=1  m |j t l  £ m=m0+ i V m - 1 m)

(  c l  !£• 1 I Z ,  (  mMl 3 „ 1
= le—»/+-Ö-I-P+ 2  — \ 2 e  —т 7 И — p  —  <l  8 )  B= im  \ f i i  \ n + j ) \  £ m0

(  £ 1 „ 1̂» 1 I JL f ml ) I 3 1
< e - ?/+-5-Lp + 2  — 2  e I—t t | h — р -щ -* —\ ' 8 ;  f i x  m |j=i V n+j/| £ 48/e-

(  3e 'l 1 I *  (  mMl= |е-»/+-7гк+ 2 —\2e\—г-Н-\  16) mti m j t l  ln + ./)

(27)

Now we are going to show that
pmo 1

nf?i m 16 P.

We have to distinguish two cases.
logtCase 1. Assume first that logn

2 ' Шf i i  V n + J  )\

Cj (i.e., In this case, we are going to
apply Lemma 2 with k, n, n+ P — 1, rut and 1 in place of r, M  M ', и and iv respecti
vely. In fact, for large и, (9), (10) and (12) hold trivially. (Note that k>~0 follows 
from (3).) Furthermore, we have

и — mt
and for large n,

и = mt = mnt 49

logt — f ( 2  logt -з) + з )  i ( t + 3 )
t =  n logn =  n 2 ^  log" > Ы п *

4 9  J5£i 4 9  i.(2J£ ii-3) + i  49 *+v
t =  —^  n logn =  —-г- n 2 '  log" ' 2 S  — n 2 <  n

so that also (11) holds. Thus we may apply Lemma 2. We obtain for läge n that

2
« 1
г m

v  e i - ^ 1  < 2 -  c2n1- 1/2fc-1-1/2'“ 1(t+1)(mi)1/ak"ltt+1)log mt 
j = 1 ( n + j ) |  m =  l  m

». J . vW»-4H-l)
<  У  c2 —  п 1_1/2к 1 —  m  log mt  <

m=l m V n )

<  c2m „n1_1/2 n ^ logn 7 lo g m 0i- =

C, i-i/3 k -i+ íi-Í2 3 2 gi-3 '|+ i'|/2> ‘-i№+i) 49<£i„ l 2t log" ) 2) Jog * Cl<
£2 £2 

Ce l - l / 2 * - l  +  i i ( *  +  l ) + - I W - l ( *  +  l)
< - 4 n  t 2 lo g n  =

£2
c ! 2  п 1 - У * - 1+ № + \1гк(к+1)\0 „ n f s  n l-U2*-l+V2»+Vak+l|0g n _

£2 6 £2

= f ln i-w ^ 'lo g n  =  if-n1- J/* +,n -W2*I+Mogn <  - l . [ „ i - i /2*+>] = T ? P16 16
which completes the proof of (27) in this case.
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314 P. ERDŐS and A. SÁRKÖZY

Case 2. Assume that

(28) 1 ^ - С1 =  т а х (Сз+У ’ 20)-
Let us write

jfit
/ . W =  2  ( - 1  V -S r* '.

(  =  0  П

Then by the well-known inequality

we have 

(29)

11 — e(a)I S  2л\<х\,

m0 1’O
m= 1 m

P ( t )l mo 1 
2 e \ m - f -  =  2  —j=:i V и + j ;  m= i  m

mo 1 I p /'+ “  m l ’ll

Ж т  U i U <" I) V ^ / ) r

P
Z ei=i

mi 1
n , 11+ — tl

mo 1
m^l m Í 4 /m C 0 +  2 °  ( - i ) ' ^ ' b

1 = 1 V l  = k + 2 1|

mo 1 ( I  p  f  I /  + “ > 4 ̂2 i r \\2е{Ш) + 2\е\ш+ 2
m =  l  m  t j l = l  1 = 1  I t  i= fc  +  2 И 1  '

"o 1
2 — =1 m 2  е(Уш0'))1+ 2 2лi=i i=i

mi +°°
—  2  ( - i ) 1n / = * + 2 Ш1

m =  l  t  7  = 1  j  =  l  И  \ U  /  J

mo (\ p . 4
2  2  «(/m(i))-1=1 Ui=i

-b 2яГ
pk + 3 
n k  + 3 = 2

m =  l
2K /m 0 ')) + 2 ™ « / ^ -

p

2i=i

2 2 ‘(Ш)
m =  l  | j  =  l

49 P*+3+  27C-5T-Íe2 * nk+3 m = 1 2  p(/m0')) 
1 =  1

400 Pk+3
"i Tö~ ^"

Now we are going to estimate the parameters ír, P. Firs we note that in this case,
(4) can be rewritten in the form

(30) fcS i £ i l + 1 fc +  1 
log n 2

i.e.,
(31) jjk-l/2 iS t <  nk+1̂ 2.
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Furthermore, with respect to (31) we have

(32) />=[(— ) j - ( i 7 _ )  ■ (? = * )

fc + 5/2^1/<*;+ 2) ]  (  „ k + 5 /2  \  !/№ + *)
and

(33) [m
/ „ Е + 5 /2 Ч 1

U * +1' 2 J

pl*+5/2j - 1

чк + Ь / 2 \ 1/ ( к +2'> 1
_  l — n 2/(4 +  2 ) _ 2  >  _  n 2/(fc+2)

(note that n2̂ k+2)->- +  =» follows easily from (3) and (30)).
For large n, the last term in (29) can be estimated in the following way:

(34) 400 k+ 5/2 \ l / ( * + 2 )Pk+3 400 [fn*+5/2'1
~nk+2 ~ I 2“ ? [ l  T~ J

fc+ 2

ЦЛ+3

400 n*+5/2 P 400 1 £
■ t ----:------—  =  — ----— P < — P.

Finally, we estimate the sum 

№  

log

2  e{fm(j)) by using Lemma 3 with 0
j=i

f m(x) in place of Q and f(x), respectively. In fact, by (28) and (30) we have

log
t 1 i f n i
n 2 ~ Cl 2 -  Г 3+ 2) 2 ~

so that (14) holds. Furthermore, with respect to (30) we have

(35) a = ( -1 ) ‘+1
mt
Л+2

t J££L-k-2
=  m —r r r  =  mn 1о*л

n K’r*

^  m0m log” 2' 2 <  —— n~3/2.

(3), (30), (32) and (35) yield for large n that

0 •< 2(L + l)P |a | <  2 jr log t | 
к log n ^

2 )

л ( 1 (log n)s/i i 31 49 n~3/2 <  (logn)1/4~Vlogn log log log n 2) П 2Er

and

9* Acta Mathematica Hungarica 41, 1983
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so that also (15) holds. Thus Lemma 2 can be applied, and we obtain that

(36)
j - 1

;2em Io*3*pi-i/Hksiogk log p-f-2ia\~1/k.

First we estimate the first term on the right hand side. By (3), (30), (32) and (33), 
for large n we have
(2~J) 2eiaklot*k pi-i/e*:2iog/i j0g p  _

=  2P exp ( l 5к log2 к -  +  lo S '° g  P )

2 P exp »(£=-4 M£r4 )-
—(»-gM#-)-

l0gl„2/(«+2) 

6k2 log к 

log n

-+ log log n3 /(t+ 2 )

6k2 (k + 2) log к + log log«

<  IP  exp 

2Pexp

( 1 (logn)s/4 ( 1 (log n)5/4l logn
i30 logn log log n ° g4  logn log log n I 18/c3log к + og ogn

log n30 (lo8-”)1- (log log ii)»- 
log log n “(&4 M£i4 )

< 2P ex p  31(log n)1/4 log logn —

2Pexp 31 (log n)1/4 log logn —

+ log log n

log n ■

100 ( Ю  4
log t }
log n )

log n

100 '(log n)1/4> 
l log log n J

3, _  (logn)1/4
g log log n

2 P exp 31 (log n)1/4 log log n — logn

100 ..(lor y-‘. log log .(log log n)3

— 2P exp ^31 (log n)1/4 log log и — (l°g n)1/4 G°g log n)2 j  <  

<  2P exp  ̂- - j i j -  (log n)1/4(log log n)2) <  P exp (—(log n)1/5)
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With respect to 20, (3), (28), (30), (31), (33) and (35), for large n the
second term on the right hand side of (36) can be estimated in the following way:

(  m t  \ ~ 1,k ( n k + i Y IK fn*+2 V/K
,38, 2 W ^ - 2 ( ^ )  - » ( V )  S 2 ( V )  -

/  п к + Ь / 2 \ 1/к (  Пк +  5 /2 \1 /(,:+2> / j j f c + í / í s V f c - l / t t + í )

= 2 l — ) "~ ‘m  = 2 {— ) l— J

„М- 2\г/к L + 2\l/*=

.* + 5 /2  \  */*(*+*)

- 1 / 2*

( „ * + 5 /2  ( „ * + 5 /2  \

“  4P \ 1  )

t + 5 / 2 l W ‘ + 2 )

— 4 р п в/ВД+2)-1/2* _  4/>n (l0-*)/2*<*+2) g

S  4 р и (*/2-*)/2*(* +  2) _  4 p n - l /4 (*  +  2) <  4 p n _l/12fc __

4/* exp log /I 
12/c 4/5exp log n

4P exp log n
12((10£»Г  +  1)

( log log n 2)
P e x p  ( ' -  ( ló g » )!??) -  ^  exP ( -  d o g  и)374)-

Hog log)

(29), (34), (36), (37) and (38) yield for large n that

v 1 I v Í 1 'll 3z  —  z e m — г т |  <  2„=1 ш |j=i V n+./7| ,„=1 2 «(/-(/)) 
7=1

400 Pk+3 
"1" e2 nk+3

<  2  í í , exp(-(logn)1/5) + 7Jexp(-(logn)3/4)) + —  P <w=lv 7 3Z

<  2m0P exp ( -  (log n)1/5)+ P =

= 2 ( H  + *) p “ P r  < ^ * ^ 4 '
which proves that (27) holds also in Case 2.

(Note that like Case 1, also Case 2 could be treated in a simpler way by replacing 
Lemma 3 by Theorem 1 in [5], p. 47; in fact in this way we can show that the exponent 
5/4 in the upper bound in (3) can be replaced by the greater on 3/2, but, on the other 
hand, this methods yields the much worse estimate P ~ /i1~c(l°s,/l0s',)-i ^ n r~c/k2 
Гог P; this is why we have preferred the more complicated way based on Lemma 3.) 

We obtain from (26) and (27) that

7V(i/, q) ( 3£ ) „  £ „ ( г 'J
10"” ,?+Т б Г + Т б ^ - ^
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318 P. ERDŐS and A. SÁRKÖZY

provided that (17) holds:

(39) N(n, в) <  [ e - 4  + -j]  P for j ^ e - i / s l - 1

£
Assume now that 0 S ß -i;< e /4 . Then (39) yields (with >7+ — in place of q)

that

(40) N (ij, e) S  N q +  ̂  -  (e -  rj) jj  =  N  4  + j )  <

<  + + p  =  T f  -  (ß-»/ +  y )  P  for 0 S ß - / ? < f i / 4 .

£
Finally, let 1——<g — tj= l. Then we have

(41) N(tj, q) S  P  =  |( l  — P <  ( e - 'i  +  y-)*’ for 1 “ j  <  Q~n = 1- 

(39), (40) and (41) yield that

(42) N(r], q) <  |ß  —>7 +  y j  P f°r O S g - i / l l .

On the other hand, by using (42) repeatedly, we obtain that

(43) t f (a ,  ß) =  N(Q,  1 )-A (0 , a ) - N ( ß ,  1) -  P - N ( 0, a) -  N ( ß ,  1) >

> P - ( « + ^ ) p - [ i - ß + Y ) r (ß—a~E )P  for all 0 ^ a < ^ g l .

(42) and (43) yield (7) and this completes the proof of Theorem 1.
3. In this section, we prove the following consequence of Theorem 1:
Theorem 2. Let  e>0 , n a positive integer satisfying n ^ n fic ), t a real number 

such that

n <  t <  exp((log n)5/4) 
log log n)'

Let us define к by (4) (where cx denotes the constant defined in Theorem 1), and write

n i f  n <  t <  n2 
_  [n1_1/2k + 2] i f  П2 ^  t <  Пс 1

^  ~  [Y  iA + 5/2  \ l / ( * + 2 ) - |

[(— ) ] V  *  '■
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Then there exists a positive integer j  such that

(44) 1 S / S P  
and
(45) (n + j\ t .

Proof. We have to distinguish three cases. 
Case 1. Let

(46) / !< /■ <  ел2.

If л</-=2л+2, then (45) holds with

{1 for n < i < H + l  
[/—ri\ for л+1^/<2и +  1 
n for 2 n  +  l ^ t < 2 n + 2

(for large ri). Thus we may assume that 2«+2 ̂  ; hence

Let us write t in the form

(48) t =  | —ij-j-J (n +1) +  r where 0 S r < n + l  
and

(49) t =  [-^-] (2n) +  s where 0 á  s <  2n,

respectively. (48) and (49) yield that

(50) 2

By (47), (48) and (49), we have
[ Ы т Ь Ы ] " = Ы т (и — 1) — r + s.

(51) I rc ̂  j ] (n — 1)—F+s S  2(n—1)—r >  2(n — 1)—(n +  1) =  n—3 >  0 

for л>  3. (50) and (51) yield (for л>  3) that

Thus there exists an integer j  such that i = /ё  и—1 (= /*—1) and

(52) ln + j\ L n + j + i J
We are going to show that this integer j  satifies also (45).

Acta Mathematica Hungarica 41, 1983



320 P. ERDŐS and A. SÁRKÖZY

Let us write ű=[ — . Then by (52), we have — -----, * , < ,ln+/J n + j  n + j  +  1
thus with respect to (46)

0 S n+ j
q .

n+ j n+ j + 1 (n+j) (n+j + 1)
which implies (45) and this completes the proof of the theorem in this case. 

Case 2. Let
(53) sn2 S / <  n2.
For j=  1 , 2 , n —1, let

d;j n+ j n+ j + 1 (n+ j)(n+ j + 1) ■

0 <  d„_1 -< d„_a <  ... <  d2 <  dx.

By (53), for sufficiently large n we have

Then obviously, 
(54)

(55) d\ d, |_ [и/3] ( n + 1) (n +  2) (2/i — [n/3]) (2n — [n/3] +1)
81 t i t  

Ш п 2>'Т 'п 2

(56)

(4») ( 4 ”)'
Let p denote number such that

10
—  < P

20
£

(It is well-known that for a'S 2, there exists a prime number q such that x<q<2x.) 
(56) yields that

J - T Ö -

(55) and (57) imply that there exists an integer a such that

a + 1(58)
Then either
(59)

'« - [ n /3 ]
a
P d1-

(a, p) = 1
or (a+1, p )= l  holds; we may assume that (59).

(54) and (58) imply that there exists an integer и such that

(60) 1 =  и = n — [n/3] — 1 2 n
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and

(61)

(62)

1 Ll Jdu+г — <  “M.

By (53), for /= 1 ,2 , — 2 we have

t
° " dj dj+1 (n+j) (n+ j+ l) (n + j + 1) (n + j+2)

2t
(n+j) (n+ j + l)(n+ j + 2) IIя n 

(61) and (62) yield that

— (for j  = 1, 2 , n-2) .

0 <  S3 du- d u+1 <  A

hence

(63) _2
n

Obviously, there exists an integer b such that

(64)
Define the integer / by
(65)
(such an / exists by (59)) and
(66)

2 P 'n + u p 

al =  b (mod p)

1 ^  l ^  p.

Put # =  ——— and j= u+ l. (56,) (60) and (66) yield for large n that

(67) . . . .  . 2n 2 n 20 2n n
(1 - ) /  = «+/<= -3- + P  <  -3- + —  <  —  + J  =  "•

For i '= l ,2, и—1 — и, we have

û + i — ^u +  (̂ ii + l ~ ^ u )  +  (^u + 2_ ^ u + l ) +  +(d„ + i ~  ̂ 11+ i - l )

thus by (62) and (63),

(68) du+i~ -  |d„+i—d„| +

, , , ,  , , , ,  j , 2 . 2 2  2(i + l)
— |dM+i—d„| +  |dB+ 2 ~ +  +  ^u+i-il+— <  * — ~F — —-----—

(for 0 s  i ^  л — 1 — u).
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Furthermore, we have

t _  t _  t ( t t \ ( t t
n + j n + u + l n + u \n  + u n + u + l )  Vn +  M +  1 n + u+2

1-1 n + u + l ) n + u и и t«И + 1 ... u|< + |- 1 —

b — la i-}(
~~ 2  l̂ n+ii=oV

a ) _ r ' b '
1 + <7— 2o (̂ и+i- a )

P p ) - К n + u P> p>

thus with respect to (56), (57), (64), (66) and (68)

t t b l -l
+ 2

i = 0
d an+j 4 n + u P
du+i p

. - а д + i)
2 p it,о и

< J _  2/2 ^  1 2p2 e 800 e e
-  2 p + и  -  2 p + n  ^  20  +  e 2n  ^  2 0 + T < £

which implies that 

(69)
n+ j

e.

(67) and (69) show that (44) and (45) hold also in Case 2. 
Case 3. Let

( (log n)5/4)
" = i < e x p l b i l ^ 7 j -

g
Then by using Theorem 1 with in place of e, we obtain for large n that

2  1 =  Z  2  1 =  ЛГ(0,е) =
l S j 'S P  l a  j s p  1 S J S P

'•*ш  Ш < - “ Ш -

s P + ( N ( 0, e ) — eP) ^  eP —|iV(0, e ) — e P \  >  г Р — — P = — P  >  1

which shows that there exists an integer j  satifying (44) and (45), and this completes 
the proof of Theorem 2.

4. In this section, we show that if t is large (in terms of n) then it may occur that 
there does not exist an integer j  satisfying l ^ j s n  and (n+j)\et.

Theorem 3. Let > e=*0, <5 > 0 . Then for и > и2(е), there exists a real number
t such that
(70) n <  t <  exp ((2+<5)n)
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and there does not exist an integer j  satisfying 1 ~ j= n  and

<71) (n+j)\J-
flProof. Let t =  [1,2, ...,2 и ]+ у  (where [1,2, ...,2и] denotes the least com

mon multiple of the numbers 1, 2, ..., 2n); then » < / holds trivially. For p^2n. 
define the positive integer ap by

p a P  s 2 n <  p x P + 1 .

Then by the prime number theorem, we have

log[1, 2, ..., 2n] =  log ( Ц  p*p] = 2  log p*p~2n
\р^2л ) p̂ 2n

so that for large n,

t =  [1, 2, ..., 2n] + y  <  exp [(2 + y ) " ] + y  exp ((2 +5)n)

which proves (70).
Furthermore, if 1 S jS n  then

f  t } J [1, 2, ..., 2n] + n/21 J [L2, 2/1] n ) j __ n__ 1
I n + j J  1 n+ j j 1 n+j 2 (n + j)i I2 (n+ / ) J '

Flere we have
1 _  n n и _  1
4 4n ~~ 2(n+j) 2n 2

hence

M —4 ln + j
which implies that

J

n [ n 1
2(n~+J)f -  2 (n+j) ^  2

Thus (71) does not hold which completes the proof of Theorem 3.
5. Note that there is a considerable gap between Theorems 2 and 3. In fact, let 

f(n , s) denote the infimum of the real numbers t such that and there does not 
exist an integer /  such that 1 =j=n and (n+ j)\j. Then for и>и0(е), Theorem 2 
shows that

(72) ч е т - «/<■•«
and on the other hand. Theorem 3 yields that 

(73) f(n ,  e) ~k exp((2 + <5)n);

we guess that both the lower estimate (72) and the upper estimate (73) are far from the 
best possible.
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BEMERKUNG ZU DER ARBEIT 
„ÜBER DIE LEBESGUESCHEN FUNKTIONEN. II”

K. TANDORI (Szeged), Mitglied der Akademie

1. Es sei A= {A*}~ eine monoton nichtabnehmende Folge von positiven Zah
len. Für ein orthonormiertes System ip = {cpk (л')}Г im Intervall (0,1) seien

2  <Pk(x)(pk( 0 dt, L*((p;x)— f  maxУ 1 <Ч-Си

у  <Pk(x)(pk(t) 
k= 1 h

0
1

2  <Pk(x)(Pk(‘) dt,

dt, L* f-^L-; xl = f  max
l  vT )  </ lsvsn

Z  <Pk(x)(Pk(t)
k t\ к

Ln(v;x) = f  
0

L\ ~ W ' ,X ) = I
(n = l,2 , ...) die verschiedenen Lebesgueschen Funktionen.

Offensichtlich gelten
L„((p;x) ^L*((p;x), L „ ^ = \x ^  =s L ^-y= r,x^  (x£ (0,1); n = 1 ,2,...). 

Weiterhin kann man leicht zeigen, daß die Implikationen

dt

Ln\̂ j=- =  0(1) (x£ (0,1); n — 1,2, ...)=>Ln(cp; x) =  0(A„)

(x£(0,1); n = 1,2,...),

L" { j £ ’x ) -  0(1) (x6 (0,1); n = 1,2, ...)^L n*(<p; x) = 0(A„)

(x£(0,1); n = 1 ,2,...)
bestehen. Aus der Bedingung

<1) L „* (-^ ;x ]  =  0 (l)  (x£ (0,1); n =  1 ,2 ,...)

folgen also die Bedingungen

(2) Ln((pt; x) =  0(A„) (x£ (0, 1); n = 1,2,...),

(3) L*n(<pi; x) = 0(A„) (x£ (0,1); n = 1 ,2 ,...),

(4) Ц  

In der Arbeit [3] haben wir den folgenden Satz bewiesen.
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3 2 6 К. TANDORI

Satz A. Es sei X eine von unten konkave, monoton wachsend gegen Unendlich 
strebende Folge von positiven Zahlen mit A„ =  О (log2 n). Gilt fü r  eine im absoluten 
Betrag monoton nichtwachsende Folge {ak}

2  ath  = °°.*=i

so gibt es ein orthonormiertes System <p= {(рк(х )}Г im Inervalle (0, 1) mit (2) derart, 
daß die Reihe

(5) 2  ak<Pk(x)k = l
in (0, 1) fast überall divergiert.

In der Arbeit [4] haben wir dieses Resultat verschärft.
Satz B. Unter den Bedingungen der Satzes A  gibt es ein orthonormiertes System  

<P= {<Pk(x)}T im Intervall (0, 1) mit (4) derart, daß die Reihe (5) in (0,1) fast überall 
divergiert.

In dieser Arbeit beweisen wir den folgenden Satz, der alle erwähnten Sätze 
verschärft.

Satz. Unter den Bedingungen der Satzes A gibt es ein orthonormiertes System 
cp={(pk(x)}i in (0, 1) mit (1) derart, daß die Reihe (5) in (0, 1) fast überall divergiert.

Bemerkung. Aus diesem Satz folgt die folgende Behauptung. Unter den Be
dingungen des Satzes A gibt es ein orthonormiertes System {%(*)}“ in (0, 1) 
mit (3) derart, daß die Reihe (5) in (0,1) überall divergiert.

Diese Behauptung verschärft einen Satz von L. Csernyák [1].
2. Zum Beweis des Satzes benötigen wir den folgenden Hilfssatz.
H ilfssatz. E s  seien 2), q positive ganze Zahlen. Dann gibt es ein in (0, 1) 

orthonormiertes System von Treppenfunktionen gt(p ,q;x) ( /=  1, ..., 2pq) mit den 
folgenden Eigenschaften.

Es gilt

/ max
l ^ v ^ 2  pq 2  gi(P><F,x)gßp,q;t) 

1 =  1
dt = Cj log2p (x€(0,1);C, S  1),

und es gibt eine einfache Menge E (  (0,1)) (d. h. ist E die Vereinigung endlichvieler 
Intervalle) mit mes(£)=-^- derart, daß fü r  jedes x£E ein Index m(x)(<2pq) 
existiert, fü r welchen g jp , q\ 0 ( /= 1 ,..., m(x)) und

">(*) ___
2  gi(p, q;x)*s C2\2pq logp 1=1

erfüllt sind, wobei C2 eine positive Konstante bezeichnet.
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Beweis des H ilfssatzes. Der Beweis kann mit der in [2] angewandten Methode 
geführt werden. Es sei

f i (P' , x )  =  jc _ p _ i _ \ j 2 . für ( k = í , . . . , 4 p ; l  =  í , . . . , 2 p ) .

Dann ist

f  f f  (p;x)dx =  — Д  (k _ p _ l _ l/2y  V = -> 2p),

woraus

(6) f f f ( p ; x ) d x ^ - ^ -  (1 =  1 , . . . , 2 p )
P о P

folgt. (C3,C 4,.. .  bezeichnen positiven Konstante.) Wir setzen
4

<*ij =  /  /*0 ; *)/Др; (1 Ä i j  Ä 2p; i ^  j).
0

Durch einfache Rechnung folgt für i> j

= j_ ^  1___________ 1
a‘y p k=i k — p — i —1/2 k — p —j —1/2

- p - j - 1 / 2 )  "

1 f 3p_i 1 3p-J 1 )
=  P (i-J ) U i ^ p - i T ^ I / I 7^1/2 J =

1 1 3 -̂y 1 'j
=  p (i-v ) L  Д - 1  7^172 - ,=3Д-+1 7^172J ’

und so gilt

(7) lai,jl — —f- (i,j = 1, ...,2p;i 9̂  j).

1 4p ( 1
_  P()—j) Ж \ к —р — i - 1/2 к

Im Intervall [4, 5] definieren wir die Funktionen f t(p; x) folgenderweise. Wir teilen 
das Intervall[4, 5] in N=2p(2p—1) paarweise disjunkte Teilintervalle Ii}J(i,j= l,... 
...,N ; i?±j) gleicher Länge. Dann sei für 1=1, ...,2p

J i ( P ' , x )

für x e lu ;j = 1, ...,2p, j  5* /,

für x e l j j J  =  1, ...,2p ,j l, 

sonst.
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Die so definierten Treppenfunktionen f t(p; x)  (l—l,...,2 p )  bilden im Intervall 
[0, 5] offenbar ein orthogonales System. Wir setzen

a?= f j f ( p ; x ) d x =  f f f ( p ; x ) d x + 2 < xi.j- 
0 0 j*i

Aus (6) und (7) folgt

(8) (1 = 1 ,...,2p).
P P

Wir betrachten die orthonormierten Funktionen

f i p ;  x) = ^~Ji(Pl x) (l = 1 , 2p).

Diese sind offenbar Treppenfunktionen in [0, 5], weiterhin gibt es für jedes x£[2, 3) 
eine von x  abhängige positive Zahl m (x) <  (2p) derart, daß die Ungleichungen

">(*) ___
(9) f(P',x)  > 0 ( /  =  1, ...,m(x)), 2 x fi(P’X) ^  Ca]/2p log p

erfüllt sind.
Offensichtlich gilt

(10) /
0
4

max
l ^ v á 2  p Z / ( P ‘, x ) f i ( p ; t)

1 =  1
d t  — f  2  \ f i ( P l x ) f ( p ; t ) \ d t  =  

0 1 = 1

max
l ^ v g 2  p 2  f i p ; x ) f i p ;  t) d t +  f  max

J  l ^ v ^ 2 p 2  f i ( p ’ X ) M p ; t)i=i
d t  =

=  R 1( x ) +  R2(x).

Essei 0 S x < 4 p.  Dann gibt es einen Index k ( x )  (lsÄ (x )s4 p ) mit x£| k ( x )  — 1

к  ix) j. Nach der Definition von f ( p ;  x ) ,  auf Grund von (8) gilt

ip и  2p J
* i(x )=  2  /  2*=i fc-i !'=i

1

4p 2p

Q  2  2

«f \ (k(x)  — p  — l — l /2 )(k  — p  — l — 1/2)| 

1

j d t  S

táii=i |(k(x)—p —l — l/2)(k—p —l—1/2)| =

Ж { \к (х ) -р -1 -1 /2 \  + |k—p —I—1/2|) '
4p 1 2p

^ c 9+ c 7 2

Daraus folgt:
(11)

k=i \k—k(x)\  к
k^k(x)

Ri  ix)  ^  C10(log p)2 (x6 [0,4)).
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Weiterhin, bekommen wir auf Grund von (8)

*■<*>s  c " p , 1  i/.(p; * w *

2  P

=  CnP 2  TT
1

/fi \k (x)~p—l —l/2\ 2  mes (A jj/j  + Д  mes (/,.,) J/ j  N\alyJ\

12 P
- Cl2, 5 | I ^ ) - p - Z - l / 2 | ’

woraus
(12) /?2(.r) ^  C13 log p (x£[0,4))

folgt. Aus (10), (11) und (12) erhalten wir

(13) / max
J  l ^ v ^ 2  p 2 7 í(p;*)./íG>;0/-1

dt == C14(log p)2 (x€[0, 4)).

Es sei nun x6[4, 5]. Dann gibt es Indizes i (x) , j (x)  (1 ^i(xj) ,  j (x)  S  2p, i(x)  
j (x)  mit xfJ i(x)Jix). Es gelten f(p -,x) =  0(1 = 1, ...,2p, l Й i(x), l ^ j ( x ) )  und 
!/;(*)(?; x)\,\fj(x)(p; *)l = C15. Somit ist

04) / , maxq
Da

2 / ( p ' ’x)f(P '’ 0 dt sg C16p I J If , M (p; t)\dt+ f  If j M (p; t) |d /j.

/ l/,(p; 01*  = i j  | t ,  J , _ 1/2| +  J m e s И.,)]/"-у +

+ J m e s ( / if^ y t f | « , j  S  C17( ^ - + l )
jVl

besteht, erhalten wir aus (14):

f  m;a is tmax2p 2 / ( р '>х) / ( р ;0 dt S  C18logp (x6[4, 5]).

Daraus und aus (13) ergibt sich

(15) f  nii
s'

max
2p

Es sei
2  f ( P  Iх) f ( P  l О dt ^  C19(log p)2 (x6 [0, 5]).

g,(p;x) = У 5/(р;  5x) (x€(0 ,1); / =1, ...,2p).
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Offentsichtlich bilden die Treppenfunktionen gi(p; x) (/=1, ...,2p) ein orthonor- 
miertes System in (0,1). Aus (15) folgt

(16) / , max
v ^ 2  p

2  gi(P',x)g,(p;t) dt S  C19(log p)2 (x€ (0,1)).

„ Г2 3Weiterhin, folgt aus (9), daß für jedes х £ £ = | у ,  y j  ein von x  abhängiger Index 
m(x)(<2p) derart existiert, daß die Ungleichungen

(17)
m 00

g,(pix) >0(1 =  1, ...,m(x)), 2  gi(p;x) =  C2j2 p \o g p
erfüllt sind.

Für eine in (0,1) definierte Funktion f ( x )  und für ein Intervall I —(a,b) 
(^ (0 , 1)) setzen wir

/ ( / ;  x) = ( S )  «'>>
sonst.

Für eine Menge H(Q  (0, 1)) sei weiterhin H (/) die Menge, die aus H  unter der 
Transformation y —(b — a)x+a  entsteht.

Es sei y j  ( i= l,...,q ) , und wir setzen

gl + 2(i -i)P(p, q;x) = gM ; p;x)]fq (/ =  1 ,..., 2p; i =  1,..., q), E U £(//)•£ = 1
Auf Grund von (16) und (17) ist es klar, daß für diese Funktionen g i(p ,q ;x ) 
(/=1, ..., 2pq) und für diese Menge E  alle Forderungen des Hilfssatzes erfüllt sind.

3. Beweis des Satzes. Der Beweis des Satzes erfolgt mit der in [4] angewandten 
Methode. Auf Grund der Annahmen des Satzes gibt es eine nichtabnehmende, 
gegen Unendlich strebende, von unten konkave Folge p.= {p(k))k mit /i (1) ё  1 und

(18) ^ \ °  (k/ “ )>
für die

(19) J « & t ( * ) = ~  
besteht.

Nach der Voraussetzung über X und nach (18) gibt es eine positive Konstante 
C21( ^ l )  mit
(20) /<(k) S  C21 log2к (к = 2,3,...).
Wir definieren eine Indexfolge folgenderweise: Es seien mk= 1 und mk+1
die kleinste natürliche Zahl mit g(mk+1)>-2p(mk) (k= 1, 2, ...). Wegen der Konka
vität gilt

g{2mk) -p { m k+ \) ^  р(т к + 1)-р(пц) 
mk— 1 — mk — m1+ 1
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woraus

folgt. Nach der Definition von mk+1 gilt also mk+1>2mk. Daraus erhalten wir 
nach (20)

Q i log2(ni* + ! - mk) >  C21 log2 mk ё  ц (mk) (к = 2,3,. . . ) .

1st к genügend groß (k> k0), so gelten die Ungleichungen 
ц(тк)  ~  n(mk- l ) + l ,  ц(тк)/С1С21 ё  8, 

und es gibt eine positive ganze Zahl qk mit mk+1 — mk>2qk und

(Hier bezeichnet [a] den ganzen Teil von a, und Cx ist die Konstante aus dem Hilfs
satz.) Es seien и0=1, nk=mk+ko, qk = qk+ko (A: =1,2, ...). Dann gelten die Bezich- 
nungen

Ohne Beschränkung der Allgemeinheit können wir (А = 1,2, ...) voraus
setzen.

Wir definieren erstens für jedes к  (&=2) ein in (0, 1) orthonormiertes System 
von Treppenfunktionen q>,((k;x) (l—nk, ..., nk+1 — 1) derart, daß für jedes к

(21)

(22)

nk+i >  2nk (k = 1,2,...), 

p ( n k+i) S  4/z(/7fc— 1) (fc =  1, 2, ...),

(23)

(25) max №„<P„(k; x)+ ... + am(pm(k; x)\ ё  C23Ak (x f Ek)

gelten, wobei

bedeutet, und für die einfache Menge Ek (^ (0 , 1))

(26)
besteht.

Wir wenden zu diesem Zweck den Hilfssatz im Falle

P = . q = qk-i
10* Acta Mathematica Hungarica 11, 1983
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an. Die entsprechenden Funktionen bezeichnen wir mit gs(x) (s=  1, 2pq). Dann
gelten auf Grund des Hilfssatzes und der Ungleichung (23)

(27)
1

/0
maxl^V^2 pq 2  8Áx)gÁ0 dt ~  p(nk) (*€(0,1)),

( 2 8 )  l ä n ^ m i o p u  + " 8" ( Ú  +  • • ■ +  а Пк + (1 -l)(„k-п к- 1) + т8т (X)  I —

~  Е 24У  T t k —1  ^  n k  -f- i ( n k  -  n k  .. j )  1 7  ( П д )  ( x £ E ,  Í  1 ,  . . . ,  c ( k ) j .

Aus (27) folgt, auf Grund von (18),

(29) f  m a x  I 2  S:(x)gs(/ )J lSvS2P, | sé l X„k+S_x

2р̂ Ч  1 1 ) г1А  1- - - - - - - - - - - - : - - - - -  /  m a x
S = 1  V z „ k +  S- 1  A n k  +  s ' o  l s v s 2 p

di '1

2  g s ( x ) g s { t )s= 1 + d/

1 r+ - — / max/  J 1SVS2 p,
2  gs (*)gs (0 \dt s  2 4 ^  (*€ (0,1)).

Es seien л0=().
c(k)

Si 2  ank+j(nk-nk-i)/2 2  a>ik + j0(nk-nk-i) 0 1, c(/c)),J = 1 J0 = l

■vc(4)+i= 1 und 7i= ( j i_1, j ,) ( i = l ,  ...,c(k) +  l). Wir setzen

<?«(*■;*) /mes(/i) 8«  -  ( i l k  +  ( i  -  l ) ( n fc - B f c - 1) }  +  l ( 7 i  > Л")

für «*+(/— l)(wft—nt _1)Sn<wJi4-/(/ijfc—nk- x)+2pq, und /= 1 , c(Ar). Weiterhin 
sei

c(k)
Ek=  U £(/,).i=l

Aus der Definition der Menge Ek und aus dem Hilfssatz folgt (26). Endlich seien
J x,J%, ... paarweise disjunkte Intervalle in (.yc(t), .vc(t)+1) НИ) und die
Funktionen <pm(k ;x )  für nk + ( i - \ ) ( n k- n k_l) + 2pqSn<nk + i(nk — nk_x); /= 1 , ... 
...,c (k ) und für nk+c(k)(nk—nk-i)+ 2 p q ^n ^n k+1 seien der Reihe nach gleich 
mit den Funktionen

/»(*)
1

fmes(J„)
0

(x€Jn),

sonts.
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Aus dem Hilfssatz und aus (29) erhalten wir durch einfache Rechnung

/ max
” bS V 5 » ,

(p,(k;x)(p,(k; t)
ц(Пь) ĉ

2 ^ 1 ,  x €  U  I i ,

dt ;
i — 1

. 9 (cötj + l 1Ait
Daraus ergibt sich (24) wegen /i(/;)Sl (и=1). Endlich folgt auf Grund der Defini
tion der Funktionen <Pi(k; x) und aus (28) auch die Ungleichung (25).

Aus (19), (21), (22), aus der Monotonität der Folge {а*}Г und aus der Definition 
der c(k) folgt

(30) 2  Al
k  =  2

“  c(k)

2  2  (nk - n k- i ) a 2nk+i(„k-„k_l}ju(nk) S  C25 2  a 2n ^ ( n )  =k = 2 i = l n=n9

Wir definieren eine Indexfolge {kr}„J folgenderweise: Es sei k0—2; wenn kr{r=0) 
schon definiert ist, dann sei kr+1 die kleinste natürliche Zahl (größer als kr), für die

(31) 
und

(32)

r+1,

(K+i — n)

erfüllt sind. Wegen (18) und (30) existiert eine solche Indexfolge.
Dann definieren wir für jeden Index r (S l )  e>n orthonormiertes System von 

Treppenfunktionen |Д„(г; x) (n=nkr+1, ...,nkr+1+x—l) mit folgenden Eigen
schaften: Es gilt

(33)

und
(34)

/ . max £  b(r;x)<l/,(r;f)
А,

d t ^ C 22-  (x€(0,1)),

max
n. \an'l'„(r;x)+... + amil/m(r;x)\ S  ^ ( r - f  !)(*€#,),

wobei für die einfache Menge / / r(Q(0, 1))

(35) U3es(^r) S  -ij-
besteht.

Es seien nähmlich i0=0,

— 2  A kr+j / У
I J -  = t , + l

A l  0 = 1 , K + i-K ),

und st) 0 = 1 ,.. . ,  kr+1—kr). Wirsetzen
1Фп(г;х) =

Vmes(/i)
<Pn(Iil k;x)(nkr+i n <  nkr+i+1; i = 1, . .. ,k r+1- k r),
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und

нг =  * ' l Г‘Х +;ф .í—1
Aus (26) folgt (35). Aus der Definition der Funktionen iJ/n(r; x) und aus (25), (31) 
erhalten wir (34). Endlich bekommen wir aus der Definition der Funktionen x)
und aus (18), (24), (32) auch (33).

Endlich definieren wir durch Induktion ein orthonormiertes System von Trep- 
penfunkctionen <p„(x) (n= 1, 2, ...) im Intervall (0, 1) und eine Folge von einfachen 
Mengen Gr(Qj(0,1)) ( r= l ,2 ,  ...), für welche die folgenden Bedingungen erfüllt 
sind: Es gilt

(36) / , max 2  (Pi(x)cp,(t)
i=i 2,

dt == C26 (x i (0,1)),

die Mengen 
Zahl r gilt

(37)

Gr (r— 1,2,...) sind stochestisch unabhängig, und für jede natürliche

mes (Gr) = — .

Ferner bestehen für jede positive ganze Zahl r die Abschätzungen

(38)

(39)

max <Pl(x)(Pt(t)
2,

dt ^  C, 1
(^(0 ,1 )),

max \an4>n(x) + ...+ a m(pm(x)\ S  C23(r+1) (x€Gr).

Es seien /*  (n= 1, ..., nkl+1 — 1) paarweise disjunkte Intervalle in (0, 1), und wir 
setzen für n —\, ...,nkl+1 — 1)

1 (xiJZ),
<Pn(x) = У m es  (У*)

0 sonts.
Dann besteht (36) offensichtlich.

Es sei r0 eine positive ganze Zahl. Wir nehmen an, daß die Treppenfunktionen 
<pn(x) (n= l ,  ..., n*ro+1—1) und die einfachen Mengen G1,...,G ro_1 (б (0, 1)) 
schon derart definiert sind, daß diese Funktionen in (0,1) ein orthonormiertes System 
bilden, diese Mengen stochastisch unabhängig sind, ferner für r = l , ..., r0—1 (37), 
(38) und (39) bestehen.

Dann gibt es eine Einteilung des Intervalls (0, 1) in endlichviele disjunkte Inter
valle /* (s=  1, ..., <t) derart, dass jede Funktion (pn(x) (n = l, ..., nkr +1 — 1) in 
jedem Intervall /* konstant, und jede Menge G,(/-= 1, . . . ,r0 —1) die Vereinigung 
gewisser I* ist. Die zwei Hälften von 7* bezeichnen wir mit I*', bzw. mit /*".

Wir setzen

< P n ( x ) =  Z ' l ' n W ' l x ) -  2 Ф п ( 1 * " ' , х )  ( n  =  n k + 1 , . . . ,  щ  + 1 - 1 ) ,
S  =  1

und

Gro = и  (я го(/Г )и я го(/П ).
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Offensichtlich bilden die Treppenfunktionen <p„(x) (n= l ,  nkro+1—1) ein 
orthonormiertes System in (0,1). Die einfachen Mengen Glt ..., Gro sind stochastisch 
unabhängig, ferner besteht (37) auch für r=r0, auf Grund von (35). Aus (34) er
halten wir sofort (39) für r=r0. Endlich bekommen wir aus (33), (38) für r —r0 
durch einfache Rechnung.

Das ganze Funktionensystem [<pn (*)}“  und die Mengenfolge {Ог}Г mit den 
geforderten Eigenschaften erhalten wir also durch Induktion.

Aus (37) folgt

2 mes (Gr) = °°.

Da die Mengen Gr stochastisch unabhängig sind, erhalten wir durch Anwendung 
des zweiten Borei—Cantellischen Lemmas, daß

mes(lim Gr) — 1.

Daraus und aus (39) ergibt sich, daß die Reihe (5) im Intervall (0,1) fast überall di
vergiert derart, daß

____  N

lim 2  “A W  = °°
n =  l

in (0,1) fast überall gilt.
Endlich sei n eine positive ganze Zahl. Ist 1 Sn<n*1+1, so gilt

(40) Z íM L - j j c J s C *  (x€(0,1))

auf Grund von (36). Ist aber и*Го+1ёи<и*Го+1+1 mit einem Index r0( s l ) ,  so gilt

(41) L* ; x \ S  f  max <Pi(x)<Pi( t )

i=i

" (p,(x)(p,(t)

d t +

+  2  f  m ax \ 2  - - r  \ d t  +
r = i  J  V +1“ v' =4 + i + 1 l i = nk , + i

+ f  max
o’7 V  +iSv*;n

( P i ( x ) < P i (  0
Äi dt ^  CaT l̂ + Y + .-.-b— j á  C28 (x€(0,1)).

Aus (40) und (41) ergibt sich:

L*n\ ^ =  ; xj  = 0(1) (x€ (0,1); n = 1,2,...).

Damit haben wir unseren Satz bewiesen.
Auf Grund der Beweisführung kann man sehen, daß für dieses Funktionensystem 

{ < Р к ( х ) } Г  auch
\<pk(x)(pk(t)\y

gilt.
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A GENERAL MOMENT INEQUALITY 
FOR THE MAXIMUM OF THE RECTANGULAR PARTIAL 

SUMS OF MULTIPLE SERIES
F. MÓRICZ (Szeged)*

Let (X ,A ,p )  be a positive measure space and let k ^ Z fc z
a V { X ,A ,n ) where Z1={1,2, ...} and у is a fixed real, y ^ l .  Studying the a.e. 
convergence of the single series

denote by S (.f)  and M (.f) the partial sum of (1.1) extended over the integers contain
ed in the interval У=(Ь1,Ь1+т1] and the maximum of the consecutive partial 
sums extended also over j , respectively. That is,

Here and in the sequel b1£ Z + = {0,1, . . .} and px, further, mx — \J\
denotes the number of the integers contained in the i n t e r v a l W e  note that clearly

M {J) =  max \S(J)\ Ш 2M{J).

A nonnegative function f ( J )  of the interval . /  with integral endpoints is said 
to be superadditive if for every J  and for every disjoint representation J r1 U =  A
we have the inequality / ( ^ i )  +/(«^г) —/(• /) • Further, let <.p(tx, mx) be also a nonne
gative function defined on R + X Z x where R + is the set of the nonnegative reals.

A recent result by the present author (1980) reads as follows.
T heorem 1 ([7]). Let y ~  1 be given. Suppose that there exist a nonnegative 

and superadditive function f ( J ’) o f the interval J ,  and a nonnegative function (p{t1, mx), 
nondecreasing in both variables, such that for every J  we have

* This research was conducted while the author was on leave from Szeged University and a 
visiting professor at the Johns Hopkins University, Baltimore. The author gratefully acknowledges the 
support received from the United States Office of Naval Research under contract N00014—79—C— 
0801.

1. A preliminary result

( 1 . 1)

and

f  \S(J)Ydp =S f{J )q > '{f{J ), mx), mx -  \J\.
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Then for every У we have both

( 1.2)

and

f M ’^  - f e ] ) } ’
In this paper the integrals are taken over the whole space X, [/,] is the integral 

part of t±, and the logarithms are with base 2. Furthermore, in the case = 1 we 
agree to take [logmj] — 1 to be equal to 0 and [m1/2t i+1] to be equal to 1 on the 
right-hand side of (1.2).

2. The main result

Let Z \  be the set of all (/-tuples k= (k l , kd) with nonnegative integers 
for coordinates, where the dimension d is a fixed positive integer. As usual, k S m  
iff kj-^rrij for each j, and we write 1 =(1, ..., 1). If all the coordinates kj are positive 
integers, we write k£Z(.

Let {£*=£t (x): k£Z(}czLy(X, A, p) be given and consider the (/-multiple 
series

(2. 1) 2f» = ....кл-

ln the following, we denote by
R =  R(b, m) = R(bl t ..., bä; ml t ..., md) =

d
= {k£Z(: bj <  kj ^  bj + mj for each j, 1 ^  j  Ш d} = X (bj> bj+ntj]

an arbitrary rectangle in Z{ where b£Zd+ and m£Z{. The rectangular partial sum 
S(R) of (2.1) extended over the lattice points contained in R, and the maximum M(R)  
extended over R to those rectangular partial sums whose left-hand bottom corners 
coincide with that of R, are defined as follows:

and
kdR

■■ S(b1, ..., bd; m1, ...■» md) =

bi+mi ba+md
2  -  2  4 , .!=X+1 kd=bd+l ...kd

-- M{bx, ..., bd; mlt ..., md) =

... max I S(b, , .4 ISPjSm, 1 ■ bd; plf

respectively. Here and in the sequel b£Zd+ and mdZf;  further, nij denotes the num
ber of the lattice points contained in the rectangle R in a row parallel to the y'th
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axis, 1 S j S d .  We note that clearly

M ( R )  ^  max |S(ß)| ^  2* M ( R ) .

A nonnegative function f ( R ) of the rectangle R  with corner points from Z \  is 
said to be superadditive if we have the inequality

(2.2) / ( Д д Н / а д  3= f ( R )

for every rectangle R  and for every ; and p j  where 1 S j ^ d ,  l = P j < m j ,  and

R j i  — R ( b i , b j , b j + i 9 . . . ,  b j ,  m x, m j _ 1 ,  P j i  w j j + i i ...»  m j ) ,

R J2 =  R ( b l t  . . . ,  b j - ! ,  b j  +  p j ,  b J + 1 ,  . . . ,  b d ; m1 ; m; _x, n i j - p j ,  m J + 1 , . . . ,  m d) .

In other words, U R j 2— R  is a disjoint decomposition of R  by a hyperplane paral
lel to each axis except the / ,h axis. For example,

f ( R )  =  2  u k
k £ R

is even an additive function of R ,  where { u k : k £ Z ( }  is a given ^-multiple sequence 
of nonnegative reals. We mention that the nonnegativity of f ( R )  and (2.2) imply that 

f ( R ) = f ( b ! ,  . . . ,  b d ; m l t  m d)  is a nondecreasing function in each variable n i j ,

Furtherm ore, by ( p ( t 1 , m ) = < p ( t 1 ; m x , ..., m d)  we denote a nonnegative function 
defined on R +  X Z f ,  which is nondecreasing in each variable, i.e.

< p ( t i ;  m i , . . . ,  m d)  ^  m"x , m ' f )

whenever
О S  t  i  S  t"  and 1 S  m 'j ^  m ' j  for each j ,  I s  j  ^  cl.

After these preliminaries we give an upper estimate for the y,h moment of M ( R )  
in the terms of the given “a priori” upper estimate for the yth moment of S ( R )  
while R  runs over all the rectangles in Z { .  This generalization of Theorem 1 reads as 
follows.

Theorem 2. L e t  y ^ l a n d  cfe 1 b e  g i v e n .  S u p p o s e  t h a t  th e r e  e x i s t  a  n o n n e g a 
t i v e  a n d  s u p e r a d d i t i v e  f u n c t i o n  f ( R )  o f  t h e  r e c t a n g l e  R  i n  Z { ,  a n d  a  n o n n e g a t i v e  

f u n c t i o n  ( p i t ! ,  m ! , . . . , m d) ,  n o n d e c r e a s i n g  i n  e a c h  v a r i a b l e ,  s u c h  t h a t  f o r  e v e r y  

R = R ( b ! ,  . . . ,  b d , m x, ..., m d)  w e  h a v e

f  \ S i R ) \ 4 p  S  f i R ) ( p y ( f i R ) ;  mx, ..., m d) .  

T h e n  f o r  e v e r y  R  w e  h a v e  b o t h  th e  i n e q u a l i t y  

(2.3) f M4 X ) d / i  S  3d(y-Vf (R)X

{  f i R ) f 1 Í mi W
\ 2 ki + - + k d ’ L2*i+1 J ’ ’" 4 2  *a+lJJj
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a n d  th e  i n e q u a l i t y  

(2.4)

^  (  f ( R )  , rm jl К Ц Г
Pl2*.+ +‘, ’ l2‘.J*”,,l2*-JJl *

( ! ) " / ( * ) x

Again we use the following convention: in case m ~ \  for some7 , 1 =7 = 1/, we 
take [log Wj-] — 1 to be equal to 0 and [mj/2kj+1] to be equal to 1 on the right of (2.3).

3. Special cases

Without aiming at completeness we present here some special cases of Theorem 2 
of interest in themselves.

Let us take c p ( t г ; m x , ..., md) =  i1(a_1)/v with real a, a > l .  Then

[logrtlj]
$ d ( t i \  m x , . . . , m d)  =  2

k=0

[logmd]

. 2  ч> *, = 0
ll

2ki+-

Ä ( 1 _2 (1 -*)/r)-‘, i1 <5I- 1 ) / ? 5

independently of m k , . . . , m d .

Corollary 1. L e t  a > l ,  y s  1, and d fel b e  g i v e n .  S u p p o s e  t h a t  th e r e  e x i s t s  
a  n o n n e g a t i v e  a n d  s u p e r a d d i t i v e  f u n c t i o n  f ( R ) o f  t h e  r e c t a n g l e  R  i n  Z {  s u c h  t h a t  f o r  
e v e r y  R  w e  h a v e

f  \ S ( R ) \ y d p  ^  f ( R ) .
T h e n  f o r  e v e r y  R  w e  h a v e

f  M y ( R ) d p  =S ( у ) \ 1 - 2 (1- ‘)/у)""у/*(Л).

This result, apart from the factor (5/2)d on the right, was proved by the present 
author in [5, Theorem 7]. For d =  1 see Longnecker and Serfling [3], and [4].

It is instructive to state this corollary for the still more particular case when 
f ( R ) — 2  u k-> where { u k : k £ Z f )  is a d-multiple sequence of nonnegative reals.

k (  R

C o r o l l a r y  la. (The d-multiple version of the Erdős—Steckin inequality.) L e t  
a > l ,  y ^ l, a n d  (м*ёО: k f Z i ]  b e  g i v e n .  S u p p o s e  t h a t  f o r  e v e r y  r e c t a n g l e  R  i n  
Z {  w e  h a r e

f  \ S ( R ) \ y d p  Q ?  M*ja.
T h e n  f o r  e v e r y  R  w e  h a v e

f  M f R ) d p  S  ( - | ) V - 2 (1- ‘>/y) - dy[ | 4 ) ' .
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As to the case d —  1, see Erdős [1] and Gaposkin [2, pp. 29—31], the latter author 
making use of the oral communication of S. B. Steckin.

Now take q > {tx; m 1 , ..., m d) = t ^ ~ 1 ) ,y w ( t 1)  where again a > l and iv(/x) is 
a slowly varying positive function, i.e. w(fj) is defined on R + , к(гг) > 0  for h>0, 
and for every positive C  we have

w (C td
w(?i)

as h ° ° .

We emphasize that wfA) is not necessarily a nondecreasing function, only t f  1>lyw ( t i )  
has to be nondecreasing. For example,

iv (?i) =  {log (1 +  b ))d{log log (2 +  rx)}a

is a slowly varying function, where ß  and <5 are arbitrary reals. It is easy to check that 
again we have

m u  . . . ,  m d)  =  C(a, y ,  d ,  w)/1(t' - 1>/l'w(r1),
where C(a, y ,  d ,  iv) denotes a positive constant depending only on a ,  y ,  d ,  and iv(h).

C orollary 2. L e t  а > 1 ,  y = 1, a n d  1 b e  g i v e n .  S u p p o s e  t h a t  t h e r e  e x i s t  
a  n o n n e g a t i v e  a n d  s u p e r a d d i t i v e  f u n c t i o n  f ( R )  o f  th e  r e c t a n g l e  R  in  Z l[ , a n d  a  s l o w l y  
v a r y i n g  p o s i t i v e  f u n c t i o n  iv(b), i{a“1)/viv(i1) i s  n o n d e c r e a s i n g ,  s u c h  t h a t  f o r  e v e r y  R  
w e  h a v e

f  \ S ( R ) \ y d p  sS f * ( R ) w y { f ( R ) ) .

T h e n  f o r  e v e r y  R  w e  h a v e

S  M y ( R ) d p  5  (1)" C ' ( a ,  y ,  d ,  w ) f * ( R ) w y ( f ( R ) ) .

Next take (p ijtp , m 1 , ..., m d) = / . ( m 1 , ..., n id) where A(wx, ..., m d ) is defined on 
Z { ,  positive and nondecreasing in each variable.

C orollary 3. L e t  у sí 1 a n d  <f&l b e  g i v e n .  S u p p o s e  t h a t  th e r e  e x i s t  a  n o n n e g a 

t i v e  a n d  s u p e r a d d i t i v e  f u n c t i o n  f ( R )  o f  t h e  r e c t a n g l e  R  i n  Z { ,  a n d  a  p o s i t i v e  a n d  n o n 
d e c r e a s i n g  d - m u l t i p l e  s e q u e n c e  {/ ( m ) : m f Z j j  s u c h  t h a t  f o r  e v e r y  R  — R ( b 1 , . . . , b d \ 
m 1 , ..., m d)  w e  h a v e

f  \ S ( R ) \ y d p  == f ( R ) P ( m i , . . . .  m d) .

T h e n  f o r  e v e r y  R  ivc h a v e
f [log iw j] 1 [logmd] - l

[ M y(R )dp  s  з ^ - о д д )  2  ••• 2
l fc,=o *d=o

ГГ ] Í mj 1IÍU.2*i+1 J ’ h
w i t h  t h e  s a m e  c o n v e n t i o n  a s  in  T h e o r e m  2 i n  t h e  c a s e  n i j  =  1 f o r  s o m e  j .

This moment inequality, apart from the factor 3d(y-1) on the right, was proved 
also by the present author in [6 , Theorem 1] in a slightly different form.

To illuminate the strength of Corollary 3, we present two particular cases. First, 
assume that {ft : k £ Z ( }  is a űf-multiple orthogonal system. Then we obviously have

f  S 2( R ) d p  =  2  a l  where <*l =  f Z l d g -
J  k £ R  J
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Corollary За. (The ^-multiple version of the Rademacher—Mensov inequality.) 
I f  { c k : k £ Z i }  i s  a d - m u l t i p l e  o r t h o g o n a l  s y s t e m ,  t h e n  f o r  e v e r y  r e c t a n g l e  R  =  R ( b x , . . .  
. . . , b d \ m x , ... , m d) w e  h a v e

f  M 2 ( R ) d p  2  e i l  П  ( lo g  ( m j +  l ) ) 2- U ts )  j =l

As to the case d —  1, see e.g. [8 , p. 83].
Secondly, assume that ( p ( t x ; m x , . . . , m d) = Я( m x ,  ..., m d)  essentially grows in 

each variable in the sense that there exist an m 0£ Z x and a real q ,  </> 1, suchthat 
for every /', \ = j =  d ,  and for every m £ Z (  with т ^ т й we have

( 3  j) Ц т х, ..., m j - x , 2 n i j ,  m j + x , ..., m d) ^

Я( m 1 , . . . , m j _ 1 , m j , m j + 1 , . . . , m d)

d
E.g. Я( m )  =  J J  n i** W j ( n i j )  is such a /̂-multiple sequence where a7 > 0  and W j( n i j )

j = 1

is a slowly varying function for each j ,  1 = j = d .  Now (3.1) implies, in a routine way, 
that

$ d ( t x -, m x, ..., m d)  =  C ( q ,  m 0) k ( m x ,  ..., m d) ,

where the positive constant C ( q ,  m 0)  depends only on q  and on those values /(/») 
for which n i j ^ m () for each j ,  l ^ j ^ d .  In particular, C (<y, m (x)  =  { q j ( q  — 1 )}d if 
i"0=  1 .

Corollary 3b. L e t  1 a n d  d 5 l  b e  g i v e n .  S u p p o s e  t h a t  t h e r e  e x i s t  a  n o n n e 
g a t i v e  a n d  s u p e r a d d i t i v e  f  u n t io n  f ( R ) o f  t h e  r e c t a n g l e  R  i n  Z {  a n d  a  d - m u l t i p l e  p o s i t i v e  
a n d  n o n d e c r e a s i n g  s e q u e n c e  (Я(т) : m d Z ( }  s a t i s f y i n g  r e l a t i o n  (3.1) w i t h  a  q >  1 
s u c h  t h a t  f o r  e v e r y  R  =  R ( b x, ..., b d ; m x, ..., m d) w e  h a v e

f  I S ( R ) \ y d t i ^ f ( R ) X y ( m 1 , . . . , m d) .

T h e n  f o r  e v e r y  R  w e  h a v e

f  M y(R)df i  S  (1 )"  С Ц д ,  m n) f ( R ) 2 y ( m x, ..., m d).

The special case d =  1, у  >2, f ( R ) = B y~ 2 2  a*, and Я( m x) = m $ ~ 2 )h  with the
ki R

assumption that |£кг| a.e. ( ^ = 1 ,  2, ...) is known as the Mensov—Paley ine
quality (cf. [9, p. 189]).

Finally, it is worth mentioning that in any case we can conclude the following
C orollary 4. U n d e r  th e  c o n d i t i o n s  o f  T h e o r e m  2 ,  f o r  e v e r y  r e c t a n g l e  R  =  

=  R ( b x , . . . , b d ; m x ,  ..., m d) w e  h a v e

f  M y { R ) d p .  =§ 3* b - » f { R ) q > y ( /(/? ); [ - ^ ] ,  ..., [ - ^ ] ]  Д  (log (m ,+  !))>,

w h e r e  a g a i n  in  t h e  c a s e  n i j  =  1 f o r  s o m e  j  w e  t a k e  [ m f  2 ]  e q u a l  t o  1 .
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4. Proof of Theorem 2

The proof proceeds by induction on d .  The case d =  1 is stated in Theorem 1. 
Assume now that Theorem 2 holds for d — 1. We will show that it holds for d .  

Consequently, the induction hypothesis can be applied to the following “partial” 
maximum:

M d _ 1 ( R )  =  m )  =  M d _ 1 ( b 1, ..., b d ; m 1 , md_ l5 m d)

=  max .. max |5(bl5 ..., b d ; p l f  ..., pd_ l5 m d) \ .
ISPjSmi l s p d _ l s m a _ t

P r o o f  o f  (2.3). By the induction hypothesis,

(4.1) / M l ^ W d p  ^  3(‘,- 1><>’- 1> / ( а д _ 1(/СЮ; »»I, ..., m d) ,

where
4 > i - i ( h ;  O h ,  . . . , m d _ 1 , m d )  =

[log m ,]-l [log md~ 1 ( t l  Г mi 1 I m d _ 1 ]
”  Д  •" k ^ 12*.+-+*--i: Ь ^ + Ч ’ L2̂ - x+1J ’ md1 d- 1  '

and in the case m ,= 1 we mean 0  by [log m j \  — 1 and 1 by [ n i j / 2 ki + 1 ] .  
Setting

[log«
ФЛ(к \  nh ,  m d)

,gm,]-l [logiHdl-l ( ti г щ  -I r l)
ф  -  kß 0 *  [ & + ■ ■ ■ + * / ’ l 2*i+1J...... L2 *,+1JJ

with the above convention, inequality (2.3) to be proved can be rewritten as follows:

(4.2) f  M ^ l O d n ^ V b - n f i R W i A R ) ;  m l t  ...,m d),
where
M d(R) = M(R) = max ... max |S(b l5 ..., b d ; р г , ..., p d) \  = maj M d_fR) .

1 - P d - m d 1 - p d - m d

It is not hard to verify that ФД/,; ш,, ..., md) can be also expressed by the aid of 
<I>d - i ( h \  m 1 , . . . , m d)  as follows:

&d(h; m i, md_ i ,  md) =
[Io g m J—1

2  Ф Л- 1*1 = 0

with the same convention as above concerning the case md= l .  This relation also 
turns into the following recurrence:

(4.3) т г , . .., md) =  Ф л- f t i ,  m 1 , ..., m d) for md=  1, 2, 3
and

(4.4) » h ,. .., md_1? ind) =  Ф л _ г ih; mj, . md_i, j

+ ф < 1 T  mi’ ’n * - 1 ’ И г] for md ~ 4'
Acta Mathematica Hungarica 41, 1983
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After these preliminaries we can prove (4.2) by using again an induction but this 
time on m d . Both the case of the initial values m d = \ ,  2 ,  3 and the induction step are 
similar to the argument explained in the proof of Theorem 1 in [7]. Therefore, we 
only sketch the proof.

If m d =  1, then (4.2) immediately follows from (4.1) due to (4.3) and the fact that 

M d ( b ;  m l t m d - i ,  1) =  ml 5 ..., m d _ x ,  1).

In case m d = 2  or 3 one can use the trivial estimate

i>d + md
M d ( b ,  m) S  2  M d - 1 { b 1 , ..., Ьа-з.» k d ~ U  m 1 ,  ..., m d ^ 1 , 1)

and argue as in [7].
Now we assume, as the second induction hypothesis, that inequality (4.2) holds 

true for all values o f the first 2 d — \  arguments b t , ..., b d \ wl5 ..., ш( Ь 1  and for all 
values of the ( 2 d ) th argument less than m d , m d ^ A .

The case f ( R ) = f ( b ,  m )  =  0 can be handled with ease since then M ( R )  =  0 a.e. 
Hence we assume that / ( jR)^O. Then there exists an integer pd, l s ^ m a, such 
that

(4.5) f ( b ;  m 1, . . . , m d - .1 , p d - l ) ^ — f ( R ) < f ( b ;  m l f ..., md _ l 5 p d) ,

the left hand side being 0 in case p d =  1. It is also convenient to set S ( b , m )  =  
— M ( b , m ) = 0  if W j — 0  for some /, l ^ j s d .

Applying (2.2) for j — d  and taking (4.5) into account we obtain

f ( b 1 ,  ..., b d _ i, b d +  p d ; т г , ..., m d _ x , m d - p d)  =§

=  m x , ..., m d - x ,  p d)  <  у  /(Ä ).

The following three cases will be distinguished: p d = \ ,  2 S p d ^ m d — 1, and 
P d  — m d ■

C a s e  (i): 2 ^ p d S m d — 1. Set

* - [ v :
and Qd =

y ,

\ p ' d + 1

if
if

p d — 1 is even, 
p d — 1 is odd;

,, Г m d - p d 

d ~  [  2
and Qd =

ir i
Ir t+ i

if
if

m d~Pd  is even 
m d~Pd  's odd.

It is obvious that
Pd+ q'd = Pd -  1 and p d +  q d =  m d - p d.
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Now, for we can establish the following upper estimate:

A/d-i(b ; m l t ..., mj-j., k d)  S

M d ( b ;  т г ,  p'd)  for 1 m k d ^ p ' d ,

M d _ 1 ( b ;  i n  I , m d _ 1 , q d)  +

+  M d ( b 1 , . . . , b i _ 1 , b d +  q d ; m 1 , . . . , m i - 1 , p d)  for q d ^ k d m p d - 1 ,  

=  \ M d _ 1 ( b ;  m u  . . . , m i . 1 , p d) +

+ M d ( b 1 , . . . , b d - 1 , b d + p d ; m 1 , . . . , m d - 1 , p Z )  for p d ^  k d Ш p d + p ' d , 

Mrf-iO; m i ,  m d - 1 ,  P i + q ' i ) +

+  M d ( b 1 , . . . , b i ^ 1 , b d + p i  +  q d ; ml 5 . . m d _ l f  p% ) for p d +  q d ^  k d Ш m d ;

whence
(4.6) M d ( b ,  in )  S  Md_1 (h1, b ^ ,  b d , ml5 m d ^ ,  q d)  +

+  Afi-i(bi, b j-i, b i + q ' a i n i ! ,  ..., m i _ 1 , p d - q d)  +

+  M d ^ 1 { b 1 , ..., b d + p d; m l t n i j - i ,  q d )  +

- \ - { M yi ( b l ,  ..., bd_!, b d \ m 1 , ..., m d - 1 , p d +

+  M yd ( b 1 , ..., b j - г ,  b d + q d ' ,n t i , ..., m d _ 1 , p d) +

+  M yd ( b 1 ,  ..., b d _ l5 b d + p d; m1? md_a, p;) +

+  M ä ( b i , b , , - ! ,  b d +  p d +  q d ; m x , ..., m d ^ ,  p d ) } 1,y = A d +  B d ,

where A d denotes the sum of the first three terms and В  denotes the fourth term on 
the right-hand side of (4.6).

C a s e  (ii): p d =  1. Setting

Pi = and {p d if m d — 1 is even,
p d + 1 if m d — 1 is odd;

we can estimate in a simpler way:

(4.7) M d { b ,  m )  =S М ^ ф г , ..., b d b d ; n it ,...,, m d - i ,  1) +

+  M i _ 1 ( b 1, . .., b d ^ 1 ,  b d + 1 ; ml5

+

1"3

+  { M } ( b l t . . *5 hd—l, bd+1 , ...., Illj-!, Pd) +

+  M yd { b 1 , ..., bd_!, b d + q d ; » h ,  ..., т л - г , p d ) } l l y  =  A'd + B ' d .
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C a s e  (iii): p d = m d . Now
(4.8) M d ( b ,  m ) — M d _ f b x , b d _ x , b d ; m x , . . . ,  m d - x ,  q d )  +

+  M d _ x ( b x , ..., b ,j_ l 5 b d +  m d - 1; m x ,  . . . ,  m d - x , 1) +

+  {M2 (bi, ml 5 m,,-!, p?) +

+  Ä f2(bi, • ••, b d - i, ba+tfá'; ">i, pd)}1/?>

where p d and q d are the same as in Case (ii).
The further reasoning closely follows that of the proof of Theorem 1 in [7]. We 

omit it.
P r o o f  o f  (2.4). Without entering into details we note that we only have to modify 

estimates (4.6)—(4.8) in the following manner: in Case (i) M d ( b , m ) ^ A d + B d , 
where B d is defined in (4.6) and

A"d =  { M yd _ x { b ;  m 1 , ..., m d _ x , q d)  +

+  Щ -1  (b; i n x, . . . , m d _ 1 , p d)  +  M yd _ 1 ( b ;  m 1 , т (1^ х , p d +  q d ) } 1 ,y ;

in Case (ii) M d ( b , m ) S A d ' + B d , where B'd is defined in (4.7) and
A T  =  { M yd _ x ( b ;  т г ,  ..., m i _ 1 , 1 ) + M yd _ f b ;  m x ,  md _ l5 q d ) } l l y ;

and a similar modification of (4.8) in Case (iii).
Thus, by a double induction, one can prove both (2.3) and (2.4) for each 

t v d — 1 , 2 , . . .  and for each d =  1 , 2 , __
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A GENERALIZATION OF THE WEYL GROUP
J. SZENTHE (Budapest)

Some basic concepts in the structure theory of compact Lie groups can be 
naturally derived by adhibiting results from the theory of compact transformation 
groups. In fact, if a compact connected Lie group G  is given then by considering its 
adjoint action Ad: G X g -g  on its Lie algebra g concepts such as Cartan subalgebra, 
Weyl chamber and Weyl group of G  can be obtained by applying results concerning 
compact transformation groups ([3], pp. 15—23). It has been shown earlier that in 
case of an orthogonal action or. GxR"-R" of a compact connected Lie group such 
that the isotropy subgroups of oc are of maximal rank, concepts can be introduced 
which generalize the Cartan subalgebra, the Weyl chamber and the Weyl group in 
a natural way [12].

Some results will be presented below in order to show that such generalizations 
are possible in a much more general setting. Actually, let M  be a complete analytic 
Riemannian manifold, G  a compact connected Lie group whose elements are iso
metries of M  and such that the isotropy subgroup of its action or. G X M ^ M  are 
of maximal rank. Then concepts can be introduced which reduce to Cartan subalge
bras, Weyl chambers and to Weyl group of G  in that special case when a is the ad
joint action of G .  In deriving the above results some theorems of J. H. C. White- 
head concerning conjugate loci [14] are generalized too in order to provide some 
auxiliary statements.

1. A generalization of Cartan subalgebras as the fixed 
point sets of principal isotropy subgroups

Unless otherwise stated Riemannian manifolds and quantities considered below 
will be supposed to be of class C°°.

Let M  be a complete Riemannian manifold, G  a compact connected Lie group 
whose elements are isometries of M  and or. G X M - + M  the action of G .  Then a is o f  
class C“ or analytic according to as M  is of class C ° °  or analytic ([7] pp. 203—315). 
Let G x be the isotropy subgroup of a at a point x £ M  and

F ( G X) =  {z|a(g, z )  —  z  for g£ G X where z £ M )

the fixed point set o f G x . According to a basic result concerning fixed point sets of 
isometry groups the components of F ( G X) are totally geodesic submanifolds of M  
and any two points in different components are conjugate to each other ([4], [5] pp 
59—61). In the special case of the adjoint action Ad: GXg—g of a compact con
nected Lie group G  the above fixed point sets are well-known for principal isotropy
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subgroups. In fact, the orbit of Хбд is principal if and only i f f  is a regular element 
of д and in such case F ( G X) =  I) с  д is a Cartan subalgebra. Actually, G x  is the 
union of the maximal tori containing exp (X ) for any X (L  д by some basic algebraic 
facts ([3] pp 15—16) and consequently F ( G X)  is the Cartan subalgebra containing X if 
this element is regular. In what follows fixed point sets of principal isotropy subgroups 
will be considered in case of isometric actions.

The following lemma presents a simple observation concerning the fixed point 
set of a principal isotropy subgroup, where a basic fact is applied. In fact let G x be 
a principal isotropy subgroup of an action a and F x  the component of F ( G X) 
containing x  then obviously any slice S x  of the action a at x  is included in F x .

Lemma 1. L e t  M  b e  a  c o m p l e t e  R i e m a n n i a n  m a n i f o l d ,  G  a  c o m p a c t  c o n n e c t e d  
L i e  g r o u p  w h o s e  e l e m e n t s  a r e  i s o m e t r i e s  o f  M  a n d  a :  G X M ^ - M  t h e  a c t i o n  o f  G .  
I f  t h e  o r b i t  G ( x ) o f  x  i s  p r i n c i p a l  th e n  M = G ( F X)  i s v a l i d  f o r  t h e  c o m p o n e n t  F x o f  th e  

f i x e d  p o i n t  s e t  F ( G X) c o n t a i n i n g  t h e  p o i n t  x .

P roof. In fact, let z f i M  be an arbitrary point, z a point of G (x) which is at 
minimal distance from z '  and g £ G  an element such that x = a ( g ,  z )  is valid. Then 
x  is a point of G ( x )  having minimal distance from x '  =  a ( g , z ' ) ;  consequently a 
minimal geodesic segment у joining .v to x '  is perpendicular to G  (x) at x .  Since G  ( x )  
is principal any point of у is left fixed by every element o f G x . Therefore, the image 
of у is included in F x  and consequently z'6oc(g-1 , F x )  is valid. Hence the assertion 
of the lemma obviously follows.

The next lemma expresses such a property of the fixed point sets o f principal 
isotropy subgroups which subsists in that special case when the isotropy subgroups 
of an isometric action are of maximal rank.

Ьпмма 2. L e t  M  b e  a  c o m p l e t e  R i e m a n n i a n  m a n i f o l d ,  G  a  c o m p a c t  c o n n e c t e d  
L i e  g r o u p  w h o s e  e l e m e n t s  a r e  i s o m e t r i e s  o f  M  a n d  s u c h  t h a t  t h e  i s o t r o p y  s u b g r o u p s  o f  
i t s  a c t i o n  a: G  X M  -*■ M  a r e  o f  m a x i m a l  r a n k .  I f  t h e  o r b i t  G ( x )  o f  x £ M  i s  p r i n c i p a l  
a n d  T xM  =  T xG (x) © N x G  ( x )  i s  t h e  o r t h o g o n a l  d e c o m p o s i t i o n  o f  t h e  t a n g e n t  s p a c e  a t  
t h i s  p o i n t ,  th e n  F x = e x p x  (N x G ( x )) h o l d s  f o r  th e  c o m p o n e n t  F x  c o n t a i n i n g  x  o f  th e  

f i x e d  p o i n t  s e t  F ( G X) .

Proof. Since M  is complete and G  ( x )  is principal the inclusion

exp x ( N x G ( x ) ) < z F x

is obviously valid. On the other hand the assumption that the principal isotropy 
subgroups of a  are of maximal rank implies the existence of an s =* 0  such that

B ( x ,  e )  П F x =  B ( x ,  e )  П exp* ( N x G (x))

holds for the solid ball B ( x ,  c )  of radius s centered at л\ In fact, the non-existence of 
such an E obviously entails that there is a v £ T x M  such that v  ̂N xG(,vj and 
v = T x a g v  for g £ G x . But in this case there exists a v ' d T x G ( x ) — {0*} such that 
v '  =  T x (xg v '  for g f G x . Since G ( x )  is equivariantly isomorphic with G / G x the exist
ence of such a v '  is in contradiction with the assumption that G x c z  G  is o f maximal 
rank ([6 ] pp 6 6 —70). Since M  is complete and F x is totally geodesic, any point of l  x 
can be joined to x  with a minimal geodesic segment у in F x . But then the image of у
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is included in exp,. ( N x G ( x ) )  by the preceding observation. Consequently the in
clusion F x c z e x p x (N x G ( x )) is valid and the assertion of the lemma is established.

The above lemma and a former observation imply that if a is an isometric 
action such that its isotropy subgroups are of maximal rank and the orbit of the 
point je is principal then for any slice S x of a at x  the inclusion S x <z exp* ( N ( G X) )  
is valid. This fact has been already obtained earlier by a different argument [11].

The following lemma presents a fact which will be applied subsequently in gen
eralizing the concept of the Weyl group of a compact connected Lie group.

Ьнмма 3. L e t  M  b e  a  c o m p l e t e  R i e m a n n i a n  m a n i f o l d ,  G  a  c o m p a c t  c o n n e c t e d  
L i e  g r o u p  w h o s e  e l e m e n t s  a r e  i s o m e t r i e s  o f  M  a n d  a :  G X M - + M  th e  a c t i o n  o f  G .  
T h e n  f o r  a n y  p o i n t  x £ M  t h e  e q u a l i t y

{g|a(g, F ( G J )  =  F ( G X) ,  g€C) =  N { G X)  

i s  v a l i d ,  w h e r e  N ( G X) i s  t h e  n o r m a l i z e r  o f  t h e  i s o t r o p y  s u b g r o u p  G x in  G .

Proof. Consider first an element g £ G  such that a(g, F ( G X) )  =  F ( G X)  holds 
and put z = o c ( g , x ) .  Then G z = g G xg ~ 1 and G x a G z  imply that G x c g G x g ~ 1 
is valid. Since G  is compact G x = g G x g ~ 1 follows ([2] pp 3—4) and consequently 
g £ N ( G x )  is obtained.

Consider secondly an element g £ N ( G x )  and a point z £ F ( G x) . If y = a ( g , z )  
then G x a G ,  and G y = g ~ 1G z g  imply that

G x =  g ~ 1G x g c z g ~ 1G z g  =  G y

holds and hence y £ F ( G x )  is valid. Thus a(g, F ( G x) ) c z F ( G x )  is obtained. Since 
g ~ 1^ .N ( G x)  holds a (g _1, F ( G X) )  c  F ( G X) is valid and consequently 
< *(g , « ( g ~ \  F ( G x) )  =  F ( G x ) c z a ( g ,  F ( G X) ) .  Therefore t x ( g ,  F ( G X) )  =  F ( G X)  follows.

2. The focal locus of an analytic submanifold having trivial normal bundle

In what follows some results will be presented concerning the focal locus of a 
compact analytic submanifold in a complete analytic Riemannian manifold provid
ed that the submanifold has a trivial normal bundle. These results which will be 
applied subsequently in case of principal orbits of compact isometry groups of 
complete analytic Riemannian manifolds, can be considered as generalizations in the 
special case of Riemannian manifolds of some theorems of J. H. C. Whitehead con
cerning the conjugate locus of a point in a complete analytic Finsler manifold [14].

Let M  be an /п-dimensional complete analytic Riemannian manifold, L c z M  
a k-dimensional compact analytic submanifold and consider the orthogonal decom
position T XM = T XL ® N XL  for x d L ,  where N XL  is said to be the n o r m a l  s u b s p a c e  
of L  at x .  The union of normal subspaces yields the n o r m a l  b u n d l e  N ( L )  =  
=  U { N x L \ x £ L }  of L  which is an m-dimensional analytic subbundle of the tangent 
bundle T ( M ) .  The exponential map of T ( M ) restricted to N ( L )  yields an analytic 
map e: N ( L ) - * M  which is surjective since M  is complete and L  is compact. Let 
x £ L  and v £ N x L  then v  is called ii f o c a l p o i n t  o f ' L  in  N ( L )  provided that the tangent 
linear map T v e :  T 0 N ( L ) - + T ZM  is not injective where z = e ( v ) .  In this case z  is 
said to be a f o c a l  p o i n t  o f  L  i n  M  and the dimension of the kernel of T v s  is called the

Acta Mathematica Hungarica 41, 1983



3 5 0 J. SZENTHE

o r d e r  of the focal points v  and z. The set of focal points of L  in N { L )  and in M  are 
called the f o c a l  l o c u s  of L  in N ( L )  and in M ,  respectively.

A more restricted concept of focal point has been introduced by F. W. Warner 
on account of the basic relation of focal points and some Jacobi fields [13]. Actually 
let x £ L  and u £ N x L  a unit vector. Then a geodesic y :  R is defined by у  (0)=  
= x ,  y ( 0 )=n. Consider now along у  a Jacobi field X ;  R  - T ( M )  then A is said to 
be an L - J a c o b i  f i e l d  provided that the following conditions are satisfied:

1. ( X (т), у '  (т)) =  0 for t£R;
2 . Х Ш Т х Ь \

3. X ' ( 0 ) - a uX ( 0 ) £ N x L

where o „ :  T X L - * T XL  is the endomorphism defined at ,v for the direction of и  by 
the second fundamental tensor o f the submanifold ([1] pp 220—224). An /.-Jacobi 
field X  is said to be a s t r o n g  L - J a c o b i  f i e l d  if instead of condition 3 the following more 
restrictive condition is satisfied:

3 Í  X ' ( 0 )  —  (TUX (0 ) =  0*.

The basic relation of focal points and Jacobi fields is given by the following asser
tion: A focal point of L  is given by v - f i  for some £>0 if and only if there is 
a non-trivial L - Jacobi field X  along the geodesic у  such that X (Q =  0 holds ([1] pp 
244—226). Accordingly v = £ u  is called a s t r o n g  f o c a l  p o i n t  o f  L  i n  N ( L )  provided 
that there is a non-trivial strong /.-Jacobi field X  along the geodesic у  such that 
A(£)=0 holds [13]. In this case the point z = e ( v )  is said to be a s t r o n g  f o c a l  p o i n t  
o f  L  in  M .  The set of strong focal points of L  in N ( L )  and in M  are called t h e  s t r o n g  
f o c a l  l o c u s  of L  in N ( L )  and in M ,  respectively.

Consider as above a unit vector u £ N x L  at some point x £ L  and the geodesic 
у  defined by и  and let P r L  the parallel translate of T X L  along у  to the point y(r) where 
r f  R. We say that the J a c o b i  e q u a t i o n  s p l i t s  a l o n g  у  r e l a t i v e  t o  L  provided the following 
condition is satisfied: The curvature transformation

Y ~ R ZY  =  R ( Y ,  / ( t) ) / ( t), Y £ T y(x)M

maps the subspace P t L < z T y(r)M  into itself where R  is the curvature tensor of the 
Riemannian manifold [13]. If the Jacobi equation splits along у  relative to L  then the 
space of /.-Jacobi fields defined along у  is the direct sum of the subspace of Jacobi 
field defined along у  and vanishing at x  and of the subspace of strong L-Jacobi 
fields defined along у  as some calculations show [13]. This fact has the following 
obvious consequence given by

LEMMa 4. L e t  M  b e  a  c o m p l e t e  R i e m a n n i a n  m a n i f o l d  a n d  L  a  c o m p a c t  s u b m a n i 
f o l d  s u c h  t h a t  t h e  J a c o b i  e q u a t i o n  s p l i t s  a l o n g  e v e r y  g e o d e s i c  у  d e f i n e d  b y  u n i t  v e c t o r s  
u k  N XL  w h e r e  x  i s  a n y  p o i n t  o f  L .  T h e n  t h e  f o c a l  l o c u s  o f  L  i s  t h e  u n i o n  o f  i t s  s t r o n g  

f o c a l  l o c u s  a n d  o f  t h e  c o n j u g a t e  l o c i  o f  p o i n t s  o f  L .

In the special case when the submanifold L  is a principal orbit of an isometric 
action whose isotropy subgroups have maximal rank the validity of the assumption of 
the above lemma and its conclusion as well have been established earlier [11].
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The normal bundle N ( L )  of a submanifold L  of a Riemannian manifold M  is 
said to be trivial provided that there is a vector bundle isomorphism N ( L ) - < - L X N x L  
where x £ L  and L X N x L  is the trivial vector bundle over L  with N X L  as typical 
fibre. The induced Riemannian metric of the submanifold L  and the euclidean me
tric of the subspace N x L c z T x M  define a Riemannian metric on the product L X N x L  
which is analytic if M  is analytic and L  is an analytic submanifold. Thus there is a 
unique Riemannian metric on the normal bundle N ( L ) which renders the isomorphism 
N ( L ) - ~ L X N x L  isometric. Thus N ( L )  has the structure of an analytic Riemannian 
manifold. Now the map T ve :  T v N ( L ) - < - T z M ,  where v £ N ( L )  and z = e ( v ) ,  is a 
homomorphism of euclidean vector spaces and consequently it defines a change 
J ( v ) of volume; i.e., if vz and v„ are the canonical volume form at z  and v ,  respec
tively then v v = J  ( v ) ( T v e ) * v z  holds for the reciprocal image ( T v e ) * v z  of v.. Conse
quently an analytic function / :  N ( L ) - * R  is obtained. Now, the focal locus F ( L )  
of L  in N ( L )  is evidently given by

F ( L ) = { v \ J ( v )  =  0, v £ N ( L ) } .

In general F ( L )  is not a submanifold of N ( L ) ,  however, it is an analytic structure in 
sense of S. Lefshetz and J. H. C. Whitehead [14].

The following lemma generalizes a result of M. Morse concerning the order of 
conjugate points in a Finsler manifold [18] for the special case of Riemannian mani
folds.

LEMMa 5. L e t  M  b e  a  c o m p l e t e  a n a l y t i c  R i e m a n n i a n  m a n i f o l d  a n d  L a M  a  
c o m p a c t  a n a l y t i c  s u b m a n i f o l d  h a v i n g  t r i v i a l  n o r m a l  b u n d l e  a n d  s u c h  t h a t  t h e  J a c o b i  
e q u a t i o n  s p l i t s  a l o n g  a n y  g e o d e s i c  o r t h o g o n a l  t o  L .  L e t  u d N x L  b e  a  u n i t  v e c t o r  
w h e r e  x £ L  a n d  c o n s i d e r  t h e  f u n c t i o n  D ( u ,  х)=У(х, и ) ,  x€R. T h e n ,  v = x u  w i t h  

i s  a  f o c a l  p o i n t  o f  L  in  N ( L ) i f  a n d  o n l y  i f  D ( u ,  x ) = 0  i s  v a l i d .  M o r e o v e r ,  i f  
v = x u  i s  a  f o c a l  p o i n t  o f  L  t h e n  th e  o r d e r  o f  v  i s  e q u a l  t o  t h e  m u l t i p l i c i t y  o f  t h e  r o o t  x  

in  t h e  e q u a t i o n  D ( u ,  x )= 0 .
Proof. The first assertion of thej_emma is evidently valid. In order to prove the 

second one consider the unit vector X x ^ .T v N ( L )  which corresponds to и  under the 
canonical isomorphism N XL - * T VN XL .  Observe now that T v t: maps the subspace 
of T VN ( L ) orthogonal to X x into a subspace of T XM  orthogonal to X 1 =  y '  ( x ) f T v s X i  
and the kernel of T v e  is included in the_subspace of T VN ( L ) orthogonal to Х г . Con
sider an orthonormal base ( X 1 , . . . , X m)  of T VN ( L ) such that C^m-i+i, •••> X ^ )  
is a base of the kernel of T v e . Then there is a unique extension X;(t), t£ R  of X t 
along the line t u , t£R  for i = 2 ,  . . . ,  m  such that Хг(т) =  2 ’тоеХг(т), TgR is an 
/.-Jacobi field; in fact, the T-Jacobi fields defined along у form an ( m —l)-dimensional 
vector space ([1] pp 220—224) and thus the same holds for the vector fields defined 
along the line t u , t£ R  which are mapped into /-Jacobi fields by Т е .  Moreover, 
put Х 1 (т ) =  у ' ( т ) , R. In a sufficiently small neighborhood of y j R  the following
equalities are obviously valid:

(т) =  у ' (г); X t (т) =  X ? (x) +  ( t - x ) X t (x) 

with a non-zero parallel field T?(x) where i = 2 , . . . , m — l ;

XfT) = (т-х)Х}(т) + (т-х)%(т)
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where i =  m —1 +  1, m .  Consequently, in the above neighborhood of %£R the
following equality is obtained:

D ( u ,  т) = (т — x ) xD ( u , т).

Now, it is evidently sufficient to show that D ( u ,  х ) ^ 0  holds. Actually, the value of 
D ( u ,  x )  is given by a determinant whose columns are the coordinates of the following 
vectors in an orthonormal base of T . M :

/ 00;
X f x )  -  X f ( x )  where i = 2, ..., m — 1;
X ' i ( x ) where i = m — 1 +  1 ,

Therefore, it is sufficient to show that the above vectors are independent. In fact,
<?№> XJ(0y)—(Xi(0), X j (0)> =  (<ruXi(0), X j(0)>-<*i(0), auXj(0)) =  0

holds where i ,  j = 2, ..., m  since X t , X j  are L -Jacobi fields and a u is symmetric. 
On the other hand, the functions

( X i  (t), X j (t)>-  <Z;(t), A j (t)>, t€ R

are constant, where i , j = l , m ,  on account o f a basic identity concerning Jacobi 
fields. Consequently, ( X [ ( x ) ,  X ' j ( x ) ) = 0  where i= 2 , 1 and j = m  — l + 1,

Since the Jacobi equation splits along y ,  even ( X 1 ( x ) ,  X ' ( x ) ) = 0  holds for 
j — m  — l + 1, ..., m .  Therefore, it is sufficient to show that each of the two separate 
systems ( Х г ( х ) ,  ..., Х т _ г ( х ) )  and ( X ' m _ l + 1 ( x ) ,  ..., X 'm ( x ) )  are independent. In fact, 
the system ( X x (x), ..., X m ^ 1 ( x ) )  is evidently independent by its definition. On the 
other hand, the Jacobi fields Ám_1+1, . . . , X m are independent by their definition. 
Consequently, since

X m - i + iM  =  ... =  X m ( x )  =  0,

the system (X 'm - 1 + 1 ( x ), ..., X ^ , ( x ) )  has to be independent as well.
The following theorem generalizes for the special case of Riemannian manifolds 

a theorem of J. H. C. Whitehead stating that the conjugate locus of a point x  of a 
complete analytic w-dimensional Finsler manifold in T x M = N ( x ) is ( m  — l )-dimen- 
sional [14].

Theorem 1. L e t  M  b e  a  c o m p l e t e  a n a l y t i c  m - d i m e n s i o n a l  R i e m a n n i a n  m a n i f o l d  
a n d  L a M  a  c o m p a c t  a n a l y t i c  к - d i m e n s i o n a l  s u b m a n i f o l d  h a v i n g  t r i v i a l  n o r m a l  b u n d l e  
N ( L ) a n d  s u c h  t h a t  t h e  J a c o b i  e q u a t i o n  s p l i t s  a l o n g  t h e  g e o d e s i c  o r t h o g o n a l  t o  L .  T h e n  
t h e  i n t e r s e c t i o n  o f  t h e  f o c a l  l o c u s  F ( L )  o f  L  i n  N ( L ) w i t h  t h e  n o r m a l  s p a c e  N XL  i s  
( m  — k — \ ) - d i m e n s i o n a l  f o r  x £ L .

Proof. Let u £ N x L  be a unit vector and assume that v — x u ,  where %>0, 
is a focal point o f order / of L  in N ( L ) .  Fix a value £>% such that is not a focal 
point of L .  Then the geodesic curve у (т )  =  г ( т и ) , т£[0, £] has a non-degenerate 
index form which is given by

I ( X ,  Y )  =  f  ( < X ' ( r ) ,  Г(т)>-< /? (/(r ), X ( r ) ) y ' ( r ) ,  Y (т)»г/т +  ( p u X (0), F(0)>
0

A d a  Mathematica Hungarica 41, 1983



A GENERALIZATION OF THE WEYL GROUP 353

and the index of the geodesic у is equal to its augmented index which in turn is equal 
to the sum of orders of focal points of L  on у  according to some basic results ([1], pp. 
232—235). Moreover, if the unit vector ü £ N x L  is sufficiently near to и  and £>0  
is sufficiently near to £ then the index of the geodesic у(т)=е(тй), т€[0 , £] is equal 
to that of у on account o f some fundamental results ([1], pp. 236—237).

Therefore in this case the sum of orders of focal points of L  on у is not less than 
the sum of orders of focal points of L  on y. On the other hand, the set F ( L )  П N XL  
in the neighborhood SR of the point v — x u  defined by the above neighborhoods of и  
and of x  is given by the equation J ( t ü )  =  D ( ü , t) =  0. Since the function D  is analytic 
some fundamental results of the theory of analytic functions ([9] vol. II pp. 83—92) 
yield the existence of a neighborhood W  of the point (w, x )  where the function 
D ( u ,  t) is given by

D ( ü ,  т) = t 1 + B 1 ( ű ) z 1~ 1 + . . .  +  B 1( ű )

where / is the order of the focal point v  =  x u  and the functions B v ( u ) ,  . . . , В , ( й )  
are analytic. Therefore the preceding lemma yields that the order of a focal point of L  
on a geodesic у specified above which is in a neighborhood of v — x u  defined by the 
neighborhood ÍV  cannot be greater than /. Since the sum of orders of focal points 
of L  on у is equal to the sum of orders of focal points of L  on y, the order of a focal 
point of L  in the above neighborhood of v  =  x u  has to be /. But then any ray тü ,  
t s O corresponding to a geodesic у specified above intersects F ( L )  in the neighbor
hood of v — x u . Therefore the set F ( L ) C \ N XL  must have codimension 1 in the 
normal space N XL  and thus the assertion of the theorem follows.

Generalizing a definition due to J. H. C. Whitehead [14] under the assumptions 
made above a point c £ N x L  of the focal locus F ( L ) ( z N { L )  of the submanifold 
L c M  is said to be an o r d i n a r y  p o i n t  provided that the set F ( L ) C \ N XL  is given by 
a cell of codimension 1 in N XL  in a sufficiently small neighborhood of the point c ,  
otherwise the point c  is said to be a b r a n c h  p o i n t .  If the set of ordinary points of 
F [ L )  in N XL  is A x and A X = C 1 U . . .  UC, is the decomposition of A x into its compo
nents then Cj, . . . , C q are evidently submanifolds of codimension 1 in N X L .

3. A generalization of the Weyl chambers and of the Weyl group

Let G  be a compact connected Lie group and consider its adjoint action Ad: 
GXg —g on its Lie algebra g. If the orbit of X C q is principal then F ( G x )  =  l)CZc\ 
is a Cartan subalgebra and the union of the walls of the Weyl chambers o f G  in 
F ( G X ) is the set of those points of F ( G X ) =  I) which have singular orbits ([3],pp. 
17—23). On the other hand, the set of those points of F ( G x ) =  l) which have singular 
orbits can be obtained as the intersection of F ( G X) with the focal locus of a principal 
orbit [10]. Consequently, the union of the walls of the Weyl chambers of G  in 
F ( G X)  =  l) is the intersection of F ( G X)  — 1) with the focal locus of a principal orbit 
of the action Ad. This observation has been already generalized for orthogonal actions 
with isotropy subgroups o f maximal rank [12]. In what follows the generalization 
will be carried out in a more general setting.

Let M  be a complete Riemannian manifold, G  a compact connected Lie group 
whose elements are isometries of M  and a: G x M - ' M  the action of G .  If the orbit
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G { x ) of x € _ M  is principal then the normal bundle of the compact submanifold 
G ( x ) c z M  is known to be trivial. Moreover, if the isotropy subgroups of the action a 
are of maximal rank then the Jacobi equation splits along the geodesics orthogonal 
to the principal orbit G ( x )  by an earlier result [11]. Actually, some of Warner’s 
results have been derived in the special case of principal orbits [1 1], where in una
wareness of this results [13] terminology of Warner has not been applied yet. Thus the 
following lemma follows on account of some former observations.

LEMMa 6 . L e t  M  b e  a  c o m p l e t e  R i e m a n n i a n  m a n i f o l d ,  G  a  c o m p a c t  c o n n e c t e d  
L i e  g r o u p  w h o s e  e l e m e n t s  a r e  i s o m e t r i e s  o f  M  s u c h  t h a t  th e  i s o t r o p y  s u b g r o u p s  o f  t h e  
a c t i o n  or. G X M - * M  a r e  o f  m a x i m a l  r a n k .  I f  t h e  o r b i t  G { x )  o f  x £ M  i s  p r i n c i p a l  
t h e n  t h e  f o c a l  l o c u s  o f  G  (x) i s  t h e  u n i o n  o f  t h e  s t r o n g  f o c a l  l o c u s  o f  G ( x )  a n d  o f  t h e  
c o n j u g a t e  l o c i  o f  p o i n t s  o f  G ( x ) .

The following theorem yields a description o f the union of singular orbits in 
terms of the focal locus of principal ones.

T heorem 2. L e t  M  b e  a  c o m p l e t e  R i e m a n n i a n  m a n i f o l d ,  G  a  c o m p a c t  c o n n e c t e d  
L i e  g r o u p  w h o s e  e l e m e n t s  a r e  i s o m e t r i e s  o f  M  a n d  s u c h  t h a t  th e  i s o t r o p y  s u b g r o u p s  o f  
t h e  a c t i o n  or. G X M - * M  a r e  o f  m a x i m a l  r a n k .  L e t  S  b e  th e  u n io n  o f  t h e  s i n g u l a r  
o r b i t s  o f  a. I f  t h e  o r b i t  G ( x )  o f  x  i s  p r i n c i p a l  th e n  S  i s  e q u a l  t o  t h e  s t r o n g  f o c a l  l o c u s  
o f  G ( x ) .

Proof. Let the orbit G ( z ) o f z £ M  be singular. There is no loss of generality 
by assuming that x  is a nearest point of G ( x )  to z. Consequently, a unit vector 
u £ N x G ( x )  exists such that for the geodesic y: R - * M  defined by y(0)=x, y ' ( 0 ) = u  
there is a £> 0  with z = y ( Q .  Now G x c z G z is obviously valid since G ( x )  is principal 
and G x X G z follows from the assumption that G ( z )  is singular. Consequently, there 
is an infinitesimal isometry X £ q  such that X ( x ) X O  and X ( z )  =  0 is valid. The 
restriction of A  to у is obviously a G(x)-Jacobi field ([1] pp. 222—223) which is strong 
by a former result [11]. Therefore z is a strong focal point of G ( x ) .

Conversely, let a strong focal point z £ M  of G(x) be given on a geodesic 
y :  R - + M  which is defined by the unit vector u £ N x G ( x )  with y(0)=x and y'(0)= 
= u \  and let X : R - + T M  be a strong non-trivial G(x)-Jacobi field along у  with 

X ( Q = 0  where z=y(Q  and £ > 0 . There is an infinitesimal isometry Z£g such 
that Т*(х)=Х(0) holds. The restriction of A to у is a strong G(x)-Jacobi field by a 
former result [11]. Therefore, A u X ( 0 )  — a uX ( 0 )  =  0 and A u k { x )  — a uX { x )  =  0, 
i.e. A uX (Q i) =  A u X ( x ) .  Consequently, X  coincides with the restriction of the infinitesi
mal isometry considered. Thus the orbit G ( z )  is singular.

Now Theorems 1 and 2 yield the following obvious corollary which will be 
applied subsequently.

Corollary. L e t  M  b e  a  c o m p l e t e  a n a l y t i c  R i e m a n n i a n  m a n i f o l d ,  G  a  c o m p a c t  
c o n n e c t e d  L i e  g r o u p  w h o s e  e l e m e n t s  a r e  i s o m e t r i e s  o f  M  a n d  s u c h  t h a t  t h e  i s o t r o p y  s u b 
g r o u p s  o f  t h e  a c t i o n  or. G X M ^ - M  a r e  o f  m a x i m a l  r a n k .  I f  t h e  o r b i t  G  (x) o f  x £ M  
i s  p r i n c i p a l  t h e n  t h e  s e t  S  П F { G X)  i s  o f  c o d i m e n s i o n  1 i n  F ( G X)  w h e r e  S  i s  th e  u n io n  o f  
t h e  s i n g u l a r  o r b i t s  o f  a .

Let M  be a complete analytic Riemannian manifold, G  a compact connected Lie 
group whose elements are isometries of M  and such that the isotropy subgroups of
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its action a: G XM —M are of maximal rank. Consider a point x £ M  such that 
G  ( x )  is principal and let F x be the component of F ( G X) containing the point x .  Then 
F x = e x p x ( N xG ( x ) )  holds according to Lemma 2; moreover, Theorem 2 yields that 
the orbit G(z) of a point z £ F x is singular if and only if z= exp v ( v )  holds with 
v £ N x G ( x )  such that v £ N x G ( x )  is a strong focal point of G ( x ) .  In other words,

S O F x =  expx(F*(G(x)) П N x G ( x ) )

where F * ( G ( x )) is the strong focal locus of G ( x )  in N ( G ( x ) ) .  Consider now a point 
z f _ S C ) F x ; then any neighborhood of z contains a point x ' £ F x such that G ( x ' )  
is principal. Consequently, there is a neighborhood of the zero vector in N x . ( G ( x ' ) )  
on which the restricted exponential map s x , is diffeomorphic and the image of the 
neighborhood is a neighborhood of x '  in F x which contains x ' .  Accordingly the 
point z is called an o r d i n a r y  p o i n t  of the set S  П F x  if z has a neighborhood in 
S  П F x  which is a cell of codimension 1 in F x , otherwise z is called a b r a n c h  p o i n t .  
Let now Cx U ... U Cg be the decomposition of the set of ordinary points of 5T] F x  
into its components, then the subsets Cl , C q are submanifolds of codimension 1 
in F x .

Let G  be a compact connected Lie group and consider its adjoint action 
Ad: G X g—9  on its Lie algebra g. Let the orbit of X £ q  be principal, then 
i) =  F(Gx) c g  is a Cartan subalgebra where the Weyl chambers are bounded by flats 
Tczl) of codimension 1 called the walls of the Weyl chambers. Moreover, to each 
wall F  there is an element g  such that Ad,; restricted to i) is equal to the reflection of 
1) on F  and the group generated by the restricted actions of such g  as F  runs through 
the set of walls of Weyl chambers in I) is called the Weyl group o f G .  In a former 
paper generalization of the Weyl group has been given for orthogonal action with 
isotropy subgroups of maximal rank [12]. It is shown below that such generalization 
works in a much more general setting.

T heorem 3. L e t  M  b e  a  c o m p l e t e  a n a l y t i c  R i e m a n n i a n  m a n i f o l d ,  G  a  c o m p a c t  
c o n n e c t e d  L i e  g r o u p  w h o s e  e l e m e n t s  a r e  i s o m e t r i e s  o f  M  s u c h  t h a t  t h e  i s o t r o p y  s u b g r o u p s  
o f  i t s  a c t i o n  or. G X M —M a r e  o f  m a x i m a l  r a n k .  I f  t h e  o r b i t  G  ( x )  o f  x £ M  i s  p r i n 
c i p a l  a n d  i t s  f o c a l  p o i n t  c  i s  a n  o r d i n a r y  p o i n t  o f  t h e  f o c a l  l o c u s  F ( G ( x )  )  th e n  t h e r e  i s  
a n  e l e m e n t  g £ _ G  s u c h  t h a t  a g r e s t r i c t e d  t o  t h e  c o m p o n e n t  F x c F ( G x) i s  a n  i n v o l u t io n  
a n d  m a p s  F x C \ F ( G ( x ) )  o n t o  i t s e l f  k e e p i n g  a  s u f f i c i e n t l y  s m a l l  n e i g h b o r h o o d  o f  c  in  

t h i s  s e t  p o i n t w i s e  f i x e d .

P roof. In fact, since c  is an ordinary point of F ( G ( x ) )  there is a unique geode
sic y :  R —M in the totally geodesic submanifold F ( G X)  with у  (0) =  c  which is 
orthogonal to F ( G ( x ) )  on account of Theorem 2 and of the preceding Corollary. If z 
is a point of у  such that G(z) is principal then z is a point of G(z) at minimal distance 
from c  provided that z is sufficiently near to c . In fact assume that z is not at minimal 
distance from c, then c  is a point of G(c) which is not at minimal distance from z and 
then there is a point c f G ( c )  which is at minimal distance from z, but then there is 
a cut point of G(c) on the minimal geodesic segment joining t  to c .  But this yields 
a contradiction if z is sufficiently near to c . Let now у  be a point of у  such that z c y  
holds and let z be a point of G(z) at minimal distance from y .  If у  is in a sufficiently 
small strongly convex neighborhood U  of c  ([1] pp. 246—250) then F ( G  (x ) )  П U
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has only ordinary points and then z  is on the same side of F { G (л))П U  in U  as y ;  
in fact a minimal geodesic segment joining у  and z cannot intersect the focal locus 
of G(z). Let now z '  be a limit point of г as у  tends to c  on y .  There is a g € G  such 
that z '  =  o t ( g ,  z )  is valid. Now, a9 maps S  onto itself by definition of S  and ac maps 
F ( G X)  onto itself as well by Lemma 3. Consequently, otg maps S П F ( G X)  onto itself 
and therefore interchanges the submanifolds Cl t ..., Cq among themselves. Let now 
C be that one of the Cy, ..., Cq which contains the point c .  Since c  is ordinary otg 
maps C  onto itself if z is sufficiently near to c .  Consequently, ocg maps у onto a geo
desic passing through z '  and orthogonal to C and therefore otg maps у  onto itself if z 
is sufficiently near to c . Consequently, ocg leaves c  fixed and maps z onto z ' .  Assume 
now that ocg does not leave all points of C  fixed, then the set of fixed points of a g 
is nowhere dense in C ,  since the existence of an open subset of fixed points of C  
would imply that every point of C is left fixed by atg . Thus there is an ordinary point 
с г of C  which is not left fixed by x g. The above construction of g  applied now to c \  
yields an element g ^ G  with analogous properties. If a9l does not leave all points 
of C fixed then there is an ordinary point c 2 of C which is not left fixed by a9 and agl. 
Thus the above construction of g  applied to c2 yields an element g 2£ G .  The repe
tition of the above process yields a sequence {g,| z£N} o f elements of G .  Since otg . 
maps F ( G X)  onto itself g t is an element of N ( G X) by Lemma 3 for z'6 N. On the other 
hand the restriction of <xg . and <xg . to F ( G X)  is different if i  j  by the above construc
tion. Therefore the natural homomorphism N ( G X) - » N ( G X) / G X maps different ele
ments of the sequence onto different elements. Since G x  is of maximal rank the group 
N ( G X) / G X is finite and thus a contradiction is obtained. Therefore ag has to leave all 
points of C fixed. Thus the assertion of the theorem follows.

Since the submanifolds , ..., Cq consist of fixed points of isometries they are 
open subsets of totally geodesic submanifolds F t , ..., F r o f  codimension 1 in F x . The 
components of the set

f ’. - U  {*Щ =  1 ,

are called g e n e r a l i z e d  W e y l  c h a m b e r s  of the action a and the totally geodesic sub
manifolds F x , F r are called walls of the g e n e r a l i z e d  W e y l  c h a m b e r s . Moreover, 
to each F t there is an element g f N ( G x ) such that the restriction of u g to F x is an 
involution and every point of F t is left fixed by a g . Let now W c z N ( G x ) be the sub
groups generated by elements g  which correspond to the totally geodesic submani
folds F x , ..., F r in the above way, then the group W  =  W / G g is called the g e n e r a l i z e d  
W e y l  g r o u p  of the action a.
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ON THE DIVERGENCE OF VILENKIN—FOURIER
SERIES

P. SIMON (Budapest)

Introduction

Throughout this paper we are concerned with the divergence of the Fourier 
series with respect to the Vilenkin systems [17]. In the theory of the trigonometric 
series a remarkable theorem of A. N. Kolmogoroff [8 ], says that there exists an in- 
tegrable function with everywhere divergent Fourier series. In Kolmogorolf’s 
proof this function is constructed by means of a rather complicated method. It is 
worth mentioning that by a theorem of Y. Katznelson [4] it is enough to prove the 
existence of an integrable function with almost everywhere divergent Fourier series
[7]; from this fact it follows already that there exists a function with everywhere 
divergent Fourier series.

The analogous question for the Walsh—Paley system was investigated first by 
E. M. Stein [16]. He proved the existence of an integrable function the Walsh— 
Fourier series of which diverges almost everywhere. Later F. Schipp [12] [13], using 
Kolmogoroff’s method, constructed an integrable function with everywhere diver
gent Walsh—Fourier series. We remark that the analogue of the above mentioned 
result of Y. Katznelson was verified for the Walsh—Paley system by D. C. Harris— 
W. R. Wade [3] and Sh. V. Kheladze [5].

For the Vilenkin systems — with certain boundedness criterion •— Sh. V. Khe
ladze [6 ] proved the existence of an integrable function with everywhere divergent 
Vilenkin—Fourier series by means of Katznelson’s idea. He proved that the existence 
of such a function follows already from the existence of an integrable function with 
divergent Vilenkin—Fourier series on a set of positive measure. This follows from the 
well-known theorem of S. V. Bockariev [1].

In this connection we remark that P. D. Getsadze [2] sharpened Bockariev’s 
result in the following way:

Suppose ( f k , 1) is a bounded functional orthonormal system satisfying the 
condition

(n +  l ) I - l

lim inf У  1Л (0 1 2 <  + °° for a.e. t ,
k=nl

where / is a natural number independent of t . Then there is a function the Fourier 
series of which for the system ( f k , k ^ l )  is a.e. divergent.

Since the above conditions are true for all Vilenkin systems (e.g. /=1) the 
existence of the a.e. divergence follows. The above mentioned Katznelson’s idea is 
not known for all Vilenkin systems.

In this paper we construct an integrable function the Vilenkin—Fourier series of 
which is everywhere divergent. We give the proof on the analogy of a beautiful simple
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construction of a function, for the Walsh—Paley system by F. Schipp.1 In addition to 
the general case we investigate the so-called “unbounded” case and give a construction 
in this case, which is useful in the proof of certain statements on the divergence. 
By means of these assertions for the divergence we shall illustrate the sharp contrast 
between the “bounded” and the “unbounded” case. We are concerned also with the 
growth of the partial sums of the Vilenkin—Fourier series.

§ 1

In this section we establish the notation and terminology to be used in the sequel. 
Let

m =  (m0, m1? ..., m k , ...) ( 2  s  m k , m kd N, k d N :={0 , 1 , ...,}) 

be a sequence of natural numbers and denote by Z ,„ k the m xk discrete cyclic group, i.e.

Z mk := {0, 1, ..., in* — 1} (/c6 N).

If we define the group G m as the direct product of the groups Z „ k , then G m is a compact 
Abelian group. Thus the elements of G m are of the form лг= (лг0, jcl 5 ..., x k, ...) 
with 0 s x t <m t(/c£N) andfor x ,  у  in G m their sum x - \ - y  is obtained by adding the n,h 
coordinates of x  and у  modulo m „ . The topology of G m is determined completely by 
the following sets in G m :

Li*) ■= {т€С,„: у =  (x0, xn_j, y„, ...)} ( x d G m , ndN).

Next, let G m : = { \ j / n \ /;£N} (the so-called Vilenkin system) denote the character 
group of G ,„ . We enumerate the elements of G,„ as follows. For k£N let r k be the 
function defined by

r k ( x )  := exp 2n^ * k ( x £  G m, i := /^ T ).

If we define the sequence (M k , k d N) by M 0 : =  1, M k + x : = m k M k ( l e d N), then 
each n£N has a unique representation of the form

n =  2  nkMk,
k — 0

where 0^nk<mk, nk£N. For such /7€N we define the function фп by

'/л, := П(Гк)”к-k = 0

We remark that G m is a complete orthonormal system with respect to the normalized 
Haar measure on G m [17]. Furthermore, if  m n — 2  (n€N) then G m is the Walsh—Paley 
system.

1 Personal communication.
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For a function /$L  1(Gm) let

/(* ) := / Ж  (*€N),
Gm

SnU )  := 2 Х/( * Ж  (n€N), < x „ ( / ) := | J  W )  («€N \{0» ,fc = 0 n *=i

A ,  : =  " Z 'I 'k  ( n € N ) ,  2  A k ( « € N \ { 0 } ) ,  т y { f ) ( x ) : = f ( x - y )  ( x , y £ G m) .
k = О И fc = l

(-denotes the inverse of the group-operation).
The modulus of continuity and the integral modulus of continuity are defined by

c o ( f , S ) : =  sup H /- tx( / ) l l -  (/€C (G J),A(x)<5

® t ( / , * ) : =  s u p  Ц / - т х ( / ) | | 1 ( / 6 Í - 1 (<?„)),A(x)<«5 

00 X*where <5>0 and А(дс):= 2 ~ n ~— (x= (x0, xls ...)£(7m), and ||/ ||p denotes the
i = o  M i+ 1

//-norm of /  (1

§ 2

In the proof of the statements on the divergence mentioned in the introduction 
the following “polynomials” of G m play an important role.

Let us assume that tn „k—2 (/c= 0 ,1 ,...) in the original occurence and introduce 
the following notations:

^k (*€N),

([ ] denotes the entire part),

N := {n€ N: A n *  0}, N n : =  2  A kM k («£N),
k  =  0

К  :=
y f j - r j  

J = 1  j  

( - 1  Yrk

( ™ k  >  2 )  ,

(fc6N), :=  2  - г г  h*D*k ( ^ N)-=  ™„a — 2 ) t=o M k

For the partial sums of the Vilenkin polinomials P k the following statements are 
true [14]:
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(i) 1̂ „(Л.)(х)| s ciogмп (хеш),
(ii) I P J U  S  Зл (neN ).
(C>0 will denote an absolute, although not always the same, constant.)

By means of the polynomials P „  we define the following functions:

s )  .__ J J  ( 1  I Гп + к  + 1Г ек з „ ( Р п )  r n +  fc +  l T cie, „ ( P n )  )

— PJo { 6n ) ’
П — 1

where for k =  2 !  k tM t e  {0 , 1 , ..., M„— 1}, e k i„ is defined by 
>=o

ek,n'.= (k0,klf... , f c „ _ ! ,0 ,0, ...)C C m.
It is immediate that the values of Q „  are real and Q„s0. Furthermore, it is easy to 
prove that | | 0 J i =  f  Q „  =  1. Indeed, if we observe that

, “ n + b+l+Vn+Wn-1 ,
^и +  fc +  l^ e fe  2  У i k r  i  9

■'“ м п + к + 1

__________  _  ( m n  + fc + l _ 1 ) A in  + fc +  l  +  ( m n _ ' 1n  +  4 JVi» ~ 1

rn+*+iT«fc „№■) =  2  yik'I'i
'=C"„+t + i - « M, +k+i

(with some coefficients yifc) and

-^п+к+1+(^л+1)-^л~1 *= Мп+к+1(?Пп+к+1—1) -= (mn+t+1 —1)Мл+к+, + 

+  (т л~^л +  1 < М п + к + 2,
then we can prove without difficulty the relations

r JL ^n + j t + l^ejt,n(P n)P rn + jc + l^ejt,n(Pn) _

( 1  0 ё л < / 2 < - < Л < В Д '
From the above facts it follows that

^ k ( Q n )  S \ f „ + к + 1 + n „ ( Q n )  ~  S M n+k+1( Q „ )  —

_  c  (  r n +  k  +  l Tek , „ ( P n ) P r n + k  + l Tek ,n ( P n ) \  _  1  _  _  /  c  f  D  \ \
—  b M n  + k  + l  + N „ (  f a  J —  ~ f a r "  + k  +  l T<-k, „ (OiV„ ( r n )J ,

i.e. for x e i „ ( e kt„) ( k = 0 , M „ — 1) we have

l<5*(ß„)(*)| -  \ S Nn( P „ m \  S  C log M „ .

On the basis of the properties of the Vilenkin polynomials Q „  we can construct 
already an integrable function with everywhere divergent Vilenkin—Fourier series

Acta Mathemaiica Hungarica 41, 1983



ON THE DIVERGENCE OF VILENKIN—FOURIER SERIES 363

using standard arguments. Let namely 0 (/c€N) be a sequence for which
oo

2  ek <  +  ° °  holds. Then for all sequences of the indices (n k , k e N) the function
k =  0

( 1) f '-=

belongs to L f G J  and with p j : = M M n j+ 1 + M n j+ k j+ 1 ,  q j : = p j + N n . ( j e N, / c ~ 0 , ..., 
..., the equality

l ^ ( / ) - ^ ( / ) l  = B j\S k ] ( Q nj) \

holds. For an element x e G m let the number k j  be chosen such that x e l n j( e k jin .) 

" j - i

(i.e. k j  =  У. х;Мг.) Therefore 
г= 0

(2) IS PJ ( f ) ( x )  - S q j( f ) ( x ) I =  e j \ A kj ( Q n) ( x ) I Sr C e j  log M nj

and if lim sup Sj log M n j >  0 then the Vilenkin—Fourier series of the above function 
/  diverges everywhere. Thus we proved

T heorem 1. F o r  a l l  s e q u e n c e s  m  t h e r e  e x i s t s  a n  i n t e g r a b l e  f u n c t i o n  w i t h  e v e r y 

w h e r e  d i v e r g e n t  V i l e n k i n — F o u r ie r  s e r i e s .

Later we shall discuss also the “unbounded” case, i.e. when lim sup m =  +  °°. 
If the sequence m  increases rapidly enough, we can construct an example with the 
condition of Theorem 1 in a very simple way. We have to observe only that for m n >2

\S snM „ + i ( K ) ( x ) \  =  2  V i  s  c l °g m n On =  0).
j= 1

We assume m n + 1 ^ 2 2m" ( n e N) and consider the following Vilenkin polynomials:
— 1 / 22k+ 1 I 22k+ 1 .

Rn -.= kh  (1+rn+18J n+1- ^ M  ^

where z k n : = ( 0 , 0 ,..., 0, k ,  0, ...)£Gm ( k = 0,..., m „ — 1). By a similar argument as
above it follows that ||Ä„||1=  J  R n= \ ,

om
|5,22k + iMn + i+diiMn+i(i?„)(x) — S 2tk t iMntl ( R n) ( x )  I =

=  ^l4n(^„M „+iOOO))l =  C l o g m n (x „  =  к  =  0, ...,m n-l;n<EN).

For a sequence ал> 0  (fc£N), let
k=  о

(3) g := Z « n ( R n - i yrt—0
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Then obviously, g  belongs to V ( G m) and for all n £ N, x d G m , k : — x n we have

\S 2.2k + 1M„ + 1 +  A„M„ + 1 ( g ) ( X )  ~ S 22k* 1M„ + l  (g)WI =

=  a„|^>x + +1+лпмп+1  (Я„)М — S2®+ 1м„ +!(R n ) ( x )I -  Ca„log m „ .

Since w„+1 s 2 2mn (n£N), the sequence ( a k , k £ N) can be selected such that 
lim sup a„ • log wn = - 0  and therefore the function g  has an everywhere divergent 
Vilenkin—Fourier series.

In the next theorem we give a lower bound for the partial sums S „. We assume 
that the following assumption for the sequence m  is fulfilled:

(4) lim sup log M n
log log M M n+l

>  0 .

Then the following sheoram is valid.
T heorem 2. L e t  m  b e  a  s e q u e n c e  w i t h  p r o p e r t y  (4). T h e n  f o r  a l l  s e q u e n c e s  w n =  

=o(log log n )  ( n  -*• t h e r e  e x i s t s  f ^ . L 1 ( G m)  s u c h  t h a t

lim„ sup |W )(* )I 0 (x € G m).

We remark that for a bounded sequence m  (4) is trivially true. On the other hand, 
there is a sequence m  with property (4) which is not bounded. (So e.g. m„: =  2" +1 

(n£N).) But (4) is not valid for all m .  (E.g. m 0 \ — 2 ,  m„: =  22',n(«6N).) Theorem 
2 for the Walsh—Paley system was proved by F. Schipp [12], [13].

In [15] we showed that for a function /€L 1(Gra) each of the following conditions 
implies the a.e. convergence of (£ „ (/), n€N):

(5)

and

(i) 2 ’ m k f  f  \ f ( x + u ) - f ( x ) \ D M k ( u ) d x d u <  +oo
k ~ °  Gm Gm

1 (ii) bt) *  + “

(iii) co1 \ f ,  j  =  о  (log M k) - 1 ■- £ ( fc -o o )

( * ) m k(  log M k)  1 '< + ■ »  (e >  0).

It is evident that for a bouneed m  we can omit the factors m k and the condi
tion (*). We shall prove that conditions (5) (i) and (5) (ii) without the factors m k 
generally do not imply the a.e. convergence. Since (i) follows from (ii), it is enough 
to prove the following theorem.

T heorem 3. T h e r e  e x i s t  a  s e q u e n c e  m  a n d  a  f u n c t i o n  g ^ L 1 ( G m)  s u c h  th a t

. i > 4 s ’T r l<  +  CO a n d  ( S n( g ) ,  n £  N ) i s  e v e r y w h e r e  d i v e r g e n t .  
k= о v M k)
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The following problem due to A. Zygmund [18] is well-known in the theory of 
the trigonometric series: does the condition cok ( f  <5)= 0  (log l/<5) - 1  (5—0) for an in- 
tegrable function /imply the a.e. convergence of the Fourier series of/?. This problem 
— and the analogous question for G m — is open. In this paper we shall investigate 
the problem for <5m.

If the sequence m  is bounded, then for a function f Z L 1 ( G m) the relation 
a>1 ( /, S )  =  0 ( a >  ( Ő ) )  ( ő  0, со is a modulus of continuity) is equivalent to the restriction

Therefore, in this case the question of A. Zyg
mund has the following form: does the condition

( 6 )  C0i ( / ,  =  о  (log M k)  - 1  (к -  со )

imply the a.e. convergence of n Z N)? In the next theorem we prove that for
unbounded sequences m  condition (6 ) is generally not sufficient for the a.e. conver
gence.

Theorem 4. T h e r e  e x i s t  a  s e q u e n c e  m  a n d  a  f u n c t i o n  f Z I d ( G f )  s u c h  t h a t  (6 ) 
i s  t r u e  a n d  (S „ ( f ), n Z N) i s  e v e r y w h e r e  d i v e r g e n t .

We shall see in the proof that the sequence m  in Theorem 4 is not bounded. There
fore the complete solution of A. Zygmund’s problem for G m remains open both in the 
bounded and in the unbounded case. If we repalace “log l/<5” by (weaker) 
“log log 1 / S ” ,  then the following theorem is true.

T heorem 5. (i) F o r  e v e r y  b o u n d e d  s e q u e n c e  m  th e r e  e x i s t s  a  f u n c t i o n  f Z  L1(Gm) 
f o r  w h ic h

(7) C0 i ( f  8 )  =  О (log log (5 -0 )

h o l d s  a n d  ( S „ ( f ) ,  n Z N) d i v e r g e s  e v e r y w h e r e .
(ii) T h e r e  e x i s t  a n  u n b o u n d e d  s e q u e n c e  m  a n d  a  f u n c t i o n  g Z L H f j f )  s u c h  t h a t  (7) 

i s  t r u e  f o r  g  a n d  th e  V i l e n k i n — F o u r i e r  s e r i e s  o f  g  d i v e r g e s  e v e r y w h e r e .

We remark that part i) of Theorem 5 for the Walsh—Paley system was proved 
by F. Schipp [13].

Related to the conditions (5) we make the following remarks. If for a modulus
oo

co the estimation 2 !  И7ла)(1/Мл)<  4 - 00 holds, then from
k = 0

< * h { f , " У  =  0 ( c o ( l / M kj )  (Jk---- ь f Z L 1 ( G j )

the a.e. convergence of ( S „ ( /) , n€N) follows (so e.g. in the case c o ( l / M k) =  
= 0 ( m k 1 - (log Mt)-1-£) (k—oo, £>0)). However, a ) ( \ / M k) ~ ( \ o g  M k) ~ 1 (k—°=>)

oo
cannot be chosen, since for every m  the relation £  m k Q ° S  М к) ~ г =  +  holds.

In [15] we showed that the condition co =  o ( m k log M k)  1 ( k - - )
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implies the £ x-convergence of (S n ( f ), n€N) ( f ^ L 1 ( G ,„ ) ) . If we modify the proof of 
this statement, i.e. we follow the method of the proof of the sufficiency for a.e. con
vergence of (5) (i) (see [15]), then — taking into consideration the relation

Ms f
r,c°).

Z rJs  

j = 1
=  O(logn) =  О  (log m s)

(и = 1 , m s — 1 , s - ~ °°) — we obtain the following assertion: 
Any of the following conditions implies the ZZ-convergence 

(.f { L \ G m)):
of { S n( f ) , n e N)

(8) (ii) ö 1( / , ^ )  =  OOogM*)-1- ( k  — g > 0 ) and

2 1 Cog "JkXlog M*) 1 E<  + « .k= 1

Consequently, if (5) (ii) or (5) (iii) is true, then (S n ( f ), n€N) converges a.e. 
and in ZZ-norm. It is an open question whether the weaker conditions (8 ) are suffi
cient for the a.e. convergence. Unfortunately, this will not bring us closer to Zyg-
mund’s problem, since У  =  +  »  for every m .

k=i log M k
We remark that for certain sequences m  condition (8 ) (i) is weaker than the above 

mentioned сог ( / ,  l / M k) =  о ( m k log M k) _ 1  e.g. for m „ : = 2" +1 (n€N).
By means of a counterexample, it was proved in [15] that ffli(/, l/A/*) =  o(log Mt ) _1 
( k  -+«>) is generally not sufficient for the L1-con verge nee. If we put m k \ = 2 M« 
( k ( z N )  in this counterexample, then we attain the growth condition 1 / M k) =
=  0 ( l / M k)  ( f c - o o ) .

Finally, we remark that the analogous statements to the above mentioned asser
tions for the /J-convergence are true for the uniform convergence if we use /€C(Gm) 
and c o ( f S ) .

We shall investigate again the (C, l)-summation of continuous functions. It is 
known [9], [10] that for bounded sequences m  the (C, l)-means <r„(/) of a continuous 
function are uniform convergent. However, this is no more true in the unbounded 
case, since J. Price [11] showed the existence of a continuous function with divergent 
(C, l)-means. In this work we prove Price’s theorem by means of a construction.

T heorem 6 . (J. Price [11]). F o r  a n y  u n b o u n d e d  s e q u e n c e  m  t h e r e  e x i s t s  a  c o n t i 
n u o u s  f u n c t i o n  f £ C ( G m) s u c h  t h a t  lim sup |«rk(/)(0 ) |=  + °°.

We remark that Price showed the relation lim sup |1AT„||i =  +  °° in the unbounded 
case, from which Theorem 6  follows. On the other hand, from Theorem 6  
lim sup||Zf„||1=  +  follows.

If the sequence m  increases rapidly enough then we can prove that the function 
f  in Theorem 6  has a certain smoothness condition. So e.g. if a sequence (n k , k £ N)
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of indices can be selected with the properties

(9)
(i) m„0 <  m ni <  ...

(ii) lim sup (log m „ k)  • M “ 1 =  + «»,

then the following corollary is valid.
Corollary (J. Price [11]). / /(9 )  i s  t r u e  th e n  w e  c a n  c h o o s e  t h e  f u n c t i o n f  in  T h e o 

r e m  6  w i t h  th e  f o l l o w i n g  p r o p e r t y :

c o ( f l / M k)  =  0 ( \ / M k)  (*-«»).

It is evident that (9) cannot be true for all unbounded sequences m ,  e.g. for 
m „ : — n  +  2  ( n £ N) we have

lim l°g m n 

M i ,
=  lim log f a + 2 )

f a + 1)!
=  0 .

§ 3. Proofs

P roof of Theorem 2. We can assume that w „ = ß n log log n  where
fa&fa S ... and lim ß „  =  0 ,  lim w„= +  » . Let ( n k , k ^ N )  be the sequence of indices

defined by 2 Ац< м  and consider the function / i n  (1) with e k : = ß n ( k £ N ) .
k~0

For x £ G m and for j £N let

kj • 2  XiM{, q,. Ммп Pj. .

Then we have by (4)

lim sup fa., ( / ) ( * ) - fa  (/)(* ) I
fa.log log P j

C  lim,- sup log M nj
fa  log log MM 0 .

From this t̂aking into consideration the relation lim sup >()j Theorem 2 

follows.
Proof of Theorem 3. We consider the function g  in (3). Then for every k £ N

oo oo oo
we have c o ^ g ,  l / M k) ^ C  2  ie . 2  ah ( g ,  l/A Q sC  fa m „ . Since the growth

n = k — l  k = 0  и = 0

condition т л+,Ё 22я» (n£N) holds, evidently the sequence a„=»0 (n6 N) can be 

selected with the properties fa и а„<+°° and lim sup a„ log m„>0 .
n = 0

Proof of Theorem 4. Let us define the sequence m  in the following way: 
m k : =  4 Mk ( k £ N). Then m k + 1 ^ 2 2mk ( k £ N) is evidently true and the Vilenkin—Fourier
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00 ^  _1

series of the function g :  =  У. — 5----- < ^ l } ( G m) in (3) is everywhere divergent. Onn=o log m „
the other hand

cuj(g, 1 / M k)  3= 2
1

„ J k - i  log m n log m k _ 1
( k  =  1,2,...).

Since log M k =  \ o g  M k _ k +  log mA_1=log /»*_! + log log rnJt_ 1<21oe m k _ x , the es-
1 2  1timation ------------- < - ----—  is true, i.e. й .(г , l/M dsC -;---- 7 7 - follows.log m k - x  log M k Vö log M k

Proof of T heorem 5. (i) For a bounded sequence m we introduce the follow
ing notations: M :=sup m , nJ:= 2J, eJ:=2~-i (/€N) and we consider the function
/ : =  2  £ к г м „ +1Q „ k£ L 1 ( G m)  in (1). Therefore the Vilenkin—Fourier series of f

k = 0 "k

diverges everywhere and

" i ( / ,  lAffc) =  Z  ej = . 2  ej ’
* — + 1 j~J‘o *

where the natural number j 0 is defined by

j - i >„+i
Л/ 2 + 1 <  к  s  M 2 0 .

From this it follows that

c o A f l / M , ) ^  2  2-J =  22~yo ^  C g  - ■ - ?  (A:-*0 0 ),
J = J0- 1  logic log log

i.e. on the basis of our earlier remark on the integral modulus we have

S) =  О (log log I/Ь)“1 («5 -  0).
(ii) We consider the function g  in the proof of Theorem 4. It is enough to prove 

that for this function (7) is fulfilled. Indeed, let k £N be the index for which '
M ,.

-Ő S
1 is true. Then

log m k log M k _ k log log M k log log 1/.5 '

P roof of T heorem 6 . We assume lim sup m — +  °° and select the sequence 
( n k , k £ N) of indices with the following properties:

0)

(ii) there exist numbers ß k > 0  (/c£N) such that lim sup ß k log m„ =  +  °° and

Z f t
k=0

+ ■
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If we consider the function / : =  2  ß k C ( G m) ,  then — on the basis of the
k = 0

definition of h ,’s — we have

<7j „,m„,+i ( /) (0 )  =  2  ßj<rjn M „ + i ( h j W  =  M i „.m„ + i ( \ ) ( 0 )  +К К j _ q к К J к К к

+  k£ ß j < T , „ M n + i ( h „ jm  =  : Л +Л * (*€N).
j  =  0  k

It is enough to give suitable estimations for v4fc and for
j  ,  . ,  x ч , /  A

l* '-‘I ■ a | 1 ‘-  w r ) j  =■ Al f  j ~ ' ) E < *  ■»*
i.e. lim sup A k =  +

2° \ВЛ =
k- 1 
V . f t

J  M +1«к "к

j =о /!„ M„ + r  2  s,(hnjmI i=i

2 ßj
м . , —Af"J

7= 0 ^1,, M „  + 1  »=Af +1
2  s ((/4 .)(0 )

7=o J„kM„k +  l 7 = 0

Therefore, lim sup |<rj„ m„ (/)(0)| =  Hm sup \A k \ — lim sup |Д ]=  +

Proof of Corollary. Let (9) be true and define ßk: =  l / M „ k (k£N). Then

2  ß k =  2  2 - k<  +■t=0 k=0
and

lim sup ß k log m „ k =  lim sup log w„
+  ° ° .

Therefore, for the function/ : =  2  j8*Äe €C(Cm) the relation lim sup |<x„(/)(0)| =  +<»
*  =  0

holds by Theorem 6 . Furthermore, we have for /€ N

ш(/, 1/M7.) =  2  ßk =  c/M„k ,
V -J J

where k j ^N is defined by Hence <u(/, I j M ß s ^ C / M j  follows.
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A NOTE ON THE SHARPNESS 
OF J. L. WALSH’S THEOREM AND ITS EXTENSIONS 

FOR INTERPOLATION IN THE ROOTS OF UNITY
E. B. SAFF1 (Tampa) and R. S. VARGA2 (Kent)

§ 1. Introduction and statements of new results

Let Ae denote the collection of functions analytic in \z\ <  q  and having a singu
larity on the circle \z\ =  q ,  where it is assumed that 1 <  q <  °°. Next, for each positive 
integer n, let / )  denote the Lagrange polynomial interpolant, of degree at
most и —1, of f(z)£A e in the n-th roots of unity, i.e.,

(LI) p„-i(w; / )  =  /(со)
where a> is any л-th root of unity, and let

(L2) Pn- i ( z ; f )  := "z  akzk
1  =  0

be the (n — l)-st partial sum of /(z) =  Z akzk- Letting
k = 0

(1.3) DT := {z£C: \z\ <  t},
then a beautiful result of J. L. Walsh [2, p. 153] can be stated as

Theorem A. For each f(z)dA„, the interpolating polynomials o f (1.1) and (1.2) 
satisfy
(1.4) lim {pn_1(z; f )  — Pn- 1(z; / )}  =  0, for all z£D02 .

П-*-оо

Moreover, the result o f (1.4) is best possible in the sense that there is some f(z )d A e 
and some z with \z\ = q2 for which the sequence {pn_!(z; f )  — P,l^ l (z; / ) } ”=i 
does not tend to zero as n - * ° ° .

Note that in Theorem A, no sharpness assertions are made for arbitrary functions 
f(z)dAg; in particular, no statement is made on the behavior of the sequence

(1.5) {p«-i(z; f ) -P „ - ! ( z ;  /)}Г=1
in |z |> e2. One of the aims of this note is to in fact address this behavior in |z|
As a special case of Theorem 1 below, we prove that, for any f(z)dA e. the sequence 
in (1.5) can be bounded in at most one point in jz| =>ß2. This fact is of special interest 
in the case when/(z) in Ae is also continuous in the disk \z \ S q ; for such functions, 
it has been shown in [1, Thm. 2] that (1.4) is valid for all \z \ ^ q 2 .

1 Research supported in part by the National Science Foundation.
2 Research supported in part by the Air Force Office of Scientific Research, and by the Depart

ment of Energy.
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For our own purposes below, we need a recent extension of Theorem A. For 
additional notation, set

(1.6) Л - 1.Д*; Л  := ' 'S  ak+Jnzk, j  =  0 ,1 ,....
k  =  0

Then, the following result of Cavaretta, Sharma, and Varga [1, Thm. 1], which gives 
Theorem A as the special case /= 1 , can be stated as

Theorem B. For each f  (z)£Ae, and for each positive integer l, there holds 

( 1 - 7 )  l i m  | p „ _ ! ( z ; / ) - Д  P „ _ i ^ ( z ; / ) |  =  0 ,  for all zeD c,+. ,

the convergence being uniform and geometric on any closed subset o f Deu 1. Moreover, 
the result o f (1.7) is best possible in the sense that there is some f  (z)£Ae and some z 
with | z | = f > , + 1  for which the sequence

(1.8) k - i ( * ; / ) - z 4 - i , .,(* ;/)}
I j = 0  J n = l

with z= z and f= f ,  does not tend to zero as 
Our first new result is
Theorem 1. For each f(z )£ A e, and for each positive integer I, the sequence

(1.8) can be bounded in at most l distinct points in \z\ =-gi+1. This result is sharp, in 
the sense that, given any l distinct points {qk}lk=1 in the annulus oi+1<  lz|< ß,+2, 
there is an f  (z)£A„ for which

(1.9) И т{ Л _1(|,4; / ) - Д Р . _ 1 . 1,(Ч4;/ )} = » 0 , fc = 1,2,

There is an extension of Theorem 1 which we can also state. Note, of course, 
that Theorem A involves only the Lagrange interpolation of /  in the м-th roots of 
unity. For r a fixed positive integer, Theorem В can be extended using Fiermite inter
polation. For notation, let /i„,_1(z; / )  denote the Hermite polynomial interpolant, 
of degree at most мм —1, to / , / ' ,  . . . , f {r~r> in the и-th roots of unity, i.e.,
(1.10) f )  — / (J)(co), j  = 0, 1, ..., r—1,

where again со is any п-th root of unity. If /(z )  — ajZJ\ we set
3 = 0

ril— 1

(1.11) o(z; / ) :  =  2  a kz k,li = 0
and we set

(1.12) 7fm -i,j(z’, f ) :  = ßj(z") ^  ак+ф +у_1)гк, j  = 1, 2, ...,
k=o

where

(1.13) ßjiz): = Д  ('‘+{ ~  ‘) ( z - l ) k, j  = 1, 2.......
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Then, the following result of Cavaretta, Sharma, and Varga [1, Thm. 3], which gives 
Theorem В as the special case r=  1, can be stated as

T h e o r e m  C. For each f(z ) fA 0, and for each pair o f positive integers r and I, 
there holds

(1.14) lim / ) -  2  / ) |  =  0, for all z£Dei+uM,

the convergence being uniform and geometric for any closed subset o f Dgi + a/o . 
Moreover, the result o f  (1.14) is best possible in the sense that there is some f(z )£ A Q 
and some z with |f) =  g1+<|/r) for which the sequence

(1.15) \hrn-i{z\ Л - ' ?  Hm-^jiz-, A  ,
l  J  =  0 J n = l

with z —z and f = f  does not tend to zero as n - + ° ° .

Our second new result, which sharpens Theorem C and gives Theorem 1 as the 
special case r= 1, can be stated as

T h e o r e m  2. For each f(z)£A e, and for each pair o f positive integers r and l, 
the sequence (1.15) can be bounded in at most r+ l— 1 distinct points in \z\> Q1 + ( l l r ) . 
This result is sharp, in the sense that, given any r+ l— 1 distinct points i 1 in

the annulus s1+(l/r)<  |z |< m in |? ,+2; i?1+r-1j ,  there is an f(z )£ A g for which

(1-16) Ü® {ft™-i(»7k; / ) - .2  Hm -i,M k\ / ) J  =  0, k =  1,2, ..., r + l - 1.

Since the proof of Theorem 2 is completely analogous to the proof of Theorem 1, 
we shall give only the proof of Theorem 1.

§ 2. Proof of Theorem 1

To establish the first part of Theorem 1, consider any (fixed f£ A e, consider 
any fixed positive integer /, and suppose that there are (/+1) distinct points 
{>•,}'t \  in |z |> e!+1 for which

(2.1) \p„-i(y+, / ) -  2  Pn-i,j(yk-, / ) |  S  M, V n S  1, VI ^  fc S  f+1.7=o

If /(z ): =  2 ajzf  then the hypothesis that /  is analytic in |z |< e  with a singu-
i=о

larity on \z\ = g gives us that

(2.2) Im laj1/" =  — .«—00 О
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Thus, for any e>0 with £ and with

(2.3) (2 -e ) '+2 >  Q,+1,
there is an n0(e) for which

1 vT> n0(e).(2.4) a, ^ (ö -e)n

Next, since all the points {ул} Й  lie in |z |> e '+1, then

(2.5) eI+1<<r1: =  min lyJ s  max |y*l = : <r2,

and we choose the least positive integer m for which

(2.6) a2 <  em+1, (where 1 <  m).

Applying Theorem В (with I chosen as in), we have that the sequence
\p n-x(z\ / ) — 2i Д -i ,(z; / ) [  converges to zero for all z£Dem+i. In particular, 
l j= 0 ’ Jn=l
as the points {j’t}(+l all lie in DB™+1 from (2.5) and (2.6), then there exists a constant 
Mj such that

(2.7) Рп-ЛУк', / ) -  2  рп-1,ЛУк\ f )J=0
S  Afls V n S l ,  V l = f c S / + l .

Using the hypothesis of (2.1), this in turn implies that

( 2 .8)
m — 1
2  рп-и(Ук, / )  j=i

== M2, V n S l ,  V i e l e s  / +  1.

that

Thus,

Recalling from (1.6) the definition of Pn_ltJ(z; / ) ,  then it follows from (2.4)

n* 2= J(4 y  . V» *  ».(e).

(2-9) \P,,-Uj(z; f ) \  g  ; Vn ^  n0(fi), V|z| >  q , \/j ё  1.

This can be used as follows. From (2.9), we see that, if / + l ^ /n_ i ? then

( 2 . 10)
»1-1
2  pn -ij(z \ f )  j=i+1

(m —/ —l)n|z|"  u  _  / 4  ,
( g _ £)(/ + 2 j„ . V n s „ 0 (8),  V | z | > 6 -

Hence, from (2.8) and (2.10),
(2.11)

\Рп-хЛУк\ / ) I -- M2+  (И>~ / ~ЧИ , ^ 1" , V « ^ u 0(£), V l S f c S /  +  l.
(e -e )(l
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Now, because of (2.11), it further follows that

( 2.12) \ЛРпЛУк, Л - Р п-гЛУк\ /)!  = M3 + М ^ п \У к \"  

(q — £)(,+ 2>"
for all я ё « 0(е), all Next, because of the definition of Рп- Лу(z; / ) ,
it can be verified that

(2.13) z'P„i((z; / )  — Р„-и(г; / )  =  2  aln+Jz J -  2  aln+jzj .
7 = о

Obviously, the last term in (2.13) is bounded, independent of n, in the points { л } й , 
whence from (2.12) and (2.13),

(2.14)
1 + ll
2  ain+jyi ^  M, , М4п\ук\п 

5 "г  ((>—e)(i+2)" ’
On dividing through by \yk\" in (2.14), we obtain

(2.15) 2  an(i+D+jyJk y=o
M , M ,n
b*l“ (g -s )0 + 2)n’ 

and so, from the definition of in (2.5), there follows

(2.16) 2  an(i+i)+jyJk7=o
M, МлП

l + 2)na'i (ß -£ )(,H
for all n ^ n 0(e), all If, for convenience, we set

t: = max(2.17)

then it follows from (2.3) and (2.5) that

(2.18)

io-i’ (e -e ), + 2} ’

l+l

Next, we write a system of (/+1) linear equations in the ‘‘unknowns” 
^(i+i)n+j -> ne..

(2.19) 2 yía(i+i)n+j
7 = 0

• fk, ni fc — 1 ,  2 ,  . . . ,  / + 1

where, from (2.16) and (2.17),
(2.20) \fk>n\ 7= M6m", n0(e), VI S  к S  / +  1.

In matrix notation, we can write the system of equations (2.19) as

( 2 .21)

1 Ух ••• yi
1 У 2 yi

1 У/+1 ••• У1+1.

a(l + l)n fl,n
a(l + l)n + l = / 2,11

.a(l + l)n + l.. 7̂ +  1 ..
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The coefficient matrix, A, in (2.21) is a Vandermonde matrix, and, as the points 
{.Vfc}í=1 are distinct by hypothesis, then A is nonsingular. Using Cramer’s rule, it is 
easy to see from (2.20) and the fact that the {yk}[+1 are fixed distinct points, that
(2.22) \a(i+i)n+j\ S  М7птп, Vn S  n0(e), V O s j S / .
However, (2.22) implies that

(2.23) lim |а„|1/л =  т1/(,+1> <  —
и’ ~ в

the last inequality coming from (2.18). As this contradicts (2.2), then there can be at 
most / distinct points {rjk}lk=1 in (z| >  £>,+1 for which the sequence (1.8) is bounded, 
completing thefirst part of the proof.

To establish the second part of Theorem 1, let wt(z) be any monic polynomial of 
degree / with precisely / distinct zeros in the annulus е '+1<|г]<(?,+2, i.e.,

(2.24) vv,(z) =  JJ ( z -r jk) =: 2  ß jzJ>
k = l  j  =  0

where
(2.25) q 1+1  < \rjk\ <  el+2 for к = 1 , 2 ,  ...,/.

Consider then the particular function

(2.26) f (z). =  _  w'(z) .
П  >'  n , + 1 — 7, + l  '

Clearly, f£ A c, and /  has l+ l poles on \z\ = g. We now show that with these defini
tions, (1.9) of Theorem 1 is satisfied. From Theorem B, we know that

(2.27)

We claim that
(2.28)

lim |p„_i(zr; / ) - Д  / ) |  =  0, \/z^De,^ .

lini P„-i,iOlk’ f )  = 0, V1 =  к == /.

To establish (2.28), write /(z ) :=  2  <*kzk- It follows from (2.24) and (2.26) thatо

(2.29) a m ( l+  1) +  j
ßj »■»«*VIIVIIо>

0 (m +  l ) ( i  +  l )  ’

Next, by definition,
n — 1

(2.30) P n -  1. | ( г ;  / ) =  2  áln+kzk,
k =  0

and we consider the case when n is a multiple of (/+1), i.e., «= (/+  l).r. On regroup
ing terms in (2.30) for such n, P„_l l(z: f )  can be expressed as

(2.31) Ps(l + f )  —  2  2 tC ,+ 1 )  2  <7(i +  l ) [ s /  +  t ]  +  j z J .
k  =  0  j  =  0
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But, the inner sum of (2.31) can be seen from (2.29) and (2.24) to be

(2.32)
I

2 ®(i+i)isi+u+jzJ
3 = 0

Wj(-)
e ( l+ l) [ s (  + * +  l ]  '

Since ir, (цк)=0  by definition, it follows from (2.31) that

(2.33) P ^+ D -1.«(%;/ )  = 0, V i s f e s / ,  Vs s i .
Having just considered the case when и is a multiple of (/+1), we now suppose that 
n=s ( /+ l )  + t, where On similarly regrouping the terms in (2.30) and using
the fact that wt(qk) = 0, it can be shown that

{2.34) Psii+^+t-i.ii^kl / )  — 2  äsia+v + it+jtli-
3 =o

Since the {qk}lk=1 are fixed, and t does not exceed /, then, as jé„|->-0 as from
(2.29), we have from (2.33) and (2.34) that

(2.35) lim Pn- U,(tik; / )  =  0, VI ss fc s  Z,П-*- oo

as claimed in (2.28). Thus, with (2.27) and the first part of Theorem 1, the sequence

(2.36) k - r ( z ;  / ) -  2  /)}
l  3 = 0  J n = l

is convergent (to zero), only in the points {qk}lk=i and unbounded for all other points 
in {z^C: |z |>p1+1}.

Added in proof. (April 14, 1983) The second part of Theorem 1 remains valid if any / distinct 
points (%}Ui are arbitrarily chosen in |z|=-eI + 1, with a similar improvement holding for Theo
rem 2. This has been shown by the author and, more generally by T. Hermann, ’’Some remarks 
on an extension of a Theorem of Walsh”, J. Approx. Th. (to appear).
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